This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 499.87 2299.98 399.75 7199.70 35100.00 199.73 81100.00 199.89 3899.79 1699.88 20199.98 1100.00 199.98 5
test_fmvs299.72 4199.85 1799.34 23899.91 3198.08 32599.48 102100.00 199.90 3499.99 799.91 2899.50 4999.98 2199.98 199.99 1699.96 13
test_fmvs399.83 2099.93 299.53 18099.96 798.62 28699.67 50100.00 199.95 23100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 5
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_vis1_n_192099.72 4199.88 799.27 25999.93 2497.84 33799.34 129100.00 199.99 399.99 799.82 8399.87 999.99 899.97 499.99 1699.97 10
test_vis1_n99.68 5099.79 2999.36 23599.94 1898.18 31499.52 89100.00 199.86 49100.00 199.88 4798.99 11299.96 5699.97 499.96 7199.95 14
test_fmvs1_n99.68 5099.81 2599.28 25699.95 1597.93 33499.49 100100.00 199.82 6599.99 799.89 3899.21 8099.98 2199.97 499.98 4399.93 20
test_f99.75 3799.88 799.37 23199.96 798.21 31199.51 95100.00 199.94 26100.00 199.93 2199.58 3899.94 8299.97 499.99 1699.97 10
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7799.01 24099.99 1199.99 399.98 1499.88 4799.97 299.99 899.96 9100.00 199.98 5
test_fmvsmvis_n_192099.84 1699.86 1399.81 4499.88 4499.55 14399.17 18899.98 1299.99 399.96 2799.84 7299.96 399.99 899.96 999.99 1699.88 31
test_cas_vis1_n_192099.76 3699.86 1399.45 20399.93 2498.40 29999.30 14499.98 1299.94 2699.99 799.89 3899.80 1599.97 3599.96 999.97 5899.97 10
fmvsm_l_conf0.5_n99.80 2599.78 3399.85 2899.88 4499.66 10699.11 21399.91 4199.98 1599.96 2799.64 19599.60 3699.99 899.95 1299.99 1699.88 31
test_fmvsm_n_192099.84 1699.85 1799.83 3499.82 7399.70 9599.17 18899.97 2099.99 399.96 2799.82 8399.94 4100.00 199.95 12100.00 199.80 53
test_fmvs199.48 9499.65 5598.97 30099.54 22497.16 36099.11 21399.98 1299.78 7599.96 2799.81 9098.72 14999.97 3599.95 1299.97 5899.79 60
mvsany_test399.85 1299.88 799.75 7999.95 1599.37 18699.53 8899.98 1299.77 7999.99 799.95 1699.85 1099.94 8299.95 1299.98 4399.94 17
fmvsm_s_conf0.1_n_299.81 2499.78 3399.89 1099.93 2499.76 6398.92 26099.98 1299.99 399.99 799.88 4799.43 5199.94 8299.94 1699.99 1699.99 2
fmvsm_l_conf0.5_n_a99.80 2599.79 2999.84 3199.88 4499.64 11599.12 20899.91 4199.98 1599.95 3599.67 18399.67 2799.99 899.94 1699.99 1699.88 31
MM99.18 18299.05 18999.55 17499.35 29398.81 26599.05 22797.79 39899.99 399.48 22799.59 23596.29 31199.95 6699.94 1699.98 4399.88 31
test_fmvsmconf_n99.85 1299.84 2099.88 1799.91 3199.73 8098.97 25299.98 1299.99 399.96 2799.85 6599.93 799.99 899.94 1699.99 1699.93 20
fmvsm_s_conf0.5_n_299.78 3099.75 4199.88 1799.82 7399.76 6398.88 26399.92 3599.98 1599.98 1499.85 6599.42 5399.94 8299.93 2099.98 4399.94 17
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1499.91 2899.68 2699.93 10299.93 2099.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1499.90 3399.88 899.92 12899.93 2099.99 1699.98 5
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5899.82 3799.03 23599.96 2699.99 399.97 2299.84 7299.58 3899.93 10299.92 2399.98 4399.93 20
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2299.85 5899.78 5199.03 23599.96 2699.99 399.97 2299.84 7299.78 1799.92 12899.92 2399.99 1699.92 24
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 2099.99 3100.00 199.98 1399.78 17100.00 199.92 23100.00 199.87 35
MVStest198.22 30998.09 30498.62 33599.04 36396.23 38199.20 17699.92 3599.44 15199.98 1499.87 5385.87 40499.67 37399.91 2699.57 28899.95 14
v192192099.56 7799.57 7699.55 17499.75 13299.11 23399.05 22799.61 19099.15 20399.88 6599.71 15399.08 9899.87 21599.90 2799.97 5899.66 114
v124099.56 7799.58 7299.51 18599.80 8999.00 24599.00 24399.65 17099.15 20399.90 5299.75 13099.09 9599.88 20199.90 2799.96 7199.67 105
v1099.69 4799.69 4899.66 12299.81 8299.39 18199.66 5499.75 11399.60 12699.92 4699.87 5398.75 14499.86 23499.90 2799.99 1699.73 76
v119299.57 7499.57 7699.57 16899.77 11699.22 21899.04 23299.60 20199.18 19299.87 7399.72 14599.08 9899.85 25299.89 3099.98 4399.66 114
fmvsm_s_conf0.5_n_399.79 2899.77 3699.85 2899.81 8299.71 8798.97 25299.92 3599.98 1599.97 2299.86 6099.53 4599.95 6699.88 3199.99 1699.89 30
v14419299.55 8099.54 8399.58 16299.78 10899.20 22399.11 21399.62 18399.18 19299.89 5699.72 14598.66 15799.87 21599.88 3199.97 5899.66 114
v899.68 5099.69 4899.65 12899.80 8999.40 17899.66 5499.76 10899.64 11199.93 4199.85 6598.66 15799.84 26799.88 3199.99 1699.71 82
mvs5depth99.88 699.91 399.80 4999.92 2999.42 17199.94 3100.00 199.97 1999.89 5699.99 1299.63 3099.97 3599.87 3499.99 16100.00 1
v114499.54 8399.53 8799.59 15999.79 10199.28 20499.10 21699.61 19099.20 19099.84 8099.73 13898.67 15599.84 26799.86 3599.98 4399.64 132
mmtdpeth99.78 3099.83 2199.66 12299.85 5899.05 24499.79 1299.97 20100.00 199.43 23999.94 1999.64 2899.94 8299.83 3699.99 1699.98 5
SSC-MVS99.52 8699.42 10599.83 3499.86 5499.65 11299.52 8999.81 8599.87 4699.81 9299.79 10396.78 29299.99 899.83 3699.51 30499.86 37
v7n99.82 2299.80 2899.88 1799.96 799.84 2499.82 999.82 7699.84 5899.94 3899.91 2899.13 9199.96 5699.83 3699.99 1699.83 46
v2v48299.50 8899.47 9299.58 16299.78 10899.25 21199.14 19899.58 21699.25 18199.81 9299.62 21398.24 21299.84 26799.83 3699.97 5899.64 132
test_vis1_rt99.45 10799.46 9699.41 22099.71 14798.63 28598.99 24899.96 2699.03 21699.95 3599.12 35098.75 14499.84 26799.82 4099.82 18599.77 66
tt080599.63 6399.57 7699.81 4499.87 5199.88 1299.58 7998.70 36299.72 8599.91 4999.60 23099.43 5199.81 30799.81 4199.53 30099.73 76
V4299.56 7799.54 8399.63 14299.79 10199.46 15799.39 11799.59 20799.24 18399.86 7499.70 16198.55 17199.82 29299.79 4299.95 8499.60 162
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 5299.92 3199.98 1499.93 2199.94 499.98 2199.77 43100.00 199.92 24
WB-MVS99.44 10999.32 12699.80 4999.81 8299.61 12899.47 10599.81 8599.82 6599.71 14199.72 14596.60 29699.98 2199.75 4499.23 34499.82 52
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6399.95 2399.98 1499.92 2599.28 7199.98 2199.75 44100.00 199.94 17
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5799.89 4099.98 1499.90 3399.94 499.98 2199.75 44100.00 199.90 26
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 34100.00 199.97 1499.61 3499.97 3599.75 44100.00 199.84 42
reproduce_monomvs97.40 34197.46 33597.20 38899.05 36091.91 41699.20 17699.18 33599.84 5899.86 7499.75 13080.67 41199.83 28299.69 4899.95 8499.85 40
SPE-MVS-test99.68 5099.70 4599.64 13599.57 20899.83 2999.78 1499.97 2099.92 3199.50 22499.38 29999.57 4099.95 6699.69 4899.90 11999.15 310
MVS_030498.61 26798.30 28899.52 18297.88 42198.95 25398.76 28594.11 42099.84 5899.32 26999.57 24595.57 32299.95 6699.68 5099.98 4399.68 97
CS-MVS99.67 5699.70 4599.58 16299.53 23099.84 2499.79 1299.96 2699.90 3499.61 18399.41 28999.51 4899.95 6699.66 5199.89 12998.96 352
mamv499.73 4099.74 4299.70 10899.66 17499.87 1499.69 4299.93 3399.93 2899.93 4199.86 6099.07 100100.00 199.66 5199.92 10899.24 286
pmmvs699.86 1099.86 1399.83 3499.94 1899.90 799.83 799.91 4199.85 5599.94 3899.95 1699.73 2199.90 16899.65 5399.97 5899.69 91
MIMVSNet199.66 5799.62 6099.80 4999.94 1899.87 1499.69 4299.77 10399.78 7599.93 4199.89 3897.94 23799.92 12899.65 5399.98 4399.62 148
EC-MVSNet99.69 4799.69 4899.68 11299.71 14799.91 499.76 2099.96 2699.86 4999.51 22299.39 29799.57 4099.93 10299.64 5599.86 15899.20 299
K. test v398.87 24498.60 25399.69 11099.93 2499.46 15799.74 2494.97 41599.78 7599.88 6599.88 4793.66 34399.97 3599.61 5699.95 8499.64 132
KD-MVS_self_test99.63 6399.59 6999.76 6999.84 6299.90 799.37 12499.79 9499.83 6399.88 6599.85 6598.42 19299.90 16899.60 5799.73 23399.49 220
Anonymous2024052199.44 10999.42 10599.49 19199.89 3998.96 25299.62 6499.76 10899.85 5599.82 8599.88 4796.39 30699.97 3599.59 5899.98 4399.55 184
TransMVSNet (Re)99.78 3099.77 3699.81 4499.91 3199.85 1999.75 2299.86 5799.70 9299.91 4999.89 3899.60 3699.87 21599.59 5899.74 22799.71 82
OurMVSNet-221017-099.75 3799.71 4499.84 3199.96 799.83 2999.83 799.85 6399.80 7199.93 4199.93 2198.54 17399.93 10299.59 5899.98 4399.76 71
EU-MVSNet99.39 12599.62 6098.72 33199.88 4496.44 37599.56 8499.85 6399.90 3499.90 5299.85 6598.09 22699.83 28299.58 6199.95 8499.90 26
mvs_anonymous99.28 14999.39 10998.94 30499.19 33697.81 33999.02 23899.55 22999.78 7599.85 7799.80 9398.24 21299.86 23499.57 6299.50 30799.15 310
test111197.74 32798.16 30096.49 39899.60 18889.86 42899.71 3491.21 42499.89 4099.88 6599.87 5393.73 34299.90 16899.56 6399.99 1699.70 85
lessismore_v099.64 13599.86 5499.38 18390.66 42599.89 5699.83 7694.56 33399.97 3599.56 6399.92 10899.57 179
mvsany_test199.44 10999.45 9899.40 22299.37 28798.64 28497.90 37499.59 20799.27 17799.92 4699.82 8399.74 2099.93 10299.55 6599.87 15099.63 137
MVSMamba_PlusPlus99.55 8099.58 7299.47 19799.68 16799.40 17899.52 8999.70 14099.92 3199.77 11499.86 6098.28 20899.96 5699.54 6699.90 11999.05 339
pm-mvs199.79 2899.79 2999.78 5999.91 3199.83 2999.76 2099.87 5499.73 8199.89 5699.87 5399.63 3099.87 21599.54 6699.92 10899.63 137
LTVRE_ROB99.19 199.88 699.87 1199.88 1799.91 3199.90 799.96 199.92 3599.90 3499.97 2299.87 5399.81 1499.95 6699.54 6699.99 1699.80 53
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 9499.65 5598.95 30399.71 14797.27 35799.50 9699.82 7699.59 12899.41 24899.85 6599.62 33100.00 199.53 6999.89 12999.59 169
test250694.73 38894.59 38995.15 40499.59 19385.90 43099.75 2274.01 43299.89 4099.71 14199.86 6079.00 42199.90 16899.52 7099.99 1699.65 122
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3999.91 499.89 599.71 13599.93 2899.95 3599.89 3899.71 2299.96 5699.51 7199.97 5899.84 42
FC-MVSNet-test99.70 4599.65 5599.86 2699.88 4499.86 1899.72 3099.78 10099.90 3499.82 8599.83 7698.45 18899.87 21599.51 7199.97 5899.86 37
BP-MVS198.72 25998.46 26999.50 18799.53 23099.00 24599.34 12998.53 37299.65 10899.73 13499.38 29990.62 37899.96 5699.50 7399.86 15899.55 184
UA-Net99.78 3099.76 4099.86 2699.72 14499.71 8799.91 499.95 3199.96 2299.71 14199.91 2899.15 8699.97 3599.50 73100.00 199.90 26
PMMVS299.48 9499.45 9899.57 16899.76 12098.99 24798.09 35199.90 4698.95 22499.78 10699.58 23899.57 4099.93 10299.48 7599.95 8499.79 60
VPA-MVSNet99.66 5799.62 6099.79 5699.68 16799.75 7199.62 6499.69 14799.85 5599.80 9699.81 9098.81 13299.91 15099.47 7699.88 13899.70 85
GDP-MVS98.81 25098.57 25999.50 18799.53 23099.12 23299.28 15399.86 5799.53 13299.57 19499.32 31590.88 37499.98 2199.46 7799.74 22799.42 248
ECVR-MVScopyleft97.73 32898.04 30796.78 39299.59 19390.81 42499.72 3090.43 42699.89 4099.86 7499.86 6093.60 34499.89 18799.46 7799.99 1699.65 122
nrg03099.70 4599.66 5399.82 3999.76 12099.84 2499.61 7099.70 14099.93 2899.78 10699.68 17999.10 9399.78 32099.45 7999.96 7199.83 46
TAMVS99.49 9299.45 9899.63 14299.48 25599.42 17199.45 10999.57 21899.66 10599.78 10699.83 7697.85 24499.86 23499.44 8099.96 7199.61 158
GeoE99.69 4799.66 5399.78 5999.76 12099.76 6399.60 7699.82 7699.46 14699.75 12299.56 24999.63 3099.95 6699.43 8199.88 13899.62 148
new-patchmatchnet99.35 13599.57 7698.71 33399.82 7396.62 37298.55 30899.75 11399.50 13699.88 6599.87 5399.31 6799.88 20199.43 81100.00 199.62 148
test20.0399.55 8099.54 8399.58 16299.79 10199.37 18699.02 23899.89 4899.60 12699.82 8599.62 21398.81 13299.89 18799.43 8199.86 15899.47 228
MVSFormer99.41 11999.44 10199.31 24999.57 20898.40 29999.77 1699.80 8899.73 8199.63 16899.30 32098.02 23199.98 2199.43 8199.69 24899.55 184
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8899.73 8199.97 2299.92 2599.77 1999.98 2199.43 81100.00 199.90 26
SDMVSNet99.77 3599.77 3699.76 6999.80 8999.65 11299.63 6199.86 5799.97 1999.89 5699.89 3899.52 4799.99 899.42 8699.96 7199.65 122
Anonymous2023121199.62 6999.57 7699.76 6999.61 18699.60 13199.81 1099.73 12399.82 6599.90 5299.90 3397.97 23699.86 23499.42 8699.96 7199.80 53
SixPastTwentyTwo99.42 11599.30 13399.76 6999.92 2999.67 10499.70 3599.14 34099.65 10899.89 5699.90 3396.20 31399.94 8299.42 8699.92 10899.67 105
balanced_conf0399.50 8899.50 8999.50 18799.42 27899.49 15099.52 8999.75 11399.86 4999.78 10699.71 15398.20 21999.90 16899.39 8999.88 13899.10 321
patch_mono-299.51 8799.46 9699.64 13599.70 15599.11 23399.04 23299.87 5499.71 8799.47 22999.79 10398.24 21299.98 2199.38 9099.96 7199.83 46
UGNet99.38 12799.34 12199.49 19198.90 37598.90 26099.70 3599.35 29999.86 4998.57 36199.81 9098.50 18399.93 10299.38 9099.98 4399.66 114
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 4499.67 5299.81 4499.89 3999.72 8599.59 7799.82 7699.39 16299.82 8599.84 7299.38 5999.91 15099.38 9099.93 10499.80 53
FIs99.65 6299.58 7299.84 3199.84 6299.85 1999.66 5499.75 11399.86 4999.74 13099.79 10398.27 21099.85 25299.37 9399.93 10499.83 46
sd_testset99.78 3099.78 3399.80 4999.80 8999.76 6399.80 1199.79 9499.97 1999.89 5699.89 3899.53 4599.99 899.36 9499.96 7199.65 122
anonymousdsp99.80 2599.77 3699.90 799.96 799.88 1299.73 2799.85 6399.70 9299.92 4699.93 2199.45 5099.97 3599.36 94100.00 199.85 40
casdiffmvs_mvgpermissive99.68 5099.68 5199.69 11099.81 8299.59 13399.29 15199.90 4699.71 8799.79 10299.73 13899.54 4399.84 26799.36 9499.96 7199.65 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3799.74 4299.79 5699.88 4499.66 10699.69 4299.92 3599.67 10199.77 11499.75 13099.61 3499.98 2199.35 9799.98 4399.72 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 7199.64 5899.53 18099.79 10198.82 26499.58 7999.97 2099.95 2399.96 2799.76 12598.44 18999.99 899.34 9899.96 7199.78 62
CHOSEN 1792x268899.39 12599.30 13399.65 12899.88 4499.25 21198.78 28399.88 5298.66 26499.96 2799.79 10397.45 26699.93 10299.34 9899.99 1699.78 62
CDS-MVSNet99.22 16899.13 16199.50 18799.35 29399.11 23398.96 25599.54 23599.46 14699.61 18399.70 16196.31 30999.83 28299.34 9899.88 13899.55 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 22499.16 15598.51 34199.75 13295.90 38798.07 35499.84 6999.84 5899.89 5699.73 13896.01 31699.99 899.33 101100.00 199.63 137
HyFIR lowres test98.91 23798.64 25099.73 9399.85 5899.47 15398.07 35499.83 7198.64 26699.89 5699.60 23092.57 353100.00 199.33 10199.97 5899.72 79
pmmvs599.19 17899.11 16899.42 21399.76 12098.88 26198.55 30899.73 12398.82 24499.72 13699.62 21396.56 29799.82 29299.32 10399.95 8499.56 181
v14899.40 12199.41 10799.39 22599.76 12098.94 25499.09 22099.59 20799.17 19799.81 9299.61 22298.41 19399.69 35699.32 10399.94 9799.53 198
baseline99.63 6399.62 6099.66 12299.80 8999.62 12299.44 11199.80 8899.71 8799.72 13699.69 16899.15 8699.83 28299.32 10399.94 9799.53 198
CVMVSNet98.61 26798.88 23097.80 37299.58 19893.60 40999.26 15999.64 17899.66 10599.72 13699.67 18393.26 34699.93 10299.30 10699.81 19599.87 35
PS-CasMVS99.66 5799.58 7299.89 1099.80 8999.85 1999.66 5499.73 12399.62 11699.84 8099.71 15398.62 16199.96 5699.30 10699.96 7199.86 37
DTE-MVSNet99.68 5099.61 6499.88 1799.80 8999.87 1499.67 5099.71 13599.72 8599.84 8099.78 11398.67 15599.97 3599.30 10699.95 8499.80 53
tmp_tt95.75 38295.42 37696.76 39389.90 43194.42 40398.86 26697.87 39778.01 42299.30 27999.69 16897.70 25295.89 42499.29 10998.14 40099.95 14
PEN-MVS99.66 5799.59 6999.89 1099.83 6699.87 1499.66 5499.73 12399.70 9299.84 8099.73 13898.56 17099.96 5699.29 10999.94 9799.83 46
WR-MVS_H99.61 7199.53 8799.87 2299.80 8999.83 2999.67 5099.75 11399.58 12999.85 7799.69 16898.18 22299.94 8299.28 11199.95 8499.83 46
IterMVS98.97 22899.16 15598.42 34699.74 13895.64 39198.06 35699.83 7199.83 6399.85 7799.74 13496.10 31599.99 899.27 112100.00 199.63 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS97.50 33897.18 34498.48 34398.85 38295.89 38898.44 32499.52 24999.53 13299.52 21699.42 28880.10 41499.86 23499.24 11399.95 8499.68 97
h-mvs3398.61 26798.34 28399.44 20799.60 18898.67 27699.27 15799.44 27499.68 9799.32 26999.49 27192.50 356100.00 199.24 11396.51 41799.65 122
hse-mvs298.52 28098.30 28899.16 27599.29 31598.60 28798.77 28499.02 34899.68 9799.32 26999.04 36092.50 35699.85 25299.24 11397.87 40799.03 343
FMVSNet199.66 5799.63 5999.73 9399.78 10899.77 5699.68 4699.70 14099.67 10199.82 8599.83 7698.98 11499.90 16899.24 11399.97 5899.53 198
casdiffmvspermissive99.63 6399.61 6499.67 11599.79 10199.59 13399.13 20499.85 6399.79 7399.76 11799.72 14599.33 6699.82 29299.21 11799.94 9799.59 169
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 8399.43 10399.87 2299.76 12099.82 3799.57 8299.61 19099.54 13099.80 9699.64 19597.79 24899.95 6699.21 11799.94 9799.84 42
DELS-MVS99.34 14099.30 13399.48 19599.51 23999.36 19098.12 34799.53 24499.36 16799.41 24899.61 22299.22 7999.87 21599.21 11799.68 25399.20 299
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 13099.26 14499.68 11299.51 23999.58 13798.98 25199.60 20199.43 15799.70 14599.36 30697.70 25299.88 20199.20 12099.87 15099.59 169
CANet99.11 19999.05 18999.28 25698.83 38498.56 28998.71 29199.41 28099.25 18199.23 28799.22 33897.66 26099.94 8299.19 12199.97 5899.33 268
EI-MVSNet-UG-set99.48 9499.50 8999.42 21399.57 20898.65 28299.24 16699.46 26999.68 9799.80 9699.66 18898.99 11299.89 18799.19 12199.90 11999.72 79
xiu_mvs_v1_base_debu99.23 16099.34 12198.91 31099.59 19398.23 30898.47 31999.66 16099.61 12099.68 15198.94 37699.39 5599.97 3599.18 12399.55 29398.51 389
xiu_mvs_v1_base99.23 16099.34 12198.91 31099.59 19398.23 30898.47 31999.66 16099.61 12099.68 15198.94 37699.39 5599.97 3599.18 12399.55 29398.51 389
xiu_mvs_v1_base_debi99.23 16099.34 12198.91 31099.59 19398.23 30898.47 31999.66 16099.61 12099.68 15198.94 37699.39 5599.97 3599.18 12399.55 29398.51 389
VPNet99.46 10399.37 11499.71 10499.82 7399.59 13399.48 10299.70 14099.81 6899.69 14899.58 23897.66 26099.86 23499.17 12699.44 31499.67 105
UniMVSNet_NR-MVSNet99.37 13099.25 14699.72 9999.47 26199.56 14098.97 25299.61 19099.43 15799.67 15699.28 32497.85 24499.95 6699.17 12699.81 19599.65 122
DU-MVS99.33 14399.21 15099.71 10499.43 27399.56 14098.83 27199.53 24499.38 16399.67 15699.36 30697.67 25699.95 6699.17 12699.81 19599.63 137
EI-MVSNet-Vis-set99.47 10299.49 9199.42 21399.57 20898.66 27999.24 16699.46 26999.67 10199.79 10299.65 19398.97 11699.89 18799.15 12999.89 12999.71 82
EI-MVSNet99.38 12799.44 10199.21 26999.58 19898.09 32299.26 15999.46 26999.62 11699.75 12299.67 18398.54 17399.85 25299.15 12999.92 10899.68 97
VNet99.18 18299.06 18599.56 17199.24 32699.36 19099.33 13399.31 30899.67 10199.47 22999.57 24596.48 30099.84 26799.15 12999.30 33399.47 228
EG-PatchMatch MVS99.57 7499.56 8199.62 15199.77 11699.33 19699.26 15999.76 10899.32 17199.80 9699.78 11399.29 6999.87 21599.15 12999.91 11899.66 114
PVSNet_Blended_VisFu99.40 12199.38 11199.44 20799.90 3798.66 27998.94 25899.91 4197.97 32799.79 10299.73 13899.05 10599.97 3599.15 12999.99 1699.68 97
IterMVS-LS99.41 11999.47 9299.25 26599.81 8298.09 32298.85 26899.76 10899.62 11699.83 8499.64 19598.54 17399.97 3599.15 12999.99 1699.68 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 8399.47 9299.76 6999.58 19899.64 11599.30 14499.63 18099.61 12099.71 14199.56 24998.76 14299.96 5699.14 13599.92 10899.68 97
MVSTER98.47 28798.22 29399.24 26799.06 35998.35 30599.08 22399.46 26999.27 17799.75 12299.66 18888.61 39199.85 25299.14 13599.92 10899.52 208
Anonymous2023120699.35 13599.31 12899.47 19799.74 13899.06 24399.28 15399.74 11999.23 18599.72 13699.53 26097.63 26299.88 20199.11 13799.84 16899.48 224
Syy-MVS98.17 31297.85 32499.15 27798.50 40798.79 26898.60 29799.21 33197.89 33396.76 40996.37 43295.47 32499.57 39799.10 13898.73 37899.09 326
ttmdpeth99.48 9499.55 8299.29 25399.76 12098.16 31699.33 13399.95 3199.79 7399.36 25899.89 3899.13 9199.77 32899.09 13999.64 26699.93 20
MVS_Test99.28 14999.31 12899.19 27299.35 29398.79 26899.36 12799.49 26299.17 19799.21 29299.67 18398.78 13999.66 37899.09 13999.66 26299.10 321
testgi99.29 14899.26 14499.37 23199.75 13298.81 26598.84 26999.89 4898.38 29499.75 12299.04 36099.36 6499.86 23499.08 14199.25 34099.45 233
1112_ss99.05 21098.84 23599.67 11599.66 17499.29 20298.52 31499.82 7697.65 34599.43 23999.16 34496.42 30399.91 15099.07 14299.84 16899.80 53
CANet_DTU98.91 23798.85 23399.09 28698.79 39098.13 31798.18 34099.31 30899.48 13998.86 33299.51 26496.56 29799.95 6699.05 14399.95 8499.19 302
Baseline_NR-MVSNet99.49 9299.37 11499.82 3999.91 3199.84 2498.83 27199.86 5799.68 9799.65 16399.88 4797.67 25699.87 21599.03 14499.86 15899.76 71
FMVSNet299.35 13599.28 14099.55 17499.49 25099.35 19399.45 10999.57 21899.44 15199.70 14599.74 13497.21 27799.87 21599.03 14499.94 9799.44 238
Test_1112_low_res98.95 23498.73 24499.63 14299.68 16799.15 22998.09 35199.80 8897.14 37199.46 23399.40 29396.11 31499.89 18799.01 14699.84 16899.84 42
VDD-MVS99.20 17599.11 16899.44 20799.43 27398.98 24899.50 9698.32 38699.80 7199.56 20299.69 16896.99 28799.85 25298.99 14799.73 23399.50 215
DeepC-MVS98.90 499.62 6999.61 6499.67 11599.72 14499.44 16499.24 16699.71 13599.27 17799.93 4199.90 3399.70 2499.93 10298.99 14799.99 1699.64 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 9499.47 9299.51 18599.77 11699.41 17798.81 27699.66 16099.42 16199.75 12299.66 18899.20 8199.76 33198.98 14999.99 1699.36 261
EPNet_dtu97.62 33397.79 32797.11 39196.67 42692.31 41498.51 31598.04 39199.24 18395.77 41899.47 27893.78 34199.66 37898.98 14999.62 27099.37 258
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 14099.32 12699.39 22599.67 17398.77 27098.57 30699.81 8599.61 12099.48 22799.41 28998.47 18499.86 23498.97 15199.90 11999.53 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 12199.31 12899.68 11299.43 27399.55 14399.73 2799.50 25899.46 14699.88 6599.36 30697.54 26399.87 21598.97 15199.87 15099.63 137
GBi-Net99.42 11599.31 12899.73 9399.49 25099.77 5699.68 4699.70 14099.44 15199.62 17799.83 7697.21 27799.90 16898.96 15399.90 11999.53 198
FMVSNet597.80 32597.25 34299.42 21398.83 38498.97 25099.38 12099.80 8898.87 23699.25 28399.69 16880.60 41399.91 15098.96 15399.90 11999.38 255
test199.42 11599.31 12899.73 9399.49 25099.77 5699.68 4699.70 14099.44 15199.62 17799.83 7697.21 27799.90 16898.96 15399.90 11999.53 198
FMVSNet398.80 25198.63 25299.32 24699.13 34598.72 27399.10 21699.48 26399.23 18599.62 17799.64 19592.57 35399.86 23498.96 15399.90 11999.39 253
UnsupCasMVSNet_eth98.83 24798.57 25999.59 15999.68 16799.45 16298.99 24899.67 15599.48 13999.55 20799.36 30694.92 32799.86 23498.95 15796.57 41699.45 233
CHOSEN 280x42098.41 29298.41 27598.40 34799.34 30295.89 38896.94 41099.44 27498.80 24899.25 28399.52 26293.51 34599.98 2198.94 15899.98 4399.32 271
TDRefinement99.72 4199.70 4599.77 6299.90 3799.85 1999.86 699.92 3599.69 9599.78 10699.92 2599.37 6199.88 20198.93 15999.95 8499.60 162
alignmvs98.28 30297.96 31399.25 26599.12 34798.93 25799.03 23598.42 37999.64 11198.72 34797.85 41290.86 37599.62 38898.88 16099.13 34699.19 302
MGCFI-Net99.02 21699.01 20199.06 29399.11 35298.60 28799.63 6199.67 15599.63 11398.58 35997.65 41599.07 10099.57 39798.85 16198.92 36299.03 343
sss98.90 23998.77 24399.27 25999.48 25598.44 29698.72 28999.32 30497.94 33199.37 25799.35 31196.31 30999.91 15098.85 16199.63 26999.47 228
xiu_mvs_v2_base99.02 21699.11 16898.77 32899.37 28798.09 32298.13 34699.51 25499.47 14399.42 24298.54 39899.38 5999.97 3598.83 16399.33 32998.24 401
PS-MVSNAJ99.00 22499.08 17998.76 32999.37 28798.10 32198.00 36299.51 25499.47 14399.41 24898.50 40099.28 7199.97 3598.83 16399.34 32898.20 405
D2MVS99.22 16899.19 15299.29 25399.69 15998.74 27298.81 27699.41 28098.55 27599.68 15199.69 16898.13 22499.87 21598.82 16599.98 4399.24 286
PatchT98.45 28998.32 28598.83 32398.94 37398.29 30699.24 16698.82 35699.84 5899.08 30999.76 12591.37 36499.94 8298.82 16599.00 35798.26 400
testf199.63 6399.60 6799.72 9999.94 1899.95 299.47 10599.89 4899.43 15799.88 6599.80 9399.26 7599.90 16898.81 16799.88 13899.32 271
APD_test299.63 6399.60 6799.72 9999.94 1899.95 299.47 10599.89 4899.43 15799.88 6599.80 9399.26 7599.90 16898.81 16799.88 13899.32 271
sasdasda99.02 21699.00 20599.09 28699.10 35498.70 27499.61 7099.66 16099.63 11398.64 35397.65 41599.04 10699.54 40198.79 16998.92 36299.04 341
Effi-MVS+99.06 20798.97 21699.34 23899.31 30998.98 24898.31 33299.91 4198.81 24698.79 34198.94 37699.14 8999.84 26798.79 16998.74 37599.20 299
canonicalmvs99.02 21699.00 20599.09 28699.10 35498.70 27499.61 7099.66 16099.63 11398.64 35397.65 41599.04 10699.54 40198.79 16998.92 36299.04 341
VDDNet98.97 22898.82 23899.42 21399.71 14798.81 26599.62 6498.68 36399.81 6899.38 25699.80 9394.25 33599.85 25298.79 16999.32 33199.59 169
CR-MVSNet98.35 29998.20 29598.83 32399.05 36098.12 31899.30 14499.67 15597.39 35999.16 29899.79 10391.87 36199.91 15098.78 17398.77 37198.44 394
test_method91.72 38992.32 39289.91 40793.49 43070.18 43390.28 42199.56 22361.71 42595.39 42099.52 26293.90 33799.94 8298.76 17498.27 39399.62 148
RPMNet98.60 27098.53 26598.83 32399.05 36098.12 31899.30 14499.62 18399.86 4999.16 29899.74 13492.53 35599.92 12898.75 17598.77 37198.44 394
pmmvs499.13 19499.06 18599.36 23599.57 20899.10 23898.01 36099.25 32198.78 25199.58 19199.44 28598.24 21299.76 33198.74 17699.93 10499.22 292
tttt051797.62 33397.20 34398.90 31699.76 12097.40 35499.48 10294.36 41799.06 21499.70 14599.49 27184.55 40799.94 8298.73 17799.65 26499.36 261
EPP-MVSNet99.17 18799.00 20599.66 12299.80 8999.43 16899.70 3599.24 32499.48 13999.56 20299.77 12294.89 32899.93 10298.72 17899.89 12999.63 137
Anonymous2024052999.42 11599.34 12199.65 12899.53 23099.60 13199.63 6199.39 29099.47 14399.76 11799.78 11398.13 22499.86 23498.70 17999.68 25399.49 220
ACMH98.42 699.59 7399.54 8399.72 9999.86 5499.62 12299.56 8499.79 9498.77 25399.80 9699.85 6599.64 2899.85 25298.70 17999.89 12999.70 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 14399.28 14099.47 19799.57 20899.39 18199.78 1499.43 27798.87 23699.57 19499.82 8398.06 22999.87 21598.69 18199.73 23399.15 310
LFMVS98.46 28898.19 29899.26 26299.24 32698.52 29299.62 6496.94 40799.87 4699.31 27499.58 23891.04 36999.81 30798.68 18299.42 31899.45 233
WR-MVS99.11 19998.93 22199.66 12299.30 31399.42 17198.42 32599.37 29599.04 21599.57 19499.20 34296.89 28999.86 23498.66 18399.87 15099.70 85
mvsmamba99.08 20398.95 21999.45 20399.36 29099.18 22699.39 11798.81 35799.37 16499.35 26099.70 16196.36 30899.94 8298.66 18399.59 28499.22 292
RRT-MVS99.08 20399.00 20599.33 24199.27 32098.65 28299.62 6499.93 3399.66 10599.67 15699.82 8395.27 32699.93 10298.64 18599.09 35099.41 249
Anonymous20240521198.75 25598.46 26999.63 14299.34 30299.66 10699.47 10597.65 39999.28 17699.56 20299.50 26793.15 34799.84 26798.62 18699.58 28699.40 251
EPNet98.13 31397.77 32899.18 27494.57 42997.99 32899.24 16697.96 39399.74 8097.29 40299.62 21393.13 34899.97 3598.59 18799.83 17699.58 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 21099.09 17798.91 31099.21 33198.36 30498.82 27599.47 26698.85 23998.90 32799.56 24998.78 13999.09 41698.57 18899.68 25399.26 283
Patchmatch-RL test98.60 27098.36 28099.33 24199.77 11699.07 24198.27 33499.87 5498.91 23199.74 13099.72 14590.57 38099.79 31798.55 18999.85 16399.11 319
pmmvs398.08 31697.80 32598.91 31099.41 28097.69 34597.87 37599.66 16095.87 39099.50 22499.51 26490.35 38299.97 3598.55 18999.47 31199.08 332
ETV-MVS99.18 18299.18 15399.16 27599.34 30299.28 20499.12 20899.79 9499.48 13998.93 32198.55 39799.40 5499.93 10298.51 19199.52 30398.28 399
jason99.16 18899.11 16899.32 24699.75 13298.44 29698.26 33699.39 29098.70 26199.74 13099.30 32098.54 17399.97 3598.48 19299.82 18599.55 184
jason: jason.
APDe-MVScopyleft99.48 9499.36 11799.85 2899.55 22299.81 4299.50 9699.69 14798.99 21899.75 12299.71 15398.79 13799.93 10298.46 19399.85 16399.80 53
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 26198.56 26399.15 27799.22 32998.66 27997.14 40599.51 25498.09 32099.54 20999.27 32696.87 29099.74 33898.43 19498.96 35999.03 343
our_test_398.85 24699.09 17798.13 36099.66 17494.90 40197.72 38099.58 21699.07 21299.64 16499.62 21398.19 22099.93 10298.41 19599.95 8499.55 184
Gipumacopyleft99.57 7499.59 6999.49 19199.98 399.71 8799.72 3099.84 6999.81 6899.94 3899.78 11398.91 12499.71 34798.41 19599.95 8499.05 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 34396.91 35398.74 33097.72 42297.57 34797.60 38697.36 40598.00 32399.21 29298.02 40890.04 38599.79 31798.37 19795.89 42198.86 366
PM-MVS99.36 13399.29 13899.58 16299.83 6699.66 10698.95 25699.86 5798.85 23999.81 9299.73 13898.40 19799.92 12898.36 19899.83 17699.17 306
baseline197.73 32897.33 33998.96 30199.30 31397.73 34399.40 11598.42 37999.33 17099.46 23399.21 34091.18 36799.82 29298.35 19991.26 42499.32 271
MVS-HIRNet97.86 32298.22 29396.76 39399.28 31891.53 42098.38 32792.60 42399.13 20599.31 27499.96 1597.18 28199.68 36898.34 20099.83 17699.07 337
GA-MVS97.99 32197.68 33198.93 30799.52 23798.04 32697.19 40499.05 34798.32 30798.81 33798.97 37289.89 38799.41 41298.33 20199.05 35399.34 267
Fast-Effi-MVS+99.02 21698.87 23199.46 20099.38 28599.50 14999.04 23299.79 9497.17 36998.62 35598.74 38999.34 6599.95 6698.32 20299.41 31998.92 359
MDA-MVSNet_test_wron98.95 23498.99 21298.85 31999.64 17997.16 36098.23 33899.33 30298.93 22899.56 20299.66 18897.39 27099.83 28298.29 20399.88 13899.55 184
N_pmnet98.73 25898.53 26599.35 23799.72 14498.67 27698.34 32994.65 41698.35 30199.79 10299.68 17998.03 23099.93 10298.28 20499.92 10899.44 238
ET-MVSNet_ETH3D96.78 35596.07 36498.91 31099.26 32397.92 33597.70 38296.05 41297.96 33092.37 42498.43 40187.06 39599.90 16898.27 20597.56 41098.91 360
thisisatest053097.45 33996.95 35098.94 30499.68 16797.73 34399.09 22094.19 41998.61 27199.56 20299.30 32084.30 40899.93 10298.27 20599.54 29899.16 308
YYNet198.95 23498.99 21298.84 32199.64 17997.14 36298.22 33999.32 30498.92 23099.59 18999.66 18897.40 26899.83 28298.27 20599.90 11999.55 184
reproduce_model99.50 8899.40 10899.83 3499.60 18899.83 2999.12 20899.68 15099.49 13899.80 9699.79 10399.01 10999.93 10298.24 20899.82 18599.73 76
ACMM98.09 1199.46 10399.38 11199.72 9999.80 8999.69 9999.13 20499.65 17098.99 21899.64 16499.72 14599.39 5599.86 23498.23 20999.81 19599.60 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 23198.87 23199.24 26799.57 20898.40 29998.12 34799.18 33598.28 30999.63 16899.13 34698.02 23199.97 3598.22 21099.69 24899.35 264
3Dnovator99.15 299.43 11299.36 11799.65 12899.39 28299.42 17199.70 3599.56 22399.23 18599.35 26099.80 9399.17 8499.95 6698.21 21199.84 16899.59 169
Fast-Effi-MVS+-dtu99.20 17599.12 16599.43 21199.25 32499.69 9999.05 22799.82 7699.50 13698.97 31799.05 35898.98 11499.98 2198.20 21299.24 34298.62 380
MS-PatchMatch99.00 22498.97 21699.09 28699.11 35298.19 31298.76 28599.33 30298.49 28499.44 23599.58 23898.21 21799.69 35698.20 21299.62 27099.39 253
TSAR-MVS + GP.99.12 19699.04 19599.38 22899.34 30299.16 22798.15 34399.29 31298.18 31699.63 16899.62 21399.18 8399.68 36898.20 21299.74 22799.30 277
DP-MVS99.48 9499.39 10999.74 8499.57 20899.62 12299.29 15199.61 19099.87 4699.74 13099.76 12598.69 15199.87 21598.20 21299.80 20299.75 74
MVP-Stereo99.16 18899.08 17999.43 21199.48 25599.07 24199.08 22399.55 22998.63 26799.31 27499.68 17998.19 22099.78 32098.18 21699.58 28699.45 233
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 11299.30 13399.80 4999.83 6699.81 4299.52 8999.70 14098.35 30199.51 22299.50 26799.31 6799.88 20198.18 21699.84 16899.69 91
MDA-MVSNet-bldmvs99.06 20799.05 18999.07 29199.80 8997.83 33898.89 26299.72 13299.29 17399.63 16899.70 16196.47 30199.89 18798.17 21899.82 18599.50 215
JIA-IIPM98.06 31797.92 32098.50 34298.59 40397.02 36498.80 27998.51 37499.88 4597.89 38999.87 5391.89 36099.90 16898.16 21997.68 40998.59 383
EIA-MVS99.12 19699.01 20199.45 20399.36 29099.62 12299.34 12999.79 9498.41 29098.84 33498.89 38098.75 14499.84 26798.15 22099.51 30498.89 363
miper_lstm_enhance98.65 26698.60 25398.82 32699.20 33497.33 35697.78 37899.66 16099.01 21799.59 18999.50 26794.62 33299.85 25298.12 22199.90 11999.26 283
reproduce-ours99.46 10399.35 11999.82 3999.56 21999.83 2999.05 22799.65 17099.45 14999.78 10699.78 11398.93 11999.93 10298.11 22299.81 19599.70 85
our_new_method99.46 10399.35 11999.82 3999.56 21999.83 2999.05 22799.65 17099.45 14999.78 10699.78 11398.93 11999.93 10298.11 22299.81 19599.70 85
Effi-MVS+-dtu99.07 20698.92 22599.52 18298.89 37899.78 5199.15 19699.66 16099.34 16898.92 32499.24 33697.69 25499.98 2198.11 22299.28 33698.81 370
tpm97.15 34796.95 35097.75 37498.91 37494.24 40499.32 13697.96 39397.71 34398.29 37199.32 31586.72 40199.92 12898.10 22596.24 41999.09 326
DeepPCF-MVS98.42 699.18 18299.02 19899.67 11599.22 32999.75 7197.25 40299.47 26698.72 25899.66 16199.70 16199.29 6999.63 38798.07 22699.81 19599.62 148
ppachtmachnet_test98.89 24299.12 16598.20 35899.66 17495.24 39797.63 38499.68 15099.08 21099.78 10699.62 21398.65 15999.88 20198.02 22799.96 7199.48 224
tpmrst97.73 32898.07 30696.73 39598.71 39992.00 41599.10 21698.86 35398.52 28098.92 32499.54 25891.90 35999.82 29298.02 22799.03 35598.37 396
CSCG99.37 13099.29 13899.60 15799.71 14799.46 15799.43 11399.85 6398.79 24999.41 24899.60 23098.92 12299.92 12898.02 22799.92 10899.43 244
eth_miper_zixun_eth98.68 26498.71 24698.60 33799.10 35496.84 36997.52 39299.54 23598.94 22599.58 19199.48 27496.25 31299.76 33198.01 23099.93 10499.21 295
Patchmtry98.78 25298.54 26499.49 19198.89 37899.19 22499.32 13699.67 15599.65 10899.72 13699.79 10391.87 36199.95 6698.00 23199.97 5899.33 268
PVSNet_BlendedMVS99.03 21499.01 20199.09 28699.54 22497.99 32898.58 30299.82 7697.62 34699.34 26499.71 15398.52 18099.77 32897.98 23299.97 5899.52 208
PVSNet_Blended98.70 26298.59 25599.02 29699.54 22497.99 32897.58 38799.82 7695.70 39499.34 26498.98 37098.52 18099.77 32897.98 23299.83 17699.30 277
cl____98.54 27898.41 27598.92 30899.03 36497.80 34197.46 39499.59 20798.90 23299.60 18699.46 28193.85 33999.78 32097.97 23499.89 12999.17 306
DIV-MVS_self_test98.54 27898.42 27498.92 30899.03 36497.80 34197.46 39499.59 20798.90 23299.60 18699.46 28193.87 33899.78 32097.97 23499.89 12999.18 304
AUN-MVS97.82 32497.38 33899.14 28099.27 32098.53 29098.72 28999.02 34898.10 31897.18 40599.03 36489.26 38999.85 25297.94 23697.91 40599.03 343
FA-MVS(test-final)98.52 28098.32 28599.10 28599.48 25598.67 27699.77 1698.60 37097.35 36199.63 16899.80 9393.07 34999.84 26797.92 23799.30 33398.78 373
ambc99.20 27199.35 29398.53 29099.17 18899.46 26999.67 15699.80 9398.46 18799.70 35097.92 23799.70 24499.38 255
USDC98.96 23198.93 22199.05 29499.54 22497.99 32897.07 40899.80 8898.21 31399.75 12299.77 12298.43 19099.64 38697.90 23999.88 13899.51 210
OPM-MVS99.26 15599.13 16199.63 14299.70 15599.61 12898.58 30299.48 26398.50 28299.52 21699.63 20699.14 8999.76 33197.89 24099.77 21699.51 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 14599.17 15499.77 6299.69 15999.80 4699.14 19899.31 30899.16 19999.62 17799.61 22298.35 20199.91 15097.88 24199.72 23999.61 158
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3499.70 15599.79 4899.14 19899.61 19099.92 12897.88 24199.72 23999.77 66
c3_l98.72 25998.71 24698.72 33199.12 34797.22 35997.68 38399.56 22398.90 23299.54 20999.48 27496.37 30799.73 34197.88 24199.88 13899.21 295
3Dnovator+98.92 399.35 13599.24 14899.67 11599.35 29399.47 15399.62 6499.50 25899.44 15199.12 30599.78 11398.77 14199.94 8297.87 24499.72 23999.62 148
miper_ehance_all_eth98.59 27398.59 25598.59 33898.98 37097.07 36397.49 39399.52 24998.50 28299.52 21699.37 30296.41 30599.71 34797.86 24599.62 27099.00 350
WTY-MVS98.59 27398.37 27999.26 26299.43 27398.40 29998.74 28799.13 34298.10 31899.21 29299.24 33694.82 32999.90 16897.86 24598.77 37199.49 220
APD_test199.36 13399.28 14099.61 15499.89 3999.89 1099.32 13699.74 11999.18 19299.69 14899.75 13098.41 19399.84 26797.85 24799.70 24499.10 321
SED-MVS99.40 12199.28 14099.77 6299.69 15999.82 3799.20 17699.54 23599.13 20599.82 8599.63 20698.91 12499.92 12897.85 24799.70 24499.58 174
test_241102_TWO99.54 23599.13 20599.76 11799.63 20698.32 20699.92 12897.85 24799.69 24899.75 74
MVS_111021_HR99.12 19699.02 19899.40 22299.50 24599.11 23397.92 37199.71 13598.76 25699.08 30999.47 27899.17 8499.54 40197.85 24799.76 21899.54 193
MTAPA99.35 13599.20 15199.80 4999.81 8299.81 4299.33 13399.53 24499.27 17799.42 24299.63 20698.21 21799.95 6697.83 25199.79 20799.65 122
MSC_two_6792asdad99.74 8499.03 36499.53 14699.23 32599.92 12897.77 25299.69 24899.78 62
No_MVS99.74 8499.03 36499.53 14699.23 32599.92 12897.77 25299.69 24899.78 62
TESTMET0.1,196.24 36995.84 37097.41 38298.24 41493.84 40797.38 39695.84 41398.43 28797.81 39498.56 39679.77 41799.89 18797.77 25298.77 37198.52 388
ACMH+98.40 899.50 8899.43 10399.71 10499.86 5499.76 6399.32 13699.77 10399.53 13299.77 11499.76 12599.26 7599.78 32097.77 25299.88 13899.60 162
IU-MVS99.69 15999.77 5699.22 32897.50 35399.69 14897.75 25699.70 24499.77 66
114514_t98.49 28598.11 30399.64 13599.73 14199.58 13799.24 16699.76 10889.94 41799.42 24299.56 24997.76 25199.86 23497.74 25799.82 18599.47 228
DVP-MVS++99.38 12799.25 14699.77 6299.03 36499.77 5699.74 2499.61 19099.18 19299.76 11799.61 22299.00 11099.92 12897.72 25899.60 28099.62 148
test_0728_THIRD99.18 19299.62 17799.61 22298.58 16799.91 15097.72 25899.80 20299.77 66
EGC-MVSNET89.05 39185.52 39499.64 13599.89 3999.78 5199.56 8499.52 24924.19 42649.96 42799.83 7699.15 8699.92 12897.71 26099.85 16399.21 295
miper_enhance_ethall98.03 31897.94 31898.32 35298.27 41396.43 37696.95 40999.41 28096.37 38599.43 23998.96 37494.74 33099.69 35697.71 26099.62 27098.83 369
TSAR-MVS + MP.99.34 14099.24 14899.63 14299.82 7399.37 18699.26 15999.35 29998.77 25399.57 19499.70 16199.27 7499.88 20197.71 26099.75 22099.65 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 33697.28 34098.40 34798.37 41196.75 37097.24 40399.37 29597.31 36399.41 24899.22 33887.30 39399.37 41397.70 26399.62 27099.08 332
MP-MVS-pluss99.14 19298.92 22599.80 4999.83 6699.83 2998.61 29599.63 18096.84 37899.44 23599.58 23898.81 13299.91 15097.70 26399.82 18599.67 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14999.11 16899.79 5699.75 13299.81 4298.95 25699.53 24498.27 31099.53 21499.73 13898.75 14499.87 21597.70 26399.83 17699.68 97
UnsupCasMVSNet_bld98.55 27798.27 29199.40 22299.56 21999.37 18697.97 36799.68 15097.49 35499.08 30999.35 31195.41 32599.82 29297.70 26398.19 39799.01 349
MVS_111021_LR99.13 19499.03 19799.42 21399.58 19899.32 19897.91 37399.73 12398.68 26299.31 27499.48 27499.09 9599.66 37897.70 26399.77 21699.29 280
IS-MVSNet99.03 21498.85 23399.55 17499.80 8999.25 21199.73 2799.15 33999.37 16499.61 18399.71 15394.73 33199.81 30797.70 26399.88 13899.58 174
test-LLR97.15 34796.95 35097.74 37598.18 41695.02 39997.38 39696.10 40998.00 32397.81 39498.58 39390.04 38599.91 15097.69 26998.78 36998.31 397
test-mter96.23 37095.73 37297.74 37598.18 41695.02 39997.38 39696.10 40997.90 33297.81 39498.58 39379.12 42099.91 15097.69 26998.78 36998.31 397
MonoMVSNet98.23 30798.32 28597.99 36398.97 37196.62 37299.49 10098.42 37999.62 11699.40 25399.79 10395.51 32398.58 42297.68 27195.98 42098.76 376
XVS99.27 15399.11 16899.75 7999.71 14799.71 8799.37 12499.61 19099.29 17398.76 34499.47 27898.47 18499.88 20197.62 27299.73 23399.67 105
X-MVStestdata96.09 37394.87 38599.75 7999.71 14799.71 8799.37 12499.61 19099.29 17398.76 34461.30 43598.47 18499.88 20197.62 27299.73 23399.67 105
SMA-MVScopyleft99.19 17899.00 20599.73 9399.46 26599.73 8099.13 20499.52 24997.40 35899.57 19499.64 19598.93 11999.83 28297.61 27499.79 20799.63 137
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 35896.79 35796.46 39998.90 37590.71 42599.41 11498.68 36394.69 40798.14 38199.34 31486.32 40399.80 31497.60 27598.07 40398.88 364
PVSNet97.47 1598.42 29198.44 27298.35 34999.46 26596.26 38096.70 41399.34 30197.68 34499.00 31699.13 34697.40 26899.72 34397.59 27699.68 25399.08 332
new_pmnet98.88 24398.89 22998.84 32199.70 15597.62 34698.15 34399.50 25897.98 32699.62 17799.54 25898.15 22399.94 8297.55 27799.84 16898.95 354
IB-MVS95.41 2095.30 38794.46 39197.84 37198.76 39595.33 39597.33 39996.07 41196.02 38995.37 42197.41 41976.17 42299.96 5697.54 27895.44 42398.22 402
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15999.11 16899.61 15498.38 41099.79 4899.57 8299.68 15099.61 12099.15 30099.71 15398.70 15099.91 15097.54 27899.68 25399.13 318
ZNCC-MVS99.22 16899.04 19599.77 6299.76 12099.73 8099.28 15399.56 22398.19 31599.14 30299.29 32398.84 13199.92 12897.53 28099.80 20299.64 132
CP-MVS99.23 16099.05 18999.75 7999.66 17499.66 10699.38 12099.62 18398.38 29499.06 31399.27 32698.79 13799.94 8297.51 28199.82 18599.66 114
SD-MVS99.01 22299.30 13398.15 35999.50 24599.40 17898.94 25899.61 19099.22 18999.75 12299.82 8399.54 4395.51 42697.48 28299.87 15099.54 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 28598.29 29099.11 28398.96 37298.42 29897.54 38899.32 30497.53 35198.47 36698.15 40797.88 24199.82 29297.46 28399.24 34299.09 326
DeepC-MVS_fast98.47 599.23 16099.12 16599.56 17199.28 31899.22 21898.99 24899.40 28799.08 21099.58 19199.64 19598.90 12799.83 28297.44 28499.75 22099.63 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 15699.08 17999.76 6999.73 14199.70 9599.31 14199.59 20798.36 29699.36 25899.37 30298.80 13699.91 15097.43 28599.75 22099.68 97
ACMMPR99.23 16099.06 18599.76 6999.74 13899.69 9999.31 14199.59 20798.36 29699.35 26099.38 29998.61 16399.93 10297.43 28599.75 22099.67 105
Vis-MVSNet (Re-imp)98.77 25398.58 25899.34 23899.78 10898.88 26199.61 7099.56 22399.11 20999.24 28699.56 24993.00 35199.78 32097.43 28599.89 12999.35 264
MIMVSNet98.43 29098.20 29599.11 28399.53 23098.38 30399.58 7998.61 36898.96 22299.33 26699.76 12590.92 37199.81 30797.38 28899.76 21899.15 310
WB-MVSnew98.34 30198.14 30198.96 30198.14 41997.90 33698.27 33497.26 40698.63 26798.80 33998.00 41097.77 24999.90 16897.37 28998.98 35899.09 326
XVG-OURS-SEG-HR99.16 18898.99 21299.66 12299.84 6299.64 11598.25 33799.73 12398.39 29399.63 16899.43 28699.70 2499.90 16897.34 29098.64 38299.44 238
COLMAP_ROBcopyleft98.06 1299.45 10799.37 11499.70 10899.83 6699.70 9599.38 12099.78 10099.53 13299.67 15699.78 11399.19 8299.86 23497.32 29199.87 15099.55 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 21698.81 23999.65 12899.58 19899.49 15098.58 30299.07 34498.40 29299.04 31499.25 33198.51 18299.80 31497.31 29299.51 30499.65 122
region2R99.23 16099.05 18999.77 6299.76 12099.70 9599.31 14199.59 20798.41 29099.32 26999.36 30698.73 14899.93 10297.29 29399.74 22799.67 105
APD-MVS_3200maxsize99.31 14699.16 15599.74 8499.53 23099.75 7199.27 15799.61 19099.19 19199.57 19499.64 19598.76 14299.90 16897.29 29399.62 27099.56 181
TAPA-MVS97.92 1398.03 31897.55 33499.46 20099.47 26199.44 16498.50 31699.62 18386.79 41899.07 31299.26 32998.26 21199.62 38897.28 29599.73 23399.31 275
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 15399.11 16899.73 9399.54 22499.74 7799.26 15999.62 18399.16 19999.52 21699.64 19598.41 19399.91 15097.27 29699.61 27799.54 193
RE-MVS-def99.13 16199.54 22499.74 7799.26 15999.62 18399.16 19999.52 21699.64 19598.57 16897.27 29699.61 27799.54 193
testing1196.05 37595.41 37797.97 36598.78 39295.27 39698.59 30098.23 38898.86 23896.56 41296.91 42575.20 42399.69 35697.26 29898.29 39298.93 357
test_yl98.25 30497.95 31499.13 28199.17 34098.47 29399.00 24398.67 36598.97 22099.22 29099.02 36591.31 36599.69 35697.26 29898.93 36099.24 286
DCV-MVSNet98.25 30497.95 31499.13 28199.17 34098.47 29399.00 24398.67 36598.97 22099.22 29099.02 36591.31 36599.69 35697.26 29898.93 36099.24 286
PHI-MVS99.11 19998.95 21999.59 15999.13 34599.59 13399.17 18899.65 17097.88 33599.25 28399.46 28198.97 11699.80 31497.26 29899.82 18599.37 258
tfpnnormal99.43 11299.38 11199.60 15799.87 5199.75 7199.59 7799.78 10099.71 8799.90 5299.69 16898.85 13099.90 16897.25 30299.78 21299.15 310
PatchmatchNetpermissive97.65 33297.80 32597.18 38998.82 38792.49 41399.17 18898.39 38298.12 31798.79 34199.58 23890.71 37799.89 18797.23 30399.41 31999.16 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22798.80 24199.56 17199.25 32499.43 16898.54 31199.27 31698.58 27398.80 33999.43 28698.53 17799.70 35097.22 30499.59 28499.54 193
testing396.48 36395.63 37499.01 29799.23 32897.81 33998.90 26199.10 34398.72 25897.84 39397.92 41172.44 42799.85 25297.21 30599.33 32999.35 264
HPM-MVScopyleft99.25 15699.07 18399.78 5999.81 8299.75 7199.61 7099.67 15597.72 34299.35 26099.25 33199.23 7899.92 12897.21 30599.82 18599.67 105
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17899.00 20599.76 6999.76 12099.68 10299.38 12099.54 23598.34 30599.01 31599.50 26798.53 17799.93 10297.18 30799.78 21299.66 114
ACMMPcopyleft99.25 15699.08 17999.74 8499.79 10199.68 10299.50 9699.65 17098.07 32199.52 21699.69 16898.57 16899.92 12897.18 30799.79 20799.63 137
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 35196.42 35898.66 33499.42 27897.47 35097.27 40194.30 41897.24 36599.15 30098.86 38285.01 40599.87 21597.10 30999.39 32198.63 379
XVG-ACMP-BASELINE99.23 16099.10 17699.63 14299.82 7399.58 13798.83 27199.72 13298.36 29699.60 18699.71 15398.92 12299.91 15097.08 31099.84 16899.40 251
MSDG99.08 20398.98 21599.37 23199.60 18899.13 23097.54 38899.74 11998.84 24299.53 21499.55 25699.10 9399.79 31797.07 31199.86 15899.18 304
SteuartSystems-ACMMP99.30 14799.14 15999.76 6999.87 5199.66 10699.18 18399.60 20198.55 27599.57 19499.67 18399.03 10899.94 8297.01 31299.80 20299.69 91
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 37195.78 37197.49 37898.53 40593.83 40898.04 35793.94 42198.96 22298.46 36798.17 40679.86 41599.87 21596.99 31399.06 35198.78 373
EPMVS96.53 36196.32 35997.17 39098.18 41692.97 41299.39 11789.95 42798.21 31398.61 35699.59 23586.69 40299.72 34396.99 31399.23 34498.81 370
MSP-MVS99.04 21398.79 24299.81 4499.78 10899.73 8099.35 12899.57 21898.54 27899.54 20998.99 36796.81 29199.93 10296.97 31599.53 30099.77 66
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 23198.70 24899.74 8499.52 23799.71 8798.86 26699.19 33498.47 28698.59 35899.06 35798.08 22899.91 15096.94 31699.60 28099.60 162
SR-MVS99.19 17899.00 20599.74 8499.51 23999.72 8599.18 18399.60 20198.85 23999.47 22999.58 23898.38 19899.92 12896.92 31799.54 29899.57 179
PGM-MVS99.20 17599.01 20199.77 6299.75 13299.71 8799.16 19499.72 13297.99 32599.42 24299.60 23098.81 13299.93 10296.91 31899.74 22799.66 114
HY-MVS98.23 998.21 31197.95 31498.99 29899.03 36498.24 30799.61 7098.72 36196.81 37998.73 34699.51 26494.06 33699.86 23496.91 31898.20 39598.86 366
MDTV_nov1_ep1397.73 32998.70 40090.83 42399.15 19698.02 39298.51 28198.82 33699.61 22290.98 37099.66 37896.89 32098.92 362
GST-MVS99.16 18898.96 21899.75 7999.73 14199.73 8099.20 17699.55 22998.22 31299.32 26999.35 31198.65 15999.91 15096.86 32199.74 22799.62 148
test_post199.14 19851.63 43789.54 38899.82 29296.86 321
SCA98.11 31498.36 28097.36 38399.20 33492.99 41198.17 34298.49 37698.24 31199.10 30899.57 24596.01 31699.94 8296.86 32199.62 27099.14 315
UBG96.53 36195.95 36698.29 35698.87 38196.31 37998.48 31898.07 39098.83 24397.32 40096.54 43079.81 41699.62 38896.84 32498.74 37598.95 354
XVG-OURS99.21 17399.06 18599.65 12899.82 7399.62 12297.87 37599.74 11998.36 29699.66 16199.68 17999.71 2299.90 16896.84 32499.88 13899.43 244
LCM-MVSNet-Re99.28 14999.15 15899.67 11599.33 30799.76 6399.34 12999.97 2098.93 22899.91 4999.79 10398.68 15299.93 10296.80 32699.56 28999.30 277
RPSCF99.18 18299.02 19899.64 13599.83 6699.85 1999.44 11199.82 7698.33 30699.50 22499.78 11397.90 23999.65 38496.78 32799.83 17699.44 238
旧先验297.94 36995.33 39898.94 32099.88 20196.75 328
MDTV_nov1_ep13_2view91.44 42199.14 19897.37 36099.21 29291.78 36396.75 32899.03 343
CLD-MVS98.76 25498.57 25999.33 24199.57 20898.97 25097.53 39099.55 22996.41 38399.27 28199.13 34699.07 10099.78 32096.73 33099.89 12999.23 290
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 31597.98 31298.48 34399.27 32096.48 37499.40 11599.07 34498.81 24699.23 28799.57 24590.11 38499.87 21596.69 33199.64 26699.09 326
baseline296.83 35496.28 36098.46 34599.09 35796.91 36798.83 27193.87 42297.23 36696.23 41798.36 40288.12 39299.90 16896.68 33298.14 40098.57 386
cascas96.99 35096.82 35697.48 37997.57 42595.64 39196.43 41599.56 22391.75 41397.13 40797.61 41895.58 32198.63 42096.68 33299.11 34898.18 406
PC_three_145297.56 34799.68 15199.41 28999.09 9597.09 42396.66 33499.60 28099.62 148
LPG-MVS_test99.22 16899.05 18999.74 8499.82 7399.63 12099.16 19499.73 12397.56 34799.64 16499.69 16899.37 6199.89 18796.66 33499.87 15099.69 91
LGP-MVS_train99.74 8499.82 7399.63 12099.73 12397.56 34799.64 16499.69 16899.37 6199.89 18796.66 33499.87 15099.69 91
ETVMVS96.14 37295.22 38298.89 31798.80 38898.01 32798.66 29398.35 38598.71 26097.18 40596.31 43474.23 42699.75 33596.64 33798.13 40298.90 361
TinyColmap98.97 22898.93 22199.07 29199.46 26598.19 31297.75 37999.75 11398.79 24999.54 20999.70 16198.97 11699.62 38896.63 33899.83 17699.41 249
LF4IMVS99.01 22298.92 22599.27 25999.71 14799.28 20498.59 30099.77 10398.32 30799.39 25599.41 28998.62 16199.84 26796.62 33999.84 16898.69 378
NCCC98.82 24898.57 25999.58 16299.21 33199.31 19998.61 29599.25 32198.65 26598.43 36899.26 32997.86 24299.81 30796.55 34099.27 33999.61 158
OPU-MVS99.29 25399.12 34799.44 16499.20 17699.40 29399.00 11098.84 41996.54 34199.60 28099.58 174
F-COLMAP98.74 25698.45 27199.62 15199.57 20899.47 15398.84 26999.65 17096.31 38698.93 32199.19 34397.68 25599.87 21596.52 34299.37 32499.53 198
testing9995.86 38095.19 38397.87 36998.76 39595.03 39898.62 29498.44 37898.68 26296.67 41196.66 42974.31 42599.69 35696.51 34398.03 40498.90 361
ADS-MVSNet297.78 32697.66 33398.12 36199.14 34395.36 39499.22 17398.75 36096.97 37498.25 37399.64 19590.90 37299.94 8296.51 34399.56 28999.08 332
ADS-MVSNet97.72 33197.67 33297.86 37099.14 34394.65 40299.22 17398.86 35396.97 37498.25 37399.64 19590.90 37299.84 26796.51 34399.56 28999.08 332
PatchMatch-RL98.68 26498.47 26899.30 25299.44 27099.28 20498.14 34599.54 23597.12 37299.11 30699.25 33197.80 24799.70 35096.51 34399.30 33398.93 357
CMPMVSbinary77.52 2398.50 28398.19 29899.41 22098.33 41299.56 14099.01 24099.59 20795.44 39699.57 19499.80 9395.64 31999.46 41196.47 34799.92 10899.21 295
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 37695.32 38098.02 36298.76 39595.39 39398.38 32798.65 36798.82 24496.84 40896.71 42875.06 42499.71 34796.46 34898.23 39498.98 351
SF-MVS99.10 20298.93 22199.62 15199.58 19899.51 14899.13 20499.65 17097.97 32799.42 24299.61 22298.86 12999.87 21596.45 34999.68 25399.49 220
FE-MVS97.85 32397.42 33799.15 27799.44 27098.75 27199.77 1698.20 38995.85 39199.33 26699.80 9388.86 39099.88 20196.40 35099.12 34798.81 370
DPE-MVScopyleft99.14 19298.92 22599.82 3999.57 20899.77 5698.74 28799.60 20198.55 27599.76 11799.69 16898.23 21699.92 12896.39 35199.75 22099.76 71
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 42389.02 42993.47 40998.30 40399.84 26796.38 352
AllTest99.21 17399.07 18399.63 14299.78 10899.64 11599.12 20899.83 7198.63 26799.63 16899.72 14598.68 15299.75 33596.38 35299.83 17699.51 210
TestCases99.63 14299.78 10899.64 11599.83 7198.63 26799.63 16899.72 14598.68 15299.75 33596.38 35299.83 17699.51 210
testdata99.42 21399.51 23998.93 25799.30 31196.20 38798.87 33199.40 29398.33 20599.89 18796.29 35599.28 33699.44 238
dp96.86 35397.07 34696.24 40198.68 40190.30 42799.19 18298.38 38397.35 36198.23 37599.59 23587.23 39499.82 29296.27 35698.73 37898.59 383
tpmvs97.39 34297.69 33096.52 39798.41 40991.76 41799.30 14498.94 35297.74 34197.85 39299.55 25692.40 35899.73 34196.25 35798.73 37898.06 408
KD-MVS_2432*160095.89 37795.41 37797.31 38694.96 42793.89 40597.09 40699.22 32897.23 36698.88 32899.04 36079.23 41899.54 40196.24 35896.81 41498.50 392
miper_refine_blended95.89 37795.41 37797.31 38694.96 42793.89 40597.09 40699.22 32897.23 36698.88 32899.04 36079.23 41899.54 40196.24 35896.81 41498.50 392
ACMP97.51 1499.05 21098.84 23599.67 11599.78 10899.55 14398.88 26399.66 16097.11 37399.47 22999.60 23099.07 10099.89 18796.18 36099.85 16399.58 174
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23998.72 24599.44 20799.39 28299.42 17198.58 30299.64 17897.31 36399.44 23599.62 21398.59 16599.69 35696.17 36199.79 20799.22 292
DP-MVS Recon98.50 28398.23 29299.31 24999.49 25099.46 15798.56 30799.63 18094.86 40598.85 33399.37 30297.81 24699.59 39596.08 36299.44 31498.88 364
tpm cat196.78 35596.98 34996.16 40298.85 38290.59 42699.08 22399.32 30492.37 41197.73 39899.46 28191.15 36899.69 35696.07 36398.80 36898.21 403
tpm296.35 36696.22 36196.73 39598.88 38091.75 41899.21 17598.51 37493.27 41097.89 38999.21 34084.83 40699.70 35096.04 36498.18 39898.75 377
dmvs_re98.69 26398.48 26799.31 24999.55 22299.42 17199.54 8798.38 38399.32 17198.72 34798.71 39096.76 29399.21 41496.01 36599.35 32799.31 275
test_040299.22 16899.14 15999.45 20399.79 10199.43 16899.28 15399.68 15099.54 13099.40 25399.56 24999.07 10099.82 29296.01 36599.96 7199.11 319
ITE_SJBPF99.38 22899.63 18199.44 16499.73 12398.56 27499.33 26699.53 26098.88 12899.68 36896.01 36599.65 26499.02 348
test_prior297.95 36897.87 33698.05 38399.05 35897.90 23995.99 36899.49 309
testdata299.89 18795.99 368
原ACMM199.37 23199.47 26198.87 26399.27 31696.74 38198.26 37299.32 31597.93 23899.82 29295.96 37099.38 32299.43 244
新几何199.52 18299.50 24599.22 21899.26 31895.66 39598.60 35799.28 32497.67 25699.89 18795.95 37199.32 33199.45 233
MP-MVScopyleft99.06 20798.83 23799.76 6999.76 12099.71 8799.32 13699.50 25898.35 30198.97 31799.48 27498.37 19999.92 12895.95 37199.75 22099.63 137
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 38694.59 38998.61 33698.66 40297.45 35298.54 31197.90 39698.53 27996.54 41396.47 43170.62 43099.81 30795.91 37398.15 39998.56 387
wuyk23d97.58 33599.13 16192.93 40599.69 15999.49 15099.52 8999.77 10397.97 32799.96 2799.79 10399.84 1299.94 8295.85 37499.82 18579.36 423
HQP_MVS98.90 23998.68 24999.55 17499.58 19899.24 21598.80 27999.54 23598.94 22599.14 30299.25 33197.24 27599.82 29295.84 37599.78 21299.60 162
plane_prior599.54 23599.82 29295.84 37599.78 21299.60 162
无先验98.01 36099.23 32595.83 39299.85 25295.79 37799.44 238
CPTT-MVS98.74 25698.44 27299.64 13599.61 18699.38 18399.18 18399.55 22996.49 38299.27 28199.37 30297.11 28399.92 12895.74 37899.67 25999.62 148
PLCcopyleft97.35 1698.36 29697.99 31099.48 19599.32 30899.24 21598.50 31699.51 25495.19 40198.58 35998.96 37496.95 28899.83 28295.63 37999.25 34099.37 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 27598.34 28399.28 25699.18 33999.10 23898.34 32999.41 28098.48 28598.52 36398.98 37097.05 28599.78 32095.59 38099.50 30798.96 352
131498.00 32097.90 32298.27 35798.90 37597.45 35299.30 14499.06 34694.98 40297.21 40499.12 35098.43 19099.67 37395.58 38198.56 38597.71 412
PVSNet_095.53 1995.85 38195.31 38197.47 38098.78 39293.48 41095.72 41799.40 28796.18 38897.37 39997.73 41395.73 31899.58 39695.49 38281.40 42599.36 261
MAR-MVS98.24 30697.92 32099.19 27298.78 39299.65 11299.17 18899.14 34095.36 39798.04 38498.81 38697.47 26599.72 34395.47 38399.06 35198.21 403
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 30797.89 32399.26 26299.19 33699.26 20899.65 5999.69 14791.33 41598.14 38199.77 12298.28 20899.96 5695.41 38499.55 29398.58 385
train_agg98.35 29997.95 31499.57 16899.35 29399.35 19398.11 34999.41 28094.90 40397.92 38798.99 36798.02 23199.85 25295.38 38599.44 31499.50 215
9.1498.64 25099.45 26998.81 27699.60 20197.52 35299.28 28099.56 24998.53 17799.83 28295.36 38699.64 266
APD-MVScopyleft98.87 24498.59 25599.71 10499.50 24599.62 12299.01 24099.57 21896.80 38099.54 20999.63 20698.29 20799.91 15095.24 38799.71 24299.61 158
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 37795.20 388
AdaColmapbinary98.60 27098.35 28299.38 22899.12 34799.22 21898.67 29299.42 27997.84 33998.81 33799.27 32697.32 27399.81 30795.14 38999.53 30099.10 321
test9_res95.10 39099.44 31499.50 215
CDPH-MVS98.56 27698.20 29599.61 15499.50 24599.46 15798.32 33199.41 28095.22 39999.21 29299.10 35498.34 20399.82 29295.09 39199.66 26299.56 181
BH-untuned98.22 30998.09 30498.58 34099.38 28597.24 35898.55 30898.98 35197.81 34099.20 29798.76 38897.01 28699.65 38494.83 39298.33 39098.86 366
BP-MVS94.73 393
HQP-MVS98.36 29698.02 30999.39 22599.31 30998.94 25497.98 36499.37 29597.45 35598.15 37798.83 38396.67 29499.70 35094.73 39399.67 25999.53 198
QAPM98.40 29497.99 31099.65 12899.39 28299.47 15399.67 5099.52 24991.70 41498.78 34399.80 9398.55 17199.95 6694.71 39599.75 22099.53 198
agg_prior294.58 39699.46 31399.50 215
myMVS_eth3d95.63 38494.73 38698.34 35198.50 40796.36 37798.60 29799.21 33197.89 33396.76 40996.37 43272.10 42899.57 39794.38 39798.73 37899.09 326
BH-RMVSNet98.41 29298.14 30199.21 26999.21 33198.47 29398.60 29798.26 38798.35 30198.93 32199.31 31897.20 28099.66 37894.32 39899.10 34999.51 210
E-PMN97.14 34997.43 33696.27 40098.79 39091.62 41995.54 41899.01 35099.44 15198.88 32899.12 35092.78 35299.68 36894.30 39999.03 35597.50 413
MG-MVS98.52 28098.39 27798.94 30499.15 34297.39 35598.18 34099.21 33198.89 23599.23 28799.63 20697.37 27199.74 33894.22 40099.61 27799.69 91
API-MVS98.38 29598.39 27798.35 34998.83 38499.26 20899.14 19899.18 33598.59 27298.66 35298.78 38798.61 16399.57 39794.14 40199.56 28996.21 420
PAPM_NR98.36 29698.04 30799.33 24199.48 25598.93 25798.79 28299.28 31597.54 35098.56 36298.57 39597.12 28299.69 35694.09 40298.90 36699.38 255
ZD-MVS99.43 27399.61 12899.43 27796.38 38499.11 30699.07 35697.86 24299.92 12894.04 40399.49 309
DPM-MVS98.28 30297.94 31899.32 24699.36 29099.11 23397.31 40098.78 35996.88 37698.84 33499.11 35397.77 24999.61 39394.03 40499.36 32599.23 290
gg-mvs-nofinetune95.87 37995.17 38497.97 36598.19 41596.95 36599.69 4289.23 42899.89 4096.24 41699.94 1981.19 41099.51 40793.99 40598.20 39597.44 414
PMVScopyleft92.94 2198.82 24898.81 23998.85 31999.84 6297.99 32899.20 17699.47 26699.71 8799.42 24299.82 8398.09 22699.47 40993.88 40699.85 16399.07 337
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 35297.28 34095.99 40398.76 39591.03 42295.26 42098.61 36899.34 16898.92 32498.88 38193.79 34099.66 37892.87 40799.05 35397.30 417
BH-w/o97.20 34697.01 34897.76 37399.08 35895.69 39098.03 35998.52 37395.76 39397.96 38698.02 40895.62 32099.47 40992.82 40897.25 41398.12 407
TR-MVS97.44 34097.15 34598.32 35298.53 40597.46 35198.47 31997.91 39596.85 37798.21 37698.51 39996.42 30399.51 40792.16 40997.29 41297.98 409
OpenMVS_ROBcopyleft97.31 1797.36 34496.84 35498.89 31799.29 31599.45 16298.87 26599.48 26386.54 42099.44 23599.74 13497.34 27299.86 23491.61 41099.28 33697.37 416
GG-mvs-BLEND97.36 38397.59 42396.87 36899.70 3588.49 42994.64 42297.26 42280.66 41299.12 41591.50 41196.50 41896.08 422
DeepMVS_CXcopyleft97.98 36499.69 15996.95 36599.26 31875.51 42395.74 41998.28 40496.47 30199.62 38891.23 41297.89 40697.38 415
PAPR97.56 33697.07 34699.04 29598.80 38898.11 32097.63 38499.25 32194.56 40898.02 38598.25 40597.43 26799.68 36890.90 41398.74 37599.33 268
MVS95.72 38394.63 38898.99 29898.56 40497.98 33399.30 14498.86 35372.71 42497.30 40199.08 35598.34 20399.74 33889.21 41498.33 39099.26 283
thres600view796.60 36096.16 36297.93 36799.63 18196.09 38599.18 18397.57 40098.77 25398.72 34797.32 42087.04 39699.72 34388.57 41598.62 38397.98 409
FPMVS96.32 36795.50 37598.79 32799.60 18898.17 31598.46 32398.80 35897.16 37096.28 41499.63 20682.19 40999.09 41688.45 41698.89 36799.10 321
PCF-MVS96.03 1896.73 35795.86 36999.33 24199.44 27099.16 22796.87 41199.44 27486.58 41998.95 31999.40 29394.38 33499.88 20187.93 41799.80 20298.95 354
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 36596.03 36597.47 38099.63 18195.93 38699.18 18397.57 40098.75 25798.70 35097.31 42187.04 39699.67 37387.62 41898.51 38796.81 418
tfpn200view996.30 36895.89 36797.53 37799.58 19896.11 38399.00 24397.54 40398.43 28798.52 36396.98 42386.85 39899.67 37387.62 41898.51 38796.81 418
thres40096.40 36495.89 36797.92 36899.58 19896.11 38399.00 24397.54 40398.43 28798.52 36396.98 42386.85 39899.67 37387.62 41898.51 38797.98 409
thres20096.09 37395.68 37397.33 38599.48 25596.22 38298.53 31397.57 40098.06 32298.37 37096.73 42786.84 40099.61 39386.99 42198.57 38496.16 421
MVEpermissive92.54 2296.66 35996.11 36398.31 35499.68 16797.55 34897.94 36995.60 41499.37 16490.68 42598.70 39196.56 29798.61 42186.94 42299.55 29398.77 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 34596.83 35598.59 33899.46 26597.55 34899.25 16596.84 40898.78 25197.24 40397.67 41497.11 28398.97 41886.59 42398.54 38699.27 281
PAPM95.61 38594.71 38798.31 35499.12 34796.63 37196.66 41498.46 37790.77 41696.25 41598.68 39293.01 35099.69 35681.60 42497.86 40898.62 380
dongtai89.37 39088.91 39390.76 40699.19 33677.46 43195.47 41987.82 43092.28 41294.17 42398.82 38571.22 42995.54 42563.85 42597.34 41199.27 281
kuosan85.65 39284.57 39588.90 40897.91 42077.11 43296.37 41687.62 43185.24 42185.45 42696.83 42669.94 43190.98 42745.90 42695.83 42298.62 380
test12329.31 39333.05 39818.08 40925.93 43312.24 43497.53 39010.93 43411.78 42724.21 42850.08 43921.04 4328.60 42823.51 42732.43 42733.39 424
testmvs28.94 39433.33 39615.79 41026.03 4329.81 43596.77 41215.67 43311.55 42823.87 42950.74 43819.03 4338.53 42923.21 42833.07 42629.03 425
mmdepth8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
test_blank8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k24.88 39533.17 3970.00 4110.00 4340.00 4360.00 42299.62 1830.00 4290.00 43099.13 34699.82 130.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas16.61 39622.14 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 199.28 710.00 4300.00 4290.00 4280.00 426
sosnet-low-res8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
sosnet8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
Regformer8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.26 40711.02 4100.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43099.16 3440.00 4340.00 4300.00 4290.00 4280.00 426
uanet8.33 39711.11 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 430100.00 10.00 4340.00 4300.00 4290.00 4280.00 426
FOURS199.83 6699.89 1099.74 2499.71 13599.69 9599.63 168
test_one_060199.63 18199.76 6399.55 22999.23 18599.31 27499.61 22298.59 165
eth-test20.00 434
eth-test0.00 434
test_241102_ONE99.69 15999.82 3799.54 23599.12 20899.82 8599.49 27198.91 12499.52 406
save fliter99.53 23099.25 21198.29 33399.38 29499.07 212
test072699.69 15999.80 4699.24 16699.57 21899.16 19999.73 13499.65 19398.35 201
GSMVS99.14 315
test_part299.62 18599.67 10499.55 207
sam_mvs190.81 37699.14 315
sam_mvs90.52 381
MTGPAbinary99.53 244
test_post52.41 43690.25 38399.86 234
patchmatchnet-post99.62 21390.58 37999.94 82
MTMP99.09 22098.59 371
TEST999.35 29399.35 19398.11 34999.41 28094.83 40697.92 38798.99 36798.02 23199.85 252
test_899.34 30299.31 19998.08 35399.40 28794.90 40397.87 39198.97 37298.02 23199.84 267
agg_prior99.35 29399.36 19099.39 29097.76 39799.85 252
test_prior499.19 22498.00 362
test_prior99.46 20099.35 29399.22 21899.39 29099.69 35699.48 224
新几何298.04 357
旧先验199.49 25099.29 20299.26 31899.39 29797.67 25699.36 32599.46 232
原ACMM297.92 371
test22299.51 23999.08 24097.83 37799.29 31295.21 40098.68 35199.31 31897.28 27499.38 32299.43 244
segment_acmp98.37 199
testdata197.72 38097.86 338
test1299.54 17999.29 31599.33 19699.16 33898.43 36897.54 26399.82 29299.47 31199.48 224
plane_prior799.58 19899.38 183
plane_prior699.47 26199.26 20897.24 275
plane_prior499.25 331
plane_prior399.31 19998.36 29699.14 302
plane_prior298.80 27998.94 225
plane_prior199.51 239
plane_prior99.24 21598.42 32597.87 33699.71 242
n20.00 435
nn0.00 435
door-mid99.83 71
test1199.29 312
door99.77 103
HQP5-MVS98.94 254
HQP-NCC99.31 30997.98 36497.45 35598.15 377
ACMP_Plane99.31 30997.98 36497.45 35598.15 377
HQP4-MVS98.15 37799.70 35099.53 198
HQP3-MVS99.37 29599.67 259
HQP2-MVS96.67 294
NP-MVS99.40 28199.13 23098.83 383
ACMMP++_ref99.94 97
ACMMP++99.79 207
Test By Simon98.41 193