This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_vis3_rt99.89 399.90 499.87 2299.98 399.75 7199.70 35100.00 199.73 80100.00 199.89 3899.79 1699.88 20099.98 1100.00 199.98 5
test_fmvs299.72 4099.85 1799.34 23799.91 3198.08 32499.48 102100.00 199.90 3399.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 13
test_fmvs399.83 2099.93 299.53 17999.96 798.62 28599.67 50100.00 199.95 22100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 5
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_vis1_n_192099.72 4099.88 799.27 25899.93 2497.84 33699.34 129100.00 199.99 399.99 799.82 8299.87 999.99 899.97 499.99 1699.97 10
test_vis1_n99.68 4999.79 2999.36 23499.94 1898.18 31399.52 89100.00 199.86 48100.00 199.88 4798.99 11199.96 5699.97 499.96 7099.95 14
test_fmvs1_n99.68 4999.81 2599.28 25599.95 1597.93 33399.49 100100.00 199.82 6499.99 799.89 3899.21 7999.98 2199.97 499.98 4299.93 20
test_f99.75 3699.88 799.37 23099.96 798.21 31099.51 95100.00 199.94 25100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 10
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7799.01 24099.99 1199.99 399.98 1499.88 4799.97 299.99 899.96 9100.00 199.98 5
test_fmvsmvis_n_192099.84 1699.86 1399.81 4399.88 4499.55 14299.17 18899.98 1299.99 399.96 2699.84 7199.96 399.99 899.96 999.99 1699.88 30
test_cas_vis1_n_192099.76 3599.86 1399.45 20299.93 2498.40 29899.30 14499.98 1299.94 2599.99 799.89 3899.80 1599.97 3599.96 999.97 5799.97 10
fmvsm_l_conf0.5_n99.80 2599.78 3399.85 2899.88 4499.66 10599.11 21399.91 4099.98 1599.96 2699.64 19499.60 3699.99 899.95 1299.99 1699.88 30
test_fmvsm_n_192099.84 1699.85 1799.83 3399.82 7399.70 9499.17 18899.97 2099.99 399.96 2699.82 8299.94 4100.00 199.95 12100.00 199.80 52
test_fmvs199.48 9399.65 5498.97 29999.54 22397.16 35999.11 21399.98 1299.78 7499.96 2699.81 8998.72 14899.97 3599.95 1299.97 5799.79 59
mvsany_test399.85 1299.88 799.75 7899.95 1599.37 18599.53 8899.98 1299.77 7899.99 799.95 1699.85 1099.94 8199.95 1299.98 4299.94 17
fmvsm_s_conf0.1_n_299.81 2499.78 3399.89 1099.93 2499.76 6398.92 25999.98 1299.99 399.99 799.88 4799.43 5099.94 8199.94 1699.99 1699.99 2
fmvsm_l_conf0.5_n_a99.80 2599.79 2999.84 3099.88 4499.64 11499.12 20899.91 4099.98 1599.95 3499.67 18299.67 2799.99 899.94 1699.99 1699.88 30
MM99.18 18199.05 18899.55 17399.35 29298.81 26499.05 22797.79 39799.99 399.48 22699.59 23496.29 31099.95 6699.94 1699.98 4299.88 30
test_fmvsmconf_n99.85 1299.84 2099.88 1799.91 3199.73 8098.97 25299.98 1299.99 399.96 2699.85 6499.93 799.99 899.94 1699.99 1699.93 20
fmvsm_s_conf0.5_n_299.78 2999.75 4099.88 1799.82 7399.76 6398.88 26299.92 3599.98 1599.98 1499.85 6499.42 5299.94 8199.93 2099.98 4299.94 17
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1499.91 2899.68 2699.93 10199.93 2099.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1499.90 3399.88 899.92 12799.93 2099.99 1699.98 5
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5899.82 3799.03 23599.96 2699.99 399.97 2299.84 7199.58 3899.93 10199.92 2399.98 4299.93 20
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2299.85 5899.78 5199.03 23599.96 2699.99 399.97 2299.84 7199.78 1799.92 12799.92 2399.99 1699.92 24
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 2099.99 3100.00 199.98 1399.78 17100.00 199.92 23100.00 199.87 34
MVStest198.22 30898.09 30398.62 33499.04 36296.23 38099.20 17699.92 3599.44 15099.98 1499.87 5385.87 40399.67 37299.91 2699.57 28799.95 14
v192192099.56 7699.57 7599.55 17399.75 13199.11 23299.05 22799.61 18999.15 20299.88 6499.71 15299.08 9799.87 21499.90 2799.97 5799.66 113
v124099.56 7699.58 7199.51 18499.80 8899.00 24499.00 24399.65 16999.15 20299.90 5199.75 12999.09 9499.88 20099.90 2799.96 7099.67 104
v1099.69 4699.69 4799.66 12199.81 8299.39 18099.66 5499.75 11299.60 12599.92 4599.87 5398.75 14399.86 23399.90 2799.99 1699.73 75
v119299.57 7399.57 7599.57 16799.77 11599.22 21799.04 23299.60 20099.18 19199.87 7299.72 14499.08 9799.85 25199.89 3099.98 4299.66 113
v14419299.55 7999.54 8299.58 16199.78 10799.20 22299.11 21399.62 18299.18 19199.89 5599.72 14498.66 15699.87 21499.88 3199.97 5799.66 113
v899.68 4999.69 4799.65 12799.80 8899.40 17799.66 5499.76 10799.64 11099.93 4099.85 6498.66 15699.84 26699.88 3199.99 1699.71 81
mvs5depth99.88 699.91 399.80 4899.92 2999.42 17099.94 3100.00 199.97 1899.89 5599.99 1299.63 3099.97 3599.87 3399.99 16100.00 1
v114499.54 8299.53 8699.59 15899.79 10099.28 20399.10 21699.61 18999.20 18999.84 7999.73 13798.67 15499.84 26699.86 3499.98 4299.64 131
mmtdpeth99.78 2999.83 2199.66 12199.85 5899.05 24399.79 1299.97 20100.00 199.43 23899.94 1999.64 2899.94 8199.83 3599.99 1699.98 5
SSC-MVS99.52 8599.42 10499.83 3399.86 5499.65 11199.52 8999.81 8499.87 4599.81 9199.79 10296.78 29199.99 899.83 3599.51 30399.86 36
v7n99.82 2299.80 2899.88 1799.96 799.84 2499.82 999.82 7599.84 5799.94 3799.91 2899.13 9099.96 5699.83 3599.99 1699.83 45
v2v48299.50 8799.47 9199.58 16199.78 10799.25 21099.14 19899.58 21599.25 18099.81 9199.62 21298.24 21199.84 26699.83 3599.97 5799.64 131
test_vis1_rt99.45 10699.46 9599.41 21999.71 14698.63 28498.99 24899.96 2699.03 21599.95 3499.12 34998.75 14399.84 26699.82 3999.82 18499.77 65
tt080599.63 6299.57 7599.81 4399.87 5199.88 1299.58 7998.70 36199.72 8499.91 4899.60 22999.43 5099.81 30699.81 4099.53 29999.73 75
V4299.56 7699.54 8299.63 14199.79 10099.46 15699.39 11799.59 20699.24 18299.86 7399.70 16098.55 17099.82 29199.79 4199.95 8399.60 161
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 5199.92 3099.98 1499.93 2199.94 499.98 2199.77 42100.00 199.92 24
WB-MVS99.44 10899.32 12599.80 4899.81 8299.61 12799.47 10599.81 8499.82 6499.71 14099.72 14496.60 29599.98 2199.75 4399.23 34399.82 51
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6299.95 2299.98 1499.92 2599.28 7099.98 2199.75 43100.00 199.94 17
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5699.89 3999.98 1499.90 3399.94 499.98 2199.75 43100.00 199.90 26
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 33100.00 199.97 1499.61 3499.97 3599.75 43100.00 199.84 41
reproduce_monomvs97.40 34097.46 33497.20 38799.05 35991.91 41599.20 17699.18 33499.84 5799.86 7399.75 12980.67 41099.83 28199.69 4799.95 8399.85 39
SPE-MVS-test99.68 4999.70 4499.64 13499.57 20799.83 2999.78 1499.97 2099.92 3099.50 22399.38 29899.57 4099.95 6699.69 4799.90 11899.15 309
MVS_030498.61 26698.30 28799.52 18197.88 42098.95 25298.76 28494.11 41999.84 5799.32 26899.57 24495.57 32199.95 6699.68 4999.98 4299.68 96
CS-MVS99.67 5599.70 4499.58 16199.53 22999.84 2499.79 1299.96 2699.90 3399.61 18299.41 28899.51 4799.95 6699.66 5099.89 12898.96 351
mamv499.73 3999.74 4199.70 10799.66 17399.87 1499.69 4299.93 3399.93 2799.93 4099.86 6099.07 99100.00 199.66 5099.92 10799.24 285
pmmvs699.86 1099.86 1399.83 3399.94 1899.90 799.83 799.91 4099.85 5499.94 3799.95 1699.73 2199.90 16799.65 5299.97 5799.69 90
MIMVSNet199.66 5699.62 5999.80 4899.94 1899.87 1499.69 4299.77 10299.78 7499.93 4099.89 3897.94 23699.92 12799.65 5299.98 4299.62 147
EC-MVSNet99.69 4699.69 4799.68 11199.71 14699.91 499.76 2099.96 2699.86 4899.51 22199.39 29699.57 4099.93 10199.64 5499.86 15799.20 298
K. test v398.87 24398.60 25299.69 10999.93 2499.46 15699.74 2494.97 41499.78 7499.88 6499.88 4793.66 34299.97 3599.61 5599.95 8399.64 131
KD-MVS_self_test99.63 6299.59 6899.76 6899.84 6299.90 799.37 12499.79 9399.83 6299.88 6499.85 6498.42 19199.90 16799.60 5699.73 23299.49 219
Anonymous2024052199.44 10899.42 10499.49 19099.89 3998.96 25199.62 6499.76 10799.85 5499.82 8499.88 4796.39 30599.97 3599.59 5799.98 4299.55 183
TransMVSNet (Re)99.78 2999.77 3699.81 4399.91 3199.85 1999.75 2299.86 5699.70 9199.91 4899.89 3899.60 3699.87 21499.59 5799.74 22699.71 81
OurMVSNet-221017-099.75 3699.71 4399.84 3099.96 799.83 2999.83 799.85 6299.80 7099.93 4099.93 2198.54 17299.93 10199.59 5799.98 4299.76 70
EU-MVSNet99.39 12499.62 5998.72 33099.88 4496.44 37499.56 8499.85 6299.90 3399.90 5199.85 6498.09 22599.83 28199.58 6099.95 8399.90 26
mvs_anonymous99.28 14899.39 10898.94 30399.19 33597.81 33899.02 23899.55 22899.78 7499.85 7699.80 9298.24 21199.86 23399.57 6199.50 30699.15 309
test111197.74 32698.16 29996.49 39799.60 18789.86 42799.71 3491.21 42399.89 3999.88 6499.87 5393.73 34199.90 16799.56 6299.99 1699.70 84
lessismore_v099.64 13499.86 5499.38 18290.66 42499.89 5599.83 7594.56 33299.97 3599.56 6299.92 10799.57 178
mvsany_test199.44 10899.45 9799.40 22199.37 28698.64 28397.90 37399.59 20699.27 17699.92 4599.82 8299.74 2099.93 10199.55 6499.87 14999.63 136
MVSMamba_PlusPlus99.55 7999.58 7199.47 19699.68 16699.40 17799.52 8999.70 13999.92 3099.77 11399.86 6098.28 20799.96 5699.54 6599.90 11899.05 338
pm-mvs199.79 2899.79 2999.78 5899.91 3199.83 2999.76 2099.87 5399.73 8099.89 5599.87 5399.63 3099.87 21499.54 6599.92 10799.63 136
LTVRE_ROB99.19 199.88 699.87 1199.88 1799.91 3199.90 799.96 199.92 3599.90 3399.97 2299.87 5399.81 1499.95 6699.54 6599.99 1699.80 52
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DSMNet-mixed99.48 9399.65 5498.95 30299.71 14697.27 35699.50 9699.82 7599.59 12799.41 24799.85 6499.62 33100.00 199.53 6899.89 12899.59 168
test250694.73 38794.59 38895.15 40399.59 19285.90 42999.75 2274.01 43199.89 3999.71 14099.86 6079.00 42099.90 16799.52 6999.99 1699.65 121
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3999.91 499.89 599.71 13499.93 2799.95 3499.89 3899.71 2299.96 5699.51 7099.97 5799.84 41
FC-MVSNet-test99.70 4499.65 5499.86 2699.88 4499.86 1899.72 3099.78 9999.90 3399.82 8499.83 7598.45 18799.87 21499.51 7099.97 5799.86 36
BP-MVS198.72 25898.46 26899.50 18699.53 22999.00 24499.34 12998.53 37199.65 10799.73 13399.38 29890.62 37799.96 5699.50 7299.86 15799.55 183
UA-Net99.78 2999.76 3999.86 2699.72 14399.71 8799.91 499.95 3199.96 2199.71 14099.91 2899.15 8599.97 3599.50 72100.00 199.90 26
PMMVS299.48 9399.45 9799.57 16799.76 11998.99 24698.09 35099.90 4598.95 22399.78 10599.58 23799.57 4099.93 10199.48 7499.95 8399.79 59
VPA-MVSNet99.66 5699.62 5999.79 5599.68 16699.75 7199.62 6499.69 14699.85 5499.80 9599.81 8998.81 13199.91 14999.47 7599.88 13799.70 84
GDP-MVS98.81 24998.57 25899.50 18699.53 22999.12 23199.28 15399.86 5699.53 13199.57 19399.32 31490.88 37399.98 2199.46 7699.74 22699.42 247
ECVR-MVScopyleft97.73 32798.04 30696.78 39199.59 19290.81 42399.72 3090.43 42599.89 3999.86 7399.86 6093.60 34399.89 18699.46 7699.99 1699.65 121
nrg03099.70 4499.66 5299.82 3899.76 11999.84 2499.61 7099.70 13999.93 2799.78 10599.68 17899.10 9299.78 31999.45 7899.96 7099.83 45
TAMVS99.49 9199.45 9799.63 14199.48 25499.42 17099.45 10999.57 21799.66 10499.78 10599.83 7597.85 24399.86 23399.44 7999.96 7099.61 157
GeoE99.69 4699.66 5299.78 5899.76 11999.76 6399.60 7699.82 7599.46 14599.75 12199.56 24899.63 3099.95 6699.43 8099.88 13799.62 147
new-patchmatchnet99.35 13499.57 7598.71 33299.82 7396.62 37198.55 30799.75 11299.50 13599.88 6499.87 5399.31 6699.88 20099.43 80100.00 199.62 147
test20.0399.55 7999.54 8299.58 16199.79 10099.37 18599.02 23899.89 4799.60 12599.82 8499.62 21298.81 13199.89 18699.43 8099.86 15799.47 227
MVSFormer99.41 11899.44 10099.31 24899.57 20798.40 29899.77 1699.80 8799.73 8099.63 16799.30 31998.02 23099.98 2199.43 8099.69 24799.55 183
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8799.73 8099.97 2299.92 2599.77 1999.98 2199.43 80100.00 199.90 26
SDMVSNet99.77 3499.77 3699.76 6899.80 8899.65 11199.63 6199.86 5699.97 1899.89 5599.89 3899.52 4699.99 899.42 8599.96 7099.65 121
Anonymous2023121199.62 6899.57 7599.76 6899.61 18599.60 13099.81 1099.73 12299.82 6499.90 5199.90 3397.97 23599.86 23399.42 8599.96 7099.80 52
SixPastTwentyTwo99.42 11499.30 13299.76 6899.92 2999.67 10399.70 3599.14 33999.65 10799.89 5599.90 3396.20 31299.94 8199.42 8599.92 10799.67 104
balanced_conf0399.50 8799.50 8899.50 18699.42 27799.49 14999.52 8999.75 11299.86 4899.78 10599.71 15298.20 21899.90 16799.39 8899.88 13799.10 320
patch_mono-299.51 8699.46 9599.64 13499.70 15499.11 23299.04 23299.87 5399.71 8699.47 22899.79 10298.24 21199.98 2199.38 8999.96 7099.83 45
UGNet99.38 12699.34 12099.49 19098.90 37498.90 25999.70 3599.35 29899.86 4898.57 36099.81 8998.50 18299.93 10199.38 8999.98 4299.66 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 4399.67 5199.81 4399.89 3999.72 8599.59 7799.82 7599.39 16199.82 8499.84 7199.38 5899.91 14999.38 8999.93 10399.80 52
FIs99.65 6199.58 7199.84 3099.84 6299.85 1999.66 5499.75 11299.86 4899.74 12999.79 10298.27 20999.85 25199.37 9299.93 10399.83 45
sd_testset99.78 2999.78 3399.80 4899.80 8899.76 6399.80 1199.79 9399.97 1899.89 5599.89 3899.53 4599.99 899.36 9399.96 7099.65 121
anonymousdsp99.80 2599.77 3699.90 799.96 799.88 1299.73 2799.85 6299.70 9199.92 4599.93 2199.45 4999.97 3599.36 93100.00 199.85 39
casdiffmvs_mvgpermissive99.68 4999.68 5099.69 10999.81 8299.59 13299.29 15199.90 4599.71 8699.79 10199.73 13799.54 4399.84 26699.36 9399.96 7099.65 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.75 3699.74 4199.79 5599.88 4499.66 10599.69 4299.92 3599.67 10099.77 11399.75 12999.61 3499.98 2199.35 9699.98 4299.72 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dcpmvs_299.61 7099.64 5799.53 17999.79 10098.82 26399.58 7999.97 2099.95 2299.96 2699.76 12498.44 18899.99 899.34 9799.96 7099.78 61
CHOSEN 1792x268899.39 12499.30 13299.65 12799.88 4499.25 21098.78 28299.88 5198.66 26399.96 2699.79 10297.45 26599.93 10199.34 9799.99 1699.78 61
CDS-MVSNet99.22 16799.13 16099.50 18699.35 29299.11 23298.96 25499.54 23499.46 14599.61 18299.70 16096.31 30899.83 28199.34 9799.88 13799.55 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 22399.16 15498.51 34099.75 13195.90 38698.07 35399.84 6899.84 5799.89 5599.73 13796.01 31599.99 899.33 100100.00 199.63 136
HyFIR lowres test98.91 23698.64 24999.73 9299.85 5899.47 15298.07 35399.83 7098.64 26599.89 5599.60 22992.57 352100.00 199.33 10099.97 5799.72 78
pmmvs599.19 17799.11 16799.42 21299.76 11998.88 26098.55 30799.73 12298.82 24399.72 13599.62 21296.56 29699.82 29199.32 10299.95 8399.56 180
v14899.40 12099.41 10699.39 22499.76 11998.94 25399.09 22099.59 20699.17 19699.81 9199.61 22198.41 19299.69 35599.32 10299.94 9699.53 197
baseline99.63 6299.62 5999.66 12199.80 8899.62 12199.44 11199.80 8799.71 8699.72 13599.69 16799.15 8599.83 28199.32 10299.94 9699.53 197
CVMVSNet98.61 26698.88 22997.80 37199.58 19793.60 40899.26 15999.64 17799.66 10499.72 13599.67 18293.26 34599.93 10199.30 10599.81 19499.87 34
PS-CasMVS99.66 5699.58 7199.89 1099.80 8899.85 1999.66 5499.73 12299.62 11599.84 7999.71 15298.62 16099.96 5699.30 10599.96 7099.86 36
DTE-MVSNet99.68 4999.61 6399.88 1799.80 8899.87 1499.67 5099.71 13499.72 8499.84 7999.78 11298.67 15499.97 3599.30 10599.95 8399.80 52
tmp_tt95.75 38195.42 37596.76 39289.90 43094.42 40298.86 26597.87 39678.01 42199.30 27899.69 16797.70 25195.89 42399.29 10898.14 39999.95 14
PEN-MVS99.66 5699.59 6899.89 1099.83 6699.87 1499.66 5499.73 12299.70 9199.84 7999.73 13798.56 16999.96 5699.29 10899.94 9699.83 45
WR-MVS_H99.61 7099.53 8699.87 2299.80 8899.83 2999.67 5099.75 11299.58 12899.85 7699.69 16798.18 22199.94 8199.28 11099.95 8399.83 45
IterMVS98.97 22799.16 15498.42 34599.74 13795.64 39098.06 35599.83 7099.83 6299.85 7699.74 13396.10 31499.99 899.27 111100.00 199.63 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS97.50 33797.18 34398.48 34298.85 38195.89 38798.44 32399.52 24899.53 13199.52 21599.42 28780.10 41399.86 23399.24 11299.95 8399.68 96
h-mvs3398.61 26698.34 28299.44 20699.60 18798.67 27599.27 15799.44 27399.68 9699.32 26899.49 27092.50 355100.00 199.24 11296.51 41699.65 121
hse-mvs298.52 27998.30 28799.16 27499.29 31498.60 28698.77 28399.02 34799.68 9699.32 26899.04 35992.50 35599.85 25199.24 11297.87 40699.03 342
FMVSNet199.66 5699.63 5899.73 9299.78 10799.77 5699.68 4699.70 13999.67 10099.82 8499.83 7598.98 11399.90 16799.24 11299.97 5799.53 197
casdiffmvspermissive99.63 6299.61 6399.67 11499.79 10099.59 13299.13 20499.85 6299.79 7299.76 11699.72 14499.33 6599.82 29199.21 11699.94 9699.59 168
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet99.54 8299.43 10299.87 2299.76 11999.82 3799.57 8299.61 18999.54 12999.80 9599.64 19497.79 24799.95 6699.21 11699.94 9699.84 41
DELS-MVS99.34 13999.30 13299.48 19499.51 23899.36 18998.12 34699.53 24399.36 16699.41 24799.61 22199.22 7899.87 21499.21 11699.68 25299.20 298
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
UniMVSNet (Re)99.37 12999.26 14399.68 11199.51 23899.58 13698.98 25199.60 20099.43 15699.70 14499.36 30597.70 25199.88 20099.20 11999.87 14999.59 168
CANet99.11 19899.05 18899.28 25598.83 38398.56 28898.71 29099.41 27999.25 18099.23 28699.22 33797.66 25999.94 8199.19 12099.97 5799.33 267
EI-MVSNet-UG-set99.48 9399.50 8899.42 21299.57 20798.65 28199.24 16699.46 26899.68 9699.80 9599.66 18798.99 11199.89 18699.19 12099.90 11899.72 78
xiu_mvs_v1_base_debu99.23 15999.34 12098.91 30999.59 19298.23 30798.47 31899.66 15999.61 11999.68 15098.94 37599.39 5499.97 3599.18 12299.55 29298.51 388
xiu_mvs_v1_base99.23 15999.34 12098.91 30999.59 19298.23 30798.47 31899.66 15999.61 11999.68 15098.94 37599.39 5499.97 3599.18 12299.55 29298.51 388
xiu_mvs_v1_base_debi99.23 15999.34 12098.91 30999.59 19298.23 30798.47 31899.66 15999.61 11999.68 15098.94 37599.39 5499.97 3599.18 12299.55 29298.51 388
VPNet99.46 10299.37 11399.71 10399.82 7399.59 13299.48 10299.70 13999.81 6799.69 14799.58 23797.66 25999.86 23399.17 12599.44 31399.67 104
UniMVSNet_NR-MVSNet99.37 12999.25 14599.72 9899.47 26099.56 13998.97 25299.61 18999.43 15699.67 15599.28 32397.85 24399.95 6699.17 12599.81 19499.65 121
DU-MVS99.33 14299.21 14999.71 10399.43 27299.56 13998.83 27099.53 24399.38 16299.67 15599.36 30597.67 25599.95 6699.17 12599.81 19499.63 136
EI-MVSNet-Vis-set99.47 10199.49 9099.42 21299.57 20798.66 27899.24 16699.46 26899.67 10099.79 10199.65 19298.97 11599.89 18699.15 12899.89 12899.71 81
EI-MVSNet99.38 12699.44 10099.21 26899.58 19798.09 32199.26 15999.46 26899.62 11599.75 12199.67 18298.54 17299.85 25199.15 12899.92 10799.68 96
VNet99.18 18199.06 18499.56 17099.24 32599.36 18999.33 13399.31 30799.67 10099.47 22899.57 24496.48 29999.84 26699.15 12899.30 33299.47 227
EG-PatchMatch MVS99.57 7399.56 8099.62 15099.77 11599.33 19599.26 15999.76 10799.32 17099.80 9599.78 11299.29 6899.87 21499.15 12899.91 11799.66 113
PVSNet_Blended_VisFu99.40 12099.38 11099.44 20699.90 3798.66 27898.94 25799.91 4097.97 32699.79 10199.73 13799.05 10499.97 3599.15 12899.99 1699.68 96
IterMVS-LS99.41 11899.47 9199.25 26499.81 8298.09 32198.85 26799.76 10799.62 11599.83 8399.64 19498.54 17299.97 3599.15 12899.99 1699.68 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 8299.47 9199.76 6899.58 19799.64 11499.30 14499.63 17999.61 11999.71 14099.56 24898.76 14199.96 5699.14 13499.92 10799.68 96
MVSTER98.47 28698.22 29299.24 26699.06 35898.35 30499.08 22399.46 26899.27 17699.75 12199.66 18788.61 39099.85 25199.14 13499.92 10799.52 207
Anonymous2023120699.35 13499.31 12799.47 19699.74 13799.06 24299.28 15399.74 11899.23 18499.72 13599.53 25997.63 26199.88 20099.11 13699.84 16799.48 223
Syy-MVS98.17 31197.85 32399.15 27698.50 40698.79 26798.60 29699.21 33097.89 33296.76 40896.37 43195.47 32399.57 39699.10 13798.73 37799.09 325
ttmdpeth99.48 9399.55 8199.29 25299.76 11998.16 31599.33 13399.95 3199.79 7299.36 25799.89 3899.13 9099.77 32799.09 13899.64 26599.93 20
MVS_Test99.28 14899.31 12799.19 27199.35 29298.79 26799.36 12799.49 26199.17 19699.21 29199.67 18298.78 13899.66 37799.09 13899.66 26199.10 320
testgi99.29 14799.26 14399.37 23099.75 13198.81 26498.84 26899.89 4798.38 29399.75 12199.04 35999.36 6399.86 23399.08 14099.25 33999.45 232
1112_ss99.05 20998.84 23499.67 11499.66 17399.29 20198.52 31399.82 7597.65 34499.43 23899.16 34396.42 30299.91 14999.07 14199.84 16799.80 52
CANet_DTU98.91 23698.85 23299.09 28598.79 38998.13 31698.18 33999.31 30799.48 13898.86 33199.51 26396.56 29699.95 6699.05 14299.95 8399.19 301
Baseline_NR-MVSNet99.49 9199.37 11399.82 3899.91 3199.84 2498.83 27099.86 5699.68 9699.65 16299.88 4797.67 25599.87 21499.03 14399.86 15799.76 70
FMVSNet299.35 13499.28 13999.55 17399.49 24999.35 19299.45 10999.57 21799.44 15099.70 14499.74 13397.21 27699.87 21499.03 14399.94 9699.44 237
Test_1112_low_res98.95 23398.73 24399.63 14199.68 16699.15 22898.09 35099.80 8797.14 37099.46 23299.40 29296.11 31399.89 18699.01 14599.84 16799.84 41
VDD-MVS99.20 17499.11 16799.44 20699.43 27298.98 24799.50 9698.32 38599.80 7099.56 20199.69 16796.99 28699.85 25198.99 14699.73 23299.50 214
DeepC-MVS98.90 499.62 6899.61 6399.67 11499.72 14399.44 16399.24 16699.71 13499.27 17699.93 4099.90 3399.70 2499.93 10198.99 14699.99 1699.64 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 9399.47 9199.51 18499.77 11599.41 17698.81 27599.66 15999.42 16099.75 12199.66 18799.20 8099.76 33098.98 14899.99 1699.36 260
EPNet_dtu97.62 33297.79 32697.11 39096.67 42592.31 41398.51 31498.04 39099.24 18295.77 41799.47 27793.78 34099.66 37798.98 14899.62 26999.37 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvspermissive99.34 13999.32 12599.39 22499.67 17298.77 26998.57 30599.81 8499.61 11999.48 22699.41 28898.47 18399.86 23398.97 15099.90 11899.53 197
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet99.40 12099.31 12799.68 11199.43 27299.55 14299.73 2799.50 25799.46 14599.88 6499.36 30597.54 26299.87 21498.97 15099.87 14999.63 136
GBi-Net99.42 11499.31 12799.73 9299.49 24999.77 5699.68 4699.70 13999.44 15099.62 17699.83 7597.21 27699.90 16798.96 15299.90 11899.53 197
FMVSNet597.80 32497.25 34199.42 21298.83 38398.97 24999.38 12099.80 8798.87 23599.25 28299.69 16780.60 41299.91 14998.96 15299.90 11899.38 254
test199.42 11499.31 12799.73 9299.49 24999.77 5699.68 4699.70 13999.44 15099.62 17699.83 7597.21 27699.90 16798.96 15299.90 11899.53 197
FMVSNet398.80 25098.63 25199.32 24599.13 34498.72 27299.10 21699.48 26299.23 18499.62 17699.64 19492.57 35299.86 23398.96 15299.90 11899.39 252
UnsupCasMVSNet_eth98.83 24698.57 25899.59 15899.68 16699.45 16198.99 24899.67 15499.48 13899.55 20699.36 30594.92 32699.86 23398.95 15696.57 41599.45 232
CHOSEN 280x42098.41 29198.41 27498.40 34699.34 30195.89 38796.94 40999.44 27398.80 24799.25 28299.52 26193.51 34499.98 2198.94 15799.98 4299.32 270
TDRefinement99.72 4099.70 4499.77 6199.90 3799.85 1999.86 699.92 3599.69 9499.78 10599.92 2599.37 6099.88 20098.93 15899.95 8399.60 161
alignmvs98.28 30197.96 31299.25 26499.12 34698.93 25699.03 23598.42 37899.64 11098.72 34697.85 41190.86 37499.62 38798.88 15999.13 34599.19 301
MGCFI-Net99.02 21599.01 20099.06 29299.11 35198.60 28699.63 6199.67 15499.63 11298.58 35897.65 41499.07 9999.57 39698.85 16098.92 36199.03 342
sss98.90 23898.77 24299.27 25899.48 25498.44 29598.72 28899.32 30397.94 33099.37 25699.35 31096.31 30899.91 14998.85 16099.63 26899.47 227
xiu_mvs_v2_base99.02 21599.11 16798.77 32799.37 28698.09 32198.13 34599.51 25399.47 14299.42 24198.54 39799.38 5899.97 3598.83 16299.33 32898.24 400
PS-MVSNAJ99.00 22399.08 17898.76 32899.37 28698.10 32098.00 36199.51 25399.47 14299.41 24798.50 39999.28 7099.97 3598.83 16299.34 32798.20 404
D2MVS99.22 16799.19 15199.29 25299.69 15898.74 27198.81 27599.41 27998.55 27499.68 15099.69 16798.13 22399.87 21498.82 16499.98 4299.24 285
PatchT98.45 28898.32 28498.83 32298.94 37298.29 30599.24 16698.82 35599.84 5799.08 30899.76 12491.37 36399.94 8198.82 16499.00 35698.26 399
testf199.63 6299.60 6699.72 9899.94 1899.95 299.47 10599.89 4799.43 15699.88 6499.80 9299.26 7499.90 16798.81 16699.88 13799.32 270
APD_test299.63 6299.60 6699.72 9899.94 1899.95 299.47 10599.89 4799.43 15699.88 6499.80 9299.26 7499.90 16798.81 16699.88 13799.32 270
sasdasda99.02 21599.00 20499.09 28599.10 35398.70 27399.61 7099.66 15999.63 11298.64 35297.65 41499.04 10599.54 40098.79 16898.92 36199.04 340
Effi-MVS+99.06 20698.97 21599.34 23799.31 30898.98 24798.31 33199.91 4098.81 24598.79 34098.94 37599.14 8899.84 26698.79 16898.74 37499.20 298
canonicalmvs99.02 21599.00 20499.09 28599.10 35398.70 27399.61 7099.66 15999.63 11298.64 35297.65 41499.04 10599.54 40098.79 16898.92 36199.04 340
VDDNet98.97 22798.82 23799.42 21299.71 14698.81 26499.62 6498.68 36299.81 6799.38 25599.80 9294.25 33499.85 25198.79 16899.32 33099.59 168
CR-MVSNet98.35 29898.20 29498.83 32299.05 35998.12 31799.30 14499.67 15497.39 35899.16 29799.79 10291.87 36099.91 14998.78 17298.77 37098.44 393
test_method91.72 38892.32 39189.91 40693.49 42970.18 43290.28 42099.56 22261.71 42495.39 41999.52 26193.90 33699.94 8198.76 17398.27 39299.62 147
RPMNet98.60 26998.53 26498.83 32299.05 35998.12 31799.30 14499.62 18299.86 4899.16 29799.74 13392.53 35499.92 12798.75 17498.77 37098.44 393
pmmvs499.13 19399.06 18499.36 23499.57 20799.10 23798.01 35999.25 32098.78 25099.58 19099.44 28498.24 21199.76 33098.74 17599.93 10399.22 291
tttt051797.62 33297.20 34298.90 31599.76 11997.40 35399.48 10294.36 41699.06 21399.70 14499.49 27084.55 40699.94 8198.73 17699.65 26399.36 260
EPP-MVSNet99.17 18699.00 20499.66 12199.80 8899.43 16799.70 3599.24 32399.48 13899.56 20199.77 12194.89 32799.93 10198.72 17799.89 12899.63 136
Anonymous2024052999.42 11499.34 12099.65 12799.53 22999.60 13099.63 6199.39 28999.47 14299.76 11699.78 11298.13 22399.86 23398.70 17899.68 25299.49 219
ACMH98.42 699.59 7299.54 8299.72 9899.86 5499.62 12199.56 8499.79 9398.77 25299.80 9599.85 6499.64 2899.85 25198.70 17899.89 12899.70 84
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 14299.28 13999.47 19699.57 20799.39 18099.78 1499.43 27698.87 23599.57 19399.82 8298.06 22899.87 21498.69 18099.73 23299.15 309
LFMVS98.46 28798.19 29799.26 26199.24 32598.52 29199.62 6496.94 40699.87 4599.31 27399.58 23791.04 36899.81 30698.68 18199.42 31799.45 232
WR-MVS99.11 19898.93 22099.66 12199.30 31299.42 17098.42 32499.37 29499.04 21499.57 19399.20 34196.89 28899.86 23398.66 18299.87 14999.70 84
mvsmamba99.08 20298.95 21899.45 20299.36 28999.18 22599.39 11798.81 35699.37 16399.35 25999.70 16096.36 30799.94 8198.66 18299.59 28399.22 291
RRT-MVS99.08 20299.00 20499.33 24099.27 31998.65 28199.62 6499.93 3399.66 10499.67 15599.82 8295.27 32599.93 10198.64 18499.09 34999.41 248
Anonymous20240521198.75 25498.46 26899.63 14199.34 30199.66 10599.47 10597.65 39899.28 17599.56 20199.50 26693.15 34699.84 26698.62 18599.58 28599.40 250
EPNet98.13 31297.77 32799.18 27394.57 42897.99 32799.24 16697.96 39299.74 7997.29 40199.62 21293.13 34799.97 3598.59 18699.83 17599.58 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 20999.09 17698.91 30999.21 33098.36 30398.82 27499.47 26598.85 23898.90 32699.56 24898.78 13899.09 41598.57 18799.68 25299.26 282
Patchmatch-RL test98.60 26998.36 27999.33 24099.77 11599.07 24098.27 33399.87 5398.91 23099.74 12999.72 14490.57 37999.79 31698.55 18899.85 16299.11 318
pmmvs398.08 31597.80 32498.91 30999.41 27997.69 34497.87 37499.66 15995.87 38999.50 22399.51 26390.35 38199.97 3598.55 18899.47 31099.08 331
ETV-MVS99.18 18199.18 15299.16 27499.34 30199.28 20399.12 20899.79 9399.48 13898.93 32098.55 39699.40 5399.93 10198.51 19099.52 30298.28 398
jason99.16 18799.11 16799.32 24599.75 13198.44 29598.26 33599.39 28998.70 26099.74 12999.30 31998.54 17299.97 3598.48 19199.82 18499.55 183
jason: jason.
APDe-MVScopyleft99.48 9399.36 11699.85 2899.55 22199.81 4299.50 9699.69 14698.99 21799.75 12199.71 15298.79 13699.93 10198.46 19299.85 16299.80 52
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CL-MVSNet_self_test98.71 26098.56 26299.15 27699.22 32898.66 27897.14 40499.51 25398.09 31999.54 20899.27 32596.87 28999.74 33798.43 19398.96 35899.03 342
our_test_398.85 24599.09 17698.13 35999.66 17394.90 40097.72 37999.58 21599.07 21199.64 16399.62 21298.19 21999.93 10198.41 19499.95 8399.55 183
Gipumacopyleft99.57 7399.59 6899.49 19099.98 399.71 8799.72 3099.84 6899.81 6799.94 3799.78 11298.91 12399.71 34698.41 19499.95 8399.05 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 34296.91 35298.74 32997.72 42197.57 34697.60 38597.36 40498.00 32299.21 29198.02 40790.04 38499.79 31698.37 19695.89 42098.86 365
PM-MVS99.36 13299.29 13799.58 16199.83 6699.66 10598.95 25599.86 5698.85 23899.81 9199.73 13798.40 19699.92 12798.36 19799.83 17599.17 305
baseline197.73 32797.33 33898.96 30099.30 31297.73 34299.40 11598.42 37899.33 16999.46 23299.21 33991.18 36699.82 29198.35 19891.26 42399.32 270
MVS-HIRNet97.86 32198.22 29296.76 39299.28 31791.53 41998.38 32692.60 42299.13 20499.31 27399.96 1597.18 28099.68 36798.34 19999.83 17599.07 336
GA-MVS97.99 32097.68 33098.93 30699.52 23698.04 32597.19 40399.05 34698.32 30698.81 33698.97 37189.89 38699.41 41198.33 20099.05 35299.34 266
Fast-Effi-MVS+99.02 21598.87 23099.46 19999.38 28499.50 14899.04 23299.79 9397.17 36898.62 35498.74 38899.34 6499.95 6698.32 20199.41 31898.92 358
MDA-MVSNet_test_wron98.95 23398.99 21198.85 31899.64 17897.16 35998.23 33799.33 30198.93 22799.56 20199.66 18797.39 26999.83 28198.29 20299.88 13799.55 183
N_pmnet98.73 25798.53 26499.35 23699.72 14398.67 27598.34 32894.65 41598.35 30099.79 10199.68 17898.03 22999.93 10198.28 20399.92 10799.44 237
ET-MVSNet_ETH3D96.78 35496.07 36398.91 30999.26 32297.92 33497.70 38196.05 41197.96 32992.37 42398.43 40087.06 39499.90 16798.27 20497.56 40998.91 359
thisisatest053097.45 33896.95 34998.94 30399.68 16697.73 34299.09 22094.19 41898.61 27099.56 20199.30 31984.30 40799.93 10198.27 20499.54 29799.16 307
YYNet198.95 23398.99 21198.84 32099.64 17897.14 36198.22 33899.32 30398.92 22999.59 18899.66 18797.40 26799.83 28198.27 20499.90 11899.55 183
reproduce_model99.50 8799.40 10799.83 3399.60 18799.83 2999.12 20899.68 14999.49 13799.80 9599.79 10299.01 10899.93 10198.24 20799.82 18499.73 75
ACMM98.09 1199.46 10299.38 11099.72 9899.80 8899.69 9899.13 20499.65 16998.99 21799.64 16399.72 14499.39 5499.86 23398.23 20899.81 19499.60 161
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 23098.87 23099.24 26699.57 20798.40 29898.12 34699.18 33498.28 30899.63 16799.13 34598.02 23099.97 3598.22 20999.69 24799.35 263
3Dnovator99.15 299.43 11199.36 11699.65 12799.39 28199.42 17099.70 3599.56 22299.23 18499.35 25999.80 9299.17 8399.95 6698.21 21099.84 16799.59 168
Fast-Effi-MVS+-dtu99.20 17499.12 16499.43 21099.25 32399.69 9899.05 22799.82 7599.50 13598.97 31699.05 35798.98 11399.98 2198.20 21199.24 34198.62 379
MS-PatchMatch99.00 22398.97 21599.09 28599.11 35198.19 31198.76 28499.33 30198.49 28399.44 23499.58 23798.21 21699.69 35598.20 21199.62 26999.39 252
TSAR-MVS + GP.99.12 19599.04 19499.38 22799.34 30199.16 22698.15 34299.29 31198.18 31599.63 16799.62 21299.18 8299.68 36798.20 21199.74 22699.30 276
DP-MVS99.48 9399.39 10899.74 8399.57 20799.62 12199.29 15199.61 18999.87 4599.74 12999.76 12498.69 15099.87 21498.20 21199.80 20199.75 73
MVP-Stereo99.16 18799.08 17899.43 21099.48 25499.07 24099.08 22399.55 22898.63 26699.31 27399.68 17898.19 21999.78 31998.18 21599.58 28599.45 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 11199.30 13299.80 4899.83 6699.81 4299.52 8999.70 13998.35 30099.51 22199.50 26699.31 6699.88 20098.18 21599.84 16799.69 90
MDA-MVSNet-bldmvs99.06 20699.05 18899.07 29099.80 8897.83 33798.89 26199.72 13199.29 17299.63 16799.70 16096.47 30099.89 18698.17 21799.82 18499.50 214
JIA-IIPM98.06 31697.92 31998.50 34198.59 40297.02 36398.80 27898.51 37399.88 4497.89 38899.87 5391.89 35999.90 16798.16 21897.68 40898.59 382
EIA-MVS99.12 19599.01 20099.45 20299.36 28999.62 12199.34 12999.79 9398.41 28998.84 33398.89 37998.75 14399.84 26698.15 21999.51 30398.89 362
miper_lstm_enhance98.65 26598.60 25298.82 32599.20 33397.33 35597.78 37799.66 15999.01 21699.59 18899.50 26694.62 33199.85 25198.12 22099.90 11899.26 282
reproduce-ours99.46 10299.35 11899.82 3899.56 21899.83 2999.05 22799.65 16999.45 14899.78 10599.78 11298.93 11899.93 10198.11 22199.81 19499.70 84
our_new_method99.46 10299.35 11899.82 3899.56 21899.83 2999.05 22799.65 16999.45 14899.78 10599.78 11298.93 11899.93 10198.11 22199.81 19499.70 84
Effi-MVS+-dtu99.07 20598.92 22499.52 18198.89 37799.78 5199.15 19699.66 15999.34 16798.92 32399.24 33597.69 25399.98 2198.11 22199.28 33598.81 369
tpm97.15 34696.95 34997.75 37398.91 37394.24 40399.32 13697.96 39297.71 34298.29 37099.32 31486.72 40099.92 12798.10 22496.24 41899.09 325
DeepPCF-MVS98.42 699.18 18199.02 19799.67 11499.22 32899.75 7197.25 40199.47 26598.72 25799.66 16099.70 16099.29 6899.63 38698.07 22599.81 19499.62 147
ppachtmachnet_test98.89 24199.12 16498.20 35799.66 17395.24 39697.63 38399.68 14999.08 20999.78 10599.62 21298.65 15899.88 20098.02 22699.96 7099.48 223
tpmrst97.73 32798.07 30596.73 39498.71 39892.00 41499.10 21698.86 35298.52 27998.92 32399.54 25791.90 35899.82 29198.02 22699.03 35498.37 395
CSCG99.37 12999.29 13799.60 15699.71 14699.46 15699.43 11399.85 6298.79 24899.41 24799.60 22998.92 12199.92 12798.02 22699.92 10799.43 243
eth_miper_zixun_eth98.68 26398.71 24598.60 33699.10 35396.84 36897.52 39199.54 23498.94 22499.58 19099.48 27396.25 31199.76 33098.01 22999.93 10399.21 294
Patchmtry98.78 25198.54 26399.49 19098.89 37799.19 22399.32 13699.67 15499.65 10799.72 13599.79 10291.87 36099.95 6698.00 23099.97 5799.33 267
PVSNet_BlendedMVS99.03 21399.01 20099.09 28599.54 22397.99 32798.58 30199.82 7597.62 34599.34 26399.71 15298.52 17999.77 32797.98 23199.97 5799.52 207
PVSNet_Blended98.70 26198.59 25499.02 29599.54 22397.99 32797.58 38699.82 7595.70 39399.34 26398.98 36998.52 17999.77 32797.98 23199.83 17599.30 276
cl____98.54 27798.41 27498.92 30799.03 36397.80 34097.46 39399.59 20698.90 23199.60 18599.46 28093.85 33899.78 31997.97 23399.89 12899.17 305
DIV-MVS_self_test98.54 27798.42 27398.92 30799.03 36397.80 34097.46 39399.59 20698.90 23199.60 18599.46 28093.87 33799.78 31997.97 23399.89 12899.18 303
AUN-MVS97.82 32397.38 33799.14 27999.27 31998.53 28998.72 28899.02 34798.10 31797.18 40499.03 36389.26 38899.85 25197.94 23597.91 40499.03 342
FA-MVS(test-final)98.52 27998.32 28499.10 28499.48 25498.67 27599.77 1698.60 36997.35 36099.63 16799.80 9293.07 34899.84 26697.92 23699.30 33298.78 372
ambc99.20 27099.35 29298.53 28999.17 18899.46 26899.67 15599.80 9298.46 18699.70 34997.92 23699.70 24399.38 254
USDC98.96 23098.93 22099.05 29399.54 22397.99 32797.07 40799.80 8798.21 31299.75 12199.77 12198.43 18999.64 38597.90 23899.88 13799.51 209
OPM-MVS99.26 15499.13 16099.63 14199.70 15499.61 12798.58 30199.48 26298.50 28199.52 21599.63 20599.14 8899.76 33097.89 23999.77 21599.51 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 14499.17 15399.77 6199.69 15899.80 4699.14 19899.31 30799.16 19899.62 17699.61 22198.35 20099.91 14997.88 24099.72 23899.61 157
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3399.70 15499.79 4899.14 19899.61 18999.92 12797.88 24099.72 23899.77 65
c3_l98.72 25898.71 24598.72 33099.12 34697.22 35897.68 38299.56 22298.90 23199.54 20899.48 27396.37 30699.73 34097.88 24099.88 13799.21 294
3Dnovator+98.92 399.35 13499.24 14799.67 11499.35 29299.47 15299.62 6499.50 25799.44 15099.12 30499.78 11298.77 14099.94 8197.87 24399.72 23899.62 147
miper_ehance_all_eth98.59 27298.59 25498.59 33798.98 36997.07 36297.49 39299.52 24898.50 28199.52 21599.37 30196.41 30499.71 34697.86 24499.62 26999.00 349
WTY-MVS98.59 27298.37 27899.26 26199.43 27298.40 29898.74 28699.13 34198.10 31799.21 29199.24 33594.82 32899.90 16797.86 24498.77 37099.49 219
APD_test199.36 13299.28 13999.61 15399.89 3999.89 1099.32 13699.74 11899.18 19199.69 14799.75 12998.41 19299.84 26697.85 24699.70 24399.10 320
SED-MVS99.40 12099.28 13999.77 6199.69 15899.82 3799.20 17699.54 23499.13 20499.82 8499.63 20598.91 12399.92 12797.85 24699.70 24399.58 173
test_241102_TWO99.54 23499.13 20499.76 11699.63 20598.32 20599.92 12797.85 24699.69 24799.75 73
MVS_111021_HR99.12 19599.02 19799.40 22199.50 24499.11 23297.92 37099.71 13498.76 25599.08 30899.47 27799.17 8399.54 40097.85 24699.76 21799.54 192
MTAPA99.35 13499.20 15099.80 4899.81 8299.81 4299.33 13399.53 24399.27 17699.42 24199.63 20598.21 21699.95 6697.83 25099.79 20699.65 121
MSC_two_6792asdad99.74 8399.03 36399.53 14599.23 32499.92 12797.77 25199.69 24799.78 61
No_MVS99.74 8399.03 36399.53 14599.23 32499.92 12797.77 25199.69 24799.78 61
TESTMET0.1,196.24 36895.84 36997.41 38198.24 41393.84 40697.38 39595.84 41298.43 28697.81 39398.56 39579.77 41699.89 18697.77 25198.77 37098.52 387
ACMH+98.40 899.50 8799.43 10299.71 10399.86 5499.76 6399.32 13699.77 10299.53 13199.77 11399.76 12499.26 7499.78 31997.77 25199.88 13799.60 161
IU-MVS99.69 15899.77 5699.22 32797.50 35299.69 14797.75 25599.70 24399.77 65
114514_t98.49 28498.11 30299.64 13499.73 14099.58 13699.24 16699.76 10789.94 41699.42 24199.56 24897.76 25099.86 23397.74 25699.82 18499.47 227
DVP-MVS++99.38 12699.25 14599.77 6199.03 36399.77 5699.74 2499.61 18999.18 19199.76 11699.61 22199.00 10999.92 12797.72 25799.60 27999.62 147
test_0728_THIRD99.18 19199.62 17699.61 22198.58 16699.91 14997.72 25799.80 20199.77 65
EGC-MVSNET89.05 39085.52 39399.64 13499.89 3999.78 5199.56 8499.52 24824.19 42549.96 42699.83 7599.15 8599.92 12797.71 25999.85 16299.21 294
miper_enhance_ethall98.03 31797.94 31798.32 35198.27 41296.43 37596.95 40899.41 27996.37 38499.43 23898.96 37394.74 32999.69 35597.71 25999.62 26998.83 368
TSAR-MVS + MP.99.34 13999.24 14799.63 14199.82 7399.37 18599.26 15999.35 29898.77 25299.57 19399.70 16099.27 7399.88 20097.71 25999.75 21999.65 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 33597.28 33998.40 34698.37 41096.75 36997.24 40299.37 29497.31 36299.41 24799.22 33787.30 39299.37 41297.70 26299.62 26999.08 331
MP-MVS-pluss99.14 19198.92 22499.80 4899.83 6699.83 2998.61 29499.63 17996.84 37799.44 23499.58 23798.81 13199.91 14997.70 26299.82 18499.67 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 14899.11 16799.79 5599.75 13199.81 4298.95 25599.53 24398.27 30999.53 21399.73 13798.75 14399.87 21497.70 26299.83 17599.68 96
UnsupCasMVSNet_bld98.55 27698.27 29099.40 22199.56 21899.37 18597.97 36699.68 14997.49 35399.08 30899.35 31095.41 32499.82 29197.70 26298.19 39699.01 348
MVS_111021_LR99.13 19399.03 19699.42 21299.58 19799.32 19797.91 37299.73 12298.68 26199.31 27399.48 27399.09 9499.66 37797.70 26299.77 21599.29 279
IS-MVSNet99.03 21398.85 23299.55 17399.80 8899.25 21099.73 2799.15 33899.37 16399.61 18299.71 15294.73 33099.81 30697.70 26299.88 13799.58 173
test-LLR97.15 34696.95 34997.74 37498.18 41595.02 39897.38 39596.10 40898.00 32297.81 39398.58 39290.04 38499.91 14997.69 26898.78 36898.31 396
test-mter96.23 36995.73 37197.74 37498.18 41595.02 39897.38 39596.10 40897.90 33197.81 39398.58 39279.12 41999.91 14997.69 26898.78 36898.31 396
MonoMVSNet98.23 30698.32 28497.99 36298.97 37096.62 37199.49 10098.42 37899.62 11599.40 25299.79 10295.51 32298.58 42197.68 27095.98 41998.76 375
XVS99.27 15299.11 16799.75 7899.71 14699.71 8799.37 12499.61 18999.29 17298.76 34399.47 27798.47 18399.88 20097.62 27199.73 23299.67 104
X-MVStestdata96.09 37294.87 38499.75 7899.71 14699.71 8799.37 12499.61 18999.29 17298.76 34361.30 43498.47 18399.88 20097.62 27199.73 23299.67 104
SMA-MVScopyleft99.19 17799.00 20499.73 9299.46 26499.73 8099.13 20499.52 24897.40 35799.57 19399.64 19498.93 11899.83 28197.61 27399.79 20699.63 136
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 35796.79 35696.46 39898.90 37490.71 42499.41 11498.68 36294.69 40698.14 38099.34 31386.32 40299.80 31397.60 27498.07 40298.88 363
PVSNet97.47 1598.42 29098.44 27198.35 34899.46 26496.26 37996.70 41299.34 30097.68 34399.00 31599.13 34597.40 26799.72 34297.59 27599.68 25299.08 331
new_pmnet98.88 24298.89 22898.84 32099.70 15497.62 34598.15 34299.50 25797.98 32599.62 17699.54 25798.15 22299.94 8197.55 27699.84 16798.95 353
IB-MVS95.41 2095.30 38694.46 39097.84 37098.76 39495.33 39497.33 39896.07 41096.02 38895.37 42097.41 41876.17 42199.96 5697.54 27795.44 42298.22 401
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 15899.11 16799.61 15398.38 40999.79 4899.57 8299.68 14999.61 11999.15 29999.71 15298.70 14999.91 14997.54 27799.68 25299.13 317
ZNCC-MVS99.22 16799.04 19499.77 6199.76 11999.73 8099.28 15399.56 22298.19 31499.14 30199.29 32298.84 13099.92 12797.53 27999.80 20199.64 131
CP-MVS99.23 15999.05 18899.75 7899.66 17399.66 10599.38 12099.62 18298.38 29399.06 31299.27 32598.79 13699.94 8197.51 28099.82 18499.66 113
SD-MVS99.01 22199.30 13298.15 35899.50 24499.40 17798.94 25799.61 18999.22 18899.75 12199.82 8299.54 4395.51 42597.48 28199.87 14999.54 192
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 28498.29 28999.11 28298.96 37198.42 29797.54 38799.32 30397.53 35098.47 36598.15 40697.88 24099.82 29197.46 28299.24 34199.09 325
DeepC-MVS_fast98.47 599.23 15999.12 16499.56 17099.28 31799.22 21798.99 24899.40 28699.08 20999.58 19099.64 19498.90 12699.83 28197.44 28399.75 21999.63 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 15599.08 17899.76 6899.73 14099.70 9499.31 14199.59 20698.36 29599.36 25799.37 30198.80 13599.91 14997.43 28499.75 21999.68 96
ACMMPR99.23 15999.06 18499.76 6899.74 13799.69 9899.31 14199.59 20698.36 29599.35 25999.38 29898.61 16299.93 10197.43 28499.75 21999.67 104
Vis-MVSNet (Re-imp)98.77 25298.58 25799.34 23799.78 10798.88 26099.61 7099.56 22299.11 20899.24 28599.56 24893.00 35099.78 31997.43 28499.89 12899.35 263
MIMVSNet98.43 28998.20 29499.11 28299.53 22998.38 30299.58 7998.61 36798.96 22199.33 26599.76 12490.92 37099.81 30697.38 28799.76 21799.15 309
WB-MVSnew98.34 30098.14 30098.96 30098.14 41897.90 33598.27 33397.26 40598.63 26698.80 33898.00 40997.77 24899.90 16797.37 28898.98 35799.09 325
XVG-OURS-SEG-HR99.16 18798.99 21199.66 12199.84 6299.64 11498.25 33699.73 12298.39 29299.63 16799.43 28599.70 2499.90 16797.34 28998.64 38199.44 237
COLMAP_ROBcopyleft98.06 1299.45 10699.37 11399.70 10799.83 6699.70 9499.38 12099.78 9999.53 13199.67 15599.78 11299.19 8199.86 23397.32 29099.87 14999.55 183
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 21598.81 23899.65 12799.58 19799.49 14998.58 30199.07 34398.40 29199.04 31399.25 33098.51 18199.80 31397.31 29199.51 30399.65 121
region2R99.23 15999.05 18899.77 6199.76 11999.70 9499.31 14199.59 20698.41 28999.32 26899.36 30598.73 14799.93 10197.29 29299.74 22699.67 104
APD-MVS_3200maxsize99.31 14599.16 15499.74 8399.53 22999.75 7199.27 15799.61 18999.19 19099.57 19399.64 19498.76 14199.90 16797.29 29299.62 26999.56 180
TAPA-MVS97.92 1398.03 31797.55 33399.46 19999.47 26099.44 16398.50 31599.62 18286.79 41799.07 31199.26 32898.26 21099.62 38797.28 29499.73 23299.31 274
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 15299.11 16799.73 9299.54 22399.74 7799.26 15999.62 18299.16 19899.52 21599.64 19498.41 19299.91 14997.27 29599.61 27699.54 192
RE-MVS-def99.13 16099.54 22399.74 7799.26 15999.62 18299.16 19899.52 21599.64 19498.57 16797.27 29599.61 27699.54 192
testing1196.05 37495.41 37697.97 36498.78 39195.27 39598.59 29998.23 38798.86 23796.56 41196.91 42475.20 42299.69 35597.26 29798.29 39198.93 356
test_yl98.25 30397.95 31399.13 28099.17 33998.47 29299.00 24398.67 36498.97 21999.22 28999.02 36491.31 36499.69 35597.26 29798.93 35999.24 285
DCV-MVSNet98.25 30397.95 31399.13 28099.17 33998.47 29299.00 24398.67 36498.97 21999.22 28999.02 36491.31 36499.69 35597.26 29798.93 35999.24 285
PHI-MVS99.11 19898.95 21899.59 15899.13 34499.59 13299.17 18899.65 16997.88 33499.25 28299.46 28098.97 11599.80 31397.26 29799.82 18499.37 257
tfpnnormal99.43 11199.38 11099.60 15699.87 5199.75 7199.59 7799.78 9999.71 8699.90 5199.69 16798.85 12999.90 16797.25 30199.78 21199.15 309
PatchmatchNetpermissive97.65 33197.80 32497.18 38898.82 38692.49 41299.17 18898.39 38198.12 31698.79 34099.58 23790.71 37699.89 18697.23 30299.41 31899.16 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 22698.80 24099.56 17099.25 32399.43 16798.54 31099.27 31598.58 27298.80 33899.43 28598.53 17699.70 34997.22 30399.59 28399.54 192
testing396.48 36295.63 37399.01 29699.23 32797.81 33898.90 26099.10 34298.72 25797.84 39297.92 41072.44 42699.85 25197.21 30499.33 32899.35 263
HPM-MVScopyleft99.25 15599.07 18299.78 5899.81 8299.75 7199.61 7099.67 15497.72 34199.35 25999.25 33099.23 7799.92 12797.21 30499.82 18499.67 104
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS99.19 17799.00 20499.76 6899.76 11999.68 10199.38 12099.54 23498.34 30499.01 31499.50 26698.53 17699.93 10197.18 30699.78 21199.66 113
ACMMPcopyleft99.25 15599.08 17899.74 8399.79 10099.68 10199.50 9699.65 16998.07 32099.52 21599.69 16798.57 16799.92 12797.18 30699.79 20699.63 136
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thisisatest051596.98 35096.42 35798.66 33399.42 27797.47 34997.27 40094.30 41797.24 36499.15 29998.86 38185.01 40499.87 21497.10 30899.39 32098.63 378
XVG-ACMP-BASELINE99.23 15999.10 17599.63 14199.82 7399.58 13698.83 27099.72 13198.36 29599.60 18599.71 15298.92 12199.91 14997.08 30999.84 16799.40 250
MSDG99.08 20298.98 21499.37 23099.60 18799.13 22997.54 38799.74 11898.84 24199.53 21399.55 25599.10 9299.79 31697.07 31099.86 15799.18 303
SteuartSystems-ACMMP99.30 14699.14 15899.76 6899.87 5199.66 10599.18 18399.60 20098.55 27499.57 19399.67 18299.03 10799.94 8197.01 31199.80 20199.69 90
Skip Steuart: Steuart Systems R&D Blog.
UWE-MVS96.21 37095.78 37097.49 37798.53 40493.83 40798.04 35693.94 42098.96 22198.46 36698.17 40579.86 41499.87 21496.99 31299.06 35098.78 372
EPMVS96.53 36096.32 35897.17 38998.18 41592.97 41199.39 11789.95 42698.21 31298.61 35599.59 23486.69 40199.72 34296.99 31299.23 34398.81 369
MSP-MVS99.04 21298.79 24199.81 4399.78 10799.73 8099.35 12899.57 21798.54 27799.54 20898.99 36696.81 29099.93 10196.97 31499.53 29999.77 65
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 23098.70 24799.74 8399.52 23699.71 8798.86 26599.19 33398.47 28598.59 35799.06 35698.08 22799.91 14996.94 31599.60 27999.60 161
SR-MVS99.19 17799.00 20499.74 8399.51 23899.72 8599.18 18399.60 20098.85 23899.47 22899.58 23798.38 19799.92 12796.92 31699.54 29799.57 178
PGM-MVS99.20 17499.01 20099.77 6199.75 13199.71 8799.16 19499.72 13197.99 32499.42 24199.60 22998.81 13199.93 10196.91 31799.74 22699.66 113
HY-MVS98.23 998.21 31097.95 31398.99 29799.03 36398.24 30699.61 7098.72 36096.81 37898.73 34599.51 26394.06 33599.86 23396.91 31798.20 39498.86 365
MDTV_nov1_ep1397.73 32898.70 39990.83 42299.15 19698.02 39198.51 28098.82 33599.61 22190.98 36999.66 37796.89 31998.92 361
GST-MVS99.16 18798.96 21799.75 7899.73 14099.73 8099.20 17699.55 22898.22 31199.32 26899.35 31098.65 15899.91 14996.86 32099.74 22699.62 147
test_post199.14 19851.63 43689.54 38799.82 29196.86 320
SCA98.11 31398.36 27997.36 38299.20 33392.99 41098.17 34198.49 37598.24 31099.10 30799.57 24496.01 31599.94 8196.86 32099.62 26999.14 314
UBG96.53 36095.95 36598.29 35598.87 38096.31 37898.48 31798.07 38998.83 24297.32 39996.54 42979.81 41599.62 38796.84 32398.74 37498.95 353
XVG-OURS99.21 17299.06 18499.65 12799.82 7399.62 12197.87 37499.74 11898.36 29599.66 16099.68 17899.71 2299.90 16796.84 32399.88 13799.43 243
LCM-MVSNet-Re99.28 14899.15 15799.67 11499.33 30699.76 6399.34 12999.97 2098.93 22799.91 4899.79 10298.68 15199.93 10196.80 32599.56 28899.30 276
RPSCF99.18 18199.02 19799.64 13499.83 6699.85 1999.44 11199.82 7598.33 30599.50 22399.78 11297.90 23899.65 38396.78 32699.83 17599.44 237
旧先验297.94 36895.33 39798.94 31999.88 20096.75 327
MDTV_nov1_ep13_2view91.44 42099.14 19897.37 35999.21 29191.78 36296.75 32799.03 342
CLD-MVS98.76 25398.57 25899.33 24099.57 20798.97 24997.53 38999.55 22896.41 38299.27 28099.13 34599.07 9999.78 31996.73 32999.89 12899.23 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 31497.98 31198.48 34299.27 31996.48 37399.40 11599.07 34398.81 24599.23 28699.57 24490.11 38399.87 21496.69 33099.64 26599.09 325
baseline296.83 35396.28 35998.46 34499.09 35696.91 36698.83 27093.87 42197.23 36596.23 41698.36 40188.12 39199.90 16796.68 33198.14 39998.57 385
cascas96.99 34996.82 35597.48 37897.57 42495.64 39096.43 41499.56 22291.75 41297.13 40697.61 41795.58 32098.63 41996.68 33199.11 34798.18 405
PC_three_145297.56 34699.68 15099.41 28899.09 9497.09 42296.66 33399.60 27999.62 147
LPG-MVS_test99.22 16799.05 18899.74 8399.82 7399.63 11999.16 19499.73 12297.56 34699.64 16399.69 16799.37 6099.89 18696.66 33399.87 14999.69 90
LGP-MVS_train99.74 8399.82 7399.63 11999.73 12297.56 34699.64 16399.69 16799.37 6099.89 18696.66 33399.87 14999.69 90
ETVMVS96.14 37195.22 38198.89 31698.80 38798.01 32698.66 29298.35 38498.71 25997.18 40496.31 43374.23 42599.75 33496.64 33698.13 40198.90 360
TinyColmap98.97 22798.93 22099.07 29099.46 26498.19 31197.75 37899.75 11298.79 24899.54 20899.70 16098.97 11599.62 38796.63 33799.83 17599.41 248
LF4IMVS99.01 22198.92 22499.27 25899.71 14699.28 20398.59 29999.77 10298.32 30699.39 25499.41 28898.62 16099.84 26696.62 33899.84 16798.69 377
NCCC98.82 24798.57 25899.58 16199.21 33099.31 19898.61 29499.25 32098.65 26498.43 36799.26 32897.86 24199.81 30696.55 33999.27 33899.61 157
OPU-MVS99.29 25299.12 34699.44 16399.20 17699.40 29299.00 10998.84 41896.54 34099.60 27999.58 173
F-COLMAP98.74 25598.45 27099.62 15099.57 20799.47 15298.84 26899.65 16996.31 38598.93 32099.19 34297.68 25499.87 21496.52 34199.37 32399.53 197
testing9995.86 37995.19 38297.87 36898.76 39495.03 39798.62 29398.44 37798.68 26196.67 41096.66 42874.31 42499.69 35596.51 34298.03 40398.90 360
ADS-MVSNet297.78 32597.66 33298.12 36099.14 34295.36 39399.22 17398.75 35996.97 37398.25 37299.64 19490.90 37199.94 8196.51 34299.56 28899.08 331
ADS-MVSNet97.72 33097.67 33197.86 36999.14 34294.65 40199.22 17398.86 35296.97 37398.25 37299.64 19490.90 37199.84 26696.51 34299.56 28899.08 331
PatchMatch-RL98.68 26398.47 26799.30 25199.44 26999.28 20398.14 34499.54 23497.12 37199.11 30599.25 33097.80 24699.70 34996.51 34299.30 33298.93 356
CMPMVSbinary77.52 2398.50 28298.19 29799.41 21998.33 41199.56 13999.01 24099.59 20695.44 39599.57 19399.80 9295.64 31899.46 41096.47 34699.92 10799.21 294
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing9196.00 37595.32 37998.02 36198.76 39495.39 39298.38 32698.65 36698.82 24396.84 40796.71 42775.06 42399.71 34696.46 34798.23 39398.98 350
SF-MVS99.10 20198.93 22099.62 15099.58 19799.51 14799.13 20499.65 16997.97 32699.42 24199.61 22198.86 12899.87 21496.45 34899.68 25299.49 219
FE-MVS97.85 32297.42 33699.15 27699.44 26998.75 27099.77 1698.20 38895.85 39099.33 26599.80 9288.86 38999.88 20096.40 34999.12 34698.81 369
DPE-MVScopyleft99.14 19198.92 22499.82 3899.57 20799.77 5698.74 28699.60 20098.55 27499.76 11699.69 16798.23 21599.92 12796.39 35099.75 21999.76 70
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 42289.02 42893.47 40898.30 40299.84 26696.38 351
AllTest99.21 17299.07 18299.63 14199.78 10799.64 11499.12 20899.83 7098.63 26699.63 16799.72 14498.68 15199.75 33496.38 35199.83 17599.51 209
TestCases99.63 14199.78 10799.64 11499.83 7098.63 26699.63 16799.72 14498.68 15199.75 33496.38 35199.83 17599.51 209
testdata99.42 21299.51 23898.93 25699.30 31096.20 38698.87 33099.40 29298.33 20499.89 18696.29 35499.28 33599.44 237
dp96.86 35297.07 34596.24 40098.68 40090.30 42699.19 18298.38 38297.35 36098.23 37499.59 23487.23 39399.82 29196.27 35598.73 37798.59 382
tpmvs97.39 34197.69 32996.52 39698.41 40891.76 41699.30 14498.94 35197.74 34097.85 39199.55 25592.40 35799.73 34096.25 35698.73 37798.06 407
KD-MVS_2432*160095.89 37695.41 37697.31 38594.96 42693.89 40497.09 40599.22 32797.23 36598.88 32799.04 35979.23 41799.54 40096.24 35796.81 41398.50 391
miper_refine_blended95.89 37695.41 37697.31 38594.96 42693.89 40497.09 40599.22 32797.23 36598.88 32799.04 35979.23 41799.54 40096.24 35796.81 41398.50 391
ACMP97.51 1499.05 20998.84 23499.67 11499.78 10799.55 14298.88 26299.66 15997.11 37299.47 22899.60 22999.07 9999.89 18696.18 35999.85 16299.58 173
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 23898.72 24499.44 20699.39 28199.42 17098.58 30199.64 17797.31 36299.44 23499.62 21298.59 16499.69 35596.17 36099.79 20699.22 291
DP-MVS Recon98.50 28298.23 29199.31 24899.49 24999.46 15698.56 30699.63 17994.86 40498.85 33299.37 30197.81 24599.59 39496.08 36199.44 31398.88 363
tpm cat196.78 35496.98 34896.16 40198.85 38190.59 42599.08 22399.32 30392.37 41097.73 39799.46 28091.15 36799.69 35596.07 36298.80 36798.21 402
tpm296.35 36596.22 36096.73 39498.88 37991.75 41799.21 17598.51 37393.27 40997.89 38899.21 33984.83 40599.70 34996.04 36398.18 39798.75 376
dmvs_re98.69 26298.48 26699.31 24899.55 22199.42 17099.54 8798.38 38299.32 17098.72 34698.71 38996.76 29299.21 41396.01 36499.35 32699.31 274
test_040299.22 16799.14 15899.45 20299.79 10099.43 16799.28 15399.68 14999.54 12999.40 25299.56 24899.07 9999.82 29196.01 36499.96 7099.11 318
ITE_SJBPF99.38 22799.63 18099.44 16399.73 12298.56 27399.33 26599.53 25998.88 12799.68 36796.01 36499.65 26399.02 347
test_prior297.95 36797.87 33598.05 38299.05 35797.90 23895.99 36799.49 308
testdata299.89 18695.99 367
原ACMM199.37 23099.47 26098.87 26299.27 31596.74 38098.26 37199.32 31497.93 23799.82 29195.96 36999.38 32199.43 243
新几何199.52 18199.50 24499.22 21799.26 31795.66 39498.60 35699.28 32397.67 25599.89 18695.95 37099.32 33099.45 232
MP-MVScopyleft99.06 20698.83 23699.76 6899.76 11999.71 8799.32 13699.50 25798.35 30098.97 31699.48 27398.37 19899.92 12795.95 37099.75 21999.63 136
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing22295.60 38594.59 38898.61 33598.66 40197.45 35198.54 31097.90 39598.53 27896.54 41296.47 43070.62 42999.81 30695.91 37298.15 39898.56 386
wuyk23d97.58 33499.13 16092.93 40499.69 15899.49 14999.52 8999.77 10297.97 32699.96 2699.79 10299.84 1299.94 8195.85 37399.82 18479.36 422
HQP_MVS98.90 23898.68 24899.55 17399.58 19799.24 21498.80 27899.54 23498.94 22499.14 30199.25 33097.24 27499.82 29195.84 37499.78 21199.60 161
plane_prior599.54 23499.82 29195.84 37499.78 21199.60 161
无先验98.01 35999.23 32495.83 39199.85 25195.79 37699.44 237
CPTT-MVS98.74 25598.44 27199.64 13499.61 18599.38 18299.18 18399.55 22896.49 38199.27 28099.37 30197.11 28299.92 12795.74 37799.67 25899.62 147
PLCcopyleft97.35 1698.36 29597.99 30999.48 19499.32 30799.24 21498.50 31599.51 25395.19 40098.58 35898.96 37396.95 28799.83 28195.63 37899.25 33999.37 257
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 27498.34 28299.28 25599.18 33899.10 23798.34 32899.41 27998.48 28498.52 36298.98 36997.05 28499.78 31995.59 37999.50 30698.96 351
131498.00 31997.90 32198.27 35698.90 37497.45 35199.30 14499.06 34594.98 40197.21 40399.12 34998.43 18999.67 37295.58 38098.56 38497.71 411
PVSNet_095.53 1995.85 38095.31 38097.47 37998.78 39193.48 40995.72 41699.40 28696.18 38797.37 39897.73 41295.73 31799.58 39595.49 38181.40 42499.36 260
MAR-MVS98.24 30597.92 31999.19 27198.78 39199.65 11199.17 18899.14 33995.36 39698.04 38398.81 38597.47 26499.72 34295.47 38299.06 35098.21 402
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 30697.89 32299.26 26199.19 33599.26 20799.65 5999.69 14691.33 41498.14 38099.77 12198.28 20799.96 5695.41 38399.55 29298.58 384
train_agg98.35 29897.95 31399.57 16799.35 29299.35 19298.11 34899.41 27994.90 40297.92 38698.99 36698.02 23099.85 25195.38 38499.44 31399.50 214
9.1498.64 24999.45 26898.81 27599.60 20097.52 35199.28 27999.56 24898.53 17699.83 28195.36 38599.64 265
APD-MVScopyleft98.87 24398.59 25499.71 10399.50 24499.62 12199.01 24099.57 21796.80 37999.54 20899.63 20598.29 20699.91 14995.24 38699.71 24199.61 157
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WAC-MVS96.36 37695.20 387
AdaColmapbinary98.60 26998.35 28199.38 22799.12 34699.22 21798.67 29199.42 27897.84 33898.81 33699.27 32597.32 27299.81 30695.14 38899.53 29999.10 320
test9_res95.10 38999.44 31399.50 214
CDPH-MVS98.56 27598.20 29499.61 15399.50 24499.46 15698.32 33099.41 27995.22 39899.21 29199.10 35398.34 20299.82 29195.09 39099.66 26199.56 180
BH-untuned98.22 30898.09 30398.58 33999.38 28497.24 35798.55 30798.98 35097.81 33999.20 29698.76 38797.01 28599.65 38394.83 39198.33 38998.86 365
BP-MVS94.73 392
HQP-MVS98.36 29598.02 30899.39 22499.31 30898.94 25397.98 36399.37 29497.45 35498.15 37698.83 38296.67 29399.70 34994.73 39299.67 25899.53 197
QAPM98.40 29397.99 30999.65 12799.39 28199.47 15299.67 5099.52 24891.70 41398.78 34299.80 9298.55 17099.95 6694.71 39499.75 21999.53 197
agg_prior294.58 39599.46 31299.50 214
myMVS_eth3d95.63 38394.73 38598.34 35098.50 40696.36 37698.60 29699.21 33097.89 33296.76 40896.37 43172.10 42799.57 39694.38 39698.73 37799.09 325
BH-RMVSNet98.41 29198.14 30099.21 26899.21 33098.47 29298.60 29698.26 38698.35 30098.93 32099.31 31797.20 27999.66 37794.32 39799.10 34899.51 209
E-PMN97.14 34897.43 33596.27 39998.79 38991.62 41895.54 41799.01 34999.44 15098.88 32799.12 34992.78 35199.68 36794.30 39899.03 35497.50 412
MG-MVS98.52 27998.39 27698.94 30399.15 34197.39 35498.18 33999.21 33098.89 23499.23 28699.63 20597.37 27099.74 33794.22 39999.61 27699.69 90
API-MVS98.38 29498.39 27698.35 34898.83 38399.26 20799.14 19899.18 33498.59 27198.66 35198.78 38698.61 16299.57 39694.14 40099.56 28896.21 419
PAPM_NR98.36 29598.04 30699.33 24099.48 25498.93 25698.79 28199.28 31497.54 34998.56 36198.57 39497.12 28199.69 35594.09 40198.90 36599.38 254
ZD-MVS99.43 27299.61 12799.43 27696.38 38399.11 30599.07 35597.86 24199.92 12794.04 40299.49 308
DPM-MVS98.28 30197.94 31799.32 24599.36 28999.11 23297.31 39998.78 35896.88 37598.84 33399.11 35297.77 24899.61 39294.03 40399.36 32499.23 289
gg-mvs-nofinetune95.87 37895.17 38397.97 36498.19 41496.95 36499.69 4289.23 42799.89 3996.24 41599.94 1981.19 40999.51 40693.99 40498.20 39497.44 413
PMVScopyleft92.94 2198.82 24798.81 23898.85 31899.84 6297.99 32799.20 17699.47 26599.71 8699.42 24199.82 8298.09 22599.47 40893.88 40599.85 16299.07 336
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS96.96 35197.28 33995.99 40298.76 39491.03 42195.26 41998.61 36799.34 16798.92 32398.88 38093.79 33999.66 37792.87 40699.05 35297.30 416
BH-w/o97.20 34597.01 34797.76 37299.08 35795.69 38998.03 35898.52 37295.76 39297.96 38598.02 40795.62 31999.47 40892.82 40797.25 41298.12 406
TR-MVS97.44 33997.15 34498.32 35198.53 40497.46 35098.47 31897.91 39496.85 37698.21 37598.51 39896.42 30299.51 40692.16 40897.29 41197.98 408
OpenMVS_ROBcopyleft97.31 1797.36 34396.84 35398.89 31699.29 31499.45 16198.87 26499.48 26286.54 41999.44 23499.74 13397.34 27199.86 23391.61 40999.28 33597.37 415
GG-mvs-BLEND97.36 38297.59 42296.87 36799.70 3588.49 42894.64 42197.26 42180.66 41199.12 41491.50 41096.50 41796.08 421
DeepMVS_CXcopyleft97.98 36399.69 15896.95 36499.26 31775.51 42295.74 41898.28 40396.47 30099.62 38791.23 41197.89 40597.38 414
PAPR97.56 33597.07 34599.04 29498.80 38798.11 31997.63 38399.25 32094.56 40798.02 38498.25 40497.43 26699.68 36790.90 41298.74 37499.33 267
MVS95.72 38294.63 38798.99 29798.56 40397.98 33299.30 14498.86 35272.71 42397.30 40099.08 35498.34 20299.74 33789.21 41398.33 38999.26 282
thres600view796.60 35996.16 36197.93 36699.63 18096.09 38499.18 18397.57 39998.77 25298.72 34697.32 41987.04 39599.72 34288.57 41498.62 38297.98 408
FPMVS96.32 36695.50 37498.79 32699.60 18798.17 31498.46 32298.80 35797.16 36996.28 41399.63 20582.19 40899.09 41588.45 41598.89 36699.10 320
PCF-MVS96.03 1896.73 35695.86 36899.33 24099.44 26999.16 22696.87 41099.44 27386.58 41898.95 31899.40 29294.38 33399.88 20087.93 41699.80 20198.95 353
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 36496.03 36497.47 37999.63 18095.93 38599.18 18397.57 39998.75 25698.70 34997.31 42087.04 39599.67 37287.62 41798.51 38696.81 417
tfpn200view996.30 36795.89 36697.53 37699.58 19796.11 38299.00 24397.54 40298.43 28698.52 36296.98 42286.85 39799.67 37287.62 41798.51 38696.81 417
thres40096.40 36395.89 36697.92 36799.58 19796.11 38299.00 24397.54 40298.43 28698.52 36296.98 42286.85 39799.67 37287.62 41798.51 38697.98 408
thres20096.09 37295.68 37297.33 38499.48 25496.22 38198.53 31297.57 39998.06 32198.37 36996.73 42686.84 39999.61 39286.99 42098.57 38396.16 420
MVEpermissive92.54 2296.66 35896.11 36298.31 35399.68 16697.55 34797.94 36895.60 41399.37 16390.68 42498.70 39096.56 29698.61 42086.94 42199.55 29298.77 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset97.27 34496.83 35498.59 33799.46 26497.55 34799.25 16596.84 40798.78 25097.24 40297.67 41397.11 28298.97 41786.59 42298.54 38599.27 280
PAPM95.61 38494.71 38698.31 35399.12 34696.63 37096.66 41398.46 37690.77 41596.25 41498.68 39193.01 34999.69 35581.60 42397.86 40798.62 379
dongtai89.37 38988.91 39290.76 40599.19 33577.46 43095.47 41887.82 42992.28 41194.17 42298.82 38471.22 42895.54 42463.85 42497.34 41099.27 280
kuosan85.65 39184.57 39488.90 40797.91 41977.11 43196.37 41587.62 43085.24 42085.45 42596.83 42569.94 43090.98 42645.90 42595.83 42198.62 379
test12329.31 39233.05 39718.08 40825.93 43212.24 43397.53 38910.93 43311.78 42624.21 42750.08 43821.04 4318.60 42723.51 42632.43 42633.39 423
testmvs28.94 39333.33 39515.79 40926.03 4319.81 43496.77 41115.67 43211.55 42723.87 42850.74 43719.03 4328.53 42823.21 42733.07 42529.03 424
mmdepth8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
test_blank8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k24.88 39433.17 3960.00 4100.00 4330.00 4350.00 42199.62 1820.00 4280.00 42999.13 34599.82 130.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas16.61 39522.14 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 199.28 700.00 4290.00 4280.00 4270.00 425
sosnet-low-res8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
sosnet8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
Regformer8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.26 40611.02 4090.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42999.16 3430.00 4330.00 4290.00 4280.00 4270.00 425
uanet8.33 39611.11 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 429100.00 10.00 4330.00 4290.00 4280.00 4270.00 425
FOURS199.83 6699.89 1099.74 2499.71 13499.69 9499.63 167
test_one_060199.63 18099.76 6399.55 22899.23 18499.31 27399.61 22198.59 164
eth-test20.00 433
eth-test0.00 433
test_241102_ONE99.69 15899.82 3799.54 23499.12 20799.82 8499.49 27098.91 12399.52 405
save fliter99.53 22999.25 21098.29 33299.38 29399.07 211
test072699.69 15899.80 4699.24 16699.57 21799.16 19899.73 13399.65 19298.35 200
GSMVS99.14 314
test_part299.62 18499.67 10399.55 206
sam_mvs190.81 37599.14 314
sam_mvs90.52 380
MTGPAbinary99.53 243
test_post52.41 43590.25 38299.86 233
patchmatchnet-post99.62 21290.58 37899.94 81
MTMP99.09 22098.59 370
TEST999.35 29299.35 19298.11 34899.41 27994.83 40597.92 38698.99 36698.02 23099.85 251
test_899.34 30199.31 19898.08 35299.40 28694.90 40297.87 39098.97 37198.02 23099.84 266
agg_prior99.35 29299.36 18999.39 28997.76 39699.85 251
test_prior499.19 22398.00 361
test_prior99.46 19999.35 29299.22 21799.39 28999.69 35599.48 223
新几何298.04 356
旧先验199.49 24999.29 20199.26 31799.39 29697.67 25599.36 32499.46 231
原ACMM297.92 370
test22299.51 23899.08 23997.83 37699.29 31195.21 39998.68 35099.31 31797.28 27399.38 32199.43 243
segment_acmp98.37 198
testdata197.72 37997.86 337
test1299.54 17899.29 31499.33 19599.16 33798.43 36797.54 26299.82 29199.47 31099.48 223
plane_prior799.58 19799.38 182
plane_prior699.47 26099.26 20797.24 274
plane_prior499.25 330
plane_prior399.31 19898.36 29599.14 301
plane_prior298.80 27898.94 224
plane_prior199.51 238
plane_prior99.24 21498.42 32497.87 33599.71 241
n20.00 434
nn0.00 434
door-mid99.83 70
test1199.29 311
door99.77 102
HQP5-MVS98.94 253
HQP-NCC99.31 30897.98 36397.45 35498.15 376
ACMP_Plane99.31 30897.98 36397.45 35498.15 376
HQP4-MVS98.15 37699.70 34999.53 197
HQP3-MVS99.37 29499.67 258
HQP2-MVS96.67 293
NP-MVS99.40 28099.13 22998.83 382
ACMMP++_ref99.94 96
ACMMP++99.79 206
Test By Simon98.41 192