This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5591.63 186.34 197.97 194.77 366.57 11795.38 187.74 197.72 193.00 7
MP-MVS-pluss82.54 2783.46 2679.76 4288.88 3168.44 7781.57 6386.33 2063.17 11085.38 5391.26 3576.33 3084.67 6983.30 294.96 2386.17 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP82.33 2883.28 2979.46 4889.28 1969.09 7583.62 4384.98 4364.77 9283.97 7091.02 3975.53 3985.93 3682.00 394.36 4583.35 150
LTVRE_ROB75.46 184.22 784.98 881.94 2184.82 7375.40 2691.60 387.80 873.52 2588.90 1293.06 771.39 7081.53 11681.53 492.15 8188.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MTAPA83.19 1983.87 1981.13 3191.16 378.16 1284.87 3080.63 12972.08 3984.93 5790.79 4674.65 4684.42 7380.98 594.75 2980.82 206
HPM-MVScopyleft84.12 984.63 1082.60 1488.21 3674.40 3285.24 2887.21 1470.69 4885.14 5590.42 5978.99 1586.62 1580.83 694.93 2486.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS83.12 2183.68 2281.45 2589.14 2573.28 4386.32 2385.97 2667.39 6384.02 6990.39 6374.73 4586.46 1780.73 794.43 4084.60 110
MSP-MVS80.49 4679.67 5982.96 689.70 1277.46 2087.16 1185.10 4164.94 9181.05 10488.38 11357.10 21387.10 979.75 883.87 23084.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP83.07 2283.64 2381.35 2785.14 6971.00 5585.53 2684.78 4770.91 4685.64 4590.41 6075.55 3887.69 579.75 895.08 2085.36 86
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft82.12 2982.68 3980.43 3788.90 3069.52 6685.12 2984.76 4863.53 10484.23 6791.47 3272.02 6487.16 879.74 1094.36 4584.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS83.39 1884.03 1781.48 2489.25 2175.69 2587.01 1484.27 6270.23 4984.47 6590.43 5876.79 2685.94 3479.58 1194.23 5182.82 166
ACMMPR83.62 1383.93 1882.69 1289.78 1177.51 1987.01 1484.19 6670.23 4984.49 6490.67 5175.15 4186.37 2079.58 1194.26 4984.18 125
HPM-MVS_fast84.59 585.10 783.06 588.60 3375.83 2486.27 2486.89 1673.69 2486.17 3791.70 2778.23 1985.20 5879.45 1394.91 2588.15 47
TSAR-MVS + MP.79.05 5878.81 6479.74 4388.94 2867.52 8486.61 1981.38 11151.71 22577.15 14991.42 3465.49 12787.20 779.44 1487.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R83.54 1583.86 2082.58 1589.82 1077.53 1787.06 1384.23 6570.19 5183.86 7190.72 5075.20 4086.27 2379.41 1594.25 5083.95 130
ACMMPcopyleft84.22 784.84 982.35 1889.23 2276.66 2387.65 685.89 2771.03 4585.85 4290.58 5278.77 1685.78 4179.37 1695.17 1784.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS84.01 1184.39 1282.88 790.65 481.38 487.08 1282.79 8572.41 3785.11 5690.85 4576.65 2884.89 6479.30 1794.63 3382.35 177
CP-MVS84.12 984.55 1182.80 1189.42 1879.74 688.19 584.43 5971.96 4184.70 6290.56 5377.12 2586.18 2879.24 1895.36 1382.49 175
GST-MVS82.79 2583.27 3081.34 2888.99 2773.29 4285.94 2585.13 3968.58 6084.14 6890.21 7373.37 5686.41 1879.09 1993.98 5684.30 124
XVS83.51 1683.73 2182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 8190.39 6373.86 5286.31 2178.84 2094.03 5384.64 105
X-MVStestdata76.81 7974.79 10182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 819.95 40873.86 5286.31 2178.84 2094.03 5384.64 105
MP-MVScopyleft83.19 1983.54 2482.14 2090.54 579.00 986.42 2283.59 7571.31 4281.26 10190.96 4074.57 4784.69 6878.41 2294.78 2882.74 169
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.07 2283.25 3182.54 1689.57 1477.21 2182.04 6085.40 3567.96 6284.91 6090.88 4375.59 3686.57 1678.16 2394.71 3183.82 132
SR-MVS-dyc-post84.75 485.26 683.21 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4879.20 1485.58 4878.11 2494.46 3684.89 95
RE-MVS-def85.50 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4881.38 778.11 2494.46 3684.89 95
APDe-MVScopyleft82.88 2484.14 1579.08 5284.80 7566.72 9186.54 2085.11 4072.00 4086.65 3291.75 2678.20 2087.04 1177.93 2694.32 4883.47 144
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS84.51 685.27 582.25 1988.52 3477.71 1486.81 1685.25 3877.42 1486.15 3890.24 7181.69 585.94 3477.77 2793.58 6183.09 157
APD-MVS_3200maxsize83.57 1484.33 1381.31 2982.83 10673.53 4185.50 2787.45 1374.11 2086.45 3590.52 5680.02 1084.48 7177.73 2894.34 4785.93 75
SD-MVS80.28 5081.55 4876.47 8783.57 9067.83 8183.39 4885.35 3764.42 9486.14 3987.07 13174.02 5180.97 13077.70 2992.32 7980.62 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft79.89 5279.80 5880.18 4089.02 2678.44 1183.49 4680.18 13964.71 9378.11 13888.39 11265.46 12883.14 9177.64 3091.20 9578.94 238
DVP-MVS++81.24 3682.74 3876.76 8183.14 9660.90 14491.64 185.49 3174.03 2284.93 5790.38 6566.82 11085.90 3777.43 3190.78 11283.49 141
test_0728_THIRD74.03 2285.83 4390.41 6075.58 3785.69 4477.43 3194.74 3084.31 122
MM78.15 7077.68 7679.55 4780.10 13765.47 10180.94 6778.74 16571.22 4372.40 22988.70 10460.51 17587.70 477.40 3389.13 14885.48 85
MSC_two_6792asdad79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
No_MVS79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
LPG-MVS_test83.47 1784.33 1380.90 3387.00 4070.41 6182.04 6086.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
LGP-MVS_train80.90 3387.00 4070.41 6186.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
SF-MVS80.72 4481.80 4377.48 7482.03 11664.40 11283.41 4788.46 665.28 8384.29 6689.18 9273.73 5583.22 9076.01 3893.77 5884.81 102
DVP-MVScopyleft81.15 3883.12 3375.24 10286.16 5260.78 14683.77 4180.58 13172.48 3585.83 4390.41 6078.57 1785.69 4475.86 3994.39 4179.24 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8486.20 4960.57 14983.77 4185.49 3185.90 3775.86 3994.39 4183.25 152
IU-MVS86.12 5460.90 14480.38 13545.49 28781.31 10075.64 4194.39 4184.65 104
SED-MVS81.78 3283.48 2576.67 8286.12 5461.06 14083.62 4384.72 5072.61 3387.38 2589.70 8177.48 2385.89 3975.29 4294.39 4183.08 158
test_241102_TWO84.80 4672.61 3384.93 5789.70 8177.73 2285.89 3975.29 4294.22 5283.25 152
XVG-OURS79.51 5479.82 5778.58 6286.11 5774.96 2976.33 12684.95 4566.89 6582.75 8488.99 9966.82 11078.37 17774.80 4490.76 11582.40 176
CPTT-MVS81.51 3581.76 4480.76 3589.20 2378.75 1086.48 2182.03 9968.80 5680.92 10688.52 10972.00 6582.39 10274.80 4493.04 6781.14 196
XVG-OURS-SEG-HR79.62 5379.99 5678.49 6386.46 4774.79 3077.15 11485.39 3666.73 6880.39 11388.85 10274.43 5078.33 17974.73 4685.79 20182.35 177
DPE-MVScopyleft82.00 3183.02 3478.95 5785.36 6667.25 8682.91 5284.98 4373.52 2585.43 5290.03 7576.37 2986.97 1374.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 987.95 1592.53 1479.37 1384.79 6774.51 4896.15 392.88 8
test_fmvsmconf0.01_n73.91 11073.64 12174.71 10369.79 29166.25 9475.90 13279.90 14346.03 28276.48 17185.02 18067.96 10173.97 23574.47 4987.22 18183.90 131
ACMP69.50 882.64 2683.38 2780.40 3886.50 4669.44 6882.30 5686.08 2566.80 6786.70 3189.99 7681.64 685.95 3374.35 5096.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 3083.31 2878.49 6388.17 3773.96 3583.11 5184.52 5866.40 7187.45 2389.16 9481.02 880.52 13974.27 5195.73 880.98 202
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030475.45 9174.66 10377.83 7175.58 20761.53 13378.29 9877.18 19163.15 11269.97 26087.20 12657.54 20987.05 1074.05 5288.96 15184.89 95
OPM-MVS80.99 4281.63 4779.07 5386.86 4469.39 6979.41 8784.00 7165.64 7585.54 4989.28 8776.32 3183.47 8674.03 5393.57 6284.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS78.49 6578.59 6878.16 6785.86 6167.40 8578.12 10381.50 10763.92 9877.51 14686.56 15068.43 9584.82 6673.83 5491.61 8782.26 181
9.1480.22 5480.68 13280.35 7687.69 1159.90 13283.00 7888.20 11674.57 4781.75 11473.75 5593.78 57
DeepC-MVS72.44 481.00 4180.83 5181.50 2386.70 4570.03 6582.06 5887.00 1559.89 13380.91 10790.53 5472.19 6188.56 273.67 5694.52 3585.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp78.60 6277.80 7581.00 3278.01 16874.34 3480.09 8076.12 19850.51 24289.19 1190.88 4371.45 6977.78 19173.38 5790.60 11790.90 17
test_fmvsmconf0.1_n73.26 12372.82 14074.56 10569.10 29766.18 9674.65 15079.34 15345.58 28475.54 18383.91 19467.19 10573.88 23873.26 5886.86 18683.63 139
3Dnovator+73.19 281.08 4080.48 5282.87 881.41 12472.03 4684.38 3586.23 2477.28 1580.65 11090.18 7459.80 18487.58 673.06 5991.34 9289.01 34
test_fmvsmconf_n72.91 13572.40 14874.46 10668.62 30166.12 9774.21 15578.80 16345.64 28374.62 19783.25 20966.80 11373.86 23972.97 6086.66 19283.39 147
v7n79.37 5780.41 5376.28 8978.67 16155.81 18179.22 8982.51 9370.72 4787.54 2292.44 1568.00 10081.34 11872.84 6191.72 8391.69 11
ZD-MVS83.91 8769.36 7081.09 11958.91 14382.73 8589.11 9575.77 3586.63 1472.73 6292.93 69
UA-Net81.56 3482.28 4179.40 4988.91 2969.16 7384.67 3380.01 14275.34 1679.80 11794.91 269.79 8580.25 14372.63 6394.46 3688.78 42
APD-MVScopyleft81.13 3981.73 4579.36 5084.47 8070.53 6083.85 3983.70 7369.43 5583.67 7388.96 10075.89 3486.41 1872.62 6492.95 6881.14 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
XVG-ACMP-BASELINE80.54 4581.06 4978.98 5687.01 3972.91 4480.23 7985.56 3066.56 7085.64 4589.57 8369.12 8980.55 13872.51 6593.37 6383.48 143
train_agg76.38 8276.55 8675.86 9485.47 6469.32 7176.42 12278.69 16654.00 20376.97 15186.74 14066.60 11581.10 12472.50 6691.56 8877.15 261
MVSFormer69.93 17269.03 18472.63 15374.93 21359.19 15783.98 3775.72 20352.27 21863.53 32276.74 29343.19 29280.56 13672.28 6778.67 28778.14 249
test_djsdf78.88 6078.27 7180.70 3681.42 12371.24 5383.98 3775.72 20352.27 21887.37 2792.25 1768.04 9980.56 13672.28 6791.15 9790.32 21
test9_res72.12 6991.37 9177.40 257
HQP_MVS78.77 6178.78 6678.72 5985.18 6765.18 10582.74 5385.49 3165.45 7878.23 13589.11 9560.83 17386.15 2971.09 7090.94 10484.82 100
plane_prior585.49 3186.15 2971.09 7090.94 10484.82 100
v1075.69 8776.20 8974.16 11374.44 22648.69 23475.84 13482.93 8459.02 14185.92 4189.17 9358.56 19482.74 9870.73 7289.14 14791.05 14
agg_prior270.70 7390.93 10678.55 243
MVSMamba_PlusPlus76.88 7878.21 7272.88 14580.83 12948.71 23283.28 4982.79 8572.78 2879.17 12491.94 2156.47 22083.95 7670.51 7486.15 19585.99 73
iter_conf0577.90 7179.33 6173.61 12380.83 12946.85 26082.06 5886.72 1772.78 2885.44 5191.94 2156.47 22083.95 7670.51 7487.24 18090.02 22
NCCC78.25 6878.04 7478.89 5885.61 6369.45 6779.80 8480.99 12265.77 7475.55 18286.25 16067.42 10385.42 4970.10 7690.88 11081.81 187
OurMVSNet-221017-078.57 6378.53 6978.67 6080.48 13464.16 11380.24 7882.06 9861.89 11988.77 1393.32 557.15 21182.60 10070.08 7792.80 7089.25 28
test_prior275.57 13558.92 14276.53 17086.78 13867.83 10269.81 7892.76 72
EC-MVSNet77.08 7777.39 7976.14 9176.86 18956.87 17580.32 7787.52 1263.45 10674.66 19684.52 18669.87 8484.94 6269.76 7989.59 13686.60 66
test_fmvsmvis_n_192072.36 14572.49 14571.96 16371.29 26764.06 11472.79 16581.82 10240.23 33381.25 10281.04 23570.62 7768.69 28469.74 8083.60 23683.14 156
v875.07 9875.64 9573.35 12773.42 24047.46 25475.20 13781.45 10960.05 13185.64 4589.26 8858.08 20281.80 11369.71 8187.97 16490.79 18
CS-MVS76.51 8176.00 9178.06 7077.02 18164.77 10980.78 6982.66 9060.39 12974.15 20483.30 20769.65 8682.07 10969.27 8286.75 19087.36 55
v124073.06 12873.14 13172.84 14674.74 21947.27 25871.88 18181.11 11751.80 22482.28 8884.21 19056.22 22382.34 10468.82 8387.17 18488.91 38
v119273.40 11973.42 12373.32 12974.65 22348.67 23572.21 16981.73 10452.76 21581.85 9184.56 18457.12 21282.24 10768.58 8487.33 17589.06 33
mvs_tets78.93 5978.67 6779.72 4484.81 7473.93 3680.65 7076.50 19651.98 22387.40 2491.86 2476.09 3378.53 16968.58 8490.20 12186.69 65
v192192072.96 13472.98 13772.89 14474.67 22047.58 25271.92 17980.69 12651.70 22681.69 9783.89 19556.58 21882.25 10668.34 8687.36 17288.82 40
jajsoiax78.51 6478.16 7379.59 4684.65 7773.83 3880.42 7376.12 19851.33 23387.19 2891.51 3173.79 5478.44 17368.27 8790.13 12586.49 67
v114473.29 12273.39 12473.01 13674.12 23248.11 24172.01 17481.08 12053.83 20781.77 9384.68 18258.07 20381.91 11168.10 8886.86 18688.99 36
LCM-MVSNet86.90 288.67 281.57 2291.50 263.30 12084.80 3287.77 1086.18 296.26 296.06 190.32 184.49 7068.08 8997.05 296.93 1
PHI-MVS74.92 10174.36 10876.61 8376.40 19462.32 12680.38 7483.15 8054.16 20073.23 21980.75 23962.19 15583.86 7968.02 9090.92 10783.65 138
CDPH-MVS77.33 7577.06 8378.14 6884.21 8463.98 11576.07 13083.45 7654.20 19877.68 14587.18 12769.98 8285.37 5068.01 9192.72 7385.08 92
v14419272.99 13273.06 13572.77 14774.58 22447.48 25371.90 18080.44 13451.57 22781.46 9984.11 19258.04 20482.12 10867.98 9287.47 17088.70 43
OMC-MVS79.41 5678.79 6581.28 3080.62 13370.71 5980.91 6884.76 4862.54 11581.77 9386.65 14671.46 6883.53 8567.95 9392.44 7589.60 24
PS-MVSNAJss77.54 7377.35 8078.13 6984.88 7266.37 9378.55 9579.59 14953.48 21086.29 3692.43 1662.39 15280.25 14367.90 9490.61 11687.77 49
EI-MVSNet-Vis-set72.78 13871.87 15375.54 9874.77 21859.02 16372.24 16871.56 23663.92 9878.59 13071.59 33366.22 12078.60 16867.58 9580.32 26989.00 35
ACMH63.62 1477.50 7480.11 5569.68 19479.61 14156.28 17778.81 9283.62 7463.41 10887.14 3090.23 7276.11 3273.32 24067.58 9594.44 3979.44 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_l_conf0.5_n67.48 20866.88 21969.28 20167.41 31662.04 12770.69 20069.85 25839.46 33669.59 26581.09 23458.15 19868.73 28367.51 9778.16 29577.07 265
SixPastTwentyTwo75.77 8576.34 8774.06 11581.69 12154.84 18676.47 11975.49 20564.10 9787.73 1892.24 1850.45 25381.30 12067.41 9891.46 9086.04 72
casdiffmvs_mvgpermissive75.26 9476.18 9072.52 15472.87 25549.47 22772.94 16484.71 5259.49 13580.90 10888.81 10370.07 8179.71 15167.40 9988.39 15688.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n66.34 22465.27 23269.57 19668.20 30659.14 16271.66 18356.48 33440.92 32667.78 28779.46 26061.23 16666.90 30367.39 10074.32 32782.66 171
DeepPCF-MVS71.07 578.48 6677.14 8282.52 1784.39 8377.04 2276.35 12484.05 6956.66 16480.27 11485.31 17768.56 9287.03 1267.39 10091.26 9383.50 140
BP-MVS67.38 102
HQP-MVS75.24 9575.01 10075.94 9282.37 11058.80 16577.32 11084.12 6759.08 13771.58 23885.96 17058.09 20085.30 5267.38 10289.16 14483.73 137
fmvsm_s_conf0.1_n66.60 21965.54 22969.77 19368.99 29859.15 16072.12 17056.74 33340.72 33068.25 28580.14 25161.18 16966.92 30267.34 10474.40 32483.23 154
EI-MVSNet-UG-set72.63 14171.68 15775.47 9974.67 22058.64 16872.02 17371.50 23763.53 10478.58 13271.39 33765.98 12178.53 16967.30 10580.18 27189.23 29
v2v48272.55 14472.58 14472.43 15672.92 25446.72 26271.41 18779.13 15655.27 17681.17 10385.25 17855.41 22581.13 12367.25 10685.46 20489.43 26
fmvsm_s_conf0.1_n_a67.37 21266.36 22170.37 18070.86 26961.17 13874.00 15757.18 32840.77 32868.83 27980.88 23763.11 14467.61 29566.94 10774.72 31982.33 180
COLMAP_ROBcopyleft72.78 383.75 1284.11 1682.68 1382.97 10374.39 3387.18 1088.18 778.98 786.11 4091.47 3279.70 1285.76 4266.91 10895.46 1287.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a67.00 21765.95 22870.17 18569.72 29261.16 13973.34 16156.83 33140.96 32568.36 28280.08 25262.84 14567.57 29666.90 10974.50 32381.78 188
LS3D80.99 4280.85 5081.41 2678.37 16271.37 5187.45 785.87 2877.48 1381.98 9089.95 7869.14 8885.26 5466.15 11091.24 9487.61 52
fmvsm_l_conf0.5_n_a66.66 21865.97 22768.72 21667.09 31961.38 13570.03 20769.15 26338.59 34368.41 28180.36 24556.56 21968.32 28866.10 11177.45 29976.46 266
MVS_Test69.84 17370.71 17067.24 23367.49 31543.25 29269.87 21081.22 11652.69 21671.57 24186.68 14362.09 15674.51 22866.05 11278.74 28583.96 129
WR-MVS_H80.22 5182.17 4274.39 11089.46 1542.69 29778.24 10082.24 9578.21 1089.57 1092.10 1968.05 9885.59 4766.04 11395.62 1094.88 5
V4271.06 15870.83 16971.72 16567.25 31747.14 25965.94 26480.35 13751.35 23283.40 7683.23 21059.25 18878.80 16565.91 11480.81 26589.23 29
test_fmvsm_n_192069.63 17568.45 19373.16 13270.56 27665.86 9970.26 20578.35 17237.69 34974.29 20278.89 27261.10 17068.10 29065.87 11579.07 28285.53 84
K. test v373.67 11373.61 12273.87 11879.78 13955.62 18474.69 14862.04 30966.16 7384.76 6193.23 649.47 25780.97 13065.66 11686.67 19185.02 94
DeepC-MVS_fast69.89 777.17 7676.33 8879.70 4583.90 8867.94 7980.06 8283.75 7256.73 16374.88 19185.32 17665.54 12687.79 365.61 11791.14 9883.35 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_040278.17 6979.48 6074.24 11283.50 9159.15 16072.52 16674.60 21275.34 1688.69 1491.81 2575.06 4282.37 10365.10 11888.68 15481.20 194
diffmvspermissive67.42 21167.50 20867.20 23462.26 35245.21 27564.87 27977.04 19248.21 26471.74 23579.70 25758.40 19571.17 26764.99 11980.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMVScopyleft70.70 681.70 3383.15 3277.36 7690.35 682.82 382.15 5779.22 15574.08 2187.16 2991.97 2084.80 276.97 19864.98 12093.61 6072.28 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH+66.64 1081.20 3782.48 4077.35 7781.16 12862.39 12580.51 7187.80 873.02 2787.57 2191.08 3880.28 982.44 10164.82 12196.10 587.21 57
MCST-MVS73.42 11873.34 12873.63 12281.28 12659.17 15974.80 14483.13 8145.50 28572.84 22283.78 19765.15 13180.99 12864.54 12289.09 15080.73 210
ambc70.10 18877.74 17250.21 21774.28 15477.93 18279.26 12288.29 11554.11 23379.77 15064.43 12391.10 10180.30 219
lessismore_v072.75 14879.60 14256.83 17657.37 32483.80 7289.01 9847.45 27278.74 16764.39 12486.49 19482.69 170
tt080576.12 8478.43 7069.20 20281.32 12541.37 30576.72 11877.64 18463.78 10182.06 8987.88 12279.78 1179.05 16064.33 12592.40 7687.17 60
baseline73.10 12573.96 11570.51 17871.46 26546.39 26772.08 17184.40 6055.95 17176.62 16486.46 15367.20 10478.03 18664.22 12687.27 17987.11 61
EGC-MVSNET64.77 23761.17 27075.60 9786.90 4374.47 3184.04 3668.62 2670.60 4101.13 41291.61 3065.32 13074.15 23464.01 12788.28 15778.17 248
CANet73.00 13171.84 15476.48 8675.82 20461.28 13674.81 14280.37 13663.17 11062.43 32780.50 24361.10 17085.16 6064.00 12884.34 22683.01 161
balanced_conf0373.59 11574.06 11272.17 16277.48 17747.72 25081.43 6482.20 9654.38 19179.19 12387.68 12454.41 23083.57 8363.98 12985.78 20285.22 87
tttt051769.46 17967.79 20574.46 10675.34 20852.72 20175.05 13863.27 30254.69 18578.87 12984.37 18826.63 38281.15 12263.95 13087.93 16589.51 25
casdiffmvspermissive73.06 12873.84 11670.72 17471.32 26646.71 26370.93 19684.26 6355.62 17477.46 14787.10 12867.09 10677.81 18963.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive74.85 10674.56 10475.72 9581.63 12264.64 11076.35 12479.06 15762.85 11373.33 21788.41 11162.54 15079.59 15463.94 13282.92 24082.94 162
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-CasMVS80.41 4882.86 3773.07 13589.93 739.21 32077.15 11481.28 11379.74 690.87 592.73 1275.03 4384.93 6363.83 13395.19 1695.07 3
DTE-MVSNet80.35 4982.89 3672.74 14989.84 837.34 34077.16 11381.81 10380.45 490.92 492.95 874.57 4786.12 3163.65 13494.68 3294.76 6
h-mvs3373.08 12671.61 15977.48 7483.89 8972.89 4570.47 20271.12 24954.28 19477.89 13983.41 20049.04 26180.98 12963.62 13590.77 11478.58 242
hse-mvs272.32 14670.66 17177.31 7883.10 10071.77 4869.19 21971.45 23954.28 19477.89 13978.26 27849.04 26179.23 15763.62 13589.13 14880.92 203
c3_l69.82 17469.89 17569.61 19566.24 32743.48 28868.12 23679.61 14851.43 22977.72 14380.18 25054.61 22978.15 18563.62 13587.50 16987.20 58
CP-MVSNet79.48 5581.65 4672.98 13889.66 1339.06 32276.76 11780.46 13378.91 890.32 891.70 2768.49 9384.89 6463.40 13895.12 1995.01 4
GeoE73.14 12473.77 11971.26 17178.09 16652.64 20274.32 15279.56 15056.32 16776.35 17583.36 20570.76 7677.96 18763.32 13981.84 25183.18 155
PC_three_145246.98 27681.83 9286.28 15766.55 11884.47 7263.31 14090.78 11283.49 141
PEN-MVS80.46 4782.91 3573.11 13489.83 939.02 32377.06 11682.61 9180.04 590.60 792.85 1074.93 4485.21 5763.15 14195.15 1895.09 2
MSLP-MVS++74.48 10775.78 9370.59 17684.66 7662.40 12478.65 9384.24 6460.55 12877.71 14481.98 22363.12 14377.64 19362.95 14288.14 15971.73 311
EI-MVSNet69.61 17769.01 18571.41 17073.94 23449.90 22271.31 19071.32 24258.22 14675.40 18670.44 34058.16 19775.85 20762.51 14379.81 27588.48 44
IterMVS-LS73.01 13073.12 13372.66 15173.79 23649.90 22271.63 18478.44 17158.22 14680.51 11186.63 14758.15 19879.62 15262.51 14388.20 15888.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 6779.29 6275.90 9381.86 11965.33 10379.05 9084.63 5674.83 1980.41 11286.27 15871.68 6683.45 8762.45 14592.40 7678.92 239
AUN-MVS70.22 16767.88 20377.22 7982.96 10471.61 4969.08 22071.39 24049.17 25771.70 23678.07 28337.62 32879.21 15861.81 14689.15 14680.82 206
MVS_111021_LR72.10 14971.82 15572.95 13979.53 14373.90 3770.45 20366.64 27556.87 16076.81 15981.76 22768.78 9071.76 26161.81 14683.74 23273.18 294
CS-MVS-test74.89 10474.23 11076.86 8077.01 18262.94 12378.98 9184.61 5758.62 14470.17 25880.80 23866.74 11481.96 11061.74 14889.40 14285.69 82
OPU-MVS78.65 6183.44 9466.85 9083.62 4386.12 16566.82 11086.01 3261.72 14989.79 13383.08 158
dcpmvs_271.02 16072.65 14366.16 24576.06 20250.49 21371.97 17579.36 15250.34 24382.81 8383.63 19864.38 13767.27 29961.54 15083.71 23480.71 212
MVS_111021_HR72.98 13372.97 13872.99 13780.82 13165.47 10168.81 22472.77 22557.67 15375.76 17982.38 21971.01 7477.17 19661.38 15186.15 19576.32 267
nrg03074.87 10575.99 9271.52 16874.90 21549.88 22674.10 15682.58 9254.55 19083.50 7589.21 9071.51 6775.74 21161.24 15292.34 7888.94 37
IterMVS-SCA-FT67.68 20666.07 22572.49 15573.34 24258.20 17063.80 29065.55 28448.10 26576.91 15482.64 21645.20 27978.84 16461.20 15377.89 29780.44 218
miper_ehance_all_eth68.36 19568.16 20068.98 20865.14 33843.34 29067.07 25178.92 16049.11 25876.21 17677.72 28553.48 23577.92 18861.16 15484.59 22285.68 83
ITE_SJBPF80.35 3976.94 18473.60 3980.48 13266.87 6683.64 7486.18 16170.25 8079.90 14961.12 15588.95 15287.56 53
DIV-MVS_self_test68.27 19968.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.43 21748.74 26575.38 21360.94 15689.81 13185.81 77
cl____68.26 20068.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.42 21848.74 26575.38 21360.92 15789.81 13185.80 81
3Dnovator65.95 1171.50 15571.22 16572.34 15873.16 24563.09 12178.37 9778.32 17357.67 15372.22 23284.61 18354.77 22678.47 17160.82 15881.07 26175.45 273
cl2267.14 21366.51 22069.03 20763.20 34843.46 28966.88 25676.25 19749.22 25674.48 19977.88 28445.49 27877.40 19560.64 15984.59 22286.24 68
testf175.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
APD_test275.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
Effi-MVS+72.10 14972.28 15071.58 16674.21 23050.33 21574.72 14782.73 8862.62 11470.77 25076.83 29269.96 8380.97 13060.20 16278.43 29083.45 146
eth_miper_zixun_eth69.42 18068.73 19171.50 16967.99 30946.42 26567.58 24178.81 16150.72 24078.13 13780.34 24650.15 25580.34 14160.18 16384.65 22087.74 50
TSAR-MVS + GP.73.08 12671.60 16077.54 7378.99 15770.73 5874.96 13969.38 26160.73 12774.39 20178.44 27657.72 20782.78 9760.16 16489.60 13579.11 236
DPM-MVS69.98 17169.22 18272.26 16082.69 10858.82 16470.53 20181.23 11547.79 27064.16 31280.21 24751.32 24983.12 9260.14 16584.95 21774.83 279
114514_t73.40 11973.33 12973.64 12184.15 8657.11 17378.20 10180.02 14143.76 30272.55 22686.07 16864.00 13983.35 8960.14 16591.03 10380.45 217
TAPA-MVS65.27 1275.16 9674.29 10977.77 7274.86 21668.08 7877.89 10484.04 7055.15 17876.19 17783.39 20166.91 10880.11 14760.04 16790.14 12485.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS70.47 16671.34 16467.85 22679.26 14740.42 31574.67 14975.15 20958.41 14568.74 28088.14 12056.08 22483.69 8159.90 16881.71 25679.43 233
CSCG74.12 10974.39 10673.33 12879.35 14561.66 13277.45 10981.98 10062.47 11779.06 12780.19 24961.83 15778.79 16659.83 16987.35 17379.54 231
APD_test175.04 9975.38 9974.02 11669.89 28770.15 6376.46 12079.71 14565.50 7782.99 7988.60 10866.94 10772.35 25359.77 17088.54 15579.56 228
FA-MVS(test-final)71.27 15671.06 16671.92 16473.96 23352.32 20476.45 12176.12 19859.07 14074.04 20986.18 16152.18 24279.43 15659.75 17181.76 25284.03 128
Gipumacopyleft69.55 17872.83 13959.70 30063.63 34753.97 19380.08 8175.93 20164.24 9673.49 21488.93 10157.89 20662.46 32859.75 17191.55 8962.67 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
thisisatest053067.05 21665.16 23572.73 15073.10 24950.55 21271.26 19263.91 29850.22 24674.46 20080.75 23926.81 38180.25 14359.43 17386.50 19387.37 54
v14869.38 18269.39 17869.36 19869.14 29644.56 27968.83 22372.70 22654.79 18378.59 13084.12 19154.69 22776.74 20459.40 17482.20 24586.79 63
bld_raw_conf0372.88 13672.76 14173.22 13076.77 19048.71 23283.28 4982.79 8548.38 26379.17 12486.44 15452.61 24084.97 6159.29 17586.15 19585.99 73
旧先验271.17 19345.11 29278.54 13361.28 33459.19 176
LF4IMVS67.50 20767.31 21168.08 22458.86 37361.93 12871.43 18675.90 20244.67 29672.42 22880.20 24857.16 21070.44 27358.99 17786.12 19871.88 309
ETV-MVS72.72 13972.16 15274.38 11176.90 18755.95 17873.34 16184.67 5362.04 11872.19 23370.81 33865.90 12385.24 5658.64 17884.96 21681.95 185
DELS-MVS68.83 18868.31 19470.38 17970.55 27848.31 23763.78 29182.13 9754.00 20368.96 27275.17 30458.95 19180.06 14858.55 17982.74 24282.76 167
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR73.91 11074.16 11173.16 13281.90 11853.50 19781.28 6581.40 11066.17 7273.30 21883.31 20659.96 18083.10 9358.45 18081.66 25782.87 164
Anonymous2023121175.54 9077.19 8170.59 17677.67 17445.70 27374.73 14680.19 13868.80 5682.95 8092.91 966.26 11976.76 20358.41 18192.77 7189.30 27
miper_enhance_ethall65.86 22665.05 24268.28 22361.62 35642.62 29864.74 28077.97 18042.52 31273.42 21672.79 32649.66 25677.68 19258.12 18284.59 22284.54 112
IS-MVSNet75.10 9775.42 9874.15 11479.23 14848.05 24379.43 8578.04 17970.09 5279.17 12488.02 12153.04 23783.60 8258.05 18393.76 5990.79 18
FC-MVSNet-test73.32 12174.78 10268.93 21179.21 14936.57 34271.82 18279.54 15157.63 15682.57 8690.38 6559.38 18778.99 16257.91 18494.56 3491.23 13
MGCFI-Net71.70 15373.10 13467.49 23073.23 24443.08 29372.06 17282.43 9454.58 18875.97 17882.00 22172.42 6075.22 21757.84 18587.34 17484.18 125
RPSCF75.76 8674.37 10779.93 4174.81 21777.53 1777.53 10879.30 15459.44 13678.88 12889.80 8071.26 7173.09 24257.45 18680.89 26289.17 31
alignmvs70.54 16571.00 16769.15 20473.50 23848.04 24469.85 21179.62 14653.94 20676.54 16982.00 22159.00 19074.68 22657.32 18787.21 18284.72 103
sasdasda72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
canonicalmvs72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
UniMVSNet (Re)75.00 10075.48 9773.56 12583.14 9647.92 24570.41 20481.04 12163.67 10279.54 11986.37 15662.83 14681.82 11257.10 19095.25 1590.94 16
原ACMM173.90 11785.90 5865.15 10781.67 10550.97 23774.25 20386.16 16361.60 16083.54 8456.75 19191.08 10273.00 296
FIs72.56 14273.80 11768.84 21478.74 16037.74 33671.02 19479.83 14456.12 16880.88 10989.45 8558.18 19678.28 18056.63 19293.36 6490.51 20
xiu_mvs_v1_base_debu67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base_debi67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
Effi-MVS+-dtu75.43 9272.28 15084.91 377.05 17983.58 278.47 9677.70 18357.68 15274.89 19078.13 28264.80 13484.26 7556.46 19685.32 20986.88 62
MVSTER63.29 25461.60 26768.36 21959.77 36946.21 26860.62 31371.32 24241.83 31675.40 18679.12 26830.25 37075.85 20756.30 19779.81 27583.03 160
UniMVSNet_NR-MVSNet74.90 10375.65 9472.64 15283.04 10145.79 27069.26 21778.81 16166.66 6981.74 9586.88 13563.26 14281.07 12656.21 19894.98 2191.05 14
DU-MVS74.91 10275.57 9672.93 14283.50 9145.79 27069.47 21480.14 14065.22 8481.74 9587.08 12961.82 15881.07 12656.21 19894.98 2191.93 9
RPMNet65.77 22765.08 24167.84 22766.37 32448.24 23970.93 19686.27 2154.66 18661.35 33186.77 13933.29 34385.67 4655.93 20070.17 35669.62 331
CLD-MVS72.88 13672.36 14974.43 10977.03 18054.30 19068.77 22783.43 7752.12 22076.79 16074.44 31169.54 8783.91 7855.88 20193.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_lstm_enhance61.97 26661.63 26662.98 27260.04 36345.74 27247.53 37770.95 25044.04 29873.06 22078.84 27339.72 31460.33 33655.82 20284.64 22182.88 163
AllTest77.66 7277.43 7878.35 6579.19 15070.81 5678.60 9488.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
TestCases78.35 6579.19 15070.81 5688.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
EU-MVSNet60.82 27660.80 27560.86 29468.37 30341.16 30672.27 16768.27 26926.96 39069.08 26975.71 29832.09 35267.44 29755.59 20578.90 28473.97 287
TranMVSNet+NR-MVSNet76.13 8377.66 7771.56 16784.61 7842.57 29970.98 19578.29 17568.67 5983.04 7789.26 8872.99 5880.75 13555.58 20695.47 1191.35 12
OpenMVScopyleft62.51 1568.76 19068.75 18968.78 21570.56 27653.91 19478.29 9877.35 18748.85 26070.22 25683.52 19952.65 23976.93 19955.31 20781.99 24775.49 272
QAPM69.18 18469.26 18068.94 21071.61 26352.58 20380.37 7578.79 16449.63 25273.51 21385.14 17953.66 23479.12 15955.11 20875.54 31275.11 278
NR-MVSNet73.62 11474.05 11372.33 15983.50 9143.71 28565.65 27077.32 18864.32 9575.59 18187.08 12962.45 15181.34 11854.90 20995.63 991.93 9
EG-PatchMatch MVS70.70 16370.88 16870.16 18682.64 10958.80 16571.48 18573.64 21754.98 17976.55 16881.77 22661.10 17078.94 16354.87 21080.84 26472.74 301
SSC-MVS61.79 26966.08 22448.89 35876.91 18510.00 41453.56 35947.37 37768.20 6176.56 16789.21 9054.13 23257.59 34854.75 21174.07 32879.08 237
jason64.47 24262.84 25969.34 20076.91 18559.20 15667.15 25065.67 28135.29 36065.16 30576.74 29344.67 28370.68 26954.74 21279.28 28178.14 249
jason: jason.
Baseline_NR-MVSNet70.62 16473.19 13062.92 27576.97 18334.44 35868.84 22270.88 25260.25 13079.50 12090.53 5461.82 15869.11 28154.67 21395.27 1485.22 87
UniMVSNet_ETH3D76.74 8079.02 6369.92 19289.27 2043.81 28474.47 15171.70 23372.33 3885.50 5093.65 477.98 2176.88 20154.60 21491.64 8589.08 32
无先验74.82 14170.94 25147.75 27176.85 20254.47 21572.09 308
testdata64.13 25885.87 6063.34 11961.80 31047.83 26976.42 17486.60 14948.83 26462.31 33054.46 21681.26 26066.74 351
SDMVSNet66.36 22367.85 20461.88 28373.04 25246.14 26958.54 32671.36 24151.42 23068.93 27482.72 21465.62 12562.22 33154.41 21784.67 21877.28 258
PVSNet_Blended_VisFu70.04 16968.88 18673.53 12682.71 10763.62 11774.81 14281.95 10148.53 26267.16 29579.18 26751.42 24878.38 17654.39 21879.72 27878.60 241
EPNet69.10 18567.32 21074.46 10668.33 30561.27 13777.56 10663.57 30060.95 12556.62 36182.75 21351.53 24781.24 12154.36 21990.20 12180.88 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EIA-MVS68.59 19367.16 21372.90 14375.18 21155.64 18369.39 21581.29 11252.44 21764.53 30870.69 33960.33 17782.30 10554.27 22076.31 30680.75 209
patch_mono-262.73 26264.08 24658.68 30770.36 28255.87 18060.84 31164.11 29741.23 32164.04 31378.22 27960.00 17948.80 36454.17 22183.71 23471.37 313
ET-MVSNet_ETH3D63.32 25360.69 27671.20 17270.15 28555.66 18265.02 27864.32 29543.28 31168.99 27172.05 33125.46 38878.19 18454.16 22282.80 24179.74 227
EPP-MVSNet73.86 11273.38 12575.31 10078.19 16453.35 19980.45 7277.32 18865.11 8776.47 17286.80 13649.47 25783.77 8053.89 22392.72 7388.81 41
lupinMVS63.36 25261.49 26868.97 20974.93 21359.19 15765.80 26864.52 29434.68 36563.53 32274.25 31443.19 29270.62 27053.88 22478.67 28777.10 262
CNLPA73.44 11773.03 13674.66 10478.27 16375.29 2775.99 13178.49 17065.39 8075.67 18083.22 21261.23 16666.77 30853.70 22585.33 20881.92 186
CVMVSNet59.21 28958.44 29261.51 28673.94 23447.76 24971.31 19064.56 29326.91 39260.34 33970.44 34036.24 33467.65 29353.57 22668.66 36469.12 336
CANet_DTU64.04 24863.83 24864.66 25468.39 30242.97 29573.45 16074.50 21352.05 22254.78 37075.44 30343.99 28770.42 27453.49 22778.41 29180.59 215
D2MVS62.58 26361.05 27267.20 23463.85 34447.92 24556.29 34069.58 26039.32 33770.07 25978.19 28034.93 33872.68 24553.44 22883.74 23281.00 201
test_fmvs356.78 30155.99 31059.12 30453.96 39748.09 24258.76 32566.22 27727.54 38876.66 16268.69 36225.32 39051.31 35753.42 22973.38 33377.97 254
Anonymous2024052163.55 25066.07 22555.99 32166.18 32944.04 28368.77 22768.80 26446.99 27572.57 22585.84 17239.87 31350.22 36053.40 23092.23 8073.71 291
PM-MVS64.49 24163.61 25167.14 23676.68 19175.15 2868.49 23242.85 39051.17 23677.85 14180.51 24245.76 27566.31 31152.83 23176.35 30559.96 379
API-MVS70.97 16171.51 16269.37 19775.20 21055.94 17980.99 6676.84 19362.48 11671.24 24677.51 28861.51 16280.96 13352.04 23285.76 20371.22 316
Fast-Effi-MVS+-dtu70.00 17068.74 19073.77 11973.47 23964.53 11171.36 18878.14 17855.81 17368.84 27874.71 30865.36 12975.75 21052.00 23379.00 28381.03 199
mvs_anonymous65.08 23365.49 23063.83 26263.79 34537.60 33866.52 26069.82 25943.44 30773.46 21586.08 16758.79 19371.75 26251.90 23475.63 31182.15 182
Patchmatch-RL test59.95 28459.12 28562.44 27872.46 25754.61 18959.63 31947.51 37641.05 32474.58 19874.30 31331.06 36465.31 31651.61 23579.85 27467.39 344
F-COLMAP75.29 9373.99 11479.18 5181.73 12071.90 4781.86 6282.98 8259.86 13472.27 23084.00 19364.56 13683.07 9451.48 23687.19 18382.56 174
pmmvs671.82 15173.66 12066.31 24475.94 20342.01 30166.99 25272.53 22863.45 10676.43 17392.78 1172.95 5969.69 27751.41 23790.46 11887.22 56
IterMVS63.12 25662.48 26265.02 25366.34 32652.86 20063.81 28962.25 30446.57 27871.51 24380.40 24444.60 28466.82 30751.38 23875.47 31375.38 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS70.81 16271.44 16368.91 21279.07 15546.51 26467.82 23970.83 25361.23 12274.07 20788.69 10559.86 18275.62 21251.11 23990.28 12084.61 108
KD-MVS_self_test66.38 22267.51 20762.97 27361.76 35434.39 35958.11 33175.30 20650.84 23977.12 15085.42 17556.84 21669.44 27851.07 24091.16 9685.08 92
新几何169.99 19088.37 3571.34 5262.08 30743.85 29974.99 18986.11 16652.85 23870.57 27150.99 24183.23 23968.05 342
Anonymous2024052972.56 14273.79 11868.86 21376.89 18845.21 27568.80 22677.25 19067.16 6476.89 15590.44 5765.95 12274.19 23350.75 24290.00 12687.18 59
UGNet70.20 16869.05 18373.65 12076.24 19663.64 11675.87 13372.53 22861.48 12160.93 33786.14 16452.37 24177.12 19750.67 24385.21 21080.17 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GA-MVS62.91 25861.66 26466.66 24267.09 31944.49 28061.18 30969.36 26251.33 23369.33 26874.47 31036.83 33174.94 22250.60 24474.72 31980.57 216
Fast-Effi-MVS+68.81 18968.30 19570.35 18174.66 22248.61 23666.06 26378.32 17350.62 24171.48 24475.54 30068.75 9179.59 15450.55 24578.73 28682.86 165
WR-MVS71.20 15772.48 14667.36 23284.98 7135.70 35064.43 28568.66 26665.05 8881.49 9886.43 15557.57 20876.48 20550.36 24693.32 6589.90 23
FMVSNet171.06 15872.48 14666.81 23877.65 17540.68 31171.96 17673.03 22061.14 12379.45 12190.36 6860.44 17675.20 21950.20 24788.05 16184.54 112
ANet_high67.08 21469.94 17458.51 30957.55 37927.09 39158.43 32876.80 19463.56 10382.40 8791.93 2359.82 18364.98 31950.10 24888.86 15383.46 145
TransMVSNet (Re)69.62 17671.63 15863.57 26576.51 19335.93 34865.75 26971.29 24461.05 12475.02 18889.90 7965.88 12470.41 27549.79 24989.48 13884.38 120
DP-MVS Recon73.57 11672.69 14276.23 9082.85 10563.39 11874.32 15282.96 8357.75 15170.35 25481.98 22364.34 13884.41 7449.69 25089.95 12880.89 204
pm-mvs168.40 19469.85 17664.04 26173.10 24939.94 31764.61 28370.50 25455.52 17573.97 21089.33 8663.91 14068.38 28749.68 25188.02 16283.81 133
test_fmvs254.80 31354.11 32256.88 31851.76 40149.95 22156.70 33865.80 28026.22 39369.42 26665.25 37531.82 35649.98 36149.63 25270.36 35470.71 321
mvsmamba68.87 18767.30 21273.57 12476.58 19253.70 19684.43 3474.25 21445.38 28976.63 16384.55 18535.85 33585.27 5349.54 25378.49 28981.75 189
131459.83 28558.86 28862.74 27665.71 33244.78 27868.59 22972.63 22733.54 37261.05 33567.29 37143.62 29071.26 26649.49 25467.84 36972.19 307
WB-MVS60.04 28364.19 24547.59 36076.09 19910.22 41352.44 36446.74 37865.17 8674.07 20787.48 12553.48 23555.28 35149.36 25572.84 33677.28 258
CMPMVSbinary48.73 2061.54 27260.89 27363.52 26661.08 35851.55 20668.07 23768.00 27033.88 36765.87 30081.25 23237.91 32567.71 29249.32 25682.60 24371.31 315
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-MVSNAJ64.27 24663.73 25065.90 24877.82 17151.42 20763.33 29572.33 23045.09 29361.60 32968.04 36562.39 15273.95 23649.07 25773.87 33072.34 304
xiu_mvs_v2_base64.43 24363.96 24765.85 24977.72 17351.32 20863.63 29272.31 23145.06 29461.70 32869.66 35162.56 14873.93 23749.06 25873.91 32972.31 305
thisisatest051560.48 28057.86 29668.34 22067.25 31746.42 26560.58 31462.14 30540.82 32763.58 32169.12 35426.28 38478.34 17848.83 25982.13 24680.26 220
OpenMVS_ROBcopyleft54.93 1763.23 25563.28 25463.07 27169.81 28845.34 27468.52 23167.14 27243.74 30370.61 25279.22 26547.90 27172.66 24648.75 26073.84 33171.21 317
PCF-MVS63.80 1372.70 14071.69 15675.72 9578.10 16560.01 15373.04 16381.50 10745.34 29079.66 11884.35 18965.15 13182.65 9948.70 26189.38 14384.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet68.69 19268.20 19970.14 18776.40 19453.90 19564.62 28273.48 21858.01 14873.91 21181.78 22559.09 18978.22 18148.59 26277.96 29678.31 245
VDDNet71.60 15473.13 13267.02 23786.29 4841.11 30769.97 20866.50 27668.72 5874.74 19291.70 2759.90 18175.81 20948.58 26391.72 8384.15 127
CR-MVSNet58.96 29058.49 29160.36 29766.37 32448.24 23970.93 19656.40 33632.87 37361.35 33186.66 14433.19 34463.22 32748.50 26470.17 35669.62 331
FE-MVS68.29 19866.96 21772.26 16074.16 23154.24 19177.55 10773.42 21957.65 15572.66 22484.91 18132.02 35581.49 11748.43 26581.85 25081.04 198
testdata267.30 29848.34 266
tfpnnormal66.48 22167.93 20162.16 28173.40 24136.65 34163.45 29364.99 28855.97 17072.82 22387.80 12357.06 21469.10 28248.31 26787.54 16780.72 211
test_vis1_n_192052.96 32553.50 32451.32 34459.15 37144.90 27756.13 34364.29 29630.56 38459.87 34460.68 38840.16 31147.47 37048.25 26862.46 38161.58 376
PAPR69.20 18368.66 19270.82 17375.15 21247.77 24875.31 13681.11 11749.62 25366.33 29879.27 26461.53 16182.96 9548.12 26981.50 25981.74 190
testing358.28 29558.38 29358.00 31277.45 17826.12 39660.78 31243.00 38956.02 16970.18 25775.76 29713.27 41467.24 30048.02 27080.89 26280.65 213
FMVSNet267.48 20868.21 19865.29 25073.14 24638.94 32468.81 22471.21 24854.81 18076.73 16186.48 15248.63 26774.60 22747.98 27186.11 19982.35 177
AdaColmapbinary74.22 10874.56 10473.20 13181.95 11760.97 14279.43 8580.90 12365.57 7672.54 22781.76 22770.98 7585.26 5447.88 27290.00 12673.37 292
cascas64.59 23962.77 26070.05 18975.27 20950.02 21961.79 30471.61 23442.46 31363.68 31968.89 35949.33 25980.35 14047.82 27384.05 22979.78 226
VPA-MVSNet68.71 19170.37 17263.72 26376.13 19838.06 33464.10 28771.48 23856.60 16674.10 20688.31 11464.78 13569.72 27647.69 27490.15 12383.37 149
MSDG67.47 21067.48 20967.46 23170.70 27254.69 18866.90 25578.17 17660.88 12670.41 25374.76 30661.22 16873.18 24147.38 27576.87 30274.49 283
GBi-Net68.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
test168.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
FMVSNet365.00 23465.16 23564.52 25669.47 29337.56 33966.63 25870.38 25551.55 22874.72 19383.27 20837.89 32674.44 22947.12 27685.37 20581.57 192
PLCcopyleft62.01 1671.79 15270.28 17376.33 8880.31 13668.63 7678.18 10281.24 11454.57 18967.09 29680.63 24159.44 18581.74 11546.91 27984.17 22778.63 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test60.26 28259.61 28362.20 28067.70 31344.33 28158.18 33060.96 31240.75 32965.80 30172.57 32741.23 30263.92 32346.87 28082.42 24478.33 244
test111164.62 23865.19 23462.93 27479.01 15629.91 38165.45 27354.41 34554.09 20171.47 24588.48 11037.02 33074.29 23246.83 28189.94 12984.58 111
MAR-MVS67.72 20566.16 22372.40 15774.45 22564.99 10874.87 14077.50 18648.67 26165.78 30268.58 36357.01 21577.79 19046.68 28281.92 24874.42 285
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS67.06 21567.89 20264.56 25578.02 16738.25 33170.81 19959.60 31665.18 8571.06 24886.56 15043.85 28875.22 21746.35 28389.63 13480.21 221
test250661.23 27360.85 27462.38 27978.80 15827.88 38967.33 24837.42 40354.23 19667.55 29188.68 10617.87 40774.39 23046.33 28489.41 14084.86 98
Syy-MVS54.13 31655.45 31450.18 34868.77 29923.59 40055.02 34944.55 38343.80 30058.05 35264.07 37746.22 27458.83 34246.16 28572.36 34068.12 340
BH-untuned69.39 18169.46 17769.18 20377.96 16956.88 17468.47 23377.53 18556.77 16277.79 14279.63 25860.30 17880.20 14646.04 28680.65 26670.47 322
MDA-MVSNet-bldmvs62.34 26561.73 26364.16 25761.64 35549.90 22248.11 37557.24 32753.31 21180.95 10579.39 26249.00 26361.55 33345.92 28780.05 27281.03 199
test_fmvs1_n52.70 32852.01 33554.76 32653.83 39850.36 21455.80 34565.90 27924.96 39765.39 30360.64 38927.69 37948.46 36645.88 28867.99 36765.46 356
TinyColmap67.98 20169.28 17964.08 25967.98 31046.82 26170.04 20675.26 20753.05 21277.36 14886.79 13759.39 18672.59 25045.64 28988.01 16372.83 299
test_cas_vis1_n_192050.90 34050.92 34450.83 34654.12 39647.80 24751.44 36854.61 34326.95 39163.95 31560.85 38737.86 32744.97 38045.53 29062.97 38059.72 380
test_yl65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
DCV-MVSNet65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
test_fmvs151.51 33850.86 34553.48 33249.72 40449.35 23054.11 35664.96 28924.64 39963.66 32059.61 39228.33 37848.45 36745.38 29367.30 37162.66 371
ECVR-MVScopyleft64.82 23565.22 23363.60 26478.80 15831.14 37566.97 25356.47 33554.23 19669.94 26188.68 10637.23 32974.81 22545.28 29489.41 14084.86 98
PVSNet_BlendedMVS65.38 22964.30 24368.61 21769.81 28849.36 22865.60 27278.96 15845.50 28559.98 34078.61 27451.82 24478.20 18244.30 29584.11 22878.27 246
PVSNet_Blended62.90 25961.64 26566.69 24169.81 28849.36 22861.23 30878.96 15842.04 31459.98 34068.86 36051.82 24478.20 18244.30 29577.77 29872.52 302
Anonymous20240521166.02 22566.89 21863.43 26874.22 22938.14 33259.00 32266.13 27863.33 10969.76 26485.95 17151.88 24370.50 27244.23 29787.52 16881.64 191
VPNet65.58 22867.56 20659.65 30179.72 14030.17 38060.27 31662.14 30554.19 19971.24 24686.63 14758.80 19267.62 29444.17 29890.87 11181.18 195
Patchmtry60.91 27563.01 25854.62 32866.10 33026.27 39567.47 24356.40 33654.05 20272.04 23486.66 14433.19 34460.17 33743.69 29987.45 17177.42 256
PatchT53.35 32356.47 30643.99 37664.19 34317.46 40759.15 32043.10 38852.11 22154.74 37186.95 13329.97 37349.98 36143.62 30074.40 32464.53 365
IB-MVS49.67 1859.69 28656.96 30267.90 22568.19 30750.30 21661.42 30665.18 28747.57 27255.83 36567.15 37223.77 39479.60 15343.56 30179.97 27373.79 290
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_356.46 30256.51 30556.30 31967.70 31339.66 31955.36 34852.34 35940.57 33263.85 31669.91 35040.04 31258.22 34543.49 30275.29 31771.03 320
test_vis1_n51.27 33950.41 34953.83 32956.99 38150.01 22056.75 33760.53 31325.68 39559.74 34557.86 39329.40 37547.41 37143.10 30363.66 37864.08 366
PatchmatchNetpermissive54.60 31454.27 32155.59 32465.17 33739.08 32166.92 25451.80 36139.89 33458.39 34973.12 32431.69 35858.33 34443.01 30458.38 39369.38 334
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs-eth3d64.41 24463.27 25567.82 22875.81 20560.18 15269.49 21362.05 30838.81 34274.13 20582.23 22043.76 28968.65 28542.53 30580.63 26874.63 280
LCM-MVSNet-Re69.10 18571.57 16161.70 28470.37 28134.30 36061.45 30579.62 14656.81 16189.59 988.16 11968.44 9472.94 24342.30 30687.33 17577.85 255
VNet64.01 24965.15 23760.57 29573.28 24335.61 35157.60 33367.08 27354.61 18766.76 29783.37 20356.28 22266.87 30442.19 30785.20 21179.23 235
test-LLR50.43 34250.69 34749.64 35260.76 35941.87 30253.18 36045.48 38143.41 30849.41 38960.47 39029.22 37644.73 38242.09 30872.14 34362.33 374
test-mter48.56 35048.20 35549.64 35260.76 35941.87 30253.18 36045.48 38131.91 37949.41 38960.47 39018.34 40544.73 38242.09 30872.14 34362.33 374
MVS60.62 27959.97 28062.58 27768.13 30847.28 25768.59 22973.96 21632.19 37459.94 34268.86 36050.48 25277.64 19341.85 31075.74 30962.83 368
MIMVSNet166.57 22069.23 18158.59 30881.26 12737.73 33764.06 28857.62 32157.02 15978.40 13490.75 4762.65 14758.10 34741.77 31189.58 13779.95 223
test_vis3_rt51.94 33651.04 34254.65 32746.32 40850.13 21844.34 38778.17 17623.62 40168.95 27362.81 38121.41 39838.52 40041.49 31272.22 34275.30 277
Vis-MVSNet (Re-imp)62.74 26163.21 25661.34 28972.19 25931.56 37267.31 24953.87 34753.60 20969.88 26283.37 20340.52 30970.98 26841.40 31386.78 18981.48 193
YYNet152.58 32953.50 32449.85 35054.15 39436.45 34440.53 39246.55 38038.09 34675.52 18473.31 32341.08 30643.88 38641.10 31471.14 35069.21 335
sd_testset63.55 25065.38 23158.07 31173.04 25238.83 32657.41 33465.44 28551.42 23068.93 27482.72 21463.76 14158.11 34641.05 31584.67 21877.28 258
MDA-MVSNet_test_wron52.57 33053.49 32649.81 35154.24 39336.47 34340.48 39346.58 37938.13 34575.47 18573.32 32241.05 30743.85 38740.98 31671.20 34969.10 337
1112_ss59.48 28758.99 28760.96 29377.84 17042.39 30061.42 30668.45 26837.96 34759.93 34367.46 36845.11 28165.07 31840.89 31771.81 34575.41 274
tpmvs55.84 30455.45 31457.01 31660.33 36233.20 36565.89 26559.29 31847.52 27356.04 36373.60 31931.05 36568.06 29140.64 31864.64 37569.77 329
TR-MVS64.59 23963.54 25267.73 22975.75 20650.83 21163.39 29470.29 25649.33 25571.55 24274.55 30950.94 25078.46 17240.43 31975.69 31073.89 289
test_post166.63 2582.08 41030.66 36859.33 34040.34 320
SCA58.57 29458.04 29560.17 29870.17 28441.07 30865.19 27653.38 35343.34 31061.00 33673.48 32045.20 27969.38 27940.34 32070.31 35570.05 325
baseline157.82 29858.36 29456.19 32069.17 29530.76 37862.94 30055.21 34046.04 28163.83 31778.47 27541.20 30363.68 32439.44 32268.99 36274.13 286
ab-mvs64.11 24765.13 23861.05 29171.99 26138.03 33567.59 24068.79 26549.08 25965.32 30486.26 15958.02 20566.85 30639.33 32379.79 27778.27 246
tpmrst50.15 34551.38 33946.45 36656.05 38524.77 39864.40 28649.98 36636.14 35653.32 37669.59 35235.16 33748.69 36539.24 32458.51 39265.89 353
test_f43.79 36545.63 36038.24 38642.29 41238.58 32734.76 40147.68 37522.22 40467.34 29363.15 38031.82 35630.60 40539.19 32562.28 38245.53 398
CostFormer57.35 30056.14 30860.97 29263.76 34638.43 32867.50 24260.22 31437.14 35359.12 34876.34 29532.78 34771.99 25839.12 32669.27 36172.47 303
pmmvs460.78 27759.04 28666.00 24773.06 25157.67 17264.53 28460.22 31436.91 35465.96 29977.27 28939.66 31568.54 28638.87 32774.89 31871.80 310
gm-plane-assit62.51 35033.91 36237.25 35262.71 38272.74 24438.70 328
Test_1112_low_res58.78 29258.69 28959.04 30679.41 14438.13 33357.62 33266.98 27434.74 36359.62 34677.56 28742.92 29463.65 32538.66 32970.73 35275.35 276
thres600view761.82 26861.38 26963.12 27071.81 26234.93 35564.64 28156.99 32954.78 18470.33 25579.74 25632.07 35372.42 25238.61 33083.46 23782.02 183
UnsupCasMVSNet_eth52.26 33253.29 32749.16 35555.08 39033.67 36350.03 37058.79 31937.67 35063.43 32474.75 30741.82 30045.83 37438.59 33159.42 38967.98 343
CL-MVSNet_self_test62.44 26463.40 25359.55 30272.34 25832.38 36756.39 33964.84 29051.21 23567.46 29281.01 23650.75 25163.51 32638.47 33288.12 16082.75 168
MDTV_nov1_ep1354.05 32365.54 33329.30 38459.00 32255.22 33935.96 35852.44 37775.98 29630.77 36759.62 33938.21 33373.33 334
BH-w/o64.81 23664.29 24466.36 24376.08 20154.71 18765.61 27175.23 20850.10 24871.05 24971.86 33254.33 23179.02 16138.20 33476.14 30765.36 357
TESTMET0.1,145.17 35944.93 36545.89 36856.02 38638.31 32953.18 36041.94 39627.85 38744.86 39956.47 39517.93 40641.50 39538.08 33568.06 36657.85 383
USDC62.80 26063.10 25761.89 28265.19 33543.30 29167.42 24474.20 21535.80 35972.25 23184.48 18745.67 27671.95 25937.95 33684.97 21370.42 324
E-PMN45.17 35945.36 36244.60 37350.07 40242.75 29638.66 39642.29 39446.39 27939.55 40451.15 40026.00 38545.37 37837.68 33776.41 30445.69 397
CDS-MVSNet64.33 24562.66 26169.35 19980.44 13558.28 16965.26 27565.66 28244.36 29767.30 29475.54 30043.27 29171.77 26037.68 33784.44 22578.01 252
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch55.59 30854.89 31757.68 31369.18 29449.05 23161.00 31062.93 30335.98 35758.36 35068.93 35836.71 33266.59 30937.62 33963.30 37957.39 385
FPMVS59.43 28860.07 27957.51 31477.62 17671.52 5062.33 30250.92 36257.40 15769.40 26780.00 25339.14 31861.92 33237.47 34066.36 37239.09 402
EPMVS45.74 35646.53 35943.39 37754.14 39522.33 40455.02 34935.00 40634.69 36451.09 38370.20 34425.92 38642.04 39237.19 34155.50 39765.78 354
baseline255.57 30952.74 32864.05 26065.26 33444.11 28262.38 30154.43 34439.03 34051.21 38267.35 37033.66 34272.45 25137.14 34264.22 37775.60 271
EMVS44.61 36344.45 36845.10 37248.91 40543.00 29437.92 39741.10 40046.75 27738.00 40648.43 40326.42 38346.27 37337.11 34375.38 31546.03 396
testing9955.16 31154.56 32056.98 31770.13 28630.58 37954.55 35554.11 34649.53 25456.76 35970.14 34622.76 39665.79 31336.99 34476.04 30874.57 281
testing9155.74 30655.29 31657.08 31570.63 27330.85 37754.94 35256.31 33850.34 24357.08 35570.10 34724.50 39265.86 31236.98 34576.75 30374.53 282
XXY-MVS55.19 31057.40 30048.56 35964.45 34234.84 35751.54 36753.59 34938.99 34163.79 31879.43 26156.59 21745.57 37536.92 34671.29 34865.25 358
HyFIR lowres test63.01 25760.47 27770.61 17583.04 10154.10 19259.93 31872.24 23233.67 37069.00 27075.63 29938.69 32076.93 19936.60 34775.45 31480.81 208
EPNet_dtu58.93 29158.52 29060.16 29967.91 31147.70 25169.97 20858.02 32049.73 25147.28 39373.02 32538.14 32262.34 32936.57 34885.99 20070.43 323
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160052.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
miper_refine_blended52.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
new-patchmatchnet52.89 32755.76 31244.26 37559.94 3676.31 41537.36 39950.76 36441.10 32264.28 31179.82 25544.77 28248.43 36836.24 35187.61 16678.03 251
JIA-IIPM54.03 31851.62 33661.25 29059.14 37255.21 18559.10 32147.72 37450.85 23850.31 38885.81 17320.10 40163.97 32236.16 35255.41 39864.55 364
WAC-MVS22.69 40236.10 353
PatchMatch-RL58.68 29357.72 29761.57 28576.21 19773.59 4061.83 30349.00 37147.30 27461.08 33368.97 35650.16 25459.01 34136.06 35468.84 36352.10 389
thres100view90061.17 27461.09 27161.39 28872.14 26035.01 35465.42 27456.99 32955.23 17770.71 25179.90 25432.07 35372.09 25535.61 35581.73 25377.08 263
tfpn200view960.35 28159.97 28061.51 28670.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25377.08 263
thres40060.77 27859.97 28063.15 26970.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25382.02 183
test_vis1_rt46.70 35545.24 36351.06 34544.58 40951.04 20939.91 39467.56 27121.84 40551.94 38050.79 40133.83 34139.77 39735.25 35861.50 38462.38 373
MVP-Stereo61.56 27159.22 28468.58 21879.28 14660.44 15069.20 21871.57 23543.58 30556.42 36278.37 27739.57 31676.46 20634.86 35960.16 38768.86 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS65.31 23063.75 24969.97 19182.23 11459.76 15566.78 25763.37 30145.20 29169.79 26379.37 26347.42 27372.17 25434.48 36085.15 21277.99 253
tpm cat154.02 31952.63 33058.19 31064.85 34139.86 31866.26 26257.28 32532.16 37556.90 35770.39 34232.75 34865.30 31734.29 36158.79 39069.41 333
pmmvs552.49 33152.58 33152.21 33954.99 39132.38 36755.45 34753.84 34832.15 37655.49 36774.81 30538.08 32357.37 34934.02 36274.40 32466.88 348
CHOSEN 1792x268858.09 29656.30 30763.45 26779.95 13850.93 21054.07 35765.59 28328.56 38661.53 33074.33 31241.09 30566.52 31033.91 36367.69 37072.92 297
myMVS_eth3d50.36 34350.52 34849.88 34968.77 29922.69 40255.02 34944.55 38343.80 30058.05 35264.07 37714.16 41358.83 34233.90 36472.36 34068.12 340
HY-MVS49.31 1957.96 29757.59 29859.10 30566.85 32336.17 34565.13 27765.39 28639.24 33954.69 37278.14 28144.28 28667.18 30133.75 36570.79 35173.95 288
tpm256.12 30354.64 31960.55 29666.24 32736.01 34668.14 23556.77 33233.60 37158.25 35175.52 30230.25 37074.33 23133.27 36669.76 36071.32 314
MDTV_nov1_ep13_2view18.41 40653.74 35831.57 38044.89 39829.90 37432.93 36771.48 312
tpm50.60 34152.42 33345.14 37165.18 33626.29 39460.30 31543.50 38637.41 35157.01 35679.09 26930.20 37242.32 39032.77 36866.36 37266.81 350
testing1153.13 32452.26 33455.75 32370.44 28031.73 37154.75 35352.40 35844.81 29552.36 37968.40 36421.83 39765.74 31432.64 36972.73 33769.78 328
sss47.59 35348.32 35345.40 37056.73 38433.96 36145.17 38348.51 37232.11 37852.37 37865.79 37340.39 31041.91 39331.85 37061.97 38360.35 378
PMMVS44.69 36143.95 36946.92 36350.05 40353.47 19848.08 37642.40 39222.36 40344.01 40253.05 39842.60 29745.49 37631.69 37161.36 38541.79 400
thres20057.55 29957.02 30159.17 30367.89 31234.93 35558.91 32457.25 32650.24 24564.01 31471.46 33532.49 34971.39 26531.31 37279.57 27971.19 318
WTY-MVS49.39 34850.31 35046.62 36561.22 35732.00 37046.61 38049.77 36733.87 36854.12 37469.55 35341.96 29945.40 37731.28 37364.42 37662.47 372
UnsupCasMVSNet_bld50.01 34651.03 34346.95 36258.61 37432.64 36648.31 37353.27 35434.27 36660.47 33871.53 33441.40 30147.07 37230.68 37460.78 38661.13 377
PVSNet43.83 2151.56 33751.17 34052.73 33668.34 30438.27 33048.22 37453.56 35136.41 35554.29 37364.94 37634.60 33954.20 35530.34 37569.87 35865.71 355
test20.0355.74 30657.51 29950.42 34759.89 36832.09 36950.63 36949.01 37050.11 24765.07 30683.23 21045.61 27748.11 36930.22 37683.82 23171.07 319
FMVSNet555.08 31255.54 31353.71 33065.80 33133.50 36456.22 34152.50 35743.72 30461.06 33483.38 20225.46 38854.87 35230.11 37781.64 25872.75 300
gg-mvs-nofinetune55.75 30556.75 30452.72 33762.87 34928.04 38868.92 22141.36 39871.09 4450.80 38492.63 1320.74 39966.86 30529.97 37872.41 33963.25 367
dp44.09 36444.88 36641.72 38158.53 37623.18 40154.70 35442.38 39334.80 36244.25 40165.61 37424.48 39344.80 38129.77 37949.42 40157.18 386
PAPM61.79 26960.37 27866.05 24676.09 19941.87 30269.30 21676.79 19540.64 33153.80 37579.62 25944.38 28582.92 9629.64 38073.11 33573.36 293
testgi54.00 32056.86 30345.45 36958.20 37725.81 39749.05 37149.50 36945.43 28867.84 28681.17 23351.81 24643.20 38929.30 38179.41 28067.34 346
Patchmatch-test47.93 35149.96 35141.84 37957.42 38024.26 39948.75 37241.49 39739.30 33856.79 35873.48 32030.48 36933.87 40329.29 38272.61 33867.39 344
pmmvs346.71 35445.09 36451.55 34256.76 38348.25 23855.78 34639.53 40224.13 40050.35 38763.40 37915.90 41051.08 35829.29 38270.69 35355.33 388
mvsany_test343.76 36641.01 37052.01 34048.09 40657.74 17142.47 38923.85 41223.30 40264.80 30762.17 38427.12 38040.59 39629.17 38448.11 40257.69 384
dmvs_re49.91 34750.77 34647.34 36159.98 36438.86 32553.18 36053.58 35039.75 33555.06 36861.58 38636.42 33344.40 38429.15 38568.23 36558.75 382
N_pmnet52.06 33351.11 34154.92 32559.64 37071.03 5437.42 39861.62 31133.68 36957.12 35472.10 32837.94 32431.03 40429.13 38671.35 34762.70 369
Anonymous2023120654.13 31655.82 31149.04 35770.89 26835.96 34751.73 36650.87 36334.86 36162.49 32679.22 26542.52 29844.29 38527.95 38781.88 24966.88 348
CHOSEN 280x42041.62 36839.89 37346.80 36461.81 35351.59 20533.56 40235.74 40527.48 38937.64 40753.53 39623.24 39542.09 39127.39 38858.64 39146.72 395
mvsany_test137.88 37035.74 37544.28 37447.28 40749.90 22236.54 40024.37 41119.56 40645.76 39553.46 39732.99 34637.97 40126.17 38935.52 40444.99 399
MIMVSNet54.39 31556.12 30949.20 35472.57 25630.91 37659.98 31748.43 37341.66 31755.94 36483.86 19641.19 30450.42 35926.05 39075.38 31566.27 352
ADS-MVSNet248.76 34947.25 35853.29 33555.90 38740.54 31447.34 37854.99 34231.41 38150.48 38572.06 32931.23 36154.26 35425.93 39155.93 39565.07 359
ADS-MVSNet44.62 36245.58 36141.73 38055.90 38720.83 40547.34 37839.94 40131.41 38150.48 38572.06 32931.23 36139.31 39825.93 39155.93 39565.07 359
testing22253.37 32252.50 33255.98 32270.51 27929.68 38256.20 34251.85 36046.19 28056.76 35968.94 35719.18 40465.39 31525.87 39376.98 30172.87 298
test0.0.03 147.72 35248.31 35445.93 36755.53 38929.39 38346.40 38141.21 39943.41 30855.81 36667.65 36729.22 37643.77 38825.73 39469.87 35864.62 363
GG-mvs-BLEND52.24 33860.64 36129.21 38569.73 21242.41 39145.47 39652.33 39920.43 40068.16 28925.52 39565.42 37459.36 381
DSMNet-mixed43.18 36744.66 36738.75 38454.75 39228.88 38657.06 33627.42 40913.47 40747.27 39477.67 28638.83 31939.29 39925.32 39660.12 38848.08 393
WB-MVSnew53.94 32154.76 31851.49 34371.53 26428.05 38758.22 32950.36 36537.94 34859.16 34770.17 34549.21 26051.94 35624.49 39771.80 34674.47 284
MVS-HIRNet45.53 35747.29 35740.24 38262.29 35126.82 39256.02 34437.41 40429.74 38543.69 40381.27 23133.96 34055.48 35024.46 39856.79 39438.43 403
UWE-MVS52.94 32652.70 32953.65 33173.56 23727.49 39057.30 33549.57 36838.56 34462.79 32571.42 33619.49 40360.41 33524.33 39977.33 30073.06 295
PVSNet_036.71 2241.12 36940.78 37242.14 37859.97 36540.13 31640.97 39142.24 39530.81 38344.86 39949.41 40240.70 30845.12 37923.15 40034.96 40541.16 401
ETVMVS50.32 34449.87 35251.68 34170.30 28326.66 39352.33 36543.93 38543.54 30654.91 36967.95 36620.01 40260.17 33722.47 40173.40 33268.22 339
new_pmnet37.55 37239.80 37430.79 38756.83 38216.46 40839.35 39530.65 40725.59 39645.26 39761.60 38524.54 39128.02 40721.60 40252.80 40047.90 394
dmvs_testset45.26 35847.51 35638.49 38559.96 36614.71 40958.50 32743.39 38741.30 32051.79 38156.48 39439.44 31749.91 36321.42 40355.35 39950.85 390
MVEpermissive27.91 2336.69 37335.64 37639.84 38343.37 41035.85 34919.49 40424.61 41024.68 39839.05 40562.63 38338.67 32127.10 40821.04 40447.25 40356.56 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d61.97 26666.25 22249.12 35658.19 37860.77 14866.32 26152.97 35555.93 17290.62 686.91 13473.07 5735.98 40220.63 40591.63 8650.62 391
PMMVS237.74 37140.87 37128.36 38842.41 4115.35 41624.61 40327.75 40832.15 37647.85 39270.27 34335.85 33529.51 40619.08 40667.85 36850.22 392
dongtai31.66 37432.98 37727.71 38958.58 37512.61 41145.02 38414.24 41541.90 31547.93 39143.91 40410.65 41541.81 39414.06 40720.53 40828.72 405
test_method19.26 37619.12 38019.71 3909.09 4151.91 4187.79 40653.44 3521.42 40910.27 41135.80 40517.42 40825.11 40912.44 40824.38 40732.10 404
tmp_tt11.98 37814.73 3813.72 3932.28 4164.62 41719.44 40514.50 4140.47 41121.55 4099.58 40925.78 3874.57 41211.61 40927.37 4061.96 408
DeepMVS_CXcopyleft11.83 39215.51 41413.86 41011.25 4175.76 40820.85 41026.46 40717.06 4099.22 4119.69 41013.82 41012.42 407
kuosan22.02 37523.52 37917.54 39141.56 41311.24 41241.99 39013.39 41626.13 39428.87 40830.75 4069.72 41621.94 4104.77 41114.49 40919.43 406
testmvs4.06 3825.28 3850.41 3940.64 4180.16 42042.54 3880.31 4190.26 4130.50 4141.40 4130.77 4170.17 4130.56 4120.55 4120.90 409
test1234.43 3815.78 3840.39 3950.97 4170.28 41946.33 3820.45 4180.31 4120.62 4131.50 4120.61 4180.11 4140.56 4120.63 4110.77 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k17.71 37723.62 3780.00 3960.00 4190.00 4210.00 40770.17 2570.00 4140.00 41574.25 31468.16 970.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.20 3806.93 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41462.39 1520.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re5.62 3797.50 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41567.46 3680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS189.19 2477.84 1391.64 189.11 384.05 391.57 3
test_one_060185.84 6261.45 13485.63 2975.27 1885.62 4890.38 6576.72 27
eth-test20.00 419
eth-test0.00 419
test_241102_ONE86.12 5461.06 14084.72 5072.64 3287.38 2589.47 8477.48 2385.74 43
save fliter87.00 4067.23 8779.24 8877.94 18156.65 165
test072686.16 5260.78 14683.81 4085.10 4172.48 3585.27 5489.96 7778.57 17
GSMVS70.05 325
test_part285.90 5866.44 9284.61 63
sam_mvs131.41 35970.05 325
sam_mvs31.21 363
MTGPAbinary80.63 129
test_post1.99 41130.91 36654.76 353
patchmatchnet-post68.99 35531.32 36069.38 279
MTMP84.83 3119.26 413
TEST985.47 6469.32 7176.42 12278.69 16653.73 20876.97 15186.74 14066.84 10981.10 124
test_885.09 7067.89 8076.26 12778.66 16854.00 20376.89 15586.72 14266.60 11580.89 134
agg_prior84.44 8266.02 9878.62 16976.95 15380.34 141
test_prior470.14 6477.57 105
test_prior75.27 10182.15 11559.85 15484.33 6183.39 8882.58 173
新几何271.33 189
旧先验184.55 7960.36 15163.69 29987.05 13254.65 22883.34 23869.66 330
原ACMM274.78 145
test22287.30 3869.15 7467.85 23859.59 31741.06 32373.05 22185.72 17448.03 27080.65 26666.92 347
segment_acmp68.30 96
testdata168.34 23457.24 158
test1276.51 8582.28 11360.94 14381.64 10673.60 21264.88 13385.19 5990.42 11983.38 148
plane_prior785.18 6766.21 95
plane_prior684.18 8565.31 10460.83 173
plane_prior489.11 95
plane_prior365.67 10063.82 10078.23 135
plane_prior282.74 5365.45 78
plane_prior184.46 81
plane_prior65.18 10580.06 8261.88 12089.91 130
n20.00 420
nn0.00 420
door-mid55.02 341
test1182.71 89
door52.91 356
HQP5-MVS58.80 165
HQP-NCC82.37 11077.32 11059.08 13771.58 238
ACMP_Plane82.37 11077.32 11059.08 13771.58 238
HQP4-MVS71.59 23785.31 5183.74 136
HQP3-MVS84.12 6789.16 144
HQP2-MVS58.09 200
NP-MVS83.34 9563.07 12285.97 169
ACMMP++_ref89.47 139
ACMMP++91.96 82
Test By Simon62.56 148