This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
XVG-OURS-SEG-HR89.59 5189.37 5890.28 4294.47 4285.95 2386.84 11893.91 4580.07 9086.75 16693.26 11493.64 290.93 19684.60 6090.75 26693.97 105
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7776.26 11689.65 7195.55 787.72 2293.89 2794.94 4791.62 393.44 12478.35 12798.76 395.61 48
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5894.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5589.57 18888.51 1790.11 9495.12 4490.98 688.92 25077.55 14197.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 2890.99 3789.63 5495.03 3383.53 4789.62 7293.35 6479.20 10193.83 2893.60 11090.81 792.96 14085.02 5698.45 1892.41 174
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 16192.50 9170.36 17589.55 7393.84 5081.89 6994.70 1495.44 3490.69 888.31 26083.33 7098.30 2493.20 140
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3692.51 5595.13 4390.65 995.34 5288.06 898.15 3395.95 41
RE-MVS-def92.61 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6790.64 1087.16 2997.60 6392.73 157
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8294.05 3979.03 10492.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 6091.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6190.72 4384.31 15497.00 264.33 23289.67 7088.38 20288.84 1394.29 1997.57 390.48 1391.26 18572.57 20597.65 5997.34 15
SED-MVS90.46 3391.64 1786.93 9694.18 4672.65 14190.47 5293.69 5483.77 4894.11 2394.27 7490.28 1495.84 2386.03 4697.92 4592.29 181
test_241102_ONE94.18 4672.65 14193.69 5483.62 5094.11 2393.78 10490.28 1495.50 46
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2493.87 4988.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7392.19 188
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7685.17 3592.47 2695.05 1387.65 2393.21 4094.39 7290.09 1795.08 6186.67 3597.60 6394.18 95
DVP-MVScopyleft90.06 3991.32 2886.29 10894.16 4972.56 14790.54 4991.01 14683.61 5193.75 3194.65 5689.76 1895.78 2886.42 3697.97 4290.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14790.63 4693.90 4683.61 5193.75 3194.49 6489.76 18
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1290.28 992.11 6195.03 4589.75 2094.93 6679.95 11198.27 2595.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 5383.77 4893.49 3694.27 7489.27 2195.84 2386.03 4697.82 5092.04 193
tt080588.09 7489.79 5282.98 18993.26 7163.94 23691.10 4289.64 18585.07 3790.91 8491.09 18289.16 2291.87 17182.03 8995.87 13093.13 143
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 3082.52 6392.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6788.83 2495.51 4487.16 2997.60 6392.73 157
APDe-MVScopyleft91.22 2191.92 1189.14 6392.97 7878.04 8992.84 1694.14 3483.33 5493.90 2595.73 2788.77 2596.41 287.60 1897.98 4192.98 151
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060193.85 5873.27 13594.11 3686.57 2693.47 3894.64 5988.42 26
ACMMP_NAP90.65 2891.07 3589.42 5895.93 1579.54 7689.95 6293.68 5677.65 12091.97 6594.89 4888.38 2795.45 4889.27 397.87 4993.27 137
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1875.79 14092.94 4494.96 4688.36 2895.01 6490.70 298.40 1995.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2293.29 7081.99 6691.47 7193.96 9588.35 2995.56 3987.74 1397.74 5692.85 154
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6383.16 5691.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 167
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6182.82 6192.60 5493.97 9288.19 3196.29 587.61 1798.20 3094.39 88
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5893.90 4680.32 8691.74 6994.41 7088.17 3295.98 1186.37 3897.99 3993.96 106
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1788.16 3394.17 9286.07 4598.48 1797.22 19
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6778.65 8389.15 8394.05 3984.68 4193.90 2594.11 8788.13 3496.30 484.51 6197.81 5191.70 204
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 4789.97 4989.27 6094.76 3979.86 7286.76 12292.78 9478.78 10792.51 5593.64 10988.13 3493.84 10584.83 5897.55 6694.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9688.06 7581.90 21292.22 10162.28 26084.66 15589.15 19383.54 5389.85 10297.32 488.08 3686.80 27970.43 22297.30 7596.62 28
mvs_tets89.78 4889.27 6091.30 2593.51 6384.79 4089.89 6490.63 15670.00 22094.55 1696.67 1287.94 3793.59 11684.27 6395.97 12395.52 49
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8991.29 7693.97 9287.93 3895.87 1888.65 497.96 4494.12 99
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2193.30 6981.91 6890.88 8694.21 7987.75 3995.87 1887.60 1897.71 5793.83 112
wuyk23d75.13 27379.30 22862.63 37375.56 37575.18 12380.89 24473.10 34875.06 15094.76 1395.32 3587.73 4052.85 40434.16 40397.11 7959.85 400
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1892.60 9983.09 5791.54 7094.25 7887.67 4195.51 4487.21 2898.11 3493.12 145
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2293.25 7281.99 6691.40 7294.17 8387.51 4295.87 1887.74 1397.76 5493.99 103
test_0728_THIRD85.33 3493.75 3194.65 5687.44 4395.78 2887.41 2298.21 2892.98 151
9.1489.29 5991.84 11688.80 8995.32 1175.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 66
PS-CasMVS90.06 3991.92 1184.47 14796.56 658.83 30689.04 8492.74 9591.40 596.12 496.06 2387.23 4595.57 3879.42 11998.74 599.00 2
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5280.98 8091.38 7393.80 10287.20 4695.80 2587.10 3197.69 5893.93 107
PEN-MVS90.03 4191.88 1484.48 14696.57 558.88 30388.95 8593.19 7491.62 496.01 696.16 2187.02 4795.60 3678.69 12498.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 15696.51 757.84 31388.93 8692.84 9291.92 396.16 396.23 1986.95 4895.99 1079.05 12198.57 1498.80 6
SF-MVS90.27 3590.80 4288.68 7392.86 8377.09 10491.19 4195.74 581.38 7492.28 5993.80 10286.89 4994.64 7485.52 5197.51 7094.30 91
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8582.59 6288.52 12994.37 7386.74 5095.41 5086.32 3998.21 2893.19 141
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12584.07 4592.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 180
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9894.03 8986.57 5295.80 2587.35 2497.62 6194.20 92
X-MVStestdata85.04 12282.70 17192.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9816.05 40986.57 5295.80 2587.35 2497.62 6194.20 92
MGCFI-Net85.04 12285.95 10982.31 20887.52 22263.59 23986.23 13193.96 4273.46 16788.07 14087.83 25486.46 5490.87 20176.17 15893.89 19792.47 172
sasdasda85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
canonicalmvs85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
TranMVSNet+NR-MVSNet87.86 7988.76 7085.18 13394.02 5464.13 23384.38 16291.29 13884.88 4092.06 6393.84 10186.45 5593.73 10773.22 19698.66 1097.69 10
test_040288.65 6689.58 5785.88 11992.55 8972.22 15584.01 16889.44 19088.63 1694.38 1895.77 2686.38 5893.59 11679.84 11295.21 15291.82 200
APD-MVScopyleft89.54 5289.63 5589.26 6192.57 8881.34 6490.19 5793.08 8180.87 8291.13 7893.19 11586.22 5995.97 1282.23 8897.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6489.88 5086.22 11191.63 12077.07 10589.82 6593.77 5178.90 10592.88 4592.29 14886.11 6090.22 21886.24 4397.24 7691.36 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10180.48 6791.85 12171.22 20790.38 9092.98 12386.06 6196.11 681.99 9196.75 89
jajsoiax89.41 5388.81 6991.19 2893.38 6784.72 4189.70 6790.29 17069.27 22494.39 1796.38 1686.02 6293.52 12083.96 6695.92 12895.34 53
nrg03087.85 8088.49 7185.91 11790.07 16369.73 17987.86 10394.20 2774.04 15892.70 5394.66 5585.88 6391.50 17779.72 11497.32 7496.50 31
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4493.24 7375.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5493.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6089.08 6389.37 5993.64 6279.07 7988.54 9494.20 2773.53 16689.71 10594.82 5185.09 6595.77 3084.17 6498.03 3793.26 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
APD_test289.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
GeoE85.45 11585.81 11584.37 14890.08 16167.07 20585.86 13591.39 13572.33 19487.59 14990.25 21284.85 6892.37 15678.00 13591.94 24193.66 121
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 984.81 6993.16 13491.10 197.53 6996.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 6789.01 6487.36 9091.30 13377.50 9787.55 10692.97 8887.95 2189.62 10992.87 12984.56 7093.89 10277.65 13996.62 9390.70 228
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1790.65 790.33 9293.95 9784.50 7195.37 5180.87 10195.50 14294.53 80
EC-MVSNet88.01 7588.32 7387.09 9289.28 17772.03 15790.31 5596.31 380.88 8185.12 19889.67 22684.47 7295.46 4782.56 8396.26 11093.77 118
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15087.09 23465.22 22384.16 16494.23 2477.89 11791.28 7793.66 10884.35 7392.71 14680.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 4988.88 6792.27 789.82 16886.67 1490.51 5190.20 17369.87 22195.06 1196.14 2284.28 7493.07 13887.68 1596.34 10597.09 21
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10993.17 7576.02 13488.64 12691.22 17784.24 7593.37 12777.97 13797.03 8195.52 49
CS-MVS88.14 7287.67 8089.54 5789.56 17079.18 7890.47 5294.77 1679.37 9984.32 21889.33 23083.87 7694.53 8082.45 8494.89 16794.90 66
XVG-OURS89.18 5988.83 6890.23 4394.28 4486.11 2285.91 13393.60 5980.16 8889.13 12093.44 11283.82 7790.98 19483.86 6895.30 15193.60 126
XVG-ACMP-BASELINE89.98 4389.84 5190.41 3994.91 3684.50 4489.49 7793.98 4179.68 9392.09 6293.89 10083.80 7893.10 13782.67 8298.04 3593.64 124
CDPH-MVS86.17 10485.54 12188.05 8392.25 9975.45 12183.85 17492.01 11465.91 25886.19 18091.75 16583.77 7994.98 6577.43 14496.71 9093.73 119
test_fmvsmvis_n_192085.22 11785.36 12584.81 13885.80 26376.13 11985.15 14892.32 10661.40 30191.33 7490.85 19383.76 8086.16 29284.31 6293.28 21192.15 190
Effi-MVS+83.90 15284.01 15083.57 17687.22 22865.61 22186.55 12792.40 10378.64 11081.34 27384.18 31283.65 8192.93 14274.22 17787.87 30392.17 189
MVS_111021_HR84.63 12984.34 14685.49 13090.18 16075.86 12079.23 26887.13 22173.35 17185.56 19389.34 22983.60 8290.50 21276.64 15394.05 19490.09 245
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9388.22 1888.53 12897.64 283.45 8394.55 7986.02 4898.60 1296.67 27
AdaColmapbinary83.66 15583.69 15583.57 17690.05 16472.26 15486.29 13090.00 17878.19 11581.65 26787.16 26883.40 8494.24 8761.69 29994.76 17584.21 324
LCM-MVSNet-Re83.48 16085.06 12878.75 25985.94 26155.75 32980.05 25294.27 2176.47 12996.09 594.54 6283.31 8589.75 23759.95 30994.89 16790.75 225
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9185.94 26178.30 8586.93 11692.20 10965.94 25689.16 11893.16 11783.10 8689.89 23187.81 1194.43 18393.35 133
TransMVSNet (Re)84.02 14885.74 11878.85 25791.00 14355.20 33482.29 22387.26 21779.65 9488.38 13495.52 3383.00 8786.88 27767.97 24996.60 9494.45 83
CNVR-MVS87.81 8187.68 7988.21 8092.87 8177.30 10385.25 14591.23 14077.31 12487.07 16091.47 17182.94 8894.71 7184.67 5996.27 10992.62 164
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10570.25 21789.35 11790.68 19982.85 8994.57 7779.55 11695.95 12592.00 195
v7n90.13 3690.96 3887.65 8891.95 10971.06 16989.99 6093.05 8286.53 2794.29 1996.27 1882.69 9094.08 9686.25 4297.63 6097.82 9
AllTest87.97 7787.40 8589.68 5291.59 12183.40 4889.50 7695.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
TestCases89.68 5291.59 12183.40 4895.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27078.25 8685.82 13691.82 12365.33 27188.55 12792.35 14782.62 9389.80 23386.87 3294.32 18693.18 142
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6991.11 14379.26 10089.68 10694.81 5482.44 9487.74 26476.54 15488.74 29196.61 29
CS-MVS-test87.00 8786.43 10188.71 7189.46 17377.46 9889.42 8095.73 677.87 11881.64 26887.25 26682.43 9594.53 8077.65 13996.46 10194.14 98
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16881.56 7290.02 9791.20 17982.40 9690.81 20373.58 19194.66 17694.56 77
SDMVSNet81.90 19183.17 16278.10 27288.81 19062.45 25676.08 31486.05 23973.67 16383.41 23793.04 11982.35 9780.65 33770.06 22595.03 16091.21 214
test_fmvsmconf_n85.88 10885.51 12286.99 9584.77 27878.21 8785.40 14491.39 13565.32 27287.72 14791.81 16282.33 9889.78 23486.68 3494.20 18992.99 150
Fast-Effi-MVS+81.04 20380.57 20882.46 20687.50 22363.22 24478.37 28089.63 18668.01 23981.87 26182.08 33582.31 9992.65 14967.10 25188.30 29991.51 210
baseline85.20 11985.93 11083.02 18886.30 25162.37 25884.55 15793.96 4274.48 15587.12 15592.03 15482.30 10091.94 16778.39 12594.21 18894.74 74
casdiffmvspermissive85.21 11885.85 11483.31 18286.17 25662.77 25083.03 19793.93 4474.69 15388.21 13792.68 13682.29 10191.89 17077.87 13893.75 20295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 6889.62 5684.73 14190.46 15465.27 22288.86 8793.02 8687.15 2493.05 4397.10 682.28 10292.02 16676.70 15197.99 3996.88 25
APD_test188.40 6887.91 7689.88 4789.50 17286.65 1689.98 6191.91 11984.26 4390.87 8793.92 9982.18 10389.29 24673.75 18894.81 17193.70 120
Anonymous2024052986.20 10287.13 8883.42 17990.19 15964.55 23084.55 15790.71 15385.85 3289.94 10195.24 4082.13 10490.40 21469.19 23496.40 10495.31 55
CLD-MVS83.18 16682.64 17384.79 13989.05 18367.82 20077.93 28492.52 10168.33 23585.07 19981.54 34182.06 10592.96 14069.35 23097.91 4793.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9579.70 7483.94 17090.32 16565.41 27084.49 21290.97 18682.03 10693.63 111
segment_acmp81.94 107
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7483.94 17090.32 16565.79 25984.49 21290.97 18681.93 10893.63 11181.21 9696.54 9690.88 222
test_892.09 10578.87 8183.82 17590.31 16765.79 25984.36 21690.96 18881.93 10893.44 124
test_prior283.37 18775.43 14584.58 21091.57 16881.92 11079.54 11796.97 82
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3787.00 1191.89 3486.28 2341.09 4102.23 41295.98 2481.87 11189.48 23879.76 11395.96 12491.10 217
CP-MVSNet89.27 5890.91 4084.37 14896.34 858.61 30988.66 9392.06 11390.78 695.67 795.17 4281.80 11295.54 4179.00 12298.69 998.95 4
MVS_111021_LR84.28 13983.76 15485.83 12189.23 17983.07 5180.99 24383.56 27372.71 18686.07 18389.07 23581.75 11386.19 29177.11 14893.36 20788.24 271
test_djsdf89.62 5089.01 6491.45 2292.36 9482.98 5391.98 3190.08 17671.54 20294.28 2196.54 1481.57 11494.27 8486.26 4096.49 9997.09 21
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
WR-MVS_H89.91 4691.31 2985.71 12396.32 962.39 25789.54 7593.31 6890.21 1095.57 995.66 2981.42 11695.90 1580.94 10098.80 298.84 5
CPTT-MVS89.39 5488.98 6690.63 3695.09 3286.95 1292.09 2992.30 10779.74 9287.50 15192.38 14381.42 11693.28 12983.07 7497.24 7691.67 205
pm-mvs183.69 15484.95 13179.91 24490.04 16559.66 29382.43 21887.44 21475.52 14487.85 14595.26 3981.25 11885.65 30268.74 24196.04 12094.42 86
DVP-MVS++90.07 3891.09 3287.00 9491.55 12672.64 14396.19 294.10 3785.33 3493.49 3694.64 5981.12 11995.88 1687.41 2295.94 12692.48 170
OPU-MVS88.27 7991.89 11277.83 9390.47 5291.22 17781.12 11994.68 7274.48 17595.35 14592.29 181
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16383.41 23793.04 11980.96 12177.65 35058.62 31595.03 16091.21 214
NCCC87.36 8486.87 9588.83 6792.32 9778.84 8286.58 12691.09 14478.77 10884.85 20790.89 19080.85 12295.29 5381.14 9895.32 14892.34 178
TAPA-MVS77.73 1285.71 11184.83 13288.37 7788.78 19279.72 7387.15 11393.50 6069.17 22585.80 18989.56 22780.76 12392.13 16273.21 20195.51 14193.25 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17581.41 19685.90 11885.60 26476.53 11183.07 19689.62 18773.02 18179.11 30383.51 31780.74 12490.24 21768.76 24089.29 28290.94 220
PC_three_145258.96 32390.06 9591.33 17480.66 12593.03 13975.78 16295.94 12692.48 170
VPA-MVSNet83.47 16184.73 13379.69 24890.29 15757.52 31681.30 23988.69 19876.29 13087.58 15094.44 6680.60 12687.20 27166.60 25796.82 8794.34 89
ETV-MVS84.31 13783.91 15385.52 12888.58 19870.40 17484.50 16193.37 6278.76 10984.07 22678.72 36580.39 12795.13 6073.82 18792.98 21991.04 218
HPM-MVS++copyleft88.93 6588.45 7290.38 4094.92 3585.85 2789.70 6791.27 13978.20 11486.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 240
ANet_high83.17 16785.68 11975.65 30381.24 32545.26 38679.94 25492.91 8983.83 4791.33 7496.88 1180.25 12985.92 29568.89 23895.89 12995.76 43
EI-MVSNet-Vis-set85.12 12184.53 14086.88 9784.01 29172.76 14083.91 17385.18 25280.44 8388.75 12485.49 29180.08 13091.92 16882.02 9090.85 26495.97 39
DeepC-MVS_fast80.27 886.23 10085.65 12087.96 8491.30 13376.92 10687.19 11191.99 11570.56 21284.96 20390.69 19880.01 13195.14 5978.37 12695.78 13691.82 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12284.44 14286.85 9883.87 29572.52 14983.82 17585.15 25380.27 8788.75 12485.45 29379.95 13291.90 16981.92 9390.80 26596.13 34
MCST-MVS84.36 13583.93 15285.63 12491.59 12171.58 16483.52 18392.13 11161.82 29483.96 22889.75 22579.93 13393.46 12378.33 12894.34 18591.87 199
TSAR-MVS + MP.88.14 7287.82 7889.09 6495.72 2176.74 10892.49 2591.19 14267.85 24486.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10290.74 14872.63 14590.69 15482.76 24879.20 13594.80 6995.32 14892.27 183
CSCG86.26 9986.47 10085.60 12590.87 14674.26 12787.98 10191.85 12180.35 8589.54 11588.01 24879.09 13692.13 16275.51 16595.06 15990.41 237
Test By Simon79.09 136
PHI-MVS86.38 9785.81 11588.08 8188.44 20277.34 10189.35 8193.05 8273.15 17984.76 20887.70 25678.87 13894.18 9080.67 10596.29 10692.73 157
EG-PatchMatch MVS84.08 14684.11 14883.98 16092.22 10172.61 14682.20 22987.02 22672.63 18788.86 12191.02 18478.52 13991.11 19073.41 19391.09 25488.21 272
dcpmvs_284.23 14285.14 12781.50 22088.61 19761.98 26782.90 20393.11 7868.66 23392.77 5192.39 14278.50 14087.63 26676.99 15092.30 22994.90 66
Effi-MVS+-dtu85.82 10983.38 15793.14 387.13 23091.15 287.70 10588.42 20174.57 15483.56 23585.65 28978.49 14194.21 8872.04 20892.88 22194.05 102
Vis-MVSNetpermissive86.86 8986.58 9887.72 8592.09 10577.43 10087.35 11092.09 11278.87 10684.27 22394.05 8878.35 14293.65 10980.54 10791.58 24892.08 192
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11492.86 8367.02 20682.55 21491.56 12883.08 5890.92 8291.82 16178.25 14393.99 9874.16 17898.35 2197.49 14
MSLP-MVS++85.00 12586.03 10881.90 21291.84 11671.56 16686.75 12393.02 8675.95 13787.12 15589.39 22877.98 14489.40 24577.46 14294.78 17284.75 315
API-MVS82.28 17882.61 17481.30 22286.29 25269.79 17788.71 9187.67 21378.42 11382.15 25784.15 31377.98 14491.59 17665.39 26892.75 22382.51 350
DP-MVS Recon84.05 14783.22 15986.52 10491.73 11975.27 12283.23 19392.40 10372.04 19882.04 25888.33 24477.91 14693.95 10066.17 25995.12 15790.34 239
fmvsm_s_conf0.1_n_a82.58 17481.93 18384.50 14587.68 21773.35 13286.14 13277.70 31061.64 29985.02 20091.62 16777.75 14786.24 28882.79 8087.07 31293.91 109
UniMVSNet (Re)86.87 8886.98 9386.55 10393.11 7568.48 19283.80 17792.87 9080.37 8489.61 11191.81 16277.72 14894.18 9075.00 17298.53 1596.99 24
PCF-MVS74.62 1582.15 18380.92 20685.84 12089.43 17472.30 15380.53 24791.82 12357.36 33687.81 14689.92 22177.67 14993.63 11158.69 31495.08 15891.58 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10586.22 10485.34 13193.24 7264.56 22982.21 22790.46 16080.99 7988.42 13291.97 15577.56 15093.85 10372.46 20698.65 1197.61 11
3Dnovator+83.92 289.97 4589.66 5490.92 3191.27 13581.66 6291.25 3994.13 3588.89 1188.83 12394.26 7777.55 15195.86 2284.88 5795.87 13095.24 58
MVS_Test82.47 17683.22 15980.22 24182.62 31357.75 31582.54 21591.96 11771.16 20882.89 24692.52 14177.41 15290.50 21280.04 11087.84 30492.40 175
fmvsm_s_conf0.5_n_a82.21 18081.51 19584.32 15386.56 24273.35 13285.46 14177.30 31461.81 29584.51 21190.88 19277.36 15386.21 29082.72 8186.97 31793.38 132
EIA-MVS82.19 18181.23 20285.10 13487.95 21169.17 18983.22 19493.33 6570.42 21378.58 30679.77 35777.29 15494.20 8971.51 21088.96 28791.93 198
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23661.30 27375.55 32187.12 22461.24 30674.45 34178.79 36477.20 15590.93 19664.62 27884.80 34683.32 338
DU-MVS86.80 9186.99 9286.21 11293.24 7267.02 20683.16 19592.21 10881.73 7090.92 8291.97 15577.20 15593.99 9874.16 17898.35 2197.61 11
Baseline_NR-MVSNet84.00 14985.90 11278.29 26991.47 13153.44 34382.29 22387.00 22979.06 10389.55 11395.72 2877.20 15586.14 29372.30 20798.51 1695.28 56
TinyColmap81.25 20082.34 17977.99 27585.33 26960.68 28482.32 22288.33 20471.26 20686.97 16292.22 15277.10 15886.98 27562.37 29195.17 15486.31 298
F-COLMAP84.97 12683.42 15689.63 5492.39 9383.40 4888.83 8891.92 11873.19 17880.18 29189.15 23477.04 15993.28 12965.82 26592.28 23292.21 186
114514_t83.10 16982.54 17684.77 14092.90 7969.10 19086.65 12490.62 15754.66 34981.46 27090.81 19576.98 16094.38 8372.62 20496.18 11390.82 224
xiu_mvs_v1_base_debu80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base_debi80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1610.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss88.31 7087.90 7789.56 5693.31 6977.96 9287.94 10291.97 11670.73 21194.19 2296.67 1276.94 16194.57 7783.07 7496.28 10796.15 33
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23461.40 27175.26 32387.13 22161.25 30574.38 34377.22 37776.94 16190.94 19564.63 27784.83 34583.35 337
MIMVSNet183.63 15684.59 13880.74 23294.06 5362.77 25082.72 20784.53 26577.57 12290.34 9195.92 2576.88 16785.83 30061.88 29797.42 7193.62 125
原ACMM184.60 14492.81 8674.01 12891.50 13062.59 28582.73 24990.67 20176.53 16894.25 8669.24 23195.69 13985.55 306
fmvsm_s_conf0.1_n82.17 18281.59 19083.94 16386.87 24071.57 16585.19 14777.42 31362.27 29384.47 21491.33 17476.43 16985.91 29683.14 7187.14 31094.33 90
fmvsm_s_conf0.5_n81.91 19081.30 19983.75 16886.02 26071.56 16684.73 15377.11 31762.44 29084.00 22790.68 19976.42 17085.89 29883.14 7187.11 31193.81 116
MSDG80.06 22479.99 22480.25 24083.91 29468.04 19877.51 29289.19 19277.65 12081.94 25983.45 31976.37 17186.31 28763.31 28786.59 32086.41 296
Gipumacopyleft84.44 13486.33 10278.78 25884.20 28973.57 13189.55 7390.44 16184.24 4484.38 21594.89 4876.35 17280.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsm_n_192083.60 15782.89 16885.74 12285.22 27277.74 9584.12 16690.48 15959.87 32086.45 17991.12 18175.65 17385.89 29882.28 8790.87 26293.58 127
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28190.96 18875.44 17469.35 37356.13 32988.33 29585.86 303
FMVSNet184.55 13285.45 12381.85 21490.27 15861.05 27786.83 11988.27 20678.57 11189.66 10895.64 3075.43 17590.68 20769.09 23595.33 14693.82 113
CANet83.79 15382.85 16986.63 10186.17 25672.21 15683.76 17891.43 13277.24 12574.39 34287.45 26275.36 17695.42 4977.03 14992.83 22292.25 185
ab-mvs79.67 22780.56 20976.99 28788.48 20056.93 32084.70 15486.06 23868.95 22980.78 28093.08 11875.30 17784.62 31056.78 32490.90 26189.43 254
patch_mono-278.89 23179.39 22777.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29889.89 22275.18 17872.97 36273.32 19592.30 22991.15 216
DELS-MVS81.44 19881.25 20082.03 21084.27 28862.87 24876.47 30892.49 10270.97 20981.64 26883.83 31475.03 17992.70 14774.29 17692.22 23590.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15862.51 28675.32 33684.61 30774.99 18092.30 15959.48 31288.04 30190.68 229
CNLPA83.55 15983.10 16484.90 13689.34 17683.87 4684.54 15988.77 19679.09 10283.54 23688.66 24174.87 18181.73 33066.84 25492.29 23189.11 260
HQP_MVS87.75 8287.43 8488.70 7293.45 6476.42 11389.45 7893.61 5779.44 9786.55 17192.95 12674.84 18295.22 5680.78 10395.83 13294.46 81
plane_prior692.61 8776.54 10974.84 182
FC-MVSNet-test85.93 10787.05 9182.58 20292.25 9956.44 32485.75 13793.09 8077.33 12391.94 6694.65 5674.78 18493.41 12675.11 17198.58 1397.88 8
VDD-MVS84.23 14284.58 13983.20 18591.17 13965.16 22583.25 19184.97 26079.79 9187.18 15494.27 7474.77 18590.89 19969.24 23196.54 9693.55 131
BH-untuned80.96 20480.99 20480.84 23188.55 19968.23 19380.33 25088.46 20072.79 18586.55 17186.76 27474.72 18691.77 17461.79 29888.99 28682.52 349
VPNet80.25 21881.68 18675.94 30192.46 9247.98 37376.70 30281.67 28973.45 16884.87 20692.82 13074.66 18786.51 28461.66 30096.85 8493.33 134
tfpnnormal81.79 19382.95 16778.31 26788.93 18755.40 33080.83 24682.85 27976.81 12785.90 18894.14 8474.58 18886.51 28466.82 25595.68 14093.01 149
KD-MVS_self_test81.93 18983.14 16378.30 26884.75 27952.75 34780.37 24989.42 19170.24 21890.26 9393.39 11374.55 18986.77 28068.61 24396.64 9195.38 52
fmvsm_l_conf0.5_n82.06 18581.54 19383.60 17383.94 29273.90 12983.35 18886.10 23758.97 32283.80 23090.36 20874.23 19086.94 27682.90 7790.22 27389.94 247
V4283.47 16183.37 15883.75 16883.16 30863.33 24281.31 23790.23 17269.51 22390.91 8490.81 19574.16 19192.29 16080.06 10990.22 27395.62 47
3Dnovator80.37 784.80 12784.71 13685.06 13586.36 24974.71 12488.77 9090.00 17875.65 14284.96 20393.17 11674.06 19291.19 18778.28 12991.09 25489.29 258
v1086.54 9587.10 8984.84 13788.16 20863.28 24386.64 12592.20 10975.42 14692.81 5094.50 6374.05 19394.06 9783.88 6796.28 10797.17 20
旧先验191.97 10871.77 15981.78 28891.84 15973.92 19493.65 20483.61 332
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26261.60 30083.09 24492.82 13073.89 19587.01 27268.33 24786.41 32291.37 211
MAR-MVS80.24 21978.74 23584.73 14186.87 24078.18 8885.75 13787.81 21265.67 26477.84 31178.50 36673.79 19690.53 21161.59 30190.87 26285.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13685.39 12481.25 22395.13 3159.32 29685.42 14381.11 29286.41 2887.41 15296.21 2073.61 19790.61 21066.33 25896.85 8493.81 116
FIs85.35 11686.27 10382.60 20191.86 11357.31 31785.10 14993.05 8275.83 13991.02 8193.97 9273.57 19892.91 14473.97 18498.02 3897.58 13
v114484.54 13384.72 13584.00 15987.67 21862.55 25482.97 20090.93 14970.32 21689.80 10390.99 18573.50 19993.48 12281.69 9594.65 17795.97 39
diffmvspermissive80.40 21480.48 21280.17 24279.02 35160.04 28877.54 29190.28 17166.65 25482.40 25287.33 26573.50 19987.35 26977.98 13689.62 28093.13 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 16483.19 16183.33 18190.90 14565.98 21788.19 9890.78 15278.13 11680.87 27887.92 25273.49 20192.42 15370.07 22488.40 29391.60 207
v886.22 10186.83 9684.36 15087.82 21362.35 25986.42 12891.33 13776.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14397.01 23
EI-MVSNet82.61 17282.42 17883.20 18583.25 30563.66 23783.50 18485.07 25476.06 13286.55 17185.10 29973.41 20290.25 21578.15 13490.67 26895.68 45
IterMVS-LS84.73 12884.98 13083.96 16187.35 22563.66 23783.25 19189.88 18076.06 13289.62 10992.37 14673.40 20492.52 15178.16 13294.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM87.64 8387.15 8789.09 6489.51 17176.39 11588.68 9286.76 23084.54 4283.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 87
v14419284.24 14184.41 14383.71 17087.59 22161.57 27082.95 20191.03 14567.82 24589.80 10390.49 20673.28 20693.51 12181.88 9494.89 16796.04 38
BH-RMVSNet80.53 21080.22 21781.49 22187.19 22966.21 21577.79 28786.23 23574.21 15783.69 23188.50 24273.25 20790.75 20463.18 28887.90 30287.52 285
PLCcopyleft73.85 1682.09 18480.31 21387.45 8990.86 14780.29 6985.88 13490.65 15568.17 23876.32 32286.33 27973.12 20892.61 15061.40 30290.02 27689.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4289.74 5390.83 3293.16 7480.37 6891.91 3393.11 7881.10 7895.32 1097.24 572.94 20994.85 6885.07 5497.78 5297.26 16
WR-MVS83.56 15884.40 14481.06 22893.43 6654.88 33578.67 27685.02 25781.24 7690.74 8891.56 16972.85 21091.08 19168.00 24898.04 3597.23 18
VNet79.31 22880.27 21476.44 29587.92 21253.95 33975.58 32084.35 26674.39 15682.23 25590.72 19772.84 21184.39 31360.38 30893.98 19590.97 219
QAPM82.59 17382.59 17582.58 20286.44 24466.69 21089.94 6390.36 16467.97 24184.94 20592.58 13972.71 21292.18 16170.63 22087.73 30588.85 267
v119284.57 13184.69 13784.21 15687.75 21562.88 24783.02 19891.43 13269.08 22789.98 10090.89 19072.70 21393.62 11482.41 8594.97 16496.13 34
OpenMVScopyleft76.72 1381.98 18882.00 18281.93 21184.42 28468.22 19488.50 9589.48 18966.92 25181.80 26591.86 15772.59 21490.16 22071.19 21391.25 25387.40 287
TSAR-MVS + GP.83.95 15082.69 17287.72 8589.27 17881.45 6383.72 17981.58 29174.73 15285.66 19086.06 28472.56 21592.69 14875.44 16795.21 15289.01 266
alignmvs83.94 15183.98 15183.80 16587.80 21467.88 19984.54 15991.42 13473.27 17788.41 13387.96 24972.33 21690.83 20276.02 16194.11 19292.69 161
fmvsm_l_conf0.5_n_a81.46 19780.87 20783.25 18383.73 29773.21 13783.00 19985.59 24658.22 32882.96 24590.09 21972.30 21786.65 28281.97 9289.95 27789.88 248
HQP2-MVS72.10 218
HQP-MVS84.61 13084.06 14986.27 10991.19 13670.66 17184.77 15092.68 9673.30 17480.55 28390.17 21772.10 21894.61 7577.30 14694.47 18093.56 129
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25281.84 26289.93 22072.08 22066.92 38646.05 38392.54 22687.01 291
v192192084.23 14284.37 14583.79 16687.64 22061.71 26982.91 20291.20 14167.94 24290.06 9590.34 20972.04 22193.59 11682.32 8694.91 16596.07 36
MSP-MVS89.08 6388.16 7491.83 1895.76 1786.14 2192.75 1793.90 4678.43 11289.16 11892.25 15072.03 22296.36 388.21 790.93 26092.98 151
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 17181.93 18385.19 13282.08 31480.15 7085.53 14088.76 19768.01 23985.58 19287.75 25571.80 22386.85 27874.02 18393.87 19888.58 269
v124084.30 13884.51 14183.65 17187.65 21961.26 27482.85 20591.54 12967.94 24290.68 8990.65 20271.71 22493.64 11082.84 7994.78 17296.07 36
ambc82.98 18990.55 15364.86 22688.20 9789.15 19389.40 11693.96 9571.67 22591.38 18478.83 12396.55 9592.71 160
MVS_030486.35 9885.92 11187.66 8789.21 18073.16 13888.40 9683.63 27281.27 7580.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
bld_raw_dy_0_6489.10 6290.28 4885.56 12792.90 7962.28 26092.93 1394.80 1588.13 2094.98 1297.01 771.37 22795.87 1884.15 6596.25 11198.52 7
新几何182.95 19193.96 5578.56 8480.24 29855.45 34483.93 22991.08 18371.19 22888.33 25965.84 26493.07 21681.95 355
SSC-MVS77.55 24781.64 18765.29 36790.46 15420.33 41373.56 33868.28 37285.44 3388.18 13994.64 5970.93 22981.33 33271.25 21192.03 23794.20 92
v14882.31 17782.48 17781.81 21785.59 26559.66 29381.47 23686.02 24072.85 18288.05 14290.65 20270.73 23090.91 19875.15 17091.79 24294.87 68
v2v48284.09 14584.24 14783.62 17287.13 23061.40 27182.71 20889.71 18372.19 19789.55 11391.41 17270.70 23193.20 13281.02 9993.76 19996.25 32
WB-MVS76.06 26580.01 22364.19 37089.96 16720.58 41272.18 34768.19 37383.21 5586.46 17893.49 11170.19 23278.97 34665.96 26090.46 27293.02 148
mamv481.86 19281.52 19482.87 19685.42 26862.26 26282.66 20992.62 9865.43 26579.34 30090.22 21369.65 23394.15 9574.14 18094.16 19192.21 186
UGNet82.78 17081.64 18786.21 11286.20 25576.24 11786.86 11785.68 24477.07 12673.76 34692.82 13069.64 23491.82 17369.04 23793.69 20390.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 19581.59 19081.79 21880.86 33159.15 30078.61 27790.18 17468.36 23487.20 15387.11 27069.39 23591.62 17578.16 13294.43 18394.60 76
MVSMamba_pp81.67 19481.33 19882.70 20085.24 27162.25 26482.88 20492.53 10062.64 28479.42 29690.65 20269.37 23693.26 13174.78 17494.44 18292.58 165
MG-MVS80.32 21780.94 20578.47 26588.18 20652.62 35082.29 22385.01 25872.01 19979.24 30292.54 14069.36 23793.36 12870.65 21989.19 28589.45 252
IS-MVSNet86.66 9486.82 9786.17 11492.05 10766.87 20991.21 4088.64 19986.30 2989.60 11292.59 13769.22 23894.91 6773.89 18597.89 4896.72 26
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16161.70 29875.43 33387.07 27169.11 23991.44 18060.68 30692.24 23390.11 244
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16157.36 33675.43 33378.30 36769.11 23991.44 18060.68 30687.70 30684.42 320
BH-w/o76.57 25976.07 26178.10 27286.88 23965.92 21877.63 28986.33 23365.69 26380.89 27779.95 35468.97 24190.74 20553.01 35285.25 33477.62 379
iter_conf05_1185.73 11085.77 11785.60 12588.77 19367.74 20191.49 3794.17 2971.86 20188.07 14092.18 15368.84 24295.06 6281.20 9795.33 14693.99 103
MVS73.21 29372.59 29575.06 30880.97 32860.81 28381.64 23485.92 24246.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
iter_conf0583.19 16582.97 16683.85 16489.06 18261.92 26882.41 21993.28 7165.43 26584.98 20289.78 22368.44 24494.48 8276.66 15296.64 9195.15 62
miper_ehance_all_eth80.34 21680.04 22281.24 22579.82 34158.95 30277.66 28889.66 18465.75 26285.99 18785.11 29868.29 24591.42 18276.03 16092.03 23793.33 134
Anonymous20240521180.51 21181.19 20378.49 26488.48 20057.26 31876.63 30482.49 28281.21 7784.30 22192.24 15167.99 24686.24 28862.22 29295.13 15591.98 197
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19591.75 16567.96 24785.24 30468.57 24592.18 23681.06 368
DPM-MVS80.10 22379.18 22982.88 19590.71 15069.74 17878.87 27390.84 15060.29 31675.64 33285.92 28767.28 24893.11 13671.24 21291.79 24285.77 304
PVSNet_Blended_VisFu81.55 19680.49 21184.70 14391.58 12473.24 13684.21 16391.67 12762.86 28380.94 27687.16 26867.27 24992.87 14569.82 22788.94 28887.99 278
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 17988.86 12188.99 23666.94 25081.23 33364.71 27588.22 30091.64 206
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23851.34 35873.20 34280.63 29768.30 23681.80 26588.40 24366.92 25180.90 33455.35 33694.90 16693.12 145
test22293.31 6976.54 10979.38 26377.79 30952.59 35882.36 25390.84 19466.83 25291.69 24481.25 363
TR-MVS76.77 25775.79 26279.72 24786.10 25965.79 21977.14 29583.02 27765.20 27381.40 27182.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27581.18 24182.52 28162.45 28983.34 23987.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
EPP-MVSNet85.47 11485.04 12986.77 10091.52 12969.37 18391.63 3687.98 21181.51 7387.05 16191.83 16066.18 25595.29 5370.75 21796.89 8395.64 46
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4391.87 12072.61 18892.16 6095.23 4166.01 25695.59 3786.02 4897.78 5297.24 17
SixPastTwentyTwo87.20 8687.45 8386.45 10592.52 9069.19 18887.84 10488.05 20981.66 7194.64 1596.53 1565.94 25794.75 7083.02 7696.83 8695.41 51
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21685.26 3475.92 31670.09 36564.34 27776.09 32681.25 34365.87 25878.07 34953.86 34483.82 35271.48 388
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25971.89 36638.21 39985.04 33887.69 284
EPNet80.37 21578.41 24086.23 11076.75 36573.28 13487.18 11277.45 31276.24 13168.14 37488.93 23765.41 26093.85 10369.47 22996.12 11791.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)83.13 16883.02 16583.43 17886.16 25866.08 21688.00 10088.36 20375.55 14385.02 20092.75 13465.12 26192.50 15274.94 17391.30 25291.72 202
PM-MVS80.20 22079.00 23083.78 16788.17 20786.66 1581.31 23766.81 38169.64 22288.33 13590.19 21564.58 26283.63 32171.99 20990.03 27581.06 368
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19558.05 33083.59 23380.69 34564.41 26391.20 18673.16 20292.03 23792.33 179
eth_miper_zixun_eth80.84 20580.22 21782.71 19881.41 32360.98 28077.81 28690.14 17567.31 24986.95 16387.24 26764.26 26492.31 15875.23 16991.61 24694.85 72
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21380.28 28991.50 17064.21 26574.72 36146.96 38094.58 17887.82 283
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21555.94 34275.16 33876.53 38263.97 26691.16 18865.00 27290.97 25988.06 276
TAMVS78.08 24276.36 25783.23 18490.62 15172.87 13979.08 26980.01 30061.72 29781.35 27286.92 27363.96 26788.78 25450.61 36293.01 21888.04 277
GBi-Net82.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
test182.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
FMVSNet281.31 19981.61 18980.41 23886.38 24658.75 30783.93 17286.58 23272.43 18987.65 14892.98 12363.78 26890.22 21866.86 25293.92 19692.27 183
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 21052.14 36383.65 23291.25 17663.24 27186.65 28254.66 34194.11 19285.17 310
DIV-MVS_self_test80.43 21280.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.38 24686.19 18089.22 23163.09 27290.16 22076.32 15595.80 13493.66 121
cl____80.42 21380.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.37 24786.18 18289.21 23263.08 27390.16 22076.31 15695.80 13493.65 123
h-mvs3384.25 14082.76 17088.72 7091.82 11882.60 5684.00 16984.98 25971.27 20486.70 16790.55 20563.04 27493.92 10178.26 13094.20 18989.63 250
hse-mvs283.47 16181.81 18588.47 7491.03 14282.27 5782.61 21083.69 27071.27 20486.70 16786.05 28563.04 27492.41 15478.26 13093.62 20690.71 227
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28280.97 27487.93 25162.83 27671.90 36555.24 33795.01 16392.00 195
K. test v385.14 12084.73 13386.37 10691.13 14069.63 18185.45 14276.68 32184.06 4692.44 5796.99 962.03 27794.65 7380.58 10693.24 21294.83 73
lessismore_v085.95 11691.10 14170.99 17070.91 36391.79 6794.42 6961.76 27892.93 14279.52 11893.03 21793.93 107
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27985.19 30563.54 28479.21 37782.59 345
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 28079.30 34364.50 28085.18 33584.22 322
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19088.29 20569.16 22667.83 37783.72 31560.93 28189.47 23969.22 23389.70 27990.88 222
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22474.41 12680.86 24579.67 30155.68 34384.69 20990.31 21160.91 28285.42 30362.20 29391.59 24787.88 281
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29888.21 24660.50 28369.12 37458.33 31877.62 38487.04 290
IterMVS-SCA-FT80.64 20979.41 22684.34 15283.93 29369.66 18076.28 31081.09 29372.43 18986.47 17790.19 21560.46 28493.15 13577.45 14386.39 32390.22 240
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28487.01 27258.11 32082.63 36383.88 326
jason77.42 24975.75 26382.43 20787.10 23369.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28689.00 24870.74 21889.27 28489.03 264
jason: jason.
1112_ss74.82 27973.74 28078.04 27489.57 16960.04 28876.49 30787.09 22554.31 35073.66 34779.80 35560.25 28786.76 28158.37 31684.15 35087.32 288
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28884.83 30949.58 36882.65 36185.11 311
Anonymous2023120671.38 30971.88 30169.88 34086.31 25054.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28972.06 36444.35 38793.23 21383.23 340
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24289.16 23359.90 29084.46 31168.61 24385.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15785.39 29559.82 29167.32 38359.79 31083.50 35485.96 300
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 15885.40 29459.80 29267.25 38459.66 31183.54 35385.92 302
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29366.35 38848.97 37178.57 38060.81 399
CDS-MVSNet77.32 25075.40 26683.06 18789.00 18572.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29488.76 25554.64 34292.37 22887.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29570.64 36948.46 37379.35 37581.66 357
Anonymous2024052180.18 22181.25 20076.95 28883.15 30960.84 28282.46 21785.99 24168.76 23186.78 16493.73 10759.13 29677.44 35173.71 18997.55 6692.56 166
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29769.06 37548.57 37281.67 36582.55 347
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22165.79 25984.32 21885.10 29958.96 29890.88 20075.36 16892.03 23793.84 111
MVSFormer82.23 17981.57 19284.19 15885.54 26669.26 18591.98 3190.08 17671.54 20276.23 32385.07 30258.69 29994.27 8486.26 4088.77 28989.03 264
lupinMVS76.37 26374.46 27582.09 20985.54 26669.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29988.94 24969.85 22688.77 28988.07 274
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15655.95 32573.40 34186.17 23650.70 37373.14 34885.94 28658.31 30185.90 29756.51 32683.22 35587.20 289
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30465.36 39250.21 36381.01 37181.25 363
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30584.26 31565.60 26791.36 25189.56 251
MVP-Stereo75.81 26873.51 28482.71 19889.35 17573.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30689.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 30470.06 31876.92 28986.39 24553.97 33876.62 30586.62 23153.44 35463.97 39384.73 30657.79 30792.34 15739.65 39481.33 36984.45 319
LFMVS80.15 22280.56 20978.89 25689.19 18155.93 32685.22 14673.78 34182.96 5984.28 22292.72 13557.38 30890.07 22763.80 28295.75 13790.68 229
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 18971.97 35574.04 15882.23 25589.78 22357.38 30889.41 24457.22 32395.41 14393.05 147
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16663.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 31085.18 30649.87 36681.67 36586.14 299
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31159.35 40146.16 38158.96 40465.93 395
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28164.69 38185.04 25663.98 27983.20 24188.22 24556.67 31278.79 34873.22 19693.12 21592.78 156
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31378.84 34762.20 29386.04 32885.23 309
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25778.81 30586.28 28256.36 31481.63 33156.63 32579.04 37987.87 282
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31584.97 30757.72 32287.05 31385.51 307
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31644.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31768.23 38132.07 40669.46 40068.17 393
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 3959.12 39376.45 32355.06 34675.31 33782.36 33255.74 31854.82 40347.02 37887.24 30983.52 333
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31981.75 32955.37 33577.70 38374.94 384
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21055.46 32063.12 39641.72 39181.30 37069.09 392
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32180.67 33652.86 35387.59 30784.77 314
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32282.99 32462.17 29590.64 27189.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26851.06 36974.85 34079.10 36155.10 32368.83 37668.86 23979.20 37882.58 346
MIMVSNet71.09 31171.59 30369.57 34387.23 22750.07 36778.91 27171.83 35660.20 31871.26 35791.76 16455.08 32476.09 35541.06 39287.02 31582.54 348
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32565.91 39035.40 40147.01 40559.25 401
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28582.35 22175.79 32566.49 25558.39 40381.06 34453.68 32685.98 29453.55 34792.97 22085.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32749.76 40632.68 40589.41 28172.15 387
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32860.04 39956.16 32877.77 38280.68 370
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29087.05 27252.83 32963.09 39751.92 36072.44 39279.84 375
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13265.19 22472.47 34587.31 21646.79 38080.29 28784.30 31052.70 33092.10 16551.88 36186.73 31890.22 240
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33164.40 39444.90 38581.44 36875.76 382
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28678.95 36352.03 33265.53 39165.77 26677.45 38679.95 374
test111178.53 23878.85 23277.56 28192.22 10147.49 37582.61 21069.24 37072.43 18985.28 19694.20 8051.91 33390.07 22765.36 26996.45 10295.11 63
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11448.95 36983.68 18069.91 36772.30 19584.26 22494.20 8051.89 33489.82 23263.58 28396.02 12194.87 68
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24369.04 22886.00 18490.44 20751.75 33590.09 22665.95 26193.34 20891.72 202
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26673.50 33984.80 26357.61 33482.24 25487.54 25951.31 33687.65 26570.40 22393.19 21491.23 213
AUN-MVS81.18 20178.78 23388.39 7690.93 14482.14 5882.51 21683.67 27164.69 27680.29 28785.91 28851.07 33792.38 15576.29 15793.63 20590.65 231
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33874.77 35945.82 38482.96 35681.60 358
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23279.75 29281.80 33850.62 33989.46 24066.85 25385.64 33089.72 249
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3674.65 32967.39 37571.94 20077.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 15987.84 25350.44 34171.62 36777.42 14588.53 29290.72 226
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25682.85 36078.52 378
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18049.95 34376.43 35438.74 39671.92 39455.84 403
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18479.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22177.54 38581.08 366
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21294.16 3074.80 15175.72 33092.59 13748.69 34595.56 3973.48 19282.91 35883.85 329
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26745.14 38782.89 24684.22 31148.37 34670.36 37073.40 19487.03 31488.52 270
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21276.90 31850.50 37575.72 33092.38 14348.07 34884.07 31768.72 24282.91 35883.85 329
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 21976.90 31873.81 16185.56 19392.38 14348.07 34883.98 31863.36 28695.31 15090.92 221
test_f64.31 35665.85 34659.67 38166.54 40662.24 26557.76 39770.96 36240.13 39984.36 21682.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 21978.56 30780.57 34846.20 35488.20 26146.99 37989.29 28284.32 321
sam_mvs146.11 35583.88 326
tfpn200view974.86 27874.23 27776.74 29386.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25689.31 256
thres40075.14 27274.23 27777.86 27886.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25692.66 162
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
patchmatchnet-post81.71 33945.93 35987.01 272
sam_mvs45.92 360
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16586.33 27945.79 36182.59 32569.63 22890.65 27081.54 359
thres100view90075.45 27075.05 27076.66 29487.27 22651.88 35581.07 24273.26 34675.68 14183.25 24086.37 27845.54 36288.80 25151.98 35790.99 25689.31 256
thres600view775.97 26675.35 26877.85 27987.01 23651.84 35680.45 24873.26 34675.20 14883.10 24386.31 28145.54 36289.05 24755.03 33992.24 23392.66 162
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
test_post3.10 41145.43 36577.22 353
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
FE-MVS79.98 22578.86 23183.36 18086.47 24366.45 21389.73 6684.74 26472.80 18484.22 22591.38 17344.95 37193.60 11563.93 28191.50 24990.04 246
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 13982.43 28339.76 40185.64 19188.76 23844.71 37387.88 26373.86 18685.88 32984.16 325
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16571.77 35592.79 13344.38 37475.65 35864.53 27985.37 33282.18 352
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18142.68 39788.20 13883.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 26943.31 39479.40 29779.39 35943.47 37668.55 37869.05 23684.91 34282.10 353
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24684.38 34979.15 376
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27677.49 29385.07 25460.78 31186.55 17188.68 24043.14 38090.25 21573.69 19090.67 26892.42 173
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25056.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25358.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
thisisatest053079.07 22977.33 24984.26 15587.13 23064.58 22883.66 18175.95 32468.86 23085.22 19787.36 26438.10 38893.57 11975.47 16694.28 18794.62 75
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19783.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21690.68 26789.17 259
tttt051781.07 20279.58 22585.52 12888.99 18666.45 21387.03 11575.51 32973.76 16288.32 13690.20 21437.96 39094.16 9479.36 12095.13 15595.93 42
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 25089.35 255
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 15836.68 39278.98 34547.87 37692.45 22787.95 279
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23770.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26273.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21365.18 38792.97 12533.64 39783.06 32253.52 34869.61 39978.79 377
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24870.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18255.88 40386.68 2564.62 39297.01 730.36 40183.97 31944.78 38682.94 35776.26 381
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16555.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27885.66 305
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29486.62 295
test250674.12 28573.39 28576.28 29891.85 11444.20 38984.06 16748.20 40872.30 19581.90 26094.20 8027.22 40989.77 23564.81 27496.02 12194.87 68
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18380.97 27482.08 33519.80 41487.33 27065.12 27191.68 24592.13 191
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
No_MVS88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
eth-test20.00 419
eth-test0.00 419
IU-MVS94.18 4672.64 14390.82 15156.98 33989.67 10785.78 5097.92 4593.28 136
save fliter93.75 5977.44 9986.31 12989.72 18270.80 210
test_0728_SECOND86.79 9994.25 4572.45 15190.54 4994.10 3795.88 1686.42 3697.97 4292.02 194
GSMVS83.88 326
test_part293.86 5777.77 9492.84 48
MTGPAbinary91.81 125
MTMP90.66 4533.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
test9_res80.83 10296.45 10290.57 232
agg_prior279.68 11596.16 11490.22 240
agg_prior91.58 12477.69 9690.30 16884.32 21893.18 133
test_prior478.97 8084.59 156
test_prior86.32 10790.59 15271.99 15892.85 9194.17 9292.80 155
旧先验281.73 23256.88 34086.54 17684.90 30872.81 203
新几何281.72 233
无先验82.81 20685.62 24558.09 32991.41 18367.95 25084.48 318
原ACMM282.26 226
testdata286.43 28663.52 285
testdata179.62 25873.95 160
plane_prior793.45 6477.31 102
plane_prior593.61 5795.22 5680.78 10395.83 13294.46 81
plane_prior492.95 126
plane_prior376.85 10777.79 11986.55 171
plane_prior289.45 7879.44 97
plane_prior192.83 85
plane_prior76.42 11387.15 11375.94 13895.03 160
n20.00 420
nn0.00 420
door-mid74.45 335
test1191.46 131
door72.57 350
HQP5-MVS70.66 171
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
BP-MVS77.30 146
HQP4-MVS80.56 28294.61 7593.56 129
HQP3-MVS92.68 9694.47 180
NP-MVS91.95 10974.55 12590.17 217
ACMMP++_ref95.74 138
ACMMP++97.35 72