This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6893.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4788.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 184
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9583.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6183.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12084.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 177
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9088.22 1888.53 12997.64 283.45 8294.55 7886.02 4898.60 1296.67 27
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6981.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6781.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6881.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4480.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5982.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8282.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5080.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5477.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6279.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 171
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7095.37 5180.87 10095.50 14394.53 79
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 200
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5283.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 178
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7075.37 14792.84 4895.28 3885.58 6396.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7986.53 2694.29 1896.27 1782.69 8994.08 9586.25 4297.63 6197.82 8
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18388.51 1790.11 9595.12 4490.98 688.92 24877.55 14097.07 8183.13 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11895.88 1787.41 2295.94 12692.48 168
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14183.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 230
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30489.04 8392.74 9291.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30188.95 8493.19 7191.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7581.10 7795.32 1097.24 572.94 20894.85 6785.07 5497.78 5397.26 16
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31188.93 8592.84 8991.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7793.10 13682.67 8298.04 3693.64 123
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15095.86 2284.88 5895.87 13095.24 58
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25689.54 7493.31 6690.21 1095.57 995.66 2981.42 11595.90 1580.94 9998.80 298.84 5
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9178.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15170.00 21894.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16869.87 21995.06 1196.14 2184.28 7393.07 13787.68 1596.34 10597.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17171.54 20094.28 2096.54 1381.57 11394.27 8486.26 4096.49 9997.09 21
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4380.07 8986.75 16593.26 11493.64 290.93 19584.60 6190.75 26493.97 104
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7880.87 8191.13 7893.19 11586.22 5895.97 1282.23 8897.18 7990.45 232
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16569.27 22294.39 1696.38 1586.02 6193.52 12083.96 6695.92 12895.34 53
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10279.74 9187.50 15092.38 14381.42 11593.28 12983.07 7497.24 7791.67 201
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4881.89 6894.70 1395.44 3490.69 888.31 25883.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30788.66 9292.06 10890.78 695.67 795.17 4281.80 11195.54 4179.00 12198.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5780.16 8789.13 12193.44 11283.82 7690.98 19383.86 6895.30 15193.60 125
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6495.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19888.84 1394.29 1897.57 390.48 1391.26 18472.57 20197.65 6097.34 15
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4478.43 11189.16 11992.25 15072.03 22196.36 388.21 790.93 25892.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4978.90 10492.88 4592.29 14886.11 5990.22 21686.24 4397.24 7791.36 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13478.20 11386.69 16892.28 14980.36 12795.06 6286.17 4496.49 9990.22 236
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16889.44 18588.63 1694.38 1795.77 2686.38 5793.59 11679.84 11195.21 15291.82 196
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8587.95 2089.62 11092.87 12984.56 6993.89 10277.65 13896.62 9390.70 224
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11484.26 4290.87 8793.92 9982.18 10289.29 24473.75 18494.81 17193.70 119
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8387.15 2393.05 4397.10 682.28 10192.02 16576.70 15097.99 4096.88 25
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11170.73 20994.19 2196.67 1176.94 16094.57 7683.07 7496.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19077.34 12293.63 3595.83 2565.40 25695.90 1585.01 5798.23 2797.49 13
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7276.02 13488.64 12791.22 17684.24 7493.37 12777.97 13697.03 8295.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21689.33 22783.87 7594.53 7982.45 8494.89 16794.90 65
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13767.85 24286.63 16994.84 5079.58 13395.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18085.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19789.67 22284.47 7195.46 4782.56 8396.26 11193.77 117
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13879.26 9989.68 10794.81 5482.44 9387.74 26276.54 15388.74 28996.61 29
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11572.61 18792.16 6095.23 4166.01 25095.59 3786.02 4897.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16191.29 13384.88 3992.06 6393.84 10186.45 5493.73 10773.22 19298.66 1097.69 9
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6291.50 17679.72 11397.32 7596.50 31
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14491.23 13577.31 12487.07 15991.47 17082.94 8794.71 7084.67 6096.27 11092.62 163
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5579.44 9686.55 17092.95 12674.84 18195.22 5680.78 10295.83 13294.46 80
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22884.54 4183.58 23393.78 10473.36 20496.48 187.98 996.21 11294.41 86
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 13978.77 10784.85 20590.89 18980.85 12195.29 5381.14 9795.32 14892.34 175
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10070.25 21589.35 11890.68 19882.85 8894.57 7679.55 11595.95 12592.00 191
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20681.66 7094.64 1496.53 1465.94 25194.75 6983.02 7696.83 8795.41 51
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26282.43 9494.53 7977.65 13896.46 10194.14 98
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17792.87 8780.37 8389.61 11291.81 16177.72 14794.18 9075.00 17098.53 1596.99 24
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10778.87 10584.27 22194.05 8878.35 14193.65 10980.54 10691.58 24692.08 188
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21291.56 12383.08 5790.92 8291.82 16078.25 14293.99 9774.16 17598.35 2197.49 13
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19592.21 10381.73 6990.92 8291.97 15477.20 15493.99 9774.16 17598.35 2197.61 10
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23165.22 22384.16 16394.23 2477.89 11691.28 7793.66 10884.35 7292.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25878.30 8586.93 11592.20 10465.94 25489.16 11993.16 11783.10 8589.89 22987.81 1194.43 18293.35 132
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19586.30 2889.60 11392.59 13769.22 23494.91 6673.89 18197.89 4996.72 26
v1086.54 9587.10 8984.84 13688.16 20663.28 24286.64 12492.20 10475.42 14692.81 5094.50 6374.05 19294.06 9683.88 6796.28 10897.17 20
pmmvs686.52 9688.06 7481.90 20892.22 10162.28 25984.66 15489.15 18883.54 5289.85 10397.32 488.08 3686.80 27770.43 21897.30 7696.62 28
PHI-MVS86.38 9785.81 11488.08 8288.44 20077.34 10189.35 8093.05 7973.15 17884.76 20687.70 25278.87 13794.18 9080.67 10496.29 10792.73 156
MVS_030486.35 9885.92 11087.66 8889.21 18073.16 13988.40 9583.63 27081.27 7480.87 27794.12 8671.49 22595.71 3287.79 1296.50 9894.11 100
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11680.35 8489.54 11688.01 24579.09 13592.13 16175.51 16395.06 15990.41 233
DeepC-MVS_fast80.27 886.23 10085.65 11887.96 8591.30 13376.92 10687.19 11091.99 11070.56 21084.96 20190.69 19780.01 13095.14 5978.37 12595.78 13791.82 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10186.83 9684.36 14987.82 21162.35 25886.42 12791.33 13276.78 12892.73 5294.48 6573.41 20193.72 10883.10 7395.41 14497.01 23
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15690.71 14885.85 3189.94 10295.24 4082.13 10390.40 21269.19 23296.40 10495.31 55
test_fmvsmconf0.1_n86.18 10385.88 11287.08 9485.26 26878.25 8685.82 13591.82 11865.33 26788.55 12892.35 14782.62 9289.80 23186.87 3294.32 18593.18 141
CDPH-MVS86.17 10485.54 11988.05 8492.25 9975.45 12283.85 17492.01 10965.91 25686.19 17991.75 16483.77 7894.98 6477.43 14396.71 9193.73 118
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22490.46 15580.99 7888.42 13391.97 15477.56 14993.85 10372.46 20298.65 1197.61 10
train_agg85.98 10685.28 12488.07 8392.34 9579.70 7483.94 17090.32 16065.79 25784.49 21090.97 18581.93 10793.63 11181.21 9696.54 9690.88 218
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32285.75 13693.09 7777.33 12391.94 6694.65 5674.78 18393.41 12675.11 16998.58 1397.88 7
test_fmvsmconf_n85.88 10885.51 12086.99 9684.77 27578.21 8785.40 14391.39 13065.32 26887.72 14691.81 16182.33 9789.78 23286.68 3494.20 18892.99 149
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10488.42 19774.57 15483.56 23485.65 28578.49 14094.21 8872.04 20492.88 21994.05 102
TAPA-MVS77.73 1285.71 11084.83 13088.37 7888.78 19179.72 7387.15 11293.50 5869.17 22385.80 18889.56 22380.76 12292.13 16173.21 19795.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
EPP-MVSNet85.47 11385.04 12786.77 10191.52 12969.37 18491.63 3687.98 20881.51 7287.05 16091.83 15966.18 24995.29 5370.75 21396.89 8495.64 46
GeoE85.45 11485.81 11484.37 14790.08 16167.07 20585.86 13491.39 13072.33 19387.59 14890.25 21084.85 6792.37 15578.00 13491.94 23993.66 120
FIs85.35 11586.27 10382.60 19891.86 11357.31 31585.10 14893.05 7975.83 13991.02 8193.97 9273.57 19792.91 14373.97 18098.02 3997.58 12
test_fmvsmvis_n_192085.22 11685.36 12384.81 13785.80 26076.13 11985.15 14792.32 10161.40 29791.33 7490.85 19283.76 7986.16 29084.31 6393.28 20992.15 186
casdiffmvspermissive85.21 11785.85 11383.31 18086.17 25362.77 24983.03 19793.93 4274.69 15388.21 13892.68 13682.29 10091.89 16977.87 13793.75 20095.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11885.93 10983.02 18786.30 24862.37 25784.55 15693.96 4174.48 15587.12 15492.03 15382.30 9991.94 16678.39 12494.21 18794.74 73
K. test v385.14 11984.73 13186.37 10791.13 14069.63 18285.45 14176.68 31984.06 4592.44 5796.99 862.03 27494.65 7280.58 10593.24 21094.83 72
EI-MVSNet-Vis-set85.12 12084.53 13886.88 9884.01 28872.76 14183.91 17385.18 25080.44 8288.75 12585.49 28780.08 12991.92 16782.02 9090.85 26295.97 39
EI-MVSNet-UG-set85.04 12184.44 14086.85 9983.87 29272.52 15083.82 17585.15 25180.27 8688.75 12585.45 28979.95 13191.90 16881.92 9390.80 26396.13 34
X-MVStestdata85.04 12182.70 16892.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9916.05 40586.57 5295.80 2587.35 2497.62 6294.20 92
MSLP-MVS++85.00 12386.03 10881.90 20891.84 11671.56 16786.75 12293.02 8375.95 13787.12 15489.39 22577.98 14389.40 24377.46 14194.78 17284.75 313
F-COLMAP84.97 12483.42 15489.63 5592.39 9383.40 4888.83 8791.92 11373.19 17780.18 29089.15 23177.04 15893.28 12965.82 26392.28 23092.21 183
3Dnovator80.37 784.80 12584.71 13485.06 13486.36 24674.71 12588.77 8990.00 17375.65 14284.96 20193.17 11674.06 19191.19 18678.28 12891.09 25289.29 256
IterMVS-LS84.73 12684.98 12883.96 16087.35 22263.66 23783.25 19189.88 17576.06 13289.62 11092.37 14673.40 20392.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12784.34 14485.49 12990.18 16075.86 12079.23 26587.13 21873.35 17085.56 19289.34 22683.60 8190.50 21076.64 15194.05 19290.09 241
HQP-MVS84.61 12884.06 14786.27 11091.19 13670.66 17284.77 14992.68 9373.30 17380.55 28290.17 21472.10 21794.61 7477.30 14594.47 18093.56 128
v119284.57 12984.69 13584.21 15587.75 21362.88 24683.02 19891.43 12769.08 22589.98 10190.89 18972.70 21293.62 11482.41 8594.97 16496.13 34
FMVSNet184.55 13085.45 12181.85 21090.27 15861.05 27286.83 11888.27 20378.57 11089.66 10995.64 3075.43 17490.68 20569.09 23395.33 14793.82 112
v114484.54 13184.72 13384.00 15887.67 21662.55 25382.97 20090.93 14470.32 21489.80 10490.99 18473.50 19893.48 12281.69 9594.65 17795.97 39
Gipumacopyleft84.44 13286.33 10278.78 25684.20 28673.57 13289.55 7290.44 15684.24 4384.38 21394.89 4876.35 17180.40 33776.14 15796.80 8982.36 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13383.93 15085.63 12591.59 12171.58 16583.52 18392.13 10661.82 29083.96 22789.75 22179.93 13293.46 12378.33 12794.34 18491.87 195
VDDNet84.35 13485.39 12281.25 22195.13 3159.32 29485.42 14281.11 29086.41 2787.41 15196.21 1973.61 19690.61 20866.33 25696.85 8593.81 115
ETV-MVS84.31 13583.91 15185.52 12788.58 19670.40 17584.50 16093.37 6078.76 10884.07 22578.72 36380.39 12695.13 6073.82 18392.98 21791.04 214
v124084.30 13684.51 13983.65 16987.65 21761.26 26982.85 20491.54 12467.94 24090.68 9090.65 20171.71 22393.64 11082.84 7994.78 17296.07 36
MVS_111021_LR84.28 13783.76 15285.83 12289.23 17983.07 5180.99 24083.56 27172.71 18586.07 18289.07 23281.75 11286.19 28977.11 14793.36 20588.24 269
h-mvs3384.25 13882.76 16788.72 7191.82 11882.60 5684.00 16984.98 25771.27 20286.70 16690.55 20363.04 27193.92 10078.26 12994.20 18889.63 248
v14419284.24 13984.41 14183.71 16887.59 21961.57 26582.95 20191.03 14067.82 24389.80 10490.49 20473.28 20593.51 12181.88 9494.89 16796.04 38
dcpmvs_284.23 14085.14 12581.50 21788.61 19561.98 26382.90 20393.11 7568.66 23192.77 5192.39 14278.50 13987.63 26476.99 14992.30 22794.90 65
v192192084.23 14084.37 14383.79 16487.64 21861.71 26482.91 20291.20 13667.94 24090.06 9690.34 20772.04 22093.59 11682.32 8694.91 16596.07 36
VDD-MVS84.23 14084.58 13783.20 18491.17 13965.16 22583.25 19184.97 25879.79 9087.18 15394.27 7474.77 18490.89 19869.24 22996.54 9693.55 130
v2v48284.09 14384.24 14583.62 17087.13 22761.40 26682.71 20789.71 17872.19 19689.55 11491.41 17170.70 22993.20 13181.02 9893.76 19796.25 32
EG-PatchMatch MVS84.08 14484.11 14683.98 15992.22 10172.61 14782.20 22687.02 22372.63 18688.86 12291.02 18378.52 13891.11 18973.41 18991.09 25288.21 270
DP-MVS Recon84.05 14583.22 15786.52 10591.73 11975.27 12383.23 19392.40 9872.04 19782.04 25788.33 24177.91 14593.95 9966.17 25795.12 15790.34 235
TransMVSNet (Re)84.02 14685.74 11678.85 25591.00 14355.20 33282.29 22087.26 21479.65 9388.38 13595.52 3383.00 8686.88 27567.97 24796.60 9494.45 82
Baseline_NR-MVSNet84.00 14785.90 11178.29 26791.47 13153.44 34182.29 22087.00 22679.06 10289.55 11495.72 2877.20 15486.14 29172.30 20398.51 1695.28 56
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17881.45 6383.72 17981.58 28974.73 15285.66 18986.06 28072.56 21492.69 14775.44 16595.21 15289.01 264
alignmvs83.94 14983.98 14983.80 16387.80 21267.88 20084.54 15891.42 12973.27 17688.41 13487.96 24672.33 21590.83 20076.02 15994.11 19092.69 160
Effi-MVS+83.90 15084.01 14883.57 17487.22 22565.61 22186.55 12692.40 9878.64 10981.34 27284.18 30883.65 8092.93 14174.22 17487.87 30192.17 185
CANet83.79 15182.85 16686.63 10286.17 25372.21 15783.76 17891.43 12777.24 12574.39 34087.45 25875.36 17595.42 4977.03 14892.83 22092.25 182
pm-mvs183.69 15284.95 12979.91 24290.04 16559.66 29182.43 21687.44 21175.52 14487.85 14495.26 3981.25 11785.65 30068.74 23996.04 12094.42 85
AdaColmapbinary83.66 15383.69 15383.57 17490.05 16472.26 15586.29 13090.00 17378.19 11481.65 26687.16 26483.40 8394.24 8761.69 29794.76 17584.21 322
MIMVSNet183.63 15484.59 13680.74 23094.06 5362.77 24982.72 20684.53 26377.57 12190.34 9295.92 2476.88 16685.83 29861.88 29597.42 7293.62 124
test_fmvsm_n_192083.60 15582.89 16585.74 12385.22 26977.74 9584.12 16590.48 15459.87 31786.45 17891.12 18075.65 17285.89 29682.28 8790.87 26093.58 126
WR-MVS83.56 15684.40 14281.06 22693.43 6754.88 33378.67 27385.02 25581.24 7590.74 8991.56 16872.85 20991.08 19068.00 24698.04 3697.23 18
CNLPA83.55 15783.10 16284.90 13589.34 17683.87 4684.54 15888.77 19279.09 10183.54 23588.66 23874.87 18081.73 32866.84 25292.29 22989.11 258
LCM-MVSNet-Re83.48 15885.06 12678.75 25785.94 25855.75 32780.05 24994.27 2176.47 12996.09 594.54 6283.31 8489.75 23559.95 30794.89 16790.75 221
hse-mvs283.47 15981.81 18288.47 7591.03 14282.27 5782.61 20883.69 26871.27 20286.70 16686.05 28163.04 27192.41 15378.26 12993.62 20490.71 223
V4283.47 15983.37 15683.75 16683.16 30563.33 24181.31 23490.23 16769.51 22190.91 8490.81 19474.16 19092.29 15980.06 10890.22 27195.62 47
VPA-MVSNet83.47 15984.73 13179.69 24690.29 15757.52 31481.30 23688.69 19476.29 13087.58 14994.44 6680.60 12587.20 26966.60 25596.82 8894.34 89
PAPM_NR83.23 16283.19 15983.33 17990.90 14565.98 21788.19 9790.78 14778.13 11580.87 27787.92 24973.49 20092.42 15270.07 22288.40 29191.60 203
CLD-MVS83.18 16382.64 17084.79 13889.05 18267.82 20177.93 28192.52 9668.33 23385.07 19881.54 33982.06 10492.96 13969.35 22897.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16485.68 11775.65 30181.24 32345.26 38479.94 25192.91 8683.83 4691.33 7496.88 1080.25 12885.92 29368.89 23695.89 12995.76 43
FA-MVS(test-final)83.13 16583.02 16383.43 17686.16 25566.08 21688.00 9988.36 19975.55 14385.02 19992.75 13465.12 25792.50 15174.94 17191.30 25091.72 198
114514_t83.10 16682.54 17384.77 13992.90 8069.10 19186.65 12390.62 15254.66 34681.46 26990.81 19476.98 15994.38 8372.62 20096.18 11390.82 220
UGNet82.78 16781.64 18486.21 11386.20 25276.24 11786.86 11685.68 24277.07 12673.76 34492.82 13069.64 23191.82 17269.04 23593.69 20190.56 229
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16881.93 18085.19 13182.08 31280.15 7085.53 13988.76 19368.01 23785.58 19187.75 25171.80 22286.85 27674.02 17993.87 19688.58 267
EI-MVSNet82.61 16982.42 17583.20 18483.25 30263.66 23783.50 18485.07 25276.06 13286.55 17085.10 29573.41 20190.25 21378.15 13390.67 26695.68 45
QAPM82.59 17082.59 17282.58 19986.44 24166.69 21089.94 6290.36 15967.97 23984.94 20392.58 13972.71 21192.18 16070.63 21687.73 30388.85 265
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14487.68 21573.35 13386.14 13177.70 30861.64 29585.02 19991.62 16677.75 14686.24 28682.79 8087.07 31093.91 108
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 11985.60 26176.53 11183.07 19689.62 18273.02 18079.11 30083.51 31380.74 12390.24 21568.76 23889.29 28090.94 216
MVS_Test82.47 17383.22 15780.22 23982.62 31157.75 31382.54 21391.96 11271.16 20682.89 24592.52 14177.41 15190.50 21080.04 10987.84 30292.40 172
v14882.31 17482.48 17481.81 21385.59 26259.66 29181.47 23386.02 23872.85 18188.05 14190.65 20170.73 22890.91 19775.15 16891.79 24094.87 67
API-MVS82.28 17582.61 17181.30 22086.29 24969.79 17888.71 9087.67 21078.42 11282.15 25684.15 30977.98 14391.59 17565.39 26692.75 22182.51 348
MVSFormer82.23 17681.57 18984.19 15785.54 26569.26 18691.98 3190.08 17171.54 20076.23 32085.07 29858.69 29694.27 8486.26 4088.77 28789.03 262
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15286.56 23973.35 13385.46 14077.30 31261.81 29184.51 20990.88 19177.36 15286.21 28882.72 8186.97 31593.38 131
EIA-MVS82.19 17881.23 19785.10 13387.95 20969.17 19083.22 19493.33 6370.42 21178.58 30379.77 35577.29 15394.20 8971.51 20688.96 28591.93 194
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16286.87 23771.57 16685.19 14677.42 31162.27 28984.47 21291.33 17376.43 16885.91 29483.14 7187.14 30894.33 90
PCF-MVS74.62 1582.15 18080.92 20285.84 12189.43 17472.30 15480.53 24491.82 11857.36 33387.81 14589.92 21877.67 14893.63 11158.69 31295.08 15891.58 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18180.31 20987.45 9090.86 14780.29 6985.88 13390.65 15068.17 23676.32 31986.33 27573.12 20792.61 14961.40 30090.02 27489.44 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17183.94 28973.90 13083.35 18886.10 23558.97 31983.80 22990.36 20674.23 18986.94 27482.90 7790.22 27189.94 243
GBi-Net82.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
test182.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20784.42 28168.22 19588.50 9489.48 18466.92 24981.80 26491.86 15672.59 21390.16 21871.19 20991.25 25187.40 285
KD-MVS_self_test81.93 18683.14 16178.30 26684.75 27652.75 34580.37 24689.42 18670.24 21690.26 9493.39 11374.55 18886.77 27868.61 24196.64 9295.38 52
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16686.02 25771.56 16784.73 15277.11 31562.44 28684.00 22690.68 19876.42 16985.89 29683.14 7187.11 30993.81 115
SDMVSNet81.90 18883.17 16078.10 27088.81 18962.45 25576.08 31286.05 23773.67 16383.41 23693.04 11982.35 9680.65 33570.06 22395.03 16091.21 210
tfpnnormal81.79 18982.95 16478.31 26588.93 18655.40 32880.83 24382.85 27776.81 12785.90 18794.14 8474.58 18786.51 28266.82 25395.68 14193.01 148
c3_l81.64 19081.59 18781.79 21480.86 32959.15 29878.61 27490.18 16968.36 23287.20 15287.11 26669.39 23291.62 17478.16 13194.43 18294.60 75
PVSNet_Blended_VisFu81.55 19180.49 20784.70 14291.58 12473.24 13784.21 16291.67 12262.86 28080.94 27587.16 26467.27 24392.87 14469.82 22588.94 28687.99 276
fmvsm_l_conf0.5_n_a81.46 19280.87 20383.25 18183.73 29473.21 13883.00 19985.59 24458.22 32582.96 24490.09 21672.30 21686.65 28081.97 9289.95 27589.88 244
DELS-MVS81.44 19381.25 19582.03 20684.27 28562.87 24776.47 30692.49 9770.97 20781.64 26783.83 31075.03 17892.70 14674.29 17392.22 23390.51 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19481.61 18680.41 23686.38 24358.75 30583.93 17286.58 23072.43 18887.65 14792.98 12363.78 26590.22 21666.86 25093.92 19492.27 180
bld_raw_dy_0_6481.25 19581.17 19981.49 21885.55 26360.85 27886.36 12895.45 957.08 33590.81 8882.69 32865.85 25393.91 10170.37 22096.34 10589.72 245
TinyColmap81.25 19582.34 17677.99 27385.33 26760.68 28282.32 21988.33 20171.26 20486.97 16192.22 15277.10 15786.98 27362.37 28995.17 15486.31 296
AUN-MVS81.18 19778.78 22988.39 7790.93 14482.14 5882.51 21483.67 26964.69 27280.29 28685.91 28451.07 33492.38 15476.29 15693.63 20390.65 227
tttt051781.07 19879.58 22185.52 12788.99 18566.45 21387.03 11475.51 32773.76 16288.32 13790.20 21137.96 38794.16 9479.36 11995.13 15595.93 42
Fast-Effi-MVS+81.04 19980.57 20482.46 20387.50 22063.22 24378.37 27789.63 18168.01 23781.87 26082.08 33282.31 9892.65 14867.10 24988.30 29791.51 206
BH-untuned80.96 20080.99 20080.84 22988.55 19768.23 19480.33 24788.46 19672.79 18486.55 17086.76 27074.72 18591.77 17361.79 29688.99 28482.52 347
eth_miper_zixun_eth80.84 20180.22 21382.71 19681.41 32160.98 27577.81 28390.14 17067.31 24786.95 16287.24 26364.26 26092.31 15775.23 16791.61 24494.85 71
xiu_mvs_v1_base_debu80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base_debi80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
IterMVS-SCA-FT80.64 20579.41 22284.34 15183.93 29069.66 18176.28 30881.09 29172.43 18886.47 17690.19 21260.46 28193.15 13477.45 14286.39 32190.22 236
BH-RMVSNet80.53 20680.22 21381.49 21887.19 22666.21 21577.79 28486.23 23374.21 15783.69 23088.50 23973.25 20690.75 20263.18 28687.90 30087.52 283
Anonymous20240521180.51 20781.19 19878.49 26288.48 19857.26 31676.63 30282.49 28081.21 7684.30 21992.24 15167.99 24086.24 28662.22 29095.13 15591.98 193
DIV-MVS_self_test80.43 20880.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.38 24486.19 17989.22 22863.09 26990.16 21876.32 15495.80 13593.66 120
cl____80.42 20980.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.37 24586.18 18189.21 22963.08 27090.16 21876.31 15595.80 13593.65 122
diffmvspermissive80.40 21080.48 20880.17 24079.02 34960.04 28677.54 28890.28 16666.65 25282.40 25187.33 26173.50 19887.35 26777.98 13589.62 27893.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21178.41 23686.23 11176.75 36373.28 13587.18 11177.45 31076.24 13168.14 37288.93 23465.41 25593.85 10369.47 22796.12 11791.55 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21280.04 21881.24 22379.82 33958.95 30077.66 28589.66 17965.75 26085.99 18685.11 29468.29 23991.42 18176.03 15892.03 23593.33 133
MG-MVS80.32 21380.94 20178.47 26388.18 20452.62 34882.29 22085.01 25672.01 19879.24 29992.54 14069.36 23393.36 12870.65 21589.19 28389.45 250
VPNet80.25 21481.68 18375.94 29992.46 9247.98 37176.70 30081.67 28773.45 16784.87 20492.82 13074.66 18686.51 28261.66 29896.85 8593.33 133
MAR-MVS80.24 21578.74 23184.73 14086.87 23778.18 8885.75 13687.81 20965.67 26277.84 30878.50 36473.79 19590.53 20961.59 29990.87 26085.49 306
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 21679.00 22683.78 16588.17 20586.66 1581.31 23466.81 37969.64 22088.33 13690.19 21264.58 25883.63 31971.99 20590.03 27381.06 366
Anonymous2024052180.18 21781.25 19576.95 28683.15 30660.84 27982.46 21585.99 23968.76 22986.78 16393.73 10759.13 29377.44 34973.71 18597.55 6792.56 164
LFMVS80.15 21880.56 20578.89 25489.19 18155.93 32485.22 14573.78 33982.96 5884.28 22092.72 13557.38 30590.07 22563.80 28095.75 13890.68 225
DPM-MVS80.10 21979.18 22582.88 19490.71 15069.74 17978.87 27090.84 14560.29 31275.64 33085.92 28367.28 24293.11 13571.24 20891.79 24085.77 302
MSDG80.06 22079.99 22080.25 23883.91 29168.04 19977.51 28989.19 18777.65 11981.94 25883.45 31576.37 17086.31 28563.31 28586.59 31886.41 294
FE-MVS79.98 22178.86 22783.36 17886.47 24066.45 21389.73 6584.74 26272.80 18384.22 22491.38 17244.95 36893.60 11563.93 27991.50 24790.04 242
sd_testset79.95 22281.39 19375.64 30288.81 18958.07 30976.16 31182.81 27873.67 16383.41 23693.04 11980.96 12077.65 34858.62 31395.03 16091.21 210
ab-mvs79.67 22380.56 20576.99 28588.48 19856.93 31884.70 15386.06 23668.95 22780.78 27993.08 11875.30 17684.62 30856.78 32290.90 25989.43 252
VNet79.31 22480.27 21076.44 29387.92 21053.95 33775.58 31884.35 26474.39 15682.23 25490.72 19672.84 21084.39 31160.38 30693.98 19390.97 215
thisisatest053079.07 22577.33 24684.26 15487.13 22764.58 22883.66 18175.95 32268.86 22885.22 19687.36 26038.10 38593.57 11975.47 16494.28 18694.62 74
cl2278.97 22678.21 23881.24 22377.74 35359.01 29977.46 29187.13 21865.79 25784.32 21685.10 29558.96 29590.88 19975.36 16692.03 23593.84 110
patch_mono-278.89 22779.39 22377.41 28284.78 27468.11 19775.60 31683.11 27460.96 30579.36 29689.89 21975.18 17772.97 36073.32 19192.30 22791.15 212
RPMNet78.88 22878.28 23780.68 23379.58 34062.64 25182.58 21094.16 2974.80 15175.72 32892.59 13748.69 34295.56 3973.48 18882.91 35683.85 327
PAPR78.84 22978.10 23981.07 22585.17 27060.22 28582.21 22490.57 15362.51 28275.32 33484.61 30374.99 17992.30 15859.48 31088.04 29990.68 225
iter_conf0578.81 23077.35 24583.21 18382.98 30960.75 28184.09 16688.34 20063.12 27884.25 22389.48 22431.41 39694.51 8176.64 15195.83 13294.38 88
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27963.41 23979.49 25990.44 15661.70 29475.43 33187.07 26769.11 23591.44 17960.68 30492.24 23190.11 240
FMVSNet378.80 23178.55 23379.57 24882.89 31056.89 32081.76 22885.77 24169.04 22686.00 18390.44 20551.75 33290.09 22465.95 25993.34 20691.72 198
test_yl78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
DCV-MVSNet78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
test111178.53 23578.85 22877.56 27992.22 10147.49 37382.61 20869.24 36872.43 18885.28 19594.20 8051.91 33090.07 22565.36 26796.45 10295.11 62
ECVR-MVScopyleft78.44 23678.63 23277.88 27591.85 11448.95 36783.68 18069.91 36572.30 19484.26 22294.20 8051.89 33189.82 23063.58 28196.02 12194.87 67
pmmvs-eth3d78.42 23777.04 24982.57 20187.44 22174.41 12780.86 24279.67 29955.68 34084.69 20790.31 20960.91 27985.42 30162.20 29191.59 24587.88 279
iter_conf05_1178.40 23877.29 24781.71 21585.55 26360.95 27777.22 29286.90 22760.10 31575.79 32781.73 33664.08 26294.47 8270.37 22093.92 19489.72 245
mvs_anonymous78.13 23978.76 23076.23 29879.24 34650.31 36478.69 27284.82 26061.60 29683.09 24392.82 13073.89 19487.01 27068.33 24586.41 32091.37 207
TAMVS78.08 24076.36 25583.23 18290.62 15172.87 14079.08 26680.01 29861.72 29381.35 27186.92 26963.96 26488.78 25250.61 36093.01 21688.04 275
miper_enhance_ethall77.83 24176.93 25080.51 23476.15 36958.01 31075.47 32088.82 19158.05 32783.59 23280.69 34364.41 25991.20 18573.16 19892.03 23592.33 176
Vis-MVSNet (Re-imp)77.82 24277.79 24177.92 27488.82 18851.29 35883.28 18971.97 35374.04 15882.23 25489.78 22057.38 30589.41 24257.22 32195.41 14493.05 146
CANet_DTU77.81 24377.05 24880.09 24181.37 32259.90 28983.26 19088.29 20269.16 22467.83 37583.72 31160.93 27889.47 23769.22 23189.70 27790.88 218
OpenMVS_ROBcopyleft70.19 1777.77 24477.46 24278.71 25884.39 28261.15 27081.18 23882.52 27962.45 28583.34 23887.37 25966.20 24888.66 25464.69 27485.02 33786.32 295
SSC-MVS77.55 24581.64 18465.29 36590.46 15420.33 41073.56 33668.28 37085.44 3288.18 14094.64 5970.93 22781.33 33071.25 20792.03 23594.20 92
MDA-MVSNet-bldmvs77.47 24676.90 25179.16 25379.03 34864.59 22766.58 37575.67 32573.15 17888.86 12288.99 23366.94 24481.23 33164.71 27388.22 29891.64 202
jason77.42 24775.75 26182.43 20487.10 23069.27 18577.99 28081.94 28551.47 36477.84 30885.07 29860.32 28389.00 24670.74 21489.27 28289.03 262
jason: jason.
CDS-MVSNet77.32 24875.40 26483.06 18689.00 18472.48 15177.90 28282.17 28360.81 30678.94 30183.49 31459.30 29188.76 25354.64 34092.37 22687.93 278
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 24976.75 25278.52 26187.01 23361.30 26875.55 31987.12 22161.24 30274.45 33978.79 36277.20 15490.93 19564.62 27684.80 34483.32 336
MVSTER77.09 25075.70 26281.25 22175.27 37761.08 27177.49 29085.07 25260.78 30786.55 17088.68 23743.14 37790.25 21373.69 18690.67 26692.42 170
PS-MVSNAJ77.04 25176.53 25478.56 26087.09 23161.40 26675.26 32187.13 21861.25 30174.38 34177.22 37576.94 16090.94 19464.63 27584.83 34383.35 335
IterMVS76.91 25276.34 25678.64 25980.91 32764.03 23476.30 30779.03 30264.88 27183.11 24189.16 23059.90 28784.46 30968.61 24185.15 33587.42 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25375.67 26380.34 23780.48 33562.16 26273.50 33784.80 26157.61 33182.24 25387.54 25551.31 33387.65 26370.40 21993.19 21291.23 209
CL-MVSNet_self_test76.81 25477.38 24475.12 30586.90 23551.34 35673.20 34080.63 29568.30 23481.80 26488.40 24066.92 24580.90 33255.35 33494.90 16693.12 144
TR-MVS76.77 25575.79 26079.72 24586.10 25665.79 21977.14 29383.02 27565.20 26981.40 27082.10 33066.30 24790.73 20455.57 33185.27 33182.65 342
USDC76.63 25676.73 25376.34 29583.46 29657.20 31780.02 25088.04 20752.14 36083.65 23191.25 17563.24 26886.65 28054.66 33994.11 19085.17 308
BH-w/o76.57 25776.07 25978.10 27086.88 23665.92 21877.63 28686.33 23165.69 26180.89 27679.95 35268.97 23790.74 20353.01 35085.25 33277.62 377
Patchmtry76.56 25877.46 24273.83 31179.37 34546.60 37782.41 21776.90 31673.81 16185.56 19292.38 14348.07 34583.98 31663.36 28495.31 15090.92 217
PVSNet_Blended76.49 25975.40 26479.76 24484.43 27963.41 23975.14 32290.44 15657.36 33375.43 33178.30 36569.11 23591.44 17960.68 30487.70 30484.42 318
miper_lstm_enhance76.45 26076.10 25877.51 28076.72 36460.97 27664.69 37985.04 25463.98 27583.20 24088.22 24256.67 30978.79 34673.22 19293.12 21392.78 155
lupinMVS76.37 26174.46 27382.09 20585.54 26569.26 18676.79 29880.77 29450.68 37176.23 32082.82 32358.69 29688.94 24769.85 22488.77 28788.07 272
cascas76.29 26274.81 26980.72 23284.47 27862.94 24573.89 33487.34 21255.94 33975.16 33676.53 38063.97 26391.16 18765.00 27090.97 25788.06 274
WB-MVS76.06 26380.01 21964.19 36889.96 16720.58 40972.18 34568.19 37183.21 5486.46 17793.49 11170.19 23078.97 34465.96 25890.46 27093.02 147
thres600view775.97 26475.35 26677.85 27787.01 23351.84 35480.45 24573.26 34475.20 14883.10 24286.31 27745.54 35989.05 24555.03 33792.24 23192.66 161
GA-MVS75.83 26574.61 27079.48 25081.87 31459.25 29573.42 33882.88 27668.68 23079.75 29181.80 33550.62 33689.46 23866.85 25185.64 32889.72 245
MVP-Stereo75.81 26673.51 28282.71 19689.35 17573.62 13180.06 24885.20 24960.30 31173.96 34287.94 24757.89 30389.45 23952.02 35474.87 38885.06 310
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26775.20 26777.27 28375.01 38069.47 18378.93 26784.88 25946.67 37887.08 15887.84 25050.44 33871.62 36577.42 14488.53 29090.72 222
thres100view90075.45 26875.05 26876.66 29287.27 22351.88 35381.07 23973.26 34475.68 14183.25 23986.37 27445.54 35988.80 24951.98 35590.99 25489.31 254
ET-MVSNet_ETH3D75.28 26972.77 29082.81 19583.03 30868.11 19777.09 29476.51 32060.67 30977.60 31380.52 34738.04 38691.15 18870.78 21290.68 26589.17 257
thres40075.14 27074.23 27577.86 27686.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25492.66 161
wuyk23d75.13 27179.30 22462.63 37175.56 37375.18 12480.89 24173.10 34675.06 15094.76 1295.32 3587.73 4052.85 40134.16 40197.11 8059.85 398
EU-MVSNet75.12 27274.43 27477.18 28483.11 30759.48 29385.71 13882.43 28139.76 39885.64 19088.76 23544.71 37087.88 26173.86 18285.88 32784.16 323
HyFIR lowres test75.12 27272.66 29282.50 20291.44 13265.19 22472.47 34387.31 21346.79 37780.29 28684.30 30652.70 32792.10 16451.88 35986.73 31690.22 236
CMPMVSbinary59.41 2075.12 27273.57 28079.77 24375.84 37267.22 20281.21 23782.18 28250.78 36976.50 31687.66 25355.20 31982.99 32262.17 29390.64 26989.09 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27572.98 28880.73 23184.95 27171.71 16476.23 30977.59 30952.83 35477.73 31286.38 27356.35 31284.97 30557.72 32087.05 31185.51 305
tfpn200view974.86 27674.23 27576.74 29186.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25489.31 254
1112_ss74.82 27773.74 27878.04 27289.57 16960.04 28676.49 30587.09 22254.31 34773.66 34579.80 35360.25 28486.76 27958.37 31484.15 34887.32 286
EGC-MVSNET74.79 27869.99 31889.19 6394.89 3787.00 1191.89 3486.28 2321.09 4062.23 40895.98 2381.87 11089.48 23679.76 11295.96 12491.10 213
ppachtmachnet_test74.73 27974.00 27776.90 28880.71 33256.89 32071.53 35178.42 30458.24 32479.32 29882.92 32257.91 30284.26 31365.60 26591.36 24989.56 249
Patchmatch-RL test74.48 28073.68 27976.89 28984.83 27366.54 21172.29 34469.16 36957.70 32986.76 16486.33 27545.79 35882.59 32369.63 22690.65 26881.54 357
PatchMatch-RL74.48 28073.22 28578.27 26887.70 21485.26 3475.92 31470.09 36364.34 27376.09 32381.25 34165.87 25278.07 34753.86 34283.82 35071.48 386
XXY-MVS74.44 28276.19 25769.21 34384.61 27752.43 34971.70 34877.18 31460.73 30880.60 28090.96 18775.44 17369.35 37156.13 32788.33 29385.86 301
test250674.12 28373.39 28376.28 29691.85 11444.20 38784.06 16748.20 40672.30 19481.90 25994.20 8027.22 40789.77 23364.81 27296.02 12194.87 67
CR-MVSNet74.00 28473.04 28776.85 29079.58 34062.64 25182.58 21076.90 31650.50 37275.72 32892.38 14348.07 34584.07 31568.72 24082.91 35683.85 327
Test_1112_low_res73.90 28573.08 28676.35 29490.35 15655.95 32373.40 33986.17 23450.70 37073.14 34685.94 28258.31 29885.90 29556.51 32483.22 35387.20 287
test20.0373.75 28674.59 27271.22 33181.11 32551.12 36070.15 36172.10 35270.42 21180.28 28891.50 16964.21 26174.72 35946.96 37894.58 17887.82 281
test_fmvs273.57 28772.80 28975.90 30072.74 39268.84 19277.07 29584.32 26545.14 38482.89 24584.22 30748.37 34370.36 36873.40 19087.03 31288.52 268
SCA73.32 28872.57 29475.58 30381.62 31855.86 32578.89 26971.37 35861.73 29274.93 33783.42 31660.46 28187.01 27058.11 31882.63 36183.88 324
baseline173.26 28973.54 28172.43 32584.92 27247.79 37279.89 25274.00 33565.93 25578.81 30286.28 27856.36 31181.63 32956.63 32379.04 37787.87 280
131473.22 29072.56 29575.20 30480.41 33657.84 31181.64 23185.36 24651.68 36373.10 34776.65 37961.45 27685.19 30363.54 28279.21 37582.59 343
MVS73.21 29172.59 29375.06 30680.97 32660.81 28081.64 23185.92 24046.03 38271.68 35477.54 37068.47 23889.77 23355.70 33085.39 32974.60 383
HY-MVS64.64 1873.03 29272.47 29674.71 30783.36 30054.19 33582.14 22781.96 28456.76 33869.57 36786.21 27960.03 28584.83 30749.58 36682.65 35985.11 309
thisisatest051573.00 29370.52 31080.46 23581.45 32059.90 28973.16 34174.31 33457.86 32876.08 32477.78 36837.60 38892.12 16365.00 27091.45 24889.35 253
EPNet_dtu72.87 29471.33 30677.49 28177.72 35460.55 28382.35 21875.79 32366.49 25358.39 40181.06 34253.68 32385.98 29253.55 34592.97 21885.95 299
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29571.41 30576.28 29683.25 30260.34 28483.50 18479.02 30337.77 40176.33 31885.10 29549.60 34187.41 26670.54 21777.54 38381.08 364
CHOSEN 1792x268872.45 29670.56 30978.13 26990.02 16663.08 24468.72 36683.16 27342.99 39275.92 32585.46 28857.22 30785.18 30449.87 36481.67 36386.14 297
testgi72.36 29774.61 27065.59 36280.56 33442.82 39268.29 36773.35 34366.87 25081.84 26189.93 21772.08 21966.92 38446.05 38192.54 22487.01 289
thres20072.34 29871.55 30474.70 30883.48 29551.60 35575.02 32373.71 34070.14 21778.56 30480.57 34646.20 35188.20 25946.99 37789.29 28084.32 319
FPMVS72.29 29972.00 29873.14 31688.63 19485.00 3674.65 32767.39 37371.94 19977.80 31087.66 25350.48 33775.83 35549.95 36279.51 37158.58 400
FMVSNet572.10 30071.69 30073.32 31481.57 31953.02 34476.77 29978.37 30563.31 27676.37 31791.85 15736.68 38978.98 34347.87 37492.45 22587.95 277
our_test_371.85 30171.59 30172.62 32280.71 33253.78 33869.72 36371.71 35758.80 32178.03 30580.51 34856.61 31078.84 34562.20 29186.04 32685.23 307
PAPM71.77 30270.06 31676.92 28786.39 24253.97 33676.62 30386.62 22953.44 35163.97 39184.73 30257.79 30492.34 15639.65 39281.33 36784.45 317
IB-MVS62.13 1971.64 30368.97 32779.66 24780.80 33162.26 26073.94 33376.90 31663.27 27768.63 37176.79 37733.83 39391.84 17159.28 31187.26 30684.88 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30472.30 29769.62 34076.47 36652.70 34770.03 36280.97 29259.18 31879.36 29688.21 24360.50 28069.12 37258.33 31677.62 38287.04 288
testing371.53 30570.79 30773.77 31288.89 18741.86 39476.60 30459.12 39672.83 18280.97 27382.08 33219.80 41287.33 26865.12 26991.68 24392.13 187
test_vis3_rt71.42 30670.67 30873.64 31369.66 39870.46 17466.97 37489.73 17642.68 39488.20 13983.04 31843.77 37260.07 39665.35 26886.66 31790.39 234
Anonymous2023120671.38 30771.88 29969.88 33886.31 24754.37 33470.39 35974.62 33052.57 35676.73 31588.76 23559.94 28672.06 36244.35 38593.23 21183.23 338
test_vis1_n_192071.30 30871.58 30370.47 33477.58 35659.99 28874.25 32884.22 26651.06 36674.85 33879.10 35955.10 32068.83 37468.86 23779.20 37682.58 344
MIMVSNet71.09 30971.59 30169.57 34187.23 22450.07 36578.91 26871.83 35460.20 31471.26 35591.76 16355.08 32176.09 35341.06 39087.02 31382.54 346
test_fmvs1_n70.94 31070.41 31372.53 32473.92 38266.93 20875.99 31384.21 26743.31 39179.40 29579.39 35743.47 37368.55 37669.05 23484.91 34082.10 351
MS-PatchMatch70.93 31170.22 31473.06 31781.85 31562.50 25473.82 33577.90 30652.44 35775.92 32581.27 34055.67 31681.75 32755.37 33377.70 38174.94 382
pmmvs570.73 31270.07 31572.72 32077.03 36152.73 34674.14 32975.65 32650.36 37372.17 35285.37 29255.42 31880.67 33452.86 35187.59 30584.77 312
PatchT70.52 31372.76 29163.79 37079.38 34433.53 40477.63 28665.37 38273.61 16571.77 35392.79 13344.38 37175.65 35664.53 27785.37 33082.18 350
test_vis1_n70.29 31469.99 31871.20 33275.97 37166.50 21276.69 30180.81 29344.22 38775.43 33177.23 37450.00 33968.59 37566.71 25482.85 35878.52 376
N_pmnet70.20 31568.80 32974.38 30980.91 32784.81 3959.12 39076.45 32155.06 34375.31 33582.36 32955.74 31554.82 40047.02 37687.24 30783.52 331
tpmvs70.16 31669.56 32171.96 32774.71 38148.13 36979.63 25475.45 32865.02 27070.26 36381.88 33445.34 36485.68 29958.34 31575.39 38782.08 352
new-patchmatchnet70.10 31773.37 28460.29 37881.23 32416.95 41159.54 38874.62 33062.93 27980.97 27387.93 24862.83 27371.90 36355.24 33595.01 16392.00 191
YYNet170.06 31870.44 31168.90 34573.76 38453.42 34258.99 39167.20 37558.42 32387.10 15685.39 29159.82 28867.32 38159.79 30883.50 35285.96 298
MDA-MVSNet_test_wron70.05 31970.44 31168.88 34673.84 38353.47 34058.93 39267.28 37458.43 32287.09 15785.40 29059.80 28967.25 38259.66 30983.54 35185.92 300
CostFormer69.98 32068.68 33073.87 31077.14 35950.72 36279.26 26274.51 33251.94 36270.97 35884.75 30145.16 36787.49 26555.16 33679.23 37483.40 334
testing9169.94 32168.99 32672.80 31983.81 29345.89 38071.57 35073.64 34268.24 23570.77 36177.82 36734.37 39284.44 31053.64 34487.00 31488.07 272
baseline269.77 32266.89 33878.41 26479.51 34258.09 30876.23 30969.57 36657.50 33264.82 38977.45 37246.02 35388.44 25553.08 34777.83 37988.70 266
PatchmatchNetpermissive69.71 32368.83 32872.33 32677.66 35553.60 33979.29 26169.99 36457.66 33072.53 35082.93 32146.45 35080.08 33960.91 30372.09 39183.31 337
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32469.05 32471.14 33369.15 39965.77 22073.98 33283.32 27242.83 39377.77 31178.27 36643.39 37668.50 37768.39 24484.38 34779.15 374
JIA-IIPM69.41 32566.64 34277.70 27873.19 38771.24 16975.67 31565.56 38170.42 21165.18 38592.97 12533.64 39483.06 32053.52 34669.61 39778.79 375
Syy-MVS69.40 32670.03 31767.49 35581.72 31638.94 39771.00 35361.99 38761.38 29870.81 35972.36 39061.37 27779.30 34164.50 27885.18 33384.22 320
testing9969.27 32768.15 33372.63 32183.29 30145.45 38271.15 35271.08 35967.34 24670.43 36277.77 36932.24 39584.35 31253.72 34386.33 32288.10 271
UnsupCasMVSNet_bld69.21 32869.68 32067.82 35379.42 34351.15 35967.82 37175.79 32354.15 34877.47 31485.36 29359.26 29270.64 36748.46 37179.35 37381.66 355
test_cas_vis1_n_192069.20 32969.12 32269.43 34273.68 38562.82 24870.38 36077.21 31346.18 38180.46 28578.95 36152.03 32965.53 38965.77 26477.45 38479.95 372
gg-mvs-nofinetune68.96 33069.11 32368.52 35176.12 37045.32 38383.59 18255.88 40186.68 2464.62 39097.01 730.36 39983.97 31744.78 38482.94 35576.26 379
WB-MVSnew68.72 33169.01 32567.85 35283.22 30443.98 38874.93 32465.98 38055.09 34273.83 34379.11 35865.63 25471.89 36438.21 39785.04 33687.69 282
tpm268.45 33266.83 33973.30 31578.93 35048.50 36879.76 25371.76 35547.50 37669.92 36583.60 31242.07 37988.40 25648.44 37279.51 37183.01 341
tpm67.95 33368.08 33467.55 35478.74 35143.53 39075.60 31667.10 37854.92 34472.23 35188.10 24442.87 37875.97 35452.21 35380.95 37083.15 339
WTY-MVS67.91 33468.35 33166.58 35980.82 33048.12 37065.96 37672.60 34753.67 35071.20 35681.68 33858.97 29469.06 37348.57 37081.67 36382.55 345
testing1167.38 33565.93 34371.73 32983.37 29946.60 37770.95 35569.40 36762.47 28466.14 37876.66 37831.22 39784.10 31449.10 36884.10 34984.49 315
test-LLR67.21 33666.74 34068.63 34976.45 36755.21 33067.89 36867.14 37662.43 28765.08 38672.39 38843.41 37469.37 36961.00 30184.89 34181.31 359
testing22266.93 33765.30 34971.81 32883.38 29845.83 38172.06 34667.50 37264.12 27469.68 36676.37 38127.34 40683.00 32138.88 39388.38 29286.62 293
sss66.92 33867.26 33665.90 36177.23 35851.10 36164.79 37871.72 35652.12 36170.13 36480.18 35057.96 30165.36 39050.21 36181.01 36981.25 361
KD-MVS_2432*160066.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
miper_refine_blended66.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
dmvs_re66.81 34166.98 33766.28 36076.87 36258.68 30671.66 34972.24 35060.29 31269.52 36873.53 38752.38 32864.40 39244.90 38381.44 36675.76 380
tpm cat166.76 34265.21 35071.42 33077.09 36050.62 36378.01 27973.68 34144.89 38568.64 37079.00 36045.51 36182.42 32649.91 36370.15 39481.23 363
UWE-MVS66.43 34365.56 34869.05 34484.15 28740.98 39573.06 34264.71 38354.84 34576.18 32279.62 35629.21 40180.50 33638.54 39689.75 27685.66 303
PVSNet58.17 2166.41 34465.63 34768.75 34781.96 31349.88 36662.19 38572.51 34951.03 36768.04 37375.34 38550.84 33574.77 35745.82 38282.96 35481.60 356
tpmrst66.28 34566.69 34165.05 36672.82 39139.33 39678.20 27870.69 36253.16 35367.88 37480.36 34948.18 34474.75 35858.13 31770.79 39381.08 364
Patchmatch-test65.91 34667.38 33561.48 37675.51 37443.21 39168.84 36563.79 38562.48 28372.80 34983.42 31644.89 36959.52 39848.27 37386.45 31981.70 354
ADS-MVSNet265.87 34763.64 35572.55 32373.16 38856.92 31967.10 37274.81 32949.74 37466.04 38082.97 31946.71 34877.26 35042.29 38769.96 39583.46 332
test_vis1_rt65.64 34864.09 35270.31 33566.09 40470.20 17761.16 38681.60 28838.65 39972.87 34869.66 39352.84 32560.04 39756.16 32677.77 38080.68 368
mvsany_test365.48 34962.97 35773.03 31869.99 39776.17 11864.83 37743.71 40843.68 38980.25 28987.05 26852.83 32663.09 39551.92 35872.44 39079.84 373
test-mter65.00 35063.79 35468.63 34976.45 36755.21 33067.89 36867.14 37650.98 36865.08 38672.39 38828.27 40469.37 36961.00 30184.89 34181.31 359
ETVMVS64.67 35163.34 35668.64 34883.44 29741.89 39369.56 36461.70 39261.33 30068.74 36975.76 38328.76 40279.35 34034.65 40086.16 32584.67 314
myMVS_eth3d64.66 35263.89 35366.97 35781.72 31637.39 40071.00 35361.99 38761.38 29870.81 35972.36 39020.96 41179.30 34149.59 36585.18 33384.22 320
test0.0.03 164.66 35264.36 35165.57 36375.03 37946.89 37664.69 37961.58 39362.43 28771.18 35777.54 37043.41 37468.47 37840.75 39182.65 35981.35 358
test_f64.31 35465.85 34459.67 37966.54 40362.24 26157.76 39370.96 36040.13 39684.36 21482.09 33146.93 34751.67 40261.99 29481.89 36265.12 394
pmmvs362.47 35560.02 36869.80 33971.58 39564.00 23570.52 35858.44 39939.77 39766.05 37975.84 38227.10 40872.28 36146.15 38084.77 34573.11 384
EPMVS62.47 35562.63 35962.01 37270.63 39638.74 39874.76 32552.86 40353.91 34967.71 37680.01 35139.40 38366.60 38555.54 33268.81 39980.68 368
ADS-MVSNet61.90 35762.19 36161.03 37773.16 38836.42 40267.10 37261.75 39049.74 37466.04 38082.97 31946.71 34863.21 39342.29 38769.96 39583.46 332
PMMVS61.65 35860.38 36565.47 36465.40 40769.26 18663.97 38161.73 39136.80 40260.11 39668.43 39559.42 29066.35 38648.97 36978.57 37860.81 397
E-PMN61.59 35961.62 36261.49 37566.81 40255.40 32853.77 39660.34 39566.80 25158.90 39965.50 39840.48 38266.12 38755.72 32986.25 32362.95 396
TESTMET0.1,161.29 36060.32 36664.19 36872.06 39351.30 35767.89 36862.09 38645.27 38360.65 39569.01 39427.93 40564.74 39156.31 32581.65 36576.53 378
MVS-HIRNet61.16 36162.92 35855.87 38279.09 34735.34 40371.83 34757.98 40046.56 37959.05 39891.14 17949.95 34076.43 35238.74 39471.92 39255.84 401
EMVS61.10 36260.81 36461.99 37365.96 40555.86 32553.10 39758.97 39867.06 24856.89 40263.33 39940.98 38067.03 38354.79 33886.18 32463.08 395
DSMNet-mixed60.98 36361.61 36359.09 38172.88 39045.05 38574.70 32646.61 40726.20 40365.34 38490.32 20855.46 31763.12 39441.72 38981.30 36869.09 390
dp60.70 36460.29 36761.92 37472.04 39438.67 39970.83 35664.08 38451.28 36560.75 39477.28 37336.59 39071.58 36647.41 37562.34 40175.52 381
dmvs_testset60.59 36562.54 36054.72 38477.26 35727.74 40774.05 33161.00 39460.48 31065.62 38367.03 39755.93 31468.23 37932.07 40469.46 39868.17 391
CHOSEN 280x42059.08 36656.52 37166.76 35876.51 36564.39 23149.62 39859.00 39743.86 38855.66 40368.41 39635.55 39168.21 38043.25 38676.78 38667.69 392
mvsany_test158.48 36756.47 37264.50 36765.90 40668.21 19656.95 39442.11 40938.30 40065.69 38277.19 37656.96 30859.35 39946.16 37958.96 40265.93 393
PVSNet_051.08 2256.10 36854.97 37359.48 38075.12 37853.28 34355.16 39561.89 38944.30 38659.16 39762.48 40054.22 32265.91 38835.40 39947.01 40359.25 399
new_pmnet55.69 36957.66 37049.76 38575.47 37530.59 40559.56 38751.45 40443.62 39062.49 39275.48 38440.96 38149.15 40437.39 39872.52 38969.55 389
PMMVS255.64 37059.27 36944.74 38664.30 40812.32 41240.60 39949.79 40553.19 35265.06 38884.81 30053.60 32449.76 40332.68 40389.41 27972.15 385
MVEpermissive40.22 2351.82 37150.47 37455.87 38262.66 40951.91 35231.61 40139.28 41040.65 39550.76 40474.98 38656.24 31344.67 40533.94 40264.11 40071.04 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 37229.60 37533.06 38717.99 4113.84 41413.62 40273.92 3362.79 40518.29 40753.41 40228.53 40343.25 40622.56 40535.27 40552.11 402
cdsmvs_eth3d_5k20.81 37327.75 3760.00 3920.00 4150.00 4170.00 40385.44 2450.00 4100.00 41182.82 32381.46 1140.00 4110.00 4100.00 4090.00 407
tmp_tt20.25 37424.50 3777.49 3894.47 4128.70 41334.17 40025.16 4121.00 40732.43 40618.49 40439.37 3849.21 40821.64 40643.75 4044.57 404
ab-mvs-re6.65 3758.87 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41179.80 3530.00 4150.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas6.41 3768.55 3790.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41076.94 1600.00 4110.00 4100.00 4090.00 407
test1236.27 3778.08 3800.84 3901.11 4140.57 41562.90 3820.82 4140.54 4081.07 4102.75 4091.26 4130.30 4091.04 4081.26 4081.66 405
testmvs5.91 3787.65 3810.72 3911.20 4130.37 41659.14 3890.67 4150.49 4091.11 4092.76 4080.94 4140.24 4101.02 4091.47 4071.55 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS37.39 40052.61 352
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
PC_three_145258.96 32090.06 9691.33 17380.66 12493.03 13875.78 16095.94 12692.48 168
No_MVS88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
eth-test20.00 415
eth-test0.00 415
ZD-MVS92.22 10180.48 6791.85 11671.22 20590.38 9192.98 12386.06 6096.11 681.99 9196.75 90
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
IU-MVS94.18 4672.64 14490.82 14656.98 33689.67 10885.78 5097.92 4693.28 135
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11894.68 7174.48 17295.35 14692.29 178
test_241102_TWO93.71 5183.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 189
test_241102_ONE94.18 4672.65 14293.69 5283.62 4994.11 2293.78 10490.28 1495.50 46
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
save fliter93.75 5977.44 9986.31 12989.72 17770.80 208
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 190
test072694.16 4972.56 14890.63 4593.90 4483.61 5093.75 3094.49 6489.76 18
GSMVS83.88 324
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35283.88 324
sam_mvs45.92 357
ambc82.98 18890.55 15364.86 22688.20 9689.15 18889.40 11793.96 9571.67 22491.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 120
test_post178.85 2713.13 40645.19 36680.13 33858.11 318
test_post3.10 40745.43 36277.22 351
patchmatchnet-post81.71 33745.93 35687.01 270
GG-mvs-BLEND67.16 35673.36 38646.54 37984.15 16455.04 40258.64 40061.95 40129.93 40083.87 31838.71 39576.92 38571.07 387
MTMP90.66 4433.14 411
gm-plane-assit75.42 37644.97 38652.17 35872.36 39087.90 26054.10 341
test9_res80.83 10196.45 10290.57 228
TEST992.34 9579.70 7483.94 17090.32 16065.41 26684.49 21090.97 18582.03 10593.63 111
test_892.09 10578.87 8183.82 17590.31 16265.79 25784.36 21490.96 18781.93 10793.44 124
agg_prior279.68 11496.16 11490.22 236
agg_prior91.58 12477.69 9690.30 16384.32 21693.18 132
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20891.57 16781.92 10979.54 11696.97 83
test_prior86.32 10890.59 15271.99 15992.85 8894.17 9292.80 154
旧先验281.73 22956.88 33786.54 17584.90 30672.81 199
新几何281.72 230
新几何182.95 19093.96 5578.56 8480.24 29655.45 34183.93 22891.08 18271.19 22688.33 25765.84 26293.07 21481.95 353
旧先验191.97 10871.77 16081.78 28691.84 15873.92 19393.65 20283.61 330
无先验82.81 20585.62 24358.09 32691.41 18267.95 24884.48 316
原ACMM282.26 223
原ACMM184.60 14392.81 8674.01 12991.50 12562.59 28182.73 24890.67 20076.53 16794.25 8669.24 22995.69 14085.55 304
test22293.31 7076.54 10979.38 26077.79 30752.59 35582.36 25290.84 19366.83 24691.69 24281.25 361
testdata286.43 28463.52 283
segment_acmp81.94 106
testdata79.54 24992.87 8172.34 15380.14 29759.91 31685.47 19491.75 16467.96 24185.24 30268.57 24392.18 23481.06 366
testdata179.62 25573.95 160
test1286.57 10390.74 14872.63 14690.69 14982.76 24779.20 13494.80 6895.32 14892.27 180
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 181
plane_prior593.61 5595.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 170
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 416
nn0.00 416
door-mid74.45 333
lessismore_v085.95 11791.10 14170.99 17170.91 36191.79 6794.42 6961.76 27592.93 14179.52 11793.03 21593.93 106
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
test1191.46 126
door72.57 348
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14973.30 17380.55 282
ACMP_Plane91.19 13684.77 14973.30 17380.55 282
BP-MVS77.30 145
HQP4-MVS80.56 28194.61 7493.56 128
HQP3-MVS92.68 9394.47 180
HQP2-MVS72.10 217
NP-MVS91.95 10974.55 12690.17 214
MDTV_nov1_ep13_2view27.60 40870.76 35746.47 38061.27 39345.20 36549.18 36783.75 329
MDTV_nov1_ep1368.29 33278.03 35243.87 38974.12 33072.22 35152.17 35867.02 37785.54 28645.36 36380.85 33355.73 32884.42 346
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 135
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16381.56 7190.02 9891.20 17882.40 9590.81 20173.58 18794.66 17694.56 76
DeepMVS_CXcopyleft24.13 38832.95 41029.49 40621.63 41312.07 40437.95 40545.07 40330.84 39819.21 40717.94 40733.06 40623.69 403