MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 46 | 88.88 32 | 68.44 82 | 81.57 64 | 86.33 21 | 63.17 112 | 85.38 54 | 91.26 35 | 76.33 32 | 84.67 69 | 83.30 1 | 94.96 23 | 86.17 71 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 54 | 89.28 19 | 69.09 80 | 83.62 45 | 84.98 47 | 64.77 93 | 83.97 75 | 91.02 40 | 75.53 41 | 85.93 37 | 82.00 2 | 94.36 48 | 83.35 151 |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 79 | 75.40 30 | 91.60 3 | 87.80 8 | 73.52 26 | 88.90 11 | 93.06 6 | 71.39 75 | 81.53 124 | 81.53 3 | 92.15 91 | 88.91 39 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 34 | 91.16 2 | 78.16 14 | 82.72 57 | 80.63 131 | 72.08 39 | 84.93 59 | 90.79 47 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 205 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 34 | 91.16 2 | 78.16 14 | 84.87 32 | 80.63 131 | 72.08 39 | 84.93 59 | 90.79 47 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 205 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 39 | 74.40 36 | 85.24 29 | 87.21 16 | 70.69 48 | 85.14 57 | 90.42 62 | 78.99 16 | 86.62 13 | 80.83 6 | 94.93 24 | 86.79 64 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 28 | 89.14 26 | 73.28 47 | 86.32 24 | 85.97 29 | 67.39 64 | 84.02 74 | 90.39 66 | 74.73 48 | 86.46 15 | 80.73 7 | 94.43 43 | 84.60 111 |
|
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 45 | 64.94 92 | 81.05 110 | 88.38 115 | 57.10 209 | 87.10 7 | 79.75 8 | 83.87 232 | 84.31 124 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 30 | 85.14 74 | 71.00 60 | 85.53 27 | 84.78 51 | 70.91 46 | 85.64 47 | 90.41 63 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 86 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 41 | 88.90 31 | 69.52 71 | 85.12 30 | 84.76 52 | 63.53 106 | 84.23 72 | 91.47 31 | 72.02 67 | 87.16 6 | 79.74 10 | 94.36 48 | 84.61 109 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 26 | 89.25 21 | 75.69 28 | 87.01 15 | 84.27 68 | 70.23 49 | 84.47 68 | 90.43 60 | 76.79 27 | 85.94 34 | 79.58 11 | 94.23 54 | 82.82 166 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 22 | 87.01 15 | 84.19 73 | 70.23 49 | 84.49 67 | 90.67 53 | 75.15 43 | 86.37 18 | 79.58 11 | 94.26 52 | 84.18 127 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 34 | 75.83 27 | 86.27 25 | 86.89 18 | 73.69 25 | 86.17 39 | 91.70 25 | 78.23 20 | 85.20 59 | 79.45 13 | 94.91 25 | 88.15 47 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 47 | 88.94 29 | 67.52 89 | 86.61 20 | 81.38 113 | 51.71 232 | 77.15 156 | 91.42 34 | 65.49 131 | 87.20 5 | 79.44 14 | 87.17 190 | 84.51 118 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 20 | 87.06 14 | 84.23 72 | 70.19 51 | 83.86 77 | 90.72 52 | 75.20 42 | 86.27 21 | 79.41 15 | 94.25 53 | 83.95 132 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 26 | 87.65 6 | 85.89 30 | 71.03 45 | 85.85 44 | 90.58 54 | 78.77 17 | 85.78 42 | 79.37 16 | 95.17 17 | 84.62 108 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 91 | 72.41 36 | 85.11 58 | 90.85 46 | 76.65 30 | 84.89 64 | 79.30 17 | 94.63 35 | 82.35 179 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 5 | 84.43 64 | 71.96 42 | 84.70 65 | 90.56 55 | 77.12 26 | 86.18 26 | 79.24 18 | 95.36 13 | 82.49 176 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 31 | 88.99 28 | 73.29 46 | 85.94 26 | 85.13 43 | 68.58 60 | 84.14 73 | 90.21 78 | 73.37 61 | 86.41 16 | 79.09 19 | 93.98 61 | 84.30 126 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 87 | 90.39 66 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 106 |
|
X-MVStestdata | | | 76.81 86 | 74.79 108 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 87 | 9.95 381 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 106 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 23 | 83.59 82 | 71.31 43 | 81.26 108 | 90.96 41 | 74.57 51 | 84.69 68 | 78.41 22 | 94.78 28 | 82.74 170 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 24 | 82.04 61 | 85.40 38 | 67.96 62 | 84.91 63 | 90.88 44 | 75.59 38 | 86.57 14 | 78.16 23 | 94.71 32 | 83.82 133 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 49 | 79.27 8 | 87.56 7 | 86.08 27 | 77.48 13 | 88.12 14 | 91.53 29 | 81.18 8 | 84.31 76 | 78.12 24 | 94.47 38 | 84.15 128 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 50 | 79.20 14 | 85.58 49 | 78.11 25 | 94.46 39 | 84.89 96 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 50 | 81.38 7 | | 78.11 25 | 94.46 39 | 84.89 96 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 38 | 80.50 6 | 85.12 30 | 85.22 42 | 81.06 3 | 87.20 28 | 90.28 74 | 79.20 14 | 85.58 49 | 78.04 27 | 94.08 57 | 83.55 141 |
|
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 58 | 84.80 81 | 66.72 97 | 86.54 21 | 85.11 44 | 72.00 41 | 86.65 33 | 91.75 24 | 78.20 21 | 87.04 8 | 77.93 28 | 94.32 51 | 83.47 146 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 35 | 77.71 17 | 86.81 17 | 85.25 41 | 77.42 15 | 86.15 40 | 90.24 76 | 81.69 5 | 85.94 34 | 77.77 29 | 93.58 68 | 83.09 157 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 32 | 82.83 115 | 73.53 45 | 85.50 28 | 87.45 14 | 74.11 21 | 86.45 37 | 90.52 58 | 80.02 11 | 84.48 71 | 77.73 30 | 94.34 50 | 85.93 76 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 97 | 83.57 98 | 67.83 86 | 83.39 51 | 85.35 40 | 64.42 97 | 86.14 41 | 87.07 132 | 74.02 55 | 80.97 138 | 77.70 31 | 92.32 89 | 80.62 213 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS++ |  | | 79.89 57 | 79.80 63 | 80.18 44 | 89.02 27 | 78.44 13 | 83.49 49 | 80.18 143 | 64.71 95 | 78.11 145 | 88.39 114 | 65.46 132 | 83.14 97 | 77.64 32 | 91.20 107 | 78.94 235 |
|
DVP-MVS++ | | | 81.24 39 | 82.74 40 | 76.76 91 | 83.14 104 | 60.90 148 | 91.64 1 | 85.49 34 | 74.03 23 | 84.93 59 | 90.38 68 | 66.82 116 | 85.90 38 | 77.43 33 | 90.78 124 | 83.49 143 |
|
test_0728_THIRD | | | | | | | | | | 74.03 23 | 85.83 45 | 90.41 63 | 75.58 39 | 85.69 45 | 77.43 33 | 94.74 31 | 84.31 124 |
|
MSC_two_6792asdad | | | | | 79.02 60 | 83.14 104 | 67.03 94 | | 80.75 126 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 136 |
|
No_MVS | | | | | 79.02 60 | 83.14 104 | 67.03 94 | | 80.75 126 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 136 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 37 | 87.00 43 | 70.41 66 | 82.04 61 | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 36 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 72 |
|
LGP-MVS_train | | | | | 80.90 37 | 87.00 43 | 70.41 66 | | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 36 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 72 |
|
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 71 | 87.00 43 | 67.23 92 | 79.24 89 | 88.61 5 | 56.65 171 | 84.29 70 | 89.18 96 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 102 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 82 | 82.03 126 | 64.40 119 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 70 | 89.18 96 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 102 |
|
#test# | | | 82.40 30 | 82.71 41 | 81.48 26 | 89.25 21 | 75.69 28 | 84.47 36 | 84.27 68 | 64.45 96 | 84.47 68 | 90.43 60 | 76.79 27 | 85.94 34 | 76.01 39 | 94.23 54 | 82.82 166 |
|
DVP-MVS |  | | 81.15 42 | 83.12 35 | 75.24 114 | 86.16 57 | 60.78 150 | 83.77 43 | 80.58 134 | 72.48 34 | 85.83 45 | 90.41 63 | 78.57 18 | 85.69 45 | 75.86 42 | 94.39 44 | 79.24 232 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 76.57 94 | 86.20 54 | 60.57 153 | 83.77 43 | 85.49 34 | | | | | 85.90 38 | 75.86 42 | 94.39 44 | 83.25 153 |
|
IU-MVS | | | | | | 86.12 59 | 60.90 148 | | 80.38 138 | 45.49 286 | 81.31 107 | | | | 75.64 44 | 94.39 44 | 84.65 105 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 92 | 86.12 59 | 61.06 144 | 83.62 45 | 84.72 54 | 72.61 32 | 87.38 25 | 89.70 86 | 77.48 24 | 85.89 40 | 75.29 45 | 94.39 44 | 83.08 158 |
|
test_241102_TWO | | | | | | | | | 84.80 50 | 72.61 32 | 84.93 59 | 89.70 86 | 77.73 23 | 85.89 40 | 75.29 45 | 94.22 56 | 83.25 153 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 68 | 86.11 62 | 74.96 33 | 76.33 129 | 84.95 49 | 66.89 66 | 82.75 91 | 88.99 104 | 66.82 116 | 78.37 187 | 74.80 47 | 90.76 127 | 82.40 178 |
|
CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 39 | 89.20 24 | 78.75 12 | 86.48 22 | 82.03 102 | 68.80 56 | 80.92 113 | 88.52 111 | 72.00 68 | 82.39 109 | 74.80 47 | 93.04 75 | 81.14 195 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 69 | 86.46 52 | 74.79 34 | 77.15 119 | 85.39 39 | 66.73 70 | 80.39 120 | 88.85 107 | 74.43 54 | 78.33 189 | 74.73 49 | 85.79 204 | 82.35 179 |
|
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 63 | 85.36 71 | 67.25 91 | 82.91 54 | 84.98 47 | 73.52 26 | 85.43 53 | 90.03 80 | 76.37 31 | 86.97 10 | 74.56 50 | 94.02 60 | 82.62 172 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 33 | 81.19 5 | 88.84 4 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 13 | 79.37 13 | 84.79 67 | 74.51 51 | 96.15 2 | 92.88 7 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 42 | 86.50 51 | 69.44 73 | 82.30 58 | 86.08 27 | 66.80 69 | 86.70 32 | 89.99 81 | 81.64 6 | 85.95 33 | 74.35 52 | 96.11 3 | 85.81 78 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 69 | 88.17 40 | 73.96 39 | 83.11 53 | 84.52 63 | 66.40 74 | 87.45 23 | 89.16 99 | 81.02 9 | 80.52 148 | 74.27 53 | 95.73 7 | 80.98 201 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 59 | 86.86 48 | 69.39 74 | 79.41 88 | 84.00 78 | 65.64 78 | 85.54 51 | 89.28 92 | 76.32 33 | 83.47 90 | 74.03 54 | 93.57 69 | 84.35 123 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 74 | 85.86 66 | 67.40 90 | 78.12 108 | 81.50 109 | 63.92 101 | 77.51 153 | 86.56 153 | 68.43 102 | 84.82 66 | 73.83 55 | 91.61 97 | 82.26 182 |
|
9.14 | | | | 80.22 59 | | 80.68 140 | | 80.35 76 | 87.69 11 | 59.90 134 | 83.00 85 | 88.20 119 | 74.57 51 | 81.75 122 | 73.75 56 | 93.78 62 | |
|
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 25 | 86.70 50 | 70.03 69 | 82.06 60 | 87.00 17 | 59.89 135 | 80.91 114 | 90.53 56 | 72.19 65 | 88.56 1 | 73.67 57 | 94.52 37 | 85.92 77 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
anonymousdsp | | | 78.60 68 | 77.80 80 | 81.00 36 | 78.01 178 | 74.34 38 | 80.09 81 | 76.12 197 | 50.51 248 | 89.19 10 | 90.88 44 | 71.45 74 | 77.78 201 | 73.38 58 | 90.60 129 | 90.90 18 |
|
mvsmamba | | | 77.20 82 | 76.37 94 | 79.69 50 | 80.34 145 | 61.52 139 | 80.58 70 | 82.12 100 | 53.54 214 | 83.93 76 | 91.03 39 | 49.49 249 | 85.97 32 | 73.26 59 | 93.08 74 | 91.59 12 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 89 | 80.67 141 | 64.57 116 | 80.26 78 | 87.60 12 | 60.74 128 | 82.47 94 | 88.03 124 | 71.73 70 | 81.81 120 | 73.12 60 | 93.61 66 | 85.09 91 |
|
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 135 | 72.03 50 | 84.38 37 | 86.23 25 | 77.28 16 | 80.65 116 | 90.18 79 | 59.80 182 | 87.58 4 | 73.06 61 | 91.34 104 | 89.01 35 |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 99 | 78.67 171 | 55.81 186 | 79.22 91 | 82.51 97 | 70.72 47 | 87.54 22 | 92.44 14 | 68.00 107 | 81.34 126 | 72.84 62 | 91.72 93 | 91.69 10 |
|
ZD-MVS | | | | | | 83.91 95 | 69.36 75 | | 81.09 121 | 58.91 146 | 82.73 92 | 89.11 100 | 75.77 37 | 86.63 12 | 72.73 63 | 92.93 77 | |
|
UA-Net | | | 81.56 37 | 82.28 44 | 79.40 55 | 88.91 30 | 69.16 78 | 84.67 35 | 80.01 146 | 75.34 17 | 79.80 125 | 94.91 2 | 69.79 89 | 80.25 153 | 72.63 64 | 94.46 39 | 88.78 43 |
|
APD-MVS |  | | 81.13 43 | 81.73 48 | 79.36 56 | 84.47 86 | 70.53 65 | 83.85 41 | 83.70 80 | 69.43 55 | 83.67 79 | 88.96 105 | 75.89 36 | 86.41 16 | 72.62 65 | 92.95 76 | 81.14 195 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 62 | 87.01 42 | 72.91 48 | 80.23 80 | 85.56 33 | 66.56 73 | 85.64 47 | 89.57 88 | 69.12 94 | 80.55 147 | 72.51 66 | 93.37 70 | 83.48 145 |
|
train_agg | | | 76.38 90 | 76.55 92 | 75.86 105 | 85.47 69 | 69.32 76 | 76.42 125 | 78.69 165 | 54.00 207 | 76.97 159 | 86.74 143 | 66.60 120 | 81.10 132 | 72.50 67 | 91.56 99 | 77.15 255 |
|
agg_prior1 | | | 75.89 92 | 76.41 93 | 74.31 123 | 84.44 88 | 66.02 103 | 76.12 131 | 78.62 168 | 54.40 196 | 76.95 161 | 86.85 137 | 66.44 123 | 80.34 150 | 72.45 68 | 91.42 102 | 76.57 259 |
|
MVSFormer | | | 69.93 176 | 69.03 188 | 72.63 162 | 74.93 218 | 59.19 163 | 83.98 39 | 75.72 202 | 52.27 224 | 63.53 311 | 76.74 284 | 43.19 284 | 80.56 145 | 72.28 69 | 78.67 291 | 78.14 246 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 40 | 81.42 134 | 71.24 58 | 83.98 39 | 75.72 202 | 52.27 224 | 87.37 27 | 92.25 16 | 68.04 106 | 80.56 145 | 72.28 69 | 91.15 109 | 90.32 22 |
|
test9_res | | | | | | | | | | | | | | | 72.12 71 | 91.37 103 | 77.40 254 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 84 | 80.09 147 | 66.16 102 | 79.08 92 | 86.13 26 | 57.55 161 | 80.93 112 | 87.76 127 | 71.98 69 | 82.73 105 | 72.11 72 | 92.83 79 | 83.25 153 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 94 | 69.77 70 | 83.58 48 | 84.63 59 | 72.13 38 | 82.85 89 | 88.36 116 | 75.00 46 | 86.79 11 | 71.99 73 | 92.84 78 | 82.44 177 |
|
RRT_MVS | | | 78.18 76 | 77.69 81 | 79.66 52 | 83.14 104 | 61.34 141 | 83.29 52 | 80.34 141 | 57.43 162 | 86.65 33 | 91.79 23 | 50.52 243 | 86.01 30 | 71.36 74 | 94.65 34 | 91.62 11 |
|
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 65 | 85.18 72 | 65.18 109 | 82.74 55 | 85.49 34 | 65.45 80 | 78.23 142 | 89.11 100 | 60.83 172 | 86.15 27 | 71.09 75 | 90.94 116 | 84.82 100 |
|
plane_prior5 | | | | | | | | | 85.49 34 | | | | | 86.15 27 | 71.09 75 | 90.94 116 | 84.82 100 |
|
bld_raw_dy_0_64 | | | 72.85 144 | 72.76 145 | 73.09 144 | 85.08 76 | 64.80 113 | 78.72 96 | 64.22 290 | 51.92 230 | 83.13 83 | 90.26 75 | 39.21 308 | 69.91 282 | 70.73 77 | 91.60 98 | 84.56 113 |
|
v10 | | | 75.69 96 | 76.20 97 | 74.16 125 | 74.44 233 | 48.69 229 | 75.84 138 | 82.93 90 | 59.02 143 | 85.92 43 | 89.17 98 | 58.56 192 | 82.74 104 | 70.73 77 | 89.14 160 | 91.05 15 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 79 | 90.93 118 | 78.55 240 |
|
Regformer-4 | | | 74.64 114 | 73.67 126 | 77.55 80 | 74.74 224 | 64.49 118 | 72.91 165 | 75.42 206 | 67.45 63 | 80.24 122 | 72.07 322 | 68.98 95 | 80.19 157 | 70.29 80 | 80.91 266 | 87.98 48 |
|
NCCC | | | 78.25 75 | 78.04 79 | 78.89 64 | 85.61 68 | 69.45 72 | 79.80 85 | 80.99 124 | 65.77 77 | 75.55 187 | 86.25 162 | 67.42 110 | 85.42 51 | 70.10 81 | 90.88 122 | 81.81 188 |
|
Regformer-2 | | | 75.32 101 | 74.47 112 | 77.88 78 | 74.22 235 | 66.65 98 | 72.77 167 | 77.54 183 | 68.47 61 | 80.44 118 | 72.08 320 | 70.60 82 | 80.97 138 | 70.08 82 | 84.02 230 | 86.01 75 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 66 | 80.48 143 | 64.16 120 | 80.24 79 | 82.06 101 | 61.89 120 | 88.77 12 | 93.32 4 | 57.15 207 | 82.60 107 | 70.08 82 | 92.80 80 | 89.25 29 |
|
test_prior3 | | | 76.71 88 | 77.19 86 | 75.27 112 | 82.15 124 | 59.85 159 | 75.57 139 | 84.33 66 | 58.92 144 | 76.53 176 | 86.78 140 | 67.83 108 | 83.39 92 | 69.81 84 | 92.76 82 | 82.58 173 |
|
test_prior2 | | | | | | | | 75.57 139 | | 58.92 144 | 76.53 176 | 86.78 140 | 67.83 108 | | 69.81 84 | 92.76 82 | |
|
DROMVSNet | | | 77.08 84 | 77.39 84 | 76.14 102 | 76.86 198 | 56.87 180 | 80.32 77 | 87.52 13 | 63.45 108 | 74.66 201 | 84.52 188 | 69.87 88 | 84.94 62 | 69.76 86 | 89.59 149 | 86.60 68 |
|
v8 | | | 75.07 106 | 75.64 103 | 73.35 137 | 73.42 248 | 47.46 248 | 75.20 143 | 81.45 111 | 60.05 133 | 85.64 47 | 89.26 93 | 58.08 199 | 81.80 121 | 69.71 87 | 87.97 174 | 90.79 19 |
|
CS-MVS | | | 76.51 89 | 76.00 98 | 78.06 77 | 77.02 191 | 64.77 114 | 80.78 68 | 82.66 94 | 60.39 131 | 74.15 207 | 83.30 208 | 69.65 90 | 82.07 116 | 69.27 88 | 86.75 195 | 87.36 57 |
|
v1240 | | | 73.06 135 | 73.14 137 | 72.84 155 | 74.74 224 | 47.27 251 | 71.88 183 | 81.11 119 | 51.80 231 | 82.28 96 | 84.21 192 | 56.22 216 | 82.34 111 | 68.82 89 | 87.17 190 | 88.91 39 |
|
Regformer-1 | | | 74.28 116 | 73.63 128 | 76.21 101 | 74.22 235 | 64.12 121 | 72.77 167 | 75.46 205 | 66.86 68 | 79.27 130 | 72.08 320 | 69.29 92 | 78.74 176 | 68.73 90 | 84.02 230 | 85.77 83 |
|
v1192 | | | 73.40 127 | 73.42 130 | 73.32 139 | 74.65 230 | 48.67 230 | 72.21 172 | 81.73 106 | 52.76 221 | 81.85 98 | 84.56 187 | 57.12 208 | 82.24 114 | 68.58 91 | 87.33 184 | 89.06 34 |
|
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 48 | 84.81 80 | 73.93 40 | 80.65 69 | 76.50 195 | 51.98 229 | 87.40 24 | 91.86 21 | 76.09 35 | 78.53 179 | 68.58 91 | 90.20 133 | 86.69 67 |
|
v1921920 | | | 72.96 141 | 72.98 142 | 72.89 154 | 74.67 227 | 47.58 246 | 71.92 181 | 80.69 128 | 51.70 233 | 81.69 104 | 83.89 196 | 56.58 214 | 82.25 113 | 68.34 93 | 87.36 182 | 88.82 41 |
|
jajsoiax | | | 78.51 70 | 78.16 78 | 79.59 53 | 84.65 83 | 73.83 42 | 80.42 73 | 76.12 197 | 51.33 238 | 87.19 29 | 91.51 30 | 73.79 58 | 78.44 183 | 68.27 94 | 90.13 138 | 86.49 69 |
|
v1144 | | | 73.29 130 | 73.39 131 | 73.01 146 | 74.12 240 | 48.11 237 | 72.01 176 | 81.08 122 | 53.83 211 | 81.77 100 | 84.68 185 | 58.07 200 | 81.91 118 | 68.10 95 | 86.86 192 | 88.99 37 |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 24 | 91.50 1 | 63.30 127 | 84.80 34 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 70 | 68.08 96 | 97.05 1 | 96.93 1 |
|
PHI-MVS | | | 74.92 108 | 74.36 115 | 76.61 93 | 76.40 201 | 62.32 133 | 80.38 74 | 83.15 86 | 54.16 204 | 73.23 221 | 80.75 235 | 62.19 157 | 83.86 81 | 68.02 97 | 90.92 119 | 83.65 140 |
|
CDPH-MVS | | | 77.33 81 | 77.06 89 | 78.14 75 | 84.21 91 | 63.98 122 | 76.07 134 | 83.45 83 | 54.20 202 | 77.68 152 | 87.18 128 | 69.98 86 | 85.37 52 | 68.01 98 | 92.72 84 | 85.08 93 |
|
v144192 | | | 72.99 139 | 73.06 140 | 72.77 156 | 74.58 231 | 47.48 247 | 71.90 182 | 80.44 137 | 51.57 234 | 81.46 106 | 84.11 194 | 58.04 201 | 82.12 115 | 67.98 99 | 87.47 180 | 88.70 44 |
|
Regformer-3 | | | 72.86 143 | 72.28 152 | 74.62 117 | 74.74 224 | 60.18 156 | 72.91 165 | 71.76 234 | 64.74 94 | 78.42 140 | 72.07 322 | 67.00 113 | 76.28 218 | 67.97 100 | 80.91 266 | 87.39 55 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 33 | 80.62 142 | 70.71 64 | 80.91 67 | 84.76 52 | 62.54 116 | 81.77 100 | 86.65 149 | 71.46 73 | 83.53 89 | 67.95 101 | 92.44 86 | 89.60 25 |
|
PS-MVSNAJss | | | 77.54 79 | 77.35 85 | 78.13 76 | 84.88 78 | 66.37 100 | 78.55 99 | 79.59 151 | 53.48 215 | 86.29 38 | 92.43 15 | 62.39 154 | 80.25 153 | 67.90 102 | 90.61 128 | 87.77 50 |
|
EI-MVSNet-Vis-set | | | 72.78 145 | 71.87 156 | 75.54 109 | 74.77 223 | 59.02 167 | 72.24 171 | 71.56 238 | 63.92 101 | 78.59 136 | 71.59 328 | 66.22 125 | 78.60 178 | 67.58 103 | 80.32 274 | 89.00 36 |
|
ACMH | | 63.62 14 | 77.50 80 | 80.11 60 | 69.68 199 | 79.61 151 | 56.28 182 | 78.81 95 | 83.62 81 | 63.41 110 | 87.14 31 | 90.23 77 | 76.11 34 | 73.32 247 | 67.58 103 | 94.44 42 | 79.44 230 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SixPastTwentyTwo | | | 75.77 93 | 76.34 95 | 74.06 127 | 81.69 132 | 54.84 191 | 76.47 123 | 75.49 204 | 64.10 100 | 87.73 18 | 92.24 17 | 50.45 245 | 81.30 128 | 67.41 105 | 91.46 101 | 86.04 74 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 88 | 82.52 19 | 84.39 90 | 77.04 25 | 76.35 127 | 84.05 76 | 56.66 170 | 80.27 121 | 85.31 180 | 68.56 99 | 87.03 9 | 67.39 106 | 91.26 105 | 83.50 142 |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 107 | | |
|
HQP-MVS | | | 75.24 103 | 75.01 107 | 75.94 103 | 82.37 119 | 58.80 169 | 77.32 115 | 84.12 74 | 59.08 139 | 71.58 240 | 85.96 173 | 58.09 197 | 85.30 54 | 67.38 107 | 89.16 157 | 83.73 139 |
|
EI-MVSNet-UG-set | | | 72.63 148 | 71.68 160 | 75.47 110 | 74.67 227 | 58.64 172 | 72.02 175 | 71.50 239 | 63.53 106 | 78.58 138 | 71.39 331 | 65.98 126 | 78.53 179 | 67.30 109 | 80.18 276 | 89.23 30 |
|
v2v482 | | | 72.55 151 | 72.58 148 | 72.43 165 | 72.92 259 | 46.72 255 | 71.41 188 | 79.13 157 | 55.27 182 | 81.17 109 | 85.25 181 | 55.41 219 | 81.13 131 | 67.25 110 | 85.46 206 | 89.43 27 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 112 | 74.39 37 | 87.18 11 | 88.18 7 | 78.98 7 | 86.11 42 | 91.47 31 | 79.70 12 | 85.76 43 | 66.91 111 | 95.46 11 | 87.89 49 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LS3D | | | 80.99 46 | 80.85 55 | 81.41 29 | 78.37 172 | 71.37 56 | 87.45 8 | 85.87 31 | 77.48 13 | 81.98 97 | 89.95 83 | 69.14 93 | 85.26 55 | 66.15 112 | 91.24 106 | 87.61 53 |
|
MVS_Test | | | 69.84 177 | 70.71 173 | 67.24 232 | 67.49 303 | 43.25 284 | 69.87 208 | 81.22 118 | 52.69 222 | 71.57 243 | 86.68 146 | 62.09 158 | 74.51 238 | 66.05 113 | 78.74 289 | 83.96 131 |
|
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 121 | 89.46 15 | 42.69 288 | 78.24 105 | 82.24 98 | 78.21 10 | 89.57 9 | 92.10 18 | 68.05 105 | 85.59 48 | 66.04 114 | 95.62 9 | 94.88 5 |
|
V42 | | | 71.06 162 | 70.83 172 | 71.72 173 | 67.25 304 | 47.14 252 | 65.94 263 | 80.35 140 | 51.35 237 | 83.40 82 | 83.23 210 | 59.25 186 | 78.80 174 | 65.91 115 | 80.81 270 | 89.23 30 |
|
test_part1 | | | 76.97 85 | 78.21 77 | 73.25 140 | 77.87 180 | 45.76 264 | 78.27 104 | 87.26 15 | 66.69 71 | 85.31 55 | 91.43 33 | 55.95 218 | 84.24 78 | 65.71 116 | 95.43 12 | 89.75 24 |
|
K. test v3 | | | 73.67 122 | 73.61 129 | 73.87 129 | 79.78 149 | 55.62 189 | 74.69 154 | 62.04 305 | 66.16 76 | 84.76 64 | 93.23 5 | 49.47 250 | 80.97 138 | 65.66 117 | 86.67 196 | 85.02 95 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 83 | 76.33 96 | 79.70 49 | 83.90 96 | 67.94 84 | 80.06 83 | 83.75 79 | 56.73 169 | 74.88 195 | 85.32 179 | 65.54 130 | 87.79 2 | 65.61 118 | 91.14 110 | 83.35 151 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3 D test6400 | | | 75.73 95 | 76.00 98 | 74.92 115 | 81.75 130 | 56.93 178 | 78.31 102 | 84.60 62 | 52.83 220 | 77.15 156 | 85.14 182 | 68.59 98 | 84.03 79 | 65.44 119 | 90.20 133 | 83.82 133 |
|
iter_conf_final | | | 68.69 195 | 67.00 219 | 73.76 131 | 73.68 245 | 52.33 208 | 75.96 136 | 73.54 218 | 50.56 247 | 69.90 263 | 82.85 213 | 24.76 373 | 83.73 83 | 65.40 120 | 86.33 199 | 85.22 87 |
|
test_0402 | | | 78.17 77 | 79.48 66 | 74.24 124 | 83.50 99 | 59.15 166 | 72.52 169 | 74.60 213 | 75.34 17 | 88.69 13 | 91.81 22 | 75.06 44 | 82.37 110 | 65.10 121 | 88.68 166 | 81.20 193 |
|
diffmvs | | | 67.42 214 | 67.50 211 | 67.20 233 | 62.26 338 | 45.21 268 | 64.87 278 | 77.04 190 | 48.21 267 | 71.74 237 | 79.70 250 | 58.40 193 | 71.17 273 | 64.99 122 | 80.27 275 | 85.22 87 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 85 | 90.35 6 | 82.82 2 | 82.15 59 | 79.22 156 | 74.08 22 | 87.16 30 | 91.97 19 | 84.80 2 | 76.97 208 | 64.98 123 | 93.61 66 | 72.28 294 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 86 | 81.16 138 | 62.39 132 | 80.51 71 | 87.80 8 | 73.02 28 | 87.57 21 | 91.08 38 | 80.28 10 | 82.44 108 | 64.82 124 | 96.10 4 | 87.21 59 |
|
MCST-MVS | | | 73.42 126 | 73.34 134 | 73.63 134 | 81.28 136 | 59.17 165 | 74.80 150 | 83.13 87 | 45.50 284 | 72.84 225 | 83.78 198 | 65.15 135 | 80.99 136 | 64.54 125 | 89.09 162 | 80.73 210 |
|
ambc | | | | | 70.10 194 | 77.74 183 | 50.21 220 | 74.28 159 | 77.93 180 | | 79.26 131 | 88.29 118 | 54.11 225 | 79.77 161 | 64.43 126 | 91.10 113 | 80.30 218 |
|
lessismore_v0 | | | | | 72.75 157 | 79.60 152 | 56.83 181 | | 57.37 319 | | 83.80 78 | 89.01 103 | 47.45 264 | 78.74 176 | 64.39 127 | 86.49 198 | 82.69 171 |
|
baseline | | | 73.10 132 | 73.96 121 | 70.51 186 | 71.46 268 | 46.39 260 | 72.08 174 | 84.40 65 | 55.95 177 | 76.62 172 | 86.46 156 | 67.20 111 | 78.03 196 | 64.22 128 | 87.27 187 | 87.11 62 |
|
EGC-MVSNET | | | 64.77 235 | 61.17 266 | 75.60 108 | 86.90 47 | 74.47 35 | 84.04 38 | 68.62 266 | 0.60 383 | 1.13 385 | 91.61 28 | 65.32 134 | 74.15 244 | 64.01 129 | 88.28 167 | 78.17 245 |
|
CANet | | | 73.00 138 | 71.84 157 | 76.48 96 | 75.82 210 | 61.28 142 | 74.81 148 | 80.37 139 | 63.17 112 | 62.43 315 | 80.50 239 | 61.10 170 | 85.16 61 | 64.00 130 | 84.34 226 | 83.01 161 |
|
tttt0517 | | | 69.46 182 | 67.79 208 | 74.46 118 | 75.34 213 | 52.72 205 | 75.05 144 | 63.27 296 | 54.69 191 | 78.87 135 | 84.37 190 | 26.63 364 | 81.15 130 | 63.95 131 | 87.93 175 | 89.51 26 |
|
casdiffmvs | | | 73.06 135 | 73.84 122 | 70.72 182 | 71.32 269 | 46.71 256 | 70.93 197 | 84.26 70 | 55.62 180 | 77.46 154 | 87.10 129 | 67.09 112 | 77.81 199 | 63.95 131 | 86.83 193 | 87.64 52 |
|
Vis-MVSNet |  | | 74.85 113 | 74.56 110 | 75.72 106 | 81.63 133 | 64.64 115 | 76.35 127 | 79.06 158 | 62.85 114 | 73.33 219 | 88.41 113 | 62.54 152 | 79.59 164 | 63.94 133 | 82.92 242 | 82.94 162 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PS-CasMVS | | | 80.41 52 | 82.86 39 | 73.07 145 | 89.93 7 | 39.21 310 | 77.15 119 | 81.28 115 | 79.74 6 | 90.87 4 | 92.73 11 | 75.03 45 | 84.93 63 | 63.83 134 | 95.19 16 | 95.07 3 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 38 | 72.74 158 | 89.84 8 | 37.34 328 | 77.16 118 | 81.81 105 | 80.45 4 | 90.92 3 | 92.95 7 | 74.57 51 | 86.12 29 | 63.65 135 | 94.68 33 | 94.76 6 |
|
h-mvs33 | | | 73.08 133 | 71.61 162 | 77.48 82 | 83.89 97 | 72.89 49 | 70.47 202 | 71.12 250 | 54.28 198 | 77.89 146 | 83.41 201 | 49.04 253 | 80.98 137 | 63.62 136 | 90.77 126 | 78.58 239 |
|
hse-mvs2 | | | 72.32 152 | 70.66 175 | 77.31 87 | 83.10 109 | 71.77 52 | 69.19 217 | 71.45 241 | 54.28 198 | 77.89 146 | 78.26 269 | 49.04 253 | 79.23 167 | 63.62 136 | 89.13 161 | 80.92 202 |
|
c3_l | | | 69.82 178 | 69.89 179 | 69.61 200 | 66.24 313 | 43.48 280 | 68.12 235 | 79.61 150 | 51.43 236 | 77.72 150 | 80.18 245 | 54.61 223 | 78.15 195 | 63.62 136 | 87.50 179 | 87.20 60 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 148 | 89.66 13 | 39.06 312 | 76.76 122 | 80.46 136 | 78.91 8 | 90.32 7 | 91.70 25 | 68.49 100 | 84.89 64 | 63.40 139 | 95.12 19 | 95.01 4 |
|
GeoE | | | 73.14 131 | 73.77 125 | 71.26 179 | 78.09 176 | 52.64 206 | 74.32 157 | 79.56 152 | 56.32 174 | 76.35 181 | 83.36 206 | 70.76 81 | 77.96 197 | 63.32 140 | 81.84 254 | 83.18 156 |
|
PC_three_1452 | | | | | | | | | | 46.98 279 | 81.83 99 | 86.28 159 | 66.55 122 | 84.47 72 | 63.31 141 | 90.78 124 | 83.49 143 |
|
PEN-MVS | | | 80.46 51 | 82.91 37 | 73.11 143 | 89.83 9 | 39.02 313 | 77.06 121 | 82.61 95 | 80.04 5 | 90.60 6 | 92.85 9 | 74.93 47 | 85.21 58 | 63.15 142 | 95.15 18 | 95.09 2 |
|
MSLP-MVS++ | | | 74.48 115 | 75.78 101 | 70.59 184 | 84.66 82 | 62.40 131 | 78.65 97 | 84.24 71 | 60.55 130 | 77.71 151 | 81.98 222 | 63.12 147 | 77.64 203 | 62.95 143 | 88.14 169 | 71.73 299 |
|
EI-MVSNet | | | 69.61 180 | 69.01 189 | 71.41 178 | 73.94 242 | 49.90 222 | 71.31 191 | 71.32 243 | 58.22 149 | 75.40 190 | 70.44 334 | 58.16 195 | 75.85 219 | 62.51 144 | 79.81 280 | 88.48 45 |
|
IterMVS-LS | | | 73.01 137 | 73.12 139 | 72.66 160 | 73.79 244 | 49.90 222 | 71.63 185 | 78.44 171 | 58.22 149 | 80.51 117 | 86.63 150 | 58.15 196 | 79.62 162 | 62.51 144 | 88.20 168 | 88.48 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 104 | 81.86 129 | 65.33 107 | 79.05 93 | 84.63 59 | 74.83 20 | 80.41 119 | 86.27 160 | 71.68 71 | 83.45 91 | 62.45 146 | 92.40 87 | 78.92 236 |
|
AUN-MVS | | | 70.22 171 | 67.88 207 | 77.22 88 | 82.96 113 | 71.61 53 | 69.08 218 | 71.39 242 | 49.17 261 | 71.70 238 | 78.07 274 | 37.62 318 | 79.21 168 | 61.81 147 | 89.15 159 | 80.82 205 |
|
MVS_111021_LR | | | 72.10 154 | 71.82 158 | 72.95 149 | 79.53 153 | 73.90 41 | 70.45 203 | 66.64 273 | 56.87 166 | 76.81 168 | 81.76 226 | 68.78 96 | 71.76 267 | 61.81 147 | 83.74 234 | 73.18 284 |
|
CS-MVS-test | | | 74.89 111 | 74.23 117 | 76.86 90 | 77.01 192 | 62.94 130 | 78.98 94 | 84.61 61 | 58.62 147 | 70.17 260 | 80.80 234 | 66.74 119 | 81.96 117 | 61.74 149 | 89.40 155 | 85.69 84 |
|
OPU-MVS | | | | | 78.65 67 | 83.44 102 | 66.85 96 | 83.62 45 | | | | 86.12 168 | 66.82 116 | 86.01 30 | 61.72 150 | 89.79 146 | 83.08 158 |
|
dcpmvs_2 | | | 71.02 164 | 72.65 147 | 66.16 244 | 76.06 208 | 50.49 217 | 71.97 177 | 79.36 154 | 50.34 249 | 82.81 90 | 83.63 199 | 64.38 142 | 67.27 300 | 61.54 151 | 83.71 236 | 80.71 212 |
|
MVS_111021_HR | | | 72.98 140 | 72.97 143 | 72.99 147 | 80.82 139 | 65.47 106 | 68.81 222 | 72.77 226 | 57.67 157 | 75.76 184 | 82.38 219 | 71.01 79 | 77.17 206 | 61.38 152 | 86.15 200 | 76.32 260 |
|
nrg030 | | | 74.87 112 | 75.99 100 | 71.52 176 | 74.90 220 | 49.88 225 | 74.10 160 | 82.58 96 | 54.55 195 | 83.50 81 | 89.21 95 | 71.51 72 | 75.74 223 | 61.24 153 | 92.34 88 | 88.94 38 |
|
IterMVS-SCA-FT | | | 67.68 210 | 66.07 225 | 72.49 164 | 73.34 250 | 58.20 174 | 63.80 290 | 65.55 280 | 48.10 268 | 76.91 163 | 82.64 216 | 45.20 271 | 78.84 173 | 61.20 154 | 77.89 299 | 80.44 217 |
|
miper_ehance_all_eth | | | 68.36 199 | 68.16 204 | 68.98 209 | 65.14 324 | 43.34 282 | 67.07 250 | 78.92 161 | 49.11 262 | 76.21 182 | 77.72 276 | 53.48 227 | 77.92 198 | 61.16 155 | 84.59 222 | 85.68 85 |
|
iter_conf05 | | | 67.34 215 | 65.62 227 | 72.50 163 | 69.82 282 | 47.06 253 | 72.19 173 | 76.86 191 | 45.32 289 | 72.86 224 | 82.85 213 | 20.53 379 | 83.73 83 | 61.13 156 | 89.02 163 | 86.70 66 |
|
ITE_SJBPF | | | | | 80.35 43 | 76.94 194 | 73.60 43 | | 80.48 135 | 66.87 67 | 83.64 80 | 86.18 163 | 70.25 85 | 79.90 160 | 61.12 157 | 88.95 164 | 87.56 54 |
|
DIV-MVS_self_test | | | 68.27 203 | 68.26 199 | 68.29 221 | 64.98 325 | 43.67 278 | 65.89 264 | 74.67 211 | 50.04 254 | 76.86 166 | 82.43 217 | 48.74 257 | 75.38 225 | 60.94 158 | 89.81 144 | 85.81 78 |
|
cl____ | | | 68.26 204 | 68.26 199 | 68.29 221 | 64.98 325 | 43.67 278 | 65.89 264 | 74.67 211 | 50.04 254 | 76.86 166 | 82.42 218 | 48.74 257 | 75.38 225 | 60.92 159 | 89.81 144 | 85.80 82 |
|
3Dnovator | | 65.95 11 | 71.50 159 | 71.22 168 | 72.34 167 | 73.16 252 | 63.09 128 | 78.37 101 | 78.32 172 | 57.67 157 | 72.22 234 | 84.61 186 | 54.77 220 | 78.47 181 | 60.82 160 | 81.07 265 | 75.45 266 |
|
cl22 | | | 67.14 216 | 66.51 222 | 69.03 208 | 63.20 334 | 43.46 281 | 66.88 255 | 76.25 196 | 49.22 260 | 74.48 203 | 77.88 275 | 45.49 270 | 77.40 205 | 60.64 161 | 84.59 222 | 86.24 70 |
|
FMVS1 | | | 75.66 97 | 76.57 90 | 72.95 149 | 67.07 307 | 67.62 87 | 76.10 132 | 80.68 129 | 64.95 90 | 86.58 35 | 90.94 42 | 71.20 77 | 71.68 269 | 60.46 162 | 91.13 111 | 79.56 227 |
|
APD_test | | | 75.66 97 | 76.57 90 | 72.95 149 | 67.07 307 | 67.62 87 | 76.10 132 | 80.68 129 | 64.95 90 | 86.58 35 | 90.94 42 | 71.20 77 | 71.68 269 | 60.46 162 | 91.13 111 | 79.56 227 |
|
Effi-MVS+ | | | 72.10 154 | 72.28 152 | 71.58 174 | 74.21 238 | 50.33 218 | 74.72 153 | 82.73 92 | 62.62 115 | 70.77 253 | 76.83 283 | 69.96 87 | 80.97 138 | 60.20 164 | 78.43 293 | 83.45 148 |
|
eth_miper_zixun_eth | | | 69.42 183 | 68.73 195 | 71.50 177 | 67.99 297 | 46.42 258 | 67.58 240 | 78.81 162 | 50.72 245 | 78.13 144 | 80.34 241 | 50.15 247 | 80.34 150 | 60.18 165 | 84.65 220 | 87.74 51 |
|
TSAR-MVS + GP. | | | 73.08 133 | 71.60 163 | 77.54 81 | 78.99 167 | 70.73 63 | 74.96 145 | 69.38 261 | 60.73 129 | 74.39 205 | 78.44 267 | 57.72 204 | 82.78 103 | 60.16 166 | 89.60 148 | 79.11 234 |
|
DPM-MVS | | | 69.98 175 | 69.22 186 | 72.26 169 | 82.69 117 | 58.82 168 | 70.53 201 | 81.23 117 | 47.79 273 | 64.16 303 | 80.21 242 | 51.32 240 | 83.12 98 | 60.14 167 | 84.95 219 | 74.83 272 |
|
114514_t | | | 73.40 127 | 73.33 135 | 73.64 133 | 84.15 93 | 57.11 177 | 78.20 106 | 80.02 145 | 43.76 299 | 72.55 229 | 86.07 171 | 64.00 144 | 83.35 94 | 60.14 167 | 91.03 115 | 80.45 216 |
|
TAPA-MVS | | 65.27 12 | 75.16 104 | 74.29 116 | 77.77 79 | 74.86 221 | 68.08 83 | 77.89 109 | 84.04 77 | 55.15 184 | 76.19 183 | 83.39 202 | 66.91 114 | 80.11 158 | 60.04 169 | 90.14 137 | 85.13 90 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MG-MVS | | | 70.47 170 | 71.34 167 | 67.85 226 | 79.26 157 | 40.42 305 | 74.67 155 | 75.15 210 | 58.41 148 | 68.74 276 | 88.14 123 | 56.08 217 | 83.69 85 | 59.90 170 | 81.71 259 | 79.43 231 |
|
CSCG | | | 74.12 118 | 74.39 113 | 73.33 138 | 79.35 155 | 61.66 138 | 77.45 114 | 81.98 103 | 62.47 118 | 79.06 133 | 80.19 244 | 61.83 159 | 78.79 175 | 59.83 171 | 87.35 183 | 79.54 229 |
|
FA-MVS(test-final) | | | 71.27 160 | 71.06 169 | 71.92 172 | 73.96 241 | 52.32 209 | 76.45 124 | 76.12 197 | 59.07 142 | 74.04 211 | 86.18 163 | 52.18 233 | 79.43 166 | 59.75 172 | 81.76 255 | 84.03 130 |
|
Gipuma |  | | 69.55 181 | 72.83 144 | 59.70 299 | 63.63 333 | 53.97 198 | 80.08 82 | 75.93 200 | 64.24 99 | 73.49 216 | 88.93 106 | 57.89 203 | 62.46 323 | 59.75 172 | 91.55 100 | 62.67 352 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
thisisatest0530 | | | 67.05 219 | 65.16 231 | 72.73 159 | 73.10 256 | 50.55 216 | 71.26 193 | 63.91 292 | 50.22 251 | 74.46 204 | 80.75 235 | 26.81 363 | 80.25 153 | 59.43 174 | 86.50 197 | 87.37 56 |
|
v148 | | | 69.38 185 | 69.39 182 | 69.36 202 | 69.14 290 | 44.56 271 | 68.83 221 | 72.70 227 | 54.79 189 | 78.59 136 | 84.12 193 | 54.69 221 | 76.74 215 | 59.40 175 | 82.20 248 | 86.79 64 |
|
旧先验2 | | | | | | | | 71.17 194 | | 45.11 291 | 78.54 139 | | | 61.28 328 | 59.19 176 | | |
|
LF4IMVS | | | 67.50 211 | 67.31 214 | 68.08 224 | 58.86 356 | 61.93 134 | 71.43 187 | 75.90 201 | 44.67 294 | 72.42 231 | 80.20 243 | 57.16 206 | 70.44 279 | 58.99 177 | 86.12 201 | 71.88 297 |
|
ETV-MVS | | | 72.72 146 | 72.16 155 | 74.38 122 | 76.90 196 | 55.95 183 | 73.34 163 | 84.67 56 | 62.04 119 | 72.19 235 | 70.81 332 | 65.90 128 | 85.24 57 | 58.64 178 | 84.96 218 | 81.95 186 |
|
DELS-MVS | | | 68.83 191 | 68.31 197 | 70.38 187 | 70.55 277 | 48.31 233 | 63.78 291 | 82.13 99 | 54.00 207 | 68.96 272 | 75.17 294 | 58.95 189 | 80.06 159 | 58.55 179 | 82.74 244 | 82.76 168 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PAPM_NR | | | 73.91 119 | 74.16 118 | 73.16 142 | 81.90 128 | 53.50 201 | 81.28 65 | 81.40 112 | 66.17 75 | 73.30 220 | 83.31 207 | 59.96 178 | 83.10 99 | 58.45 180 | 81.66 260 | 82.87 164 |
|
Anonymous20231211 | | | 75.54 99 | 77.19 86 | 70.59 184 | 77.67 185 | 45.70 266 | 74.73 152 | 80.19 142 | 68.80 56 | 82.95 86 | 92.91 8 | 66.26 124 | 76.76 214 | 58.41 181 | 92.77 81 | 89.30 28 |
|
miper_enhance_ethall | | | 65.86 224 | 65.05 238 | 68.28 223 | 61.62 342 | 42.62 289 | 64.74 279 | 77.97 178 | 42.52 308 | 73.42 218 | 72.79 317 | 49.66 248 | 77.68 202 | 58.12 182 | 84.59 222 | 84.54 114 |
|
IS-MVSNet | | | 75.10 105 | 75.42 106 | 74.15 126 | 79.23 158 | 48.05 239 | 79.43 86 | 78.04 177 | 70.09 52 | 79.17 132 | 88.02 125 | 53.04 228 | 83.60 87 | 58.05 183 | 93.76 65 | 90.79 19 |
|
FC-MVSNet-test | | | 73.32 129 | 74.78 109 | 68.93 212 | 79.21 159 | 36.57 330 | 71.82 184 | 79.54 153 | 57.63 160 | 82.57 93 | 90.38 68 | 59.38 185 | 78.99 171 | 57.91 184 | 94.56 36 | 91.23 14 |
|
RPSCF | | | 75.76 94 | 74.37 114 | 79.93 45 | 74.81 222 | 77.53 20 | 77.53 113 | 79.30 155 | 59.44 138 | 78.88 134 | 89.80 85 | 71.26 76 | 73.09 249 | 57.45 185 | 80.89 268 | 89.17 32 |
|
alignmvs | | | 70.54 169 | 71.00 170 | 69.15 206 | 73.50 246 | 48.04 240 | 69.85 209 | 79.62 148 | 53.94 210 | 76.54 175 | 82.00 221 | 59.00 188 | 74.68 236 | 57.32 186 | 87.21 188 | 84.72 104 |
|
canonicalmvs | | | 72.29 153 | 73.38 132 | 69.04 207 | 74.23 234 | 47.37 249 | 73.93 161 | 83.18 85 | 54.36 197 | 76.61 173 | 81.64 228 | 72.03 66 | 75.34 227 | 57.12 187 | 87.28 186 | 84.40 121 |
|
UniMVSNet (Re) | | | 75.00 107 | 75.48 105 | 73.56 135 | 83.14 104 | 47.92 241 | 70.41 204 | 81.04 123 | 63.67 104 | 79.54 127 | 86.37 158 | 62.83 148 | 81.82 119 | 57.10 188 | 95.25 15 | 90.94 17 |
|
原ACMM1 | | | | | 73.90 128 | 85.90 63 | 65.15 111 | | 81.67 107 | 50.97 242 | 74.25 206 | 86.16 166 | 61.60 162 | 83.54 88 | 56.75 189 | 91.08 114 | 73.00 285 |
|
FIs | | | 72.56 149 | 73.80 123 | 68.84 215 | 78.74 170 | 37.74 324 | 71.02 195 | 79.83 147 | 56.12 175 | 80.88 115 | 89.45 90 | 58.18 194 | 78.28 190 | 56.63 190 | 93.36 71 | 90.51 21 |
|
xiu_mvs_v1_base_debu | | | 67.87 206 | 67.07 216 | 70.26 189 | 79.13 162 | 61.90 135 | 67.34 244 | 71.25 246 | 47.98 269 | 67.70 280 | 74.19 307 | 61.31 165 | 72.62 254 | 56.51 191 | 78.26 295 | 76.27 261 |
|
xiu_mvs_v1_base | | | 67.87 206 | 67.07 216 | 70.26 189 | 79.13 162 | 61.90 135 | 67.34 244 | 71.25 246 | 47.98 269 | 67.70 280 | 74.19 307 | 61.31 165 | 72.62 254 | 56.51 191 | 78.26 295 | 76.27 261 |
|
xiu_mvs_v1_base_debi | | | 67.87 206 | 67.07 216 | 70.26 189 | 79.13 162 | 61.90 135 | 67.34 244 | 71.25 246 | 47.98 269 | 67.70 280 | 74.19 307 | 61.31 165 | 72.62 254 | 56.51 191 | 78.26 295 | 76.27 261 |
|
Effi-MVS+-dtu | | | 75.43 100 | 72.28 152 | 84.91 2 | 77.05 188 | 83.58 1 | 78.47 100 | 77.70 181 | 57.68 155 | 74.89 194 | 78.13 273 | 64.80 138 | 84.26 77 | 56.46 194 | 85.32 211 | 86.88 63 |
|
mvs-test1 | | | 73.81 121 | 70.69 174 | 83.18 5 | 77.05 188 | 81.39 3 | 75.39 141 | 77.70 181 | 57.68 155 | 71.19 250 | 74.72 298 | 64.80 138 | 83.66 86 | 56.46 194 | 81.19 264 | 84.50 119 |
|
MVSTER | | | 63.29 251 | 61.60 263 | 68.36 219 | 59.77 353 | 46.21 261 | 60.62 312 | 71.32 243 | 41.83 311 | 75.40 190 | 79.12 260 | 30.25 355 | 75.85 219 | 56.30 196 | 79.81 280 | 83.03 160 |
|
UniMVSNet_NR-MVSNet | | | 74.90 110 | 75.65 102 | 72.64 161 | 83.04 110 | 45.79 262 | 69.26 215 | 78.81 162 | 66.66 72 | 81.74 102 | 86.88 136 | 63.26 146 | 81.07 134 | 56.21 197 | 94.98 21 | 91.05 15 |
|
DU-MVS | | | 74.91 109 | 75.57 104 | 72.93 152 | 83.50 99 | 45.79 262 | 69.47 212 | 80.14 144 | 65.22 86 | 81.74 102 | 87.08 130 | 61.82 160 | 81.07 134 | 56.21 197 | 94.98 21 | 91.93 8 |
|
RPMNet | | | 65.77 225 | 65.08 237 | 67.84 227 | 66.37 310 | 48.24 235 | 70.93 197 | 86.27 22 | 54.66 192 | 61.35 319 | 86.77 142 | 33.29 330 | 85.67 47 | 55.93 199 | 70.17 340 | 69.62 317 |
|
CLD-MVS | | | 72.88 142 | 72.36 151 | 74.43 120 | 77.03 190 | 54.30 195 | 68.77 225 | 83.43 84 | 52.12 226 | 76.79 169 | 74.44 302 | 69.54 91 | 83.91 80 | 55.88 200 | 93.25 73 | 85.09 91 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
miper_lstm_enhance | | | 61.97 264 | 61.63 262 | 62.98 272 | 60.04 349 | 45.74 265 | 47.53 355 | 70.95 251 | 44.04 296 | 73.06 222 | 78.84 264 | 39.72 305 | 60.33 329 | 55.82 201 | 84.64 221 | 82.88 163 |
|
AllTest | | | 77.66 78 | 77.43 83 | 78.35 72 | 79.19 160 | 70.81 61 | 78.60 98 | 88.64 3 | 65.37 83 | 80.09 123 | 88.17 120 | 70.33 83 | 78.43 184 | 55.60 202 | 90.90 120 | 85.81 78 |
|
TestCases | | | | | 78.35 72 | 79.19 160 | 70.81 61 | | 88.64 3 | 65.37 83 | 80.09 123 | 88.17 120 | 70.33 83 | 78.43 184 | 55.60 202 | 90.90 120 | 85.81 78 |
|
EU-MVSNet | | | 60.82 273 | 60.80 271 | 60.86 293 | 68.37 292 | 41.16 296 | 72.27 170 | 68.27 268 | 26.96 372 | 69.08 269 | 75.71 288 | 32.09 338 | 67.44 298 | 55.59 204 | 78.90 288 | 73.97 277 |
|
TranMVSNet+NR-MVSNet | | | 76.13 91 | 77.66 82 | 71.56 175 | 84.61 84 | 42.57 290 | 70.98 196 | 78.29 174 | 68.67 59 | 83.04 84 | 89.26 93 | 72.99 63 | 80.75 144 | 55.58 205 | 95.47 10 | 91.35 13 |
|
OpenMVS |  | 62.51 15 | 68.76 193 | 68.75 193 | 68.78 216 | 70.56 276 | 53.91 199 | 78.29 103 | 77.35 186 | 48.85 264 | 70.22 259 | 83.52 200 | 52.65 231 | 76.93 209 | 55.31 206 | 81.99 250 | 75.49 265 |
|
QAPM | | | 69.18 188 | 69.26 184 | 68.94 211 | 71.61 267 | 52.58 207 | 80.37 75 | 78.79 164 | 49.63 257 | 73.51 215 | 85.14 182 | 53.66 226 | 79.12 169 | 55.11 207 | 75.54 309 | 75.11 270 |
|
NR-MVSNet | | | 73.62 123 | 74.05 119 | 72.33 168 | 83.50 99 | 43.71 277 | 65.65 269 | 77.32 187 | 64.32 98 | 75.59 186 | 87.08 130 | 62.45 153 | 81.34 126 | 54.90 208 | 95.63 8 | 91.93 8 |
|
EG-PatchMatch MVS | | | 70.70 167 | 70.88 171 | 70.16 192 | 82.64 118 | 58.80 169 | 71.48 186 | 73.64 217 | 54.98 185 | 76.55 174 | 81.77 225 | 61.10 170 | 78.94 172 | 54.87 209 | 80.84 269 | 72.74 289 |
|
jason | | | 64.47 240 | 62.84 254 | 69.34 204 | 76.91 195 | 59.20 162 | 67.15 249 | 65.67 277 | 35.29 343 | 65.16 296 | 76.74 284 | 44.67 275 | 70.68 275 | 54.74 210 | 79.28 286 | 78.14 246 |
jason: jason. |
Baseline_NR-MVSNet | | | 70.62 168 | 73.19 136 | 62.92 275 | 76.97 193 | 34.44 346 | 68.84 220 | 70.88 253 | 60.25 132 | 79.50 128 | 90.53 56 | 61.82 160 | 69.11 288 | 54.67 211 | 95.27 14 | 85.22 87 |
|
UniMVSNet_ETH3D | | | 76.74 87 | 79.02 68 | 69.92 198 | 89.27 20 | 43.81 276 | 74.47 156 | 71.70 235 | 72.33 37 | 85.50 52 | 93.65 3 | 77.98 22 | 76.88 211 | 54.60 212 | 91.64 95 | 89.08 33 |
|
无先验 | | | | | | | | 74.82 147 | 70.94 252 | 47.75 274 | | | | 76.85 212 | 54.47 213 | | 72.09 296 |
|
1121 | | | 69.23 186 | 68.26 199 | 72.12 171 | 88.36 37 | 71.40 55 | 68.59 227 | 62.06 303 | 43.80 298 | 74.75 196 | 86.18 163 | 52.92 229 | 76.85 212 | 54.47 213 | 83.27 240 | 68.12 325 |
|
testdata | | | | | 64.13 257 | 85.87 65 | 63.34 126 | | 61.80 306 | 47.83 272 | 76.42 180 | 86.60 152 | 48.83 256 | 62.31 325 | 54.46 215 | 81.26 263 | 66.74 335 |
|
PVSNet_Blended_VisFu | | | 70.04 173 | 68.88 190 | 73.53 136 | 82.71 116 | 63.62 124 | 74.81 148 | 81.95 104 | 48.53 266 | 67.16 287 | 79.18 259 | 51.42 239 | 78.38 186 | 54.39 216 | 79.72 283 | 78.60 238 |
|
EPNet | | | 69.10 189 | 67.32 213 | 74.46 118 | 68.33 294 | 61.27 143 | 77.56 111 | 63.57 294 | 60.95 126 | 56.62 341 | 82.75 215 | 51.53 238 | 81.24 129 | 54.36 217 | 90.20 133 | 80.88 204 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EIA-MVS | | | 68.59 197 | 67.16 215 | 72.90 153 | 75.18 216 | 55.64 188 | 69.39 213 | 81.29 114 | 52.44 223 | 64.53 299 | 70.69 333 | 60.33 175 | 82.30 112 | 54.27 218 | 76.31 304 | 80.75 209 |
|
patch_mono-2 | | | 62.73 259 | 64.08 241 | 58.68 306 | 70.36 279 | 55.87 185 | 60.84 311 | 64.11 291 | 41.23 315 | 64.04 304 | 78.22 270 | 60.00 177 | 48.80 348 | 54.17 219 | 83.71 236 | 71.37 301 |
|
ET-MVSNet_ETH3D | | | 63.32 250 | 60.69 272 | 71.20 180 | 70.15 281 | 55.66 187 | 65.02 277 | 64.32 289 | 43.28 307 | 68.99 271 | 72.05 326 | 25.46 370 | 78.19 194 | 54.16 220 | 82.80 243 | 79.74 226 |
|
EPP-MVSNet | | | 73.86 120 | 73.38 132 | 75.31 111 | 78.19 174 | 53.35 203 | 80.45 72 | 77.32 187 | 65.11 88 | 76.47 178 | 86.80 138 | 49.47 250 | 83.77 82 | 53.89 221 | 92.72 84 | 88.81 42 |
|
lupinMVS | | | 63.36 249 | 61.49 264 | 68.97 210 | 74.93 218 | 59.19 163 | 65.80 267 | 64.52 288 | 34.68 348 | 63.53 311 | 74.25 305 | 43.19 284 | 70.62 276 | 53.88 222 | 78.67 291 | 77.10 256 |
|
CNLPA | | | 73.44 125 | 73.03 141 | 74.66 116 | 78.27 173 | 75.29 31 | 75.99 135 | 78.49 170 | 65.39 82 | 75.67 185 | 83.22 212 | 61.23 168 | 66.77 306 | 53.70 223 | 85.33 210 | 81.92 187 |
|
CVMVSNet | | | 59.21 285 | 58.44 288 | 61.51 285 | 73.94 242 | 47.76 244 | 71.31 191 | 64.56 287 | 26.91 373 | 60.34 327 | 70.44 334 | 36.24 323 | 67.65 296 | 53.57 224 | 68.66 348 | 69.12 322 |
|
CANet_DTU | | | 64.04 246 | 63.83 243 | 64.66 253 | 68.39 291 | 42.97 286 | 73.45 162 | 74.50 214 | 52.05 228 | 54.78 348 | 75.44 293 | 43.99 279 | 70.42 280 | 53.49 225 | 78.41 294 | 80.59 214 |
|
D2MVS | | | 62.58 260 | 61.05 268 | 67.20 233 | 63.85 330 | 47.92 241 | 56.29 332 | 69.58 260 | 39.32 324 | 70.07 261 | 78.19 271 | 34.93 326 | 72.68 252 | 53.44 226 | 83.74 234 | 81.00 200 |
|
FMVS2 | | | 56.78 296 | 55.99 305 | 59.12 303 | 53.96 377 | 48.09 238 | 58.76 324 | 66.22 275 | 27.54 370 | 76.66 171 | 68.69 352 | 25.32 372 | 51.31 343 | 53.42 227 | 73.38 324 | 77.97 251 |
|
Anonymous20240521 | | | 63.55 248 | 66.07 225 | 55.99 315 | 66.18 315 | 44.04 275 | 68.77 225 | 68.80 263 | 46.99 278 | 72.57 228 | 85.84 175 | 39.87 304 | 50.22 346 | 53.40 228 | 92.23 90 | 73.71 281 |
|
PM-MVS | | | 64.49 239 | 63.61 246 | 67.14 235 | 76.68 199 | 75.15 32 | 68.49 231 | 42.85 366 | 51.17 241 | 77.85 148 | 80.51 238 | 45.76 266 | 66.31 309 | 52.83 229 | 76.35 303 | 59.96 358 |
|
API-MVS | | | 70.97 165 | 71.51 165 | 69.37 201 | 75.20 215 | 55.94 184 | 80.99 66 | 76.84 192 | 62.48 117 | 71.24 248 | 77.51 279 | 61.51 164 | 80.96 142 | 52.04 230 | 85.76 205 | 71.22 304 |
|
Fast-Effi-MVS+-dtu | | | 70.00 174 | 68.74 194 | 73.77 130 | 73.47 247 | 64.53 117 | 71.36 189 | 78.14 176 | 55.81 179 | 68.84 275 | 74.71 299 | 65.36 133 | 75.75 222 | 52.00 231 | 79.00 287 | 81.03 198 |
|
mvs_anonymous | | | 65.08 231 | 65.49 228 | 63.83 261 | 63.79 331 | 37.60 326 | 66.52 259 | 69.82 259 | 43.44 303 | 73.46 217 | 86.08 170 | 58.79 191 | 71.75 268 | 51.90 232 | 75.63 308 | 82.15 183 |
|
Patchmatch-RL test | | | 59.95 280 | 59.12 281 | 62.44 278 | 72.46 261 | 54.61 194 | 59.63 318 | 47.51 359 | 41.05 318 | 74.58 202 | 74.30 304 | 31.06 349 | 65.31 311 | 51.61 233 | 79.85 279 | 67.39 328 |
|
F-COLMAP | | | 75.29 102 | 73.99 120 | 79.18 57 | 81.73 131 | 71.90 51 | 81.86 63 | 82.98 88 | 59.86 136 | 72.27 232 | 84.00 195 | 64.56 141 | 83.07 100 | 51.48 234 | 87.19 189 | 82.56 175 |
|
pmmvs6 | | | 71.82 156 | 73.66 127 | 66.31 243 | 75.94 209 | 42.01 292 | 66.99 251 | 72.53 229 | 63.45 108 | 76.43 179 | 92.78 10 | 72.95 64 | 69.69 284 | 51.41 235 | 90.46 130 | 87.22 58 |
|
IterMVS | | | 63.12 253 | 62.48 257 | 65.02 252 | 66.34 312 | 52.86 204 | 63.81 289 | 62.25 299 | 46.57 281 | 71.51 245 | 80.40 240 | 44.60 276 | 66.82 305 | 51.38 236 | 75.47 310 | 75.38 268 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VDD-MVS | | | 70.81 166 | 71.44 166 | 68.91 213 | 79.07 165 | 46.51 257 | 67.82 238 | 70.83 254 | 61.23 123 | 74.07 210 | 88.69 108 | 59.86 180 | 75.62 224 | 51.11 237 | 90.28 132 | 84.61 109 |
|
KD-MVS_self_test | | | 66.38 222 | 67.51 210 | 62.97 273 | 61.76 340 | 34.39 347 | 58.11 327 | 75.30 207 | 50.84 244 | 77.12 158 | 85.42 178 | 56.84 212 | 69.44 285 | 51.07 238 | 91.16 108 | 85.08 93 |
|
新几何1 | | | | | 69.99 196 | 88.37 36 | 71.34 57 | | 62.08 302 | 43.85 297 | 74.99 193 | 86.11 169 | 52.85 230 | 70.57 277 | 50.99 239 | 83.23 241 | 68.05 326 |
|
Anonymous20240529 | | | 72.56 149 | 73.79 124 | 68.86 214 | 76.89 197 | 45.21 268 | 68.80 224 | 77.25 189 | 67.16 65 | 76.89 164 | 90.44 59 | 65.95 127 | 74.19 243 | 50.75 240 | 90.00 139 | 87.18 61 |
|
UGNet | | | 70.20 172 | 69.05 187 | 73.65 132 | 76.24 203 | 63.64 123 | 75.87 137 | 72.53 229 | 61.48 122 | 60.93 325 | 86.14 167 | 52.37 232 | 77.12 207 | 50.67 241 | 85.21 212 | 80.17 221 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
GA-MVS | | | 62.91 255 | 61.66 260 | 66.66 241 | 67.09 306 | 44.49 272 | 61.18 309 | 69.36 262 | 51.33 238 | 69.33 268 | 74.47 301 | 36.83 321 | 74.94 232 | 50.60 242 | 74.72 316 | 80.57 215 |
|
Fast-Effi-MVS+ | | | 68.81 192 | 68.30 198 | 70.35 188 | 74.66 229 | 48.61 231 | 66.06 262 | 78.32 172 | 50.62 246 | 71.48 246 | 75.54 290 | 68.75 97 | 79.59 164 | 50.55 243 | 78.73 290 | 82.86 165 |
|
WR-MVS | | | 71.20 161 | 72.48 149 | 67.36 231 | 84.98 77 | 35.70 338 | 64.43 284 | 68.66 265 | 65.05 89 | 81.49 105 | 86.43 157 | 57.57 205 | 76.48 216 | 50.36 244 | 93.32 72 | 89.90 23 |
|
FMVSNet1 | | | 71.06 162 | 72.48 149 | 66.81 237 | 77.65 186 | 40.68 301 | 71.96 178 | 73.03 221 | 61.14 124 | 79.45 129 | 90.36 71 | 60.44 174 | 75.20 229 | 50.20 245 | 88.05 171 | 84.54 114 |
|
ANet_high | | | 67.08 217 | 69.94 178 | 58.51 308 | 57.55 361 | 27.09 373 | 58.43 325 | 76.80 193 | 63.56 105 | 82.40 95 | 91.93 20 | 59.82 181 | 64.98 314 | 50.10 246 | 88.86 165 | 83.46 147 |
|
TransMVSNet (Re) | | | 69.62 179 | 71.63 161 | 63.57 264 | 76.51 200 | 35.93 336 | 65.75 268 | 71.29 245 | 61.05 125 | 75.02 192 | 89.90 84 | 65.88 129 | 70.41 281 | 49.79 247 | 89.48 151 | 84.38 122 |
|
DP-MVS Recon | | | 73.57 124 | 72.69 146 | 76.23 100 | 82.85 114 | 63.39 125 | 74.32 157 | 82.96 89 | 57.75 154 | 70.35 257 | 81.98 222 | 64.34 143 | 84.41 75 | 49.69 248 | 89.95 141 | 80.89 203 |
|
pm-mvs1 | | | 68.40 198 | 69.85 180 | 64.04 260 | 73.10 256 | 39.94 307 | 64.61 282 | 70.50 255 | 55.52 181 | 73.97 212 | 89.33 91 | 63.91 145 | 68.38 292 | 49.68 249 | 88.02 172 | 83.81 135 |
|
1314 | | | 59.83 281 | 58.86 284 | 62.74 276 | 65.71 318 | 44.78 270 | 68.59 227 | 72.63 228 | 33.54 355 | 61.05 323 | 67.29 359 | 43.62 282 | 71.26 272 | 49.49 250 | 67.84 351 | 72.19 295 |
|
CMPMVS |  | 48.73 20 | 61.54 269 | 60.89 269 | 63.52 265 | 61.08 344 | 51.55 211 | 68.07 236 | 68.00 269 | 33.88 350 | 65.87 292 | 81.25 230 | 37.91 316 | 67.71 295 | 49.32 251 | 82.60 245 | 71.31 303 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PS-MVSNAJ | | | 64.27 244 | 63.73 245 | 65.90 247 | 77.82 182 | 51.42 212 | 63.33 295 | 72.33 231 | 45.09 292 | 61.60 317 | 68.04 354 | 62.39 154 | 73.95 245 | 49.07 252 | 73.87 322 | 72.34 292 |
|
xiu_mvs_v2_base | | | 64.43 241 | 63.96 242 | 65.85 248 | 77.72 184 | 51.32 213 | 63.63 292 | 72.31 232 | 45.06 293 | 61.70 316 | 69.66 342 | 62.56 150 | 73.93 246 | 49.06 253 | 73.91 321 | 72.31 293 |
|
thisisatest0515 | | | 60.48 277 | 57.86 291 | 68.34 220 | 67.25 304 | 46.42 258 | 60.58 313 | 62.14 300 | 40.82 319 | 63.58 310 | 69.12 345 | 26.28 366 | 78.34 188 | 48.83 254 | 82.13 249 | 80.26 219 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 252 | 63.28 249 | 63.07 271 | 69.81 283 | 45.34 267 | 68.52 230 | 67.14 270 | 43.74 300 | 70.61 255 | 79.22 257 | 47.90 263 | 72.66 253 | 48.75 255 | 73.84 323 | 71.21 305 |
|
PCF-MVS | | 63.80 13 | 72.70 147 | 71.69 159 | 75.72 106 | 78.10 175 | 60.01 158 | 73.04 164 | 81.50 109 | 45.34 288 | 79.66 126 | 84.35 191 | 65.15 135 | 82.65 106 | 48.70 256 | 89.38 156 | 84.50 119 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-RMVSNet | | | 68.69 195 | 68.20 203 | 70.14 193 | 76.40 201 | 53.90 200 | 64.62 281 | 73.48 219 | 58.01 151 | 73.91 213 | 81.78 224 | 59.09 187 | 78.22 191 | 48.59 257 | 77.96 298 | 78.31 242 |
|
VDDNet | | | 71.60 158 | 73.13 138 | 67.02 236 | 86.29 53 | 41.11 297 | 69.97 206 | 66.50 274 | 68.72 58 | 74.74 197 | 91.70 25 | 59.90 179 | 75.81 221 | 48.58 258 | 91.72 93 | 84.15 128 |
|
CR-MVSNet | | | 58.96 286 | 58.49 287 | 60.36 296 | 66.37 310 | 48.24 235 | 70.93 197 | 56.40 327 | 32.87 356 | 61.35 319 | 86.66 147 | 33.19 331 | 63.22 322 | 48.50 259 | 70.17 340 | 69.62 317 |
|
FE-MVS | | | 68.29 202 | 66.96 220 | 72.26 169 | 74.16 239 | 54.24 196 | 77.55 112 | 73.42 220 | 57.65 159 | 72.66 227 | 84.91 184 | 32.02 341 | 81.49 125 | 48.43 260 | 81.85 253 | 81.04 197 |
|
testdata2 | | | | | | | | | | | | | | 67.30 299 | 48.34 261 | | |
|
tfpnnormal | | | 66.48 221 | 67.93 205 | 62.16 281 | 73.40 249 | 36.65 329 | 63.45 293 | 64.99 283 | 55.97 176 | 72.82 226 | 87.80 126 | 57.06 210 | 69.10 289 | 48.31 262 | 87.54 177 | 80.72 211 |
|
PAPR | | | 69.20 187 | 68.66 196 | 70.82 181 | 75.15 217 | 47.77 243 | 75.31 142 | 81.11 119 | 49.62 258 | 66.33 290 | 79.27 256 | 61.53 163 | 82.96 101 | 48.12 263 | 81.50 262 | 81.74 189 |
|
FMVSNet2 | | | 67.48 212 | 68.21 202 | 65.29 249 | 73.14 253 | 38.94 314 | 68.81 222 | 71.21 249 | 54.81 186 | 76.73 170 | 86.48 155 | 48.63 259 | 74.60 237 | 47.98 264 | 86.11 202 | 82.35 179 |
|
AdaColmap |  | | 74.22 117 | 74.56 110 | 73.20 141 | 81.95 127 | 60.97 146 | 79.43 86 | 80.90 125 | 65.57 79 | 72.54 230 | 81.76 226 | 70.98 80 | 85.26 55 | 47.88 265 | 90.00 139 | 73.37 282 |
|
cascas | | | 64.59 237 | 62.77 255 | 70.05 195 | 75.27 214 | 50.02 221 | 61.79 304 | 71.61 236 | 42.46 309 | 63.68 309 | 68.89 349 | 49.33 252 | 80.35 149 | 47.82 266 | 84.05 229 | 79.78 225 |
|
VPA-MVSNet | | | 68.71 194 | 70.37 176 | 63.72 262 | 76.13 205 | 38.06 322 | 64.10 286 | 71.48 240 | 56.60 173 | 74.10 209 | 88.31 117 | 64.78 140 | 69.72 283 | 47.69 267 | 90.15 136 | 83.37 150 |
|
MSDG | | | 67.47 213 | 67.48 212 | 67.46 230 | 70.70 273 | 54.69 193 | 66.90 254 | 78.17 175 | 60.88 127 | 70.41 256 | 74.76 296 | 61.22 169 | 73.18 248 | 47.38 268 | 76.87 301 | 74.49 274 |
|
GBi-Net | | | 68.30 200 | 68.79 191 | 66.81 237 | 73.14 253 | 40.68 301 | 71.96 178 | 73.03 221 | 54.81 186 | 74.72 198 | 90.36 71 | 48.63 259 | 75.20 229 | 47.12 269 | 85.37 207 | 84.54 114 |
|
test1 | | | 68.30 200 | 68.79 191 | 66.81 237 | 73.14 253 | 40.68 301 | 71.96 178 | 73.03 221 | 54.81 186 | 74.72 198 | 90.36 71 | 48.63 259 | 75.20 229 | 47.12 269 | 85.37 207 | 84.54 114 |
|
FMVSNet3 | | | 65.00 232 | 65.16 231 | 64.52 255 | 69.47 286 | 37.56 327 | 66.63 257 | 70.38 256 | 51.55 235 | 74.72 198 | 83.27 209 | 37.89 317 | 74.44 239 | 47.12 269 | 85.37 207 | 81.57 191 |
|
PLC |  | 62.01 16 | 71.79 157 | 70.28 177 | 76.33 98 | 80.31 146 | 68.63 81 | 78.18 107 | 81.24 116 | 54.57 194 | 67.09 288 | 80.63 237 | 59.44 183 | 81.74 123 | 46.91 272 | 84.17 227 | 78.63 237 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ppachtmachnet_test | | | 60.26 279 | 59.61 279 | 62.20 280 | 67.70 301 | 44.33 273 | 58.18 326 | 60.96 308 | 40.75 320 | 65.80 293 | 72.57 318 | 41.23 294 | 63.92 318 | 46.87 273 | 82.42 247 | 78.33 241 |
|
test1111 | | | 64.62 236 | 65.19 230 | 62.93 274 | 79.01 166 | 29.91 366 | 65.45 272 | 54.41 334 | 54.09 205 | 71.47 247 | 88.48 112 | 37.02 320 | 74.29 242 | 46.83 274 | 89.94 142 | 84.58 112 |
|
MAR-MVS | | | 67.72 209 | 66.16 224 | 72.40 166 | 74.45 232 | 64.99 112 | 74.87 146 | 77.50 185 | 48.67 265 | 65.78 294 | 68.58 353 | 57.01 211 | 77.79 200 | 46.68 275 | 81.92 251 | 74.42 275 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 67.06 218 | 67.89 206 | 64.56 254 | 78.02 177 | 38.25 319 | 70.81 200 | 59.60 311 | 65.18 87 | 71.06 251 | 86.56 153 | 43.85 280 | 75.22 228 | 46.35 276 | 89.63 147 | 80.21 220 |
|
test2506 | | | 61.23 270 | 60.85 270 | 62.38 279 | 78.80 168 | 27.88 372 | 67.33 247 | 37.42 379 | 54.23 200 | 67.55 283 | 88.68 109 | 17.87 384 | 74.39 240 | 46.33 277 | 89.41 153 | 84.86 98 |
|
BH-untuned | | | 69.39 184 | 69.46 181 | 69.18 205 | 77.96 179 | 56.88 179 | 68.47 232 | 77.53 184 | 56.77 168 | 77.79 149 | 79.63 251 | 60.30 176 | 80.20 156 | 46.04 278 | 80.65 271 | 70.47 309 |
|
MDA-MVSNet-bldmvs | | | 62.34 263 | 61.73 259 | 64.16 256 | 61.64 341 | 49.90 222 | 48.11 353 | 57.24 322 | 53.31 216 | 80.95 111 | 79.39 254 | 49.00 255 | 61.55 327 | 45.92 279 | 80.05 277 | 81.03 198 |
|
TinyColmap | | | 67.98 205 | 69.28 183 | 64.08 258 | 67.98 298 | 46.82 254 | 70.04 205 | 75.26 208 | 53.05 217 | 77.36 155 | 86.79 139 | 59.39 184 | 72.59 257 | 45.64 280 | 88.01 173 | 72.83 287 |
|
test_yl | | | 65.11 229 | 65.09 235 | 65.18 250 | 70.59 274 | 40.86 299 | 63.22 298 | 72.79 224 | 57.91 152 | 68.88 273 | 79.07 262 | 42.85 287 | 74.89 233 | 45.50 281 | 84.97 215 | 79.81 223 |
|
DCV-MVSNet | | | 65.11 229 | 65.09 235 | 65.18 250 | 70.59 274 | 40.86 299 | 63.22 298 | 72.79 224 | 57.91 152 | 68.88 273 | 79.07 262 | 42.85 287 | 74.89 233 | 45.50 281 | 84.97 215 | 79.81 223 |
|
ECVR-MVS |  | | 64.82 233 | 65.22 229 | 63.60 263 | 78.80 168 | 31.14 362 | 66.97 252 | 56.47 326 | 54.23 200 | 69.94 262 | 88.68 109 | 37.23 319 | 74.81 235 | 45.28 283 | 89.41 153 | 84.86 98 |
|
PVSNet_BlendedMVS | | | 65.38 227 | 64.30 239 | 68.61 217 | 69.81 283 | 49.36 226 | 65.60 271 | 78.96 159 | 45.50 284 | 59.98 328 | 78.61 265 | 51.82 235 | 78.20 192 | 44.30 284 | 84.11 228 | 78.27 243 |
|
PVSNet_Blended | | | 62.90 256 | 61.64 261 | 66.69 240 | 69.81 283 | 49.36 226 | 61.23 308 | 78.96 159 | 42.04 310 | 59.98 328 | 68.86 350 | 51.82 235 | 78.20 192 | 44.30 284 | 77.77 300 | 72.52 290 |
|
Anonymous202405211 | | | 66.02 223 | 66.89 221 | 63.43 267 | 74.22 235 | 38.14 320 | 59.00 321 | 66.13 276 | 63.33 111 | 69.76 266 | 85.95 174 | 51.88 234 | 70.50 278 | 44.23 286 | 87.52 178 | 81.64 190 |
|
VPNet | | | 65.58 226 | 67.56 209 | 59.65 300 | 79.72 150 | 30.17 365 | 60.27 315 | 62.14 300 | 54.19 203 | 71.24 248 | 86.63 150 | 58.80 190 | 67.62 297 | 44.17 287 | 90.87 123 | 81.18 194 |
|
Patchmtry | | | 60.91 272 | 63.01 253 | 54.62 318 | 66.10 316 | 26.27 376 | 67.47 242 | 56.40 327 | 54.05 206 | 72.04 236 | 86.66 147 | 33.19 331 | 60.17 330 | 43.69 288 | 87.45 181 | 77.42 253 |
|
PatchT | | | 53.35 312 | 56.47 301 | 43.99 352 | 64.19 329 | 17.46 384 | 59.15 319 | 43.10 365 | 52.11 227 | 54.74 349 | 86.95 134 | 29.97 358 | 49.98 347 | 43.62 289 | 74.40 319 | 64.53 348 |
|
IB-MVS | | 49.67 18 | 59.69 282 | 56.96 297 | 67.90 225 | 68.19 295 | 50.30 219 | 61.42 306 | 65.18 282 | 47.57 275 | 55.83 345 | 67.15 360 | 23.77 376 | 79.60 163 | 43.56 290 | 79.97 278 | 73.79 280 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
our_test_3 | | | 56.46 297 | 56.51 300 | 56.30 313 | 67.70 301 | 39.66 309 | 55.36 337 | 52.34 345 | 40.57 322 | 63.85 306 | 69.91 341 | 40.04 303 | 58.22 335 | 43.49 291 | 75.29 314 | 71.03 308 |
|
PatchmatchNet |  | | 54.60 306 | 54.27 312 | 55.59 316 | 65.17 323 | 39.08 311 | 66.92 253 | 51.80 346 | 39.89 323 | 58.39 334 | 73.12 315 | 31.69 343 | 58.33 334 | 43.01 292 | 58.38 370 | 69.38 320 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pmmvs-eth3d | | | 64.41 242 | 63.27 250 | 67.82 228 | 75.81 211 | 60.18 156 | 69.49 211 | 62.05 304 | 38.81 329 | 74.13 208 | 82.23 220 | 43.76 281 | 68.65 290 | 42.53 293 | 80.63 273 | 74.63 273 |
|
LCM-MVSNet-Re | | | 69.10 189 | 71.57 164 | 61.70 283 | 70.37 278 | 34.30 348 | 61.45 305 | 79.62 148 | 56.81 167 | 89.59 8 | 88.16 122 | 68.44 101 | 72.94 250 | 42.30 294 | 87.33 184 | 77.85 252 |
|
VNet | | | 64.01 247 | 65.15 233 | 60.57 294 | 73.28 251 | 35.61 339 | 57.60 329 | 67.08 271 | 54.61 193 | 66.76 289 | 83.37 204 | 56.28 215 | 66.87 302 | 42.19 295 | 85.20 213 | 79.23 233 |
|
test-LLR | | | 50.43 323 | 50.69 328 | 49.64 332 | 60.76 345 | 41.87 293 | 53.18 342 | 45.48 362 | 43.41 304 | 49.41 365 | 60.47 370 | 29.22 360 | 44.73 361 | 42.09 296 | 72.14 329 | 62.33 354 |
|
test-mter | | | 48.56 328 | 48.20 333 | 49.64 332 | 60.76 345 | 41.87 293 | 53.18 342 | 45.48 362 | 31.91 362 | 49.41 365 | 60.47 370 | 18.34 382 | 44.73 361 | 42.09 296 | 72.14 329 | 62.33 354 |
|
MVS | | | 60.62 276 | 59.97 276 | 62.58 277 | 68.13 296 | 47.28 250 | 68.59 227 | 73.96 216 | 32.19 357 | 59.94 330 | 68.86 350 | 50.48 244 | 77.64 203 | 41.85 298 | 75.74 306 | 62.83 350 |
|
MIMVSNet1 | | | 66.57 220 | 69.23 185 | 58.59 307 | 81.26 137 | 37.73 325 | 64.06 287 | 57.62 316 | 57.02 165 | 78.40 141 | 90.75 49 | 62.65 149 | 58.10 336 | 41.77 299 | 89.58 150 | 79.95 222 |
|
Vis-MVSNet (Re-imp) | | | 62.74 258 | 63.21 251 | 61.34 288 | 72.19 263 | 31.56 359 | 67.31 248 | 53.87 335 | 53.60 213 | 69.88 264 | 83.37 204 | 40.52 301 | 70.98 274 | 41.40 300 | 86.78 194 | 81.48 192 |
|
MVS_0304 | | | 62.51 261 | 62.27 258 | 63.25 268 | 69.39 287 | 48.47 232 | 64.05 288 | 62.48 298 | 59.69 137 | 54.10 353 | 81.04 232 | 45.71 267 | 66.31 309 | 41.38 301 | 82.58 246 | 74.96 271 |
|
YYNet1 | | | 52.58 314 | 53.50 314 | 49.85 330 | 54.15 375 | 36.45 332 | 40.53 367 | 46.55 361 | 38.09 331 | 75.52 188 | 73.31 314 | 41.08 298 | 43.88 364 | 41.10 302 | 71.14 335 | 69.21 321 |
|
MDA-MVSNet_test_wron | | | 52.57 315 | 53.49 315 | 49.81 331 | 54.24 374 | 36.47 331 | 40.48 368 | 46.58 360 | 38.13 330 | 75.47 189 | 73.32 313 | 41.05 299 | 43.85 365 | 40.98 303 | 71.20 334 | 69.10 323 |
|
1112_ss | | | 59.48 283 | 58.99 283 | 60.96 292 | 77.84 181 | 42.39 291 | 61.42 306 | 68.45 267 | 37.96 332 | 59.93 331 | 67.46 356 | 45.11 273 | 65.07 313 | 40.89 304 | 71.81 331 | 75.41 267 |
|
tpmvs | | | 55.84 299 | 55.45 309 | 57.01 312 | 60.33 348 | 33.20 353 | 65.89 264 | 59.29 313 | 47.52 276 | 56.04 343 | 73.60 310 | 31.05 350 | 68.06 294 | 40.64 305 | 64.64 356 | 69.77 315 |
|
TR-MVS | | | 64.59 237 | 63.54 247 | 67.73 229 | 75.75 212 | 50.83 215 | 63.39 294 | 70.29 257 | 49.33 259 | 71.55 244 | 74.55 300 | 50.94 241 | 78.46 182 | 40.43 306 | 75.69 307 | 73.89 279 |
|
test_post1 | | | | | | | | 66.63 257 | | | | 2.08 383 | 30.66 353 | 59.33 332 | 40.34 307 | | |
|
SCA | | | 58.57 290 | 58.04 290 | 60.17 297 | 70.17 280 | 41.07 298 | 65.19 275 | 53.38 340 | 43.34 306 | 61.00 324 | 73.48 311 | 45.20 271 | 69.38 286 | 40.34 307 | 70.31 339 | 70.05 312 |
|
baseline1 | | | 57.82 293 | 58.36 289 | 56.19 314 | 69.17 289 | 30.76 364 | 62.94 300 | 55.21 330 | 46.04 283 | 63.83 307 | 78.47 266 | 41.20 295 | 63.68 319 | 39.44 309 | 68.99 346 | 74.13 276 |
|
ab-mvs | | | 64.11 245 | 65.13 234 | 61.05 290 | 71.99 265 | 38.03 323 | 67.59 239 | 68.79 264 | 49.08 263 | 65.32 295 | 86.26 161 | 58.02 202 | 66.85 304 | 39.33 310 | 79.79 282 | 78.27 243 |
|
tpmrst | | | 50.15 324 | 51.38 324 | 46.45 343 | 56.05 366 | 24.77 378 | 64.40 285 | 49.98 350 | 36.14 339 | 53.32 355 | 69.59 343 | 35.16 325 | 48.69 349 | 39.24 311 | 58.51 369 | 65.89 337 |
|
FMVS | | | 43.79 341 | 45.63 337 | 38.24 361 | 42.29 386 | 38.58 315 | 34.76 374 | 47.68 358 | 22.22 379 | 67.34 285 | 63.15 365 | 31.82 342 | 30.60 379 | 39.19 312 | 62.28 360 | 45.53 374 |
|
CostFormer | | | 57.35 295 | 56.14 303 | 60.97 291 | 63.76 332 | 38.43 316 | 67.50 241 | 60.22 309 | 37.14 336 | 59.12 333 | 76.34 286 | 32.78 333 | 71.99 264 | 39.12 313 | 69.27 345 | 72.47 291 |
|
pmmvs4 | | | 60.78 274 | 59.04 282 | 66.00 246 | 73.06 258 | 57.67 176 | 64.53 283 | 60.22 309 | 36.91 337 | 65.96 291 | 77.27 280 | 39.66 306 | 68.54 291 | 38.87 314 | 74.89 315 | 71.80 298 |
|
gm-plane-assit | | | | | | 62.51 336 | 33.91 350 | | | 37.25 335 | | 62.71 366 | | 72.74 251 | 38.70 315 | | |
|
Test_1112_low_res | | | 58.78 288 | 58.69 285 | 59.04 305 | 79.41 154 | 38.13 321 | 57.62 328 | 66.98 272 | 34.74 346 | 59.62 332 | 77.56 278 | 42.92 286 | 63.65 320 | 38.66 316 | 70.73 337 | 75.35 269 |
|
thres600view7 | | | 61.82 266 | 61.38 265 | 63.12 270 | 71.81 266 | 34.93 343 | 64.64 280 | 56.99 323 | 54.78 190 | 70.33 258 | 79.74 249 | 32.07 339 | 72.42 259 | 38.61 317 | 83.46 238 | 82.02 184 |
|
UnsupCasMVSNet_eth | | | 52.26 317 | 53.29 316 | 49.16 335 | 55.08 371 | 33.67 351 | 50.03 348 | 58.79 314 | 37.67 333 | 63.43 313 | 74.75 297 | 41.82 292 | 45.83 354 | 38.59 318 | 59.42 366 | 67.98 327 |
|
CL-MVSNet_self_test | | | 62.44 262 | 63.40 248 | 59.55 301 | 72.34 262 | 32.38 355 | 56.39 331 | 64.84 284 | 51.21 240 | 67.46 284 | 81.01 233 | 50.75 242 | 63.51 321 | 38.47 319 | 88.12 170 | 82.75 169 |
|
MDTV_nov1_ep13 | | | | 54.05 313 | | 65.54 319 | 29.30 368 | 59.00 321 | 55.22 329 | 35.96 341 | 52.44 356 | 75.98 287 | 30.77 352 | 59.62 331 | 38.21 320 | 73.33 325 | |
|
BH-w/o | | | 64.81 234 | 64.29 240 | 66.36 242 | 76.08 207 | 54.71 192 | 65.61 270 | 75.23 209 | 50.10 253 | 71.05 252 | 71.86 327 | 54.33 224 | 79.02 170 | 38.20 321 | 76.14 305 | 65.36 340 |
|
TESTMET0.1,1 | | | 45.17 335 | 44.93 341 | 45.89 345 | 56.02 367 | 38.31 317 | 53.18 342 | 41.94 372 | 27.85 369 | 44.86 373 | 56.47 372 | 17.93 383 | 41.50 372 | 38.08 322 | 68.06 349 | 57.85 360 |
|
USDC | | | 62.80 257 | 63.10 252 | 61.89 282 | 65.19 321 | 43.30 283 | 67.42 243 | 74.20 215 | 35.80 342 | 72.25 233 | 84.48 189 | 45.67 268 | 71.95 265 | 37.95 323 | 84.97 215 | 70.42 311 |
|
E-PMN | | | 45.17 335 | 45.36 339 | 44.60 350 | 50.07 380 | 42.75 287 | 38.66 370 | 42.29 370 | 46.39 282 | 39.55 378 | 51.15 376 | 26.00 367 | 45.37 358 | 37.68 324 | 76.41 302 | 45.69 373 |
|
CDS-MVSNet | | | 64.33 243 | 62.66 256 | 69.35 203 | 80.44 144 | 58.28 173 | 65.26 274 | 65.66 278 | 44.36 295 | 67.30 286 | 75.54 290 | 43.27 283 | 71.77 266 | 37.68 324 | 84.44 225 | 78.01 249 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 55.59 302 | 54.89 310 | 57.68 310 | 69.18 288 | 49.05 228 | 61.00 310 | 62.93 297 | 35.98 340 | 58.36 335 | 68.93 348 | 36.71 322 | 66.59 307 | 37.62 326 | 63.30 359 | 57.39 362 |
|
FPMVS | | | 59.43 284 | 60.07 275 | 57.51 311 | 77.62 187 | 71.52 54 | 62.33 302 | 50.92 347 | 57.40 163 | 69.40 267 | 80.00 246 | 39.14 309 | 61.92 326 | 37.47 327 | 66.36 353 | 39.09 377 |
|
EPMVS | | | 45.74 333 | 46.53 336 | 43.39 353 | 54.14 376 | 22.33 381 | 55.02 338 | 35.00 382 | 34.69 347 | 51.09 359 | 70.20 338 | 25.92 368 | 42.04 370 | 37.19 328 | 55.50 374 | 65.78 338 |
|
baseline2 | | | 55.57 303 | 52.74 317 | 64.05 259 | 65.26 320 | 44.11 274 | 62.38 301 | 54.43 333 | 39.03 327 | 51.21 358 | 67.35 358 | 33.66 329 | 72.45 258 | 37.14 329 | 64.22 358 | 75.60 264 |
|
EMVS | | | 44.61 339 | 44.45 344 | 45.10 349 | 48.91 382 | 43.00 285 | 37.92 371 | 41.10 376 | 46.75 280 | 38.00 380 | 48.43 378 | 26.42 365 | 46.27 353 | 37.11 330 | 75.38 312 | 46.03 372 |
|
XXY-MVS | | | 55.19 304 | 57.40 295 | 48.56 338 | 64.45 328 | 34.84 345 | 51.54 346 | 53.59 337 | 38.99 328 | 63.79 308 | 79.43 253 | 56.59 213 | 45.57 355 | 36.92 331 | 71.29 333 | 65.25 341 |
|
HyFIR lowres test | | | 63.01 254 | 60.47 273 | 70.61 183 | 83.04 110 | 54.10 197 | 59.93 317 | 72.24 233 | 33.67 353 | 69.00 270 | 75.63 289 | 38.69 311 | 76.93 209 | 36.60 332 | 75.45 311 | 80.81 208 |
|
EPNet_dtu | | | 58.93 287 | 58.52 286 | 60.16 298 | 67.91 299 | 47.70 245 | 69.97 206 | 58.02 315 | 49.73 256 | 47.28 368 | 73.02 316 | 38.14 313 | 62.34 324 | 36.57 333 | 85.99 203 | 70.43 310 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
KD-MVS_2432*1600 | | | 52.05 319 | 51.58 322 | 53.44 320 | 52.11 378 | 31.20 360 | 44.88 362 | 64.83 285 | 41.53 313 | 64.37 300 | 70.03 339 | 15.61 388 | 64.20 315 | 36.25 334 | 74.61 317 | 64.93 344 |
|
miper_refine_blended | | | 52.05 319 | 51.58 322 | 53.44 320 | 52.11 378 | 31.20 360 | 44.88 362 | 64.83 285 | 41.53 313 | 64.37 300 | 70.03 339 | 15.61 388 | 64.20 315 | 36.25 334 | 74.61 317 | 64.93 344 |
|
new-patchmatchnet | | | 52.89 313 | 55.76 307 | 44.26 351 | 59.94 351 | 6.31 387 | 37.36 373 | 50.76 349 | 41.10 316 | 64.28 302 | 79.82 248 | 44.77 274 | 48.43 350 | 36.24 336 | 87.61 176 | 78.03 248 |
|
JIA-IIPM | | | 54.03 309 | 51.62 321 | 61.25 289 | 59.14 355 | 55.21 190 | 59.10 320 | 47.72 357 | 50.85 243 | 50.31 364 | 85.81 176 | 20.10 381 | 63.97 317 | 36.16 337 | 55.41 375 | 64.55 347 |
|
PatchMatch-RL | | | 58.68 289 | 57.72 292 | 61.57 284 | 76.21 204 | 73.59 44 | 61.83 303 | 49.00 354 | 47.30 277 | 61.08 321 | 68.97 347 | 50.16 246 | 59.01 333 | 36.06 338 | 68.84 347 | 52.10 366 |
|
thres100view900 | | | 61.17 271 | 61.09 267 | 61.39 287 | 72.14 264 | 35.01 342 | 65.42 273 | 56.99 323 | 55.23 183 | 70.71 254 | 79.90 247 | 32.07 339 | 72.09 261 | 35.61 339 | 81.73 256 | 77.08 257 |
|
tfpn200view9 | | | 60.35 278 | 59.97 276 | 61.51 285 | 70.78 271 | 35.35 340 | 63.27 296 | 57.47 317 | 53.00 218 | 68.31 277 | 77.09 281 | 32.45 336 | 72.09 261 | 35.61 339 | 81.73 256 | 77.08 257 |
|
thres400 | | | 60.77 275 | 59.97 276 | 63.15 269 | 70.78 271 | 35.35 340 | 63.27 296 | 57.47 317 | 53.00 218 | 68.31 277 | 77.09 281 | 32.45 336 | 72.09 261 | 35.61 339 | 81.73 256 | 82.02 184 |
|
MVP-Stereo | | | 61.56 268 | 59.22 280 | 68.58 218 | 79.28 156 | 60.44 154 | 69.20 216 | 71.57 237 | 43.58 302 | 56.42 342 | 78.37 268 | 39.57 307 | 76.46 217 | 34.86 342 | 60.16 364 | 68.86 324 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
TAMVS | | | 65.31 228 | 63.75 244 | 69.97 197 | 82.23 123 | 59.76 161 | 66.78 256 | 63.37 295 | 45.20 290 | 69.79 265 | 79.37 255 | 47.42 265 | 72.17 260 | 34.48 343 | 85.15 214 | 77.99 250 |
|
tpm cat1 | | | 54.02 310 | 52.63 318 | 58.19 309 | 64.85 327 | 39.86 308 | 66.26 261 | 57.28 320 | 32.16 358 | 56.90 339 | 70.39 336 | 32.75 334 | 65.30 312 | 34.29 344 | 58.79 367 | 69.41 319 |
|
pmmvs5 | | | 52.49 316 | 52.58 319 | 52.21 326 | 54.99 372 | 32.38 355 | 55.45 336 | 53.84 336 | 32.15 359 | 55.49 347 | 74.81 295 | 38.08 314 | 57.37 337 | 34.02 345 | 74.40 319 | 66.88 332 |
|
CHOSEN 1792x2688 | | | 58.09 291 | 56.30 302 | 63.45 266 | 79.95 148 | 50.93 214 | 54.07 340 | 65.59 279 | 28.56 368 | 61.53 318 | 74.33 303 | 41.09 297 | 66.52 308 | 33.91 346 | 67.69 352 | 72.92 286 |
|
HY-MVS | | 49.31 19 | 57.96 292 | 57.59 293 | 59.10 304 | 66.85 309 | 36.17 333 | 65.13 276 | 65.39 281 | 39.24 326 | 54.69 350 | 78.14 272 | 44.28 278 | 67.18 301 | 33.75 347 | 70.79 336 | 73.95 278 |
|
tpm2 | | | 56.12 298 | 54.64 311 | 60.55 295 | 66.24 313 | 36.01 334 | 68.14 234 | 56.77 325 | 33.60 354 | 58.25 336 | 75.52 292 | 30.25 355 | 74.33 241 | 33.27 348 | 69.76 344 | 71.32 302 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 383 | 53.74 341 | | 31.57 363 | 44.89 372 | | 29.90 359 | | 32.93 349 | | 71.48 300 |
|
tpm | | | 50.60 322 | 52.42 320 | 45.14 348 | 65.18 322 | 26.29 375 | 60.30 314 | 43.50 364 | 37.41 334 | 57.01 338 | 79.09 261 | 30.20 357 | 42.32 368 | 32.77 350 | 66.36 353 | 66.81 334 |
|
sss | | | 47.59 331 | 48.32 331 | 45.40 347 | 56.73 365 | 33.96 349 | 45.17 361 | 48.51 355 | 32.11 361 | 52.37 357 | 65.79 361 | 40.39 302 | 41.91 371 | 31.85 351 | 61.97 361 | 60.35 357 |
|
PMMVS | | | 44.69 337 | 43.95 345 | 46.92 340 | 50.05 381 | 53.47 202 | 48.08 354 | 42.40 368 | 22.36 378 | 44.01 376 | 53.05 374 | 42.60 289 | 45.49 356 | 31.69 352 | 61.36 362 | 41.79 375 |
|
thres200 | | | 57.55 294 | 57.02 296 | 59.17 302 | 67.89 300 | 34.93 343 | 58.91 323 | 57.25 321 | 50.24 250 | 64.01 305 | 71.46 330 | 32.49 335 | 71.39 271 | 31.31 353 | 79.57 284 | 71.19 306 |
|
WTY-MVS | | | 49.39 326 | 50.31 329 | 46.62 342 | 61.22 343 | 32.00 358 | 46.61 358 | 49.77 351 | 33.87 351 | 54.12 352 | 69.55 344 | 41.96 291 | 45.40 357 | 31.28 354 | 64.42 357 | 62.47 353 |
|
UnsupCasMVSNet_bld | | | 50.01 325 | 51.03 327 | 46.95 339 | 58.61 357 | 32.64 354 | 48.31 351 | 53.27 341 | 34.27 349 | 60.47 326 | 71.53 329 | 41.40 293 | 47.07 352 | 30.68 355 | 60.78 363 | 61.13 356 |
|
PVSNet | | 43.83 21 | 51.56 321 | 51.17 325 | 52.73 323 | 68.34 293 | 38.27 318 | 48.22 352 | 53.56 338 | 36.41 338 | 54.29 351 | 64.94 363 | 34.60 327 | 54.20 342 | 30.34 356 | 69.87 342 | 65.71 339 |
|
test20.03 | | | 55.74 301 | 57.51 294 | 50.42 329 | 59.89 352 | 32.09 357 | 50.63 347 | 49.01 353 | 50.11 252 | 65.07 297 | 83.23 210 | 45.61 269 | 48.11 351 | 30.22 357 | 83.82 233 | 71.07 307 |
|
FMVSNet5 | | | 55.08 305 | 55.54 308 | 53.71 319 | 65.80 317 | 33.50 352 | 56.22 333 | 52.50 344 | 43.72 301 | 61.06 322 | 83.38 203 | 25.46 370 | 54.87 339 | 30.11 358 | 81.64 261 | 72.75 288 |
|
gg-mvs-nofinetune | | | 55.75 300 | 56.75 299 | 52.72 324 | 62.87 335 | 28.04 371 | 68.92 219 | 41.36 374 | 71.09 44 | 50.80 360 | 92.63 12 | 20.74 378 | 66.86 303 | 29.97 359 | 72.41 328 | 63.25 349 |
|
dp | | | 44.09 340 | 44.88 342 | 41.72 357 | 58.53 358 | 23.18 380 | 54.70 339 | 42.38 369 | 34.80 345 | 44.25 375 | 65.61 362 | 24.48 375 | 44.80 360 | 29.77 360 | 49.42 377 | 57.18 363 |
|
PAPM | | | 61.79 267 | 60.37 274 | 66.05 245 | 76.09 206 | 41.87 293 | 69.30 214 | 76.79 194 | 40.64 321 | 53.80 354 | 79.62 252 | 44.38 277 | 82.92 102 | 29.64 361 | 73.11 326 | 73.36 283 |
|
testgi | | | 54.00 311 | 56.86 298 | 45.45 346 | 58.20 359 | 25.81 377 | 49.05 349 | 49.50 352 | 45.43 287 | 67.84 279 | 81.17 231 | 51.81 237 | 43.20 367 | 29.30 362 | 79.41 285 | 67.34 330 |
|
Patchmatch-test | | | 47.93 329 | 49.96 330 | 41.84 355 | 57.42 362 | 24.26 379 | 48.75 350 | 41.49 373 | 39.30 325 | 56.79 340 | 73.48 311 | 30.48 354 | 33.87 377 | 29.29 363 | 72.61 327 | 67.39 328 |
|
pmmvs3 | | | 46.71 332 | 45.09 340 | 51.55 328 | 56.76 364 | 48.25 234 | 55.78 335 | 39.53 378 | 24.13 376 | 50.35 363 | 63.40 364 | 15.90 387 | 51.08 344 | 29.29 363 | 70.69 338 | 55.33 365 |
|
mvsany_test | | | 43.76 342 | 41.01 346 | 52.01 327 | 48.09 383 | 57.74 175 | 42.47 365 | 23.85 387 | 23.30 377 | 64.80 298 | 62.17 368 | 27.12 362 | 40.59 373 | 29.17 365 | 48.11 378 | 57.69 361 |
|
N_pmnet | | | 52.06 318 | 51.11 326 | 54.92 317 | 59.64 354 | 71.03 59 | 37.42 372 | 61.62 307 | 33.68 352 | 57.12 337 | 72.10 319 | 37.94 315 | 31.03 378 | 29.13 366 | 71.35 332 | 62.70 351 |
|
Anonymous20231206 | | | 54.13 308 | 55.82 306 | 49.04 337 | 70.89 270 | 35.96 335 | 51.73 345 | 50.87 348 | 34.86 344 | 62.49 314 | 79.22 257 | 42.52 290 | 44.29 363 | 27.95 367 | 81.88 252 | 66.88 332 |
|
CHOSEN 280x420 | | | 41.62 344 | 39.89 349 | 46.80 341 | 61.81 339 | 51.59 210 | 33.56 375 | 35.74 381 | 27.48 371 | 37.64 381 | 53.53 373 | 23.24 377 | 42.09 369 | 27.39 368 | 58.64 368 | 46.72 371 |
|
MIMVSNet | | | 54.39 307 | 56.12 304 | 49.20 334 | 72.57 260 | 30.91 363 | 59.98 316 | 48.43 356 | 41.66 312 | 55.94 344 | 83.86 197 | 41.19 296 | 50.42 345 | 26.05 369 | 75.38 312 | 66.27 336 |
|
ADS-MVSNet2 | | | 48.76 327 | 47.25 335 | 53.29 322 | 55.90 368 | 40.54 304 | 47.34 356 | 54.99 332 | 31.41 364 | 50.48 361 | 72.06 324 | 31.23 346 | 54.26 341 | 25.93 370 | 55.93 372 | 65.07 342 |
|
ADS-MVSNet | | | 44.62 338 | 45.58 338 | 41.73 356 | 55.90 368 | 20.83 382 | 47.34 356 | 39.94 377 | 31.41 364 | 50.48 361 | 72.06 324 | 31.23 346 | 39.31 374 | 25.93 370 | 55.93 372 | 65.07 342 |
|
test0.0.03 1 | | | 47.72 330 | 48.31 332 | 45.93 344 | 55.53 370 | 29.39 367 | 46.40 359 | 41.21 375 | 43.41 304 | 55.81 346 | 67.65 355 | 29.22 360 | 43.77 366 | 25.73 372 | 69.87 342 | 64.62 346 |
|
GG-mvs-BLEND | | | | | 52.24 325 | 60.64 347 | 29.21 369 | 69.73 210 | 42.41 367 | | 45.47 370 | 52.33 375 | 20.43 380 | 68.16 293 | 25.52 373 | 65.42 355 | 59.36 359 |
|
DSMNet-mixed | | | 43.18 343 | 44.66 343 | 38.75 360 | 54.75 373 | 28.88 370 | 57.06 330 | 27.42 385 | 13.47 380 | 47.27 369 | 77.67 277 | 38.83 310 | 39.29 375 | 25.32 374 | 60.12 365 | 48.08 369 |
|
MVS-HIRNet | | | 45.53 334 | 47.29 334 | 40.24 358 | 62.29 337 | 26.82 374 | 56.02 334 | 37.41 380 | 29.74 367 | 43.69 377 | 81.27 229 | 33.96 328 | 55.48 338 | 24.46 375 | 56.79 371 | 38.43 378 |
|
PVSNet_0 | | 36.71 22 | 41.12 345 | 40.78 348 | 42.14 354 | 59.97 350 | 40.13 306 | 40.97 366 | 42.24 371 | 30.81 366 | 44.86 373 | 49.41 377 | 40.70 300 | 45.12 359 | 23.15 376 | 34.96 380 | 41.16 376 |
|
new_pmnet | | | 37.55 347 | 39.80 350 | 30.79 362 | 56.83 363 | 16.46 385 | 39.35 369 | 30.65 383 | 25.59 374 | 45.26 371 | 61.60 369 | 24.54 374 | 28.02 381 | 21.60 377 | 52.80 376 | 47.90 370 |
|
MVE |  | 27.91 23 | 36.69 348 | 35.64 351 | 39.84 359 | 43.37 384 | 35.85 337 | 19.49 377 | 24.61 386 | 24.68 375 | 39.05 379 | 62.63 367 | 38.67 312 | 27.10 382 | 21.04 378 | 47.25 379 | 56.56 364 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 61.97 264 | 66.25 223 | 49.12 336 | 58.19 360 | 60.77 152 | 66.32 260 | 52.97 342 | 55.93 178 | 90.62 5 | 86.91 135 | 73.07 62 | 35.98 376 | 20.63 379 | 91.63 96 | 50.62 367 |
|
PMMVS2 | | | 37.74 346 | 40.87 347 | 28.36 363 | 42.41 385 | 5.35 388 | 24.61 376 | 27.75 384 | 32.15 359 | 47.85 367 | 70.27 337 | 35.85 324 | 29.51 380 | 19.08 380 | 67.85 350 | 50.22 368 |
|
test_method | | | 19.26 349 | 19.12 353 | 19.71 364 | 9.09 388 | 1.91 390 | 7.79 379 | 53.44 339 | 1.42 382 | 10.27 384 | 35.80 379 | 17.42 385 | 25.11 383 | 12.44 381 | 24.38 382 | 32.10 379 |
|
tmp_tt | | | 11.98 351 | 14.73 354 | 3.72 366 | 2.28 389 | 4.62 389 | 19.44 378 | 14.50 389 | 0.47 384 | 21.55 382 | 9.58 382 | 25.78 369 | 4.57 385 | 11.61 382 | 27.37 381 | 1.96 381 |
|
DeepMVS_CX |  | | | | 11.83 365 | 15.51 387 | 13.86 386 | | 11.25 390 | 5.76 381 | 20.85 383 | 26.46 380 | 17.06 386 | 9.22 384 | 9.69 383 | 13.82 383 | 12.42 380 |
|
testmvs | | | 4.06 355 | 5.28 358 | 0.41 367 | 0.64 391 | 0.16 392 | 42.54 364 | 0.31 392 | 0.26 386 | 0.50 387 | 1.40 386 | 0.77 390 | 0.17 386 | 0.56 384 | 0.55 385 | 0.90 382 |
|
test123 | | | 4.43 354 | 5.78 357 | 0.39 368 | 0.97 390 | 0.28 391 | 46.33 360 | 0.45 391 | 0.31 385 | 0.62 386 | 1.50 385 | 0.61 391 | 0.11 387 | 0.56 384 | 0.63 384 | 0.77 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 17.71 350 | 23.62 352 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 70.17 258 | 0.00 387 | 0.00 388 | 74.25 305 | 68.16 104 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 5.20 353 | 6.93 356 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 62.39 154 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 5.62 352 | 7.50 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 67.46 356 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 89.19 25 | 77.84 16 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
test_one_0601 | | | | | | 85.84 67 | 61.45 140 | | 85.63 32 | 75.27 19 | 85.62 50 | 90.38 68 | 76.72 29 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 86.12 59 | 61.06 144 | | 84.72 54 | 72.64 31 | 87.38 25 | 89.47 89 | 77.48 24 | 85.74 44 | | | |
|
save fliter | | | | | | 87.00 43 | 67.23 92 | 79.24 89 | 77.94 179 | 56.65 171 | | | | | | | |
|
test0726 | | | | | | 86.16 57 | 60.78 150 | 83.81 42 | 85.10 45 | 72.48 34 | 85.27 56 | 89.96 82 | 78.57 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 312 |
|
test_part2 | | | | | | 85.90 63 | 66.44 99 | | | | 84.61 66 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 344 | | | | 70.05 312 |
|
sam_mvs | | | | | | | | | | | | | 31.21 348 | | | | |
|
MTGPA |  | | | | | | | | 80.63 131 | | | | | | | | |
|
test_post | | | | | | | | | | | | 1.99 384 | 30.91 351 | 54.76 340 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 346 | 31.32 345 | 69.38 286 | | | |
|
MTMP | | | | | | | | 84.83 33 | 19.26 388 | | | | | | | | |
|
TEST9 | | | | | | 85.47 69 | 69.32 76 | 76.42 125 | 78.69 165 | 53.73 212 | 76.97 159 | 86.74 143 | 66.84 115 | 81.10 132 | | | |
|
test_8 | | | | | | 85.09 75 | 67.89 85 | 76.26 130 | 78.66 167 | 54.00 207 | 76.89 164 | 86.72 145 | 66.60 120 | 80.89 143 | | | |
|
agg_prior | | | | | | 84.44 88 | 66.02 103 | | 78.62 168 | | 76.95 161 | | | 80.34 150 | | | |
|
test_prior4 | | | | | | | 70.14 68 | 77.57 110 | | | | | | | | | |
|
test_prior | | | | | 75.27 112 | 82.15 124 | 59.85 159 | | 84.33 66 | | | | | 83.39 92 | | | 82.58 173 |
|
新几何2 | | | | | | | | 71.33 190 | | | | | | | | | |
|
旧先验1 | | | | | | 84.55 85 | 60.36 155 | | 63.69 293 | | | 87.05 133 | 54.65 222 | | | 83.34 239 | 69.66 316 |
|
原ACMM2 | | | | | | | | 74.78 151 | | | | | | | | | |
|
test222 | | | | | | 87.30 41 | 69.15 79 | 67.85 237 | 59.59 312 | 41.06 317 | 73.05 223 | 85.72 177 | 48.03 262 | | | 80.65 271 | 66.92 331 |
|
segment_acmp | | | | | | | | | | | | | 68.30 103 | | | | |
|
testdata1 | | | | | | | | 68.34 233 | | 57.24 164 | | | | | | | |
|
test12 | | | | | 76.51 95 | 82.28 122 | 60.94 147 | | 81.64 108 | | 73.60 214 | | 64.88 137 | 85.19 60 | | 90.42 131 | 83.38 149 |
|
plane_prior7 | | | | | | 85.18 72 | 66.21 101 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 92 | 65.31 108 | | | | | | 60.83 172 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.11 100 | | | | | |
|
plane_prior3 | | | | | | | 65.67 105 | | | 63.82 103 | 78.23 142 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 55 | | 65.45 80 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 87 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 109 | 80.06 83 | | 61.88 121 | | | | | | 89.91 143 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 331 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 93 | | | | | | | | |
|
door | | | | | | | | | 52.91 343 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 169 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 119 | | 77.32 115 | | 59.08 139 | 71.58 240 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 119 | | 77.32 115 | | 59.08 139 | 71.58 240 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 239 | | | 85.31 53 | | | 83.74 138 |
|
HQP3-MVS | | | | | | | | | 84.12 74 | | | | | | | 89.16 157 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 197 | | | | |
|
NP-MVS | | | | | | 83.34 103 | 63.07 129 | | | | | 85.97 172 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 152 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 92 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 150 | | | | |
|