test_vis3_rt | | | 99.89 3 | 99.90 3 | 99.87 15 | 99.98 3 | 99.75 63 | 99.70 35 | 100.00 1 | 99.73 64 | 100.00 1 | 99.89 31 | 99.79 12 | 99.88 178 | 99.98 1 | 100.00 1 | 99.98 1 |
|
test_fmvs2 | | | 99.72 27 | 99.85 14 | 99.34 216 | 99.91 28 | 98.08 298 | 99.48 95 | 100.00 1 | 99.90 20 | 99.99 7 | 99.91 24 | 99.50 37 | 99.98 15 | 99.98 1 | 99.99 14 | 99.96 6 |
|
test_fmvs3 | | | 99.83 14 | 99.93 2 | 99.53 163 | 99.96 5 | 98.62 261 | 99.67 49 | 100.00 1 | 99.95 10 | 100.00 1 | 99.95 13 | 99.85 6 | 99.99 7 | 99.98 1 | 99.99 14 | 99.98 1 |
|
test_vis1_n_1920 | | | 99.72 27 | 99.88 6 | 99.27 235 | 99.93 23 | 97.84 309 | 99.34 120 | 100.00 1 | 99.99 1 | 99.99 7 | 99.82 66 | 99.87 5 | 99.99 7 | 99.97 4 | 99.99 14 | 99.97 3 |
|
test_vis1_n | | | 99.68 37 | 99.79 21 | 99.36 213 | 99.94 16 | 98.18 288 | 99.52 86 | 100.00 1 | 99.86 35 | 100.00 1 | 99.88 39 | 98.99 93 | 99.96 48 | 99.97 4 | 99.96 61 | 99.95 7 |
|
test_fmvs1_n | | | 99.68 37 | 99.81 18 | 99.28 232 | 99.95 13 | 97.93 307 | 99.49 94 | 100.00 1 | 99.82 48 | 99.99 7 | 99.89 31 | 99.21 66 | 99.98 15 | 99.97 4 | 99.98 33 | 99.93 11 |
|
test_f | | | 99.75 23 | 99.88 6 | 99.37 209 | 99.96 5 | 98.21 285 | 99.51 89 | 100.00 1 | 99.94 14 | 100.00 1 | 99.93 17 | 99.58 28 | 99.94 70 | 99.97 4 | 99.99 14 | 99.97 3 |
|
test_fmvsmvis_n_1920 | | | 99.84 10 | 99.86 11 | 99.81 31 | 99.88 40 | 99.55 128 | 99.17 175 | 99.98 9 | 99.99 1 | 99.96 17 | 99.84 57 | 99.96 1 | 99.99 7 | 99.96 8 | 99.99 14 | 99.88 18 |
|
test_cas_vis1_n_1920 | | | 99.76 22 | 99.86 11 | 99.45 181 | 99.93 23 | 98.40 273 | 99.30 133 | 99.98 9 | 99.94 14 | 99.99 7 | 99.89 31 | 99.80 11 | 99.97 27 | 99.96 8 | 99.97 46 | 99.97 3 |
|
test_fmvsm_n_1920 | | | 99.84 10 | 99.85 14 | 99.83 25 | 99.82 63 | 99.70 84 | 99.17 175 | 99.97 13 | 99.99 1 | 99.96 17 | 99.82 66 | 99.94 2 | 100.00 1 | 99.95 10 | 100.00 1 | 99.80 35 |
|
test_fmvs1 | | | 99.48 78 | 99.65 41 | 98.97 273 | 99.54 205 | 97.16 330 | 99.11 197 | 99.98 9 | 99.78 58 | 99.96 17 | 99.81 72 | 98.72 128 | 99.97 27 | 99.95 10 | 99.97 46 | 99.79 42 |
|
mvsany_test3 | | | 99.85 8 | 99.88 6 | 99.75 64 | 99.95 13 | 99.37 168 | 99.53 85 | 99.98 9 | 99.77 62 | 99.99 7 | 99.95 13 | 99.85 6 | 99.94 70 | 99.95 10 | 99.98 33 | 99.94 9 |
|
MVS_0304 | | | 99.17 166 | 99.03 176 | 99.59 142 | 99.44 249 | 98.90 237 | 99.04 211 | 95.32 376 | 99.99 1 | 99.68 132 | 99.57 219 | 98.30 188 | 99.97 27 | 99.94 13 | 99.98 33 | 99.88 18 |
|
LCM-MVSNet | | | 99.95 1 | 99.95 1 | 99.95 1 | 99.99 1 | 99.99 1 | 99.95 2 | 99.97 13 | 99.99 1 | 100.00 1 | 99.98 10 | 99.78 13 | 100.00 1 | 99.92 14 | 100.00 1 | 99.87 20 |
|
v1921920 | | | 99.56 65 | 99.57 63 | 99.55 158 | 99.75 118 | 99.11 213 | 99.05 209 | 99.61 164 | 99.15 174 | 99.88 53 | 99.71 130 | 99.08 83 | 99.87 192 | 99.90 15 | 99.97 46 | 99.66 93 |
|
v1240 | | | 99.56 65 | 99.58 60 | 99.51 167 | 99.80 76 | 99.00 224 | 99.00 220 | 99.65 146 | 99.15 174 | 99.90 41 | 99.75 109 | 99.09 80 | 99.88 178 | 99.90 15 | 99.96 61 | 99.67 84 |
|
v10 | | | 99.69 34 | 99.69 34 | 99.66 106 | 99.81 71 | 99.39 163 | 99.66 53 | 99.75 93 | 99.60 104 | 99.92 32 | 99.87 43 | 98.75 123 | 99.86 210 | 99.90 15 | 99.99 14 | 99.73 60 |
|
v1192 | | | 99.57 62 | 99.57 63 | 99.57 152 | 99.77 103 | 99.22 200 | 99.04 211 | 99.60 176 | 99.18 163 | 99.87 61 | 99.72 123 | 99.08 83 | 99.85 227 | 99.89 18 | 99.98 33 | 99.66 93 |
|
v144192 | | | 99.55 68 | 99.54 69 | 99.58 146 | 99.78 95 | 99.20 205 | 99.11 197 | 99.62 157 | 99.18 163 | 99.89 45 | 99.72 123 | 98.66 136 | 99.87 192 | 99.88 19 | 99.97 46 | 99.66 93 |
|
v8 | | | 99.68 37 | 99.69 34 | 99.65 111 | 99.80 76 | 99.40 161 | 99.66 53 | 99.76 88 | 99.64 92 | 99.93 28 | 99.85 52 | 98.66 136 | 99.84 241 | 99.88 19 | 99.99 14 | 99.71 65 |
|
v1144 | | | 99.54 70 | 99.53 73 | 99.59 142 | 99.79 88 | 99.28 186 | 99.10 199 | 99.61 164 | 99.20 161 | 99.84 67 | 99.73 116 | 98.67 134 | 99.84 241 | 99.86 21 | 99.98 33 | 99.64 111 |
|
v7n | | | 99.82 15 | 99.80 20 | 99.88 12 | 99.96 5 | 99.84 24 | 99.82 8 | 99.82 57 | 99.84 43 | 99.94 25 | 99.91 24 | 99.13 77 | 99.96 48 | 99.83 22 | 99.99 14 | 99.83 29 |
|
v2v482 | | | 99.50 74 | 99.47 77 | 99.58 146 | 99.78 95 | 99.25 193 | 99.14 185 | 99.58 192 | 99.25 152 | 99.81 79 | 99.62 186 | 98.24 193 | 99.84 241 | 99.83 22 | 99.97 46 | 99.64 111 |
|
test_vis1_rt | | | 99.45 88 | 99.46 81 | 99.41 197 | 99.71 133 | 98.63 260 | 98.99 225 | 99.96 18 | 99.03 187 | 99.95 23 | 99.12 321 | 98.75 123 | 99.84 241 | 99.82 24 | 99.82 169 | 99.77 49 |
|
tt0805 | | | 99.63 51 | 99.57 63 | 99.81 31 | 99.87 45 | 99.88 12 | 99.58 76 | 98.70 333 | 99.72 68 | 99.91 35 | 99.60 203 | 99.43 39 | 99.81 280 | 99.81 25 | 99.53 277 | 99.73 60 |
|
V42 | | | 99.56 65 | 99.54 69 | 99.63 125 | 99.79 88 | 99.46 141 | 99.39 109 | 99.59 182 | 99.24 154 | 99.86 62 | 99.70 137 | 98.55 151 | 99.82 265 | 99.79 26 | 99.95 74 | 99.60 141 |
|
mvs_tets | | | 99.90 2 | 99.90 3 | 99.90 5 | 99.96 5 | 99.79 44 | 99.72 30 | 99.88 34 | 99.92 18 | 99.98 12 | 99.93 17 | 99.94 2 | 99.98 15 | 99.77 27 | 100.00 1 | 99.92 12 |
|
PS-MVSNAJss | | | 99.84 10 | 99.82 17 | 99.89 8 | 99.96 5 | 99.77 50 | 99.68 45 | 99.85 44 | 99.95 10 | 99.98 12 | 99.92 21 | 99.28 57 | 99.98 15 | 99.75 28 | 100.00 1 | 99.94 9 |
|
jajsoiax | | | 99.89 3 | 99.89 5 | 99.89 8 | 99.96 5 | 99.78 47 | 99.70 35 | 99.86 39 | 99.89 26 | 99.98 12 | 99.90 27 | 99.94 2 | 99.98 15 | 99.75 28 | 100.00 1 | 99.90 13 |
|
ANet_high | | | 99.88 5 | 99.87 9 | 99.91 2 | 99.99 1 | 99.91 4 | 99.65 59 | 100.00 1 | 99.90 20 | 100.00 1 | 99.97 11 | 99.61 25 | 99.97 27 | 99.75 28 | 100.00 1 | 99.84 25 |
|
CS-MVS-test | | | 99.68 37 | 99.70 30 | 99.64 118 | 99.57 191 | 99.83 29 | 99.78 12 | 99.97 13 | 99.92 18 | 99.50 203 | 99.38 272 | 99.57 29 | 99.95 57 | 99.69 31 | 99.90 106 | 99.15 284 |
|
RRT_MVS | | | 99.67 43 | 99.59 56 | 99.91 2 | 99.94 16 | 99.88 12 | 99.78 12 | 99.27 291 | 99.87 32 | 99.91 35 | 99.87 43 | 98.04 210 | 99.96 48 | 99.68 32 | 99.99 14 | 99.90 13 |
|
CS-MVS | | | 99.67 43 | 99.70 30 | 99.58 146 | 99.53 211 | 99.84 24 | 99.79 11 | 99.96 18 | 99.90 20 | 99.61 164 | 99.41 262 | 99.51 36 | 99.95 57 | 99.66 33 | 99.89 115 | 98.96 318 |
|
pmmvs6 | | | 99.86 7 | 99.86 11 | 99.83 25 | 99.94 16 | 99.90 7 | 99.83 6 | 99.91 25 | 99.85 40 | 99.94 25 | 99.95 13 | 99.73 16 | 99.90 147 | 99.65 34 | 99.97 46 | 99.69 72 |
|
MIMVSNet1 | | | 99.66 45 | 99.62 47 | 99.80 36 | 99.94 16 | 99.87 15 | 99.69 42 | 99.77 83 | 99.78 58 | 99.93 28 | 99.89 31 | 97.94 218 | 99.92 107 | 99.65 34 | 99.98 33 | 99.62 127 |
|
EC-MVSNet | | | 99.69 34 | 99.69 34 | 99.68 96 | 99.71 133 | 99.91 4 | 99.76 19 | 99.96 18 | 99.86 35 | 99.51 201 | 99.39 270 | 99.57 29 | 99.93 87 | 99.64 36 | 99.86 143 | 99.20 273 |
|
K. test v3 | | | 98.87 220 | 98.60 229 | 99.69 94 | 99.93 23 | 99.46 141 | 99.74 24 | 94.97 377 | 99.78 58 | 99.88 53 | 99.88 39 | 93.66 315 | 99.97 27 | 99.61 37 | 99.95 74 | 99.64 111 |
|
KD-MVS_self_test | | | 99.63 51 | 99.59 56 | 99.76 54 | 99.84 52 | 99.90 7 | 99.37 115 | 99.79 74 | 99.83 46 | 99.88 53 | 99.85 52 | 98.42 172 | 99.90 147 | 99.60 38 | 99.73 213 | 99.49 200 |
|
Anonymous20240521 | | | 99.44 90 | 99.42 90 | 99.49 170 | 99.89 35 | 98.96 230 | 99.62 63 | 99.76 88 | 99.85 40 | 99.82 72 | 99.88 39 | 96.39 284 | 99.97 27 | 99.59 39 | 99.98 33 | 99.55 163 |
|
TransMVSNet (Re) | | | 99.78 18 | 99.77 24 | 99.81 31 | 99.91 28 | 99.85 19 | 99.75 22 | 99.86 39 | 99.70 75 | 99.91 35 | 99.89 31 | 99.60 27 | 99.87 192 | 99.59 39 | 99.74 208 | 99.71 65 |
|
OurMVSNet-221017-0 | | | 99.75 23 | 99.71 29 | 99.84 23 | 99.96 5 | 99.83 29 | 99.83 6 | 99.85 44 | 99.80 53 | 99.93 28 | 99.93 17 | 98.54 153 | 99.93 87 | 99.59 39 | 99.98 33 | 99.76 55 |
|
EU-MVSNet | | | 99.39 105 | 99.62 47 | 98.72 302 | 99.88 40 | 96.44 344 | 99.56 81 | 99.85 44 | 99.90 20 | 99.90 41 | 99.85 52 | 98.09 206 | 99.83 256 | 99.58 42 | 99.95 74 | 99.90 13 |
|
mvsmamba | | | 99.74 26 | 99.70 30 | 99.85 20 | 99.93 23 | 99.83 29 | 99.76 19 | 99.81 66 | 99.96 8 | 99.91 35 | 99.81 72 | 98.60 144 | 99.94 70 | 99.58 42 | 99.98 33 | 99.77 49 |
|
mvs_anonymous | | | 99.28 129 | 99.39 92 | 98.94 276 | 99.19 312 | 97.81 311 | 99.02 216 | 99.55 205 | 99.78 58 | 99.85 64 | 99.80 76 | 98.24 193 | 99.86 210 | 99.57 44 | 99.50 283 | 99.15 284 |
|
test1111 | | | 97.74 298 | 98.16 274 | 96.49 358 | 99.60 172 | 89.86 387 | 99.71 34 | 91.21 384 | 99.89 26 | 99.88 53 | 99.87 43 | 93.73 314 | 99.90 147 | 99.56 45 | 99.99 14 | 99.70 68 |
|
lessismore_v0 | | | | | 99.64 118 | 99.86 48 | 99.38 165 | | 90.66 385 | | 99.89 45 | 99.83 59 | 94.56 305 | 99.97 27 | 99.56 45 | 99.92 96 | 99.57 158 |
|
mvsany_test1 | | | 99.44 90 | 99.45 83 | 99.40 199 | 99.37 266 | 98.64 259 | 97.90 334 | 99.59 182 | 99.27 148 | 99.92 32 | 99.82 66 | 99.74 15 | 99.93 87 | 99.55 47 | 99.87 135 | 99.63 116 |
|
bld_raw_dy_0_64 | | | 99.70 31 | 99.65 41 | 99.85 20 | 99.95 13 | 99.77 50 | 99.66 53 | 99.71 114 | 99.95 10 | 99.91 35 | 99.77 100 | 98.35 181 | 100.00 1 | 99.54 48 | 99.99 14 | 99.79 42 |
|
pm-mvs1 | | | 99.79 17 | 99.79 21 | 99.78 44 | 99.91 28 | 99.83 29 | 99.76 19 | 99.87 36 | 99.73 64 | 99.89 45 | 99.87 43 | 99.63 22 | 99.87 192 | 99.54 48 | 99.92 96 | 99.63 116 |
|
LTVRE_ROB | | 99.19 1 | 99.88 5 | 99.87 9 | 99.88 12 | 99.91 28 | 99.90 7 | 99.96 1 | 99.92 22 | 99.90 20 | 99.97 15 | 99.87 43 | 99.81 10 | 99.95 57 | 99.54 48 | 99.99 14 | 99.80 35 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DSMNet-mixed | | | 99.48 78 | 99.65 41 | 98.95 275 | 99.71 133 | 97.27 327 | 99.50 90 | 99.82 57 | 99.59 106 | 99.41 225 | 99.85 52 | 99.62 24 | 100.00 1 | 99.53 51 | 99.89 115 | 99.59 148 |
|
test2506 | | | 94.73 348 | 94.59 350 | 95.15 364 | 99.59 176 | 85.90 389 | 99.75 22 | 74.01 390 | 99.89 26 | 99.71 123 | 99.86 50 | 79.00 388 | 99.90 147 | 99.52 52 | 99.99 14 | 99.65 101 |
|
UniMVSNet_ETH3D | | | 99.85 8 | 99.83 16 | 99.90 5 | 99.89 35 | 99.91 4 | 99.89 4 | 99.71 114 | 99.93 16 | 99.95 23 | 99.89 31 | 99.71 17 | 99.96 48 | 99.51 53 | 99.97 46 | 99.84 25 |
|
FC-MVSNet-test | | | 99.70 31 | 99.65 41 | 99.86 18 | 99.88 40 | 99.86 18 | 99.72 30 | 99.78 80 | 99.90 20 | 99.82 72 | 99.83 59 | 98.45 168 | 99.87 192 | 99.51 53 | 99.97 46 | 99.86 22 |
|
UA-Net | | | 99.78 18 | 99.76 27 | 99.86 18 | 99.72 130 | 99.71 77 | 99.91 3 | 99.95 21 | 99.96 8 | 99.71 123 | 99.91 24 | 99.15 72 | 99.97 27 | 99.50 55 | 100.00 1 | 99.90 13 |
|
PMMVS2 | | | 99.48 78 | 99.45 83 | 99.57 152 | 99.76 107 | 98.99 225 | 98.09 312 | 99.90 28 | 98.95 194 | 99.78 91 | 99.58 210 | 99.57 29 | 99.93 87 | 99.48 56 | 99.95 74 | 99.79 42 |
|
VPA-MVSNet | | | 99.66 45 | 99.62 47 | 99.79 41 | 99.68 153 | 99.75 63 | 99.62 63 | 99.69 126 | 99.85 40 | 99.80 82 | 99.81 72 | 98.81 111 | 99.91 129 | 99.47 57 | 99.88 124 | 99.70 68 |
|
ECVR-MVS |  | | 97.73 299 | 98.04 279 | 96.78 352 | 99.59 176 | 90.81 383 | 99.72 30 | 90.43 386 | 99.89 26 | 99.86 62 | 99.86 50 | 93.60 316 | 99.89 164 | 99.46 58 | 99.99 14 | 99.65 101 |
|
nrg030 | | | 99.70 31 | 99.66 39 | 99.82 28 | 99.76 107 | 99.84 24 | 99.61 68 | 99.70 120 | 99.93 16 | 99.78 91 | 99.68 154 | 99.10 78 | 99.78 292 | 99.45 59 | 99.96 61 | 99.83 29 |
|
TAMVS | | | 99.49 76 | 99.45 83 | 99.63 125 | 99.48 234 | 99.42 155 | 99.45 101 | 99.57 194 | 99.66 88 | 99.78 91 | 99.83 59 | 97.85 225 | 99.86 210 | 99.44 60 | 99.96 61 | 99.61 137 |
|
GeoE | | | 99.69 34 | 99.66 39 | 99.78 44 | 99.76 107 | 99.76 58 | 99.60 73 | 99.82 57 | 99.46 121 | 99.75 105 | 99.56 223 | 99.63 22 | 99.95 57 | 99.43 61 | 99.88 124 | 99.62 127 |
|
new-patchmatchnet | | | 99.35 115 | 99.57 63 | 98.71 304 | 99.82 63 | 96.62 342 | 98.55 274 | 99.75 93 | 99.50 112 | 99.88 53 | 99.87 43 | 99.31 53 | 99.88 178 | 99.43 61 | 100.00 1 | 99.62 127 |
|
test20.03 | | | 99.55 68 | 99.54 69 | 99.58 146 | 99.79 88 | 99.37 168 | 99.02 216 | 99.89 30 | 99.60 104 | 99.82 72 | 99.62 186 | 98.81 111 | 99.89 164 | 99.43 61 | 99.86 143 | 99.47 208 |
|
MVSFormer | | | 99.41 99 | 99.44 86 | 99.31 226 | 99.57 191 | 98.40 273 | 99.77 15 | 99.80 68 | 99.73 64 | 99.63 149 | 99.30 291 | 98.02 212 | 99.98 15 | 99.43 61 | 99.69 228 | 99.55 163 |
|
test_djsdf | | | 99.84 10 | 99.81 18 | 99.91 2 | 99.94 16 | 99.84 24 | 99.77 15 | 99.80 68 | 99.73 64 | 99.97 15 | 99.92 21 | 99.77 14 | 99.98 15 | 99.43 61 | 100.00 1 | 99.90 13 |
|
SDMVSNet | | | 99.77 21 | 99.77 24 | 99.76 54 | 99.80 76 | 99.65 100 | 99.63 61 | 99.86 39 | 99.97 6 | 99.89 45 | 99.89 31 | 99.52 35 | 99.99 7 | 99.42 66 | 99.96 61 | 99.65 101 |
|
Anonymous20231211 | | | 99.62 57 | 99.57 63 | 99.76 54 | 99.61 170 | 99.60 116 | 99.81 9 | 99.73 102 | 99.82 48 | 99.90 41 | 99.90 27 | 97.97 217 | 99.86 210 | 99.42 66 | 99.96 61 | 99.80 35 |
|
SixPastTwentyTwo | | | 99.42 95 | 99.30 113 | 99.76 54 | 99.92 27 | 99.67 93 | 99.70 35 | 99.14 313 | 99.65 90 | 99.89 45 | 99.90 27 | 96.20 289 | 99.94 70 | 99.42 66 | 99.92 96 | 99.67 84 |
|
patch_mono-2 | | | 99.51 73 | 99.46 81 | 99.64 118 | 99.70 141 | 99.11 213 | 99.04 211 | 99.87 36 | 99.71 70 | 99.47 207 | 99.79 86 | 98.24 193 | 99.98 15 | 99.38 69 | 99.96 61 | 99.83 29 |
|
UGNet | | | 99.38 107 | 99.34 102 | 99.49 170 | 98.90 346 | 98.90 237 | 99.70 35 | 99.35 274 | 99.86 35 | 98.57 331 | 99.81 72 | 98.50 163 | 99.93 87 | 99.38 69 | 99.98 33 | 99.66 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
XXY-MVS | | | 99.71 30 | 99.67 38 | 99.81 31 | 99.89 35 | 99.72 75 | 99.59 74 | 99.82 57 | 99.39 134 | 99.82 72 | 99.84 57 | 99.38 45 | 99.91 129 | 99.38 69 | 99.93 92 | 99.80 35 |
|
iter_conf_final | | | 98.75 230 | 98.54 239 | 99.40 199 | 99.33 284 | 98.75 247 | 99.26 147 | 99.59 182 | 99.80 53 | 99.76 98 | 99.58 210 | 90.17 354 | 99.92 107 | 99.37 72 | 99.97 46 | 99.54 171 |
|
FIs | | | 99.65 50 | 99.58 60 | 99.84 23 | 99.84 52 | 99.85 19 | 99.66 53 | 99.75 93 | 99.86 35 | 99.74 113 | 99.79 86 | 98.27 191 | 99.85 227 | 99.37 72 | 99.93 92 | 99.83 29 |
|
sd_testset | | | 99.78 18 | 99.78 23 | 99.80 36 | 99.80 76 | 99.76 58 | 99.80 10 | 99.79 74 | 99.97 6 | 99.89 45 | 99.89 31 | 99.53 34 | 99.99 7 | 99.36 74 | 99.96 61 | 99.65 101 |
|
anonymousdsp | | | 99.80 16 | 99.77 24 | 99.90 5 | 99.96 5 | 99.88 12 | 99.73 27 | 99.85 44 | 99.70 75 | 99.92 32 | 99.93 17 | 99.45 38 | 99.97 27 | 99.36 74 | 100.00 1 | 99.85 24 |
|
casdiffmvs_mvg |  | | 99.68 37 | 99.68 37 | 99.69 94 | 99.81 71 | 99.59 118 | 99.29 140 | 99.90 28 | 99.71 70 | 99.79 87 | 99.73 116 | 99.54 32 | 99.84 241 | 99.36 74 | 99.96 61 | 99.65 101 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Vis-MVSNet |  | | 99.75 23 | 99.74 28 | 99.79 41 | 99.88 40 | 99.66 95 | 99.69 42 | 99.92 22 | 99.67 84 | 99.77 96 | 99.75 109 | 99.61 25 | 99.98 15 | 99.35 77 | 99.98 33 | 99.72 62 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dcpmvs_2 | | | 99.61 59 | 99.64 45 | 99.53 163 | 99.79 88 | 98.82 242 | 99.58 76 | 99.97 13 | 99.95 10 | 99.96 17 | 99.76 104 | 98.44 169 | 99.99 7 | 99.34 78 | 99.96 61 | 99.78 45 |
|
CHOSEN 1792x2688 | | | 99.39 105 | 99.30 113 | 99.65 111 | 99.88 40 | 99.25 193 | 98.78 255 | 99.88 34 | 98.66 228 | 99.96 17 | 99.79 86 | 97.45 246 | 99.93 87 | 99.34 78 | 99.99 14 | 99.78 45 |
|
CDS-MVSNet | | | 99.22 148 | 99.13 141 | 99.50 169 | 99.35 271 | 99.11 213 | 98.96 230 | 99.54 211 | 99.46 121 | 99.61 164 | 99.70 137 | 96.31 286 | 99.83 256 | 99.34 78 | 99.88 124 | 99.55 163 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS-SCA-FT | | | 99.00 200 | 99.16 135 | 98.51 310 | 99.75 118 | 95.90 352 | 98.07 315 | 99.84 50 | 99.84 43 | 99.89 45 | 99.73 116 | 96.01 292 | 99.99 7 | 99.33 81 | 100.00 1 | 99.63 116 |
|
HyFIR lowres test | | | 98.91 213 | 98.64 226 | 99.73 78 | 99.85 51 | 99.47 137 | 98.07 315 | 99.83 52 | 98.64 230 | 99.89 45 | 99.60 203 | 92.57 325 | 100.00 1 | 99.33 81 | 99.97 46 | 99.72 62 |
|
pmmvs5 | | | 99.19 158 | 99.11 148 | 99.42 190 | 99.76 107 | 98.88 239 | 98.55 274 | 99.73 102 | 98.82 212 | 99.72 118 | 99.62 186 | 96.56 275 | 99.82 265 | 99.32 83 | 99.95 74 | 99.56 160 |
|
v148 | | | 99.40 101 | 99.41 91 | 99.39 203 | 99.76 107 | 98.94 231 | 99.09 203 | 99.59 182 | 99.17 168 | 99.81 79 | 99.61 195 | 98.41 173 | 99.69 325 | 99.32 83 | 99.94 85 | 99.53 177 |
|
baseline | | | 99.63 51 | 99.62 47 | 99.66 106 | 99.80 76 | 99.62 108 | 99.44 103 | 99.80 68 | 99.71 70 | 99.72 118 | 99.69 143 | 99.15 72 | 99.83 256 | 99.32 83 | 99.94 85 | 99.53 177 |
|
iter_conf05 | | | 98.46 262 | 98.23 265 | 99.15 253 | 99.04 335 | 97.99 300 | 99.10 199 | 99.61 164 | 99.79 56 | 99.76 98 | 99.58 210 | 87.88 364 | 99.92 107 | 99.31 86 | 99.97 46 | 99.53 177 |
|
CVMVSNet | | | 98.61 242 | 98.88 206 | 97.80 334 | 99.58 181 | 93.60 369 | 99.26 147 | 99.64 152 | 99.66 88 | 99.72 118 | 99.67 158 | 93.26 318 | 99.93 87 | 99.30 87 | 99.81 178 | 99.87 20 |
|
PS-CasMVS | | | 99.66 45 | 99.58 60 | 99.89 8 | 99.80 76 | 99.85 19 | 99.66 53 | 99.73 102 | 99.62 95 | 99.84 67 | 99.71 130 | 98.62 140 | 99.96 48 | 99.30 87 | 99.96 61 | 99.86 22 |
|
DTE-MVSNet | | | 99.68 37 | 99.61 51 | 99.88 12 | 99.80 76 | 99.87 15 | 99.67 49 | 99.71 114 | 99.72 68 | 99.84 67 | 99.78 93 | 98.67 134 | 99.97 27 | 99.30 87 | 99.95 74 | 99.80 35 |
|
tmp_tt | | | 95.75 344 | 95.42 342 | 96.76 353 | 89.90 389 | 94.42 364 | 98.86 238 | 97.87 360 | 78.01 380 | 99.30 252 | 99.69 143 | 97.70 232 | 95.89 384 | 99.29 90 | 98.14 363 | 99.95 7 |
|
PEN-MVS | | | 99.66 45 | 99.59 56 | 99.89 8 | 99.83 56 | 99.87 15 | 99.66 53 | 99.73 102 | 99.70 75 | 99.84 67 | 99.73 116 | 98.56 150 | 99.96 48 | 99.29 90 | 99.94 85 | 99.83 29 |
|
WR-MVS_H | | | 99.61 59 | 99.53 73 | 99.87 15 | 99.80 76 | 99.83 29 | 99.67 49 | 99.75 93 | 99.58 107 | 99.85 64 | 99.69 143 | 98.18 202 | 99.94 70 | 99.28 92 | 99.95 74 | 99.83 29 |
|
IterMVS | | | 98.97 204 | 99.16 135 | 98.42 314 | 99.74 124 | 95.64 355 | 98.06 317 | 99.83 52 | 99.83 46 | 99.85 64 | 99.74 112 | 96.10 291 | 99.99 7 | 99.27 93 | 100.00 1 | 99.63 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
h-mvs33 | | | 98.61 242 | 98.34 258 | 99.44 184 | 99.60 172 | 98.67 252 | 99.27 145 | 99.44 249 | 99.68 80 | 99.32 243 | 99.49 245 | 92.50 328 | 100.00 1 | 99.24 94 | 96.51 377 | 99.65 101 |
|
hse-mvs2 | | | 98.52 254 | 98.30 262 | 99.16 251 | 99.29 293 | 98.60 262 | 98.77 256 | 99.02 320 | 99.68 80 | 99.32 243 | 99.04 331 | 92.50 328 | 99.85 227 | 99.24 94 | 97.87 368 | 99.03 311 |
|
FMVSNet1 | | | 99.66 45 | 99.63 46 | 99.73 78 | 99.78 95 | 99.77 50 | 99.68 45 | 99.70 120 | 99.67 84 | 99.82 72 | 99.83 59 | 98.98 95 | 99.90 147 | 99.24 94 | 99.97 46 | 99.53 177 |
|
casdiffmvs |  | | 99.63 51 | 99.61 51 | 99.67 99 | 99.79 88 | 99.59 118 | 99.13 191 | 99.85 44 | 99.79 56 | 99.76 98 | 99.72 123 | 99.33 52 | 99.82 265 | 99.21 97 | 99.94 85 | 99.59 148 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CP-MVSNet | | | 99.54 70 | 99.43 88 | 99.87 15 | 99.76 107 | 99.82 35 | 99.57 79 | 99.61 164 | 99.54 108 | 99.80 82 | 99.64 169 | 97.79 229 | 99.95 57 | 99.21 97 | 99.94 85 | 99.84 25 |
|
DELS-MVS | | | 99.34 120 | 99.30 113 | 99.48 174 | 99.51 218 | 99.36 172 | 98.12 308 | 99.53 220 | 99.36 138 | 99.41 225 | 99.61 195 | 99.22 65 | 99.87 192 | 99.21 97 | 99.68 233 | 99.20 273 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
UniMVSNet (Re) | | | 99.37 110 | 99.26 124 | 99.68 96 | 99.51 218 | 99.58 122 | 98.98 228 | 99.60 176 | 99.43 129 | 99.70 126 | 99.36 278 | 97.70 232 | 99.88 178 | 99.20 100 | 99.87 135 | 99.59 148 |
|
CANet | | | 99.11 179 | 99.05 169 | 99.28 232 | 98.83 353 | 98.56 263 | 98.71 262 | 99.41 255 | 99.25 152 | 99.23 260 | 99.22 309 | 97.66 240 | 99.94 70 | 99.19 101 | 99.97 46 | 99.33 245 |
|
EI-MVSNet-UG-set | | | 99.48 78 | 99.50 75 | 99.42 190 | 99.57 191 | 98.65 258 | 99.24 155 | 99.46 244 | 99.68 80 | 99.80 82 | 99.66 162 | 98.99 93 | 99.89 164 | 99.19 101 | 99.90 106 | 99.72 62 |
|
xiu_mvs_v1_base_debu | | | 99.23 140 | 99.34 102 | 98.91 282 | 99.59 176 | 98.23 282 | 98.47 283 | 99.66 137 | 99.61 98 | 99.68 132 | 98.94 347 | 99.39 41 | 99.97 27 | 99.18 103 | 99.55 270 | 98.51 347 |
|
xiu_mvs_v1_base | | | 99.23 140 | 99.34 102 | 98.91 282 | 99.59 176 | 98.23 282 | 98.47 283 | 99.66 137 | 99.61 98 | 99.68 132 | 98.94 347 | 99.39 41 | 99.97 27 | 99.18 103 | 99.55 270 | 98.51 347 |
|
xiu_mvs_v1_base_debi | | | 99.23 140 | 99.34 102 | 98.91 282 | 99.59 176 | 98.23 282 | 98.47 283 | 99.66 137 | 99.61 98 | 99.68 132 | 98.94 347 | 99.39 41 | 99.97 27 | 99.18 103 | 99.55 270 | 98.51 347 |
|
VPNet | | | 99.46 86 | 99.37 97 | 99.71 89 | 99.82 63 | 99.59 118 | 99.48 95 | 99.70 120 | 99.81 50 | 99.69 129 | 99.58 210 | 97.66 240 | 99.86 210 | 99.17 106 | 99.44 290 | 99.67 84 |
|
UniMVSNet_NR-MVSNet | | | 99.37 110 | 99.25 126 | 99.72 84 | 99.47 240 | 99.56 125 | 98.97 229 | 99.61 164 | 99.43 129 | 99.67 138 | 99.28 295 | 97.85 225 | 99.95 57 | 99.17 106 | 99.81 178 | 99.65 101 |
|
DU-MVS | | | 99.33 123 | 99.21 130 | 99.71 89 | 99.43 253 | 99.56 125 | 98.83 243 | 99.53 220 | 99.38 135 | 99.67 138 | 99.36 278 | 97.67 236 | 99.95 57 | 99.17 106 | 99.81 178 | 99.63 116 |
|
EI-MVSNet-Vis-set | | | 99.47 85 | 99.49 76 | 99.42 190 | 99.57 191 | 98.66 255 | 99.24 155 | 99.46 244 | 99.67 84 | 99.79 87 | 99.65 167 | 98.97 97 | 99.89 164 | 99.15 109 | 99.89 115 | 99.71 65 |
|
EI-MVSNet | | | 99.38 107 | 99.44 86 | 99.21 245 | 99.58 181 | 98.09 295 | 99.26 147 | 99.46 244 | 99.62 95 | 99.75 105 | 99.67 158 | 98.54 153 | 99.85 227 | 99.15 109 | 99.92 96 | 99.68 78 |
|
VNet | | | 99.18 162 | 99.06 165 | 99.56 155 | 99.24 303 | 99.36 172 | 99.33 123 | 99.31 283 | 99.67 84 | 99.47 207 | 99.57 219 | 96.48 278 | 99.84 241 | 99.15 109 | 99.30 308 | 99.47 208 |
|
EG-PatchMatch MVS | | | 99.57 62 | 99.56 68 | 99.62 134 | 99.77 103 | 99.33 178 | 99.26 147 | 99.76 88 | 99.32 142 | 99.80 82 | 99.78 93 | 99.29 55 | 99.87 192 | 99.15 109 | 99.91 105 | 99.66 93 |
|
PVSNet_Blended_VisFu | | | 99.40 101 | 99.38 94 | 99.44 184 | 99.90 33 | 98.66 255 | 98.94 233 | 99.91 25 | 97.97 289 | 99.79 87 | 99.73 116 | 99.05 88 | 99.97 27 | 99.15 109 | 99.99 14 | 99.68 78 |
|
IterMVS-LS | | | 99.41 99 | 99.47 77 | 99.25 241 | 99.81 71 | 98.09 295 | 98.85 240 | 99.76 88 | 99.62 95 | 99.83 71 | 99.64 169 | 98.54 153 | 99.97 27 | 99.15 109 | 99.99 14 | 99.68 78 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TranMVSNet+NR-MVSNet | | | 99.54 70 | 99.47 77 | 99.76 54 | 99.58 181 | 99.64 102 | 99.30 133 | 99.63 154 | 99.61 98 | 99.71 123 | 99.56 223 | 98.76 121 | 99.96 48 | 99.14 115 | 99.92 96 | 99.68 78 |
|
MVSTER | | | 98.47 261 | 98.22 267 | 99.24 243 | 99.06 332 | 98.35 279 | 99.08 206 | 99.46 244 | 99.27 148 | 99.75 105 | 99.66 162 | 88.61 362 | 99.85 227 | 99.14 115 | 99.92 96 | 99.52 188 |
|
Anonymous20231206 | | | 99.35 115 | 99.31 108 | 99.47 176 | 99.74 124 | 99.06 223 | 99.28 142 | 99.74 98 | 99.23 156 | 99.72 118 | 99.53 234 | 97.63 242 | 99.88 178 | 99.11 117 | 99.84 152 | 99.48 204 |
|
MVS_Test | | | 99.28 129 | 99.31 108 | 99.19 248 | 99.35 271 | 98.79 245 | 99.36 118 | 99.49 237 | 99.17 168 | 99.21 265 | 99.67 158 | 98.78 118 | 99.66 344 | 99.09 118 | 99.66 242 | 99.10 295 |
|
testgi | | | 99.29 128 | 99.26 124 | 99.37 209 | 99.75 118 | 98.81 243 | 98.84 241 | 99.89 30 | 98.38 256 | 99.75 105 | 99.04 331 | 99.36 50 | 99.86 210 | 99.08 119 | 99.25 315 | 99.45 213 |
|
1112_ss | | | 99.05 188 | 98.84 211 | 99.67 99 | 99.66 159 | 99.29 184 | 98.52 279 | 99.82 57 | 97.65 305 | 99.43 217 | 99.16 315 | 96.42 281 | 99.91 129 | 99.07 120 | 99.84 152 | 99.80 35 |
|
CANet_DTU | | | 98.91 213 | 98.85 209 | 99.09 262 | 98.79 358 | 98.13 290 | 98.18 301 | 99.31 283 | 99.48 114 | 98.86 305 | 99.51 238 | 96.56 275 | 99.95 57 | 99.05 121 | 99.95 74 | 99.19 276 |
|
Baseline_NR-MVSNet | | | 99.49 76 | 99.37 97 | 99.82 28 | 99.91 28 | 99.84 24 | 98.83 243 | 99.86 39 | 99.68 80 | 99.65 144 | 99.88 39 | 97.67 236 | 99.87 192 | 99.03 122 | 99.86 143 | 99.76 55 |
|
FMVSNet2 | | | 99.35 115 | 99.28 120 | 99.55 158 | 99.49 229 | 99.35 175 | 99.45 101 | 99.57 194 | 99.44 124 | 99.70 126 | 99.74 112 | 97.21 257 | 99.87 192 | 99.03 122 | 99.94 85 | 99.44 218 |
|
Test_1112_low_res | | | 98.95 210 | 98.73 220 | 99.63 125 | 99.68 153 | 99.15 210 | 98.09 312 | 99.80 68 | 97.14 331 | 99.46 211 | 99.40 266 | 96.11 290 | 99.89 164 | 99.01 124 | 99.84 152 | 99.84 25 |
|
VDD-MVS | | | 99.20 155 | 99.11 148 | 99.44 184 | 99.43 253 | 98.98 226 | 99.50 90 | 98.32 352 | 99.80 53 | 99.56 182 | 99.69 143 | 96.99 267 | 99.85 227 | 98.99 125 | 99.73 213 | 99.50 195 |
|
DeepC-MVS | | 98.90 4 | 99.62 57 | 99.61 51 | 99.67 99 | 99.72 130 | 99.44 148 | 99.24 155 | 99.71 114 | 99.27 148 | 99.93 28 | 99.90 27 | 99.70 19 | 99.93 87 | 98.99 125 | 99.99 14 | 99.64 111 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
pmmvs-eth3d | | | 99.48 78 | 99.47 77 | 99.51 167 | 99.77 103 | 99.41 160 | 98.81 248 | 99.66 137 | 99.42 133 | 99.75 105 | 99.66 162 | 99.20 67 | 99.76 302 | 98.98 127 | 99.99 14 | 99.36 239 |
|
EPNet_dtu | | | 97.62 304 | 97.79 298 | 97.11 351 | 96.67 384 | 92.31 374 | 98.51 280 | 98.04 355 | 99.24 154 | 95.77 378 | 99.47 252 | 93.78 313 | 99.66 344 | 98.98 127 | 99.62 249 | 99.37 236 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
diffmvs |  | | 99.34 120 | 99.32 107 | 99.39 203 | 99.67 158 | 98.77 246 | 98.57 272 | 99.81 66 | 99.61 98 | 99.48 206 | 99.41 262 | 98.47 164 | 99.86 210 | 98.97 129 | 99.90 106 | 99.53 177 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
NR-MVSNet | | | 99.40 101 | 99.31 108 | 99.68 96 | 99.43 253 | 99.55 128 | 99.73 27 | 99.50 233 | 99.46 121 | 99.88 53 | 99.36 278 | 97.54 243 | 99.87 192 | 98.97 129 | 99.87 135 | 99.63 116 |
|
GBi-Net | | | 99.42 95 | 99.31 108 | 99.73 78 | 99.49 229 | 99.77 50 | 99.68 45 | 99.70 120 | 99.44 124 | 99.62 158 | 99.83 59 | 97.21 257 | 99.90 147 | 98.96 131 | 99.90 106 | 99.53 177 |
|
FMVSNet5 | | | 97.80 296 | 97.25 312 | 99.42 190 | 98.83 353 | 98.97 228 | 99.38 111 | 99.80 68 | 98.87 206 | 99.25 256 | 99.69 143 | 80.60 383 | 99.91 129 | 98.96 131 | 99.90 106 | 99.38 233 |
|
test1 | | | 99.42 95 | 99.31 108 | 99.73 78 | 99.49 229 | 99.77 50 | 99.68 45 | 99.70 120 | 99.44 124 | 99.62 158 | 99.83 59 | 97.21 257 | 99.90 147 | 98.96 131 | 99.90 106 | 99.53 177 |
|
FMVSNet3 | | | 98.80 226 | 98.63 228 | 99.32 223 | 99.13 320 | 98.72 250 | 99.10 199 | 99.48 238 | 99.23 156 | 99.62 158 | 99.64 169 | 92.57 325 | 99.86 210 | 98.96 131 | 99.90 106 | 99.39 231 |
|
UnsupCasMVSNet_eth | | | 98.83 223 | 98.57 235 | 99.59 142 | 99.68 153 | 99.45 146 | 98.99 225 | 99.67 133 | 99.48 114 | 99.55 187 | 99.36 278 | 94.92 299 | 99.86 210 | 98.95 135 | 96.57 376 | 99.45 213 |
|
CHOSEN 280x420 | | | 98.41 267 | 98.41 250 | 98.40 315 | 99.34 279 | 95.89 353 | 96.94 370 | 99.44 249 | 98.80 215 | 99.25 256 | 99.52 236 | 93.51 317 | 99.98 15 | 98.94 136 | 99.98 33 | 99.32 248 |
|
TDRefinement | | | 99.72 27 | 99.70 30 | 99.77 47 | 99.90 33 | 99.85 19 | 99.86 5 | 99.92 22 | 99.69 78 | 99.78 91 | 99.92 21 | 99.37 47 | 99.88 178 | 98.93 137 | 99.95 74 | 99.60 141 |
|
alignmvs | | | 98.28 276 | 97.96 285 | 99.25 241 | 99.12 322 | 98.93 234 | 99.03 215 | 98.42 347 | 99.64 92 | 98.72 319 | 97.85 379 | 90.86 346 | 99.62 354 | 98.88 138 | 99.13 320 | 99.19 276 |
|
sss | | | 98.90 215 | 98.77 219 | 99.27 235 | 99.48 234 | 98.44 270 | 98.72 260 | 99.32 279 | 97.94 293 | 99.37 233 | 99.35 283 | 96.31 286 | 99.91 129 | 98.85 139 | 99.63 248 | 99.47 208 |
|
xiu_mvs_v2_base | | | 99.02 194 | 99.11 148 | 98.77 299 | 99.37 266 | 98.09 295 | 98.13 307 | 99.51 229 | 99.47 118 | 99.42 219 | 98.54 368 | 99.38 45 | 99.97 27 | 98.83 140 | 99.33 305 | 98.24 359 |
|
PS-MVSNAJ | | | 99.00 200 | 99.08 159 | 98.76 300 | 99.37 266 | 98.10 294 | 98.00 322 | 99.51 229 | 99.47 118 | 99.41 225 | 98.50 370 | 99.28 57 | 99.97 27 | 98.83 140 | 99.34 304 | 98.20 363 |
|
D2MVS | | | 99.22 148 | 99.19 132 | 99.29 230 | 99.69 145 | 98.74 249 | 98.81 248 | 99.41 255 | 98.55 238 | 99.68 132 | 99.69 143 | 98.13 204 | 99.87 192 | 98.82 142 | 99.98 33 | 99.24 262 |
|
PatchT | | | 98.45 264 | 98.32 260 | 98.83 294 | 98.94 344 | 98.29 280 | 99.24 155 | 98.82 328 | 99.84 43 | 99.08 282 | 99.76 104 | 91.37 336 | 99.94 70 | 98.82 142 | 99.00 329 | 98.26 358 |
|
testf1 | | | 99.63 51 | 99.60 54 | 99.72 84 | 99.94 16 | 99.95 2 | 99.47 98 | 99.89 30 | 99.43 129 | 99.88 53 | 99.80 76 | 99.26 61 | 99.90 147 | 98.81 144 | 99.88 124 | 99.32 248 |
|
APD_test2 | | | 99.63 51 | 99.60 54 | 99.72 84 | 99.94 16 | 99.95 2 | 99.47 98 | 99.89 30 | 99.43 129 | 99.88 53 | 99.80 76 | 99.26 61 | 99.90 147 | 98.81 144 | 99.88 124 | 99.32 248 |
|
Effi-MVS+ | | | 99.06 185 | 98.97 193 | 99.34 216 | 99.31 287 | 98.98 226 | 98.31 294 | 99.91 25 | 98.81 213 | 98.79 313 | 98.94 347 | 99.14 75 | 99.84 241 | 98.79 146 | 98.74 344 | 99.20 273 |
|
canonicalmvs | | | 99.02 194 | 99.00 184 | 99.09 262 | 99.10 328 | 98.70 251 | 99.61 68 | 99.66 137 | 99.63 94 | 98.64 325 | 97.65 382 | 99.04 89 | 99.54 363 | 98.79 146 | 98.92 333 | 99.04 310 |
|
VDDNet | | | 98.97 204 | 98.82 214 | 99.42 190 | 99.71 133 | 98.81 243 | 99.62 63 | 98.68 334 | 99.81 50 | 99.38 232 | 99.80 76 | 94.25 307 | 99.85 227 | 98.79 146 | 99.32 306 | 99.59 148 |
|
CR-MVSNet | | | 98.35 274 | 98.20 269 | 98.83 294 | 99.05 333 | 98.12 291 | 99.30 133 | 99.67 133 | 97.39 319 | 99.16 271 | 99.79 86 | 91.87 333 | 99.91 129 | 98.78 149 | 98.77 340 | 98.44 352 |
|
test_method | | | 91.72 349 | 92.32 352 | 89.91 366 | 93.49 388 | 70.18 390 | 90.28 379 | 99.56 199 | 61.71 383 | 95.39 380 | 99.52 236 | 93.90 309 | 99.94 70 | 98.76 150 | 98.27 358 | 99.62 127 |
|
RPMNet | | | 98.60 244 | 98.53 241 | 98.83 294 | 99.05 333 | 98.12 291 | 99.30 133 | 99.62 157 | 99.86 35 | 99.16 271 | 99.74 112 | 92.53 327 | 99.92 107 | 98.75 151 | 98.77 340 | 98.44 352 |
|
pmmvs4 | | | 99.13 174 | 99.06 165 | 99.36 213 | 99.57 191 | 99.10 218 | 98.01 320 | 99.25 297 | 98.78 218 | 99.58 172 | 99.44 259 | 98.24 193 | 99.76 302 | 98.74 152 | 99.93 92 | 99.22 267 |
|
tttt0517 | | | 97.62 304 | 97.20 313 | 98.90 288 | 99.76 107 | 97.40 324 | 99.48 95 | 94.36 379 | 99.06 185 | 99.70 126 | 99.49 245 | 84.55 378 | 99.94 70 | 98.73 153 | 99.65 244 | 99.36 239 |
|
EPP-MVSNet | | | 99.17 166 | 99.00 184 | 99.66 106 | 99.80 76 | 99.43 152 | 99.70 35 | 99.24 300 | 99.48 114 | 99.56 182 | 99.77 100 | 94.89 300 | 99.93 87 | 98.72 154 | 99.89 115 | 99.63 116 |
|
Anonymous20240529 | | | 99.42 95 | 99.34 102 | 99.65 111 | 99.53 211 | 99.60 116 | 99.63 61 | 99.39 265 | 99.47 118 | 99.76 98 | 99.78 93 | 98.13 204 | 99.86 210 | 98.70 155 | 99.68 233 | 99.49 200 |
|
ACMH | | 98.42 6 | 99.59 61 | 99.54 69 | 99.72 84 | 99.86 48 | 99.62 108 | 99.56 81 | 99.79 74 | 98.77 220 | 99.80 82 | 99.85 52 | 99.64 21 | 99.85 227 | 98.70 155 | 99.89 115 | 99.70 68 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ab-mvs | | | 99.33 123 | 99.28 120 | 99.47 176 | 99.57 191 | 99.39 163 | 99.78 12 | 99.43 252 | 98.87 206 | 99.57 175 | 99.82 66 | 98.06 209 | 99.87 192 | 98.69 157 | 99.73 213 | 99.15 284 |
|
LFMVS | | | 98.46 262 | 98.19 272 | 99.26 238 | 99.24 303 | 98.52 266 | 99.62 63 | 96.94 368 | 99.87 32 | 99.31 247 | 99.58 210 | 91.04 341 | 99.81 280 | 98.68 158 | 99.42 294 | 99.45 213 |
|
WR-MVS | | | 99.11 179 | 98.93 197 | 99.66 106 | 99.30 291 | 99.42 155 | 98.42 288 | 99.37 270 | 99.04 186 | 99.57 175 | 99.20 313 | 96.89 269 | 99.86 210 | 98.66 159 | 99.87 135 | 99.70 68 |
|
Anonymous202405211 | | | 98.75 230 | 98.46 245 | 99.63 125 | 99.34 279 | 99.66 95 | 99.47 98 | 97.65 361 | 99.28 147 | 99.56 182 | 99.50 241 | 93.15 319 | 99.84 241 | 98.62 160 | 99.58 264 | 99.40 229 |
|
EPNet | | | 98.13 284 | 97.77 299 | 99.18 250 | 94.57 387 | 97.99 300 | 99.24 155 | 97.96 357 | 99.74 63 | 97.29 369 | 99.62 186 | 93.13 320 | 99.97 27 | 98.59 161 | 99.83 160 | 99.58 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSLP-MVS++ | | | 99.05 188 | 99.09 157 | 98.91 282 | 99.21 307 | 98.36 278 | 98.82 247 | 99.47 241 | 98.85 208 | 98.90 300 | 99.56 223 | 98.78 118 | 99.09 377 | 98.57 162 | 99.68 233 | 99.26 259 |
|
Patchmatch-RL test | | | 98.60 244 | 98.36 255 | 99.33 219 | 99.77 103 | 99.07 221 | 98.27 296 | 99.87 36 | 98.91 201 | 99.74 113 | 99.72 123 | 90.57 350 | 99.79 289 | 98.55 163 | 99.85 147 | 99.11 293 |
|
pmmvs3 | | | 98.08 287 | 97.80 296 | 98.91 282 | 99.41 259 | 97.69 316 | 97.87 335 | 99.66 137 | 95.87 350 | 99.50 203 | 99.51 238 | 90.35 352 | 99.97 27 | 98.55 163 | 99.47 287 | 99.08 302 |
|
ETV-MVS | | | 99.18 162 | 99.18 133 | 99.16 251 | 99.34 279 | 99.28 186 | 99.12 195 | 99.79 74 | 99.48 114 | 98.93 294 | 98.55 367 | 99.40 40 | 99.93 87 | 98.51 165 | 99.52 280 | 98.28 357 |
|
jason | | | 99.16 168 | 99.11 148 | 99.32 223 | 99.75 118 | 98.44 270 | 98.26 297 | 99.39 265 | 98.70 226 | 99.74 113 | 99.30 291 | 98.54 153 | 99.97 27 | 98.48 166 | 99.82 169 | 99.55 163 |
jason: jason. |
APDe-MVS | | | 99.48 78 | 99.36 100 | 99.85 20 | 99.55 203 | 99.81 38 | 99.50 90 | 99.69 126 | 98.99 189 | 99.75 105 | 99.71 130 | 98.79 116 | 99.93 87 | 98.46 167 | 99.85 147 | 99.80 35 |
|
CL-MVSNet_self_test | | | 98.71 236 | 98.56 238 | 99.15 253 | 99.22 305 | 98.66 255 | 97.14 365 | 99.51 229 | 98.09 282 | 99.54 189 | 99.27 297 | 96.87 270 | 99.74 308 | 98.43 168 | 98.96 330 | 99.03 311 |
|
our_test_3 | | | 98.85 222 | 99.09 157 | 98.13 326 | 99.66 159 | 94.90 362 | 97.72 340 | 99.58 192 | 99.07 183 | 99.64 145 | 99.62 186 | 98.19 200 | 99.93 87 | 98.41 169 | 99.95 74 | 99.55 163 |
|
Gipuma |  | | 99.57 62 | 99.59 56 | 99.49 170 | 99.98 3 | 99.71 77 | 99.72 30 | 99.84 50 | 99.81 50 | 99.94 25 | 99.78 93 | 98.91 103 | 99.71 317 | 98.41 169 | 99.95 74 | 99.05 309 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test0.0.03 1 | | | 97.37 312 | 96.91 322 | 98.74 301 | 97.72 380 | 97.57 318 | 97.60 346 | 97.36 367 | 98.00 285 | 99.21 265 | 98.02 377 | 90.04 356 | 99.79 289 | 98.37 171 | 95.89 380 | 98.86 328 |
|
PM-MVS | | | 99.36 113 | 99.29 118 | 99.58 146 | 99.83 56 | 99.66 95 | 98.95 231 | 99.86 39 | 98.85 208 | 99.81 79 | 99.73 116 | 98.40 177 | 99.92 107 | 98.36 172 | 99.83 160 | 99.17 280 |
|
baseline1 | | | 97.73 299 | 97.33 309 | 98.96 274 | 99.30 291 | 97.73 314 | 99.40 107 | 98.42 347 | 99.33 141 | 99.46 211 | 99.21 311 | 91.18 339 | 99.82 265 | 98.35 173 | 91.26 382 | 99.32 248 |
|
MVS-HIRNet | | | 97.86 293 | 98.22 267 | 96.76 353 | 99.28 296 | 91.53 379 | 98.38 290 | 92.60 383 | 99.13 176 | 99.31 247 | 99.96 12 | 97.18 261 | 99.68 335 | 98.34 174 | 99.83 160 | 99.07 307 |
|
GA-MVS | | | 97.99 292 | 97.68 302 | 98.93 279 | 99.52 216 | 98.04 299 | 97.19 364 | 99.05 319 | 98.32 269 | 98.81 310 | 98.97 343 | 89.89 358 | 99.41 373 | 98.33 175 | 99.05 325 | 99.34 244 |
|
Fast-Effi-MVS+ | | | 99.02 194 | 98.87 207 | 99.46 178 | 99.38 264 | 99.50 134 | 99.04 211 | 99.79 74 | 97.17 329 | 98.62 326 | 98.74 359 | 99.34 51 | 99.95 57 | 98.32 176 | 99.41 295 | 98.92 323 |
|
MDA-MVSNet_test_wron | | | 98.95 210 | 98.99 189 | 98.85 290 | 99.64 163 | 97.16 330 | 98.23 299 | 99.33 277 | 98.93 198 | 99.56 182 | 99.66 162 | 97.39 250 | 99.83 256 | 98.29 177 | 99.88 124 | 99.55 163 |
|
N_pmnet | | | 98.73 234 | 98.53 241 | 99.35 215 | 99.72 130 | 98.67 252 | 98.34 291 | 94.65 378 | 98.35 263 | 99.79 87 | 99.68 154 | 98.03 211 | 99.93 87 | 98.28 178 | 99.92 96 | 99.44 218 |
|
ET-MVSNet_ETH3D | | | 96.78 324 | 96.07 333 | 98.91 282 | 99.26 300 | 97.92 308 | 97.70 342 | 96.05 373 | 97.96 292 | 92.37 383 | 98.43 371 | 87.06 367 | 99.90 147 | 98.27 179 | 97.56 371 | 98.91 324 |
|
thisisatest0530 | | | 97.45 309 | 96.95 319 | 98.94 276 | 99.68 153 | 97.73 314 | 99.09 203 | 94.19 381 | 98.61 234 | 99.56 182 | 99.30 291 | 84.30 379 | 99.93 87 | 98.27 179 | 99.54 275 | 99.16 282 |
|
YYNet1 | | | 98.95 210 | 98.99 189 | 98.84 292 | 99.64 163 | 97.14 332 | 98.22 300 | 99.32 279 | 98.92 200 | 99.59 170 | 99.66 162 | 97.40 248 | 99.83 256 | 98.27 179 | 99.90 106 | 99.55 163 |
|
ACMM | | 98.09 11 | 99.46 86 | 99.38 94 | 99.72 84 | 99.80 76 | 99.69 88 | 99.13 191 | 99.65 146 | 98.99 189 | 99.64 145 | 99.72 123 | 99.39 41 | 99.86 210 | 98.23 182 | 99.81 178 | 99.60 141 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
lupinMVS | | | 98.96 207 | 98.87 207 | 99.24 243 | 99.57 191 | 98.40 273 | 98.12 308 | 99.18 309 | 98.28 271 | 99.63 149 | 99.13 317 | 98.02 212 | 99.97 27 | 98.22 183 | 99.69 228 | 99.35 242 |
|
3Dnovator | | 99.15 2 | 99.43 92 | 99.36 100 | 99.65 111 | 99.39 261 | 99.42 155 | 99.70 35 | 99.56 199 | 99.23 156 | 99.35 235 | 99.80 76 | 99.17 70 | 99.95 57 | 98.21 184 | 99.84 152 | 99.59 148 |
|
Fast-Effi-MVS+-dtu | | | 99.20 155 | 99.12 145 | 99.43 188 | 99.25 301 | 99.69 88 | 99.05 209 | 99.82 57 | 99.50 112 | 98.97 290 | 99.05 329 | 98.98 95 | 99.98 15 | 98.20 185 | 99.24 317 | 98.62 340 |
|
MS-PatchMatch | | | 99.00 200 | 98.97 193 | 99.09 262 | 99.11 327 | 98.19 286 | 98.76 257 | 99.33 277 | 98.49 246 | 99.44 213 | 99.58 210 | 98.21 198 | 99.69 325 | 98.20 185 | 99.62 249 | 99.39 231 |
|
TSAR-MVS + GP. | | | 99.12 176 | 99.04 174 | 99.38 206 | 99.34 279 | 99.16 208 | 98.15 304 | 99.29 287 | 98.18 278 | 99.63 149 | 99.62 186 | 99.18 69 | 99.68 335 | 98.20 185 | 99.74 208 | 99.30 254 |
|
DP-MVS | | | 99.48 78 | 99.39 92 | 99.74 69 | 99.57 191 | 99.62 108 | 99.29 140 | 99.61 164 | 99.87 32 | 99.74 113 | 99.76 104 | 98.69 130 | 99.87 192 | 98.20 185 | 99.80 183 | 99.75 58 |
|
MVP-Stereo | | | 99.16 168 | 99.08 159 | 99.43 188 | 99.48 234 | 99.07 221 | 99.08 206 | 99.55 205 | 98.63 231 | 99.31 247 | 99.68 154 | 98.19 200 | 99.78 292 | 98.18 189 | 99.58 264 | 99.45 213 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HPM-MVS_fast | | | 99.43 92 | 99.30 113 | 99.80 36 | 99.83 56 | 99.81 38 | 99.52 86 | 99.70 120 | 98.35 263 | 99.51 201 | 99.50 241 | 99.31 53 | 99.88 178 | 98.18 189 | 99.84 152 | 99.69 72 |
|
MDA-MVSNet-bldmvs | | | 99.06 185 | 99.05 169 | 99.07 266 | 99.80 76 | 97.83 310 | 98.89 235 | 99.72 111 | 99.29 144 | 99.63 149 | 99.70 137 | 96.47 279 | 99.89 164 | 98.17 191 | 99.82 169 | 99.50 195 |
|
JIA-IIPM | | | 98.06 288 | 97.92 292 | 98.50 311 | 98.59 367 | 97.02 334 | 98.80 251 | 98.51 343 | 99.88 31 | 97.89 358 | 99.87 43 | 91.89 332 | 99.90 147 | 98.16 192 | 97.68 370 | 98.59 342 |
|
EIA-MVS | | | 99.12 176 | 99.01 181 | 99.45 181 | 99.36 269 | 99.62 108 | 99.34 120 | 99.79 74 | 98.41 252 | 98.84 307 | 98.89 351 | 98.75 123 | 99.84 241 | 98.15 193 | 99.51 281 | 98.89 325 |
|
miper_lstm_enhance | | | 98.65 241 | 98.60 229 | 98.82 297 | 99.20 310 | 97.33 326 | 97.78 338 | 99.66 137 | 99.01 188 | 99.59 170 | 99.50 241 | 94.62 304 | 99.85 227 | 98.12 194 | 99.90 106 | 99.26 259 |
|
Effi-MVS+-dtu | | | 99.07 184 | 98.92 201 | 99.52 165 | 98.89 349 | 99.78 47 | 99.15 183 | 99.66 137 | 99.34 139 | 98.92 297 | 99.24 307 | 97.69 234 | 99.98 15 | 98.11 195 | 99.28 311 | 98.81 332 |
|
tpm | | | 97.15 316 | 96.95 319 | 97.75 336 | 98.91 345 | 94.24 365 | 99.32 125 | 97.96 357 | 97.71 303 | 98.29 340 | 99.32 287 | 86.72 373 | 99.92 107 | 98.10 196 | 96.24 379 | 99.09 299 |
|
DeepPCF-MVS | | 98.42 6 | 99.18 162 | 99.02 178 | 99.67 99 | 99.22 305 | 99.75 63 | 97.25 362 | 99.47 241 | 98.72 225 | 99.66 142 | 99.70 137 | 99.29 55 | 99.63 353 | 98.07 197 | 99.81 178 | 99.62 127 |
|
ppachtmachnet_test | | | 98.89 218 | 99.12 145 | 98.20 324 | 99.66 159 | 95.24 359 | 97.63 344 | 99.68 129 | 99.08 181 | 99.78 91 | 99.62 186 | 98.65 138 | 99.88 178 | 98.02 198 | 99.96 61 | 99.48 204 |
|
tpmrst | | | 97.73 299 | 98.07 278 | 96.73 355 | 98.71 364 | 92.00 375 | 99.10 199 | 98.86 325 | 98.52 242 | 98.92 297 | 99.54 232 | 91.90 331 | 99.82 265 | 98.02 198 | 99.03 327 | 98.37 354 |
|
CSCG | | | 99.37 110 | 99.29 118 | 99.60 140 | 99.71 133 | 99.46 141 | 99.43 105 | 99.85 44 | 98.79 216 | 99.41 225 | 99.60 203 | 98.92 101 | 99.92 107 | 98.02 198 | 99.92 96 | 99.43 224 |
|
eth_miper_zixun_eth | | | 98.68 239 | 98.71 222 | 98.60 306 | 99.10 328 | 96.84 339 | 97.52 352 | 99.54 211 | 98.94 195 | 99.58 172 | 99.48 248 | 96.25 288 | 99.76 302 | 98.01 201 | 99.93 92 | 99.21 269 |
|
Patchmtry | | | 98.78 227 | 98.54 239 | 99.49 170 | 98.89 349 | 99.19 206 | 99.32 125 | 99.67 133 | 99.65 90 | 99.72 118 | 99.79 86 | 91.87 333 | 99.95 57 | 98.00 202 | 99.97 46 | 99.33 245 |
|
PVSNet_BlendedMVS | | | 99.03 192 | 99.01 181 | 99.09 262 | 99.54 205 | 97.99 300 | 98.58 268 | 99.82 57 | 97.62 306 | 99.34 238 | 99.71 130 | 98.52 160 | 99.77 300 | 97.98 203 | 99.97 46 | 99.52 188 |
|
PVSNet_Blended | | | 98.70 237 | 98.59 231 | 99.02 270 | 99.54 205 | 97.99 300 | 97.58 347 | 99.82 57 | 95.70 354 | 99.34 238 | 98.98 341 | 98.52 160 | 99.77 300 | 97.98 203 | 99.83 160 | 99.30 254 |
|
cl____ | | | 98.54 252 | 98.41 250 | 98.92 280 | 99.03 336 | 97.80 312 | 97.46 354 | 99.59 182 | 98.90 202 | 99.60 167 | 99.46 255 | 93.85 311 | 99.78 292 | 97.97 205 | 99.89 115 | 99.17 280 |
|
DIV-MVS_self_test | | | 98.54 252 | 98.42 249 | 98.92 280 | 99.03 336 | 97.80 312 | 97.46 354 | 99.59 182 | 98.90 202 | 99.60 167 | 99.46 255 | 93.87 310 | 99.78 292 | 97.97 205 | 99.89 115 | 99.18 278 |
|
AUN-MVS | | | 97.82 295 | 97.38 308 | 99.14 256 | 99.27 298 | 98.53 264 | 98.72 260 | 99.02 320 | 98.10 280 | 97.18 372 | 99.03 335 | 89.26 360 | 99.85 227 | 97.94 207 | 97.91 366 | 99.03 311 |
|
FA-MVS(test-final) | | | 98.52 254 | 98.32 260 | 99.10 261 | 99.48 234 | 98.67 252 | 99.77 15 | 98.60 340 | 97.35 321 | 99.63 149 | 99.80 76 | 93.07 321 | 99.84 241 | 97.92 208 | 99.30 308 | 98.78 335 |
|
ambc | | | | | 99.20 247 | 99.35 271 | 98.53 264 | 99.17 175 | 99.46 244 | | 99.67 138 | 99.80 76 | 98.46 167 | 99.70 319 | 97.92 208 | 99.70 224 | 99.38 233 |
|
USDC | | | 98.96 207 | 98.93 197 | 99.05 268 | 99.54 205 | 97.99 300 | 97.07 368 | 99.80 68 | 98.21 275 | 99.75 105 | 99.77 100 | 98.43 170 | 99.64 352 | 97.90 210 | 99.88 124 | 99.51 190 |
|
OPM-MVS | | | 99.26 135 | 99.13 141 | 99.63 125 | 99.70 141 | 99.61 114 | 98.58 268 | 99.48 238 | 98.50 244 | 99.52 196 | 99.63 179 | 99.14 75 | 99.76 302 | 97.89 211 | 99.77 197 | 99.51 190 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DVP-MVS |  | | 99.32 125 | 99.17 134 | 99.77 47 | 99.69 145 | 99.80 42 | 99.14 185 | 99.31 283 | 99.16 170 | 99.62 158 | 99.61 195 | 98.35 181 | 99.91 129 | 97.88 212 | 99.72 219 | 99.61 137 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 99.83 25 | 99.70 141 | 99.79 44 | 99.14 185 | 99.61 164 | | | | | 99.92 107 | 97.88 212 | 99.72 219 | 99.77 49 |
|
c3_l | | | 98.72 235 | 98.71 222 | 98.72 302 | 99.12 322 | 97.22 329 | 97.68 343 | 99.56 199 | 98.90 202 | 99.54 189 | 99.48 248 | 96.37 285 | 99.73 311 | 97.88 212 | 99.88 124 | 99.21 269 |
|
3Dnovator+ | | 98.92 3 | 99.35 115 | 99.24 128 | 99.67 99 | 99.35 271 | 99.47 137 | 99.62 63 | 99.50 233 | 99.44 124 | 99.12 278 | 99.78 93 | 98.77 120 | 99.94 70 | 97.87 215 | 99.72 219 | 99.62 127 |
|
miper_ehance_all_eth | | | 98.59 247 | 98.59 231 | 98.59 307 | 98.98 342 | 97.07 333 | 97.49 353 | 99.52 225 | 98.50 244 | 99.52 196 | 99.37 274 | 96.41 283 | 99.71 317 | 97.86 216 | 99.62 249 | 99.00 317 |
|
WTY-MVS | | | 98.59 247 | 98.37 254 | 99.26 238 | 99.43 253 | 98.40 273 | 98.74 258 | 99.13 315 | 98.10 280 | 99.21 265 | 99.24 307 | 94.82 301 | 99.90 147 | 97.86 216 | 98.77 340 | 99.49 200 |
|
APD_test1 | | | 99.36 113 | 99.28 120 | 99.61 137 | 99.89 35 | 99.89 10 | 99.32 125 | 99.74 98 | 99.18 163 | 99.69 129 | 99.75 109 | 98.41 173 | 99.84 241 | 97.85 218 | 99.70 224 | 99.10 295 |
|
SED-MVS | | | 99.40 101 | 99.28 120 | 99.77 47 | 99.69 145 | 99.82 35 | 99.20 165 | 99.54 211 | 99.13 176 | 99.82 72 | 99.63 179 | 98.91 103 | 99.92 107 | 97.85 218 | 99.70 224 | 99.58 153 |
|
test_241102_TWO | | | | | | | | | 99.54 211 | 99.13 176 | 99.76 98 | 99.63 179 | 98.32 187 | 99.92 107 | 97.85 218 | 99.69 228 | 99.75 58 |
|
MVS_111021_HR | | | 99.12 176 | 99.02 178 | 99.40 199 | 99.50 224 | 99.11 213 | 97.92 331 | 99.71 114 | 98.76 223 | 99.08 282 | 99.47 252 | 99.17 70 | 99.54 363 | 97.85 218 | 99.76 199 | 99.54 171 |
|
MTAPA | | | 99.35 115 | 99.20 131 | 99.80 36 | 99.81 71 | 99.81 38 | 99.33 123 | 99.53 220 | 99.27 148 | 99.42 219 | 99.63 179 | 98.21 198 | 99.95 57 | 97.83 222 | 99.79 188 | 99.65 101 |
|
MSC_two_6792asdad | | | | | 99.74 69 | 99.03 336 | 99.53 131 | | 99.23 301 | | | | | 99.92 107 | 97.77 223 | 99.69 228 | 99.78 45 |
|
No_MVS | | | | | 99.74 69 | 99.03 336 | 99.53 131 | | 99.23 301 | | | | | 99.92 107 | 97.77 223 | 99.69 228 | 99.78 45 |
|
TESTMET0.1,1 | | | 96.24 336 | 95.84 338 | 97.41 343 | 98.24 375 | 93.84 368 | 97.38 356 | 95.84 374 | 98.43 249 | 97.81 362 | 98.56 366 | 79.77 384 | 99.89 164 | 97.77 223 | 98.77 340 | 98.52 346 |
|
ACMH+ | | 98.40 8 | 99.50 74 | 99.43 88 | 99.71 89 | 99.86 48 | 99.76 58 | 99.32 125 | 99.77 83 | 99.53 110 | 99.77 96 | 99.76 104 | 99.26 61 | 99.78 292 | 97.77 223 | 99.88 124 | 99.60 141 |
|
IU-MVS | | | | | | 99.69 145 | 99.77 50 | | 99.22 304 | 97.50 313 | 99.69 129 | | | | 97.75 227 | 99.70 224 | 99.77 49 |
|
114514_t | | | 98.49 259 | 98.11 276 | 99.64 118 | 99.73 127 | 99.58 122 | 99.24 155 | 99.76 88 | 89.94 376 | 99.42 219 | 99.56 223 | 97.76 231 | 99.86 210 | 97.74 228 | 99.82 169 | 99.47 208 |
|
DVP-MVS++ | | | 99.38 107 | 99.25 126 | 99.77 47 | 99.03 336 | 99.77 50 | 99.74 24 | 99.61 164 | 99.18 163 | 99.76 98 | 99.61 195 | 99.00 91 | 99.92 107 | 97.72 229 | 99.60 259 | 99.62 127 |
|
test_0728_THIRD | | | | | | | | | | 99.18 163 | 99.62 158 | 99.61 195 | 98.58 147 | 99.91 129 | 97.72 229 | 99.80 183 | 99.77 49 |
|
EGC-MVSNET | | | 89.05 350 | 85.52 353 | 99.64 118 | 99.89 35 | 99.78 47 | 99.56 81 | 99.52 225 | 24.19 384 | 49.96 385 | 99.83 59 | 99.15 72 | 99.92 107 | 97.71 231 | 99.85 147 | 99.21 269 |
|
miper_enhance_ethall | | | 98.03 289 | 97.94 290 | 98.32 319 | 98.27 374 | 96.43 345 | 96.95 369 | 99.41 255 | 96.37 345 | 99.43 217 | 98.96 345 | 94.74 302 | 99.69 325 | 97.71 231 | 99.62 249 | 98.83 331 |
|
TSAR-MVS + MP. | | | 99.34 120 | 99.24 128 | 99.63 125 | 99.82 63 | 99.37 168 | 99.26 147 | 99.35 274 | 98.77 220 | 99.57 175 | 99.70 137 | 99.27 60 | 99.88 178 | 97.71 231 | 99.75 201 | 99.65 101 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
cl22 | | | 97.56 307 | 97.28 310 | 98.40 315 | 98.37 372 | 96.75 340 | 97.24 363 | 99.37 270 | 97.31 323 | 99.41 225 | 99.22 309 | 87.30 365 | 99.37 374 | 97.70 234 | 99.62 249 | 99.08 302 |
|
MP-MVS-pluss | | | 99.14 172 | 98.92 201 | 99.80 36 | 99.83 56 | 99.83 29 | 98.61 264 | 99.63 154 | 96.84 338 | 99.44 213 | 99.58 210 | 98.81 111 | 99.91 129 | 97.70 234 | 99.82 169 | 99.67 84 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 99.28 129 | 99.11 148 | 99.79 41 | 99.75 118 | 99.81 38 | 98.95 231 | 99.53 220 | 98.27 272 | 99.53 194 | 99.73 116 | 98.75 123 | 99.87 192 | 97.70 234 | 99.83 160 | 99.68 78 |
|
UnsupCasMVSNet_bld | | | 98.55 251 | 98.27 264 | 99.40 199 | 99.56 202 | 99.37 168 | 97.97 327 | 99.68 129 | 97.49 314 | 99.08 282 | 99.35 283 | 95.41 298 | 99.82 265 | 97.70 234 | 98.19 361 | 99.01 316 |
|
MVS_111021_LR | | | 99.13 174 | 99.03 176 | 99.42 190 | 99.58 181 | 99.32 180 | 97.91 333 | 99.73 102 | 98.68 227 | 99.31 247 | 99.48 248 | 99.09 80 | 99.66 344 | 97.70 234 | 99.77 197 | 99.29 257 |
|
IS-MVSNet | | | 99.03 192 | 98.85 209 | 99.55 158 | 99.80 76 | 99.25 193 | 99.73 27 | 99.15 312 | 99.37 136 | 99.61 164 | 99.71 130 | 94.73 303 | 99.81 280 | 97.70 234 | 99.88 124 | 99.58 153 |
|
test-LLR | | | 97.15 316 | 96.95 319 | 97.74 337 | 98.18 377 | 95.02 360 | 97.38 356 | 96.10 370 | 98.00 285 | 97.81 362 | 98.58 363 | 90.04 356 | 99.91 129 | 97.69 240 | 98.78 338 | 98.31 355 |
|
test-mter | | | 96.23 337 | 95.73 339 | 97.74 337 | 98.18 377 | 95.02 360 | 97.38 356 | 96.10 370 | 97.90 294 | 97.81 362 | 98.58 363 | 79.12 387 | 99.91 129 | 97.69 240 | 98.78 338 | 98.31 355 |
|
XVS | | | 99.27 133 | 99.11 148 | 99.75 64 | 99.71 133 | 99.71 77 | 99.37 115 | 99.61 164 | 99.29 144 | 98.76 316 | 99.47 252 | 98.47 164 | 99.88 178 | 97.62 242 | 99.73 213 | 99.67 84 |
|
X-MVStestdata | | | 96.09 338 | 94.87 347 | 99.75 64 | 99.71 133 | 99.71 77 | 99.37 115 | 99.61 164 | 99.29 144 | 98.76 316 | 61.30 391 | 98.47 164 | 99.88 178 | 97.62 242 | 99.73 213 | 99.67 84 |
|
SMA-MVS |  | | 99.19 158 | 99.00 184 | 99.73 78 | 99.46 244 | 99.73 71 | 99.13 191 | 99.52 225 | 97.40 318 | 99.57 175 | 99.64 169 | 98.93 100 | 99.83 256 | 97.61 244 | 99.79 188 | 99.63 116 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CostFormer | | | 96.71 327 | 96.79 326 | 96.46 359 | 98.90 346 | 90.71 384 | 99.41 106 | 98.68 334 | 94.69 367 | 98.14 350 | 99.34 286 | 86.32 375 | 99.80 286 | 97.60 245 | 98.07 365 | 98.88 326 |
|
PVSNet | | 97.47 15 | 98.42 266 | 98.44 247 | 98.35 317 | 99.46 244 | 96.26 346 | 96.70 373 | 99.34 276 | 97.68 304 | 99.00 289 | 99.13 317 | 97.40 248 | 99.72 313 | 97.59 246 | 99.68 233 | 99.08 302 |
|
new_pmnet | | | 98.88 219 | 98.89 205 | 98.84 292 | 99.70 141 | 97.62 317 | 98.15 304 | 99.50 233 | 97.98 288 | 99.62 158 | 99.54 232 | 98.15 203 | 99.94 70 | 97.55 247 | 99.84 152 | 98.95 320 |
|
IB-MVS | | 95.41 20 | 95.30 347 | 94.46 351 | 97.84 333 | 98.76 362 | 95.33 358 | 97.33 359 | 96.07 372 | 96.02 349 | 95.37 381 | 97.41 384 | 76.17 389 | 99.96 48 | 97.54 248 | 95.44 381 | 98.22 360 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LS3D | | | 99.24 139 | 99.11 148 | 99.61 137 | 98.38 371 | 99.79 44 | 99.57 79 | 99.68 129 | 99.61 98 | 99.15 273 | 99.71 130 | 98.70 129 | 99.91 129 | 97.54 248 | 99.68 233 | 99.13 292 |
|
ZNCC-MVS | | | 99.22 148 | 99.04 174 | 99.77 47 | 99.76 107 | 99.73 71 | 99.28 142 | 99.56 199 | 98.19 277 | 99.14 275 | 99.29 294 | 98.84 110 | 99.92 107 | 97.53 250 | 99.80 183 | 99.64 111 |
|
CP-MVS | | | 99.23 140 | 99.05 169 | 99.75 64 | 99.66 159 | 99.66 95 | 99.38 111 | 99.62 157 | 98.38 256 | 99.06 286 | 99.27 297 | 98.79 116 | 99.94 70 | 97.51 251 | 99.82 169 | 99.66 93 |
|
SD-MVS | | | 99.01 198 | 99.30 113 | 98.15 325 | 99.50 224 | 99.40 161 | 98.94 233 | 99.61 164 | 99.22 160 | 99.75 105 | 99.82 66 | 99.54 32 | 95.51 385 | 97.48 252 | 99.87 135 | 99.54 171 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PMMVS | | | 98.49 259 | 98.29 263 | 99.11 259 | 98.96 343 | 98.42 272 | 97.54 348 | 99.32 279 | 97.53 311 | 98.47 336 | 98.15 376 | 97.88 222 | 99.82 265 | 97.46 253 | 99.24 317 | 99.09 299 |
|
DeepC-MVS_fast | | 98.47 5 | 99.23 140 | 99.12 145 | 99.56 155 | 99.28 296 | 99.22 200 | 98.99 225 | 99.40 262 | 99.08 181 | 99.58 172 | 99.64 169 | 98.90 106 | 99.83 256 | 97.44 254 | 99.75 201 | 99.63 116 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HFP-MVS | | | 99.25 136 | 99.08 159 | 99.76 54 | 99.73 127 | 99.70 84 | 99.31 130 | 99.59 182 | 98.36 258 | 99.36 234 | 99.37 274 | 98.80 115 | 99.91 129 | 97.43 255 | 99.75 201 | 99.68 78 |
|
ACMMPR | | | 99.23 140 | 99.06 165 | 99.76 54 | 99.74 124 | 99.69 88 | 99.31 130 | 99.59 182 | 98.36 258 | 99.35 235 | 99.38 272 | 98.61 142 | 99.93 87 | 97.43 255 | 99.75 201 | 99.67 84 |
|
Vis-MVSNet (Re-imp) | | | 98.77 228 | 98.58 234 | 99.34 216 | 99.78 95 | 98.88 239 | 99.61 68 | 99.56 199 | 99.11 180 | 99.24 259 | 99.56 223 | 93.00 323 | 99.78 292 | 97.43 255 | 99.89 115 | 99.35 242 |
|
MIMVSNet | | | 98.43 265 | 98.20 269 | 99.11 259 | 99.53 211 | 98.38 277 | 99.58 76 | 98.61 338 | 98.96 193 | 99.33 240 | 99.76 104 | 90.92 343 | 99.81 280 | 97.38 258 | 99.76 199 | 99.15 284 |
|
XVG-OURS-SEG-HR | | | 99.16 168 | 98.99 189 | 99.66 106 | 99.84 52 | 99.64 102 | 98.25 298 | 99.73 102 | 98.39 255 | 99.63 149 | 99.43 260 | 99.70 19 | 99.90 147 | 97.34 259 | 98.64 348 | 99.44 218 |
|
COLMAP_ROB |  | 98.06 12 | 99.45 88 | 99.37 97 | 99.70 93 | 99.83 56 | 99.70 84 | 99.38 111 | 99.78 80 | 99.53 110 | 99.67 138 | 99.78 93 | 99.19 68 | 99.86 210 | 97.32 260 | 99.87 135 | 99.55 163 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MCST-MVS | | | 99.02 194 | 98.81 215 | 99.65 111 | 99.58 181 | 99.49 135 | 98.58 268 | 99.07 316 | 98.40 254 | 99.04 287 | 99.25 302 | 98.51 162 | 99.80 286 | 97.31 261 | 99.51 281 | 99.65 101 |
|
region2R | | | 99.23 140 | 99.05 169 | 99.77 47 | 99.76 107 | 99.70 84 | 99.31 130 | 99.59 182 | 98.41 252 | 99.32 243 | 99.36 278 | 98.73 127 | 99.93 87 | 97.29 262 | 99.74 208 | 99.67 84 |
|
APD-MVS_3200maxsize | | | 99.31 126 | 99.16 135 | 99.74 69 | 99.53 211 | 99.75 63 | 99.27 145 | 99.61 164 | 99.19 162 | 99.57 175 | 99.64 169 | 98.76 121 | 99.90 147 | 97.29 262 | 99.62 249 | 99.56 160 |
|
TAPA-MVS | | 97.92 13 | 98.03 289 | 97.55 305 | 99.46 178 | 99.47 240 | 99.44 148 | 98.50 281 | 99.62 157 | 86.79 377 | 99.07 285 | 99.26 300 | 98.26 192 | 99.62 354 | 97.28 264 | 99.73 213 | 99.31 252 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SR-MVS-dyc-post | | | 99.27 133 | 99.11 148 | 99.73 78 | 99.54 205 | 99.74 69 | 99.26 147 | 99.62 157 | 99.16 170 | 99.52 196 | 99.64 169 | 98.41 173 | 99.91 129 | 97.27 265 | 99.61 256 | 99.54 171 |
|
RE-MVS-def | | | | 99.13 141 | | 99.54 205 | 99.74 69 | 99.26 147 | 99.62 157 | 99.16 170 | 99.52 196 | 99.64 169 | 98.57 148 | | 97.27 265 | 99.61 256 | 99.54 171 |
|
test_yl | | | 98.25 278 | 97.95 286 | 99.13 257 | 99.17 315 | 98.47 267 | 99.00 220 | 98.67 336 | 98.97 191 | 99.22 263 | 99.02 336 | 91.31 337 | 99.69 325 | 97.26 267 | 98.93 331 | 99.24 262 |
|
DCV-MVSNet | | | 98.25 278 | 97.95 286 | 99.13 257 | 99.17 315 | 98.47 267 | 99.00 220 | 98.67 336 | 98.97 191 | 99.22 263 | 99.02 336 | 91.31 337 | 99.69 325 | 97.26 267 | 98.93 331 | 99.24 262 |
|
PHI-MVS | | | 99.11 179 | 98.95 196 | 99.59 142 | 99.13 320 | 99.59 118 | 99.17 175 | 99.65 146 | 97.88 295 | 99.25 256 | 99.46 255 | 98.97 97 | 99.80 286 | 97.26 267 | 99.82 169 | 99.37 236 |
|
tfpnnormal | | | 99.43 92 | 99.38 94 | 99.60 140 | 99.87 45 | 99.75 63 | 99.59 74 | 99.78 80 | 99.71 70 | 99.90 41 | 99.69 143 | 98.85 109 | 99.90 147 | 97.25 270 | 99.78 193 | 99.15 284 |
|
PatchmatchNet |  | | 97.65 303 | 97.80 296 | 97.18 349 | 98.82 356 | 92.49 373 | 99.17 175 | 98.39 349 | 98.12 279 | 98.79 313 | 99.58 210 | 90.71 348 | 99.89 164 | 97.23 271 | 99.41 295 | 99.16 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CNVR-MVS | | | 98.99 203 | 98.80 217 | 99.56 155 | 99.25 301 | 99.43 152 | 98.54 277 | 99.27 291 | 98.58 236 | 98.80 312 | 99.43 260 | 98.53 157 | 99.70 319 | 97.22 272 | 99.59 263 | 99.54 171 |
|
HPM-MVS |  | | 99.25 136 | 99.07 163 | 99.78 44 | 99.81 71 | 99.75 63 | 99.61 68 | 99.67 133 | 97.72 302 | 99.35 235 | 99.25 302 | 99.23 64 | 99.92 107 | 97.21 273 | 99.82 169 | 99.67 84 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 99.19 158 | 99.00 184 | 99.76 54 | 99.76 107 | 99.68 91 | 99.38 111 | 99.54 211 | 98.34 267 | 99.01 288 | 99.50 241 | 98.53 157 | 99.93 87 | 97.18 274 | 99.78 193 | 99.66 93 |
|
ACMMP |  | | 99.25 136 | 99.08 159 | 99.74 69 | 99.79 88 | 99.68 91 | 99.50 90 | 99.65 146 | 98.07 283 | 99.52 196 | 99.69 143 | 98.57 148 | 99.92 107 | 97.18 274 | 99.79 188 | 99.63 116 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
thisisatest0515 | | | 96.98 320 | 96.42 327 | 98.66 305 | 99.42 258 | 97.47 321 | 97.27 361 | 94.30 380 | 97.24 325 | 99.15 273 | 98.86 353 | 85.01 376 | 99.87 192 | 97.10 276 | 99.39 297 | 98.63 339 |
|
XVG-ACMP-BASELINE | | | 99.23 140 | 99.10 156 | 99.63 125 | 99.82 63 | 99.58 122 | 98.83 243 | 99.72 111 | 98.36 258 | 99.60 167 | 99.71 130 | 98.92 101 | 99.91 129 | 97.08 277 | 99.84 152 | 99.40 229 |
|
MSDG | | | 99.08 183 | 98.98 192 | 99.37 209 | 99.60 172 | 99.13 211 | 97.54 348 | 99.74 98 | 98.84 211 | 99.53 194 | 99.55 230 | 99.10 78 | 99.79 289 | 97.07 278 | 99.86 143 | 99.18 278 |
|
SteuartSystems-ACMMP | | | 99.30 127 | 99.14 139 | 99.76 54 | 99.87 45 | 99.66 95 | 99.18 170 | 99.60 176 | 98.55 238 | 99.57 175 | 99.67 158 | 99.03 90 | 99.94 70 | 97.01 279 | 99.80 183 | 99.69 72 |
Skip Steuart: Steuart Systems R&D Blog. |
EPMVS | | | 96.53 330 | 96.32 328 | 97.17 350 | 98.18 377 | 92.97 372 | 99.39 109 | 89.95 387 | 98.21 275 | 98.61 327 | 99.59 208 | 86.69 374 | 99.72 313 | 96.99 280 | 99.23 319 | 98.81 332 |
|
MSP-MVS | | | 99.04 191 | 98.79 218 | 99.81 31 | 99.78 95 | 99.73 71 | 99.35 119 | 99.57 194 | 98.54 241 | 99.54 189 | 98.99 338 | 96.81 271 | 99.93 87 | 96.97 281 | 99.53 277 | 99.77 49 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 98.96 207 | 98.70 224 | 99.74 69 | 99.52 216 | 99.71 77 | 98.86 238 | 99.19 308 | 98.47 248 | 98.59 329 | 99.06 328 | 98.08 208 | 99.91 129 | 96.94 282 | 99.60 259 | 99.60 141 |
|
SR-MVS | | | 99.19 158 | 99.00 184 | 99.74 69 | 99.51 218 | 99.72 75 | 99.18 170 | 99.60 176 | 98.85 208 | 99.47 207 | 99.58 210 | 98.38 178 | 99.92 107 | 96.92 283 | 99.54 275 | 99.57 158 |
|
PGM-MVS | | | 99.20 155 | 99.01 181 | 99.77 47 | 99.75 118 | 99.71 77 | 99.16 181 | 99.72 111 | 97.99 287 | 99.42 219 | 99.60 203 | 98.81 111 | 99.93 87 | 96.91 284 | 99.74 208 | 99.66 93 |
|
HY-MVS | | 98.23 9 | 98.21 283 | 97.95 286 | 98.99 271 | 99.03 336 | 98.24 281 | 99.61 68 | 98.72 332 | 96.81 339 | 98.73 318 | 99.51 238 | 94.06 308 | 99.86 210 | 96.91 284 | 98.20 359 | 98.86 328 |
|
MDTV_nov1_ep13 | | | | 97.73 300 | | 98.70 365 | 90.83 382 | 99.15 183 | 98.02 356 | 98.51 243 | 98.82 309 | 99.61 195 | 90.98 342 | 99.66 344 | 96.89 286 | 98.92 333 | |
|
GST-MVS | | | 99.16 168 | 98.96 195 | 99.75 64 | 99.73 127 | 99.73 71 | 99.20 165 | 99.55 205 | 98.22 274 | 99.32 243 | 99.35 283 | 98.65 138 | 99.91 129 | 96.86 287 | 99.74 208 | 99.62 127 |
|
test_post1 | | | | | | | | 99.14 185 | | | | 51.63 393 | 89.54 359 | 99.82 265 | 96.86 287 | | |
|
SCA | | | 98.11 285 | 98.36 255 | 97.36 344 | 99.20 310 | 92.99 371 | 98.17 303 | 98.49 345 | 98.24 273 | 99.10 281 | 99.57 219 | 96.01 292 | 99.94 70 | 96.86 287 | 99.62 249 | 99.14 289 |
|
XVG-OURS | | | 99.21 153 | 99.06 165 | 99.65 111 | 99.82 63 | 99.62 108 | 97.87 335 | 99.74 98 | 98.36 258 | 99.66 142 | 99.68 154 | 99.71 17 | 99.90 147 | 96.84 290 | 99.88 124 | 99.43 224 |
|
LCM-MVSNet-Re | | | 99.28 129 | 99.15 138 | 99.67 99 | 99.33 284 | 99.76 58 | 99.34 120 | 99.97 13 | 98.93 198 | 99.91 35 | 99.79 86 | 98.68 131 | 99.93 87 | 96.80 291 | 99.56 266 | 99.30 254 |
|
RPSCF | | | 99.18 162 | 99.02 178 | 99.64 118 | 99.83 56 | 99.85 19 | 99.44 103 | 99.82 57 | 98.33 268 | 99.50 203 | 99.78 93 | 97.90 220 | 99.65 350 | 96.78 292 | 99.83 160 | 99.44 218 |
|
旧先验2 | | | | | | | | 97.94 329 | | 95.33 358 | 98.94 293 | | | 99.88 178 | 96.75 293 | | |
|
MDTV_nov1_ep13_2view | | | | | | | 91.44 380 | 99.14 185 | | 97.37 320 | 99.21 265 | | 91.78 335 | | 96.75 293 | | 99.03 311 |
|
CLD-MVS | | | 98.76 229 | 98.57 235 | 99.33 219 | 99.57 191 | 98.97 228 | 97.53 350 | 99.55 205 | 96.41 343 | 99.27 254 | 99.13 317 | 99.07 85 | 99.78 292 | 96.73 295 | 99.89 115 | 99.23 265 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Patchmatch-test | | | 98.10 286 | 97.98 284 | 98.48 312 | 99.27 298 | 96.48 343 | 99.40 107 | 99.07 316 | 98.81 213 | 99.23 260 | 99.57 219 | 90.11 355 | 99.87 192 | 96.69 296 | 99.64 246 | 99.09 299 |
|
baseline2 | | | 96.83 323 | 96.28 329 | 98.46 313 | 99.09 330 | 96.91 337 | 98.83 243 | 93.87 382 | 97.23 326 | 96.23 377 | 98.36 372 | 88.12 363 | 99.90 147 | 96.68 297 | 98.14 363 | 98.57 345 |
|
cascas | | | 96.99 319 | 96.82 325 | 97.48 340 | 97.57 383 | 95.64 355 | 96.43 375 | 99.56 199 | 91.75 372 | 97.13 373 | 97.61 383 | 95.58 297 | 98.63 381 | 96.68 297 | 99.11 322 | 98.18 364 |
|
PC_three_1452 | | | | | | | | | | 97.56 307 | 99.68 132 | 99.41 262 | 99.09 80 | 97.09 383 | 96.66 299 | 99.60 259 | 99.62 127 |
|
LPG-MVS_test | | | 99.22 148 | 99.05 169 | 99.74 69 | 99.82 63 | 99.63 106 | 99.16 181 | 99.73 102 | 97.56 307 | 99.64 145 | 99.69 143 | 99.37 47 | 99.89 164 | 96.66 299 | 99.87 135 | 99.69 72 |
|
LGP-MVS_train | | | | | 99.74 69 | 99.82 63 | 99.63 106 | | 99.73 102 | 97.56 307 | 99.64 145 | 99.69 143 | 99.37 47 | 99.89 164 | 96.66 299 | 99.87 135 | 99.69 72 |
|
TinyColmap | | | 98.97 204 | 98.93 197 | 99.07 266 | 99.46 244 | 98.19 286 | 97.75 339 | 99.75 93 | 98.79 216 | 99.54 189 | 99.70 137 | 98.97 97 | 99.62 354 | 96.63 302 | 99.83 160 | 99.41 228 |
|
LF4IMVS | | | 99.01 198 | 98.92 201 | 99.27 235 | 99.71 133 | 99.28 186 | 98.59 267 | 99.77 83 | 98.32 269 | 99.39 231 | 99.41 262 | 98.62 140 | 99.84 241 | 96.62 303 | 99.84 152 | 98.69 338 |
|
NCCC | | | 98.82 224 | 98.57 235 | 99.58 146 | 99.21 307 | 99.31 181 | 98.61 264 | 99.25 297 | 98.65 229 | 98.43 337 | 99.26 300 | 97.86 223 | 99.81 280 | 96.55 304 | 99.27 314 | 99.61 137 |
|
OPU-MVS | | | | | 99.29 230 | 99.12 322 | 99.44 148 | 99.20 165 | | | | 99.40 266 | 99.00 91 | 98.84 380 | 96.54 305 | 99.60 259 | 99.58 153 |
|
F-COLMAP | | | 98.74 232 | 98.45 246 | 99.62 134 | 99.57 191 | 99.47 137 | 98.84 241 | 99.65 146 | 96.31 346 | 98.93 294 | 99.19 314 | 97.68 235 | 99.87 192 | 96.52 306 | 99.37 300 | 99.53 177 |
|
ADS-MVSNet2 | | | 97.78 297 | 97.66 304 | 98.12 327 | 99.14 318 | 95.36 357 | 99.22 162 | 98.75 331 | 96.97 334 | 98.25 342 | 99.64 169 | 90.90 344 | 99.94 70 | 96.51 307 | 99.56 266 | 99.08 302 |
|
ADS-MVSNet | | | 97.72 302 | 97.67 303 | 97.86 332 | 99.14 318 | 94.65 363 | 99.22 162 | 98.86 325 | 96.97 334 | 98.25 342 | 99.64 169 | 90.90 344 | 99.84 241 | 96.51 307 | 99.56 266 | 99.08 302 |
|
PatchMatch-RL | | | 98.68 239 | 98.47 244 | 99.30 229 | 99.44 249 | 99.28 186 | 98.14 306 | 99.54 211 | 97.12 332 | 99.11 279 | 99.25 302 | 97.80 228 | 99.70 319 | 96.51 307 | 99.30 308 | 98.93 322 |
|
CMPMVS |  | 77.52 23 | 98.50 257 | 98.19 272 | 99.41 197 | 98.33 373 | 99.56 125 | 99.01 218 | 99.59 182 | 95.44 356 | 99.57 175 | 99.80 76 | 95.64 295 | 99.46 372 | 96.47 310 | 99.92 96 | 99.21 269 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SF-MVS | | | 99.10 182 | 98.93 197 | 99.62 134 | 99.58 181 | 99.51 133 | 99.13 191 | 99.65 146 | 97.97 289 | 99.42 219 | 99.61 195 | 98.86 108 | 99.87 192 | 96.45 311 | 99.68 233 | 99.49 200 |
|
FE-MVS | | | 97.85 294 | 97.42 307 | 99.15 253 | 99.44 249 | 98.75 247 | 99.77 15 | 98.20 354 | 95.85 351 | 99.33 240 | 99.80 76 | 88.86 361 | 99.88 178 | 96.40 312 | 99.12 321 | 98.81 332 |
|
DPE-MVS |  | | 99.14 172 | 98.92 201 | 99.82 28 | 99.57 191 | 99.77 50 | 98.74 258 | 99.60 176 | 98.55 238 | 99.76 98 | 99.69 143 | 98.23 197 | 99.92 107 | 96.39 313 | 99.75 201 | 99.76 55 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
gm-plane-assit | | | | | | 97.59 381 | 89.02 388 | | | 93.47 369 | | 98.30 373 | | 99.84 241 | 96.38 314 | | |
|
AllTest | | | 99.21 153 | 99.07 163 | 99.63 125 | 99.78 95 | 99.64 102 | 99.12 195 | 99.83 52 | 98.63 231 | 99.63 149 | 99.72 123 | 98.68 131 | 99.75 306 | 96.38 314 | 99.83 160 | 99.51 190 |
|
TestCases | | | | | 99.63 125 | 99.78 95 | 99.64 102 | | 99.83 52 | 98.63 231 | 99.63 149 | 99.72 123 | 98.68 131 | 99.75 306 | 96.38 314 | 99.83 160 | 99.51 190 |
|
testdata | | | | | 99.42 190 | 99.51 218 | 98.93 234 | | 99.30 286 | 96.20 347 | 98.87 304 | 99.40 266 | 98.33 186 | 99.89 164 | 96.29 317 | 99.28 311 | 99.44 218 |
|
dp | | | 96.86 322 | 97.07 315 | 96.24 361 | 98.68 366 | 90.30 386 | 99.19 169 | 98.38 350 | 97.35 321 | 98.23 344 | 99.59 208 | 87.23 366 | 99.82 265 | 96.27 318 | 98.73 346 | 98.59 342 |
|
tpmvs | | | 97.39 311 | 97.69 301 | 96.52 357 | 98.41 370 | 91.76 376 | 99.30 133 | 98.94 324 | 97.74 301 | 97.85 361 | 99.55 230 | 92.40 330 | 99.73 311 | 96.25 319 | 98.73 346 | 98.06 366 |
|
KD-MVS_2432*1600 | | | 95.89 340 | 95.41 343 | 97.31 347 | 94.96 385 | 93.89 366 | 97.09 366 | 99.22 304 | 97.23 326 | 98.88 301 | 99.04 331 | 79.23 385 | 99.54 363 | 96.24 320 | 96.81 374 | 98.50 350 |
|
miper_refine_blended | | | 95.89 340 | 95.41 343 | 97.31 347 | 94.96 385 | 93.89 366 | 97.09 366 | 99.22 304 | 97.23 326 | 98.88 301 | 99.04 331 | 79.23 385 | 99.54 363 | 96.24 320 | 96.81 374 | 98.50 350 |
|
ACMP | | 97.51 14 | 99.05 188 | 98.84 211 | 99.67 99 | 99.78 95 | 99.55 128 | 98.88 236 | 99.66 137 | 97.11 333 | 99.47 207 | 99.60 203 | 99.07 85 | 99.89 164 | 96.18 322 | 99.85 147 | 99.58 153 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OMC-MVS | | | 98.90 215 | 98.72 221 | 99.44 184 | 99.39 261 | 99.42 155 | 98.58 268 | 99.64 152 | 97.31 323 | 99.44 213 | 99.62 186 | 98.59 145 | 99.69 325 | 96.17 323 | 99.79 188 | 99.22 267 |
|
DP-MVS Recon | | | 98.50 257 | 98.23 265 | 99.31 226 | 99.49 229 | 99.46 141 | 98.56 273 | 99.63 154 | 94.86 365 | 98.85 306 | 99.37 274 | 97.81 227 | 99.59 360 | 96.08 324 | 99.44 290 | 98.88 326 |
|
tpm cat1 | | | 96.78 324 | 96.98 318 | 96.16 362 | 98.85 352 | 90.59 385 | 99.08 206 | 99.32 279 | 92.37 371 | 97.73 366 | 99.46 255 | 91.15 340 | 99.69 325 | 96.07 325 | 98.80 337 | 98.21 361 |
|
tpm2 | | | 96.35 333 | 96.22 330 | 96.73 355 | 98.88 351 | 91.75 377 | 99.21 164 | 98.51 343 | 93.27 370 | 97.89 358 | 99.21 311 | 84.83 377 | 99.70 319 | 96.04 326 | 98.18 362 | 98.75 337 |
|
dmvs_re | | | 98.69 238 | 98.48 243 | 99.31 226 | 99.55 203 | 99.42 155 | 99.54 84 | 98.38 350 | 99.32 142 | 98.72 319 | 98.71 360 | 96.76 272 | 99.21 375 | 96.01 327 | 99.35 303 | 99.31 252 |
|
test_0402 | | | 99.22 148 | 99.14 139 | 99.45 181 | 99.79 88 | 99.43 152 | 99.28 142 | 99.68 129 | 99.54 108 | 99.40 230 | 99.56 223 | 99.07 85 | 99.82 265 | 96.01 327 | 99.96 61 | 99.11 293 |
|
ITE_SJBPF | | | | | 99.38 206 | 99.63 165 | 99.44 148 | | 99.73 102 | 98.56 237 | 99.33 240 | 99.53 234 | 98.88 107 | 99.68 335 | 96.01 327 | 99.65 244 | 99.02 315 |
|
test_prior2 | | | | | | | | 97.95 328 | | 97.87 296 | 98.05 352 | 99.05 329 | 97.90 220 | | 95.99 330 | 99.49 285 | |
|
testdata2 | | | | | | | | | | | | | | 99.89 164 | 95.99 330 | | |
|
原ACMM1 | | | | | 99.37 209 | 99.47 240 | 98.87 241 | | 99.27 291 | 96.74 341 | 98.26 341 | 99.32 287 | 97.93 219 | 99.82 265 | 95.96 332 | 99.38 298 | 99.43 224 |
|
æ–°å‡ ä½•1 | | | | | 99.52 165 | 99.50 224 | 99.22 200 | | 99.26 294 | 95.66 355 | 98.60 328 | 99.28 295 | 97.67 236 | 99.89 164 | 95.95 333 | 99.32 306 | 99.45 213 |
|
MP-MVS |  | | 99.06 185 | 98.83 213 | 99.76 54 | 99.76 107 | 99.71 77 | 99.32 125 | 99.50 233 | 98.35 263 | 98.97 290 | 99.48 248 | 98.37 179 | 99.92 107 | 95.95 333 | 99.75 201 | 99.63 116 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
wuyk23d | | | 97.58 306 | 99.13 141 | 92.93 365 | 99.69 145 | 99.49 135 | 99.52 86 | 99.77 83 | 97.97 289 | 99.96 17 | 99.79 86 | 99.84 8 | 99.94 70 | 95.85 335 | 99.82 169 | 79.36 381 |
|
HQP_MVS | | | 98.90 215 | 98.68 225 | 99.55 158 | 99.58 181 | 99.24 197 | 98.80 251 | 99.54 211 | 98.94 195 | 99.14 275 | 99.25 302 | 97.24 255 | 99.82 265 | 95.84 336 | 99.78 193 | 99.60 141 |
|
plane_prior5 | | | | | | | | | 99.54 211 | | | | | 99.82 265 | 95.84 336 | 99.78 193 | 99.60 141 |
|
æ— å…ˆéªŒ | | | | | | | | 98.01 320 | 99.23 301 | 95.83 352 | | | | 99.85 227 | 95.79 338 | | 99.44 218 |
|
CPTT-MVS | | | 98.74 232 | 98.44 247 | 99.64 118 | 99.61 170 | 99.38 165 | 99.18 170 | 99.55 205 | 96.49 342 | 99.27 254 | 99.37 274 | 97.11 263 | 99.92 107 | 95.74 339 | 99.67 239 | 99.62 127 |
|
PLC |  | 97.35 16 | 98.36 271 | 97.99 282 | 99.48 174 | 99.32 286 | 99.24 197 | 98.50 281 | 99.51 229 | 95.19 361 | 98.58 330 | 98.96 345 | 96.95 268 | 99.83 256 | 95.63 340 | 99.25 315 | 99.37 236 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNLPA | | | 98.57 249 | 98.34 258 | 99.28 232 | 99.18 314 | 99.10 218 | 98.34 291 | 99.41 255 | 98.48 247 | 98.52 333 | 98.98 341 | 97.05 265 | 99.78 292 | 95.59 341 | 99.50 283 | 98.96 318 |
|
1314 | | | 98.00 291 | 97.90 294 | 98.27 323 | 98.90 346 | 97.45 323 | 99.30 133 | 99.06 318 | 94.98 362 | 97.21 371 | 99.12 321 | 98.43 170 | 99.67 340 | 95.58 342 | 98.56 351 | 97.71 370 |
|
PVSNet_0 | | 95.53 19 | 95.85 343 | 95.31 345 | 97.47 341 | 98.78 360 | 93.48 370 | 95.72 376 | 99.40 262 | 96.18 348 | 97.37 367 | 97.73 380 | 95.73 294 | 99.58 361 | 95.49 343 | 81.40 383 | 99.36 239 |
|
MAR-MVS | | | 98.24 280 | 97.92 292 | 99.19 248 | 98.78 360 | 99.65 100 | 99.17 175 | 99.14 313 | 95.36 357 | 98.04 353 | 98.81 356 | 97.47 245 | 99.72 313 | 95.47 344 | 99.06 324 | 98.21 361 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
OpenMVS |  | 98.12 10 | 98.23 281 | 97.89 295 | 99.26 238 | 99.19 312 | 99.26 190 | 99.65 59 | 99.69 126 | 91.33 374 | 98.14 350 | 99.77 100 | 98.28 190 | 99.96 48 | 95.41 345 | 99.55 270 | 98.58 344 |
|
train_agg | | | 98.35 274 | 97.95 286 | 99.57 152 | 99.35 271 | 99.35 175 | 98.11 310 | 99.41 255 | 94.90 363 | 97.92 356 | 98.99 338 | 98.02 212 | 99.85 227 | 95.38 346 | 99.44 290 | 99.50 195 |
|
9.14 | | | | 98.64 226 | | 99.45 248 | | 98.81 248 | 99.60 176 | 97.52 312 | 99.28 253 | 99.56 223 | 98.53 157 | 99.83 256 | 95.36 347 | 99.64 246 | |
|
APD-MVS |  | | 98.87 220 | 98.59 231 | 99.71 89 | 99.50 224 | 99.62 108 | 99.01 218 | 99.57 194 | 96.80 340 | 99.54 189 | 99.63 179 | 98.29 189 | 99.91 129 | 95.24 348 | 99.71 222 | 99.61 137 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
AdaColmap |  | | 98.60 244 | 98.35 257 | 99.38 206 | 99.12 322 | 99.22 200 | 98.67 263 | 99.42 254 | 97.84 299 | 98.81 310 | 99.27 297 | 97.32 253 | 99.81 280 | 95.14 349 | 99.53 277 | 99.10 295 |
|
test9_res | | | | | | | | | | | | | | | 95.10 350 | 99.44 290 | 99.50 195 |
|
CDPH-MVS | | | 98.56 250 | 98.20 269 | 99.61 137 | 99.50 224 | 99.46 141 | 98.32 293 | 99.41 255 | 95.22 359 | 99.21 265 | 99.10 325 | 98.34 184 | 99.82 265 | 95.09 351 | 99.66 242 | 99.56 160 |
|
BH-untuned | | | 98.22 282 | 98.09 277 | 98.58 309 | 99.38 264 | 97.24 328 | 98.55 274 | 98.98 323 | 97.81 300 | 99.20 270 | 98.76 358 | 97.01 266 | 99.65 350 | 94.83 352 | 98.33 356 | 98.86 328 |
|
BP-MVS | | | | | | | | | | | | | | | 94.73 353 | | |
|
HQP-MVS | | | 98.36 271 | 98.02 281 | 99.39 203 | 99.31 287 | 98.94 231 | 97.98 324 | 99.37 270 | 97.45 315 | 98.15 346 | 98.83 354 | 96.67 273 | 99.70 319 | 94.73 353 | 99.67 239 | 99.53 177 |
|
QAPM | | | 98.40 269 | 97.99 282 | 99.65 111 | 99.39 261 | 99.47 137 | 99.67 49 | 99.52 225 | 91.70 373 | 98.78 315 | 99.80 76 | 98.55 151 | 99.95 57 | 94.71 355 | 99.75 201 | 99.53 177 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.58 356 | 99.46 289 | 99.50 195 |
|
BH-RMVSNet | | | 98.41 267 | 98.14 275 | 99.21 245 | 99.21 307 | 98.47 267 | 98.60 266 | 98.26 353 | 98.35 263 | 98.93 294 | 99.31 289 | 97.20 260 | 99.66 344 | 94.32 357 | 99.10 323 | 99.51 190 |
|
E-PMN | | | 97.14 318 | 97.43 306 | 96.27 360 | 98.79 358 | 91.62 378 | 95.54 377 | 99.01 322 | 99.44 124 | 98.88 301 | 99.12 321 | 92.78 324 | 99.68 335 | 94.30 358 | 99.03 327 | 97.50 371 |
|
MG-MVS | | | 98.52 254 | 98.39 252 | 98.94 276 | 99.15 317 | 97.39 325 | 98.18 301 | 99.21 307 | 98.89 205 | 99.23 260 | 99.63 179 | 97.37 251 | 99.74 308 | 94.22 359 | 99.61 256 | 99.69 72 |
|
API-MVS | | | 98.38 270 | 98.39 252 | 98.35 317 | 98.83 353 | 99.26 190 | 99.14 185 | 99.18 309 | 98.59 235 | 98.66 324 | 98.78 357 | 98.61 142 | 99.57 362 | 94.14 360 | 99.56 266 | 96.21 378 |
|
PAPM_NR | | | 98.36 271 | 98.04 279 | 99.33 219 | 99.48 234 | 98.93 234 | 98.79 254 | 99.28 290 | 97.54 310 | 98.56 332 | 98.57 365 | 97.12 262 | 99.69 325 | 94.09 361 | 98.90 335 | 99.38 233 |
|
ZD-MVS | | | | | | 99.43 253 | 99.61 114 | | 99.43 252 | 96.38 344 | 99.11 279 | 99.07 327 | 97.86 223 | 99.92 107 | 94.04 362 | 99.49 285 | |
|
DPM-MVS | | | 98.28 276 | 97.94 290 | 99.32 223 | 99.36 269 | 99.11 213 | 97.31 360 | 98.78 330 | 96.88 336 | 98.84 307 | 99.11 324 | 97.77 230 | 99.61 358 | 94.03 363 | 99.36 301 | 99.23 265 |
|
gg-mvs-nofinetune | | | 95.87 342 | 95.17 346 | 97.97 329 | 98.19 376 | 96.95 335 | 99.69 42 | 89.23 388 | 99.89 26 | 96.24 376 | 99.94 16 | 81.19 381 | 99.51 368 | 93.99 364 | 98.20 359 | 97.44 372 |
|
PMVS |  | 92.94 21 | 98.82 224 | 98.81 215 | 98.85 290 | 99.84 52 | 97.99 300 | 99.20 165 | 99.47 241 | 99.71 70 | 99.42 219 | 99.82 66 | 98.09 206 | 99.47 370 | 93.88 365 | 99.85 147 | 99.07 307 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 96.96 321 | 97.28 310 | 95.99 363 | 98.76 362 | 91.03 381 | 95.26 378 | 98.61 338 | 99.34 139 | 98.92 297 | 98.88 352 | 93.79 312 | 99.66 344 | 92.87 366 | 99.05 325 | 97.30 375 |
|
BH-w/o | | | 97.20 315 | 97.01 317 | 97.76 335 | 99.08 331 | 95.69 354 | 98.03 319 | 98.52 342 | 95.76 353 | 97.96 355 | 98.02 377 | 95.62 296 | 99.47 370 | 92.82 367 | 97.25 373 | 98.12 365 |
|
TR-MVS | | | 97.44 310 | 97.15 314 | 98.32 319 | 98.53 369 | 97.46 322 | 98.47 283 | 97.91 359 | 96.85 337 | 98.21 345 | 98.51 369 | 96.42 281 | 99.51 368 | 92.16 368 | 97.29 372 | 97.98 367 |
|
OpenMVS_ROB |  | 97.31 17 | 97.36 313 | 96.84 323 | 98.89 289 | 99.29 293 | 99.45 146 | 98.87 237 | 99.48 238 | 86.54 379 | 99.44 213 | 99.74 112 | 97.34 252 | 99.86 210 | 91.61 369 | 99.28 311 | 97.37 374 |
|
GG-mvs-BLEND | | | | | 97.36 344 | 97.59 381 | 96.87 338 | 99.70 35 | 88.49 389 | | 94.64 382 | 97.26 387 | 80.66 382 | 99.12 376 | 91.50 370 | 96.50 378 | 96.08 380 |
|
DeepMVS_CX |  | | | | 97.98 328 | 99.69 145 | 96.95 335 | | 99.26 294 | 75.51 381 | 95.74 379 | 98.28 374 | 96.47 279 | 99.62 354 | 91.23 371 | 97.89 367 | 97.38 373 |
|
PAPR | | | 97.56 307 | 97.07 315 | 99.04 269 | 98.80 357 | 98.11 293 | 97.63 344 | 99.25 297 | 94.56 368 | 98.02 354 | 98.25 375 | 97.43 247 | 99.68 335 | 90.90 372 | 98.74 344 | 99.33 245 |
|
MVS | | | 95.72 345 | 94.63 349 | 98.99 271 | 98.56 368 | 97.98 306 | 99.30 133 | 98.86 325 | 72.71 382 | 97.30 368 | 99.08 326 | 98.34 184 | 99.74 308 | 89.21 373 | 98.33 356 | 99.26 259 |
|
thres600view7 | | | 96.60 329 | 96.16 331 | 97.93 330 | 99.63 165 | 96.09 350 | 99.18 170 | 97.57 362 | 98.77 220 | 98.72 319 | 97.32 385 | 87.04 368 | 99.72 313 | 88.57 374 | 98.62 349 | 97.98 367 |
|
FPMVS | | | 96.32 334 | 95.50 341 | 98.79 298 | 99.60 172 | 98.17 289 | 98.46 287 | 98.80 329 | 97.16 330 | 96.28 374 | 99.63 179 | 82.19 380 | 99.09 377 | 88.45 375 | 98.89 336 | 99.10 295 |
|
PCF-MVS | | 96.03 18 | 96.73 326 | 95.86 337 | 99.33 219 | 99.44 249 | 99.16 208 | 96.87 371 | 99.44 249 | 86.58 378 | 98.95 292 | 99.40 266 | 94.38 306 | 99.88 178 | 87.93 376 | 99.80 183 | 98.95 320 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thres100view900 | | | 96.39 332 | 96.03 334 | 97.47 341 | 99.63 165 | 95.93 351 | 99.18 170 | 97.57 362 | 98.75 224 | 98.70 322 | 97.31 386 | 87.04 368 | 99.67 340 | 87.62 377 | 98.51 353 | 96.81 376 |
|
tfpn200view9 | | | 96.30 335 | 95.89 335 | 97.53 339 | 99.58 181 | 96.11 348 | 99.00 220 | 97.54 365 | 98.43 249 | 98.52 333 | 96.98 388 | 86.85 370 | 99.67 340 | 87.62 377 | 98.51 353 | 96.81 376 |
|
thres400 | | | 96.40 331 | 95.89 335 | 97.92 331 | 99.58 181 | 96.11 348 | 99.00 220 | 97.54 365 | 98.43 249 | 98.52 333 | 96.98 388 | 86.85 370 | 99.67 340 | 87.62 377 | 98.51 353 | 97.98 367 |
|
thres200 | | | 96.09 338 | 95.68 340 | 97.33 346 | 99.48 234 | 96.22 347 | 98.53 278 | 97.57 362 | 98.06 284 | 98.37 339 | 96.73 390 | 86.84 372 | 99.61 358 | 86.99 380 | 98.57 350 | 96.16 379 |
|
MVE |  | 92.54 22 | 96.66 328 | 96.11 332 | 98.31 321 | 99.68 153 | 97.55 319 | 97.94 329 | 95.60 375 | 99.37 136 | 90.68 384 | 98.70 361 | 96.56 275 | 98.61 382 | 86.94 381 | 99.55 270 | 98.77 336 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dmvs_testset | | | 97.27 314 | 96.83 324 | 98.59 307 | 99.46 244 | 97.55 319 | 99.25 154 | 96.84 369 | 98.78 218 | 97.24 370 | 97.67 381 | 97.11 263 | 98.97 379 | 86.59 382 | 98.54 352 | 99.27 258 |
|
PAPM | | | 95.61 346 | 94.71 348 | 98.31 321 | 99.12 322 | 96.63 341 | 96.66 374 | 98.46 346 | 90.77 375 | 96.25 375 | 98.68 362 | 93.01 322 | 99.69 325 | 81.60 383 | 97.86 369 | 98.62 340 |
|
test123 | | | 29.31 351 | 33.05 356 | 18.08 367 | 25.93 391 | 12.24 391 | 97.53 350 | 10.93 392 | 11.78 385 | 24.21 386 | 50.08 395 | 21.04 390 | 8.60 386 | 23.51 384 | 32.43 385 | 33.39 382 |
|
testmvs | | | 28.94 352 | 33.33 354 | 15.79 368 | 26.03 390 | 9.81 392 | 96.77 372 | 15.67 391 | 11.55 386 | 23.87 387 | 50.74 394 | 19.03 391 | 8.53 387 | 23.21 385 | 33.07 384 | 29.03 383 |
|
test_blank | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 24.88 353 | 33.17 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 99.62 157 | 0.00 387 | 0.00 388 | 99.13 317 | 99.82 9 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 16.61 354 | 22.14 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 99.28 57 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.26 363 | 11.02 366 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 99.16 315 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 8.33 355 | 11.11 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 100.00 1 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.83 56 | 99.89 10 | 99.74 24 | 99.71 114 | 99.69 78 | 99.63 149 | | | | | | |
|
test_one_0601 | | | | | | 99.63 165 | 99.76 58 | | 99.55 205 | 99.23 156 | 99.31 247 | 99.61 195 | 98.59 145 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.69 145 | 99.82 35 | | 99.54 211 | 99.12 179 | 99.82 72 | 99.49 245 | 98.91 103 | 99.52 367 | | | |
|
save fliter | | | | | | 99.53 211 | 99.25 193 | 98.29 295 | 99.38 269 | 99.07 183 | | | | | | | |
|
test0726 | | | | | | 99.69 145 | 99.80 42 | 99.24 155 | 99.57 194 | 99.16 170 | 99.73 117 | 99.65 167 | 98.35 181 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.14 289 |
|
test_part2 | | | | | | 99.62 169 | 99.67 93 | | | | 99.55 187 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 90.81 347 | | | | 99.14 289 |
|
sam_mvs | | | | | | | | | | | | | 90.52 351 | | | | |
|
MTGPA |  | | | | | | | | 99.53 220 | | | | | | | | |
|
test_post | | | | | | | | | | | | 52.41 392 | 90.25 353 | 99.86 210 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 99.62 186 | 90.58 349 | 99.94 70 | | | |
|
MTMP | | | | | | | | 99.09 203 | 98.59 341 | | | | | | | | |
|
TEST9 | | | | | | 99.35 271 | 99.35 175 | 98.11 310 | 99.41 255 | 94.83 366 | 97.92 356 | 98.99 338 | 98.02 212 | 99.85 227 | | | |
|
test_8 | | | | | | 99.34 279 | 99.31 181 | 98.08 314 | 99.40 262 | 94.90 363 | 97.87 360 | 98.97 343 | 98.02 212 | 99.84 241 | | | |
|
agg_prior | | | | | | 99.35 271 | 99.36 172 | | 99.39 265 | | 97.76 365 | | | 99.85 227 | | | |
|
test_prior4 | | | | | | | 99.19 206 | 98.00 322 | | | | | | | | | |
|
test_prior | | | | | 99.46 178 | 99.35 271 | 99.22 200 | | 99.39 265 | | | | | 99.69 325 | | | 99.48 204 |
|
æ–°å‡ ä½•2 | | | | | | | | 98.04 318 | | | | | | | | | |
|
旧先验1 | | | | | | 99.49 229 | 99.29 184 | | 99.26 294 | | | 99.39 270 | 97.67 236 | | | 99.36 301 | 99.46 212 |
|
原ACMM2 | | | | | | | | 97.92 331 | | | | | | | | | |
|
test222 | | | | | | 99.51 218 | 99.08 220 | 97.83 337 | 99.29 287 | 95.21 360 | 98.68 323 | 99.31 289 | 97.28 254 | | | 99.38 298 | 99.43 224 |
|
segment_acmp | | | | | | | | | | | | | 98.37 179 | | | | |
|
testdata1 | | | | | | | | 97.72 340 | | 97.86 298 | | | | | | | |
|
test12 | | | | | 99.54 162 | 99.29 293 | 99.33 178 | | 99.16 311 | | 98.43 337 | | 97.54 243 | 99.82 265 | | 99.47 287 | 99.48 204 |
|
plane_prior7 | | | | | | 99.58 181 | 99.38 165 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.47 240 | 99.26 190 | | | | | | 97.24 255 | | | | |
|
plane_prior4 | | | | | | | | | | | | 99.25 302 | | | | | |
|
plane_prior3 | | | | | | | 99.31 181 | | | 98.36 258 | 99.14 275 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 251 | | 98.94 195 | | | | | | | |
|
plane_prior1 | | | | | | 99.51 218 | | | | | | | | | | | |
|
plane_prior | | | | | | | 99.24 197 | 98.42 288 | | 97.87 296 | | | | | | 99.71 222 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 99.83 52 | | | | | | | | |
|
test11 | | | | | | | | | 99.29 287 | | | | | | | | |
|
door | | | | | | | | | 99.77 83 | | | | | | | | |
|
HQP5-MVS | | | | | | | 98.94 231 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.31 287 | | 97.98 324 | | 97.45 315 | 98.15 346 | | | | | | |
|
ACMP_Plane | | | | | | 99.31 287 | | 97.98 324 | | 97.45 315 | 98.15 346 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 98.15 346 | | | 99.70 319 | | | 99.53 177 |
|
HQP3-MVS | | | | | | | | | 99.37 270 | | | | | | | 99.67 239 | |
|
HQP2-MVS | | | | | | | | | | | | | 96.67 273 | | | | |
|
NP-MVS | | | | | | 99.40 260 | 99.13 211 | | | | | 98.83 354 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.94 85 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.79 188 | |
|
Test By Simon | | | | | | | | | | | | | 98.41 173 | | | | |
|