This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5596.26 3072.84 2699.38 192.64 1995.93 997.08 10
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7294.37 5272.48 18492.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 24
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 594.44 4671.65 21492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4871.65 21492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 19
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 697.05 776.79 999.11 6
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9897.64 297.94 1
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1293.78 6686.89 689.68 2995.78 4065.94 7099.10 992.99 1693.91 4296.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 994.52 4271.92 20090.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18490.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 30
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1394.83 3084.83 1289.07 3396.80 1970.86 3599.06 1592.64 1995.71 1096.12 39
QAPM79.95 16477.39 19087.64 3489.63 15471.41 2093.30 10793.70 7365.34 29167.39 26691.75 14847.83 27298.96 1657.71 29589.81 9692.54 171
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 3998.91 1796.83 195.06 1696.76 15
DELS-MVS90.05 790.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5694.91 7074.11 1998.91 1787.26 6295.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS84.66 7782.86 10690.06 290.93 12974.56 687.91 27795.54 1368.55 26672.35 20194.71 7559.78 14698.90 1981.29 11394.69 3296.74 16
API-MVS82.28 12280.53 14087.54 4196.13 2270.59 3393.63 9391.04 19165.72 28875.45 16592.83 12456.11 19098.89 2064.10 25889.75 9993.15 153
MAR-MVS84.18 8883.43 9186.44 7396.25 2165.93 14494.28 5894.27 5674.41 14279.16 12395.61 4553.99 21498.88 2169.62 20393.26 5494.50 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS86.83 4086.85 4286.78 6193.47 6265.55 15395.39 3095.10 2271.77 21085.69 5796.52 2362.07 12298.77 2286.06 7495.60 1196.03 42
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1594.64 3984.42 1386.74 4796.20 3266.56 6698.76 2389.03 4894.56 3395.92 45
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1395.72 1087.33 489.60 3096.26 3068.44 4698.74 2495.82 494.72 3195.90 46
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30696.72 894.41 4886.50 890.25 2397.83 175.46 1498.67 2592.78 1895.49 1297.32 6
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8595.24 3394.49 4482.43 2588.90 3496.35 2771.89 3398.63 2688.76 4996.40 696.06 40
CHOSEN 1792x268884.98 7383.45 8989.57 1089.94 14875.14 592.07 15692.32 12681.87 3175.68 16088.27 20460.18 14098.60 2780.46 11890.27 9494.96 83
3Dnovator73.91 682.69 11880.82 13388.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25892.48 13148.42 26598.52 2868.80 21494.40 3595.15 76
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10194.17 6094.15 5968.77 26490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG86.87 3786.26 4688.72 1795.05 3170.79 3193.83 8495.33 1668.48 26877.63 14194.35 8873.04 2498.45 3084.92 8493.71 4796.92 13
DeepC-MVS77.85 385.52 6585.24 6586.37 7688.80 17866.64 12592.15 15093.68 7481.07 4476.91 15193.64 10662.59 11798.44 3185.50 7692.84 5994.03 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.48 287.95 2388.00 2687.79 3195.86 2768.32 7995.74 2194.11 6083.82 1683.49 7796.19 3364.53 8898.44 3183.42 9794.88 2496.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1988.29 2387.67 3393.21 6768.72 7093.85 7994.03 6274.18 14791.74 1196.67 2165.61 7498.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.87.96 2288.37 2286.70 6393.51 6165.32 15795.15 3693.84 6578.17 9385.93 5494.80 7375.80 1398.21 3489.38 4288.78 10496.59 19
DP-MVS Recon82.73 11581.65 12285.98 8597.31 467.06 11495.15 3691.99 14069.08 26176.50 15593.89 10154.48 20998.20 3570.76 19485.66 13792.69 166
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 7193.76 6979.08 8178.88 12893.99 9962.25 12198.15 3685.93 7591.15 8594.15 120
OpenMVScopyleft70.45 1178.54 19175.92 21086.41 7585.93 24771.68 1892.74 12592.51 12366.49 28264.56 28791.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
ZNCC-MVS85.33 6785.08 6886.06 8393.09 7265.65 14993.89 7793.41 8773.75 15879.94 11294.68 7660.61 13798.03 3882.63 10193.72 4694.52 108
test_fmvsm_n_192087.69 2788.50 1985.27 11287.05 22463.55 20993.69 8991.08 18784.18 1490.17 2597.04 867.58 5797.99 3995.72 590.03 9594.26 114
SteuartSystems-ACMMP86.82 4186.90 4086.58 6890.42 13866.38 13296.09 1793.87 6477.73 10084.01 7595.66 4363.39 10597.94 4087.40 6093.55 5095.42 57
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.05 5285.80 5786.80 6091.58 11467.53 10391.79 17193.49 8374.93 13884.61 6795.30 5359.42 15097.92 4186.13 7294.92 1994.94 85
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17494.81 3179.65 6777.87 13894.09 9663.35 10797.90 4279.35 12579.36 19290.74 208
PS-MVSNAJ88.14 1987.61 3089.71 692.06 9776.72 195.75 2093.26 9083.86 1589.55 3196.06 3653.55 21997.89 4391.10 3193.31 5394.54 106
9.1487.63 2993.86 4994.41 5594.18 5772.76 17986.21 5096.51 2466.64 6497.88 4490.08 3894.04 39
GST-MVS84.63 7884.29 7885.66 9992.82 7965.27 15893.04 11593.13 9773.20 16778.89 12594.18 9559.41 15197.85 4581.45 10992.48 6393.86 135
fmvsm_s_conf0.5_n86.39 4686.91 3984.82 12587.36 21763.54 21094.74 5090.02 22782.52 2490.14 2696.92 1362.93 11497.84 4695.28 882.26 16493.07 157
SF-MVS87.03 3687.09 3686.84 5792.70 8367.45 10693.64 9293.76 6970.78 23986.25 4996.44 2666.98 6197.79 4788.68 5094.56 3395.28 70
EI-MVSNet-UG-set83.14 10982.96 10283.67 16992.28 9163.19 21891.38 19094.68 3779.22 7676.60 15393.75 10262.64 11697.76 4878.07 13878.01 20390.05 217
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13582.95 29463.48 21294.03 7089.46 24681.69 3389.86 2796.74 2061.85 12597.75 4994.74 982.01 17092.81 165
xiu_mvs_v2_base87.92 2487.38 3489.55 1191.41 12176.43 395.74 2193.12 9883.53 1889.55 3195.95 3853.45 22397.68 5091.07 3292.62 6094.54 106
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13285.73 25063.58 20793.79 8589.32 25281.42 3990.21 2496.91 1462.41 11997.67 5194.48 1080.56 18392.90 163
HFP-MVS84.73 7684.40 7785.72 9793.75 5365.01 16693.50 10093.19 9472.19 19479.22 12294.93 6859.04 15597.67 5181.55 10792.21 6594.49 111
IB-MVS77.80 482.18 12380.46 14287.35 4589.14 17070.28 3795.59 2695.17 2178.85 8470.19 22585.82 24270.66 3697.67 5172.19 18266.52 28894.09 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
APDe-MVScopyleft87.54 2887.84 2786.65 6496.07 2366.30 13594.84 4793.78 6669.35 25588.39 3596.34 2867.74 5697.66 5490.62 3693.44 5196.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+73.60 782.10 12780.60 13986.60 6690.89 13166.80 12295.20 3493.44 8574.05 14967.42 26492.49 13049.46 25597.65 5570.80 19391.68 7595.33 64
SD-MVS87.49 2987.49 3287.50 4293.60 5668.82 6893.90 7692.63 11976.86 11287.90 3795.76 4166.17 6797.63 5689.06 4791.48 7996.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WTY-MVS86.32 4785.81 5687.85 2992.82 7969.37 5695.20 3495.25 1782.71 2281.91 8894.73 7467.93 5597.63 5679.55 12482.25 16596.54 22
PAPR85.15 7084.47 7587.18 4896.02 2568.29 8091.85 16993.00 10376.59 11979.03 12495.00 6561.59 12797.61 5878.16 13789.00 10395.63 52
test_fmvsmvis_n_192083.80 9783.48 8784.77 12982.51 29663.72 20091.37 19183.99 34581.42 3977.68 14095.74 4258.37 16097.58 5993.38 1486.87 12393.00 160
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20295.04 4195.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 36
fmvsm_s_conf0.1_n_a84.76 7584.84 7384.53 14180.23 32063.50 21192.79 12388.73 28180.46 5289.84 2896.65 2260.96 13397.57 6193.80 1380.14 18592.53 172
test1287.09 5194.60 3668.86 6692.91 10582.67 8565.44 7597.55 6293.69 4894.84 90
region2R84.36 8184.03 8085.36 10893.54 5964.31 18593.43 10592.95 10472.16 19778.86 12994.84 7256.97 17797.53 6381.38 11192.11 6894.24 115
PAPM_NR82.97 11281.84 12086.37 7694.10 4466.76 12387.66 28292.84 10769.96 24874.07 17993.57 10863.10 11297.50 6470.66 19690.58 9194.85 87
ACMMPR84.37 8084.06 7985.28 11193.56 5864.37 18293.50 10093.15 9672.19 19478.85 13094.86 7156.69 18297.45 6581.55 10792.20 6694.02 128
test_yl84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
DCV-MVSNet84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
XVS83.87 9583.47 8885.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13494.31 9155.25 19797.41 6879.16 12791.58 7793.95 130
X-MVStestdata76.86 21774.13 23785.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13410.19 41055.25 19797.41 6879.16 12791.58 7793.95 130
MVSMamba_pp88.94 1688.82 1789.29 1394.04 4574.01 894.81 4892.74 11185.13 1090.37 2190.13 18168.40 4897.38 7089.42 4094.34 3696.47 28
gm-plane-assit88.42 18667.04 11678.62 8991.83 14697.37 7176.57 145
CDPH-MVS85.71 6085.46 6286.46 7294.75 3467.19 11093.89 7792.83 10870.90 23583.09 8095.28 5463.62 10097.36 7280.63 11694.18 3794.84 90
AdaColmapbinary78.94 18077.00 19684.76 13096.34 1765.86 14592.66 13287.97 30562.18 31670.56 21892.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
EPNet87.84 2588.38 2186.23 8093.30 6466.05 13995.26 3294.84 2987.09 588.06 3694.53 7966.79 6397.34 7483.89 9491.68 7595.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 22074.15 23684.88 12391.02 12764.95 16893.84 8291.09 18553.57 35973.00 18687.42 22135.91 34197.32 7569.14 21072.41 25092.36 175
PGM-MVS83.25 10782.70 10984.92 12192.81 8164.07 19190.44 22392.20 13371.28 22677.23 14794.43 8255.17 20197.31 7679.33 12691.38 8193.37 146
ZD-MVS96.63 965.50 15593.50 8270.74 24085.26 6395.19 6264.92 8297.29 7787.51 5893.01 56
Anonymous20240521177.96 20075.33 21985.87 8993.73 5464.52 17294.85 4685.36 33062.52 31476.11 15690.18 17829.43 36597.29 7768.51 21677.24 21595.81 49
PVSNet_BlendedMVS83.38 10583.43 9183.22 18093.76 5167.53 10394.06 6593.61 7679.13 7981.00 9985.14 24763.19 10997.29 7787.08 6573.91 23784.83 304
PVSNet_Blended86.73 4286.86 4186.31 7993.76 5167.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10997.29 7787.08 6591.38 8194.13 121
mamv488.66 1888.41 2089.39 1294.02 4674.04 794.94 4592.69 11480.90 4790.32 2290.30 17468.33 4997.28 8189.47 3994.74 3096.84 14
TEST994.18 4167.28 10894.16 6193.51 8071.75 21185.52 5895.33 5168.01 5397.27 82
train_agg87.21 3487.42 3386.60 6694.18 4167.28 10894.16 6193.51 8071.87 20585.52 5895.33 5168.19 5197.27 8289.09 4694.90 2195.25 74
MSP-MVS90.38 591.87 185.88 8892.83 7764.03 19293.06 11394.33 5482.19 2893.65 396.15 3585.89 197.19 8491.02 3397.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n_a87.44 3188.15 2585.30 11087.10 22264.19 18994.41 5588.14 29980.24 5992.54 596.97 1069.52 4297.17 8595.89 288.51 10794.56 103
MP-MVScopyleft85.02 7184.97 7085.17 11692.60 8664.27 18793.24 10892.27 12873.13 16979.63 11694.43 8261.90 12397.17 8585.00 8292.56 6194.06 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 9483.38 9585.50 10291.89 10665.16 16281.75 32692.23 12975.32 13380.53 10595.21 6156.06 19197.16 8784.86 8592.55 6294.18 117
fmvsm_l_conf0.5_n87.49 2988.19 2485.39 10686.95 22564.37 18294.30 5788.45 29080.51 5192.70 496.86 1569.98 4097.15 8895.83 388.08 11294.65 100
h-mvs3383.01 11182.56 11184.35 14989.34 16062.02 24492.72 12693.76 6981.45 3682.73 8392.25 13860.11 14197.13 8987.69 5662.96 31493.91 132
VDD-MVS83.06 11081.81 12186.81 5990.86 13267.70 9795.40 2991.50 16775.46 13081.78 8992.34 13540.09 31297.13 8986.85 6882.04 16995.60 53
FA-MVS(test-final)79.12 17677.23 19284.81 12890.54 13663.98 19381.35 33291.71 15671.09 23274.85 17182.94 27052.85 22697.05 9167.97 21981.73 17493.41 145
LFMVS84.34 8282.73 10889.18 1494.76 3373.25 1194.99 4391.89 14671.90 20282.16 8793.49 11047.98 27097.05 9182.55 10284.82 14197.25 7
sss82.71 11782.38 11483.73 16589.25 16559.58 28992.24 14794.89 2877.96 9579.86 11392.38 13356.70 18197.05 9177.26 14280.86 18094.55 104
131480.70 14878.95 16585.94 8787.77 20967.56 10187.91 27792.55 12272.17 19667.44 26393.09 11450.27 24897.04 9471.68 18887.64 11693.23 151
无先验92.71 12792.61 12062.03 31897.01 9566.63 23393.97 129
MP-MVS-pluss85.24 6885.13 6785.56 10191.42 11965.59 15191.54 18192.51 12374.56 14180.62 10395.64 4459.15 15497.00 9686.94 6793.80 4394.07 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VNet86.20 4985.65 6087.84 3093.92 4869.99 3995.73 2395.94 778.43 9086.00 5393.07 11658.22 16297.00 9685.22 7884.33 14796.52 23
APD-MVScopyleft85.93 5585.99 5385.76 9595.98 2665.21 16093.59 9592.58 12166.54 28186.17 5195.88 3963.83 9597.00 9686.39 7192.94 5795.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS82.96 11382.44 11384.52 14292.83 7762.92 22692.76 12491.85 15071.52 22275.61 16394.24 9353.48 22296.99 9978.97 13090.73 8893.64 141
test_fmvsmconf_n86.58 4487.17 3584.82 12585.28 25662.55 23394.26 5989.78 23483.81 1787.78 3896.33 2965.33 7696.98 10094.40 1187.55 11794.95 84
CANet_DTU84.09 9083.52 8485.81 9290.30 14166.82 12091.87 16789.01 27085.27 986.09 5293.74 10347.71 27496.98 10077.90 13989.78 9893.65 140
PVSNet_Blended_VisFu83.97 9383.50 8685.39 10690.02 14666.59 12993.77 8691.73 15477.43 10877.08 15089.81 18663.77 9796.97 10279.67 12388.21 11092.60 169
iter_conf05_1184.06 9183.37 9686.15 8293.04 7366.63 12687.84 27990.21 21971.10 23181.47 9289.48 18968.80 4496.96 10375.97 14992.39 6494.87 86
ACMMPcopyleft81.49 13480.67 13683.93 16091.71 11162.90 22792.13 15192.22 13271.79 20971.68 20993.49 11050.32 24696.96 10378.47 13584.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_894.19 4067.19 11094.15 6393.42 8671.87 20585.38 6195.35 5068.19 5196.95 105
HY-MVS76.49 584.28 8383.36 9787.02 5492.22 9367.74 9684.65 30394.50 4379.15 7882.23 8687.93 21366.88 6296.94 10680.53 11782.20 16796.39 32
MG-MVS87.11 3586.27 4589.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7692.94 11964.34 8996.94 10675.19 15594.09 3895.66 51
sasdasda86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
test_fmvsmconf0.1_n85.71 6086.08 5284.62 13980.83 31062.33 23893.84 8288.81 27883.50 1987.00 4596.01 3763.36 10696.93 10894.04 1287.29 12094.61 102
canonicalmvs86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
alignmvs87.28 3386.97 3888.24 2791.30 12371.14 2795.61 2593.56 7879.30 7487.07 4495.25 5868.43 4796.93 10887.87 5484.33 14796.65 17
test_prior86.42 7494.71 3567.35 10793.10 9996.84 11295.05 80
test_fmvsmconf0.01_n83.70 10183.52 8484.25 15475.26 36261.72 25292.17 14987.24 31282.36 2684.91 6595.41 4855.60 19596.83 11392.85 1785.87 13594.21 116
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10068.97 6595.04 4192.70 11279.04 8381.50 9196.50 2558.98 15696.78 11483.49 9693.93 4196.29 34
agg_prior94.16 4366.97 11893.31 8984.49 6996.75 115
FE-MVS75.97 23473.02 25084.82 12589.78 15065.56 15277.44 35791.07 18864.55 29472.66 19179.85 31746.05 28896.69 11654.97 30480.82 18192.21 184
原ACMM184.42 14593.21 6764.27 18793.40 8865.39 28979.51 11792.50 12858.11 16496.69 11665.27 25293.96 4092.32 177
ab-mvs80.18 15878.31 17285.80 9388.44 18565.49 15683.00 32092.67 11571.82 20877.36 14585.01 24854.50 20696.59 11876.35 14775.63 22595.32 66
PCF-MVS73.15 979.29 17377.63 18384.29 15186.06 24265.96 14387.03 28991.10 18469.86 25069.79 23290.64 16457.54 16996.59 11864.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何184.73 13192.32 9064.28 18691.46 16959.56 33679.77 11492.90 12056.95 17896.57 12063.40 26292.91 5893.34 147
VDDNet80.50 15178.26 17387.21 4786.19 23869.79 4794.48 5391.31 17360.42 32979.34 12090.91 16238.48 32096.56 12182.16 10381.05 17895.27 71
dcpmvs_287.37 3287.55 3186.85 5695.04 3268.20 8690.36 22790.66 19979.37 7381.20 9493.67 10574.73 1596.55 12290.88 3492.00 7095.82 48
thisisatest051583.41 10482.49 11286.16 8189.46 15968.26 8293.54 9794.70 3674.31 14575.75 15890.92 16172.62 2796.52 12369.64 20181.50 17593.71 138
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 10095.08 2580.26 5680.53 10591.93 14470.43 3796.51 12480.32 11982.13 16895.37 61
testing9986.01 5385.47 6187.63 3893.62 5571.25 2493.47 10395.23 1880.42 5480.60 10491.95 14371.73 3496.50 12580.02 12182.22 16695.13 77
cascas78.18 19675.77 21285.41 10587.14 22169.11 6092.96 11891.15 18266.71 28070.47 21986.07 23937.49 33196.48 12670.15 19979.80 18890.65 209
testing1186.71 4386.44 4487.55 4093.54 5971.35 2293.65 9195.58 1181.36 4180.69 10292.21 13972.30 2996.46 12785.18 8083.43 15494.82 93
EIA-MVS84.84 7484.88 7184.69 13491.30 12362.36 23793.85 7992.04 13879.45 7079.33 12194.28 9262.42 11896.35 12880.05 12091.25 8495.38 60
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5188.22 19569.35 5793.74 8891.89 14681.47 3580.10 11091.45 15364.80 8496.35 12887.23 6387.69 11595.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10283.42 9384.48 14487.37 21666.00 14190.06 23695.93 879.71 6669.08 23790.39 17277.92 696.28 13078.91 13181.38 17691.16 204
HPM-MVScopyleft83.25 10782.95 10384.17 15592.25 9262.88 22890.91 20891.86 14870.30 24477.12 14893.96 10056.75 18096.28 13082.04 10491.34 8393.34 147
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS83.71 10083.40 9484.65 13693.14 7063.84 19494.59 5292.28 12771.03 23377.41 14494.92 6955.21 20096.19 13281.32 11290.70 8993.91 132
UGNet79.87 16578.68 16783.45 17689.96 14761.51 25592.13 15190.79 19476.83 11478.85 13086.33 23638.16 32396.17 13367.93 22187.17 12192.67 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30191.39 18891.01 19263.35 30479.72 11594.62 7851.82 23396.14 13479.71 12287.93 11392.89 164
MGCFI-Net85.59 6485.73 5985.17 11691.41 12162.44 23492.87 12191.31 17379.65 6786.99 4695.14 6462.90 11596.12 13587.13 6484.13 15296.96 12
BH-RMVSNet79.46 17277.65 18284.89 12291.68 11265.66 14893.55 9688.09 30172.93 17473.37 18491.12 16046.20 28696.12 13556.28 30085.61 13892.91 162
SDMVSNet80.26 15678.88 16684.40 14689.25 16567.63 10085.35 29993.02 10076.77 11670.84 21687.12 22647.95 27196.09 13785.04 8174.55 22889.48 227
testdata296.09 13761.26 278
MVS_Test84.16 8983.20 9887.05 5391.56 11569.82 4689.99 24192.05 13777.77 9982.84 8186.57 23263.93 9496.09 13774.91 16089.18 10295.25 74
baseline85.01 7284.44 7686.71 6288.33 19068.73 6990.24 23291.82 15281.05 4581.18 9592.50 12863.69 9896.08 14084.45 8886.71 12995.32 66
casdiffmvspermissive85.37 6684.87 7286.84 5788.25 19369.07 6193.04 11591.76 15381.27 4280.84 10192.07 14164.23 9096.06 14184.98 8387.43 11995.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053081.15 13880.07 14484.39 14788.26 19265.63 15091.40 18694.62 4071.27 22770.93 21589.18 19372.47 2896.04 14265.62 24776.89 21891.49 193
TSAR-MVS + MP.88.11 2188.64 1886.54 7091.73 11068.04 8990.36 22793.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5394.77 2595.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSDG69.54 29565.73 30580.96 23885.11 26163.71 20184.19 30583.28 35156.95 34854.50 34584.03 25931.50 35796.03 14342.87 35469.13 27083.14 325
Effi-MVS+83.82 9682.76 10786.99 5589.56 15669.40 5391.35 19386.12 32372.59 18183.22 7992.81 12559.60 14896.01 14581.76 10687.80 11495.56 55
UA-Net80.02 16279.65 15281.11 23289.33 16257.72 31086.33 29689.00 27377.44 10781.01 9889.15 19459.33 15295.90 14661.01 27984.28 14989.73 223
SR-MVS82.81 11482.58 11083.50 17493.35 6361.16 26192.23 14891.28 17764.48 29581.27 9395.28 5453.71 21895.86 14782.87 9988.77 10593.49 144
lupinMVS87.74 2687.77 2887.63 3889.24 16871.18 2596.57 1192.90 10682.70 2387.13 4295.27 5664.99 7995.80 14889.34 4391.80 7395.93 44
MS-PatchMatch77.90 20376.50 20182.12 20985.99 24369.95 4291.75 17692.70 11273.97 15262.58 30884.44 25641.11 30995.78 14963.76 26192.17 6780.62 352
CLD-MVS82.73 11582.35 11583.86 16187.90 20367.65 9995.45 2892.18 13585.06 1172.58 19492.27 13652.46 23095.78 14984.18 9079.06 19588.16 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test86.14 5187.01 3783.52 17192.63 8559.36 29495.49 2791.92 14380.09 6085.46 6095.53 4761.82 12695.77 15186.77 6993.37 5295.41 58
HPM-MVS_fast80.25 15779.55 15682.33 19991.55 11659.95 28491.32 19589.16 26065.23 29274.71 17293.07 11647.81 27395.74 15274.87 16288.23 10991.31 201
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24676.11 36650.27 37057.69 33685.23 24639.68 31395.73 15333.35 38071.05 25981.78 342
114514_t79.17 17577.67 18183.68 16895.32 2965.53 15492.85 12291.60 16363.49 30267.92 25590.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
TR-MVS78.77 18677.37 19182.95 18490.49 13760.88 26593.67 9090.07 22370.08 24774.51 17391.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
ETV-MVS86.01 5386.11 5085.70 9890.21 14367.02 11793.43 10591.92 14381.21 4384.13 7494.07 9860.93 13495.63 15989.28 4489.81 9694.46 112
tttt051779.50 17078.53 17082.41 19887.22 21961.43 25789.75 24594.76 3269.29 25667.91 25688.06 21272.92 2595.63 15962.91 26873.90 23890.16 215
bld_raw_dy_0_6476.92 21674.65 22583.71 16784.96 26471.37 2173.29 36989.16 26050.14 37162.32 31084.19 25867.48 5895.61 16172.10 18388.25 10884.14 309
SR-MVS-dyc-post81.06 14280.70 13582.15 20792.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8051.26 24195.61 16178.77 13386.77 12792.28 179
thres20079.66 16778.33 17183.66 17092.54 8865.82 14793.06 11396.31 374.90 13973.30 18588.66 19759.67 14795.61 16147.84 33378.67 19989.56 226
HQP4-MVS74.18 17595.61 16188.63 236
BH-w/o80.49 15279.30 16184.05 15890.83 13364.36 18493.60 9489.42 24974.35 14469.09 23690.15 18055.23 19995.61 16164.61 25586.43 13392.17 185
HQP-MVS81.14 13980.64 13782.64 19187.54 21163.66 20594.06 6591.70 15979.80 6374.18 17590.30 17451.63 23795.61 16177.63 14078.90 19688.63 236
HQP_MVS80.34 15579.75 15182.12 20986.94 22662.42 23593.13 11191.31 17378.81 8672.53 19589.14 19550.66 24495.55 16776.74 14378.53 20188.39 242
plane_prior591.31 17395.55 16776.74 14378.53 20188.39 242
jason86.40 4586.17 4987.11 5086.16 24170.54 3495.71 2492.19 13482.00 3084.58 6894.34 8961.86 12495.53 16987.76 5590.89 8795.27 71
jason: jason.
CS-MVS85.80 5886.65 4383.27 17992.00 10158.92 29995.31 3191.86 14879.97 6184.82 6695.40 4962.26 12095.51 17086.11 7392.08 6995.37 61
EC-MVSNet84.53 7985.04 6983.01 18389.34 16061.37 25894.42 5491.09 18577.91 9783.24 7894.20 9458.37 16095.40 17185.35 7791.41 8092.27 182
BH-untuned78.68 18777.08 19383.48 17589.84 14963.74 19892.70 12888.59 28771.57 22066.83 27388.65 19851.75 23595.39 17259.03 29084.77 14291.32 200
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18662.88 22889.77 24488.93 27476.78 11575.55 16493.10 11350.31 24795.38 17383.82 9587.02 12292.26 183
thres100view90078.37 19377.01 19582.46 19491.89 10663.21 21791.19 20396.33 172.28 19270.45 22187.89 21460.31 13895.32 17445.16 34477.58 20888.83 232
tfpn200view978.79 18577.43 18682.88 18592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20888.83 232
thres40078.68 18777.43 18682.43 19592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20887.48 251
RPMNet70.42 28765.68 30684.63 13883.15 28967.96 9170.25 37490.45 20346.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 210
ECVR-MVScopyleft81.29 13780.38 14384.01 15988.39 18861.96 24692.56 14086.79 31677.66 10276.63 15291.42 15446.34 28395.24 17874.36 16489.23 10094.85 87
iter_conf0583.65 10383.44 9084.28 15286.17 24068.61 7495.08 3989.82 23380.90 4778.08 13690.49 16969.08 4395.22 17984.29 8977.07 21689.02 230
testing22285.18 6984.69 7486.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10792.27 13668.73 4595.19 18075.94 15083.27 15694.81 94
OPM-MVS79.00 17878.09 17581.73 21783.52 28663.83 19591.64 18090.30 21376.36 12271.97 20489.93 18546.30 28595.17 18175.10 15677.70 20686.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250683.29 10682.92 10484.37 14888.39 18863.18 21992.01 15991.35 17277.66 10278.49 13391.42 15464.58 8795.09 18273.19 16789.23 10094.85 87
PAPM85.89 5785.46 6287.18 4888.20 19672.42 1592.41 14392.77 10982.11 2980.34 10893.07 11668.27 5095.02 18378.39 13693.59 4994.09 123
sd_testset77.08 21475.37 21782.20 20589.25 16562.11 24382.06 32489.09 26676.77 11670.84 21687.12 22641.43 30895.01 18467.23 22874.55 22889.48 227
PMMVS81.98 12982.04 11781.78 21689.76 15256.17 32591.13 20490.69 19677.96 9580.09 11193.57 10846.33 28494.99 18581.41 11087.46 11894.17 118
CostFormer82.33 12181.15 12685.86 9089.01 17368.46 7682.39 32393.01 10175.59 12880.25 10981.57 28972.03 3294.96 18679.06 12977.48 21194.16 119
EPP-MVSNet81.79 13181.52 12382.61 19288.77 17960.21 28193.02 11793.66 7568.52 26772.90 18990.39 17272.19 3194.96 18674.93 15979.29 19492.67 167
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25763.25 21587.72 28184.66 33660.83 32751.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view778.00 19876.66 20082.03 21491.93 10363.69 20391.30 19696.33 172.43 18770.46 22087.89 21460.31 13894.92 18942.64 35676.64 21987.48 251
baseline181.84 13081.03 13184.28 15291.60 11366.62 12791.08 20591.66 16181.87 3174.86 17091.67 15069.98 4094.92 18971.76 18664.75 30291.29 202
XXY-MVS77.94 20176.44 20282.43 19582.60 29564.44 17792.01 15991.83 15173.59 16370.00 22885.82 24254.43 21094.76 19169.63 20268.02 27888.10 246
Vis-MVSNetpermissive80.92 14579.98 14883.74 16388.48 18361.80 24893.44 10488.26 29873.96 15377.73 13991.76 14749.94 25194.76 19165.84 24490.37 9394.65 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 14479.86 14984.13 15683.69 28368.83 6793.23 10991.20 17875.55 12975.06 16888.22 20863.04 11394.74 19381.88 10566.88 28588.82 234
GA-MVS78.33 19576.23 20584.65 13683.65 28466.30 13591.44 18290.14 22176.01 12470.32 22384.02 26042.50 30494.72 19470.98 19177.00 21792.94 161
EI-MVSNet78.97 17978.22 17481.25 22785.33 25462.73 23189.53 24993.21 9172.39 18972.14 20290.13 18160.99 13194.72 19467.73 22372.49 24886.29 274
MVSTER82.47 11982.05 11683.74 16392.68 8469.01 6391.90 16693.21 9179.83 6272.14 20285.71 24474.72 1694.72 19475.72 15172.49 24887.50 250
test111180.84 14680.02 14583.33 17787.87 20460.76 26992.62 13386.86 31577.86 9875.73 15991.39 15646.35 28294.70 19772.79 17388.68 10694.52 108
test_vis1_n_192081.66 13282.01 11880.64 24382.24 29855.09 33394.76 4986.87 31481.67 3484.40 7094.63 7738.17 32294.67 19891.98 2683.34 15592.16 186
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28092.18 13561.23 32567.04 26986.49 23331.35 35994.58 19965.06 25367.12 28388.57 238
hse-mvs281.12 14181.11 13081.16 23086.52 23257.48 31489.40 25291.16 18081.45 3682.73 8390.49 16960.11 14194.58 19987.69 5660.41 34191.41 196
AUN-MVS78.37 19377.43 18681.17 22986.60 23157.45 31589.46 25191.16 18074.11 14874.40 17490.49 16955.52 19694.57 20174.73 16360.43 34091.48 194
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7558.68 30290.64 22088.30 29460.90 32664.43 29190.53 16742.38 30594.57 20156.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36794.75 3378.67 13290.85 16377.91 794.56 20372.25 17993.74 4595.36 63
OMC-MVS78.67 18977.91 18080.95 23985.76 24957.40 31688.49 26888.67 28473.85 15572.43 19992.10 14049.29 25894.55 20472.73 17477.89 20490.91 207
Fast-Effi-MVS+81.14 13980.01 14684.51 14390.24 14265.86 14594.12 6489.15 26273.81 15775.37 16688.26 20557.26 17094.53 20566.97 23284.92 14093.15 153
diffmvspermissive84.28 8383.83 8185.61 10087.40 21568.02 9090.88 21189.24 25580.54 5081.64 9092.52 12759.83 14594.52 20687.32 6185.11 13994.29 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.03 14379.56 15485.43 10487.81 20768.11 8890.18 23390.01 22870.65 24172.95 18886.06 24063.61 10194.50 20775.01 15879.75 18993.67 139
v2v48277.42 20875.65 21582.73 18880.38 31667.13 11391.85 16990.23 21775.09 13669.37 23383.39 26753.79 21794.44 20871.77 18565.00 29986.63 270
v114476.73 22374.88 22282.27 20180.23 32066.60 12891.68 17890.21 21973.69 16069.06 23881.89 28252.73 22894.40 20969.21 20865.23 29685.80 288
dmvs_re76.93 21575.36 21881.61 22087.78 20860.71 27280.00 34587.99 30379.42 7169.02 23989.47 19046.77 27794.32 21063.38 26374.45 23189.81 220
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 13952.07 34589.19 25789.61 24362.69 31370.07 22692.67 12648.89 26494.32 21038.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22389.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
LGP-MVS_train79.56 27384.31 27559.37 29289.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20089.75 23672.67 18068.49 24981.42 29249.86 25294.27 21467.08 23065.02 29885.95 285
tpmvs72.88 26969.76 28582.22 20490.98 12867.05 11578.22 35488.30 29463.10 30964.35 29274.98 35155.09 20294.27 21443.25 35069.57 26485.34 299
tpm279.80 16677.95 17985.34 10988.28 19168.26 8281.56 32991.42 17070.11 24677.59 14380.50 30767.40 5994.26 21667.34 22677.35 21293.51 143
mvsmamba76.85 21975.71 21480.25 25183.07 29159.16 29691.44 18280.64 35976.84 11367.95 25486.33 23646.17 28794.24 21776.06 14872.92 24487.36 255
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26590.31 21275.84 12557.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 214
ETVMVS84.22 8783.71 8285.76 9592.58 8768.25 8492.45 14295.53 1479.54 6979.46 11891.64 15170.29 3894.18 21969.16 20982.76 16294.84 90
MVP-Stereo77.12 21376.23 20579.79 26781.72 30366.34 13489.29 25390.88 19370.56 24262.01 31282.88 27149.34 25694.13 22065.55 24993.80 4378.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22789.93 22963.17 30865.64 27886.04 24137.79 32994.10 22165.89 24371.52 25585.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23189.42 24973.75 15868.63 24781.89 28251.31 24094.09 22271.69 18764.84 30084.66 305
TESTMET0.1,182.41 12081.98 11983.72 16688.08 19763.74 19892.70 12893.77 6879.30 7477.61 14287.57 21958.19 16394.08 22373.91 16686.68 13093.33 149
Anonymous2023121173.08 26370.39 27981.13 23190.62 13563.33 21491.40 18690.06 22551.84 36464.46 29080.67 30536.49 33994.07 22463.83 26064.17 30785.98 284
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24889.27 25471.65 21463.30 30080.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24389.17 25960.55 32850.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
PVSNet73.49 880.05 16178.63 16884.31 15090.92 13064.97 16792.47 14191.05 19079.18 7772.43 19990.51 16837.05 33794.06 22568.06 21886.00 13493.90 134
GeoE78.90 18177.43 18683.29 17888.95 17462.02 24492.31 14486.23 32170.24 24571.34 21389.27 19254.43 21094.04 22863.31 26480.81 18293.81 137
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25889.08 26770.94 23463.08 30379.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18889.71 24272.30 19168.17 25181.33 29451.75 23594.03 23067.94 22064.19 30685.77 289
tpm cat175.30 24472.21 26284.58 14088.52 18167.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13594.03 23053.77 31074.11 23491.93 189
gg-mvs-nofinetune77.18 21174.31 23385.80 9391.42 11968.36 7871.78 37194.72 3449.61 37277.12 14845.92 39577.41 893.98 23267.62 22493.16 5595.05 80
PS-MVSNAJss77.26 21076.31 20480.13 25580.64 31459.16 29690.63 22291.06 18972.80 17868.58 24884.57 25453.55 21993.96 23372.97 16971.96 25287.27 259
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25583.41 34955.48 35553.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
MDTV_nov1_ep1372.61 25789.06 17168.48 7580.33 33990.11 22271.84 20771.81 20675.92 34853.01 22593.92 23548.04 33073.38 239
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20789.48 24571.98 19967.99 25281.22 29749.16 26193.90 23666.56 23464.56 30585.92 287
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21689.11 26571.63 21867.41 26581.22 29747.36 27593.87 23765.46 25064.72 30385.77 289
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26359.64 28790.80 21489.07 26870.39 24362.95 30487.30 22338.28 32193.87 23772.89 17071.45 25685.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17690.23 21773.68 16167.13 26880.84 30255.92 19393.86 23968.95 21261.73 32985.76 291
LS3D69.17 29766.40 30177.50 29591.92 10456.12 32685.12 30080.37 36046.96 37856.50 34087.51 22037.25 33293.71 24032.52 38679.40 19182.68 333
EPMVS78.49 19275.98 20986.02 8491.21 12569.68 5180.23 34191.20 17875.25 13472.48 19778.11 32954.65 20593.69 24157.66 29683.04 15794.69 96
IS-MVSNet80.14 15979.41 15882.33 19987.91 20260.08 28391.97 16388.27 29672.90 17771.44 21291.73 14961.44 12893.66 24262.47 27286.53 13193.24 150
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29489.45 24764.17 29758.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
VPA-MVSNet79.03 17778.00 17782.11 21285.95 24464.48 17593.22 11094.66 3875.05 13774.04 18084.95 24952.17 23293.52 24474.90 16167.04 28488.32 244
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26292.77 10964.85 29360.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
旧先验292.00 16259.37 33787.54 4193.47 24675.39 154
1112_ss80.56 15079.83 15082.77 18788.65 18060.78 26792.29 14588.36 29272.58 18272.46 19894.95 6665.09 7893.42 24766.38 23877.71 20594.10 122
testdata81.34 22689.02 17257.72 31089.84 23258.65 34085.32 6294.09 9657.03 17393.28 24869.34 20690.56 9293.03 158
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPNet78.82 18377.53 18582.70 18984.52 27066.44 13193.93 7492.23 12980.46 5272.60 19388.38 20249.18 25993.13 25072.47 17863.97 31188.55 239
Test_1112_low_res79.56 16978.60 16982.43 19588.24 19460.39 27892.09 15487.99 30372.10 19871.84 20587.42 22164.62 8693.04 25165.80 24577.30 21393.85 136
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15855.70 32983.49 31083.39 35061.24 32463.72 29682.76 27234.77 34593.03 25253.37 31277.59 20786.12 281
WB-MVSnew77.14 21276.18 20780.01 25986.18 23963.24 21691.26 19794.11 6071.72 21273.52 18387.29 22445.14 29493.00 25356.98 29779.42 19083.80 313
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20285.38 32971.90 20265.20 28184.84 25041.46 30792.97 25466.50 23772.96 24387.73 248
cl____76.07 22874.67 22380.28 24985.15 25861.76 25090.12 23488.73 28171.16 22865.43 27981.57 28961.15 12992.95 25566.54 23562.17 32286.13 280
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21489.30 25367.66 27262.91 30581.78 28449.11 26292.95 25560.29 28458.89 34684.22 308
TAMVS80.37 15479.45 15783.13 18285.14 25963.37 21391.23 19990.76 19574.81 14072.65 19288.49 19960.63 13692.95 25569.41 20581.95 17193.08 156
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27280.79 35758.59 34153.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
DIV-MVS_self_test76.07 22874.67 22380.28 24985.14 25961.75 25190.12 23488.73 28171.16 22865.42 28081.60 28861.15 12992.94 25966.54 23562.16 32486.14 278
cl2277.94 20176.78 19881.42 22487.57 21064.93 16990.67 21888.86 27772.45 18667.63 26282.68 27464.07 9192.91 26071.79 18465.30 29386.44 272
CDS-MVSNet81.43 13580.74 13483.52 17186.26 23764.45 17692.09 15490.65 20075.83 12673.95 18189.81 18663.97 9392.91 26071.27 18982.82 15993.20 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_enhance_ethall78.86 18277.97 17881.54 22288.00 20165.17 16191.41 18489.15 26275.19 13568.79 24483.98 26167.17 6092.82 26272.73 17465.30 29386.62 271
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25488.27 29671.88 20465.73 27781.65 28659.45 14992.81 26368.13 21760.53 33886.14 278
CPTT-MVS79.59 16879.16 16380.89 24191.54 11759.80 28692.10 15388.54 28960.42 32972.96 18793.28 11248.27 26692.80 26478.89 13286.50 13290.06 216
PatchmatchNetpermissive77.46 20774.63 22685.96 8689.55 15770.35 3679.97 34689.55 24472.23 19370.94 21476.91 34057.03 17392.79 26554.27 30781.17 17794.74 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26390.04 22669.13 26062.85 30683.51 26531.16 36092.75 26670.83 19269.80 26185.43 297
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 26989.76 23568.76 26562.70 30783.26 26829.49 36492.71 26770.51 19869.62 26385.34 299
tpmrst80.57 14979.14 16484.84 12490.10 14568.28 8181.70 32789.72 24177.63 10475.96 15779.54 32164.94 8192.71 26775.43 15377.28 21493.55 142
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26790.07 22372.94 17359.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
test_post23.01 40556.49 18692.67 270
MVSFormer83.75 9982.88 10586.37 7689.24 16871.18 2589.07 25990.69 19665.80 28687.13 4294.34 8964.99 7992.67 27072.83 17191.80 7395.27 71
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 25990.69 19665.80 28663.92 29382.03 28143.14 30392.67 27072.83 17168.53 27485.57 293
miper_ehance_all_eth77.60 20576.44 20281.09 23685.70 25164.41 18090.65 21988.64 28672.31 19067.37 26782.52 27564.77 8592.64 27370.67 19565.30 29386.24 276
c3_l76.83 22175.47 21680.93 24085.02 26264.18 19090.39 22688.11 30071.66 21366.65 27581.64 28763.58 10492.56 27469.31 20762.86 31586.04 282
dp75.01 24872.09 26383.76 16289.28 16466.22 13879.96 34789.75 23671.16 22867.80 26077.19 33751.81 23492.54 27550.39 31871.44 25792.51 173
Effi-MVS+-dtu76.14 22775.28 22078.72 28383.22 28855.17 33289.87 24287.78 30675.42 13167.98 25381.43 29145.08 29592.52 27675.08 15771.63 25388.48 240
F-COLMAP70.66 28468.44 29277.32 29986.37 23655.91 32788.00 27586.32 31856.94 34957.28 33888.07 21133.58 34992.49 27751.02 31668.37 27583.55 315
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35285.00 33373.17 16848.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26486.78 31753.19 36057.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
test-LLR80.10 16079.56 15481.72 21886.93 22861.17 25992.70 12891.54 16471.51 22375.62 16186.94 22853.83 21592.38 28072.21 18084.76 14391.60 191
test-mter79.96 16379.38 16081.72 21886.93 22861.17 25992.70 12891.54 16473.85 15575.62 16186.94 22849.84 25392.38 28072.21 18084.76 14391.60 191
UniMVSNet (Re)77.58 20676.78 19879.98 26084.11 27860.80 26691.76 17493.17 9576.56 12069.93 23184.78 25163.32 10892.36 28264.89 25462.51 32086.78 266
ET-MVSNet_ETH3D84.01 9283.15 10186.58 6890.78 13470.89 3094.74 5094.62 4081.44 3858.19 33093.64 10673.64 2392.35 28382.66 10078.66 20096.50 27
mvs_anonymous81.36 13679.99 14785.46 10390.39 14068.40 7786.88 29390.61 20174.41 14270.31 22484.67 25263.79 9692.32 28473.13 16885.70 13695.67 50
IterMVS-LS76.49 22475.18 22180.43 24684.49 27162.74 23090.64 22088.80 27972.40 18865.16 28281.72 28560.98 13292.27 28567.74 22264.65 30486.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet377.73 20476.04 20882.80 18691.20 12668.99 6491.87 16791.99 14073.35 16667.04 26983.19 26956.62 18392.14 28659.80 28769.34 26587.28 258
UniMVSNet_NR-MVSNet78.15 19777.55 18479.98 26084.46 27260.26 27992.25 14693.20 9377.50 10668.88 24286.61 23166.10 6892.13 28766.38 23862.55 31887.54 249
DU-MVS76.86 21775.84 21179.91 26382.96 29260.26 27991.26 19791.54 16476.46 12168.88 24286.35 23456.16 18892.13 28766.38 23862.55 31887.35 256
tpm78.58 19077.03 19483.22 18085.94 24664.56 17183.21 31791.14 18378.31 9173.67 18279.68 31964.01 9292.09 28966.07 24271.26 25893.03 158
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17184.55 33868.85 26268.99 24080.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
FMVSNet276.07 22874.01 23982.26 20388.85 17567.66 9891.33 19491.61 16270.84 23665.98 27682.25 27848.03 26792.00 29158.46 29268.73 27387.10 261
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17384.94 33465.97 28560.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30189.20 25763.77 30064.84 28584.44 25634.05 34891.86 29363.94 25970.89 26089.57 225
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21391.73 15477.12 11060.96 31586.35 23459.28 15391.80 29460.74 28061.34 33387.35 256
FIs79.47 17179.41 15879.67 26985.95 24459.40 29191.68 17893.94 6378.06 9468.96 24188.28 20366.61 6591.77 29566.20 24174.99 22787.82 247
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 33987.39 30863.86 29968.76 24589.62 18840.50 31191.72 29669.00 21174.25 23389.58 224
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27679.71 36252.03 36252.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
test_cas_vis1_n_192080.45 15380.61 13879.97 26278.25 34657.01 32194.04 6988.33 29379.06 8282.81 8293.70 10438.65 31791.63 29890.82 3579.81 18791.27 203
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33787.32 30963.22 30668.76 24590.12 18444.89 29691.59 29970.55 19774.09 23589.79 221
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19191.37 17176.63 11867.65 26186.21 23852.37 23191.55 30061.84 27560.81 33687.48 251
GBi-Net75.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test175.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23890.32 20963.92 29863.56 29780.25 31236.35 34091.54 30154.46 30666.75 28686.64 267
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28587.26 31167.64 27463.46 29883.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
test_post178.95 34820.70 40853.05 22491.50 30560.43 282
UWE-MVS80.81 14781.01 13280.20 25389.33 16257.05 31991.91 16594.71 3575.67 12775.01 16989.37 19163.13 11191.44 30667.19 22982.80 16192.12 187
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30588.88 27561.92 32062.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35185.88 32562.03 31858.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
CNLPA74.31 25372.30 26180.32 24791.49 11861.66 25390.85 21280.72 35856.67 35163.85 29590.64 16446.75 27890.84 30953.79 30975.99 22488.47 241
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26582.90 35360.11 33355.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20586.90 31367.69 27163.32 29983.64 26344.33 29890.53 31162.04 27466.02 29085.46 296
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31379.51 36362.86 31050.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30875.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
patchmatchnet-post67.62 37457.62 16890.25 314
SCA75.82 23772.76 25385.01 12086.63 23070.08 3881.06 33489.19 25871.60 21970.01 22777.09 33845.53 29090.25 31460.43 28273.27 24094.68 97
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29446.86 39456.06 19190.25 31449.53 32368.83 27185.95 285
WR-MVS76.76 22275.74 21379.82 26684.60 26862.27 24192.60 13592.51 12376.06 12367.87 25985.34 24556.76 17990.24 31762.20 27363.69 31386.94 264
FC-MVSNet-test77.99 19978.08 17677.70 29284.89 26555.51 33090.27 23093.75 7276.87 11166.80 27487.59 21865.71 7390.23 31862.89 26973.94 23687.37 254
EPNet_dtu78.80 18479.26 16277.43 29788.06 19849.71 35791.96 16491.95 14277.67 10176.56 15491.28 15858.51 15890.20 31956.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Vis-MVSNet (Re-imp)79.24 17479.57 15378.24 28988.46 18452.29 34490.41 22589.12 26474.24 14669.13 23591.91 14565.77 7290.09 32159.00 29188.09 11192.33 176
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27085.06 33260.32 33152.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16269.97 22972.41 35857.82 16689.48 32552.99 31373.13 24190.64 210
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19866.90 11968.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32740.87 36167.89 27986.97 262
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25756.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 82
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35089.05 26957.20 34746.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33141.59 35966.60 28788.74 235
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35375.64 36952.30 36141.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18248.02 36480.07 34470.17 38373.96 15352.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 179
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 78
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28775.67 36863.48 30378.08 13691.17 15920.16 38587.87 33684.65 8675.57 22690.01 218
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25264.59 28674.79 35232.79 35187.82 33753.99 30876.35 22191.42 195
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31477.15 36564.35 29647.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26174.69 37363.68 30179.41 11991.59 15224.36 37487.77 33985.22 7876.26 22290.55 212
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23789.90 23069.96 24861.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32588.88 27569.80 25161.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 301
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33389.88 23172.58 18249.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27187.32 30961.75 32358.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32183.43 34862.52 31451.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28386.28 31971.56 22160.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31881.23 35557.57 34334.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29172.11 37863.21 30775.18 16790.17 17920.40 38385.76 35184.59 8774.42 23289.87 219
Syy-MVS69.65 29469.52 28670.03 34987.87 20443.21 38388.07 27389.01 27072.91 17563.11 30188.10 20945.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20449.45 35988.07 27389.01 27072.91 17563.11 30188.10 20963.63 9985.54 35232.73 38469.23 26881.32 344
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30785.23 33150.38 36947.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 30986.26 32061.83 32253.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20089.45 24771.51 22362.51 30987.66 21753.83 21585.06 35650.16 32067.84 28185.58 292
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29879.92 36165.36 29054.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
testing370.38 28870.83 27369.03 35385.82 24843.93 38290.72 21790.56 20268.06 26960.24 31886.82 23064.83 8384.12 35826.33 39264.10 30879.04 365
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19860.70 27368.01 38175.56 37057.57 34364.48 28869.87 36838.68 31584.10 35940.87 36167.89 27986.97 262
CVMVSNet74.04 25674.27 23473.33 33085.33 25443.94 38189.53 24988.39 29154.33 35870.37 22290.13 18149.17 26084.05 36061.83 27679.36 19291.99 188
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33254.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
CHOSEN 280x42077.35 20976.95 19778.55 28487.07 22362.68 23269.71 37782.95 35268.80 26371.48 21187.27 22566.03 6984.00 36276.47 14682.81 16088.95 231
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29788.58 28866.36 28358.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28385.99 32466.17 28459.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 307
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29289.24 25567.24 27959.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28692.03 13967.38 27560.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31283.99 34556.18 35339.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31084.03 34156.17 35439.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3042.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29584.17 34063.29 30551.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36172.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28890.30 21367.84 27059.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29089.75 23667.27 27659.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36475.94 36746.94 37958.96 32784.59 25331.40 35882.00 37647.76 33460.33 34286.04 282
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31469.81 38454.38 35767.91 25684.54 25515.35 39081.22 37975.65 15266.16 28982.88 326
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 35971.74 38077.42 10955.85 34187.77 21651.39 23980.69 38031.51 39065.92 29185.55 294
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31486.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33873.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17743.22 30275.05 38574.26 16562.70 31787.25 260
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 265
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3020.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
FOURS193.95 4761.77 24993.96 7291.92 14362.14 31786.57 48
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1896.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
RE-MVS-def80.48 14192.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8049.30 25778.77 13386.77 12792.28 179
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1396.47 28
save fliter93.84 5067.89 9395.05 4092.66 11678.19 92
test072696.40 1569.99 3996.76 794.33 5471.92 20091.89 1097.11 673.77 21
GSMVS94.68 97
test_part296.29 1968.16 8790.78 16
sam_mvs157.85 16594.68 97
sam_mvs54.91 204
MTGPAbinary92.23 129
MTMP93.77 8632.52 414
test9_res89.41 4194.96 1895.29 68
agg_prior286.41 7094.75 2995.33 64
test_prior467.18 11293.92 75
test_prior295.10 3875.40 13285.25 6495.61 4567.94 5487.47 5994.77 25
新几何291.41 184
旧先验191.94 10260.74 27191.50 16794.36 8465.23 7791.84 7294.55 104
原ACMM292.01 159
test22289.77 15161.60 25489.55 24789.42 24956.83 35077.28 14692.43 13252.76 22791.14 8693.09 155
segment_acmp65.94 70
testdata189.21 25677.55 105
plane_prior786.94 22661.51 255
plane_prior687.23 21862.32 23950.66 244
plane_prior489.14 195
plane_prior361.95 24779.09 8072.53 195
plane_prior293.13 11178.81 86
plane_prior187.15 220
plane_prior62.42 23593.85 7979.38 7278.80 198
n20.00 420
nn0.00 420
door-mid66.01 390
test1193.01 101
door66.57 389
HQP5-MVS63.66 205
HQP-NCC87.54 21194.06 6579.80 6374.18 175
ACMP_Plane87.54 21194.06 6579.80 6374.18 175
BP-MVS77.63 140
HQP3-MVS91.70 15978.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21463.04 22090.30 174
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27372.79 19054.33 21259.83 28692.58 170
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213