This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
pmmvs686.52 9688.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18255.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
K. test v385.14 11884.73 13086.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high83.17 16485.68 11675.65 30081.24 32245.26 38379.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
VDDNet84.35 13485.39 12181.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2291.09 4052.23 40795.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
MIMVSNet183.63 15484.59 13580.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Baseline_NR-MVSNet84.00 14785.90 11078.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
GBi-Net82.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 13085.45 12081.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
TransMVSNet (Re)84.02 14685.74 11578.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24173.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
testf189.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs183.69 15284.95 12879.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
Anonymous2024052986.20 10287.13 8883.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
bld_raw_dy_0_6484.85 12484.44 13986.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
Gipumacopyleft84.44 13286.33 10278.78 25584.20 28573.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33676.14 15996.80 9082.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24386.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9491.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28896.61 29
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
FC-MVSNet-test85.93 10787.05 9182.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
SSC-MVS77.55 24481.64 18465.29 36490.46 15520.33 40973.56 33568.28 36985.44 3288.18 13994.64 6070.93 22681.33 32971.25 20892.03 23494.20 92
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
LCM-MVSNet-Re83.48 15885.06 12578.75 25685.94 25955.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
v1086.54 9587.10 8984.84 13788.16 20763.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
v886.22 10186.83 9684.36 15187.82 21162.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
VPA-MVSNet83.47 15984.73 13079.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
lessismore_v085.95 11891.10 14270.99 17270.91 36091.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
VDD-MVS84.23 14084.58 13683.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
test250674.12 28273.39 28276.28 29591.85 11544.20 38684.06 16748.20 40572.30 19381.90 25994.20 8127.22 40689.77 23164.81 27196.02 12194.87 67
test111178.53 23578.85 22877.56 27892.22 10247.49 37282.61 20869.24 36772.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
ECVR-MVScopyleft78.44 23678.63 23277.88 27491.85 11548.95 36683.68 18069.91 36472.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
tfpnnormal81.79 18982.95 16478.31 26488.93 18755.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030486.35 9885.92 10987.66 8889.21 18173.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
FIs85.35 11486.27 10382.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD_test188.40 6787.91 7589.88 4789.50 17386.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
MM87.64 8387.15 8789.09 6589.51 17276.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052180.18 21781.25 19576.95 28583.15 30560.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34873.71 18697.55 6792.56 166
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15187.09 23165.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVS76.06 26280.01 21864.19 36789.96 16820.58 40872.18 34468.19 37083.21 5486.46 17693.49 11270.19 22978.97 34365.96 25790.46 26993.02 149
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
KD-MVS_self_test81.93 18683.14 16178.30 26584.75 27552.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator80.37 784.80 12584.71 13385.06 13586.36 24674.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11692.20 10265.94 25589.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
ab-mvs79.67 22380.56 20476.99 28488.48 19956.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
SDMVSNet81.90 18883.17 16078.10 26988.81 19062.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33470.06 22295.03 16091.21 211
sd_testset79.95 22281.39 19375.64 30188.81 19058.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34758.62 31295.03 16091.21 211
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
FMVSNet281.31 19481.61 18680.41 23586.38 24358.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 17075.67 31465.56 38070.42 21165.18 38492.97 12633.64 39383.06 31953.52 34569.61 39678.79 374
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
VPNet80.25 21481.68 18375.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
mvs_anonymous78.13 23878.76 23076.23 29779.24 34550.31 36378.69 27284.82 25861.60 29783.09 24292.82 13173.89 19387.01 26968.33 24486.41 31991.37 208
UGNet82.78 16781.64 18486.21 11386.20 25376.24 11786.86 11785.68 24077.07 12673.76 34392.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28665.37 38173.61 16571.77 35292.79 13444.38 36975.65 35564.53 27685.37 32982.18 349
FA-MVS(test-final)83.13 16583.02 16383.43 17786.16 25666.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
LFMVS80.15 21880.56 20478.89 25389.19 18255.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
casdiffmvspermissive85.21 11685.85 11283.31 18186.17 25462.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPMNet78.88 22878.28 23780.68 23279.58 33962.64 25282.58 21094.16 2774.80 15175.72 32792.59 13848.69 34095.56 3973.48 18982.91 35583.85 326
IS-MVSNet86.66 9486.82 9786.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
QAPM82.59 17082.59 17282.58 20086.44 24166.69 21089.94 6290.36 15767.97 24084.94 20292.58 14072.71 21092.18 15970.63 21787.73 30288.85 264
MG-MVS80.32 21380.94 20078.47 26288.18 20552.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28289.45 249
MVS_Test82.47 17383.22 15780.22 23882.62 31057.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30192.40 173
dcpmvs_284.23 14085.14 12481.50 21788.61 19661.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25282.58 21076.90 31550.50 37175.72 32792.38 14448.07 34384.07 31468.72 23982.91 35583.85 326
Patchmtry76.56 25777.46 24273.83 31079.37 34446.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31563.36 28395.31 15090.92 218
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
IterMVS-LS84.73 12684.98 12783.96 16287.35 22263.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13591.82 11665.33 26888.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521180.51 20681.19 19878.49 26188.48 19957.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
TinyColmap81.25 19582.34 17677.99 27285.33 26660.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 295
baseline85.20 11785.93 10883.02 18886.30 24862.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
DU-MVS86.80 9186.99 9286.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
NR-MVSNet86.00 10586.22 10485.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20884.42 28068.22 19688.50 9589.48 18266.92 25081.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 284
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27776.37 31791.85 15836.68 38778.98 34247.87 37392.45 22487.95 276
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 329
EPP-MVSNet85.47 11285.04 12686.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14391.39 12865.32 26987.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
MIMVSNet71.09 30871.59 30069.57 34087.23 22450.07 36478.91 26871.83 35360.20 31571.26 35491.76 16455.08 31976.09 35241.06 38987.02 31282.54 345
testdata79.54 24892.87 8272.34 15480.14 29659.91 31685.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 365
CDPH-MVS86.17 10485.54 11888.05 8492.25 10075.45 12283.85 17492.01 10765.91 25786.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14687.68 21573.35 13486.14 13177.70 30761.64 29685.02 19891.62 16777.75 14586.24 28582.79 8187.07 30993.91 109
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
WR-MVS83.56 15684.40 14281.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21180.28 28891.50 17064.21 25974.72 35846.96 37794.58 17887.82 280
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
v2v48284.09 14384.24 14583.62 17287.13 22761.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
FE-MVS79.98 22178.86 22783.36 17986.47 24066.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16486.87 23771.57 16785.19 14677.42 31062.27 29084.47 21191.33 17476.43 16785.91 29383.14 7287.14 30794.33 90
PC_three_145258.96 32090.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 25088.04 20552.14 35983.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 307
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 18049.95 33876.43 35138.74 39371.92 39155.84 400
test_fmvsm_n_192083.60 15582.89 16585.74 12485.22 26877.74 9584.12 16590.48 15259.87 31786.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
新几何182.95 19193.96 5578.56 8480.24 29555.45 34083.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 352
EG-PatchMatch MVS84.08 14484.11 14683.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
v114484.54 13184.72 13284.00 16087.67 21662.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
TEST992.34 9679.70 7483.94 17090.32 15865.41 26784.49 20990.97 18682.03 10493.63 110
train_agg85.98 10685.28 12388.07 8392.34 9679.70 7483.94 17090.32 15865.79 25884.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
test_892.09 10678.87 8183.82 17590.31 16065.79 25884.36 21390.96 18881.93 10693.44 123
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30980.60 28090.96 18875.44 17269.35 37056.13 32688.33 29285.86 300
v119284.57 12984.69 13484.21 15787.75 21362.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
NCCC87.36 8486.87 9588.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15486.56 23973.35 13485.46 14077.30 31161.81 29284.51 20890.88 19277.36 15186.21 28782.72 8286.97 31493.38 133
test_fmvsmvis_n_192085.22 11585.36 12284.81 13885.80 26176.13 11985.15 14792.32 9961.40 29891.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
test22293.31 7176.54 10979.38 26077.79 30652.59 35482.36 25190.84 19466.83 24591.69 24181.25 360
V4283.47 15983.37 15683.75 16883.16 30463.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
114514_t83.10 16682.54 17384.77 14192.90 8169.10 19286.65 12490.62 15054.66 34581.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
VNet79.31 22480.27 20976.44 29287.92 21053.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 31060.38 30593.98 19490.97 216
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16886.02 25871.56 16884.73 15277.11 31462.44 28784.00 22590.68 19976.42 16885.89 29583.14 7287.11 30893.81 116
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28282.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 303
v14882.31 17482.48 17481.81 21485.59 26359.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
v124084.30 13684.51 13883.65 17187.65 21761.26 27082.85 20491.54 12267.94 24190.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
h-mvs3384.25 13882.76 16788.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
v14419284.24 13984.41 14183.71 17087.59 21961.57 26682.95 20191.03 13867.82 24489.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
FMVSNet378.80 23178.55 23379.57 24782.89 30956.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17383.94 28873.90 13183.35 18886.10 23358.97 31983.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
v192192084.23 14084.37 14383.79 16687.64 21861.71 26582.91 20291.20 13467.94 24190.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20955.46 31563.12 39341.72 38881.30 36769.09 389
pmmvs-eth3d78.42 23777.04 24882.57 20287.44 22174.41 12880.86 24279.67 29855.68 33984.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 278
GeoE85.45 11385.81 11384.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
tttt051781.07 19779.58 22085.52 12888.99 18666.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
IterMVS-SCA-FT80.64 20479.41 22184.34 15383.93 28969.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 32090.22 237
PM-MVS80.20 21679.00 22583.78 16788.17 20686.66 1581.31 23466.81 37869.64 22088.33 13590.19 21364.58 25683.63 31871.99 20690.03 27281.06 365
NP-MVS91.95 11074.55 12790.17 215
HQP-MVS84.61 12884.06 14786.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
fmvsm_l_conf0.5_n_a81.46 19280.87 20283.25 18283.73 29373.21 13983.00 19985.59 24258.22 32582.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 25181.84 26189.93 21872.08 21866.92 38346.05 38092.54 22387.01 288
PCF-MVS74.62 1582.15 18080.92 20185.84 12289.43 17572.30 15580.53 24491.82 11657.36 33387.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
patch_mono-278.89 22779.39 22277.41 28184.78 27368.11 19875.60 31583.11 27260.96 30679.36 29689.89 22075.18 17672.97 35973.32 19292.30 22691.15 213
Vis-MVSNet (Re-imp)77.82 24177.79 24177.92 27388.82 18951.29 35783.28 18971.97 35274.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
MCST-MVS84.36 13383.93 15085.63 12691.59 12271.58 16683.52 18392.13 10461.82 29183.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
EC-MVSNet88.01 7588.32 7287.09 9389.28 17872.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19279.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final80.36 21178.88 22684.79 13986.29 24966.36 21586.95 11586.25 23068.16 23782.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
iter_conf0578.81 23077.35 24583.21 18482.98 30860.75 28084.09 16688.34 19863.12 27984.25 22289.48 22531.41 39594.51 8176.64 15395.83 13294.38 88
MSLP-MVS++85.00 12286.03 10781.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 312
MVS_111021_HR84.63 12784.34 14485.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.38 24586.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.37 24686.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23576.30 30679.03 30164.88 27283.11 24089.16 23259.90 28484.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP84.97 12383.42 15489.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
MVS_111021_LR84.28 13783.76 15285.83 12389.23 18083.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22866.58 37475.67 32473.15 17788.86 12288.99 23566.94 24381.23 33064.71 27288.22 29791.64 203
EPNet80.37 21078.41 23686.23 11176.75 36273.28 13687.18 11177.45 30976.24 13168.14 37188.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120671.38 30671.88 29869.88 33786.31 24754.37 33370.39 35874.62 32952.57 35576.73 31588.76 23759.94 28372.06 36144.35 38493.23 21083.23 337
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13882.43 27939.76 39785.64 18988.76 23744.71 36887.88 26073.86 18385.88 32684.16 322
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27277.49 29085.07 25060.78 30886.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
CNLPA83.55 15783.10 16284.90 13689.34 17783.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32766.84 25192.29 22889.11 257
BH-RMVSNet80.53 20580.22 21281.49 21887.19 22666.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29987.52 282
CL-MVSNet_self_test76.81 25377.38 24475.12 30486.90 23551.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 33155.35 33394.90 16693.12 146
DP-MVS Recon84.05 14583.22 15786.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27764.69 37885.04 25263.98 27683.20 23988.22 24456.67 30678.79 34573.22 19393.12 21292.78 157
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31879.36 29688.21 24560.50 27769.12 37158.33 31577.62 38187.04 287
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24642.87 37675.97 35352.21 35280.95 36983.15 338
CSCG86.26 9986.47 10085.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
alignmvs83.94 14983.98 14983.80 16587.80 21267.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
MVP-Stereo75.81 26573.51 28182.71 19789.35 17673.62 13280.06 24885.20 24760.30 31273.96 34187.94 24957.89 30089.45 23752.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 28080.97 27387.93 25062.83 27071.90 36255.24 33495.01 16392.00 192
PAPM_NR83.23 16283.19 15983.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 29091.60 204
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18478.93 26784.88 25746.67 37787.08 15787.84 25250.44 33671.62 36477.42 14688.53 28990.72 223
LF4IMVS82.75 16881.93 18085.19 13282.08 31180.15 7085.53 13988.76 19168.01 23885.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
PHI-MVS86.38 9785.81 11388.08 8288.44 20177.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
FPMVS72.29 29872.00 29773.14 31588.63 19585.00 3674.65 32667.39 37271.94 19877.80 31087.66 25550.48 33575.83 35449.95 36179.51 37058.58 399
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20381.21 23782.18 28050.78 36876.50 31687.66 25555.20 31782.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26373.50 33684.80 25957.61 33182.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
canonicalmvs85.50 11186.14 10683.58 17487.97 20867.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
CANet83.79 15182.85 16686.63 10286.17 25472.21 15883.76 17891.43 12577.24 12574.39 33987.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24278.71 25784.39 28161.15 27181.18 23882.52 27762.45 28683.34 23787.37 26066.20 24788.66 25364.69 27385.02 33686.32 294
thisisatest053079.07 22577.33 24684.26 15687.13 22764.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28890.28 16466.65 25382.40 25087.33 26273.50 19787.35 26677.98 13789.62 27793.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8786.43 10188.71 7289.46 17477.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
eth_miper_zixun_eth80.84 20080.22 21282.71 19781.41 32060.98 27677.81 28390.14 16867.31 24886.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
PVSNet_Blended_VisFu81.55 19180.49 20684.70 14491.58 12573.24 13884.21 16291.67 12062.86 28180.94 27587.16 26567.27 24292.87 14369.82 22488.94 28587.99 275
AdaColmapbinary83.66 15383.69 15383.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 321
c3_l81.64 19081.59 18781.79 21580.86 32859.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27863.41 24079.49 25990.44 15461.70 29575.43 33087.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28987.05 26952.83 32463.09 39451.92 35772.44 38979.84 372
TAMVS78.08 23976.36 25483.23 18390.62 15272.87 14179.08 26680.01 29761.72 29481.35 27186.92 27063.96 26188.78 25150.61 35993.01 21588.04 274
BH-untuned80.96 19980.99 19980.84 22888.55 19868.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28382.52 346
test_yl78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16576.23 30877.59 30852.83 35377.73 31286.38 27456.35 31084.97 30457.72 31987.05 31085.51 304
thres100view90075.45 26775.05 26776.66 29187.27 22351.88 35281.07 23973.26 34375.68 14183.25 23886.37 27545.54 35788.80 24851.98 35490.99 25389.31 253
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21172.29 34369.16 36857.70 32986.76 16386.33 27645.79 35682.59 32269.63 22590.65 26781.54 356
PLCcopyleft73.85 1682.09 18180.31 20887.45 9090.86 14880.29 6985.88 13390.65 14868.17 23676.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres600view775.97 26375.35 26577.85 27687.01 23351.84 35380.45 24573.26 34375.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25274.00 33465.93 25678.81 30286.28 27956.36 30981.63 32856.63 32279.04 37687.87 279
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22781.96 28256.76 33769.57 36686.21 28060.03 28284.83 30649.58 36582.65 35885.11 308
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17981.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
hse-mvs283.47 15981.81 18288.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15755.95 32273.40 33886.17 23250.70 36973.14 34585.94 28358.31 29585.90 29456.51 32383.22 35287.20 286
DPM-MVS80.10 21979.18 22482.88 19590.71 15169.74 18078.87 27090.84 14360.29 31375.64 32985.92 28467.28 24193.11 13471.24 20991.79 23985.77 301
AUN-MVS81.18 19678.78 22988.39 7790.93 14582.14 5882.51 21483.67 26764.69 27380.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28745.36 36180.85 33255.73 32784.42 345
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16763.08 24568.72 36583.16 27142.99 39175.92 32585.46 28957.22 30485.18 30349.87 36381.67 36286.14 296
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32287.09 15685.40 29159.80 28667.25 38159.66 30883.54 35085.92 299
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32387.10 15585.39 29259.82 28567.32 38059.79 30783.50 35185.96 297
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29355.42 31680.67 33352.86 35087.59 30484.77 311
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31485.36 29459.26 28970.64 36648.46 37079.35 37281.66 354
miper_ehance_all_eth80.34 21280.04 21781.24 22279.82 33858.95 29977.66 28589.66 17765.75 26185.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
cl2278.97 22678.21 23881.24 22277.74 35259.01 29877.46 29187.13 21665.79 25884.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
EI-MVSNet82.61 16982.42 17583.20 18583.25 30163.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18479.02 30237.77 40076.33 31885.10 29649.60 33987.41 26570.54 21877.54 38281.08 363
MVSFormer82.23 17681.57 18984.19 15985.54 26469.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28689.03 261
jason77.42 24675.75 26082.43 20587.10 23069.27 18677.99 28081.94 28351.47 36377.84 30885.07 29960.32 28089.00 24570.74 21589.27 28189.03 261
jason: jason.
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 30153.60 32249.76 40232.68 40289.41 27872.15 384
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26274.51 33151.94 36170.97 35784.75 30245.16 36587.49 26455.16 33579.23 37383.40 333
PAPM71.77 30170.06 31576.92 28686.39 24253.97 33576.62 30286.62 22653.44 35063.97 39084.73 30357.79 30192.34 15539.65 39181.33 36684.45 316
PAPR78.84 22978.10 23981.07 22485.17 26960.22 28482.21 22490.57 15162.51 28375.32 33384.61 30474.99 17892.30 15759.48 30988.04 29890.68 226
tfpn200view974.86 27574.23 27476.74 29086.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25392.66 163
HyFIR lowres test75.12 27172.66 29182.50 20391.44 13365.19 22572.47 34287.31 21146.79 37680.29 28684.30 30752.70 32592.10 16351.88 35886.73 31590.22 237
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19377.07 29484.32 26345.14 38382.89 24484.22 30848.37 34170.36 36773.40 19187.03 31188.52 267
Effi-MVS+83.90 15084.01 14883.57 17587.22 22565.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 30092.17 186
API-MVS82.28 17582.61 17181.30 21986.29 24969.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 347
DELS-MVS81.44 19381.25 19582.03 20784.27 28462.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 19088.29 20069.16 22467.83 37483.72 31260.93 27589.47 23569.22 23089.70 27690.88 219
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25371.76 35447.50 37569.92 36483.60 31342.07 37788.40 25548.44 37179.51 37083.01 340
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 12085.60 26276.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27990.94 217
CDS-MVSNet77.32 24775.40 26383.06 18789.00 18572.48 15277.90 28282.17 28160.81 30778.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG80.06 22079.99 21980.25 23783.91 29068.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31786.41 293
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26971.37 35761.73 29374.93 33683.42 31760.46 27887.01 26958.11 31782.63 36083.88 323
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28472.80 34883.42 31744.89 36759.52 39748.27 37286.45 31881.70 353
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17566.97 37389.73 17442.68 39388.20 13883.04 31943.77 37060.07 39565.35 26786.66 31690.39 235
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 32046.71 34677.26 34942.29 38669.96 39483.46 331
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 32046.71 34663.21 39242.29 38669.96 39483.46 331
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26169.99 36357.66 33072.53 34982.93 32246.45 34880.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32479.32 29882.92 32357.91 29984.26 31265.60 26491.36 24889.56 248
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2430.00 4090.00 41082.82 32481.46 1130.00 4100.00 4090.00 4080.00 406
lupinMVS76.37 26074.46 27282.09 20685.54 26469.26 18776.79 29780.77 29350.68 37076.23 32082.82 32458.69 29388.94 24669.85 22388.77 28688.07 271
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32955.74 31354.82 39947.02 37587.24 30683.52 330
TR-MVS76.77 25475.79 25979.72 24486.10 25765.79 22077.14 29283.02 27365.20 27081.40 27082.10 33066.30 24690.73 20255.57 33085.27 33082.65 341
test_f64.31 35365.85 34359.67 37866.54 40262.24 26257.76 39270.96 35940.13 39584.36 21382.09 33146.93 34551.67 40161.99 29381.89 36165.12 393
testing371.53 30470.79 30673.77 31188.89 18841.86 39376.60 30359.12 39572.83 18180.97 27382.08 33219.80 41187.33 26765.12 26891.68 24292.13 188
Fast-Effi-MVS+81.04 19880.57 20382.46 20487.50 22063.22 24478.37 27789.63 17968.01 23881.87 26082.08 33282.31 9792.65 14767.10 24888.30 29691.51 207
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25475.45 32765.02 27170.26 36281.88 33445.34 36285.68 29858.34 31475.39 38682.08 351
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32789.72 246
patchmatchnet-post81.71 33645.93 35487.01 269
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29169.06 37248.57 36981.67 36282.55 344
CLD-MVS83.18 16382.64 17084.79 13989.05 18367.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25573.82 33477.90 30552.44 35675.92 32581.27 33955.67 31481.75 32655.37 33277.70 38074.94 381
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21485.26 3475.92 31370.09 36264.34 27476.09 32381.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21875.79 32266.49 25458.39 40081.06 34153.68 32185.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 18958.05 32783.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37689.29 27984.32 318
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19683.03 30768.11 19877.09 29376.51 31960.67 31077.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32178.03 30580.51 34756.61 30878.84 34462.20 29086.04 32585.23 306
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27870.69 36153.16 35267.88 37380.36 34848.18 34274.75 35758.13 31670.79 39281.08 363
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 29865.36 38950.21 36081.01 36881.25 360
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38166.60 38455.54 33168.81 39880.68 367
BH-w/o76.57 25676.07 25878.10 26986.88 23665.92 21977.63 28686.33 22865.69 26280.89 27679.95 35168.97 23690.74 20153.01 34985.25 33177.62 376
1112_ss74.82 27673.74 27778.04 27189.57 17060.04 28576.49 30487.09 22054.31 34673.66 34479.80 35260.25 28186.76 27858.37 31384.15 34787.32 285
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
EIA-MVS82.19 17881.23 19785.10 13487.95 20969.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28491.93 195
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32279.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20875.99 31284.21 26543.31 39079.40 29579.39 35643.47 37168.55 37569.05 23384.91 33982.10 350
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25271.89 36338.21 39685.04 33587.69 281
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26451.06 36574.85 33779.10 35855.10 31868.83 37368.86 23679.20 37582.58 343
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27973.68 34044.89 38468.64 36979.00 35945.51 35982.42 32549.91 36270.15 39381.23 362
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24970.38 35977.21 31246.18 38080.46 28578.95 36052.03 32765.53 38865.77 26377.45 38379.95 371
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23361.30 26975.55 31887.12 21961.24 30374.45 33878.79 36177.20 15390.93 19364.62 27584.80 34383.32 335
ETV-MVS84.31 13583.91 15185.52 12888.58 19770.40 17684.50 16093.37 5878.76 10884.07 22478.72 36280.39 12595.13 6073.82 18492.98 21691.04 215
MAR-MVS80.24 21578.74 23184.73 14286.87 23778.18 8885.75 13687.81 20765.67 26377.84 30878.50 36373.79 19490.53 20761.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 24075.14 32190.44 15457.36 33375.43 33078.30 36469.11 23491.44 17860.68 30387.70 30384.42 317
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 22173.98 33183.32 27042.83 39277.77 31178.27 36543.39 37468.50 37668.39 24384.38 34679.15 373
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23570.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32876.08 32477.78 36737.60 38692.12 16265.00 26991.45 24789.35 252
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24770.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23185.92 23846.03 38171.68 35377.54 36968.47 23789.77 23155.70 32985.39 32874.60 382
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28871.18 35677.54 36943.41 37268.47 37740.75 39082.65 35881.35 357
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33264.82 38877.45 37146.02 35188.44 25453.08 34677.83 37888.70 265
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38871.58 36547.41 37462.34 40075.52 380
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21276.69 30080.81 29244.22 38675.43 33077.23 37350.00 33768.59 37466.71 25382.85 35778.52 375
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23161.40 26775.26 32087.13 21661.25 30274.38 34077.22 37476.94 15990.94 19264.63 27484.83 34283.35 334
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19756.95 39342.11 40838.30 39965.69 38177.19 37556.96 30559.35 39846.16 37858.96 40165.93 392
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 26173.94 33276.90 31563.27 27868.63 37076.79 37633.83 39291.84 17059.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28566.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23185.36 24451.68 36273.10 34676.65 37861.45 27385.19 30263.54 28179.21 37482.59 342
cascas76.29 26174.81 26880.72 23184.47 27762.94 24673.89 33387.34 21055.94 33875.16 33576.53 37963.97 26091.16 18665.00 26990.97 25688.06 273
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27569.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23670.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 30168.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 37949.15 40337.39 39772.52 38869.55 388
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33374.77 35645.82 38182.96 35381.60 355
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31144.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31369.52 36773.53 38652.38 32664.40 39144.90 38281.44 36575.76 379
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28865.08 38572.39 38743.41 37269.37 36861.00 30084.89 34081.31 358
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29970.81 35872.36 38961.37 27479.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29970.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17861.16 38581.60 28738.65 39872.87 34769.66 39252.84 32360.04 39656.16 32577.77 37980.68 367
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18763.97 38061.73 39036.80 40160.11 39568.43 39459.42 28766.35 38548.97 36878.57 37760.81 396
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23249.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 31165.62 38267.03 39655.93 31268.23 37832.07 40369.46 39768.17 390
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25258.90 39865.50 39740.48 38066.12 38655.72 32886.25 32262.95 395
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24956.89 40163.33 39840.98 37867.03 38254.79 33786.18 32363.08 394
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32065.91 38735.40 39847.01 40259.25 398
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16455.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3829.21 40721.64 40543.75 4034.57 403
X-MVStestdata85.04 12082.70 16892.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
test_post178.85 2713.13 40545.19 36480.13 33758.11 317
test_post3.10 40645.43 36077.22 350
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
eth-test20.00 414
eth-test0.00 414
IU-MVS94.18 4672.64 14590.82 14456.98 33589.67 10885.78 5097.92 4693.28 137
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
GSMVS83.88 323
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35083.88 323
sam_mvs45.92 355
MTGPAbinary91.81 118
MTMP90.66 4433.14 410
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
旧先验281.73 22956.88 33686.54 17484.90 30572.81 200
新几何281.72 230
无先验82.81 20585.62 24158.09 32691.41 18167.95 24784.48 315
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 415
nn0.00 415
door-mid74.45 332
test1191.46 124
door72.57 347
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36349.18 36683.75 328
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134