This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19699.98 1100.00 199.98 4
test_fmvs299.72 3899.85 1799.34 23399.91 3098.08 32099.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28199.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 206100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_vis1_n_192099.72 3899.88 799.27 25499.93 2497.84 33299.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
test_vis1_n99.68 4799.79 2999.36 23099.94 1898.18 30999.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5599.97 499.96 6899.95 13
test_fmvs1_n99.68 4799.81 2599.28 25199.95 1597.93 32999.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
test_f99.75 3499.88 799.37 22699.96 798.21 30699.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 7999.97 499.99 1699.97 9
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 23899.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18699.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_cas_vis1_n_192099.76 3399.86 1399.45 19899.93 2498.40 29499.30 14399.98 1299.94 2399.99 799.89 3899.80 1599.97 3499.96 999.97 5599.97 9
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21199.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18699.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_fmvs199.48 9199.65 5298.97 29599.54 22197.16 35599.11 21199.98 1299.78 7299.96 2499.81 8798.72 14699.97 3499.95 1299.97 5599.79 57
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 7999.95 1299.98 4199.94 16
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20699.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
MM99.18 17999.05 18699.55 17199.35 28898.81 26099.05 22597.79 39399.99 399.48 22299.59 23296.29 30899.95 6499.94 1699.98 4199.88 28
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25099.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21499.98 1299.99 399.98 1399.91 2899.68 2699.93 9799.93 1999.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22499.98 1299.99 399.98 1399.90 3399.88 899.92 12399.93 1999.99 1699.98 4
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23399.96 2599.99 399.97 2099.84 6999.58 3899.93 9799.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23399.96 2599.99 399.97 2099.84 6999.78 1799.92 12399.92 2199.99 1699.92 22
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
MVStest198.22 30498.09 29998.62 33099.04 35896.23 37699.20 17499.92 3499.44 14699.98 1399.87 5285.87 39999.67 36899.91 2499.57 28399.95 13
v192192099.56 7499.57 7399.55 17199.75 12999.11 22999.05 22599.61 18699.15 19899.88 6299.71 15099.08 9599.87 21099.90 2599.97 5599.66 111
v124099.56 7499.58 6999.51 18299.80 8699.00 24199.00 24199.65 16699.15 19899.90 4999.75 12799.09 9299.88 19699.90 2599.96 6899.67 102
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 10999.60 12299.92 4399.87 5298.75 14199.86 22999.90 2599.99 1699.73 73
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23099.60 19799.18 18799.87 7099.72 14299.08 9599.85 24799.89 2899.98 4199.66 111
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21199.62 17999.18 18799.89 5399.72 14298.66 15499.87 21099.88 2999.97 5599.66 111
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10499.64 10799.93 3899.85 6398.66 15499.84 26299.88 2999.99 1699.71 79
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3499.87 3199.99 16100.00 1
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21499.61 18699.20 18599.84 7799.73 13598.67 15299.84 26299.86 3299.98 4199.64 129
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24099.79 1299.97 19100.00 199.43 23499.94 1999.64 2899.94 7999.83 3399.99 1699.98 4
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8199.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 29999.86 34
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7299.84 5599.94 3599.91 2899.13 8899.96 5599.83 3399.99 1699.83 43
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19699.58 21299.25 17699.81 8999.62 21098.24 20999.84 26299.83 3399.97 5599.64 129
test_vis1_rt99.45 10499.46 9399.41 21599.71 14498.63 28098.99 24699.96 2599.03 21199.95 3299.12 34598.75 14199.84 26299.82 3799.82 18199.77 63
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35899.72 8299.91 4699.60 22799.43 5099.81 30299.81 3899.53 29599.73 73
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20399.24 17899.86 7199.70 15898.55 16899.82 28799.79 3999.95 8199.60 159
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8199.82 6299.71 13799.72 14296.60 29399.98 2199.75 4199.23 33999.82 49
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 5999.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3499.75 41100.00 199.84 39
reproduce_monomvs97.40 33697.46 33097.20 38399.05 35591.91 41199.20 17499.18 33199.84 5599.86 7199.75 12780.67 40699.83 27799.69 4599.95 8199.85 37
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 21999.38 29699.57 4099.95 6499.69 4599.90 11699.15 305
MVS_030498.61 26298.30 28399.52 17997.88 41698.95 24898.76 28094.11 41599.84 5599.32 26499.57 24295.57 31999.95 6499.68 4799.98 4199.68 94
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 17999.41 28699.51 4799.95 6499.66 4899.89 12698.96 347
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 281
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16399.65 5099.97 5599.69 88
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 9999.78 7299.93 3899.89 3897.94 23499.92 12399.65 5099.98 4199.62 145
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21799.39 29499.57 4099.93 9799.64 5299.86 15599.20 294
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41099.78 7299.88 6299.88 4793.66 34099.97 3499.61 5399.95 8199.64 129
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9099.83 6099.88 6299.85 6398.42 18999.90 16399.60 5499.73 22899.49 216
Anonymous2024052199.44 10699.42 10299.49 18699.89 3898.96 24799.62 6499.76 10499.85 5299.82 8299.88 4796.39 30399.97 3499.59 5599.98 4199.55 181
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21099.59 5599.74 22399.71 79
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 5999.80 6899.93 3899.93 2198.54 17099.93 9799.59 5599.98 4199.76 68
EU-MVSNet99.39 12299.62 5798.72 32699.88 4396.44 37099.56 8499.85 5999.90 3199.90 4999.85 6398.09 22399.83 27799.58 5899.95 8199.90 24
mvs_anonymous99.28 14699.39 10698.94 29999.19 33197.81 33499.02 23699.55 22599.78 7299.85 7499.80 9098.24 20999.86 22999.57 5999.50 30299.15 305
test111197.74 32298.16 29596.49 39399.60 18589.86 42399.71 3491.21 41999.89 3799.88 6299.87 5293.73 33999.90 16399.56 6099.99 1699.70 82
lessismore_v099.64 13299.86 5399.38 18090.66 42099.89 5399.83 7394.56 33099.97 3499.56 6099.92 10599.57 176
mvsany_test199.44 10699.45 9599.40 21799.37 28298.64 27997.90 36999.59 20399.27 17299.92 4399.82 8099.74 2099.93 9799.55 6299.87 14799.63 134
MVSMamba_PlusPlus99.55 7799.58 6999.47 19299.68 16499.40 17599.52 8999.70 13699.92 2899.77 11199.86 5998.28 20599.96 5599.54 6399.90 11699.05 334
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21099.54 6399.92 10599.63 134
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6499.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 9199.65 5298.95 29899.71 14497.27 35299.50 9699.82 7299.59 12499.41 24399.85 6399.62 33100.00 199.53 6699.89 12699.59 166
test250694.73 38394.59 38495.15 39999.59 19085.90 42599.75 2274.01 42799.89 3799.71 13799.86 5979.00 41699.90 16399.52 6799.99 1699.65 119
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13199.93 2599.95 3299.89 3899.71 2299.96 5599.51 6899.97 5599.84 39
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9699.90 3199.82 8299.83 7398.45 18599.87 21099.51 6899.97 5599.86 34
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13799.91 2899.15 8399.97 3499.50 70100.00 199.90 24
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24298.09 34699.90 4398.95 21999.78 10399.58 23599.57 4099.93 9799.48 7199.95 8199.79 57
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14399.85 5299.80 9399.81 8798.81 12999.91 14599.47 7299.88 13599.70 82
ECVR-MVScopyleft97.73 32398.04 30296.78 38799.59 19090.81 41999.72 3090.43 42199.89 3799.86 7199.86 5993.60 34199.89 18299.46 7399.99 1699.65 119
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13699.93 2599.78 10399.68 17699.10 9099.78 31599.45 7499.96 6899.83 43
TAMVS99.49 8999.45 9599.63 13999.48 25099.42 16899.45 10999.57 21499.66 10299.78 10399.83 7397.85 24199.86 22999.44 7599.96 6899.61 155
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7299.46 14199.75 11999.56 24699.63 3099.95 6499.43 7699.88 13599.62 145
new-patchmatchnet99.35 13299.57 7398.71 32899.82 7296.62 36798.55 30399.75 10999.50 13199.88 6299.87 5299.31 6499.88 19699.43 76100.00 199.62 145
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23699.89 4599.60 12299.82 8299.62 21098.81 12999.89 18299.43 7699.86 15599.47 224
MVSFormer99.41 11699.44 9899.31 24499.57 20598.40 29499.77 1699.80 8499.73 7899.63 16499.30 31598.02 22899.98 2199.43 7699.69 24399.55 181
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8499.73 7899.97 2099.92 2599.77 1999.98 2199.43 76100.00 199.90 24
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8199.96 6899.65 119
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 11999.82 6299.90 4999.90 3397.97 23399.86 22999.42 8199.96 6899.80 50
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33699.65 10599.89 5399.90 3396.20 31099.94 7999.42 8199.92 10599.67 102
balanced_conf0399.50 8599.50 8699.50 18499.42 27399.49 14799.52 8999.75 10999.86 4699.78 10399.71 15098.20 21699.90 16399.39 8499.88 13599.10 316
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 22999.04 23099.87 5199.71 8499.47 22499.79 10098.24 20999.98 2199.38 8599.96 6899.83 43
UGNet99.38 12499.34 11899.49 18698.90 37098.90 25599.70 3599.35 29599.86 4698.57 35699.81 8798.50 18099.93 9799.38 8599.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7299.39 15799.82 8299.84 6999.38 5699.91 14599.38 8599.93 10199.80 50
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 10999.86 4699.74 12799.79 10098.27 20799.85 24799.37 8899.93 10199.83 43
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9099.97 1699.89 5399.89 3899.53 4599.99 899.36 8999.96 6899.65 119
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 5999.70 8999.92 4399.93 2199.45 4999.97 3499.36 89100.00 199.85 37
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15099.90 4399.71 8499.79 9999.73 13599.54 4399.84 26299.36 8999.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9299.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 25999.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9399.96 6899.78 59
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 27899.88 4998.66 25999.96 2499.79 10097.45 26399.93 9799.34 9399.99 1699.78 59
CDS-MVSNet99.22 16599.13 15899.50 18499.35 28899.11 22998.96 25299.54 23199.46 14199.61 17999.70 15896.31 30699.83 27799.34 9399.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 22199.16 15298.51 33699.75 12995.90 38298.07 34999.84 6599.84 5599.89 5399.73 13596.01 31399.99 899.33 96100.00 199.63 134
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 34999.83 6798.64 26199.89 5399.60 22792.57 350100.00 199.33 9699.97 5599.72 76
pmmvs599.19 17599.11 16599.42 20899.76 11798.88 25698.55 30399.73 11998.82 23999.72 13299.62 21096.56 29499.82 28799.32 9899.95 8199.56 178
v14899.40 11899.41 10499.39 22099.76 11798.94 24999.09 21899.59 20399.17 19299.81 8999.61 21998.41 19099.69 35199.32 9899.94 9499.53 194
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8499.71 8499.72 13299.69 16599.15 8399.83 27799.32 9899.94 9499.53 194
CVMVSNet98.61 26298.88 22797.80 36799.58 19593.60 40499.26 15799.64 17499.66 10299.72 13299.67 18093.26 34399.93 9799.30 10199.81 19199.87 32
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 11999.62 11299.84 7799.71 15098.62 15899.96 5599.30 10199.96 6899.86 34
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13199.72 8299.84 7799.78 11098.67 15299.97 3499.30 10199.95 8199.80 50
tmp_tt95.75 37795.42 37196.76 38889.90 42694.42 39898.86 26197.87 39278.01 41799.30 27499.69 16597.70 24995.89 41999.29 10498.14 39599.95 13
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 11999.70 8999.84 7799.73 13598.56 16799.96 5599.29 10499.94 9499.83 43
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 10999.58 12599.85 7499.69 16598.18 21999.94 7999.28 10699.95 8199.83 43
IterMVS98.97 22599.16 15298.42 34199.74 13595.64 38698.06 35199.83 6799.83 6099.85 7499.74 13196.10 31299.99 899.27 107100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS97.50 33397.18 33998.48 33898.85 37795.89 38398.44 31999.52 24599.53 12899.52 21199.42 28580.10 40999.86 22999.24 10899.95 8199.68 94
h-mvs3398.61 26298.34 27899.44 20299.60 18598.67 27199.27 15599.44 27099.68 9499.32 26499.49 26892.50 353100.00 199.24 10896.51 41299.65 119
hse-mvs298.52 27598.30 28399.16 27099.29 31098.60 28298.77 27999.02 34499.68 9499.32 26499.04 35592.50 35399.85 24799.24 10897.87 40299.03 338
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13699.67 9899.82 8299.83 7398.98 11199.90 16399.24 10899.97 5599.53 194
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20299.85 5999.79 7099.76 11499.72 14299.33 6399.82 28799.21 11299.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18699.54 12699.80 9399.64 19297.79 24599.95 6499.21 11299.94 9499.84 39
DELS-MVS99.34 13799.30 13099.48 19099.51 23499.36 18798.12 34299.53 24099.36 16299.41 24399.61 21999.22 7699.87 21099.21 11299.68 24899.20 294
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23499.58 13498.98 24999.60 19799.43 15299.70 14199.36 30297.70 24999.88 19699.20 11599.87 14799.59 166
CANet99.11 19699.05 18699.28 25198.83 37998.56 28498.71 28699.41 27699.25 17699.23 28299.22 33397.66 25799.94 7999.19 11699.97 5599.33 263
EI-MVSNet-UG-set99.48 9199.50 8699.42 20899.57 20598.65 27799.24 16499.46 26599.68 9499.80 9399.66 18598.99 10999.89 18299.19 11699.90 11699.72 76
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13699.81 6599.69 14499.58 23597.66 25799.86 22999.17 12199.44 30999.67 102
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25699.56 13798.97 25099.61 18699.43 15299.67 15299.28 31997.85 24199.95 6499.17 12199.81 19199.65 119
DU-MVS99.33 14099.21 14799.71 10199.43 26899.56 13798.83 26699.53 24099.38 15899.67 15299.36 30297.67 25399.95 6499.17 12199.81 19199.63 134
EI-MVSNet-Vis-set99.47 9999.49 8899.42 20899.57 20598.66 27499.24 16499.46 26599.67 9899.79 9999.65 19098.97 11399.89 18299.15 12499.89 12699.71 79
EI-MVSNet99.38 12499.44 9899.21 26499.58 19598.09 31799.26 15799.46 26599.62 11299.75 11999.67 18098.54 17099.85 24799.15 12499.92 10599.68 94
VNet99.18 17999.06 18299.56 16899.24 32199.36 18799.33 13299.31 30499.67 9899.47 22499.57 24296.48 29799.84 26299.15 12499.30 32899.47 224
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15799.76 10499.32 16699.80 9399.78 11099.29 6699.87 21099.15 12499.91 11599.66 111
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20299.90 3698.66 27498.94 25599.91 3897.97 32299.79 9999.73 13599.05 10299.97 3499.15 12499.99 1699.68 94
IterMVS-LS99.41 11699.47 8999.25 26099.81 8098.09 31798.85 26399.76 10499.62 11299.83 8199.64 19298.54 17099.97 3499.15 12499.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14399.63 17699.61 11699.71 13799.56 24698.76 13999.96 5599.14 13099.92 10599.68 94
MVSTER98.47 28298.22 28899.24 26299.06 35498.35 30099.08 22199.46 26599.27 17299.75 11999.66 18588.61 38699.85 24799.14 13099.92 10599.52 204
Anonymous2023120699.35 13299.31 12599.47 19299.74 13599.06 23999.28 15299.74 11599.23 18099.72 13299.53 25797.63 25999.88 19699.11 13299.84 16499.48 220
Syy-MVS98.17 30797.85 31999.15 27298.50 40298.79 26398.60 29299.21 32797.89 32896.76 40496.37 42795.47 32199.57 39299.10 13398.73 37399.09 321
ttmdpeth99.48 9199.55 7999.29 24899.76 11798.16 31199.33 13299.95 3099.79 7099.36 25399.89 3899.13 8899.77 32399.09 13499.64 26199.93 18
MVS_Test99.28 14699.31 12599.19 26799.35 28898.79 26399.36 12799.49 25899.17 19299.21 28799.67 18098.78 13699.66 37399.09 13499.66 25799.10 316
testgi99.29 14599.26 14199.37 22699.75 12998.81 26098.84 26499.89 4598.38 28999.75 11999.04 35599.36 6199.86 22999.08 13699.25 33599.45 229
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 30999.82 7297.65 34099.43 23499.16 33996.42 30099.91 14599.07 13799.84 16499.80 50
CANet_DTU98.91 23498.85 23099.09 28198.79 38598.13 31298.18 33599.31 30499.48 13498.86 32799.51 26196.56 29499.95 6499.05 13899.95 8199.19 297
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26699.86 5499.68 9499.65 15999.88 4797.67 25399.87 21099.03 13999.86 15599.76 68
FMVSNet299.35 13299.28 13799.55 17199.49 24599.35 19099.45 10999.57 21499.44 14699.70 14199.74 13197.21 27499.87 21099.03 13999.94 9499.44 234
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34699.80 8497.14 36699.46 22899.40 29096.11 31199.89 18299.01 14199.84 16499.84 39
VDD-MVS99.20 17299.11 16599.44 20299.43 26898.98 24399.50 9698.32 38199.80 6899.56 19799.69 16596.99 28499.85 24798.99 14299.73 22899.50 211
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16499.71 13199.27 17299.93 3899.90 3399.70 2499.93 9798.99 14299.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27199.66 15699.42 15699.75 11999.66 18599.20 7899.76 32698.98 14499.99 1699.36 256
EPNet_dtu97.62 32897.79 32297.11 38696.67 42192.31 40998.51 31098.04 38699.24 17895.77 41399.47 27593.78 33899.66 37398.98 14499.62 26599.37 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13799.32 12399.39 22099.67 17098.77 26598.57 30199.81 8199.61 11699.48 22299.41 28698.47 18199.86 22998.97 14699.90 11699.53 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 11899.31 12599.68 10999.43 26899.55 14099.73 2799.50 25499.46 14199.88 6299.36 30297.54 26099.87 21098.97 14699.87 14799.63 134
GBi-Net99.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
FMVSNet597.80 32097.25 33799.42 20898.83 37998.97 24599.38 12099.80 8498.87 23199.25 27899.69 16580.60 40899.91 14598.96 14899.90 11699.38 250
test199.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
FMVSNet398.80 24798.63 24999.32 24199.13 34098.72 26899.10 21499.48 25999.23 18099.62 17399.64 19292.57 35099.86 22998.96 14899.90 11699.39 248
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24699.67 15199.48 13499.55 20299.36 30294.92 32499.86 22998.95 15296.57 41199.45 229
CHOSEN 280x42098.41 28798.41 27098.40 34299.34 29795.89 38396.94 40599.44 27098.80 24399.25 27899.52 25993.51 34299.98 2198.94 15399.98 4199.32 266
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19698.93 15499.95 8199.60 159
alignmvs98.28 29797.96 30899.25 26099.12 34298.93 25299.03 23398.42 37499.64 10798.72 34297.85 40790.86 37199.62 38398.88 15599.13 34199.19 297
MGCFI-Net99.02 21399.01 19899.06 28899.11 34798.60 28299.63 6199.67 15199.63 10998.58 35497.65 41099.07 9799.57 39298.85 15698.92 35799.03 338
sss98.90 23698.77 24099.27 25499.48 25098.44 29198.72 28499.32 30097.94 32699.37 25299.35 30796.31 30699.91 14598.85 15699.63 26499.47 224
xiu_mvs_v2_base99.02 21399.11 16598.77 32399.37 28298.09 31798.13 34199.51 25099.47 13899.42 23798.54 39399.38 5699.97 3498.83 15899.33 32498.24 396
PS-MVSNAJ99.00 22199.08 17698.76 32499.37 28298.10 31698.00 35799.51 25099.47 13899.41 24398.50 39599.28 6899.97 3498.83 15899.34 32398.20 400
D2MVS99.22 16599.19 14999.29 24899.69 15698.74 26798.81 27199.41 27698.55 27099.68 14799.69 16598.13 22199.87 21098.82 16099.98 4199.24 281
PatchT98.45 28498.32 28098.83 31898.94 36898.29 30199.24 16498.82 35299.84 5599.08 30499.76 12291.37 36199.94 7998.82 16099.00 35298.26 395
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
sasdasda99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
Effi-MVS+99.06 20498.97 21399.34 23399.31 30498.98 24398.31 32799.91 3898.81 24198.79 33698.94 37199.14 8699.84 26298.79 16498.74 37099.20 294
canonicalmvs99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
VDDNet98.97 22598.82 23599.42 20899.71 14498.81 26099.62 6498.68 35999.81 6599.38 25199.80 9094.25 33299.85 24798.79 16499.32 32699.59 166
CR-MVSNet98.35 29498.20 29098.83 31899.05 35598.12 31399.30 14399.67 15197.39 35499.16 29399.79 10091.87 35899.91 14598.78 16898.77 36698.44 389
test_method91.72 38492.32 38789.91 40293.49 42570.18 42890.28 41699.56 21961.71 42095.39 41599.52 25993.90 33499.94 7998.76 16998.27 38899.62 145
RPMNet98.60 26598.53 26198.83 31899.05 35598.12 31399.30 14399.62 17999.86 4699.16 29399.74 13192.53 35299.92 12398.75 17098.77 36698.44 389
pmmvs499.13 19199.06 18299.36 23099.57 20599.10 23498.01 35599.25 31798.78 24699.58 18799.44 28298.24 20999.76 32698.74 17199.93 10199.22 287
tttt051797.62 32897.20 33898.90 31199.76 11797.40 34999.48 10294.36 41299.06 20999.70 14199.49 26884.55 40299.94 7998.73 17299.65 25999.36 256
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32099.48 13499.56 19799.77 11994.89 32599.93 9798.72 17399.89 12699.63 134
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28699.47 13899.76 11499.78 11098.13 22199.86 22998.70 17499.68 24899.49 216
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9098.77 24899.80 9399.85 6399.64 2899.85 24798.70 17499.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 14099.28 13799.47 19299.57 20599.39 17899.78 1499.43 27398.87 23199.57 19099.82 8098.06 22699.87 21098.69 17699.73 22899.15 305
LFMVS98.46 28398.19 29399.26 25799.24 32198.52 28799.62 6496.94 40299.87 4399.31 26999.58 23591.04 36699.81 30298.68 17799.42 31399.45 229
WR-MVS99.11 19698.93 21899.66 11999.30 30899.42 16898.42 32099.37 29199.04 21099.57 19099.20 33796.89 28699.86 22998.66 17899.87 14799.70 82
mvsmamba99.08 20098.95 21699.45 19899.36 28599.18 22399.39 11798.81 35399.37 15999.35 25599.70 15896.36 30599.94 7998.66 17899.59 27999.22 287
RRT-MVS99.08 20099.00 20299.33 23699.27 31598.65 27799.62 6499.93 3299.66 10299.67 15299.82 8095.27 32399.93 9798.64 18099.09 34599.41 244
Anonymous20240521198.75 25198.46 26599.63 13999.34 29799.66 10399.47 10597.65 39499.28 17199.56 19799.50 26493.15 34499.84 26298.62 18199.58 28199.40 246
EPNet98.13 30897.77 32399.18 26994.57 42497.99 32399.24 16497.96 38899.74 7797.29 39799.62 21093.13 34599.97 3498.59 18299.83 17299.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20799.09 17498.91 30599.21 32698.36 29998.82 27099.47 26298.85 23498.90 32299.56 24698.78 13699.09 41198.57 18399.68 24899.26 278
Patchmatch-RL test98.60 26598.36 27599.33 23699.77 11399.07 23798.27 32999.87 5198.91 22699.74 12799.72 14290.57 37599.79 31298.55 18499.85 15999.11 314
pmmvs398.08 31197.80 32098.91 30599.41 27597.69 34097.87 37099.66 15695.87 38599.50 21999.51 26190.35 37799.97 3498.55 18499.47 30699.08 327
ETV-MVS99.18 17999.18 15099.16 27099.34 29799.28 20199.12 20699.79 9099.48 13498.93 31698.55 39299.40 5199.93 9798.51 18699.52 29898.28 394
jason99.16 18599.11 16599.32 24199.75 12998.44 29198.26 33199.39 28698.70 25699.74 12799.30 31598.54 17099.97 3498.48 18799.82 18199.55 181
jason: jason.
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14398.99 21399.75 11999.71 15098.79 13499.93 9798.46 18899.85 15999.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 25698.56 25999.15 27299.22 32498.66 27497.14 40099.51 25098.09 31599.54 20499.27 32196.87 28799.74 33398.43 18998.96 35499.03 338
our_test_398.85 24399.09 17498.13 35599.66 17194.90 39697.72 37599.58 21299.07 20799.64 16099.62 21098.19 21799.93 9798.41 19099.95 8199.55 181
Gipumacopyleft99.57 7199.59 6699.49 18699.98 399.71 8599.72 3099.84 6599.81 6599.94 3599.78 11098.91 12199.71 34298.41 19099.95 8199.05 334
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 33896.91 34898.74 32597.72 41797.57 34297.60 38197.36 40098.00 31899.21 28798.02 40390.04 38099.79 31298.37 19295.89 41698.86 361
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25399.86 5498.85 23499.81 8999.73 13598.40 19499.92 12398.36 19399.83 17299.17 301
baseline197.73 32397.33 33498.96 29699.30 30897.73 33899.40 11598.42 37499.33 16599.46 22899.21 33591.18 36499.82 28798.35 19491.26 41999.32 266
MVS-HIRNet97.86 31798.22 28896.76 38899.28 31391.53 41598.38 32292.60 41899.13 20099.31 26999.96 1597.18 27899.68 36398.34 19599.83 17299.07 332
GA-MVS97.99 31697.68 32698.93 30299.52 23298.04 32197.19 39999.05 34398.32 30298.81 33298.97 36789.89 38299.41 40798.33 19699.05 34899.34 262
Fast-Effi-MVS+99.02 21398.87 22899.46 19599.38 28099.50 14699.04 23099.79 9097.17 36498.62 35098.74 38499.34 6299.95 6498.32 19799.41 31498.92 354
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31499.64 17697.16 35598.23 33399.33 29898.93 22399.56 19799.66 18597.39 26799.83 27798.29 19899.88 13599.55 181
N_pmnet98.73 25498.53 26199.35 23299.72 14198.67 27198.34 32494.65 41198.35 29699.79 9999.68 17698.03 22799.93 9798.28 19999.92 10599.44 234
ET-MVSNet_ETH3D96.78 35096.07 35998.91 30599.26 31897.92 33097.70 37796.05 40797.96 32592.37 41998.43 39687.06 39099.90 16398.27 20097.56 40598.91 355
thisisatest053097.45 33496.95 34598.94 29999.68 16497.73 33899.09 21894.19 41498.61 26699.56 19799.30 31584.30 40399.93 9798.27 20099.54 29399.16 303
YYNet198.95 23198.99 20998.84 31699.64 17697.14 35798.22 33499.32 30098.92 22599.59 18599.66 18597.40 26599.83 27798.27 20099.90 11699.55 181
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20699.68 14699.49 13399.80 9399.79 10099.01 10699.93 9798.24 20399.82 18199.73 73
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20299.65 16698.99 21399.64 16099.72 14299.39 5299.86 22998.23 20499.81 19199.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 22898.87 22899.24 26299.57 20598.40 29498.12 34299.18 33198.28 30499.63 16499.13 34198.02 22899.97 3498.22 20599.69 24399.35 259
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27799.42 16899.70 3599.56 21999.23 18099.35 25599.80 9099.17 8199.95 6498.21 20699.84 16499.59 166
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20699.25 31999.69 9699.05 22599.82 7299.50 13198.97 31299.05 35398.98 11199.98 2198.20 20799.24 33798.62 375
MS-PatchMatch99.00 22198.97 21399.09 28199.11 34798.19 30798.76 28099.33 29898.49 27999.44 23099.58 23598.21 21499.69 35198.20 20799.62 26599.39 248
TSAR-MVS + GP.99.12 19399.04 19299.38 22399.34 29799.16 22498.15 33899.29 30898.18 31199.63 16499.62 21099.18 8099.68 36398.20 20799.74 22399.30 272
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15099.61 18699.87 4399.74 12799.76 12298.69 14899.87 21098.20 20799.80 19899.75 71
MVP-Stereo99.16 18599.08 17699.43 20699.48 25099.07 23799.08 22199.55 22598.63 26299.31 26999.68 17698.19 21799.78 31598.18 21199.58 28199.45 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13698.35 29699.51 21799.50 26499.31 6499.88 19698.18 21199.84 16499.69 88
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28699.80 8697.83 33398.89 25899.72 12899.29 16899.63 16499.70 15896.47 29899.89 18298.17 21399.82 18199.50 211
JIA-IIPM98.06 31297.92 31598.50 33798.59 39897.02 35998.80 27498.51 36999.88 4297.89 38499.87 5291.89 35799.90 16398.16 21497.68 40498.59 378
EIA-MVS99.12 19399.01 19899.45 19899.36 28599.62 11999.34 12999.79 9098.41 28598.84 32998.89 37598.75 14199.84 26298.15 21599.51 29998.89 358
miper_lstm_enhance98.65 26198.60 25098.82 32199.20 32997.33 35197.78 37399.66 15699.01 21299.59 18599.50 26494.62 32999.85 24798.12 21699.90 11699.26 278
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37399.78 5199.15 19499.66 15699.34 16398.92 31999.24 33197.69 25199.98 2198.11 21799.28 33198.81 365
tpm97.15 34296.95 34597.75 36998.91 36994.24 39999.32 13597.96 38897.71 33898.29 36699.32 31186.72 39699.92 12398.10 22096.24 41499.09 321
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32499.75 6997.25 39799.47 26298.72 25399.66 15799.70 15899.29 6699.63 38298.07 22199.81 19199.62 145
ppachtmachnet_test98.89 23999.12 16298.20 35399.66 17195.24 39297.63 37999.68 14699.08 20599.78 10399.62 21098.65 15699.88 19698.02 22299.96 6899.48 220
tpmrst97.73 32398.07 30196.73 39098.71 39492.00 41099.10 21498.86 34998.52 27598.92 31999.54 25591.90 35699.82 28798.02 22299.03 35098.37 391
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 5998.79 24499.41 24399.60 22798.92 11999.92 12398.02 22299.92 10599.43 240
eth_miper_zixun_eth98.68 25998.71 24398.60 33299.10 34996.84 36497.52 38799.54 23198.94 22099.58 18799.48 27196.25 30999.76 32698.01 22599.93 10199.21 290
Patchmtry98.78 24898.54 26099.49 18698.89 37399.19 22199.32 13599.67 15199.65 10599.72 13299.79 10091.87 35899.95 6498.00 22699.97 5599.33 263
PVSNet_BlendedMVS99.03 21199.01 19899.09 28199.54 22197.99 32398.58 29799.82 7297.62 34199.34 25999.71 15098.52 17799.77 32397.98 22799.97 5599.52 204
PVSNet_Blended98.70 25798.59 25299.02 29199.54 22197.99 32397.58 38299.82 7295.70 38999.34 25998.98 36598.52 17799.77 32397.98 22799.83 17299.30 272
cl____98.54 27398.41 27098.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.85 33699.78 31597.97 22999.89 12699.17 301
DIV-MVS_self_test98.54 27398.42 26998.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.87 33599.78 31597.97 22999.89 12699.18 299
AUN-MVS97.82 31997.38 33399.14 27599.27 31598.53 28598.72 28499.02 34498.10 31397.18 40099.03 35989.26 38499.85 24797.94 23197.91 40099.03 338
FA-MVS(test-final)98.52 27598.32 28099.10 28099.48 25098.67 27199.77 1698.60 36697.35 35699.63 16499.80 9093.07 34699.84 26297.92 23299.30 32898.78 368
ambc99.20 26699.35 28898.53 28599.17 18699.46 26599.67 15299.80 9098.46 18499.70 34597.92 23299.70 23999.38 250
USDC98.96 22898.93 21899.05 28999.54 22197.99 32397.07 40399.80 8498.21 30899.75 11999.77 11998.43 18799.64 38197.90 23499.88 13599.51 206
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29799.48 25998.50 27799.52 21199.63 20399.14 8699.76 32697.89 23599.77 21299.51 206
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19699.31 30499.16 19499.62 17399.61 21998.35 19899.91 14597.88 23699.72 23499.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19699.61 18699.92 12397.88 23699.72 23499.77 63
c3_l98.72 25598.71 24398.72 32699.12 34297.22 35497.68 37899.56 21998.90 22799.54 20499.48 27196.37 30499.73 33697.88 23699.88 13599.21 290
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 28899.47 15099.62 6499.50 25499.44 14699.12 30099.78 11098.77 13899.94 7997.87 23999.72 23499.62 145
miper_ehance_all_eth98.59 26898.59 25298.59 33398.98 36597.07 35897.49 38899.52 24598.50 27799.52 21199.37 29896.41 30299.71 34297.86 24099.62 26599.00 345
WTY-MVS98.59 26898.37 27499.26 25799.43 26898.40 29498.74 28299.13 33898.10 31399.21 28799.24 33194.82 32699.90 16397.86 24098.77 36699.49 216
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13599.74 11599.18 18799.69 14499.75 12798.41 19099.84 26297.85 24299.70 23999.10 316
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17499.54 23199.13 20099.82 8299.63 20398.91 12199.92 12397.85 24299.70 23999.58 171
test_241102_TWO99.54 23199.13 20099.76 11499.63 20398.32 20399.92 12397.85 24299.69 24399.75 71
MVS_111021_HR99.12 19399.02 19599.40 21799.50 24099.11 22997.92 36699.71 13198.76 25199.08 30499.47 27599.17 8199.54 39697.85 24299.76 21499.54 189
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13299.53 24099.27 17299.42 23799.63 20398.21 21499.95 6497.83 24699.79 20399.65 119
MSC_two_6792asdad99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
No_MVS99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
TESTMET0.1,196.24 36495.84 36597.41 37798.24 40993.84 40297.38 39195.84 40898.43 28297.81 38998.56 39179.77 41299.89 18297.77 24798.77 36698.52 383
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13599.77 9999.53 12899.77 11199.76 12299.26 7299.78 31597.77 24799.88 13599.60 159
IU-MVS99.69 15699.77 5699.22 32497.50 34899.69 14497.75 25199.70 23999.77 63
114514_t98.49 28098.11 29899.64 13299.73 13899.58 13499.24 16499.76 10489.94 41299.42 23799.56 24697.76 24899.86 22997.74 25299.82 18199.47 224
DVP-MVS++99.38 12499.25 14399.77 5999.03 35999.77 5699.74 2499.61 18699.18 18799.76 11499.61 21999.00 10799.92 12397.72 25399.60 27599.62 145
test_0728_THIRD99.18 18799.62 17399.61 21998.58 16499.91 14597.72 25399.80 19899.77 63
EGC-MVSNET89.05 38685.52 38999.64 13299.89 3899.78 5199.56 8499.52 24524.19 42149.96 42299.83 7399.15 8399.92 12397.71 25599.85 15999.21 290
miper_enhance_ethall98.03 31397.94 31398.32 34798.27 40896.43 37196.95 40499.41 27696.37 38099.43 23498.96 36994.74 32799.69 35197.71 25599.62 26598.83 364
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15799.35 29598.77 24899.57 19099.70 15899.27 7199.88 19697.71 25599.75 21699.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 33197.28 33598.40 34298.37 40696.75 36597.24 39899.37 29197.31 35899.41 24399.22 33387.30 38899.37 40897.70 25899.62 26599.08 327
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29099.63 17696.84 37399.44 23099.58 23598.81 12999.91 14597.70 25899.82 18199.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25399.53 24098.27 30599.53 20999.73 13598.75 14199.87 21097.70 25899.83 17299.68 94
UnsupCasMVSNet_bld98.55 27298.27 28699.40 21799.56 21699.37 18397.97 36299.68 14697.49 34999.08 30499.35 30795.41 32299.82 28797.70 25898.19 39299.01 344
MVS_111021_LR99.13 19199.03 19499.42 20899.58 19599.32 19597.91 36899.73 11998.68 25799.31 26999.48 27199.09 9299.66 37397.70 25899.77 21299.29 275
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33599.37 15999.61 17999.71 15094.73 32899.81 30297.70 25899.88 13599.58 171
test-LLR97.15 34296.95 34597.74 37098.18 41195.02 39497.38 39196.10 40498.00 31897.81 38998.58 38890.04 38099.91 14597.69 26498.78 36498.31 392
test-mter96.23 36595.73 36797.74 37098.18 41195.02 39497.38 39196.10 40497.90 32797.81 38998.58 38879.12 41599.91 14597.69 26498.78 36498.31 392
MonoMVSNet98.23 30298.32 28097.99 35898.97 36696.62 36799.49 10098.42 37499.62 11299.40 24899.79 10095.51 32098.58 41797.68 26695.98 41598.76 371
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33999.47 27598.47 18199.88 19697.62 26799.73 22899.67 102
X-MVStestdata96.09 36894.87 38099.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33961.30 43098.47 18199.88 19697.62 26799.73 22899.67 102
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26099.73 7899.13 20299.52 24597.40 35399.57 19099.64 19298.93 11699.83 27797.61 26999.79 20399.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 35396.79 35296.46 39498.90 37090.71 42099.41 11498.68 35994.69 40298.14 37699.34 31086.32 39899.80 30997.60 27098.07 39898.88 359
PVSNet97.47 1598.42 28698.44 26798.35 34499.46 26096.26 37596.70 40899.34 29797.68 33999.00 31199.13 34197.40 26599.72 33897.59 27199.68 24899.08 327
new_pmnet98.88 24098.89 22698.84 31699.70 15297.62 34198.15 33899.50 25497.98 32199.62 17399.54 25598.15 22099.94 7997.55 27299.84 16498.95 349
IB-MVS95.41 2095.30 38294.46 38697.84 36698.76 39095.33 39097.33 39496.07 40696.02 38495.37 41697.41 41476.17 41799.96 5597.54 27395.44 41898.22 397
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15699.11 16599.61 15198.38 40599.79 4899.57 8299.68 14699.61 11699.15 29599.71 15098.70 14799.91 14597.54 27399.68 24899.13 313
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15299.56 21998.19 31099.14 29799.29 31898.84 12899.92 12397.53 27599.80 19899.64 129
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 17998.38 28999.06 30899.27 32198.79 13499.94 7997.51 27699.82 18199.66 111
SD-MVS99.01 21999.30 13098.15 35499.50 24099.40 17598.94 25599.61 18699.22 18499.75 11999.82 8099.54 4395.51 42197.48 27799.87 14799.54 189
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 28098.29 28599.11 27898.96 36798.42 29397.54 38399.32 30097.53 34698.47 36198.15 40297.88 23899.82 28797.46 27899.24 33799.09 321
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31399.22 21598.99 24699.40 28399.08 20599.58 18799.64 19298.90 12499.83 27797.44 27999.75 21699.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14099.59 20398.36 29199.36 25399.37 29898.80 13399.91 14597.43 28099.75 21699.68 94
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14099.59 20398.36 29199.35 25599.38 29698.61 16099.93 9797.43 28099.75 21699.67 102
Vis-MVSNet (Re-imp)98.77 24998.58 25599.34 23399.78 10598.88 25699.61 7099.56 21999.11 20499.24 28199.56 24693.00 34899.78 31597.43 28099.89 12699.35 259
MIMVSNet98.43 28598.20 29099.11 27899.53 22798.38 29899.58 7998.61 36498.96 21799.33 26199.76 12290.92 36899.81 30297.38 28399.76 21499.15 305
WB-MVSnew98.34 29698.14 29698.96 29698.14 41497.90 33198.27 32997.26 40198.63 26298.80 33498.00 40597.77 24699.90 16397.37 28498.98 35399.09 321
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33299.73 11998.39 28899.63 16499.43 28399.70 2499.90 16397.34 28598.64 37799.44 234
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9699.53 12899.67 15299.78 11099.19 7999.86 22997.32 28699.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29799.07 34098.40 28799.04 30999.25 32698.51 17999.80 30997.31 28799.51 29999.65 119
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14099.59 20398.41 28599.32 26499.36 30298.73 14599.93 9797.29 28899.74 22399.67 102
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15599.61 18699.19 18699.57 19099.64 19298.76 13999.90 16397.29 28899.62 26599.56 178
TAPA-MVS97.92 1398.03 31397.55 32999.46 19599.47 25699.44 16198.50 31199.62 17986.79 41399.07 30799.26 32498.26 20899.62 38397.28 29099.73 22899.31 270
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.41 19099.91 14597.27 29199.61 27299.54 189
RE-MVS-def99.13 15899.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.57 16597.27 29199.61 27299.54 189
testing1196.05 37095.41 37297.97 36098.78 38795.27 39198.59 29598.23 38398.86 23396.56 40796.91 42075.20 41899.69 35197.26 29398.29 38798.93 352
test_yl98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
DCV-MVSNet98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
PHI-MVS99.11 19698.95 21699.59 15699.13 34099.59 13099.17 18699.65 16697.88 33099.25 27899.46 27898.97 11399.80 30997.26 29399.82 18199.37 253
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9699.71 8499.90 4999.69 16598.85 12799.90 16397.25 29799.78 20899.15 305
PatchmatchNetpermissive97.65 32797.80 32097.18 38498.82 38292.49 40899.17 18698.39 37798.12 31298.79 33699.58 23590.71 37399.89 18297.23 29899.41 31499.16 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22498.80 23899.56 16899.25 31999.43 16598.54 30699.27 31298.58 26898.80 33499.43 28398.53 17499.70 34597.22 29999.59 27999.54 189
testing396.48 35895.63 36999.01 29299.23 32397.81 33498.90 25799.10 33998.72 25397.84 38897.92 40672.44 42299.85 24797.21 30099.33 32499.35 259
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15197.72 33799.35 25599.25 32699.23 7599.92 12397.21 30099.82 18199.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23198.34 30099.01 31099.50 26498.53 17499.93 9797.18 30299.78 20899.66 111
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16698.07 31699.52 21199.69 16598.57 16599.92 12397.18 30299.79 20399.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 34696.42 35398.66 32999.42 27397.47 34597.27 39694.30 41397.24 36099.15 29598.86 37785.01 40099.87 21097.10 30499.39 31698.63 374
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26699.72 12898.36 29199.60 18299.71 15098.92 11999.91 14597.08 30599.84 16499.40 246
MSDG99.08 20098.98 21299.37 22699.60 18599.13 22797.54 38399.74 11598.84 23799.53 20999.55 25399.10 9099.79 31297.07 30699.86 15599.18 299
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18199.60 19798.55 27099.57 19099.67 18099.03 10599.94 7997.01 30799.80 19899.69 88
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 36695.78 36697.49 37398.53 40093.83 40398.04 35293.94 41698.96 21798.46 36298.17 40179.86 41099.87 21096.99 30899.06 34698.78 368
EPMVS96.53 35696.32 35497.17 38598.18 41192.97 40799.39 11789.95 42298.21 30898.61 35199.59 23286.69 39799.72 33896.99 30899.23 33998.81 365
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21498.54 27399.54 20498.99 36296.81 28899.93 9796.97 31099.53 29599.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23299.71 8598.86 26199.19 33098.47 28198.59 35399.06 35298.08 22599.91 14596.94 31199.60 27599.60 159
SR-MVS99.19 17599.00 20299.74 8199.51 23499.72 8399.18 18199.60 19798.85 23499.47 22499.58 23598.38 19599.92 12396.92 31299.54 29399.57 176
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19299.72 12897.99 32099.42 23799.60 22798.81 12999.93 9796.91 31399.74 22399.66 111
HY-MVS98.23 998.21 30697.95 30998.99 29399.03 35998.24 30299.61 7098.72 35796.81 37498.73 34199.51 26194.06 33399.86 22996.91 31398.20 39098.86 361
MDTV_nov1_ep1397.73 32498.70 39590.83 41899.15 19498.02 38798.51 27698.82 33199.61 21990.98 36799.66 37396.89 31598.92 357
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17499.55 22598.22 30799.32 26499.35 30798.65 15699.91 14596.86 31699.74 22399.62 145
test_post199.14 19651.63 43289.54 38399.82 28796.86 316
SCA98.11 30998.36 27597.36 37899.20 32992.99 40698.17 33798.49 37198.24 30699.10 30399.57 24296.01 31399.94 7996.86 31699.62 26599.14 310
UBG96.53 35695.95 36198.29 35198.87 37696.31 37498.48 31398.07 38598.83 23897.32 39596.54 42579.81 41199.62 38396.84 31998.74 37098.95 349
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37099.74 11598.36 29199.66 15799.68 17699.71 2299.90 16396.84 31999.88 13599.43 240
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30299.76 6399.34 12999.97 1998.93 22399.91 4699.79 10098.68 14999.93 9796.80 32199.56 28499.30 272
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7298.33 30199.50 21999.78 11097.90 23699.65 37996.78 32299.83 17299.44 234
旧先验297.94 36495.33 39398.94 31599.88 19696.75 323
MDTV_nov1_ep13_2view91.44 41699.14 19697.37 35599.21 28791.78 36096.75 32399.03 338
CLD-MVS98.76 25098.57 25699.33 23699.57 20598.97 24597.53 38599.55 22596.41 37899.27 27699.13 34199.07 9799.78 31596.73 32599.89 12699.23 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 31097.98 30798.48 33899.27 31596.48 36999.40 11599.07 34098.81 24199.23 28299.57 24290.11 37999.87 21096.69 32699.64 26199.09 321
baseline296.83 34996.28 35598.46 34099.09 35296.91 36298.83 26693.87 41797.23 36196.23 41298.36 39788.12 38799.90 16396.68 32798.14 39598.57 381
cascas96.99 34596.82 35197.48 37497.57 42095.64 38696.43 41099.56 21991.75 40897.13 40297.61 41395.58 31898.63 41596.68 32799.11 34398.18 401
PC_three_145297.56 34299.68 14799.41 28699.09 9297.09 41896.66 32999.60 27599.62 145
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19299.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
ETVMVS96.14 36795.22 37798.89 31298.80 38398.01 32298.66 28898.35 38098.71 25597.18 40096.31 42974.23 42199.75 33096.64 33298.13 39798.90 356
TinyColmap98.97 22598.93 21899.07 28699.46 26098.19 30797.75 37499.75 10998.79 24499.54 20499.70 15898.97 11399.62 38396.63 33399.83 17299.41 244
LF4IMVS99.01 21998.92 22299.27 25499.71 14499.28 20198.59 29599.77 9998.32 30299.39 25099.41 28698.62 15899.84 26296.62 33499.84 16498.69 373
NCCC98.82 24598.57 25699.58 15999.21 32699.31 19698.61 29099.25 31798.65 26098.43 36399.26 32497.86 23999.81 30296.55 33599.27 33499.61 155
OPU-MVS99.29 24899.12 34299.44 16199.20 17499.40 29099.00 10798.84 41496.54 33699.60 27599.58 171
F-COLMAP98.74 25298.45 26699.62 14899.57 20599.47 15098.84 26499.65 16696.31 38198.93 31699.19 33897.68 25299.87 21096.52 33799.37 31999.53 194
testing9995.86 37595.19 37897.87 36498.76 39095.03 39398.62 28998.44 37398.68 25796.67 40696.66 42474.31 42099.69 35196.51 33898.03 39998.90 356
ADS-MVSNet297.78 32197.66 32898.12 35699.14 33895.36 38999.22 17198.75 35696.97 36998.25 36899.64 19290.90 36999.94 7996.51 33899.56 28499.08 327
ADS-MVSNet97.72 32697.67 32797.86 36599.14 33894.65 39799.22 17198.86 34996.97 36998.25 36899.64 19290.90 36999.84 26296.51 33899.56 28499.08 327
PatchMatch-RL98.68 25998.47 26499.30 24799.44 26599.28 20198.14 34099.54 23197.12 36799.11 30199.25 32697.80 24499.70 34596.51 33899.30 32898.93 352
CMPMVSbinary77.52 2398.50 27898.19 29399.41 21598.33 40799.56 13799.01 23899.59 20395.44 39199.57 19099.80 9095.64 31699.46 40696.47 34299.92 10599.21 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 37195.32 37598.02 35798.76 39095.39 38898.38 32298.65 36398.82 23996.84 40396.71 42375.06 41999.71 34296.46 34398.23 38998.98 346
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20299.65 16697.97 32299.42 23799.61 21998.86 12699.87 21096.45 34499.68 24899.49 216
FE-MVS97.85 31897.42 33299.15 27299.44 26598.75 26699.77 1698.20 38495.85 38699.33 26199.80 9088.86 38599.88 19696.40 34599.12 34298.81 365
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28299.60 19798.55 27099.76 11499.69 16598.23 21399.92 12396.39 34699.75 21699.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 41889.02 42493.47 40498.30 39899.84 26296.38 347
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20699.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
TestCases99.63 13999.78 10599.64 11299.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
testdata99.42 20899.51 23498.93 25299.30 30796.20 38298.87 32699.40 29098.33 20299.89 18296.29 35099.28 33199.44 234
dp96.86 34897.07 34196.24 39698.68 39690.30 42299.19 18098.38 37897.35 35698.23 37099.59 23287.23 38999.82 28796.27 35198.73 37398.59 378
tpmvs97.39 33797.69 32596.52 39298.41 40491.76 41299.30 14398.94 34897.74 33697.85 38799.55 25392.40 35599.73 33696.25 35298.73 37398.06 403
KD-MVS_2432*160095.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
miper_refine_blended95.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 25999.66 15697.11 36899.47 22499.60 22799.07 9799.89 18296.18 35599.85 15999.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23698.72 24299.44 20299.39 27799.42 16898.58 29799.64 17497.31 35899.44 23099.62 21098.59 16299.69 35196.17 35699.79 20399.22 287
DP-MVS Recon98.50 27898.23 28799.31 24499.49 24599.46 15498.56 30299.63 17694.86 40098.85 32899.37 29897.81 24399.59 39096.08 35799.44 30998.88 359
tpm cat196.78 35096.98 34496.16 39798.85 37790.59 42199.08 22199.32 30092.37 40697.73 39399.46 27891.15 36599.69 35196.07 35898.80 36398.21 398
tpm296.35 36196.22 35696.73 39098.88 37591.75 41399.21 17398.51 36993.27 40597.89 38499.21 33584.83 40199.70 34596.04 35998.18 39398.75 372
dmvs_re98.69 25898.48 26399.31 24499.55 21999.42 16899.54 8798.38 37899.32 16698.72 34298.71 38596.76 29099.21 40996.01 36099.35 32299.31 270
test_040299.22 16599.14 15699.45 19899.79 9899.43 16599.28 15299.68 14699.54 12699.40 24899.56 24699.07 9799.82 28796.01 36099.96 6899.11 314
ITE_SJBPF99.38 22399.63 17899.44 16199.73 11998.56 26999.33 26199.53 25798.88 12599.68 36396.01 36099.65 25999.02 343
test_prior297.95 36397.87 33198.05 37899.05 35397.90 23695.99 36399.49 304
testdata299.89 18295.99 363
原ACMM199.37 22699.47 25698.87 25899.27 31296.74 37698.26 36799.32 31197.93 23599.82 28795.96 36599.38 31799.43 240
新几何199.52 17999.50 24099.22 21599.26 31495.66 39098.60 35299.28 31997.67 25399.89 18295.95 36699.32 32699.45 229
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13599.50 25498.35 29698.97 31299.48 27198.37 19699.92 12395.95 36699.75 21699.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 38194.59 38498.61 33198.66 39797.45 34798.54 30697.90 39198.53 27496.54 40896.47 42670.62 42599.81 30295.91 36898.15 39498.56 382
wuyk23d97.58 33099.13 15892.93 40099.69 15699.49 14799.52 8999.77 9997.97 32299.96 2499.79 10099.84 1299.94 7995.85 36999.82 18179.36 418
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27499.54 23198.94 22099.14 29799.25 32697.24 27299.82 28795.84 37099.78 20899.60 159
plane_prior599.54 23199.82 28795.84 37099.78 20899.60 159
无先验98.01 35599.23 32195.83 38799.85 24795.79 37299.44 234
CPTT-MVS98.74 25298.44 26799.64 13299.61 18399.38 18099.18 18199.55 22596.49 37799.27 27699.37 29897.11 28099.92 12395.74 37399.67 25499.62 145
PLCcopyleft97.35 1698.36 29197.99 30599.48 19099.32 30399.24 21298.50 31199.51 25095.19 39698.58 35498.96 36996.95 28599.83 27795.63 37499.25 33599.37 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 27098.34 27899.28 25199.18 33499.10 23498.34 32499.41 27698.48 28098.52 35898.98 36597.05 28299.78 31595.59 37599.50 30298.96 347
131498.00 31597.90 31798.27 35298.90 37097.45 34799.30 14399.06 34294.98 39797.21 39999.12 34598.43 18799.67 36895.58 37698.56 38097.71 407
PVSNet_095.53 1995.85 37695.31 37697.47 37598.78 38793.48 40595.72 41299.40 28396.18 38397.37 39497.73 40895.73 31599.58 39195.49 37781.40 42099.36 256
MAR-MVS98.24 30197.92 31599.19 26798.78 38799.65 10999.17 18699.14 33695.36 39298.04 37998.81 38197.47 26299.72 33895.47 37899.06 34698.21 398
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 30297.89 31899.26 25799.19 33199.26 20599.65 5999.69 14391.33 41098.14 37699.77 11998.28 20599.96 5595.41 37999.55 28898.58 380
train_agg98.35 29497.95 30999.57 16599.35 28899.35 19098.11 34499.41 27694.90 39897.92 38298.99 36298.02 22899.85 24795.38 38099.44 30999.50 211
9.1498.64 24799.45 26498.81 27199.60 19797.52 34799.28 27599.56 24698.53 17499.83 27795.36 38199.64 261
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24099.62 11999.01 23899.57 21496.80 37599.54 20499.63 20398.29 20499.91 14595.24 38299.71 23799.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 37295.20 383
AdaColmapbinary98.60 26598.35 27799.38 22399.12 34299.22 21598.67 28799.42 27597.84 33498.81 33299.27 32197.32 27099.81 30295.14 38499.53 29599.10 316
test9_res95.10 38599.44 30999.50 211
CDPH-MVS98.56 27198.20 29099.61 15199.50 24099.46 15498.32 32699.41 27695.22 39499.21 28799.10 34998.34 20099.82 28795.09 38699.66 25799.56 178
BH-untuned98.22 30498.09 29998.58 33599.38 28097.24 35398.55 30398.98 34797.81 33599.20 29298.76 38397.01 28399.65 37994.83 38798.33 38598.86 361
BP-MVS94.73 388
HQP-MVS98.36 29198.02 30499.39 22099.31 30498.94 24997.98 35999.37 29197.45 35098.15 37298.83 37896.67 29199.70 34594.73 38899.67 25499.53 194
QAPM98.40 28997.99 30599.65 12599.39 27799.47 15099.67 5099.52 24591.70 40998.78 33899.80 9098.55 16899.95 6494.71 39099.75 21699.53 194
agg_prior294.58 39199.46 30899.50 211
myMVS_eth3d95.63 37994.73 38198.34 34698.50 40296.36 37298.60 29299.21 32797.89 32896.76 40496.37 42772.10 42399.57 39294.38 39298.73 37399.09 321
BH-RMVSNet98.41 28798.14 29699.21 26499.21 32698.47 28898.60 29298.26 38298.35 29698.93 31699.31 31397.20 27799.66 37394.32 39399.10 34499.51 206
E-PMN97.14 34497.43 33196.27 39598.79 38591.62 41495.54 41399.01 34699.44 14698.88 32399.12 34592.78 34999.68 36394.30 39499.03 35097.50 408
MG-MVS98.52 27598.39 27298.94 29999.15 33797.39 35098.18 33599.21 32798.89 23099.23 28299.63 20397.37 26899.74 33394.22 39599.61 27299.69 88
API-MVS98.38 29098.39 27298.35 34498.83 37999.26 20599.14 19699.18 33198.59 26798.66 34798.78 38298.61 16099.57 39294.14 39699.56 28496.21 415
PAPM_NR98.36 29198.04 30299.33 23699.48 25098.93 25298.79 27799.28 31197.54 34598.56 35798.57 39097.12 27999.69 35194.09 39798.90 36199.38 250
ZD-MVS99.43 26899.61 12599.43 27396.38 37999.11 30199.07 35197.86 23999.92 12394.04 39899.49 304
DPM-MVS98.28 29797.94 31399.32 24199.36 28599.11 22997.31 39598.78 35596.88 37198.84 32999.11 34897.77 24699.61 38894.03 39999.36 32099.23 285
gg-mvs-nofinetune95.87 37495.17 37997.97 36098.19 41096.95 36099.69 4289.23 42399.89 3796.24 41199.94 1981.19 40599.51 40293.99 40098.20 39097.44 409
PMVScopyleft92.94 2198.82 24598.81 23698.85 31499.84 6197.99 32399.20 17499.47 26299.71 8499.42 23799.82 8098.09 22399.47 40493.88 40199.85 15999.07 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 34797.28 33595.99 39898.76 39091.03 41795.26 41598.61 36499.34 16398.92 31998.88 37693.79 33799.66 37392.87 40299.05 34897.30 412
BH-w/o97.20 34197.01 34397.76 36899.08 35395.69 38598.03 35498.52 36895.76 38897.96 38198.02 40395.62 31799.47 40492.82 40397.25 40898.12 402
TR-MVS97.44 33597.15 34098.32 34798.53 40097.46 34698.47 31497.91 39096.85 37298.21 37198.51 39496.42 30099.51 40292.16 40497.29 40797.98 404
OpenMVS_ROBcopyleft97.31 1797.36 33996.84 34998.89 31299.29 31099.45 15998.87 26099.48 25986.54 41599.44 23099.74 13197.34 26999.86 22991.61 40599.28 33197.37 411
GG-mvs-BLEND97.36 37897.59 41896.87 36399.70 3588.49 42494.64 41797.26 41780.66 40799.12 41091.50 40696.50 41396.08 417
DeepMVS_CXcopyleft97.98 35999.69 15696.95 36099.26 31475.51 41895.74 41498.28 39996.47 29899.62 38391.23 40797.89 40197.38 410
PAPR97.56 33197.07 34199.04 29098.80 38398.11 31597.63 37999.25 31794.56 40398.02 38098.25 40097.43 26499.68 36390.90 40898.74 37099.33 263
MVS95.72 37894.63 38398.99 29398.56 39997.98 32899.30 14398.86 34972.71 41997.30 39699.08 35098.34 20099.74 33389.21 40998.33 38599.26 278
thres600view796.60 35596.16 35797.93 36299.63 17896.09 38099.18 18197.57 39598.77 24898.72 34297.32 41587.04 39199.72 33888.57 41098.62 37897.98 404
FPMVS96.32 36295.50 37098.79 32299.60 18598.17 31098.46 31898.80 35497.16 36596.28 40999.63 20382.19 40499.09 41188.45 41198.89 36299.10 316
PCF-MVS96.03 1896.73 35295.86 36499.33 23699.44 26599.16 22496.87 40699.44 27086.58 41498.95 31499.40 29094.38 33199.88 19687.93 41299.80 19898.95 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 36096.03 36097.47 37599.63 17895.93 38199.18 18197.57 39598.75 25298.70 34597.31 41687.04 39199.67 36887.62 41398.51 38296.81 413
tfpn200view996.30 36395.89 36297.53 37299.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38296.81 413
thres40096.40 35995.89 36297.92 36399.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38297.98 404
thres20096.09 36895.68 36897.33 38099.48 25096.22 37798.53 30897.57 39598.06 31798.37 36596.73 42286.84 39599.61 38886.99 41698.57 37996.16 416
MVEpermissive92.54 2296.66 35496.11 35898.31 34999.68 16497.55 34397.94 36495.60 40999.37 15990.68 42098.70 38696.56 29498.61 41686.94 41799.55 28898.77 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 34096.83 35098.59 33399.46 26097.55 34399.25 16396.84 40398.78 24697.24 39897.67 40997.11 28098.97 41386.59 41898.54 38199.27 276
PAPM95.61 38094.71 38298.31 34999.12 34296.63 36696.66 40998.46 37290.77 41196.25 41098.68 38793.01 34799.69 35181.60 41997.86 40398.62 375
dongtai89.37 38588.91 38890.76 40199.19 33177.46 42695.47 41487.82 42592.28 40794.17 41898.82 38071.22 42495.54 42063.85 42097.34 40699.27 276
kuosan85.65 38784.57 39088.90 40397.91 41577.11 42796.37 41187.62 42685.24 41685.45 42196.83 42169.94 42690.98 42245.90 42195.83 41798.62 375
test12329.31 38833.05 39318.08 40425.93 42812.24 42997.53 38510.93 42911.78 42224.21 42350.08 43421.04 4278.60 42323.51 42232.43 42233.39 419
testmvs28.94 38933.33 39115.79 40526.03 4279.81 43096.77 40715.67 42811.55 42323.87 42450.74 43319.03 4288.53 42423.21 42333.07 42129.03 420
mmdepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
test_blank8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.88 39033.17 3920.00 4060.00 4290.00 4310.00 41799.62 1790.00 4240.00 42599.13 34199.82 130.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas16.61 39122.14 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 199.28 680.00 4250.00 4240.00 4230.00 421
sosnet-low-res8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
Regformer8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.26 40211.02 4050.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.16 3390.00 4290.00 4250.00 4240.00 4230.00 421
uanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
FOURS199.83 6599.89 1099.74 2499.71 13199.69 9299.63 164
test_one_060199.63 17899.76 6399.55 22599.23 18099.31 26999.61 21998.59 162
eth-test20.00 429
eth-test0.00 429
test_241102_ONE99.69 15699.82 3799.54 23199.12 20399.82 8299.49 26898.91 12199.52 401
save fliter99.53 22799.25 20898.29 32899.38 29099.07 207
test072699.69 15699.80 4699.24 16499.57 21499.16 19499.73 13199.65 19098.35 198
GSMVS99.14 310
test_part299.62 18299.67 10199.55 202
sam_mvs190.81 37299.14 310
sam_mvs90.52 376
MTGPAbinary99.53 240
test_post52.41 43190.25 37899.86 229
patchmatchnet-post99.62 21090.58 37499.94 79
MTMP99.09 21898.59 367
TEST999.35 28899.35 19098.11 34499.41 27694.83 40197.92 38298.99 36298.02 22899.85 247
test_899.34 29799.31 19698.08 34899.40 28394.90 39897.87 38698.97 36798.02 22899.84 262
agg_prior99.35 28899.36 18799.39 28697.76 39299.85 247
test_prior499.19 22198.00 357
test_prior99.46 19599.35 28899.22 21599.39 28699.69 35199.48 220
新几何298.04 352
旧先验199.49 24599.29 19999.26 31499.39 29497.67 25399.36 32099.46 228
原ACMM297.92 366
test22299.51 23499.08 23697.83 37299.29 30895.21 39598.68 34699.31 31397.28 27199.38 31799.43 240
segment_acmp98.37 196
testdata197.72 37597.86 333
test1299.54 17699.29 31099.33 19399.16 33498.43 36397.54 26099.82 28799.47 30699.48 220
plane_prior799.58 19599.38 180
plane_prior699.47 25699.26 20597.24 272
plane_prior499.25 326
plane_prior399.31 19698.36 29199.14 297
plane_prior298.80 27498.94 220
plane_prior199.51 234
plane_prior99.24 21298.42 32097.87 33199.71 237
n20.00 430
nn0.00 430
door-mid99.83 67
test1199.29 308
door99.77 99
HQP5-MVS98.94 249
HQP-NCC99.31 30497.98 35997.45 35098.15 372
ACMP_Plane99.31 30497.98 35997.45 35098.15 372
HQP4-MVS98.15 37299.70 34599.53 194
HQP3-MVS99.37 29199.67 254
HQP2-MVS96.67 291
NP-MVS99.40 27699.13 22798.83 378
ACMMP++_ref99.94 94
ACMMP++99.79 203
Test By Simon98.41 190