This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
DTE-MVSNet89.98 4391.91 1384.21 15696.51 757.84 31388.93 8692.84 9291.92 396.16 396.23 1986.95 4895.99 1079.05 12198.57 1498.80 6
PEN-MVS90.03 4191.88 1484.48 14696.57 558.88 30388.95 8593.19 7491.62 496.01 696.16 2187.02 4795.60 3678.69 12498.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14796.56 658.83 30689.04 8492.74 9591.40 596.12 496.06 2387.23 4595.57 3879.42 11998.74 599.00 2
CP-MVSNet89.27 5890.91 4084.37 14896.34 858.61 30988.66 9392.06 11390.78 695.67 795.17 4281.80 11295.54 4179.00 12298.69 998.95 4
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1790.65 790.33 9293.95 9784.50 7195.37 5180.87 10195.50 14294.53 80
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1788.16 3394.17 9286.07 4598.48 1797.22 19
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1290.28 992.11 6195.03 4589.75 2094.93 6679.95 11198.27 2595.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H89.91 4691.31 2985.71 12396.32 962.39 25789.54 7593.31 6890.21 1095.57 995.66 2981.42 11695.90 1580.94 10098.80 298.84 5
3Dnovator+83.92 289.97 4589.66 5490.92 3191.27 13581.66 6291.25 3994.13 3588.89 1188.83 12394.26 7777.55 15195.86 2284.88 5795.87 13095.24 58
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 984.81 6993.16 13491.10 197.53 6996.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D89.12 6190.72 4384.31 15497.00 264.33 23289.67 7088.38 20288.84 1394.29 1997.57 390.48 1391.26 18572.57 20597.65 5997.34 15
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6788.83 2495.51 4487.16 2997.60 6392.73 157
RE-MVS-def92.61 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6790.64 1087.16 2997.60 6392.73 157
test_040288.65 6689.58 5785.88 11992.55 8972.22 15584.01 16889.44 19088.63 1694.38 1895.77 2686.38 5893.59 11679.84 11295.21 15291.82 200
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5589.57 18888.51 1790.11 9495.12 4490.98 688.92 25077.55 14197.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9388.22 1888.53 12897.64 283.45 8394.55 7986.02 4898.60 1296.67 27
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2493.87 4988.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7392.19 188
bld_raw_dy_0_6489.10 6290.28 4885.56 12792.90 7962.28 26092.93 1394.80 1588.13 2094.98 1297.01 771.37 22795.87 1884.15 6596.25 11198.52 7
DP-MVS88.60 6789.01 6487.36 9091.30 13377.50 9787.55 10692.97 8887.95 2189.62 10992.87 12984.56 7093.89 10277.65 13996.62 9390.70 228
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7776.26 11689.65 7195.55 787.72 2293.89 2794.94 4791.62 393.44 12478.35 12798.76 395.61 48
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7685.17 3592.47 2695.05 1387.65 2393.21 4094.39 7290.09 1795.08 6186.67 3597.60 6394.18 95
Anonymous2023121188.40 6889.62 5684.73 14190.46 15465.27 22288.86 8793.02 8687.15 2493.05 4397.10 682.28 10292.02 16676.70 15197.99 3996.88 25
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18255.88 40386.68 2564.62 39297.01 730.36 40183.97 31944.78 38682.94 35776.26 381
test_one_060193.85 5873.27 13594.11 3686.57 2693.47 3894.64 5988.42 26
v7n90.13 3690.96 3887.65 8891.95 10971.06 16989.99 6093.05 8286.53 2794.29 1996.27 1882.69 9094.08 9686.25 4297.63 6097.82 9
VDDNet84.35 13685.39 12481.25 22395.13 3159.32 29685.42 14381.11 29286.41 2887.41 15296.21 2073.61 19790.61 21066.33 25896.85 8493.81 116
IS-MVSNet86.66 9486.82 9786.17 11492.05 10766.87 20991.21 4088.64 19986.30 2989.60 11292.59 13769.22 23894.91 6773.89 18597.89 4896.72 26
testf189.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
APD_test289.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
Anonymous2024052986.20 10287.13 8883.42 17990.19 15964.55 23084.55 15790.71 15385.85 3289.94 10195.24 4082.13 10490.40 21469.19 23496.40 10495.31 55
SSC-MVS77.55 24781.64 18765.29 36790.46 15420.33 41373.56 33868.28 37285.44 3388.18 13994.64 5970.93 22981.33 33271.25 21192.03 23794.20 92
DVP-MVS++90.07 3891.09 3287.00 9491.55 12672.64 14396.19 294.10 3785.33 3493.49 3694.64 5981.12 11995.88 1687.41 2295.94 12692.48 170
test_0728_THIRD85.33 3493.75 3194.65 5687.44 4395.78 2887.41 2298.21 2892.98 151
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3692.51 5595.13 4390.65 995.34 5288.06 898.15 3395.95 41
tt080588.09 7489.79 5282.98 18993.26 7163.94 23691.10 4289.64 18585.07 3790.91 8491.09 18289.16 2291.87 17182.03 8995.87 13093.13 143
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9894.03 8986.57 5295.80 2587.35 2497.62 6194.20 92
X-MVStestdata85.04 12282.70 17192.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9816.05 40986.57 5295.80 2587.35 2497.62 6194.20 92
TranMVSNet+NR-MVSNet87.86 7988.76 7085.18 13394.02 5464.13 23384.38 16291.29 13884.88 4092.06 6393.84 10186.45 5593.73 10773.22 19698.66 1097.69 10
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6778.65 8389.15 8394.05 3984.68 4193.90 2594.11 8788.13 3496.30 484.51 6197.81 5191.70 204
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM87.64 8387.15 8789.09 6489.51 17176.39 11588.68 9286.76 23084.54 4283.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 87
APD_test188.40 6887.91 7689.88 4789.50 17286.65 1689.98 6191.91 11984.26 4390.87 8793.92 9982.18 10389.29 24673.75 18894.81 17193.70 120
Gipumacopyleft84.44 13486.33 10278.78 25884.20 28973.57 13189.55 7390.44 16184.24 4484.38 21594.89 4876.35 17280.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12584.07 4592.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 180
K. test v385.14 12084.73 13386.37 10691.13 14069.63 18185.45 14276.68 32184.06 4692.44 5796.99 962.03 27794.65 7380.58 10693.24 21294.83 73
ANet_high83.17 16785.68 11975.65 30381.24 32545.26 38679.94 25492.91 8983.83 4791.33 7496.88 1180.25 12985.92 29568.89 23895.89 12995.76 43
SED-MVS90.46 3391.64 1786.93 9694.18 4672.65 14190.47 5293.69 5483.77 4894.11 2394.27 7490.28 1495.84 2386.03 4697.92 4592.29 181
test_241102_TWO93.71 5383.77 4893.49 3694.27 7489.27 2195.84 2386.03 4697.82 5092.04 193
test_241102_ONE94.18 4672.65 14193.69 5483.62 5094.11 2393.78 10490.28 1495.50 46
DVP-MVScopyleft90.06 3991.32 2886.29 10894.16 4972.56 14790.54 4991.01 14683.61 5193.75 3194.65 5689.76 1895.78 2886.42 3697.97 4290.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14790.63 4693.90 4683.61 5193.75 3194.49 6489.76 18
pmmvs686.52 9688.06 7581.90 21292.22 10162.28 26084.66 15589.15 19383.54 5389.85 10297.32 488.08 3686.80 27970.43 22297.30 7596.62 28
APDe-MVScopyleft91.22 2191.92 1189.14 6392.97 7878.04 8992.84 1694.14 3483.33 5493.90 2595.73 2788.77 2596.41 287.60 1897.98 4192.98 151
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS76.06 26580.01 22364.19 37089.96 16720.58 41272.18 34768.19 37383.21 5586.46 17893.49 11170.19 23278.97 34665.96 26090.46 27293.02 148
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6383.16 5691.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 167
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1892.60 9983.09 5791.54 7094.25 7887.67 4195.51 4487.21 2898.11 3493.12 145
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11492.86 8367.02 20682.55 21491.56 12883.08 5890.92 8291.82 16178.25 14393.99 9874.16 17898.35 2197.49 14
LFMVS80.15 22280.56 20978.89 25689.19 18155.93 32685.22 14673.78 34182.96 5984.28 22292.72 13557.38 30890.07 22763.80 28295.75 13790.68 229
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 6091.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6182.82 6192.60 5493.97 9288.19 3196.29 587.61 1798.20 3094.39 88
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8582.59 6288.52 12994.37 7386.74 5095.41 5086.32 3998.21 2893.19 141
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 3082.52 6392.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5894.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2293.29 7081.99 6691.47 7193.96 9588.35 2995.56 3987.74 1397.74 5692.85 154
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2293.25 7281.99 6691.40 7294.17 8387.51 4295.87 1887.74 1397.76 5493.99 103
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2193.30 6981.91 6890.88 8694.21 7987.75 3995.87 1887.60 1897.71 5793.83 112
ACMH76.49 1489.34 5591.14 3183.96 16192.50 9170.36 17589.55 7393.84 5081.89 6994.70 1495.44 3490.69 888.31 26083.33 7098.30 2493.20 140
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DU-MVS86.80 9186.99 9286.21 11293.24 7267.02 20683.16 19592.21 10881.73 7090.92 8291.97 15577.20 15593.99 9874.16 17898.35 2197.61 11
SixPastTwentyTwo87.20 8687.45 8386.45 10592.52 9069.19 18887.84 10488.05 20981.66 7194.64 1596.53 1565.94 25794.75 7083.02 7696.83 8695.41 51
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16881.56 7290.02 9791.20 17982.40 9690.81 20373.58 19194.66 17694.56 77
EPP-MVSNet85.47 11485.04 12986.77 10091.52 12969.37 18391.63 3687.98 21181.51 7387.05 16191.83 16066.18 25595.29 5370.75 21796.89 8395.64 46
SF-MVS90.27 3590.80 4288.68 7392.86 8377.09 10491.19 4195.74 581.38 7492.28 5993.80 10286.89 4994.64 7485.52 5197.51 7094.30 91
MVS_030486.35 9885.92 11187.66 8789.21 18073.16 13888.40 9683.63 27281.27 7580.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
WR-MVS83.56 15884.40 14481.06 22893.43 6654.88 33578.67 27685.02 25781.24 7690.74 8891.56 16972.85 21091.08 19168.00 24898.04 3597.23 18
Anonymous20240521180.51 21181.19 20378.49 26488.48 20057.26 31876.63 30482.49 28281.21 7784.30 22192.24 15167.99 24686.24 28862.22 29295.13 15591.98 197
OurMVSNet-221017-090.01 4289.74 5390.83 3293.16 7480.37 6891.91 3393.11 7881.10 7895.32 1097.24 572.94 20994.85 6885.07 5497.78 5297.26 16
NR-MVSNet86.00 10586.22 10485.34 13193.24 7264.56 22982.21 22790.46 16080.99 7988.42 13291.97 15577.56 15093.85 10372.46 20698.65 1197.61 11
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5280.98 8091.38 7393.80 10287.20 4695.80 2587.10 3197.69 5893.93 107
EC-MVSNet88.01 7588.32 7387.09 9289.28 17772.03 15790.31 5596.31 380.88 8185.12 19889.67 22684.47 7295.46 4782.56 8396.26 11093.77 118
APD-MVScopyleft89.54 5289.63 5589.26 6192.57 8881.34 6490.19 5793.08 8180.87 8291.13 7893.19 11586.22 5995.97 1282.23 8897.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-Vis-set85.12 12184.53 14086.88 9784.01 29172.76 14083.91 17385.18 25280.44 8388.75 12485.49 29180.08 13091.92 16882.02 9090.85 26495.97 39
UniMVSNet (Re)86.87 8886.98 9386.55 10393.11 7568.48 19283.80 17792.87 9080.37 8489.61 11191.81 16277.72 14894.18 9075.00 17298.53 1596.99 24
CSCG86.26 9986.47 10085.60 12590.87 14674.26 12787.98 10191.85 12180.35 8589.54 11588.01 24879.09 13692.13 16275.51 16595.06 15990.41 237
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5893.90 4680.32 8691.74 6994.41 7088.17 3295.98 1186.37 3897.99 3993.96 106
EI-MVSNet-UG-set85.04 12284.44 14286.85 9883.87 29572.52 14983.82 17585.15 25380.27 8788.75 12485.45 29379.95 13291.90 16981.92 9390.80 26596.13 34
XVG-OURS89.18 5988.83 6890.23 4394.28 4486.11 2285.91 13393.60 5980.16 8889.13 12093.44 11283.82 7790.98 19483.86 6895.30 15193.60 126
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8991.29 7693.97 9287.93 3895.87 1888.65 497.96 4494.12 99
XVG-OURS-SEG-HR89.59 5189.37 5890.28 4294.47 4285.95 2386.84 11893.91 4580.07 9086.75 16693.26 11493.64 290.93 19684.60 6090.75 26693.97 105
VDD-MVS84.23 14284.58 13983.20 18591.17 13965.16 22583.25 19184.97 26079.79 9187.18 15494.27 7474.77 18590.89 19969.24 23196.54 9693.55 131
CPTT-MVS89.39 5488.98 6690.63 3695.09 3286.95 1292.09 2992.30 10779.74 9287.50 15192.38 14381.42 11693.28 12983.07 7497.24 7691.67 205
XVG-ACMP-BASELINE89.98 4389.84 5190.41 3994.91 3684.50 4489.49 7793.98 4179.68 9392.09 6293.89 10083.80 7893.10 13782.67 8298.04 3593.64 124
TransMVSNet (Re)84.02 14885.74 11878.85 25791.00 14355.20 33482.29 22387.26 21779.65 9488.38 13495.52 3383.00 8786.88 27767.97 24996.60 9494.45 83
AllTest87.97 7787.40 8589.68 5291.59 12183.40 4889.50 7695.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
TestCases89.68 5291.59 12183.40 4895.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
HQP_MVS87.75 8287.43 8488.70 7293.45 6476.42 11389.45 7893.61 5779.44 9786.55 17192.95 12674.84 18295.22 5680.78 10395.83 13294.46 81
plane_prior289.45 7879.44 97
CS-MVS88.14 7287.67 8089.54 5789.56 17079.18 7890.47 5294.77 1679.37 9984.32 21889.33 23083.87 7694.53 8082.45 8494.89 16794.90 66
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6991.11 14379.26 10089.68 10694.81 5482.44 9487.74 26476.54 15488.74 29196.61 29
ACMM79.39 990.65 2890.99 3789.63 5495.03 3383.53 4789.62 7293.35 6479.20 10193.83 2893.60 11090.81 792.96 14085.02 5698.45 1892.41 174
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA83.55 15983.10 16484.90 13689.34 17683.87 4684.54 15988.77 19679.09 10283.54 23688.66 24174.87 18181.73 33066.84 25492.29 23189.11 260
Baseline_NR-MVSNet84.00 14985.90 11278.29 26991.47 13153.44 34382.29 22387.00 22979.06 10389.55 11395.72 2877.20 15586.14 29372.30 20798.51 1695.28 56
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8294.05 3979.03 10492.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SD-MVS88.96 6489.88 5086.22 11191.63 12077.07 10589.82 6593.77 5178.90 10592.88 4592.29 14886.11 6090.22 21886.24 4397.24 7691.36 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNetpermissive86.86 8986.58 9887.72 8592.09 10577.43 10087.35 11092.09 11278.87 10684.27 22394.05 8878.35 14293.65 10980.54 10791.58 24892.08 192
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS89.80 4789.97 4989.27 6094.76 3979.86 7286.76 12292.78 9478.78 10792.51 5593.64 10988.13 3493.84 10584.83 5897.55 6694.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NCCC87.36 8486.87 9588.83 6792.32 9778.84 8286.58 12691.09 14478.77 10884.85 20790.89 19080.85 12295.29 5381.14 9895.32 14892.34 178
ETV-MVS84.31 13783.91 15385.52 12888.58 19870.40 17484.50 16193.37 6278.76 10984.07 22678.72 36580.39 12795.13 6073.82 18792.98 21991.04 218
Effi-MVS+83.90 15284.01 15083.57 17687.22 22865.61 22186.55 12792.40 10378.64 11081.34 27384.18 31283.65 8192.93 14274.22 17787.87 30392.17 189
FMVSNet184.55 13285.45 12381.85 21490.27 15861.05 27786.83 11988.27 20678.57 11189.66 10895.64 3075.43 17590.68 20769.09 23595.33 14693.82 113
MSP-MVS89.08 6388.16 7491.83 1895.76 1786.14 2192.75 1793.90 4678.43 11289.16 11892.25 15072.03 22296.36 388.21 790.93 26092.98 151
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
API-MVS82.28 17882.61 17481.30 22286.29 25269.79 17788.71 9187.67 21378.42 11382.15 25784.15 31377.98 14491.59 17665.39 26892.75 22382.51 350
HPM-MVS++copyleft88.93 6588.45 7290.38 4094.92 3585.85 2789.70 6791.27 13978.20 11486.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 240
AdaColmapbinary83.66 15583.69 15583.57 17690.05 16472.26 15486.29 13090.00 17878.19 11581.65 26787.16 26883.40 8494.24 8761.69 29994.76 17584.21 324
PAPM_NR83.23 16483.19 16183.33 18190.90 14565.98 21788.19 9890.78 15278.13 11680.87 27887.92 25273.49 20192.42 15370.07 22488.40 29391.60 207
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15087.09 23465.22 22384.16 16494.23 2477.89 11791.28 7793.66 10884.35 7392.71 14680.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8786.43 10188.71 7189.46 17377.46 9889.42 8095.73 677.87 11881.64 26887.25 26682.43 9594.53 8077.65 13996.46 10194.14 98
plane_prior376.85 10777.79 11986.55 171
ACMMP_NAP90.65 2891.07 3589.42 5895.93 1579.54 7689.95 6293.68 5677.65 12091.97 6594.89 4888.38 2795.45 4889.27 397.87 4993.27 137
MSDG80.06 22479.99 22480.25 24083.91 29468.04 19877.51 29289.19 19277.65 12081.94 25983.45 31976.37 17186.31 28763.31 28786.59 32086.41 296
MIMVSNet183.63 15684.59 13880.74 23294.06 5362.77 25082.72 20784.53 26577.57 12290.34 9195.92 2576.88 16785.83 30061.88 29797.42 7193.62 125
FC-MVSNet-test85.93 10787.05 9182.58 20292.25 9956.44 32485.75 13793.09 8077.33 12391.94 6694.65 5674.78 18493.41 12675.11 17198.58 1397.88 8
CNVR-MVS87.81 8187.68 7988.21 8092.87 8177.30 10385.25 14591.23 14077.31 12487.07 16091.47 17182.94 8894.71 7184.67 5996.27 10992.62 164
CANet83.79 15382.85 16986.63 10186.17 25672.21 15683.76 17891.43 13277.24 12574.39 34287.45 26275.36 17695.42 4977.03 14992.83 22292.25 185
UGNet82.78 17081.64 18786.21 11286.20 25576.24 11786.86 11785.68 24477.07 12673.76 34692.82 13069.64 23491.82 17369.04 23793.69 20390.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal81.79 19382.95 16778.31 26788.93 18755.40 33080.83 24682.85 27976.81 12785.90 18894.14 8474.58 18886.51 28466.82 25595.68 14093.01 149
v886.22 10186.83 9684.36 15087.82 21362.35 25986.42 12891.33 13776.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14397.01 23
LCM-MVSNet-Re83.48 16085.06 12878.75 25985.94 26155.75 32980.05 25294.27 2176.47 12996.09 594.54 6283.31 8589.75 23759.95 30994.89 16790.75 225
VPA-MVSNet83.47 16184.73 13379.69 24890.29 15757.52 31681.30 23988.69 19876.29 13087.58 15094.44 6680.60 12687.20 27166.60 25796.82 8794.34 89
EPNet80.37 21578.41 24086.23 11076.75 36573.28 13487.18 11277.45 31276.24 13168.14 37488.93 23765.41 26093.85 10369.47 22996.12 11791.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet82.61 17282.42 17883.20 18583.25 30563.66 23783.50 18485.07 25476.06 13286.55 17185.10 29973.41 20290.25 21578.15 13490.67 26895.68 45
IterMVS-LS84.73 12884.98 13083.96 16187.35 22563.66 23783.25 19189.88 18076.06 13289.62 10992.37 14673.40 20492.52 15178.16 13294.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10993.17 7576.02 13488.64 12691.22 17784.24 7593.37 12777.97 13797.03 8195.52 49
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
MSLP-MVS++85.00 12586.03 10881.90 21291.84 11671.56 16686.75 12393.02 8675.95 13787.12 15589.39 22877.98 14489.40 24577.46 14294.78 17284.75 315
plane_prior76.42 11387.15 11375.94 13895.03 160
FIs85.35 11686.27 10382.60 20191.86 11357.31 31785.10 14993.05 8275.83 13991.02 8193.97 9273.57 19892.91 14473.97 18498.02 3897.58 13
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1875.79 14092.94 4494.96 4688.36 2895.01 6490.70 298.40 1995.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
thres100view90075.45 27075.05 27076.66 29487.27 22651.88 35581.07 24273.26 34675.68 14183.25 24086.37 27845.54 36288.80 25151.98 35790.99 25689.31 256
3Dnovator80.37 784.80 12784.71 13685.06 13586.36 24974.71 12488.77 9090.00 17875.65 14284.96 20393.17 11674.06 19291.19 18778.28 12991.09 25489.29 258
FA-MVS(test-final)83.13 16883.02 16583.43 17886.16 25866.08 21688.00 10088.36 20375.55 14385.02 20092.75 13465.12 26192.50 15274.94 17391.30 25291.72 202
pm-mvs183.69 15484.95 13179.91 24490.04 16559.66 29382.43 21887.44 21475.52 14487.85 14595.26 3981.25 11885.65 30268.74 24196.04 12094.42 86
test_prior283.37 18775.43 14584.58 21091.57 16881.92 11079.54 11796.97 82
v1086.54 9587.10 8984.84 13788.16 20863.28 24386.64 12592.20 10975.42 14692.81 5094.50 6374.05 19394.06 9783.88 6796.28 10797.17 20
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4493.24 7375.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5493.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres600view775.97 26675.35 26877.85 27987.01 23651.84 35680.45 24873.26 34675.20 14883.10 24386.31 28145.54 36289.05 24755.03 33992.24 23392.66 162
9.1489.29 5991.84 11688.80 8995.32 1175.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 66
wuyk23d75.13 27379.30 22862.63 37375.56 37575.18 12380.89 24473.10 34875.06 15094.76 1395.32 3587.73 4052.85 40434.16 40397.11 7959.85 400
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21294.16 3074.80 15175.72 33092.59 13748.69 34595.56 3973.48 19282.91 35883.85 329
TSAR-MVS + GP.83.95 15082.69 17287.72 8589.27 17881.45 6383.72 17981.58 29174.73 15285.66 19086.06 28472.56 21592.69 14875.44 16795.21 15289.01 266
casdiffmvspermissive85.21 11885.85 11483.31 18286.17 25662.77 25083.03 19793.93 4474.69 15388.21 13792.68 13682.29 10191.89 17077.87 13893.75 20295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+-dtu85.82 10983.38 15793.14 387.13 23091.15 287.70 10588.42 20174.57 15483.56 23585.65 28978.49 14194.21 8872.04 20892.88 22194.05 102
baseline85.20 11985.93 11083.02 18886.30 25162.37 25884.55 15793.96 4274.48 15587.12 15592.03 15482.30 10091.94 16778.39 12594.21 18894.74 74
VNet79.31 22880.27 21476.44 29587.92 21253.95 33975.58 32084.35 26674.39 15682.23 25590.72 19772.84 21184.39 31360.38 30893.98 19590.97 219
BH-RMVSNet80.53 21080.22 21781.49 22187.19 22966.21 21577.79 28786.23 23574.21 15783.69 23188.50 24273.25 20790.75 20463.18 28887.90 30287.52 285
nrg03087.85 8088.49 7185.91 11790.07 16369.73 17987.86 10394.20 2774.04 15892.70 5394.66 5585.88 6391.50 17779.72 11497.32 7496.50 31
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 18971.97 35574.04 15882.23 25589.78 22357.38 30889.41 24457.22 32395.41 14393.05 147
testdata179.62 25873.95 160
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 21976.90 31873.81 16185.56 19392.38 14348.07 34883.98 31863.36 28695.31 15090.92 221
tttt051781.07 20279.58 22585.52 12888.99 18666.45 21387.03 11575.51 32973.76 16288.32 13690.20 21437.96 39094.16 9479.36 12095.13 15595.93 42
SDMVSNet81.90 19183.17 16278.10 27288.81 19062.45 25676.08 31486.05 23973.67 16383.41 23793.04 11982.35 9780.65 33770.06 22595.03 16091.21 214
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16383.41 23793.04 11980.96 12177.65 35058.62 31595.03 16091.21 214
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16571.77 35592.79 13344.38 37475.65 35864.53 27985.37 33282.18 352
DeepC-MVS82.31 489.15 6089.08 6389.37 5993.64 6279.07 7988.54 9494.20 2773.53 16689.71 10594.82 5185.09 6595.77 3084.17 6498.03 3793.26 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.04 12285.95 10982.31 20887.52 22263.59 23986.23 13193.96 4273.46 16788.07 14087.83 25486.46 5490.87 20176.17 15893.89 19792.47 172
VPNet80.25 21881.68 18675.94 30192.46 9247.98 37376.70 30281.67 28973.45 16884.87 20692.82 13074.66 18786.51 28461.66 30096.85 8493.33 134
sasdasda85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
canonicalmvs85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
MVS_111021_HR84.63 12984.34 14685.49 13090.18 16075.86 12079.23 26887.13 22173.35 17185.56 19389.34 22983.60 8290.50 21276.64 15394.05 19490.09 245
tfpn200view974.86 27874.23 27776.74 29386.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25689.31 256
thres40075.14 27274.23 27777.86 27886.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25692.66 162
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
HQP-MVS84.61 13084.06 14986.27 10991.19 13670.66 17184.77 15092.68 9673.30 17480.55 28390.17 21772.10 21894.61 7577.30 14694.47 18093.56 129
alignmvs83.94 15183.98 15183.80 16587.80 21467.88 19984.54 15991.42 13473.27 17788.41 13387.96 24972.33 21690.83 20276.02 16194.11 19292.69 161
F-COLMAP84.97 12683.42 15689.63 5492.39 9383.40 4888.83 8891.92 11873.19 17880.18 29189.15 23477.04 15993.28 12965.82 26592.28 23292.21 186
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 17988.86 12188.99 23666.94 25081.23 33364.71 27588.22 30091.64 206
PHI-MVS86.38 9785.81 11588.08 8188.44 20277.34 10189.35 8193.05 8273.15 17984.76 20887.70 25678.87 13894.18 9080.67 10596.29 10692.73 157
Fast-Effi-MVS+-dtu82.54 17581.41 19685.90 11885.60 26476.53 11183.07 19689.62 18773.02 18179.11 30383.51 31780.74 12490.24 21768.76 24089.29 28290.94 220
v14882.31 17782.48 17781.81 21785.59 26559.66 29381.47 23686.02 24072.85 18288.05 14290.65 20270.73 23090.91 19875.15 17091.79 24294.87 68
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18380.97 27482.08 33519.80 41487.33 27065.12 27191.68 24592.13 191
FE-MVS79.98 22578.86 23183.36 18086.47 24366.45 21389.73 6684.74 26472.80 18484.22 22591.38 17344.95 37193.60 11563.93 28191.50 24990.04 246
BH-untuned80.96 20480.99 20480.84 23188.55 19968.23 19380.33 25088.46 20072.79 18586.55 17186.76 27474.72 18691.77 17461.79 29888.99 28682.52 349
MVS_111021_LR84.28 13983.76 15485.83 12189.23 17983.07 5180.99 24383.56 27372.71 18686.07 18389.07 23581.75 11386.19 29177.11 14893.36 20788.24 271
EG-PatchMatch MVS84.08 14684.11 14883.98 16092.22 10172.61 14682.20 22987.02 22672.63 18788.86 12191.02 18478.52 13991.11 19073.41 19391.09 25488.21 272
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4391.87 12072.61 18892.16 6095.23 4166.01 25695.59 3786.02 4897.78 5297.24 17
test111178.53 23878.85 23277.56 28192.22 10147.49 37582.61 21069.24 37072.43 18985.28 19694.20 8051.91 33390.07 22765.36 26996.45 10295.11 63
IterMVS-SCA-FT80.64 20979.41 22684.34 15283.93 29369.66 18076.28 31081.09 29372.43 18986.47 17790.19 21560.46 28493.15 13577.45 14386.39 32390.22 240
GBi-Net82.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
test182.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
FMVSNet281.31 19981.61 18980.41 23886.38 24658.75 30783.93 17286.58 23272.43 18987.65 14892.98 12363.78 26890.22 21866.86 25293.92 19692.27 183
GeoE85.45 11585.81 11584.37 14890.08 16167.07 20585.86 13591.39 13572.33 19487.59 14990.25 21284.85 6892.37 15678.00 13591.94 24193.66 121
test250674.12 28573.39 28576.28 29891.85 11444.20 38984.06 16748.20 40872.30 19581.90 26094.20 8027.22 40989.77 23564.81 27496.02 12194.87 68
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11448.95 36983.68 18069.91 36772.30 19584.26 22494.20 8051.89 33489.82 23263.58 28396.02 12194.87 68
v2v48284.09 14584.24 14783.62 17287.13 23061.40 27182.71 20889.71 18372.19 19789.55 11391.41 17270.70 23193.20 13281.02 9993.76 19996.25 32
DP-MVS Recon84.05 14783.22 15986.52 10491.73 11975.27 12283.23 19392.40 10372.04 19882.04 25888.33 24477.91 14693.95 10066.17 25995.12 15790.34 239
MG-MVS80.32 21780.94 20578.47 26588.18 20652.62 35082.29 22385.01 25872.01 19979.24 30292.54 14069.36 23793.36 12870.65 21989.19 28589.45 252
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3674.65 32967.39 37571.94 20077.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
iter_conf05_1185.73 11085.77 11785.60 12588.77 19367.74 20191.49 3794.17 2971.86 20188.07 14092.18 15368.84 24295.06 6281.20 9795.33 14693.99 103
MVSFormer82.23 17981.57 19284.19 15885.54 26669.26 18591.98 3190.08 17671.54 20276.23 32385.07 30258.69 29994.27 8486.26 4088.77 28989.03 264
test_djsdf89.62 5089.01 6491.45 2292.36 9482.98 5391.98 3190.08 17671.54 20294.28 2196.54 1481.57 11494.27 8486.26 4096.49 9997.09 21
h-mvs3384.25 14082.76 17088.72 7091.82 11882.60 5684.00 16984.98 25971.27 20486.70 16790.55 20563.04 27493.92 10178.26 13094.20 18989.63 250
hse-mvs283.47 16181.81 18588.47 7491.03 14282.27 5782.61 21083.69 27071.27 20486.70 16786.05 28563.04 27492.41 15478.26 13093.62 20690.71 227
TinyColmap81.25 20082.34 17977.99 27585.33 26960.68 28482.32 22288.33 20471.26 20686.97 16292.22 15277.10 15886.98 27562.37 29195.17 15486.31 298
ZD-MVS92.22 10180.48 6791.85 12171.22 20790.38 9092.98 12386.06 6196.11 681.99 9196.75 89
MVS_Test82.47 17683.22 15980.22 24182.62 31357.75 31582.54 21591.96 11771.16 20882.89 24692.52 14177.41 15290.50 21280.04 11087.84 30492.40 175
DELS-MVS81.44 19881.25 20082.03 21084.27 28862.87 24876.47 30892.49 10270.97 20981.64 26883.83 31475.03 17992.70 14774.29 17692.22 23590.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
save fliter93.75 5977.44 9986.31 12989.72 18270.80 210
PS-MVSNAJss88.31 7087.90 7789.56 5693.31 6977.96 9287.94 10291.97 11670.73 21194.19 2296.67 1276.94 16194.57 7783.07 7496.28 10796.15 33
DeepC-MVS_fast80.27 886.23 10085.65 12087.96 8491.30 13376.92 10687.19 11191.99 11570.56 21284.96 20390.69 19880.01 13195.14 5978.37 12695.78 13691.82 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS82.19 18181.23 20285.10 13487.95 21169.17 18983.22 19493.33 6570.42 21378.58 30679.77 35777.29 15494.20 8971.51 21088.96 28791.93 198
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21380.28 28991.50 17064.21 26574.72 36146.96 38094.58 17887.82 283
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21365.18 38792.97 12533.64 39783.06 32253.52 34869.61 39978.79 377
v114484.54 13384.72 13584.00 15987.67 21862.55 25482.97 20090.93 14970.32 21689.80 10390.99 18573.50 19993.48 12281.69 9594.65 17795.97 39
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10570.25 21789.35 11790.68 19982.85 8994.57 7779.55 11695.95 12592.00 195
KD-MVS_self_test81.93 18983.14 16378.30 26884.75 27952.75 34780.37 24989.42 19170.24 21890.26 9393.39 11374.55 18986.77 28068.61 24396.64 9195.38 52
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 21978.56 30780.57 34846.20 35488.20 26146.99 37989.29 28284.32 321
mvs_tets89.78 4889.27 6091.30 2593.51 6384.79 4089.89 6490.63 15670.00 22094.55 1696.67 1287.94 3793.59 11684.27 6395.97 12395.52 49
anonymousdsp89.73 4988.88 6792.27 789.82 16886.67 1490.51 5190.20 17369.87 22195.06 1196.14 2284.28 7493.07 13887.68 1596.34 10597.09 21
PM-MVS80.20 22079.00 23083.78 16788.17 20786.66 1581.31 23766.81 38169.64 22288.33 13590.19 21564.58 26283.63 32171.99 20990.03 27581.06 368
V4283.47 16183.37 15883.75 16883.16 30863.33 24281.31 23790.23 17269.51 22390.91 8490.81 19574.16 19192.29 16080.06 10990.22 27395.62 47
jajsoiax89.41 5388.81 6991.19 2893.38 6784.72 4189.70 6790.29 17069.27 22494.39 1796.38 1686.02 6293.52 12083.96 6695.92 12895.34 53
TAPA-MVS77.73 1285.71 11184.83 13288.37 7788.78 19279.72 7387.15 11393.50 6069.17 22585.80 18989.56 22780.76 12392.13 16273.21 20195.51 14193.25 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19088.29 20569.16 22667.83 37783.72 31560.93 28189.47 23969.22 23389.70 27990.88 222
v119284.57 13184.69 13784.21 15687.75 21562.88 24783.02 19891.43 13269.08 22789.98 10090.89 19072.70 21393.62 11482.41 8594.97 16496.13 34
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24369.04 22886.00 18490.44 20751.75 33590.09 22665.95 26193.34 20891.72 202
ab-mvs79.67 22780.56 20976.99 28788.48 20056.93 32084.70 15486.06 23868.95 22980.78 28093.08 11875.30 17784.62 31056.78 32490.90 26189.43 254
thisisatest053079.07 22977.33 24984.26 15587.13 23064.58 22883.66 18175.95 32468.86 23085.22 19787.36 26438.10 38893.57 11975.47 16694.28 18794.62 75
Anonymous2024052180.18 22181.25 20076.95 28883.15 30960.84 28282.46 21785.99 24168.76 23186.78 16493.73 10759.13 29677.44 35173.71 18997.55 6692.56 166
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23279.75 29281.80 33850.62 33989.46 24066.85 25385.64 33089.72 249
dcpmvs_284.23 14285.14 12781.50 22088.61 19761.98 26782.90 20393.11 7868.66 23392.77 5192.39 14278.50 14087.63 26676.99 15092.30 22994.90 66
c3_l81.64 19581.59 19081.79 21880.86 33159.15 30078.61 27790.18 17468.36 23487.20 15387.11 27069.39 23591.62 17578.16 13294.43 18394.60 76
CLD-MVS83.18 16682.64 17384.79 13989.05 18367.82 20077.93 28492.52 10168.33 23585.07 19981.54 34182.06 10592.96 14069.35 23097.91 4793.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23851.34 35873.20 34280.63 29768.30 23681.80 26588.40 24366.92 25180.90 33455.35 33694.90 16693.12 145
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23770.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
PLCcopyleft73.85 1682.09 18480.31 21387.45 8990.86 14780.29 6985.88 13490.65 15568.17 23876.32 32286.33 27973.12 20892.61 15061.40 30290.02 27689.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+81.04 20380.57 20882.46 20687.50 22363.22 24478.37 28089.63 18668.01 23981.87 26182.08 33582.31 9992.65 14967.10 25188.30 29991.51 210
LF4IMVS82.75 17181.93 18385.19 13282.08 31480.15 7085.53 14088.76 19768.01 23985.58 19287.75 25571.80 22386.85 27874.02 18393.87 19888.58 269
QAPM82.59 17382.59 17582.58 20286.44 24466.69 21089.94 6390.36 16467.97 24184.94 20592.58 13972.71 21292.18 16170.63 22087.73 30588.85 267
v192192084.23 14284.37 14583.79 16687.64 22061.71 26982.91 20291.20 14167.94 24290.06 9590.34 20972.04 22193.59 11682.32 8694.91 16596.07 36
v124084.30 13884.51 14183.65 17187.65 21961.26 27482.85 20591.54 12967.94 24290.68 8990.65 20271.71 22493.64 11082.84 7994.78 17296.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6495.72 2176.74 10892.49 2591.19 14267.85 24486.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419284.24 14184.41 14383.71 17087.59 22161.57 27082.95 20191.03 14567.82 24589.80 10390.49 20673.28 20693.51 12181.88 9494.89 16796.04 38
DIV-MVS_self_test80.43 21280.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.38 24686.19 18089.22 23163.09 27290.16 22076.32 15595.80 13493.66 121
cl____80.42 21380.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.37 24786.18 18289.21 23263.08 27390.16 22076.31 15695.80 13493.65 123
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24870.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
eth_miper_zixun_eth80.84 20580.22 21782.71 19881.41 32360.98 28077.81 28690.14 17567.31 24986.95 16387.24 26764.26 26492.31 15875.23 16991.61 24694.85 72
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25056.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
OpenMVScopyleft76.72 1381.98 18882.00 18281.93 21184.42 28468.22 19488.50 9589.48 18966.92 25181.80 26591.86 15772.59 21490.16 22071.19 21391.25 25387.40 287
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25281.84 26289.93 22072.08 22066.92 38646.05 38392.54 22687.01 291
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25358.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
diffmvspermissive80.40 21480.48 21280.17 24279.02 35160.04 28877.54 29190.28 17166.65 25482.40 25287.33 26573.50 19987.35 26977.98 13689.62 28093.13 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28582.35 22175.79 32566.49 25558.39 40381.06 34453.68 32685.98 29453.55 34792.97 22085.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9185.94 26178.30 8586.93 11692.20 10965.94 25689.16 11893.16 11783.10 8689.89 23187.81 1194.43 18393.35 133
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25778.81 30586.28 28256.36 31481.63 33156.63 32579.04 37987.87 282
CDPH-MVS86.17 10485.54 12188.05 8392.25 9975.45 12183.85 17492.01 11465.91 25886.19 18091.75 16583.77 7994.98 6577.43 14496.71 9093.73 119
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22165.79 25984.32 21885.10 29958.96 29890.88 20075.36 16892.03 23793.84 111
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7483.94 17090.32 16565.79 25984.49 21290.97 18681.93 10893.63 11181.21 9696.54 9690.88 222
test_892.09 10578.87 8183.82 17590.31 16765.79 25984.36 21690.96 18881.93 10893.44 124
miper_ehance_all_eth80.34 21680.04 22281.24 22579.82 34158.95 30277.66 28889.66 18465.75 26285.99 18785.11 29868.29 24591.42 18276.03 16092.03 23793.33 134
BH-w/o76.57 25976.07 26178.10 27286.88 23965.92 21877.63 28986.33 23365.69 26380.89 27779.95 35468.97 24190.74 20553.01 35285.25 33477.62 379
MAR-MVS80.24 21978.74 23584.73 14186.87 24078.18 8885.75 13787.81 21265.67 26477.84 31178.50 36673.79 19690.53 21161.59 30190.87 26285.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base_debi80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
iter_conf0583.19 16582.97 16683.85 16489.06 18261.92 26882.41 21993.28 7165.43 26584.98 20289.78 22368.44 24494.48 8276.66 15296.64 9195.15 62
mamv481.86 19281.52 19482.87 19685.42 26862.26 26282.66 20992.62 9865.43 26579.34 30090.22 21369.65 23394.15 9574.14 18094.16 19192.21 186
TEST992.34 9579.70 7483.94 17090.32 16565.41 27084.49 21290.97 18682.03 10693.63 111
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27078.25 8685.82 13691.82 12365.33 27188.55 12792.35 14782.62 9389.80 23386.87 3294.32 18693.18 142
test_fmvsmconf_n85.88 10885.51 12286.99 9584.77 27878.21 8785.40 14491.39 13565.32 27287.72 14791.81 16282.33 9889.78 23486.68 3494.20 18992.99 150
TR-MVS76.77 25775.79 26279.72 24786.10 25965.79 21977.14 29583.02 27765.20 27381.40 27182.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24289.16 23359.90 29084.46 31168.61 24385.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS81.18 20178.78 23388.39 7690.93 14482.14 5882.51 21683.67 27164.69 27680.29 28785.91 28851.07 33792.38 15576.29 15793.63 20590.65 231
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21685.26 3475.92 31670.09 36564.34 27776.09 32681.25 34365.87 25878.07 34953.86 34483.82 35271.48 388
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29486.62 295
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28164.69 38185.04 25663.98 27983.20 24188.22 24556.67 31278.79 34873.22 19693.12 21592.78 156
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 15836.68 39278.98 34547.87 37692.45 22787.95 279
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26273.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28280.97 27487.93 25162.83 27671.90 36555.24 33795.01 16392.00 195
PVSNet_Blended_VisFu81.55 19680.49 21184.70 14391.58 12473.24 13684.21 16391.67 12762.86 28380.94 27687.16 26867.27 24992.87 14569.82 22788.94 28887.99 278
MVSMamba_pp81.67 19481.33 19882.70 20085.24 27162.25 26482.88 20492.53 10062.64 28479.42 29690.65 20269.37 23693.26 13174.78 17494.44 18292.58 165
原ACMM184.60 14492.81 8674.01 12891.50 13062.59 28582.73 24990.67 20176.53 16894.25 8669.24 23195.69 13985.55 306
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15862.51 28675.32 33684.61 30774.99 18092.30 15959.48 31288.04 30190.68 229
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27581.18 24182.52 28162.45 28983.34 23987.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
fmvsm_s_conf0.5_n81.91 19081.30 19983.75 16886.02 26071.56 16684.73 15377.11 31762.44 29084.00 22790.68 19976.42 17085.89 29883.14 7187.11 31193.81 116
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
fmvsm_s_conf0.1_n82.17 18281.59 19083.94 16386.87 24071.57 16585.19 14777.42 31362.27 29384.47 21491.33 17476.43 16985.91 29683.14 7187.14 31094.33 90
MCST-MVS84.36 13583.93 15285.63 12491.59 12171.58 16483.52 18392.13 11161.82 29483.96 22889.75 22579.93 13393.46 12378.33 12894.34 18591.87 199
fmvsm_s_conf0.5_n_a82.21 18081.51 19584.32 15386.56 24273.35 13285.46 14177.30 31461.81 29584.51 21190.88 19277.36 15386.21 29082.72 8186.97 31793.38 132
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28487.01 27258.11 32082.63 36383.88 326
TAMVS78.08 24276.36 25783.23 18490.62 15172.87 13979.08 26980.01 30061.72 29781.35 27286.92 27363.96 26788.78 25450.61 36293.01 21888.04 277
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16161.70 29875.43 33387.07 27169.11 23991.44 18060.68 30692.24 23390.11 244
fmvsm_s_conf0.1_n_a82.58 17481.93 18384.50 14587.68 21773.35 13286.14 13277.70 31061.64 29985.02 20091.62 16777.75 14786.24 28882.79 8087.07 31293.91 109
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26261.60 30083.09 24492.82 13073.89 19587.01 27268.33 24786.41 32291.37 211
test_fmvsmvis_n_192085.22 11785.36 12584.81 13885.80 26376.13 11985.15 14892.32 10661.40 30191.33 7490.85 19383.76 8086.16 29284.31 6293.28 21192.15 190
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 28079.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23461.40 27175.26 32387.13 22161.25 30574.38 34377.22 37776.94 16190.94 19564.63 27784.83 34583.35 337
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23661.30 27375.55 32187.12 22461.24 30674.45 34178.79 36477.20 15590.93 19664.62 27884.80 34683.32 338
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
patch_mono-278.89 23179.39 22777.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29889.89 22275.18 17872.97 36273.32 19592.30 22991.15 216
CDS-MVSNet77.32 25075.40 26683.06 18789.00 18572.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29488.76 25554.64 34292.37 22887.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27677.49 29385.07 25460.78 31186.55 17188.68 24043.14 38090.25 21573.69 19090.67 26892.42 173
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28190.96 18875.44 17469.35 37356.13 32988.33 29585.86 303
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19783.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21690.68 26789.17 259
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31768.23 38132.07 40669.46 40068.17 393
MVP-Stereo75.81 26873.51 28482.71 19889.35 17573.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30689.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33164.40 39444.90 38581.44 36875.76 382
DPM-MVS80.10 22379.18 22982.88 19590.71 15069.74 17878.87 27390.84 15060.29 31675.64 33285.92 28767.28 24893.11 13671.24 21291.79 24285.77 304
MIMVSNet71.09 31171.59 30369.57 34387.23 22750.07 36778.91 27171.83 35660.20 31871.26 35791.76 16455.08 32476.09 35541.06 39287.02 31582.54 348
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19591.75 16567.96 24785.24 30468.57 24592.18 23681.06 368
test_fmvsm_n_192083.60 15782.89 16885.74 12285.22 27277.74 9584.12 16690.48 15959.87 32086.45 17991.12 18175.65 17385.89 29882.28 8790.87 26293.58 127
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29888.21 24660.50 28369.12 37458.33 31877.62 38487.04 290
fmvsm_l_conf0.5_n82.06 18581.54 19383.60 17383.94 29273.90 12983.35 18886.10 23758.97 32283.80 23090.36 20874.23 19086.94 27682.90 7790.22 27389.94 247
PC_three_145258.96 32390.06 9591.33 17480.66 12593.03 13975.78 16295.94 12692.48 170
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31378.84 34762.20 29386.04 32885.23 309
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 15885.40 29459.80 29267.25 38459.66 31183.54 35385.92 302
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15785.39 29559.82 29167.32 38359.79 31083.50 35485.96 300
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30584.26 31565.60 26791.36 25189.56 251
fmvsm_l_conf0.5_n_a81.46 19780.87 20783.25 18383.73 29773.21 13783.00 19985.59 24658.22 32882.96 24590.09 21972.30 21786.65 28281.97 9289.95 27789.88 248
无先验82.81 20685.62 24558.09 32991.41 18367.95 25084.48 318
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19558.05 33083.59 23380.69 34564.41 26391.20 18673.16 20292.03 23792.33 179
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 25089.35 255
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16586.33 27945.79 36182.59 32569.63 22890.65 27081.54 359
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26673.50 33984.80 26357.61 33482.24 25487.54 25951.31 33687.65 26570.40 22393.19 21491.23 213
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16157.36 33675.43 33378.30 36769.11 23991.44 18060.68 30687.70 30684.42 320
PCF-MVS74.62 1582.15 18380.92 20685.84 12089.43 17472.30 15380.53 24791.82 12357.36 33687.81 14689.92 22177.67 14993.63 11158.69 31495.08 15891.58 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IU-MVS94.18 4672.64 14390.82 15156.98 33989.67 10785.78 5097.92 4593.28 136
旧先验281.73 23256.88 34086.54 17684.90 30872.81 203
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28884.83 30949.58 36882.65 36185.11 311
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21555.94 34275.16 33876.53 38263.97 26691.16 18865.00 27290.97 25988.06 276
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22474.41 12680.86 24579.67 30155.68 34384.69 20990.31 21160.91 28285.42 30362.20 29391.59 24787.88 281
新几何182.95 19193.96 5578.56 8480.24 29855.45 34483.93 22991.08 18371.19 22888.33 25965.84 26493.07 21681.95 355
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25971.89 36638.21 39985.04 33887.69 284
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 3959.12 39376.45 32355.06 34675.31 33782.36 33255.74 31854.82 40347.02 37887.24 30983.52 333
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27885.66 305
114514_t83.10 16982.54 17684.77 14092.90 7969.10 19086.65 12490.62 15754.66 34981.46 27090.81 19576.98 16094.38 8372.62 20496.18 11390.82 224
1112_ss74.82 27973.74 28078.04 27489.57 16960.04 28876.49 30787.09 22554.31 35073.66 34779.80 35560.25 28786.76 28158.37 31684.15 35087.32 288
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29570.64 36948.46 37379.35 37581.66 357
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29769.06 37548.57 37281.67 36582.55 347
PAPM71.77 30470.06 31876.92 28986.39 24553.97 33876.62 30586.62 23153.44 35463.97 39384.73 30657.79 30792.34 15739.65 39481.33 36984.45 319
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32749.76 40632.68 40589.41 28172.15 387
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31584.97 30757.72 32287.05 31385.51 307
test22293.31 6976.54 10979.38 26377.79 30952.59 35882.36 25390.84 19466.83 25291.69 24481.25 363
Anonymous2023120671.38 30971.88 30169.88 34086.31 25054.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28972.06 36444.35 38793.23 21383.23 340
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31981.75 32955.37 33577.70 38374.94 384
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 21052.14 36383.65 23291.25 17663.24 27186.65 28254.66 34194.11 19285.17 310
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30465.36 39250.21 36381.01 37181.25 363
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27985.19 30563.54 28479.21 37782.59 345
jason77.42 24975.75 26382.43 20787.10 23369.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28689.00 24870.74 21889.27 28489.03 264
jason: jason.
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26851.06 36974.85 34079.10 36155.10 32368.83 37668.86 23979.20 37882.58 346
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33874.77 35945.82 38482.96 35681.60 358
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32282.99 32462.17 29590.64 27189.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15655.95 32573.40 34186.17 23650.70 37373.14 34885.94 28658.31 30185.90 29756.51 32683.22 35587.20 289
lupinMVS76.37 26374.46 27582.09 20985.54 26669.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29988.94 24969.85 22688.77 28988.07 274
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21276.90 31850.50 37575.72 33092.38 14348.07 34884.07 31768.72 24282.91 35883.85 329
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32180.67 33652.86 35387.59 30784.77 314
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13265.19 22472.47 34587.31 21646.79 38080.29 28784.30 31052.70 33092.10 16551.88 36186.73 31890.22 240
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 15987.84 25350.44 34171.62 36777.42 14588.53 29290.72 226
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18049.95 34376.43 35438.74 39671.92 39455.84 403
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28678.95 36352.03 33265.53 39165.77 26677.45 38679.95 374
MVS73.21 29372.59 29575.06 30880.97 32860.81 28381.64 23485.92 24246.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26745.14 38782.89 24684.22 31148.37 34670.36 37073.40 19487.03 31488.52 270
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32565.91 39035.40 40147.01 40559.25 401
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25682.85 36078.52 378
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29087.05 27252.83 32963.09 39751.92 36072.44 39279.84 375
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 26943.31 39479.40 29779.39 35943.47 37668.55 37869.05 23684.91 34282.10 353
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16663.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 31085.18 30649.87 36681.67 36586.14 299
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24684.38 34979.15 376
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18142.68 39788.20 13883.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31644.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f64.31 35665.85 34659.67 38166.54 40662.24 26557.76 39770.96 36240.13 39984.36 21682.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 13982.43 28339.76 40185.64 19188.76 23844.71 37387.88 26373.86 18685.88 32984.16 325
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32860.04 39956.16 32877.77 38280.68 370
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31159.35 40146.16 38158.96 40465.93 395
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18479.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22177.54 38581.08 366
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29366.35 38848.97 37178.57 38060.81 399
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21055.46 32063.12 39641.72 39181.30 37069.09 392
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3787.00 1191.89 3486.28 2341.09 4102.23 41295.98 2481.87 11189.48 23879.76 11395.96 12491.10 217
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1610.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
MSC_two_6792asdad88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
No_MVS88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
eth-test20.00 419
eth-test0.00 419
OPU-MVS88.27 7991.89 11277.83 9390.47 5291.22 17781.12 11994.68 7274.48 17595.35 14592.29 181
test_0728_SECOND86.79 9994.25 4572.45 15190.54 4994.10 3795.88 1686.42 3697.97 4292.02 194
GSMVS83.88 326
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
ambc82.98 18990.55 15364.86 22688.20 9789.15 19389.40 11693.96 9571.67 22591.38 18478.83 12396.55 9592.71 160
MTGPAbinary91.81 125
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16555.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
MTMP90.66 4533.14 413
test9_res80.83 10296.45 10290.57 232
agg_prior279.68 11596.16 11490.22 240
agg_prior91.58 12477.69 9690.30 16884.32 21893.18 133
test_prior478.97 8084.59 156
test_prior86.32 10790.59 15271.99 15892.85 9194.17 9292.80 155
新几何281.72 233
旧先验191.97 10871.77 15981.78 28891.84 15973.92 19493.65 20483.61 332
原ACMM282.26 226
testdata286.43 28663.52 285
segment_acmp81.94 107
test1286.57 10290.74 14872.63 14590.69 15482.76 24879.20 13594.80 6995.32 14892.27 183
plane_prior793.45 6477.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior593.61 5795.22 5680.78 10395.83 13294.46 81
plane_prior492.95 126
plane_prior192.83 85
n20.00 420
nn0.00 420
door-mid74.45 335
lessismore_v085.95 11691.10 14170.99 17070.91 36391.79 6794.42 6961.76 27892.93 14279.52 11893.03 21793.93 107
test1191.46 131
door72.57 350
HQP5-MVS70.66 171
BP-MVS77.30 146
HQP4-MVS80.56 28294.61 7593.56 129
HQP3-MVS92.68 9694.47 180
HQP2-MVS72.10 218
NP-MVS91.95 10974.55 12590.17 217
ACMMP++_ref95.74 138
ACMMP++97.35 72
Test By Simon79.09 136