This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19199.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32499.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32199.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34799.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
MM99.18 17399.05 18099.55 16999.35 28298.81 25499.05 21697.79 38099.99 299.48 21799.59 21996.29 30099.95 6499.94 1699.98 4199.88 25
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
MVS_030499.17 17899.03 18899.59 15399.44 26098.90 24899.04 21995.32 39799.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20599.90 2599.97 5699.66 105
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19199.90 2599.96 7199.67 96
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22499.90 2599.99 1699.73 72
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 24199.89 2899.98 4199.66 105
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20599.88 2999.97 5699.66 105
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25699.88 2999.99 1699.71 77
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25699.86 3199.98 4199.64 123
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28299.99 899.83 3299.51 29199.86 32
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25699.83 3299.97 5699.64 123
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25699.82 3599.82 17999.77 61
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29599.81 3699.53 28799.73 72
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 28099.79 3799.95 8499.60 153
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28699.98 2199.75 3999.23 33199.82 46
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 335
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
K. test v398.87 23298.60 24199.69 10599.93 2699.46 15299.74 2494.97 39899.78 7099.88 6299.88 4293.66 32999.97 3499.61 4999.95 8499.64 123
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29699.97 3499.59 5199.98 4199.55 175
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20599.59 5199.74 21899.71 77
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
EU-MVSNet99.39 11699.62 5698.72 31899.88 4596.44 36199.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 27199.58 5499.95 8499.90 20
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
mvs_anonymous99.28 14099.39 10298.94 29199.19 32597.81 32699.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22499.57 5699.50 29499.15 297
test111197.74 31298.16 28696.49 38099.60 18389.86 41099.71 3491.21 40699.89 3699.88 6299.87 4793.73 32899.90 15999.56 5799.99 1699.70 80
lessismore_v099.64 12999.86 5599.38 17690.66 40799.89 5499.83 6694.56 31999.97 3499.56 5799.92 10699.57 170
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 35699.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20599.54 6099.92 10699.63 128
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8899.65 5098.95 29099.71 14497.27 34499.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
test250694.73 37094.59 37195.15 38699.59 18785.90 41299.75 2274.01 41299.89 3699.71 13399.86 5479.00 40399.90 15999.52 6499.99 1699.65 113
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20599.51 6599.97 5699.86 32
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 33399.90 3798.95 20799.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18790.81 40699.72 3090.43 40899.89 3699.86 7199.86 5493.60 33099.89 17799.46 7099.99 1699.65 113
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30899.45 7199.96 7199.83 40
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22499.44 7299.96 7199.61 149
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
new-patchmatchnet99.35 12699.57 7298.71 32099.82 7396.62 35998.55 29299.75 10499.50 12499.88 6299.87 4799.31 6299.88 19199.43 73100.00 199.62 139
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17799.43 7399.86 15399.47 220
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22499.42 7899.96 7199.80 47
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30299.94 7899.42 7899.92 10699.67 96
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
UGNet99.38 11899.34 11299.49 18298.90 35998.90 24899.70 3599.35 28599.86 4698.57 34499.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
iter_conf_final98.75 24298.54 25199.40 21199.33 29698.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36899.92 11799.37 8499.97 5699.54 183
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 24199.37 8499.93 10299.83 40
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25699.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24699.96 2399.79 9397.45 25699.93 9599.34 9099.99 1699.78 57
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29899.83 27199.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21299.16 14698.51 32799.75 12995.90 37198.07 33699.84 5999.84 5499.89 5499.73 12496.01 30599.99 899.33 93100.00 199.63 128
HyFIR lowres test98.91 22598.64 23899.73 8999.85 5999.47 14898.07 33699.83 6198.64 24899.89 5499.60 21492.57 339100.00 199.33 9399.97 5699.72 74
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 29299.73 11398.82 22699.72 12899.62 19796.56 28799.82 28099.32 9599.95 8499.56 172
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 34399.32 9599.94 9599.53 189
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 27199.32 9599.94 9599.53 189
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20499.61 17599.79 6899.76 10899.58 22287.88 37899.92 11799.31 9899.97 5699.53 189
CVMVSNet98.61 25498.88 21897.80 35599.58 19293.60 39299.26 14999.64 16399.66 10099.72 12899.67 16793.26 33299.93 9599.30 9999.81 18899.87 30
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25197.87 37978.01 40299.30 26499.69 15297.70 24295.89 40699.29 10298.14 38399.95 11
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
IterMVS98.97 21699.16 14698.42 33199.74 13595.64 37498.06 33899.83 6199.83 5799.85 7399.74 12096.10 30499.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25498.34 27099.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 342100.00 199.24 10696.51 39999.65 113
hse-mvs298.52 26698.30 27499.16 26399.29 30598.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34299.85 24199.24 10697.87 39099.03 327
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 28099.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32999.53 23199.36 15099.41 23799.61 20699.22 7499.87 20599.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24299.88 19199.20 11299.87 14599.59 160
CANet99.11 19199.05 18099.28 24498.83 36698.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 25099.94 7899.19 11399.97 5699.33 258
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17799.19 11399.90 11699.72 74
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
xiu_mvs_v1_base99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 25099.86 22499.17 11899.44 30199.67 96
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24699.95 6499.17 11899.81 18899.63 128
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17799.15 12199.89 12599.71 77
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 24199.15 12199.92 10699.68 90
VNet99.18 17399.06 17699.56 16699.24 31599.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 29099.84 25699.15 12199.30 32099.47 220
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20599.15 12199.91 11599.66 105
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30999.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
MVSTER98.47 27398.22 27999.24 25599.06 34598.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37699.85 24199.14 12799.92 10699.52 200
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25299.88 19199.11 12999.84 16299.48 216
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25798.60 28199.21 31897.89 31596.76 39196.37 41095.47 31199.57 38299.10 13098.73 36199.09 312
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 36499.09 13199.66 25299.10 308
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 27699.75 11599.04 34399.36 5999.86 22499.08 13299.25 32799.45 225
1112_ss99.05 20098.84 22399.67 11099.66 17099.29 19598.52 29899.82 6697.65 32799.43 22999.16 32796.42 29399.91 14199.07 13399.84 16299.80 47
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32299.31 29499.48 12698.86 31799.51 25096.56 28799.95 6499.05 13499.95 8499.19 289
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24699.87 20599.03 13599.86 15399.76 67
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26799.87 20599.03 13599.94 9599.44 230
Test_1112_low_res98.95 22298.73 23299.63 13699.68 16499.15 22198.09 33399.80 7997.14 35399.46 22399.40 27896.11 30399.89 17799.01 13799.84 16299.84 36
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36999.80 6599.56 19399.69 15296.99 27799.85 24198.99 13899.73 22399.50 207
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31898.98 14099.99 1699.36 251
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29998.04 37399.24 16695.77 40099.47 26493.78 32799.66 36498.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 29099.81 7599.61 11099.48 21799.41 27498.47 17399.86 22498.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25399.87 20598.97 14299.87 14599.63 128
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
FMVSNet597.80 31097.25 32699.42 20298.83 36698.97 23999.38 11399.80 7998.87 21999.25 26899.69 15280.60 39799.91 14198.96 14499.90 11699.38 245
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
FMVSNet398.80 23898.63 24099.32 23599.13 33398.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33999.86 22498.96 14499.90 11699.39 243
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31399.86 22498.95 14896.57 39899.45 225
CHOSEN 280x42098.41 27998.41 26298.40 33299.34 29195.89 37296.94 39299.44 26098.80 23099.25 26899.52 24893.51 33199.98 2198.94 14999.98 4199.32 261
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19198.93 15099.95 8499.60 153
alignmvs98.28 28997.96 29899.25 25399.12 33598.93 24599.03 22398.42 36399.64 10498.72 33297.85 39490.86 36099.62 37498.88 15199.13 33399.19 289
sss98.90 22798.77 23199.27 24799.48 24598.44 28398.72 27399.32 29097.94 31399.37 24599.35 29596.31 29899.91 14198.85 15299.63 25899.47 220
xiu_mvs_v2_base99.02 20699.11 15998.77 31599.37 27798.09 30898.13 32899.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 381
PS-MVSNAJ99.00 21299.08 17098.76 31699.37 27798.10 30798.00 34499.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 385
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25799.68 14399.69 15298.13 21399.87 20598.82 15599.98 4199.24 275
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 35099.94 7898.82 15599.00 34398.26 380
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
Effi-MVS+99.06 19798.97 20599.34 22899.31 29998.98 23798.31 31499.91 3298.81 22898.79 32698.94 35999.14 8499.84 25698.79 15998.74 35999.20 286
canonicalmvs99.02 20699.00 19699.09 27599.10 34198.70 26499.61 6899.66 14899.63 10698.64 33897.65 39799.04 9899.54 38598.79 15998.92 34899.04 326
VDDNet98.97 21698.82 22699.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32199.85 24198.79 15999.32 31899.59 160
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13599.67 14497.39 34199.16 28399.79 9391.87 34799.91 14198.78 16298.77 35598.44 374
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 21061.71 40595.39 40299.52 24893.90 32399.94 7898.76 16398.27 37699.62 139
RPMNet98.60 25698.53 25398.83 31099.05 34698.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34199.92 11798.75 16498.77 35598.44 374
pmmvs499.13 18699.06 17699.36 22599.57 20299.10 22998.01 34299.25 30898.78 23399.58 18399.44 27198.24 20299.76 31898.74 16599.93 10299.22 280
tttt051797.62 31897.20 32798.90 30399.76 11897.40 34199.48 9694.36 40099.06 19799.70 13799.49 25784.55 39299.94 7898.73 16699.65 25499.36 251
EPP-MVSNet99.17 17899.00 19699.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31499.93 9598.72 16799.89 12599.63 128
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22498.70 16899.68 24399.49 212
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23599.80 9299.85 5699.64 2899.85 24198.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21999.57 18699.82 7398.06 21899.87 20598.69 17099.73 22399.15 297
LFMVS98.46 27498.19 28499.26 25099.24 31598.52 27999.62 6396.94 38999.87 4299.31 25999.58 22291.04 35599.81 29598.68 17199.42 30599.45 225
WR-MVS99.11 19198.93 20999.66 11799.30 30399.42 16698.42 30799.37 28199.04 19899.57 18699.20 32596.89 27999.86 22498.66 17299.87 14599.70 80
Anonymous20240521198.75 24298.46 25799.63 13699.34 29199.66 10299.47 9997.65 38199.28 15999.56 19399.50 25393.15 33399.84 25698.62 17399.58 27499.40 241
EPNet98.13 29897.77 31399.18 26294.57 40997.99 31499.24 15797.96 37599.74 7597.29 38499.62 19793.13 33499.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20099.09 16898.91 29799.21 32098.36 29198.82 26099.47 25298.85 22298.90 31299.56 23598.78 12799.09 39998.57 17599.68 24399.26 272
Patchmatch-RL test98.60 25698.36 26799.33 23199.77 11499.07 23298.27 31699.87 4598.91 21499.74 12399.72 13190.57 36499.79 30598.55 17699.85 15799.11 306
pmmvs398.08 30197.80 31098.91 29799.41 27097.69 33297.87 35799.66 14895.87 37299.50 21499.51 25090.35 36699.97 3498.55 17699.47 29899.08 318
ETV-MVS99.18 17399.18 14499.16 26399.34 29199.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 379
jason99.16 18099.11 15999.32 23599.75 12998.44 28398.26 31899.39 27698.70 24399.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 24898.56 25099.15 26599.22 31898.66 26897.14 38799.51 24098.09 30299.54 20099.27 30996.87 28099.74 32598.43 18198.96 34599.03 327
our_test_398.85 23499.09 16898.13 34499.66 17094.90 38497.72 36299.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33498.41 18299.95 8499.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18495.89 40298.86 348
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22299.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
baseline197.73 31397.33 32398.96 28899.30 30397.73 33099.40 10998.42 36399.33 15399.46 22399.21 32391.18 35399.82 28098.35 18691.26 40499.32 261
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30891.53 40298.38 30992.60 40599.13 18899.31 25999.96 1297.18 27199.68 35598.34 18799.83 17099.07 323
GA-MVS97.99 30697.68 31698.93 29499.52 22798.04 31297.19 38699.05 33398.32 28998.81 32298.97 35589.89 37299.41 39598.33 18899.05 33999.34 257
Fast-Effi-MVS+99.02 20698.87 21999.46 19099.38 27599.50 14599.04 21999.79 8597.17 35198.62 33998.74 37199.34 6099.95 6498.32 18999.41 30698.92 341
MDA-MVSNet_test_wron98.95 22298.99 20198.85 30699.64 17497.16 34798.23 32099.33 28898.93 21199.56 19399.66 17297.39 26099.83 27198.29 19099.88 13499.55 175
N_pmnet98.73 24698.53 25399.35 22799.72 14198.67 26598.34 31194.65 39998.35 28399.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31297.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15998.27 19297.56 39398.91 342
thisisatest053097.45 32396.95 33398.94 29199.68 16497.73 33099.09 20994.19 40298.61 25399.56 19399.30 30384.30 39399.93 9598.27 19299.54 28599.16 295
YYNet198.95 22298.99 20198.84 30899.64 17497.14 34998.22 32199.32 29098.92 21399.59 18199.66 17297.40 25899.83 27198.27 19299.90 11699.55 175
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22498.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 21998.87 21999.24 25599.57 20298.40 28698.12 32999.18 32298.28 29199.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31399.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 361
MS-PatchMatch99.00 21298.97 20599.09 27599.11 34098.19 29998.76 27099.33 28898.49 26699.44 22599.58 22298.21 20799.69 34398.20 19899.62 25999.39 243
TSAR-MVS + GP.99.12 18899.04 18699.38 21899.34 29199.16 21998.15 32599.29 29898.18 29899.63 16099.62 19799.18 7899.68 35598.20 19899.74 21899.30 267
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20598.20 19899.80 19399.75 70
MVP-Stereo99.16 18099.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24999.31 25999.68 16398.19 20999.78 30898.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 28399.51 21299.50 25399.31 6299.88 19198.18 20299.84 16299.69 84
MDA-MVSNet-bldmvs99.06 19799.05 18099.07 27999.80 8797.83 32598.89 24899.72 12299.29 15699.63 16099.70 14696.47 29199.89 17798.17 20499.82 17999.50 207
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26498.51 35899.88 4197.89 37299.87 4791.89 34699.90 15998.16 20597.68 39298.59 363
EIA-MVS99.12 18899.01 19399.45 19399.36 28099.62 11899.34 12299.79 8598.41 27298.84 31998.89 36398.75 13299.84 25698.15 20699.51 29198.89 345
miper_lstm_enhance98.65 25398.60 24198.82 31399.20 32397.33 34397.78 36099.66 14899.01 20099.59 18199.50 25394.62 31899.85 24198.12 20799.90 11699.26 272
Effi-MVS+-dtu99.07 19698.92 21399.52 17798.89 36299.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24499.98 2198.11 20899.28 32398.81 352
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12797.96 37597.71 32598.29 35499.32 29986.72 38799.92 11798.10 20996.24 40199.09 312
DeepPCF-MVS98.42 699.18 17399.02 19099.67 11099.22 31899.75 6897.25 38499.47 25298.72 24099.66 15399.70 14699.29 6499.63 37398.07 21099.81 18899.62 139
ppachtmachnet_test98.89 23099.12 15698.20 34299.66 17095.24 38097.63 36699.68 14099.08 19399.78 10199.62 19798.65 14799.88 19198.02 21199.96 7199.48 216
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20498.86 33998.52 26298.92 30999.54 24491.90 34599.82 28098.02 21199.03 34198.37 376
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 23199.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
eth_miper_zixun_eth98.68 25198.71 23498.60 32399.10 34196.84 35697.52 37499.54 22298.94 20899.58 18399.48 26096.25 30199.76 31898.01 21499.93 10299.21 282
Patchmtry98.78 23998.54 25199.49 18298.89 36299.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34799.95 6498.00 21599.97 5699.33 258
PVSNet_BlendedMVS99.03 20499.01 19399.09 27599.54 21697.99 31498.58 28699.82 6697.62 32899.34 25099.71 13998.52 16999.77 31697.98 21699.97 5699.52 200
PVSNet_Blended98.70 24998.59 24399.02 28399.54 21697.99 31497.58 36999.82 6695.70 37699.34 25098.98 35398.52 16999.77 31697.98 21699.83 17099.30 267
cl____98.54 26498.41 26298.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17899.46 26793.85 32599.78 30897.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26498.42 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17899.46 26793.87 32499.78 30897.97 21899.89 12599.18 291
AUN-MVS97.82 30997.38 32299.14 26999.27 31098.53 27798.72 27399.02 33498.10 30097.18 38799.03 34789.26 37499.85 24197.94 22097.91 38899.03 327
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24598.67 26599.77 1598.60 35597.35 34399.63 16099.80 8393.07 33599.84 25697.92 22199.30 32098.78 355
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33797.92 22199.70 23499.38 245
USDC98.96 21998.93 20999.05 28199.54 21697.99 31497.07 39099.80 7998.21 29599.75 11599.77 10898.43 17999.64 37297.90 22399.88 13499.51 202
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28699.48 24998.50 26499.52 20799.63 19099.14 8499.76 31897.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
c3_l98.72 24798.71 23498.72 31899.12 33597.22 34697.68 36599.56 21098.90 21599.54 20099.48 26096.37 29799.73 32897.88 22599.88 13499.21 282
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
miper_ehance_all_eth98.59 25998.59 24398.59 32498.98 35597.07 35097.49 37599.52 23698.50 26499.52 20799.37 28696.41 29599.71 33497.86 22999.62 25999.00 333
WTY-MVS98.59 25998.37 26699.26 25099.43 26498.40 28698.74 27199.13 32898.10 30099.21 27799.24 31994.82 31599.90 15997.86 22998.77 35599.49 212
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25697.85 23199.70 23499.10 308
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
MVS_111021_HR99.12 18899.02 19099.40 21199.50 23599.11 22497.92 35399.71 12598.76 23899.08 29499.47 26499.17 7999.54 38597.85 23199.76 20999.54 183
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
MSC_two_6792asdad99.74 8099.03 34999.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34999.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17797.77 23698.77 35598.52 368
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30897.77 23699.88 13499.60 153
IU-MVS99.69 15699.77 5499.22 31597.50 33599.69 14097.75 24099.70 23499.77 61
114514_t98.49 27198.11 28999.64 12999.73 13899.58 13399.24 15799.76 9989.94 39899.42 23199.56 23597.76 24199.86 22497.74 24199.82 17999.47 220
DVP-MVS++99.38 11899.25 13799.77 5899.03 34999.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
EGC-MVSNET89.05 37285.52 37599.64 12999.89 4099.78 4999.56 8199.52 23624.19 40649.96 40799.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26696.37 36799.43 22998.96 35794.74 31699.69 34397.71 24499.62 25998.83 351
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23599.57 18699.70 14699.27 6999.88 19197.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28197.31 34599.41 23799.22 32187.30 37999.37 39697.70 24799.62 25999.08 318
MP-MVS-pluss99.14 18498.92 21399.80 4699.83 6699.83 2998.61 27999.63 16596.84 36099.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 29299.53 20599.73 12498.75 13299.87 20597.70 24799.83 17099.68 90
UnsupCasMVSNet_bld98.55 26398.27 27699.40 21199.56 21399.37 17997.97 34999.68 14097.49 33699.08 29499.35 29595.41 31299.82 28097.70 24798.19 38099.01 332
MVS_111021_LR99.13 18699.03 18899.42 20299.58 19299.32 19197.91 35599.73 11398.68 24499.31 25999.48 26099.09 8999.66 36497.70 24799.77 20799.29 270
IS-MVSNet99.03 20498.85 22199.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31799.81 29597.70 24799.88 13499.58 165
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 14197.69 25398.78 35398.31 377
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 14197.69 25398.78 35398.31 377
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32999.47 26498.47 17399.88 19197.62 25599.73 22399.67 96
X-MVStestdata96.09 35594.87 36799.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32961.30 41398.47 17399.88 19197.62 25599.73 22399.67 96
SMA-MVScopyleft99.19 16999.00 19699.73 8999.46 25599.73 7799.13 19399.52 23697.40 34099.57 18699.64 17998.93 10999.83 27197.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10898.68 34894.69 38998.14 36499.34 29886.32 38999.80 30297.60 25898.07 38698.88 346
PVSNet97.47 1598.42 27898.44 25998.35 33499.46 25596.26 36596.70 39599.34 28797.68 32699.00 30199.13 32997.40 25899.72 33097.59 25999.68 24399.08 318
new_pmnet98.88 23198.89 21798.84 30899.70 15297.62 33398.15 32599.50 24497.98 30899.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 337
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5597.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15099.11 15999.61 14898.38 39299.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
ZNCC-MVS99.22 15999.04 18699.77 5899.76 11899.73 7799.28 14499.56 21098.19 29799.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 27699.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
SD-MVS99.01 21099.30 12498.15 34399.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40797.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 29097.53 33398.47 34998.15 38997.88 23199.82 28097.46 26699.24 32999.09 312
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30899.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 27197.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27899.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27899.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33799.78 30897.43 26899.89 12599.35 254
MIMVSNet98.43 27798.20 28199.11 27299.53 22298.38 29099.58 7698.61 35398.96 20599.33 25299.76 11290.92 35799.81 29597.38 27199.76 20999.15 297
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31697.26 38898.63 24998.80 32498.00 39297.77 23999.90 15997.37 27298.98 34499.09 312
XVG-OURS-SEG-HR99.16 18098.99 20199.66 11799.84 6299.64 11198.25 31999.73 11398.39 27599.63 16099.43 27299.70 2499.90 15997.34 27398.64 36599.44 230
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22497.32 27499.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20698.81 22799.65 12299.58 19299.49 14698.58 28699.07 33098.40 27499.04 29999.25 31498.51 17199.80 30297.31 27599.51 29199.65 113
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 27299.32 25599.36 29098.73 13699.93 9597.29 27699.74 21899.67 96
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27699.62 25999.56 172
TAPA-MVS97.92 1398.03 30397.55 31999.46 19099.47 25199.44 15998.50 30099.62 16886.79 39999.07 29799.26 31298.26 20199.62 37497.28 27899.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27999.61 26699.54 183
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27999.61 26699.54 183
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28498.23 37198.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 339
test_yl98.25 29197.95 29999.13 27099.17 32898.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34397.26 28198.93 34699.24 275
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32898.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34397.26 28198.93 34699.24 275
PHI-MVS99.11 19198.95 20899.59 15399.13 33399.59 12999.17 17799.65 15797.88 31799.25 26899.46 26798.97 10699.80 30297.26 28199.82 17999.37 248
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28599.78 20399.15 297
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17798.39 36598.12 29998.79 32699.58 22290.71 36299.89 17797.23 28699.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 21598.80 22999.56 16699.25 31399.43 16398.54 29599.27 30298.58 25598.80 32499.43 27298.53 16699.70 33797.22 28799.59 27399.54 183
testing396.48 34595.63 35699.01 28499.23 31797.81 32698.90 24799.10 32998.72 24097.84 37697.92 39372.44 40999.85 24197.21 28899.33 31699.35 254
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 32499.35 24799.25 31499.23 7399.92 11797.21 28899.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 16999.00 19699.76 6599.76 11899.68 9899.38 11399.54 22298.34 28799.01 30099.50 25398.53 16699.93 9597.18 29099.78 20399.66 105
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 30399.52 20799.69 15298.57 15799.92 11797.18 29099.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33496.42 34198.66 32199.42 26997.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20597.10 29299.39 30898.63 360
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27899.60 17899.71 13998.92 11099.91 14197.08 29399.84 16299.40 241
MSDG99.08 19598.98 20499.37 22199.60 18399.13 22297.54 37099.74 10998.84 22599.53 20599.55 24299.10 8799.79 30597.07 29499.86 15399.18 291
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25799.57 18699.67 16799.03 9999.94 7897.01 29599.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33993.94 40398.96 20598.46 35098.17 38879.86 39899.87 20596.99 29699.06 33798.78 355
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11189.95 40998.21 29598.61 34099.59 21986.69 38899.72 33096.99 29699.23 33198.81 352
MSP-MVS99.04 20398.79 23099.81 4199.78 10699.73 7799.35 12199.57 20598.54 26099.54 20098.99 35096.81 28199.93 9596.97 29899.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 21998.70 23699.74 8099.52 22799.71 8498.86 25199.19 32198.47 26898.59 34299.06 34098.08 21799.91 14196.94 29999.60 26999.60 153
SR-MVS99.19 16999.00 19699.74 8099.51 22999.72 8299.18 17299.60 18798.85 22299.47 21999.58 22298.38 18799.92 11796.92 30099.54 28599.57 170
PGM-MVS99.20 16699.01 19399.77 5899.75 12999.71 8499.16 18399.72 12297.99 30799.42 23199.60 21498.81 12099.93 9596.91 30199.74 21899.66 105
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6898.72 34696.81 36198.73 33199.51 25094.06 32299.86 22496.91 30198.20 37898.86 348
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18598.02 37498.51 26398.82 32199.61 20690.98 35699.66 36496.89 30398.92 348
GST-MVS99.16 18098.96 20799.75 7599.73 13899.73 7799.20 16799.55 21698.22 29499.32 25599.35 29598.65 14799.91 14196.86 30499.74 21899.62 139
test_post199.14 18751.63 41589.54 37399.82 28096.86 304
SCA98.11 29998.36 26797.36 36699.20 32392.99 39498.17 32498.49 36098.24 29399.10 29399.57 23196.01 30599.94 7896.86 30499.62 25999.14 302
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35799.74 10998.36 27899.66 15399.68 16399.71 2299.90 15996.84 30799.88 13499.43 236
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29699.76 6299.34 12299.97 1898.93 21199.91 4499.79 9398.68 14099.93 9596.80 30899.56 27699.30 267
RPSCF99.18 17399.02 19099.64 12999.83 6699.85 1999.44 10599.82 6698.33 28899.50 21499.78 10197.90 22999.65 37096.78 30999.83 17099.44 230
旧先验297.94 35195.33 38098.94 30599.88 19196.75 310
MDTV_nov1_ep13_2view91.44 40399.14 18797.37 34299.21 27791.78 34996.75 31099.03 327
CLD-MVS98.76 24198.57 24799.33 23199.57 20298.97 23997.53 37299.55 21696.41 36599.27 26699.13 32999.07 9499.78 30896.73 31299.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30097.98 29798.48 32999.27 31096.48 36099.40 10999.07 33098.81 22899.23 27299.57 23190.11 36999.87 20596.69 31399.64 25699.09 312
baseline296.83 33796.28 34398.46 33099.09 34396.91 35498.83 25693.87 40497.23 34896.23 39998.36 38488.12 37799.90 15996.68 31498.14 38398.57 366
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 21091.75 39497.13 38997.61 39895.58 31098.63 40396.68 31499.11 33598.18 386
PC_three_145297.56 32999.68 14399.41 27499.09 8997.09 40596.66 31699.60 26999.62 139
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32999.64 15699.69 15299.37 5699.89 17796.66 31699.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32999.64 15699.69 15299.37 5699.89 17796.66 31699.87 14599.69 84
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27798.35 36898.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 343
TinyColmap98.97 21698.93 20999.07 27999.46 25598.19 29997.75 36199.75 10498.79 23199.54 20099.70 14698.97 10699.62 37496.63 32099.83 17099.41 240
LF4IMVS99.01 21098.92 21399.27 24799.71 14499.28 19798.59 28499.77 9498.32 28999.39 24399.41 27498.62 14999.84 25696.62 32199.84 16298.69 359
NCCC98.82 23698.57 24799.58 15799.21 32099.31 19298.61 27999.25 30898.65 24798.43 35199.26 31297.86 23299.81 29596.55 32299.27 32699.61 149
OPU-MVS99.29 24299.12 33599.44 15999.20 16799.40 27899.00 10098.84 40296.54 32399.60 26999.58 165
F-COLMAP98.74 24498.45 25899.62 14599.57 20299.47 14898.84 25499.65 15796.31 36898.93 30699.19 32697.68 24599.87 20596.52 32499.37 31199.53 189
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27898.44 36298.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 343
ADS-MVSNet297.78 31197.66 31898.12 34599.14 33195.36 37799.22 16498.75 34596.97 35698.25 35699.64 17990.90 35899.94 7896.51 32599.56 27699.08 318
ADS-MVSNet97.72 31697.67 31797.86 35399.14 33194.65 38599.22 16498.86 33996.97 35698.25 35699.64 17990.90 35899.84 25696.51 32599.56 27699.08 318
PatchMatch-RL98.68 25198.47 25699.30 24199.44 26099.28 19798.14 32799.54 22297.12 35499.11 29199.25 31497.80 23799.70 33796.51 32599.30 32098.93 339
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20998.33 39499.56 13699.01 22899.59 19395.44 37899.57 18699.80 8395.64 30899.46 39496.47 32999.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30998.65 35298.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 334
SF-MVS99.10 19498.93 20999.62 14599.58 19299.51 14499.13 19399.65 15797.97 30999.42 23199.61 20698.86 11799.87 20596.45 33199.68 24399.49 212
FE-MVS97.85 30897.42 32199.15 26599.44 26098.75 26099.77 1598.20 37295.85 37399.33 25299.80 8388.86 37599.88 19196.40 33299.12 33498.81 352
DPE-MVScopyleft99.14 18498.92 21399.82 3899.57 20299.77 5498.74 27199.60 18798.55 25799.76 10899.69 15298.23 20699.92 11796.39 33399.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25696.38 334
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24999.63 16099.72 13198.68 14099.75 32296.38 33499.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24999.63 16099.72 13198.68 14099.75 32296.38 33499.83 17099.51 202
testdata99.42 20299.51 22998.93 24599.30 29796.20 36998.87 31699.40 27898.33 19599.89 17796.29 33799.28 32399.44 230
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17198.38 36697.35 34398.23 35899.59 21987.23 38099.82 28096.27 33898.73 36198.59 363
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13598.94 33897.74 32397.85 37599.55 24292.40 34499.73 32896.25 33998.73 36198.06 388
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31597.23 34898.88 31399.04 34379.23 40099.54 38596.24 34096.81 39698.50 372
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31597.23 34898.88 31399.04 34379.23 40099.54 38596.24 34096.81 39698.50 372
ACMP97.51 1499.05 20098.84 22399.67 11099.78 10699.55 13998.88 24999.66 14897.11 35599.47 21999.60 21499.07 9499.89 17796.18 34299.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 22798.72 23399.44 19699.39 27299.42 16698.58 28699.64 16397.31 34599.44 22599.62 19798.59 15499.69 34396.17 34399.79 19899.22 280
DP-MVS Recon98.50 26998.23 27799.31 23899.49 24099.46 15298.56 29199.63 16594.86 38798.85 31899.37 28697.81 23699.59 38096.08 34499.44 30198.88 346
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21299.32 29092.37 39397.73 38199.46 26791.15 35499.69 34396.07 34598.80 35298.21 383
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16698.51 35893.27 39297.89 37299.21 32384.83 39199.70 33796.04 34698.18 38198.75 358
dmvs_re98.69 25098.48 25599.31 23899.55 21499.42 16699.54 8498.38 36699.32 15498.72 33298.71 37296.76 28399.21 39796.01 34799.35 31499.31 265
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 28096.01 34799.96 7199.11 306
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25699.33 25299.53 24698.88 11699.68 35596.01 34799.65 25499.02 331
test_prior297.95 35097.87 31898.05 36699.05 34197.90 22995.99 35099.49 296
testdata299.89 17795.99 350
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 36398.26 35599.32 29997.93 22899.82 28095.96 35299.38 30999.43 236
新几何199.52 17799.50 23599.22 21199.26 30595.66 37798.60 34199.28 30797.67 24699.89 17795.95 35399.32 31899.45 225
MP-MVScopyleft99.06 19798.83 22599.76 6599.76 11899.71 8499.32 12799.50 24498.35 28398.97 30299.48 26098.37 18899.92 11795.95 35399.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29597.90 37898.53 26196.54 39596.47 40970.62 41199.81 29595.91 35598.15 38298.56 367
wuyk23d97.58 32099.13 15292.93 38799.69 15699.49 14699.52 8699.77 9497.97 30999.96 2399.79 9399.84 1299.94 7895.85 35699.82 17979.36 403
HQP_MVS98.90 22798.68 23799.55 16999.58 19299.24 20898.80 26499.54 22298.94 20899.14 28799.25 31497.24 26599.82 28095.84 35799.78 20399.60 153
plane_prior599.54 22299.82 28095.84 35799.78 20399.60 153
无先验98.01 34299.23 31295.83 37499.85 24195.79 35999.44 230
CPTT-MVS98.74 24498.44 25999.64 12999.61 18199.38 17699.18 17299.55 21696.49 36499.27 26699.37 28697.11 27399.92 11795.74 36099.67 24999.62 139
PLCcopyleft97.35 1698.36 28397.99 29599.48 18699.32 29899.24 20898.50 30099.51 24095.19 38398.58 34398.96 35796.95 27899.83 27195.63 36199.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26198.34 27099.28 24499.18 32799.10 22998.34 31199.41 26698.48 26798.52 34698.98 35397.05 27599.78 30895.59 36299.50 29498.96 335
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13599.06 33294.98 38497.21 38699.12 33398.43 17999.67 36095.58 36398.56 36897.71 392
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27396.18 37097.37 38297.73 39595.73 30799.58 38195.49 36481.40 40599.36 251
MAR-MVS98.24 29397.92 30599.19 26098.78 37499.65 10899.17 17799.14 32695.36 37998.04 36798.81 36897.47 25599.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 25099.19 32599.26 20199.65 5999.69 13791.33 39698.14 36499.77 10898.28 19999.96 5595.41 36699.55 28098.58 365
train_agg98.35 28697.95 29999.57 16399.35 28299.35 18698.11 33199.41 26694.90 38597.92 37098.99 35098.02 22199.85 24195.38 36799.44 30199.50 207
9.1498.64 23899.45 25998.81 26199.60 18797.52 33499.28 26599.56 23598.53 16699.83 27195.36 36899.64 256
APD-MVScopyleft98.87 23298.59 24399.71 10099.50 23599.62 11899.01 22899.57 20596.80 36299.54 20099.63 19098.29 19899.91 14195.24 36999.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36395.20 370
AdaColmapbinary98.60 25698.35 26999.38 21899.12 33599.22 21198.67 27699.42 26597.84 32198.81 32299.27 30997.32 26399.81 29595.14 37199.53 28799.10 308
test9_res95.10 37299.44 30199.50 207
CDPH-MVS98.56 26298.20 28199.61 14899.50 23599.46 15298.32 31399.41 26695.22 38199.21 27799.10 33798.34 19399.82 28095.09 37399.66 25299.56 172
BH-untuned98.22 29598.09 29098.58 32699.38 27597.24 34598.55 29298.98 33797.81 32299.20 28298.76 37097.01 27699.65 37094.83 37498.33 37398.86 348
BP-MVS94.73 375
HQP-MVS98.36 28398.02 29499.39 21599.31 29998.94 24297.98 34699.37 28197.45 33798.15 36098.83 36696.67 28499.70 33794.73 37599.67 24999.53 189
QAPM98.40 28197.99 29599.65 12299.39 27299.47 14899.67 4999.52 23691.70 39598.78 32899.80 8398.55 16099.95 6494.71 37799.75 21199.53 189
agg_prior294.58 37899.46 30099.50 207
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28199.21 31897.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 312
BH-RMVSNet98.41 27998.14 28799.21 25799.21 32098.47 28098.60 28198.26 37098.35 28398.93 30699.31 30197.20 27099.66 36494.32 38099.10 33699.51 202
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33699.44 13698.88 31399.12 33392.78 33899.68 35594.30 38199.03 34197.50 393
MG-MVS98.52 26698.39 26498.94 29199.15 33097.39 34298.18 32299.21 31898.89 21899.23 27299.63 19097.37 26199.74 32594.22 38299.61 26699.69 84
API-MVS98.38 28298.39 26498.35 33498.83 36699.26 20199.14 18799.18 32298.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
PAPM_NR98.36 28398.04 29299.33 23199.48 24598.93 24598.79 26799.28 30197.54 33298.56 34598.57 37797.12 27299.69 34394.09 38498.90 35099.38 245
ZD-MVS99.43 26499.61 12499.43 26396.38 36699.11 29199.07 33997.86 23299.92 11794.04 38599.49 296
DPM-MVS98.28 28997.94 30399.32 23599.36 28099.11 22497.31 38298.78 34496.88 35898.84 31999.11 33697.77 23999.61 37894.03 38699.36 31299.23 278
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3696.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6297.99 31499.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 39293.88 38899.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35399.34 15198.92 30998.88 36493.79 32699.66 36492.87 38999.05 33997.30 397
BH-w/o97.20 32997.01 33197.76 35699.08 34495.69 37398.03 34198.52 35795.76 37597.96 36998.02 39095.62 30999.47 39292.82 39097.25 39598.12 387
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30297.91 37796.85 35998.21 35998.51 38196.42 29399.51 39092.16 39197.29 39497.98 389
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30599.45 15798.87 25099.48 24986.54 40199.44 22599.74 12097.34 26299.86 22491.61 39299.28 32397.37 396
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
DeepMVS_CXcopyleft97.98 34799.69 15696.95 35299.26 30575.51 40395.74 40198.28 38696.47 29199.62 37491.23 39497.89 38997.38 395
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30894.56 39098.02 36898.25 38797.43 25799.68 35590.90 39598.74 35999.33 258
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13598.86 33972.71 40497.30 38399.08 33898.34 19399.74 32589.21 39698.33 37399.26 272
thres600view796.60 34396.16 34597.93 35099.63 17696.09 36999.18 17297.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
FPMVS96.32 34995.50 35798.79 31499.60 18398.17 30298.46 30698.80 34397.16 35296.28 39699.63 19082.19 39499.09 39988.45 39898.89 35199.10 308
PCF-MVS96.03 1896.73 34095.86 35199.33 23199.44 26099.16 21996.87 39399.44 26086.58 40098.95 30499.40 27894.38 32099.88 19187.93 39999.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 34796.03 34897.47 36399.63 17695.93 37099.18 17297.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
tfpn200view996.30 35095.89 34997.53 36099.58 19296.11 36799.00 23197.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
thres40096.40 34695.89 34997.92 35199.58 19296.11 36799.00 23197.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
thres20096.09 35595.68 35597.33 36899.48 24596.22 36698.53 29797.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16497.55 33597.94 35195.60 39699.37 14890.68 40698.70 37396.56 28798.61 40486.94 40499.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 32896.83 33898.59 32499.46 25597.55 33599.25 15696.84 39098.78 23397.24 38597.67 39697.11 27398.97 40186.59 40598.54 36999.27 271
PAPM95.61 36794.71 36998.31 33999.12 33596.63 35896.66 39698.46 36190.77 39796.25 39798.68 37493.01 33699.69 34381.60 40697.86 39198.62 361
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32999.82 130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3270.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 389
save fliter99.53 22299.25 20498.29 31599.38 28099.07 195
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
GSMVS99.14 302
test_part299.62 18099.67 10099.55 198
sam_mvs190.81 36199.14 302
sam_mvs90.52 365
MTGPAbinary99.53 231
test_post52.41 41490.25 36799.86 224
patchmatchnet-post99.62 19790.58 36399.94 78
MTMP99.09 20998.59 356
TEST999.35 28299.35 18698.11 33199.41 26694.83 38897.92 37098.99 35098.02 22199.85 241
test_899.34 29199.31 19298.08 33599.40 27394.90 38597.87 37498.97 35598.02 22199.84 256
agg_prior99.35 28299.36 18399.39 27697.76 38099.85 241
test_prior499.19 21798.00 344
test_prior99.46 19099.35 28299.22 21199.39 27699.69 34399.48 216
新几何298.04 339
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24699.36 31299.46 224
原ACMM297.92 353
test22299.51 22999.08 23197.83 35999.29 29895.21 38298.68 33699.31 30197.28 26499.38 30999.43 236
segment_acmp98.37 188
testdata197.72 36297.86 320
test1299.54 17499.29 30599.33 18999.16 32498.43 35197.54 25399.82 28099.47 29899.48 216
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 265
plane_prior499.25 314
plane_prior399.31 19298.36 27899.14 287
plane_prior298.80 26498.94 208
plane_prior199.51 229
plane_prior99.24 20898.42 30797.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
HQP-NCC99.31 29997.98 34697.45 33798.15 360
ACMP_Plane99.31 29997.98 34697.45 33798.15 360
HQP4-MVS98.15 36099.70 33799.53 189
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
NP-MVS99.40 27199.13 22298.83 366
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182