This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9173.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet86.45 3886.10 4587.51 3790.09 10370.94 6789.70 8292.59 7081.78 481.32 11891.43 10670.34 6697.23 1384.26 5293.36 6794.37 40
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 43
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 60
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7993.36 6371.44 5696.76 2580.82 8995.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5584.47 7488.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19993.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7594.52 2169.09 8196.70 2784.37 5194.83 4494.03 54
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 51
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 4994.90 4094.00 55
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 52
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 52
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 41
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12793.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8476.87 6282.81 10294.25 3466.44 11296.24 4182.88 6794.28 5893.38 86
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9079.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5396.16 4494.50 5093.54 82
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12392.42 7668.32 24684.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11392.20 8570.53 19579.17 14391.03 12164.12 13496.03 4668.39 20990.14 10691.50 151
DPM-MVS84.93 6784.29 7586.84 4790.20 10173.04 2387.12 17193.04 3869.80 21182.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 155
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf05_1184.86 7084.52 7285.87 6690.86 8867.18 15589.63 8592.15 8871.48 17484.64 6990.81 12668.82 8996.00 4978.50 10793.84 6394.43 36
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7874.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5284.58 4896.68 294.95 10
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5384.20 5594.39 5493.23 92
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5584.80 4692.85 7092.84 108
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9588.97 19569.27 22275.70 22089.69 14957.20 21695.77 5563.06 25088.41 13387.50 282
bld_raw_dy_0_6482.00 11181.23 11584.34 11188.75 15866.52 16681.95 28191.90 9863.91 30075.26 23890.15 14169.37 7795.74 5777.66 11792.08 8090.76 175
DELS-MVS85.41 5885.30 6085.77 6888.49 16767.93 13385.52 22193.44 2778.70 2983.63 9289.03 16974.57 2495.71 5880.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13292.65 6572.35 15984.47 7490.26 13668.98 8795.69 5981.09 8594.45 5394.47 34
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6592.51 7493.53 83
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2665.00 13095.56 6182.75 6891.87 8392.50 119
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19491.65 9766.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8792.93 6993.57 79
h-mvs3383.15 9482.19 10286.02 6290.56 9470.85 7088.15 14389.16 18576.02 8584.67 6691.39 10761.54 16995.50 6482.71 7075.48 30191.72 145
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
原ACMM184.35 11093.01 5768.79 10792.44 7363.96 29981.09 12391.57 10166.06 11895.45 6667.19 21994.82 4588.81 255
QAPM80.88 13379.50 14985.03 8588.01 18868.97 10491.59 4392.00 9266.63 26675.15 24292.16 8857.70 20995.45 6663.52 24588.76 12690.66 180
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19275.92 34792.27 8057.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 293
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8595.43 6883.93 5793.77 6493.01 104
TEST993.26 5072.96 2588.75 11591.89 9968.44 24485.00 5993.10 6774.36 2895.41 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23985.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6779.97 1584.10 8285.71 25769.32 7995.38 7280.82 8991.37 9092.72 109
HQP_MVS83.64 8283.14 8685.14 8190.08 10468.71 11391.25 5092.44 7379.12 2378.92 14791.00 12260.42 19395.38 7278.71 10586.32 15791.33 156
plane_prior592.44 7395.38 7278.71 10586.32 15791.33 156
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10587.28 23476.41 7485.80 4990.22 13974.15 3195.37 7581.82 7791.88 8292.65 114
MVSMamba_pp84.98 6684.70 6785.80 6789.43 12667.63 14088.44 12692.64 6772.17 16284.54 7390.39 13468.88 8895.28 7681.45 8194.39 5494.49 33
EIA-MVS83.31 9282.80 9584.82 9489.59 11865.59 18488.21 13992.68 6174.66 11178.96 14586.42 24469.06 8395.26 7775.54 14190.09 10793.62 77
UA-Net85.08 6384.96 6485.45 7492.07 7068.07 13089.78 7990.86 13382.48 384.60 7193.20 6669.35 7895.22 7871.39 17790.88 9693.07 100
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7979.94 9994.38 5693.55 81
test_893.13 5272.57 3588.68 12091.84 10368.69 23984.87 6393.10 6774.43 2695.16 80
CS-MVS-test86.29 4286.48 3785.71 6991.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8181.96 7694.89 4194.77 22
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17483.13 26887.79 22468.42 24578.01 17085.23 27045.50 32595.12 8259.11 28785.83 16891.11 162
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10264.47 20992.32 3090.73 13574.45 11779.35 14191.10 11669.05 8495.12 8272.78 16687.22 14494.13 49
HQP4-MVS77.24 18595.11 8491.03 166
HQP-MVS82.61 10382.02 10684.37 10889.33 13266.98 15889.17 9992.19 8676.41 7477.23 18690.23 13860.17 19695.11 8477.47 11985.99 16591.03 166
MG-MVS83.41 8883.45 8183.28 15692.74 6262.28 25188.17 14189.50 17175.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
API-MVS81.99 11281.23 11584.26 11890.94 8570.18 8291.10 5389.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 281
PCF-MVS73.52 780.38 14978.84 16485.01 8687.71 19968.99 10383.65 25791.46 11863.00 30777.77 17590.28 13566.10 11695.09 8861.40 26988.22 13590.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12758.10 20595.04 8969.70 19489.42 11790.30 196
CS-MVS86.69 3586.95 3185.90 6590.76 9267.57 14292.83 1793.30 3279.67 1784.57 7292.27 8671.47 5595.02 9084.24 5493.46 6695.13 6
agg_prior92.85 5971.94 5191.78 10684.41 7694.93 91
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16291.26 4885.89 25774.66 11178.23 16390.56 13054.33 23494.91 9280.73 9283.54 20292.04 139
LPG-MVS_test82.08 10881.27 11484.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
PAPM_NR83.02 9882.41 9884.82 9492.47 6766.37 16887.93 15091.80 10473.82 12977.32 18390.66 12867.90 9894.90 9570.37 18689.48 11693.19 96
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13384.05 27971.45 17576.78 19689.12 16649.93 28694.89 9670.18 18883.18 20892.96 106
PAPR81.66 12180.89 12383.99 13790.27 9964.00 21786.76 18591.77 10768.84 23777.13 19289.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8890.80 9069.76 8788.74 11791.70 10869.39 21978.96 14588.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
iter_conf0583.17 9382.90 9383.97 13887.59 20765.09 19688.29 13791.52 11272.35 15981.39 11790.13 14268.76 9294.84 9980.30 9685.75 16991.98 140
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15789.73 16680.05 1482.95 9789.59 15470.74 6394.82 10080.66 9384.72 17793.28 91
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12483.70 28363.98 29870.20 29588.89 17154.01 23994.80 10146.66 36281.88 22486.01 314
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19587.36 16484.26 27770.04 20477.42 18088.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14387.44 16389.66 16779.74 1682.23 10689.41 16370.24 6894.74 10379.95 9883.92 19092.99 105
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19784.55 23990.01 15873.25 14679.61 13787.57 20658.35 20494.72 10471.29 17886.25 15992.56 116
3Dnovator76.31 583.38 9082.31 10186.59 5287.94 18972.94 2890.64 5892.14 8977.21 5275.47 22492.83 7658.56 20294.72 10473.24 16292.71 7292.13 135
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17283.38 26385.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMP74.13 681.51 12580.57 12784.36 10989.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13353.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D76.95 22974.82 24483.37 15490.45 9667.36 14889.15 10386.94 24161.87 32269.52 30790.61 12951.71 26694.53 10846.38 36586.71 15288.21 268
MAR-MVS81.84 11480.70 12585.27 7891.32 7971.53 5489.82 7690.92 12969.77 21378.50 15686.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12591.75 9560.71 18694.50 11079.67 10086.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 7087.65 20267.22 15388.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14488.89 11089.15 18675.50 9482.27 10588.28 18969.61 7594.45 11277.81 11587.84 13693.84 64
CLD-MVS82.31 10581.65 11184.29 11488.47 16867.73 13785.81 21292.35 7875.78 8878.33 16186.58 23964.01 13594.35 11376.05 13487.48 14190.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24890.09 15670.79 18781.26 12285.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
IS-MVSNet83.15 9482.81 9484.18 12089.94 11163.30 23491.59 4388.46 21079.04 2579.49 13992.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28083.27 29165.06 28275.91 21683.84 29649.54 28894.27 11667.24 21886.19 16091.48 153
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23167.27 15189.27 9791.51 11471.75 16679.37 14090.22 13963.15 14594.27 11677.69 11682.36 21891.49 152
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15065.40 18786.16 20192.00 9269.34 22178.11 16786.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15065.40 18784.43 24492.00 9267.62 25278.11 16785.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
Vis-MVSNetpermissive83.46 8782.80 9585.43 7590.25 10068.74 11190.30 6990.13 15576.33 8080.87 12692.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14268.03 13284.46 24290.02 15770.67 19081.30 12186.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14876.11 8382.08 10791.61 10071.36 5894.17 12281.02 8692.58 7392.08 136
无先验87.48 16188.98 19360.00 33494.12 12367.28 21788.97 248
MVS78.19 20176.99 20881.78 20185.66 24166.99 15784.66 23490.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
v1079.74 16178.67 16582.97 17484.06 27464.95 19887.88 15390.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
baseline84.93 6784.98 6384.80 9687.30 21665.39 18987.30 16792.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
OMC-MVS82.69 10181.97 10884.85 9388.75 15867.42 14587.98 14690.87 13274.92 10579.72 13691.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26072.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
v119279.59 16478.43 17283.07 16883.55 28464.52 20586.93 17790.58 13870.83 18677.78 17485.90 25359.15 19993.94 12973.96 15377.19 27490.76 175
v114480.03 15779.03 16083.01 17183.78 28064.51 20687.11 17290.57 14071.96 16578.08 16986.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9288.16 21276.95 5976.22 21089.46 15949.30 29393.94 12968.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
casdiffmvspermissive85.11 6285.14 6285.01 8687.20 21865.77 18287.75 15592.83 5677.84 3784.36 7892.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
VDD-MVS83.01 9982.36 10084.96 8891.02 8366.40 16788.91 10988.11 21377.57 4184.39 7793.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
v879.97 15979.02 16182.80 18184.09 27364.50 20887.96 14790.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17389.97 15973.61 13478.18 16687.22 21761.10 18193.82 13776.11 13276.78 28191.18 160
v7n78.97 18377.58 19783.14 16483.45 28665.51 18588.32 13591.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7276.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17590.36 14769.99 20677.50 17885.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21677.33 18285.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18190.33 14869.91 20977.48 17985.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
cascas76.72 23274.64 24582.99 17285.78 24065.88 17882.33 27789.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
Anonymous2024052980.19 15578.89 16384.10 12290.60 9364.75 20388.95 10890.90 13065.97 27480.59 12891.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25589.59 16964.74 28671.23 28788.70 17562.59 15293.66 14652.66 32987.03 14789.01 245
test_yl81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15064.51 20685.53 21989.39 17470.79 18778.49 15785.06 27567.54 10193.58 14767.03 22286.58 15392.32 125
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 14089.46 17264.33 29269.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned79.47 16778.60 16782.05 19689.19 14165.91 17786.07 20388.52 20972.18 16175.42 22887.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
ACMM73.20 880.78 14179.84 14283.58 14789.31 13568.37 12289.99 7391.60 11070.28 20077.25 18489.66 15053.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet81.52 12380.67 12684.05 13290.44 9764.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20887.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 164
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21087.26 23569.08 23077.23 18688.14 19753.20 24793.47 15575.50 14273.45 32891.06 164
MVSFormer82.85 10082.05 10585.24 7987.35 21070.21 7790.50 6190.38 14468.55 24181.32 11889.47 15761.68 16693.46 15678.98 10290.26 10492.05 137
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 19090.50 6190.38 14468.55 24176.19 21188.70 17556.44 22093.46 15678.98 10280.14 24590.97 169
LFMVS81.82 11581.23 11583.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 62
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 9092.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
Effi-MVS+-dtu80.03 15778.57 16884.42 10785.13 25468.74 11188.77 11488.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 160
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17684.95 22987.15 23873.56 13678.19 16589.79 14756.67 21993.36 16059.53 28386.74 15190.13 202
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20485.17 27257.64 21093.28 16261.34 27183.10 20991.91 141
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15893.02 4278.42 3278.56 15588.16 19369.78 7393.26 16369.58 19676.49 28391.60 146
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 56
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 61
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9390.90 13071.21 17977.17 19088.73 17446.38 31293.21 16772.57 16978.96 25790.79 173
MVS_Test83.15 9483.06 8883.41 15386.86 22263.21 23686.11 20292.00 9274.31 11882.87 9989.44 16270.03 6993.21 16777.39 12188.50 13293.81 65
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14291.51 11465.77 27577.14 19191.09 11760.91 18493.21 16750.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10788.73 20571.27 17878.63 15389.76 14866.32 11493.20 17069.89 19286.02 16493.74 68
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19188.86 11187.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
V4279.38 17378.24 17782.83 17881.10 33365.50 18685.55 21789.82 16271.57 17278.21 16486.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16889.17 9990.19 15369.38 22075.40 22989.46 15944.17 33293.15 17476.78 12880.70 23790.14 201
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23786.40 24967.55 25377.81 17386.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9890.16 15469.20 22775.46 22689.49 15645.75 32393.13 17676.84 12680.80 23590.11 204
BH-w/o78.21 19977.33 20280.84 22788.81 15465.13 19484.87 23087.85 22369.75 21474.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
nrg03083.88 7683.53 8084.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9179.28 25592.50 119
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16488.65 20676.37 7875.88 21788.44 18553.51 24393.07 17973.30 16089.74 11492.25 128
UniMVSNet_NR-MVSNet81.88 11381.54 11282.92 17588.46 16963.46 23087.13 17092.37 7780.19 1278.38 15989.14 16571.66 5493.05 18070.05 18976.46 28492.25 128
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17491.87 10179.01 2678.38 15989.07 16765.02 12893.05 18070.05 18976.46 28492.20 131
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14468.75 23879.57 13892.83 7660.60 19193.04 18280.92 8891.56 8890.86 172
Anonymous2023121178.97 18377.69 19482.81 18090.54 9564.29 21390.11 7291.51 11465.01 28476.16 21588.13 19850.56 27793.03 18369.68 19577.56 27191.11 162
MSLP-MVS++85.43 5785.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7992.81 7867.16 10692.94 18480.36 9494.35 5790.16 200
F-COLMAP76.38 24074.33 25182.50 19089.28 13766.95 16188.41 12889.03 19064.05 29666.83 33288.61 17946.78 31092.89 18557.48 30278.55 25987.67 276
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16767.20 10592.81 18966.08 22875.65 29792.20 131
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15691.33 11980.55 977.99 17189.86 14565.23 12692.62 19067.05 22175.24 31192.30 126
test_040272.79 28170.44 29279.84 24788.13 18165.99 17585.93 20684.29 27565.57 27867.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21383.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26789.20 18469.52 21874.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 20988.08 21566.04 27264.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18388.30 13684.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10454.69 34387.89 15277.44 35174.88 10680.27 13092.79 7948.96 29992.45 19668.55 20692.50 7594.86 17
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15087.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20284.08 25388.95 19669.01 23478.69 15087.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18289.34 17574.19 12175.45 22786.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21285.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
test250677.30 22476.49 22079.74 24990.08 10452.02 35987.86 15463.10 39474.88 10680.16 13392.79 7938.29 36392.35 20268.74 20592.50 7594.86 17
FIs82.07 10982.42 9781.04 22288.80 15558.34 29188.26 13893.49 2676.93 6078.47 15891.04 11969.92 7292.34 20369.87 19384.97 17492.44 123
test111179.43 16979.18 15880.15 24189.99 10953.31 35687.33 16677.05 35475.04 10380.23 13292.77 8148.97 29892.33 20468.87 20392.40 7794.81 20
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11291.98 9063.28 14092.27 20564.60 24092.99 6887.27 287
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15687.24 16989.53 17065.66 27775.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21786.41 24862.85 31081.32 11888.61 17961.68 16692.24 20778.41 11090.26 10491.83 142
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27680.65 32266.81 25766.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20586.77 24463.24 30381.07 12489.47 15761.08 18292.15 20978.33 11190.07 10992.05 137
jason: jason.
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20483.60 26089.75 16569.75 21471.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25289.13 18869.97 20775.56 22284.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25789.15 18668.87 23675.55 22383.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 158
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27488.98 19365.52 27975.47 22482.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21183.23 29273.94 12676.32 20887.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
tfpn200view976.42 23875.37 23879.55 25689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 21983.23 29273.79 13076.26 20987.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26187.98 21768.96 23575.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7895.35 3
FC-MVSNet-test81.52 12382.02 10680.03 24388.42 17255.97 32987.95 14893.42 2977.10 5677.38 18190.98 12469.96 7091.79 22168.46 20884.50 18092.33 124
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23568.08 24888.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 130
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22784.61 27069.54 21766.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27183.51 28772.44 15675.84 21884.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24587.95 21965.03 28367.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13486.85 24367.48 25587.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 134
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20786.64 24566.39 26866.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23568.12 12889.43 9082.87 30170.27 20187.27 3993.80 5469.09 8191.58 22888.21 2683.65 19893.14 98
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 16086.94 17687.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30269.80 21187.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16888.79 19974.25 12076.84 19390.53 13249.48 28991.56 23067.98 21082.15 21993.29 90
test_fmvsm_n_192085.29 6085.34 5785.13 8386.12 23669.93 8388.65 12190.78 13469.97 20788.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 58
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 26987.87 22169.22 22574.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 26987.86 22269.22 22574.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14387.96 21870.01 20583.95 8593.23 6568.80 9191.51 23588.61 2089.96 11092.57 115
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12289.01 19269.81 21066.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22867.31 14989.46 8983.07 29671.09 18286.96 4393.70 5569.02 8691.47 23788.79 1884.62 17993.44 85
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 15089.40 9483.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23283.90 28170.65 19480.00 13491.20 11341.08 35091.43 23965.21 23485.26 17293.85 62
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 11068.58 11978.70 32887.50 23056.38 36275.80 21986.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27390.39 14371.09 18277.63 17791.49 10454.62 23391.35 24175.71 13783.47 20391.54 149
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26290.50 14170.66 19376.71 19891.66 9660.69 18791.26 24376.94 12581.58 22691.83 142
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22782.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12989.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23186.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16289.02 19171.63 16875.29 23787.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24776.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23583.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
testdata291.01 25362.37 258
MSDG73.36 27470.99 28680.49 23484.51 26665.80 18080.71 30186.13 25465.70 27665.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23385.05 26667.63 25176.75 19787.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
diffmvspermissive82.10 10781.88 10982.76 18683.00 29963.78 22283.68 25689.76 16472.94 15282.02 10889.85 14665.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24686.20 25267.49 25476.36 20786.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23488.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
WR-MVS79.49 16679.22 15780.27 23988.79 15658.35 29085.06 22688.61 20878.56 3077.65 17688.34 18763.81 13890.66 25964.98 23777.22 27391.80 144
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15371.58 5385.15 22486.16 25374.69 11080.47 12991.04 11962.29 15890.55 26080.33 9590.08 10890.20 199
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26487.78 22566.11 27075.37 23087.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
VNet82.21 10682.41 9881.62 20490.82 8960.93 26584.47 24089.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17991.58 11175.67 9280.24 13189.45 16163.34 13990.25 26370.51 18579.22 25691.23 159
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25489.24 18270.36 19779.03 14488.87 17263.23 14390.21 26465.12 23582.57 21692.28 127
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29168.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23184.29 28746.20 31790.07 26664.33 24184.50 18091.58 148
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 153
1112_ss77.40 22276.43 22280.32 23889.11 14760.41 27583.65 25787.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23687.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29667.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18679.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24386.63 24676.79 6478.26 16290.55 13159.30 19889.70 27466.63 22377.05 27590.88 171
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27587.62 22767.40 25676.17 21488.56 18268.47 9389.59 27570.65 18486.05 16393.47 84
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28570.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 16090.66 13677.08 5772.50 27488.67 17760.48 19289.52 27657.33 30570.74 34690.05 211
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13758.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18386.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12792.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15191.18 12277.56 4373.14 26788.82 17361.23 17889.17 28259.95 27972.37 33590.43 190
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18385.76 25973.60 13577.93 17287.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 150
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23879.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
patchmatchnet-post74.00 37751.12 27188.60 293
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 26972.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14991.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14591.22 12077.50 4673.26 26588.64 17860.73 18588.41 29661.88 26473.88 32490.53 186
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17381.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20181.57 28783.47 28869.16 22870.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17883.09 29571.64 16766.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23182.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22581.89 31073.04 15076.79 19588.90 17062.43 15687.78 30363.30 24971.18 34489.55 230
SDMVSNet80.38 14980.18 13680.99 22389.03 14864.94 19980.45 30689.40 17375.19 10076.61 20289.98 14360.61 19087.69 30476.83 12783.55 20090.33 194
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22467.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19275.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17181.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22373.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
CNLPA78.08 20376.79 21381.97 19990.40 9871.07 6287.59 15984.55 27166.03 27372.38 27789.64 15157.56 21186.04 31559.61 28283.35 20588.79 256
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29371.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27271.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22184.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 24969.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
sd_testset77.70 21677.40 19978.60 26989.03 14860.02 27979.00 32485.83 25875.19 10076.61 20289.98 14354.81 22685.46 32262.63 25683.55 20090.33 194
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 27982.84 30358.96 34471.15 28989.41 16345.48 32684.77 32858.82 29171.83 34091.02 168
test_post5.46 40950.36 28084.24 330
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 22970.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24084.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 28950.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29059.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
patch_mono-283.65 8184.54 7080.99 22390.06 10865.83 17984.21 24988.74 20471.60 17185.01 5792.44 8474.51 2583.50 33682.15 7592.15 7893.64 76
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28872.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 25970.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26466.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26466.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28767.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26685.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27877.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28176.18 21287.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26774.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26585.52 26162.83 31179.34 14286.17 25045.10 32779.71 35578.75 10481.21 23087.10 295
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26169.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26163.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28060.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 14984.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15484.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24169.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11585.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23683.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26166.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27065.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25060.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 119
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 90
MTMP92.18 3532.83 413
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6695.45 3092.70 110
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
新几何286.29 198
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8092.74 7188.74 259
原ACMM286.86 179
test22291.50 7768.26 12584.16 25083.20 29454.63 36879.74 13591.63 9958.97 20091.42 8986.77 300
segment_acmp73.08 38
testdata184.14 25175.71 89
plane_prior790.08 10468.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 5079.12 23
plane_prior189.90 112
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 83
door69.44 382
HQP5-MVS66.98 158
HQP-NCC89.33 13289.17 9976.41 7477.23 186
ACMP_Plane89.33 13289.17 9976.41 7477.23 186
BP-MVS77.47 119
HQP3-MVS92.19 8685.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 137
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132