This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
LCM-MVSNet-Re83.48 15885.06 12578.75 25685.94 25955.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24173.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
testf189.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part293.86 5777.77 9492.84 48
v1086.54 9587.10 8984.84 13788.16 20763.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
dcpmvs_284.23 14085.14 12481.50 21788.61 19661.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
v886.22 10186.83 9684.36 15187.82 21162.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
K. test v385.14 11884.73 13086.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
FC-MVSNet-test85.93 10787.05 9182.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
lessismore_v085.95 11891.10 14270.99 17270.91 36091.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
test_fmvsmvis_n_192085.22 11585.36 12284.81 13885.80 26176.13 11985.15 14792.32 9961.40 29891.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
ANet_high83.17 16485.68 11675.65 30081.24 32245.26 38379.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
bld_raw_dy_0_6484.85 12484.44 13986.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15187.09 23165.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
FIs85.35 11486.27 10382.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9186.99 9286.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
V4283.47 15983.37 15683.75 16883.16 30463.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
APD_test188.40 6787.91 7589.88 4789.50 17386.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
WR-MVS83.56 15684.40 14281.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
v124084.30 13684.51 13883.65 17187.65 21761.26 27082.85 20491.54 12267.94 24190.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
MIMVSNet183.63 15484.59 13580.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
KD-MVS_self_test81.93 18683.14 16178.30 26584.75 27552.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PC_three_145258.96 32090.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
v192192084.23 14084.37 14383.79 16687.64 21861.71 26582.91 20291.20 13467.94 24190.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12082.70 16892.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
v119284.57 12984.69 13484.21 15787.75 21362.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
Anonymous2024052986.20 10287.13 8883.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
pmmvs686.52 9688.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
v14419284.24 13984.41 14183.71 17087.59 21961.57 26682.95 20191.03 13867.82 24489.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
v114484.54 13184.72 13284.00 16087.67 21662.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9491.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28896.61 29
IU-MVS94.18 4672.64 14590.82 14456.98 33589.67 10885.78 5097.92 4693.28 137
FMVSNet184.55 13085.45 12081.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
IterMVS-LS84.73 12684.98 12783.96 16287.35 22263.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
IS-MVSNet86.66 9486.82 9786.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
v2v48284.09 14384.24 14583.62 17287.13 22761.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
Baseline_NR-MVSNet84.00 14785.90 11078.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
CSCG86.26 9986.47 10085.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11692.20 10265.94 25589.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22866.58 37475.67 32473.15 17788.86 12288.99 23566.94 24381.23 33064.71 27288.22 29791.64 203
EG-PatchMatch MVS84.08 14484.11 14683.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13591.82 11665.33 26888.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
canonicalmvs85.50 11186.14 10683.58 17487.97 20867.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
NR-MVSNet86.00 10586.22 10485.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
alignmvs83.94 14983.98 14983.80 16587.80 21267.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
TransMVSNet (Re)84.02 14685.74 11578.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
PM-MVS80.20 21679.00 22583.78 16788.17 20686.66 1581.31 23466.81 37869.64 22088.33 13590.19 21364.58 25683.63 31871.99 20690.03 27281.06 365
tttt051781.07 19779.58 22085.52 12888.99 18666.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
casdiffmvspermissive85.21 11685.85 11283.31 18186.17 25462.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17566.97 37389.73 17442.68 39388.20 13883.04 31943.77 37060.07 39565.35 26786.66 31690.39 235
SSC-MVS77.55 24481.64 18465.29 36490.46 15520.33 40973.56 33568.28 36985.44 3288.18 13994.64 6070.93 22681.33 32971.25 20892.03 23494.20 92
v14882.31 17482.48 17481.81 21485.59 26359.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
pm-mvs183.69 15284.95 12879.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
PCF-MVS74.62 1582.15 18080.92 20185.84 12289.43 17572.30 15580.53 24491.82 11657.36 33387.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14391.39 12865.32 26987.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
FMVSNet281.31 19481.61 18680.41 23586.38 24358.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
GeoE85.45 11385.81 11384.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
VPA-MVSNet83.47 15984.73 13079.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
VDDNet84.35 13485.39 12181.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
c3_l81.64 19081.59 18781.79 21580.86 32859.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
VDD-MVS84.23 14084.58 13683.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
MSLP-MVS++85.00 12286.03 10781.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 312
baseline85.20 11785.93 10883.02 18886.30 24862.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32387.10 15585.39 29259.82 28567.32 38059.79 30783.50 35185.96 297
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32287.09 15685.40 29159.80 28667.25 38159.66 30883.54 35085.92 299
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18478.93 26784.88 25746.67 37787.08 15787.84 25250.44 33671.62 36477.42 14688.53 28990.72 223
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
EPP-MVSNet85.47 11285.04 12686.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
TinyColmap81.25 19582.34 17677.99 27285.33 26660.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 295
eth_miper_zixun_eth80.84 20080.22 21282.71 19781.41 32060.98 27677.81 28390.14 16867.31 24886.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
Anonymous2024052180.18 21781.25 19576.95 28583.15 30560.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34873.71 18697.55 6792.56 166
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21172.29 34369.16 36857.70 32986.76 16386.33 27645.79 35682.59 32269.63 22590.65 26781.54 356
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
h-mvs3384.25 13882.76 16788.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
hse-mvs283.47 15981.81 18288.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24386.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet82.61 16982.42 17583.20 18583.25 30163.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior376.85 10777.79 11886.55 169
BH-untuned80.96 19980.99 19980.84 22888.55 19868.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28382.52 346
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27277.49 29085.07 25060.78 30886.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
旧先验281.73 22956.88 33686.54 17484.90 30572.81 200
IterMVS-SCA-FT80.64 20479.41 22184.34 15383.93 28969.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 32090.22 237
WB-MVS76.06 26280.01 21864.19 36789.96 16820.58 40872.18 34468.19 37083.21 5486.46 17693.49 11270.19 22978.97 34365.96 25790.46 26993.02 149
test_fmvsm_n_192083.60 15582.89 16585.74 12485.22 26877.74 9584.12 16590.48 15259.87 31786.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.38 24586.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
CDPH-MVS86.17 10485.54 11888.05 8492.25 10075.45 12283.85 17492.01 10765.91 25786.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.37 24686.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
MVS_111021_LR84.28 13783.76 15285.83 12389.23 18083.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
GBi-Net82.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet378.80 23178.55 23379.57 24782.89 30956.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
miper_ehance_all_eth80.34 21280.04 21781.24 22279.82 33858.95 29977.66 28589.66 17765.75 26185.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
tfpnnormal81.79 18982.95 16478.31 26488.93 18755.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19279.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17981.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13882.43 27939.76 39785.64 18988.76 23744.71 36887.88 26073.86 18385.88 32684.16 322
LF4IMVS82.75 16881.93 18085.19 13282.08 31180.15 7085.53 13988.76 19168.01 23885.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
Patchmtry76.56 25777.46 24273.83 31079.37 34446.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31563.36 28395.31 15090.92 218
MVS_111021_HR84.63 12784.34 14485.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
testdata79.54 24892.87 8272.34 15480.14 29659.91 31685.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 365
test111178.53 23578.85 22877.56 27892.22 10247.49 37282.61 20869.24 36772.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
thisisatest053079.07 22577.33 24684.26 15687.13 22764.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
EC-MVSNet88.01 7588.32 7287.09 9389.28 17872.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
CLD-MVS83.18 16382.64 17084.79 13989.05 18367.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14687.68 21573.35 13486.14 13177.70 30761.64 29685.02 19891.62 16777.75 14586.24 28582.79 8187.07 30993.91 109
FA-MVS(test-final)83.13 16583.02 16383.43 17786.16 25666.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator80.37 784.80 12584.71 13385.06 13586.36 24674.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
QAPM82.59 17082.59 17282.58 20086.44 24166.69 21089.94 6290.36 15767.97 24084.94 20292.58 14072.71 21092.18 15970.63 21787.73 30288.85 264
VPNet80.25 21481.68 18375.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
NCCC87.36 8486.87 9588.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
PHI-MVS86.38 9785.81 11388.08 8288.44 20177.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
pmmvs-eth3d78.42 23777.04 24882.57 20287.44 22174.41 12880.86 24279.67 29855.68 33984.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 278
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15486.56 23973.35 13485.46 14077.30 31161.81 29284.51 20890.88 19277.36 15186.21 28782.72 8286.97 31493.38 133
TEST992.34 9679.70 7483.94 17090.32 15865.41 26784.49 20990.97 18682.03 10493.63 110
train_agg85.98 10685.28 12388.07 8392.34 9679.70 7483.94 17090.32 15865.79 25884.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16486.87 23771.57 16785.19 14677.42 31062.27 29084.47 21191.33 17476.43 16785.91 29383.14 7287.14 30794.33 90
Gipumacopyleft84.44 13286.33 10278.78 25584.20 28573.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33676.14 15996.80 9082.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f64.31 35365.85 34359.67 37866.54 40262.24 26257.76 39270.96 35940.13 39584.36 21382.09 33146.93 34551.67 40161.99 29381.89 36165.12 393
test_892.09 10678.87 8183.82 17590.31 16065.79 25884.36 21390.96 18881.93 10693.44 123
cl2278.97 22678.21 23881.24 22277.74 35259.01 29877.46 29187.13 21665.79 25884.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
Anonymous20240521180.51 20681.19 19878.49 26188.48 19957.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
LFMVS80.15 21880.56 20478.89 25389.19 18255.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ECVR-MVScopyleft78.44 23678.63 23277.88 27491.85 11548.95 36683.68 18069.91 36472.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
iter_conf0578.81 23077.35 24583.21 18482.98 30860.75 28084.09 16688.34 19863.12 27984.25 22289.48 22531.41 39594.51 8176.64 15395.83 13294.38 88
FE-MVS79.98 22178.86 22783.36 17986.47 24066.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
ETV-MVS84.31 13583.91 15185.52 12888.58 19770.40 17684.50 16093.37 5878.76 10884.07 22478.72 36280.39 12595.13 6073.82 18492.98 21691.04 215
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16886.02 25871.56 16884.73 15277.11 31462.44 28784.00 22590.68 19976.42 16885.89 29583.14 7287.11 30893.81 116
MCST-MVS84.36 13383.93 15085.63 12691.59 12271.58 16683.52 18392.13 10461.82 29183.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
新几何182.95 19193.96 5578.56 8480.24 29555.45 34083.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 352
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17383.94 28873.90 13183.35 18886.10 23358.97 31983.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
BH-RMVSNet80.53 20580.22 21281.49 21887.19 22666.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29987.52 282
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 25088.04 20552.14 35983.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 307
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 18958.05 32783.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
MM87.64 8387.15 8789.09 6589.51 17276.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
CNLPA83.55 15783.10 16284.90 13689.34 17783.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32766.84 25192.29 22889.11 257
SDMVSNet81.90 18883.17 16078.10 26988.81 19062.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33470.06 22295.03 16091.21 211
sd_testset79.95 22281.39 19375.64 30188.81 19058.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34758.62 31295.03 16091.21 211
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24278.71 25784.39 28161.15 27181.18 23882.52 27762.45 28683.34 23787.37 26066.20 24788.66 25364.69 27385.02 33686.32 294
thres100view90075.45 26775.05 26776.66 29187.27 22351.88 35281.07 23973.26 34375.68 14183.25 23886.37 27545.54 35788.80 24851.98 35490.99 25389.31 253
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27764.69 37885.04 25263.98 27683.20 23988.22 24456.67 30678.79 34573.22 19393.12 21292.78 157
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23576.30 30679.03 30164.88 27283.11 24089.16 23259.90 28484.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres600view775.97 26375.35 26577.85 27687.01 23351.84 35380.45 24573.26 34375.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
mvs_anonymous78.13 23878.76 23076.23 29779.24 34550.31 36378.69 27284.82 25861.60 29783.09 24292.82 13173.89 19387.01 26968.33 24486.41 31991.37 208
fmvsm_l_conf0.5_n_a81.46 19280.87 20283.25 18283.73 29373.21 13983.00 19985.59 24258.22 32582.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19377.07 29484.32 26345.14 38382.89 24484.22 30848.37 34170.36 36773.40 19187.03 31188.52 267
MVS_Test82.47 17383.22 15780.22 23882.62 31057.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30192.40 173
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28282.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 303
test_yl78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28890.28 16466.65 25382.40 25087.33 26273.50 19787.35 26677.98 13789.62 27793.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22293.31 7176.54 10979.38 26077.79 30652.59 35482.36 25190.84 19466.83 24591.69 24181.25 360
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26373.50 33684.80 25957.61 33182.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
VNet79.31 22480.27 20976.44 29287.92 21053.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 31060.38 30593.98 19490.97 216
Vis-MVSNet (Re-imp)77.82 24177.79 24177.92 27388.82 18951.29 35783.28 18971.97 35274.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
API-MVS82.28 17582.61 17181.30 21986.29 24969.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 347
iter_conf_final80.36 21178.88 22684.79 13986.29 24966.36 21586.95 11586.25 23068.16 23782.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
DP-MVS Recon84.05 14583.22 15786.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
MSDG80.06 22079.99 21980.25 23783.91 29068.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31786.41 293
test250674.12 28273.39 28276.28 29591.85 11544.20 38684.06 16748.20 40572.30 19381.90 25994.20 8127.22 40689.77 23164.81 27196.02 12194.87 67
Fast-Effi-MVS+81.04 19880.57 20382.46 20487.50 22063.22 24478.37 27789.63 17968.01 23881.87 26082.08 33282.31 9792.65 14767.10 24888.30 29691.51 207
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 25181.84 26189.93 21872.08 21866.92 38346.05 38092.54 22387.01 288
tfpn200view974.86 27574.23 27476.74 29086.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25392.66 163
CL-MVSNet_self_test76.81 25377.38 24475.12 30486.90 23551.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 33155.35 33394.90 16693.12 146
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20884.42 28068.22 19688.50 9589.48 18266.92 25081.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 284
AdaColmapbinary83.66 15383.69 15383.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 321
CS-MVS-test87.00 8786.43 10188.71 7289.46 17477.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
DELS-MVS81.44 19381.25 19582.03 20784.27 28462.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
114514_t83.10 16682.54 17384.77 14192.90 8169.10 19286.65 12490.62 15054.66 34581.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
TR-MVS76.77 25475.79 25979.72 24486.10 25765.79 22077.14 29283.02 27365.20 27081.40 27082.10 33066.30 24690.73 20255.57 33085.27 33082.65 341
TAMVS78.08 23976.36 25483.23 18390.62 15272.87 14179.08 26680.01 29761.72 29481.35 27186.92 27063.96 26188.78 25150.61 35993.01 21588.04 274
Effi-MVS+83.90 15084.01 14883.57 17587.22 22565.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 30092.17 186
testing371.53 30470.79 30673.77 31188.89 18841.86 39376.60 30359.12 39572.83 18180.97 27382.08 33219.80 41187.33 26765.12 26891.68 24292.13 188
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 28080.97 27387.93 25062.83 27071.90 36255.24 33495.01 16392.00 192
PVSNet_Blended_VisFu81.55 19180.49 20684.70 14491.58 12573.24 13884.21 16291.67 12062.86 28180.94 27587.16 26567.27 24292.87 14369.82 22488.94 28587.99 275
BH-w/o76.57 25676.07 25878.10 26986.88 23665.92 21977.63 28686.33 22865.69 26280.89 27679.95 35168.97 23690.74 20153.01 34985.25 33177.62 376
MVS_030486.35 9885.92 10987.66 8889.21 18173.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
PAPM_NR83.23 16283.19 15983.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 29091.60 204
ab-mvs79.67 22380.56 20476.99 28488.48 19956.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30980.60 28090.96 18875.44 17269.35 37056.13 32688.33 29285.86 300
HQP4-MVS80.56 28194.61 7493.56 129
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
HQP-MVS84.61 12884.06 14786.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24970.38 35977.21 31246.18 38080.46 28578.95 36052.03 32765.53 38865.77 26377.45 38379.95 371
AUN-MVS81.18 19678.78 22988.39 7790.93 14582.14 5882.51 21483.67 26764.69 27380.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
HyFIR lowres test75.12 27172.66 29182.50 20391.44 13365.19 22572.47 34287.31 21146.79 37680.29 28684.30 30752.70 32592.10 16351.88 35886.73 31590.22 237
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21180.28 28891.50 17064.21 25974.72 35846.96 37794.58 17887.82 280
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28987.05 26952.83 32463.09 39451.92 35772.44 38979.84 372
F-COLMAP84.97 12383.42 15489.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32789.72 246
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20875.99 31284.21 26543.31 39079.40 29579.39 35643.47 37168.55 37569.05 23384.91 33982.10 350
patch_mono-278.89 22779.39 22277.41 28184.78 27368.11 19875.60 31583.11 27260.96 30679.36 29689.89 22075.18 17672.97 35973.32 19292.30 22691.15 213
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31879.36 29688.21 24560.50 27769.12 37158.33 31577.62 38187.04 287
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32479.32 29882.92 32357.91 29984.26 31265.60 26491.36 24889.56 248
MG-MVS80.32 21380.94 20078.47 26288.18 20552.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28289.45 249
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 12085.60 26276.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27990.94 217
CDS-MVSNet77.32 24775.40 26383.06 18789.00 18572.48 15277.90 28282.17 28160.81 30778.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25274.00 33465.93 25678.81 30286.28 27956.36 30981.63 32856.63 32279.04 37687.87 279
EIA-MVS82.19 17881.23 19785.10 13487.95 20969.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28491.93 195
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37689.29 27984.32 318
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32178.03 30580.51 34756.61 30878.84 34462.20 29086.04 32585.23 306
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
jason77.42 24675.75 26082.43 20587.10 23069.27 18677.99 28081.94 28351.47 36377.84 30885.07 29960.32 28089.00 24570.74 21589.27 28189.03 261
jason: jason.
MAR-MVS80.24 21578.74 23184.73 14286.87 23778.18 8885.75 13687.81 20765.67 26377.84 30878.50 36373.79 19490.53 20761.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FPMVS72.29 29872.00 29773.14 31588.63 19585.00 3674.65 32667.39 37271.94 19877.80 31087.66 25550.48 33575.83 35449.95 36179.51 37058.58 399
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 22173.98 33183.32 27042.83 39277.77 31178.27 36543.39 37468.50 37668.39 24384.38 34679.15 373
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16576.23 30877.59 30852.83 35377.73 31286.38 27456.35 31084.97 30457.72 31987.05 31085.51 304
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19683.03 30768.11 19877.09 29376.51 31960.67 31077.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31485.36 29459.26 28970.64 36648.46 37079.35 37281.66 354
Anonymous2023120671.38 30671.88 29869.88 33786.31 24754.37 33370.39 35874.62 32952.57 35576.73 31588.76 23759.94 28372.06 36144.35 38493.23 21083.23 337
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20381.21 23782.18 28050.78 36876.50 31687.66 25555.20 31782.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27776.37 31791.85 15836.68 38778.98 34247.87 37392.45 22487.95 276
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18479.02 30237.77 40076.33 31885.10 29649.60 33987.41 26570.54 21877.54 38281.08 363
PLCcopyleft73.85 1682.09 18180.31 20887.45 9090.86 14880.29 6985.88 13390.65 14868.17 23676.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVSFormer82.23 17681.57 18984.19 15985.54 26469.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28689.03 261
lupinMVS76.37 26074.46 27282.09 20685.54 26469.26 18776.79 29780.77 29350.68 37076.23 32082.82 32458.69 29388.94 24669.85 22388.77 28688.07 271
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32279.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21485.26 3475.92 31370.09 36264.34 27476.09 32381.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32876.08 32477.78 36737.60 38692.12 16265.00 26991.45 24789.35 252
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25573.82 33477.90 30552.44 35675.92 32581.27 33955.67 31481.75 32655.37 33277.70 38074.94 381
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16763.08 24568.72 36583.16 27142.99 39175.92 32585.46 28957.22 30485.18 30349.87 36381.67 36286.14 296
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25282.58 21076.90 31550.50 37175.72 32792.38 14448.07 34384.07 31468.72 23982.91 35583.85 326
RPMNet78.88 22878.28 23780.68 23279.58 33962.64 25282.58 21094.16 2774.80 15175.72 32792.59 13848.69 34095.56 3973.48 18982.91 35583.85 326
DPM-MVS80.10 21979.18 22482.88 19590.71 15169.74 18078.87 27090.84 14360.29 31375.64 32985.92 28467.28 24193.11 13471.24 20991.79 23985.77 301
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21276.69 30080.81 29244.22 38675.43 33077.23 37350.00 33768.59 37466.71 25382.85 35778.52 375
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27863.41 24079.49 25990.44 15461.70 29575.43 33087.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 24075.14 32190.44 15457.36 33375.43 33078.30 36469.11 23491.44 17860.68 30387.70 30384.42 317
PAPR78.84 22978.10 23981.07 22485.17 26960.22 28482.21 22490.57 15162.51 28375.32 33384.61 30474.99 17892.30 15759.48 30988.04 29890.68 226
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32955.74 31354.82 39947.02 37587.24 30683.52 330
cascas76.29 26174.81 26880.72 23184.47 27762.94 24673.89 33387.34 21055.94 33875.16 33576.53 37963.97 26091.16 18665.00 26990.97 25688.06 273
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26971.37 35761.73 29374.93 33683.42 31760.46 27887.01 26958.11 31782.63 36083.88 323
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26451.06 36574.85 33779.10 35855.10 31868.83 37368.86 23679.20 37582.58 343
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23361.30 26975.55 31887.12 21961.24 30374.45 33878.79 36177.20 15390.93 19364.62 27584.80 34383.32 335
CANet83.79 15182.85 16686.63 10286.17 25472.21 15883.76 17891.43 12577.24 12574.39 33987.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23161.40 26775.26 32087.13 21661.25 30274.38 34077.22 37476.94 15990.94 19264.63 27484.83 34283.35 334
MVP-Stereo75.81 26573.51 28182.71 19789.35 17673.62 13280.06 24885.20 24760.30 31273.96 34187.94 24957.89 30089.45 23752.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25271.89 36338.21 39685.04 33587.69 281
UGNet82.78 16781.64 18486.21 11386.20 25376.24 11786.86 11785.68 24077.07 12673.76 34392.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
1112_ss74.82 27673.74 27778.04 27189.57 17060.04 28576.49 30487.09 22054.31 34673.66 34479.80 35260.25 28186.76 27858.37 31384.15 34787.32 285
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15755.95 32273.40 33886.17 23250.70 36973.14 34585.94 28358.31 29585.90 29456.51 32383.22 35287.20 286
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23185.36 24451.68 36273.10 34676.65 37861.45 27385.19 30263.54 28179.21 37482.59 342
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17861.16 38581.60 28738.65 39872.87 34769.66 39252.84 32360.04 39656.16 32577.77 37980.68 367
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28472.80 34883.42 31744.89 36759.52 39748.27 37286.45 31881.70 353
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26169.99 36357.66 33072.53 34982.93 32246.45 34880.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24642.87 37675.97 35352.21 35280.95 36983.15 338
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29355.42 31680.67 33352.86 35087.59 30484.77 311
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28665.37 38173.61 16571.77 35292.79 13444.38 36975.65 35564.53 27685.37 32982.18 349
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23185.92 23846.03 38171.68 35377.54 36968.47 23789.77 23155.70 32985.39 32874.60 382
MIMVSNet71.09 30871.59 30069.57 34087.23 22450.07 36478.91 26871.83 35360.20 31571.26 35491.76 16455.08 31976.09 35241.06 38987.02 31282.54 345
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29169.06 37248.57 36981.67 36282.55 344
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28871.18 35677.54 36943.41 37268.47 37740.75 39082.65 35881.35 357
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26274.51 33151.94 36170.97 35784.75 30245.16 36587.49 26455.16 33579.23 37383.40 333
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29970.81 35872.36 38961.37 27479.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29970.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23570.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24770.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25475.45 32765.02 27170.26 36281.88 33445.34 36285.68 29858.34 31475.39 38682.08 351
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 29865.36 38950.21 36081.01 36881.25 360
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25371.76 35447.50 37569.92 36483.60 31342.07 37788.40 25548.44 37179.51 37083.01 340
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27569.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22781.96 28256.76 33769.57 36686.21 28060.03 28284.83 30649.58 36582.65 35885.11 308
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31369.52 36773.53 38652.38 32664.40 39144.90 38281.44 36575.76 379
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 30168.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27973.68 34044.89 38468.64 36979.00 35945.51 35982.42 32549.91 36270.15 39381.23 362
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 26173.94 33276.90 31563.27 27868.63 37076.79 37633.83 39291.84 17059.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet80.37 21078.41 23686.23 11176.75 36273.28 13687.18 11177.45 30976.24 13168.14 37188.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33374.77 35645.82 38182.96 35381.60 355
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27870.69 36153.16 35267.88 37380.36 34848.18 34274.75 35758.13 31670.79 39281.08 363
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 19088.29 20069.16 22467.83 37483.72 31260.93 27589.47 23569.22 23089.70 27690.88 219
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38166.60 38455.54 33168.81 39880.68 367
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28745.36 36180.85 33255.73 32784.42 345
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28566.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23670.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 32046.71 34677.26 34942.29 38669.96 39483.46 331
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 32046.71 34663.21 39242.29 38669.96 39483.46 331
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19756.95 39342.11 40838.30 39965.69 38177.19 37556.96 30559.35 39846.16 37858.96 40165.93 392
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 31165.62 38267.03 39655.93 31268.23 37832.07 40369.46 39768.17 390
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20955.46 31563.12 39341.72 38881.30 36769.09 389
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 17075.67 31465.56 38070.42 21165.18 38492.97 12633.64 39383.06 31953.52 34569.61 39678.79 374
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28865.08 38572.39 38743.41 37269.37 36861.00 30084.89 34081.31 358
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 30153.60 32249.76 40232.68 40289.41 27872.15 384
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33264.82 38877.45 37146.02 35188.44 25453.08 34677.83 37888.70 265
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18255.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
PAPM71.77 30170.06 31576.92 28686.39 24253.97 33576.62 30286.62 22653.44 35063.97 39084.73 30357.79 30192.34 15539.65 39181.33 36684.45 316
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 37949.15 40337.39 39772.52 38869.55 388
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36349.18 36683.75 328
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38871.58 36547.41 37462.34 40075.52 380
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18763.97 38061.73 39036.80 40160.11 39568.43 39459.42 28766.35 38548.97 36878.57 37760.81 396
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32065.91 38735.40 39847.01 40259.25 398
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 18049.95 33876.43 35138.74 39371.92 39155.84 400
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25258.90 39865.50 39740.48 38066.12 38655.72 32886.25 32262.95 395
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16455.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21875.79 32266.49 25458.39 40081.06 34153.68 32185.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24956.89 40163.33 39840.98 37867.03 38254.79 33786.18 32363.08 394
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23249.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31144.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3829.21 40721.64 40543.75 4034.57 403
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2291.09 4052.23 40795.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2430.00 4090.00 41082.82 32481.46 1130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
eth-test20.00 414
eth-test0.00 414
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
GSMVS83.88 323
sam_mvs146.11 35083.88 323
sam_mvs45.92 355
MTGPAbinary91.81 118
test_post178.85 2713.13 40545.19 36480.13 33758.11 317
test_post3.10 40645.43 36077.22 350
patchmatchnet-post81.71 33645.93 35487.01 269
MTMP90.66 4433.14 410
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
新几何281.72 230
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 329
无先验82.81 20585.62 24158.09 32691.41 18167.95 24784.48 315
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 415
nn0.00 415
door-mid74.45 332
test1191.46 124
door72.57 347
HQP5-MVS70.66 173
BP-MVS77.30 147
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134