This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1697.98 4292.98 142
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10889.16 11992.25 14672.03 21096.36 288.21 790.93 25192.98 142
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8788.13 3496.30 384.51 5997.81 5291.70 190
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9288.19 3196.29 487.61 1598.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10280.48 6791.85 11371.22 20090.38 9192.98 12086.06 5996.11 581.99 8396.75 91
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
No_MVS88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
DTE-MVSNet89.98 4391.91 1384.21 15196.51 757.84 30088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 11298.57 1498.80 6
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8291.74 6994.41 7088.17 3295.98 1086.37 3497.99 4093.96 103
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7891.13 7993.19 11386.22 5795.97 1182.23 8097.18 7990.45 222
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10592.49 2491.19 13267.85 23886.63 16494.84 5179.58 12995.96 1287.62 1494.50 17894.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5199.27 199.54 1
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11792.36 2689.06 18577.34 11993.63 3595.83 2565.40 24195.90 1485.01 5498.23 2797.49 13
WR-MVS_H89.91 4691.31 2985.71 12196.32 962.39 24789.54 7493.31 6490.21 1095.57 995.66 2981.42 11195.90 1480.94 9098.80 298.84 5
DVP-MVS++90.07 3891.09 3287.00 9291.55 12772.64 13796.19 294.10 3485.33 3293.49 3694.64 6081.12 11495.88 1687.41 2095.94 12592.48 159
test_0728_SECOND86.79 9694.25 4572.45 14590.54 4894.10 3495.88 1686.42 3297.97 4392.02 180
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8591.29 7693.97 9287.93 3895.87 1888.65 497.96 4594.12 96
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8794.21 7987.75 3995.87 1887.60 1697.71 5893.83 108
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1197.76 5593.99 100
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12394.26 7777.55 14595.86 2184.88 5595.87 12995.24 58
SED-MVS90.46 3391.64 1786.93 9394.18 4672.65 13590.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4297.92 4692.29 169
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4297.82 5192.04 179
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7691.38 7393.80 10287.20 4695.80 2487.10 2997.69 5993.93 104
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9994.03 8986.57 5295.80 2487.35 2297.62 6294.20 90
X-MVStestdata85.04 11682.70 16492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9916.05 38286.57 5295.80 2487.35 2297.62 6294.20 90
DVP-MVScopyleft90.06 3991.32 2886.29 10594.16 4972.56 14190.54 4891.01 13683.61 4893.75 3094.65 5789.76 1895.78 2786.42 3297.97 4390.55 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 2098.21 2992.98 142
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16389.71 10694.82 5285.09 6395.77 2984.17 6298.03 3893.26 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9890.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_030486.35 9685.92 10787.66 8789.21 17873.16 13288.40 9583.63 26281.27 7180.87 26494.12 8671.49 21495.71 3187.79 1096.50 9994.11 97
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8194.00 9188.26 3095.71 3187.28 2598.39 2092.55 157
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9090.15 1695.67 3386.82 3097.34 7492.19 175
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3487.35 2298.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS90.03 4191.88 1484.48 14296.57 558.88 29088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3578.69 11598.72 898.97 3
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10991.09 4291.87 11272.61 18292.16 6095.23 4166.01 23795.59 3686.02 4497.78 5397.24 17
PS-CasMVS90.06 3991.92 1184.47 14396.56 658.83 29389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3779.42 11098.74 599.00 2
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9588.35 2995.56 3887.74 1197.74 5792.85 145
RPMNet78.88 21878.28 22580.68 22279.58 31762.64 24282.58 20094.16 2774.80 14875.72 31392.59 13448.69 32695.56 3873.48 17982.91 33383.85 304
CP-MVSNet89.27 5890.91 4084.37 14496.34 858.61 29688.66 9192.06 10590.78 695.67 795.17 4381.80 10795.54 4079.00 11398.69 998.95 4
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4387.16 2797.60 6492.73 148
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4387.21 2698.11 3593.12 138
test_241102_ONE94.18 4672.65 13593.69 5083.62 4794.11 2293.78 10490.28 1495.50 45
EC-MVSNet88.01 7588.32 7287.09 9189.28 17572.03 15190.31 5496.31 380.88 7785.12 19189.67 21184.47 7095.46 4682.56 7596.26 11193.77 113
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11691.97 6594.89 4988.38 2795.45 4789.27 397.87 5093.27 131
CANet83.79 14782.85 16286.63 9886.17 24772.21 15083.76 17091.43 12377.24 12274.39 32587.45 24775.36 16795.42 4877.03 14092.83 21592.25 173
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12894.37 7386.74 5095.41 4986.32 3598.21 2993.19 135
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D90.60 3090.34 4791.38 2489.03 18184.23 4593.58 694.68 1690.65 790.33 9393.95 9784.50 6995.37 5080.87 9195.50 14294.53 79
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5188.06 898.15 3495.95 41
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12491.09 13478.77 10484.85 19890.89 18280.85 11795.29 5281.14 8895.32 14792.34 166
EPP-MVSNet85.47 10885.04 12286.77 9791.52 13069.37 17591.63 3687.98 20381.51 6987.05 15591.83 15566.18 23695.29 5270.75 20396.89 8595.64 46
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11684.07 4292.00 6494.40 7186.63 5195.28 5488.59 598.31 2392.30 168
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 11089.45 7793.61 5379.44 9386.55 16592.95 12374.84 17395.22 5580.78 9395.83 13194.46 80
plane_prior593.61 5395.22 5580.78 9395.83 13194.46 80
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10092.87 4693.74 10590.60 1195.21 5782.87 7298.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8491.30 13476.92 10387.19 10991.99 10770.56 20584.96 19490.69 18980.01 12695.14 5878.37 11795.78 13691.82 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.31 13183.91 14785.52 12488.58 19370.40 16684.50 15293.37 5878.76 10584.07 21678.72 34780.39 12295.13 5973.82 17492.98 21291.04 204
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6086.67 3197.60 6494.18 92
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12978.20 11086.69 16392.28 14580.36 12395.06 6186.17 4096.49 10090.22 226
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13792.94 4494.96 4788.36 2895.01 6290.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS86.17 10185.54 11588.05 8392.25 10075.45 11883.85 16692.01 10665.91 25086.19 17391.75 15983.77 7794.98 6377.43 13596.71 9293.73 114
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6479.95 10198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS-MVSNet86.66 9286.82 9686.17 11192.05 10866.87 19991.21 3988.64 19086.30 2889.60 11392.59 13469.22 22194.91 6573.89 17297.89 4996.72 26
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7495.32 1097.24 572.94 19894.85 6685.07 5197.78 5397.26 16
test1286.57 9990.74 14972.63 13990.69 14482.76 23479.20 13094.80 6795.32 14792.27 171
SixPastTwentyTwo87.20 8587.45 8386.45 10292.52 9169.19 18087.84 10388.05 20181.66 6794.64 1496.53 1465.94 23894.75 6883.02 7196.83 8895.41 51
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 10085.25 13891.23 13077.31 12187.07 15491.47 16482.94 8594.71 6984.67 5796.27 11092.62 155
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16981.12 11494.68 7074.48 16395.35 14592.29 169
K. test v385.14 11484.73 12686.37 10391.13 14169.63 17385.45 13676.68 30884.06 4392.44 5796.99 862.03 25894.65 7180.58 9693.24 20594.83 72
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10191.19 4095.74 581.38 7092.28 5993.80 10286.89 4994.64 7285.52 4797.51 7194.30 89
HQP4-MVS80.56 26894.61 7393.56 124
HQP-MVS84.61 12484.06 14386.27 10691.19 13770.66 16384.77 14292.68 9173.30 16980.55 26990.17 20472.10 20694.61 7377.30 13794.47 17993.56 124
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10191.97 10870.73 20494.19 2196.67 1176.94 15494.57 7583.07 6996.28 10896.15 33
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17892.38 9870.25 21189.35 11890.68 19082.85 8694.57 7579.55 10795.95 12492.00 181
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12797.64 283.45 8194.55 7786.02 4498.60 1296.67 27
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9584.32 20789.33 21783.87 7494.53 7882.45 7694.89 16694.90 65
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9589.42 7995.73 677.87 11481.64 25587.25 25182.43 9194.53 7877.65 13096.46 10294.14 95
iter_conf_final80.36 20178.88 21484.79 13586.29 24266.36 20586.95 11486.25 22668.16 23282.09 24489.48 21336.59 37494.51 8079.83 10394.30 18393.50 127
iter_conf0578.81 22077.35 23383.21 17482.98 28860.75 27084.09 15888.34 19563.12 26984.25 21489.48 21331.41 37994.51 8076.64 14395.83 13194.38 87
114514_t83.10 16282.54 16984.77 13792.90 8169.10 18286.65 12290.62 14754.66 32381.46 25790.81 18676.98 15394.38 8272.62 19196.18 11290.82 210
MVSFormer82.23 17181.57 18284.19 15385.54 25569.26 17791.98 3190.08 16671.54 19576.23 30785.07 28758.69 27994.27 8386.26 3688.77 27689.03 248
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16671.54 19594.28 2096.54 1381.57 10994.27 8386.26 3696.49 10097.09 21
原ACMM184.60 14192.81 8774.01 12691.50 12162.59 27282.73 23590.67 19176.53 16194.25 8569.24 21795.69 13985.55 285
AdaColmapbinary83.66 14983.69 14983.57 16690.05 16472.26 14886.29 12890.00 16878.19 11181.65 25487.16 25383.40 8294.24 8661.69 28294.76 17484.21 299
Effi-MVS+-dtu85.82 10583.38 15193.14 387.13 22291.15 287.70 10488.42 19274.57 15183.56 22285.65 27478.49 13694.21 8772.04 19592.88 21494.05 99
EIA-MVS82.19 17281.23 18785.10 13087.95 20569.17 18183.22 18593.33 6170.42 20778.58 29079.77 34177.29 14794.20 8871.51 19788.96 27491.93 184
UniMVSNet (Re)86.87 8786.98 9286.55 10093.11 7768.48 18483.80 16992.87 8580.37 8089.61 11291.81 15777.72 14294.18 8975.00 16198.53 1596.99 24
PHI-MVS86.38 9585.81 11088.08 8188.44 19777.34 9889.35 8093.05 7773.15 17484.76 19987.70 24278.87 13394.18 8980.67 9596.29 10792.73 148
test_prior86.32 10490.59 15371.99 15292.85 8694.17 9192.80 146
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4198.48 1797.22 19
tttt051781.07 18779.58 20885.52 12488.99 18366.45 20387.03 11375.51 31673.76 15988.32 13490.20 20137.96 37194.16 9379.36 11195.13 15495.93 42
v7n90.13 3690.96 3887.65 8891.95 11071.06 16189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8794.08 9486.25 3897.63 6197.82 8
v1086.54 9387.10 8884.84 13388.16 20363.28 23386.64 12392.20 10275.42 14392.81 5094.50 6374.05 18394.06 9583.88 6496.28 10897.17 20
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11192.86 8467.02 19682.55 20291.56 11983.08 5490.92 8391.82 15678.25 13893.99 9674.16 16698.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 10993.24 7467.02 19683.16 18692.21 10181.73 6690.92 8391.97 15077.20 14893.99 9674.16 16698.35 2197.61 10
DP-MVS Recon84.05 14183.22 15386.52 10191.73 12075.27 11983.23 18492.40 9672.04 19282.04 24588.33 23177.91 14193.95 9866.17 24595.12 15690.34 225
h-mvs3384.25 13482.76 16388.72 7091.82 11982.60 5684.00 16184.98 24971.27 19786.70 16190.55 19463.04 25593.92 9978.26 12194.20 18689.63 234
DP-MVS88.60 6689.01 6387.36 9091.30 13477.50 9487.55 10592.97 8387.95 2089.62 11092.87 12684.56 6893.89 10077.65 13096.62 9490.70 214
NR-MVSNet86.00 10286.22 10285.34 12793.24 7464.56 22082.21 21490.46 15080.99 7588.42 13091.97 15077.56 14493.85 10172.46 19398.65 1197.61 10
EPNet80.37 20078.41 22486.23 10776.75 34073.28 12987.18 11077.45 30276.24 12868.14 35088.93 22465.41 24093.85 10169.47 21596.12 11691.55 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 8978.78 10392.51 5593.64 10888.13 3493.84 10384.83 5697.55 6794.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 8092.89 12587.27 4493.78 10483.69 6697.55 67
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12994.02 5464.13 22484.38 15391.29 12884.88 3892.06 6393.84 10186.45 5493.73 10573.22 18398.66 1097.69 9
v886.22 9986.83 9584.36 14687.82 20762.35 24986.42 12691.33 12776.78 12592.73 5294.48 6573.41 19293.72 10683.10 6895.41 14397.01 23
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9787.35 10892.09 10478.87 10284.27 21294.05 8878.35 13793.65 10780.54 9791.58 23992.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v124084.30 13284.51 13483.65 16387.65 21261.26 26082.85 19491.54 12067.94 23690.68 9090.65 19271.71 21293.64 10882.84 7394.78 17196.07 36
TEST992.34 9679.70 7483.94 16290.32 15565.41 26084.49 20290.97 17882.03 10193.63 109
train_agg85.98 10385.28 11988.07 8292.34 9679.70 7483.94 16290.32 15565.79 25184.49 20290.97 17881.93 10393.63 10981.21 8796.54 9790.88 208
PCF-MVS74.62 1582.15 17380.92 19185.84 11889.43 17272.30 14780.53 23491.82 11557.36 31387.81 14189.92 20777.67 14393.63 10958.69 29795.08 15791.58 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119284.57 12584.69 13084.21 15187.75 20962.88 23783.02 18991.43 12369.08 22189.98 10190.89 18272.70 20293.62 11282.41 7794.97 16396.13 34
FE-MVS79.98 21178.86 21583.36 17086.47 23366.45 20389.73 6584.74 25472.80 17884.22 21591.38 16644.95 35293.60 11363.93 26491.50 24090.04 232
v192192084.23 13684.37 13983.79 15987.64 21361.71 25582.91 19291.20 13167.94 23690.06 9690.34 19772.04 20993.59 11482.32 7894.91 16496.07 36
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14670.00 21494.55 1596.67 1187.94 3793.59 11484.27 6195.97 12295.52 49
test_040288.65 6589.58 5685.88 11792.55 9072.22 14984.01 16089.44 18088.63 1694.38 1795.77 2686.38 5693.59 11479.84 10295.21 15191.82 186
thisisatest053079.07 21577.33 23484.26 15087.13 22264.58 21983.66 17375.95 31168.86 22485.22 19087.36 24938.10 36993.57 11775.47 15594.28 18494.62 74
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16069.27 21894.39 1696.38 1586.02 6093.52 11883.96 6395.92 12795.34 53
v14419284.24 13584.41 13783.71 16287.59 21461.57 25682.95 19191.03 13567.82 23989.80 10490.49 19573.28 19593.51 11981.88 8594.89 16696.04 38
v114484.54 12784.72 12884.00 15487.67 21162.55 24482.97 19090.93 13970.32 21089.80 10490.99 17773.50 18993.48 12081.69 8694.65 17695.97 39
MCST-MVS84.36 12983.93 14685.63 12291.59 12271.58 15883.52 17592.13 10361.82 27883.96 21789.75 21079.93 12893.46 12178.33 11994.34 18291.87 185
test_892.09 10678.87 8183.82 16790.31 15765.79 25184.36 20590.96 18081.93 10393.44 122
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11289.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12278.35 11898.76 395.61 48
FC-MVSNet-test85.93 10487.05 9082.58 19092.25 10056.44 31185.75 13293.09 7577.33 12091.94 6694.65 5774.78 17593.41 12475.11 16098.58 1397.88 7
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10793.17 7076.02 13188.64 12691.22 16984.24 7393.37 12577.97 12897.03 8395.52 49
MG-MVS80.32 20380.94 19078.47 25288.18 20152.62 33782.29 21085.01 24872.01 19379.24 28692.54 13769.36 22093.36 12670.65 20589.19 27289.45 236
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 8887.50 14592.38 14081.42 11193.28 12783.07 6997.24 7791.67 191
F-COLMAP84.97 11983.42 15089.63 5592.39 9483.40 4888.83 8791.92 11073.19 17380.18 27789.15 22177.04 15293.28 12765.82 25092.28 22592.21 174
v2v48284.09 13984.24 14183.62 16487.13 22261.40 25782.71 19789.71 17372.19 19189.55 11491.41 16570.70 21793.20 12981.02 8993.76 19396.25 32
agg_prior91.58 12577.69 9390.30 15884.32 20793.18 130
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13191.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.64 19479.41 20984.34 14883.93 27669.66 17276.28 29681.09 28472.43 18386.47 17190.19 20260.46 26493.15 13277.45 13486.39 30490.22 226
DPM-MVS80.10 20979.18 21282.88 18590.71 15169.74 17078.87 26090.84 14060.29 29575.64 31585.92 27267.28 22993.11 13371.24 19891.79 23485.77 284
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8992.09 6293.89 10083.80 7693.10 13482.67 7498.04 3693.64 119
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16369.87 21595.06 1196.14 2184.28 7293.07 13587.68 1396.34 10697.09 21
PC_three_145258.96 30190.06 9691.33 16780.66 12093.03 13675.78 15295.94 12592.48 159
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9793.83 2793.60 10990.81 792.96 13785.02 5398.45 1892.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS83.18 15982.64 16684.79 13589.05 18067.82 19277.93 27192.52 9468.33 22985.07 19281.54 32582.06 10092.96 13769.35 21697.91 4893.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+83.90 14684.01 14483.57 16687.22 22065.61 21286.55 12592.40 9678.64 10681.34 26084.18 29783.65 7992.93 13974.22 16587.87 28992.17 176
lessismore_v085.95 11491.10 14270.99 16270.91 34891.79 6794.42 6961.76 25992.93 13979.52 10993.03 21093.93 104
FIs85.35 11086.27 10182.60 18991.86 11457.31 30485.10 14193.05 7775.83 13691.02 8293.97 9273.57 18892.91 14173.97 17198.02 3997.58 12
PVSNet_Blended_VisFu81.55 18280.49 19584.70 14091.58 12573.24 13184.21 15491.67 11862.86 27180.94 26287.16 25367.27 23092.87 14269.82 21388.94 27587.99 260
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14687.09 22665.22 21484.16 15594.23 2277.89 11391.28 7793.66 10784.35 7192.71 14380.07 9894.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS81.44 18381.25 18582.03 19784.27 27362.87 23876.47 29492.49 9570.97 20281.64 25583.83 29975.03 17092.70 14474.29 16492.22 22890.51 221
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.83.95 14482.69 16587.72 8589.27 17681.45 6383.72 17181.58 28274.73 14985.66 18386.06 26972.56 20492.69 14575.44 15695.21 15189.01 250
Fast-Effi-MVS+81.04 18880.57 19282.46 19487.50 21563.22 23478.37 26789.63 17668.01 23381.87 24882.08 32082.31 9492.65 14667.10 23788.30 28591.51 196
PLCcopyleft73.85 1682.09 17480.31 19787.45 8990.86 14880.29 6985.88 13090.65 14568.17 23176.32 30686.33 26473.12 19792.61 14761.40 28590.02 26589.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-LS84.73 12284.98 12383.96 15687.35 21763.66 22883.25 18289.88 17076.06 12989.62 11092.37 14373.40 19492.52 14878.16 12394.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)83.13 16183.02 15983.43 16886.16 24966.08 20788.00 9988.36 19475.55 14085.02 19392.75 13165.12 24292.50 14974.94 16291.30 24391.72 188
PAPM_NR83.23 15883.19 15583.33 17190.90 14665.98 20888.19 9790.78 14278.13 11280.87 26487.92 23973.49 19192.42 15070.07 21088.40 28091.60 193
hse-mvs283.47 15581.81 17788.47 7491.03 14382.27 5782.61 19883.69 26071.27 19786.70 16186.05 27063.04 25592.41 15178.26 12193.62 19990.71 213
AUN-MVS81.18 18678.78 21788.39 7690.93 14582.14 5882.51 20483.67 26164.69 26480.29 27385.91 27351.07 31892.38 15276.29 14893.63 19890.65 217
GeoE85.45 10985.81 11084.37 14490.08 16167.07 19585.86 13191.39 12672.33 18887.59 14390.25 20084.85 6692.37 15378.00 12691.94 23393.66 116
PAPM71.77 28970.06 30276.92 27686.39 23553.97 32576.62 29286.62 22253.44 32863.97 36884.73 29157.79 28792.34 15439.65 37281.33 34484.45 296
eth_miper_zixun_eth80.84 19080.22 20182.71 18781.41 29860.98 26677.81 27390.14 16567.31 24286.95 15787.24 25264.26 24592.31 15575.23 15891.61 23794.85 71
PAPR78.84 21978.10 22781.07 21485.17 25960.22 27482.21 21490.57 14862.51 27375.32 31984.61 29274.99 17192.30 15659.48 29588.04 28790.68 215
V4283.47 15583.37 15283.75 16183.16 28463.33 23281.31 22490.23 16269.51 21790.91 8590.81 18674.16 18192.29 15780.06 9990.22 26395.62 47
QAPM82.59 16682.59 16882.58 19086.44 23466.69 20089.94 6290.36 15467.97 23584.94 19692.58 13672.71 20192.18 15870.63 20687.73 29188.85 251
CSCG86.26 9786.47 9885.60 12390.87 14774.26 12587.98 10091.85 11380.35 8189.54 11688.01 23579.09 13192.13 15975.51 15495.06 15890.41 223
TAPA-MVS77.73 1285.71 10684.83 12588.37 7788.78 18879.72 7387.15 11193.50 5669.17 21985.80 18289.56 21280.76 11892.13 15973.21 18895.51 14193.25 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051573.00 28070.52 29680.46 22481.45 29759.90 27873.16 32774.31 32357.86 30876.08 31077.78 35137.60 37292.12 16165.00 25691.45 24189.35 239
HyFIR lowres test75.12 25972.66 27982.50 19391.44 13365.19 21572.47 32887.31 20846.79 35480.29 27384.30 29552.70 31192.10 16251.88 34186.73 29990.22 226
Anonymous2023121188.40 6789.62 5584.73 13890.46 15565.27 21388.86 8693.02 8187.15 2393.05 4397.10 682.28 9792.02 16376.70 14297.99 4096.88 25
baseline85.20 11385.93 10683.02 17886.30 24162.37 24884.55 14893.96 3974.48 15287.12 14992.03 14982.30 9591.94 16478.39 11694.21 18594.74 73
EI-MVSNet-Vis-set85.12 11584.53 13386.88 9484.01 27572.76 13483.91 16585.18 24280.44 7988.75 12485.49 27680.08 12591.92 16582.02 8290.85 25595.97 39
EI-MVSNet-UG-set85.04 11684.44 13586.85 9583.87 27872.52 14383.82 16785.15 24380.27 8388.75 12485.45 27879.95 12791.90 16681.92 8490.80 25696.13 34
casdiffmvspermissive85.21 11285.85 10983.31 17286.17 24762.77 24083.03 18893.93 4074.69 15088.21 13592.68 13382.29 9691.89 16777.87 12993.75 19595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tt080588.09 7489.79 5182.98 17993.26 7363.94 22791.10 4189.64 17585.07 3590.91 8591.09 17489.16 2291.87 16882.03 8195.87 12993.13 136
IB-MVS62.13 1971.64 29068.97 31079.66 23680.80 30862.26 25173.94 32076.90 30563.27 26868.63 34976.79 35933.83 37791.84 16959.28 29687.26 29484.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UGNet82.78 16381.64 17986.21 10986.20 24676.24 11386.86 11585.68 23577.07 12373.76 32892.82 12769.64 21891.82 17069.04 22393.69 19690.56 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned80.96 18980.99 18980.84 21888.55 19468.23 18580.33 23788.46 19172.79 17986.55 16586.76 25974.72 17791.77 17161.79 28188.99 27382.52 324
c3_l81.64 18181.59 18181.79 20580.86 30659.15 28778.61 26490.18 16468.36 22887.20 14787.11 25569.39 21991.62 17278.16 12394.43 18194.60 75
API-MVS82.28 17082.61 16781.30 20986.29 24269.79 16988.71 9087.67 20578.42 10982.15 24384.15 29877.98 13991.59 17365.39 25392.75 21682.51 325
nrg03087.85 8088.49 7085.91 11590.07 16369.73 17187.86 10294.20 2574.04 15592.70 5394.66 5685.88 6191.50 17479.72 10597.32 7596.50 31
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
PVSNet_BlendedMVS78.80 22177.84 22881.65 20684.43 26763.41 23079.49 24990.44 15161.70 28175.43 31687.07 25669.11 22291.44 17760.68 28992.24 22690.11 230
PVSNet_Blended76.49 24775.40 25179.76 23384.43 26763.41 23075.14 31090.44 15157.36 31375.43 31678.30 34969.11 22291.44 17760.68 28987.70 29284.42 297
miper_ehance_all_eth80.34 20280.04 20681.24 21279.82 31658.95 28977.66 27589.66 17465.75 25485.99 18085.11 28368.29 22691.42 17976.03 15092.03 23093.33 128
无先验82.81 19585.62 23658.09 30691.41 18067.95 23684.48 295
ambc82.98 17990.55 15464.86 21788.20 9689.15 18389.40 11793.96 9571.67 21391.38 18178.83 11496.55 9692.71 151
UniMVSNet_ETH3D89.12 6190.72 4384.31 14997.00 264.33 22389.67 6988.38 19388.84 1394.29 1897.57 390.48 1391.26 18272.57 19297.65 6097.34 15
miper_enhance_ethall77.83 23076.93 23780.51 22376.15 34658.01 29975.47 30888.82 18658.05 30783.59 22180.69 32964.41 24491.20 18373.16 18992.03 23092.33 167
3Dnovator80.37 784.80 12184.71 12985.06 13186.36 23974.71 12288.77 8990.00 16875.65 13984.96 19493.17 11474.06 18291.19 18478.28 12091.09 24589.29 242
cascas76.29 25074.81 25680.72 22184.47 26662.94 23673.89 32187.34 20755.94 31875.16 32176.53 36163.97 24791.16 18565.00 25690.97 25088.06 258
ET-MVSNet_ETH3D75.28 25672.77 27782.81 18683.03 28768.11 18877.09 28376.51 30960.67 29277.60 30080.52 33338.04 37091.15 18670.78 20290.68 25889.17 243
EG-PatchMatch MVS84.08 14084.11 14283.98 15592.22 10272.61 14082.20 21687.02 21872.63 18188.86 12191.02 17678.52 13491.11 18773.41 18091.09 24588.21 256
WR-MVS83.56 15284.40 13881.06 21593.43 6854.88 32278.67 26385.02 24781.24 7290.74 8991.56 16272.85 19991.08 18868.00 23498.04 3697.23 18
canonicalmvs85.50 10786.14 10483.58 16587.97 20467.13 19487.55 10594.32 1873.44 16588.47 12987.54 24586.45 5491.06 18975.76 15393.76 19392.54 158
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12993.60 5580.16 8489.13 12093.44 11083.82 7590.98 19083.86 6595.30 15093.60 121
PS-MVSNAJ77.04 23976.53 24178.56 24987.09 22661.40 25775.26 30987.13 21361.25 28474.38 32677.22 35776.94 15490.94 19164.63 26184.83 32183.35 312
xiu_mvs_v2_base77.19 23776.75 23978.52 25087.01 22861.30 25975.55 30787.12 21661.24 28574.45 32478.79 34677.20 14890.93 19264.62 26284.80 32283.32 313
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4180.07 8686.75 16093.26 11293.64 290.93 19284.60 5890.75 25793.97 102
v14882.31 16982.48 17081.81 20485.59 25459.66 28081.47 22386.02 23172.85 17788.05 13790.65 19270.73 21690.91 19475.15 15991.79 23494.87 67
VDD-MVS84.23 13684.58 13283.20 17591.17 14065.16 21683.25 18284.97 25079.79 8787.18 14894.27 7474.77 17690.89 19569.24 21796.54 9793.55 126
cl2278.97 21678.21 22681.24 21277.74 33059.01 28877.46 28187.13 21365.79 25184.32 20785.10 28458.96 27890.88 19675.36 15792.03 23093.84 107
alignmvs83.94 14583.98 14583.80 15887.80 20867.88 19184.54 15091.42 12573.27 17288.41 13187.96 23672.33 20590.83 19776.02 15194.11 18792.69 152
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15881.56 6890.02 9891.20 17182.40 9290.81 19873.58 17894.66 17594.56 76
BH-RMVSNet80.53 19580.22 20181.49 20887.19 22166.21 20677.79 27486.23 22774.21 15483.69 21988.50 22973.25 19690.75 19963.18 27187.90 28887.52 266
BH-w/o76.57 24576.07 24678.10 25986.88 23165.92 20977.63 27686.33 22465.69 25580.89 26379.95 33868.97 22490.74 20053.01 33385.25 31377.62 354
TR-MVS76.77 24375.79 24779.72 23486.10 25065.79 21077.14 28283.02 26765.20 26181.40 25882.10 31866.30 23490.73 20155.57 31685.27 31282.65 319
GBi-Net82.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
test182.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
FMVSNet184.55 12685.45 11681.85 20190.27 15861.05 26386.83 11788.27 19878.57 10789.66 10995.64 3075.43 16690.68 20269.09 22195.33 14693.82 109
VDDNet84.35 13085.39 11781.25 21095.13 3159.32 28385.42 13781.11 28386.41 2787.41 14696.21 1973.61 18790.61 20566.33 24496.85 8693.81 112
MAR-MVS80.24 20578.74 21984.73 13886.87 23278.18 8585.75 13287.81 20465.67 25677.84 29578.50 34873.79 18690.53 20661.59 28490.87 25385.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test82.47 16883.22 15380.22 22882.62 29057.75 30282.54 20391.96 10971.16 20182.89 23292.52 13877.41 14690.50 20780.04 10087.84 29092.40 163
MVS_111021_HR84.63 12384.34 14085.49 12690.18 16075.86 11679.23 25587.13 21373.35 16685.56 18689.34 21683.60 8090.50 20776.64 14394.05 18990.09 231
Anonymous2024052986.20 10087.13 8783.42 16990.19 15964.55 22184.55 14890.71 14385.85 3189.94 10295.24 4082.13 9990.40 20969.19 22096.40 10595.31 55
EI-MVSNet82.61 16582.42 17183.20 17583.25 28263.66 22883.50 17685.07 24476.06 12986.55 16585.10 28473.41 19290.25 21078.15 12590.67 25995.68 45
MVSTER77.09 23875.70 24981.25 21075.27 35461.08 26277.49 28085.07 24460.78 29086.55 16588.68 22743.14 36190.25 21073.69 17790.67 25992.42 161
Fast-Effi-MVS+-dtu82.54 16781.41 18385.90 11685.60 25376.53 10883.07 18789.62 17773.02 17679.11 28783.51 30280.74 11990.24 21268.76 22689.29 26990.94 206
SD-MVS88.96 6389.88 4986.22 10891.63 12177.07 10289.82 6493.77 4778.90 10192.88 4592.29 14486.11 5890.22 21386.24 3997.24 7791.36 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet281.31 18481.61 18080.41 22586.38 23658.75 29483.93 16486.58 22372.43 18387.65 14292.98 12063.78 24990.22 21366.86 23893.92 19192.27 171
cl____80.42 19880.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.37 24186.18 17589.21 21963.08 25490.16 21576.31 14795.80 13493.65 118
DIV-MVS_self_test80.43 19780.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.38 24086.19 17389.22 21863.09 25390.16 21576.32 14695.80 13493.66 116
OpenMVScopyleft76.72 1381.98 17782.00 17581.93 19884.42 26968.22 18688.50 9489.48 17966.92 24481.80 25291.86 15272.59 20390.16 21571.19 19991.25 24487.40 268
xiu_mvs_v1_base_debu80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base_debi80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
FMVSNet378.80 22178.55 22179.57 23782.89 28956.89 30981.76 21885.77 23469.04 22286.00 17790.44 19651.75 31690.09 22165.95 24693.34 20191.72 188
test111178.53 22578.85 21677.56 26892.22 10247.49 36282.61 19869.24 35472.43 18385.28 18994.20 8051.91 31490.07 22265.36 25496.45 10395.11 62
LFMVS80.15 20880.56 19378.89 24389.19 17955.93 31385.22 13973.78 32882.96 5584.28 21192.72 13257.38 28890.07 22263.80 26595.75 13790.68 215
test_yl78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
DCV-MVSNet78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
ECVR-MVScopyleft78.44 22678.63 22077.88 26491.85 11548.95 35683.68 17269.91 35272.30 18984.26 21394.20 8051.89 31589.82 22663.58 26696.02 12094.87 67
test250674.12 27073.39 27076.28 28591.85 11544.20 37284.06 15948.20 38372.30 18981.90 24794.20 8027.22 38689.77 22764.81 25896.02 12094.87 67
MVS73.21 27872.59 28075.06 29580.97 30360.81 26981.64 22185.92 23346.03 35971.68 33877.54 35268.47 22589.77 22755.70 31585.39 31074.60 360
LCM-MVSNet-Re83.48 15485.06 12178.75 24685.94 25155.75 31680.05 23994.27 1976.47 12696.09 594.54 6283.31 8389.75 22959.95 29294.89 16690.75 211
EGC-MVSNET74.79 26569.99 30389.19 6394.89 3787.00 1191.89 3486.28 2251.09 3832.23 38595.98 2381.87 10689.48 23079.76 10495.96 12391.10 203
CANet_DTU77.81 23277.05 23580.09 23081.37 29959.90 27883.26 18188.29 19769.16 22067.83 35383.72 30060.93 26189.47 23169.22 21989.70 26690.88 208
GA-MVS75.83 25274.61 25779.48 23981.87 29359.25 28473.42 32482.88 26868.68 22679.75 27881.80 32250.62 32089.46 23266.85 23985.64 30989.72 233
MVP-Stereo75.81 25373.51 26982.71 18789.35 17373.62 12780.06 23885.20 24160.30 29473.96 32787.94 23757.89 28689.45 23352.02 33674.87 36585.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testf189.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
Vis-MVSNet (Re-imp)77.82 23177.79 22977.92 26388.82 18551.29 34783.28 18071.97 34174.04 15582.23 24189.78 20957.38 28889.41 23657.22 30695.41 14393.05 140
MSLP-MVS++85.00 11886.03 10581.90 19991.84 11771.56 15986.75 12193.02 8175.95 13487.12 14989.39 21577.98 13989.40 23777.46 13394.78 17184.75 294
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11184.26 4090.87 8893.92 9982.18 9889.29 23873.75 17594.81 17093.70 115
bld_raw_dy_0_6484.85 12084.44 13586.07 11393.73 6074.93 12188.57 9281.90 27870.44 20691.28 7795.18 4256.62 29389.28 23985.15 5097.09 8193.99 100
thres600view775.97 25175.35 25377.85 26687.01 22851.84 34380.45 23573.26 33275.20 14583.10 23086.31 26645.54 34389.05 24055.03 32292.24 22692.66 153
jason77.42 23575.75 24882.43 19587.10 22569.27 17677.99 27081.94 27751.47 34177.84 29585.07 28760.32 26689.00 24170.74 20489.27 27189.03 248
jason: jason.
lupinMVS76.37 24974.46 26082.09 19685.54 25569.26 17776.79 28780.77 28750.68 34876.23 30782.82 31258.69 27988.94 24269.85 21288.77 27688.07 257
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17888.51 1790.11 9595.12 4590.98 688.92 24377.55 13297.07 8283.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
thres100view90075.45 25575.05 25576.66 28187.27 21851.88 34281.07 22973.26 33275.68 13883.25 22786.37 26345.54 34388.80 24451.98 33790.99 24789.31 240
tfpn200view974.86 26374.23 26276.74 28086.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24789.31 240
thres40075.14 25774.23 26277.86 26586.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24792.66 153
TAMVS78.08 22976.36 24283.23 17390.62 15272.87 13379.08 25680.01 29161.72 28081.35 25986.92 25863.96 24888.78 24750.61 34293.01 21188.04 259
CDS-MVSNet77.32 23675.40 25183.06 17789.00 18272.48 14477.90 27282.17 27560.81 28978.94 28883.49 30359.30 27488.76 24854.64 32592.37 22187.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVS_ROBcopyleft70.19 1777.77 23377.46 23078.71 24784.39 27061.15 26181.18 22882.52 27162.45 27583.34 22687.37 24866.20 23588.66 24964.69 26085.02 31586.32 277
baseline269.77 30766.89 32078.41 25379.51 31958.09 29776.23 29769.57 35357.50 31264.82 36677.45 35446.02 33788.44 25053.08 33077.83 35688.70 252
tpm268.45 31466.83 32173.30 30378.93 32748.50 35779.76 24371.76 34347.50 35369.92 34583.60 30142.07 36388.40 25148.44 35279.51 34883.01 318
新几何182.95 18193.96 5578.56 8480.24 28955.45 32083.93 21891.08 17571.19 21588.33 25265.84 24993.07 20981.95 330
ACMH76.49 1489.34 5591.14 3183.96 15692.50 9270.36 16789.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25383.33 6798.30 2493.20 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20072.34 28571.55 29174.70 29783.48 27951.60 34475.02 31173.71 32970.14 21378.56 29180.57 33246.20 33588.20 25446.99 35789.29 26984.32 298
gm-plane-assit75.42 35344.97 37152.17 33572.36 36987.90 25554.10 326
EU-MVSNet75.12 25974.43 26177.18 27383.11 28659.48 28285.71 13482.43 27339.76 37585.64 18488.76 22544.71 35487.88 25673.86 17385.88 30884.16 300
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13379.26 9689.68 10794.81 5582.44 9087.74 25776.54 14588.74 27896.61 29
D2MVS76.84 24175.67 25080.34 22680.48 31262.16 25373.50 32384.80 25357.61 31182.24 24087.54 24551.31 31787.65 25870.40 20993.19 20791.23 199
dcpmvs_284.23 13685.14 12081.50 20788.61 19261.98 25482.90 19393.11 7368.66 22792.77 5192.39 13978.50 13587.63 25976.99 14192.30 22294.90 65
CostFormer69.98 30668.68 31373.87 29977.14 33650.72 35179.26 25274.51 32151.94 33970.97 34284.75 29045.16 35187.49 26055.16 32179.23 35183.40 311
CVMVSNet72.62 28271.41 29276.28 28583.25 28260.34 27383.50 17679.02 29637.77 37876.33 30585.10 28449.60 32587.41 26170.54 20777.54 36081.08 341
diffmvspermissive80.40 19980.48 19680.17 22979.02 32660.04 27577.54 27890.28 16166.65 24782.40 23887.33 25073.50 18987.35 26277.98 12789.62 26793.13 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VPA-MVSNet83.47 15584.73 12679.69 23590.29 15757.52 30381.30 22688.69 18976.29 12787.58 14494.44 6680.60 12187.20 26366.60 24396.82 8994.34 88
patchmatchnet-post81.71 32345.93 34087.01 264
SCA73.32 27572.57 28175.58 29281.62 29555.86 31478.89 25971.37 34661.73 27974.93 32283.42 30560.46 26487.01 26458.11 30382.63 33883.88 301
mvs_anonymous78.13 22878.76 21876.23 28779.24 32350.31 35378.69 26284.82 25261.60 28283.09 23192.82 12773.89 18587.01 26468.33 23386.41 30391.37 197
TinyColmap81.25 18582.34 17277.99 26285.33 25760.68 27182.32 20988.33 19671.26 19986.97 15692.22 14877.10 15186.98 26762.37 27495.17 15386.31 278
TransMVSNet (Re)84.02 14285.74 11278.85 24491.00 14455.20 32182.29 21087.26 20979.65 9088.38 13295.52 3383.00 8486.88 26867.97 23596.60 9594.45 82
LF4IMVS82.75 16481.93 17685.19 12882.08 29180.15 7085.53 13588.76 18868.01 23385.58 18587.75 24171.80 21186.85 26974.02 17093.87 19288.58 253
pmmvs686.52 9488.06 7481.90 19992.22 10262.28 25084.66 14689.15 18383.54 5089.85 10397.32 488.08 3686.80 27070.43 20897.30 7696.62 28
KD-MVS_self_test81.93 17883.14 15778.30 25584.75 26452.75 33480.37 23689.42 18170.24 21290.26 9493.39 11174.55 18086.77 27168.61 22996.64 9395.38 52
1112_ss74.82 26473.74 26578.04 26189.57 16860.04 27576.49 29387.09 21754.31 32473.66 32979.80 33960.25 26786.76 27258.37 29984.15 32687.32 269
USDC76.63 24476.73 24076.34 28483.46 28057.20 30680.02 24088.04 20252.14 33783.65 22091.25 16863.24 25286.65 27354.66 32494.11 18785.17 289
tfpnnormal81.79 18082.95 16078.31 25488.93 18455.40 31780.83 23382.85 26976.81 12485.90 18194.14 8474.58 17986.51 27466.82 24195.68 14093.01 141
VPNet80.25 20481.68 17875.94 28892.46 9347.98 36076.70 28981.67 28073.45 16484.87 19792.82 12774.66 17886.51 27461.66 28396.85 8693.33 128
testdata286.43 27663.52 268
MSDG80.06 21079.99 20780.25 22783.91 27768.04 19077.51 27989.19 18277.65 11681.94 24683.45 30476.37 16286.31 27763.31 27086.59 30186.41 276
Anonymous20240521180.51 19681.19 18878.49 25188.48 19557.26 30576.63 29182.49 27281.21 7384.30 21092.24 14767.99 22786.24 27862.22 27595.13 15491.98 183
MVS_111021_LR84.28 13383.76 14885.83 11989.23 17783.07 5180.99 23083.56 26372.71 18086.07 17689.07 22281.75 10886.19 27977.11 13993.36 20088.24 255
test_fmvsmvis_n_192085.22 11185.36 11884.81 13485.80 25276.13 11585.15 14092.32 9961.40 28391.33 7490.85 18483.76 7886.16 28084.31 6093.28 20492.15 177
Baseline_NR-MVSNet84.00 14385.90 10878.29 25691.47 13253.44 33082.29 21087.00 22179.06 9989.55 11495.72 2877.20 14886.14 28172.30 19498.51 1695.28 56
EPNet_dtu72.87 28171.33 29377.49 27077.72 33160.55 27282.35 20875.79 31266.49 24858.39 37881.06 32853.68 30785.98 28253.55 32892.97 21385.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ANet_high83.17 16085.68 11375.65 29081.24 30045.26 36979.94 24192.91 8483.83 4491.33 7496.88 1080.25 12485.92 28368.89 22495.89 12895.76 43
Test_1112_low_res73.90 27273.08 27376.35 28390.35 15655.95 31273.40 32586.17 22850.70 34773.14 33085.94 27158.31 28185.90 28456.51 30983.22 33087.20 270
test_fmvsm_n_192083.60 15182.89 16185.74 12085.22 25877.74 9284.12 15790.48 14959.87 29986.45 17291.12 17375.65 16485.89 28582.28 7990.87 25393.58 122
MIMVSNet183.63 15084.59 13180.74 21994.06 5362.77 24082.72 19684.53 25577.57 11890.34 9295.92 2476.88 16085.83 28661.88 28097.42 7293.62 120
tpmvs70.16 30269.56 30671.96 31374.71 35848.13 35879.63 24475.45 31765.02 26270.26 34381.88 32145.34 34885.68 28758.34 30075.39 36482.08 329
pm-mvs183.69 14884.95 12479.91 23190.04 16559.66 28082.43 20687.44 20675.52 14187.85 14095.26 3981.25 11385.65 28868.74 22796.04 11994.42 85
pmmvs-eth3d78.42 22777.04 23682.57 19287.44 21674.41 12480.86 23279.67 29255.68 31984.69 20090.31 19960.91 26285.42 28962.20 27691.59 23887.88 263
testdata79.54 23892.87 8272.34 14680.14 29059.91 29885.47 18891.75 15967.96 22885.24 29068.57 23192.18 22981.06 343
131473.22 27772.56 28275.20 29380.41 31357.84 30081.64 22185.36 23851.68 34073.10 33176.65 36061.45 26085.19 29163.54 26779.21 35282.59 320
CHOSEN 1792x268872.45 28370.56 29578.13 25890.02 16663.08 23568.72 34383.16 26542.99 36975.92 31185.46 27757.22 29085.18 29249.87 34681.67 34086.14 279
pmmvs474.92 26272.98 27580.73 22084.95 26071.71 15776.23 29777.59 30152.83 33177.73 29986.38 26256.35 29684.97 29357.72 30587.05 29685.51 286
旧先验281.73 21956.88 31686.54 17084.90 29472.81 190
HY-MVS64.64 1873.03 27972.47 28374.71 29683.36 28154.19 32482.14 21781.96 27656.76 31769.57 34686.21 26860.03 26884.83 29549.58 34782.65 33685.11 290
ab-mvs79.67 21380.56 19376.99 27488.48 19556.93 30784.70 14586.06 22968.95 22380.78 26693.08 11575.30 16884.62 29656.78 30790.90 25289.43 238
IterMVS76.91 24076.34 24378.64 24880.91 30464.03 22576.30 29579.03 29564.88 26383.11 22989.16 22059.90 27084.46 29768.61 22985.15 31487.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VNet79.31 21480.27 19876.44 28287.92 20653.95 32675.58 30684.35 25674.39 15382.23 24190.72 18872.84 20084.39 29860.38 29193.98 19090.97 205
ppachtmachnet_test74.73 26674.00 26476.90 27780.71 30956.89 30971.53 33378.42 29758.24 30579.32 28582.92 31157.91 28584.26 29965.60 25291.36 24289.56 235
CR-MVSNet74.00 27173.04 27476.85 27979.58 31762.64 24282.58 20076.90 30550.50 34975.72 31392.38 14048.07 32984.07 30068.72 22882.91 33383.85 304
Patchmtry76.56 24677.46 23073.83 30079.37 32246.60 36682.41 20776.90 30573.81 15885.56 18692.38 14048.07 32983.98 30163.36 26995.31 14990.92 207
gg-mvs-nofinetune68.96 31369.11 30868.52 33376.12 34745.32 36883.59 17455.88 37886.68 2464.62 36797.01 730.36 38183.97 30244.78 36482.94 33276.26 356
GG-mvs-BLEND67.16 33673.36 36346.54 36784.15 15655.04 37958.64 37761.95 37829.93 38283.87 30338.71 37476.92 36271.07 364
PM-MVS80.20 20679.00 21383.78 16088.17 20286.66 1581.31 22466.81 36269.64 21688.33 13390.19 20264.58 24383.63 30471.99 19690.03 26481.06 343
JIA-IIPM69.41 31066.64 32477.70 26773.19 36471.24 16075.67 30365.56 36370.42 20765.18 36292.97 12233.64 37883.06 30553.52 32969.61 37478.79 352
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23275.84 34967.22 19381.21 22782.18 27450.78 34676.50 30387.66 24355.20 30382.99 30662.17 27890.64 26289.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test74.48 26773.68 26676.89 27884.83 26266.54 20172.29 32969.16 35557.70 30986.76 15986.33 26445.79 34282.59 30769.63 21490.65 26181.54 334
KD-MVS_2432*160066.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
miper_refine_blended66.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
tpm cat166.76 32265.21 32971.42 31477.09 33750.62 35278.01 26973.68 33044.89 36268.64 34879.00 34445.51 34582.42 31049.91 34570.15 37181.23 340
MS-PatchMatch70.93 29770.22 30073.06 30581.85 29462.50 24573.82 32277.90 29952.44 33475.92 31181.27 32655.67 30081.75 31155.37 31877.70 35874.94 359
CNLPA83.55 15383.10 15884.90 13289.34 17483.87 4684.54 15088.77 18779.09 9883.54 22388.66 22874.87 17281.73 31266.84 24092.29 22489.11 244
baseline173.26 27673.54 26872.43 31184.92 26147.79 36179.89 24274.00 32465.93 24978.81 28986.28 26756.36 29581.63 31356.63 30879.04 35487.87 264
MDA-MVSNet-bldmvs77.47 23476.90 23879.16 24279.03 32564.59 21866.58 35275.67 31473.15 17488.86 12188.99 22366.94 23181.23 31464.71 25988.22 28691.64 192
CL-MVSNet_self_test76.81 24277.38 23275.12 29486.90 23051.34 34573.20 32680.63 28868.30 23081.80 25288.40 23066.92 23280.90 31555.35 31994.90 16593.12 138
MDTV_nov1_ep1368.29 31578.03 32943.87 37374.12 31772.22 33952.17 33567.02 35585.54 27545.36 34780.85 31655.73 31384.42 324
pmmvs570.73 29870.07 30172.72 30777.03 33852.73 33574.14 31675.65 31550.36 35072.17 33685.37 28155.42 30280.67 31752.86 33487.59 29384.77 293
SDMVSNet81.90 17983.17 15678.10 25988.81 18662.45 24676.08 30086.05 23073.67 16083.41 22493.04 11682.35 9380.65 31870.06 21195.03 15991.21 200
Gipumacopyleft84.44 12886.33 10078.78 24584.20 27473.57 12889.55 7290.44 15184.24 4184.38 20494.89 4976.35 16380.40 31976.14 14996.80 9082.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.85 2613.13 38345.19 35080.13 32058.11 303
PatchmatchNetpermissive69.71 30868.83 31172.33 31277.66 33253.60 32879.29 25169.99 35157.66 31072.53 33482.93 31046.45 33480.08 32160.91 28872.09 36883.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FMVSNet572.10 28771.69 28773.32 30281.57 29653.02 33376.77 28878.37 29863.31 26776.37 30491.85 15336.68 37378.98 32247.87 35492.45 22087.95 261
our_test_371.85 28871.59 28872.62 30880.71 30953.78 32769.72 34171.71 34558.80 30278.03 29280.51 33456.61 29478.84 32362.20 27686.04 30785.23 288
miper_lstm_enhance76.45 24876.10 24577.51 26976.72 34160.97 26764.69 35685.04 24663.98 26683.20 22888.22 23256.67 29278.79 32473.22 18393.12 20892.78 147
PatchMatch-RL74.48 26773.22 27278.27 25787.70 21085.26 3475.92 30270.09 35064.34 26576.09 30981.25 32765.87 23978.07 32553.86 32783.82 32771.48 363
sd_testset79.95 21281.39 18475.64 29188.81 18658.07 29876.16 29982.81 27073.67 16083.41 22493.04 11680.96 11677.65 32658.62 29895.03 15991.21 200
Anonymous2024052180.18 20781.25 18576.95 27583.15 28560.84 26882.46 20585.99 23268.76 22586.78 15893.73 10659.13 27677.44 32773.71 17697.55 6792.56 156
ADS-MVSNet265.87 32663.64 33372.55 30973.16 36556.92 30867.10 34974.81 31849.74 35166.04 35782.97 30846.71 33277.26 32842.29 36769.96 37283.46 309
test_post3.10 38445.43 34677.22 329
MVS-HIRNet61.16 33862.92 33555.87 35979.09 32435.34 38171.83 33057.98 37746.56 35659.05 37591.14 17249.95 32476.43 33038.74 37371.92 36955.84 378
MIMVSNet71.09 29571.59 28869.57 32587.23 21950.07 35478.91 25871.83 34260.20 29771.26 33991.76 15855.08 30576.09 33141.06 37087.02 29882.54 323
tpm67.95 31568.08 31667.55 33578.74 32843.53 37475.60 30467.10 36154.92 32272.23 33588.10 23442.87 36275.97 33252.21 33580.95 34783.15 316
FPMVS72.29 28672.00 28573.14 30488.63 19185.00 3674.65 31467.39 35671.94 19477.80 29787.66 24350.48 32175.83 33349.95 34479.51 34858.58 377
PatchT70.52 29972.76 27863.79 34779.38 32133.53 38277.63 27665.37 36473.61 16271.77 33792.79 13044.38 35575.65 33464.53 26385.37 31182.18 327
PVSNet58.17 2166.41 32365.63 32868.75 33081.96 29249.88 35562.19 36272.51 33751.03 34468.04 35175.34 36450.84 31974.77 33545.82 36282.96 33181.60 333
tpmrst66.28 32466.69 32365.05 34472.82 36839.33 37778.20 26870.69 34953.16 33067.88 35280.36 33548.18 32874.75 33658.13 30270.79 37081.08 341
test20.0373.75 27374.59 25971.22 31581.11 30251.12 34970.15 33972.10 34070.42 20780.28 27591.50 16364.21 24674.72 33746.96 35894.58 17787.82 265
patch_mono-278.89 21779.39 21077.41 27184.78 26368.11 18875.60 30483.11 26660.96 28879.36 28389.89 20875.18 16972.97 33873.32 18292.30 22291.15 202
pmmvs362.47 33260.02 34569.80 32371.58 37264.00 22670.52 33658.44 37639.77 37466.05 35675.84 36227.10 38772.28 33946.15 36084.77 32373.11 361
Anonymous2023120671.38 29371.88 28669.88 32286.31 24054.37 32370.39 33774.62 31952.57 33376.73 30288.76 22559.94 26972.06 34044.35 36593.23 20683.23 315
new-patchmatchnet70.10 30373.37 27160.29 35581.23 30116.95 38759.54 36574.62 31962.93 27080.97 26187.93 23862.83 25771.90 34155.24 32095.01 16292.00 181
test_fmvs375.72 25475.20 25477.27 27275.01 35769.47 17478.93 25784.88 25146.67 35587.08 15387.84 24050.44 32271.62 34277.42 13688.53 27990.72 212
dp60.70 34160.29 34461.92 35172.04 37138.67 37970.83 33464.08 36551.28 34260.75 37177.28 35536.59 37471.58 34347.41 35562.34 37875.52 358
UnsupCasMVSNet_bld69.21 31169.68 30567.82 33479.42 32051.15 34867.82 34875.79 31254.15 32577.47 30185.36 28259.26 27570.64 34448.46 35179.35 35081.66 332
test_fmvs273.57 27472.80 27675.90 28972.74 36968.84 18377.07 28484.32 25745.14 36182.89 23284.22 29648.37 32770.36 34573.40 18187.03 29788.52 254
test-LLR67.21 31766.74 32268.63 33176.45 34455.21 31967.89 34567.14 35962.43 27665.08 36372.39 36743.41 35869.37 34661.00 28684.89 31981.31 336
test-mter65.00 32963.79 33268.63 33176.45 34455.21 31967.89 34567.14 35950.98 34565.08 36372.39 36728.27 38469.37 34661.00 28684.89 31981.31 336
XXY-MVS74.44 26976.19 24469.21 32784.61 26552.43 33871.70 33177.18 30460.73 29180.60 26790.96 18075.44 16569.35 34856.13 31288.33 28185.86 283
UnsupCasMVSNet_eth71.63 29172.30 28469.62 32476.47 34352.70 33670.03 34080.97 28559.18 30079.36 28388.21 23360.50 26369.12 34958.33 30177.62 35987.04 271
WTY-MVS67.91 31668.35 31466.58 33880.82 30748.12 35965.96 35372.60 33553.67 32771.20 34081.68 32458.97 27769.06 35048.57 35081.67 34082.55 322
test_vis1_n_192071.30 29471.58 29070.47 31877.58 33359.99 27774.25 31584.22 25851.06 34374.85 32379.10 34355.10 30468.83 35168.86 22579.20 35382.58 321
test_vis1_n70.29 30069.99 30371.20 31675.97 34866.50 20276.69 29080.81 28644.22 36475.43 31677.23 35650.00 32368.59 35266.71 24282.85 33578.52 353
test_fmvs1_n70.94 29670.41 29972.53 31073.92 35966.93 19875.99 30184.21 25943.31 36879.40 28279.39 34243.47 35768.55 35369.05 22284.91 31882.10 328
test_fmvs169.57 30969.05 30971.14 31769.15 37665.77 21173.98 31983.32 26442.83 37077.77 29878.27 35043.39 36068.50 35468.39 23284.38 32579.15 351
test0.0.03 164.66 33064.36 33065.57 34275.03 35646.89 36564.69 35661.58 37162.43 27671.18 34177.54 35243.41 35868.47 35540.75 37182.65 33681.35 335
dmvs_testset60.59 34262.54 33754.72 36177.26 33427.74 38574.05 31861.00 37260.48 29365.62 36067.03 37455.93 29868.23 35632.07 38069.46 37568.17 368
CHOSEN 280x42059.08 34356.52 34866.76 33776.51 34264.39 22249.62 37559.00 37443.86 36555.66 38068.41 37335.55 37668.21 35743.25 36676.78 36367.69 369
YYNet170.06 30470.44 29768.90 32873.76 36153.42 33158.99 36867.20 35858.42 30487.10 15185.39 28059.82 27167.32 35859.79 29383.50 32985.96 280
MDA-MVSNet_test_wron70.05 30570.44 29768.88 32973.84 36053.47 32958.93 36967.28 35758.43 30387.09 15285.40 27959.80 27267.25 35959.66 29483.54 32885.92 282
EMVS61.10 33960.81 34161.99 35065.96 38255.86 31453.10 37458.97 37567.06 24356.89 37963.33 37640.98 36467.03 36054.79 32386.18 30663.08 372
testgi72.36 28474.61 25765.59 34180.56 31142.82 37668.29 34473.35 33166.87 24581.84 24989.93 20672.08 20866.92 36146.05 36192.54 21987.01 272
EPMVS62.47 33262.63 33662.01 34970.63 37338.74 37874.76 31252.86 38053.91 32667.71 35480.01 33739.40 36766.60 36255.54 31768.81 37680.68 345
PMMVS61.65 33560.38 34265.47 34365.40 38469.26 17763.97 35861.73 37036.80 37960.11 37368.43 37259.42 27366.35 36348.97 34978.57 35560.81 374
E-PMN61.59 33661.62 33961.49 35266.81 37955.40 31753.77 37360.34 37366.80 24658.90 37665.50 37540.48 36666.12 36455.72 31486.25 30562.95 373
PVSNet_051.08 2256.10 34554.97 35059.48 35775.12 35553.28 33255.16 37261.89 36844.30 36359.16 37462.48 37754.22 30665.91 36535.40 37647.01 38059.25 376
test_cas_vis1_n_192069.20 31269.12 30769.43 32673.68 36262.82 23970.38 33877.21 30346.18 35880.46 27278.95 34552.03 31365.53 36665.77 25177.45 36179.95 349
sss66.92 31867.26 31865.90 34077.23 33551.10 35064.79 35571.72 34452.12 33870.13 34480.18 33657.96 28465.36 36750.21 34381.01 34681.25 338
TESTMET0.1,161.29 33760.32 34364.19 34672.06 37051.30 34667.89 34562.09 36745.27 36060.65 37269.01 37127.93 38564.74 36856.31 31081.65 34276.53 355
dmvs_re66.81 32166.98 31966.28 33976.87 33958.68 29571.66 33272.24 33860.29 29569.52 34773.53 36652.38 31264.40 36944.90 36381.44 34375.76 357
ADS-MVSNet61.90 33462.19 33861.03 35473.16 36536.42 38067.10 34961.75 36949.74 35166.04 35782.97 30846.71 33263.21 37042.29 36769.96 37283.46 309
DSMNet-mixed60.98 34061.61 34059.09 35872.88 36745.05 37074.70 31346.61 38426.20 38065.34 36190.32 19855.46 30163.12 37141.72 36981.30 34569.09 367
mvsany_test365.48 32862.97 33473.03 30669.99 37476.17 11464.83 35443.71 38543.68 36680.25 27687.05 25752.83 31063.09 37251.92 34072.44 36779.84 350
test_vis3_rt71.42 29270.67 29473.64 30169.66 37570.46 16566.97 35189.73 17142.68 37188.20 13683.04 30743.77 35660.07 37365.35 25586.66 30090.39 224
test_vis1_rt65.64 32764.09 33170.31 31966.09 38170.20 16861.16 36381.60 28138.65 37672.87 33269.66 37052.84 30960.04 37456.16 31177.77 35780.68 345
Patchmatch-test65.91 32567.38 31761.48 35375.51 35143.21 37568.84 34263.79 36662.48 27472.80 33383.42 30544.89 35359.52 37548.27 35386.45 30281.70 331
mvsany_test158.48 34456.47 34964.50 34565.90 38368.21 18756.95 37142.11 38638.30 37765.69 35977.19 35856.96 29159.35 37646.16 35958.96 37965.93 370
N_pmnet70.20 30168.80 31274.38 29880.91 30484.81 3959.12 36776.45 31055.06 32175.31 32082.36 31755.74 29954.82 37747.02 35687.24 29583.52 308
wuyk23d75.13 25879.30 21162.63 34875.56 35075.18 12080.89 23173.10 33475.06 14794.76 1295.32 3587.73 4052.85 37834.16 37797.11 8059.85 375
test_f64.31 33165.85 32559.67 35666.54 38062.24 25257.76 37070.96 34740.13 37384.36 20582.09 31946.93 33151.67 37961.99 27981.89 33965.12 371
PMMVS255.64 34759.27 34644.74 36364.30 38512.32 38840.60 37649.79 38253.19 32965.06 36584.81 28953.60 30849.76 38032.68 37989.41 26872.15 362
new_pmnet55.69 34657.66 34749.76 36275.47 35230.59 38359.56 36451.45 38143.62 36762.49 36975.48 36340.96 36549.15 38137.39 37572.52 36669.55 366
MVEpermissive40.22 2351.82 34850.47 35155.87 35962.66 38651.91 34131.61 37839.28 38740.65 37250.76 38174.98 36556.24 29744.67 38233.94 37864.11 37771.04 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34929.60 35233.06 36417.99 3883.84 39013.62 37973.92 3252.79 38218.29 38453.41 37928.53 38343.25 38322.56 38135.27 38252.11 379
DeepMVS_CXcopyleft24.13 36532.95 38729.49 38421.63 39012.07 38137.95 38245.07 38030.84 38019.21 38417.94 38333.06 38323.69 380
tmp_tt20.25 35124.50 3547.49 3664.47 3898.70 38934.17 37725.16 3891.00 38432.43 38318.49 38139.37 3689.21 38521.64 38243.75 3814.57 381
test1236.27 3548.08 3570.84 3671.11 3910.57 39162.90 3590.82 3910.54 3851.07 3872.75 3861.26 3900.30 3861.04 3841.26 3851.66 382
testmvs5.91 3557.65 3580.72 3681.20 3900.37 39259.14 3660.67 3920.49 3861.11 3862.76 3850.94 3910.24 3871.02 3851.47 3841.55 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k20.81 35027.75 3530.00 3690.00 3920.00 3930.00 38085.44 2370.00 3870.00 38882.82 31281.46 1100.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.41 3538.55 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38776.94 1540.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re6.65 3528.87 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38879.80 3390.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13094.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 392
eth-test0.00 392
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2797.60 6492.73 148
IU-MVS94.18 4672.64 13790.82 14156.98 31589.67 10885.78 4697.92 4693.28 130
save fliter93.75 5977.44 9686.31 12789.72 17270.80 203
test072694.16 4972.56 14190.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
GSMVS83.88 301
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 33683.88 301
sam_mvs45.92 341
MTGPAbinary91.81 116
MTMP90.66 4433.14 388
test9_res80.83 9296.45 10390.57 218
agg_prior279.68 10696.16 11390.22 226
test_prior478.97 8084.59 147
test_prior283.37 17975.43 14284.58 20191.57 16181.92 10579.54 10896.97 84
新几何281.72 220
旧先验191.97 10971.77 15381.78 27991.84 15473.92 18493.65 19783.61 307
原ACMM282.26 213
test22293.31 7176.54 10679.38 25077.79 30052.59 33282.36 23990.84 18566.83 23391.69 23681.25 338
segment_acmp81.94 102
testdata179.62 24573.95 157
plane_prior793.45 6677.31 99
plane_prior692.61 8876.54 10674.84 173
plane_prior492.95 123
plane_prior376.85 10477.79 11586.55 165
plane_prior289.45 7779.44 93
plane_prior192.83 86
plane_prior76.42 11087.15 11175.94 13595.03 159
n20.00 393
nn0.00 393
door-mid74.45 322
test1191.46 122
door72.57 336
HQP5-MVS70.66 163
HQP-NCC91.19 13784.77 14273.30 16980.55 269
ACMP_Plane91.19 13784.77 14273.30 16980.55 269
BP-MVS77.30 137
HQP3-MVS92.68 9194.47 179
HQP2-MVS72.10 206
NP-MVS91.95 11074.55 12390.17 204
MDTV_nov1_ep13_2view27.60 38670.76 33546.47 35761.27 37045.20 34949.18 34883.75 306
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 131