This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37486.57 5295.80 2487.35 2197.62 6294.20 90
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
EGC-MVSNET74.79 26169.99 29889.19 6394.89 3787.00 1191.89 3486.28 2231.09 3752.23 37795.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTMP90.66 4433.14 380
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34493.60 11263.93 25891.50 23790.04 227
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 321
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior289.45 7779.44 92
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28889.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28588.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29388.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24592.28 22192.21 172
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24792.75 21282.51 320
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29088.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27270.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet80.37 19678.41 21986.23 10676.75 33373.28 12787.18 10977.45 29776.24 12868.14 34288.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
plane_prior76.42 10987.15 11075.94 13595.03 158
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31073.76 15988.32 13390.20 19637.96 36394.16 9279.36 10895.13 15395.93 42
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36694.51 7979.83 10094.30 18093.50 125
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32192.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27694.76 17184.21 295
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 27990.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30485.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34273.79 18290.53 20561.59 27890.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27785.71 13382.43 26739.76 36785.64 18288.76 22144.71 34687.88 25573.86 17085.88 30484.16 296
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30284.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27885.42 13681.11 27786.41 2787.41 14596.21 1973.61 18390.61 20466.33 23996.85 8693.81 111
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30685.22 13873.78 32282.96 5584.28 20992.72 12957.38 28490.07 22163.80 25995.75 13690.68 210
FIs85.35 10986.27 10182.60 18691.86 11457.31 29785.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30084.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30190.90 24989.43 233
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
test_prior478.97 8084.59 145
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23592.29 22089.11 239
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34180.39 11995.13 5873.82 17192.98 20891.04 199
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND67.16 33073.36 35546.54 36084.15 15455.04 37158.64 36961.95 37029.93 37483.87 30138.71 36776.92 35571.07 357
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37194.51 7976.64 14095.83 13094.38 87
test250674.12 26673.39 26676.28 28291.85 11544.20 36584.06 15648.20 37572.30 18781.90 24394.20 8027.22 37889.77 22664.81 25296.02 11994.87 67
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 28983.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23393.92 18892.27 169
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31887.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27674.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 34983.68 16969.91 34572.30 18784.26 21194.20 8051.89 30789.82 22563.58 26096.02 11994.87 67
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30568.86 22285.22 18887.36 24538.10 36193.57 11675.47 15294.28 18194.62 74
gg-mvs-nofinetune68.96 30769.11 30268.52 32776.12 34045.32 36183.59 17155.88 37086.68 2464.62 35997.01 730.36 37383.97 30044.78 35782.94 32876.26 350
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
CVMVSNet72.62 27871.41 28776.28 28283.25 27860.34 26983.50 17379.02 29137.77 37076.33 29985.10 28049.60 31787.41 26070.54 20477.54 35481.08 336
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34083.28 17771.97 33474.04 15582.23 23789.78 20457.38 28489.41 23557.22 30095.41 14293.05 138
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27383.26 17888.29 19569.16 21867.83 34583.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24095.12 15590.34 220
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22189.29 26590.94 201
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
无先验82.81 19285.62 23358.09 30091.41 17967.95 23184.48 291
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27497.42 7293.62 119
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
test111178.53 22078.85 21177.56 26592.22 10247.49 35582.61 19569.24 34772.43 18185.28 18794.20 8051.91 30690.07 22165.36 24896.45 10295.11 62
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25671.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 29950.50 34275.72 30792.38 13748.07 32184.07 29868.72 22382.91 32983.85 300
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31895.56 3773.48 17682.91 32983.85 300
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29582.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25764.69 26280.29 26785.91 26951.07 31092.38 15176.29 14593.63 19590.65 212
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27582.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22296.04 11894.42 85
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 35982.41 20476.90 29973.81 15885.56 18492.38 13748.07 32183.98 29963.36 26395.31 14890.92 202
EPNet_dtu72.87 27771.33 28877.49 26777.72 32760.55 26882.35 20575.79 30666.49 24658.39 37081.06 32453.68 30185.98 28153.55 32292.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26895.17 15286.31 274
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31482.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23096.60 9594.45 82
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32382.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33082.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
原ACMM282.26 210
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29088.04 28390.68 210
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31782.14 21481.96 27056.76 31169.57 33986.21 26460.03 26484.83 29349.58 34182.65 33285.11 286
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30281.76 21585.77 23169.04 22086.00 17590.44 19151.75 30890.09 22065.95 24193.34 19891.72 185
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
新几何281.72 217
131473.22 27372.56 27875.20 28980.41 30957.84 29381.64 21885.36 23551.68 33473.10 32476.65 35461.45 25685.19 28963.54 26179.21 34782.59 316
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35171.68 33177.54 34668.47 22089.77 22655.70 30985.39 30674.60 353
v14882.31 16682.48 16681.81 20185.59 25059.66 27581.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28076.28 12767.53 34789.11 21762.87 25286.77 27060.90 28392.01 22987.13 266
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35569.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 338
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29681.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23896.82 8994.34 88
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34267.22 19181.21 22582.18 26850.78 33976.50 29787.66 23955.20 29882.99 30462.17 27290.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26562.45 27383.34 22287.37 24466.20 23088.66 24864.69 25485.02 31186.32 273
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33581.07 22773.26 32675.68 13883.25 22386.37 25945.54 33588.80 24351.98 33190.99 24489.31 235
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25872.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
wuyk23d75.13 25479.30 20662.63 34175.56 34375.18 11880.89 22973.10 32875.06 14794.76 1295.32 3587.73 4052.85 37034.16 37097.11 8059.85 367
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28755.68 31384.69 19890.31 19460.91 25885.42 28762.20 27091.59 23587.88 258
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31080.83 23182.85 26476.81 12385.90 17994.14 8474.58 17586.51 27466.82 23695.68 13993.01 139
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29295.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33680.45 23373.26 32675.20 14583.10 22686.31 26245.54 33589.05 23955.03 31692.24 22292.66 151
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32780.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22496.64 9395.38 52
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27588.99 26982.52 319
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32087.94 23357.89 28289.45 23252.02 33074.87 35885.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 30980.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28794.89 16390.75 206
USDC76.63 24076.73 23676.34 28183.46 27657.20 29980.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31894.11 18485.17 285
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36279.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
baseline173.26 27273.54 26472.43 30784.92 25647.79 35479.89 24074.00 31865.93 24778.81 28386.28 26356.36 29181.63 31156.63 30279.04 34887.87 259
tpm268.45 30866.83 31473.30 29978.93 32348.50 35079.76 24171.76 33647.50 34669.92 33883.60 29742.07 35588.40 25048.44 34679.51 34383.01 314
tpmvs70.16 29769.56 30171.96 30974.71 35148.13 35179.63 24275.45 31165.02 26070.26 33681.88 31745.34 34085.68 28558.34 29475.39 35782.08 324
testdata179.62 24373.95 157
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28492.24 22290.11 225
test22293.31 7176.54 10579.38 24877.79 29552.59 32682.36 23590.84 18066.83 22891.69 23381.25 333
PatchmatchNetpermissive69.71 30368.83 30572.33 30877.66 32853.60 32179.29 24969.99 34457.66 30472.53 32782.93 30646.45 32680.08 31860.91 28272.09 36183.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer69.98 30168.68 30773.87 29577.14 33050.72 34479.26 25074.51 31551.94 33370.97 33584.75 28645.16 34387.49 25955.16 31579.23 34683.40 307
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24492.66 151
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28661.72 27881.35 25586.92 25463.96 24388.78 24650.61 33693.01 20788.04 254
test_fmvs375.72 25075.20 25077.27 26975.01 35069.47 17178.93 25584.88 24846.67 34887.08 15287.84 23650.44 31471.62 33877.42 13388.53 27590.72 207
MIMVSNet71.09 29071.59 28469.57 32087.23 21650.07 34778.91 25671.83 33560.20 29271.26 33291.76 15555.08 29976.09 32741.06 36387.02 29482.54 318
SCA73.32 27172.57 27775.58 28881.62 29155.86 30778.89 25771.37 33961.73 27774.93 31683.42 30160.46 26087.01 26358.11 29782.63 33483.88 297
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
test_post178.85 2593.13 37545.19 34280.13 31758.11 297
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34678.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22886.41 29991.37 194
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31578.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 22998.04 3697.23 18
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28278.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23288.30 28191.51 193
tpmrst66.28 31766.69 31665.05 33772.82 36039.33 37078.20 26670.69 34253.16 32467.88 34480.36 33148.18 32074.75 33258.13 29670.79 36381.08 336
tpm cat166.76 31565.21 32271.42 31077.09 33150.62 34578.01 26773.68 32444.89 35468.64 34079.00 33945.51 33782.42 30849.91 33970.15 36481.23 335
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27151.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 26960.81 28678.94 28283.49 29959.30 27088.76 24754.64 31992.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26587.90 28487.52 261
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28477.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
PatchT70.52 29472.76 27463.79 34079.38 31733.53 37577.63 27465.37 35773.61 16071.77 33092.79 12744.38 34775.65 33064.53 25785.37 30782.18 322
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32785.25 30977.62 348
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26486.59 29786.41 272
MVSTER77.09 23475.70 24581.25 20775.27 34761.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35390.25 20973.69 17490.67 25592.42 159
cl2278.97 21178.21 22181.24 20977.74 32659.01 28377.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26265.20 25981.40 25482.10 31466.30 22990.73 20055.57 31085.27 30882.65 315
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30360.67 28977.60 29480.52 32938.04 36291.15 18570.78 19990.68 25489.17 238
test_fmvs273.57 27072.80 27275.90 28672.74 36168.84 18177.07 28284.32 25445.14 35382.89 22884.22 29248.37 31970.36 34173.40 17887.03 29388.52 249
cl____80.42 19480.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28250.68 34176.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32676.77 28678.37 29363.31 26576.37 29891.85 15036.68 36578.98 31947.87 34892.45 21687.95 256
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35376.70 28781.67 27473.45 16284.87 19592.82 12474.66 17486.51 27461.66 27796.85 8693.33 126
test_vis1_n70.29 29569.99 29871.20 31275.97 34166.50 20076.69 28880.81 28044.22 35675.43 31077.23 35050.00 31568.59 34766.71 23782.85 33178.52 347
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29876.63 28982.49 26681.21 7284.30 20892.24 14467.99 22286.24 27862.22 26995.13 15391.98 180
PAPM71.77 28570.06 29776.92 27386.39 23253.97 31876.62 29086.62 22053.44 32263.97 36084.73 28757.79 28392.34 15339.65 36581.33 33984.45 292
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32279.80 33560.25 26386.76 27258.37 29384.15 32287.32 264
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29064.88 26183.11 22589.16 21559.90 26684.46 29568.61 22485.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27872.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29652.83 32577.73 29386.38 25856.35 29284.97 29157.72 29987.05 29285.51 282
baseline269.77 30266.89 31378.41 25179.51 31558.09 29176.23 29569.57 34657.50 30664.82 35877.45 34846.02 32988.44 24953.08 32477.83 35088.70 247
test_fmvs1_n70.94 29170.41 29472.53 30673.92 35266.93 19675.99 29784.21 25543.31 36079.40 27679.39 33843.47 34968.55 34869.05 21884.91 31482.10 323
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34364.34 26376.09 30381.25 32365.87 23478.07 32253.86 32183.82 32371.48 356
JIA-IIPM69.41 30566.64 31777.70 26473.19 35671.24 15775.67 29965.56 35670.42 20565.18 35492.97 11933.64 37083.06 30353.52 32369.61 36778.79 346
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26160.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
tpm67.95 30968.08 31067.55 32978.74 32443.53 36775.60 30067.10 35454.92 31672.23 32888.10 23042.87 35475.97 32852.21 32980.95 34283.15 312
VNet79.31 20980.27 19376.44 27987.92 20353.95 31975.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28693.98 18790.97 200
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31778.79 34077.20 14590.93 19164.62 25684.80 31883.32 309
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 33958.01 29275.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 31977.22 35176.94 15190.94 19064.63 25584.83 31783.35 308
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34369.11 21791.44 17660.68 28487.70 28884.42 293
thres20072.34 28171.55 28674.70 29383.48 27551.60 33775.02 30773.71 32370.14 21178.56 28580.57 32846.20 32788.20 25346.99 35189.29 26584.32 294
EPMVS62.47 32562.63 32962.01 34270.63 36538.74 37174.76 30852.86 37253.91 32067.71 34680.01 33339.40 35966.60 35655.54 31168.81 36880.68 340
DSMNet-mixed60.98 33361.61 33259.09 35172.88 35945.05 36374.70 30946.61 37626.20 37265.34 35390.32 19355.46 29663.12 36341.72 36281.30 34069.09 360
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 34971.94 19277.80 29187.66 23950.48 31375.83 32949.95 33879.51 34358.58 369
pmmvs570.73 29370.07 29672.72 30377.03 33252.73 32874.14 31175.65 30950.36 34372.17 32985.37 27755.42 29780.67 31552.86 32887.59 28984.77 289
MDTV_nov1_ep1368.29 30978.03 32543.87 36674.12 31272.22 33252.17 32967.02 34885.54 27145.36 33980.85 31455.73 30784.42 320
test_fmvs169.57 30469.05 30371.14 31369.15 36865.77 20973.98 31383.32 25942.83 36277.77 29278.27 34443.39 35268.50 34968.39 22784.38 32179.15 345
IB-MVS62.13 1971.64 28668.97 30479.66 23480.80 30462.26 24773.94 31476.90 29963.27 26668.63 34176.79 35333.83 36991.84 16859.28 29187.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31587.34 20555.94 31275.16 31576.53 35563.97 24291.16 18465.00 25090.97 24788.06 253
MS-PatchMatch70.93 29270.22 29573.06 30181.85 29062.50 24273.82 31677.90 29452.44 32875.92 30581.27 32255.67 29581.75 30955.37 31277.70 35274.94 352
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31784.80 25057.61 30582.24 23687.54 24151.31 30987.65 25770.40 20693.19 20391.23 196
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 27973.42 31882.88 26368.68 22479.75 27281.80 31850.62 31289.46 23166.85 23485.64 30589.72 228
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30573.40 31986.17 22650.70 34073.14 32385.94 26758.31 27785.90 28356.51 30383.22 32687.20 265
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33873.20 32080.63 28368.30 22881.80 24888.40 22666.92 22780.90 31355.35 31394.90 16293.12 136
thisisatest051573.00 27670.52 29180.46 22281.45 29359.90 27373.16 32174.31 31757.86 30276.08 30477.78 34537.60 36492.12 16065.00 25091.45 23889.35 234
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32287.31 20646.79 34780.29 26784.30 29152.70 30592.10 16151.88 33586.73 29590.22 221
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32369.16 34857.70 30386.76 15886.33 26045.79 33482.59 30569.63 21090.65 25781.54 329
MVS-HIRNet61.16 33162.92 32855.87 35279.09 32035.34 37471.83 32457.98 36946.56 34959.05 36791.14 16949.95 31676.43 32638.74 36671.92 36255.84 370
XXY-MVS74.44 26576.19 24069.21 32184.61 26052.43 33171.70 32577.18 29860.73 28880.60 26290.96 17675.44 16169.35 34456.13 30688.33 27785.86 279
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30271.53 32678.42 29258.24 29979.32 27982.92 30757.91 28184.26 29765.60 24691.36 23989.56 230
dp60.70 33460.29 33661.92 34472.04 36338.67 37270.83 32764.08 35851.28 33660.75 36377.28 34936.59 36671.58 33947.41 34962.34 37075.52 351
MDTV_nov1_ep13_2view27.60 37870.76 32846.47 35061.27 36245.20 34149.18 34283.75 302
pmmvs362.47 32560.02 33769.80 31871.58 36464.00 22470.52 32958.44 36839.77 36666.05 34975.84 35627.10 37972.28 33546.15 35484.77 31973.11 354
Anonymous2023120671.38 28971.88 28269.88 31786.31 23754.37 31670.39 33074.62 31352.57 32776.73 29688.76 22159.94 26572.06 33644.35 35893.23 20283.23 311
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34270.15 33172.10 33370.42 20580.28 26991.50 16064.21 24174.72 33346.96 35294.58 17487.82 260
UnsupCasMVSNet_eth71.63 28772.30 28069.62 31976.47 33652.70 32970.03 33280.97 27959.18 29479.36 27788.21 22960.50 25969.12 34558.33 29577.62 35387.04 267
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32069.72 33371.71 33858.80 29678.03 28680.51 33056.61 29078.84 32062.20 27086.04 30385.23 284
Patchmatch-test65.91 31867.38 31161.48 34675.51 34443.21 36868.84 33463.79 35962.48 27272.80 32683.42 30144.89 34559.52 36748.27 34786.45 29881.70 326
CHOSEN 1792x268872.45 27970.56 29078.13 25690.02 16663.08 23368.72 33583.16 26042.99 36175.92 30585.46 27357.22 28685.18 29049.87 34081.67 33686.14 275
testgi72.36 28074.61 25365.59 33480.56 30742.82 36968.29 33673.35 32566.87 24381.84 24589.93 20172.08 20466.92 35546.05 35592.54 21587.01 268
test-LLR67.21 31166.74 31568.63 32576.45 33755.21 31267.89 33767.14 35262.43 27465.08 35572.39 36043.41 35069.37 34261.00 28084.89 31581.31 331
TESTMET0.1,161.29 33060.32 33564.19 33972.06 36251.30 33967.89 33762.09 36045.27 35260.65 36469.01 36427.93 37764.74 36156.31 30481.65 33876.53 349
test-mter65.00 32263.79 32568.63 32576.45 33755.21 31267.89 33767.14 35250.98 33865.08 35572.39 36028.27 37669.37 34261.00 28084.89 31581.31 331
UnsupCasMVSNet_bld69.21 30669.68 30067.82 32879.42 31651.15 34167.82 34075.79 30654.15 31977.47 29585.36 27859.26 27170.64 34048.46 34579.35 34581.66 327
ADS-MVSNet265.87 31963.64 32672.55 30573.16 35756.92 30167.10 34174.81 31249.74 34466.04 35082.97 30446.71 32477.26 32442.29 36069.96 36583.46 305
ADS-MVSNet61.90 32762.19 33061.03 34773.16 35736.42 37367.10 34161.75 36249.74 34466.04 35082.97 30446.71 32463.21 36242.29 36069.96 36583.46 305
test_vis3_rt71.42 28870.67 28973.64 29769.66 36770.46 16266.97 34389.73 16942.68 36388.20 13583.04 30343.77 34860.07 36565.35 24986.66 29690.39 219
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34475.67 30873.15 17288.86 12088.99 21966.94 22681.23 31264.71 25388.22 28291.64 189
WTY-MVS67.91 31068.35 30866.58 33280.82 30348.12 35265.96 34572.60 32953.67 32171.20 33381.68 32058.97 27369.06 34648.57 34481.67 33682.55 317
mvsany_test365.48 32162.97 32773.03 30269.99 36676.17 11364.83 34643.71 37743.68 35880.25 27087.05 25352.83 30463.09 36451.92 33472.44 36079.84 344
sss66.92 31267.26 31265.90 33377.23 32951.10 34364.79 34771.72 33752.12 33270.13 33780.18 33257.96 28065.36 36050.21 33781.01 34181.25 333
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33460.97 26364.69 34885.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
test0.0.03 164.66 32364.36 32365.57 33575.03 34946.89 35864.69 34861.58 36462.43 27471.18 33477.54 34643.41 35068.47 35040.75 36482.65 33281.35 330
PMMVS61.65 32860.38 33465.47 33665.40 37669.26 17463.97 35061.73 36336.80 37160.11 36568.43 36559.42 26966.35 35748.97 34378.57 34960.81 366
test1236.27 3468.08 3490.84 3591.11 3830.57 38362.90 3510.82 3830.54 3771.07 3792.75 3781.26 3820.30 3781.04 3761.26 3771.66 374
KD-MVS_2432*160066.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
miper_refine_blended66.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
PVSNet58.17 2166.41 31665.63 32168.75 32481.96 28849.88 34862.19 35472.51 33151.03 33768.04 34375.34 35850.84 31174.77 33145.82 35682.96 32781.60 328
test_vis1_rt65.64 32064.09 32470.31 31466.09 37370.20 16561.16 35581.60 27538.65 36872.87 32569.66 36352.84 30360.04 36656.16 30577.77 35180.68 340
new_pmnet55.69 33857.66 33949.76 35475.47 34530.59 37659.56 35651.45 37343.62 35962.49 36175.48 35740.96 35749.15 37337.39 36872.52 35969.55 359
new-patchmatchnet70.10 29873.37 26760.29 34881.23 29716.95 37959.54 35774.62 31362.93 26880.97 25787.93 23462.83 25371.90 33755.24 31495.01 15992.00 178
testmvs5.91 3477.65 3500.72 3601.20 3820.37 38459.14 3580.67 3840.49 3781.11 3782.76 3770.94 3830.24 3791.02 3771.47 3761.55 375
N_pmnet70.20 29668.80 30674.38 29480.91 30084.81 3959.12 35976.45 30455.06 31575.31 31482.36 31355.74 29454.82 36947.02 35087.24 29183.52 304
YYNet170.06 29970.44 29268.90 32273.76 35453.42 32458.99 36067.20 35158.42 29887.10 15085.39 27659.82 26767.32 35259.79 28883.50 32585.96 276
MDA-MVSNet_test_wron70.05 30070.44 29268.88 32373.84 35353.47 32258.93 36167.28 35058.43 29787.09 15185.40 27559.80 26867.25 35359.66 28983.54 32485.92 278
test_f64.31 32465.85 31859.67 34966.54 37262.24 24857.76 36270.96 34040.13 36584.36 20382.09 31546.93 32351.67 37161.99 27381.89 33565.12 363
mvsany_test158.48 33656.47 34164.50 33865.90 37568.21 18556.95 36342.11 37838.30 36965.69 35277.19 35256.96 28759.35 36846.16 35358.96 37165.93 362
PVSNet_051.08 2256.10 33754.97 34259.48 35075.12 34853.28 32555.16 36461.89 36144.30 35559.16 36662.48 36954.22 30065.91 35935.40 36947.01 37259.25 368
E-PMN61.59 32961.62 33161.49 34566.81 37155.40 31053.77 36560.34 36566.80 24458.90 36865.50 36740.48 35866.12 35855.72 30886.25 30162.95 365
EMVS61.10 33260.81 33361.99 34365.96 37455.86 30753.10 36658.97 36767.06 24156.89 37163.33 36840.98 35667.03 35454.79 31786.18 30263.08 364
CHOSEN 280x42059.08 33556.52 34066.76 33176.51 33564.39 22049.62 36759.00 36643.86 35755.66 37268.41 36635.55 36868.21 35143.25 35976.78 35667.69 361
PMMVS255.64 33959.27 33844.74 35564.30 37712.32 38040.60 36849.79 37453.19 32365.06 35784.81 28553.60 30249.76 37232.68 37289.41 26472.15 355
tmp_tt20.25 34324.50 3467.49 3584.47 3818.70 38134.17 36925.16 3811.00 37632.43 37518.49 37339.37 3609.21 37721.64 37443.75 3734.57 373
MVEpermissive40.22 2351.82 34050.47 34355.87 35262.66 37851.91 33431.61 37039.28 37940.65 36450.76 37374.98 35956.24 29344.67 37433.94 37164.11 36971.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34129.60 34433.06 35617.99 3803.84 38213.62 37173.92 3192.79 37418.29 37653.41 37128.53 37543.25 37522.56 37335.27 37452.11 371
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k20.81 34227.75 3450.00 3610.00 3840.00 3850.00 37285.44 2340.00 3790.00 38082.82 30881.46 1080.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.41 3458.55 3480.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37976.94 1510.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re6.65 3448.87 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38079.80 3350.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 384
eth-test0.00 384
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
GSMVS83.88 297
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 32883.88 297
sam_mvs45.92 333
MTGPAbinary91.81 115
test_post3.10 37645.43 33877.22 325
patchmatchnet-post81.71 31945.93 33287.01 263
gm-plane-assit75.42 34644.97 36452.17 32972.36 36287.90 25454.10 320
test9_res80.83 8996.45 10290.57 213
agg_prior279.68 10396.16 11290.22 221
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
新几何182.95 17893.96 5578.56 8480.24 28455.45 31483.93 21691.08 17171.19 21088.33 25165.84 24493.07 20581.95 325
旧先验191.97 10971.77 15081.78 27391.84 15173.92 18093.65 19483.61 303
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
testdata286.43 27663.52 262
segment_acmp81.94 100
testdata79.54 23692.87 8272.34 14380.14 28559.91 29385.47 18691.75 15667.96 22385.24 28868.57 22692.18 22581.06 338
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior192.83 86
n20.00 385
nn0.00 385
door-mid74.45 316
lessismore_v085.95 11391.10 14270.99 15970.91 34191.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
test1191.46 121
door72.57 330
HQP5-MVS70.66 160
BP-MVS77.30 134
HQP4-MVS80.56 26394.61 7293.56 122
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
DeepMVS_CXcopyleft24.13 35732.95 37929.49 37721.63 38212.07 37337.95 37445.07 37230.84 37219.21 37617.94 37533.06 37523.69 372