This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31399.48 97100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 198100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32699.34 123100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30399.52 87100.00 199.86 45100.00 199.88 4298.99 10499.96 5499.97 499.96 7099.95 11
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32399.49 96100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_f99.75 3299.88 699.37 21999.96 798.21 30099.51 91100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22999.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17899.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28899.30 13699.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20299.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17899.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8799.65 5098.97 28999.54 21597.16 34999.11 20299.98 1199.78 6899.96 2399.81 7998.72 13999.97 3399.95 1299.97 5699.79 54
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8699.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19899.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21797.79 38199.99 299.48 21699.59 21896.29 30199.95 6399.94 1699.98 4199.88 25
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24199.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 22095.32 39999.99 299.68 14299.57 22998.30 19899.97 3399.94 1699.98 4199.88 25
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20599.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21699.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22499.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22499.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21799.61 17799.15 18899.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23299.65 15999.15 18899.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11699.92 4199.87 4798.75 13499.86 22299.90 2599.99 1699.73 71
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 22099.60 18999.18 17699.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20299.62 17099.18 17699.89 5399.72 13098.66 14799.87 20399.88 2999.97 5699.66 104
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14799.84 25599.88 2999.99 1699.71 76
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20599.61 17799.20 17499.84 7699.73 12398.67 14599.84 25599.86 3199.98 4199.64 122
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8799.81 7699.87 4199.81 8899.79 9396.78 28399.99 799.83 3299.51 29199.86 32
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18899.58 20499.25 16499.81 8899.62 19698.24 20399.84 25599.83 3299.97 5699.64 122
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23799.96 2399.03 20199.95 3199.12 33198.75 13499.84 25599.82 3599.82 17999.77 60
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7798.70 34899.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11299.59 19599.24 16699.86 7199.70 14598.55 16299.82 27999.79 3799.95 8399.60 152
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 10099.81 7699.82 5899.71 13299.72 13096.60 28799.98 2099.75 3999.23 33199.82 46
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30399.87 4199.91 4499.87 4798.04 22099.96 5499.68 4499.99 1699.90 20
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 335
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22899.92 11699.65 4699.98 4199.62 138
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
K. test v398.87 23498.60 24399.69 10499.93 2599.46 15199.74 2494.97 40099.78 6899.88 6199.88 4293.66 33299.97 3399.61 4999.95 8399.64 122
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11899.79 8699.83 5699.88 6199.85 5698.42 18399.90 15799.60 5099.73 22399.49 210
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6399.76 10099.85 5099.82 8199.88 4296.39 29799.97 3399.59 5199.98 4199.55 174
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16499.93 9499.59 5199.98 4199.76 66
EU-MVSNet99.39 11599.62 5598.72 32099.88 4496.44 36399.56 8299.85 5499.90 2999.90 4999.85 5698.09 21699.83 27099.58 5499.95 8399.90 20
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15599.94 7799.58 5499.98 4199.77 60
mvs_anonymous99.28 13999.39 10198.94 29399.19 32397.81 32899.02 22799.55 21799.78 6899.85 7399.80 8398.24 20399.86 22299.57 5699.50 29499.15 295
test111197.74 31498.16 28896.49 38299.60 18289.86 41299.71 3491.21 40899.89 3599.88 6199.87 4793.73 33199.90 15799.56 5799.99 1699.70 79
lessismore_v099.64 12899.86 5499.38 17590.66 40999.89 5399.83 6694.56 32299.97 3399.56 5799.92 10599.57 169
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35899.59 19599.27 16099.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8799.65 5098.95 29299.71 14397.27 34699.50 9299.82 6799.59 11899.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
test250694.73 37294.59 37395.15 38899.59 18685.90 41499.75 2274.01 41499.89 3599.71 13299.86 5479.00 40599.90 15799.52 6399.99 1699.65 112
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17999.87 20399.51 6499.97 5699.86 32
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33499.90 3898.95 20999.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6399.69 13799.85 5099.80 9299.81 7998.81 12299.91 13999.47 6899.88 13499.70 79
ECVR-MVScopyleft97.73 31598.04 29496.78 37699.59 18690.81 40899.72 3090.43 41099.89 3599.86 7199.86 5493.60 33399.89 17599.46 6999.99 1699.65 112
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6899.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10499.57 20699.66 9899.78 10199.83 6697.85 23599.86 22299.44 7199.96 7099.61 148
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7499.82 6799.46 13399.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
new-patchmatchnet99.35 12599.57 7198.71 32299.82 7296.62 36198.55 29399.75 10599.50 12499.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22799.89 4099.60 11699.82 8199.62 19698.81 12299.89 17599.43 7299.86 15399.47 218
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28899.77 1599.80 8099.73 7499.63 15999.30 30198.02 22299.98 2099.43 7299.69 23899.55 174
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22799.86 22299.42 7799.96 7099.80 47
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32799.65 10099.89 5399.90 2996.20 30399.94 7799.42 7799.92 10599.67 95
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 22099.87 4699.71 8099.47 21899.79 9398.24 20399.98 2099.38 8099.96 7099.83 40
UGNet99.38 11799.34 11199.49 18198.90 36198.90 24999.70 3599.35 28699.86 4598.57 34699.81 7998.50 17499.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7599.82 6799.39 14699.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20199.85 24099.37 8399.93 10199.83 40
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14399.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7799.97 1899.95 2099.96 2399.76 11198.44 18099.99 799.34 8899.96 7099.78 56
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26999.88 4498.66 24899.96 2399.79 9397.45 25799.93 9499.34 8899.99 1699.78 56
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24399.54 22399.46 13399.61 17499.70 14596.31 29999.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21399.16 14598.51 32999.75 12895.90 37398.07 33799.84 6099.84 5399.89 5399.73 12396.01 30699.99 799.33 91100.00 199.63 127
HyFIR lowres test98.91 22798.64 24099.73 8899.85 5899.47 14798.07 33799.83 6298.64 25099.89 5399.60 21392.57 342100.00 199.33 9199.97 5699.72 73
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29399.73 11498.82 22899.72 12799.62 19696.56 28899.82 27999.32 9399.95 8399.56 171
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 21099.59 19599.17 18199.81 8899.61 20598.41 18499.69 34399.32 9399.94 9499.53 187
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10699.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
iter_conf0598.46 27698.23 27999.15 26599.04 35097.99 31699.10 20599.61 17799.79 6699.76 10899.58 22187.88 38099.92 11699.31 9699.97 5699.53 187
CVMVSNet98.61 25598.88 22097.80 35799.58 19193.60 39499.26 15099.64 16599.66 9899.72 12799.67 16693.26 33599.93 9499.30 9799.81 18899.87 30
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10799.84 7699.71 13898.62 15199.96 5499.30 9799.96 7099.86 32
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14599.97 3399.30 9799.95 8399.80 47
tmp_tt95.75 36695.42 36096.76 37789.90 41394.42 38898.86 25297.87 38078.01 40499.30 26399.69 15197.70 24395.89 40899.29 10098.14 38599.95 11
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16199.96 5499.29 10099.94 9499.83 40
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11999.85 7399.69 15198.18 21299.94 7799.28 10299.95 8399.83 40
IterMVS98.97 21799.16 14598.42 33399.74 13495.64 37698.06 33999.83 6299.83 5699.85 7399.74 11996.10 30599.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25598.34 27199.44 19599.60 18298.67 26699.27 14899.44 26199.68 9099.32 25499.49 25592.50 345100.00 199.24 10496.51 40199.65 112
hse-mvs298.52 26898.30 27699.16 26399.29 30398.60 27698.77 27099.02 33599.68 9099.32 25499.04 34192.50 34599.85 24099.24 10497.87 39299.03 326
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10699.90 15799.24 10499.97 5699.53 187
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19499.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 8099.61 17799.54 12099.80 9299.64 17897.79 23999.95 6399.21 10799.94 9499.84 36
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 33099.53 23299.36 15099.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 24099.60 18999.43 14199.70 13699.36 28897.70 24399.88 18999.20 11099.87 14599.59 159
CANet99.11 19099.05 17999.28 24298.83 36898.56 27898.71 27699.41 26799.25 16499.23 27299.22 31997.66 25199.94 7799.19 11199.97 5699.33 256
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15799.46 25699.68 9099.80 9299.66 17198.99 10499.89 17599.19 11199.90 11599.72 73
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9799.70 13199.81 6199.69 13999.58 22197.66 25199.86 22299.17 11699.44 30199.67 95
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24199.61 17799.43 14199.67 14899.28 30597.85 23599.95 6399.17 11699.81 18899.65 112
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25799.53 23299.38 14799.67 14899.36 28897.67 24799.95 6399.17 11699.81 18899.63 127
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15799.46 25699.67 9499.79 9799.65 17698.97 10899.89 17599.15 11999.89 12499.71 76
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 31099.26 15099.46 25699.62 10799.75 11499.67 16698.54 16499.85 24099.15 11999.92 10599.68 89
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12699.31 29599.67 9499.47 21899.57 22996.48 29199.84 25599.15 11999.30 32099.47 218
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 15099.76 10099.32 15499.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24699.91 3397.97 31199.79 9799.73 12399.05 9899.97 3399.15 11999.99 1699.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 31098.85 25499.76 10099.62 10799.83 8099.64 17898.54 16499.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13699.63 16799.61 11099.71 13299.56 23398.76 13299.96 5499.14 12599.92 10599.68 89
MVSTER98.47 27598.22 28199.24 25399.06 34798.35 29499.08 21399.46 25699.27 16099.75 11499.66 17188.61 37899.85 24099.14 12599.92 10599.52 198
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14599.74 11099.23 16899.72 12799.53 24497.63 25399.88 18999.11 12799.84 16299.48 214
Syy-MVS98.17 29997.85 31199.15 26598.50 39198.79 25898.60 28299.21 31997.89 31796.76 39396.37 41295.47 31399.57 38299.10 12898.73 36399.09 310
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12199.49 24999.17 18199.21 27799.67 16698.78 12999.66 36499.09 12999.66 25299.10 306
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25599.89 4098.38 27899.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
1112_ss99.05 19998.84 22599.67 10999.66 16999.29 19498.52 29999.82 6797.65 32999.43 22899.16 32596.42 29499.91 13999.07 13199.84 16299.80 47
CANet_DTU98.91 22798.85 22399.09 27598.79 37498.13 30598.18 32399.31 29599.48 12698.86 31799.51 24896.56 28899.95 6399.05 13299.95 8399.19 287
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25799.86 4999.68 9099.65 15499.88 4297.67 24799.87 20399.03 13399.86 15399.76 66
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10499.57 20699.44 13699.70 13699.74 11997.21 26899.87 20399.03 13399.94 9499.44 228
Test_1112_low_res98.95 22498.73 23499.63 13599.68 16399.15 22298.09 33499.80 8097.14 35599.46 22299.40 27696.11 30499.89 17599.01 13599.84 16299.84 36
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9298.32 37099.80 6499.56 19299.69 15196.99 27899.85 24098.99 13699.73 22399.50 205
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15799.71 12699.27 16099.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26299.66 14999.42 14599.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
EPNet_dtu97.62 32097.79 31497.11 37596.67 40892.31 39998.51 30098.04 37499.24 16695.77 40299.47 26293.78 33099.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29199.81 7699.61 11099.48 21699.41 27298.47 17599.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24599.46 13399.88 6199.36 28897.54 25499.87 20398.97 14099.87 14599.63 127
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
FMVSNet597.80 31297.25 32899.42 20198.83 36898.97 24099.38 11499.80 8098.87 22199.25 26899.69 15180.60 39999.91 13998.96 14299.90 11599.38 243
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
FMVSNet398.80 24098.63 24299.32 23399.13 33198.72 26399.10 20599.48 25099.23 16899.62 16899.64 17892.57 34299.86 22298.96 14299.90 11599.39 241
UnsupCasMVSNet_eth98.83 23798.57 24999.59 15299.68 16399.45 15698.99 23799.67 14499.48 12699.55 19799.36 28894.92 31599.86 22298.95 14696.57 40099.45 223
CHOSEN 280x42098.41 28198.41 26398.40 33499.34 29095.89 37496.94 39499.44 26198.80 23299.25 26899.52 24693.51 33499.98 2098.94 14799.98 4199.32 259
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
alignmvs98.28 29197.96 30099.25 25199.12 33398.93 24699.03 22498.42 36499.64 10298.72 33297.85 39490.86 36399.62 37498.88 14999.13 33399.19 287
sdadasadasd99.02 20599.01 19299.06 28299.11 33898.60 27699.63 6099.67 14499.63 10498.58 34497.65 39799.07 9499.57 38298.85 15098.92 34899.03 326
sss98.90 22998.77 23399.27 24599.48 24498.44 28598.72 27499.32 29197.94 31599.37 24499.35 29396.31 29999.91 13998.85 15099.63 25899.47 218
xiu_mvs_v2_base99.02 20599.11 15898.77 31799.37 27698.09 31098.13 32999.51 24199.47 13099.42 23098.54 38099.38 5499.97 3398.83 15299.33 31698.24 383
PS-MVSNAJ99.00 21399.08 16998.76 31899.37 27698.10 30998.00 34599.51 24199.47 13099.41 23698.50 38299.28 6699.97 3398.83 15299.34 31598.20 387
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26299.41 26798.55 25999.68 14299.69 15198.13 21499.87 20398.82 15499.98 4199.24 273
PatchT98.45 27898.32 27498.83 31298.94 35998.29 29599.24 15798.82 34399.84 5399.08 29499.76 11191.37 35399.94 7798.82 15499.00 34398.26 382
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
sasdasda99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
Effi-MVS+99.06 19698.97 20699.34 22699.31 29798.98 23898.31 31599.91 3398.81 23098.79 32698.94 35899.14 8499.84 25598.79 15898.74 36199.20 284
canonicalmvs99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
VDDNet98.97 21798.82 22899.42 20199.71 14398.81 25599.62 6398.68 34999.81 6199.38 24399.80 8394.25 32499.85 24098.79 15899.32 31899.59 159
CR-MVSNet98.35 28898.20 28398.83 31299.05 34898.12 30699.30 13699.67 14497.39 34399.16 28399.79 9391.87 35099.91 13998.78 16298.77 35798.44 376
test_method91.72 37392.32 37689.91 39093.49 41270.18 41590.28 40399.56 21161.71 40795.39 40499.52 24693.90 32699.94 7798.76 16398.27 37899.62 138
RPMNet98.60 25798.53 25498.83 31299.05 34898.12 30699.30 13699.62 17099.86 4599.16 28399.74 11992.53 34499.92 11698.75 16498.77 35798.44 376
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34399.25 30998.78 23599.58 18299.44 26998.24 20399.76 31898.74 16599.93 10199.22 278
tttt051797.62 32097.20 32998.90 30599.76 11797.40 34399.48 9794.36 40299.06 19999.70 13699.49 25584.55 39499.94 7798.73 16699.65 25499.36 249
EPP-MVSNet99.17 17799.00 19699.66 11699.80 8699.43 16299.70 3599.24 31299.48 12699.56 19299.77 10894.89 31699.93 9498.72 16799.89 12499.63 127
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27799.47 13099.76 10899.78 10198.13 21499.86 22298.70 16899.68 24399.49 210
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8299.79 8698.77 23799.80 9299.85 5699.64 2899.85 24098.70 16899.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26498.87 22199.57 18599.82 7398.06 21999.87 20398.69 17099.73 22399.15 295
LFMVS98.46 27698.19 28699.26 24899.24 31398.52 28199.62 6396.94 39199.87 4199.31 25899.58 22191.04 35899.81 29498.68 17199.42 30599.45 223
WR-MVS99.11 19098.93 21099.66 11699.30 30199.42 16598.42 30899.37 28299.04 20099.57 18599.20 32396.89 28099.86 22298.66 17299.87 14599.70 79
Anonymous20240521198.75 24498.46 25899.63 13599.34 29099.66 10199.47 10097.65 38299.28 15999.56 19299.50 25193.15 33699.84 25598.62 17399.58 27499.40 239
EPNet98.13 30097.77 31599.18 26094.57 41197.99 31699.24 15797.96 37699.74 7397.29 38699.62 19693.13 33799.97 3398.59 17499.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 19999.09 16798.91 29999.21 31898.36 29398.82 26199.47 25398.85 22498.90 31299.56 23398.78 12999.09 40198.57 17599.68 24399.26 270
Patchmatch-RL test98.60 25798.36 26899.33 22999.77 11399.07 23398.27 31799.87 4698.91 21699.74 12299.72 13090.57 36799.79 30598.55 17699.85 15799.11 304
pmmvs398.08 30397.80 31298.91 29999.41 26997.69 33497.87 35999.66 14995.87 37499.50 21399.51 24890.35 36999.97 3398.55 17699.47 29899.08 316
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19899.79 8699.48 12698.93 30698.55 37999.40 4999.93 9498.51 17899.52 29098.28 381
jason99.16 17999.11 15899.32 23399.75 12898.44 28598.26 31999.39 27798.70 24599.74 12299.30 30198.54 16499.97 3398.48 17999.82 17999.55 174
jason: jason.
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9299.69 13798.99 20399.75 11499.71 13898.79 12799.93 9498.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 24998.56 25299.15 26599.22 31698.66 26997.14 38999.51 24198.09 30499.54 19999.27 30796.87 28199.74 32598.43 18198.96 34599.03 326
our_test_398.85 23699.09 16798.13 34699.66 16994.90 38697.72 36499.58 20499.07 19799.64 15599.62 19698.19 21099.93 9498.41 18299.95 8399.55 174
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11499.71 33498.41 18299.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32896.91 33898.74 31997.72 40497.57 33697.60 37097.36 38998.00 30799.21 27798.02 39090.04 37299.79 30598.37 18495.89 40498.86 348
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24499.86 4998.85 22499.81 8899.73 12398.40 18899.92 11698.36 18599.83 17099.17 291
baseline197.73 31597.33 32598.96 29099.30 30197.73 33299.40 11098.42 36499.33 15399.46 22299.21 32191.18 35699.82 27998.35 18691.26 40699.32 259
MVS-HIRNet97.86 30998.22 28196.76 37799.28 30691.53 40498.38 31092.60 40799.13 19099.31 25899.96 1297.18 27299.68 35598.34 18799.83 17099.07 321
GA-MVS97.99 30897.68 31898.93 29699.52 22698.04 31497.19 38899.05 33498.32 29198.81 32298.97 35489.89 37499.41 39798.33 18899.05 33999.34 255
Fast-Effi-MVS+99.02 20598.87 22199.46 18999.38 27499.50 14499.04 22099.79 8697.17 35398.62 34098.74 37199.34 6099.95 6398.32 18999.41 30698.92 341
iter_conf05_1198.54 26598.33 27399.18 26099.07 34599.20 21697.94 35297.59 38399.17 18199.30 26398.92 36294.79 31899.86 22298.29 19099.89 12498.47 374
bld_raw_dy_0_6498.97 21798.90 21899.17 26299.07 34599.24 20799.24 15799.93 2999.23 16899.87 6999.03 34595.48 31299.81 29498.29 19099.99 1698.47 374
MDA-MVSNet_test_wron98.95 22498.99 20298.85 30899.64 17397.16 34998.23 32199.33 28998.93 21399.56 19299.66 17197.39 26199.83 27098.29 19099.88 13499.55 174
N_pmnet98.73 24798.53 25499.35 22599.72 14098.67 26698.34 31294.65 40198.35 28599.79 9799.68 16298.03 22199.93 9498.28 19399.92 10599.44 228
ET-MVSNet_ETH3D96.78 34096.07 34998.91 29999.26 31097.92 32497.70 36696.05 39697.96 31492.37 40798.43 38387.06 38399.90 15798.27 19497.56 39598.91 342
thisisatest053097.45 32596.95 33598.94 29399.68 16397.73 33299.09 21094.19 40498.61 25599.56 19299.30 30184.30 39599.93 9498.27 19499.54 28599.16 293
YYNet198.95 22498.99 20298.84 31099.64 17397.14 35198.22 32299.32 29198.92 21599.59 18099.66 17197.40 25999.83 27098.27 19499.90 11599.55 174
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19499.65 15998.99 20399.64 15599.72 13099.39 5099.86 22298.23 19799.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22198.87 22199.24 25399.57 20198.40 28898.12 33099.18 32398.28 29399.63 15999.13 32798.02 22299.97 3398.22 19899.69 23899.35 252
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21199.23 16899.35 24699.80 8399.17 7999.95 6398.21 19999.84 16299.59 159
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21799.82 6799.50 12498.97 30299.05 33998.98 10699.98 2098.20 20099.24 32998.62 361
MS-PatchMatch99.00 21398.97 20699.09 27599.11 33898.19 30198.76 27199.33 28998.49 26899.44 22499.58 22198.21 20899.69 34398.20 20099.62 25999.39 241
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32699.29 29998.18 30099.63 15999.62 19699.18 7899.68 35598.20 20099.74 21899.30 265
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14399.61 17799.87 4199.74 12299.76 11198.69 14199.87 20398.20 20099.80 19399.75 69
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21399.55 21798.63 25199.31 25899.68 16298.19 21099.78 30898.18 20499.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8799.70 13198.35 28599.51 21199.50 25199.31 6299.88 18998.18 20499.84 16299.69 83
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32798.89 24999.72 12399.29 15699.63 15999.70 14596.47 29299.89 17598.17 20699.82 17999.50 205
JIA-IIPM98.06 30497.92 30798.50 33098.59 38797.02 35398.80 26598.51 35999.88 4097.89 37499.87 4791.89 34999.90 15798.16 20797.68 39498.59 363
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12399.79 8698.41 27498.84 31998.89 36398.75 13499.84 25598.15 20899.51 29198.89 345
miper_lstm_enhance98.65 25498.60 24398.82 31599.20 32197.33 34597.78 36299.66 14999.01 20299.59 18099.50 25194.62 32199.85 24098.12 20999.90 11599.26 270
Effi-MVS+-dtu99.07 19598.92 21499.52 17698.89 36499.78 4999.15 18699.66 14999.34 15198.92 30999.24 31797.69 24599.98 2098.11 21099.28 32398.81 352
tpm97.15 33296.95 33597.75 35998.91 36094.24 38999.32 12897.96 37697.71 32798.29 35699.32 29786.72 38999.92 11698.10 21196.24 40399.09 310
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38699.47 25398.72 24299.66 15299.70 14599.29 6499.63 37398.07 21299.81 18899.62 138
ppachtmachnet_test98.89 23299.12 15598.20 34499.66 16995.24 38297.63 36899.68 14099.08 19599.78 10199.62 19698.65 14999.88 18998.02 21399.96 7099.48 214
tpmrst97.73 31598.07 29396.73 37998.71 38392.00 40099.10 20598.86 34098.52 26498.92 30999.54 24291.90 34899.82 27998.02 21399.03 34198.37 378
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10899.85 5498.79 23399.41 23699.60 21398.92 11299.92 11698.02 21399.92 10599.43 234
eth_miper_zixun_eth98.68 25298.71 23698.60 32599.10 34096.84 35897.52 37699.54 22398.94 21099.58 18299.48 25896.25 30299.76 31898.01 21699.93 10199.21 280
Patchmtry98.78 24198.54 25399.49 18198.89 36499.19 21899.32 12899.67 14499.65 10099.72 12799.79 9391.87 35099.95 6398.00 21799.97 5699.33 256
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31698.58 28799.82 6797.62 33099.34 24999.71 13898.52 17199.77 31697.98 21899.97 5699.52 198
PVSNet_Blended98.70 25098.59 24599.02 28599.54 21597.99 31697.58 37199.82 6795.70 37899.34 24998.98 35298.52 17199.77 31697.98 21899.83 17099.30 265
cl____98.54 26598.41 26398.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.85 32899.78 30897.97 22099.89 12499.17 291
DIV-MVS_self_test98.54 26598.42 26298.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.87 32799.78 30897.97 22099.89 12499.18 289
AUN-MVS97.82 31197.38 32499.14 26999.27 30898.53 27998.72 27499.02 33598.10 30297.18 38999.03 34589.26 37699.85 24097.94 22297.91 39099.03 326
FA-MVS(test-final)98.52 26898.32 27499.10 27499.48 24498.67 26699.77 1598.60 35697.35 34599.63 15999.80 8393.07 33899.84 25597.92 22399.30 32098.78 355
ambc99.20 25799.35 28198.53 27999.17 17899.46 25699.67 14899.80 8398.46 17899.70 33797.92 22399.70 23499.38 243
USDC98.96 22198.93 21099.05 28399.54 21597.99 31697.07 39299.80 8098.21 29799.75 11499.77 10898.43 18199.64 37297.90 22599.88 13499.51 200
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28799.48 25098.50 26699.52 20699.63 18999.14 8499.76 31897.89 22699.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18899.31 29599.16 18499.62 16899.61 20598.35 19299.91 13997.88 22799.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18899.61 17799.92 11697.88 22799.72 22999.77 60
c3_l98.72 24898.71 23698.72 32099.12 33397.22 34897.68 36799.56 21198.90 21799.54 19999.48 25896.37 29899.73 32897.88 22799.88 13499.21 280
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6399.50 24599.44 13699.12 29099.78 10198.77 13199.94 7797.87 23099.72 22999.62 138
miper_ehance_all_eth98.59 26098.59 24598.59 32698.98 35797.07 35297.49 37799.52 23798.50 26699.52 20699.37 28496.41 29699.71 33497.86 23199.62 25999.00 333
WTY-MVS98.59 26098.37 26799.26 24899.43 26398.40 28898.74 27299.13 32998.10 30299.21 27799.24 31794.82 31799.90 15797.86 23198.77 35799.49 210
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12899.74 11099.18 17699.69 13999.75 11698.41 18499.84 25597.85 23399.70 23499.10 306
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16899.54 22399.13 19099.82 8199.63 18998.91 11499.92 11697.85 23399.70 23499.58 164
test_241102_TWO99.54 22399.13 19099.76 10899.63 18998.32 19799.92 11697.85 23399.69 23899.75 69
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35599.71 12698.76 24099.08 29499.47 26299.17 7999.54 38697.85 23399.76 20999.54 182
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12699.53 23299.27 16099.42 23099.63 18998.21 20899.95 6397.83 23799.79 19899.65 112
MSC_two_6792asdad99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
No_MVS99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
TESTMET0.1,196.24 35395.84 35497.41 36798.24 39893.84 39297.38 38095.84 39798.43 27197.81 37998.56 37879.77 40199.89 17597.77 23898.77 35798.52 368
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12899.77 9599.53 12299.77 10699.76 11199.26 7099.78 30897.77 23899.88 13499.60 152
IU-MVS99.69 15599.77 5499.22 31697.50 33799.69 13997.75 24299.70 23499.77 60
114514_t98.49 27398.11 29199.64 12899.73 13799.58 13299.24 15799.76 10089.94 40099.42 23099.56 23397.76 24299.86 22297.74 24399.82 17999.47 218
DVP-MVS++99.38 11799.25 13699.77 5799.03 35199.77 5499.74 2499.61 17799.18 17699.76 10899.61 20599.00 10299.92 11697.72 24499.60 26999.62 138
test_0728_THIRD99.18 17699.62 16899.61 20598.58 15899.91 13997.72 24499.80 19399.77 60
EGC-MVSNET89.05 37485.52 37799.64 12899.89 3999.78 4999.56 8299.52 23724.19 40849.96 40999.83 6699.15 8199.92 11697.71 24699.85 15799.21 280
miper_enhance_ethall98.03 30597.94 30598.32 33998.27 39796.43 36496.95 39399.41 26796.37 36999.43 22898.96 35694.74 31999.69 34397.71 24699.62 25998.83 351
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 15099.35 28698.77 23799.57 18599.70 14599.27 6999.88 18997.71 24699.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32397.28 32698.40 33498.37 39596.75 35997.24 38799.37 28297.31 34799.41 23699.22 31987.30 38199.37 39897.70 24999.62 25999.08 316
MP-MVS-pluss99.14 18398.92 21499.80 4599.83 6599.83 2998.61 28099.63 16796.84 36299.44 22499.58 22198.81 12299.91 13997.70 24999.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24499.53 23298.27 29499.53 20499.73 12398.75 13499.87 20397.70 24999.83 17099.68 89
UnsupCasMVSNet_bld98.55 26498.27 27899.40 21099.56 21299.37 17897.97 35099.68 14097.49 33899.08 29499.35 29395.41 31499.82 27997.70 24998.19 38299.01 332
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35799.73 11498.68 24699.31 25899.48 25899.09 8999.66 36497.70 24999.77 20799.29 268
IS-MVSNet99.03 20398.85 22399.55 16899.80 8699.25 20399.73 2799.15 32699.37 14899.61 17499.71 13894.73 32099.81 29497.70 24999.88 13499.58 164
test-LLR97.15 33296.95 33597.74 36098.18 40095.02 38497.38 38096.10 39398.00 30797.81 37998.58 37590.04 37299.91 13997.69 25598.78 35598.31 379
test-mter96.23 35495.73 35697.74 36098.18 40095.02 38497.38 38096.10 39397.90 31697.81 37998.58 37579.12 40499.91 13997.69 25598.78 35598.31 379
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32999.47 26298.47 17599.88 18997.62 25799.73 22399.67 95
X-MVStestdata96.09 35794.87 36999.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32961.30 41598.47 17599.88 18997.62 25799.73 22399.67 95
SMA-MVScopyleft99.19 16899.00 19699.73 8899.46 25499.73 7699.13 19499.52 23797.40 34299.57 18599.64 17898.93 11199.83 27097.61 25999.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34396.79 34296.46 38398.90 36190.71 40999.41 10998.68 34994.69 39198.14 36699.34 29686.32 39199.80 30297.60 26098.07 38898.88 346
PVSNet97.47 1598.42 28098.44 26098.35 33699.46 25496.26 36796.70 39799.34 28897.68 32899.00 30199.13 32797.40 25999.72 33097.59 26199.68 24399.08 316
new_pmnet98.88 23398.89 21998.84 31099.70 15197.62 33598.15 32699.50 24597.98 31099.62 16899.54 24298.15 21399.94 7797.55 26299.84 16298.95 337
IB-MVS95.41 2095.30 37194.46 37597.84 35698.76 37995.33 38097.33 38396.07 39596.02 37395.37 40597.41 40176.17 40699.96 5497.54 26395.44 40598.22 384
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 14999.11 15899.61 14798.38 39499.79 4699.57 8099.68 14099.61 11099.15 28599.71 13898.70 14099.91 13997.54 26399.68 24399.13 303
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14599.56 21198.19 29999.14 28799.29 30498.84 12199.92 11697.53 26599.80 19399.64 122
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11499.62 17098.38 27899.06 29899.27 30798.79 12799.94 7797.51 26699.82 17999.66 104
SD-MVS99.01 21199.30 12398.15 34599.50 23499.40 17198.94 24699.61 17799.22 17399.75 11499.82 7399.54 4195.51 40997.48 26799.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27398.29 27799.11 27298.96 35898.42 28797.54 37299.32 29197.53 33598.47 35198.15 38997.88 23299.82 27997.46 26899.24 32999.09 310
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23799.40 27499.08 19599.58 18299.64 17898.90 11799.83 27097.44 26999.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13399.59 19598.36 28099.36 24599.37 28498.80 12699.91 13997.43 27099.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13399.59 19598.36 28099.35 24699.38 28298.61 15399.93 9497.43 27099.75 21199.67 95
Vis-MVSNet (Re-imp)98.77 24298.58 24899.34 22699.78 10598.88 25199.61 6899.56 21199.11 19499.24 27199.56 23393.00 34099.78 30897.43 27099.89 12499.35 252
MIMVSNet98.43 27998.20 28399.11 27299.53 22198.38 29299.58 7798.61 35498.96 20799.33 25199.76 11190.92 36099.81 29497.38 27399.76 20999.15 295
WB-MVSnew98.34 29098.14 28998.96 29098.14 40397.90 32598.27 31797.26 39098.63 25198.80 32498.00 39297.77 24099.90 15797.37 27498.98 34499.09 310
XVG-OURS-SEG-HR99.16 17998.99 20299.66 11699.84 6199.64 11098.25 32099.73 11498.39 27799.63 15999.43 27099.70 2499.90 15797.34 27598.64 36799.44 228
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11499.78 9299.53 12299.67 14899.78 10199.19 7799.86 22297.32 27699.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20598.81 22999.65 12199.58 19199.49 14598.58 28799.07 33198.40 27699.04 29999.25 31298.51 17399.80 30297.31 27799.51 29199.65 112
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13399.59 19598.41 27499.32 25499.36 28898.73 13899.93 9497.29 27899.74 21899.67 95
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14899.61 17799.19 17599.57 18599.64 17898.76 13299.90 15797.29 27899.62 25999.56 171
TAPA-MVS97.92 1398.03 30597.55 32199.46 18999.47 25099.44 15898.50 30199.62 17086.79 40199.07 29799.26 31098.26 20299.62 37497.28 28099.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.41 18499.91 13997.27 28199.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.57 15997.27 28199.61 26699.54 182
testing1196.05 35995.41 36197.97 35098.78 37695.27 38198.59 28598.23 37298.86 22396.56 39696.91 40775.20 40799.69 34397.26 28398.29 37798.93 339
test_yl98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
DCV-MVSNet98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
PHI-MVS99.11 19098.95 20999.59 15299.13 33199.59 12899.17 17899.65 15997.88 31999.25 26899.46 26598.97 10899.80 30297.26 28399.82 17999.37 246
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7599.78 9299.71 8099.90 4999.69 15198.85 12099.90 15797.25 28799.78 20399.15 295
PatchmatchNetpermissive97.65 31997.80 31297.18 37398.82 37192.49 39899.17 17898.39 36698.12 30198.79 32699.58 22190.71 36599.89 17597.23 28899.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 21698.80 23199.56 16599.25 31199.43 16298.54 29699.27 30398.58 25798.80 32499.43 27098.53 16899.70 33797.22 28999.59 27399.54 182
testing396.48 34795.63 35899.01 28699.23 31597.81 32898.90 24899.10 33098.72 24297.84 37897.92 39372.44 41199.85 24097.21 29099.33 31699.35 252
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6899.67 14497.72 32699.35 24699.25 31299.23 7399.92 11697.21 29099.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 16899.00 19699.76 6499.76 11799.68 9799.38 11499.54 22398.34 28999.01 30099.50 25198.53 16899.93 9497.18 29299.78 20399.66 104
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9299.65 15998.07 30599.52 20699.69 15198.57 15999.92 11697.18 29299.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33696.42 34398.66 32399.42 26897.47 33997.27 38594.30 40397.24 34999.15 28598.86 36585.01 39299.87 20397.10 29499.39 30898.63 360
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25799.72 12398.36 28099.60 17799.71 13898.92 11299.91 13997.08 29599.84 16299.40 239
MSDG99.08 19498.98 20599.37 21999.60 18299.13 22397.54 37299.74 11098.84 22799.53 20499.55 24099.10 8799.79 30597.07 29699.86 15399.18 289
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17399.60 18998.55 25999.57 18599.67 16699.03 10199.94 7797.01 29799.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35595.78 35597.49 36398.53 38993.83 39398.04 34093.94 40598.96 20798.46 35298.17 38879.86 40099.87 20396.99 29899.06 33798.78 355
EPMVS96.53 34696.32 34497.17 37498.18 40092.97 39799.39 11289.95 41198.21 29798.61 34199.59 21886.69 39099.72 33096.99 29899.23 33198.81 352
MSP-MVS99.04 20298.79 23299.81 4099.78 10599.73 7699.35 12299.57 20698.54 26299.54 19998.99 34996.81 28299.93 9496.97 30099.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22198.70 23899.74 7999.52 22699.71 8398.86 25299.19 32298.47 27098.59 34399.06 33898.08 21899.91 13996.94 30199.60 26999.60 152
SR-MVS99.19 16899.00 19699.74 7999.51 22899.72 8199.18 17399.60 18998.85 22499.47 21899.58 22198.38 18999.92 11696.92 30299.54 28599.57 169
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18499.72 12397.99 30999.42 23099.60 21398.81 12299.93 9496.91 30399.74 21899.66 104
HY-MVS98.23 998.21 29897.95 30198.99 28799.03 35198.24 29699.61 6898.72 34796.81 36398.73 33199.51 24894.06 32599.86 22296.91 30398.20 38098.86 348
MDTV_nov1_ep1397.73 31698.70 38490.83 40799.15 18698.02 37598.51 26598.82 32199.61 20590.98 35999.66 36496.89 30598.92 348
GST-MVS99.16 17998.96 20899.75 7499.73 13799.73 7699.20 16899.55 21798.22 29699.32 25499.35 29398.65 14999.91 13996.86 30699.74 21899.62 138
test_post199.14 18851.63 41789.54 37599.82 27996.86 306
SCA98.11 30198.36 26897.36 36899.20 32192.99 39698.17 32598.49 36198.24 29599.10 29399.57 22996.01 30699.94 7796.86 30699.62 25999.14 300
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35999.74 11098.36 28099.66 15299.68 16299.71 2299.90 15796.84 30999.88 13499.43 234
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12399.97 1898.93 21399.91 4499.79 9398.68 14299.93 9496.80 31099.56 27699.30 265
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10699.82 6798.33 29099.50 21399.78 10197.90 23099.65 37096.78 31199.83 17099.44 228
旧先验297.94 35295.33 38298.94 30599.88 18996.75 312
MDTV_nov1_ep13_2view91.44 40599.14 18897.37 34499.21 27791.78 35296.75 31299.03 326
CLD-MVS98.76 24398.57 24999.33 22999.57 20198.97 24097.53 37499.55 21796.41 36799.27 26699.13 32799.07 9499.78 30896.73 31499.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30297.98 29998.48 33199.27 30896.48 36299.40 11099.07 33198.81 23099.23 27299.57 22990.11 37199.87 20396.69 31599.64 25699.09 310
baseline296.83 33996.28 34598.46 33299.09 34396.91 35698.83 25793.87 40697.23 35096.23 40198.36 38488.12 37999.90 15796.68 31698.14 38598.57 366
cascas96.99 33596.82 34197.48 36497.57 40795.64 37696.43 39999.56 21191.75 39697.13 39197.61 40095.58 31198.63 40596.68 31699.11 33598.18 388
PC_three_145297.56 33199.68 14299.41 27299.09 8997.09 40796.66 31899.60 26999.62 138
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18499.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
ETVMVS96.14 35695.22 36698.89 30698.80 37298.01 31598.66 27898.35 36998.71 24497.18 38996.31 41474.23 41099.75 32296.64 32198.13 38798.90 343
TinyColmap98.97 21798.93 21099.07 28099.46 25498.19 30197.75 36399.75 10598.79 23399.54 19999.70 14598.97 10899.62 37496.63 32299.83 17099.41 238
LF4IMVS99.01 21198.92 21499.27 24599.71 14399.28 19698.59 28599.77 9598.32 29199.39 24299.41 27298.62 15199.84 25596.62 32399.84 16298.69 359
NCCC98.82 23898.57 24999.58 15699.21 31899.31 19198.61 28099.25 30998.65 24998.43 35399.26 31097.86 23399.81 29496.55 32499.27 32699.61 148
OPU-MVS99.29 24099.12 33399.44 15899.20 16899.40 27699.00 10298.84 40496.54 32599.60 26999.58 164
F-COLMAP98.74 24598.45 25999.62 14499.57 20199.47 14798.84 25599.65 15996.31 37098.93 30699.19 32497.68 24699.87 20396.52 32699.37 31199.53 187
testing9995.86 36495.19 36797.87 35498.76 37995.03 38398.62 27998.44 36398.68 24696.67 39596.66 41074.31 40999.69 34396.51 32798.03 38998.90 343
ADS-MVSNet297.78 31397.66 32098.12 34799.14 32995.36 37999.22 16598.75 34696.97 35898.25 35899.64 17890.90 36199.94 7796.51 32799.56 27699.08 316
ADS-MVSNet97.72 31897.67 31997.86 35599.14 32994.65 38799.22 16598.86 34096.97 35898.25 35899.64 17890.90 36199.84 25596.51 32799.56 27699.08 316
PatchMatch-RL98.68 25298.47 25799.30 23999.44 25999.28 19698.14 32899.54 22397.12 35699.11 29199.25 31297.80 23899.70 33796.51 32799.30 32098.93 339
CMPMVSbinary77.52 2398.50 27198.19 28699.41 20898.33 39699.56 13599.01 22999.59 19595.44 38099.57 18599.80 8395.64 30999.46 39696.47 33199.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 36095.32 36498.02 34898.76 37995.39 37898.38 31098.65 35398.82 22896.84 39296.71 40975.06 40899.71 33496.46 33298.23 37998.98 334
SF-MVS99.10 19398.93 21099.62 14499.58 19199.51 14399.13 19499.65 15997.97 31199.42 23099.61 20598.86 11999.87 20396.45 33399.68 24399.49 210
FE-MVS97.85 31097.42 32399.15 26599.44 25998.75 26199.77 1598.20 37395.85 37599.33 25199.80 8388.86 37799.88 18996.40 33499.12 33498.81 352
DPE-MVScopyleft99.14 18398.92 21499.82 3799.57 20199.77 5498.74 27299.60 18998.55 25999.76 10899.69 15198.23 20799.92 11696.39 33599.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40589.02 41393.47 39398.30 38599.84 25596.38 336
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19899.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
testdata99.42 20199.51 22898.93 24699.30 29896.20 37198.87 31699.40 27698.33 19699.89 17596.29 33999.28 32399.44 228
dp96.86 33897.07 33196.24 38598.68 38590.30 41199.19 17298.38 36797.35 34598.23 36099.59 21887.23 38299.82 27996.27 34098.73 36398.59 363
tpmvs97.39 32797.69 31796.52 38198.41 39391.76 40199.30 13698.94 33997.74 32597.85 37799.55 24092.40 34799.73 32896.25 34198.73 36398.06 390
KD-MVS_2432*160095.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
miper_refine_blended95.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
ACMP97.51 1499.05 19998.84 22599.67 10999.78 10599.55 13898.88 25099.66 14997.11 35799.47 21899.60 21399.07 9499.89 17596.18 34499.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 22998.72 23599.44 19599.39 27199.42 16598.58 28799.64 16597.31 34799.44 22499.62 19698.59 15699.69 34396.17 34599.79 19899.22 278
DP-MVS Recon98.50 27198.23 27999.31 23699.49 23999.46 15198.56 29299.63 16794.86 38998.85 31899.37 28497.81 23799.59 38096.08 34699.44 30198.88 346
tpm cat196.78 34096.98 33496.16 38698.85 36790.59 41099.08 21399.32 29192.37 39597.73 38399.46 26591.15 35799.69 34396.07 34798.80 35498.21 385
tpm296.35 35096.22 34696.73 37998.88 36691.75 40299.21 16798.51 35993.27 39497.89 37499.21 32184.83 39399.70 33796.04 34898.18 38398.75 358
dmvs_re98.69 25198.48 25699.31 23699.55 21399.42 16599.54 8598.38 36799.32 15498.72 33298.71 37296.76 28499.21 39996.01 34999.35 31499.31 263
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14599.68 14099.54 12099.40 24199.56 23399.07 9499.82 27996.01 34999.96 7099.11 304
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25899.33 25199.53 24498.88 11899.68 35596.01 34999.65 25499.02 331
test_prior297.95 35197.87 32098.05 36899.05 33997.90 23095.99 35299.49 296
testdata299.89 17595.99 352
原ACMM199.37 21999.47 25098.87 25399.27 30396.74 36598.26 35799.32 29797.93 22999.82 27995.96 35499.38 30999.43 234
新几何199.52 17699.50 23499.22 21199.26 30695.66 37998.60 34299.28 30597.67 24799.89 17595.95 35599.32 31899.45 223
MP-MVScopyleft99.06 19698.83 22799.76 6499.76 11799.71 8399.32 12899.50 24598.35 28598.97 30299.48 25898.37 19099.92 11695.95 35599.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 37094.59 37398.61 32498.66 38697.45 34198.54 29697.90 37998.53 26396.54 39796.47 41170.62 41399.81 29495.91 35798.15 38498.56 367
wuyk23d97.58 32299.13 15192.93 38999.69 15599.49 14599.52 8799.77 9597.97 31199.96 2399.79 9399.84 1299.94 7795.85 35899.82 17979.36 405
HQP_MVS98.90 22998.68 23999.55 16899.58 19199.24 20798.80 26599.54 22398.94 21099.14 28799.25 31297.24 26699.82 27995.84 35999.78 20399.60 152
plane_prior599.54 22399.82 27995.84 35999.78 20399.60 152
无先验98.01 34399.23 31395.83 37699.85 24095.79 36199.44 228
CPTT-MVS98.74 24598.44 26099.64 12899.61 18099.38 17599.18 17399.55 21796.49 36699.27 26699.37 28497.11 27499.92 11695.74 36299.67 24999.62 138
PLCcopyleft97.35 1698.36 28597.99 29799.48 18599.32 29699.24 20798.50 30199.51 24195.19 38598.58 34498.96 35696.95 27999.83 27095.63 36399.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26298.34 27199.28 24299.18 32599.10 23098.34 31299.41 26798.48 26998.52 34898.98 35297.05 27699.78 30895.59 36499.50 29498.96 335
131498.00 30797.90 30998.27 34398.90 36197.45 34199.30 13699.06 33394.98 38697.21 38899.12 33198.43 18199.67 36095.58 36598.56 37097.71 394
PVSNet_095.53 1995.85 36595.31 36597.47 36598.78 37693.48 39595.72 40099.40 27496.18 37297.37 38497.73 39595.73 30899.58 38195.49 36681.40 40799.36 249
MAR-MVS98.24 29597.92 30799.19 25898.78 37699.65 10799.17 17899.14 32795.36 38198.04 36998.81 36897.47 25699.72 33095.47 36799.06 33798.21 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29697.89 31099.26 24899.19 32399.26 20099.65 5899.69 13791.33 39898.14 36699.77 10898.28 20099.96 5495.41 36899.55 28098.58 365
train_agg98.35 28897.95 30199.57 16299.35 28199.35 18598.11 33299.41 26794.90 38797.92 37298.99 34998.02 22299.85 24095.38 36999.44 30199.50 205
9.1498.64 24099.45 25898.81 26299.60 18997.52 33699.28 26599.56 23398.53 16899.83 27095.36 37099.64 256
APD-MVScopyleft98.87 23498.59 24599.71 9999.50 23499.62 11799.01 22999.57 20696.80 36499.54 19999.63 18998.29 19999.91 13995.24 37199.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36595.20 372
AdaColmapbinary98.60 25798.35 27099.38 21699.12 33399.22 21198.67 27799.42 26697.84 32398.81 32299.27 30797.32 26499.81 29495.14 37399.53 28799.10 306
test9_res95.10 37499.44 30199.50 205
CDPH-MVS98.56 26398.20 28399.61 14799.50 23499.46 15198.32 31499.41 26795.22 38399.21 27799.10 33598.34 19499.82 27995.09 37599.66 25299.56 171
BH-untuned98.22 29798.09 29298.58 32899.38 27497.24 34798.55 29398.98 33897.81 32499.20 28298.76 37097.01 27799.65 37094.83 37698.33 37598.86 348
BP-MVS94.73 377
HQP-MVS98.36 28598.02 29699.39 21399.31 29798.94 24397.98 34799.37 28297.45 33998.15 36298.83 36696.67 28599.70 33794.73 37799.67 24999.53 187
QAPM98.40 28397.99 29799.65 12199.39 27199.47 14799.67 4999.52 23791.70 39798.78 32899.80 8398.55 16299.95 6394.71 37999.75 21199.53 187
agg_prior294.58 38099.46 30099.50 205
myMVS_eth3d95.63 36894.73 37098.34 33898.50 39196.36 36598.60 28299.21 31997.89 31796.76 39396.37 41272.10 41299.57 38294.38 38198.73 36399.09 310
BH-RMVSNet98.41 28198.14 28999.21 25599.21 31898.47 28298.60 28298.26 37198.35 28598.93 30699.31 29997.20 27199.66 36494.32 38299.10 33699.51 200
E-PMN97.14 33497.43 32296.27 38498.79 37491.62 40395.54 40199.01 33799.44 13698.88 31399.12 33192.78 34199.68 35594.30 38399.03 34197.50 395
MG-MVS98.52 26898.39 26598.94 29399.15 32897.39 34498.18 32399.21 31998.89 22099.23 27299.63 18997.37 26299.74 32594.22 38499.61 26699.69 83
API-MVS98.38 28498.39 26598.35 33698.83 36899.26 20099.14 18899.18 32398.59 25698.66 33798.78 36998.61 15399.57 38294.14 38599.56 27696.21 402
PAPM_NR98.36 28598.04 29499.33 22999.48 24498.93 24698.79 26899.28 30297.54 33498.56 34798.57 37797.12 27399.69 34394.09 38698.90 35299.38 243
ZD-MVS99.43 26399.61 12399.43 26496.38 36899.11 29199.07 33797.86 23399.92 11694.04 38799.49 296
DPM-MVS98.28 29197.94 30599.32 23399.36 27999.11 22597.31 38498.78 34596.88 36098.84 31999.11 33497.77 24099.61 37894.03 38899.36 31299.23 276
gg-mvs-nofinetune95.87 36395.17 36897.97 35098.19 39996.95 35499.69 4289.23 41299.89 3596.24 40099.94 1681.19 39799.51 39293.99 38998.20 38097.44 396
PMVScopyleft92.94 2198.82 23898.81 22998.85 30899.84 6197.99 31699.20 16899.47 25399.71 8099.42 23099.82 7398.09 21699.47 39493.88 39099.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33797.28 32695.99 38798.76 37991.03 40695.26 40298.61 35499.34 15198.92 30998.88 36493.79 32999.66 36492.87 39199.05 33997.30 399
BH-w/o97.20 33197.01 33397.76 35899.08 34495.69 37598.03 34298.52 35895.76 37797.96 37198.02 39095.62 31099.47 39492.82 39297.25 39798.12 389
TR-MVS97.44 32697.15 33098.32 33998.53 38997.46 34098.47 30397.91 37896.85 36198.21 36198.51 38196.42 29499.51 39292.16 39397.29 39697.98 391
OpenMVS_ROBcopyleft97.31 1797.36 32996.84 33998.89 30699.29 30399.45 15698.87 25199.48 25086.54 40399.44 22499.74 11997.34 26399.86 22291.61 39499.28 32397.37 398
GG-mvs-BLEND97.36 36897.59 40596.87 35799.70 3588.49 41394.64 40697.26 40480.66 39899.12 40091.50 39596.50 40296.08 404
DeepMVS_CXcopyleft97.98 34999.69 15596.95 35499.26 30675.51 40595.74 40398.28 38696.47 29299.62 37491.23 39697.89 39197.38 397
PAPR97.56 32397.07 33199.04 28498.80 37298.11 30897.63 36899.25 30994.56 39298.02 37098.25 38797.43 25899.68 35590.90 39798.74 36199.33 256
MVS95.72 36794.63 37298.99 28798.56 38897.98 32299.30 13698.86 34072.71 40697.30 38599.08 33698.34 19499.74 32589.21 39898.33 37599.26 270
thres600view796.60 34596.16 34797.93 35299.63 17596.09 37199.18 17397.57 38498.77 23798.72 33297.32 40287.04 38499.72 33088.57 39998.62 36897.98 391
FPMVS96.32 35195.50 35998.79 31699.60 18298.17 30498.46 30798.80 34497.16 35496.28 39899.63 18982.19 39699.09 40188.45 40098.89 35399.10 306
PCF-MVS96.03 1896.73 34295.86 35399.33 22999.44 25999.16 22096.87 39599.44 26186.58 40298.95 30499.40 27694.38 32399.88 18987.93 40199.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 34996.03 35097.47 36599.63 17595.93 37299.18 17397.57 38498.75 24198.70 33597.31 40387.04 38499.67 36087.62 40298.51 37296.81 400
tfpn200view996.30 35295.89 35197.53 36299.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37296.81 400
thres40096.40 34895.89 35197.92 35399.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37297.98 391
thres20096.09 35795.68 35797.33 37099.48 24496.22 36898.53 29897.57 38498.06 30698.37 35596.73 40886.84 38899.61 37886.99 40598.57 36996.16 403
MVEpermissive92.54 2296.66 34496.11 34898.31 34199.68 16397.55 33797.94 35295.60 39899.37 14890.68 40898.70 37396.56 28898.61 40686.94 40699.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 33096.83 34098.59 32699.46 25497.55 33799.25 15696.84 39298.78 23597.24 38797.67 39697.11 27498.97 40386.59 40798.54 37199.27 269
PAPM95.61 36994.71 37198.31 34199.12 33396.63 36096.66 39898.46 36290.77 39996.25 39998.68 37493.01 33999.69 34381.60 40897.86 39398.62 361
test12329.31 37533.05 38018.08 39125.93 41512.24 41697.53 37410.93 41611.78 40924.21 41050.08 41921.04 4148.60 41023.51 40932.43 40933.39 406
testmvs28.94 37633.33 37815.79 39226.03 4149.81 41796.77 39615.67 41511.55 41023.87 41150.74 41819.03 4158.53 41123.21 41033.07 40829.03 407
test_blank8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.88 37733.17 3790.00 3930.00 4160.00 4180.00 40499.62 1700.00 4110.00 41299.13 32799.82 130.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas16.61 37822.14 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 199.28 660.00 4120.00 4110.00 4100.00 408
sosnet-low-res8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
sosnet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
Regformer8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.26 38711.02 3900.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.16 3250.00 4160.00 4120.00 4110.00 4100.00 408
uanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
test_one_060199.63 17599.76 6199.55 21799.23 16899.31 25899.61 20598.59 156
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.69 15599.82 3599.54 22399.12 19399.82 8199.49 25598.91 11499.52 391
save fliter99.53 22199.25 20398.29 31699.38 28199.07 197
test072699.69 15599.80 4499.24 15799.57 20699.16 18499.73 12699.65 17698.35 192
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36499.14 300
sam_mvs90.52 368
MTGPAbinary99.53 232
test_post52.41 41690.25 37099.86 222
patchmatchnet-post99.62 19690.58 36699.94 77
MTMP99.09 21098.59 357
TEST999.35 28199.35 18598.11 33299.41 26794.83 39097.92 37298.99 34998.02 22299.85 240
test_899.34 29099.31 19198.08 33699.40 27494.90 38797.87 37698.97 35498.02 22299.84 255
agg_prior99.35 28199.36 18299.39 27797.76 38299.85 240
test_prior499.19 21898.00 345
test_prior99.46 18999.35 28199.22 21199.39 27799.69 34399.48 214
新几何298.04 340
旧先验199.49 23999.29 19499.26 30699.39 28097.67 24799.36 31299.46 222
原ACMM297.92 355
test22299.51 22899.08 23297.83 36199.29 29995.21 38498.68 33699.31 29997.28 26599.38 30999.43 234
segment_acmp98.37 190
testdata197.72 36497.86 322
test1299.54 17399.29 30399.33 18899.16 32598.43 35397.54 25499.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 266
plane_prior499.25 312
plane_prior399.31 19198.36 28099.14 287
plane_prior298.80 26598.94 210
plane_prior199.51 228
plane_prior99.24 20798.42 30897.87 32099.71 232
n20.00 417
nn0.00 417
door-mid99.83 62
test1199.29 299
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34797.45 33998.15 362
ACMP_Plane99.31 29797.98 34797.45 33998.15 362
HQP4-MVS98.15 36299.70 33799.53 187
HQP3-MVS99.37 28299.67 249
HQP2-MVS96.67 285
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 184