This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
v7n98.73 1198.99 597.95 10299.64 1494.20 16398.67 1599.14 3199.08 1099.42 1599.23 2596.53 8799.91 1399.27 299.93 1099.73 17
FMVS297.38 10797.56 9096.84 18598.63 14192.81 20497.60 8799.61 790.87 28198.76 5599.66 394.03 17797.90 36399.24 399.68 6999.81 8
mvs_tets98.90 598.94 698.75 3599.69 1096.48 6498.54 2299.22 1896.23 12099.71 499.48 998.77 699.93 398.89 499.95 599.84 5
PS-MVSNAJss98.53 2198.63 1998.21 8399.68 1194.82 13598.10 5599.21 1996.91 9299.75 299.45 1295.82 11299.92 598.80 599.96 499.89 1
jajsoiax98.77 998.79 1298.74 3799.66 1396.48 6498.45 3099.12 3395.83 14799.67 699.37 1598.25 1099.92 598.77 699.94 899.82 6
v1097.55 9497.97 4696.31 21798.60 14689.64 25897.44 10099.02 5796.60 10198.72 5899.16 3493.48 19099.72 9098.76 799.92 1499.58 32
MVSFormer96.14 17796.36 16395.49 25497.68 25987.81 29698.67 1599.02 5796.50 10894.48 29696.15 29186.90 29199.92 598.73 899.13 21198.74 221
test_djsdf98.73 1198.74 1698.69 4299.63 1596.30 7098.67 1599.02 5796.50 10899.32 2199.44 1397.43 3399.92 598.73 899.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4799.77 596.35 6799.17 699.05 4898.05 4399.61 1199.52 793.72 18699.88 2098.72 1099.88 2699.65 25
RRT_MVS97.95 5497.79 6198.43 6099.67 1295.56 9898.86 1096.73 29997.99 4599.15 3199.35 1989.84 26199.90 1498.64 1199.90 2399.82 6
v897.60 9198.06 4096.23 21998.71 13089.44 26297.43 10298.82 12097.29 8498.74 5699.10 3993.86 18199.68 13098.61 1299.94 899.56 40
anonymousdsp98.72 1498.63 1998.99 1399.62 1697.29 4198.65 1899.19 2395.62 15599.35 2099.37 1597.38 3599.90 1498.59 1399.91 1799.77 10
LTVRE_ROB96.88 199.18 299.34 298.72 4099.71 996.99 4899.69 299.57 899.02 1599.62 1099.36 1798.53 799.52 18698.58 1499.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsmamba98.16 3598.06 4098.44 5899.53 2795.87 8498.70 1398.94 7997.71 5998.85 4699.10 3991.35 23899.83 3398.47 1599.90 2399.64 27
v124096.74 14697.02 12795.91 23598.18 19488.52 27795.39 21298.88 9193.15 24198.46 7798.40 9592.80 20499.71 10698.45 1699.49 12999.49 58
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 16098.06 5898.60 16396.60 10198.79 5198.95 5189.62 26299.84 3098.43 1799.91 1799.62 28
v119296.83 14097.06 12496.15 22498.28 18089.29 26495.36 21498.77 12793.73 22098.11 11898.34 9893.02 20199.67 13598.35 1899.58 9399.50 50
v192192096.72 14996.96 13095.99 22898.21 18988.79 27495.42 20898.79 12293.22 23598.19 11098.26 11592.68 20799.70 11598.34 1999.55 10599.49 58
Anonymous2023121198.55 1998.76 1397.94 10398.79 11994.37 15398.84 1199.15 2999.37 399.67 699.43 1495.61 12499.72 9098.12 2099.86 2899.73 17
v14419296.69 15296.90 13596.03 22798.25 18588.92 26995.49 20498.77 12793.05 24398.09 12298.29 10992.51 21699.70 11598.11 2199.56 9999.47 67
Anonymous2024052197.07 12397.51 9495.76 24099.35 4888.18 28597.78 7298.40 18797.11 8798.34 9199.04 4589.58 26499.79 4598.09 2299.93 1099.30 112
v114496.84 13797.08 12296.13 22598.42 17089.28 26595.41 21098.67 15394.21 20697.97 13798.31 10193.06 19799.65 14398.06 2399.62 7999.45 74
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 21298.28 4196.97 28898.30 3499.45 1499.35 1988.43 27799.89 1898.01 2499.76 4799.54 43
WR-MVS_H98.65 1598.62 2198.75 3599.51 2996.61 6098.55 2199.17 2499.05 1399.17 3098.79 6195.47 13099.89 1897.95 2599.91 1799.75 15
UA-Net98.88 798.76 1399.22 299.11 8997.89 1699.47 399.32 1499.08 1097.87 14999.67 296.47 9299.92 597.88 2699.98 299.85 3
FC-MVSNet-test98.16 3598.37 2997.56 13199.49 3393.10 19898.35 3499.21 1998.43 2998.89 4498.83 6094.30 16999.81 3897.87 2799.91 1799.77 10
Vis-MVSNetpermissive98.27 3198.34 3098.07 9399.33 5095.21 12598.04 5999.46 1097.32 8297.82 15499.11 3896.75 7699.86 2497.84 2899.36 16899.15 147
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 16596.28 16696.95 17799.41 4291.53 23297.65 8490.31 36898.89 1998.93 4199.36 1784.57 30699.92 597.81 2999.56 9999.39 91
v2v48296.78 14497.06 12495.95 23298.57 15088.77 27595.36 21498.26 20395.18 17397.85 15198.23 11892.58 21199.63 14897.80 3099.69 6599.45 74
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2799.13 3299.22 899.22 2898.96 5097.35 3699.92 597.79 3199.93 1099.79 9
nrg03098.54 2098.62 2198.32 6999.22 6495.66 9597.90 6799.08 4298.31 3399.02 3798.74 6797.68 2699.61 16297.77 3299.85 3199.70 20
pmmvs699.07 499.24 498.56 5199.81 296.38 6698.87 999.30 1599.01 1699.63 999.66 399.27 299.68 13097.75 3399.89 2599.62 28
ACMH93.61 998.44 2498.76 1397.51 13699.43 3993.54 18898.23 4599.05 4897.40 7999.37 1899.08 4298.79 599.47 20097.74 3499.71 6199.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVS95.82 19195.88 18695.66 24597.61 26693.21 19695.61 20198.17 21786.98 32398.42 8099.47 1090.46 24994.74 37897.71 3598.45 27899.03 173
DTE-MVSNet98.79 898.86 898.59 4999.55 2296.12 7598.48 2999.10 3699.36 499.29 2499.06 4497.27 4099.93 397.71 3599.91 1799.70 20
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3899.66 497.57 6795.95 25497.01 24296.99 5799.82 3597.66 3799.64 7698.39 252
PEN-MVS98.75 1098.85 1098.44 5899.58 1895.67 9498.45 3099.15 2999.33 599.30 2299.00 4697.27 4099.92 597.64 3899.92 1499.75 15
test_part196.77 14596.53 15597.47 14498.04 20892.92 20297.93 6498.85 10098.83 2199.30 2299.07 4379.25 32899.79 4597.59 3999.93 1099.69 22
CP-MVSNet98.42 2598.46 2498.30 7399.46 3595.22 12398.27 4398.84 10599.05 1399.01 3898.65 7595.37 13399.90 1497.57 4099.91 1799.77 10
EI-MVSNet-UG-set97.32 11397.40 10097.09 17097.34 29092.01 22495.33 21797.65 26297.74 5498.30 10098.14 12795.04 14499.69 12397.55 4199.52 11699.58 32
ANet_high98.31 3098.94 696.41 21399.33 5089.64 25897.92 6699.56 999.27 699.66 899.50 897.67 2799.83 3397.55 4199.98 299.77 10
CS-MVS98.09 4298.01 4498.32 6998.45 16896.69 5698.52 2599.69 298.07 4296.07 24997.19 22896.88 6899.86 2497.50 4399.73 5498.41 249
EI-MVSNet-Vis-set97.32 11397.39 10197.11 16897.36 28592.08 22295.34 21697.65 26297.74 5498.29 10198.11 13395.05 14299.68 13097.50 4399.50 12599.56 40
EU-MVSNet94.25 25794.47 24493.60 31498.14 20182.60 35597.24 11192.72 35085.08 34198.48 7498.94 5282.59 31598.76 32097.47 4599.53 11199.44 84
Regformer-497.53 9797.47 9997.71 12097.35 28693.91 17195.26 22398.14 22497.97 4698.34 9197.89 16295.49 12899.71 10697.41 4699.42 15499.51 49
V4297.04 12497.16 11796.68 19698.59 14891.05 23796.33 15598.36 19294.60 19397.99 13398.30 10593.32 19299.62 15697.40 4799.53 11199.38 93
KD-MVS_self_test97.86 7198.07 3897.25 16399.22 6492.81 20497.55 9298.94 7997.10 8898.85 4698.88 5795.03 14599.67 13597.39 4899.65 7499.26 125
lessismore_v097.05 17299.36 4792.12 22084.07 38098.77 5498.98 4885.36 30099.74 8097.34 4999.37 16599.30 112
FIs97.93 6098.07 3897.48 14399.38 4592.95 20198.03 6199.11 3498.04 4498.62 6098.66 7393.75 18599.78 4997.23 5099.84 3299.73 17
UniMVSNet_ETH3D99.12 399.28 398.65 4599.77 596.34 6899.18 599.20 2199.67 299.73 399.65 599.15 399.86 2497.22 5199.92 1499.77 10
MVS_Test96.27 17096.79 14194.73 28796.94 31086.63 31796.18 16498.33 19794.94 18396.07 24998.28 11095.25 13899.26 26297.21 5297.90 29998.30 265
TDRefinement98.90 598.86 899.02 999.54 2498.06 1099.34 499.44 1198.85 2099.00 3999.20 2797.42 3499.59 16497.21 5299.76 4799.40 89
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18995.96 17898.97 7594.55 19798.82 4998.76 6697.31 3899.29 25697.20 5499.44 14399.38 93
VPA-MVSNet98.27 3198.46 2497.70 12299.06 9593.80 17797.76 7599.00 6598.40 3099.07 3698.98 4896.89 6699.75 7097.19 5599.79 4199.55 42
Regformer-397.25 11797.29 10797.11 16897.35 28692.32 21395.26 22397.62 26797.67 6598.17 11197.89 16295.05 14299.56 17397.16 5699.42 15499.46 69
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18399.04 5497.51 7298.22 10697.81 17494.68 15699.78 4997.14 5799.75 5299.41 88
pm-mvs198.47 2398.67 1797.86 11099.52 2894.58 14598.28 4199.00 6597.57 6799.27 2599.22 2698.32 999.50 19197.09 5899.75 5299.50 50
baseline97.44 10397.78 6596.43 20998.52 15590.75 24596.84 12999.03 5596.51 10797.86 15098.02 14696.67 7899.36 23797.09 5899.47 13599.19 139
IterMVS-SCA-FT95.86 18996.19 16994.85 28197.68 25985.53 32892.42 32597.63 26696.99 8998.36 8898.54 8387.94 28199.75 7097.07 6099.08 21999.27 124
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19599.02 5798.11 4098.31 9897.69 18694.65 15899.85 2797.02 6199.71 6199.48 64
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19898.87 9397.57 6798.31 9897.83 17094.69 15499.85 2797.02 6199.71 6199.46 69
EI-MVSNet96.63 15696.93 13195.74 24197.26 29588.13 28895.29 22197.65 26296.99 8997.94 14098.19 12392.55 21299.58 16696.91 6399.56 9999.50 50
IterMVS-LS96.92 13297.29 10795.79 23998.51 15788.13 28895.10 23098.66 15596.99 8998.46 7798.68 7292.55 21299.74 8096.91 6399.79 4199.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.91 6497.84 5698.14 8898.52 15596.03 8098.38 3399.67 398.11 4095.50 27196.92 24896.81 7499.87 2296.87 6599.76 4798.51 242
iter_conf_final94.54 24993.91 26396.43 20997.23 29790.41 25196.81 13198.10 22893.87 21796.80 20897.89 16268.02 37499.72 9096.73 6699.77 4699.18 142
test111194.53 25094.81 22593.72 31199.06 9581.94 36098.31 3883.87 38196.37 11398.49 7399.17 3381.49 31799.73 8596.64 6799.86 2899.49 58
APDe-MVS98.14 3798.03 4398.47 5798.72 12796.04 7898.07 5799.10 3695.96 13698.59 6598.69 7196.94 6099.81 3896.64 6799.58 9399.57 37
MP-MVS-pluss97.69 8497.36 10398.70 4199.50 3296.84 5195.38 21398.99 6892.45 25898.11 11898.31 10197.25 4399.77 5896.60 6999.62 7999.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 20996.07 17693.21 32396.29 32381.56 36194.60 25697.66 26093.30 23296.95 20298.91 5593.03 20099.38 23296.60 6997.30 32698.69 227
casdiffmvs97.50 9897.81 6096.56 20398.51 15791.04 23895.83 18799.09 4197.23 8598.33 9598.30 10597.03 5499.37 23596.58 7199.38 16499.28 120
Regformer-297.41 10597.24 11297.93 10497.21 29894.72 13894.85 24798.27 20197.74 5498.11 11897.50 20095.58 12699.69 12396.57 7299.31 18799.37 100
Regformer-197.27 11597.16 11797.61 12997.21 29893.86 17494.85 24798.04 23997.62 6698.03 13097.50 20095.34 13499.63 14896.52 7399.31 18799.35 103
TransMVSNet (Re)98.38 2798.67 1797.51 13699.51 2993.39 19298.20 5098.87 9398.23 3699.48 1299.27 2398.47 899.55 17796.52 7399.53 11199.60 30
HPM-MVS_fast98.32 2998.13 3598.88 2699.54 2497.48 3498.35 3499.03 5595.88 14297.88 14698.22 12198.15 1299.74 8096.50 7599.62 7999.42 86
MIMVSNet198.51 2298.45 2698.67 4399.72 896.71 5498.76 1298.89 8598.49 2899.38 1799.14 3795.44 13299.84 3096.47 7699.80 4099.47 67
TranMVSNet+NR-MVSNet98.33 2898.30 3398.43 6099.07 9495.87 8496.73 14099.05 4898.67 2498.84 4898.45 8997.58 3099.88 2096.45 7799.86 2899.54 43
test250689.86 32989.16 33491.97 34398.95 10576.83 37598.54 2261.07 38996.20 12197.07 19199.16 3455.19 38899.69 12396.43 7899.83 3499.38 93
Gipumacopyleft98.07 4498.31 3197.36 15699.76 796.28 7198.51 2699.10 3698.76 2396.79 20999.34 2196.61 8298.82 31396.38 7999.50 12596.98 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 26093.93 26295.05 27195.83 34186.46 31895.18 22897.65 26292.41 25997.94 14098.00 15072.39 36399.58 16696.36 8099.56 9999.12 157
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11898.98 7195.75 15197.62 15797.59 19297.61 2999.77 5896.34 8199.44 14399.36 101
canonicalmvs97.23 11997.21 11597.30 15997.65 26394.39 15197.84 7099.05 4897.42 7596.68 21693.85 34297.63 2899.33 24596.29 8298.47 27798.18 277
FMVS198.57 1798.45 2698.93 2199.79 398.78 297.69 8199.42 1297.69 6198.92 4298.77 6497.80 2299.25 26496.27 8399.69 6598.76 219
APD_test98.57 1798.45 2698.93 2199.79 398.78 297.69 8199.42 1297.69 6198.92 4298.77 6497.80 2299.25 26496.27 8399.69 6598.76 219
alignmvs96.01 18395.52 19897.50 13997.77 24994.71 13996.07 16996.84 29197.48 7396.78 21394.28 33985.50 29999.40 22496.22 8598.73 25998.40 250
tttt051793.31 28592.56 29295.57 24898.71 13087.86 29397.44 10087.17 37695.79 14897.47 16996.84 25264.12 37899.81 3896.20 8699.32 18599.02 176
iter_conf0593.65 27793.05 27695.46 25696.13 33587.45 30395.95 18198.22 20792.66 25497.04 19397.89 16263.52 38099.72 9096.19 8799.82 3699.21 134
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 16299.02 5793.92 21698.62 6098.99 4797.69 2599.62 15696.18 8899.87 2799.15 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1495.66 19598.73 13597.69 6197.90 14397.96 15295.81 11699.82 3596.13 8999.61 8599.45 74
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1497.25 10998.73 13597.69 6197.90 14397.96 15295.81 11699.82 3596.13 8999.61 8599.45 74
ZNCC-MVS97.92 6197.62 8398.83 2899.32 5297.24 4397.45 9998.84 10595.76 14996.93 20397.43 20697.26 4299.79 4596.06 9199.53 11199.45 74
Patchmatch-RL test94.66 24294.49 24295.19 26598.54 15388.91 27092.57 32198.74 13391.46 27398.32 9697.75 17977.31 34198.81 31596.06 9199.61 8597.85 299
ACMMP_NAP97.89 6797.63 8198.67 4399.35 4896.84 5196.36 15398.79 12295.07 17897.88 14698.35 9797.24 4499.72 9096.05 9399.58 9399.45 74
v14896.58 15996.97 12895.42 25898.63 14187.57 30095.09 23197.90 24395.91 14198.24 10497.96 15293.42 19199.39 22996.04 9499.52 11699.29 119
ACMM93.33 1198.05 4597.79 6198.85 2799.15 7997.55 2996.68 14298.83 11295.21 17098.36 8898.13 12998.13 1499.62 15696.04 9499.54 10899.39 91
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 10997.25 11097.74 11898.69 13494.50 14997.04 12295.61 31898.59 2698.51 7098.72 6892.54 21499.58 16696.02 9699.49 12999.12 157
IterMVS95.42 20795.83 18794.20 30597.52 27283.78 35092.41 32697.47 27295.49 16198.06 12698.49 8687.94 28199.58 16696.02 9699.02 22699.23 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 18196.23 16795.46 25697.35 28688.03 29193.42 30299.08 4294.09 21296.66 21896.93 24693.85 18299.29 25696.01 9898.67 26199.06 169
PM-MVS97.36 11197.10 12098.14 8898.91 11096.77 5396.20 16398.63 16193.82 21898.54 6898.33 9993.98 17899.05 29295.99 9999.45 14298.61 235
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19395.44 20698.86 9698.20 3898.37 8599.24 2494.69 15499.55 17795.98 10099.79 4199.65 25
ECVR-MVScopyleft94.37 25594.48 24394.05 30898.95 10583.10 35298.31 3882.48 38296.20 12198.23 10599.16 3481.18 32099.66 14195.95 10199.83 3499.38 93
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25593.65 18698.49 2798.88 9196.86 9497.11 18598.55 8295.82 11299.73 8595.94 10299.42 15499.13 152
PatchT93.75 27293.57 26894.29 30495.05 35587.32 30796.05 17092.98 34697.54 7194.25 29998.72 6875.79 34999.24 26795.92 10395.81 34896.32 348
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13597.79 4999.42 1597.83 17094.40 16799.78 4995.91 10499.76 4799.46 69
h-mvs3396.29 16995.63 19498.26 7598.50 16096.11 7696.90 12797.09 28396.58 10497.21 17898.19 12384.14 30799.78 4995.89 10596.17 34698.89 199
hse-mvs295.77 19295.09 20897.79 11497.84 23095.51 10295.66 19595.43 32396.58 10497.21 17896.16 29084.14 30799.54 18095.89 10596.92 32998.32 261
MSC_two_6792asdad98.22 8097.75 25295.34 11598.16 22199.75 7095.87 10799.51 12199.57 37
No_MVS98.22 8097.75 25295.34 11598.16 22199.75 7095.87 10799.51 12199.57 37
new-patchmatchnet95.67 19596.58 14992.94 33197.48 27580.21 36692.96 31398.19 21694.83 18698.82 4998.79 6193.31 19399.51 19095.83 10999.04 22599.12 157
FMVSNet197.95 5498.08 3797.56 13199.14 8793.67 18298.23 4598.66 15597.41 7899.00 3999.19 2895.47 13099.73 8595.83 10999.76 4799.30 112
patch_mono-296.59 15796.93 13195.55 25198.88 11287.12 31094.47 26199.30 1594.12 21096.65 22098.41 9294.98 14899.87 2295.81 11199.78 4499.66 23
DVP-MVS++97.96 5097.90 5098.12 9097.75 25295.40 10899.03 798.89 8596.62 9998.62 6098.30 10596.97 5899.75 7095.70 11299.25 19699.21 134
test_0728_THIRD96.62 9998.40 8298.28 11097.10 4799.71 10695.70 11299.62 7999.58 32
EGC-MVSNET83.08 34877.93 35198.53 5399.57 1997.55 2998.33 3798.57 1684.71 38410.38 38598.90 5695.60 12599.50 19195.69 11499.61 8598.55 240
RPMNet94.68 24194.60 23694.90 27895.44 35088.15 28696.18 16498.86 9697.43 7494.10 30398.49 8679.40 32799.76 6395.69 11495.81 34896.81 338
TSAR-MVS + MP.97.42 10497.23 11398.00 10099.38 4595.00 13097.63 8698.20 21193.00 24598.16 11298.06 14295.89 10799.72 9095.67 11699.10 21799.28 120
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_698.42 2598.19 3499.09 399.16 7698.10 897.73 8099.11 3497.76 5398.62 6098.27 11497.88 1999.80 4495.67 11699.50 12599.38 93
XVS97.96 5097.63 8198.94 1899.15 7997.66 2297.77 7398.83 11297.42 7596.32 23597.64 18896.49 9099.72 9095.66 11899.37 16599.45 74
X-MVStestdata92.86 29290.83 31698.94 1899.15 7997.66 2297.77 7398.83 11297.42 7596.32 23536.50 38296.49 9099.72 9095.66 11899.37 16599.45 74
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20695.60 9798.04 5998.70 14598.13 3996.93 20398.45 8995.30 13799.62 15695.64 12098.96 23099.24 131
DELS-MVS96.17 17696.23 16795.99 22897.55 27190.04 25392.38 32798.52 17194.13 20996.55 22697.06 23794.99 14799.58 16695.62 12199.28 19298.37 254
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 5797.64 7998.83 2899.15 7997.50 3297.59 8998.84 10596.05 12997.49 16497.54 19597.07 5099.70 11595.61 12299.46 13899.30 112
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2897.59 8998.83 11296.05 12997.46 17097.63 18996.77 7599.76 6395.61 12299.46 13899.49 58
UGNet96.81 14296.56 15197.58 13096.64 31593.84 17697.75 7697.12 28296.47 11193.62 32098.88 5793.22 19599.53 18295.61 12299.69 6599.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 4197.83 5998.92 2499.42 4197.46 3598.57 1999.05 4895.43 16497.41 17297.50 20097.98 1599.79 4595.58 12599.57 9699.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 12197.99 4594.51 29799.11 8984.00 34897.75 7699.65 597.38 8099.14 3298.42 9195.16 14099.96 295.52 12699.78 4499.58 32
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 1197.55 9298.86 9697.77 5098.20 10798.07 13796.60 8499.76 6395.49 12799.20 20199.26 125
RE-MVS-def97.88 5498.81 11698.05 1197.55 9298.86 9697.77 5098.20 10798.07 13796.94 6095.49 12799.20 20199.26 125
Anonymous2024052997.96 5098.04 4297.71 12098.69 13494.28 15997.86 6998.31 20098.79 2299.23 2798.86 5995.76 11999.61 16295.49 12799.36 16899.23 132
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13698.23 20695.92 13998.40 8298.28 11097.06 5299.71 10695.48 13099.52 11699.26 125
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13698.89 8599.75 7095.48 13099.52 11699.53 46
region2R97.92 6197.59 8798.92 2499.22 6497.55 2997.60 8798.84 10596.00 13497.22 17697.62 19096.87 7099.76 6395.48 13099.43 15199.46 69
pmmvs-eth3d96.49 16296.18 17097.42 15298.25 18594.29 15694.77 25198.07 23689.81 29397.97 13798.33 9993.11 19699.08 28995.46 13399.84 3298.89 199
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13398.83 11296.11 12699.08 3498.24 11697.87 2099.72 9095.44 13499.51 12199.14 150
test_241102_TWO98.83 11296.11 12698.62 6098.24 11696.92 6499.72 9095.44 13499.49 12999.49 58
APD-MVS_3200maxsize98.13 4097.90 5098.79 3398.79 11997.31 4097.55 9298.92 8297.72 5798.25 10398.13 12997.10 4799.75 7095.44 13499.24 19999.32 106
xiu_mvs_v1_base_debu95.62 19695.96 18194.60 29198.01 21288.42 27893.99 28398.21 20892.98 24695.91 25694.53 33296.39 9699.72 9095.43 13798.19 28795.64 356
xiu_mvs_v1_base95.62 19695.96 18194.60 29198.01 21288.42 27893.99 28398.21 20892.98 24695.91 25694.53 33296.39 9699.72 9095.43 13798.19 28795.64 356
xiu_mvs_v1_base_debi95.62 19695.96 18194.60 29198.01 21288.42 27893.99 28398.21 20892.98 24695.91 25694.53 33296.39 9699.72 9095.43 13798.19 28795.64 356
c3_l95.20 21595.32 20194.83 28396.19 32986.43 32091.83 33598.35 19693.47 22697.36 17397.26 22488.69 27499.28 25895.41 14099.36 16898.78 214
mvsany_test96.21 17395.93 18497.05 17297.40 28394.33 15595.76 18994.20 33489.10 29899.36 1999.60 693.97 17997.85 36495.40 14198.63 26798.99 180
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2598.09 5698.96 7695.75 15197.91 14298.06 14296.89 6699.76 6395.32 14299.57 9699.43 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117298.08 4397.76 6699.05 698.78 12198.07 997.41 10498.85 10097.57 6798.15 11497.96 15296.60 8499.76 6395.30 14399.18 20599.33 105
miper_lstm_enhance94.81 23294.80 22694.85 28196.16 33186.45 31991.14 34898.20 21193.49 22597.03 19597.37 21684.97 30399.26 26295.28 14499.56 9998.83 208
MSLP-MVS++96.42 16796.71 14395.57 24897.82 23390.56 24995.71 19098.84 10594.72 18996.71 21597.39 21294.91 15198.10 36195.28 14499.02 22698.05 289
SteuartSystems-ACMMP98.02 4797.76 6698.79 3399.43 3997.21 4597.15 11498.90 8496.58 10498.08 12497.87 16897.02 5599.76 6395.25 14699.59 9199.40 89
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 10997.70 6996.35 21498.14 20195.13 12796.54 14598.92 8295.94 13899.19 2998.08 13597.74 2495.06 37795.24 14799.54 10898.87 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 6495.40 10898.14 22485.77 33498.36 8895.23 14899.51 12199.49 58
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1897.93 6498.96 7696.11 12696.89 20697.45 20496.85 7199.78 4995.19 14999.63 7899.38 93
LS3D97.77 7997.50 9698.57 5096.24 32597.58 2798.45 3098.85 10098.58 2797.51 16297.94 15795.74 12099.63 14895.19 14998.97 22998.51 242
SMA-MVScopyleft97.48 10097.11 11998.60 4898.83 11596.67 5796.74 13698.73 13591.61 27098.48 7498.36 9696.53 8799.68 13095.17 15199.54 10899.45 74
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 28692.79 28494.78 28595.44 35088.15 28696.18 16497.20 27784.94 34594.10 30398.57 7977.67 33699.39 22995.17 15195.81 34896.81 338
OPM-MVS97.54 9597.25 11098.41 6299.11 8996.61 6095.24 22598.46 17694.58 19698.10 12198.07 13797.09 4999.39 22995.16 15399.44 14399.21 134
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6497.53 9299.04 799.22 6497.87 1797.74 7898.78 12696.04 13197.10 18697.73 18296.53 8799.78 4995.16 15399.50 12599.46 69
DIV-MVS_self_test94.73 23494.64 23295.01 27295.86 33987.00 31291.33 34298.08 23293.34 23097.10 18697.34 21884.02 30999.31 24995.15 15599.55 10598.72 224
cl____94.73 23494.64 23295.01 27295.85 34087.00 31291.33 34298.08 23293.34 23097.10 18697.33 21984.01 31099.30 25295.14 15699.56 9998.71 226
MSP-MVS97.45 10296.92 13399.03 899.26 5597.70 2197.66 8398.89 8595.65 15398.51 7096.46 27692.15 22199.81 3895.14 15698.58 27299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 12996.84 13697.41 15399.40 4393.26 19497.94 6395.31 32499.26 798.39 8499.18 3187.85 28699.62 15695.13 15899.09 21899.35 103
CANet95.86 18995.65 19396.49 20696.41 32190.82 24294.36 26398.41 18594.94 18392.62 34696.73 26192.68 20799.71 10695.12 15999.60 8998.94 186
CNVR-MVS96.92 13296.55 15298.03 9998.00 21695.54 10094.87 24598.17 21794.60 19396.38 23297.05 23895.67 12299.36 23795.12 15999.08 21999.19 139
eth_miper_zixun_eth94.89 22894.93 21694.75 28695.99 33786.12 32391.35 34198.49 17493.40 22797.12 18497.25 22586.87 29399.35 24095.08 16198.82 24998.78 214
GST-MVS97.82 7597.49 9798.81 3199.23 6197.25 4297.16 11398.79 12295.96 13697.53 16097.40 20896.93 6299.77 5895.04 16299.35 17399.42 86
DP-MVS97.87 6997.89 5397.81 11398.62 14394.82 13597.13 11798.79 12298.98 1798.74 5698.49 8695.80 11899.49 19495.04 16299.44 14399.11 160
D2MVS95.18 21695.17 20595.21 26497.76 25087.76 29894.15 27597.94 24189.77 29496.99 19897.68 18787.45 28899.14 28095.03 16499.81 3798.74 221
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1397.38 10598.83 11297.32 8298.06 12697.85 16996.65 7999.77 5895.00 16599.11 21599.32 106
FMVSNet296.72 14996.67 14696.87 18397.96 21891.88 22697.15 11498.06 23795.59 15798.50 7298.62 7689.51 26899.65 14394.99 16699.60 8999.07 167
miper_ehance_all_eth94.69 23994.70 22994.64 28895.77 34386.22 32291.32 34498.24 20591.67 26997.05 19296.65 26688.39 27899.22 27194.88 16798.34 28198.49 245
XVG-OURS-SEG-HR97.38 10797.07 12398.30 7399.01 10297.41 3894.66 25499.02 5795.20 17198.15 11497.52 19898.83 498.43 34694.87 16896.41 34299.07 167
MVS_111021_HR96.73 14896.54 15497.27 16098.35 17593.66 18593.42 30298.36 19294.74 18896.58 22296.76 26096.54 8698.99 29994.87 16899.27 19499.15 147
test_040297.84 7297.97 4697.47 14499.19 7494.07 16696.71 14198.73 13598.66 2598.56 6798.41 9296.84 7299.69 12394.82 17099.81 3798.64 230
MVS_111021_LR96.82 14196.55 15297.62 12898.27 18295.34 11593.81 29298.33 19794.59 19596.56 22496.63 26796.61 8298.73 32294.80 17199.34 17698.78 214
WR-MVS96.90 13496.81 13897.16 16598.56 15192.20 21894.33 26498.12 22797.34 8198.20 10797.33 21992.81 20399.75 7094.79 17299.81 3799.54 43
ACMH+93.58 1098.23 3498.31 3197.98 10199.39 4495.22 12397.55 9299.20 2198.21 3799.25 2698.51 8598.21 1199.40 22494.79 17299.72 5899.32 106
thisisatest053092.71 29591.76 30295.56 25098.42 17088.23 28396.03 17287.35 37594.04 21396.56 22495.47 31664.03 37999.77 5894.78 17499.11 21598.68 229
PGM-MVS97.88 6897.52 9398.96 1699.20 7297.62 2497.09 11999.06 4695.45 16297.55 15997.94 15797.11 4699.78 4994.77 17599.46 13899.48 64
TSAR-MVS + GP.96.47 16496.12 17297.49 14297.74 25595.23 12094.15 27596.90 29093.26 23398.04 12996.70 26394.41 16698.89 30894.77 17599.14 20898.37 254
VNet96.84 13796.83 13796.88 18298.06 20792.02 22396.35 15497.57 26997.70 6097.88 14697.80 17592.40 21899.54 18094.73 17798.96 23099.08 165
VPNet97.26 11697.49 9796.59 19999.47 3490.58 24796.27 15798.53 17097.77 5098.46 7798.41 9294.59 16099.68 13094.61 17899.29 19199.52 47
GBi-Net96.99 12696.80 13997.56 13197.96 21893.67 18298.23 4598.66 15595.59 15797.99 13399.19 2889.51 26899.73 8594.60 17999.44 14399.30 112
test196.99 12696.80 13997.56 13197.96 21893.67 18298.23 4598.66 15595.59 15797.99 13399.19 2889.51 26899.73 8594.60 17999.44 14399.30 112
FMVSNet395.26 21494.94 21496.22 22196.53 31890.06 25295.99 17597.66 26094.11 21197.99 13397.91 16180.22 32699.63 14894.60 17999.44 14398.96 183
xxxxxxxxxxxxxcwj97.24 11897.03 12697.89 10798.48 16394.71 13994.53 25999.07 4595.02 18197.83 15297.88 16696.44 9499.72 9094.59 18299.39 16299.25 129
SF-MVS97.60 9197.39 10198.22 8098.93 10895.69 9197.05 12199.10 3695.32 16797.83 15297.88 16696.44 9499.72 9094.59 18299.39 16299.25 129
MVS_030495.50 20095.05 21296.84 18596.28 32493.12 19797.00 12496.16 30495.03 18089.22 36897.70 18490.16 25799.48 19794.51 18499.34 17697.93 296
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21697.22 11299.00 6594.93 18598.58 6698.92 5497.31 3899.41 22294.44 18599.43 15199.59 31
UnsupCasMVSNet_eth95.91 18695.73 19196.44 20898.48 16391.52 23395.31 21998.45 17795.76 14997.48 16797.54 19589.53 26798.69 32694.43 18694.61 36199.13 152
LPG-MVS_test97.94 5797.67 7398.74 3799.15 7997.02 4697.09 11999.02 5795.15 17498.34 9198.23 11897.91 1799.70 11594.41 18799.73 5499.50 50
LGP-MVS_train98.74 3799.15 7997.02 4699.02 5795.15 17498.34 9198.23 11897.91 1799.70 11594.41 18799.73 5499.50 50
DeepPCF-MVS94.58 596.90 13496.43 16198.31 7297.48 27597.23 4492.56 32298.60 16392.84 25298.54 6897.40 20896.64 8198.78 31794.40 18999.41 16098.93 190
#test#97.62 8997.22 11498.83 2899.15 7997.50 3296.81 13198.84 10594.25 20597.49 16497.54 19597.07 5099.70 11594.37 19099.46 13899.30 112
XVG-ACMP-BASELINE97.58 9397.28 10998.49 5599.16 7696.90 5096.39 15098.98 7195.05 17998.06 12698.02 14695.86 10899.56 17394.37 19099.64 7699.00 177
RPSCF97.87 6997.51 9498.95 1799.15 7998.43 597.56 9199.06 4696.19 12398.48 7498.70 7094.72 15399.24 26794.37 19099.33 18399.17 143
CSCG97.40 10697.30 10697.69 12498.95 10594.83 13497.28 10898.99 6896.35 11698.13 11795.95 30395.99 10599.66 14194.36 19399.73 5498.59 236
HPM-MVS++copyleft96.99 12696.38 16298.81 3198.64 13797.59 2695.97 17798.20 21195.51 16095.06 27996.53 27294.10 17499.70 11594.29 19499.15 20799.13 152
XVG-OURS97.12 12196.74 14298.26 7598.99 10397.45 3693.82 29099.05 4895.19 17298.32 9697.70 18495.22 13998.41 34794.27 19598.13 29098.93 190
jason94.39 25494.04 25895.41 26098.29 17887.85 29592.74 31996.75 29685.38 34095.29 27596.15 29188.21 28099.65 14394.24 19699.34 17698.74 221
jason: jason.
CVMVSNet92.33 30192.79 28490.95 34897.26 29575.84 37895.29 22192.33 35381.86 35596.27 23998.19 12381.44 31898.46 34594.23 19798.29 28498.55 240
EIA-MVS96.04 18195.77 19096.85 18497.80 23892.98 20096.12 16799.16 2594.65 19193.77 31491.69 36795.68 12199.67 13594.18 19898.85 24697.91 297
ET-MVSNet_ETH3D91.12 31589.67 32795.47 25596.41 32189.15 26891.54 33890.23 36989.07 29986.78 37792.84 35369.39 37299.44 21094.16 19996.61 33997.82 301
cl2293.25 28792.84 28394.46 29894.30 36386.00 32491.09 35096.64 30190.74 28295.79 26196.31 28478.24 33398.77 31894.15 20098.34 28198.62 233
MCST-MVS96.24 17195.80 18897.56 13198.75 12494.13 16594.66 25498.17 21790.17 28996.21 24396.10 29695.14 14199.43 21294.13 20198.85 24699.13 152
COLMAP_ROBcopyleft94.48 698.25 3398.11 3698.64 4699.21 7197.35 3997.96 6299.16 2598.34 3298.78 5298.52 8497.32 3799.45 20794.08 20299.67 7199.13 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 16895.98 18097.43 15198.25 18593.85 17596.74 13694.41 33297.72 5798.37 8598.03 14587.15 29099.53 18294.06 20399.07 22198.92 194
Effi-MVS+-dtu96.81 14296.09 17498.99 1396.90 31298.69 496.42 14998.09 23095.86 14495.15 27895.54 31494.26 17099.81 3894.06 20398.51 27698.47 246
mvs-test196.20 17495.50 19998.32 6996.90 31298.16 795.07 23498.09 23095.86 14493.63 31994.32 33894.26 17099.71 10694.06 20397.27 32797.07 324
ambc96.56 20398.23 18891.68 23197.88 6898.13 22698.42 8098.56 8194.22 17299.04 29394.05 20699.35 17398.95 184
our_test_394.20 26294.58 23993.07 32596.16 33181.20 36390.42 35696.84 29190.72 28397.14 18297.13 23090.47 24899.11 28594.04 20798.25 28598.91 195
pmmvs594.63 24494.34 24995.50 25397.63 26588.34 28194.02 28197.13 28187.15 32095.22 27797.15 22987.50 28799.27 26193.99 20899.26 19598.88 203
DPE-MVScopyleft97.64 8797.35 10498.50 5498.85 11496.18 7295.21 22798.99 6895.84 14698.78 5298.08 13596.84 7299.81 3893.98 20999.57 9699.52 47
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 25194.84 22293.46 31796.16 33182.10 35790.59 35497.48 27190.53 28597.01 19797.59 19291.01 24199.36 23793.97 21099.18 20598.94 186
tfpnnormal97.72 8297.97 4696.94 17899.26 5592.23 21597.83 7198.45 17798.25 3599.13 3398.66 7396.65 7999.69 12393.92 21199.62 7998.91 195
LFMVS95.32 21194.88 22096.62 19798.03 20991.47 23497.65 8490.72 36599.11 997.89 14598.31 10179.20 32999.48 19793.91 21299.12 21498.93 190
EPP-MVSNet96.84 13796.58 14997.65 12699.18 7593.78 17998.68 1496.34 30297.91 4897.30 17498.06 14288.46 27699.85 2793.85 21399.40 16199.32 106
Fast-Effi-MVS+-dtu96.44 16596.12 17297.39 15597.18 30194.39 15195.46 20598.73 13596.03 13394.72 28794.92 32696.28 10299.69 12393.81 21497.98 29598.09 279
PHI-MVS96.96 13096.53 15598.25 7897.48 27596.50 6396.76 13598.85 10093.52 22496.19 24596.85 25195.94 10699.42 21393.79 21599.43 15198.83 208
miper_enhance_ethall93.14 28992.78 28694.20 30593.65 37185.29 33289.97 36097.85 24685.05 34296.15 24894.56 33185.74 29799.14 28093.74 21698.34 28198.17 278
DeepC-MVS_fast94.34 796.74 14696.51 15897.44 15097.69 25894.15 16496.02 17398.43 18093.17 24097.30 17497.38 21495.48 12999.28 25893.74 21699.34 17698.88 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 27092.69 28897.74 11897.80 23895.38 11095.57 20395.46 32291.26 27792.64 34496.10 29674.67 35299.55 17793.72 21896.97 32898.30 265
MP-MVScopyleft97.64 8797.18 11699.00 1299.32 5297.77 2097.49 9898.73 13596.27 11795.59 26997.75 17996.30 10099.78 4993.70 21999.48 13399.45 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 18595.80 18896.42 21199.28 5490.62 24695.31 21999.08 4288.40 30896.97 20198.17 12692.11 22399.78 4993.64 22099.21 20098.86 206
lupinMVS93.77 27193.28 27295.24 26397.68 25987.81 29692.12 33096.05 30684.52 34794.48 29695.06 32286.90 29199.63 14893.62 22199.13 21198.27 269
NCCC96.52 16195.99 17998.10 9197.81 23495.68 9395.00 24098.20 21195.39 16595.40 27496.36 28293.81 18399.45 20793.55 22298.42 27999.17 143
ETV-MVS96.13 17895.90 18596.82 18797.76 25093.89 17295.40 21198.95 7895.87 14395.58 27091.00 37396.36 9999.72 9093.36 22398.83 24896.85 334
FA-MVS(test-final)94.91 22794.89 21994.99 27497.51 27388.11 29098.27 4395.20 32592.40 26096.68 21698.60 7783.44 31299.28 25893.34 22498.53 27397.59 312
MDA-MVSNet_test_wron94.73 23494.83 22494.42 29997.48 27585.15 33590.28 35895.87 31292.52 25597.48 16797.76 17691.92 23199.17 27793.32 22596.80 33598.94 186
YYNet194.73 23494.84 22294.41 30097.47 27985.09 33790.29 35795.85 31392.52 25597.53 16097.76 17691.97 22799.18 27393.31 22696.86 33298.95 184
pmmvs494.82 23194.19 25496.70 19497.42 28292.75 20792.09 33296.76 29586.80 32595.73 26697.22 22689.28 27198.89 30893.28 22799.14 20898.46 248
CANet_DTU94.65 24394.21 25395.96 23095.90 33889.68 25793.92 28797.83 25093.19 23690.12 36395.64 31188.52 27599.57 17293.27 22899.47 13598.62 233
ACMP92.54 1397.47 10197.10 12098.55 5299.04 10096.70 5596.24 16198.89 8593.71 22197.97 13797.75 17997.44 3299.63 14893.22 22999.70 6499.32 106
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 17596.01 17796.71 19397.43 28192.19 21996.12 16799.10 3695.45 16293.33 33294.71 32997.23 4599.56 17393.21 23097.54 31698.37 254
MDA-MVSNet-bldmvs95.69 19395.67 19295.74 24198.48 16388.76 27692.84 31497.25 27596.00 13497.59 15897.95 15691.38 23799.46 20393.16 23196.35 34398.99 180
IS-MVSNet96.93 13196.68 14597.70 12299.25 5894.00 16998.57 1996.74 29798.36 3198.14 11697.98 15188.23 27999.71 10693.10 23299.72 5899.38 93
9.1496.69 14498.53 15496.02 17398.98 7193.23 23497.18 18097.46 20396.47 9299.62 15692.99 23399.32 185
MS-PatchMatch94.83 23094.91 21894.57 29496.81 31487.10 31194.23 27097.34 27488.74 30597.14 18297.11 23391.94 22998.23 35792.99 23397.92 29798.37 254
Patchmtry95.03 22494.59 23896.33 21594.83 35790.82 24296.38 15297.20 27796.59 10397.49 16498.57 7977.67 33699.38 23292.95 23599.62 7998.80 211
ETH3D-3000-0.196.89 13696.46 16098.16 8498.62 14395.69 9195.96 17898.98 7193.36 22997.04 19397.31 22194.93 15099.63 14892.60 23699.34 17699.17 143
Fast-Effi-MVS+95.49 20195.07 20996.75 19197.67 26292.82 20394.22 27198.60 16391.61 27093.42 33092.90 35296.73 7799.70 11592.60 23697.89 30097.74 304
HQP_MVS96.66 15596.33 16597.68 12598.70 13294.29 15696.50 14698.75 13196.36 11496.16 24696.77 25891.91 23299.46 20392.59 23899.20 20199.28 120
plane_prior598.75 13199.46 20392.59 23899.20 20199.28 120
GA-MVS92.83 29392.15 29794.87 28096.97 30787.27 30890.03 35996.12 30591.83 26894.05 30694.57 33076.01 34898.97 30592.46 24097.34 32498.36 259
CPTT-MVS96.69 15296.08 17598.49 5598.89 11196.64 5997.25 10998.77 12792.89 25196.01 25397.13 23092.23 22099.67 13592.24 24199.34 17699.17 143
EPNet93.72 27392.62 29197.03 17587.61 38792.25 21496.27 15791.28 35996.74 9787.65 37397.39 21285.00 30299.64 14692.14 24299.48 13399.20 138
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 31898.37 8597.44 20597.00 5696.78 37492.01 24399.25 19699.21 134
APD-MVScopyleft97.00 12596.53 15598.41 6298.55 15296.31 6996.32 15698.77 12792.96 25097.44 17197.58 19495.84 10999.74 8091.96 24499.35 17399.19 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 22294.79 22795.82 23897.51 27389.79 25691.14 34896.82 29393.05 24396.72 21496.40 28090.82 24499.16 27891.95 24598.66 26398.50 244
test_prior395.91 18695.39 20097.46 14797.79 24494.26 16193.33 30798.42 18394.21 20694.02 30796.25 28693.64 18799.34 24291.90 24698.96 23098.79 212
test_prior293.33 30794.21 20694.02 30796.25 28693.64 18791.90 24698.96 230
test-LLR89.97 32789.90 32590.16 35294.24 36574.98 37989.89 36189.06 37192.02 26389.97 36490.77 37473.92 35598.57 33791.88 24897.36 32296.92 329
test-mter87.92 34387.17 34490.16 35294.24 36574.98 37989.89 36189.06 37186.44 32789.97 36490.77 37454.96 38998.57 33791.88 24897.36 32296.92 329
MVP-Stereo95.69 19395.28 20296.92 17998.15 20093.03 19995.64 20098.20 21190.39 28696.63 22197.73 18291.63 23599.10 28791.84 25097.31 32598.63 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 26393.42 27096.23 21998.59 14890.85 24194.24 26998.85 10085.49 33592.97 33694.94 32486.01 29699.64 14691.78 25197.92 29798.20 275
train_agg95.46 20594.66 23097.88 10997.84 23095.23 12093.62 29698.39 18887.04 32193.78 31295.99 29894.58 16199.52 18691.76 25298.90 23898.89 199
LF4IMVS96.07 17995.63 19497.36 15698.19 19195.55 9995.44 20698.82 12092.29 26195.70 26796.55 27092.63 21098.69 32691.75 25399.33 18397.85 299
agg_prior195.39 20894.60 23697.75 11797.80 23894.96 13193.39 30498.36 19287.20 31993.49 32595.97 30194.65 15899.53 18291.69 25498.86 24498.77 217
N_pmnet95.18 21694.23 25198.06 9597.85 22696.55 6292.49 32391.63 35889.34 29698.09 12297.41 20790.33 25199.06 29191.58 25599.31 18798.56 238
ETH3D cwj APD-0.1696.23 17295.61 19698.09 9297.91 22295.65 9694.94 24298.74 13391.31 27696.02 25297.08 23594.05 17699.69 12391.51 25698.94 23498.93 190
AllTest97.20 12096.92 13398.06 9599.08 9296.16 7397.14 11699.16 2594.35 20197.78 15598.07 13795.84 10999.12 28291.41 25799.42 15498.91 195
TestCases98.06 9599.08 9296.16 7399.16 2594.35 20197.78 15598.07 13795.84 10999.12 28291.41 25799.42 15498.91 195
test9_res91.29 25998.89 24199.00 177
xiu_mvs_v2_base94.22 25894.63 23492.99 32997.32 29384.84 34092.12 33097.84 24891.96 26594.17 30193.43 34396.07 10499.71 10691.27 26097.48 31994.42 365
PS-MVSNAJ94.10 26494.47 24493.00 32897.35 28684.88 33991.86 33497.84 24891.96 26594.17 30192.50 35995.82 11299.71 10691.27 26097.48 31994.40 366
tpm91.08 31790.85 31591.75 34495.33 35378.09 36995.03 23991.27 36088.75 30493.53 32497.40 20871.24 36599.30 25291.25 26293.87 36497.87 298
OPU-MVS97.64 12798.01 21295.27 11896.79 13397.35 21796.97 5898.51 34391.21 26399.25 19699.14 150
ZD-MVS98.43 16995.94 8398.56 16990.72 28396.66 21897.07 23695.02 14699.74 8091.08 26498.93 236
tpmrst90.31 32290.61 32089.41 35594.06 36872.37 38495.06 23693.69 33688.01 31292.32 34996.86 25077.45 33898.82 31391.04 26587.01 37797.04 326
sss94.22 25893.72 26695.74 24197.71 25789.95 25593.84 28996.98 28788.38 30993.75 31595.74 30787.94 28198.89 30891.02 26698.10 29198.37 254
ITE_SJBPF97.85 11198.64 13796.66 5898.51 17395.63 15497.22 17697.30 22295.52 12798.55 34090.97 26798.90 23898.34 260
Test_1112_low_res93.53 28192.86 28195.54 25298.60 14688.86 27292.75 31798.69 14882.66 35492.65 34396.92 24884.75 30499.56 17390.94 26897.76 30398.19 276
TESTMET0.1,187.20 34586.57 34789.07 35693.62 37272.84 38389.89 36187.01 37785.46 33789.12 36990.20 37656.00 38797.72 36790.91 26996.92 32996.64 342
FMVSNet593.39 28392.35 29396.50 20595.83 34190.81 24497.31 10698.27 20192.74 25396.27 23998.28 11062.23 38199.67 13590.86 27099.36 16899.03 173
PatchmatchNetpermissive91.98 30791.87 29992.30 34194.60 36079.71 36795.12 22993.59 34189.52 29593.61 32197.02 24077.94 33499.18 27390.84 27194.57 36398.01 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 20495.07 20996.69 19598.27 18292.53 20991.36 34098.67 15391.22 27895.78 26394.12 34095.65 12398.98 30190.81 27299.72 5898.57 237
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 30891.35 30693.51 31694.27 36485.60 32788.86 36998.61 16279.32 36792.16 35091.44 36989.22 27298.12 36090.80 27397.47 32196.82 337
test20.0396.58 15996.61 14796.48 20798.49 16191.72 23095.68 19497.69 25796.81 9598.27 10297.92 16094.18 17398.71 32490.78 27499.66 7399.00 177
test_yl94.40 25294.00 25995.59 24696.95 30889.52 26094.75 25295.55 32096.18 12496.79 20996.14 29381.09 32199.18 27390.75 27597.77 30198.07 282
DCV-MVSNet94.40 25294.00 25995.59 24696.95 30889.52 26094.75 25295.55 32096.18 12496.79 20996.14 29381.09 32199.18 27390.75 27597.77 30198.07 282
EPMVS89.26 33388.55 33791.39 34692.36 38079.11 36895.65 19879.86 38388.60 30693.12 33496.53 27270.73 36998.10 36190.75 27589.32 37596.98 327
旧先验293.35 30677.95 37395.77 26598.67 33090.74 278
USDC94.56 24794.57 24194.55 29597.78 24886.43 32092.75 31798.65 16085.96 33096.91 20597.93 15990.82 24498.74 32190.71 27999.59 9198.47 246
OpenMVScopyleft94.22 895.48 20395.20 20396.32 21697.16 30291.96 22597.74 7898.84 10587.26 31794.36 29898.01 14893.95 18099.67 13590.70 28098.75 25597.35 321
Patchmatch-test93.60 27993.25 27494.63 28996.14 33487.47 30296.04 17194.50 33193.57 22396.47 22896.97 24376.50 34498.61 33490.67 28198.41 28097.81 303
thisisatest051590.43 32189.18 33394.17 30797.07 30585.44 32989.75 36587.58 37488.28 31093.69 31891.72 36665.27 37799.58 16690.59 28298.67 26197.50 316
DP-MVS Recon95.55 19995.13 20696.80 18898.51 15793.99 17094.60 25698.69 14890.20 28895.78 26396.21 28992.73 20698.98 30190.58 28398.86 24497.42 318
testtj96.69 15296.13 17198.36 6698.46 16796.02 8196.44 14898.70 14594.26 20496.79 20997.13 23094.07 17599.75 7090.53 28498.80 25099.31 111
TinyColmap96.00 18496.34 16494.96 27597.90 22487.91 29294.13 27898.49 17494.41 19998.16 11297.76 17696.29 10198.68 32990.52 28599.42 15498.30 265
BP-MVS90.51 286
HQP-MVS95.17 21894.58 23996.92 17997.85 22692.47 21094.26 26598.43 18093.18 23792.86 33895.08 32090.33 25199.23 26990.51 28698.74 25699.05 171
OMC-MVS96.48 16396.00 17897.91 10598.30 17796.01 8294.86 24698.60 16391.88 26797.18 18097.21 22796.11 10399.04 29390.49 28899.34 17698.69 227
ab-mvs96.59 15796.59 14896.60 19898.64 13792.21 21698.35 3497.67 25894.45 19896.99 19898.79 6194.96 14999.49 19490.39 28999.07 22198.08 280
HyFIR lowres test93.72 27392.65 28996.91 18198.93 10891.81 22991.23 34698.52 17182.69 35396.46 22996.52 27480.38 32599.90 1490.36 29098.79 25199.03 173
agg_prior290.34 29198.90 23899.10 164
LCM-MVSNet-Re97.33 11297.33 10597.32 15898.13 20493.79 17896.99 12599.65 596.74 9799.47 1398.93 5396.91 6599.84 3090.11 29299.06 22498.32 261
CDS-MVSNet94.88 22994.12 25697.14 16797.64 26493.57 18793.96 28697.06 28590.05 29096.30 23896.55 27086.10 29599.47 20090.10 29399.31 18798.40 250
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 20694.65 23197.84 11298.28 18094.96 13193.73 29498.33 19785.03 34395.44 27296.60 26895.31 13699.44 21090.01 29499.13 21199.11 160
baseline193.14 28992.64 29094.62 29097.34 29087.20 30996.67 14393.02 34594.71 19096.51 22795.83 30681.64 31698.60 33690.00 29588.06 37698.07 282
TAPA-MVS93.32 1294.93 22694.23 25197.04 17498.18 19494.51 14795.22 22698.73 13581.22 36096.25 24195.95 30393.80 18498.98 30189.89 29698.87 24297.62 309
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 29891.08 31096.30 21893.12 37592.81 20490.58 35595.96 31079.17 36891.85 35392.27 36090.29 25598.66 33189.85 29796.68 33897.43 317
PVSNet_BlendedMVS95.02 22594.93 21695.27 26297.79 24487.40 30594.14 27798.68 15088.94 30294.51 29498.01 14893.04 19899.30 25289.77 29899.49 12999.11 160
PVSNet_Blended93.96 26893.65 26794.91 27697.79 24487.40 30591.43 33998.68 15084.50 34894.51 29494.48 33593.04 19899.30 25289.77 29898.61 26998.02 292
MSDG95.33 21095.13 20695.94 23497.40 28391.85 22791.02 35198.37 19195.30 16896.31 23795.99 29894.51 16498.38 35089.59 30097.65 31397.60 311
PMVScopyleft89.60 1796.71 15196.97 12895.95 23299.51 2997.81 1997.42 10397.49 27097.93 4795.95 25498.58 7896.88 6896.91 37189.59 30099.36 16893.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 24110.37 38676.21 34799.04 29389.47 302
SCA93.38 28493.52 26992.96 33096.24 32581.40 36293.24 30994.00 33591.58 27294.57 29196.97 24387.94 28199.42 21389.47 30297.66 31298.06 286
tpmvs90.79 32090.87 31490.57 35192.75 37976.30 37695.79 18893.64 34091.04 28091.91 35296.26 28577.19 34298.86 31289.38 30489.85 37496.56 345
Anonymous2023120695.27 21395.06 21195.88 23698.72 12789.37 26395.70 19197.85 24688.00 31396.98 20097.62 19091.95 22899.34 24289.21 30599.53 11198.94 186
CHOSEN 1792x268894.10 26493.41 27196.18 22399.16 7690.04 25392.15 32998.68 15079.90 36596.22 24297.83 17087.92 28599.42 21389.18 30699.65 7499.08 165
114514_t93.96 26893.22 27596.19 22299.06 9590.97 24095.99 17598.94 7973.88 37893.43 32996.93 24692.38 21999.37 23589.09 30799.28 19298.25 271
pmmvs390.00 32588.90 33593.32 31894.20 36785.34 33091.25 34592.56 35278.59 36993.82 31195.17 31967.36 37698.69 32689.08 30898.03 29495.92 351
testdata95.70 24498.16 19890.58 24797.72 25580.38 36395.62 26897.02 24092.06 22698.98 30189.06 30998.52 27497.54 313
MDTV_nov1_ep1391.28 30794.31 36273.51 38294.80 24993.16 34486.75 32693.45 32897.40 20876.37 34598.55 34088.85 31096.43 341
PMMVS293.66 27694.07 25792.45 33997.57 26880.67 36586.46 37296.00 30893.99 21497.10 18697.38 21489.90 25997.82 36588.76 31199.47 13598.86 206
QAPM95.88 18895.57 19796.80 18897.90 22491.84 22898.18 5298.73 13588.41 30796.42 23098.13 12994.73 15299.75 7088.72 31298.94 23498.81 210
CHOSEN 280x42089.98 32689.19 33292.37 34095.60 34781.13 36486.22 37397.09 28381.44 35987.44 37493.15 34473.99 35399.47 20088.69 31399.07 22196.52 346
testgi96.07 17996.50 15994.80 28499.26 5587.69 29995.96 17898.58 16795.08 17798.02 13296.25 28697.92 1697.60 36888.68 31498.74 25699.11 160
CostFormer89.75 33089.25 32891.26 34794.69 35978.00 37195.32 21891.98 35581.50 35890.55 35996.96 24571.06 36798.89 30888.59 31592.63 36896.87 332
UnsupCasMVSNet_bld94.72 23894.26 25096.08 22698.62 14390.54 25093.38 30598.05 23890.30 28797.02 19696.80 25789.54 26599.16 27888.44 31696.18 34598.56 238
TAMVS95.49 20194.94 21497.16 16598.31 17693.41 19195.07 23496.82 29391.09 27997.51 16297.82 17389.96 25899.42 21388.42 31799.44 14398.64 230
Vis-MVSNet (Re-imp)95.11 21994.85 22195.87 23799.12 8889.17 26697.54 9794.92 32796.50 10896.58 22297.27 22383.64 31199.48 19788.42 31799.67 7198.97 182
EPNet_dtu91.39 31490.75 31793.31 31990.48 38482.61 35494.80 24992.88 34793.39 22881.74 38194.90 32781.36 31999.11 28588.28 31998.87 24298.21 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 30990.69 31895.11 26793.80 37090.98 23994.16 27491.78 35796.38 11290.30 36299.30 2272.02 36498.90 30788.28 31990.17 37395.45 360
新几何197.25 16398.29 17894.70 14297.73 25477.98 37194.83 28696.67 26592.08 22599.45 20788.17 32198.65 26597.61 310
testdata299.46 20387.84 322
FE-MVS92.95 29192.22 29595.11 26797.21 29888.33 28298.54 2293.66 33989.91 29296.21 24398.14 12770.33 37099.50 19187.79 32398.24 28697.51 314
无先验93.20 31097.91 24280.78 36199.40 22487.71 32497.94 295
112194.26 25693.26 27397.27 16098.26 18494.73 13795.86 18497.71 25677.96 37294.53 29396.71 26291.93 23099.40 22487.71 32498.64 26697.69 307
WTY-MVS93.55 28093.00 27995.19 26597.81 23487.86 29393.89 28896.00 30889.02 30094.07 30595.44 31786.27 29499.33 24587.69 32696.82 33398.39 252
原ACMM196.58 20098.16 19892.12 22098.15 22385.90 33293.49 32596.43 27792.47 21799.38 23287.66 32798.62 26898.23 272
BH-untuned94.69 23994.75 22894.52 29697.95 22187.53 30194.07 28097.01 28693.99 21497.10 18695.65 31092.65 20998.95 30687.60 32896.74 33697.09 323
PAPM_NR94.61 24594.17 25595.96 23098.36 17491.23 23595.93 18297.95 24092.98 24693.42 33094.43 33690.53 24798.38 35087.60 32896.29 34498.27 269
DPM-MVS93.68 27592.77 28796.42 21197.91 22292.54 20891.17 34797.47 27284.99 34493.08 33594.74 32889.90 25999.00 29787.54 33098.09 29297.72 305
MG-MVS94.08 26694.00 25994.32 30297.09 30485.89 32593.19 31195.96 31092.52 25594.93 28597.51 19989.54 26598.77 31887.52 33197.71 30798.31 263
F-COLMAP95.30 21294.38 24898.05 9898.64 13796.04 7895.61 20198.66 15589.00 30193.22 33396.40 28092.90 20299.35 24087.45 33297.53 31798.77 217
PatchMatch-RL94.61 24593.81 26597.02 17698.19 19195.72 8993.66 29597.23 27688.17 31194.94 28495.62 31291.43 23698.57 33787.36 33397.68 31096.76 340
IB-MVS85.98 2088.63 33786.95 34693.68 31395.12 35484.82 34190.85 35290.17 37087.55 31688.48 37191.34 37058.01 38299.59 16487.24 33493.80 36596.63 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 34188.05 33988.16 36192.85 37768.81 38694.17 27392.88 34785.47 33691.38 35596.14 29368.87 37398.81 31586.88 33583.80 38096.87 332
131492.38 29992.30 29492.64 33595.42 35285.15 33595.86 18496.97 28885.40 33990.62 35793.06 35091.12 24097.80 36686.74 33695.49 35594.97 363
CNLPA95.04 22294.47 24496.75 19197.81 23495.25 11994.12 27997.89 24494.41 19994.57 29195.69 30890.30 25498.35 35386.72 33798.76 25496.64 342
ETH3 D test640094.77 23393.87 26497.47 14498.12 20593.73 18094.56 25898.70 14585.45 33894.70 28995.93 30591.77 23499.63 14886.45 33899.14 20899.05 171
baseline289.65 33188.44 33893.25 32195.62 34682.71 35393.82 29085.94 37888.89 30387.35 37592.54 35871.23 36699.33 24586.01 33994.60 36297.72 305
BH-RMVSNet94.56 24794.44 24794.91 27697.57 26887.44 30493.78 29396.26 30393.69 22296.41 23196.50 27592.10 22499.00 29785.96 34097.71 30798.31 263
E-PMN89.52 33289.78 32688.73 35793.14 37477.61 37283.26 37692.02 35494.82 18793.71 31693.11 34575.31 35096.81 37285.81 34196.81 33491.77 375
API-MVS95.09 22195.01 21395.31 26196.61 31694.02 16896.83 13097.18 27995.60 15695.79 26194.33 33794.54 16398.37 35285.70 34298.52 27493.52 369
AdaColmapbinary95.11 21994.62 23596.58 20097.33 29294.45 15094.92 24398.08 23293.15 24193.98 31095.53 31594.34 16899.10 28785.69 34398.61 26996.20 350
ADS-MVSNet291.47 31390.51 32194.36 30195.51 34885.63 32695.05 23795.70 31483.46 35192.69 34196.84 25279.15 33099.41 22285.66 34490.52 37198.04 290
ADS-MVSNet90.95 31990.26 32393.04 32695.51 34882.37 35695.05 23793.41 34283.46 35192.69 34196.84 25279.15 33098.70 32585.66 34490.52 37198.04 290
MDTV_nov1_ep13_2view57.28 38894.89 24480.59 36294.02 30778.66 33285.50 34697.82 301
OpenMVS_ROBcopyleft91.80 1493.64 27893.05 27695.42 25897.31 29491.21 23695.08 23396.68 30081.56 35796.88 20796.41 27890.44 25099.25 26485.39 34797.67 31195.80 354
KD-MVS_2432*160088.93 33587.74 34092.49 33688.04 38581.99 35889.63 36695.62 31691.35 27495.06 27993.11 34556.58 38498.63 33285.19 34895.07 35696.85 334
miper_refine_blended88.93 33587.74 34092.49 33688.04 38581.99 35889.63 36695.62 31691.35 27495.06 27993.11 34556.58 38498.63 33285.19 34895.07 35696.85 334
PVSNet86.72 1991.10 31690.97 31391.49 34597.56 27078.04 37087.17 37194.60 33084.65 34692.34 34892.20 36187.37 28998.47 34485.17 35097.69 30997.96 294
PLCcopyleft91.02 1694.05 26792.90 28097.51 13698.00 21695.12 12894.25 26898.25 20486.17 32891.48 35495.25 31891.01 24199.19 27285.02 35196.69 33798.22 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 38171.40 38581.67 35690.11 37798.99 29984.86 352
CMPMVSbinary73.10 2392.74 29491.39 30596.77 19093.57 37394.67 14394.21 27297.67 25880.36 36493.61 32196.60 26882.85 31497.35 36984.86 35298.78 25298.29 268
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 30091.69 30394.32 30296.23 32789.16 26792.27 32892.88 34784.39 35095.29 27596.35 28385.66 29896.74 37584.53 35497.56 31597.05 325
tpm cat188.01 34287.33 34390.05 35494.48 36176.28 37794.47 26194.35 33373.84 37989.26 36795.61 31373.64 35798.30 35584.13 35586.20 37895.57 359
MAR-MVS94.21 26093.03 27897.76 11696.94 31097.44 3796.97 12697.15 28087.89 31592.00 35192.73 35692.14 22299.12 28283.92 35697.51 31896.73 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 30391.83 30093.25 32196.18 33083.68 35196.27 15793.68 33876.97 37592.54 34799.18 3189.20 27398.55 34083.88 35798.60 27197.51 314
EMVS89.06 33489.22 32988.61 35893.00 37677.34 37382.91 37790.92 36294.64 19292.63 34591.81 36576.30 34697.02 37083.83 35896.90 33191.48 376
HY-MVS91.43 1592.58 29691.81 30194.90 27896.49 31988.87 27197.31 10694.62 32985.92 33190.50 36096.84 25285.05 30199.40 22483.77 35995.78 35196.43 347
test0.0.03 190.11 32389.21 33092.83 33293.89 36986.87 31591.74 33688.74 37392.02 26394.71 28891.14 37273.92 35594.48 37983.75 36092.94 36697.16 322
tpm288.47 33887.69 34290.79 34994.98 35677.34 37395.09 23191.83 35677.51 37489.40 36696.41 27867.83 37598.73 32283.58 36192.60 36996.29 349
MVS-HIRNet88.40 33990.20 32482.99 36397.01 30660.04 38793.11 31285.61 37984.45 34988.72 37099.09 4184.72 30598.23 35782.52 36296.59 34090.69 378
BH-w/o92.14 30491.94 29892.73 33497.13 30385.30 33192.46 32495.64 31589.33 29794.21 30092.74 35589.60 26398.24 35681.68 36394.66 36094.66 364
MIMVSNet93.42 28292.86 28195.10 26998.17 19688.19 28498.13 5493.69 33692.07 26295.04 28298.21 12280.95 32399.03 29681.42 36498.06 29398.07 282
TR-MVS92.54 29792.20 29693.57 31596.49 31986.66 31693.51 30094.73 32889.96 29194.95 28393.87 34190.24 25698.61 33481.18 36594.88 35895.45 360
thres600view792.03 30691.43 30493.82 30998.19 19184.61 34296.27 15790.39 36696.81 9596.37 23393.11 34573.44 36199.49 19480.32 36697.95 29697.36 319
PAPR92.22 30291.27 30895.07 27095.73 34588.81 27391.97 33397.87 24585.80 33390.91 35692.73 35691.16 23998.33 35479.48 36795.76 35298.08 280
MVS90.02 32489.20 33192.47 33894.71 35886.90 31495.86 18496.74 29764.72 38090.62 35792.77 35492.54 21498.39 34979.30 36895.56 35492.12 373
gg-mvs-nofinetune88.28 34086.96 34592.23 34292.84 37884.44 34498.19 5174.60 38599.08 1087.01 37699.47 1056.93 38398.23 35778.91 36995.61 35394.01 367
thres100view90091.76 31091.26 30993.26 32098.21 18984.50 34396.39 15090.39 36696.87 9396.33 23493.08 34973.44 36199.42 21378.85 37097.74 30495.85 352
tfpn200view991.55 31291.00 31193.21 32398.02 21084.35 34595.70 19190.79 36396.26 11895.90 25992.13 36273.62 35899.42 21378.85 37097.74 30495.85 352
thres40091.68 31191.00 31193.71 31298.02 21084.35 34595.70 19190.79 36396.26 11895.90 25992.13 36273.62 35899.42 21378.85 37097.74 30497.36 319
thres20091.00 31890.42 32292.77 33397.47 27983.98 34994.01 28291.18 36195.12 17695.44 27291.21 37173.93 35499.31 24977.76 37397.63 31495.01 362
wuyk23d93.25 28795.20 20387.40 36296.07 33695.38 11097.04 12294.97 32695.33 16699.70 598.11 13398.14 1391.94 38077.76 37399.68 6974.89 380
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30714.32 38364.27 38491.69 36773.45 36088.05 38276.06 37566.94 38293.54 368
PCF-MVS89.43 1892.12 30590.64 31996.57 20297.80 23893.48 19089.88 36498.45 17774.46 37796.04 25195.68 30990.71 24699.31 24973.73 37699.01 22896.91 331
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 34783.21 35088.34 35995.76 34474.97 38183.49 37592.70 35178.47 37087.94 37286.90 37983.38 31396.63 37673.44 37766.86 38393.40 370
GG-mvs-BLEND90.60 35091.00 38284.21 34798.23 4572.63 38882.76 37984.11 38056.14 38696.79 37372.20 37892.09 37090.78 377
FPMVS89.92 32888.63 33693.82 30998.37 17396.94 4991.58 33793.34 34388.00 31390.32 36197.10 23470.87 36891.13 38171.91 37996.16 34793.39 371
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32785.28 33381.78 37875.79 38486.01 32982.53 38091.88 36492.74 20587.47 38371.42 38094.86 35991.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38182.93 38130.25 381
PAPM87.64 34485.84 34993.04 32696.54 31784.99 33888.42 37095.57 31979.52 36683.82 37893.05 35180.57 32498.41 34762.29 38292.79 36795.71 355
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33374.08 38752.51 38180.87 38288.03 37875.25 35170.63 38459.23 38384.94 37975.62 379
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32297.54 310.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1120.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3240.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1798.20 699.03 799.25 1798.96 1898.87 45
test_one_060199.05 9995.50 10598.87 9397.21 8698.03 13098.30 10596.93 62
eth-test20.00 392
eth-test0.00 392
test_241102_ONE99.22 6495.35 11398.83 11296.04 13199.08 3498.13 12997.87 2099.33 245
save fliter98.48 16394.71 13994.53 25998.41 18595.02 181
test072699.24 5995.51 10296.89 12898.89 8595.92 13998.64 5998.31 10197.06 52
GSMVS98.06 286
test_part299.03 10196.07 7798.08 124
sam_mvs177.80 33598.06 286
sam_mvs77.38 339
MTGPAbinary98.73 135
test_post10.87 38576.83 34399.07 290
patchmatchnet-post96.84 25277.36 34099.42 213
MTMP96.55 14474.60 385
TEST997.84 23095.23 12093.62 29698.39 18886.81 32493.78 31295.99 29894.68 15699.52 186
test_897.81 23495.07 12993.54 29998.38 19087.04 32193.71 31695.96 30294.58 16199.52 186
agg_prior97.80 23894.96 13198.36 19293.49 32599.53 182
test_prior495.38 11093.61 298
test_prior97.46 14797.79 24494.26 16198.42 18399.34 24298.79 212
新几何293.43 301
旧先验197.80 23893.87 17397.75 25397.04 23993.57 18998.68 26098.72 224
原ACMM292.82 315
test22298.17 19693.24 19592.74 31997.61 26875.17 37694.65 29096.69 26490.96 24398.66 26397.66 308
segment_acmp95.34 134
testdata192.77 31693.78 219
test1297.46 14797.61 26694.07 16697.78 25293.57 32393.31 19399.42 21398.78 25298.89 199
plane_prior798.70 13294.67 143
plane_prior698.38 17294.37 15391.91 232
plane_prior496.77 258
plane_prior394.51 14795.29 16996.16 246
plane_prior296.50 14696.36 114
plane_prior198.49 161
plane_prior94.29 15695.42 20894.31 20398.93 236
n20.00 393
nn0.00 393
door-mid98.17 217
test1198.08 232
door97.81 251
HQP5-MVS92.47 210
HQP-NCC97.85 22694.26 26593.18 23792.86 338
ACMP_Plane97.85 22694.26 26593.18 23792.86 338
HQP4-MVS92.87 33799.23 26999.06 169
HQP3-MVS98.43 18098.74 256
HQP2-MVS90.33 251
NP-MVS98.14 20193.72 18195.08 320
ACMMP++_ref99.52 116
ACMMP++99.55 105
Test By Simon94.51 164