This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6399.70 35100.00 199.73 64100.00 199.89 3199.79 1299.88 17899.98 1100.00 199.98 1
test_fmvs299.72 2799.85 1499.34 21699.91 2898.08 29899.48 95100.00 199.90 2099.99 799.91 2499.50 3799.98 1599.98 199.99 1499.96 6
test_fmvs399.83 1499.93 299.53 16399.96 598.62 26199.67 49100.00 199.95 10100.00 199.95 1399.85 699.99 799.98 199.99 1499.98 1
test_vis1_n_192099.72 2799.88 699.27 23599.93 2397.84 30999.34 120100.00 199.99 199.99 799.82 6699.87 599.99 799.97 499.99 1499.97 3
test_vis1_n99.68 3799.79 2199.36 21399.94 1698.18 28899.52 86100.00 199.86 35100.00 199.88 3998.99 9399.96 4899.97 499.96 6199.95 7
test_fmvs1_n99.68 3799.81 1899.28 23299.95 1397.93 30799.49 94100.00 199.82 4899.99 799.89 3199.21 6699.98 1599.97 499.98 3399.93 11
test_f99.75 2399.88 699.37 20999.96 598.21 28599.51 89100.00 199.94 14100.00 199.93 1799.58 2899.94 7099.97 499.99 1499.97 3
test_fmvsmvis_n_192099.84 1099.86 1199.81 3199.88 4099.55 12899.17 17599.98 999.99 199.96 1799.84 5799.96 199.99 799.96 899.99 1499.88 18
test_cas_vis1_n_192099.76 2299.86 1199.45 18199.93 2398.40 27399.30 13399.98 999.94 1499.99 799.89 3199.80 1199.97 2799.96 899.97 4699.97 3
test_fmvsm_n_192099.84 1099.85 1499.83 2599.82 6399.70 8499.17 17599.97 1399.99 199.96 1799.82 6699.94 2100.00 199.95 10100.00 199.80 35
test_fmvs199.48 7899.65 4198.97 27399.54 20597.16 33099.11 19799.98 999.78 5899.96 1799.81 7298.72 12899.97 2799.95 1099.97 4699.79 42
mvsany_test399.85 899.88 699.75 6499.95 1399.37 16899.53 8599.98 999.77 6299.99 799.95 1399.85 699.94 7099.95 1099.98 3399.94 9
MVS_030499.17 16699.03 17699.59 14299.44 24998.90 23799.04 21195.32 37699.99 199.68 13299.57 21998.30 18899.97 2799.94 1399.98 3399.88 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1399.99 1100.00 199.98 1099.78 13100.00 199.92 14100.00 199.87 20
v192192099.56 6599.57 6399.55 15899.75 11899.11 21399.05 20999.61 16499.15 17499.88 5399.71 13099.08 8399.87 19299.90 1599.97 4699.66 93
v124099.56 6599.58 6099.51 16799.80 7699.00 22499.00 22099.65 14699.15 17499.90 4199.75 10999.09 8099.88 17899.90 1599.96 6199.67 84
v1099.69 3499.69 3499.66 10699.81 7199.39 16399.66 5399.75 9399.60 10499.92 3299.87 4398.75 12399.86 21099.90 1599.99 1499.73 60
v119299.57 6299.57 6399.57 15299.77 10399.22 20099.04 21199.60 17699.18 16399.87 6199.72 12399.08 8399.85 22799.89 1899.98 3399.66 93
v14419299.55 6899.54 6999.58 14699.78 9599.20 20599.11 19799.62 15799.18 16399.89 4599.72 12398.66 13699.87 19299.88 1999.97 4699.66 93
v899.68 3799.69 3499.65 11199.80 7699.40 16199.66 5399.76 8899.64 9299.93 2899.85 5298.66 13699.84 24199.88 1999.99 1499.71 65
v114499.54 7099.53 7399.59 14299.79 8899.28 18699.10 19999.61 16499.20 16199.84 6799.73 11698.67 13499.84 24199.86 2199.98 3399.64 111
v7n99.82 1599.80 2099.88 1299.96 599.84 2499.82 899.82 5799.84 4399.94 2599.91 2499.13 7799.96 4899.83 2299.99 1499.83 29
v2v48299.50 7499.47 7799.58 14699.78 9599.25 19399.14 18599.58 19299.25 15299.81 7999.62 18698.24 19399.84 24199.83 2299.97 4699.64 111
test_vis1_rt99.45 8899.46 8199.41 19799.71 13398.63 26098.99 22599.96 1899.03 18799.95 2399.12 32198.75 12399.84 24199.82 2499.82 16999.77 49
tt080599.63 5199.57 6399.81 3199.87 4599.88 1299.58 7698.70 33399.72 6899.91 3599.60 20399.43 3999.81 28099.81 2599.53 27799.73 60
V4299.56 6599.54 6999.63 12599.79 8899.46 14199.39 10999.59 18299.24 15499.86 6299.70 13798.55 15199.82 26599.79 2699.95 7499.60 141
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 3099.88 3499.92 1899.98 1299.93 1799.94 299.98 1599.77 27100.00 199.92 12
PS-MVSNAJss99.84 1099.82 1799.89 899.96 599.77 5099.68 4599.85 4499.95 1099.98 1299.92 2199.28 5799.98 1599.75 28100.00 199.94 9
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3599.86 3999.89 2699.98 1299.90 2799.94 299.98 1599.75 28100.00 199.90 13
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 59100.00 199.90 20100.00 199.97 1199.61 2599.97 2799.75 28100.00 199.84 25
CS-MVS-test99.68 3799.70 3099.64 11899.57 19199.83 2999.78 1299.97 1399.92 1899.50 20399.38 27299.57 2999.95 5799.69 3199.90 10699.15 284
RRT_MVS99.67 4399.59 5699.91 299.94 1699.88 1299.78 1299.27 29199.87 3299.91 3599.87 4398.04 21099.96 4899.68 3299.99 1499.90 13
CS-MVS99.67 4399.70 3099.58 14699.53 21199.84 2499.79 1199.96 1899.90 2099.61 16499.41 26299.51 3699.95 5799.66 3399.89 11598.96 318
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2599.85 4099.94 2599.95 1399.73 1699.90 14799.65 3499.97 4699.69 72
MIMVSNet199.66 4599.62 4799.80 3699.94 1699.87 1599.69 4299.77 8399.78 5899.93 2899.89 3197.94 21899.92 10799.65 3499.98 3399.62 127
EC-MVSNet99.69 3499.69 3499.68 9699.71 13399.91 499.76 1999.96 1899.86 3599.51 20199.39 27099.57 2999.93 8799.64 3699.86 14399.20 273
K. test v398.87 22098.60 22999.69 9499.93 2399.46 14199.74 2494.97 37799.78 5899.88 5399.88 3993.66 31599.97 2799.61 3799.95 7499.64 111
KD-MVS_self_test99.63 5199.59 5699.76 5499.84 5299.90 799.37 11599.79 7499.83 4699.88 5399.85 5298.42 17299.90 14799.60 3899.73 21399.49 200
Anonymous2024052199.44 9099.42 9099.49 17099.89 3598.96 23099.62 6399.76 8899.85 4099.82 7299.88 3996.39 28499.97 2799.59 3999.98 3399.55 163
TransMVSNet (Re)99.78 1899.77 2499.81 3199.91 2899.85 1999.75 2299.86 3999.70 7599.91 3599.89 3199.60 2799.87 19299.59 3999.74 20899.71 65
OurMVSNet-221017-099.75 2399.71 2999.84 2399.96 599.83 2999.83 699.85 4499.80 5399.93 2899.93 1798.54 15399.93 8799.59 3999.98 3399.76 55
EU-MVSNet99.39 10599.62 4798.72 30299.88 4096.44 34499.56 8199.85 4499.90 2099.90 4199.85 5298.09 20699.83 25699.58 4299.95 7499.90 13
mvsmamba99.74 2699.70 3099.85 2099.93 2399.83 2999.76 1999.81 6699.96 899.91 3599.81 7298.60 14499.94 7099.58 4299.98 3399.77 49
mvs_anonymous99.28 12999.39 9298.94 27699.19 31297.81 31199.02 21699.55 20599.78 5899.85 6499.80 7698.24 19399.86 21099.57 4499.50 28399.15 284
test111197.74 29898.16 27496.49 35899.60 17289.86 38799.71 3491.21 38499.89 2699.88 5399.87 4393.73 31499.90 14799.56 4599.99 1499.70 68
lessismore_v099.64 11899.86 4899.38 16590.66 38599.89 4599.83 5994.56 30599.97 2799.56 4599.92 9699.57 158
mvsany_test199.44 9099.45 8399.40 19999.37 26698.64 25997.90 33499.59 18299.27 14899.92 3299.82 6699.74 1599.93 8799.55 4799.87 13599.63 116
bld_raw_dy_0_6499.70 3199.65 4199.85 2099.95 1399.77 5099.66 5399.71 11499.95 1099.91 3599.77 10098.35 181100.00 199.54 4899.99 1499.79 42
pm-mvs199.79 1799.79 2199.78 4499.91 2899.83 2999.76 1999.87 3699.73 6499.89 4599.87 4399.63 2299.87 19299.54 4899.92 9699.63 116
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2899.90 799.96 199.92 2299.90 2099.97 1599.87 4399.81 1099.95 5799.54 4899.99 1499.80 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 7899.65 4198.95 27599.71 13397.27 32799.50 9099.82 5799.59 10699.41 22599.85 5299.62 24100.00 199.53 5199.89 11599.59 148
test250694.73 34894.59 35095.15 36499.59 17685.90 38999.75 2274.01 39099.89 2699.71 12399.86 5079.00 38899.90 14799.52 5299.99 1499.65 101
UniMVSNet_ETH3D99.85 899.83 1699.90 599.89 3599.91 499.89 499.71 11499.93 1699.95 2399.89 3199.71 1799.96 4899.51 5399.97 4699.84 25
FC-MVSNet-test99.70 3199.65 4199.86 1899.88 4099.86 1899.72 3099.78 8099.90 2099.82 7299.83 5998.45 16899.87 19299.51 5399.97 4699.86 22
UA-Net99.78 1899.76 2799.86 1899.72 13099.71 7799.91 399.95 2199.96 899.71 12399.91 2499.15 7299.97 2799.50 55100.00 199.90 13
PMMVS299.48 7899.45 8399.57 15299.76 10798.99 22598.09 31299.90 2898.95 19499.78 9199.58 21099.57 2999.93 8799.48 5699.95 7499.79 42
VPA-MVSNet99.66 4599.62 4799.79 4199.68 15399.75 6399.62 6399.69 12699.85 4099.80 8299.81 7298.81 11199.91 12999.47 5799.88 12499.70 68
ECVR-MVScopyleft97.73 29998.04 27996.78 35299.59 17690.81 38399.72 3090.43 38699.89 2699.86 6299.86 5093.60 31699.89 16499.46 5899.99 1499.65 101
nrg03099.70 3199.66 3999.82 2899.76 10799.84 2499.61 6899.70 12099.93 1699.78 9199.68 15499.10 7899.78 29299.45 5999.96 6199.83 29
TAMVS99.49 7699.45 8399.63 12599.48 23499.42 15599.45 10199.57 19499.66 8899.78 9199.83 5997.85 22599.86 21099.44 6099.96 6199.61 137
GeoE99.69 3499.66 3999.78 4499.76 10799.76 5899.60 7399.82 5799.46 12199.75 10599.56 22399.63 2299.95 5799.43 6199.88 12499.62 127
new-patchmatchnet99.35 11599.57 6398.71 30499.82 6396.62 34298.55 27499.75 9399.50 11299.88 5399.87 4399.31 5399.88 17899.43 61100.00 199.62 127
test20.0399.55 6899.54 6999.58 14699.79 8899.37 16899.02 21699.89 3099.60 10499.82 7299.62 18698.81 11199.89 16499.43 6199.86 14399.47 208
MVSFormer99.41 9999.44 8699.31 22699.57 19198.40 27399.77 1599.80 6899.73 6499.63 14999.30 29198.02 21299.98 1599.43 6199.69 22899.55 163
test_djsdf99.84 1099.81 1899.91 299.94 1699.84 2499.77 1599.80 6899.73 6499.97 1599.92 2199.77 1499.98 1599.43 61100.00 199.90 13
SDMVSNet99.77 2199.77 2499.76 5499.80 7699.65 10099.63 6199.86 3999.97 699.89 4599.89 3199.52 3599.99 799.42 6699.96 6199.65 101
Anonymous2023121199.62 5799.57 6399.76 5499.61 17099.60 11699.81 999.73 10299.82 4899.90 4199.90 2797.97 21799.86 21099.42 6699.96 6199.80 35
SixPastTwentyTwo99.42 9599.30 11399.76 5499.92 2799.67 9399.70 3599.14 31399.65 9099.89 4599.90 2796.20 28999.94 7099.42 6699.92 9699.67 84
patch_mono-299.51 7399.46 8199.64 11899.70 14199.11 21399.04 21199.87 3699.71 7099.47 20799.79 8698.24 19399.98 1599.38 6999.96 6199.83 29
UGNet99.38 10799.34 10299.49 17098.90 34698.90 23799.70 3599.35 27499.86 3598.57 33199.81 7298.50 16399.93 8799.38 6999.98 3399.66 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 3099.67 3899.81 3199.89 3599.72 7599.59 7499.82 5799.39 13499.82 7299.84 5799.38 4599.91 12999.38 6999.93 9299.80 35
iter_conf_final98.75 23098.54 23999.40 19999.33 28498.75 24799.26 14799.59 18299.80 5399.76 9899.58 21090.17 35499.92 10799.37 7299.97 4699.54 171
FIs99.65 5099.58 6099.84 2399.84 5299.85 1999.66 5399.75 9399.86 3599.74 11399.79 8698.27 19199.85 22799.37 7299.93 9299.83 29
sd_testset99.78 1899.78 2399.80 3699.80 7699.76 5899.80 1099.79 7499.97 699.89 4599.89 3199.53 3499.99 799.36 7499.96 6199.65 101
anonymousdsp99.80 1699.77 2499.90 599.96 599.88 1299.73 2799.85 4499.70 7599.92 3299.93 1799.45 3899.97 2799.36 74100.00 199.85 24
casdiffmvs_mvgpermissive99.68 3799.68 3799.69 9499.81 7199.59 11899.29 14099.90 2899.71 7099.79 8799.73 11699.54 3299.84 24199.36 7499.96 6199.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 2399.74 2899.79 4199.88 4099.66 9599.69 4299.92 2299.67 8499.77 9699.75 10999.61 2599.98 1599.35 7799.98 3399.72 62
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 5999.64 4599.53 16399.79 8898.82 24299.58 7699.97 1399.95 1099.96 1799.76 10498.44 16999.99 799.34 7899.96 6199.78 45
CHOSEN 1792x268899.39 10599.30 11399.65 11199.88 4099.25 19398.78 25599.88 3498.66 22899.96 1799.79 8697.45 24699.93 8799.34 7899.99 1499.78 45
CDS-MVSNet99.22 14899.13 14199.50 16999.35 27199.11 21398.96 23099.54 21199.46 12199.61 16499.70 13796.31 28699.83 25699.34 7899.88 12499.55 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 20099.16 13598.51 31099.75 11895.90 35298.07 31599.84 5099.84 4399.89 4599.73 11696.01 29299.99 799.33 81100.00 199.63 116
HyFIR lowres test98.91 21398.64 22699.73 7899.85 5199.47 13798.07 31599.83 5298.64 23099.89 4599.60 20392.57 325100.00 199.33 8199.97 4699.72 62
pmmvs599.19 15899.11 14899.42 19099.76 10798.88 23998.55 27499.73 10298.82 21299.72 11899.62 18696.56 27599.82 26599.32 8399.95 7499.56 160
v14899.40 10199.41 9199.39 20399.76 10798.94 23199.09 20399.59 18299.17 16899.81 7999.61 19598.41 17399.69 32599.32 8399.94 8599.53 177
baseline99.63 5199.62 4799.66 10699.80 7699.62 10899.44 10399.80 6899.71 7099.72 11899.69 14399.15 7299.83 25699.32 8399.94 8599.53 177
iter_conf0598.46 26298.23 26599.15 25399.04 33597.99 30099.10 19999.61 16499.79 5699.76 9899.58 21087.88 36499.92 10799.31 8699.97 4699.53 177
CVMVSNet98.61 24298.88 20697.80 33499.58 18193.60 36999.26 14799.64 15299.66 8899.72 11899.67 15893.26 31899.93 8799.30 8799.81 17899.87 20
PS-CasMVS99.66 4599.58 6099.89 899.80 7699.85 1999.66 5399.73 10299.62 9599.84 6799.71 13098.62 14099.96 4899.30 8799.96 6199.86 22
DTE-MVSNet99.68 3799.61 5199.88 1299.80 7699.87 1599.67 4999.71 11499.72 6899.84 6799.78 9398.67 13499.97 2799.30 8799.95 7499.80 35
tmp_tt95.75 34495.42 34296.76 35389.90 38994.42 36498.86 23897.87 36078.01 38099.30 25299.69 14397.70 23295.89 38499.29 9098.14 36399.95 7
PEN-MVS99.66 4599.59 5699.89 899.83 5699.87 1599.66 5399.73 10299.70 7599.84 6799.73 11698.56 15099.96 4899.29 9099.94 8599.83 29
WR-MVS_H99.61 5999.53 7399.87 1599.80 7699.83 2999.67 4999.75 9399.58 10799.85 6499.69 14398.18 20299.94 7099.28 9299.95 7499.83 29
IterMVS98.97 20499.16 13598.42 31499.74 12495.64 35598.06 31799.83 5299.83 4699.85 6499.74 11296.10 29199.99 799.27 93100.00 199.63 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 24298.34 25899.44 18499.60 17298.67 25299.27 14599.44 24999.68 8099.32 24399.49 24592.50 328100.00 199.24 9496.51 37799.65 101
hse-mvs298.52 25498.30 26299.16 25199.29 29398.60 26298.77 25699.02 32099.68 8099.32 24399.04 33192.50 32899.85 22799.24 9497.87 36899.03 311
FMVSNet199.66 4599.63 4699.73 7899.78 9599.77 5099.68 4599.70 12099.67 8499.82 7299.83 5998.98 9599.90 14799.24 9499.97 4699.53 177
casdiffmvspermissive99.63 5199.61 5199.67 9999.79 8899.59 11899.13 19199.85 4499.79 5699.76 9899.72 12399.33 5299.82 26599.21 9799.94 8599.59 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 7099.43 8899.87 1599.76 10799.82 3599.57 7999.61 16499.54 10899.80 8299.64 16997.79 22999.95 5799.21 9799.94 8599.84 25
DELS-MVS99.34 12099.30 11399.48 17499.51 21899.36 17298.12 30899.53 22099.36 13899.41 22599.61 19599.22 6599.87 19299.21 9799.68 23399.20 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 11099.26 12499.68 9699.51 21899.58 12298.98 22899.60 17699.43 12999.70 12699.36 27897.70 23299.88 17899.20 10099.87 13599.59 148
CANet99.11 17999.05 16999.28 23298.83 35398.56 26398.71 26299.41 25599.25 15299.23 26099.22 30997.66 24099.94 7099.19 10199.97 4699.33 245
EI-MVSNet-UG-set99.48 7899.50 7599.42 19099.57 19198.65 25899.24 15599.46 24499.68 8099.80 8299.66 16298.99 9399.89 16499.19 10199.90 10699.72 62
xiu_mvs_v1_base_debu99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base_debi99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
VPNet99.46 8699.37 9799.71 8999.82 6399.59 11899.48 9599.70 12099.81 5099.69 12999.58 21097.66 24099.86 21099.17 10699.44 29099.67 84
UniMVSNet_NR-MVSNet99.37 11099.25 12699.72 8499.47 24099.56 12598.97 22999.61 16499.43 12999.67 13899.28 29597.85 22599.95 5799.17 10699.81 17899.65 101
DU-MVS99.33 12399.21 13099.71 8999.43 25399.56 12598.83 24399.53 22099.38 13599.67 13899.36 27897.67 23699.95 5799.17 10699.81 17899.63 116
EI-MVSNet-Vis-set99.47 8599.49 7699.42 19099.57 19198.66 25599.24 15599.46 24499.67 8499.79 8799.65 16798.97 9799.89 16499.15 10999.89 11599.71 65
EI-MVSNet99.38 10799.44 8699.21 24599.58 18198.09 29599.26 14799.46 24499.62 9599.75 10599.67 15898.54 15399.85 22799.15 10999.92 9699.68 78
VNet99.18 16299.06 16599.56 15599.24 30399.36 17299.33 12399.31 28399.67 8499.47 20799.57 21996.48 27899.84 24199.15 10999.30 30899.47 208
EG-PatchMatch MVS99.57 6299.56 6899.62 13499.77 10399.33 17899.26 14799.76 8899.32 14299.80 8299.78 9399.29 5599.87 19299.15 10999.91 10599.66 93
PVSNet_Blended_VisFu99.40 10199.38 9499.44 18499.90 3398.66 25598.94 23399.91 2597.97 28999.79 8799.73 11699.05 8899.97 2799.15 10999.99 1499.68 78
IterMVS-LS99.41 9999.47 7799.25 24199.81 7198.09 29598.85 24099.76 8899.62 9599.83 7199.64 16998.54 15399.97 2799.15 10999.99 1499.68 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7099.47 7799.76 5499.58 18199.64 10299.30 13399.63 15499.61 9899.71 12399.56 22398.76 12199.96 4899.14 11599.92 9699.68 78
MVSTER98.47 26198.22 26799.24 24399.06 33298.35 27999.08 20699.46 24499.27 14899.75 10599.66 16288.61 36299.85 22799.14 11599.92 9699.52 188
Anonymous2023120699.35 11599.31 10899.47 17699.74 12499.06 22399.28 14299.74 9899.23 15699.72 11899.53 23497.63 24299.88 17899.11 11799.84 15299.48 204
MVS_Test99.28 12999.31 10899.19 24899.35 27198.79 24599.36 11899.49 23799.17 16899.21 26599.67 15898.78 11899.66 34499.09 11899.66 24299.10 295
testgi99.29 12899.26 12499.37 20999.75 11898.81 24398.84 24199.89 3098.38 25699.75 10599.04 33199.36 5099.86 21099.08 11999.25 31599.45 213
1112_ss99.05 18898.84 21199.67 9999.66 15999.29 18498.52 27999.82 5797.65 30599.43 21799.16 31596.42 28199.91 12999.07 12099.84 15299.80 35
CANet_DTU98.91 21398.85 20999.09 26298.79 35898.13 29098.18 30199.31 28399.48 11498.86 30599.51 23896.56 27599.95 5799.05 12199.95 7499.19 276
Baseline_NR-MVSNet99.49 7699.37 9799.82 2899.91 2899.84 2498.83 24399.86 3999.68 8099.65 14499.88 3997.67 23699.87 19299.03 12299.86 14399.76 55
FMVSNet299.35 11599.28 12099.55 15899.49 22999.35 17599.45 10199.57 19499.44 12499.70 12699.74 11297.21 25799.87 19299.03 12299.94 8599.44 218
Test_1112_low_res98.95 21098.73 22099.63 12599.68 15399.15 21098.09 31299.80 6897.14 33199.46 21199.40 26696.11 29099.89 16499.01 12499.84 15299.84 25
VDD-MVS99.20 15599.11 14899.44 18499.43 25398.98 22699.50 9098.32 35299.80 5399.56 18299.69 14396.99 26799.85 22798.99 12599.73 21399.50 195
DeepC-MVS98.90 499.62 5799.61 5199.67 9999.72 13099.44 14899.24 15599.71 11499.27 14899.93 2899.90 2799.70 1999.93 8798.99 12599.99 1499.64 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 7899.47 7799.51 16799.77 10399.41 16098.81 24899.66 13799.42 13399.75 10599.66 16299.20 6799.76 30298.98 12799.99 1499.36 239
EPNet_dtu97.62 30497.79 29897.11 35196.67 38492.31 37498.51 28098.04 35599.24 15495.77 37899.47 25293.78 31399.66 34498.98 12799.62 24999.37 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 12099.32 10799.39 20399.67 15898.77 24698.57 27299.81 6699.61 9899.48 20699.41 26298.47 16499.86 21098.97 12999.90 10699.53 177
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 10199.31 10899.68 9699.43 25399.55 12899.73 2799.50 23399.46 12199.88 5399.36 27897.54 24399.87 19298.97 12999.87 13599.63 116
GBi-Net99.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
FMVSNet597.80 29697.25 31299.42 19098.83 35398.97 22899.38 11199.80 6898.87 20699.25 25699.69 14380.60 38399.91 12998.96 13199.90 10699.38 233
test199.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
FMVSNet398.80 22698.63 22899.32 22399.13 32098.72 25099.10 19999.48 23899.23 15699.62 15899.64 16992.57 32599.86 21098.96 13199.90 10699.39 231
UnsupCasMVSNet_eth98.83 22398.57 23599.59 14299.68 15399.45 14698.99 22599.67 13399.48 11499.55 18799.36 27894.92 29999.86 21098.95 13596.57 37699.45 213
CHOSEN 280x42098.41 26798.41 25098.40 31599.34 27995.89 35396.94 37099.44 24998.80 21599.25 25699.52 23693.51 31799.98 1598.94 13699.98 3399.32 248
TDRefinement99.72 2799.70 3099.77 4799.90 3399.85 1999.86 599.92 2299.69 7899.78 9199.92 2199.37 4799.88 17898.93 13799.95 7499.60 141
alignmvs98.28 27697.96 28599.25 24199.12 32298.93 23499.03 21598.42 34799.64 9298.72 31997.85 37990.86 34699.62 35498.88 13899.13 32099.19 276
sss98.90 21598.77 21999.27 23599.48 23498.44 27098.72 26099.32 27997.94 29399.37 23399.35 28396.31 28699.91 12998.85 13999.63 24899.47 208
xiu_mvs_v2_base99.02 19499.11 14898.77 29999.37 26698.09 29598.13 30799.51 22999.47 11899.42 21998.54 36899.38 4599.97 2798.83 14099.33 30598.24 359
PS-MVSNAJ99.00 20099.08 15998.76 30099.37 26698.10 29498.00 32299.51 22999.47 11899.41 22598.50 37099.28 5799.97 2798.83 14099.34 30498.20 363
D2MVS99.22 14899.19 13299.29 23099.69 14598.74 24998.81 24899.41 25598.55 23899.68 13299.69 14398.13 20499.87 19298.82 14299.98 3399.24 262
PatchT98.45 26498.32 26098.83 29498.94 34498.29 28099.24 15598.82 32899.84 4399.08 28299.76 10491.37 33699.94 7098.82 14299.00 32998.26 358
testf199.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
APD_test299.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
Effi-MVS+99.06 18598.97 19399.34 21699.31 28798.98 22698.31 29499.91 2598.81 21398.79 31398.94 34799.14 7599.84 24198.79 14698.74 34499.20 273
canonicalmvs99.02 19499.00 18499.09 26299.10 32898.70 25199.61 6899.66 13799.63 9498.64 32597.65 38299.04 8999.54 36398.79 14698.92 33399.04 310
VDDNet98.97 20498.82 21499.42 19099.71 13398.81 24399.62 6398.68 33499.81 5099.38 23299.80 7694.25 30799.85 22798.79 14699.32 30699.59 148
CR-MVSNet98.35 27498.20 26998.83 29499.05 33398.12 29199.30 13399.67 13397.39 31999.16 27199.79 8691.87 33399.91 12998.78 14998.77 34098.44 352
test_method91.72 34992.32 35289.91 36693.49 38870.18 39090.28 37999.56 19961.71 38395.39 38099.52 23693.90 30999.94 7098.76 15098.27 35899.62 127
RPMNet98.60 24498.53 24198.83 29499.05 33398.12 29199.30 13399.62 15799.86 3599.16 27199.74 11292.53 32799.92 10798.75 15198.77 34098.44 352
pmmvs499.13 17499.06 16599.36 21399.57 19199.10 21898.01 32099.25 29798.78 21899.58 17299.44 25998.24 19399.76 30298.74 15299.93 9299.22 267
tttt051797.62 30497.20 31398.90 28899.76 10797.40 32499.48 9594.36 37999.06 18599.70 12699.49 24584.55 37899.94 7098.73 15399.65 24499.36 239
EPP-MVSNet99.17 16699.00 18499.66 10699.80 7699.43 15299.70 3599.24 30099.48 11499.56 18299.77 10094.89 30099.93 8798.72 15499.89 11599.63 116
Anonymous2024052999.42 9599.34 10299.65 11199.53 21199.60 11699.63 6199.39 26599.47 11899.76 9899.78 9398.13 20499.86 21098.70 15599.68 23399.49 200
ACMH98.42 699.59 6199.54 6999.72 8499.86 4899.62 10899.56 8199.79 7498.77 22099.80 8299.85 5299.64 2199.85 22798.70 15599.89 11599.70 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 12399.28 12099.47 17699.57 19199.39 16399.78 1299.43 25298.87 20699.57 17599.82 6698.06 20999.87 19298.69 15799.73 21399.15 284
LFMVS98.46 26298.19 27299.26 23899.24 30398.52 26699.62 6396.94 36899.87 3299.31 24799.58 21091.04 34199.81 28098.68 15899.42 29499.45 213
WR-MVS99.11 17998.93 19799.66 10699.30 29199.42 15598.42 28899.37 27099.04 18699.57 17599.20 31396.89 26999.86 21098.66 15999.87 13599.70 68
Anonymous20240521198.75 23098.46 24599.63 12599.34 27999.66 9599.47 9897.65 36199.28 14799.56 18299.50 24193.15 31999.84 24198.62 16099.58 26499.40 229
EPNet98.13 28497.77 29999.18 25094.57 38797.99 30099.24 15597.96 35799.74 6397.29 36999.62 18693.13 32099.97 2798.59 16199.83 16099.58 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 18899.09 15798.91 28299.21 30798.36 27898.82 24799.47 24198.85 20898.90 30099.56 22398.78 11899.09 37798.57 16299.68 23399.26 259
Patchmatch-RL test98.60 24498.36 25599.33 21999.77 10399.07 22198.27 29699.87 3698.91 20199.74 11399.72 12390.57 35099.79 28998.55 16399.85 14799.11 293
pmmvs398.08 28797.80 29698.91 28299.41 25997.69 31697.87 33599.66 13795.87 35099.50 20399.51 23890.35 35299.97 2798.55 16399.47 28799.08 302
ETV-MVS99.18 16299.18 13399.16 25199.34 27999.28 18699.12 19599.79 7499.48 11498.93 29498.55 36799.40 4099.93 8798.51 16599.52 28098.28 357
jason99.16 16899.11 14899.32 22399.75 11898.44 27098.26 29799.39 26598.70 22699.74 11399.30 29198.54 15399.97 2798.48 16699.82 16999.55 163
jason: jason.
APDe-MVS99.48 7899.36 10099.85 2099.55 20399.81 3899.50 9099.69 12698.99 18999.75 10599.71 13098.79 11699.93 8798.46 16799.85 14799.80 35
CL-MVSNet_self_test98.71 23698.56 23899.15 25399.22 30598.66 25597.14 36599.51 22998.09 28299.54 18999.27 29796.87 27099.74 30898.43 16898.96 33099.03 311
our_test_398.85 22299.09 15798.13 32699.66 15994.90 36297.72 34099.58 19299.07 18399.64 14599.62 18698.19 20099.93 8798.41 16999.95 7499.55 163
Gipumacopyleft99.57 6299.59 5699.49 17099.98 399.71 7799.72 3099.84 5099.81 5099.94 2599.78 9398.91 10399.71 31798.41 16999.95 7499.05 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 31296.91 32298.74 30197.72 38097.57 31897.60 34697.36 36798.00 28599.21 26598.02 37790.04 35699.79 28998.37 17195.89 38098.86 328
PM-MVS99.36 11399.29 11899.58 14699.83 5699.66 9598.95 23199.86 3998.85 20899.81 7999.73 11698.40 17799.92 10798.36 17299.83 16099.17 280
baseline197.73 29997.33 30998.96 27499.30 29197.73 31499.40 10798.42 34799.33 14199.46 21199.21 31191.18 33999.82 26598.35 17391.26 38299.32 248
MVS-HIRNet97.86 29398.22 26796.76 35399.28 29691.53 37998.38 29092.60 38399.13 17699.31 24799.96 1297.18 26199.68 33598.34 17499.83 16099.07 307
GA-MVS97.99 29297.68 30298.93 27999.52 21698.04 29997.19 36499.05 31998.32 26998.81 31098.97 34389.89 35899.41 37398.33 17599.05 32599.34 244
Fast-Effi-MVS+99.02 19498.87 20799.46 17899.38 26499.50 13499.04 21199.79 7497.17 32998.62 32698.74 35999.34 5199.95 5798.32 17699.41 29598.92 323
MDA-MVSNet_test_wron98.95 21098.99 18998.85 29099.64 16397.16 33098.23 29999.33 27798.93 19899.56 18299.66 16297.39 25099.83 25698.29 17799.88 12499.55 163
N_pmnet98.73 23498.53 24199.35 21599.72 13098.67 25298.34 29194.65 37898.35 26399.79 8799.68 15498.03 21199.93 8798.28 17899.92 9699.44 218
ET-MVSNet_ETH3D96.78 32496.07 33398.91 28299.26 30097.92 30897.70 34296.05 37397.96 29292.37 38398.43 37187.06 36799.90 14798.27 17997.56 37198.91 324
thisisatest053097.45 30996.95 31998.94 27699.68 15397.73 31499.09 20394.19 38198.61 23499.56 18299.30 29184.30 37999.93 8798.27 17999.54 27599.16 282
YYNet198.95 21098.99 18998.84 29299.64 16397.14 33298.22 30099.32 27998.92 20099.59 17099.66 16297.40 24899.83 25698.27 17999.90 10699.55 163
ACMM98.09 1199.46 8699.38 9499.72 8499.80 7699.69 8899.13 19199.65 14698.99 18999.64 14599.72 12399.39 4199.86 21098.23 18299.81 17899.60 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 20798.87 20799.24 24399.57 19198.40 27398.12 30899.18 30998.28 27199.63 14999.13 31798.02 21299.97 2798.22 18399.69 22899.35 242
3Dnovator99.15 299.43 9299.36 10099.65 11199.39 26199.42 15599.70 3599.56 19999.23 15699.35 23599.80 7699.17 7099.95 5798.21 18499.84 15299.59 148
Fast-Effi-MVS+-dtu99.20 15599.12 14599.43 18899.25 30199.69 8899.05 20999.82 5799.50 11298.97 29099.05 32998.98 9599.98 1598.20 18599.24 31798.62 340
MS-PatchMatch99.00 20098.97 19399.09 26299.11 32798.19 28698.76 25799.33 27798.49 24699.44 21399.58 21098.21 19899.69 32598.20 18599.62 24999.39 231
TSAR-MVS + GP.99.12 17699.04 17499.38 20699.34 27999.16 20898.15 30499.29 28798.18 27899.63 14999.62 18699.18 6999.68 33598.20 18599.74 20899.30 254
DP-MVS99.48 7899.39 9299.74 6999.57 19199.62 10899.29 14099.61 16499.87 3299.74 11399.76 10498.69 13099.87 19298.20 18599.80 18399.75 58
MVP-Stereo99.16 16899.08 15999.43 18899.48 23499.07 22199.08 20699.55 20598.63 23199.31 24799.68 15498.19 20099.78 29298.18 18999.58 26499.45 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 9299.30 11399.80 3699.83 5699.81 3899.52 8699.70 12098.35 26399.51 20199.50 24199.31 5399.88 17898.18 18999.84 15299.69 72
MDA-MVSNet-bldmvs99.06 18599.05 16999.07 26699.80 7697.83 31098.89 23599.72 11199.29 14499.63 14999.70 13796.47 27999.89 16498.17 19199.82 16999.50 195
JIA-IIPM98.06 28897.92 29298.50 31198.59 36797.02 33498.80 25198.51 34399.88 3197.89 35899.87 4391.89 33299.90 14798.16 19297.68 37098.59 342
EIA-MVS99.12 17699.01 18199.45 18199.36 26999.62 10899.34 12099.79 7498.41 25298.84 30798.89 35198.75 12399.84 24198.15 19399.51 28198.89 325
miper_lstm_enhance98.65 24198.60 22998.82 29799.20 31097.33 32697.78 33899.66 13799.01 18899.59 17099.50 24194.62 30499.85 22798.12 19499.90 10699.26 259
Effi-MVS+-dtu99.07 18498.92 20199.52 16598.89 34999.78 4799.15 18399.66 13799.34 13998.92 29799.24 30797.69 23499.98 1598.11 19599.28 31198.81 332
tpm97.15 31696.95 31997.75 33698.91 34594.24 36599.32 12597.96 35797.71 30398.29 34099.32 28786.72 37399.92 10798.10 19696.24 37999.09 299
DeepPCF-MVS98.42 699.18 16299.02 17899.67 9999.22 30599.75 6397.25 36299.47 24198.72 22599.66 14299.70 13799.29 5599.63 35398.07 19799.81 17899.62 127
ppachtmachnet_test98.89 21899.12 14598.20 32499.66 15995.24 35997.63 34499.68 12999.08 18199.78 9199.62 18698.65 13899.88 17898.02 19899.96 6199.48 204
tpmrst97.73 29998.07 27896.73 35598.71 36492.00 37599.10 19998.86 32598.52 24298.92 29799.54 23291.90 33199.82 26598.02 19899.03 32798.37 354
CSCG99.37 11099.29 11899.60 14099.71 13399.46 14199.43 10599.85 4498.79 21699.41 22599.60 20398.92 10199.92 10798.02 19899.92 9699.43 224
eth_miper_zixun_eth98.68 23998.71 22298.60 30699.10 32896.84 33997.52 35299.54 21198.94 19599.58 17299.48 24896.25 28899.76 30298.01 20199.93 9299.21 269
Patchmtry98.78 22798.54 23999.49 17098.89 34999.19 20699.32 12599.67 13399.65 9099.72 11899.79 8691.87 33399.95 5798.00 20299.97 4699.33 245
PVSNet_BlendedMVS99.03 19299.01 18199.09 26299.54 20597.99 30098.58 26899.82 5797.62 30699.34 23899.71 13098.52 16099.77 30097.98 20399.97 4699.52 188
PVSNet_Blended98.70 23798.59 23199.02 27099.54 20597.99 30097.58 34799.82 5795.70 35499.34 23898.98 34198.52 16099.77 30097.98 20399.83 16099.30 254
cl____98.54 25298.41 25098.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.85 31199.78 29297.97 20599.89 11599.17 280
DIV-MVS_self_test98.54 25298.42 24998.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.87 31099.78 29297.97 20599.89 11599.18 278
AUN-MVS97.82 29597.38 30899.14 25699.27 29898.53 26498.72 26099.02 32098.10 28097.18 37299.03 33589.26 36099.85 22797.94 20797.91 36699.03 311
FA-MVS(test-final)98.52 25498.32 26099.10 26199.48 23498.67 25299.77 1598.60 34097.35 32199.63 14999.80 7693.07 32199.84 24197.92 20899.30 30898.78 335
ambc99.20 24799.35 27198.53 26499.17 17599.46 24499.67 13899.80 7698.46 16799.70 31997.92 20899.70 22499.38 233
USDC98.96 20798.93 19799.05 26899.54 20597.99 30097.07 36899.80 6898.21 27599.75 10599.77 10098.43 17099.64 35297.90 21099.88 12499.51 190
OPM-MVS99.26 13599.13 14199.63 12599.70 14199.61 11498.58 26899.48 23898.50 24499.52 19699.63 17999.14 7599.76 30297.89 21199.77 19799.51 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 12599.17 13499.77 4799.69 14599.80 4299.14 18599.31 28399.16 17099.62 15899.61 19598.35 18199.91 12997.88 21299.72 21999.61 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2599.70 14199.79 4499.14 18599.61 16499.92 10797.88 21299.72 21999.77 49
c3_l98.72 23598.71 22298.72 30299.12 32297.22 32997.68 34399.56 19998.90 20299.54 18999.48 24896.37 28599.73 31197.88 21299.88 12499.21 269
3Dnovator+98.92 399.35 11599.24 12899.67 9999.35 27199.47 13799.62 6399.50 23399.44 12499.12 27899.78 9398.77 12099.94 7097.87 21599.72 21999.62 127
miper_ehance_all_eth98.59 24798.59 23198.59 30798.98 34297.07 33397.49 35399.52 22598.50 24499.52 19699.37 27496.41 28399.71 31797.86 21699.62 24999.00 317
WTY-MVS98.59 24798.37 25499.26 23899.43 25398.40 27398.74 25899.13 31598.10 28099.21 26599.24 30794.82 30199.90 14797.86 21698.77 34099.49 200
APD_test199.36 11399.28 12099.61 13799.89 3599.89 1099.32 12599.74 9899.18 16399.69 12999.75 10998.41 17399.84 24197.85 21899.70 22499.10 295
SED-MVS99.40 10199.28 12099.77 4799.69 14599.82 3599.20 16599.54 21199.13 17699.82 7299.63 17998.91 10399.92 10797.85 21899.70 22499.58 153
test_241102_TWO99.54 21199.13 17699.76 9899.63 17998.32 18799.92 10797.85 21899.69 22899.75 58
MVS_111021_HR99.12 17699.02 17899.40 19999.50 22499.11 21397.92 33199.71 11498.76 22399.08 28299.47 25299.17 7099.54 36397.85 21899.76 19999.54 171
MTAPA99.35 11599.20 13199.80 3699.81 7199.81 3899.33 12399.53 22099.27 14899.42 21999.63 17998.21 19899.95 5797.83 22299.79 18899.65 101
MSC_two_6792asdad99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
No_MVS99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
TESTMET0.1,196.24 33695.84 33897.41 34398.24 37593.84 36897.38 35695.84 37498.43 24997.81 36298.56 36679.77 38499.89 16497.77 22398.77 34098.52 346
ACMH+98.40 899.50 7499.43 8899.71 8999.86 4899.76 5899.32 12599.77 8399.53 11099.77 9699.76 10499.26 6199.78 29297.77 22399.88 12499.60 141
IU-MVS99.69 14599.77 5099.22 30497.50 31399.69 12997.75 22799.70 22499.77 49
114514_t98.49 25998.11 27699.64 11899.73 12799.58 12299.24 15599.76 8889.94 37699.42 21999.56 22397.76 23199.86 21097.74 22899.82 16999.47 208
DVP-MVS++99.38 10799.25 12699.77 4799.03 33699.77 5099.74 2499.61 16499.18 16399.76 9899.61 19599.00 9199.92 10797.72 22999.60 25999.62 127
test_0728_THIRD99.18 16399.62 15899.61 19598.58 14799.91 12997.72 22999.80 18399.77 49
EGC-MVSNET89.05 35085.52 35399.64 11899.89 3599.78 4799.56 8199.52 22524.19 38449.96 38599.83 5999.15 7299.92 10797.71 23199.85 14799.21 269
miper_enhance_ethall98.03 28997.94 29098.32 31998.27 37496.43 34596.95 36999.41 25596.37 34599.43 21798.96 34594.74 30299.69 32597.71 23199.62 24998.83 331
TSAR-MVS + MP.99.34 12099.24 12899.63 12599.82 6399.37 16899.26 14799.35 27498.77 22099.57 17599.70 13799.27 6099.88 17897.71 23199.75 20199.65 101
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 30797.28 31098.40 31598.37 37296.75 34097.24 36399.37 27097.31 32399.41 22599.22 30987.30 36599.37 37497.70 23499.62 24999.08 302
MP-MVS-pluss99.14 17298.92 20199.80 3699.83 5699.83 2998.61 26499.63 15496.84 33899.44 21399.58 21098.81 11199.91 12997.70 23499.82 16999.67 84
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 12999.11 14899.79 4199.75 11899.81 3898.95 23199.53 22098.27 27299.53 19499.73 11698.75 12399.87 19297.70 23499.83 16099.68 78
UnsupCasMVSNet_bld98.55 25198.27 26499.40 19999.56 20299.37 16897.97 32799.68 12997.49 31499.08 28299.35 28395.41 29899.82 26597.70 23498.19 36199.01 316
MVS_111021_LR99.13 17499.03 17699.42 19099.58 18199.32 18097.91 33399.73 10298.68 22799.31 24799.48 24899.09 8099.66 34497.70 23499.77 19799.29 257
IS-MVSNet99.03 19298.85 20999.55 15899.80 7699.25 19399.73 2799.15 31299.37 13699.61 16499.71 13094.73 30399.81 28097.70 23499.88 12499.58 153
test-LLR97.15 31696.95 31997.74 33798.18 37795.02 36097.38 35696.10 37098.00 28597.81 36298.58 36390.04 35699.91 12997.69 24098.78 33898.31 355
test-mter96.23 33795.73 33997.74 33798.18 37795.02 36097.38 35696.10 37097.90 29497.81 36298.58 36379.12 38799.91 12997.69 24098.78 33898.31 355
XVS99.27 13399.11 14899.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31699.47 25298.47 16499.88 17897.62 24299.73 21399.67 84
X-MVStestdata96.09 33894.87 34799.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31661.30 39198.47 16499.88 17897.62 24299.73 21399.67 84
SMA-MVScopyleft99.19 15899.00 18499.73 7899.46 24499.73 7199.13 19199.52 22597.40 31899.57 17599.64 16998.93 10099.83 25697.61 24499.79 18899.63 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 32796.79 32696.46 35998.90 34690.71 38499.41 10698.68 33494.69 36798.14 35099.34 28686.32 37599.80 28697.60 24598.07 36598.88 326
PVSNet97.47 1598.42 26698.44 24798.35 31799.46 24496.26 34696.70 37399.34 27697.68 30499.00 28999.13 31797.40 24899.72 31397.59 24699.68 23399.08 302
new_pmnet98.88 21998.89 20598.84 29299.70 14197.62 31798.15 30499.50 23397.98 28899.62 15899.54 23298.15 20399.94 7097.55 24799.84 15298.95 320
IB-MVS95.41 2095.30 34794.46 35197.84 33398.76 36295.33 35897.33 35996.07 37296.02 34995.37 38197.41 38476.17 38999.96 4897.54 24895.44 38198.22 360
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 13999.11 14899.61 13798.38 37199.79 4499.57 7999.68 12999.61 9899.15 27399.71 13098.70 12999.91 12997.54 24899.68 23399.13 292
ZNCC-MVS99.22 14899.04 17499.77 4799.76 10799.73 7199.28 14299.56 19998.19 27799.14 27599.29 29498.84 11099.92 10797.53 25099.80 18399.64 111
CP-MVS99.23 14099.05 16999.75 6499.66 15999.66 9599.38 11199.62 15798.38 25699.06 28699.27 29798.79 11699.94 7097.51 25199.82 16999.66 93
SD-MVS99.01 19899.30 11398.15 32599.50 22499.40 16198.94 23399.61 16499.22 16099.75 10599.82 6699.54 3295.51 38597.48 25299.87 13599.54 171
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 25998.29 26399.11 25998.96 34398.42 27297.54 34899.32 27997.53 31198.47 33698.15 37697.88 22299.82 26597.46 25399.24 31799.09 299
DeepC-MVS_fast98.47 599.23 14099.12 14599.56 15599.28 29699.22 20098.99 22599.40 26299.08 18199.58 17299.64 16998.90 10699.83 25697.44 25499.75 20199.63 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 13699.08 15999.76 5499.73 12799.70 8499.31 13099.59 18298.36 25899.36 23499.37 27498.80 11599.91 12997.43 25599.75 20199.68 78
ACMMPR99.23 14099.06 16599.76 5499.74 12499.69 8899.31 13099.59 18298.36 25899.35 23599.38 27298.61 14299.93 8797.43 25599.75 20199.67 84
Vis-MVSNet (Re-imp)98.77 22898.58 23499.34 21699.78 9598.88 23999.61 6899.56 19999.11 18099.24 25999.56 22393.00 32399.78 29297.43 25599.89 11599.35 242
MIMVSNet98.43 26598.20 26999.11 25999.53 21198.38 27799.58 7698.61 33898.96 19399.33 24099.76 10490.92 34399.81 28097.38 25899.76 19999.15 284
XVG-OURS-SEG-HR99.16 16898.99 18999.66 10699.84 5299.64 10298.25 29899.73 10298.39 25599.63 14999.43 26099.70 1999.90 14797.34 25998.64 34899.44 218
COLMAP_ROBcopyleft98.06 1299.45 8899.37 9799.70 9399.83 5699.70 8499.38 11199.78 8099.53 11099.67 13899.78 9399.19 6899.86 21097.32 26099.87 13599.55 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 19498.81 21599.65 11199.58 18199.49 13598.58 26899.07 31698.40 25499.04 28799.25 30298.51 16299.80 28697.31 26199.51 28199.65 101
region2R99.23 14099.05 16999.77 4799.76 10799.70 8499.31 13099.59 18298.41 25299.32 24399.36 27898.73 12799.93 8797.29 26299.74 20899.67 84
APD-MVS_3200maxsize99.31 12699.16 13599.74 6999.53 21199.75 6399.27 14599.61 16499.19 16299.57 17599.64 16998.76 12199.90 14797.29 26299.62 24999.56 160
TAPA-MVS97.92 1398.03 28997.55 30599.46 17899.47 24099.44 14898.50 28199.62 15786.79 37799.07 28599.26 30098.26 19299.62 35497.28 26499.73 21399.31 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 13399.11 14899.73 7899.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.41 17399.91 12997.27 26599.61 25699.54 171
RE-MVS-def99.13 14199.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.57 14897.27 26599.61 25699.54 171
test_yl98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
DCV-MVSNet98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
PHI-MVS99.11 17998.95 19699.59 14299.13 32099.59 11899.17 17599.65 14697.88 29599.25 25699.46 25598.97 9799.80 28697.26 26799.82 16999.37 236
tfpnnormal99.43 9299.38 9499.60 14099.87 4599.75 6399.59 7499.78 8099.71 7099.90 4199.69 14398.85 10999.90 14797.25 27099.78 19399.15 284
PatchmatchNetpermissive97.65 30397.80 29697.18 34998.82 35692.49 37399.17 17598.39 34998.12 27998.79 31399.58 21090.71 34899.89 16497.23 27199.41 29599.16 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 20398.80 21799.56 15599.25 30199.43 15298.54 27799.27 29198.58 23698.80 31299.43 26098.53 15799.70 31997.22 27299.59 26399.54 171
HPM-MVScopyleft99.25 13699.07 16399.78 4499.81 7199.75 6399.61 6899.67 13397.72 30299.35 23599.25 30299.23 6499.92 10797.21 27399.82 16999.67 84
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 15899.00 18499.76 5499.76 10799.68 9199.38 11199.54 21198.34 26799.01 28899.50 24198.53 15799.93 8797.18 27499.78 19399.66 93
ACMMPcopyleft99.25 13699.08 15999.74 6999.79 8899.68 9199.50 9099.65 14698.07 28399.52 19699.69 14398.57 14899.92 10797.18 27499.79 18899.63 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 32096.42 32798.66 30599.42 25897.47 32197.27 36194.30 38097.24 32599.15 27398.86 35385.01 37699.87 19297.10 27699.39 29798.63 339
XVG-ACMP-BASELINE99.23 14099.10 15699.63 12599.82 6399.58 12298.83 24399.72 11198.36 25899.60 16799.71 13098.92 10199.91 12997.08 27799.84 15299.40 229
MSDG99.08 18398.98 19299.37 20999.60 17299.13 21197.54 34899.74 9898.84 21199.53 19499.55 23099.10 7899.79 28997.07 27899.86 14399.18 278
SteuartSystems-ACMMP99.30 12799.14 13999.76 5499.87 4599.66 9599.18 17099.60 17698.55 23899.57 17599.67 15899.03 9099.94 7097.01 27999.80 18399.69 72
Skip Steuart: Steuart Systems R&D Blog.
EPMVS96.53 33096.32 32897.17 35098.18 37792.97 37299.39 10989.95 38798.21 27598.61 32799.59 20886.69 37499.72 31396.99 28099.23 31998.81 332
MSP-MVS99.04 19198.79 21899.81 3199.78 9599.73 7199.35 11999.57 19498.54 24199.54 18998.99 33896.81 27199.93 8796.97 28199.53 27799.77 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 20798.70 22499.74 6999.52 21699.71 7798.86 23899.19 30898.47 24898.59 32999.06 32898.08 20899.91 12996.94 28299.60 25999.60 141
SR-MVS99.19 15899.00 18499.74 6999.51 21899.72 7599.18 17099.60 17698.85 20899.47 20799.58 21098.38 17899.92 10796.92 28399.54 27599.57 158
PGM-MVS99.20 15599.01 18199.77 4799.75 11899.71 7799.16 18199.72 11197.99 28799.42 21999.60 20398.81 11199.93 8796.91 28499.74 20899.66 93
HY-MVS98.23 998.21 28397.95 28698.99 27199.03 33698.24 28199.61 6898.72 33296.81 33998.73 31899.51 23894.06 30899.86 21096.91 28498.20 35998.86 328
MDTV_nov1_ep1397.73 30098.70 36590.83 38299.15 18398.02 35698.51 24398.82 30999.61 19590.98 34299.66 34496.89 28698.92 333
GST-MVS99.16 16898.96 19599.75 6499.73 12799.73 7199.20 16599.55 20598.22 27499.32 24399.35 28398.65 13899.91 12996.86 28799.74 20899.62 127
test_post199.14 18551.63 39389.54 35999.82 26596.86 287
SCA98.11 28598.36 25597.36 34499.20 31092.99 37198.17 30398.49 34598.24 27399.10 28199.57 21996.01 29299.94 7096.86 28799.62 24999.14 289
XVG-OURS99.21 15399.06 16599.65 11199.82 6399.62 10897.87 33599.74 9898.36 25899.66 14299.68 15499.71 1799.90 14796.84 29099.88 12499.43 224
LCM-MVSNet-Re99.28 12999.15 13899.67 9999.33 28499.76 5899.34 12099.97 1398.93 19899.91 3599.79 8698.68 13199.93 8796.80 29199.56 26699.30 254
RPSCF99.18 16299.02 17899.64 11899.83 5699.85 1999.44 10399.82 5798.33 26899.50 20399.78 9397.90 22099.65 35096.78 29299.83 16099.44 218
旧先验297.94 32995.33 35898.94 29399.88 17896.75 293
MDTV_nov1_ep13_2view91.44 38099.14 18597.37 32099.21 26591.78 33596.75 29399.03 311
CLD-MVS98.76 22998.57 23599.33 21999.57 19198.97 22897.53 35099.55 20596.41 34399.27 25499.13 31799.07 8599.78 29296.73 29599.89 11599.23 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 28697.98 28498.48 31299.27 29896.48 34399.40 10799.07 31698.81 21399.23 26099.57 21990.11 35599.87 19296.69 29699.64 24699.09 299
baseline296.83 32396.28 32998.46 31399.09 33096.91 33798.83 24393.87 38297.23 32696.23 37798.36 37288.12 36399.90 14796.68 29798.14 36398.57 345
cascas96.99 31996.82 32597.48 34097.57 38395.64 35596.43 37599.56 19991.75 37297.13 37397.61 38395.58 29798.63 38196.68 29799.11 32298.18 364
PC_three_145297.56 30799.68 13299.41 26299.09 8097.09 38396.66 29999.60 25999.62 127
LPG-MVS_test99.22 14899.05 16999.74 6999.82 6399.63 10699.16 18199.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
LGP-MVS_train99.74 6999.82 6399.63 10699.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
TinyColmap98.97 20498.93 19799.07 26699.46 24498.19 28697.75 33999.75 9398.79 21699.54 18999.70 13798.97 9799.62 35496.63 30299.83 16099.41 228
LF4IMVS99.01 19898.92 20199.27 23599.71 13399.28 18698.59 26799.77 8398.32 26999.39 23199.41 26298.62 14099.84 24196.62 30399.84 15298.69 338
NCCC98.82 22498.57 23599.58 14699.21 30799.31 18198.61 26499.25 29798.65 22998.43 33799.26 30097.86 22399.81 28096.55 30499.27 31499.61 137
OPU-MVS99.29 23099.12 32299.44 14899.20 16599.40 26699.00 9198.84 38096.54 30599.60 25999.58 153
F-COLMAP98.74 23298.45 24699.62 13499.57 19199.47 13798.84 24199.65 14696.31 34698.93 29499.19 31497.68 23599.87 19296.52 30699.37 30099.53 177
ADS-MVSNet297.78 29797.66 30498.12 32799.14 31895.36 35799.22 16298.75 33196.97 33498.25 34299.64 16990.90 34499.94 7096.51 30799.56 26699.08 302
ADS-MVSNet97.72 30297.67 30397.86 33299.14 31894.65 36399.22 16298.86 32596.97 33498.25 34299.64 16990.90 34499.84 24196.51 30799.56 26699.08 302
PatchMatch-RL98.68 23998.47 24499.30 22999.44 24999.28 18698.14 30699.54 21197.12 33299.11 27999.25 30297.80 22899.70 31996.51 30799.30 30898.93 322
CMPMVSbinary77.52 2398.50 25798.19 27299.41 19798.33 37399.56 12599.01 21899.59 18295.44 35699.57 17599.80 7695.64 29599.46 37296.47 31099.92 9699.21 269
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SF-MVS99.10 18298.93 19799.62 13499.58 18199.51 13399.13 19199.65 14697.97 28999.42 21999.61 19598.86 10899.87 19296.45 31199.68 23399.49 200
FE-MVS97.85 29497.42 30799.15 25399.44 24998.75 24799.77 1598.20 35495.85 35199.33 24099.80 7688.86 36199.88 17896.40 31299.12 32198.81 332
DPE-MVScopyleft99.14 17298.92 20199.82 2899.57 19199.77 5098.74 25899.60 17698.55 23899.76 9899.69 14398.23 19799.92 10796.39 31399.75 20199.76 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 38189.02 38893.47 36998.30 37399.84 24196.38 314
AllTest99.21 15399.07 16399.63 12599.78 9599.64 10299.12 19599.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
TestCases99.63 12599.78 9599.64 10299.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
testdata99.42 19099.51 21898.93 23499.30 28696.20 34798.87 30499.40 26698.33 18699.89 16496.29 31799.28 31199.44 218
dp96.86 32297.07 31596.24 36198.68 36690.30 38699.19 16998.38 35097.35 32198.23 34499.59 20887.23 36699.82 26596.27 31898.73 34698.59 342
tpmvs97.39 31197.69 30196.52 35798.41 37091.76 37699.30 13398.94 32497.74 30197.85 36199.55 23092.40 33099.73 31196.25 31998.73 34698.06 366
KD-MVS_2432*160095.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
miper_refine_blended95.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
ACMP97.51 1499.05 18898.84 21199.67 9999.78 9599.55 12898.88 23699.66 13797.11 33399.47 20799.60 20399.07 8599.89 16496.18 32299.85 14799.58 153
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 21598.72 22199.44 18499.39 26199.42 15598.58 26899.64 15297.31 32399.44 21399.62 18698.59 14599.69 32596.17 32399.79 18899.22 267
DP-MVS Recon98.50 25798.23 26599.31 22699.49 22999.46 14198.56 27399.63 15494.86 36598.85 30699.37 27497.81 22799.59 36096.08 32499.44 29098.88 326
tpm cat196.78 32496.98 31896.16 36298.85 35290.59 38599.08 20699.32 27992.37 37197.73 36699.46 25591.15 34099.69 32596.07 32598.80 33798.21 361
tpm296.35 33396.22 33096.73 35598.88 35191.75 37799.21 16498.51 34393.27 37097.89 35899.21 31184.83 37799.70 31996.04 32698.18 36298.75 337
dmvs_re98.69 23898.48 24399.31 22699.55 20399.42 15599.54 8498.38 35099.32 14298.72 31998.71 36096.76 27299.21 37596.01 32799.35 30399.31 252
test_040299.22 14899.14 13999.45 18199.79 8899.43 15299.28 14299.68 12999.54 10899.40 23099.56 22399.07 8599.82 26596.01 32799.96 6199.11 293
ITE_SJBPF99.38 20699.63 16599.44 14899.73 10298.56 23799.33 24099.53 23498.88 10799.68 33596.01 32799.65 24499.02 315
test_prior297.95 32897.87 29698.05 35299.05 32997.90 22095.99 33099.49 285
testdata299.89 16495.99 330
原ACMM199.37 20999.47 24098.87 24199.27 29196.74 34198.26 34199.32 28797.93 21999.82 26595.96 33299.38 29899.43 224
新几何199.52 16599.50 22499.22 20099.26 29495.66 35598.60 32899.28 29597.67 23699.89 16495.95 33399.32 30699.45 213
MP-MVScopyleft99.06 18598.83 21399.76 5499.76 10799.71 7799.32 12599.50 23398.35 26398.97 29099.48 24898.37 17999.92 10795.95 33399.75 20199.63 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
wuyk23d97.58 30699.13 14192.93 36599.69 14599.49 13599.52 8699.77 8397.97 28999.96 1799.79 8699.84 899.94 7095.85 33599.82 16979.36 381
HQP_MVS98.90 21598.68 22599.55 15899.58 18199.24 19798.80 25199.54 21198.94 19599.14 27599.25 30297.24 25599.82 26595.84 33699.78 19399.60 141
plane_prior599.54 21199.82 26595.84 33699.78 19399.60 141
无先验98.01 32099.23 30195.83 35299.85 22795.79 33899.44 218
CPTT-MVS98.74 23298.44 24799.64 11899.61 17099.38 16599.18 17099.55 20596.49 34299.27 25499.37 27497.11 26399.92 10795.74 33999.67 23999.62 127
PLCcopyleft97.35 1698.36 27197.99 28299.48 17499.32 28699.24 19798.50 28199.51 22995.19 36198.58 33098.96 34596.95 26899.83 25695.63 34099.25 31599.37 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 24998.34 25899.28 23299.18 31499.10 21898.34 29199.41 25598.48 24798.52 33398.98 34197.05 26599.78 29295.59 34199.50 28398.96 318
131498.00 29197.90 29498.27 32398.90 34697.45 32399.30 13399.06 31894.98 36297.21 37199.12 32198.43 17099.67 34095.58 34298.56 35197.71 370
PVSNet_095.53 1995.85 34395.31 34597.47 34198.78 36093.48 37095.72 37699.40 26296.18 34897.37 36797.73 38095.73 29499.58 36195.49 34381.40 38399.36 239
MAR-MVS98.24 28097.92 29299.19 24898.78 36099.65 10099.17 17599.14 31395.36 35798.04 35398.81 35697.47 24599.72 31395.47 34499.06 32498.21 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 28197.89 29599.26 23899.19 31299.26 19099.65 5999.69 12691.33 37498.14 35099.77 10098.28 19099.96 4895.41 34599.55 27098.58 344
train_agg98.35 27497.95 28699.57 15299.35 27199.35 17598.11 31099.41 25594.90 36397.92 35698.99 33898.02 21299.85 22795.38 34699.44 29099.50 195
9.1498.64 22699.45 24898.81 24899.60 17697.52 31299.28 25399.56 22398.53 15799.83 25695.36 34799.64 246
APD-MVScopyleft98.87 22098.59 23199.71 8999.50 22499.62 10899.01 21899.57 19496.80 34099.54 18999.63 17998.29 18999.91 12995.24 34899.71 22299.61 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary98.60 24498.35 25799.38 20699.12 32299.22 20098.67 26399.42 25497.84 29998.81 31099.27 29797.32 25399.81 28095.14 34999.53 27799.10 295
test9_res95.10 35099.44 29099.50 195
CDPH-MVS98.56 25098.20 26999.61 13799.50 22499.46 14198.32 29399.41 25595.22 35999.21 26599.10 32598.34 18499.82 26595.09 35199.66 24299.56 160
BH-untuned98.22 28298.09 27798.58 30999.38 26497.24 32898.55 27498.98 32397.81 30099.20 27098.76 35897.01 26699.65 35094.83 35298.33 35698.86 328
BP-MVS94.73 353
HQP-MVS98.36 27198.02 28199.39 20399.31 28798.94 23197.98 32499.37 27097.45 31598.15 34698.83 35496.67 27399.70 31994.73 35399.67 23999.53 177
QAPM98.40 26997.99 28299.65 11199.39 26199.47 13799.67 4999.52 22591.70 37398.78 31599.80 7698.55 15199.95 5794.71 35599.75 20199.53 177
agg_prior294.58 35699.46 28999.50 195
BH-RMVSNet98.41 26798.14 27599.21 24599.21 30798.47 26798.60 26698.26 35398.35 26398.93 29499.31 28997.20 26099.66 34494.32 35799.10 32399.51 190
E-PMN97.14 31897.43 30696.27 36098.79 35891.62 37895.54 37799.01 32299.44 12498.88 30199.12 32192.78 32499.68 33594.30 35899.03 32797.50 371
MG-MVS98.52 25498.39 25298.94 27699.15 31797.39 32598.18 30199.21 30798.89 20599.23 26099.63 17997.37 25199.74 30894.22 35999.61 25699.69 72
API-MVS98.38 27098.39 25298.35 31798.83 35399.26 19099.14 18599.18 30998.59 23598.66 32498.78 35798.61 14299.57 36294.14 36099.56 26696.21 378
PAPM_NR98.36 27198.04 27999.33 21999.48 23498.93 23498.79 25499.28 29097.54 31098.56 33298.57 36597.12 26299.69 32594.09 36198.90 33599.38 233
ZD-MVS99.43 25399.61 11499.43 25296.38 34499.11 27999.07 32797.86 22399.92 10794.04 36299.49 285
DPM-MVS98.28 27697.94 29099.32 22399.36 26999.11 21397.31 36098.78 33096.88 33698.84 30799.11 32497.77 23099.61 35894.03 36399.36 30199.23 265
gg-mvs-nofinetune95.87 34295.17 34697.97 32998.19 37696.95 33599.69 4289.23 38899.89 2696.24 37699.94 1681.19 38199.51 36893.99 36498.20 35997.44 372
PMVScopyleft92.94 2198.82 22498.81 21598.85 29099.84 5297.99 30099.20 16599.47 24199.71 7099.42 21999.82 6698.09 20699.47 37093.88 36599.85 14799.07 307
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 32197.28 31095.99 36398.76 36291.03 38195.26 37898.61 33899.34 13998.92 29798.88 35293.79 31299.66 34492.87 36699.05 32597.30 375
BH-w/o97.20 31597.01 31797.76 33599.08 33195.69 35498.03 31998.52 34295.76 35397.96 35598.02 37795.62 29699.47 37092.82 36797.25 37398.12 365
TR-MVS97.44 31097.15 31498.32 31998.53 36997.46 32298.47 28397.91 35996.85 33798.21 34598.51 36996.42 28199.51 36892.16 36897.29 37297.98 367
OpenMVS_ROBcopyleft97.31 1797.36 31396.84 32398.89 28999.29 29399.45 14698.87 23799.48 23886.54 37999.44 21399.74 11297.34 25299.86 21091.61 36999.28 31197.37 374
GG-mvs-BLEND97.36 34497.59 38196.87 33899.70 3588.49 38994.64 38297.26 38780.66 38299.12 37691.50 37096.50 37896.08 380
DeepMVS_CXcopyleft97.98 32899.69 14596.95 33599.26 29475.51 38195.74 37998.28 37496.47 27999.62 35491.23 37197.89 36797.38 373
PAPR97.56 30797.07 31599.04 26998.80 35798.11 29397.63 34499.25 29794.56 36898.02 35498.25 37597.43 24799.68 33590.90 37298.74 34499.33 245
MVS95.72 34594.63 34998.99 27198.56 36897.98 30699.30 13398.86 32572.71 38297.30 36899.08 32698.34 18499.74 30889.21 37398.33 35699.26 259
thres600view796.60 32996.16 33197.93 33099.63 16596.09 35099.18 17097.57 36298.77 22098.72 31997.32 38587.04 36899.72 31388.57 37498.62 34997.98 367
FPMVS96.32 33495.50 34198.79 29899.60 17298.17 28998.46 28798.80 32997.16 33096.28 37499.63 17982.19 38099.09 37788.45 37598.89 33699.10 295
PCF-MVS96.03 1896.73 32695.86 33799.33 21999.44 24999.16 20896.87 37199.44 24986.58 37898.95 29299.40 26694.38 30699.88 17887.93 37699.80 18398.95 320
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 33296.03 33497.47 34199.63 16595.93 35199.18 17097.57 36298.75 22498.70 32297.31 38687.04 36899.67 34087.62 37798.51 35396.81 376
tfpn200view996.30 33595.89 33597.53 33999.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35396.81 376
thres40096.40 33195.89 33597.92 33199.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35397.98 367
thres20096.09 33895.68 34097.33 34699.48 23496.22 34798.53 27897.57 36298.06 28498.37 33996.73 39086.84 37299.61 35886.99 38098.57 35096.16 379
MVEpermissive92.54 2296.66 32896.11 33298.31 32199.68 15397.55 31997.94 32995.60 37599.37 13690.68 38498.70 36196.56 27598.61 38286.94 38199.55 27098.77 336
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 31496.83 32498.59 30799.46 24497.55 31999.25 15496.84 36998.78 21897.24 37097.67 38197.11 26398.97 37986.59 38298.54 35299.27 258
PAPM95.61 34694.71 34898.31 32199.12 32296.63 34196.66 37498.46 34690.77 37596.25 37598.68 36293.01 32299.69 32581.60 38397.86 36998.62 340
test12329.31 35133.05 35618.08 36725.93 39112.24 39197.53 35010.93 39211.78 38524.21 38650.08 39521.04 3908.60 38623.51 38432.43 38533.39 382
testmvs28.94 35233.33 35415.79 36826.03 3909.81 39296.77 37215.67 39111.55 38623.87 38750.74 39419.03 3918.53 38723.21 38533.07 38429.03 383
test_blank8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.88 35333.17 3550.00 3690.00 3920.00 3930.00 38099.62 1570.00 3870.00 38899.13 31799.82 90.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas16.61 35422.14 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 199.28 570.00 3880.00 3860.00 3860.00 384
sosnet-low-res8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
Regformer8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.26 36311.02 3660.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.16 3150.00 3920.00 3880.00 3860.00 3860.00 384
uanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.83 5699.89 1099.74 2499.71 11499.69 7899.63 149
test_one_060199.63 16599.76 5899.55 20599.23 15699.31 24799.61 19598.59 145
eth-test20.00 392
eth-test0.00 392
test_241102_ONE99.69 14599.82 3599.54 21199.12 17999.82 7299.49 24598.91 10399.52 367
save fliter99.53 21199.25 19398.29 29599.38 26999.07 183
test072699.69 14599.80 4299.24 15599.57 19499.16 17099.73 11799.65 16798.35 181
GSMVS99.14 289
test_part299.62 16999.67 9399.55 187
sam_mvs190.81 34799.14 289
sam_mvs90.52 351
MTGPAbinary99.53 220
test_post52.41 39290.25 35399.86 210
patchmatchnet-post99.62 18690.58 34999.94 70
MTMP99.09 20398.59 341
TEST999.35 27199.35 17598.11 31099.41 25594.83 36697.92 35698.99 33898.02 21299.85 227
test_899.34 27999.31 18198.08 31499.40 26294.90 36397.87 36098.97 34398.02 21299.84 241
agg_prior99.35 27199.36 17299.39 26597.76 36599.85 227
test_prior499.19 20698.00 322
test_prior99.46 17899.35 27199.22 20099.39 26599.69 32599.48 204
新几何298.04 318
旧先验199.49 22999.29 18499.26 29499.39 27097.67 23699.36 30199.46 212
原ACMM297.92 331
test22299.51 21899.08 22097.83 33799.29 28795.21 36098.68 32399.31 28997.28 25499.38 29899.43 224
segment_acmp98.37 179
testdata197.72 34097.86 298
test1299.54 16299.29 29399.33 17899.16 31198.43 33797.54 24399.82 26599.47 28799.48 204
plane_prior799.58 18199.38 165
plane_prior699.47 24099.26 19097.24 255
plane_prior499.25 302
plane_prior399.31 18198.36 25899.14 275
plane_prior298.80 25198.94 195
plane_prior199.51 218
plane_prior99.24 19798.42 28897.87 29699.71 222
n20.00 393
nn0.00 393
door-mid99.83 52
test1199.29 287
door99.77 83
HQP5-MVS98.94 231
HQP-NCC99.31 28797.98 32497.45 31598.15 346
ACMP_Plane99.31 28797.98 32497.45 31598.15 346
HQP4-MVS98.15 34699.70 31999.53 177
HQP3-MVS99.37 27099.67 239
HQP2-MVS96.67 273
NP-MVS99.40 26099.13 21198.83 354
ACMMP++_ref99.94 85
ACMMP++99.79 188
Test By Simon98.41 173