| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 22 | 93.73 64 | 85.72 34 | 96.79 1 | 95.51 9 | 88.86 16 | 95.63 10 | 96.99 10 | 84.81 72 | 93.16 136 | 91.10 2 | 97.53 72 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| DVP-MVS++ | | | 90.07 42 | 91.09 36 | 87.00 97 | 91.55 129 | 72.64 147 | 96.19 2 | 94.10 39 | 85.33 38 | 93.49 39 | 94.64 64 | 81.12 122 | 95.88 18 | 87.41 25 | 95.94 128 | 92.48 172 |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 14 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 50 | 96.29 19 | 88.16 35 | 94.17 96 | 86.07 48 | 98.48 18 | 97.22 17 |
|
| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 37 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 58 | 99.27 1 | 99.54 1 |
|
| LS3D | | | 90.60 34 | 90.34 51 | 91.38 28 | 89.03 185 | 84.23 49 | 93.58 6 | 94.68 17 | 90.65 8 | 90.33 94 | 93.95 101 | 84.50 74 | 95.37 54 | 80.87 104 | 95.50 145 | 94.53 80 |
|
| UA-Net | | | 91.49 19 | 91.53 24 | 91.39 27 | 94.98 35 | 82.95 58 | 93.52 7 | 92.79 94 | 88.22 22 | 88.53 133 | 97.64 3 | 83.45 86 | 94.55 83 | 86.02 51 | 98.60 13 | 96.67 25 |
|
| HPM-MVS |  | | 92.13 11 | 92.20 13 | 91.91 17 | 95.58 26 | 84.67 46 | 93.51 8 | 94.85 15 | 82.88 64 | 91.77 70 | 93.94 102 | 90.55 12 | 95.73 35 | 88.50 10 | 98.23 31 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 91.67 16 | 91.58 23 | 91.96 14 | 95.29 31 | 87.62 13 | 93.38 9 | 93.36 65 | 83.16 60 | 91.06 82 | 94.00 95 | 88.26 32 | 95.71 37 | 87.28 30 | 98.39 21 | 92.55 169 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 13 | 91.95 14 | 92.04 11 | 93.68 65 | 86.15 24 | 93.37 10 | 95.10 13 | 90.28 10 | 92.11 63 | 95.03 50 | 89.75 20 | 94.93 70 | 79.95 114 | 98.27 26 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMMP |  | | 91.91 14 | 91.87 19 | 92.03 12 | 95.53 27 | 85.91 28 | 93.35 11 | 94.16 32 | 82.52 67 | 92.39 61 | 94.14 89 | 89.15 25 | 95.62 39 | 87.35 27 | 98.24 30 | 94.56 77 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| HPM-MVS_fast | | | 92.50 8 | 92.54 9 | 92.37 6 | 95.93 16 | 85.81 33 | 92.99 12 | 94.23 27 | 85.21 40 | 92.51 58 | 95.13 48 | 90.65 9 | 95.34 55 | 88.06 12 | 98.15 37 | 95.95 40 |
|
| reproduce_model | | | 92.89 5 | 93.18 7 | 92.01 13 | 94.20 49 | 88.23 9 | 92.87 13 | 94.32 21 | 90.25 11 | 95.65 9 | 95.74 30 | 87.75 41 | 95.72 36 | 89.60 4 | 98.27 26 | 92.08 194 |
|
| SR-MVS-dyc-post | | | 92.41 9 | 92.41 10 | 92.39 5 | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 88.83 26 | 95.51 47 | 87.16 32 | 97.60 66 | 92.73 159 |
|
| RE-MVS-def | | | | 92.61 8 | | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 90.64 10 | | 87.16 32 | 97.60 66 | 92.73 159 |
|
| APDe-MVS |  | | 91.22 25 | 91.92 15 | 89.14 66 | 92.97 82 | 78.04 93 | 92.84 16 | 94.14 36 | 83.33 58 | 93.90 28 | 95.73 31 | 88.77 27 | 96.41 3 | 87.60 21 | 97.98 45 | 92.98 153 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSP-MVS | | | 89.08 66 | 88.16 78 | 91.83 20 | 95.76 18 | 86.14 25 | 92.75 17 | 93.90 48 | 78.43 116 | 89.16 121 | 92.25 159 | 72.03 228 | 96.36 4 | 88.21 11 | 90.93 263 | 92.98 153 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| mPP-MVS | | | 91.69 15 | 91.47 26 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 18 | 92.60 100 | 83.09 61 | 91.54 72 | 94.25 83 | 87.67 44 | 95.51 47 | 87.21 31 | 98.11 38 | 93.12 147 |
|
| XVS | | | 91.54 17 | 91.36 28 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 94.03 93 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 93 |
|
| X-MVStestdata | | | 85.04 125 | 82.70 176 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 16.05 420 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 93 |
|
| region2R | | | 91.44 22 | 91.30 34 | 91.87 19 | 95.75 19 | 85.90 29 | 92.63 21 | 93.30 71 | 81.91 72 | 90.88 88 | 94.21 84 | 87.75 41 | 95.87 20 | 87.60 21 | 97.71 60 | 93.83 112 |
|
| HFP-MVS | | | 91.30 23 | 91.39 27 | 91.02 33 | 95.43 29 | 84.66 47 | 92.58 22 | 93.29 72 | 81.99 70 | 91.47 73 | 93.96 99 | 88.35 31 | 95.56 42 | 87.74 16 | 97.74 59 | 92.85 156 |
|
| ACMMPR | | | 91.49 19 | 91.35 30 | 91.92 16 | 95.74 20 | 85.88 30 | 92.58 22 | 93.25 73 | 81.99 70 | 91.40 74 | 94.17 88 | 87.51 45 | 95.87 20 | 87.74 16 | 97.76 57 | 93.99 103 |
|
| SR-MVS | | | 92.23 10 | 92.34 11 | 91.91 17 | 94.89 38 | 87.85 10 | 92.51 24 | 93.87 51 | 88.20 23 | 93.24 42 | 94.02 94 | 90.15 16 | 95.67 38 | 86.82 36 | 97.34 76 | 92.19 190 |
|
| TSAR-MVS + MP. | | | 88.14 75 | 87.82 82 | 89.09 67 | 95.72 22 | 76.74 112 | 92.49 25 | 91.19 142 | 67.85 252 | 86.63 176 | 94.84 55 | 79.58 138 | 95.96 15 | 87.62 19 | 94.50 182 | 94.56 77 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| APD-MVS_3200maxsize | | | 92.05 12 | 92.24 12 | 91.48 25 | 93.02 80 | 85.17 39 | 92.47 26 | 95.05 14 | 87.65 27 | 93.21 43 | 94.39 77 | 90.09 17 | 95.08 66 | 86.67 38 | 97.60 66 | 94.18 96 |
|
| reproduce-ours | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 205 |
|
| our_new_method | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 205 |
|
| mvsmamba | | | 80.30 222 | 78.87 235 | 84.58 147 | 88.12 210 | 67.55 207 | 92.35 29 | 84.88 266 | 63.15 289 | 85.33 203 | 90.91 198 | 50.71 343 | 95.20 62 | 66.36 264 | 87.98 310 | 90.99 224 |
|
| MP-MVS |  | | 91.14 28 | 90.91 44 | 91.83 20 | 96.18 11 | 86.88 17 | 92.20 30 | 93.03 86 | 82.59 66 | 88.52 134 | 94.37 78 | 86.74 53 | 95.41 53 | 86.32 42 | 98.21 32 | 93.19 143 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 91.26 24 | 91.34 31 | 91.01 34 | 95.73 21 | 83.05 56 | 92.18 31 | 94.22 29 | 80.14 92 | 91.29 78 | 93.97 96 | 87.93 40 | 95.87 20 | 88.65 8 | 97.96 48 | 94.12 100 |
|
| CPTT-MVS | | | 89.39 58 | 88.98 69 | 90.63 40 | 95.09 33 | 86.95 16 | 92.09 32 | 92.30 108 | 79.74 96 | 87.50 157 | 92.38 152 | 81.42 119 | 93.28 132 | 83.07 78 | 97.24 79 | 91.67 210 |
|
| MTAPA | | | 91.52 18 | 91.60 22 | 91.29 30 | 96.59 4 | 86.29 21 | 92.02 33 | 91.81 125 | 84.07 49 | 92.00 66 | 94.40 76 | 86.63 54 | 95.28 58 | 88.59 9 | 98.31 24 | 92.30 183 |
|
| MVSFormer | | | 82.23 185 | 81.57 198 | 84.19 161 | 85.54 269 | 69.26 189 | 91.98 34 | 90.08 178 | 71.54 208 | 76.23 333 | 85.07 312 | 58.69 302 | 94.27 88 | 86.26 43 | 88.77 296 | 89.03 272 |
|
| test_djsdf | | | 89.62 54 | 89.01 67 | 91.45 26 | 92.36 97 | 82.98 57 | 91.98 34 | 90.08 178 | 71.54 208 | 94.28 24 | 96.54 16 | 81.57 117 | 94.27 88 | 86.26 43 | 96.49 100 | 97.09 19 |
|
| OurMVSNet-221017-0 | | | 90.01 46 | 89.74 56 | 90.83 36 | 93.16 78 | 80.37 72 | 91.91 36 | 93.11 79 | 81.10 81 | 95.32 14 | 97.24 7 | 72.94 214 | 94.85 72 | 85.07 58 | 97.78 56 | 97.26 15 |
|
| EGC-MVSNET | | | 74.79 286 | 69.99 328 | 89.19 65 | 94.89 38 | 87.00 15 | 91.89 37 | 86.28 237 | 1.09 421 | 2.23 423 | 95.98 27 | 81.87 114 | 89.48 241 | 79.76 116 | 95.96 125 | 91.10 222 |
|
| GST-MVS | | | 90.96 29 | 91.01 40 | 90.82 37 | 95.45 28 | 82.73 59 | 91.75 38 | 93.74 54 | 80.98 83 | 91.38 75 | 93.80 106 | 87.20 49 | 95.80 28 | 87.10 34 | 97.69 61 | 93.93 106 |
|
| EPP-MVSNet | | | 85.47 115 | 85.04 132 | 86.77 103 | 91.52 132 | 69.37 187 | 91.63 39 | 87.98 214 | 81.51 77 | 87.05 167 | 91.83 168 | 66.18 257 | 95.29 56 | 70.75 222 | 96.89 86 | 95.64 46 |
|
| MVSMamba_PlusPlus | | | 87.53 86 | 88.86 71 | 83.54 180 | 92.03 110 | 62.26 267 | 91.49 40 | 92.62 99 | 88.07 24 | 88.07 145 | 96.17 23 | 72.24 223 | 95.79 31 | 84.85 62 | 94.16 193 | 92.58 167 |
|
| SteuartSystems-ACMMP | | | 91.16 27 | 91.36 28 | 90.55 41 | 93.91 60 | 80.97 70 | 91.49 40 | 93.48 63 | 82.82 65 | 92.60 57 | 93.97 96 | 88.19 33 | 96.29 6 | 87.61 20 | 98.20 34 | 94.39 88 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 57 | 90.92 35 | 91.27 138 | 81.66 66 | 91.25 42 | 94.13 37 | 88.89 15 | 88.83 126 | 94.26 82 | 77.55 156 | 95.86 23 | 84.88 61 | 95.87 132 | 95.24 58 |
|
| IS-MVSNet | | | 86.66 97 | 86.82 100 | 86.17 118 | 92.05 109 | 66.87 215 | 91.21 43 | 88.64 202 | 86.30 33 | 89.60 114 | 92.59 145 | 69.22 242 | 94.91 71 | 73.89 190 | 97.89 52 | 96.72 24 |
|
| SF-MVS | | | 90.27 39 | 90.80 46 | 88.68 76 | 92.86 86 | 77.09 108 | 91.19 44 | 95.74 6 | 81.38 78 | 92.28 62 | 93.80 106 | 86.89 52 | 94.64 78 | 85.52 54 | 97.51 73 | 94.30 92 |
|
| tt0805 | | | 88.09 77 | 89.79 55 | 82.98 194 | 93.26 75 | 63.94 242 | 91.10 45 | 89.64 188 | 85.07 41 | 90.91 86 | 91.09 190 | 89.16 24 | 91.87 174 | 82.03 93 | 95.87 132 | 93.13 145 |
|
| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 46 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 6 | 80.16 133 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| SMA-MVS |  | | 90.31 38 | 90.48 50 | 89.83 54 | 95.31 30 | 79.52 81 | 90.98 47 | 93.24 74 | 75.37 155 | 92.84 51 | 95.28 44 | 85.58 67 | 96.09 8 | 87.92 14 | 97.76 57 | 93.88 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTMP | | | | | | | | 90.66 48 | 33.14 424 | | | | | | | | |
|
| test0726 | | | | | | 94.16 53 | 72.56 151 | 90.63 49 | 93.90 48 | 83.61 55 | 93.75 34 | 94.49 69 | 89.76 18 | | | | |
|
| testf1 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 245 | 74.12 185 | 96.10 119 | 94.45 83 |
|
| APD_test2 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 245 | 74.12 185 | 96.10 119 | 94.45 83 |
|
| DVP-MVS |  | | 90.06 43 | 91.32 32 | 86.29 111 | 94.16 53 | 72.56 151 | 90.54 52 | 91.01 146 | 83.61 55 | 93.75 34 | 94.65 61 | 89.76 18 | 95.78 32 | 86.42 39 | 97.97 46 | 90.55 241 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 86.79 102 | 94.25 48 | 72.45 155 | 90.54 52 | 94.10 39 | | | | | 95.88 18 | 86.42 39 | 97.97 46 | 92.02 197 |
|
| anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 8 | 89.82 171 | 86.67 18 | 90.51 54 | 90.20 175 | 69.87 229 | 95.06 15 | 96.14 25 | 84.28 77 | 93.07 140 | 87.68 18 | 96.34 106 | 97.09 19 |
|
| SED-MVS | | | 90.46 37 | 91.64 21 | 86.93 99 | 94.18 50 | 72.65 145 | 90.47 55 | 93.69 56 | 83.77 52 | 94.11 26 | 94.27 79 | 90.28 14 | 95.84 24 | 86.03 49 | 97.92 49 | 92.29 184 |
|
| OPU-MVS | | | | | 88.27 82 | 91.89 115 | 77.83 97 | 90.47 55 | | | | 91.22 185 | 81.12 122 | 94.68 76 | 74.48 180 | 95.35 148 | 92.29 184 |
|
| CS-MVS | | | 88.14 75 | 87.67 84 | 89.54 60 | 89.56 173 | 79.18 82 | 90.47 55 | 94.77 16 | 79.37 103 | 84.32 226 | 89.33 237 | 83.87 79 | 94.53 84 | 82.45 88 | 94.89 169 | 94.90 65 |
|
| balanced_conf03 | | | 84.80 130 | 85.40 126 | 83.00 193 | 88.95 188 | 61.44 274 | 90.42 58 | 92.37 106 | 71.48 210 | 88.72 129 | 93.13 125 | 70.16 238 | 95.15 63 | 79.26 124 | 94.11 194 | 92.41 176 |
|
| EC-MVSNet | | | 88.01 78 | 88.32 77 | 87.09 95 | 89.28 180 | 72.03 161 | 90.31 59 | 96.31 4 | 80.88 84 | 85.12 207 | 89.67 233 | 84.47 75 | 95.46 50 | 82.56 87 | 96.26 111 | 93.77 118 |
|
| PMVS |  | 80.48 6 | 90.08 41 | 90.66 48 | 88.34 81 | 96.71 3 | 92.97 2 | 90.31 59 | 89.57 191 | 88.51 21 | 90.11 96 | 95.12 49 | 90.98 6 | 88.92 253 | 77.55 146 | 97.07 83 | 83.13 352 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| APD-MVS |  | | 89.54 56 | 89.63 58 | 89.26 64 | 92.57 91 | 81.34 68 | 90.19 61 | 93.08 82 | 80.87 85 | 91.13 80 | 93.19 122 | 86.22 62 | 95.97 14 | 82.23 92 | 97.18 81 | 90.45 243 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PGM-MVS | | | 91.20 26 | 90.95 43 | 91.93 15 | 95.67 23 | 85.85 31 | 90.00 62 | 93.90 48 | 80.32 89 | 91.74 71 | 94.41 75 | 88.17 34 | 95.98 13 | 86.37 41 | 97.99 43 | 93.96 105 |
|
| LPG-MVS_test | | | 91.47 21 | 91.68 20 | 90.82 37 | 94.75 41 | 81.69 63 | 90.00 62 | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 59 |
|
| v7n | | | 90.13 40 | 90.96 42 | 87.65 91 | 91.95 112 | 71.06 173 | 89.99 64 | 93.05 83 | 86.53 31 | 94.29 22 | 96.27 20 | 82.69 93 | 94.08 99 | 86.25 45 | 97.63 63 | 97.82 8 |
|
| APD_test1 | | | 88.40 71 | 87.91 80 | 89.88 51 | 89.50 175 | 86.65 20 | 89.98 65 | 91.91 120 | 84.26 47 | 90.87 89 | 93.92 103 | 82.18 106 | 89.29 249 | 73.75 193 | 94.81 173 | 93.70 120 |
|
| ACMMP_NAP | | | 90.65 32 | 91.07 39 | 89.42 61 | 95.93 16 | 79.54 80 | 89.95 66 | 93.68 58 | 77.65 126 | 91.97 67 | 94.89 53 | 88.38 29 | 95.45 51 | 89.27 5 | 97.87 53 | 93.27 139 |
|
| QAPM | | | 82.59 179 | 82.59 180 | 82.58 205 | 86.44 247 | 66.69 216 | 89.94 67 | 90.36 165 | 67.97 249 | 84.94 213 | 92.58 147 | 72.71 217 | 92.18 164 | 70.63 225 | 87.73 314 | 88.85 275 |
|
| mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 29 | 93.51 67 | 84.79 44 | 89.89 68 | 90.63 156 | 70.00 228 | 94.55 19 | 96.67 14 | 87.94 39 | 93.59 119 | 84.27 68 | 95.97 124 | 95.52 49 |
|
| SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 115 | 91.63 123 | 77.07 109 | 89.82 69 | 93.77 53 | 78.90 109 | 92.88 48 | 92.29 157 | 86.11 63 | 90.22 221 | 86.24 46 | 97.24 79 | 91.36 217 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| FE-MVS | | | 79.98 230 | 78.86 236 | 83.36 183 | 86.47 246 | 66.45 219 | 89.73 70 | 84.74 270 | 72.80 192 | 84.22 233 | 91.38 181 | 44.95 377 | 93.60 118 | 63.93 288 | 91.50 252 | 90.04 254 |
|
| jajsoiax | | | 89.41 57 | 88.81 73 | 91.19 32 | 93.38 71 | 84.72 45 | 89.70 71 | 90.29 172 | 69.27 232 | 94.39 20 | 96.38 18 | 86.02 65 | 93.52 123 | 83.96 70 | 95.92 130 | 95.34 53 |
|
| HPM-MVS++ |  | | 88.93 68 | 88.45 76 | 90.38 44 | 94.92 36 | 85.85 31 | 89.70 71 | 91.27 139 | 78.20 118 | 86.69 175 | 92.28 158 | 80.36 131 | 95.06 67 | 86.17 47 | 96.49 100 | 90.22 247 |
|
| RPSCF | | | 88.00 79 | 86.93 97 | 91.22 31 | 90.08 164 | 89.30 5 | 89.68 73 | 91.11 143 | 79.26 104 | 89.68 108 | 94.81 59 | 82.44 97 | 87.74 267 | 76.54 158 | 88.74 298 | 96.61 27 |
|
| UniMVSNet_ETH3D | | | 89.12 65 | 90.72 47 | 84.31 157 | 97.00 2 | 64.33 238 | 89.67 74 | 88.38 205 | 88.84 17 | 94.29 22 | 97.57 4 | 90.48 13 | 91.26 188 | 72.57 210 | 97.65 62 | 97.34 14 |
|
| ACMH+ | | 77.89 11 | 90.73 31 | 91.50 25 | 88.44 78 | 93.00 81 | 76.26 119 | 89.65 75 | 95.55 8 | 87.72 26 | 93.89 30 | 94.94 52 | 91.62 3 | 93.44 127 | 78.35 132 | 98.76 4 | 95.61 48 |
|
| ACMM | | 79.39 9 | 90.65 32 | 90.99 41 | 89.63 57 | 95.03 34 | 83.53 51 | 89.62 76 | 93.35 66 | 79.20 105 | 93.83 31 | 93.60 116 | 90.81 7 | 92.96 143 | 85.02 60 | 98.45 19 | 92.41 176 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH | | 76.49 14 | 89.34 59 | 91.14 35 | 83.96 164 | 92.50 94 | 70.36 179 | 89.55 77 | 93.84 52 | 81.89 73 | 94.70 17 | 95.44 40 | 90.69 8 | 88.31 263 | 83.33 74 | 98.30 25 | 93.20 142 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Gipuma |  | | 84.44 138 | 86.33 105 | 78.78 263 | 84.20 293 | 73.57 135 | 89.55 77 | 90.44 161 | 84.24 48 | 84.38 223 | 94.89 53 | 76.35 177 | 80.40 346 | 76.14 165 | 96.80 91 | 82.36 362 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| WR-MVS_H | | | 89.91 50 | 91.31 33 | 85.71 127 | 96.32 9 | 62.39 263 | 89.54 79 | 93.31 70 | 90.21 12 | 95.57 11 | 95.66 33 | 81.42 119 | 95.90 17 | 80.94 103 | 98.80 3 | 98.84 5 |
|
| AllTest | | | 87.97 80 | 87.40 89 | 89.68 55 | 91.59 124 | 83.40 52 | 89.50 80 | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 181 | 70.81 219 | 96.14 116 | 94.16 97 |
|
| XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 43 | 94.91 37 | 84.50 48 | 89.49 81 | 93.98 43 | 79.68 97 | 92.09 64 | 93.89 104 | 83.80 81 | 93.10 139 | 82.67 86 | 98.04 39 | 93.64 124 |
|
| HQP_MVS | | | 87.75 84 | 87.43 88 | 88.70 75 | 93.45 68 | 76.42 116 | 89.45 82 | 93.61 59 | 79.44 101 | 86.55 177 | 92.95 134 | 74.84 187 | 95.22 59 | 80.78 106 | 95.83 134 | 94.46 81 |
|
| plane_prior2 | | | | | | | | 89.45 82 | | 79.44 101 | | | | | | | |
|
| SPE-MVS-test | | | 87.00 90 | 86.43 104 | 88.71 74 | 89.46 176 | 77.46 102 | 89.42 84 | 95.73 7 | 77.87 124 | 81.64 279 | 87.25 274 | 82.43 98 | 94.53 84 | 77.65 144 | 96.46 102 | 94.14 99 |
|
| PHI-MVS | | | 86.38 100 | 85.81 117 | 88.08 84 | 88.44 203 | 77.34 105 | 89.35 85 | 93.05 83 | 73.15 187 | 84.76 216 | 87.70 264 | 78.87 142 | 94.18 94 | 80.67 108 | 96.29 107 | 92.73 159 |
|
| ACMP | | 79.16 10 | 90.54 35 | 90.60 49 | 90.35 45 | 94.36 46 | 80.98 69 | 89.16 86 | 94.05 41 | 79.03 108 | 92.87 49 | 93.74 111 | 90.60 11 | 95.21 61 | 82.87 82 | 98.76 4 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DPE-MVS |  | | 90.53 36 | 91.08 37 | 88.88 69 | 93.38 71 | 78.65 87 | 89.15 87 | 94.05 41 | 84.68 45 | 93.90 28 | 94.11 91 | 88.13 36 | 96.30 5 | 84.51 66 | 97.81 55 | 91.70 209 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PS-CasMVS | | | 90.06 43 | 91.92 15 | 84.47 150 | 96.56 6 | 58.83 310 | 89.04 88 | 92.74 96 | 91.40 6 | 96.12 5 | 96.06 26 | 87.23 48 | 95.57 41 | 79.42 122 | 98.74 6 | 99.00 2 |
|
| PEN-MVS | | | 90.03 45 | 91.88 18 | 84.48 149 | 96.57 5 | 58.88 307 | 88.95 89 | 93.19 75 | 91.62 5 | 96.01 7 | 96.16 24 | 87.02 50 | 95.60 40 | 78.69 128 | 98.72 9 | 98.97 3 |
|
| DTE-MVSNet | | | 89.98 47 | 91.91 17 | 84.21 159 | 96.51 7 | 57.84 318 | 88.93 90 | 92.84 93 | 91.92 4 | 96.16 4 | 96.23 21 | 86.95 51 | 95.99 12 | 79.05 125 | 98.57 15 | 98.80 6 |
|
| Anonymous20231211 | | | 88.40 71 | 89.62 59 | 84.73 143 | 90.46 157 | 65.27 228 | 88.86 91 | 93.02 87 | 87.15 28 | 93.05 46 | 97.10 8 | 82.28 105 | 92.02 169 | 76.70 156 | 97.99 43 | 96.88 23 |
|
| F-COLMAP | | | 84.97 129 | 83.42 162 | 89.63 57 | 92.39 96 | 83.40 52 | 88.83 92 | 91.92 119 | 73.19 186 | 80.18 301 | 89.15 241 | 77.04 164 | 93.28 132 | 65.82 272 | 92.28 235 | 92.21 189 |
|
| 9.14 | | | | 89.29 62 | | 91.84 119 | | 88.80 93 | 95.32 12 | 75.14 157 | 91.07 81 | 92.89 136 | 87.27 47 | 93.78 109 | 83.69 73 | 97.55 69 | |
|
| 3Dnovator | | 80.37 7 | 84.80 130 | 84.71 139 | 85.06 137 | 86.36 252 | 74.71 127 | 88.77 94 | 90.00 180 | 75.65 149 | 84.96 211 | 93.17 123 | 74.06 197 | 91.19 190 | 78.28 134 | 91.09 257 | 89.29 266 |
|
| API-MVS | | | 82.28 184 | 82.61 179 | 81.30 227 | 86.29 255 | 69.79 181 | 88.71 95 | 87.67 216 | 78.42 117 | 82.15 267 | 84.15 323 | 77.98 148 | 91.59 179 | 65.39 275 | 92.75 226 | 82.51 361 |
|
| MM | | | 87.64 85 | 87.15 90 | 89.09 67 | 89.51 174 | 76.39 118 | 88.68 96 | 86.76 233 | 84.54 46 | 83.58 243 | 93.78 108 | 73.36 210 | 96.48 2 | 87.98 13 | 96.21 112 | 94.41 87 |
|
| CP-MVSNet | | | 89.27 62 | 90.91 44 | 84.37 151 | 96.34 8 | 58.61 313 | 88.66 97 | 92.06 114 | 90.78 7 | 95.67 8 | 95.17 47 | 81.80 115 | 95.54 44 | 79.00 126 | 98.69 10 | 98.95 4 |
|
| DeepC-MVS | | 82.31 4 | 89.15 64 | 89.08 66 | 89.37 62 | 93.64 66 | 79.07 83 | 88.54 98 | 94.20 30 | 73.53 174 | 89.71 107 | 94.82 56 | 85.09 68 | 95.77 34 | 84.17 69 | 98.03 41 | 93.26 140 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OpenMVS |  | 76.72 13 | 81.98 194 | 82.00 187 | 81.93 214 | 84.42 288 | 68.22 200 | 88.50 99 | 89.48 192 | 66.92 259 | 81.80 275 | 91.86 165 | 72.59 219 | 90.16 223 | 71.19 218 | 91.25 256 | 87.40 296 |
|
| ambc | | | | | 82.98 194 | 90.55 156 | 64.86 232 | 88.20 100 | 89.15 196 | | 89.40 118 | 93.96 99 | 71.67 231 | 91.38 187 | 78.83 127 | 96.55 97 | 92.71 162 |
|
| PAPM_NR | | | 83.23 169 | 83.19 167 | 83.33 184 | 90.90 148 | 65.98 223 | 88.19 101 | 90.78 152 | 78.13 120 | 80.87 289 | 87.92 260 | 73.49 206 | 92.42 156 | 70.07 230 | 88.40 301 | 91.60 212 |
|
| MP-MVS-pluss | | | 90.81 30 | 91.08 37 | 89.99 50 | 95.97 14 | 79.88 75 | 88.13 102 | 94.51 18 | 75.79 147 | 92.94 47 | 94.96 51 | 88.36 30 | 95.01 68 | 90.70 3 | 98.40 20 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| FA-MVS(test-final) | | | 83.13 172 | 83.02 171 | 83.43 181 | 86.16 261 | 66.08 222 | 88.00 103 | 88.36 206 | 75.55 151 | 85.02 209 | 92.75 142 | 65.12 262 | 92.50 155 | 74.94 179 | 91.30 255 | 91.72 207 |
|
| CSCG | | | 86.26 101 | 86.47 103 | 85.60 129 | 90.87 149 | 74.26 131 | 87.98 104 | 91.85 121 | 80.35 88 | 89.54 117 | 88.01 256 | 79.09 140 | 92.13 165 | 75.51 171 | 95.06 161 | 90.41 244 |
|
| PS-MVSNAJss | | | 88.31 73 | 87.90 81 | 89.56 59 | 93.31 73 | 77.96 96 | 87.94 105 | 91.97 117 | 70.73 219 | 94.19 25 | 96.67 14 | 76.94 166 | 94.57 81 | 83.07 78 | 96.28 108 | 96.15 32 |
|
| nrg030 | | | 87.85 82 | 88.49 75 | 85.91 121 | 90.07 166 | 69.73 183 | 87.86 106 | 94.20 30 | 74.04 166 | 92.70 56 | 94.66 60 | 85.88 66 | 91.50 180 | 79.72 117 | 97.32 77 | 96.50 29 |
|
| SixPastTwentyTwo | | | 87.20 89 | 87.45 87 | 86.45 108 | 92.52 93 | 69.19 192 | 87.84 107 | 88.05 212 | 81.66 75 | 94.64 18 | 96.53 17 | 65.94 258 | 94.75 74 | 83.02 80 | 96.83 89 | 95.41 51 |
|
| Effi-MVS+-dtu | | | 85.82 111 | 83.38 163 | 93.14 4 | 87.13 233 | 91.15 3 | 87.70 108 | 88.42 204 | 74.57 162 | 83.56 244 | 85.65 298 | 78.49 145 | 94.21 92 | 72.04 213 | 92.88 224 | 94.05 102 |
|
| sasdasda | | | 85.50 113 | 86.14 109 | 83.58 176 | 87.97 211 | 67.13 209 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 267 | 86.45 58 | 91.06 195 | 75.76 169 | 93.76 202 | 92.54 170 |
|
| canonicalmvs | | | 85.50 113 | 86.14 109 | 83.58 176 | 87.97 211 | 67.13 209 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 267 | 86.45 58 | 91.06 195 | 75.76 169 | 93.76 202 | 92.54 170 |
|
| DP-MVS | | | 88.60 70 | 89.01 67 | 87.36 93 | 91.30 136 | 77.50 101 | 87.55 109 | 92.97 89 | 87.95 25 | 89.62 111 | 92.87 137 | 84.56 73 | 93.89 105 | 77.65 144 | 96.62 95 | 90.70 235 |
|
| OMC-MVS | | | 88.19 74 | 87.52 85 | 90.19 48 | 91.94 114 | 81.68 65 | 87.49 112 | 93.17 76 | 76.02 141 | 88.64 130 | 91.22 185 | 84.24 78 | 93.37 130 | 77.97 142 | 97.03 84 | 95.52 49 |
|
| Vis-MVSNet |  | | 86.86 92 | 86.58 101 | 87.72 89 | 92.09 107 | 77.43 104 | 87.35 113 | 92.09 113 | 78.87 110 | 84.27 231 | 94.05 92 | 78.35 146 | 93.65 112 | 80.54 110 | 91.58 251 | 92.08 194 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| RRT-MVS | | | 82.97 174 | 83.44 161 | 81.57 224 | 85.06 276 | 58.04 316 | 87.20 114 | 90.37 164 | 77.88 123 | 88.59 131 | 93.70 113 | 63.17 274 | 93.05 141 | 76.49 159 | 88.47 300 | 93.62 125 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 102 | 85.65 122 | 87.96 87 | 91.30 136 | 76.92 110 | 87.19 115 | 91.99 116 | 70.56 220 | 84.96 211 | 90.69 207 | 80.01 135 | 95.14 64 | 78.37 131 | 95.78 138 | 91.82 203 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EPNet | | | 80.37 219 | 78.41 245 | 86.23 113 | 76.75 373 | 73.28 139 | 87.18 116 | 77.45 319 | 76.24 138 | 68.14 384 | 88.93 244 | 65.41 261 | 93.85 106 | 69.47 235 | 96.12 118 | 91.55 214 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| plane_prior | | | | | | | 76.42 116 | 87.15 117 | | 75.94 145 | | | | | | 95.03 162 | |
|
| TAPA-MVS | | 77.73 12 | 85.71 112 | 84.83 135 | 88.37 80 | 88.78 194 | 79.72 77 | 87.15 117 | 93.50 62 | 69.17 233 | 85.80 195 | 89.56 234 | 80.76 126 | 92.13 165 | 73.21 206 | 95.51 144 | 93.25 141 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| tttt0517 | | | 81.07 206 | 79.58 229 | 85.52 130 | 88.99 187 | 66.45 219 | 87.03 119 | 75.51 336 | 73.76 170 | 88.32 141 | 90.20 221 | 37.96 397 | 94.16 98 | 79.36 123 | 95.13 157 | 95.93 41 |
|
| test_fmvsmconf0.01_n | | | 86.68 96 | 86.52 102 | 87.18 94 | 85.94 264 | 78.30 89 | 86.93 120 | 92.20 110 | 65.94 264 | 89.16 121 | 93.16 124 | 83.10 89 | 89.89 234 | 87.81 15 | 94.43 185 | 93.35 134 |
|
| mvs5depth | | | 83.82 157 | 84.54 144 | 81.68 222 | 82.23 320 | 68.65 196 | 86.89 121 | 89.90 182 | 80.02 94 | 87.74 152 | 97.86 2 | 64.19 267 | 82.02 334 | 76.37 160 | 95.63 143 | 94.35 89 |
|
| UGNet | | | 82.78 176 | 81.64 193 | 86.21 116 | 86.20 258 | 76.24 120 | 86.86 122 | 85.68 249 | 77.07 133 | 73.76 356 | 92.82 138 | 69.64 239 | 91.82 176 | 69.04 243 | 93.69 206 | 90.56 240 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 46 | 94.47 43 | 85.95 27 | 86.84 123 | 93.91 47 | 80.07 93 | 86.75 172 | 93.26 121 | 93.64 2 | 90.93 199 | 84.60 65 | 90.75 270 | 93.97 104 |
|
| GBi-Net | | | 82.02 192 | 82.07 185 | 81.85 217 | 86.38 249 | 61.05 281 | 86.83 124 | 88.27 209 | 72.43 196 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 210 | 65.95 268 | 93.34 211 | 93.82 113 |
|
| test1 | | | 82.02 192 | 82.07 185 | 81.85 217 | 86.38 249 | 61.05 281 | 86.83 124 | 88.27 209 | 72.43 196 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 210 | 65.95 268 | 93.34 211 | 93.82 113 |
|
| FMVSNet1 | | | 84.55 136 | 85.45 125 | 81.85 217 | 90.27 161 | 61.05 281 | 86.83 124 | 88.27 209 | 78.57 115 | 89.66 110 | 95.64 34 | 75.43 180 | 90.68 210 | 69.09 241 | 95.33 149 | 93.82 113 |
|
| OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 76 | 86.76 127 | 92.78 95 | 78.78 111 | 92.51 58 | 93.64 115 | 88.13 36 | 93.84 108 | 84.83 63 | 97.55 69 | 94.10 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MSLP-MVS++ | | | 85.00 128 | 86.03 111 | 81.90 215 | 91.84 119 | 71.56 170 | 86.75 128 | 93.02 87 | 75.95 144 | 87.12 161 | 89.39 235 | 77.98 148 | 89.40 248 | 77.46 147 | 94.78 174 | 84.75 324 |
|
| 114514_t | | | 83.10 173 | 82.54 181 | 84.77 142 | 92.90 83 | 69.10 194 | 86.65 129 | 90.62 157 | 54.66 359 | 81.46 281 | 90.81 204 | 76.98 165 | 94.38 87 | 72.62 209 | 96.18 114 | 90.82 231 |
|
| v10 | | | 86.54 98 | 87.10 92 | 84.84 139 | 88.16 209 | 63.28 249 | 86.64 130 | 92.20 110 | 75.42 154 | 92.81 53 | 94.50 68 | 74.05 198 | 94.06 100 | 83.88 71 | 96.28 108 | 97.17 18 |
|
| NCCC | | | 87.36 87 | 86.87 98 | 88.83 70 | 92.32 100 | 78.84 86 | 86.58 131 | 91.09 144 | 78.77 112 | 84.85 215 | 90.89 199 | 80.85 125 | 95.29 56 | 81.14 101 | 95.32 150 | 92.34 181 |
|
| Effi-MVS+ | | | 83.90 156 | 84.01 155 | 83.57 178 | 87.22 231 | 65.61 227 | 86.55 132 | 92.40 103 | 78.64 114 | 81.34 284 | 84.18 322 | 83.65 84 | 92.93 145 | 74.22 182 | 87.87 312 | 92.17 191 |
|
| MVS_0304 | | | 85.37 117 | 84.58 142 | 87.75 88 | 85.28 272 | 73.36 136 | 86.54 133 | 85.71 248 | 77.56 129 | 81.78 277 | 92.47 150 | 70.29 236 | 96.02 11 | 85.59 53 | 95.96 125 | 93.87 110 |
|
| v8 | | | 86.22 103 | 86.83 99 | 84.36 153 | 87.82 216 | 62.35 265 | 86.42 134 | 91.33 137 | 76.78 135 | 92.73 55 | 94.48 70 | 73.41 207 | 93.72 111 | 83.10 77 | 95.41 146 | 97.01 21 |
|
| save fliter | | | | | | 93.75 63 | 77.44 103 | 86.31 135 | 89.72 185 | 70.80 218 | | | | | | | |
|
| AdaColmap |  | | 83.66 160 | 83.69 160 | 83.57 178 | 90.05 167 | 72.26 158 | 86.29 136 | 90.00 180 | 78.19 119 | 81.65 278 | 87.16 276 | 83.40 87 | 94.24 91 | 61.69 307 | 94.76 177 | 84.21 334 |
|
| MonoMVSNet | | | 76.66 263 | 77.26 255 | 74.86 315 | 79.86 348 | 54.34 345 | 86.26 137 | 86.08 241 | 71.08 216 | 85.59 198 | 88.68 247 | 53.95 329 | 85.93 298 | 63.86 289 | 80.02 383 | 84.32 330 |
|
| MGCFI-Net | | | 85.04 125 | 85.95 112 | 82.31 211 | 87.52 225 | 63.59 245 | 86.23 138 | 93.96 44 | 73.46 175 | 88.07 145 | 87.83 262 | 86.46 57 | 90.87 204 | 76.17 164 | 93.89 200 | 92.47 174 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 180 | 81.93 188 | 84.50 148 | 87.68 220 | 73.35 137 | 86.14 139 | 77.70 317 | 61.64 306 | 85.02 209 | 91.62 175 | 77.75 151 | 86.24 291 | 82.79 84 | 87.07 321 | 93.91 108 |
|
| BP-MVS1 | | | 82.81 175 | 81.67 192 | 86.23 113 | 87.88 215 | 68.53 197 | 86.06 140 | 84.36 272 | 75.65 149 | 85.14 206 | 90.19 222 | 45.84 366 | 94.42 86 | 85.18 57 | 94.72 178 | 95.75 43 |
|
| XVG-OURS | | | 89.18 63 | 88.83 72 | 90.23 47 | 94.28 47 | 86.11 26 | 85.91 141 | 93.60 61 | 80.16 91 | 89.13 123 | 93.44 118 | 83.82 80 | 90.98 197 | 83.86 72 | 95.30 153 | 93.60 127 |
|
| PLC |  | 73.85 16 | 82.09 190 | 80.31 217 | 87.45 92 | 90.86 150 | 80.29 73 | 85.88 142 | 90.65 155 | 68.17 246 | 76.32 332 | 86.33 288 | 73.12 213 | 92.61 153 | 61.40 310 | 90.02 281 | 89.44 261 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| mmtdpeth | | | 85.13 123 | 85.78 119 | 83.17 190 | 84.65 283 | 74.71 127 | 85.87 143 | 90.35 166 | 77.94 121 | 83.82 238 | 96.96 12 | 77.75 151 | 80.03 349 | 78.44 129 | 96.21 112 | 94.79 73 |
|
| GeoE | | | 85.45 116 | 85.81 117 | 84.37 151 | 90.08 164 | 67.07 211 | 85.86 144 | 91.39 135 | 72.33 201 | 87.59 155 | 90.25 220 | 84.85 71 | 92.37 159 | 78.00 140 | 91.94 244 | 93.66 121 |
|
| test_fmvsmconf0.1_n | | | 86.18 105 | 85.88 115 | 87.08 96 | 85.26 273 | 78.25 90 | 85.82 145 | 91.82 123 | 65.33 278 | 88.55 132 | 92.35 156 | 82.62 96 | 89.80 236 | 86.87 35 | 94.32 188 | 93.18 144 |
|
| FC-MVSNet-test | | | 85.93 109 | 87.05 94 | 82.58 205 | 92.25 101 | 56.44 329 | 85.75 146 | 93.09 81 | 77.33 130 | 91.94 68 | 94.65 61 | 74.78 189 | 93.41 129 | 75.11 177 | 98.58 14 | 97.88 7 |
|
| MAR-MVS | | | 80.24 224 | 78.74 240 | 84.73 143 | 86.87 243 | 78.18 92 | 85.75 146 | 87.81 215 | 65.67 273 | 77.84 320 | 78.50 376 | 73.79 201 | 90.53 214 | 61.59 309 | 90.87 266 | 85.49 317 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| EU-MVSNet | | | 75.12 280 | 74.43 282 | 77.18 291 | 83.11 316 | 59.48 299 | 85.71 148 | 82.43 289 | 39.76 412 | 85.64 197 | 88.76 245 | 44.71 379 | 87.88 266 | 73.86 191 | 85.88 338 | 84.16 335 |
|
| LF4IMVS | | | 82.75 177 | 81.93 188 | 85.19 134 | 82.08 321 | 80.15 74 | 85.53 149 | 88.76 200 | 68.01 247 | 85.58 199 | 87.75 263 | 71.80 229 | 86.85 281 | 74.02 188 | 93.87 201 | 88.58 277 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 186 | 81.51 200 | 84.32 156 | 86.56 245 | 73.35 137 | 85.46 150 | 77.30 321 | 61.81 302 | 84.51 219 | 90.88 201 | 77.36 158 | 86.21 293 | 82.72 85 | 86.97 326 | 93.38 133 |
|
| K. test v3 | | | 85.14 122 | 84.73 136 | 86.37 109 | 91.13 143 | 69.63 185 | 85.45 151 | 76.68 328 | 84.06 50 | 92.44 60 | 96.99 10 | 62.03 280 | 94.65 77 | 80.58 109 | 93.24 215 | 94.83 72 |
|
| VDDNet | | | 84.35 140 | 85.39 127 | 81.25 228 | 95.13 32 | 59.32 300 | 85.42 152 | 81.11 299 | 86.41 32 | 87.41 158 | 96.21 22 | 73.61 202 | 90.61 213 | 66.33 265 | 96.85 87 | 93.81 116 |
|
| test_fmvsmconf_n | | | 85.88 110 | 85.51 124 | 86.99 98 | 84.77 281 | 78.21 91 | 85.40 153 | 91.39 135 | 65.32 279 | 87.72 153 | 91.81 170 | 82.33 101 | 89.78 237 | 86.68 37 | 94.20 191 | 92.99 152 |
|
| CNVR-MVS | | | 87.81 83 | 87.68 83 | 88.21 83 | 92.87 84 | 77.30 107 | 85.25 154 | 91.23 140 | 77.31 131 | 87.07 166 | 91.47 179 | 82.94 91 | 94.71 75 | 84.67 64 | 96.27 110 | 92.62 166 |
|
| LFMVS | | | 80.15 227 | 80.56 213 | 78.89 261 | 89.19 183 | 55.93 331 | 85.22 155 | 73.78 348 | 82.96 63 | 84.28 230 | 92.72 143 | 57.38 311 | 90.07 230 | 63.80 290 | 95.75 139 | 90.68 236 |
|
| fmvsm_s_conf0.1_n | | | 82.17 188 | 81.59 196 | 83.94 166 | 86.87 243 | 71.57 169 | 85.19 156 | 77.42 320 | 62.27 300 | 84.47 222 | 91.33 182 | 76.43 174 | 85.91 300 | 83.14 75 | 87.14 319 | 94.33 91 |
|
| test_fmvsmvis_n_1920 | | | 85.22 119 | 85.36 128 | 84.81 140 | 85.80 266 | 76.13 122 | 85.15 157 | 92.32 107 | 61.40 308 | 91.33 76 | 90.85 202 | 83.76 83 | 86.16 295 | 84.31 67 | 93.28 214 | 92.15 192 |
|
| FIs | | | 85.35 118 | 86.27 106 | 82.60 204 | 91.86 116 | 57.31 322 | 85.10 158 | 93.05 83 | 75.83 146 | 91.02 83 | 93.97 96 | 73.57 203 | 92.91 147 | 73.97 189 | 98.02 42 | 97.58 12 |
|
| HQP-NCC | | | | | | 91.19 139 | | 84.77 159 | | 73.30 182 | 80.55 293 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 139 | | 84.77 159 | | 73.30 182 | 80.55 293 | | | | | | |
|
| HQP-MVS | | | 84.61 134 | 84.06 154 | 86.27 112 | 91.19 139 | 70.66 175 | 84.77 159 | 92.68 97 | 73.30 182 | 80.55 293 | 90.17 225 | 72.10 224 | 94.61 79 | 77.30 151 | 94.47 183 | 93.56 130 |
|
| fmvsm_s_conf0.5_n | | | 81.91 196 | 81.30 203 | 83.75 170 | 86.02 263 | 71.56 170 | 84.73 162 | 77.11 324 | 62.44 297 | 84.00 235 | 90.68 208 | 76.42 175 | 85.89 302 | 83.14 75 | 87.11 320 | 93.81 116 |
|
| ab-mvs | | | 79.67 232 | 80.56 213 | 76.99 292 | 88.48 201 | 56.93 325 | 84.70 163 | 86.06 242 | 68.95 237 | 80.78 290 | 93.08 126 | 75.30 182 | 84.62 314 | 56.78 333 | 90.90 264 | 89.43 262 |
|
| pmmvs6 | | | 86.52 99 | 88.06 79 | 81.90 215 | 92.22 103 | 62.28 266 | 84.66 164 | 89.15 196 | 83.54 57 | 89.85 104 | 97.32 5 | 88.08 38 | 86.80 282 | 70.43 227 | 97.30 78 | 96.62 26 |
|
| test_prior4 | | | | | | | 78.97 84 | 84.59 165 | | | | | | | | | |
|
| Anonymous20240529 | | | 86.20 104 | 87.13 91 | 83.42 182 | 90.19 162 | 64.55 236 | 84.55 166 | 90.71 153 | 85.85 36 | 89.94 103 | 95.24 46 | 82.13 107 | 90.40 217 | 69.19 240 | 96.40 105 | 95.31 55 |
|
| baseline | | | 85.20 121 | 85.93 113 | 83.02 192 | 86.30 254 | 62.37 264 | 84.55 166 | 93.96 44 | 74.48 163 | 87.12 161 | 92.03 162 | 82.30 103 | 91.94 170 | 78.39 130 | 94.21 190 | 94.74 74 |
|
| alignmvs | | | 83.94 155 | 83.98 156 | 83.80 167 | 87.80 217 | 67.88 205 | 84.54 168 | 91.42 134 | 73.27 185 | 88.41 138 | 87.96 257 | 72.33 221 | 90.83 205 | 76.02 167 | 94.11 194 | 92.69 163 |
|
| CNLPA | | | 83.55 164 | 83.10 170 | 84.90 138 | 89.34 179 | 83.87 50 | 84.54 168 | 88.77 199 | 79.09 106 | 83.54 245 | 88.66 249 | 74.87 186 | 81.73 336 | 66.84 260 | 92.29 234 | 89.11 268 |
|
| ETV-MVS | | | 84.31 141 | 83.91 158 | 85.52 130 | 88.58 199 | 70.40 178 | 84.50 170 | 93.37 64 | 78.76 113 | 84.07 234 | 78.72 375 | 80.39 130 | 95.13 65 | 73.82 192 | 92.98 222 | 91.04 223 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 81 | 88.76 74 | 85.18 135 | 94.02 58 | 64.13 239 | 84.38 171 | 91.29 138 | 84.88 44 | 92.06 65 | 93.84 105 | 86.45 58 | 93.73 110 | 73.22 201 | 98.66 11 | 97.69 9 |
|
| PVSNet_Blended_VisFu | | | 81.55 200 | 80.49 215 | 84.70 145 | 91.58 127 | 73.24 141 | 84.21 172 | 91.67 127 | 62.86 291 | 80.94 287 | 87.16 276 | 67.27 251 | 92.87 148 | 69.82 233 | 88.94 295 | 87.99 287 |
|
| casdiffmvs_mvg |  | | 86.72 95 | 87.51 86 | 84.36 153 | 87.09 237 | 65.22 229 | 84.16 173 | 94.23 27 | 77.89 122 | 91.28 79 | 93.66 114 | 84.35 76 | 92.71 149 | 80.07 111 | 94.87 172 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GG-mvs-BLEND | | | | | 67.16 369 | 73.36 397 | 46.54 390 | 84.15 174 | 55.04 415 | | 58.64 413 | 61.95 414 | 29.93 411 | 83.87 325 | 38.71 408 | 76.92 398 | 71.07 400 |
|
| test_fmvsm_n_1920 | | | 83.60 162 | 82.89 173 | 85.74 126 | 85.22 274 | 77.74 99 | 84.12 175 | 90.48 159 | 59.87 327 | 86.45 185 | 91.12 189 | 75.65 178 | 85.89 302 | 82.28 91 | 90.87 266 | 93.58 128 |
|
| test2506 | | | 74.12 291 | 73.39 291 | 76.28 304 | 91.85 117 | 44.20 398 | 84.06 176 | 48.20 419 | 72.30 202 | 81.90 270 | 94.20 85 | 27.22 419 | 89.77 238 | 64.81 281 | 96.02 122 | 94.87 67 |
|
| test_0402 | | | 88.65 69 | 89.58 60 | 85.88 123 | 92.55 92 | 72.22 159 | 84.01 177 | 89.44 193 | 88.63 20 | 94.38 21 | 95.77 29 | 86.38 61 | 93.59 119 | 79.84 115 | 95.21 154 | 91.82 203 |
|
| h-mvs33 | | | 84.25 144 | 82.76 175 | 88.72 73 | 91.82 121 | 82.60 60 | 84.00 178 | 84.98 264 | 71.27 211 | 86.70 173 | 90.55 213 | 63.04 277 | 93.92 104 | 78.26 135 | 94.20 191 | 89.63 258 |
|
| TEST9 | | | | | | 92.34 98 | 79.70 78 | 83.94 179 | 90.32 167 | 65.41 277 | 84.49 220 | 90.97 194 | 82.03 109 | 93.63 114 | | | |
|
| train_agg | | | 85.98 108 | 85.28 129 | 88.07 85 | 92.34 98 | 79.70 78 | 83.94 179 | 90.32 167 | 65.79 268 | 84.49 220 | 90.97 194 | 81.93 111 | 93.63 114 | 81.21 100 | 96.54 98 | 90.88 229 |
|
| FMVSNet2 | | | 81.31 203 | 81.61 195 | 80.41 243 | 86.38 249 | 58.75 311 | 83.93 181 | 86.58 235 | 72.43 196 | 87.65 154 | 92.98 131 | 63.78 270 | 90.22 221 | 66.86 258 | 93.92 199 | 92.27 186 |
|
| EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 145 | 86.88 100 | 84.01 295 | 72.76 144 | 83.91 182 | 85.18 257 | 80.44 86 | 88.75 127 | 85.49 301 | 80.08 134 | 91.92 171 | 82.02 94 | 90.85 268 | 95.97 38 |
|
| CDPH-MVS | | | 86.17 106 | 85.54 123 | 88.05 86 | 92.25 101 | 75.45 124 | 83.85 183 | 92.01 115 | 65.91 266 | 86.19 186 | 91.75 173 | 83.77 82 | 94.98 69 | 77.43 149 | 96.71 93 | 93.73 119 |
|
| test_8 | | | | | | 92.09 107 | 78.87 85 | 83.82 184 | 90.31 169 | 65.79 268 | 84.36 224 | 90.96 196 | 81.93 111 | 93.44 127 | | | |
|
| EI-MVSNet-UG-set | | | 85.04 125 | 84.44 147 | 86.85 101 | 83.87 299 | 72.52 153 | 83.82 184 | 85.15 258 | 80.27 90 | 88.75 127 | 85.45 303 | 79.95 136 | 91.90 172 | 81.92 97 | 90.80 269 | 96.13 33 |
|
| UniMVSNet (Re) | | | 86.87 91 | 86.98 96 | 86.55 106 | 93.11 79 | 68.48 198 | 83.80 186 | 92.87 91 | 80.37 87 | 89.61 113 | 91.81 170 | 77.72 153 | 94.18 94 | 75.00 178 | 98.53 16 | 96.99 22 |
|
| CANet | | | 83.79 158 | 82.85 174 | 86.63 104 | 86.17 259 | 72.21 160 | 83.76 187 | 91.43 132 | 77.24 132 | 74.39 352 | 87.45 270 | 75.36 181 | 95.42 52 | 77.03 154 | 92.83 225 | 92.25 188 |
|
| TSAR-MVS + GP. | | | 83.95 154 | 82.69 177 | 87.72 89 | 89.27 181 | 81.45 67 | 83.72 188 | 81.58 297 | 74.73 160 | 85.66 196 | 86.06 293 | 72.56 220 | 92.69 151 | 75.44 173 | 95.21 154 | 89.01 274 |
|
| ECVR-MVS |  | | 78.44 244 | 78.63 241 | 77.88 282 | 91.85 117 | 48.95 378 | 83.68 189 | 69.91 375 | 72.30 202 | 84.26 232 | 94.20 85 | 51.89 338 | 89.82 235 | 63.58 291 | 96.02 122 | 94.87 67 |
|
| thisisatest0530 | | | 79.07 234 | 77.33 254 | 84.26 158 | 87.13 233 | 64.58 234 | 83.66 190 | 75.95 331 | 68.86 238 | 85.22 205 | 87.36 272 | 38.10 394 | 93.57 122 | 75.47 172 | 94.28 189 | 94.62 75 |
|
| gg-mvs-nofinetune | | | 68.96 341 | 69.11 334 | 68.52 363 | 76.12 381 | 45.32 394 | 83.59 191 | 55.88 414 | 86.68 29 | 64.62 403 | 97.01 9 | 30.36 410 | 83.97 324 | 44.78 396 | 82.94 367 | 76.26 392 |
|
| MCST-MVS | | | 84.36 139 | 83.93 157 | 85.63 128 | 91.59 124 | 71.58 168 | 83.52 192 | 92.13 112 | 61.82 301 | 83.96 236 | 89.75 232 | 79.93 137 | 93.46 126 | 78.33 133 | 94.34 187 | 91.87 202 |
|
| EI-MVSNet | | | 82.61 178 | 82.42 183 | 83.20 188 | 83.25 311 | 63.66 243 | 83.50 193 | 85.07 259 | 76.06 139 | 86.55 177 | 85.10 309 | 73.41 207 | 90.25 218 | 78.15 139 | 90.67 272 | 95.68 45 |
|
| CVMVSNet | | | 72.62 304 | 71.41 314 | 76.28 304 | 83.25 311 | 60.34 290 | 83.50 193 | 79.02 312 | 37.77 416 | 76.33 331 | 85.10 309 | 49.60 349 | 87.41 271 | 70.54 226 | 77.54 396 | 81.08 377 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 88 | 86.21 108 | 90.49 42 | 91.48 133 | 84.90 42 | 83.41 195 | 92.38 105 | 70.25 225 | 89.35 119 | 90.68 208 | 82.85 92 | 94.57 81 | 79.55 119 | 95.95 127 | 92.00 198 |
|
| test_prior2 | | | | | | | | 83.37 196 | | 75.43 153 | 84.58 218 | 91.57 176 | 81.92 113 | | 79.54 120 | 96.97 85 | |
|
| fmvsm_l_conf0.5_n | | | 82.06 191 | 81.54 199 | 83.60 175 | 83.94 296 | 73.90 133 | 83.35 197 | 86.10 240 | 58.97 329 | 83.80 239 | 90.36 216 | 74.23 195 | 86.94 279 | 82.90 81 | 90.22 278 | 89.94 255 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 249 | 77.79 250 | 77.92 281 | 88.82 191 | 51.29 369 | 83.28 198 | 71.97 363 | 74.04 166 | 82.23 265 | 89.78 231 | 57.38 311 | 89.41 247 | 57.22 332 | 95.41 146 | 93.05 149 |
|
| CANet_DTU | | | 77.81 250 | 77.05 256 | 80.09 248 | 81.37 331 | 59.90 295 | 83.26 199 | 88.29 208 | 69.16 234 | 67.83 387 | 83.72 325 | 60.93 284 | 89.47 242 | 69.22 239 | 89.70 285 | 90.88 229 |
|
| VDD-MVS | | | 84.23 146 | 84.58 142 | 83.20 188 | 91.17 142 | 65.16 231 | 83.25 200 | 84.97 265 | 79.79 95 | 87.18 160 | 94.27 79 | 74.77 190 | 90.89 202 | 69.24 237 | 96.54 98 | 93.55 132 |
|
| IterMVS-LS | | | 84.73 132 | 84.98 133 | 83.96 164 | 87.35 228 | 63.66 243 | 83.25 200 | 89.88 183 | 76.06 139 | 89.62 111 | 92.37 155 | 73.40 209 | 92.52 154 | 78.16 137 | 94.77 176 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 84.05 151 | 83.22 165 | 86.52 107 | 91.73 122 | 75.27 125 | 83.23 202 | 92.40 103 | 72.04 205 | 82.04 268 | 88.33 252 | 77.91 150 | 93.95 103 | 66.17 266 | 95.12 159 | 90.34 246 |
|
| EIA-MVS | | | 82.19 187 | 81.23 206 | 85.10 136 | 87.95 213 | 69.17 193 | 83.22 203 | 93.33 67 | 70.42 221 | 78.58 315 | 79.77 367 | 77.29 159 | 94.20 93 | 71.51 215 | 88.96 294 | 91.93 201 |
|
| DU-MVS | | | 86.80 94 | 86.99 95 | 86.21 116 | 93.24 76 | 67.02 212 | 83.16 204 | 92.21 109 | 81.73 74 | 90.92 84 | 91.97 163 | 77.20 160 | 93.99 101 | 74.16 183 | 98.35 22 | 97.61 10 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 181 | 81.41 201 | 85.90 122 | 85.60 267 | 76.53 115 | 83.07 205 | 89.62 190 | 73.02 189 | 79.11 311 | 83.51 327 | 80.74 127 | 90.24 220 | 68.76 246 | 89.29 289 | 90.94 226 |
|
| casdiffmvs |  | | 85.21 120 | 85.85 116 | 83.31 185 | 86.17 259 | 62.77 256 | 83.03 206 | 93.93 46 | 74.69 161 | 88.21 142 | 92.68 144 | 82.29 104 | 91.89 173 | 77.87 143 | 93.75 205 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v1192 | | | 84.57 135 | 84.69 140 | 84.21 159 | 87.75 218 | 62.88 253 | 83.02 207 | 91.43 132 | 69.08 235 | 89.98 102 | 90.89 199 | 72.70 218 | 93.62 117 | 82.41 89 | 94.97 166 | 96.13 33 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 201 | 80.87 211 | 83.25 186 | 83.73 301 | 73.21 142 | 83.00 208 | 85.59 251 | 58.22 335 | 82.96 254 | 90.09 227 | 72.30 222 | 86.65 285 | 81.97 96 | 89.95 282 | 89.88 256 |
|
| v1144 | | | 84.54 137 | 84.72 138 | 84.00 162 | 87.67 221 | 62.55 260 | 82.97 209 | 90.93 149 | 70.32 224 | 89.80 105 | 90.99 193 | 73.50 204 | 93.48 125 | 81.69 99 | 94.65 180 | 95.97 38 |
|
| v144192 | | | 84.24 145 | 84.41 148 | 83.71 172 | 87.59 224 | 61.57 273 | 82.95 210 | 91.03 145 | 67.82 253 | 89.80 105 | 90.49 214 | 73.28 211 | 93.51 124 | 81.88 98 | 94.89 169 | 96.04 37 |
|
| v1921920 | | | 84.23 146 | 84.37 150 | 83.79 168 | 87.64 223 | 61.71 272 | 82.91 211 | 91.20 141 | 67.94 250 | 90.06 97 | 90.34 217 | 72.04 227 | 93.59 119 | 82.32 90 | 94.91 167 | 96.07 35 |
|
| dcpmvs_2 | | | 84.23 146 | 85.14 130 | 81.50 225 | 88.61 198 | 61.98 271 | 82.90 212 | 93.11 79 | 68.66 241 | 92.77 54 | 92.39 151 | 78.50 144 | 87.63 269 | 76.99 155 | 92.30 232 | 94.90 65 |
|
| v1240 | | | 84.30 142 | 84.51 146 | 83.65 173 | 87.65 222 | 61.26 278 | 82.85 213 | 91.54 129 | 67.94 250 | 90.68 91 | 90.65 211 | 71.71 230 | 93.64 113 | 82.84 83 | 94.78 174 | 96.07 35 |
|
| 无先验 | | | | | | | | 82.81 214 | 85.62 250 | 58.09 336 | | | | 91.41 186 | 67.95 256 | | 84.48 327 |
|
| MIMVSNet1 | | | 83.63 161 | 84.59 141 | 80.74 237 | 94.06 57 | 62.77 256 | 82.72 215 | 84.53 271 | 77.57 128 | 90.34 93 | 95.92 28 | 76.88 172 | 85.83 304 | 61.88 305 | 97.42 74 | 93.62 125 |
|
| v2v482 | | | 84.09 149 | 84.24 152 | 83.62 174 | 87.13 233 | 61.40 275 | 82.71 216 | 89.71 186 | 72.19 204 | 89.55 115 | 91.41 180 | 70.70 235 | 93.20 134 | 81.02 102 | 93.76 202 | 96.25 31 |
|
| test1111 | | | 78.53 243 | 78.85 237 | 77.56 286 | 92.22 103 | 47.49 384 | 82.61 217 | 69.24 379 | 72.43 196 | 85.28 204 | 94.20 85 | 51.91 337 | 90.07 230 | 65.36 276 | 96.45 103 | 95.11 62 |
|
| hse-mvs2 | | | 83.47 166 | 81.81 190 | 88.47 77 | 91.03 145 | 82.27 61 | 82.61 217 | 83.69 277 | 71.27 211 | 86.70 173 | 86.05 294 | 63.04 277 | 92.41 157 | 78.26 135 | 93.62 209 | 90.71 234 |
|
| CR-MVSNet | | | 74.00 293 | 73.04 296 | 76.85 297 | 79.58 350 | 62.64 258 | 82.58 219 | 76.90 325 | 50.50 386 | 75.72 340 | 92.38 152 | 48.07 353 | 84.07 322 | 68.72 248 | 82.91 368 | 83.85 339 |
|
| RPMNet | | | 78.88 237 | 78.28 246 | 80.68 240 | 79.58 350 | 62.64 258 | 82.58 219 | 94.16 32 | 74.80 159 | 75.72 340 | 92.59 145 | 48.69 350 | 95.56 42 | 73.48 197 | 82.91 368 | 83.85 339 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 93 | 87.06 93 | 86.17 118 | 92.86 86 | 67.02 212 | 82.55 221 | 91.56 128 | 83.08 62 | 90.92 84 | 91.82 169 | 78.25 147 | 93.99 101 | 74.16 183 | 98.35 22 | 97.49 13 |
|
| MVS_Test | | | 82.47 182 | 83.22 165 | 80.22 246 | 82.62 319 | 57.75 320 | 82.54 222 | 91.96 118 | 71.16 215 | 82.89 255 | 92.52 149 | 77.41 157 | 90.50 215 | 80.04 113 | 87.84 313 | 92.40 178 |
|
| AUN-MVS | | | 81.18 205 | 78.78 238 | 88.39 79 | 90.93 147 | 82.14 62 | 82.51 223 | 83.67 278 | 64.69 283 | 80.29 297 | 85.91 297 | 51.07 341 | 92.38 158 | 76.29 163 | 93.63 208 | 90.65 238 |
|
| Anonymous20240521 | | | 80.18 226 | 81.25 204 | 76.95 293 | 83.15 315 | 60.84 286 | 82.46 224 | 85.99 245 | 68.76 239 | 86.78 170 | 93.73 112 | 59.13 299 | 77.44 360 | 73.71 194 | 97.55 69 | 92.56 168 |
|
| pm-mvs1 | | | 83.69 159 | 84.95 134 | 79.91 249 | 90.04 168 | 59.66 297 | 82.43 225 | 87.44 217 | 75.52 152 | 87.85 150 | 95.26 45 | 81.25 121 | 85.65 306 | 68.74 247 | 96.04 121 | 94.42 86 |
|
| Patchmtry | | | 76.56 266 | 77.46 251 | 73.83 321 | 79.37 355 | 46.60 388 | 82.41 226 | 76.90 325 | 73.81 169 | 85.56 200 | 92.38 152 | 48.07 353 | 83.98 323 | 63.36 294 | 95.31 152 | 90.92 227 |
|
| EPNet_dtu | | | 72.87 303 | 71.33 315 | 77.49 288 | 77.72 364 | 60.55 289 | 82.35 227 | 75.79 332 | 66.49 263 | 58.39 414 | 81.06 354 | 53.68 330 | 85.98 297 | 53.55 356 | 92.97 223 | 85.95 310 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TinyColmap | | | 81.25 204 | 82.34 184 | 77.99 280 | 85.33 271 | 60.68 288 | 82.32 228 | 88.33 207 | 71.26 213 | 86.97 168 | 92.22 161 | 77.10 163 | 86.98 278 | 62.37 299 | 95.17 156 | 86.31 307 |
|
| TransMVSNet (Re) | | | 84.02 152 | 85.74 120 | 78.85 262 | 91.00 146 | 55.20 341 | 82.29 229 | 87.26 220 | 79.65 98 | 88.38 139 | 95.52 37 | 83.00 90 | 86.88 280 | 67.97 255 | 96.60 96 | 94.45 83 |
|
| Baseline_NR-MVSNet | | | 84.00 153 | 85.90 114 | 78.29 274 | 91.47 134 | 53.44 352 | 82.29 229 | 87.00 232 | 79.06 107 | 89.55 115 | 95.72 32 | 77.20 160 | 86.14 296 | 72.30 212 | 98.51 17 | 95.28 56 |
|
| MG-MVS | | | 80.32 221 | 80.94 209 | 78.47 270 | 88.18 207 | 52.62 359 | 82.29 229 | 85.01 263 | 72.01 206 | 79.24 310 | 92.54 148 | 69.36 241 | 93.36 131 | 70.65 224 | 89.19 292 | 89.45 260 |
|
| 原ACMM2 | | | | | | | | 82.26 232 | | | | | | | | | |
|
| NR-MVSNet | | | 86.00 107 | 86.22 107 | 85.34 133 | 93.24 76 | 64.56 235 | 82.21 233 | 90.46 160 | 80.99 82 | 88.42 137 | 91.97 163 | 77.56 155 | 93.85 106 | 72.46 211 | 98.65 12 | 97.61 10 |
|
| PAPR | | | 78.84 238 | 78.10 248 | 81.07 232 | 85.17 275 | 60.22 291 | 82.21 233 | 90.57 158 | 62.51 293 | 75.32 346 | 84.61 317 | 74.99 185 | 92.30 162 | 59.48 321 | 88.04 309 | 90.68 236 |
|
| EG-PatchMatch MVS | | | 84.08 150 | 84.11 153 | 83.98 163 | 92.22 103 | 72.61 150 | 82.20 235 | 87.02 229 | 72.63 195 | 88.86 124 | 91.02 192 | 78.52 143 | 91.11 193 | 73.41 198 | 91.09 257 | 88.21 281 |
|
| HY-MVS | | 64.64 18 | 73.03 301 | 72.47 305 | 74.71 317 | 83.36 308 | 54.19 346 | 82.14 236 | 81.96 292 | 56.76 349 | 69.57 379 | 86.21 292 | 60.03 291 | 84.83 313 | 49.58 377 | 82.65 371 | 85.11 320 |
|
| FMVSNet3 | | | 78.80 239 | 78.55 242 | 79.57 255 | 82.89 318 | 56.89 327 | 81.76 237 | 85.77 247 | 69.04 236 | 86.00 190 | 90.44 215 | 51.75 339 | 90.09 229 | 65.95 268 | 93.34 211 | 91.72 207 |
|
| 旧先验2 | | | | | | | | 81.73 238 | | 56.88 348 | 86.54 182 | | | 84.90 312 | 72.81 208 | | |
|
| 新几何2 | | | | | | | | 81.72 239 | | | | | | | | | |
|
| 1314 | | | 73.22 299 | 72.56 304 | 75.20 312 | 80.41 345 | 57.84 318 | 81.64 240 | 85.36 253 | 51.68 377 | 73.10 359 | 76.65 391 | 61.45 282 | 85.19 309 | 63.54 292 | 79.21 388 | 82.59 356 |
|
| MVS | | | 73.21 300 | 72.59 302 | 75.06 314 | 80.97 335 | 60.81 287 | 81.64 240 | 85.92 246 | 46.03 396 | 71.68 366 | 77.54 382 | 68.47 246 | 89.77 238 | 55.70 341 | 85.39 340 | 74.60 396 |
|
| v148 | | | 82.31 183 | 82.48 182 | 81.81 220 | 85.59 268 | 59.66 297 | 81.47 242 | 86.02 244 | 72.85 190 | 88.05 147 | 90.65 211 | 70.73 234 | 90.91 201 | 75.15 176 | 91.79 245 | 94.87 67 |
|
| V42 | | | 83.47 166 | 83.37 164 | 83.75 170 | 83.16 314 | 63.33 248 | 81.31 243 | 90.23 174 | 69.51 231 | 90.91 86 | 90.81 204 | 74.16 196 | 92.29 163 | 80.06 112 | 90.22 278 | 95.62 47 |
|
| PM-MVS | | | 80.20 225 | 79.00 234 | 83.78 169 | 88.17 208 | 86.66 19 | 81.31 243 | 66.81 390 | 69.64 230 | 88.33 140 | 90.19 222 | 64.58 263 | 83.63 326 | 71.99 214 | 90.03 280 | 81.06 379 |
|
| VPA-MVSNet | | | 83.47 166 | 84.73 136 | 79.69 253 | 90.29 160 | 57.52 321 | 81.30 245 | 88.69 201 | 76.29 137 | 87.58 156 | 94.44 71 | 80.60 129 | 87.20 274 | 66.60 263 | 96.82 90 | 94.34 90 |
|
| CMPMVS |  | 59.41 20 | 75.12 280 | 73.57 288 | 79.77 250 | 75.84 383 | 67.22 208 | 81.21 246 | 82.18 290 | 50.78 383 | 76.50 329 | 87.66 265 | 55.20 325 | 82.99 329 | 62.17 303 | 90.64 276 | 89.09 271 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 70.19 17 | 77.77 251 | 77.46 251 | 78.71 265 | 84.39 289 | 61.15 279 | 81.18 247 | 82.52 287 | 62.45 296 | 83.34 248 | 87.37 271 | 66.20 256 | 88.66 259 | 64.69 283 | 85.02 348 | 86.32 306 |
|
| thres100view900 | | | 75.45 276 | 75.05 276 | 76.66 299 | 87.27 229 | 51.88 364 | 81.07 248 | 73.26 353 | 75.68 148 | 83.25 249 | 86.37 287 | 45.54 368 | 88.80 254 | 51.98 366 | 90.99 259 | 89.31 264 |
|
| MVS_111021_LR | | | 84.28 143 | 83.76 159 | 85.83 125 | 89.23 182 | 83.07 55 | 80.99 249 | 83.56 279 | 72.71 194 | 86.07 189 | 89.07 242 | 81.75 116 | 86.19 294 | 77.11 153 | 93.36 210 | 88.24 280 |
|
| wuyk23d | | | 75.13 279 | 79.30 232 | 62.63 384 | 75.56 384 | 75.18 126 | 80.89 250 | 73.10 355 | 75.06 158 | 94.76 16 | 95.32 41 | 87.73 43 | 52.85 415 | 34.16 414 | 97.11 82 | 59.85 411 |
|
| pmmvs-eth3d | | | 78.42 245 | 77.04 257 | 82.57 207 | 87.44 227 | 74.41 130 | 80.86 251 | 79.67 308 | 55.68 352 | 84.69 217 | 90.31 219 | 60.91 285 | 85.42 307 | 62.20 301 | 91.59 250 | 87.88 290 |
|
| tfpnnormal | | | 81.79 198 | 82.95 172 | 78.31 272 | 88.93 189 | 55.40 337 | 80.83 252 | 82.85 285 | 76.81 134 | 85.90 194 | 94.14 89 | 74.58 193 | 86.51 287 | 66.82 261 | 95.68 142 | 93.01 151 |
|
| PCF-MVS | | 74.62 15 | 82.15 189 | 80.92 210 | 85.84 124 | 89.43 177 | 72.30 157 | 80.53 253 | 91.82 123 | 57.36 343 | 87.81 151 | 89.92 229 | 77.67 154 | 93.63 114 | 58.69 323 | 95.08 160 | 91.58 213 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| thres600view7 | | | 75.97 272 | 75.35 274 | 77.85 284 | 87.01 239 | 51.84 365 | 80.45 254 | 73.26 353 | 75.20 156 | 83.10 252 | 86.31 290 | 45.54 368 | 89.05 250 | 55.03 348 | 92.24 236 | 92.66 164 |
|
| KD-MVS_self_test | | | 81.93 195 | 83.14 169 | 78.30 273 | 84.75 282 | 52.75 356 | 80.37 255 | 89.42 194 | 70.24 226 | 90.26 95 | 93.39 119 | 74.55 194 | 86.77 283 | 68.61 249 | 96.64 94 | 95.38 52 |
|
| BH-untuned | | | 80.96 208 | 80.99 208 | 80.84 236 | 88.55 200 | 68.23 199 | 80.33 256 | 88.46 203 | 72.79 193 | 86.55 177 | 86.76 282 | 74.72 191 | 91.77 177 | 61.79 306 | 88.99 293 | 82.52 360 |
|
| MVP-Stereo | | | 75.81 274 | 73.51 290 | 82.71 202 | 89.35 178 | 73.62 134 | 80.06 257 | 85.20 256 | 60.30 322 | 73.96 354 | 87.94 258 | 57.89 309 | 89.45 244 | 52.02 365 | 74.87 401 | 85.06 321 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| LCM-MVSNet-Re | | | 83.48 165 | 85.06 131 | 78.75 264 | 85.94 264 | 55.75 335 | 80.05 258 | 94.27 24 | 76.47 136 | 96.09 6 | 94.54 67 | 83.31 88 | 89.75 240 | 59.95 318 | 94.89 169 | 90.75 232 |
|
| USDC | | | 76.63 264 | 76.73 261 | 76.34 303 | 83.46 304 | 57.20 324 | 80.02 259 | 88.04 213 | 52.14 374 | 83.65 241 | 91.25 184 | 63.24 273 | 86.65 285 | 54.66 350 | 94.11 194 | 85.17 319 |
|
| ANet_high | | | 83.17 171 | 85.68 121 | 75.65 309 | 81.24 332 | 45.26 395 | 79.94 260 | 92.91 90 | 83.83 51 | 91.33 76 | 96.88 13 | 80.25 132 | 85.92 299 | 68.89 244 | 95.89 131 | 95.76 42 |
|
| baseline1 | | | 73.26 298 | 73.54 289 | 72.43 335 | 84.92 278 | 47.79 383 | 79.89 261 | 74.00 344 | 65.93 265 | 78.81 313 | 86.28 291 | 56.36 317 | 81.63 337 | 56.63 334 | 79.04 390 | 87.87 291 |
|
| tpm2 | | | 68.45 344 | 66.83 351 | 73.30 325 | 78.93 360 | 48.50 379 | 79.76 262 | 71.76 365 | 47.50 390 | 69.92 377 | 83.60 326 | 42.07 388 | 88.40 261 | 48.44 384 | 79.51 384 | 83.01 353 |
|
| tpmvs | | | 70.16 326 | 69.56 331 | 71.96 338 | 74.71 392 | 48.13 380 | 79.63 263 | 75.45 337 | 65.02 281 | 70.26 375 | 81.88 347 | 45.34 373 | 85.68 305 | 58.34 326 | 75.39 400 | 82.08 365 |
|
| testdata1 | | | | | | | | 79.62 264 | | 73.95 168 | | | | | | | |
|
| xiu_mvs_v1_base_debu | | | 80.84 209 | 80.14 223 | 82.93 197 | 88.31 204 | 71.73 164 | 79.53 265 | 87.17 221 | 65.43 274 | 79.59 303 | 82.73 339 | 76.94 166 | 90.14 226 | 73.22 201 | 88.33 303 | 86.90 301 |
|
| xiu_mvs_v1_base | | | 80.84 209 | 80.14 223 | 82.93 197 | 88.31 204 | 71.73 164 | 79.53 265 | 87.17 221 | 65.43 274 | 79.59 303 | 82.73 339 | 76.94 166 | 90.14 226 | 73.22 201 | 88.33 303 | 86.90 301 |
|
| xiu_mvs_v1_base_debi | | | 80.84 209 | 80.14 223 | 82.93 197 | 88.31 204 | 71.73 164 | 79.53 265 | 87.17 221 | 65.43 274 | 79.59 303 | 82.73 339 | 76.94 166 | 90.14 226 | 73.22 201 | 88.33 303 | 86.90 301 |
|
| PVSNet_BlendedMVS | | | 78.80 239 | 77.84 249 | 81.65 223 | 84.43 286 | 63.41 246 | 79.49 268 | 90.44 161 | 61.70 305 | 75.43 343 | 87.07 279 | 69.11 243 | 91.44 183 | 60.68 314 | 92.24 236 | 90.11 252 |
|
| test222 | | | | | | 93.31 73 | 76.54 113 | 79.38 269 | 77.79 316 | 52.59 369 | 82.36 263 | 90.84 203 | 66.83 254 | | | 91.69 247 | 81.25 374 |
|
| PatchmatchNet |  | | 69.71 334 | 68.83 339 | 72.33 337 | 77.66 365 | 53.60 350 | 79.29 270 | 69.99 374 | 57.66 340 | 72.53 362 | 82.93 335 | 46.45 358 | 80.08 348 | 60.91 313 | 72.09 404 | 83.31 349 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CostFormer | | | 69.98 331 | 68.68 341 | 73.87 320 | 77.14 369 | 50.72 373 | 79.26 271 | 74.51 341 | 51.94 376 | 70.97 370 | 84.75 315 | 45.16 376 | 87.49 270 | 55.16 347 | 79.23 387 | 83.40 346 |
|
| tfpn200view9 | | | 74.86 284 | 74.23 283 | 76.74 298 | 86.24 256 | 52.12 361 | 79.24 272 | 73.87 346 | 73.34 180 | 81.82 273 | 84.60 318 | 46.02 361 | 88.80 254 | 51.98 366 | 90.99 259 | 89.31 264 |
|
| thres400 | | | 75.14 278 | 74.23 283 | 77.86 283 | 86.24 256 | 52.12 361 | 79.24 272 | 73.87 346 | 73.34 180 | 81.82 273 | 84.60 318 | 46.02 361 | 88.80 254 | 51.98 366 | 90.99 259 | 92.66 164 |
|
| MVS_111021_HR | | | 84.63 133 | 84.34 151 | 85.49 132 | 90.18 163 | 75.86 123 | 79.23 274 | 87.13 224 | 73.35 179 | 85.56 200 | 89.34 236 | 83.60 85 | 90.50 215 | 76.64 157 | 94.05 197 | 90.09 253 |
|
| TAMVS | | | 78.08 247 | 76.36 263 | 83.23 187 | 90.62 154 | 72.87 143 | 79.08 275 | 80.01 307 | 61.72 304 | 81.35 283 | 86.92 281 | 63.96 269 | 88.78 257 | 50.61 371 | 93.01 221 | 88.04 286 |
|
| test_fmvs3 | | | 75.72 275 | 75.20 275 | 77.27 290 | 75.01 391 | 69.47 186 | 78.93 276 | 84.88 266 | 46.67 392 | 87.08 165 | 87.84 261 | 50.44 346 | 71.62 377 | 77.42 150 | 88.53 299 | 90.72 233 |
|
| MIMVSNet | | | 71.09 319 | 71.59 310 | 69.57 353 | 87.23 230 | 50.07 376 | 78.91 277 | 71.83 364 | 60.20 325 | 71.26 367 | 91.76 172 | 55.08 327 | 76.09 364 | 41.06 402 | 87.02 324 | 82.54 359 |
|
| SCA | | | 73.32 297 | 72.57 303 | 75.58 311 | 81.62 327 | 55.86 333 | 78.89 278 | 71.37 368 | 61.73 303 | 74.93 349 | 83.42 330 | 60.46 287 | 87.01 275 | 58.11 329 | 82.63 373 | 83.88 336 |
|
| DPM-MVS | | | 80.10 228 | 79.18 233 | 82.88 200 | 90.71 153 | 69.74 182 | 78.87 279 | 90.84 150 | 60.29 323 | 75.64 342 | 85.92 296 | 67.28 250 | 93.11 138 | 71.24 217 | 91.79 245 | 85.77 313 |
|
| test_post1 | | | | | | | | 78.85 280 | | | | 3.13 421 | 45.19 375 | 80.13 347 | 58.11 329 | | |
|
| mvs_anonymous | | | 78.13 246 | 78.76 239 | 76.23 306 | 79.24 356 | 50.31 375 | 78.69 281 | 84.82 268 | 61.60 307 | 83.09 253 | 92.82 138 | 73.89 200 | 87.01 275 | 68.33 253 | 86.41 331 | 91.37 216 |
|
| WR-MVS | | | 83.56 163 | 84.40 149 | 81.06 233 | 93.43 70 | 54.88 342 | 78.67 282 | 85.02 262 | 81.24 79 | 90.74 90 | 91.56 177 | 72.85 215 | 91.08 194 | 68.00 254 | 98.04 39 | 97.23 16 |
|
| c3_l | | | 81.64 199 | 81.59 196 | 81.79 221 | 80.86 338 | 59.15 304 | 78.61 283 | 90.18 176 | 68.36 242 | 87.20 159 | 87.11 278 | 69.39 240 | 91.62 178 | 78.16 137 | 94.43 185 | 94.60 76 |
|
| test_yl | | | 78.71 241 | 78.51 243 | 79.32 258 | 84.32 290 | 58.84 308 | 78.38 284 | 85.33 254 | 75.99 142 | 82.49 260 | 86.57 284 | 58.01 305 | 90.02 232 | 62.74 297 | 92.73 227 | 89.10 269 |
|
| DCV-MVSNet | | | 78.71 241 | 78.51 243 | 79.32 258 | 84.32 290 | 58.84 308 | 78.38 284 | 85.33 254 | 75.99 142 | 82.49 260 | 86.57 284 | 58.01 305 | 90.02 232 | 62.74 297 | 92.73 227 | 89.10 269 |
|
| Fast-Effi-MVS+ | | | 81.04 207 | 80.57 212 | 82.46 209 | 87.50 226 | 63.22 250 | 78.37 286 | 89.63 189 | 68.01 247 | 81.87 271 | 82.08 345 | 82.31 102 | 92.65 152 | 67.10 257 | 88.30 307 | 91.51 215 |
|
| tpmrst | | | 66.28 357 | 66.69 353 | 65.05 379 | 72.82 403 | 39.33 409 | 78.20 287 | 70.69 372 | 53.16 367 | 67.88 386 | 80.36 361 | 48.18 352 | 74.75 370 | 58.13 328 | 70.79 406 | 81.08 377 |
|
| tpm cat1 | | | 66.76 354 | 65.21 362 | 71.42 341 | 77.09 370 | 50.62 374 | 78.01 288 | 73.68 350 | 44.89 399 | 68.64 382 | 79.00 372 | 45.51 370 | 82.42 333 | 49.91 374 | 70.15 407 | 81.23 376 |
|
| jason | | | 77.42 254 | 75.75 269 | 82.43 210 | 87.10 236 | 69.27 188 | 77.99 289 | 81.94 293 | 51.47 378 | 77.84 320 | 85.07 312 | 60.32 289 | 89.00 251 | 70.74 223 | 89.27 291 | 89.03 272 |
| jason: jason. |
| CLD-MVS | | | 83.18 170 | 82.64 178 | 84.79 141 | 89.05 184 | 67.82 206 | 77.93 290 | 92.52 101 | 68.33 243 | 85.07 208 | 81.54 351 | 82.06 108 | 92.96 143 | 69.35 236 | 97.91 51 | 93.57 129 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CDS-MVSNet | | | 77.32 255 | 75.40 272 | 83.06 191 | 89.00 186 | 72.48 154 | 77.90 291 | 82.17 291 | 60.81 317 | 78.94 312 | 83.49 328 | 59.30 297 | 88.76 258 | 54.64 351 | 92.37 231 | 87.93 289 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| eth_miper_zixun_eth | | | 80.84 209 | 80.22 221 | 82.71 202 | 81.41 330 | 60.98 284 | 77.81 292 | 90.14 177 | 67.31 257 | 86.95 169 | 87.24 275 | 64.26 265 | 92.31 161 | 75.23 175 | 91.61 249 | 94.85 71 |
|
| BH-RMVSNet | | | 80.53 214 | 80.22 221 | 81.49 226 | 87.19 232 | 66.21 221 | 77.79 293 | 86.23 238 | 74.21 165 | 83.69 240 | 88.50 250 | 73.25 212 | 90.75 207 | 63.18 296 | 87.90 311 | 87.52 294 |
|
| miper_ehance_all_eth | | | 80.34 220 | 80.04 226 | 81.24 230 | 79.82 349 | 58.95 306 | 77.66 294 | 89.66 187 | 65.75 271 | 85.99 193 | 85.11 308 | 68.29 247 | 91.42 185 | 76.03 166 | 92.03 240 | 93.33 135 |
|
| PatchT | | | 70.52 323 | 72.76 300 | 63.79 383 | 79.38 354 | 33.53 417 | 77.63 295 | 65.37 394 | 73.61 173 | 71.77 365 | 92.79 141 | 44.38 380 | 75.65 367 | 64.53 286 | 85.37 341 | 82.18 363 |
|
| BH-w/o | | | 76.57 265 | 76.07 267 | 78.10 277 | 86.88 242 | 65.92 224 | 77.63 295 | 86.33 236 | 65.69 272 | 80.89 288 | 79.95 364 | 68.97 245 | 90.74 208 | 53.01 361 | 85.25 343 | 77.62 390 |
|
| diffmvs |  | | 80.40 218 | 80.48 216 | 80.17 247 | 79.02 359 | 60.04 292 | 77.54 297 | 90.28 173 | 66.65 262 | 82.40 262 | 87.33 273 | 73.50 204 | 87.35 272 | 77.98 141 | 89.62 286 | 93.13 145 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MSDG | | | 80.06 229 | 79.99 228 | 80.25 245 | 83.91 298 | 68.04 204 | 77.51 298 | 89.19 195 | 77.65 126 | 81.94 269 | 83.45 329 | 76.37 176 | 86.31 290 | 63.31 295 | 86.59 329 | 86.41 305 |
|
| reproduce_monomvs | | | 74.09 292 | 73.23 293 | 76.65 300 | 76.52 375 | 54.54 343 | 77.50 299 | 81.40 298 | 65.85 267 | 82.86 257 | 86.67 283 | 27.38 417 | 84.53 315 | 70.24 229 | 90.66 274 | 90.89 228 |
|
| MVSTER | | | 77.09 257 | 75.70 270 | 81.25 228 | 75.27 388 | 61.08 280 | 77.49 300 | 85.07 259 | 60.78 318 | 86.55 177 | 88.68 247 | 43.14 386 | 90.25 218 | 73.69 195 | 90.67 272 | 92.42 175 |
|
| cl22 | | | 78.97 235 | 78.21 247 | 81.24 230 | 77.74 363 | 59.01 305 | 77.46 301 | 87.13 224 | 65.79 268 | 84.32 226 | 85.10 309 | 58.96 301 | 90.88 203 | 75.36 174 | 92.03 240 | 93.84 111 |
|
| ttmdpeth | | | 71.72 312 | 70.67 317 | 74.86 315 | 73.08 401 | 55.88 332 | 77.41 302 | 69.27 378 | 55.86 351 | 78.66 314 | 93.77 110 | 38.01 396 | 75.39 368 | 60.12 317 | 89.87 283 | 93.31 137 |
|
| TR-MVS | | | 76.77 262 | 75.79 268 | 79.72 252 | 86.10 262 | 65.79 225 | 77.14 303 | 83.02 283 | 65.20 280 | 81.40 282 | 82.10 343 | 66.30 255 | 90.73 209 | 55.57 342 | 85.27 342 | 82.65 355 |
|
| ET-MVSNet_ETH3D | | | 75.28 277 | 72.77 299 | 82.81 201 | 83.03 317 | 68.11 202 | 77.09 304 | 76.51 329 | 60.67 320 | 77.60 325 | 80.52 359 | 38.04 395 | 91.15 192 | 70.78 221 | 90.68 271 | 89.17 267 |
|
| test_fmvs2 | | | 73.57 296 | 72.80 298 | 75.90 308 | 72.74 404 | 68.84 195 | 77.07 305 | 84.32 274 | 45.14 398 | 82.89 255 | 84.22 321 | 48.37 351 | 70.36 381 | 73.40 199 | 87.03 323 | 88.52 278 |
|
| cl____ | | | 80.42 217 | 80.23 219 | 81.02 234 | 79.99 346 | 59.25 301 | 77.07 305 | 87.02 229 | 67.37 255 | 86.18 188 | 89.21 239 | 63.08 276 | 90.16 223 | 76.31 162 | 95.80 136 | 93.65 123 |
|
| DIV-MVS_self_test | | | 80.43 216 | 80.23 219 | 81.02 234 | 79.99 346 | 59.25 301 | 77.07 305 | 87.02 229 | 67.38 254 | 86.19 186 | 89.22 238 | 63.09 275 | 90.16 223 | 76.32 161 | 95.80 136 | 93.66 121 |
|
| lupinMVS | | | 76.37 269 | 74.46 281 | 82.09 212 | 85.54 269 | 69.26 189 | 76.79 308 | 80.77 303 | 50.68 385 | 76.23 333 | 82.82 337 | 58.69 302 | 88.94 252 | 69.85 232 | 88.77 296 | 88.07 283 |
|
| FMVSNet5 | | | 72.10 309 | 71.69 309 | 73.32 324 | 81.57 328 | 53.02 355 | 76.77 309 | 78.37 314 | 63.31 287 | 76.37 330 | 91.85 166 | 36.68 399 | 78.98 353 | 47.87 386 | 92.45 230 | 87.95 288 |
|
| VPNet | | | 80.25 223 | 81.68 191 | 75.94 307 | 92.46 95 | 47.98 382 | 76.70 310 | 81.67 295 | 73.45 176 | 84.87 214 | 92.82 138 | 74.66 192 | 86.51 287 | 61.66 308 | 96.85 87 | 93.33 135 |
|
| test_vis1_n | | | 70.29 324 | 69.99 328 | 71.20 343 | 75.97 382 | 66.50 218 | 76.69 311 | 80.81 302 | 44.22 401 | 75.43 343 | 77.23 386 | 50.00 347 | 68.59 388 | 66.71 262 | 82.85 370 | 78.52 389 |
|
| Anonymous202405211 | | | 80.51 215 | 81.19 207 | 78.49 269 | 88.48 201 | 57.26 323 | 76.63 312 | 82.49 288 | 81.21 80 | 84.30 229 | 92.24 160 | 67.99 248 | 86.24 291 | 62.22 300 | 95.13 157 | 91.98 200 |
|
| PAPM | | | 71.77 311 | 70.06 326 | 76.92 294 | 86.39 248 | 53.97 347 | 76.62 313 | 86.62 234 | 53.44 364 | 63.97 404 | 84.73 316 | 57.79 310 | 92.34 160 | 39.65 405 | 81.33 379 | 84.45 328 |
|
| MVStest1 | | | 70.05 329 | 69.26 332 | 72.41 336 | 58.62 423 | 55.59 336 | 76.61 314 | 65.58 392 | 53.44 364 | 89.28 120 | 93.32 120 | 22.91 423 | 71.44 379 | 74.08 187 | 89.52 287 | 90.21 251 |
|
| testing3 | | | 71.53 315 | 70.79 316 | 73.77 322 | 88.89 190 | 41.86 405 | 76.60 315 | 59.12 409 | 72.83 191 | 80.97 285 | 82.08 345 | 19.80 425 | 87.33 273 | 65.12 278 | 91.68 248 | 92.13 193 |
|
| 1112_ss | | | 74.82 285 | 73.74 286 | 78.04 279 | 89.57 172 | 60.04 292 | 76.49 316 | 87.09 228 | 54.31 360 | 73.66 357 | 79.80 365 | 60.25 290 | 86.76 284 | 58.37 325 | 84.15 359 | 87.32 297 |
|
| DELS-MVS | | | 81.44 202 | 81.25 204 | 82.03 213 | 84.27 292 | 62.87 254 | 76.47 317 | 92.49 102 | 70.97 217 | 81.64 279 | 83.83 324 | 75.03 184 | 92.70 150 | 74.29 181 | 92.22 238 | 90.51 242 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| IterMVS | | | 76.91 259 | 76.34 264 | 78.64 266 | 80.91 336 | 64.03 240 | 76.30 318 | 79.03 311 | 64.88 282 | 83.11 251 | 89.16 240 | 59.90 293 | 84.46 316 | 68.61 249 | 85.15 346 | 87.42 295 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 80.64 213 | 79.41 230 | 84.34 155 | 83.93 297 | 69.66 184 | 76.28 319 | 81.09 300 | 72.43 196 | 86.47 183 | 90.19 222 | 60.46 287 | 93.15 137 | 77.45 148 | 86.39 332 | 90.22 247 |
|
| pmmvs4 | | | 74.92 283 | 72.98 297 | 80.73 238 | 84.95 277 | 71.71 167 | 76.23 320 | 77.59 318 | 52.83 368 | 77.73 324 | 86.38 286 | 56.35 318 | 84.97 311 | 57.72 331 | 87.05 322 | 85.51 316 |
|
| baseline2 | | | 69.77 333 | 66.89 350 | 78.41 271 | 79.51 352 | 58.09 314 | 76.23 320 | 69.57 376 | 57.50 342 | 64.82 402 | 77.45 384 | 46.02 361 | 88.44 260 | 53.08 358 | 77.83 392 | 88.70 276 |
|
| sd_testset | | | 79.95 231 | 81.39 202 | 75.64 310 | 88.81 192 | 58.07 315 | 76.16 322 | 82.81 286 | 73.67 171 | 83.41 246 | 93.04 127 | 80.96 124 | 77.65 359 | 58.62 324 | 95.03 162 | 91.21 219 |
|
| SDMVSNet | | | 81.90 197 | 83.17 168 | 78.10 277 | 88.81 192 | 62.45 262 | 76.08 323 | 86.05 243 | 73.67 171 | 83.41 246 | 93.04 127 | 82.35 100 | 80.65 343 | 70.06 231 | 95.03 162 | 91.21 219 |
|
| test_fmvs1_n | | | 70.94 320 | 70.41 323 | 72.53 334 | 73.92 393 | 66.93 214 | 75.99 324 | 84.21 276 | 43.31 405 | 79.40 306 | 79.39 369 | 43.47 382 | 68.55 389 | 69.05 242 | 84.91 351 | 82.10 364 |
|
| PatchMatch-RL | | | 74.48 288 | 73.22 294 | 78.27 275 | 87.70 219 | 85.26 38 | 75.92 325 | 70.09 373 | 64.34 284 | 76.09 336 | 81.25 353 | 65.87 259 | 78.07 358 | 53.86 353 | 83.82 361 | 71.48 399 |
|
| JIA-IIPM | | | 69.41 336 | 66.64 354 | 77.70 285 | 73.19 398 | 71.24 172 | 75.67 326 | 65.56 393 | 70.42 221 | 65.18 398 | 92.97 133 | 33.64 405 | 83.06 327 | 53.52 357 | 69.61 410 | 78.79 388 |
|
| patch_mono-2 | | | 78.89 236 | 79.39 231 | 77.41 289 | 84.78 280 | 68.11 202 | 75.60 327 | 83.11 282 | 60.96 316 | 79.36 307 | 89.89 230 | 75.18 183 | 72.97 372 | 73.32 200 | 92.30 232 | 91.15 221 |
|
| tpm | | | 67.95 345 | 68.08 346 | 67.55 366 | 78.74 361 | 43.53 401 | 75.60 327 | 67.10 389 | 54.92 356 | 72.23 363 | 88.10 255 | 42.87 387 | 75.97 365 | 52.21 364 | 80.95 382 | 83.15 351 |
|
| VNet | | | 79.31 233 | 80.27 218 | 76.44 301 | 87.92 214 | 53.95 348 | 75.58 329 | 84.35 273 | 74.39 164 | 82.23 265 | 90.72 206 | 72.84 216 | 84.39 318 | 60.38 316 | 93.98 198 | 90.97 225 |
|
| xiu_mvs_v2_base | | | 77.19 256 | 76.75 260 | 78.52 268 | 87.01 239 | 61.30 277 | 75.55 330 | 87.12 227 | 61.24 313 | 74.45 351 | 78.79 374 | 77.20 160 | 90.93 199 | 64.62 285 | 84.80 355 | 83.32 348 |
|
| miper_enhance_ethall | | | 77.83 248 | 76.93 258 | 80.51 241 | 76.15 380 | 58.01 317 | 75.47 331 | 88.82 198 | 58.05 337 | 83.59 242 | 80.69 355 | 64.41 264 | 91.20 189 | 73.16 207 | 92.03 240 | 92.33 182 |
|
| PS-MVSNAJ | | | 77.04 258 | 76.53 262 | 78.56 267 | 87.09 237 | 61.40 275 | 75.26 332 | 87.13 224 | 61.25 312 | 74.38 353 | 77.22 387 | 76.94 166 | 90.94 198 | 64.63 284 | 84.83 354 | 83.35 347 |
|
| PVSNet_Blended | | | 76.49 267 | 75.40 272 | 79.76 251 | 84.43 286 | 63.41 246 | 75.14 333 | 90.44 161 | 57.36 343 | 75.43 343 | 78.30 377 | 69.11 243 | 91.44 183 | 60.68 314 | 87.70 315 | 84.42 329 |
|
| thres200 | | | 72.34 307 | 71.55 313 | 74.70 318 | 83.48 303 | 51.60 366 | 75.02 334 | 73.71 349 | 70.14 227 | 78.56 316 | 80.57 358 | 46.20 359 | 88.20 264 | 46.99 389 | 89.29 289 | 84.32 330 |
|
| WB-MVSnew | | | 68.72 343 | 69.01 336 | 67.85 364 | 83.22 313 | 43.98 399 | 74.93 335 | 65.98 391 | 55.09 354 | 73.83 355 | 79.11 370 | 65.63 260 | 71.89 376 | 38.21 410 | 85.04 347 | 87.69 293 |
|
| EPMVS | | | 62.47 368 | 62.63 372 | 62.01 385 | 70.63 409 | 38.74 411 | 74.76 336 | 52.86 416 | 53.91 362 | 67.71 388 | 80.01 363 | 39.40 392 | 66.60 398 | 55.54 343 | 68.81 412 | 80.68 381 |
|
| DSMNet-mixed | | | 60.98 376 | 61.61 376 | 59.09 394 | 72.88 402 | 45.05 396 | 74.70 337 | 46.61 420 | 26.20 418 | 65.34 397 | 90.32 218 | 55.46 323 | 63.12 407 | 41.72 401 | 81.30 380 | 69.09 403 |
|
| FPMVS | | | 72.29 308 | 72.00 307 | 73.14 326 | 88.63 197 | 85.00 40 | 74.65 338 | 67.39 384 | 71.94 207 | 77.80 322 | 87.66 265 | 50.48 345 | 75.83 366 | 49.95 373 | 79.51 384 | 58.58 413 |
|
| test_vis1_n_1920 | | | 71.30 318 | 71.58 312 | 70.47 345 | 77.58 366 | 59.99 294 | 74.25 339 | 84.22 275 | 51.06 380 | 74.85 350 | 79.10 371 | 55.10 326 | 68.83 387 | 68.86 245 | 79.20 389 | 82.58 357 |
|
| pmmvs5 | | | 70.73 322 | 70.07 325 | 72.72 330 | 77.03 371 | 52.73 357 | 74.14 340 | 75.65 335 | 50.36 387 | 72.17 364 | 85.37 306 | 55.42 324 | 80.67 342 | 52.86 362 | 87.59 316 | 84.77 323 |
|
| MDTV_nov1_ep13 | | | | 68.29 344 | | 78.03 362 | 43.87 400 | 74.12 341 | 72.22 360 | 52.17 372 | 67.02 390 | 85.54 299 | 45.36 372 | 80.85 341 | 55.73 339 | 84.42 357 | |
|
| dmvs_testset | | | 60.59 378 | 62.54 373 | 54.72 397 | 77.26 367 | 27.74 420 | 74.05 342 | 61.00 407 | 60.48 321 | 65.62 396 | 67.03 410 | 55.93 320 | 68.23 392 | 32.07 417 | 69.46 411 | 68.17 404 |
|
| test_fmvs1 | | | 69.57 335 | 69.05 335 | 71.14 344 | 69.15 412 | 65.77 226 | 73.98 343 | 83.32 280 | 42.83 407 | 77.77 323 | 78.27 378 | 43.39 385 | 68.50 390 | 68.39 252 | 84.38 358 | 79.15 387 |
|
| IB-MVS | | 62.13 19 | 71.64 313 | 68.97 338 | 79.66 254 | 80.80 340 | 62.26 267 | 73.94 344 | 76.90 325 | 63.27 288 | 68.63 383 | 76.79 389 | 33.83 403 | 91.84 175 | 59.28 322 | 87.26 317 | 84.88 322 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| cascas | | | 76.29 270 | 74.81 277 | 80.72 239 | 84.47 285 | 62.94 252 | 73.89 345 | 87.34 218 | 55.94 350 | 75.16 348 | 76.53 392 | 63.97 268 | 91.16 191 | 65.00 279 | 90.97 262 | 88.06 285 |
|
| MS-PatchMatch | | | 70.93 321 | 70.22 324 | 73.06 327 | 81.85 324 | 62.50 261 | 73.82 346 | 77.90 315 | 52.44 371 | 75.92 338 | 81.27 352 | 55.67 322 | 81.75 335 | 55.37 344 | 77.70 394 | 74.94 395 |
|
| SSC-MVS | | | 77.55 252 | 81.64 193 | 65.29 378 | 90.46 157 | 20.33 424 | 73.56 347 | 68.28 381 | 85.44 37 | 88.18 144 | 94.64 64 | 70.93 233 | 81.33 338 | 71.25 216 | 92.03 240 | 94.20 93 |
|
| D2MVS | | | 76.84 260 | 75.67 271 | 80.34 244 | 80.48 344 | 62.16 270 | 73.50 348 | 84.80 269 | 57.61 341 | 82.24 264 | 87.54 267 | 51.31 340 | 87.65 268 | 70.40 228 | 93.19 217 | 91.23 218 |
|
| GA-MVS | | | 75.83 273 | 74.61 278 | 79.48 257 | 81.87 323 | 59.25 301 | 73.42 349 | 82.88 284 | 68.68 240 | 79.75 302 | 81.80 348 | 50.62 344 | 89.46 243 | 66.85 259 | 85.64 339 | 89.72 257 |
|
| Test_1112_low_res | | | 73.90 294 | 73.08 295 | 76.35 302 | 90.35 159 | 55.95 330 | 73.40 350 | 86.17 239 | 50.70 384 | 73.14 358 | 85.94 295 | 58.31 304 | 85.90 301 | 56.51 335 | 83.22 365 | 87.20 298 |
|
| CL-MVSNet_self_test | | | 76.81 261 | 77.38 253 | 75.12 313 | 86.90 241 | 51.34 367 | 73.20 351 | 80.63 304 | 68.30 244 | 81.80 275 | 88.40 251 | 66.92 253 | 80.90 340 | 55.35 345 | 94.90 168 | 93.12 147 |
|
| thisisatest0515 | | | 73.00 302 | 70.52 320 | 80.46 242 | 81.45 329 | 59.90 295 | 73.16 352 | 74.31 343 | 57.86 338 | 76.08 337 | 77.78 380 | 37.60 398 | 92.12 167 | 65.00 279 | 91.45 253 | 89.35 263 |
|
| UWE-MVS | | | 66.43 355 | 65.56 360 | 69.05 356 | 84.15 294 | 40.98 406 | 73.06 353 | 64.71 396 | 54.84 357 | 76.18 335 | 79.62 368 | 29.21 412 | 80.50 345 | 38.54 409 | 89.75 284 | 85.66 314 |
|
| HyFIR lowres test | | | 75.12 280 | 72.66 301 | 82.50 208 | 91.44 135 | 65.19 230 | 72.47 354 | 87.31 219 | 46.79 391 | 80.29 297 | 84.30 320 | 52.70 334 | 92.10 168 | 51.88 370 | 86.73 327 | 90.22 247 |
|
| Patchmatch-RL test | | | 74.48 288 | 73.68 287 | 76.89 296 | 84.83 279 | 66.54 217 | 72.29 355 | 69.16 380 | 57.70 339 | 86.76 171 | 86.33 288 | 45.79 367 | 82.59 330 | 69.63 234 | 90.65 275 | 81.54 370 |
|
| WB-MVS | | | 76.06 271 | 80.01 227 | 64.19 381 | 89.96 170 | 20.58 423 | 72.18 356 | 68.19 382 | 83.21 59 | 86.46 184 | 93.49 117 | 70.19 237 | 78.97 354 | 65.96 267 | 90.46 277 | 93.02 150 |
|
| testing222 | | | 66.93 349 | 65.30 361 | 71.81 339 | 83.38 306 | 45.83 392 | 72.06 357 | 67.50 383 | 64.12 285 | 69.68 378 | 76.37 393 | 27.34 418 | 83.00 328 | 38.88 406 | 88.38 302 | 86.62 304 |
|
| MVS-HIRNet | | | 61.16 374 | 62.92 371 | 55.87 395 | 79.09 357 | 35.34 416 | 71.83 358 | 57.98 413 | 46.56 393 | 59.05 411 | 91.14 188 | 49.95 348 | 76.43 363 | 38.74 407 | 71.92 405 | 55.84 414 |
|
| XXY-MVS | | | 74.44 290 | 76.19 265 | 69.21 355 | 84.61 284 | 52.43 360 | 71.70 359 | 77.18 323 | 60.73 319 | 80.60 291 | 90.96 196 | 75.44 179 | 69.35 384 | 56.13 338 | 88.33 303 | 85.86 312 |
|
| dmvs_re | | | 66.81 353 | 66.98 349 | 66.28 373 | 76.87 372 | 58.68 312 | 71.66 360 | 72.24 359 | 60.29 323 | 69.52 380 | 73.53 400 | 52.38 335 | 64.40 405 | 44.90 395 | 81.44 378 | 75.76 393 |
|
| testing91 | | | 69.94 332 | 68.99 337 | 72.80 329 | 83.81 300 | 45.89 391 | 71.57 361 | 73.64 351 | 68.24 245 | 70.77 373 | 77.82 379 | 34.37 402 | 84.44 317 | 53.64 355 | 87.00 325 | 88.07 283 |
|
| ppachtmachnet_test | | | 74.73 287 | 74.00 285 | 76.90 295 | 80.71 341 | 56.89 327 | 71.53 362 | 78.42 313 | 58.24 334 | 79.32 309 | 82.92 336 | 57.91 308 | 84.26 320 | 65.60 274 | 91.36 254 | 89.56 259 |
|
| testing99 | | | 69.27 338 | 68.15 345 | 72.63 331 | 83.29 309 | 45.45 393 | 71.15 363 | 71.08 369 | 67.34 256 | 70.43 374 | 77.77 381 | 32.24 407 | 84.35 319 | 53.72 354 | 86.33 333 | 88.10 282 |
|
| Syy-MVS | | | 69.40 337 | 70.03 327 | 67.49 367 | 81.72 325 | 38.94 410 | 71.00 364 | 61.99 400 | 61.38 309 | 70.81 371 | 72.36 403 | 61.37 283 | 79.30 351 | 64.50 287 | 85.18 344 | 84.22 332 |
|
| myMVS_eth3d | | | 64.66 364 | 63.89 365 | 66.97 370 | 81.72 325 | 37.39 413 | 71.00 364 | 61.99 400 | 61.38 309 | 70.81 371 | 72.36 403 | 20.96 424 | 79.30 351 | 49.59 376 | 85.18 344 | 84.22 332 |
|
| testing11 | | | 67.38 347 | 65.93 355 | 71.73 340 | 83.37 307 | 46.60 388 | 70.95 366 | 69.40 377 | 62.47 295 | 66.14 391 | 76.66 390 | 31.22 408 | 84.10 321 | 49.10 379 | 84.10 360 | 84.49 326 |
|
| dp | | | 60.70 377 | 60.29 380 | 61.92 387 | 72.04 406 | 38.67 412 | 70.83 367 | 64.08 397 | 51.28 379 | 60.75 407 | 77.28 385 | 36.59 400 | 71.58 378 | 47.41 387 | 62.34 414 | 75.52 394 |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 421 | 70.76 368 | | 46.47 394 | 61.27 406 | | 45.20 374 | | 49.18 378 | | 83.75 341 |
|
| pmmvs3 | | | 62.47 368 | 60.02 381 | 69.80 350 | 71.58 407 | 64.00 241 | 70.52 369 | 58.44 412 | 39.77 411 | 66.05 392 | 75.84 394 | 27.10 420 | 72.28 373 | 46.15 392 | 84.77 356 | 73.11 397 |
|
| Anonymous20231206 | | | 71.38 317 | 71.88 308 | 69.88 349 | 86.31 253 | 54.37 344 | 70.39 370 | 74.62 339 | 52.57 370 | 76.73 328 | 88.76 245 | 59.94 292 | 72.06 374 | 44.35 397 | 93.23 216 | 83.23 350 |
|
| test_cas_vis1_n_1920 | | | 69.20 340 | 69.12 333 | 69.43 354 | 73.68 396 | 62.82 255 | 70.38 371 | 77.21 322 | 46.18 395 | 80.46 296 | 78.95 373 | 52.03 336 | 65.53 402 | 65.77 273 | 77.45 397 | 79.95 385 |
|
| test20.03 | | | 73.75 295 | 74.59 280 | 71.22 342 | 81.11 334 | 51.12 371 | 70.15 372 | 72.10 362 | 70.42 221 | 80.28 299 | 91.50 178 | 64.21 266 | 74.72 371 | 46.96 390 | 94.58 181 | 87.82 292 |
|
| UnsupCasMVSNet_eth | | | 71.63 314 | 72.30 306 | 69.62 352 | 76.47 377 | 52.70 358 | 70.03 373 | 80.97 301 | 59.18 328 | 79.36 307 | 88.21 254 | 60.50 286 | 69.12 385 | 58.33 327 | 77.62 395 | 87.04 299 |
|
| our_test_3 | | | 71.85 310 | 71.59 310 | 72.62 332 | 80.71 341 | 53.78 349 | 69.72 374 | 71.71 367 | 58.80 331 | 78.03 317 | 80.51 360 | 56.61 316 | 78.84 355 | 62.20 301 | 86.04 337 | 85.23 318 |
|
| ETVMVS | | | 64.67 363 | 63.34 369 | 68.64 360 | 83.44 305 | 41.89 404 | 69.56 375 | 61.70 405 | 61.33 311 | 68.74 381 | 75.76 395 | 28.76 413 | 79.35 350 | 34.65 413 | 86.16 336 | 84.67 325 |
|
| Patchmatch-test | | | 65.91 358 | 67.38 347 | 61.48 389 | 75.51 385 | 43.21 402 | 68.84 376 | 63.79 398 | 62.48 294 | 72.80 361 | 83.42 330 | 44.89 378 | 59.52 411 | 48.27 385 | 86.45 330 | 81.70 367 |
|
| CHOSEN 1792x2688 | | | 72.45 305 | 70.56 319 | 78.13 276 | 90.02 169 | 63.08 251 | 68.72 377 | 83.16 281 | 42.99 406 | 75.92 338 | 85.46 302 | 57.22 313 | 85.18 310 | 49.87 375 | 81.67 375 | 86.14 308 |
|
| testgi | | | 72.36 306 | 74.61 278 | 65.59 375 | 80.56 343 | 42.82 403 | 68.29 378 | 73.35 352 | 66.87 260 | 81.84 272 | 89.93 228 | 72.08 226 | 66.92 397 | 46.05 393 | 92.54 229 | 87.01 300 |
|
| test-LLR | | | 67.21 348 | 66.74 352 | 68.63 361 | 76.45 378 | 55.21 339 | 67.89 379 | 67.14 387 | 62.43 298 | 65.08 399 | 72.39 401 | 43.41 383 | 69.37 382 | 61.00 311 | 84.89 352 | 81.31 372 |
|
| TESTMET0.1,1 | | | 61.29 373 | 60.32 379 | 64.19 381 | 72.06 405 | 51.30 368 | 67.89 379 | 62.09 399 | 45.27 397 | 60.65 408 | 69.01 407 | 27.93 416 | 64.74 404 | 56.31 336 | 81.65 377 | 76.53 391 |
|
| test-mter | | | 65.00 362 | 63.79 366 | 68.63 361 | 76.45 378 | 55.21 339 | 67.89 379 | 67.14 387 | 50.98 382 | 65.08 399 | 72.39 401 | 28.27 415 | 69.37 382 | 61.00 311 | 84.89 352 | 81.31 372 |
|
| UnsupCasMVSNet_bld | | | 69.21 339 | 69.68 330 | 67.82 365 | 79.42 353 | 51.15 370 | 67.82 382 | 75.79 332 | 54.15 361 | 77.47 326 | 85.36 307 | 59.26 298 | 70.64 380 | 48.46 383 | 79.35 386 | 81.66 368 |
|
| UBG | | | 64.34 366 | 63.35 368 | 67.30 368 | 83.50 302 | 40.53 407 | 67.46 383 | 65.02 395 | 54.77 358 | 67.54 389 | 74.47 399 | 32.99 406 | 78.50 357 | 40.82 403 | 83.58 362 | 82.88 354 |
|
| WBMVS | | | 68.76 342 | 68.43 342 | 69.75 351 | 83.29 309 | 40.30 408 | 67.36 384 | 72.21 361 | 57.09 346 | 77.05 327 | 85.53 300 | 33.68 404 | 80.51 344 | 48.79 381 | 90.90 264 | 88.45 279 |
|
| ADS-MVSNet2 | | | 65.87 359 | 63.64 367 | 72.55 333 | 73.16 399 | 56.92 326 | 67.10 385 | 74.81 338 | 49.74 388 | 66.04 393 | 82.97 333 | 46.71 356 | 77.26 361 | 42.29 399 | 69.96 408 | 83.46 344 |
|
| ADS-MVSNet | | | 61.90 370 | 62.19 374 | 61.03 390 | 73.16 399 | 36.42 415 | 67.10 385 | 61.75 403 | 49.74 388 | 66.04 393 | 82.97 333 | 46.71 356 | 63.21 406 | 42.29 399 | 69.96 408 | 83.46 344 |
|
| test_vis3_rt | | | 71.42 316 | 70.67 317 | 73.64 323 | 69.66 411 | 70.46 177 | 66.97 387 | 89.73 184 | 42.68 408 | 88.20 143 | 83.04 332 | 43.77 381 | 60.07 409 | 65.35 277 | 86.66 328 | 90.39 245 |
|
| MDA-MVSNet-bldmvs | | | 77.47 253 | 76.90 259 | 79.16 260 | 79.03 358 | 64.59 233 | 66.58 388 | 75.67 334 | 73.15 187 | 88.86 124 | 88.99 243 | 66.94 252 | 81.23 339 | 64.71 282 | 88.22 308 | 91.64 211 |
|
| WTY-MVS | | | 67.91 346 | 68.35 343 | 66.58 372 | 80.82 339 | 48.12 381 | 65.96 389 | 72.60 356 | 53.67 363 | 71.20 368 | 81.68 350 | 58.97 300 | 69.06 386 | 48.57 382 | 81.67 375 | 82.55 358 |
|
| mvsany_test3 | | | 65.48 361 | 62.97 370 | 73.03 328 | 69.99 410 | 76.17 121 | 64.83 390 | 43.71 421 | 43.68 403 | 80.25 300 | 87.05 280 | 52.83 333 | 63.09 408 | 51.92 369 | 72.44 403 | 79.84 386 |
|
| sss | | | 66.92 350 | 67.26 348 | 65.90 374 | 77.23 368 | 51.10 372 | 64.79 391 | 71.72 366 | 52.12 375 | 70.13 376 | 80.18 362 | 57.96 307 | 65.36 403 | 50.21 372 | 81.01 381 | 81.25 374 |
|
| miper_lstm_enhance | | | 76.45 268 | 76.10 266 | 77.51 287 | 76.72 374 | 60.97 285 | 64.69 392 | 85.04 261 | 63.98 286 | 83.20 250 | 88.22 253 | 56.67 315 | 78.79 356 | 73.22 201 | 93.12 218 | 92.78 158 |
|
| test0.0.03 1 | | | 64.66 364 | 64.36 363 | 65.57 376 | 75.03 390 | 46.89 387 | 64.69 392 | 61.58 406 | 62.43 298 | 71.18 369 | 77.54 382 | 43.41 383 | 68.47 391 | 40.75 404 | 82.65 371 | 81.35 371 |
|
| PMMVS | | | 61.65 371 | 60.38 378 | 65.47 377 | 65.40 420 | 69.26 189 | 63.97 394 | 61.73 404 | 36.80 417 | 60.11 409 | 68.43 408 | 59.42 296 | 66.35 399 | 48.97 380 | 78.57 391 | 60.81 410 |
|
| test123 | | | 6.27 392 | 8.08 395 | 0.84 405 | 1.11 429 | 0.57 430 | 62.90 395 | 0.82 429 | 0.54 423 | 1.07 425 | 2.75 424 | 1.26 428 | 0.30 424 | 1.04 423 | 1.26 423 | 1.66 420 |
|
| KD-MVS_2432*1600 | | | 66.87 351 | 65.81 357 | 70.04 347 | 67.50 413 | 47.49 384 | 62.56 396 | 79.16 309 | 61.21 314 | 77.98 318 | 80.61 356 | 25.29 421 | 82.48 331 | 53.02 359 | 84.92 349 | 80.16 383 |
|
| miper_refine_blended | | | 66.87 351 | 65.81 357 | 70.04 347 | 67.50 413 | 47.49 384 | 62.56 396 | 79.16 309 | 61.21 314 | 77.98 318 | 80.61 356 | 25.29 421 | 82.48 331 | 53.02 359 | 84.92 349 | 80.16 383 |
|
| PVSNet | | 58.17 21 | 66.41 356 | 65.63 359 | 68.75 359 | 81.96 322 | 49.88 377 | 62.19 398 | 72.51 358 | 51.03 381 | 68.04 385 | 75.34 397 | 50.84 342 | 74.77 369 | 45.82 394 | 82.96 366 | 81.60 369 |
|
| test_vis1_rt | | | 65.64 360 | 64.09 364 | 70.31 346 | 66.09 417 | 70.20 180 | 61.16 399 | 81.60 296 | 38.65 413 | 72.87 360 | 69.66 406 | 52.84 332 | 60.04 410 | 56.16 337 | 77.77 393 | 80.68 381 |
|
| dongtai | | | 41.90 385 | 42.65 388 | 39.67 400 | 70.86 408 | 21.11 422 | 61.01 400 | 21.42 427 | 57.36 343 | 57.97 415 | 50.06 416 | 16.40 426 | 58.73 413 | 21.03 420 | 27.69 420 | 39.17 416 |
|
| new_pmnet | | | 55.69 382 | 57.66 383 | 49.76 398 | 75.47 386 | 30.59 418 | 59.56 401 | 51.45 417 | 43.62 404 | 62.49 405 | 75.48 396 | 40.96 390 | 49.15 418 | 37.39 411 | 72.52 402 | 69.55 402 |
|
| new-patchmatchnet | | | 70.10 327 | 73.37 292 | 60.29 391 | 81.23 333 | 16.95 426 | 59.54 402 | 74.62 339 | 62.93 290 | 80.97 285 | 87.93 259 | 62.83 279 | 71.90 375 | 55.24 346 | 95.01 165 | 92.00 198 |
|
| testmvs | | | 5.91 393 | 7.65 396 | 0.72 406 | 1.20 428 | 0.37 431 | 59.14 403 | 0.67 430 | 0.49 424 | 1.11 424 | 2.76 423 | 0.94 429 | 0.24 425 | 1.02 424 | 1.47 422 | 1.55 421 |
|
| N_pmnet | | | 70.20 325 | 68.80 340 | 74.38 319 | 80.91 336 | 84.81 43 | 59.12 404 | 76.45 330 | 55.06 355 | 75.31 347 | 82.36 342 | 55.74 321 | 54.82 414 | 47.02 388 | 87.24 318 | 83.52 343 |
|
| YYNet1 | | | 70.06 328 | 70.44 321 | 68.90 357 | 73.76 395 | 53.42 353 | 58.99 405 | 67.20 386 | 58.42 333 | 87.10 163 | 85.39 305 | 59.82 294 | 67.32 394 | 59.79 319 | 83.50 364 | 85.96 309 |
|
| MDA-MVSNet_test_wron | | | 70.05 329 | 70.44 321 | 68.88 358 | 73.84 394 | 53.47 351 | 58.93 406 | 67.28 385 | 58.43 332 | 87.09 164 | 85.40 304 | 59.80 295 | 67.25 395 | 59.66 320 | 83.54 363 | 85.92 311 |
|
| kuosan | | | 30.83 386 | 32.17 389 | 26.83 402 | 53.36 424 | 19.02 425 | 57.90 407 | 20.44 428 | 38.29 415 | 38.01 419 | 37.82 418 | 15.18 427 | 33.45 421 | 7.74 422 | 20.76 421 | 28.03 417 |
|
| test_f | | | 64.31 367 | 65.85 356 | 59.67 392 | 66.54 416 | 62.24 269 | 57.76 408 | 70.96 370 | 40.13 410 | 84.36 224 | 82.09 344 | 46.93 355 | 51.67 416 | 61.99 304 | 81.89 374 | 65.12 407 |
|
| mvsany_test1 | | | 58.48 380 | 56.47 385 | 64.50 380 | 65.90 419 | 68.21 201 | 56.95 409 | 42.11 422 | 38.30 414 | 65.69 395 | 77.19 388 | 56.96 314 | 59.35 412 | 46.16 391 | 58.96 415 | 65.93 406 |
|
| PVSNet_0 | | 51.08 22 | 56.10 381 | 54.97 386 | 59.48 393 | 75.12 389 | 53.28 354 | 55.16 410 | 61.89 402 | 44.30 400 | 59.16 410 | 62.48 413 | 54.22 328 | 65.91 401 | 35.40 412 | 47.01 416 | 59.25 412 |
|
| E-PMN | | | 61.59 372 | 61.62 375 | 61.49 388 | 66.81 415 | 55.40 337 | 53.77 411 | 60.34 408 | 66.80 261 | 58.90 412 | 65.50 411 | 40.48 391 | 66.12 400 | 55.72 340 | 86.25 334 | 62.95 409 |
|
| EMVS | | | 61.10 375 | 60.81 377 | 61.99 386 | 65.96 418 | 55.86 333 | 53.10 412 | 58.97 411 | 67.06 258 | 56.89 416 | 63.33 412 | 40.98 389 | 67.03 396 | 54.79 349 | 86.18 335 | 63.08 408 |
|
| CHOSEN 280x420 | | | 59.08 379 | 56.52 384 | 66.76 371 | 76.51 376 | 64.39 237 | 49.62 413 | 59.00 410 | 43.86 402 | 55.66 417 | 68.41 409 | 35.55 401 | 68.21 393 | 43.25 398 | 76.78 399 | 67.69 405 |
|
| PMMVS2 | | | 55.64 383 | 59.27 382 | 44.74 399 | 64.30 421 | 12.32 427 | 40.60 414 | 49.79 418 | 53.19 366 | 65.06 401 | 84.81 314 | 53.60 331 | 49.76 417 | 32.68 416 | 89.41 288 | 72.15 398 |
|
| tmp_tt | | | 20.25 389 | 24.50 392 | 7.49 404 | 4.47 427 | 8.70 428 | 34.17 415 | 25.16 425 | 1.00 422 | 32.43 421 | 18.49 419 | 39.37 393 | 9.21 423 | 21.64 419 | 43.75 417 | 4.57 419 |
|
| MVE |  | 40.22 23 | 51.82 384 | 50.47 387 | 55.87 395 | 62.66 422 | 51.91 363 | 31.61 416 | 39.28 423 | 40.65 409 | 50.76 418 | 74.98 398 | 56.24 319 | 44.67 419 | 33.94 415 | 64.11 413 | 71.04 401 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 30.46 387 | 29.60 390 | 33.06 401 | 17.99 426 | 3.84 429 | 13.62 417 | 73.92 345 | 2.79 420 | 18.29 422 | 53.41 415 | 28.53 414 | 43.25 420 | 22.56 418 | 35.27 418 | 52.11 415 |
|
| mmdepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| monomultidepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| test_blank | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uanet_test | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| DCPMVS | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| cdsmvs_eth3d_5k | | | 20.81 388 | 27.75 391 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 85.44 252 | 0.00 425 | 0.00 426 | 82.82 337 | 81.46 118 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| pcd_1.5k_mvsjas | | | 6.41 391 | 8.55 394 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 76.94 166 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| sosnet-low-res | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| sosnet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uncertanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| Regformer | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| ab-mvs-re | | | 6.65 390 | 8.87 393 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 79.80 365 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| WAC-MVS | | | | | | | 37.39 413 | | | | | | | | 52.61 363 | | |
|
| MSC_two_6792asdad | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 146 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 178 |
|
| PC_three_1452 | | | | | | | | | | 58.96 330 | 90.06 97 | 91.33 182 | 80.66 128 | 93.03 142 | 75.78 168 | 95.94 128 | 92.48 172 |
|
| No_MVS | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 146 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 178 |
|
| test_one_0601 | | | | | | 93.85 62 | 73.27 140 | | 94.11 38 | 86.57 30 | 93.47 41 | 94.64 64 | 88.42 28 | | | | |
|
| eth-test2 | | | | | | 0.00 430 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 430 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 92.22 103 | 80.48 71 | | 91.85 121 | 71.22 214 | 90.38 92 | 92.98 131 | 86.06 64 | 96.11 7 | 81.99 95 | 96.75 92 | |
|
| IU-MVS | | | | | | 94.18 50 | 72.64 147 | | 90.82 151 | 56.98 347 | 89.67 109 | | | | 85.78 52 | 97.92 49 | 93.28 138 |
|
| test_241102_TWO | | | | | | | | | 93.71 55 | 83.77 52 | 93.49 39 | 94.27 79 | 89.27 23 | 95.84 24 | 86.03 49 | 97.82 54 | 92.04 196 |
|
| test_241102_ONE | | | | | | 94.18 50 | 72.65 145 | | 93.69 56 | 83.62 54 | 94.11 26 | 93.78 108 | 90.28 14 | 95.50 49 | | | |
|
| test_0728_THIRD | | | | | | | | | | 85.33 38 | 93.75 34 | 94.65 61 | 87.44 46 | 95.78 32 | 87.41 25 | 98.21 32 | 92.98 153 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 336 |
|
| test_part2 | | | | | | 93.86 61 | 77.77 98 | | | | 92.84 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 360 | | | | 83.88 336 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 365 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 125 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 3.10 422 | 45.43 371 | 77.22 362 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 349 | 45.93 364 | 87.01 275 | | | |
|
| gm-plane-assit | | | | | | 75.42 387 | 44.97 397 | | | 52.17 372 | | 72.36 403 | | 87.90 265 | 54.10 352 | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 105 | 96.45 103 | 90.57 239 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 118 | 96.16 115 | 90.22 247 |
|
| agg_prior | | | | | | 91.58 127 | 77.69 100 | | 90.30 170 | | 84.32 226 | | | 93.18 135 | | | |
|
| TestCases | | | | | 89.68 55 | 91.59 124 | 83.40 52 | | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 181 | 70.81 219 | 96.14 116 | 94.16 97 |
|
| test_prior | | | | | 86.32 110 | 90.59 155 | 71.99 162 | | 92.85 92 | | | | | 94.17 96 | | | 92.80 157 |
|
| 新几何1 | | | | | 82.95 196 | 93.96 59 | 78.56 88 | | 80.24 305 | 55.45 353 | 83.93 237 | 91.08 191 | 71.19 232 | 88.33 262 | 65.84 271 | 93.07 219 | 81.95 366 |
|
| 旧先验1 | | | | | | 91.97 111 | 71.77 163 | | 81.78 294 | | | 91.84 167 | 73.92 199 | | | 93.65 207 | 83.61 342 |
|
| 原ACMM1 | | | | | 84.60 146 | 92.81 89 | 74.01 132 | | 91.50 130 | 62.59 292 | 82.73 259 | 90.67 210 | 76.53 173 | 94.25 90 | 69.24 237 | 95.69 141 | 85.55 315 |
|
| testdata2 | | | | | | | | | | | | | | 86.43 289 | 63.52 293 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 110 | | | | |
|
| testdata | | | | | 79.54 256 | 92.87 84 | 72.34 156 | | 80.14 306 | 59.91 326 | 85.47 202 | 91.75 173 | 67.96 249 | 85.24 308 | 68.57 251 | 92.18 239 | 81.06 379 |
|
| test12 | | | | | 86.57 105 | 90.74 151 | 72.63 149 | | 90.69 154 | | 82.76 258 | | 79.20 139 | 94.80 73 | | 95.32 150 | 92.27 186 |
|
| plane_prior7 | | | | | | 93.45 68 | 77.31 106 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 90 | 76.54 113 | | | | | | 74.84 187 | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 59 | | | | | 95.22 59 | 80.78 106 | 95.83 134 | 94.46 81 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 134 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 111 | | | 77.79 125 | 86.55 177 | | | | | | |
|
| plane_prior1 | | | | | | 92.83 88 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 431 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 431 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 342 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.95 120 | 91.10 144 | 70.99 174 | | 70.91 371 | | 91.79 69 | 94.42 74 | 61.76 281 | 92.93 145 | 79.52 121 | 93.03 220 | 93.93 106 |
|
| LGP-MVS_train | | | | | 90.82 37 | 94.75 41 | 81.69 63 | | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 59 |
|
| test11 | | | | | | | | | 91.46 131 | | | | | | | | |
|
| door | | | | | | | | | 72.57 357 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 175 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 151 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 292 | | | 94.61 79 | | | 93.56 130 |
|
| HQP3-MVS | | | | | | | | | 92.68 97 | | | | | | | 94.47 183 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 224 | | | | |
|
| NP-MVS | | | | | | 91.95 112 | 74.55 129 | | | | | 90.17 225 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 140 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 140 | | | | |
|
| ITE_SJBPF | | | | | 90.11 49 | 90.72 152 | 84.97 41 | | 90.30 170 | 81.56 76 | 90.02 99 | 91.20 187 | 82.40 99 | 90.81 206 | 73.58 196 | 94.66 179 | 94.56 77 |
|
| DeepMVS_CX |  | | | | 24.13 403 | 32.95 425 | 29.49 419 | | 21.63 426 | 12.07 419 | 37.95 420 | 45.07 417 | 30.84 409 | 19.21 422 | 17.94 421 | 33.06 419 | 23.69 418 |
|