This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6699.70 34100.00 199.73 76100.00 199.89 3499.79 1699.88 19299.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 23099.91 2998.08 31699.48 100100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27799.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6099.12 203100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 25099.93 2497.84 32899.34 127100.00 199.99 299.99 799.82 7799.87 999.99 899.97 499.99 1699.97 7
test_vis1_n99.68 4599.79 2799.36 22799.94 1898.18 30599.52 87100.00 199.86 45100.00 199.88 4398.99 10699.96 5499.97 499.96 6699.95 11
test_fmvs1_n99.68 4599.81 2399.28 24799.95 1597.93 32599.49 99100.00 199.82 6099.99 799.89 3499.21 7599.98 2199.97 499.98 3999.93 16
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 94100.00 199.94 21100.00 199.93 1799.58 3699.94 7999.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7299.01 23299.99 1099.99 299.98 1399.88 4399.97 299.99 899.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 3899.88 4299.55 13899.17 18399.98 1199.99 299.96 2499.84 6699.96 399.99 899.96 999.99 1699.88 26
test_cas_vis1_n_192099.76 3199.86 1299.45 19499.93 2498.40 29099.30 14199.98 1199.94 2199.99 799.89 3499.80 1599.97 3499.96 999.97 5399.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4299.66 10099.11 20799.91 3599.98 1399.96 2499.64 18499.60 3499.99 899.95 1299.99 1699.88 26
test_fmvsm_n_192099.84 1599.85 1699.83 3199.82 7099.70 8999.17 18399.97 1899.99 299.96 2499.82 7799.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8999.65 5098.97 29199.54 21797.16 35199.11 20799.98 1199.78 7099.96 2499.81 8398.72 14199.97 3499.95 1299.97 5399.79 54
mvsany_test399.85 1199.88 699.75 7299.95 1599.37 18199.53 8699.98 1199.77 7499.99 799.95 1399.85 1099.94 7999.95 1299.98 3999.94 14
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2899.88 4299.64 10999.12 20399.91 3599.98 1399.95 3299.67 17299.67 2799.99 899.94 1699.99 1699.88 26
MM99.18 17699.05 18399.55 16799.35 28598.81 25799.05 22197.79 38799.99 299.48 21899.59 22496.29 30599.95 6499.94 1699.98 3999.88 26
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 2999.73 7598.97 24499.98 1199.99 299.96 2499.85 6099.93 799.99 899.94 1699.99 1699.93 16
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3499.10 21099.98 1199.99 299.98 1399.91 2499.68 2699.93 9699.93 1999.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4899.07 22099.98 1199.99 299.98 1399.90 2999.88 899.92 11899.93 1999.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5699.82 3499.03 22799.96 2399.99 299.97 2099.84 6699.58 3699.93 9699.92 2199.98 3999.93 16
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5699.78 4899.03 22799.96 2399.99 299.97 2099.84 6699.78 1799.92 11899.92 2199.99 1699.92 20
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 21100.00 199.87 30
MVStest198.22 29998.09 29498.62 32699.04 35396.23 37199.20 17299.92 3199.44 14099.98 1399.87 4885.87 39499.67 36399.91 2499.57 27999.95 11
v192192099.56 7399.57 7299.55 16799.75 12799.11 22799.05 22199.61 18299.15 19299.88 6299.71 14299.08 9399.87 20699.90 2599.97 5399.66 105
v124099.56 7399.58 6899.51 17899.80 8499.00 23899.00 23599.65 16499.15 19299.90 5099.75 11999.09 9099.88 19299.90 2599.96 6699.67 96
v1099.69 4299.69 4399.66 11599.81 7899.39 17699.66 5399.75 10799.60 11999.92 4499.87 4898.75 13699.86 22599.90 2599.99 1699.73 70
v119299.57 7099.57 7299.57 16199.77 11199.22 21399.04 22499.60 19399.18 18199.87 7099.72 13499.08 9399.85 24399.89 2899.98 3999.66 105
v14419299.55 7699.54 7999.58 15599.78 10399.20 21899.11 20799.62 17599.18 18199.89 5499.72 13498.66 14999.87 20699.88 2999.97 5399.66 105
v899.68 4599.69 4399.65 12099.80 8499.40 17299.66 5399.76 10299.64 10599.93 3899.85 6098.66 14999.84 25899.88 2999.99 1699.71 75
v114499.54 7999.53 8399.59 15299.79 9699.28 19999.10 21099.61 18299.20 17999.84 7699.73 12698.67 14799.84 25899.86 3199.98 3999.64 123
SSC-MVS99.52 8299.42 10299.83 3199.86 5299.65 10699.52 8799.81 7999.87 4299.81 8899.79 9696.78 28699.99 899.83 3299.51 29599.86 32
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 899.82 7099.84 5499.94 3599.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
v2v48299.50 8499.47 8899.58 15599.78 10399.25 20699.14 19399.58 20899.25 17099.81 8899.62 20298.24 20599.84 25899.83 3299.97 5399.64 123
test_vis1_rt99.45 10099.46 9299.41 21299.71 14298.63 27698.99 24099.96 2399.03 20599.95 3299.12 33798.75 13699.84 25899.82 3599.82 18099.77 60
tt080599.63 5999.57 7299.81 3899.87 4999.88 1299.58 7798.70 35399.72 8199.91 4799.60 21999.43 4899.81 29799.81 3699.53 29199.73 70
V4299.56 7399.54 7999.63 13499.79 9699.46 15299.39 11599.59 19999.24 17299.86 7199.70 15098.55 16399.82 28299.79 3799.95 7999.60 153
mvs_tets99.90 299.90 399.90 799.96 799.79 4599.72 2999.88 4799.92 2699.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 20
WB-MVS99.44 10299.32 12099.80 4399.81 7899.61 12399.47 10399.81 7999.82 6099.71 13499.72 13496.60 29099.98 2199.75 3999.23 33599.82 46
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5399.68 4599.85 5799.95 1899.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 14
jajsoiax99.89 399.89 599.89 1099.96 799.78 4899.70 3499.86 5299.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 22
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
CS-MVS-test99.68 4599.70 4099.64 12799.57 20399.83 2999.78 1399.97 1899.92 2699.50 21599.38 28899.57 3899.95 6499.69 4399.90 11499.15 299
MVS_030498.61 25898.30 27899.52 17597.88 41098.95 24598.76 27494.11 40999.84 5499.32 25899.57 23495.57 31699.95 6499.68 4499.98 3999.68 88
CS-MVS99.67 5199.70 4099.58 15599.53 22399.84 2499.79 1299.96 2399.90 3099.61 17599.41 27899.51 4599.95 6499.66 4599.89 12598.96 342
mamv499.73 3599.74 3799.70 10199.66 17099.87 1499.69 4199.93 3099.93 2399.93 3899.86 5599.07 95100.00 199.66 4599.92 10299.24 274
pmmvs699.86 999.86 1299.83 3199.94 1899.90 799.83 699.91 3599.85 5199.94 3599.95 1399.73 2199.90 15999.65 4799.97 5399.69 82
MIMVSNet199.66 5299.62 5699.80 4399.94 1899.87 1499.69 4199.77 9799.78 7099.93 3899.89 3497.94 23199.92 11899.65 4799.98 3999.62 139
EC-MVSNet99.69 4299.69 4399.68 10599.71 14299.91 499.76 1999.96 2399.86 4599.51 21399.39 28699.57 3899.93 9699.64 4999.86 15499.20 288
K. test v398.87 23798.60 24699.69 10399.93 2499.46 15299.74 2394.97 40499.78 7099.88 6299.88 4393.66 33599.97 3499.61 5099.95 7999.64 123
KD-MVS_self_test99.63 5999.59 6599.76 6299.84 5999.90 799.37 12299.79 8899.83 5899.88 6299.85 6098.42 18499.90 15999.60 5199.73 22499.49 210
Anonymous2024052199.44 10299.42 10299.49 18299.89 3798.96 24499.62 6399.76 10299.85 5199.82 8199.88 4396.39 30099.97 3499.59 5299.98 3999.55 175
TransMVSNet (Re)99.78 2799.77 3399.81 3899.91 2999.85 1999.75 2199.86 5299.70 8899.91 4799.89 3499.60 3499.87 20699.59 5299.74 21999.71 75
OurMVSNet-221017-099.75 3299.71 3999.84 2899.96 799.83 2999.83 699.85 5799.80 6699.93 3899.93 1798.54 16599.93 9699.59 5299.98 3999.76 65
EU-MVSNet99.39 11999.62 5698.72 32299.88 4296.44 36599.56 8299.85 5799.90 3099.90 5099.85 6098.09 21999.83 27399.58 5599.95 7999.90 22
mvs_anonymous99.28 14399.39 10598.94 29599.19 32797.81 33099.02 23099.55 22199.78 7099.85 7399.80 8698.24 20599.86 22599.57 5699.50 29899.15 299
test111197.74 31798.16 29096.49 38799.60 18489.86 41799.71 3391.21 41399.89 3699.88 6299.87 4893.73 33499.90 15999.56 5799.99 1699.70 78
lessismore_v099.64 12799.86 5299.38 17890.66 41499.89 5499.83 7094.56 32599.97 3499.56 5799.92 10299.57 170
mvsany_test199.44 10299.45 9499.40 21499.37 27998.64 27597.90 36399.59 19999.27 16699.92 4499.82 7799.74 2099.93 9699.55 5999.87 14699.63 128
MVSMamba_PlusPlus99.55 7699.58 6899.47 18899.68 16299.40 17299.52 8799.70 13499.92 2699.77 10799.86 5598.28 20099.96 5499.54 6099.90 11499.05 328
iter_conf0599.64 5899.65 5099.60 14999.68 16299.62 11699.82 899.89 4299.92 2699.93 3899.86 5598.28 20099.96 5499.54 6099.91 11299.23 278
pm-mvs199.79 2699.79 2799.78 5299.91 2999.83 2999.76 1999.87 4999.73 7699.89 5499.87 4899.63 2999.87 20699.54 6099.92 10299.63 128
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 2999.90 799.96 199.92 3199.90 3099.97 2099.87 4899.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8999.65 5098.95 29499.71 14297.27 34899.50 9599.82 7099.59 12199.41 23899.85 6099.62 31100.00 199.53 6499.89 12599.59 160
test250694.73 37794.59 37895.15 39399.59 18885.90 41999.75 2174.01 42199.89 3699.71 13499.86 5579.00 41099.90 15999.52 6599.99 1699.65 113
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3799.91 499.89 499.71 12999.93 2399.95 3299.89 3499.71 2299.96 5499.51 6699.97 5399.84 36
FC-MVSNet-test99.70 4099.65 5099.86 2499.88 4299.86 1899.72 2999.78 9499.90 3099.82 8199.83 7098.45 18099.87 20699.51 6699.97 5399.86 32
UA-Net99.78 2799.76 3699.86 2499.72 13999.71 8299.91 399.95 2899.96 1799.71 13499.91 2499.15 8199.97 3499.50 68100.00 199.90 22
PMMVS299.48 8999.45 9499.57 16199.76 11598.99 23998.09 34099.90 4098.95 21399.78 10199.58 22799.57 3899.93 9699.48 6999.95 7999.79 54
VPA-MVSNet99.66 5299.62 5699.79 4999.68 16299.75 6699.62 6399.69 14299.85 5199.80 9299.81 8398.81 12499.91 14099.47 7099.88 13499.70 78
ECVR-MVScopyleft97.73 31898.04 29796.78 38199.59 18890.81 41399.72 2990.43 41599.89 3699.86 7199.86 5593.60 33699.89 17899.46 7199.99 1699.65 113
nrg03099.70 4099.66 4899.82 3599.76 11599.84 2499.61 6899.70 13499.93 2399.78 10199.68 16899.10 8899.78 31099.45 7299.96 6699.83 40
TAMVS99.49 8799.45 9499.63 13499.48 24699.42 16699.45 10799.57 21099.66 10199.78 10199.83 7097.85 23899.86 22599.44 7399.96 6699.61 149
GeoE99.69 4299.66 4899.78 5299.76 11599.76 6099.60 7499.82 7099.46 13799.75 11699.56 23899.63 2999.95 6499.43 7499.88 13499.62 139
new-patchmatchnet99.35 12999.57 7298.71 32499.82 7096.62 36398.55 29799.75 10799.50 12899.88 6299.87 4899.31 6299.88 19299.43 74100.00 199.62 139
test20.0399.55 7699.54 7999.58 15599.79 9699.37 18199.02 23099.89 4299.60 11999.82 8199.62 20298.81 12499.89 17899.43 7499.86 15499.47 218
MVSFormer99.41 11399.44 9799.31 24099.57 20398.40 29099.77 1599.80 8299.73 7699.63 16099.30 30798.02 22599.98 2199.43 7499.69 23999.55 175
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8299.73 7699.97 2099.92 2199.77 1999.98 2199.43 74100.00 199.90 22
SDMVSNet99.77 3099.77 3399.76 6299.80 8499.65 10699.63 6099.86 5299.97 1599.89 5499.89 3499.52 4499.99 899.42 7999.96 6699.65 113
Anonymous2023121199.62 6599.57 7299.76 6299.61 18299.60 12699.81 1099.73 11799.82 6099.90 5099.90 2997.97 23099.86 22599.42 7999.96 6699.80 47
SixPastTwentyTwo99.42 10999.30 12799.76 6299.92 2899.67 9899.70 3499.14 33199.65 10399.89 5499.90 2996.20 30799.94 7999.42 7999.92 10299.67 96
balanced_conf0399.50 8499.50 8599.50 18099.42 26999.49 14599.52 8799.75 10799.86 4599.78 10199.71 14298.20 21299.90 15999.39 8299.88 13499.10 310
patch_mono-299.51 8399.46 9299.64 12799.70 15099.11 22799.04 22499.87 4999.71 8399.47 22099.79 9698.24 20599.98 2199.38 8399.96 6699.83 40
UGNet99.38 12199.34 11599.49 18298.90 36498.90 25299.70 3499.35 29199.86 4598.57 35099.81 8398.50 17599.93 9699.38 8399.98 3999.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 3899.89 3799.72 8099.59 7599.82 7099.39 15199.82 8199.84 6699.38 5499.91 14099.38 8399.93 9899.80 47
FIs99.65 5799.58 6899.84 2899.84 5999.85 1999.66 5399.75 10799.86 4599.74 12499.79 9698.27 20399.85 24399.37 8699.93 9899.83 40
sd_testset99.78 2799.78 3199.80 4399.80 8499.76 6099.80 1199.79 8899.97 1599.89 5499.89 3499.53 4399.99 899.36 8799.96 6699.65 113
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2699.85 5799.70 8899.92 4499.93 1799.45 4799.97 3499.36 87100.00 199.85 35
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10399.81 7899.59 12899.29 14899.90 4099.71 8399.79 9799.73 12699.54 4199.84 25899.36 8799.96 6699.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 4999.88 4299.66 10099.69 4199.92 3199.67 9799.77 10799.75 11999.61 3299.98 2199.35 9099.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6799.64 5499.53 17399.79 9698.82 25699.58 7799.97 1899.95 1899.96 2499.76 11498.44 18199.99 899.34 9199.96 6699.78 56
CHOSEN 1792x268899.39 11999.30 12799.65 12099.88 4299.25 20698.78 27299.88 4798.66 25399.96 2499.79 9697.45 26099.93 9699.34 9199.99 1699.78 56
CDS-MVSNet99.22 16299.13 15599.50 18099.35 28599.11 22798.96 24699.54 22799.46 13799.61 17599.70 15096.31 30399.83 27399.34 9199.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21799.16 14998.51 33299.75 12795.90 37798.07 34399.84 6399.84 5499.89 5499.73 12696.01 31099.99 899.33 94100.00 199.63 128
HyFIR lowres test98.91 23098.64 24399.73 8699.85 5699.47 14898.07 34399.83 6598.64 25599.89 5499.60 21992.57 345100.00 199.33 9499.97 5399.72 72
pmmvs599.19 17299.11 16299.42 20599.76 11598.88 25398.55 29799.73 11798.82 23399.72 12999.62 20296.56 29199.82 28299.32 9699.95 7999.56 172
v14899.40 11599.41 10499.39 21799.76 11598.94 24699.09 21499.59 19999.17 18699.81 8899.61 21198.41 18599.69 34699.32 9699.94 9199.53 188
baseline99.63 5999.62 5699.66 11599.80 8499.62 11699.44 10999.80 8299.71 8399.72 12999.69 15799.15 8199.83 27399.32 9699.94 9199.53 188
CVMVSNet98.61 25898.88 22397.80 36299.58 19393.60 39999.26 15599.64 17099.66 10199.72 12999.67 17293.26 33899.93 9699.30 9999.81 18999.87 30
PS-CasMVS99.66 5299.58 6899.89 1099.80 8499.85 1999.66 5399.73 11799.62 11099.84 7699.71 14298.62 15399.96 5499.30 9999.96 6699.86 32
DTE-MVSNet99.68 4599.61 6099.88 1699.80 8499.87 1499.67 4999.71 12999.72 8199.84 7699.78 10498.67 14799.97 3499.30 9999.95 7999.80 47
tmp_tt95.75 37195.42 36596.76 38289.90 42094.42 39398.86 25597.87 38678.01 41199.30 26899.69 15797.70 24695.89 41399.29 10298.14 39099.95 11
PEN-MVS99.66 5299.59 6599.89 1099.83 6399.87 1499.66 5399.73 11799.70 8899.84 7699.73 12698.56 16299.96 5499.29 10299.94 9199.83 40
WR-MVS_H99.61 6799.53 8399.87 2099.80 8499.83 2999.67 4999.75 10799.58 12299.85 7399.69 15798.18 21599.94 7999.28 10499.95 7999.83 40
IterMVS98.97 22199.16 14998.42 33799.74 13395.64 38198.06 34599.83 6599.83 5899.85 7399.74 12296.10 30999.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS97.50 32897.18 33398.48 33498.85 37195.89 37898.44 31399.52 24199.53 12599.52 20799.42 27780.10 40399.86 22599.24 10699.95 7999.68 88
h-mvs3398.61 25898.34 27499.44 19999.60 18498.67 26899.27 15399.44 26699.68 9399.32 25899.49 26092.50 348100.00 199.24 10696.51 40799.65 113
hse-mvs298.52 27198.30 27899.16 26699.29 30798.60 27898.77 27399.02 33999.68 9399.32 25899.04 34792.50 34899.85 24399.24 10697.87 39799.03 333
FMVSNet199.66 5299.63 5599.73 8699.78 10399.77 5399.68 4599.70 13499.67 9799.82 8199.83 7098.98 10899.90 15999.24 10699.97 5399.53 188
casdiffmvspermissive99.63 5999.61 6099.67 10899.79 9699.59 12899.13 19999.85 5799.79 6899.76 11199.72 13499.33 6199.82 28299.21 11099.94 9199.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7999.43 9999.87 2099.76 11599.82 3499.57 8099.61 18299.54 12399.80 9299.64 18497.79 24299.95 6499.21 11099.94 9199.84 36
DELS-MVS99.34 13499.30 12799.48 18699.51 23099.36 18598.12 33699.53 23699.36 15699.41 23899.61 21199.22 7499.87 20699.21 11099.68 24499.20 288
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12499.26 13899.68 10599.51 23099.58 13298.98 24399.60 19399.43 14699.70 13899.36 29497.70 24699.88 19299.20 11399.87 14699.59 160
CANet99.11 19399.05 18399.28 24798.83 37398.56 28098.71 28099.41 27299.25 17099.23 27699.22 32597.66 25499.94 7999.19 11499.97 5399.33 256
EI-MVSNet-UG-set99.48 8999.50 8599.42 20599.57 20398.65 27499.24 16299.46 26199.68 9399.80 9299.66 17798.99 10699.89 17899.19 11499.90 11499.72 72
xiu_mvs_v1_base_debu99.23 15499.34 11598.91 30199.59 18898.23 29998.47 30899.66 15499.61 11399.68 14498.94 36399.39 5099.97 3499.18 11699.55 28498.51 378
xiu_mvs_v1_base99.23 15499.34 11598.91 30199.59 18898.23 29998.47 30899.66 15499.61 11399.68 14498.94 36399.39 5099.97 3499.18 11699.55 28498.51 378
xiu_mvs_v1_base_debi99.23 15499.34 11598.91 30199.59 18898.23 29998.47 30899.66 15499.61 11399.68 14498.94 36399.39 5099.97 3499.18 11699.55 28498.51 378
VPNet99.46 9899.37 11099.71 9799.82 7099.59 12899.48 10099.70 13499.81 6399.69 14199.58 22797.66 25499.86 22599.17 11999.44 30599.67 96
UniMVSNet_NR-MVSNet99.37 12499.25 14099.72 9299.47 25299.56 13598.97 24499.61 18299.43 14699.67 14999.28 31197.85 23899.95 6499.17 11999.81 18999.65 113
DU-MVS99.33 13799.21 14499.71 9799.43 26499.56 13598.83 26099.53 23699.38 15299.67 14999.36 29497.67 25099.95 6499.17 11999.81 18999.63 128
EI-MVSNet-Vis-set99.47 9799.49 8799.42 20599.57 20398.66 27199.24 16299.46 26199.67 9799.79 9799.65 18298.97 11099.89 17899.15 12299.89 12599.71 75
EI-MVSNet99.38 12199.44 9799.21 26099.58 19398.09 31399.26 15599.46 26199.62 11099.75 11699.67 17298.54 16599.85 24399.15 12299.92 10299.68 88
VNet99.18 17699.06 17999.56 16499.24 31799.36 18599.33 13099.31 30099.67 9799.47 22099.57 23496.48 29499.84 25899.15 12299.30 32499.47 218
EG-PatchMatch MVS99.57 7099.56 7799.62 14399.77 11199.33 19199.26 15599.76 10299.32 16099.80 9299.78 10499.29 6499.87 20699.15 12299.91 11299.66 105
PVSNet_Blended_VisFu99.40 11599.38 10799.44 19999.90 3598.66 27198.94 24999.91 3597.97 31699.79 9799.73 12699.05 10099.97 3499.15 12299.99 1699.68 88
IterMVS-LS99.41 11399.47 8899.25 25699.81 7898.09 31398.85 25799.76 10299.62 11099.83 8099.64 18498.54 16599.97 3499.15 12299.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7999.47 8899.76 6299.58 19399.64 10999.30 14199.63 17299.61 11399.71 13499.56 23898.76 13499.96 5499.14 12899.92 10299.68 88
MVSTER98.47 27898.22 28399.24 25899.06 35098.35 29699.08 21799.46 26199.27 16699.75 11699.66 17788.61 38199.85 24399.14 12899.92 10299.52 198
Anonymous2023120699.35 12999.31 12299.47 18899.74 13399.06 23799.28 15099.74 11399.23 17499.72 12999.53 24997.63 25699.88 19299.11 13099.84 16399.48 214
Syy-MVS98.17 30297.85 31499.15 26898.50 39698.79 26098.60 28699.21 32397.89 32296.76 39896.37 41995.47 31799.57 38799.10 13198.73 36899.09 315
m2depth99.48 8999.55 7899.29 24499.76 11598.16 30799.33 13099.95 2899.79 6899.36 24799.89 3499.13 8699.77 31899.09 13299.64 25799.93 16
MVS_Test99.28 14399.31 12299.19 26399.35 28598.79 26099.36 12599.49 25499.17 18699.21 28199.67 17298.78 13199.66 36899.09 13299.66 25399.10 310
testgi99.29 14299.26 13899.37 22399.75 12798.81 25798.84 25899.89 4298.38 28399.75 11699.04 34799.36 5999.86 22599.08 13499.25 33199.45 223
1112_ss99.05 20398.84 22899.67 10899.66 17099.29 19798.52 30399.82 7097.65 33499.43 23099.16 33196.42 29799.91 14099.07 13599.84 16399.80 47
CANet_DTU98.91 23098.85 22699.09 27798.79 37998.13 30898.18 32999.31 30099.48 13098.86 32199.51 25396.56 29199.95 6499.05 13699.95 7999.19 291
bld_raw_conf0399.43 10599.43 9999.45 19499.42 26999.40 17299.52 8799.70 13499.73 7699.77 10799.73 12698.05 22399.91 14099.04 13799.90 11499.05 328
Baseline_NR-MVSNet99.49 8799.37 11099.82 3599.91 2999.84 2498.83 26099.86 5299.68 9399.65 15599.88 4397.67 25099.87 20699.03 13899.86 15499.76 65
FMVSNet299.35 12999.28 13499.55 16799.49 24199.35 18899.45 10799.57 21099.44 14099.70 13899.74 12297.21 27199.87 20699.03 13899.94 9199.44 228
Test_1112_low_res98.95 22798.73 23799.63 13499.68 16299.15 22498.09 34099.80 8297.14 36099.46 22499.40 28296.11 30899.89 17899.01 14099.84 16399.84 36
VDD-MVS99.20 16999.11 16299.44 19999.43 26498.98 24099.50 9598.32 37599.80 6699.56 19399.69 15796.99 28199.85 24398.99 14199.73 22499.50 205
DeepC-MVS98.90 499.62 6599.61 6099.67 10899.72 13999.44 15999.24 16299.71 12999.27 16699.93 3899.90 2999.70 2499.93 9698.99 14199.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8999.47 8899.51 17899.77 11199.41 17198.81 26599.66 15499.42 15099.75 11699.66 17799.20 7699.76 32198.98 14399.99 1699.36 249
EPNet_dtu97.62 32397.79 31797.11 38096.67 41592.31 40498.51 30498.04 38099.24 17295.77 40799.47 26793.78 33399.66 36898.98 14399.62 26199.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13499.32 12099.39 21799.67 16998.77 26298.57 29599.81 7999.61 11399.48 21899.41 27898.47 17699.86 22598.97 14599.90 11499.53 188
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11599.31 12299.68 10599.43 26499.55 13899.73 2699.50 25099.46 13799.88 6299.36 29497.54 25799.87 20698.97 14599.87 14699.63 128
GBi-Net99.42 10999.31 12299.73 8699.49 24199.77 5399.68 4599.70 13499.44 14099.62 16999.83 7097.21 27199.90 15998.96 14799.90 11499.53 188
FMVSNet597.80 31597.25 33199.42 20598.83 37398.97 24299.38 11899.80 8298.87 22599.25 27299.69 15780.60 40299.91 14098.96 14799.90 11499.38 243
test199.42 10999.31 12299.73 8699.49 24199.77 5399.68 4599.70 13499.44 14099.62 16999.83 7097.21 27199.90 15998.96 14799.90 11499.53 188
FMVSNet398.80 24398.63 24599.32 23799.13 33698.72 26599.10 21099.48 25599.23 17499.62 16999.64 18492.57 34599.86 22598.96 14799.90 11499.39 241
UnsupCasMVSNet_eth98.83 24098.57 25299.59 15299.68 16299.45 15798.99 24099.67 14999.48 13099.55 19899.36 29494.92 31999.86 22598.95 15196.57 40699.45 223
CHOSEN 280x42098.41 28398.41 26698.40 33899.34 29495.89 37896.94 39999.44 26698.80 23799.25 27299.52 25193.51 33799.98 2198.94 15299.98 3999.32 259
TDRefinement99.72 3699.70 4099.77 5599.90 3599.85 1999.86 599.92 3199.69 9199.78 10199.92 2199.37 5699.88 19298.93 15399.95 7999.60 153
alignmvs98.28 29397.96 30399.25 25699.12 33898.93 24999.03 22798.42 36999.64 10598.72 33697.85 39990.86 36699.62 37898.88 15499.13 33799.19 291
MGCFI-Net99.02 20999.01 19599.06 28499.11 34398.60 27899.63 6099.67 14999.63 10798.58 34897.65 40299.07 9599.57 38798.85 15598.92 35299.03 333
sss98.90 23298.77 23699.27 25099.48 24698.44 28798.72 27899.32 29697.94 32099.37 24699.35 29996.31 30399.91 14098.85 15599.63 26099.47 218
xiu_mvs_v2_base99.02 20999.11 16298.77 31999.37 27998.09 31398.13 33599.51 24699.47 13499.42 23298.54 38599.38 5499.97 3498.83 15799.33 32098.24 390
PS-MVSNAJ99.00 21799.08 17398.76 32099.37 27998.10 31298.00 35199.51 24699.47 13499.41 23898.50 38799.28 6699.97 3498.83 15799.34 31998.20 394
D2MVS99.22 16299.19 14699.29 24499.69 15498.74 26498.81 26599.41 27298.55 26499.68 14499.69 15798.13 21799.87 20698.82 15999.98 3999.24 274
PatchT98.45 28098.32 27698.83 31498.94 36298.29 29799.24 16298.82 34799.84 5499.08 29899.76 11491.37 35699.94 7998.82 15999.00 34798.26 389
testf199.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4299.43 14699.88 6299.80 8699.26 7099.90 15998.81 16199.88 13499.32 259
APD_test299.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4299.43 14699.88 6299.80 8699.26 7099.90 15998.81 16199.88 13499.32 259
sasdasda99.02 20999.00 19999.09 27799.10 34598.70 26699.61 6899.66 15499.63 10798.64 34297.65 40299.04 10199.54 39198.79 16398.92 35299.04 331
Effi-MVS+99.06 20098.97 20999.34 23099.31 30198.98 24098.31 32199.91 3598.81 23598.79 33098.94 36399.14 8499.84 25898.79 16398.74 36599.20 288
canonicalmvs99.02 20999.00 19999.09 27799.10 34598.70 26699.61 6899.66 15499.63 10798.64 34297.65 40299.04 10199.54 39198.79 16398.92 35299.04 331
VDDNet98.97 22198.82 23199.42 20599.71 14298.81 25799.62 6398.68 35499.81 6399.38 24599.80 8694.25 32799.85 24398.79 16399.32 32299.59 160
CR-MVSNet98.35 29098.20 28598.83 31499.05 35198.12 30999.30 14199.67 14997.39 34899.16 28799.79 9691.87 35399.91 14098.78 16798.77 36198.44 383
test_method91.72 37892.32 38189.91 39693.49 41970.18 42290.28 41099.56 21561.71 41495.39 40999.52 25193.90 32999.94 7998.76 16898.27 38399.62 139
RPMNet98.60 26198.53 25798.83 31499.05 35198.12 30999.30 14199.62 17599.86 4599.16 28799.74 12292.53 34799.92 11898.75 16998.77 36198.44 383
pmmvs499.13 18899.06 17999.36 22799.57 20399.10 23298.01 34999.25 31398.78 24099.58 18399.44 27498.24 20599.76 32198.74 17099.93 9899.22 281
tttt051797.62 32397.20 33298.90 30799.76 11597.40 34599.48 10094.36 40699.06 20399.70 13899.49 26084.55 39799.94 7998.73 17199.65 25599.36 249
EPP-MVSNet99.17 18199.00 19999.66 11599.80 8499.43 16399.70 3499.24 31699.48 13099.56 19399.77 11194.89 32099.93 9698.72 17299.89 12599.63 128
Anonymous2024052999.42 10999.34 11599.65 12099.53 22399.60 12699.63 6099.39 28299.47 13499.76 11199.78 10498.13 21799.86 22598.70 17399.68 24499.49 210
ACMH98.42 699.59 6999.54 7999.72 9299.86 5299.62 11699.56 8299.79 8898.77 24299.80 9299.85 6099.64 2899.85 24398.70 17399.89 12599.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13799.28 13499.47 18899.57 20399.39 17699.78 1399.43 26998.87 22599.57 18699.82 7798.06 22299.87 20698.69 17599.73 22499.15 299
LFMVS98.46 27998.19 28899.26 25399.24 31798.52 28399.62 6396.94 39699.87 4299.31 26399.58 22791.04 36199.81 29798.68 17699.42 30999.45 223
WR-MVS99.11 19398.93 21499.66 11599.30 30599.42 16698.42 31499.37 28799.04 20499.57 18699.20 32996.89 28399.86 22598.66 17799.87 14699.70 78
mvsmamba99.08 19798.95 21299.45 19499.36 28299.18 22199.39 11598.81 34899.37 15399.35 24999.70 15096.36 30299.94 7998.66 17799.59 27599.22 281
Anonymous20240521198.75 24798.46 26199.63 13499.34 29499.66 10099.47 10397.65 38899.28 16599.56 19399.50 25693.15 33999.84 25898.62 17999.58 27799.40 239
EPNet98.13 30397.77 31899.18 26594.57 41897.99 31999.24 16297.96 38299.74 7597.29 39199.62 20293.13 34099.97 3498.59 18099.83 17199.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20399.09 17198.91 30199.21 32298.36 29598.82 26499.47 25898.85 22898.90 31699.56 23898.78 13199.09 40698.57 18199.68 24499.26 271
Patchmatch-RL test98.60 26198.36 27199.33 23399.77 11199.07 23598.27 32399.87 4998.91 22099.74 12499.72 13490.57 37099.79 30798.55 18299.85 15899.11 308
pmmvs398.08 30697.80 31598.91 30199.41 27297.69 33697.87 36499.66 15495.87 37999.50 21599.51 25390.35 37299.97 3498.55 18299.47 30299.08 321
ETV-MVS99.18 17699.18 14799.16 26699.34 29499.28 19999.12 20399.79 8899.48 13098.93 31098.55 38499.40 4999.93 9698.51 18499.52 29498.28 388
jason99.16 18299.11 16299.32 23799.75 12798.44 28798.26 32599.39 28298.70 25099.74 12499.30 30798.54 16599.97 3498.48 18599.82 18099.55 175
jason: jason.
APDe-MVScopyleft99.48 8999.36 11399.85 2699.55 21599.81 3999.50 9599.69 14298.99 20799.75 11699.71 14298.79 12999.93 9698.46 18699.85 15899.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 25298.56 25599.15 26899.22 32098.66 27197.14 39499.51 24698.09 30999.54 20099.27 31396.87 28499.74 32898.43 18798.96 34999.03 333
our_test_398.85 23999.09 17198.13 35199.66 17094.90 39197.72 36999.58 20899.07 20199.64 15699.62 20298.19 21399.93 9698.41 18899.95 7999.55 175
Gipumacopyleft99.57 7099.59 6599.49 18299.98 399.71 8299.72 2999.84 6399.81 6399.94 3599.78 10498.91 11699.71 33798.41 18899.95 7999.05 328
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 33296.91 34298.74 32197.72 41197.57 33897.60 37597.36 39498.00 31299.21 28198.02 39590.04 37599.79 30798.37 19095.89 41098.86 356
PM-MVS99.36 12799.29 13299.58 15599.83 6399.66 10098.95 24799.86 5298.85 22899.81 8899.73 12698.40 18999.92 11898.36 19199.83 17199.17 295
baseline197.73 31897.33 32898.96 29299.30 30597.73 33499.40 11398.42 36999.33 15999.46 22499.21 32791.18 35999.82 28298.35 19291.26 41399.32 259
MVS-HIRNet97.86 31298.22 28396.76 38299.28 31091.53 40998.38 31692.60 41299.13 19499.31 26399.96 1297.18 27599.68 35898.34 19399.83 17199.07 326
GA-MVS97.99 31197.68 32198.93 29899.52 22898.04 31797.19 39399.05 33898.32 29698.81 32698.97 35989.89 37799.41 40298.33 19499.05 34399.34 255
Fast-Effi-MVS+99.02 20998.87 22499.46 19199.38 27799.50 14499.04 22499.79 8897.17 35898.62 34498.74 37699.34 6099.95 6498.32 19599.41 31098.92 349
MDA-MVSNet_test_wron98.95 22798.99 20598.85 31099.64 17597.16 35198.23 32799.33 29498.93 21799.56 19399.66 17797.39 26499.83 27398.29 19699.88 13499.55 175
N_pmnet98.73 25098.53 25799.35 22999.72 13998.67 26898.34 31894.65 40598.35 29099.79 9799.68 16898.03 22499.93 9698.28 19799.92 10299.44 228
ET-MVSNet_ETH3D96.78 34496.07 35398.91 30199.26 31497.92 32697.70 37196.05 40197.96 31992.37 41398.43 38887.06 38599.90 15998.27 19897.56 40098.91 350
thisisatest053097.45 32996.95 33998.94 29599.68 16297.73 33499.09 21494.19 40898.61 26099.56 19399.30 30784.30 39899.93 9698.27 19899.54 28999.16 297
YYNet198.95 22798.99 20598.84 31299.64 17597.14 35398.22 32899.32 29698.92 21999.59 18199.66 17797.40 26299.83 27398.27 19899.90 11499.55 175
ACMM98.09 1199.46 9899.38 10799.72 9299.80 8499.69 9399.13 19999.65 16498.99 20799.64 15699.72 13499.39 5099.86 22598.23 20199.81 18999.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22498.87 22499.24 25899.57 20398.40 29098.12 33699.18 32798.28 29899.63 16099.13 33398.02 22599.97 3498.22 20299.69 23999.35 252
3Dnovator99.15 299.43 10599.36 11399.65 12099.39 27499.42 16699.70 3499.56 21599.23 17499.35 24999.80 8699.17 7999.95 6498.21 20399.84 16399.59 160
Fast-Effi-MVS+-dtu99.20 16999.12 15999.43 20399.25 31599.69 9399.05 22199.82 7099.50 12898.97 30699.05 34598.98 10899.98 2198.20 20499.24 33398.62 369
MS-PatchMatch99.00 21798.97 20999.09 27799.11 34398.19 30398.76 27499.33 29498.49 27399.44 22699.58 22798.21 21099.69 34698.20 20499.62 26199.39 241
TSAR-MVS + GP.99.12 19099.04 18999.38 22099.34 29499.16 22298.15 33299.29 30498.18 30599.63 16099.62 20299.18 7899.68 35898.20 20499.74 21999.30 265
DP-MVS99.48 8999.39 10599.74 7799.57 20399.62 11699.29 14899.61 18299.87 4299.74 12499.76 11498.69 14399.87 20698.20 20499.80 19499.75 68
MVP-Stereo99.16 18299.08 17399.43 20399.48 24699.07 23599.08 21799.55 22198.63 25699.31 26399.68 16898.19 21399.78 31098.18 20899.58 27799.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10599.30 12799.80 4399.83 6399.81 3999.52 8799.70 13498.35 29099.51 21399.50 25699.31 6299.88 19298.18 20899.84 16399.69 82
MDA-MVSNet-bldmvs99.06 20099.05 18399.07 28299.80 8497.83 32998.89 25299.72 12699.29 16299.63 16099.70 15096.47 29599.89 17898.17 21099.82 18099.50 205
JIA-IIPM98.06 30797.92 31098.50 33398.59 39297.02 35598.80 26898.51 36499.88 4197.89 37899.87 4891.89 35299.90 15998.16 21197.68 39998.59 372
EIA-MVS99.12 19099.01 19599.45 19499.36 28299.62 11699.34 12799.79 8898.41 27998.84 32398.89 36798.75 13699.84 25898.15 21299.51 29598.89 353
miper_lstm_enhance98.65 25798.60 24698.82 31799.20 32597.33 34797.78 36799.66 15499.01 20699.59 18199.50 25694.62 32499.85 24398.12 21399.90 11499.26 271
Effi-MVS+-dtu99.07 19998.92 21899.52 17598.89 36799.78 4899.15 19199.66 15499.34 15798.92 31399.24 32397.69 24899.98 2198.11 21499.28 32798.81 360
tpm97.15 33696.95 33997.75 36498.91 36394.24 39499.32 13397.96 38297.71 33298.29 36099.32 30386.72 39199.92 11898.10 21596.24 40999.09 315
DeepPCF-MVS98.42 699.18 17699.02 19299.67 10899.22 32099.75 6697.25 39199.47 25898.72 24799.66 15399.70 15099.29 6499.63 37798.07 21699.81 18999.62 139
ppachtmachnet_test98.89 23599.12 15998.20 34999.66 17095.24 38797.63 37399.68 14599.08 19999.78 10199.62 20298.65 15199.88 19298.02 21799.96 6699.48 214
tpmrst97.73 31898.07 29696.73 38498.71 38892.00 40599.10 21098.86 34498.52 26998.92 31399.54 24791.90 35199.82 28298.02 21799.03 34598.37 385
CSCG99.37 12499.29 13299.60 14999.71 14299.46 15299.43 11199.85 5798.79 23899.41 23899.60 21998.92 11499.92 11898.02 21799.92 10299.43 234
eth_miper_zixun_eth98.68 25598.71 23998.60 32899.10 34596.84 36097.52 38199.54 22798.94 21499.58 18399.48 26396.25 30699.76 32198.01 22099.93 9899.21 284
Patchmtry98.78 24498.54 25699.49 18298.89 36799.19 21999.32 13399.67 14999.65 10399.72 12999.79 9691.87 35399.95 6498.00 22199.97 5399.33 256
PVSNet_BlendedMVS99.03 20799.01 19599.09 27799.54 21797.99 31998.58 29199.82 7097.62 33599.34 25399.71 14298.52 17299.77 31897.98 22299.97 5399.52 198
PVSNet_Blended98.70 25398.59 24899.02 28799.54 21797.99 31997.58 37699.82 7095.70 38399.34 25398.98 35798.52 17299.77 31897.98 22299.83 17199.30 265
cl____98.54 26998.41 26698.92 29999.03 35497.80 33297.46 38399.59 19998.90 22199.60 17899.46 27093.85 33199.78 31097.97 22499.89 12599.17 295
DIV-MVS_self_test98.54 26998.42 26598.92 29999.03 35497.80 33297.46 38399.59 19998.90 22199.60 17899.46 27093.87 33099.78 31097.97 22499.89 12599.18 293
AUN-MVS97.82 31497.38 32799.14 27199.27 31298.53 28198.72 27899.02 33998.10 30797.18 39499.03 35189.26 37999.85 24397.94 22697.91 39599.03 333
FA-MVS(test-final)98.52 27198.32 27699.10 27699.48 24698.67 26899.77 1598.60 36197.35 35099.63 16099.80 8693.07 34199.84 25897.92 22799.30 32498.78 363
ambc99.20 26299.35 28598.53 28199.17 18399.46 26199.67 14999.80 8698.46 17999.70 34097.92 22799.70 23599.38 243
USDC98.96 22498.93 21499.05 28599.54 21797.99 31997.07 39799.80 8298.21 30299.75 11699.77 11198.43 18299.64 37697.90 22999.88 13499.51 200
OPM-MVS99.26 14999.13 15599.63 13499.70 15099.61 12398.58 29199.48 25598.50 27199.52 20799.63 19599.14 8499.76 32197.89 23099.77 20899.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13999.17 14899.77 5599.69 15499.80 4399.14 19399.31 30099.16 18899.62 16999.61 21198.35 19399.91 14097.88 23199.72 23099.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3199.70 15099.79 4599.14 19399.61 18299.92 11897.88 23199.72 23099.77 60
c3_l98.72 25198.71 23998.72 32299.12 33897.22 35097.68 37299.56 21598.90 22199.54 20099.48 26396.37 30199.73 33197.88 23199.88 13499.21 284
3Dnovator+98.92 399.35 12999.24 14299.67 10899.35 28599.47 14899.62 6399.50 25099.44 14099.12 29499.78 10498.77 13399.94 7997.87 23499.72 23099.62 139
miper_ehance_all_eth98.59 26498.59 24898.59 32998.98 36097.07 35497.49 38299.52 24198.50 27199.52 20799.37 29096.41 29999.71 33797.86 23599.62 26199.00 340
WTY-MVS98.59 26498.37 27099.26 25399.43 26498.40 29098.74 27699.13 33398.10 30799.21 28199.24 32394.82 32199.90 15997.86 23598.77 36199.49 210
APD_test199.36 12799.28 13499.61 14699.89 3799.89 1099.32 13399.74 11399.18 18199.69 14199.75 11998.41 18599.84 25897.85 23799.70 23599.10 310
SED-MVS99.40 11599.28 13499.77 5599.69 15499.82 3499.20 17299.54 22799.13 19499.82 8199.63 19598.91 11699.92 11897.85 23799.70 23599.58 165
test_241102_TWO99.54 22799.13 19499.76 11199.63 19598.32 19899.92 11897.85 23799.69 23999.75 68
MVS_111021_HR99.12 19099.02 19299.40 21499.50 23699.11 22797.92 36099.71 12998.76 24599.08 29899.47 26799.17 7999.54 39197.85 23799.76 21099.54 183
MTAPA99.35 12999.20 14599.80 4399.81 7899.81 3999.33 13099.53 23699.27 16699.42 23299.63 19598.21 21099.95 6497.83 24199.79 19999.65 113
MSC_two_6792asdad99.74 7799.03 35499.53 14199.23 31799.92 11897.77 24299.69 23999.78 56
No_MVS99.74 7799.03 35499.53 14199.23 31799.92 11897.77 24299.69 23999.78 56
TESTMET0.1,196.24 35895.84 35997.41 37298.24 40393.84 39797.38 38595.84 40298.43 27697.81 38398.56 38379.77 40699.89 17897.77 24298.77 36198.52 377
ACMH+98.40 899.50 8499.43 9999.71 9799.86 5299.76 6099.32 13399.77 9799.53 12599.77 10799.76 11499.26 7099.78 31097.77 24299.88 13499.60 153
IU-MVS99.69 15499.77 5399.22 32097.50 34299.69 14197.75 24699.70 23599.77 60
114514_t98.49 27698.11 29399.64 12799.73 13699.58 13299.24 16299.76 10289.94 40699.42 23299.56 23897.76 24599.86 22597.74 24799.82 18099.47 218
DVP-MVS++99.38 12199.25 14099.77 5599.03 35499.77 5399.74 2399.61 18299.18 18199.76 11199.61 21199.00 10499.92 11897.72 24899.60 27199.62 139
test_0728_THIRD99.18 18199.62 16999.61 21198.58 15999.91 14097.72 24899.80 19499.77 60
EGC-MVSNET89.05 38085.52 38399.64 12799.89 3799.78 4899.56 8299.52 24124.19 41549.96 41699.83 7099.15 8199.92 11897.71 25099.85 15899.21 284
miper_enhance_ethall98.03 30897.94 30898.32 34398.27 40296.43 36696.95 39899.41 27296.37 37499.43 23098.96 36194.74 32299.69 34697.71 25099.62 26198.83 359
TSAR-MVS + MP.99.34 13499.24 14299.63 13499.82 7099.37 18199.26 15599.35 29198.77 24299.57 18699.70 15099.27 6999.88 19297.71 25099.75 21299.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32697.28 32998.40 33898.37 40096.75 36197.24 39299.37 28797.31 35299.41 23899.22 32587.30 38399.37 40397.70 25399.62 26199.08 321
MP-MVS-pluss99.14 18698.92 21899.80 4399.83 6399.83 2998.61 28499.63 17296.84 36799.44 22699.58 22798.81 12499.91 14097.70 25399.82 18099.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14399.11 16299.79 4999.75 12799.81 3998.95 24799.53 23698.27 29999.53 20599.73 12698.75 13699.87 20697.70 25399.83 17199.68 88
UnsupCasMVSNet_bld98.55 26898.27 28199.40 21499.56 21499.37 18197.97 35699.68 14597.49 34399.08 29899.35 29995.41 31899.82 28297.70 25398.19 38799.01 339
MVS_111021_LR99.13 18899.03 19199.42 20599.58 19399.32 19397.91 36299.73 11798.68 25199.31 26399.48 26399.09 9099.66 36897.70 25399.77 20899.29 268
IS-MVSNet99.03 20798.85 22699.55 16799.80 8499.25 20699.73 2699.15 33099.37 15399.61 17599.71 14294.73 32399.81 29797.70 25399.88 13499.58 165
test-LLR97.15 33696.95 33997.74 36598.18 40595.02 38997.38 38596.10 39898.00 31297.81 38398.58 38090.04 37599.91 14097.69 25998.78 35998.31 386
test-mter96.23 35995.73 36197.74 36598.18 40595.02 38997.38 38596.10 39897.90 32197.81 38398.58 38079.12 40999.91 14097.69 25998.78 35998.31 386
XVS99.27 14799.11 16299.75 7299.71 14299.71 8299.37 12299.61 18299.29 16298.76 33399.47 26798.47 17699.88 19297.62 26199.73 22499.67 96
X-MVStestdata96.09 36294.87 37499.75 7299.71 14299.71 8299.37 12299.61 18299.29 16298.76 33361.30 42298.47 17699.88 19297.62 26199.73 22499.67 96
SMA-MVScopyleft99.19 17299.00 19999.73 8699.46 25699.73 7599.13 19999.52 24197.40 34799.57 18699.64 18498.93 11399.83 27397.61 26399.79 19999.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34796.79 34696.46 38898.90 36490.71 41499.41 11298.68 35494.69 39698.14 37099.34 30286.32 39399.80 30497.60 26498.07 39398.88 354
PVSNet97.47 1598.42 28298.44 26398.35 34099.46 25696.26 37096.70 40299.34 29397.68 33399.00 30599.13 33397.40 26299.72 33397.59 26599.68 24499.08 321
new_pmnet98.88 23698.89 22298.84 31299.70 15097.62 33798.15 33299.50 25097.98 31599.62 16999.54 24798.15 21699.94 7997.55 26699.84 16398.95 344
IB-MVS95.41 2095.30 37694.46 38097.84 36198.76 38495.33 38597.33 38896.07 40096.02 37895.37 41097.41 40676.17 41199.96 5497.54 26795.44 41298.22 391
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15399.11 16299.61 14698.38 39999.79 4599.57 8099.68 14599.61 11399.15 28999.71 14298.70 14299.91 14097.54 26799.68 24499.13 307
ZNCC-MVS99.22 16299.04 18999.77 5599.76 11599.73 7599.28 15099.56 21598.19 30499.14 29199.29 31098.84 12399.92 11897.53 26999.80 19499.64 123
CP-MVS99.23 15499.05 18399.75 7299.66 17099.66 10099.38 11899.62 17598.38 28399.06 30299.27 31398.79 12999.94 7997.51 27099.82 18099.66 105
SD-MVS99.01 21599.30 12798.15 35099.50 23699.40 17298.94 24999.61 18299.22 17899.75 11699.82 7799.54 4195.51 41597.48 27199.87 14699.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27698.29 28099.11 27498.96 36198.42 28997.54 37799.32 29697.53 34098.47 35598.15 39497.88 23599.82 28297.46 27299.24 33399.09 315
DeepC-MVS_fast98.47 599.23 15499.12 15999.56 16499.28 31099.22 21398.99 24099.40 27999.08 19999.58 18399.64 18498.90 11999.83 27397.44 27399.75 21299.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 15099.08 17399.76 6299.73 13699.70 8999.31 13899.59 19998.36 28599.36 24799.37 29098.80 12899.91 14097.43 27499.75 21299.68 88
ACMMPR99.23 15499.06 17999.76 6299.74 13399.69 9399.31 13899.59 19998.36 28599.35 24999.38 28898.61 15599.93 9697.43 27499.75 21299.67 96
Vis-MVSNet (Re-imp)98.77 24598.58 25199.34 23099.78 10398.88 25399.61 6899.56 21599.11 19899.24 27599.56 23893.00 34399.78 31097.43 27499.89 12599.35 252
MIMVSNet98.43 28198.20 28599.11 27499.53 22398.38 29499.58 7798.61 35998.96 21199.33 25599.76 11490.92 36399.81 29797.38 27799.76 21099.15 299
WB-MVSnew98.34 29298.14 29198.96 29298.14 40897.90 32798.27 32397.26 39598.63 25698.80 32898.00 39797.77 24399.90 15997.37 27898.98 34899.09 315
XVG-OURS-SEG-HR99.16 18298.99 20599.66 11599.84 5999.64 10998.25 32699.73 11798.39 28299.63 16099.43 27599.70 2499.90 15997.34 27998.64 37299.44 228
COLMAP_ROBcopyleft98.06 1299.45 10099.37 11099.70 10199.83 6399.70 8999.38 11899.78 9499.53 12599.67 14999.78 10499.19 7799.86 22597.32 28099.87 14699.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20998.81 23299.65 12099.58 19399.49 14598.58 29199.07 33598.40 28199.04 30399.25 31898.51 17499.80 30497.31 28199.51 29599.65 113
region2R99.23 15499.05 18399.77 5599.76 11599.70 8999.31 13899.59 19998.41 27999.32 25899.36 29498.73 14099.93 9697.29 28299.74 21999.67 96
APD-MVS_3200maxsize99.31 14099.16 14999.74 7799.53 22399.75 6699.27 15399.61 18299.19 18099.57 18699.64 18498.76 13499.90 15997.29 28299.62 26199.56 172
TAPA-MVS97.92 1398.03 30897.55 32499.46 19199.47 25299.44 15998.50 30599.62 17586.79 40799.07 30199.26 31698.26 20499.62 37897.28 28499.73 22499.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14799.11 16299.73 8699.54 21799.74 7299.26 15599.62 17599.16 18899.52 20799.64 18498.41 18599.91 14097.27 28599.61 26899.54 183
RE-MVS-def99.13 15599.54 21799.74 7299.26 15599.62 17599.16 18899.52 20799.64 18498.57 16097.27 28599.61 26899.54 183
testing1196.05 36495.41 36697.97 35598.78 38195.27 38698.59 28998.23 37798.86 22796.56 40196.91 41275.20 41299.69 34697.26 28798.29 38298.93 347
test_yl98.25 29597.95 30499.13 27299.17 33198.47 28499.00 23598.67 35698.97 20999.22 27999.02 35291.31 35799.69 34697.26 28798.93 35099.24 274
DCV-MVSNet98.25 29597.95 30499.13 27299.17 33198.47 28499.00 23598.67 35698.97 20999.22 27999.02 35291.31 35799.69 34697.26 28798.93 35099.24 274
PHI-MVS99.11 19398.95 21299.59 15299.13 33699.59 12899.17 18399.65 16497.88 32499.25 27299.46 27098.97 11099.80 30497.26 28799.82 18099.37 246
tfpnnormal99.43 10599.38 10799.60 14999.87 4999.75 6699.59 7599.78 9499.71 8399.90 5099.69 15798.85 12299.90 15997.25 29199.78 20499.15 299
PatchmatchNetpermissive97.65 32297.80 31597.18 37898.82 37692.49 40399.17 18398.39 37198.12 30698.79 33099.58 22790.71 36899.89 17897.23 29299.41 31099.16 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22098.80 23499.56 16499.25 31599.43 16398.54 30099.27 30898.58 26298.80 32899.43 27598.53 16999.70 34097.22 29399.59 27599.54 183
testing396.48 35295.63 36399.01 28899.23 31997.81 33098.90 25199.10 33498.72 24797.84 38297.92 39872.44 41699.85 24397.21 29499.33 32099.35 252
HPM-MVScopyleft99.25 15099.07 17799.78 5299.81 7899.75 6699.61 6899.67 14997.72 33199.35 24999.25 31899.23 7399.92 11897.21 29499.82 18099.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17299.00 19999.76 6299.76 11599.68 9699.38 11899.54 22798.34 29499.01 30499.50 25698.53 16999.93 9697.18 29699.78 20499.66 105
ACMMPcopyleft99.25 15099.08 17399.74 7799.79 9699.68 9699.50 9599.65 16498.07 31099.52 20799.69 15798.57 16099.92 11897.18 29699.79 19999.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 34096.42 34798.66 32599.42 26997.47 34197.27 39094.30 40797.24 35499.15 28998.86 36985.01 39599.87 20697.10 29899.39 31298.63 368
XVG-ACMP-BASELINE99.23 15499.10 17099.63 13499.82 7099.58 13298.83 26099.72 12698.36 28599.60 17899.71 14298.92 11499.91 14097.08 29999.84 16399.40 239
MSDG99.08 19798.98 20899.37 22399.60 18499.13 22597.54 37799.74 11398.84 23199.53 20599.55 24599.10 8899.79 30797.07 30099.86 15499.18 293
SteuartSystems-ACMMP99.30 14199.14 15399.76 6299.87 4999.66 10099.18 17899.60 19398.55 26499.57 18699.67 17299.03 10399.94 7997.01 30199.80 19499.69 82
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 36095.78 36097.49 36898.53 39493.83 39898.04 34693.94 41098.96 21198.46 35698.17 39379.86 40499.87 20696.99 30299.06 34198.78 363
EPMVS96.53 35096.32 34897.17 37998.18 40592.97 40299.39 11589.95 41698.21 30298.61 34599.59 22486.69 39299.72 33396.99 30299.23 33598.81 360
MSP-MVS99.04 20698.79 23599.81 3899.78 10399.73 7599.35 12699.57 21098.54 26799.54 20098.99 35496.81 28599.93 9696.97 30499.53 29199.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22498.70 24199.74 7799.52 22899.71 8298.86 25599.19 32698.47 27598.59 34799.06 34498.08 22199.91 14096.94 30599.60 27199.60 153
SR-MVS99.19 17299.00 19999.74 7799.51 23099.72 8099.18 17899.60 19398.85 22899.47 22099.58 22798.38 19099.92 11896.92 30699.54 28999.57 170
PGM-MVS99.20 16999.01 19599.77 5599.75 12799.71 8299.16 18999.72 12697.99 31499.42 23299.60 21998.81 12499.93 9696.91 30799.74 21999.66 105
HY-MVS98.23 998.21 30197.95 30498.99 28999.03 35498.24 29899.61 6898.72 35296.81 36898.73 33599.51 25394.06 32899.86 22596.91 30798.20 38598.86 356
MDTV_nov1_ep1397.73 31998.70 38990.83 41299.15 19198.02 38198.51 27098.82 32599.61 21190.98 36299.66 36896.89 30998.92 352
GST-MVS99.16 18298.96 21199.75 7299.73 13699.73 7599.20 17299.55 22198.22 30199.32 25899.35 29998.65 15199.91 14096.86 31099.74 21999.62 139
test_post199.14 19351.63 42489.54 37899.82 28296.86 310
SCA98.11 30498.36 27197.36 37399.20 32592.99 40198.17 33198.49 36698.24 30099.10 29799.57 23496.01 31099.94 7996.86 31099.62 26199.14 304
UBG96.53 35095.95 35598.29 34798.87 37096.31 36998.48 30798.07 37998.83 23297.32 38996.54 41779.81 40599.62 37896.84 31398.74 36598.95 344
XVG-OURS99.21 16799.06 17999.65 12099.82 7099.62 11697.87 36499.74 11398.36 28599.66 15399.68 16899.71 2299.90 15996.84 31399.88 13499.43 234
LCM-MVSNet-Re99.28 14399.15 15299.67 10899.33 29999.76 6099.34 12799.97 1898.93 21799.91 4799.79 9698.68 14499.93 9696.80 31599.56 28099.30 265
RPSCF99.18 17699.02 19299.64 12799.83 6399.85 1999.44 10999.82 7098.33 29599.50 21599.78 10497.90 23399.65 37496.78 31699.83 17199.44 228
旧先验297.94 35895.33 38798.94 30999.88 19296.75 317
MDTV_nov1_ep13_2view91.44 41099.14 19397.37 34999.21 28191.78 35596.75 31799.03 333
CLD-MVS98.76 24698.57 25299.33 23399.57 20398.97 24297.53 37999.55 22196.41 37299.27 27099.13 33399.07 9599.78 31096.73 31999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30597.98 30298.48 33499.27 31296.48 36499.40 11399.07 33598.81 23599.23 27699.57 23490.11 37499.87 20696.69 32099.64 25799.09 315
baseline296.83 34396.28 34998.46 33699.09 34896.91 35898.83 26093.87 41197.23 35596.23 40698.36 38988.12 38299.90 15996.68 32198.14 39098.57 375
cascas96.99 33996.82 34597.48 36997.57 41495.64 38196.43 40499.56 21591.75 40297.13 39697.61 40595.58 31598.63 41096.68 32199.11 33998.18 395
PC_three_145297.56 33699.68 14499.41 27899.09 9097.09 41296.66 32399.60 27199.62 139
LPG-MVS_test99.22 16299.05 18399.74 7799.82 7099.63 11499.16 18999.73 11797.56 33699.64 15699.69 15799.37 5699.89 17896.66 32399.87 14699.69 82
LGP-MVS_train99.74 7799.82 7099.63 11499.73 11797.56 33699.64 15699.69 15799.37 5699.89 17896.66 32399.87 14699.69 82
ETVMVS96.14 36195.22 37198.89 30898.80 37798.01 31898.66 28298.35 37498.71 24997.18 39496.31 42174.23 41599.75 32596.64 32698.13 39298.90 351
TinyColmap98.97 22198.93 21499.07 28299.46 25698.19 30397.75 36899.75 10798.79 23899.54 20099.70 15098.97 11099.62 37896.63 32799.83 17199.41 238
LF4IMVS99.01 21598.92 21899.27 25099.71 14299.28 19998.59 28999.77 9798.32 29699.39 24499.41 27898.62 15399.84 25896.62 32899.84 16398.69 367
NCCC98.82 24198.57 25299.58 15599.21 32299.31 19498.61 28499.25 31398.65 25498.43 35799.26 31697.86 23699.81 29796.55 32999.27 33099.61 149
OPU-MVS99.29 24499.12 33899.44 15999.20 17299.40 28299.00 10498.84 40996.54 33099.60 27199.58 165
F-COLMAP98.74 24898.45 26299.62 14399.57 20399.47 14898.84 25899.65 16496.31 37598.93 31099.19 33097.68 24999.87 20696.52 33199.37 31599.53 188
testing9995.86 36995.19 37297.87 35998.76 38495.03 38898.62 28398.44 36898.68 25196.67 40096.66 41674.31 41499.69 34696.51 33298.03 39498.90 351
ADS-MVSNet297.78 31697.66 32398.12 35299.14 33495.36 38499.22 16998.75 35196.97 36398.25 36299.64 18490.90 36499.94 7996.51 33299.56 28099.08 321
ADS-MVSNet97.72 32197.67 32297.86 36099.14 33494.65 39299.22 16998.86 34496.97 36398.25 36299.64 18490.90 36499.84 25896.51 33299.56 28099.08 321
PatchMatch-RL98.68 25598.47 26099.30 24399.44 26199.28 19998.14 33499.54 22797.12 36199.11 29599.25 31897.80 24199.70 34096.51 33299.30 32498.93 347
CMPMVSbinary77.52 2398.50 27498.19 28899.41 21298.33 40199.56 13599.01 23299.59 19995.44 38599.57 18699.80 8695.64 31399.46 40196.47 33699.92 10299.21 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 36595.32 36998.02 35398.76 38495.39 38398.38 31698.65 35898.82 23396.84 39796.71 41575.06 41399.71 33796.46 33798.23 38498.98 341
SF-MVS99.10 19698.93 21499.62 14399.58 19399.51 14399.13 19999.65 16497.97 31699.42 23299.61 21198.86 12199.87 20696.45 33899.68 24499.49 210
FE-MVS97.85 31397.42 32699.15 26899.44 26198.75 26399.77 1598.20 37895.85 38099.33 25599.80 8688.86 38099.88 19296.40 33999.12 33898.81 360
DPE-MVScopyleft99.14 18698.92 21899.82 3599.57 20399.77 5398.74 27699.60 19398.55 26499.76 11199.69 15798.23 20999.92 11896.39 34099.75 21299.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 41289.02 41893.47 39898.30 39099.84 25896.38 341
AllTest99.21 16799.07 17799.63 13499.78 10399.64 10999.12 20399.83 6598.63 25699.63 16099.72 13498.68 14499.75 32596.38 34199.83 17199.51 200
TestCases99.63 13499.78 10399.64 10999.83 6598.63 25699.63 16099.72 13498.68 14499.75 32596.38 34199.83 17199.51 200
testdata99.42 20599.51 23098.93 24999.30 30396.20 37698.87 32099.40 28298.33 19799.89 17896.29 34499.28 32799.44 228
dp96.86 34297.07 33596.24 39098.68 39090.30 41699.19 17798.38 37297.35 35098.23 36499.59 22487.23 38499.82 28296.27 34598.73 36898.59 372
tpmvs97.39 33197.69 32096.52 38698.41 39891.76 40699.30 14198.94 34397.74 33097.85 38199.55 24592.40 35099.73 33196.25 34698.73 36898.06 397
KD-MVS_2432*160095.89 36695.41 36697.31 37694.96 41693.89 39597.09 39599.22 32097.23 35598.88 31799.04 34779.23 40799.54 39196.24 34796.81 40498.50 381
miper_refine_blended95.89 36695.41 36697.31 37694.96 41693.89 39597.09 39599.22 32097.23 35598.88 31799.04 34779.23 40799.54 39196.24 34796.81 40498.50 381
ACMP97.51 1499.05 20398.84 22899.67 10899.78 10399.55 13898.88 25399.66 15497.11 36299.47 22099.60 21999.07 9599.89 17896.18 34999.85 15899.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23298.72 23899.44 19999.39 27499.42 16698.58 29199.64 17097.31 35299.44 22699.62 20298.59 15799.69 34696.17 35099.79 19999.22 281
DP-MVS Recon98.50 27498.23 28299.31 24099.49 24199.46 15298.56 29699.63 17294.86 39498.85 32299.37 29097.81 24099.59 38596.08 35199.44 30598.88 354
tpm cat196.78 34496.98 33896.16 39198.85 37190.59 41599.08 21799.32 29692.37 40097.73 38799.46 27091.15 36099.69 34696.07 35298.80 35898.21 392
tpm296.35 35596.22 35096.73 38498.88 36991.75 40799.21 17198.51 36493.27 39997.89 37899.21 32784.83 39699.70 34096.04 35398.18 38898.75 366
dmvs_re98.69 25498.48 25999.31 24099.55 21599.42 16699.54 8598.38 37299.32 16098.72 33698.71 37796.76 28799.21 40496.01 35499.35 31899.31 263
test_040299.22 16299.14 15399.45 19499.79 9699.43 16399.28 15099.68 14599.54 12399.40 24399.56 23899.07 9599.82 28296.01 35499.96 6699.11 308
ITE_SJBPF99.38 22099.63 17799.44 15999.73 11798.56 26399.33 25599.53 24998.88 12099.68 35896.01 35499.65 25599.02 338
test_prior297.95 35797.87 32598.05 37299.05 34597.90 23395.99 35799.49 300
testdata299.89 17895.99 357
原ACMM199.37 22399.47 25298.87 25599.27 30896.74 37098.26 36199.32 30397.93 23299.82 28295.96 35999.38 31399.43 234
新几何199.52 17599.50 23699.22 21399.26 31095.66 38498.60 34699.28 31197.67 25099.89 17895.95 36099.32 32299.45 223
MP-MVScopyleft99.06 20098.83 23099.76 6299.76 11599.71 8299.32 13399.50 25098.35 29098.97 30699.48 26398.37 19199.92 11895.95 36099.75 21299.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 37594.59 37898.61 32798.66 39197.45 34398.54 30097.90 38598.53 26896.54 40296.47 41870.62 41999.81 29795.91 36298.15 38998.56 376
wuyk23d97.58 32599.13 15592.93 39499.69 15499.49 14599.52 8799.77 9797.97 31699.96 2499.79 9699.84 1299.94 7995.85 36399.82 18079.36 412
HQP_MVS98.90 23298.68 24299.55 16799.58 19399.24 21098.80 26899.54 22798.94 21499.14 29199.25 31897.24 26999.82 28295.84 36499.78 20499.60 153
plane_prior599.54 22799.82 28295.84 36499.78 20499.60 153
无先验98.01 34999.23 31795.83 38199.85 24395.79 36699.44 228
CPTT-MVS98.74 24898.44 26399.64 12799.61 18299.38 17899.18 17899.55 22196.49 37199.27 27099.37 29097.11 27799.92 11895.74 36799.67 25099.62 139
PLCcopyleft97.35 1698.36 28797.99 30099.48 18699.32 30099.24 21098.50 30599.51 24695.19 39098.58 34898.96 36196.95 28299.83 27395.63 36899.25 33199.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26698.34 27499.28 24799.18 33099.10 23298.34 31899.41 27298.48 27498.52 35298.98 35797.05 27999.78 31095.59 36999.50 29898.96 342
131498.00 31097.90 31298.27 34898.90 36497.45 34399.30 14199.06 33794.98 39197.21 39399.12 33798.43 18299.67 36395.58 37098.56 37597.71 401
PVSNet_095.53 1995.85 37095.31 37097.47 37098.78 38193.48 40095.72 40699.40 27996.18 37797.37 38897.73 40095.73 31299.58 38695.49 37181.40 41499.36 249
MAR-MVS98.24 29797.92 31099.19 26398.78 38199.65 10699.17 18399.14 33195.36 38698.04 37398.81 37397.47 25999.72 33395.47 37299.06 34198.21 392
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29897.89 31399.26 25399.19 32799.26 20399.65 5899.69 14291.33 40498.14 37099.77 11198.28 20099.96 5495.41 37399.55 28498.58 374
train_agg98.35 29097.95 30499.57 16199.35 28599.35 18898.11 33899.41 27294.90 39297.92 37698.99 35498.02 22599.85 24395.38 37499.44 30599.50 205
9.1498.64 24399.45 26098.81 26599.60 19397.52 34199.28 26999.56 23898.53 16999.83 27395.36 37599.64 257
APD-MVScopyleft98.87 23798.59 24899.71 9799.50 23699.62 11699.01 23299.57 21096.80 36999.54 20099.63 19598.29 19999.91 14095.24 37699.71 23399.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36795.20 377
AdaColmapbinary98.60 26198.35 27399.38 22099.12 33899.22 21398.67 28199.42 27197.84 32898.81 32699.27 31397.32 26799.81 29795.14 37899.53 29199.10 310
test9_res95.10 37999.44 30599.50 205
CDPH-MVS98.56 26798.20 28599.61 14699.50 23699.46 15298.32 32099.41 27295.22 38899.21 28199.10 34198.34 19599.82 28295.09 38099.66 25399.56 172
BH-untuned98.22 29998.09 29498.58 33199.38 27797.24 34998.55 29798.98 34297.81 32999.20 28698.76 37597.01 28099.65 37494.83 38198.33 38098.86 356
BP-MVS94.73 382
HQP-MVS98.36 28798.02 29999.39 21799.31 30198.94 24697.98 35399.37 28797.45 34498.15 36698.83 37096.67 28899.70 34094.73 38299.67 25099.53 188
QAPM98.40 28597.99 30099.65 12099.39 27499.47 14899.67 4999.52 24191.70 40398.78 33299.80 8698.55 16399.95 6494.71 38499.75 21299.53 188
agg_prior294.58 38599.46 30499.50 205
myMVS_eth3d95.63 37394.73 37598.34 34298.50 39696.36 36798.60 28699.21 32397.89 32296.76 39896.37 41972.10 41799.57 38794.38 38698.73 36899.09 315
BH-RMVSNet98.41 28398.14 29199.21 26099.21 32298.47 28498.60 28698.26 37698.35 29098.93 31099.31 30597.20 27499.66 36894.32 38799.10 34099.51 200
E-PMN97.14 33897.43 32596.27 38998.79 37991.62 40895.54 40799.01 34199.44 14098.88 31799.12 33792.78 34499.68 35894.30 38899.03 34597.50 402
MG-MVS98.52 27198.39 26898.94 29599.15 33397.39 34698.18 32999.21 32398.89 22499.23 27699.63 19597.37 26599.74 32894.22 38999.61 26899.69 82
API-MVS98.38 28698.39 26898.35 34098.83 37399.26 20399.14 19399.18 32798.59 26198.66 34198.78 37498.61 15599.57 38794.14 39099.56 28096.21 409
PAPM_NR98.36 28798.04 29799.33 23399.48 24698.93 24998.79 27199.28 30797.54 33998.56 35198.57 38297.12 27699.69 34694.09 39198.90 35699.38 243
ZD-MVS99.43 26499.61 12399.43 26996.38 37399.11 29599.07 34397.86 23699.92 11894.04 39299.49 300
DPM-MVS98.28 29397.94 30899.32 23799.36 28299.11 22797.31 38998.78 35096.88 36598.84 32399.11 34097.77 24399.61 38394.03 39399.36 31699.23 278
gg-mvs-nofinetune95.87 36895.17 37397.97 35598.19 40496.95 35699.69 4189.23 41799.89 3696.24 40599.94 1681.19 40099.51 39793.99 39498.20 38597.44 403
PMVScopyleft92.94 2198.82 24198.81 23298.85 31099.84 5997.99 31999.20 17299.47 25899.71 8399.42 23299.82 7798.09 21999.47 39993.88 39599.85 15899.07 326
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 34197.28 32995.99 39298.76 38491.03 41195.26 40998.61 35999.34 15798.92 31398.88 36893.79 33299.66 36892.87 39699.05 34397.30 406
BH-w/o97.20 33597.01 33797.76 36399.08 34995.69 38098.03 34898.52 36395.76 38297.96 37598.02 39595.62 31499.47 39992.82 39797.25 40398.12 396
TR-MVS97.44 33097.15 33498.32 34398.53 39497.46 34298.47 30897.91 38496.85 36698.21 36598.51 38696.42 29799.51 39792.16 39897.29 40297.98 398
OpenMVS_ROBcopyleft97.31 1797.36 33396.84 34398.89 30899.29 30799.45 15798.87 25499.48 25586.54 40999.44 22699.74 12297.34 26699.86 22591.61 39999.28 32797.37 405
GG-mvs-BLEND97.36 37397.59 41296.87 35999.70 3488.49 41894.64 41197.26 40980.66 40199.12 40591.50 40096.50 40896.08 411
DeepMVS_CXcopyleft97.98 35499.69 15496.95 35699.26 31075.51 41295.74 40898.28 39196.47 29599.62 37891.23 40197.89 39697.38 404
PAPR97.56 32697.07 33599.04 28698.80 37798.11 31197.63 37399.25 31394.56 39798.02 37498.25 39297.43 26199.68 35890.90 40298.74 36599.33 256
MVS95.72 37294.63 37798.99 28998.56 39397.98 32499.30 14198.86 34472.71 41397.30 39099.08 34298.34 19599.74 32889.21 40398.33 38099.26 271
thres600view796.60 34996.16 35197.93 35799.63 17796.09 37599.18 17897.57 38998.77 24298.72 33697.32 40787.04 38699.72 33388.57 40498.62 37397.98 398
FPMVS96.32 35695.50 36498.79 31899.60 18498.17 30698.46 31298.80 34997.16 35996.28 40399.63 19582.19 39999.09 40688.45 40598.89 35799.10 310
PCF-MVS96.03 1896.73 34695.86 35899.33 23399.44 26199.16 22296.87 40099.44 26686.58 40898.95 30899.40 28294.38 32699.88 19287.93 40699.80 19498.95 344
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 35496.03 35497.47 37099.63 17795.93 37699.18 17897.57 38998.75 24698.70 33997.31 40887.04 38699.67 36387.62 40798.51 37796.81 407
tfpn200view996.30 35795.89 35697.53 36799.58 19396.11 37399.00 23597.54 39298.43 27698.52 35296.98 41086.85 38899.67 36387.62 40798.51 37796.81 407
thres40096.40 35395.89 35697.92 35899.58 19396.11 37399.00 23597.54 39298.43 27698.52 35296.98 41086.85 38899.67 36387.62 40798.51 37797.98 398
thres20096.09 36295.68 36297.33 37599.48 24696.22 37298.53 30297.57 38998.06 31198.37 35996.73 41486.84 39099.61 38386.99 41098.57 37496.16 410
MVEpermissive92.54 2296.66 34896.11 35298.31 34599.68 16297.55 33997.94 35895.60 40399.37 15390.68 41498.70 37896.56 29198.61 41186.94 41199.55 28498.77 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 33496.83 34498.59 32999.46 25697.55 33999.25 16196.84 39798.78 24097.24 39297.67 40197.11 27798.97 40886.59 41298.54 37699.27 269
PAPM95.61 37494.71 37698.31 34599.12 33896.63 36296.66 40398.46 36790.77 40596.25 40498.68 37993.01 34299.69 34681.60 41397.86 39898.62 369
dongtai89.37 37988.91 38290.76 39599.19 32777.46 42095.47 40887.82 41992.28 40194.17 41298.82 37271.22 41895.54 41463.85 41497.34 40199.27 269
kuosan85.65 38184.57 38488.90 39797.91 40977.11 42196.37 40587.62 42085.24 41085.45 41596.83 41369.94 42090.98 41645.90 41595.83 41198.62 369
test12329.31 38233.05 38718.08 39825.93 42212.24 42397.53 37910.93 42311.78 41624.21 41750.08 42621.04 4218.60 41723.51 41632.43 41633.39 413
testmvs28.94 38333.33 38515.79 39926.03 4219.81 42496.77 40115.67 42211.55 41723.87 41850.74 42519.03 4228.53 41823.21 41733.07 41529.03 414
test_blank8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
uanet_test8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
cdsmvs_eth3d_5k24.88 38433.17 3860.00 4000.00 4230.00 4250.00 41199.62 1750.00 4180.00 41999.13 33399.82 130.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas16.61 38522.14 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 199.28 660.00 4190.00 4180.00 4170.00 415
sosnet-low-res8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
sosnet8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
Regformer8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs-re8.26 39411.02 3970.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41999.16 3310.00 4230.00 4190.00 4180.00 4170.00 415
uanet8.33 38611.11 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 419100.00 10.00 4230.00 4190.00 4180.00 4170.00 415
FOURS199.83 6399.89 1099.74 2399.71 12999.69 9199.63 160
test_one_060199.63 17799.76 6099.55 22199.23 17499.31 26399.61 21198.59 157
eth-test20.00 423
eth-test0.00 423
test_241102_ONE99.69 15499.82 3499.54 22799.12 19799.82 8199.49 26098.91 11699.52 396
save fliter99.53 22399.25 20698.29 32299.38 28699.07 201
test072699.69 15499.80 4399.24 16299.57 21099.16 18899.73 12899.65 18298.35 193
GSMVS99.14 304
test_part299.62 18199.67 9899.55 198
sam_mvs190.81 36799.14 304
sam_mvs90.52 371
MTGPAbinary99.53 236
test_post52.41 42390.25 37399.86 225
patchmatchnet-post99.62 20290.58 36999.94 79
MTMP99.09 21498.59 362
TEST999.35 28599.35 18898.11 33899.41 27294.83 39597.92 37698.99 35498.02 22599.85 243
test_899.34 29499.31 19498.08 34299.40 27994.90 39297.87 38098.97 35998.02 22599.84 258
agg_prior99.35 28599.36 18599.39 28297.76 38699.85 243
test_prior499.19 21998.00 351
test_prior99.46 19199.35 28599.22 21399.39 28299.69 34699.48 214
新几何298.04 346
旧先验199.49 24199.29 19799.26 31099.39 28697.67 25099.36 31699.46 222
原ACMM297.92 360
test22299.51 23099.08 23497.83 36699.29 30495.21 38998.68 34099.31 30597.28 26899.38 31399.43 234
segment_acmp98.37 191
testdata197.72 36997.86 327
test1299.54 17299.29 30799.33 19199.16 32998.43 35797.54 25799.82 28299.47 30299.48 214
plane_prior799.58 19399.38 178
plane_prior699.47 25299.26 20397.24 269
plane_prior499.25 318
plane_prior399.31 19498.36 28599.14 291
plane_prior298.80 26898.94 214
plane_prior199.51 230
plane_prior99.24 21098.42 31497.87 32599.71 233
n20.00 424
nn0.00 424
door-mid99.83 65
test1199.29 304
door99.77 97
HQP5-MVS98.94 246
HQP-NCC99.31 30197.98 35397.45 34498.15 366
ACMP_Plane99.31 30197.98 35397.45 34498.15 366
HQP4-MVS98.15 36699.70 34099.53 188
HQP3-MVS99.37 28799.67 250
HQP2-MVS96.67 288
NP-MVS99.40 27399.13 22598.83 370
ACMMP++_ref99.94 91
ACMMP++99.79 199
Test By Simon98.41 185