This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6699.70 34100.00 199.73 75100.00 199.89 3499.79 1699.88 19299.98 1100.00 199.98 3
test_fmvs299.72 3699.85 1699.34 23099.91 2998.08 31599.48 100100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27799.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6099.12 201100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24999.93 2497.84 32799.34 127100.00 199.99 299.99 799.82 7599.87 999.99 899.97 499.99 1699.97 7
test_vis1_n99.68 4599.79 2799.36 22799.94 1898.18 30599.52 87100.00 199.86 45100.00 199.88 4298.99 10599.96 5499.97 499.96 6699.95 11
test_fmvs1_n99.68 4599.81 2399.28 24699.95 1597.93 32499.49 99100.00 199.82 6099.99 799.89 3499.21 7599.98 2199.97 499.98 3999.93 15
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 94100.00 199.94 21100.00 199.93 1799.58 3699.94 7999.97 499.99 1699.97 7
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7299.01 23099.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 3899.88 4299.55 13899.17 18199.98 1199.99 299.96 2399.84 6499.96 399.99 899.96 999.99 1699.88 24
test_cas_vis1_n_192099.76 3199.86 1299.45 19499.93 2498.40 29099.30 14099.98 1199.94 2199.99 799.89 3499.80 1599.97 3499.96 999.97 5399.97 7
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4299.66 10099.11 20599.91 3399.98 1399.96 2399.64 18299.60 3499.99 899.95 1299.99 1699.88 24
test_fmvsm_n_192099.84 1599.85 1699.83 3199.82 7099.70 8999.17 18199.97 1899.99 299.96 2399.82 7599.94 4100.00 199.95 12100.00 199.80 45
test_fmvs199.48 8999.65 5098.97 29099.54 21697.16 35099.11 20599.98 1199.78 6999.96 2399.81 8198.72 14099.97 3499.95 1299.97 5399.79 52
mvsany_test399.85 1199.88 699.75 7299.95 1599.37 18199.53 8699.98 1199.77 7399.99 799.95 1399.85 1099.94 7999.95 1299.98 3999.94 13
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2899.88 4299.64 10999.12 20199.91 3399.98 1399.95 3199.67 17099.67 2799.99 899.94 1699.99 1699.88 24
MM99.18 17599.05 18299.55 16799.35 28498.81 25799.05 21997.79 38399.99 299.48 21699.59 22296.29 30499.95 6499.94 1699.98 3999.88 24
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 2999.73 7598.97 24299.98 1199.99 299.96 2399.85 5899.93 799.99 899.94 1699.99 1699.93 15
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3499.10 20899.98 1199.99 299.98 1399.91 2499.68 2699.93 9699.93 1999.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4899.07 21899.98 1199.99 299.98 1399.90 2999.88 899.92 11899.93 1999.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5699.82 3499.03 22599.96 2399.99 299.97 1999.84 6499.58 3699.93 9699.92 2199.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5699.78 4899.03 22599.96 2399.99 299.97 1999.84 6499.78 1799.92 11899.92 2199.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 21100.00 199.87 28
v192192099.56 7399.57 7299.55 16799.75 12699.11 22799.05 21999.61 18099.15 18999.88 6199.71 14099.08 9299.87 20699.90 2499.97 5399.66 102
v124099.56 7399.58 6899.51 17899.80 8499.00 23899.00 23399.65 16299.15 18999.90 4999.75 11799.09 8999.88 19299.90 2499.96 6699.67 93
v1099.69 4299.69 4399.66 11599.81 7899.39 17699.66 5399.75 10599.60 11899.92 4399.87 4798.75 13599.86 22599.90 2499.99 1699.73 68
v119299.57 7099.57 7299.57 16199.77 11199.22 21399.04 22299.60 19199.18 17899.87 6999.72 13299.08 9299.85 24299.89 2799.98 3999.66 102
v14419299.55 7699.54 7899.58 15599.78 10399.20 21899.11 20599.62 17399.18 17899.89 5399.72 13298.66 14899.87 20699.88 2899.97 5399.66 102
v899.68 4599.69 4399.65 12099.80 8499.40 17299.66 5399.76 10099.64 10499.93 3799.85 5898.66 14899.84 25799.88 2899.99 1699.71 73
v114499.54 7999.53 8299.59 15299.79 9699.28 19999.10 20899.61 18099.20 17699.84 7599.73 12498.67 14699.84 25799.86 3099.98 3999.64 120
SSC-MVS99.52 8299.42 10199.83 3199.86 5299.65 10699.52 8799.81 7799.87 4299.81 8799.79 9496.78 28599.99 899.83 3199.51 29299.86 30
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 899.82 6899.84 5499.94 3499.91 2499.13 8699.96 5499.83 3199.99 1699.83 38
v2v48299.50 8499.47 8799.58 15599.78 10399.25 20699.14 19199.58 20699.25 16799.81 8799.62 20098.24 20499.84 25799.83 3199.97 5399.64 120
test_vis1_rt99.45 9999.46 9199.41 21299.71 14198.63 27698.99 23899.96 2399.03 20299.95 3199.12 33498.75 13599.84 25799.82 3499.82 17999.77 58
tt080599.63 5999.57 7299.81 3899.87 4999.88 1299.58 7798.70 35099.72 8099.91 4699.60 21799.43 4899.81 29699.81 3599.53 28899.73 68
V4299.56 7399.54 7899.63 13499.79 9699.46 15299.39 11599.59 19799.24 16999.86 7099.70 14898.55 16299.82 28199.79 3699.95 7999.60 150
mvs_tets99.90 299.90 399.90 799.96 799.79 4599.72 2999.88 4599.92 2699.98 1399.93 1799.94 499.98 2199.77 37100.00 199.92 18
WB-MVS99.44 10199.32 11999.80 4399.81 7899.61 12399.47 10399.81 7799.82 6099.71 13399.72 13296.60 28999.98 2199.75 3899.23 33299.82 44
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5399.68 4599.85 5599.95 1899.98 1399.92 2199.28 6699.98 2199.75 38100.00 199.94 13
jajsoiax99.89 399.89 599.89 1099.96 799.78 4899.70 3499.86 5099.89 3699.98 1399.90 2999.94 499.98 2199.75 38100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 38100.00 199.84 34
CS-MVS-test99.68 4599.70 4099.64 12799.57 20299.83 2999.78 1399.97 1899.92 2699.50 21399.38 28599.57 3899.95 6499.69 4299.90 11399.15 296
MVS_030498.61 25798.30 27799.52 17597.88 40698.95 24598.76 27294.11 40599.84 5499.32 25599.57 23295.57 31599.95 6499.68 4399.98 3999.68 86
CS-MVS99.67 5199.70 4099.58 15599.53 22299.84 2499.79 1299.96 2399.90 3099.61 17499.41 27599.51 4599.95 6499.66 4499.89 12498.96 339
mamv499.73 3599.74 3799.70 10199.66 16999.87 1499.69 4199.93 2999.93 2399.93 3799.86 5399.07 94100.00 199.66 4499.92 10199.24 271
pmmvs699.86 999.86 1299.83 3199.94 1899.90 799.83 699.91 3399.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5399.69 80
MIMVSNet199.66 5299.62 5699.80 4399.94 1899.87 1499.69 4199.77 9599.78 6999.93 3799.89 3497.94 23099.92 11899.65 4699.98 3999.62 136
EC-MVSNet99.69 4299.69 4399.68 10599.71 14199.91 499.76 1999.96 2399.86 4599.51 21199.39 28399.57 3899.93 9699.64 4899.86 15399.20 285
K. test v398.87 23698.60 24599.69 10399.93 2499.46 15299.74 2394.97 40099.78 6999.88 6199.88 4293.66 33499.97 3499.61 4999.95 7999.64 120
KD-MVS_self_test99.63 5999.59 6599.76 6299.84 5999.90 799.37 12299.79 8699.83 5899.88 6199.85 5898.42 18399.90 15999.60 5099.73 22399.49 207
Anonymous2024052199.44 10199.42 10199.49 18299.89 3798.96 24499.62 6399.76 10099.85 5199.82 8099.88 4296.39 29999.97 3499.59 5199.98 3999.55 172
TransMVSNet (Re)99.78 2799.77 3399.81 3899.91 2999.85 1999.75 2199.86 5099.70 8799.91 4699.89 3499.60 3499.87 20699.59 5199.74 21899.71 73
OurMVSNet-221017-099.75 3299.71 3999.84 2899.96 799.83 2999.83 699.85 5599.80 6699.93 3799.93 1798.54 16499.93 9699.59 5199.98 3999.76 63
EU-MVSNet99.39 11899.62 5698.72 32199.88 4296.44 36499.56 8299.85 5599.90 3099.90 4999.85 5898.09 21899.83 27299.58 5499.95 7999.90 20
mvs_anonymous99.28 14299.39 10498.94 29499.19 32697.81 32999.02 22899.55 21999.78 6999.85 7299.80 8498.24 20499.86 22599.57 5599.50 29599.15 296
test111197.74 31598.16 28996.49 38399.60 18389.86 41399.71 3391.21 40999.89 3699.88 6199.87 4793.73 33399.90 15999.56 5699.99 1699.70 76
lessismore_v099.64 12799.86 5299.38 17890.66 41099.89 5399.83 6894.56 32499.97 3499.56 5699.92 10199.57 167
mvsany_test199.44 10199.45 9399.40 21499.37 27898.64 27597.90 35999.59 19799.27 16399.92 4399.82 7599.74 2099.93 9699.55 5899.87 14599.63 125
MVSMamba_PlusPlus99.55 7699.58 6899.47 18899.68 16199.40 17299.52 8799.70 13299.92 2699.77 10699.86 5398.28 19999.96 5499.54 5999.90 11399.05 325
iter_conf0599.64 5899.65 5099.60 14999.68 16199.62 11699.82 899.89 4099.92 2699.93 3799.86 5398.28 19999.96 5499.54 5999.91 11199.23 275
pm-mvs199.79 2699.79 2799.78 5299.91 2999.83 2999.76 1999.87 4799.73 7599.89 5399.87 4799.63 2999.87 20699.54 5999.92 10199.63 125
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 2999.90 799.96 199.92 3099.90 3099.97 1999.87 4799.81 1499.95 6499.54 5999.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 8999.65 5098.95 29399.71 14197.27 34799.50 9599.82 6899.59 12099.41 23699.85 5899.62 31100.00 199.53 6399.89 12499.59 157
test250694.73 37394.59 37495.15 38999.59 18785.90 41599.75 2174.01 41799.89 3699.71 13399.86 5379.00 40699.90 15999.52 6499.99 1699.65 110
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3799.91 499.89 499.71 12799.93 2399.95 3199.89 3499.71 2299.96 5499.51 6599.97 5399.84 34
FC-MVSNet-test99.70 4099.65 5099.86 2499.88 4299.86 1899.72 2999.78 9299.90 3099.82 8099.83 6898.45 17999.87 20699.51 6599.97 5399.86 30
UA-Net99.78 2799.76 3699.86 2499.72 13899.71 8299.91 399.95 2899.96 1799.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
PMMVS299.48 8999.45 9399.57 16199.76 11598.99 23998.09 33699.90 3898.95 21099.78 10099.58 22599.57 3899.93 9699.48 6899.95 7999.79 52
VPA-MVSNet99.66 5299.62 5699.79 4999.68 16199.75 6699.62 6399.69 14099.85 5199.80 9199.81 8198.81 12399.91 14099.47 6999.88 13399.70 76
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18790.81 40999.72 2990.43 41199.89 3699.86 7099.86 5393.60 33599.89 17899.46 7099.99 1699.65 110
nrg03099.70 4099.66 4899.82 3599.76 11599.84 2499.61 6899.70 13299.93 2399.78 10099.68 16699.10 8799.78 30999.45 7199.96 6699.83 38
TAMVS99.49 8799.45 9399.63 13499.48 24599.42 16699.45 10799.57 20899.66 10099.78 10099.83 6897.85 23799.86 22599.44 7299.96 6699.61 146
GeoE99.69 4299.66 4899.78 5299.76 11599.76 6099.60 7499.82 6899.46 13599.75 11599.56 23699.63 2999.95 6499.43 7399.88 13399.62 136
new-patchmatchnet99.35 12899.57 7298.71 32399.82 7096.62 36298.55 29599.75 10599.50 12699.88 6199.87 4799.31 6299.88 19299.43 73100.00 199.62 136
test20.0399.55 7699.54 7899.58 15599.79 9699.37 18199.02 22899.89 4099.60 11899.82 8099.62 20098.81 12399.89 17899.43 7399.86 15399.47 215
MVSFormer99.41 11299.44 9699.31 24099.57 20298.40 29099.77 1599.80 8099.73 7599.63 15999.30 30498.02 22499.98 2199.43 7399.69 23899.55 172
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7599.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
SDMVSNet99.77 3099.77 3399.76 6299.80 8499.65 10699.63 6099.86 5099.97 1599.89 5399.89 3499.52 4499.99 899.42 7899.96 6699.65 110
Anonymous2023121199.62 6599.57 7299.76 6299.61 18199.60 12699.81 1099.73 11599.82 6099.90 4999.90 2997.97 22999.86 22599.42 7899.96 6699.80 45
SixPastTwentyTwo99.42 10899.30 12699.76 6299.92 2899.67 9899.70 3499.14 32899.65 10299.89 5399.90 2996.20 30699.94 7999.42 7899.92 10199.67 93
balanced_conf0399.50 8499.50 8499.50 18099.42 26899.49 14599.52 8799.75 10599.86 4599.78 10099.71 14098.20 21199.90 15999.39 8199.88 13399.10 307
patch_mono-299.51 8399.46 9199.64 12799.70 14999.11 22799.04 22299.87 4799.71 8299.47 21899.79 9498.24 20499.98 2199.38 8299.96 6699.83 38
UGNet99.38 12099.34 11499.49 18298.90 36298.90 25299.70 3499.35 28899.86 4598.57 34799.81 8198.50 17499.93 9699.38 8299.98 3999.66 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3999.67 4799.81 3899.89 3799.72 8099.59 7599.82 6899.39 14899.82 8099.84 6499.38 5499.91 14099.38 8299.93 9799.80 45
FIs99.65 5799.58 6899.84 2899.84 5999.85 1999.66 5399.75 10599.86 4599.74 12399.79 9498.27 20299.85 24299.37 8599.93 9799.83 38
sd_testset99.78 2799.78 3199.80 4399.80 8499.76 6099.80 1199.79 8699.97 1599.89 5399.89 3499.53 4399.99 899.36 8699.96 6699.65 110
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2699.85 5599.70 8799.92 4399.93 1799.45 4799.97 3499.36 86100.00 199.85 33
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10399.81 7899.59 12899.29 14799.90 3899.71 8299.79 9699.73 12499.54 4199.84 25799.36 8699.96 6699.65 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3299.74 3799.79 4999.88 4299.66 10099.69 4199.92 3099.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 3999.72 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6799.64 5499.53 17399.79 9698.82 25699.58 7799.97 1899.95 1899.96 2399.76 11298.44 18099.99 899.34 9099.96 6699.78 54
CHOSEN 1792x268899.39 11899.30 12699.65 12099.88 4299.25 20698.78 27099.88 4598.66 24999.96 2399.79 9497.45 25999.93 9699.34 9099.99 1699.78 54
CDS-MVSNet99.22 16199.13 15499.50 18099.35 28499.11 22798.96 24499.54 22599.46 13599.61 17499.70 14896.31 30299.83 27299.34 9099.88 13399.55 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 21699.16 14898.51 33099.75 12695.90 37498.07 33999.84 6199.84 5499.89 5399.73 12496.01 30999.99 899.33 93100.00 199.63 125
HyFIR lowres test98.91 22998.64 24299.73 8699.85 5699.47 14898.07 33999.83 6398.64 25199.89 5399.60 21792.57 344100.00 199.33 9399.97 5399.72 70
pmmvs599.19 17199.11 16199.42 20599.76 11598.88 25398.55 29599.73 11598.82 22999.72 12899.62 20096.56 29099.82 28199.32 9599.95 7999.56 169
v14899.40 11499.41 10399.39 21799.76 11598.94 24699.09 21299.59 19799.17 18399.81 8799.61 20998.41 18499.69 34499.32 9599.94 9099.53 185
baseline99.63 5999.62 5699.66 11599.80 8499.62 11699.44 10999.80 8099.71 8299.72 12899.69 15599.15 8199.83 27299.32 9599.94 9099.53 185
CVMVSNet98.61 25798.88 22297.80 35899.58 19293.60 39599.26 15499.64 16899.66 10099.72 12899.67 17093.26 33799.93 9699.30 9899.81 18899.87 28
PS-CasMVS99.66 5299.58 6899.89 1099.80 8499.85 1999.66 5399.73 11599.62 10999.84 7599.71 14098.62 15299.96 5499.30 9899.96 6699.86 30
DTE-MVSNet99.68 4599.61 6099.88 1699.80 8499.87 1499.67 4999.71 12799.72 8099.84 7599.78 10298.67 14699.97 3499.30 9899.95 7999.80 45
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25397.87 38278.01 40799.30 26599.69 15597.70 24595.89 40999.29 10198.14 38699.95 11
PEN-MVS99.66 5299.59 6599.89 1099.83 6399.87 1499.66 5399.73 11599.70 8799.84 7599.73 12498.56 16199.96 5499.29 10199.94 9099.83 38
WR-MVS_H99.61 6799.53 8299.87 2099.80 8499.83 2999.67 4999.75 10599.58 12199.85 7299.69 15598.18 21499.94 7999.28 10399.95 7999.83 38
IterMVS98.97 22099.16 14898.42 33499.74 13295.64 37798.06 34199.83 6399.83 5899.85 7299.74 12096.10 30899.99 899.27 104100.00 199.63 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 25798.34 27399.44 19999.60 18398.67 26899.27 15299.44 26399.68 9299.32 25599.49 25892.50 347100.00 199.24 10596.51 40399.65 110
hse-mvs298.52 27098.30 27799.16 26599.29 30698.60 27898.77 27199.02 33699.68 9299.32 25599.04 34492.50 34799.85 24299.24 10597.87 39399.03 330
FMVSNet199.66 5299.63 5599.73 8699.78 10399.77 5399.68 4599.70 13299.67 9699.82 8099.83 6898.98 10799.90 15999.24 10599.97 5399.53 185
casdiffmvspermissive99.63 5999.61 6099.67 10899.79 9699.59 12899.13 19799.85 5599.79 6899.76 11099.72 13299.33 6199.82 28199.21 10899.94 9099.59 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7999.43 9899.87 2099.76 11599.82 3499.57 8099.61 18099.54 12299.80 9199.64 18297.79 24199.95 6499.21 10899.94 9099.84 34
DELS-MVS99.34 13399.30 12699.48 18699.51 22999.36 18598.12 33299.53 23499.36 15399.41 23699.61 20999.22 7499.87 20699.21 10899.68 24399.20 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12399.26 13799.68 10599.51 22999.58 13298.98 24199.60 19199.43 14399.70 13799.36 29197.70 24599.88 19299.20 11199.87 14599.59 157
CANet99.11 19299.05 18299.28 24698.83 36998.56 28098.71 27899.41 26999.25 16799.23 27399.22 32297.66 25399.94 7999.19 11299.97 5399.33 253
EI-MVSNet-UG-set99.48 8999.50 8499.42 20599.57 20298.65 27499.24 16199.46 25899.68 9299.80 9199.66 17598.99 10599.89 17899.19 11299.90 11399.72 70
xiu_mvs_v1_base_debu99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base_debi99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
VPNet99.46 9799.37 10999.71 9799.82 7099.59 12899.48 10099.70 13299.81 6399.69 14099.58 22597.66 25399.86 22599.17 11799.44 30299.67 93
UniMVSNet_NR-MVSNet99.37 12399.25 13999.72 9299.47 25199.56 13598.97 24299.61 18099.43 14399.67 14899.28 30897.85 23799.95 6499.17 11799.81 18899.65 110
DU-MVS99.33 13699.21 14399.71 9799.43 26399.56 13598.83 25899.53 23499.38 14999.67 14899.36 29197.67 24999.95 6499.17 11799.81 18899.63 125
EI-MVSNet-Vis-set99.47 9699.49 8699.42 20599.57 20298.66 27199.24 16199.46 25899.67 9699.79 9699.65 18098.97 10999.89 17899.15 12099.89 12499.71 73
EI-MVSNet99.38 12099.44 9699.21 25999.58 19298.09 31299.26 15499.46 25899.62 10999.75 11599.67 17098.54 16499.85 24299.15 12099.92 10199.68 86
VNet99.18 17599.06 17899.56 16499.24 31699.36 18599.33 13099.31 29799.67 9699.47 21899.57 23296.48 29399.84 25799.15 12099.30 32199.47 215
EG-PatchMatch MVS99.57 7099.56 7799.62 14399.77 11199.33 19199.26 15499.76 10099.32 15799.80 9199.78 10299.29 6499.87 20699.15 12099.91 11199.66 102
PVSNet_Blended_VisFu99.40 11499.38 10699.44 19999.90 3598.66 27198.94 24799.91 3397.97 31299.79 9699.73 12499.05 9999.97 3499.15 12099.99 1699.68 86
IterMVS-LS99.41 11299.47 8799.25 25599.81 7898.09 31298.85 25599.76 10099.62 10999.83 7999.64 18298.54 16499.97 3499.15 12099.99 1699.68 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7999.47 8799.76 6299.58 19299.64 10999.30 14099.63 17099.61 11299.71 13399.56 23698.76 13399.96 5499.14 12699.92 10199.68 86
MVSTER98.47 27798.22 28299.24 25799.06 34998.35 29699.08 21599.46 25899.27 16399.75 11599.66 17588.61 38099.85 24299.14 12699.92 10199.52 195
Anonymous2023120699.35 12899.31 12199.47 18899.74 13299.06 23799.28 14999.74 11199.23 17199.72 12899.53 24797.63 25599.88 19299.11 12899.84 16299.48 211
Syy-MVS98.17 30097.85 31299.15 26798.50 39298.79 26098.60 28499.21 32097.89 31896.76 39496.37 41595.47 31699.57 38399.10 12998.73 36499.09 312
MVS_Test99.28 14299.31 12199.19 26299.35 28498.79 26099.36 12599.49 25199.17 18399.21 27899.67 17098.78 13099.66 36599.09 13099.66 25299.10 307
testgi99.29 14199.26 13799.37 22399.75 12698.81 25798.84 25699.89 4098.38 27999.75 11599.04 34499.36 5999.86 22599.08 13199.25 32899.45 220
1112_ss99.05 20298.84 22799.67 10899.66 16999.29 19798.52 30199.82 6897.65 33099.43 22899.16 32896.42 29699.91 14099.07 13299.84 16299.80 45
CANet_DTU98.91 22998.85 22599.09 27698.79 37598.13 30798.18 32599.31 29799.48 12898.86 31899.51 25196.56 29099.95 6499.05 13399.95 7999.19 288
bld_raw_conf0399.43 10499.43 9899.45 19499.42 26899.40 17299.52 8799.70 13299.73 7599.77 10699.73 12498.05 22299.91 14099.04 13499.90 11399.05 325
Baseline_NR-MVSNet99.49 8799.37 10999.82 3599.91 2999.84 2498.83 25899.86 5099.68 9299.65 15499.88 4297.67 24999.87 20699.03 13599.86 15399.76 63
FMVSNet299.35 12899.28 13399.55 16799.49 24099.35 18899.45 10799.57 20899.44 13899.70 13799.74 12097.21 27099.87 20699.03 13599.94 9099.44 225
Test_1112_low_res98.95 22698.73 23699.63 13499.68 16199.15 22498.09 33699.80 8097.14 35699.46 22299.40 27996.11 30799.89 17899.01 13799.84 16299.84 34
VDD-MVS99.20 16899.11 16199.44 19999.43 26398.98 24099.50 9598.32 37299.80 6699.56 19299.69 15596.99 28099.85 24298.99 13899.73 22399.50 202
DeepC-MVS98.90 499.62 6599.61 6099.67 10899.72 13899.44 15999.24 16199.71 12799.27 16399.93 3799.90 2999.70 2499.93 9698.99 13899.99 1699.64 120
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 8999.47 8799.51 17899.77 11199.41 17198.81 26399.66 15299.42 14799.75 11599.66 17599.20 7699.76 31998.98 14099.99 1699.36 246
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30298.04 37699.24 16995.77 40399.47 26593.78 33299.66 36598.98 14099.62 25999.37 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13399.32 11999.39 21799.67 16898.77 26298.57 29399.81 7799.61 11299.48 21699.41 27598.47 17599.86 22598.97 14299.90 11399.53 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11499.31 12199.68 10599.43 26399.55 13899.73 2699.50 24799.46 13599.88 6199.36 29197.54 25699.87 20698.97 14299.87 14599.63 125
GBi-Net99.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
FMVSNet597.80 31397.25 32999.42 20598.83 36998.97 24299.38 11899.80 8098.87 22299.25 26999.69 15580.60 40099.91 14098.96 14499.90 11399.38 240
test199.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
FMVSNet398.80 24298.63 24499.32 23799.13 33598.72 26599.10 20899.48 25299.23 17199.62 16899.64 18292.57 34499.86 22598.96 14499.90 11399.39 238
UnsupCasMVSNet_eth98.83 23998.57 25199.59 15299.68 16199.45 15798.99 23899.67 14799.48 12899.55 19799.36 29194.92 31899.86 22598.95 14896.57 40299.45 220
CHOSEN 280x42098.41 28298.41 26598.40 33599.34 29395.89 37596.94 39599.44 26398.80 23399.25 26999.52 24993.51 33699.98 2198.94 14999.98 3999.32 256
TDRefinement99.72 3699.70 4099.77 5599.90 3599.85 1999.86 599.92 3099.69 9099.78 10099.92 2199.37 5699.88 19298.93 15099.95 7999.60 150
alignmvs98.28 29297.96 30199.25 25599.12 33798.93 24999.03 22598.42 36699.64 10498.72 33397.85 39690.86 36599.62 37598.88 15199.13 33499.19 288
MGCFI-Net99.02 20899.01 19499.06 28399.11 34298.60 27899.63 6099.67 14799.63 10698.58 34597.65 39999.07 9499.57 38398.85 15298.92 34999.03 330
sss98.90 23198.77 23599.27 24999.48 24598.44 28798.72 27699.32 29397.94 31699.37 24499.35 29696.31 30299.91 14098.85 15299.63 25899.47 215
xiu_mvs_v2_base99.02 20899.11 16198.77 31899.37 27898.09 31298.13 33199.51 24399.47 13299.42 23098.54 38299.38 5499.97 3498.83 15499.33 31798.24 386
PS-MVSNAJ99.00 21699.08 17298.76 31999.37 27898.10 31198.00 34799.51 24399.47 13299.41 23698.50 38499.28 6699.97 3498.83 15499.34 31698.20 390
D2MVS99.22 16199.19 14599.29 24499.69 15398.74 26498.81 26399.41 26998.55 26099.68 14399.69 15598.13 21699.87 20698.82 15699.98 3999.24 271
PatchT98.45 27998.32 27598.83 31398.94 36098.29 29799.24 16198.82 34499.84 5499.08 29599.76 11291.37 35599.94 7998.82 15699.00 34498.26 385
testf199.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
APD_test299.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
sasdasda99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
Effi-MVS+99.06 19998.97 20899.34 23099.31 30098.98 24098.31 31799.91 3398.81 23198.79 32798.94 36099.14 8499.84 25798.79 16098.74 36299.20 285
canonicalmvs99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
VDDNet98.97 22098.82 23099.42 20599.71 14198.81 25799.62 6398.68 35199.81 6399.38 24399.80 8494.25 32699.85 24298.79 16099.32 31999.59 157
CR-MVSNet98.35 28998.20 28498.83 31399.05 35098.12 30899.30 14099.67 14797.39 34499.16 28499.79 9491.87 35299.91 14098.78 16498.77 35898.44 379
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21361.71 41095.39 40599.52 24993.90 32899.94 7998.76 16598.27 37999.62 136
RPMNet98.60 26098.53 25698.83 31399.05 35098.12 30899.30 14099.62 17399.86 4599.16 28499.74 12092.53 34699.92 11898.75 16698.77 35898.44 379
pmmvs499.13 18799.06 17899.36 22799.57 20299.10 23298.01 34599.25 31098.78 23699.58 18299.44 27298.24 20499.76 31998.74 16799.93 9799.22 278
tttt051797.62 32197.20 33098.90 30699.76 11597.40 34499.48 10094.36 40299.06 20099.70 13799.49 25884.55 39599.94 7998.73 16899.65 25499.36 246
EPP-MVSNet99.17 18099.00 19899.66 11599.80 8499.43 16399.70 3499.24 31399.48 12899.56 19299.77 10994.89 31999.93 9698.72 16999.89 12499.63 125
Anonymous2024052999.42 10899.34 11499.65 12099.53 22299.60 12699.63 6099.39 27999.47 13299.76 11099.78 10298.13 21699.86 22598.70 17099.68 24399.49 207
ACMH98.42 699.59 6999.54 7899.72 9299.86 5299.62 11699.56 8299.79 8698.77 23899.80 9199.85 5899.64 2899.85 24298.70 17099.89 12499.70 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 13699.28 13399.47 18899.57 20299.39 17699.78 1399.43 26698.87 22299.57 18599.82 7598.06 22199.87 20698.69 17299.73 22399.15 296
LFMVS98.46 27898.19 28799.26 25299.24 31698.52 28399.62 6396.94 39299.87 4299.31 26099.58 22591.04 36099.81 29698.68 17399.42 30699.45 220
WR-MVS99.11 19298.93 21399.66 11599.30 30499.42 16698.42 31099.37 28499.04 20199.57 18599.20 32696.89 28299.86 22598.66 17499.87 14599.70 76
mvsmamba99.08 19698.95 21199.45 19499.36 28199.18 22199.39 11598.81 34599.37 15099.35 24699.70 14896.36 30199.94 7998.66 17499.59 27399.22 278
Anonymous20240521198.75 24698.46 26099.63 13499.34 29399.66 10099.47 10397.65 38499.28 16299.56 19299.50 25493.15 33899.84 25798.62 17699.58 27599.40 236
EPNet98.13 30197.77 31699.18 26494.57 41497.99 31899.24 16197.96 37899.74 7497.29 38799.62 20093.13 33999.97 3498.59 17799.83 17099.58 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20299.09 17098.91 30099.21 32198.36 29598.82 26299.47 25598.85 22598.90 31399.56 23698.78 13099.09 40298.57 17899.68 24399.26 268
Patchmatch-RL test98.60 26098.36 27099.33 23399.77 11199.07 23598.27 31999.87 4798.91 21799.74 12399.72 13290.57 36999.79 30698.55 17999.85 15799.11 305
pmmvs398.08 30497.80 31398.91 30099.41 27197.69 33597.87 36099.66 15295.87 37599.50 21399.51 25190.35 37199.97 3498.55 17999.47 29999.08 318
ETV-MVS99.18 17599.18 14699.16 26599.34 29399.28 19999.12 20199.79 8699.48 12898.93 30798.55 38199.40 4999.93 9698.51 18199.52 29198.28 384
jason99.16 18199.11 16199.32 23799.75 12698.44 28798.26 32199.39 27998.70 24699.74 12399.30 30498.54 16499.97 3498.48 18299.82 17999.55 172
jason: jason.
APDe-MVScopyleft99.48 8999.36 11299.85 2699.55 21499.81 3999.50 9599.69 14098.99 20499.75 11599.71 14098.79 12899.93 9698.46 18399.85 15799.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 25198.56 25499.15 26799.22 31998.66 27197.14 39099.51 24398.09 30599.54 19999.27 31096.87 28399.74 32698.43 18498.96 34699.03 330
our_test_398.85 23899.09 17098.13 34799.66 16994.90 38797.72 36599.58 20699.07 19899.64 15599.62 20098.19 21299.93 9698.41 18599.95 7999.55 172
Gipumacopyleft99.57 7099.59 6599.49 18299.98 399.71 8299.72 2999.84 6199.81 6399.94 3499.78 10298.91 11599.71 33598.41 18599.95 7999.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 352
PM-MVS99.36 12699.29 13199.58 15599.83 6399.66 10098.95 24599.86 5098.85 22599.81 8799.73 12498.40 18899.92 11898.36 18899.83 17099.17 292
baseline197.73 31697.33 32698.96 29199.30 30497.73 33399.40 11398.42 36699.33 15699.46 22299.21 32491.18 35899.82 28198.35 18991.26 40999.32 256
MVS-HIRNet97.86 31098.22 28296.76 37899.28 30991.53 40598.38 31292.60 40899.13 19199.31 26099.96 1297.18 27499.68 35698.34 19099.83 17099.07 323
GA-MVS97.99 30997.68 31998.93 29799.52 22798.04 31697.19 38999.05 33598.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 252
Fast-Effi-MVS+99.02 20898.87 22399.46 19199.38 27699.50 14499.04 22299.79 8697.17 35498.62 34198.74 37399.34 6099.95 6498.32 19299.41 30798.92 345
MDA-MVSNet_test_wron98.95 22698.99 20498.85 30999.64 17497.16 35098.23 32399.33 29198.93 21499.56 19299.66 17597.39 26399.83 27298.29 19399.88 13399.55 172
N_pmnet98.73 24998.53 25699.35 22999.72 13898.67 26898.34 31494.65 40198.35 28699.79 9699.68 16698.03 22399.93 9698.28 19499.92 10199.44 225
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31397.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15998.27 19597.56 39698.91 346
thisisatest053097.45 32696.95 33698.94 29499.68 16197.73 33399.09 21294.19 40498.61 25699.56 19299.30 30484.30 39699.93 9698.27 19599.54 28699.16 294
YYNet198.95 22698.99 20498.84 31199.64 17497.14 35298.22 32499.32 29398.92 21699.59 18099.66 17597.40 26199.83 27298.27 19599.90 11399.55 172
ACMM98.09 1199.46 9799.38 10699.72 9299.80 8499.69 9399.13 19799.65 16298.99 20499.64 15599.72 13299.39 5099.86 22598.23 19899.81 18899.60 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22398.87 22399.24 25799.57 20298.40 29098.12 33299.18 32498.28 29499.63 15999.13 33098.02 22499.97 3498.22 19999.69 23899.35 249
3Dnovator99.15 299.43 10499.36 11299.65 12099.39 27399.42 16699.70 3499.56 21399.23 17199.35 24699.80 8499.17 7999.95 6498.21 20099.84 16299.59 157
Fast-Effi-MVS+-dtu99.20 16899.12 15899.43 20399.25 31499.69 9399.05 21999.82 6899.50 12698.97 30399.05 34298.98 10799.98 2198.20 20199.24 33098.62 365
MS-PatchMatch99.00 21698.97 20899.09 27699.11 34298.19 30398.76 27299.33 29198.49 26999.44 22499.58 22598.21 20999.69 34498.20 20199.62 25999.39 238
TSAR-MVS + GP.99.12 18999.04 18899.38 22099.34 29399.16 22298.15 32899.29 30198.18 30199.63 15999.62 20099.18 7899.68 35698.20 20199.74 21899.30 262
DP-MVS99.48 8999.39 10499.74 7799.57 20299.62 11699.29 14799.61 18099.87 4299.74 12399.76 11298.69 14299.87 20698.20 20199.80 19399.75 66
MVP-Stereo99.16 18199.08 17299.43 20399.48 24599.07 23599.08 21599.55 21998.63 25299.31 26099.68 16698.19 21299.78 30998.18 20599.58 27599.45 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10499.30 12699.80 4399.83 6399.81 3999.52 8799.70 13298.35 28699.51 21199.50 25499.31 6299.88 19298.18 20599.84 16299.69 80
MDA-MVSNet-bldmvs99.06 19999.05 18299.07 28199.80 8497.83 32898.89 25099.72 12499.29 15999.63 15999.70 14896.47 29499.89 17898.17 20799.82 17999.50 202
JIA-IIPM98.06 30597.92 30898.50 33198.59 38897.02 35498.80 26698.51 36199.88 4197.89 37599.87 4791.89 35199.90 15998.16 20897.68 39598.59 368
EIA-MVS99.12 18999.01 19499.45 19499.36 28199.62 11699.34 12799.79 8698.41 27598.84 32098.89 36498.75 13599.84 25798.15 20999.51 29298.89 349
miper_lstm_enhance98.65 25698.60 24598.82 31699.20 32497.33 34697.78 36399.66 15299.01 20399.59 18099.50 25494.62 32399.85 24298.12 21099.90 11399.26 268
Effi-MVS+-dtu99.07 19898.92 21799.52 17598.89 36599.78 4899.15 18999.66 15299.34 15498.92 31099.24 32097.69 24799.98 2198.11 21199.28 32498.81 356
tpm97.15 33396.95 33697.75 36098.91 36194.24 39099.32 13297.96 37897.71 32898.29 35799.32 30086.72 39099.92 11898.10 21296.24 40599.09 312
DeepPCF-MVS98.42 699.18 17599.02 19199.67 10899.22 31999.75 6697.25 38799.47 25598.72 24399.66 15299.70 14899.29 6499.63 37498.07 21399.81 18899.62 136
ppachtmachnet_test98.89 23499.12 15898.20 34599.66 16995.24 38397.63 36999.68 14399.08 19699.78 10099.62 20098.65 15099.88 19298.02 21499.96 6699.48 211
tpmrst97.73 31698.07 29496.73 38098.71 38492.00 40199.10 20898.86 34198.52 26598.92 31099.54 24591.90 35099.82 28198.02 21499.03 34298.37 381
CSCG99.37 12399.29 13199.60 14999.71 14199.46 15299.43 11199.85 5598.79 23499.41 23699.60 21798.92 11399.92 11898.02 21499.92 10199.43 231
eth_miper_zixun_eth98.68 25498.71 23898.60 32699.10 34496.84 35997.52 37799.54 22598.94 21199.58 18299.48 26196.25 30599.76 31998.01 21799.93 9799.21 281
Patchmtry98.78 24398.54 25599.49 18298.89 36599.19 21999.32 13299.67 14799.65 10299.72 12899.79 9491.87 35299.95 6498.00 21899.97 5399.33 253
PVSNet_BlendedMVS99.03 20699.01 19499.09 27699.54 21697.99 31898.58 28999.82 6897.62 33199.34 25099.71 14098.52 17199.77 31797.98 21999.97 5399.52 195
PVSNet_Blended98.70 25298.59 24799.02 28699.54 21697.99 31897.58 37299.82 6895.70 37999.34 25098.98 35498.52 17199.77 31797.98 21999.83 17099.30 262
cl____98.54 26898.41 26598.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.85 33099.78 30997.97 22199.89 12499.17 292
DIV-MVS_self_test98.54 26898.42 26498.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.87 32999.78 30997.97 22199.89 12499.18 290
AUN-MVS97.82 31297.38 32599.14 27099.27 31198.53 28198.72 27699.02 33698.10 30397.18 39099.03 34889.26 37899.85 24297.94 22397.91 39199.03 330
FA-MVS(test-final)98.52 27098.32 27599.10 27599.48 24598.67 26899.77 1598.60 35897.35 34699.63 15999.80 8493.07 34099.84 25797.92 22499.30 32198.78 359
ambc99.20 26199.35 28498.53 28199.17 18199.46 25899.67 14899.80 8498.46 17899.70 33897.92 22499.70 23499.38 240
USDC98.96 22398.93 21399.05 28499.54 21697.99 31897.07 39399.80 8098.21 29899.75 11599.77 10998.43 18199.64 37397.90 22699.88 13399.51 197
OPM-MVS99.26 14899.13 15499.63 13499.70 14999.61 12398.58 28999.48 25298.50 26799.52 20699.63 19399.14 8499.76 31997.89 22799.77 20799.51 197
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 13899.17 14799.77 5599.69 15399.80 4399.14 19199.31 29799.16 18599.62 16899.61 20998.35 19299.91 14097.88 22899.72 22999.61 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3199.70 14999.79 4599.14 19199.61 18099.92 11897.88 22899.72 22999.77 58
c3_l98.72 25098.71 23898.72 32199.12 33797.22 34997.68 36899.56 21398.90 21899.54 19999.48 26196.37 30099.73 32997.88 22899.88 13399.21 281
3Dnovator+98.92 399.35 12899.24 14199.67 10899.35 28499.47 14899.62 6399.50 24799.44 13899.12 29199.78 10298.77 13299.94 7997.87 23199.72 22999.62 136
miper_ehance_all_eth98.59 26398.59 24798.59 32798.98 35897.07 35397.49 37899.52 23998.50 26799.52 20699.37 28796.41 29899.71 33597.86 23299.62 25999.00 337
WTY-MVS98.59 26398.37 26999.26 25299.43 26398.40 29098.74 27499.13 33098.10 30399.21 27899.24 32094.82 32099.90 15997.86 23298.77 35899.49 207
APD_test199.36 12699.28 13399.61 14699.89 3799.89 1099.32 13299.74 11199.18 17899.69 14099.75 11798.41 18499.84 25797.85 23499.70 23499.10 307
SED-MVS99.40 11499.28 13399.77 5599.69 15399.82 3499.20 17199.54 22599.13 19199.82 8099.63 19398.91 11599.92 11897.85 23499.70 23499.58 162
test_241102_TWO99.54 22599.13 19199.76 11099.63 19398.32 19799.92 11897.85 23499.69 23899.75 66
MVS_111021_HR99.12 18999.02 19199.40 21499.50 23599.11 22797.92 35699.71 12798.76 24199.08 29599.47 26599.17 7999.54 38797.85 23499.76 20999.54 180
MTAPA99.35 12899.20 14499.80 4399.81 7899.81 3999.33 13099.53 23499.27 16399.42 23099.63 19398.21 20999.95 6497.83 23899.79 19899.65 110
MSC_two_6792asdad99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
No_MVS99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
TESTMET0.1,196.24 35495.84 35597.41 36898.24 39993.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17897.77 23998.77 35898.52 373
ACMH+98.40 899.50 8499.43 9899.71 9799.86 5299.76 6099.32 13299.77 9599.53 12499.77 10699.76 11299.26 7099.78 30997.77 23999.88 13399.60 150
IU-MVS99.69 15399.77 5399.22 31797.50 33899.69 14097.75 24399.70 23499.77 58
114514_t98.49 27598.11 29299.64 12799.73 13599.58 13299.24 16199.76 10089.94 40299.42 23099.56 23697.76 24499.86 22597.74 24499.82 17999.47 215
DVP-MVS++99.38 12099.25 13999.77 5599.03 35299.77 5399.74 2399.61 18099.18 17899.76 11099.61 20999.00 10399.92 11897.72 24599.60 26999.62 136
test_0728_THIRD99.18 17899.62 16899.61 20998.58 15899.91 14097.72 24599.80 19399.77 58
EGC-MVSNET89.05 37685.52 37999.64 12799.89 3799.78 4899.56 8299.52 23924.19 41149.96 41299.83 6899.15 8199.92 11897.71 24799.85 15799.21 281
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39896.43 36596.95 39499.41 26996.37 37099.43 22898.96 35894.74 32199.69 34497.71 24799.62 25998.83 355
TSAR-MVS + MP.99.34 13399.24 14199.63 13499.82 7099.37 18199.26 15499.35 28898.77 23899.57 18599.70 14899.27 6999.88 19297.71 24799.75 21199.65 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 32497.28 32798.40 33598.37 39696.75 36097.24 38899.37 28497.31 34899.41 23699.22 32287.30 38299.37 39997.70 25099.62 25999.08 318
MP-MVS-pluss99.14 18598.92 21799.80 4399.83 6399.83 2998.61 28299.63 17096.84 36399.44 22499.58 22598.81 12399.91 14097.70 25099.82 17999.67 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14299.11 16199.79 4999.75 12699.81 3998.95 24599.53 23498.27 29599.53 20499.73 12498.75 13599.87 20697.70 25099.83 17099.68 86
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21499.56 21399.37 18197.97 35299.68 14397.49 33999.08 29599.35 29695.41 31799.82 28197.70 25098.19 38399.01 336
MVS_111021_LR99.13 18799.03 19099.42 20599.58 19299.32 19397.91 35899.73 11598.68 24799.31 26099.48 26199.09 8999.66 36597.70 25099.77 20799.29 265
IS-MVSNet99.03 20698.85 22599.55 16799.80 8499.25 20699.73 2699.15 32799.37 15099.61 17499.71 14094.73 32299.81 29697.70 25099.88 13399.58 162
test-LLR97.15 33396.95 33697.74 36198.18 40195.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 14097.69 25698.78 35698.31 382
test-mter96.23 35595.73 35797.74 36198.18 40195.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 14097.69 25698.78 35698.31 382
XVS99.27 14699.11 16199.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33099.47 26598.47 17599.88 19297.62 25899.73 22399.67 93
X-MVStestdata96.09 35894.87 37099.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33061.30 41898.47 17599.88 19297.62 25899.73 22399.67 93
SMA-MVScopyleft99.19 17199.00 19899.73 8699.46 25599.73 7599.13 19799.52 23997.40 34399.57 18599.64 18298.93 11299.83 27297.61 26099.79 19899.63 125
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 34496.79 34396.46 38498.90 36290.71 41099.41 11298.68 35194.69 39298.14 36799.34 29986.32 39299.80 30397.60 26198.07 38998.88 350
PVSNet97.47 1598.42 28198.44 26298.35 33799.46 25596.26 36896.70 39899.34 29097.68 32999.00 30299.13 33097.40 26199.72 33197.59 26299.68 24399.08 318
new_pmnet98.88 23598.89 22198.84 31199.70 14997.62 33698.15 32899.50 24797.98 31199.62 16899.54 24598.15 21599.94 7997.55 26399.84 16298.95 341
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38095.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5497.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15299.11 16199.61 14698.38 39599.79 4599.57 8099.68 14399.61 11299.15 28699.71 14098.70 14199.91 14097.54 26499.68 24399.13 304
ZNCC-MVS99.22 16199.04 18899.77 5599.76 11599.73 7599.28 14999.56 21398.19 30099.14 28899.29 30798.84 12299.92 11897.53 26699.80 19399.64 120
CP-MVS99.23 15399.05 18299.75 7299.66 16999.66 10099.38 11899.62 17398.38 27999.06 29999.27 31098.79 12899.94 7997.51 26799.82 17999.66 102
SD-MVS99.01 21499.30 12698.15 34699.50 23599.40 17298.94 24799.61 18099.22 17599.75 11599.82 7599.54 4195.51 41197.48 26899.87 14599.54 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 27598.29 27999.11 27398.96 35998.42 28997.54 37399.32 29397.53 33698.47 35298.15 39197.88 23499.82 28197.46 26999.24 33099.09 312
DeepC-MVS_fast98.47 599.23 15399.12 15899.56 16499.28 30999.22 21398.99 23899.40 27699.08 19699.58 18299.64 18298.90 11899.83 27297.44 27099.75 21199.63 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 14999.08 17299.76 6299.73 13599.70 8999.31 13799.59 19798.36 28199.36 24599.37 28798.80 12799.91 14097.43 27199.75 21199.68 86
ACMMPR99.23 15399.06 17899.76 6299.74 13299.69 9399.31 13799.59 19798.36 28199.35 24699.38 28598.61 15499.93 9697.43 27199.75 21199.67 93
Vis-MVSNet (Re-imp)98.77 24498.58 25099.34 23099.78 10398.88 25399.61 6899.56 21399.11 19599.24 27299.56 23693.00 34299.78 30997.43 27199.89 12499.35 249
MIMVSNet98.43 28098.20 28499.11 27399.53 22298.38 29499.58 7798.61 35698.96 20899.33 25299.76 11290.92 36299.81 29697.38 27499.76 20999.15 296
WB-MVSnew98.34 29198.14 29098.96 29198.14 40497.90 32698.27 31997.26 39198.63 25298.80 32598.00 39497.77 24299.90 15997.37 27598.98 34599.09 312
XVG-OURS-SEG-HR99.16 18198.99 20499.66 11599.84 5999.64 10998.25 32299.73 11598.39 27899.63 15999.43 27399.70 2499.90 15997.34 27698.64 36899.44 225
COLMAP_ROBcopyleft98.06 1299.45 9999.37 10999.70 10199.83 6399.70 8999.38 11899.78 9299.53 12499.67 14899.78 10299.19 7799.86 22597.32 27799.87 14599.55 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 20898.81 23199.65 12099.58 19299.49 14598.58 28999.07 33298.40 27799.04 30099.25 31598.51 17399.80 30397.31 27899.51 29299.65 110
region2R99.23 15399.05 18299.77 5599.76 11599.70 8999.31 13799.59 19798.41 27599.32 25599.36 29198.73 13999.93 9697.29 27999.74 21899.67 93
APD-MVS_3200maxsize99.31 13999.16 14899.74 7799.53 22299.75 6699.27 15299.61 18099.19 17799.57 18599.64 18298.76 13399.90 15997.29 27999.62 25999.56 169
TAPA-MVS97.92 1398.03 30697.55 32299.46 19199.47 25199.44 15998.50 30399.62 17386.79 40399.07 29899.26 31398.26 20399.62 37597.28 28199.73 22399.31 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 14699.11 16199.73 8699.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.41 18499.91 14097.27 28299.61 26699.54 180
RE-MVS-def99.13 15499.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.57 15997.27 28299.61 26699.54 180
testing1196.05 36095.41 36297.97 35198.78 37795.27 38298.59 28798.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 343
test_yl98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
DCV-MVSNet98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
PHI-MVS99.11 19298.95 21199.59 15299.13 33599.59 12899.17 18199.65 16297.88 32099.25 26999.46 26898.97 10999.80 30397.26 28499.82 17999.37 243
tfpnnormal99.43 10499.38 10699.60 14999.87 4999.75 6699.59 7599.78 9299.71 8299.90 4999.69 15598.85 12199.90 15997.25 28899.78 20399.15 296
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37292.49 39999.17 18198.39 36898.12 30298.79 32799.58 22590.71 36799.89 17897.23 28999.41 30799.16 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 21998.80 23399.56 16499.25 31499.43 16398.54 29899.27 30598.58 25898.80 32599.43 27398.53 16899.70 33897.22 29099.59 27399.54 180
testing396.48 34895.63 35999.01 28799.23 31897.81 32998.90 24999.10 33198.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 249
HPM-MVScopyleft99.25 14999.07 17699.78 5299.81 7899.75 6699.61 6899.67 14797.72 32799.35 24699.25 31599.23 7399.92 11897.21 29199.82 17999.67 93
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17199.00 19899.76 6299.76 11599.68 9699.38 11899.54 22598.34 29099.01 30199.50 25498.53 16899.93 9697.18 29399.78 20399.66 102
ACMMPcopyleft99.25 14999.08 17299.74 7799.79 9699.68 9699.50 9599.65 16298.07 30699.52 20699.69 15598.57 15999.92 11897.18 29399.79 19899.63 125
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 33796.42 34498.66 32499.42 26897.47 34097.27 38694.30 40397.24 35099.15 28698.86 36685.01 39399.87 20697.10 29599.39 30998.63 364
XVG-ACMP-BASELINE99.23 15399.10 16999.63 13499.82 7099.58 13298.83 25899.72 12498.36 28199.60 17799.71 14098.92 11399.91 14097.08 29699.84 16299.40 236
MSDG99.08 19698.98 20799.37 22399.60 18399.13 22597.54 37399.74 11198.84 22899.53 20499.55 24399.10 8799.79 30697.07 29799.86 15399.18 290
SteuartSystems-ACMMP99.30 14099.14 15299.76 6299.87 4999.66 10099.18 17699.60 19198.55 26099.57 18599.67 17099.03 10299.94 7997.01 29899.80 19399.69 80
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 35695.78 35697.49 36498.53 39093.83 39498.04 34293.94 40698.96 20898.46 35398.17 39079.86 40199.87 20696.99 29999.06 33898.78 359
EPMVS96.53 34796.32 34597.17 37598.18 40192.97 39899.39 11589.95 41298.21 29898.61 34299.59 22286.69 39199.72 33196.99 29999.23 33298.81 356
MSP-MVS99.04 20598.79 23499.81 3899.78 10399.73 7599.35 12699.57 20898.54 26399.54 19998.99 35196.81 28499.93 9696.97 30199.53 28899.77 58
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22398.70 24099.74 7799.52 22799.71 8298.86 25399.19 32398.47 27198.59 34499.06 34198.08 22099.91 14096.94 30299.60 26999.60 150
SR-MVS99.19 17199.00 19899.74 7799.51 22999.72 8099.18 17699.60 19198.85 22599.47 21899.58 22598.38 18999.92 11896.92 30399.54 28699.57 167
PGM-MVS99.20 16899.01 19499.77 5599.75 12699.71 8299.16 18799.72 12497.99 31099.42 23099.60 21798.81 12399.93 9696.91 30499.74 21899.66 102
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35298.24 29899.61 6898.72 34996.81 36498.73 33299.51 25194.06 32799.86 22596.91 30498.20 38198.86 352
MDTV_nov1_ep1397.73 31798.70 38590.83 40899.15 18998.02 37798.51 26698.82 32299.61 20990.98 36199.66 36596.89 30698.92 349
GST-MVS99.16 18198.96 21099.75 7299.73 13599.73 7599.20 17199.55 21998.22 29799.32 25599.35 29698.65 15099.91 14096.86 30799.74 21899.62 136
test_post199.14 19151.63 42089.54 37799.82 28196.86 307
SCA98.11 30298.36 27097.36 36999.20 32492.99 39798.17 32798.49 36398.24 29699.10 29499.57 23296.01 30999.94 7996.86 30799.62 25999.14 301
XVG-OURS99.21 16699.06 17899.65 12099.82 7099.62 11697.87 36099.74 11198.36 28199.66 15299.68 16699.71 2299.90 15996.84 31099.88 13399.43 231
LCM-MVSNet-Re99.28 14299.15 15199.67 10899.33 29899.76 6099.34 12799.97 1898.93 21499.91 4699.79 9498.68 14399.93 9696.80 31199.56 27799.30 262
RPSCF99.18 17599.02 19199.64 12799.83 6399.85 1999.44 10999.82 6898.33 29199.50 21399.78 10297.90 23299.65 37196.78 31299.83 17099.44 225
旧先验297.94 35495.33 38398.94 30699.88 19296.75 313
MDTV_nov1_ep13_2view91.44 40699.14 19197.37 34599.21 27891.78 35496.75 31399.03 330
CLD-MVS98.76 24598.57 25199.33 23399.57 20298.97 24297.53 37599.55 21996.41 36899.27 26799.13 33099.07 9499.78 30996.73 31599.89 12499.23 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 30397.98 30098.48 33299.27 31196.48 36399.40 11399.07 33298.81 23199.23 27399.57 23290.11 37399.87 20696.69 31699.64 25699.09 312
baseline296.83 34096.28 34698.46 33399.09 34796.91 35798.83 25893.87 40797.23 35196.23 40298.36 38688.12 38199.90 15996.68 31798.14 38698.57 371
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21391.75 39897.13 39297.61 40295.58 31498.63 40696.68 31799.11 33698.18 391
PC_three_145297.56 33299.68 14399.41 27599.09 8997.09 40896.66 31999.60 26999.62 136
LPG-MVS_test99.22 16199.05 18299.74 7799.82 7099.63 11499.16 18799.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
LGP-MVS_train99.74 7799.82 7099.63 11499.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
ETVMVS96.14 35795.22 36798.89 30798.80 37398.01 31798.66 28098.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 347
TinyColmap98.97 22098.93 21399.07 28199.46 25598.19 30397.75 36499.75 10598.79 23499.54 19999.70 14898.97 10999.62 37596.63 32399.83 17099.41 235
LF4IMVS99.01 21498.92 21799.27 24999.71 14199.28 19998.59 28799.77 9598.32 29299.39 24299.41 27598.62 15299.84 25796.62 32499.84 16298.69 363
NCCC98.82 24098.57 25199.58 15599.21 32199.31 19498.61 28299.25 31098.65 25098.43 35499.26 31397.86 23599.81 29696.55 32599.27 32799.61 146
OPU-MVS99.29 24499.12 33799.44 15999.20 17199.40 27999.00 10398.84 40596.54 32699.60 26999.58 162
F-COLMAP98.74 24798.45 26199.62 14399.57 20299.47 14898.84 25699.65 16296.31 37198.93 30799.19 32797.68 24899.87 20696.52 32799.37 31299.53 185
testing9995.86 36595.19 36897.87 35598.76 38095.03 38498.62 28198.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 347
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33395.36 38099.22 16898.75 34896.97 35998.25 35999.64 18290.90 36399.94 7996.51 32899.56 27799.08 318
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33394.65 38899.22 16898.86 34196.97 35998.25 35999.64 18290.90 36399.84 25796.51 32899.56 27799.08 318
PatchMatch-RL98.68 25498.47 25999.30 24399.44 26099.28 19998.14 33099.54 22597.12 35799.11 29299.25 31597.80 24099.70 33896.51 32899.30 32198.93 343
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21298.33 39799.56 13599.01 23099.59 19795.44 38199.57 18599.80 8495.64 31299.46 39796.47 33299.92 10199.21 281
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 36195.32 36598.02 34998.76 38095.39 37998.38 31298.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 338
SF-MVS99.10 19598.93 21399.62 14399.58 19299.51 14399.13 19799.65 16297.97 31299.42 23099.61 20998.86 12099.87 20696.45 33499.68 24399.49 207
FE-MVS97.85 31197.42 32499.15 26799.44 26098.75 26399.77 1598.20 37595.85 37699.33 25299.80 8488.86 37999.88 19296.40 33599.12 33598.81 356
DPE-MVScopyleft99.14 18598.92 21799.82 3599.57 20299.77 5398.74 27499.60 19198.55 26099.76 11099.69 15598.23 20899.92 11896.39 33699.75 21199.76 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
AllTest99.21 16699.07 17699.63 13499.78 10399.64 10999.12 20199.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
TestCases99.63 13499.78 10399.64 10999.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
testdata99.42 20599.51 22998.93 24999.30 30096.20 37298.87 31799.40 27998.33 19699.89 17896.29 34099.28 32499.44 225
dp96.86 33997.07 33296.24 38698.68 38690.30 41299.19 17598.38 36997.35 34698.23 36199.59 22287.23 38399.82 28196.27 34198.73 36498.59 368
tpmvs97.39 32897.69 31896.52 38298.41 39491.76 40299.30 14098.94 34097.74 32697.85 37899.55 24392.40 34999.73 32996.25 34298.73 36498.06 393
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
ACMP97.51 1499.05 20298.84 22799.67 10899.78 10399.55 13898.88 25199.66 15297.11 35899.47 21899.60 21799.07 9499.89 17896.18 34599.85 15799.58 162
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23198.72 23799.44 19999.39 27399.42 16698.58 28999.64 16897.31 34899.44 22499.62 20098.59 15699.69 34496.17 34699.79 19899.22 278
DP-MVS Recon98.50 27398.23 28199.31 24099.49 24099.46 15298.56 29499.63 17094.86 39098.85 31999.37 28797.81 23999.59 38196.08 34799.44 30298.88 350
tpm cat196.78 34196.98 33596.16 38798.85 36890.59 41199.08 21599.32 29392.37 39697.73 38499.46 26891.15 35999.69 34496.07 34898.80 35598.21 388
tpm296.35 35196.22 34796.73 38098.88 36791.75 40399.21 17098.51 36193.27 39597.89 37599.21 32484.83 39499.70 33896.04 34998.18 38498.75 362
dmvs_re98.69 25398.48 25899.31 24099.55 21499.42 16699.54 8598.38 36999.32 15798.72 33398.71 37496.76 28699.21 40096.01 35099.35 31599.31 260
test_040299.22 16199.14 15299.45 19499.79 9699.43 16399.28 14999.68 14399.54 12299.40 24199.56 23699.07 9499.82 28196.01 35099.96 6699.11 305
ITE_SJBPF99.38 22099.63 17699.44 15999.73 11598.56 25999.33 25299.53 24798.88 11999.68 35696.01 35099.65 25499.02 335
test_prior297.95 35397.87 32198.05 36999.05 34297.90 23295.99 35399.49 297
testdata299.89 17895.99 353
原ACMM199.37 22399.47 25198.87 25599.27 30596.74 36698.26 35899.32 30097.93 23199.82 28195.96 35599.38 31099.43 231
新几何199.52 17599.50 23599.22 21399.26 30795.66 38098.60 34399.28 30897.67 24999.89 17895.95 35699.32 31999.45 220
MP-MVScopyleft99.06 19998.83 22999.76 6299.76 11599.71 8299.32 13299.50 24798.35 28698.97 30399.48 26198.37 19099.92 11895.95 35699.75 21199.63 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 37194.59 37498.61 32598.66 38797.45 34298.54 29897.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 372
wuyk23d97.58 32399.13 15492.93 39099.69 15399.49 14599.52 8799.77 9597.97 31299.96 2399.79 9499.84 1299.94 7995.85 35999.82 17979.36 408
HQP_MVS98.90 23198.68 24199.55 16799.58 19299.24 21098.80 26699.54 22598.94 21199.14 28899.25 31597.24 26899.82 28195.84 36099.78 20399.60 150
plane_prior599.54 22599.82 28195.84 36099.78 20399.60 150
无先验98.01 34599.23 31495.83 37799.85 24295.79 36299.44 225
CPTT-MVS98.74 24798.44 26299.64 12799.61 18199.38 17899.18 17699.55 21996.49 36799.27 26799.37 28797.11 27699.92 11895.74 36399.67 24999.62 136
PLCcopyleft97.35 1698.36 28697.99 29899.48 18699.32 29999.24 21098.50 30399.51 24395.19 38698.58 34598.96 35896.95 28199.83 27295.63 36499.25 32899.37 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 26598.34 27399.28 24699.18 32999.10 23298.34 31499.41 26998.48 27098.52 34998.98 35497.05 27899.78 30995.59 36599.50 29598.96 339
131498.00 30897.90 31098.27 34498.90 36297.45 34299.30 14099.06 33494.98 38797.21 38999.12 33498.43 18199.67 36195.58 36698.56 37197.71 397
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37793.48 39695.72 40299.40 27696.18 37397.37 38597.73 39795.73 31199.58 38295.49 36781.40 41099.36 246
MAR-MVS98.24 29697.92 30899.19 26298.78 37799.65 10699.17 18199.14 32895.36 38298.04 37098.81 37097.47 25899.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25299.19 32699.26 20399.65 5899.69 14091.33 40098.14 36799.77 10998.28 19999.96 5495.41 36999.55 28198.58 370
train_agg98.35 28997.95 30299.57 16199.35 28499.35 18898.11 33499.41 26994.90 38897.92 37398.99 35198.02 22499.85 24295.38 37099.44 30299.50 202
9.1498.64 24299.45 25998.81 26399.60 19197.52 33799.28 26699.56 23698.53 16899.83 27295.36 37199.64 256
APD-MVScopyleft98.87 23698.59 24799.71 9799.50 23599.62 11699.01 23099.57 20896.80 36599.54 19999.63 19398.29 19899.91 14095.24 37299.71 23299.61 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 36695.20 373
AdaColmapbinary98.60 26098.35 27299.38 22099.12 33799.22 21398.67 27999.42 26897.84 32498.81 32399.27 31097.32 26699.81 29695.14 37499.53 28899.10 307
test9_res95.10 37599.44 30299.50 202
CDPH-MVS98.56 26698.20 28499.61 14699.50 23599.46 15298.32 31699.41 26995.22 38499.21 27899.10 33898.34 19499.82 28195.09 37699.66 25299.56 169
BH-untuned98.22 29898.09 29398.58 32999.38 27697.24 34898.55 29598.98 33997.81 32599.20 28398.76 37297.01 27999.65 37194.83 37798.33 37698.86 352
BP-MVS94.73 378
HQP-MVS98.36 28698.02 29799.39 21799.31 30098.94 24697.98 34999.37 28497.45 34098.15 36398.83 36796.67 28799.70 33894.73 37899.67 24999.53 185
QAPM98.40 28497.99 29899.65 12099.39 27399.47 14899.67 4999.52 23991.70 39998.78 32999.80 8498.55 16299.95 6494.71 38099.75 21199.53 185
agg_prior294.58 38199.46 30199.50 202
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39296.36 36698.60 28499.21 32097.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 312
BH-RMVSNet98.41 28298.14 29099.21 25999.21 32198.47 28498.60 28498.26 37398.35 28698.93 30799.31 30297.20 27399.66 36594.32 38399.10 33799.51 197
E-PMN97.14 33597.43 32396.27 38598.79 37591.62 40495.54 40399.01 33899.44 13898.88 31499.12 33492.78 34399.68 35694.30 38499.03 34297.50 398
MG-MVS98.52 27098.39 26798.94 29499.15 33297.39 34598.18 32599.21 32098.89 22199.23 27399.63 19397.37 26499.74 32694.22 38599.61 26699.69 80
API-MVS98.38 28598.39 26798.35 33798.83 36999.26 20399.14 19199.18 32498.59 25798.66 33898.78 37198.61 15499.57 38394.14 38699.56 27796.21 405
PAPM_NR98.36 28698.04 29599.33 23399.48 24598.93 24998.79 26999.28 30497.54 33598.56 34898.57 37997.12 27599.69 34494.09 38798.90 35399.38 240
ZD-MVS99.43 26399.61 12399.43 26696.38 36999.11 29299.07 34097.86 23599.92 11894.04 38899.49 297
DPM-MVS98.28 29297.94 30699.32 23799.36 28199.11 22797.31 38598.78 34796.88 36198.84 32099.11 33797.77 24299.61 37994.03 38999.36 31399.23 275
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40096.95 35599.69 4189.23 41399.89 3696.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
PMVScopyleft92.94 2198.82 24098.81 23198.85 30999.84 5997.99 31899.20 17199.47 25599.71 8299.42 23099.82 7598.09 21899.47 39593.88 39199.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 33897.28 32795.99 38898.76 38091.03 40795.26 40598.61 35699.34 15498.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
BH-w/o97.20 33297.01 33497.76 35999.08 34895.69 37698.03 34498.52 36095.76 37897.96 37298.02 39295.62 31399.47 39592.82 39397.25 39998.12 392
TR-MVS97.44 32797.15 33198.32 34098.53 39097.46 34198.47 30597.91 38096.85 36298.21 36298.51 38396.42 29699.51 39392.16 39497.29 39897.98 394
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30699.45 15798.87 25299.48 25286.54 40599.44 22499.74 12097.34 26599.86 22591.61 39599.28 32497.37 401
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3488.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
DeepMVS_CXcopyleft97.98 35099.69 15396.95 35599.26 30775.51 40895.74 40498.28 38896.47 29499.62 37591.23 39797.89 39297.38 400
PAPR97.56 32497.07 33299.04 28598.80 37398.11 31097.63 36999.25 31094.56 39398.02 37198.25 38997.43 26099.68 35690.90 39898.74 36299.33 253
MVS95.72 36894.63 37398.99 28898.56 38997.98 32399.30 14098.86 34172.71 40997.30 38699.08 33998.34 19499.74 32689.21 39998.33 37699.26 268
thres600view796.60 34696.16 34897.93 35399.63 17696.09 37299.18 17697.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
FPMVS96.32 35295.50 36098.79 31799.60 18398.17 30698.46 30998.80 34697.16 35596.28 39999.63 19382.19 39799.09 40288.45 40198.89 35499.10 307
PCF-MVS96.03 1896.73 34395.86 35499.33 23399.44 26099.16 22296.87 39699.44 26386.58 40498.95 30599.40 27994.38 32599.88 19287.93 40299.80 19398.95 341
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 35096.03 35197.47 36699.63 17695.93 37399.18 17697.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
tfpn200view996.30 35395.89 35297.53 36399.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
thres40096.40 34995.89 35297.92 35499.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
thres20096.09 35895.68 35897.33 37199.48 24596.22 36998.53 30097.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16197.55 33897.94 35495.60 39999.37 15090.68 41098.70 37596.56 29098.61 40786.94 40799.55 28198.77 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 33196.83 34198.59 32799.46 25597.55 33899.25 16096.84 39398.78 23697.24 38897.67 39897.11 27698.97 40486.59 40898.54 37299.27 266
PAPM95.61 37094.71 37298.31 34299.12 33796.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 365
dongtai89.37 37588.91 37890.76 39199.19 32677.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 266
kuosan85.65 37784.57 38088.90 39397.91 40577.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 365
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1730.00 4140.00 41599.13 33099.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3280.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.83 6399.89 1099.74 2399.71 12799.69 9099.63 159
test_one_060199.63 17699.76 6099.55 21999.23 17199.31 26099.61 20998.59 156
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.69 15399.82 3499.54 22599.12 19499.82 8099.49 25898.91 11599.52 392
save fliter99.53 22299.25 20698.29 31899.38 28399.07 198
test072699.69 15399.80 4399.24 16199.57 20899.16 18599.73 12799.65 18098.35 192
GSMVS99.14 301
test_part299.62 18099.67 9899.55 197
sam_mvs190.81 36699.14 301
sam_mvs90.52 370
MTGPAbinary99.53 234
test_post52.41 41990.25 37299.86 225
patchmatchnet-post99.62 20090.58 36899.94 79
MTMP99.09 21298.59 359
TEST999.35 28499.35 18898.11 33499.41 26994.83 39197.92 37398.99 35198.02 22499.85 242
test_899.34 29399.31 19498.08 33899.40 27694.90 38897.87 37798.97 35698.02 22499.84 257
agg_prior99.35 28499.36 18599.39 27997.76 38399.85 242
test_prior499.19 21998.00 347
test_prior99.46 19199.35 28499.22 21399.39 27999.69 34499.48 211
新几何298.04 342
旧先验199.49 24099.29 19799.26 30799.39 28397.67 24999.36 31399.46 219
原ACMM297.92 356
test22299.51 22999.08 23497.83 36299.29 30195.21 38598.68 33799.31 30297.28 26799.38 31099.43 231
segment_acmp98.37 190
testdata197.72 36597.86 323
test1299.54 17299.29 30699.33 19199.16 32698.43 35497.54 25699.82 28199.47 29999.48 211
plane_prior799.58 19299.38 178
plane_prior699.47 25199.26 20397.24 268
plane_prior499.25 315
plane_prior399.31 19498.36 28199.14 288
plane_prior298.80 26698.94 211
plane_prior199.51 229
plane_prior99.24 21098.42 31097.87 32199.71 232
n20.00 420
nn0.00 420
door-mid99.83 63
test1199.29 301
door99.77 95
HQP5-MVS98.94 246
HQP-NCC99.31 30097.98 34997.45 34098.15 363
ACMP_Plane99.31 30097.98 34997.45 34098.15 363
HQP4-MVS98.15 36399.70 33899.53 185
HQP3-MVS99.37 28499.67 249
HQP2-MVS96.67 287
NP-MVS99.40 27299.13 22598.83 367
ACMMP++_ref99.94 90
ACMMP++99.79 198
Test By Simon98.41 184