This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6893.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11895.88 1787.41 2295.94 12692.48 168
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7095.37 5180.87 10095.50 14394.53 79
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9088.22 1888.53 12997.64 283.45 8294.55 7886.02 4898.60 1296.67 27
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6183.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4478.43 11189.16 11992.25 15072.03 22196.36 388.21 790.93 25892.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9583.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12182.70 16892.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9916.05 40586.57 5295.80 2587.35 2497.62 6294.20 92
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6781.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6881.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6981.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4788.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 184
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13767.85 24286.63 16994.84 5079.58 13395.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19077.34 12293.63 3595.83 2565.40 25695.90 1585.01 5798.23 2797.49 13
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8282.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10279.74 9187.50 15092.38 14381.42 11593.28 12983.07 7497.24 7791.67 201
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12084.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 177
MVSFormer82.23 17681.57 18984.19 15785.54 26569.26 18691.98 3190.08 17171.54 20076.23 32085.07 29858.69 29694.27 8486.26 4088.77 28789.03 262
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17171.54 20094.28 2096.54 1381.57 11394.27 8486.26 4096.49 9997.09 21
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7581.10 7795.32 1097.24 572.94 20894.85 6785.07 5497.78 5397.26 16
EGC-MVSNET74.79 27869.99 31889.19 6394.89 3787.00 1191.89 3486.28 2321.09 4062.23 40895.98 2381.87 11089.48 23679.76 11295.96 12491.10 213
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5080.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
EPP-MVSNet85.47 11385.04 12786.77 10191.52 12969.37 18491.63 3687.98 20881.51 7287.05 16091.83 15966.18 24995.29 5370.75 21396.89 8495.64 46
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5982.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15095.86 2284.88 5895.87 13095.24 58
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19586.30 2889.60 11392.59 13769.22 23494.91 6673.89 18197.89 4996.72 26
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18085.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11572.61 18792.16 6095.23 4166.01 25095.59 3786.02 4897.78 5397.24 17
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7075.37 14792.84 4895.28 3885.58 6396.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTMP90.66 4433.14 411
test072694.16 4972.56 14890.63 4593.90 4483.61 5093.75 3094.49 6489.76 18
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14183.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 230
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 190
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16869.87 21995.06 1196.14 2184.28 7393.07 13787.68 1596.34 10597.09 21
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5283.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 178
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11894.68 7174.48 17295.35 14692.29 178
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21689.33 22783.87 7594.53 7982.45 8494.89 16794.90 65
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19789.67 22284.47 7195.46 4782.56 8396.26 11193.77 117
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18388.51 1790.11 9595.12 4490.98 688.92 24877.55 14097.07 8183.13 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7880.87 8191.13 7893.19 11586.22 5895.97 1282.23 8897.18 7990.45 232
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4480.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7986.53 2694.29 1896.27 1782.69 8994.08 9586.25 4297.63 6197.82 8
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11484.26 4290.87 8793.92 9982.18 10289.29 24473.75 18494.81 17193.70 119
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5477.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
QAPM82.59 17082.59 17282.58 19986.44 24166.69 21089.94 6290.36 15967.97 23984.94 20392.58 13972.71 21192.18 16070.63 21687.73 30388.85 265
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15170.00 21894.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4978.90 10492.88 4592.29 14886.11 5990.22 21686.24 4397.24 7791.36 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FE-MVS79.98 22178.86 22783.36 17886.47 24066.45 21389.73 6584.74 26272.80 18384.22 22491.38 17244.95 36893.60 11563.93 27991.50 24790.04 242
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16569.27 22294.39 1696.38 1586.02 6193.52 12083.96 6695.92 12895.34 53
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13478.20 11386.69 16892.28 14980.36 12795.06 6286.17 4496.49 9990.22 236
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13879.26 9989.68 10794.81 5482.44 9387.74 26276.54 15388.74 28996.61 29
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19888.84 1394.29 1897.57 390.48 1391.26 18472.57 20197.65 6097.34 15
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6279.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 171
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4881.89 6894.70 1395.44 3490.69 888.31 25883.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft84.44 13286.33 10278.78 25684.20 28673.57 13289.55 7290.44 15684.24 4384.38 21394.89 4876.35 17180.40 33776.14 15796.80 8982.36 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25689.54 7493.31 6690.21 1095.57 995.66 2981.42 11595.90 1580.94 9998.80 298.84 5
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7793.10 13682.67 8298.04 3693.64 123
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5579.44 9686.55 17092.95 12674.84 18195.22 5680.78 10295.83 13294.46 80
plane_prior289.45 7779.44 96
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26282.43 9494.53 7977.65 13896.46 10194.14 98
PHI-MVS86.38 9785.81 11488.08 8288.44 20077.34 10189.35 8093.05 7973.15 17884.76 20687.70 25278.87 13794.18 9080.67 10496.29 10792.73 156
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 200
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30489.04 8392.74 9291.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30188.95 8493.19 7191.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31188.93 8592.84 8991.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8387.15 2393.05 4397.10 682.28 10192.02 16576.70 15097.99 4096.88 25
F-COLMAP84.97 12483.42 15489.63 5592.39 9383.40 4888.83 8791.92 11373.19 17780.18 29089.15 23177.04 15893.28 12965.82 26392.28 23092.21 183
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
3Dnovator80.37 784.80 12584.71 13485.06 13486.36 24674.71 12588.77 8990.00 17375.65 14284.96 20193.17 11674.06 19191.19 18678.28 12891.09 25289.29 256
API-MVS82.28 17582.61 17181.30 22086.29 24969.79 17888.71 9087.67 21078.42 11282.15 25684.15 30977.98 14391.59 17565.39 26692.75 22182.51 348
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22884.54 4183.58 23393.78 10473.36 20496.48 187.98 996.21 11294.41 86
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30788.66 9292.06 10890.78 695.67 795.17 4281.80 11195.54 4179.00 12198.69 998.95 4
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6495.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20784.42 28168.22 19588.50 9489.48 18466.92 24981.80 26491.86 15672.59 21390.16 21871.19 20991.25 25187.40 285
MVS_030486.35 9885.92 11087.66 8889.21 18073.16 13988.40 9583.63 27081.27 7480.87 27794.12 8671.49 22595.71 3287.79 1296.50 9894.11 100
ambc82.98 18890.55 15364.86 22688.20 9689.15 18889.40 11793.96 9571.67 22491.38 18378.83 12296.55 9592.71 159
PAPM_NR83.23 16283.19 15983.33 17990.90 14565.98 21788.19 9790.78 14778.13 11580.87 27787.92 24973.49 20092.42 15270.07 22288.40 29191.60 203
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)83.13 16583.02 16383.43 17686.16 25566.08 21688.00 9988.36 19975.55 14385.02 19992.75 13465.12 25792.50 15174.94 17191.30 25091.72 198
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11680.35 8489.54 11688.01 24579.09 13592.13 16175.51 16395.06 15990.41 233
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11170.73 20994.19 2196.67 1176.94 16094.57 7683.07 7496.28 10896.15 33
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6291.50 17679.72 11397.32 7596.50 31
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20681.66 7094.64 1496.53 1465.94 25194.75 6983.02 7696.83 8795.41 51
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10488.42 19774.57 15483.56 23485.65 28578.49 14094.21 8872.04 20492.88 21994.05 102
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8587.95 2089.62 11092.87 12984.56 6993.89 10277.65 13896.62 9390.70 224
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7276.02 13488.64 12791.22 17684.24 7493.37 12777.97 13697.03 8295.52 49
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10778.87 10584.27 22194.05 8878.35 14193.65 10980.54 10691.58 24692.08 188
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast80.27 886.23 10085.65 11887.96 8591.30 13376.92 10687.19 11091.99 11070.56 21084.96 20190.69 19780.01 13095.14 5978.37 12595.78 13791.82 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet80.37 21178.41 23686.23 11176.75 36373.28 13587.18 11177.45 31076.24 13168.14 37288.93 23465.41 25593.85 10369.47 22796.12 11791.55 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
plane_prior76.42 11387.15 11275.94 13895.03 160
TAPA-MVS77.73 1285.71 11084.83 13088.37 7888.78 19179.72 7387.15 11293.50 5869.17 22385.80 18889.56 22380.76 12292.13 16173.21 19795.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051781.07 19879.58 22185.52 12788.99 18566.45 21387.03 11475.51 32773.76 16288.32 13790.20 21137.96 38794.16 9479.36 11995.13 15595.93 42
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25878.30 8586.93 11592.20 10465.94 25489.16 11993.16 11783.10 8589.89 22987.81 1194.43 18293.35 132
UGNet82.78 16781.64 18486.21 11386.20 25276.24 11786.86 11685.68 24277.07 12673.76 34492.82 13069.64 23191.82 17269.04 23593.69 20190.56 229
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4380.07 8986.75 16593.26 11493.64 290.93 19584.60 6190.75 26493.97 104
GBi-Net82.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
test182.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
FMVSNet184.55 13085.45 12181.85 21090.27 15861.05 27286.83 11888.27 20378.57 11089.66 10995.64 3075.43 17490.68 20569.09 23395.33 14793.82 112
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9178.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSLP-MVS++85.00 12386.03 10881.90 20891.84 11671.56 16786.75 12293.02 8375.95 13787.12 15489.39 22577.98 14389.40 24377.46 14194.78 17284.75 313
114514_t83.10 16682.54 17384.77 13992.90 8069.10 19186.65 12390.62 15254.66 34681.46 26990.81 19476.98 15994.38 8372.62 20096.18 11390.82 220
v1086.54 9587.10 8984.84 13688.16 20663.28 24286.64 12492.20 10475.42 14692.81 5094.50 6374.05 19294.06 9683.88 6796.28 10897.17 20
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 13978.77 10784.85 20590.89 18980.85 12195.29 5381.14 9795.32 14892.34 175
Effi-MVS+83.90 15084.01 14883.57 17487.22 22565.61 22186.55 12692.40 9878.64 10981.34 27284.18 30883.65 8092.93 14174.22 17487.87 30192.17 185
v886.22 10186.83 9684.36 14987.82 21162.35 25886.42 12791.33 13276.78 12892.73 5294.48 6573.41 20193.72 10883.10 7395.41 14497.01 23
bld_raw_dy_0_6481.25 19581.17 19981.49 21885.55 26360.85 27886.36 12895.45 957.08 33590.81 8882.69 32865.85 25393.91 10170.37 22096.34 10589.72 245
save fliter93.75 5977.44 9986.31 12989.72 17770.80 208
AdaColmapbinary83.66 15383.69 15383.57 17490.05 16472.26 15586.29 13090.00 17378.19 11481.65 26687.16 26483.40 8394.24 8761.69 29794.76 17584.21 322
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14487.68 21573.35 13386.14 13177.70 30861.64 29585.02 19991.62 16677.75 14686.24 28682.79 8087.07 31093.91 108
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5780.16 8789.13 12193.44 11283.82 7690.98 19383.86 6895.30 15193.60 125
PLCcopyleft73.85 1682.09 18180.31 20987.45 9090.86 14780.29 6985.88 13390.65 15068.17 23676.32 31986.33 27573.12 20792.61 14961.40 30090.02 27489.44 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GeoE85.45 11485.81 11484.37 14790.08 16167.07 20585.86 13491.39 13072.33 19387.59 14890.25 21084.85 6792.37 15578.00 13491.94 23993.66 120
test_fmvsmconf0.1_n86.18 10385.88 11287.08 9485.26 26878.25 8685.82 13591.82 11865.33 26788.55 12892.35 14782.62 9289.80 23186.87 3294.32 18593.18 141
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32285.75 13693.09 7777.33 12391.94 6694.65 5674.78 18393.41 12675.11 16998.58 1397.88 7
MAR-MVS80.24 21578.74 23184.73 14086.87 23778.18 8885.75 13687.81 20965.67 26277.84 30878.50 36473.79 19590.53 20961.59 29990.87 26085.49 306
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet75.12 27274.43 27477.18 28483.11 30759.48 29385.71 13882.43 28139.76 39885.64 19088.76 23544.71 37087.88 26173.86 18285.88 32784.16 323
LF4IMVS82.75 16881.93 18085.19 13182.08 31280.15 7085.53 13988.76 19368.01 23785.58 19187.75 25171.80 22286.85 27674.02 17993.87 19688.58 267
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15286.56 23973.35 13385.46 14077.30 31261.81 29184.51 20990.88 19177.36 15286.21 28882.72 8186.97 31593.38 131
K. test v385.14 11984.73 13186.37 10791.13 14069.63 18285.45 14176.68 31984.06 4592.44 5796.99 862.03 27494.65 7280.58 10593.24 21094.83 72
VDDNet84.35 13485.39 12281.25 22195.13 3159.32 29485.42 14281.11 29086.41 2787.41 15196.21 1973.61 19690.61 20866.33 25696.85 8593.81 115
test_fmvsmconf_n85.88 10885.51 12086.99 9684.77 27578.21 8785.40 14391.39 13065.32 26887.72 14691.81 16182.33 9789.78 23286.68 3494.20 18892.99 149
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14491.23 13577.31 12487.07 15991.47 17082.94 8794.71 7084.67 6096.27 11092.62 163
LFMVS80.15 21880.56 20578.89 25489.19 18155.93 32485.22 14573.78 33982.96 5884.28 22092.72 13557.38 30590.07 22563.80 28095.75 13890.68 225
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16286.87 23771.57 16685.19 14677.42 31162.27 28984.47 21291.33 17376.43 16885.91 29483.14 7187.14 30894.33 90
test_fmvsmvis_n_192085.22 11685.36 12384.81 13785.80 26076.13 11985.15 14792.32 10161.40 29791.33 7490.85 19283.76 7986.16 29084.31 6393.28 20992.15 186
FIs85.35 11586.27 10382.60 19891.86 11357.31 31585.10 14893.05 7975.83 13991.02 8193.97 9273.57 19792.91 14373.97 18098.02 3997.58 12
HQP-NCC91.19 13684.77 14973.30 17380.55 282
ACMP_Plane91.19 13684.77 14973.30 17380.55 282
HQP-MVS84.61 12884.06 14786.27 11091.19 13670.66 17284.77 14992.68 9373.30 17380.55 28290.17 21472.10 21794.61 7477.30 14594.47 18093.56 128
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16686.02 25771.56 16784.73 15277.11 31562.44 28684.00 22690.68 19876.42 16985.89 29683.14 7187.11 30993.81 115
ab-mvs79.67 22380.56 20576.99 28588.48 19856.93 31884.70 15386.06 23668.95 22780.78 27993.08 11875.30 17684.62 30856.78 32290.90 25989.43 252
pmmvs686.52 9688.06 7481.90 20892.22 10162.28 25984.66 15489.15 18883.54 5289.85 10397.32 488.08 3686.80 27770.43 21897.30 7696.62 28
test_prior478.97 8084.59 155
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15690.71 14885.85 3189.94 10295.24 4082.13 10390.40 21269.19 23296.40 10495.31 55
baseline85.20 11885.93 10983.02 18786.30 24862.37 25784.55 15693.96 4174.48 15587.12 15492.03 15382.30 9991.94 16678.39 12494.21 18794.74 73
alignmvs83.94 14983.98 14983.80 16387.80 21267.88 20084.54 15891.42 12973.27 17688.41 13487.96 24672.33 21590.83 20076.02 15994.11 19092.69 160
CNLPA83.55 15783.10 16284.90 13589.34 17683.87 4684.54 15888.77 19279.09 10183.54 23588.66 23874.87 18081.73 32866.84 25292.29 22989.11 258
ETV-MVS84.31 13583.91 15185.52 12788.58 19670.40 17584.50 16093.37 6078.76 10884.07 22578.72 36380.39 12695.13 6073.82 18392.98 21791.04 214
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16191.29 13384.88 3992.06 6393.84 10186.45 5493.73 10773.22 19298.66 1097.69 9
PVSNet_Blended_VisFu81.55 19180.49 20784.70 14291.58 12473.24 13784.21 16291.67 12262.86 28080.94 27587.16 26467.27 24392.87 14469.82 22588.94 28687.99 276
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23165.22 22384.16 16394.23 2477.89 11691.28 7793.66 10884.35 7292.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND67.16 35673.36 38646.54 37984.15 16455.04 40258.64 40061.95 40129.93 40083.87 31838.71 39576.92 38571.07 387
test_fmvsm_n_192083.60 15582.89 16585.74 12385.22 26977.74 9584.12 16590.48 15459.87 31786.45 17891.12 18075.65 17285.89 29682.28 8790.87 26093.58 126
iter_conf0578.81 23077.35 24583.21 18382.98 30960.75 28184.09 16688.34 20063.12 27884.25 22389.48 22431.41 39694.51 8176.64 15195.83 13294.38 88
test250674.12 28373.39 28376.28 29691.85 11444.20 38784.06 16748.20 40672.30 19481.90 25994.20 8027.22 40789.77 23364.81 27296.02 12194.87 67
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16889.44 18588.63 1694.38 1795.77 2686.38 5793.59 11679.84 11195.21 15291.82 196
h-mvs3384.25 13882.76 16788.72 7191.82 11882.60 5684.00 16984.98 25771.27 20286.70 16690.55 20363.04 27193.92 10078.26 12994.20 18889.63 248
TEST992.34 9579.70 7483.94 17090.32 16065.41 26684.49 21090.97 18582.03 10593.63 111
train_agg85.98 10685.28 12488.07 8392.34 9579.70 7483.94 17090.32 16065.79 25784.49 21090.97 18581.93 10793.63 11181.21 9696.54 9690.88 218
FMVSNet281.31 19481.61 18680.41 23686.38 24358.75 30583.93 17286.58 23072.43 18887.65 14792.98 12363.78 26590.22 21666.86 25093.92 19492.27 180
EI-MVSNet-Vis-set85.12 12084.53 13886.88 9884.01 28872.76 14183.91 17385.18 25080.44 8288.75 12585.49 28780.08 12991.92 16782.02 9090.85 26295.97 39
CDPH-MVS86.17 10485.54 11988.05 8492.25 9975.45 12283.85 17492.01 10965.91 25686.19 17991.75 16483.77 7894.98 6477.43 14396.71 9193.73 118
test_892.09 10578.87 8183.82 17590.31 16265.79 25784.36 21490.96 18781.93 10793.44 124
EI-MVSNet-UG-set85.04 12184.44 14086.85 9983.87 29272.52 15083.82 17585.15 25180.27 8688.75 12585.45 28979.95 13191.90 16881.92 9390.80 26396.13 34
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17792.87 8780.37 8389.61 11291.81 16177.72 14794.18 9075.00 17098.53 1596.99 24
CANet83.79 15182.85 16686.63 10286.17 25372.21 15783.76 17891.43 12777.24 12574.39 34087.45 25875.36 17595.42 4977.03 14892.83 22092.25 182
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17881.45 6383.72 17981.58 28974.73 15285.66 18986.06 28072.56 21492.69 14775.44 16595.21 15289.01 264
ECVR-MVScopyleft78.44 23678.63 23277.88 27591.85 11448.95 36783.68 18069.91 36572.30 19484.26 22294.20 8051.89 33189.82 23063.58 28196.02 12194.87 67
thisisatest053079.07 22577.33 24684.26 15487.13 22764.58 22883.66 18175.95 32268.86 22885.22 19687.36 26038.10 38593.57 11975.47 16494.28 18694.62 74
gg-mvs-nofinetune68.96 33069.11 32368.52 35176.12 37045.32 38383.59 18255.88 40186.68 2464.62 39097.01 730.36 39983.97 31744.78 38482.94 35576.26 379
MCST-MVS84.36 13383.93 15085.63 12591.59 12171.58 16583.52 18392.13 10661.82 29083.96 22789.75 22179.93 13293.46 12378.33 12794.34 18491.87 195
EI-MVSNet82.61 16982.42 17583.20 18483.25 30263.66 23783.50 18485.07 25276.06 13286.55 17085.10 29573.41 20190.25 21378.15 13390.67 26695.68 45
CVMVSNet72.62 29571.41 30576.28 29683.25 30260.34 28483.50 18479.02 30337.77 40176.33 31885.10 29549.60 34187.41 26670.54 21777.54 38381.08 364
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10070.25 21589.35 11890.68 19882.85 8894.57 7679.55 11595.95 12592.00 191
test_prior283.37 18775.43 14584.58 20891.57 16781.92 10979.54 11696.97 83
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17183.94 28973.90 13083.35 18886.10 23558.97 31983.80 22990.36 20674.23 18986.94 27482.90 7790.22 27189.94 243
Vis-MVSNet (Re-imp)77.82 24277.79 24177.92 27488.82 18851.29 35883.28 18971.97 35374.04 15882.23 25489.78 22057.38 30589.41 24257.22 32195.41 14493.05 146
CANet_DTU77.81 24377.05 24880.09 24181.37 32259.90 28983.26 19088.29 20269.16 22467.83 37583.72 31160.93 27889.47 23769.22 23189.70 27790.88 218
VDD-MVS84.23 14084.58 13783.20 18491.17 13965.16 22583.25 19184.97 25879.79 9087.18 15394.27 7474.77 18490.89 19869.24 22996.54 9693.55 130
IterMVS-LS84.73 12684.98 12883.96 16087.35 22263.66 23783.25 19189.88 17576.06 13289.62 11092.37 14673.40 20392.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 14583.22 15786.52 10591.73 11975.27 12383.23 19392.40 9872.04 19782.04 25788.33 24177.91 14593.95 9966.17 25795.12 15790.34 235
EIA-MVS82.19 17881.23 19785.10 13387.95 20969.17 19083.22 19493.33 6370.42 21178.58 30379.77 35577.29 15394.20 8971.51 20688.96 28591.93 194
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19592.21 10381.73 6990.92 8291.97 15477.20 15493.99 9774.16 17598.35 2197.61 10
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 11985.60 26176.53 11183.07 19689.62 18273.02 18079.11 30083.51 31380.74 12390.24 21568.76 23889.29 28090.94 216
casdiffmvspermissive85.21 11785.85 11383.31 18086.17 25362.77 24983.03 19793.93 4274.69 15388.21 13892.68 13682.29 10091.89 16977.87 13793.75 20095.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v119284.57 12984.69 13584.21 15587.75 21362.88 24683.02 19891.43 12769.08 22589.98 10190.89 18972.70 21293.62 11482.41 8594.97 16496.13 34
fmvsm_l_conf0.5_n_a81.46 19280.87 20383.25 18183.73 29473.21 13883.00 19985.59 24458.22 32582.96 24490.09 21672.30 21686.65 28081.97 9289.95 27589.88 244
v114484.54 13184.72 13384.00 15887.67 21662.55 25382.97 20090.93 14470.32 21489.80 10490.99 18473.50 19893.48 12281.69 9594.65 17795.97 39
v14419284.24 13984.41 14183.71 16887.59 21961.57 26582.95 20191.03 14067.82 24389.80 10490.49 20473.28 20593.51 12181.88 9494.89 16796.04 38
v192192084.23 14084.37 14383.79 16487.64 21861.71 26482.91 20291.20 13667.94 24090.06 9690.34 20772.04 22093.59 11682.32 8694.91 16596.07 36
dcpmvs_284.23 14085.14 12581.50 21788.61 19561.98 26382.90 20393.11 7568.66 23192.77 5192.39 14278.50 13987.63 26476.99 14992.30 22794.90 65
v124084.30 13684.51 13983.65 16987.65 21761.26 26982.85 20491.54 12467.94 24090.68 9090.65 20171.71 22393.64 11082.84 7994.78 17296.07 36
无先验82.81 20585.62 24358.09 32691.41 18267.95 24884.48 316
MIMVSNet183.63 15484.59 13680.74 23094.06 5362.77 24982.72 20684.53 26377.57 12190.34 9295.92 2476.88 16685.83 29861.88 29597.42 7293.62 124
v2v48284.09 14384.24 14583.62 17087.13 22761.40 26682.71 20789.71 17872.19 19689.55 11491.41 17170.70 22993.20 13181.02 9893.76 19796.25 32
test111178.53 23578.85 22877.56 27992.22 10147.49 37382.61 20869.24 36872.43 18885.28 19594.20 8051.91 33090.07 22565.36 26796.45 10295.11 62
hse-mvs283.47 15981.81 18288.47 7591.03 14282.27 5782.61 20883.69 26871.27 20286.70 16686.05 28163.04 27192.41 15378.26 12993.62 20490.71 223
CR-MVSNet74.00 28473.04 28776.85 29079.58 34062.64 25182.58 21076.90 31650.50 37275.72 32892.38 14348.07 34584.07 31568.72 24082.91 35683.85 327
RPMNet78.88 22878.28 23780.68 23379.58 34062.64 25182.58 21094.16 2974.80 15175.72 32892.59 13748.69 34295.56 3973.48 18882.91 35683.85 327
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21291.56 12383.08 5790.92 8291.82 16078.25 14293.99 9774.16 17598.35 2197.49 13
MVS_Test82.47 17383.22 15780.22 23982.62 31157.75 31382.54 21391.96 11271.16 20682.89 24592.52 14177.41 15190.50 21080.04 10987.84 30292.40 172
AUN-MVS81.18 19778.78 22988.39 7790.93 14482.14 5882.51 21483.67 26964.69 27280.29 28685.91 28451.07 33492.38 15476.29 15693.63 20390.65 227
Anonymous2024052180.18 21781.25 19576.95 28683.15 30660.84 27982.46 21585.99 23968.76 22986.78 16393.73 10759.13 29377.44 34973.71 18597.55 6792.56 164
pm-mvs183.69 15284.95 12979.91 24290.04 16559.66 29182.43 21687.44 21175.52 14487.85 14495.26 3981.25 11785.65 30068.74 23996.04 12094.42 85
Patchmtry76.56 25877.46 24273.83 31179.37 34546.60 37782.41 21776.90 31673.81 16185.56 19292.38 14348.07 34583.98 31663.36 28495.31 15090.92 217
EPNet_dtu72.87 29471.33 30677.49 28177.72 35460.55 28382.35 21875.79 32366.49 25358.39 40181.06 34253.68 32385.98 29253.55 34592.97 21885.95 299
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap81.25 19582.34 17677.99 27385.33 26760.68 28282.32 21988.33 20171.26 20486.97 16192.22 15277.10 15786.98 27362.37 28995.17 15486.31 296
TransMVSNet (Re)84.02 14685.74 11678.85 25591.00 14355.20 33282.29 22087.26 21479.65 9388.38 13595.52 3383.00 8686.88 27567.97 24796.60 9494.45 82
Baseline_NR-MVSNet84.00 14785.90 11178.29 26791.47 13153.44 34182.29 22087.00 22679.06 10289.55 11495.72 2877.20 15486.14 29172.30 20398.51 1695.28 56
MG-MVS80.32 21380.94 20178.47 26388.18 20452.62 34882.29 22085.01 25672.01 19879.24 29992.54 14069.36 23393.36 12870.65 21589.19 28389.45 250
原ACMM282.26 223
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22490.46 15580.99 7888.42 13391.97 15477.56 14993.85 10372.46 20298.65 1197.61 10
PAPR78.84 22978.10 23981.07 22585.17 27060.22 28582.21 22490.57 15362.51 28275.32 33484.61 30374.99 17992.30 15859.48 31088.04 29990.68 225
EG-PatchMatch MVS84.08 14484.11 14683.98 15992.22 10172.61 14782.20 22687.02 22372.63 18688.86 12291.02 18378.52 13891.11 18973.41 18991.09 25288.21 270
HY-MVS64.64 1873.03 29272.47 29674.71 30783.36 30054.19 33582.14 22781.96 28456.76 33869.57 36786.21 27960.03 28584.83 30749.58 36682.65 35985.11 309
FMVSNet378.80 23178.55 23379.57 24882.89 31056.89 32081.76 22885.77 24169.04 22686.00 18390.44 20551.75 33290.09 22465.95 25993.34 20691.72 198
旧先验281.73 22956.88 33786.54 17584.90 30672.81 199
新几何281.72 230
131473.22 29072.56 29575.20 30480.41 33657.84 31181.64 23185.36 24651.68 36373.10 34776.65 37961.45 27685.19 30363.54 28279.21 37582.59 343
MVS73.21 29172.59 29375.06 30680.97 32660.81 28081.64 23185.92 24046.03 38271.68 35477.54 37068.47 23889.77 23355.70 33085.39 32974.60 383
v14882.31 17482.48 17481.81 21385.59 26259.66 29181.47 23386.02 23872.85 18188.05 14190.65 20170.73 22890.91 19775.15 16891.79 24094.87 67
V4283.47 15983.37 15683.75 16683.16 30563.33 24181.31 23490.23 16769.51 22190.91 8490.81 19474.16 19092.29 15980.06 10890.22 27195.62 47
PM-MVS80.20 21679.00 22683.78 16588.17 20586.66 1581.31 23466.81 37969.64 22088.33 13690.19 21264.58 25883.63 31971.99 20590.03 27381.06 366
VPA-MVSNet83.47 15984.73 13179.69 24690.29 15757.52 31481.30 23688.69 19476.29 13087.58 14994.44 6680.60 12587.20 26966.60 25596.82 8894.34 89
CMPMVSbinary59.41 2075.12 27273.57 28079.77 24375.84 37267.22 20281.21 23782.18 28250.78 36976.50 31687.66 25355.20 31982.99 32262.17 29390.64 26989.09 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft70.19 1777.77 24477.46 24278.71 25884.39 28261.15 27081.18 23882.52 27962.45 28583.34 23887.37 25966.20 24888.66 25464.69 27485.02 33786.32 295
thres100view90075.45 26875.05 26876.66 29287.27 22351.88 35381.07 23973.26 34475.68 14183.25 23986.37 27445.54 35988.80 24951.98 35590.99 25489.31 254
MVS_111021_LR84.28 13783.76 15285.83 12289.23 17983.07 5180.99 24083.56 27172.71 18586.07 18289.07 23281.75 11286.19 28977.11 14793.36 20588.24 269
wuyk23d75.13 27179.30 22462.63 37175.56 37375.18 12480.89 24173.10 34675.06 15094.76 1295.32 3587.73 4052.85 40134.16 40197.11 8059.85 398
pmmvs-eth3d78.42 23777.04 24982.57 20187.44 22174.41 12780.86 24279.67 29955.68 34084.69 20790.31 20960.91 27985.42 30162.20 29191.59 24587.88 279
tfpnnormal81.79 18982.95 16478.31 26588.93 18655.40 32880.83 24382.85 27776.81 12785.90 18794.14 8474.58 18786.51 28266.82 25395.68 14193.01 148
PCF-MVS74.62 1582.15 18080.92 20285.84 12189.43 17472.30 15480.53 24491.82 11857.36 33387.81 14589.92 21877.67 14893.63 11158.69 31295.08 15891.58 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view775.97 26475.35 26677.85 27787.01 23351.84 35480.45 24573.26 34475.20 14883.10 24286.31 27745.54 35989.05 24555.03 33792.24 23192.66 161
KD-MVS_self_test81.93 18683.14 16178.30 26684.75 27652.75 34580.37 24689.42 18670.24 21690.26 9493.39 11374.55 18886.77 27868.61 24196.64 9295.38 52
BH-untuned80.96 20080.99 20080.84 22988.55 19768.23 19480.33 24788.46 19672.79 18486.55 17086.76 27074.72 18591.77 17361.79 29688.99 28482.52 347
MVP-Stereo75.81 26673.51 28282.71 19689.35 17573.62 13180.06 24885.20 24960.30 31173.96 34287.94 24757.89 30389.45 23952.02 35474.87 38885.06 310
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LCM-MVSNet-Re83.48 15885.06 12678.75 25785.94 25855.75 32780.05 24994.27 2176.47 12996.09 594.54 6283.31 8489.75 23559.95 30794.89 16790.75 221
USDC76.63 25676.73 25376.34 29583.46 29657.20 31780.02 25088.04 20752.14 36083.65 23191.25 17563.24 26886.65 28054.66 33994.11 19085.17 308
ANet_high83.17 16485.68 11775.65 30181.24 32345.26 38479.94 25192.91 8683.83 4691.33 7496.88 1080.25 12885.92 29368.89 23695.89 12995.76 43
baseline173.26 28973.54 28172.43 32584.92 27247.79 37279.89 25274.00 33565.93 25578.81 30286.28 27856.36 31181.63 32956.63 32379.04 37787.87 280
tpm268.45 33266.83 33973.30 31578.93 35048.50 36879.76 25371.76 35547.50 37669.92 36583.60 31242.07 37988.40 25648.44 37279.51 37183.01 341
tpmvs70.16 31669.56 32171.96 32774.71 38148.13 36979.63 25475.45 32865.02 27070.26 36381.88 33445.34 36485.68 29958.34 31575.39 38782.08 352
testdata179.62 25573.95 160
xiu_mvs_v1_base_debu80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base_debi80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27963.41 23979.49 25990.44 15661.70 29475.43 33187.07 26769.11 23591.44 17960.68 30492.24 23190.11 240
test22293.31 7076.54 10979.38 26077.79 30752.59 35582.36 25290.84 19366.83 24691.69 24281.25 361
PatchmatchNetpermissive69.71 32368.83 32872.33 32677.66 35553.60 33979.29 26169.99 36457.66 33072.53 35082.93 32146.45 35080.08 33960.91 30372.09 39183.31 337
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer69.98 32068.68 33073.87 31077.14 35950.72 36279.26 26274.51 33251.94 36270.97 35884.75 30145.16 36787.49 26555.16 33679.23 37483.40 334
tfpn200view974.86 27674.23 27576.74 29186.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25489.31 254
thres40075.14 27074.23 27577.86 27686.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25492.66 161
MVS_111021_HR84.63 12784.34 14485.49 12990.18 16075.86 12079.23 26587.13 21873.35 17085.56 19289.34 22683.60 8190.50 21076.64 15194.05 19290.09 241
TAMVS78.08 24076.36 25583.23 18290.62 15172.87 14079.08 26680.01 29861.72 29381.35 27186.92 26963.96 26488.78 25250.61 36093.01 21688.04 275
test_fmvs375.72 26775.20 26777.27 28375.01 38069.47 18378.93 26784.88 25946.67 37887.08 15887.84 25050.44 33871.62 36577.42 14488.53 29090.72 222
MIMVSNet71.09 30971.59 30169.57 34187.23 22450.07 36578.91 26871.83 35460.20 31471.26 35591.76 16355.08 32176.09 35341.06 39087.02 31382.54 346
SCA73.32 28872.57 29475.58 30381.62 31855.86 32578.89 26971.37 35861.73 29274.93 33783.42 31660.46 28187.01 27058.11 31882.63 36183.88 324
DPM-MVS80.10 21979.18 22582.88 19490.71 15069.74 17978.87 27090.84 14560.29 31275.64 33085.92 28367.28 24293.11 13571.24 20891.79 24085.77 302
test_post178.85 2713.13 40645.19 36680.13 33858.11 318
mvs_anonymous78.13 23978.76 23076.23 29879.24 34650.31 36478.69 27284.82 26061.60 29683.09 24392.82 13073.89 19487.01 27068.33 24586.41 32091.37 207
WR-MVS83.56 15684.40 14281.06 22693.43 6754.88 33378.67 27385.02 25581.24 7590.74 8991.56 16872.85 20991.08 19068.00 24698.04 3697.23 18
c3_l81.64 19081.59 18781.79 21480.86 32959.15 29878.61 27490.18 16968.36 23287.20 15287.11 26669.39 23291.62 17478.16 13194.43 18294.60 75
test_yl78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
DCV-MVSNet78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
Fast-Effi-MVS+81.04 19980.57 20482.46 20387.50 22063.22 24378.37 27789.63 18168.01 23781.87 26082.08 33282.31 9892.65 14867.10 24988.30 29791.51 206
tpmrst66.28 34566.69 34165.05 36672.82 39139.33 39678.20 27870.69 36253.16 35367.88 37480.36 34948.18 34474.75 35858.13 31770.79 39381.08 364
tpm cat166.76 34265.21 35071.42 33077.09 36050.62 36378.01 27973.68 34144.89 38568.64 37079.00 36045.51 36182.42 32649.91 36370.15 39481.23 363
jason77.42 24775.75 26182.43 20487.10 23069.27 18577.99 28081.94 28551.47 36477.84 30885.07 29860.32 28389.00 24670.74 21489.27 28289.03 262
jason: jason.
CLD-MVS83.18 16382.64 17084.79 13889.05 18267.82 20177.93 28192.52 9668.33 23385.07 19881.54 33982.06 10492.96 13969.35 22897.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet77.32 24875.40 26483.06 18689.00 18472.48 15177.90 28282.17 28360.81 30678.94 30183.49 31459.30 29188.76 25354.64 34092.37 22687.93 278
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth80.84 20180.22 21382.71 19681.41 32160.98 27577.81 28390.14 17067.31 24786.95 16287.24 26364.26 26092.31 15775.23 16791.61 24494.85 71
BH-RMVSNet80.53 20680.22 21381.49 21887.19 22666.21 21577.79 28486.23 23374.21 15783.69 23088.50 23973.25 20690.75 20263.18 28687.90 30087.52 283
miper_ehance_all_eth80.34 21280.04 21881.24 22379.82 33958.95 30077.66 28589.66 17965.75 26085.99 18685.11 29468.29 23991.42 18176.03 15892.03 23593.33 133
PatchT70.52 31372.76 29163.79 37079.38 34433.53 40477.63 28665.37 38273.61 16571.77 35392.79 13344.38 37175.65 35664.53 27785.37 33082.18 350
BH-w/o76.57 25776.07 25978.10 27086.88 23665.92 21877.63 28686.33 23165.69 26180.89 27679.95 35268.97 23790.74 20353.01 35085.25 33277.62 377
diffmvspermissive80.40 21080.48 20880.17 24079.02 34960.04 28677.54 28890.28 16666.65 25282.40 25187.33 26173.50 19887.35 26777.98 13589.62 27893.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG80.06 22079.99 22080.25 23883.91 29168.04 19977.51 28989.19 18777.65 11981.94 25883.45 31576.37 17086.31 28563.31 28586.59 31886.41 294
MVSTER77.09 25075.70 26281.25 22175.27 37761.08 27177.49 29085.07 25260.78 30786.55 17088.68 23743.14 37790.25 21373.69 18690.67 26692.42 170
cl2278.97 22678.21 23881.24 22377.74 35359.01 29977.46 29187.13 21865.79 25784.32 21685.10 29558.96 29590.88 19975.36 16692.03 23593.84 110
iter_conf05_1178.40 23877.29 24781.71 21585.55 26360.95 27777.22 29286.90 22760.10 31575.79 32781.73 33664.08 26294.47 8270.37 22093.92 19489.72 245
TR-MVS76.77 25575.79 26079.72 24586.10 25665.79 21977.14 29383.02 27565.20 26981.40 27082.10 33066.30 24790.73 20455.57 33185.27 33182.65 342
ET-MVSNet_ETH3D75.28 26972.77 29082.81 19583.03 30868.11 19777.09 29476.51 32060.67 30977.60 31380.52 34738.04 38691.15 18870.78 21290.68 26589.17 257
test_fmvs273.57 28772.80 28975.90 30072.74 39268.84 19277.07 29584.32 26545.14 38482.89 24584.22 30748.37 34370.36 36873.40 19087.03 31288.52 268
cl____80.42 20980.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.37 24586.18 18189.21 22963.08 27090.16 21876.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20880.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.38 24486.19 17989.22 22863.09 26990.16 21876.32 15495.80 13593.66 120
lupinMVS76.37 26174.46 27382.09 20585.54 26569.26 18676.79 29880.77 29450.68 37176.23 32082.82 32358.69 29688.94 24769.85 22488.77 28788.07 272
FMVSNet572.10 30071.69 30073.32 31481.57 31953.02 34476.77 29978.37 30563.31 27676.37 31791.85 15736.68 38978.98 34347.87 37492.45 22587.95 277
VPNet80.25 21481.68 18375.94 29992.46 9247.98 37176.70 30081.67 28773.45 16784.87 20492.82 13074.66 18686.51 28261.66 29896.85 8593.33 133
test_vis1_n70.29 31469.99 31871.20 33275.97 37166.50 21276.69 30180.81 29344.22 38775.43 33177.23 37450.00 33968.59 37566.71 25482.85 35878.52 376
Anonymous20240521180.51 20781.19 19878.49 26288.48 19857.26 31676.63 30282.49 28081.21 7684.30 21992.24 15167.99 24086.24 28662.22 29095.13 15591.98 193
PAPM71.77 30270.06 31676.92 28786.39 24253.97 33676.62 30386.62 22953.44 35163.97 39184.73 30257.79 30492.34 15639.65 39281.33 36784.45 317
testing371.53 30570.79 30773.77 31288.89 18741.86 39476.60 30459.12 39672.83 18280.97 27382.08 33219.80 41287.33 26865.12 26991.68 24392.13 187
1112_ss74.82 27773.74 27878.04 27289.57 16960.04 28676.49 30587.09 22254.31 34773.66 34579.80 35360.25 28486.76 27958.37 31484.15 34887.32 286
DELS-MVS81.44 19381.25 19582.03 20684.27 28562.87 24776.47 30692.49 9770.97 20781.64 26783.83 31075.03 17892.70 14674.29 17392.22 23390.51 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS76.91 25276.34 25678.64 25980.91 32764.03 23476.30 30779.03 30264.88 27183.11 24189.16 23059.90 28784.46 30968.61 24185.15 33587.42 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.64 20579.41 22284.34 15183.93 29069.66 18176.28 30881.09 29172.43 18886.47 17690.19 21260.46 28193.15 13477.45 14286.39 32190.22 236
pmmvs474.92 27572.98 28880.73 23184.95 27171.71 16476.23 30977.59 30952.83 35477.73 31286.38 27356.35 31284.97 30557.72 32087.05 31185.51 305
baseline269.77 32266.89 33878.41 26479.51 34258.09 30876.23 30969.57 36657.50 33264.82 38977.45 37246.02 35388.44 25553.08 34777.83 37988.70 266
sd_testset79.95 22281.39 19375.64 30288.81 18958.07 30976.16 31182.81 27873.67 16383.41 23693.04 11980.96 12077.65 34858.62 31395.03 16091.21 210
SDMVSNet81.90 18883.17 16078.10 27088.81 18962.45 25576.08 31286.05 23773.67 16383.41 23693.04 11982.35 9680.65 33570.06 22395.03 16091.21 210
test_fmvs1_n70.94 31070.41 31372.53 32473.92 38266.93 20875.99 31384.21 26743.31 39179.40 29579.39 35743.47 37368.55 37669.05 23484.91 34082.10 351
PatchMatch-RL74.48 28073.22 28578.27 26887.70 21485.26 3475.92 31470.09 36364.34 27376.09 32381.25 34165.87 25278.07 34753.86 34283.82 35071.48 386
JIA-IIPM69.41 32566.64 34277.70 27873.19 38771.24 16975.67 31565.56 38170.42 21165.18 38592.97 12533.64 39483.06 32053.52 34669.61 39778.79 375
patch_mono-278.89 22779.39 22377.41 28284.78 27468.11 19775.60 31683.11 27460.96 30579.36 29689.89 21975.18 17772.97 36073.32 19192.30 22791.15 212
tpm67.95 33368.08 33467.55 35478.74 35143.53 39075.60 31667.10 37854.92 34472.23 35188.10 24442.87 37875.97 35452.21 35380.95 37083.15 339
VNet79.31 22480.27 21076.44 29387.92 21053.95 33775.58 31884.35 26474.39 15682.23 25490.72 19672.84 21084.39 31160.38 30693.98 19390.97 215
xiu_mvs_v2_base77.19 24976.75 25278.52 26187.01 23361.30 26875.55 31987.12 22161.24 30274.45 33978.79 36277.20 15490.93 19564.62 27684.80 34483.32 336
miper_enhance_ethall77.83 24176.93 25080.51 23476.15 36958.01 31075.47 32088.82 19158.05 32783.59 23280.69 34364.41 25991.20 18573.16 19892.03 23592.33 176
PS-MVSNAJ77.04 25176.53 25478.56 26087.09 23161.40 26675.26 32187.13 21861.25 30174.38 34177.22 37576.94 16090.94 19464.63 27584.83 34383.35 335
PVSNet_Blended76.49 25975.40 26479.76 24484.43 27963.41 23975.14 32290.44 15657.36 33375.43 33178.30 36569.11 23591.44 17960.68 30487.70 30484.42 318
thres20072.34 29871.55 30474.70 30883.48 29551.60 35575.02 32373.71 34070.14 21778.56 30480.57 34646.20 35188.20 25946.99 37789.29 28084.32 319
WB-MVSnew68.72 33169.01 32567.85 35283.22 30443.98 38874.93 32465.98 38055.09 34273.83 34379.11 35865.63 25471.89 36438.21 39785.04 33687.69 282
EPMVS62.47 35562.63 35962.01 37270.63 39638.74 39874.76 32552.86 40353.91 34967.71 37680.01 35139.40 38366.60 38555.54 33268.81 39980.68 368
DSMNet-mixed60.98 36361.61 36359.09 38172.88 39045.05 38574.70 32646.61 40726.20 40365.34 38490.32 20855.46 31763.12 39441.72 38981.30 36869.09 390
FPMVS72.29 29972.00 29873.14 31688.63 19485.00 3674.65 32767.39 37371.94 19977.80 31087.66 25350.48 33775.83 35549.95 36279.51 37158.58 400
test_vis1_n_192071.30 30871.58 30370.47 33477.58 35659.99 28874.25 32884.22 26651.06 36674.85 33879.10 35955.10 32068.83 37468.86 23779.20 37682.58 344
pmmvs570.73 31270.07 31572.72 32077.03 36152.73 34674.14 32975.65 32650.36 37372.17 35285.37 29255.42 31880.67 33452.86 35187.59 30584.77 312
MDTV_nov1_ep1368.29 33278.03 35243.87 38974.12 33072.22 35152.17 35867.02 37785.54 28645.36 36380.85 33355.73 32884.42 346
dmvs_testset60.59 36562.54 36054.72 38477.26 35727.74 40774.05 33161.00 39460.48 31065.62 38367.03 39755.93 31468.23 37932.07 40469.46 39868.17 391
test_fmvs169.57 32469.05 32471.14 33369.15 39965.77 22073.98 33283.32 27242.83 39377.77 31178.27 36643.39 37668.50 37768.39 24484.38 34779.15 374
IB-MVS62.13 1971.64 30368.97 32779.66 24780.80 33162.26 26073.94 33376.90 31663.27 27768.63 37176.79 37733.83 39391.84 17159.28 31187.26 30684.88 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.29 26274.81 26980.72 23284.47 27862.94 24573.89 33487.34 21255.94 33975.16 33676.53 38063.97 26391.16 18765.00 27090.97 25788.06 274
MS-PatchMatch70.93 31170.22 31473.06 31781.85 31562.50 25473.82 33577.90 30652.44 35775.92 32581.27 34055.67 31681.75 32755.37 33377.70 38174.94 382
SSC-MVS77.55 24581.64 18465.29 36590.46 15420.33 41073.56 33668.28 37085.44 3288.18 14094.64 5970.93 22781.33 33071.25 20792.03 23594.20 92
D2MVS76.84 25375.67 26380.34 23780.48 33562.16 26273.50 33784.80 26157.61 33182.24 25387.54 25551.31 33387.65 26370.40 21993.19 21291.23 209
GA-MVS75.83 26574.61 27079.48 25081.87 31459.25 29573.42 33882.88 27668.68 23079.75 29181.80 33550.62 33689.46 23866.85 25185.64 32889.72 245
Test_1112_low_res73.90 28573.08 28676.35 29490.35 15655.95 32373.40 33986.17 23450.70 37073.14 34685.94 28258.31 29885.90 29556.51 32483.22 35387.20 287
CL-MVSNet_self_test76.81 25477.38 24475.12 30586.90 23551.34 35673.20 34080.63 29568.30 23481.80 26488.40 24066.92 24580.90 33255.35 33494.90 16693.12 144
thisisatest051573.00 29370.52 31080.46 23581.45 32059.90 28973.16 34174.31 33457.86 32876.08 32477.78 36837.60 38892.12 16365.00 27091.45 24889.35 253
UWE-MVS66.43 34365.56 34869.05 34484.15 28740.98 39573.06 34264.71 38354.84 34576.18 32279.62 35629.21 40180.50 33638.54 39689.75 27685.66 303
HyFIR lowres test75.12 27272.66 29282.50 20291.44 13265.19 22472.47 34387.31 21346.79 37780.29 28684.30 30652.70 32792.10 16451.88 35986.73 31690.22 236
Patchmatch-RL test74.48 28073.68 27976.89 28984.83 27366.54 21172.29 34469.16 36957.70 32986.76 16486.33 27545.79 35882.59 32369.63 22690.65 26881.54 357
WB-MVS76.06 26380.01 21964.19 36889.96 16720.58 40972.18 34568.19 37183.21 5486.46 17793.49 11170.19 23078.97 34465.96 25890.46 27093.02 147
testing22266.93 33765.30 34971.81 32883.38 29845.83 38172.06 34667.50 37264.12 27469.68 36676.37 38127.34 40683.00 32138.88 39388.38 29286.62 293
MVS-HIRNet61.16 36162.92 35855.87 38279.09 34735.34 40371.83 34757.98 40046.56 37959.05 39891.14 17949.95 34076.43 35238.74 39471.92 39255.84 401
XXY-MVS74.44 28276.19 25769.21 34384.61 27752.43 34971.70 34877.18 31460.73 30880.60 28090.96 18775.44 17369.35 37156.13 32788.33 29385.86 301
dmvs_re66.81 34166.98 33766.28 36076.87 36258.68 30671.66 34972.24 35060.29 31269.52 36873.53 38752.38 32864.40 39244.90 38381.44 36675.76 380
testing9169.94 32168.99 32672.80 31983.81 29345.89 38071.57 35073.64 34268.24 23570.77 36177.82 36734.37 39284.44 31053.64 34487.00 31488.07 272
ppachtmachnet_test74.73 27974.00 27776.90 28880.71 33256.89 32071.53 35178.42 30458.24 32479.32 29882.92 32257.91 30284.26 31365.60 26591.36 24989.56 249
testing9969.27 32768.15 33372.63 32183.29 30145.45 38271.15 35271.08 35967.34 24670.43 36277.77 36932.24 39584.35 31253.72 34386.33 32288.10 271
Syy-MVS69.40 32670.03 31767.49 35581.72 31638.94 39771.00 35361.99 38761.38 29870.81 35972.36 39061.37 27779.30 34164.50 27885.18 33384.22 320
myMVS_eth3d64.66 35263.89 35366.97 35781.72 31637.39 40071.00 35361.99 38761.38 29870.81 35972.36 39020.96 41179.30 34149.59 36585.18 33384.22 320
testing1167.38 33565.93 34371.73 32983.37 29946.60 37770.95 35569.40 36762.47 28466.14 37876.66 37831.22 39784.10 31449.10 36884.10 34984.49 315
dp60.70 36460.29 36761.92 37472.04 39438.67 39970.83 35664.08 38451.28 36560.75 39477.28 37336.59 39071.58 36647.41 37562.34 40175.52 381
MDTV_nov1_ep13_2view27.60 40870.76 35746.47 38061.27 39345.20 36549.18 36783.75 329
pmmvs362.47 35560.02 36869.80 33971.58 39564.00 23570.52 35858.44 39939.77 39766.05 37975.84 38227.10 40872.28 36146.15 38084.77 34573.11 384
Anonymous2023120671.38 30771.88 29969.88 33886.31 24754.37 33470.39 35974.62 33052.57 35676.73 31588.76 23559.94 28672.06 36244.35 38593.23 21183.23 338
test_cas_vis1_n_192069.20 32969.12 32269.43 34273.68 38562.82 24870.38 36077.21 31346.18 38180.46 28578.95 36152.03 32965.53 38965.77 26477.45 38479.95 372
test20.0373.75 28674.59 27271.22 33181.11 32551.12 36070.15 36172.10 35270.42 21180.28 28891.50 16964.21 26174.72 35946.96 37894.58 17887.82 281
UnsupCasMVSNet_eth71.63 30472.30 29769.62 34076.47 36652.70 34770.03 36280.97 29259.18 31879.36 29688.21 24360.50 28069.12 37258.33 31677.62 38287.04 288
our_test_371.85 30171.59 30172.62 32280.71 33253.78 33869.72 36371.71 35758.80 32178.03 30580.51 34856.61 31078.84 34562.20 29186.04 32685.23 307
ETVMVS64.67 35163.34 35668.64 34883.44 29741.89 39369.56 36461.70 39261.33 30068.74 36975.76 38328.76 40279.35 34034.65 40086.16 32584.67 314
Patchmatch-test65.91 34667.38 33561.48 37675.51 37443.21 39168.84 36563.79 38562.48 28372.80 34983.42 31644.89 36959.52 39848.27 37386.45 31981.70 354
CHOSEN 1792x268872.45 29670.56 30978.13 26990.02 16663.08 24468.72 36683.16 27342.99 39275.92 32585.46 28857.22 30785.18 30449.87 36481.67 36386.14 297
testgi72.36 29774.61 27065.59 36280.56 33442.82 39268.29 36773.35 34366.87 25081.84 26189.93 21772.08 21966.92 38446.05 38192.54 22487.01 289
test-LLR67.21 33666.74 34068.63 34976.45 36755.21 33067.89 36867.14 37662.43 28765.08 38672.39 38843.41 37469.37 36961.00 30184.89 34181.31 359
TESTMET0.1,161.29 36060.32 36664.19 36872.06 39351.30 35767.89 36862.09 38645.27 38360.65 39569.01 39427.93 40564.74 39156.31 32581.65 36576.53 378
test-mter65.00 35063.79 35468.63 34976.45 36755.21 33067.89 36867.14 37650.98 36865.08 38672.39 38828.27 40469.37 36961.00 30184.89 34181.31 359
UnsupCasMVSNet_bld69.21 32869.68 32067.82 35379.42 34351.15 35967.82 37175.79 32354.15 34877.47 31485.36 29359.26 29270.64 36748.46 37179.35 37381.66 355
ADS-MVSNet265.87 34763.64 35572.55 32373.16 38856.92 31967.10 37274.81 32949.74 37466.04 38082.97 31946.71 34877.26 35042.29 38769.96 39583.46 332
ADS-MVSNet61.90 35762.19 36161.03 37773.16 38836.42 40267.10 37261.75 39049.74 37466.04 38082.97 31946.71 34863.21 39342.29 38769.96 39583.46 332
test_vis3_rt71.42 30670.67 30873.64 31369.66 39870.46 17466.97 37489.73 17642.68 39488.20 13983.04 31843.77 37260.07 39665.35 26886.66 31790.39 234
MDA-MVSNet-bldmvs77.47 24676.90 25179.16 25379.03 34864.59 22766.58 37575.67 32573.15 17888.86 12288.99 23366.94 24481.23 33164.71 27388.22 29891.64 202
WTY-MVS67.91 33468.35 33166.58 35980.82 33048.12 37065.96 37672.60 34753.67 35071.20 35681.68 33858.97 29469.06 37348.57 37081.67 36382.55 345
mvsany_test365.48 34962.97 35773.03 31869.99 39776.17 11864.83 37743.71 40843.68 38980.25 28987.05 26852.83 32663.09 39551.92 35872.44 39079.84 373
sss66.92 33867.26 33665.90 36177.23 35851.10 36164.79 37871.72 35652.12 36170.13 36480.18 35057.96 30165.36 39050.21 36181.01 36981.25 361
miper_lstm_enhance76.45 26076.10 25877.51 28076.72 36460.97 27664.69 37985.04 25463.98 27583.20 24088.22 24256.67 30978.79 34673.22 19293.12 21392.78 155
test0.0.03 164.66 35264.36 35165.57 36375.03 37946.89 37664.69 37961.58 39362.43 28771.18 35777.54 37043.41 37468.47 37840.75 39182.65 35981.35 358
PMMVS61.65 35860.38 36565.47 36465.40 40769.26 18663.97 38161.73 39136.80 40260.11 39668.43 39559.42 29066.35 38648.97 36978.57 37860.81 397
test1236.27 3778.08 3800.84 3901.11 4140.57 41562.90 3820.82 4140.54 4081.07 4102.75 4091.26 4130.30 4091.04 4081.26 4081.66 405
KD-MVS_2432*160066.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
miper_refine_blended66.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
PVSNet58.17 2166.41 34465.63 34768.75 34781.96 31349.88 36662.19 38572.51 34951.03 36768.04 37375.34 38550.84 33574.77 35745.82 38282.96 35481.60 356
test_vis1_rt65.64 34864.09 35270.31 33566.09 40470.20 17761.16 38681.60 28838.65 39972.87 34869.66 39352.84 32560.04 39756.16 32677.77 38080.68 368
new_pmnet55.69 36957.66 37049.76 38575.47 37530.59 40559.56 38751.45 40443.62 39062.49 39275.48 38440.96 38149.15 40437.39 39872.52 38969.55 389
new-patchmatchnet70.10 31773.37 28460.29 37881.23 32416.95 41159.54 38874.62 33062.93 27980.97 27387.93 24862.83 27371.90 36355.24 33595.01 16392.00 191
testmvs5.91 3787.65 3810.72 3911.20 4130.37 41659.14 3890.67 4150.49 4091.11 4092.76 4080.94 4140.24 4101.02 4091.47 4071.55 406
N_pmnet70.20 31568.80 32974.38 30980.91 32784.81 3959.12 39076.45 32155.06 34375.31 33582.36 32955.74 31554.82 40047.02 37687.24 30783.52 331
YYNet170.06 31870.44 31168.90 34573.76 38453.42 34258.99 39167.20 37558.42 32387.10 15685.39 29159.82 28867.32 38159.79 30883.50 35285.96 298
MDA-MVSNet_test_wron70.05 31970.44 31168.88 34673.84 38353.47 34058.93 39267.28 37458.43 32287.09 15785.40 29059.80 28967.25 38259.66 30983.54 35185.92 300
test_f64.31 35465.85 34459.67 37966.54 40362.24 26157.76 39370.96 36040.13 39684.36 21482.09 33146.93 34751.67 40261.99 29481.89 36265.12 394
mvsany_test158.48 36756.47 37264.50 36765.90 40668.21 19656.95 39442.11 40938.30 40065.69 38277.19 37656.96 30859.35 39946.16 37958.96 40265.93 393
PVSNet_051.08 2256.10 36854.97 37359.48 38075.12 37853.28 34355.16 39561.89 38944.30 38659.16 39762.48 40054.22 32265.91 38835.40 39947.01 40359.25 399
E-PMN61.59 35961.62 36261.49 37566.81 40255.40 32853.77 39660.34 39566.80 25158.90 39965.50 39840.48 38266.12 38755.72 32986.25 32362.95 396
EMVS61.10 36260.81 36461.99 37365.96 40555.86 32553.10 39758.97 39867.06 24856.89 40263.33 39940.98 38067.03 38354.79 33886.18 32463.08 395
CHOSEN 280x42059.08 36656.52 37166.76 35876.51 36564.39 23149.62 39859.00 39743.86 38855.66 40368.41 39635.55 39168.21 38043.25 38676.78 38667.69 392
PMMVS255.64 37059.27 36944.74 38664.30 40812.32 41240.60 39949.79 40553.19 35265.06 38884.81 30053.60 32449.76 40332.68 40389.41 27972.15 385
tmp_tt20.25 37424.50 3777.49 3894.47 4128.70 41334.17 40025.16 4121.00 40732.43 40618.49 40439.37 3849.21 40821.64 40643.75 4044.57 404
MVEpermissive40.22 2351.82 37150.47 37455.87 38262.66 40951.91 35231.61 40139.28 41040.65 39550.76 40474.98 38656.24 31344.67 40533.94 40264.11 40071.04 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 37229.60 37533.06 38717.99 4113.84 41413.62 40273.92 3362.79 40518.29 40753.41 40228.53 40343.25 40622.56 40535.27 40552.11 402
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k20.81 37327.75 3760.00 3920.00 4150.00 4170.00 40385.44 2450.00 4100.00 41182.82 32381.46 1140.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas6.41 3768.55 3790.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41076.94 1600.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re6.65 3758.87 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41179.80 3530.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS37.39 40052.61 352
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
PC_three_145258.96 32090.06 9691.33 17380.66 12493.03 13875.78 16095.94 12692.48 168
No_MVS88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
eth-test20.00 415
eth-test0.00 415
ZD-MVS92.22 10180.48 6791.85 11671.22 20590.38 9192.98 12386.06 6096.11 681.99 9196.75 90
IU-MVS94.18 4672.64 14490.82 14656.98 33689.67 10885.78 5097.92 4693.28 135
test_241102_TWO93.71 5183.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 189
test_241102_ONE94.18 4672.65 14293.69 5283.62 4994.11 2293.78 10490.28 1495.50 46
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
GSMVS83.88 324
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35283.88 324
sam_mvs45.92 357
MTGPAbinary91.81 120
test_post3.10 40745.43 36277.22 351
patchmatchnet-post81.71 33745.93 35687.01 270
gm-plane-assit75.42 37644.97 38652.17 35872.36 39087.90 26054.10 341
test9_res80.83 10196.45 10290.57 228
agg_prior279.68 11496.16 11490.22 236
agg_prior91.58 12477.69 9690.30 16384.32 21693.18 132
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
test_prior86.32 10890.59 15271.99 15992.85 8894.17 9292.80 154
新几何182.95 19093.96 5578.56 8480.24 29655.45 34183.93 22891.08 18271.19 22688.33 25765.84 26293.07 21481.95 353
旧先验191.97 10871.77 16081.78 28691.84 15873.92 19393.65 20283.61 330
原ACMM184.60 14392.81 8674.01 12991.50 12562.59 28182.73 24890.67 20076.53 16794.25 8669.24 22995.69 14085.55 304
testdata286.43 28463.52 283
segment_acmp81.94 106
testdata79.54 24992.87 8172.34 15380.14 29759.91 31685.47 19491.75 16467.96 24185.24 30268.57 24392.18 23481.06 366
test1286.57 10390.74 14872.63 14690.69 14982.76 24779.20 13494.80 6895.32 14892.27 180
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 181
plane_prior593.61 5595.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 170
plane_prior192.83 85
n20.00 416
nn0.00 416
door-mid74.45 333
lessismore_v085.95 11791.10 14170.99 17170.91 36191.79 6794.42 6961.76 27592.93 14179.52 11793.03 21593.93 106
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
test1191.46 126
door72.57 348
HQP5-MVS70.66 172
BP-MVS77.30 145
HQP4-MVS80.56 28194.61 7493.56 128
HQP3-MVS92.68 9394.47 180
HQP2-MVS72.10 217
NP-MVS91.95 10974.55 12690.17 214
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 135
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16381.56 7190.02 9891.20 17882.40 9590.81 20173.58 18794.66 17694.56 76
DeepMVS_CXcopyleft24.13 38832.95 41029.49 40621.63 41312.07 40437.95 40545.07 40330.84 39819.21 40717.94 40733.06 40623.69 403