This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5299.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3594.17 9686.07 4398.48 1897.22 17
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 13991.10 197.53 7396.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3791.86 395.09 6387.54 1898.02 4093.71 115
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5595.13 4190.65 1095.34 5388.06 998.15 3595.95 40
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6488.83 2495.51 4487.16 2897.60 6692.73 150
test117292.40 792.41 792.37 694.68 4589.04 691.98 3193.62 5790.14 1193.63 3694.16 8288.83 2495.51 4487.11 3097.54 7292.54 160
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4194.02 8890.15 1795.67 3386.82 3297.34 7992.19 179
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 6993.94 9790.55 1395.73 3088.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8185.17 3692.47 2695.05 1587.65 2493.21 4294.39 7090.09 1895.08 6486.67 3397.60 6694.18 93
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6786.15 2393.37 1095.10 1490.28 992.11 6195.03 4389.75 2194.93 6879.95 10898.27 2795.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5894.14 8389.15 2395.62 3487.35 2398.24 2894.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 10083.09 5491.54 7194.25 7687.67 4395.51 4487.21 2798.11 3693.12 136
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 8094.00 8988.26 3295.71 3187.28 2698.39 2192.55 159
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9894.03 8786.57 5695.80 2487.35 2397.62 6494.20 91
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3091.81 12084.07 4092.00 6494.40 6886.63 5495.28 5688.59 598.31 2492.30 171
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9588.22 2088.53 13197.64 283.45 8494.55 8386.02 4698.60 1396.67 26
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7494.17 8187.51 4495.87 1887.74 1197.76 5693.99 100
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5694.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8594.21 7787.75 4195.87 1887.60 1697.71 6093.83 107
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7293.96 9388.35 3095.56 3787.74 1197.74 5892.85 145
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8291.81 12084.07 4092.00 6494.40 6886.63 5495.28 5688.59 598.31 2492.30 171
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2894.22 2780.14 8991.29 7793.97 9087.93 4095.87 1888.65 497.96 4794.12 97
APDe-MVS91.22 2491.92 1389.14 6692.97 8378.04 9392.84 1694.14 3583.33 5193.90 2595.73 2688.77 2696.41 187.60 1697.98 4492.98 141
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5693.90 4680.32 8691.74 7094.41 6788.17 3495.98 1186.37 3697.99 4293.96 102
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3893.48 6382.82 5892.60 5493.97 9088.19 3396.29 487.61 1598.20 3294.39 86
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2793.03 8682.59 6088.52 13294.37 7186.74 5395.41 5186.32 3798.21 3093.19 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3693.74 5280.98 7991.38 7593.80 10087.20 4895.80 2487.10 3197.69 6193.93 103
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9594.51 2175.79 14292.94 4494.96 4488.36 2995.01 6690.70 298.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3091.50 2388.44 8293.00 8276.26 12289.65 6795.55 787.72 2393.89 2794.94 4591.62 493.44 12978.35 12698.76 495.61 47
ACMMP_NAP90.65 3191.07 3889.42 6195.93 1679.54 7989.95 5993.68 5677.65 11991.97 6694.89 4688.38 2895.45 4989.27 397.87 5293.27 130
ACMM79.39 990.65 3190.99 4089.63 5695.03 3583.53 4989.62 6893.35 6679.20 10193.83 2893.60 10790.81 892.96 14685.02 5498.45 1992.41 165
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3390.34 5091.38 2789.03 18784.23 4793.58 694.68 1990.65 790.33 9293.95 9684.50 7295.37 5280.87 9895.50 14794.53 80
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 7894.05 4079.03 10492.87 4693.74 10490.60 1295.21 6082.87 7698.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3591.08 3688.88 6893.38 7378.65 8989.15 7994.05 4084.68 3893.90 2594.11 8588.13 3696.30 384.51 6097.81 5491.70 194
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4493.29 7377.00 12691.47 7293.96 9388.35 3095.56 3784.88 5597.74 5892.85 145
SED-MVS90.46 3791.64 1986.93 10194.18 5072.65 14190.47 4993.69 5483.77 4494.11 2394.27 7290.28 1595.84 2286.03 4497.92 4892.29 173
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4293.24 7675.37 14992.84 4895.28 3685.58 6696.09 787.92 1097.76 5693.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4588.68 7792.86 8777.09 11191.19 4195.74 581.38 7492.28 5993.80 10086.89 5194.64 7785.52 4897.51 7494.30 89
v7n90.13 4090.96 4187.65 9491.95 11371.06 16889.99 5893.05 8386.53 2894.29 1996.27 1782.69 9194.08 10086.25 4097.63 6397.82 8
PMVScopyleft80.48 690.08 4190.66 4788.34 8596.71 392.97 190.31 5289.57 18188.51 1990.11 9495.12 4290.98 788.92 25177.55 14197.07 8683.13 318
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 4291.09 3587.00 10091.55 13272.64 14396.19 294.10 3885.33 3293.49 3894.64 5781.12 12095.88 1687.41 2195.94 13192.48 162
DVP-MVScopyleft90.06 4391.32 3086.29 11494.16 5372.56 14790.54 4691.01 14183.61 4793.75 3194.65 5489.76 1995.78 2786.42 3497.97 4590.55 222
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4391.92 1384.47 15196.56 758.83 28689.04 8092.74 9791.40 596.12 496.06 2287.23 4795.57 3679.42 11798.74 699.00 2
PEN-MVS90.03 4591.88 1684.48 15096.57 658.88 28388.95 8193.19 7791.62 496.01 696.16 2087.02 4995.60 3578.69 12298.72 998.97 3
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 7980.37 7191.91 3493.11 7981.10 7795.32 1097.24 572.94 20594.85 7185.07 5297.78 5597.26 15
DTE-MVSNet89.98 4791.91 1584.21 15896.51 857.84 29188.93 8392.84 9491.92 396.16 396.23 1886.95 5095.99 1079.05 11998.57 1598.80 6
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7393.98 4279.68 9392.09 6293.89 9883.80 8093.10 14382.67 7898.04 3793.64 120
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14181.66 6491.25 3994.13 3688.89 1388.83 12694.26 7577.55 15395.86 2184.88 5595.87 13595.24 57
WR-MVS_H89.91 5091.31 3185.71 13096.32 1062.39 24389.54 7193.31 7090.21 1095.57 995.66 2981.42 11795.90 1580.94 9798.80 398.84 5
OPM-MVS89.80 5189.97 5289.27 6394.76 4179.86 7586.76 11792.78 9678.78 10792.51 5593.64 10688.13 3693.84 11084.83 5797.55 6994.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 5289.27 6391.30 2893.51 6984.79 4189.89 6190.63 15170.00 21894.55 1596.67 1187.94 3993.59 12184.27 6295.97 12895.52 48
anonymousdsp89.73 5388.88 7092.27 989.82 17586.67 1790.51 4890.20 16869.87 21995.06 1196.14 2184.28 7593.07 14487.68 1396.34 11397.09 19
test_djsdf89.62 5489.01 6691.45 2592.36 9882.98 5591.98 3190.08 17171.54 19994.28 2196.54 1381.57 11594.27 8786.26 3896.49 10697.09 19
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11393.91 4580.07 9086.75 16393.26 11093.64 290.93 20384.60 5990.75 26193.97 101
APD-MVScopyleft89.54 5689.63 5789.26 6492.57 9281.34 6690.19 5493.08 8280.87 8191.13 7893.19 11186.22 6195.97 1282.23 8497.18 8490.45 224
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj89.51 5789.48 6089.59 5892.26 10280.80 6990.14 5593.54 6183.37 5090.57 8992.55 13384.99 6896.15 581.26 9296.61 10191.83 190
jajsoiax89.41 5888.81 7291.19 3293.38 7384.72 4289.70 6390.29 16569.27 22294.39 1796.38 1586.02 6493.52 12583.96 6495.92 13395.34 52
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 2992.30 10679.74 9287.50 14892.38 13781.42 11793.28 13483.07 7397.24 8291.67 195
ACMH76.49 1489.34 6091.14 3483.96 16492.50 9570.36 17389.55 6993.84 5081.89 6994.70 1395.44 3490.69 988.31 26183.33 7198.30 2693.20 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet89.27 6190.91 4384.37 15296.34 958.61 28888.66 9092.06 11190.78 695.67 795.17 4081.80 11395.54 4179.00 12098.69 1098.95 4
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 12893.60 6080.16 8889.13 12293.44 10883.82 7990.98 20183.86 6695.30 15593.60 122
DeepC-MVS82.31 489.15 6389.08 6589.37 6293.64 6879.07 8488.54 9194.20 2873.53 16789.71 10794.82 4985.09 6795.77 2984.17 6398.03 3993.26 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6490.72 4684.31 15697.00 264.33 22189.67 6688.38 19888.84 1594.29 1997.57 390.48 1491.26 19372.57 19597.65 6297.34 14
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11289.16 12192.25 14472.03 21796.36 288.21 890.93 25692.98 141
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7293.75 6477.44 10486.31 12595.27 1270.80 20792.28 5993.80 10086.89 5194.64 7785.52 4897.51 7494.30 89
SD-MVS88.96 6789.88 5386.22 11791.63 12577.07 11289.82 6293.77 5178.90 10592.88 4592.29 14286.11 6290.22 22586.24 4197.24 8291.36 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6391.27 13478.20 11486.69 16692.28 14380.36 13095.06 6586.17 4296.49 10690.22 227
ETH3D-3000-0.188.85 6988.96 6988.52 7891.94 11577.27 11088.71 8895.26 1376.08 13390.66 8892.69 12884.48 7393.83 11183.38 7097.48 7694.47 81
test_040288.65 7089.58 5985.88 12692.55 9372.22 15584.01 15989.44 18388.63 1894.38 1895.77 2586.38 6093.59 12179.84 10995.21 15691.82 191
DP-MVS88.60 7189.01 6687.36 9791.30 13977.50 10287.55 10292.97 8987.95 2289.62 11192.87 12284.56 7193.89 10777.65 13896.62 10090.70 216
Anonymous2023121188.40 7289.62 5884.73 14690.46 16365.27 21288.86 8493.02 8787.15 2593.05 4397.10 682.28 10092.02 17376.70 15097.99 4296.88 23
PS-MVSNAJss88.31 7387.90 7989.56 5993.31 7577.96 9687.94 9891.97 11470.73 20994.19 2296.67 1176.94 16294.57 8183.07 7396.28 11596.15 32
OMC-MVS88.19 7487.52 8590.19 4991.94 11581.68 6387.49 10493.17 7876.02 13688.64 12991.22 16784.24 7693.37 13277.97 13697.03 8795.52 48
CS-MVS88.14 7587.67 8389.54 6089.56 17779.18 8390.47 4994.77 1879.37 9984.32 21089.33 21483.87 7794.53 8482.45 8094.89 17094.90 64
TSAR-MVS + MP.88.14 7587.82 8089.09 6795.72 2276.74 11692.49 2591.19 13767.85 24186.63 16794.84 4879.58 13695.96 1387.62 1494.50 18094.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DROMVSNet88.01 7788.32 7687.09 9989.28 18272.03 15790.31 5296.31 380.88 8085.12 19489.67 21084.47 7495.46 4882.56 7996.26 11893.77 113
RPSCF88.00 7886.93 9591.22 3190.08 16989.30 589.68 6591.11 13879.26 10089.68 10894.81 5282.44 9487.74 26576.54 15288.74 28396.61 28
AllTest87.97 7987.40 8889.68 5491.59 12683.40 5089.50 7295.44 979.47 9588.00 14193.03 11482.66 9291.47 18570.81 20496.14 12294.16 94
TranMVSNet+NR-MVSNet87.86 8088.76 7385.18 13894.02 5864.13 22284.38 15391.29 13384.88 3792.06 6393.84 9986.45 5893.73 11373.22 18698.66 1197.69 9
nrg03087.85 8188.49 7485.91 12490.07 17169.73 17687.86 9994.20 2874.04 16192.70 5394.66 5385.88 6591.50 18479.72 11197.32 8096.50 30
ETH3D cwj APD-0.1687.83 8287.62 8488.47 8091.21 14278.20 9187.26 10694.54 2072.05 19588.89 12392.31 14183.86 7894.24 9081.59 9196.87 9192.97 144
CNVR-MVS87.81 8387.68 8288.21 8792.87 8577.30 10985.25 13891.23 13577.31 12387.07 15691.47 16382.94 8994.71 7484.67 5896.27 11792.62 157
HQP_MVS87.75 8487.43 8788.70 7693.45 7076.42 12089.45 7493.61 5879.44 9786.55 16892.95 11974.84 18095.22 5880.78 10095.83 13694.46 82
NCCC87.36 8586.87 9688.83 6992.32 10178.84 8786.58 12191.09 13978.77 10884.85 20090.89 18180.85 12395.29 5481.14 9495.32 15292.34 169
DeepPCF-MVS81.24 587.28 8686.21 10690.49 4391.48 13684.90 3983.41 18092.38 10570.25 21589.35 11990.68 18882.85 9094.57 8179.55 11395.95 13092.00 184
SixPastTwentyTwo87.20 8787.45 8686.45 11092.52 9469.19 18587.84 10088.05 20481.66 7194.64 1496.53 1465.94 24594.75 7383.02 7596.83 9495.41 50
test_part187.15 8887.82 8085.15 13988.88 19163.04 23387.98 9694.85 1682.52 6193.61 3795.73 2667.51 23695.71 3180.48 10598.83 296.69 25
CS-MVS-test87.00 8986.43 10188.71 7589.46 17877.46 10389.42 7695.73 677.87 11781.64 25587.25 24982.43 9594.53 8477.65 13896.46 10894.14 96
UniMVSNet (Re)86.87 9086.98 9486.55 10893.11 8068.48 18983.80 16892.87 9180.37 8489.61 11391.81 15577.72 15094.18 9475.00 16998.53 1696.99 22
Vis-MVSNetpermissive86.86 9186.58 9987.72 9292.09 10977.43 10687.35 10592.09 11078.87 10684.27 21694.05 8678.35 14593.65 11580.54 10491.58 24492.08 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9287.06 9186.17 12192.86 8767.02 20082.55 20591.56 12483.08 5590.92 8291.82 15478.25 14693.99 10274.16 17398.35 2297.49 13
DU-MVS86.80 9386.99 9386.21 11993.24 7767.02 20083.16 18992.21 10781.73 7090.92 8291.97 14877.20 15693.99 10274.16 17398.35 2297.61 10
Regformer-286.74 9486.08 10888.73 7384.18 27679.20 8283.52 17589.33 18583.33 5189.92 10285.07 28683.23 8793.16 13983.39 6992.72 22193.83 107
IS-MVSNet86.66 9586.82 9886.17 12192.05 11166.87 20291.21 4088.64 19486.30 3089.60 11492.59 13069.22 22894.91 6973.89 17797.89 5196.72 24
v1086.54 9687.10 9084.84 14388.16 20663.28 23086.64 12092.20 10875.42 14892.81 5094.50 6074.05 19094.06 10183.88 6596.28 11597.17 18
pmmvs686.52 9788.06 7881.90 20492.22 10562.28 24684.66 14689.15 18783.54 4989.85 10397.32 488.08 3886.80 27870.43 21297.30 8196.62 27
Regformer-486.41 9885.71 11688.52 7884.27 27277.57 10184.07 15688.00 20682.82 5889.84 10485.48 27482.06 10492.77 15283.83 6791.04 25095.22 60
PHI-MVS86.38 9985.81 11388.08 8888.44 20077.34 10789.35 7793.05 8373.15 17884.76 20187.70 24078.87 14094.18 9480.67 10296.29 11492.73 150
test_prior386.31 10086.31 10386.32 11290.59 16071.99 15883.37 18192.85 9275.43 14684.58 20491.57 15981.92 11094.17 9679.54 11496.97 8892.80 147
CSCG86.26 10186.47 10085.60 13290.87 15374.26 13187.98 9691.85 11780.35 8589.54 11788.01 23479.09 13892.13 16775.51 16295.06 16390.41 225
DeepC-MVS_fast80.27 886.23 10285.65 11887.96 9191.30 13976.92 11387.19 10791.99 11370.56 21084.96 19690.69 18780.01 13395.14 6178.37 12595.78 14091.82 191
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10386.83 9784.36 15487.82 21062.35 24586.42 12391.33 13276.78 12892.73 5294.48 6273.41 19993.72 11483.10 7295.41 14897.01 21
Anonymous2024052986.20 10487.13 8983.42 17690.19 16764.55 21984.55 14890.71 14885.85 3189.94 10195.24 3982.13 10290.40 22069.19 22396.40 11195.31 54
CDPH-MVS86.17 10585.54 11988.05 9092.25 10375.45 12583.85 16592.01 11265.91 25686.19 17591.75 15783.77 8194.98 6777.43 14496.71 9893.73 114
Regformer-186.00 10685.50 12087.49 9584.18 27676.90 11483.52 17587.94 20882.18 6589.19 12085.07 28682.28 10091.89 17782.40 8292.72 22193.69 116
NR-MVSNet86.00 10686.22 10585.34 13693.24 7764.56 21882.21 21790.46 15480.99 7888.42 13491.97 14877.56 15293.85 10872.46 19698.65 1297.61 10
train_agg85.98 10885.28 12388.07 8992.34 9979.70 7783.94 16190.32 15965.79 25784.49 20690.97 17781.93 10893.63 11781.21 9396.54 10490.88 211
FC-MVSNet-test85.93 10987.05 9282.58 19592.25 10356.44 30285.75 13293.09 8177.33 12291.94 6794.65 5474.78 18293.41 13175.11 16898.58 1497.88 7
Effi-MVS+-dtu85.82 11083.38 15793.14 387.13 22591.15 287.70 10188.42 19674.57 15683.56 22585.65 27178.49 14394.21 9272.04 19892.88 21694.05 99
agg_prior185.72 11185.20 12487.28 9891.58 12977.69 9983.69 17190.30 16266.29 25384.32 21091.07 17482.13 10293.18 13781.02 9596.36 11290.98 207
TAPA-MVS77.73 1285.71 11284.83 13188.37 8488.78 19379.72 7687.15 10993.50 6269.17 22385.80 18589.56 21180.76 12492.13 16773.21 19195.51 14693.25 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 11386.14 10783.58 17387.97 20767.13 19887.55 10294.32 2273.44 16988.47 13387.54 24386.45 5891.06 20075.76 16193.76 19592.54 160
EPP-MVSNet85.47 11485.04 12786.77 10591.52 13569.37 17991.63 3787.98 20781.51 7387.05 15791.83 15366.18 24495.29 5470.75 20796.89 9095.64 45
GeoE85.45 11585.81 11384.37 15290.08 16967.07 19985.86 13191.39 13172.33 19087.59 14690.25 19884.85 6992.37 16178.00 13491.94 23893.66 117
FIs85.35 11686.27 10482.60 19491.86 11857.31 29585.10 14093.05 8375.83 14191.02 8193.97 9073.57 19592.91 15073.97 17698.02 4097.58 12
casdiffmvs85.21 11785.85 11283.31 17886.17 24862.77 23783.03 19193.93 4474.69 15588.21 13992.68 12982.29 9991.89 17777.87 13793.75 19795.27 56
baseline85.20 11885.93 11083.02 18386.30 24362.37 24484.55 14893.96 4374.48 15887.12 15292.03 14782.30 9891.94 17478.39 12494.21 18694.74 73
K. test v385.14 11984.73 13286.37 11191.13 14769.63 17885.45 13676.68 30484.06 4292.44 5796.99 862.03 26494.65 7680.58 10393.24 20694.83 72
EI-MVSNet-Vis-set85.12 12084.53 14086.88 10284.01 27972.76 14083.91 16485.18 24780.44 8388.75 12785.49 27380.08 13291.92 17582.02 8590.85 25995.97 38
ETH3 D test640085.09 12184.87 13085.75 12990.80 15569.34 18085.90 12993.31 7065.43 26386.11 17889.95 20480.92 12294.86 7075.90 15995.57 14593.05 138
Regformer-385.06 12284.67 13786.22 11784.27 27273.43 13584.07 15685.26 24580.77 8288.62 13085.48 27480.56 12890.39 22181.99 8691.04 25094.85 70
EI-MVSNet-UG-set85.04 12384.44 14286.85 10383.87 28272.52 14983.82 16685.15 24880.27 8788.75 12785.45 27779.95 13491.90 17681.92 8890.80 26096.13 33
X-MVStestdata85.04 12382.70 16792.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9816.05 37486.57 5695.80 2487.35 2397.62 6494.20 91
MSLP-MVS++85.00 12586.03 10981.90 20491.84 12171.56 16686.75 11893.02 8775.95 13987.12 15289.39 21277.98 14789.40 24777.46 14294.78 17384.75 295
F-COLMAP84.97 12683.42 15689.63 5692.39 9783.40 5088.83 8591.92 11673.19 17780.18 27589.15 21977.04 16093.28 13465.82 25092.28 22992.21 178
3Dnovator80.37 784.80 12784.71 13585.06 14186.36 24174.71 12888.77 8790.00 17375.65 14484.96 19693.17 11274.06 18991.19 19578.28 12891.09 24889.29 243
IterMVS-LS84.73 12884.98 12883.96 16487.35 22063.66 22583.25 18589.88 17576.06 13489.62 11192.37 14073.40 20192.52 15778.16 13194.77 17595.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12984.34 14685.49 13590.18 16875.86 12479.23 26187.13 21873.35 17085.56 18989.34 21383.60 8390.50 21876.64 15194.05 19190.09 232
HQP-MVS84.61 13084.06 14986.27 11591.19 14370.66 17084.77 14292.68 9873.30 17380.55 26990.17 20272.10 21394.61 7977.30 14594.47 18193.56 124
v119284.57 13184.69 13684.21 15887.75 21262.88 23583.02 19291.43 12869.08 22589.98 10090.89 18172.70 20993.62 12082.41 8194.97 16796.13 33
mvs-test184.55 13282.12 17691.84 2087.13 22589.54 485.05 14188.42 19674.57 15680.60 26682.98 30878.49 14393.98 10472.04 19889.77 27092.00 184
FMVSNet184.55 13285.45 12181.85 20690.27 16661.05 25886.83 11488.27 20178.57 11189.66 11095.64 3075.43 17390.68 21369.09 22495.33 15193.82 109
v114484.54 13484.72 13484.00 16287.67 21462.55 24182.97 19390.93 14470.32 21489.80 10590.99 17673.50 19693.48 12781.69 9094.65 17895.97 38
Gipumacopyleft84.44 13586.33 10278.78 25284.20 27573.57 13489.55 6990.44 15584.24 3984.38 20894.89 4676.35 17180.40 32676.14 15696.80 9682.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13683.93 15285.63 13191.59 12671.58 16583.52 17592.13 10961.82 28483.96 21989.75 20979.93 13593.46 12878.33 12794.34 18491.87 189
VDDNet84.35 13785.39 12281.25 21595.13 3359.32 27685.42 13781.11 27886.41 2987.41 14996.21 1973.61 19490.61 21666.33 24496.85 9293.81 112
ETV-MVS84.31 13883.91 15385.52 13388.58 19670.40 17284.50 15293.37 6478.76 10984.07 21878.72 34480.39 12995.13 6273.82 17992.98 21491.04 206
v124084.30 13984.51 14183.65 17187.65 21561.26 25582.85 19791.54 12567.94 23990.68 8790.65 19071.71 21993.64 11682.84 7794.78 17396.07 35
MVS_111021_LR84.28 14083.76 15485.83 12889.23 18483.07 5380.99 23583.56 26272.71 18386.07 17989.07 22181.75 11486.19 28877.11 14793.36 20288.24 255
h-mvs3384.25 14182.76 16688.72 7491.82 12382.60 5884.00 16084.98 25471.27 20186.70 16490.55 19263.04 26093.92 10678.26 12994.20 18789.63 234
v14419284.24 14284.41 14383.71 17087.59 21761.57 25182.95 19491.03 14067.82 24289.80 10590.49 19373.28 20293.51 12681.88 8994.89 17096.04 37
dcpmvs_284.23 14385.14 12581.50 21288.61 19561.98 24982.90 19693.11 7968.66 23192.77 5192.39 13678.50 14287.63 26776.99 14992.30 22694.90 64
v192192084.23 14384.37 14583.79 16787.64 21661.71 25082.91 19591.20 13667.94 23990.06 9590.34 19572.04 21693.59 12182.32 8394.91 16896.07 35
VDD-MVS84.23 14384.58 13983.20 18091.17 14665.16 21483.25 18584.97 25579.79 9187.18 15194.27 7274.77 18390.89 20669.24 22096.54 10493.55 126
v2v48284.09 14684.24 14783.62 17287.13 22561.40 25282.71 20089.71 17772.19 19489.55 11591.41 16470.70 22493.20 13681.02 9593.76 19596.25 31
EG-PatchMatch MVS84.08 14784.11 14883.98 16392.22 10572.61 14682.20 21987.02 22372.63 18488.86 12491.02 17578.52 14191.11 19873.41 18491.09 24888.21 256
DP-MVS Recon84.05 14883.22 15986.52 10991.73 12475.27 12683.23 18792.40 10372.04 19682.04 24588.33 23077.91 14993.95 10566.17 24595.12 16190.34 226
TransMVSNet (Re)84.02 14985.74 11578.85 25191.00 15055.20 31282.29 21387.26 21479.65 9488.38 13695.52 3383.00 8886.88 27667.97 23596.60 10294.45 84
Baseline_NR-MVSNet84.00 15085.90 11178.29 26391.47 13753.44 32182.29 21387.00 22679.06 10389.55 11595.72 2877.20 15686.14 28972.30 19798.51 1795.28 55
TSAR-MVS + GP.83.95 15182.69 16887.72 9289.27 18381.45 6583.72 17081.58 27774.73 15485.66 18686.06 26672.56 21192.69 15475.44 16495.21 15689.01 251
alignmvs83.94 15283.98 15183.80 16687.80 21167.88 19584.54 15091.42 13073.27 17688.41 13587.96 23572.33 21290.83 20876.02 15894.11 18992.69 154
Effi-MVS+83.90 15384.01 15083.57 17487.22 22365.61 21186.55 12292.40 10378.64 11081.34 26084.18 29783.65 8292.93 14874.22 17287.87 29392.17 180
CANet83.79 15482.85 16586.63 10686.17 24872.21 15683.76 16991.43 12877.24 12474.39 31987.45 24575.36 17495.42 5077.03 14892.83 21792.25 177
pm-mvs183.69 15584.95 12979.91 23790.04 17359.66 27382.43 20987.44 21175.52 14587.85 14395.26 3881.25 11985.65 29568.74 22896.04 12594.42 85
AdaColmapbinary83.66 15683.69 15583.57 17490.05 17272.26 15486.29 12790.00 17378.19 11581.65 25487.16 25183.40 8594.24 9061.69 27894.76 17684.21 300
MIMVSNet183.63 15784.59 13880.74 22594.06 5762.77 23782.72 19984.53 25877.57 12190.34 9195.92 2476.88 16885.83 29361.88 27697.42 7793.62 121
WR-MVS83.56 15884.40 14481.06 22093.43 7254.88 31378.67 26885.02 25281.24 7590.74 8691.56 16172.85 20691.08 19968.00 23498.04 3797.23 16
CNLPA83.55 15983.10 16384.90 14289.34 18183.87 4884.54 15088.77 19179.09 10283.54 22688.66 22774.87 17981.73 32066.84 24192.29 22889.11 245
LCM-MVSNet-Re83.48 16085.06 12678.75 25385.94 25155.75 30780.05 24594.27 2376.47 12996.09 594.54 5983.31 8689.75 24159.95 29094.89 17090.75 214
hse-mvs283.47 16181.81 18188.47 8091.03 14982.27 5982.61 20183.69 26071.27 20186.70 16486.05 26763.04 26092.41 15978.26 12993.62 20190.71 215
V4283.47 16183.37 15883.75 16983.16 28863.33 22981.31 22990.23 16769.51 22190.91 8490.81 18474.16 18892.29 16580.06 10690.22 26795.62 46
VPA-MVSNet83.47 16184.73 13279.69 24290.29 16557.52 29481.30 23188.69 19376.29 13087.58 14794.44 6380.60 12787.20 27166.60 24396.82 9594.34 88
RRT_MVS83.25 16481.08 19289.74 5380.55 31679.32 8186.41 12486.69 22772.33 19087.00 15891.08 17244.98 34795.55 4084.47 6196.24 11994.36 87
PAPM_NR83.23 16583.19 16183.33 17790.90 15265.98 20888.19 9490.78 14778.13 11680.87 26487.92 23873.49 19892.42 15870.07 21488.40 28491.60 197
CLD-MVS83.18 16682.64 16984.79 14489.05 18667.82 19677.93 27692.52 10168.33 23385.07 19581.54 32582.06 10492.96 14669.35 21997.91 5093.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16785.68 11775.65 29481.24 30345.26 36279.94 24792.91 9083.83 4391.33 7696.88 1080.25 13185.92 29168.89 22695.89 13495.76 42
114514_t83.10 16882.54 17284.77 14592.90 8469.10 18786.65 11990.62 15254.66 32681.46 25790.81 18476.98 16194.38 8672.62 19496.18 12090.82 213
UGNet82.78 16981.64 18386.21 11986.20 24776.24 12386.86 11285.68 23977.07 12573.76 32292.82 12369.64 22591.82 18069.04 22593.69 19890.56 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17081.93 18085.19 13782.08 29480.15 7385.53 13588.76 19268.01 23685.58 18887.75 23971.80 21886.85 27774.02 17593.87 19488.58 254
EI-MVSNet82.61 17182.42 17483.20 18083.25 28663.66 22583.50 17885.07 24976.06 13486.55 16885.10 28373.41 19990.25 22278.15 13390.67 26395.68 44
QAPM82.59 17282.59 17182.58 19586.44 23666.69 20489.94 6090.36 15867.97 23884.94 19892.58 13272.71 20892.18 16670.63 21087.73 29588.85 252
Fast-Effi-MVS+-dtu82.54 17381.41 18785.90 12585.60 25376.53 11983.07 19089.62 18073.02 18079.11 28483.51 30280.74 12590.24 22468.76 22789.29 27490.94 209
MVS_Test82.47 17483.22 15980.22 23482.62 29357.75 29382.54 20691.96 11571.16 20582.89 23492.52 13577.41 15490.50 21880.04 10787.84 29492.40 166
v14882.31 17582.48 17381.81 20985.59 25459.66 27381.47 22786.02 23572.85 18188.05 14090.65 19070.73 22390.91 20575.15 16791.79 23994.87 66
API-MVS82.28 17682.61 17081.30 21486.29 24469.79 17488.71 8887.67 21078.42 11382.15 24484.15 29877.98 14791.59 18365.39 25292.75 21882.51 325
MVSFormer82.23 17781.57 18684.19 16085.54 25569.26 18291.98 3190.08 17171.54 19976.23 30385.07 28658.69 28594.27 8786.26 3888.77 28189.03 249
EIA-MVS82.19 17881.23 19085.10 14087.95 20869.17 18683.22 18893.33 6770.42 21178.58 28779.77 34177.29 15594.20 9371.51 20188.96 27991.93 188
PCF-MVS74.62 1582.15 17980.92 19585.84 12789.43 17972.30 15380.53 24091.82 11957.36 31587.81 14489.92 20677.67 15193.63 11758.69 29595.08 16291.58 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18080.31 20187.45 9690.86 15480.29 7285.88 13090.65 15068.17 23576.32 30286.33 26173.12 20492.61 15661.40 28290.02 26989.44 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net82.02 18182.07 17781.85 20686.38 23861.05 25886.83 11488.27 20172.43 18586.00 18095.64 3063.78 25490.68 21365.95 24693.34 20393.82 109
test182.02 18182.07 17781.85 20686.38 23861.05 25886.83 11488.27 20172.43 18586.00 18095.64 3063.78 25490.68 21365.95 24693.34 20393.82 109
OpenMVScopyleft76.72 1381.98 18382.00 17981.93 20384.42 26868.22 19188.50 9289.48 18266.92 24881.80 25291.86 15072.59 21090.16 22771.19 20391.25 24787.40 268
KD-MVS_self_test81.93 18483.14 16278.30 26284.75 26352.75 32580.37 24289.42 18470.24 21690.26 9393.39 10974.55 18786.77 27968.61 23096.64 9995.38 51
tfpnnormal81.79 18582.95 16478.31 26188.93 19055.40 30880.83 23882.85 26776.81 12785.90 18494.14 8374.58 18686.51 28366.82 24295.68 14493.01 140
c3_l81.64 18681.59 18581.79 21080.86 30959.15 28078.61 26990.18 16968.36 23287.20 15087.11 25369.39 22691.62 18278.16 13194.43 18394.60 76
PVSNet_Blended_VisFu81.55 18780.49 19984.70 14891.58 12973.24 13884.21 15491.67 12362.86 27780.94 26287.16 25167.27 23892.87 15169.82 21688.94 28087.99 260
DELS-MVS81.44 18881.25 18882.03 20284.27 27262.87 23676.47 29892.49 10270.97 20681.64 25583.83 29975.03 17792.70 15374.29 17192.22 23290.51 223
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 18981.61 18480.41 23186.38 23858.75 28783.93 16386.58 22972.43 18587.65 14592.98 11663.78 25490.22 22566.86 23993.92 19392.27 175
TinyColmap81.25 19082.34 17577.99 26885.33 25760.68 26582.32 21288.33 19971.26 20386.97 15992.22 14677.10 15986.98 27562.37 27195.17 15886.31 279
AUN-MVS81.18 19178.78 22088.39 8390.93 15182.14 6082.51 20783.67 26164.69 27180.29 27285.91 27051.07 31792.38 16076.29 15593.63 20090.65 219
tttt051781.07 19279.58 21385.52 13388.99 18966.45 20687.03 11175.51 31273.76 16588.32 13890.20 19937.96 36394.16 9979.36 11895.13 15995.93 41
Fast-Effi-MVS+81.04 19380.57 19682.46 19987.50 21863.22 23178.37 27289.63 17968.01 23681.87 24882.08 32082.31 9792.65 15567.10 23888.30 28991.51 200
BH-untuned80.96 19480.99 19380.84 22488.55 19768.23 19080.33 24388.46 19572.79 18286.55 16886.76 25674.72 18491.77 18161.79 27788.99 27882.52 324
112180.86 19579.81 21284.02 16193.93 6078.70 8881.64 22480.18 28555.43 32383.67 22291.15 17071.29 22191.41 19067.95 23693.06 21181.96 330
eth_miper_zixun_eth80.84 19680.22 20582.71 19281.41 30160.98 26177.81 27890.14 17067.31 24686.95 16087.24 25064.26 25092.31 16375.23 16691.61 24294.85 70
xiu_mvs_v1_base_debu80.84 19680.14 20782.93 18688.31 20171.73 16179.53 25287.17 21565.43 26379.59 27782.73 31576.94 16290.14 23073.22 18688.33 28586.90 274
xiu_mvs_v1_base80.84 19680.14 20782.93 18688.31 20171.73 16179.53 25287.17 21565.43 26379.59 27782.73 31576.94 16290.14 23073.22 18688.33 28586.90 274
xiu_mvs_v1_base_debi80.84 19680.14 20782.93 18688.31 20171.73 16179.53 25287.17 21565.43 26379.59 27782.73 31576.94 16290.14 23073.22 18688.33 28586.90 274
IterMVS-SCA-FT80.64 20079.41 21484.34 15583.93 28069.66 17776.28 30081.09 27972.43 18586.47 17490.19 20060.46 27093.15 14177.45 14386.39 30690.22 227
BH-RMVSNet80.53 20180.22 20581.49 21387.19 22466.21 20777.79 27986.23 23274.21 16083.69 22188.50 22873.25 20390.75 21063.18 26887.90 29287.52 266
Anonymous20240521180.51 20281.19 19178.49 25888.48 19857.26 29676.63 29482.49 26981.21 7684.30 21492.24 14567.99 23486.24 28762.22 27295.13 15991.98 187
DIV-MVS_self_test80.43 20380.23 20381.02 22179.99 31959.25 27777.07 28987.02 22367.38 24486.19 17589.22 21663.09 25890.16 22776.32 15395.80 13893.66 117
cl____80.42 20480.23 20381.02 22179.99 31959.25 27777.07 28987.02 22367.37 24586.18 17789.21 21763.08 25990.16 22776.31 15495.80 13893.65 119
diffmvs80.40 20580.48 20080.17 23579.02 33160.04 26977.54 28390.28 16666.65 25182.40 23987.33 24873.50 19687.35 27077.98 13589.62 27293.13 135
EPNet80.37 20678.41 22786.23 11676.75 34273.28 13687.18 10877.45 29976.24 13268.14 34288.93 22365.41 24793.85 10869.47 21896.12 12491.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 20780.04 21081.24 21779.82 32158.95 28277.66 28089.66 17865.75 26085.99 18385.11 28268.29 23391.42 18976.03 15792.03 23493.33 127
MG-MVS80.32 20880.94 19478.47 25988.18 20452.62 32882.29 21385.01 25372.01 19779.24 28392.54 13469.36 22793.36 13370.65 20989.19 27789.45 237
VPNet80.25 20981.68 18275.94 29392.46 9647.98 35376.70 29381.67 27673.45 16884.87 19992.82 12374.66 18586.51 28361.66 27996.85 9293.33 127
MAR-MVS80.24 21078.74 22284.73 14686.87 23578.18 9285.75 13287.81 20965.67 26277.84 29278.50 34573.79 19390.53 21761.59 28190.87 25885.49 288
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 21179.00 21883.78 16888.17 20586.66 1881.31 22966.81 35769.64 22088.33 13790.19 20064.58 24883.63 31271.99 20090.03 26881.06 344
Anonymous2024052180.18 21281.25 18876.95 28083.15 28960.84 26382.46 20885.99 23668.76 22986.78 16193.73 10559.13 28277.44 33373.71 18097.55 6992.56 158
LFMVS80.15 21380.56 19778.89 25089.19 18555.93 30485.22 13973.78 32482.96 5684.28 21592.72 12757.38 29490.07 23463.80 26295.75 14190.68 217
DPM-MVS80.10 21479.18 21782.88 18990.71 15869.74 17578.87 26590.84 14560.29 29975.64 31185.92 26967.28 23793.11 14271.24 20291.79 23985.77 285
MSDG80.06 21579.99 21180.25 23383.91 28168.04 19477.51 28489.19 18677.65 11981.94 24683.45 30476.37 17086.31 28663.31 26786.59 30386.41 277
ab-mvs79.67 21680.56 19776.99 27988.48 19856.93 29884.70 14586.06 23468.95 22780.78 26593.08 11375.30 17584.62 30456.78 30490.90 25789.43 239
VNet79.31 21780.27 20276.44 28787.92 20953.95 31775.58 30784.35 25974.39 15982.23 24290.72 18672.84 20784.39 30660.38 28993.98 19290.97 208
bset_n11_16_dypcd79.19 21877.97 23182.86 19085.81 25266.85 20375.02 31279.31 28966.07 25483.50 22783.37 30755.04 30892.10 17078.63 12394.99 16689.63 234
thisisatest053079.07 21977.33 23884.26 15787.13 22564.58 21783.66 17375.95 30768.86 22885.22 19387.36 24738.10 36193.57 12475.47 16394.28 18594.62 74
cl2278.97 22078.21 22981.24 21777.74 33559.01 28177.46 28687.13 21865.79 25784.32 21085.10 28358.96 28490.88 20775.36 16592.03 23493.84 106
patch_mono-278.89 22179.39 21577.41 27784.78 26268.11 19275.60 30583.11 26460.96 29379.36 28089.89 20775.18 17672.97 34473.32 18592.30 22691.15 204
RPMNet78.88 22278.28 22880.68 22879.58 32262.64 23982.58 20394.16 3174.80 15375.72 30992.59 13048.69 32395.56 3773.48 18382.91 33383.85 305
PAPR78.84 22378.10 23081.07 21985.17 25860.22 26882.21 21790.57 15362.51 27975.32 31484.61 29374.99 17892.30 16459.48 29388.04 29190.68 217
PVSNet_BlendedMVS78.80 22477.84 23281.65 21184.43 26663.41 22779.49 25590.44 15561.70 28775.43 31287.07 25469.11 22991.44 18760.68 28792.24 23090.11 231
FMVSNet378.80 22478.55 22479.57 24482.89 29256.89 30081.76 22185.77 23869.04 22686.00 18090.44 19451.75 31590.09 23365.95 24693.34 20391.72 193
test_yl78.71 22678.51 22579.32 24784.32 27058.84 28478.38 27085.33 24375.99 13782.49 23786.57 25758.01 28890.02 23662.74 26992.73 21989.10 246
DCV-MVSNet78.71 22678.51 22579.32 24784.32 27058.84 28478.38 27085.33 24375.99 13782.49 23786.57 25758.01 28890.02 23662.74 26992.73 21989.10 246
test111178.53 22878.85 21977.56 27492.22 10547.49 35582.61 20169.24 34972.43 18585.28 19294.20 7851.91 31390.07 23465.36 25396.45 10995.11 61
ECVR-MVScopyleft78.44 22978.63 22377.88 27091.85 11948.95 34983.68 17269.91 34772.30 19284.26 21794.20 7851.89 31489.82 23863.58 26396.02 12694.87 66
pmmvs-eth3d78.42 23077.04 24182.57 19787.44 21974.41 13080.86 23779.67 28855.68 32184.69 20290.31 19760.91 26885.42 29662.20 27391.59 24387.88 263
MVS_030478.17 23177.23 23980.99 22384.13 27869.07 18881.39 22880.81 28176.28 13167.53 34789.11 22062.87 26286.77 27960.90 28692.01 23787.13 271
mvs_anonymous78.13 23278.76 22176.23 29279.24 32850.31 34678.69 26784.82 25661.60 28883.09 23392.82 12373.89 19287.01 27268.33 23386.41 30591.37 201
RRT_test8_iter0578.08 23377.52 23479.75 24080.84 31052.54 32980.61 23988.96 18967.77 24384.62 20389.29 21533.89 36892.10 17077.59 14094.15 18894.62 74
TAMVS78.08 23376.36 24783.23 17990.62 15972.87 13979.08 26280.01 28761.72 28681.35 25986.92 25563.96 25388.78 25550.61 33793.01 21388.04 259
miper_enhance_ethall77.83 23576.93 24280.51 22976.15 34858.01 29075.47 30988.82 19058.05 30983.59 22480.69 32964.41 24991.20 19473.16 19292.03 23492.33 170
Vis-MVSNet (Re-imp)77.82 23677.79 23377.92 26988.82 19251.29 33983.28 18371.97 33774.04 16182.23 24289.78 20857.38 29489.41 24657.22 30395.41 14893.05 138
CANet_DTU77.81 23777.05 24080.09 23681.37 30259.90 27183.26 18488.29 20069.16 22467.83 34583.72 30060.93 26789.47 24369.22 22289.70 27190.88 211
OpenMVS_ROBcopyleft70.19 1777.77 23877.46 23578.71 25484.39 26961.15 25681.18 23382.52 26862.45 28183.34 22887.37 24666.20 24388.66 25764.69 25885.02 31786.32 278
MDA-MVSNet-bldmvs77.47 23976.90 24379.16 24979.03 33064.59 21666.58 34875.67 31073.15 17888.86 12488.99 22266.94 23981.23 32264.71 25788.22 29091.64 196
jason77.42 24075.75 25382.43 20087.10 22969.27 18177.99 27581.94 27451.47 34577.84 29285.07 28660.32 27289.00 24970.74 20889.27 27689.03 249
jason: jason.
CDS-MVSNet77.32 24175.40 25683.06 18289.00 18872.48 15077.90 27782.17 27260.81 29478.94 28583.49 30359.30 28088.76 25654.64 32192.37 22587.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 24276.75 24478.52 25787.01 23161.30 25475.55 30887.12 22161.24 29074.45 31878.79 34377.20 15690.93 20364.62 26084.80 32383.32 314
MVSTER77.09 24375.70 25481.25 21575.27 35561.08 25777.49 28585.07 24960.78 29586.55 16888.68 22643.14 35390.25 22273.69 18190.67 26392.42 164
PS-MVSNAJ77.04 24476.53 24678.56 25687.09 23061.40 25275.26 31087.13 21861.25 28974.38 32077.22 35276.94 16290.94 20264.63 25984.83 32283.35 313
IterMVS76.91 24576.34 24878.64 25580.91 30764.03 22376.30 29979.03 29264.88 27083.11 23189.16 21859.90 27684.46 30568.61 23085.15 31687.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 24675.67 25580.34 23280.48 31762.16 24873.50 32284.80 25757.61 31382.24 24187.54 24351.31 31687.65 26670.40 21393.19 20891.23 203
CL-MVSNet_self_test76.81 24777.38 23775.12 29786.90 23351.34 33773.20 32580.63 28368.30 23481.80 25288.40 22966.92 24080.90 32355.35 31594.90 16993.12 136
TR-MVS76.77 24875.79 25279.72 24186.10 25065.79 21077.14 28783.02 26565.20 26881.40 25882.10 31966.30 24290.73 21255.57 31285.27 31482.65 320
USDC76.63 24976.73 24576.34 28983.46 28457.20 29780.02 24688.04 20552.14 34183.65 22391.25 16663.24 25786.65 28254.66 32094.11 18985.17 290
BH-w/o76.57 25076.07 25178.10 26686.88 23465.92 20977.63 28186.33 23065.69 26180.89 26379.95 33868.97 23190.74 21153.01 32985.25 31577.62 350
Patchmtry76.56 25177.46 23573.83 30379.37 32746.60 35982.41 21076.90 30173.81 16485.56 18992.38 13748.07 32583.98 30963.36 26695.31 15490.92 210
PVSNet_Blended76.49 25275.40 25679.76 23984.43 26663.41 22775.14 31190.44 15557.36 31575.43 31278.30 34669.11 22991.44 18760.68 28787.70 29684.42 298
miper_lstm_enhance76.45 25376.10 25077.51 27576.72 34360.97 26264.69 35185.04 25163.98 27383.20 23088.22 23156.67 29778.79 33173.22 18693.12 20992.78 149
lupinMVS76.37 25474.46 26482.09 20185.54 25569.26 18276.79 29180.77 28250.68 35176.23 30382.82 31358.69 28588.94 25069.85 21588.77 28188.07 257
cascas76.29 25574.81 26080.72 22784.47 26562.94 23473.89 32087.34 21255.94 32075.16 31676.53 35563.97 25291.16 19665.00 25490.97 25588.06 258
thres600view775.97 25675.35 25877.85 27287.01 23151.84 33580.45 24173.26 32875.20 15083.10 23286.31 26345.54 33889.05 24855.03 31892.24 23092.66 155
GA-MVS75.83 25774.61 26179.48 24681.87 29659.25 27773.42 32382.88 26668.68 23079.75 27681.80 32250.62 31989.46 24466.85 24085.64 31189.72 233
MVP-Stereo75.81 25873.51 27382.71 19289.35 18073.62 13380.06 24485.20 24660.30 29873.96 32187.94 23657.89 29289.45 24552.02 33274.87 35985.06 292
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 25975.05 25976.66 28687.27 22151.88 33481.07 23473.26 32875.68 14383.25 22986.37 26045.54 33888.80 25251.98 33390.99 25289.31 241
ET-MVSNet_ETH3D75.28 26072.77 28082.81 19183.03 29168.11 19277.09 28876.51 30560.67 29777.60 29680.52 33338.04 36291.15 19770.78 20690.68 26289.17 244
thres40075.14 26174.23 26677.86 27186.24 24552.12 33179.24 25973.87 32273.34 17181.82 25084.60 29446.02 33288.80 25251.98 33390.99 25292.66 155
wuyk23d75.13 26279.30 21662.63 34275.56 35175.18 12780.89 23673.10 33075.06 15294.76 1295.32 3587.73 4252.85 37134.16 37097.11 8559.85 367
EU-MVSNet75.12 26374.43 26577.18 27883.11 29059.48 27585.71 13482.43 27039.76 36985.64 18788.76 22444.71 34987.88 26473.86 17885.88 31084.16 301
HyFIR lowres test75.12 26372.66 28282.50 19891.44 13865.19 21372.47 32787.31 21346.79 35780.29 27284.30 29652.70 31292.10 17051.88 33686.73 30290.22 227
CMPMVSbinary59.41 2075.12 26373.57 27179.77 23875.84 35067.22 19781.21 23282.18 27150.78 34976.50 29987.66 24155.20 30682.99 31462.17 27590.64 26689.09 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 26672.98 27980.73 22684.95 25971.71 16476.23 30177.59 29852.83 33577.73 29586.38 25956.35 30084.97 30057.72 30287.05 30085.51 287
tfpn200view974.86 26774.23 26676.74 28586.24 24552.12 33179.24 25973.87 32273.34 17181.82 25084.60 29446.02 33288.80 25251.98 33390.99 25289.31 241
1112_ss74.82 26873.74 26978.04 26789.57 17660.04 26976.49 29787.09 22254.31 32773.66 32379.80 33960.25 27386.76 28158.37 29684.15 32687.32 269
EGC-MVSNET74.79 26969.99 30389.19 6594.89 3987.00 1491.89 3586.28 2311.09 3752.23 37795.98 2381.87 11289.48 24279.76 11095.96 12991.10 205
ppachtmachnet_test74.73 27074.00 26876.90 28280.71 31356.89 30071.53 33178.42 29458.24 30779.32 28282.92 31257.91 29184.26 30765.60 25191.36 24689.56 236
Patchmatch-RL test74.48 27173.68 27076.89 28384.83 26166.54 20572.29 32869.16 35057.70 31186.76 16286.33 26145.79 33782.59 31569.63 21790.65 26581.54 335
PatchMatch-RL74.48 27173.22 27678.27 26487.70 21385.26 3575.92 30370.09 34564.34 27276.09 30581.25 32765.87 24678.07 33253.86 32383.82 32771.48 358
XXY-MVS74.44 27376.19 24969.21 32384.61 26452.43 33071.70 33077.18 30060.73 29680.60 26690.96 17975.44 17269.35 35256.13 30888.33 28585.86 284
test250674.12 27473.39 27476.28 29091.85 11944.20 36584.06 15848.20 37772.30 19281.90 24794.20 7827.22 37889.77 23964.81 25696.02 12694.87 66
CR-MVSNet74.00 27573.04 27876.85 28479.58 32262.64 23982.58 20376.90 30150.50 35275.72 30992.38 13748.07 32584.07 30868.72 22982.91 33383.85 305
Test_1112_low_res73.90 27673.08 27776.35 28890.35 16455.95 30373.40 32486.17 23350.70 35073.14 32485.94 26858.31 28785.90 29256.51 30683.22 33087.20 270
test20.0373.75 27774.59 26371.22 31681.11 30551.12 34170.15 33672.10 33670.42 21180.28 27491.50 16264.21 25174.72 34346.96 35394.58 17987.82 265
SCA73.32 27872.57 28475.58 29581.62 29855.86 30578.89 26471.37 34261.73 28574.93 31783.42 30560.46 27087.01 27258.11 30082.63 33783.88 302
baseline173.26 27973.54 27272.43 31284.92 26047.79 35479.89 24874.00 32065.93 25578.81 28686.28 26456.36 29981.63 32156.63 30579.04 35087.87 264
131473.22 28072.56 28575.20 29680.41 31857.84 29181.64 22485.36 24251.68 34473.10 32576.65 35461.45 26685.19 29863.54 26479.21 34982.59 321
MVS73.21 28172.59 28375.06 29880.97 30660.81 26481.64 22485.92 23746.03 36071.68 33177.54 34868.47 23289.77 23955.70 31185.39 31274.60 355
HY-MVS64.64 1873.03 28272.47 28674.71 29983.36 28554.19 31582.14 22081.96 27356.76 31969.57 33986.21 26560.03 27484.83 30349.58 34282.65 33585.11 291
thisisatest051573.00 28370.52 29780.46 23081.45 30059.90 27173.16 32674.31 31957.86 31076.08 30677.78 34737.60 36492.12 16965.00 25491.45 24589.35 240
EPNet_dtu72.87 28471.33 29577.49 27677.72 33660.55 26682.35 21175.79 30866.49 25258.39 37081.06 32853.68 31085.98 29053.55 32492.97 21585.95 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 28571.41 29476.28 29083.25 28660.34 26783.50 17879.02 29337.77 37076.33 30185.10 28349.60 32287.41 26970.54 21177.54 35581.08 342
CHOSEN 1792x268872.45 28670.56 29678.13 26590.02 17463.08 23268.72 34083.16 26342.99 36675.92 30785.46 27657.22 29685.18 29949.87 34181.67 33886.14 280
testgi72.36 28774.61 26165.59 33680.56 31542.82 36968.29 34173.35 32766.87 24981.84 24989.93 20572.08 21566.92 36046.05 35592.54 22387.01 273
thres20072.34 28871.55 29374.70 30083.48 28351.60 33675.02 31273.71 32570.14 21778.56 28880.57 33246.20 33088.20 26246.99 35289.29 27484.32 299
FPMVS72.29 28972.00 28873.14 30688.63 19485.00 3774.65 31667.39 35171.94 19877.80 29487.66 24150.48 32075.83 33949.95 33979.51 34558.58 369
FMVSNet572.10 29071.69 29073.32 30481.57 29953.02 32476.77 29278.37 29563.31 27476.37 30091.85 15136.68 36578.98 32947.87 34992.45 22487.95 261
our_test_371.85 29171.59 29172.62 31080.71 31353.78 31869.72 33871.71 34158.80 30478.03 28980.51 33456.61 29878.84 33062.20 27386.04 30985.23 289
PAPM71.77 29270.06 30276.92 28186.39 23753.97 31676.62 29586.62 22853.44 33263.97 36084.73 29257.79 29392.34 16239.65 36581.33 34184.45 297
IB-MVS62.13 1971.64 29368.97 30779.66 24380.80 31262.26 24773.94 31976.90 30163.27 27568.63 34176.79 35333.83 36991.84 17959.28 29487.26 29884.88 293
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 29472.30 28769.62 32176.47 34552.70 32770.03 33780.97 28059.18 30279.36 28088.21 23260.50 26969.12 35358.33 29877.62 35487.04 272
Anonymous2023120671.38 29571.88 28969.88 31986.31 24254.37 31470.39 33574.62 31552.57 33776.73 29888.76 22459.94 27572.06 34644.35 35893.23 20783.23 316
MIMVSNet71.09 29671.59 29169.57 32287.23 22250.07 34778.91 26371.83 33860.20 30071.26 33291.76 15655.08 30776.09 33741.06 36387.02 30182.54 323
MS-PatchMatch70.93 29770.22 30073.06 30781.85 29762.50 24273.82 32177.90 29652.44 33875.92 30781.27 32655.67 30381.75 31955.37 31477.70 35374.94 354
pmmvs570.73 29870.07 30172.72 30877.03 34152.73 32674.14 31775.65 31150.36 35372.17 32985.37 28055.42 30580.67 32552.86 33087.59 29784.77 294
PatchT70.52 29972.76 28163.79 34179.38 32633.53 37577.63 28165.37 35973.61 16671.77 33092.79 12644.38 35075.65 34064.53 26185.37 31382.18 328
N_pmnet70.20 30068.80 30974.38 30180.91 30784.81 4059.12 36176.45 30655.06 32475.31 31582.36 31855.74 30254.82 37047.02 35187.24 29983.52 309
tpmvs70.16 30169.56 30571.96 31474.71 35948.13 35179.63 25075.45 31365.02 26970.26 33681.88 32145.34 34385.68 29458.34 29775.39 35882.08 329
new-patchmatchnet70.10 30273.37 27560.29 34981.23 30416.95 37959.54 35974.62 31562.93 27680.97 26187.93 23762.83 26371.90 34755.24 31695.01 16592.00 184
YYNet170.06 30370.44 29868.90 32473.76 36153.42 32258.99 36267.20 35358.42 30687.10 15485.39 27959.82 27767.32 35759.79 29183.50 32985.96 281
MDA-MVSNet_test_wron70.05 30470.44 29868.88 32573.84 36053.47 32058.93 36367.28 35258.43 30587.09 15585.40 27859.80 27867.25 35859.66 29283.54 32885.92 283
CostFormer69.98 30568.68 31073.87 30277.14 33950.72 34479.26 25874.51 31751.94 34370.97 33584.75 29145.16 34687.49 26855.16 31779.23 34883.40 312
baseline269.77 30666.89 31678.41 26079.51 32458.09 28976.23 30169.57 34857.50 31464.82 35877.45 35046.02 33288.44 25853.08 32677.83 35288.70 253
PatchmatchNetpermissive69.71 30768.83 30872.33 31377.66 33753.60 31979.29 25769.99 34657.66 31272.53 32782.93 31146.45 32980.08 32860.91 28572.09 36283.31 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
JIA-IIPM69.41 30866.64 32077.70 27373.19 36371.24 16775.67 30465.56 35870.42 21165.18 35492.97 11833.64 37083.06 31353.52 32569.61 36878.79 349
UnsupCasMVSNet_bld69.21 30969.68 30467.82 33079.42 32551.15 34067.82 34575.79 30854.15 32877.47 29785.36 28159.26 28170.64 34948.46 34679.35 34781.66 333
gg-mvs-nofinetune68.96 31069.11 30668.52 32976.12 34945.32 36183.59 17455.88 37286.68 2664.62 35997.01 730.36 37383.97 31044.78 35782.94 33276.26 352
tpm268.45 31166.83 31773.30 30578.93 33248.50 35079.76 24971.76 33947.50 35669.92 33883.60 30142.07 35588.40 25948.44 34779.51 34583.01 319
tpm67.95 31268.08 31367.55 33178.74 33343.53 36775.60 30567.10 35654.92 32572.23 32888.10 23342.87 35475.97 33852.21 33180.95 34483.15 317
WTY-MVS67.91 31368.35 31166.58 33480.82 31148.12 35265.96 34972.60 33253.67 33171.20 33381.68 32458.97 28369.06 35448.57 34581.67 33882.55 322
test-LLR67.21 31466.74 31868.63 32776.45 34655.21 31067.89 34267.14 35462.43 28265.08 35572.39 36043.41 35169.37 35061.00 28384.89 32081.31 337
sss66.92 31567.26 31565.90 33577.23 33851.10 34264.79 35071.72 34052.12 34270.13 33780.18 33657.96 29065.36 36550.21 33881.01 34381.25 339
KD-MVS_2432*160066.87 31665.81 32170.04 31767.50 37247.49 35562.56 35579.16 29061.21 29177.98 29080.61 33025.29 38082.48 31653.02 32784.92 31880.16 347
miper_refine_blended66.87 31665.81 32170.04 31767.50 37247.49 35562.56 35579.16 29061.21 29177.98 29080.61 33025.29 38082.48 31653.02 32784.92 31880.16 347
tpm cat166.76 31865.21 32471.42 31577.09 34050.62 34578.01 27473.68 32644.89 36268.64 34079.00 34245.51 34082.42 31849.91 34070.15 36581.23 341
DWT-MVSNet_test66.43 31964.37 32572.63 30974.86 35850.86 34376.52 29672.74 33154.06 32965.50 35268.30 36632.13 37184.84 30261.63 28073.59 36082.19 327
PVSNet58.17 2166.41 32065.63 32368.75 32681.96 29549.88 34862.19 35772.51 33451.03 34768.04 34375.34 35850.84 31874.77 34145.82 35682.96 33181.60 334
tpmrst66.28 32166.69 31965.05 33972.82 36739.33 37078.20 27370.69 34453.16 33467.88 34480.36 33548.18 32474.75 34258.13 29970.79 36481.08 342
Patchmatch-test65.91 32267.38 31461.48 34775.51 35243.21 36868.84 33963.79 36162.48 28072.80 32683.42 30544.89 34859.52 36948.27 34886.45 30481.70 332
ADS-MVSNet265.87 32363.64 32872.55 31173.16 36456.92 29967.10 34674.81 31449.74 35466.04 35082.97 30946.71 32777.26 33442.29 36069.96 36683.46 310
test-mter65.00 32463.79 32768.63 32776.45 34655.21 31067.89 34267.14 35450.98 34865.08 35572.39 36028.27 37669.37 35061.00 28384.89 32081.31 337
test0.0.03 164.66 32564.36 32665.57 33775.03 35746.89 35864.69 35161.58 36662.43 28271.18 33477.54 34843.41 35168.47 35540.75 36482.65 33581.35 336
pmmvs362.47 32660.02 33869.80 32071.58 37064.00 22470.52 33458.44 37039.77 36866.05 34975.84 35627.10 37972.28 34546.15 35484.77 32473.11 356
EPMVS62.47 32662.63 33062.01 34370.63 37138.74 37174.76 31452.86 37453.91 33067.71 34680.01 33739.40 35966.60 36155.54 31368.81 36980.68 346
ADS-MVSNet61.90 32862.19 33161.03 34873.16 36436.42 37367.10 34661.75 36449.74 35466.04 35082.97 30946.71 32763.21 36742.29 36069.96 36683.46 310
PMMVS61.65 32960.38 33565.47 33865.40 37669.26 18263.97 35361.73 36536.80 37160.11 36568.43 36459.42 27966.35 36248.97 34478.57 35160.81 366
E-PMN61.59 33061.62 33261.49 34666.81 37455.40 30853.77 36560.34 36766.80 25058.90 36865.50 36740.48 35866.12 36355.72 31086.25 30762.95 365
TESTMET0.1,161.29 33160.32 33664.19 34072.06 36851.30 33867.89 34262.09 36245.27 36160.65 36469.01 36327.93 37764.74 36656.31 30781.65 34076.53 351
MVS-HIRNet61.16 33262.92 32955.87 35279.09 32935.34 37471.83 32957.98 37146.56 35859.05 36791.14 17149.95 32176.43 33638.74 36671.92 36355.84 370
EMVS61.10 33360.81 33461.99 34465.96 37555.86 30553.10 36658.97 36967.06 24756.89 37163.33 36840.98 35667.03 35954.79 31986.18 30863.08 364
DSMNet-mixed60.98 33461.61 33359.09 35172.88 36645.05 36374.70 31546.61 37826.20 37265.34 35390.32 19655.46 30463.12 36841.72 36281.30 34269.09 362
dp60.70 33560.29 33761.92 34572.04 36938.67 37270.83 33264.08 36051.28 34660.75 36377.28 35136.59 36671.58 34847.41 35062.34 37175.52 353
CHOSEN 280x42059.08 33656.52 34166.76 33376.51 34464.39 22049.62 36759.00 36843.86 36455.66 37268.41 36535.55 36768.21 35643.25 35976.78 35767.69 363
PVSNet_051.08 2256.10 33754.97 34259.48 35075.12 35653.28 32355.16 36461.89 36344.30 36359.16 36662.48 36954.22 30965.91 36435.40 36947.01 37259.25 368
new_pmnet55.69 33857.66 34049.76 35475.47 35330.59 37659.56 35851.45 37543.62 36562.49 36175.48 35740.96 35749.15 37337.39 36872.52 36169.55 361
PMMVS255.64 33959.27 33944.74 35564.30 37712.32 38040.60 36849.79 37653.19 33365.06 35784.81 29053.60 31149.76 37232.68 37289.41 27372.15 357
MVEpermissive40.22 2351.82 34050.47 34355.87 35262.66 37851.91 33331.61 37039.28 37940.65 36750.76 37374.98 35956.24 30144.67 37433.94 37164.11 37071.04 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34129.60 34433.06 35617.99 3803.84 38213.62 37173.92 3212.79 37418.29 37653.41 37128.53 37543.25 37522.56 37335.27 37452.11 371
cdsmvs_eth3d_5k20.81 34227.75 3450.00 3610.00 3840.00 3850.00 37285.44 2410.00 3790.00 38082.82 31381.46 1160.00 3800.00 3780.00 3780.00 376
tmp_tt20.25 34324.50 3467.49 3584.47 3818.70 38134.17 36925.16 3811.00 37632.43 37518.49 37339.37 3609.21 37721.64 37443.75 3734.57 373
ab-mvs-re6.65 3448.87 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38079.80 3390.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.41 3458.55 3480.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37976.94 1620.00 3800.00 3780.00 3780.00 376
test1236.27 3468.08 3490.84 3591.11 3830.57 38362.90 3540.82 3830.54 3771.07 3792.75 3781.26 3820.30 3781.04 3761.26 3771.66 374
testmvs5.91 3477.65 3500.72 3601.20 3820.37 38459.14 3600.67 3840.49 3781.11 3782.76 3770.94 3830.24 3791.02 3771.47 3761.55 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 7091.55 13277.99 9491.01 14196.05 887.45 1998.17 3392.40 166
PC_three_145258.96 30390.06 9591.33 16580.66 12693.03 14575.78 16095.94 13192.48 162
No_MVS88.81 7091.55 13277.99 9491.01 14196.05 887.45 1998.17 3392.40 166
test_one_060193.85 6373.27 13794.11 3786.57 2793.47 4094.64 5788.42 27
eth-test20.00 384
eth-test0.00 384
ZD-MVS92.22 10580.48 7091.85 11771.22 20490.38 9092.98 11686.06 6396.11 681.99 8696.75 97
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6490.64 1187.16 2897.60 6692.73 150
IU-MVS94.18 5072.64 14390.82 14656.98 31789.67 10985.78 4797.92 4893.28 129
OPU-MVS88.27 8691.89 11777.83 9790.47 4991.22 16781.12 12094.68 7574.48 17095.35 15092.29 173
test_241102_TWO93.71 5383.77 4493.49 3894.27 7289.27 2295.84 2286.03 4497.82 5392.04 182
test_241102_ONE94.18 5072.65 14193.69 5483.62 4694.11 2393.78 10390.28 1595.50 47
9.1489.29 6291.84 12188.80 8695.32 1175.14 15191.07 7992.89 12187.27 4693.78 11283.69 6897.55 69
save fliter93.75 6477.44 10486.31 12589.72 17670.80 207
test_0728_THIRD85.33 3293.75 3194.65 5487.44 4595.78 2787.41 2198.21 3092.98 141
test_0728_SECOND86.79 10494.25 4972.45 15190.54 4694.10 3895.88 1686.42 3497.97 4592.02 183
test072694.16 5372.56 14790.63 4593.90 4683.61 4793.75 3194.49 6189.76 19
GSMVS83.88 302
test_part293.86 6277.77 9892.84 48
sam_mvs146.11 33183.88 302
sam_mvs45.92 336
ambc82.98 18490.55 16264.86 21588.20 9389.15 18789.40 11893.96 9371.67 22091.38 19278.83 12196.55 10392.71 153
MTGPAbinary91.81 120
test_post178.85 2663.13 37545.19 34580.13 32758.11 300
test_post3.10 37645.43 34177.22 335
patchmatchnet-post81.71 32345.93 33587.01 272
GG-mvs-BLEND67.16 33273.36 36246.54 36084.15 15555.04 37358.64 36961.95 37029.93 37483.87 31138.71 36776.92 35671.07 359
MTMP90.66 4333.14 380
gm-plane-assit75.42 35444.97 36452.17 33972.36 36287.90 26354.10 322
test9_res80.83 9996.45 10990.57 220
TEST992.34 9979.70 7783.94 16190.32 15965.41 26784.49 20690.97 17782.03 10693.63 117
test_892.09 10978.87 8683.82 16690.31 16165.79 25784.36 20990.96 17981.93 10893.44 129
agg_prior279.68 11296.16 12190.22 227
agg_prior91.58 12977.69 9990.30 16284.32 21093.18 137
TestCases89.68 5491.59 12683.40 5095.44 979.47 9588.00 14193.03 11482.66 9291.47 18570.81 20496.14 12294.16 94
test_prior478.97 8584.59 147
test_prior283.37 18175.43 14684.58 20491.57 15981.92 11079.54 11496.97 88
test_prior86.32 11290.59 16071.99 15892.85 9294.17 9692.80 147
旧先验281.73 22256.88 31886.54 17384.90 30172.81 193
新几何281.72 223
新几何182.95 18593.96 5978.56 9080.24 28455.45 32283.93 22091.08 17271.19 22288.33 26065.84 24993.07 21081.95 331
旧先验191.97 11271.77 16081.78 27591.84 15273.92 19193.65 19983.61 308
无先验82.81 19885.62 24058.09 30891.41 19067.95 23684.48 296
原ACMM282.26 216
原ACMM184.60 14992.81 9074.01 13291.50 12662.59 27882.73 23690.67 18976.53 16994.25 8969.24 22095.69 14385.55 286
test22293.31 7576.54 11779.38 25677.79 29752.59 33682.36 24090.84 18366.83 24191.69 24181.25 339
testdata286.43 28563.52 265
segment_acmp81.94 107
testdata79.54 24592.87 8572.34 15280.14 28659.91 30185.47 19191.75 15767.96 23585.24 29768.57 23292.18 23381.06 344
testdata179.62 25173.95 163
test1286.57 10790.74 15672.63 14590.69 14982.76 23579.20 13794.80 7295.32 15292.27 175
plane_prior793.45 7077.31 108
plane_prior692.61 9176.54 11774.84 180
plane_prior593.61 5895.22 5880.78 10095.83 13694.46 82
plane_prior492.95 119
plane_prior376.85 11577.79 11886.55 168
plane_prior289.45 7479.44 97
plane_prior192.83 89
plane_prior76.42 12087.15 10975.94 14095.03 164
n20.00 385
nn0.00 385
door-mid74.45 318
lessismore_v085.95 12391.10 14870.99 16970.91 34391.79 6894.42 6661.76 26592.93 14879.52 11693.03 21293.93 103
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
test1191.46 127
door72.57 333
HQP5-MVS70.66 170
HQP-NCC91.19 14384.77 14273.30 17380.55 269
ACMP_Plane91.19 14384.77 14273.30 17380.55 269
BP-MVS77.30 145
HQP4-MVS80.56 26894.61 7993.56 124
HQP3-MVS92.68 9894.47 181
HQP2-MVS72.10 213
NP-MVS91.95 11374.55 12990.17 202
MDTV_nov1_ep13_2view27.60 37870.76 33346.47 35961.27 36245.20 34449.18 34383.75 307
MDTV_nov1_ep1368.29 31278.03 33443.87 36674.12 31872.22 33552.17 33967.02 34885.54 27245.36 34280.85 32455.73 30984.42 325
ACMMP++_ref95.74 142
ACMMP++97.35 78
Test By Simon79.09 138
ITE_SJBPF90.11 5090.72 15784.97 3890.30 16281.56 7290.02 9791.20 16982.40 9690.81 20973.58 18294.66 17794.56 77
DeepMVS_CXcopyleft24.13 35732.95 37929.49 37721.63 38212.07 37337.95 37445.07 37230.84 37219.21 37617.94 37533.06 37523.69 372