This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6799.70 36100.00 199.73 76100.00 199.89 3599.79 1699.88 19199.98 1100.00 199.98 3
test_fmvs299.72 3799.85 1699.34 23099.91 3098.08 31599.48 100100.00 199.90 3299.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17799.96 798.62 27799.67 51100.00 199.95 21100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 200100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3799.88 699.27 24999.93 2497.84 32799.34 126100.00 199.99 299.99 799.82 7599.87 999.99 899.97 499.99 1699.97 7
test_vis1_n99.68 4799.79 2799.36 22799.94 1898.18 30599.52 89100.00 199.86 47100.00 199.88 4398.99 10599.96 5699.97 499.96 6799.95 11
test_fmvs1_n99.68 4799.81 2399.28 24699.95 1597.93 32499.49 99100.00 199.82 6099.99 799.89 3599.21 7599.98 2199.97 499.98 3999.93 15
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 94100.00 199.94 24100.00 199.93 1799.58 3699.94 7999.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 23099.99 1099.99 299.98 1399.88 4399.97 299.99 899.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4399.55 14199.17 18099.98 1199.99 299.96 2399.84 6499.96 399.99 899.96 999.99 1699.88 24
test_cas_vis1_n_192099.76 3199.86 1299.45 19599.93 2498.40 29099.30 13999.98 1199.94 2499.99 799.89 3599.80 1599.97 3599.96 999.97 5499.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4399.66 10299.11 20499.91 3399.98 1499.96 2399.64 18299.60 3499.99 899.95 1299.99 1699.88 24
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7299.70 9099.17 18099.97 1899.99 299.96 2399.82 7599.94 4100.00 199.95 12100.00 199.80 46
test_fmvs199.48 9099.65 5298.97 29099.54 21797.16 35099.11 20499.98 1199.78 6999.96 2399.81 8198.72 14099.97 3599.95 1299.97 5499.79 53
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 18299.53 8899.98 1199.77 7499.99 799.95 1399.85 1099.94 7999.95 1299.98 3999.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2999.88 4399.64 11199.12 20099.91 3399.98 1499.95 3199.67 16999.67 2799.99 899.94 1699.99 1699.88 24
MM99.18 17699.05 18399.55 17199.35 28498.81 25799.05 21897.79 38399.99 299.48 21899.59 22296.29 30599.95 6599.94 1699.98 3999.88 24
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 3099.73 7698.97 24399.98 1199.99 299.96 2399.85 5899.93 799.99 899.94 1699.99 1699.93 15
MVS_030499.17 18199.03 19199.59 15499.44 26198.90 25199.04 22195.32 40099.99 299.68 14399.57 23298.30 20099.97 3599.94 1699.98 3999.88 24
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20799.98 1199.99 299.98 1399.91 2499.68 2699.93 9699.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4999.07 21799.98 1199.99 299.98 1399.90 3099.88 899.92 11899.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5799.82 3599.03 22599.96 2399.99 299.97 1999.84 6499.58 3699.93 9699.92 2299.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5799.78 4999.03 22599.96 2399.99 299.97 1999.84 6499.78 1799.92 11899.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 29
v192192099.56 7599.57 7399.55 17199.75 12899.11 22799.05 21899.61 18199.15 18999.88 6399.71 14199.08 9299.87 20599.90 2599.97 5499.66 104
v124099.56 7599.58 7099.51 18199.80 8699.00 23899.00 23499.65 16399.15 18999.90 5199.75 11899.09 8999.88 19199.90 2599.96 6799.67 94
v1099.69 4399.69 4499.66 11799.81 8099.39 17799.66 5599.75 10899.60 11899.92 4499.87 4898.75 13599.86 22599.90 2599.99 1699.73 70
v119299.57 7299.57 7399.57 16499.77 11399.22 21499.04 22199.60 19299.18 17899.87 7199.72 13399.08 9299.85 24299.89 2899.98 3999.66 104
v14419299.55 7899.54 7999.58 15899.78 10599.20 21999.11 20499.62 17499.18 17899.89 5599.72 13398.66 14899.87 20599.88 2999.97 5499.66 104
v899.68 4799.69 4499.65 12299.80 8699.40 17599.66 5599.76 10399.64 10499.93 3899.85 5898.66 14899.84 25799.88 2999.99 1699.71 75
v114499.54 8099.53 8399.59 15499.79 9899.28 20099.10 20799.61 18199.20 17699.84 7799.73 12598.67 14699.84 25799.86 3199.98 3999.64 122
SSC-MVS99.52 8399.42 10199.83 3299.86 5399.65 10899.52 8999.81 7899.87 4499.81 8999.79 9596.78 28799.99 899.83 3299.51 29299.86 31
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 999.82 6999.84 5599.94 3499.91 2499.13 8699.96 5699.83 3299.99 1699.83 39
v2v48299.50 8699.47 8899.58 15899.78 10599.25 20799.14 19099.58 20799.25 16799.81 8999.62 20098.24 20699.84 25799.83 3299.97 5499.64 122
test_vis1_rt99.45 10099.46 9299.41 21299.71 14398.63 27698.99 23999.96 2399.03 20299.95 3199.12 33498.75 13599.84 25799.82 3599.82 18099.77 59
tt080599.63 6199.57 7399.81 3999.87 5099.88 1299.58 7998.70 35099.72 8099.91 4799.60 21799.43 4899.81 29699.81 3699.53 28899.73 70
V4299.56 7599.54 7999.63 13699.79 9899.46 15499.39 11599.59 19899.24 16999.86 7299.70 14898.55 16399.82 28199.79 3799.95 8199.60 152
mvs_tets99.90 299.90 399.90 799.96 799.79 4699.72 3199.88 4599.92 2999.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
WB-MVS99.44 10299.32 11999.80 4499.81 8099.61 12599.47 10399.81 7899.82 6099.71 13399.72 13396.60 29199.98 2199.75 3999.23 33299.82 45
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5499.68 4799.85 5599.95 2199.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1099.96 799.78 4999.70 3699.86 5099.89 3899.98 1399.90 3099.94 499.98 2199.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 60100.00 199.90 32100.00 199.97 1199.61 3299.97 3599.75 39100.00 199.84 35
CS-MVS-test99.68 4799.70 4099.64 12999.57 20399.83 2999.78 1499.97 1899.92 2999.50 21599.38 28599.57 3899.95 6599.69 4399.90 11799.15 298
CS-MVS99.67 5399.70 4099.58 15899.53 22399.84 2499.79 1399.96 2399.90 3299.61 17599.41 27599.51 4599.95 6599.66 4499.89 12698.96 339
mamv499.73 3699.74 3799.70 10399.66 17099.87 1499.69 4399.93 2999.93 2699.93 3899.86 5499.07 94100.00 199.66 4499.92 10499.24 273
pmmvs699.86 999.86 1299.83 3299.94 1899.90 799.83 799.91 3399.85 5299.94 3499.95 1399.73 2199.90 15899.65 4699.97 5499.69 82
MIMVSNet199.66 5499.62 5899.80 4499.94 1899.87 1499.69 4399.77 9799.78 6999.93 3899.89 3597.94 23299.92 11899.65 4699.98 3999.62 138
EC-MVSNet99.69 4399.69 4499.68 10799.71 14399.91 499.76 2099.96 2399.86 4799.51 21399.39 28399.57 3899.93 9699.64 4899.86 15499.20 286
K. test v398.87 23798.60 24699.69 10599.93 2499.46 15499.74 2594.97 40199.78 6999.88 6399.88 4393.66 33499.97 3599.61 4999.95 8199.64 122
KD-MVS_self_test99.63 6199.59 6799.76 6399.84 6099.90 799.37 12199.79 8899.83 5899.88 6399.85 5898.42 18499.90 15899.60 5099.73 22499.49 209
Anonymous2024052199.44 10299.42 10199.49 18499.89 3898.96 24499.62 6599.76 10399.85 5299.82 8299.88 4396.39 30199.97 3599.59 5199.98 3999.55 174
TransMVSNet (Re)99.78 2799.77 3399.81 3999.91 3099.85 1999.75 2399.86 5099.70 8799.91 4799.89 3599.60 3499.87 20599.59 5199.74 21999.71 75
OurMVSNet-221017-099.75 3299.71 3999.84 2999.96 799.83 2999.83 799.85 5599.80 6699.93 3899.93 1798.54 16599.93 9699.59 5199.98 3999.76 65
EU-MVSNet99.39 11899.62 5898.72 32199.88 4396.44 36499.56 8499.85 5599.90 3299.90 5199.85 5898.09 22199.83 27299.58 5499.95 8199.90 20
mvsmamba99.74 3599.70 4099.85 2699.93 2499.83 2999.76 2099.81 7899.96 1899.91 4799.81 8198.60 15699.94 7999.58 5499.98 3999.77 59
mvs_anonymous99.28 14399.39 10498.94 29499.19 32697.81 32999.02 22899.55 22099.78 6999.85 7499.80 8598.24 20699.86 22599.57 5699.50 29599.15 298
test111197.74 31598.16 28996.49 38399.60 18489.86 41399.71 3591.21 40999.89 3899.88 6399.87 4893.73 33399.90 15899.56 5799.99 1699.70 78
lessismore_v099.64 12999.86 5399.38 17990.66 41099.89 5599.83 6894.56 32499.97 3599.56 5799.92 10499.57 169
mvsany_test199.44 10299.45 9499.40 21499.37 27998.64 27597.90 35999.59 19899.27 16399.92 4499.82 7599.74 2099.93 9699.55 5999.87 14699.63 127
iter_conf0599.64 6099.65 5299.60 15199.68 16399.62 11899.82 999.89 4099.92 2999.93 3899.86 5498.28 20299.96 5699.54 6099.91 11599.23 277
pm-mvs199.79 2699.79 2799.78 5399.91 3099.83 2999.76 2099.87 4799.73 7699.89 5599.87 4899.63 2999.87 20599.54 6099.92 10499.63 127
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 3099.90 799.96 199.92 3099.90 3299.97 1999.87 4899.81 1499.95 6599.54 6099.99 1699.80 46
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 9099.65 5298.95 29399.71 14397.27 34799.50 9599.82 6999.59 12099.41 23899.85 5899.62 31100.00 199.53 6399.89 12699.59 159
test250694.73 37394.59 37495.15 38999.59 18885.90 41599.75 2374.01 41799.89 3899.71 13399.86 5479.00 40699.90 15899.52 6499.99 1699.65 112
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3899.91 499.89 499.71 12999.93 2699.95 3199.89 3599.71 2299.96 5699.51 6599.97 5499.84 35
FC-MVSNet-test99.70 4199.65 5299.86 2499.88 4399.86 1899.72 3199.78 9499.90 3299.82 8299.83 6898.45 18099.87 20599.51 6599.97 5499.86 31
UA-Net99.78 2799.76 3699.86 2499.72 14099.71 8399.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3599.50 67100.00 199.90 20
PMMVS299.48 9099.45 9499.57 16499.76 11798.99 23998.09 33699.90 3898.95 21099.78 10299.58 22599.57 3899.93 9699.48 6899.95 8199.79 53
VPA-MVSNet99.66 5499.62 5899.79 5099.68 16399.75 6799.62 6599.69 14099.85 5299.80 9399.81 8198.81 12399.91 14099.47 6999.88 13599.70 78
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18890.81 40999.72 3190.43 41199.89 3899.86 7299.86 5493.60 33599.89 17699.46 7099.99 1699.65 112
nrg03099.70 4199.66 5099.82 3699.76 11799.84 2499.61 7099.70 13499.93 2699.78 10299.68 16599.10 8799.78 30999.45 7199.96 6799.83 39
TAMVS99.49 8899.45 9499.63 13699.48 24699.42 16899.45 10799.57 20999.66 10099.78 10299.83 6897.85 23999.86 22599.44 7299.96 6799.61 148
GeoE99.69 4399.66 5099.78 5399.76 11799.76 6199.60 7699.82 6999.46 13599.75 11599.56 23699.63 2999.95 6599.43 7399.88 13599.62 138
new-patchmatchnet99.35 12899.57 7398.71 32399.82 7296.62 36298.55 29599.75 10899.50 12699.88 6399.87 4899.31 6299.88 19199.43 73100.00 199.62 138
test20.0399.55 7899.54 7999.58 15899.79 9899.37 18299.02 22899.89 4099.60 11899.82 8299.62 20098.81 12399.89 17699.43 7399.86 15499.47 217
MVSFormer99.41 11299.44 9799.31 24099.57 20398.40 29099.77 1699.80 8299.73 7699.63 16099.30 30498.02 22699.98 2199.43 7399.69 23999.55 174
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1699.80 8299.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6399.80 8699.65 10899.63 6299.86 5099.97 1699.89 5599.89 3599.52 4499.99 899.42 7899.96 6799.65 112
iter_conf05_1199.51 8499.49 8699.57 16499.42 27099.67 9999.52 8999.77 9799.78 6999.77 10799.73 12598.10 22099.89 17699.42 7899.93 9999.16 295
bld_raw_dy_0_6499.69 4399.67 4899.74 7899.84 6099.58 13499.88 599.83 6399.96 1899.94 3499.91 2498.33 19799.98 2199.42 7899.96 6799.67 94
Anonymous2023121199.62 6799.57 7399.76 6399.61 18299.60 12899.81 1199.73 11799.82 6099.90 5199.90 3097.97 23199.86 22599.42 7899.96 6799.80 46
SixPastTwentyTwo99.42 10899.30 12699.76 6399.92 2999.67 9999.70 3699.14 32999.65 10299.89 5599.90 3096.20 30799.94 7999.42 7899.92 10499.67 94
patch_mono-299.51 8499.46 9299.64 12999.70 15199.11 22799.04 22199.87 4799.71 8299.47 22099.79 9598.24 20699.98 2199.38 8399.96 6799.83 39
UGNet99.38 12099.34 11499.49 18498.90 36398.90 25199.70 3699.35 28999.86 4798.57 34799.81 8198.50 17599.93 9699.38 8399.98 3999.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 4099.67 4899.81 3999.89 3899.72 8199.59 7799.82 6999.39 14899.82 8299.84 6499.38 5499.91 14099.38 8399.93 9999.80 46
FIs99.65 5999.58 7099.84 2999.84 6099.85 1999.66 5599.75 10899.86 4799.74 12399.79 9598.27 20499.85 24299.37 8699.93 9999.83 39
sd_testset99.78 2799.78 3199.80 4499.80 8699.76 6199.80 1299.79 8899.97 1699.89 5599.89 3599.53 4399.99 899.36 8799.96 6799.65 112
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2899.85 5599.70 8799.92 4499.93 1799.45 4799.97 3599.36 87100.00 199.85 34
casdiffmvs_mvgpermissive99.68 4799.68 4799.69 10599.81 8099.59 13099.29 14699.90 3899.71 8299.79 9899.73 12599.54 4199.84 25799.36 8799.96 6799.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 5099.88 4399.66 10299.69 4399.92 3099.67 9699.77 10799.75 11899.61 3299.98 2199.35 9099.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6999.64 5699.53 17799.79 9898.82 25699.58 7999.97 1899.95 2199.96 2399.76 11398.44 18199.99 899.34 9199.96 6799.78 55
CHOSEN 1792x268899.39 11899.30 12699.65 12299.88 4399.25 20798.78 27199.88 4598.66 24999.96 2399.79 9597.45 26199.93 9699.34 9199.99 1699.78 55
CDS-MVSNet99.22 16299.13 15599.50 18399.35 28499.11 22798.96 24599.54 22699.46 13599.61 17599.70 14896.31 30399.83 27299.34 9199.88 13599.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21799.16 14998.51 33099.75 12895.90 37498.07 33999.84 6199.84 5599.89 5599.73 12596.01 31099.99 899.33 94100.00 199.63 127
HyFIR lowres test98.91 23098.64 24399.73 8899.85 5799.47 15098.07 33999.83 6398.64 25199.89 5599.60 21792.57 344100.00 199.33 9499.97 5499.72 72
pmmvs599.19 17299.11 16299.42 20599.76 11798.88 25398.55 29599.73 11798.82 22999.72 12899.62 20096.56 29299.82 28199.32 9699.95 8199.56 171
v14899.40 11499.41 10399.39 21799.76 11798.94 24599.09 21199.59 19899.17 18399.81 8999.61 20998.41 18599.69 34499.32 9699.94 9299.53 187
baseline99.63 6199.62 5899.66 11799.80 8699.62 11899.44 10999.80 8299.71 8299.72 12899.69 15499.15 8199.83 27299.32 9699.94 9299.53 187
CVMVSNet98.61 25898.88 22397.80 35899.58 19393.60 39599.26 15399.64 16999.66 10099.72 12899.67 16993.26 33799.93 9699.30 9999.81 18999.87 29
PS-CasMVS99.66 5499.58 7099.89 1099.80 8699.85 1999.66 5599.73 11799.62 10999.84 7799.71 14198.62 15299.96 5699.30 9999.96 6799.86 31
DTE-MVSNet99.68 4799.61 6299.88 1699.80 8699.87 1499.67 5199.71 12999.72 8099.84 7799.78 10398.67 14699.97 3599.30 9999.95 8199.80 46
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25497.87 38278.01 40799.30 26599.69 15497.70 24795.89 40999.29 10298.14 38699.95 11
PEN-MVS99.66 5499.59 6799.89 1099.83 6599.87 1499.66 5599.73 11799.70 8799.84 7799.73 12598.56 16299.96 5699.29 10299.94 9299.83 39
WR-MVS_H99.61 6999.53 8399.87 2099.80 8699.83 2999.67 5199.75 10899.58 12199.85 7499.69 15498.18 21599.94 7999.28 10499.95 8199.83 39
IterMVS98.97 22199.16 14998.42 33499.74 13495.64 37798.06 34199.83 6399.83 5899.85 7499.74 12196.10 30999.99 899.27 105100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25898.34 27499.44 19899.60 18498.67 26899.27 15199.44 26499.68 9299.32 25699.49 25892.50 347100.00 199.24 10696.51 40399.65 112
hse-mvs298.52 27098.30 27899.16 26599.29 30698.60 27898.77 27299.02 33799.68 9299.32 25699.04 34492.50 34799.85 24299.24 10697.87 39399.03 330
FMVSNet199.66 5499.63 5799.73 8899.78 10599.77 5499.68 4799.70 13499.67 9699.82 8299.83 6898.98 10799.90 15899.24 10699.97 5499.53 187
casdiffmvspermissive99.63 6199.61 6299.67 11099.79 9899.59 13099.13 19699.85 5599.79 6899.76 11099.72 13399.33 6199.82 28199.21 10999.94 9299.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 8099.43 9999.87 2099.76 11799.82 3599.57 8299.61 18199.54 12299.80 9399.64 18297.79 24399.95 6599.21 10999.94 9299.84 35
DELS-MVS99.34 13399.30 12699.48 18899.51 23099.36 18698.12 33299.53 23599.36 15399.41 23899.61 20999.22 7499.87 20599.21 10999.68 24499.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12399.26 13899.68 10799.51 23099.58 13498.98 24299.60 19299.43 14399.70 13799.36 29197.70 24799.88 19199.20 11299.87 14699.59 159
CANet99.11 19499.05 18399.28 24698.83 37098.56 28098.71 27899.41 27099.25 16799.23 27399.22 32297.66 25599.94 7999.19 11399.97 5499.33 255
EI-MVSNet-UG-set99.48 9099.50 8599.42 20599.57 20398.65 27499.24 16099.46 25999.68 9299.80 9399.66 17598.99 10599.89 17699.19 11399.90 11799.72 72
xiu_mvs_v1_base_debu99.23 15499.34 11498.91 30099.59 18898.23 29998.47 30599.66 15399.61 11299.68 14398.94 36099.39 5099.97 3599.18 11599.55 28198.51 374
xiu_mvs_v1_base99.23 15499.34 11498.91 30099.59 18898.23 29998.47 30599.66 15399.61 11299.68 14398.94 36099.39 5099.97 3599.18 11599.55 28198.51 374
xiu_mvs_v1_base_debi99.23 15499.34 11498.91 30099.59 18898.23 29998.47 30599.66 15399.61 11299.68 14398.94 36099.39 5099.97 3599.18 11599.55 28198.51 374
VPNet99.46 9899.37 10999.71 9999.82 7299.59 13099.48 10099.70 13499.81 6399.69 14099.58 22597.66 25599.86 22599.17 11899.44 30299.67 94
UniMVSNet_NR-MVSNet99.37 12399.25 14099.72 9499.47 25299.56 13898.97 24399.61 18199.43 14399.67 14999.28 30897.85 23999.95 6599.17 11899.81 18999.65 112
DU-MVS99.33 13699.21 14499.71 9999.43 26599.56 13898.83 25999.53 23599.38 14999.67 14999.36 29197.67 25199.95 6599.17 11899.81 18999.63 127
EI-MVSNet-Vis-set99.47 9799.49 8699.42 20599.57 20398.66 27199.24 16099.46 25999.67 9699.79 9899.65 18098.97 10999.89 17699.15 12199.89 12699.71 75
EI-MVSNet99.38 12099.44 9799.21 25999.58 19398.09 31299.26 15399.46 25999.62 10999.75 11599.67 16998.54 16599.85 24299.15 12199.92 10499.68 88
VNet99.18 17699.06 17999.56 16899.24 31699.36 18699.33 12999.31 29899.67 9699.47 22099.57 23296.48 29599.84 25799.15 12199.30 32199.47 217
EG-PatchMatch MVS99.57 7299.56 7899.62 14599.77 11399.33 19299.26 15399.76 10399.32 15799.80 9399.78 10399.29 6499.87 20599.15 12199.91 11599.66 104
PVSNet_Blended_VisFu99.40 11499.38 10699.44 19899.90 3698.66 27198.94 24899.91 3397.97 31299.79 9899.73 12599.05 9999.97 3599.15 12199.99 1699.68 88
IterMVS-LS99.41 11299.47 8899.25 25599.81 8098.09 31298.85 25699.76 10399.62 10999.83 8199.64 18298.54 16599.97 3599.15 12199.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 8099.47 8899.76 6399.58 19399.64 11199.30 13999.63 17199.61 11299.71 13399.56 23698.76 13399.96 5699.14 12799.92 10499.68 88
MVSTER98.47 27798.22 28299.24 25799.06 35098.35 29699.08 21499.46 25999.27 16399.75 11599.66 17588.61 38099.85 24299.14 12799.92 10499.52 197
Anonymous2023120699.35 12899.31 12199.47 19099.74 13499.06 23799.28 14899.74 11399.23 17199.72 12899.53 24797.63 25799.88 19199.11 12999.84 16399.48 213
Syy-MVS98.17 30097.85 31299.15 26798.50 39398.79 26098.60 28499.21 32197.89 31896.76 39496.37 41595.47 31699.57 38399.10 13098.73 36499.09 313
MVS_Test99.28 14399.31 12199.19 26299.35 28498.79 26099.36 12499.49 25299.17 18399.21 27899.67 16998.78 13099.66 36599.09 13199.66 25399.10 309
testgi99.29 14299.26 13899.37 22399.75 12898.81 25798.84 25799.89 4098.38 27999.75 11599.04 34499.36 5999.86 22599.08 13299.25 32899.45 222
1112_ss99.05 20398.84 22899.67 11099.66 17099.29 19898.52 30199.82 6997.65 33099.43 23099.16 32896.42 29899.91 14099.07 13399.84 16399.80 46
CANet_DTU98.91 23098.85 22699.09 27698.79 37698.13 30798.18 32599.31 29899.48 12898.86 31899.51 25196.56 29299.95 6599.05 13499.95 8199.19 289
MVSMamba_pp99.32 13899.28 13399.44 19899.10 34499.41 17399.01 23099.68 14399.37 15099.58 18399.67 16998.11 21999.87 20599.04 13599.92 10499.05 326
Baseline_NR-MVSNet99.49 8899.37 10999.82 3699.91 3099.84 2498.83 25999.86 5099.68 9299.65 15599.88 4397.67 25199.87 20599.03 13699.86 15499.76 65
FMVSNet299.35 12899.28 13399.55 17199.49 24199.35 18999.45 10799.57 20999.44 13899.70 13799.74 12197.21 27299.87 20599.03 13699.94 9299.44 227
Test_1112_low_res98.95 22798.73 23799.63 13699.68 16399.15 22498.09 33699.80 8297.14 35699.46 22499.40 27996.11 30899.89 17699.01 13899.84 16399.84 35
VDD-MVS99.20 16999.11 16299.44 19899.43 26598.98 24099.50 9598.32 37299.80 6699.56 19499.69 15496.99 28299.85 24298.99 13999.73 22499.50 204
DeepC-MVS98.90 499.62 6799.61 6299.67 11099.72 14099.44 16199.24 16099.71 12999.27 16399.93 3899.90 3099.70 2499.93 9698.99 13999.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 9099.47 8899.51 18199.77 11399.41 17398.81 26499.66 15399.42 14799.75 11599.66 17599.20 7699.76 31998.98 14199.99 1699.36 248
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30298.04 37699.24 16995.77 40399.47 26593.78 33299.66 36598.98 14199.62 26099.37 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13399.32 11999.39 21799.67 16998.77 26298.57 29399.81 7899.61 11299.48 21899.41 27598.47 17699.86 22598.97 14399.90 11799.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11499.31 12199.68 10799.43 26599.55 14199.73 2899.50 24899.46 13599.88 6399.36 29197.54 25899.87 20598.97 14399.87 14699.63 127
GBi-Net99.42 10899.31 12199.73 8899.49 24199.77 5499.68 4799.70 13499.44 13899.62 16999.83 6897.21 27299.90 15898.96 14599.90 11799.53 187
FMVSNet597.80 31397.25 32999.42 20598.83 37098.97 24299.38 11799.80 8298.87 22299.25 26999.69 15480.60 40099.91 14098.96 14599.90 11799.38 242
test199.42 10899.31 12199.73 8899.49 24199.77 5499.68 4799.70 13499.44 13899.62 16999.83 6897.21 27299.90 15898.96 14599.90 11799.53 187
FMVSNet398.80 24398.63 24599.32 23799.13 33598.72 26599.10 20799.48 25399.23 17199.62 16999.64 18292.57 34499.86 22598.96 14599.90 11799.39 240
UnsupCasMVSNet_eth98.83 24098.57 25299.59 15499.68 16399.45 15998.99 23999.67 14899.48 12899.55 19999.36 29194.92 31899.86 22598.95 14996.57 40299.45 222
CHOSEN 280x42098.41 28298.41 26698.40 33599.34 29395.89 37596.94 39599.44 26498.80 23399.25 26999.52 24993.51 33699.98 2198.94 15099.98 3999.32 258
TDRefinement99.72 3799.70 4099.77 5699.90 3699.85 1999.86 699.92 3099.69 9099.78 10299.92 2199.37 5699.88 19198.93 15199.95 8199.60 152
alignmvs98.28 29297.96 30199.25 25599.12 33798.93 24899.03 22598.42 36699.64 10498.72 33397.85 39690.86 36599.62 37598.88 15299.13 33499.19 289
MGCFI-Net99.02 20999.01 19699.06 28399.11 34298.60 27899.63 6299.67 14899.63 10698.58 34597.65 39999.07 9499.57 38398.85 15398.92 34999.03 330
sss98.90 23298.77 23699.27 24999.48 24698.44 28798.72 27699.32 29497.94 31699.37 24699.35 29696.31 30399.91 14098.85 15399.63 25999.47 217
xiu_mvs_v2_base99.02 20999.11 16298.77 31899.37 27998.09 31298.13 33199.51 24499.47 13299.42 23298.54 38299.38 5499.97 3598.83 15599.33 31798.24 386
PS-MVSNAJ99.00 21799.08 17398.76 31999.37 27998.10 31198.00 34799.51 24499.47 13299.41 23898.50 38499.28 6699.97 3598.83 15599.34 31698.20 390
D2MVS99.22 16299.19 14699.29 24499.69 15598.74 26498.81 26499.41 27098.55 26099.68 14399.69 15498.13 21799.87 20598.82 15799.98 3999.24 273
PatchT98.45 27998.32 27698.83 31398.94 36198.29 29799.24 16098.82 34599.84 5599.08 29599.76 11391.37 35599.94 7998.82 15799.00 34498.26 385
testf199.63 6199.60 6599.72 9499.94 1899.95 299.47 10399.89 4099.43 14399.88 6399.80 8599.26 7099.90 15898.81 15999.88 13599.32 258
APD_test299.63 6199.60 6599.72 9499.94 1899.95 299.47 10399.89 4099.43 14399.88 6399.80 8599.26 7099.90 15898.81 15999.88 13599.32 258
sasdasda99.02 20999.00 20099.09 27699.10 34498.70 26699.61 7099.66 15399.63 10698.64 33997.65 39999.04 10099.54 38798.79 16198.92 34999.04 328
Effi-MVS+99.06 20098.97 21099.34 23099.31 30098.98 24098.31 31799.91 3398.81 23198.79 32798.94 36099.14 8499.84 25798.79 16198.74 36299.20 286
canonicalmvs99.02 20999.00 20099.09 27699.10 34498.70 26699.61 7099.66 15399.63 10698.64 33997.65 39999.04 10099.54 38798.79 16198.92 34999.04 328
VDDNet98.97 22198.82 23199.42 20599.71 14398.81 25799.62 6598.68 35199.81 6399.38 24599.80 8594.25 32699.85 24298.79 16199.32 31999.59 159
CR-MVSNet98.35 28998.20 28498.83 31399.05 35198.12 30899.30 13999.67 14897.39 34499.16 28499.79 9591.87 35299.91 14098.78 16598.77 35898.44 379
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21461.71 41095.39 40599.52 24993.90 32899.94 7998.76 16698.27 37999.62 138
RPMNet98.60 26098.53 25798.83 31399.05 35198.12 30899.30 13999.62 17499.86 4799.16 28499.74 12192.53 34699.92 11898.75 16798.77 35898.44 379
pmmvs499.13 18999.06 17999.36 22799.57 20399.10 23298.01 34599.25 31198.78 23699.58 18399.44 27298.24 20699.76 31998.74 16899.93 9999.22 280
tttt051797.62 32197.20 33098.90 30699.76 11797.40 34499.48 10094.36 40399.06 20099.70 13799.49 25884.55 39599.94 7998.73 16999.65 25599.36 248
EPP-MVSNet99.17 18199.00 20099.66 11799.80 8699.43 16599.70 3699.24 31499.48 12899.56 19499.77 11094.89 31999.93 9698.72 17099.89 12699.63 127
Anonymous2024052999.42 10899.34 11499.65 12299.53 22399.60 12899.63 6299.39 28099.47 13299.76 11099.78 10398.13 21799.86 22598.70 17199.68 24499.49 209
ACMH98.42 699.59 7199.54 7999.72 9499.86 5399.62 11899.56 8499.79 8898.77 23899.80 9399.85 5899.64 2899.85 24298.70 17199.89 12699.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13699.28 13399.47 19099.57 20399.39 17799.78 1499.43 26798.87 22299.57 18799.82 7598.06 22499.87 20598.69 17399.73 22499.15 298
LFMVS98.46 27898.19 28799.26 25299.24 31698.52 28399.62 6596.94 39299.87 4499.31 26099.58 22591.04 36099.81 29698.68 17499.42 30699.45 222
WR-MVS99.11 19498.93 21499.66 11799.30 30499.42 16898.42 31099.37 28599.04 20199.57 18799.20 32696.89 28499.86 22598.66 17599.87 14699.70 78
Anonymous20240521198.75 24798.46 26199.63 13699.34 29399.66 10299.47 10397.65 38499.28 16299.56 19499.50 25493.15 33899.84 25798.62 17699.58 27599.40 238
EPNet98.13 30197.77 31699.18 26494.57 41497.99 31899.24 16097.96 37899.74 7597.29 38799.62 20093.13 33999.97 3598.59 17799.83 17199.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20399.09 17198.91 30099.21 32198.36 29598.82 26399.47 25698.85 22598.90 31399.56 23698.78 13099.09 40298.57 17899.68 24499.26 270
Patchmatch-RL test98.60 26098.36 27199.33 23399.77 11399.07 23598.27 31999.87 4798.91 21799.74 12399.72 13390.57 36999.79 30698.55 17999.85 15899.11 307
pmmvs398.08 30497.80 31398.91 30099.41 27297.69 33597.87 36099.66 15395.87 37599.50 21599.51 25190.35 37199.97 3598.55 17999.47 29999.08 319
ETV-MVS99.18 17699.18 14799.16 26599.34 29399.28 20099.12 20099.79 8899.48 12898.93 30798.55 38199.40 4999.93 9698.51 18199.52 29198.28 384
jason99.16 18399.11 16299.32 23799.75 12898.44 28798.26 32199.39 28098.70 24699.74 12399.30 30498.54 16599.97 3598.48 18299.82 18099.55 174
jason: jason.
APDe-MVScopyleft99.48 9099.36 11299.85 2699.55 21599.81 4099.50 9599.69 14098.99 20499.75 11599.71 14198.79 12899.93 9698.46 18399.85 15899.80 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 25298.56 25599.15 26799.22 31998.66 27197.14 39099.51 24498.09 30599.54 20199.27 31096.87 28599.74 32698.43 18498.96 34699.03 330
our_test_398.85 23999.09 17198.13 34799.66 17094.90 38797.72 36599.58 20799.07 19899.64 15699.62 20098.19 21399.93 9698.41 18599.95 8199.55 174
Gipumacopyleft99.57 7299.59 6799.49 18499.98 399.71 8399.72 3199.84 6199.81 6399.94 3499.78 10398.91 11599.71 33598.41 18599.95 8199.05 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 352
PM-MVS99.36 12699.29 13199.58 15899.83 6599.66 10298.95 24699.86 5098.85 22599.81 8999.73 12598.40 18999.92 11898.36 18899.83 17199.17 293
baseline197.73 31697.33 32698.96 29199.30 30497.73 33399.40 11398.42 36699.33 15699.46 22499.21 32491.18 35899.82 28198.35 18991.26 40999.32 258
MVS-HIRNet97.86 31098.22 28296.76 37899.28 30991.53 40598.38 31292.60 40899.13 19199.31 26099.96 1297.18 27699.68 35698.34 19099.83 17199.07 324
GA-MVS97.99 30997.68 31998.93 29799.52 22898.04 31697.19 38999.05 33698.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 254
Fast-Effi-MVS+99.02 20998.87 22499.46 19299.38 27799.50 14799.04 22199.79 8897.17 35498.62 34198.74 37399.34 6099.95 6598.32 19299.41 30798.92 345
MDA-MVSNet_test_wron98.95 22798.99 20698.85 30999.64 17597.16 35098.23 32399.33 29298.93 21499.56 19499.66 17597.39 26599.83 27298.29 19399.88 13599.55 174
N_pmnet98.73 25098.53 25799.35 22999.72 14098.67 26898.34 31494.65 40298.35 28699.79 9899.68 16598.03 22599.93 9698.28 19499.92 10499.44 227
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31397.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15898.27 19597.56 39698.91 346
thisisatest053097.45 32696.95 33698.94 29499.68 16397.73 33399.09 21194.19 40598.61 25699.56 19499.30 30484.30 39699.93 9698.27 19599.54 28699.16 295
YYNet198.95 22798.99 20698.84 31199.64 17597.14 35298.22 32499.32 29498.92 21699.59 18199.66 17597.40 26399.83 27298.27 19599.90 11799.55 174
ACMM98.09 1199.46 9899.38 10699.72 9499.80 8699.69 9499.13 19699.65 16398.99 20499.64 15699.72 13399.39 5099.86 22598.23 19899.81 18999.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22498.87 22499.24 25799.57 20398.40 29098.12 33299.18 32598.28 29499.63 16099.13 33098.02 22699.97 3598.22 19999.69 23999.35 251
3Dnovator99.15 299.43 10599.36 11299.65 12299.39 27499.42 16899.70 3699.56 21499.23 17199.35 24899.80 8599.17 7999.95 6598.21 20099.84 16399.59 159
Fast-Effi-MVS+-dtu99.20 16999.12 15999.43 20399.25 31499.69 9499.05 21899.82 6999.50 12698.97 30399.05 34298.98 10799.98 2198.20 20199.24 33098.62 365
MS-PatchMatch99.00 21798.97 21099.09 27699.11 34298.19 30398.76 27399.33 29298.49 26999.44 22699.58 22598.21 21199.69 34498.20 20199.62 26099.39 240
TSAR-MVS + GP.99.12 19199.04 18999.38 22099.34 29399.16 22298.15 32899.29 30298.18 30199.63 16099.62 20099.18 7899.68 35698.20 20199.74 21999.30 264
DP-MVS99.48 9099.39 10499.74 7899.57 20399.62 11899.29 14699.61 18199.87 4499.74 12399.76 11398.69 14299.87 20598.20 20199.80 19499.75 68
MVP-Stereo99.16 18399.08 17399.43 20399.48 24699.07 23599.08 21499.55 22098.63 25299.31 26099.68 16598.19 21399.78 30998.18 20599.58 27599.45 222
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10599.30 12699.80 4499.83 6599.81 4099.52 8999.70 13498.35 28699.51 21399.50 25499.31 6299.88 19198.18 20599.84 16399.69 82
MDA-MVSNet-bldmvs99.06 20099.05 18399.07 28199.80 8697.83 32898.89 25199.72 12699.29 15999.63 16099.70 14896.47 29699.89 17698.17 20799.82 18099.50 204
JIA-IIPM98.06 30597.92 30898.50 33198.59 38997.02 35498.80 26798.51 36199.88 4397.89 37599.87 4891.89 35199.90 15898.16 20897.68 39598.59 368
EIA-MVS99.12 19199.01 19699.45 19599.36 28299.62 11899.34 12699.79 8898.41 27598.84 32098.89 36498.75 13599.84 25798.15 20999.51 29298.89 349
miper_lstm_enhance98.65 25798.60 24698.82 31699.20 32497.33 34697.78 36399.66 15399.01 20399.59 18199.50 25494.62 32399.85 24298.12 21099.90 11799.26 270
Effi-MVS+-dtu99.07 19998.92 21899.52 17998.89 36699.78 4999.15 18899.66 15399.34 15498.92 31099.24 32097.69 24999.98 2198.11 21199.28 32498.81 356
tpm97.15 33396.95 33697.75 36098.91 36294.24 39099.32 13197.96 37897.71 32898.29 35799.32 30086.72 39099.92 11898.10 21296.24 40599.09 313
DeepPCF-MVS98.42 699.18 17699.02 19399.67 11099.22 31999.75 6797.25 38799.47 25698.72 24399.66 15399.70 14899.29 6499.63 37498.07 21399.81 18999.62 138
ppachtmachnet_test98.89 23599.12 15998.20 34599.66 17095.24 38397.63 36999.68 14399.08 19699.78 10299.62 20098.65 15099.88 19198.02 21499.96 6799.48 213
tpmrst97.73 31698.07 29496.73 38098.71 38592.00 40199.10 20798.86 34298.52 26598.92 31099.54 24591.90 35099.82 28198.02 21499.03 34298.37 381
CSCG99.37 12399.29 13199.60 15199.71 14399.46 15499.43 11199.85 5598.79 23499.41 23899.60 21798.92 11399.92 11898.02 21499.92 10499.43 233
eth_miper_zixun_eth98.68 25598.71 23998.60 32699.10 34496.84 35997.52 37799.54 22698.94 21199.58 18399.48 26196.25 30699.76 31998.01 21799.93 9999.21 282
Patchmtry98.78 24498.54 25699.49 18498.89 36699.19 22099.32 13199.67 14899.65 10299.72 12899.79 9591.87 35299.95 6598.00 21899.97 5499.33 255
PVSNet_BlendedMVS99.03 20799.01 19699.09 27699.54 21797.99 31898.58 28999.82 6997.62 33199.34 25199.71 14198.52 17299.77 31797.98 21999.97 5499.52 197
PVSNet_Blended98.70 25398.59 24899.02 28699.54 21797.99 31897.58 37299.82 6995.70 37999.34 25198.98 35498.52 17299.77 31797.98 21999.83 17199.30 264
cl____98.54 26898.41 26698.92 29899.03 35397.80 33197.46 37999.59 19898.90 21899.60 17899.46 26893.85 33099.78 30997.97 22199.89 12699.17 293
DIV-MVS_self_test98.54 26898.42 26598.92 29899.03 35397.80 33197.46 37999.59 19898.90 21899.60 17899.46 26893.87 32999.78 30997.97 22199.89 12699.18 291
AUN-MVS97.82 31297.38 32599.14 27099.27 31198.53 28198.72 27699.02 33798.10 30397.18 39099.03 34889.26 37899.85 24297.94 22397.91 39199.03 330
FA-MVS(test-final)98.52 27098.32 27699.10 27599.48 24698.67 26899.77 1698.60 35897.35 34699.63 16099.80 8593.07 34099.84 25797.92 22499.30 32198.78 359
ambc99.20 26199.35 28498.53 28199.17 18099.46 25999.67 14999.80 8598.46 17999.70 33897.92 22499.70 23599.38 242
USDC98.96 22498.93 21499.05 28499.54 21797.99 31897.07 39399.80 8298.21 29899.75 11599.77 11098.43 18299.64 37397.90 22699.88 13599.51 199
OPM-MVS99.26 14999.13 15599.63 13699.70 15199.61 12598.58 28999.48 25398.50 26799.52 20899.63 19399.14 8499.76 31997.89 22799.77 20899.51 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13899.17 14899.77 5699.69 15599.80 4499.14 19099.31 29899.16 18599.62 16999.61 20998.35 19399.91 14097.88 22899.72 23099.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3299.70 15199.79 4699.14 19099.61 18199.92 11897.88 22899.72 23099.77 59
c3_l98.72 25198.71 23998.72 32199.12 33797.22 34997.68 36899.56 21498.90 21899.54 20199.48 26196.37 30299.73 32997.88 22899.88 13599.21 282
3Dnovator+98.92 399.35 12899.24 14299.67 11099.35 28499.47 15099.62 6599.50 24899.44 13899.12 29199.78 10398.77 13299.94 7997.87 23199.72 23099.62 138
miper_ehance_all_eth98.59 26398.59 24898.59 32798.98 35997.07 35397.49 37899.52 24098.50 26799.52 20899.37 28796.41 30099.71 33597.86 23299.62 26099.00 337
WTY-MVS98.59 26398.37 27099.26 25299.43 26598.40 29098.74 27499.13 33198.10 30399.21 27899.24 32094.82 32099.90 15897.86 23298.77 35899.49 209
APD_test199.36 12699.28 13399.61 14899.89 3899.89 1099.32 13199.74 11399.18 17899.69 14099.75 11898.41 18599.84 25797.85 23499.70 23599.10 309
SED-MVS99.40 11499.28 13399.77 5699.69 15599.82 3599.20 17099.54 22699.13 19199.82 8299.63 19398.91 11599.92 11897.85 23499.70 23599.58 164
test_241102_TWO99.54 22699.13 19199.76 11099.63 19398.32 19999.92 11897.85 23499.69 23999.75 68
MVS_111021_HR99.12 19199.02 19399.40 21499.50 23699.11 22797.92 35699.71 12998.76 24199.08 29599.47 26599.17 7999.54 38797.85 23499.76 21099.54 182
MTAPA99.35 12899.20 14599.80 4499.81 8099.81 4099.33 12999.53 23599.27 16399.42 23299.63 19398.21 21199.95 6597.83 23899.79 19999.65 112
MSC_two_6792asdad99.74 7899.03 35399.53 14499.23 31599.92 11897.77 23999.69 23999.78 55
No_MVS99.74 7899.03 35399.53 14499.23 31599.92 11897.77 23999.69 23999.78 55
TESTMET0.1,196.24 35495.84 35597.41 36898.24 40093.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17697.77 23998.77 35898.52 373
ACMH+98.40 899.50 8699.43 9999.71 9999.86 5399.76 6199.32 13199.77 9799.53 12499.77 10799.76 11399.26 7099.78 30997.77 23999.88 13599.60 152
IU-MVS99.69 15599.77 5499.22 31897.50 33899.69 14097.75 24399.70 23599.77 59
114514_t98.49 27598.11 29299.64 12999.73 13799.58 13499.24 16099.76 10389.94 40299.42 23299.56 23697.76 24699.86 22597.74 24499.82 18099.47 217
DVP-MVS++99.38 12099.25 14099.77 5699.03 35399.77 5499.74 2599.61 18199.18 17899.76 11099.61 20999.00 10399.92 11897.72 24599.60 27099.62 138
test_0728_THIRD99.18 17899.62 16999.61 20998.58 15999.91 14097.72 24599.80 19499.77 59
EGC-MVSNET89.05 37685.52 37999.64 12999.89 3899.78 4999.56 8499.52 24024.19 41149.96 41299.83 6899.15 8199.92 11897.71 24799.85 15899.21 282
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39996.43 36596.95 39499.41 27096.37 37099.43 23098.96 35894.74 32199.69 34497.71 24799.62 26098.83 355
TSAR-MVS + MP.99.34 13399.24 14299.63 13699.82 7299.37 18299.26 15399.35 28998.77 23899.57 18799.70 14899.27 6999.88 19197.71 24799.75 21299.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32497.28 32798.40 33598.37 39796.75 36097.24 38899.37 28597.31 34899.41 23899.22 32287.30 38299.37 39997.70 25099.62 26099.08 319
MP-MVS-pluss99.14 18798.92 21899.80 4499.83 6599.83 2998.61 28299.63 17196.84 36399.44 22699.58 22598.81 12399.91 14097.70 25099.82 18099.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14399.11 16299.79 5099.75 12899.81 4098.95 24699.53 23598.27 29599.53 20699.73 12598.75 13599.87 20597.70 25099.83 17199.68 88
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21499.56 21499.37 18297.97 35299.68 14397.49 33999.08 29599.35 29695.41 31799.82 28197.70 25098.19 38399.01 336
MVS_111021_LR99.13 18999.03 19199.42 20599.58 19399.32 19497.91 35899.73 11798.68 24799.31 26099.48 26199.09 8999.66 36597.70 25099.77 20899.29 267
IS-MVSNet99.03 20798.85 22699.55 17199.80 8699.25 20799.73 2899.15 32899.37 15099.61 17599.71 14194.73 32299.81 29697.70 25099.88 13599.58 164
test-LLR97.15 33396.95 33697.74 36198.18 40295.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 14097.69 25698.78 35698.31 382
test-mter96.23 35595.73 35797.74 36198.18 40295.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 14097.69 25698.78 35698.31 382
XVS99.27 14799.11 16299.75 7399.71 14399.71 8399.37 12199.61 18199.29 15998.76 33099.47 26598.47 17699.88 19197.62 25899.73 22499.67 94
X-MVStestdata96.09 35894.87 37099.75 7399.71 14399.71 8399.37 12199.61 18199.29 15998.76 33061.30 41898.47 17699.88 19197.62 25899.73 22499.67 94
SMA-MVScopyleft99.19 17299.00 20099.73 8899.46 25699.73 7699.13 19699.52 24097.40 34399.57 18799.64 18298.93 11299.83 27297.61 26099.79 19999.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34496.79 34396.46 38498.90 36390.71 41099.41 11298.68 35194.69 39298.14 36799.34 29986.32 39299.80 30397.60 26198.07 38998.88 350
PVSNet97.47 1598.42 28198.44 26398.35 33799.46 25696.26 36896.70 39899.34 29197.68 32999.00 30299.13 33097.40 26399.72 33197.59 26299.68 24499.08 319
new_pmnet98.88 23698.89 22298.84 31199.70 15197.62 33698.15 32899.50 24897.98 31199.62 16999.54 24598.15 21699.94 7997.55 26399.84 16398.95 341
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38195.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5697.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15399.11 16299.61 14898.38 39699.79 4699.57 8299.68 14399.61 11299.15 28699.71 14198.70 14199.91 14097.54 26499.68 24499.13 306
ZNCC-MVS99.22 16299.04 18999.77 5699.76 11799.73 7699.28 14899.56 21498.19 30099.14 28899.29 30798.84 12299.92 11897.53 26699.80 19499.64 122
CP-MVS99.23 15499.05 18399.75 7399.66 17099.66 10299.38 11799.62 17498.38 27999.06 29999.27 31098.79 12899.94 7997.51 26799.82 18099.66 104
SD-MVS99.01 21599.30 12698.15 34699.50 23699.40 17598.94 24899.61 18199.22 17599.75 11599.82 7599.54 4195.51 41197.48 26899.87 14699.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27598.29 27999.11 27398.96 36098.42 28997.54 37399.32 29497.53 33698.47 35298.15 39197.88 23699.82 28197.46 26999.24 33099.09 313
DeepC-MVS_fast98.47 599.23 15499.12 15999.56 16899.28 30999.22 21498.99 23999.40 27799.08 19699.58 18399.64 18298.90 11899.83 27297.44 27099.75 21299.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 15099.08 17399.76 6399.73 13799.70 9099.31 13699.59 19898.36 28199.36 24799.37 28798.80 12799.91 14097.43 27199.75 21299.68 88
ACMMPR99.23 15499.06 17999.76 6399.74 13499.69 9499.31 13699.59 19898.36 28199.35 24899.38 28598.61 15499.93 9697.43 27199.75 21299.67 94
Vis-MVSNet (Re-imp)98.77 24598.58 25199.34 23099.78 10598.88 25399.61 7099.56 21499.11 19599.24 27299.56 23693.00 34299.78 30997.43 27199.89 12699.35 251
MIMVSNet98.43 28098.20 28499.11 27399.53 22398.38 29499.58 7998.61 35698.96 20899.33 25399.76 11390.92 36299.81 29697.38 27499.76 21099.15 298
WB-MVSnew98.34 29198.14 29098.96 29198.14 40597.90 32698.27 31997.26 39198.63 25298.80 32598.00 39497.77 24499.90 15897.37 27598.98 34599.09 313
XVG-OURS-SEG-HR99.16 18398.99 20699.66 11799.84 6099.64 11198.25 32299.73 11798.39 27899.63 16099.43 27399.70 2499.90 15897.34 27698.64 36899.44 227
COLMAP_ROBcopyleft98.06 1299.45 10099.37 10999.70 10399.83 6599.70 9099.38 11799.78 9499.53 12499.67 14999.78 10399.19 7799.86 22597.32 27799.87 14699.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20998.81 23299.65 12299.58 19399.49 14898.58 28999.07 33398.40 27799.04 30099.25 31598.51 17499.80 30397.31 27899.51 29299.65 112
region2R99.23 15499.05 18399.77 5699.76 11799.70 9099.31 13699.59 19898.41 27599.32 25699.36 29198.73 13999.93 9697.29 27999.74 21999.67 94
APD-MVS_3200maxsize99.31 14099.16 14999.74 7899.53 22399.75 6799.27 15199.61 18199.19 17799.57 18799.64 18298.76 13399.90 15897.29 27999.62 26099.56 171
TAPA-MVS97.92 1398.03 30697.55 32299.46 19299.47 25299.44 16198.50 30399.62 17486.79 40399.07 29899.26 31398.26 20599.62 37597.28 28199.73 22499.31 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14799.11 16299.73 8899.54 21799.74 7399.26 15399.62 17499.16 18599.52 20899.64 18298.41 18599.91 14097.27 28299.61 26799.54 182
RE-MVS-def99.13 15599.54 21799.74 7399.26 15399.62 17499.16 18599.52 20899.64 18298.57 16097.27 28299.61 26799.54 182
testing1196.05 36095.41 36297.97 35198.78 37895.27 38298.59 28798.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 343
test_yl98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23498.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 273
DCV-MVSNet98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23498.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 273
PHI-MVS99.11 19498.95 21399.59 15499.13 33599.59 13099.17 18099.65 16397.88 32099.25 26999.46 26898.97 10999.80 30397.26 28499.82 18099.37 245
tfpnnormal99.43 10599.38 10699.60 15199.87 5099.75 6799.59 7799.78 9499.71 8299.90 5199.69 15498.85 12199.90 15897.25 28899.78 20499.15 298
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37392.49 39999.17 18098.39 36898.12 30298.79 32799.58 22590.71 36799.89 17697.23 28999.41 30799.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22098.80 23499.56 16899.25 31499.43 16598.54 29899.27 30698.58 25898.80 32599.43 27398.53 16999.70 33897.22 29099.59 27499.54 182
testing396.48 34895.63 35999.01 28799.23 31897.81 32998.90 25099.10 33298.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 251
HPM-MVScopyleft99.25 15099.07 17799.78 5399.81 8099.75 6799.61 7099.67 14897.72 32799.35 24899.25 31599.23 7399.92 11897.21 29199.82 18099.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17299.00 20099.76 6399.76 11799.68 9799.38 11799.54 22698.34 29099.01 30199.50 25498.53 16999.93 9697.18 29399.78 20499.66 104
ACMMPcopyleft99.25 15099.08 17399.74 7899.79 9899.68 9799.50 9599.65 16398.07 30699.52 20899.69 15498.57 16099.92 11897.18 29399.79 19999.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33796.42 34498.66 32499.42 27097.47 34097.27 38694.30 40497.24 35099.15 28698.86 36685.01 39399.87 20597.10 29599.39 30998.63 364
XVG-ACMP-BASELINE99.23 15499.10 17099.63 13699.82 7299.58 13498.83 25999.72 12698.36 28199.60 17899.71 14198.92 11399.91 14097.08 29699.84 16399.40 238
MSDG99.08 19898.98 20999.37 22399.60 18499.13 22597.54 37399.74 11398.84 22899.53 20699.55 24399.10 8799.79 30697.07 29799.86 15499.18 291
SteuartSystems-ACMMP99.30 14199.14 15399.76 6399.87 5099.66 10299.18 17599.60 19298.55 26099.57 18799.67 16999.03 10299.94 7997.01 29899.80 19499.69 82
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35695.78 35697.49 36498.53 39193.83 39498.04 34293.94 40698.96 20898.46 35398.17 39079.86 40199.87 20596.99 29999.06 33898.78 359
EPMVS96.53 34796.32 34597.17 37598.18 40292.97 39899.39 11589.95 41298.21 29898.61 34299.59 22286.69 39199.72 33196.99 29999.23 33298.81 356
MSP-MVS99.04 20698.79 23599.81 3999.78 10599.73 7699.35 12599.57 20998.54 26399.54 20198.99 35196.81 28699.93 9696.97 30199.53 28899.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22498.70 24199.74 7899.52 22899.71 8398.86 25499.19 32498.47 27198.59 34499.06 34198.08 22399.91 14096.94 30299.60 27099.60 152
SR-MVS99.19 17299.00 20099.74 7899.51 23099.72 8199.18 17599.60 19298.85 22599.47 22099.58 22598.38 19099.92 11896.92 30399.54 28699.57 169
PGM-MVS99.20 16999.01 19699.77 5699.75 12899.71 8399.16 18699.72 12697.99 31099.42 23299.60 21798.81 12399.93 9696.91 30499.74 21999.66 104
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35398.24 29899.61 7098.72 34996.81 36498.73 33299.51 25194.06 32799.86 22596.91 30498.20 38198.86 352
MDTV_nov1_ep1397.73 31798.70 38690.83 40899.15 18898.02 37798.51 26698.82 32299.61 20990.98 36199.66 36596.89 30698.92 349
GST-MVS99.16 18398.96 21299.75 7399.73 13799.73 7699.20 17099.55 22098.22 29799.32 25699.35 29698.65 15099.91 14096.86 30799.74 21999.62 138
test_post199.14 19051.63 42089.54 37799.82 28196.86 307
SCA98.11 30298.36 27197.36 36999.20 32492.99 39798.17 32798.49 36398.24 29699.10 29499.57 23296.01 31099.94 7996.86 30799.62 26099.14 303
XVG-OURS99.21 16799.06 17999.65 12299.82 7299.62 11897.87 36099.74 11398.36 28199.66 15399.68 16599.71 2299.90 15896.84 31099.88 13599.43 233
LCM-MVSNet-Re99.28 14399.15 15299.67 11099.33 29899.76 6199.34 12699.97 1898.93 21499.91 4799.79 9598.68 14399.93 9696.80 31199.56 27799.30 264
RPSCF99.18 17699.02 19399.64 12999.83 6599.85 1999.44 10999.82 6998.33 29199.50 21599.78 10397.90 23499.65 37196.78 31299.83 17199.44 227
旧先验297.94 35495.33 38398.94 30699.88 19196.75 313
MDTV_nov1_ep13_2view91.44 40699.14 19097.37 34599.21 27891.78 35496.75 31399.03 330
CLD-MVS98.76 24698.57 25299.33 23399.57 20398.97 24297.53 37599.55 22096.41 36899.27 26799.13 33099.07 9499.78 30996.73 31599.89 12699.23 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30397.98 30098.48 33299.27 31196.48 36399.40 11399.07 33398.81 23199.23 27399.57 23290.11 37399.87 20596.69 31699.64 25799.09 313
baseline296.83 34096.28 34698.46 33399.09 34896.91 35798.83 25993.87 40797.23 35196.23 40298.36 38688.12 38199.90 15896.68 31798.14 38698.57 371
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21491.75 39897.13 39297.61 40295.58 31598.63 40696.68 31799.11 33698.18 391
PC_three_145297.56 33299.68 14399.41 27599.09 8997.09 40896.66 31999.60 27099.62 138
LPG-MVS_test99.22 16299.05 18399.74 7899.82 7299.63 11699.16 18699.73 11797.56 33299.64 15699.69 15499.37 5699.89 17696.66 31999.87 14699.69 82
LGP-MVS_train99.74 7899.82 7299.63 11699.73 11797.56 33299.64 15699.69 15499.37 5699.89 17696.66 31999.87 14699.69 82
ETVMVS96.14 35795.22 36798.89 30798.80 37498.01 31798.66 28098.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 347
TinyColmap98.97 22198.93 21499.07 28199.46 25698.19 30397.75 36499.75 10898.79 23499.54 20199.70 14898.97 10999.62 37596.63 32399.83 17199.41 237
LF4IMVS99.01 21598.92 21899.27 24999.71 14399.28 20098.59 28799.77 9798.32 29299.39 24499.41 27598.62 15299.84 25796.62 32499.84 16398.69 363
NCCC98.82 24198.57 25299.58 15899.21 32199.31 19598.61 28299.25 31198.65 25098.43 35499.26 31397.86 23799.81 29696.55 32599.27 32799.61 148
OPU-MVS99.29 24499.12 33799.44 16199.20 17099.40 27999.00 10398.84 40596.54 32699.60 27099.58 164
F-COLMAP98.74 24898.45 26299.62 14599.57 20399.47 15098.84 25799.65 16396.31 37198.93 30799.19 32797.68 25099.87 20596.52 32799.37 31299.53 187
testing9995.86 36595.19 36897.87 35598.76 38195.03 38498.62 28198.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 347
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33395.36 38099.22 16798.75 34896.97 35998.25 35999.64 18290.90 36399.94 7996.51 32899.56 27799.08 319
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33394.65 38899.22 16798.86 34296.97 35998.25 35999.64 18290.90 36399.84 25796.51 32899.56 27799.08 319
PatchMatch-RL98.68 25598.47 26099.30 24399.44 26199.28 20098.14 33099.54 22697.12 35799.11 29299.25 31597.80 24299.70 33896.51 32899.30 32198.93 343
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21298.33 39899.56 13899.01 23099.59 19895.44 38199.57 18799.80 8595.64 31399.46 39796.47 33299.92 10499.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 36195.32 36598.02 34998.76 38195.39 37998.38 31298.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 338
SF-MVS99.10 19798.93 21499.62 14599.58 19399.51 14699.13 19699.65 16397.97 31299.42 23299.61 20998.86 12099.87 20596.45 33499.68 24499.49 209
FE-MVS97.85 31197.42 32499.15 26799.44 26198.75 26399.77 1698.20 37595.85 37699.33 25399.80 8588.86 37999.88 19196.40 33599.12 33598.81 356
DPE-MVScopyleft99.14 18798.92 21899.82 3699.57 20399.77 5498.74 27499.60 19298.55 26099.76 11099.69 15498.23 21099.92 11896.39 33699.75 21299.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
AllTest99.21 16799.07 17799.63 13699.78 10599.64 11199.12 20099.83 6398.63 25299.63 16099.72 13398.68 14399.75 32396.38 33799.83 17199.51 199
TestCases99.63 13699.78 10599.64 11199.83 6398.63 25299.63 16099.72 13398.68 14399.75 32396.38 33799.83 17199.51 199
testdata99.42 20599.51 23098.93 24899.30 30196.20 37298.87 31799.40 27998.33 19799.89 17696.29 34099.28 32499.44 227
dp96.86 33997.07 33296.24 38698.68 38790.30 41299.19 17498.38 36997.35 34698.23 36199.59 22287.23 38399.82 28196.27 34198.73 36498.59 368
tpmvs97.39 32897.69 31896.52 38298.41 39591.76 40299.30 13998.94 34197.74 32697.85 37899.55 24392.40 34999.73 32996.25 34298.73 36498.06 393
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
ACMP97.51 1499.05 20398.84 22899.67 11099.78 10599.55 14198.88 25299.66 15397.11 35899.47 22099.60 21799.07 9499.89 17696.18 34599.85 15899.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23298.72 23899.44 19899.39 27499.42 16898.58 28999.64 16997.31 34899.44 22699.62 20098.59 15799.69 34496.17 34699.79 19999.22 280
DP-MVS Recon98.50 27398.23 28199.31 24099.49 24199.46 15498.56 29499.63 17194.86 39098.85 31999.37 28797.81 24199.59 38196.08 34799.44 30298.88 350
tpm cat196.78 34196.98 33596.16 38798.85 36990.59 41199.08 21499.32 29492.37 39697.73 38499.46 26891.15 35999.69 34496.07 34898.80 35598.21 388
tpm296.35 35196.22 34796.73 38098.88 36891.75 40399.21 16998.51 36193.27 39597.89 37599.21 32484.83 39499.70 33896.04 34998.18 38498.75 362
dmvs_re98.69 25498.48 25999.31 24099.55 21599.42 16899.54 8798.38 36999.32 15798.72 33398.71 37496.76 28899.21 40096.01 35099.35 31599.31 262
test_040299.22 16299.14 15399.45 19599.79 9899.43 16599.28 14899.68 14399.54 12299.40 24399.56 23699.07 9499.82 28196.01 35099.96 6799.11 307
ITE_SJBPF99.38 22099.63 17799.44 16199.73 11798.56 25999.33 25399.53 24798.88 11999.68 35696.01 35099.65 25599.02 335
test_prior297.95 35397.87 32198.05 36999.05 34297.90 23495.99 35399.49 297
testdata299.89 17695.99 353
原ACMM199.37 22399.47 25298.87 25599.27 30696.74 36698.26 35899.32 30097.93 23399.82 28195.96 35599.38 31099.43 233
新几何199.52 17999.50 23699.22 21499.26 30895.66 38098.60 34399.28 30897.67 25199.89 17695.95 35699.32 31999.45 222
MP-MVScopyleft99.06 20098.83 23099.76 6399.76 11799.71 8399.32 13199.50 24898.35 28698.97 30399.48 26198.37 19199.92 11895.95 35699.75 21299.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 37194.59 37498.61 32598.66 38897.45 34298.54 29897.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 372
wuyk23d97.58 32399.13 15592.93 39099.69 15599.49 14899.52 8999.77 9797.97 31299.96 2399.79 9599.84 1299.94 7995.85 35999.82 18079.36 408
HQP_MVS98.90 23298.68 24299.55 17199.58 19399.24 21198.80 26799.54 22698.94 21199.14 28899.25 31597.24 27099.82 28195.84 36099.78 20499.60 152
plane_prior599.54 22699.82 28195.84 36099.78 20499.60 152
无先验98.01 34599.23 31595.83 37799.85 24295.79 36299.44 227
CPTT-MVS98.74 24898.44 26399.64 12999.61 18299.38 17999.18 17599.55 22096.49 36799.27 26799.37 28797.11 27899.92 11895.74 36399.67 25099.62 138
PLCcopyleft97.35 1698.36 28697.99 29899.48 18899.32 29999.24 21198.50 30399.51 24495.19 38698.58 34598.96 35896.95 28399.83 27295.63 36499.25 32899.37 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26598.34 27499.28 24699.18 32999.10 23298.34 31499.41 27098.48 27098.52 34998.98 35497.05 28099.78 30995.59 36599.50 29598.96 339
131498.00 30897.90 31098.27 34498.90 36397.45 34299.30 13999.06 33594.98 38797.21 38999.12 33498.43 18299.67 36195.58 36698.56 37197.71 397
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37893.48 39695.72 40299.40 27796.18 37397.37 38597.73 39795.73 31299.58 38295.49 36781.40 41099.36 248
MAR-MVS98.24 29697.92 30899.19 26298.78 37899.65 10899.17 18099.14 32995.36 38298.04 37098.81 37097.47 26099.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25299.19 32699.26 20499.65 6099.69 14091.33 40098.14 36799.77 11098.28 20299.96 5695.41 36999.55 28198.58 370
train_agg98.35 28997.95 30299.57 16499.35 28499.35 18998.11 33499.41 27094.90 38897.92 37398.99 35198.02 22699.85 24295.38 37099.44 30299.50 204
9.1498.64 24399.45 26098.81 26499.60 19297.52 33799.28 26699.56 23698.53 16999.83 27295.36 37199.64 257
APD-MVScopyleft98.87 23798.59 24899.71 9999.50 23699.62 11899.01 23099.57 20996.80 36599.54 20199.63 19398.29 20199.91 14095.24 37299.71 23399.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36695.20 373
AdaColmapbinary98.60 26098.35 27399.38 22099.12 33799.22 21498.67 27999.42 26997.84 32498.81 32399.27 31097.32 26899.81 29695.14 37499.53 28899.10 309
test9_res95.10 37599.44 30299.50 204
CDPH-MVS98.56 26698.20 28499.61 14899.50 23699.46 15498.32 31699.41 27095.22 38499.21 27899.10 33898.34 19599.82 28195.09 37699.66 25399.56 171
BH-untuned98.22 29898.09 29398.58 32999.38 27797.24 34898.55 29598.98 34097.81 32599.20 28398.76 37297.01 28199.65 37194.83 37798.33 37698.86 352
BP-MVS94.73 378
HQP-MVS98.36 28698.02 29799.39 21799.31 30098.94 24597.98 34999.37 28597.45 34098.15 36398.83 36796.67 28999.70 33894.73 37899.67 25099.53 187
QAPM98.40 28497.99 29899.65 12299.39 27499.47 15099.67 5199.52 24091.70 39998.78 32999.80 8598.55 16399.95 6594.71 38099.75 21299.53 187
agg_prior294.58 38199.46 30199.50 204
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39396.36 36698.60 28499.21 32197.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 313
BH-RMVSNet98.41 28298.14 29099.21 25999.21 32198.47 28498.60 28498.26 37398.35 28698.93 30799.31 30297.20 27599.66 36594.32 38399.10 33799.51 199
E-PMN97.14 33597.43 32396.27 38598.79 37691.62 40495.54 40399.01 33999.44 13898.88 31499.12 33492.78 34399.68 35694.30 38499.03 34297.50 398
MG-MVS98.52 27098.39 26898.94 29499.15 33297.39 34598.18 32599.21 32198.89 22199.23 27399.63 19397.37 26699.74 32694.22 38599.61 26799.69 82
API-MVS98.38 28598.39 26898.35 33798.83 37099.26 20499.14 19099.18 32598.59 25798.66 33898.78 37198.61 15499.57 38394.14 38699.56 27796.21 405
PAPM_NR98.36 28698.04 29599.33 23399.48 24698.93 24898.79 27099.28 30597.54 33598.56 34898.57 37997.12 27799.69 34494.09 38798.90 35399.38 242
ZD-MVS99.43 26599.61 12599.43 26796.38 36999.11 29299.07 34097.86 23799.92 11894.04 38899.49 297
DPM-MVS98.28 29297.94 30699.32 23799.36 28299.11 22797.31 38598.78 34796.88 36198.84 32099.11 33797.77 24499.61 37994.03 38999.36 31399.23 277
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40196.95 35599.69 4389.23 41399.89 3896.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
PMVScopyleft92.94 2198.82 24198.81 23298.85 30999.84 6097.99 31899.20 17099.47 25699.71 8299.42 23299.82 7598.09 22199.47 39593.88 39199.85 15899.07 324
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33897.28 32795.99 38898.76 38191.03 40795.26 40598.61 35699.34 15498.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
BH-w/o97.20 33297.01 33497.76 35999.08 34995.69 37698.03 34498.52 36095.76 37897.96 37298.02 39295.62 31499.47 39592.82 39397.25 39998.12 392
TR-MVS97.44 32797.15 33198.32 34098.53 39197.46 34198.47 30597.91 38096.85 36298.21 36298.51 38396.42 29899.51 39392.16 39497.29 39897.98 394
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30699.45 15998.87 25399.48 25386.54 40599.44 22699.74 12197.34 26799.86 22591.61 39599.28 32497.37 401
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3688.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
DeepMVS_CXcopyleft97.98 35099.69 15596.95 35599.26 30875.51 40895.74 40498.28 38896.47 29699.62 37591.23 39797.89 39297.38 400
PAPR97.56 32497.07 33299.04 28598.80 37498.11 31097.63 36999.25 31194.56 39398.02 37198.25 38997.43 26299.68 35690.90 39898.74 36299.33 255
MVS95.72 36894.63 37398.99 28898.56 39097.98 32399.30 13998.86 34272.71 40997.30 38699.08 33998.34 19599.74 32689.21 39998.33 37699.26 270
thres600view796.60 34696.16 34897.93 35399.63 17796.09 37299.18 17597.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
FPMVS96.32 35295.50 36098.79 31799.60 18498.17 30698.46 30998.80 34697.16 35596.28 39999.63 19382.19 39799.09 40288.45 40198.89 35499.10 309
PCF-MVS96.03 1896.73 34395.86 35499.33 23399.44 26199.16 22296.87 39699.44 26486.58 40498.95 30599.40 27994.38 32599.88 19187.93 40299.80 19498.95 341
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 35096.03 35197.47 36699.63 17795.93 37399.18 17597.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
tfpn200view996.30 35395.89 35297.53 36399.58 19396.11 37099.00 23497.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
thres40096.40 34995.89 35297.92 35499.58 19396.11 37099.00 23497.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
thres20096.09 35895.68 35897.33 37199.48 24696.22 36998.53 30097.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16397.55 33897.94 35495.60 39999.37 15090.68 41098.70 37596.56 29298.61 40786.94 40799.55 28198.77 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 33196.83 34198.59 32799.46 25697.55 33899.25 15996.84 39398.78 23697.24 38897.67 39897.11 27898.97 40486.59 40898.54 37299.27 268
PAPM95.61 37094.71 37298.31 34299.12 33796.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 365
dongtai89.37 37588.91 37890.76 39199.19 32677.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 268
kuosan85.65 37784.57 38088.90 39397.91 40677.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 365
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1740.00 4140.00 41599.13 33099.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3280.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.83 6599.89 1099.74 2599.71 12999.69 9099.63 160
test_one_060199.63 17799.76 6199.55 22099.23 17199.31 26099.61 20998.59 157
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.69 15599.82 3599.54 22699.12 19499.82 8299.49 25898.91 11599.52 392
save fliter99.53 22399.25 20798.29 31899.38 28499.07 198
test072699.69 15599.80 4499.24 16099.57 20999.16 18599.73 12799.65 18098.35 193
GSMVS99.14 303
test_part299.62 18199.67 9999.55 199
sam_mvs190.81 36699.14 303
sam_mvs90.52 370
MTGPAbinary99.53 235
test_post52.41 41990.25 37299.86 225
patchmatchnet-post99.62 20090.58 36899.94 79
MTMP99.09 21198.59 359
TEST999.35 28499.35 18998.11 33499.41 27094.83 39197.92 37398.99 35198.02 22699.85 242
test_899.34 29399.31 19598.08 33899.40 27794.90 38897.87 37798.97 35698.02 22699.84 257
agg_prior99.35 28499.36 18699.39 28097.76 38399.85 242
test_prior499.19 22098.00 347
test_prior99.46 19299.35 28499.22 21499.39 28099.69 34499.48 213
新几何298.04 342
旧先验199.49 24199.29 19899.26 30899.39 28397.67 25199.36 31399.46 221
原ACMM297.92 356
test22299.51 23099.08 23497.83 36299.29 30295.21 38598.68 33799.31 30297.28 26999.38 31099.43 233
segment_acmp98.37 191
testdata197.72 36597.86 323
test1299.54 17699.29 30699.33 19299.16 32798.43 35497.54 25899.82 28199.47 29999.48 213
plane_prior799.58 19399.38 179
plane_prior699.47 25299.26 20497.24 270
plane_prior499.25 315
plane_prior399.31 19598.36 28199.14 288
plane_prior298.80 26798.94 211
plane_prior199.51 230
plane_prior99.24 21198.42 31097.87 32199.71 233
n20.00 420
nn0.00 420
door-mid99.83 63
test1199.29 302
door99.77 97
HQP5-MVS98.94 245
HQP-NCC99.31 30097.98 34997.45 34098.15 363
ACMP_Plane99.31 30097.98 34997.45 34098.15 363
HQP4-MVS98.15 36399.70 33899.53 187
HQP3-MVS99.37 28599.67 250
HQP2-MVS96.67 289
NP-MVS99.40 27399.13 22598.83 367
ACMMP++_ref99.94 92
ACMMP++99.79 199
Test By Simon98.41 185