This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 9
v192192099.56 4599.57 4399.55 15199.75 9899.11 21299.05 19199.61 14999.15 15799.88 3399.71 10899.08 6799.87 18199.90 299.97 3399.66 80
v124099.56 4599.58 4099.51 16299.80 5899.00 22499.00 20199.65 13199.15 15799.90 2399.75 8899.09 6399.88 16899.90 299.96 4599.67 70
v1099.69 2199.69 1999.66 9999.81 5399.39 15799.66 4699.75 7799.60 8699.92 1999.87 3398.75 11299.86 20199.90 299.99 1299.73 46
v119299.57 4299.57 4399.57 14499.77 8399.22 19899.04 19399.60 16199.18 14799.87 4099.72 10199.08 6799.85 21999.89 599.98 2499.66 80
v14419299.55 4899.54 4899.58 13999.78 7599.20 20499.11 18099.62 14299.18 14799.89 2799.72 10198.66 12399.87 18199.88 699.97 3399.66 80
v899.68 2499.69 1999.65 10499.80 5899.40 15599.66 4699.76 7099.64 7299.93 1599.85 4298.66 12399.84 23699.88 699.99 1299.71 50
v114499.54 5099.53 5299.59 13499.79 6899.28 18199.10 18199.61 14999.20 14599.84 4699.73 9598.67 12199.84 23699.86 899.98 2499.64 97
v7n99.82 1099.80 1099.88 1199.96 499.84 2199.82 899.82 4199.84 3099.94 1299.91 2199.13 6099.96 3799.83 999.99 1299.83 18
v2v48299.50 5499.47 5699.58 13999.78 7599.25 18999.14 16899.58 17799.25 13699.81 6099.62 16898.24 17799.84 23699.83 999.97 3399.64 97
V4299.56 4599.54 4899.63 11799.79 6899.46 13699.39 9399.59 16899.24 13899.86 4199.70 11598.55 13799.82 25799.79 1199.95 5499.60 128
mvs_tets99.90 299.90 299.90 499.96 499.79 3999.72 2499.88 1999.92 799.98 399.93 1599.94 199.98 899.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4599.68 3899.85 2899.95 399.98 399.92 1899.28 4299.98 899.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4299.70 2999.86 2499.89 1499.98 399.90 2399.94 199.98 899.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 51100.00 199.90 8100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 14
CS-MVS-test99.59 4099.59 3699.60 13199.55 18499.86 1399.60 6499.94 899.90 899.59 15098.89 34399.24 4799.95 4799.66 1699.90 8998.98 309
CS-MVS99.67 2699.70 1799.59 13499.54 18699.86 1399.80 1099.96 599.90 899.59 15099.41 24999.51 2399.95 4799.65 1799.90 8998.97 310
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1299.85 2799.94 1299.95 1399.73 899.90 13799.65 1799.97 3399.69 57
MIMVSNet199.66 2799.62 2999.80 2999.94 1099.87 1099.69 3599.77 6599.78 4299.93 1599.89 2797.94 20399.92 9599.65 1799.98 2499.62 113
DROMVSNet99.69 2199.69 1999.68 8999.71 11499.91 299.76 1499.96 599.86 2299.51 18399.39 25799.57 2099.93 7599.64 2099.86 12399.20 266
K. test v398.87 20598.60 21599.69 8899.93 1399.46 13699.74 1894.97 36999.78 4299.88 3399.88 3093.66 30799.97 1999.61 2199.95 5499.64 97
KD-MVS_self_test99.63 3399.59 3699.76 4799.84 3599.90 599.37 9999.79 5799.83 3399.88 3399.85 4298.42 15899.90 13799.60 2299.73 19999.49 190
Anonymous2024052199.44 6999.42 6899.49 16899.89 2198.96 23099.62 5499.76 7099.85 2799.82 5399.88 3096.39 27399.97 1999.59 2399.98 2499.55 154
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1699.75 1699.86 2499.70 5599.91 2199.89 2799.60 1999.87 18199.59 2399.74 19299.71 50
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2599.83 699.85 2899.80 3999.93 1599.93 1598.54 13999.93 7599.59 2399.98 2499.76 41
EU-MVSNet99.39 8499.62 2998.72 29399.88 2596.44 33499.56 7299.85 2899.90 899.90 2399.85 4298.09 19199.83 24799.58 2699.95 5499.90 4
mvs_anonymous99.28 11199.39 7198.94 26799.19 29997.81 30399.02 19799.55 19099.78 4299.85 4399.80 6098.24 17799.86 20199.57 2799.50 27299.15 277
test111197.74 28998.16 26396.49 35099.60 15489.86 37999.71 2891.21 37699.89 1499.88 3399.87 3393.73 30699.90 13799.56 2899.99 1299.70 53
lessismore_v099.64 11199.86 3199.38 16090.66 37799.89 2799.83 4894.56 29799.97 1999.56 2899.92 7999.57 148
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2599.76 1499.87 2199.73 4699.89 2799.87 3399.63 1499.87 18199.54 3099.92 7999.63 102
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 999.90 899.97 699.87 3399.81 599.95 4799.54 3099.99 1299.80 25
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_test8_iter0597.35 30597.25 30297.63 32998.81 34693.13 36199.26 12999.89 1699.51 9499.83 5199.68 13279.03 37999.88 16899.53 3299.72 20599.89 8
DSMNet-mixed99.48 5899.65 2598.95 26699.71 11497.27 31899.50 7799.82 4199.59 8899.41 20999.85 4299.62 16100.00 199.53 3299.89 9999.59 137
test250694.73 34094.59 34295.15 35699.59 15885.90 38199.75 1674.01 38299.89 1499.71 10499.86 3979.00 38099.90 13799.52 3499.99 1299.65 88
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9799.93 599.95 1199.89 2799.71 999.96 3799.51 3599.97 3399.84 14
FC-MVSNet-test99.70 1999.65 2599.86 1699.88 2599.86 1399.72 2499.78 6299.90 899.82 5399.83 4898.45 15499.87 18199.51 3599.97 3399.86 11
UA-Net99.78 1399.76 1499.86 1699.72 11199.71 7199.91 399.95 799.96 299.71 10499.91 2199.15 5599.97 1999.50 37100.00 199.90 4
PMMVS299.48 5899.45 6199.57 14499.76 8798.99 22598.09 30299.90 1598.95 17999.78 7199.58 19499.57 2099.93 7599.48 3899.95 5499.79 31
VPA-MVSNet99.66 2799.62 2999.79 3499.68 13599.75 5699.62 5499.69 10899.85 2799.80 6399.81 5898.81 9799.91 11799.47 3999.88 10799.70 53
ECVR-MVScopyleft97.73 29098.04 26996.78 34399.59 15890.81 37599.72 2490.43 37899.89 1499.86 4199.86 3993.60 30899.89 15399.46 4099.99 1299.65 88
nrg03099.70 1999.66 2399.82 2399.76 8799.84 2199.61 5999.70 10299.93 599.78 7199.68 13299.10 6199.78 28499.45 4199.96 4599.83 18
TAMVS99.49 5699.45 6199.63 11799.48 21999.42 15099.45 8499.57 17999.66 6899.78 7199.83 4897.85 21299.86 20199.44 4299.96 4599.61 124
GeoE99.69 2199.66 2399.78 3799.76 8799.76 5299.60 6499.82 4199.46 10699.75 8499.56 20599.63 1499.95 4799.43 4399.88 10799.62 113
new-patchmatchnet99.35 9499.57 4398.71 29599.82 4696.62 33298.55 26199.75 7799.50 9599.88 3399.87 3399.31 3899.88 16899.43 43100.00 199.62 113
test20.0399.55 4899.54 4899.58 13999.79 6899.37 16399.02 19799.89 1699.60 8699.82 5399.62 16898.81 9799.89 15399.43 4399.86 12399.47 200
MVSFormer99.41 7799.44 6399.31 22399.57 17398.40 27299.77 1299.80 5199.73 4699.63 13199.30 27998.02 19799.98 899.43 4399.69 21499.55 154
test_djsdf99.84 899.81 999.91 299.94 1099.84 2199.77 1299.80 5199.73 4699.97 699.92 1899.77 799.98 899.43 43100.00 199.90 4
Anonymous2023121199.62 3699.57 4399.76 4799.61 15299.60 11099.81 999.73 8599.82 3599.90 2399.90 2397.97 20299.86 20199.42 4899.96 4599.80 25
SixPastTwentyTwo99.42 7399.30 9299.76 4799.92 1499.67 8799.70 2999.14 30999.65 7099.89 2799.90 2396.20 27899.94 6199.42 4899.92 7999.67 70
bset_n11_16_dypcd98.69 22598.45 23299.42 18999.69 12698.52 26496.06 36796.80 36299.71 5099.73 9799.54 21495.14 29099.96 3799.39 5099.95 5499.79 31
patch_mono-299.51 5399.46 6099.64 11199.70 12299.11 21299.04 19399.87 2199.71 5099.47 18999.79 6698.24 17799.98 899.38 5199.96 4599.83 18
UGNet99.38 8699.34 8199.49 16898.90 33398.90 24099.70 2999.35 26999.86 2298.57 31799.81 5898.50 14999.93 7599.38 5199.98 2499.66 80
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 1899.67 2299.81 2699.89 2199.72 6999.59 6699.82 4199.39 11799.82 5399.84 4799.38 3099.91 11799.38 5199.93 7599.80 25
FIs99.65 3299.58 4099.84 1999.84 3599.85 1699.66 4699.75 7799.86 2299.74 9399.79 6698.27 17599.85 21999.37 5499.93 7599.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2199.85 2899.70 5599.92 1999.93 1599.45 2499.97 1999.36 55100.00 199.85 13
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3599.92 999.67 6499.77 7699.75 8899.61 1799.98 899.35 5699.98 2499.72 47
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 3899.64 2799.53 15799.79 6898.82 24499.58 6899.97 299.95 399.96 899.76 8398.44 15599.99 599.34 5799.96 4599.78 33
test_part198.63 22998.26 25299.75 5799.40 24599.49 12999.67 4299.68 11199.86 2299.88 3399.86 3986.73 36299.93 7599.34 5799.97 3399.81 24
CHOSEN 1792x268899.39 8499.30 9299.65 10499.88 2599.25 18998.78 24099.88 1998.66 21299.96 899.79 6697.45 23599.93 7599.34 5799.99 1299.78 33
CDS-MVSNet99.22 13199.13 12399.50 16599.35 25799.11 21298.96 21399.54 19699.46 10699.61 14599.70 11596.31 27599.83 24799.34 5799.88 10799.55 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 18499.16 11698.51 30099.75 9895.90 34298.07 30599.84 3499.84 3099.89 2799.73 9596.01 28299.99 599.33 61100.00 199.63 102
HyFIR lowres test98.91 19798.64 21299.73 7399.85 3499.47 13298.07 30599.83 3698.64 21499.89 2799.60 18692.57 316100.00 199.33 6199.97 3399.72 47
pmmvs599.19 14199.11 13099.42 18999.76 8798.88 24198.55 26199.73 8598.82 19799.72 9999.62 16896.56 26499.82 25799.32 6399.95 5499.56 151
v14899.40 8099.41 6999.39 20299.76 8798.94 23299.09 18599.59 16899.17 15199.81 6099.61 17798.41 15999.69 31799.32 6399.94 6799.53 167
baseline99.63 3399.62 2999.66 9999.80 5899.62 10299.44 8799.80 5199.71 5099.72 9999.69 12199.15 5599.83 24799.32 6399.94 6799.53 167
CVMVSNet98.61 23198.88 19097.80 32499.58 16393.60 35999.26 12999.64 13799.66 6899.72 9999.67 13893.26 31099.93 7599.30 6699.81 15999.87 9
PS-CasMVS99.66 2799.58 4099.89 799.80 5899.85 1699.66 4699.73 8599.62 7699.84 4699.71 10898.62 12799.96 3799.30 6699.96 4599.86 11
DTE-MVSNet99.68 2499.61 3399.88 1199.80 5899.87 1099.67 4299.71 9799.72 4999.84 4699.78 7398.67 12199.97 1999.30 6699.95 5499.80 25
tmp_tt95.75 33695.42 33496.76 34489.90 38194.42 35498.86 22397.87 35278.01 37299.30 23699.69 12197.70 21995.89 37699.29 6998.14 35499.95 1
PEN-MVS99.66 2799.59 3699.89 799.83 3999.87 1099.66 4699.73 8599.70 5599.84 4699.73 9598.56 13699.96 3799.29 6999.94 6799.83 18
WR-MVS_H99.61 3899.53 5299.87 1499.80 5899.83 2599.67 4299.75 7799.58 8999.85 4399.69 12198.18 18799.94 6199.28 7199.95 5499.83 18
IterMVS98.97 18899.16 11698.42 30499.74 10495.64 34598.06 30799.83 3699.83 3399.85 4399.74 9196.10 28199.99 599.27 72100.00 199.63 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 23198.34 24599.44 18399.60 15498.67 25399.27 12799.44 24199.68 6099.32 22799.49 23192.50 319100.00 199.24 7396.51 36999.65 88
hse-mvs298.52 24598.30 24999.16 24699.29 28098.60 26098.77 24199.02 31699.68 6099.32 22799.04 32192.50 31999.85 21999.24 7397.87 36099.03 302
FMVSNet199.66 2799.63 2899.73 7399.78 7599.77 4599.68 3899.70 10299.67 6499.82 5399.83 4898.98 7899.90 13799.24 7399.97 3399.53 167
casdiffmvs99.63 3399.61 3399.67 9299.79 6899.59 11399.13 17499.85 2899.79 4199.76 7899.72 10199.33 3799.82 25799.21 7699.94 6799.59 137
CP-MVSNet99.54 5099.43 6699.87 1499.76 8799.82 2999.57 7099.61 14999.54 9099.80 6399.64 14997.79 21699.95 4799.21 7699.94 6799.84 14
DELS-MVS99.34 9999.30 9299.48 17299.51 20299.36 16698.12 29899.53 20599.36 12199.41 20999.61 17799.22 4999.87 18199.21 7699.68 21999.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RRT_MVS98.75 21798.54 22599.41 19798.14 37198.61 25998.98 21099.66 12099.31 12799.84 4699.75 8891.98 32299.98 899.20 7999.95 5499.62 113
UniMVSNet (Re)99.37 8999.26 10499.68 8999.51 20299.58 11698.98 21099.60 16199.43 11499.70 10799.36 26597.70 21999.88 16899.20 7999.87 11699.59 137
CANet99.11 16299.05 15199.28 22898.83 34298.56 26198.71 24999.41 24899.25 13699.23 24499.22 29897.66 22899.94 6199.19 8199.97 3399.33 240
EI-MVSNet-UG-set99.48 5899.50 5499.42 18999.57 17398.65 25899.24 13799.46 23699.68 6099.80 6399.66 14298.99 7799.89 15399.19 8199.90 8999.72 47
xiu_mvs_v1_base_debu99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base_debi99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
MVS_030498.88 20398.71 20699.39 20298.85 34098.91 23999.45 8499.30 28198.56 22197.26 36199.68 13296.18 27999.96 3799.17 8699.94 6799.29 249
VPNet99.46 6599.37 7699.71 8399.82 4699.59 11399.48 8199.70 10299.81 3699.69 11099.58 19497.66 22899.86 20199.17 8699.44 28099.67 70
UniMVSNet_NR-MVSNet99.37 8999.25 10699.72 7999.47 22499.56 11998.97 21299.61 14999.43 11499.67 11799.28 28497.85 21299.95 4799.17 8699.81 15999.65 88
DU-MVS99.33 10399.21 11199.71 8399.43 23699.56 11998.83 22899.53 20599.38 11899.67 11799.36 26597.67 22499.95 4799.17 8699.81 15999.63 102
EI-MVSNet-Vis-set99.47 6499.49 5599.42 18999.57 17398.66 25599.24 13799.46 23699.67 6499.79 6899.65 14798.97 8099.89 15399.15 9099.89 9999.71 50
EI-MVSNet99.38 8699.44 6399.21 24099.58 16398.09 29199.26 12999.46 23699.62 7699.75 8499.67 13898.54 13999.85 21999.15 9099.92 7999.68 63
VNet99.18 14599.06 14799.56 14899.24 29099.36 16699.33 10699.31 27899.67 6499.47 18999.57 20296.48 26799.84 23699.15 9099.30 30199.47 200
EG-PatchMatch MVS99.57 4299.56 4799.62 12699.77 8399.33 17399.26 12999.76 7099.32 12699.80 6399.78 7399.29 4099.87 18199.15 9099.91 8899.66 80
PVSNet_Blended_VisFu99.40 8099.38 7399.44 18399.90 1998.66 25598.94 21699.91 1297.97 27499.79 6899.73 9599.05 7299.97 1999.15 9099.99 1299.68 63
IterMVS-LS99.41 7799.47 5699.25 23599.81 5398.09 29198.85 22599.76 7099.62 7699.83 5199.64 14998.54 13999.97 1999.15 9099.99 1299.68 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 5099.47 5699.76 4799.58 16399.64 9699.30 11699.63 13999.61 8099.71 10499.56 20598.76 11099.96 3799.14 9699.92 7999.68 63
MVSTER98.47 25298.22 25599.24 23799.06 31998.35 27799.08 18899.46 23699.27 13299.75 8499.66 14288.61 35299.85 21999.14 9699.92 7999.52 177
Anonymous2023120699.35 9499.31 8799.47 17499.74 10499.06 22399.28 12499.74 8299.23 14099.72 9999.53 21797.63 23099.88 16899.11 9899.84 13299.48 195
MVS_Test99.28 11199.31 8799.19 24399.35 25798.79 24799.36 10299.49 22699.17 15199.21 25099.67 13898.78 10699.66 33799.09 9999.66 23099.10 287
testgi99.29 11099.26 10499.37 20999.75 9898.81 24598.84 22699.89 1698.38 24199.75 8499.04 32199.36 3599.86 20199.08 10099.25 30799.45 206
1112_ss99.05 17298.84 19599.67 9299.66 14199.29 17998.52 26699.82 4197.65 29199.43 19999.16 30596.42 27099.91 11799.07 10199.84 13299.80 25
CANet_DTU98.91 19798.85 19399.09 25498.79 34898.13 28698.18 29199.31 27899.48 9798.86 29199.51 22396.56 26499.95 4799.05 10299.95 5499.19 269
Baseline_NR-MVSNet99.49 5699.37 7699.82 2399.91 1599.84 2198.83 22899.86 2499.68 6099.65 12599.88 3097.67 22499.87 18199.03 10399.86 12399.76 41
FMVSNet299.35 9499.28 9999.55 15199.49 21399.35 17099.45 8499.57 17999.44 10999.70 10799.74 9197.21 24799.87 18199.03 10399.94 6799.44 211
Test_1112_low_res98.95 19498.73 20499.63 11799.68 13599.15 20998.09 30299.80 5197.14 31899.46 19399.40 25396.11 28099.89 15399.01 10599.84 13299.84 14
VDD-MVS99.20 13899.11 13099.44 18399.43 23698.98 22699.50 7798.32 34599.80 3999.56 16499.69 12196.99 25799.85 21998.99 10699.73 19999.50 185
DeepC-MVS98.90 499.62 3699.61 3399.67 9299.72 11199.44 14399.24 13799.71 9799.27 13299.93 1599.90 2399.70 1199.93 7598.99 10699.99 1299.64 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 5899.47 5699.51 16299.77 8399.41 15498.81 23399.66 12099.42 11699.75 8499.66 14299.20 5099.76 29498.98 10899.99 1299.36 234
EPNet_dtu97.62 29597.79 28997.11 34296.67 37692.31 36598.51 26798.04 34799.24 13895.77 37099.47 23993.78 30599.66 33798.98 10899.62 23899.37 231
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvs99.34 9999.32 8699.39 20299.67 14098.77 24898.57 25999.81 5099.61 8099.48 18799.41 24998.47 15099.86 20198.97 11099.90 8999.53 167
NR-MVSNet99.40 8099.31 8799.68 8999.43 23699.55 12299.73 2199.50 22199.46 10699.88 3399.36 26597.54 23299.87 18198.97 11099.87 11699.63 102
GBi-Net99.42 7399.31 8799.73 7399.49 21399.77 4599.68 3899.70 10299.44 10999.62 13999.83 4897.21 24799.90 13798.96 11299.90 8999.53 167
FMVSNet597.80 28697.25 30299.42 18998.83 34298.97 22899.38 9599.80 5198.87 19199.25 24099.69 12180.60 37499.91 11798.96 11299.90 8999.38 228
test199.42 7399.31 8799.73 7399.49 21399.77 4599.68 3899.70 10299.44 10999.62 13999.83 4897.21 24799.90 13798.96 11299.90 8999.53 167
FMVSNet398.80 21298.63 21499.32 22099.13 30798.72 25099.10 18199.48 22899.23 14099.62 13999.64 14992.57 31699.86 20198.96 11299.90 8999.39 226
UnsupCasMVSNet_eth98.83 20898.57 22199.59 13499.68 13599.45 14198.99 20699.67 11699.48 9799.55 16999.36 26594.92 29199.86 20198.95 11696.57 36899.45 206
CHOSEN 280x42098.41 25798.41 23798.40 30599.34 26795.89 34396.94 36199.44 24198.80 20099.25 24099.52 21993.51 30999.98 898.94 11799.98 2499.32 243
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1699.86 599.92 999.69 5899.78 7199.92 1899.37 3299.88 16898.93 11899.95 5499.60 128
Regformer-499.45 6799.44 6399.50 16599.52 19798.94 23299.17 15899.53 20599.64 7299.76 7899.60 18698.96 8399.90 13798.91 11999.84 13299.67 70
Regformer-399.41 7799.41 6999.40 19999.52 19798.70 25199.17 15899.44 24199.62 7699.75 8499.60 18698.90 9099.85 21998.89 12099.84 13299.65 88
alignmvs98.28 26797.96 27599.25 23599.12 30998.93 23699.03 19698.42 34199.64 7298.72 30697.85 37190.86 33899.62 34898.88 12199.13 31299.19 269
sss98.90 19998.77 20399.27 23099.48 21998.44 26998.72 24799.32 27497.94 27899.37 21799.35 27096.31 27599.91 11798.85 12299.63 23799.47 200
xiu_mvs_v2_base99.02 17899.11 13098.77 29099.37 25398.09 29198.13 29799.51 21799.47 10299.42 20198.54 36099.38 3099.97 1998.83 12399.33 29898.24 350
PS-MVSNAJ99.00 18499.08 14198.76 29199.37 25398.10 29098.00 31299.51 21799.47 10299.41 20998.50 36299.28 4299.97 1998.83 12399.34 29698.20 354
D2MVS99.22 13199.19 11399.29 22699.69 12698.74 24998.81 23399.41 24898.55 22399.68 11299.69 12198.13 18999.87 18198.82 12599.98 2499.24 255
PatchT98.45 25498.32 24898.83 28598.94 33198.29 27899.24 13798.82 32499.84 3099.08 26899.76 8391.37 32899.94 6198.82 12599.00 32098.26 349
Effi-MVS+99.06 16998.97 17599.34 21499.31 27498.98 22698.31 28399.91 1298.81 19898.79 29998.94 33899.14 5899.84 23698.79 12798.74 33599.20 266
canonicalmvs99.02 17899.00 16699.09 25499.10 31598.70 25199.61 5999.66 12099.63 7598.64 31197.65 37399.04 7399.54 35798.79 12798.92 32499.04 301
VDDNet98.97 18898.82 19899.42 18999.71 11498.81 24599.62 5498.68 32999.81 3699.38 21699.80 6094.25 29999.85 21998.79 12799.32 29999.59 137
CR-MVSNet98.35 26498.20 25798.83 28599.05 32098.12 28799.30 11699.67 11697.39 30699.16 25799.79 6691.87 32599.91 11798.78 13098.77 33198.44 343
test_method91.72 34192.32 34489.91 35893.49 38070.18 38290.28 37199.56 18461.71 37595.39 37299.52 21993.90 30199.94 6198.76 13198.27 34999.62 113
RPMNet98.60 23398.53 22798.83 28599.05 32098.12 28799.30 11699.62 14299.86 2299.16 25799.74 9192.53 31899.92 9598.75 13298.77 33198.44 343
pmmvs499.13 15699.06 14799.36 21299.57 17399.10 21798.01 31099.25 29298.78 20399.58 15499.44 24698.24 17799.76 29498.74 13399.93 7599.22 260
tttt051797.62 29597.20 30498.90 27999.76 8797.40 31599.48 8194.36 37199.06 17099.70 10799.49 23184.55 36899.94 6198.73 13499.65 23399.36 234
EPP-MVSNet99.17 14999.00 16699.66 9999.80 5899.43 14799.70 2999.24 29599.48 9799.56 16499.77 8094.89 29299.93 7598.72 13599.89 9999.63 102
Anonymous2024052999.42 7399.34 8199.65 10499.53 19299.60 11099.63 5399.39 25899.47 10299.76 7899.78 7398.13 18999.86 20198.70 13699.68 21999.49 190
ACMH98.42 699.59 4099.54 4899.72 7999.86 3199.62 10299.56 7299.79 5798.77 20499.80 6399.85 4299.64 1399.85 21998.70 13699.89 9999.70 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 10399.28 9999.47 17499.57 17399.39 15799.78 1199.43 24598.87 19199.57 15799.82 5598.06 19499.87 18198.69 13899.73 19999.15 277
LFMVS98.46 25398.19 26099.26 23299.24 29098.52 26499.62 5496.94 36199.87 2099.31 23199.58 19491.04 33399.81 27398.68 13999.42 28599.45 206
WR-MVS99.11 16298.93 18099.66 9999.30 27899.42 15098.42 27699.37 26599.04 17199.57 15799.20 30296.89 25999.86 20198.66 14099.87 11699.70 53
Anonymous20240521198.75 21798.46 23199.63 11799.34 26799.66 8999.47 8397.65 35499.28 13199.56 16499.50 22693.15 31199.84 23698.62 14199.58 25399.40 223
EPNet98.13 27597.77 29099.18 24594.57 37997.99 29599.24 13797.96 34999.74 4597.29 36099.62 16893.13 31299.97 1998.59 14299.83 14299.58 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 17299.09 13998.91 27399.21 29498.36 27698.82 23299.47 23298.85 19398.90 28699.56 20598.78 10699.09 37098.57 14399.68 21999.26 252
Patchmatch-RL test98.60 23398.36 24299.33 21699.77 8399.07 22198.27 28699.87 2198.91 18699.74 9399.72 10190.57 34299.79 28198.55 14499.85 12799.11 285
pmmvs398.08 27897.80 28798.91 27399.41 24297.69 30897.87 32699.66 12095.87 34099.50 18599.51 22390.35 34499.97 1998.55 14499.47 27799.08 293
ETV-MVS99.18 14599.18 11499.16 24699.34 26799.28 18199.12 17899.79 5799.48 9798.93 28098.55 35999.40 2599.93 7598.51 14699.52 26998.28 348
jason99.16 15099.11 13099.32 22099.75 9898.44 26998.26 28799.39 25898.70 21099.74 9399.30 27998.54 13999.97 1998.48 14799.82 15199.55 154
jason: jason.
APDe-MVS99.48 5899.36 7999.85 1899.55 18499.81 3299.50 7799.69 10898.99 17399.75 8499.71 10898.79 10499.93 7598.46 14899.85 12799.80 25
CL-MVSNet_self_test98.71 22398.56 22499.15 24899.22 29298.66 25597.14 35699.51 21798.09 26799.54 17199.27 28696.87 26099.74 30098.43 14998.96 32199.03 302
our_test_398.85 20799.09 13998.13 31699.66 14194.90 35297.72 33199.58 17799.07 16699.64 12799.62 16898.19 18599.93 7598.41 15099.95 5499.55 154
Gipumacopyleft99.57 4299.59 3699.49 16899.98 399.71 7199.72 2499.84 3499.81 3699.94 1299.78 7398.91 8799.71 30998.41 15099.95 5499.05 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 30396.91 31498.74 29297.72 37297.57 31097.60 33797.36 36098.00 27099.21 25098.02 36990.04 34799.79 28198.37 15295.89 37298.86 320
Regformer-199.32 10599.27 10299.47 17499.41 24298.95 23198.99 20699.48 22899.48 9799.66 12199.52 21998.78 10699.87 18198.36 15399.74 19299.60 128
PM-MVS99.36 9299.29 9799.58 13999.83 3999.66 8998.95 21499.86 2498.85 19399.81 6099.73 9598.40 16399.92 9598.36 15399.83 14299.17 273
baseline197.73 29097.33 29998.96 26599.30 27897.73 30699.40 9198.42 34199.33 12599.46 19399.21 30091.18 33199.82 25798.35 15591.26 37499.32 243
MVS-HIRNet97.86 28498.22 25596.76 34499.28 28391.53 37198.38 27892.60 37599.13 15999.31 23199.96 1297.18 25199.68 32898.34 15699.83 14299.07 298
GA-MVS97.99 28397.68 29398.93 27099.52 19798.04 29497.19 35599.05 31598.32 25498.81 29698.97 33489.89 34999.41 36798.33 15799.05 31699.34 239
Fast-Effi-MVS+99.02 17898.87 19199.46 17799.38 25099.50 12899.04 19399.79 5797.17 31698.62 31298.74 35299.34 3699.95 4798.32 15899.41 28698.92 315
Regformer-299.34 9999.27 10299.53 15799.41 24299.10 21798.99 20699.53 20599.47 10299.66 12199.52 21998.80 10199.89 15398.31 15999.74 19299.60 128
MDA-MVSNet_test_wron98.95 19498.99 17198.85 28199.64 14597.16 32198.23 28999.33 27298.93 18399.56 16499.66 14297.39 23999.83 24798.29 16099.88 10799.55 154
N_pmnet98.73 22198.53 22799.35 21399.72 11198.67 25398.34 27994.65 37098.35 24899.79 6899.68 13298.03 19599.93 7598.28 16199.92 7999.44 211
ET-MVSNet_ETH3D96.78 31596.07 32498.91 27399.26 28797.92 30197.70 33396.05 36697.96 27792.37 37598.43 36387.06 35699.90 13798.27 16297.56 36398.91 316
thisisatest053097.45 30096.95 31198.94 26799.68 13597.73 30699.09 18594.19 37398.61 21899.56 16499.30 27984.30 36999.93 7598.27 16299.54 26599.16 275
YYNet198.95 19498.99 17198.84 28399.64 14597.14 32298.22 29099.32 27498.92 18599.59 15099.66 14297.40 23799.83 24798.27 16299.90 8999.55 154
ACMM98.09 1199.46 6599.38 7399.72 7999.80 5899.69 8299.13 17499.65 13198.99 17399.64 12799.72 10199.39 2699.86 20198.23 16599.81 15999.60 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 19198.87 19199.24 23799.57 17398.40 27298.12 29899.18 30598.28 25699.63 13199.13 30798.02 19799.97 1998.22 16699.69 21499.35 237
3Dnovator99.15 299.43 7099.36 7999.65 10499.39 24799.42 15099.70 2999.56 18499.23 14099.35 22099.80 6099.17 5399.95 4798.21 16799.84 13299.59 137
Fast-Effi-MVS+-dtu99.20 13899.12 12799.43 18799.25 28899.69 8299.05 19199.82 4199.50 9598.97 27699.05 31898.98 7899.98 898.20 16899.24 30998.62 330
MS-PatchMatch99.00 18498.97 17599.09 25499.11 31498.19 28398.76 24399.33 27298.49 23199.44 19599.58 19498.21 18299.69 31798.20 16899.62 23899.39 226
TSAR-MVS + GP.99.12 15899.04 15799.38 20699.34 26799.16 20798.15 29499.29 28398.18 26399.63 13199.62 16899.18 5299.68 32898.20 16899.74 19299.30 246
DP-MVS99.48 5899.39 7199.74 6399.57 17399.62 10299.29 12399.61 14999.87 2099.74 9399.76 8398.69 11799.87 18198.20 16899.80 16499.75 44
MVP-Stereo99.16 15099.08 14199.43 18799.48 21999.07 22199.08 18899.55 19098.63 21599.31 23199.68 13298.19 18599.78 28498.18 17299.58 25399.45 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 7099.30 9299.80 2999.83 3999.81 3299.52 7599.70 10298.35 24899.51 18399.50 22699.31 3899.88 16898.18 17299.84 13299.69 57
MDA-MVSNet-bldmvs99.06 16999.05 15199.07 25899.80 5897.83 30298.89 21899.72 9499.29 12899.63 13199.70 11596.47 26899.89 15398.17 17499.82 15199.50 185
JIA-IIPM98.06 27997.92 28298.50 30198.59 35797.02 32498.80 23698.51 33799.88 1997.89 34899.87 3391.89 32499.90 13798.16 17597.68 36298.59 332
EIA-MVS99.12 15899.01 16399.45 18199.36 25599.62 10299.34 10499.79 5798.41 23798.84 29398.89 34398.75 11299.84 23698.15 17699.51 27098.89 317
miper_lstm_enhance98.65 22898.60 21598.82 28899.20 29797.33 31797.78 32999.66 12099.01 17299.59 15099.50 22694.62 29699.85 21998.12 17799.90 8999.26 252
Effi-MVS+-dtu99.07 16898.92 18499.52 15998.89 33699.78 4299.15 16699.66 12099.34 12298.92 28399.24 29697.69 22199.98 898.11 17899.28 30398.81 324
mvs-test198.83 20898.70 20999.22 23998.89 33699.65 9498.88 21999.66 12099.34 12298.29 32898.94 33897.69 22199.96 3798.11 17898.54 34398.04 358
tpm97.15 30796.95 31197.75 32698.91 33294.24 35599.32 10997.96 34997.71 28998.29 32899.32 27586.72 36399.92 9598.10 18096.24 37199.09 290
DeepPCF-MVS98.42 699.18 14599.02 16099.67 9299.22 29299.75 5697.25 35399.47 23298.72 20999.66 12199.70 11599.29 4099.63 34798.07 18199.81 15999.62 113
ppachtmachnet_test98.89 20299.12 12798.20 31499.66 14195.24 34997.63 33599.68 11199.08 16499.78 7199.62 16898.65 12599.88 16898.02 18299.96 4599.48 195
tpmrst97.73 29098.07 26896.73 34698.71 35492.00 36699.10 18198.86 32198.52 22798.92 28399.54 21491.90 32399.82 25798.02 18299.03 31898.37 345
CSCG99.37 8999.29 9799.60 13199.71 11499.46 13699.43 8999.85 2898.79 20199.41 20999.60 18698.92 8599.92 9598.02 18299.92 7999.43 217
eth_miper_zixun_eth98.68 22698.71 20698.60 29799.10 31596.84 32997.52 34399.54 19698.94 18099.58 15499.48 23496.25 27799.76 29498.01 18599.93 7599.21 262
Patchmtry98.78 21398.54 22599.49 16898.89 33699.19 20599.32 10999.67 11699.65 7099.72 9999.79 6691.87 32599.95 4798.00 18699.97 3399.33 240
PVSNet_BlendedMVS99.03 17699.01 16399.09 25499.54 18697.99 29598.58 25599.82 4197.62 29299.34 22399.71 10898.52 14699.77 29297.98 18799.97 3399.52 177
PVSNet_Blended98.70 22498.59 21799.02 26299.54 18697.99 29597.58 33899.82 4195.70 34499.34 22398.98 33198.52 14699.77 29297.98 18799.83 14299.30 246
cl____98.54 24398.41 23798.92 27199.03 32397.80 30497.46 34599.59 16898.90 18799.60 14799.46 24293.85 30399.78 28497.97 18999.89 9999.17 273
DIV-MVS_self_test98.54 24398.42 23698.92 27199.03 32397.80 30497.46 34599.59 16898.90 18799.60 14799.46 24293.87 30299.78 28497.97 18999.89 9999.18 271
AUN-MVS97.82 28597.38 29899.14 24999.27 28598.53 26298.72 24799.02 31698.10 26597.18 36399.03 32589.26 35199.85 21997.94 19197.91 35899.03 302
ambc99.20 24299.35 25798.53 26299.17 15899.46 23699.67 11799.80 6098.46 15399.70 31197.92 19299.70 21199.38 228
USDC98.96 19198.93 18099.05 26099.54 18697.99 29597.07 35999.80 5198.21 26099.75 8499.77 8098.43 15699.64 34697.90 19399.88 10799.51 179
OPM-MVS99.26 11799.13 12399.63 11799.70 12299.61 10898.58 25599.48 22898.50 22999.52 17899.63 15999.14 5899.76 29497.89 19499.77 17999.51 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 10599.17 11599.77 4099.69 12699.80 3799.14 16899.31 27899.16 15399.62 13999.61 17798.35 16799.91 11797.88 19599.72 20599.61 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 12299.79 3999.14 16899.61 14999.92 9597.88 19599.72 20599.77 37
c3_l98.72 22298.71 20698.72 29399.12 30997.22 32097.68 33499.56 18498.90 18799.54 17199.48 23496.37 27499.73 30397.88 19599.88 10799.21 262
3Dnovator+98.92 399.35 9499.24 10899.67 9299.35 25799.47 13299.62 5499.50 22199.44 10999.12 26499.78 7398.77 10999.94 6197.87 19899.72 20599.62 113
miper_ehance_all_eth98.59 23698.59 21798.59 29898.98 32997.07 32397.49 34499.52 21398.50 22999.52 17899.37 26096.41 27299.71 30997.86 19999.62 23899.00 308
WTY-MVS98.59 23698.37 24199.26 23299.43 23698.40 27298.74 24499.13 31198.10 26599.21 25099.24 29694.82 29399.90 13797.86 19998.77 33199.49 190
SED-MVS99.40 8099.28 9999.77 4099.69 12699.82 2999.20 14799.54 19699.13 15999.82 5399.63 15998.91 8799.92 9597.85 20199.70 21199.58 142
test_241102_TWO99.54 19699.13 15999.76 7899.63 15998.32 17299.92 9597.85 20199.69 21499.75 44
MVS_111021_HR99.12 15899.02 16099.40 19999.50 20899.11 21297.92 32399.71 9798.76 20799.08 26899.47 23999.17 5399.54 35797.85 20199.76 18199.54 162
zzz-MVS99.30 10899.14 12099.80 2999.81 5399.81 3298.73 24699.53 20599.27 13299.42 20199.63 15998.21 18299.95 4797.83 20499.79 16999.65 88
MTAPA99.35 9499.20 11299.80 2999.81 5399.81 3299.33 10699.53 20599.27 13299.42 20199.63 15998.21 18299.95 4797.83 20499.79 16999.65 88
MSC_two_6792asdad99.74 6399.03 32399.53 12499.23 29699.92 9597.77 20699.69 21499.78 33
No_MVS99.74 6399.03 32399.53 12499.23 29699.92 9597.77 20699.69 21499.78 33
TESTMET0.1,196.24 32795.84 32997.41 33498.24 36693.84 35897.38 34795.84 36798.43 23497.81 35298.56 35879.77 37599.89 15397.77 20698.77 33198.52 337
ACMH+98.40 899.50 5499.43 6699.71 8399.86 3199.76 5299.32 10999.77 6599.53 9299.77 7699.76 8399.26 4699.78 28497.77 20699.88 10799.60 128
IU-MVS99.69 12699.77 4599.22 29997.50 30099.69 11097.75 21099.70 21199.77 37
114514_t98.49 25098.11 26699.64 11199.73 10799.58 11699.24 13799.76 7089.94 36899.42 20199.56 20597.76 21899.86 20197.74 21199.82 15199.47 200
DVP-MVS++99.38 8699.25 10699.77 4099.03 32399.77 4599.74 1899.61 14999.18 14799.76 7899.61 17799.00 7599.92 9597.72 21299.60 24899.62 113
test_0728_THIRD99.18 14799.62 13999.61 17798.58 13399.91 11797.72 21299.80 16499.77 37
EGC-MVSNET89.05 34285.52 34599.64 11199.89 2199.78 4299.56 7299.52 21324.19 37649.96 37799.83 4899.15 5599.92 9597.71 21499.85 12799.21 262
miper_enhance_ethall98.03 28097.94 28098.32 30998.27 36596.43 33596.95 36099.41 24896.37 33499.43 19998.96 33694.74 29499.69 31797.71 21499.62 23898.83 323
TSAR-MVS + MP.99.34 9999.24 10899.63 11799.82 4699.37 16399.26 12999.35 26998.77 20499.57 15799.70 11599.27 4599.88 16897.71 21499.75 18499.65 88
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 29897.28 30098.40 30598.37 36396.75 33097.24 35499.37 26597.31 31099.41 20999.22 29887.30 35499.37 36897.70 21799.62 23899.08 293
MP-MVS-pluss99.14 15498.92 18499.80 2999.83 3999.83 2598.61 25199.63 13996.84 32699.44 19599.58 19498.81 9799.91 11797.70 21799.82 15199.67 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 11199.11 13099.79 3499.75 9899.81 3298.95 21499.53 20598.27 25799.53 17699.73 9598.75 11299.87 18197.70 21799.83 14299.68 63
UnsupCasMVSNet_bld98.55 24298.27 25199.40 19999.56 18399.37 16397.97 31899.68 11197.49 30199.08 26899.35 27095.41 28999.82 25797.70 21798.19 35299.01 307
MVS_111021_LR99.13 15699.03 15999.42 18999.58 16399.32 17597.91 32599.73 8598.68 21199.31 23199.48 23499.09 6399.66 33797.70 21799.77 17999.29 249
IS-MVSNet99.03 17698.85 19399.55 15199.80 5899.25 18999.73 2199.15 30899.37 11999.61 14599.71 10894.73 29599.81 27397.70 21799.88 10799.58 142
test-LLR97.15 30796.95 31197.74 32798.18 36895.02 35097.38 34796.10 36398.00 27097.81 35298.58 35590.04 34799.91 11797.69 22398.78 32998.31 346
test-mter96.23 32895.73 33197.74 32798.18 36895.02 35097.38 34796.10 36397.90 27997.81 35298.58 35579.12 37899.91 11797.69 22398.78 32998.31 346
XVS99.27 11599.11 13099.75 5799.71 11499.71 7199.37 9999.61 14999.29 12898.76 30399.47 23998.47 15099.88 16897.62 22599.73 19999.67 70
X-MVStestdata96.09 32994.87 33999.75 5799.71 11499.71 7199.37 9999.61 14999.29 12898.76 30361.30 38398.47 15099.88 16897.62 22599.73 19999.67 70
SMA-MVScopyleft99.19 14199.00 16699.73 7399.46 22999.73 6599.13 17499.52 21397.40 30599.57 15799.64 14998.93 8499.83 24797.61 22799.79 16999.63 102
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 31896.79 31796.46 35198.90 33390.71 37699.41 9098.68 32994.69 35898.14 33999.34 27386.32 36599.80 27897.60 22898.07 35698.88 318
PVSNet97.47 1598.42 25698.44 23498.35 30799.46 22996.26 33696.70 36499.34 27197.68 29099.00 27599.13 30797.40 23799.72 30597.59 22999.68 21999.08 293
new_pmnet98.88 20398.89 18998.84 28399.70 12297.62 30998.15 29499.50 22197.98 27399.62 13999.54 21498.15 18899.94 6197.55 23099.84 13298.95 312
IB-MVS95.41 2095.30 33994.46 34397.84 32398.76 35295.33 34897.33 35096.07 36596.02 33895.37 37397.41 37676.17 38199.96 3797.54 23195.44 37398.22 351
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 12199.11 13099.61 12998.38 36299.79 3999.57 7099.68 11199.61 8099.15 25999.71 10898.70 11699.91 11797.54 23199.68 21999.13 284
ZNCC-MVS99.22 13199.04 15799.77 4099.76 8799.73 6599.28 12499.56 18498.19 26299.14 26199.29 28298.84 9699.92 9597.53 23399.80 16499.64 97
CP-MVS99.23 12299.05 15199.75 5799.66 14199.66 8999.38 9599.62 14298.38 24199.06 27299.27 28698.79 10499.94 6197.51 23499.82 15199.66 80
SD-MVS99.01 18299.30 9298.15 31599.50 20899.40 15598.94 21699.61 14999.22 14499.75 8499.82 5599.54 2295.51 37797.48 23599.87 11699.54 162
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 25098.29 25099.11 25298.96 33098.42 27197.54 33999.32 27497.53 29898.47 32498.15 36897.88 20999.82 25797.46 23699.24 30999.09 290
DeepC-MVS_fast98.47 599.23 12299.12 12799.56 14899.28 28399.22 19898.99 20699.40 25599.08 16499.58 15499.64 14998.90 9099.83 24797.44 23799.75 18499.63 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 11899.08 14199.76 4799.73 10799.70 7899.31 11399.59 16898.36 24399.36 21899.37 26098.80 10199.91 11797.43 23899.75 18499.68 63
ACMMPR99.23 12299.06 14799.76 4799.74 10499.69 8299.31 11399.59 16898.36 24399.35 22099.38 25998.61 12999.93 7597.43 23899.75 18499.67 70
Vis-MVSNet (Re-imp)98.77 21498.58 22099.34 21499.78 7598.88 24199.61 5999.56 18499.11 16399.24 24399.56 20593.00 31499.78 28497.43 23899.89 9999.35 237
MIMVSNet98.43 25598.20 25799.11 25299.53 19298.38 27599.58 6898.61 33398.96 17899.33 22599.76 8390.92 33599.81 27397.38 24199.76 18199.15 277
XVG-OURS-SEG-HR99.16 15098.99 17199.66 9999.84 3599.64 9698.25 28899.73 8598.39 24099.63 13199.43 24799.70 1199.90 13797.34 24298.64 33999.44 211
COLMAP_ROBcopyleft98.06 1299.45 6799.37 7699.70 8799.83 3999.70 7899.38 9599.78 6299.53 9299.67 11799.78 7399.19 5199.86 20197.32 24399.87 11699.55 154
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 17898.81 19999.65 10499.58 16399.49 12998.58 25599.07 31298.40 23999.04 27399.25 29198.51 14899.80 27897.31 24499.51 27099.65 88
region2R99.23 12299.05 15199.77 4099.76 8799.70 7899.31 11399.59 16898.41 23799.32 22799.36 26598.73 11599.93 7597.29 24599.74 19299.67 70
APD-MVS_3200maxsize99.31 10799.16 11699.74 6399.53 19299.75 5699.27 12799.61 14999.19 14699.57 15799.64 14998.76 11099.90 13797.29 24599.62 23899.56 151
TAPA-MVS97.92 1398.03 28097.55 29699.46 17799.47 22499.44 14398.50 26899.62 14286.79 36999.07 27199.26 28998.26 17699.62 34897.28 24799.73 19999.31 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 11599.11 13099.73 7399.54 18699.74 6299.26 12999.62 14299.16 15399.52 17899.64 14998.41 15999.91 11797.27 24899.61 24599.54 162
RE-MVS-def99.13 12399.54 18699.74 6299.26 12999.62 14299.16 15399.52 17899.64 14998.57 13497.27 24899.61 24599.54 162
test_yl98.25 26997.95 27699.13 25099.17 30298.47 26699.00 20198.67 33198.97 17599.22 24899.02 32691.31 32999.69 31797.26 25098.93 32299.24 255
DCV-MVSNet98.25 26997.95 27699.13 25099.17 30298.47 26699.00 20198.67 33198.97 17599.22 24899.02 32691.31 32999.69 31797.26 25098.93 32299.24 255
PHI-MVS99.11 16298.95 17999.59 13499.13 30799.59 11399.17 15899.65 13197.88 28099.25 24099.46 24298.97 8099.80 27897.26 25099.82 15199.37 231
tfpnnormal99.43 7099.38 7399.60 13199.87 2999.75 5699.59 6699.78 6299.71 5099.90 2399.69 12198.85 9599.90 13797.25 25399.78 17599.15 277
PatchmatchNetpermissive97.65 29497.80 28797.18 34098.82 34592.49 36499.17 15898.39 34398.12 26498.79 29999.58 19490.71 34099.89 15397.23 25499.41 28699.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 18798.80 20199.56 14899.25 28899.43 14798.54 26499.27 28798.58 22098.80 29899.43 24798.53 14399.70 31197.22 25599.59 25299.54 162
HPM-MVScopyleft99.25 11899.07 14599.78 3799.81 5399.75 5699.61 5999.67 11697.72 28899.35 22099.25 29199.23 4899.92 9597.21 25699.82 15199.67 70
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DWT-MVSNet_test96.03 33195.80 33096.71 34898.50 36091.93 36799.25 13697.87 35295.99 33996.81 36597.61 37481.02 37299.66 33797.20 25797.98 35798.54 336
mPP-MVS99.19 14199.00 16699.76 4799.76 8799.68 8599.38 9599.54 19698.34 25299.01 27499.50 22698.53 14399.93 7597.18 25899.78 17599.66 80
ACMMPcopyleft99.25 11899.08 14199.74 6399.79 6899.68 8599.50 7799.65 13198.07 26899.52 17899.69 12198.57 13499.92 9597.18 25899.79 16999.63 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.23 12299.05 15199.74 6399.52 19799.75 5699.20 14799.61 14998.97 17599.48 18799.58 19498.41 15999.91 11797.15 26099.55 25999.57 148
abl_699.36 9299.23 11099.75 5799.71 11499.74 6299.33 10699.76 7099.07 16699.65 12599.63 15999.09 6399.92 9597.13 26199.76 18199.58 142
thisisatest051596.98 31196.42 31898.66 29699.42 24197.47 31297.27 35294.30 37297.24 31299.15 25998.86 34685.01 36699.87 18197.10 26299.39 28898.63 329
XVG-ACMP-BASELINE99.23 12299.10 13899.63 11799.82 4699.58 11698.83 22899.72 9498.36 24399.60 14799.71 10898.92 8599.91 11797.08 26399.84 13299.40 223
MSDG99.08 16798.98 17499.37 20999.60 15499.13 21097.54 33999.74 8298.84 19699.53 17699.55 21299.10 6199.79 28197.07 26499.86 12399.18 271
SteuartSystems-ACMMP99.30 10899.14 12099.76 4799.87 2999.66 8999.18 15399.60 16198.55 22399.57 15799.67 13899.03 7499.94 6197.01 26599.80 16499.69 57
Skip Steuart: Steuart Systems R&D Blog.
EPMVS96.53 32196.32 31997.17 34198.18 36892.97 36399.39 9389.95 37998.21 26098.61 31399.59 19286.69 36499.72 30596.99 26699.23 31198.81 324
MSP-MVS99.04 17598.79 20299.81 2699.78 7599.73 6599.35 10399.57 17998.54 22699.54 17198.99 32896.81 26199.93 7596.97 26799.53 26799.77 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 19198.70 20999.74 6399.52 19799.71 7198.86 22399.19 30498.47 23398.59 31599.06 31798.08 19399.91 11796.94 26899.60 24899.60 128
SR-MVS99.19 14199.00 16699.74 6399.51 20299.72 6999.18 15399.60 16198.85 19399.47 18999.58 19498.38 16499.92 9596.92 26999.54 26599.57 148
PGM-MVS99.20 13899.01 16399.77 4099.75 9899.71 7199.16 16499.72 9497.99 27299.42 20199.60 18698.81 9799.93 7596.91 27099.74 19299.66 80
HY-MVS98.23 998.21 27497.95 27698.99 26399.03 32398.24 27999.61 5998.72 32896.81 32798.73 30599.51 22394.06 30099.86 20196.91 27098.20 35098.86 320
MDTV_nov1_ep1397.73 29198.70 35590.83 37499.15 16698.02 34898.51 22898.82 29599.61 17790.98 33499.66 33796.89 27298.92 324
GST-MVS99.16 15098.96 17799.75 5799.73 10799.73 6599.20 14799.55 19098.22 25999.32 22799.35 27098.65 12599.91 11796.86 27399.74 19299.62 113
test_post199.14 16851.63 38589.54 35099.82 25796.86 273
SCA98.11 27698.36 24297.36 33599.20 29792.99 36298.17 29398.49 33998.24 25899.10 26799.57 20296.01 28299.94 6196.86 27399.62 23899.14 281
#test#99.12 15898.90 18899.76 4799.73 10799.70 7899.10 18199.59 16897.60 29399.36 21899.37 26098.80 10199.91 11796.84 27699.75 18499.68 63
XVG-OURS99.21 13699.06 14799.65 10499.82 4699.62 10297.87 32699.74 8298.36 24399.66 12199.68 13299.71 999.90 13796.84 27699.88 10799.43 217
LCM-MVSNet-Re99.28 11199.15 11999.67 9299.33 27299.76 5299.34 10499.97 298.93 18399.91 2199.79 6698.68 11899.93 7596.80 27899.56 25599.30 246
RPSCF99.18 14599.02 16099.64 11199.83 3999.85 1699.44 8799.82 4198.33 25399.50 18599.78 7397.90 20699.65 34496.78 27999.83 14299.44 211
旧先验297.94 32195.33 34898.94 27999.88 16896.75 280
MDTV_nov1_ep13_2view91.44 37299.14 16897.37 30799.21 25091.78 32796.75 28099.03 302
CLD-MVS98.76 21698.57 22199.33 21699.57 17398.97 22897.53 34199.55 19096.41 33299.27 23899.13 30799.07 6999.78 28496.73 28299.89 9999.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 27797.98 27498.48 30299.27 28596.48 33399.40 9199.07 31298.81 19899.23 24499.57 20290.11 34699.87 18196.69 28399.64 23599.09 290
baseline296.83 31496.28 32098.46 30399.09 31796.91 32798.83 22893.87 37497.23 31396.23 36998.36 36488.12 35399.90 13796.68 28498.14 35498.57 335
cascas96.99 31096.82 31697.48 33197.57 37595.64 34596.43 36699.56 18491.75 36497.13 36497.61 37495.58 28898.63 37396.68 28499.11 31398.18 355
PC_three_145297.56 29499.68 11299.41 24999.09 6397.09 37596.66 28699.60 24899.62 113
LPG-MVS_test99.22 13199.05 15199.74 6399.82 4699.63 10099.16 16499.73 8597.56 29499.64 12799.69 12199.37 3299.89 15396.66 28699.87 11699.69 57
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8597.56 29499.64 12799.69 12199.37 3299.89 15396.66 28699.87 11699.69 57
TinyColmap98.97 18898.93 18099.07 25899.46 22998.19 28397.75 33099.75 7798.79 20199.54 17199.70 11598.97 8099.62 34896.63 28999.83 14299.41 221
LF4IMVS99.01 18298.92 18499.27 23099.71 11499.28 18198.59 25499.77 6598.32 25499.39 21599.41 24998.62 12799.84 23696.62 29099.84 13298.69 328
NCCC98.82 21098.57 22199.58 13999.21 29499.31 17698.61 25199.25 29298.65 21398.43 32599.26 28997.86 21099.81 27396.55 29199.27 30699.61 124
OPU-MVS99.29 22699.12 30999.44 14399.20 14799.40 25399.00 7598.84 37296.54 29299.60 24899.58 142
F-COLMAP98.74 21998.45 23299.62 12699.57 17399.47 13298.84 22699.65 13196.31 33598.93 28099.19 30497.68 22399.87 18196.52 29399.37 29399.53 167
ADS-MVSNet297.78 28797.66 29598.12 31799.14 30595.36 34799.22 14498.75 32796.97 32198.25 33199.64 14990.90 33699.94 6196.51 29499.56 25599.08 293
ADS-MVSNet97.72 29397.67 29497.86 32299.14 30594.65 35399.22 14498.86 32196.97 32198.25 33199.64 14990.90 33699.84 23696.51 29499.56 25599.08 293
PatchMatch-RL98.68 22698.47 23099.30 22599.44 23499.28 18198.14 29699.54 19697.12 31999.11 26599.25 29197.80 21599.70 31196.51 29499.30 30198.93 314
CMPMVSbinary77.52 2398.50 24798.19 26099.41 19798.33 36499.56 11999.01 19999.59 16895.44 34699.57 15799.80 6095.64 28699.46 36696.47 29799.92 7999.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
xxxxxxxxxxxxxcwj99.11 16298.96 17799.54 15599.53 19299.25 18998.29 28499.76 7099.07 16699.42 20199.61 17798.86 9399.87 18196.45 29899.68 21999.49 190
SF-MVS99.10 16698.93 18099.62 12699.58 16399.51 12799.13 17499.65 13197.97 27499.42 20199.61 17798.86 9399.87 18196.45 29899.68 21999.49 190
DPE-MVScopyleft99.14 15498.92 18499.82 2399.57 17399.77 4598.74 24499.60 16198.55 22399.76 7899.69 12198.23 18199.92 9596.39 30099.75 18499.76 41
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 37389.02 38093.47 36098.30 36599.84 23696.38 301
AllTest99.21 13699.07 14599.63 11799.78 7599.64 9699.12 17899.83 3698.63 21599.63 13199.72 10198.68 11899.75 29896.38 30199.83 14299.51 179
TestCases99.63 11799.78 7599.64 9699.83 3698.63 21599.63 13199.72 10198.68 11899.75 29896.38 30199.83 14299.51 179
testdata99.42 18999.51 20298.93 23699.30 28196.20 33698.87 29099.40 25398.33 17199.89 15396.29 30499.28 30399.44 211
dp96.86 31397.07 30796.24 35398.68 35690.30 37899.19 15298.38 34497.35 30898.23 33399.59 19287.23 35599.82 25796.27 30598.73 33798.59 332
tpmvs97.39 30297.69 29296.52 34998.41 36191.76 36899.30 11698.94 32097.74 28797.85 35199.55 21292.40 32199.73 30396.25 30698.73 33798.06 357
KD-MVS_2432*160095.89 33295.41 33597.31 33894.96 37793.89 35697.09 35799.22 29997.23 31398.88 28799.04 32179.23 37699.54 35796.24 30796.81 36698.50 341
miper_refine_blended95.89 33295.41 33597.31 33894.96 37793.89 35697.09 35799.22 29997.23 31398.88 28799.04 32179.23 37699.54 35796.24 30796.81 36698.50 341
ACMP97.51 1499.05 17298.84 19599.67 9299.78 7599.55 12298.88 21999.66 12097.11 32099.47 18999.60 18699.07 6999.89 15396.18 30999.85 12799.58 142
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 19998.72 20599.44 18399.39 24799.42 15098.58 25599.64 13797.31 31099.44 19599.62 16898.59 13199.69 31796.17 31099.79 16999.22 260
DP-MVS Recon98.50 24798.23 25499.31 22399.49 21399.46 13698.56 26099.63 13994.86 35598.85 29299.37 26097.81 21499.59 35496.08 31199.44 28098.88 318
tpm cat196.78 31596.98 31096.16 35498.85 34090.59 37799.08 18899.32 27492.37 36397.73 35799.46 24291.15 33299.69 31796.07 31298.80 32898.21 352
tpm296.35 32496.22 32196.73 34698.88 33991.75 36999.21 14698.51 33793.27 36197.89 34899.21 30084.83 36799.70 31196.04 31398.18 35398.75 327
test_040299.22 13199.14 12099.45 18199.79 6899.43 14799.28 12499.68 11199.54 9099.40 21499.56 20599.07 6999.82 25796.01 31499.96 4599.11 285
ITE_SJBPF99.38 20699.63 14799.44 14399.73 8598.56 22199.33 22599.53 21798.88 9299.68 32896.01 31499.65 23399.02 306
test_prior398.62 23098.34 24599.46 17799.35 25799.22 19897.95 31999.39 25897.87 28198.05 34199.05 31897.90 20699.69 31795.99 31699.49 27499.48 195
test_prior297.95 31997.87 28198.05 34199.05 31897.90 20695.99 31699.49 274
testdata299.89 15395.99 316
原ACMM199.37 20999.47 22498.87 24399.27 28796.74 32998.26 33099.32 27597.93 20499.82 25795.96 31999.38 28999.43 217
新几何199.52 15999.50 20899.22 19899.26 28995.66 34598.60 31499.28 28497.67 22499.89 15395.95 32099.32 29999.45 206
MP-MVScopyleft99.06 16998.83 19799.76 4799.76 8799.71 7199.32 10999.50 22198.35 24898.97 27699.48 23498.37 16599.92 9595.95 32099.75 18499.63 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
wuyk23d97.58 29799.13 12392.93 35799.69 12699.49 12999.52 7599.77 6597.97 27499.96 899.79 6699.84 399.94 6195.85 32299.82 15179.36 373
HQP_MVS98.90 19998.68 21199.55 15199.58 16399.24 19498.80 23699.54 19698.94 18099.14 26199.25 29197.24 24599.82 25795.84 32399.78 17599.60 128
plane_prior599.54 19699.82 25795.84 32399.78 17599.60 128
无先验98.01 31099.23 29695.83 34199.85 21995.79 32599.44 211
112198.56 23998.24 25399.52 15999.49 21399.24 19499.30 11699.22 29995.77 34298.52 32099.29 28297.39 23999.85 21995.79 32599.34 29699.46 204
CPTT-MVS98.74 21998.44 23499.64 11199.61 15299.38 16099.18 15399.55 19096.49 33199.27 23899.37 26097.11 25399.92 9595.74 32799.67 22699.62 113
PLCcopyleft97.35 1698.36 26197.99 27299.48 17299.32 27399.24 19498.50 26899.51 21795.19 35198.58 31698.96 33696.95 25899.83 24795.63 32899.25 30799.37 231
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 23898.34 24599.28 22899.18 30199.10 21798.34 27999.41 24898.48 23298.52 32098.98 33197.05 25599.78 28495.59 32999.50 27298.96 311
131498.00 28297.90 28598.27 31398.90 33397.45 31499.30 11699.06 31494.98 35297.21 36299.12 31198.43 15699.67 33395.58 33098.56 34297.71 362
agg_prior198.33 26697.92 28299.57 14499.35 25799.36 16697.99 31499.39 25894.85 35697.76 35598.98 33198.03 19599.85 21995.49 33199.44 28099.51 179
PVSNet_095.53 1995.85 33595.31 33797.47 33298.78 35093.48 36095.72 36899.40 25596.18 33797.37 35897.73 37295.73 28599.58 35595.49 33181.40 37599.36 234
MAR-MVS98.24 27197.92 28299.19 24398.78 35099.65 9499.17 15899.14 30995.36 34798.04 34398.81 34997.47 23499.72 30595.47 33399.06 31598.21 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 27297.89 28699.26 23299.19 29999.26 18599.65 5199.69 10891.33 36698.14 33999.77 8098.28 17499.96 3795.41 33499.55 25998.58 334
train_agg98.35 26497.95 27699.57 14499.35 25799.35 17098.11 30099.41 24894.90 35397.92 34698.99 32898.02 19799.85 21995.38 33599.44 28099.50 185
9.1498.64 21299.45 23298.81 23399.60 16197.52 29999.28 23799.56 20598.53 14399.83 24795.36 33699.64 235
APD-MVScopyleft98.87 20598.59 21799.71 8399.50 20899.62 10299.01 19999.57 17996.80 32899.54 17199.63 15998.29 17399.91 11795.24 33799.71 20999.61 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary98.60 23398.35 24499.38 20699.12 30999.22 19898.67 25099.42 24797.84 28598.81 29699.27 28697.32 24399.81 27395.14 33899.53 26799.10 287
test9_res95.10 33999.44 28099.50 185
CDPH-MVS98.56 23998.20 25799.61 12999.50 20899.46 13698.32 28299.41 24895.22 34999.21 25099.10 31498.34 16999.82 25795.09 34099.66 23099.56 151
ETH3D-3000-0.198.77 21498.50 22999.59 13499.47 22499.53 12498.77 24199.60 16197.33 30999.23 24499.50 22697.91 20599.83 24795.02 34199.67 22699.41 221
BH-untuned98.22 27398.09 26798.58 29999.38 25097.24 31998.55 26198.98 31997.81 28699.20 25598.76 35197.01 25699.65 34494.83 34298.33 34798.86 320
BP-MVS94.73 343
HQP-MVS98.36 26198.02 27199.39 20299.31 27498.94 23297.98 31599.37 26597.45 30298.15 33598.83 34796.67 26299.70 31194.73 34399.67 22699.53 167
QAPM98.40 25997.99 27299.65 10499.39 24799.47 13299.67 4299.52 21391.70 36598.78 30199.80 6098.55 13799.95 4794.71 34599.75 18499.53 167
ETH3D cwj APD-0.1698.50 24798.16 26399.51 16299.04 32299.39 15798.47 27099.47 23296.70 33098.78 30199.33 27497.62 23199.86 20194.69 34699.38 28999.28 251
agg_prior294.58 34799.46 27999.50 185
BH-RMVSNet98.41 25798.14 26599.21 24099.21 29498.47 26698.60 25398.26 34698.35 24898.93 28099.31 27797.20 25099.66 33794.32 34899.10 31499.51 179
E-PMN97.14 30997.43 29796.27 35298.79 34891.62 37095.54 36999.01 31899.44 10998.88 28799.12 31192.78 31599.68 32894.30 34999.03 31897.50 363
MG-MVS98.52 24598.39 23998.94 26799.15 30497.39 31698.18 29199.21 30398.89 19099.23 24499.63 15997.37 24199.74 30094.22 35099.61 24599.69 57
API-MVS98.38 26098.39 23998.35 30798.83 34299.26 18599.14 16899.18 30598.59 21998.66 31098.78 35098.61 12999.57 35694.14 35199.56 25596.21 370
PAPM_NR98.36 26198.04 26999.33 21699.48 21998.93 23698.79 23999.28 28697.54 29798.56 31898.57 35797.12 25299.69 31794.09 35298.90 32699.38 228
ZD-MVS99.43 23699.61 10899.43 24596.38 33399.11 26599.07 31697.86 21099.92 9594.04 35399.49 274
DPM-MVS98.28 26797.94 28099.32 22099.36 25599.11 21297.31 35198.78 32696.88 32398.84 29399.11 31397.77 21799.61 35294.03 35499.36 29499.23 258
gg-mvs-nofinetune95.87 33495.17 33897.97 31998.19 36796.95 32599.69 3589.23 38099.89 1496.24 36899.94 1481.19 37199.51 36293.99 35598.20 35097.44 364
PMVScopyleft92.94 2198.82 21098.81 19998.85 28199.84 3597.99 29599.20 14799.47 23299.71 5099.42 20199.82 5598.09 19199.47 36493.88 35699.85 12799.07 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj98.56 23998.17 26299.72 7999.45 23299.60 11098.88 21999.50 22196.88 32399.18 25699.48 23497.08 25499.92 9593.69 35799.38 28999.63 102
EMVS96.96 31297.28 30095.99 35598.76 35291.03 37395.26 37098.61 33399.34 12298.92 28398.88 34593.79 30499.66 33792.87 35899.05 31697.30 367
BH-w/o97.20 30697.01 30997.76 32599.08 31895.69 34498.03 30998.52 33695.76 34397.96 34598.02 36995.62 28799.47 36492.82 35997.25 36598.12 356
TR-MVS97.44 30197.15 30698.32 30998.53 35997.46 31398.47 27097.91 35196.85 32598.21 33498.51 36196.42 27099.51 36292.16 36097.29 36497.98 359
OpenMVS_ROBcopyleft97.31 1797.36 30496.84 31598.89 28099.29 28099.45 14198.87 22299.48 22886.54 37199.44 19599.74 9197.34 24299.86 20191.61 36199.28 30397.37 366
GG-mvs-BLEND97.36 33597.59 37396.87 32899.70 2988.49 38194.64 37497.26 37980.66 37399.12 36991.50 36296.50 37096.08 372
DeepMVS_CXcopyleft97.98 31899.69 12696.95 32599.26 28975.51 37395.74 37198.28 36696.47 26899.62 34891.23 36397.89 35997.38 365
ETH3 D test640097.76 28897.19 30599.50 16599.38 25099.26 18598.34 27999.49 22692.99 36298.54 31999.20 30295.92 28499.82 25791.14 36499.66 23099.40 223
PAPR97.56 29897.07 30799.04 26198.80 34798.11 28997.63 33599.25 29294.56 35998.02 34498.25 36797.43 23699.68 32890.90 36598.74 33599.33 240
MVS95.72 33794.63 34198.99 26398.56 35897.98 30099.30 11698.86 32172.71 37497.30 35999.08 31598.34 16999.74 30089.21 36698.33 34799.26 252
thres600view796.60 32096.16 32297.93 32099.63 14796.09 34099.18 15397.57 35598.77 20498.72 30697.32 37787.04 35799.72 30588.57 36798.62 34097.98 359
FPMVS96.32 32595.50 33398.79 28999.60 15498.17 28598.46 27598.80 32597.16 31796.28 36699.63 15982.19 37099.09 37088.45 36898.89 32799.10 287
PCF-MVS96.03 1896.73 31795.86 32899.33 21699.44 23499.16 20796.87 36299.44 24186.58 37098.95 27899.40 25394.38 29899.88 16887.93 36999.80 16498.95 312
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 32396.03 32597.47 33299.63 14795.93 34199.18 15397.57 35598.75 20898.70 30897.31 37887.04 35799.67 33387.62 37098.51 34496.81 368
tfpn200view996.30 32695.89 32697.53 33099.58 16396.11 33899.00 20197.54 35898.43 23498.52 32096.98 38086.85 35999.67 33387.62 37098.51 34496.81 368
thres40096.40 32295.89 32697.92 32199.58 16396.11 33899.00 20197.54 35898.43 23498.52 32096.98 38086.85 35999.67 33387.62 37098.51 34497.98 359
thres20096.09 32995.68 33297.33 33799.48 21996.22 33798.53 26597.57 35598.06 26998.37 32796.73 38286.84 36199.61 35286.99 37398.57 34196.16 371
MVEpermissive92.54 2296.66 31996.11 32398.31 31199.68 13597.55 31197.94 32195.60 36899.37 11990.68 37698.70 35396.56 26498.61 37486.94 37499.55 25998.77 326
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 33894.71 34098.31 31199.12 30996.63 33196.66 36598.46 34090.77 36796.25 36798.68 35493.01 31399.69 31781.60 37597.86 36198.62 330
test12329.31 34333.05 34818.08 35925.93 38312.24 38397.53 34110.93 38411.78 37724.21 37850.08 38721.04 3828.60 37823.51 37632.43 37733.39 374
testmvs28.94 34433.33 34615.79 36026.03 3829.81 38496.77 36315.67 38311.55 37823.87 37950.74 38619.03 3838.53 37923.21 37733.07 37629.03 375
test_blank8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.88 34533.17 3470.00 3610.00 3840.00 3850.00 37299.62 1420.00 3790.00 38099.13 30799.82 40.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas16.61 34622.14 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 199.28 420.00 3800.00 3780.00 3780.00 376
sosnet-low-res8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
Regformer8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.26 35511.02 3580.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.16 3050.00 3840.00 3800.00 3780.00 3780.00 376
uanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.83 3999.89 899.74 1899.71 9799.69 5899.63 131
test_one_060199.63 14799.76 5299.55 19099.23 14099.31 23199.61 17798.59 131
eth-test20.00 384
eth-test0.00 384
test_241102_ONE99.69 12699.82 2999.54 19699.12 16299.82 5399.49 23198.91 8799.52 361
save fliter99.53 19299.25 18998.29 28499.38 26499.07 166
test072699.69 12699.80 3799.24 13799.57 17999.16 15399.73 9799.65 14798.35 167
GSMVS99.14 281
test_part299.62 15199.67 8799.55 169
sam_mvs190.81 33999.14 281
sam_mvs90.52 343
MTGPAbinary99.53 205
test_post52.41 38490.25 34599.86 201
patchmatchnet-post99.62 16890.58 34199.94 61
MTMP99.09 18598.59 335
TEST999.35 25799.35 17098.11 30099.41 24894.83 35797.92 34698.99 32898.02 19799.85 219
test_899.34 26799.31 17698.08 30499.40 25594.90 35397.87 35098.97 33498.02 19799.84 236
agg_prior99.35 25799.36 16699.39 25897.76 35599.85 219
test_prior499.19 20598.00 312
test_prior99.46 17799.35 25799.22 19899.39 25899.69 31799.48 195
新几何298.04 308
旧先验199.49 21399.29 17999.26 28999.39 25797.67 22499.36 29499.46 204
原ACMM297.92 323
test22299.51 20299.08 22097.83 32899.29 28395.21 35098.68 30999.31 27797.28 24499.38 28999.43 217
segment_acmp98.37 165
testdata197.72 33197.86 284
test1299.54 15599.29 28099.33 17399.16 30798.43 32597.54 23299.82 25799.47 27799.48 195
plane_prior799.58 16399.38 160
plane_prior699.47 22499.26 18597.24 245
plane_prior499.25 291
plane_prior399.31 17698.36 24399.14 261
plane_prior298.80 23698.94 180
plane_prior199.51 202
plane_prior99.24 19498.42 27697.87 28199.71 209
n20.00 385
nn0.00 385
door-mid99.83 36
test1199.29 283
door99.77 65
HQP5-MVS98.94 232
HQP-NCC99.31 27497.98 31597.45 30298.15 335
ACMP_Plane99.31 27497.98 31597.45 30298.15 335
HQP4-MVS98.15 33599.70 31199.53 167
HQP3-MVS99.37 26599.67 226
HQP2-MVS96.67 262
NP-MVS99.40 24599.13 21098.83 347
ACMMP++_ref99.94 67
ACMMP++99.79 169
Test By Simon98.41 159