LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 13 | 85.07 51 | 99.27 1 | 99.54 1 |
|
XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 116 | 93.91 41 | 80.07 86 | 86.75 160 | 93.26 112 | 93.64 2 | 90.93 192 | 84.60 58 | 90.75 257 | 93.97 102 |
|
ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 75 | 93.00 79 | 76.26 112 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 48 | 91.62 3 | 93.44 122 | 78.35 118 | 98.76 3 | 95.61 48 |
|
LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 19 | 82.35 60 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 41 | 85.36 48 | 98.73 6 | 95.23 59 |
|
LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 19 | 82.35 60 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 41 | 85.36 48 | 98.73 6 | 95.23 59 |
|
PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 78 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 178 | 88.51 17 | 90.11 95 | 95.12 45 | 90.98 6 | 88.92 243 | 77.55 132 | 97.07 82 | 83.13 317 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 60 | 79.20 97 | 93.83 27 | 93.60 109 | 90.81 7 | 92.96 137 | 85.02 53 | 98.45 18 | 92.41 162 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 156 | 92.50 92 | 70.36 167 | 89.55 72 | 93.84 46 | 81.89 65 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 253 | 83.33 67 | 98.30 24 | 93.20 134 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 22 | 85.21 34 | 92.51 55 | 95.13 44 | 90.65 9 | 95.34 51 | 88.06 8 | 98.15 34 | 95.95 41 |
|
RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 67 | 90.64 10 | | 87.16 27 | 97.60 64 | 92.73 148 |
|
ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 36 | 79.03 100 | 92.87 46 | 93.74 105 | 90.60 11 | 95.21 57 | 82.87 72 | 98.76 3 | 94.87 67 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 14 | 82.88 56 | 91.77 68 | 93.94 98 | 90.55 12 | 95.73 30 | 88.50 6 | 98.23 27 | 95.33 54 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 149 | 97.00 2 | 64.33 223 | 89.67 69 | 88.38 193 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 182 | 72.57 192 | 97.65 60 | 97.34 15 |
|
SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 93 | 94.18 46 | 72.65 135 | 90.47 51 | 93.69 50 | 83.77 45 | 94.11 22 | 94.27 74 | 90.28 14 | 95.84 22 | 86.03 42 | 97.92 46 | 92.29 169 |
|
test_241102_ONE | | | | | | 94.18 46 | 72.65 135 | | 93.69 50 | 83.62 47 | 94.11 22 | 93.78 104 | 90.28 14 | 95.50 45 | | | |
|
SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 45 | 88.20 19 | 93.24 39 | 94.02 90 | 90.15 16 | 95.67 33 | 86.82 30 | 97.34 74 | 92.19 175 |
|
APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 78 | 85.17 35 | 92.47 25 | 95.05 13 | 87.65 22 | 93.21 40 | 94.39 72 | 90.09 17 | 95.08 60 | 86.67 31 | 97.60 64 | 94.18 92 |
|
DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 105 | 94.16 49 | 72.56 141 | 90.54 48 | 91.01 136 | 83.61 48 | 93.75 30 | 94.65 57 | 89.76 18 | 95.78 27 | 86.42 32 | 97.97 43 | 90.55 220 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 94.16 49 | 72.56 141 | 90.63 45 | 93.90 42 | 83.61 48 | 93.75 30 | 94.49 64 | 89.76 18 | | | | |
|
COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 62 | 86.15 20 | 93.37 10 | 95.10 12 | 90.28 9 | 92.11 61 | 95.03 46 | 89.75 20 | 94.93 64 | 79.95 101 | 98.27 25 | 95.04 64 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_241102_TWO | | | | | | | | | 93.71 49 | 83.77 45 | 93.49 36 | 94.27 74 | 89.27 21 | 95.84 22 | 86.03 42 | 97.82 51 | 92.04 179 |
|
tt0805 | | | 88.09 74 | 89.79 51 | 82.98 179 | 93.26 73 | 63.94 227 | 91.10 41 | 89.64 175 | 85.07 35 | 90.91 85 | 91.09 174 | 89.16 22 | 91.87 168 | 82.03 81 | 95.87 129 | 93.13 136 |
|
ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 27 | 82.52 59 | 92.39 58 | 94.14 84 | 89.15 23 | 95.62 34 | 87.35 22 | 98.24 26 | 94.56 76 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 67 | 88.83 24 | 95.51 43 | 87.16 27 | 97.60 64 | 92.73 148 |
|
APDe-MVS | | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 80 | 78.04 86 | 92.84 15 | 94.14 31 | 83.33 51 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 142 |
|
test_one_0601 | | | | | | 93.85 58 | 73.27 130 | | 94.11 33 | 86.57 25 | 93.47 38 | 94.64 60 | 88.42 26 | | | | |
|
ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 52 | 77.65 116 | 91.97 65 | 94.89 49 | 88.38 27 | 95.45 47 | 89.27 3 | 97.87 50 | 93.27 131 |
|
MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 98 | 94.51 17 | 75.79 137 | 92.94 44 | 94.96 47 | 88.36 28 | 95.01 62 | 90.70 2 | 98.40 19 | 95.09 63 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 66 | 81.99 62 | 91.47 71 | 93.96 95 | 88.35 29 | 95.56 38 | 87.74 11 | 97.74 57 | 92.85 145 |
|
CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 59 | 83.16 52 | 91.06 81 | 94.00 91 | 88.26 30 | 95.71 31 | 87.28 25 | 98.39 20 | 92.55 157 |
|
SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 57 | 82.82 57 | 92.60 54 | 93.97 92 | 88.19 31 | 96.29 4 | 87.61 15 | 98.20 31 | 94.39 86 |
Skip Steuart: Steuart Systems R&D Blog. |
PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 42 | 80.32 82 | 91.74 69 | 94.41 70 | 88.17 32 | 95.98 10 | 86.37 34 | 97.99 40 | 93.96 103 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 91 | 86.07 41 | 98.48 17 | 97.22 19 |
|
DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 66 | 93.38 69 | 78.65 83 | 89.15 82 | 94.05 36 | 84.68 39 | 93.90 24 | 94.11 87 | 88.13 34 | 96.30 3 | 84.51 59 | 97.81 52 | 91.70 190 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 120 | 92.78 89 | 78.78 103 | 92.51 55 | 93.64 108 | 88.13 34 | 93.84 103 | 84.83 56 | 97.55 67 | 94.10 98 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
pmmvs6 | | | 86.52 94 | 88.06 74 | 81.90 199 | 92.22 102 | 62.28 250 | 84.66 146 | 89.15 183 | 83.54 50 | 89.85 103 | 97.32 4 | 88.08 36 | 86.80 270 | 70.43 208 | 97.30 76 | 96.62 28 |
|
mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 65 | 84.79 40 | 89.89 63 | 90.63 146 | 70.00 214 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 114 | 84.27 61 | 95.97 122 | 95.52 49 |
|
ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 24 | 80.14 85 | 91.29 76 | 93.97 92 | 87.93 38 | 95.87 18 | 88.65 4 | 97.96 45 | 94.12 96 |
|
region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 65 | 81.91 64 | 90.88 87 | 94.21 79 | 87.75 39 | 95.87 18 | 87.60 16 | 97.71 58 | 93.83 108 |
|
wuyk23d | | | 75.13 258 | 79.30 211 | 62.63 348 | 75.56 350 | 75.18 120 | 80.89 231 | 73.10 334 | 75.06 147 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 378 | 34.16 377 | 97.11 80 | 59.85 375 |
|
mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 93 | 83.09 53 | 91.54 70 | 94.25 78 | 87.67 41 | 95.51 43 | 87.21 26 | 98.11 35 | 93.12 138 |
|
ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 67 | 81.99 62 | 91.40 72 | 94.17 83 | 87.51 42 | 95.87 18 | 87.74 11 | 97.76 55 | 93.99 100 |
|
test_0728_THIRD | | | | | | | | | | 85.33 32 | 93.75 30 | 94.65 57 | 87.44 43 | 95.78 27 | 87.41 20 | 98.21 29 | 92.98 142 |
|
9.14 | | | | 89.29 58 | | 91.84 117 | | 88.80 88 | 95.32 11 | 75.14 146 | 91.07 80 | 92.89 125 | 87.27 44 | 93.78 104 | 83.69 66 | 97.55 67 | |
|
PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 143 | 96.56 6 | 58.83 293 | 89.04 83 | 92.74 90 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 37 | 79.42 110 | 98.74 5 | 99.00 2 |
|
GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 48 | 80.98 76 | 91.38 73 | 93.80 102 | 87.20 46 | 95.80 24 | 87.10 29 | 97.69 59 | 93.93 104 |
|
PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 142 | 96.57 5 | 58.88 290 | 88.95 84 | 93.19 69 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 35 | 78.69 115 | 98.72 8 | 98.97 3 |
|
DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 151 | 96.51 7 | 57.84 300 | 88.93 85 | 92.84 87 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 9 | 79.05 112 | 98.57 14 | 98.80 6 |
|
SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 73 | 92.86 84 | 77.09 101 | 91.19 40 | 95.74 5 | 81.38 70 | 92.28 59 | 93.80 102 | 86.89 49 | 94.64 72 | 85.52 47 | 97.51 71 | 94.30 89 |
|
MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 80 | 82.59 58 | 88.52 128 | 94.37 73 | 86.74 50 | 95.41 49 | 86.32 35 | 98.21 29 | 93.19 135 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 116 | 84.07 42 | 92.00 64 | 94.40 71 | 86.63 51 | 95.28 54 | 88.59 5 | 98.31 23 | 92.30 168 |
|
XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 35 | 89.99 99 | 94.03 89 | 86.57 52 | 95.80 24 | 87.35 22 | 97.62 62 | 94.20 90 |
|
X-MVStestdata | | | 85.04 116 | 82.70 164 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 35 | 89.99 99 | 16.05 382 | 86.57 52 | 95.80 24 | 87.35 22 | 97.62 62 | 94.20 90 |
|
canonicalmvs | | | 85.50 107 | 86.14 104 | 83.58 165 | 87.97 204 | 67.13 194 | 87.55 105 | 94.32 18 | 73.44 165 | 88.47 129 | 87.54 245 | 86.45 54 | 91.06 189 | 75.76 153 | 93.76 193 | 92.54 158 |
|
TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 129 | 94.02 54 | 64.13 224 | 84.38 153 | 91.29 128 | 84.88 38 | 92.06 63 | 93.84 101 | 86.45 54 | 93.73 105 | 73.22 183 | 98.66 10 | 97.69 9 |
|
test_0402 | | | 88.65 65 | 89.58 56 | 85.88 117 | 92.55 90 | 72.22 149 | 84.01 160 | 89.44 180 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 56 | 93.59 114 | 79.84 102 | 95.21 151 | 91.82 186 |
|
APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 89 | 81.34 64 | 90.19 56 | 93.08 76 | 80.87 78 | 91.13 79 | 93.19 113 | 86.22 57 | 95.97 11 | 82.23 80 | 97.18 79 | 90.45 222 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 108 | 91.63 121 | 77.07 102 | 89.82 64 | 93.77 47 | 78.90 101 | 92.88 45 | 92.29 144 | 86.11 58 | 90.22 213 | 86.24 39 | 97.24 77 | 91.36 198 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ZD-MVS | | | | | | 92.22 102 | 80.48 67 | | 91.85 113 | 71.22 200 | 90.38 91 | 92.98 120 | 86.06 59 | 96.11 5 | 81.99 83 | 96.75 91 | |
|
jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 69 | 84.72 41 | 89.70 66 | 90.29 160 | 69.27 218 | 94.39 16 | 96.38 15 | 86.02 60 | 93.52 118 | 83.96 63 | 95.92 127 | 95.34 53 |
|
nrg030 | | | 87.85 80 | 88.49 70 | 85.91 115 | 90.07 163 | 69.73 171 | 87.86 102 | 94.20 25 | 74.04 155 | 92.70 53 | 94.66 56 | 85.88 61 | 91.50 174 | 79.72 105 | 97.32 75 | 96.50 31 |
|
SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 68 | 75.37 144 | 92.84 48 | 95.28 38 | 85.58 62 | 96.09 6 | 87.92 9 | 97.76 55 | 93.88 106 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 63 | 79.07 79 | 88.54 93 | 94.20 25 | 73.53 163 | 89.71 106 | 94.82 52 | 85.09 63 | 95.77 29 | 84.17 62 | 98.03 38 | 93.26 132 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 189 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 234 | 74.12 168 | 96.10 117 | 94.45 82 |
|
APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 189 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 234 | 74.12 168 | 96.10 117 | 94.45 82 |
|
GeoE | | | 85.45 109 | 85.81 110 | 84.37 144 | 90.08 161 | 67.07 195 | 85.86 131 | 91.39 126 | 72.33 188 | 87.59 143 | 90.25 200 | 84.85 66 | 92.37 153 | 78.00 126 | 91.94 233 | 93.66 116 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 67 | 93.16 131 | 91.10 1 | 97.53 70 | 96.58 30 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 90 | 91.30 134 | 77.50 94 | 87.55 105 | 92.97 83 | 87.95 20 | 89.62 110 | 92.87 126 | 84.56 68 | 93.89 100 | 77.65 130 | 96.62 94 | 90.70 214 |
|
LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 181 | 84.23 45 | 93.58 6 | 94.68 16 | 90.65 7 | 90.33 93 | 93.95 97 | 84.50 69 | 95.37 50 | 80.87 91 | 95.50 142 | 94.53 79 |
|
EC-MVSNet | | | 88.01 75 | 88.32 72 | 87.09 91 | 89.28 175 | 72.03 151 | 90.31 54 | 96.31 3 | 80.88 77 | 85.12 191 | 89.67 211 | 84.47 70 | 95.46 46 | 82.56 75 | 96.26 111 | 93.77 113 |
|
casdiffmvs_mvg |  | | 86.72 91 | 87.51 82 | 84.36 146 | 87.09 226 | 65.22 214 | 84.16 155 | 94.23 22 | 77.89 113 | 91.28 77 | 93.66 107 | 84.35 71 | 92.71 143 | 80.07 98 | 94.87 169 | 95.16 61 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 167 | 86.67 14 | 90.51 50 | 90.20 163 | 69.87 215 | 95.06 11 | 96.14 21 | 84.28 72 | 93.07 135 | 87.68 13 | 96.34 106 | 97.09 21 |
|
OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 112 | 81.68 61 | 87.49 107 | 93.17 70 | 76.02 131 | 88.64 126 | 91.22 169 | 84.24 73 | 93.37 125 | 77.97 128 | 97.03 83 | 95.52 49 |
|
CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 169 | 79.18 78 | 90.47 51 | 94.77 15 | 79.37 95 | 84.32 207 | 89.33 217 | 83.87 74 | 94.53 78 | 82.45 76 | 94.89 166 | 94.90 65 |
|
XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 129 | 93.60 55 | 80.16 84 | 89.13 120 | 93.44 110 | 83.82 75 | 90.98 190 | 83.86 65 | 95.30 150 | 93.60 121 |
|
XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 38 | 79.68 89 | 92.09 62 | 93.89 100 | 83.80 76 | 93.10 134 | 82.67 74 | 98.04 36 | 93.64 119 |
|
CDPH-MVS | | | 86.17 101 | 85.54 115 | 88.05 83 | 92.25 100 | 75.45 118 | 83.85 166 | 92.01 106 | 65.91 250 | 86.19 173 | 91.75 159 | 83.77 77 | 94.98 63 | 77.43 135 | 96.71 92 | 93.73 114 |
|
test_fmvsmvis_n_1920 | | | 85.22 111 | 85.36 118 | 84.81 134 | 85.80 252 | 76.13 115 | 85.15 140 | 92.32 99 | 61.40 283 | 91.33 74 | 90.85 184 | 83.76 78 | 86.16 280 | 84.31 60 | 93.28 204 | 92.15 177 |
|
Effi-MVS+ | | | 83.90 146 | 84.01 144 | 83.57 166 | 87.22 220 | 65.61 212 | 86.55 125 | 92.40 96 | 78.64 106 | 81.34 260 | 84.18 297 | 83.65 79 | 92.93 139 | 74.22 165 | 87.87 289 | 92.17 176 |
|
MVS_111021_HR | | | 84.63 123 | 84.34 140 | 85.49 126 | 90.18 160 | 75.86 116 | 79.23 255 | 87.13 213 | 73.35 166 | 85.56 186 | 89.34 216 | 83.60 80 | 90.50 207 | 76.64 143 | 94.05 189 | 90.09 231 |
|
UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 88 | 88.22 18 | 88.53 127 | 97.64 2 | 83.45 81 | 94.55 77 | 86.02 44 | 98.60 12 | 96.67 27 |
|
AdaColmap |  | | 83.66 149 | 83.69 149 | 83.57 166 | 90.05 164 | 72.26 148 | 86.29 128 | 90.00 168 | 78.19 111 | 81.65 254 | 87.16 253 | 83.40 82 | 94.24 86 | 61.69 282 | 94.76 174 | 84.21 299 |
|
LCM-MVSNet-Re | | | 83.48 154 | 85.06 121 | 78.75 246 | 85.94 251 | 55.75 316 | 80.05 239 | 94.27 19 | 76.47 126 | 96.09 5 | 94.54 62 | 83.31 83 | 89.75 229 | 59.95 292 | 94.89 166 | 90.75 211 |
|
TransMVSNet (Re) | | | 84.02 142 | 85.74 112 | 78.85 244 | 91.00 144 | 55.20 321 | 82.29 210 | 87.26 209 | 79.65 90 | 88.38 132 | 95.52 33 | 83.00 84 | 86.88 268 | 67.97 235 | 96.60 95 | 94.45 82 |
|
CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 80 | 92.87 82 | 77.30 100 | 85.25 138 | 91.23 130 | 77.31 121 | 87.07 154 | 91.47 164 | 82.94 85 | 94.71 69 | 84.67 57 | 96.27 110 | 92.62 155 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 103 | 90.49 38 | 91.48 131 | 84.90 38 | 83.41 178 | 92.38 98 | 70.25 211 | 89.35 118 | 90.68 190 | 82.85 86 | 94.57 75 | 79.55 107 | 95.95 124 | 92.00 181 |
|
v7n | | | 90.13 36 | 90.96 38 | 87.65 88 | 91.95 110 | 71.06 161 | 89.99 59 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 87 | 94.08 94 | 86.25 38 | 97.63 61 | 97.82 8 |
|
AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 122 | 83.40 48 | 89.50 75 | 95.44 9 | 79.47 91 | 88.00 138 | 93.03 118 | 82.66 88 | 91.47 175 | 70.81 200 | 96.14 114 | 94.16 93 |
|
TestCases | | | | | 89.68 53 | 91.59 122 | 83.40 48 | | 95.44 9 | 79.47 91 | 88.00 138 | 93.03 118 | 82.66 88 | 91.47 175 | 70.81 200 | 96.14 114 | 94.16 93 |
|
RPSCF | | | 88.00 76 | 86.93 93 | 91.22 27 | 90.08 161 | 89.30 4 | 89.68 68 | 91.11 133 | 79.26 96 | 89.68 107 | 94.81 55 | 82.44 90 | 87.74 257 | 76.54 145 | 88.74 278 | 96.61 29 |
|
CS-MVS-test | | | 87.00 86 | 86.43 99 | 88.71 71 | 89.46 171 | 77.46 95 | 89.42 79 | 95.73 6 | 77.87 114 | 81.64 255 | 87.25 251 | 82.43 91 | 94.53 78 | 77.65 130 | 96.46 102 | 94.14 95 |
|
ITE_SJBPF | | | | | 90.11 45 | 90.72 150 | 84.97 37 | | 90.30 158 | 81.56 68 | 90.02 98 | 91.20 171 | 82.40 92 | 90.81 198 | 73.58 178 | 94.66 175 | 94.56 76 |
|
SDMVSNet | | | 81.90 179 | 83.17 156 | 78.10 259 | 88.81 186 | 62.45 246 | 76.08 300 | 86.05 230 | 73.67 160 | 83.41 224 | 93.04 116 | 82.35 93 | 80.65 318 | 70.06 211 | 95.03 159 | 91.21 200 |
|
Fast-Effi-MVS+ | | | 81.04 188 | 80.57 192 | 82.46 194 | 87.50 215 | 63.22 234 | 78.37 267 | 89.63 176 | 68.01 233 | 81.87 248 | 82.08 320 | 82.31 94 | 92.65 146 | 67.10 237 | 88.30 285 | 91.51 196 |
|
baseline | | | 85.20 113 | 85.93 106 | 83.02 178 | 86.30 241 | 62.37 248 | 84.55 148 | 93.96 39 | 74.48 152 | 87.12 149 | 92.03 149 | 82.30 95 | 91.94 164 | 78.39 116 | 94.21 185 | 94.74 73 |
|
casdiffmvs |  | | 85.21 112 | 85.85 109 | 83.31 172 | 86.17 247 | 62.77 240 | 83.03 188 | 93.93 40 | 74.69 150 | 88.21 135 | 92.68 133 | 82.29 96 | 91.89 167 | 77.87 129 | 93.75 195 | 95.27 57 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 138 | 90.46 155 | 65.27 213 | 88.86 86 | 93.02 81 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 97 | 92.02 163 | 76.70 142 | 97.99 40 | 96.88 25 |
|
APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 170 | 86.65 16 | 89.98 60 | 91.91 111 | 84.26 40 | 90.87 88 | 93.92 99 | 82.18 98 | 89.29 238 | 73.75 175 | 94.81 170 | 93.70 115 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 87 | 83.42 169 | 90.19 159 | 64.55 221 | 84.55 148 | 90.71 143 | 85.85 31 | 89.94 102 | 95.24 40 | 82.13 99 | 90.40 209 | 69.19 220 | 96.40 105 | 95.31 55 |
|
CLD-MVS | | | 83.18 159 | 82.64 166 | 84.79 135 | 89.05 180 | 67.82 192 | 77.93 271 | 92.52 94 | 68.33 229 | 85.07 192 | 81.54 325 | 82.06 100 | 92.96 137 | 69.35 216 | 97.91 48 | 93.57 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TEST9 | | | | | | 92.34 96 | 79.70 74 | 83.94 162 | 90.32 155 | 65.41 260 | 84.49 202 | 90.97 178 | 82.03 101 | 93.63 109 | | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 102 | | | | |
|
train_agg | | | 85.98 103 | 85.28 119 | 88.07 82 | 92.34 96 | 79.70 74 | 83.94 162 | 90.32 155 | 65.79 251 | 84.49 202 | 90.97 178 | 81.93 103 | 93.63 109 | 81.21 87 | 96.54 97 | 90.88 208 |
|
test_8 | | | | | | 92.09 106 | 78.87 81 | 83.82 167 | 90.31 157 | 65.79 251 | 84.36 205 | 90.96 180 | 81.93 103 | 93.44 122 | | | |
|
test_prior2 | | | | | | | | 83.37 179 | | 75.43 142 | 84.58 201 | 91.57 161 | 81.92 105 | | 79.54 108 | 96.97 84 | |
|
EGC-MVSNET | | | 74.79 265 | 69.99 303 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 225 | 1.09 383 | 2.23 385 | 95.98 23 | 81.87 106 | 89.48 230 | 79.76 104 | 95.96 123 | 91.10 203 |
|
CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 144 | 96.34 8 | 58.61 296 | 88.66 91 | 92.06 105 | 90.78 6 | 95.67 7 | 95.17 43 | 81.80 107 | 95.54 40 | 79.00 113 | 98.69 9 | 98.95 4 |
|
MVS_111021_LR | | | 84.28 133 | 83.76 148 | 85.83 119 | 89.23 177 | 83.07 51 | 80.99 230 | 83.56 263 | 72.71 180 | 86.07 176 | 89.07 222 | 81.75 108 | 86.19 279 | 77.11 139 | 93.36 200 | 88.24 255 |
|
test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 95 | 82.98 53 | 91.98 31 | 90.08 166 | 71.54 195 | 94.28 20 | 96.54 13 | 81.57 109 | 94.27 83 | 86.26 36 | 96.49 100 | 97.09 21 |
|
cdsmvs_eth3d_5k | | | 20.81 350 | 27.75 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 85.44 237 | 0.00 387 | 0.00 388 | 82.82 312 | 81.46 110 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 121 | 96.32 9 | 62.39 247 | 89.54 74 | 93.31 64 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 111 | 95.90 14 | 80.94 90 | 98.80 2 | 98.84 5 |
|
CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 100 | 79.74 88 | 87.50 145 | 92.38 140 | 81.42 111 | 93.28 127 | 83.07 69 | 97.24 77 | 91.67 191 |
|
pm-mvs1 | | | 83.69 148 | 84.95 124 | 79.91 231 | 90.04 165 | 59.66 280 | 82.43 206 | 87.44 206 | 75.52 141 | 87.85 140 | 95.26 39 | 81.25 113 | 85.65 288 | 68.74 227 | 96.04 119 | 94.42 85 |
|
DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 92 | 91.55 127 | 72.64 137 | 96.19 2 | 94.10 34 | 85.33 32 | 93.49 36 | 94.64 60 | 81.12 114 | 95.88 16 | 87.41 20 | 95.94 125 | 92.48 159 |
|
OPU-MVS | | | | | 88.27 79 | 91.89 113 | 77.83 90 | 90.47 51 | | | | 91.22 169 | 81.12 114 | 94.68 70 | 74.48 163 | 95.35 145 | 92.29 169 |
|
sd_testset | | | 79.95 212 | 81.39 184 | 75.64 291 | 88.81 186 | 58.07 298 | 76.16 299 | 82.81 270 | 73.67 160 | 83.41 224 | 93.04 116 | 80.96 116 | 77.65 326 | 58.62 298 | 95.03 159 | 91.21 200 |
|
NCCC | | | 87.36 83 | 86.87 94 | 88.83 67 | 92.32 98 | 78.84 82 | 86.58 124 | 91.09 134 | 78.77 104 | 84.85 198 | 90.89 182 | 80.85 117 | 95.29 52 | 81.14 88 | 95.32 147 | 92.34 166 |
|
TAPA-MVS | | 77.73 12 | 85.71 106 | 84.83 125 | 88.37 77 | 88.78 188 | 79.72 73 | 87.15 111 | 93.50 56 | 69.17 219 | 85.80 182 | 89.56 212 | 80.76 118 | 92.13 159 | 73.21 188 | 95.51 141 | 93.25 133 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Fast-Effi-MVS+-dtu | | | 82.54 167 | 81.41 183 | 85.90 116 | 85.60 253 | 76.53 108 | 83.07 187 | 89.62 177 | 73.02 176 | 79.11 287 | 83.51 302 | 80.74 119 | 90.24 212 | 68.76 226 | 89.29 269 | 90.94 206 |
|
PC_three_1452 | | | | | | | | | | 58.96 301 | 90.06 96 | 91.33 167 | 80.66 120 | 93.03 136 | 75.78 152 | 95.94 125 | 92.48 159 |
|
VPA-MVSNet | | | 83.47 155 | 84.73 126 | 79.69 235 | 90.29 157 | 57.52 303 | 81.30 226 | 88.69 189 | 76.29 127 | 87.58 144 | 94.44 66 | 80.60 121 | 87.20 263 | 66.60 243 | 96.82 89 | 94.34 88 |
|
ETV-MVS | | | 84.31 131 | 83.91 147 | 85.52 124 | 88.58 193 | 70.40 166 | 84.50 152 | 93.37 58 | 78.76 105 | 84.07 216 | 78.72 347 | 80.39 122 | 95.13 59 | 73.82 174 | 92.98 212 | 91.04 204 |
|
HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 129 | 78.20 110 | 86.69 163 | 92.28 145 | 80.36 123 | 95.06 61 | 86.17 40 | 96.49 100 | 90.22 226 |
|
ANet_high | | | 83.17 160 | 85.68 113 | 75.65 290 | 81.24 300 | 45.26 369 | 79.94 241 | 92.91 84 | 83.83 44 | 91.33 74 | 96.88 10 | 80.25 124 | 85.92 283 | 68.89 224 | 95.89 128 | 95.76 43 |
|
EI-MVSNet-Vis-set | | | 85.12 115 | 84.53 133 | 86.88 94 | 84.01 275 | 72.76 134 | 83.91 165 | 85.18 242 | 80.44 79 | 88.75 124 | 85.49 276 | 80.08 125 | 91.92 165 | 82.02 82 | 90.85 255 | 95.97 39 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 114 | 87.96 84 | 91.30 134 | 76.92 103 | 87.19 109 | 91.99 107 | 70.56 205 | 84.96 194 | 90.69 189 | 80.01 126 | 95.14 58 | 78.37 117 | 95.78 136 | 91.82 186 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EI-MVSNet-UG-set | | | 85.04 116 | 84.44 135 | 86.85 95 | 83.87 278 | 72.52 143 | 83.82 167 | 85.15 243 | 80.27 83 | 88.75 124 | 85.45 278 | 79.95 127 | 91.90 166 | 81.92 84 | 90.80 256 | 96.13 34 |
|
MCST-MVS | | | 84.36 129 | 83.93 146 | 85.63 122 | 91.59 122 | 71.58 158 | 83.52 175 | 92.13 103 | 61.82 278 | 83.96 217 | 89.75 210 | 79.93 128 | 93.46 121 | 78.33 119 | 94.34 182 | 91.87 185 |
|
TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 105 | 92.49 24 | 91.19 132 | 67.85 238 | 86.63 164 | 94.84 51 | 79.58 129 | 95.96 12 | 87.62 14 | 94.50 178 | 94.56 76 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test12 | | | | | 86.57 99 | 90.74 149 | 72.63 139 | | 90.69 144 | | 82.76 234 | | 79.20 130 | 94.80 67 | | 95.32 147 | 92.27 171 |
|
CSCG | | | 86.26 97 | 86.47 98 | 85.60 123 | 90.87 147 | 74.26 125 | 87.98 100 | 91.85 113 | 80.35 81 | 89.54 116 | 88.01 235 | 79.09 131 | 92.13 159 | 75.51 154 | 95.06 158 | 90.41 223 |
|
Test By Simon | | | | | | | | | | | | | 79.09 131 | | | | |
|
PHI-MVS | | | 86.38 95 | 85.81 110 | 88.08 81 | 88.44 197 | 77.34 98 | 89.35 80 | 93.05 77 | 73.15 174 | 84.76 199 | 87.70 242 | 78.87 133 | 94.18 89 | 80.67 95 | 96.29 107 | 92.73 148 |
|
EG-PatchMatch MVS | | | 84.08 140 | 84.11 142 | 83.98 155 | 92.22 102 | 72.61 140 | 82.20 216 | 87.02 218 | 72.63 181 | 88.86 121 | 91.02 176 | 78.52 134 | 91.11 187 | 73.41 180 | 91.09 245 | 88.21 256 |
|
dcpmvs_2 | | | 84.23 136 | 85.14 120 | 81.50 207 | 88.61 192 | 61.98 254 | 82.90 193 | 93.11 73 | 68.66 227 | 92.77 51 | 92.39 139 | 78.50 135 | 87.63 259 | 76.99 141 | 92.30 222 | 94.90 65 |
|
Effi-MVS+-dtu | | | 85.82 105 | 83.38 151 | 93.14 3 | 87.13 222 | 91.15 2 | 87.70 104 | 88.42 192 | 74.57 151 | 83.56 222 | 85.65 274 | 78.49 136 | 94.21 87 | 72.04 195 | 92.88 214 | 94.05 99 |
|
Vis-MVSNet |  | | 86.86 88 | 86.58 97 | 87.72 85 | 92.09 106 | 77.43 97 | 87.35 108 | 92.09 104 | 78.87 102 | 84.27 212 | 94.05 88 | 78.35 137 | 93.65 107 | 80.54 97 | 91.58 239 | 92.08 178 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 86.84 89 | 87.06 89 | 86.17 111 | 92.86 84 | 67.02 196 | 82.55 202 | 91.56 119 | 83.08 54 | 90.92 83 | 91.82 156 | 78.25 138 | 93.99 96 | 74.16 166 | 98.35 21 | 97.49 13 |
|
MSLP-MVS++ | | | 85.00 118 | 86.03 105 | 81.90 199 | 91.84 117 | 71.56 159 | 86.75 121 | 93.02 81 | 75.95 134 | 87.12 149 | 89.39 215 | 77.98 139 | 89.40 237 | 77.46 133 | 94.78 171 | 84.75 294 |
|
API-MVS | | | 82.28 170 | 82.61 167 | 81.30 209 | 86.29 242 | 69.79 169 | 88.71 90 | 87.67 205 | 78.42 109 | 82.15 243 | 84.15 298 | 77.98 139 | 91.59 173 | 65.39 253 | 92.75 216 | 82.51 325 |
|
DP-MVS Recon | | | 84.05 141 | 83.22 153 | 86.52 101 | 91.73 120 | 75.27 119 | 83.23 184 | 92.40 96 | 72.04 192 | 82.04 245 | 88.33 231 | 77.91 141 | 93.95 98 | 66.17 245 | 95.12 156 | 90.34 225 |
|
UniMVSNet (Re) | | | 86.87 87 | 86.98 92 | 86.55 100 | 93.11 77 | 68.48 184 | 83.80 169 | 92.87 85 | 80.37 80 | 89.61 112 | 91.81 157 | 77.72 142 | 94.18 89 | 75.00 161 | 98.53 15 | 96.99 24 |
|
PCF-MVS | | 74.62 15 | 82.15 173 | 80.92 191 | 85.84 118 | 89.43 172 | 72.30 147 | 80.53 234 | 91.82 115 | 57.36 313 | 87.81 141 | 89.92 207 | 77.67 143 | 93.63 109 | 58.69 297 | 95.08 157 | 91.58 194 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
NR-MVSNet | | | 86.00 102 | 86.22 102 | 85.34 127 | 93.24 74 | 64.56 220 | 82.21 214 | 90.46 150 | 80.99 75 | 88.42 130 | 91.97 150 | 77.56 144 | 93.85 101 | 72.46 193 | 98.65 11 | 97.61 10 |
|
3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 136 | 81.66 62 | 91.25 38 | 94.13 32 | 88.89 11 | 88.83 123 | 94.26 77 | 77.55 145 | 95.86 21 | 84.88 55 | 95.87 129 | 95.24 58 |
|
MVS_Test | | | 82.47 168 | 83.22 153 | 80.22 228 | 82.62 290 | 57.75 302 | 82.54 203 | 91.96 109 | 71.16 201 | 82.89 232 | 92.52 138 | 77.41 146 | 90.50 207 | 80.04 100 | 87.84 290 | 92.40 163 |
|
EIA-MVS | | | 82.19 172 | 81.23 187 | 85.10 130 | 87.95 205 | 69.17 181 | 83.22 185 | 93.33 61 | 70.42 207 | 78.58 290 | 79.77 341 | 77.29 147 | 94.20 88 | 71.51 197 | 88.96 274 | 91.93 184 |
|
xiu_mvs_v2_base | | | 77.19 237 | 76.75 239 | 78.52 250 | 87.01 228 | 61.30 259 | 75.55 307 | 87.12 216 | 61.24 285 | 74.45 324 | 78.79 346 | 77.20 148 | 90.93 192 | 64.62 262 | 84.80 322 | 83.32 313 |
|
DU-MVS | | | 86.80 90 | 86.99 91 | 86.21 109 | 93.24 74 | 67.02 196 | 83.16 186 | 92.21 101 | 81.73 66 | 90.92 83 | 91.97 150 | 77.20 148 | 93.99 96 | 74.16 166 | 98.35 21 | 97.61 10 |
|
Baseline_NR-MVSNet | | | 84.00 143 | 85.90 108 | 78.29 256 | 91.47 132 | 53.44 330 | 82.29 210 | 87.00 221 | 79.06 99 | 89.55 114 | 95.72 28 | 77.20 148 | 86.14 281 | 72.30 194 | 98.51 16 | 95.28 56 |
|
TinyColmap | | | 81.25 185 | 82.34 172 | 77.99 262 | 85.33 257 | 60.68 271 | 82.32 209 | 88.33 196 | 71.26 199 | 86.97 156 | 92.22 148 | 77.10 151 | 86.98 267 | 62.37 274 | 95.17 153 | 86.31 278 |
|
F-COLMAP | | | 84.97 119 | 83.42 150 | 89.63 55 | 92.39 94 | 83.40 48 | 88.83 87 | 91.92 110 | 73.19 173 | 80.18 277 | 89.15 221 | 77.04 152 | 93.28 127 | 65.82 250 | 92.28 225 | 92.21 174 |
|
114514_t | | | 83.10 162 | 82.54 169 | 84.77 137 | 92.90 81 | 69.10 182 | 86.65 122 | 90.62 147 | 54.66 323 | 81.46 257 | 90.81 186 | 76.98 153 | 94.38 82 | 72.62 191 | 96.18 112 | 90.82 210 |
|
xiu_mvs_v1_base_debu | | | 80.84 190 | 80.14 203 | 82.93 182 | 88.31 198 | 71.73 154 | 79.53 246 | 87.17 210 | 65.43 257 | 79.59 279 | 82.73 314 | 76.94 154 | 90.14 218 | 73.22 183 | 88.33 281 | 86.90 273 |
|
xiu_mvs_v1_base | | | 80.84 190 | 80.14 203 | 82.93 182 | 88.31 198 | 71.73 154 | 79.53 246 | 87.17 210 | 65.43 257 | 79.59 279 | 82.73 314 | 76.94 154 | 90.14 218 | 73.22 183 | 88.33 281 | 86.90 273 |
|
xiu_mvs_v1_base_debi | | | 80.84 190 | 80.14 203 | 82.93 182 | 88.31 198 | 71.73 154 | 79.53 246 | 87.17 210 | 65.43 257 | 79.59 279 | 82.73 314 | 76.94 154 | 90.14 218 | 73.22 183 | 88.33 281 | 86.90 273 |
|
pcd_1.5k_mvsjas | | | 6.41 353 | 8.55 356 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 76.94 154 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 71 | 77.96 89 | 87.94 101 | 91.97 108 | 70.73 204 | 94.19 21 | 96.67 11 | 76.94 154 | 94.57 75 | 83.07 69 | 96.28 108 | 96.15 33 |
|
PS-MVSNAJ | | | 77.04 239 | 76.53 241 | 78.56 249 | 87.09 226 | 61.40 257 | 75.26 309 | 87.13 213 | 61.25 284 | 74.38 326 | 77.22 357 | 76.94 154 | 90.94 191 | 64.63 261 | 84.83 321 | 83.35 312 |
|
MIMVSNet1 | | | 83.63 150 | 84.59 131 | 80.74 219 | 94.06 53 | 62.77 240 | 82.72 196 | 84.53 255 | 77.57 118 | 90.34 92 | 95.92 24 | 76.88 160 | 85.83 286 | 61.88 280 | 97.42 72 | 93.62 120 |
|
原ACMM1 | | | | | 84.60 141 | 92.81 87 | 74.01 126 | | 91.50 121 | 62.59 272 | 82.73 235 | 90.67 191 | 76.53 161 | 94.25 85 | 69.24 217 | 95.69 139 | 85.55 285 |
|
MSDG | | | 80.06 210 | 79.99 207 | 80.25 227 | 83.91 277 | 68.04 190 | 77.51 279 | 89.19 182 | 77.65 116 | 81.94 246 | 83.45 304 | 76.37 162 | 86.31 277 | 63.31 270 | 86.59 301 | 86.41 276 |
|
Gipuma |  | | 84.44 128 | 86.33 100 | 78.78 245 | 84.20 274 | 73.57 128 | 89.55 72 | 90.44 151 | 84.24 41 | 84.38 204 | 94.89 49 | 76.35 163 | 80.40 319 | 76.14 149 | 96.80 90 | 82.36 326 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_fmvsm_n_1920 | | | 83.60 151 | 82.89 161 | 85.74 120 | 85.22 258 | 77.74 92 | 84.12 157 | 90.48 149 | 59.87 299 | 86.45 172 | 91.12 173 | 75.65 164 | 85.89 285 | 82.28 79 | 90.87 253 | 93.58 122 |
|
XXY-MVS | | | 74.44 269 | 76.19 244 | 69.21 327 | 84.61 265 | 52.43 338 | 71.70 331 | 77.18 304 | 60.73 291 | 80.60 267 | 90.96 180 | 75.44 165 | 69.35 348 | 56.13 312 | 88.33 281 | 85.86 283 |
|
FMVSNet1 | | | 84.55 126 | 85.45 116 | 81.85 201 | 90.27 158 | 61.05 263 | 86.83 117 | 88.27 198 | 78.57 107 | 89.66 109 | 95.64 30 | 75.43 166 | 90.68 202 | 69.09 221 | 95.33 146 | 93.82 109 |
|
CANet | | | 83.79 147 | 82.85 162 | 86.63 98 | 86.17 247 | 72.21 150 | 83.76 170 | 91.43 123 | 77.24 122 | 74.39 325 | 87.45 247 | 75.36 167 | 95.42 48 | 77.03 140 | 92.83 215 | 92.25 173 |
|
ab-mvs | | | 79.67 213 | 80.56 193 | 76.99 274 | 88.48 195 | 56.93 307 | 84.70 145 | 86.06 229 | 68.95 223 | 80.78 266 | 93.08 115 | 75.30 168 | 84.62 296 | 56.78 307 | 90.90 252 | 89.43 238 |
|
patch_mono-2 | | | 78.89 217 | 79.39 210 | 77.41 271 | 84.78 263 | 68.11 188 | 75.60 304 | 83.11 266 | 60.96 288 | 79.36 283 | 89.89 208 | 75.18 169 | 72.97 338 | 73.32 182 | 92.30 222 | 91.15 202 |
|
DELS-MVS | | | 81.44 183 | 81.25 185 | 82.03 197 | 84.27 273 | 62.87 238 | 76.47 294 | 92.49 95 | 70.97 202 | 81.64 255 | 83.83 299 | 75.03 170 | 92.70 144 | 74.29 164 | 92.22 228 | 90.51 221 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PAPR | | | 78.84 219 | 78.10 227 | 81.07 214 | 85.17 259 | 60.22 274 | 82.21 214 | 90.57 148 | 62.51 273 | 75.32 319 | 84.61 292 | 74.99 171 | 92.30 156 | 59.48 295 | 88.04 287 | 90.68 215 |
|
CNLPA | | | 83.55 153 | 83.10 158 | 84.90 132 | 89.34 174 | 83.87 46 | 84.54 150 | 88.77 187 | 79.09 98 | 83.54 223 | 88.66 228 | 74.87 172 | 81.73 312 | 66.84 240 | 92.29 224 | 89.11 244 |
|
HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 72 | 93.45 66 | 76.42 110 | 89.45 77 | 93.61 53 | 79.44 93 | 86.55 165 | 92.95 123 | 74.84 173 | 95.22 55 | 80.78 93 | 95.83 131 | 94.46 80 |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 106 | | | | | | 74.84 173 | | | | |
|
FC-MVSNet-test | | | 85.93 104 | 87.05 90 | 82.58 190 | 92.25 100 | 56.44 311 | 85.75 132 | 93.09 75 | 77.33 120 | 91.94 66 | 94.65 57 | 74.78 175 | 93.41 124 | 75.11 160 | 98.58 13 | 97.88 7 |
|
VDD-MVS | | | 84.23 136 | 84.58 132 | 83.20 175 | 91.17 140 | 65.16 216 | 83.25 182 | 84.97 250 | 79.79 87 | 87.18 148 | 94.27 74 | 74.77 176 | 90.89 195 | 69.24 217 | 96.54 97 | 93.55 126 |
|
BH-untuned | | | 80.96 189 | 80.99 189 | 80.84 218 | 88.55 194 | 68.23 185 | 80.33 237 | 88.46 191 | 72.79 179 | 86.55 165 | 86.76 259 | 74.72 177 | 91.77 171 | 61.79 281 | 88.99 273 | 82.52 324 |
|
VPNet | | | 80.25 204 | 81.68 178 | 75.94 288 | 92.46 93 | 47.98 360 | 76.70 289 | 81.67 280 | 73.45 164 | 84.87 197 | 92.82 127 | 74.66 178 | 86.51 274 | 61.66 283 | 96.85 86 | 93.33 128 |
|
tfpnnormal | | | 81.79 180 | 82.95 160 | 78.31 254 | 88.93 184 | 55.40 317 | 80.83 233 | 82.85 269 | 76.81 124 | 85.90 181 | 94.14 84 | 74.58 179 | 86.51 274 | 66.82 241 | 95.68 140 | 93.01 141 |
|
KD-MVS_self_test | | | 81.93 178 | 83.14 157 | 78.30 255 | 84.75 264 | 52.75 334 | 80.37 236 | 89.42 181 | 70.24 212 | 90.26 94 | 93.39 111 | 74.55 180 | 86.77 271 | 68.61 229 | 96.64 93 | 95.38 52 |
|
V42 | | | 83.47 155 | 83.37 152 | 83.75 161 | 83.16 284 | 63.33 232 | 81.31 224 | 90.23 162 | 69.51 217 | 90.91 85 | 90.81 186 | 74.16 181 | 92.29 157 | 80.06 99 | 90.22 263 | 95.62 47 |
|
3Dnovator | | 80.37 7 | 84.80 121 | 84.71 129 | 85.06 131 | 86.36 239 | 74.71 122 | 88.77 89 | 90.00 168 | 75.65 139 | 84.96 194 | 93.17 114 | 74.06 182 | 91.19 184 | 78.28 120 | 91.09 245 | 89.29 242 |
|
v10 | | | 86.54 93 | 87.10 88 | 84.84 133 | 88.16 203 | 63.28 233 | 86.64 123 | 92.20 102 | 75.42 143 | 92.81 50 | 94.50 63 | 74.05 183 | 94.06 95 | 83.88 64 | 96.28 108 | 97.17 20 |
|
旧先验1 | | | | | | 91.97 109 | 71.77 153 | | 81.78 279 | | | 91.84 154 | 73.92 184 | | | 93.65 197 | 83.61 307 |
|
mvs_anonymous | | | 78.13 228 | 78.76 218 | 76.23 287 | 79.24 323 | 50.31 353 | 78.69 262 | 84.82 252 | 61.60 282 | 83.09 231 | 92.82 127 | 73.89 185 | 87.01 264 | 68.33 233 | 86.41 303 | 91.37 197 |
|
MAR-MVS | | | 80.24 205 | 78.74 219 | 84.73 138 | 86.87 232 | 78.18 85 | 85.75 132 | 87.81 204 | 65.67 256 | 77.84 295 | 78.50 348 | 73.79 186 | 90.53 206 | 61.59 284 | 90.87 253 | 85.49 287 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VDDNet | | | 84.35 130 | 85.39 117 | 81.25 210 | 95.13 31 | 59.32 283 | 85.42 137 | 81.11 283 | 86.41 27 | 87.41 146 | 96.21 19 | 73.61 187 | 90.61 205 | 66.33 244 | 96.85 86 | 93.81 112 |
|
FIs | | | 85.35 110 | 86.27 101 | 82.60 189 | 91.86 114 | 57.31 304 | 85.10 141 | 93.05 77 | 75.83 136 | 91.02 82 | 93.97 92 | 73.57 188 | 92.91 141 | 73.97 171 | 98.02 39 | 97.58 12 |
|
v1144 | | | 84.54 127 | 84.72 128 | 84.00 154 | 87.67 211 | 62.55 244 | 82.97 190 | 90.93 139 | 70.32 210 | 89.80 104 | 90.99 177 | 73.50 189 | 93.48 120 | 81.69 86 | 94.65 176 | 95.97 39 |
|
diffmvs |  | | 80.40 199 | 80.48 196 | 80.17 229 | 79.02 326 | 60.04 275 | 77.54 278 | 90.28 161 | 66.65 247 | 82.40 238 | 87.33 250 | 73.50 189 | 87.35 262 | 77.98 127 | 89.62 267 | 93.13 136 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PAPM_NR | | | 83.23 158 | 83.19 155 | 83.33 171 | 90.90 146 | 65.98 208 | 88.19 97 | 90.78 142 | 78.13 112 | 80.87 264 | 87.92 239 | 73.49 191 | 92.42 150 | 70.07 210 | 88.40 280 | 91.60 193 |
|
v8 | | | 86.22 99 | 86.83 95 | 84.36 146 | 87.82 207 | 62.35 249 | 86.42 126 | 91.33 127 | 76.78 125 | 92.73 52 | 94.48 65 | 73.41 192 | 93.72 106 | 83.10 68 | 95.41 143 | 97.01 23 |
|
EI-MVSNet | | | 82.61 165 | 82.42 171 | 83.20 175 | 83.25 282 | 63.66 228 | 83.50 176 | 85.07 244 | 76.06 129 | 86.55 165 | 85.10 284 | 73.41 192 | 90.25 210 | 78.15 125 | 90.67 259 | 95.68 45 |
|
IterMVS-LS | | | 84.73 122 | 84.98 123 | 83.96 156 | 87.35 217 | 63.66 228 | 83.25 182 | 89.88 170 | 76.06 129 | 89.62 110 | 92.37 143 | 73.40 194 | 92.52 148 | 78.16 123 | 94.77 173 | 95.69 44 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 84.24 135 | 84.41 137 | 83.71 162 | 87.59 214 | 61.57 256 | 82.95 191 | 91.03 135 | 67.82 239 | 89.80 104 | 90.49 195 | 73.28 195 | 93.51 119 | 81.88 85 | 94.89 166 | 96.04 38 |
|
BH-RMVSNet | | | 80.53 195 | 80.22 201 | 81.49 208 | 87.19 221 | 66.21 206 | 77.79 274 | 86.23 227 | 74.21 154 | 83.69 219 | 88.50 229 | 73.25 196 | 90.75 199 | 63.18 271 | 87.90 288 | 87.52 266 |
|
PLC |  | 73.85 16 | 82.09 174 | 80.31 197 | 87.45 89 | 90.86 148 | 80.29 69 | 85.88 130 | 90.65 145 | 68.17 231 | 76.32 306 | 86.33 264 | 73.12 197 | 92.61 147 | 61.40 285 | 90.02 265 | 89.44 237 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 76 | 80.37 68 | 91.91 33 | 93.11 73 | 81.10 74 | 95.32 10 | 97.24 5 | 72.94 198 | 94.85 66 | 85.07 51 | 97.78 53 | 97.26 16 |
|
WR-MVS | | | 83.56 152 | 84.40 138 | 81.06 215 | 93.43 68 | 54.88 322 | 78.67 263 | 85.02 247 | 81.24 72 | 90.74 89 | 91.56 162 | 72.85 199 | 91.08 188 | 68.00 234 | 98.04 36 | 97.23 18 |
|
VNet | | | 79.31 214 | 80.27 198 | 76.44 282 | 87.92 206 | 53.95 326 | 75.58 306 | 84.35 256 | 74.39 153 | 82.23 241 | 90.72 188 | 72.84 200 | 84.39 298 | 60.38 291 | 93.98 190 | 90.97 205 |
|
QAPM | | | 82.59 166 | 82.59 168 | 82.58 190 | 86.44 234 | 66.69 200 | 89.94 62 | 90.36 154 | 67.97 235 | 84.94 196 | 92.58 136 | 72.71 201 | 92.18 158 | 70.63 206 | 87.73 291 | 88.85 251 |
|
v1192 | | | 84.57 125 | 84.69 130 | 84.21 151 | 87.75 209 | 62.88 237 | 83.02 189 | 91.43 123 | 69.08 221 | 89.98 101 | 90.89 182 | 72.70 202 | 93.62 112 | 82.41 77 | 94.97 163 | 96.13 34 |
|
OpenMVS |  | 76.72 13 | 81.98 177 | 82.00 175 | 81.93 198 | 84.42 269 | 68.22 186 | 88.50 94 | 89.48 179 | 66.92 244 | 81.80 252 | 91.86 152 | 72.59 203 | 90.16 215 | 71.19 199 | 91.25 244 | 87.40 268 |
|
TSAR-MVS + GP. | | | 83.95 144 | 82.69 165 | 87.72 85 | 89.27 176 | 81.45 63 | 83.72 171 | 81.58 282 | 74.73 149 | 85.66 183 | 86.06 269 | 72.56 204 | 92.69 145 | 75.44 156 | 95.21 151 | 89.01 250 |
|
alignmvs | | | 83.94 145 | 83.98 145 | 83.80 158 | 87.80 208 | 67.88 191 | 84.54 150 | 91.42 125 | 73.27 172 | 88.41 131 | 87.96 236 | 72.33 205 | 90.83 197 | 76.02 151 | 94.11 187 | 92.69 152 |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 206 | | | | |
|
HQP-MVS | | | 84.61 124 | 84.06 143 | 86.27 106 | 91.19 137 | 70.66 163 | 84.77 142 | 92.68 91 | 73.30 169 | 80.55 269 | 90.17 204 | 72.10 206 | 94.61 73 | 77.30 137 | 94.47 179 | 93.56 124 |
|
testgi | | | 72.36 284 | 74.61 257 | 65.59 341 | 80.56 311 | 42.82 376 | 68.29 344 | 73.35 331 | 66.87 245 | 81.84 249 | 89.93 206 | 72.08 208 | 66.92 361 | 46.05 361 | 92.54 219 | 87.01 272 |
|
v1921920 | | | 84.23 136 | 84.37 139 | 83.79 159 | 87.64 213 | 61.71 255 | 82.91 192 | 91.20 131 | 67.94 236 | 90.06 96 | 90.34 197 | 72.04 209 | 93.59 114 | 82.32 78 | 94.91 164 | 96.07 36 |
|
MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 42 | 78.43 108 | 89.16 119 | 92.25 146 | 72.03 210 | 96.36 2 | 88.21 7 | 90.93 251 | 92.98 142 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
LF4IMVS | | | 82.75 164 | 81.93 176 | 85.19 128 | 82.08 291 | 80.15 70 | 85.53 135 | 88.76 188 | 68.01 233 | 85.58 185 | 87.75 241 | 71.80 211 | 86.85 269 | 74.02 170 | 93.87 192 | 88.58 253 |
|
v1240 | | | 84.30 132 | 84.51 134 | 83.65 163 | 87.65 212 | 61.26 260 | 82.85 194 | 91.54 120 | 67.94 236 | 90.68 90 | 90.65 192 | 71.71 212 | 93.64 108 | 82.84 73 | 94.78 171 | 96.07 36 |
|
ambc | | | | | 82.98 179 | 90.55 154 | 64.86 217 | 88.20 96 | 89.15 183 | | 89.40 117 | 93.96 95 | 71.67 213 | 91.38 181 | 78.83 114 | 96.55 96 | 92.71 151 |
|
MVS_0304 | | | 86.35 96 | 85.92 107 | 87.66 87 | 89.21 178 | 73.16 132 | 88.40 95 | 83.63 262 | 81.27 71 | 80.87 264 | 94.12 86 | 71.49 214 | 95.71 31 | 87.79 10 | 96.50 99 | 94.11 97 |
|
新几何1 | | | | | 82.95 181 | 93.96 55 | 78.56 84 | | 80.24 289 | 55.45 320 | 83.93 218 | 91.08 175 | 71.19 215 | 88.33 252 | 65.84 249 | 93.07 209 | 81.95 330 |
|
v148 | | | 82.31 169 | 82.48 170 | 81.81 204 | 85.59 254 | 59.66 280 | 81.47 223 | 86.02 231 | 72.85 177 | 88.05 137 | 90.65 192 | 70.73 216 | 90.91 194 | 75.15 159 | 91.79 234 | 94.87 67 |
|
v2v482 | | | 84.09 139 | 84.24 141 | 83.62 164 | 87.13 222 | 61.40 257 | 82.71 197 | 89.71 173 | 72.19 191 | 89.55 114 | 91.41 165 | 70.70 217 | 93.20 129 | 81.02 89 | 93.76 193 | 96.25 32 |
|
UGNet | | | 82.78 163 | 81.64 179 | 86.21 109 | 86.20 246 | 76.24 113 | 86.86 115 | 85.68 235 | 77.07 123 | 73.76 328 | 92.82 127 | 69.64 218 | 91.82 170 | 69.04 223 | 93.69 196 | 90.56 219 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
c3_l | | | 81.64 181 | 81.59 181 | 81.79 205 | 80.86 306 | 59.15 287 | 78.61 264 | 90.18 164 | 68.36 228 | 87.20 147 | 87.11 255 | 69.39 219 | 91.62 172 | 78.16 123 | 94.43 181 | 94.60 75 |
|
MG-MVS | | | 80.32 203 | 80.94 190 | 78.47 252 | 88.18 201 | 52.62 337 | 82.29 210 | 85.01 248 | 72.01 193 | 79.24 286 | 92.54 137 | 69.36 220 | 93.36 126 | 70.65 205 | 89.19 272 | 89.45 236 |
|
IS-MVSNet | | | 86.66 92 | 86.82 96 | 86.17 111 | 92.05 108 | 66.87 199 | 91.21 39 | 88.64 190 | 86.30 28 | 89.60 113 | 92.59 134 | 69.22 221 | 94.91 65 | 73.89 172 | 97.89 49 | 96.72 26 |
|
PVSNet_BlendedMVS | | | 78.80 221 | 77.84 228 | 81.65 206 | 84.43 267 | 63.41 230 | 79.49 249 | 90.44 151 | 61.70 281 | 75.43 316 | 87.07 256 | 69.11 222 | 91.44 177 | 60.68 289 | 92.24 226 | 90.11 230 |
|
PVSNet_Blended | | | 76.49 247 | 75.40 251 | 79.76 233 | 84.43 267 | 63.41 230 | 75.14 310 | 90.44 151 | 57.36 313 | 75.43 316 | 78.30 349 | 69.11 222 | 91.44 177 | 60.68 289 | 87.70 292 | 84.42 297 |
|
BH-w/o | | | 76.57 245 | 76.07 246 | 78.10 259 | 86.88 231 | 65.92 209 | 77.63 276 | 86.33 224 | 65.69 255 | 80.89 263 | 79.95 338 | 68.97 224 | 90.74 200 | 53.01 333 | 85.25 313 | 77.62 354 |
|
MVS | | | 73.21 278 | 72.59 280 | 75.06 295 | 80.97 303 | 60.81 269 | 81.64 221 | 85.92 233 | 46.03 359 | 71.68 338 | 77.54 352 | 68.47 225 | 89.77 227 | 55.70 315 | 85.39 310 | 74.60 360 |
|
miper_ehance_all_eth | | | 80.34 202 | 80.04 206 | 81.24 212 | 79.82 316 | 58.95 289 | 77.66 275 | 89.66 174 | 65.75 254 | 85.99 180 | 85.11 283 | 68.29 226 | 91.42 179 | 76.03 150 | 92.03 230 | 93.33 128 |
|
Anonymous202405211 | | | 80.51 196 | 81.19 188 | 78.49 251 | 88.48 195 | 57.26 305 | 76.63 291 | 82.49 272 | 81.21 73 | 84.30 210 | 92.24 147 | 67.99 227 | 86.24 278 | 62.22 275 | 95.13 154 | 91.98 183 |
|
testdata | | | | | 79.54 238 | 92.87 82 | 72.34 146 | | 80.14 290 | 59.91 298 | 85.47 188 | 91.75 159 | 67.96 228 | 85.24 290 | 68.57 231 | 92.18 229 | 81.06 343 |
|
DPM-MVS | | | 80.10 209 | 79.18 212 | 82.88 185 | 90.71 151 | 69.74 170 | 78.87 260 | 90.84 140 | 60.29 295 | 75.64 315 | 85.92 272 | 67.28 229 | 93.11 133 | 71.24 198 | 91.79 234 | 85.77 284 |
|
PVSNet_Blended_VisFu | | | 81.55 182 | 80.49 195 | 84.70 140 | 91.58 125 | 73.24 131 | 84.21 154 | 91.67 118 | 62.86 271 | 80.94 262 | 87.16 253 | 67.27 230 | 92.87 142 | 69.82 213 | 88.94 275 | 87.99 260 |
|
MDA-MVSNet-bldmvs | | | 77.47 234 | 76.90 238 | 79.16 242 | 79.03 325 | 64.59 218 | 66.58 352 | 75.67 314 | 73.15 174 | 88.86 121 | 88.99 223 | 66.94 231 | 81.23 314 | 64.71 259 | 88.22 286 | 91.64 192 |
|
CL-MVSNet_self_test | | | 76.81 242 | 77.38 232 | 75.12 294 | 86.90 230 | 51.34 345 | 73.20 326 | 80.63 288 | 68.30 230 | 81.80 252 | 88.40 230 | 66.92 232 | 80.90 315 | 55.35 319 | 94.90 165 | 93.12 138 |
|
test222 | | | | | | 93.31 71 | 76.54 106 | 79.38 250 | 77.79 300 | 52.59 332 | 82.36 239 | 90.84 185 | 66.83 233 | | | 91.69 236 | 81.25 338 |
|
TR-MVS | | | 76.77 243 | 75.79 247 | 79.72 234 | 86.10 250 | 65.79 210 | 77.14 282 | 83.02 267 | 65.20 261 | 81.40 258 | 82.10 318 | 66.30 234 | 90.73 201 | 55.57 316 | 85.27 312 | 82.65 319 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 233 | 77.46 230 | 78.71 247 | 84.39 270 | 61.15 261 | 81.18 228 | 82.52 271 | 62.45 275 | 83.34 226 | 87.37 248 | 66.20 235 | 88.66 249 | 64.69 260 | 85.02 315 | 86.32 277 |
|
EPP-MVSNet | | | 85.47 108 | 85.04 122 | 86.77 97 | 91.52 130 | 69.37 175 | 91.63 36 | 87.98 203 | 81.51 69 | 87.05 155 | 91.83 155 | 66.18 236 | 95.29 52 | 70.75 203 | 96.89 85 | 95.64 46 |
|
mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 99 | 76.51 109 | 91.09 42 | 91.87 112 | 72.61 182 | 92.16 60 | 95.23 41 | 66.01 237 | 95.59 36 | 86.02 44 | 97.78 53 | 97.24 17 |
|
SixPastTwentyTwo | | | 87.20 85 | 87.45 83 | 86.45 102 | 92.52 91 | 69.19 180 | 87.84 103 | 88.05 201 | 81.66 67 | 94.64 14 | 96.53 14 | 65.94 238 | 94.75 68 | 83.02 71 | 96.83 88 | 95.41 51 |
|
PatchMatch-RL | | | 74.48 267 | 73.22 272 | 78.27 257 | 87.70 210 | 85.26 34 | 75.92 302 | 70.09 350 | 64.34 265 | 76.09 309 | 81.25 327 | 65.87 239 | 78.07 325 | 53.86 327 | 83.82 327 | 71.48 363 |
|
EPNet | | | 80.37 200 | 78.41 224 | 86.23 107 | 76.75 340 | 73.28 129 | 87.18 110 | 77.45 302 | 76.24 128 | 68.14 350 | 88.93 224 | 65.41 240 | 93.85 101 | 69.47 215 | 96.12 116 | 91.55 195 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 64 | 75.70 117 | 92.36 26 | 89.06 185 | 77.34 119 | 93.63 35 | 95.83 25 | 65.40 241 | 95.90 14 | 85.01 54 | 98.23 27 | 97.49 13 |
|
FA-MVS(test-final) | | | 83.13 161 | 83.02 159 | 83.43 168 | 86.16 249 | 66.08 207 | 88.00 99 | 88.36 194 | 75.55 140 | 85.02 193 | 92.75 131 | 65.12 242 | 92.50 149 | 74.94 162 | 91.30 243 | 91.72 188 |
|
PM-MVS | | | 80.20 206 | 79.00 213 | 83.78 160 | 88.17 202 | 86.66 15 | 81.31 224 | 66.81 362 | 69.64 216 | 88.33 133 | 90.19 202 | 64.58 243 | 83.63 304 | 71.99 196 | 90.03 264 | 81.06 343 |
|
miper_enhance_ethall | | | 77.83 230 | 76.93 237 | 80.51 223 | 76.15 346 | 58.01 299 | 75.47 308 | 88.82 186 | 58.05 307 | 83.59 221 | 80.69 329 | 64.41 244 | 91.20 183 | 73.16 189 | 92.03 230 | 92.33 167 |
|
eth_miper_zixun_eth | | | 80.84 190 | 80.22 201 | 82.71 187 | 81.41 298 | 60.98 266 | 77.81 273 | 90.14 165 | 67.31 242 | 86.95 157 | 87.24 252 | 64.26 245 | 92.31 155 | 75.23 158 | 91.61 237 | 94.85 71 |
|
test20.03 | | | 73.75 273 | 74.59 259 | 71.22 315 | 81.11 302 | 51.12 349 | 70.15 339 | 72.10 340 | 70.42 207 | 80.28 275 | 91.50 163 | 64.21 246 | 74.72 337 | 46.96 358 | 94.58 177 | 87.82 265 |
|
cascas | | | 76.29 250 | 74.81 256 | 80.72 221 | 84.47 266 | 62.94 236 | 73.89 321 | 87.34 207 | 55.94 318 | 75.16 321 | 76.53 361 | 63.97 247 | 91.16 185 | 65.00 256 | 90.97 250 | 88.06 258 |
|
TAMVS | | | 78.08 229 | 76.36 242 | 83.23 173 | 90.62 152 | 72.87 133 | 79.08 256 | 80.01 291 | 61.72 280 | 81.35 259 | 86.92 258 | 63.96 248 | 88.78 247 | 50.61 342 | 93.01 211 | 88.04 259 |
|
GBi-Net | | | 82.02 175 | 82.07 173 | 81.85 201 | 86.38 236 | 61.05 263 | 86.83 117 | 88.27 198 | 72.43 183 | 86.00 177 | 95.64 30 | 63.78 249 | 90.68 202 | 65.95 246 | 93.34 201 | 93.82 109 |
|
test1 | | | 82.02 175 | 82.07 173 | 81.85 201 | 86.38 236 | 61.05 263 | 86.83 117 | 88.27 198 | 72.43 183 | 86.00 177 | 95.64 30 | 63.78 249 | 90.68 202 | 65.95 246 | 93.34 201 | 93.82 109 |
|
FMVSNet2 | | | 81.31 184 | 81.61 180 | 80.41 225 | 86.38 236 | 58.75 294 | 83.93 164 | 86.58 223 | 72.43 183 | 87.65 142 | 92.98 120 | 63.78 249 | 90.22 213 | 66.86 238 | 93.92 191 | 92.27 171 |
|
USDC | | | 76.63 244 | 76.73 240 | 76.34 284 | 83.46 280 | 57.20 306 | 80.02 240 | 88.04 202 | 52.14 337 | 83.65 220 | 91.25 168 | 63.24 252 | 86.65 273 | 54.66 324 | 94.11 187 | 85.17 289 |
|
DIV-MVS_self_test | | | 80.43 197 | 80.23 199 | 81.02 216 | 79.99 314 | 59.25 284 | 77.07 284 | 87.02 218 | 67.38 240 | 86.19 173 | 89.22 218 | 63.09 253 | 90.16 215 | 76.32 146 | 95.80 134 | 93.66 116 |
|
cl____ | | | 80.42 198 | 80.23 199 | 81.02 216 | 79.99 314 | 59.25 284 | 77.07 284 | 87.02 218 | 67.37 241 | 86.18 175 | 89.21 219 | 63.08 254 | 90.16 215 | 76.31 147 | 95.80 134 | 93.65 118 |
|
h-mvs33 | | | 84.25 134 | 82.76 163 | 88.72 70 | 91.82 119 | 82.60 56 | 84.00 161 | 84.98 249 | 71.27 197 | 86.70 161 | 90.55 194 | 63.04 255 | 93.92 99 | 78.26 121 | 94.20 186 | 89.63 234 |
|
hse-mvs2 | | | 83.47 155 | 81.81 177 | 88.47 74 | 91.03 143 | 82.27 57 | 82.61 198 | 83.69 260 | 71.27 197 | 86.70 161 | 86.05 270 | 63.04 255 | 92.41 151 | 78.26 121 | 93.62 199 | 90.71 213 |
|
new-patchmatchnet | | | 70.10 303 | 73.37 271 | 60.29 355 | 81.23 301 | 16.95 387 | 59.54 365 | 74.62 319 | 62.93 270 | 80.97 261 | 87.93 238 | 62.83 257 | 71.90 341 | 55.24 320 | 95.01 162 | 92.00 181 |
|
K. test v3 | | | 85.14 114 | 84.73 126 | 86.37 103 | 91.13 141 | 69.63 173 | 85.45 136 | 76.68 308 | 84.06 43 | 92.44 57 | 96.99 8 | 62.03 258 | 94.65 71 | 80.58 96 | 93.24 205 | 94.83 72 |
|
lessismore_v0 | | | | | 85.95 114 | 91.10 142 | 70.99 162 | | 70.91 348 | | 91.79 67 | 94.42 69 | 61.76 259 | 92.93 139 | 79.52 109 | 93.03 210 | 93.93 104 |
|
1314 | | | 73.22 277 | 72.56 282 | 75.20 293 | 80.41 313 | 57.84 300 | 81.64 221 | 85.36 238 | 51.68 340 | 73.10 331 | 76.65 360 | 61.45 260 | 85.19 291 | 63.54 267 | 79.21 352 | 82.59 320 |
|
CANet_DTU | | | 77.81 232 | 77.05 235 | 80.09 230 | 81.37 299 | 59.90 278 | 83.26 181 | 88.29 197 | 69.16 220 | 67.83 353 | 83.72 300 | 60.93 261 | 89.47 231 | 69.22 219 | 89.70 266 | 90.88 208 |
|
pmmvs-eth3d | | | 78.42 227 | 77.04 236 | 82.57 192 | 87.44 216 | 74.41 124 | 80.86 232 | 79.67 292 | 55.68 319 | 84.69 200 | 90.31 199 | 60.91 262 | 85.42 289 | 62.20 276 | 91.59 238 | 87.88 263 |
|
UnsupCasMVSNet_eth | | | 71.63 291 | 72.30 284 | 69.62 324 | 76.47 343 | 52.70 336 | 70.03 340 | 80.97 285 | 59.18 300 | 79.36 283 | 88.21 233 | 60.50 263 | 69.12 349 | 58.33 301 | 77.62 359 | 87.04 271 |
|
IterMVS-SCA-FT | | | 80.64 194 | 79.41 209 | 84.34 148 | 83.93 276 | 69.66 172 | 76.28 296 | 81.09 284 | 72.43 183 | 86.47 171 | 90.19 202 | 60.46 264 | 93.15 132 | 77.45 134 | 86.39 304 | 90.22 226 |
|
SCA | | | 73.32 275 | 72.57 281 | 75.58 292 | 81.62 295 | 55.86 314 | 78.89 259 | 71.37 346 | 61.73 279 | 74.93 322 | 83.42 305 | 60.46 264 | 87.01 264 | 58.11 303 | 82.63 338 | 83.88 301 |
|
jason | | | 77.42 235 | 75.75 248 | 82.43 195 | 87.10 225 | 69.27 176 | 77.99 270 | 81.94 277 | 51.47 341 | 77.84 295 | 85.07 287 | 60.32 266 | 89.00 241 | 70.74 204 | 89.27 271 | 89.03 248 |
jason: jason. |
1112_ss | | | 74.82 264 | 73.74 265 | 78.04 261 | 89.57 168 | 60.04 275 | 76.49 293 | 87.09 217 | 54.31 324 | 73.66 329 | 79.80 339 | 60.25 267 | 86.76 272 | 58.37 299 | 84.15 326 | 87.32 269 |
|
HY-MVS | | 64.64 18 | 73.03 279 | 72.47 283 | 74.71 296 | 83.36 281 | 54.19 324 | 82.14 217 | 81.96 276 | 56.76 317 | 69.57 346 | 86.21 268 | 60.03 268 | 84.83 295 | 49.58 347 | 82.65 336 | 85.11 290 |
|
Anonymous20231206 | | | 71.38 293 | 71.88 286 | 69.88 322 | 86.31 240 | 54.37 323 | 70.39 337 | 74.62 319 | 52.57 333 | 76.73 302 | 88.76 225 | 59.94 269 | 72.06 340 | 44.35 365 | 93.23 206 | 83.23 315 |
|
IterMVS | | | 76.91 240 | 76.34 243 | 78.64 248 | 80.91 304 | 64.03 225 | 76.30 295 | 79.03 295 | 64.88 263 | 83.11 229 | 89.16 220 | 59.90 270 | 84.46 297 | 68.61 229 | 85.15 314 | 87.42 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
YYNet1 | | | 70.06 304 | 70.44 297 | 68.90 328 | 73.76 361 | 53.42 331 | 58.99 368 | 67.20 358 | 58.42 304 | 87.10 151 | 85.39 280 | 59.82 271 | 67.32 358 | 59.79 293 | 83.50 329 | 85.96 280 |
|
MDA-MVSNet_test_wron | | | 70.05 305 | 70.44 297 | 68.88 329 | 73.84 360 | 53.47 329 | 58.93 369 | 67.28 357 | 58.43 303 | 87.09 152 | 85.40 279 | 59.80 272 | 67.25 359 | 59.66 294 | 83.54 328 | 85.92 282 |
|
PMMVS | | | 61.65 335 | 60.38 342 | 65.47 343 | 65.40 384 | 69.26 177 | 63.97 358 | 61.73 370 | 36.80 379 | 60.11 373 | 68.43 372 | 59.42 273 | 66.35 363 | 48.97 349 | 78.57 355 | 60.81 374 |
|
CDS-MVSNet | | | 77.32 236 | 75.40 251 | 83.06 177 | 89.00 182 | 72.48 144 | 77.90 272 | 82.17 275 | 60.81 289 | 78.94 288 | 83.49 303 | 59.30 274 | 88.76 248 | 54.64 325 | 92.37 221 | 87.93 262 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UnsupCasMVSNet_bld | | | 69.21 311 | 69.68 305 | 67.82 334 | 79.42 320 | 51.15 348 | 67.82 348 | 75.79 312 | 54.15 325 | 77.47 301 | 85.36 282 | 59.26 275 | 70.64 344 | 48.46 351 | 79.35 350 | 81.66 332 |
|
Anonymous20240521 | | | 80.18 207 | 81.25 185 | 76.95 275 | 83.15 285 | 60.84 268 | 82.46 205 | 85.99 232 | 68.76 225 | 86.78 158 | 93.73 106 | 59.13 276 | 77.44 327 | 73.71 176 | 97.55 67 | 92.56 156 |
|
WTY-MVS | | | 67.91 316 | 68.35 314 | 66.58 338 | 80.82 307 | 48.12 359 | 65.96 353 | 72.60 335 | 53.67 327 | 71.20 340 | 81.68 324 | 58.97 277 | 69.06 350 | 48.57 350 | 81.67 340 | 82.55 322 |
|
cl22 | | | 78.97 216 | 78.21 226 | 81.24 212 | 77.74 330 | 59.01 288 | 77.46 281 | 87.13 213 | 65.79 251 | 84.32 207 | 85.10 284 | 58.96 278 | 90.88 196 | 75.36 157 | 92.03 230 | 93.84 107 |
|
MVSFormer | | | 82.23 171 | 81.57 182 | 84.19 153 | 85.54 255 | 69.26 177 | 91.98 31 | 90.08 166 | 71.54 195 | 76.23 307 | 85.07 287 | 58.69 279 | 94.27 83 | 86.26 36 | 88.77 276 | 89.03 248 |
|
lupinMVS | | | 76.37 249 | 74.46 260 | 82.09 196 | 85.54 255 | 69.26 177 | 76.79 287 | 80.77 287 | 50.68 348 | 76.23 307 | 82.82 312 | 58.69 279 | 88.94 242 | 69.85 212 | 88.77 276 | 88.07 257 |
|
Test_1112_low_res | | | 73.90 272 | 73.08 273 | 76.35 283 | 90.35 156 | 55.95 312 | 73.40 325 | 86.17 228 | 50.70 347 | 73.14 330 | 85.94 271 | 58.31 281 | 85.90 284 | 56.51 309 | 83.22 330 | 87.20 270 |
|
test_yl | | | 78.71 223 | 78.51 222 | 79.32 240 | 84.32 271 | 58.84 291 | 78.38 265 | 85.33 239 | 75.99 132 | 82.49 236 | 86.57 260 | 58.01 282 | 90.02 224 | 62.74 272 | 92.73 217 | 89.10 245 |
|
DCV-MVSNet | | | 78.71 223 | 78.51 222 | 79.32 240 | 84.32 271 | 58.84 291 | 78.38 265 | 85.33 239 | 75.99 132 | 82.49 236 | 86.57 260 | 58.01 282 | 90.02 224 | 62.74 272 | 92.73 217 | 89.10 245 |
|
sss | | | 66.92 318 | 67.26 318 | 65.90 340 | 77.23 335 | 51.10 350 | 64.79 355 | 71.72 344 | 52.12 338 | 70.13 344 | 80.18 336 | 57.96 284 | 65.36 367 | 50.21 343 | 81.01 346 | 81.25 338 |
|
ppachtmachnet_test | | | 74.73 266 | 74.00 264 | 76.90 277 | 80.71 309 | 56.89 309 | 71.53 333 | 78.42 297 | 58.24 305 | 79.32 285 | 82.92 311 | 57.91 285 | 84.26 299 | 65.60 252 | 91.36 242 | 89.56 235 |
|
MVP-Stereo | | | 75.81 253 | 73.51 269 | 82.71 187 | 89.35 173 | 73.62 127 | 80.06 238 | 85.20 241 | 60.30 294 | 73.96 327 | 87.94 237 | 57.89 286 | 89.45 233 | 52.02 336 | 74.87 365 | 85.06 291 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PAPM | | | 71.77 289 | 70.06 302 | 76.92 276 | 86.39 235 | 53.97 325 | 76.62 292 | 86.62 222 | 53.44 328 | 63.97 368 | 84.73 291 | 57.79 287 | 92.34 154 | 39.65 372 | 81.33 344 | 84.45 296 |
|
LFMVS | | | 80.15 208 | 80.56 193 | 78.89 243 | 89.19 179 | 55.93 313 | 85.22 139 | 73.78 328 | 82.96 55 | 84.28 211 | 92.72 132 | 57.38 288 | 90.07 222 | 63.80 265 | 95.75 137 | 90.68 215 |
|
Vis-MVSNet (Re-imp) | | | 77.82 231 | 77.79 229 | 77.92 263 | 88.82 185 | 51.29 347 | 83.28 180 | 71.97 341 | 74.04 155 | 82.23 241 | 89.78 209 | 57.38 288 | 89.41 236 | 57.22 306 | 95.41 143 | 93.05 140 |
|
CHOSEN 1792x2688 | | | 72.45 283 | 70.56 295 | 78.13 258 | 90.02 166 | 63.08 235 | 68.72 343 | 83.16 265 | 42.99 369 | 75.92 311 | 85.46 277 | 57.22 290 | 85.18 292 | 49.87 346 | 81.67 340 | 86.14 279 |
|
mvsany_test1 | | | 58.48 344 | 56.47 349 | 64.50 345 | 65.90 383 | 68.21 187 | 56.95 371 | 42.11 386 | 38.30 377 | 65.69 359 | 77.19 358 | 56.96 291 | 59.35 376 | 46.16 359 | 58.96 379 | 65.93 370 |
|
miper_lstm_enhance | | | 76.45 248 | 76.10 245 | 77.51 269 | 76.72 341 | 60.97 267 | 64.69 356 | 85.04 246 | 63.98 266 | 83.20 228 | 88.22 232 | 56.67 292 | 78.79 324 | 73.22 183 | 93.12 208 | 92.78 147 |
|
bld_raw_dy_0_64 | | | 84.85 120 | 84.44 135 | 86.07 113 | 93.73 60 | 74.93 121 | 88.57 92 | 81.90 278 | 70.44 206 | 91.28 77 | 95.18 42 | 56.62 293 | 89.28 239 | 85.15 50 | 97.09 81 | 93.99 100 |
|
our_test_3 | | | 71.85 288 | 71.59 288 | 72.62 308 | 80.71 309 | 53.78 327 | 69.72 341 | 71.71 345 | 58.80 302 | 78.03 292 | 80.51 334 | 56.61 294 | 78.84 323 | 62.20 276 | 86.04 307 | 85.23 288 |
|
baseline1 | | | 73.26 276 | 73.54 268 | 72.43 311 | 84.92 261 | 47.79 361 | 79.89 242 | 74.00 324 | 65.93 249 | 78.81 289 | 86.28 267 | 56.36 295 | 81.63 313 | 56.63 308 | 79.04 354 | 87.87 264 |
|
pmmvs4 | | | 74.92 262 | 72.98 275 | 80.73 220 | 84.95 260 | 71.71 157 | 76.23 297 | 77.59 301 | 52.83 331 | 77.73 299 | 86.38 262 | 56.35 296 | 84.97 293 | 57.72 305 | 87.05 296 | 85.51 286 |
|
MVE |  | 40.22 23 | 51.82 348 | 50.47 351 | 55.87 359 | 62.66 386 | 51.91 341 | 31.61 378 | 39.28 387 | 40.65 372 | 50.76 381 | 74.98 365 | 56.24 297 | 44.67 382 | 33.94 378 | 64.11 377 | 71.04 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dmvs_testset | | | 60.59 342 | 62.54 337 | 54.72 361 | 77.26 334 | 27.74 385 | 74.05 318 | 61.00 372 | 60.48 293 | 65.62 360 | 67.03 374 | 55.93 298 | 68.23 356 | 32.07 380 | 69.46 375 | 68.17 368 |
|
N_pmnet | | | 70.20 301 | 68.80 312 | 74.38 298 | 80.91 304 | 84.81 39 | 59.12 367 | 76.45 310 | 55.06 321 | 75.31 320 | 82.36 317 | 55.74 299 | 54.82 377 | 47.02 356 | 87.24 295 | 83.52 308 |
|
MS-PatchMatch | | | 70.93 297 | 70.22 300 | 73.06 305 | 81.85 294 | 62.50 245 | 73.82 322 | 77.90 299 | 52.44 334 | 75.92 311 | 81.27 326 | 55.67 300 | 81.75 311 | 55.37 318 | 77.70 358 | 74.94 359 |
|
DSMNet-mixed | | | 60.98 340 | 61.61 340 | 59.09 358 | 72.88 367 | 45.05 370 | 74.70 313 | 46.61 384 | 26.20 380 | 65.34 361 | 90.32 198 | 55.46 301 | 63.12 371 | 41.72 369 | 81.30 345 | 69.09 367 |
|
pmmvs5 | | | 70.73 298 | 70.07 301 | 72.72 307 | 77.03 338 | 52.73 335 | 74.14 316 | 75.65 315 | 50.36 350 | 72.17 336 | 85.37 281 | 55.42 302 | 80.67 317 | 52.86 334 | 87.59 293 | 84.77 293 |
|
CMPMVS |  | 59.41 20 | 75.12 259 | 73.57 267 | 79.77 232 | 75.84 349 | 67.22 193 | 81.21 227 | 82.18 274 | 50.78 346 | 76.50 303 | 87.66 243 | 55.20 303 | 82.99 306 | 62.17 278 | 90.64 262 | 89.09 247 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_vis1_n_1920 | | | 71.30 294 | 71.58 290 | 70.47 318 | 77.58 333 | 59.99 277 | 74.25 315 | 84.22 258 | 51.06 343 | 74.85 323 | 79.10 343 | 55.10 304 | 68.83 351 | 68.86 225 | 79.20 353 | 82.58 321 |
|
MIMVSNet | | | 71.09 295 | 71.59 288 | 69.57 325 | 87.23 219 | 50.07 354 | 78.91 258 | 71.83 342 | 60.20 297 | 71.26 339 | 91.76 158 | 55.08 305 | 76.09 331 | 41.06 370 | 87.02 298 | 82.54 323 |
|
PVSNet_0 | | 51.08 22 | 56.10 345 | 54.97 350 | 59.48 357 | 75.12 355 | 53.28 332 | 55.16 372 | 61.89 368 | 44.30 363 | 59.16 374 | 62.48 377 | 54.22 306 | 65.91 365 | 35.40 376 | 47.01 380 | 59.25 376 |
|
EPNet_dtu | | | 72.87 281 | 71.33 293 | 77.49 270 | 77.72 331 | 60.55 272 | 82.35 208 | 75.79 312 | 66.49 248 | 58.39 378 | 81.06 328 | 53.68 307 | 85.98 282 | 53.55 328 | 92.97 213 | 85.95 281 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PMMVS2 | | | 55.64 347 | 59.27 346 | 44.74 363 | 64.30 385 | 12.32 388 | 40.60 376 | 49.79 382 | 53.19 329 | 65.06 365 | 84.81 289 | 53.60 308 | 49.76 380 | 32.68 379 | 89.41 268 | 72.15 362 |
|
test_vis1_rt | | | 65.64 327 | 64.09 331 | 70.31 319 | 66.09 381 | 70.20 168 | 61.16 363 | 81.60 281 | 38.65 376 | 72.87 332 | 69.66 370 | 52.84 309 | 60.04 374 | 56.16 311 | 77.77 357 | 80.68 345 |
|
mvsany_test3 | | | 65.48 328 | 62.97 334 | 73.03 306 | 69.99 374 | 76.17 114 | 64.83 354 | 43.71 385 | 43.68 366 | 80.25 276 | 87.05 257 | 52.83 310 | 63.09 372 | 51.92 340 | 72.44 367 | 79.84 350 |
|
HyFIR lowres test | | | 75.12 259 | 72.66 279 | 82.50 193 | 91.44 133 | 65.19 215 | 72.47 328 | 87.31 208 | 46.79 354 | 80.29 273 | 84.30 295 | 52.70 311 | 92.10 162 | 51.88 341 | 86.73 299 | 90.22 226 |
|
dmvs_re | | | 66.81 321 | 66.98 319 | 66.28 339 | 76.87 339 | 58.68 295 | 71.66 332 | 72.24 338 | 60.29 295 | 69.52 347 | 73.53 366 | 52.38 312 | 64.40 369 | 44.90 363 | 81.44 343 | 75.76 357 |
|
test_cas_vis1_n_1920 | | | 69.20 312 | 69.12 307 | 69.43 326 | 73.68 362 | 62.82 239 | 70.38 338 | 77.21 303 | 46.18 358 | 80.46 272 | 78.95 345 | 52.03 313 | 65.53 366 | 65.77 251 | 77.45 361 | 79.95 349 |
|
test1111 | | | 78.53 225 | 78.85 216 | 77.56 268 | 92.22 102 | 47.49 362 | 82.61 198 | 69.24 354 | 72.43 183 | 85.28 189 | 94.20 80 | 51.91 314 | 90.07 222 | 65.36 254 | 96.45 103 | 95.11 62 |
|
ECVR-MVS |  | | 78.44 226 | 78.63 220 | 77.88 264 | 91.85 115 | 48.95 356 | 83.68 172 | 69.91 352 | 72.30 189 | 84.26 213 | 94.20 80 | 51.89 315 | 89.82 226 | 63.58 266 | 96.02 120 | 94.87 67 |
|
FMVSNet3 | | | 78.80 221 | 78.55 221 | 79.57 237 | 82.89 289 | 56.89 309 | 81.76 218 | 85.77 234 | 69.04 222 | 86.00 177 | 90.44 196 | 51.75 316 | 90.09 221 | 65.95 246 | 93.34 201 | 91.72 188 |
|
D2MVS | | | 76.84 241 | 75.67 250 | 80.34 226 | 80.48 312 | 62.16 253 | 73.50 323 | 84.80 253 | 57.61 311 | 82.24 240 | 87.54 245 | 51.31 317 | 87.65 258 | 70.40 209 | 93.19 207 | 91.23 199 |
|
AUN-MVS | | | 81.18 186 | 78.78 217 | 88.39 76 | 90.93 145 | 82.14 58 | 82.51 204 | 83.67 261 | 64.69 264 | 80.29 273 | 85.91 273 | 51.07 318 | 92.38 152 | 76.29 148 | 93.63 198 | 90.65 217 |
|
PVSNet | | 58.17 21 | 66.41 323 | 65.63 328 | 68.75 330 | 81.96 292 | 49.88 355 | 62.19 362 | 72.51 337 | 51.03 344 | 68.04 351 | 75.34 364 | 50.84 319 | 74.77 335 | 45.82 362 | 82.96 331 | 81.60 333 |
|
GA-MVS | | | 75.83 252 | 74.61 257 | 79.48 239 | 81.87 293 | 59.25 284 | 73.42 324 | 82.88 268 | 68.68 226 | 79.75 278 | 81.80 322 | 50.62 320 | 89.46 232 | 66.85 239 | 85.64 309 | 89.72 233 |
|
FPMVS | | | 72.29 286 | 72.00 285 | 73.14 304 | 88.63 191 | 85.00 36 | 74.65 314 | 67.39 356 | 71.94 194 | 77.80 297 | 87.66 243 | 50.48 321 | 75.83 333 | 49.95 344 | 79.51 348 | 58.58 377 |
|
test_fmvs3 | | | 75.72 254 | 75.20 254 | 77.27 272 | 75.01 357 | 69.47 174 | 78.93 257 | 84.88 251 | 46.67 355 | 87.08 153 | 87.84 240 | 50.44 322 | 71.62 342 | 77.42 136 | 88.53 279 | 90.72 212 |
|
test_vis1_n | | | 70.29 300 | 69.99 303 | 71.20 316 | 75.97 348 | 66.50 202 | 76.69 290 | 80.81 286 | 44.22 364 | 75.43 316 | 77.23 356 | 50.00 323 | 68.59 352 | 66.71 242 | 82.85 335 | 78.52 353 |
|
MVS-HIRNet | | | 61.16 338 | 62.92 335 | 55.87 359 | 79.09 324 | 35.34 381 | 71.83 330 | 57.98 377 | 46.56 356 | 59.05 375 | 91.14 172 | 49.95 324 | 76.43 330 | 38.74 373 | 71.92 369 | 55.84 378 |
|
CVMVSNet | | | 72.62 282 | 71.41 292 | 76.28 285 | 83.25 282 | 60.34 273 | 83.50 176 | 79.02 296 | 37.77 378 | 76.33 305 | 85.10 284 | 49.60 325 | 87.41 261 | 70.54 207 | 77.54 360 | 81.08 341 |
|
RPMNet | | | 78.88 218 | 78.28 225 | 80.68 222 | 79.58 317 | 62.64 242 | 82.58 200 | 94.16 27 | 74.80 148 | 75.72 313 | 92.59 134 | 48.69 326 | 95.56 38 | 73.48 179 | 82.91 333 | 83.85 304 |
|
test_fmvs2 | | | 73.57 274 | 72.80 276 | 75.90 289 | 72.74 369 | 68.84 183 | 77.07 284 | 84.32 257 | 45.14 361 | 82.89 232 | 84.22 296 | 48.37 327 | 70.36 345 | 73.40 181 | 87.03 297 | 88.52 254 |
|
tpmrst | | | 66.28 324 | 66.69 323 | 65.05 344 | 72.82 368 | 39.33 377 | 78.20 268 | 70.69 349 | 53.16 330 | 67.88 352 | 80.36 335 | 48.18 328 | 74.75 336 | 58.13 302 | 70.79 370 | 81.08 341 |
|
CR-MVSNet | | | 74.00 271 | 73.04 274 | 76.85 279 | 79.58 317 | 62.64 242 | 82.58 200 | 76.90 305 | 50.50 349 | 75.72 313 | 92.38 140 | 48.07 329 | 84.07 300 | 68.72 228 | 82.91 333 | 83.85 304 |
|
Patchmtry | | | 76.56 246 | 77.46 230 | 73.83 300 | 79.37 322 | 46.60 366 | 82.41 207 | 76.90 305 | 73.81 158 | 85.56 186 | 92.38 140 | 48.07 329 | 83.98 301 | 63.36 269 | 95.31 149 | 90.92 207 |
|
test_f | | | 64.31 331 | 65.85 325 | 59.67 356 | 66.54 380 | 62.24 252 | 57.76 370 | 70.96 347 | 40.13 373 | 84.36 205 | 82.09 319 | 46.93 331 | 51.67 379 | 61.99 279 | 81.89 339 | 65.12 371 |
|
ADS-MVSNet2 | | | 65.87 326 | 63.64 333 | 72.55 309 | 73.16 365 | 56.92 308 | 67.10 349 | 74.81 318 | 49.74 351 | 66.04 357 | 82.97 308 | 46.71 332 | 77.26 328 | 42.29 367 | 69.96 372 | 83.46 309 |
|
ADS-MVSNet | | | 61.90 334 | 62.19 338 | 61.03 354 | 73.16 365 | 36.42 380 | 67.10 349 | 61.75 369 | 49.74 351 | 66.04 357 | 82.97 308 | 46.71 332 | 63.21 370 | 42.29 367 | 69.96 372 | 83.46 309 |
|
PatchmatchNet |  | | 69.71 308 | 68.83 311 | 72.33 312 | 77.66 332 | 53.60 328 | 79.29 251 | 69.99 351 | 57.66 310 | 72.53 334 | 82.93 310 | 46.45 334 | 80.08 321 | 60.91 288 | 72.09 368 | 83.31 314 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
thres200 | | | 72.34 285 | 71.55 291 | 74.70 297 | 83.48 279 | 51.60 344 | 75.02 311 | 73.71 329 | 70.14 213 | 78.56 291 | 80.57 332 | 46.20 335 | 88.20 254 | 46.99 357 | 89.29 269 | 84.32 298 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 336 | | | | 83.88 301 |
|
tfpn200view9 | | | 74.86 263 | 74.23 262 | 76.74 280 | 86.24 244 | 52.12 339 | 79.24 253 | 73.87 326 | 73.34 167 | 81.82 250 | 84.60 293 | 46.02 337 | 88.80 244 | 51.98 337 | 90.99 247 | 89.31 240 |
|
thres400 | | | 75.14 257 | 74.23 262 | 77.86 265 | 86.24 244 | 52.12 339 | 79.24 253 | 73.87 326 | 73.34 167 | 81.82 250 | 84.60 293 | 46.02 337 | 88.80 244 | 51.98 337 | 90.99 247 | 92.66 153 |
|
baseline2 | | | 69.77 307 | 66.89 320 | 78.41 253 | 79.51 319 | 58.09 297 | 76.23 297 | 69.57 353 | 57.50 312 | 64.82 366 | 77.45 354 | 46.02 337 | 88.44 250 | 53.08 330 | 77.83 356 | 88.70 252 |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 323 | 45.93 340 | 87.01 264 | | | |
|
sam_mvs | | | | | | | | | | | | | 45.92 341 | | | | |
|
Patchmatch-RL test | | | 74.48 267 | 73.68 266 | 76.89 278 | 84.83 262 | 66.54 201 | 72.29 329 | 69.16 355 | 57.70 309 | 86.76 159 | 86.33 264 | 45.79 342 | 82.59 307 | 69.63 214 | 90.65 261 | 81.54 334 |
|
thres100view900 | | | 75.45 255 | 75.05 255 | 76.66 281 | 87.27 218 | 51.88 342 | 81.07 229 | 73.26 332 | 75.68 138 | 83.25 227 | 86.37 263 | 45.54 343 | 88.80 244 | 51.98 337 | 90.99 247 | 89.31 240 |
|
thres600view7 | | | 75.97 251 | 75.35 253 | 77.85 266 | 87.01 228 | 51.84 343 | 80.45 235 | 73.26 332 | 75.20 145 | 83.10 230 | 86.31 266 | 45.54 343 | 89.05 240 | 55.03 322 | 92.24 226 | 92.66 153 |
|
tpm cat1 | | | 66.76 322 | 65.21 329 | 71.42 314 | 77.09 337 | 50.62 352 | 78.01 269 | 73.68 330 | 44.89 362 | 68.64 348 | 79.00 344 | 45.51 345 | 82.42 310 | 49.91 345 | 70.15 371 | 81.23 340 |
|
test_post | | | | | | | | | | | | 3.10 384 | 45.43 346 | 77.22 329 | | | |
|
MDTV_nov1_ep13 | | | | 68.29 315 | | 78.03 329 | 43.87 373 | 74.12 317 | 72.22 339 | 52.17 335 | 67.02 355 | 85.54 275 | 45.36 347 | 80.85 316 | 55.73 313 | 84.42 324 | |
|
tpmvs | | | 70.16 302 | 69.56 306 | 71.96 313 | 74.71 358 | 48.13 358 | 79.63 244 | 75.45 317 | 65.02 262 | 70.26 343 | 81.88 321 | 45.34 348 | 85.68 287 | 58.34 300 | 75.39 364 | 82.08 329 |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 386 | 70.76 335 | | 46.47 357 | 61.27 370 | | 45.20 349 | | 49.18 348 | | 83.75 306 |
|
test_post1 | | | | | | | | 78.85 261 | | | | 3.13 383 | 45.19 350 | 80.13 320 | 58.11 303 | | |
|
CostFormer | | | 69.98 306 | 68.68 313 | 73.87 299 | 77.14 336 | 50.72 351 | 79.26 252 | 74.51 321 | 51.94 339 | 70.97 342 | 84.75 290 | 45.16 351 | 87.49 260 | 55.16 321 | 79.23 351 | 83.40 311 |
|
FE-MVS | | | 79.98 211 | 78.86 215 | 83.36 170 | 86.47 233 | 66.45 203 | 89.73 65 | 84.74 254 | 72.80 178 | 84.22 215 | 91.38 166 | 44.95 352 | 93.60 113 | 63.93 264 | 91.50 240 | 90.04 232 |
|
Patchmatch-test | | | 65.91 325 | 67.38 317 | 61.48 353 | 75.51 351 | 43.21 375 | 68.84 342 | 63.79 366 | 62.48 274 | 72.80 333 | 83.42 305 | 44.89 353 | 59.52 375 | 48.27 353 | 86.45 302 | 81.70 331 |
|
EU-MVSNet | | | 75.12 259 | 74.43 261 | 77.18 273 | 83.11 286 | 59.48 282 | 85.71 134 | 82.43 273 | 39.76 375 | 85.64 184 | 88.76 225 | 44.71 354 | 87.88 256 | 73.86 173 | 85.88 308 | 84.16 300 |
|
PatchT | | | 70.52 299 | 72.76 278 | 63.79 347 | 79.38 321 | 33.53 382 | 77.63 276 | 65.37 364 | 73.61 162 | 71.77 337 | 92.79 130 | 44.38 355 | 75.65 334 | 64.53 263 | 85.37 311 | 82.18 327 |
|
test_vis3_rt | | | 71.42 292 | 70.67 294 | 73.64 301 | 69.66 375 | 70.46 165 | 66.97 351 | 89.73 171 | 42.68 371 | 88.20 136 | 83.04 307 | 43.77 356 | 60.07 373 | 65.35 255 | 86.66 300 | 90.39 224 |
|
test_fmvs1_n | | | 70.94 296 | 70.41 299 | 72.53 310 | 73.92 359 | 66.93 198 | 75.99 301 | 84.21 259 | 43.31 368 | 79.40 282 | 79.39 342 | 43.47 357 | 68.55 353 | 69.05 222 | 84.91 318 | 82.10 328 |
|
test-LLR | | | 67.21 317 | 66.74 322 | 68.63 331 | 76.45 344 | 55.21 319 | 67.89 345 | 67.14 359 | 62.43 276 | 65.08 363 | 72.39 367 | 43.41 358 | 69.37 346 | 61.00 286 | 84.89 319 | 81.31 336 |
|
test0.0.03 1 | | | 64.66 330 | 64.36 330 | 65.57 342 | 75.03 356 | 46.89 365 | 64.69 356 | 61.58 371 | 62.43 276 | 71.18 341 | 77.54 352 | 43.41 358 | 68.47 355 | 40.75 371 | 82.65 336 | 81.35 335 |
|
test_fmvs1 | | | 69.57 309 | 69.05 309 | 71.14 317 | 69.15 376 | 65.77 211 | 73.98 319 | 83.32 264 | 42.83 370 | 77.77 298 | 78.27 350 | 43.39 360 | 68.50 354 | 68.39 232 | 84.38 325 | 79.15 351 |
|
MVSTER | | | 77.09 238 | 75.70 249 | 81.25 210 | 75.27 354 | 61.08 262 | 77.49 280 | 85.07 244 | 60.78 290 | 86.55 165 | 88.68 227 | 43.14 361 | 90.25 210 | 73.69 177 | 90.67 259 | 92.42 161 |
|
tpm | | | 67.95 315 | 68.08 316 | 67.55 335 | 78.74 328 | 43.53 374 | 75.60 304 | 67.10 361 | 54.92 322 | 72.23 335 | 88.10 234 | 42.87 362 | 75.97 332 | 52.21 335 | 80.95 347 | 83.15 316 |
|
tpm2 | | | 68.45 314 | 66.83 321 | 73.30 303 | 78.93 327 | 48.50 357 | 79.76 243 | 71.76 343 | 47.50 353 | 69.92 345 | 83.60 301 | 42.07 363 | 88.40 251 | 48.44 352 | 79.51 348 | 83.01 318 |
|
EMVS | | | 61.10 339 | 60.81 341 | 61.99 350 | 65.96 382 | 55.86 314 | 53.10 374 | 58.97 375 | 67.06 243 | 56.89 379 | 63.33 376 | 40.98 364 | 67.03 360 | 54.79 323 | 86.18 306 | 63.08 372 |
|
new_pmnet | | | 55.69 346 | 57.66 347 | 49.76 362 | 75.47 352 | 30.59 383 | 59.56 364 | 51.45 381 | 43.62 367 | 62.49 369 | 75.48 363 | 40.96 365 | 49.15 381 | 37.39 375 | 72.52 366 | 69.55 366 |
|
E-PMN | | | 61.59 336 | 61.62 339 | 61.49 352 | 66.81 379 | 55.40 317 | 53.77 373 | 60.34 373 | 66.80 246 | 58.90 376 | 65.50 375 | 40.48 366 | 66.12 364 | 55.72 314 | 86.25 305 | 62.95 373 |
|
EPMVS | | | 62.47 332 | 62.63 336 | 62.01 349 | 70.63 373 | 38.74 378 | 74.76 312 | 52.86 380 | 53.91 326 | 67.71 354 | 80.01 337 | 39.40 367 | 66.60 362 | 55.54 317 | 68.81 376 | 80.68 345 |
|
tmp_tt | | | 20.25 351 | 24.50 354 | 7.49 366 | 4.47 389 | 8.70 389 | 34.17 377 | 25.16 389 | 1.00 384 | 32.43 383 | 18.49 381 | 39.37 368 | 9.21 385 | 21.64 382 | 43.75 381 | 4.57 381 |
|
thisisatest0530 | | | 79.07 215 | 77.33 234 | 84.26 150 | 87.13 222 | 64.58 219 | 83.66 173 | 75.95 311 | 68.86 224 | 85.22 190 | 87.36 249 | 38.10 369 | 93.57 117 | 75.47 155 | 94.28 184 | 94.62 74 |
|
ET-MVSNet_ETH3D | | | 75.28 256 | 72.77 277 | 82.81 186 | 83.03 287 | 68.11 188 | 77.09 283 | 76.51 309 | 60.67 292 | 77.60 300 | 80.52 333 | 38.04 370 | 91.15 186 | 70.78 202 | 90.68 258 | 89.17 243 |
|
tttt0517 | | | 81.07 187 | 79.58 208 | 85.52 124 | 88.99 183 | 66.45 203 | 87.03 113 | 75.51 316 | 73.76 159 | 88.32 134 | 90.20 201 | 37.96 371 | 94.16 93 | 79.36 111 | 95.13 154 | 95.93 42 |
|
thisisatest0515 | | | 73.00 280 | 70.52 296 | 80.46 224 | 81.45 297 | 59.90 278 | 73.16 327 | 74.31 323 | 57.86 308 | 76.08 310 | 77.78 351 | 37.60 372 | 92.12 161 | 65.00 256 | 91.45 241 | 89.35 239 |
|
FMVSNet5 | | | 72.10 287 | 71.69 287 | 73.32 302 | 81.57 296 | 53.02 333 | 76.77 288 | 78.37 298 | 63.31 267 | 76.37 304 | 91.85 153 | 36.68 373 | 78.98 322 | 47.87 354 | 92.45 220 | 87.95 261 |
|
iter_conf_final | | | 80.36 201 | 78.88 214 | 84.79 135 | 86.29 242 | 66.36 205 | 86.95 114 | 86.25 226 | 68.16 232 | 82.09 244 | 89.48 213 | 36.59 374 | 94.51 80 | 79.83 103 | 94.30 183 | 93.50 127 |
|
dp | | | 60.70 341 | 60.29 344 | 61.92 351 | 72.04 371 | 38.67 379 | 70.83 334 | 64.08 365 | 51.28 342 | 60.75 371 | 77.28 355 | 36.59 374 | 71.58 343 | 47.41 355 | 62.34 378 | 75.52 358 |
|
CHOSEN 280x420 | | | 59.08 343 | 56.52 348 | 66.76 337 | 76.51 342 | 64.39 222 | 49.62 375 | 59.00 374 | 43.86 365 | 55.66 380 | 68.41 373 | 35.55 376 | 68.21 357 | 43.25 366 | 76.78 363 | 67.69 369 |
|
IB-MVS | | 62.13 19 | 71.64 290 | 68.97 310 | 79.66 236 | 80.80 308 | 62.26 251 | 73.94 320 | 76.90 305 | 63.27 268 | 68.63 349 | 76.79 359 | 33.83 377 | 91.84 169 | 59.28 296 | 87.26 294 | 84.88 292 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
JIA-IIPM | | | 69.41 310 | 66.64 324 | 77.70 267 | 73.19 364 | 71.24 160 | 75.67 303 | 65.56 363 | 70.42 207 | 65.18 362 | 92.97 122 | 33.64 378 | 83.06 305 | 53.52 329 | 69.61 374 | 78.79 352 |
|
iter_conf05 | | | 78.81 220 | 77.35 233 | 83.21 174 | 82.98 288 | 60.75 270 | 84.09 158 | 88.34 195 | 63.12 269 | 84.25 214 | 89.48 213 | 31.41 379 | 94.51 80 | 76.64 143 | 95.83 131 | 94.38 87 |
|
DeepMVS_CX |  | | | | 24.13 365 | 32.95 387 | 29.49 384 | | 21.63 390 | 12.07 381 | 37.95 382 | 45.07 380 | 30.84 380 | 19.21 384 | 17.94 383 | 33.06 383 | 23.69 380 |
|
gg-mvs-nofinetune | | | 68.96 313 | 69.11 308 | 68.52 333 | 76.12 347 | 45.32 368 | 83.59 174 | 55.88 378 | 86.68 24 | 64.62 367 | 97.01 7 | 30.36 381 | 83.97 302 | 44.78 364 | 82.94 332 | 76.26 356 |
|
GG-mvs-BLEND | | | | | 67.16 336 | 73.36 363 | 46.54 367 | 84.15 156 | 55.04 379 | | 58.64 377 | 61.95 378 | 29.93 382 | 83.87 303 | 38.71 374 | 76.92 362 | 71.07 364 |
|
test_method | | | 30.46 349 | 29.60 352 | 33.06 364 | 17.99 388 | 3.84 390 | 13.62 379 | 73.92 325 | 2.79 382 | 18.29 384 | 53.41 379 | 28.53 383 | 43.25 383 | 22.56 381 | 35.27 382 | 52.11 379 |
|
test-mter | | | 65.00 329 | 63.79 332 | 68.63 331 | 76.45 344 | 55.21 319 | 67.89 345 | 67.14 359 | 50.98 345 | 65.08 363 | 72.39 367 | 28.27 384 | 69.37 346 | 61.00 286 | 84.89 319 | 81.31 336 |
|
TESTMET0.1,1 | | | 61.29 337 | 60.32 343 | 64.19 346 | 72.06 370 | 51.30 346 | 67.89 345 | 62.09 367 | 45.27 360 | 60.65 372 | 69.01 371 | 27.93 385 | 64.74 368 | 56.31 310 | 81.65 342 | 76.53 355 |
|
test2506 | | | 74.12 270 | 73.39 270 | 76.28 285 | 91.85 115 | 44.20 372 | 84.06 159 | 48.20 383 | 72.30 189 | 81.90 247 | 94.20 80 | 27.22 386 | 89.77 227 | 64.81 258 | 96.02 120 | 94.87 67 |
|
pmmvs3 | | | 62.47 332 | 60.02 345 | 69.80 323 | 71.58 372 | 64.00 226 | 70.52 336 | 58.44 376 | 39.77 374 | 66.05 356 | 75.84 362 | 27.10 387 | 72.28 339 | 46.15 360 | 84.77 323 | 73.11 361 |
|
KD-MVS_2432*1600 | | | 66.87 319 | 65.81 326 | 70.04 320 | 67.50 377 | 47.49 362 | 62.56 360 | 79.16 293 | 61.21 286 | 77.98 293 | 80.61 330 | 25.29 388 | 82.48 308 | 53.02 331 | 84.92 316 | 80.16 347 |
|
miper_refine_blended | | | 66.87 319 | 65.81 326 | 70.04 320 | 67.50 377 | 47.49 362 | 62.56 360 | 79.16 293 | 61.21 286 | 77.98 293 | 80.61 330 | 25.29 388 | 82.48 308 | 53.02 331 | 84.92 316 | 80.16 347 |
|
test123 | | | 6.27 354 | 8.08 357 | 0.84 367 | 1.11 391 | 0.57 391 | 62.90 359 | 0.82 391 | 0.54 385 | 1.07 387 | 2.75 386 | 1.26 390 | 0.30 386 | 1.04 384 | 1.26 385 | 1.66 382 |
|
testmvs | | | 5.91 355 | 7.65 358 | 0.72 368 | 1.20 390 | 0.37 392 | 59.14 366 | 0.67 392 | 0.49 386 | 1.11 386 | 2.76 385 | 0.94 391 | 0.24 387 | 1.02 385 | 1.47 384 | 1.55 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 6.65 352 | 8.87 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 79.80 339 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
MSC_two_6792asdad | | | | | 88.81 68 | 91.55 127 | 77.99 87 | | 91.01 136 | | | | | 96.05 7 | 87.45 18 | 98.17 32 | 92.40 163 |
|
No_MVS | | | | | 88.81 68 | 91.55 127 | 77.99 87 | | 91.01 136 | | | | | 96.05 7 | 87.45 18 | 98.17 32 | 92.40 163 |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
IU-MVS | | | | | | 94.18 46 | 72.64 137 | | 90.82 141 | 56.98 315 | 89.67 108 | | | | 85.78 46 | 97.92 46 | 93.28 130 |
|
save fliter | | | | | | 93.75 59 | 77.44 96 | 86.31 127 | 89.72 172 | 70.80 203 | | | | | | | |
|
test_0728_SECOND | | | | | 86.79 96 | 94.25 45 | 72.45 145 | 90.54 48 | 94.10 34 | | | | | 95.88 16 | 86.42 32 | 97.97 43 | 92.02 180 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 301 |
|
test_part2 | | | | | | 93.86 57 | 77.77 91 | | | | 92.84 48 | | | | | | |
|
MTGPA |  | | | | | | | | 91.81 116 | | | | | | | | |
|
MTMP | | | | | | | | 90.66 44 | 33.14 388 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 353 | 44.97 371 | | | 52.17 335 | | 72.36 369 | | 87.90 255 | 54.10 326 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 92 | 96.45 103 | 90.57 218 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 113 | 90.22 226 |
|
agg_prior | | | | | | 91.58 125 | 77.69 93 | | 90.30 158 | | 84.32 207 | | | 93.18 130 | | | |
|
test_prior4 | | | | | | | 78.97 80 | 84.59 147 | | | | | | | | | |
|
test_prior | | | | | 86.32 104 | 90.59 153 | 71.99 152 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 146 |
|
旧先验2 | | | | | | | | 81.73 219 | | 56.88 316 | 86.54 170 | | | 84.90 294 | 72.81 190 | | |
|
新几何2 | | | | | | | | 81.72 220 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 195 | 85.62 236 | 58.09 306 | | | | 91.41 180 | 67.95 236 | | 84.48 295 |
|
原ACMM2 | | | | | | | | 82.26 213 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 276 | 63.52 268 | | |
|
testdata1 | | | | | | | | 79.62 245 | | 73.95 157 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 66 | 77.31 99 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 93 | 95.83 131 | 94.46 80 |
|
plane_prior4 | | | | | | | | | | | | 92.95 123 | | | | | |
|
plane_prior3 | | | | | | | 76.85 104 | | | 77.79 115 | 86.55 165 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 77 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 110 | 87.15 111 | | 75.94 135 | | | | | | 95.03 159 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 322 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 122 | | | | | | | | |
|
door | | | | | | | | | 72.57 336 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 163 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 137 | | 84.77 142 | | 73.30 169 | 80.55 269 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 137 | | 84.77 142 | | 73.30 169 | 80.55 269 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 137 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 268 | | | 94.61 73 | | | 93.56 124 |
|
HQP3-MVS | | | | | | | | | 92.68 91 | | | | | | | 94.47 179 | |
|
NP-MVS | | | | | | 91.95 110 | 74.55 123 | | | | | 90.17 204 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 138 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|