This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13191.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12394.26 7777.55 14595.86 2184.88 5595.87 12995.24 58
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6479.95 10198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16389.71 10694.82 5285.09 6395.77 2984.17 6298.03 3893.26 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17892.38 9870.25 21189.35 11890.68 19082.85 8694.57 7579.55 10795.95 12492.00 181
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17888.51 1790.11 9595.12 4590.98 688.92 24377.55 13297.07 8283.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator80.37 784.80 12184.71 12985.06 13186.36 23974.71 12288.77 8990.00 16875.65 13984.96 19493.17 11474.06 18291.19 18478.28 12091.09 24589.29 242
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8491.30 13476.92 10387.19 10991.99 10770.56 20584.96 19490.69 18980.01 12695.14 5878.37 11795.78 13691.82 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9793.83 2793.60 10990.81 792.96 13785.02 5398.45 1892.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10092.87 4693.74 10590.60 1195.21 5782.87 7298.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11289.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12278.35 11898.76 395.61 48
TAPA-MVS77.73 1285.71 10684.83 12588.37 7788.78 18879.72 7387.15 11193.50 5669.17 21985.80 18289.56 21280.76 11892.13 15973.21 18895.51 14193.25 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft76.72 1381.98 17782.00 17581.93 19884.42 26968.22 18688.50 9489.48 17966.92 24481.80 25291.86 15272.59 20390.16 21571.19 19991.25 24487.40 268
ACMH76.49 1489.34 5591.14 3183.96 15692.50 9270.36 16789.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25383.33 6798.30 2493.20 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS74.62 1582.15 17380.92 19185.84 11889.43 17272.30 14780.53 23491.82 11557.36 31387.81 14189.92 20777.67 14393.63 10958.69 29795.08 15791.58 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 17480.31 19787.45 8990.86 14880.29 6985.88 13090.65 14568.17 23176.32 30686.33 26473.12 19792.61 14761.40 28590.02 26589.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft70.19 1777.77 23377.46 23078.71 24784.39 27061.15 26181.18 22882.52 27162.45 27583.34 22687.37 24866.20 23588.66 24964.69 26085.02 31586.32 277
HY-MVS64.64 1873.03 27972.47 28374.71 29683.36 28154.19 32482.14 21781.96 27656.76 31769.57 34686.21 26860.03 26884.83 29549.58 34782.65 33685.11 290
IB-MVS62.13 1971.64 29068.97 31079.66 23680.80 30862.26 25173.94 32076.90 30563.27 26868.63 34976.79 35933.83 37791.84 16959.28 29687.26 29484.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23275.84 34967.22 19381.21 22782.18 27450.78 34676.50 30387.66 24355.20 30382.99 30662.17 27890.64 26289.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet58.17 2166.41 32365.63 32868.75 33081.96 29249.88 35562.19 36272.51 33751.03 34468.04 35175.34 36450.84 31974.77 33545.82 36282.96 33181.60 333
PVSNet_051.08 2256.10 34554.97 35059.48 35775.12 35553.28 33255.16 37261.89 36844.30 36359.16 37462.48 37754.22 30665.91 36535.40 37647.01 38059.25 376
MVEpermissive40.22 2351.82 34850.47 35155.87 35962.66 38651.91 34131.61 37839.28 38740.65 37250.76 38174.98 36556.24 29744.67 38233.94 37864.11 37771.04 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvsmvis_n_192085.22 11185.36 11884.81 13485.80 25276.13 11585.15 14092.32 9961.40 28391.33 7490.85 18483.76 7886.16 28084.31 6093.28 20492.15 177
dmvs_re66.81 32166.98 31966.28 33976.87 33958.68 29571.66 33272.24 33860.29 29569.52 34773.53 36652.38 31264.40 36944.90 36381.44 34375.76 357
SDMVSNet81.90 17983.17 15678.10 25988.81 18662.45 24676.08 30086.05 23073.67 16083.41 22493.04 11682.35 9380.65 31870.06 21195.03 15991.21 200
dmvs_testset60.59 34262.54 33754.72 36177.26 33427.74 38574.05 31861.00 37260.48 29365.62 36067.03 37455.93 29868.23 35632.07 38069.46 37568.17 368
sd_testset79.95 21281.39 18475.64 29188.81 18658.07 29876.16 29982.81 27073.67 16083.41 22493.04 11680.96 11677.65 32658.62 29895.03 15991.21 200
test_fmvsm_n_192083.60 15182.89 16185.74 12085.22 25877.74 9284.12 15790.48 14959.87 29986.45 17291.12 17375.65 16485.89 28582.28 7990.87 25393.58 122
test_cas_vis1_n_192069.20 31269.12 30769.43 32673.68 36262.82 23970.38 33877.21 30346.18 35880.46 27278.95 34552.03 31365.53 36665.77 25177.45 36179.95 349
test_vis1_n_192071.30 29471.58 29070.47 31877.58 33359.99 27774.25 31584.22 25851.06 34374.85 32379.10 34355.10 30468.83 35168.86 22579.20 35382.58 321
test_vis1_n70.29 30069.99 30371.20 31675.97 34866.50 20276.69 29080.81 28644.22 36475.43 31677.23 35650.00 32368.59 35266.71 24282.85 33578.52 353
test_fmvs1_n70.94 29670.41 29972.53 31073.92 35966.93 19875.99 30184.21 25943.31 36879.40 28279.39 34243.47 35768.55 35369.05 22284.91 31882.10 328
mvsany_test158.48 34456.47 34964.50 34565.90 38368.21 18756.95 37142.11 38638.30 37765.69 35977.19 35856.96 29159.35 37646.16 35958.96 37965.93 370
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11184.26 4090.87 8893.92 9982.18 9889.29 23873.75 17594.81 17093.70 115
test_vis1_rt65.64 32764.09 33170.31 31966.09 38170.20 16861.16 36381.60 28138.65 37672.87 33269.66 37052.84 30960.04 37456.16 31177.77 35780.68 345
test_vis3_rt71.42 29270.67 29473.64 30169.66 37570.46 16566.97 35189.73 17142.68 37188.20 13683.04 30743.77 35660.07 37365.35 25586.66 30090.39 224
test_fmvs273.57 27472.80 27675.90 28972.74 36968.84 18377.07 28484.32 25745.14 36182.89 23284.22 29648.37 32770.36 34573.40 18187.03 29788.52 254
test_fmvs169.57 30969.05 30971.14 31769.15 37665.77 21173.98 31983.32 26442.83 37077.77 29878.27 35043.39 36068.50 35468.39 23284.38 32579.15 351
test_fmvs375.72 25475.20 25477.27 27275.01 35769.47 17478.93 25784.88 25146.67 35587.08 15387.84 24050.44 32271.62 34277.42 13688.53 27990.72 212
mvsany_test365.48 32862.97 33473.03 30669.99 37476.17 11464.83 35443.71 38543.68 36680.25 27687.05 25752.83 31063.09 37251.92 34072.44 36779.84 350
testf189.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
test_f64.31 33165.85 32559.67 35666.54 38062.24 25257.76 37070.96 34740.13 37384.36 20582.09 31946.93 33151.67 37961.99 27981.89 33965.12 371
FE-MVS79.98 21178.86 21583.36 17086.47 23366.45 20389.73 6584.74 25472.80 17884.22 21591.38 16644.95 35293.60 11363.93 26491.50 24090.04 232
FA-MVS(test-final)83.13 16183.02 15983.43 16886.16 24966.08 20788.00 9988.36 19475.55 14085.02 19392.75 13165.12 24292.50 14974.94 16291.30 24391.72 188
iter_conf_final80.36 20178.88 21484.79 13586.29 24266.36 20586.95 11486.25 22668.16 23282.09 24489.48 21336.59 37494.51 8079.83 10394.30 18393.50 127
bld_raw_dy_0_6484.85 12084.44 13586.07 11393.73 6074.93 12188.57 9281.90 27870.44 20691.28 7795.18 4256.62 29389.28 23985.15 5097.09 8193.99 100
patch_mono-278.89 21779.39 21077.41 27184.78 26368.11 18875.60 30483.11 26660.96 28879.36 28389.89 20875.18 16972.97 33873.32 18292.30 22291.15 202
EGC-MVSNET74.79 26569.99 30389.19 6394.89 3787.00 1191.89 3486.28 2251.09 3832.23 38595.98 2381.87 10689.48 23079.76 10495.96 12391.10 203
test250674.12 27073.39 27076.28 28591.85 11544.20 37284.06 15948.20 38372.30 18981.90 24794.20 8027.22 38689.77 22764.81 25896.02 12094.87 67
test111178.53 22578.85 21677.56 26892.22 10247.49 36282.61 19869.24 35472.43 18385.28 18994.20 8051.91 31490.07 22265.36 25496.45 10395.11 62
ECVR-MVScopyleft78.44 22678.63 22077.88 26491.85 11548.95 35683.68 17269.91 35272.30 18984.26 21394.20 8051.89 31589.82 22663.58 26696.02 12094.87 67
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
tt080588.09 7489.79 5182.98 17993.26 7363.94 22791.10 4189.64 17585.07 3590.91 8591.09 17489.16 2291.87 16882.03 8195.87 12993.13 136
DVP-MVS++90.07 3891.09 3287.00 9291.55 12772.64 13796.19 294.10 3485.33 3293.49 3694.64 6081.12 11495.88 1687.41 2095.94 12592.48 159
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
PC_three_145258.96 30190.06 9691.33 16780.66 12093.03 13675.78 15295.94 12592.48 159
No_MVS88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
test_one_060193.85 5873.27 13094.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 392
eth-test0.00 392
GeoE85.45 10985.81 11084.37 14490.08 16167.07 19585.86 13191.39 12672.33 18887.59 14390.25 20084.85 6692.37 15378.00 12691.94 23393.66 116
test_method30.46 34929.60 35233.06 36417.99 3883.84 39013.62 37973.92 3252.79 38218.29 38453.41 37928.53 38343.25 38322.56 38135.27 38252.11 379
Anonymous2024052180.18 20781.25 18576.95 27583.15 28560.84 26882.46 20585.99 23268.76 22586.78 15893.73 10659.13 27677.44 32773.71 17697.55 6792.56 156
h-mvs3384.25 13482.76 16388.72 7091.82 11982.60 5684.00 16184.98 24971.27 19786.70 16190.55 19463.04 25593.92 9978.26 12194.20 18689.63 234
hse-mvs283.47 15581.81 17788.47 7491.03 14382.27 5782.61 19883.69 26071.27 19786.70 16186.05 27063.04 25592.41 15178.26 12193.62 19990.71 213
CL-MVSNet_self_test76.81 24277.38 23275.12 29486.90 23051.34 34573.20 32680.63 28868.30 23081.80 25288.40 23066.92 23280.90 31555.35 31994.90 16593.12 138
KD-MVS_2432*160066.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
KD-MVS_self_test81.93 17883.14 15778.30 25584.75 26452.75 33480.37 23689.42 18170.24 21290.26 9493.39 11174.55 18086.77 27168.61 22996.64 9395.38 52
AUN-MVS81.18 18678.78 21788.39 7690.93 14582.14 5882.51 20483.67 26164.69 26480.29 27385.91 27351.07 31892.38 15276.29 14893.63 19890.65 217
ZD-MVS92.22 10280.48 6791.85 11371.22 20090.38 9192.98 12086.06 5996.11 581.99 8396.75 91
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4387.16 2797.60 6492.73 148
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2797.60 6492.73 148
SED-MVS90.46 3391.64 1786.93 9394.18 4672.65 13590.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4297.92 4692.29 169
IU-MVS94.18 4672.64 13790.82 14156.98 31589.67 10885.78 4697.92 4693.28 130
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16981.12 11494.68 7074.48 16395.35 14592.29 169
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4297.82 5192.04 179
test_241102_ONE94.18 4672.65 13593.69 5083.62 4794.11 2293.78 10490.28 1495.50 45
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10191.19 4095.74 581.38 7092.28 5993.80 10286.89 4994.64 7285.52 4797.51 7194.30 89
cl2278.97 21678.21 22681.24 21277.74 33059.01 28877.46 28187.13 21365.79 25184.32 20785.10 28458.96 27890.88 19675.36 15792.03 23093.84 107
miper_ehance_all_eth80.34 20280.04 20681.24 21279.82 31658.95 28977.66 27589.66 17465.75 25485.99 18085.11 28368.29 22691.42 17976.03 15092.03 23093.33 128
miper_enhance_ethall77.83 23076.93 23780.51 22376.15 34658.01 29975.47 30888.82 18658.05 30783.59 22180.69 32964.41 24491.20 18373.16 18992.03 23092.33 167
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8591.29 7693.97 9287.93 3895.87 1888.65 497.96 4594.12 96
dcpmvs_284.23 13685.14 12081.50 20788.61 19261.98 25482.90 19393.11 7368.66 22792.77 5192.39 13978.50 13587.63 25976.99 14192.30 22294.90 65
cl____80.42 19880.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.37 24186.18 17589.21 21963.08 25490.16 21576.31 14795.80 13493.65 118
DIV-MVS_self_test80.43 19780.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.38 24086.19 17389.22 21863.09 25390.16 21576.32 14695.80 13493.66 116
eth_miper_zixun_eth80.84 19080.22 20182.71 18781.41 29860.98 26677.81 27390.14 16567.31 24286.95 15787.24 25264.26 24592.31 15575.23 15891.61 23794.85 71
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 8092.89 12587.27 4493.78 10483.69 6697.55 67
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
save fliter93.75 5977.44 9686.31 12789.72 17270.80 203
ET-MVSNet_ETH3D75.28 25672.77 27782.81 18683.03 28768.11 18877.09 28376.51 30960.67 29277.60 30080.52 33338.04 37091.15 18670.78 20290.68 25889.17 243
UniMVSNet_ETH3D89.12 6190.72 4384.31 14997.00 264.33 22389.67 6988.38 19388.84 1394.29 1897.57 390.48 1391.26 18272.57 19297.65 6097.34 15
EIA-MVS82.19 17281.23 18785.10 13087.95 20569.17 18183.22 18593.33 6170.42 20778.58 29079.77 34177.29 14794.20 8871.51 19788.96 27491.93 184
miper_refine_blended66.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
miper_lstm_enhance76.45 24876.10 24577.51 26976.72 34160.97 26764.69 35685.04 24663.98 26683.20 22888.22 23256.67 29278.79 32473.22 18393.12 20892.78 147
ETV-MVS84.31 13183.91 14785.52 12488.58 19370.40 16684.50 15293.37 5878.76 10584.07 21678.72 34780.39 12295.13 5973.82 17492.98 21291.04 204
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9584.32 20789.33 21783.87 7494.53 7882.45 7694.89 16694.90 65
D2MVS76.84 24175.67 25080.34 22680.48 31262.16 25373.50 32384.80 25357.61 31182.24 24087.54 24551.31 31787.65 25870.40 20993.19 20791.23 199
DVP-MVScopyleft90.06 3991.32 2886.29 10594.16 4972.56 14190.54 4891.01 13683.61 4893.75 3094.65 5789.76 1895.78 2786.42 3297.97 4390.55 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 2098.21 2992.98 142
test_0728_SECOND86.79 9694.25 4572.45 14590.54 4894.10 3495.88 1686.42 3297.97 4392.02 180
test072694.16 4972.56 14190.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9090.15 1695.67 3386.82 3097.34 7492.19 175
DPM-MVS80.10 20979.18 21282.88 18590.71 15169.74 17078.87 26090.84 14060.29 29575.64 31585.92 27267.28 22993.11 13371.24 19891.79 23485.77 284
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7691.38 7393.80 10287.20 4695.80 2487.10 2997.69 5993.93 104
test_yl78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
thisisatest053079.07 21577.33 23484.26 15087.13 22264.58 21983.66 17375.95 31168.86 22485.22 19087.36 24938.10 36993.57 11775.47 15594.28 18494.62 74
Anonymous2024052986.20 10087.13 8783.42 16990.19 15964.55 22184.55 14890.71 14385.85 3189.94 10295.24 4082.13 9990.40 20969.19 22096.40 10595.31 55
Anonymous20240521180.51 19681.19 18878.49 25188.48 19557.26 30576.63 29182.49 27281.21 7384.30 21092.24 14767.99 22786.24 27862.22 27595.13 15491.98 183
DCV-MVSNet78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
tttt051781.07 18779.58 20885.52 12488.99 18366.45 20387.03 11375.51 31673.76 15988.32 13490.20 20137.96 37194.16 9379.36 11195.13 15495.93 42
our_test_371.85 28871.59 28872.62 30880.71 30953.78 32769.72 34171.71 34558.80 30278.03 29280.51 33456.61 29478.84 32362.20 27686.04 30785.23 288
thisisatest051573.00 28070.52 29680.46 22481.45 29759.90 27873.16 32774.31 32357.86 30876.08 31077.78 35137.60 37292.12 16165.00 25691.45 24189.35 239
ppachtmachnet_test74.73 26674.00 26476.90 27780.71 30956.89 30971.53 33378.42 29758.24 30579.32 28582.92 31157.91 28584.26 29965.60 25291.36 24289.56 235
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS83.88 301
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8788.13 3496.30 384.51 5997.81 5291.70 190
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part293.86 5777.77 9192.84 48
thres100view90075.45 25575.05 25576.66 28187.27 21851.88 34281.07 22973.26 33275.68 13883.25 22786.37 26345.54 34388.80 24451.98 33790.99 24789.31 240
tfpnnormal81.79 18082.95 16078.31 25488.93 18455.40 31780.83 23382.85 26976.81 12485.90 18194.14 8474.58 17986.51 27466.82 24195.68 14093.01 141
tfpn200view974.86 26374.23 26276.74 28086.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24789.31 240
c3_l81.64 18181.59 18181.79 20580.86 30659.15 28778.61 26490.18 16468.36 22887.20 14787.11 25569.39 21991.62 17278.16 12394.43 18194.60 75
CHOSEN 280x42059.08 34356.52 34866.76 33776.51 34264.39 22249.62 37559.00 37443.86 36555.66 38068.41 37335.55 37668.21 35743.25 36676.78 36367.69 369
CANet83.79 14782.85 16286.63 9886.17 24772.21 15083.76 17091.43 12377.24 12274.39 32587.45 24775.36 16795.42 4877.03 14092.83 21592.25 173
Fast-Effi-MVS+-dtu82.54 16781.41 18385.90 11685.60 25376.53 10883.07 18789.62 17773.02 17679.11 28783.51 30280.74 11990.24 21268.76 22689.29 26990.94 206
Effi-MVS+-dtu85.82 10583.38 15193.14 387.13 22291.15 287.70 10488.42 19274.57 15183.56 22285.65 27478.49 13694.21 8772.04 19592.88 21494.05 99
CANet_DTU77.81 23277.05 23580.09 23081.37 29959.90 27883.26 18188.29 19769.16 22067.83 35383.72 30060.93 26189.47 23169.22 21989.70 26690.88 208
MVS_030486.35 9685.92 10787.66 8789.21 17873.16 13288.40 9583.63 26281.27 7180.87 26494.12 8671.49 21495.71 3187.79 1096.50 9994.11 97
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13792.94 4494.96 4788.36 2895.01 6290.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10889.16 11992.25 14672.03 21096.36 288.21 790.93 25192.98 142
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs146.11 33683.88 301
sam_mvs45.92 341
IterMVS-SCA-FT80.64 19479.41 20984.34 14883.93 27669.66 17276.28 29681.09 28472.43 18386.47 17190.19 20260.46 26493.15 13277.45 13486.39 30490.22 226
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10592.49 2491.19 13267.85 23886.63 16494.84 5179.58 12995.96 1287.62 1494.50 17894.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 8978.78 10392.51 5593.64 10888.13 3493.84 10384.83 5697.55 6794.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11691.97 6594.89 4988.38 2795.45 4789.27 397.87 5093.27 131
ambc82.98 17990.55 15464.86 21788.20 9689.15 18389.40 11793.96 9571.67 21391.38 18178.83 11496.55 9692.71 151
MTGPAbinary91.81 116
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9589.42 7995.73 677.87 11481.64 25587.25 25182.43 9194.53 7877.65 13096.46 10294.14 95
Effi-MVS+83.90 14684.01 14483.57 16687.22 22065.61 21286.55 12592.40 9678.64 10681.34 26084.18 29783.65 7992.93 13974.22 16587.87 28992.17 176
xiu_mvs_v2_base77.19 23776.75 23978.52 25087.01 22861.30 25975.55 30787.12 21661.24 28574.45 32478.79 34677.20 14890.93 19264.62 26284.80 32283.32 313
xiu_mvs_v1_base80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
new-patchmatchnet70.10 30373.37 27160.29 35581.23 30116.95 38759.54 36574.62 31962.93 27080.97 26187.93 23862.83 25771.90 34155.24 32095.01 16292.00 181
pmmvs686.52 9488.06 7481.90 19992.22 10262.28 25084.66 14689.15 18383.54 5089.85 10397.32 488.08 3686.80 27070.43 20897.30 7696.62 28
pmmvs570.73 29870.07 30172.72 30777.03 33852.73 33574.14 31675.65 31550.36 35072.17 33685.37 28155.42 30280.67 31752.86 33487.59 29384.77 293
test_post178.85 2613.13 38345.19 35080.13 32058.11 303
test_post3.10 38445.43 34677.22 329
Fast-Effi-MVS+81.04 18880.57 19282.46 19487.50 21563.22 23478.37 26789.63 17668.01 23381.87 24882.08 32082.31 9492.65 14667.10 23788.30 28591.51 196
patchmatchnet-post81.71 32345.93 34087.01 264
Anonymous2023121188.40 6789.62 5584.73 13890.46 15565.27 21388.86 8693.02 8187.15 2393.05 4397.10 682.28 9792.02 16376.70 14297.99 4096.88 25
pmmvs-eth3d78.42 22777.04 23682.57 19287.44 21674.41 12480.86 23279.67 29255.68 31984.69 20090.31 19960.91 26285.42 28962.20 27691.59 23887.88 263
GG-mvs-BLEND67.16 33673.36 36346.54 36784.15 15655.04 37958.64 37761.95 37829.93 38283.87 30338.71 37476.92 36271.07 364
xiu_mvs_v1_base_debi80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
Anonymous2023120671.38 29371.88 28669.88 32286.31 24054.37 32370.39 33774.62 31952.57 33376.73 30288.76 22559.94 26972.06 34044.35 36593.23 20683.23 315
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11684.07 4292.00 6494.40 7186.63 5195.28 5488.59 598.31 2392.30 168
MTMP90.66 4433.14 388
gm-plane-assit75.42 35344.97 37152.17 33572.36 36987.90 25554.10 326
test9_res80.83 9296.45 10390.57 218
MVP-Stereo75.81 25373.51 26982.71 18789.35 17373.62 12780.06 23885.20 24160.30 29473.96 32787.94 23757.89 28689.45 23352.02 33674.87 36585.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST992.34 9679.70 7483.94 16290.32 15565.41 26084.49 20290.97 17882.03 10193.63 109
train_agg85.98 10385.28 11988.07 8292.34 9679.70 7483.94 16290.32 15565.79 25184.49 20290.97 17881.93 10393.63 10981.21 8796.54 9790.88 208
gg-mvs-nofinetune68.96 31369.11 30868.52 33376.12 34745.32 36883.59 17455.88 37886.68 2464.62 36797.01 730.36 38183.97 30244.78 36482.94 33276.26 356
SCA73.32 27572.57 28175.58 29281.62 29555.86 31478.89 25971.37 34661.73 27974.93 32283.42 30560.46 26487.01 26458.11 30382.63 33883.88 301
Patchmatch-test65.91 32567.38 31761.48 35375.51 35143.21 37568.84 34263.79 36662.48 27472.80 33383.42 30544.89 35359.52 37548.27 35386.45 30281.70 331
test_892.09 10678.87 8183.82 16790.31 15765.79 25184.36 20590.96 18081.93 10393.44 122
MS-PatchMatch70.93 29770.22 30073.06 30581.85 29462.50 24573.82 32277.90 29952.44 33475.92 31181.27 32655.67 30081.75 31155.37 31877.70 35874.94 359
Patchmatch-RL test74.48 26773.68 26676.89 27884.83 26266.54 20172.29 32969.16 35557.70 30986.76 15986.33 26445.79 34282.59 30769.63 21490.65 26181.54 334
cdsmvs_eth3d_5k20.81 35027.75 3530.00 3690.00 3920.00 3930.00 38085.44 2370.00 3870.00 38882.82 31281.46 1100.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.41 3538.55 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38776.94 1540.00 3880.00 3860.00 3860.00 384
agg_prior279.68 10696.16 11390.22 226
agg_prior91.58 12577.69 9390.30 15884.32 20793.18 130
tmp_tt20.25 35124.50 3547.49 3664.47 3898.70 38934.17 37725.16 3891.00 38432.43 38318.49 38139.37 3689.21 38521.64 38243.75 3814.57 381
canonicalmvs85.50 10786.14 10483.58 16587.97 20467.13 19487.55 10594.32 1873.44 16588.47 12987.54 24586.45 5491.06 18975.76 15393.76 19392.54 158
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16369.87 21595.06 1196.14 2184.28 7293.07 13587.68 1396.34 10697.09 21
alignmvs83.94 14583.98 14583.80 15887.80 20867.88 19184.54 15091.42 12573.27 17288.41 13187.96 23672.33 20590.83 19776.02 15194.11 18792.69 152
nrg03087.85 8088.49 7085.91 11590.07 16369.73 17187.86 10294.20 2574.04 15592.70 5394.66 5685.88 6191.50 17479.72 10597.32 7596.50 31
v14419284.24 13584.41 13783.71 16287.59 21461.57 25682.95 19191.03 13567.82 23989.80 10490.49 19573.28 19593.51 11981.88 8594.89 16696.04 38
FIs85.35 11086.27 10182.60 18991.86 11457.31 30485.10 14193.05 7775.83 13691.02 8293.97 9273.57 18892.91 14173.97 17198.02 3997.58 12
v192192084.23 13684.37 13983.79 15987.64 21361.71 25582.91 19291.20 13167.94 23690.06 9690.34 19772.04 20993.59 11482.32 7894.91 16496.07 36
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12797.64 283.45 8194.55 7786.02 4498.60 1296.67 27
v119284.57 12584.69 13084.21 15187.75 20962.88 23783.02 18991.43 12369.08 22189.98 10190.89 18272.70 20293.62 11282.41 7794.97 16396.13 34
FC-MVSNet-test85.93 10487.05 9082.58 19092.25 10056.44 31185.75 13293.09 7577.33 12091.94 6694.65 5774.78 17593.41 12475.11 16098.58 1397.88 7
v114484.54 12784.72 12884.00 15487.67 21162.55 24482.97 19090.93 13970.32 21089.80 10490.99 17773.50 18993.48 12081.69 8694.65 17695.97 39
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9588.35 2995.56 3887.74 1197.74 5792.85 145
v14882.31 16982.48 17081.81 20485.59 25459.66 28081.47 22386.02 23172.85 17788.05 13790.65 19270.73 21690.91 19475.15 15991.79 23494.87 67
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
v7n90.13 3690.96 3887.65 8891.95 11071.06 16189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8794.08 9486.25 3897.63 6197.82 8
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8794.21 7987.75 3995.87 1887.60 1697.71 5893.83 108
iter_conf0578.81 22077.35 23383.21 17482.98 28860.75 27084.09 15888.34 19563.12 26984.25 21489.48 21331.41 37994.51 8076.64 14395.83 13194.38 87
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11792.36 2689.06 18577.34 11993.63 3595.83 2565.40 24195.90 1485.01 5498.23 2797.49 13
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10191.97 10870.73 20494.19 2196.67 1176.94 15494.57 7583.07 6996.28 10896.15 33
PS-MVSNAJ77.04 23976.53 24178.56 24987.09 22661.40 25775.26 30987.13 21361.25 28474.38 32677.22 35776.94 15490.94 19164.63 26184.83 32183.35 312
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16069.27 21894.39 1696.38 1586.02 6093.52 11883.96 6395.92 12795.34 53
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14670.00 21494.55 1596.67 1187.94 3793.59 11484.27 6195.97 12295.52 49
EI-MVSNet-UG-set85.04 11684.44 13586.85 9583.87 27872.52 14383.82 16785.15 24380.27 8388.75 12485.45 27879.95 12791.90 16681.92 8490.80 25696.13 34
EI-MVSNet-Vis-set85.12 11584.53 13386.88 9484.01 27572.76 13483.91 16585.18 24280.44 7988.75 12485.49 27680.08 12591.92 16582.02 8290.85 25595.97 39
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12978.20 11086.69 16392.28 14580.36 12395.06 6186.17 4096.49 10090.22 226
test_prior478.97 8084.59 147
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9994.03 8986.57 5295.80 2487.35 2297.62 6294.20 90
v124084.30 13284.51 13483.65 16387.65 21261.26 26082.85 19491.54 12067.94 23690.68 9090.65 19271.71 21293.64 10882.84 7394.78 17196.07 36
pm-mvs183.69 14884.95 12479.91 23190.04 16559.66 28082.43 20687.44 20675.52 14187.85 14095.26 3981.25 11385.65 28868.74 22796.04 11994.42 85
test_prior283.37 17975.43 14284.58 20191.57 16181.92 10579.54 10896.97 84
X-MVStestdata85.04 11682.70 16492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9916.05 38286.57 5295.80 2487.35 2297.62 6294.20 90
test_prior86.32 10490.59 15371.99 15292.85 8694.17 9192.80 146
旧先验281.73 21956.88 31686.54 17084.90 29472.81 190
新几何281.72 220
新几何182.95 18193.96 5578.56 8480.24 28955.45 32083.93 21891.08 17571.19 21588.33 25265.84 24993.07 20981.95 330
旧先验191.97 10971.77 15381.78 27991.84 15473.92 18493.65 19783.61 307
无先验82.81 19585.62 23658.09 30691.41 18067.95 23684.48 295
原ACMM282.26 213
原ACMM184.60 14192.81 8774.01 12691.50 12162.59 27282.73 23590.67 19176.53 16194.25 8569.24 21795.69 13985.55 285
test22293.31 7176.54 10679.38 25077.79 30052.59 33282.36 23990.84 18566.83 23391.69 23681.25 338
testdata286.43 27663.52 268
segment_acmp81.94 102
testdata79.54 23892.87 8272.34 14680.14 29059.91 29885.47 18891.75 15967.96 22885.24 29068.57 23192.18 22981.06 343
testdata179.62 24573.95 157
v886.22 9986.83 9584.36 14687.82 20762.35 24986.42 12691.33 12776.78 12592.73 5294.48 6573.41 19293.72 10683.10 6895.41 14397.01 23
131473.22 27772.56 28275.20 29380.41 31357.84 30081.64 22185.36 23851.68 34073.10 33176.65 36061.45 26085.19 29163.54 26779.21 35282.59 320
LFMVS80.15 20880.56 19378.89 24389.19 17955.93 31385.22 13973.78 32882.96 5584.28 21192.72 13257.38 28890.07 22263.80 26595.75 13790.68 215
VDD-MVS84.23 13684.58 13283.20 17591.17 14065.16 21683.25 18284.97 25079.79 8787.18 14894.27 7474.77 17690.89 19569.24 21796.54 9793.55 126
VDDNet84.35 13085.39 11781.25 21095.13 3159.32 28385.42 13781.11 28386.41 2787.41 14696.21 1973.61 18790.61 20566.33 24496.85 8693.81 112
v1086.54 9387.10 8884.84 13388.16 20363.28 23386.64 12392.20 10275.42 14392.81 5094.50 6374.05 18394.06 9583.88 6496.28 10897.17 20
VPNet80.25 20481.68 17875.94 28892.46 9347.98 36076.70 28981.67 28073.45 16484.87 19792.82 12774.66 17886.51 27461.66 28396.85 8693.33 128
MVS73.21 27872.59 28075.06 29580.97 30360.81 26981.64 22185.92 23346.03 35971.68 33877.54 35268.47 22589.77 22755.70 31585.39 31074.60 360
v2v48284.09 13984.24 14183.62 16487.13 22261.40 25782.71 19789.71 17372.19 19189.55 11491.41 16570.70 21793.20 12981.02 8993.76 19396.25 32
V4283.47 15583.37 15283.75 16183.16 28463.33 23281.31 22490.23 16269.51 21790.91 8590.81 18674.16 18192.29 15780.06 9990.22 26395.62 47
SD-MVS88.96 6389.88 4986.22 10891.63 12177.07 10289.82 6493.77 4778.90 10192.88 4592.29 14486.11 5890.22 21386.24 3997.24 7791.36 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.83 25274.61 25779.48 23981.87 29359.25 28473.42 32482.88 26868.68 22679.75 27881.80 32250.62 32089.46 23266.85 23985.64 30989.72 233
MSLP-MVS++85.00 11886.03 10581.90 19991.84 11771.56 15986.75 12193.02 8175.95 13487.12 14989.39 21577.98 13989.40 23777.46 13394.78 17184.75 294
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1697.98 4292.98 142
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6086.67 3197.60 6494.18 92
ADS-MVSNet265.87 32663.64 33372.55 30973.16 36556.92 30867.10 34974.81 31849.74 35166.04 35782.97 30846.71 33277.26 32842.29 36769.96 37283.46 309
EI-MVSNet82.61 16582.42 17183.20 17583.25 28263.66 22883.50 17685.07 24476.06 12986.55 16585.10 28473.41 19290.25 21078.15 12590.67 25995.68 45
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet72.62 28271.41 29276.28 28583.25 28260.34 27383.50 17679.02 29637.77 37876.33 30585.10 28449.60 32587.41 26170.54 20777.54 36081.08 341
pmmvs474.92 26272.98 27580.73 22084.95 26071.71 15776.23 29777.59 30152.83 33177.73 29986.38 26256.35 29684.97 29357.72 30587.05 29685.51 286
EU-MVSNet75.12 25974.43 26177.18 27383.11 28659.48 28285.71 13482.43 27339.76 37585.64 18488.76 22544.71 35487.88 25673.86 17385.88 30884.16 300
VNet79.31 21480.27 19876.44 28287.92 20653.95 32675.58 30684.35 25674.39 15382.23 24190.72 18872.84 20084.39 29860.38 29193.98 19090.97 205
test-LLR67.21 31766.74 32268.63 33176.45 34455.21 31967.89 34567.14 35962.43 27665.08 36372.39 36743.41 35869.37 34661.00 28684.89 31981.31 336
TESTMET0.1,161.29 33760.32 34364.19 34672.06 37051.30 34667.89 34562.09 36745.27 36060.65 37269.01 37127.93 38564.74 36856.31 31081.65 34276.53 355
test-mter65.00 32963.79 33268.63 33176.45 34455.21 31967.89 34567.14 35950.98 34565.08 36372.39 36728.27 38469.37 34661.00 28684.89 31981.31 336
VPA-MVSNet83.47 15584.73 12679.69 23590.29 15757.52 30381.30 22688.69 18976.29 12787.58 14494.44 6680.60 12187.20 26366.60 24396.82 8994.34 88
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1197.76 5593.99 100
testgi72.36 28474.61 25765.59 34180.56 31142.82 37668.29 34473.35 33166.87 24581.84 24989.93 20672.08 20866.92 36146.05 36192.54 21987.01 272
test20.0373.75 27374.59 25971.22 31581.11 30251.12 34970.15 33972.10 34070.42 20780.28 27591.50 16364.21 24674.72 33746.96 35894.58 17787.82 265
thres600view775.97 25175.35 25377.85 26687.01 22851.84 34380.45 23573.26 33275.20 14583.10 23086.31 26645.54 34389.05 24055.03 32292.24 22692.66 153
ADS-MVSNet61.90 33462.19 33861.03 35473.16 36536.42 38067.10 34961.75 36949.74 35166.04 35782.97 30846.71 33263.21 37042.29 36769.96 37283.46 309
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12894.37 7386.74 5095.41 4986.32 3598.21 2993.19 135
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs5.91 3557.65 3580.72 3681.20 3900.37 39259.14 3660.67 3920.49 3861.11 3862.76 3850.94 3910.24 3871.02 3851.47 3841.55 383
thres40075.14 25774.23 26277.86 26586.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24792.66 153
test1236.27 3548.08 3570.84 3671.11 3910.57 39162.90 3590.82 3910.54 3851.07 3872.75 3861.26 3900.30 3861.04 3841.26 3851.66 382
thres20072.34 28571.55 29174.70 29783.48 27951.60 34475.02 31173.71 32970.14 21378.56 29180.57 33246.20 33588.20 25446.99 35789.29 26984.32 298
test0.0.03 164.66 33064.36 33065.57 34275.03 35646.89 36564.69 35661.58 37162.43 27671.18 34177.54 35243.41 35868.47 35540.75 37182.65 33681.35 335
pmmvs362.47 33260.02 34569.80 32371.58 37264.00 22670.52 33658.44 37639.77 37466.05 35675.84 36227.10 38772.28 33946.15 36084.77 32373.11 361
EMVS61.10 33960.81 34161.99 35065.96 38255.86 31453.10 37458.97 37567.06 24356.89 37963.33 37640.98 36467.03 36054.79 32386.18 30663.08 372
E-PMN61.59 33661.62 33961.49 35266.81 37955.40 31753.77 37360.34 37366.80 24658.90 37665.50 37540.48 36666.12 36455.72 31486.25 30562.95 373
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8291.74 6994.41 7088.17 3295.98 1086.37 3497.99 4093.96 103
LCM-MVSNet-Re83.48 15485.06 12178.75 24685.94 25155.75 31680.05 23994.27 1976.47 12696.09 594.54 6283.31 8389.75 22959.95 29294.89 16690.75 211
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5199.27 199.54 1
MCST-MVS84.36 12983.93 14685.63 12291.59 12271.58 15883.52 17592.13 10361.82 27883.96 21789.75 21079.93 12893.46 12178.33 11994.34 18291.87 185
mvs_anonymous78.13 22878.76 21876.23 28779.24 32350.31 35378.69 26284.82 25261.60 28283.09 23192.82 12773.89 18587.01 26468.33 23386.41 30391.37 197
MVS_Test82.47 16883.22 15380.22 22882.62 29057.75 30282.54 20391.96 10971.16 20182.89 23292.52 13877.41 14690.50 20780.04 10087.84 29092.40 163
MDA-MVSNet-bldmvs77.47 23476.90 23879.16 24279.03 32564.59 21866.58 35275.67 31473.15 17488.86 12188.99 22366.94 23181.23 31464.71 25988.22 28691.64 192
CDPH-MVS86.17 10185.54 11588.05 8392.25 10075.45 11883.85 16692.01 10665.91 25086.19 17391.75 15983.77 7794.98 6377.43 13596.71 9293.73 114
test1286.57 9990.74 14972.63 13990.69 14482.76 23479.20 13094.80 6795.32 14792.27 171
casdiffmvspermissive85.21 11285.85 10983.31 17286.17 24762.77 24083.03 18893.93 4074.69 15088.21 13592.68 13382.29 9691.89 16777.87 12993.75 19595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive80.40 19980.48 19680.17 22979.02 32660.04 27577.54 27890.28 16166.65 24782.40 23887.33 25073.50 18987.35 26277.98 12789.62 26793.13 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline269.77 30766.89 32078.41 25379.51 31958.09 29776.23 29769.57 35357.50 31264.82 36677.45 35446.02 33788.44 25053.08 33077.83 35688.70 252
baseline173.26 27673.54 26872.43 31184.92 26147.79 36179.89 24274.00 32465.93 24978.81 28986.28 26756.36 29581.63 31356.63 30879.04 35487.87 264
YYNet170.06 30470.44 29768.90 32873.76 36153.42 33158.99 36867.20 35858.42 30487.10 15185.39 28059.82 27167.32 35859.79 29383.50 32985.96 280
PMMVS255.64 34759.27 34644.74 36364.30 38512.32 38840.60 37649.79 38253.19 32965.06 36584.81 28953.60 30849.76 38032.68 37989.41 26872.15 362
MDA-MVSNet_test_wron70.05 30570.44 29768.88 32973.84 36053.47 32958.93 36967.28 35758.43 30387.09 15285.40 27959.80 27267.25 35959.66 29483.54 32885.92 282
tpmvs70.16 30269.56 30671.96 31374.71 35848.13 35879.63 24475.45 31765.02 26270.26 34381.88 32145.34 34885.68 28758.34 30075.39 36482.08 329
PM-MVS80.20 20679.00 21383.78 16088.17 20286.66 1581.31 22466.81 36269.64 21688.33 13390.19 20264.58 24383.63 30471.99 19690.03 26481.06 343
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 11089.45 7793.61 5379.44 9386.55 16592.95 12374.84 17395.22 5580.78 9395.83 13194.46 80
plane_prior793.45 6677.31 99
plane_prior692.61 8876.54 10674.84 173
plane_prior593.61 5395.22 5580.78 9395.83 13194.46 80
plane_prior492.95 123
plane_prior376.85 10477.79 11586.55 165
plane_prior289.45 7779.44 93
plane_prior192.83 86
plane_prior76.42 11087.15 11175.94 13595.03 159
PS-CasMVS90.06 3991.92 1184.47 14396.56 658.83 29389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3779.42 11098.74 599.00 2
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11192.86 8467.02 19682.55 20291.56 11983.08 5490.92 8391.82 15678.25 13893.99 9674.16 16698.35 2197.49 13
PEN-MVS90.03 4191.88 1484.48 14296.57 558.88 29088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3578.69 11598.72 898.97 3
TransMVSNet (Re)84.02 14285.74 11278.85 24491.00 14455.20 32182.29 21087.26 20979.65 9088.38 13295.52 3383.00 8486.88 26867.97 23596.60 9594.45 82
DTE-MVSNet89.98 4391.91 1384.21 15196.51 757.84 30088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 11298.57 1498.80 6
DU-MVS86.80 9086.99 9186.21 10993.24 7467.02 19683.16 18692.21 10181.73 6690.92 8391.97 15077.20 14893.99 9674.16 16698.35 2197.61 10
UniMVSNet (Re)86.87 8786.98 9286.55 10093.11 7768.48 18483.80 16992.87 8580.37 8089.61 11291.81 15777.72 14294.18 8975.00 16198.53 1596.99 24
CP-MVSNet89.27 5890.91 4084.37 14496.34 858.61 29688.66 9192.06 10590.78 695.67 795.17 4381.80 10795.54 4079.00 11398.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12196.32 962.39 24789.54 7493.31 6490.21 1095.57 995.66 2981.42 11195.90 1480.94 9098.80 298.84 5
WR-MVS83.56 15284.40 13881.06 21593.43 6854.88 32278.67 26385.02 24781.24 7290.74 8991.56 16272.85 19991.08 18868.00 23498.04 3697.23 18
NR-MVSNet86.00 10286.22 10285.34 12793.24 7464.56 22082.21 21490.46 15080.99 7588.42 13091.97 15077.56 14493.85 10172.46 19398.65 1197.61 10
Baseline_NR-MVSNet84.00 14385.90 10878.29 25691.47 13253.44 33082.29 21087.00 22179.06 9989.55 11495.72 2877.20 14886.14 28172.30 19498.51 1695.28 56
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12994.02 5464.13 22484.38 15391.29 12884.88 3892.06 6393.84 10186.45 5493.73 10573.22 18398.66 1097.69 9
TSAR-MVS + GP.83.95 14482.69 16587.72 8589.27 17681.45 6383.72 17181.58 28274.73 14985.66 18386.06 26972.56 20492.69 14575.44 15695.21 15189.01 250
n20.00 393
nn0.00 393
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4387.21 2698.11 3593.12 138
door-mid74.45 322
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4180.07 8686.75 16093.26 11293.64 290.93 19284.60 5890.75 25793.97 102
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10991.09 4291.87 11272.61 18292.16 6095.23 4166.01 23795.59 3686.02 4497.78 5397.24 17
MVSFormer82.23 17181.57 18284.19 15385.54 25569.26 17791.98 3190.08 16671.54 19576.23 30785.07 28758.69 27994.27 8386.26 3688.77 27689.03 248
jason77.42 23575.75 24882.43 19587.10 22569.27 17677.99 27081.94 27751.47 34177.84 29585.07 28760.32 26689.00 24170.74 20489.27 27189.03 248
jason: jason.
lupinMVS76.37 24974.46 26082.09 19685.54 25569.26 17776.79 28780.77 28750.68 34876.23 30782.82 31258.69 27988.94 24269.85 21288.77 27688.07 257
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16671.54 19594.28 2096.54 1381.57 10994.27 8386.26 3696.49 10097.09 21
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5188.06 898.15 3495.95 41
K. test v385.14 11484.73 12686.37 10391.13 14169.63 17385.45 13676.68 30884.06 4392.44 5796.99 862.03 25894.65 7180.58 9693.24 20594.83 72
lessismore_v085.95 11491.10 14270.99 16270.91 34891.79 6794.42 6961.76 25992.93 13979.52 10993.03 21093.93 104
SixPastTwentyTwo87.20 8587.45 8386.45 10292.52 9169.19 18087.84 10388.05 20181.66 6794.64 1496.53 1465.94 23894.75 6883.02 7196.83 8895.41 51
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7495.32 1097.24 572.94 19894.85 6685.07 5197.78 5397.26 16
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9890.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12993.60 5580.16 8489.13 12093.44 11083.82 7590.98 19083.86 6595.30 15093.60 121
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8992.09 6293.89 10083.80 7693.10 13482.67 7498.04 3693.64 119
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14687.09 22665.22 21484.16 15594.23 2277.89 11391.28 7793.66 10784.35 7192.71 14380.07 9894.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
baseline85.20 11385.93 10683.02 17886.30 24162.37 24884.55 14893.96 3974.48 15287.12 14992.03 14982.30 9591.94 16478.39 11694.21 18594.74 73
test1191.46 122
door72.57 336
EPNet_dtu72.87 28171.33 29377.49 27077.72 33160.55 27282.35 20875.79 31266.49 24858.39 37881.06 32853.68 30785.98 28253.55 32892.97 21385.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.45 28370.56 29578.13 25890.02 16663.08 23568.72 34383.16 26542.99 36975.92 31185.46 27757.22 29085.18 29249.87 34681.67 34086.14 279
EPNet80.37 20078.41 22486.23 10776.75 34073.28 12987.18 11077.45 30276.24 12868.14 35088.93 22465.41 24093.85 10169.47 21596.12 11691.55 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS70.66 163
HQP-NCC91.19 13784.77 14273.30 16980.55 269
ACMP_Plane91.19 13784.77 14273.30 16980.55 269
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7891.13 7993.19 11386.22 5795.97 1182.23 8097.18 7990.45 222
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.30 137
HQP4-MVS80.56 26894.61 7393.56 124
HQP3-MVS92.68 9194.47 179
HQP2-MVS72.10 206
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 10085.25 13891.23 13077.31 12187.07 15491.47 16482.94 8594.71 6984.67 5796.27 11092.62 155
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12491.09 13478.77 10484.85 19890.89 18280.85 11795.29 5281.14 8895.32 14792.34 166
114514_t83.10 16282.54 16984.77 13792.90 8169.10 18286.65 12290.62 14754.66 32381.46 25790.81 18676.98 15394.38 8272.62 19196.18 11290.82 210
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8194.00 9188.26 3095.71 3187.28 2598.39 2092.55 157
DSMNet-mixed60.98 34061.61 34059.09 35872.88 36745.05 37074.70 31346.61 38426.20 38065.34 36190.32 19855.46 30163.12 37141.72 36981.30 34569.09 367
tpm268.45 31466.83 32173.30 30378.93 32748.50 35779.76 24371.76 34347.50 35369.92 34583.60 30142.07 36388.40 25148.44 35279.51 34883.01 318
NP-MVS91.95 11074.55 12390.17 204
EG-PatchMatch MVS84.08 14084.11 14283.98 15592.22 10272.61 14082.20 21687.02 21872.63 18188.86 12191.02 17678.52 13491.11 18773.41 18091.09 24588.21 256
tpm cat166.76 32265.21 32971.42 31477.09 33750.62 35278.01 26973.68 33044.89 36268.64 34879.00 34445.51 34582.42 31049.91 34570.15 37181.23 340
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9288.19 3196.29 487.61 1598.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
CostFormer69.98 30668.68 31373.87 29977.14 33650.72 35179.26 25274.51 32151.94 33970.97 34284.75 29045.16 35187.49 26055.16 32179.23 35183.40 311
CR-MVSNet74.00 27173.04 27476.85 27979.58 31762.64 24282.58 20076.90 30550.50 34975.72 31392.38 14048.07 32984.07 30068.72 22882.91 33383.85 304
JIA-IIPM69.41 31066.64 32477.70 26773.19 36471.24 16075.67 30365.56 36370.42 20765.18 36292.97 12233.64 37883.06 30553.52 32969.61 37478.79 352
Patchmtry76.56 24677.46 23073.83 30079.37 32246.60 36682.41 20776.90 30573.81 15885.56 18692.38 14048.07 32983.98 30163.36 26995.31 14990.92 207
PatchT70.52 29972.76 27863.79 34779.38 32133.53 38277.63 27665.37 36473.61 16271.77 33792.79 13044.38 35575.65 33464.53 26385.37 31182.18 327
tpmrst66.28 32466.69 32365.05 34472.82 36839.33 37778.20 26870.69 34953.16 33067.88 35280.36 33548.18 32874.75 33658.13 30270.79 37081.08 341
BH-w/o76.57 24576.07 24678.10 25986.88 23165.92 20977.63 27686.33 22465.69 25580.89 26379.95 33868.97 22490.74 20053.01 33385.25 31377.62 354
tpm67.95 31568.08 31667.55 33578.74 32843.53 37475.60 30467.10 36154.92 32272.23 33588.10 23442.87 36275.97 33252.21 33580.95 34783.15 316
DELS-MVS81.44 18381.25 18582.03 19784.27 27362.87 23876.47 29492.49 9570.97 20281.64 25583.83 29975.03 17092.70 14474.29 16492.22 22890.51 221
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned80.96 18980.99 18980.84 21888.55 19468.23 18580.33 23788.46 19172.79 17986.55 16586.76 25974.72 17791.77 17161.79 28188.99 27382.52 324
RPMNet78.88 21878.28 22580.68 22279.58 31762.64 24282.58 20094.16 2774.80 14875.72 31392.59 13448.69 32695.56 3873.48 17982.91 33383.85 304
MVSTER77.09 23875.70 24981.25 21075.27 35461.08 26277.49 28085.07 24460.78 29086.55 16588.68 22743.14 36190.25 21073.69 17790.67 25992.42 161
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 8887.50 14592.38 14081.42 11193.28 12783.07 6997.24 7791.67 191
GBi-Net82.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
PVSNet_Blended_VisFu81.55 18280.49 19584.70 14091.58 12573.24 13184.21 15491.67 11862.86 27180.94 26287.16 25367.27 23092.87 14269.82 21388.94 27587.99 260
PVSNet_BlendedMVS78.80 22177.84 22881.65 20684.43 26763.41 23079.49 24990.44 15161.70 28175.43 31687.07 25669.11 22291.44 17760.68 28992.24 22690.11 230
UnsupCasMVSNet_eth71.63 29172.30 28469.62 32476.47 34352.70 33670.03 34080.97 28559.18 30079.36 28388.21 23360.50 26369.12 34958.33 30177.62 35987.04 271
UnsupCasMVSNet_bld69.21 31169.68 30567.82 33479.42 32051.15 34867.82 34875.79 31254.15 32577.47 30185.36 28259.26 27570.64 34448.46 35179.35 35081.66 332
PVSNet_Blended76.49 24775.40 25179.76 23384.43 26763.41 23075.14 31090.44 15157.36 31375.43 31678.30 34969.11 22291.44 17760.68 28987.70 29284.42 297
FMVSNet572.10 28771.69 28773.32 30281.57 29653.02 33376.77 28878.37 29863.31 26776.37 30491.85 15336.68 37378.98 32247.87 35492.45 22087.95 261
test182.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
new_pmnet55.69 34657.66 34749.76 36275.47 35230.59 38359.56 36451.45 38143.62 36762.49 36975.48 36340.96 36549.15 38137.39 37572.52 36669.55 366
FMVSNet378.80 22178.55 22179.57 23782.89 28956.89 30981.76 21885.77 23469.04 22286.00 17790.44 19651.75 31690.09 22165.95 24693.34 20191.72 188
dp60.70 34160.29 34461.92 35172.04 37138.67 37970.83 33464.08 36551.28 34260.75 37177.28 35536.59 37471.58 34347.41 35562.34 37875.52 358
FMVSNet281.31 18481.61 18080.41 22586.38 23658.75 29483.93 16486.58 22372.43 18387.65 14292.98 12063.78 24990.22 21366.86 23893.92 19192.27 171
FMVSNet184.55 12685.45 11681.85 20190.27 15861.05 26386.83 11788.27 19878.57 10789.66 10995.64 3075.43 16690.68 20269.09 22195.33 14693.82 109
N_pmnet70.20 30168.80 31274.38 29880.91 30484.81 3959.12 36776.45 31055.06 32175.31 32082.36 31755.74 29954.82 37747.02 35687.24 29583.52 308
cascas76.29 25074.81 25680.72 22184.47 26662.94 23673.89 32187.34 20755.94 31875.16 32176.53 36163.97 24791.16 18565.00 25690.97 25088.06 258
BH-RMVSNet80.53 19580.22 20181.49 20887.19 22166.21 20677.79 27486.23 22774.21 15483.69 21988.50 22973.25 19690.75 19963.18 27187.90 28887.52 266
UGNet82.78 16381.64 17986.21 10986.20 24676.24 11386.86 11585.68 23577.07 12373.76 32892.82 12769.64 21891.82 17069.04 22393.69 19690.56 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS67.91 31668.35 31466.58 33880.82 30748.12 35965.96 35372.60 33553.67 32771.20 34081.68 32458.97 27769.06 35048.57 35081.67 34082.55 322
XXY-MVS74.44 26976.19 24469.21 32784.61 26552.43 33871.70 33177.18 30460.73 29180.60 26790.96 18075.44 16569.35 34856.13 31288.33 28185.86 283
EC-MVSNet88.01 7588.32 7287.09 9189.28 17572.03 15190.31 5496.31 380.88 7785.12 19189.67 21184.47 7095.46 4682.56 7596.26 11193.77 113
sss66.92 31867.26 31865.90 34077.23 33551.10 35064.79 35571.72 34452.12 33870.13 34480.18 33657.96 28465.36 36750.21 34381.01 34681.25 338
Test_1112_low_res73.90 27273.08 27376.35 28390.35 15655.95 31273.40 32586.17 22850.70 34773.14 33085.94 27158.31 28185.90 28456.51 30983.22 33087.20 270
1112_ss74.82 26473.74 26578.04 26189.57 16860.04 27576.49 29387.09 21754.31 32473.66 32979.80 33960.25 26786.76 27258.37 29984.15 32687.32 269
ab-mvs-re6.65 3528.87 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38879.80 3390.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs79.67 21380.56 19376.99 27488.48 19556.93 30784.70 14586.06 22968.95 22380.78 26693.08 11575.30 16884.62 29656.78 30790.90 25289.43 238
TR-MVS76.77 24375.79 24779.72 23486.10 25065.79 21077.14 28283.02 26765.20 26181.40 25882.10 31866.30 23490.73 20155.57 31685.27 31282.65 319
MDTV_nov1_ep13_2view27.60 38670.76 33546.47 35761.27 37045.20 34949.18 34883.75 306
MDTV_nov1_ep1368.29 31578.03 32943.87 37374.12 31772.22 33952.17 33567.02 35585.54 27545.36 34780.85 31655.73 31384.42 324
MIMVSNet183.63 15084.59 13180.74 21994.06 5362.77 24082.72 19684.53 25577.57 11890.34 9295.92 2476.88 16085.83 28661.88 28097.42 7293.62 120
MIMVSNet71.09 29571.59 28869.57 32587.23 21950.07 35478.91 25871.83 34260.20 29771.26 33991.76 15855.08 30576.09 33141.06 37087.02 29882.54 323
IterMVS-LS84.73 12284.98 12383.96 15687.35 21763.66 22883.25 18289.88 17076.06 12989.62 11092.37 14373.40 19492.52 14878.16 12394.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet77.32 23675.40 25183.06 17789.00 18272.48 14477.90 27282.17 27560.81 28978.94 28883.49 30359.30 27488.76 24854.64 32592.37 22187.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref95.74 138
IterMVS76.91 24076.34 24378.64 24880.91 30464.03 22576.30 29579.03 29564.88 26383.11 22989.16 22059.90 27084.46 29768.61 22985.15 31487.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 14183.22 15386.52 10191.73 12075.27 11983.23 18492.40 9672.04 19282.04 24588.33 23177.91 14193.95 9866.17 24595.12 15690.34 225
MVS_111021_LR84.28 13383.76 14885.83 11989.23 17783.07 5180.99 23083.56 26372.71 18086.07 17689.07 22281.75 10886.19 27977.11 13993.36 20088.24 255
DP-MVS88.60 6689.01 6387.36 9091.30 13477.50 9487.55 10592.97 8387.95 2089.62 11092.87 12684.56 6893.89 10077.65 13096.62 9490.70 214
ACMMP++97.35 73
HQP-MVS84.61 12484.06 14386.27 10691.19 13770.66 16384.77 14292.68 9173.30 16980.55 26990.17 20472.10 20694.61 7377.30 13794.47 17993.56 124
QAPM82.59 16682.59 16882.58 19086.44 23466.69 20089.94 6290.36 15467.97 23584.94 19692.58 13672.71 20192.18 15870.63 20687.73 29188.85 251
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9787.35 10892.09 10478.87 10284.27 21294.05 8878.35 13793.65 10780.54 9791.58 23992.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet61.16 33862.92 33555.87 35979.09 32435.34 38171.83 33057.98 37746.56 35659.05 37591.14 17249.95 32476.43 33038.74 37371.92 36955.84 378
IS-MVSNet86.66 9286.82 9686.17 11192.05 10866.87 19991.21 3988.64 19086.30 2889.60 11392.59 13469.22 22194.91 6573.89 17297.89 4996.72 26
HyFIR lowres test75.12 25972.66 27982.50 19391.44 13365.19 21572.47 32887.31 20846.79 35480.29 27384.30 29552.70 31192.10 16251.88 34186.73 29990.22 226
EPMVS62.47 33262.63 33662.01 34970.63 37338.74 37874.76 31252.86 38053.91 32667.71 35480.01 33739.40 36766.60 36255.54 31768.81 37680.68 345
PAPM_NR83.23 15883.19 15583.33 17190.90 14665.98 20888.19 9790.78 14278.13 11280.87 26487.92 23973.49 19192.42 15070.07 21088.40 28091.60 193
TAMVS78.08 22976.36 24283.23 17390.62 15272.87 13379.08 25680.01 29161.72 28081.35 25986.92 25863.96 24888.78 24750.61 34293.01 21188.04 259
PAPR78.84 21978.10 22781.07 21485.17 25960.22 27482.21 21490.57 14862.51 27375.32 31984.61 29274.99 17192.30 15659.48 29588.04 28790.68 215
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13379.26 9689.68 10794.81 5582.44 9087.74 25776.54 14588.74 27896.61 29
Vis-MVSNet (Re-imp)77.82 23177.79 22977.92 26388.82 18551.29 34783.28 18071.97 34174.04 15582.23 24189.78 20957.38 28889.41 23657.22 30695.41 14393.05 140
test_040288.65 6589.58 5685.88 11792.55 9072.22 14984.01 16089.44 18088.63 1694.38 1795.77 2686.38 5693.59 11479.84 10295.21 15191.82 186
MVS_111021_HR84.63 12384.34 14085.49 12690.18 16075.86 11679.23 25587.13 21373.35 16685.56 18689.34 21683.60 8090.50 20776.64 14394.05 18990.09 231
CSCG86.26 9786.47 9885.60 12390.87 14774.26 12587.98 10091.85 11380.35 8189.54 11688.01 23579.09 13192.13 15975.51 15495.06 15890.41 223
PatchMatch-RL74.48 26773.22 27278.27 25787.70 21085.26 3475.92 30270.09 35064.34 26576.09 30981.25 32765.87 23978.07 32553.86 32783.82 32771.48 363
API-MVS82.28 17082.61 16781.30 20986.29 24269.79 16988.71 9087.67 20578.42 10982.15 24384.15 29877.98 13991.59 17365.39 25392.75 21682.51 325
Test By Simon79.09 131
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4198.48 1797.22 19
USDC76.63 24476.73 24076.34 28483.46 28057.20 30680.02 24088.04 20252.14 33783.65 22091.25 16863.24 25286.65 27354.66 32494.11 18785.17 289
EPP-MVSNet85.47 10885.04 12286.77 9791.52 13069.37 17591.63 3687.98 20381.51 6987.05 15591.83 15566.18 23695.29 5270.75 20396.89 8595.64 46
PMMVS61.65 33560.38 34265.47 34365.40 38469.26 17763.97 35861.73 37036.80 37960.11 37368.43 37259.42 27366.35 36348.97 34978.57 35560.81 374
PAPM71.77 28970.06 30276.92 27686.39 23553.97 32576.62 29286.62 22253.44 32863.97 36884.73 29157.79 28792.34 15439.65 37281.33 34484.45 296
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3487.35 2298.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA83.55 15383.10 15884.90 13289.34 17483.87 4684.54 15088.77 18779.09 9883.54 22388.66 22874.87 17281.73 31266.84 24092.29 22489.11 244
PatchmatchNetpermissive69.71 30868.83 31172.33 31277.66 33253.60 32879.29 25169.99 35157.66 31072.53 33482.93 31046.45 33480.08 32160.91 28872.09 36883.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.38 9585.81 11088.08 8188.44 19777.34 9889.35 8093.05 7773.15 17484.76 19987.70 24278.87 13394.18 8980.67 9596.29 10792.73 148
F-COLMAP84.97 11983.42 15089.63 5592.39 9483.40 4888.83 8791.92 11073.19 17380.18 27789.15 22177.04 15293.28 12765.82 25092.28 22592.21 174
ANet_high83.17 16085.68 11375.65 29081.24 30045.26 36979.94 24192.91 8483.83 4491.33 7496.88 1080.25 12485.92 28368.89 22495.89 12895.76 43
wuyk23d75.13 25879.30 21162.63 34875.56 35075.18 12080.89 23173.10 33475.06 14794.76 1295.32 3587.73 4052.85 37834.16 37797.11 8059.85 375
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10793.17 7076.02 13188.64 12691.22 16984.24 7393.37 12577.97 12897.03 8395.52 49
MG-MVS80.32 20380.94 19078.47 25288.18 20152.62 33782.29 21085.01 24872.01 19379.24 28692.54 13769.36 22093.36 12670.65 20589.19 27289.45 236
AdaColmapbinary83.66 14983.69 14983.57 16690.05 16472.26 14886.29 12890.00 16878.19 11181.65 25487.16 25383.40 8294.24 8661.69 28294.76 17484.21 299
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15881.56 6890.02 9891.20 17182.40 9290.81 19873.58 17894.66 17594.56 76
DeepMVS_CXcopyleft24.13 36532.95 38729.49 38421.63 39012.07 38137.95 38245.07 38030.84 38019.21 38417.94 38333.06 38323.69 380
TinyColmap81.25 18582.34 17277.99 26285.33 25760.68 27182.32 20988.33 19671.26 19986.97 15692.22 14877.10 15186.98 26762.37 27495.17 15386.31 278
MAR-MVS80.24 20578.74 21984.73 13886.87 23278.18 8585.75 13287.81 20465.67 25677.84 29578.50 34873.79 18690.53 20661.59 28490.87 25385.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS82.75 16481.93 17685.19 12882.08 29180.15 7085.53 13588.76 18868.01 23385.58 18587.75 24171.80 21186.85 26974.02 17093.87 19288.58 253
MSDG80.06 21079.99 20780.25 22783.91 27768.04 19077.51 27989.19 18277.65 11681.94 24683.45 30476.37 16286.31 27763.31 27086.59 30186.41 276
LS3D90.60 3090.34 4791.38 2489.03 18184.23 4593.58 694.68 1690.65 790.33 9393.95 9784.50 6995.37 5080.87 9195.50 14294.53 79
CLD-MVS83.18 15982.64 16684.79 13589.05 18067.82 19277.93 27192.52 9468.33 22985.07 19281.54 32582.06 10092.96 13769.35 21697.91 4893.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS72.29 28672.00 28573.14 30488.63 19185.00 3674.65 31467.39 35671.94 19477.80 29787.66 24350.48 32175.83 33349.95 34479.51 34858.58 377
Gipumacopyleft84.44 12886.33 10078.78 24584.20 27473.57 12889.55 7290.44 15184.24 4184.38 20494.89 4976.35 16380.40 31976.14 14996.80 9082.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015