This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
v7n98.73 1198.99 597.95 9899.64 1194.20 15798.67 1399.14 2899.08 1099.42 1599.23 2196.53 8499.91 1399.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 6398.54 2099.22 1596.23 11599.71 499.48 798.77 699.93 398.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 8099.68 994.82 13198.10 5099.21 1696.91 8899.75 299.45 995.82 10999.92 598.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6398.45 2799.12 3095.83 14299.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
v1097.55 8997.97 4396.31 21098.60 14089.64 25197.44 9199.02 5496.60 9798.72 5199.16 3093.48 18699.72 9098.76 699.92 1499.58 29
MVSFormer96.14 17096.36 15795.49 24797.68 25387.81 28798.67 1399.02 5496.50 10394.48 28796.15 28186.90 28399.92 598.73 799.13 20698.74 214
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6998.67 1399.02 5496.50 10399.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6699.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 1998.72 999.88 2399.65 24
v897.60 8698.06 3896.23 21398.71 12589.44 25597.43 9398.82 11697.29 8098.74 4999.10 3593.86 17799.68 12898.61 1099.94 899.56 37
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 2095.62 15099.35 1999.37 1297.38 3399.90 1498.59 1199.91 1799.77 8
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 699.02 1599.62 1099.36 1498.53 799.52 18498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124096.74 14097.02 12195.91 22998.18 18888.52 27095.39 20198.88 8793.15 23898.46 7098.40 8692.80 20099.71 10498.45 1399.49 12399.49 55
v119296.83 13497.06 11896.15 21898.28 17489.29 25795.36 20398.77 12393.73 21798.11 11198.34 8993.02 19799.67 13398.35 1499.58 8799.50 47
v192192096.72 14396.96 12495.99 22298.21 18388.79 26795.42 19798.79 11893.22 23298.19 10398.26 10692.68 20399.70 11398.34 1599.55 9999.49 55
Anonymous2023121198.55 1798.76 1397.94 9998.79 11494.37 14998.84 1099.15 2699.37 399.67 699.43 1195.61 12199.72 9098.12 1699.86 2599.73 15
v14419296.69 14696.90 12996.03 22198.25 17988.92 26295.49 19398.77 12393.05 24098.09 11598.29 10092.51 21299.70 11398.11 1799.56 9399.47 64
Anonymous2024052197.07 11797.51 8795.76 23499.35 4388.18 27797.78 6698.40 18397.11 8398.34 8399.04 4089.58 25699.79 4398.09 1899.93 1099.30 109
v114496.84 13197.08 11696.13 21998.42 16489.28 25895.41 19998.67 14994.21 20397.97 13098.31 9293.06 19399.65 14198.06 1999.62 7399.45 71
SixPastTwentyTwo97.49 9497.57 8397.26 15899.56 1792.33 20598.28 3796.97 28298.30 3499.45 1499.35 1688.43 26999.89 1798.01 2099.76 4499.54 40
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 2199.05 1399.17 2998.79 5595.47 12899.89 1797.95 2199.91 1799.75 13
RRT_MVS94.90 21994.07 24897.39 15093.18 36493.21 19095.26 21297.49 26393.94 21398.25 9597.85 15772.96 35599.84 2997.90 2299.78 4199.14 145
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1199.08 1097.87 14299.67 296.47 8999.92 597.88 2399.98 299.85 3
FC-MVSNet-test98.16 3398.37 2797.56 12699.49 2893.10 19298.35 3099.21 1698.43 2998.89 4098.83 5494.30 16799.81 3697.87 2499.91 1799.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8999.33 4595.21 12198.04 5399.46 997.32 7897.82 14799.11 3496.75 7399.86 2297.84 2599.36 16299.15 142
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 15996.28 16096.95 17299.41 3791.53 22597.65 7690.31 36098.89 1998.93 3999.36 1484.57 29899.92 597.81 2699.56 9399.39 88
v2v48296.78 13897.06 11895.95 22698.57 14488.77 26895.36 20398.26 19995.18 16897.85 14498.23 10992.58 20799.63 14697.80 2799.69 6299.45 71
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10398.49 2499.13 2999.22 899.22 2798.96 4597.35 3499.92 597.79 2899.93 1099.79 7
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9297.90 6199.08 3998.31 3399.02 3598.74 5997.68 2499.61 16097.77 2999.85 2899.70 18
pmmvs699.07 499.24 498.56 4999.81 296.38 6598.87 999.30 1299.01 1699.63 999.66 399.27 299.68 12897.75 3099.89 2299.62 26
ACMH93.61 998.44 2298.76 1397.51 13199.43 3493.54 18298.23 4099.05 4597.40 7599.37 1899.08 3798.79 599.47 19797.74 3199.71 5899.50 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7498.48 2699.10 3399.36 499.29 2399.06 3997.27 3899.93 397.71 3299.91 1799.70 18
DROMVSNet97.90 6197.94 4697.79 10998.66 13195.14 12298.31 3499.66 397.57 6395.95 24697.01 23296.99 5599.82 3397.66 3399.64 7098.39 245
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 9198.45 2799.15 2699.33 599.30 2199.00 4197.27 3899.92 597.64 3499.92 1499.75 13
test_part196.77 13996.53 14997.47 13998.04 20292.92 19697.93 5898.85 9698.83 2199.30 2199.07 3879.25 32099.79 4397.59 3599.93 1099.69 20
CP-MVSNet98.42 2398.46 2498.30 6999.46 3095.22 11998.27 3998.84 10199.05 1399.01 3698.65 6795.37 13199.90 1497.57 3699.91 1799.77 8
EI-MVSNet-UG-set97.32 10797.40 9497.09 16697.34 28292.01 21795.33 20697.65 25597.74 5398.30 9298.14 11895.04 14299.69 12197.55 3799.52 11099.58 29
ANet_high98.31 2898.94 696.41 20699.33 4589.64 25197.92 6099.56 799.27 699.66 899.50 697.67 2599.83 3297.55 3799.98 299.77 8
EI-MVSNet-Vis-set97.32 10797.39 9597.11 16497.36 27792.08 21595.34 20597.65 25597.74 5398.29 9398.11 12395.05 14099.68 12897.50 3999.50 11999.56 37
CS-MVS-test97.69 7997.49 9098.31 6798.48 15696.61 5797.21 10499.53 898.10 4196.05 24195.33 30895.49 12599.86 2297.49 4099.74 5098.45 241
CS-MVS98.08 3998.01 4198.29 7198.46 16196.58 6098.53 2299.69 298.07 4296.04 24297.18 21896.88 6699.86 2297.48 4199.74 5098.43 242
EU-MVSNet94.25 24994.47 23593.60 30498.14 19582.60 34597.24 10292.72 34085.08 33398.48 6798.94 4682.59 30698.76 31597.47 4299.53 10599.44 81
Regformer-497.53 9297.47 9397.71 11597.35 27893.91 16595.26 21298.14 21897.97 4598.34 8397.89 15295.49 12599.71 10497.41 4399.42 14899.51 46
V4297.04 11897.16 11196.68 19098.59 14291.05 23096.33 14698.36 18894.60 18997.99 12698.30 9693.32 18899.62 15497.40 4499.53 10599.38 90
KD-MVS_self_test97.86 6698.07 3697.25 15999.22 5992.81 19897.55 8398.94 7697.10 8498.85 4298.88 5195.03 14399.67 13397.39 4599.65 6899.26 122
lessismore_v097.05 16899.36 4292.12 21384.07 37298.77 4898.98 4385.36 29299.74 7997.34 4699.37 15999.30 109
FIs97.93 5698.07 3697.48 13899.38 4092.95 19598.03 5599.11 3198.04 4498.62 5398.66 6593.75 18199.78 4797.23 4799.84 2999.73 15
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6799.18 599.20 1899.67 299.73 399.65 499.15 399.86 2297.22 4899.92 1499.77 8
bset_n11_16_dypcd94.53 24193.95 25496.25 21297.56 26389.85 24888.52 36191.32 35094.90 18197.51 15596.38 27182.34 30799.78 4797.22 4899.80 3699.12 153
MVS_Test96.27 16496.79 13594.73 27796.94 30086.63 30796.18 15598.33 19394.94 17896.07 24098.28 10195.25 13699.26 25897.21 5097.90 29098.30 258
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 1098.85 2099.00 3799.20 2397.42 3299.59 16297.21 5099.76 4499.40 86
EG-PatchMatch MVS97.69 7997.79 5797.40 14999.06 9093.52 18395.96 16998.97 7294.55 19398.82 4498.76 5897.31 3699.29 25397.20 5299.44 13799.38 90
VPA-MVSNet98.27 2998.46 2497.70 11799.06 9093.80 17197.76 6999.00 6298.40 3099.07 3498.98 4396.89 6499.75 6997.19 5399.79 3899.55 39
Regformer-397.25 11197.29 10197.11 16497.35 27892.32 20695.26 21297.62 26097.67 6198.17 10497.89 15295.05 14099.56 17197.16 5499.42 14899.46 66
UniMVSNet (Re)97.83 6897.65 7198.35 6498.80 11395.86 8395.92 17399.04 5197.51 6898.22 9997.81 16394.68 15499.78 4797.14 5599.75 4899.41 85
pm-mvs198.47 2198.67 1797.86 10599.52 2394.58 14198.28 3799.00 6297.57 6399.27 2499.22 2298.32 999.50 18997.09 5699.75 4899.50 47
baseline97.44 9897.78 6096.43 20398.52 14990.75 23896.84 12199.03 5296.51 10297.86 14398.02 13696.67 7599.36 23497.09 5699.47 12999.19 135
IterMVS-SCA-FT95.86 18296.19 16394.85 27197.68 25385.53 31892.42 31697.63 25996.99 8598.36 8098.54 7487.94 27399.75 6997.07 5899.08 21499.27 121
UniMVSNet_NR-MVSNet97.83 6897.65 7198.37 6198.72 12295.78 8495.66 18599.02 5498.11 4098.31 9097.69 17694.65 15699.85 2697.02 5999.71 5899.48 61
DU-MVS97.79 7297.60 8098.36 6298.73 12095.78 8495.65 18898.87 8997.57 6398.31 9097.83 15994.69 15299.85 2697.02 5999.71 5899.46 66
RRT_test8_iter0592.46 28892.52 28492.29 33295.33 34277.43 36495.73 17998.55 16594.41 19597.46 16497.72 17357.44 37499.74 7996.92 6199.14 20299.69 20
EI-MVSNet96.63 15096.93 12595.74 23597.26 28788.13 28095.29 21097.65 25596.99 8597.94 13398.19 11492.55 20899.58 16496.91 6299.56 9399.50 47
IterMVS-LS96.92 12697.29 10195.79 23398.51 15088.13 28095.10 22098.66 15196.99 8598.46 7098.68 6492.55 20899.74 7996.91 6299.79 3899.50 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111194.53 24194.81 21693.72 30199.06 9081.94 35098.31 3483.87 37396.37 10898.49 6699.17 2981.49 30999.73 8596.64 6499.86 2599.49 55
APDe-MVS98.14 3498.03 4098.47 5598.72 12296.04 7798.07 5299.10 3395.96 13198.59 5898.69 6396.94 5899.81 3696.64 6499.58 8799.57 34
MP-MVS-pluss97.69 7997.36 9798.70 3999.50 2796.84 4995.38 20298.99 6592.45 25498.11 11198.31 9297.25 4199.77 5796.60 6699.62 7399.48 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 20196.07 17093.21 31396.29 31381.56 35194.60 24797.66 25393.30 22996.95 19698.91 4993.03 19699.38 22996.60 6697.30 31798.69 220
casdiffmvs97.50 9397.81 5696.56 19798.51 15091.04 23195.83 17799.09 3897.23 8198.33 8798.30 9697.03 5299.37 23296.58 6899.38 15899.28 117
Regformer-297.41 10097.24 10697.93 10097.21 28994.72 13494.85 23898.27 19797.74 5398.11 11197.50 19095.58 12399.69 12196.57 6999.31 18199.37 97
Regformer-197.27 10997.16 11197.61 12497.21 28993.86 16894.85 23898.04 23297.62 6298.03 12397.50 19095.34 13299.63 14696.52 7099.31 18199.35 100
TransMVSNet (Re)98.38 2598.67 1797.51 13199.51 2493.39 18698.20 4598.87 8998.23 3699.48 1299.27 1998.47 899.55 17596.52 7099.53 10599.60 27
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 3099.03 5295.88 13797.88 13998.22 11298.15 1299.74 7996.50 7299.62 7399.42 83
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 8198.49 2899.38 1799.14 3395.44 13099.84 2996.47 7399.80 3699.47 64
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8995.87 8296.73 13199.05 4598.67 2498.84 4398.45 8097.58 2899.88 1996.45 7499.86 2599.54 40
test250689.86 32089.16 32591.97 33498.95 10076.83 36798.54 2061.07 38196.20 11697.07 18699.16 3055.19 38099.69 12196.43 7599.83 3199.38 90
Gipumacopyleft98.07 4198.31 2997.36 15299.76 596.28 7098.51 2399.10 3398.76 2396.79 20299.34 1796.61 7998.82 30896.38 7699.50 11996.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 25293.93 25595.05 26295.83 33086.46 30895.18 21897.65 25592.41 25597.94 13398.00 14072.39 35699.58 16496.36 7799.56 9399.12 153
GeoE97.75 7597.70 6497.89 10298.88 10794.53 14297.10 11098.98 6895.75 14697.62 15097.59 18297.61 2799.77 5796.34 7899.44 13799.36 98
canonicalmvs97.23 11397.21 10997.30 15597.65 25794.39 14797.84 6499.05 4597.42 7196.68 20993.85 33397.63 2699.33 24296.29 7998.47 27098.18 270
alignmvs96.01 17695.52 19097.50 13497.77 24394.71 13596.07 16096.84 28597.48 6996.78 20694.28 33085.50 29199.40 22196.22 8098.73 25498.40 243
tttt051793.31 27692.56 28395.57 24198.71 12587.86 28497.44 9187.17 36895.79 14397.47 16396.84 24164.12 36999.81 3696.20 8199.32 17999.02 172
DeepC-MVS95.41 497.82 7097.70 6498.16 8198.78 11695.72 8696.23 15399.02 5493.92 21498.62 5398.99 4297.69 2399.62 15496.18 8299.87 2499.15 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.01 4597.66 6999.06 499.44 3297.90 1295.66 18598.73 13197.69 5997.90 13697.96 14295.81 11399.82 3396.13 8399.61 7999.45 71
MTAPA98.14 3497.84 5399.06 499.44 3297.90 1297.25 10098.73 13197.69 5997.90 13697.96 14295.81 11399.82 3396.13 8399.61 7999.45 71
ZNCC-MVS97.92 5797.62 7898.83 2699.32 4797.24 4197.45 9098.84 10195.76 14496.93 19797.43 19697.26 4099.79 4396.06 8599.53 10599.45 71
Patchmatch-RL test94.66 23494.49 23395.19 25798.54 14788.91 26392.57 31298.74 12991.46 26898.32 8897.75 16877.31 33398.81 31096.06 8599.61 7997.85 292
ACMMP_NAP97.89 6297.63 7698.67 4199.35 4396.84 4996.36 14498.79 11895.07 17397.88 13998.35 8897.24 4299.72 9096.05 8799.58 8799.45 71
v14896.58 15396.97 12295.42 25098.63 13687.57 29195.09 22297.90 23695.91 13698.24 9797.96 14293.42 18799.39 22696.04 8899.52 11099.29 116
ACMM93.33 1198.05 4297.79 5798.85 2599.15 7497.55 2796.68 13398.83 10895.21 16598.36 8098.13 11998.13 1499.62 15496.04 8899.54 10299.39 88
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 10397.25 10497.74 11398.69 12994.50 14597.04 11495.61 31198.59 2698.51 6398.72 6092.54 21099.58 16496.02 9099.49 12399.12 153
IterMVS95.42 19995.83 17994.20 29597.52 26683.78 34092.41 31797.47 26695.49 15698.06 11998.49 7787.94 27399.58 16496.02 9099.02 22199.23 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 17496.23 16195.46 24997.35 27888.03 28293.42 29399.08 3994.09 20996.66 21096.93 23693.85 17899.29 25396.01 9298.67 25699.06 166
PM-MVS97.36 10597.10 11498.14 8598.91 10596.77 5196.20 15498.63 15793.82 21598.54 6198.33 9093.98 17599.05 28695.99 9399.45 13698.61 228
Baseline_NR-MVSNet97.72 7797.79 5797.50 13499.56 1793.29 18795.44 19598.86 9298.20 3898.37 7799.24 2094.69 15299.55 17595.98 9499.79 3899.65 24
ECVR-MVScopyleft94.37 24794.48 23494.05 29898.95 10083.10 34298.31 3482.48 37496.20 11698.23 9899.16 3081.18 31299.66 13995.95 9599.83 3199.38 90
3Dnovator96.53 297.61 8597.64 7497.50 13497.74 24993.65 18098.49 2498.88 8796.86 9097.11 18098.55 7395.82 10999.73 8595.94 9699.42 14899.13 148
PatchT93.75 26493.57 26094.29 29495.05 34587.32 29796.05 16192.98 33697.54 6794.25 29098.72 6075.79 34199.24 26195.92 9795.81 33996.32 340
NR-MVSNet97.96 4797.86 5298.26 7298.73 12095.54 9698.14 4898.73 13197.79 4899.42 1597.83 15994.40 16599.78 4795.91 9899.76 4499.46 66
h-mvs3396.29 16395.63 18698.26 7298.50 15396.11 7596.90 11997.09 27796.58 9997.21 17398.19 11484.14 29999.78 4795.89 9996.17 33798.89 194
hse-mvs295.77 18495.09 20097.79 10997.84 22495.51 9895.66 18595.43 31696.58 9997.21 17396.16 28084.14 29999.54 17895.89 9996.92 32098.32 254
MSC_two_6792asdad98.22 7797.75 24695.34 11198.16 21599.75 6995.87 10199.51 11599.57 34
No_MVS98.22 7797.75 24695.34 11198.16 21599.75 6995.87 10199.51 11599.57 34
new-patchmatchnet95.67 18796.58 14392.94 32197.48 26880.21 35692.96 30498.19 21194.83 18298.82 4498.79 5593.31 18999.51 18895.83 10399.04 22099.12 153
FMVSNet197.95 5198.08 3597.56 12699.14 8293.67 17698.23 4098.66 15197.41 7499.00 3799.19 2495.47 12899.73 8595.83 10399.76 4499.30 109
patch_mono-296.59 15196.93 12595.55 24498.88 10787.12 30094.47 25299.30 1294.12 20796.65 21298.41 8394.98 14699.87 2195.81 10599.78 4199.66 22
DVP-MVS++97.96 4797.90 4798.12 8697.75 24695.40 10499.03 798.89 8196.62 9598.62 5398.30 9696.97 5699.75 6995.70 10699.25 19099.21 131
test_0728_THIRD96.62 9598.40 7498.28 10197.10 4599.71 10495.70 10699.62 7399.58 29
EGC-MVSNET83.08 34077.93 34398.53 5199.57 1697.55 2798.33 3398.57 1634.71 37610.38 37798.90 5095.60 12299.50 18995.69 10899.61 7998.55 233
RPMNet94.68 23394.60 22794.90 26895.44 33988.15 27896.18 15598.86 9297.43 7094.10 29498.49 7779.40 31999.76 6295.69 10895.81 33996.81 329
TSAR-MVS + MP.97.42 9997.23 10798.00 9699.38 4095.00 12697.63 7898.20 20693.00 24298.16 10598.06 13295.89 10499.72 9095.67 11099.10 21299.28 117
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7499.11 3197.76 5298.62 5398.27 10597.88 1999.80 4295.67 11099.50 11999.38 90
XVS97.96 4797.63 7698.94 1899.15 7497.66 2097.77 6798.83 10897.42 7196.32 22797.64 17896.49 8799.72 9095.66 11299.37 15999.45 71
X-MVStestdata92.86 28290.83 30798.94 1899.15 7497.66 2097.77 6798.83 10897.42 7196.32 22736.50 37496.49 8799.72 9095.66 11299.37 15999.45 71
3Dnovator+96.13 397.73 7697.59 8198.15 8498.11 20095.60 9498.04 5398.70 14198.13 3996.93 19798.45 8095.30 13599.62 15495.64 11498.96 22599.24 128
DELS-MVS96.17 16996.23 16195.99 22297.55 26590.04 24592.38 31898.52 16794.13 20696.55 21897.06 22794.99 14599.58 16495.62 11599.28 18698.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 5397.64 7498.83 2699.15 7497.50 3097.59 8098.84 10196.05 12497.49 15897.54 18597.07 4899.70 11395.61 11699.46 13299.30 109
ACMMPR97.95 5197.62 7898.94 1899.20 6797.56 2697.59 8098.83 10896.05 12497.46 16497.63 17996.77 7299.76 6295.61 11699.46 13299.49 55
UGNet96.81 13696.56 14597.58 12596.64 30593.84 17097.75 7097.12 27696.47 10693.62 31198.88 5193.22 19199.53 18095.61 11699.69 6299.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 3897.83 5598.92 2299.42 3697.46 3398.57 1799.05 4595.43 15997.41 16797.50 19097.98 1599.79 4395.58 11999.57 9099.50 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 11597.99 4294.51 28799.11 8484.00 33897.75 7099.65 497.38 7699.14 3098.42 8295.16 13899.96 295.52 12099.78 4199.58 29
SR-MVS-dyc-post98.14 3497.84 5399.02 998.81 11198.05 997.55 8398.86 9297.77 4998.20 10098.07 12796.60 8199.76 6295.49 12199.20 19599.26 122
RE-MVS-def97.88 5198.81 11198.05 997.55 8398.86 9297.77 4998.20 10098.07 12796.94 5895.49 12199.20 19599.26 122
Anonymous2024052997.96 4798.04 3997.71 11598.69 12994.28 15497.86 6398.31 19698.79 2299.23 2698.86 5395.76 11699.61 16095.49 12199.36 16299.23 129
DVP-MVScopyleft97.78 7397.65 7198.16 8199.24 5495.51 9896.74 12798.23 20295.92 13498.40 7498.28 10197.06 5099.71 10495.48 12499.52 11099.26 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7599.23 5695.49 10296.74 12798.89 8199.75 6995.48 12499.52 11099.53 43
region2R97.92 5797.59 8198.92 2299.22 5997.55 2797.60 7998.84 10196.00 12997.22 17197.62 18096.87 6899.76 6295.48 12499.43 14599.46 66
pmmvs-eth3d96.49 15696.18 16497.42 14798.25 17994.29 15194.77 24298.07 22989.81 28697.97 13098.33 9093.11 19299.08 28395.46 12799.84 2998.89 194
SED-MVS97.94 5397.90 4798.07 8999.22 5995.35 10996.79 12498.83 10896.11 12199.08 3298.24 10797.87 2099.72 9095.44 12899.51 11599.14 145
test_241102_TWO98.83 10896.11 12198.62 5398.24 10796.92 6299.72 9095.44 12899.49 12399.49 55
APD-MVS_3200maxsize98.13 3797.90 4798.79 3198.79 11497.31 3897.55 8398.92 7897.72 5698.25 9598.13 11997.10 4599.75 6995.44 12899.24 19399.32 103
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31091.83 32698.35 19293.47 22397.36 16897.26 21488.69 26699.28 25595.41 13499.36 16298.78 209
ACMMPcopyleft98.05 4297.75 6398.93 2199.23 5697.60 2398.09 5198.96 7395.75 14697.91 13598.06 13296.89 6499.76 6295.32 13599.57 9099.43 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117298.08 3997.76 6199.05 698.78 11698.07 797.41 9598.85 9697.57 6398.15 10797.96 14296.60 8199.76 6295.30 13699.18 19999.33 102
miper_lstm_enhance94.81 22494.80 21794.85 27196.16 32186.45 30991.14 33998.20 20693.49 22297.03 18997.37 20684.97 29599.26 25895.28 13799.56 9398.83 203
MSLP-MVS++96.42 16196.71 13795.57 24197.82 22790.56 24295.71 18098.84 10194.72 18596.71 20897.39 20294.91 14998.10 35695.28 13799.02 22198.05 282
SteuartSystems-ACMMP98.02 4497.76 6198.79 3199.43 3497.21 4397.15 10698.90 8096.58 9998.08 11797.87 15697.02 5399.76 6295.25 13999.59 8599.40 86
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 10397.70 6496.35 20798.14 19595.13 12396.54 13698.92 7895.94 13399.19 2898.08 12597.74 2295.06 37095.24 14099.54 10298.87 200
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 5995.40 10498.14 21885.77 32598.36 8095.23 14199.51 11599.49 55
CP-MVS97.92 5797.56 8498.99 1398.99 9897.82 1697.93 5898.96 7396.11 12196.89 20097.45 19496.85 6999.78 4795.19 14299.63 7299.38 90
LS3D97.77 7497.50 8998.57 4896.24 31597.58 2598.45 2798.85 9698.58 2797.51 15597.94 14795.74 11799.63 14695.19 14298.97 22498.51 235
SMA-MVScopyleft97.48 9597.11 11398.60 4698.83 11096.67 5496.74 12798.73 13191.61 26598.48 6798.36 8796.53 8499.68 12895.17 14499.54 10299.45 71
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 27792.79 27594.78 27595.44 33988.15 27896.18 15597.20 27184.94 33794.10 29498.57 7077.67 32899.39 22695.17 14495.81 33996.81 329
OPM-MVS97.54 9097.25 10498.41 5899.11 8496.61 5795.24 21598.46 17294.58 19298.10 11498.07 12797.09 4799.39 22695.16 14699.44 13799.21 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6097.53 8599.04 799.22 5997.87 1597.74 7298.78 12296.04 12697.10 18197.73 17196.53 8499.78 4795.16 14699.50 11999.46 66
DIV-MVS_self_test94.73 22694.64 22395.01 26395.86 32887.00 30291.33 33398.08 22593.34 22797.10 18197.34 20884.02 30199.31 24695.15 14899.55 9998.72 217
cl____94.73 22694.64 22395.01 26395.85 32987.00 30291.33 33398.08 22593.34 22797.10 18197.33 20984.01 30299.30 24995.14 14999.56 9398.71 219
MSP-MVS97.45 9796.92 12799.03 899.26 5097.70 1997.66 7598.89 8195.65 14898.51 6396.46 26592.15 21799.81 3695.14 14998.58 26699.58 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 12396.84 13097.41 14899.40 3893.26 18897.94 5795.31 31799.26 798.39 7699.18 2787.85 27899.62 15495.13 15199.09 21399.35 100
CANet95.86 18295.65 18596.49 20096.41 31190.82 23594.36 25498.41 18194.94 17892.62 33796.73 25092.68 20399.71 10495.12 15299.60 8398.94 181
CNVR-MVS96.92 12696.55 14698.03 9598.00 21095.54 9694.87 23698.17 21294.60 18996.38 22497.05 22895.67 11999.36 23495.12 15299.08 21499.19 135
eth_miper_zixun_eth94.89 22094.93 20894.75 27695.99 32686.12 31391.35 33298.49 17093.40 22497.12 17997.25 21586.87 28599.35 23795.08 15498.82 24498.78 209
GST-MVS97.82 7097.49 9098.81 2999.23 5697.25 4097.16 10598.79 11895.96 13197.53 15397.40 19896.93 6099.77 5795.04 15599.35 16799.42 83
DP-MVS97.87 6497.89 5097.81 10898.62 13794.82 13197.13 10998.79 11898.98 1798.74 4998.49 7795.80 11599.49 19195.04 15599.44 13799.11 157
D2MVS95.18 20895.17 19795.21 25697.76 24487.76 28994.15 26697.94 23489.77 28796.99 19297.68 17787.45 28099.14 27495.03 15799.81 3398.74 214
SR-MVS98.00 4697.66 6999.01 1198.77 11897.93 1197.38 9698.83 10897.32 7898.06 11997.85 15796.65 7699.77 5795.00 15899.11 21099.32 103
FMVSNet296.72 14396.67 14096.87 17897.96 21291.88 21997.15 10698.06 23095.59 15298.50 6598.62 6889.51 26099.65 14194.99 15999.60 8399.07 164
miper_ehance_all_eth94.69 23194.70 22094.64 27895.77 33286.22 31291.32 33598.24 20191.67 26497.05 18796.65 25588.39 27099.22 26594.88 16098.34 27398.49 237
XVG-OURS-SEG-HR97.38 10297.07 11798.30 6999.01 9797.41 3694.66 24599.02 5495.20 16698.15 10797.52 18898.83 498.43 34194.87 16196.41 33399.07 164
MVS_111021_HR96.73 14296.54 14897.27 15698.35 16993.66 17993.42 29398.36 18894.74 18496.58 21496.76 24996.54 8398.99 29394.87 16199.27 18899.15 142
test_040297.84 6797.97 4397.47 13999.19 6994.07 16096.71 13298.73 13198.66 2598.56 6098.41 8396.84 7099.69 12194.82 16399.81 3398.64 223
MVS_111021_LR96.82 13596.55 14697.62 12398.27 17695.34 11193.81 28398.33 19394.59 19196.56 21696.63 25696.61 7998.73 31794.80 16499.34 17098.78 209
WR-MVS96.90 12896.81 13297.16 16198.56 14592.20 21194.33 25598.12 22197.34 7798.20 10097.33 20992.81 19999.75 6994.79 16599.81 3399.54 40
ACMH+93.58 1098.23 3298.31 2997.98 9799.39 3995.22 11997.55 8399.20 1898.21 3799.25 2598.51 7698.21 1199.40 22194.79 16599.72 5599.32 103
thisisatest053092.71 28591.76 29395.56 24398.42 16488.23 27596.03 16387.35 36794.04 21096.56 21695.47 30664.03 37099.77 5794.78 16799.11 21098.68 222
PGM-MVS97.88 6397.52 8698.96 1699.20 6797.62 2297.09 11199.06 4395.45 15797.55 15297.94 14797.11 4499.78 4794.77 16899.46 13299.48 61
TSAR-MVS + GP.96.47 15896.12 16697.49 13797.74 24995.23 11694.15 26696.90 28493.26 23098.04 12296.70 25294.41 16498.89 30394.77 16899.14 20298.37 247
VNet96.84 13196.83 13196.88 17798.06 20192.02 21696.35 14597.57 26297.70 5897.88 13997.80 16492.40 21499.54 17894.73 17098.96 22599.08 162
VPNet97.26 11097.49 9096.59 19399.47 2990.58 24096.27 14898.53 16697.77 4998.46 7098.41 8394.59 15899.68 12894.61 17199.29 18599.52 44
GBi-Net96.99 12096.80 13397.56 12697.96 21293.67 17698.23 4098.66 15195.59 15297.99 12699.19 2489.51 26099.73 8594.60 17299.44 13799.30 109
test196.99 12096.80 13397.56 12697.96 21293.67 17698.23 4098.66 15195.59 15297.99 12699.19 2489.51 26099.73 8594.60 17299.44 13799.30 109
FMVSNet395.26 20694.94 20696.22 21596.53 30890.06 24495.99 16697.66 25394.11 20897.99 12697.91 15180.22 31899.63 14694.60 17299.44 13798.96 178
xxxxxxxxxxxxxcwj97.24 11297.03 12097.89 10298.48 15694.71 13594.53 25099.07 4295.02 17697.83 14597.88 15496.44 9199.72 9094.59 17599.39 15699.25 126
SF-MVS97.60 8697.39 9598.22 7798.93 10395.69 8897.05 11399.10 3395.32 16297.83 14597.88 15496.44 9199.72 9094.59 17599.39 15699.25 126
MVS_030495.50 19295.05 20496.84 18096.28 31493.12 19197.00 11696.16 29795.03 17589.22 35997.70 17490.16 25199.48 19494.51 17799.34 17097.93 289
XXY-MVS97.54 9097.70 6497.07 16799.46 3092.21 20997.22 10399.00 6294.93 18098.58 5998.92 4897.31 3699.41 21994.44 17899.43 14599.59 28
UnsupCasMVSNet_eth95.91 17995.73 18396.44 20298.48 15691.52 22695.31 20898.45 17395.76 14497.48 16197.54 18589.53 25998.69 32194.43 17994.61 35299.13 148
LPG-MVS_test97.94 5397.67 6898.74 3599.15 7497.02 4497.09 11199.02 5495.15 16998.34 8398.23 10997.91 1799.70 11394.41 18099.73 5299.50 47
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5495.15 16998.34 8398.23 10997.91 1799.70 11394.41 18099.73 5299.50 47
DeepPCF-MVS94.58 596.90 12896.43 15598.31 6797.48 26897.23 4292.56 31398.60 15992.84 24998.54 6197.40 19896.64 7898.78 31294.40 18299.41 15498.93 185
#test#97.62 8497.22 10898.83 2699.15 7497.50 3096.81 12398.84 10194.25 20297.49 15897.54 18597.07 4899.70 11394.37 18399.46 13299.30 109
XVG-ACMP-BASELINE97.58 8897.28 10398.49 5399.16 7196.90 4896.39 14198.98 6895.05 17498.06 11998.02 13695.86 10599.56 17194.37 18399.64 7099.00 173
RPSCF97.87 6497.51 8798.95 1799.15 7498.43 397.56 8299.06 4396.19 11898.48 6798.70 6294.72 15199.24 26194.37 18399.33 17799.17 138
CSCG97.40 10197.30 10097.69 11998.95 10094.83 13097.28 9998.99 6596.35 11198.13 11095.95 29395.99 10299.66 13994.36 18699.73 5298.59 229
HPM-MVS++copyleft96.99 12096.38 15698.81 2998.64 13297.59 2495.97 16898.20 20695.51 15595.06 27096.53 26194.10 17299.70 11394.29 18799.15 20199.13 148
XVG-OURS97.12 11596.74 13698.26 7298.99 9897.45 3493.82 28199.05 4595.19 16798.32 8897.70 17495.22 13798.41 34294.27 18898.13 28198.93 185
jason94.39 24694.04 25095.41 25298.29 17287.85 28692.74 31096.75 29085.38 33295.29 26696.15 28188.21 27299.65 14194.24 18999.34 17098.74 214
jason: jason.
CVMVSNet92.33 29292.79 27590.95 34097.26 28775.84 37095.29 21092.33 34381.86 34796.27 23198.19 11481.44 31098.46 34094.23 19098.29 27698.55 233
EIA-MVS96.04 17495.77 18296.85 17997.80 23292.98 19496.12 15899.16 2294.65 18793.77 30591.69 35895.68 11899.67 13394.18 19198.85 24197.91 290
ET-MVSNet_ETH3D91.12 30689.67 31895.47 24896.41 31189.15 26191.54 32990.23 36189.07 29186.78 36992.84 34469.39 36499.44 20794.16 19296.61 33097.82 294
cl2293.25 27892.84 27494.46 28894.30 35386.00 31491.09 34196.64 29490.74 27695.79 25396.31 27478.24 32598.77 31394.15 19398.34 27398.62 226
MCST-MVS96.24 16595.80 18097.56 12698.75 11994.13 15994.66 24598.17 21290.17 28396.21 23596.10 28695.14 13999.43 20994.13 19498.85 24199.13 148
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5699.16 2298.34 3298.78 4698.52 7597.32 3599.45 20494.08 19599.67 6599.13 148
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 16295.98 17497.43 14698.25 17993.85 16996.74 12794.41 32497.72 5698.37 7798.03 13587.15 28299.53 18094.06 19699.07 21698.92 189
Effi-MVS+-dtu96.81 13696.09 16898.99 1396.90 30298.69 296.42 14098.09 22395.86 13995.15 26995.54 30494.26 16899.81 3694.06 19698.51 26998.47 238
mvs-test196.20 16795.50 19198.32 6596.90 30298.16 595.07 22598.09 22395.86 13993.63 31094.32 32994.26 16899.71 10494.06 19697.27 31897.07 315
ambc96.56 19798.23 18291.68 22497.88 6298.13 22098.42 7398.56 7294.22 17099.04 28794.05 19999.35 16798.95 179
our_test_394.20 25494.58 23093.07 31596.16 32181.20 35390.42 34796.84 28590.72 27797.14 17797.13 22090.47 24399.11 27994.04 20098.25 27798.91 190
pmmvs594.63 23694.34 24095.50 24697.63 25988.34 27494.02 27297.13 27587.15 31295.22 26897.15 21987.50 27999.27 25793.99 20199.26 18998.88 198
DPE-MVScopyleft97.64 8297.35 9898.50 5298.85 10996.18 7195.21 21798.99 6595.84 14198.78 4698.08 12596.84 7099.81 3693.98 20299.57 9099.52 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 24394.84 21393.46 30796.16 32182.10 34790.59 34597.48 26590.53 27997.01 19197.59 18291.01 23699.36 23493.97 20399.18 19998.94 181
tfpnnormal97.72 7797.97 4396.94 17399.26 5092.23 20897.83 6598.45 17398.25 3599.13 3198.66 6596.65 7699.69 12193.92 20499.62 7398.91 190
LFMVS95.32 20394.88 21196.62 19198.03 20391.47 22797.65 7690.72 35799.11 997.89 13898.31 9279.20 32199.48 19493.91 20599.12 20998.93 185
EPP-MVSNet96.84 13196.58 14397.65 12199.18 7093.78 17398.68 1296.34 29597.91 4797.30 16998.06 13288.46 26899.85 2693.85 20699.40 15599.32 103
Fast-Effi-MVS+-dtu96.44 15996.12 16697.39 15097.18 29194.39 14795.46 19498.73 13196.03 12894.72 27894.92 31796.28 9999.69 12193.81 20797.98 28698.09 272
PHI-MVS96.96 12496.53 14998.25 7597.48 26896.50 6296.76 12698.85 9693.52 22196.19 23696.85 24095.94 10399.42 21093.79 20899.43 14598.83 203
miper_enhance_ethall93.14 28092.78 27794.20 29593.65 36185.29 32289.97 35197.85 23985.05 33496.15 23994.56 32285.74 28999.14 27493.74 20998.34 27398.17 271
DeepC-MVS_fast94.34 796.74 14096.51 15297.44 14597.69 25294.15 15896.02 16498.43 17693.17 23797.30 16997.38 20495.48 12799.28 25593.74 20999.34 17098.88 198
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 26292.69 27997.74 11397.80 23295.38 10695.57 19295.46 31591.26 27292.64 33596.10 28674.67 34499.55 17593.72 21196.97 31998.30 258
MP-MVScopyleft97.64 8297.18 11099.00 1299.32 4797.77 1897.49 8998.73 13196.27 11295.59 26197.75 16896.30 9799.78 4793.70 21299.48 12799.45 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 17895.80 18096.42 20499.28 4990.62 23995.31 20899.08 3988.40 30096.97 19598.17 11792.11 21999.78 4793.64 21399.21 19498.86 201
lupinMVS93.77 26393.28 26495.24 25597.68 25387.81 28792.12 32196.05 29984.52 33994.48 28795.06 31386.90 28399.63 14693.62 21499.13 20698.27 262
NCCC96.52 15595.99 17398.10 8797.81 22895.68 9095.00 23198.20 20695.39 16095.40 26596.36 27293.81 17999.45 20493.55 21598.42 27199.17 138
ETV-MVS96.13 17195.90 17896.82 18197.76 24493.89 16695.40 20098.95 7595.87 13895.58 26291.00 36496.36 9699.72 9093.36 21698.83 24396.85 325
MDA-MVSNet_test_wron94.73 22694.83 21594.42 28997.48 26885.15 32590.28 34995.87 30592.52 25197.48 16197.76 16591.92 22799.17 27193.32 21796.80 32698.94 181
YYNet194.73 22694.84 21394.41 29097.47 27285.09 32790.29 34895.85 30692.52 25197.53 15397.76 16591.97 22399.18 26793.31 21896.86 32398.95 179
pmmvs494.82 22394.19 24596.70 18897.42 27592.75 20092.09 32396.76 28986.80 31695.73 25897.22 21689.28 26398.89 30393.28 21999.14 20298.46 240
CANet_DTU94.65 23594.21 24495.96 22495.90 32789.68 25093.92 27897.83 24393.19 23390.12 35495.64 30188.52 26799.57 17093.27 22099.47 12998.62 226
ACMP92.54 1397.47 9697.10 11498.55 5099.04 9596.70 5396.24 15298.89 8193.71 21897.97 13097.75 16897.44 3099.63 14693.22 22199.70 6199.32 103
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 16896.01 17196.71 18797.43 27492.19 21296.12 15899.10 3395.45 15793.33 32394.71 32097.23 4399.56 17193.21 22297.54 30798.37 247
MDA-MVSNet-bldmvs95.69 18595.67 18495.74 23598.48 15688.76 26992.84 30597.25 26996.00 12997.59 15197.95 14691.38 23399.46 20093.16 22396.35 33498.99 176
IS-MVSNet96.93 12596.68 13997.70 11799.25 5394.00 16398.57 1796.74 29198.36 3198.14 10997.98 14188.23 27199.71 10493.10 22499.72 5599.38 90
9.1496.69 13898.53 14896.02 16498.98 6893.23 23197.18 17597.46 19396.47 8999.62 15492.99 22599.32 179
MS-PatchMatch94.83 22294.91 21094.57 28496.81 30487.10 30194.23 26197.34 26888.74 29797.14 17797.11 22391.94 22598.23 35292.99 22597.92 28898.37 247
Patchmtry95.03 21694.59 22996.33 20894.83 34790.82 23596.38 14397.20 27196.59 9897.49 15898.57 7077.67 32899.38 22992.95 22799.62 7398.80 206
ETH3D-3000-0.196.89 13096.46 15498.16 8198.62 13795.69 8895.96 16998.98 6893.36 22697.04 18897.31 21194.93 14899.63 14692.60 22899.34 17099.17 138
Fast-Effi-MVS+95.49 19395.07 20196.75 18597.67 25692.82 19794.22 26298.60 15991.61 26593.42 32192.90 34396.73 7499.70 11392.60 22897.89 29197.74 297
HQP_MVS96.66 14996.33 15997.68 12098.70 12794.29 15196.50 13798.75 12796.36 10996.16 23796.77 24791.91 22899.46 20092.59 23099.20 19599.28 117
plane_prior598.75 12799.46 20092.59 23099.20 19599.28 117
GA-MVS92.83 28392.15 28894.87 27096.97 29787.27 29890.03 35096.12 29891.83 26394.05 29794.57 32176.01 34098.97 29992.46 23297.34 31598.36 252
CPTT-MVS96.69 14696.08 16998.49 5398.89 10696.64 5697.25 10098.77 12392.89 24896.01 24597.13 22092.23 21699.67 13392.24 23399.34 17099.17 138
EPNet93.72 26592.62 28297.03 17087.61 37992.25 20796.27 14891.28 35196.74 9387.65 36597.39 20285.00 29499.64 14492.14 23499.48 12799.20 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 31098.37 7797.44 19597.00 5496.78 36792.01 23599.25 19099.21 131
APD-MVScopyleft97.00 11996.53 14998.41 5898.55 14696.31 6896.32 14798.77 12392.96 24797.44 16697.58 18495.84 10699.74 7991.96 23699.35 16799.19 135
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 21494.79 21895.82 23297.51 26789.79 24991.14 33996.82 28793.05 24096.72 20796.40 26990.82 23999.16 27291.95 23798.66 25898.50 236
test_prior395.91 17995.39 19297.46 14297.79 23894.26 15593.33 29898.42 17994.21 20394.02 29896.25 27693.64 18399.34 23991.90 23898.96 22598.79 207
test_prior293.33 29894.21 20394.02 29896.25 27693.64 18391.90 23898.96 225
test-LLR89.97 31889.90 31690.16 34494.24 35574.98 37189.89 35289.06 36392.02 25889.97 35590.77 36573.92 34798.57 33291.88 24097.36 31396.92 320
test-mter87.92 33487.17 33590.16 34494.24 35574.98 37189.89 35289.06 36386.44 31889.97 35590.77 36554.96 38198.57 33291.88 24097.36 31396.92 320
MVP-Stereo95.69 18595.28 19496.92 17498.15 19493.03 19395.64 19098.20 20690.39 28096.63 21397.73 17191.63 23199.10 28191.84 24297.31 31698.63 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 25593.42 26296.23 21398.59 14290.85 23494.24 26098.85 9685.49 32792.97 32794.94 31586.01 28899.64 14491.78 24397.92 28898.20 268
train_agg95.46 19794.66 22197.88 10497.84 22495.23 11693.62 28798.39 18487.04 31393.78 30395.99 28894.58 15999.52 18491.76 24498.90 23398.89 194
LF4IMVS96.07 17295.63 18697.36 15298.19 18595.55 9595.44 19598.82 11692.29 25695.70 25996.55 25992.63 20698.69 32191.75 24599.33 17797.85 292
agg_prior195.39 20094.60 22797.75 11297.80 23294.96 12793.39 29598.36 18887.20 31193.49 31695.97 29194.65 15699.53 18091.69 24698.86 23998.77 212
N_pmnet95.18 20894.23 24298.06 9197.85 22096.55 6192.49 31491.63 34889.34 28998.09 11597.41 19790.33 24599.06 28591.58 24799.31 18198.56 231
ETH3D cwj APD-0.1696.23 16695.61 18898.09 8897.91 21695.65 9394.94 23398.74 12991.31 27196.02 24497.08 22594.05 17499.69 12191.51 24898.94 22998.93 185
AllTest97.20 11496.92 12798.06 9199.08 8796.16 7297.14 10899.16 2294.35 19897.78 14898.07 12795.84 10699.12 27691.41 24999.42 14898.91 190
TestCases98.06 9199.08 8796.16 7299.16 2294.35 19897.78 14898.07 12795.84 10699.12 27691.41 24999.42 14898.91 190
test9_res91.29 25198.89 23699.00 173
xiu_mvs_v2_base94.22 25094.63 22592.99 31997.32 28584.84 33092.12 32197.84 24191.96 26094.17 29293.43 33496.07 10199.71 10491.27 25297.48 31094.42 357
PS-MVSNAJ94.10 25694.47 23593.00 31897.35 27884.88 32991.86 32597.84 24191.96 26094.17 29292.50 35095.82 10999.71 10491.27 25297.48 31094.40 358
tpm91.08 30890.85 30691.75 33595.33 34278.09 36095.03 23091.27 35288.75 29693.53 31597.40 19871.24 35899.30 24991.25 25493.87 35597.87 291
OPU-MVS97.64 12298.01 20695.27 11496.79 12497.35 20796.97 5698.51 33891.21 25599.25 19099.14 145
ZD-MVS98.43 16395.94 8198.56 16490.72 27796.66 21097.07 22695.02 14499.74 7991.08 25698.93 231
tpmrst90.31 31390.61 31189.41 34794.06 35872.37 37695.06 22793.69 32788.01 30492.32 34096.86 23977.45 33098.82 30891.04 25787.01 36997.04 317
sss94.22 25093.72 25895.74 23597.71 25189.95 24793.84 28096.98 28188.38 30193.75 30695.74 29787.94 27398.89 30391.02 25898.10 28298.37 247
ITE_SJBPF97.85 10698.64 13296.66 5598.51 16995.63 14997.22 17197.30 21295.52 12498.55 33590.97 25998.90 23398.34 253
Test_1112_low_res93.53 27292.86 27295.54 24598.60 14088.86 26592.75 30898.69 14482.66 34692.65 33496.92 23884.75 29699.56 17190.94 26097.76 29498.19 269
TESTMET0.1,187.20 33786.57 33989.07 34893.62 36272.84 37589.89 35287.01 36985.46 32989.12 36090.20 36756.00 37997.72 36090.91 26196.92 32096.64 334
FMVSNet593.39 27492.35 28596.50 19995.83 33090.81 23797.31 9798.27 19792.74 25096.27 23198.28 10162.23 37199.67 13390.86 26299.36 16299.03 170
PatchmatchNetpermissive91.98 29891.87 29092.30 33194.60 35079.71 35795.12 21993.59 33189.52 28893.61 31297.02 23077.94 32699.18 26790.84 26394.57 35498.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 19695.07 20196.69 18998.27 17692.53 20291.36 33198.67 14991.22 27395.78 25594.12 33195.65 12098.98 29590.81 26499.72 5598.57 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 29991.35 29793.51 30694.27 35485.60 31788.86 36098.61 15879.32 35992.16 34191.44 36089.22 26498.12 35590.80 26597.47 31296.82 328
test20.0396.58 15396.61 14196.48 20198.49 15491.72 22395.68 18497.69 25096.81 9198.27 9497.92 15094.18 17198.71 31990.78 26699.66 6799.00 173
test_yl94.40 24494.00 25195.59 23996.95 29889.52 25394.75 24395.55 31396.18 11996.79 20296.14 28381.09 31399.18 26790.75 26797.77 29298.07 275
DCV-MVSNet94.40 24494.00 25195.59 23996.95 29889.52 25394.75 24395.55 31396.18 11996.79 20296.14 28381.09 31399.18 26790.75 26797.77 29298.07 275
EPMVS89.26 32488.55 32891.39 33792.36 37279.11 35895.65 18879.86 37588.60 29893.12 32596.53 26170.73 36298.10 35690.75 26789.32 36696.98 318
旧先验293.35 29777.95 36595.77 25798.67 32590.74 270
USDC94.56 23994.57 23294.55 28597.78 24286.43 31092.75 30898.65 15685.96 32196.91 19997.93 14990.82 23998.74 31690.71 27199.59 8598.47 238
OpenMVScopyleft94.22 895.48 19595.20 19596.32 20997.16 29291.96 21897.74 7298.84 10187.26 30994.36 28998.01 13893.95 17699.67 13390.70 27298.75 25097.35 312
Patchmatch-test93.60 27093.25 26694.63 27996.14 32487.47 29396.04 16294.50 32393.57 22096.47 22096.97 23376.50 33698.61 32990.67 27398.41 27297.81 296
DWT-MVSNet_test87.92 33486.77 33891.39 33793.18 36478.62 35995.10 22091.42 34985.58 32688.00 36388.73 36960.60 37298.90 30190.60 27487.70 36896.65 333
thisisatest051590.43 31289.18 32494.17 29797.07 29585.44 31989.75 35687.58 36688.28 30293.69 30991.72 35765.27 36899.58 16490.59 27598.67 25697.50 307
DP-MVS Recon95.55 19195.13 19896.80 18298.51 15093.99 16494.60 24798.69 14490.20 28295.78 25596.21 27992.73 20298.98 29590.58 27698.86 23997.42 309
testtj96.69 14696.13 16598.36 6298.46 16196.02 7996.44 13998.70 14194.26 20196.79 20297.13 22094.07 17399.75 6990.53 27798.80 24599.31 108
TinyColmap96.00 17796.34 15894.96 26597.90 21887.91 28394.13 26998.49 17094.41 19598.16 10597.76 16596.29 9898.68 32490.52 27899.42 14898.30 258
BP-MVS90.51 279
HQP-MVS95.17 21094.58 23096.92 17497.85 22092.47 20394.26 25698.43 17693.18 23492.86 32995.08 31190.33 24599.23 26390.51 27998.74 25199.05 168
OMC-MVS96.48 15796.00 17297.91 10198.30 17196.01 8094.86 23798.60 15991.88 26297.18 17597.21 21796.11 10099.04 28790.49 28199.34 17098.69 220
ab-mvs96.59 15196.59 14296.60 19298.64 13292.21 20998.35 3097.67 25194.45 19496.99 19298.79 5594.96 14799.49 19190.39 28299.07 21698.08 273
HyFIR lowres test93.72 26592.65 28096.91 17698.93 10391.81 22291.23 33798.52 16782.69 34596.46 22196.52 26380.38 31799.90 1490.36 28398.79 24699.03 170
agg_prior290.34 28498.90 23399.10 161
LCM-MVSNet-Re97.33 10697.33 9997.32 15498.13 19893.79 17296.99 11799.65 496.74 9399.47 1398.93 4796.91 6399.84 2990.11 28599.06 21998.32 254
CDS-MVSNet94.88 22194.12 24797.14 16397.64 25893.57 18193.96 27797.06 27990.05 28496.30 23096.55 25986.10 28799.47 19790.10 28699.31 18198.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 19894.65 22297.84 10798.28 17494.96 12793.73 28598.33 19385.03 33595.44 26396.60 25795.31 13499.44 20790.01 28799.13 20699.11 157
baseline193.14 28092.64 28194.62 28097.34 28287.20 29996.67 13493.02 33594.71 18696.51 21995.83 29681.64 30898.60 33190.00 28888.06 36798.07 275
TAPA-MVS93.32 1294.93 21894.23 24297.04 16998.18 18894.51 14395.22 21698.73 13181.22 35296.25 23395.95 29393.80 18098.98 29589.89 28998.87 23797.62 302
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 28991.08 30196.30 21193.12 36792.81 19890.58 34695.96 30379.17 36091.85 34492.27 35190.29 24998.66 32689.85 29096.68 32997.43 308
PVSNet_BlendedMVS95.02 21794.93 20895.27 25497.79 23887.40 29594.14 26898.68 14688.94 29494.51 28598.01 13893.04 19499.30 24989.77 29199.49 12399.11 157
PVSNet_Blended93.96 26093.65 25994.91 26697.79 23887.40 29591.43 33098.68 14684.50 34094.51 28594.48 32693.04 19499.30 24989.77 29198.61 26398.02 285
MSDG95.33 20295.13 19895.94 22897.40 27691.85 22091.02 34298.37 18795.30 16396.31 22995.99 28894.51 16298.38 34589.59 29397.65 30497.60 304
PMVScopyleft89.60 1796.71 14596.97 12295.95 22699.51 2497.81 1797.42 9497.49 26397.93 4695.95 24698.58 6996.88 6696.91 36489.59 29399.36 16293.12 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 23210.37 37876.21 33999.04 28789.47 295
SCA93.38 27593.52 26192.96 32096.24 31581.40 35293.24 30094.00 32691.58 26794.57 28296.97 23387.94 27399.42 21089.47 29597.66 30398.06 279
tpmvs90.79 31190.87 30590.57 34392.75 37176.30 36895.79 17893.64 33091.04 27591.91 34396.26 27577.19 33498.86 30789.38 29789.85 36596.56 337
Anonymous2023120695.27 20595.06 20395.88 23098.72 12289.37 25695.70 18197.85 23988.00 30596.98 19497.62 18091.95 22499.34 23989.21 29899.53 10598.94 181
CHOSEN 1792x268894.10 25693.41 26396.18 21799.16 7190.04 24592.15 32098.68 14679.90 35796.22 23497.83 15987.92 27799.42 21089.18 29999.65 6899.08 162
114514_t93.96 26093.22 26796.19 21699.06 9090.97 23395.99 16698.94 7673.88 37093.43 32096.93 23692.38 21599.37 23289.09 30099.28 18698.25 264
pmmvs390.00 31688.90 32693.32 30894.20 35785.34 32091.25 33692.56 34278.59 36193.82 30295.17 31067.36 36798.69 32189.08 30198.03 28595.92 343
testdata95.70 23898.16 19290.58 24097.72 24880.38 35595.62 26097.02 23092.06 22298.98 29589.06 30298.52 26797.54 305
MDTV_nov1_ep1391.28 29894.31 35273.51 37494.80 24093.16 33486.75 31793.45 31997.40 19876.37 33798.55 33588.85 30396.43 332
PMMVS293.66 26894.07 24892.45 32997.57 26180.67 35586.46 36496.00 30193.99 21197.10 18197.38 20489.90 25397.82 35888.76 30499.47 12998.86 201
QAPM95.88 18195.57 18996.80 18297.90 21891.84 22198.18 4798.73 13188.41 29996.42 22298.13 11994.73 15099.75 6988.72 30598.94 22998.81 205
CHOSEN 280x42089.98 31789.19 32392.37 33095.60 33681.13 35486.22 36597.09 27781.44 35187.44 36693.15 33573.99 34599.47 19788.69 30699.07 21696.52 338
testgi96.07 17296.50 15394.80 27499.26 5087.69 29095.96 16998.58 16295.08 17298.02 12596.25 27697.92 1697.60 36188.68 30798.74 25199.11 157
CostFormer89.75 32189.25 31991.26 33994.69 34978.00 36295.32 20791.98 34581.50 35090.55 35096.96 23571.06 36098.89 30388.59 30892.63 35996.87 323
UnsupCasMVSNet_bld94.72 23094.26 24196.08 22098.62 13790.54 24393.38 29698.05 23190.30 28197.02 19096.80 24689.54 25799.16 27288.44 30996.18 33698.56 231
TAMVS95.49 19394.94 20697.16 16198.31 17093.41 18595.07 22596.82 28791.09 27497.51 15597.82 16289.96 25299.42 21088.42 31099.44 13798.64 223
Vis-MVSNet (Re-imp)95.11 21194.85 21295.87 23199.12 8389.17 25997.54 8894.92 31996.50 10396.58 21497.27 21383.64 30399.48 19488.42 31099.67 6598.97 177
EPNet_dtu91.39 30590.75 30893.31 30990.48 37682.61 34494.80 24092.88 33793.39 22581.74 37394.90 31881.36 31199.11 27988.28 31298.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 30090.69 30995.11 25993.80 36090.98 23294.16 26591.78 34796.38 10790.30 35399.30 1872.02 35798.90 30188.28 31290.17 36495.45 352
新几何197.25 15998.29 17294.70 13897.73 24777.98 36394.83 27796.67 25492.08 22199.45 20488.17 31498.65 26097.61 303
testdata299.46 20087.84 315
无先验93.20 30197.91 23580.78 35399.40 22187.71 31697.94 288
112194.26 24893.26 26597.27 15698.26 17894.73 13395.86 17497.71 24977.96 36494.53 28496.71 25191.93 22699.40 22187.71 31698.64 26197.69 300
WTY-MVS93.55 27193.00 27095.19 25797.81 22887.86 28493.89 27996.00 30189.02 29294.07 29695.44 30786.27 28699.33 24287.69 31896.82 32498.39 245
原ACMM196.58 19498.16 19292.12 21398.15 21785.90 32393.49 31696.43 26692.47 21399.38 22987.66 31998.62 26298.23 265
BH-untuned94.69 23194.75 21994.52 28697.95 21587.53 29294.07 27197.01 28093.99 21197.10 18195.65 30092.65 20598.95 30087.60 32096.74 32797.09 314
PAPM_NR94.61 23794.17 24695.96 22498.36 16891.23 22895.93 17297.95 23392.98 24393.42 32194.43 32790.53 24298.38 34587.60 32096.29 33598.27 262
DPM-MVS93.68 26792.77 27896.42 20497.91 21692.54 20191.17 33897.47 26684.99 33693.08 32694.74 31989.90 25399.00 29187.54 32298.09 28397.72 298
MG-MVS94.08 25894.00 25194.32 29297.09 29485.89 31593.19 30295.96 30392.52 25194.93 27697.51 18989.54 25798.77 31387.52 32397.71 29898.31 256
F-COLMAP95.30 20494.38 23998.05 9498.64 13296.04 7795.61 19198.66 15189.00 29393.22 32496.40 26992.90 19899.35 23787.45 32497.53 30898.77 212
PatchMatch-RL94.61 23793.81 25797.02 17198.19 18595.72 8693.66 28697.23 27088.17 30394.94 27595.62 30291.43 23298.57 33287.36 32597.68 30196.76 331
IB-MVS85.98 2088.63 32886.95 33793.68 30395.12 34484.82 33190.85 34390.17 36287.55 30888.48 36291.34 36158.01 37399.59 16287.24 32693.80 35696.63 336
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 33288.05 33088.16 35392.85 36968.81 37894.17 26492.88 33785.47 32891.38 34696.14 28368.87 36598.81 31086.88 32783.80 37296.87 323
131492.38 29092.30 28692.64 32595.42 34185.15 32595.86 17496.97 28285.40 33190.62 34893.06 34191.12 23597.80 35986.74 32895.49 34694.97 355
CNLPA95.04 21494.47 23596.75 18597.81 22895.25 11594.12 27097.89 23794.41 19594.57 28295.69 29890.30 24898.35 34886.72 32998.76 24996.64 334
ETH3 D test640094.77 22593.87 25697.47 13998.12 19993.73 17494.56 24998.70 14185.45 33094.70 28095.93 29591.77 23099.63 14686.45 33099.14 20299.05 168
baseline289.65 32288.44 32993.25 31195.62 33582.71 34393.82 28185.94 37088.89 29587.35 36792.54 34971.23 35999.33 24286.01 33194.60 35397.72 298
BH-RMVSNet94.56 23994.44 23894.91 26697.57 26187.44 29493.78 28496.26 29693.69 21996.41 22396.50 26492.10 22099.00 29185.96 33297.71 29898.31 256
E-PMN89.52 32389.78 31788.73 34993.14 36677.61 36383.26 36892.02 34494.82 18393.71 30793.11 33675.31 34296.81 36585.81 33396.81 32591.77 367
API-MVS95.09 21395.01 20595.31 25396.61 30694.02 16296.83 12297.18 27395.60 15195.79 25394.33 32894.54 16198.37 34785.70 33498.52 26793.52 361
AdaColmapbinary95.11 21194.62 22696.58 19497.33 28494.45 14694.92 23498.08 22593.15 23893.98 30195.53 30594.34 16699.10 28185.69 33598.61 26396.20 342
ADS-MVSNet291.47 30490.51 31294.36 29195.51 33785.63 31695.05 22895.70 30783.46 34392.69 33296.84 24179.15 32299.41 21985.66 33690.52 36298.04 283
ADS-MVSNet90.95 31090.26 31493.04 31695.51 33782.37 34695.05 22893.41 33283.46 34392.69 33296.84 24179.15 32298.70 32085.66 33690.52 36298.04 283
MDTV_nov1_ep13_2view57.28 38094.89 23580.59 35494.02 29878.66 32485.50 33897.82 294
OpenMVS_ROBcopyleft91.80 1493.64 26993.05 26895.42 25097.31 28691.21 22995.08 22496.68 29381.56 34996.88 20196.41 26790.44 24499.25 26085.39 33997.67 30295.80 346
KD-MVS_2432*160088.93 32687.74 33192.49 32688.04 37781.99 34889.63 35795.62 30991.35 26995.06 27093.11 33656.58 37698.63 32785.19 34095.07 34796.85 325
miper_refine_blended88.93 32687.74 33192.49 32688.04 37781.99 34889.63 35795.62 30991.35 26995.06 27093.11 33656.58 37698.63 32785.19 34095.07 34796.85 325
PVSNet86.72 1991.10 30790.97 30491.49 33697.56 26378.04 36187.17 36394.60 32284.65 33892.34 33992.20 35287.37 28198.47 33985.17 34297.69 30097.96 287
PLCcopyleft91.02 1694.05 25992.90 27197.51 13198.00 21095.12 12494.25 25998.25 20086.17 31991.48 34595.25 30991.01 23699.19 26685.02 34396.69 32898.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 37371.40 37781.67 34890.11 36898.99 29384.86 344
CMPMVSbinary73.10 2392.74 28491.39 29696.77 18493.57 36394.67 13994.21 26397.67 25180.36 35693.61 31296.60 25782.85 30597.35 36284.86 34498.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 29191.69 29494.32 29296.23 31789.16 26092.27 31992.88 33784.39 34295.29 26696.35 27385.66 29096.74 36884.53 34697.56 30697.05 316
tpm cat188.01 33387.33 33490.05 34694.48 35176.28 36994.47 25294.35 32573.84 37189.26 35895.61 30373.64 34998.30 35084.13 34786.20 37095.57 351
MAR-MVS94.21 25293.03 26997.76 11196.94 30097.44 3596.97 11897.15 27487.89 30792.00 34292.73 34792.14 21899.12 27683.92 34897.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 29491.83 29193.25 31196.18 32083.68 34196.27 14893.68 32976.97 36792.54 33899.18 2789.20 26598.55 33583.88 34998.60 26597.51 306
EMVS89.06 32589.22 32088.61 35093.00 36877.34 36582.91 36990.92 35494.64 18892.63 33691.81 35676.30 33897.02 36383.83 35096.90 32291.48 368
HY-MVS91.43 1592.58 28691.81 29294.90 26896.49 30988.87 26497.31 9794.62 32185.92 32290.50 35196.84 24185.05 29399.40 22183.77 35195.78 34296.43 339
test0.0.03 190.11 31489.21 32192.83 32293.89 35986.87 30591.74 32788.74 36592.02 25894.71 27991.14 36373.92 34794.48 37183.75 35292.94 35797.16 313
tpm288.47 32987.69 33390.79 34194.98 34677.34 36595.09 22291.83 34677.51 36689.40 35796.41 26767.83 36698.73 31783.58 35392.60 36096.29 341
MVS-HIRNet88.40 33090.20 31582.99 35597.01 29660.04 37993.11 30385.61 37184.45 34188.72 36199.09 3684.72 29798.23 35282.52 35496.59 33190.69 370
BH-w/o92.14 29591.94 28992.73 32497.13 29385.30 32192.46 31595.64 30889.33 29094.21 29192.74 34689.60 25598.24 35181.68 35594.66 35194.66 356
MIMVSNet93.42 27392.86 27295.10 26098.17 19088.19 27698.13 4993.69 32792.07 25795.04 27398.21 11380.95 31599.03 29081.42 35698.06 28498.07 275
TR-MVS92.54 28792.20 28793.57 30596.49 30986.66 30693.51 29194.73 32089.96 28594.95 27493.87 33290.24 25098.61 32981.18 35794.88 34995.45 352
thres600view792.03 29791.43 29593.82 29998.19 18584.61 33296.27 14890.39 35896.81 9196.37 22593.11 33673.44 35399.49 19180.32 35897.95 28797.36 310
PAPR92.22 29391.27 29995.07 26195.73 33488.81 26691.97 32497.87 23885.80 32490.91 34792.73 34791.16 23498.33 34979.48 35995.76 34398.08 273
MVS90.02 31589.20 32292.47 32894.71 34886.90 30495.86 17496.74 29164.72 37290.62 34892.77 34592.54 21098.39 34479.30 36095.56 34592.12 365
gg-mvs-nofinetune88.28 33186.96 33692.23 33392.84 37084.44 33498.19 4674.60 37799.08 1087.01 36899.47 856.93 37598.23 35278.91 36195.61 34494.01 359
thres100view90091.76 30191.26 30093.26 31098.21 18384.50 33396.39 14190.39 35896.87 8996.33 22693.08 34073.44 35399.42 21078.85 36297.74 29595.85 344
tfpn200view991.55 30391.00 30293.21 31398.02 20484.35 33595.70 18190.79 35596.26 11395.90 25192.13 35373.62 35099.42 21078.85 36297.74 29595.85 344
thres40091.68 30291.00 30293.71 30298.02 20484.35 33595.70 18190.79 35596.26 11395.90 25192.13 35373.62 35099.42 21078.85 36297.74 29597.36 310
thres20091.00 30990.42 31392.77 32397.47 27283.98 33994.01 27391.18 35395.12 17195.44 26391.21 36273.93 34699.31 24677.76 36597.63 30595.01 354
wuyk23d93.25 27895.20 19587.40 35496.07 32595.38 10697.04 11494.97 31895.33 16199.70 598.11 12398.14 1391.94 37277.76 36599.68 6474.89 372
test_method66.88 34166.13 34469.11 35762.68 38025.73 38249.76 37196.04 30014.32 37564.27 37691.69 35873.45 35288.05 37476.06 36766.94 37493.54 360
PCF-MVS89.43 1892.12 29690.64 31096.57 19697.80 23293.48 18489.88 35598.45 17374.46 36996.04 24295.68 29990.71 24199.31 24673.73 36899.01 22396.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 33983.21 34288.34 35195.76 33374.97 37383.49 36792.70 34178.47 36287.94 36486.90 37183.38 30496.63 36973.44 36966.86 37593.40 362
GG-mvs-BLEND90.60 34291.00 37484.21 33798.23 4072.63 38082.76 37184.11 37256.14 37896.79 36672.20 37092.09 36190.78 369
FPMVS89.92 31988.63 32793.82 29998.37 16796.94 4791.58 32893.34 33388.00 30590.32 35297.10 22470.87 36191.13 37371.91 37196.16 33893.39 363
MVEpermissive73.61 2286.48 33885.92 34088.18 35296.23 31785.28 32381.78 37075.79 37686.01 32082.53 37291.88 35592.74 20187.47 37571.42 37294.86 35091.78 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 34262.50 34541.44 35834.77 38149.21 38183.93 36660.22 38215.31 37471.11 37579.37 37370.09 36344.86 37764.76 37382.93 37330.25 373
PAPM87.64 33685.84 34193.04 31696.54 30784.99 32888.42 36295.57 31279.52 35883.82 37093.05 34280.57 31698.41 34262.29 37492.79 35895.71 347
DeepMVS_CXcopyleft77.17 35690.94 37585.28 32374.08 37952.51 37380.87 37488.03 37075.25 34370.63 37659.23 37584.94 37175.62 371
test12312.59 34415.49 3473.87 3596.07 3822.55 38390.75 3442.59 3842.52 3775.20 37913.02 3764.96 3821.85 3795.20 3769.09 3767.23 374
testmvs12.33 34515.23 3483.64 3605.77 3832.23 38488.99 3593.62 3832.30 3785.29 37813.09 3754.52 3831.95 3785.16 3778.32 3776.75 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.22 34332.30 3460.00 3610.00 3840.00 3850.00 37298.10 2220.00 3790.00 38095.06 31397.54 290.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.98 34610.65 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37995.82 1090.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.91 34710.55 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38094.94 3150.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.59 1498.20 499.03 799.25 1498.96 1898.87 41
test_one_060199.05 9495.50 10198.87 8997.21 8298.03 12398.30 9696.93 60
eth-test20.00 384
eth-test0.00 384
test_241102_ONE99.22 5995.35 10998.83 10896.04 12699.08 3298.13 11997.87 2099.33 242
save fliter98.48 15694.71 13594.53 25098.41 18195.02 176
test072699.24 5495.51 9896.89 12098.89 8195.92 13498.64 5298.31 9297.06 50
GSMVS98.06 279
test_part299.03 9696.07 7698.08 117
sam_mvs177.80 32798.06 279
sam_mvs77.38 331
MTGPAbinary98.73 131
test_post10.87 37776.83 33599.07 284
patchmatchnet-post96.84 24177.36 33299.42 210
MTMP96.55 13574.60 377
TEST997.84 22495.23 11693.62 28798.39 18486.81 31593.78 30395.99 28894.68 15499.52 184
test_897.81 22895.07 12593.54 29098.38 18687.04 31393.71 30795.96 29294.58 15999.52 184
agg_prior97.80 23294.96 12798.36 18893.49 31699.53 180
test_prior495.38 10693.61 289
test_prior97.46 14297.79 23894.26 15598.42 17999.34 23998.79 207
新几何293.43 292
旧先验197.80 23293.87 16797.75 24697.04 22993.57 18598.68 25598.72 217
原ACMM292.82 306
test22298.17 19093.24 18992.74 31097.61 26175.17 36894.65 28196.69 25390.96 23898.66 25897.66 301
segment_acmp95.34 132
testdata192.77 30793.78 216
test1297.46 14297.61 26094.07 16097.78 24593.57 31493.31 18999.42 21098.78 24798.89 194
plane_prior798.70 12794.67 139
plane_prior698.38 16694.37 14991.91 228
plane_prior496.77 247
plane_prior394.51 14395.29 16496.16 237
plane_prior296.50 13796.36 109
plane_prior198.49 154
plane_prior94.29 15195.42 19794.31 20098.93 231
n20.00 385
nn0.00 385
door-mid98.17 212
test1198.08 225
door97.81 244
HQP5-MVS92.47 203
HQP-NCC97.85 22094.26 25693.18 23492.86 329
ACMP_Plane97.85 22094.26 25693.18 23492.86 329
HQP4-MVS92.87 32899.23 26399.06 166
HQP3-MVS98.43 17698.74 251
HQP2-MVS90.33 245
NP-MVS98.14 19593.72 17595.08 311
ACMMP++_ref99.52 110
ACMMP++99.55 99
Test By Simon94.51 162