This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6699.70 34100.00 199.73 73100.00 199.89 3499.79 1699.88 18799.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 22999.91 3098.08 31599.48 96100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27799.67 48100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6099.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24899.93 2497.84 32799.34 122100.00 199.99 299.99 799.82 7299.87 999.99 799.97 499.99 1699.97 7
test_vis1_n99.68 4599.79 2799.36 22699.94 1898.18 30599.52 86100.00 199.86 44100.00 199.88 4298.99 10499.96 5499.97 499.96 6899.95 11
test_fmvs1_n99.68 4599.81 2399.28 24599.95 1597.93 32499.49 95100.00 199.82 5799.99 799.89 3499.21 7599.98 2099.97 499.98 3999.93 15
test_f99.75 3299.88 699.37 22299.96 798.21 30299.51 90100.00 199.94 23100.00 199.93 1799.58 3699.94 7699.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7299.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4399.55 13999.17 17699.98 1199.99 299.96 2399.84 6199.96 399.99 799.96 999.99 1699.88 24
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2498.40 29099.30 13599.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5599.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4399.66 10099.11 20099.91 3299.98 1499.96 2399.64 17999.60 3499.99 799.95 1299.99 1699.88 24
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 8999.17 17699.97 1899.99 299.96 2399.82 7299.94 4100.00 199.95 12100.00 199.80 46
test_fmvs199.48 8699.65 5098.97 29099.54 21597.16 35099.11 20099.98 1199.78 6699.96 2399.81 7898.72 13999.97 3399.95 1299.97 5599.79 53
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 18199.53 8599.98 1199.77 7099.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2999.88 4399.64 11099.12 19699.91 3299.98 1499.95 3199.67 16599.67 2799.99 799.94 1699.99 1699.88 24
MM99.18 17599.05 18299.55 16899.35 28198.81 25799.05 21497.79 38399.99 299.48 21799.59 22096.29 30599.95 6299.94 1699.98 3999.88 24
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 3099.73 7598.97 24199.98 1199.99 299.96 2399.85 5599.93 799.99 799.94 1699.99 1699.93 15
MVS_030499.17 18099.03 19099.59 15299.44 25998.90 25199.04 21795.32 40099.99 299.68 14099.57 23098.30 19899.97 3399.94 1699.98 3999.88 24
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3499.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4899.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5799.82 3499.03 22199.96 2399.99 299.97 1999.84 6199.58 3699.93 9399.92 2299.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5799.78 4899.03 22199.96 2399.99 299.97 1999.84 6199.78 1799.92 11599.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 29
v192192099.56 7299.57 7099.55 16899.75 12799.11 22799.05 21499.61 18099.15 18999.88 6099.71 13799.08 9299.87 20399.90 2599.97 5599.66 103
v124099.56 7299.58 6799.51 17899.80 8599.00 23899.00 23299.65 16199.15 18999.90 4899.75 11599.09 8999.88 18799.90 2599.96 6899.67 94
v1099.69 4299.69 4399.66 11599.81 7999.39 17699.66 5299.75 10499.60 11799.92 4199.87 4798.75 13499.86 22499.90 2599.99 1699.73 70
v119299.57 6999.57 7099.57 16299.77 11299.22 21399.04 21799.60 19199.18 17899.87 6899.72 12999.08 9299.85 24299.89 2899.98 3999.66 103
v14419299.55 7599.54 7699.58 15699.78 10499.20 21999.11 20099.62 17399.18 17899.89 5299.72 12998.66 14799.87 20399.88 2999.97 5599.66 103
v899.68 4599.69 4399.65 12099.80 8599.40 17399.66 5299.76 9999.64 10399.93 3799.85 5598.66 14799.84 25799.88 2999.99 1699.71 75
v114499.54 7799.53 8099.59 15299.79 9799.28 19999.10 20399.61 18099.20 17699.84 7499.73 12298.67 14599.84 25799.86 3199.98 3999.64 121
SSC-MVS99.52 8099.42 9899.83 3299.86 5399.65 10699.52 8699.81 7599.87 4199.81 8699.79 9296.78 28799.99 799.83 3299.51 29299.86 31
v7n99.82 2199.80 2699.88 1699.96 799.84 2399.82 899.82 6699.84 5299.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 39
v2v48299.50 8299.47 8499.58 15699.78 10499.25 20699.14 18699.58 20699.25 16699.81 8699.62 19798.24 20399.84 25799.83 3299.97 5599.64 121
test_vis1_rt99.45 9799.46 8899.41 21199.71 14298.63 27698.99 23799.96 2399.03 20299.95 3199.12 33298.75 13499.84 25799.82 3599.82 18099.77 59
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 35099.72 7999.91 4499.60 21599.43 4899.81 29699.81 3699.53 28899.73 70
V4299.56 7299.54 7699.63 13499.79 9799.46 15299.39 11199.59 19799.24 16899.86 6999.70 14498.55 16299.82 28199.79 3799.95 8199.60 151
mvs_tets99.90 299.90 399.90 799.96 799.79 4599.72 2999.88 4399.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
WB-MVS99.44 9999.32 11699.80 4499.81 7999.61 12399.47 9999.81 7599.82 5799.71 13099.72 12996.60 29199.98 2099.75 3999.23 33299.82 45
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5399.68 4499.85 5399.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1099.96 799.78 4899.70 3499.86 4899.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 57100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 35
CS-MVS-test99.68 4599.70 3999.64 12799.57 20199.83 2899.78 1299.97 1899.92 2799.50 21499.38 28399.57 3899.95 6299.69 4399.90 11599.15 295
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2399.79 1199.96 2399.90 2999.61 17299.41 27399.51 4599.95 6299.66 4499.89 12598.96 337
pmmvs699.86 999.86 1299.83 3299.94 1899.90 799.83 699.91 3299.85 4999.94 3499.95 1399.73 2199.90 15599.65 4599.97 5599.69 82
MIMVSNet199.66 5299.62 5599.80 4499.94 1899.87 1499.69 4199.77 9499.78 6699.93 3799.89 3497.94 23299.92 11599.65 4599.98 3999.62 137
EC-MVSNet99.69 4299.69 4399.68 10599.71 14299.91 499.76 1899.96 2399.86 4499.51 21299.39 28199.57 3899.93 9399.64 4799.86 15499.20 284
K. test v398.87 23798.60 24699.69 10399.93 2499.46 15299.74 2394.97 40199.78 6699.88 6099.88 4293.66 33499.97 3399.61 4899.95 8199.64 121
KD-MVS_self_test99.63 5899.59 6499.76 6399.84 6099.90 799.37 11799.79 8599.83 5599.88 6099.85 5598.42 18399.90 15599.60 4999.73 22499.49 208
Anonymous2024052199.44 9999.42 9899.49 18199.89 3898.96 24499.62 6299.76 9999.85 4999.82 7999.88 4296.39 30199.97 3399.59 5099.98 3999.55 173
TransMVSNet (Re)99.78 2799.77 3399.81 3999.91 3099.85 1899.75 2199.86 4899.70 8699.91 4499.89 3499.60 3499.87 20399.59 5099.74 21999.71 75
OurMVSNet-221017-099.75 3299.71 3899.84 2999.96 799.83 2899.83 699.85 5399.80 6399.93 3799.93 1798.54 16499.93 9399.59 5099.98 3999.76 65
EU-MVSNet99.39 11599.62 5598.72 32199.88 4396.44 36499.56 8199.85 5399.90 2999.90 4899.85 5598.09 21999.83 27299.58 5399.95 8199.90 20
mvsmamba99.74 3599.70 3999.85 2699.93 2499.83 2899.76 1899.81 7599.96 1899.91 4499.81 7898.60 15599.94 7699.58 5399.98 3999.77 59
mvs_anonymous99.28 14199.39 10198.94 29499.19 32497.81 32999.02 22499.55 21999.78 6699.85 7199.80 8298.24 20399.86 22499.57 5599.50 29599.15 295
test111197.74 31598.16 28996.49 38399.60 18289.86 41399.71 3391.21 40999.89 3599.88 6099.87 4793.73 33399.90 15599.56 5699.99 1699.70 78
lessismore_v099.64 12799.86 5399.38 17890.66 41099.89 5299.83 6594.56 32499.97 3399.56 5699.92 10499.57 168
mvsany_test199.44 9999.45 9099.40 21399.37 27698.64 27597.90 35999.59 19799.27 16299.92 4199.82 7299.74 2099.93 9399.55 5899.87 14699.63 126
pm-mvs199.79 2699.79 2799.78 5399.91 3099.83 2899.76 1899.87 4599.73 7399.89 5299.87 4799.63 2999.87 20399.54 5999.92 10499.63 126
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 3099.90 799.96 199.92 2999.90 2999.97 1999.87 4799.81 1499.95 6299.54 5999.99 1699.80 46
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8699.65 5098.95 29399.71 14297.27 34799.50 9199.82 6699.59 11999.41 23899.85 5599.62 31100.00 199.53 6199.89 12599.59 158
test250694.73 37394.59 37495.15 38999.59 18685.90 41599.75 2174.01 41799.89 3599.71 13099.86 5379.00 40699.90 15599.52 6299.99 1699.65 111
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3899.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6399.97 5599.84 35
FC-MVSNet-test99.70 4099.65 5099.86 2499.88 4399.86 1799.72 2999.78 9199.90 2999.82 7999.83 6598.45 17999.87 20399.51 6399.97 5599.86 31
UA-Net99.78 2799.76 3699.86 2499.72 13999.71 8299.91 399.95 2899.96 1899.71 13099.91 2499.15 8199.97 3399.50 65100.00 199.90 20
PMMVS299.48 8699.45 9099.57 16299.76 11698.99 23998.09 33499.90 3798.95 21099.78 9999.58 22399.57 3899.93 9399.48 6699.95 8199.79 53
VPA-MVSNet99.66 5299.62 5599.79 5099.68 16399.75 6699.62 6299.69 13899.85 4999.80 9099.81 7898.81 12299.91 13799.47 6799.88 13599.70 78
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18690.81 40999.72 2990.43 41199.89 3599.86 6999.86 5393.60 33599.89 17399.46 6899.99 1699.65 111
nrg03099.70 4099.66 4899.82 3699.76 11699.84 2399.61 6799.70 13199.93 2599.78 9999.68 16199.10 8799.78 30999.45 6999.96 6899.83 39
TAMVS99.49 8499.45 9099.63 13499.48 24499.42 16699.45 10399.57 20899.66 9999.78 9999.83 6597.85 23999.86 22499.44 7099.96 6899.61 147
GeoE99.69 4299.66 4899.78 5399.76 11699.76 6099.60 7399.82 6699.46 13499.75 11299.56 23499.63 2999.95 6299.43 7199.88 13599.62 137
new-patchmatchnet99.35 12599.57 7098.71 32399.82 7196.62 36298.55 29399.75 10499.50 12599.88 6099.87 4799.31 6299.88 18799.43 71100.00 199.62 137
test20.0399.55 7599.54 7699.58 15699.79 9799.37 18199.02 22499.89 3999.60 11799.82 7999.62 19798.81 12299.89 17399.43 7199.86 15499.47 216
MVSFormer99.41 10999.44 9399.31 23999.57 20198.40 29099.77 1499.80 7999.73 7399.63 15799.30 30298.02 22699.98 2099.43 7199.69 23999.55 173
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2399.77 1499.80 7999.73 7399.97 1999.92 2199.77 1999.98 2099.43 71100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6399.80 8599.65 10699.63 5999.86 4899.97 1699.89 5299.89 3499.52 4499.99 799.42 7699.96 6899.65 111
Anonymous2023121199.62 6499.57 7099.76 6399.61 18099.60 12699.81 999.73 11499.82 5799.90 4899.90 2997.97 23199.86 22499.42 7699.96 6899.80 46
SixPastTwentyTwo99.42 10599.30 12399.76 6399.92 2999.67 9899.70 3499.14 32999.65 10199.89 5299.90 2996.20 30799.94 7699.42 7699.92 10499.67 94
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22799.04 21799.87 4599.71 8199.47 21999.79 9298.24 20399.98 2099.38 7999.96 6899.83 39
UGNet99.38 11799.34 11199.49 18198.90 36398.90 25199.70 3499.35 28999.86 4498.57 34799.81 7898.50 17499.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 3999.89 3899.72 8099.59 7499.82 6699.39 14799.82 7999.84 6199.38 5499.91 13799.38 7999.93 9999.80 46
FIs99.65 5799.58 6799.84 2999.84 6099.85 1899.66 5299.75 10499.86 4499.74 12099.79 9298.27 20199.85 24299.37 8299.93 9999.83 39
sd_testset99.78 2799.78 3199.80 4499.80 8599.76 6099.80 1099.79 8599.97 1699.89 5299.89 3499.53 4399.99 799.36 8399.96 6899.65 111
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2699.85 5399.70 8699.92 4199.93 1799.45 4799.97 3399.36 83100.00 199.85 34
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10399.81 7999.59 12899.29 14299.90 3799.71 8199.79 9599.73 12299.54 4199.84 25799.36 8399.96 6899.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 5099.88 4399.66 10099.69 4199.92 2999.67 9599.77 10599.75 11599.61 3299.98 2099.35 8699.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6699.64 5399.53 17499.79 9798.82 25699.58 7699.97 1899.95 2099.96 2399.76 11098.44 18099.99 799.34 8799.96 6899.78 55
CHOSEN 1792x268899.39 11599.30 12399.65 12099.88 4399.25 20698.78 26999.88 4398.66 24999.96 2399.79 9297.45 26199.93 9399.34 8799.99 1699.78 55
CDS-MVSNet99.22 16199.13 15499.50 18099.35 28199.11 22798.96 24399.54 22599.46 13499.61 17299.70 14496.31 30399.83 27299.34 8799.88 13599.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21799.16 14798.51 33099.75 12795.90 37498.07 33799.84 5999.84 5299.89 5299.73 12296.01 31099.99 799.33 90100.00 199.63 126
HyFIR lowres test98.91 23098.64 24399.73 8799.85 5799.47 14898.07 33799.83 6198.64 25199.89 5299.60 21592.57 344100.00 199.33 9099.97 5599.72 72
pmmvs599.19 17199.11 16199.42 20499.76 11698.88 25398.55 29399.73 11498.82 22999.72 12599.62 19796.56 29299.82 28199.32 9299.95 8199.56 170
v14899.40 11199.41 10099.39 21699.76 11698.94 24599.09 20799.59 19799.17 18399.81 8699.61 20798.41 18499.69 34499.32 9299.94 9299.53 186
baseline99.63 5899.62 5599.66 11599.80 8599.62 11799.44 10599.80 7999.71 8199.72 12599.69 15099.15 8199.83 27299.32 9299.94 9299.53 186
CVMVSNet98.61 25898.88 22397.80 35899.58 19193.60 39599.26 14999.64 16799.66 9999.72 12599.67 16593.26 33799.93 9399.30 9599.81 18999.87 29
PS-CasMVS99.66 5299.58 6799.89 1099.80 8599.85 1899.66 5299.73 11499.62 10899.84 7499.71 13798.62 15199.96 5499.30 9599.96 6899.86 31
DTE-MVSNet99.68 4599.61 5999.88 1699.80 8599.87 1499.67 4899.71 12699.72 7999.84 7499.78 10098.67 14599.97 3399.30 9599.95 8199.80 46
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25297.87 38278.01 40799.30 26599.69 15097.70 24795.89 40999.29 9898.14 38699.95 11
PEN-MVS99.66 5299.59 6499.89 1099.83 6499.87 1499.66 5299.73 11499.70 8699.84 7499.73 12298.56 16199.96 5499.29 9899.94 9299.83 39
WR-MVS_H99.61 6699.53 8099.87 2099.80 8599.83 2899.67 4899.75 10499.58 12099.85 7199.69 15098.18 21399.94 7699.28 10099.95 8199.83 39
IterMVS98.97 22199.16 14798.42 33499.74 13395.64 37798.06 33999.83 6199.83 5599.85 7199.74 11896.10 30999.99 799.27 101100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25898.34 27499.44 19799.60 18298.67 26899.27 14799.44 26499.68 9199.32 25699.49 25692.50 347100.00 199.24 10296.51 40399.65 111
hse-mvs298.52 27098.30 27899.16 26599.29 30398.60 27898.77 27099.02 33799.68 9199.32 25699.04 34392.50 34799.85 24299.24 10297.87 39399.03 328
FMVSNet199.66 5299.63 5499.73 8799.78 10499.77 5399.68 4499.70 13199.67 9599.82 7999.83 6598.98 10699.90 15599.24 10299.97 5599.53 186
casdiffmvspermissive99.63 5899.61 5999.67 10899.79 9799.59 12899.13 19299.85 5399.79 6599.76 10799.72 12999.33 6199.82 28199.21 10599.94 9299.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7799.43 9599.87 2099.76 11699.82 3499.57 7999.61 18099.54 12199.80 9099.64 17997.79 24399.95 6299.21 10599.94 9299.84 35
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18598.12 33099.53 23499.36 15299.41 23899.61 20799.22 7499.87 20399.21 10599.68 24499.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf0599.48 8699.43 9599.63 13499.70 15099.65 10699.01 22699.75 10499.73 7399.78 9999.62 19798.05 22399.88 18799.20 10899.98 3999.37 244
UniMVSNet (Re)99.37 12099.26 13699.68 10599.51 22899.58 13298.98 24099.60 19199.43 14299.70 13499.36 28997.70 24799.88 18799.20 10899.87 14699.59 158
CANet99.11 19399.05 18299.28 24598.83 37098.56 28098.71 27699.41 27099.25 16699.23 27399.22 32097.66 25599.94 7699.19 11099.97 5599.33 255
EI-MVSNet-UG-set99.48 8699.50 8299.42 20499.57 20198.65 27499.24 15699.46 25899.68 9199.80 9099.66 17198.99 10499.89 17399.19 11099.90 11599.72 72
xiu_mvs_v1_base_debu99.23 15399.34 11198.91 30099.59 18698.23 29998.47 30399.66 15199.61 11199.68 14098.94 36099.39 5099.97 3399.18 11299.55 28198.51 373
xiu_mvs_v1_base99.23 15399.34 11198.91 30099.59 18698.23 29998.47 30399.66 15199.61 11199.68 14098.94 36099.39 5099.97 3399.18 11299.55 28198.51 373
xiu_mvs_v1_base_debi99.23 15399.34 11198.91 30099.59 18698.23 29998.47 30399.66 15199.61 11199.68 14098.94 36099.39 5099.97 3399.18 11299.55 28198.51 373
VPNet99.46 9599.37 10699.71 9899.82 7199.59 12899.48 9699.70 13199.81 6099.69 13799.58 22397.66 25599.86 22499.17 11599.44 30299.67 94
UniMVSNet_NR-MVSNet99.37 12099.25 13899.72 9399.47 25099.56 13698.97 24199.61 18099.43 14299.67 14699.28 30697.85 23999.95 6299.17 11599.81 18999.65 111
DU-MVS99.33 13499.21 14299.71 9899.43 26399.56 13698.83 25799.53 23499.38 14899.67 14699.36 28997.67 25199.95 6299.17 11599.81 18999.63 126
EI-MVSNet-Vis-set99.47 9499.49 8399.42 20499.57 20198.66 27199.24 15699.46 25899.67 9599.79 9599.65 17698.97 10899.89 17399.15 11899.89 12599.71 75
EI-MVSNet99.38 11799.44 9399.21 25899.58 19198.09 31299.26 14999.46 25899.62 10899.75 11299.67 16598.54 16499.85 24299.15 11899.92 10499.68 88
VNet99.18 17599.06 17899.56 16599.24 31499.36 18599.33 12599.31 29899.67 9599.47 21999.57 23096.48 29599.84 25799.15 11899.30 32199.47 216
EG-PatchMatch MVS99.57 6999.56 7599.62 14499.77 11299.33 19199.26 14999.76 9999.32 15699.80 9099.78 10099.29 6499.87 20399.15 11899.91 11499.66 103
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19799.90 3698.66 27198.94 24699.91 3297.97 31299.79 9599.73 12299.05 9899.97 3399.15 11899.99 1699.68 88
IterMVS-LS99.41 10999.47 8499.25 25499.81 7998.09 31298.85 25499.76 9999.62 10899.83 7899.64 17998.54 16499.97 3399.15 11899.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19199.64 11099.30 13599.63 16999.61 11199.71 13099.56 23498.76 13299.96 5499.14 12499.92 10499.68 88
MVSTER98.47 27798.22 28299.24 25699.06 35098.35 29699.08 21099.46 25899.27 16299.75 11299.66 17188.61 38099.85 24299.14 12499.92 10499.52 196
Anonymous2023120699.35 12599.31 11899.47 18799.74 13399.06 23799.28 14499.74 11099.23 17099.72 12599.53 24597.63 25799.88 18799.11 12699.84 16399.48 212
Syy-MVS98.17 30097.85 31299.15 26798.50 39398.79 26098.60 28299.21 32197.89 31896.76 39496.37 41595.47 31699.57 38399.10 12798.73 36499.09 310
MVS_Test99.28 14199.31 11899.19 26199.35 28198.79 26099.36 12099.49 25199.17 18399.21 27899.67 16598.78 12999.66 36599.09 12899.66 25399.10 306
testgi99.29 14099.26 13699.37 22299.75 12798.81 25798.84 25599.89 3998.38 27999.75 11299.04 34399.36 5999.86 22499.08 12999.25 32899.45 221
1112_ss99.05 20298.84 22899.67 10899.66 16999.29 19798.52 29999.82 6697.65 33099.43 23099.16 32696.42 29899.91 13799.07 13099.84 16399.80 46
CANet_DTU98.91 23098.85 22699.09 27698.79 37698.13 30798.18 32399.31 29899.48 12798.86 31899.51 24996.56 29299.95 6299.05 13199.95 8199.19 287
MVSMamba_pp99.32 13699.28 13199.44 19799.10 34399.41 17199.01 22699.68 14199.37 14999.58 18099.67 16598.11 21899.87 20399.04 13299.92 10499.05 324
Baseline_NR-MVSNet99.49 8499.37 10699.82 3699.91 3099.84 2398.83 25799.86 4899.68 9199.65 15299.88 4297.67 25199.87 20399.03 13399.86 15499.76 65
FMVSNet299.35 12599.28 13199.55 16899.49 23999.35 18899.45 10399.57 20899.44 13799.70 13499.74 11897.21 27299.87 20399.03 13399.94 9299.44 226
Test_1112_low_res98.95 22798.73 23799.63 13499.68 16399.15 22498.09 33499.80 7997.14 35699.46 22399.40 27796.11 30899.89 17399.01 13599.84 16399.84 35
VDD-MVS99.20 16899.11 16199.44 19799.43 26398.98 24099.50 9198.32 37299.80 6399.56 19199.69 15096.99 28299.85 24298.99 13699.73 22499.50 203
DeepC-MVS98.90 499.62 6499.61 5999.67 10899.72 13999.44 15999.24 15699.71 12699.27 16299.93 3799.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8699.47 8499.51 17899.77 11299.41 17198.81 26299.66 15199.42 14699.75 11299.66 17199.20 7699.76 31998.98 13899.99 1699.36 248
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30098.04 37699.24 16895.77 40399.47 26393.78 33299.66 36598.98 13899.62 26099.37 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13099.32 11699.39 21699.67 16898.77 26298.57 29199.81 7599.61 11199.48 21799.41 27398.47 17599.86 22498.97 14099.90 11599.53 186
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11199.31 11899.68 10599.43 26399.55 13999.73 2699.50 24799.46 13499.88 6099.36 28997.54 25899.87 20398.97 14099.87 14699.63 126
bld_raw_dy_0_6499.24 15199.16 14799.45 19299.26 31099.58 13298.06 33999.63 16999.77 7099.54 19999.12 33298.18 21399.88 18798.96 14299.93 9998.90 345
mamv499.34 13099.30 12399.45 19299.13 33399.40 17399.01 22699.70 13199.73 7399.56 19199.65 17698.04 22499.87 20398.96 14299.90 11599.09 310
GBi-Net99.42 10599.31 11899.73 8799.49 23999.77 5399.68 4499.70 13199.44 13799.62 16699.83 6597.21 27299.90 15598.96 14299.90 11599.53 186
FMVSNet597.80 31397.25 32999.42 20498.83 37098.97 24299.38 11399.80 7998.87 22299.25 26999.69 15080.60 40099.91 13798.96 14299.90 11599.38 241
test199.42 10599.31 11899.73 8799.49 23999.77 5399.68 4499.70 13199.44 13799.62 16699.83 6597.21 27299.90 15598.96 14299.90 11599.53 186
FMVSNet398.80 24398.63 24599.32 23699.13 33398.72 26599.10 20399.48 25299.23 17099.62 16699.64 17992.57 34499.86 22498.96 14299.90 11599.39 239
UnsupCasMVSNet_eth98.83 24098.57 25299.59 15299.68 16399.45 15798.99 23799.67 14699.48 12799.55 19799.36 28994.92 31899.86 22498.95 14896.57 40299.45 221
CHOSEN 280x42098.41 28298.41 26698.40 33599.34 29095.89 37596.94 39599.44 26498.80 23399.25 26999.52 24793.51 33699.98 2098.94 14999.98 3999.32 258
TDRefinement99.72 3699.70 3999.77 5699.90 3699.85 1899.86 599.92 2999.69 8999.78 9999.92 2199.37 5699.88 18798.93 15099.95 8199.60 151
alignmvs98.28 29297.96 30199.25 25499.12 33698.93 24899.03 22198.42 36699.64 10398.72 33397.85 39690.86 36599.62 37598.88 15199.13 33499.19 287
MGCFI-Net99.02 20999.01 19599.06 28399.11 34198.60 27899.63 5999.67 14699.63 10598.58 34597.65 39999.07 9499.57 38398.85 15298.92 34999.03 328
sss98.90 23298.77 23699.27 24899.48 24498.44 28798.72 27499.32 29497.94 31699.37 24699.35 29496.31 30399.91 13798.85 15299.63 25999.47 216
xiu_mvs_v2_base99.02 20999.11 16198.77 31899.37 27698.09 31298.13 32999.51 24399.47 13199.42 23298.54 38299.38 5499.97 3398.83 15499.33 31798.24 386
PS-MVSNAJ99.00 21799.08 17298.76 31999.37 27698.10 31198.00 34699.51 24399.47 13199.41 23898.50 38499.28 6699.97 3398.83 15499.34 31698.20 390
D2MVS99.22 16199.19 14499.29 24399.69 15598.74 26498.81 26299.41 27098.55 26099.68 14099.69 15098.13 21699.87 20398.82 15699.98 3999.24 273
PatchT98.45 27998.32 27698.83 31398.94 36198.29 29799.24 15698.82 34599.84 5299.08 29599.76 11091.37 35599.94 7698.82 15699.00 34498.26 385
testf199.63 5899.60 6299.72 9399.94 1899.95 299.47 9999.89 3999.43 14299.88 6099.80 8299.26 7099.90 15598.81 15899.88 13599.32 258
APD_test299.63 5899.60 6299.72 9399.94 1899.95 299.47 9999.89 3999.43 14299.88 6099.80 8299.26 7099.90 15598.81 15899.88 13599.32 258
sasdasda99.02 20999.00 19999.09 27699.10 34398.70 26699.61 6799.66 15199.63 10598.64 33997.65 39999.04 9999.54 38798.79 16098.92 34999.04 326
Effi-MVS+99.06 19998.97 21099.34 22999.31 29798.98 24098.31 31599.91 3298.81 23198.79 32798.94 36099.14 8499.84 25798.79 16098.74 36299.20 284
canonicalmvs99.02 20999.00 19999.09 27699.10 34398.70 26699.61 6799.66 15199.63 10598.64 33997.65 39999.04 9999.54 38798.79 16098.92 34999.04 326
VDDNet98.97 22198.82 23199.42 20499.71 14298.81 25799.62 6298.68 35199.81 6099.38 24599.80 8294.25 32699.85 24298.79 16099.32 31999.59 158
CR-MVSNet98.35 28998.20 28498.83 31399.05 35198.12 30899.30 13599.67 14697.39 34499.16 28499.79 9291.87 35299.91 13798.78 16498.77 35898.44 378
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21361.71 41095.39 40599.52 24793.90 32899.94 7698.76 16598.27 37999.62 137
RPMNet98.60 26098.53 25798.83 31399.05 35198.12 30899.30 13599.62 17399.86 4499.16 28499.74 11892.53 34699.92 11598.75 16698.77 35898.44 378
pmmvs499.13 18899.06 17899.36 22699.57 20199.10 23298.01 34499.25 31198.78 23699.58 18099.44 27098.24 20399.76 31998.74 16799.93 9999.22 278
tttt051797.62 32197.20 33098.90 30699.76 11697.40 34499.48 9694.36 40399.06 20099.70 13499.49 25684.55 39599.94 7698.73 16899.65 25599.36 248
EPP-MVSNet99.17 18099.00 19999.66 11599.80 8599.43 16399.70 3499.24 31499.48 12799.56 19199.77 10794.89 31999.93 9398.72 16999.89 12599.63 126
Anonymous2024052999.42 10599.34 11199.65 12099.53 22199.60 12699.63 5999.39 28099.47 13199.76 10799.78 10098.13 21699.86 22498.70 17099.68 24499.49 208
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11799.56 8199.79 8598.77 23899.80 9099.85 5599.64 2899.85 24298.70 17099.89 12599.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13499.28 13199.47 18799.57 20199.39 17699.78 1299.43 26798.87 22299.57 18499.82 7298.06 22299.87 20398.69 17299.73 22499.15 295
LFMVS98.46 27898.19 28799.26 25199.24 31498.52 28399.62 6296.94 39299.87 4199.31 26099.58 22391.04 36099.81 29698.68 17399.42 30699.45 221
iter_conf05_1199.03 20698.98 20899.17 26499.07 34999.22 21397.92 35599.46 25899.23 17099.44 22598.98 35398.19 21099.86 22498.66 17499.89 12598.42 380
WR-MVS99.11 19398.93 21499.66 11599.30 30199.42 16698.42 30899.37 28599.04 20199.57 18499.20 32496.89 28499.86 22498.66 17499.87 14699.70 78
Anonymous20240521198.75 24798.46 26199.63 13499.34 29099.66 10099.47 9997.65 38499.28 16199.56 19199.50 25293.15 33899.84 25798.62 17699.58 27599.40 237
EPNet98.13 30197.77 31699.18 26394.57 41497.99 31899.24 15697.96 37899.74 7297.29 38799.62 19793.13 33999.97 3398.59 17799.83 17199.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20299.09 17098.91 30099.21 31998.36 29598.82 26199.47 25598.85 22598.90 31399.56 23498.78 12999.09 40298.57 17899.68 24499.26 270
Patchmatch-RL test98.60 26098.36 27199.33 23299.77 11299.07 23598.27 31799.87 4598.91 21799.74 12099.72 12990.57 36999.79 30698.55 17999.85 15899.11 304
pmmvs398.08 30497.80 31398.91 30099.41 26997.69 33597.87 36099.66 15195.87 37599.50 21499.51 24990.35 37199.97 3398.55 17999.47 29999.08 317
ETV-MVS99.18 17599.18 14599.16 26599.34 29099.28 19999.12 19699.79 8599.48 12798.93 30798.55 38199.40 4999.93 9398.51 18199.52 29198.28 384
jason99.16 18299.11 16199.32 23699.75 12798.44 28798.26 31999.39 28098.70 24699.74 12099.30 30298.54 16499.97 3398.48 18299.82 18099.55 173
jason: jason.
APDe-MVScopyleft99.48 8699.36 10999.85 2699.55 21399.81 3999.50 9199.69 13898.99 20499.75 11299.71 13798.79 12799.93 9398.46 18399.85 15899.80 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 25298.56 25599.15 26799.22 31798.66 27197.14 39099.51 24398.09 30599.54 19999.27 30896.87 28599.74 32698.43 18498.96 34699.03 328
our_test_398.85 23999.09 17098.13 34799.66 16994.90 38797.72 36599.58 20699.07 19899.64 15399.62 19798.19 21099.93 9398.41 18599.95 8199.55 173
Gipumacopyleft99.57 6999.59 6499.49 18199.98 399.71 8299.72 2999.84 5999.81 6099.94 3499.78 10098.91 11499.71 33598.41 18599.95 8199.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 351
PM-MVS99.36 12399.29 12999.58 15699.83 6499.66 10098.95 24499.86 4898.85 22599.81 8699.73 12298.40 18899.92 11598.36 18899.83 17199.17 291
baseline197.73 31697.33 32698.96 29199.30 30197.73 33399.40 10998.42 36699.33 15599.46 22399.21 32291.18 35899.82 28198.35 18991.26 40999.32 258
MVS-HIRNet97.86 31098.22 28296.76 37899.28 30691.53 40598.38 31092.60 40899.13 19199.31 26099.96 1297.18 27699.68 35698.34 19099.83 17199.07 322
GA-MVS97.99 30997.68 31998.93 29799.52 22698.04 31697.19 38999.05 33698.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 254
Fast-Effi-MVS+99.02 20998.87 22499.46 18999.38 27499.50 14599.04 21799.79 8597.17 35498.62 34198.74 37399.34 6099.95 6298.32 19299.41 30798.92 343
MDA-MVSNet_test_wron98.95 22798.99 20598.85 30999.64 17397.16 35098.23 32199.33 29298.93 21499.56 19199.66 17197.39 26599.83 27298.29 19399.88 13599.55 173
N_pmnet98.73 25098.53 25799.35 22899.72 13998.67 26898.34 31294.65 40298.35 28699.79 9599.68 16198.03 22599.93 9398.28 19499.92 10499.44 226
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31097.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15598.27 19597.56 39698.91 344
thisisatest053097.45 32696.95 33698.94 29499.68 16397.73 33399.09 20794.19 40598.61 25699.56 19199.30 30284.30 39699.93 9398.27 19599.54 28699.16 293
YYNet198.95 22798.99 20598.84 31199.64 17397.14 35298.22 32299.32 29498.92 21699.59 17899.66 17197.40 26399.83 27298.27 19599.90 11599.55 173
ACMM98.09 1199.46 9599.38 10399.72 9399.80 8599.69 9399.13 19299.65 16198.99 20499.64 15399.72 12999.39 5099.86 22498.23 19899.81 18999.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22498.87 22499.24 25699.57 20198.40 29098.12 33099.18 32598.28 29499.63 15799.13 32898.02 22699.97 3398.22 19999.69 23999.35 251
3Dnovator99.15 299.43 10299.36 10999.65 12099.39 27199.42 16699.70 3499.56 21399.23 17099.35 24899.80 8299.17 7999.95 6298.21 20099.84 16399.59 158
Fast-Effi-MVS+-dtu99.20 16899.12 15899.43 20299.25 31299.69 9399.05 21499.82 6699.50 12598.97 30399.05 34198.98 10699.98 2098.20 20199.24 33098.62 364
MS-PatchMatch99.00 21798.97 21099.09 27699.11 34198.19 30398.76 27199.33 29298.49 26999.44 22599.58 22398.21 20899.69 34498.20 20199.62 26099.39 239
TSAR-MVS + GP.99.12 19099.04 18899.38 21999.34 29099.16 22298.15 32699.29 30298.18 30199.63 15799.62 19799.18 7899.68 35698.20 20199.74 21999.30 264
DP-MVS99.48 8699.39 10199.74 7899.57 20199.62 11799.29 14299.61 18099.87 4199.74 12099.76 11098.69 14199.87 20398.20 20199.80 19499.75 68
MVP-Stereo99.16 18299.08 17299.43 20299.48 24499.07 23599.08 21099.55 21998.63 25299.31 26099.68 16198.19 21099.78 30998.18 20599.58 27599.45 221
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10299.30 12399.80 4499.83 6499.81 3999.52 8699.70 13198.35 28699.51 21299.50 25299.31 6299.88 18798.18 20599.84 16399.69 82
MDA-MVSNet-bldmvs99.06 19999.05 18299.07 28199.80 8597.83 32898.89 24999.72 12399.29 15899.63 15799.70 14496.47 29699.89 17398.17 20799.82 18099.50 203
JIA-IIPM98.06 30597.92 30898.50 33198.59 38997.02 35498.80 26598.51 36199.88 4097.89 37599.87 4791.89 35199.90 15598.16 20897.68 39598.59 367
EIA-MVS99.12 19099.01 19599.45 19299.36 27999.62 11799.34 12299.79 8598.41 27598.84 32098.89 36498.75 13499.84 25798.15 20999.51 29298.89 348
miper_lstm_enhance98.65 25798.60 24698.82 31699.20 32297.33 34697.78 36399.66 15199.01 20399.59 17899.50 25294.62 32399.85 24298.12 21099.90 11599.26 270
Effi-MVS+-dtu99.07 19898.92 21899.52 17698.89 36699.78 4899.15 18499.66 15199.34 15398.92 31099.24 31897.69 24999.98 2098.11 21199.28 32498.81 355
tpm97.15 33396.95 33697.75 36098.91 36294.24 39099.32 12797.96 37897.71 32898.29 35799.32 29886.72 39099.92 11598.10 21296.24 40599.09 310
DeepPCF-MVS98.42 699.18 17599.02 19299.67 10899.22 31799.75 6697.25 38799.47 25598.72 24399.66 15099.70 14499.29 6499.63 37498.07 21399.81 18999.62 137
ppachtmachnet_test98.89 23599.12 15898.20 34599.66 16995.24 38397.63 36999.68 14199.08 19699.78 9999.62 19798.65 14999.88 18798.02 21499.96 6899.48 212
tpmrst97.73 31698.07 29496.73 38098.71 38592.00 40199.10 20398.86 34298.52 26598.92 31099.54 24391.90 35099.82 28198.02 21499.03 34298.37 381
CSCG99.37 12099.29 12999.60 15099.71 14299.46 15299.43 10799.85 5398.79 23499.41 23899.60 21598.92 11299.92 11598.02 21499.92 10499.43 232
eth_miper_zixun_eth98.68 25598.71 23998.60 32699.10 34396.84 35997.52 37799.54 22598.94 21199.58 18099.48 25996.25 30699.76 31998.01 21799.93 9999.21 280
Patchmtry98.78 24498.54 25699.49 18198.89 36699.19 22099.32 12799.67 14699.65 10199.72 12599.79 9291.87 35299.95 6298.00 21899.97 5599.33 255
PVSNet_BlendedMVS99.03 20699.01 19599.09 27699.54 21597.99 31898.58 28799.82 6697.62 33199.34 25199.71 13798.52 17199.77 31797.98 21999.97 5599.52 196
PVSNet_Blended98.70 25398.59 24899.02 28699.54 21597.99 31897.58 37299.82 6695.70 37999.34 25198.98 35398.52 17199.77 31797.98 21999.83 17199.30 264
cl____98.54 26898.41 26698.92 29899.03 35397.80 33197.46 37999.59 19798.90 21899.60 17599.46 26693.85 33099.78 30997.97 22199.89 12599.17 291
DIV-MVS_self_test98.54 26898.42 26598.92 29899.03 35397.80 33197.46 37999.59 19798.90 21899.60 17599.46 26693.87 32999.78 30997.97 22199.89 12599.18 289
AUN-MVS97.82 31297.38 32599.14 27099.27 30898.53 28198.72 27499.02 33798.10 30397.18 39099.03 34789.26 37899.85 24297.94 22397.91 39199.03 328
FA-MVS(test-final)98.52 27098.32 27699.10 27599.48 24498.67 26899.77 1498.60 35897.35 34699.63 15799.80 8293.07 34099.84 25797.92 22499.30 32198.78 358
ambc99.20 26099.35 28198.53 28199.17 17699.46 25899.67 14699.80 8298.46 17899.70 33897.92 22499.70 23599.38 241
USDC98.96 22498.93 21499.05 28499.54 21597.99 31897.07 39399.80 7998.21 29899.75 11299.77 10798.43 18199.64 37397.90 22699.88 13599.51 198
OPM-MVS99.26 14799.13 15499.63 13499.70 15099.61 12398.58 28799.48 25298.50 26799.52 20799.63 19099.14 8499.76 31997.89 22799.77 20899.51 198
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13699.17 14699.77 5699.69 15599.80 4399.14 18699.31 29899.16 18599.62 16699.61 20798.35 19299.91 13797.88 22899.72 23099.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3299.70 15099.79 4599.14 18699.61 18099.92 11597.88 22899.72 23099.77 59
c3_l98.72 25198.71 23998.72 32199.12 33697.22 34997.68 36899.56 21398.90 21899.54 19999.48 25996.37 30299.73 32997.88 22899.88 13599.21 280
3Dnovator+98.92 399.35 12599.24 14099.67 10899.35 28199.47 14899.62 6299.50 24799.44 13799.12 29199.78 10098.77 13199.94 7697.87 23199.72 23099.62 137
miper_ehance_all_eth98.59 26398.59 24898.59 32798.98 35997.07 35397.49 37899.52 23998.50 26799.52 20799.37 28596.41 30099.71 33597.86 23299.62 26099.00 335
WTY-MVS98.59 26398.37 27099.26 25199.43 26398.40 29098.74 27299.13 33198.10 30399.21 27899.24 31894.82 32099.90 15597.86 23298.77 35899.49 208
APD_test199.36 12399.28 13199.61 14799.89 3899.89 1099.32 12799.74 11099.18 17899.69 13799.75 11598.41 18499.84 25797.85 23499.70 23599.10 306
SED-MVS99.40 11199.28 13199.77 5699.69 15599.82 3499.20 16699.54 22599.13 19199.82 7999.63 19098.91 11499.92 11597.85 23499.70 23599.58 163
test_241102_TWO99.54 22599.13 19199.76 10799.63 19098.32 19799.92 11597.85 23499.69 23999.75 68
MVS_111021_HR99.12 19099.02 19299.40 21399.50 23499.11 22797.92 35599.71 12698.76 24199.08 29599.47 26399.17 7999.54 38797.85 23499.76 21099.54 181
MTAPA99.35 12599.20 14399.80 4499.81 7999.81 3999.33 12599.53 23499.27 16299.42 23299.63 19098.21 20899.95 6297.83 23899.79 19999.65 111
MSC_two_6792asdad99.74 7899.03 35399.53 14299.23 31599.92 11597.77 23999.69 23999.78 55
No_MVS99.74 7899.03 35399.53 14299.23 31599.92 11597.77 23999.69 23999.78 55
TESTMET0.1,196.24 35495.84 35597.41 36898.24 40093.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17397.77 23998.77 35898.52 372
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6099.32 12799.77 9499.53 12399.77 10599.76 11099.26 7099.78 30997.77 23999.88 13599.60 151
IU-MVS99.69 15599.77 5399.22 31897.50 33899.69 13797.75 24399.70 23599.77 59
114514_t98.49 27598.11 29299.64 12799.73 13699.58 13299.24 15699.76 9989.94 40299.42 23299.56 23497.76 24699.86 22497.74 24499.82 18099.47 216
DVP-MVS++99.38 11799.25 13899.77 5699.03 35399.77 5399.74 2399.61 18099.18 17899.76 10799.61 20799.00 10299.92 11597.72 24599.60 27099.62 137
test_0728_THIRD99.18 17899.62 16699.61 20798.58 15899.91 13797.72 24599.80 19499.77 59
EGC-MVSNET89.05 37685.52 37999.64 12799.89 3899.78 4899.56 8199.52 23924.19 41149.96 41299.83 6599.15 8199.92 11597.71 24799.85 15899.21 280
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39996.43 36596.95 39499.41 27096.37 37099.43 23098.96 35894.74 32199.69 34497.71 24799.62 26098.83 354
TSAR-MVS + MP.99.34 13099.24 14099.63 13499.82 7199.37 18199.26 14999.35 28998.77 23899.57 18499.70 14499.27 6999.88 18797.71 24799.75 21299.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32497.28 32798.40 33598.37 39796.75 36097.24 38899.37 28597.31 34899.41 23899.22 32087.30 38299.37 39997.70 25099.62 26099.08 317
MP-MVS-pluss99.14 18698.92 21899.80 4499.83 6499.83 2898.61 28099.63 16996.84 36399.44 22599.58 22398.81 12299.91 13797.70 25099.82 18099.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14199.11 16199.79 5099.75 12799.81 3998.95 24499.53 23498.27 29599.53 20599.73 12298.75 13499.87 20397.70 25099.83 17199.68 88
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21399.56 21299.37 18197.97 35199.68 14197.49 33999.08 29599.35 29495.41 31799.82 28197.70 25098.19 38399.01 334
MVS_111021_LR99.13 18899.03 19099.42 20499.58 19199.32 19397.91 35899.73 11498.68 24799.31 26099.48 25999.09 8999.66 36597.70 25099.77 20899.29 267
IS-MVSNet99.03 20698.85 22699.55 16899.80 8599.25 20699.73 2699.15 32899.37 14999.61 17299.71 13794.73 32299.81 29697.70 25099.88 13599.58 163
test-LLR97.15 33396.95 33697.74 36198.18 40295.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 13797.69 25698.78 35698.31 382
test-mter96.23 35595.73 35797.74 36198.18 40295.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 13797.69 25698.78 35698.31 382
XVS99.27 14599.11 16199.75 7399.71 14299.71 8299.37 11799.61 18099.29 15898.76 33099.47 26398.47 17599.88 18797.62 25899.73 22499.67 94
X-MVStestdata96.09 35894.87 37099.75 7399.71 14299.71 8299.37 11799.61 18099.29 15898.76 33061.30 41898.47 17599.88 18797.62 25899.73 22499.67 94
SMA-MVScopyleft99.19 17199.00 19999.73 8799.46 25499.73 7599.13 19299.52 23997.40 34399.57 18499.64 17998.93 11199.83 27297.61 26099.79 19999.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34496.79 34396.46 38498.90 36390.71 41099.41 10898.68 35194.69 39298.14 36799.34 29786.32 39299.80 30397.60 26198.07 38998.88 349
PVSNet97.47 1598.42 28198.44 26398.35 33799.46 25496.26 36896.70 39899.34 29197.68 32999.00 30299.13 32897.40 26399.72 33197.59 26299.68 24499.08 317
new_pmnet98.88 23698.89 22298.84 31199.70 15097.62 33698.15 32699.50 24797.98 31199.62 16699.54 24398.15 21599.94 7697.55 26399.84 16398.95 339
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38195.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5497.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15199.11 16199.61 14798.38 39699.79 4599.57 7999.68 14199.61 11199.15 28699.71 13798.70 14099.91 13797.54 26499.68 24499.13 303
ZNCC-MVS99.22 16199.04 18899.77 5699.76 11699.73 7599.28 14499.56 21398.19 30099.14 28899.29 30598.84 12199.92 11597.53 26699.80 19499.64 121
CP-MVS99.23 15399.05 18299.75 7399.66 16999.66 10099.38 11399.62 17398.38 27999.06 29999.27 30898.79 12799.94 7697.51 26799.82 18099.66 103
SD-MVS99.01 21599.30 12398.15 34699.50 23499.40 17398.94 24699.61 18099.22 17599.75 11299.82 7299.54 4195.51 41197.48 26899.87 14699.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27598.29 27999.11 27398.96 36098.42 28997.54 37399.32 29497.53 33698.47 35298.15 39197.88 23699.82 28197.46 26999.24 33099.09 310
DeepC-MVS_fast98.47 599.23 15399.12 15899.56 16599.28 30699.22 21398.99 23799.40 27799.08 19699.58 18099.64 17998.90 11799.83 27297.44 27099.75 21299.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 14899.08 17299.76 6399.73 13699.70 8999.31 13299.59 19798.36 28199.36 24799.37 28598.80 12699.91 13797.43 27199.75 21299.68 88
ACMMPR99.23 15399.06 17899.76 6399.74 13399.69 9399.31 13299.59 19798.36 28199.35 24899.38 28398.61 15399.93 9397.43 27199.75 21299.67 94
Vis-MVSNet (Re-imp)98.77 24598.58 25199.34 22999.78 10498.88 25399.61 6799.56 21399.11 19599.24 27299.56 23493.00 34299.78 30997.43 27199.89 12599.35 251
MIMVSNet98.43 28098.20 28499.11 27399.53 22198.38 29499.58 7698.61 35698.96 20899.33 25399.76 11090.92 36299.81 29697.38 27499.76 21099.15 295
WB-MVSnew98.34 29198.14 29098.96 29198.14 40597.90 32698.27 31797.26 39198.63 25298.80 32598.00 39497.77 24499.90 15597.37 27598.98 34599.09 310
XVG-OURS-SEG-HR99.16 18298.99 20599.66 11599.84 6099.64 11098.25 32099.73 11498.39 27899.63 15799.43 27199.70 2499.90 15597.34 27698.64 36899.44 226
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10299.83 6499.70 8999.38 11399.78 9199.53 12399.67 14699.78 10099.19 7799.86 22497.32 27799.87 14699.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20998.81 23299.65 12099.58 19199.49 14698.58 28799.07 33398.40 27799.04 30099.25 31398.51 17399.80 30397.31 27899.51 29299.65 111
region2R99.23 15399.05 18299.77 5699.76 11699.70 8999.31 13299.59 19798.41 27599.32 25699.36 28998.73 13899.93 9397.29 27999.74 21999.67 94
APD-MVS_3200maxsize99.31 13899.16 14799.74 7899.53 22199.75 6699.27 14799.61 18099.19 17799.57 18499.64 17998.76 13299.90 15597.29 27999.62 26099.56 170
TAPA-MVS97.92 1398.03 30697.55 32299.46 18999.47 25099.44 15998.50 30199.62 17386.79 40399.07 29899.26 31198.26 20299.62 37597.28 28199.73 22499.31 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14599.11 16199.73 8799.54 21599.74 7299.26 14999.62 17399.16 18599.52 20799.64 17998.41 18499.91 13797.27 28299.61 26799.54 181
RE-MVS-def99.13 15499.54 21599.74 7299.26 14999.62 17399.16 18599.52 20799.64 17998.57 15997.27 28299.61 26799.54 181
testing1196.05 36095.41 36297.97 35198.78 37895.27 38298.59 28598.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 341
test_yl98.25 29497.95 30299.13 27199.17 32898.47 28499.00 23298.67 35398.97 20699.22 27699.02 34891.31 35699.69 34497.26 28498.93 34799.24 273
DCV-MVSNet98.25 29497.95 30299.13 27199.17 32898.47 28499.00 23298.67 35398.97 20699.22 27699.02 34891.31 35699.69 34497.26 28498.93 34799.24 273
PHI-MVS99.11 19398.95 21399.59 15299.13 33399.59 12899.17 17699.65 16197.88 32099.25 26999.46 26698.97 10899.80 30397.26 28499.82 18099.37 244
tfpnnormal99.43 10299.38 10399.60 15099.87 5099.75 6699.59 7499.78 9199.71 8199.90 4899.69 15098.85 12099.90 15597.25 28899.78 20499.15 295
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37392.49 39999.17 17698.39 36898.12 30298.79 32799.58 22390.71 36799.89 17397.23 28999.41 30799.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22098.80 23499.56 16599.25 31299.43 16398.54 29699.27 30698.58 25898.80 32599.43 27198.53 16899.70 33897.22 29099.59 27499.54 181
testing396.48 34895.63 35999.01 28799.23 31697.81 32998.90 24899.10 33298.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 251
HPM-MVScopyleft99.25 14899.07 17699.78 5399.81 7999.75 6699.61 6799.67 14697.72 32799.35 24899.25 31399.23 7399.92 11597.21 29199.82 18099.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17199.00 19999.76 6399.76 11699.68 9699.38 11399.54 22598.34 29099.01 30199.50 25298.53 16899.93 9397.18 29399.78 20499.66 103
ACMMPcopyleft99.25 14899.08 17299.74 7899.79 9799.68 9699.50 9199.65 16198.07 30699.52 20799.69 15098.57 15999.92 11597.18 29399.79 19999.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33796.42 34498.66 32499.42 26897.47 34097.27 38694.30 40497.24 35099.15 28698.86 36685.01 39399.87 20397.10 29599.39 30998.63 363
XVG-ACMP-BASELINE99.23 15399.10 16999.63 13499.82 7199.58 13298.83 25799.72 12398.36 28199.60 17599.71 13798.92 11299.91 13797.08 29699.84 16399.40 237
MSDG99.08 19798.98 20899.37 22299.60 18299.13 22597.54 37399.74 11098.84 22899.53 20599.55 24199.10 8799.79 30697.07 29799.86 15499.18 289
SteuartSystems-ACMMP99.30 13999.14 15299.76 6399.87 5099.66 10099.18 17199.60 19198.55 26099.57 18499.67 16599.03 10199.94 7697.01 29899.80 19499.69 82
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35695.78 35697.49 36498.53 39193.83 39498.04 34193.94 40698.96 20898.46 35398.17 39079.86 40199.87 20396.99 29999.06 33898.78 358
EPMVS96.53 34796.32 34597.17 37598.18 40292.97 39899.39 11189.95 41298.21 29898.61 34299.59 22086.69 39199.72 33196.99 29999.23 33298.81 355
MSP-MVS99.04 20598.79 23599.81 3999.78 10499.73 7599.35 12199.57 20898.54 26399.54 19998.99 35096.81 28699.93 9396.97 30199.53 28899.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22498.70 24199.74 7899.52 22699.71 8298.86 25299.19 32498.47 27198.59 34499.06 34098.08 22199.91 13796.94 30299.60 27099.60 151
SR-MVS99.19 17199.00 19999.74 7899.51 22899.72 8099.18 17199.60 19198.85 22599.47 21999.58 22398.38 18999.92 11596.92 30399.54 28699.57 168
PGM-MVS99.20 16899.01 19599.77 5699.75 12799.71 8299.16 18299.72 12397.99 31099.42 23299.60 21598.81 12299.93 9396.91 30499.74 21999.66 103
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35398.24 29899.61 6798.72 34996.81 36498.73 33299.51 24994.06 32799.86 22496.91 30498.20 38198.86 351
MDTV_nov1_ep1397.73 31798.70 38690.83 40899.15 18498.02 37798.51 26698.82 32299.61 20790.98 36199.66 36596.89 30698.92 349
GST-MVS99.16 18298.96 21299.75 7399.73 13699.73 7599.20 16699.55 21998.22 29799.32 25699.35 29498.65 14999.91 13796.86 30799.74 21999.62 137
test_post199.14 18651.63 42089.54 37799.82 28196.86 307
SCA98.11 30298.36 27197.36 36999.20 32292.99 39798.17 32598.49 36398.24 29699.10 29499.57 23096.01 31099.94 7696.86 30799.62 26099.14 300
XVG-OURS99.21 16699.06 17899.65 12099.82 7199.62 11797.87 36099.74 11098.36 28199.66 15099.68 16199.71 2299.90 15596.84 31099.88 13599.43 232
LCM-MVSNet-Re99.28 14199.15 15199.67 10899.33 29599.76 6099.34 12299.97 1898.93 21499.91 4499.79 9298.68 14299.93 9396.80 31199.56 27799.30 264
RPSCF99.18 17599.02 19299.64 12799.83 6499.85 1899.44 10599.82 6698.33 29199.50 21499.78 10097.90 23499.65 37196.78 31299.83 17199.44 226
旧先验297.94 35395.33 38398.94 30699.88 18796.75 313
MDTV_nov1_ep13_2view91.44 40699.14 18697.37 34599.21 27891.78 35496.75 31399.03 328
CLD-MVS98.76 24698.57 25299.33 23299.57 20198.97 24297.53 37599.55 21996.41 36899.27 26799.13 32899.07 9499.78 30996.73 31599.89 12599.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30397.98 30098.48 33299.27 30896.48 36399.40 10999.07 33398.81 23199.23 27399.57 23090.11 37399.87 20396.69 31699.64 25799.09 310
baseline296.83 34096.28 34698.46 33399.09 34796.91 35798.83 25793.87 40797.23 35196.23 40298.36 38688.12 38199.90 15596.68 31798.14 38698.57 370
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21391.75 39897.13 39297.61 40295.58 31598.63 40696.68 31799.11 33698.18 391
PC_three_145297.56 33299.68 14099.41 27399.09 8997.09 40896.66 31999.60 27099.62 137
LPG-MVS_test99.22 16199.05 18299.74 7899.82 7199.63 11599.16 18299.73 11497.56 33299.64 15399.69 15099.37 5699.89 17396.66 31999.87 14699.69 82
LGP-MVS_train99.74 7899.82 7199.63 11599.73 11497.56 33299.64 15399.69 15099.37 5699.89 17396.66 31999.87 14699.69 82
ETVMVS96.14 35795.22 36798.89 30798.80 37498.01 31798.66 27898.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 345
TinyColmap98.97 22198.93 21499.07 28199.46 25498.19 30397.75 36499.75 10498.79 23499.54 19999.70 14498.97 10899.62 37596.63 32399.83 17199.41 236
LF4IMVS99.01 21598.92 21899.27 24899.71 14299.28 19998.59 28599.77 9498.32 29299.39 24499.41 27398.62 15199.84 25796.62 32499.84 16398.69 362
NCCC98.82 24198.57 25299.58 15699.21 31999.31 19498.61 28099.25 31198.65 25098.43 35499.26 31197.86 23799.81 29696.55 32599.27 32799.61 147
OPU-MVS99.29 24399.12 33699.44 15999.20 16699.40 27799.00 10298.84 40596.54 32699.60 27099.58 163
F-COLMAP98.74 24898.45 26299.62 14499.57 20199.47 14898.84 25599.65 16196.31 37198.93 30799.19 32597.68 25099.87 20396.52 32799.37 31299.53 186
testing9995.86 36595.19 36897.87 35598.76 38195.03 38498.62 27998.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 345
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33195.36 38099.22 16398.75 34896.97 35998.25 35999.64 17990.90 36399.94 7696.51 32899.56 27799.08 317
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33194.65 38899.22 16398.86 34296.97 35998.25 35999.64 17990.90 36399.84 25796.51 32899.56 27799.08 317
PatchMatch-RL98.68 25598.47 26099.30 24299.44 25999.28 19998.14 32899.54 22597.12 35799.11 29299.25 31397.80 24299.70 33896.51 32899.30 32198.93 341
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21198.33 39899.56 13699.01 22699.59 19795.44 38199.57 18499.80 8295.64 31399.46 39796.47 33299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 36195.32 36598.02 34998.76 38195.39 37998.38 31098.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 336
SF-MVS99.10 19698.93 21499.62 14499.58 19199.51 14499.13 19299.65 16197.97 31299.42 23299.61 20798.86 11999.87 20396.45 33499.68 24499.49 208
FE-MVS97.85 31197.42 32499.15 26799.44 25998.75 26399.77 1498.20 37595.85 37699.33 25399.80 8288.86 37999.88 18796.40 33599.12 33598.81 355
DPE-MVScopyleft99.14 18698.92 21899.82 3699.57 20199.77 5398.74 27299.60 19198.55 26099.76 10799.69 15098.23 20799.92 11596.39 33699.75 21299.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
AllTest99.21 16699.07 17699.63 13499.78 10499.64 11099.12 19699.83 6198.63 25299.63 15799.72 12998.68 14299.75 32396.38 33799.83 17199.51 198
TestCases99.63 13499.78 10499.64 11099.83 6198.63 25299.63 15799.72 12998.68 14299.75 32396.38 33799.83 17199.51 198
testdata99.42 20499.51 22898.93 24899.30 30196.20 37298.87 31799.40 27798.33 19699.89 17396.29 34099.28 32499.44 226
dp96.86 33997.07 33296.24 38698.68 38790.30 41299.19 17098.38 36997.35 34698.23 36199.59 22087.23 38399.82 28196.27 34198.73 36498.59 367
tpmvs97.39 32897.69 31896.52 38298.41 39591.76 40299.30 13598.94 34197.74 32697.85 37899.55 24192.40 34999.73 32996.25 34298.73 36498.06 393
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34379.23 40399.54 38796.24 34396.81 40098.50 376
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31897.23 35198.88 31499.04 34379.23 40399.54 38796.24 34396.81 40098.50 376
ACMP97.51 1499.05 20298.84 22899.67 10899.78 10499.55 13998.88 25099.66 15197.11 35899.47 21999.60 21599.07 9499.89 17396.18 34599.85 15899.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23298.72 23899.44 19799.39 27199.42 16698.58 28799.64 16797.31 34899.44 22599.62 19798.59 15699.69 34496.17 34699.79 19999.22 278
DP-MVS Recon98.50 27398.23 28199.31 23999.49 23999.46 15298.56 29299.63 16994.86 39098.85 31999.37 28597.81 24199.59 38196.08 34799.44 30298.88 349
tpm cat196.78 34196.98 33596.16 38798.85 36990.59 41199.08 21099.32 29492.37 39697.73 38499.46 26691.15 35999.69 34496.07 34898.80 35598.21 388
tpm296.35 35196.22 34796.73 38098.88 36891.75 40399.21 16598.51 36193.27 39597.89 37599.21 32284.83 39499.70 33896.04 34998.18 38498.75 361
dmvs_re98.69 25498.48 25999.31 23999.55 21399.42 16699.54 8498.38 36999.32 15698.72 33398.71 37496.76 28899.21 40096.01 35099.35 31599.31 262
test_040299.22 16199.14 15299.45 19299.79 9799.43 16399.28 14499.68 14199.54 12199.40 24399.56 23499.07 9499.82 28196.01 35099.96 6899.11 304
ITE_SJBPF99.38 21999.63 17599.44 15999.73 11498.56 25999.33 25399.53 24598.88 11899.68 35696.01 35099.65 25599.02 333
test_prior297.95 35297.87 32198.05 36999.05 34197.90 23495.99 35399.49 297
testdata299.89 17395.99 353
原ACMM199.37 22299.47 25098.87 25599.27 30696.74 36698.26 35899.32 29897.93 23399.82 28195.96 35599.38 31099.43 232
新几何199.52 17699.50 23499.22 21399.26 30895.66 38098.60 34399.28 30697.67 25199.89 17395.95 35699.32 31999.45 221
MP-MVScopyleft99.06 19998.83 23099.76 6399.76 11699.71 8299.32 12799.50 24798.35 28698.97 30399.48 25998.37 19099.92 11595.95 35699.75 21299.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 37194.59 37498.61 32598.66 38897.45 34298.54 29697.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 371
wuyk23d97.58 32399.13 15492.93 39099.69 15599.49 14699.52 8699.77 9497.97 31299.96 2399.79 9299.84 1299.94 7695.85 35999.82 18079.36 408
HQP_MVS98.90 23298.68 24299.55 16899.58 19199.24 21098.80 26599.54 22598.94 21199.14 28899.25 31397.24 27099.82 28195.84 36099.78 20499.60 151
plane_prior599.54 22599.82 28195.84 36099.78 20499.60 151
无先验98.01 34499.23 31595.83 37799.85 24295.79 36299.44 226
CPTT-MVS98.74 24898.44 26399.64 12799.61 18099.38 17899.18 17199.55 21996.49 36799.27 26799.37 28597.11 27899.92 11595.74 36399.67 25099.62 137
PLCcopyleft97.35 1698.36 28697.99 29899.48 18599.32 29699.24 21098.50 30199.51 24395.19 38698.58 34598.96 35896.95 28399.83 27295.63 36499.25 32899.37 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26598.34 27499.28 24599.18 32799.10 23298.34 31299.41 27098.48 27098.52 34998.98 35397.05 28099.78 30995.59 36599.50 29598.96 337
131498.00 30897.90 31098.27 34498.90 36397.45 34299.30 13599.06 33594.98 38797.21 38999.12 33298.43 18199.67 36195.58 36698.56 37197.71 397
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37893.48 39695.72 40299.40 27796.18 37397.37 38597.73 39795.73 31299.58 38295.49 36781.40 41099.36 248
MAR-MVS98.24 29697.92 30899.19 26198.78 37899.65 10699.17 17699.14 32995.36 38298.04 37098.81 37097.47 26099.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25199.19 32499.26 20399.65 5799.69 13891.33 40098.14 36799.77 10798.28 20099.96 5495.41 36999.55 28198.58 369
train_agg98.35 28997.95 30299.57 16299.35 28199.35 18898.11 33299.41 27094.90 38897.92 37398.99 35098.02 22699.85 24295.38 37099.44 30299.50 203
9.1498.64 24399.45 25898.81 26299.60 19197.52 33799.28 26699.56 23498.53 16899.83 27295.36 37199.64 257
APD-MVScopyleft98.87 23798.59 24899.71 9899.50 23499.62 11799.01 22699.57 20896.80 36599.54 19999.63 19098.29 19999.91 13795.24 37299.71 23399.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36695.20 373
AdaColmapbinary98.60 26098.35 27399.38 21999.12 33699.22 21398.67 27799.42 26997.84 32498.81 32399.27 30897.32 26899.81 29695.14 37499.53 28899.10 306
test9_res95.10 37599.44 30299.50 203
CDPH-MVS98.56 26698.20 28499.61 14799.50 23499.46 15298.32 31499.41 27095.22 38499.21 27899.10 33798.34 19499.82 28195.09 37699.66 25399.56 170
BH-untuned98.22 29898.09 29398.58 32999.38 27497.24 34898.55 29398.98 34097.81 32599.20 28398.76 37297.01 28199.65 37194.83 37798.33 37698.86 351
BP-MVS94.73 378
HQP-MVS98.36 28698.02 29799.39 21699.31 29798.94 24597.98 34899.37 28597.45 34098.15 36398.83 36796.67 28999.70 33894.73 37899.67 25099.53 186
QAPM98.40 28497.99 29899.65 12099.39 27199.47 14899.67 4899.52 23991.70 39998.78 32999.80 8298.55 16299.95 6294.71 38099.75 21299.53 186
agg_prior294.58 38199.46 30199.50 203
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39396.36 36698.60 28299.21 32197.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 310
BH-RMVSNet98.41 28298.14 29099.21 25899.21 31998.47 28498.60 28298.26 37398.35 28698.93 30799.31 30097.20 27599.66 36594.32 38399.10 33799.51 198
E-PMN97.14 33597.43 32396.27 38598.79 37691.62 40495.54 40399.01 33999.44 13798.88 31499.12 33292.78 34399.68 35694.30 38499.03 34297.50 398
MG-MVS98.52 27098.39 26898.94 29499.15 33097.39 34598.18 32399.21 32198.89 22199.23 27399.63 19097.37 26699.74 32694.22 38599.61 26799.69 82
API-MVS98.38 28598.39 26898.35 33798.83 37099.26 20399.14 18699.18 32598.59 25798.66 33898.78 37198.61 15399.57 38394.14 38699.56 27796.21 405
PAPM_NR98.36 28698.04 29599.33 23299.48 24498.93 24898.79 26899.28 30597.54 33598.56 34898.57 37997.12 27799.69 34494.09 38798.90 35399.38 241
ZD-MVS99.43 26399.61 12399.43 26796.38 36999.11 29299.07 33997.86 23799.92 11594.04 38899.49 297
DPM-MVS98.28 29297.94 30699.32 23699.36 27999.11 22797.31 38598.78 34796.88 36198.84 32099.11 33697.77 24499.61 37994.03 38999.36 31399.23 276
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40196.95 35599.69 4189.23 41399.89 3596.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
PMVScopyleft92.94 2198.82 24198.81 23298.85 30999.84 6097.99 31899.20 16699.47 25599.71 8199.42 23299.82 7298.09 21999.47 39593.88 39199.85 15899.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33897.28 32795.99 38898.76 38191.03 40795.26 40598.61 35699.34 15398.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
BH-w/o97.20 33297.01 33497.76 35999.08 34895.69 37698.03 34398.52 36095.76 37897.96 37298.02 39295.62 31499.47 39592.82 39397.25 39998.12 392
TR-MVS97.44 32797.15 33198.32 34098.53 39197.46 34198.47 30397.91 38096.85 36298.21 36298.51 38396.42 29899.51 39392.16 39497.29 39897.98 394
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30399.45 15798.87 25199.48 25286.54 40599.44 22599.74 11897.34 26799.86 22491.61 39599.28 32497.37 401
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3488.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
DeepMVS_CXcopyleft97.98 35099.69 15596.95 35599.26 30875.51 40895.74 40498.28 38896.47 29699.62 37591.23 39797.89 39297.38 400
PAPR97.56 32497.07 33299.04 28598.80 37498.11 31097.63 36999.25 31194.56 39398.02 37198.25 38997.43 26299.68 35690.90 39898.74 36299.33 255
MVS95.72 36894.63 37398.99 28898.56 39097.98 32399.30 13598.86 34272.71 40997.30 38699.08 33898.34 19499.74 32689.21 39998.33 37699.26 270
thres600view796.60 34696.16 34897.93 35399.63 17596.09 37299.18 17197.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
FPMVS96.32 35295.50 36098.79 31799.60 18298.17 30698.46 30798.80 34697.16 35596.28 39999.63 19082.19 39799.09 40288.45 40198.89 35499.10 306
PCF-MVS96.03 1896.73 34395.86 35499.33 23299.44 25999.16 22296.87 39699.44 26486.58 40498.95 30599.40 27794.38 32599.88 18787.93 40299.80 19498.95 339
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 35096.03 35197.47 36699.63 17595.93 37399.18 17197.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
tfpn200view996.30 35395.89 35297.53 36399.58 19196.11 37099.00 23297.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
thres40096.40 34995.89 35297.92 35499.58 19196.11 37099.00 23297.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
thres20096.09 35895.68 35897.33 37199.48 24496.22 36998.53 29897.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16397.55 33897.94 35395.60 39999.37 14990.68 41098.70 37596.56 29298.61 40786.94 40799.55 28198.77 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 33196.83 34198.59 32799.46 25497.55 33899.25 15596.84 39398.78 23697.24 38897.67 39897.11 27898.97 40486.59 40898.54 37299.27 268
PAPM95.61 37094.71 37298.31 34299.12 33696.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 364
dongtai89.37 37588.91 37890.76 39199.19 32477.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 268
kuosan85.65 37784.57 38088.90 39397.91 40677.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 364
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1730.00 4140.00 41599.13 32899.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3260.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.83 6499.89 1099.74 2399.71 12699.69 8999.63 157
test_one_060199.63 17599.76 6099.55 21999.23 17099.31 26099.61 20798.59 156
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.69 15599.82 3499.54 22599.12 19499.82 7999.49 25698.91 11499.52 392
save fliter99.53 22199.25 20698.29 31699.38 28499.07 198
test072699.69 15599.80 4399.24 15699.57 20899.16 18599.73 12499.65 17698.35 192
GSMVS99.14 300
test_part299.62 17999.67 9899.55 197
sam_mvs190.81 36699.14 300
sam_mvs90.52 370
MTGPAbinary99.53 234
test_post52.41 41990.25 37299.86 224
patchmatchnet-post99.62 19790.58 36899.94 76
MTMP99.09 20798.59 359
TEST999.35 28199.35 18898.11 33299.41 27094.83 39197.92 37398.99 35098.02 22699.85 242
test_899.34 29099.31 19498.08 33699.40 27794.90 38897.87 37798.97 35698.02 22699.84 257
agg_prior99.35 28199.36 18599.39 28097.76 38399.85 242
test_prior499.19 22098.00 346
test_prior99.46 18999.35 28199.22 21399.39 28099.69 34499.48 212
新几何298.04 341
旧先验199.49 23999.29 19799.26 30899.39 28197.67 25199.36 31399.46 220
原ACMM297.92 355
test22299.51 22899.08 23497.83 36299.29 30295.21 38598.68 33799.31 30097.28 26999.38 31099.43 232
segment_acmp98.37 190
testdata197.72 36597.86 323
test1299.54 17399.29 30399.33 19199.16 32798.43 35497.54 25899.82 28199.47 29999.48 212
plane_prior799.58 19199.38 178
plane_prior699.47 25099.26 20397.24 270
plane_prior499.25 313
plane_prior399.31 19498.36 28199.14 288
plane_prior298.80 26598.94 211
plane_prior199.51 228
plane_prior99.24 21098.42 30897.87 32199.71 233
n20.00 420
nn0.00 420
door-mid99.83 61
test1199.29 302
door99.77 94
HQP5-MVS98.94 245
HQP-NCC99.31 29797.98 34897.45 34098.15 363
ACMP_Plane99.31 29797.98 34897.45 34098.15 363
HQP4-MVS98.15 36399.70 33899.53 186
HQP3-MVS99.37 28599.67 250
HQP2-MVS96.67 289
NP-MVS99.40 27099.13 22598.83 367
ACMMP++_ref99.94 92
ACMMP++99.79 199
Test By Simon98.41 184