This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5299.27 199.54 1
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4585.95 2586.84 11193.91 4580.07 9086.75 16293.26 10693.64 290.93 20384.60 5990.75 25593.97 95
abl_693.02 493.16 492.60 494.73 4388.99 793.26 1294.19 3089.11 1294.43 1695.27 3691.86 395.09 6487.54 1898.02 4093.71 109
ACMH+77.89 1190.73 3091.50 2388.44 7993.00 8176.26 11989.65 6595.55 787.72 2393.89 2794.94 4491.62 493.44 12978.35 12498.76 495.61 47
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4181.69 6090.00 5494.27 2382.35 6393.67 3494.82 4891.18 595.52 4285.36 5098.73 795.23 58
LGP-MVS_train90.82 3894.75 4181.69 6094.27 2382.35 6393.67 3494.82 4891.18 595.52 4285.36 5098.73 795.23 58
PMVScopyleft80.48 690.08 4190.66 4788.34 8296.71 392.97 190.31 5089.57 18088.51 1990.11 9395.12 4190.98 788.92 24777.55 13997.07 8683.13 312
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3190.99 4089.63 5695.03 3583.53 4889.62 6693.35 6679.20 10093.83 2893.60 10390.81 892.96 14685.02 5498.45 1992.41 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 6091.14 3483.96 16292.50 9470.36 17089.55 6793.84 5081.89 6994.70 1395.44 3390.69 988.31 25783.33 7198.30 2693.20 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3192.99 1394.23 2685.21 3492.51 5495.13 4090.65 1095.34 5488.06 998.15 3595.95 40
RE-MVS-def92.61 594.13 5488.95 892.87 1494.16 3188.75 1693.79 2994.43 6390.64 1187.16 2897.60 6692.73 144
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4680.98 6689.16 7594.05 4079.03 10392.87 4693.74 10090.60 1295.21 6182.87 7698.76 494.87 63
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4293.51 894.85 1682.88 5791.77 6893.94 9390.55 1395.73 3088.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6490.72 4684.31 15397.00 264.33 21889.67 6488.38 19788.84 1594.29 1997.57 390.48 1491.26 19372.57 19297.65 6297.34 14
SED-MVS90.46 3791.64 1986.93 9894.18 4972.65 13890.47 4893.69 5483.77 4494.11 2394.27 7190.28 1595.84 2286.03 4497.92 4892.29 167
test_241102_ONE94.18 4972.65 13893.69 5483.62 4694.11 2393.78 9990.28 1595.50 47
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4194.02 8490.15 1795.67 3386.82 3297.34 7992.19 173
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8085.17 3592.47 2695.05 1587.65 2493.21 4294.39 6990.09 1895.08 6586.67 3397.60 6694.18 88
DVP-MVScopyleft90.06 4391.32 3086.29 11194.16 5272.56 14490.54 4591.01 14083.61 4793.75 3194.65 5389.76 1995.78 2786.42 3497.97 4590.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5272.56 14490.63 4493.90 4683.61 4793.75 3194.49 6089.76 19
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6686.15 2293.37 1095.10 1490.28 992.11 6095.03 4289.75 2194.93 6979.95 10798.27 2795.04 62
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 5383.77 4493.49 3894.27 7189.27 2295.84 2286.03 4497.82 5392.04 176
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2693.35 1194.16 3182.52 6192.39 5794.14 7989.15 2395.62 3487.35 2398.24 2894.56 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117292.40 792.41 792.37 694.68 4489.04 691.98 3193.62 5790.14 1193.63 3694.16 7888.83 2495.51 4487.11 3097.54 7292.54 154
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5488.95 892.87 1494.16 3188.75 1693.79 2994.43 6388.83 2495.51 4487.16 2897.60 6692.73 144
APDe-MVS91.22 2491.92 1389.14 6492.97 8278.04 9192.84 1694.14 3583.33 5193.90 2595.73 2588.77 2696.41 187.60 1697.98 4492.98 135
test_one_060193.85 6273.27 13494.11 3786.57 2793.47 4094.64 5688.42 27
ACMMP_NAP90.65 3191.07 3889.42 6095.93 1679.54 7889.95 5793.68 5677.65 11791.97 6594.89 4588.38 2895.45 4989.27 397.87 5293.27 124
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7388.13 9294.51 2175.79 14192.94 4494.96 4388.36 2995.01 6790.70 298.40 2095.09 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4392.58 2293.29 7381.99 6691.47 7193.96 8988.35 3095.56 3787.74 1197.74 5892.85 139
#test#90.49 3690.31 5191.02 3395.43 2984.66 4390.65 4393.29 7377.00 12591.47 7193.96 8988.35 3095.56 3784.88 5597.74 5892.85 139
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 7994.00 8588.26 3295.71 3187.28 2698.39 2192.55 153
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6080.97 6791.49 3793.48 6382.82 5892.60 5393.97 8688.19 3396.29 487.61 1598.20 3294.39 81
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 2990.00 5493.90 4680.32 8691.74 6994.41 6688.17 3495.98 1186.37 3697.99 4293.96 96
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3594.17 9686.07 4398.48 1897.22 17
DPE-MVScopyleft90.53 3591.08 3688.88 6693.38 7278.65 8789.15 7694.05 4084.68 3893.90 2594.11 8188.13 3696.30 384.51 6097.81 5491.70 188
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 5189.97 5289.27 6294.76 4079.86 7486.76 11592.78 9578.78 10692.51 5493.64 10288.13 3693.84 11084.83 5797.55 6994.10 92
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9588.06 7881.90 20292.22 10462.28 24384.66 14489.15 18683.54 4989.85 10297.32 488.08 3886.80 27370.43 20997.30 8196.62 27
mvs_tets89.78 5289.27 6391.30 2893.51 6884.79 4089.89 5990.63 15070.00 21594.55 1596.67 1187.94 3993.59 12184.27 6295.97 12495.52 48
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5392.18 2894.22 2780.14 8991.29 7693.97 8687.93 4095.87 1888.65 497.96 4794.12 91
region2R91.44 2091.30 3291.87 1995.75 1985.90 2792.63 2193.30 7281.91 6890.88 8494.21 7687.75 4195.87 1887.60 1697.71 6093.83 101
wuyk23d75.13 25879.30 21462.63 33675.56 34575.18 12480.89 23173.10 32775.06 15194.76 1295.32 3487.73 4252.85 36534.16 36497.11 8559.85 361
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 9983.09 5491.54 7094.25 7587.67 4395.51 4487.21 2798.11 3693.12 130
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2892.58 2293.25 7581.99 6691.40 7394.17 7787.51 4495.87 1887.74 1197.76 5693.99 94
test_0728_THIRD85.33 3293.75 3194.65 5387.44 4595.78 2787.41 2198.21 3092.98 135
9.1489.29 6291.84 11788.80 8395.32 1175.14 15091.07 7892.89 11787.27 4693.78 11283.69 6897.55 69
PS-CasMVS90.06 4391.92 1384.47 14896.56 758.83 28289.04 7792.74 9691.40 596.12 496.06 2287.23 4795.57 3679.42 11598.74 699.00 2
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5691.75 3593.74 5280.98 7991.38 7493.80 9687.20 4895.80 2487.10 3197.69 6193.93 97
PEN-MVS90.03 4591.88 1684.48 14796.57 658.88 27988.95 7893.19 7791.62 496.01 696.16 2087.02 4995.60 3578.69 12098.72 998.97 3
DTE-MVSNet89.98 4791.91 1584.21 15596.51 857.84 28788.93 8092.84 9391.92 396.16 396.23 1886.95 5095.99 1079.05 11798.57 1598.80 6
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7093.75 6377.44 10186.31 12395.27 1270.80 20492.28 5893.80 9686.89 5194.64 7885.52 4897.51 7494.30 84
SF-MVS90.27 3990.80 4588.68 7492.86 8677.09 10891.19 4095.74 581.38 7492.28 5893.80 9686.89 5194.64 7885.52 4897.51 7494.30 84
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1592.20 2793.03 8582.59 6088.52 13194.37 7086.74 5395.41 5186.32 3798.21 3093.19 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1888.94 7991.81 11984.07 4092.00 6394.40 6786.63 5495.28 5788.59 598.31 2492.30 165
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1892.02 3091.81 11984.07 4092.00 6394.40 6786.63 5495.28 5788.59 598.31 2492.30 165
XVS91.54 1591.36 2692.08 1095.64 2486.25 2092.64 1993.33 6785.07 3589.99 9794.03 8386.57 5695.80 2487.35 2397.62 6494.20 86
X-MVStestdata85.04 12182.70 16592.08 1095.64 2486.25 2092.64 1993.33 6785.07 3589.99 9716.05 36886.57 5695.80 2487.35 2397.62 6494.20 86
canonicalmvs85.50 11186.14 10583.58 17187.97 20067.13 19487.55 9994.32 2273.44 16888.47 13287.54 23686.45 5891.06 20075.76 15993.76 18992.54 154
TranMVSNet+NR-MVSNet87.86 7988.76 7385.18 13594.02 5764.13 21984.38 15191.29 13284.88 3792.06 6293.84 9586.45 5893.73 11373.22 18398.66 1197.69 9
test_040288.65 7089.58 5985.88 12392.55 9272.22 15284.01 15689.44 18288.63 1894.38 1895.77 2486.38 6093.59 12179.84 10895.21 15191.82 185
APD-MVScopyleft89.54 5689.63 5789.26 6392.57 9181.34 6590.19 5293.08 8180.87 8191.13 7793.19 10786.22 6195.97 1282.23 8397.18 8490.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6789.88 5386.22 11491.63 12177.07 10989.82 6093.77 5178.90 10492.88 4592.29 13786.11 6290.22 22586.24 4197.24 8291.36 196
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10480.48 6991.85 11671.22 20190.38 8992.98 11286.06 6396.11 681.99 8596.75 97
jajsoiax89.41 5888.81 7291.19 3293.38 7284.72 4189.70 6190.29 16469.27 21994.39 1796.38 1586.02 6493.52 12583.96 6495.92 12895.34 52
nrg03087.85 8088.49 7485.91 12190.07 16769.73 17387.86 9694.20 2874.04 16092.70 5294.66 5285.88 6591.50 18479.72 10997.32 8096.50 30
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 7990.98 4193.24 7675.37 14892.84 4895.28 3585.58 6696.09 787.92 1097.76 5693.88 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6389.08 6589.37 6193.64 6779.07 8288.54 8894.20 2873.53 16689.71 10694.82 4885.09 6795.77 2984.17 6398.03 3993.26 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj89.51 5789.48 6089.59 5892.26 10180.80 6890.14 5393.54 6183.37 5090.57 8892.55 12984.99 6896.15 581.26 9196.61 10191.83 184
GeoE85.45 11385.81 11184.37 14990.08 16567.07 19585.86 12991.39 13072.33 18887.59 14590.25 19384.85 6992.37 16178.00 13391.94 23293.66 111
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6585.72 3296.79 195.51 888.86 1495.63 896.99 884.81 7093.16 13991.10 197.53 7396.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7189.01 6687.36 9491.30 13577.50 10087.55 9992.97 8887.95 2289.62 11092.87 11884.56 7193.89 10777.65 13796.62 10090.70 209
LS3D90.60 3390.34 5091.38 2789.03 18184.23 4693.58 694.68 1990.65 790.33 9193.95 9284.50 7295.37 5380.87 9795.50 14294.53 75
ETH3D-3000-0.188.85 6988.96 6988.52 7591.94 11377.27 10788.71 8595.26 1376.08 13290.66 8792.69 12484.48 7393.83 11183.38 7097.48 7694.47 76
DROMVSNet88.01 7688.32 7687.09 9689.28 17672.03 15490.31 5096.31 380.88 8085.12 19289.67 20484.47 7495.46 4882.56 7996.26 11693.77 107
anonymousdsp89.73 5388.88 7092.27 989.82 17186.67 1690.51 4790.20 16769.87 21695.06 1196.14 2184.28 7593.07 14487.68 1396.34 11197.09 19
OMC-MVS88.19 7487.52 8490.19 4991.94 11381.68 6287.49 10193.17 7876.02 13588.64 12891.22 16284.24 7693.37 13277.97 13597.03 8795.52 48
ETH3D cwj APD-0.1687.83 8187.62 8388.47 7791.21 13878.20 8987.26 10494.54 2072.05 19188.89 12292.31 13683.86 7794.24 9081.59 9096.87 9192.97 138
XVG-OURS89.18 6288.83 7190.23 4894.28 4786.11 2485.91 12693.60 6080.16 8889.13 12193.44 10483.82 7890.98 20183.86 6695.30 15093.60 116
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4589.49 7193.98 4279.68 9392.09 6193.89 9483.80 7993.10 14382.67 7898.04 3793.64 114
CDPH-MVS86.17 10385.54 11788.05 8792.25 10275.45 12283.85 16292.01 11165.91 25286.19 17491.75 15283.77 8094.98 6877.43 14296.71 9893.73 108
Effi-MVS+83.90 15184.01 14883.57 17287.22 21765.61 20886.55 12092.40 10278.64 10981.34 25484.18 29183.65 8192.93 14874.22 17087.87 28792.17 174
MVS_111021_HR84.63 12884.34 14485.49 13290.18 16475.86 12179.23 25687.13 21773.35 16985.56 18889.34 20783.60 8290.50 21876.64 14894.05 18590.09 225
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5593.52 792.79 9488.22 2088.53 13097.64 283.45 8394.55 8586.02 4698.60 1396.67 26
AdaColmapbinary83.66 15483.69 15383.57 17290.05 16872.26 15186.29 12590.00 17278.19 11481.65 24987.16 24383.40 8494.24 9061.69 27294.76 17084.21 294
LCM-MVSNet-Re83.48 15885.06 12478.75 25185.94 24555.75 30480.05 24094.27 2376.47 12896.09 594.54 5883.31 8589.75 23859.95 28494.89 16590.75 207
Regformer-286.74 9286.08 10688.73 7184.18 27079.20 8183.52 17189.33 18483.33 5189.92 10185.07 27983.23 8693.16 13983.39 6992.72 21793.83 101
TransMVSNet (Re)84.02 14785.74 11378.85 24991.00 14655.20 30982.29 20887.26 21379.65 9488.38 13595.52 3283.00 8786.88 27167.97 23296.60 10294.45 79
CNVR-MVS87.81 8287.68 8288.21 8492.87 8477.30 10685.25 13691.23 13477.31 12287.07 15591.47 15882.94 8894.71 7584.67 5896.27 11592.62 151
DeepPCF-MVS81.24 587.28 8586.21 10490.49 4391.48 13284.90 3883.41 17692.38 10470.25 21289.35 11890.68 18382.85 8994.57 8279.55 11195.95 12592.00 178
v7n90.13 4090.96 4187.65 9191.95 11171.06 16589.99 5693.05 8286.53 2894.29 1996.27 1782.69 9094.08 10086.25 4097.63 6397.82 8
AllTest87.97 7887.40 8789.68 5491.59 12283.40 4989.50 7095.44 979.47 9588.00 14093.03 11082.66 9191.47 18570.81 20196.14 12094.16 89
TestCases89.68 5491.59 12283.40 4995.44 979.47 9588.00 14093.03 11082.66 9191.47 18570.81 20196.14 12094.16 89
RPSCF88.00 7786.93 9491.22 3190.08 16589.30 589.68 6391.11 13779.26 9989.68 10794.81 5182.44 9387.74 26176.54 14988.74 27796.61 28
ITE_SJBPF90.11 5090.72 15384.97 3790.30 16181.56 7290.02 9691.20 16482.40 9490.81 20973.58 18094.66 17194.56 72
Fast-Effi-MVS+81.04 19280.57 19582.46 19787.50 21263.22 22878.37 26789.63 17868.01 23281.87 24382.08 31482.31 9592.65 15567.10 23588.30 28391.51 194
baseline85.20 11685.93 10883.02 18186.30 23762.37 24184.55 14693.96 4374.48 15787.12 15192.03 14282.30 9691.94 17478.39 12294.21 18094.74 68
casdiffmvs85.21 11585.85 11083.31 17686.17 24262.77 23483.03 18793.93 4474.69 15488.21 13892.68 12582.29 9791.89 17777.87 13693.75 19195.27 56
Anonymous2023121188.40 7289.62 5884.73 14390.46 15965.27 20988.86 8193.02 8687.15 2593.05 4397.10 682.28 9892.02 17376.70 14797.99 4296.88 23
Regformer-186.00 10485.50 11887.49 9284.18 27076.90 11183.52 17187.94 20782.18 6589.19 11985.07 27982.28 9891.89 17782.40 8192.72 21793.69 110
Anonymous2024052986.20 10287.13 8883.42 17490.19 16364.55 21684.55 14690.71 14785.85 3189.94 10095.24 3882.13 10090.40 22069.19 22096.40 10995.31 54
agg_prior185.72 10985.20 12387.28 9591.58 12577.69 9783.69 16890.30 16166.29 24984.32 20891.07 16982.13 10093.18 13781.02 9496.36 11090.98 200
Regformer-486.41 9685.71 11488.52 7584.27 26677.57 9984.07 15488.00 20582.82 5889.84 10385.48 26782.06 10292.77 15283.83 6791.04 24495.22 60
CLD-MVS83.18 16482.64 16784.79 14189.05 18067.82 19277.93 27192.52 10068.33 22985.07 19381.54 31982.06 10292.96 14669.35 21697.91 5093.57 117
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9879.70 7683.94 15890.32 15865.41 26384.49 20490.97 17282.03 10493.63 117
segment_acmp81.94 105
train_agg85.98 10685.28 12188.07 8692.34 9879.70 7683.94 15890.32 15865.79 25384.49 20490.97 17281.93 10693.63 11781.21 9296.54 10490.88 204
test_892.09 10778.87 8483.82 16390.31 16065.79 25384.36 20790.96 17481.93 10693.44 129
test_prior386.31 9886.31 10186.32 10990.59 15671.99 15583.37 17792.85 9175.43 14584.58 20291.57 15481.92 10894.17 9679.54 11296.97 8892.80 141
test_prior283.37 17775.43 14584.58 20291.57 15481.92 10879.54 11296.97 88
CP-MVSNet89.27 6190.91 4384.37 14996.34 958.61 28488.66 8792.06 11090.78 695.67 795.17 3981.80 11095.54 4179.00 11898.69 1098.95 4
MVS_111021_LR84.28 13983.76 15285.83 12589.23 17883.07 5280.99 23083.56 26072.71 18286.07 17889.07 21481.75 11186.19 28377.11 14593.36 19888.24 249
test_djsdf89.62 5489.01 6691.45 2592.36 9782.98 5491.98 3190.08 17071.54 19594.28 2196.54 1381.57 11294.27 8786.26 3896.49 10697.09 19
cdsmvs_eth3d_5k20.81 33627.75 3390.00 3550.00 3780.00 3790.00 36685.44 2390.00 3730.00 37482.82 30781.46 1130.00 3740.00 3720.00 3720.00 370
WR-MVS_H89.91 5091.31 3185.71 12796.32 1062.39 24089.54 6993.31 7090.21 1095.57 995.66 2881.42 11495.90 1580.94 9698.80 398.84 5
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1492.09 2992.30 10579.74 9287.50 14792.38 13281.42 11493.28 13483.07 7397.24 8291.67 189
CS-MVS-test85.00 12385.28 12184.17 15887.84 20366.12 20487.30 10395.67 677.63 11980.02 27185.85 26381.34 11695.41 5178.18 12993.71 19290.99 199
pm-mvs183.69 15384.95 12779.91 23590.04 16959.66 26982.43 20387.44 21075.52 14487.85 14295.26 3781.25 11785.65 29068.74 22596.04 12394.42 80
DVP-MVS++.90.07 4291.09 3587.00 9791.55 12872.64 14096.19 294.10 3885.33 3293.49 3894.64 5681.12 11895.88 1687.41 2195.94 12692.48 156
OPU-MVS88.27 8391.89 11577.83 9590.47 4891.22 16281.12 11894.68 7674.48 16895.35 14592.29 167
ETH3 D test640085.09 11984.87 12885.75 12690.80 15169.34 17785.90 12793.31 7065.43 25986.11 17789.95 19980.92 12094.86 7175.90 15795.57 14093.05 132
NCCC87.36 8486.87 9588.83 6792.32 10078.84 8586.58 11991.09 13878.77 10784.85 19890.89 17680.85 12195.29 5581.14 9395.32 14792.34 163
TAPA-MVS77.73 1285.71 11084.83 12988.37 8188.78 18779.72 7587.15 10793.50 6269.17 22085.80 18489.56 20580.76 12292.13 16773.21 18895.51 14193.25 126
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17181.41 18685.90 12285.60 24776.53 11683.07 18689.62 17973.02 17979.11 27983.51 29680.74 12390.24 22468.76 22489.29 26890.94 202
PC_three_145258.96 29890.06 9491.33 16080.66 12493.03 14575.78 15895.94 12692.48 156
VPA-MVSNet83.47 15984.73 13079.69 24090.29 16157.52 29181.30 22688.69 19276.29 12987.58 14694.44 6280.60 12587.20 26666.60 24096.82 9594.34 83
Regformer-385.06 12084.67 13586.22 11484.27 26673.43 13284.07 15485.26 24380.77 8288.62 12985.48 26780.56 12690.39 22181.99 8591.04 24494.85 65
ETV-MVS84.31 13783.91 15185.52 13088.58 18970.40 16984.50 15093.37 6478.76 10884.07 21478.72 33880.39 12795.13 6373.82 17792.98 21091.04 198
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 2989.70 6191.27 13378.20 11386.69 16592.28 13880.36 12895.06 6686.17 4296.49 10690.22 220
ANet_high83.17 16585.68 11575.65 28881.24 29745.26 35779.94 24292.91 8983.83 4391.33 7596.88 1080.25 12985.92 28668.89 22395.89 12995.76 42
EI-MVSNet-Vis-set85.12 11884.53 13886.88 9984.01 27372.76 13783.91 16185.18 24580.44 8388.75 12685.49 26680.08 13091.92 17582.02 8490.85 25395.97 38
DeepC-MVS_fast80.27 886.23 10085.65 11687.96 8891.30 13576.92 11087.19 10591.99 11270.56 20784.96 19490.69 18280.01 13195.14 6278.37 12395.78 13591.82 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12184.44 14086.85 10083.87 27672.52 14683.82 16385.15 24680.27 8788.75 12685.45 27079.95 13291.90 17681.92 8790.80 25496.13 33
MCST-MVS84.36 13583.93 15085.63 12891.59 12271.58 16283.52 17192.13 10861.82 28083.96 21589.75 20379.93 13393.46 12878.33 12594.34 17891.87 183
TSAR-MVS + MP.88.14 7587.82 8089.09 6595.72 2276.74 11392.49 2591.19 13667.85 23786.63 16694.84 4779.58 13495.96 1387.62 1494.50 17494.56 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10490.74 15272.63 14290.69 14882.76 23179.20 13594.80 7395.32 14792.27 169
CSCG86.26 9986.47 9985.60 12990.87 14974.26 12887.98 9391.85 11680.35 8589.54 11688.01 22779.09 13692.13 16775.51 16095.06 15890.41 218
Test By Simon79.09 136
PHI-MVS86.38 9785.81 11188.08 8588.44 19377.34 10489.35 7493.05 8273.15 17784.76 19987.70 23378.87 13894.18 9480.67 10196.29 11292.73 144
EG-PatchMatch MVS84.08 14584.11 14683.98 16192.22 10472.61 14382.20 21487.02 22272.63 18388.86 12391.02 17078.52 13991.11 19873.41 18291.09 24288.21 250
Effi-MVS+-dtu85.82 10883.38 15593.14 387.13 21991.15 287.70 9888.42 19574.57 15583.56 22185.65 26478.49 14094.21 9272.04 19592.88 21294.05 93
mvs-test184.55 13182.12 17591.84 2087.13 21989.54 485.05 13988.42 19574.57 15580.60 26082.98 30278.49 14093.98 10472.04 19589.77 26492.00 178
Vis-MVSNetpermissive86.86 8986.58 9887.72 8992.09 10777.43 10387.35 10292.09 10978.87 10584.27 21394.05 8278.35 14293.65 11580.54 10391.58 23892.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11892.86 8667.02 19682.55 19991.56 12383.08 5590.92 8191.82 14978.25 14393.99 10274.16 17198.35 2297.49 13
MSLP-MVS++85.00 12386.03 10781.90 20291.84 11771.56 16386.75 11693.02 8675.95 13887.12 15189.39 20677.98 14489.40 24377.46 14094.78 16784.75 289
API-MVS82.28 17482.61 16981.30 21186.29 23869.79 17188.71 8587.67 20978.42 11282.15 24084.15 29277.98 14491.59 18365.39 24992.75 21482.51 319
DP-MVS Recon84.05 14683.22 15786.52 10691.73 12075.27 12383.23 18392.40 10272.04 19282.04 24188.33 22377.91 14693.95 10566.17 24295.12 15690.34 219
UniMVSNet (Re)86.87 8886.98 9386.55 10593.11 7968.48 18683.80 16592.87 9080.37 8489.61 11291.81 15077.72 14794.18 9475.00 16798.53 1696.99 22
PCF-MVS74.62 1582.15 17780.92 19485.84 12489.43 17372.30 15080.53 23591.82 11857.36 31087.81 14389.92 20177.67 14893.63 11758.69 28995.08 15791.58 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10486.22 10385.34 13393.24 7664.56 21582.21 21290.46 15380.99 7888.42 13391.97 14377.56 14993.85 10872.46 19398.65 1297.61 10
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 13781.66 6391.25 3894.13 3688.89 1388.83 12594.26 7477.55 15095.86 2184.88 5595.87 13095.24 57
MVS_Test82.47 17283.22 15780.22 23182.62 28757.75 28982.54 20091.96 11471.16 20282.89 23092.52 13177.41 15190.50 21880.04 10687.84 28892.40 160
EIA-MVS82.19 17681.23 18985.10 13787.95 20169.17 18383.22 18493.33 6770.42 20878.58 28279.77 33577.29 15294.20 9371.51 19888.96 27391.93 182
xiu_mvs_v2_base77.19 23876.75 24078.52 25587.01 22561.30 25075.55 30287.12 22061.24 28674.45 31378.79 33777.20 15390.93 20364.62 25584.80 31783.32 308
DU-MVS86.80 9186.99 9286.21 11693.24 7667.02 19683.16 18592.21 10681.73 7090.92 8191.97 14377.20 15393.99 10274.16 17198.35 2297.61 10
Baseline_NR-MVSNet84.00 14885.90 10978.29 26191.47 13353.44 31882.29 20887.00 22579.06 10289.55 11495.72 2777.20 15386.14 28472.30 19498.51 1795.28 55
TinyColmap81.25 18982.34 17477.99 26685.33 25160.68 26182.32 20788.33 19871.26 19986.97 15892.22 14177.10 15686.98 27062.37 26595.17 15386.31 273
F-COLMAP84.97 12583.42 15489.63 5692.39 9683.40 4988.83 8291.92 11573.19 17680.18 27089.15 21277.04 15793.28 13465.82 24792.28 22392.21 172
114514_t83.10 16682.54 17184.77 14292.90 8369.10 18486.65 11790.62 15154.66 32181.46 25190.81 17976.98 15894.38 8672.62 19196.18 11890.82 206
xiu_mvs_v1_base_debu80.84 19580.14 20682.93 18488.31 19471.73 15879.53 24787.17 21465.43 25979.59 27382.73 30976.94 15990.14 23073.22 18388.33 27986.90 268
xiu_mvs_v1_base80.84 19580.14 20682.93 18488.31 19471.73 15879.53 24787.17 21465.43 25979.59 27382.73 30976.94 15990.14 23073.22 18388.33 27986.90 268
xiu_mvs_v1_base_debi80.84 19580.14 20682.93 18488.31 19471.73 15879.53 24787.17 21465.43 25979.59 27382.73 30976.94 15990.14 23073.22 18388.33 27986.90 268
pcd_1.5k_mvsjas6.41 3398.55 3420.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37376.94 1590.00 3740.00 3720.00 3720.00 370
PS-MVSNAJss88.31 7387.90 7989.56 5993.31 7477.96 9487.94 9591.97 11370.73 20694.19 2296.67 1176.94 15994.57 8283.07 7396.28 11396.15 32
PS-MVSNAJ77.04 24076.53 24278.56 25487.09 22461.40 24875.26 30487.13 21761.25 28574.38 31577.22 34676.94 15990.94 20264.63 25484.83 31683.35 307
MIMVSNet183.63 15584.59 13680.74 22294.06 5662.77 23482.72 19484.53 25677.57 12090.34 9095.92 2376.88 16585.83 28861.88 27097.42 7793.62 115
原ACMM184.60 14692.81 8974.01 12991.50 12562.59 27482.73 23290.67 18476.53 16694.25 8969.24 21795.69 13885.55 280
MSDG80.06 21479.99 21080.25 23083.91 27568.04 19077.51 27989.19 18577.65 11781.94 24283.45 29876.37 16786.31 28163.31 26186.59 29786.41 271
Gipumacopyleft84.44 13486.33 10078.78 25084.20 26973.57 13189.55 6790.44 15484.24 3984.38 20694.89 4576.35 16880.40 32176.14 15396.80 9682.36 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CS-MVS82.02 17982.63 16880.19 23284.80 25657.56 29082.39 20594.72 1871.24 20080.22 26984.89 28375.85 16994.56 8476.08 15493.49 19788.46 248
XXY-MVS74.44 26876.19 24569.21 31784.61 25852.43 32771.70 32477.18 29760.73 29180.60 26090.96 17475.44 17069.35 34656.13 30288.33 27985.86 278
FMVSNet184.55 13185.45 11981.85 20490.27 16261.05 25486.83 11288.27 20078.57 11089.66 10995.64 2975.43 17190.68 21369.09 22195.33 14693.82 103
CANet83.79 15282.85 16386.63 10386.17 24272.21 15383.76 16691.43 12777.24 12374.39 31487.45 23875.36 17295.42 5077.03 14692.83 21392.25 171
ab-mvs79.67 21580.56 19676.99 27488.48 19156.93 29584.70 14386.06 23268.95 22480.78 25993.08 10975.30 17384.62 29956.78 29890.90 25189.43 232
DELS-MVS81.44 18781.25 18782.03 20084.27 26662.87 23376.47 29392.49 10170.97 20381.64 25083.83 29375.03 17492.70 15374.29 16992.22 22690.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 22178.10 22681.07 21685.17 25260.22 26482.21 21290.57 15262.51 27575.32 30984.61 28774.99 17592.30 16459.48 28788.04 28590.68 210
CNLPA83.55 15783.10 16184.90 13989.34 17583.87 4784.54 14888.77 19079.09 10183.54 22288.66 22074.87 17681.73 31566.84 23892.29 22289.11 238
HQP_MVS87.75 8387.43 8688.70 7393.45 6976.42 11789.45 7293.61 5879.44 9786.55 16792.95 11574.84 17795.22 5980.78 9995.83 13194.46 77
plane_prior692.61 9076.54 11474.84 177
FC-MVSNet-test85.93 10787.05 9182.58 19392.25 10256.44 29985.75 13093.09 8077.33 12191.94 6694.65 5374.78 17993.41 13175.11 16698.58 1497.88 7
VDD-MVS84.23 14284.58 13783.20 17891.17 14265.16 21183.25 18184.97 25379.79 9187.18 15094.27 7174.77 18090.89 20669.24 21796.54 10493.55 120
BH-untuned80.96 19380.99 19280.84 22188.55 19068.23 18780.33 23888.46 19472.79 18186.55 16786.76 24874.72 18191.77 18161.79 27188.99 27282.52 318
VPNet80.25 20881.68 18175.94 28792.46 9547.98 34976.70 28881.67 27373.45 16784.87 19792.82 11974.66 18286.51 27861.66 27396.85 9293.33 121
tfpnnormal81.79 18482.95 16278.31 25988.93 18455.40 30580.83 23382.85 26476.81 12685.90 18394.14 7974.58 18386.51 27866.82 23995.68 13993.01 134
KD-MVS_self_test81.93 18383.14 16078.30 26084.75 25752.75 32280.37 23789.42 18370.24 21390.26 9293.39 10574.55 18486.77 27468.61 22796.64 9995.38 51
V4283.47 15983.37 15683.75 16783.16 28263.33 22681.31 22490.23 16669.51 21890.91 8390.81 17974.16 18592.29 16580.06 10590.22 26195.62 46
3Dnovator80.37 784.80 12684.71 13385.06 13886.36 23574.71 12588.77 8490.00 17275.65 14384.96 19493.17 10874.06 18691.19 19578.28 12691.09 24289.29 236
v1086.54 9487.10 8984.84 14088.16 19963.28 22786.64 11892.20 10775.42 14792.81 5094.50 5974.05 18794.06 10183.88 6596.28 11397.17 18
旧先验191.97 11071.77 15781.78 27291.84 14773.92 18893.65 19483.61 302
mvs_anonymous78.13 22878.76 21876.23 28679.24 32250.31 34378.69 26284.82 25461.60 28483.09 22992.82 11973.89 18987.01 26768.33 23086.41 29991.37 195
MAR-MVS80.24 20978.74 21984.73 14386.87 22978.18 9085.75 13087.81 20865.67 25877.84 28778.50 33973.79 19090.53 21761.59 27590.87 25285.49 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13685.39 12081.25 21295.13 3359.32 27285.42 13581.11 27586.41 2987.41 14896.21 1973.61 19190.61 21666.33 24196.85 9293.81 106
FIs85.35 11486.27 10282.60 19291.86 11657.31 29285.10 13893.05 8275.83 14091.02 8093.97 8673.57 19292.91 15073.97 17498.02 4097.58 12
v114484.54 13384.72 13284.00 16087.67 20862.55 23882.97 18990.93 14370.32 21189.80 10490.99 17173.50 19393.48 12781.69 8994.65 17295.97 38
diffmvs80.40 20480.48 19980.17 23379.02 32560.04 26577.54 27890.28 16566.65 24782.40 23587.33 24173.50 19387.35 26577.98 13489.62 26693.13 129
PAPM_NR83.23 16383.19 15983.33 17590.90 14865.98 20588.19 9190.78 14678.13 11580.87 25887.92 23173.49 19592.42 15870.07 21188.40 27891.60 191
v886.22 10186.83 9684.36 15187.82 20462.35 24286.42 12191.33 13176.78 12792.73 5194.48 6173.41 19693.72 11483.10 7295.41 14397.01 21
EI-MVSNet82.61 16982.42 17383.20 17883.25 28063.66 22283.50 17485.07 24776.06 13386.55 16785.10 27673.41 19690.25 22278.15 13290.67 25795.68 44
IterMVS-LS84.73 12784.98 12683.96 16287.35 21463.66 22283.25 18189.88 17476.06 13389.62 11092.37 13573.40 19892.52 15778.16 13094.77 16995.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419284.24 14184.41 14183.71 16887.59 21161.57 24782.95 19091.03 13967.82 23889.80 10490.49 18873.28 19993.51 12681.88 8894.89 16596.04 37
BH-RMVSNet80.53 20080.22 20481.49 21087.19 21866.21 20377.79 27486.23 23074.21 15983.69 21788.50 22173.25 20090.75 21063.18 26287.90 28687.52 260
PLCcopyleft73.85 1682.09 17880.31 20087.45 9390.86 15080.29 7185.88 12890.65 14968.17 23176.32 29786.33 25373.12 20192.61 15661.40 27690.02 26389.44 231
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 7880.37 7091.91 3493.11 7981.10 7795.32 1097.24 572.94 20294.85 7285.07 5297.78 5597.26 15
WR-MVS83.56 15684.40 14281.06 21793.43 7154.88 31078.67 26385.02 25081.24 7590.74 8591.56 15672.85 20391.08 19968.00 23198.04 3797.23 16
VNet79.31 21680.27 20176.44 28287.92 20253.95 31475.58 30184.35 25774.39 15882.23 23890.72 18172.84 20484.39 30160.38 28393.98 18690.97 201
QAPM82.59 17082.59 17082.58 19386.44 23066.69 20089.94 5890.36 15767.97 23484.94 19692.58 12872.71 20592.18 16670.63 20787.73 28988.85 245
v119284.57 13084.69 13484.21 15587.75 20662.88 23283.02 18891.43 12769.08 22289.98 9990.89 17672.70 20693.62 12082.41 8094.97 16296.13 33
OpenMVScopyleft76.72 1381.98 18282.00 17881.93 20184.42 26268.22 18888.50 8989.48 18166.92 24481.80 24791.86 14572.59 20790.16 22771.19 20091.25 24187.40 262
TSAR-MVS + GP.83.95 14982.69 16687.72 8989.27 17781.45 6483.72 16781.58 27474.73 15385.66 18586.06 25872.56 20892.69 15475.44 16295.21 15189.01 244
alignmvs83.94 15083.98 14983.80 16487.80 20567.88 19184.54 14891.42 12973.27 17588.41 13487.96 22872.33 20990.83 20876.02 15694.11 18392.69 148
HQP2-MVS72.10 210
HQP-MVS84.61 12984.06 14786.27 11291.19 13970.66 16784.77 14092.68 9773.30 17280.55 26390.17 19772.10 21094.61 8077.30 14394.47 17593.56 118
testgi72.36 28174.61 25765.59 33080.56 30942.82 36368.29 33573.35 32466.87 24581.84 24489.93 20072.08 21266.92 35446.05 34992.54 21987.01 267
v192192084.23 14284.37 14383.79 16587.64 21061.71 24682.91 19191.20 13567.94 23590.06 9490.34 19072.04 21393.59 12182.32 8294.91 16396.07 35
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2392.75 1793.90 4678.43 11189.16 12092.25 13972.03 21496.36 288.21 890.93 25092.98 135
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16881.93 17985.19 13482.08 28880.15 7285.53 13388.76 19168.01 23285.58 18787.75 23271.80 21586.85 27274.02 17393.87 18888.58 247
v124084.30 13884.51 13983.65 16987.65 20961.26 25182.85 19291.54 12467.94 23590.68 8690.65 18571.71 21693.64 11682.84 7794.78 16796.07 35
ambc82.98 18290.55 15864.86 21288.20 9089.15 18689.40 11793.96 8971.67 21791.38 19278.83 11996.55 10392.71 147
112180.86 19479.81 21184.02 15993.93 5978.70 8681.64 21980.18 28255.43 31883.67 21891.15 16571.29 21891.41 19067.95 23393.06 20781.96 324
新几何182.95 18393.96 5878.56 8880.24 28155.45 31783.93 21691.08 16771.19 21988.33 25665.84 24693.07 20681.95 325
v14882.31 17382.48 17281.81 20785.59 24859.66 26981.47 22286.02 23372.85 18088.05 13990.65 18570.73 22090.91 20575.15 16591.79 23394.87 63
v2v48284.09 14484.24 14583.62 17087.13 21961.40 24882.71 19589.71 17672.19 19089.55 11491.41 15970.70 22193.20 13681.02 9493.76 18996.25 31
UGNet82.78 16781.64 18286.21 11686.20 24176.24 12086.86 11085.68 23777.07 12473.76 31792.82 11969.64 22291.82 18069.04 22293.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 18581.59 18481.79 20880.86 30359.15 27678.61 26490.18 16868.36 22887.20 14987.11 24569.39 22391.62 18278.16 13094.43 17794.60 71
MG-MVS80.32 20780.94 19378.47 25788.18 19752.62 32582.29 20885.01 25172.01 19379.24 27892.54 13069.36 22493.36 13370.65 20689.19 27189.45 230
IS-MVSNet86.66 9386.82 9786.17 11892.05 10966.87 19891.21 3988.64 19386.30 3089.60 11392.59 12669.22 22594.91 7073.89 17597.89 5196.72 24
PVSNet_BlendedMVS78.80 22277.84 22881.65 20984.43 26063.41 22479.49 25090.44 15461.70 28375.43 30787.07 24669.11 22691.44 18760.68 28192.24 22490.11 224
PVSNet_Blended76.49 24875.40 25279.76 23784.43 26063.41 22475.14 30590.44 15457.36 31075.43 30778.30 34069.11 22691.44 18760.68 28187.70 29084.42 292
BH-w/o76.57 24676.07 24778.10 26486.88 22865.92 20677.63 27686.33 22965.69 25780.89 25779.95 33268.97 22890.74 21153.01 32385.25 30977.62 344
MVS73.21 27572.59 27875.06 29280.97 30060.81 26081.64 21985.92 23546.03 35571.68 32677.54 34268.47 22989.77 23755.70 30585.39 30674.60 349
miper_ehance_all_eth80.34 20680.04 20981.24 21479.82 31558.95 27877.66 27589.66 17765.75 25685.99 18285.11 27568.29 23091.42 18976.03 15592.03 22893.33 121
Anonymous20240521180.51 20181.19 19078.49 25688.48 19157.26 29376.63 28982.49 26681.21 7684.30 21192.24 14067.99 23186.24 28262.22 26695.13 15491.98 181
testdata79.54 24392.87 8472.34 14980.14 28359.91 29685.47 19091.75 15267.96 23285.24 29268.57 22992.18 22781.06 338
test_part187.15 8787.82 8085.15 13688.88 18563.04 23087.98 9394.85 1682.52 6193.61 3795.73 2567.51 23395.71 3180.48 10498.83 296.69 25
DPM-MVS80.10 21379.18 21582.88 18790.71 15469.74 17278.87 26090.84 14460.29 29475.64 30685.92 26167.28 23493.11 14271.24 19991.79 23385.77 279
PVSNet_Blended_VisFu81.55 18680.49 19884.70 14591.58 12573.24 13584.21 15291.67 12262.86 27380.94 25687.16 24367.27 23592.87 15169.82 21388.94 27487.99 254
MDA-MVSNet-bldmvs77.47 23576.90 23979.16 24779.03 32464.59 21366.58 34275.67 30773.15 17788.86 12388.99 21566.94 23681.23 31764.71 25288.22 28491.64 190
CL-MVSNet_self_test76.81 24377.38 23375.12 29186.90 22751.34 33473.20 31980.63 28068.30 23081.80 24788.40 22266.92 23780.90 31855.35 30994.90 16493.12 130
test22293.31 7476.54 11479.38 25177.79 29452.59 33182.36 23690.84 17866.83 23891.69 23581.25 333
TR-MVS76.77 24475.79 24879.72 23986.10 24465.79 20777.14 28283.02 26265.20 26481.40 25282.10 31366.30 23990.73 21255.57 30685.27 30882.65 314
OpenMVS_ROBcopyleft70.19 1777.77 23477.46 23178.71 25284.39 26361.15 25281.18 22882.52 26562.45 27783.34 22487.37 23966.20 24088.66 25364.69 25385.02 31186.32 272
EPP-MVSNet85.47 11285.04 12586.77 10291.52 13169.37 17691.63 3687.98 20681.51 7387.05 15691.83 14866.18 24195.29 5570.75 20496.89 9095.64 45
SixPastTwentyTwo87.20 8687.45 8586.45 10792.52 9369.19 18287.84 9788.05 20381.66 7194.64 1496.53 1465.94 24294.75 7483.02 7596.83 9495.41 50
PatchMatch-RL74.48 26673.22 27178.27 26287.70 20785.26 3475.92 29870.09 34264.34 26876.09 30081.25 32165.87 24378.07 32753.86 31783.82 32171.48 352
EPNet80.37 20578.41 22386.23 11376.75 33673.28 13387.18 10677.45 29676.24 13168.14 33788.93 21665.41 24493.85 10869.47 21596.12 12291.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS80.20 21079.00 21683.78 16688.17 19886.66 1781.31 22466.81 35269.64 21788.33 13690.19 19564.58 24583.63 30771.99 19790.03 26281.06 338
miper_enhance_ethall77.83 23176.93 23880.51 22676.15 34258.01 28675.47 30388.82 18958.05 30483.59 22080.69 32364.41 24691.20 19473.16 18992.03 22892.33 164
eth_miper_zixun_eth80.84 19580.22 20482.71 19081.41 29560.98 25777.81 27390.14 16967.31 24286.95 15987.24 24264.26 24792.31 16375.23 16491.61 23694.85 65
test20.0373.75 27174.59 25971.22 31081.11 29951.12 33870.15 33072.10 33370.42 20880.28 26891.50 15764.21 24874.72 33846.96 34794.58 17387.82 259
cascas76.29 25174.81 25680.72 22484.47 25962.94 23173.89 31487.34 21155.94 31575.16 31176.53 34963.97 24991.16 19665.00 25090.97 24988.06 252
TAMVS78.08 22976.36 24383.23 17790.62 15572.87 13679.08 25780.01 28461.72 28281.35 25386.92 24763.96 25088.78 25150.61 33193.01 20988.04 253
GBi-Net82.02 17982.07 17681.85 20486.38 23261.05 25486.83 11288.27 20072.43 18486.00 17995.64 2963.78 25190.68 21365.95 24393.34 19993.82 103
test182.02 17982.07 17681.85 20486.38 23261.05 25486.83 11288.27 20072.43 18486.00 17995.64 2963.78 25190.68 21365.95 24393.34 19993.82 103
FMVSNet281.31 18881.61 18380.41 22886.38 23258.75 28383.93 16086.58 22872.43 18487.65 14492.98 11263.78 25190.22 22566.86 23693.92 18792.27 169
USDC76.63 24576.73 24176.34 28483.46 27857.20 29480.02 24188.04 20452.14 33683.65 21991.25 16163.24 25486.65 27754.66 31494.11 18385.17 284
DIV-MVS_self_test80.43 20280.23 20281.02 21879.99 31359.25 27377.07 28487.02 22267.38 24086.19 17489.22 20963.09 25590.16 22776.32 15095.80 13393.66 111
cl____80.42 20380.23 20281.02 21879.99 31359.25 27377.07 28487.02 22267.37 24186.18 17689.21 21063.08 25690.16 22776.31 15195.80 13393.65 113
h-mvs3384.25 14082.76 16488.72 7291.82 11982.60 5784.00 15784.98 25271.27 19786.70 16390.55 18763.04 25793.92 10678.26 12794.20 18189.63 227
hse-mvs283.47 15981.81 18088.47 7791.03 14582.27 5882.61 19683.69 25871.27 19786.70 16386.05 25963.04 25792.41 15978.26 12793.62 19690.71 208
MVS_030478.17 22777.23 23580.99 22084.13 27269.07 18581.39 22380.81 27876.28 13067.53 34289.11 21362.87 25986.77 27460.90 28092.01 23187.13 265
new-patchmatchnet70.10 29673.37 27060.29 34381.23 29816.95 37359.54 35374.62 31262.93 27280.97 25587.93 23062.83 26071.90 34155.24 31095.01 16092.00 178
K. test v385.14 11784.73 13086.37 10891.13 14369.63 17585.45 13476.68 30184.06 4292.44 5696.99 862.03 26194.65 7780.58 10293.24 20294.83 67
lessismore_v085.95 12091.10 14470.99 16670.91 34091.79 6794.42 6561.76 26292.93 14879.52 11493.03 20893.93 97
131473.22 27472.56 28075.20 29080.41 31257.84 28781.64 21985.36 24051.68 33973.10 32076.65 34861.45 26385.19 29363.54 25879.21 34382.59 315
CANet_DTU77.81 23377.05 23680.09 23481.37 29659.90 26783.26 18088.29 19969.16 22167.83 34083.72 29460.93 26489.47 23969.22 21989.70 26590.88 204
pmmvs-eth3d78.42 22677.04 23782.57 19587.44 21374.41 12780.86 23279.67 28555.68 31684.69 20090.31 19260.91 26585.42 29162.20 26791.59 23787.88 257
UnsupCasMVSNet_eth71.63 28872.30 28269.62 31576.47 33952.70 32470.03 33180.97 27759.18 29779.36 27688.21 22560.50 26669.12 34758.33 29277.62 34887.04 266
IterMVS-SCA-FT80.64 19979.41 21384.34 15283.93 27469.66 17476.28 29581.09 27672.43 18486.47 17390.19 19560.46 26793.15 14177.45 14186.39 30090.22 220
SCA73.32 27272.57 27975.58 28981.62 29255.86 30278.89 25971.37 33961.73 28174.93 31283.42 29960.46 26787.01 26758.11 29482.63 33183.88 296
jason77.42 23675.75 24982.43 19887.10 22369.27 17877.99 27081.94 27151.47 34077.84 28785.07 27960.32 26989.00 24570.74 20589.27 27089.03 242
jason: jason.
1112_ss74.82 26473.74 26578.04 26589.57 17260.04 26576.49 29287.09 22154.31 32273.66 31879.80 33360.25 27086.76 27658.37 29084.15 32087.32 263
HY-MVS64.64 1873.03 27672.47 28174.71 29383.36 27954.19 31282.14 21581.96 27056.76 31469.57 33486.21 25760.03 27184.83 29849.58 33682.65 32985.11 285
Anonymous2023120671.38 28971.88 28469.88 31386.31 23654.37 31170.39 32974.62 31252.57 33276.73 29388.76 21759.94 27272.06 34044.35 35293.23 20383.23 310
IterMVS76.91 24176.34 24478.64 25380.91 30164.03 22076.30 29479.03 28964.88 26683.11 22789.16 21159.90 27384.46 30068.61 22785.15 31087.42 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 29770.44 29368.90 31873.76 35553.42 31958.99 35667.20 34858.42 30187.10 15385.39 27259.82 27467.32 35159.79 28583.50 32385.96 275
MDA-MVSNet_test_wron70.05 29870.44 29368.88 31973.84 35453.47 31758.93 35767.28 34758.43 30087.09 15485.40 27159.80 27567.25 35259.66 28683.54 32285.92 277
PMMVS61.65 32360.38 32965.47 33265.40 37069.26 17963.97 34761.73 36036.80 36660.11 36068.43 35859.42 27666.35 35648.97 33878.57 34560.81 360
CDS-MVSNet77.32 23775.40 25283.06 18089.00 18272.48 14777.90 27282.17 26960.81 28978.94 28083.49 29759.30 27788.76 25254.64 31592.37 22187.93 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 30369.68 29867.82 32479.42 31951.15 33767.82 33975.79 30554.15 32377.47 29285.36 27459.26 27870.64 34348.46 34079.35 34181.66 327
Anonymous2024052180.18 21181.25 18776.95 27583.15 28360.84 25982.46 20285.99 23468.76 22686.78 16093.73 10159.13 27977.44 32873.71 17897.55 6992.56 152
WTY-MVS67.91 30768.35 30566.58 32880.82 30548.12 34865.96 34372.60 32953.67 32671.20 32881.68 31858.97 28069.06 34848.57 33981.67 33282.55 316
cl2278.97 21978.21 22581.24 21477.74 32959.01 27777.46 28187.13 21765.79 25384.32 20885.10 27658.96 28190.88 20775.36 16392.03 22893.84 100
MVSFormer82.23 17581.57 18584.19 15785.54 24969.26 17991.98 3190.08 17071.54 19576.23 29885.07 27958.69 28294.27 8786.26 3888.77 27589.03 242
lupinMVS76.37 25074.46 26082.09 19985.54 24969.26 17976.79 28680.77 27950.68 34676.23 29882.82 30758.69 28288.94 24669.85 21288.77 27588.07 251
Test_1112_low_res73.90 27073.08 27276.35 28390.35 16055.95 30073.40 31886.17 23150.70 34573.14 31985.94 26058.31 28485.90 28756.51 30083.22 32487.20 264
test_yl78.71 22478.51 22179.32 24584.32 26458.84 28078.38 26585.33 24175.99 13682.49 23386.57 24958.01 28590.02 23562.74 26392.73 21589.10 239
DCV-MVSNet78.71 22478.51 22179.32 24584.32 26458.84 28078.38 26585.33 24175.99 13682.49 23386.57 24958.01 28590.02 23562.74 26392.73 21589.10 239
sss66.92 30967.26 30965.90 32977.23 33251.10 33964.79 34471.72 33752.12 33770.13 33280.18 33057.96 28765.36 35950.21 33281.01 33781.25 333
ppachtmachnet_test74.73 26574.00 26476.90 27780.71 30756.89 29771.53 32578.42 29158.24 30279.32 27782.92 30657.91 28884.26 30265.60 24891.36 24089.56 229
MVP-Stereo75.81 25473.51 26982.71 19089.35 17473.62 13080.06 23985.20 24460.30 29373.96 31687.94 22957.89 28989.45 24152.02 32674.87 35385.06 286
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 28670.06 29776.92 27686.39 23153.97 31376.62 29086.62 22753.44 32763.97 35584.73 28657.79 29092.34 16239.65 35981.33 33584.45 291
LFMVS80.15 21280.56 19678.89 24889.19 17955.93 30185.22 13773.78 32182.96 5684.28 21292.72 12357.38 29190.07 23463.80 25795.75 13690.68 210
Vis-MVSNet (Re-imp)77.82 23277.79 22977.92 26788.82 18651.29 33683.28 17971.97 33474.04 16082.23 23889.78 20257.38 29189.41 24257.22 29795.41 14393.05 132
CHOSEN 1792x268872.45 28070.56 29178.13 26390.02 17063.08 22968.72 33483.16 26142.99 36175.92 30285.46 26957.22 29385.18 29449.87 33581.67 33286.14 274
miper_lstm_enhance76.45 24976.10 24677.51 27176.72 33760.97 25864.69 34585.04 24963.98 26983.20 22688.22 22456.67 29478.79 32673.22 18393.12 20592.78 143
our_test_371.85 28571.59 28672.62 30480.71 30753.78 31569.72 33271.71 33858.80 29978.03 28480.51 32856.61 29578.84 32562.20 26786.04 30385.23 283
baseline173.26 27373.54 26872.43 30684.92 25447.79 35079.89 24374.00 31765.93 25178.81 28186.28 25656.36 29681.63 31656.63 29979.04 34487.87 258
pmmvs474.92 26272.98 27480.73 22384.95 25371.71 16176.23 29677.59 29552.83 33077.73 29086.38 25156.35 29784.97 29557.72 29687.05 29485.51 281
MVEpermissive40.22 2351.82 33450.47 33755.87 34662.66 37251.91 33031.61 36439.28 37340.65 36250.76 36874.98 35356.24 29844.67 36833.94 36564.11 36471.04 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet70.20 29468.80 30374.38 29580.91 30184.81 3959.12 35576.45 30355.06 31975.31 31082.36 31255.74 29954.82 36447.02 34587.24 29383.52 303
MS-PatchMatch70.93 29170.22 29573.06 30181.85 29162.50 23973.82 31577.90 29352.44 33375.92 30281.27 32055.67 30081.75 31455.37 30877.70 34774.94 348
DSMNet-mixed60.98 32861.61 32759.09 34572.88 36045.05 35874.70 30946.61 37226.20 36765.34 34890.32 19155.46 30163.12 36241.72 35681.30 33669.09 356
pmmvs570.73 29270.07 29672.72 30277.03 33552.73 32374.14 31175.65 30850.36 34872.17 32485.37 27355.42 30280.67 32052.86 32487.59 29184.77 288
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23675.84 34467.22 19381.21 22782.18 26850.78 34476.50 29487.66 23455.20 30382.99 30962.17 26990.64 26089.09 241
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet71.09 29071.59 28669.57 31687.23 21650.07 34478.91 25871.83 33560.20 29571.26 32791.76 15155.08 30476.09 33241.06 35787.02 29582.54 317
bset_n11_16_dypcd79.19 21777.97 22782.86 18885.81 24666.85 19975.02 30679.31 28666.07 25083.50 22383.37 30155.04 30592.10 17078.63 12194.99 16189.63 227
PVSNet_051.08 2256.10 33154.97 33659.48 34475.12 35053.28 32055.16 35861.89 35844.30 35859.16 36162.48 36354.22 30665.91 35835.40 36347.01 36659.25 362
EPNet_dtu72.87 27871.33 29077.49 27277.72 33060.55 26282.35 20675.79 30566.49 24858.39 36581.06 32253.68 30785.98 28553.55 31892.97 21185.95 276
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 33359.27 33344.74 34964.30 37112.32 37440.60 36249.79 37153.19 32865.06 35284.81 28453.60 30849.76 36632.68 36689.41 26772.15 351
HyFIR lowres test75.12 25972.66 27782.50 19691.44 13465.19 21072.47 32187.31 21246.79 35280.29 26684.30 29052.70 30992.10 17051.88 33086.73 29690.22 220
FMVSNet378.80 22278.55 22079.57 24282.89 28656.89 29781.76 21685.77 23669.04 22386.00 17990.44 18951.75 31090.09 23365.95 24393.34 19991.72 187
D2MVS76.84 24275.67 25180.34 22980.48 31162.16 24573.50 31684.80 25557.61 30882.24 23787.54 23651.31 31187.65 26270.40 21093.19 20491.23 197
AUN-MVS81.18 19078.78 21788.39 8090.93 14782.14 5982.51 20183.67 25964.69 26780.29 26685.91 26251.07 31292.38 16076.29 15293.63 19590.65 212
PVSNet58.17 2166.41 31465.63 31768.75 32081.96 28949.88 34562.19 35172.51 33151.03 34268.04 33875.34 35250.84 31374.77 33645.82 35082.96 32581.60 328
GA-MVS75.83 25374.61 25779.48 24481.87 29059.25 27373.42 31782.88 26368.68 22779.75 27281.80 31650.62 31489.46 24066.85 23785.64 30589.72 226
FPMVS72.29 28372.00 28373.14 30088.63 18885.00 3674.65 31067.39 34671.94 19477.80 28987.66 23450.48 31575.83 33449.95 33379.51 33958.58 363
MVS-HIRNet61.16 32662.92 32355.87 34679.09 32335.34 36871.83 32357.98 36646.56 35359.05 36291.14 16649.95 31676.43 33138.74 36071.92 35755.84 364
CVMVSNet72.62 27971.41 28976.28 28583.25 28060.34 26383.50 17479.02 29037.77 36576.33 29685.10 27649.60 31787.41 26470.54 20877.54 34981.08 336
RPMNet78.88 22078.28 22480.68 22579.58 31662.64 23682.58 19794.16 3174.80 15275.72 30492.59 12648.69 31895.56 3773.48 18182.91 32783.85 299
tpmrst66.28 31566.69 31365.05 33372.82 36139.33 36478.20 26870.69 34153.16 32967.88 33980.36 32948.18 31974.75 33758.13 29370.79 35881.08 336
CR-MVSNet74.00 26973.04 27376.85 27979.58 31662.64 23682.58 19776.90 29850.50 34775.72 30492.38 13248.07 32084.07 30368.72 22682.91 32783.85 299
Patchmtry76.56 24777.46 23173.83 29779.37 32146.60 35482.41 20476.90 29873.81 16385.56 18892.38 13248.07 32083.98 30463.36 26095.31 14990.92 203
ADS-MVSNet265.87 31763.64 32272.55 30573.16 35856.92 29667.10 34074.81 31149.74 34966.04 34582.97 30346.71 32277.26 32942.29 35469.96 36083.46 304
ADS-MVSNet61.90 32262.19 32561.03 34273.16 35836.42 36767.10 34061.75 35949.74 34966.04 34582.97 30346.71 32263.21 36142.29 35469.96 36083.46 304
PatchmatchNetpermissive69.71 30168.83 30272.33 30777.66 33153.60 31679.29 25269.99 34357.66 30772.53 32282.93 30546.45 32480.08 32360.91 27972.09 35683.31 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 28271.55 28874.70 29483.48 27751.60 33375.02 30673.71 32270.14 21478.56 28380.57 32646.20 32588.20 25846.99 34689.29 26884.32 293
sam_mvs146.11 32683.88 296
tfpn200view974.86 26374.23 26276.74 28086.24 23952.12 32879.24 25473.87 31973.34 17081.82 24584.60 28846.02 32788.80 24851.98 32790.99 24689.31 234
thres40075.14 25774.23 26277.86 26886.24 23952.12 32879.24 25473.87 31973.34 17081.82 24584.60 28846.02 32788.80 24851.98 32790.99 24692.66 149
baseline269.77 30066.89 31078.41 25879.51 31858.09 28576.23 29669.57 34457.50 30964.82 35377.45 34446.02 32788.44 25453.08 32077.83 34688.70 246
patchmatchnet-post81.71 31745.93 33087.01 267
sam_mvs45.92 331
Patchmatch-RL test74.48 26673.68 26676.89 27884.83 25566.54 20172.29 32269.16 34557.70 30686.76 16186.33 25345.79 33282.59 31069.63 21490.65 25981.54 329
thres100view90075.45 25575.05 25576.66 28187.27 21551.88 33181.07 22973.26 32575.68 14283.25 22586.37 25245.54 33388.80 24851.98 32790.99 24689.31 234
thres600view775.97 25275.35 25477.85 26987.01 22551.84 33280.45 23673.26 32575.20 14983.10 22886.31 25545.54 33389.05 24455.03 31292.24 22492.66 149
tpm cat166.76 31265.21 31871.42 30977.09 33450.62 34278.01 26973.68 32344.89 35768.64 33579.00 33645.51 33582.42 31349.91 33470.15 35981.23 335
test_post3.10 37045.43 33677.22 330
MDTV_nov1_ep1368.29 30678.03 32843.87 36074.12 31272.22 33252.17 33467.02 34385.54 26545.36 33780.85 31955.73 30384.42 319
tpmvs70.16 29569.56 29971.96 30874.71 35348.13 34779.63 24575.45 31065.02 26570.26 33181.88 31545.34 33885.68 28958.34 29175.39 35282.08 323
MDTV_nov1_ep13_2view27.60 37270.76 32746.47 35461.27 35745.20 33949.18 33783.75 301
test_post178.85 2613.13 36945.19 34080.13 32258.11 294
CostFormer69.98 29968.68 30473.87 29677.14 33350.72 34179.26 25374.51 31451.94 33870.97 33084.75 28545.16 34187.49 26355.16 31179.23 34283.40 306
RRT_MVS83.25 16281.08 19189.74 5380.55 31079.32 8086.41 12286.69 22672.33 18887.00 15791.08 16744.98 34295.55 4084.47 6196.24 11794.36 82
Patchmatch-test65.91 31667.38 30861.48 34175.51 34643.21 36268.84 33363.79 35662.48 27672.80 32183.42 29944.89 34359.52 36348.27 34286.45 29881.70 326
EU-MVSNet75.12 25974.43 26177.18 27383.11 28459.48 27185.71 13282.43 26739.76 36485.64 18688.76 21744.71 34487.88 26073.86 17685.88 30484.16 295
PatchT70.52 29372.76 27663.79 33579.38 32033.53 36977.63 27665.37 35473.61 16571.77 32592.79 12244.38 34575.65 33564.53 25685.37 30782.18 322
test-LLR67.21 30866.74 31268.63 32176.45 34055.21 30767.89 33667.14 34962.43 27865.08 35072.39 35443.41 34669.37 34461.00 27784.89 31481.31 331
test0.0.03 164.66 31964.36 32065.57 33175.03 35146.89 35364.69 34561.58 36162.43 27871.18 32977.54 34243.41 34668.47 34940.75 35882.65 32981.35 330
MVSTER77.09 23975.70 25081.25 21275.27 34961.08 25377.49 28085.07 24760.78 29086.55 16788.68 21943.14 34890.25 22273.69 17990.67 25792.42 158
tpm67.95 30668.08 30767.55 32578.74 32743.53 36175.60 30067.10 35154.92 32072.23 32388.10 22642.87 34975.97 33352.21 32580.95 33883.15 311
tpm268.45 30566.83 31173.30 29978.93 32648.50 34679.76 24471.76 33647.50 35169.92 33383.60 29542.07 35088.40 25548.44 34179.51 33983.01 313
EMVS61.10 32760.81 32861.99 33865.96 36955.86 30253.10 36058.97 36467.06 24356.89 36663.33 36240.98 35167.03 35354.79 31386.18 30263.08 358
new_pmnet55.69 33257.66 33449.76 34875.47 34730.59 37059.56 35251.45 37043.62 36062.49 35675.48 35140.96 35249.15 36737.39 36272.52 35569.55 355
E-PMN61.59 32461.62 32661.49 34066.81 36855.40 30553.77 35960.34 36266.80 24658.90 36365.50 36140.48 35366.12 35755.72 30486.25 30162.95 359
EPMVS62.47 32062.63 32462.01 33770.63 36538.74 36574.76 30852.86 36953.91 32567.71 34180.01 33139.40 35466.60 35555.54 30768.81 36380.68 340
tmp_tt20.25 33724.50 3407.49 3524.47 3758.70 37534.17 36325.16 3751.00 37032.43 37018.49 36739.37 3559.21 37121.64 36843.75 3674.57 367
thisisatest053079.07 21877.33 23484.26 15487.13 21964.58 21483.66 16975.95 30468.86 22585.22 19187.36 24038.10 35693.57 12475.47 16194.28 17994.62 69
ET-MVSNet_ETH3D75.28 25672.77 27582.81 18983.03 28568.11 18977.09 28376.51 30260.67 29277.60 29180.52 32738.04 35791.15 19770.78 20390.68 25689.17 237
tttt051781.07 19179.58 21285.52 13088.99 18366.45 20287.03 10975.51 30973.76 16488.32 13790.20 19437.96 35894.16 9979.36 11695.13 15495.93 41
thisisatest051573.00 27770.52 29280.46 22781.45 29459.90 26773.16 32074.31 31657.86 30576.08 30177.78 34137.60 35992.12 16965.00 25091.45 23989.35 233
FMVSNet572.10 28471.69 28573.32 29881.57 29353.02 32176.77 28778.37 29263.31 27076.37 29591.85 14636.68 36078.98 32447.87 34392.45 22087.95 255
dp60.70 32960.29 33161.92 33972.04 36338.67 36670.83 32664.08 35551.28 34160.75 35877.28 34536.59 36171.58 34247.41 34462.34 36575.52 347
CHOSEN 280x42059.08 33056.52 33566.76 32776.51 33864.39 21749.62 36159.00 36343.86 35955.66 36768.41 35935.55 36268.21 35043.25 35376.78 35167.69 357
RRT_test8_iter0578.08 22977.52 23079.75 23880.84 30452.54 32680.61 23488.96 18867.77 23984.62 20189.29 20833.89 36392.10 17077.59 13894.15 18294.62 69
IB-MVS62.13 1971.64 28768.97 30179.66 24180.80 30662.26 24473.94 31376.90 29863.27 27168.63 33676.79 34733.83 36491.84 17959.28 28887.26 29284.88 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 30266.64 31477.70 27073.19 35771.24 16475.67 29965.56 35370.42 20865.18 34992.97 11433.64 36583.06 30853.52 31969.61 36278.79 343
DWT-MVSNet_test66.43 31364.37 31972.63 30374.86 35250.86 34076.52 29172.74 32854.06 32465.50 34768.30 36032.13 36684.84 29761.63 27473.59 35482.19 321
DeepMVS_CXcopyleft24.13 35132.95 37329.49 37121.63 37612.07 36837.95 36945.07 36630.84 36719.21 37017.94 36933.06 36923.69 366
gg-mvs-nofinetune68.96 30469.11 30068.52 32376.12 34345.32 35683.59 17055.88 36786.68 2664.62 35497.01 730.36 36883.97 30544.78 35182.94 32676.26 346
GG-mvs-BLEND67.16 32673.36 35646.54 35584.15 15355.04 36858.64 36461.95 36429.93 36983.87 30638.71 36176.92 35071.07 353
test_method30.46 33529.60 33833.06 35017.99 3743.84 37613.62 36573.92 3182.79 36918.29 37153.41 36528.53 37043.25 36922.56 36735.27 36852.11 365
test-mter65.00 31863.79 32168.63 32176.45 34055.21 30767.89 33667.14 34950.98 34365.08 35072.39 35428.27 37169.37 34461.00 27784.89 31481.31 331
TESTMET0.1,161.29 32560.32 33064.19 33472.06 36251.30 33567.89 33662.09 35745.27 35660.65 35969.01 35727.93 37264.74 36056.31 30181.65 33476.53 345
pmmvs362.47 32060.02 33269.80 31471.58 36464.00 22170.52 32858.44 36539.77 36366.05 34475.84 35027.10 37372.28 33946.15 34884.77 31873.11 350
KD-MVS_2432*160066.87 31065.81 31570.04 31167.50 36647.49 35162.56 34979.16 28761.21 28777.98 28580.61 32425.29 37482.48 31153.02 32184.92 31280.16 341
miper_refine_blended66.87 31065.81 31570.04 31167.50 36647.49 35162.56 34979.16 28761.21 28777.98 28580.61 32425.29 37482.48 31153.02 32184.92 31280.16 341
test1236.27 3408.08 3430.84 3531.11 3770.57 37762.90 3480.82 3770.54 3711.07 3732.75 3721.26 3760.30 3721.04 3701.26 3711.66 368
testmvs5.91 3417.65 3440.72 3541.20 3760.37 37859.14 3540.67 3780.49 3721.11 3722.76 3710.94 3770.24 3731.02 3711.47 3701.55 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re6.65 3388.87 3410.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37479.80 3330.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12877.99 9291.01 14096.05 887.45 1998.17 3392.40 160
No_MVS88.81 6891.55 12877.99 9291.01 14096.05 887.45 1998.17 3392.40 160
eth-test20.00 378
eth-test0.00 378
IU-MVS94.18 4972.64 14090.82 14556.98 31289.67 10885.78 4797.92 4893.28 123
save fliter93.75 6377.44 10186.31 12389.72 17570.80 204
test_0728_SECOND86.79 10194.25 4872.45 14890.54 4594.10 3895.88 1686.42 3497.97 4592.02 177
GSMVS83.88 296
test_part293.86 6177.77 9692.84 48
MTGPAbinary91.81 119
MTMP90.66 4233.14 374
gm-plane-assit75.42 34844.97 35952.17 33472.36 35687.90 25954.10 316
test9_res80.83 9896.45 10890.57 213
agg_prior279.68 11096.16 11990.22 220
agg_prior91.58 12577.69 9790.30 16184.32 20893.18 137
test_prior478.97 8384.59 145
test_prior86.32 10990.59 15671.99 15592.85 9194.17 9692.80 141
旧先验281.73 21756.88 31386.54 17284.90 29672.81 190
新几何281.72 218
无先验82.81 19385.62 23858.09 30391.41 19067.95 23384.48 290
原ACMM282.26 211
testdata286.43 28063.52 259
testdata179.62 24673.95 162
plane_prior793.45 6977.31 105
plane_prior593.61 5895.22 5980.78 9995.83 13194.46 77
plane_prior492.95 115
plane_prior376.85 11277.79 11686.55 167
plane_prior289.45 7279.44 97
plane_prior192.83 88
plane_prior76.42 11787.15 10775.94 13995.03 159
n20.00 379
nn0.00 379
door-mid74.45 315
test1191.46 126
door72.57 330
HQP5-MVS70.66 167
HQP-NCC91.19 13984.77 14073.30 17280.55 263
ACMP_Plane91.19 13984.77 14073.30 17280.55 263
BP-MVS77.30 143
HQP4-MVS80.56 26294.61 8093.56 118
HQP3-MVS92.68 9794.47 175
NP-MVS91.95 11174.55 12690.17 197
ACMMP++_ref95.74 137
ACMMP++97.35 78