LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 102 | 99.64 14 | 94.20 163 | 98.67 15 | 99.14 31 | 99.08 10 | 99.42 15 | 99.23 25 | 96.53 87 | 99.91 13 | 99.27 2 | 99.93 10 | 99.73 17 |
|
FMVS2 | | | 97.38 107 | 97.56 90 | 96.84 185 | 98.63 141 | 92.81 204 | 97.60 87 | 99.61 7 | 90.87 281 | 98.76 55 | 99.66 3 | 94.03 177 | 97.90 363 | 99.24 3 | 99.68 69 | 99.81 8 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 35 | 99.69 10 | 96.48 64 | 98.54 22 | 99.22 18 | 96.23 120 | 99.71 4 | 99.48 9 | 98.77 6 | 99.93 3 | 98.89 4 | 99.95 5 | 99.84 5 |
|
PS-MVSNAJss | | | 98.53 21 | 98.63 19 | 98.21 83 | 99.68 11 | 94.82 135 | 98.10 55 | 99.21 19 | 96.91 92 | 99.75 2 | 99.45 12 | 95.82 112 | 99.92 5 | 98.80 5 | 99.96 4 | 99.89 1 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 37 | 99.66 13 | 96.48 64 | 98.45 30 | 99.12 33 | 95.83 147 | 99.67 6 | 99.37 15 | 98.25 10 | 99.92 5 | 98.77 6 | 99.94 8 | 99.82 6 |
|
v10 | | | 97.55 94 | 97.97 46 | 96.31 217 | 98.60 146 | 89.64 258 | 97.44 100 | 99.02 57 | 96.60 101 | 98.72 58 | 99.16 34 | 93.48 190 | 99.72 90 | 98.76 7 | 99.92 14 | 99.58 32 |
|
MVSFormer | | | 96.14 177 | 96.36 163 | 95.49 254 | 97.68 259 | 87.81 296 | 98.67 15 | 99.02 57 | 96.50 108 | 94.48 296 | 96.15 291 | 86.90 291 | 99.92 5 | 98.73 8 | 99.13 211 | 98.74 221 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 42 | 99.63 15 | 96.30 70 | 98.67 15 | 99.02 57 | 96.50 108 | 99.32 21 | 99.44 13 | 97.43 33 | 99.92 5 | 98.73 8 | 99.95 5 | 99.86 2 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 47 | 99.77 5 | 96.35 67 | 99.17 6 | 99.05 48 | 98.05 43 | 99.61 11 | 99.52 7 | 93.72 186 | 99.88 20 | 98.72 10 | 99.88 26 | 99.65 25 |
|
RRT_MVS | | | 97.95 54 | 97.79 61 | 98.43 60 | 99.67 12 | 95.56 98 | 98.86 10 | 96.73 299 | 97.99 45 | 99.15 31 | 99.35 19 | 89.84 261 | 99.90 14 | 98.64 11 | 99.90 23 | 99.82 6 |
|
v8 | | | 97.60 91 | 98.06 40 | 96.23 219 | 98.71 130 | 89.44 262 | 97.43 102 | 98.82 120 | 97.29 84 | 98.74 56 | 99.10 39 | 93.86 181 | 99.68 130 | 98.61 12 | 99.94 8 | 99.56 40 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 16 | 97.29 41 | 98.65 18 | 99.19 23 | 95.62 155 | 99.35 20 | 99.37 15 | 97.38 35 | 99.90 14 | 98.59 13 | 99.91 17 | 99.77 10 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 40 | 99.71 9 | 96.99 48 | 99.69 2 | 99.57 8 | 99.02 15 | 99.62 10 | 99.36 17 | 98.53 7 | 99.52 186 | 98.58 14 | 99.95 5 | 99.66 23 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvsmamba | | | 98.16 35 | 98.06 40 | 98.44 58 | 99.53 27 | 95.87 84 | 98.70 13 | 98.94 79 | 97.71 59 | 98.85 46 | 99.10 39 | 91.35 238 | 99.83 33 | 98.47 15 | 99.90 23 | 99.64 27 |
|
v1240 | | | 96.74 146 | 97.02 127 | 95.91 235 | 98.18 194 | 88.52 277 | 95.39 212 | 98.88 91 | 93.15 241 | 98.46 77 | 98.40 95 | 92.80 204 | 99.71 106 | 98.45 16 | 99.49 129 | 99.49 58 |
|
bld_raw_dy_0_64 | | | 97.69 84 | 97.61 85 | 97.91 105 | 99.54 24 | 94.27 160 | 98.06 58 | 98.60 163 | 96.60 101 | 98.79 51 | 98.95 51 | 89.62 262 | 99.84 30 | 98.43 17 | 99.91 17 | 99.62 28 |
|
v1192 | | | 96.83 140 | 97.06 124 | 96.15 224 | 98.28 180 | 89.29 264 | 95.36 214 | 98.77 127 | 93.73 220 | 98.11 118 | 98.34 98 | 93.02 201 | 99.67 135 | 98.35 18 | 99.58 93 | 99.50 50 |
|
v1921920 | | | 96.72 149 | 96.96 130 | 95.99 228 | 98.21 189 | 88.79 274 | 95.42 208 | 98.79 122 | 93.22 235 | 98.19 110 | 98.26 115 | 92.68 207 | 99.70 115 | 98.34 19 | 99.55 105 | 99.49 58 |
|
Anonymous20231211 | | | 98.55 19 | 98.76 13 | 97.94 103 | 98.79 119 | 94.37 153 | 98.84 11 | 99.15 29 | 99.37 3 | 99.67 6 | 99.43 14 | 95.61 124 | 99.72 90 | 98.12 20 | 99.86 28 | 99.73 17 |
|
v144192 | | | 96.69 152 | 96.90 135 | 96.03 227 | 98.25 185 | 88.92 269 | 95.49 204 | 98.77 127 | 93.05 243 | 98.09 122 | 98.29 109 | 92.51 216 | 99.70 115 | 98.11 21 | 99.56 99 | 99.47 67 |
|
Anonymous20240521 | | | 97.07 123 | 97.51 94 | 95.76 240 | 99.35 48 | 88.18 285 | 97.78 72 | 98.40 187 | 97.11 87 | 98.34 91 | 99.04 45 | 89.58 264 | 99.79 45 | 98.09 22 | 99.93 10 | 99.30 112 |
|
v1144 | | | 96.84 137 | 97.08 122 | 96.13 225 | 98.42 170 | 89.28 265 | 95.41 210 | 98.67 153 | 94.21 206 | 97.97 137 | 98.31 101 | 93.06 197 | 99.65 143 | 98.06 23 | 99.62 79 | 99.45 74 |
|
SixPastTwentyTwo | | | 97.49 99 | 97.57 89 | 97.26 162 | 99.56 20 | 92.33 212 | 98.28 41 | 96.97 288 | 98.30 34 | 99.45 14 | 99.35 19 | 88.43 277 | 99.89 18 | 98.01 24 | 99.76 47 | 99.54 43 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 35 | 99.51 29 | 96.61 60 | 98.55 21 | 99.17 24 | 99.05 13 | 99.17 30 | 98.79 61 | 95.47 130 | 99.89 18 | 97.95 25 | 99.91 17 | 99.75 15 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 89 | 97.89 16 | 99.47 3 | 99.32 14 | 99.08 10 | 97.87 149 | 99.67 2 | 96.47 92 | 99.92 5 | 97.88 26 | 99.98 2 | 99.85 3 |
|
FC-MVSNet-test | | | 98.16 35 | 98.37 29 | 97.56 131 | 99.49 33 | 93.10 198 | 98.35 34 | 99.21 19 | 98.43 29 | 98.89 44 | 98.83 60 | 94.30 169 | 99.81 38 | 97.87 27 | 99.91 17 | 99.77 10 |
|
Vis-MVSNet |  | | 98.27 31 | 98.34 30 | 98.07 93 | 99.33 50 | 95.21 125 | 98.04 59 | 99.46 10 | 97.32 82 | 97.82 154 | 99.11 38 | 96.75 76 | 99.86 24 | 97.84 28 | 99.36 168 | 99.15 147 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
K. test v3 | | | 96.44 165 | 96.28 166 | 96.95 177 | 99.41 42 | 91.53 232 | 97.65 84 | 90.31 368 | 98.89 19 | 98.93 41 | 99.36 17 | 84.57 306 | 99.92 5 | 97.81 29 | 99.56 99 | 99.39 91 |
|
v2v482 | | | 96.78 144 | 97.06 124 | 95.95 232 | 98.57 150 | 88.77 275 | 95.36 214 | 98.26 203 | 95.18 173 | 97.85 151 | 98.23 118 | 92.58 211 | 99.63 148 | 97.80 30 | 99.69 65 | 99.45 74 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 64 | 99.55 22 | 95.47 107 | 98.49 27 | 99.13 32 | 99.22 8 | 99.22 28 | 98.96 50 | 97.35 36 | 99.92 5 | 97.79 31 | 99.93 10 | 99.79 9 |
|
nrg030 | | | 98.54 20 | 98.62 21 | 98.32 69 | 99.22 64 | 95.66 95 | 97.90 67 | 99.08 42 | 98.31 33 | 99.02 37 | 98.74 67 | 97.68 26 | 99.61 162 | 97.77 32 | 99.85 31 | 99.70 20 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 51 | 99.81 2 | 96.38 66 | 98.87 9 | 99.30 15 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 130 | 97.75 33 | 99.89 25 | 99.62 28 |
|
ACMH | | 93.61 9 | 98.44 24 | 98.76 13 | 97.51 136 | 99.43 39 | 93.54 188 | 98.23 45 | 99.05 48 | 97.40 79 | 99.37 18 | 99.08 42 | 98.79 5 | 99.47 200 | 97.74 34 | 99.71 61 | 99.50 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FMVS | | | 95.82 191 | 95.88 186 | 95.66 245 | 97.61 266 | 93.21 196 | 95.61 201 | 98.17 217 | 86.98 323 | 98.42 80 | 99.47 10 | 90.46 249 | 94.74 378 | 97.71 35 | 98.45 278 | 99.03 173 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 49 | 99.55 22 | 96.12 75 | 98.48 29 | 99.10 36 | 99.36 4 | 99.29 24 | 99.06 44 | 97.27 40 | 99.93 3 | 97.71 35 | 99.91 17 | 99.70 20 |
|
DROMVSNet | | | 97.90 66 | 97.94 49 | 97.79 114 | 98.66 136 | 95.14 126 | 98.31 38 | 99.66 4 | 97.57 67 | 95.95 254 | 97.01 242 | 96.99 57 | 99.82 35 | 97.66 37 | 99.64 76 | 98.39 252 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 58 | 99.58 18 | 95.67 94 | 98.45 30 | 99.15 29 | 99.33 5 | 99.30 22 | 99.00 46 | 97.27 40 | 99.92 5 | 97.64 38 | 99.92 14 | 99.75 15 |
|
test_part1 | | | 96.77 145 | 96.53 155 | 97.47 144 | 98.04 208 | 92.92 202 | 97.93 64 | 98.85 100 | 98.83 21 | 99.30 22 | 99.07 43 | 79.25 328 | 99.79 45 | 97.59 39 | 99.93 10 | 99.69 22 |
|
CP-MVSNet | | | 98.42 25 | 98.46 24 | 98.30 73 | 99.46 35 | 95.22 123 | 98.27 43 | 98.84 105 | 99.05 13 | 99.01 38 | 98.65 75 | 95.37 133 | 99.90 14 | 97.57 40 | 99.91 17 | 99.77 10 |
|
EI-MVSNet-UG-set | | | 97.32 113 | 97.40 100 | 97.09 170 | 97.34 290 | 92.01 224 | 95.33 217 | 97.65 262 | 97.74 54 | 98.30 100 | 98.14 127 | 95.04 144 | 99.69 123 | 97.55 41 | 99.52 116 | 99.58 32 |
|
ANet_high | | | 98.31 30 | 98.94 6 | 96.41 213 | 99.33 50 | 89.64 258 | 97.92 66 | 99.56 9 | 99.27 6 | 99.66 8 | 99.50 8 | 97.67 27 | 99.83 33 | 97.55 41 | 99.98 2 | 99.77 10 |
|
CS-MVS | | | 98.09 42 | 98.01 44 | 98.32 69 | 98.45 168 | 96.69 56 | 98.52 25 | 99.69 2 | 98.07 42 | 96.07 249 | 97.19 228 | 96.88 68 | 99.86 24 | 97.50 43 | 99.73 54 | 98.41 249 |
|
EI-MVSNet-Vis-set | | | 97.32 113 | 97.39 101 | 97.11 168 | 97.36 285 | 92.08 222 | 95.34 216 | 97.65 262 | 97.74 54 | 98.29 101 | 98.11 133 | 95.05 142 | 99.68 130 | 97.50 43 | 99.50 125 | 99.56 40 |
|
EU-MVSNet | | | 94.25 257 | 94.47 244 | 93.60 314 | 98.14 201 | 82.60 355 | 97.24 111 | 92.72 350 | 85.08 341 | 98.48 74 | 98.94 52 | 82.59 315 | 98.76 320 | 97.47 45 | 99.53 111 | 99.44 84 |
|
Regformer-4 | | | 97.53 97 | 97.47 99 | 97.71 120 | 97.35 286 | 93.91 171 | 95.26 223 | 98.14 224 | 97.97 46 | 98.34 91 | 97.89 162 | 95.49 128 | 99.71 106 | 97.41 46 | 99.42 154 | 99.51 49 |
|
V42 | | | 97.04 124 | 97.16 117 | 96.68 196 | 98.59 148 | 91.05 237 | 96.33 155 | 98.36 192 | 94.60 193 | 97.99 133 | 98.30 105 | 93.32 192 | 99.62 156 | 97.40 47 | 99.53 111 | 99.38 93 |
|
KD-MVS_self_test | | | 97.86 71 | 98.07 38 | 97.25 163 | 99.22 64 | 92.81 204 | 97.55 92 | 98.94 79 | 97.10 88 | 98.85 46 | 98.88 57 | 95.03 145 | 99.67 135 | 97.39 48 | 99.65 74 | 99.26 125 |
|
lessismore_v0 | | | | | 97.05 172 | 99.36 47 | 92.12 220 | | 84.07 380 | | 98.77 54 | 98.98 48 | 85.36 300 | 99.74 80 | 97.34 49 | 99.37 165 | 99.30 112 |
|
FIs | | | 97.93 60 | 98.07 38 | 97.48 143 | 99.38 45 | 92.95 201 | 98.03 61 | 99.11 34 | 98.04 44 | 98.62 60 | 98.66 73 | 93.75 185 | 99.78 49 | 97.23 50 | 99.84 32 | 99.73 17 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 45 | 99.77 5 | 96.34 68 | 99.18 5 | 99.20 21 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 51 | 99.92 14 | 99.77 10 |
|
MVS_Test | | | 96.27 170 | 96.79 141 | 94.73 287 | 96.94 310 | 86.63 317 | 96.18 164 | 98.33 197 | 94.94 183 | 96.07 249 | 98.28 110 | 95.25 138 | 99.26 262 | 97.21 52 | 97.90 299 | 98.30 265 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 24 | 98.06 10 | 99.34 4 | 99.44 11 | 98.85 20 | 99.00 39 | 99.20 27 | 97.42 34 | 99.59 164 | 97.21 52 | 99.76 47 | 99.40 89 |
|
EG-PatchMatch MVS | | | 97.69 84 | 97.79 61 | 97.40 154 | 99.06 95 | 93.52 189 | 95.96 178 | 98.97 75 | 94.55 197 | 98.82 49 | 98.76 66 | 97.31 38 | 99.29 256 | 97.20 54 | 99.44 143 | 99.38 93 |
|
VPA-MVSNet | | | 98.27 31 | 98.46 24 | 97.70 122 | 99.06 95 | 93.80 177 | 97.76 75 | 99.00 65 | 98.40 30 | 99.07 36 | 98.98 48 | 96.89 66 | 99.75 70 | 97.19 55 | 99.79 41 | 99.55 42 |
|
Regformer-3 | | | 97.25 117 | 97.29 107 | 97.11 168 | 97.35 286 | 92.32 213 | 95.26 223 | 97.62 267 | 97.67 65 | 98.17 111 | 97.89 162 | 95.05 142 | 99.56 173 | 97.16 56 | 99.42 154 | 99.46 69 |
|
UniMVSNet (Re) | | | 97.83 73 | 97.65 76 | 98.35 68 | 98.80 118 | 95.86 86 | 95.92 183 | 99.04 54 | 97.51 72 | 98.22 106 | 97.81 174 | 94.68 156 | 99.78 49 | 97.14 57 | 99.75 52 | 99.41 88 |
|
pm-mvs1 | | | 98.47 23 | 98.67 17 | 97.86 110 | 99.52 28 | 94.58 145 | 98.28 41 | 99.00 65 | 97.57 67 | 99.27 25 | 99.22 26 | 98.32 9 | 99.50 191 | 97.09 58 | 99.75 52 | 99.50 50 |
|
baseline | | | 97.44 103 | 97.78 65 | 96.43 209 | 98.52 155 | 90.75 245 | 96.84 129 | 99.03 55 | 96.51 107 | 97.86 150 | 98.02 146 | 96.67 78 | 99.36 237 | 97.09 58 | 99.47 135 | 99.19 139 |
|
IterMVS-SCA-FT | | | 95.86 189 | 96.19 169 | 94.85 281 | 97.68 259 | 85.53 328 | 92.42 325 | 97.63 266 | 96.99 89 | 98.36 88 | 98.54 83 | 87.94 281 | 99.75 70 | 97.07 60 | 99.08 219 | 99.27 124 |
|
UniMVSNet_NR-MVSNet | | | 97.83 73 | 97.65 76 | 98.37 65 | 98.72 127 | 95.78 87 | 95.66 195 | 99.02 57 | 98.11 40 | 98.31 98 | 97.69 186 | 94.65 158 | 99.85 27 | 97.02 61 | 99.71 61 | 99.48 64 |
|
DU-MVS | | | 97.79 77 | 97.60 86 | 98.36 66 | 98.73 125 | 95.78 87 | 95.65 198 | 98.87 93 | 97.57 67 | 98.31 98 | 97.83 170 | 94.69 154 | 99.85 27 | 97.02 61 | 99.71 61 | 99.46 69 |
|
EI-MVSNet | | | 96.63 156 | 96.93 131 | 95.74 241 | 97.26 295 | 88.13 288 | 95.29 221 | 97.65 262 | 96.99 89 | 97.94 140 | 98.19 123 | 92.55 212 | 99.58 166 | 96.91 63 | 99.56 99 | 99.50 50 |
|
IterMVS-LS | | | 96.92 132 | 97.29 107 | 95.79 239 | 98.51 157 | 88.13 288 | 95.10 230 | 98.66 155 | 96.99 89 | 98.46 77 | 98.68 72 | 92.55 212 | 99.74 80 | 96.91 63 | 99.79 41 | 99.50 50 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CS-MVS-test | | | 97.91 64 | 97.84 56 | 98.14 88 | 98.52 155 | 96.03 80 | 98.38 33 | 99.67 3 | 98.11 40 | 95.50 271 | 96.92 248 | 96.81 74 | 99.87 22 | 96.87 65 | 99.76 47 | 98.51 242 |
|
iter_conf_final | | | 94.54 249 | 93.91 263 | 96.43 209 | 97.23 297 | 90.41 251 | 96.81 131 | 98.10 228 | 93.87 217 | 96.80 208 | 97.89 162 | 68.02 374 | 99.72 90 | 96.73 66 | 99.77 46 | 99.18 142 |
|
test1111 | | | 94.53 250 | 94.81 225 | 93.72 311 | 99.06 95 | 81.94 360 | 98.31 38 | 83.87 381 | 96.37 113 | 98.49 73 | 99.17 33 | 81.49 317 | 99.73 85 | 96.64 67 | 99.86 28 | 99.49 58 |
|
APDe-MVS | | | 98.14 37 | 98.03 43 | 98.47 57 | 98.72 127 | 96.04 78 | 98.07 57 | 99.10 36 | 95.96 136 | 98.59 65 | 98.69 71 | 96.94 60 | 99.81 38 | 96.64 67 | 99.58 93 | 99.57 37 |
|
MP-MVS-pluss | | | 97.69 84 | 97.36 103 | 98.70 41 | 99.50 32 | 96.84 51 | 95.38 213 | 98.99 68 | 92.45 258 | 98.11 118 | 98.31 101 | 97.25 43 | 99.77 58 | 96.60 69 | 99.62 79 | 99.48 64 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
mvs_anonymous | | | 95.36 209 | 96.07 176 | 93.21 323 | 96.29 323 | 81.56 361 | 94.60 256 | 97.66 260 | 93.30 232 | 96.95 202 | 98.91 55 | 93.03 200 | 99.38 232 | 96.60 69 | 97.30 326 | 98.69 227 |
|
casdiffmvs | | | 97.50 98 | 97.81 60 | 96.56 203 | 98.51 157 | 91.04 238 | 95.83 187 | 99.09 41 | 97.23 85 | 98.33 95 | 98.30 105 | 97.03 54 | 99.37 235 | 96.58 71 | 99.38 164 | 99.28 120 |
|
Regformer-2 | | | 97.41 105 | 97.24 112 | 97.93 104 | 97.21 298 | 94.72 138 | 94.85 247 | 98.27 201 | 97.74 54 | 98.11 118 | 97.50 200 | 95.58 126 | 99.69 123 | 96.57 72 | 99.31 187 | 99.37 100 |
|
Regformer-1 | | | 97.27 115 | 97.16 117 | 97.61 129 | 97.21 298 | 93.86 174 | 94.85 247 | 98.04 239 | 97.62 66 | 98.03 130 | 97.50 200 | 95.34 134 | 99.63 148 | 96.52 73 | 99.31 187 | 99.35 103 |
|
TransMVSNet (Re) | | | 98.38 27 | 98.67 17 | 97.51 136 | 99.51 29 | 93.39 192 | 98.20 50 | 98.87 93 | 98.23 36 | 99.48 12 | 99.27 23 | 98.47 8 | 99.55 177 | 96.52 73 | 99.53 111 | 99.60 30 |
|
HPM-MVS_fast | | | 98.32 29 | 98.13 35 | 98.88 26 | 99.54 24 | 97.48 34 | 98.35 34 | 99.03 55 | 95.88 142 | 97.88 146 | 98.22 121 | 98.15 12 | 99.74 80 | 96.50 75 | 99.62 79 | 99.42 86 |
|
MIMVSNet1 | | | 98.51 22 | 98.45 26 | 98.67 43 | 99.72 8 | 96.71 54 | 98.76 12 | 98.89 85 | 98.49 28 | 99.38 17 | 99.14 37 | 95.44 132 | 99.84 30 | 96.47 76 | 99.80 40 | 99.47 67 |
|
TranMVSNet+NR-MVSNet | | | 98.33 28 | 98.30 33 | 98.43 60 | 99.07 94 | 95.87 84 | 96.73 140 | 99.05 48 | 98.67 24 | 98.84 48 | 98.45 89 | 97.58 30 | 99.88 20 | 96.45 77 | 99.86 28 | 99.54 43 |
|
test2506 | | | 89.86 329 | 89.16 334 | 91.97 343 | 98.95 105 | 76.83 375 | 98.54 22 | 61.07 389 | 96.20 121 | 97.07 191 | 99.16 34 | 55.19 388 | 99.69 123 | 96.43 78 | 99.83 34 | 99.38 93 |
|
Gipuma |  | | 98.07 44 | 98.31 31 | 97.36 156 | 99.76 7 | 96.28 71 | 98.51 26 | 99.10 36 | 98.76 23 | 96.79 209 | 99.34 21 | 96.61 82 | 98.82 313 | 96.38 79 | 99.50 125 | 96.98 327 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVSTER | | | 94.21 260 | 93.93 262 | 95.05 271 | 95.83 341 | 86.46 318 | 95.18 228 | 97.65 262 | 92.41 259 | 97.94 140 | 98.00 150 | 72.39 363 | 99.58 166 | 96.36 80 | 99.56 99 | 99.12 157 |
|
GeoE | | | 97.75 80 | 97.70 69 | 97.89 107 | 98.88 112 | 94.53 146 | 97.10 118 | 98.98 71 | 95.75 151 | 97.62 157 | 97.59 192 | 97.61 29 | 99.77 58 | 96.34 81 | 99.44 143 | 99.36 101 |
|
canonicalmvs | | | 97.23 119 | 97.21 115 | 97.30 159 | 97.65 263 | 94.39 151 | 97.84 70 | 99.05 48 | 97.42 75 | 96.68 216 | 93.85 342 | 97.63 28 | 99.33 245 | 96.29 82 | 98.47 277 | 98.18 277 |
|
FMVS1 | | | 98.57 17 | 98.45 26 | 98.93 21 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 12 | 97.69 61 | 98.92 42 | 98.77 64 | 97.80 22 | 99.25 264 | 96.27 83 | 99.69 65 | 98.76 219 |
|
APD_test | | | 98.57 17 | 98.45 26 | 98.93 21 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 12 | 97.69 61 | 98.92 42 | 98.77 64 | 97.80 22 | 99.25 264 | 96.27 83 | 99.69 65 | 98.76 219 |
|
alignmvs | | | 96.01 183 | 95.52 198 | 97.50 139 | 97.77 249 | 94.71 139 | 96.07 169 | 96.84 291 | 97.48 73 | 96.78 213 | 94.28 339 | 85.50 299 | 99.40 224 | 96.22 85 | 98.73 259 | 98.40 250 |
|
tttt0517 | | | 93.31 285 | 92.56 292 | 95.57 248 | 98.71 130 | 87.86 293 | 97.44 100 | 87.17 376 | 95.79 148 | 97.47 169 | 96.84 252 | 64.12 378 | 99.81 38 | 96.20 86 | 99.32 185 | 99.02 176 |
|
iter_conf05 | | | 93.65 277 | 93.05 276 | 95.46 256 | 96.13 335 | 87.45 303 | 95.95 181 | 98.22 207 | 92.66 254 | 97.04 193 | 97.89 162 | 63.52 380 | 99.72 90 | 96.19 87 | 99.82 36 | 99.21 134 |
|
DeepC-MVS | | 95.41 4 | 97.82 75 | 97.70 69 | 98.16 84 | 98.78 121 | 95.72 89 | 96.23 162 | 99.02 57 | 93.92 216 | 98.62 60 | 98.99 47 | 97.69 25 | 99.62 156 | 96.18 88 | 99.87 27 | 99.15 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 98.01 48 | 97.66 74 | 99.06 4 | 99.44 37 | 97.90 14 | 95.66 195 | 98.73 135 | 97.69 61 | 97.90 143 | 97.96 152 | 95.81 116 | 99.82 35 | 96.13 89 | 99.61 85 | 99.45 74 |
|
MTAPA | | | 98.14 37 | 97.84 56 | 99.06 4 | 99.44 37 | 97.90 14 | 97.25 109 | 98.73 135 | 97.69 61 | 97.90 143 | 97.96 152 | 95.81 116 | 99.82 35 | 96.13 89 | 99.61 85 | 99.45 74 |
|
ZNCC-MVS | | | 97.92 61 | 97.62 83 | 98.83 28 | 99.32 52 | 97.24 43 | 97.45 99 | 98.84 105 | 95.76 149 | 96.93 203 | 97.43 206 | 97.26 42 | 99.79 45 | 96.06 91 | 99.53 111 | 99.45 74 |
|
Patchmatch-RL test | | | 94.66 242 | 94.49 242 | 95.19 265 | 98.54 153 | 88.91 270 | 92.57 321 | 98.74 133 | 91.46 273 | 98.32 96 | 97.75 179 | 77.31 341 | 98.81 315 | 96.06 91 | 99.61 85 | 97.85 299 |
|
ACMMP_NAP | | | 97.89 67 | 97.63 81 | 98.67 43 | 99.35 48 | 96.84 51 | 96.36 153 | 98.79 122 | 95.07 178 | 97.88 146 | 98.35 97 | 97.24 44 | 99.72 90 | 96.05 93 | 99.58 93 | 99.45 74 |
|
v148 | | | 96.58 159 | 96.97 128 | 95.42 258 | 98.63 141 | 87.57 300 | 95.09 231 | 97.90 243 | 95.91 141 | 98.24 104 | 97.96 152 | 93.42 191 | 99.39 229 | 96.04 94 | 99.52 116 | 99.29 119 |
|
ACMM | | 93.33 11 | 98.05 45 | 97.79 61 | 98.85 27 | 99.15 79 | 97.55 29 | 96.68 142 | 98.83 112 | 95.21 170 | 98.36 88 | 98.13 129 | 98.13 14 | 99.62 156 | 96.04 94 | 99.54 108 | 99.39 91 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VDD-MVS | | | 97.37 109 | 97.25 110 | 97.74 118 | 98.69 134 | 94.50 149 | 97.04 122 | 95.61 318 | 98.59 26 | 98.51 70 | 98.72 68 | 92.54 214 | 99.58 166 | 96.02 96 | 99.49 129 | 99.12 157 |
|
IterMVS | | | 95.42 207 | 95.83 187 | 94.20 305 | 97.52 272 | 83.78 350 | 92.41 326 | 97.47 272 | 95.49 161 | 98.06 126 | 98.49 86 | 87.94 281 | 99.58 166 | 96.02 96 | 99.02 226 | 99.23 132 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
diffmvs | | | 96.04 181 | 96.23 167 | 95.46 256 | 97.35 286 | 88.03 291 | 93.42 302 | 99.08 42 | 94.09 212 | 96.66 218 | 96.93 246 | 93.85 182 | 99.29 256 | 96.01 98 | 98.67 261 | 99.06 169 |
|
PM-MVS | | | 97.36 111 | 97.10 120 | 98.14 88 | 98.91 110 | 96.77 53 | 96.20 163 | 98.63 161 | 93.82 218 | 98.54 68 | 98.33 99 | 93.98 178 | 99.05 292 | 95.99 99 | 99.45 142 | 98.61 235 |
|
Baseline_NR-MVSNet | | | 97.72 82 | 97.79 61 | 97.50 139 | 99.56 20 | 93.29 193 | 95.44 206 | 98.86 96 | 98.20 38 | 98.37 85 | 99.24 24 | 94.69 154 | 99.55 177 | 95.98 100 | 99.79 41 | 99.65 25 |
|
ECVR-MVS |  | | 94.37 255 | 94.48 243 | 94.05 308 | 98.95 105 | 83.10 352 | 98.31 38 | 82.48 382 | 96.20 121 | 98.23 105 | 99.16 34 | 81.18 320 | 99.66 141 | 95.95 101 | 99.83 34 | 99.38 93 |
|
3Dnovator | | 96.53 2 | 97.61 90 | 97.64 79 | 97.50 139 | 97.74 255 | 93.65 186 | 98.49 27 | 98.88 91 | 96.86 94 | 97.11 185 | 98.55 82 | 95.82 112 | 99.73 85 | 95.94 102 | 99.42 154 | 99.13 152 |
|
PatchT | | | 93.75 272 | 93.57 268 | 94.29 304 | 95.05 355 | 87.32 307 | 96.05 170 | 92.98 346 | 97.54 71 | 94.25 299 | 98.72 68 | 75.79 349 | 99.24 267 | 95.92 103 | 95.81 348 | 96.32 348 |
|
NR-MVSNet | | | 97.96 50 | 97.86 55 | 98.26 75 | 98.73 125 | 95.54 100 | 98.14 53 | 98.73 135 | 97.79 49 | 99.42 15 | 97.83 170 | 94.40 167 | 99.78 49 | 95.91 104 | 99.76 47 | 99.46 69 |
|
h-mvs33 | | | 96.29 169 | 95.63 194 | 98.26 75 | 98.50 160 | 96.11 76 | 96.90 127 | 97.09 283 | 96.58 104 | 97.21 178 | 98.19 123 | 84.14 307 | 99.78 49 | 95.89 105 | 96.17 346 | 98.89 199 |
|
hse-mvs2 | | | 95.77 192 | 95.09 208 | 97.79 114 | 97.84 230 | 95.51 102 | 95.66 195 | 95.43 323 | 96.58 104 | 97.21 178 | 96.16 290 | 84.14 307 | 99.54 180 | 95.89 105 | 96.92 329 | 98.32 261 |
|
MSC_two_6792asdad | | | | | 98.22 80 | 97.75 252 | 95.34 115 | | 98.16 221 | | | | | 99.75 70 | 95.87 107 | 99.51 121 | 99.57 37 |
|
No_MVS | | | | | 98.22 80 | 97.75 252 | 95.34 115 | | 98.16 221 | | | | | 99.75 70 | 95.87 107 | 99.51 121 | 99.57 37 |
|
new-patchmatchnet | | | 95.67 195 | 96.58 149 | 92.94 331 | 97.48 275 | 80.21 366 | 92.96 313 | 98.19 216 | 94.83 186 | 98.82 49 | 98.79 61 | 93.31 193 | 99.51 190 | 95.83 109 | 99.04 225 | 99.12 157 |
|
FMVSNet1 | | | 97.95 54 | 98.08 37 | 97.56 131 | 99.14 87 | 93.67 182 | 98.23 45 | 98.66 155 | 97.41 78 | 99.00 39 | 99.19 28 | 95.47 130 | 99.73 85 | 95.83 109 | 99.76 47 | 99.30 112 |
|
patch_mono-2 | | | 96.59 157 | 96.93 131 | 95.55 251 | 98.88 112 | 87.12 310 | 94.47 261 | 99.30 15 | 94.12 210 | 96.65 220 | 98.41 92 | 94.98 148 | 99.87 22 | 95.81 111 | 99.78 44 | 99.66 23 |
|
DVP-MVS++ | | | 97.96 50 | 97.90 50 | 98.12 90 | 97.75 252 | 95.40 108 | 99.03 7 | 98.89 85 | 96.62 99 | 98.62 60 | 98.30 105 | 96.97 58 | 99.75 70 | 95.70 112 | 99.25 196 | 99.21 134 |
|
test_0728_THIRD | | | | | | | | | | 96.62 99 | 98.40 82 | 98.28 110 | 97.10 47 | 99.71 106 | 95.70 112 | 99.62 79 | 99.58 32 |
|
EGC-MVSNET | | | 83.08 348 | 77.93 351 | 98.53 53 | 99.57 19 | 97.55 29 | 98.33 37 | 98.57 168 | 4.71 384 | 10.38 385 | 98.90 56 | 95.60 125 | 99.50 191 | 95.69 114 | 99.61 85 | 98.55 240 |
|
RPMNet | | | 94.68 241 | 94.60 236 | 94.90 278 | 95.44 350 | 88.15 286 | 96.18 164 | 98.86 96 | 97.43 74 | 94.10 303 | 98.49 86 | 79.40 327 | 99.76 63 | 95.69 114 | 95.81 348 | 96.81 338 |
|
TSAR-MVS + MP. | | | 97.42 104 | 97.23 113 | 98.00 100 | 99.38 45 | 95.00 130 | 97.63 86 | 98.20 211 | 93.00 245 | 98.16 112 | 98.06 142 | 95.89 107 | 99.72 90 | 95.67 116 | 99.10 217 | 99.28 120 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
abl_6 | | | 98.42 25 | 98.19 34 | 99.09 3 | 99.16 76 | 98.10 8 | 97.73 80 | 99.11 34 | 97.76 53 | 98.62 60 | 98.27 114 | 97.88 19 | 99.80 44 | 95.67 116 | 99.50 125 | 99.38 93 |
|
XVS | | | 97.96 50 | 97.63 81 | 98.94 18 | 99.15 79 | 97.66 22 | 97.77 73 | 98.83 112 | 97.42 75 | 96.32 235 | 97.64 188 | 96.49 90 | 99.72 90 | 95.66 118 | 99.37 165 | 99.45 74 |
|
X-MVStestdata | | | 92.86 292 | 90.83 316 | 98.94 18 | 99.15 79 | 97.66 22 | 97.77 73 | 98.83 112 | 97.42 75 | 96.32 235 | 36.50 382 | 96.49 90 | 99.72 90 | 95.66 118 | 99.37 165 | 99.45 74 |
|
3Dnovator+ | | 96.13 3 | 97.73 81 | 97.59 87 | 98.15 87 | 98.11 206 | 95.60 97 | 98.04 59 | 98.70 145 | 98.13 39 | 96.93 203 | 98.45 89 | 95.30 137 | 99.62 156 | 95.64 120 | 98.96 230 | 99.24 131 |
|
DELS-MVS | | | 96.17 176 | 96.23 167 | 95.99 228 | 97.55 271 | 90.04 253 | 92.38 327 | 98.52 171 | 94.13 209 | 96.55 226 | 97.06 237 | 94.99 147 | 99.58 166 | 95.62 121 | 99.28 192 | 98.37 254 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HFP-MVS | | | 97.94 57 | 97.64 79 | 98.83 28 | 99.15 79 | 97.50 32 | 97.59 89 | 98.84 105 | 96.05 129 | 97.49 164 | 97.54 195 | 97.07 50 | 99.70 115 | 95.61 122 | 99.46 138 | 99.30 112 |
|
ACMMPR | | | 97.95 54 | 97.62 83 | 98.94 18 | 99.20 72 | 97.56 28 | 97.59 89 | 98.83 112 | 96.05 129 | 97.46 170 | 97.63 189 | 96.77 75 | 99.76 63 | 95.61 122 | 99.46 138 | 99.49 58 |
|
UGNet | | | 96.81 142 | 96.56 151 | 97.58 130 | 96.64 315 | 93.84 176 | 97.75 76 | 97.12 282 | 96.47 111 | 93.62 320 | 98.88 57 | 93.22 195 | 99.53 182 | 95.61 122 | 99.69 65 | 99.36 101 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
HPM-MVS |  | | 98.11 41 | 97.83 59 | 98.92 24 | 99.42 41 | 97.46 35 | 98.57 19 | 99.05 48 | 95.43 164 | 97.41 172 | 97.50 200 | 97.98 15 | 99.79 45 | 95.58 125 | 99.57 96 | 99.50 50 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
dcpmvs_2 | | | 97.12 121 | 97.99 45 | 94.51 297 | 99.11 89 | 84.00 348 | 97.75 76 | 99.65 5 | 97.38 80 | 99.14 32 | 98.42 91 | 95.16 140 | 99.96 2 | 95.52 126 | 99.78 44 | 99.58 32 |
|
SR-MVS-dyc-post | | | 98.14 37 | 97.84 56 | 99.02 9 | 98.81 116 | 98.05 11 | 97.55 92 | 98.86 96 | 97.77 50 | 98.20 107 | 98.07 137 | 96.60 84 | 99.76 63 | 95.49 127 | 99.20 201 | 99.26 125 |
|
RE-MVS-def | | | | 97.88 54 | | 98.81 116 | 98.05 11 | 97.55 92 | 98.86 96 | 97.77 50 | 98.20 107 | 98.07 137 | 96.94 60 | | 95.49 127 | 99.20 201 | 99.26 125 |
|
Anonymous20240529 | | | 97.96 50 | 98.04 42 | 97.71 120 | 98.69 134 | 94.28 159 | 97.86 69 | 98.31 200 | 98.79 22 | 99.23 27 | 98.86 59 | 95.76 119 | 99.61 162 | 95.49 127 | 99.36 168 | 99.23 132 |
|
DVP-MVS |  | | 97.78 78 | 97.65 76 | 98.16 84 | 99.24 59 | 95.51 102 | 96.74 136 | 98.23 206 | 95.92 139 | 98.40 82 | 98.28 110 | 97.06 52 | 99.71 106 | 95.48 130 | 99.52 116 | 99.26 125 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 98.25 78 | 99.23 61 | 95.49 106 | 96.74 136 | 98.89 85 | | | | | 99.75 70 | 95.48 130 | 99.52 116 | 99.53 46 |
|
region2R | | | 97.92 61 | 97.59 87 | 98.92 24 | 99.22 64 | 97.55 29 | 97.60 87 | 98.84 105 | 96.00 134 | 97.22 176 | 97.62 190 | 96.87 70 | 99.76 63 | 95.48 130 | 99.43 151 | 99.46 69 |
|
pmmvs-eth3d | | | 96.49 162 | 96.18 170 | 97.42 152 | 98.25 185 | 94.29 156 | 94.77 251 | 98.07 236 | 89.81 293 | 97.97 137 | 98.33 99 | 93.11 196 | 99.08 289 | 95.46 133 | 99.84 32 | 98.89 199 |
|
SED-MVS | | | 97.94 57 | 97.90 50 | 98.07 93 | 99.22 64 | 95.35 113 | 96.79 133 | 98.83 112 | 96.11 126 | 99.08 34 | 98.24 116 | 97.87 20 | 99.72 90 | 95.44 134 | 99.51 121 | 99.14 150 |
|
test_241102_TWO | | | | | | | | | 98.83 112 | 96.11 126 | 98.62 60 | 98.24 116 | 96.92 64 | 99.72 90 | 95.44 134 | 99.49 129 | 99.49 58 |
|
APD-MVS_3200maxsize | | | 98.13 40 | 97.90 50 | 98.79 33 | 98.79 119 | 97.31 40 | 97.55 92 | 98.92 82 | 97.72 57 | 98.25 103 | 98.13 129 | 97.10 47 | 99.75 70 | 95.44 134 | 99.24 199 | 99.32 106 |
|
xiu_mvs_v1_base_debu | | | 95.62 196 | 95.96 181 | 94.60 291 | 98.01 212 | 88.42 278 | 93.99 283 | 98.21 208 | 92.98 246 | 95.91 256 | 94.53 332 | 96.39 96 | 99.72 90 | 95.43 137 | 98.19 287 | 95.64 356 |
|
xiu_mvs_v1_base | | | 95.62 196 | 95.96 181 | 94.60 291 | 98.01 212 | 88.42 278 | 93.99 283 | 98.21 208 | 92.98 246 | 95.91 256 | 94.53 332 | 96.39 96 | 99.72 90 | 95.43 137 | 98.19 287 | 95.64 356 |
|
xiu_mvs_v1_base_debi | | | 95.62 196 | 95.96 181 | 94.60 291 | 98.01 212 | 88.42 278 | 93.99 283 | 98.21 208 | 92.98 246 | 95.91 256 | 94.53 332 | 96.39 96 | 99.72 90 | 95.43 137 | 98.19 287 | 95.64 356 |
|
c3_l | | | 95.20 215 | 95.32 201 | 94.83 283 | 96.19 329 | 86.43 320 | 91.83 335 | 98.35 196 | 93.47 226 | 97.36 173 | 97.26 224 | 88.69 274 | 99.28 258 | 95.41 140 | 99.36 168 | 98.78 214 |
|
mvsany_test | | | 96.21 173 | 95.93 184 | 97.05 172 | 97.40 283 | 94.33 155 | 95.76 189 | 94.20 334 | 89.10 298 | 99.36 19 | 99.60 6 | 93.97 179 | 97.85 364 | 95.40 141 | 98.63 267 | 98.99 180 |
|
ACMMP |  | | 98.05 45 | 97.75 68 | 98.93 21 | 99.23 61 | 97.60 25 | 98.09 56 | 98.96 76 | 95.75 151 | 97.91 142 | 98.06 142 | 96.89 66 | 99.76 63 | 95.32 142 | 99.57 96 | 99.43 85 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test1172 | | | 98.08 43 | 97.76 66 | 99.05 6 | 98.78 121 | 98.07 9 | 97.41 104 | 98.85 100 | 97.57 67 | 98.15 114 | 97.96 152 | 96.60 84 | 99.76 63 | 95.30 143 | 99.18 205 | 99.33 105 |
|
miper_lstm_enhance | | | 94.81 232 | 94.80 226 | 94.85 281 | 96.16 331 | 86.45 319 | 91.14 348 | 98.20 211 | 93.49 225 | 97.03 195 | 97.37 216 | 84.97 303 | 99.26 262 | 95.28 144 | 99.56 99 | 98.83 208 |
|
MSLP-MVS++ | | | 96.42 167 | 96.71 143 | 95.57 248 | 97.82 233 | 90.56 249 | 95.71 190 | 98.84 105 | 94.72 189 | 96.71 215 | 97.39 212 | 94.91 151 | 98.10 361 | 95.28 144 | 99.02 226 | 98.05 289 |
|
SteuartSystems-ACMMP | | | 98.02 47 | 97.76 66 | 98.79 33 | 99.43 39 | 97.21 45 | 97.15 114 | 98.90 84 | 96.58 104 | 98.08 124 | 97.87 168 | 97.02 55 | 99.76 63 | 95.25 146 | 99.59 91 | 99.40 89 |
Skip Steuart: Steuart Systems R&D Blog. |
SD-MVS | | | 97.37 109 | 97.70 69 | 96.35 214 | 98.14 201 | 95.13 127 | 96.54 145 | 98.92 82 | 95.94 138 | 99.19 29 | 98.08 135 | 97.74 24 | 95.06 377 | 95.24 147 | 99.54 108 | 98.87 205 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
IU-MVS | | | | | | 99.22 64 | 95.40 108 | | 98.14 224 | 85.77 334 | 98.36 88 | | | | 95.23 148 | 99.51 121 | 99.49 58 |
|
CP-MVS | | | 97.92 61 | 97.56 90 | 98.99 13 | 98.99 103 | 97.82 18 | 97.93 64 | 98.96 76 | 96.11 126 | 96.89 206 | 97.45 204 | 96.85 71 | 99.78 49 | 95.19 149 | 99.63 78 | 99.38 93 |
|
LS3D | | | 97.77 79 | 97.50 96 | 98.57 50 | 96.24 325 | 97.58 27 | 98.45 30 | 98.85 100 | 98.58 27 | 97.51 162 | 97.94 157 | 95.74 120 | 99.63 148 | 95.19 149 | 98.97 229 | 98.51 242 |
|
SMA-MVS |  | | 97.48 100 | 97.11 119 | 98.60 48 | 98.83 115 | 96.67 57 | 96.74 136 | 98.73 135 | 91.61 270 | 98.48 74 | 98.36 96 | 96.53 87 | 99.68 130 | 95.17 151 | 99.54 108 | 99.45 74 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CR-MVSNet | | | 93.29 286 | 92.79 284 | 94.78 285 | 95.44 350 | 88.15 286 | 96.18 164 | 97.20 277 | 84.94 345 | 94.10 303 | 98.57 79 | 77.67 336 | 99.39 229 | 95.17 151 | 95.81 348 | 96.81 338 |
|
OPM-MVS | | | 97.54 95 | 97.25 110 | 98.41 62 | 99.11 89 | 96.61 60 | 95.24 225 | 98.46 176 | 94.58 196 | 98.10 121 | 98.07 137 | 97.09 49 | 99.39 229 | 95.16 153 | 99.44 143 | 99.21 134 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
mPP-MVS | | | 97.91 64 | 97.53 92 | 99.04 7 | 99.22 64 | 97.87 17 | 97.74 78 | 98.78 126 | 96.04 131 | 97.10 186 | 97.73 182 | 96.53 87 | 99.78 49 | 95.16 153 | 99.50 125 | 99.46 69 |
|
DIV-MVS_self_test | | | 94.73 234 | 94.64 232 | 95.01 272 | 95.86 339 | 87.00 312 | 91.33 342 | 98.08 232 | 93.34 230 | 97.10 186 | 97.34 218 | 84.02 309 | 99.31 249 | 95.15 155 | 99.55 105 | 98.72 224 |
|
cl____ | | | 94.73 234 | 94.64 232 | 95.01 272 | 95.85 340 | 87.00 312 | 91.33 342 | 98.08 232 | 93.34 230 | 97.10 186 | 97.33 219 | 84.01 310 | 99.30 252 | 95.14 156 | 99.56 99 | 98.71 226 |
|
MSP-MVS | | | 97.45 102 | 96.92 133 | 99.03 8 | 99.26 55 | 97.70 21 | 97.66 83 | 98.89 85 | 95.65 153 | 98.51 70 | 96.46 276 | 92.15 221 | 99.81 38 | 95.14 156 | 98.58 272 | 99.58 32 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
VDDNet | | | 96.98 129 | 96.84 136 | 97.41 153 | 99.40 43 | 93.26 194 | 97.94 63 | 95.31 324 | 99.26 7 | 98.39 84 | 99.18 31 | 87.85 286 | 99.62 156 | 95.13 158 | 99.09 218 | 99.35 103 |
|
CANet | | | 95.86 189 | 95.65 193 | 96.49 206 | 96.41 321 | 90.82 242 | 94.36 263 | 98.41 185 | 94.94 183 | 92.62 346 | 96.73 261 | 92.68 207 | 99.71 106 | 95.12 159 | 99.60 89 | 98.94 186 |
|
CNVR-MVS | | | 96.92 132 | 96.55 152 | 98.03 99 | 98.00 216 | 95.54 100 | 94.87 245 | 98.17 217 | 94.60 193 | 96.38 232 | 97.05 238 | 95.67 122 | 99.36 237 | 95.12 159 | 99.08 219 | 99.19 139 |
|
eth_miper_zixun_eth | | | 94.89 228 | 94.93 216 | 94.75 286 | 95.99 337 | 86.12 323 | 91.35 341 | 98.49 174 | 93.40 227 | 97.12 184 | 97.25 225 | 86.87 293 | 99.35 240 | 95.08 161 | 98.82 249 | 98.78 214 |
|
GST-MVS | | | 97.82 75 | 97.49 97 | 98.81 31 | 99.23 61 | 97.25 42 | 97.16 113 | 98.79 122 | 95.96 136 | 97.53 160 | 97.40 208 | 96.93 62 | 99.77 58 | 95.04 162 | 99.35 173 | 99.42 86 |
|
DP-MVS | | | 97.87 69 | 97.89 53 | 97.81 113 | 98.62 143 | 94.82 135 | 97.13 117 | 98.79 122 | 98.98 17 | 98.74 56 | 98.49 86 | 95.80 118 | 99.49 194 | 95.04 162 | 99.44 143 | 99.11 160 |
|
D2MVS | | | 95.18 216 | 95.17 205 | 95.21 264 | 97.76 250 | 87.76 298 | 94.15 275 | 97.94 241 | 89.77 294 | 96.99 198 | 97.68 187 | 87.45 288 | 99.14 280 | 95.03 164 | 99.81 37 | 98.74 221 |
|
SR-MVS | | | 98.00 49 | 97.66 74 | 99.01 11 | 98.77 123 | 97.93 13 | 97.38 105 | 98.83 112 | 97.32 82 | 98.06 126 | 97.85 169 | 96.65 79 | 99.77 58 | 95.00 165 | 99.11 215 | 99.32 106 |
|
FMVSNet2 | | | 96.72 149 | 96.67 146 | 96.87 183 | 97.96 218 | 91.88 226 | 97.15 114 | 98.06 237 | 95.59 157 | 98.50 72 | 98.62 76 | 89.51 268 | 99.65 143 | 94.99 166 | 99.60 89 | 99.07 167 |
|
miper_ehance_all_eth | | | 94.69 239 | 94.70 229 | 94.64 288 | 95.77 343 | 86.22 322 | 91.32 344 | 98.24 205 | 91.67 269 | 97.05 192 | 96.65 266 | 88.39 278 | 99.22 271 | 94.88 167 | 98.34 281 | 98.49 245 |
|
XVG-OURS-SEG-HR | | | 97.38 107 | 97.07 123 | 98.30 73 | 99.01 102 | 97.41 38 | 94.66 254 | 99.02 57 | 95.20 171 | 98.15 114 | 97.52 198 | 98.83 4 | 98.43 346 | 94.87 168 | 96.41 342 | 99.07 167 |
|
MVS_111021_HR | | | 96.73 148 | 96.54 154 | 97.27 160 | 98.35 175 | 93.66 185 | 93.42 302 | 98.36 192 | 94.74 188 | 96.58 222 | 96.76 260 | 96.54 86 | 98.99 299 | 94.87 168 | 99.27 194 | 99.15 147 |
|
test_0402 | | | 97.84 72 | 97.97 46 | 97.47 144 | 99.19 74 | 94.07 166 | 96.71 141 | 98.73 135 | 98.66 25 | 98.56 67 | 98.41 92 | 96.84 72 | 99.69 123 | 94.82 170 | 99.81 37 | 98.64 230 |
|
MVS_111021_LR | | | 96.82 141 | 96.55 152 | 97.62 128 | 98.27 182 | 95.34 115 | 93.81 292 | 98.33 197 | 94.59 195 | 96.56 224 | 96.63 267 | 96.61 82 | 98.73 322 | 94.80 171 | 99.34 176 | 98.78 214 |
|
WR-MVS | | | 96.90 134 | 96.81 138 | 97.16 165 | 98.56 151 | 92.20 218 | 94.33 264 | 98.12 227 | 97.34 81 | 98.20 107 | 97.33 219 | 92.81 203 | 99.75 70 | 94.79 172 | 99.81 37 | 99.54 43 |
|
ACMH+ | | 93.58 10 | 98.23 34 | 98.31 31 | 97.98 101 | 99.39 44 | 95.22 123 | 97.55 92 | 99.20 21 | 98.21 37 | 99.25 26 | 98.51 85 | 98.21 11 | 99.40 224 | 94.79 172 | 99.72 58 | 99.32 106 |
|
thisisatest0530 | | | 92.71 295 | 91.76 302 | 95.56 250 | 98.42 170 | 88.23 283 | 96.03 172 | 87.35 375 | 94.04 213 | 96.56 224 | 95.47 316 | 64.03 379 | 99.77 58 | 94.78 174 | 99.11 215 | 98.68 229 |
|
PGM-MVS | | | 97.88 68 | 97.52 93 | 98.96 16 | 99.20 72 | 97.62 24 | 97.09 119 | 99.06 46 | 95.45 162 | 97.55 159 | 97.94 157 | 97.11 46 | 99.78 49 | 94.77 175 | 99.46 138 | 99.48 64 |
|
TSAR-MVS + GP. | | | 96.47 164 | 96.12 172 | 97.49 142 | 97.74 255 | 95.23 120 | 94.15 275 | 96.90 290 | 93.26 233 | 98.04 129 | 96.70 263 | 94.41 166 | 98.89 308 | 94.77 175 | 99.14 208 | 98.37 254 |
|
VNet | | | 96.84 137 | 96.83 137 | 96.88 182 | 98.06 207 | 92.02 223 | 96.35 154 | 97.57 269 | 97.70 60 | 97.88 146 | 97.80 175 | 92.40 218 | 99.54 180 | 94.73 177 | 98.96 230 | 99.08 165 |
|
VPNet | | | 97.26 116 | 97.49 97 | 96.59 199 | 99.47 34 | 90.58 247 | 96.27 157 | 98.53 170 | 97.77 50 | 98.46 77 | 98.41 92 | 94.59 160 | 99.68 130 | 94.61 178 | 99.29 191 | 99.52 47 |
|
GBi-Net | | | 96.99 126 | 96.80 139 | 97.56 131 | 97.96 218 | 93.67 182 | 98.23 45 | 98.66 155 | 95.59 157 | 97.99 133 | 99.19 28 | 89.51 268 | 99.73 85 | 94.60 179 | 99.44 143 | 99.30 112 |
|
test1 | | | 96.99 126 | 96.80 139 | 97.56 131 | 97.96 218 | 93.67 182 | 98.23 45 | 98.66 155 | 95.59 157 | 97.99 133 | 99.19 28 | 89.51 268 | 99.73 85 | 94.60 179 | 99.44 143 | 99.30 112 |
|
FMVSNet3 | | | 95.26 214 | 94.94 214 | 96.22 221 | 96.53 318 | 90.06 252 | 95.99 175 | 97.66 260 | 94.11 211 | 97.99 133 | 97.91 161 | 80.22 326 | 99.63 148 | 94.60 179 | 99.44 143 | 98.96 183 |
|
xxxxxxxxxxxxxcwj | | | 97.24 118 | 97.03 126 | 97.89 107 | 98.48 163 | 94.71 139 | 94.53 259 | 99.07 45 | 95.02 181 | 97.83 152 | 97.88 166 | 96.44 94 | 99.72 90 | 94.59 182 | 99.39 162 | 99.25 129 |
|
SF-MVS | | | 97.60 91 | 97.39 101 | 98.22 80 | 98.93 108 | 95.69 91 | 97.05 121 | 99.10 36 | 95.32 167 | 97.83 152 | 97.88 166 | 96.44 94 | 99.72 90 | 94.59 182 | 99.39 162 | 99.25 129 |
|
MVS_0304 | | | 95.50 200 | 95.05 212 | 96.84 185 | 96.28 324 | 93.12 197 | 97.00 124 | 96.16 304 | 95.03 180 | 89.22 368 | 97.70 184 | 90.16 257 | 99.48 197 | 94.51 184 | 99.34 176 | 97.93 296 |
|
XXY-MVS | | | 97.54 95 | 97.70 69 | 97.07 171 | 99.46 35 | 92.21 216 | 97.22 112 | 99.00 65 | 94.93 185 | 98.58 66 | 98.92 54 | 97.31 38 | 99.41 222 | 94.44 185 | 99.43 151 | 99.59 31 |
|
UnsupCasMVSNet_eth | | | 95.91 186 | 95.73 191 | 96.44 208 | 98.48 163 | 91.52 233 | 95.31 219 | 98.45 177 | 95.76 149 | 97.48 167 | 97.54 195 | 89.53 267 | 98.69 326 | 94.43 186 | 94.61 361 | 99.13 152 |
|
LPG-MVS_test | | | 97.94 57 | 97.67 73 | 98.74 37 | 99.15 79 | 97.02 46 | 97.09 119 | 99.02 57 | 95.15 174 | 98.34 91 | 98.23 118 | 97.91 17 | 99.70 115 | 94.41 187 | 99.73 54 | 99.50 50 |
|
LGP-MVS_train | | | | | 98.74 37 | 99.15 79 | 97.02 46 | | 99.02 57 | 95.15 174 | 98.34 91 | 98.23 118 | 97.91 17 | 99.70 115 | 94.41 187 | 99.73 54 | 99.50 50 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 134 | 96.43 161 | 98.31 72 | 97.48 275 | 97.23 44 | 92.56 322 | 98.60 163 | 92.84 252 | 98.54 68 | 97.40 208 | 96.64 81 | 98.78 317 | 94.40 189 | 99.41 160 | 98.93 190 |
|
#test# | | | 97.62 89 | 97.22 114 | 98.83 28 | 99.15 79 | 97.50 32 | 96.81 131 | 98.84 105 | 94.25 205 | 97.49 164 | 97.54 195 | 97.07 50 | 99.70 115 | 94.37 190 | 99.46 138 | 99.30 112 |
|
XVG-ACMP-BASELINE | | | 97.58 93 | 97.28 109 | 98.49 55 | 99.16 76 | 96.90 50 | 96.39 150 | 98.98 71 | 95.05 179 | 98.06 126 | 98.02 146 | 95.86 108 | 99.56 173 | 94.37 190 | 99.64 76 | 99.00 177 |
|
RPSCF | | | 97.87 69 | 97.51 94 | 98.95 17 | 99.15 79 | 98.43 5 | 97.56 91 | 99.06 46 | 96.19 123 | 98.48 74 | 98.70 70 | 94.72 153 | 99.24 267 | 94.37 190 | 99.33 183 | 99.17 143 |
|
CSCG | | | 97.40 106 | 97.30 106 | 97.69 124 | 98.95 105 | 94.83 134 | 97.28 108 | 98.99 68 | 96.35 116 | 98.13 117 | 95.95 303 | 95.99 105 | 99.66 141 | 94.36 193 | 99.73 54 | 98.59 236 |
|
HPM-MVS++ |  | | 96.99 126 | 96.38 162 | 98.81 31 | 98.64 137 | 97.59 26 | 95.97 177 | 98.20 211 | 95.51 160 | 95.06 279 | 96.53 272 | 94.10 174 | 99.70 115 | 94.29 194 | 99.15 207 | 99.13 152 |
|
XVG-OURS | | | 97.12 121 | 96.74 142 | 98.26 75 | 98.99 103 | 97.45 36 | 93.82 290 | 99.05 48 | 95.19 172 | 98.32 96 | 97.70 184 | 95.22 139 | 98.41 347 | 94.27 195 | 98.13 290 | 98.93 190 |
|
jason | | | 94.39 254 | 94.04 258 | 95.41 260 | 98.29 178 | 87.85 295 | 92.74 319 | 96.75 296 | 85.38 340 | 95.29 275 | 96.15 291 | 88.21 280 | 99.65 143 | 94.24 196 | 99.34 176 | 98.74 221 |
jason: jason. |
CVMVSNet | | | 92.33 301 | 92.79 284 | 90.95 348 | 97.26 295 | 75.84 378 | 95.29 221 | 92.33 353 | 81.86 355 | 96.27 239 | 98.19 123 | 81.44 318 | 98.46 345 | 94.23 197 | 98.29 284 | 98.55 240 |
|
EIA-MVS | | | 96.04 181 | 95.77 190 | 96.85 184 | 97.80 238 | 92.98 200 | 96.12 167 | 99.16 25 | 94.65 191 | 93.77 314 | 91.69 367 | 95.68 121 | 99.67 135 | 94.18 198 | 98.85 246 | 97.91 297 |
|
ET-MVSNet_ETH3D | | | 91.12 315 | 89.67 327 | 95.47 255 | 96.41 321 | 89.15 268 | 91.54 338 | 90.23 369 | 89.07 299 | 86.78 377 | 92.84 353 | 69.39 372 | 99.44 210 | 94.16 199 | 96.61 339 | 97.82 301 |
|
cl22 | | | 93.25 287 | 92.84 283 | 94.46 298 | 94.30 363 | 86.00 324 | 91.09 350 | 96.64 301 | 90.74 282 | 95.79 261 | 96.31 284 | 78.24 333 | 98.77 318 | 94.15 200 | 98.34 281 | 98.62 233 |
|
MCST-MVS | | | 96.24 171 | 95.80 188 | 97.56 131 | 98.75 124 | 94.13 165 | 94.66 254 | 98.17 217 | 90.17 289 | 96.21 243 | 96.10 296 | 95.14 141 | 99.43 212 | 94.13 201 | 98.85 246 | 99.13 152 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 33 | 98.11 36 | 98.64 46 | 99.21 71 | 97.35 39 | 97.96 62 | 99.16 25 | 98.34 32 | 98.78 52 | 98.52 84 | 97.32 37 | 99.45 207 | 94.08 202 | 99.67 71 | 99.13 152 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous202405211 | | | 96.34 168 | 95.98 180 | 97.43 151 | 98.25 185 | 93.85 175 | 96.74 136 | 94.41 332 | 97.72 57 | 98.37 85 | 98.03 145 | 87.15 290 | 99.53 182 | 94.06 203 | 99.07 221 | 98.92 194 |
|
Effi-MVS+-dtu | | | 96.81 142 | 96.09 174 | 98.99 13 | 96.90 312 | 98.69 4 | 96.42 149 | 98.09 230 | 95.86 144 | 95.15 278 | 95.54 314 | 94.26 170 | 99.81 38 | 94.06 203 | 98.51 276 | 98.47 246 |
|
mvs-test1 | | | 96.20 174 | 95.50 199 | 98.32 69 | 96.90 312 | 98.16 7 | 95.07 234 | 98.09 230 | 95.86 144 | 93.63 319 | 94.32 338 | 94.26 170 | 99.71 106 | 94.06 203 | 97.27 327 | 97.07 324 |
|
ambc | | | | | 96.56 203 | 98.23 188 | 91.68 231 | 97.88 68 | 98.13 226 | | 98.42 80 | 98.56 81 | 94.22 172 | 99.04 293 | 94.05 206 | 99.35 173 | 98.95 184 |
|
our_test_3 | | | 94.20 262 | 94.58 239 | 93.07 325 | 96.16 331 | 81.20 363 | 90.42 356 | 96.84 291 | 90.72 283 | 97.14 182 | 97.13 230 | 90.47 248 | 99.11 285 | 94.04 207 | 98.25 285 | 98.91 195 |
|
pmmvs5 | | | 94.63 244 | 94.34 249 | 95.50 253 | 97.63 265 | 88.34 281 | 94.02 281 | 97.13 281 | 87.15 320 | 95.22 277 | 97.15 229 | 87.50 287 | 99.27 261 | 93.99 208 | 99.26 195 | 98.88 203 |
|
DPE-MVS |  | | 97.64 87 | 97.35 104 | 98.50 54 | 98.85 114 | 96.18 72 | 95.21 227 | 98.99 68 | 95.84 146 | 98.78 52 | 98.08 135 | 96.84 72 | 99.81 38 | 93.98 209 | 99.57 96 | 99.52 47 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ppachtmachnet_test | | | 94.49 251 | 94.84 222 | 93.46 317 | 96.16 331 | 82.10 357 | 90.59 354 | 97.48 271 | 90.53 285 | 97.01 197 | 97.59 192 | 91.01 241 | 99.36 237 | 93.97 210 | 99.18 205 | 98.94 186 |
|
tfpnnormal | | | 97.72 82 | 97.97 46 | 96.94 178 | 99.26 55 | 92.23 215 | 97.83 71 | 98.45 177 | 98.25 35 | 99.13 33 | 98.66 73 | 96.65 79 | 99.69 123 | 93.92 211 | 99.62 79 | 98.91 195 |
|
LFMVS | | | 95.32 211 | 94.88 220 | 96.62 197 | 98.03 209 | 91.47 234 | 97.65 84 | 90.72 365 | 99.11 9 | 97.89 145 | 98.31 101 | 79.20 329 | 99.48 197 | 93.91 212 | 99.12 214 | 98.93 190 |
|
EPP-MVSNet | | | 96.84 137 | 96.58 149 | 97.65 126 | 99.18 75 | 93.78 179 | 98.68 14 | 96.34 302 | 97.91 48 | 97.30 174 | 98.06 142 | 88.46 276 | 99.85 27 | 93.85 213 | 99.40 161 | 99.32 106 |
|
Fast-Effi-MVS+-dtu | | | 96.44 165 | 96.12 172 | 97.39 155 | 97.18 301 | 94.39 151 | 95.46 205 | 98.73 135 | 96.03 133 | 94.72 287 | 94.92 326 | 96.28 102 | 99.69 123 | 93.81 214 | 97.98 295 | 98.09 279 |
|
PHI-MVS | | | 96.96 130 | 96.53 155 | 98.25 78 | 97.48 275 | 96.50 63 | 96.76 135 | 98.85 100 | 93.52 224 | 96.19 245 | 96.85 251 | 95.94 106 | 99.42 213 | 93.79 215 | 99.43 151 | 98.83 208 |
|
miper_enhance_ethall | | | 93.14 289 | 92.78 286 | 94.20 305 | 93.65 371 | 85.29 332 | 89.97 360 | 97.85 246 | 85.05 342 | 96.15 248 | 94.56 331 | 85.74 297 | 99.14 280 | 93.74 216 | 98.34 281 | 98.17 278 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 146 | 96.51 158 | 97.44 150 | 97.69 258 | 94.15 164 | 96.02 173 | 98.43 180 | 93.17 240 | 97.30 174 | 97.38 214 | 95.48 129 | 99.28 258 | 93.74 216 | 99.34 176 | 98.88 203 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AUN-MVS | | | 93.95 270 | 92.69 288 | 97.74 118 | 97.80 238 | 95.38 110 | 95.57 203 | 95.46 322 | 91.26 277 | 92.64 344 | 96.10 296 | 74.67 352 | 99.55 177 | 93.72 218 | 96.97 328 | 98.30 265 |
|
MP-MVS |  | | 97.64 87 | 97.18 116 | 99.00 12 | 99.32 52 | 97.77 20 | 97.49 98 | 98.73 135 | 96.27 117 | 95.59 269 | 97.75 179 | 96.30 100 | 99.78 49 | 93.70 219 | 99.48 133 | 99.45 74 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PVSNet_Blended_VisFu | | | 95.95 185 | 95.80 188 | 96.42 211 | 99.28 54 | 90.62 246 | 95.31 219 | 99.08 42 | 88.40 308 | 96.97 201 | 98.17 126 | 92.11 223 | 99.78 49 | 93.64 220 | 99.21 200 | 98.86 206 |
|
lupinMVS | | | 93.77 271 | 93.28 272 | 95.24 263 | 97.68 259 | 87.81 296 | 92.12 330 | 96.05 306 | 84.52 347 | 94.48 296 | 95.06 322 | 86.90 291 | 99.63 148 | 93.62 221 | 99.13 211 | 98.27 269 |
|
NCCC | | | 96.52 161 | 95.99 179 | 98.10 91 | 97.81 234 | 95.68 93 | 95.00 240 | 98.20 211 | 95.39 165 | 95.40 274 | 96.36 282 | 93.81 183 | 99.45 207 | 93.55 222 | 98.42 279 | 99.17 143 |
|
ETV-MVS | | | 96.13 178 | 95.90 185 | 96.82 187 | 97.76 250 | 93.89 172 | 95.40 211 | 98.95 78 | 95.87 143 | 95.58 270 | 91.00 373 | 96.36 99 | 99.72 90 | 93.36 223 | 98.83 248 | 96.85 334 |
|
FA-MVS(test-final) | | | 94.91 227 | 94.89 219 | 94.99 274 | 97.51 273 | 88.11 290 | 98.27 43 | 95.20 325 | 92.40 260 | 96.68 216 | 98.60 77 | 83.44 312 | 99.28 258 | 93.34 224 | 98.53 273 | 97.59 312 |
|
MDA-MVSNet_test_wron | | | 94.73 234 | 94.83 224 | 94.42 299 | 97.48 275 | 85.15 335 | 90.28 358 | 95.87 312 | 92.52 255 | 97.48 167 | 97.76 176 | 91.92 231 | 99.17 277 | 93.32 225 | 96.80 335 | 98.94 186 |
|
YYNet1 | | | 94.73 234 | 94.84 222 | 94.41 300 | 97.47 279 | 85.09 337 | 90.29 357 | 95.85 313 | 92.52 255 | 97.53 160 | 97.76 176 | 91.97 227 | 99.18 273 | 93.31 226 | 96.86 332 | 98.95 184 |
|
pmmvs4 | | | 94.82 231 | 94.19 254 | 96.70 194 | 97.42 282 | 92.75 207 | 92.09 332 | 96.76 295 | 86.80 325 | 95.73 266 | 97.22 226 | 89.28 271 | 98.89 308 | 93.28 227 | 99.14 208 | 98.46 248 |
|
CANet_DTU | | | 94.65 243 | 94.21 253 | 95.96 230 | 95.90 338 | 89.68 257 | 93.92 287 | 97.83 250 | 93.19 236 | 90.12 363 | 95.64 311 | 88.52 275 | 99.57 172 | 93.27 228 | 99.47 135 | 98.62 233 |
|
ACMP | | 92.54 13 | 97.47 101 | 97.10 120 | 98.55 52 | 99.04 100 | 96.70 55 | 96.24 161 | 98.89 85 | 93.71 221 | 97.97 137 | 97.75 179 | 97.44 32 | 99.63 148 | 93.22 229 | 99.70 64 | 99.32 106 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Effi-MVS+ | | | 96.19 175 | 96.01 177 | 96.71 193 | 97.43 281 | 92.19 219 | 96.12 167 | 99.10 36 | 95.45 162 | 93.33 332 | 94.71 329 | 97.23 45 | 99.56 173 | 93.21 230 | 97.54 316 | 98.37 254 |
|
MDA-MVSNet-bldmvs | | | 95.69 193 | 95.67 192 | 95.74 241 | 98.48 163 | 88.76 276 | 92.84 314 | 97.25 275 | 96.00 134 | 97.59 158 | 97.95 156 | 91.38 237 | 99.46 203 | 93.16 231 | 96.35 343 | 98.99 180 |
|
IS-MVSNet | | | 96.93 131 | 96.68 145 | 97.70 122 | 99.25 58 | 94.00 169 | 98.57 19 | 96.74 297 | 98.36 31 | 98.14 116 | 97.98 151 | 88.23 279 | 99.71 106 | 93.10 232 | 99.72 58 | 99.38 93 |
|
9.14 | | | | 96.69 144 | | 98.53 154 | | 96.02 173 | 98.98 71 | 93.23 234 | 97.18 180 | 97.46 203 | 96.47 92 | 99.62 156 | 92.99 233 | 99.32 185 | |
|
MS-PatchMatch | | | 94.83 230 | 94.91 218 | 94.57 294 | 96.81 314 | 87.10 311 | 94.23 270 | 97.34 274 | 88.74 305 | 97.14 182 | 97.11 233 | 91.94 229 | 98.23 357 | 92.99 233 | 97.92 297 | 98.37 254 |
|
Patchmtry | | | 95.03 224 | 94.59 238 | 96.33 215 | 94.83 357 | 90.82 242 | 96.38 152 | 97.20 277 | 96.59 103 | 97.49 164 | 98.57 79 | 77.67 336 | 99.38 232 | 92.95 235 | 99.62 79 | 98.80 211 |
|
ETH3D-3000-0.1 | | | 96.89 136 | 96.46 160 | 98.16 84 | 98.62 143 | 95.69 91 | 95.96 178 | 98.98 71 | 93.36 229 | 97.04 193 | 97.31 221 | 94.93 150 | 99.63 148 | 92.60 236 | 99.34 176 | 99.17 143 |
|
Fast-Effi-MVS+ | | | 95.49 201 | 95.07 209 | 96.75 191 | 97.67 262 | 92.82 203 | 94.22 271 | 98.60 163 | 91.61 270 | 93.42 330 | 92.90 352 | 96.73 77 | 99.70 115 | 92.60 236 | 97.89 300 | 97.74 304 |
|
HQP_MVS | | | 96.66 155 | 96.33 165 | 97.68 125 | 98.70 132 | 94.29 156 | 96.50 146 | 98.75 131 | 96.36 114 | 96.16 246 | 96.77 258 | 91.91 232 | 99.46 203 | 92.59 238 | 99.20 201 | 99.28 120 |
|
plane_prior5 | | | | | | | | | 98.75 131 | | | | | 99.46 203 | 92.59 238 | 99.20 201 | 99.28 120 |
|
GA-MVS | | | 92.83 293 | 92.15 297 | 94.87 280 | 96.97 307 | 87.27 308 | 90.03 359 | 96.12 305 | 91.83 268 | 94.05 306 | 94.57 330 | 76.01 348 | 98.97 305 | 92.46 240 | 97.34 324 | 98.36 259 |
|
CPTT-MVS | | | 96.69 152 | 96.08 175 | 98.49 55 | 98.89 111 | 96.64 59 | 97.25 109 | 98.77 127 | 92.89 251 | 96.01 253 | 97.13 230 | 92.23 220 | 99.67 135 | 92.24 241 | 99.34 176 | 99.17 143 |
|
EPNet | | | 93.72 273 | 92.62 291 | 97.03 175 | 87.61 387 | 92.25 214 | 96.27 157 | 91.28 359 | 96.74 97 | 87.65 373 | 97.39 212 | 85.00 302 | 99.64 146 | 92.14 242 | 99.48 133 | 99.20 138 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PC_three_1452 | | | | | | | | | | 87.24 318 | 98.37 85 | 97.44 205 | 97.00 56 | 96.78 374 | 92.01 243 | 99.25 196 | 99.21 134 |
|
APD-MVS |  | | 97.00 125 | 96.53 155 | 98.41 62 | 98.55 152 | 96.31 69 | 96.32 156 | 98.77 127 | 92.96 250 | 97.44 171 | 97.58 194 | 95.84 109 | 99.74 80 | 91.96 244 | 99.35 173 | 99.19 139 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CL-MVSNet_self_test | | | 95.04 222 | 94.79 227 | 95.82 238 | 97.51 273 | 89.79 256 | 91.14 348 | 96.82 293 | 93.05 243 | 96.72 214 | 96.40 280 | 90.82 244 | 99.16 278 | 91.95 245 | 98.66 263 | 98.50 244 |
|
test_prior3 | | | 95.91 186 | 95.39 200 | 97.46 147 | 97.79 244 | 94.26 161 | 93.33 307 | 98.42 183 | 94.21 206 | 94.02 307 | 96.25 286 | 93.64 187 | 99.34 242 | 91.90 246 | 98.96 230 | 98.79 212 |
|
test_prior2 | | | | | | | | 93.33 307 | | 94.21 206 | 94.02 307 | 96.25 286 | 93.64 187 | | 91.90 246 | 98.96 230 | |
|
test-LLR | | | 89.97 327 | 89.90 325 | 90.16 352 | 94.24 365 | 74.98 379 | 89.89 361 | 89.06 371 | 92.02 263 | 89.97 364 | 90.77 374 | 73.92 355 | 98.57 337 | 91.88 248 | 97.36 322 | 96.92 329 |
|
test-mter | | | 87.92 343 | 87.17 344 | 90.16 352 | 94.24 365 | 74.98 379 | 89.89 361 | 89.06 371 | 86.44 327 | 89.97 364 | 90.77 374 | 54.96 389 | 98.57 337 | 91.88 248 | 97.36 322 | 96.92 329 |
|
MVP-Stereo | | | 95.69 193 | 95.28 202 | 96.92 179 | 98.15 200 | 93.03 199 | 95.64 200 | 98.20 211 | 90.39 286 | 96.63 221 | 97.73 182 | 91.63 235 | 99.10 287 | 91.84 250 | 97.31 325 | 98.63 232 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1112_ss | | | 94.12 263 | 93.42 270 | 96.23 219 | 98.59 148 | 90.85 241 | 94.24 269 | 98.85 100 | 85.49 335 | 92.97 336 | 94.94 324 | 86.01 296 | 99.64 146 | 91.78 251 | 97.92 297 | 98.20 275 |
|
train_agg | | | 95.46 205 | 94.66 230 | 97.88 109 | 97.84 230 | 95.23 120 | 93.62 296 | 98.39 188 | 87.04 321 | 93.78 312 | 95.99 298 | 94.58 161 | 99.52 186 | 91.76 252 | 98.90 238 | 98.89 199 |
|
LF4IMVS | | | 96.07 179 | 95.63 194 | 97.36 156 | 98.19 191 | 95.55 99 | 95.44 206 | 98.82 120 | 92.29 261 | 95.70 267 | 96.55 270 | 92.63 210 | 98.69 326 | 91.75 253 | 99.33 183 | 97.85 299 |
|
agg_prior1 | | | 95.39 208 | 94.60 236 | 97.75 117 | 97.80 238 | 94.96 131 | 93.39 304 | 98.36 192 | 87.20 319 | 93.49 325 | 95.97 301 | 94.65 158 | 99.53 182 | 91.69 254 | 98.86 244 | 98.77 217 |
|
N_pmnet | | | 95.18 216 | 94.23 251 | 98.06 95 | 97.85 226 | 96.55 62 | 92.49 323 | 91.63 358 | 89.34 296 | 98.09 122 | 97.41 207 | 90.33 251 | 99.06 291 | 91.58 255 | 99.31 187 | 98.56 238 |
|
ETH3D cwj APD-0.16 | | | 96.23 172 | 95.61 196 | 98.09 92 | 97.91 222 | 95.65 96 | 94.94 242 | 98.74 133 | 91.31 276 | 96.02 252 | 97.08 235 | 94.05 176 | 99.69 123 | 91.51 256 | 98.94 234 | 98.93 190 |
|
AllTest | | | 97.20 120 | 96.92 133 | 98.06 95 | 99.08 92 | 96.16 73 | 97.14 116 | 99.16 25 | 94.35 201 | 97.78 155 | 98.07 137 | 95.84 109 | 99.12 282 | 91.41 257 | 99.42 154 | 98.91 195 |
|
TestCases | | | | | 98.06 95 | 99.08 92 | 96.16 73 | | 99.16 25 | 94.35 201 | 97.78 155 | 98.07 137 | 95.84 109 | 99.12 282 | 91.41 257 | 99.42 154 | 98.91 195 |
|
test9_res | | | | | | | | | | | | | | | 91.29 259 | 98.89 241 | 99.00 177 |
|
xiu_mvs_v2_base | | | 94.22 258 | 94.63 234 | 92.99 329 | 97.32 293 | 84.84 340 | 92.12 330 | 97.84 248 | 91.96 265 | 94.17 301 | 93.43 343 | 96.07 104 | 99.71 106 | 91.27 260 | 97.48 319 | 94.42 365 |
|
PS-MVSNAJ | | | 94.10 264 | 94.47 244 | 93.00 328 | 97.35 286 | 84.88 339 | 91.86 334 | 97.84 248 | 91.96 265 | 94.17 301 | 92.50 359 | 95.82 112 | 99.71 106 | 91.27 260 | 97.48 319 | 94.40 366 |
|
tpm | | | 91.08 317 | 90.85 315 | 91.75 344 | 95.33 353 | 78.09 369 | 95.03 239 | 91.27 360 | 88.75 304 | 93.53 324 | 97.40 208 | 71.24 365 | 99.30 252 | 91.25 262 | 93.87 364 | 97.87 298 |
|
OPU-MVS | | | | | 97.64 127 | 98.01 212 | 95.27 118 | 96.79 133 | | | | 97.35 217 | 96.97 58 | 98.51 343 | 91.21 263 | 99.25 196 | 99.14 150 |
|
ZD-MVS | | | | | | 98.43 169 | 95.94 83 | | 98.56 169 | 90.72 283 | 96.66 218 | 97.07 236 | 95.02 146 | 99.74 80 | 91.08 264 | 98.93 236 | |
|
tpmrst | | | 90.31 322 | 90.61 320 | 89.41 355 | 94.06 368 | 72.37 384 | 95.06 236 | 93.69 336 | 88.01 312 | 92.32 349 | 96.86 250 | 77.45 338 | 98.82 313 | 91.04 265 | 87.01 377 | 97.04 326 |
|
sss | | | 94.22 258 | 93.72 266 | 95.74 241 | 97.71 257 | 89.95 255 | 93.84 289 | 96.98 287 | 88.38 309 | 93.75 315 | 95.74 307 | 87.94 281 | 98.89 308 | 91.02 266 | 98.10 291 | 98.37 254 |
|
ITE_SJBPF | | | | | 97.85 111 | 98.64 137 | 96.66 58 | | 98.51 173 | 95.63 154 | 97.22 176 | 97.30 222 | 95.52 127 | 98.55 340 | 90.97 267 | 98.90 238 | 98.34 260 |
|
Test_1112_low_res | | | 93.53 281 | 92.86 281 | 95.54 252 | 98.60 146 | 88.86 272 | 92.75 317 | 98.69 148 | 82.66 354 | 92.65 343 | 96.92 248 | 84.75 304 | 99.56 173 | 90.94 268 | 97.76 303 | 98.19 276 |
|
TESTMET0.1,1 | | | 87.20 345 | 86.57 347 | 89.07 356 | 93.62 372 | 72.84 383 | 89.89 361 | 87.01 377 | 85.46 337 | 89.12 369 | 90.20 376 | 56.00 387 | 97.72 367 | 90.91 269 | 96.92 329 | 96.64 342 |
|
FMVSNet5 | | | 93.39 283 | 92.35 293 | 96.50 205 | 95.83 341 | 90.81 244 | 97.31 106 | 98.27 201 | 92.74 253 | 96.27 239 | 98.28 110 | 62.23 381 | 99.67 135 | 90.86 270 | 99.36 168 | 99.03 173 |
|
PatchmatchNet |  | | 91.98 307 | 91.87 299 | 92.30 341 | 94.60 360 | 79.71 367 | 95.12 229 | 93.59 341 | 89.52 295 | 93.61 321 | 97.02 240 | 77.94 334 | 99.18 273 | 90.84 271 | 94.57 363 | 98.01 293 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CLD-MVS | | | 95.47 204 | 95.07 209 | 96.69 195 | 98.27 182 | 92.53 209 | 91.36 340 | 98.67 153 | 91.22 278 | 95.78 263 | 94.12 340 | 95.65 123 | 98.98 301 | 90.81 272 | 99.72 58 | 98.57 237 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
cascas | | | 91.89 308 | 91.35 306 | 93.51 316 | 94.27 364 | 85.60 327 | 88.86 369 | 98.61 162 | 79.32 367 | 92.16 350 | 91.44 369 | 89.22 272 | 98.12 360 | 90.80 273 | 97.47 321 | 96.82 337 |
|
test20.03 | | | 96.58 159 | 96.61 147 | 96.48 207 | 98.49 161 | 91.72 230 | 95.68 194 | 97.69 257 | 96.81 95 | 98.27 102 | 97.92 160 | 94.18 173 | 98.71 324 | 90.78 274 | 99.66 73 | 99.00 177 |
|
test_yl | | | 94.40 252 | 94.00 259 | 95.59 246 | 96.95 308 | 89.52 260 | 94.75 252 | 95.55 320 | 96.18 124 | 96.79 209 | 96.14 293 | 81.09 321 | 99.18 273 | 90.75 275 | 97.77 301 | 98.07 282 |
|
DCV-MVSNet | | | 94.40 252 | 94.00 259 | 95.59 246 | 96.95 308 | 89.52 260 | 94.75 252 | 95.55 320 | 96.18 124 | 96.79 209 | 96.14 293 | 81.09 321 | 99.18 273 | 90.75 275 | 97.77 301 | 98.07 282 |
|
EPMVS | | | 89.26 333 | 88.55 337 | 91.39 346 | 92.36 380 | 79.11 368 | 95.65 198 | 79.86 383 | 88.60 306 | 93.12 334 | 96.53 272 | 70.73 369 | 98.10 361 | 90.75 275 | 89.32 375 | 96.98 327 |
|
旧先验2 | | | | | | | | 93.35 306 | | 77.95 373 | 95.77 265 | | | 98.67 330 | 90.74 278 | | |
|
USDC | | | 94.56 247 | 94.57 241 | 94.55 295 | 97.78 248 | 86.43 320 | 92.75 317 | 98.65 160 | 85.96 330 | 96.91 205 | 97.93 159 | 90.82 244 | 98.74 321 | 90.71 279 | 99.59 91 | 98.47 246 |
|
OpenMVS |  | 94.22 8 | 95.48 203 | 95.20 203 | 96.32 216 | 97.16 302 | 91.96 225 | 97.74 78 | 98.84 105 | 87.26 317 | 94.36 298 | 98.01 148 | 93.95 180 | 99.67 135 | 90.70 280 | 98.75 255 | 97.35 321 |
|
Patchmatch-test | | | 93.60 279 | 93.25 274 | 94.63 289 | 96.14 334 | 87.47 302 | 96.04 171 | 94.50 331 | 93.57 223 | 96.47 228 | 96.97 243 | 76.50 344 | 98.61 334 | 90.67 281 | 98.41 280 | 97.81 303 |
|
thisisatest0515 | | | 90.43 321 | 89.18 333 | 94.17 307 | 97.07 305 | 85.44 329 | 89.75 365 | 87.58 374 | 88.28 310 | 93.69 318 | 91.72 366 | 65.27 377 | 99.58 166 | 90.59 282 | 98.67 261 | 97.50 316 |
|
DP-MVS Recon | | | 95.55 199 | 95.13 206 | 96.80 188 | 98.51 157 | 93.99 170 | 94.60 256 | 98.69 148 | 90.20 288 | 95.78 263 | 96.21 289 | 92.73 206 | 98.98 301 | 90.58 283 | 98.86 244 | 97.42 318 |
|
testtj | | | 96.69 152 | 96.13 171 | 98.36 66 | 98.46 167 | 96.02 81 | 96.44 148 | 98.70 145 | 94.26 204 | 96.79 209 | 97.13 230 | 94.07 175 | 99.75 70 | 90.53 284 | 98.80 250 | 99.31 111 |
|
TinyColmap | | | 96.00 184 | 96.34 164 | 94.96 275 | 97.90 224 | 87.91 292 | 94.13 278 | 98.49 174 | 94.41 199 | 98.16 112 | 97.76 176 | 96.29 101 | 98.68 329 | 90.52 285 | 99.42 154 | 98.30 265 |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 286 | | |
|
HQP-MVS | | | 95.17 218 | 94.58 239 | 96.92 179 | 97.85 226 | 92.47 210 | 94.26 265 | 98.43 180 | 93.18 237 | 92.86 338 | 95.08 320 | 90.33 251 | 99.23 269 | 90.51 286 | 98.74 256 | 99.05 171 |
|
OMC-MVS | | | 96.48 163 | 96.00 178 | 97.91 105 | 98.30 177 | 96.01 82 | 94.86 246 | 98.60 163 | 91.88 267 | 97.18 180 | 97.21 227 | 96.11 103 | 99.04 293 | 90.49 288 | 99.34 176 | 98.69 227 |
|
ab-mvs | | | 96.59 157 | 96.59 148 | 96.60 198 | 98.64 137 | 92.21 216 | 98.35 34 | 97.67 258 | 94.45 198 | 96.99 198 | 98.79 61 | 94.96 149 | 99.49 194 | 90.39 289 | 99.07 221 | 98.08 280 |
|
HyFIR lowres test | | | 93.72 273 | 92.65 289 | 96.91 181 | 98.93 108 | 91.81 229 | 91.23 346 | 98.52 171 | 82.69 353 | 96.46 229 | 96.52 274 | 80.38 325 | 99.90 14 | 90.36 290 | 98.79 251 | 99.03 173 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 291 | 98.90 238 | 99.10 164 |
|
LCM-MVSNet-Re | | | 97.33 112 | 97.33 105 | 97.32 158 | 98.13 204 | 93.79 178 | 96.99 125 | 99.65 5 | 96.74 97 | 99.47 13 | 98.93 53 | 96.91 65 | 99.84 30 | 90.11 292 | 99.06 224 | 98.32 261 |
|
CDS-MVSNet | | | 94.88 229 | 94.12 256 | 97.14 167 | 97.64 264 | 93.57 187 | 93.96 286 | 97.06 285 | 90.05 290 | 96.30 238 | 96.55 270 | 86.10 295 | 99.47 200 | 90.10 293 | 99.31 187 | 98.40 250 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CDPH-MVS | | | 95.45 206 | 94.65 231 | 97.84 112 | 98.28 180 | 94.96 131 | 93.73 294 | 98.33 197 | 85.03 343 | 95.44 272 | 96.60 268 | 95.31 136 | 99.44 210 | 90.01 294 | 99.13 211 | 99.11 160 |
|
baseline1 | | | 93.14 289 | 92.64 290 | 94.62 290 | 97.34 290 | 87.20 309 | 96.67 143 | 93.02 345 | 94.71 190 | 96.51 227 | 95.83 306 | 81.64 316 | 98.60 336 | 90.00 295 | 88.06 376 | 98.07 282 |
|
TAPA-MVS | | 93.32 12 | 94.93 226 | 94.23 251 | 97.04 174 | 98.18 194 | 94.51 147 | 95.22 226 | 98.73 135 | 81.22 360 | 96.25 241 | 95.95 303 | 93.80 184 | 98.98 301 | 89.89 296 | 98.87 242 | 97.62 309 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PMMVS | | | 92.39 298 | 91.08 310 | 96.30 218 | 93.12 375 | 92.81 204 | 90.58 355 | 95.96 310 | 79.17 368 | 91.85 353 | 92.27 360 | 90.29 255 | 98.66 331 | 89.85 297 | 96.68 338 | 97.43 317 |
|
PVSNet_BlendedMVS | | | 95.02 225 | 94.93 216 | 95.27 262 | 97.79 244 | 87.40 305 | 94.14 277 | 98.68 150 | 88.94 302 | 94.51 294 | 98.01 148 | 93.04 198 | 99.30 252 | 89.77 298 | 99.49 129 | 99.11 160 |
|
PVSNet_Blended | | | 93.96 268 | 93.65 267 | 94.91 276 | 97.79 244 | 87.40 305 | 91.43 339 | 98.68 150 | 84.50 348 | 94.51 294 | 94.48 335 | 93.04 198 | 99.30 252 | 89.77 298 | 98.61 269 | 98.02 292 |
|
MSDG | | | 95.33 210 | 95.13 206 | 95.94 234 | 97.40 283 | 91.85 227 | 91.02 351 | 98.37 191 | 95.30 168 | 96.31 237 | 95.99 298 | 94.51 164 | 98.38 350 | 89.59 300 | 97.65 313 | 97.60 311 |
|
PMVS |  | 89.60 17 | 96.71 151 | 96.97 128 | 95.95 232 | 99.51 29 | 97.81 19 | 97.42 103 | 97.49 270 | 97.93 47 | 95.95 254 | 98.58 78 | 96.88 68 | 96.91 371 | 89.59 300 | 99.36 168 | 93.12 372 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_post1 | | | | | | | | 94.98 241 | | | | 10.37 386 | 76.21 347 | 99.04 293 | 89.47 302 | | |
|
SCA | | | 93.38 284 | 93.52 269 | 92.96 330 | 96.24 325 | 81.40 362 | 93.24 309 | 94.00 335 | 91.58 272 | 94.57 291 | 96.97 243 | 87.94 281 | 99.42 213 | 89.47 302 | 97.66 312 | 98.06 286 |
|
tpmvs | | | 90.79 320 | 90.87 314 | 90.57 351 | 92.75 379 | 76.30 376 | 95.79 188 | 93.64 340 | 91.04 280 | 91.91 352 | 96.26 285 | 77.19 342 | 98.86 312 | 89.38 304 | 89.85 374 | 96.56 345 |
|
Anonymous20231206 | | | 95.27 213 | 95.06 211 | 95.88 236 | 98.72 127 | 89.37 263 | 95.70 191 | 97.85 246 | 88.00 313 | 96.98 200 | 97.62 190 | 91.95 228 | 99.34 242 | 89.21 305 | 99.53 111 | 98.94 186 |
|
CHOSEN 1792x2688 | | | 94.10 264 | 93.41 271 | 96.18 223 | 99.16 76 | 90.04 253 | 92.15 329 | 98.68 150 | 79.90 365 | 96.22 242 | 97.83 170 | 87.92 285 | 99.42 213 | 89.18 306 | 99.65 74 | 99.08 165 |
|
114514_t | | | 93.96 268 | 93.22 275 | 96.19 222 | 99.06 95 | 90.97 240 | 95.99 175 | 98.94 79 | 73.88 378 | 93.43 329 | 96.93 246 | 92.38 219 | 99.37 235 | 89.09 307 | 99.28 192 | 98.25 271 |
|
pmmvs3 | | | 90.00 325 | 88.90 335 | 93.32 318 | 94.20 367 | 85.34 330 | 91.25 345 | 92.56 352 | 78.59 369 | 93.82 311 | 95.17 319 | 67.36 376 | 98.69 326 | 89.08 308 | 98.03 294 | 95.92 351 |
|
testdata | | | | | 95.70 244 | 98.16 198 | 90.58 247 | | 97.72 255 | 80.38 363 | 95.62 268 | 97.02 240 | 92.06 226 | 98.98 301 | 89.06 309 | 98.52 274 | 97.54 313 |
|
MDTV_nov1_ep13 | | | | 91.28 307 | | 94.31 362 | 73.51 382 | 94.80 249 | 93.16 344 | 86.75 326 | 93.45 328 | 97.40 208 | 76.37 345 | 98.55 340 | 88.85 310 | 96.43 341 | |
|
PMMVS2 | | | 93.66 276 | 94.07 257 | 92.45 339 | 97.57 268 | 80.67 365 | 86.46 372 | 96.00 308 | 93.99 214 | 97.10 186 | 97.38 214 | 89.90 259 | 97.82 365 | 88.76 311 | 99.47 135 | 98.86 206 |
|
QAPM | | | 95.88 188 | 95.57 197 | 96.80 188 | 97.90 224 | 91.84 228 | 98.18 52 | 98.73 135 | 88.41 307 | 96.42 230 | 98.13 129 | 94.73 152 | 99.75 70 | 88.72 312 | 98.94 234 | 98.81 210 |
|
CHOSEN 280x420 | | | 89.98 326 | 89.19 332 | 92.37 340 | 95.60 347 | 81.13 364 | 86.22 373 | 97.09 283 | 81.44 359 | 87.44 374 | 93.15 344 | 73.99 353 | 99.47 200 | 88.69 313 | 99.07 221 | 96.52 346 |
|
testgi | | | 96.07 179 | 96.50 159 | 94.80 284 | 99.26 55 | 87.69 299 | 95.96 178 | 98.58 167 | 95.08 177 | 98.02 132 | 96.25 286 | 97.92 16 | 97.60 368 | 88.68 314 | 98.74 256 | 99.11 160 |
|
CostFormer | | | 89.75 330 | 89.25 328 | 91.26 347 | 94.69 359 | 78.00 371 | 95.32 218 | 91.98 355 | 81.50 358 | 90.55 359 | 96.96 245 | 71.06 367 | 98.89 308 | 88.59 315 | 92.63 368 | 96.87 332 |
|
UnsupCasMVSNet_bld | | | 94.72 238 | 94.26 250 | 96.08 226 | 98.62 143 | 90.54 250 | 93.38 305 | 98.05 238 | 90.30 287 | 97.02 196 | 96.80 257 | 89.54 265 | 99.16 278 | 88.44 316 | 96.18 345 | 98.56 238 |
|
TAMVS | | | 95.49 201 | 94.94 214 | 97.16 165 | 98.31 176 | 93.41 191 | 95.07 234 | 96.82 293 | 91.09 279 | 97.51 162 | 97.82 173 | 89.96 258 | 99.42 213 | 88.42 317 | 99.44 143 | 98.64 230 |
|
Vis-MVSNet (Re-imp) | | | 95.11 219 | 94.85 221 | 95.87 237 | 99.12 88 | 89.17 266 | 97.54 97 | 94.92 327 | 96.50 108 | 96.58 222 | 97.27 223 | 83.64 311 | 99.48 197 | 88.42 317 | 99.67 71 | 98.97 182 |
|
EPNet_dtu | | | 91.39 314 | 90.75 317 | 93.31 319 | 90.48 384 | 82.61 354 | 94.80 249 | 92.88 347 | 93.39 228 | 81.74 381 | 94.90 327 | 81.36 319 | 99.11 285 | 88.28 319 | 98.87 242 | 98.21 274 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
JIA-IIPM | | | 91.79 309 | 90.69 318 | 95.11 267 | 93.80 370 | 90.98 239 | 94.16 274 | 91.78 357 | 96.38 112 | 90.30 362 | 99.30 22 | 72.02 364 | 98.90 307 | 88.28 319 | 90.17 373 | 95.45 360 |
|
新几何1 | | | | | 97.25 163 | 98.29 178 | 94.70 142 | | 97.73 254 | 77.98 371 | 94.83 286 | 96.67 265 | 92.08 225 | 99.45 207 | 88.17 321 | 98.65 265 | 97.61 310 |
|
testdata2 | | | | | | | | | | | | | | 99.46 203 | 87.84 322 | | |
|
FE-MVS | | | 92.95 291 | 92.22 295 | 95.11 267 | 97.21 298 | 88.33 282 | 98.54 22 | 93.66 339 | 89.91 292 | 96.21 243 | 98.14 127 | 70.33 370 | 99.50 191 | 87.79 323 | 98.24 286 | 97.51 314 |
|
无先验 | | | | | | | | 93.20 310 | 97.91 242 | 80.78 361 | | | | 99.40 224 | 87.71 324 | | 97.94 295 |
|
1121 | | | 94.26 256 | 93.26 273 | 97.27 160 | 98.26 184 | 94.73 137 | 95.86 184 | 97.71 256 | 77.96 372 | 94.53 293 | 96.71 262 | 91.93 230 | 99.40 224 | 87.71 324 | 98.64 266 | 97.69 307 |
|
WTY-MVS | | | 93.55 280 | 93.00 279 | 95.19 265 | 97.81 234 | 87.86 293 | 93.89 288 | 96.00 308 | 89.02 300 | 94.07 305 | 95.44 317 | 86.27 294 | 99.33 245 | 87.69 326 | 96.82 333 | 98.39 252 |
|
原ACMM1 | | | | | 96.58 200 | 98.16 198 | 92.12 220 | | 98.15 223 | 85.90 332 | 93.49 325 | 96.43 277 | 92.47 217 | 99.38 232 | 87.66 327 | 98.62 268 | 98.23 272 |
|
BH-untuned | | | 94.69 239 | 94.75 228 | 94.52 296 | 97.95 221 | 87.53 301 | 94.07 280 | 97.01 286 | 93.99 214 | 97.10 186 | 95.65 310 | 92.65 209 | 98.95 306 | 87.60 328 | 96.74 336 | 97.09 323 |
|
PAPM_NR | | | 94.61 245 | 94.17 255 | 95.96 230 | 98.36 174 | 91.23 235 | 95.93 182 | 97.95 240 | 92.98 246 | 93.42 330 | 94.43 336 | 90.53 247 | 98.38 350 | 87.60 328 | 96.29 344 | 98.27 269 |
|
DPM-MVS | | | 93.68 275 | 92.77 287 | 96.42 211 | 97.91 222 | 92.54 208 | 91.17 347 | 97.47 272 | 84.99 344 | 93.08 335 | 94.74 328 | 89.90 259 | 99.00 297 | 87.54 330 | 98.09 292 | 97.72 305 |
|
MG-MVS | | | 94.08 266 | 94.00 259 | 94.32 302 | 97.09 304 | 85.89 325 | 93.19 311 | 95.96 310 | 92.52 255 | 94.93 285 | 97.51 199 | 89.54 265 | 98.77 318 | 87.52 331 | 97.71 307 | 98.31 263 |
|
F-COLMAP | | | 95.30 212 | 94.38 248 | 98.05 98 | 98.64 137 | 96.04 78 | 95.61 201 | 98.66 155 | 89.00 301 | 93.22 333 | 96.40 280 | 92.90 202 | 99.35 240 | 87.45 332 | 97.53 317 | 98.77 217 |
|
PatchMatch-RL | | | 94.61 245 | 93.81 265 | 97.02 176 | 98.19 191 | 95.72 89 | 93.66 295 | 97.23 276 | 88.17 311 | 94.94 284 | 95.62 312 | 91.43 236 | 98.57 337 | 87.36 333 | 97.68 310 | 96.76 340 |
|
IB-MVS | | 85.98 20 | 88.63 337 | 86.95 346 | 93.68 313 | 95.12 354 | 84.82 341 | 90.85 352 | 90.17 370 | 87.55 316 | 88.48 371 | 91.34 370 | 58.01 382 | 99.59 164 | 87.24 334 | 93.80 365 | 96.63 344 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
dp | | | 88.08 341 | 88.05 339 | 88.16 361 | 92.85 377 | 68.81 386 | 94.17 273 | 92.88 347 | 85.47 336 | 91.38 355 | 96.14 293 | 68.87 373 | 98.81 315 | 86.88 335 | 83.80 380 | 96.87 332 |
|
1314 | | | 92.38 299 | 92.30 294 | 92.64 335 | 95.42 352 | 85.15 335 | 95.86 184 | 96.97 288 | 85.40 339 | 90.62 357 | 93.06 350 | 91.12 240 | 97.80 366 | 86.74 336 | 95.49 355 | 94.97 363 |
|
CNLPA | | | 95.04 222 | 94.47 244 | 96.75 191 | 97.81 234 | 95.25 119 | 94.12 279 | 97.89 244 | 94.41 199 | 94.57 291 | 95.69 308 | 90.30 254 | 98.35 353 | 86.72 337 | 98.76 254 | 96.64 342 |
|
ETH3 D test6400 | | | 94.77 233 | 93.87 264 | 97.47 144 | 98.12 205 | 93.73 180 | 94.56 258 | 98.70 145 | 85.45 338 | 94.70 289 | 95.93 305 | 91.77 234 | 99.63 148 | 86.45 338 | 99.14 208 | 99.05 171 |
|
baseline2 | | | 89.65 331 | 88.44 338 | 93.25 321 | 95.62 346 | 82.71 353 | 93.82 290 | 85.94 378 | 88.89 303 | 87.35 375 | 92.54 358 | 71.23 366 | 99.33 245 | 86.01 339 | 94.60 362 | 97.72 305 |
|
BH-RMVSNet | | | 94.56 247 | 94.44 247 | 94.91 276 | 97.57 268 | 87.44 304 | 93.78 293 | 96.26 303 | 93.69 222 | 96.41 231 | 96.50 275 | 92.10 224 | 99.00 297 | 85.96 340 | 97.71 307 | 98.31 263 |
|
E-PMN | | | 89.52 332 | 89.78 326 | 88.73 357 | 93.14 374 | 77.61 372 | 83.26 376 | 92.02 354 | 94.82 187 | 93.71 316 | 93.11 345 | 75.31 350 | 96.81 372 | 85.81 341 | 96.81 334 | 91.77 375 |
|
API-MVS | | | 95.09 221 | 95.01 213 | 95.31 261 | 96.61 316 | 94.02 168 | 96.83 130 | 97.18 279 | 95.60 156 | 95.79 261 | 94.33 337 | 94.54 163 | 98.37 352 | 85.70 342 | 98.52 274 | 93.52 369 |
|
AdaColmap |  | | 95.11 219 | 94.62 235 | 96.58 200 | 97.33 292 | 94.45 150 | 94.92 243 | 98.08 232 | 93.15 241 | 93.98 310 | 95.53 315 | 94.34 168 | 99.10 287 | 85.69 343 | 98.61 269 | 96.20 350 |
|
ADS-MVSNet2 | | | 91.47 313 | 90.51 321 | 94.36 301 | 95.51 348 | 85.63 326 | 95.05 237 | 95.70 314 | 83.46 351 | 92.69 341 | 96.84 252 | 79.15 330 | 99.41 222 | 85.66 344 | 90.52 371 | 98.04 290 |
|
ADS-MVSNet | | | 90.95 319 | 90.26 323 | 93.04 326 | 95.51 348 | 82.37 356 | 95.05 237 | 93.41 342 | 83.46 351 | 92.69 341 | 96.84 252 | 79.15 330 | 98.70 325 | 85.66 344 | 90.52 371 | 98.04 290 |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 388 | 94.89 244 | | 80.59 362 | 94.02 307 | | 78.66 332 | | 85.50 346 | | 97.82 301 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 278 | 93.05 276 | 95.42 258 | 97.31 294 | 91.21 236 | 95.08 233 | 96.68 300 | 81.56 357 | 96.88 207 | 96.41 278 | 90.44 250 | 99.25 264 | 85.39 347 | 97.67 311 | 95.80 354 |
|
KD-MVS_2432*1600 | | | 88.93 335 | 87.74 340 | 92.49 336 | 88.04 385 | 81.99 358 | 89.63 366 | 95.62 316 | 91.35 274 | 95.06 279 | 93.11 345 | 56.58 384 | 98.63 332 | 85.19 348 | 95.07 356 | 96.85 334 |
|
miper_refine_blended | | | 88.93 335 | 87.74 340 | 92.49 336 | 88.04 385 | 81.99 358 | 89.63 366 | 95.62 316 | 91.35 274 | 95.06 279 | 93.11 345 | 56.58 384 | 98.63 332 | 85.19 348 | 95.07 356 | 96.85 334 |
|
PVSNet | | 86.72 19 | 91.10 316 | 90.97 313 | 91.49 345 | 97.56 270 | 78.04 370 | 87.17 371 | 94.60 330 | 84.65 346 | 92.34 348 | 92.20 361 | 87.37 289 | 98.47 344 | 85.17 350 | 97.69 309 | 97.96 294 |
|
PLC |  | 91.02 16 | 94.05 267 | 92.90 280 | 97.51 136 | 98.00 216 | 95.12 128 | 94.25 268 | 98.25 204 | 86.17 328 | 91.48 354 | 95.25 318 | 91.01 241 | 99.19 272 | 85.02 351 | 96.69 337 | 98.22 273 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
gm-plane-assit | | | | | | 91.79 381 | 71.40 385 | | | 81.67 356 | | 90.11 377 | | 98.99 299 | 84.86 352 | | |
|
CMPMVS |  | 73.10 23 | 92.74 294 | 91.39 305 | 96.77 190 | 93.57 373 | 94.67 143 | 94.21 272 | 97.67 258 | 80.36 364 | 93.61 321 | 96.60 268 | 82.85 314 | 97.35 369 | 84.86 352 | 98.78 252 | 98.29 268 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new_pmnet | | | 92.34 300 | 91.69 303 | 94.32 302 | 96.23 327 | 89.16 267 | 92.27 328 | 92.88 347 | 84.39 350 | 95.29 275 | 96.35 283 | 85.66 298 | 96.74 375 | 84.53 354 | 97.56 315 | 97.05 325 |
|
tpm cat1 | | | 88.01 342 | 87.33 343 | 90.05 354 | 94.48 361 | 76.28 377 | 94.47 261 | 94.35 333 | 73.84 379 | 89.26 367 | 95.61 313 | 73.64 357 | 98.30 355 | 84.13 355 | 86.20 378 | 95.57 359 |
|
MAR-MVS | | | 94.21 260 | 93.03 278 | 97.76 116 | 96.94 310 | 97.44 37 | 96.97 126 | 97.15 280 | 87.89 315 | 92.00 351 | 92.73 356 | 92.14 222 | 99.12 282 | 83.92 356 | 97.51 318 | 96.73 341 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DSMNet-mixed | | | 92.19 303 | 91.83 300 | 93.25 321 | 96.18 330 | 83.68 351 | 96.27 157 | 93.68 338 | 76.97 375 | 92.54 347 | 99.18 31 | 89.20 273 | 98.55 340 | 83.88 357 | 98.60 271 | 97.51 314 |
|
EMVS | | | 89.06 334 | 89.22 329 | 88.61 358 | 93.00 376 | 77.34 373 | 82.91 377 | 90.92 362 | 94.64 192 | 92.63 345 | 91.81 365 | 76.30 346 | 97.02 370 | 83.83 358 | 96.90 331 | 91.48 376 |
|
HY-MVS | | 91.43 15 | 92.58 296 | 91.81 301 | 94.90 278 | 96.49 319 | 88.87 271 | 97.31 106 | 94.62 329 | 85.92 331 | 90.50 360 | 96.84 252 | 85.05 301 | 99.40 224 | 83.77 359 | 95.78 351 | 96.43 347 |
|
test0.0.03 1 | | | 90.11 323 | 89.21 330 | 92.83 332 | 93.89 369 | 86.87 315 | 91.74 336 | 88.74 373 | 92.02 263 | 94.71 288 | 91.14 372 | 73.92 355 | 94.48 379 | 83.75 360 | 92.94 366 | 97.16 322 |
|
tpm2 | | | 88.47 338 | 87.69 342 | 90.79 349 | 94.98 356 | 77.34 373 | 95.09 231 | 91.83 356 | 77.51 374 | 89.40 366 | 96.41 278 | 67.83 375 | 98.73 322 | 83.58 361 | 92.60 369 | 96.29 349 |
|
MVS-HIRNet | | | 88.40 339 | 90.20 324 | 82.99 363 | 97.01 306 | 60.04 387 | 93.11 312 | 85.61 379 | 84.45 349 | 88.72 370 | 99.09 41 | 84.72 305 | 98.23 357 | 82.52 362 | 96.59 340 | 90.69 378 |
|
BH-w/o | | | 92.14 304 | 91.94 298 | 92.73 334 | 97.13 303 | 85.30 331 | 92.46 324 | 95.64 315 | 89.33 297 | 94.21 300 | 92.74 355 | 89.60 263 | 98.24 356 | 81.68 363 | 94.66 360 | 94.66 364 |
|
MIMVSNet | | | 93.42 282 | 92.86 281 | 95.10 269 | 98.17 196 | 88.19 284 | 98.13 54 | 93.69 336 | 92.07 262 | 95.04 282 | 98.21 122 | 80.95 323 | 99.03 296 | 81.42 364 | 98.06 293 | 98.07 282 |
|
TR-MVS | | | 92.54 297 | 92.20 296 | 93.57 315 | 96.49 319 | 86.66 316 | 93.51 300 | 94.73 328 | 89.96 291 | 94.95 283 | 93.87 341 | 90.24 256 | 98.61 334 | 81.18 365 | 94.88 358 | 95.45 360 |
|
thres600view7 | | | 92.03 306 | 91.43 304 | 93.82 309 | 98.19 191 | 84.61 342 | 96.27 157 | 90.39 366 | 96.81 95 | 96.37 233 | 93.11 345 | 73.44 361 | 99.49 194 | 80.32 366 | 97.95 296 | 97.36 319 |
|
PAPR | | | 92.22 302 | 91.27 308 | 95.07 270 | 95.73 345 | 88.81 273 | 91.97 333 | 97.87 245 | 85.80 333 | 90.91 356 | 92.73 356 | 91.16 239 | 98.33 354 | 79.48 367 | 95.76 352 | 98.08 280 |
|
MVS | | | 90.02 324 | 89.20 331 | 92.47 338 | 94.71 358 | 86.90 314 | 95.86 184 | 96.74 297 | 64.72 380 | 90.62 357 | 92.77 354 | 92.54 214 | 98.39 349 | 79.30 368 | 95.56 354 | 92.12 373 |
|
gg-mvs-nofinetune | | | 88.28 340 | 86.96 345 | 92.23 342 | 92.84 378 | 84.44 344 | 98.19 51 | 74.60 385 | 99.08 10 | 87.01 376 | 99.47 10 | 56.93 383 | 98.23 357 | 78.91 369 | 95.61 353 | 94.01 367 |
|
thres100view900 | | | 91.76 310 | 91.26 309 | 93.26 320 | 98.21 189 | 84.50 343 | 96.39 150 | 90.39 366 | 96.87 93 | 96.33 234 | 93.08 349 | 73.44 361 | 99.42 213 | 78.85 370 | 97.74 304 | 95.85 352 |
|
tfpn200view9 | | | 91.55 312 | 91.00 311 | 93.21 323 | 98.02 210 | 84.35 345 | 95.70 191 | 90.79 363 | 96.26 118 | 95.90 259 | 92.13 362 | 73.62 358 | 99.42 213 | 78.85 370 | 97.74 304 | 95.85 352 |
|
thres400 | | | 91.68 311 | 91.00 311 | 93.71 312 | 98.02 210 | 84.35 345 | 95.70 191 | 90.79 363 | 96.26 118 | 95.90 259 | 92.13 362 | 73.62 358 | 99.42 213 | 78.85 370 | 97.74 304 | 97.36 319 |
|
thres200 | | | 91.00 318 | 90.42 322 | 92.77 333 | 97.47 279 | 83.98 349 | 94.01 282 | 91.18 361 | 95.12 176 | 95.44 272 | 91.21 371 | 73.93 354 | 99.31 249 | 77.76 373 | 97.63 314 | 95.01 362 |
|
wuyk23d | | | 93.25 287 | 95.20 203 | 87.40 362 | 96.07 336 | 95.38 110 | 97.04 122 | 94.97 326 | 95.33 166 | 99.70 5 | 98.11 133 | 98.14 13 | 91.94 380 | 77.76 373 | 99.68 69 | 74.89 380 |
|
test_method | | | 66.88 349 | 66.13 352 | 69.11 365 | 62.68 388 | 25.73 390 | 49.76 379 | 96.04 307 | 14.32 383 | 64.27 384 | 91.69 367 | 73.45 360 | 88.05 382 | 76.06 375 | 66.94 382 | 93.54 368 |
|
PCF-MVS | | 89.43 18 | 92.12 305 | 90.64 319 | 96.57 202 | 97.80 238 | 93.48 190 | 89.88 364 | 98.45 177 | 74.46 377 | 96.04 251 | 95.68 309 | 90.71 246 | 99.31 249 | 73.73 376 | 99.01 228 | 96.91 331 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet_0 | | 81.89 21 | 84.49 347 | 83.21 350 | 88.34 359 | 95.76 344 | 74.97 381 | 83.49 375 | 92.70 351 | 78.47 370 | 87.94 372 | 86.90 379 | 83.38 313 | 96.63 376 | 73.44 377 | 66.86 383 | 93.40 370 |
|
GG-mvs-BLEND | | | | | 90.60 350 | 91.00 382 | 84.21 347 | 98.23 45 | 72.63 388 | | 82.76 379 | 84.11 380 | 56.14 386 | 96.79 373 | 72.20 378 | 92.09 370 | 90.78 377 |
|
FPMVS | | | 89.92 328 | 88.63 336 | 93.82 309 | 98.37 173 | 96.94 49 | 91.58 337 | 93.34 343 | 88.00 313 | 90.32 361 | 97.10 234 | 70.87 368 | 91.13 381 | 71.91 379 | 96.16 347 | 93.39 371 |
|
MVE |  | 73.61 22 | 86.48 346 | 85.92 348 | 88.18 360 | 96.23 327 | 85.28 333 | 81.78 378 | 75.79 384 | 86.01 329 | 82.53 380 | 91.88 364 | 92.74 205 | 87.47 383 | 71.42 380 | 94.86 359 | 91.78 374 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 57.23 350 | 62.50 353 | 41.44 366 | 34.77 389 | 49.21 389 | 83.93 374 | 60.22 390 | 15.31 382 | 71.11 383 | 79.37 381 | 70.09 371 | 44.86 385 | 64.76 381 | 82.93 381 | 30.25 381 |
|
PAPM | | | 87.64 344 | 85.84 349 | 93.04 326 | 96.54 317 | 84.99 338 | 88.42 370 | 95.57 319 | 79.52 366 | 83.82 378 | 93.05 351 | 80.57 324 | 98.41 347 | 62.29 382 | 92.79 367 | 95.71 355 |
|
DeepMVS_CX |  | | | | 77.17 364 | 90.94 383 | 85.28 333 | | 74.08 387 | 52.51 381 | 80.87 382 | 88.03 378 | 75.25 351 | 70.63 384 | 59.23 383 | 84.94 379 | 75.62 379 |
|
test123 | | | 12.59 352 | 15.49 355 | 3.87 367 | 6.07 390 | 2.55 391 | 90.75 353 | 2.59 392 | 2.52 385 | 5.20 387 | 13.02 384 | 4.96 390 | 1.85 387 | 5.20 384 | 9.09 384 | 7.23 382 |
|
testmvs | | | 12.33 353 | 15.23 356 | 3.64 368 | 5.77 391 | 2.23 392 | 88.99 368 | 3.62 391 | 2.30 386 | 5.29 386 | 13.09 383 | 4.52 391 | 1.95 386 | 5.16 385 | 8.32 385 | 6.75 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 24.22 351 | 32.30 354 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 98.10 228 | 0.00 387 | 0.00 388 | 95.06 322 | 97.54 31 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 7.98 354 | 10.65 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 95.82 112 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 7.91 355 | 10.55 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 94.94 324 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.59 17 | 98.20 6 | 99.03 7 | 99.25 17 | 98.96 18 | 98.87 45 | | | | | | |
|
test_one_0601 | | | | | | 99.05 99 | 95.50 105 | | 98.87 93 | 97.21 86 | 98.03 130 | 98.30 105 | 96.93 62 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.22 64 | 95.35 113 | | 98.83 112 | 96.04 131 | 99.08 34 | 98.13 129 | 97.87 20 | 99.33 245 | | | |
|
save fliter | | | | | | 98.48 163 | 94.71 139 | 94.53 259 | 98.41 185 | 95.02 181 | | | | | | | |
|
test0726 | | | | | | 99.24 59 | 95.51 102 | 96.89 128 | 98.89 85 | 95.92 139 | 98.64 59 | 98.31 101 | 97.06 52 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 286 |
|
test_part2 | | | | | | 99.03 101 | 96.07 77 | | | | 98.08 124 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 335 | | | | 98.06 286 |
|
sam_mvs | | | | | | | | | | | | | 77.38 339 | | | | |
|
MTGPA |  | | | | | | | | 98.73 135 | | | | | | | | |
|
test_post | | | | | | | | | | | | 10.87 385 | 76.83 343 | 99.07 290 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 252 | 77.36 340 | 99.42 213 | | | |
|
MTMP | | | | | | | | 96.55 144 | 74.60 385 | | | | | | | | |
|
TEST9 | | | | | | 97.84 230 | 95.23 120 | 93.62 296 | 98.39 188 | 86.81 324 | 93.78 312 | 95.99 298 | 94.68 156 | 99.52 186 | | | |
|
test_8 | | | | | | 97.81 234 | 95.07 129 | 93.54 299 | 98.38 190 | 87.04 321 | 93.71 316 | 95.96 302 | 94.58 161 | 99.52 186 | | | |
|
agg_prior | | | | | | 97.80 238 | 94.96 131 | | 98.36 192 | | 93.49 325 | | | 99.53 182 | | | |
|
test_prior4 | | | | | | | 95.38 110 | 93.61 298 | | | | | | | | | |
|
test_prior | | | | | 97.46 147 | 97.79 244 | 94.26 161 | | 98.42 183 | | | | | 99.34 242 | | | 98.79 212 |
|
新几何2 | | | | | | | | 93.43 301 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 238 | 93.87 173 | | 97.75 253 | | | 97.04 239 | 93.57 189 | | | 98.68 260 | 98.72 224 |
|
原ACMM2 | | | | | | | | 92.82 315 | | | | | | | | | |
|
test222 | | | | | | 98.17 196 | 93.24 195 | 92.74 319 | 97.61 268 | 75.17 376 | 94.65 290 | 96.69 264 | 90.96 243 | | | 98.66 263 | 97.66 308 |
|
segment_acmp | | | | | | | | | | | | | 95.34 134 | | | | |
|
testdata1 | | | | | | | | 92.77 316 | | 93.78 219 | | | | | | | |
|
test12 | | | | | 97.46 147 | 97.61 266 | 94.07 166 | | 97.78 252 | | 93.57 323 | | 93.31 193 | 99.42 213 | | 98.78 252 | 98.89 199 |
|
plane_prior7 | | | | | | 98.70 132 | 94.67 143 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 172 | 94.37 153 | | | | | | 91.91 232 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.77 258 | | | | | |
|
plane_prior3 | | | | | | | 94.51 147 | | | 95.29 169 | 96.16 246 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 146 | | 96.36 114 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 161 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 156 | 95.42 208 | | 94.31 203 | | | | | | 98.93 236 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 217 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 232 | | | | | | | | |
|
door | | | | | | | | | 97.81 251 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 210 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 226 | | 94.26 265 | | 93.18 237 | 92.86 338 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 226 | | 94.26 265 | | 93.18 237 | 92.86 338 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 337 | | | 99.23 269 | | | 99.06 169 |
|
HQP3-MVS | | | | | | | | | 98.43 180 | | | | | | | 98.74 256 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 251 | | | | |
|
NP-MVS | | | | | | 98.14 201 | 93.72 181 | | | | | 95.08 320 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 116 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 105 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 164 | | | | |
|