This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
test_fmvsmvis_n_192098.08 4298.47 2496.93 16999.03 10293.29 18396.32 15999.65 795.59 15599.71 499.01 4997.66 2999.60 15399.44 299.83 3797.90 292
MVS_030496.62 15396.40 16197.28 14797.91 22492.30 20396.47 15189.74 36997.52 6895.38 27798.63 8592.76 19999.81 3799.28 399.93 1099.75 16
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 4099.08 1099.42 1799.23 2996.53 9099.91 1399.27 499.93 1099.73 19
test_fmvs397.38 10897.56 9396.84 17698.63 14392.81 19397.60 8799.61 1090.87 27698.76 6099.66 394.03 17197.90 35499.24 599.68 7399.81 8
test_fmvsm_n_192098.08 4298.29 3597.43 13798.88 11493.95 16196.17 17199.57 1195.66 15099.52 1398.71 7897.04 5799.64 13699.21 699.87 2798.69 218
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2696.23 11899.71 499.48 998.77 699.93 398.89 799.95 599.84 5
test_fmvs296.38 16596.45 15896.16 21497.85 22891.30 22896.81 13399.45 1589.24 29598.49 7799.38 1788.68 26897.62 35998.83 899.32 18299.57 38
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2796.91 8999.75 299.45 1295.82 11599.92 598.80 999.96 499.89 1
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4295.83 14499.67 799.37 1898.25 1099.92 598.77 1099.94 899.82 6
v1097.55 9697.97 5096.31 20798.60 14789.64 25397.44 10099.02 6596.60 9898.72 6399.16 3893.48 18499.72 8698.76 1199.92 1499.58 33
MVSFormer96.14 17396.36 16395.49 24597.68 26087.81 29398.67 1599.02 6596.50 10694.48 29796.15 29086.90 28699.92 598.73 1299.13 20798.74 211
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6596.50 10699.32 2399.44 1397.43 3699.92 598.73 1299.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5698.05 4599.61 1299.52 793.72 18099.88 2098.72 1499.88 2699.65 26
tt080597.44 10497.56 9397.11 15699.55 2396.36 6398.66 1895.66 31098.31 3497.09 19495.45 31597.17 4998.50 33398.67 1597.45 31896.48 343
RRT_MVS97.95 5597.79 6598.43 5799.67 1295.56 9398.86 1096.73 29597.99 4799.15 3399.35 2289.84 25499.90 1498.64 1699.90 2399.82 6
v897.60 9398.06 4496.23 20998.71 13289.44 25797.43 10298.82 12597.29 8198.74 6199.10 4393.86 17599.68 12098.61 1799.94 899.56 42
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 3195.62 15399.35 2299.37 1897.38 3899.90 1498.59 1899.91 1799.77 11
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1199.02 1599.62 1199.36 2098.53 799.52 17598.58 1999.95 599.66 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsmamba98.16 3498.06 4498.44 5599.53 2995.87 8198.70 1398.94 8797.71 5898.85 4999.10 4391.35 23299.83 3398.47 2099.90 2399.64 28
v124096.74 14397.02 12595.91 22698.18 19688.52 27395.39 21898.88 9993.15 23598.46 8298.40 10792.80 19899.71 10198.45 2199.49 13299.49 61
bld_raw_dy_0_6497.69 8797.61 8897.91 9799.54 2694.27 15198.06 5998.60 16496.60 9898.79 5498.95 5689.62 25599.84 3098.43 2299.91 1799.62 29
v119296.83 13897.06 12396.15 21598.28 18289.29 25995.36 22098.77 13293.73 21598.11 12298.34 11193.02 19599.67 12598.35 2399.58 9699.50 53
v192192096.72 14696.96 12995.99 21998.21 19088.79 27095.42 21498.79 12793.22 22998.19 11598.26 12892.68 20299.70 10898.34 2499.55 10899.49 61
Anonymous2023121198.55 1998.76 1397.94 9698.79 12294.37 14498.84 1199.15 3899.37 399.67 799.43 1495.61 12699.72 8698.12 2599.86 2999.73 19
v14419296.69 14996.90 13496.03 21898.25 18688.92 26595.49 21098.77 13293.05 23798.09 12598.29 12292.51 21299.70 10898.11 2699.56 10299.47 70
test_fmvs1_n95.21 21195.28 20094.99 26798.15 20389.13 26496.81 13399.43 1786.97 32297.21 18098.92 5983.00 31397.13 36398.09 2798.94 22998.72 214
Anonymous2024052197.07 12197.51 9895.76 23199.35 5188.18 28197.78 7398.40 18897.11 8498.34 9699.04 4889.58 25799.79 4498.09 2799.93 1099.30 109
v114496.84 13597.08 12196.13 21698.42 17289.28 26095.41 21698.67 15494.21 20197.97 14098.31 11493.06 19199.65 13398.06 2999.62 8399.45 76
SixPastTwentyTwo97.49 10097.57 9297.26 14999.56 2192.33 20298.28 4296.97 28498.30 3699.45 1699.35 2288.43 27199.89 1898.01 3099.76 5199.54 45
test_vis1_n_192095.77 18796.41 16093.85 30798.55 15484.86 33895.91 18999.71 292.72 24897.67 15898.90 6387.44 28398.73 31097.96 3198.85 24097.96 288
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3399.05 1399.17 3298.79 6995.47 13099.89 1897.95 3299.91 1799.75 16
UA-Net98.88 798.76 1399.22 299.11 9097.89 1399.47 399.32 2099.08 1097.87 15199.67 296.47 9599.92 597.88 3399.98 299.85 3
test_fmvs194.51 24794.60 23494.26 30295.91 33587.92 28895.35 22299.02 6586.56 32696.79 21298.52 9482.64 31597.00 36697.87 3498.71 25597.88 294
FC-MVSNet-test98.16 3498.37 3097.56 11999.49 3593.10 18898.35 3599.21 2798.43 3098.89 4798.83 6894.30 16599.81 3797.87 3499.91 1799.77 11
Vis-MVSNetpermissive98.27 3098.34 3198.07 8699.33 5395.21 12098.04 6099.46 1497.32 7997.82 15599.11 4296.75 8099.86 2497.84 3699.36 16799.15 141
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 16296.28 16696.95 16799.41 4391.53 22597.65 8490.31 36598.89 1998.93 4499.36 2084.57 30399.92 597.81 3799.56 10299.39 93
v2v48296.78 14297.06 12395.95 22398.57 15188.77 27195.36 22098.26 20395.18 17297.85 15398.23 13192.58 20699.63 13997.80 3899.69 6999.45 76
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4199.22 899.22 3098.96 5497.35 3999.92 597.79 3999.93 1099.79 9
nrg03098.54 2098.62 2198.32 6599.22 6795.66 9197.90 6899.08 5098.31 3499.02 3998.74 7597.68 2799.61 15197.77 4099.85 3499.70 22
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2199.01 1699.63 1099.66 399.27 299.68 12097.75 4199.89 2599.62 29
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17698.23 4699.05 5697.40 7699.37 2099.08 4698.79 599.47 18997.74 4299.71 6599.50 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_f95.82 18695.88 18695.66 23697.61 26793.21 18795.61 20698.17 21886.98 32198.42 8599.47 1090.46 24394.74 37697.71 4398.45 27399.03 166
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4499.36 499.29 2599.06 4797.27 4399.93 397.71 4399.91 1799.70 22
test_vis1_n95.67 19195.89 18595.03 26498.18 19689.89 25096.94 12699.28 2388.25 30998.20 11198.92 5986.69 28997.19 36297.70 4598.82 24498.00 287
EC-MVSNet97.90 6897.94 5397.79 10598.66 13895.14 12198.31 3999.66 697.57 6495.95 25697.01 24396.99 6199.82 3597.66 4699.64 8098.39 245
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3899.33 599.30 2499.00 5097.27 4399.92 597.64 4799.92 1499.75 16
CP-MVSNet98.42 2598.46 2598.30 6899.46 3795.22 11898.27 4498.84 11199.05 1399.01 4098.65 8495.37 13399.90 1497.57 4899.91 1799.77 11
EI-MVSNet-UG-set97.32 11497.40 10397.09 15997.34 28992.01 21795.33 22497.65 25997.74 5498.30 10498.14 14095.04 14299.69 11597.55 4999.52 12099.58 33
ANet_high98.31 2998.94 696.41 20399.33 5389.64 25397.92 6799.56 1399.27 699.66 999.50 897.67 2899.83 3397.55 4999.98 299.77 11
CS-MVS98.09 4198.01 4898.32 6598.45 16996.69 5298.52 2699.69 398.07 4496.07 25297.19 23196.88 7299.86 2497.50 5199.73 5898.41 242
EI-MVSNet-Vis-set97.32 11497.39 10497.11 15697.36 28692.08 21595.34 22397.65 25997.74 5498.29 10598.11 14695.05 14199.68 12097.50 5199.50 12999.56 42
EU-MVSNet94.25 25394.47 24293.60 31398.14 20582.60 35497.24 11092.72 34685.08 34098.48 7998.94 5782.59 31698.76 30897.47 5399.53 11599.44 85
V4297.04 12297.16 11796.68 18698.59 14991.05 23196.33 15898.36 19394.60 19097.99 13698.30 11893.32 18699.62 14497.40 5499.53 11599.38 95
KD-MVS_self_test97.86 7398.07 4297.25 15099.22 6792.81 19397.55 9298.94 8797.10 8598.85 4998.88 6595.03 14399.67 12597.39 5599.65 7899.26 121
lessismore_v097.05 16199.36 5092.12 21184.07 38098.77 5998.98 5285.36 29799.74 7697.34 5699.37 16499.30 109
FIs97.93 6298.07 4297.48 13299.38 4892.95 19198.03 6299.11 4398.04 4698.62 6598.66 8293.75 17999.78 4797.23 5799.84 3599.73 19
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2999.67 299.73 399.65 599.15 399.86 2497.22 5899.92 1499.77 11
MVS_Test96.27 16896.79 14094.73 28296.94 30886.63 31596.18 16898.33 19794.94 18096.07 25298.28 12395.25 13799.26 24997.21 5997.90 29498.30 258
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1698.85 2099.00 4199.20 3197.42 3799.59 15497.21 5999.76 5199.40 90
EG-PatchMatch MVS97.69 8797.79 6597.40 14199.06 9693.52 17795.96 18498.97 8394.55 19498.82 5298.76 7497.31 4199.29 24397.20 6199.44 14599.38 95
VPA-MVSNet98.27 3098.46 2597.70 11199.06 9693.80 16697.76 7699.00 7498.40 3199.07 3898.98 5296.89 7099.75 6797.19 6299.79 4599.55 44
test_vis3_rt97.04 12296.98 12697.23 15298.44 17095.88 8096.82 13299.67 490.30 28399.27 2699.33 2594.04 17096.03 37397.14 6397.83 29699.78 10
UniMVSNet (Re)97.83 7597.65 7998.35 6498.80 12195.86 8395.92 18899.04 6297.51 6998.22 11097.81 18294.68 15399.78 4797.14 6399.75 5699.41 89
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7497.57 6499.27 2699.22 3098.32 999.50 18097.09 6599.75 5699.50 53
baseline97.44 10497.78 6996.43 19998.52 15890.75 23996.84 13099.03 6396.51 10597.86 15298.02 15996.67 8299.36 22597.09 6599.47 13899.19 134
IterMVS-SCA-FT95.86 18496.19 16994.85 27597.68 26085.53 32692.42 32497.63 26396.99 8698.36 9398.54 9387.94 27599.75 6797.07 6799.08 21599.27 120
UniMVSNet_NR-MVSNet97.83 7597.65 7998.37 6298.72 12995.78 8495.66 20099.02 6598.11 4298.31 10297.69 19394.65 15599.85 2797.02 6899.71 6599.48 67
DU-MVS97.79 8097.60 8998.36 6398.73 12795.78 8495.65 20298.87 10197.57 6498.31 10297.83 17894.69 15199.85 2797.02 6899.71 6599.46 72
casdiffmvs_mvgpermissive97.83 7598.11 3997.00 16698.57 15192.10 21495.97 18299.18 3297.67 6399.00 4198.48 10097.64 3099.50 18096.96 7099.54 11199.40 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet96.63 15296.93 13095.74 23297.26 29488.13 28495.29 22897.65 25996.99 8697.94 14398.19 13692.55 20799.58 15696.91 7199.56 10299.50 53
IterMVS-LS96.92 13197.29 11095.79 23098.51 16088.13 28495.10 23598.66 15696.99 8698.46 8298.68 8192.55 20799.74 7696.91 7199.79 4599.50 53
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.91 6697.84 6098.14 8298.52 15896.03 7798.38 3499.67 498.11 4295.50 27396.92 24996.81 7899.87 2296.87 7399.76 5198.51 235
test_cas_vis1_n_192095.34 20595.67 19294.35 29898.21 19086.83 31395.61 20699.26 2490.45 28198.17 11698.96 5484.43 30498.31 34596.74 7499.17 20397.90 292
iter_conf_final94.54 24593.91 26196.43 19997.23 29690.41 24596.81 13398.10 22893.87 21296.80 21197.89 17368.02 37499.72 8696.73 7599.77 5099.18 137
test111194.53 24694.81 22393.72 31099.06 9681.94 35998.31 3983.87 38196.37 11198.49 7799.17 3781.49 31899.73 8196.64 7699.86 2999.49 61
APDe-MVS98.14 3698.03 4798.47 5498.72 12996.04 7598.07 5899.10 4495.96 13498.59 6998.69 8096.94 6499.81 3796.64 7699.58 9699.57 38
MP-MVS-pluss97.69 8797.36 10698.70 3899.50 3496.84 4795.38 21998.99 7792.45 25498.11 12298.31 11497.25 4699.77 5696.60 7899.62 8399.48 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 20496.07 17593.21 32296.29 32181.56 36094.60 25897.66 25793.30 22696.95 20598.91 6293.03 19499.38 22096.60 7897.30 32398.69 218
casdiffmvspermissive97.50 9997.81 6496.56 19398.51 16091.04 23295.83 19299.09 4997.23 8298.33 9998.30 11897.03 5899.37 22396.58 8099.38 16399.28 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18298.20 5198.87 10198.23 3899.48 1499.27 2798.47 899.55 16796.52 8199.53 11599.60 31
HPM-MVS_fast98.32 2898.13 3798.88 2399.54 2697.48 3098.35 3599.03 6395.88 14097.88 14898.22 13498.15 1399.74 7696.50 8299.62 8399.42 87
MIMVSNet198.51 2298.45 2798.67 4099.72 896.71 5098.76 1298.89 9398.49 2999.38 1999.14 4195.44 13299.84 3096.47 8399.80 4499.47 70
TranMVSNet+NR-MVSNet98.33 2798.30 3498.43 5799.07 9595.87 8196.73 14399.05 5698.67 2398.84 5198.45 10197.58 3399.88 2096.45 8499.86 2999.54 45
test250689.86 32889.16 33391.97 34298.95 10776.83 37598.54 2361.07 38996.20 11997.07 19599.16 3855.19 38899.69 11596.43 8599.83 3799.38 95
Gipumacopyleft98.07 4498.31 3297.36 14399.76 796.28 6898.51 2799.10 4498.76 2296.79 21299.34 2496.61 8698.82 30196.38 8699.50 12996.98 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 25693.93 26095.05 26395.83 33986.46 31695.18 23397.65 25992.41 25597.94 14398.00 16372.39 36399.58 15696.36 8799.56 10299.12 151
GeoE97.75 8397.70 7297.89 9998.88 11494.53 13797.10 11898.98 8095.75 14897.62 15997.59 19997.61 3299.77 5696.34 8899.44 14599.36 101
canonicalmvs97.23 11797.21 11597.30 14697.65 26494.39 14297.84 7199.05 5697.42 7296.68 21993.85 34097.63 3199.33 23296.29 8998.47 27298.18 270
testf198.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
APD_test298.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
alignmvs96.01 17995.52 19897.50 12897.77 25094.71 13196.07 17496.84 28797.48 7096.78 21694.28 33785.50 29699.40 21396.22 9298.73 25498.40 243
tttt051793.31 28392.56 29095.57 23998.71 13287.86 29097.44 10087.17 37595.79 14597.47 17096.84 25364.12 37899.81 3796.20 9399.32 18299.02 169
iter_conf0593.65 27493.05 27395.46 24796.13 33287.45 30095.95 18698.22 20892.66 24997.04 19797.89 17363.52 38099.72 8696.19 9499.82 4099.21 129
DeepC-MVS95.41 497.82 7897.70 7298.16 7998.78 12495.72 8696.23 16699.02 6593.92 21198.62 6598.99 5197.69 2699.62 14496.18 9599.87 2799.15 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA98.14 3697.84 6099.06 399.44 3997.90 1297.25 10898.73 13997.69 6097.90 14697.96 16595.81 11999.82 3596.13 9699.61 8999.45 76
ZNCC-MVS97.92 6397.62 8698.83 2599.32 5597.24 3997.45 9998.84 11195.76 14696.93 20697.43 21097.26 4599.79 4496.06 9799.53 11599.45 76
Patchmatch-RL test94.66 23894.49 24095.19 25698.54 15688.91 26692.57 32098.74 13891.46 26998.32 10097.75 18777.31 34198.81 30396.06 9799.61 8997.85 296
ACMMP_NAP97.89 6997.63 8498.67 4099.35 5196.84 4796.36 15698.79 12795.07 17797.88 14898.35 11097.24 4799.72 8696.05 9999.58 9699.45 76
v14896.58 15696.97 12795.42 24998.63 14387.57 29795.09 23697.90 24195.91 13998.24 10897.96 16593.42 18599.39 21796.04 10099.52 12099.29 115
ACMM93.33 1198.05 4597.79 6598.85 2499.15 8197.55 2696.68 14598.83 11795.21 16998.36 9398.13 14298.13 1599.62 14496.04 10099.54 11199.39 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 11097.25 11297.74 10898.69 13694.50 14097.04 12295.61 31498.59 2598.51 7498.72 7692.54 20999.58 15696.02 10299.49 13299.12 151
IterMVS95.42 20395.83 18794.20 30397.52 27383.78 34992.41 32597.47 26895.49 16098.06 13098.49 9787.94 27599.58 15696.02 10299.02 22299.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive96.04 17796.23 16795.46 24797.35 28788.03 28793.42 30399.08 5094.09 20796.66 22196.93 24793.85 17699.29 24396.01 10498.67 25799.06 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS97.36 11297.10 11998.14 8298.91 11296.77 4996.20 16798.63 16293.82 21398.54 7298.33 11293.98 17299.05 28095.99 10599.45 14498.61 227
Baseline_NR-MVSNet97.72 8597.79 6597.50 12899.56 2193.29 18395.44 21298.86 10498.20 4098.37 9099.24 2894.69 15199.55 16795.98 10699.79 4599.65 26
ECVR-MVScopyleft94.37 25294.48 24194.05 30698.95 10783.10 35198.31 3982.48 38296.20 11998.23 10999.16 3881.18 32199.66 13195.95 10799.83 3799.38 95
3Dnovator96.53 297.61 9297.64 8297.50 12897.74 25693.65 17498.49 2898.88 9996.86 9197.11 18898.55 9295.82 11599.73 8195.94 10899.42 15699.13 146
PatchT93.75 26993.57 26694.29 30195.05 35487.32 30496.05 17592.98 34297.54 6794.25 30098.72 7675.79 34999.24 25495.92 10995.81 34496.32 345
NR-MVSNet97.96 5197.86 5998.26 7098.73 12795.54 9598.14 5498.73 13997.79 5099.42 1797.83 17894.40 16399.78 4795.91 11099.76 5199.46 72
h-mvs3396.29 16795.63 19598.26 7098.50 16396.11 7396.90 12897.09 27996.58 10197.21 18098.19 13684.14 30599.78 4795.89 11196.17 34298.89 191
hse-mvs295.77 18795.09 20797.79 10597.84 23395.51 9795.66 20095.43 31996.58 10197.21 18096.16 28984.14 30599.54 17095.89 11196.92 32598.32 254
MSC_two_6792asdad98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
No_MVS98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
new-patchmatchnet95.67 19196.58 14892.94 33097.48 27680.21 36592.96 31298.19 21794.83 18398.82 5298.79 6993.31 18799.51 17995.83 11599.04 22199.12 151
FMVSNet197.95 5598.08 4197.56 11999.14 8893.67 17098.23 4698.66 15697.41 7599.00 4199.19 3295.47 13099.73 8195.83 11599.76 5199.30 109
patch_mono-296.59 15496.93 13095.55 24298.88 11487.12 30794.47 26199.30 2194.12 20496.65 22398.41 10494.98 14699.87 2295.81 11799.78 4899.66 24
DVP-MVS++97.96 5197.90 5498.12 8497.75 25395.40 10399.03 798.89 9396.62 9698.62 6598.30 11896.97 6299.75 6795.70 11899.25 19399.21 129
test_0728_THIRD96.62 9698.40 8798.28 12397.10 5199.71 10195.70 11899.62 8399.58 33
EGC-MVSNET83.08 34877.93 35198.53 5099.57 2097.55 2698.33 3898.57 1704.71 38410.38 38598.90 6395.60 12799.50 18095.69 12099.61 8998.55 232
RPMNet94.68 23794.60 23494.90 27295.44 34988.15 28296.18 16898.86 10497.43 7194.10 30498.49 9779.40 32899.76 6195.69 12095.81 34496.81 334
TSAR-MVS + MP.97.42 10697.23 11498.00 9399.38 4895.00 12597.63 8698.20 21293.00 23998.16 11798.06 15595.89 11099.72 8695.67 12299.10 21399.28 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS97.96 5197.63 8498.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23897.64 19596.49 9399.72 8695.66 12399.37 16499.45 76
X-MVStestdata92.86 29090.83 31598.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23836.50 38296.49 9399.72 8695.66 12399.37 16499.45 76
3Dnovator+96.13 397.73 8497.59 9098.15 8198.11 20995.60 9298.04 6098.70 14898.13 4196.93 20698.45 10195.30 13699.62 14495.64 12598.96 22699.24 126
DELS-MVS96.17 17296.23 16795.99 21997.55 27290.04 24792.38 32698.52 17394.13 20396.55 22997.06 23894.99 14599.58 15695.62 12699.28 18998.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 5997.64 8298.83 2599.15 8197.50 2997.59 8998.84 11196.05 12797.49 16697.54 20297.07 5499.70 10895.61 12799.46 14199.30 109
ACMMPR97.95 5597.62 8698.94 1599.20 7597.56 2597.59 8998.83 11796.05 12797.46 17197.63 19696.77 7999.76 6195.61 12799.46 14199.49 61
UGNet96.81 14096.56 15097.58 11896.64 31393.84 16597.75 7797.12 27896.47 10993.62 31998.88 6593.22 18999.53 17295.61 12799.69 6999.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 4097.83 6398.92 2199.42 4297.46 3198.57 2099.05 5695.43 16397.41 17397.50 20697.98 1699.79 4495.58 13099.57 9999.50 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 11997.99 4994.51 29299.11 9084.00 34797.75 7799.65 797.38 7799.14 3498.42 10395.16 13999.96 295.52 13199.78 4899.58 33
SR-MVS-dyc-post98.14 3697.84 6099.02 698.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.60 8899.76 6195.49 13299.20 19899.26 121
RE-MVS-def97.88 5898.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.94 6495.49 13299.20 19899.26 121
Anonymous2024052997.96 5198.04 4697.71 11098.69 13694.28 15097.86 7098.31 20198.79 2199.23 2998.86 6795.76 12199.61 15195.49 13299.36 16799.23 127
DVP-MVScopyleft97.78 8197.65 7998.16 7999.24 6295.51 9796.74 13998.23 20795.92 13798.40 8798.28 12397.06 5599.71 10195.48 13599.52 12099.26 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6495.49 10196.74 13998.89 9399.75 6795.48 13599.52 12099.53 48
region2R97.92 6397.59 9098.92 2199.22 6797.55 2697.60 8798.84 11196.00 13297.22 17897.62 19796.87 7499.76 6195.48 13599.43 15399.46 72
pmmvs-eth3d96.49 15996.18 17097.42 13998.25 18694.29 14794.77 25298.07 23589.81 29097.97 14098.33 11293.11 19099.08 27795.46 13899.84 3598.89 191
SED-MVS97.94 5997.90 5498.07 8699.22 6795.35 10896.79 13698.83 11796.11 12499.08 3698.24 12997.87 2099.72 8695.44 13999.51 12599.14 144
test_241102_TWO98.83 11796.11 12498.62 6598.24 12996.92 6899.72 8695.44 13999.49 13299.49 61
APD-MVS_3200maxsize98.13 3997.90 5498.79 2998.79 12297.31 3697.55 9298.92 9097.72 5698.25 10798.13 14297.10 5199.75 6795.44 13999.24 19699.32 104
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
c3_l95.20 21295.32 19994.83 27796.19 32686.43 31891.83 33498.35 19693.47 22197.36 17497.26 22788.69 26799.28 24595.41 14599.36 16798.78 205
mvsany_test396.21 17095.93 18397.05 16197.40 28494.33 14695.76 19494.20 33089.10 29699.36 2199.60 693.97 17397.85 35595.40 14698.63 26298.99 173
ACMMPcopyleft98.05 4597.75 7198.93 1899.23 6497.60 2298.09 5798.96 8495.75 14897.91 14598.06 15596.89 7099.76 6195.32 14799.57 9999.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
miper_lstm_enhance94.81 22994.80 22494.85 27596.16 32886.45 31791.14 34798.20 21293.49 22097.03 19897.37 22084.97 30099.26 24995.28 14899.56 10298.83 200
MSLP-MVS++96.42 16496.71 14295.57 23997.82 23690.56 24395.71 19598.84 11194.72 18696.71 21897.39 21694.91 14898.10 35295.28 14899.02 22298.05 282
SteuartSystems-ACMMP98.02 4797.76 7098.79 2999.43 4097.21 4197.15 11498.90 9296.58 10198.08 12797.87 17697.02 5999.76 6195.25 15099.59 9499.40 90
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 11097.70 7296.35 20498.14 20595.13 12296.54 14898.92 9095.94 13699.19 3198.08 14897.74 2595.06 37495.24 15199.54 11198.87 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 6795.40 10398.14 22585.77 33498.36 9395.23 15299.51 12599.49 61
CP-MVS97.92 6397.56 9398.99 1098.99 10597.82 1597.93 6698.96 8496.11 12496.89 20997.45 20896.85 7599.78 4795.19 15399.63 8299.38 95
LS3D97.77 8297.50 10098.57 4796.24 32297.58 2498.45 3198.85 10898.58 2697.51 16497.94 16895.74 12299.63 13995.19 15398.97 22598.51 235
SMA-MVScopyleft97.48 10197.11 11898.60 4598.83 11896.67 5396.74 13998.73 13991.61 26698.48 7998.36 10996.53 9099.68 12095.17 15599.54 11199.45 76
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 28492.79 28294.78 28095.44 34988.15 28296.18 16897.20 27384.94 34594.10 30498.57 8977.67 33699.39 21795.17 15595.81 34496.81 334
OPM-MVS97.54 9797.25 11298.41 5999.11 9096.61 5695.24 23098.46 17894.58 19398.10 12498.07 15097.09 5399.39 21795.16 15799.44 14599.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6697.53 9699.04 499.22 6797.87 1497.74 7998.78 13196.04 12997.10 18997.73 19096.53 9099.78 4795.16 15799.50 12999.46 72
DIV-MVS_self_test94.73 23094.64 23095.01 26595.86 33787.00 30991.33 34198.08 23193.34 22497.10 18997.34 22284.02 30799.31 23695.15 15999.55 10898.72 214
cl____94.73 23094.64 23095.01 26595.85 33887.00 30991.33 34198.08 23193.34 22497.10 18997.33 22384.01 30899.30 23995.14 16099.56 10298.71 217
MSP-MVS97.45 10396.92 13299.03 599.26 5897.70 1897.66 8398.89 9395.65 15198.51 7496.46 27692.15 21799.81 3795.14 16098.58 26799.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 12896.84 13597.41 14099.40 4693.26 18597.94 6595.31 32099.26 798.39 8999.18 3587.85 28099.62 14495.13 16299.09 21499.35 103
CANet95.86 18495.65 19496.49 19696.41 31990.82 23694.36 26398.41 18694.94 18092.62 34696.73 26292.68 20299.71 10195.12 16399.60 9298.94 179
CNVR-MVS96.92 13196.55 15198.03 9298.00 21895.54 9594.87 24898.17 21894.60 19096.38 23597.05 23995.67 12499.36 22595.12 16399.08 21599.19 134
eth_miper_zixun_eth94.89 22594.93 21494.75 28195.99 33486.12 32191.35 34098.49 17693.40 22297.12 18797.25 22886.87 28899.35 22895.08 16598.82 24498.78 205
GST-MVS97.82 7897.49 10198.81 2799.23 6497.25 3897.16 11398.79 12795.96 13497.53 16297.40 21296.93 6699.77 5695.04 16699.35 17299.42 87
DP-MVS97.87 7197.89 5797.81 10498.62 14594.82 12997.13 11798.79 12798.98 1798.74 6198.49 9795.80 12099.49 18495.04 16699.44 14599.11 154
D2MVS95.18 21395.17 20495.21 25597.76 25187.76 29594.15 27597.94 23989.77 29196.99 20197.68 19487.45 28299.14 26795.03 16899.81 4198.74 211
SR-MVS98.00 4897.66 7899.01 898.77 12597.93 1197.38 10498.83 11797.32 7998.06 13097.85 17796.65 8399.77 5695.00 16999.11 21199.32 104
FMVSNet296.72 14696.67 14596.87 17497.96 22091.88 21997.15 11498.06 23695.59 15598.50 7698.62 8689.51 26199.65 13394.99 17099.60 9299.07 161
SDMVSNet97.97 4998.26 3697.11 15699.41 4392.21 20696.92 12798.60 16498.58 2698.78 5599.39 1597.80 2299.62 14494.98 17199.86 2999.52 49
miper_ehance_all_eth94.69 23594.70 22794.64 28395.77 34186.22 32091.32 34398.24 20691.67 26597.05 19696.65 26688.39 27299.22 25894.88 17298.34 27698.49 238
XVG-OURS-SEG-HR97.38 10897.07 12298.30 6899.01 10497.41 3494.66 25699.02 6595.20 17098.15 11997.52 20498.83 498.43 33694.87 17396.41 33899.07 161
MVS_111021_HR96.73 14596.54 15397.27 14898.35 17793.66 17393.42 30398.36 19394.74 18596.58 22596.76 26196.54 8998.99 28794.87 17399.27 19199.15 141
test_040297.84 7497.97 5097.47 13399.19 7794.07 15696.71 14498.73 13998.66 2498.56 7198.41 10496.84 7699.69 11594.82 17599.81 4198.64 222
MVS_111021_LR96.82 13996.55 15197.62 11798.27 18495.34 11093.81 29398.33 19794.59 19296.56 22796.63 26796.61 8698.73 31094.80 17699.34 17598.78 205
WR-MVS96.90 13396.81 13797.16 15398.56 15392.20 20994.33 26498.12 22797.34 7898.20 11197.33 22392.81 19799.75 6794.79 17799.81 4199.54 45
ACMH+93.58 1098.23 3398.31 3297.98 9499.39 4795.22 11897.55 9299.20 2998.21 3999.25 2898.51 9698.21 1199.40 21394.79 17799.72 6299.32 104
thisisatest053092.71 29391.76 30095.56 24198.42 17288.23 27996.03 17787.35 37494.04 20896.56 22795.47 31464.03 37999.77 5694.78 17999.11 21198.68 221
PGM-MVS97.88 7097.52 9798.96 1399.20 7597.62 2197.09 11999.06 5495.45 16197.55 16197.94 16897.11 5099.78 4794.77 18099.46 14199.48 67
TSAR-MVS + GP.96.47 16196.12 17197.49 13197.74 25695.23 11594.15 27596.90 28693.26 22798.04 13396.70 26394.41 16298.89 29694.77 18099.14 20598.37 247
VNet96.84 13596.83 13696.88 17398.06 21092.02 21696.35 15797.57 26597.70 5997.88 14897.80 18392.40 21499.54 17094.73 18298.96 22699.08 159
APD_test197.95 5597.68 7698.75 3199.60 1798.60 597.21 11299.08 5096.57 10498.07 12998.38 10896.22 10599.14 26794.71 18399.31 18598.52 234
VPNet97.26 11697.49 10196.59 18999.47 3690.58 24196.27 16198.53 17297.77 5198.46 8298.41 10494.59 15699.68 12094.61 18499.29 18899.52 49
GBi-Net96.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
test196.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
FMVSNet395.26 21094.94 21296.22 21196.53 31690.06 24695.99 18097.66 25794.11 20597.99 13697.91 17280.22 32799.63 13994.60 18599.44 14598.96 176
SF-MVS97.60 9397.39 10498.22 7598.93 11095.69 8897.05 12199.10 4495.32 16697.83 15497.88 17596.44 9799.72 8694.59 18899.39 16299.25 125
XXY-MVS97.54 9797.70 7297.07 16099.46 3792.21 20697.22 11199.00 7494.93 18298.58 7098.92 5997.31 4199.41 21194.44 18999.43 15399.59 32
UnsupCasMVSNet_eth95.91 18295.73 19196.44 19898.48 16691.52 22695.31 22698.45 17995.76 14697.48 16897.54 20289.53 26098.69 31594.43 19094.61 35999.13 146
LPG-MVS_test97.94 5997.67 7798.74 3499.15 8197.02 4297.09 11999.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
LGP-MVS_train98.74 3499.15 8197.02 4299.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
DeepPCF-MVS94.58 596.90 13396.43 15998.31 6797.48 27697.23 4092.56 32198.60 16492.84 24698.54 7297.40 21296.64 8598.78 30594.40 19399.41 16098.93 183
XVG-ACMP-BASELINE97.58 9597.28 11198.49 5299.16 7996.90 4696.39 15398.98 8095.05 17898.06 13098.02 15995.86 11199.56 16394.37 19499.64 8099.00 170
RPSCF97.87 7197.51 9898.95 1499.15 8198.43 697.56 9199.06 5496.19 12198.48 7998.70 7994.72 15099.24 25494.37 19499.33 18099.17 138
CSCG97.40 10797.30 10997.69 11398.95 10794.83 12897.28 10798.99 7796.35 11498.13 12195.95 30195.99 10899.66 13194.36 19699.73 5898.59 228
HPM-MVS++copyleft96.99 12596.38 16298.81 2798.64 13997.59 2395.97 18298.20 21295.51 15995.06 28296.53 27294.10 16999.70 10894.29 19799.15 20499.13 146
XVG-OURS97.12 11996.74 14198.26 7098.99 10597.45 3293.82 29199.05 5695.19 17198.32 10097.70 19295.22 13898.41 33794.27 19898.13 28598.93 183
jason94.39 25194.04 25695.41 25198.29 18087.85 29292.74 31896.75 29285.38 33995.29 27896.15 29088.21 27499.65 13394.24 19999.34 17598.74 211
jason: jason.
CVMVSNet92.33 29992.79 28290.95 34797.26 29475.84 37895.29 22892.33 35081.86 35696.27 24298.19 13681.44 31998.46 33594.23 20098.29 27998.55 232
EIA-MVS96.04 17795.77 19096.85 17597.80 24192.98 19096.12 17299.16 3494.65 18893.77 31491.69 36595.68 12399.67 12594.18 20198.85 24097.91 291
ET-MVSNet_ETH3D91.12 31489.67 32695.47 24696.41 31989.15 26391.54 33790.23 36689.07 29786.78 37792.84 35169.39 37299.44 19994.16 20296.61 33597.82 298
cl2293.25 28592.84 28194.46 29494.30 36286.00 32291.09 34996.64 29790.74 27795.79 26396.31 28478.24 33398.77 30694.15 20398.34 27698.62 225
MCST-MVS96.24 16995.80 18897.56 11998.75 12694.13 15594.66 25698.17 21890.17 28696.21 24696.10 29595.14 14099.43 20194.13 20498.85 24099.13 146
COLMAP_ROBcopyleft94.48 698.25 3298.11 3998.64 4399.21 7497.35 3597.96 6399.16 3498.34 3398.78 5598.52 9497.32 4099.45 19694.08 20599.67 7599.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 16695.98 17997.43 13798.25 18693.85 16496.74 13994.41 32897.72 5698.37 9098.03 15887.15 28599.53 17294.06 20699.07 21798.92 186
Effi-MVS+-dtu96.81 14096.09 17398.99 1096.90 31098.69 496.42 15298.09 23095.86 14295.15 28195.54 31294.26 16699.81 3794.06 20698.51 27198.47 239
ambc96.56 19398.23 18991.68 22497.88 6998.13 22698.42 8598.56 9194.22 16799.04 28194.05 20899.35 17298.95 177
our_test_394.20 25894.58 23793.07 32496.16 32881.20 36290.42 35696.84 28790.72 27897.14 18597.13 23390.47 24299.11 27394.04 20998.25 28098.91 187
pmmvs594.63 24094.34 24795.50 24497.63 26688.34 27794.02 28197.13 27787.15 31895.22 28097.15 23287.50 28199.27 24893.99 21099.26 19298.88 195
DPE-MVScopyleft97.64 9097.35 10798.50 5198.85 11796.18 6995.21 23298.99 7795.84 14398.78 5598.08 14896.84 7699.81 3793.98 21199.57 9999.52 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 24894.84 22093.46 31696.16 32882.10 35690.59 35497.48 26790.53 28097.01 20097.59 19991.01 23599.36 22593.97 21299.18 20298.94 179
tfpnnormal97.72 8597.97 5096.94 16899.26 5892.23 20597.83 7298.45 17998.25 3799.13 3598.66 8296.65 8399.69 11593.92 21399.62 8398.91 187
LFMVS95.32 20794.88 21896.62 18798.03 21191.47 22797.65 8490.72 36299.11 997.89 14798.31 11479.20 32999.48 18793.91 21499.12 21098.93 183
EPP-MVSNet96.84 13596.58 14897.65 11599.18 7893.78 16898.68 1496.34 29897.91 4997.30 17598.06 15588.46 27099.85 2793.85 21599.40 16199.32 104
Fast-Effi-MVS+-dtu96.44 16296.12 17197.39 14297.18 29894.39 14295.46 21198.73 13996.03 13194.72 29094.92 32596.28 10499.69 11593.81 21697.98 29098.09 272
PHI-MVS96.96 12996.53 15498.25 7397.48 27696.50 5996.76 13898.85 10893.52 21996.19 24896.85 25295.94 10999.42 20293.79 21799.43 15398.83 200
miper_enhance_ethall93.14 28792.78 28494.20 30393.65 37185.29 33089.97 36097.85 24485.05 34196.15 25194.56 33085.74 29499.14 26793.74 21898.34 27698.17 271
DeepC-MVS_fast94.34 796.74 14396.51 15697.44 13697.69 25994.15 15496.02 17898.43 18293.17 23497.30 17597.38 21895.48 12999.28 24593.74 21899.34 17598.88 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 26792.69 28697.74 10897.80 24195.38 10595.57 20995.46 31891.26 27292.64 34496.10 29574.67 35299.55 16793.72 22096.97 32498.30 258
MP-MVScopyleft97.64 9097.18 11699.00 999.32 5597.77 1797.49 9898.73 13996.27 11595.59 27197.75 18796.30 10299.78 4793.70 22199.48 13699.45 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 18195.80 18896.42 20199.28 5790.62 24095.31 22699.08 5088.40 30696.97 20498.17 13992.11 21999.78 4793.64 22299.21 19798.86 198
lupinMVS93.77 26893.28 27095.24 25497.68 26087.81 29392.12 32996.05 30184.52 34894.48 29795.06 32186.90 28699.63 13993.62 22399.13 20798.27 262
NCCC96.52 15895.99 17898.10 8597.81 23795.68 8995.00 24498.20 21295.39 16495.40 27696.36 28293.81 17799.45 19693.55 22498.42 27499.17 138
test_vis1_rt94.03 26493.65 26495.17 25895.76 34293.42 18093.97 28698.33 19784.68 34693.17 33295.89 30392.53 21194.79 37593.50 22594.97 35597.31 318
ETV-MVS96.13 17495.90 18496.82 17797.76 25193.89 16295.40 21798.95 8695.87 14195.58 27291.00 37196.36 10199.72 8693.36 22698.83 24396.85 330
FA-MVS(test-final)94.91 22494.89 21794.99 26797.51 27488.11 28698.27 4495.20 32192.40 25696.68 21998.60 8783.44 31099.28 24593.34 22798.53 26897.59 308
MDA-MVSNet_test_wron94.73 23094.83 22294.42 29597.48 27685.15 33390.28 35895.87 30792.52 25197.48 16897.76 18491.92 22699.17 26493.32 22896.80 33198.94 179
YYNet194.73 23094.84 22094.41 29697.47 28085.09 33590.29 35795.85 30892.52 25197.53 16297.76 18491.97 22399.18 26093.31 22996.86 32898.95 177
pmmvs494.82 22894.19 25296.70 18497.42 28392.75 19792.09 33196.76 29186.80 32495.73 26897.22 22989.28 26498.89 29693.28 23099.14 20598.46 241
CANet_DTU94.65 23994.21 25195.96 22195.90 33689.68 25293.92 28897.83 24893.19 23090.12 36395.64 30988.52 26999.57 16293.27 23199.47 13898.62 225
ACMP92.54 1397.47 10297.10 11998.55 4999.04 10196.70 5196.24 16598.89 9393.71 21697.97 14097.75 18797.44 3599.63 13993.22 23299.70 6899.32 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 17196.01 17696.71 18397.43 28292.19 21096.12 17299.10 4495.45 16193.33 33094.71 32897.23 4899.56 16393.21 23397.54 31298.37 247
MDA-MVSNet-bldmvs95.69 18995.67 19295.74 23298.48 16688.76 27292.84 31397.25 27196.00 13297.59 16097.95 16791.38 23199.46 19293.16 23496.35 33998.99 173
IS-MVSNet96.93 13096.68 14497.70 11199.25 6194.00 15998.57 2096.74 29398.36 3298.14 12097.98 16488.23 27399.71 10193.10 23599.72 6299.38 95
9.1496.69 14398.53 15796.02 17898.98 8093.23 22897.18 18397.46 20796.47 9599.62 14492.99 23699.32 182
MS-PatchMatch94.83 22794.91 21694.57 28996.81 31187.10 30894.23 27097.34 27088.74 30397.14 18597.11 23591.94 22598.23 34892.99 23697.92 29298.37 247
Patchmtry95.03 22194.59 23696.33 20594.83 35690.82 23696.38 15597.20 27396.59 10097.49 16698.57 8977.67 33699.38 22092.95 23899.62 8398.80 203
sd_testset97.97 4998.12 3897.51 12499.41 4393.44 17997.96 6398.25 20498.58 2698.78 5599.39 1598.21 1199.56 16392.65 23999.86 2999.52 49
Fast-Effi-MVS+95.49 19795.07 20896.75 18197.67 26392.82 19294.22 27198.60 16491.61 26693.42 32892.90 35096.73 8199.70 10892.60 24097.89 29597.74 301
HQP_MVS96.66 15196.33 16597.68 11498.70 13494.29 14796.50 14998.75 13696.36 11296.16 24996.77 25991.91 22799.46 19292.59 24199.20 19899.28 116
plane_prior598.75 13699.46 19292.59 24199.20 19899.28 116
mvsany_test193.47 27993.03 27594.79 27994.05 36892.12 21190.82 35290.01 36885.02 34397.26 17798.28 12393.57 18297.03 36492.51 24395.75 34995.23 360
GA-MVS92.83 29192.15 29594.87 27496.97 30587.27 30590.03 35996.12 30091.83 26494.05 30794.57 32976.01 34898.97 29392.46 24497.34 32198.36 252
CPTT-MVS96.69 14996.08 17498.49 5298.89 11396.64 5597.25 10898.77 13292.89 24596.01 25597.13 23392.23 21699.67 12592.24 24599.34 17599.17 138
EPNet93.72 27092.62 28997.03 16487.61 38792.25 20496.27 16191.28 35696.74 9487.65 37397.39 21685.00 29999.64 13692.14 24699.48 13699.20 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 31798.37 9097.44 20997.00 6096.78 37092.01 24799.25 19399.21 129
APD-MVScopyleft97.00 12496.53 15498.41 5998.55 15496.31 6696.32 15998.77 13292.96 24497.44 17297.58 20195.84 11299.74 7691.96 24899.35 17299.19 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 21994.79 22595.82 22997.51 27489.79 25191.14 34796.82 28993.05 23796.72 21796.40 28090.82 23899.16 26591.95 24998.66 25998.50 237
test_prior293.33 30794.21 20194.02 30896.25 28693.64 18191.90 25098.96 226
test-LLR89.97 32689.90 32490.16 35194.24 36474.98 37989.89 36189.06 37092.02 25989.97 36490.77 37373.92 35598.57 32691.88 25197.36 31996.92 325
test-mter87.92 34287.17 34390.16 35194.24 36474.98 37989.89 36189.06 37086.44 32789.97 36490.77 37354.96 38998.57 32691.88 25197.36 31996.92 325
MVP-Stereo95.69 18995.28 20096.92 17098.15 20393.03 18995.64 20598.20 21290.39 28296.63 22497.73 19091.63 22999.10 27591.84 25397.31 32298.63 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 25993.42 26896.23 20998.59 14990.85 23594.24 26998.85 10885.49 33592.97 33594.94 32386.01 29299.64 13691.78 25497.92 29298.20 268
train_agg95.46 20194.66 22897.88 10097.84 23395.23 11593.62 29798.39 18987.04 31993.78 31295.99 29794.58 15799.52 17591.76 25598.90 23398.89 191
LF4IMVS96.07 17595.63 19597.36 14398.19 19395.55 9495.44 21298.82 12592.29 25795.70 26996.55 27092.63 20598.69 31591.75 25699.33 18097.85 296
N_pmnet95.18 21394.23 24998.06 8897.85 22896.55 5892.49 32291.63 35589.34 29398.09 12597.41 21190.33 24599.06 27991.58 25799.31 18598.56 230
AllTest97.20 11896.92 13298.06 8899.08 9396.16 7097.14 11699.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
TestCases98.06 8899.08 9396.16 7099.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
test9_res91.29 26098.89 23699.00 170
xiu_mvs_v2_base94.22 25494.63 23292.99 32897.32 29284.84 33992.12 32997.84 24691.96 26194.17 30293.43 34196.07 10799.71 10191.27 26197.48 31594.42 364
PS-MVSNAJ94.10 26094.47 24293.00 32797.35 28784.88 33791.86 33397.84 24691.96 26194.17 30292.50 35795.82 11599.71 10191.27 26197.48 31594.40 365
tpm91.08 31690.85 31491.75 34395.33 35278.09 36895.03 24391.27 35788.75 30293.53 32397.40 21271.24 36599.30 23991.25 26393.87 36397.87 295
OPU-MVS97.64 11698.01 21495.27 11396.79 13697.35 22196.97 6298.51 33291.21 26499.25 19399.14 144
ZD-MVS98.43 17195.94 7998.56 17190.72 27896.66 22197.07 23795.02 14499.74 7691.08 26598.93 231
tpmrst90.31 32190.61 31989.41 35494.06 36772.37 38495.06 24093.69 33288.01 31192.32 34996.86 25177.45 33898.82 30191.04 26687.01 37797.04 322
sss94.22 25493.72 26395.74 23297.71 25889.95 24993.84 29096.98 28388.38 30793.75 31595.74 30587.94 27598.89 29691.02 26798.10 28698.37 247
ITE_SJBPF97.85 10298.64 13996.66 5498.51 17595.63 15297.22 17897.30 22595.52 12898.55 32990.97 26898.90 23398.34 253
Test_1112_low_res93.53 27892.86 27995.54 24398.60 14788.86 26892.75 31698.69 14982.66 35592.65 34396.92 24984.75 30199.56 16390.94 26997.76 29998.19 269
TESTMET0.1,187.20 34586.57 34789.07 35593.62 37272.84 38389.89 36187.01 37685.46 33789.12 36990.20 37556.00 38797.72 35890.91 27096.92 32596.64 338
FMVSNet593.39 28192.35 29196.50 19595.83 33990.81 23897.31 10598.27 20292.74 24796.27 24298.28 12362.23 38199.67 12590.86 27199.36 16799.03 166
PatchmatchNetpermissive91.98 30691.87 29792.30 34094.60 35979.71 36695.12 23493.59 33789.52 29293.61 32097.02 24177.94 33499.18 26090.84 27294.57 36198.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 20095.07 20896.69 18598.27 18492.53 19991.36 33998.67 15491.22 27395.78 26594.12 33895.65 12598.98 28990.81 27399.72 6298.57 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 30791.35 30493.51 31594.27 36385.60 32588.86 36998.61 16379.32 36892.16 35091.44 36789.22 26598.12 35190.80 27497.47 31796.82 333
test20.0396.58 15696.61 14696.48 19798.49 16491.72 22395.68 19997.69 25496.81 9298.27 10697.92 17194.18 16898.71 31390.78 27599.66 7799.00 170
test_yl94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
DCV-MVSNet94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
EPMVS89.26 33288.55 33691.39 34592.36 38079.11 36795.65 20279.86 38388.60 30493.12 33396.53 27270.73 36998.10 35290.75 27689.32 37496.98 323
旧先验293.35 30677.95 37395.77 26798.67 31990.74 279
USDC94.56 24394.57 23994.55 29097.78 24986.43 31892.75 31698.65 16185.96 33096.91 20897.93 17090.82 23898.74 30990.71 28099.59 9498.47 239
OpenMVScopyleft94.22 895.48 19995.20 20296.32 20697.16 29991.96 21897.74 7998.84 11187.26 31694.36 29998.01 16193.95 17499.67 12590.70 28198.75 25097.35 317
Patchmatch-test93.60 27693.25 27194.63 28496.14 33187.47 29996.04 17694.50 32793.57 21896.47 23196.97 24476.50 34498.61 32390.67 28298.41 27597.81 300
thisisatest051590.43 32089.18 33294.17 30597.07 30385.44 32789.75 36587.58 37388.28 30893.69 31891.72 36465.27 37799.58 15690.59 28398.67 25797.50 312
DP-MVS Recon95.55 19695.13 20596.80 17898.51 16093.99 16094.60 25898.69 14990.20 28595.78 26596.21 28892.73 20198.98 28990.58 28498.86 23997.42 314
TinyColmap96.00 18096.34 16494.96 26997.90 22687.91 28994.13 27898.49 17694.41 19698.16 11797.76 18496.29 10398.68 31890.52 28599.42 15698.30 258
BP-MVS90.51 286
HQP-MVS95.17 21594.58 23796.92 17097.85 22892.47 20094.26 26598.43 18293.18 23192.86 33795.08 31990.33 24599.23 25690.51 28698.74 25199.05 165
OMC-MVS96.48 16096.00 17797.91 9798.30 17996.01 7894.86 24998.60 16491.88 26397.18 18397.21 23096.11 10699.04 28190.49 28899.34 17598.69 218
ab-mvs96.59 15496.59 14796.60 18898.64 13992.21 20698.35 3597.67 25594.45 19596.99 20198.79 6994.96 14799.49 18490.39 28999.07 21798.08 273
HyFIR lowres test93.72 27092.65 28796.91 17298.93 11091.81 22291.23 34598.52 17382.69 35496.46 23296.52 27480.38 32699.90 1490.36 29098.79 24699.03 166
agg_prior290.34 29198.90 23399.10 158
LCM-MVSNet-Re97.33 11397.33 10897.32 14598.13 20893.79 16796.99 12499.65 796.74 9499.47 1598.93 5896.91 6999.84 3090.11 29299.06 22098.32 254
CDS-MVSNet94.88 22694.12 25497.14 15597.64 26593.57 17593.96 28797.06 28190.05 28796.30 24196.55 27086.10 29199.47 18990.10 29399.31 18598.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 20294.65 22997.84 10398.28 18294.96 12693.73 29598.33 19785.03 34295.44 27496.60 26895.31 13599.44 19990.01 29499.13 20799.11 154
baseline193.14 28792.64 28894.62 28597.34 28987.20 30696.67 14693.02 34194.71 18796.51 23095.83 30481.64 31798.60 32590.00 29588.06 37698.07 275
TAPA-MVS93.32 1294.93 22394.23 24997.04 16398.18 19694.51 13895.22 23198.73 13981.22 36196.25 24495.95 30193.80 17898.98 28989.89 29698.87 23797.62 305
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 29691.08 30996.30 20893.12 37592.81 19390.58 35595.96 30579.17 36991.85 35392.27 35890.29 24998.66 32089.85 29796.68 33497.43 313
PVSNet_BlendedMVS95.02 22294.93 21495.27 25397.79 24687.40 30294.14 27798.68 15188.94 30094.51 29598.01 16193.04 19299.30 23989.77 29899.49 13299.11 154
PVSNet_Blended93.96 26593.65 26494.91 27097.79 24687.40 30291.43 33898.68 15184.50 34994.51 29594.48 33493.04 19299.30 23989.77 29898.61 26498.02 285
MSDG95.33 20695.13 20595.94 22597.40 28491.85 22091.02 35098.37 19295.30 16796.31 24095.99 29794.51 16098.38 34089.59 30097.65 30997.60 307
PMVScopyleft89.60 1796.71 14896.97 12795.95 22399.51 3197.81 1697.42 10397.49 26697.93 4895.95 25698.58 8896.88 7296.91 36789.59 30099.36 16793.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 24510.37 38676.21 34799.04 28189.47 302
SCA93.38 28293.52 26792.96 32996.24 32281.40 36193.24 30894.00 33191.58 26894.57 29396.97 24487.94 27599.42 20289.47 30297.66 30898.06 279
tpmvs90.79 31990.87 31390.57 35092.75 37976.30 37695.79 19393.64 33691.04 27591.91 35296.26 28577.19 34298.86 30089.38 30489.85 37396.56 341
Anonymous2023120695.27 20995.06 21095.88 22798.72 12989.37 25895.70 19697.85 24488.00 31296.98 20397.62 19791.95 22499.34 23089.21 30599.53 11598.94 179
CHOSEN 1792x268894.10 26093.41 26996.18 21399.16 7990.04 24792.15 32898.68 15179.90 36696.22 24597.83 17887.92 27999.42 20289.18 30699.65 7899.08 159
114514_t93.96 26593.22 27296.19 21299.06 9690.97 23495.99 18098.94 8773.88 37893.43 32796.93 24792.38 21599.37 22389.09 30799.28 18998.25 264
pmmvs390.00 32488.90 33493.32 31794.20 36685.34 32891.25 34492.56 34978.59 37093.82 31195.17 31867.36 37698.69 31589.08 30898.03 28995.92 349
testdata95.70 23598.16 20190.58 24197.72 25380.38 36495.62 27097.02 24192.06 22298.98 28989.06 30998.52 26997.54 309
MDTV_nov1_ep1391.28 30594.31 36173.51 38294.80 25093.16 34086.75 32593.45 32697.40 21276.37 34598.55 32988.85 31096.43 337
PMMVS293.66 27394.07 25592.45 33897.57 26980.67 36486.46 37296.00 30393.99 20997.10 18997.38 21889.90 25297.82 35688.76 31199.47 13898.86 198
QAPM95.88 18395.57 19796.80 17897.90 22691.84 22198.18 5398.73 13988.41 30596.42 23398.13 14294.73 14999.75 6788.72 31298.94 22998.81 202
CHOSEN 280x42089.98 32589.19 33192.37 33995.60 34681.13 36386.22 37397.09 27981.44 36087.44 37493.15 34273.99 35399.47 18988.69 31399.07 21796.52 342
testgi96.07 17596.50 15794.80 27899.26 5887.69 29695.96 18498.58 16995.08 17698.02 13596.25 28697.92 1797.60 36088.68 31498.74 25199.11 154
CostFormer89.75 32989.25 32791.26 34694.69 35878.00 37095.32 22591.98 35281.50 35990.55 35996.96 24671.06 36798.89 29688.59 31592.63 36796.87 328
UnsupCasMVSNet_bld94.72 23494.26 24896.08 21798.62 14590.54 24493.38 30598.05 23790.30 28397.02 19996.80 25889.54 25899.16 26588.44 31696.18 34198.56 230
TAMVS95.49 19794.94 21297.16 15398.31 17893.41 18195.07 23996.82 28991.09 27497.51 16497.82 18189.96 25199.42 20288.42 31799.44 14598.64 222
Vis-MVSNet (Re-imp)95.11 21694.85 21995.87 22899.12 8989.17 26197.54 9794.92 32396.50 10696.58 22597.27 22683.64 30999.48 18788.42 31799.67 7598.97 175
EPNet_dtu91.39 31390.75 31693.31 31890.48 38482.61 35394.80 25092.88 34393.39 22381.74 38194.90 32681.36 32099.11 27388.28 31998.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 30890.69 31795.11 25993.80 37090.98 23394.16 27491.78 35496.38 11090.30 36299.30 2672.02 36498.90 29588.28 31990.17 37295.45 358
新几何197.25 15098.29 18094.70 13397.73 25277.98 37294.83 28996.67 26592.08 22199.45 19688.17 32198.65 26197.61 306
testdata299.46 19287.84 322
FE-MVS92.95 28992.22 29395.11 25997.21 29788.33 27898.54 2393.66 33589.91 28996.21 24698.14 14070.33 37099.50 18087.79 32398.24 28197.51 310
无先验93.20 30997.91 24080.78 36299.40 21387.71 32497.94 290
WTY-MVS93.55 27793.00 27795.19 25697.81 23787.86 29093.89 28996.00 30389.02 29894.07 30695.44 31686.27 29099.33 23287.69 32596.82 32998.39 245
原ACMM196.58 19098.16 20192.12 21198.15 22485.90 33293.49 32496.43 27792.47 21399.38 22087.66 32698.62 26398.23 265
BH-untuned94.69 23594.75 22694.52 29197.95 22387.53 29894.07 28097.01 28293.99 20997.10 18995.65 30892.65 20498.95 29487.60 32796.74 33297.09 320
PAPM_NR94.61 24194.17 25395.96 22198.36 17691.23 22995.93 18797.95 23892.98 24093.42 32894.43 33590.53 24198.38 34087.60 32796.29 34098.27 262
DPM-MVS93.68 27292.77 28596.42 20197.91 22492.54 19891.17 34697.47 26884.99 34493.08 33494.74 32789.90 25299.00 28587.54 32998.09 28797.72 302
MG-MVS94.08 26294.00 25794.32 29997.09 30285.89 32393.19 31095.96 30592.52 25194.93 28897.51 20589.54 25898.77 30687.52 33097.71 30398.31 256
F-COLMAP95.30 20894.38 24698.05 9198.64 13996.04 7595.61 20698.66 15689.00 29993.22 33196.40 28092.90 19699.35 22887.45 33197.53 31398.77 208
PatchMatch-RL94.61 24193.81 26297.02 16598.19 19395.72 8693.66 29697.23 27288.17 31094.94 28795.62 31091.43 23098.57 32687.36 33297.68 30696.76 336
IB-MVS85.98 2088.63 33686.95 34693.68 31295.12 35384.82 34090.85 35190.17 36787.55 31588.48 37191.34 36858.01 38299.59 15487.24 33393.80 36496.63 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 34088.05 33888.16 36192.85 37768.81 38694.17 27392.88 34385.47 33691.38 35596.14 29268.87 37398.81 30386.88 33483.80 38096.87 328
131492.38 29792.30 29292.64 33495.42 35185.15 33395.86 19096.97 28485.40 33890.62 35793.06 34891.12 23497.80 35786.74 33595.49 35294.97 362
CNLPA95.04 21994.47 24296.75 18197.81 23795.25 11494.12 27997.89 24294.41 19694.57 29395.69 30690.30 24898.35 34386.72 33698.76 24996.64 338
baseline289.65 33088.44 33793.25 32095.62 34582.71 35293.82 29185.94 37888.89 30187.35 37592.54 35671.23 36699.33 23286.01 33794.60 36097.72 302
BH-RMVSNet94.56 24394.44 24594.91 27097.57 26987.44 30193.78 29496.26 29993.69 21796.41 23496.50 27592.10 22099.00 28585.96 33897.71 30398.31 256
E-PMN89.52 33189.78 32588.73 35693.14 37477.61 37183.26 37692.02 35194.82 18493.71 31693.11 34375.31 35096.81 36885.81 33996.81 33091.77 375
API-MVS95.09 21895.01 21195.31 25296.61 31494.02 15896.83 13197.18 27595.60 15495.79 26394.33 33694.54 15998.37 34285.70 34098.52 26993.52 369
AdaColmapbinary95.11 21694.62 23396.58 19097.33 29194.45 14194.92 24698.08 23193.15 23593.98 31095.53 31394.34 16499.10 27585.69 34198.61 26496.20 348
ADS-MVSNet291.47 31290.51 32094.36 29795.51 34785.63 32495.05 24195.70 30983.46 35292.69 34196.84 25379.15 33099.41 21185.66 34290.52 37098.04 283
ADS-MVSNet90.95 31890.26 32293.04 32595.51 34782.37 35595.05 24193.41 33883.46 35292.69 34196.84 25379.15 33098.70 31485.66 34290.52 37098.04 283
MDTV_nov1_ep13_2view57.28 38894.89 24780.59 36394.02 30878.66 33285.50 34497.82 298
OpenMVS_ROBcopyleft91.80 1493.64 27593.05 27395.42 24997.31 29391.21 23095.08 23896.68 29681.56 35896.88 21096.41 27890.44 24499.25 25185.39 34597.67 30795.80 352
KD-MVS_2432*160088.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
miper_refine_blended88.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
PVSNet86.72 1991.10 31590.97 31291.49 34497.56 27178.04 36987.17 37194.60 32684.65 34792.34 34892.20 35987.37 28498.47 33485.17 34897.69 30597.96 288
PLCcopyleft91.02 1694.05 26392.90 27897.51 12498.00 21895.12 12394.25 26898.25 20486.17 32891.48 35495.25 31791.01 23599.19 25985.02 34996.69 33398.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 38171.40 38581.67 35790.11 37698.99 28784.86 350
CMPMVSbinary73.10 2392.74 29291.39 30396.77 18093.57 37394.67 13494.21 27297.67 25580.36 36593.61 32096.60 26882.85 31497.35 36184.86 35098.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 29891.69 30194.32 29996.23 32489.16 26292.27 32792.88 34384.39 35195.29 27896.35 28385.66 29596.74 37184.53 35297.56 31197.05 321
tpm cat188.01 34187.33 34290.05 35394.48 36076.28 37794.47 26194.35 32973.84 37989.26 36895.61 31173.64 35798.30 34684.13 35386.20 37895.57 357
MAR-MVS94.21 25693.03 27597.76 10796.94 30897.44 3396.97 12597.15 27687.89 31492.00 35192.73 35492.14 21899.12 27083.92 35497.51 31496.73 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 30191.83 29893.25 32096.18 32783.68 35096.27 16193.68 33476.97 37592.54 34799.18 3589.20 26698.55 32983.88 35598.60 26697.51 310
EMVS89.06 33389.22 32888.61 35793.00 37677.34 37382.91 37790.92 35994.64 18992.63 34591.81 36376.30 34697.02 36583.83 35696.90 32791.48 376
HY-MVS91.43 1592.58 29491.81 29994.90 27296.49 31788.87 26797.31 10594.62 32585.92 33190.50 36096.84 25385.05 29899.40 21383.77 35795.78 34796.43 344
test0.0.03 190.11 32289.21 32992.83 33193.89 36986.87 31291.74 33588.74 37292.02 25994.71 29191.14 37073.92 35594.48 37783.75 35892.94 36597.16 319
tpm288.47 33787.69 34190.79 34894.98 35577.34 37395.09 23691.83 35377.51 37489.40 36796.41 27867.83 37598.73 31083.58 35992.60 36896.29 346
MVS-HIRNet88.40 33890.20 32382.99 36397.01 30460.04 38793.11 31185.61 37984.45 35088.72 37099.09 4584.72 30298.23 34882.52 36096.59 33690.69 378
BH-w/o92.14 30291.94 29692.73 33397.13 30185.30 32992.46 32395.64 31189.33 29494.21 30192.74 35389.60 25698.24 34781.68 36194.66 35894.66 363
MIMVSNet93.42 28092.86 27995.10 26198.17 19988.19 28098.13 5593.69 33292.07 25895.04 28598.21 13580.95 32499.03 28481.42 36298.06 28898.07 275
TR-MVS92.54 29592.20 29493.57 31496.49 31786.66 31493.51 30194.73 32489.96 28894.95 28693.87 33990.24 25098.61 32381.18 36394.88 35695.45 358
dmvs_re92.08 30491.27 30694.51 29297.16 29992.79 19695.65 20292.64 34894.11 20592.74 34090.98 37283.41 31194.44 37880.72 36494.07 36296.29 346
thres600view792.03 30591.43 30293.82 30898.19 19384.61 34196.27 16190.39 36396.81 9296.37 23693.11 34373.44 36199.49 18480.32 36597.95 29197.36 315
PAPR92.22 30091.27 30695.07 26295.73 34488.81 26991.97 33297.87 24385.80 33390.91 35692.73 35491.16 23398.33 34479.48 36695.76 34898.08 273
MVS90.02 32389.20 33092.47 33794.71 35786.90 31195.86 19096.74 29364.72 38090.62 35792.77 35292.54 20998.39 33979.30 36795.56 35192.12 373
gg-mvs-nofinetune88.28 33986.96 34592.23 34192.84 37884.44 34398.19 5274.60 38599.08 1087.01 37699.47 1056.93 38398.23 34878.91 36895.61 35094.01 367
thres100view90091.76 30991.26 30893.26 31998.21 19084.50 34296.39 15390.39 36396.87 9096.33 23793.08 34773.44 36199.42 20278.85 36997.74 30095.85 350
tfpn200view991.55 31191.00 31093.21 32298.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30095.85 350
thres40091.68 31091.00 31093.71 31198.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30097.36 315
thres20091.00 31790.42 32192.77 33297.47 28083.98 34894.01 28291.18 35895.12 17595.44 27491.21 36973.93 35499.31 23677.76 37297.63 31095.01 361
wuyk23d93.25 28595.20 20287.40 36296.07 33395.38 10597.04 12294.97 32295.33 16599.70 698.11 14698.14 1491.94 38077.76 37299.68 7374.89 380
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30214.32 38364.27 38491.69 36573.45 36088.05 38276.06 37466.94 38293.54 368
PCF-MVS89.43 1892.12 30390.64 31896.57 19297.80 24193.48 17889.88 36498.45 17974.46 37796.04 25495.68 30790.71 24099.31 23673.73 37599.01 22496.91 327
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 34783.21 35088.34 35895.76 34274.97 38183.49 37592.70 34778.47 37187.94 37286.90 37983.38 31296.63 37273.44 37666.86 38393.40 370
GG-mvs-BLEND90.60 34991.00 38284.21 34698.23 4672.63 38882.76 37984.11 38056.14 38696.79 36972.20 37792.09 36990.78 377
FPMVS89.92 32788.63 33593.82 30898.37 17596.94 4591.58 33693.34 33988.00 31290.32 36197.10 23670.87 36891.13 38171.91 37896.16 34393.39 371
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32485.28 33181.78 37875.79 38486.01 32982.53 38091.88 36292.74 20087.47 38371.42 37994.86 35791.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38082.93 38130.25 381
PAPM87.64 34385.84 34993.04 32596.54 31584.99 33688.42 37095.57 31579.52 36783.82 37893.05 34980.57 32598.41 33762.29 38192.79 36695.71 353
dmvs_testset87.30 34486.99 34488.24 35996.71 31277.48 37294.68 25586.81 37792.64 25089.61 36687.01 37885.91 29393.12 37961.04 38288.49 37594.13 366
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33174.08 38752.51 38180.87 38288.03 37775.25 35170.63 38459.23 38384.94 37975.62 379
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32197.54 340.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1150.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3230.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1898.20 799.03 799.25 2598.96 1898.87 48
test_one_060199.05 10095.50 10098.87 10197.21 8398.03 13498.30 11896.93 66
eth-test20.00 392
eth-test0.00 392
test_241102_ONE99.22 6795.35 10898.83 11796.04 12999.08 3698.13 14297.87 2099.33 232
save fliter98.48 16694.71 13194.53 26098.41 18695.02 179
test072699.24 6295.51 9796.89 12998.89 9395.92 13798.64 6498.31 11497.06 55
GSMVS98.06 279
test_part299.03 10296.07 7498.08 127
sam_mvs177.80 33598.06 279
sam_mvs77.38 339
MTGPAbinary98.73 139
test_post10.87 38576.83 34399.07 278
patchmatchnet-post96.84 25377.36 34099.42 202
MTMP96.55 14774.60 385
TEST997.84 23395.23 11593.62 29798.39 18986.81 32393.78 31295.99 29794.68 15399.52 175
test_897.81 23795.07 12493.54 30098.38 19187.04 31993.71 31695.96 30094.58 15799.52 175
agg_prior97.80 24194.96 12698.36 19393.49 32499.53 172
test_prior495.38 10593.61 299
test_prior97.46 13497.79 24694.26 15298.42 18599.34 23098.79 204
新几何293.43 302
旧先验197.80 24193.87 16397.75 25197.04 24093.57 18298.68 25698.72 214
原ACMM292.82 314
test22298.17 19993.24 18692.74 31897.61 26475.17 37694.65 29296.69 26490.96 23798.66 25997.66 304
segment_acmp95.34 134
testdata192.77 31593.78 214
test1297.46 13497.61 26794.07 15697.78 25093.57 32293.31 18799.42 20298.78 24798.89 191
plane_prior798.70 13494.67 134
plane_prior698.38 17494.37 14491.91 227
plane_prior496.77 259
plane_prior394.51 13895.29 16896.16 249
plane_prior296.50 14996.36 112
plane_prior198.49 164
plane_prior94.29 14795.42 21494.31 20098.93 231
n20.00 393
nn0.00 393
door-mid98.17 218
test1198.08 231
door97.81 249
HQP5-MVS92.47 200
HQP-NCC97.85 22894.26 26593.18 23192.86 337
ACMP_Plane97.85 22894.26 26593.18 23192.86 337
HQP4-MVS92.87 33699.23 25699.06 163
HQP3-MVS98.43 18298.74 251
HQP2-MVS90.33 245
NP-MVS98.14 20593.72 16995.08 319
ACMMP++_ref99.52 120
ACMMP++99.55 108
Test By Simon94.51 160