This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31199.48 95100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32499.34 121100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30199.52 85100.00 199.86 45100.00 199.88 4298.99 10299.96 5499.97 499.96 7099.95 11
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32199.49 94100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_f99.75 3299.88 699.37 21999.96 798.21 29899.51 89100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22799.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17699.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28699.30 13499.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20099.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17699.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8799.65 5098.97 28799.54 21597.16 34799.11 20099.98 1199.78 6899.96 2399.81 7998.72 13799.97 3399.95 1299.97 5699.79 54
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8499.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19699.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21597.79 37999.99 299.48 21699.59 21896.29 29999.95 6399.94 1699.98 4199.88 25
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 23999.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21895.32 39799.99 299.68 14299.57 22998.30 19699.97 3399.94 1699.98 4199.88 25
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21499.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22299.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22299.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21599.61 17599.15 18699.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23099.65 15799.15 18699.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11499.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 71
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21899.60 18799.18 17499.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20099.62 16899.18 17499.89 5399.72 13098.66 14599.87 20399.88 2999.97 5699.66 104
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 76
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20399.61 17599.20 17299.84 7699.73 12398.67 14399.84 25599.86 3199.98 4199.64 122
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8599.81 7699.87 4199.81 8899.79 9396.78 28199.99 799.83 3299.51 29199.86 32
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18699.58 20299.25 16299.81 8899.62 19698.24 20199.84 25599.83 3299.97 5699.64 122
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27398.99 23599.96 2399.03 19999.95 3199.12 33198.75 13299.84 25599.82 3599.82 17999.77 60
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7598.70 34699.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11099.59 19399.24 16499.86 7199.70 14598.55 16099.82 27999.79 3799.95 8399.60 152
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9899.81 7699.82 5899.71 13299.72 13096.60 28599.98 2099.75 3999.23 33199.82 46
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30199.87 4199.91 4499.87 4798.04 21899.96 5499.68 4499.99 1699.90 20
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 333
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22699.92 11699.65 4699.98 4199.62 138
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
K. test v398.87 23298.60 24199.69 10499.93 2599.46 15199.74 2494.97 39899.78 6899.88 6199.88 4293.66 33099.97 3399.61 4999.95 8399.64 122
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11699.79 8699.83 5699.88 6199.85 5698.42 18199.90 15799.60 5099.73 22399.49 210
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29599.97 3399.59 5199.98 4199.55 174
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16299.93 9499.59 5199.98 4199.76 66
EU-MVSNet99.39 11599.62 5598.72 31899.88 4496.44 36199.56 8099.85 5499.90 2999.90 4999.85 5698.09 21499.83 27099.58 5499.95 8399.90 20
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15399.94 7799.58 5499.98 4199.77 60
mvs_anonymous99.28 13999.39 10198.94 29199.19 32397.81 32699.02 22599.55 21599.78 6899.85 7399.80 8398.24 20199.86 22299.57 5699.50 29499.15 295
test111197.74 31298.16 28696.49 38099.60 18289.86 41099.71 3491.21 40699.89 3599.88 6199.87 4793.73 32999.90 15799.56 5799.99 1699.70 79
lessismore_v099.64 12899.86 5499.38 17590.66 40799.89 5399.83 6694.56 32099.97 3399.56 5799.92 10599.57 169
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27297.90 35699.59 19399.27 15899.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8799.65 5098.95 29099.71 14397.27 34499.50 9099.82 6799.59 11699.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
test250694.73 37094.59 37195.15 38699.59 18685.90 41299.75 2274.01 41299.89 3599.71 13299.86 5479.00 40399.90 15799.52 6399.99 1699.65 112
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17799.87 20399.51 6499.97 5699.86 32
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33299.90 3898.95 20799.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12099.91 13999.47 6899.88 13499.70 79
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18690.81 40699.72 3090.43 40899.89 3599.86 7199.86 5493.60 33199.89 17599.46 6999.99 1699.65 112
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10299.57 20499.66 9899.78 10199.83 6697.85 23399.86 22299.44 7199.96 7099.61 148
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7299.82 6799.46 13199.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
new-patchmatchnet99.35 12599.57 7198.71 32099.82 7296.62 35998.55 29199.75 10599.50 12299.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22599.89 4099.60 11499.82 8199.62 19698.81 12099.89 17599.43 7299.86 15399.47 218
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28699.77 1599.80 8099.73 7499.63 15999.30 30198.02 22099.98 2099.43 7299.69 23899.55 174
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22599.86 22299.42 7799.96 7099.80 47
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32599.65 10099.89 5399.90 2996.20 30199.94 7799.42 7799.92 10599.67 95
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21899.87 4699.71 8099.47 21899.79 9398.24 20199.98 2099.38 8099.96 7099.83 40
UGNet99.38 11799.34 11199.49 18198.90 35998.90 24999.70 3599.35 28499.86 4598.57 34499.81 7998.50 17299.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7399.82 6799.39 14499.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 19999.85 24099.37 8399.93 10199.83 40
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14199.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7599.97 1899.95 2099.96 2399.76 11198.44 17899.99 799.34 8899.96 7099.78 56
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26799.88 4498.66 24699.96 2399.79 9397.45 25599.93 9499.34 8899.99 1699.78 56
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24199.54 22199.46 13199.61 17499.70 14596.31 29799.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21199.16 14598.51 32799.75 12895.90 37198.07 33599.84 6099.84 5399.89 5399.73 12396.01 30499.99 799.33 91100.00 199.63 127
HyFIR lowres test98.91 22598.64 23899.73 8899.85 5899.47 14798.07 33599.83 6298.64 24899.89 5399.60 21392.57 340100.00 199.33 9199.97 5699.72 73
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29199.73 11498.82 22699.72 12799.62 19696.56 28699.82 27999.32 9399.95 8399.56 171
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20899.59 19399.17 17999.81 8899.61 20598.41 18299.69 34399.32 9399.94 9499.53 187
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10499.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20399.61 17599.79 6699.76 10899.58 22187.88 37899.92 11699.31 9699.97 5699.53 187
CVMVSNet98.61 25398.88 21897.80 35599.58 19193.60 39299.26 14899.64 16399.66 9899.72 12799.67 16693.26 33399.93 9499.30 9799.81 18899.87 30
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10599.84 7699.71 13898.62 14999.96 5499.30 9799.96 7099.86 32
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14399.97 3399.30 9799.95 8399.80 47
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25097.87 37878.01 40299.30 26399.69 15197.70 24195.89 40699.29 10098.14 38399.95 11
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 15999.96 5499.29 10099.94 9499.83 40
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11799.85 7399.69 15198.18 21099.94 7799.28 10299.95 8399.83 40
IterMVS98.97 21599.16 14598.42 33199.74 13495.64 37498.06 33799.83 6299.83 5699.85 7399.74 11996.10 30399.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25398.34 26999.44 19599.60 18298.67 26599.27 14699.44 25999.68 9099.32 25499.49 25592.50 343100.00 199.24 10496.51 39999.65 112
hse-mvs298.52 26698.30 27499.16 26399.29 30398.60 27598.77 26899.02 33399.68 9099.32 25499.04 34192.50 34399.85 24099.24 10497.87 39099.03 325
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10499.90 15799.24 10499.97 5699.53 187
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19299.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7899.61 17599.54 11899.80 9299.64 17897.79 23799.95 6399.21 10799.94 9499.84 36
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32899.53 23099.36 14899.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23899.60 18799.43 13999.70 13699.36 28897.70 24199.88 18999.20 11099.87 14599.59 159
CANet99.11 19099.05 17999.28 24298.83 36698.56 27698.71 27499.41 26599.25 16299.23 27299.22 31997.66 24999.94 7799.19 11199.97 5699.33 256
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27199.24 15599.46 25499.68 9099.80 9299.66 17198.99 10299.89 17599.19 11199.90 11599.72 73
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9599.70 13199.81 6199.69 13999.58 22197.66 24999.86 22299.17 11699.44 30199.67 95
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 23999.61 17599.43 13999.67 14899.28 30597.85 23399.95 6399.17 11699.81 18899.65 112
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25599.53 23099.38 14599.67 14899.36 28897.67 24599.95 6399.17 11699.81 18899.63 127
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26899.24 15599.46 25499.67 9499.79 9799.65 17698.97 10699.89 17599.15 11999.89 12499.71 76
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30899.26 14899.46 25499.62 10599.75 11499.67 16698.54 16299.85 24099.15 11999.92 10599.68 89
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12499.31 29399.67 9499.47 21899.57 22996.48 28999.84 25599.15 11999.30 32099.47 218
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14899.76 10099.32 15299.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26898.94 24499.91 3397.97 30999.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30898.85 25299.76 10099.62 10599.83 8099.64 17898.54 16299.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13499.63 16599.61 10899.71 13299.56 23398.76 13099.96 5499.14 12599.92 10599.68 89
MVSTER98.47 27398.22 27999.24 25399.06 34598.35 29299.08 21199.46 25499.27 15899.75 11499.66 17188.61 37699.85 24099.14 12599.92 10599.52 198
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14399.74 11099.23 16699.72 12799.53 24497.63 25199.88 18999.11 12799.84 16299.48 214
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25898.60 28099.21 31797.89 31596.76 39196.37 41095.47 31199.57 38299.10 12898.73 36199.09 310
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 11999.49 24799.17 17999.21 27799.67 16698.78 12799.66 36499.09 12999.66 25299.10 306
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25399.89 4098.38 27699.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
1112_ss99.05 19998.84 22399.67 10999.66 16999.29 19498.52 29799.82 6797.65 32799.43 22899.16 32596.42 29299.91 13999.07 13199.84 16299.80 47
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32199.31 29399.48 12498.86 31799.51 24896.56 28699.95 6399.05 13299.95 8399.19 287
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25599.86 4999.68 9099.65 15499.88 4297.67 24599.87 20399.03 13399.86 15399.76 66
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10299.57 20499.44 13499.70 13699.74 11997.21 26699.87 20399.03 13399.94 9499.44 228
Test_1112_low_res98.95 22298.73 23299.63 13599.68 16399.15 22298.09 33299.80 8097.14 35399.46 22299.40 27696.11 30299.89 17599.01 13599.84 16299.84 36
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9098.32 36899.80 6499.56 19299.69 15196.99 27699.85 24098.99 13699.73 22399.50 205
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15599.71 12699.27 15899.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26099.66 14899.42 14399.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29898.04 37299.24 16495.77 40099.47 26293.78 32899.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 28999.81 7699.61 10899.48 21699.41 27298.47 17399.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24399.46 13199.88 6199.36 28897.54 25299.87 20398.97 14099.87 14599.63 127
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
FMVSNet597.80 31097.25 32699.42 20198.83 36698.97 24099.38 11299.80 8098.87 21999.25 26899.69 15180.60 39799.91 13998.96 14299.90 11599.38 243
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
FMVSNet398.80 23898.63 24099.32 23399.13 33198.72 26399.10 20399.48 24899.23 16699.62 16899.64 17892.57 34099.86 22298.96 14299.90 11599.39 241
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15299.68 16399.45 15698.99 23599.67 14499.48 12499.55 19799.36 28894.92 31399.86 22298.95 14696.57 39899.45 223
CHOSEN 280x42098.41 27998.41 26198.40 33299.34 29095.89 37296.94 39299.44 25998.80 23099.25 26899.52 24693.51 33299.98 2098.94 14799.98 4199.32 259
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
alignmvs98.28 28997.96 29899.25 25199.12 33398.93 24699.03 22298.42 36299.64 10298.72 33297.85 39490.86 36199.62 37498.88 14999.13 33399.19 287
sss98.90 22798.77 23199.27 24599.48 24498.44 28398.72 27299.32 28997.94 31399.37 24499.35 29396.31 29799.91 13998.85 15099.63 25899.47 218
xiu_mvs_v2_base99.02 20599.11 15898.77 31599.37 27698.09 30898.13 32799.51 23999.47 12899.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 381
PS-MVSNAJ99.00 21199.08 16998.76 31699.37 27698.10 30798.00 34399.51 23999.47 12899.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 385
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26099.41 26598.55 25799.68 14299.69 15198.13 21299.87 20398.82 15399.98 4199.24 273
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15598.82 34199.84 5399.08 29499.76 11191.37 35199.94 7798.82 15399.00 34398.26 380
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
Effi-MVS+99.06 19698.97 20499.34 22699.31 29798.98 23898.31 31399.91 3398.81 22898.79 32698.94 35899.14 8499.84 25598.79 15798.74 35999.20 284
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
VDDNet98.97 21598.82 22699.42 20199.71 14398.81 25599.62 6298.68 34799.81 6199.38 24399.80 8394.25 32299.85 24098.79 15799.32 31899.59 159
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13499.67 14497.39 34199.16 28399.79 9391.87 34899.91 13998.78 16098.77 35598.44 374
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 20961.71 40595.39 40299.52 24693.90 32499.94 7798.76 16198.27 37699.62 138
RPMNet98.60 25598.53 25298.83 31099.05 34698.12 30499.30 13499.62 16899.86 4599.16 28399.74 11992.53 34299.92 11698.75 16298.77 35598.44 374
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34199.25 30798.78 23399.58 18299.44 26998.24 20199.76 31898.74 16399.93 10199.22 278
tttt051797.62 31897.20 32798.90 30399.76 11797.40 34199.48 9594.36 40099.06 19799.70 13699.49 25584.55 39299.94 7798.73 16499.65 25499.36 249
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31099.48 12499.56 19299.77 10894.89 31499.93 9498.72 16599.89 12499.63 127
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27599.47 12899.76 10899.78 10198.13 21299.86 22298.70 16699.68 24399.49 210
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8099.79 8698.77 23599.80 9299.85 5699.64 2899.85 24098.70 16699.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26298.87 21999.57 18599.82 7398.06 21799.87 20398.69 16899.73 22399.15 295
LFMVS98.46 27498.19 28499.26 24899.24 31398.52 27999.62 6296.94 38999.87 4199.31 25899.58 22191.04 35699.81 29498.68 16999.42 30599.45 223
WR-MVS99.11 19098.93 20899.66 11699.30 30199.42 16598.42 30699.37 28099.04 19899.57 18599.20 32396.89 27899.86 22298.66 17099.87 14599.70 79
Anonymous20240521198.75 24298.46 25699.63 13599.34 29099.66 10199.47 9897.65 38099.28 15799.56 19299.50 25193.15 33499.84 25598.62 17199.58 27499.40 239
EPNet98.13 29897.77 31399.18 26094.57 40997.99 31499.24 15597.96 37499.74 7397.29 38499.62 19693.13 33599.97 3398.59 17299.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 19999.09 16798.91 29799.21 31898.36 29198.82 25999.47 25198.85 22298.90 31299.56 23398.78 12799.09 39998.57 17399.68 24399.26 270
Patchmatch-RL test98.60 25598.36 26699.33 22999.77 11399.07 23398.27 31599.87 4698.91 21499.74 12299.72 13090.57 36599.79 30598.55 17499.85 15799.11 304
pmmvs398.08 30197.80 31098.91 29799.41 26997.69 33297.87 35799.66 14895.87 37299.50 21399.51 24890.35 36799.97 3398.55 17499.47 29899.08 316
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19699.79 8699.48 12498.93 30698.55 37999.40 4999.93 9498.51 17699.52 29098.28 379
jason99.16 17999.11 15899.32 23399.75 12898.44 28398.26 31799.39 27598.70 24399.74 12299.30 30198.54 16299.97 3398.48 17799.82 17999.55 174
jason: jason.
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9099.69 13798.99 20199.75 11499.71 13898.79 12599.93 9498.46 17899.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 24798.56 25099.15 26599.22 31698.66 26897.14 38799.51 23998.09 30299.54 19999.27 30796.87 27999.74 32598.43 17998.96 34599.03 325
our_test_398.85 23499.09 16798.13 34499.66 16994.90 38497.72 36299.58 20299.07 19599.64 15599.62 19698.19 20899.93 9498.41 18099.95 8399.55 174
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11299.71 33498.41 18099.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18295.89 40298.86 346
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24299.86 4998.85 22299.81 8899.73 12398.40 18699.92 11698.36 18399.83 17099.17 291
baseline197.73 31397.33 32398.96 28899.30 30197.73 33099.40 10898.42 36299.33 15199.46 22299.21 32191.18 35499.82 27998.35 18491.26 40499.32 259
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30691.53 40298.38 30892.60 40599.13 18899.31 25899.96 1297.18 27099.68 35598.34 18599.83 17099.07 321
GA-MVS97.99 30697.68 31698.93 29499.52 22698.04 31297.19 38699.05 33298.32 28998.81 32298.97 35489.89 37299.41 39598.33 18699.05 33999.34 255
Fast-Effi-MVS+99.02 20598.87 21999.46 18999.38 27499.50 14499.04 21899.79 8697.17 35198.62 33998.74 37199.34 6099.95 6398.32 18799.41 30698.92 339
iter_conf05_1198.54 26398.33 27199.18 26099.07 34399.20 21697.94 35097.59 38199.17 17999.30 26398.92 36294.79 31699.86 22298.29 18899.89 12498.47 372
bld_raw_dy_0_6498.97 21598.90 21699.17 26299.07 34399.24 20799.24 15599.93 2999.23 16699.87 6999.03 34595.48 31099.81 29498.29 18899.99 1698.47 372
MDA-MVSNet_test_wron98.95 22298.99 20098.85 30699.64 17397.16 34798.23 31999.33 28798.93 21199.56 19299.66 17197.39 25999.83 27098.29 18899.88 13499.55 174
N_pmnet98.73 24598.53 25299.35 22599.72 14098.67 26598.34 31094.65 39998.35 28399.79 9799.68 16298.03 21999.93 9498.28 19199.92 10599.44 228
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31097.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15798.27 19297.56 39398.91 340
thisisatest053097.45 32396.95 33398.94 29199.68 16397.73 33099.09 20894.19 40298.61 25399.56 19299.30 30184.30 39399.93 9498.27 19299.54 28599.16 293
YYNet198.95 22298.99 20098.84 30899.64 17397.14 34998.22 32099.32 28998.92 21399.59 18099.66 17197.40 25799.83 27098.27 19299.90 11599.55 174
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19299.65 15798.99 20199.64 15599.72 13099.39 5099.86 22298.23 19599.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 21998.87 21999.24 25399.57 20198.40 28698.12 32899.18 32198.28 29199.63 15999.13 32798.02 22099.97 3398.22 19699.69 23899.35 252
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 20999.23 16699.35 24699.80 8399.17 7999.95 6398.21 19799.84 16299.59 159
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21599.82 6799.50 12298.97 30299.05 33998.98 10499.98 2098.20 19899.24 32998.62 359
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33898.19 29998.76 26999.33 28798.49 26699.44 22499.58 22198.21 20699.69 34398.20 19899.62 25999.39 241
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32499.29 29798.18 29899.63 15999.62 19699.18 7899.68 35598.20 19899.74 21899.30 265
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14199.61 17599.87 4199.74 12299.76 11198.69 13999.87 20398.20 19899.80 19399.75 69
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21199.55 21598.63 24999.31 25899.68 16298.19 20899.78 30898.18 20299.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8599.70 13198.35 28399.51 21199.50 25199.31 6299.88 18998.18 20299.84 16299.69 83
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 27999.80 8697.83 32598.89 24799.72 12399.29 15499.63 15999.70 14596.47 29099.89 17598.17 20499.82 17999.50 205
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26398.51 35799.88 4097.89 37299.87 4791.89 34799.90 15798.16 20597.68 39298.59 361
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12199.79 8698.41 27298.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 343
miper_lstm_enhance98.65 25298.60 24198.82 31399.20 32197.33 34397.78 36099.66 14899.01 20099.59 18099.50 25194.62 31999.85 24098.12 20799.90 11599.26 270
Effi-MVS+-dtu99.07 19598.92 21299.52 17698.89 36299.78 4999.15 18499.66 14899.34 14998.92 30999.24 31797.69 24399.98 2098.11 20899.28 32398.81 350
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12697.96 37497.71 32598.29 35499.32 29786.72 38799.92 11698.10 20996.24 40199.09 310
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38499.47 25198.72 24099.66 15299.70 14599.29 6499.63 37398.07 21099.81 18899.62 138
ppachtmachnet_test98.89 23099.12 15598.20 34299.66 16995.24 38097.63 36699.68 14099.08 19399.78 10199.62 19698.65 14799.88 18998.02 21199.96 7099.48 214
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20398.86 33898.52 26298.92 30999.54 24291.90 34699.82 27998.02 21199.03 34198.37 376
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10699.85 5498.79 23199.41 23699.60 21398.92 11099.92 11698.02 21199.92 10599.43 234
eth_miper_zixun_eth98.68 25098.71 23498.60 32399.10 33996.84 35697.52 37499.54 22198.94 20899.58 18299.48 25896.25 30099.76 31898.01 21499.93 10199.21 280
Patchmtry98.78 23998.54 25199.49 18198.89 36299.19 21899.32 12699.67 14499.65 10099.72 12799.79 9391.87 34899.95 6398.00 21599.97 5699.33 256
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31498.58 28599.82 6797.62 32899.34 24999.71 13898.52 16999.77 31697.98 21699.97 5699.52 198
PVSNet_Blended98.70 24898.59 24399.02 28399.54 21597.99 31497.58 36999.82 6795.70 37699.34 24998.98 35298.52 16999.77 31697.98 21699.83 17099.30 265
cl____98.54 26398.41 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.85 32699.78 30897.97 21899.89 12499.17 291
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.87 32599.78 30897.97 21899.89 12499.18 289
AUN-MVS97.82 30997.38 32299.14 26999.27 30898.53 27798.72 27299.02 33398.10 30097.18 38799.03 34589.26 37499.85 24097.94 22097.91 38899.03 325
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24498.67 26599.77 1598.60 35497.35 34399.63 15999.80 8393.07 33699.84 25597.92 22199.30 32098.78 353
ambc99.20 25799.35 28198.53 27799.17 17699.46 25499.67 14899.80 8398.46 17699.70 33797.92 22199.70 23499.38 243
USDC98.96 21998.93 20899.05 28199.54 21597.99 31497.07 39099.80 8098.21 29599.75 11499.77 10898.43 17999.64 37297.90 22399.88 13499.51 200
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28599.48 24898.50 26499.52 20699.63 18999.14 8499.76 31897.89 22499.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18699.31 29399.16 18299.62 16899.61 20598.35 19099.91 13997.88 22599.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18699.61 17599.92 11697.88 22599.72 22999.77 60
c3_l98.72 24698.71 23498.72 31899.12 33397.22 34697.68 36599.56 20998.90 21599.54 19999.48 25896.37 29699.73 32897.88 22599.88 13499.21 280
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24399.44 13499.12 29099.78 10198.77 12999.94 7797.87 22899.72 22999.62 138
miper_ehance_all_eth98.59 25898.59 24398.59 32498.98 35597.07 35097.49 37599.52 23598.50 26499.52 20699.37 28496.41 29499.71 33497.86 22999.62 25999.00 331
WTY-MVS98.59 25898.37 26599.26 24899.43 26398.40 28698.74 27099.13 32798.10 30099.21 27799.24 31794.82 31599.90 15797.86 22998.77 35599.49 210
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12699.74 11099.18 17499.69 13999.75 11698.41 18299.84 25597.85 23199.70 23499.10 306
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16699.54 22199.13 18899.82 8199.63 18998.91 11299.92 11697.85 23199.70 23499.58 164
test_241102_TWO99.54 22199.13 18899.76 10899.63 18998.32 19599.92 11697.85 23199.69 23899.75 69
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35399.71 12698.76 23899.08 29499.47 26299.17 7999.54 38597.85 23199.76 20999.54 182
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12499.53 23099.27 15899.42 23099.63 18998.21 20699.95 6397.83 23599.79 19899.65 112
MSC_two_6792asdad99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
No_MVS99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17597.77 23698.77 35598.52 366
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12699.77 9599.53 12099.77 10699.76 11199.26 7099.78 30897.77 23699.88 13499.60 152
IU-MVS99.69 15599.77 5499.22 31497.50 33599.69 13997.75 24099.70 23499.77 60
114514_t98.49 27198.11 28999.64 12899.73 13799.58 13299.24 15599.76 10089.94 39899.42 23099.56 23397.76 24099.86 22297.74 24199.82 17999.47 218
DVP-MVS++99.38 11799.25 13699.77 5799.03 34999.77 5499.74 2499.61 17599.18 17499.76 10899.61 20599.00 10099.92 11697.72 24299.60 26999.62 138
test_0728_THIRD99.18 17499.62 16899.61 20598.58 15699.91 13997.72 24299.80 19399.77 60
EGC-MVSNET89.05 37285.52 37599.64 12899.89 3999.78 4999.56 8099.52 23524.19 40649.96 40799.83 6699.15 8199.92 11697.71 24499.85 15799.21 280
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26596.37 36799.43 22898.96 35694.74 31799.69 34397.71 24499.62 25998.83 349
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14899.35 28498.77 23599.57 18599.70 14599.27 6999.88 18997.71 24499.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28097.31 34599.41 23699.22 31987.30 37999.37 39697.70 24799.62 25999.08 316
MP-MVS-pluss99.14 18398.92 21299.80 4599.83 6599.83 2998.61 27899.63 16596.84 36099.44 22499.58 22198.81 12099.91 13997.70 24799.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24299.53 23098.27 29299.53 20499.73 12398.75 13299.87 20397.70 24799.83 17099.68 89
UnsupCasMVSNet_bld98.55 26298.27 27699.40 21099.56 21299.37 17897.97 34899.68 14097.49 33699.08 29499.35 29395.41 31299.82 27997.70 24798.19 38099.01 330
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35599.73 11498.68 24499.31 25899.48 25899.09 8999.66 36497.70 24799.77 20799.29 268
IS-MVSNet99.03 20398.85 22199.55 16899.80 8699.25 20399.73 2799.15 32499.37 14699.61 17499.71 13894.73 31899.81 29497.70 24799.88 13499.58 164
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 13997.69 25398.78 35398.31 377
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 13997.69 25398.78 35398.31 377
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32999.47 26298.47 17399.88 18997.62 25599.73 22399.67 95
X-MVStestdata96.09 35594.87 36799.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32961.30 41398.47 17399.88 18997.62 25599.73 22399.67 95
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19299.52 23597.40 34099.57 18599.64 17898.93 10999.83 27097.61 25799.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10798.68 34794.69 38998.14 36499.34 29686.32 38999.80 30297.60 25898.07 38698.88 344
PVSNet97.47 1598.42 27898.44 25898.35 33499.46 25496.26 36596.70 39599.34 28697.68 32699.00 30199.13 32797.40 25799.72 33097.59 25999.68 24399.08 316
new_pmnet98.88 23198.89 21798.84 30899.70 15197.62 33398.15 32499.50 24397.98 30899.62 16899.54 24298.15 21199.94 7797.55 26099.84 16298.95 335
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5497.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 14999.11 15899.61 14798.38 39299.79 4699.57 7899.68 14099.61 10899.15 28599.71 13898.70 13899.91 13997.54 26199.68 24399.13 303
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14399.56 20998.19 29799.14 28799.29 30498.84 11999.92 11697.53 26399.80 19399.64 122
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11299.62 16898.38 27699.06 29899.27 30798.79 12599.94 7797.51 26499.82 17999.66 104
SD-MVS99.01 20999.30 12398.15 34399.50 23499.40 17198.94 24499.61 17599.22 17199.75 11499.82 7399.54 4195.51 40797.48 26599.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 28997.53 33398.47 34998.15 38997.88 23099.82 27997.46 26699.24 32999.09 310
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23599.40 27299.08 19399.58 18299.64 17898.90 11599.83 27097.44 26799.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13199.59 19398.36 27899.36 24599.37 28498.80 12499.91 13997.43 26899.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13199.59 19398.36 27899.35 24699.38 28298.61 15199.93 9497.43 26899.75 21199.67 95
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22699.78 10598.88 25199.61 6799.56 20999.11 19299.24 27199.56 23393.00 33899.78 30897.43 26899.89 12499.35 252
MIMVSNet98.43 27798.20 28199.11 27299.53 22198.38 29099.58 7598.61 35298.96 20599.33 25199.76 11190.92 35899.81 29497.38 27199.76 20999.15 295
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31597.26 38898.63 24998.80 32498.00 39297.77 23899.90 15797.37 27298.98 34499.09 310
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11699.84 6199.64 11098.25 31899.73 11498.39 27599.63 15999.43 27099.70 2499.90 15797.34 27398.64 36599.44 228
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11299.78 9299.53 12099.67 14899.78 10199.19 7799.86 22297.32 27499.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20598.81 22799.65 12199.58 19199.49 14598.58 28599.07 32998.40 27499.04 29999.25 31298.51 17199.80 30297.31 27599.51 29199.65 112
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13199.59 19398.41 27299.32 25499.36 28898.73 13699.93 9497.29 27699.74 21899.67 95
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14699.61 17599.19 17399.57 18599.64 17898.76 13099.90 15797.29 27699.62 25999.56 171
TAPA-MVS97.92 1398.03 30397.55 31999.46 18999.47 25099.44 15898.50 29999.62 16886.79 39999.07 29799.26 31098.26 20099.62 37497.28 27899.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.41 18299.91 13997.27 27999.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.57 15797.27 27999.61 26699.54 182
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28398.23 37098.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 337
test_yl98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
PHI-MVS99.11 19098.95 20799.59 15299.13 33199.59 12899.17 17699.65 15797.88 31799.25 26899.46 26598.97 10699.80 30297.26 28199.82 17999.37 246
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7399.78 9299.71 8099.90 4999.69 15198.85 11899.90 15797.25 28599.78 20399.15 295
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17698.39 36498.12 29998.79 32699.58 22190.71 36399.89 17597.23 28699.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 21498.80 22999.56 16599.25 31199.43 16298.54 29499.27 30198.58 25598.80 32499.43 27098.53 16699.70 33797.22 28799.59 27399.54 182
testing396.48 34595.63 35699.01 28499.23 31597.81 32698.90 24699.10 32898.72 24097.84 37697.92 39372.44 40999.85 24097.21 28899.33 31699.35 252
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32499.35 24699.25 31299.23 7399.92 11697.21 28899.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11299.54 22198.34 28799.01 30099.50 25198.53 16699.93 9497.18 29099.78 20399.66 104
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9099.65 15798.07 30399.52 20699.69 15198.57 15799.92 11697.18 29099.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33496.42 34198.66 32199.42 26897.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20397.10 29299.39 30898.63 358
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25599.72 12398.36 27899.60 17799.71 13898.92 11099.91 13997.08 29399.84 16299.40 239
MSDG99.08 19498.98 20399.37 21999.60 18299.13 22397.54 37099.74 11098.84 22599.53 20499.55 24099.10 8799.79 30597.07 29499.86 15399.18 289
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17199.60 18798.55 25799.57 18599.67 16699.03 9999.94 7797.01 29599.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33893.94 40398.96 20598.46 35098.17 38879.86 39899.87 20396.99 29699.06 33798.78 353
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11089.95 40998.21 29598.61 34099.59 21886.69 38899.72 33096.99 29699.23 33198.81 350
MSP-MVS99.04 20298.79 23099.81 4099.78 10599.73 7699.35 12099.57 20498.54 26099.54 19998.99 34996.81 28099.93 9496.97 29899.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 21998.70 23699.74 7999.52 22699.71 8398.86 25099.19 32098.47 26898.59 34299.06 33898.08 21699.91 13996.94 29999.60 26999.60 152
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17199.60 18798.85 22299.47 21899.58 22198.38 18799.92 11696.92 30099.54 28599.57 169
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18299.72 12397.99 30799.42 23099.60 21398.81 12099.93 9496.91 30199.74 21899.66 104
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6798.72 34596.81 36198.73 33199.51 24894.06 32399.86 22296.91 30198.20 37898.86 346
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18498.02 37398.51 26398.82 32199.61 20590.98 35799.66 36496.89 30398.92 348
GST-MVS99.16 17998.96 20699.75 7499.73 13799.73 7699.20 16699.55 21598.22 29499.32 25499.35 29398.65 14799.91 13996.86 30499.74 21899.62 138
test_post199.14 18651.63 41589.54 37399.82 27996.86 304
SCA98.11 29998.36 26697.36 36699.20 32192.99 39498.17 32398.49 35998.24 29399.10 29399.57 22996.01 30499.94 7796.86 30499.62 25999.14 300
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35799.74 11098.36 27899.66 15299.68 16299.71 2299.90 15796.84 30799.88 13499.43 234
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12199.97 1898.93 21199.91 4499.79 9398.68 14099.93 9496.80 30899.56 27699.30 265
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10499.82 6798.33 28899.50 21399.78 10197.90 22899.65 37096.78 30999.83 17099.44 228
旧先验297.94 35095.33 38098.94 30599.88 18996.75 310
MDTV_nov1_ep13_2view91.44 40399.14 18697.37 34299.21 27791.78 35096.75 31099.03 325
CLD-MVS98.76 24198.57 24799.33 22999.57 20198.97 24097.53 37299.55 21596.41 36599.27 26699.13 32799.07 9499.78 30896.73 31299.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30097.98 29798.48 32999.27 30896.48 36099.40 10899.07 32998.81 22899.23 27299.57 22990.11 36999.87 20396.69 31399.64 25699.09 310
baseline296.83 33796.28 34398.46 33099.09 34196.91 35498.83 25593.87 40497.23 34896.23 39998.36 38488.12 37799.90 15796.68 31498.14 38398.57 364
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 20991.75 39497.13 38997.61 39895.58 30998.63 40396.68 31499.11 33598.18 386
PC_three_145297.56 32999.68 14299.41 27299.09 8997.09 40596.66 31699.60 26999.62 138
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18299.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27698.35 36798.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 341
TinyColmap98.97 21598.93 20899.07 27999.46 25498.19 29997.75 36199.75 10598.79 23199.54 19999.70 14598.97 10699.62 37496.63 32099.83 17099.41 238
LF4IMVS99.01 20998.92 21299.27 24599.71 14399.28 19698.59 28399.77 9598.32 28999.39 24299.41 27298.62 14999.84 25596.62 32199.84 16298.69 357
NCCC98.82 23698.57 24799.58 15699.21 31899.31 19198.61 27899.25 30798.65 24798.43 35199.26 31097.86 23199.81 29496.55 32299.27 32699.61 148
OPU-MVS99.29 24099.12 33399.44 15899.20 16699.40 27699.00 10098.84 40296.54 32399.60 26999.58 164
F-COLMAP98.74 24398.45 25799.62 14499.57 20199.47 14798.84 25399.65 15796.31 36898.93 30699.19 32497.68 24499.87 20396.52 32499.37 31199.53 187
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27798.44 36198.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 341
ADS-MVSNet297.78 31197.66 31898.12 34599.14 32995.36 37799.22 16398.75 34496.97 35698.25 35699.64 17890.90 35999.94 7796.51 32599.56 27699.08 316
ADS-MVSNet97.72 31697.67 31797.86 35399.14 32994.65 38599.22 16398.86 33896.97 35698.25 35699.64 17890.90 35999.84 25596.51 32599.56 27699.08 316
PatchMatch-RL98.68 25098.47 25599.30 23999.44 25999.28 19698.14 32699.54 22197.12 35499.11 29199.25 31297.80 23699.70 33796.51 32599.30 32098.93 337
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20898.33 39499.56 13599.01 22799.59 19395.44 37899.57 18599.80 8395.64 30799.46 39496.47 32999.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30898.65 35198.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 332
SF-MVS99.10 19398.93 20899.62 14499.58 19199.51 14399.13 19299.65 15797.97 30999.42 23099.61 20598.86 11799.87 20396.45 33199.68 24399.49 210
FE-MVS97.85 30897.42 32199.15 26599.44 25998.75 26199.77 1598.20 37195.85 37399.33 25199.80 8388.86 37599.88 18996.40 33299.12 33498.81 350
DPE-MVScopyleft99.14 18398.92 21299.82 3799.57 20199.77 5498.74 27099.60 18798.55 25799.76 10899.69 15198.23 20599.92 11696.39 33399.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25596.38 334
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19699.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
testdata99.42 20199.51 22898.93 24699.30 29696.20 36998.87 31699.40 27698.33 19499.89 17596.29 33799.28 32399.44 228
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17098.38 36597.35 34398.23 35899.59 21887.23 38099.82 27996.27 33898.73 36198.59 361
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13498.94 33797.74 32397.85 37599.55 24092.40 34599.73 32896.25 33998.73 36198.06 388
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
ACMP97.51 1499.05 19998.84 22399.67 10999.78 10599.55 13898.88 24899.66 14897.11 35599.47 21899.60 21399.07 9499.89 17596.18 34299.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 22798.72 23399.44 19599.39 27199.42 16598.58 28599.64 16397.31 34599.44 22499.62 19698.59 15499.69 34396.17 34399.79 19899.22 278
DP-MVS Recon98.50 26998.23 27799.31 23699.49 23999.46 15198.56 29099.63 16594.86 38798.85 31899.37 28497.81 23599.59 38096.08 34499.44 30198.88 344
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21199.32 28992.37 39397.73 38199.46 26591.15 35599.69 34396.07 34598.80 35298.21 383
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16598.51 35793.27 39297.89 37299.21 32184.83 39199.70 33796.04 34698.18 38198.75 356
dmvs_re98.69 24998.48 25499.31 23699.55 21399.42 16599.54 8398.38 36599.32 15298.72 33298.71 37296.76 28299.21 39796.01 34799.35 31499.31 263
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14399.68 14099.54 11899.40 24199.56 23399.07 9499.82 27996.01 34799.96 7099.11 304
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25699.33 25199.53 24498.88 11699.68 35596.01 34799.65 25499.02 329
test_prior297.95 34997.87 31898.05 36699.05 33997.90 22895.99 35099.49 296
testdata299.89 17595.99 350
原ACMM199.37 21999.47 25098.87 25399.27 30196.74 36398.26 35599.32 29797.93 22799.82 27995.96 35299.38 30999.43 234
新几何199.52 17699.50 23499.22 21199.26 30495.66 37798.60 34199.28 30597.67 24599.89 17595.95 35399.32 31899.45 223
MP-MVScopyleft99.06 19698.83 22599.76 6499.76 11799.71 8399.32 12699.50 24398.35 28398.97 30299.48 25898.37 18899.92 11695.95 35399.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29497.90 37798.53 26196.54 39596.47 40970.62 41199.81 29495.91 35598.15 38298.56 365
wuyk23d97.58 32099.13 15192.93 38799.69 15599.49 14599.52 8599.77 9597.97 30999.96 2399.79 9399.84 1299.94 7795.85 35699.82 17979.36 403
HQP_MVS98.90 22798.68 23799.55 16899.58 19199.24 20798.80 26399.54 22198.94 20899.14 28799.25 31297.24 26499.82 27995.84 35799.78 20399.60 152
plane_prior599.54 22199.82 27995.84 35799.78 20399.60 152
无先验98.01 34199.23 31195.83 37499.85 24095.79 35999.44 228
CPTT-MVS98.74 24398.44 25899.64 12899.61 18099.38 17599.18 17199.55 21596.49 36499.27 26699.37 28497.11 27299.92 11695.74 36099.67 24999.62 138
PLCcopyleft97.35 1698.36 28397.99 29599.48 18599.32 29699.24 20798.50 29999.51 23995.19 38398.58 34398.96 35696.95 27799.83 27095.63 36199.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26098.34 26999.28 24299.18 32599.10 23098.34 31099.41 26598.48 26798.52 34698.98 35297.05 27499.78 30895.59 36299.50 29498.96 333
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13499.06 33194.98 38497.21 38699.12 33198.43 17999.67 36095.58 36398.56 36897.71 392
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27296.18 37097.37 38297.73 39595.73 30699.58 38195.49 36481.40 40599.36 249
MAR-MVS98.24 29397.92 30599.19 25898.78 37499.65 10799.17 17699.14 32595.36 37998.04 36798.81 36897.47 25499.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 24899.19 32399.26 20099.65 5899.69 13791.33 39698.14 36499.77 10898.28 19899.96 5495.41 36699.55 28098.58 363
train_agg98.35 28697.95 29999.57 16299.35 28199.35 18598.11 33099.41 26594.90 38597.92 37098.99 34998.02 22099.85 24095.38 36799.44 30199.50 205
9.1498.64 23899.45 25898.81 26099.60 18797.52 33499.28 26599.56 23398.53 16699.83 27095.36 36899.64 256
APD-MVScopyleft98.87 23298.59 24399.71 9999.50 23499.62 11799.01 22799.57 20496.80 36299.54 19999.63 18998.29 19799.91 13995.24 36999.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36395.20 370
AdaColmapbinary98.60 25598.35 26899.38 21699.12 33399.22 21198.67 27599.42 26497.84 32198.81 32299.27 30797.32 26299.81 29495.14 37199.53 28799.10 306
test9_res95.10 37299.44 30199.50 205
CDPH-MVS98.56 26198.20 28199.61 14799.50 23499.46 15198.32 31299.41 26595.22 38199.21 27799.10 33598.34 19299.82 27995.09 37399.66 25299.56 171
BH-untuned98.22 29598.09 29098.58 32699.38 27497.24 34598.55 29198.98 33697.81 32299.20 28298.76 37097.01 27599.65 37094.83 37498.33 37398.86 346
BP-MVS94.73 375
HQP-MVS98.36 28398.02 29499.39 21399.31 29798.94 24397.98 34599.37 28097.45 33798.15 36098.83 36696.67 28399.70 33794.73 37599.67 24999.53 187
QAPM98.40 28197.99 29599.65 12199.39 27199.47 14799.67 4999.52 23591.70 39598.78 32899.80 8398.55 16099.95 6394.71 37799.75 21199.53 187
agg_prior294.58 37899.46 30099.50 205
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28099.21 31797.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 310
BH-RMVSNet98.41 27998.14 28799.21 25599.21 31898.47 28098.60 28098.26 36998.35 28398.93 30699.31 29997.20 26999.66 36494.32 38099.10 33699.51 200
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33599.44 13498.88 31399.12 33192.78 33999.68 35594.30 38199.03 34197.50 393
MG-MVS98.52 26698.39 26398.94 29199.15 32897.39 34298.18 32199.21 31798.89 21899.23 27299.63 18997.37 26099.74 32594.22 38299.61 26699.69 83
API-MVS98.38 28298.39 26398.35 33498.83 36699.26 20099.14 18699.18 32198.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
PAPM_NR98.36 28398.04 29299.33 22999.48 24498.93 24698.79 26699.28 30097.54 33298.56 34598.57 37797.12 27199.69 34394.09 38498.90 35099.38 243
ZD-MVS99.43 26399.61 12399.43 26296.38 36699.11 29199.07 33797.86 23199.92 11694.04 38599.49 296
DPM-MVS98.28 28997.94 30399.32 23399.36 27999.11 22597.31 38298.78 34396.88 35898.84 31999.11 33497.77 23899.61 37894.03 38699.36 31299.23 276
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3596.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6197.99 31499.20 16699.47 25199.71 8099.42 23099.82 7398.09 21499.47 39293.88 38899.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35299.34 14998.92 30998.88 36493.79 32799.66 36492.87 38999.05 33997.30 397
BH-w/o97.20 32997.01 33197.76 35699.08 34295.69 37398.03 34098.52 35695.76 37597.96 36998.02 39095.62 30899.47 39292.82 39097.25 39598.12 387
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30197.91 37696.85 35998.21 35998.51 38196.42 29299.51 39092.16 39197.29 39497.98 389
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30399.45 15698.87 24999.48 24886.54 40199.44 22499.74 11997.34 26199.86 22291.61 39299.28 32397.37 396
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
DeepMVS_CXcopyleft97.98 34799.69 15596.95 35299.26 30475.51 40395.74 40198.28 38696.47 29099.62 37491.23 39497.89 38997.38 395
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30794.56 39098.02 36898.25 38797.43 25699.68 35590.90 39598.74 35999.33 256
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13498.86 33872.71 40497.30 38399.08 33698.34 19299.74 32589.21 39698.33 37399.26 270
thres600view796.60 34396.16 34597.93 35099.63 17596.09 36999.18 17197.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
FPMVS96.32 34995.50 35798.79 31499.60 18298.17 30298.46 30598.80 34297.16 35296.28 39699.63 18982.19 39499.09 39988.45 39898.89 35199.10 306
PCF-MVS96.03 1896.73 34095.86 35199.33 22999.44 25999.16 22096.87 39399.44 25986.58 40098.95 30499.40 27694.38 32199.88 18987.93 39999.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 34796.03 34897.47 36399.63 17595.93 37099.18 17197.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
tfpn200view996.30 35095.89 34997.53 36099.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
thres40096.40 34695.89 34997.92 35199.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
thres20096.09 35595.68 35597.33 36899.48 24496.22 36698.53 29697.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16397.55 33597.94 35095.60 39699.37 14690.68 40698.70 37396.56 28698.61 40486.94 40499.55 28098.77 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 32896.83 33898.59 32499.46 25497.55 33599.25 15496.84 39098.78 23397.24 38597.67 39697.11 27298.97 40186.59 40598.54 36999.27 269
PAPM95.61 36794.71 36998.31 33999.12 33396.63 35896.66 39698.46 36090.77 39796.25 39798.68 37493.01 33799.69 34381.60 40697.86 39198.62 359
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32799.82 130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3250.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
test_one_060199.63 17599.76 6199.55 21599.23 16699.31 25899.61 20598.59 154
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.69 15599.82 3599.54 22199.12 19199.82 8199.49 25598.91 11299.52 389
save fliter99.53 22199.25 20398.29 31499.38 27999.07 195
test072699.69 15599.80 4499.24 15599.57 20499.16 18299.73 12699.65 17698.35 190
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36299.14 300
sam_mvs90.52 366
MTGPAbinary99.53 230
test_post52.41 41490.25 36899.86 222
patchmatchnet-post99.62 19690.58 36499.94 77
MTMP99.09 20898.59 355
TEST999.35 28199.35 18598.11 33099.41 26594.83 38897.92 37098.99 34998.02 22099.85 240
test_899.34 29099.31 19198.08 33499.40 27294.90 38597.87 37498.97 35498.02 22099.84 255
agg_prior99.35 28199.36 18299.39 27597.76 38099.85 240
test_prior499.19 21898.00 343
test_prior99.46 18999.35 28199.22 21199.39 27599.69 34399.48 214
新几何298.04 338
旧先验199.49 23999.29 19499.26 30499.39 28097.67 24599.36 31299.46 222
原ACMM297.92 353
test22299.51 22899.08 23297.83 35999.29 29795.21 38298.68 33699.31 29997.28 26399.38 30999.43 234
segment_acmp98.37 188
testdata197.72 36297.86 320
test1299.54 17399.29 30399.33 18899.16 32398.43 35197.54 25299.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 264
plane_prior499.25 312
plane_prior399.31 19198.36 27899.14 287
plane_prior298.80 26398.94 208
plane_prior199.51 228
plane_prior99.24 20798.42 30697.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 62
test1199.29 297
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34597.45 33798.15 360
ACMP_Plane99.31 29797.98 34597.45 33798.15 360
HQP4-MVS98.15 36099.70 33799.53 187
HQP3-MVS99.37 28099.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 182