This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9686.07 4898.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13691.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 194
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 159
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 190
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 96
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 147
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 169
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 93
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 183
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 103
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 112
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 156
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 100
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 153
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 105
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 88
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 143
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 106
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12778.35 13298.76 495.61 48
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 139
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14385.02 6098.45 1992.41 176
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 80
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 209
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 184
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 92
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9986.25 4597.63 6397.82 8
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25377.55 14697.07 8383.13 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 172
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 241
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4391.92 1584.47 15096.56 658.83 31089.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12298.74 699.00 2
PEN-MVS90.03 4591.88 1884.48 14996.57 558.88 30788.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12898.72 998.97 3
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
DTE-MVSNet89.98 4791.91 1784.21 15996.51 757.84 31888.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12598.57 1598.80 6
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13982.67 8698.04 3993.64 124
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
WR-MVS_H89.91 5091.31 3385.71 12796.32 962.39 26389.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10884.83 6397.55 6994.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22894.55 1996.67 1487.94 3993.59 11984.27 6895.97 12495.52 49
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22995.06 1596.14 2584.28 7793.07 14087.68 1896.34 10697.09 19
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20894.28 2496.54 1681.57 11794.27 8886.26 4396.49 10097.09 19
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19984.60 6590.75 27093.97 104
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 243
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23294.39 2096.38 1886.02 6593.52 12383.96 7095.92 13095.34 53
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13283.07 7897.24 7991.67 210
ACMH76.49 1489.34 5991.14 3583.96 16492.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26383.33 7498.30 2593.20 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
CP-MVSNet89.27 6290.91 4484.37 15196.34 858.61 31388.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12698.69 1098.95 4
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19783.86 7295.30 15393.60 127
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6590.72 4784.31 15797.00 264.33 23889.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18872.57 21097.65 6297.34 14
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26392.98 153
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22186.24 4697.24 7991.36 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 247
test_040288.65 6989.58 6085.88 12392.55 9272.22 15984.01 17789.44 19388.63 2094.38 2195.77 2986.38 6193.59 11979.84 11595.21 15491.82 203
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10577.65 14496.62 9590.70 235
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24973.75 19394.81 17393.70 120
Anonymous2023121188.40 7189.62 5984.73 14390.46 15765.27 22888.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16976.70 15697.99 4396.88 23
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13077.97 14297.03 8495.52 49
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23783.87 7994.53 8482.45 8894.89 16994.90 65
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25286.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7789.79 5582.98 19493.26 7563.94 24291.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17482.03 9395.87 13293.13 145
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 118
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26776.54 15888.74 29896.61 27
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13594.02 5864.13 23984.38 17191.29 13884.88 4492.06 6593.84 10586.45 5893.73 11073.22 20198.66 1197.69 9
nrg03087.85 8288.49 7585.91 12190.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18079.72 11797.32 7796.50 29
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15491.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 166
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 81
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24393.78 10873.36 21096.48 287.98 1396.21 11294.41 87
MVSMamba_PlusPlus87.53 8688.86 7183.54 18092.03 11062.26 26791.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 167
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 181
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19592.38 10570.25 22589.35 11990.68 20882.85 9294.57 8179.55 11995.95 12792.00 198
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27987.25 27482.43 9894.53 8477.65 14496.46 10294.14 99
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19883.80 18692.87 9180.37 8789.61 11391.81 17077.72 15394.18 9475.00 17898.53 1696.99 22
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23194.05 9278.35 14693.65 11280.54 11091.58 25192.08 194
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21282.55 22191.56 12883.08 6290.92 8491.82 16978.25 14793.99 10174.16 18398.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21283.16 20492.21 10981.73 7490.92 8491.97 16377.20 16093.99 10174.16 18398.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15387.09 23765.22 22984.16 17394.23 2777.89 12291.28 7993.66 11484.35 7692.71 14980.07 11194.87 17295.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26478.30 8986.93 12092.20 11065.94 26489.16 12193.16 12483.10 8989.89 23487.81 1594.43 18593.35 134
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21591.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 19097.89 5296.72 24
v1086.54 9887.10 9284.84 13988.16 20963.28 24986.64 13092.20 11075.42 15492.81 5394.50 6874.05 19894.06 10083.88 7196.28 10897.17 18
pmmvs686.52 9988.06 7981.90 21592.22 10362.28 26684.66 16489.15 19683.54 5789.85 10497.32 588.08 3886.80 28270.43 22797.30 7896.62 26
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18784.76 21687.70 26478.87 14294.18 9480.67 10896.29 10792.73 159
CSCG86.26 10186.47 10385.60 12990.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25679.09 14092.13 16575.51 17195.06 16190.41 244
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 22084.96 21190.69 20780.01 13595.14 6478.37 13195.78 13891.82 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10386.83 9984.36 15387.82 21662.35 26586.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11183.10 7795.41 14697.01 21
Anonymous2024052986.20 10487.13 9183.42 18290.19 16264.55 23684.55 16690.71 15385.85 3689.94 10395.24 4682.13 10790.40 21769.19 24096.40 10595.31 55
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27378.25 9085.82 14591.82 12365.33 27888.55 13292.35 15682.62 9689.80 23686.87 3594.32 18893.18 144
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18392.01 11565.91 26686.19 18691.75 17383.77 8294.98 6977.43 14996.71 9393.73 119
NR-MVSNet86.00 10786.22 10785.34 13393.24 7664.56 23582.21 23390.46 16080.99 8288.42 13791.97 16377.56 15593.85 10672.46 21198.65 1297.61 10
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17990.32 16765.79 26884.49 22090.97 19481.93 11193.63 11481.21 10096.54 9890.88 229
FC-MVSNet-test85.93 10987.05 9482.58 20592.25 10156.44 32985.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 12975.11 17798.58 1497.88 7
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28178.21 9185.40 15391.39 13565.32 27987.72 15391.81 17082.33 10189.78 23786.68 3794.20 19192.99 152
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23391.15 387.70 10888.42 20474.57 16283.56 24485.65 29878.49 14594.21 9272.04 21392.88 22494.05 102
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16573.21 20695.51 14493.25 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
canonicalmvs85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22296.89 8695.64 46
GeoE85.45 11685.81 11784.37 15190.08 16467.07 21185.86 14491.39 13572.33 20187.59 15590.25 22084.85 7192.37 15978.00 14091.94 24493.66 121
MVS_030485.37 11784.58 14287.75 8885.28 27273.36 13686.54 13385.71 24877.56 12981.78 27792.47 15070.29 23696.02 1185.59 5395.96 12593.87 110
FIs85.35 11886.27 10682.60 20491.86 11657.31 32285.10 15893.05 8375.83 14691.02 8393.97 9673.57 20392.91 14773.97 18998.02 4297.58 12
test_fmvsmvis_n_192085.22 11985.36 12884.81 14085.80 26676.13 12285.15 15792.32 10761.40 30891.33 7690.85 20283.76 8386.16 29584.31 6793.28 21492.15 192
casdiffmvspermissive85.21 12085.85 11683.31 18586.17 25962.77 25683.03 20693.93 4674.69 16188.21 14292.68 14482.29 10491.89 17377.87 14393.75 20595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 12185.93 11383.02 19286.30 25462.37 26484.55 16693.96 4474.48 16387.12 16192.03 16282.30 10391.94 17078.39 13094.21 19094.74 74
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15176.68 32884.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21594.83 72
mmtdpeth85.13 12385.78 11983.17 19084.65 28374.71 12785.87 14390.35 16677.94 12183.82 23896.96 1277.75 15180.03 34978.44 12996.21 11294.79 73
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29572.76 14483.91 18285.18 25780.44 8688.75 12785.49 30180.08 13491.92 17182.02 9490.85 26895.97 38
MGCFI-Net85.04 12585.95 11282.31 21187.52 22563.59 24586.23 13893.96 4473.46 17588.07 14587.83 26286.46 5790.87 20476.17 16493.89 20092.47 174
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29972.52 15383.82 18485.15 25880.27 9088.75 12785.45 30379.95 13691.90 17281.92 9790.80 26996.13 33
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42086.57 5595.80 2887.35 2797.62 6494.20 93
MSLP-MVS++85.00 12886.03 11181.90 21591.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23577.98 14889.40 24877.46 14794.78 17484.75 324
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18680.18 30189.15 24177.04 16493.28 13265.82 27292.28 23592.21 189
balanced_conf0384.80 13085.40 12683.00 19388.95 18861.44 27490.42 5892.37 10671.48 21088.72 12993.13 12570.16 23895.15 6379.26 12494.11 19492.41 176
3Dnovator80.37 784.80 13084.71 13985.06 13786.36 25274.71 12788.77 9490.00 18075.65 14984.96 21193.17 12374.06 19791.19 19078.28 13491.09 25789.29 266
IterMVS-LS84.73 13284.98 13383.96 16487.35 22863.66 24383.25 20089.88 18376.06 13989.62 11192.37 15573.40 20992.52 15478.16 13794.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13384.34 15185.49 13290.18 16375.86 12379.23 27487.13 22473.35 17985.56 20089.34 23683.60 8590.50 21576.64 15794.05 19790.09 253
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15992.68 9773.30 18280.55 29390.17 22572.10 22494.61 7977.30 15194.47 18393.56 130
v119284.57 13584.69 14084.21 15987.75 21862.88 25383.02 20791.43 13269.08 23589.98 10290.89 19972.70 21893.62 11782.41 8994.97 16696.13 33
FMVSNet184.55 13685.45 12581.85 21790.27 16161.05 28186.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 21069.09 24195.33 14993.82 113
v114484.54 13784.72 13884.00 16287.67 22162.55 26082.97 20990.93 14970.32 22489.80 10590.99 19373.50 20493.48 12581.69 9994.65 18095.97 38
Gipumacopyleft84.44 13886.33 10578.78 26384.20 29373.57 13589.55 7790.44 16184.24 4884.38 22394.89 5376.35 17780.40 34676.14 16596.80 9182.36 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13983.93 15785.63 12891.59 12471.58 16883.52 19292.13 11261.82 30183.96 23689.75 23279.93 13793.46 12678.33 13394.34 18791.87 202
VDDNet84.35 14085.39 12781.25 22895.13 3259.32 30085.42 15281.11 29986.41 3287.41 15896.21 2273.61 20290.61 21366.33 26596.85 8793.81 116
ETV-MVS84.31 14183.91 15885.52 13088.58 19970.40 17884.50 17093.37 6478.76 11384.07 23478.72 37580.39 13095.13 6573.82 19292.98 22291.04 223
v124084.30 14284.51 14683.65 17387.65 22261.26 27882.85 21391.54 12967.94 25090.68 9190.65 21171.71 23093.64 11382.84 8394.78 17496.07 35
MVS_111021_LR84.28 14383.76 15985.83 12589.23 18283.07 5580.99 24983.56 27972.71 19486.07 18989.07 24281.75 11686.19 29477.11 15393.36 21088.24 280
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17884.98 26471.27 21186.70 17390.55 21363.04 27793.92 10478.26 13594.20 19189.63 258
v14419284.24 14584.41 14883.71 17287.59 22461.57 27382.95 21091.03 14567.82 25389.80 10590.49 21473.28 21193.51 12481.88 9894.89 16996.04 37
dcpmvs_284.23 14685.14 13081.50 22588.61 19861.98 27182.90 21293.11 7968.66 24192.77 5492.39 15178.50 14487.63 26976.99 15592.30 23294.90 65
v192192084.23 14684.37 15083.79 16887.64 22361.71 27282.91 21191.20 14167.94 25090.06 9790.34 21772.04 22793.59 11982.32 9094.91 16796.07 35
VDD-MVS84.23 14684.58 14283.20 18891.17 14265.16 23183.25 20084.97 26579.79 9587.18 16094.27 7974.77 19090.89 20269.24 23796.54 9893.55 132
v2v48284.09 14984.24 15283.62 17487.13 23361.40 27582.71 21689.71 18672.19 20489.55 11591.41 18070.70 23593.20 13481.02 10293.76 20296.25 31
EG-PatchMatch MVS84.08 15084.11 15383.98 16392.22 10372.61 15082.20 23587.02 22972.63 19588.86 12491.02 19278.52 14391.11 19373.41 19891.09 25788.21 281
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20292.40 10372.04 20582.04 26888.33 25277.91 15093.95 10366.17 26695.12 15990.34 246
TransMVSNet (Re)84.02 15285.74 12078.85 26291.00 14655.20 34182.29 22987.26 22079.65 9888.38 13995.52 3783.00 9086.88 28067.97 25596.60 9694.45 83
Baseline_NR-MVSNet84.00 15385.90 11478.29 27491.47 13453.44 35282.29 22987.00 23279.06 10789.55 11595.72 3277.20 16086.14 29672.30 21298.51 1795.28 56
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18881.58 29774.73 16085.66 19686.06 29372.56 22092.69 15175.44 17395.21 15489.01 274
alignmvs83.94 15583.98 15683.80 16787.80 21767.88 20584.54 16891.42 13473.27 18588.41 13887.96 25772.33 22190.83 20576.02 16794.11 19492.69 163
Effi-MVS+83.90 15684.01 15583.57 17887.22 23165.61 22786.55 13292.40 10378.64 11481.34 28484.18 32283.65 8492.93 14574.22 18287.87 31292.17 191
mvs5depth83.82 15784.54 14481.68 22282.23 32068.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33476.37 16095.63 14394.35 89
CANet83.79 15882.85 17486.63 10486.17 25972.21 16083.76 18791.43 13277.24 13274.39 35287.45 27075.36 18195.42 5277.03 15492.83 22592.25 188
pm-mvs183.69 15984.95 13479.91 24990.04 16859.66 29782.43 22587.44 21775.52 15287.85 15095.26 4581.25 12185.65 30668.74 24796.04 12194.42 86
AdaColmapbinary83.66 16083.69 16083.57 17890.05 16772.26 15886.29 13690.00 18078.19 11981.65 27887.16 27683.40 8794.24 9161.69 30794.76 17784.21 334
MIMVSNet183.63 16184.59 14180.74 23794.06 5762.77 25682.72 21584.53 27177.57 12890.34 9395.92 2876.88 17285.83 30461.88 30597.42 7493.62 125
test_fmvsm_n_192083.60 16282.89 17385.74 12685.22 27477.74 9984.12 17590.48 15959.87 32786.45 18591.12 18975.65 17885.89 30282.28 9190.87 26693.58 128
WR-MVS83.56 16384.40 14981.06 23393.43 7054.88 34278.67 28285.02 26281.24 7990.74 9091.56 17772.85 21591.08 19468.00 25498.04 3997.23 16
CNLPA83.55 16483.10 17084.90 13889.34 17983.87 5084.54 16888.77 19979.09 10683.54 24588.66 24974.87 18681.73 33666.84 26092.29 23489.11 268
LCM-MVSNet-Re83.48 16585.06 13178.75 26485.94 26455.75 33580.05 25894.27 2476.47 13696.09 694.54 6783.31 8889.75 24059.95 31894.89 16990.75 232
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21783.69 27771.27 21186.70 17386.05 29463.04 27792.41 15778.26 13593.62 20990.71 234
V4283.47 16683.37 16483.75 17083.16 31463.33 24881.31 24390.23 17469.51 23190.91 8690.81 20474.16 19692.29 16380.06 11290.22 27895.62 47
VPA-MVSNet83.47 16684.73 13679.69 25390.29 16057.52 32181.30 24588.69 20176.29 13787.58 15694.44 7180.60 12987.20 27466.60 26396.82 9094.34 90
PAPM_NR83.23 16983.19 16783.33 18490.90 14865.98 22388.19 10190.78 15278.13 12080.87 28987.92 26073.49 20692.42 15670.07 23088.40 30191.60 212
CLD-MVS83.18 17082.64 17884.79 14189.05 18467.82 20677.93 29092.52 10168.33 24385.07 20881.54 35182.06 10892.96 14369.35 23697.91 5193.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 17185.68 12175.65 30981.24 33245.26 39579.94 26092.91 9083.83 5191.33 7696.88 1380.25 13285.92 29968.89 24495.89 13195.76 42
FA-MVS(test-final)83.13 17283.02 17183.43 18186.16 26166.08 22288.00 10388.36 20675.55 15185.02 20992.75 14265.12 26292.50 15574.94 17991.30 25591.72 207
114514_t83.10 17382.54 18184.77 14292.90 8369.10 19486.65 12990.62 15754.66 35981.46 28190.81 20476.98 16594.38 8772.62 20996.18 11490.82 231
RRT-MVS82.97 17483.44 16181.57 22485.06 27658.04 31687.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14176.49 15988.47 30093.62 125
BP-MVS182.81 17581.67 19286.23 11387.88 21568.53 19786.06 14084.36 27275.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
UGNet82.78 17681.64 19386.21 11686.20 25876.24 12086.86 12285.68 24977.07 13373.76 35692.82 13869.64 23991.82 17669.04 24393.69 20690.56 240
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17781.93 18885.19 13482.08 32180.15 7485.53 14988.76 20068.01 24785.58 19987.75 26371.80 22986.85 28174.02 18893.87 20188.58 277
EI-MVSNet82.61 17882.42 18383.20 18883.25 31163.66 24383.50 19385.07 25976.06 13986.55 17785.10 30973.41 20790.25 21878.15 13990.67 27295.68 45
QAPM82.59 17982.59 18082.58 20586.44 24766.69 21689.94 6790.36 16567.97 24984.94 21392.58 14772.71 21792.18 16470.63 22587.73 31488.85 275
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14887.68 22073.35 13786.14 13977.70 31761.64 30685.02 20991.62 17577.75 15186.24 29182.79 8487.07 32193.91 108
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12285.60 26776.53 11583.07 20589.62 19073.02 18979.11 31183.51 32780.74 12790.24 22068.76 24689.29 28990.94 226
MVS_Test82.47 18283.22 16580.22 24682.62 31957.75 32082.54 22291.96 11871.16 21582.89 25592.52 14977.41 15790.50 21580.04 11387.84 31392.40 178
v14882.31 18382.48 18281.81 22085.59 26859.66 29781.47 24286.02 24472.85 19088.05 14790.65 21170.73 23490.91 20175.15 17691.79 24594.87 67
API-MVS82.28 18482.61 17981.30 22786.29 25569.79 18188.71 9587.67 21678.42 11782.15 26784.15 32377.98 14891.59 17965.39 27592.75 22682.51 361
MVSFormer82.23 18581.57 19884.19 16185.54 26969.26 18991.98 3490.08 17871.54 20876.23 33385.07 31258.69 30294.27 8886.26 4388.77 29689.03 272
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15686.56 24573.35 13785.46 15077.30 32161.81 30284.51 21990.88 20177.36 15886.21 29382.72 8586.97 32693.38 133
EIA-MVS82.19 18781.23 20685.10 13687.95 21369.17 19383.22 20393.33 6770.42 22178.58 31579.77 36777.29 15994.20 9371.51 21588.96 29491.93 201
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16686.87 24371.57 16985.19 15677.42 32062.27 30084.47 22291.33 18276.43 17485.91 30083.14 7587.14 31994.33 91
PCF-MVS74.62 1582.15 18980.92 21085.84 12489.43 17772.30 15780.53 25391.82 12357.36 34387.81 15189.92 22977.67 15493.63 11458.69 32395.08 16091.58 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 19080.31 21787.45 9290.86 15080.29 7385.88 14290.65 15568.17 24676.32 33286.33 28873.12 21392.61 15361.40 31090.02 28189.44 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 19181.54 19983.60 17583.94 29673.90 13383.35 19786.10 24058.97 32983.80 23990.36 21674.23 19586.94 27982.90 8190.22 27889.94 255
GBi-Net82.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
test182.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
OpenMVScopyleft76.72 1381.98 19482.00 18781.93 21484.42 28868.22 20088.50 9989.48 19266.92 25981.80 27591.86 16572.59 21990.16 22371.19 21891.25 25687.40 296
KD-MVS_self_test81.93 19583.14 16978.30 27384.75 28252.75 35680.37 25589.42 19470.24 22690.26 9593.39 11974.55 19486.77 28368.61 24996.64 9495.38 52
fmvsm_s_conf0.5_n81.91 19681.30 20383.75 17086.02 26371.56 17084.73 16277.11 32462.44 29784.00 23590.68 20876.42 17585.89 30283.14 7587.11 32093.81 116
SDMVSNet81.90 19783.17 16878.10 27788.81 19262.45 26276.08 32386.05 24373.67 17183.41 24693.04 12782.35 10080.65 34370.06 23195.03 16291.21 219
tfpnnormal81.79 19882.95 17278.31 27288.93 18955.40 33780.83 25282.85 28576.81 13485.90 19494.14 8974.58 19386.51 28766.82 26195.68 14293.01 151
c3_l81.64 19981.59 19681.79 22180.86 33859.15 30478.61 28390.18 17668.36 24287.20 15987.11 27869.39 24091.62 17878.16 13794.43 18594.60 76
PVSNet_Blended_VisFu81.55 20080.49 21584.70 14591.58 12773.24 14184.21 17291.67 12762.86 29180.94 28787.16 27667.27 25192.87 14869.82 23388.94 29587.99 287
fmvsm_l_conf0.5_n_a81.46 20180.87 21183.25 18683.73 30173.21 14283.00 20885.59 25158.22 33582.96 25490.09 22772.30 22286.65 28581.97 9689.95 28289.88 256
DELS-MVS81.44 20281.25 20482.03 21384.27 29262.87 25476.47 31792.49 10270.97 21781.64 27983.83 32475.03 18492.70 15074.29 18192.22 23890.51 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 20381.61 19580.41 24386.38 24958.75 31183.93 18186.58 23572.43 19687.65 15492.98 13163.78 27090.22 22166.86 25893.92 19992.27 186
TinyColmap81.25 20482.34 18477.99 28085.33 27160.68 28882.32 22888.33 20771.26 21386.97 16892.22 16177.10 16386.98 27862.37 29995.17 15686.31 307
AUN-MVS81.18 20578.78 23888.39 7990.93 14782.14 6282.51 22383.67 27864.69 28380.29 29785.91 29751.07 34192.38 15876.29 16393.63 20890.65 238
tttt051781.07 20679.58 22985.52 13088.99 18766.45 21987.03 11975.51 33673.76 17088.32 14190.20 22137.96 39794.16 9879.36 12395.13 15795.93 41
Fast-Effi-MVS+81.04 20780.57 21282.46 20987.50 22663.22 25078.37 28689.63 18968.01 24781.87 27182.08 34582.31 10292.65 15267.10 25788.30 30791.51 215
BH-untuned80.96 20880.99 20880.84 23688.55 20068.23 19980.33 25688.46 20372.79 19386.55 17786.76 28274.72 19191.77 17761.79 30688.99 29382.52 360
eth_miper_zixun_eth80.84 20980.22 22182.71 20281.41 33060.98 28477.81 29290.14 17767.31 25786.95 16987.24 27564.26 26592.31 16175.23 17591.61 24994.85 71
xiu_mvs_v1_base_debu80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base_debi80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
IterMVS-SCA-FT80.64 21379.41 23084.34 15583.93 29769.66 18476.28 31981.09 30072.43 19686.47 18390.19 22260.46 28793.15 13777.45 14886.39 33290.22 247
BH-RMVSNet80.53 21480.22 22181.49 22687.19 23266.21 22177.79 29386.23 23874.21 16583.69 24088.50 25073.25 21290.75 20763.18 29687.90 31187.52 294
Anonymous20240521180.51 21581.19 20778.49 26988.48 20157.26 32376.63 31282.49 28881.21 8084.30 22992.24 16067.99 24886.24 29162.22 30095.13 15791.98 200
DIV-MVS_self_test80.43 21680.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.38 25486.19 18689.22 23863.09 27590.16 22376.32 16195.80 13693.66 121
cl____80.42 21780.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.37 25586.18 18889.21 23963.08 27690.16 22376.31 16295.80 13693.65 123
diffmvspermissive80.40 21880.48 21680.17 24779.02 35960.04 29277.54 29790.28 17366.65 26282.40 26287.33 27373.50 20487.35 27277.98 14189.62 28693.13 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21978.41 24586.23 11376.75 37373.28 13987.18 11677.45 31976.24 13868.14 38488.93 24465.41 26193.85 10669.47 23596.12 11891.55 214
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 22080.04 22681.24 23079.82 34958.95 30677.66 29489.66 18765.75 27185.99 19385.11 30868.29 24791.42 18576.03 16692.03 24093.33 135
MG-MVS80.32 22180.94 20978.47 27088.18 20752.62 35982.29 22985.01 26372.01 20679.24 31092.54 14869.36 24193.36 13170.65 22489.19 29289.45 260
mvsmamba80.30 22278.87 23584.58 14788.12 21067.55 20792.35 2984.88 26663.15 28985.33 20390.91 19850.71 34395.20 6266.36 26487.98 31090.99 224
VPNet80.25 22381.68 19175.94 30792.46 9547.98 38276.70 31081.67 29573.45 17684.87 21492.82 13874.66 19286.51 28761.66 30896.85 8793.33 135
MAR-MVS80.24 22478.74 24084.73 14386.87 24378.18 9285.75 14687.81 21565.67 27377.84 32078.50 37673.79 20190.53 21461.59 30990.87 26685.49 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22579.00 23483.78 16988.17 20886.66 1981.31 24366.81 39069.64 23088.33 14090.19 22264.58 26383.63 32671.99 21490.03 28081.06 379
Anonymous2024052180.18 22681.25 20476.95 29383.15 31560.84 28682.46 22485.99 24568.76 23986.78 17093.73 11259.13 29977.44 36073.71 19497.55 6992.56 168
LFMVS80.15 22780.56 21378.89 26189.19 18355.93 33185.22 15573.78 34882.96 6384.28 23092.72 14357.38 31190.07 23063.80 29095.75 13990.68 236
DPM-MVS80.10 22879.18 23382.88 20090.71 15369.74 18278.87 27990.84 15060.29 32375.64 34285.92 29667.28 25093.11 13871.24 21791.79 24585.77 313
MSDG80.06 22979.99 22880.25 24583.91 29868.04 20477.51 29889.19 19577.65 12681.94 26983.45 32976.37 17686.31 29063.31 29586.59 32986.41 305
FE-MVS79.98 23078.86 23683.36 18386.47 24666.45 21989.73 7084.74 27072.80 19284.22 23391.38 18144.95 37793.60 11863.93 28891.50 25290.04 254
sd_testset79.95 23181.39 20275.64 31088.81 19258.07 31576.16 32282.81 28673.67 17183.41 24693.04 12780.96 12477.65 35958.62 32495.03 16291.21 219
ab-mvs79.67 23280.56 21376.99 29288.48 20156.93 32584.70 16386.06 24268.95 23780.78 29093.08 12675.30 18284.62 31456.78 33390.90 26489.43 262
VNet79.31 23380.27 21876.44 30187.92 21453.95 34875.58 32984.35 27374.39 16482.23 26590.72 20672.84 21684.39 31860.38 31693.98 19890.97 225
thisisatest053079.07 23477.33 25484.26 15887.13 23364.58 23483.66 19075.95 33168.86 23885.22 20587.36 27238.10 39493.57 12275.47 17294.28 18994.62 75
cl2278.97 23578.21 24781.24 23077.74 36359.01 30577.46 30187.13 22465.79 26884.32 22685.10 30958.96 30190.88 20375.36 17492.03 24093.84 111
patch_mono-278.89 23679.39 23177.41 28984.78 28068.11 20275.60 32783.11 28260.96 31679.36 30789.89 23075.18 18372.97 37273.32 20092.30 23291.15 221
RPMNet78.88 23778.28 24680.68 24079.58 35062.64 25882.58 21994.16 3274.80 15975.72 34092.59 14548.69 35095.56 4273.48 19782.91 36883.85 339
PAPR78.84 23878.10 24881.07 23285.17 27560.22 29182.21 23390.57 15862.51 29375.32 34684.61 31774.99 18592.30 16259.48 32188.04 30990.68 236
PVSNet_BlendedMVS78.80 23977.84 24981.65 22384.43 28663.41 24679.49 26890.44 16161.70 30575.43 34387.07 27969.11 24391.44 18360.68 31492.24 23690.11 252
FMVSNet378.80 23978.55 24279.57 25582.89 31856.89 32781.76 23785.77 24769.04 23686.00 19090.44 21551.75 33990.09 22965.95 26893.34 21191.72 207
test_yl78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
DCV-MVSNet78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
test111178.53 24378.85 23777.56 28692.22 10347.49 38482.61 21769.24 37972.43 19685.28 20494.20 8551.91 33790.07 23065.36 27696.45 10395.11 62
ECVR-MVScopyleft78.44 24478.63 24177.88 28291.85 11748.95 37883.68 18969.91 37572.30 20284.26 23294.20 8551.89 33889.82 23563.58 29196.02 12294.87 67
pmmvs-eth3d78.42 24577.04 25782.57 20787.44 22774.41 13080.86 25179.67 30855.68 35284.69 21790.31 21960.91 28585.42 30762.20 30191.59 25087.88 290
mvs_anonymous78.13 24678.76 23976.23 30679.24 35650.31 37578.69 28184.82 26861.60 30783.09 25392.82 13873.89 20087.01 27568.33 25386.41 33191.37 216
TAMVS78.08 24776.36 26383.23 18790.62 15472.87 14379.08 27580.01 30761.72 30481.35 28386.92 28163.96 26988.78 25750.61 37193.01 22188.04 286
miper_enhance_ethall77.83 24876.93 25880.51 24176.15 38058.01 31775.47 33188.82 19858.05 33783.59 24280.69 35564.41 26491.20 18973.16 20792.03 24092.33 182
Vis-MVSNet (Re-imp)77.82 24977.79 25077.92 28188.82 19151.29 36983.28 19871.97 36374.04 16682.23 26589.78 23157.38 31189.41 24757.22 33295.41 14693.05 149
CANet_DTU77.81 25077.05 25680.09 24881.37 33159.90 29583.26 19988.29 20869.16 23467.83 38783.72 32560.93 28489.47 24269.22 23989.70 28590.88 229
OpenMVS_ROBcopyleft70.19 1777.77 25177.46 25178.71 26584.39 28961.15 27981.18 24782.52 28762.45 29683.34 24887.37 27166.20 25688.66 25964.69 28385.02 34886.32 306
SSC-MVS77.55 25281.64 19365.29 37890.46 15720.33 42473.56 34768.28 38185.44 3788.18 14494.64 6470.93 23381.33 33871.25 21692.03 24094.20 93
MDA-MVSNet-bldmvs77.47 25376.90 25979.16 26079.03 35864.59 23366.58 38875.67 33473.15 18788.86 12488.99 24366.94 25281.23 33964.71 28288.22 30891.64 211
jason77.42 25475.75 26982.43 21087.10 23669.27 18877.99 28981.94 29351.47 37877.84 32085.07 31260.32 28989.00 25170.74 22389.27 29189.03 272
jason: jason.
CDS-MVSNet77.32 25575.40 27283.06 19189.00 18672.48 15477.90 29182.17 29160.81 31778.94 31283.49 32859.30 29788.76 25854.64 35192.37 23187.93 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25676.75 26078.52 26887.01 23961.30 27775.55 33087.12 22761.24 31374.45 35178.79 37477.20 16090.93 19964.62 28584.80 35583.32 348
MVSTER77.09 25775.70 27081.25 22875.27 38861.08 28077.49 30085.07 25960.78 31886.55 17788.68 24743.14 38690.25 21873.69 19590.67 27292.42 175
PS-MVSNAJ77.04 25876.53 26278.56 26787.09 23761.40 27575.26 33287.13 22461.25 31274.38 35377.22 38776.94 16690.94 19864.63 28484.83 35483.35 347
IterMVS76.91 25976.34 26478.64 26680.91 33664.03 24076.30 31879.03 31164.88 28283.11 25189.16 24059.90 29384.46 31668.61 24985.15 34687.42 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 26075.67 27180.34 24480.48 34462.16 27073.50 34884.80 26957.61 34182.24 26487.54 26751.31 34087.65 26870.40 22893.19 21791.23 218
CL-MVSNet_self_test76.81 26177.38 25375.12 31386.90 24151.34 36773.20 35180.63 30468.30 24481.80 27588.40 25166.92 25380.90 34055.35 34594.90 16893.12 147
TR-MVS76.77 26275.79 26879.72 25286.10 26265.79 22577.14 30383.02 28365.20 28081.40 28282.10 34366.30 25590.73 20955.57 34285.27 34282.65 355
MonoMVSNet76.66 26377.26 25574.86 31579.86 34854.34 34586.26 13786.08 24171.08 21685.59 19888.68 24753.95 32985.93 29863.86 28980.02 38384.32 330
USDC76.63 26476.73 26176.34 30383.46 30457.20 32480.02 25988.04 21352.14 37483.65 24191.25 18463.24 27386.65 28554.66 35094.11 19485.17 319
BH-w/o76.57 26576.07 26778.10 27786.88 24265.92 22477.63 29586.33 23665.69 27280.89 28879.95 36468.97 24590.74 20853.01 36185.25 34377.62 390
Patchmtry76.56 26677.46 25173.83 32179.37 35546.60 38882.41 22676.90 32573.81 16985.56 20092.38 15248.07 35383.98 32363.36 29495.31 15290.92 227
PVSNet_Blended76.49 26775.40 27279.76 25184.43 28663.41 24675.14 33390.44 16157.36 34375.43 34378.30 37769.11 24391.44 18360.68 31487.70 31584.42 329
miper_lstm_enhance76.45 26876.10 26677.51 28776.72 37460.97 28564.69 39285.04 26163.98 28683.20 25088.22 25356.67 31578.79 35673.22 20193.12 21892.78 158
lupinMVS76.37 26974.46 28182.09 21285.54 26969.26 18976.79 30880.77 30350.68 38576.23 33382.82 33758.69 30288.94 25269.85 23288.77 29688.07 283
cascas76.29 27074.81 27780.72 23984.47 28562.94 25273.89 34587.34 21855.94 35075.16 34876.53 39263.97 26891.16 19165.00 27990.97 26288.06 285
WB-MVS76.06 27180.01 22764.19 38189.96 17020.58 42372.18 35668.19 38283.21 5986.46 18493.49 11770.19 23778.97 35465.96 26790.46 27793.02 150
thres600view775.97 27275.35 27477.85 28487.01 23951.84 36580.45 25473.26 35375.20 15683.10 25286.31 29045.54 36889.05 25055.03 34892.24 23692.66 164
GA-MVS75.83 27374.61 27879.48 25781.87 32359.25 30173.42 34982.88 28468.68 24079.75 30281.80 34850.62 34489.46 24366.85 25985.64 33989.72 257
MVP-Stereo75.81 27473.51 29082.71 20289.35 17873.62 13480.06 25785.20 25660.30 32273.96 35487.94 25857.89 30989.45 24452.02 36574.87 40185.06 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 27575.20 27577.27 29075.01 39169.47 18678.93 27684.88 26646.67 39287.08 16587.84 26150.44 34671.62 37777.42 15088.53 29990.72 233
thres100view90075.45 27675.05 27676.66 29987.27 22951.88 36481.07 24873.26 35375.68 14883.25 24986.37 28745.54 36888.80 25451.98 36690.99 25989.31 264
ET-MVSNet_ETH3D75.28 27772.77 29982.81 20183.03 31768.11 20277.09 30476.51 32960.67 32077.60 32580.52 35938.04 39591.15 19270.78 22190.68 27189.17 267
thres40075.14 27874.23 28377.86 28386.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25992.66 164
wuyk23d75.13 27979.30 23262.63 38475.56 38475.18 12680.89 25073.10 35575.06 15894.76 1695.32 4187.73 4352.85 41534.16 41497.11 8259.85 411
EU-MVSNet75.12 28074.43 28277.18 29183.11 31659.48 29985.71 14882.43 28939.76 41285.64 19788.76 24544.71 37987.88 26673.86 19185.88 33884.16 335
HyFIR lowres test75.12 28072.66 30182.50 20891.44 13565.19 23072.47 35487.31 21946.79 39180.29 29784.30 32052.70 33492.10 16851.88 37086.73 32790.22 247
CMPMVSbinary59.41 2075.12 28073.57 28879.77 25075.84 38367.22 20881.21 24682.18 29050.78 38376.50 32987.66 26555.20 32582.99 32962.17 30390.64 27689.09 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 28372.98 29780.73 23884.95 27771.71 16776.23 32077.59 31852.83 36877.73 32486.38 28656.35 31884.97 31157.72 33187.05 32285.51 316
tfpn200view974.86 28474.23 28376.74 29886.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25989.31 264
1112_ss74.82 28573.74 28678.04 27989.57 17260.04 29276.49 31687.09 22854.31 36073.66 35779.80 36560.25 29086.76 28458.37 32584.15 35987.32 297
EGC-MVSNET74.79 28669.99 32889.19 6594.89 3887.00 1591.89 3786.28 2371.09 4212.23 42395.98 2781.87 11489.48 24179.76 11695.96 12591.10 222
ppachtmachnet_test74.73 28774.00 28576.90 29580.71 34156.89 32771.53 36278.42 31358.24 33479.32 30982.92 33657.91 30884.26 32065.60 27491.36 25489.56 259
Patchmatch-RL test74.48 28873.68 28776.89 29684.83 27966.54 21772.29 35569.16 38057.70 33986.76 17186.33 28845.79 36782.59 33069.63 23490.65 27581.54 370
PatchMatch-RL74.48 28873.22 29478.27 27587.70 21985.26 3875.92 32570.09 37364.34 28476.09 33681.25 35365.87 25978.07 35853.86 35383.82 36171.48 399
XXY-MVS74.44 29076.19 26569.21 35584.61 28452.43 36071.70 35977.18 32360.73 31980.60 29190.96 19675.44 17969.35 38456.13 33888.33 30385.86 312
test250674.12 29173.39 29176.28 30491.85 11744.20 39884.06 17648.20 41972.30 20281.90 27094.20 8527.22 41989.77 23864.81 28196.02 12294.87 67
reproduce_monomvs74.09 29273.23 29376.65 30076.52 37554.54 34377.50 29981.40 29865.85 26782.86 25786.67 28327.38 41784.53 31570.24 22990.66 27490.89 228
CR-MVSNet74.00 29373.04 29676.85 29779.58 35062.64 25882.58 21976.90 32550.50 38675.72 34092.38 15248.07 35384.07 32268.72 24882.91 36883.85 339
Test_1112_low_res73.90 29473.08 29576.35 30290.35 15955.95 33073.40 35086.17 23950.70 38473.14 35885.94 29558.31 30485.90 30156.51 33583.22 36587.20 298
test20.0373.75 29574.59 28071.22 34281.11 33451.12 37170.15 37272.10 36270.42 22180.28 29991.50 17864.21 26674.72 37146.96 39094.58 18187.82 292
test_fmvs273.57 29672.80 29875.90 30872.74 40468.84 19577.07 30584.32 27445.14 39882.89 25584.22 32148.37 35170.36 38173.40 19987.03 32388.52 278
SCA73.32 29772.57 30375.58 31181.62 32755.86 33378.89 27871.37 36861.73 30374.93 34983.42 33060.46 28787.01 27558.11 32982.63 37383.88 336
baseline173.26 29873.54 28972.43 33584.92 27847.79 38379.89 26174.00 34465.93 26578.81 31386.28 29156.36 31781.63 33756.63 33479.04 39087.87 291
131473.22 29972.56 30475.20 31280.41 34557.84 31881.64 24085.36 25351.68 37773.10 35976.65 39161.45 28285.19 30963.54 29279.21 38882.59 356
MVS73.21 30072.59 30275.06 31480.97 33560.81 28781.64 24085.92 24646.03 39671.68 36677.54 38268.47 24689.77 23855.70 34185.39 34074.60 396
HY-MVS64.64 1873.03 30172.47 30574.71 31783.36 30854.19 34682.14 23681.96 29256.76 34969.57 37986.21 29260.03 29184.83 31349.58 37782.65 37185.11 320
thisisatest051573.00 30270.52 32080.46 24281.45 32959.90 29573.16 35274.31 34357.86 33876.08 33777.78 38037.60 39892.12 16765.00 27991.45 25389.35 263
EPNet_dtu72.87 30371.33 31577.49 28877.72 36460.55 28982.35 22775.79 33266.49 26358.39 41481.06 35453.68 33085.98 29753.55 35692.97 22385.95 310
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 30471.41 31476.28 30483.25 31160.34 29083.50 19379.02 31237.77 41676.33 33185.10 30949.60 34987.41 27170.54 22677.54 39681.08 377
CHOSEN 1792x268872.45 30570.56 31978.13 27690.02 16963.08 25168.72 37783.16 28142.99 40675.92 33885.46 30257.22 31385.18 31049.87 37581.67 37586.14 308
testgi72.36 30674.61 27865.59 37580.56 34342.82 40368.29 37873.35 35266.87 26081.84 27289.93 22872.08 22666.92 39746.05 39392.54 22987.01 300
thres20072.34 30771.55 31374.70 31883.48 30351.60 36675.02 33473.71 34970.14 22778.56 31680.57 35846.20 35988.20 26446.99 38989.29 28984.32 330
FPMVS72.29 30872.00 30773.14 32688.63 19785.00 4074.65 33867.39 38471.94 20777.80 32287.66 26550.48 34575.83 36649.95 37379.51 38458.58 413
FMVSNet572.10 30971.69 30973.32 32481.57 32853.02 35576.77 30978.37 31463.31 28776.37 33091.85 16636.68 39978.98 35347.87 38692.45 23087.95 288
our_test_371.85 31071.59 31072.62 33280.71 34153.78 34969.72 37471.71 36758.80 33178.03 31780.51 36056.61 31678.84 35562.20 30186.04 33785.23 318
PAPM71.77 31170.06 32676.92 29486.39 24853.97 34776.62 31386.62 23453.44 36463.97 40484.73 31657.79 31092.34 16039.65 40581.33 37984.45 328
ttmdpeth71.72 31270.67 31774.86 31573.08 40155.88 33277.41 30269.27 37855.86 35178.66 31493.77 11038.01 39675.39 36860.12 31789.87 28393.31 137
IB-MVS62.13 1971.64 31368.97 33879.66 25480.80 34062.26 26773.94 34476.90 32563.27 28868.63 38376.79 38933.83 40391.84 17559.28 32287.26 31784.88 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 31472.30 30669.62 35276.47 37752.70 35870.03 37380.97 30159.18 32879.36 30788.21 25460.50 28669.12 38558.33 32777.62 39587.04 299
testing371.53 31570.79 31673.77 32288.89 19041.86 40576.60 31559.12 40972.83 19180.97 28582.08 34519.80 42587.33 27365.12 27891.68 24892.13 193
test_vis3_rt71.42 31670.67 31773.64 32369.66 41170.46 17766.97 38789.73 18442.68 40888.20 14383.04 33243.77 38160.07 40965.35 27786.66 32890.39 245
Anonymous2023120671.38 31771.88 30869.88 34986.31 25354.37 34470.39 37074.62 33952.57 37076.73 32888.76 24559.94 29272.06 37444.35 39793.23 21683.23 350
test_vis1_n_192071.30 31871.58 31270.47 34577.58 36659.99 29474.25 33984.22 27551.06 38074.85 35079.10 37155.10 32668.83 38768.86 24579.20 38982.58 357
MIMVSNet71.09 31971.59 31069.57 35387.23 23050.07 37678.91 27771.83 36460.20 32571.26 36791.76 17255.08 32776.09 36441.06 40287.02 32482.54 359
test_fmvs1_n70.94 32070.41 32372.53 33473.92 39366.93 21475.99 32484.21 27643.31 40579.40 30679.39 36943.47 38268.55 38969.05 24284.91 35182.10 364
MS-PatchMatch70.93 32170.22 32473.06 32781.85 32462.50 26173.82 34677.90 31552.44 37175.92 33881.27 35255.67 32281.75 33555.37 34477.70 39474.94 395
pmmvs570.73 32270.07 32572.72 33077.03 37152.73 35774.14 34075.65 33550.36 38772.17 36485.37 30655.42 32480.67 34252.86 36287.59 31684.77 323
PatchT70.52 32372.76 30063.79 38379.38 35433.53 41777.63 29565.37 39473.61 17371.77 36592.79 14144.38 38075.65 36764.53 28685.37 34182.18 363
test_vis1_n70.29 32469.99 32871.20 34375.97 38266.50 21876.69 31180.81 30244.22 40175.43 34377.23 38650.00 34768.59 38866.71 26282.85 37078.52 389
N_pmnet70.20 32568.80 34074.38 31980.91 33684.81 4359.12 40476.45 33055.06 35575.31 34782.36 34255.74 32154.82 41447.02 38887.24 31883.52 343
tpmvs70.16 32669.56 33171.96 33874.71 39248.13 38079.63 26375.45 33765.02 28170.26 37581.88 34745.34 37385.68 30558.34 32675.39 40082.08 365
new-patchmatchnet70.10 32773.37 29260.29 39181.23 33316.95 42659.54 40274.62 33962.93 29080.97 28587.93 25962.83 27971.90 37555.24 34695.01 16592.00 198
YYNet170.06 32870.44 32168.90 35773.76 39553.42 35358.99 40567.20 38658.42 33387.10 16385.39 30559.82 29467.32 39459.79 31983.50 36485.96 309
MVStest170.05 32969.26 33272.41 33658.62 42355.59 33676.61 31465.58 39253.44 36489.28 12093.32 12022.91 42371.44 37974.08 18789.52 28790.21 251
MDA-MVSNet_test_wron70.05 32970.44 32168.88 35873.84 39453.47 35158.93 40667.28 38558.43 33287.09 16485.40 30459.80 29567.25 39559.66 32083.54 36385.92 311
CostFormer69.98 33168.68 34173.87 32077.14 36950.72 37379.26 27174.51 34151.94 37670.97 37084.75 31545.16 37687.49 27055.16 34779.23 38783.40 346
testing9169.94 33268.99 33772.80 32983.81 30045.89 39171.57 36173.64 35168.24 24570.77 37377.82 37934.37 40284.44 31753.64 35587.00 32588.07 283
baseline269.77 33366.89 35078.41 27179.51 35258.09 31476.23 32069.57 37657.50 34264.82 40277.45 38446.02 36188.44 26053.08 35877.83 39288.70 276
PatchmatchNetpermissive69.71 33468.83 33972.33 33777.66 36553.60 35079.29 27069.99 37457.66 34072.53 36282.93 33546.45 35880.08 34860.91 31372.09 40483.31 349
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 33569.05 33571.14 34469.15 41265.77 22673.98 34383.32 28042.83 40777.77 32378.27 37843.39 38568.50 39068.39 25284.38 35879.15 387
JIA-IIPM69.41 33666.64 35477.70 28573.19 39871.24 17275.67 32665.56 39370.42 22165.18 39892.97 13333.64 40583.06 32753.52 35769.61 41078.79 388
Syy-MVS69.40 33770.03 32767.49 36781.72 32538.94 41071.00 36461.99 40061.38 30970.81 37172.36 40361.37 28379.30 35164.50 28785.18 34484.22 332
testing9969.27 33868.15 34572.63 33183.29 30945.45 39371.15 36371.08 36967.34 25670.43 37477.77 38132.24 40784.35 31953.72 35486.33 33388.10 282
UnsupCasMVSNet_bld69.21 33969.68 33067.82 36579.42 35351.15 37067.82 38275.79 33254.15 36177.47 32685.36 30759.26 29870.64 38048.46 38379.35 38681.66 368
test_cas_vis1_n_192069.20 34069.12 33369.43 35473.68 39662.82 25570.38 37177.21 32246.18 39580.46 29678.95 37352.03 33665.53 40265.77 27377.45 39779.95 385
gg-mvs-nofinetune68.96 34169.11 33468.52 36376.12 38145.32 39483.59 19155.88 41486.68 2964.62 40397.01 930.36 41083.97 32444.78 39682.94 36776.26 392
WBMVS68.76 34268.43 34269.75 35183.29 30940.30 40867.36 38472.21 36157.09 34677.05 32785.53 30033.68 40480.51 34448.79 38190.90 26488.45 279
WB-MVSnew68.72 34369.01 33667.85 36483.22 31343.98 39974.93 33565.98 39155.09 35473.83 35579.11 37065.63 26071.89 37638.21 41085.04 34787.69 293
tpm268.45 34466.83 35173.30 32578.93 36048.50 37979.76 26271.76 36547.50 39069.92 37783.60 32642.07 38888.40 26148.44 38479.51 38483.01 353
tpm67.95 34568.08 34667.55 36678.74 36143.53 40175.60 32767.10 38954.92 35672.23 36388.10 25542.87 38775.97 36552.21 36480.95 38283.15 351
WTY-MVS67.91 34668.35 34366.58 37280.82 33948.12 38165.96 38972.60 35653.67 36371.20 36881.68 35058.97 30069.06 38648.57 38281.67 37582.55 358
testing1167.38 34765.93 35571.73 34083.37 30746.60 38870.95 36669.40 37762.47 29566.14 39176.66 39031.22 40884.10 32149.10 37984.10 36084.49 326
test-LLR67.21 34866.74 35268.63 36176.45 37855.21 33967.89 37967.14 38762.43 29865.08 39972.39 40143.41 38369.37 38261.00 31184.89 35281.31 372
testing22266.93 34965.30 36171.81 33983.38 30645.83 39272.06 35767.50 38364.12 28569.68 37876.37 39327.34 41883.00 32838.88 40688.38 30286.62 304
sss66.92 35067.26 34865.90 37477.23 36851.10 37264.79 39171.72 36652.12 37570.13 37680.18 36257.96 30765.36 40350.21 37281.01 38181.25 374
KD-MVS_2432*160066.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
miper_refine_blended66.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
dmvs_re66.81 35366.98 34966.28 37376.87 37258.68 31271.66 36072.24 35960.29 32369.52 38073.53 40052.38 33564.40 40544.90 39581.44 37875.76 393
tpm cat166.76 35465.21 36271.42 34177.09 37050.62 37478.01 28873.68 35044.89 39968.64 38279.00 37245.51 37082.42 33349.91 37470.15 40781.23 376
UWE-MVS66.43 35565.56 36069.05 35684.15 29440.98 40673.06 35364.71 39654.84 35776.18 33579.62 36829.21 41280.50 34538.54 40989.75 28485.66 314
PVSNet58.17 2166.41 35665.63 35968.75 35981.96 32249.88 37762.19 39872.51 35851.03 38168.04 38575.34 39750.84 34274.77 36945.82 39482.96 36681.60 369
tpmrst66.28 35766.69 35365.05 37972.82 40339.33 40978.20 28770.69 37253.16 36767.88 38680.36 36148.18 35274.75 37058.13 32870.79 40681.08 377
Patchmatch-test65.91 35867.38 34761.48 38975.51 38543.21 40268.84 37663.79 39862.48 29472.80 36183.42 33044.89 37859.52 41148.27 38586.45 33081.70 367
ADS-MVSNet265.87 35963.64 36772.55 33373.16 39956.92 32667.10 38574.81 33849.74 38866.04 39382.97 33346.71 35677.26 36142.29 39969.96 40883.46 344
test_vis1_rt65.64 36064.09 36470.31 34666.09 41770.20 18061.16 39981.60 29638.65 41372.87 36069.66 40652.84 33260.04 41056.16 33777.77 39380.68 381
mvsany_test365.48 36162.97 37073.03 32869.99 41076.17 12164.83 39043.71 42143.68 40380.25 30087.05 28052.83 33363.09 40851.92 36972.44 40379.84 386
test-mter65.00 36263.79 36668.63 36176.45 37855.21 33967.89 37967.14 38750.98 38265.08 39972.39 40128.27 41569.37 38261.00 31184.89 35281.31 372
ETVMVS64.67 36363.34 36968.64 36083.44 30541.89 40469.56 37561.70 40561.33 31168.74 38175.76 39528.76 41379.35 35034.65 41386.16 33684.67 325
myMVS_eth3d64.66 36463.89 36566.97 37081.72 32537.39 41371.00 36461.99 40061.38 30970.81 37172.36 40320.96 42479.30 35149.59 37685.18 34484.22 332
test0.0.03 164.66 36464.36 36365.57 37675.03 39046.89 38764.69 39261.58 40662.43 29871.18 36977.54 38243.41 38368.47 39140.75 40482.65 37181.35 371
UBG64.34 36663.35 36867.30 36883.50 30240.53 40767.46 38365.02 39554.77 35867.54 38974.47 39932.99 40678.50 35740.82 40383.58 36282.88 354
test_f64.31 36765.85 35659.67 39266.54 41662.24 26957.76 40870.96 37040.13 41084.36 22482.09 34446.93 35551.67 41661.99 30481.89 37465.12 407
pmmvs362.47 36860.02 38169.80 35071.58 40764.00 24170.52 36958.44 41239.77 41166.05 39275.84 39427.10 42072.28 37346.15 39284.77 35673.11 397
EPMVS62.47 36862.63 37262.01 38570.63 40938.74 41174.76 33652.86 41653.91 36267.71 38880.01 36339.40 39266.60 39855.54 34368.81 41280.68 381
ADS-MVSNet61.90 37062.19 37461.03 39073.16 39936.42 41567.10 38561.75 40349.74 38866.04 39382.97 33346.71 35663.21 40642.29 39969.96 40883.46 344
PMMVS61.65 37160.38 37865.47 37765.40 42069.26 18963.97 39461.73 40436.80 41760.11 40968.43 40859.42 29666.35 39948.97 38078.57 39160.81 410
E-PMN61.59 37261.62 37561.49 38866.81 41555.40 33753.77 41160.34 40866.80 26158.90 41265.50 41140.48 39166.12 40055.72 34086.25 33462.95 409
TESTMET0.1,161.29 37360.32 37964.19 38172.06 40551.30 36867.89 37962.09 39945.27 39760.65 40869.01 40727.93 41664.74 40456.31 33681.65 37776.53 391
MVS-HIRNet61.16 37462.92 37155.87 39579.09 35735.34 41671.83 35857.98 41346.56 39359.05 41191.14 18849.95 34876.43 36338.74 40771.92 40555.84 414
EMVS61.10 37560.81 37761.99 38665.96 41855.86 33353.10 41258.97 41167.06 25856.89 41663.33 41240.98 38967.03 39654.79 34986.18 33563.08 408
DSMNet-mixed60.98 37661.61 37659.09 39472.88 40245.05 39674.70 33746.61 42026.20 41865.34 39790.32 21855.46 32363.12 40741.72 40181.30 38069.09 403
dp60.70 37760.29 38061.92 38772.04 40638.67 41270.83 36764.08 39751.28 37960.75 40777.28 38536.59 40071.58 37847.41 38762.34 41475.52 394
dmvs_testset60.59 37862.54 37354.72 39777.26 36727.74 42074.05 34261.00 40760.48 32165.62 39667.03 41055.93 32068.23 39232.07 41769.46 41168.17 404
CHOSEN 280x42059.08 37956.52 38466.76 37176.51 37664.39 23749.62 41359.00 41043.86 40255.66 41768.41 40935.55 40168.21 39343.25 39876.78 39967.69 405
mvsany_test158.48 38056.47 38564.50 38065.90 41968.21 20156.95 40942.11 42238.30 41465.69 39577.19 38856.96 31459.35 41246.16 39158.96 41565.93 406
PVSNet_051.08 2256.10 38154.97 38659.48 39375.12 38953.28 35455.16 41061.89 40244.30 40059.16 41062.48 41354.22 32865.91 40135.40 41247.01 41659.25 412
new_pmnet55.69 38257.66 38349.76 39875.47 38630.59 41859.56 40151.45 41743.62 40462.49 40575.48 39640.96 39049.15 41837.39 41172.52 40269.55 402
PMMVS255.64 38359.27 38244.74 39964.30 42112.32 42740.60 41449.79 41853.19 36665.06 40184.81 31453.60 33149.76 41732.68 41689.41 28872.15 398
MVEpermissive40.22 2351.82 38450.47 38755.87 39562.66 42251.91 36331.61 41639.28 42340.65 40950.76 41874.98 39856.24 31944.67 41933.94 41564.11 41371.04 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 38542.65 38839.67 40070.86 40821.11 42261.01 40021.42 42757.36 34357.97 41550.06 41616.40 42658.73 41321.03 42027.69 42039.17 416
kuosan30.83 38632.17 38926.83 40253.36 42419.02 42557.90 40720.44 42838.29 41538.01 41937.82 41815.18 42733.45 4217.74 42220.76 42128.03 417
test_method30.46 38729.60 39033.06 40117.99 4263.84 42913.62 41773.92 3452.79 42018.29 42253.41 41528.53 41443.25 42022.56 41835.27 41852.11 415
cdsmvs_eth3d_5k20.81 38827.75 3910.00 4070.00 4300.00 4320.00 41885.44 2520.00 4250.00 42682.82 33781.46 1180.00 4260.00 4250.00 4240.00 422
tmp_tt20.25 38924.50 3927.49 4044.47 4278.70 42834.17 41525.16 4251.00 42232.43 42118.49 41939.37 3939.21 42321.64 41943.75 4174.57 419
ab-mvs-re6.65 3908.87 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42679.80 3650.00 4300.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas6.41 3918.55 3940.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42576.94 1660.00 4260.00 4250.00 4240.00 422
test1236.27 3928.08 3950.84 4051.11 4290.57 43062.90 3950.82 4290.54 4231.07 4252.75 4241.26 4280.30 4241.04 4231.26 4231.66 420
testmvs5.91 3937.65 3960.72 4061.20 4280.37 43159.14 4030.67 4300.49 4241.11 4242.76 4230.94 4290.24 4251.02 4241.47 4221.55 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS37.39 41352.61 363
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
PC_three_145258.96 33090.06 9791.33 18280.66 12893.03 14275.78 16895.94 12892.48 172
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 430
eth-test0.00 430
ZD-MVS92.22 10380.48 7191.85 12171.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 159
IU-MVS94.18 5072.64 14790.82 15156.98 34789.67 10985.78 5297.92 4993.28 138
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18095.35 14892.29 184
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 196
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 10983.69 7397.55 69
save fliter93.75 6377.44 10386.31 13589.72 18570.80 218
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 153
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 197
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 336
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 336
sam_mvs45.92 365
ambc82.98 19490.55 15664.86 23288.20 10089.15 19689.40 11893.96 9971.67 23191.38 18778.83 12796.55 9792.71 162
MTGPAbinary91.81 125
test_post178.85 2803.13 42145.19 37580.13 34758.11 329
test_post3.10 42245.43 37177.22 362
patchmatchnet-post81.71 34945.93 36487.01 275
GG-mvs-BLEND67.16 36973.36 39746.54 39084.15 17455.04 41558.64 41361.95 41429.93 41183.87 32538.71 40876.92 39871.07 400
MTMP90.66 4833.14 424
gm-plane-assit75.42 38744.97 39752.17 37272.36 40387.90 26554.10 352
test9_res80.83 10596.45 10390.57 239
TEST992.34 9879.70 7883.94 17990.32 16765.41 27784.49 22090.97 19482.03 10993.63 114
test_892.09 10778.87 8583.82 18490.31 16965.79 26884.36 22490.96 19681.93 11193.44 127
agg_prior279.68 11896.16 11590.22 247
agg_prior91.58 12777.69 10090.30 17084.32 22693.18 135
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
test_prior478.97 8484.59 165
test_prior283.37 19675.43 15384.58 21891.57 17681.92 11379.54 12096.97 85
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9692.80 157
旧先验281.73 23856.88 34886.54 18284.90 31272.81 208
新几何281.72 239
新几何182.95 19693.96 5978.56 8880.24 30555.45 35383.93 23791.08 19171.19 23288.33 26265.84 27193.07 21981.95 366
旧先验191.97 11171.77 16381.78 29491.84 16773.92 19993.65 20783.61 342
无先验82.81 21485.62 25058.09 33691.41 18667.95 25684.48 327
原ACMM282.26 232
原ACMM184.60 14692.81 8974.01 13291.50 13062.59 29282.73 25990.67 21076.53 17394.25 9069.24 23795.69 14185.55 315
test22293.31 7376.54 11379.38 26977.79 31652.59 36982.36 26390.84 20366.83 25491.69 24781.25 374
testdata286.43 28963.52 293
segment_acmp81.94 110
testdata79.54 25692.87 8472.34 15680.14 30659.91 32685.47 20291.75 17367.96 24985.24 30868.57 25192.18 23981.06 379
testdata179.62 26473.95 168
test1286.57 10590.74 15172.63 14990.69 15482.76 25879.20 13994.80 7395.32 15092.27 186
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 81
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 431
nn0.00 431
door-mid74.45 342
lessismore_v085.95 12091.10 14470.99 17470.91 37191.79 6994.42 7461.76 28192.93 14579.52 12193.03 22093.93 106
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
test1191.46 131
door72.57 357
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15973.30 18280.55 293
ACMP_Plane91.19 13984.77 15973.30 18280.55 293
BP-MVS77.30 151
HQP4-MVS80.56 29294.61 7993.56 130
HQP3-MVS92.68 9794.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
MDTV_nov1_ep13_2view27.60 42170.76 36846.47 39461.27 40645.20 37449.18 37883.75 341
MDTV_nov1_ep1368.29 34478.03 36243.87 40074.12 34172.22 36052.17 37267.02 39085.54 29945.36 37280.85 34155.73 33984.42 357
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20673.58 19694.66 17994.56 77
DeepMVS_CXcopyleft24.13 40332.95 42529.49 41921.63 42612.07 41937.95 42045.07 41730.84 40919.21 42217.94 42133.06 41923.69 418