This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM90.87 291.52 288.92 1592.12 9671.10 2797.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 14
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10887.10 22064.19 18694.41 5388.14 29380.24 5892.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 100
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10486.95 22364.37 17994.30 5588.45 28480.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 97
MVS_030490.01 890.50 988.53 2290.14 14270.94 2896.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 44
test_fmvsm_n_192087.69 2588.50 1885.27 11087.05 22263.55 20693.69 8891.08 18384.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 111
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
fmvsm_s_conf0.5_n86.39 4486.91 3784.82 12387.36 21563.54 20794.74 4890.02 22282.52 2690.14 2596.92 1362.93 10997.84 4695.28 882.26 15993.07 154
fmvsm_s_conf0.1_n85.61 6185.93 5284.68 13382.95 29063.48 20994.03 6989.46 24081.69 3589.86 2696.74 2061.85 11997.75 4994.74 982.01 16592.81 162
fmvsm_s_conf0.5_n_a85.75 5786.09 4984.72 13085.73 24763.58 20493.79 8489.32 24681.42 4190.21 2396.91 1462.41 11397.67 5194.48 1080.56 17892.90 160
test_fmvsmconf_n86.58 4287.17 3384.82 12385.28 25362.55 23094.26 5789.78 22883.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 82
test_fmvsmconf0.1_n85.71 5886.08 5084.62 13780.83 30662.33 23493.84 8188.81 27183.50 2087.00 4396.01 3963.36 10196.93 10794.04 1287.29 11794.61 99
fmvsm_s_conf0.1_n_a84.76 7284.84 7084.53 13980.23 31663.50 20892.79 12188.73 27580.46 5289.84 2796.65 2260.96 12797.57 6193.80 1380.14 18092.53 169
test_fmvsmvis_n_192083.80 9383.48 8484.77 12782.51 29263.72 19791.37 18983.99 33881.42 4177.68 13595.74 4458.37 15397.58 5993.38 1486.87 12093.00 157
patch_mono-289.71 1190.99 685.85 8996.04 2463.70 19995.04 4195.19 1986.74 991.53 1595.15 6473.86 2097.58 5993.38 1492.00 6896.28 34
CANet89.61 1289.99 1288.46 2394.39 3969.71 4996.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 20
test_fmvsmconf0.01_n83.70 9783.52 8184.25 15175.26 35761.72 24892.17 14787.24 30682.36 2884.91 6295.41 5055.60 18796.83 11192.85 1785.87 13294.21 113
DeepPCF-MVS81.17 189.72 1091.38 484.72 13093.00 7458.16 30296.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5296.26 3272.84 2699.38 192.64 1995.93 997.08 11
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3196.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 37
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5396.89 694.44 4671.65 21292.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2195.36 1496.47 27
test_241102_TWO94.41 4871.65 21292.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 18
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30788.32 492.60 596.57 2332.61 34697.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11080.75 13089.09 1493.74 5272.16 1593.16 10977.36 35889.69 174.55 16896.48 2732.35 34897.56 6292.21 2477.24 21097.53 6
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
test_vis1_n_192081.66 12982.01 11480.64 23982.24 29555.09 33094.76 4786.87 30981.67 3684.40 6794.63 7738.17 31594.67 19391.98 2883.34 15092.16 183
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3896.64 1094.52 4271.92 19890.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2994.90 2296.51 23
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7194.37 5272.48 18292.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_0728_THIRD72.48 18290.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 28
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21197.89 4391.10 3393.31 5294.54 103
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12076.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21597.68 5091.07 3492.62 5994.54 103
MSP-MVS90.38 591.87 185.88 8692.83 7764.03 18993.06 11294.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_287.37 3087.55 2986.85 5595.04 3268.20 8490.36 22590.66 19579.37 7181.20 9093.67 10574.73 1596.55 12090.88 3692.00 6895.82 46
test_cas_vis1_n_192080.45 15080.61 13579.97 25878.25 34257.01 31894.04 6888.33 28779.06 8082.81 7993.70 10438.65 31091.63 29590.82 3779.81 18291.27 200
APDe-MVScopyleft87.54 2687.84 2586.65 6396.07 2366.30 13294.84 4693.78 6669.35 25388.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft88.77 1689.21 1687.45 4296.26 2067.56 9994.17 5894.15 5968.77 26290.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 31
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1487.63 2793.86 4794.41 5394.18 5772.76 17786.21 4796.51 2566.64 6097.88 4490.08 4094.04 38
test9_res89.41 4194.96 1995.29 66
TSAR-MVS + GP.87.96 2088.37 2086.70 6293.51 6165.32 15495.15 3793.84 6578.17 9185.93 5194.80 7375.80 1398.21 3489.38 4288.78 10296.59 18
lupinMVS87.74 2487.77 2687.63 3789.24 16671.18 2496.57 1292.90 10682.70 2587.13 4095.27 5864.99 7595.80 14589.34 4391.80 7195.93 42
ETV-MVS86.01 5186.11 4885.70 9690.21 14167.02 11593.43 10391.92 14181.21 4584.13 7194.07 9860.93 12895.63 15689.28 4489.81 9494.46 109
SMA-MVScopyleft88.14 1788.29 2187.67 3293.21 6868.72 6993.85 7894.03 6274.18 14591.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
train_agg87.21 3287.42 3186.60 6594.18 4167.28 10694.16 5993.51 8071.87 20385.52 5595.33 5368.19 4897.27 8289.09 4694.90 2295.25 72
SD-MVS87.49 2787.49 3087.50 4193.60 5668.82 6793.90 7592.63 11776.86 11087.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 39
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6196.38 1694.64 3984.42 1486.74 4496.20 3466.56 6298.76 2389.03 4894.56 3395.92 43
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8395.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 38
SF-MVS87.03 3487.09 3486.84 5692.70 8367.45 10493.64 9193.76 6970.78 23686.25 4696.44 2866.98 5797.79 4788.68 5094.56 3395.28 68
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
TSAR-MVS + MP.88.11 1988.64 1786.54 6991.73 10968.04 8790.36 22593.55 7982.89 2191.29 1692.89 12172.27 3196.03 14087.99 5294.77 2695.54 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs87.28 3186.97 3688.24 2691.30 12171.14 2695.61 2693.56 7879.30 7287.07 4295.25 6068.43 4696.93 10787.87 5384.33 14396.65 16
jason86.40 4386.17 4787.11 4986.16 23870.54 3395.71 2592.19 13282.00 3284.58 6594.34 8961.86 11895.53 16587.76 5490.89 8595.27 69
jason: jason.
h-mvs3383.01 10782.56 10784.35 14789.34 15862.02 24092.72 12493.76 6981.45 3882.73 8092.25 13860.11 13597.13 8987.69 5562.96 31193.91 129
hse-mvs281.12 13881.11 12681.16 22686.52 23057.48 31189.40 25191.16 17681.45 3882.73 8090.49 16960.11 13594.58 19587.69 5560.41 33891.41 193
ZD-MVS96.63 965.50 15293.50 8270.74 23785.26 6095.19 6364.92 7897.29 7887.51 5793.01 55
test_prior295.10 3975.40 13085.25 6195.61 4767.94 5187.47 5894.77 26
SteuartSystems-ACMMP86.82 3986.90 3886.58 6790.42 13666.38 12996.09 1893.87 6477.73 9884.01 7295.66 4563.39 10097.94 4087.40 5993.55 4995.42 55
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive84.28 8083.83 7885.61 9887.40 21368.02 8890.88 20989.24 24980.54 5081.64 8792.52 12759.83 13994.52 20287.32 6085.11 13694.29 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5394.91 7074.11 1998.91 1787.26 6195.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
casdiffmvs_mvgpermissive85.66 6085.18 6387.09 5088.22 19369.35 5693.74 8791.89 14481.47 3780.10 10691.45 15364.80 8096.35 12687.23 6287.69 11295.58 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS83.38 10083.43 8783.22 17693.76 4967.53 10194.06 6493.61 7679.13 7781.00 9585.14 24463.19 10497.29 7887.08 6373.91 23384.83 302
PVSNet_Blended86.73 4086.86 3986.31 7893.76 4967.53 10196.33 1793.61 7682.34 2981.00 9593.08 11563.19 10497.29 7887.08 6391.38 7994.13 118
MP-MVS-pluss85.24 6585.13 6485.56 9991.42 11865.59 14891.54 17992.51 12174.56 13980.62 9995.64 4659.15 14897.00 9686.94 6593.80 4294.07 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS83.06 10681.81 11786.81 5890.86 13067.70 9595.40 3091.50 16475.46 12881.78 8692.34 13540.09 30497.13 8986.85 6682.04 16495.60 51
CS-MVS-test86.14 4987.01 3583.52 16792.63 8559.36 29095.49 2891.92 14180.09 5985.46 5795.53 4961.82 12095.77 14886.77 6793.37 5195.41 56
agg_prior286.41 6894.75 3095.33 62
APD-MVScopyleft85.93 5385.99 5185.76 9395.98 2665.21 15793.59 9492.58 11966.54 27986.17 4895.88 4163.83 9197.00 9686.39 6992.94 5695.06 77
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.05 5085.80 5586.80 5991.58 11367.53 10191.79 16993.49 8374.93 13684.61 6495.30 5559.42 14497.92 4186.13 7094.92 2094.94 83
CS-MVS85.80 5686.65 4183.27 17592.00 10158.92 29595.31 3291.86 14679.97 6084.82 6395.40 5162.26 11495.51 16686.11 7192.08 6795.37 59
PHI-MVS86.83 3886.85 4086.78 6093.47 6265.55 15095.39 3195.10 2271.77 20885.69 5496.52 2462.07 11698.77 2286.06 7295.60 1296.03 40
MVS_111021_HR86.19 4885.80 5587.37 4393.17 7069.79 4693.99 7093.76 6979.08 7978.88 12493.99 9962.25 11598.15 3685.93 7391.15 8394.15 117
DeepC-MVS77.85 385.52 6285.24 6286.37 7588.80 17666.64 12392.15 14893.68 7481.07 4676.91 14693.64 10662.59 11198.44 3185.50 7492.84 5894.03 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7685.04 6683.01 17989.34 15861.37 25494.42 5291.09 18177.91 9583.24 7594.20 9458.37 15395.40 16785.35 7591.41 7892.27 179
test_fmvs174.07 25273.69 23975.22 31278.91 33447.34 36689.06 26074.69 36863.68 29979.41 11591.59 15224.36 36987.77 33685.22 7676.26 21790.55 209
VNet86.20 4785.65 5787.84 2993.92 4669.99 3895.73 2495.94 778.43 8886.00 5093.07 11658.22 15597.00 9685.22 7684.33 14396.52 22
testing1186.71 4186.44 4287.55 3993.54 5971.35 2193.65 9095.58 1181.36 4380.69 9892.21 13972.30 3096.46 12585.18 7883.43 14994.82 90
SDMVSNet80.26 15378.88 16384.40 14489.25 16367.63 9885.35 29793.02 10076.77 11470.84 21387.12 22347.95 26396.09 13485.04 7974.55 22489.48 224
MP-MVScopyleft85.02 6884.97 6785.17 11492.60 8664.27 18493.24 10692.27 12673.13 16779.63 11294.43 8261.90 11797.17 8585.00 8092.56 6094.06 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.37 6384.87 6986.84 5688.25 19169.07 6093.04 11491.76 15181.27 4480.84 9792.07 14164.23 8696.06 13884.98 8187.43 11695.39 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3093.83 8395.33 1668.48 26677.63 13694.35 8873.04 2498.45 3084.92 8293.71 4696.92 13
MTAPA83.91 9083.38 9185.50 10091.89 10665.16 15981.75 32492.23 12775.32 13180.53 10195.21 6256.06 18397.16 8784.86 8392.55 6194.18 114
test_fmvs1_n72.69 27171.92 26274.99 31571.15 37047.08 36887.34 28575.67 36363.48 30178.08 13291.17 15920.16 38087.87 33384.65 8475.57 22190.01 215
test_vis1_n71.63 27770.73 27374.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16290.17 17720.40 37885.76 34884.59 8574.42 22889.87 216
baseline85.01 6984.44 7386.71 6188.33 18868.73 6890.24 23091.82 15081.05 4781.18 9192.50 12863.69 9496.08 13784.45 8686.71 12695.32 64
CLD-MVS82.73 11282.35 11183.86 15887.90 20167.65 9795.45 2992.18 13385.06 1272.58 19192.27 13652.46 22295.78 14684.18 8779.06 19088.16 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base_debi82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
EPNet87.84 2388.38 1986.23 7993.30 6566.05 13695.26 3394.84 2987.09 788.06 3594.53 7966.79 5997.34 7583.89 9191.68 7395.29 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR82.02 12581.52 11983.51 16988.42 18462.88 22589.77 24388.93 26776.78 11375.55 15993.10 11350.31 23995.38 16983.82 9287.02 11992.26 180
MSLP-MVS++86.27 4685.91 5387.35 4492.01 10068.97 6495.04 4192.70 11179.04 8181.50 8896.50 2658.98 15096.78 11283.49 9393.93 4096.29 32
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3095.86 2768.32 7795.74 2294.11 6083.82 1783.49 7496.19 3564.53 8498.44 3183.42 9494.88 2596.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS90.70 390.52 891.24 189.68 15176.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9597.64 297.94 1
SR-MVS82.81 11182.58 10683.50 17093.35 6361.16 25792.23 14691.28 17364.48 29381.27 8995.28 5653.71 21095.86 14482.87 9688.77 10393.49 141
ET-MVSNet_ETH3D84.01 8883.15 9686.58 6790.78 13270.89 2994.74 4894.62 4081.44 4058.19 32793.64 10673.64 2392.35 28082.66 9778.66 19596.50 26
ZNCC-MVS85.33 6485.08 6586.06 8193.09 7365.65 14693.89 7693.41 8773.75 15679.94 10894.68 7660.61 13198.03 3882.63 9893.72 4594.52 105
LFMVS84.34 7982.73 10389.18 1294.76 3373.25 994.99 4391.89 14471.90 20082.16 8493.49 11047.98 26297.05 9182.55 9984.82 13897.25 9
VDDNet80.50 14878.26 17087.21 4686.19 23669.79 4694.48 5191.31 17060.42 32779.34 11690.91 16238.48 31396.56 11982.16 10081.05 17395.27 69
iter_conf0583.27 10282.70 10484.98 11893.32 6471.84 1794.16 5981.76 34882.74 2373.83 17888.40 19872.77 2794.61 19482.10 10175.21 22288.48 236
HPM-MVScopyleft83.25 10382.95 9884.17 15292.25 9262.88 22590.91 20691.86 14670.30 24277.12 14393.96 10056.75 17396.28 12882.04 10291.34 8193.34 144
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 14179.86 14684.13 15383.69 27968.83 6693.23 10791.20 17475.55 12775.06 16388.22 20563.04 10894.74 18881.88 10366.88 28188.82 230
Effi-MVS+83.82 9282.76 10286.99 5489.56 15469.40 5291.35 19186.12 31872.59 17983.22 7692.81 12559.60 14296.01 14281.76 10487.80 11195.56 53
HFP-MVS84.73 7384.40 7485.72 9593.75 5165.01 16393.50 9893.19 9472.19 19279.22 11894.93 6859.04 14997.67 5181.55 10592.21 6394.49 108
ACMMPR84.37 7784.06 7685.28 10993.56 5864.37 17993.50 9893.15 9672.19 19278.85 12694.86 7156.69 17597.45 6681.55 10592.20 6494.02 125
GST-MVS84.63 7584.29 7585.66 9792.82 7965.27 15593.04 11493.13 9773.20 16578.89 12194.18 9559.41 14597.85 4581.45 10792.48 6293.86 132
PMMVS81.98 12682.04 11381.78 21289.76 15056.17 32291.13 20290.69 19277.96 9380.09 10793.57 10846.33 27694.99 18081.41 10887.46 11594.17 115
region2R84.36 7884.03 7785.36 10693.54 5964.31 18293.43 10392.95 10472.16 19578.86 12594.84 7256.97 17097.53 6481.38 10992.11 6694.24 112
CP-MVS83.71 9683.40 9084.65 13493.14 7163.84 19194.59 5092.28 12571.03 23077.41 13994.92 6955.21 19296.19 13081.32 11090.70 8793.91 129
MVS84.66 7482.86 10190.06 290.93 12774.56 687.91 27695.54 1368.55 26472.35 19894.71 7559.78 14098.90 1981.29 11194.69 3296.74 15
test_yl84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
DCV-MVSNet84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
CDPH-MVS85.71 5885.46 5986.46 7194.75 3467.19 10893.89 7692.83 10870.90 23283.09 7795.28 5663.62 9697.36 7380.63 11494.18 3694.84 87
HY-MVS76.49 584.28 8083.36 9287.02 5392.22 9367.74 9484.65 30194.50 4379.15 7682.23 8387.93 21066.88 5896.94 10580.53 11582.20 16296.39 30
CHOSEN 1792x268884.98 7083.45 8689.57 1089.94 14675.14 592.07 15492.32 12481.87 3375.68 15588.27 20160.18 13498.60 2780.46 11690.27 9294.96 81
testing9185.93 5385.31 6187.78 3193.59 5771.47 1993.50 9895.08 2580.26 5680.53 10191.93 14470.43 3896.51 12280.32 11782.13 16395.37 59
EIA-MVS84.84 7184.88 6884.69 13291.30 12162.36 23393.85 7892.04 13679.45 6879.33 11794.28 9262.42 11296.35 12680.05 11891.25 8295.38 58
testing9986.01 5185.47 5887.63 3793.62 5571.25 2393.47 10195.23 1880.42 5480.60 10091.95 14371.73 3596.50 12380.02 11982.22 16195.13 75
APD-MVS_3200maxsize81.64 13081.32 12182.59 18992.36 8958.74 29791.39 18691.01 18863.35 30279.72 11194.62 7851.82 22596.14 13279.71 12087.93 11092.89 161
PVSNet_Blended_VisFu83.97 8983.50 8385.39 10490.02 14466.59 12693.77 8591.73 15277.43 10677.08 14589.81 18363.77 9396.97 10279.67 12188.21 10792.60 166
WTY-MVS86.32 4585.81 5487.85 2892.82 7969.37 5595.20 3595.25 1782.71 2481.91 8594.73 7467.93 5297.63 5679.55 12282.25 16096.54 21
EI-MVSNet-Vis-set83.77 9483.67 8084.06 15492.79 8263.56 20591.76 17294.81 3179.65 6677.87 13394.09 9663.35 10297.90 4279.35 12379.36 18790.74 205
PGM-MVS83.25 10382.70 10484.92 11992.81 8164.07 18890.44 22192.20 13171.28 22477.23 14294.43 8255.17 19397.31 7779.33 12491.38 7993.37 143
XVS83.87 9183.47 8585.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13094.31 9155.25 18997.41 7079.16 12591.58 7593.95 127
X-MVStestdata76.86 21374.13 23385.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13010.19 40555.25 18997.41 7079.16 12591.58 7593.95 127
CostFormer82.33 11881.15 12285.86 8889.01 17168.46 7482.39 32193.01 10175.59 12680.25 10581.57 28672.03 3394.96 18179.06 12777.48 20694.16 116
mPP-MVS82.96 10982.44 10984.52 14092.83 7762.92 22392.76 12291.85 14871.52 22075.61 15894.24 9353.48 21496.99 9978.97 12890.73 8693.64 138
baseline283.68 9883.42 8984.48 14287.37 21466.00 13890.06 23495.93 879.71 6569.08 23490.39 17177.92 696.28 12878.91 12981.38 17191.16 201
CPTT-MVS79.59 16579.16 16080.89 23791.54 11659.80 28292.10 15188.54 28360.42 32772.96 18493.28 11248.27 25892.80 26078.89 13086.50 12990.06 213
SR-MVS-dyc-post81.06 13980.70 13282.15 20392.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8051.26 23395.61 15878.77 13186.77 12492.28 176
RE-MVS-def80.48 13892.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8049.30 24978.77 13186.77 12492.28 176
ACMMPcopyleft81.49 13180.67 13383.93 15791.71 11062.90 22492.13 14992.22 13071.79 20771.68 20693.49 11050.32 23896.96 10378.47 13384.22 14791.93 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM85.89 5585.46 5987.18 4788.20 19472.42 1492.41 14192.77 10982.11 3180.34 10493.07 11668.27 4795.02 17878.39 13493.59 4894.09 120
PAPR85.15 6784.47 7287.18 4796.02 2568.29 7891.85 16793.00 10376.59 11779.03 12095.00 6561.59 12197.61 5878.16 13589.00 10195.63 50
EI-MVSNet-UG-set83.14 10582.96 9783.67 16592.28 9163.19 21591.38 18894.68 3779.22 7476.60 14893.75 10262.64 11097.76 4878.07 13678.01 19890.05 214
CANet_DTU84.09 8783.52 8185.81 9090.30 13966.82 11891.87 16589.01 26385.27 1186.09 4993.74 10347.71 26696.98 10077.90 13789.78 9693.65 137
BP-MVS77.63 138
HQP-MVS81.14 13680.64 13482.64 18787.54 20963.66 20294.06 6491.70 15679.80 6274.18 17190.30 17351.63 22995.61 15877.63 13878.90 19188.63 232
sss82.71 11482.38 11083.73 16289.25 16359.58 28592.24 14594.89 2877.96 9379.86 10992.38 13356.70 17497.05 9177.26 14080.86 17594.55 101
HQP_MVS80.34 15279.75 14882.12 20586.94 22462.42 23193.13 11091.31 17078.81 8472.53 19289.14 19150.66 23695.55 16376.74 14178.53 19688.39 239
plane_prior591.31 17095.55 16376.74 14178.53 19688.39 239
gm-plane-assit88.42 18467.04 11478.62 8791.83 14697.37 7276.57 143
CHOSEN 280x42077.35 20676.95 19478.55 28187.07 22162.68 22969.71 37282.95 34568.80 26171.48 20887.27 22266.03 6584.00 35976.47 14482.81 15588.95 227
ab-mvs80.18 15578.31 16985.80 9188.44 18365.49 15383.00 31892.67 11371.82 20677.36 14085.01 24554.50 19896.59 11676.35 14575.63 22095.32 64
mvsmamba76.85 21575.71 21180.25 24783.07 28759.16 29291.44 18080.64 35376.84 11167.95 25186.33 23346.17 27994.24 21376.06 14672.92 24087.36 252
testing22285.18 6684.69 7186.63 6492.91 7669.91 4292.61 13295.80 980.31 5580.38 10392.27 13668.73 4495.19 17575.94 14783.27 15194.81 91
MVSTER82.47 11682.05 11283.74 16092.68 8469.01 6291.90 16493.21 9179.83 6172.14 19985.71 24174.72 1694.72 18975.72 14872.49 24487.50 247
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25384.54 25315.35 38581.22 37675.65 14966.16 28682.88 323
tpmrst80.57 14679.14 16184.84 12290.10 14368.28 7981.70 32589.72 23577.63 10275.96 15279.54 31864.94 7792.71 26375.43 15077.28 20993.55 139
旧先验292.00 16059.37 33587.54 3993.47 24275.39 151
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8683.87 7392.94 11964.34 8596.94 10575.19 15294.09 3795.66 49
OPM-MVS79.00 17578.09 17281.73 21383.52 28263.83 19291.64 17890.30 20976.36 12071.97 20189.93 18246.30 27795.17 17675.10 15377.70 20186.19 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu76.14 22375.28 21778.72 28083.22 28455.17 32989.87 24087.78 30075.42 12967.98 25081.43 28845.08 28792.52 27375.08 15471.63 24988.48 236
HyFIR lowres test81.03 14079.56 15185.43 10287.81 20568.11 8690.18 23190.01 22370.65 23872.95 18586.06 23763.61 9794.50 20375.01 15579.75 18493.67 136
EPP-MVSNet81.79 12881.52 11982.61 18888.77 17760.21 27793.02 11693.66 7568.52 26572.90 18690.39 17172.19 3294.96 18174.93 15679.29 18992.67 164
MVS_Test84.16 8683.20 9387.05 5291.56 11469.82 4589.99 23992.05 13577.77 9782.84 7886.57 22963.93 9096.09 13474.91 15789.18 10095.25 72
VPA-MVSNet79.03 17478.00 17482.11 20885.95 24164.48 17293.22 10894.66 3875.05 13574.04 17684.95 24652.17 22493.52 24074.90 15867.04 28088.32 241
HPM-MVS_fast80.25 15479.55 15382.33 19591.55 11559.95 28091.32 19389.16 25465.23 29074.71 16793.07 11647.81 26595.74 14974.87 15988.23 10691.31 198
AUN-MVS78.37 19077.43 18381.17 22586.60 22957.45 31289.46 25091.16 17674.11 14674.40 17090.49 16955.52 18894.57 19774.73 16060.43 33791.48 191
ECVR-MVScopyleft81.29 13480.38 14084.01 15688.39 18661.96 24292.56 13886.79 31177.66 10076.63 14791.42 15446.34 27595.24 17474.36 16189.23 9894.85 84
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20790.26 17543.22 29475.05 38174.26 16262.70 31487.25 257
TESTMET0.1,182.41 11781.98 11583.72 16388.08 19563.74 19592.70 12693.77 6879.30 7277.61 13787.57 21658.19 15694.08 21973.91 16386.68 12793.33 146
test250683.29 10182.92 9984.37 14688.39 18663.18 21692.01 15791.35 16977.66 10078.49 12991.42 15464.58 8395.09 17773.19 16489.23 9894.85 84
mvs_anonymous81.36 13379.99 14485.46 10190.39 13868.40 7586.88 29190.61 19774.41 14070.31 22184.67 25063.79 9292.32 28173.13 16585.70 13395.67 48
PS-MVSNAJss77.26 20776.31 20180.13 25180.64 31059.16 29290.63 22091.06 18572.80 17668.58 24584.57 25253.55 21193.96 22972.97 16671.96 24887.27 256
ACMP71.68 1075.58 23874.23 23179.62 26784.97 26059.64 28390.80 21289.07 26170.39 24162.95 30287.30 22038.28 31493.87 23372.89 16771.45 25285.36 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer83.75 9582.88 10086.37 7589.24 16671.18 2489.07 25890.69 19265.80 28487.13 4094.34 8964.99 7592.67 26672.83 16891.80 7195.27 69
test_djsdf73.76 25872.56 25577.39 29577.00 35153.93 33589.07 25890.69 19265.80 28463.92 29182.03 27843.14 29592.67 26672.83 16868.53 27085.57 291
test111180.84 14380.02 14283.33 17387.87 20260.76 26592.62 13186.86 31077.86 9675.73 15491.39 15646.35 27494.70 19272.79 17088.68 10494.52 105
miper_enhance_ethall78.86 17977.97 17581.54 21888.00 19965.17 15891.41 18289.15 25575.19 13368.79 24183.98 25867.17 5692.82 25872.73 17165.30 29086.62 268
OMC-MVS78.67 18677.91 17780.95 23585.76 24657.40 31388.49 26788.67 27873.85 15372.43 19692.10 14049.29 25094.55 20072.73 17177.89 19990.91 204
LPG-MVS_test75.82 23374.58 22479.56 26984.31 27159.37 28890.44 22189.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
LGP-MVS_train79.56 26984.31 27159.37 28889.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
VPNet78.82 18077.53 18282.70 18584.52 26666.44 12893.93 7392.23 12780.46 5272.60 19088.38 19949.18 25193.13 24672.47 17563.97 30888.55 235
GG-mvs-BLEND86.53 7091.91 10569.67 5175.02 36394.75 3378.67 12890.85 16377.91 794.56 19972.25 17693.74 4495.36 61
test-LLR80.10 15779.56 15181.72 21486.93 22661.17 25592.70 12691.54 16171.51 22175.62 15686.94 22553.83 20792.38 27772.21 17784.76 14091.60 188
test-mter79.96 16079.38 15781.72 21486.93 22661.17 25592.70 12691.54 16173.85 15375.62 15686.94 22549.84 24592.38 27772.21 17784.76 14091.60 188
IB-MVS77.80 482.18 12080.46 13987.35 4489.14 16870.28 3695.59 2795.17 2178.85 8270.19 22285.82 23970.66 3797.67 5172.19 17966.52 28494.09 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl2277.94 19876.78 19581.42 22087.57 20864.93 16690.67 21688.86 27072.45 18467.63 25982.68 27164.07 8792.91 25671.79 18065.30 29086.44 269
v2v48277.42 20575.65 21282.73 18480.38 31267.13 11191.85 16790.23 21375.09 13469.37 23083.39 26453.79 20994.44 20471.77 18165.00 29686.63 267
baseline181.84 12781.03 12784.28 15091.60 11266.62 12491.08 20391.66 15881.87 3374.86 16591.67 15069.98 4194.92 18471.76 18264.75 29991.29 199
V4276.46 22174.55 22582.19 20279.14 33067.82 9290.26 22989.42 24373.75 15668.63 24481.89 27951.31 23294.09 21871.69 18364.84 29784.66 303
131480.70 14578.95 16285.94 8587.77 20767.56 9987.91 27692.55 12072.17 19467.44 26093.09 11450.27 24097.04 9471.68 18487.64 11393.23 148
CDS-MVSNet81.43 13280.74 13183.52 16786.26 23564.45 17392.09 15290.65 19675.83 12473.95 17789.81 18363.97 8992.91 25671.27 18582.82 15493.20 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18662.79 31367.07 385
GA-MVS78.33 19276.23 20284.65 13483.65 28066.30 13291.44 18090.14 21676.01 12270.32 22084.02 25742.50 29694.72 18970.98 18777.00 21292.94 158
jajsoiax73.05 26271.51 26777.67 29077.46 34854.83 33188.81 26290.04 22169.13 25862.85 30483.51 26231.16 35592.75 26270.83 18869.80 25785.43 295
3Dnovator+73.60 782.10 12480.60 13686.60 6590.89 12966.80 12095.20 3593.44 8574.05 14767.42 26192.49 13049.46 24797.65 5570.80 18991.68 7395.33 62
DP-MVS Recon82.73 11281.65 11885.98 8397.31 467.06 11295.15 3791.99 13869.08 25976.50 15093.89 10154.48 20198.20 3570.76 19085.66 13492.69 163
miper_ehance_all_eth77.60 20276.44 19981.09 23285.70 24864.41 17790.65 21788.64 28072.31 18867.37 26482.52 27264.77 8192.64 27070.67 19165.30 29086.24 273
PAPM_NR82.97 10881.84 11686.37 7594.10 4466.76 12187.66 28092.84 10769.96 24674.07 17593.57 10863.10 10797.50 6570.66 19290.58 8994.85 84
XVG-OURS-SEG-HR74.70 24773.08 24579.57 26878.25 34257.33 31480.49 33587.32 30363.22 30468.76 24290.12 18144.89 28891.59 29670.55 19374.09 23189.79 218
mvs_tets72.71 26971.11 26877.52 29177.41 34954.52 33388.45 26889.76 22968.76 26362.70 30583.26 26529.49 35992.71 26370.51 19469.62 25985.34 297
cascas78.18 19375.77 20985.41 10387.14 21969.11 5992.96 11791.15 17866.71 27870.47 21686.07 23637.49 32496.48 12470.15 19579.80 18390.65 206
RRT_MVS74.44 24872.97 24878.84 27982.36 29457.66 30889.83 24288.79 27470.61 23964.58 28484.89 24739.24 30692.65 26970.11 19666.34 28586.21 274
PVSNet_068.08 1571.81 27568.32 29182.27 19784.68 26262.31 23688.68 26490.31 20875.84 12357.93 33280.65 30337.85 32194.19 21469.94 19729.05 39590.31 211
thisisatest051583.41 9982.49 10886.16 8089.46 15768.26 8093.54 9694.70 3674.31 14375.75 15390.92 16172.62 2896.52 12169.64 19881.50 17093.71 135
XXY-MVS77.94 19876.44 19982.43 19182.60 29164.44 17492.01 15791.83 14973.59 16170.00 22585.82 23954.43 20294.76 18669.63 19968.02 27488.10 243
MAR-MVS84.18 8583.43 8786.44 7296.25 2165.93 14194.28 5694.27 5674.41 14079.16 11995.61 4753.99 20698.88 2169.62 20093.26 5394.50 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Patchmatch-RL test68.17 30464.49 31479.19 27371.22 36953.93 33570.07 37171.54 37769.22 25556.79 33662.89 37756.58 17788.61 32569.53 20152.61 36095.03 80
TAMVS80.37 15179.45 15483.13 17885.14 25663.37 21091.23 19790.76 19174.81 13872.65 18988.49 19560.63 13092.95 25169.41 20281.95 16693.08 153
testdata81.34 22289.02 17057.72 30689.84 22758.65 33885.32 5994.09 9657.03 16693.28 24469.34 20390.56 9093.03 155
c3_l76.83 21775.47 21380.93 23685.02 25964.18 18790.39 22488.11 29471.66 21166.65 27281.64 28463.58 9992.56 27169.31 20462.86 31286.04 280
v114476.73 21974.88 21982.27 19780.23 31666.60 12591.68 17690.21 21573.69 15869.06 23581.89 27952.73 22094.40 20569.21 20565.23 29385.80 286
ETVMVS84.22 8483.71 7985.76 9392.58 8768.25 8292.45 14095.53 1479.54 6779.46 11491.64 15170.29 3994.18 21569.16 20682.76 15794.84 87
Anonymous2024052976.84 21674.15 23284.88 12191.02 12564.95 16593.84 8191.09 18153.57 35673.00 18387.42 21835.91 33497.32 7669.14 20772.41 24692.36 172
XVG-OURS74.25 25172.46 25779.63 26678.45 34057.59 31080.33 33787.39 30263.86 29768.76 24289.62 18540.50 30391.72 29369.00 20874.25 22989.58 221
v14876.19 22274.47 22781.36 22180.05 31864.44 17491.75 17490.23 21373.68 15967.13 26580.84 29955.92 18593.86 23568.95 20961.73 32685.76 289
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30879.77 31538.14 31791.44 30368.90 21067.45 27883.21 320
3Dnovator73.91 682.69 11580.82 12988.31 2589.57 15371.26 2292.60 13394.39 5178.84 8367.89 25592.48 13148.42 25798.52 2868.80 21194.40 3595.15 74
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
Anonymous20240521177.96 19775.33 21685.87 8793.73 5464.52 16994.85 4585.36 32462.52 31276.11 15190.18 17629.43 36097.29 7868.51 21377.24 21095.81 47
eth_miper_zixun_eth75.96 23174.40 22880.66 23884.66 26363.02 21889.28 25388.27 29071.88 20265.73 27481.65 28359.45 14392.81 25968.13 21460.53 33586.14 276
PVSNet73.49 880.05 15878.63 16584.31 14890.92 12864.97 16492.47 13991.05 18679.18 7572.43 19690.51 16837.05 33094.06 22168.06 21586.00 13193.90 131
FA-MVS(test-final)79.12 17377.23 18984.81 12690.54 13463.98 19081.35 33091.71 15471.09 22974.85 16682.94 26752.85 21897.05 9167.97 21681.73 16993.41 142
v14419276.05 22774.03 23482.12 20579.50 32466.55 12791.39 18689.71 23672.30 18968.17 24881.33 29151.75 22794.03 22667.94 21764.19 30385.77 287
UGNet79.87 16278.68 16483.45 17289.96 14561.51 25192.13 14990.79 19076.83 11278.85 12686.33 23338.16 31696.17 13167.93 21887.17 11892.67 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS76.49 22075.18 21880.43 24284.49 26762.74 22790.64 21888.80 27272.40 18665.16 27981.72 28260.98 12692.27 28267.74 21964.65 30186.29 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17678.22 17181.25 22385.33 25162.73 22889.53 24893.21 9172.39 18772.14 19990.13 17960.99 12594.72 18967.73 22072.49 24486.29 271
gg-mvs-nofinetune77.18 20874.31 22985.80 9191.42 11868.36 7671.78 36694.72 3449.61 36777.12 14345.92 39077.41 893.98 22867.62 22193.16 5495.05 78
LCM-MVSNet-Re72.93 26471.84 26376.18 30888.49 18048.02 36180.07 34270.17 37873.96 15152.25 35180.09 31249.98 24288.24 33067.35 22284.23 14692.28 176
tpm279.80 16377.95 17685.34 10788.28 18968.26 8081.56 32791.42 16770.11 24477.59 13880.50 30467.40 5594.26 21267.34 22377.35 20793.51 140
v875.35 23973.26 24481.61 21680.67 30966.82 11889.54 24789.27 24871.65 21263.30 29880.30 30854.99 19594.06 22167.33 22462.33 31883.94 308
sd_testset77.08 21175.37 21482.20 20189.25 16362.11 23982.06 32289.09 25976.77 11470.84 21387.12 22341.43 30095.01 17967.23 22574.55 22489.48 224
UWE-MVS80.81 14481.01 12880.20 24989.33 16057.05 31691.91 16394.71 3575.67 12575.01 16489.37 18763.13 10691.44 30367.19 22682.80 15692.12 184
v119275.98 22973.92 23682.15 20379.73 32066.24 13491.22 19889.75 23072.67 17868.49 24681.42 28949.86 24494.27 21067.08 22765.02 29585.95 283
114514_t79.17 17277.67 17883.68 16495.32 2965.53 15192.85 12091.60 16063.49 30067.92 25290.63 16646.65 27195.72 15467.01 22883.54 14889.79 218
Fast-Effi-MVS+81.14 13680.01 14384.51 14190.24 14065.86 14294.12 6389.15 25573.81 15575.37 16188.26 20257.26 16394.53 20166.97 22984.92 13793.15 150
无先验92.71 12592.61 11862.03 31697.01 9566.63 23093.97 126
v192192075.63 23773.49 24282.06 20979.38 32566.35 13091.07 20589.48 23971.98 19767.99 24981.22 29449.16 25393.90 23266.56 23164.56 30285.92 285
cl____76.07 22474.67 22080.28 24585.15 25561.76 24690.12 23288.73 27571.16 22665.43 27681.57 28661.15 12392.95 25166.54 23262.17 31986.13 278
DIV-MVS_self_test76.07 22474.67 22080.28 24585.14 25661.75 24790.12 23288.73 27571.16 22665.42 27781.60 28561.15 12392.94 25566.54 23262.16 32186.14 276
Fast-Effi-MVS+-dtu75.04 24373.37 24380.07 25280.86 30559.52 28691.20 20085.38 32371.90 20065.20 27884.84 24841.46 29992.97 25066.50 23472.96 23987.73 245
UniMVSNet_NR-MVSNet78.15 19477.55 18179.98 25684.46 26860.26 27592.25 14493.20 9377.50 10468.88 23986.61 22866.10 6492.13 28466.38 23562.55 31587.54 246
DU-MVS76.86 21375.84 20879.91 25982.96 28860.26 27591.26 19591.54 16176.46 11968.88 23986.35 23156.16 18092.13 28466.38 23562.55 31587.35 253
1112_ss80.56 14779.83 14782.77 18388.65 17860.78 26392.29 14388.36 28672.58 18072.46 19594.95 6665.09 7493.42 24366.38 23577.71 20094.10 119
FIs79.47 16879.41 15579.67 26585.95 24159.40 28791.68 17693.94 6378.06 9268.96 23888.28 20066.61 6191.77 29266.20 23874.99 22387.82 244
tpm78.58 18777.03 19183.22 17685.94 24364.56 16883.21 31591.14 17978.31 8973.67 17979.68 31664.01 8892.09 28666.07 23971.26 25493.03 155
ACMM69.62 1374.34 24972.73 25279.17 27484.25 27357.87 30490.36 22589.93 22463.17 30665.64 27586.04 23837.79 32294.10 21765.89 24071.52 25185.55 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive80.92 14279.98 14583.74 16088.48 18161.80 24493.44 10288.26 29273.96 15177.73 13491.76 14749.94 24394.76 18665.84 24190.37 9194.65 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Test_1112_low_res79.56 16678.60 16682.43 19188.24 19260.39 27492.09 15287.99 29772.10 19671.84 20287.42 21864.62 8293.04 24765.80 24277.30 20893.85 133
v1074.77 24672.54 25681.46 21980.33 31466.71 12289.15 25789.08 26070.94 23163.08 30179.86 31352.52 22194.04 22465.70 24362.17 31983.64 311
thisisatest053081.15 13580.07 14184.39 14588.26 19065.63 14791.40 18494.62 4071.27 22570.93 21289.18 18972.47 2996.04 13965.62 24476.89 21391.49 190
D2MVS73.80 25672.02 26179.15 27679.15 32962.97 21988.58 26690.07 21872.94 17159.22 32178.30 32342.31 29892.70 26565.59 24572.00 24781.79 338
MVP-Stereo77.12 21076.23 20279.79 26381.72 30066.34 13189.29 25290.88 18970.56 24062.01 30982.88 26849.34 24894.13 21665.55 24693.80 4278.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124075.21 24272.98 24781.88 21179.20 32766.00 13890.75 21489.11 25871.63 21667.41 26281.22 29447.36 26793.87 23365.46 24764.72 30085.77 287
miper_lstm_enhance73.05 26271.73 26577.03 29983.80 27758.32 30181.76 32388.88 26869.80 24961.01 31178.23 32557.19 16487.51 34065.34 24859.53 34085.27 299
原ACMM184.42 14393.21 6864.27 18493.40 8865.39 28779.51 11392.50 12858.11 15796.69 11465.27 24993.96 3992.32 174
tt080573.07 26170.73 27380.07 25278.37 34157.05 31687.78 27892.18 13361.23 32367.04 26686.49 23031.35 35494.58 19565.06 25067.12 27988.57 234
UniMVSNet (Re)77.58 20376.78 19579.98 25684.11 27460.80 26291.76 17293.17 9576.56 11869.93 22884.78 24963.32 10392.36 27964.89 25162.51 31786.78 263
BH-w/o80.49 14979.30 15884.05 15590.83 13164.36 18193.60 9389.42 24374.35 14269.09 23390.15 17855.23 19195.61 15864.61 25286.43 13092.17 182
AdaColmapbinary78.94 17777.00 19384.76 12896.34 1765.86 14292.66 13087.97 29962.18 31470.56 21592.37 13443.53 29297.35 7464.50 25382.86 15391.05 203
PCF-MVS73.15 979.29 17077.63 18084.29 14986.06 23965.96 14087.03 28791.10 18069.86 24869.79 22990.64 16457.54 16296.59 11664.37 25482.29 15890.32 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
API-MVS82.28 11980.53 13787.54 4096.13 2270.59 3293.63 9291.04 18765.72 28675.45 16092.83 12456.11 18298.89 2064.10 25589.75 9793.15 150
UniMVSNet_ETH3D72.74 26870.53 27579.36 27178.62 33956.64 32085.01 29989.20 25163.77 29864.84 28284.44 25434.05 34191.86 29063.94 25670.89 25689.57 222
Anonymous2023121173.08 26070.39 27681.13 22790.62 13363.33 21191.40 18490.06 22051.84 36164.46 28880.67 30236.49 33294.07 22063.83 25764.17 30485.98 282
MS-PatchMatch77.90 20076.50 19882.12 20585.99 24069.95 4191.75 17492.70 11173.97 15062.58 30684.44 25441.11 30195.78 14663.76 25892.17 6580.62 349
新几何184.73 12992.32 9064.28 18391.46 16659.56 33479.77 11092.90 12056.95 17196.57 11863.40 25992.91 5793.34 144
dmvs_re76.93 21275.36 21581.61 21687.78 20660.71 26880.00 34387.99 29779.42 6969.02 23689.47 18646.77 26994.32 20663.38 26074.45 22789.81 217
GeoE78.90 17877.43 18383.29 17488.95 17262.02 24092.31 14286.23 31670.24 24371.34 21089.27 18854.43 20294.04 22463.31 26180.81 17793.81 134
IterMVS72.65 27270.83 27078.09 28782.17 29662.96 22087.64 28186.28 31471.56 21960.44 31478.85 32145.42 28486.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32245.54 37744.76 37682.14 27735.40 33690.14 31763.18 26374.54 22681.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs473.92 25571.81 26480.25 24779.17 32865.24 15687.43 28387.26 30567.64 27263.46 29683.91 25948.96 25591.53 30162.94 26465.49 28983.96 307
tttt051779.50 16778.53 16782.41 19487.22 21761.43 25389.75 24494.76 3269.29 25467.91 25388.06 20972.92 2595.63 15662.91 26573.90 23490.16 212
FC-MVSNet-test77.99 19678.08 17377.70 28984.89 26155.51 32790.27 22893.75 7276.87 10966.80 27187.59 21565.71 6990.23 31562.89 26673.94 23287.37 251
Baseline_NR-MVSNet73.99 25472.83 24977.48 29380.78 30759.29 29191.79 16984.55 33168.85 26068.99 23780.70 30056.16 18092.04 28762.67 26760.98 33281.11 343
IterMVS-SCA-FT71.55 27869.97 27876.32 30681.48 30160.67 27087.64 28185.99 31966.17 28259.50 31978.88 32045.53 28283.65 36162.58 26861.93 32284.63 305
IS-MVSNet80.14 15679.41 15582.33 19587.91 20060.08 27991.97 16188.27 29072.90 17571.44 20991.73 14961.44 12293.66 23862.47 26986.53 12893.24 147
WR-MVS76.76 21875.74 21079.82 26284.60 26462.27 23792.60 13392.51 12176.06 12167.87 25685.34 24256.76 17290.24 31462.20 27063.69 31086.94 261
pmmvs573.35 25971.52 26678.86 27878.64 33860.61 27291.08 20386.90 30867.69 26963.32 29783.64 26044.33 29090.53 30862.04 27166.02 28785.46 294
TranMVSNet+NR-MVSNet75.86 23274.52 22679.89 26082.44 29360.64 27191.37 18991.37 16876.63 11667.65 25886.21 23552.37 22391.55 29761.84 27260.81 33387.48 248
CVMVSNet74.04 25374.27 23073.33 32785.33 25143.94 37789.53 24888.39 28554.33 35570.37 21990.13 17949.17 25284.05 35761.83 27379.36 18791.99 185
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
testdata296.09 13461.26 275
UA-Net80.02 15979.65 14981.11 22889.33 16057.72 30686.33 29489.00 26677.44 10581.01 9489.15 19059.33 14695.90 14361.01 27684.28 14589.73 220
NR-MVSNet76.05 22774.59 22380.44 24182.96 28862.18 23890.83 21191.73 15277.12 10860.96 31286.35 23159.28 14791.80 29160.74 27761.34 33087.35 253
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 32062.03 31658.91 32581.21 29620.38 37991.15 30560.69 27868.18 27283.16 321
test_post178.95 34620.70 40353.05 21691.50 30260.43 279
SCA75.82 23372.76 25085.01 11786.63 22870.08 3781.06 33289.19 25271.60 21770.01 22477.09 33545.53 28290.25 31160.43 27973.27 23694.68 94
pm-mvs172.89 26571.09 26978.26 28579.10 33157.62 30990.80 21289.30 24767.66 27062.91 30381.78 28149.11 25492.95 25160.29 28158.89 34384.22 306
TR-MVS78.77 18377.37 18882.95 18090.49 13560.88 26193.67 8990.07 21870.08 24574.51 16991.37 15745.69 28195.70 15560.12 28280.32 17992.29 175
MDTV_nov1_ep13_2view59.90 28180.13 34167.65 27172.79 18754.33 20459.83 28392.58 167
GBi-Net75.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
test175.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
FMVSNet377.73 20176.04 20582.80 18291.20 12468.99 6391.87 16591.99 13873.35 16467.04 26683.19 26656.62 17692.14 28359.80 28469.34 26187.28 255
BH-untuned78.68 18477.08 19083.48 17189.84 14763.74 19592.70 12688.59 28171.57 21866.83 27088.65 19451.75 22795.39 16859.03 28784.77 13991.32 197
Vis-MVSNet (Re-imp)79.24 17179.57 15078.24 28688.46 18252.29 34190.41 22389.12 25774.24 14469.13 23291.91 14565.77 6890.09 31859.00 28888.09 10892.33 173
FMVSNet276.07 22474.01 23582.26 19988.85 17367.66 9691.33 19291.61 15970.84 23365.98 27382.25 27548.03 25992.00 28858.46 28968.73 26987.10 258
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
v7n71.31 27968.65 28679.28 27276.40 35360.77 26486.71 29289.45 24164.17 29558.77 32678.24 32444.59 28993.54 23957.76 29161.75 32583.52 314
QAPM79.95 16177.39 18787.64 3389.63 15271.41 2093.30 10593.70 7365.34 28967.39 26391.75 14847.83 26498.96 1657.71 29289.81 9492.54 168
EPMVS78.49 18975.98 20686.02 8291.21 12369.68 5080.23 33991.20 17475.25 13272.48 19478.11 32654.65 19793.69 23757.66 29383.04 15294.69 93
WB-MVSnew77.14 20976.18 20480.01 25586.18 23763.24 21391.26 19594.11 6071.72 21073.52 18087.29 22145.14 28693.00 24956.98 29479.42 18583.80 310
PLCcopyleft68.80 1475.23 24173.68 24079.86 26192.93 7558.68 29890.64 21888.30 28860.90 32464.43 28990.53 16742.38 29794.57 19756.52 29576.54 21586.33 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu78.80 18179.26 15977.43 29488.06 19649.71 35491.96 16291.95 14077.67 9976.56 14991.28 15858.51 15290.20 31656.37 29680.95 17492.39 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet79.46 16977.65 17984.89 12091.68 11165.66 14593.55 9588.09 29572.93 17273.37 18191.12 16046.20 27896.12 13356.28 29785.61 13592.91 159
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 18049.25 36474.77 35032.57 34787.43 34155.96 29841.04 38083.90 309
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26386.78 31253.19 35757.58 33478.03 32735.33 33792.41 27655.56 29954.88 35582.21 335
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28482.80 31983.43 34162.52 31251.30 35672.49 35332.86 34387.16 34355.32 30050.73 36478.83 364
FE-MVS75.97 23073.02 24684.82 12389.78 14865.56 14977.44 35591.07 18464.55 29272.66 18879.85 31446.05 28096.69 11454.97 30180.82 17692.21 181
OpenMVScopyleft70.45 1178.54 18875.92 20786.41 7485.93 24471.68 1892.74 12392.51 12166.49 28064.56 28591.96 14243.88 29198.10 3754.61 30290.65 8889.44 226
FMVSNet172.71 26969.91 28081.10 22983.60 28165.11 16090.01 23690.32 20563.92 29663.56 29580.25 30936.35 33391.54 29854.46 30366.75 28286.64 264
PatchmatchNetpermissive77.46 20474.63 22285.96 8489.55 15570.35 3579.97 34489.55 23872.23 19170.94 21176.91 33757.03 16692.79 26154.27 30481.17 17294.74 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet71.64 27668.44 28981.23 22481.97 29964.44 17473.05 36588.80 27269.67 25064.59 28374.79 34932.79 34487.82 33453.99 30576.35 21691.42 192
CNLPA74.31 25072.30 25880.32 24391.49 11761.66 24990.85 21080.72 35256.67 34863.85 29390.64 16446.75 27090.84 30653.79 30675.99 21988.47 238
tpm cat175.30 24072.21 25984.58 13888.52 17967.77 9378.16 35388.02 29661.88 31968.45 24776.37 34160.65 12994.03 22653.77 30774.11 23091.93 186
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32753.60 30853.63 35880.71 348
PatchMatch-RL72.06 27469.98 27778.28 28489.51 15655.70 32683.49 30883.39 34361.24 32263.72 29482.76 26934.77 33893.03 24853.37 30977.59 20286.12 279
CR-MVSNet73.79 25770.82 27282.70 18583.15 28567.96 8970.25 36984.00 33673.67 16069.97 22672.41 35557.82 15989.48 32252.99 31073.13 23790.64 207
USDC67.43 31264.51 31376.19 30777.94 34655.29 32878.38 35085.00 32773.17 16648.36 36680.37 30621.23 37692.48 27552.15 31164.02 30780.81 347
CP-MVSNet70.50 28369.91 28072.26 33680.71 30851.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24182.30 37151.28 31259.28 34183.46 316
F-COLMAP70.66 28168.44 28977.32 29686.37 23455.91 32488.00 27486.32 31356.94 34657.28 33588.07 20833.58 34292.49 27451.02 31368.37 27183.55 312
PS-CasMVS69.86 29069.13 28572.07 34080.35 31350.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27282.24 37250.69 31459.02 34283.39 318
dp75.01 24472.09 26083.76 15989.28 16266.22 13579.96 34589.75 23071.16 22667.80 25777.19 33451.81 22692.54 27250.39 31571.44 25392.51 170
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
test0.0.03 172.76 26772.71 25372.88 33180.25 31547.99 36291.22 19889.45 24171.51 22162.51 30787.66 21453.83 20785.06 35350.16 31767.84 27785.58 290
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32650.08 31838.90 38479.63 357
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 36064.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
JIA-IIPM66.06 31762.45 32676.88 30381.42 30354.45 33457.49 39188.67 27849.36 36863.86 29246.86 38956.06 18390.25 31149.53 32068.83 26785.95 283
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23589.90 22569.96 24661.96 31076.54 33851.05 23487.64 33749.51 32150.59 36582.70 329
FMVSNet568.04 30565.66 30475.18 31484.43 26957.89 30383.54 30786.26 31561.83 32053.64 34773.30 35237.15 32885.08 35248.99 32261.77 32482.56 332
TransMVSNet (Re)70.07 28767.66 29377.31 29780.62 31159.13 29491.78 17184.94 32865.97 28360.08 31780.44 30550.78 23591.87 28948.84 32345.46 37380.94 345
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31745.11 37854.27 34381.15 29736.91 33180.01 37948.79 32457.02 34782.19 336
PEN-MVS69.46 29368.56 28772.17 33879.27 32649.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26883.54 36248.42 32557.12 34683.25 319
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32957.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
MDTV_nov1_ep1372.61 25489.06 16968.48 7380.33 33790.11 21771.84 20571.81 20375.92 34553.01 21793.92 23148.04 32773.38 235
thres20079.66 16478.33 16883.66 16692.54 8865.82 14493.06 11296.31 374.90 13773.30 18288.66 19359.67 14195.61 15847.84 33078.67 19489.56 223
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36246.94 37458.96 32484.59 25131.40 35382.00 37347.76 33160.33 33986.04 280
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31947.75 33231.37 39283.53 313
EG-PatchMatch MVS68.55 30065.41 30677.96 28878.69 33762.93 22189.86 24189.17 25360.55 32650.27 35977.73 32922.60 37494.06 22147.18 33372.65 24376.88 371
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26557.10 31588.08 27180.79 35158.59 33953.00 34881.09 29826.63 36792.95 25146.51 33561.69 32880.82 346
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32550.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
WR-MVS_H70.59 28269.94 27972.53 33381.03 30451.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18683.45 36346.33 33758.58 34582.72 327
Patchmtry67.53 31063.93 31778.34 28282.12 29764.38 17868.72 37384.00 33648.23 37259.24 32072.41 35557.82 15989.27 32346.10 33856.68 35081.36 340
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33649.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30945.89 33947.06 37082.78 324
ambc69.61 34761.38 38941.35 38249.07 39685.86 32150.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
thres100view90078.37 19077.01 19282.46 19091.89 10663.21 21491.19 20196.33 172.28 19070.45 21887.89 21160.31 13295.32 17045.16 34177.58 20388.83 228
tfpn200view978.79 18277.43 18382.88 18192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20388.83 228
thres40078.68 18477.43 18382.43 19192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20387.48 248
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34649.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27383.87 36044.97 34455.17 35382.73 326
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 37040.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
our_test_368.29 30364.69 31179.11 27778.92 33264.85 16788.40 26985.06 32660.32 32952.68 34976.12 34340.81 30289.80 32144.25 34655.65 35182.67 331
tpmvs72.88 26669.76 28282.22 20090.98 12667.05 11378.22 35288.30 28863.10 30764.35 29074.98 34855.09 19494.27 21043.25 34769.57 26085.34 297
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35960.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 27087.32 30361.75 32158.07 32977.29 33237.79 32287.29 34242.91 34963.71 30983.48 315
YYNet163.76 33160.14 33474.62 31878.06 34560.19 27883.46 31083.99 33856.18 35039.25 38471.56 36237.18 32783.34 36442.90 35048.70 36880.32 352
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34460.41 27383.49 30884.03 33456.17 35139.17 38571.59 36137.22 32683.24 36642.87 35148.73 36780.26 353
MSDG69.54 29265.73 30280.96 23485.11 25863.71 19884.19 30383.28 34456.95 34554.50 34284.03 25631.50 35296.03 14042.87 35169.13 26683.14 322
thres600view778.00 19576.66 19782.03 21091.93 10363.69 20091.30 19496.33 172.43 18570.46 21787.89 21160.31 13294.92 18442.64 35376.64 21487.48 248
ACMH63.93 1768.62 29964.81 30980.03 25485.22 25463.25 21287.72 27984.66 33060.83 32551.57 35479.43 31927.29 36594.96 18141.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
PatchT69.11 29565.37 30780.32 24382.07 29863.68 20167.96 37887.62 30150.86 36469.37 23065.18 37357.09 16588.53 32841.59 35666.60 28388.74 231
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
ADS-MVSNet266.90 31363.44 32077.26 29888.06 19660.70 26968.01 37675.56 36557.57 34064.48 28669.87 36538.68 30884.10 35640.87 35867.89 27586.97 259
ADS-MVSNet68.54 30164.38 31681.03 23388.06 19666.90 11768.01 37684.02 33557.57 34064.48 28669.87 36538.68 30889.21 32440.87 35867.89 27586.97 259
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27651.55 34467.08 37983.53 34058.78 33754.94 34180.31 30734.54 33993.23 24540.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 34055.55 34774.35 32084.37 27056.57 32171.64 36774.11 36934.44 38845.54 37442.24 39531.11 35689.81 31940.36 36176.10 21876.67 372
ppachtmachnet_test67.72 30763.70 31879.77 26478.92 33266.04 13788.68 26482.90 34660.11 33155.45 33975.96 34439.19 30790.55 30739.53 36252.55 36182.71 328
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
AllTest61.66 33558.06 33972.46 33479.57 32151.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32151.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33363.29 30351.86 35277.30 33137.09 32982.47 36938.87 36654.13 35779.73 356
TAPA-MVS70.22 1274.94 24573.53 24179.17 27490.40 13752.07 34289.19 25689.61 23762.69 31170.07 22392.67 12648.89 25694.32 20638.26 36779.97 18191.12 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 262
TinyColmap60.32 33956.42 34672.00 34178.78 33553.18 33878.36 35175.64 36452.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32357.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34486.26 34735.81 37141.95 37875.89 373
RPMNet70.42 28465.68 30384.63 13683.15 28567.96 8970.25 36990.45 19946.83 37569.97 22665.10 37456.48 17995.30 17335.79 37273.13 23790.64 207
Patchmatch-test65.86 31860.94 33280.62 24083.75 27858.83 29658.91 39075.26 36744.50 38050.95 35877.09 33558.81 15187.90 33235.13 37364.03 30695.12 76
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25483.41 34255.48 35253.86 34677.84 32826.28 36893.95 23034.90 37468.76 26878.68 365
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
DP-MVS69.90 28966.48 29680.14 25095.36 2862.93 22189.56 24576.11 36150.27 36657.69 33385.23 24339.68 30595.73 15033.35 37771.05 25581.78 339
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30253.00 33983.75 30675.53 36648.34 37148.81 36581.40 29024.14 37090.30 31032.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
myMVS_eth3d72.58 27372.74 25172.10 33987.87 20249.45 35688.07 27289.01 26372.91 17363.11 29988.10 20663.63 9585.54 34932.73 38169.23 26481.32 341
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33255.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
LS3D69.17 29466.40 29877.50 29291.92 10456.12 32385.12 29880.37 35446.96 37356.50 33787.51 21737.25 32593.71 23632.52 38379.40 18682.68 330
tfpnnormal70.10 28667.36 29478.32 28383.45 28360.97 26088.85 26192.77 10964.85 29160.83 31378.53 32243.52 29393.48 24131.73 38461.70 32780.52 350
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
WAC-MVS49.45 35631.56 386
dmvs_testset65.55 32166.45 29762.86 36279.87 31922.35 40576.55 35771.74 37577.42 10755.85 33887.77 21351.39 23180.69 37731.51 38765.92 28885.55 292
testing370.38 28570.83 27069.03 35085.82 24543.93 37890.72 21590.56 19868.06 26760.24 31586.82 22764.83 7984.12 35526.33 38864.10 30579.04 362
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
test_040264.54 32561.09 33174.92 31684.10 27560.75 26687.95 27579.71 35652.03 35952.41 35077.20 33332.21 35091.64 29423.14 39061.03 33172.36 379
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
Syy-MVS69.65 29169.52 28370.03 34687.87 20243.21 37988.07 27289.01 26372.91 17363.11 29988.10 20645.28 28585.54 34922.07 39269.23 26481.32 341
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33572.83 3859.96 40121.75 39656.27 389
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34070.39 3889.14 40319.57 39754.68 390
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5849.56 2460.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2110.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 660.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
FOURS193.95 4561.77 24593.96 7191.92 14162.14 31586.57 45
test_one_060196.32 1869.74 4894.18 5771.42 22390.67 1996.85 1674.45 18
eth-test20.00 414
eth-test0.00 414
test_241102_ONE96.45 1269.38 5394.44 4671.65 21292.11 797.05 776.79 999.11 6
save fliter93.84 4867.89 9195.05 4092.66 11478.19 90
test072696.40 1569.99 3896.76 894.33 5471.92 19891.89 1197.11 673.77 21
GSMVS94.68 94
test_part296.29 1968.16 8590.78 17
sam_mvs157.85 15894.68 94
sam_mvs54.91 196
MTGPAbinary92.23 127
test_post23.01 40056.49 17892.67 266
patchmatchnet-post67.62 37057.62 16190.25 311
MTMP93.77 8532.52 409
TEST994.18 4167.28 10694.16 5993.51 8071.75 20985.52 5595.33 5368.01 5097.27 82
test_894.19 4067.19 10894.15 6293.42 8671.87 20385.38 5895.35 5268.19 4896.95 104
agg_prior94.16 4366.97 11693.31 8984.49 6696.75 113
test_prior467.18 11093.92 74
test_prior86.42 7394.71 3567.35 10593.10 9996.84 11095.05 78
新几何291.41 182
旧先验191.94 10260.74 26791.50 16494.36 8465.23 7391.84 7094.55 101
原ACMM292.01 157
test22289.77 14961.60 25089.55 24689.42 24356.83 34777.28 14192.43 13252.76 21991.14 8493.09 152
segment_acmp65.94 66
testdata189.21 25577.55 103
test1287.09 5094.60 3668.86 6592.91 10582.67 8265.44 7197.55 6393.69 4794.84 87
plane_prior786.94 22461.51 251
plane_prior687.23 21662.32 23550.66 236
plane_prior489.14 191
plane_prior361.95 24379.09 7872.53 192
plane_prior293.13 11078.81 84
plane_prior187.15 218
plane_prior62.42 23193.85 7879.38 7078.80 193
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 202
HQP-NCC87.54 20994.06 6479.80 6274.18 171
ACMP_Plane87.54 20994.06 6479.80 6274.18 171
HQP4-MVS74.18 17195.61 15888.63 232
HQP3-MVS91.70 15678.90 191
HQP2-MVS51.63 229
NP-MVS87.41 21263.04 21790.30 173
ACMMP++_ref71.63 249
ACMMP++69.72 258
Test By Simon54.21 205