LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 67 | 93.16 130 | 91.10 1 | 97.53 70 | 96.58 30 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 91 | 91.55 127 | 72.64 134 | 96.19 2 | 94.10 34 | 85.33 32 | 93.49 36 | 94.64 60 | 81.12 112 | 95.88 16 | 87.41 19 | 95.94 124 | 92.48 157 |
|
FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 90 | 86.07 40 | 98.48 17 | 97.22 19 |
|
LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 13 | 85.07 50 | 99.27 1 | 99.54 1 |
|
LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 180 | 84.23 45 | 93.58 6 | 94.68 16 | 90.65 7 | 90.33 92 | 93.95 96 | 84.50 69 | 95.37 49 | 80.87 88 | 95.50 141 | 94.53 79 |
|
UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 88 | 88.22 18 | 88.53 126 | 97.64 2 | 83.45 80 | 94.55 76 | 86.02 43 | 98.60 12 | 96.67 27 |
|
HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 14 | 82.88 56 | 91.77 68 | 93.94 97 | 90.55 12 | 95.73 30 | 88.50 6 | 98.23 27 | 95.33 54 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 59 | 83.16 52 | 91.06 80 | 94.00 90 | 88.26 30 | 95.71 31 | 87.28 24 | 98.39 20 | 92.55 155 |
|
COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 62 | 86.15 20 | 93.37 10 | 95.10 12 | 90.28 9 | 92.11 61 | 95.03 46 | 89.75 20 | 94.93 63 | 79.95 98 | 98.27 25 | 95.04 64 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 27 | 82.52 59 | 92.39 58 | 94.14 84 | 89.15 23 | 95.62 33 | 87.35 21 | 98.24 26 | 94.56 76 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 22 | 85.21 34 | 92.51 55 | 95.13 44 | 90.65 9 | 95.34 50 | 88.06 8 | 98.15 34 | 95.95 41 |
|
SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 67 | 88.83 24 | 95.51 42 | 87.16 26 | 97.60 64 | 92.73 146 |
|
RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 67 | 90.64 10 | | 87.16 26 | 97.60 64 | 92.73 146 |
|
APDe-MVS | | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 80 | 78.04 86 | 92.84 15 | 94.14 31 | 83.33 51 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 1 | 87.60 15 | 97.98 42 | 92.98 140 |
|
MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 42 | 78.43 107 | 89.16 118 | 92.25 143 | 72.03 206 | 96.36 2 | 88.21 7 | 90.93 248 | 92.98 140 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 93 | 83.09 53 | 91.54 70 | 94.25 78 | 87.67 41 | 95.51 42 | 87.21 25 | 98.11 35 | 93.12 136 |
|
XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 35 | 89.99 98 | 94.03 88 | 86.57 52 | 95.80 24 | 87.35 21 | 97.62 62 | 94.20 90 |
|
X-MVStestdata | | | 85.04 114 | 82.70 160 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 35 | 89.99 98 | 16.05 374 | 86.57 52 | 95.80 24 | 87.35 21 | 97.62 62 | 94.20 90 |
|
region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 65 | 81.91 64 | 90.88 86 | 94.21 79 | 87.75 39 | 95.87 18 | 87.60 15 | 97.71 58 | 93.83 107 |
|
HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 66 | 81.99 62 | 91.47 71 | 93.96 94 | 88.35 29 | 95.56 37 | 87.74 10 | 97.74 57 | 92.85 143 |
|
ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 67 | 81.99 62 | 91.40 72 | 94.17 83 | 87.51 42 | 95.87 18 | 87.74 10 | 97.76 55 | 93.99 99 |
|
SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 45 | 88.20 19 | 93.24 39 | 94.02 89 | 90.15 16 | 95.67 32 | 86.82 29 | 97.34 74 | 92.19 173 |
|
TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 104 | 92.49 24 | 91.19 131 | 67.85 236 | 86.63 163 | 94.84 51 | 79.58 126 | 95.96 12 | 87.62 13 | 94.50 175 | 94.56 76 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 78 | 85.17 35 | 92.47 25 | 95.05 13 | 87.65 22 | 93.21 40 | 94.39 72 | 90.09 17 | 95.08 59 | 86.67 30 | 97.60 64 | 94.18 92 |
|
RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 64 | 75.70 115 | 92.36 26 | 89.06 183 | 77.34 118 | 93.63 35 | 95.83 25 | 65.40 236 | 95.90 14 | 85.01 53 | 98.23 27 | 97.49 13 |
|
MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 80 | 82.59 58 | 88.52 127 | 94.37 73 | 86.74 50 | 95.41 48 | 86.32 34 | 98.21 29 | 93.19 133 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 24 | 80.14 84 | 91.29 75 | 93.97 91 | 87.93 38 | 95.87 18 | 88.65 4 | 97.96 45 | 94.12 96 |
|
CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 99 | 79.74 87 | 87.50 144 | 92.38 137 | 81.42 109 | 93.28 126 | 83.07 67 | 97.24 77 | 91.67 188 |
|
MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 115 | 84.07 42 | 92.00 64 | 94.40 71 | 86.63 51 | 95.28 53 | 88.59 5 | 98.31 23 | 92.30 166 |
|
MVSFormer | | | 82.23 168 | 81.57 178 | 84.19 150 | 85.54 251 | 69.26 174 | 91.98 31 | 90.08 164 | 71.54 193 | 76.23 301 | 85.07 283 | 58.69 275 | 94.27 82 | 86.26 35 | 88.77 272 | 89.03 243 |
|
test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 95 | 82.98 53 | 91.98 31 | 90.08 164 | 71.54 193 | 94.28 20 | 96.54 13 | 81.57 107 | 94.27 82 | 86.26 35 | 96.49 99 | 97.09 21 |
|
OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 76 | 80.37 68 | 91.91 33 | 93.11 73 | 81.10 73 | 95.32 10 | 97.24 5 | 72.94 194 | 94.85 65 | 85.07 50 | 97.78 53 | 97.26 16 |
|
EGC-MVSNET | | | 74.79 261 | 69.99 298 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 223 | 1.09 375 | 2.23 377 | 95.98 23 | 81.87 104 | 89.48 229 | 79.76 101 | 95.96 122 | 91.10 198 |
|
GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 48 | 80.98 75 | 91.38 73 | 93.80 101 | 87.20 46 | 95.80 24 | 87.10 28 | 97.69 59 | 93.93 103 |
|
EPP-MVSNet | | | 85.47 107 | 85.04 120 | 86.77 96 | 91.52 130 | 69.37 172 | 91.63 36 | 87.98 201 | 81.51 69 | 87.05 154 | 91.83 152 | 66.18 231 | 95.29 51 | 70.75 200 | 96.89 85 | 95.64 46 |
|
SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 57 | 82.82 57 | 92.60 54 | 93.97 91 | 88.19 31 | 96.29 4 | 87.61 14 | 98.20 31 | 94.39 86 |
Skip Steuart: Steuart Systems R&D Blog. |
3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 136 | 81.66 62 | 91.25 38 | 94.13 32 | 88.89 11 | 88.83 122 | 94.26 77 | 77.55 142 | 95.86 21 | 84.88 54 | 95.87 128 | 95.24 58 |
|
IS-MVSNet | | | 86.66 92 | 86.82 96 | 86.17 110 | 92.05 108 | 66.87 197 | 91.21 39 | 88.64 188 | 86.30 28 | 89.60 112 | 92.59 131 | 69.22 216 | 94.91 64 | 73.89 169 | 97.89 49 | 96.72 26 |
|
SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 73 | 92.86 84 | 77.09 100 | 91.19 40 | 95.74 5 | 81.38 70 | 92.28 59 | 93.80 101 | 86.89 49 | 94.64 71 | 85.52 46 | 97.51 71 | 94.30 89 |
|
tt0805 | | | 88.09 74 | 89.79 51 | 82.98 176 | 93.26 73 | 63.94 225 | 91.10 41 | 89.64 173 | 85.07 35 | 90.91 84 | 91.09 170 | 89.16 22 | 91.87 167 | 82.03 78 | 95.87 128 | 93.13 134 |
|
mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 99 | 76.51 108 | 91.09 42 | 91.87 111 | 72.61 180 | 92.16 60 | 95.23 41 | 66.01 232 | 95.59 35 | 86.02 43 | 97.78 53 | 97.24 17 |
|
SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 68 | 75.37 144 | 92.84 48 | 95.28 38 | 85.58 62 | 96.09 6 | 87.92 9 | 97.76 55 | 93.88 105 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTMP | | | | | | | | 90.66 44 | 33.14 380 | | | | | | | | |
|
test0726 | | | | | | 94.16 49 | 72.56 138 | 90.63 45 | 93.90 42 | 83.61 48 | 93.75 30 | 94.49 64 | 89.76 18 | | | | |
|
testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 186 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 233 | 74.12 165 | 96.10 116 | 94.45 82 |
|
APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 186 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 233 | 74.12 165 | 96.10 116 | 94.45 82 |
|
DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 104 | 94.16 49 | 72.56 138 | 90.54 48 | 91.01 135 | 83.61 48 | 93.75 30 | 94.65 57 | 89.76 18 | 95.78 27 | 86.42 31 | 97.97 43 | 90.55 215 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 86.79 95 | 94.25 45 | 72.45 142 | 90.54 48 | 94.10 34 | | | | | 95.88 16 | 86.42 31 | 97.97 43 | 92.02 177 |
|
anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 167 | 86.67 14 | 90.51 50 | 90.20 161 | 69.87 213 | 95.06 11 | 96.14 21 | 84.28 72 | 93.07 134 | 87.68 12 | 96.34 105 | 97.09 21 |
|
SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 92 | 94.18 46 | 72.65 132 | 90.47 51 | 93.69 50 | 83.77 45 | 94.11 22 | 94.27 74 | 90.28 14 | 95.84 22 | 86.03 41 | 97.92 46 | 92.29 167 |
|
OPU-MVS | | | | | 88.27 79 | 91.89 113 | 77.83 90 | 90.47 51 | | | | 91.22 166 | 81.12 112 | 94.68 69 | 74.48 160 | 95.35 144 | 92.29 167 |
|
CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 169 | 79.18 78 | 90.47 51 | 94.77 15 | 79.37 94 | 84.32 205 | 89.33 212 | 83.87 74 | 94.53 77 | 82.45 74 | 94.89 163 | 94.90 65 |
|
DROMVSNet | | | 88.01 75 | 88.32 72 | 87.09 90 | 89.28 175 | 72.03 148 | 90.31 54 | 96.31 3 | 80.88 76 | 85.12 189 | 89.67 206 | 84.47 70 | 95.46 45 | 82.56 73 | 96.26 110 | 93.77 112 |
|
PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 78 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 176 | 88.51 17 | 90.11 94 | 95.12 45 | 90.98 6 | 88.92 242 | 77.55 129 | 97.07 82 | 83.13 313 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 89 | 81.34 64 | 90.19 56 | 93.08 76 | 80.87 77 | 91.13 78 | 93.19 112 | 86.22 57 | 95.97 11 | 82.23 77 | 97.18 79 | 90.45 217 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 42 | 80.32 81 | 91.74 69 | 94.41 70 | 88.17 32 | 95.98 10 | 86.37 33 | 97.99 40 | 93.96 102 |
|
LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 19 | 82.35 60 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 40 | 85.36 47 | 98.73 6 | 95.23 59 |
|
v7n | | | 90.13 36 | 90.96 38 | 87.65 87 | 91.95 110 | 71.06 158 | 89.99 59 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 86 | 94.08 93 | 86.25 37 | 97.63 61 | 97.82 8 |
|
APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 170 | 86.65 16 | 89.98 60 | 91.91 110 | 84.26 40 | 90.87 87 | 93.92 98 | 82.18 96 | 89.29 237 | 73.75 172 | 94.81 167 | 93.70 114 |
|
ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 52 | 77.65 115 | 91.97 65 | 94.89 49 | 88.38 27 | 95.45 46 | 89.27 3 | 97.87 50 | 93.27 129 |
|
QAPM | | | 82.59 163 | 82.59 164 | 82.58 187 | 86.44 231 | 66.69 198 | 89.94 62 | 90.36 152 | 67.97 233 | 84.94 194 | 92.58 133 | 72.71 197 | 92.18 157 | 70.63 203 | 87.73 287 | 88.85 246 |
|
mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 65 | 84.79 40 | 89.89 63 | 90.63 145 | 70.00 212 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 113 | 84.27 59 | 95.97 121 | 95.52 49 |
|
SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 107 | 91.63 121 | 77.07 101 | 89.82 64 | 93.77 47 | 78.90 100 | 92.88 45 | 92.29 141 | 86.11 58 | 90.22 212 | 86.24 38 | 97.24 77 | 91.36 195 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
FE-MVS | | | 79.98 207 | 78.86 210 | 83.36 167 | 86.47 230 | 66.45 201 | 89.73 65 | 84.74 251 | 72.80 176 | 84.22 213 | 91.38 163 | 44.95 344 | 93.60 112 | 63.93 258 | 91.50 237 | 90.04 227 |
|
jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 69 | 84.72 41 | 89.70 66 | 90.29 158 | 69.27 216 | 94.39 16 | 96.38 15 | 86.02 60 | 93.52 117 | 83.96 61 | 95.92 126 | 95.34 53 |
|
HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 128 | 78.20 109 | 86.69 162 | 92.28 142 | 80.36 120 | 95.06 60 | 86.17 39 | 96.49 99 | 90.22 221 |
|
RPSCF | | | 88.00 76 | 86.93 93 | 91.22 27 | 90.08 161 | 89.30 4 | 89.68 68 | 91.11 132 | 79.26 95 | 89.68 106 | 94.81 55 | 82.44 89 | 87.74 256 | 76.54 142 | 88.74 274 | 96.61 29 |
|
UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 146 | 97.00 2 | 64.33 221 | 89.67 69 | 88.38 191 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 181 | 72.57 189 | 97.65 60 | 97.34 15 |
|
ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 75 | 93.00 79 | 76.26 111 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 48 | 91.62 3 | 93.44 121 | 78.35 115 | 98.76 3 | 95.61 48 |
|
ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 60 | 79.20 96 | 93.83 27 | 93.60 108 | 90.81 7 | 92.96 136 | 85.02 52 | 98.45 18 | 92.41 160 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 153 | 92.50 92 | 70.36 164 | 89.55 72 | 93.84 46 | 81.89 65 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 252 | 83.33 65 | 98.30 24 | 93.20 132 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Gipuma |  | | 84.44 126 | 86.33 100 | 78.78 243 | 84.20 269 | 73.57 126 | 89.55 72 | 90.44 149 | 84.24 41 | 84.38 202 | 94.89 49 | 76.35 160 | 80.40 316 | 76.14 146 | 96.80 90 | 82.36 321 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 119 | 96.32 9 | 62.39 243 | 89.54 74 | 93.31 64 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 109 | 95.90 14 | 80.94 87 | 98.80 2 | 98.84 5 |
|
AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 122 | 83.40 48 | 89.50 75 | 95.44 9 | 79.47 90 | 88.00 137 | 93.03 115 | 82.66 87 | 91.47 174 | 70.81 197 | 96.14 113 | 94.16 93 |
|
XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 38 | 79.68 88 | 92.09 62 | 93.89 99 | 83.80 76 | 93.10 133 | 82.67 72 | 98.04 36 | 93.64 118 |
|
HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 72 | 93.45 66 | 76.42 109 | 89.45 77 | 93.61 53 | 79.44 92 | 86.55 164 | 92.95 120 | 74.84 169 | 95.22 54 | 80.78 90 | 95.83 130 | 94.46 80 |
|
plane_prior2 | | | | | | | | 89.45 77 | | 79.44 92 | | | | | | | |
|
CS-MVS-test | | | 87.00 86 | 86.43 99 | 88.71 71 | 89.46 171 | 77.46 94 | 89.42 79 | 95.73 6 | 77.87 113 | 81.64 251 | 87.25 247 | 82.43 90 | 94.53 77 | 77.65 127 | 96.46 101 | 94.14 95 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 81 | 88.44 194 | 77.34 97 | 89.35 80 | 93.05 77 | 73.15 172 | 84.76 197 | 87.70 238 | 78.87 130 | 94.18 88 | 80.67 92 | 96.29 106 | 92.73 146 |
|
ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 36 | 79.03 99 | 92.87 46 | 93.74 104 | 90.60 11 | 95.21 56 | 82.87 70 | 98.76 3 | 94.87 67 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 66 | 93.38 69 | 78.65 83 | 89.15 82 | 94.05 36 | 84.68 39 | 93.90 24 | 94.11 86 | 88.13 34 | 96.30 3 | 84.51 58 | 97.81 52 | 91.70 187 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 140 | 96.56 6 | 58.83 288 | 89.04 83 | 92.74 90 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 36 | 79.42 107 | 98.74 5 | 99.00 2 |
|
PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 139 | 96.57 5 | 58.88 285 | 88.95 84 | 93.19 69 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 34 | 78.69 112 | 98.72 8 | 98.97 3 |
|
DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 148 | 96.51 7 | 57.84 293 | 88.93 85 | 92.84 87 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 9 | 79.05 109 | 98.57 14 | 98.80 6 |
|
Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 135 | 90.46 155 | 65.27 211 | 88.86 86 | 93.02 81 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 95 | 92.02 162 | 76.70 139 | 97.99 40 | 96.88 25 |
|
F-COLMAP | | | 84.97 117 | 83.42 148 | 89.63 55 | 92.39 94 | 83.40 48 | 88.83 87 | 91.92 109 | 73.19 171 | 80.18 271 | 89.15 216 | 77.04 149 | 93.28 126 | 65.82 245 | 92.28 221 | 92.21 172 |
|
9.14 | | | | 89.29 58 | | 91.84 117 | | 88.80 88 | 95.32 11 | 75.14 146 | 91.07 79 | 92.89 122 | 87.27 44 | 93.78 103 | 83.69 64 | 97.55 67 | |
|
3Dnovator | | 80.37 7 | 84.80 119 | 84.71 127 | 85.06 129 | 86.36 236 | 74.71 120 | 88.77 89 | 90.00 166 | 75.65 139 | 84.96 192 | 93.17 113 | 74.06 178 | 91.19 183 | 78.28 117 | 91.09 242 | 89.29 237 |
|
API-MVS | | | 82.28 167 | 82.61 163 | 81.30 206 | 86.29 239 | 69.79 166 | 88.71 90 | 87.67 203 | 78.42 108 | 82.15 239 | 84.15 294 | 77.98 136 | 91.59 172 | 65.39 247 | 92.75 212 | 82.51 320 |
|
CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 141 | 96.34 8 | 58.61 290 | 88.66 91 | 92.06 104 | 90.78 6 | 95.67 7 | 95.17 43 | 81.80 105 | 95.54 39 | 79.00 110 | 98.69 9 | 98.95 4 |
|
bld_raw_dy_0_64 | | | 84.85 118 | 84.44 133 | 86.07 112 | 93.73 60 | 74.93 119 | 88.57 92 | 81.90 272 | 70.44 204 | 91.28 76 | 95.18 42 | 56.62 289 | 89.28 238 | 85.15 49 | 97.09 81 | 93.99 99 |
|
DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 63 | 79.07 79 | 88.54 93 | 94.20 25 | 73.53 161 | 89.71 105 | 94.82 52 | 85.09 63 | 95.77 29 | 84.17 60 | 98.03 38 | 93.26 130 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OpenMVS |  | 76.72 13 | 81.98 174 | 82.00 171 | 81.93 195 | 84.42 264 | 68.22 184 | 88.50 94 | 89.48 177 | 66.92 242 | 81.80 248 | 91.86 149 | 72.59 199 | 90.16 214 | 71.19 196 | 91.25 241 | 87.40 263 |
|
ambc | | | | | 82.98 176 | 90.55 154 | 64.86 215 | 88.20 95 | 89.15 181 | | 89.40 116 | 93.96 94 | 71.67 209 | 91.38 180 | 78.83 111 | 96.55 96 | 92.71 149 |
|
PAPM_NR | | | 83.23 155 | 83.19 153 | 83.33 168 | 90.90 146 | 65.98 206 | 88.19 96 | 90.78 141 | 78.13 111 | 80.87 260 | 87.92 235 | 73.49 187 | 92.42 149 | 70.07 207 | 88.40 276 | 91.60 190 |
|
MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 97 | 94.51 17 | 75.79 137 | 92.94 44 | 94.96 47 | 88.36 28 | 95.01 61 | 90.70 2 | 98.40 19 | 95.09 63 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
FA-MVS(test-final) | | | 83.13 158 | 83.02 156 | 83.43 165 | 86.16 246 | 66.08 205 | 88.00 98 | 88.36 192 | 75.55 140 | 85.02 191 | 92.75 128 | 65.12 237 | 92.50 148 | 74.94 159 | 91.30 240 | 91.72 185 |
|
CSCG | | | 86.26 96 | 86.47 98 | 85.60 121 | 90.87 147 | 74.26 123 | 87.98 99 | 91.85 112 | 80.35 80 | 89.54 115 | 88.01 231 | 79.09 128 | 92.13 158 | 75.51 151 | 95.06 157 | 90.41 218 |
|
PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 71 | 77.96 89 | 87.94 100 | 91.97 107 | 70.73 202 | 94.19 21 | 96.67 11 | 76.94 151 | 94.57 74 | 83.07 67 | 96.28 107 | 96.15 33 |
|
nrg030 | | | 87.85 80 | 88.49 70 | 85.91 114 | 90.07 163 | 69.73 168 | 87.86 101 | 94.20 25 | 74.04 155 | 92.70 53 | 94.66 56 | 85.88 61 | 91.50 173 | 79.72 102 | 97.32 75 | 96.50 31 |
|
SixPastTwentyTwo | | | 87.20 85 | 87.45 83 | 86.45 101 | 92.52 91 | 69.19 177 | 87.84 102 | 88.05 199 | 81.66 67 | 94.64 14 | 96.53 14 | 65.94 233 | 94.75 67 | 83.02 69 | 96.83 88 | 95.41 51 |
|
Effi-MVS+-dtu | | | 85.82 104 | 83.38 149 | 93.14 3 | 87.13 219 | 91.15 2 | 87.70 103 | 88.42 190 | 74.57 151 | 83.56 220 | 85.65 270 | 78.49 133 | 94.21 86 | 72.04 192 | 92.88 210 | 94.05 98 |
|
canonicalmvs | | | 85.50 106 | 86.14 104 | 83.58 162 | 87.97 201 | 67.13 192 | 87.55 104 | 94.32 18 | 73.44 163 | 88.47 128 | 87.54 241 | 86.45 54 | 91.06 188 | 75.76 150 | 93.76 190 | 92.54 156 |
|
DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 89 | 91.30 134 | 77.50 93 | 87.55 104 | 92.97 83 | 87.95 20 | 89.62 109 | 92.87 123 | 84.56 68 | 93.89 99 | 77.65 127 | 96.62 94 | 90.70 209 |
|
OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 112 | 81.68 61 | 87.49 106 | 93.17 70 | 76.02 131 | 88.64 125 | 91.22 166 | 84.24 73 | 93.37 124 | 77.97 125 | 97.03 83 | 95.52 49 |
|
Vis-MVSNet |  | | 86.86 88 | 86.58 97 | 87.72 85 | 92.09 106 | 77.43 96 | 87.35 107 | 92.09 103 | 78.87 101 | 84.27 210 | 94.05 87 | 78.35 134 | 93.65 106 | 80.54 94 | 91.58 236 | 92.08 175 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DeepC-MVS_fast | | 80.27 8 | 86.23 97 | 85.65 113 | 87.96 84 | 91.30 134 | 76.92 102 | 87.19 108 | 91.99 106 | 70.56 203 | 84.96 192 | 90.69 184 | 80.01 123 | 95.14 57 | 78.37 114 | 95.78 135 | 91.82 183 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPNet | | | 80.37 196 | 78.41 219 | 86.23 106 | 76.75 333 | 73.28 127 | 87.18 109 | 77.45 297 | 76.24 128 | 68.14 342 | 88.93 220 | 65.41 235 | 93.85 100 | 69.47 211 | 96.12 115 | 91.55 192 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
plane_prior | | | | | | | 76.42 109 | 87.15 110 | | 75.94 135 | | | | | | 95.03 158 | |
|
TAPA-MVS | | 77.73 12 | 85.71 105 | 84.83 123 | 88.37 77 | 88.78 185 | 79.72 73 | 87.15 110 | 93.50 56 | 69.17 217 | 85.80 180 | 89.56 207 | 80.76 115 | 92.13 158 | 73.21 185 | 95.51 140 | 93.25 131 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
tttt0517 | | | 81.07 183 | 79.58 203 | 85.52 122 | 88.99 182 | 66.45 201 | 87.03 112 | 75.51 310 | 73.76 159 | 88.32 133 | 90.20 196 | 37.96 363 | 94.16 92 | 79.36 108 | 95.13 153 | 95.93 42 |
|
iter_conf_final | | | 80.36 197 | 78.88 209 | 84.79 132 | 86.29 239 | 66.36 203 | 86.95 113 | 86.25 224 | 68.16 230 | 82.09 240 | 89.48 208 | 36.59 366 | 94.51 79 | 79.83 100 | 94.30 180 | 93.50 125 |
|
UGNet | | | 82.78 160 | 81.64 175 | 86.21 108 | 86.20 243 | 76.24 112 | 86.86 114 | 85.68 232 | 77.07 122 | 73.76 321 | 92.82 124 | 69.64 213 | 91.82 169 | 69.04 219 | 93.69 193 | 90.56 214 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 115 | 93.91 41 | 80.07 85 | 86.75 159 | 93.26 111 | 93.64 2 | 90.93 191 | 84.60 57 | 90.75 253 | 93.97 101 |
|
GBi-Net | | | 82.02 172 | 82.07 169 | 81.85 198 | 86.38 233 | 61.05 259 | 86.83 116 | 88.27 196 | 72.43 181 | 86.00 175 | 95.64 30 | 63.78 244 | 90.68 201 | 65.95 241 | 93.34 198 | 93.82 108 |
|
test1 | | | 82.02 172 | 82.07 169 | 81.85 198 | 86.38 233 | 61.05 259 | 86.83 116 | 88.27 196 | 72.43 181 | 86.00 175 | 95.64 30 | 63.78 244 | 90.68 201 | 65.95 241 | 93.34 198 | 93.82 108 |
|
FMVSNet1 | | | 84.55 124 | 85.45 115 | 81.85 198 | 90.27 158 | 61.05 259 | 86.83 116 | 88.27 196 | 78.57 106 | 89.66 108 | 95.64 30 | 75.43 162 | 90.68 201 | 69.09 217 | 95.33 145 | 93.82 108 |
|
OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 119 | 92.78 89 | 78.78 102 | 92.51 55 | 93.64 107 | 88.13 34 | 93.84 102 | 84.83 55 | 97.55 67 | 94.10 97 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MSLP-MVS++ | | | 85.00 116 | 86.03 105 | 81.90 196 | 91.84 117 | 71.56 156 | 86.75 120 | 93.02 81 | 75.95 134 | 87.12 148 | 89.39 210 | 77.98 136 | 89.40 236 | 77.46 130 | 94.78 168 | 84.75 290 |
|
114514_t | | | 83.10 159 | 82.54 165 | 84.77 134 | 92.90 81 | 69.10 179 | 86.65 121 | 90.62 146 | 54.66 317 | 81.46 253 | 90.81 181 | 76.98 150 | 94.38 81 | 72.62 188 | 96.18 111 | 90.82 205 |
|
v10 | | | 86.54 93 | 87.10 88 | 84.84 131 | 88.16 200 | 63.28 231 | 86.64 122 | 92.20 101 | 75.42 143 | 92.81 50 | 94.50 63 | 74.05 179 | 94.06 94 | 83.88 62 | 96.28 107 | 97.17 20 |
|
NCCC | | | 87.36 83 | 86.87 94 | 88.83 67 | 92.32 98 | 78.84 82 | 86.58 123 | 91.09 133 | 78.77 103 | 84.85 196 | 90.89 178 | 80.85 114 | 95.29 51 | 81.14 85 | 95.32 146 | 92.34 164 |
|
Effi-MVS+ | | | 83.90 144 | 84.01 142 | 83.57 163 | 87.22 217 | 65.61 210 | 86.55 124 | 92.40 96 | 78.64 105 | 81.34 256 | 84.18 293 | 83.65 78 | 92.93 138 | 74.22 162 | 87.87 285 | 92.17 174 |
|
v8 | | | 86.22 98 | 86.83 95 | 84.36 143 | 87.82 204 | 62.35 245 | 86.42 125 | 91.33 126 | 76.78 124 | 92.73 52 | 94.48 65 | 73.41 188 | 93.72 105 | 83.10 66 | 95.41 142 | 97.01 23 |
|
save fliter | | | | | | 93.75 59 | 77.44 95 | 86.31 126 | 89.72 170 | 70.80 201 | | | | | | | |
|
AdaColmap |  | | 83.66 147 | 83.69 147 | 83.57 163 | 90.05 164 | 72.26 145 | 86.29 127 | 90.00 166 | 78.19 110 | 81.65 250 | 87.16 249 | 83.40 81 | 94.24 85 | 61.69 276 | 94.76 171 | 84.21 295 |
|
XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 128 | 93.60 55 | 80.16 83 | 89.13 119 | 93.44 109 | 83.82 75 | 90.98 189 | 83.86 63 | 95.30 149 | 93.60 120 |
|
PLC |  | 73.85 16 | 82.09 171 | 80.31 192 | 87.45 88 | 90.86 148 | 80.29 69 | 85.88 129 | 90.65 144 | 68.17 229 | 76.32 300 | 86.33 260 | 73.12 193 | 92.61 146 | 61.40 279 | 90.02 261 | 89.44 232 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
GeoE | | | 85.45 108 | 85.81 109 | 84.37 141 | 90.08 161 | 67.07 193 | 85.86 130 | 91.39 125 | 72.33 186 | 87.59 142 | 90.25 195 | 84.85 66 | 92.37 152 | 78.00 123 | 91.94 230 | 93.66 115 |
|
FC-MVSNet-test | | | 85.93 103 | 87.05 90 | 82.58 187 | 92.25 100 | 56.44 304 | 85.75 131 | 93.09 75 | 77.33 119 | 91.94 66 | 94.65 57 | 74.78 171 | 93.41 123 | 75.11 157 | 98.58 13 | 97.88 7 |
|
MAR-MVS | | | 80.24 201 | 78.74 214 | 84.73 135 | 86.87 229 | 78.18 85 | 85.75 131 | 87.81 202 | 65.67 254 | 77.84 289 | 78.50 342 | 73.79 182 | 90.53 205 | 61.59 278 | 90.87 250 | 85.49 283 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 75.12 255 | 74.43 257 | 77.18 270 | 83.11 282 | 59.48 277 | 85.71 133 | 82.43 267 | 39.76 367 | 85.64 182 | 88.76 221 | 44.71 346 | 87.88 255 | 73.86 170 | 85.88 304 | 84.16 296 |
|
LF4IMVS | | | 82.75 161 | 81.93 172 | 85.19 126 | 82.08 287 | 80.15 70 | 85.53 134 | 88.76 186 | 68.01 231 | 85.58 183 | 87.75 237 | 71.80 207 | 86.85 268 | 74.02 167 | 93.87 189 | 88.58 248 |
|
K. test v3 | | | 85.14 112 | 84.73 124 | 86.37 102 | 91.13 141 | 69.63 170 | 85.45 135 | 76.68 302 | 84.06 43 | 92.44 57 | 96.99 8 | 62.03 254 | 94.65 70 | 80.58 93 | 93.24 201 | 94.83 72 |
|
VDDNet | | | 84.35 128 | 85.39 116 | 81.25 207 | 95.13 31 | 59.32 278 | 85.42 136 | 81.11 277 | 86.41 27 | 87.41 145 | 96.21 19 | 73.61 183 | 90.61 204 | 66.33 239 | 96.85 86 | 93.81 111 |
|
CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 80 | 92.87 82 | 77.30 99 | 85.25 137 | 91.23 129 | 77.31 120 | 87.07 153 | 91.47 161 | 82.94 84 | 94.71 68 | 84.67 56 | 96.27 109 | 92.62 153 |
|
LFMVS | | | 80.15 204 | 80.56 188 | 78.89 241 | 89.19 178 | 55.93 306 | 85.22 138 | 73.78 322 | 82.96 55 | 84.28 209 | 92.72 129 | 57.38 284 | 90.07 221 | 63.80 259 | 95.75 136 | 90.68 210 |
|
FIs | | | 85.35 109 | 86.27 101 | 82.60 186 | 91.86 114 | 57.31 297 | 85.10 139 | 93.05 77 | 75.83 136 | 91.02 81 | 93.97 91 | 73.57 184 | 92.91 140 | 73.97 168 | 98.02 39 | 97.58 12 |
|
HQP-NCC | | | | | | 91.19 137 | | 84.77 140 | | 73.30 167 | 80.55 264 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 137 | | 84.77 140 | | 73.30 167 | 80.55 264 | | | | | | |
|
HQP-MVS | | | 84.61 122 | 84.06 141 | 86.27 105 | 91.19 137 | 70.66 160 | 84.77 140 | 92.68 91 | 73.30 167 | 80.55 264 | 90.17 199 | 72.10 202 | 94.61 72 | 77.30 134 | 94.47 176 | 93.56 122 |
|
ab-mvs | | | 79.67 208 | 80.56 188 | 76.99 271 | 88.48 192 | 56.93 300 | 84.70 143 | 86.06 227 | 68.95 221 | 80.78 261 | 93.08 114 | 75.30 164 | 84.62 294 | 56.78 301 | 90.90 249 | 89.43 233 |
|
pmmvs6 | | | 86.52 94 | 88.06 74 | 81.90 196 | 92.22 102 | 62.28 246 | 84.66 144 | 89.15 181 | 83.54 50 | 89.85 102 | 97.32 4 | 88.08 36 | 86.80 269 | 70.43 205 | 97.30 76 | 96.62 28 |
|
test_prior4 | | | | | | | 78.97 80 | 84.59 145 | | | | | | | | | |
|
Anonymous20240529 | | | 86.20 99 | 87.13 87 | 83.42 166 | 90.19 159 | 64.55 219 | 84.55 146 | 90.71 142 | 85.85 31 | 89.94 101 | 95.24 40 | 82.13 97 | 90.40 208 | 69.19 216 | 96.40 104 | 95.31 55 |
|
baseline | | | 85.20 111 | 85.93 106 | 83.02 175 | 86.30 238 | 62.37 244 | 84.55 146 | 93.96 39 | 74.48 152 | 87.12 148 | 92.03 146 | 82.30 93 | 91.94 163 | 78.39 113 | 94.21 182 | 94.74 73 |
|
alignmvs | | | 83.94 143 | 83.98 143 | 83.80 155 | 87.80 205 | 67.88 189 | 84.54 148 | 91.42 124 | 73.27 170 | 88.41 130 | 87.96 232 | 72.33 201 | 90.83 196 | 76.02 148 | 94.11 184 | 92.69 150 |
|
CNLPA | | | 83.55 150 | 83.10 155 | 84.90 130 | 89.34 174 | 83.87 46 | 84.54 148 | 88.77 185 | 79.09 97 | 83.54 221 | 88.66 224 | 74.87 168 | 81.73 310 | 66.84 235 | 92.29 220 | 89.11 239 |
|
ETV-MVS | | | 84.31 129 | 83.91 145 | 85.52 122 | 88.58 190 | 70.40 163 | 84.50 150 | 93.37 58 | 78.76 104 | 84.07 214 | 78.72 341 | 80.39 119 | 95.13 58 | 73.82 171 | 92.98 208 | 91.04 199 |
|
TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 127 | 94.02 54 | 64.13 222 | 84.38 151 | 91.29 127 | 84.88 38 | 92.06 63 | 93.84 100 | 86.45 54 | 93.73 104 | 73.22 180 | 98.66 10 | 97.69 9 |
|
PVSNet_Blended_VisFu | | | 81.55 178 | 80.49 190 | 84.70 137 | 91.58 125 | 73.24 129 | 84.21 152 | 91.67 117 | 62.86 269 | 80.94 258 | 87.16 249 | 67.27 225 | 92.87 141 | 69.82 209 | 88.94 271 | 87.99 255 |
|
casdiffmvs_mvg |  | | 86.72 91 | 87.51 82 | 84.36 143 | 87.09 223 | 65.22 212 | 84.16 153 | 94.23 22 | 77.89 112 | 91.28 76 | 93.66 106 | 84.35 71 | 92.71 142 | 80.07 95 | 94.87 166 | 95.16 61 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
GG-mvs-BLEND | | | | | 67.16 330 | 73.36 355 | 46.54 360 | 84.15 154 | 55.04 371 | | 58.64 369 | 61.95 370 | 29.93 374 | 83.87 301 | 38.71 367 | 76.92 355 | 71.07 357 |
|
iter_conf05 | | | 78.81 215 | 77.35 228 | 83.21 171 | 82.98 284 | 60.75 266 | 84.09 155 | 88.34 193 | 63.12 267 | 84.25 212 | 89.48 208 | 31.41 371 | 94.51 79 | 76.64 140 | 95.83 130 | 94.38 87 |
|
test2506 | | | 74.12 266 | 73.39 266 | 76.28 282 | 91.85 115 | 44.20 365 | 84.06 156 | 48.20 375 | 72.30 187 | 81.90 243 | 94.20 80 | 27.22 378 | 89.77 226 | 64.81 252 | 96.02 119 | 94.87 67 |
|
test_0402 | | | 88.65 65 | 89.58 56 | 85.88 116 | 92.55 90 | 72.22 146 | 84.01 157 | 89.44 178 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 56 | 93.59 113 | 79.84 99 | 95.21 150 | 91.82 183 |
|
h-mvs33 | | | 84.25 132 | 82.76 159 | 88.72 70 | 91.82 119 | 82.60 56 | 84.00 158 | 84.98 246 | 71.27 195 | 86.70 160 | 90.55 189 | 63.04 250 | 93.92 98 | 78.26 118 | 94.20 183 | 89.63 229 |
|
TEST9 | | | | | | 92.34 96 | 79.70 74 | 83.94 159 | 90.32 153 | 65.41 258 | 84.49 200 | 90.97 174 | 82.03 99 | 93.63 108 | | | |
|
train_agg | | | 85.98 102 | 85.28 117 | 88.07 82 | 92.34 96 | 79.70 74 | 83.94 159 | 90.32 153 | 65.79 249 | 84.49 200 | 90.97 174 | 81.93 101 | 93.63 108 | 81.21 84 | 96.54 97 | 90.88 203 |
|
FMVSNet2 | | | 81.31 180 | 81.61 176 | 80.41 223 | 86.38 233 | 58.75 289 | 83.93 161 | 86.58 221 | 72.43 181 | 87.65 141 | 92.98 117 | 63.78 244 | 90.22 212 | 66.86 233 | 93.92 188 | 92.27 169 |
|
EI-MVSNet-Vis-set | | | 85.12 113 | 84.53 131 | 86.88 93 | 84.01 271 | 72.76 131 | 83.91 162 | 85.18 239 | 80.44 78 | 88.75 123 | 85.49 272 | 80.08 122 | 91.92 164 | 82.02 79 | 90.85 251 | 95.97 39 |
|
CDPH-MVS | | | 86.17 100 | 85.54 114 | 88.05 83 | 92.25 100 | 75.45 116 | 83.85 163 | 92.01 105 | 65.91 248 | 86.19 171 | 91.75 156 | 83.77 77 | 94.98 62 | 77.43 132 | 96.71 92 | 93.73 113 |
|
test_8 | | | | | | 92.09 106 | 78.87 81 | 83.82 164 | 90.31 155 | 65.79 249 | 84.36 203 | 90.96 176 | 81.93 101 | 93.44 121 | | | |
|
EI-MVSNet-UG-set | | | 85.04 114 | 84.44 133 | 86.85 94 | 83.87 274 | 72.52 140 | 83.82 164 | 85.15 240 | 80.27 82 | 88.75 123 | 85.45 274 | 79.95 124 | 91.90 165 | 81.92 81 | 90.80 252 | 96.13 34 |
|
UniMVSNet (Re) | | | 86.87 87 | 86.98 92 | 86.55 99 | 93.11 77 | 68.48 182 | 83.80 166 | 92.87 85 | 80.37 79 | 89.61 111 | 91.81 154 | 77.72 139 | 94.18 88 | 75.00 158 | 98.53 15 | 96.99 24 |
|
CANet | | | 83.79 145 | 82.85 158 | 86.63 97 | 86.17 244 | 72.21 147 | 83.76 167 | 91.43 122 | 77.24 121 | 74.39 318 | 87.45 243 | 75.36 163 | 95.42 47 | 77.03 137 | 92.83 211 | 92.25 171 |
|
TSAR-MVS + GP. | | | 83.95 142 | 82.69 161 | 87.72 85 | 89.27 176 | 81.45 63 | 83.72 168 | 81.58 276 | 74.73 149 | 85.66 181 | 86.06 265 | 72.56 200 | 92.69 144 | 75.44 153 | 95.21 150 | 89.01 245 |
|
ECVR-MVS |  | | 78.44 221 | 78.63 215 | 77.88 261 | 91.85 115 | 48.95 349 | 83.68 169 | 69.91 345 | 72.30 187 | 84.26 211 | 94.20 80 | 51.89 307 | 89.82 225 | 63.58 260 | 96.02 119 | 94.87 67 |
|
thisisatest0530 | | | 79.07 210 | 77.33 229 | 84.26 147 | 87.13 219 | 64.58 217 | 83.66 170 | 75.95 305 | 68.86 222 | 85.22 188 | 87.36 245 | 38.10 361 | 93.57 116 | 75.47 152 | 94.28 181 | 94.62 74 |
|
gg-mvs-nofinetune | | | 68.96 307 | 69.11 302 | 68.52 327 | 76.12 340 | 45.32 361 | 83.59 171 | 55.88 370 | 86.68 24 | 64.62 359 | 97.01 7 | 30.36 373 | 83.97 300 | 44.78 357 | 82.94 328 | 76.26 350 |
|
MCST-MVS | | | 84.36 127 | 83.93 144 | 85.63 120 | 91.59 122 | 71.58 155 | 83.52 172 | 92.13 102 | 61.82 276 | 83.96 215 | 89.75 205 | 79.93 125 | 93.46 120 | 78.33 116 | 94.34 179 | 91.87 182 |
|
EI-MVSNet | | | 82.61 162 | 82.42 167 | 83.20 172 | 83.25 278 | 63.66 226 | 83.50 173 | 85.07 241 | 76.06 129 | 86.55 164 | 85.10 280 | 73.41 188 | 90.25 209 | 78.15 122 | 90.67 255 | 95.68 45 |
|
CVMVSNet | | | 72.62 278 | 71.41 287 | 76.28 282 | 83.25 278 | 60.34 269 | 83.50 173 | 79.02 291 | 37.77 370 | 76.33 299 | 85.10 280 | 49.60 317 | 87.41 260 | 70.54 204 | 77.54 354 | 81.08 336 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 103 | 90.49 38 | 91.48 131 | 84.90 38 | 83.41 175 | 92.38 98 | 70.25 209 | 89.35 117 | 90.68 185 | 82.85 85 | 94.57 74 | 79.55 104 | 95.95 123 | 92.00 178 |
|
test_prior2 | | | | | | | | 83.37 176 | | 75.43 142 | 84.58 199 | 91.57 158 | 81.92 103 | | 79.54 105 | 96.97 84 | |
|
Vis-MVSNet (Re-imp) | | | 77.82 227 | 77.79 224 | 77.92 260 | 88.82 184 | 51.29 340 | 83.28 177 | 71.97 334 | 74.04 155 | 82.23 237 | 89.78 204 | 57.38 284 | 89.41 235 | 57.22 300 | 95.41 142 | 93.05 138 |
|
CANet_DTU | | | 77.81 228 | 77.05 231 | 80.09 228 | 81.37 295 | 59.90 273 | 83.26 178 | 88.29 195 | 69.16 218 | 67.83 345 | 83.72 296 | 60.93 257 | 89.47 230 | 69.22 215 | 89.70 262 | 90.88 203 |
|
VDD-MVS | | | 84.23 134 | 84.58 130 | 83.20 172 | 91.17 140 | 65.16 214 | 83.25 179 | 84.97 247 | 79.79 86 | 87.18 147 | 94.27 74 | 74.77 172 | 90.89 194 | 69.24 213 | 96.54 97 | 93.55 124 |
|
IterMVS-LS | | | 84.73 120 | 84.98 121 | 83.96 153 | 87.35 214 | 63.66 226 | 83.25 179 | 89.88 168 | 76.06 129 | 89.62 109 | 92.37 140 | 73.40 190 | 92.52 147 | 78.16 120 | 94.77 170 | 95.69 44 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 84.05 139 | 83.22 151 | 86.52 100 | 91.73 120 | 75.27 117 | 83.23 181 | 92.40 96 | 72.04 190 | 82.04 241 | 88.33 227 | 77.91 138 | 93.95 97 | 66.17 240 | 95.12 155 | 90.34 220 |
|
EIA-MVS | | | 82.19 169 | 81.23 182 | 85.10 128 | 87.95 202 | 69.17 178 | 83.22 182 | 93.33 61 | 70.42 205 | 78.58 284 | 79.77 337 | 77.29 144 | 94.20 87 | 71.51 194 | 88.96 270 | 91.93 181 |
|
DU-MVS | | | 86.80 90 | 86.99 91 | 86.21 108 | 93.24 74 | 67.02 194 | 83.16 183 | 92.21 100 | 81.73 66 | 90.92 82 | 91.97 147 | 77.20 145 | 93.99 95 | 74.16 163 | 98.35 21 | 97.61 10 |
|
Fast-Effi-MVS+-dtu | | | 82.54 164 | 81.41 179 | 85.90 115 | 85.60 249 | 76.53 107 | 83.07 184 | 89.62 175 | 73.02 174 | 79.11 281 | 83.51 298 | 80.74 116 | 90.24 211 | 68.76 221 | 89.29 265 | 90.94 201 |
|
casdiffmvs |  | | 85.21 110 | 85.85 108 | 83.31 169 | 86.17 244 | 62.77 237 | 83.03 185 | 93.93 40 | 74.69 150 | 88.21 134 | 92.68 130 | 82.29 94 | 91.89 166 | 77.87 126 | 93.75 192 | 95.27 57 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
v1192 | | | 84.57 123 | 84.69 128 | 84.21 148 | 87.75 206 | 62.88 235 | 83.02 186 | 91.43 122 | 69.08 219 | 89.98 100 | 90.89 178 | 72.70 198 | 93.62 111 | 82.41 75 | 94.97 160 | 96.13 34 |
|
v1144 | | | 84.54 125 | 84.72 126 | 84.00 151 | 87.67 208 | 62.55 241 | 82.97 187 | 90.93 138 | 70.32 208 | 89.80 103 | 90.99 173 | 73.50 185 | 93.48 119 | 81.69 83 | 94.65 173 | 95.97 39 |
|
v144192 | | | 84.24 133 | 84.41 135 | 83.71 159 | 87.59 211 | 61.57 252 | 82.95 188 | 91.03 134 | 67.82 237 | 89.80 103 | 90.49 190 | 73.28 191 | 93.51 118 | 81.88 82 | 94.89 163 | 96.04 38 |
|
v1921920 | | | 84.23 134 | 84.37 137 | 83.79 156 | 87.64 210 | 61.71 251 | 82.91 189 | 91.20 130 | 67.94 234 | 90.06 95 | 90.34 192 | 72.04 205 | 93.59 113 | 82.32 76 | 94.91 161 | 96.07 36 |
|
dcpmvs_2 | | | 84.23 134 | 85.14 118 | 81.50 204 | 88.61 189 | 61.98 250 | 82.90 190 | 93.11 73 | 68.66 225 | 92.77 51 | 92.39 136 | 78.50 132 | 87.63 258 | 76.99 138 | 92.30 218 | 94.90 65 |
|
v1240 | | | 84.30 130 | 84.51 132 | 83.65 160 | 87.65 209 | 61.26 256 | 82.85 191 | 91.54 119 | 67.94 234 | 90.68 89 | 90.65 187 | 71.71 208 | 93.64 107 | 82.84 71 | 94.78 168 | 96.07 36 |
|
无先验 | | | | | | | | 82.81 192 | 85.62 233 | 58.09 300 | | | | 91.41 179 | 67.95 231 | | 84.48 291 |
|
MIMVSNet1 | | | 83.63 148 | 84.59 129 | 80.74 217 | 94.06 53 | 62.77 237 | 82.72 193 | 84.53 252 | 77.57 117 | 90.34 91 | 95.92 24 | 76.88 157 | 85.83 284 | 61.88 274 | 97.42 72 | 93.62 119 |
|
v2v482 | | | 84.09 137 | 84.24 139 | 83.62 161 | 87.13 219 | 61.40 253 | 82.71 194 | 89.71 171 | 72.19 189 | 89.55 113 | 91.41 162 | 70.70 212 | 93.20 128 | 81.02 86 | 93.76 190 | 96.25 32 |
|
test1111 | | | 78.53 220 | 78.85 211 | 77.56 265 | 92.22 102 | 47.49 355 | 82.61 195 | 69.24 347 | 72.43 181 | 85.28 187 | 94.20 80 | 51.91 306 | 90.07 221 | 65.36 248 | 96.45 102 | 95.11 62 |
|
hse-mvs2 | | | 83.47 152 | 81.81 173 | 88.47 74 | 91.03 143 | 82.27 57 | 82.61 195 | 83.69 256 | 71.27 195 | 86.70 160 | 86.05 266 | 63.04 250 | 92.41 150 | 78.26 118 | 93.62 196 | 90.71 208 |
|
CR-MVSNet | | | 74.00 267 | 73.04 270 | 76.85 276 | 79.58 313 | 62.64 239 | 82.58 197 | 76.90 299 | 50.50 342 | 75.72 307 | 92.38 137 | 48.07 321 | 84.07 298 | 68.72 223 | 82.91 329 | 83.85 300 |
|
RPMNet | | | 78.88 213 | 78.28 220 | 80.68 220 | 79.58 313 | 62.64 239 | 82.58 197 | 94.16 27 | 74.80 148 | 75.72 307 | 92.59 131 | 48.69 318 | 95.56 37 | 73.48 176 | 82.91 329 | 83.85 300 |
|
UniMVSNet_NR-MVSNet | | | 86.84 89 | 87.06 89 | 86.17 110 | 92.86 84 | 67.02 194 | 82.55 199 | 91.56 118 | 83.08 54 | 90.92 82 | 91.82 153 | 78.25 135 | 93.99 95 | 74.16 163 | 98.35 21 | 97.49 13 |
|
MVS_Test | | | 82.47 165 | 83.22 151 | 80.22 226 | 82.62 286 | 57.75 295 | 82.54 200 | 91.96 108 | 71.16 199 | 82.89 228 | 92.52 135 | 77.41 143 | 90.50 206 | 80.04 97 | 87.84 286 | 92.40 161 |
|
AUN-MVS | | | 81.18 182 | 78.78 212 | 88.39 76 | 90.93 145 | 82.14 58 | 82.51 201 | 83.67 257 | 64.69 262 | 80.29 267 | 85.91 269 | 51.07 310 | 92.38 151 | 76.29 145 | 93.63 195 | 90.65 212 |
|
Anonymous20240521 | | | 80.18 203 | 81.25 180 | 76.95 272 | 83.15 281 | 60.84 264 | 82.46 202 | 85.99 229 | 68.76 223 | 86.78 157 | 93.73 105 | 59.13 272 | 77.44 323 | 73.71 173 | 97.55 67 | 92.56 154 |
|
pm-mvs1 | | | 83.69 146 | 84.95 122 | 79.91 229 | 90.04 165 | 59.66 275 | 82.43 203 | 87.44 204 | 75.52 141 | 87.85 139 | 95.26 39 | 81.25 111 | 85.65 286 | 68.74 222 | 96.04 118 | 94.42 85 |
|
Patchmtry | | | 76.56 242 | 77.46 225 | 73.83 296 | 79.37 318 | 46.60 359 | 82.41 204 | 76.90 299 | 73.81 158 | 85.56 184 | 92.38 137 | 48.07 321 | 83.98 299 | 63.36 263 | 95.31 148 | 90.92 202 |
|
EPNet_dtu | | | 72.87 277 | 71.33 288 | 77.49 267 | 77.72 327 | 60.55 268 | 82.35 205 | 75.79 306 | 66.49 246 | 58.39 370 | 81.06 324 | 53.68 301 | 85.98 281 | 53.55 322 | 92.97 209 | 85.95 277 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TinyColmap | | | 81.25 181 | 82.34 168 | 77.99 259 | 85.33 253 | 60.68 267 | 82.32 206 | 88.33 194 | 71.26 197 | 86.97 155 | 92.22 145 | 77.10 148 | 86.98 266 | 62.37 268 | 95.17 152 | 86.31 274 |
|
TransMVSNet (Re) | | | 84.02 140 | 85.74 111 | 78.85 242 | 91.00 144 | 55.20 314 | 82.29 207 | 87.26 207 | 79.65 89 | 88.38 131 | 95.52 33 | 83.00 83 | 86.88 267 | 67.97 230 | 96.60 95 | 94.45 82 |
|
Baseline_NR-MVSNet | | | 84.00 141 | 85.90 107 | 78.29 254 | 91.47 132 | 53.44 323 | 82.29 207 | 87.00 219 | 79.06 98 | 89.55 113 | 95.72 28 | 77.20 145 | 86.14 280 | 72.30 191 | 98.51 16 | 95.28 56 |
|
MG-MVS | | | 80.32 199 | 80.94 185 | 78.47 250 | 88.18 198 | 52.62 330 | 82.29 207 | 85.01 245 | 72.01 191 | 79.24 280 | 92.54 134 | 69.36 215 | 93.36 125 | 70.65 202 | 89.19 268 | 89.45 231 |
|
原ACMM2 | | | | | | | | 82.26 210 | | | | | | | | | |
|
NR-MVSNet | | | 86.00 101 | 86.22 102 | 85.34 125 | 93.24 74 | 64.56 218 | 82.21 211 | 90.46 148 | 80.99 74 | 88.42 129 | 91.97 147 | 77.56 141 | 93.85 100 | 72.46 190 | 98.65 11 | 97.61 10 |
|
PAPR | | | 78.84 214 | 78.10 222 | 81.07 211 | 85.17 254 | 60.22 270 | 82.21 211 | 90.57 147 | 62.51 271 | 75.32 313 | 84.61 288 | 74.99 167 | 92.30 155 | 59.48 290 | 88.04 283 | 90.68 210 |
|
EG-PatchMatch MVS | | | 84.08 138 | 84.11 140 | 83.98 152 | 92.22 102 | 72.61 137 | 82.20 213 | 87.02 216 | 72.63 179 | 88.86 120 | 91.02 172 | 78.52 131 | 91.11 186 | 73.41 177 | 91.09 242 | 88.21 251 |
|
HY-MVS | | 64.64 18 | 73.03 275 | 72.47 279 | 74.71 292 | 83.36 277 | 54.19 317 | 82.14 214 | 81.96 270 | 56.76 311 | 69.57 339 | 86.21 264 | 60.03 264 | 84.83 293 | 49.58 341 | 82.65 332 | 85.11 286 |
|
FMVSNet3 | | | 78.80 216 | 78.55 216 | 79.57 235 | 82.89 285 | 56.89 302 | 81.76 215 | 85.77 231 | 69.04 220 | 86.00 175 | 90.44 191 | 51.75 308 | 90.09 220 | 65.95 241 | 93.34 198 | 91.72 185 |
|
旧先验2 | | | | | | | | 81.73 216 | | 56.88 310 | 86.54 169 | | | 84.90 292 | 72.81 187 | | |
|
新几何2 | | | | | | | | 81.72 217 | | | | | | | | | |
|
1314 | | | 73.22 273 | 72.56 278 | 75.20 289 | 80.41 309 | 57.84 293 | 81.64 218 | 85.36 235 | 51.68 334 | 73.10 324 | 76.65 354 | 61.45 256 | 85.19 289 | 63.54 261 | 79.21 347 | 82.59 316 |
|
MVS | | | 73.21 274 | 72.59 276 | 75.06 291 | 80.97 299 | 60.81 265 | 81.64 218 | 85.92 230 | 46.03 351 | 71.68 331 | 77.54 346 | 68.47 220 | 89.77 226 | 55.70 309 | 85.39 306 | 74.60 353 |
|
v148 | | | 82.31 166 | 82.48 166 | 81.81 201 | 85.59 250 | 59.66 275 | 81.47 220 | 86.02 228 | 72.85 175 | 88.05 136 | 90.65 187 | 70.73 211 | 90.91 193 | 75.15 156 | 91.79 231 | 94.87 67 |
|
MVS_0304 | | | 78.17 223 | 77.23 230 | 80.99 215 | 84.13 270 | 69.07 180 | 81.39 221 | 80.81 280 | 76.28 127 | 67.53 347 | 89.11 217 | 62.87 252 | 86.77 270 | 60.90 283 | 92.01 229 | 87.13 266 |
|
V42 | | | 83.47 152 | 83.37 150 | 83.75 158 | 83.16 280 | 63.33 230 | 81.31 222 | 90.23 160 | 69.51 215 | 90.91 84 | 90.81 181 | 74.16 177 | 92.29 156 | 80.06 96 | 90.22 259 | 95.62 47 |
|
PM-MVS | | | 80.20 202 | 79.00 208 | 83.78 157 | 88.17 199 | 86.66 15 | 81.31 222 | 66.81 355 | 69.64 214 | 88.33 132 | 90.19 197 | 64.58 238 | 83.63 302 | 71.99 193 | 90.03 260 | 81.06 338 |
|
VPA-MVSNet | | | 83.47 152 | 84.73 124 | 79.69 233 | 90.29 157 | 57.52 296 | 81.30 224 | 88.69 187 | 76.29 126 | 87.58 143 | 94.44 66 | 80.60 118 | 87.20 262 | 66.60 238 | 96.82 89 | 94.34 88 |
|
CMPMVS |  | 59.41 20 | 75.12 255 | 73.57 263 | 79.77 230 | 75.84 342 | 67.22 191 | 81.21 225 | 82.18 268 | 50.78 339 | 76.50 297 | 87.66 239 | 55.20 298 | 82.99 304 | 62.17 272 | 90.64 258 | 89.09 242 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 70.19 17 | 77.77 229 | 77.46 225 | 78.71 245 | 84.39 265 | 61.15 257 | 81.18 226 | 82.52 265 | 62.45 273 | 83.34 222 | 87.37 244 | 66.20 230 | 88.66 248 | 64.69 254 | 85.02 311 | 86.32 273 |
|
thres100view900 | | | 75.45 251 | 75.05 251 | 76.66 278 | 87.27 215 | 51.88 335 | 81.07 227 | 73.26 326 | 75.68 138 | 83.25 223 | 86.37 259 | 45.54 335 | 88.80 243 | 51.98 331 | 90.99 244 | 89.31 235 |
|
MVS_111021_LR | | | 84.28 131 | 83.76 146 | 85.83 118 | 89.23 177 | 83.07 51 | 80.99 228 | 83.56 258 | 72.71 178 | 86.07 174 | 89.07 218 | 81.75 106 | 86.19 279 | 77.11 136 | 93.36 197 | 88.24 250 |
|
wuyk23d | | | 75.13 254 | 79.30 206 | 62.63 341 | 75.56 343 | 75.18 118 | 80.89 229 | 73.10 328 | 75.06 147 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 370 | 34.16 370 | 97.11 80 | 59.85 367 |
|
pmmvs-eth3d | | | 78.42 222 | 77.04 232 | 82.57 189 | 87.44 213 | 74.41 122 | 80.86 230 | 79.67 287 | 55.68 313 | 84.69 198 | 90.31 194 | 60.91 258 | 85.42 287 | 62.20 270 | 91.59 235 | 87.88 258 |
|
tfpnnormal | | | 81.79 176 | 82.95 157 | 78.31 252 | 88.93 183 | 55.40 310 | 80.83 231 | 82.85 264 | 76.81 123 | 85.90 179 | 94.14 84 | 74.58 175 | 86.51 274 | 66.82 236 | 95.68 139 | 93.01 139 |
|
PCF-MVS | | 74.62 15 | 82.15 170 | 80.92 186 | 85.84 117 | 89.43 172 | 72.30 144 | 80.53 232 | 91.82 114 | 57.36 307 | 87.81 140 | 89.92 202 | 77.67 140 | 93.63 108 | 58.69 292 | 95.08 156 | 91.58 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thres600view7 | | | 75.97 247 | 75.35 249 | 77.85 263 | 87.01 225 | 51.84 336 | 80.45 233 | 73.26 326 | 75.20 145 | 83.10 226 | 86.31 262 | 45.54 335 | 89.05 239 | 55.03 316 | 92.24 222 | 92.66 151 |
|
KD-MVS_self_test | | | 81.93 175 | 83.14 154 | 78.30 253 | 84.75 259 | 52.75 327 | 80.37 234 | 89.42 179 | 70.24 210 | 90.26 93 | 93.39 110 | 74.55 176 | 86.77 270 | 68.61 224 | 96.64 93 | 95.38 52 |
|
BH-untuned | | | 80.96 185 | 80.99 184 | 80.84 216 | 88.55 191 | 68.23 183 | 80.33 235 | 88.46 189 | 72.79 177 | 86.55 164 | 86.76 255 | 74.72 173 | 91.77 170 | 61.79 275 | 88.99 269 | 82.52 319 |
|
MVP-Stereo | | | 75.81 249 | 73.51 265 | 82.71 184 | 89.35 173 | 73.62 125 | 80.06 236 | 85.20 238 | 60.30 290 | 73.96 320 | 87.94 233 | 57.89 282 | 89.45 232 | 52.02 330 | 74.87 358 | 85.06 287 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
LCM-MVSNet-Re | | | 83.48 151 | 85.06 119 | 78.75 244 | 85.94 248 | 55.75 309 | 80.05 237 | 94.27 19 | 76.47 125 | 96.09 5 | 94.54 62 | 83.31 82 | 89.75 228 | 59.95 287 | 94.89 163 | 90.75 206 |
|
USDC | | | 76.63 240 | 76.73 236 | 76.34 281 | 83.46 276 | 57.20 299 | 80.02 238 | 88.04 200 | 52.14 331 | 83.65 218 | 91.25 165 | 63.24 247 | 86.65 273 | 54.66 318 | 94.11 184 | 85.17 285 |
|
ANet_high | | | 83.17 157 | 85.68 112 | 75.65 287 | 81.24 296 | 45.26 362 | 79.94 239 | 92.91 84 | 83.83 44 | 91.33 74 | 96.88 10 | 80.25 121 | 85.92 282 | 68.89 220 | 95.89 127 | 95.76 43 |
|
baseline1 | | | 73.26 272 | 73.54 264 | 72.43 307 | 84.92 256 | 47.79 354 | 79.89 240 | 74.00 318 | 65.93 247 | 78.81 283 | 86.28 263 | 56.36 291 | 81.63 311 | 56.63 302 | 79.04 348 | 87.87 259 |
|
tpm2 | | | 68.45 308 | 66.83 314 | 73.30 299 | 78.93 323 | 48.50 350 | 79.76 241 | 71.76 336 | 47.50 346 | 69.92 338 | 83.60 297 | 42.07 355 | 88.40 250 | 48.44 346 | 79.51 343 | 83.01 314 |
|
tpmvs | | | 70.16 297 | 69.56 301 | 71.96 309 | 74.71 351 | 48.13 351 | 79.63 242 | 75.45 311 | 65.02 260 | 70.26 336 | 81.88 317 | 45.34 340 | 85.68 285 | 58.34 294 | 75.39 357 | 82.08 324 |
|
testdata1 | | | | | | | | 79.62 243 | | 73.95 157 | | | | | | | |
|
xiu_mvs_v1_base_debu | | | 80.84 186 | 80.14 198 | 82.93 179 | 88.31 195 | 71.73 151 | 79.53 244 | 87.17 208 | 65.43 255 | 79.59 273 | 82.73 310 | 76.94 151 | 90.14 217 | 73.22 180 | 88.33 277 | 86.90 269 |
|
xiu_mvs_v1_base | | | 80.84 186 | 80.14 198 | 82.93 179 | 88.31 195 | 71.73 151 | 79.53 244 | 87.17 208 | 65.43 255 | 79.59 273 | 82.73 310 | 76.94 151 | 90.14 217 | 73.22 180 | 88.33 277 | 86.90 269 |
|
xiu_mvs_v1_base_debi | | | 80.84 186 | 80.14 198 | 82.93 179 | 88.31 195 | 71.73 151 | 79.53 244 | 87.17 208 | 65.43 255 | 79.59 273 | 82.73 310 | 76.94 151 | 90.14 217 | 73.22 180 | 88.33 277 | 86.90 269 |
|
PVSNet_BlendedMVS | | | 78.80 216 | 77.84 223 | 81.65 203 | 84.43 262 | 63.41 228 | 79.49 247 | 90.44 149 | 61.70 279 | 75.43 310 | 87.07 252 | 69.11 217 | 91.44 176 | 60.68 284 | 92.24 222 | 90.11 225 |
|
test222 | | | | | | 93.31 71 | 76.54 105 | 79.38 248 | 77.79 295 | 52.59 326 | 82.36 235 | 90.84 180 | 66.83 228 | | | 91.69 233 | 81.25 333 |
|
PatchmatchNet |  | | 69.71 303 | 68.83 305 | 72.33 308 | 77.66 328 | 53.60 321 | 79.29 249 | 69.99 344 | 57.66 304 | 72.53 327 | 82.93 306 | 46.45 326 | 80.08 318 | 60.91 282 | 72.09 361 | 83.31 310 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CostFormer | | | 69.98 301 | 68.68 307 | 73.87 295 | 77.14 330 | 50.72 344 | 79.26 250 | 74.51 315 | 51.94 333 | 70.97 335 | 84.75 286 | 45.16 343 | 87.49 259 | 55.16 315 | 79.23 346 | 83.40 307 |
|
tfpn200view9 | | | 74.86 259 | 74.23 258 | 76.74 277 | 86.24 241 | 52.12 332 | 79.24 251 | 73.87 320 | 73.34 165 | 81.82 246 | 84.60 289 | 46.02 329 | 88.80 243 | 51.98 331 | 90.99 244 | 89.31 235 |
|
thres400 | | | 75.14 253 | 74.23 258 | 77.86 262 | 86.24 241 | 52.12 332 | 79.24 251 | 73.87 320 | 73.34 165 | 81.82 246 | 84.60 289 | 46.02 329 | 88.80 243 | 51.98 331 | 90.99 244 | 92.66 151 |
|
MVS_111021_HR | | | 84.63 121 | 84.34 138 | 85.49 124 | 90.18 160 | 75.86 114 | 79.23 253 | 87.13 211 | 73.35 164 | 85.56 184 | 89.34 211 | 83.60 79 | 90.50 206 | 76.64 140 | 94.05 186 | 90.09 226 |
|
TAMVS | | | 78.08 225 | 76.36 238 | 83.23 170 | 90.62 152 | 72.87 130 | 79.08 254 | 80.01 286 | 61.72 278 | 81.35 255 | 86.92 254 | 63.96 243 | 88.78 246 | 50.61 336 | 93.01 207 | 88.04 254 |
|
test_fmvs3 | | | 75.72 250 | 75.20 250 | 77.27 269 | 75.01 350 | 69.47 171 | 78.93 255 | 84.88 248 | 46.67 348 | 87.08 152 | 87.84 236 | 50.44 314 | 71.62 338 | 77.42 133 | 88.53 275 | 90.72 207 |
|
MIMVSNet | | | 71.09 290 | 71.59 284 | 69.57 320 | 87.23 216 | 50.07 347 | 78.91 256 | 71.83 335 | 60.20 292 | 71.26 332 | 91.76 155 | 55.08 299 | 76.09 327 | 41.06 363 | 87.02 294 | 82.54 318 |
|
SCA | | | 73.32 271 | 72.57 277 | 75.58 288 | 81.62 291 | 55.86 307 | 78.89 257 | 71.37 339 | 61.73 277 | 74.93 316 | 83.42 301 | 60.46 260 | 87.01 263 | 58.11 297 | 82.63 334 | 83.88 297 |
|
DPM-MVS | | | 80.10 205 | 79.18 207 | 82.88 182 | 90.71 151 | 69.74 167 | 78.87 258 | 90.84 139 | 60.29 291 | 75.64 309 | 85.92 268 | 67.28 224 | 93.11 132 | 71.24 195 | 91.79 231 | 85.77 280 |
|
test_post1 | | | | | | | | 78.85 259 | | | | 3.13 375 | 45.19 342 | 80.13 317 | 58.11 297 | | |
|
mvs_anonymous | | | 78.13 224 | 78.76 213 | 76.23 284 | 79.24 319 | 50.31 346 | 78.69 260 | 84.82 249 | 61.60 280 | 83.09 227 | 92.82 124 | 73.89 181 | 87.01 263 | 68.33 228 | 86.41 299 | 91.37 194 |
|
WR-MVS | | | 83.56 149 | 84.40 136 | 81.06 212 | 93.43 68 | 54.88 315 | 78.67 261 | 85.02 244 | 81.24 71 | 90.74 88 | 91.56 159 | 72.85 195 | 91.08 187 | 68.00 229 | 98.04 36 | 97.23 18 |
|
c3_l | | | 81.64 177 | 81.59 177 | 81.79 202 | 80.86 302 | 59.15 282 | 78.61 262 | 90.18 162 | 68.36 226 | 87.20 146 | 87.11 251 | 69.39 214 | 91.62 171 | 78.16 120 | 94.43 178 | 94.60 75 |
|
test_yl | | | 78.71 218 | 78.51 217 | 79.32 238 | 84.32 266 | 58.84 286 | 78.38 263 | 85.33 236 | 75.99 132 | 82.49 232 | 86.57 256 | 58.01 278 | 90.02 223 | 62.74 266 | 92.73 213 | 89.10 240 |
|
DCV-MVSNet | | | 78.71 218 | 78.51 217 | 79.32 238 | 84.32 266 | 58.84 286 | 78.38 263 | 85.33 236 | 75.99 132 | 82.49 232 | 86.57 256 | 58.01 278 | 90.02 223 | 62.74 266 | 92.73 213 | 89.10 240 |
|
Fast-Effi-MVS+ | | | 81.04 184 | 80.57 187 | 82.46 191 | 87.50 212 | 63.22 232 | 78.37 265 | 89.63 174 | 68.01 231 | 81.87 244 | 82.08 316 | 82.31 92 | 92.65 145 | 67.10 232 | 88.30 281 | 91.51 193 |
|
tpmrst | | | 66.28 317 | 66.69 316 | 65.05 337 | 72.82 360 | 39.33 370 | 78.20 266 | 70.69 342 | 53.16 324 | 67.88 344 | 80.36 331 | 48.18 320 | 74.75 332 | 58.13 296 | 70.79 363 | 81.08 336 |
|
tpm cat1 | | | 66.76 315 | 65.21 322 | 71.42 310 | 77.09 331 | 50.62 345 | 78.01 267 | 73.68 324 | 44.89 354 | 68.64 340 | 79.00 339 | 45.51 337 | 82.42 308 | 49.91 339 | 70.15 364 | 81.23 335 |
|
jason | | | 77.42 231 | 75.75 244 | 82.43 192 | 87.10 222 | 69.27 173 | 77.99 268 | 81.94 271 | 51.47 335 | 77.84 289 | 85.07 283 | 60.32 262 | 89.00 240 | 70.74 201 | 89.27 267 | 89.03 243 |
jason: jason. |
CLD-MVS | | | 83.18 156 | 82.64 162 | 84.79 132 | 89.05 179 | 67.82 190 | 77.93 269 | 92.52 94 | 68.33 227 | 85.07 190 | 81.54 321 | 82.06 98 | 92.96 136 | 69.35 212 | 97.91 48 | 93.57 121 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDS-MVSNet | | | 77.32 232 | 75.40 247 | 83.06 174 | 89.00 181 | 72.48 141 | 77.90 270 | 82.17 269 | 60.81 286 | 78.94 282 | 83.49 299 | 59.30 270 | 88.76 247 | 54.64 319 | 92.37 217 | 87.93 257 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
eth_miper_zixun_eth | | | 80.84 186 | 80.22 196 | 82.71 184 | 81.41 294 | 60.98 262 | 77.81 271 | 90.14 163 | 67.31 240 | 86.95 156 | 87.24 248 | 64.26 240 | 92.31 154 | 75.23 155 | 91.61 234 | 94.85 71 |
|
BH-RMVSNet | | | 80.53 191 | 80.22 196 | 81.49 205 | 87.19 218 | 66.21 204 | 77.79 272 | 86.23 225 | 74.21 154 | 83.69 217 | 88.50 225 | 73.25 192 | 90.75 198 | 63.18 265 | 87.90 284 | 87.52 261 |
|
miper_ehance_all_eth | | | 80.34 198 | 80.04 201 | 81.24 209 | 79.82 312 | 58.95 284 | 77.66 273 | 89.66 172 | 65.75 252 | 85.99 178 | 85.11 279 | 68.29 221 | 91.42 178 | 76.03 147 | 92.03 226 | 93.33 126 |
|
PatchT | | | 70.52 294 | 72.76 274 | 63.79 340 | 79.38 317 | 33.53 375 | 77.63 274 | 65.37 357 | 73.61 160 | 71.77 330 | 92.79 127 | 44.38 347 | 75.65 330 | 64.53 257 | 85.37 307 | 82.18 322 |
|
BH-w/o | | | 76.57 241 | 76.07 242 | 78.10 257 | 86.88 228 | 65.92 207 | 77.63 274 | 86.33 222 | 65.69 253 | 80.89 259 | 79.95 334 | 68.97 219 | 90.74 199 | 53.01 327 | 85.25 309 | 77.62 348 |
|
diffmvs |  | | 80.40 195 | 80.48 191 | 80.17 227 | 79.02 322 | 60.04 271 | 77.54 276 | 90.28 159 | 66.65 245 | 82.40 234 | 87.33 246 | 73.50 185 | 87.35 261 | 77.98 124 | 89.62 263 | 93.13 134 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MSDG | | | 80.06 206 | 79.99 202 | 80.25 225 | 83.91 273 | 68.04 188 | 77.51 277 | 89.19 180 | 77.65 115 | 81.94 242 | 83.45 300 | 76.37 159 | 86.31 277 | 63.31 264 | 86.59 297 | 86.41 272 |
|
MVSTER | | | 77.09 234 | 75.70 245 | 81.25 207 | 75.27 347 | 61.08 258 | 77.49 278 | 85.07 241 | 60.78 287 | 86.55 164 | 88.68 223 | 43.14 353 | 90.25 209 | 73.69 174 | 90.67 255 | 92.42 159 |
|
cl22 | | | 78.97 211 | 78.21 221 | 81.24 209 | 77.74 326 | 59.01 283 | 77.46 279 | 87.13 211 | 65.79 249 | 84.32 205 | 85.10 280 | 58.96 274 | 90.88 195 | 75.36 154 | 92.03 226 | 93.84 106 |
|
TR-MVS | | | 76.77 239 | 75.79 243 | 79.72 232 | 86.10 247 | 65.79 208 | 77.14 280 | 83.02 262 | 65.20 259 | 81.40 254 | 82.10 314 | 66.30 229 | 90.73 200 | 55.57 310 | 85.27 308 | 82.65 315 |
|
ET-MVSNet_ETH3D | | | 75.28 252 | 72.77 273 | 82.81 183 | 83.03 283 | 68.11 186 | 77.09 281 | 76.51 303 | 60.67 289 | 77.60 294 | 80.52 329 | 38.04 362 | 91.15 185 | 70.78 199 | 90.68 254 | 89.17 238 |
|
test_fmvs2 | | | 73.57 270 | 72.80 272 | 75.90 286 | 72.74 361 | 68.84 181 | 77.07 282 | 84.32 254 | 45.14 353 | 82.89 228 | 84.22 292 | 48.37 319 | 70.36 341 | 73.40 178 | 87.03 293 | 88.52 249 |
|
cl____ | | | 80.42 194 | 80.23 194 | 81.02 213 | 79.99 310 | 59.25 279 | 77.07 282 | 87.02 216 | 67.37 239 | 86.18 173 | 89.21 214 | 63.08 249 | 90.16 214 | 76.31 144 | 95.80 133 | 93.65 117 |
|
DIV-MVS_self_test | | | 80.43 193 | 80.23 194 | 81.02 213 | 79.99 310 | 59.25 279 | 77.07 282 | 87.02 216 | 67.38 238 | 86.19 171 | 89.22 213 | 63.09 248 | 90.16 214 | 76.32 143 | 95.80 133 | 93.66 115 |
|
lupinMVS | | | 76.37 245 | 74.46 256 | 82.09 193 | 85.54 251 | 69.26 174 | 76.79 285 | 80.77 282 | 50.68 341 | 76.23 301 | 82.82 308 | 58.69 275 | 88.94 241 | 69.85 208 | 88.77 272 | 88.07 252 |
|
FMVSNet5 | | | 72.10 283 | 71.69 283 | 73.32 298 | 81.57 292 | 53.02 326 | 76.77 286 | 78.37 293 | 63.31 265 | 76.37 298 | 91.85 150 | 36.68 365 | 78.98 319 | 47.87 348 | 92.45 216 | 87.95 256 |
|
VPNet | | | 80.25 200 | 81.68 174 | 75.94 285 | 92.46 93 | 47.98 353 | 76.70 287 | 81.67 274 | 73.45 162 | 84.87 195 | 92.82 124 | 74.66 174 | 86.51 274 | 61.66 277 | 96.85 86 | 93.33 126 |
|
test_vis1_n | | | 70.29 295 | 69.99 298 | 71.20 312 | 75.97 341 | 66.50 200 | 76.69 288 | 80.81 280 | 44.22 356 | 75.43 310 | 77.23 350 | 50.00 315 | 68.59 347 | 66.71 237 | 82.85 331 | 78.52 347 |
|
Anonymous202405211 | | | 80.51 192 | 81.19 183 | 78.49 249 | 88.48 192 | 57.26 298 | 76.63 289 | 82.49 266 | 81.21 72 | 84.30 208 | 92.24 144 | 67.99 222 | 86.24 278 | 62.22 269 | 95.13 153 | 91.98 180 |
|
PAPM | | | 71.77 285 | 70.06 297 | 76.92 273 | 86.39 232 | 53.97 318 | 76.62 290 | 86.62 220 | 53.44 322 | 63.97 360 | 84.73 287 | 57.79 283 | 92.34 153 | 39.65 365 | 81.33 339 | 84.45 292 |
|
1112_ss | | | 74.82 260 | 73.74 261 | 78.04 258 | 89.57 168 | 60.04 271 | 76.49 291 | 87.09 215 | 54.31 318 | 73.66 322 | 79.80 335 | 60.25 263 | 86.76 272 | 58.37 293 | 84.15 322 | 87.32 264 |
|
DELS-MVS | | | 81.44 179 | 81.25 180 | 82.03 194 | 84.27 268 | 62.87 236 | 76.47 292 | 92.49 95 | 70.97 200 | 81.64 251 | 83.83 295 | 75.03 166 | 92.70 143 | 74.29 161 | 92.22 224 | 90.51 216 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
IterMVS | | | 76.91 236 | 76.34 239 | 78.64 246 | 80.91 300 | 64.03 223 | 76.30 293 | 79.03 290 | 64.88 261 | 83.11 225 | 89.16 215 | 59.90 266 | 84.46 295 | 68.61 224 | 85.15 310 | 87.42 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 80.64 190 | 79.41 204 | 84.34 145 | 83.93 272 | 69.66 169 | 76.28 294 | 81.09 278 | 72.43 181 | 86.47 170 | 90.19 197 | 60.46 260 | 93.15 131 | 77.45 131 | 86.39 300 | 90.22 221 |
|
pmmvs4 | | | 74.92 258 | 72.98 271 | 80.73 218 | 84.95 255 | 71.71 154 | 76.23 295 | 77.59 296 | 52.83 325 | 77.73 293 | 86.38 258 | 56.35 292 | 84.97 291 | 57.72 299 | 87.05 292 | 85.51 282 |
|
baseline2 | | | 69.77 302 | 66.89 313 | 78.41 251 | 79.51 315 | 58.09 291 | 76.23 295 | 69.57 346 | 57.50 306 | 64.82 358 | 77.45 348 | 46.02 329 | 88.44 249 | 53.08 324 | 77.83 350 | 88.70 247 |
|
test_fmvs1_n | | | 70.94 291 | 70.41 294 | 72.53 306 | 73.92 352 | 66.93 196 | 75.99 297 | 84.21 255 | 43.31 360 | 79.40 276 | 79.39 338 | 43.47 349 | 68.55 348 | 69.05 218 | 84.91 314 | 82.10 323 |
|
PatchMatch-RL | | | 74.48 263 | 73.22 268 | 78.27 255 | 87.70 207 | 85.26 34 | 75.92 298 | 70.09 343 | 64.34 263 | 76.09 303 | 81.25 323 | 65.87 234 | 78.07 322 | 53.86 321 | 83.82 323 | 71.48 356 |
|
JIA-IIPM | | | 69.41 305 | 66.64 317 | 77.70 264 | 73.19 356 | 71.24 157 | 75.67 299 | 65.56 356 | 70.42 205 | 65.18 354 | 92.97 119 | 33.64 370 | 83.06 303 | 53.52 323 | 69.61 367 | 78.79 346 |
|
patch_mono-2 | | | 78.89 212 | 79.39 205 | 77.41 268 | 84.78 258 | 68.11 186 | 75.60 300 | 83.11 261 | 60.96 285 | 79.36 277 | 89.89 203 | 75.18 165 | 72.97 334 | 73.32 179 | 92.30 218 | 91.15 197 |
|
tpm | | | 67.95 309 | 68.08 310 | 67.55 329 | 78.74 324 | 43.53 367 | 75.60 300 | 67.10 354 | 54.92 316 | 72.23 328 | 88.10 230 | 42.87 354 | 75.97 328 | 52.21 329 | 80.95 342 | 83.15 312 |
|
VNet | | | 79.31 209 | 80.27 193 | 76.44 279 | 87.92 203 | 53.95 319 | 75.58 302 | 84.35 253 | 74.39 153 | 82.23 237 | 90.72 183 | 72.84 196 | 84.39 296 | 60.38 286 | 93.98 187 | 90.97 200 |
|
xiu_mvs_v2_base | | | 77.19 233 | 76.75 235 | 78.52 248 | 87.01 225 | 61.30 255 | 75.55 303 | 87.12 214 | 61.24 282 | 74.45 317 | 78.79 340 | 77.20 145 | 90.93 191 | 64.62 256 | 84.80 318 | 83.32 309 |
|
miper_enhance_ethall | | | 77.83 226 | 76.93 233 | 80.51 221 | 76.15 339 | 58.01 292 | 75.47 304 | 88.82 184 | 58.05 301 | 83.59 219 | 80.69 325 | 64.41 239 | 91.20 182 | 73.16 186 | 92.03 226 | 92.33 165 |
|
PS-MVSNAJ | | | 77.04 235 | 76.53 237 | 78.56 247 | 87.09 223 | 61.40 253 | 75.26 305 | 87.13 211 | 61.25 281 | 74.38 319 | 77.22 351 | 76.94 151 | 90.94 190 | 64.63 255 | 84.83 317 | 83.35 308 |
|
PVSNet_Blended | | | 76.49 243 | 75.40 247 | 79.76 231 | 84.43 262 | 63.41 228 | 75.14 306 | 90.44 149 | 57.36 307 | 75.43 310 | 78.30 343 | 69.11 217 | 91.44 176 | 60.68 284 | 87.70 288 | 84.42 293 |
|
thres200 | | | 72.34 281 | 71.55 286 | 74.70 293 | 83.48 275 | 51.60 337 | 75.02 307 | 73.71 323 | 70.14 211 | 78.56 285 | 80.57 328 | 46.20 327 | 88.20 253 | 46.99 351 | 89.29 265 | 84.32 294 |
|
EPMVS | | | 62.47 325 | 62.63 329 | 62.01 342 | 70.63 365 | 38.74 371 | 74.76 308 | 52.86 372 | 53.91 320 | 67.71 346 | 80.01 333 | 39.40 359 | 66.60 356 | 55.54 311 | 68.81 368 | 80.68 340 |
|
DSMNet-mixed | | | 60.98 333 | 61.61 332 | 59.09 351 | 72.88 359 | 45.05 363 | 74.70 309 | 46.61 376 | 26.20 372 | 65.34 353 | 90.32 193 | 55.46 296 | 63.12 363 | 41.72 362 | 81.30 340 | 69.09 360 |
|
FPMVS | | | 72.29 282 | 72.00 281 | 73.14 300 | 88.63 188 | 85.00 36 | 74.65 310 | 67.39 349 | 71.94 192 | 77.80 291 | 87.66 239 | 50.48 313 | 75.83 329 | 49.95 338 | 79.51 343 | 58.58 369 |
|
pmmvs5 | | | 70.73 293 | 70.07 296 | 72.72 303 | 77.03 332 | 52.73 328 | 74.14 311 | 75.65 309 | 50.36 343 | 72.17 329 | 85.37 277 | 55.42 297 | 80.67 315 | 52.86 328 | 87.59 289 | 84.77 289 |
|
MDTV_nov1_ep13 | | | | 68.29 309 | | 78.03 325 | 43.87 366 | 74.12 312 | 72.22 332 | 52.17 329 | 67.02 348 | 85.54 271 | 45.36 339 | 80.85 314 | 55.73 307 | 84.42 320 | |
|
test_fmvs1 | | | 69.57 304 | 69.05 303 | 71.14 313 | 69.15 368 | 65.77 209 | 73.98 313 | 83.32 259 | 42.83 362 | 77.77 292 | 78.27 344 | 43.39 352 | 68.50 349 | 68.39 227 | 84.38 321 | 79.15 345 |
|
IB-MVS | | 62.13 19 | 71.64 286 | 68.97 304 | 79.66 234 | 80.80 304 | 62.26 247 | 73.94 314 | 76.90 299 | 63.27 266 | 68.63 341 | 76.79 353 | 33.83 369 | 91.84 168 | 59.28 291 | 87.26 290 | 84.88 288 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 76.29 246 | 74.81 252 | 80.72 219 | 84.47 261 | 62.94 234 | 73.89 315 | 87.34 205 | 55.94 312 | 75.16 315 | 76.53 355 | 63.97 242 | 91.16 184 | 65.00 250 | 90.97 247 | 88.06 253 |
|
MS-PatchMatch | | | 70.93 292 | 70.22 295 | 73.06 301 | 81.85 290 | 62.50 242 | 73.82 316 | 77.90 294 | 52.44 328 | 75.92 305 | 81.27 322 | 55.67 295 | 81.75 309 | 55.37 312 | 77.70 352 | 74.94 352 |
|
D2MVS | | | 76.84 237 | 75.67 246 | 80.34 224 | 80.48 308 | 62.16 249 | 73.50 317 | 84.80 250 | 57.61 305 | 82.24 236 | 87.54 241 | 51.31 309 | 87.65 257 | 70.40 206 | 93.19 203 | 91.23 196 |
|
GA-MVS | | | 75.83 248 | 74.61 253 | 79.48 237 | 81.87 289 | 59.25 279 | 73.42 318 | 82.88 263 | 68.68 224 | 79.75 272 | 81.80 318 | 50.62 312 | 89.46 231 | 66.85 234 | 85.64 305 | 89.72 228 |
|
Test_1112_low_res | | | 73.90 268 | 73.08 269 | 76.35 280 | 90.35 156 | 55.95 305 | 73.40 319 | 86.17 226 | 50.70 340 | 73.14 323 | 85.94 267 | 58.31 277 | 85.90 283 | 56.51 303 | 83.22 326 | 87.20 265 |
|
CL-MVSNet_self_test | | | 76.81 238 | 77.38 227 | 75.12 290 | 86.90 227 | 51.34 338 | 73.20 320 | 80.63 283 | 68.30 228 | 81.80 248 | 88.40 226 | 66.92 227 | 80.90 313 | 55.35 313 | 94.90 162 | 93.12 136 |
|
thisisatest0515 | | | 73.00 276 | 70.52 291 | 80.46 222 | 81.45 293 | 59.90 273 | 73.16 321 | 74.31 317 | 57.86 302 | 76.08 304 | 77.78 345 | 37.60 364 | 92.12 160 | 65.00 250 | 91.45 238 | 89.35 234 |
|
HyFIR lowres test | | | 75.12 255 | 72.66 275 | 82.50 190 | 91.44 133 | 65.19 213 | 72.47 322 | 87.31 206 | 46.79 347 | 80.29 267 | 84.30 291 | 52.70 305 | 92.10 161 | 51.88 335 | 86.73 295 | 90.22 221 |
|
Patchmatch-RL test | | | 74.48 263 | 73.68 262 | 76.89 275 | 84.83 257 | 66.54 199 | 72.29 323 | 69.16 348 | 57.70 303 | 86.76 158 | 86.33 260 | 45.79 334 | 82.59 305 | 69.63 210 | 90.65 257 | 81.54 329 |
|
MVS-HIRNet | | | 61.16 331 | 62.92 328 | 55.87 352 | 79.09 320 | 35.34 374 | 71.83 324 | 57.98 369 | 46.56 349 | 59.05 367 | 91.14 169 | 49.95 316 | 76.43 326 | 38.74 366 | 71.92 362 | 55.84 370 |
|
XXY-MVS | | | 74.44 265 | 76.19 240 | 69.21 321 | 84.61 260 | 52.43 331 | 71.70 325 | 77.18 298 | 60.73 288 | 80.60 262 | 90.96 176 | 75.44 161 | 69.35 344 | 56.13 306 | 88.33 277 | 85.86 279 |
|
ppachtmachnet_test | | | 74.73 262 | 74.00 260 | 76.90 274 | 80.71 305 | 56.89 302 | 71.53 326 | 78.42 292 | 58.24 299 | 79.32 279 | 82.92 307 | 57.91 281 | 84.26 297 | 65.60 246 | 91.36 239 | 89.56 230 |
|
dp | | | 60.70 334 | 60.29 336 | 61.92 344 | 72.04 363 | 38.67 372 | 70.83 327 | 64.08 358 | 51.28 336 | 60.75 363 | 77.28 349 | 36.59 366 | 71.58 339 | 47.41 349 | 62.34 370 | 75.52 351 |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 378 | 70.76 328 | | 46.47 350 | 61.27 362 | | 45.20 341 | | 49.18 342 | | 83.75 302 |
|
pmmvs3 | | | 62.47 325 | 60.02 337 | 69.80 318 | 71.58 364 | 64.00 224 | 70.52 329 | 58.44 368 | 39.77 366 | 66.05 349 | 75.84 356 | 27.10 379 | 72.28 335 | 46.15 354 | 84.77 319 | 73.11 354 |
|
Anonymous20231206 | | | 71.38 289 | 71.88 282 | 69.88 317 | 86.31 237 | 54.37 316 | 70.39 330 | 74.62 313 | 52.57 327 | 76.73 296 | 88.76 221 | 59.94 265 | 72.06 336 | 44.35 358 | 93.23 202 | 83.23 311 |
|
test20.03 | | | 73.75 269 | 74.59 255 | 71.22 311 | 81.11 298 | 51.12 342 | 70.15 331 | 72.10 333 | 70.42 205 | 80.28 269 | 91.50 160 | 64.21 241 | 74.72 333 | 46.96 352 | 94.58 174 | 87.82 260 |
|
UnsupCasMVSNet_eth | | | 71.63 287 | 72.30 280 | 69.62 319 | 76.47 336 | 52.70 329 | 70.03 332 | 80.97 279 | 59.18 294 | 79.36 277 | 88.21 229 | 60.50 259 | 69.12 345 | 58.33 295 | 77.62 353 | 87.04 267 |
|
our_test_3 | | | 71.85 284 | 71.59 284 | 72.62 304 | 80.71 305 | 53.78 320 | 69.72 333 | 71.71 338 | 58.80 296 | 78.03 286 | 80.51 330 | 56.61 290 | 78.84 320 | 62.20 270 | 86.04 303 | 85.23 284 |
|
Patchmatch-test | | | 65.91 318 | 67.38 311 | 61.48 346 | 75.51 344 | 43.21 368 | 68.84 334 | 63.79 359 | 62.48 272 | 72.80 326 | 83.42 301 | 44.89 345 | 59.52 367 | 48.27 347 | 86.45 298 | 81.70 326 |
|
CHOSEN 1792x2688 | | | 72.45 279 | 70.56 290 | 78.13 256 | 90.02 166 | 63.08 233 | 68.72 335 | 83.16 260 | 42.99 361 | 75.92 305 | 85.46 273 | 57.22 286 | 85.18 290 | 49.87 340 | 81.67 336 | 86.14 275 |
|
testgi | | | 72.36 280 | 74.61 253 | 65.59 334 | 80.56 307 | 42.82 369 | 68.29 336 | 73.35 325 | 66.87 243 | 81.84 245 | 89.93 201 | 72.08 204 | 66.92 355 | 46.05 355 | 92.54 215 | 87.01 268 |
|
test-LLR | | | 67.21 311 | 66.74 315 | 68.63 325 | 76.45 337 | 55.21 312 | 67.89 337 | 67.14 352 | 62.43 274 | 65.08 355 | 72.39 360 | 43.41 350 | 69.37 342 | 61.00 280 | 84.89 315 | 81.31 331 |
|
TESTMET0.1,1 | | | 61.29 330 | 60.32 335 | 64.19 339 | 72.06 362 | 51.30 339 | 67.89 337 | 62.09 360 | 45.27 352 | 60.65 364 | 69.01 364 | 27.93 377 | 64.74 361 | 56.31 304 | 81.65 338 | 76.53 349 |
|
test-mter | | | 65.00 322 | 63.79 325 | 68.63 325 | 76.45 337 | 55.21 312 | 67.89 337 | 67.14 352 | 50.98 338 | 65.08 355 | 72.39 360 | 28.27 376 | 69.37 342 | 61.00 280 | 84.89 315 | 81.31 331 |
|
UnsupCasMVSNet_bld | | | 69.21 306 | 69.68 300 | 67.82 328 | 79.42 316 | 51.15 341 | 67.82 340 | 75.79 306 | 54.15 319 | 77.47 295 | 85.36 278 | 59.26 271 | 70.64 340 | 48.46 345 | 79.35 345 | 81.66 327 |
|
ADS-MVSNet2 | | | 65.87 319 | 63.64 326 | 72.55 305 | 73.16 357 | 56.92 301 | 67.10 341 | 74.81 312 | 49.74 344 | 66.04 350 | 82.97 304 | 46.71 324 | 77.26 324 | 42.29 360 | 69.96 365 | 83.46 305 |
|
ADS-MVSNet | | | 61.90 327 | 62.19 330 | 61.03 347 | 73.16 357 | 36.42 373 | 67.10 341 | 61.75 362 | 49.74 344 | 66.04 350 | 82.97 304 | 46.71 324 | 63.21 362 | 42.29 360 | 69.96 365 | 83.46 305 |
|
test_vis3_rt | | | 71.42 288 | 70.67 289 | 73.64 297 | 69.66 367 | 70.46 162 | 66.97 343 | 89.73 169 | 42.68 363 | 88.20 135 | 83.04 303 | 43.77 348 | 60.07 365 | 65.35 249 | 86.66 296 | 90.39 219 |
|
MDA-MVSNet-bldmvs | | | 77.47 230 | 76.90 234 | 79.16 240 | 79.03 321 | 64.59 216 | 66.58 344 | 75.67 308 | 73.15 172 | 88.86 120 | 88.99 219 | 66.94 226 | 81.23 312 | 64.71 253 | 88.22 282 | 91.64 189 |
|
WTY-MVS | | | 67.91 310 | 68.35 308 | 66.58 332 | 80.82 303 | 48.12 352 | 65.96 345 | 72.60 329 | 53.67 321 | 71.20 333 | 81.68 320 | 58.97 273 | 69.06 346 | 48.57 344 | 81.67 336 | 82.55 317 |
|
mvsany_test3 | | | 65.48 321 | 62.97 327 | 73.03 302 | 69.99 366 | 76.17 113 | 64.83 346 | 43.71 377 | 43.68 358 | 80.25 270 | 87.05 253 | 52.83 304 | 63.09 364 | 51.92 334 | 72.44 360 | 79.84 344 |
|
sss | | | 66.92 312 | 67.26 312 | 65.90 333 | 77.23 329 | 51.10 343 | 64.79 347 | 71.72 337 | 52.12 332 | 70.13 337 | 80.18 332 | 57.96 280 | 65.36 360 | 50.21 337 | 81.01 341 | 81.25 333 |
|
miper_lstm_enhance | | | 76.45 244 | 76.10 241 | 77.51 266 | 76.72 334 | 60.97 263 | 64.69 348 | 85.04 243 | 63.98 264 | 83.20 224 | 88.22 228 | 56.67 288 | 78.79 321 | 73.22 180 | 93.12 204 | 92.78 145 |
|
test0.0.03 1 | | | 64.66 323 | 64.36 323 | 65.57 335 | 75.03 349 | 46.89 358 | 64.69 348 | 61.58 364 | 62.43 274 | 71.18 334 | 77.54 346 | 43.41 350 | 68.47 350 | 40.75 364 | 82.65 332 | 81.35 330 |
|
PMMVS | | | 61.65 328 | 60.38 334 | 65.47 336 | 65.40 376 | 69.26 174 | 63.97 350 | 61.73 363 | 36.80 371 | 60.11 365 | 68.43 365 | 59.42 269 | 66.35 357 | 48.97 343 | 78.57 349 | 60.81 366 |
|
test123 | | | 6.27 346 | 8.08 349 | 0.84 359 | 1.11 383 | 0.57 383 | 62.90 351 | 0.82 383 | 0.54 377 | 1.07 379 | 2.75 378 | 1.26 382 | 0.30 378 | 1.04 376 | 1.26 377 | 1.66 374 |
|
KD-MVS_2432*1600 | | | 66.87 313 | 65.81 319 | 70.04 315 | 67.50 369 | 47.49 355 | 62.56 352 | 79.16 288 | 61.21 283 | 77.98 287 | 80.61 326 | 25.29 380 | 82.48 306 | 53.02 325 | 84.92 312 | 80.16 342 |
|
miper_refine_blended | | | 66.87 313 | 65.81 319 | 70.04 315 | 67.50 369 | 47.49 355 | 62.56 352 | 79.16 288 | 61.21 283 | 77.98 287 | 80.61 326 | 25.29 380 | 82.48 306 | 53.02 325 | 84.92 312 | 80.16 342 |
|
PVSNet | | 58.17 21 | 66.41 316 | 65.63 321 | 68.75 324 | 81.96 288 | 49.88 348 | 62.19 354 | 72.51 331 | 51.03 337 | 68.04 343 | 75.34 358 | 50.84 311 | 74.77 331 | 45.82 356 | 82.96 327 | 81.60 328 |
|
test_vis1_rt | | | 65.64 320 | 64.09 324 | 70.31 314 | 66.09 373 | 70.20 165 | 61.16 355 | 81.60 275 | 38.65 368 | 72.87 325 | 69.66 363 | 52.84 303 | 60.04 366 | 56.16 305 | 77.77 351 | 80.68 340 |
|
new_pmnet | | | 55.69 338 | 57.66 339 | 49.76 354 | 75.47 345 | 30.59 376 | 59.56 356 | 51.45 373 | 43.62 359 | 62.49 361 | 75.48 357 | 40.96 357 | 49.15 373 | 37.39 368 | 72.52 359 | 69.55 359 |
|
new-patchmatchnet | | | 70.10 298 | 73.37 267 | 60.29 348 | 81.23 297 | 16.95 379 | 59.54 357 | 74.62 313 | 62.93 268 | 80.97 257 | 87.93 234 | 62.83 253 | 71.90 337 | 55.24 314 | 95.01 159 | 92.00 178 |
|
testmvs | | | 5.91 347 | 7.65 350 | 0.72 360 | 1.20 382 | 0.37 384 | 59.14 358 | 0.67 384 | 0.49 378 | 1.11 378 | 2.76 377 | 0.94 383 | 0.24 379 | 1.02 377 | 1.47 376 | 1.55 375 |
|
N_pmnet | | | 70.20 296 | 68.80 306 | 74.38 294 | 80.91 300 | 84.81 39 | 59.12 359 | 76.45 304 | 55.06 315 | 75.31 314 | 82.36 313 | 55.74 294 | 54.82 369 | 47.02 350 | 87.24 291 | 83.52 304 |
|
YYNet1 | | | 70.06 299 | 70.44 292 | 68.90 322 | 73.76 354 | 53.42 324 | 58.99 360 | 67.20 351 | 58.42 298 | 87.10 150 | 85.39 276 | 59.82 267 | 67.32 352 | 59.79 288 | 83.50 325 | 85.96 276 |
|
MDA-MVSNet_test_wron | | | 70.05 300 | 70.44 292 | 68.88 323 | 73.84 353 | 53.47 322 | 58.93 361 | 67.28 350 | 58.43 297 | 87.09 151 | 85.40 275 | 59.80 268 | 67.25 353 | 59.66 289 | 83.54 324 | 85.92 278 |
|
test_f | | | 64.31 324 | 65.85 318 | 59.67 349 | 66.54 372 | 62.24 248 | 57.76 362 | 70.96 340 | 40.13 365 | 84.36 203 | 82.09 315 | 46.93 323 | 51.67 371 | 61.99 273 | 81.89 335 | 65.12 363 |
|
mvsany_test1 | | | 58.48 336 | 56.47 341 | 64.50 338 | 65.90 375 | 68.21 185 | 56.95 363 | 42.11 378 | 38.30 369 | 65.69 352 | 77.19 352 | 56.96 287 | 59.35 368 | 46.16 353 | 58.96 371 | 65.93 362 |
|
PVSNet_0 | | 51.08 22 | 56.10 337 | 54.97 342 | 59.48 350 | 75.12 348 | 53.28 325 | 55.16 364 | 61.89 361 | 44.30 355 | 59.16 366 | 62.48 369 | 54.22 300 | 65.91 359 | 35.40 369 | 47.01 372 | 59.25 368 |
|
E-PMN | | | 61.59 329 | 61.62 331 | 61.49 345 | 66.81 371 | 55.40 310 | 53.77 365 | 60.34 365 | 66.80 244 | 58.90 368 | 65.50 367 | 40.48 358 | 66.12 358 | 55.72 308 | 86.25 301 | 62.95 365 |
|
EMVS | | | 61.10 332 | 60.81 333 | 61.99 343 | 65.96 374 | 55.86 307 | 53.10 366 | 58.97 367 | 67.06 241 | 56.89 371 | 63.33 368 | 40.98 356 | 67.03 354 | 54.79 317 | 86.18 302 | 63.08 364 |
|
CHOSEN 280x420 | | | 59.08 335 | 56.52 340 | 66.76 331 | 76.51 335 | 64.39 220 | 49.62 367 | 59.00 366 | 43.86 357 | 55.66 372 | 68.41 366 | 35.55 368 | 68.21 351 | 43.25 359 | 76.78 356 | 67.69 361 |
|
PMMVS2 | | | 55.64 339 | 59.27 338 | 44.74 355 | 64.30 377 | 12.32 380 | 40.60 368 | 49.79 374 | 53.19 323 | 65.06 357 | 84.81 285 | 53.60 302 | 49.76 372 | 32.68 372 | 89.41 264 | 72.15 355 |
|
tmp_tt | | | 20.25 343 | 24.50 346 | 7.49 358 | 4.47 381 | 8.70 381 | 34.17 369 | 25.16 381 | 1.00 376 | 32.43 375 | 18.49 373 | 39.37 360 | 9.21 377 | 21.64 374 | 43.75 373 | 4.57 373 |
|
MVE |  | 40.22 23 | 51.82 340 | 50.47 343 | 55.87 352 | 62.66 378 | 51.91 334 | 31.61 370 | 39.28 379 | 40.65 364 | 50.76 373 | 74.98 359 | 56.24 293 | 44.67 374 | 33.94 371 | 64.11 369 | 71.04 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 30.46 341 | 29.60 344 | 33.06 356 | 17.99 380 | 3.84 382 | 13.62 371 | 73.92 319 | 2.79 374 | 18.29 376 | 53.41 371 | 28.53 375 | 43.25 375 | 22.56 373 | 35.27 374 | 52.11 371 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 20.81 342 | 27.75 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 85.44 234 | 0.00 379 | 0.00 380 | 82.82 308 | 81.46 108 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 6.41 345 | 8.55 348 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 76.94 151 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 6.65 344 | 8.87 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 79.80 335 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
MSC_two_6792asdad | | | | | 88.81 68 | 91.55 127 | 77.99 87 | | 91.01 135 | | | | | 96.05 7 | 87.45 17 | 98.17 32 | 92.40 161 |
|
PC_three_1452 | | | | | | | | | | 58.96 295 | 90.06 95 | 91.33 164 | 80.66 117 | 93.03 135 | 75.78 149 | 95.94 124 | 92.48 157 |
|
No_MVS | | | | | 88.81 68 | 91.55 127 | 77.99 87 | | 91.01 135 | | | | | 96.05 7 | 87.45 17 | 98.17 32 | 92.40 161 |
|
test_one_0601 | | | | | | 93.85 58 | 73.27 128 | | 94.11 33 | 86.57 25 | 93.47 38 | 94.64 60 | 88.42 26 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 92.22 102 | 80.48 67 | | 91.85 112 | 71.22 198 | 90.38 90 | 92.98 117 | 86.06 59 | 96.11 5 | 81.99 80 | 96.75 91 | |
|
IU-MVS | | | | | | 94.18 46 | 72.64 134 | | 90.82 140 | 56.98 309 | 89.67 107 | | | | 85.78 45 | 97.92 46 | 93.28 128 |
|
test_241102_TWO | | | | | | | | | 93.71 49 | 83.77 45 | 93.49 36 | 94.27 74 | 89.27 21 | 95.84 22 | 86.03 41 | 97.82 51 | 92.04 176 |
|
test_241102_ONE | | | | | | 94.18 46 | 72.65 132 | | 93.69 50 | 83.62 47 | 94.11 22 | 93.78 103 | 90.28 14 | 95.50 44 | | | |
|
test_0728_THIRD | | | | | | | | | | 85.33 32 | 93.75 30 | 94.65 57 | 87.44 43 | 95.78 27 | 87.41 19 | 98.21 29 | 92.98 140 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 297 |
|
test_part2 | | | | | | 93.86 57 | 77.77 91 | | | | 92.84 48 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 328 | | | | 83.88 297 |
|
sam_mvs | | | | | | | | | | | | | 45.92 333 | | | | |
|
MTGPA |  | | | | | | | | 91.81 115 | | | | | | | | |
|
test_post | | | | | | | | | | | | 3.10 376 | 45.43 338 | 77.22 325 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 319 | 45.93 332 | 87.01 263 | | | |
|
gm-plane-assit | | | | | | 75.42 346 | 44.97 364 | | | 52.17 329 | | 72.36 362 | | 87.90 254 | 54.10 320 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 89 | 96.45 102 | 90.57 213 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 103 | 96.16 112 | 90.22 221 |
|
agg_prior | | | | | | 91.58 125 | 77.69 92 | | 90.30 156 | | 84.32 205 | | | 93.18 129 | | | |
|
TestCases | | | | | 89.68 53 | 91.59 122 | 83.40 48 | | 95.44 9 | 79.47 90 | 88.00 137 | 93.03 115 | 82.66 87 | 91.47 174 | 70.81 197 | 96.14 113 | 94.16 93 |
|
test_prior | | | | | 86.32 103 | 90.59 153 | 71.99 149 | | 92.85 86 | | | | | 94.17 90 | | | 92.80 144 |
|
新几何1 | | | | | 82.95 178 | 93.96 55 | 78.56 84 | | 80.24 284 | 55.45 314 | 83.93 216 | 91.08 171 | 71.19 210 | 88.33 251 | 65.84 244 | 93.07 205 | 81.95 325 |
|
旧先验1 | | | | | | 91.97 109 | 71.77 150 | | 81.78 273 | | | 91.84 151 | 73.92 180 | | | 93.65 194 | 83.61 303 |
|
原ACMM1 | | | | | 84.60 138 | 92.81 87 | 74.01 124 | | 91.50 120 | 62.59 270 | 82.73 231 | 90.67 186 | 76.53 158 | 94.25 84 | 69.24 213 | 95.69 138 | 85.55 281 |
|
testdata2 | | | | | | | | | | | | | | 86.43 276 | 63.52 262 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 100 | | | | |
|
testdata | | | | | 79.54 236 | 92.87 82 | 72.34 143 | | 80.14 285 | 59.91 293 | 85.47 186 | 91.75 156 | 67.96 223 | 85.24 288 | 68.57 226 | 92.18 225 | 81.06 338 |
|
test12 | | | | | 86.57 98 | 90.74 149 | 72.63 136 | | 90.69 143 | | 82.76 230 | | 79.20 127 | 94.80 66 | | 95.32 146 | 92.27 169 |
|
plane_prior7 | | | | | | 93.45 66 | 77.31 98 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 105 | | | | | | 74.84 169 | | | | |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 54 | 80.78 90 | 95.83 130 | 94.46 80 |
|
plane_prior4 | | | | | | | | | | | | 92.95 120 | | | | | |
|
plane_prior3 | | | | | | | 76.85 103 | | | 77.79 114 | 86.55 164 | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 316 | | | | | | | | |
|
lessismore_v0 | | | | | 85.95 113 | 91.10 142 | 70.99 159 | | 70.91 341 | | 91.79 67 | 94.42 69 | 61.76 255 | 92.93 138 | 79.52 106 | 93.03 206 | 93.93 103 |
|
LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 19 | 82.35 60 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 40 | 85.36 47 | 98.73 6 | 95.23 59 |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
door | | | | | | | | | 72.57 330 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 160 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 134 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 263 | | | 94.61 72 | | | 93.56 122 |
|
HQP3-MVS | | | | | | | | | 92.68 91 | | | | | | | 94.47 176 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 202 | | | | |
|
NP-MVS | | | | | | 91.95 110 | 74.55 121 | | | | | 90.17 199 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 137 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 128 | | | | |
|
ITE_SJBPF | | | | | 90.11 45 | 90.72 150 | 84.97 37 | | 90.30 156 | 81.56 68 | 90.02 97 | 91.20 168 | 82.40 91 | 90.81 197 | 73.58 175 | 94.66 172 | 94.56 76 |
|
DeepMVS_CX |  | | | | 24.13 357 | 32.95 379 | 29.49 377 | | 21.63 382 | 12.07 373 | 37.95 374 | 45.07 372 | 30.84 372 | 19.21 376 | 17.94 375 | 33.06 375 | 23.69 372 |
|