This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
test_fmvsmvis_n_192098.08 4598.47 2896.93 17799.03 10593.29 18796.32 16799.65 1095.59 16099.71 699.01 5597.66 3399.60 16199.44 299.83 4097.90 307
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8799.39 4494.63 13596.70 14999.82 195.44 16999.64 1299.52 798.96 499.74 7799.38 399.86 2899.81 7
mamv499.05 598.91 899.46 298.94 11399.62 297.98 6399.70 599.49 399.78 299.22 3395.92 12199.95 399.31 499.83 4098.83 207
v7n98.73 1298.99 597.95 9799.64 1394.20 15598.67 1499.14 4899.08 1399.42 2299.23 3296.53 9599.91 1499.27 599.93 1199.73 20
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19897.60 9299.61 1490.87 29798.76 6999.66 394.03 18397.90 37999.24 699.68 8099.81 7
test_fmvsmconf0.1_n98.41 2898.54 2698.03 9299.16 8094.61 13696.18 17799.73 395.05 18599.60 1699.34 2498.68 899.72 8899.21 799.85 3599.76 16
test_fmvsm_n_192098.08 4598.29 4097.43 13998.88 12193.95 16396.17 18199.57 1595.66 15599.52 1798.71 8597.04 6299.64 14399.21 799.87 2698.69 226
MM96.87 14796.62 15997.62 11897.72 26893.30 18696.39 15992.61 36497.90 5496.76 22898.64 9390.46 26099.81 3799.16 999.94 899.76 16
test_fmvsmconf_n98.30 3398.41 3497.99 9598.94 11394.60 13796.00 19299.64 1394.99 18899.43 2199.18 3998.51 1099.71 10299.13 1099.84 3799.67 26
fmvsm_l_conf0.5_n97.68 9497.81 7397.27 15198.92 11792.71 20395.89 20299.41 2593.36 23899.00 4798.44 11396.46 10299.65 13999.09 1199.76 5699.45 82
fmvsm_l_conf0.5_n_a97.60 10097.76 7997.11 16298.92 11792.28 21195.83 20599.32 2693.22 24498.91 5498.49 10696.31 10999.64 14399.07 1299.76 5699.40 97
fmvsm_s_conf0.1_n_a97.80 8398.01 5397.18 15799.17 7992.51 20696.57 15399.15 4593.68 23098.89 5599.30 2796.42 10499.37 23599.03 1399.83 4099.66 28
fmvsm_s_conf0.1_n97.73 8898.02 5296.85 18399.09 9591.43 23796.37 16399.11 5194.19 21399.01 4599.25 3096.30 11099.38 23099.00 1499.88 2499.73 20
fmvsm_s_conf0.5_n_a97.65 9597.83 7197.13 16198.80 13092.51 20696.25 17399.06 6493.67 23198.64 7399.00 5696.23 11499.36 23898.99 1599.80 4899.53 53
fmvsm_s_conf0.5_n97.62 9897.89 6496.80 18798.79 13291.44 23696.14 18299.06 6494.19 21398.82 6198.98 5996.22 11599.38 23098.98 1699.86 2899.58 36
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2299.22 3396.23 12299.71 699.48 1098.77 799.93 498.89 1799.95 599.84 5
test_fmvs296.38 17796.45 17496.16 22497.85 23891.30 23896.81 13899.45 1989.24 31898.49 8799.38 1888.68 28497.62 38498.83 1899.32 19299.57 43
PS-MVSNAJss98.53 2398.63 2198.21 7799.68 1194.82 12898.10 5599.21 3496.91 9499.75 399.45 1395.82 12799.92 698.80 1999.96 499.89 1
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3099.12 5095.83 14999.67 999.37 1998.25 1399.92 698.77 2099.94 899.82 6
v1097.55 10497.97 5796.31 21798.60 15889.64 26597.44 10599.02 7896.60 10398.72 7299.16 4393.48 19699.72 8898.76 2199.92 1499.58 36
MVSFormer96.14 18696.36 17895.49 25997.68 27287.81 30798.67 1499.02 7896.50 11094.48 31396.15 30386.90 30399.92 698.73 2299.13 21898.74 219
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1499.02 7896.50 11099.32 2899.44 1497.43 4199.92 698.73 2299.95 599.86 2
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 699.05 6898.05 5099.61 1599.52 793.72 19299.88 2298.72 2499.88 2499.65 31
tt080597.44 11297.56 10297.11 16299.55 2296.36 6498.66 1795.66 32198.31 3997.09 20595.45 32897.17 5498.50 35598.67 2597.45 33596.48 368
v897.60 10098.06 4996.23 21998.71 14389.44 27097.43 10798.82 14097.29 8698.74 7099.10 5093.86 18799.68 12398.61 2699.94 899.56 47
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 1899.19 3895.62 15899.35 2799.37 1997.38 4399.90 1798.59 2799.91 1799.77 11
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1899.62 1499.36 2198.53 999.52 18398.58 2899.95 599.66 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124096.74 15697.02 13895.91 23698.18 20788.52 28795.39 23298.88 11293.15 25298.46 9298.40 11992.80 21299.71 10298.45 2999.49 14299.49 67
MVSMamba_PlusPlus97.43 11497.98 5695.78 24298.88 12189.70 26298.03 6098.85 12199.18 1096.84 22199.12 4793.04 20499.91 1498.38 3099.55 11697.73 320
iter_conf0597.83 7798.49 2795.84 23998.88 12189.05 27898.87 999.42 2299.18 1099.73 499.12 4793.04 20499.91 1498.38 3099.78 5398.58 237
v119296.83 15197.06 13596.15 22598.28 19389.29 27295.36 23498.77 14793.73 22698.11 13298.34 12493.02 20999.67 13198.35 3299.58 10499.50 59
v192192096.72 15996.96 14295.99 22998.21 20188.79 28495.42 22898.79 14293.22 24498.19 12598.26 14192.68 21599.70 11098.34 3399.55 11699.49 67
MVS_030495.71 20395.18 21997.33 14794.85 37992.82 19695.36 23490.89 38095.51 16495.61 28597.82 19388.39 28899.78 4798.23 3499.91 1799.40 97
Anonymous2023121198.55 2198.76 1497.94 9898.79 13294.37 14798.84 1199.15 4599.37 499.67 999.43 1595.61 13899.72 8898.12 3599.86 2899.73 20
v14419296.69 16296.90 14796.03 22898.25 19788.92 27995.49 22498.77 14793.05 25498.09 13598.29 13592.51 22699.70 11098.11 3699.56 11099.47 76
test_fmvs1_n95.21 22795.28 21594.99 28098.15 21489.13 27796.81 13899.43 2186.97 34797.21 19198.92 6683.00 33297.13 38898.09 3798.94 24098.72 222
Anonymous2024052197.07 13297.51 10795.76 24399.35 4988.18 29597.78 7898.40 20297.11 8998.34 10699.04 5489.58 27399.79 4498.09 3799.93 1199.30 118
v114496.84 14897.08 13396.13 22698.42 18389.28 27395.41 23098.67 16994.21 21197.97 15098.31 12793.06 20399.65 13998.06 3999.62 9099.45 82
SixPastTwentyTwo97.49 10897.57 10197.26 15399.56 2092.33 21098.28 4196.97 29698.30 4199.45 2099.35 2388.43 28799.89 2098.01 4099.76 5699.54 50
test_vis1_n_192095.77 20196.41 17693.85 32198.55 16584.86 35195.91 20199.71 492.72 26697.67 16998.90 7087.44 30098.73 33097.96 4198.85 25197.96 303
WR-MVS_H98.65 1698.62 2398.75 3299.51 2896.61 5798.55 2199.17 4099.05 1699.17 3798.79 7695.47 14299.89 2097.95 4299.91 1799.75 18
UA-Net98.88 898.76 1499.22 399.11 9297.89 1499.47 399.32 2699.08 1397.87 16199.67 296.47 10099.92 697.88 4399.98 299.85 3
test_fmvs194.51 26394.60 25094.26 31595.91 35187.92 30295.35 23799.02 7886.56 35196.79 22398.52 10382.64 33497.00 39197.87 4498.71 26697.88 309
FC-MVSNet-test98.16 3898.37 3597.56 12199.49 3293.10 19298.35 3499.21 3498.43 3598.89 5598.83 7594.30 17799.81 3797.87 4499.91 1799.77 11
Vis-MVSNetpermissive98.27 3498.34 3698.07 8599.33 5195.21 11998.04 5899.46 1897.32 8497.82 16599.11 4996.75 8599.86 2697.84 4699.36 17799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 17496.28 18196.95 17599.41 4091.53 23397.65 8990.31 38798.89 2398.93 5199.36 2184.57 32199.92 697.81 4799.56 11099.39 102
v2v48296.78 15597.06 13595.95 23398.57 16288.77 28595.36 23498.26 21795.18 17997.85 16398.23 14592.58 21999.63 14797.80 4899.69 7699.45 82
PS-CasMVS98.73 1298.85 1198.39 6099.55 2295.47 10198.49 2799.13 4999.22 999.22 3598.96 6297.35 4499.92 697.79 4999.93 1199.79 9
nrg03098.54 2298.62 2398.32 6499.22 6695.66 9197.90 7199.08 6098.31 3999.02 4498.74 8297.68 3099.61 15997.77 5099.85 3599.70 24
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 999.30 2899.01 1999.63 1399.66 399.27 299.68 12397.75 5199.89 2399.62 33
ACMH93.61 998.44 2698.76 1497.51 12699.43 3793.54 17998.23 4599.05 6897.40 8099.37 2599.08 5298.79 699.47 19897.74 5299.71 7299.50 59
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_f95.82 20095.88 20195.66 24997.61 28493.21 19195.61 22098.17 23186.98 34698.42 9599.47 1190.46 26094.74 40197.71 5398.45 28799.03 173
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 2999.10 5399.36 599.29 3099.06 5397.27 4899.93 497.71 5399.91 1799.70 24
test_vis1_n95.67 20695.89 20095.03 27798.18 20789.89 26096.94 13199.28 3088.25 33498.20 12198.92 6686.69 30697.19 38797.70 5598.82 25598.00 301
EC-MVSNet97.90 7097.94 6097.79 10698.66 14995.14 12098.31 3899.66 997.57 6895.95 27097.01 25696.99 6699.82 3597.66 5699.64 8798.39 255
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9098.45 3099.15 4599.33 699.30 2999.00 5697.27 4899.92 697.64 5799.92 1499.75 18
CP-MVSNet98.42 2798.46 2998.30 6799.46 3495.22 11798.27 4398.84 12699.05 1699.01 4598.65 9295.37 14599.90 1797.57 5899.91 1799.77 11
EI-MVSNet-UG-set97.32 12397.40 11297.09 16697.34 30692.01 22595.33 23997.65 27197.74 5998.30 11498.14 15495.04 15499.69 11897.55 5999.52 13099.58 36
ANet_high98.31 3298.94 696.41 21299.33 5189.64 26597.92 6999.56 1799.27 799.66 1199.50 997.67 3199.83 3497.55 5999.98 299.77 11
CS-MVS98.09 4498.01 5398.32 6498.45 18096.69 5398.52 2599.69 698.07 4996.07 26697.19 24496.88 7799.86 2697.50 6199.73 6598.41 252
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16297.36 30392.08 22395.34 23897.65 27197.74 5998.29 11598.11 16095.05 15399.68 12397.50 6199.50 13999.56 47
EU-MVSNet94.25 26994.47 25893.60 32798.14 21682.60 37197.24 11592.72 36185.08 36598.48 8998.94 6482.59 33598.76 32897.47 6399.53 12599.44 92
V4297.04 13397.16 12996.68 19698.59 16091.05 24296.33 16698.36 20794.60 20097.99 14698.30 13193.32 19899.62 15297.40 6499.53 12599.38 104
KD-MVS_self_test97.86 7598.07 4797.25 15499.22 6692.81 19897.55 9798.94 10097.10 9098.85 5898.88 7295.03 15599.67 13197.39 6599.65 8599.26 130
lessismore_v097.05 16999.36 4892.12 21984.07 40498.77 6898.98 5985.36 31599.74 7797.34 6699.37 17499.30 118
FIs97.93 6498.07 4797.48 13499.38 4692.95 19598.03 6099.11 5198.04 5198.62 7598.66 8993.75 19199.78 4797.23 6799.84 3799.73 20
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 599.20 3699.67 299.73 499.65 599.15 399.86 2697.22 6899.92 1499.77 11
MVS_Test96.27 18196.79 15394.73 29596.94 32486.63 32896.18 17798.33 21194.94 18996.07 26698.28 13695.25 14999.26 26597.21 6997.90 31098.30 268
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2499.00 4799.20 3597.42 4299.59 16297.21 6999.76 5699.40 97
EG-PatchMatch MVS97.69 9297.79 7597.40 14399.06 9993.52 18095.96 19798.97 9694.55 20498.82 6198.76 8197.31 4699.29 25997.20 7199.44 15599.38 104
VPA-MVSNet98.27 3498.46 2997.70 11299.06 9993.80 16897.76 8199.00 8798.40 3699.07 4398.98 5996.89 7599.75 6897.19 7299.79 5099.55 49
test_vis3_rt97.04 13396.98 13997.23 15698.44 18195.88 8196.82 13799.67 790.30 30699.27 3199.33 2694.04 18296.03 39897.14 7397.83 31399.78 10
UniMVSNet (Re)97.83 7797.65 8998.35 6398.80 13095.86 8395.92 20099.04 7597.51 7298.22 12097.81 19594.68 16599.78 4797.14 7399.75 6399.41 96
pm-mvs198.47 2598.67 1997.86 10299.52 2794.58 13898.28 4199.00 8797.57 6899.27 3199.22 3398.32 1299.50 18897.09 7599.75 6399.50 59
baseline97.44 11297.78 7896.43 20998.52 16990.75 25096.84 13599.03 7696.51 10997.86 16298.02 17396.67 8799.36 23897.09 7599.47 14899.19 142
IterMVS-SCA-FT95.86 19896.19 18494.85 28897.68 27285.53 33992.42 34797.63 27596.99 9198.36 10398.54 10287.94 29299.75 6897.07 7799.08 22699.27 129
balanced_conf0396.88 14697.29 11995.63 25097.66 27789.47 26997.95 6698.89 10595.94 14097.77 16898.55 10092.23 23099.68 12397.05 7899.61 9697.73 320
UniMVSNet_NR-MVSNet97.83 7797.65 8998.37 6198.72 14095.78 8495.66 21499.02 7898.11 4798.31 11297.69 20694.65 16799.85 2997.02 7999.71 7299.48 73
DU-MVS97.79 8497.60 9898.36 6298.73 13895.78 8495.65 21698.87 11497.57 6898.31 11297.83 19094.69 16399.85 2997.02 7999.71 7299.46 78
casdiffmvs_mvgpermissive97.83 7798.11 4497.00 17498.57 16292.10 22295.97 19599.18 3997.67 6799.00 4798.48 11097.64 3499.50 18896.96 8199.54 12199.40 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet96.63 16596.93 14395.74 24497.26 31188.13 29895.29 24397.65 27196.99 9197.94 15398.19 15092.55 22199.58 16496.91 8299.56 11099.50 59
IterMVS-LS96.92 14297.29 11995.79 24198.51 17188.13 29895.10 25098.66 17196.99 9198.46 9298.68 8892.55 22199.74 7796.91 8299.79 5099.50 59
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.91 6897.84 6898.14 8198.52 16996.03 7898.38 3399.67 798.11 4795.50 28996.92 26296.81 8399.87 2496.87 8499.76 5698.51 245
test_cas_vis1_n_192095.34 22195.67 20794.35 31198.21 20186.83 32695.61 22099.26 3190.45 30498.17 12698.96 6284.43 32298.31 36996.74 8599.17 21397.90 307
test111194.53 26294.81 23993.72 32499.06 9981.94 37698.31 3883.87 40596.37 11598.49 8799.17 4281.49 33799.73 8396.64 8699.86 2899.49 67
APDe-MVScopyleft98.14 3998.03 5198.47 5598.72 14096.04 7698.07 5799.10 5395.96 13898.59 7998.69 8796.94 6999.81 3796.64 8699.58 10499.57 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss97.69 9297.36 11598.70 3999.50 3196.84 4895.38 23398.99 9092.45 27298.11 13298.31 12797.25 5199.77 5796.60 8899.62 9099.48 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 22096.07 19093.21 33796.29 33781.56 37894.60 27497.66 26993.30 24196.95 21598.91 6993.03 20899.38 23096.60 8897.30 34098.69 226
casdiffmvspermissive97.50 10797.81 7396.56 20398.51 17191.04 24395.83 20599.09 5897.23 8798.33 10998.30 13197.03 6399.37 23596.58 9099.38 17399.28 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)98.38 2998.67 1997.51 12699.51 2893.39 18598.20 5098.87 11498.23 4399.48 1899.27 2998.47 1199.55 17596.52 9199.53 12599.60 34
HPM-MVS_fast98.32 3198.13 4298.88 2499.54 2597.48 3198.35 3499.03 7695.88 14597.88 15898.22 14898.15 1699.74 7796.50 9299.62 9099.42 94
MIMVSNet198.51 2498.45 3198.67 4199.72 896.71 5198.76 1298.89 10598.49 3499.38 2499.14 4695.44 14499.84 3296.47 9399.80 4899.47 76
TranMVSNet+NR-MVSNet98.33 3098.30 3998.43 5799.07 9895.87 8296.73 14799.05 6898.67 2798.84 5998.45 11197.58 3899.88 2296.45 9499.86 2899.54 50
MGCFI-Net97.20 12897.23 12497.08 16797.68 27293.71 17297.79 7799.09 5897.40 8096.59 23893.96 35297.67 3199.35 24296.43 9598.50 28498.17 283
test250689.86 34589.16 35091.97 36598.95 11076.83 40098.54 2261.07 41496.20 12397.07 20699.16 4355.19 40899.69 11896.43 9599.83 4099.38 104
Gipumacopyleft98.07 4798.31 3797.36 14599.76 796.28 6998.51 2699.10 5398.76 2696.79 22399.34 2496.61 9198.82 32196.38 9799.50 13996.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 27293.93 27795.05 27695.83 35786.46 32995.18 24897.65 27192.41 27397.94 15398.00 17772.39 38299.58 16496.36 9899.56 11099.12 158
GeoE97.75 8797.70 8297.89 10098.88 12194.53 13997.10 12398.98 9395.75 15397.62 17097.59 21297.61 3799.77 5796.34 9999.44 15599.36 110
sasdasda97.23 12697.21 12697.30 14997.65 27994.39 14497.84 7499.05 6897.42 7596.68 23193.85 35497.63 3599.33 24796.29 10098.47 28598.18 281
canonicalmvs97.23 12697.21 12697.30 14997.65 27994.39 14497.84 7499.05 6897.42 7596.68 23193.85 35497.63 3599.33 24796.29 10098.47 28598.18 281
testf198.57 1898.45 3198.93 1999.79 398.78 397.69 8699.42 2297.69 6498.92 5298.77 7997.80 2599.25 26796.27 10299.69 7698.76 217
APD_test298.57 1898.45 3198.93 1999.79 398.78 397.69 8699.42 2297.69 6498.92 5298.77 7997.80 2599.25 26796.27 10299.69 7698.76 217
alignmvs96.01 19295.52 21397.50 13097.77 26094.71 13096.07 18696.84 29997.48 7396.78 22794.28 35085.50 31499.40 22396.22 10498.73 26598.40 253
tttt051793.31 29892.56 30595.57 25398.71 14387.86 30497.44 10587.17 39995.79 15097.47 18196.84 26664.12 39699.81 3796.20 10599.32 19299.02 176
DeepC-MVS95.41 497.82 8197.70 8298.16 7898.78 13595.72 8696.23 17599.02 7893.92 22398.62 7598.99 5897.69 2999.62 15296.18 10699.87 2699.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA98.14 3997.84 6899.06 499.44 3697.90 1397.25 11398.73 15497.69 6497.90 15697.96 17995.81 13199.82 3596.13 10799.61 9699.45 82
ZNCC-MVS97.92 6597.62 9698.83 2699.32 5397.24 4097.45 10498.84 12695.76 15196.93 21697.43 22397.26 5099.79 4496.06 10899.53 12599.45 82
Patchmatch-RL test94.66 25594.49 25695.19 26998.54 16788.91 28092.57 34098.74 15391.46 28998.32 11097.75 20077.31 36098.81 32396.06 10899.61 9697.85 311
ACMMP_NAP97.89 7197.63 9498.67 4199.35 4996.84 4896.36 16498.79 14295.07 18497.88 15898.35 12397.24 5299.72 8896.05 11099.58 10499.45 82
v14896.58 16896.97 14095.42 26298.63 15487.57 31195.09 25197.90 25395.91 14498.24 11897.96 17993.42 19799.39 22796.04 11199.52 13099.29 124
ACMM93.33 1198.05 4897.79 7598.85 2599.15 8397.55 2796.68 15098.83 13295.21 17698.36 10398.13 15698.13 1899.62 15296.04 11199.54 12199.39 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 11997.25 12297.74 10998.69 14794.50 14297.04 12795.61 32598.59 3098.51 8498.72 8392.54 22399.58 16496.02 11399.49 14299.12 158
IterMVS95.42 21995.83 20294.20 31697.52 29083.78 36392.41 34897.47 28095.49 16698.06 14098.49 10687.94 29299.58 16496.02 11399.02 23399.23 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive96.04 19096.23 18295.46 26197.35 30488.03 30193.42 31999.08 6094.09 21996.66 23496.93 26093.85 18899.29 25996.01 11598.67 26999.06 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS97.36 12197.10 13198.14 8198.91 11996.77 5096.20 17698.63 17793.82 22498.54 8298.33 12593.98 18499.05 30095.99 11699.45 15498.61 235
Baseline_NR-MVSNet97.72 9097.79 7597.50 13099.56 2093.29 18795.44 22698.86 11798.20 4598.37 10099.24 3194.69 16399.55 17595.98 11799.79 5099.65 31
ECVR-MVScopyleft94.37 26894.48 25794.05 32098.95 11083.10 36698.31 3882.48 40796.20 12398.23 11999.16 4381.18 34099.66 13795.95 11899.83 4099.38 104
3Dnovator96.53 297.61 9997.64 9297.50 13097.74 26693.65 17798.49 2798.88 11296.86 9697.11 19998.55 10095.82 12799.73 8395.94 11999.42 16699.13 153
PatchT93.75 28593.57 28294.29 31495.05 37787.32 31796.05 18792.98 35797.54 7194.25 31698.72 8375.79 36899.24 27195.92 12095.81 36996.32 370
NR-MVSNet97.96 5497.86 6798.26 6998.73 13895.54 9498.14 5398.73 15497.79 5599.42 2297.83 19094.40 17599.78 4795.91 12199.76 5699.46 78
h-mvs3396.29 18095.63 21098.26 6998.50 17496.11 7496.90 13397.09 29196.58 10597.21 19198.19 15084.14 32399.78 4795.89 12296.17 36698.89 198
hse-mvs295.77 20195.09 22397.79 10697.84 24395.51 9695.66 21495.43 33096.58 10597.21 19196.16 30284.14 32399.54 17895.89 12296.92 34398.32 264
MSC_two_6792asdad98.22 7497.75 26395.34 10998.16 23599.75 6895.87 12499.51 13599.57 43
No_MVS98.22 7497.75 26395.34 10998.16 23599.75 6895.87 12499.51 13599.57 43
new-patchmatchnet95.67 20696.58 16392.94 34697.48 29380.21 38692.96 32998.19 23094.83 19298.82 6198.79 7693.31 19999.51 18795.83 12699.04 23299.12 158
FMVSNet197.95 5898.08 4697.56 12199.14 9093.67 17398.23 4598.66 17197.41 7999.00 4799.19 3695.47 14299.73 8395.83 12699.76 5699.30 118
patch_mono-296.59 16696.93 14395.55 25698.88 12187.12 32094.47 27799.30 2894.12 21696.65 23698.41 11694.98 15899.87 2495.81 12899.78 5399.66 28
DVP-MVS++97.96 5497.90 6198.12 8397.75 26395.40 10299.03 798.89 10596.62 10198.62 7598.30 13196.97 6799.75 6895.70 12999.25 20399.21 138
test_0728_THIRD96.62 10198.40 9798.28 13697.10 5699.71 10295.70 12999.62 9099.58 36
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3798.57 1844.71 41110.38 41298.90 7095.60 13999.50 18895.69 13199.61 9698.55 241
RPMNet94.68 25494.60 25094.90 28595.44 36988.15 29696.18 17798.86 11797.43 7494.10 32098.49 10679.40 34799.76 6295.69 13195.81 36996.81 359
TSAR-MVS + MP.97.42 11597.23 12498.00 9499.38 4695.00 12497.63 9198.20 22593.00 25698.16 12798.06 16995.89 12299.72 8895.67 13399.10 22499.28 125
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS97.96 5497.63 9498.94 1699.15 8397.66 2097.77 7998.83 13297.42 7596.32 25297.64 20896.49 9899.72 8895.66 13499.37 17499.45 82
X-MVStestdata92.86 30590.83 33298.94 1699.15 8397.66 2097.77 7998.83 13297.42 7596.32 25236.50 40996.49 9899.72 8895.66 13499.37 17499.45 82
3Dnovator+96.13 397.73 8897.59 9998.15 8098.11 22095.60 9298.04 5898.70 16398.13 4696.93 21698.45 11195.30 14899.62 15295.64 13698.96 23799.24 135
DELS-MVS96.17 18596.23 18295.99 22997.55 28990.04 25792.38 35098.52 18794.13 21596.55 24397.06 25194.99 15799.58 16495.62 13799.28 19998.37 257
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 6197.64 9298.83 2699.15 8397.50 3097.59 9498.84 12696.05 13197.49 17797.54 21597.07 5999.70 11095.61 13899.46 15199.30 118
ACMMPR97.95 5897.62 9698.94 1699.20 7597.56 2697.59 9498.83 13296.05 13197.46 18297.63 20996.77 8499.76 6295.61 13899.46 15199.49 67
UGNet96.81 15396.56 16597.58 12096.64 32993.84 16797.75 8297.12 29096.47 11393.62 33698.88 7293.22 20199.53 18095.61 13899.69 7699.36 110
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 4397.83 7198.92 2299.42 3997.46 3298.57 1999.05 6895.43 17097.41 18497.50 21997.98 1999.79 4495.58 14199.57 10799.50 59
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 13097.99 5594.51 30599.11 9284.00 36197.75 8299.65 1097.38 8299.14 3898.42 11595.16 15199.96 295.52 14299.78 5399.58 36
SR-MVS-dyc-post98.14 3997.84 6899.02 798.81 12898.05 1097.55 9798.86 11797.77 5698.20 12198.07 16496.60 9399.76 6295.49 14399.20 20899.26 130
RE-MVS-def97.88 6698.81 12898.05 1097.55 9798.86 11797.77 5698.20 12198.07 16496.94 6995.49 14399.20 20899.26 130
Anonymous2024052997.96 5498.04 5097.71 11198.69 14794.28 15397.86 7398.31 21598.79 2599.23 3498.86 7495.76 13399.61 15995.49 14399.36 17799.23 136
DVP-MVScopyleft97.78 8597.65 8998.16 7899.24 6195.51 9696.74 14398.23 22195.92 14298.40 9798.28 13697.06 6099.71 10295.48 14699.52 13099.26 130
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7299.23 6395.49 10096.74 14398.89 10599.75 6895.48 14699.52 13099.53 53
region2R97.92 6597.59 9998.92 2299.22 6697.55 2797.60 9298.84 12696.00 13697.22 18997.62 21096.87 7999.76 6295.48 14699.43 16399.46 78
pmmvs-eth3d96.49 17196.18 18597.42 14198.25 19794.29 15094.77 26898.07 24789.81 31397.97 15098.33 12593.11 20299.08 29795.46 14999.84 3798.89 198
SED-MVS97.94 6197.90 6198.07 8599.22 6695.35 10796.79 14098.83 13296.11 12899.08 4198.24 14397.87 2399.72 8895.44 15099.51 13599.14 151
test_241102_TWO98.83 13296.11 12898.62 7598.24 14396.92 7399.72 8895.44 15099.49 14299.49 67
APD-MVS_3200maxsize98.13 4297.90 6198.79 3098.79 13297.31 3797.55 9798.92 10297.72 6198.25 11798.13 15697.10 5699.75 6895.44 15099.24 20699.32 113
xiu_mvs_v1_base_debu95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
xiu_mvs_v1_base95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
xiu_mvs_v1_base_debi95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
c3_l95.20 22895.32 21494.83 29096.19 34286.43 33191.83 35998.35 21093.47 23597.36 18597.26 24088.69 28399.28 26195.41 15699.36 17798.78 213
mvsany_test396.21 18395.93 19897.05 16997.40 30194.33 14995.76 20894.20 34489.10 31999.36 2699.60 693.97 18597.85 38095.40 15798.63 27498.99 180
ACMMPcopyleft98.05 4897.75 8198.93 1999.23 6397.60 2398.09 5698.96 9795.75 15397.91 15598.06 16996.89 7599.76 6295.32 15899.57 10799.43 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
miper_lstm_enhance94.81 24694.80 24094.85 28896.16 34486.45 33091.14 37298.20 22593.49 23497.03 20897.37 23384.97 31899.26 26595.28 15999.56 11098.83 207
MSLP-MVS++96.42 17696.71 15595.57 25397.82 24690.56 25495.71 20998.84 12694.72 19596.71 23097.39 22994.91 16098.10 37795.28 15999.02 23398.05 296
SteuartSystems-ACMMP98.02 5097.76 7998.79 3099.43 3797.21 4297.15 11998.90 10496.58 10598.08 13797.87 18897.02 6499.76 6295.25 16199.59 10299.40 97
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 11997.70 8296.35 21498.14 21695.13 12196.54 15598.92 10295.94 14099.19 3698.08 16297.74 2895.06 39995.24 16299.54 12198.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 6695.40 10298.14 23885.77 35998.36 10395.23 16399.51 13599.49 67
CP-MVS97.92 6597.56 10298.99 1198.99 10897.82 1697.93 6898.96 9796.11 12896.89 21997.45 22196.85 8099.78 4795.19 16499.63 8999.38 104
LS3D97.77 8697.50 10998.57 4896.24 33897.58 2598.45 3098.85 12198.58 3197.51 17597.94 18295.74 13499.63 14795.19 16498.97 23698.51 245
SMA-MVScopyleft97.48 10997.11 13098.60 4698.83 12796.67 5496.74 14398.73 15491.61 28598.48 8998.36 12296.53 9599.68 12395.17 16699.54 12199.45 82
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 29992.79 29794.78 29395.44 36988.15 29696.18 17797.20 28584.94 37094.10 32098.57 9777.67 35599.39 22795.17 16695.81 36996.81 359
OPM-MVS97.54 10597.25 12298.41 5899.11 9296.61 5795.24 24598.46 19294.58 20398.10 13498.07 16497.09 5899.39 22795.16 16899.44 15599.21 138
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6897.53 10599.04 599.22 6697.87 1597.74 8498.78 14696.04 13397.10 20097.73 20396.53 9599.78 4795.16 16899.50 13999.46 78
DIV-MVS_self_test94.73 24794.64 24695.01 27895.86 35587.00 32291.33 36698.08 24393.34 23997.10 20097.34 23584.02 32599.31 25295.15 17099.55 11698.72 222
cl____94.73 24794.64 24695.01 27895.85 35687.00 32291.33 36698.08 24393.34 23997.10 20097.33 23684.01 32699.30 25595.14 17199.56 11098.71 225
MSP-MVS97.45 11196.92 14599.03 699.26 5797.70 1997.66 8898.89 10595.65 15698.51 8496.46 28992.15 23299.81 3795.14 17198.58 27999.58 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 13996.84 14897.41 14299.40 4393.26 18997.94 6795.31 33399.26 898.39 9999.18 3987.85 29799.62 15295.13 17399.09 22599.35 112
CANet95.86 19895.65 20996.49 20696.41 33590.82 24794.36 27998.41 20094.94 18992.62 36496.73 27592.68 21599.71 10295.12 17499.60 10098.94 186
CNVR-MVS96.92 14296.55 16698.03 9298.00 22995.54 9494.87 26398.17 23194.60 20096.38 24997.05 25295.67 13699.36 23895.12 17499.08 22699.19 142
eth_miper_zixun_eth94.89 24294.93 23094.75 29495.99 35086.12 33491.35 36598.49 19093.40 23697.12 19897.25 24186.87 30599.35 24295.08 17698.82 25598.78 213
bld_raw_conf0396.30 17996.50 17295.71 24797.70 27089.70 26298.03 6098.85 12192.51 27196.84 22198.43 11491.53 24599.70 11095.07 17799.55 11697.73 320
GST-MVS97.82 8197.49 11098.81 2899.23 6397.25 3997.16 11898.79 14295.96 13897.53 17397.40 22596.93 7199.77 5795.04 17899.35 18299.42 94
DP-MVS97.87 7397.89 6497.81 10598.62 15694.82 12897.13 12298.79 14298.98 2098.74 7098.49 10695.80 13299.49 19395.04 17899.44 15599.11 161
D2MVS95.18 22995.17 22095.21 26897.76 26187.76 30994.15 29197.94 25189.77 31496.99 21197.68 20787.45 29999.14 28595.03 18099.81 4598.74 219
SSC-MVS95.92 19597.03 13792.58 35599.28 5578.39 39196.68 15095.12 33598.90 2299.11 4098.66 8991.36 24899.68 12395.00 18199.16 21499.67 26
SR-MVS98.00 5197.66 8899.01 998.77 13697.93 1297.38 10998.83 13297.32 8498.06 14097.85 18996.65 8899.77 5795.00 18199.11 22299.32 113
FMVSNet296.72 15996.67 15896.87 18297.96 23191.88 22797.15 11998.06 24895.59 16098.50 8698.62 9489.51 27799.65 13994.99 18399.60 10099.07 168
SDMVSNet97.97 5298.26 4197.11 16299.41 4092.21 21496.92 13298.60 17998.58 3198.78 6499.39 1697.80 2599.62 15294.98 18499.86 2899.52 55
miper_ehance_all_eth94.69 25294.70 24394.64 29695.77 36186.22 33391.32 36898.24 22091.67 28397.05 20796.65 27988.39 28899.22 27594.88 18598.34 29198.49 248
XVG-OURS-SEG-HR97.38 11797.07 13498.30 6799.01 10797.41 3594.66 27299.02 7895.20 17798.15 12997.52 21798.83 598.43 36094.87 18696.41 35999.07 168
MVS_111021_HR96.73 15896.54 16897.27 15198.35 18893.66 17693.42 31998.36 20794.74 19496.58 23996.76 27496.54 9498.99 30794.87 18699.27 20199.15 148
test_040297.84 7697.97 5797.47 13599.19 7794.07 15896.71 14898.73 15498.66 2898.56 8198.41 11696.84 8199.69 11894.82 18899.81 4598.64 230
MVS_111021_LR96.82 15296.55 16697.62 11898.27 19595.34 10993.81 30998.33 21194.59 20296.56 24196.63 28096.61 9198.73 33094.80 18999.34 18598.78 213
WR-MVS96.90 14496.81 15097.16 15898.56 16492.20 21794.33 28098.12 24097.34 8398.20 12197.33 23692.81 21199.75 6894.79 19099.81 4599.54 50
ACMH+93.58 1098.23 3798.31 3797.98 9699.39 4495.22 11797.55 9799.20 3698.21 4499.25 3398.51 10598.21 1499.40 22394.79 19099.72 6999.32 113
thisisatest053092.71 30891.76 31695.56 25598.42 18388.23 29396.03 18987.35 39894.04 22096.56 24195.47 32764.03 39799.77 5794.78 19299.11 22298.68 229
PGM-MVS97.88 7297.52 10698.96 1499.20 7597.62 2297.09 12499.06 6495.45 16797.55 17297.94 18297.11 5599.78 4794.77 19399.46 15199.48 73
TSAR-MVS + GP.96.47 17396.12 18697.49 13397.74 26695.23 11494.15 29196.90 29893.26 24298.04 14396.70 27694.41 17498.89 31694.77 19399.14 21698.37 257
Syy-MVS92.09 31991.80 31592.93 34795.19 37482.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31398.50 35594.73 19596.84 34797.65 326
VNet96.84 14896.83 14996.88 18198.06 22192.02 22496.35 16597.57 27797.70 6397.88 15897.80 19692.40 22899.54 17894.73 19598.96 23799.08 166
APD_test197.95 5897.68 8698.75 3299.60 1698.60 697.21 11799.08 6096.57 10898.07 13998.38 12096.22 11599.14 28594.71 19799.31 19598.52 244
VPNet97.26 12597.49 11096.59 19999.47 3390.58 25296.27 16998.53 18697.77 5698.46 9298.41 11694.59 16899.68 12394.61 19899.29 19899.52 55
GBi-Net96.99 13696.80 15197.56 12197.96 23193.67 17398.23 4598.66 17195.59 16097.99 14699.19 3689.51 27799.73 8394.60 19999.44 15599.30 118
test196.99 13696.80 15197.56 12197.96 23193.67 17398.23 4598.66 17195.59 16097.99 14699.19 3689.51 27799.73 8394.60 19999.44 15599.30 118
FMVSNet395.26 22694.94 22896.22 22196.53 33290.06 25695.99 19397.66 26994.11 21797.99 14697.91 18680.22 34699.63 14794.60 19999.44 15598.96 183
SF-MVS97.60 10097.39 11398.22 7498.93 11595.69 8897.05 12699.10 5395.32 17397.83 16497.88 18796.44 10399.72 8894.59 20299.39 17299.25 134
XXY-MVS97.54 10597.70 8297.07 16899.46 3492.21 21497.22 11699.00 8794.93 19198.58 8098.92 6697.31 4699.41 22194.44 20399.43 16399.59 35
UnsupCasMVSNet_eth95.91 19695.73 20696.44 20898.48 17791.52 23495.31 24198.45 19395.76 15197.48 17997.54 21589.53 27698.69 33694.43 20494.61 38499.13 153
LPG-MVS_test97.94 6197.67 8798.74 3599.15 8397.02 4397.09 12499.02 7895.15 18098.34 10698.23 14597.91 2199.70 11094.41 20599.73 6599.50 59
LGP-MVS_train98.74 3599.15 8397.02 4399.02 7895.15 18098.34 10698.23 14597.91 2199.70 11094.41 20599.73 6599.50 59
DeepPCF-MVS94.58 596.90 14496.43 17598.31 6697.48 29397.23 4192.56 34198.60 17992.84 26398.54 8297.40 22596.64 9098.78 32594.40 20799.41 17098.93 190
XVG-ACMP-BASELINE97.58 10397.28 12198.49 5399.16 8096.90 4796.39 15998.98 9395.05 18598.06 14098.02 17395.86 12399.56 17194.37 20899.64 8799.00 177
RPSCF97.87 7397.51 10798.95 1599.15 8398.43 797.56 9699.06 6496.19 12598.48 8998.70 8694.72 16299.24 27194.37 20899.33 19099.17 145
CSCG97.40 11697.30 11897.69 11498.95 11094.83 12797.28 11298.99 9096.35 11898.13 13195.95 31495.99 11999.66 13794.36 21099.73 6598.59 236
HPM-MVS++copyleft96.99 13696.38 17798.81 2898.64 15097.59 2495.97 19598.20 22595.51 16495.06 29896.53 28594.10 18199.70 11094.29 21199.15 21599.13 153
XVG-OURS97.12 13096.74 15498.26 6998.99 10897.45 3393.82 30799.05 6895.19 17898.32 11097.70 20595.22 15098.41 36194.27 21298.13 30098.93 190
jason94.39 26794.04 27395.41 26498.29 19187.85 30692.74 33696.75 30485.38 36495.29 29396.15 30388.21 29199.65 13994.24 21399.34 18598.74 219
jason: jason.
CVMVSNet92.33 31492.79 29790.95 37197.26 31175.84 40395.29 24392.33 36681.86 38196.27 25698.19 15081.44 33898.46 35994.23 21498.29 29498.55 241
EIA-MVS96.04 19095.77 20596.85 18397.80 25192.98 19496.12 18399.16 4194.65 19893.77 33191.69 38395.68 13599.67 13194.18 21598.85 25197.91 306
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33589.15 27691.54 36290.23 38889.07 32086.78 40292.84 36769.39 39199.44 20894.16 21696.61 35697.82 313
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30890.74 29895.79 27796.31 29778.24 35298.77 32694.15 21798.34 29198.62 233
MCST-MVS96.24 18295.80 20397.56 12198.75 13794.13 15794.66 27298.17 23190.17 30996.21 26096.10 30895.14 15299.43 21094.13 21898.85 25199.13 153
COLMAP_ROBcopyleft94.48 698.25 3698.11 4498.64 4499.21 7397.35 3697.96 6499.16 4198.34 3898.78 6498.52 10397.32 4599.45 20594.08 21999.67 8299.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 17895.98 19497.43 13998.25 19793.85 16696.74 14394.41 34297.72 6198.37 10098.03 17287.15 30299.53 18094.06 22099.07 22898.92 193
Effi-MVS+-dtu96.81 15396.09 18898.99 1196.90 32698.69 596.42 15898.09 24295.86 14795.15 29695.54 32594.26 17899.81 3794.06 22098.51 28398.47 249
ambc96.56 20398.23 20091.68 23297.88 7298.13 23998.42 9598.56 9994.22 17999.04 30194.05 22299.35 18298.95 184
our_test_394.20 27494.58 25393.07 33996.16 34481.20 38190.42 38196.84 29990.72 29997.14 19697.13 24690.47 25999.11 29294.04 22398.25 29598.91 194
pmmvs594.63 25794.34 26495.50 25897.63 28388.34 29194.02 29797.13 28987.15 34395.22 29597.15 24587.50 29899.27 26493.99 22499.26 20298.88 202
DPE-MVScopyleft97.64 9697.35 11698.50 5298.85 12696.18 7095.21 24798.99 9095.84 14898.78 6498.08 16296.84 8199.81 3793.98 22599.57 10799.52 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 26494.84 23693.46 33096.16 34482.10 37390.59 37997.48 27990.53 30397.01 21097.59 21291.01 25299.36 23893.97 22699.18 21298.94 186
tfpnnormal97.72 9097.97 5796.94 17699.26 5792.23 21397.83 7698.45 19398.25 4299.13 3998.66 8996.65 8899.69 11893.92 22799.62 9098.91 194
LFMVS95.32 22394.88 23496.62 19798.03 22291.47 23597.65 8990.72 38399.11 1297.89 15798.31 12779.20 34899.48 19693.91 22899.12 22198.93 190
EPP-MVSNet96.84 14896.58 16397.65 11699.18 7893.78 17098.68 1396.34 30997.91 5397.30 18698.06 16988.46 28699.85 2993.85 22999.40 17199.32 113
Fast-Effi-MVS+-dtu96.44 17496.12 18697.39 14497.18 31494.39 14495.46 22598.73 15496.03 13594.72 30694.92 33896.28 11399.69 11893.81 23097.98 30598.09 286
PHI-MVS96.96 14096.53 16998.25 7297.48 29396.50 6096.76 14298.85 12193.52 23396.19 26296.85 26595.94 12099.42 21293.79 23199.43 16398.83 207
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25685.05 36696.15 26594.56 34385.74 31199.14 28593.74 23298.34 29198.17 283
DeepC-MVS_fast94.34 796.74 15696.51 17197.44 13897.69 27194.15 15696.02 19098.43 19693.17 25197.30 18697.38 23195.48 14199.28 26193.74 23299.34 18598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 28392.69 30197.74 10997.80 25195.38 10495.57 22395.46 32991.26 29392.64 36296.10 30874.67 37199.55 17593.72 23496.97 34298.30 268
MP-MVScopyleft97.64 9697.18 12899.00 1099.32 5397.77 1897.49 10398.73 15496.27 11995.59 28697.75 20096.30 11099.78 4793.70 23599.48 14699.45 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 19495.80 20396.42 21099.28 5590.62 25195.31 24199.08 6088.40 33196.97 21498.17 15392.11 23499.78 4793.64 23699.21 20798.86 205
lupinMVS93.77 28493.28 28695.24 26797.68 27287.81 30792.12 35396.05 31284.52 37394.48 31395.06 33486.90 30399.63 14793.62 23799.13 21898.27 272
NCCC96.52 17095.99 19398.10 8497.81 24795.68 8995.00 25998.20 22595.39 17195.40 29296.36 29593.81 18999.45 20593.55 23898.42 28999.17 145
test_vis1_rt94.03 28093.65 28095.17 27195.76 36293.42 18393.97 30298.33 21184.68 37193.17 34995.89 31692.53 22594.79 40093.50 23994.97 38097.31 342
WB-MVS95.50 21296.62 15992.11 36499.21 7377.26 39996.12 18395.40 33198.62 2998.84 5998.26 14191.08 25199.50 18893.37 24098.70 26799.58 36
ETV-MVS96.13 18795.90 19996.82 18697.76 26193.89 16495.40 23198.95 9995.87 14695.58 28791.00 38996.36 10899.72 8893.36 24198.83 25496.85 355
FA-MVS(test-final)94.91 24094.89 23394.99 28097.51 29188.11 30098.27 4395.20 33492.40 27496.68 23198.60 9583.44 32899.28 26193.34 24298.53 28097.59 331
MDA-MVSNet_test_wron94.73 24794.83 23894.42 30897.48 29385.15 34690.28 38395.87 31892.52 26897.48 17997.76 19791.92 24199.17 28293.32 24396.80 35198.94 186
YYNet194.73 24794.84 23694.41 30997.47 29785.09 34890.29 38295.85 31992.52 26897.53 17397.76 19791.97 23899.18 27893.31 24496.86 34698.95 184
pmmvs494.82 24594.19 26996.70 19497.42 30092.75 20292.09 35596.76 30386.80 34995.73 28297.22 24289.28 28098.89 31693.28 24599.14 21698.46 251
CANet_DTU94.65 25694.21 26895.96 23195.90 35289.68 26493.92 30497.83 26093.19 24790.12 38595.64 32288.52 28599.57 17093.27 24699.47 14898.62 233
ACMP92.54 1397.47 11097.10 13198.55 5099.04 10496.70 5296.24 17498.89 10593.71 22797.97 15097.75 20097.44 4099.63 14793.22 24799.70 7599.32 113
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 18496.01 19196.71 19397.43 29992.19 21896.12 18399.10 5395.45 16793.33 34794.71 34197.23 5399.56 17193.21 24897.54 32998.37 257
MDA-MVSNet-bldmvs95.69 20495.67 20795.74 24498.48 17788.76 28692.84 33197.25 28396.00 13697.59 17197.95 18191.38 24799.46 20193.16 24996.35 36198.99 180
IS-MVSNet96.93 14196.68 15797.70 11299.25 6094.00 16198.57 1996.74 30598.36 3798.14 13097.98 17888.23 29099.71 10293.10 25099.72 6999.38 104
9.1496.69 15698.53 16896.02 19098.98 9393.23 24397.18 19497.46 22096.47 10099.62 15292.99 25199.32 192
MS-PatchMatch94.83 24494.91 23294.57 30296.81 32787.10 32194.23 28697.34 28288.74 32697.14 19697.11 24891.94 24098.23 37392.99 25197.92 30898.37 257
Patchmtry95.03 23794.59 25296.33 21594.83 38190.82 24796.38 16297.20 28596.59 10497.49 17798.57 9777.67 35599.38 23092.95 25399.62 9098.80 211
sd_testset97.97 5298.12 4397.51 12699.41 4093.44 18297.96 6498.25 21898.58 3198.78 6499.39 1698.21 1499.56 17192.65 25499.86 2899.52 55
Fast-Effi-MVS+95.49 21395.07 22496.75 19197.67 27692.82 19694.22 28798.60 17991.61 28593.42 34592.90 36596.73 8699.70 11092.60 25597.89 31197.74 319
HQP_MVS96.66 16496.33 18097.68 11598.70 14594.29 15096.50 15698.75 15196.36 11696.16 26396.77 27291.91 24299.46 20192.59 25699.20 20899.28 125
plane_prior598.75 15199.46 20192.59 25699.20 20899.28 125
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 21990.82 37790.01 39185.02 36897.26 18898.28 13693.57 19497.03 38992.51 25895.75 37495.23 385
GA-MVS92.83 30692.15 31094.87 28796.97 32187.27 31890.03 38496.12 31191.83 28294.05 32394.57 34276.01 36798.97 31392.46 25997.34 33898.36 262
mvsmamba94.91 24094.41 26296.40 21397.65 27991.30 23897.92 6995.32 33291.50 28895.54 28898.38 12083.06 33199.68 12392.46 25997.84 31298.23 275
CPTT-MVS96.69 16296.08 18998.49 5398.89 12096.64 5697.25 11398.77 14792.89 26296.01 26997.13 24692.23 23099.67 13192.24 26199.34 18599.17 145
EPNet93.72 28692.62 30497.03 17287.61 41292.25 21296.27 16991.28 37696.74 9987.65 39897.39 22985.00 31799.64 14392.14 26299.48 14699.20 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 34298.37 10097.44 22297.00 6596.78 39592.01 26399.25 20399.21 138
APD-MVScopyleft97.00 13596.53 16998.41 5898.55 16596.31 6796.32 16798.77 14792.96 26197.44 18397.58 21495.84 12499.74 7791.96 26499.35 18299.19 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 23594.79 24195.82 24097.51 29189.79 26191.14 37296.82 30193.05 25496.72 22996.40 29390.82 25599.16 28391.95 26598.66 27198.50 247
test_prior293.33 32394.21 21194.02 32596.25 29993.64 19391.90 26698.96 237
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27789.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
MVP-Stereo95.69 20495.28 21596.92 17898.15 21493.03 19395.64 21998.20 22590.39 30596.63 23797.73 20391.63 24499.10 29591.84 26997.31 33998.63 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testing389.72 34788.26 35694.10 31997.66 27784.30 35994.80 26588.25 39694.66 19795.07 29792.51 37341.15 41499.43 21091.81 27098.44 28898.55 241
1112_ss94.12 27593.42 28496.23 21998.59 16090.85 24694.24 28598.85 12185.49 36092.97 35394.94 33686.01 30999.64 14391.78 27197.92 30898.20 279
train_agg95.46 21794.66 24497.88 10197.84 24395.23 11493.62 31398.39 20387.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24498.89 198
LF4IMVS96.07 18895.63 21097.36 14598.19 20495.55 9395.44 22698.82 14092.29 27595.70 28396.55 28392.63 21898.69 33691.75 27399.33 19097.85 311
N_pmnet95.18 22994.23 26698.06 8797.85 23896.55 5992.49 34291.63 37289.34 31698.09 13597.41 22490.33 26399.06 29991.58 27499.31 19598.56 239
AllTest97.20 12896.92 14598.06 8799.08 9696.16 7197.14 12199.16 4194.35 20897.78 16698.07 16495.84 12499.12 28991.41 27599.42 16698.91 194
TestCases98.06 8799.08 9696.16 7199.16 4194.35 20897.78 16698.07 16495.84 12499.12 28991.41 27599.42 16698.91 194
test9_res91.29 27798.89 24799.00 177
xiu_mvs_v2_base94.22 27094.63 24892.99 34497.32 30984.84 35292.12 35397.84 25891.96 27994.17 31893.43 35696.07 11899.71 10291.27 27897.48 33294.42 389
PS-MVSNAJ94.10 27694.47 25893.00 34397.35 30484.88 35091.86 35897.84 25891.96 27994.17 31892.50 37495.82 12799.71 10291.27 27897.48 33294.40 390
tpm91.08 33390.85 33191.75 36795.33 37278.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 310
OPU-MVS97.64 11798.01 22595.27 11296.79 14097.35 23496.97 6798.51 35491.21 28199.25 20399.14 151
ZD-MVS98.43 18295.94 8098.56 18590.72 29996.66 23497.07 25095.02 15699.74 7791.08 28298.93 242
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
sss94.22 27093.72 27995.74 24497.71 26989.95 25993.84 30696.98 29588.38 33293.75 33295.74 31887.94 29298.89 31691.02 28498.10 30198.37 257
ITE_SJBPF97.85 10398.64 15096.66 5598.51 18995.63 15797.22 18997.30 23895.52 14098.55 35190.97 28598.90 24498.34 263
Test_1112_low_res93.53 29392.86 29495.54 25798.60 15888.86 28292.75 33498.69 16482.66 38092.65 36196.92 26284.75 31999.56 17190.94 28697.76 31698.19 280
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
FMVSNet593.39 29692.35 30696.50 20595.83 35790.81 24997.31 11098.27 21692.74 26596.27 25698.28 13662.23 39899.67 13190.86 28899.36 17799.03 173
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 21695.07 22496.69 19598.27 19592.53 20591.36 36498.67 16991.22 29495.78 27994.12 35195.65 13798.98 30990.81 29099.72 6998.57 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17879.32 39392.16 36891.44 38589.22 28198.12 37690.80 29197.47 33496.82 358
test20.0396.58 16896.61 16196.48 20798.49 17591.72 23195.68 21397.69 26696.81 9798.27 11697.92 18594.18 18098.71 33390.78 29299.66 8499.00 177
test_yl94.40 26594.00 27495.59 25196.95 32289.52 26794.75 26995.55 32796.18 12696.79 22396.14 30581.09 34199.18 27890.75 29397.77 31498.07 289
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32289.52 26794.75 26995.55 32796.18 12696.79 22396.14 30581.09 34199.18 27890.75 29397.77 31498.07 289
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21679.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
旧先验293.35 32277.95 39895.77 28198.67 34090.74 296
USDC94.56 26094.57 25594.55 30397.78 25986.43 33192.75 33498.65 17685.96 35596.91 21897.93 18490.82 25598.74 32990.71 29799.59 10298.47 249
OpenMVScopyleft94.22 895.48 21595.20 21796.32 21697.16 31591.96 22697.74 8498.84 12687.26 34194.36 31598.01 17593.95 18699.67 13190.70 29898.75 26197.35 341
Patchmatch-test93.60 29193.25 28794.63 29796.14 34887.47 31396.04 18894.50 34193.57 23296.47 24596.97 25776.50 36398.61 34590.67 29998.41 29097.81 315
thisisatest051590.43 33789.18 34994.17 31897.07 31985.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 26997.50 336
DP-MVS Recon95.55 21195.13 22196.80 18798.51 17193.99 16294.60 27498.69 16490.20 30895.78 27996.21 30192.73 21498.98 30990.58 30198.86 25097.42 338
TinyColmap96.00 19396.34 17994.96 28297.90 23687.91 30394.13 29498.49 19094.41 20698.16 12797.76 19796.29 11298.68 33990.52 30299.42 16698.30 268
BP-MVS90.51 303
HQP-MVS95.17 23194.58 25396.92 17897.85 23892.47 20894.26 28198.43 19693.18 24892.86 35595.08 33290.33 26399.23 27390.51 30398.74 26299.05 172
OMC-MVS96.48 17296.00 19297.91 9998.30 19096.01 7994.86 26498.60 17991.88 28197.18 19497.21 24396.11 11799.04 30190.49 30599.34 18598.69 226
ab-mvs96.59 16696.59 16296.60 19898.64 15092.21 21498.35 3497.67 26794.45 20596.99 21198.79 7694.96 15999.49 19390.39 30699.07 22898.08 287
HyFIR lowres test93.72 28692.65 30296.91 18098.93 11591.81 23091.23 37098.52 18782.69 37996.46 24696.52 28780.38 34599.90 1790.36 30798.79 25799.03 173
agg_prior290.34 30898.90 24499.10 165
LCM-MVSNet-Re97.33 12297.33 11797.32 14898.13 21993.79 16996.99 12999.65 1096.74 9999.47 1998.93 6596.91 7499.84 3290.11 30999.06 23198.32 264
CDS-MVSNet94.88 24394.12 27197.14 16097.64 28293.57 17893.96 30397.06 29390.05 31096.30 25596.55 28386.10 30899.47 19890.10 31099.31 19598.40 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 21894.65 24597.84 10498.28 19394.96 12593.73 31198.33 21185.03 36795.44 29096.60 28195.31 14799.44 20890.01 31199.13 21899.11 161
baseline193.14 30292.64 30394.62 29897.34 30687.20 31996.67 15293.02 35694.71 19696.51 24495.83 31781.64 33698.60 34790.00 31288.06 40198.07 289
TAPA-MVS93.32 1294.93 23994.23 26697.04 17198.18 20794.51 14095.22 24698.73 15481.22 38696.25 25895.95 31493.80 19098.98 30989.89 31398.87 24897.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 31191.08 32696.30 21893.12 40092.81 19890.58 38095.96 31679.17 39491.85 37192.27 37590.29 26798.66 34189.85 31496.68 35597.43 337
PVSNet_BlendedMVS95.02 23894.93 23095.27 26697.79 25687.40 31594.14 29398.68 16688.94 32394.51 31198.01 17593.04 20499.30 25589.77 31599.49 14299.11 161
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25687.40 31591.43 36398.68 16684.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27698.02 299
MSDG95.33 22295.13 22195.94 23597.40 30191.85 22891.02 37598.37 20695.30 17496.31 25495.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
PMVScopyleft89.60 1796.71 16196.97 14095.95 23399.51 2897.81 1797.42 10897.49 27897.93 5295.95 27098.58 9696.88 7796.91 39289.59 31799.36 17793.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
SCA93.38 29793.52 28392.96 34596.24 33881.40 38093.24 32594.00 34591.58 28794.57 30996.97 25787.94 29299.42 21289.47 31997.66 32598.06 293
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20793.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
Anonymous2023120695.27 22595.06 22695.88 23798.72 14089.37 27195.70 21097.85 25688.00 33796.98 21397.62 21091.95 23999.34 24589.21 32299.53 12598.94 186
CHOSEN 1792x268894.10 27693.41 28596.18 22399.16 8090.04 25792.15 35298.68 16679.90 39196.22 25997.83 19087.92 29699.42 21289.18 32399.65 8599.08 166
114514_t93.96 28193.22 28896.19 22299.06 9990.97 24595.99 19398.94 10073.88 40493.43 34496.93 26092.38 22999.37 23589.09 32499.28 19998.25 274
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30495.92 374
testdata95.70 24898.16 21290.58 25297.72 26580.38 38995.62 28497.02 25492.06 23798.98 30989.06 32698.52 28197.54 333
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
PMMVS293.66 28994.07 27292.45 35997.57 28680.67 38486.46 39796.00 31493.99 22197.10 20097.38 23189.90 27097.82 38188.76 32899.47 14898.86 205
QAPM95.88 19795.57 21296.80 18797.90 23691.84 22998.18 5298.73 15488.41 33096.42 24798.13 15694.73 16199.75 6888.72 32998.94 24098.81 210
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36681.13 38286.22 39897.09 29181.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22896.52 367
testgi96.07 18896.50 17294.80 29199.26 5787.69 31095.96 19798.58 18395.08 18398.02 14596.25 29997.92 2097.60 38588.68 33198.74 26299.11 161
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22798.62 15690.54 25593.38 32198.05 24990.30 30697.02 20996.80 27189.54 27499.16 28388.44 33396.18 36598.56 239
TAMVS95.49 21394.94 22897.16 15898.31 18993.41 18495.07 25496.82 30191.09 29597.51 17597.82 19389.96 26999.42 21288.42 33499.44 15598.64 230
Vis-MVSNet (Re-imp)95.11 23294.85 23595.87 23899.12 9189.17 27497.54 10294.92 33796.50 11096.58 23997.27 23983.64 32799.48 19688.42 33499.67 8298.97 182
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23781.74 40694.90 33981.36 33999.11 29288.28 33698.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24494.16 29091.78 37196.38 11490.30 38399.30 2772.02 38398.90 31588.28 33690.17 39795.45 383
新几何197.25 15498.29 19194.70 13297.73 26477.98 39794.83 30596.67 27892.08 23699.45 20588.17 33898.65 27397.61 329
testdata299.46 20187.84 339
FE-MVS92.95 30492.22 30895.11 27297.21 31388.33 29298.54 2293.66 35089.91 31296.21 26098.14 15470.33 38999.50 18887.79 34098.24 29697.51 334
无先验93.20 32697.91 25280.78 38799.40 22387.71 34197.94 305
WTY-MVS93.55 29293.00 29295.19 26997.81 24787.86 30493.89 30596.00 31489.02 32194.07 32295.44 32986.27 30799.33 24787.69 34296.82 34998.39 255
原ACMM196.58 20098.16 21292.12 21998.15 23785.90 35793.49 34196.43 29092.47 22799.38 23087.66 34398.62 27598.23 275
BH-untuned94.69 25294.75 24294.52 30497.95 23487.53 31294.07 29697.01 29493.99 22197.10 20095.65 32192.65 21798.95 31487.60 34496.74 35297.09 345
PAPM_NR94.61 25894.17 27095.96 23198.36 18791.23 24095.93 19997.95 25092.98 25793.42 34594.43 34890.53 25898.38 36487.60 34496.29 36398.27 272
testing9989.21 35288.04 35892.70 35395.78 36081.00 38392.65 33992.03 36793.20 24689.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 302
DPM-MVS93.68 28892.77 30096.42 21097.91 23592.54 20491.17 37197.47 28084.99 36993.08 35194.74 34089.90 27099.00 30587.54 34698.09 30297.72 323
MG-MVS94.08 27894.00 27494.32 31297.09 31885.89 33693.19 32795.96 31692.52 26894.93 30497.51 21889.54 27498.77 32687.52 34897.71 32098.31 266
F-COLMAP95.30 22494.38 26398.05 9198.64 15096.04 7695.61 22098.66 17189.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 216
PatchMatch-RL94.61 25893.81 27897.02 17398.19 20495.72 8693.66 31297.23 28488.17 33594.94 30395.62 32391.43 24698.57 34887.36 35097.68 32396.76 361
testing1188.93 35487.63 36292.80 35095.87 35481.49 37992.48 34391.54 37391.62 28488.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 315
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37684.82 35390.85 37690.17 38987.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9189.67 34888.55 35393.04 34095.90 35281.80 37792.71 33893.71 34693.71 22790.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 285
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
131492.38 31292.30 30792.64 35495.42 37185.15 34695.86 20396.97 29685.40 36390.62 37793.06 36391.12 25097.80 38286.74 35595.49 37794.97 387
CNLPA95.04 23594.47 25896.75 19197.81 24795.25 11394.12 29597.89 25494.41 20694.57 30995.69 31990.30 26698.35 36786.72 35698.76 26096.64 363
baseline289.65 34988.44 35593.25 33495.62 36582.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
BH-RMVSNet94.56 26094.44 26194.91 28397.57 28687.44 31493.78 31096.26 31093.69 22996.41 24896.50 28892.10 23599.00 30585.96 35897.71 32098.31 266
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19393.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
API-MVS95.09 23495.01 22795.31 26596.61 33094.02 16096.83 13697.18 28795.60 15995.79 27794.33 34994.54 17198.37 36685.70 36098.52 28193.52 394
AdaColmapbinary95.11 23294.62 24996.58 20097.33 30894.45 14394.92 26198.08 24393.15 25293.98 32795.53 32694.34 17699.10 29585.69 36198.61 27696.20 373
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36785.63 33795.05 25695.70 32083.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 297
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36782.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 297
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 313
WAC-MVS79.32 38885.41 365
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31091.21 24195.08 25396.68 30781.56 38396.88 22096.41 29190.44 26299.25 26785.39 36697.67 32495.80 377
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32391.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32391.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28878.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30198.47 35885.17 36997.69 32297.96 303
PLCcopyleft91.02 1694.05 27992.90 29397.51 12698.00 22995.12 12294.25 28498.25 21886.17 35391.48 37495.25 33091.01 25299.19 27785.02 37096.69 35498.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19093.57 39894.67 13394.21 28897.67 26780.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25898.29 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 31391.69 31794.32 31296.23 34089.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31296.74 39684.53 37397.56 32897.05 346
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
MAR-MVS94.21 27293.03 29097.76 10896.94 32497.44 3496.97 13097.15 28887.89 33992.00 36992.73 37092.14 23399.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34383.68 36496.27 16993.68 34976.97 40192.54 36599.18 3989.20 28298.55 35183.88 37698.60 27897.51 334
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 19992.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33388.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31699.40 22383.77 37895.78 37296.43 369
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27794.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
tpm288.47 35887.69 36190.79 37294.98 37877.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37479.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32060.04 41393.11 32885.61 40384.45 37588.72 39499.09 5184.72 32098.23 37382.52 38296.59 35790.69 403
UWE-MVS87.57 36686.72 36890.13 37795.21 37373.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30697.59 331
BH-w/o92.14 31791.94 31192.73 35297.13 31785.30 34292.46 34495.64 32289.33 31794.21 31792.74 36989.60 27298.24 37281.68 38494.66 38394.66 388
MIMVSNet93.42 29592.86 29495.10 27498.17 21088.19 29498.13 5493.69 34792.07 27695.04 30198.21 14980.95 34399.03 30481.42 38598.06 30398.07 289
TR-MVS92.54 31092.20 30993.57 32896.49 33386.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 26898.61 34581.18 38694.88 38195.45 383
dmvs_re92.08 32091.27 32394.51 30597.16 31592.79 20195.65 21692.64 36394.11 21792.74 35890.98 39083.41 32994.44 40380.72 38794.07 38796.29 371
thres600view792.03 32191.43 31893.82 32298.19 20484.61 35496.27 16990.39 38496.81 9796.37 25093.11 35873.44 38099.49 19380.32 38897.95 30797.36 339
WB-MVSnew91.50 32891.29 32192.14 36394.85 37980.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22098.28 37180.21 38997.08 34197.81 315
PAPR92.22 31591.27 32395.07 27595.73 36488.81 28391.97 35697.87 25585.80 35890.91 37692.73 37091.16 24998.33 36879.48 39095.76 37398.08 287
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20396.74 30564.72 40690.62 37792.77 36892.54 22398.39 36379.30 39195.56 37692.12 398
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5174.60 41099.08 1387.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
thres100view90091.76 32591.26 32593.26 33398.21 20184.50 35596.39 15990.39 38496.87 9596.33 25193.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
tfpn200view991.55 32791.00 32793.21 33798.02 22384.35 35795.70 21090.79 38196.26 12095.90 27592.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
thres40091.68 32691.00 32793.71 32598.02 22384.35 35795.70 21090.79 38196.26 12095.90 27592.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
thres20091.00 33490.42 33892.77 35197.47 29783.98 36294.01 29891.18 37895.12 18295.44 29091.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
wuyk23d93.25 30095.20 21787.40 38796.07 34995.38 10497.04 12794.97 33695.33 17299.70 898.11 16098.14 1791.94 40577.76 39699.68 8074.89 405
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31314.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
testing22287.35 36785.50 37492.93 34795.79 35982.83 36792.40 34990.10 39092.80 26488.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
ETVMVS87.62 36585.75 37293.22 33696.15 34783.26 36592.94 33090.37 38691.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 318
PCF-MVS89.43 1892.12 31890.64 33596.57 20297.80 25193.48 18189.88 38998.45 19374.46 40396.04 26895.68 32090.71 25799.31 25273.73 40199.01 23596.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36274.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33096.63 39773.44 40266.86 40893.40 395
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4572.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
FPMVS89.92 34488.63 35293.82 32298.37 18696.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34085.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21387.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
PAPM87.64 36485.84 37193.04 34096.54 33184.99 34988.42 39595.57 32679.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
dmvs_testset87.30 36886.99 36588.24 38496.71 32877.48 39694.68 27186.81 40192.64 26789.61 38987.01 40385.91 31093.12 40461.04 40888.49 40094.13 391
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2410.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.59 1798.20 899.03 799.25 3298.96 2198.87 57
test_one_060199.05 10395.50 9998.87 11497.21 8898.03 14498.30 13196.93 71
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.22 6695.35 10798.83 13296.04 13399.08 4198.13 15697.87 2399.33 247
save fliter98.48 17794.71 13094.53 27698.41 20095.02 187
test072699.24 6195.51 9696.89 13498.89 10595.92 14298.64 7398.31 12797.06 60
GSMVS98.06 293
test_part299.03 10596.07 7598.08 137
sam_mvs177.80 35498.06 293
sam_mvs77.38 358
MTGPAbinary98.73 154
test_post10.87 41276.83 36299.07 298
patchmatchnet-post96.84 26677.36 35999.42 212
MTMP96.55 15474.60 410
TEST997.84 24395.23 11493.62 31398.39 20386.81 34893.78 32995.99 31094.68 16599.52 183
test_897.81 24795.07 12393.54 31698.38 20587.04 34493.71 33395.96 31394.58 16999.52 183
agg_prior97.80 25194.96 12598.36 20793.49 34199.53 180
test_prior495.38 10493.61 315
test_prior97.46 13697.79 25694.26 15498.42 19999.34 24598.79 212
新几何293.43 318
旧先验197.80 25193.87 16597.75 26397.04 25393.57 19498.68 26898.72 222
原ACMM292.82 332
test22298.17 21093.24 19092.74 33697.61 27675.17 40294.65 30896.69 27790.96 25498.66 27197.66 325
segment_acmp95.34 146
testdata192.77 33393.78 225
test1297.46 13697.61 28494.07 15897.78 26293.57 33993.31 19999.42 21298.78 25898.89 198
plane_prior798.70 14594.67 133
plane_prior698.38 18594.37 14791.91 242
plane_prior496.77 272
plane_prior394.51 14095.29 17596.16 263
plane_prior296.50 15696.36 116
plane_prior198.49 175
plane_prior94.29 15095.42 22894.31 21098.93 242
n20.00 420
nn0.00 420
door-mid98.17 231
test1198.08 243
door97.81 261
HQP5-MVS92.47 208
HQP-NCC97.85 23894.26 28193.18 24892.86 355
ACMP_Plane97.85 23894.26 28193.18 24892.86 355
HQP4-MVS92.87 35499.23 27399.06 170
HQP3-MVS98.43 19698.74 262
HQP2-MVS90.33 263
NP-MVS98.14 21693.72 17195.08 332
ACMMP++_ref99.52 130
ACMMP++99.55 116
Test By Simon94.51 172