This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13691.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 172
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9686.07 4898.48 1897.22 17
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 80
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 169
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 194
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 159
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 159
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 153
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26392.98 153
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 147
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 93
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42086.57 5595.80 2887.35 2797.62 6494.20 93
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 112
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 156
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 103
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 190
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25286.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 96
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
mvsmamba80.30 22278.87 23584.58 14788.12 21067.55 20792.35 2984.88 26663.15 28985.33 20390.91 19850.71 34395.20 6266.36 26487.98 31090.99 224
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 143
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 100
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13283.07 7897.24 7991.67 210
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 183
MVSFormer82.23 18581.57 19884.19 16185.54 26969.26 18991.98 3490.08 17871.54 20876.23 33385.07 31258.69 30294.27 8886.26 4388.77 29689.03 272
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20894.28 2496.54 1681.57 11794.27 8886.26 4396.49 10097.09 19
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
EGC-MVSNET74.79 28669.99 32889.19 6594.89 3887.00 1591.89 3786.28 2371.09 4212.23 42395.98 2781.87 11489.48 24179.76 11695.96 12591.10 222
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 106
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22296.89 8695.64 46
MVSMamba_PlusPlus87.53 8688.86 7183.54 18092.03 11062.26 26791.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 167
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 88
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21591.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 19097.89 5296.72 24
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 92
tt080588.09 7789.79 5582.98 19493.26 7563.94 24291.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17482.03 9395.87 13293.13 145
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTMP90.66 4833.14 424
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 241
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 197
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22995.06 1596.14 2584.28 7793.07 14087.68 1896.34 10697.09 19
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 184
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18095.35 14892.29 184
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23783.87 7994.53 8482.45 8894.89 16994.90 65
balanced_conf0384.80 13085.40 12683.00 19388.95 18861.44 27490.42 5892.37 10671.48 21088.72 12993.13 12570.16 23895.15 6379.26 12494.11 19492.41 176
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 118
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25377.55 14697.07 8383.13 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 243
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 105
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9986.25 4597.63 6397.82 8
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24973.75 19394.81 17393.70 120
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 139
QAPM82.59 17982.59 18082.58 20586.44 24766.69 21689.94 6790.36 16567.97 24984.94 21392.58 14772.71 21792.18 16470.63 22587.73 31488.85 275
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22894.55 1996.67 1487.94 3993.59 11984.27 6895.97 12495.52 49
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22186.24 4697.24 7991.36 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FE-MVS79.98 23078.86 23683.36 18386.47 24666.45 21989.73 7084.74 27072.80 19284.22 23391.38 18144.95 37793.60 11863.93 28891.50 25290.04 254
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23294.39 2096.38 1886.02 6593.52 12383.96 7095.92 13095.34 53
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 247
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26776.54 15888.74 29896.61 27
UniMVSNet_ETH3D89.12 6590.72 4784.31 15797.00 264.33 23889.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18872.57 21097.65 6297.34 14
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12778.35 13298.76 495.61 48
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14385.02 6098.45 1992.41 176
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5991.14 3583.96 16492.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26383.33 7498.30 2593.20 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft84.44 13886.33 10578.78 26384.20 29373.57 13589.55 7790.44 16184.24 4884.38 22394.89 5376.35 17780.40 34676.14 16596.80 9182.36 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H89.91 5091.31 3385.71 12796.32 962.39 26389.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13982.67 8698.04 3993.64 124
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 81
plane_prior289.45 8279.44 101
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27987.25 27482.43 9894.53 8477.65 14496.46 10294.14 99
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18784.76 21687.70 26478.87 14294.18 9480.67 10896.29 10792.73 159
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 209
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-CasMVS90.06 4391.92 1584.47 15096.56 658.83 31089.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12298.74 699.00 2
PEN-MVS90.03 4591.88 1884.48 14996.57 558.88 30788.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12898.72 998.97 3
DTE-MVSNet89.98 4791.91 1784.21 15996.51 757.84 31888.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12598.57 1598.80 6
Anonymous2023121188.40 7189.62 5984.73 14390.46 15765.27 22888.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16976.70 15697.99 4396.88 23
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18680.18 30189.15 24177.04 16493.28 13265.82 27292.28 23592.21 189
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 10983.69 7397.55 69
3Dnovator80.37 784.80 13084.71 13985.06 13786.36 25274.71 12788.77 9490.00 18075.65 14984.96 21193.17 12374.06 19791.19 19078.28 13491.09 25789.29 266
API-MVS82.28 18482.61 17981.30 22786.29 25569.79 18188.71 9587.67 21678.42 11782.15 26784.15 32377.98 14891.59 17965.39 27592.75 22682.51 361
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24393.78 10873.36 21096.48 287.98 1396.21 11294.41 87
CP-MVSNet89.27 6290.91 4484.37 15196.34 858.61 31388.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12698.69 1098.95 4
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft76.72 1381.98 19482.00 18781.93 21484.42 28868.22 20088.50 9989.48 19266.92 25981.80 27591.86 16572.59 21990.16 22371.19 21891.25 25687.40 296
ambc82.98 19490.55 15664.86 23288.20 10089.15 19689.40 11893.96 9971.67 23191.38 18778.83 12796.55 9792.71 162
PAPM_NR83.23 16983.19 16783.33 18490.90 14865.98 22388.19 10190.78 15278.13 12080.87 28987.92 26073.49 20692.42 15670.07 23088.40 30191.60 212
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)83.13 17283.02 17183.43 18186.16 26166.08 22288.00 10388.36 20675.55 15185.02 20992.75 14265.12 26292.50 15574.94 17991.30 25591.72 207
CSCG86.26 10186.47 10385.60 12990.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25679.09 14092.13 16575.51 17195.06 16190.41 244
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
nrg03087.85 8288.49 7585.91 12190.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18079.72 11797.32 7796.50 29
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23391.15 387.70 10888.42 20474.57 16283.56 24485.65 29878.49 14594.21 9272.04 21392.88 22494.05 102
sasdasda85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
canonicalmvs85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10577.65 14496.62 9590.70 235
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13077.97 14297.03 8495.52 49
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23194.05 9278.35 14693.65 11280.54 11091.58 25192.08 194
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT-MVS82.97 17483.44 16181.57 22485.06 27658.04 31687.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14176.49 15988.47 30093.62 125
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 22084.96 21190.69 20780.01 13595.14 6478.37 13195.78 13891.82 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet80.37 21978.41 24586.23 11376.75 37373.28 13987.18 11677.45 31976.24 13868.14 38488.93 24465.41 26193.85 10669.47 23596.12 11891.55 214
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
plane_prior76.42 11687.15 11775.94 14595.03 162
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16573.21 20695.51 14493.25 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051781.07 20679.58 22985.52 13088.99 18766.45 21987.03 11975.51 33673.76 17088.32 14190.20 22137.96 39794.16 9879.36 12395.13 15795.93 41
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26478.30 8986.93 12092.20 11065.94 26489.16 12193.16 12483.10 8989.89 23487.81 1594.43 18593.35 134
mvs5depth83.82 15784.54 14481.68 22282.23 32068.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33476.37 16095.63 14394.35 89
UGNet82.78 17681.64 19386.21 11686.20 25876.24 12086.86 12285.68 24977.07 13373.76 35692.82 13869.64 23991.82 17669.04 24393.69 20690.56 240
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19984.60 6590.75 27093.97 104
GBi-Net82.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
test182.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
FMVSNet184.55 13685.45 12581.85 21790.27 16161.05 28186.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 21069.09 24195.33 14993.82 113
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10884.83 6397.55 6994.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSLP-MVS++85.00 12886.03 11181.90 21591.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23577.98 14889.40 24877.46 14794.78 17484.75 324
114514_t83.10 17382.54 18184.77 14292.90 8369.10 19486.65 12990.62 15754.66 35981.46 28190.81 20476.98 16594.38 8772.62 20996.18 11490.82 231
v1086.54 9887.10 9284.84 13988.16 20963.28 24986.64 13092.20 11075.42 15492.81 5394.50 6874.05 19894.06 10083.88 7196.28 10897.17 18
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 181
Effi-MVS+83.90 15684.01 15583.57 17887.22 23165.61 22786.55 13292.40 10378.64 11481.34 28484.18 32283.65 8492.93 14574.22 18287.87 31292.17 191
MVS_030485.37 11784.58 14287.75 8885.28 27273.36 13686.54 13385.71 24877.56 12981.78 27792.47 15070.29 23696.02 1185.59 5395.96 12593.87 110
v886.22 10386.83 9984.36 15387.82 21662.35 26586.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11183.10 7795.41 14697.01 21
save fliter93.75 6377.44 10386.31 13589.72 18570.80 218
AdaColmapbinary83.66 16083.69 16083.57 17890.05 16772.26 15886.29 13690.00 18078.19 11981.65 27887.16 27683.40 8794.24 9161.69 30794.76 17784.21 334
MonoMVSNet76.66 26377.26 25574.86 31579.86 34854.34 34586.26 13786.08 24171.08 21685.59 19888.68 24753.95 32985.93 29863.86 28980.02 38384.32 330
MGCFI-Net85.04 12585.95 11282.31 21187.52 22563.59 24586.23 13893.96 4473.46 17588.07 14587.83 26286.46 5790.87 20476.17 16493.89 20092.47 174
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14887.68 22073.35 13786.14 13977.70 31761.64 30685.02 20991.62 17577.75 15186.24 29182.79 8487.07 32193.91 108
BP-MVS182.81 17581.67 19286.23 11387.88 21568.53 19786.06 14084.36 27275.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19783.86 7295.30 15393.60 127
PLCcopyleft73.85 1682.09 19080.31 21787.45 9290.86 15080.29 7385.88 14290.65 15568.17 24676.32 33286.33 28873.12 21392.61 15361.40 31090.02 28189.44 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mmtdpeth85.13 12385.78 11983.17 19084.65 28374.71 12785.87 14390.35 16677.94 12183.82 23896.96 1277.75 15180.03 34978.44 12996.21 11294.79 73
GeoE85.45 11685.81 11784.37 15190.08 16467.07 21185.86 14491.39 13572.33 20187.59 15590.25 22084.85 7192.37 15978.00 14091.94 24493.66 121
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27378.25 9085.82 14591.82 12365.33 27888.55 13292.35 15682.62 9689.80 23686.87 3594.32 18893.18 144
FC-MVSNet-test85.93 10987.05 9482.58 20592.25 10156.44 32985.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 12975.11 17798.58 1497.88 7
MAR-MVS80.24 22478.74 24084.73 14386.87 24378.18 9285.75 14687.81 21565.67 27377.84 32078.50 37673.79 20190.53 21461.59 30990.87 26685.49 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet75.12 28074.43 28277.18 29183.11 31659.48 29985.71 14882.43 28939.76 41285.64 19788.76 24544.71 37987.88 26673.86 19185.88 33884.16 335
LF4IMVS82.75 17781.93 18885.19 13482.08 32180.15 7485.53 14988.76 20068.01 24785.58 19987.75 26371.80 22986.85 28174.02 18893.87 20188.58 277
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15686.56 24573.35 13785.46 15077.30 32161.81 30284.51 21990.88 20177.36 15886.21 29382.72 8586.97 32693.38 133
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15176.68 32884.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21594.83 72
VDDNet84.35 14085.39 12781.25 22895.13 3259.32 30085.42 15281.11 29986.41 3287.41 15896.21 2273.61 20290.61 21366.33 26596.85 8793.81 116
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28178.21 9185.40 15391.39 13565.32 27987.72 15391.81 17082.33 10189.78 23786.68 3794.20 19192.99 152
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15491.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 166
LFMVS80.15 22780.56 21378.89 26189.19 18355.93 33185.22 15573.78 34882.96 6384.28 23092.72 14357.38 31190.07 23063.80 29095.75 13990.68 236
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16686.87 24371.57 16985.19 15677.42 32062.27 30084.47 22291.33 18276.43 17485.91 30083.14 7587.14 31994.33 91
test_fmvsmvis_n_192085.22 11985.36 12884.81 14085.80 26676.13 12285.15 15792.32 10761.40 30891.33 7690.85 20283.76 8386.16 29584.31 6793.28 21492.15 192
FIs85.35 11886.27 10682.60 20491.86 11657.31 32285.10 15893.05 8375.83 14691.02 8393.97 9673.57 20392.91 14773.97 18998.02 4297.58 12
HQP-NCC91.19 13984.77 15973.30 18280.55 293
ACMP_Plane91.19 13984.77 15973.30 18280.55 293
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15992.68 9773.30 18280.55 29390.17 22572.10 22494.61 7977.30 15194.47 18393.56 130
fmvsm_s_conf0.5_n81.91 19681.30 20383.75 17086.02 26371.56 17084.73 16277.11 32462.44 29784.00 23590.68 20876.42 17585.89 30283.14 7587.11 32093.81 116
ab-mvs79.67 23280.56 21376.99 29288.48 20156.93 32584.70 16386.06 24268.95 23780.78 29093.08 12675.30 18284.62 31456.78 33390.90 26489.43 262
pmmvs686.52 9988.06 7981.90 21592.22 10362.28 26684.66 16489.15 19683.54 5789.85 10497.32 588.08 3886.80 28270.43 22797.30 7896.62 26
test_prior478.97 8484.59 165
Anonymous2024052986.20 10487.13 9183.42 18290.19 16264.55 23684.55 16690.71 15385.85 3689.94 10395.24 4682.13 10790.40 21769.19 24096.40 10595.31 55
baseline85.20 12185.93 11383.02 19286.30 25462.37 26484.55 16693.96 4474.48 16387.12 16192.03 16282.30 10391.94 17078.39 13094.21 19094.74 74
alignmvs83.94 15583.98 15683.80 16787.80 21767.88 20584.54 16891.42 13473.27 18588.41 13887.96 25772.33 22190.83 20576.02 16794.11 19492.69 163
CNLPA83.55 16483.10 17084.90 13889.34 17983.87 5084.54 16888.77 19979.09 10683.54 24588.66 24974.87 18681.73 33666.84 26092.29 23489.11 268
ETV-MVS84.31 14183.91 15885.52 13088.58 19970.40 17884.50 17093.37 6478.76 11384.07 23478.72 37580.39 13095.13 6573.82 19292.98 22291.04 223
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13594.02 5864.13 23984.38 17191.29 13884.88 4492.06 6593.84 10586.45 5893.73 11073.22 20198.66 1197.69 9
PVSNet_Blended_VisFu81.55 20080.49 21584.70 14591.58 12773.24 14184.21 17291.67 12762.86 29180.94 28787.16 27667.27 25192.87 14869.82 23388.94 29587.99 287
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15387.09 23765.22 22984.16 17394.23 2777.89 12291.28 7993.66 11484.35 7692.71 14980.07 11194.87 17295.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND67.16 36973.36 39746.54 39084.15 17455.04 41558.64 41361.95 41429.93 41183.87 32538.71 40876.92 39871.07 400
test_fmvsm_n_192083.60 16282.89 17385.74 12685.22 27477.74 9984.12 17590.48 15959.87 32786.45 18591.12 18975.65 17885.89 30282.28 9190.87 26693.58 128
test250674.12 29173.39 29176.28 30491.85 11744.20 39884.06 17648.20 41972.30 20281.90 27094.20 8527.22 41989.77 23864.81 28196.02 12294.87 67
test_040288.65 6989.58 6085.88 12392.55 9272.22 15984.01 17789.44 19388.63 2094.38 2195.77 2986.38 6193.59 11979.84 11595.21 15491.82 203
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17884.98 26471.27 21186.70 17390.55 21363.04 27793.92 10478.26 13594.20 19189.63 258
TEST992.34 9879.70 7883.94 17990.32 16765.41 27784.49 22090.97 19482.03 10993.63 114
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17990.32 16765.79 26884.49 22090.97 19481.93 11193.63 11481.21 10096.54 9890.88 229
FMVSNet281.31 20381.61 19580.41 24386.38 24958.75 31183.93 18186.58 23572.43 19687.65 15492.98 13163.78 27090.22 22166.86 25893.92 19992.27 186
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29572.76 14483.91 18285.18 25780.44 8688.75 12785.49 30180.08 13491.92 17182.02 9490.85 26895.97 38
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18392.01 11565.91 26686.19 18691.75 17383.77 8294.98 6977.43 14996.71 9393.73 119
test_892.09 10778.87 8583.82 18490.31 16965.79 26884.36 22490.96 19681.93 11193.44 127
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29972.52 15383.82 18485.15 25880.27 9088.75 12785.45 30379.95 13691.90 17281.92 9790.80 26996.13 33
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19883.80 18692.87 9180.37 8789.61 11391.81 17077.72 15394.18 9475.00 17898.53 1696.99 22
CANet83.79 15882.85 17486.63 10486.17 25972.21 16083.76 18791.43 13277.24 13274.39 35287.45 27075.36 18195.42 5277.03 15492.83 22592.25 188
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18881.58 29774.73 16085.66 19686.06 29372.56 22092.69 15175.44 17395.21 15489.01 274
ECVR-MVScopyleft78.44 24478.63 24177.88 28291.85 11748.95 37883.68 18969.91 37572.30 20284.26 23294.20 8551.89 33889.82 23563.58 29196.02 12294.87 67
thisisatest053079.07 23477.33 25484.26 15887.13 23364.58 23483.66 19075.95 33168.86 23885.22 20587.36 27238.10 39493.57 12275.47 17294.28 18994.62 75
gg-mvs-nofinetune68.96 34169.11 33468.52 36376.12 38145.32 39483.59 19155.88 41486.68 2964.62 40397.01 930.36 41083.97 32444.78 39682.94 36776.26 392
MCST-MVS84.36 13983.93 15785.63 12891.59 12471.58 16883.52 19292.13 11261.82 30183.96 23689.75 23279.93 13793.46 12678.33 13394.34 18791.87 202
EI-MVSNet82.61 17882.42 18383.20 18883.25 31163.66 24383.50 19385.07 25976.06 13986.55 17785.10 30973.41 20790.25 21878.15 13990.67 27295.68 45
CVMVSNet72.62 30471.41 31476.28 30483.25 31160.34 29083.50 19379.02 31237.77 41676.33 33185.10 30949.60 34987.41 27170.54 22677.54 39681.08 377
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19592.38 10570.25 22589.35 11990.68 20882.85 9294.57 8179.55 11995.95 12792.00 198
test_prior283.37 19675.43 15384.58 21891.57 17681.92 11379.54 12096.97 85
fmvsm_l_conf0.5_n82.06 19181.54 19983.60 17583.94 29673.90 13383.35 19786.10 24058.97 32983.80 23990.36 21674.23 19586.94 27982.90 8190.22 27889.94 255
Vis-MVSNet (Re-imp)77.82 24977.79 25077.92 28188.82 19151.29 36983.28 19871.97 36374.04 16682.23 26589.78 23157.38 31189.41 24757.22 33295.41 14693.05 149
CANet_DTU77.81 25077.05 25680.09 24881.37 33159.90 29583.26 19988.29 20869.16 23467.83 38783.72 32560.93 28489.47 24269.22 23989.70 28590.88 229
VDD-MVS84.23 14684.58 14283.20 18891.17 14265.16 23183.25 20084.97 26579.79 9587.18 16094.27 7974.77 19090.89 20269.24 23796.54 9893.55 132
IterMVS-LS84.73 13284.98 13383.96 16487.35 22863.66 24383.25 20089.88 18376.06 13989.62 11192.37 15573.40 20992.52 15478.16 13794.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20292.40 10372.04 20582.04 26888.33 25277.91 15093.95 10366.17 26695.12 15990.34 246
EIA-MVS82.19 18781.23 20685.10 13687.95 21369.17 19383.22 20393.33 6770.42 22178.58 31579.77 36777.29 15994.20 9371.51 21588.96 29491.93 201
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21283.16 20492.21 10981.73 7490.92 8491.97 16377.20 16093.99 10174.16 18398.35 2297.61 10
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12285.60 26776.53 11583.07 20589.62 19073.02 18979.11 31183.51 32780.74 12790.24 22068.76 24689.29 28990.94 226
casdiffmvspermissive85.21 12085.85 11683.31 18586.17 25962.77 25683.03 20693.93 4674.69 16188.21 14292.68 14482.29 10491.89 17377.87 14393.75 20595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v119284.57 13584.69 14084.21 15987.75 21862.88 25383.02 20791.43 13269.08 23589.98 10290.89 19972.70 21893.62 11782.41 8994.97 16696.13 33
fmvsm_l_conf0.5_n_a81.46 20180.87 21183.25 18683.73 30173.21 14283.00 20885.59 25158.22 33582.96 25490.09 22772.30 22286.65 28581.97 9689.95 28289.88 256
v114484.54 13784.72 13884.00 16287.67 22162.55 26082.97 20990.93 14970.32 22489.80 10590.99 19373.50 20493.48 12581.69 9994.65 18095.97 38
v14419284.24 14584.41 14883.71 17287.59 22461.57 27382.95 21091.03 14567.82 25389.80 10590.49 21473.28 21193.51 12481.88 9894.89 16996.04 37
v192192084.23 14684.37 15083.79 16887.64 22361.71 27282.91 21191.20 14167.94 25090.06 9790.34 21772.04 22793.59 11982.32 9094.91 16796.07 35
dcpmvs_284.23 14685.14 13081.50 22588.61 19861.98 27182.90 21293.11 7968.66 24192.77 5492.39 15178.50 14487.63 26976.99 15592.30 23294.90 65
v124084.30 14284.51 14683.65 17387.65 22261.26 27882.85 21391.54 12967.94 25090.68 9190.65 21171.71 23093.64 11382.84 8394.78 17496.07 35
无先验82.81 21485.62 25058.09 33691.41 18667.95 25684.48 327
MIMVSNet183.63 16184.59 14180.74 23794.06 5762.77 25682.72 21584.53 27177.57 12890.34 9395.92 2876.88 17285.83 30461.88 30597.42 7493.62 125
v2v48284.09 14984.24 15283.62 17487.13 23361.40 27582.71 21689.71 18672.19 20489.55 11591.41 18070.70 23593.20 13481.02 10293.76 20296.25 31
test111178.53 24378.85 23777.56 28692.22 10347.49 38482.61 21769.24 37972.43 19685.28 20494.20 8551.91 33790.07 23065.36 27696.45 10395.11 62
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21783.69 27771.27 21186.70 17386.05 29463.04 27792.41 15778.26 13593.62 20990.71 234
CR-MVSNet74.00 29373.04 29676.85 29779.58 35062.64 25882.58 21976.90 32550.50 38675.72 34092.38 15248.07 35384.07 32268.72 24882.91 36883.85 339
RPMNet78.88 23778.28 24680.68 24079.58 35062.64 25882.58 21994.16 3274.80 15975.72 34092.59 14548.69 35095.56 4273.48 19782.91 36883.85 339
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21282.55 22191.56 12883.08 6290.92 8491.82 16978.25 14793.99 10174.16 18398.35 2297.49 13
MVS_Test82.47 18283.22 16580.22 24682.62 31957.75 32082.54 22291.96 11871.16 21582.89 25592.52 14977.41 15790.50 21580.04 11387.84 31392.40 178
AUN-MVS81.18 20578.78 23888.39 7990.93 14782.14 6282.51 22383.67 27864.69 28380.29 29785.91 29751.07 34192.38 15876.29 16393.63 20890.65 238
Anonymous2024052180.18 22681.25 20476.95 29383.15 31560.84 28682.46 22485.99 24568.76 23986.78 17093.73 11259.13 29977.44 36073.71 19497.55 6992.56 168
pm-mvs183.69 15984.95 13479.91 24990.04 16859.66 29782.43 22587.44 21775.52 15287.85 15095.26 4581.25 12185.65 30668.74 24796.04 12194.42 86
Patchmtry76.56 26677.46 25173.83 32179.37 35546.60 38882.41 22676.90 32573.81 16985.56 20092.38 15248.07 35383.98 32363.36 29495.31 15290.92 227
EPNet_dtu72.87 30371.33 31577.49 28877.72 36460.55 28982.35 22775.79 33266.49 26358.39 41481.06 35453.68 33085.98 29753.55 35692.97 22385.95 310
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap81.25 20482.34 18477.99 28085.33 27160.68 28882.32 22888.33 20771.26 21386.97 16892.22 16177.10 16386.98 27862.37 29995.17 15686.31 307
TransMVSNet (Re)84.02 15285.74 12078.85 26291.00 14655.20 34182.29 22987.26 22079.65 9888.38 13995.52 3783.00 9086.88 28067.97 25596.60 9694.45 83
Baseline_NR-MVSNet84.00 15385.90 11478.29 27491.47 13453.44 35282.29 22987.00 23279.06 10789.55 11595.72 3277.20 16086.14 29672.30 21298.51 1795.28 56
MG-MVS80.32 22180.94 20978.47 27088.18 20752.62 35982.29 22985.01 26372.01 20679.24 31092.54 14869.36 24193.36 13170.65 22489.19 29289.45 260
原ACMM282.26 232
NR-MVSNet86.00 10786.22 10785.34 13393.24 7664.56 23582.21 23390.46 16080.99 8288.42 13791.97 16377.56 15593.85 10672.46 21198.65 1297.61 10
PAPR78.84 23878.10 24881.07 23285.17 27560.22 29182.21 23390.57 15862.51 29375.32 34684.61 31774.99 18592.30 16259.48 32188.04 30990.68 236
EG-PatchMatch MVS84.08 15084.11 15383.98 16392.22 10372.61 15082.20 23587.02 22972.63 19588.86 12491.02 19278.52 14391.11 19373.41 19891.09 25788.21 281
HY-MVS64.64 1873.03 30172.47 30574.71 31783.36 30854.19 34682.14 23681.96 29256.76 34969.57 37986.21 29260.03 29184.83 31349.58 37782.65 37185.11 320
FMVSNet378.80 23978.55 24279.57 25582.89 31856.89 32781.76 23785.77 24769.04 23686.00 19090.44 21551.75 33990.09 22965.95 26893.34 21191.72 207
旧先验281.73 23856.88 34886.54 18284.90 31272.81 208
新几何281.72 239
131473.22 29972.56 30475.20 31280.41 34557.84 31881.64 24085.36 25351.68 37773.10 35976.65 39161.45 28285.19 30963.54 29279.21 38882.59 356
MVS73.21 30072.59 30275.06 31480.97 33560.81 28781.64 24085.92 24646.03 39671.68 36677.54 38268.47 24689.77 23855.70 34185.39 34074.60 396
v14882.31 18382.48 18281.81 22085.59 26859.66 29781.47 24286.02 24472.85 19088.05 14790.65 21170.73 23490.91 20175.15 17691.79 24594.87 67
V4283.47 16683.37 16483.75 17083.16 31463.33 24881.31 24390.23 17469.51 23190.91 8690.81 20474.16 19692.29 16380.06 11290.22 27895.62 47
PM-MVS80.20 22579.00 23483.78 16988.17 20886.66 1981.31 24366.81 39069.64 23088.33 14090.19 22264.58 26383.63 32671.99 21490.03 28081.06 379
VPA-MVSNet83.47 16684.73 13679.69 25390.29 16057.52 32181.30 24588.69 20176.29 13787.58 15694.44 7180.60 12987.20 27466.60 26396.82 9094.34 90
CMPMVSbinary59.41 2075.12 28073.57 28879.77 25075.84 38367.22 20881.21 24682.18 29050.78 38376.50 32987.66 26555.20 32582.99 32962.17 30390.64 27689.09 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft70.19 1777.77 25177.46 25178.71 26584.39 28961.15 27981.18 24782.52 28762.45 29683.34 24887.37 27166.20 25688.66 25964.69 28385.02 34886.32 306
thres100view90075.45 27675.05 27676.66 29987.27 22951.88 36481.07 24873.26 35375.68 14883.25 24986.37 28745.54 36888.80 25451.98 36690.99 25989.31 264
MVS_111021_LR84.28 14383.76 15985.83 12589.23 18283.07 5580.99 24983.56 27972.71 19486.07 18989.07 24281.75 11686.19 29477.11 15393.36 21088.24 280
wuyk23d75.13 27979.30 23262.63 38475.56 38475.18 12680.89 25073.10 35575.06 15894.76 1695.32 4187.73 4352.85 41534.16 41497.11 8259.85 411
pmmvs-eth3d78.42 24577.04 25782.57 20787.44 22774.41 13080.86 25179.67 30855.68 35284.69 21790.31 21960.91 28585.42 30762.20 30191.59 25087.88 290
tfpnnormal81.79 19882.95 17278.31 27288.93 18955.40 33780.83 25282.85 28576.81 13485.90 19494.14 8974.58 19386.51 28766.82 26195.68 14293.01 151
PCF-MVS74.62 1582.15 18980.92 21085.84 12489.43 17772.30 15780.53 25391.82 12357.36 34387.81 15189.92 22977.67 15493.63 11458.69 32395.08 16091.58 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view775.97 27275.35 27477.85 28487.01 23951.84 36580.45 25473.26 35375.20 15683.10 25286.31 29045.54 36889.05 25055.03 34892.24 23692.66 164
KD-MVS_self_test81.93 19583.14 16978.30 27384.75 28252.75 35680.37 25589.42 19470.24 22690.26 9593.39 11974.55 19486.77 28368.61 24996.64 9495.38 52
BH-untuned80.96 20880.99 20880.84 23688.55 20068.23 19980.33 25688.46 20372.79 19386.55 17786.76 28274.72 19191.77 17761.79 30688.99 29382.52 360
MVP-Stereo75.81 27473.51 29082.71 20289.35 17873.62 13480.06 25785.20 25660.30 32273.96 35487.94 25857.89 30989.45 24452.02 36574.87 40185.06 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LCM-MVSNet-Re83.48 16585.06 13178.75 26485.94 26455.75 33580.05 25894.27 2476.47 13696.09 694.54 6783.31 8889.75 24059.95 31894.89 16990.75 232
USDC76.63 26476.73 26176.34 30383.46 30457.20 32480.02 25988.04 21352.14 37483.65 24191.25 18463.24 27386.65 28554.66 35094.11 19485.17 319
ANet_high83.17 17185.68 12175.65 30981.24 33245.26 39579.94 26092.91 9083.83 5191.33 7696.88 1380.25 13285.92 29968.89 24495.89 13195.76 42
baseline173.26 29873.54 28972.43 33584.92 27847.79 38379.89 26174.00 34465.93 26578.81 31386.28 29156.36 31781.63 33756.63 33479.04 39087.87 291
tpm268.45 34466.83 35173.30 32578.93 36048.50 37979.76 26271.76 36547.50 39069.92 37783.60 32642.07 38888.40 26148.44 38479.51 38483.01 353
tpmvs70.16 32669.56 33171.96 33874.71 39248.13 38079.63 26375.45 33765.02 28170.26 37581.88 34745.34 37385.68 30558.34 32675.39 40082.08 365
testdata179.62 26473.95 168
xiu_mvs_v1_base_debu80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base_debi80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
PVSNet_BlendedMVS78.80 23977.84 24981.65 22384.43 28663.41 24679.49 26890.44 16161.70 30575.43 34387.07 27969.11 24391.44 18360.68 31492.24 23690.11 252
test22293.31 7376.54 11379.38 26977.79 31652.59 36982.36 26390.84 20366.83 25491.69 24781.25 374
PatchmatchNetpermissive69.71 33468.83 33972.33 33777.66 36553.60 35079.29 27069.99 37457.66 34072.53 36282.93 33546.45 35880.08 34860.91 31372.09 40483.31 349
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer69.98 33168.68 34173.87 32077.14 36950.72 37379.26 27174.51 34151.94 37670.97 37084.75 31545.16 37687.49 27055.16 34779.23 38783.40 346
tfpn200view974.86 28474.23 28376.74 29886.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25989.31 264
thres40075.14 27874.23 28377.86 28386.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25992.66 164
MVS_111021_HR84.63 13384.34 15185.49 13290.18 16375.86 12379.23 27487.13 22473.35 17985.56 20089.34 23683.60 8590.50 21576.64 15794.05 19790.09 253
TAMVS78.08 24776.36 26383.23 18790.62 15472.87 14379.08 27580.01 30761.72 30481.35 28386.92 28163.96 26988.78 25750.61 37193.01 22188.04 286
test_fmvs375.72 27575.20 27577.27 29075.01 39169.47 18678.93 27684.88 26646.67 39287.08 16587.84 26150.44 34671.62 37777.42 15088.53 29990.72 233
MIMVSNet71.09 31971.59 31069.57 35387.23 23050.07 37678.91 27771.83 36460.20 32571.26 36791.76 17255.08 32776.09 36441.06 40287.02 32482.54 359
SCA73.32 29772.57 30375.58 31181.62 32755.86 33378.89 27871.37 36861.73 30374.93 34983.42 33060.46 28787.01 27558.11 32982.63 37383.88 336
DPM-MVS80.10 22879.18 23382.88 20090.71 15369.74 18278.87 27990.84 15060.29 32375.64 34285.92 29667.28 25093.11 13871.24 21791.79 24585.77 313
test_post178.85 2803.13 42145.19 37580.13 34758.11 329
mvs_anonymous78.13 24678.76 23976.23 30679.24 35650.31 37578.69 28184.82 26861.60 30783.09 25392.82 13873.89 20087.01 27568.33 25386.41 33191.37 216
WR-MVS83.56 16384.40 14981.06 23393.43 7054.88 34278.67 28285.02 26281.24 7990.74 9091.56 17772.85 21591.08 19468.00 25498.04 3997.23 16
c3_l81.64 19981.59 19681.79 22180.86 33859.15 30478.61 28390.18 17668.36 24287.20 15987.11 27869.39 24091.62 17878.16 13794.43 18594.60 76
test_yl78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
DCV-MVSNet78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
Fast-Effi-MVS+81.04 20780.57 21282.46 20987.50 22663.22 25078.37 28689.63 18968.01 24781.87 27182.08 34582.31 10292.65 15267.10 25788.30 30791.51 215
tpmrst66.28 35766.69 35365.05 37972.82 40339.33 40978.20 28770.69 37253.16 36767.88 38680.36 36148.18 35274.75 37058.13 32870.79 40681.08 377
tpm cat166.76 35465.21 36271.42 34177.09 37050.62 37478.01 28873.68 35044.89 39968.64 38279.00 37245.51 37082.42 33349.91 37470.15 40781.23 376
jason77.42 25475.75 26982.43 21087.10 23669.27 18877.99 28981.94 29351.47 37877.84 32085.07 31260.32 28989.00 25170.74 22389.27 29189.03 272
jason: jason.
CLD-MVS83.18 17082.64 17884.79 14189.05 18467.82 20677.93 29092.52 10168.33 24385.07 20881.54 35182.06 10892.96 14369.35 23697.91 5193.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet77.32 25575.40 27283.06 19189.00 18672.48 15477.90 29182.17 29160.81 31778.94 31283.49 32859.30 29788.76 25854.64 35192.37 23187.93 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth80.84 20980.22 22182.71 20281.41 33060.98 28477.81 29290.14 17767.31 25786.95 16987.24 27564.26 26592.31 16175.23 17591.61 24994.85 71
BH-RMVSNet80.53 21480.22 22181.49 22687.19 23266.21 22177.79 29386.23 23874.21 16583.69 24088.50 25073.25 21290.75 20763.18 29687.90 31187.52 294
miper_ehance_all_eth80.34 22080.04 22681.24 23079.82 34958.95 30677.66 29489.66 18765.75 27185.99 19385.11 30868.29 24791.42 18576.03 16692.03 24093.33 135
PatchT70.52 32372.76 30063.79 38379.38 35433.53 41777.63 29565.37 39473.61 17371.77 36592.79 14144.38 38075.65 36764.53 28685.37 34182.18 363
BH-w/o76.57 26576.07 26778.10 27786.88 24265.92 22477.63 29586.33 23665.69 27280.89 28879.95 36468.97 24590.74 20853.01 36185.25 34377.62 390
diffmvspermissive80.40 21880.48 21680.17 24779.02 35960.04 29277.54 29790.28 17366.65 26282.40 26287.33 27373.50 20487.35 27277.98 14189.62 28693.13 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG80.06 22979.99 22880.25 24583.91 29868.04 20477.51 29889.19 19577.65 12681.94 26983.45 32976.37 17686.31 29063.31 29586.59 32986.41 305
reproduce_monomvs74.09 29273.23 29376.65 30076.52 37554.54 34377.50 29981.40 29865.85 26782.86 25786.67 28327.38 41784.53 31570.24 22990.66 27490.89 228
MVSTER77.09 25775.70 27081.25 22875.27 38861.08 28077.49 30085.07 25960.78 31886.55 17788.68 24743.14 38690.25 21873.69 19590.67 27292.42 175
cl2278.97 23578.21 24781.24 23077.74 36359.01 30577.46 30187.13 22465.79 26884.32 22685.10 30958.96 30190.88 20375.36 17492.03 24093.84 111
ttmdpeth71.72 31270.67 31774.86 31573.08 40155.88 33277.41 30269.27 37855.86 35178.66 31493.77 11038.01 39675.39 36860.12 31789.87 28393.31 137
TR-MVS76.77 26275.79 26879.72 25286.10 26265.79 22577.14 30383.02 28365.20 28081.40 28282.10 34366.30 25590.73 20955.57 34285.27 34282.65 355
ET-MVSNet_ETH3D75.28 27772.77 29982.81 20183.03 31768.11 20277.09 30476.51 32960.67 32077.60 32580.52 35938.04 39591.15 19270.78 22190.68 27189.17 267
test_fmvs273.57 29672.80 29875.90 30872.74 40468.84 19577.07 30584.32 27445.14 39882.89 25584.22 32148.37 35170.36 38173.40 19987.03 32388.52 278
cl____80.42 21780.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.37 25586.18 18889.21 23963.08 27690.16 22376.31 16295.80 13693.65 123
DIV-MVS_self_test80.43 21680.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.38 25486.19 18689.22 23863.09 27590.16 22376.32 16195.80 13693.66 121
lupinMVS76.37 26974.46 28182.09 21285.54 26969.26 18976.79 30880.77 30350.68 38576.23 33382.82 33758.69 30288.94 25269.85 23288.77 29688.07 283
FMVSNet572.10 30971.69 30973.32 32481.57 32853.02 35576.77 30978.37 31463.31 28776.37 33091.85 16636.68 39978.98 35347.87 38692.45 23087.95 288
VPNet80.25 22381.68 19175.94 30792.46 9547.98 38276.70 31081.67 29573.45 17684.87 21492.82 13874.66 19286.51 28761.66 30896.85 8793.33 135
test_vis1_n70.29 32469.99 32871.20 34375.97 38266.50 21876.69 31180.81 30244.22 40175.43 34377.23 38650.00 34768.59 38866.71 26282.85 37078.52 389
Anonymous20240521180.51 21581.19 20778.49 26988.48 20157.26 32376.63 31282.49 28881.21 8084.30 22992.24 16067.99 24886.24 29162.22 30095.13 15791.98 200
PAPM71.77 31170.06 32676.92 29486.39 24853.97 34776.62 31386.62 23453.44 36463.97 40484.73 31657.79 31092.34 16039.65 40581.33 37984.45 328
MVStest170.05 32969.26 33272.41 33658.62 42355.59 33676.61 31465.58 39253.44 36489.28 12093.32 12022.91 42371.44 37974.08 18789.52 28790.21 251
testing371.53 31570.79 31673.77 32288.89 19041.86 40576.60 31559.12 40972.83 19180.97 28582.08 34519.80 42587.33 27365.12 27891.68 24892.13 193
1112_ss74.82 28573.74 28678.04 27989.57 17260.04 29276.49 31687.09 22854.31 36073.66 35779.80 36560.25 29086.76 28458.37 32584.15 35987.32 297
DELS-MVS81.44 20281.25 20482.03 21384.27 29262.87 25476.47 31792.49 10270.97 21781.64 27983.83 32475.03 18492.70 15074.29 18192.22 23890.51 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS76.91 25976.34 26478.64 26680.91 33664.03 24076.30 31879.03 31164.88 28283.11 25189.16 24059.90 29384.46 31668.61 24985.15 34687.42 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.64 21379.41 23084.34 15583.93 29769.66 18476.28 31981.09 30072.43 19686.47 18390.19 22260.46 28793.15 13777.45 14886.39 33290.22 247
pmmvs474.92 28372.98 29780.73 23884.95 27771.71 16776.23 32077.59 31852.83 36877.73 32486.38 28656.35 31884.97 31157.72 33187.05 32285.51 316
baseline269.77 33366.89 35078.41 27179.51 35258.09 31476.23 32069.57 37657.50 34264.82 40277.45 38446.02 36188.44 26053.08 35877.83 39288.70 276
sd_testset79.95 23181.39 20275.64 31088.81 19258.07 31576.16 32282.81 28673.67 17183.41 24693.04 12780.96 12477.65 35958.62 32495.03 16291.21 219
SDMVSNet81.90 19783.17 16878.10 27788.81 19262.45 26276.08 32386.05 24373.67 17183.41 24693.04 12782.35 10080.65 34370.06 23195.03 16291.21 219
test_fmvs1_n70.94 32070.41 32372.53 33473.92 39366.93 21475.99 32484.21 27643.31 40579.40 30679.39 36943.47 38268.55 38969.05 24284.91 35182.10 364
PatchMatch-RL74.48 28873.22 29478.27 27587.70 21985.26 3875.92 32570.09 37364.34 28476.09 33681.25 35365.87 25978.07 35853.86 35383.82 36171.48 399
JIA-IIPM69.41 33666.64 35477.70 28573.19 39871.24 17275.67 32665.56 39370.42 22165.18 39892.97 13333.64 40583.06 32753.52 35769.61 41078.79 388
patch_mono-278.89 23679.39 23177.41 28984.78 28068.11 20275.60 32783.11 28260.96 31679.36 30789.89 23075.18 18372.97 37273.32 20092.30 23291.15 221
tpm67.95 34568.08 34667.55 36678.74 36143.53 40175.60 32767.10 38954.92 35672.23 36388.10 25542.87 38775.97 36552.21 36480.95 38283.15 351
VNet79.31 23380.27 21876.44 30187.92 21453.95 34875.58 32984.35 27374.39 16482.23 26590.72 20672.84 21684.39 31860.38 31693.98 19890.97 225
xiu_mvs_v2_base77.19 25676.75 26078.52 26887.01 23961.30 27775.55 33087.12 22761.24 31374.45 35178.79 37477.20 16090.93 19964.62 28584.80 35583.32 348
miper_enhance_ethall77.83 24876.93 25880.51 24176.15 38058.01 31775.47 33188.82 19858.05 33783.59 24280.69 35564.41 26491.20 18973.16 20792.03 24092.33 182
PS-MVSNAJ77.04 25876.53 26278.56 26787.09 23761.40 27575.26 33287.13 22461.25 31274.38 35377.22 38776.94 16690.94 19864.63 28484.83 35483.35 347
PVSNet_Blended76.49 26775.40 27279.76 25184.43 28663.41 24675.14 33390.44 16157.36 34375.43 34378.30 37769.11 24391.44 18360.68 31487.70 31584.42 329
thres20072.34 30771.55 31374.70 31883.48 30351.60 36675.02 33473.71 34970.14 22778.56 31680.57 35846.20 35988.20 26446.99 38989.29 28984.32 330
WB-MVSnew68.72 34369.01 33667.85 36483.22 31343.98 39974.93 33565.98 39155.09 35473.83 35579.11 37065.63 26071.89 37638.21 41085.04 34787.69 293
EPMVS62.47 36862.63 37262.01 38570.63 40938.74 41174.76 33652.86 41653.91 36267.71 38880.01 36339.40 39266.60 39855.54 34368.81 41280.68 381
DSMNet-mixed60.98 37661.61 37659.09 39472.88 40245.05 39674.70 33746.61 42026.20 41865.34 39790.32 21855.46 32363.12 40741.72 40181.30 38069.09 403
FPMVS72.29 30872.00 30773.14 32688.63 19785.00 4074.65 33867.39 38471.94 20777.80 32287.66 26550.48 34575.83 36649.95 37379.51 38458.58 413
test_vis1_n_192071.30 31871.58 31270.47 34577.58 36659.99 29474.25 33984.22 27551.06 38074.85 35079.10 37155.10 32668.83 38768.86 24579.20 38982.58 357
pmmvs570.73 32270.07 32572.72 33077.03 37152.73 35774.14 34075.65 33550.36 38772.17 36485.37 30655.42 32480.67 34252.86 36287.59 31684.77 323
MDTV_nov1_ep1368.29 34478.03 36243.87 40074.12 34172.22 36052.17 37267.02 39085.54 29945.36 37280.85 34155.73 33984.42 357
dmvs_testset60.59 37862.54 37354.72 39777.26 36727.74 42074.05 34261.00 40760.48 32165.62 39667.03 41055.93 32068.23 39232.07 41769.46 41168.17 404
test_fmvs169.57 33569.05 33571.14 34469.15 41265.77 22673.98 34383.32 28042.83 40777.77 32378.27 37843.39 38568.50 39068.39 25284.38 35879.15 387
IB-MVS62.13 1971.64 31368.97 33879.66 25480.80 34062.26 26773.94 34476.90 32563.27 28868.63 38376.79 38933.83 40391.84 17559.28 32287.26 31784.88 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.29 27074.81 27780.72 23984.47 28562.94 25273.89 34587.34 21855.94 35075.16 34876.53 39263.97 26891.16 19165.00 27990.97 26288.06 285
MS-PatchMatch70.93 32170.22 32473.06 32781.85 32462.50 26173.82 34677.90 31552.44 37175.92 33881.27 35255.67 32281.75 33555.37 34477.70 39474.94 395
SSC-MVS77.55 25281.64 19365.29 37890.46 15720.33 42473.56 34768.28 38185.44 3788.18 14494.64 6470.93 23381.33 33871.25 21692.03 24094.20 93
D2MVS76.84 26075.67 27180.34 24480.48 34462.16 27073.50 34884.80 26957.61 34182.24 26487.54 26751.31 34087.65 26870.40 22893.19 21791.23 218
GA-MVS75.83 27374.61 27879.48 25781.87 32359.25 30173.42 34982.88 28468.68 24079.75 30281.80 34850.62 34489.46 24366.85 25985.64 33989.72 257
Test_1112_low_res73.90 29473.08 29576.35 30290.35 15955.95 33073.40 35086.17 23950.70 38473.14 35885.94 29558.31 30485.90 30156.51 33583.22 36587.20 298
CL-MVSNet_self_test76.81 26177.38 25375.12 31386.90 24151.34 36773.20 35180.63 30468.30 24481.80 27588.40 25166.92 25380.90 34055.35 34594.90 16893.12 147
thisisatest051573.00 30270.52 32080.46 24281.45 32959.90 29573.16 35274.31 34357.86 33876.08 33777.78 38037.60 39892.12 16765.00 27991.45 25389.35 263
UWE-MVS66.43 35565.56 36069.05 35684.15 29440.98 40673.06 35364.71 39654.84 35776.18 33579.62 36829.21 41280.50 34538.54 40989.75 28485.66 314
HyFIR lowres test75.12 28072.66 30182.50 20891.44 13565.19 23072.47 35487.31 21946.79 39180.29 29784.30 32052.70 33492.10 16851.88 37086.73 32790.22 247
Patchmatch-RL test74.48 28873.68 28776.89 29684.83 27966.54 21772.29 35569.16 38057.70 33986.76 17186.33 28845.79 36782.59 33069.63 23490.65 27581.54 370
WB-MVS76.06 27180.01 22764.19 38189.96 17020.58 42372.18 35668.19 38283.21 5986.46 18493.49 11770.19 23778.97 35465.96 26790.46 27793.02 150
testing22266.93 34965.30 36171.81 33983.38 30645.83 39272.06 35767.50 38364.12 28569.68 37876.37 39327.34 41883.00 32838.88 40688.38 30286.62 304
MVS-HIRNet61.16 37462.92 37155.87 39579.09 35735.34 41671.83 35857.98 41346.56 39359.05 41191.14 18849.95 34876.43 36338.74 40771.92 40555.84 414
XXY-MVS74.44 29076.19 26569.21 35584.61 28452.43 36071.70 35977.18 32360.73 31980.60 29190.96 19675.44 17969.35 38456.13 33888.33 30385.86 312
dmvs_re66.81 35366.98 34966.28 37376.87 37258.68 31271.66 36072.24 35960.29 32369.52 38073.53 40052.38 33564.40 40544.90 39581.44 37875.76 393
testing9169.94 33268.99 33772.80 32983.81 30045.89 39171.57 36173.64 35168.24 24570.77 37377.82 37934.37 40284.44 31753.64 35587.00 32588.07 283
ppachtmachnet_test74.73 28774.00 28576.90 29580.71 34156.89 32771.53 36278.42 31358.24 33479.32 30982.92 33657.91 30884.26 32065.60 27491.36 25489.56 259
testing9969.27 33868.15 34572.63 33183.29 30945.45 39371.15 36371.08 36967.34 25670.43 37477.77 38132.24 40784.35 31953.72 35486.33 33388.10 282
Syy-MVS69.40 33770.03 32767.49 36781.72 32538.94 41071.00 36461.99 40061.38 30970.81 37172.36 40361.37 28379.30 35164.50 28785.18 34484.22 332
myMVS_eth3d64.66 36463.89 36566.97 37081.72 32537.39 41371.00 36461.99 40061.38 30970.81 37172.36 40320.96 42479.30 35149.59 37685.18 34484.22 332
testing1167.38 34765.93 35571.73 34083.37 30746.60 38870.95 36669.40 37762.47 29566.14 39176.66 39031.22 40884.10 32149.10 37984.10 36084.49 326
dp60.70 37760.29 38061.92 38772.04 40638.67 41270.83 36764.08 39751.28 37960.75 40777.28 38536.59 40071.58 37847.41 38762.34 41475.52 394
MDTV_nov1_ep13_2view27.60 42170.76 36846.47 39461.27 40645.20 37449.18 37883.75 341
pmmvs362.47 36860.02 38169.80 35071.58 40764.00 24170.52 36958.44 41239.77 41166.05 39275.84 39427.10 42072.28 37346.15 39284.77 35673.11 397
Anonymous2023120671.38 31771.88 30869.88 34986.31 25354.37 34470.39 37074.62 33952.57 37076.73 32888.76 24559.94 29272.06 37444.35 39793.23 21683.23 350
test_cas_vis1_n_192069.20 34069.12 33369.43 35473.68 39662.82 25570.38 37177.21 32246.18 39580.46 29678.95 37352.03 33665.53 40265.77 27377.45 39779.95 385
test20.0373.75 29574.59 28071.22 34281.11 33451.12 37170.15 37272.10 36270.42 22180.28 29991.50 17864.21 26674.72 37146.96 39094.58 18187.82 292
UnsupCasMVSNet_eth71.63 31472.30 30669.62 35276.47 37752.70 35870.03 37380.97 30159.18 32879.36 30788.21 25460.50 28669.12 38558.33 32777.62 39587.04 299
our_test_371.85 31071.59 31072.62 33280.71 34153.78 34969.72 37471.71 36758.80 33178.03 31780.51 36056.61 31678.84 35562.20 30186.04 33785.23 318
ETVMVS64.67 36363.34 36968.64 36083.44 30541.89 40469.56 37561.70 40561.33 31168.74 38175.76 39528.76 41379.35 35034.65 41386.16 33684.67 325
Patchmatch-test65.91 35867.38 34761.48 38975.51 38543.21 40268.84 37663.79 39862.48 29472.80 36183.42 33044.89 37859.52 41148.27 38586.45 33081.70 367
CHOSEN 1792x268872.45 30570.56 31978.13 27690.02 16963.08 25168.72 37783.16 28142.99 40675.92 33885.46 30257.22 31385.18 31049.87 37581.67 37586.14 308
testgi72.36 30674.61 27865.59 37580.56 34342.82 40368.29 37873.35 35266.87 26081.84 27289.93 22872.08 22666.92 39746.05 39392.54 22987.01 300
test-LLR67.21 34866.74 35268.63 36176.45 37855.21 33967.89 37967.14 38762.43 29865.08 39972.39 40143.41 38369.37 38261.00 31184.89 35281.31 372
TESTMET0.1,161.29 37360.32 37964.19 38172.06 40551.30 36867.89 37962.09 39945.27 39760.65 40869.01 40727.93 41664.74 40456.31 33681.65 37776.53 391
test-mter65.00 36263.79 36668.63 36176.45 37855.21 33967.89 37967.14 38750.98 38265.08 39972.39 40128.27 41569.37 38261.00 31184.89 35281.31 372
UnsupCasMVSNet_bld69.21 33969.68 33067.82 36579.42 35351.15 37067.82 38275.79 33254.15 36177.47 32685.36 30759.26 29870.64 38048.46 38379.35 38681.66 368
UBG64.34 36663.35 36867.30 36883.50 30240.53 40767.46 38365.02 39554.77 35867.54 38974.47 39932.99 40678.50 35740.82 40383.58 36282.88 354
WBMVS68.76 34268.43 34269.75 35183.29 30940.30 40867.36 38472.21 36157.09 34677.05 32785.53 30033.68 40480.51 34448.79 38190.90 26488.45 279
ADS-MVSNet265.87 35963.64 36772.55 33373.16 39956.92 32667.10 38574.81 33849.74 38866.04 39382.97 33346.71 35677.26 36142.29 39969.96 40883.46 344
ADS-MVSNet61.90 37062.19 37461.03 39073.16 39936.42 41567.10 38561.75 40349.74 38866.04 39382.97 33346.71 35663.21 40642.29 39969.96 40883.46 344
test_vis3_rt71.42 31670.67 31773.64 32369.66 41170.46 17766.97 38789.73 18442.68 40888.20 14383.04 33243.77 38160.07 40965.35 27786.66 32890.39 245
MDA-MVSNet-bldmvs77.47 25376.90 25979.16 26079.03 35864.59 23366.58 38875.67 33473.15 18788.86 12488.99 24366.94 25281.23 33964.71 28288.22 30891.64 211
WTY-MVS67.91 34668.35 34366.58 37280.82 33948.12 38165.96 38972.60 35653.67 36371.20 36881.68 35058.97 30069.06 38648.57 38281.67 37582.55 358
mvsany_test365.48 36162.97 37073.03 32869.99 41076.17 12164.83 39043.71 42143.68 40380.25 30087.05 28052.83 33363.09 40851.92 36972.44 40379.84 386
sss66.92 35067.26 34865.90 37477.23 36851.10 37264.79 39171.72 36652.12 37570.13 37680.18 36257.96 30765.36 40350.21 37281.01 38181.25 374
miper_lstm_enhance76.45 26876.10 26677.51 28776.72 37460.97 28564.69 39285.04 26163.98 28683.20 25088.22 25356.67 31578.79 35673.22 20193.12 21892.78 158
test0.0.03 164.66 36464.36 36365.57 37675.03 39046.89 38764.69 39261.58 40662.43 29871.18 36977.54 38243.41 38368.47 39140.75 40482.65 37181.35 371
PMMVS61.65 37160.38 37865.47 37765.40 42069.26 18963.97 39461.73 40436.80 41760.11 40968.43 40859.42 29666.35 39948.97 38078.57 39160.81 410
test1236.27 3928.08 3950.84 4051.11 4290.57 43062.90 3950.82 4290.54 4231.07 4252.75 4241.26 4280.30 4241.04 4231.26 4231.66 420
KD-MVS_2432*160066.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
miper_refine_blended66.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
PVSNet58.17 2166.41 35665.63 35968.75 35981.96 32249.88 37762.19 39872.51 35851.03 38168.04 38575.34 39750.84 34274.77 36945.82 39482.96 36681.60 369
test_vis1_rt65.64 36064.09 36470.31 34666.09 41770.20 18061.16 39981.60 29638.65 41372.87 36069.66 40652.84 33260.04 41056.16 33777.77 39380.68 381
dongtai41.90 38542.65 38839.67 40070.86 40821.11 42261.01 40021.42 42757.36 34357.97 41550.06 41616.40 42658.73 41321.03 42027.69 42039.17 416
new_pmnet55.69 38257.66 38349.76 39875.47 38630.59 41859.56 40151.45 41743.62 40462.49 40575.48 39640.96 39049.15 41837.39 41172.52 40269.55 402
new-patchmatchnet70.10 32773.37 29260.29 39181.23 33316.95 42659.54 40274.62 33962.93 29080.97 28587.93 25962.83 27971.90 37555.24 34695.01 16592.00 198
testmvs5.91 3937.65 3960.72 4061.20 4280.37 43159.14 4030.67 4300.49 4241.11 4242.76 4230.94 4290.24 4251.02 4241.47 4221.55 421
N_pmnet70.20 32568.80 34074.38 31980.91 33684.81 4359.12 40476.45 33055.06 35575.31 34782.36 34255.74 32154.82 41447.02 38887.24 31883.52 343
YYNet170.06 32870.44 32168.90 35773.76 39553.42 35358.99 40567.20 38658.42 33387.10 16385.39 30559.82 29467.32 39459.79 31983.50 36485.96 309
MDA-MVSNet_test_wron70.05 32970.44 32168.88 35873.84 39453.47 35158.93 40667.28 38558.43 33287.09 16485.40 30459.80 29567.25 39559.66 32083.54 36385.92 311
kuosan30.83 38632.17 38926.83 40253.36 42419.02 42557.90 40720.44 42838.29 41538.01 41937.82 41815.18 42733.45 4217.74 42220.76 42128.03 417
test_f64.31 36765.85 35659.67 39266.54 41662.24 26957.76 40870.96 37040.13 41084.36 22482.09 34446.93 35551.67 41661.99 30481.89 37465.12 407
mvsany_test158.48 38056.47 38564.50 38065.90 41968.21 20156.95 40942.11 42238.30 41465.69 39577.19 38856.96 31459.35 41246.16 39158.96 41565.93 406
PVSNet_051.08 2256.10 38154.97 38659.48 39375.12 38953.28 35455.16 41061.89 40244.30 40059.16 41062.48 41354.22 32865.91 40135.40 41247.01 41659.25 412
E-PMN61.59 37261.62 37561.49 38866.81 41555.40 33753.77 41160.34 40866.80 26158.90 41265.50 41140.48 39166.12 40055.72 34086.25 33462.95 409
EMVS61.10 37560.81 37761.99 38665.96 41855.86 33353.10 41258.97 41167.06 25856.89 41663.33 41240.98 38967.03 39654.79 34986.18 33563.08 408
CHOSEN 280x42059.08 37956.52 38466.76 37176.51 37664.39 23749.62 41359.00 41043.86 40255.66 41768.41 40935.55 40168.21 39343.25 39876.78 39967.69 405
PMMVS255.64 38359.27 38244.74 39964.30 42112.32 42740.60 41449.79 41853.19 36665.06 40184.81 31453.60 33149.76 41732.68 41689.41 28872.15 398
tmp_tt20.25 38924.50 3927.49 4044.47 4278.70 42834.17 41525.16 4251.00 42232.43 42118.49 41939.37 3939.21 42321.64 41943.75 4174.57 419
MVEpermissive40.22 2351.82 38450.47 38755.87 39562.66 42251.91 36331.61 41639.28 42340.65 40950.76 41874.98 39856.24 31944.67 41933.94 41564.11 41371.04 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 38729.60 39033.06 40117.99 4263.84 42913.62 41773.92 3452.79 42018.29 42253.41 41528.53 41443.25 42022.56 41835.27 41852.11 415
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
cdsmvs_eth3d_5k20.81 38827.75 3910.00 4070.00 4300.00 4320.00 41885.44 2520.00 4250.00 42682.82 33781.46 1180.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas6.41 3918.55 3940.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42576.94 1660.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re6.65 3908.87 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42679.80 3650.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS37.39 41352.61 363
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
PC_three_145258.96 33090.06 9791.33 18280.66 12893.03 14275.78 16895.94 12892.48 172
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 430
eth-test0.00 430
ZD-MVS92.22 10380.48 7191.85 12171.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
IU-MVS94.18 5072.64 14790.82 15156.98 34789.67 10985.78 5297.92 4993.28 138
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 196
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 153
GSMVS83.88 336
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 336
sam_mvs45.92 365
MTGPAbinary91.81 125
test_post3.10 42245.43 37177.22 362
patchmatchnet-post81.71 34945.93 36487.01 275
gm-plane-assit75.42 38744.97 39752.17 37272.36 40387.90 26554.10 352
test9_res80.83 10596.45 10390.57 239
agg_prior279.68 11896.16 11590.22 247
agg_prior91.58 12777.69 10090.30 17084.32 22693.18 135
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9692.80 157
新几何182.95 19693.96 5978.56 8880.24 30555.45 35383.93 23791.08 19171.19 23288.33 26265.84 27193.07 21981.95 366
旧先验191.97 11171.77 16381.78 29491.84 16773.92 19993.65 20783.61 342
原ACMM184.60 14692.81 8974.01 13291.50 13062.59 29282.73 25990.67 21076.53 17394.25 9069.24 23795.69 14185.55 315
testdata286.43 28963.52 293
segment_acmp81.94 110
testdata79.54 25692.87 8472.34 15680.14 30659.91 32685.47 20291.75 17367.96 24985.24 30868.57 25192.18 23981.06 379
test1286.57 10590.74 15172.63 14990.69 15482.76 25879.20 13994.80 7395.32 15092.27 186
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 81
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior192.83 88
n20.00 431
nn0.00 431
door-mid74.45 342
lessismore_v085.95 12091.10 14470.99 17470.91 37191.79 6994.42 7461.76 28192.93 14579.52 12193.03 22093.93 106
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
test1191.46 131
door72.57 357
HQP5-MVS70.66 175
BP-MVS77.30 151
HQP4-MVS80.56 29294.61 7993.56 130
HQP3-MVS92.68 9794.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20673.58 19694.66 17994.56 77
DeepMVS_CXcopyleft24.13 40332.95 42529.49 41921.63 42612.07 41937.95 42045.07 41730.84 40919.21 42217.94 42133.06 41923.69 418