This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6385.72 3196.79 195.51 688.86 1395.63 796.99 884.81 6993.16 13491.10 197.53 7196.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss90.81 2991.08 3589.99 5195.97 1379.88 7288.13 8994.51 1875.79 13792.94 4194.96 4388.36 2895.01 6390.70 298.40 2095.09 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 3191.07 3789.42 6095.93 1579.54 7789.95 5493.68 5177.65 11391.97 6294.89 4588.38 2795.45 4589.27 397.87 5093.27 123
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2083.05 5292.18 2694.22 2480.14 8591.29 7393.97 8487.93 3995.87 1588.65 497.96 4594.12 91
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1788.94 7691.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1792.02 2891.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2584.67 4193.51 694.85 1482.88 5491.77 6593.94 9190.55 1395.73 2788.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS89.08 6488.16 7591.83 2195.76 1786.14 2292.75 1593.90 4178.43 10789.16 11692.25 13772.03 20996.36 288.21 890.93 24492.98 134
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS_fast92.50 592.54 692.37 695.93 1585.81 3092.99 1194.23 2385.21 3192.51 5195.13 4090.65 1095.34 4988.06 998.15 3395.95 40
SMA-MVScopyleft90.31 3890.48 4889.83 5295.31 3079.52 7890.98 3993.24 7175.37 14492.84 4595.28 3585.58 6596.09 787.92 1097.76 5493.88 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS91.30 2191.39 2591.02 3395.43 2884.66 4292.58 2093.29 6881.99 6391.47 6893.96 8788.35 2995.56 3487.74 1197.74 5692.85 138
ACMMPR91.49 1791.35 2891.92 1695.74 1985.88 2792.58 2093.25 7081.99 6391.40 7094.17 7587.51 4395.87 1587.74 1197.76 5493.99 94
anonymousdsp89.73 5288.88 6992.27 989.82 16686.67 1590.51 4590.20 16069.87 21195.06 1096.14 2184.28 7393.07 13987.68 1396.34 10997.09 19
TSAR-MVS + MP.88.14 7487.82 7889.09 6595.72 2176.74 11092.49 2391.19 13167.85 23286.63 16294.84 4779.58 13095.96 1187.62 1494.50 16994.56 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 5980.97 6691.49 3593.48 5882.82 5592.60 5093.97 8488.19 3296.29 487.61 1598.20 3294.39 81
Skip Steuart: Steuart Systems R&D Blog.
region2R91.44 2091.30 3291.87 1995.75 1885.90 2692.63 1993.30 6781.91 6590.88 8194.21 7487.75 4095.87 1587.60 1697.71 5893.83 101
APDe-MVS91.22 2491.92 1389.14 6492.97 8078.04 9092.84 1494.14 3283.33 4893.90 2495.73 2588.77 2696.41 187.60 1697.98 4292.98 134
abl_693.02 493.16 492.60 494.73 4288.99 793.26 1094.19 2789.11 1194.43 1595.27 3691.86 395.09 6087.54 1898.02 3893.71 108
test_0728_THIRD85.33 3093.75 3094.65 5387.44 4495.78 2487.41 1998.21 3092.98 134
XVS91.54 1591.36 2692.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9394.03 8186.57 5595.80 2187.35 2097.62 6294.20 86
X-MVStestdata85.04 12082.70 16392.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9316.05 36386.57 5595.80 2187.35 2097.62 6294.20 86
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2685.91 2593.35 994.16 2882.52 5892.39 5494.14 7789.15 2395.62 3187.35 2098.24 2894.56 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1491.58 2191.96 1495.29 3187.62 1293.38 793.36 6083.16 5091.06 7694.00 8388.26 3195.71 2887.28 2398.39 2192.55 152
mPP-MVS91.69 1391.47 2492.37 696.04 1288.48 1092.72 1692.60 9483.09 5191.54 6794.25 7387.67 4295.51 4187.21 2498.11 3493.12 129
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6188.83 2495.51 4187.16 2597.60 6492.73 143
RE-MVS-def92.61 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6190.64 1187.16 2597.60 6492.73 143
test117292.40 792.41 792.37 694.68 4389.04 691.98 2993.62 5290.14 1093.63 3594.16 7688.83 2495.51 4187.11 2797.54 7092.54 153
GST-MVS90.96 2891.01 3890.82 3895.45 2782.73 5591.75 3393.74 4780.98 7691.38 7193.80 9487.20 4795.80 2187.10 2897.69 5993.93 97
SR-MVS92.23 892.34 991.91 1794.89 3887.85 1192.51 2293.87 4488.20 2093.24 3894.02 8290.15 1795.67 3086.82 2997.34 7792.19 168
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 7885.17 3492.47 2495.05 1387.65 2393.21 3994.39 6790.09 1895.08 6186.67 3097.60 6494.18 88
DVP-MVS90.06 4291.32 3086.29 10794.16 5172.56 13990.54 4391.01 13583.61 4493.75 3094.65 5389.76 1995.78 2486.42 3197.97 4390.55 210
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 9794.25 4772.45 14390.54 4394.10 3495.88 1486.42 3197.97 4392.02 172
PGM-MVS91.20 2590.95 4191.93 1595.67 2285.85 2890.00 5193.90 4180.32 8291.74 6694.41 6488.17 3395.98 986.37 3397.99 4093.96 96
MP-MVScopyleft91.14 2790.91 4291.83 2196.18 1186.88 1492.20 2593.03 8082.59 5788.52 12794.37 6886.74 5295.41 4786.32 3498.21 3093.19 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSFormer82.23 17381.57 18284.19 15385.54 24369.26 17391.98 2990.08 16371.54 19176.23 29285.07 27558.69 27794.27 8286.26 3588.77 26989.03 237
test_djsdf89.62 5389.01 6591.45 2592.36 9582.98 5391.98 2990.08 16371.54 19194.28 2096.54 1381.57 11094.27 8286.26 3596.49 10497.09 19
v7n90.13 4090.96 4087.65 8991.95 10971.06 15989.99 5393.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 3797.63 6197.82 8
SD-MVS88.96 6689.88 5286.22 11091.63 11977.07 10689.82 5793.77 4678.90 10092.88 4292.29 13586.11 6190.22 21986.24 3897.24 8091.36 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6788.45 7490.38 4594.92 3685.85 2889.70 5891.27 12878.20 10986.69 16192.28 13680.36 12495.06 6286.17 3996.49 10490.22 215
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4496.29 1688.16 3494.17 9186.07 4098.48 1897.22 17
SED-MVS90.46 3791.64 1986.93 9494.18 4872.65 13490.47 4693.69 4983.77 4194.11 2294.27 6990.28 1595.84 1986.03 4197.92 4692.29 162
test_241102_TWO93.71 4883.77 4193.49 3794.27 6989.27 2295.84 1986.03 4197.82 5192.04 171
UA-Net91.49 1791.53 2291.39 2694.98 3582.95 5493.52 592.79 8988.22 1988.53 12697.64 283.45 8194.55 8086.02 4398.60 1396.67 26
IU-MVS94.18 4872.64 13690.82 13856.98 30689.67 10485.78 4497.92 4693.28 122
xxxxxxxxxxxxxcwj89.04 6589.13 6388.79 6893.75 6177.44 9886.31 12095.27 1070.80 19992.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
SF-MVS90.27 3990.80 4488.68 7292.86 8477.09 10591.19 3895.74 381.38 7192.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4081.69 5990.00 5194.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
LGP-MVS_train90.82 3894.75 4081.69 5994.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3295.54 397.36 196.97 199.04 199.05 196.61 195.92 1285.07 4999.27 199.54 1
OurMVSNet-221017-090.01 4589.74 5490.83 3793.16 7680.37 6991.91 3293.11 7481.10 7495.32 997.24 572.94 19794.85 6885.07 4997.78 5397.26 15
ACMM79.39 990.65 3190.99 3989.63 5695.03 3483.53 4789.62 6393.35 6179.20 9693.83 2793.60 10190.81 892.96 14085.02 5198.45 1992.41 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
#test#90.49 3690.31 5091.02 3395.43 2884.66 4290.65 4193.29 6877.00 12091.47 6893.96 8788.35 2995.56 3484.88 5297.74 5692.85 138
3Dnovator+83.92 289.97 4889.66 5590.92 3691.27 13281.66 6291.25 3694.13 3388.89 1288.83 12194.26 7277.55 14695.86 1884.88 5295.87 12595.24 57
OPM-MVS89.80 5089.97 5189.27 6294.76 3979.86 7386.76 11292.78 9078.78 10292.51 5193.64 10088.13 3593.84 10584.83 5497.55 6794.10 92
CNVR-MVS87.81 8087.68 8088.21 8292.87 8277.30 10385.25 13391.23 12977.31 11787.07 15191.47 15682.94 8694.71 7184.67 5596.27 11392.62 150
XVG-OURS-SEG-HR89.59 5489.37 6090.28 4794.47 4485.95 2486.84 10893.91 4080.07 8686.75 15893.26 10493.64 290.93 19784.60 5690.75 24993.97 95
DPE-MVScopyleft90.53 3591.08 3588.88 6693.38 7078.65 8689.15 7394.05 3584.68 3593.90 2494.11 7988.13 3596.30 384.51 5797.81 5291.70 183
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
RRT_MVS83.25 16081.08 18889.74 5380.55 30379.32 7986.41 11986.69 21972.33 18487.00 15391.08 16444.98 33795.55 3784.47 5896.24 11494.36 82
mvs_tets89.78 5189.27 6291.30 2893.51 6684.79 3989.89 5690.63 14370.00 21094.55 1496.67 1187.94 3893.59 11684.27 5995.97 12195.52 48
DeepC-MVS82.31 489.15 6289.08 6489.37 6193.64 6579.07 8188.54 8594.20 2573.53 16289.71 10294.82 4885.09 6695.77 2684.17 6098.03 3793.26 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jajsoiax89.41 5788.81 7191.19 3293.38 7084.72 4089.70 5890.29 15769.27 21494.39 1696.38 1586.02 6393.52 12083.96 6195.92 12395.34 52
v1086.54 9287.10 8784.84 13688.16 19363.28 22186.64 11592.20 10275.42 14392.81 4794.50 5774.05 18294.06 9683.88 6296.28 11197.17 18
XVG-OURS89.18 6188.83 7090.23 4894.28 4686.11 2385.91 12393.60 5580.16 8489.13 11793.44 10283.82 7690.98 19583.86 6395.30 14593.60 115
Regformer-486.41 9485.71 11288.52 7384.27 25977.57 9684.07 15188.00 19882.82 5589.84 9985.48 26382.06 10092.77 14683.83 6491.04 23895.22 60
9.1489.29 6191.84 11588.80 8095.32 975.14 14691.07 7592.89 11587.27 4593.78 10783.69 6597.55 67
Regformer-286.74 9086.08 10488.73 6984.18 26379.20 8083.52 16889.33 17783.33 4889.92 9785.07 27583.23 8493.16 13483.39 6692.72 21193.83 101
ETH3D-3000-0.188.85 6888.96 6888.52 7391.94 11177.27 10488.71 8295.26 1176.08 12890.66 8492.69 12284.48 7293.83 10683.38 6797.48 7494.47 76
ACMH76.49 1489.34 5991.14 3483.96 15792.50 9270.36 16489.55 6493.84 4581.89 6694.70 1295.44 3390.69 988.31 25183.33 6898.30 2693.20 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v886.22 9986.83 9484.36 14787.82 19762.35 23686.42 11891.33 12676.78 12292.73 4894.48 5973.41 19193.72 10983.10 6995.41 13897.01 21
PS-MVSNAJss88.31 7287.90 7789.56 5993.31 7277.96 9187.94 9291.97 10870.73 20194.19 2196.67 1176.94 15594.57 7883.07 7096.28 11196.15 32
CPTT-MVS89.39 5888.98 6790.63 4195.09 3386.95 1392.09 2792.30 10079.74 8887.50 14392.38 13081.42 11293.28 12983.07 7097.24 8091.67 184
SixPastTwentyTwo87.20 8487.45 8386.45 10392.52 9169.19 17687.84 9488.05 19681.66 6894.64 1396.53 1465.94 23794.75 7083.02 7296.83 9295.41 50
ACMP79.16 1090.54 3490.60 4790.35 4694.36 4580.98 6589.16 7294.05 3579.03 9992.87 4393.74 9890.60 1295.21 5782.87 7398.76 494.87 63
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124084.30 13684.51 13783.65 16587.65 20261.26 24582.85 18991.54 11967.94 23090.68 8390.65 18271.71 21193.64 11182.84 7494.78 16296.07 35
XVG-ACMP-BASELINE89.98 4689.84 5390.41 4494.91 3784.50 4489.49 6893.98 3779.68 8992.09 5893.89 9283.80 7793.10 13882.67 7598.04 3593.64 113
v119284.57 12884.69 13284.21 15187.75 19962.88 22683.02 18591.43 12269.08 21789.98 9590.89 17372.70 20193.62 11582.41 7694.97 15796.13 33
Regformer-186.00 10285.50 11687.49 9084.18 26376.90 10883.52 16887.94 20082.18 6289.19 11585.07 27582.28 9691.89 17182.40 7792.72 21193.69 109
v192192084.23 14084.37 14183.79 16187.64 20361.71 24082.91 18891.20 13067.94 23090.06 9190.34 18772.04 20893.59 11682.32 7894.91 15896.07 35
APD-MVScopyleft89.54 5589.63 5689.26 6392.57 8981.34 6490.19 4993.08 7680.87 7791.13 7493.19 10586.22 6095.97 1082.23 7997.18 8290.45 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-Vis-set85.12 11684.53 13686.88 9584.01 26672.76 13383.91 15885.18 23880.44 7988.75 12285.49 26280.08 12691.92 16982.02 8090.85 24795.97 38
ZD-MVS92.22 10280.48 6891.85 11171.22 19690.38 8692.98 11086.06 6296.11 681.99 8196.75 95
Regformer-385.06 11984.67 13386.22 11084.27 25973.43 12984.07 15185.26 23680.77 7888.62 12585.48 26380.56 12290.39 21581.99 8191.04 23894.85 65
EI-MVSNet-UG-set85.04 12084.44 13886.85 9683.87 26972.52 14183.82 16085.15 23980.27 8388.75 12285.45 26679.95 12891.90 17081.92 8390.80 24896.13 33
v14419284.24 13984.41 13983.71 16487.59 20461.57 24182.95 18791.03 13467.82 23389.80 10090.49 18573.28 19493.51 12181.88 8494.89 16096.04 37
v114484.54 13184.72 13084.00 15587.67 20162.55 23282.97 18690.93 13670.32 20689.80 10090.99 16873.50 18893.48 12281.69 8594.65 16795.97 38
ETH3D cwj APD-0.1687.83 7987.62 8188.47 7591.21 13378.20 8887.26 10194.54 1772.05 18788.89 11892.31 13483.86 7594.24 8581.59 8696.87 8992.97 137
testtj89.51 5689.48 5989.59 5892.26 9980.80 6790.14 5093.54 5683.37 4790.57 8592.55 12784.99 6796.15 581.26 8796.61 9991.83 179
train_agg85.98 10485.28 12088.07 8492.34 9679.70 7583.94 15590.32 15165.79 24884.49 19990.97 16981.93 10493.63 11281.21 8896.54 10290.88 199
NCCC87.36 8286.87 9388.83 6792.32 9878.84 8486.58 11691.09 13378.77 10384.85 19390.89 17380.85 11895.29 5081.14 8995.32 14292.34 158
agg_prior185.72 10785.20 12187.28 9391.58 12377.69 9483.69 16590.30 15466.29 24484.32 20391.07 16682.13 9893.18 13281.02 9096.36 10890.98 195
v2v48284.09 14284.24 14383.62 16687.13 21261.40 24282.71 19289.71 16972.19 18689.55 11091.41 15770.70 21693.20 13181.02 9093.76 18596.25 31
WR-MVS_H89.91 4991.31 3185.71 12396.32 1062.39 23489.54 6693.31 6590.21 995.57 895.66 2881.42 11295.90 1380.94 9298.80 398.84 5
LS3D90.60 3390.34 4991.38 2789.03 17584.23 4593.58 494.68 1690.65 690.33 8893.95 9084.50 7195.37 4880.87 9395.50 13794.53 75
test9_res80.83 9496.45 10690.57 208
HQP_MVS87.75 8187.43 8488.70 7193.45 6776.42 11489.45 6993.61 5379.44 9386.55 16392.95 11374.84 17295.22 5580.78 9595.83 12694.46 77
plane_prior593.61 5395.22 5580.78 9595.83 12694.46 77
PHI-MVS86.38 9585.81 10988.08 8388.44 18777.34 10189.35 7193.05 7773.15 17384.76 19487.70 22978.87 13494.18 8980.67 9796.29 11092.73 143
K. test v385.14 11584.73 12886.37 10491.13 13869.63 16985.45 13176.68 29484.06 3992.44 5396.99 862.03 25694.65 7380.58 9893.24 19694.83 67
Vis-MVSNetpermissive86.86 8786.58 9687.72 8792.09 10577.43 10087.35 10092.09 10478.87 10184.27 20894.05 8078.35 13893.65 11080.54 9991.58 23292.08 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_part187.15 8587.82 7885.15 13288.88 17963.04 22487.98 9094.85 1482.52 5893.61 3695.73 2567.51 22895.71 2880.48 10098.83 296.69 25
V4283.47 15783.37 15483.75 16383.16 27563.33 22081.31 22090.23 15969.51 21390.91 8090.81 17674.16 18092.29 15980.06 10190.22 25595.62 46
MVS_Test82.47 17083.22 15580.22 22782.62 28057.75 28382.54 19791.96 10971.16 19782.89 22592.52 12977.41 14790.50 21280.04 10287.84 28292.40 157
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6486.15 2193.37 895.10 1290.28 892.11 5795.03 4289.75 2194.93 6579.95 10398.27 2795.04 62
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040288.65 6989.58 5885.88 11992.55 9072.22 14784.01 15389.44 17588.63 1794.38 1795.77 2486.38 5993.59 11679.84 10495.21 14691.82 180
nrg03087.85 7888.49 7385.91 11790.07 16269.73 16787.86 9394.20 2574.04 15692.70 4994.66 5285.88 6491.50 17879.72 10597.32 7896.50 30
agg_prior279.68 10696.16 11690.22 215
DeepPCF-MVS81.24 587.28 8386.21 10290.49 4391.48 12784.90 3783.41 17392.38 9970.25 20789.35 11490.68 18082.85 8794.57 7879.55 10795.95 12292.00 173
test_prior386.31 9686.31 9986.32 10590.59 15171.99 14983.37 17492.85 8675.43 14184.58 19791.57 15281.92 10694.17 9179.54 10896.97 8692.80 140
test_prior283.37 17475.43 14184.58 19791.57 15281.92 10679.54 10896.97 86
lessismore_v085.95 11691.10 13970.99 16070.91 33391.79 6494.42 6361.76 25792.93 14279.52 11093.03 20293.93 97
PS-CasMVS90.06 4291.92 1384.47 14496.56 758.83 27689.04 7492.74 9191.40 496.12 396.06 2287.23 4695.57 3379.42 11198.74 699.00 2
tttt051781.07 18879.58 20985.52 12688.99 17766.45 19687.03 10675.51 30273.76 16088.32 13390.20 19137.96 35394.16 9479.36 11295.13 14995.93 41
CS-MVS85.09 11785.49 11783.90 15986.75 22365.28 20287.53 9895.66 476.39 12481.90 23886.80 24480.98 11695.23 5479.09 11394.36 17391.17 193
DTE-MVSNet89.98 4691.91 1584.21 15196.51 857.84 28188.93 7792.84 8891.92 296.16 296.23 1886.95 4995.99 879.05 11498.57 1598.80 6
CP-MVSNet89.27 6090.91 4284.37 14596.34 958.61 27888.66 8492.06 10590.78 595.67 695.17 3981.80 10895.54 3879.00 11598.69 1098.95 4
ambc82.98 17890.55 15364.86 20688.20 8789.15 17989.40 11393.96 8771.67 21291.38 18678.83 11696.55 10192.71 146
PEN-MVS90.03 4491.88 1684.48 14396.57 658.88 27388.95 7593.19 7291.62 396.01 596.16 2087.02 4895.60 3278.69 11798.72 998.97 3
bset_n11_16_dypcd79.19 21477.97 22482.86 18485.81 24066.85 19375.02 30279.31 27966.07 24583.50 21883.37 29655.04 30092.10 16478.63 11894.99 15689.63 222
baseline85.20 11485.93 10683.02 17786.30 23162.37 23584.55 14393.96 3874.48 15387.12 14792.03 14082.30 9491.94 16878.39 11994.21 17694.74 68
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8691.30 13076.92 10787.19 10291.99 10770.56 20284.96 18990.69 17980.01 12795.14 5878.37 12095.78 13091.82 180
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+77.89 1190.73 3091.50 2388.44 7793.00 7976.26 11689.65 6295.55 587.72 2293.89 2694.94 4491.62 493.44 12478.35 12198.76 495.61 47
MCST-MVS84.36 13383.93 14885.63 12491.59 12071.58 15683.52 16892.13 10361.82 27583.96 21089.75 20079.93 12993.46 12378.33 12294.34 17491.87 178
3Dnovator80.37 784.80 12484.71 13185.06 13486.36 22974.71 12288.77 8190.00 16575.65 13984.96 18993.17 10674.06 18191.19 18978.28 12391.09 23689.29 231
hse-mvs384.25 13882.76 16288.72 7091.82 11782.60 5684.00 15484.98 24571.27 19386.70 15990.55 18463.04 25293.92 10178.26 12494.20 17789.63 222
hse-mvs283.47 15781.81 17788.47 7591.03 14082.27 5782.61 19383.69 25171.27 19386.70 15986.05 25663.04 25292.41 15378.26 12493.62 19190.71 203
cl_fuxian81.64 18281.59 18181.79 20480.86 29659.15 27078.61 26090.18 16168.36 22387.20 14587.11 24169.39 21891.62 17678.16 12694.43 17294.60 71
IterMVS-LS84.73 12584.98 12483.96 15787.35 20763.66 21683.25 17889.88 16776.06 12989.62 10692.37 13373.40 19392.52 15178.16 12694.77 16495.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16782.42 17083.20 17483.25 27363.66 21683.50 17185.07 24076.06 12986.55 16385.10 27273.41 19190.25 21678.15 12890.67 25195.68 44
GeoE85.45 11185.81 10984.37 14590.08 16067.07 18985.86 12691.39 12572.33 18487.59 14190.25 19084.85 6892.37 15578.00 12991.94 22693.66 110
diffmvs80.40 20180.48 19680.17 22879.02 31860.04 25977.54 27490.28 15866.65 24282.40 23087.33 23773.50 18887.35 25977.98 13089.62 26093.13 128
OMC-MVS88.19 7387.52 8290.19 4991.94 11181.68 6187.49 9993.17 7376.02 13188.64 12491.22 15984.24 7493.37 12777.97 13197.03 8595.52 48
casdiffmvs85.21 11385.85 10883.31 17286.17 23662.77 22883.03 18493.93 3974.69 15088.21 13492.68 12382.29 9591.89 17177.87 13293.75 18795.27 56
DP-MVS88.60 7089.01 6587.36 9291.30 13077.50 9787.55 9692.97 8387.95 2189.62 10692.87 11684.56 7093.89 10277.65 13396.62 9890.70 204
RRT_test8_iter0578.08 22677.52 22779.75 23380.84 29752.54 31980.61 23088.96 18167.77 23484.62 19689.29 20433.89 35892.10 16477.59 13494.15 17894.62 69
PMVScopyleft80.48 690.08 4190.66 4688.34 8096.71 392.97 190.31 4889.57 17388.51 1890.11 9095.12 4190.98 788.92 24177.55 13597.07 8483.13 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSLP-MVS++85.00 12286.03 10581.90 19891.84 11571.56 15786.75 11393.02 8175.95 13487.12 14789.39 20277.98 14089.40 23777.46 13694.78 16284.75 283
IterMVS-SCA-FT80.64 19679.41 21084.34 14883.93 26769.66 16876.28 29181.09 26972.43 18086.47 16990.19 19260.46 26293.15 13677.45 13786.39 29490.22 215
CDPH-MVS86.17 10185.54 11588.05 8592.25 10075.45 11983.85 15992.01 10665.91 24786.19 17091.75 15083.77 7894.98 6477.43 13896.71 9693.73 107
BP-MVS77.30 139
HQP-MVS84.61 12784.06 14586.27 10891.19 13470.66 16184.77 13792.68 9273.30 16880.55 25990.17 19472.10 20594.61 7677.30 13994.47 17093.56 117
MVS_111021_LR84.28 13783.76 15085.83 12189.23 17283.07 5180.99 22683.56 25372.71 17886.07 17489.07 21081.75 10986.19 27777.11 14193.36 19288.24 243
CANet83.79 15082.85 16186.63 9986.17 23672.21 14883.76 16391.43 12277.24 11874.39 30887.45 23475.36 16795.42 4677.03 14292.83 20792.25 166
Anonymous2023121188.40 7189.62 5784.73 13990.46 15465.27 20388.86 7893.02 8187.15 2493.05 4097.10 682.28 9692.02 16776.70 14397.99 4096.88 23
MVS_111021_HR84.63 12684.34 14285.49 12890.18 15975.86 11879.23 25287.13 21073.35 16585.56 18489.34 20383.60 8090.50 21276.64 14494.05 18190.09 220
RPSCF88.00 7586.93 9291.22 3190.08 16089.30 589.68 6091.11 13279.26 9589.68 10394.81 5182.44 9187.74 25576.54 14588.74 27196.61 28
cl-mvsnet180.43 19980.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.38 23586.19 17089.22 20563.09 25090.16 22176.32 14695.80 12893.66 110
cl-mvsnet____80.42 20080.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.37 23686.18 17289.21 20663.08 25190.16 22176.31 14795.80 12893.65 112
AUN-MVS81.18 18778.78 21488.39 7890.93 14282.14 5882.51 19883.67 25264.69 26280.29 26285.91 25951.07 30792.38 15476.29 14893.63 19090.65 207
Gipumacopyleft84.44 13286.33 9878.78 24584.20 26273.57 12889.55 6490.44 14784.24 3684.38 20194.89 4576.35 16480.40 31576.14 14996.80 9482.36 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
miper_ehance_all_eth80.34 20380.04 20681.24 21079.82 30858.95 27277.66 27189.66 17065.75 25185.99 17885.11 27168.29 22591.42 18376.03 15092.03 22293.33 120
alignmvs83.94 14883.98 14783.80 16087.80 19867.88 18584.54 14591.42 12473.27 17188.41 13087.96 22472.33 20490.83 20276.02 15194.11 17992.69 147
ETH3 D test640085.09 11784.87 12685.75 12290.80 14669.34 17185.90 12493.31 6565.43 25486.11 17389.95 19680.92 11794.86 6775.90 15295.57 13593.05 131
canonicalmvs85.50 10986.14 10383.58 16787.97 19467.13 18887.55 9694.32 1973.44 16488.47 12887.54 23286.45 5791.06 19475.76 15393.76 18592.54 153
CSCG86.26 9786.47 9785.60 12590.87 14474.26 12587.98 9091.85 11180.35 8189.54 11288.01 22379.09 13292.13 16175.51 15495.06 15390.41 213
thisisatest053079.07 21577.33 23184.26 15087.13 21264.58 20883.66 16675.95 29768.86 22085.22 18787.36 23638.10 35193.57 11975.47 15594.28 17594.62 69
TSAR-MVS + GP.83.95 14782.69 16487.72 8789.27 17181.45 6383.72 16481.58 26774.73 14985.66 18186.06 25572.56 20392.69 14875.44 15695.21 14689.01 239
cl-mvsnet278.97 21678.21 22281.24 21077.74 32259.01 27177.46 27787.13 21065.79 24884.32 20385.10 27258.96 27690.88 20175.36 15792.03 22293.84 100
eth_miper_zixun_eth80.84 19280.22 20182.71 18681.41 28860.98 25177.81 26990.14 16267.31 23786.95 15587.24 23864.26 24292.31 15775.23 15891.61 23094.85 65
v14882.31 17182.48 16981.81 20385.59 24259.66 26381.47 21886.02 22672.85 17688.05 13590.65 18270.73 21590.91 19975.15 15991.79 22794.87 63
FC-MVSNet-test85.93 10587.05 8982.58 18992.25 10056.44 29285.75 12793.09 7577.33 11691.94 6394.65 5374.78 17493.41 12675.11 16098.58 1497.88 7
UniMVSNet (Re)86.87 8686.98 9186.55 10193.11 7768.48 18083.80 16292.87 8580.37 8089.61 10891.81 14877.72 14394.18 8975.00 16198.53 1696.99 22
OPU-MVS88.27 8191.89 11377.83 9290.47 4691.22 15981.12 11594.68 7274.48 16295.35 14092.29 162
DELS-MVS81.44 18481.25 18482.03 19684.27 25962.87 22776.47 28992.49 9670.97 19881.64 24683.83 28875.03 16992.70 14774.29 16392.22 22090.51 211
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14683.57 16887.22 21065.61 20186.55 11792.40 9778.64 10581.34 25084.18 28683.65 7992.93 14274.22 16487.87 28192.17 169
UniMVSNet_NR-MVSNet86.84 8887.06 8886.17 11492.86 8467.02 19082.55 19691.56 11883.08 5290.92 7891.82 14778.25 13993.99 9774.16 16598.35 2297.49 13
DU-MVS86.80 8986.99 9086.21 11293.24 7467.02 19083.16 18292.21 10181.73 6790.92 7891.97 14177.20 14993.99 9774.16 16598.35 2297.61 10
LF4IMVS82.75 16681.93 17685.19 13082.08 28180.15 7185.53 13088.76 18468.01 22785.58 18387.75 22871.80 21086.85 26674.02 16793.87 18488.58 242
FIs85.35 11286.27 10082.60 18891.86 11457.31 28585.10 13593.05 7775.83 13691.02 7793.97 8473.57 18792.91 14473.97 16898.02 3897.58 12
IS-MVSNet86.66 9186.82 9586.17 11492.05 10766.87 19291.21 3788.64 18686.30 2889.60 10992.59 12469.22 22094.91 6673.89 16997.89 4996.72 24
EU-MVSNet75.12 25674.43 25877.18 26883.11 27759.48 26585.71 12982.43 26039.76 35885.64 18288.76 21344.71 33987.88 25473.86 17085.88 29884.16 289
ETV-MVS84.31 13583.91 14985.52 12688.58 18370.40 16384.50 14793.37 5978.76 10484.07 20978.72 33380.39 12395.13 5973.82 17192.98 20491.04 194
Anonymous2024052180.18 20881.25 18476.95 27083.15 27660.84 25382.46 19985.99 22768.76 22186.78 15693.73 9959.13 27477.44 32273.71 17297.55 6792.56 151
MVSTER77.09 23675.70 24781.25 20875.27 34261.08 24777.49 27685.07 24060.78 28586.55 16388.68 21543.14 34390.25 21673.69 17390.67 25192.42 155
ITE_SJBPF90.11 5090.72 14884.97 3690.30 15481.56 6990.02 9291.20 16182.40 9290.81 20373.58 17494.66 16694.56 72
RPMNet78.88 21778.28 22180.68 22179.58 30962.64 23082.58 19494.16 2874.80 14875.72 29892.59 12448.69 31395.56 3473.48 17582.91 32183.85 293
EG-PatchMatch MVS84.08 14384.11 14483.98 15692.22 10272.61 13882.20 21087.02 21572.63 17988.86 11991.02 16778.52 13591.11 19273.41 17691.09 23688.21 244
miper_lstm_enhance76.45 24676.10 24377.51 26676.72 33060.97 25264.69 34185.04 24263.98 26483.20 22188.22 22056.67 28978.79 32073.22 17793.12 19992.78 142
xiu_mvs_v1_base_debu80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base_debi80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
TranMVSNet+NR-MVSNet87.86 7788.76 7285.18 13194.02 5664.13 21384.38 14891.29 12784.88 3492.06 5993.84 9386.45 5793.73 10873.22 17798.66 1197.69 9
TAPA-MVS77.73 1285.71 10884.83 12788.37 7988.78 18179.72 7487.15 10493.50 5769.17 21585.80 18089.56 20180.76 11992.13 16173.21 18295.51 13693.25 125
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall77.83 22876.93 23580.51 22276.15 33558.01 28075.47 29988.82 18258.05 29883.59 21580.69 31864.41 24191.20 18873.16 18392.03 22292.33 159
旧先验281.73 21356.88 30786.54 16884.90 29072.81 184
114514_t83.10 16482.54 16884.77 13892.90 8169.10 17886.65 11490.62 14454.66 31581.46 24790.81 17676.98 15494.38 8172.62 18596.18 11590.82 201
UniMVSNet_ETH3D89.12 6390.72 4584.31 14997.00 264.33 21289.67 6188.38 19088.84 1494.29 1897.57 390.48 1491.26 18772.57 18697.65 6097.34 14
NR-MVSNet86.00 10286.22 10185.34 12993.24 7464.56 20982.21 20890.46 14680.99 7588.42 12991.97 14177.56 14593.85 10372.46 18798.65 1297.61 10
Baseline_NR-MVSNet84.00 14685.90 10778.29 25691.47 12853.44 31182.29 20487.00 21879.06 9889.55 11095.72 2777.20 14986.14 27872.30 18898.51 1795.28 55
Effi-MVS+-dtu85.82 10683.38 15393.14 387.13 21291.15 287.70 9588.42 18874.57 15183.56 21685.65 26078.49 13694.21 8772.04 18992.88 20694.05 93
mvs-test184.55 12982.12 17291.84 2087.13 21289.54 485.05 13688.42 18874.57 15180.60 25682.98 29778.49 13693.98 9972.04 18989.77 25892.00 173
PM-MVS80.20 20779.00 21383.78 16288.17 19286.66 1681.31 22066.81 34569.64 21288.33 13290.19 19264.58 24083.63 30171.99 19190.03 25681.06 332
EIA-MVS82.19 17481.23 18685.10 13387.95 19569.17 17783.22 18193.33 6270.42 20378.58 27679.77 33077.29 14894.20 8871.51 19288.96 26791.93 177
DPM-MVS80.10 21079.18 21282.88 18390.71 14969.74 16678.87 25690.84 13760.29 28975.64 30085.92 25867.28 22993.11 13771.24 19391.79 22785.77 273
OpenMVScopyleft76.72 1381.98 17982.00 17581.93 19784.42 25568.22 18288.50 8689.48 17466.92 23981.80 24391.86 14372.59 20290.16 22171.19 19491.25 23587.40 256
AllTest87.97 7687.40 8589.68 5491.59 12083.40 4889.50 6795.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
TestCases89.68 5491.59 12083.40 4895.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
ET-MVSNet_ETH3D75.28 25372.77 27282.81 18583.03 27868.11 18377.09 27976.51 29560.67 28777.60 28580.52 32238.04 35291.15 19170.78 19790.68 25089.17 232
EPP-MVSNet85.47 11085.04 12386.77 9891.52 12669.37 17091.63 3487.98 19981.51 7087.05 15291.83 14666.18 23695.29 5070.75 19896.89 8895.64 45
jason77.42 23375.75 24682.43 19487.10 21669.27 17277.99 26681.94 26451.47 33477.84 28185.07 27560.32 26489.00 23970.74 19989.27 26489.03 237
jason: jason.
MG-MVS80.32 20480.94 19078.47 25288.18 19152.62 31882.29 20485.01 24472.01 18979.24 27292.54 12869.36 21993.36 12870.65 20089.19 26589.45 225
QAPM82.59 16882.59 16782.58 18986.44 22466.69 19489.94 5590.36 15067.97 22984.94 19192.58 12672.71 20092.18 16070.63 20187.73 28388.85 240
CVMVSNet72.62 27671.41 28676.28 28083.25 27360.34 25783.50 17179.02 28337.77 35976.33 29085.10 27249.60 31287.41 25870.54 20277.54 34381.08 330
pmmvs686.52 9388.06 7681.90 19892.22 10262.28 23784.66 14189.15 17983.54 4689.85 9897.32 488.08 3786.80 26770.43 20397.30 7996.62 27
D2MVS76.84 23975.67 24880.34 22580.48 30462.16 23973.50 31284.80 24857.61 30282.24 23287.54 23251.31 30687.65 25670.40 20493.19 19891.23 192
PAPM_NR83.23 16183.19 15783.33 17190.90 14365.98 19888.19 8890.78 13978.13 11180.87 25487.92 22773.49 19092.42 15270.07 20588.40 27291.60 186
lupinMVS76.37 24774.46 25782.09 19585.54 24369.26 17376.79 28280.77 27250.68 34076.23 29282.82 30258.69 27788.94 24069.85 20688.77 26988.07 245
PVSNet_Blended_VisFu81.55 18380.49 19584.70 14191.58 12373.24 13184.21 14991.67 11762.86 26880.94 25287.16 23967.27 23092.87 14569.82 20788.94 26887.99 248
Patchmatch-RL test74.48 26373.68 26376.89 27384.83 24966.54 19572.29 31869.16 33857.70 30086.76 15786.33 25045.79 32782.59 30469.63 20890.65 25381.54 323
EPNet80.37 20278.41 22086.23 10976.75 32973.28 13087.18 10377.45 28976.24 12768.14 33188.93 21265.41 23993.85 10369.47 20996.12 11991.55 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS83.18 16282.64 16584.79 13789.05 17467.82 18677.93 26792.52 9568.33 22485.07 18881.54 31482.06 10092.96 14069.35 21097.91 4893.57 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM184.60 14292.81 8774.01 12691.50 12062.59 26982.73 22790.67 18176.53 16294.25 8469.24 21195.69 13385.55 274
VDD-MVS84.23 14084.58 13583.20 17491.17 13765.16 20583.25 17884.97 24679.79 8787.18 14694.27 6974.77 17590.89 20069.24 21196.54 10293.55 119
CANet_DTU77.81 23077.05 23380.09 22981.37 28959.90 26183.26 17788.29 19269.16 21667.83 33483.72 28960.93 25989.47 23369.22 21389.70 25990.88 199
Anonymous2024052986.20 10087.13 8683.42 17090.19 15864.55 21084.55 14390.71 14085.85 2989.94 9695.24 3882.13 9890.40 21469.19 21496.40 10795.31 54
FMVSNet184.55 12985.45 11881.85 20090.27 15761.05 24886.83 10988.27 19378.57 10689.66 10595.64 2975.43 16690.68 20769.09 21595.33 14193.82 103
UGNet82.78 16581.64 17986.21 11286.20 23576.24 11786.86 10785.68 23077.07 11973.76 31192.82 11769.64 21791.82 17469.04 21693.69 18890.56 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ANet_high83.17 16385.68 11375.65 28381.24 29045.26 35079.94 23892.91 8483.83 4091.33 7296.88 1080.25 12585.92 28068.89 21795.89 12495.76 42
Fast-Effi-MVS+-dtu82.54 16981.41 18385.90 11885.60 24176.53 11383.07 18389.62 17273.02 17579.11 27383.51 29180.74 12090.24 21868.76 21889.29 26290.94 197
pm-mvs183.69 15184.95 12579.91 23090.04 16459.66 26382.43 20087.44 20375.52 14087.85 13895.26 3781.25 11485.65 28468.74 21996.04 12094.42 80
CR-MVSNet74.00 26673.04 27076.85 27479.58 30962.64 23082.58 19476.90 29150.50 34175.72 29892.38 13048.07 31584.07 29768.72 22082.91 32183.85 293
DIV-MVS_2432*160081.93 18083.14 15878.30 25584.75 25052.75 31580.37 23389.42 17670.24 20890.26 8993.39 10374.55 17986.77 26868.61 22196.64 9795.38 51
IterMVS76.91 23876.34 24178.64 24880.91 29464.03 21476.30 29079.03 28264.88 26183.11 22289.16 20759.90 26884.46 29468.61 22185.15 30487.42 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata79.54 23892.87 8272.34 14480.14 27659.91 29185.47 18691.75 15067.96 22785.24 28668.57 22392.18 22181.06 332
mvs_anonymous78.13 22578.76 21576.23 28179.24 31550.31 33678.69 25884.82 24761.60 27983.09 22492.82 11773.89 18487.01 26168.33 22486.41 29391.37 190
WR-MVS83.56 15484.40 14081.06 21393.43 6954.88 30378.67 25985.02 24381.24 7290.74 8291.56 15472.85 19891.08 19368.00 22598.04 3597.23 16
TransMVSNet (Re)84.02 14585.74 11178.85 24491.00 14155.20 30282.29 20487.26 20679.65 9088.38 13195.52 3283.00 8586.88 26567.97 22696.60 10094.45 79
无先验82.81 19085.62 23158.09 29791.41 18467.95 22784.48 284
112180.86 19179.81 20884.02 15493.93 5878.70 8581.64 21580.18 27555.43 31283.67 21391.15 16271.29 21391.41 18467.95 22793.06 20181.96 318
Fast-Effi-MVS+81.04 18980.57 19282.46 19387.50 20563.22 22278.37 26389.63 17168.01 22781.87 23982.08 30982.31 9392.65 14967.10 22988.30 27791.51 189
FMVSNet281.31 18581.61 18080.41 22486.38 22658.75 27783.93 15786.58 22172.43 18087.65 14092.98 11063.78 24690.22 21966.86 23093.92 18392.27 164
GA-MVS75.83 25074.61 25479.48 23981.87 28359.25 26773.42 31382.88 25668.68 22279.75 26681.80 31150.62 30989.46 23466.85 23185.64 29989.72 221
CNLPA83.55 15583.10 15984.90 13589.34 17083.87 4684.54 14588.77 18379.09 9783.54 21788.66 21674.87 17181.73 30966.84 23292.29 21689.11 233
tfpnnormal81.79 18182.95 16078.31 25488.93 17855.40 29880.83 22982.85 25776.81 12185.90 17994.14 7774.58 17886.51 27266.82 23395.68 13493.01 133
VPA-MVSNet83.47 15784.73 12879.69 23590.29 15657.52 28481.30 22288.69 18576.29 12587.58 14294.44 6080.60 12187.20 26066.60 23496.82 9394.34 83
VDDNet84.35 13485.39 11981.25 20895.13 3259.32 26685.42 13281.11 26886.41 2787.41 14496.21 1973.61 18690.61 21066.33 23596.85 9093.81 106
DP-MVS Recon84.05 14483.22 15586.52 10291.73 11875.27 12083.23 18092.40 9772.04 18882.04 23688.33 21977.91 14293.95 10066.17 23695.12 15190.34 214
GBi-Net82.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
test182.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
FMVSNet378.80 21978.55 21779.57 23782.89 27956.89 29081.76 21285.77 22969.04 21886.00 17590.44 18651.75 30590.09 22765.95 23793.34 19391.72 182
新几何182.95 17993.96 5778.56 8780.24 27455.45 31183.93 21191.08 16471.19 21488.33 25065.84 24093.07 20081.95 319
F-COLMAP84.97 12383.42 15289.63 5692.39 9483.40 4888.83 7991.92 11073.19 17280.18 26589.15 20877.04 15393.28 12965.82 24192.28 21792.21 167
ppachtmachnet_test74.73 26274.00 26176.90 27280.71 30056.89 29071.53 32178.42 28458.24 29679.32 27182.92 30157.91 28384.26 29665.60 24291.36 23489.56 224
API-MVS82.28 17282.61 16681.30 20786.29 23269.79 16588.71 8287.67 20278.42 10882.15 23584.15 28777.98 14091.59 17765.39 24392.75 20882.51 313
thisisatest051573.00 27470.52 28980.46 22381.45 28759.90 26173.16 31674.31 30957.86 29976.08 29577.78 33637.60 35492.12 16365.00 24491.45 23389.35 228
cascas76.29 24874.81 25380.72 22084.47 25262.94 22573.89 31087.34 20455.94 30975.16 30576.53 34463.97 24491.16 19065.00 24490.97 24388.06 246
MDA-MVSNet-bldmvs77.47 23276.90 23679.16 24279.03 31764.59 20766.58 33875.67 30073.15 17388.86 11988.99 21166.94 23181.23 31164.71 24688.22 27891.64 185
OpenMVS_ROBcopyleft70.19 1777.77 23177.46 22878.71 24784.39 25661.15 24681.18 22482.52 25862.45 27283.34 21987.37 23566.20 23588.66 24764.69 24785.02 30586.32 266
PS-MVSNAJ77.04 23776.53 23978.56 24987.09 21761.40 24275.26 30087.13 21061.25 28074.38 30977.22 34176.94 15590.94 19664.63 24884.83 31083.35 301
xiu_mvs_v2_base77.19 23576.75 23778.52 25087.01 21861.30 24475.55 29887.12 21361.24 28174.45 30778.79 33277.20 14990.93 19764.62 24984.80 31183.32 302
PatchT70.52 29072.76 27363.79 33079.38 31333.53 36277.63 27265.37 34773.61 16171.77 31992.79 12044.38 34075.65 32964.53 25085.37 30182.18 316
LFMVS80.15 20980.56 19378.89 24389.19 17355.93 29485.22 13473.78 31482.96 5384.28 20792.72 12157.38 28690.07 22863.80 25195.75 13190.68 205
131473.22 27172.56 27775.20 28580.41 30557.84 28181.64 21585.36 23351.68 33373.10 31476.65 34361.45 25885.19 28763.54 25279.21 33782.59 309
testdata286.43 27463.52 253
Patchmtry76.56 24477.46 22873.83 29279.37 31446.60 34782.41 20176.90 29173.81 15985.56 18492.38 13048.07 31583.98 29863.36 25495.31 14490.92 198
MSDG80.06 21179.99 20780.25 22683.91 26868.04 18477.51 27589.19 17877.65 11381.94 23783.45 29376.37 16386.31 27563.31 25586.59 29186.41 265
BH-RMVSNet80.53 19780.22 20181.49 20687.19 21166.21 19777.79 27086.23 22374.21 15583.69 21288.50 21773.25 19590.75 20463.18 25687.90 28087.52 254
test_yl78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
DCV-MVSNet78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
TinyColmap81.25 18682.34 17177.99 26185.33 24560.68 25582.32 20388.33 19171.26 19586.97 15492.22 13977.10 15286.98 26462.37 25995.17 14886.31 267
Anonymous20240521180.51 19881.19 18778.49 25188.48 18557.26 28676.63 28582.49 25981.21 7384.30 20692.24 13867.99 22686.24 27662.22 26095.13 14991.98 176
our_test_371.85 28271.59 28372.62 29980.71 30053.78 30869.72 32871.71 33158.80 29378.03 27880.51 32356.61 29078.84 31962.20 26186.04 29785.23 277
pmmvs-eth3d78.42 22377.04 23482.57 19187.44 20674.41 12480.86 22879.67 27855.68 31084.69 19590.31 18960.91 26085.42 28562.20 26191.59 23187.88 251
CMPMVSbinary59.41 2075.12 25673.57 26479.77 23175.84 33767.22 18781.21 22382.18 26150.78 33876.50 28887.66 23055.20 29882.99 30362.17 26390.64 25489.09 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet183.63 15384.59 13480.74 21894.06 5562.77 22882.72 19184.53 24977.57 11590.34 8795.92 2376.88 16185.83 28261.88 26497.42 7593.62 114
BH-untuned80.96 19080.99 18980.84 21788.55 18468.23 18180.33 23488.46 18772.79 17786.55 16386.76 24574.72 17691.77 17561.79 26588.99 26682.52 312
AdaColmapbinary83.66 15283.69 15183.57 16890.05 16372.26 14686.29 12290.00 16578.19 11081.65 24587.16 23983.40 8294.24 8561.69 26694.76 16584.21 288
VPNet80.25 20581.68 17875.94 28292.46 9347.98 34276.70 28481.67 26673.45 16384.87 19292.82 11774.66 17786.51 27261.66 26796.85 9093.33 120
DWT-MVSNet_test66.43 31064.37 31672.63 29874.86 34550.86 33376.52 28772.74 32154.06 31865.50 34168.30 35532.13 36184.84 29161.63 26873.59 34882.19 315
MAR-MVS80.24 20678.74 21684.73 13986.87 22278.18 8985.75 12787.81 20165.67 25377.84 28178.50 33473.79 18590.53 21161.59 26990.87 24685.49 276
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft73.85 1682.09 17680.31 19787.45 9190.86 14580.29 7085.88 12590.65 14268.17 22676.32 29186.33 25073.12 19692.61 15061.40 27090.02 25789.44 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test-LLR67.21 30566.74 30968.63 31676.45 33355.21 30067.89 33267.14 34262.43 27365.08 34472.39 34943.41 34169.37 33861.00 27184.89 30881.31 325
test-mter65.00 31563.79 31868.63 31676.45 33355.21 30067.89 33267.14 34250.98 33765.08 34472.39 34928.27 36669.37 33861.00 27184.89 30881.31 325
PatchmatchNetpermissive69.71 29868.83 29972.33 30277.66 32453.60 30979.29 24869.99 33657.66 30172.53 31682.93 30046.45 31980.08 31760.91 27372.09 35083.31 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS_030478.17 22477.23 23280.99 21684.13 26569.07 17981.39 21980.81 27176.28 12667.53 33689.11 20962.87 25486.77 26860.90 27492.01 22587.13 259
PVSNet_BlendedMVS78.80 21977.84 22581.65 20584.43 25363.41 21879.49 24690.44 14761.70 27875.43 30187.07 24269.11 22191.44 18160.68 27592.24 21890.11 219
PVSNet_Blended76.49 24575.40 24979.76 23284.43 25363.41 21875.14 30190.44 14757.36 30475.43 30178.30 33569.11 22191.44 18160.68 27587.70 28484.42 286
VNet79.31 21380.27 19876.44 27787.92 19653.95 30775.58 29784.35 25074.39 15482.23 23390.72 17872.84 19984.39 29560.38 27793.98 18290.97 196
LCM-MVSNet-Re83.48 15685.06 12278.75 24685.94 23955.75 29780.05 23694.27 2076.47 12396.09 494.54 5683.31 8389.75 23259.95 27894.89 16090.75 202
YYNet170.06 29470.44 29068.90 31373.76 34853.42 31258.99 35267.20 34158.42 29587.10 14985.39 26859.82 26967.32 34559.79 27983.50 31785.96 269
MDA-MVSNet_test_wron70.05 29570.44 29068.88 31473.84 34753.47 31058.93 35367.28 34058.43 29487.09 15085.40 26759.80 27067.25 34659.66 28083.54 31685.92 271
PAPR78.84 21878.10 22381.07 21285.17 24660.22 25882.21 20890.57 14562.51 27075.32 30384.61 28274.99 17092.30 15859.48 28188.04 27990.68 205
IB-MVS62.13 1971.64 28468.97 29879.66 23680.80 29962.26 23873.94 30976.90 29163.27 26668.63 33076.79 34233.83 35991.84 17359.28 28287.26 28684.88 281
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS74.62 1582.15 17580.92 19185.84 12089.43 16872.30 14580.53 23191.82 11357.36 30487.81 13989.92 19877.67 14493.63 11258.69 28395.08 15291.58 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
1112_ss74.82 26173.74 26278.04 26089.57 16760.04 25976.49 28887.09 21454.31 31673.66 31279.80 32860.25 26586.76 27058.37 28484.15 31487.32 257
tpmvs70.16 29269.56 29671.96 30374.71 34648.13 34079.63 24175.45 30365.02 26070.26 32581.88 31045.34 33385.68 28358.34 28575.39 34682.08 317
UnsupCasMVSNet_eth71.63 28572.30 27969.62 31076.47 33252.70 31770.03 32780.97 27059.18 29279.36 27088.21 22160.50 26169.12 34158.33 28677.62 34287.04 260
tpmrst66.28 31266.69 31065.05 32872.82 35439.33 35778.20 26470.69 33453.16 32367.88 33380.36 32448.18 31474.75 33158.13 28770.79 35281.08 330
test_post178.85 2573.13 36445.19 33580.13 31658.11 288
SCA73.32 26972.57 27675.58 28481.62 28555.86 29578.89 25571.37 33261.73 27674.93 30683.42 29460.46 26287.01 26158.11 28882.63 32583.88 290
pmmvs474.92 25972.98 27180.73 21984.95 24771.71 15576.23 29277.59 28852.83 32477.73 28486.38 24856.35 29284.97 28957.72 29087.05 28885.51 275
Vis-MVSNet (Re-imp)77.82 22977.79 22677.92 26288.82 18051.29 32983.28 17671.97 32774.04 15682.23 23389.78 19957.38 28689.41 23657.22 29195.41 13893.05 131
ab-mvs79.67 21280.56 19376.99 26988.48 18556.93 28884.70 14086.06 22568.95 21980.78 25593.08 10775.30 16884.62 29356.78 29290.90 24589.43 227
baseline173.26 27073.54 26572.43 30184.92 24847.79 34379.89 23974.00 31065.93 24678.81 27586.28 25356.36 29181.63 31056.63 29379.04 33887.87 252
Test_1112_low_res73.90 26773.08 26976.35 27890.35 15555.95 29373.40 31486.17 22450.70 33973.14 31385.94 25758.31 27985.90 28156.51 29483.22 31887.20 258
TESTMET0.1,161.29 32260.32 32764.19 32972.06 35551.30 32867.89 33262.09 35045.27 35060.65 35369.01 35227.93 36764.74 35456.31 29581.65 32876.53 339
XXY-MVS74.44 26576.19 24269.21 31284.61 25152.43 32071.70 32077.18 29060.73 28680.60 25690.96 17175.44 16569.35 34056.13 29688.33 27385.86 272
MDTV_nov1_ep1368.29 30378.03 32143.87 35374.12 30872.22 32552.17 32867.02 33785.54 26145.36 33280.85 31355.73 29784.42 313
E-PMN61.59 32161.62 32361.49 33566.81 36155.40 29853.77 35560.34 35566.80 24158.90 35765.50 35640.48 34866.12 35155.72 29886.25 29562.95 353
MVS73.21 27272.59 27575.06 28780.97 29360.81 25481.64 21585.92 22846.03 34971.68 32077.54 33768.47 22489.77 23155.70 29985.39 30074.60 343
TR-MVS76.77 24175.79 24579.72 23486.10 23865.79 20077.14 27883.02 25565.20 25981.40 24882.10 30866.30 23490.73 20655.57 30085.27 30282.65 308
EPMVS62.47 31762.63 32162.01 33270.63 35838.74 35874.76 30452.86 36253.91 31967.71 33580.01 32639.40 34966.60 34955.54 30168.81 35780.68 334
MS-PatchMatch70.93 28870.22 29273.06 29681.85 28462.50 23373.82 31177.90 28652.44 32775.92 29681.27 31555.67 29581.75 30855.37 30277.70 34174.94 342
CL-MVSNet_2432*160076.81 24077.38 23075.12 28686.90 22051.34 32773.20 31580.63 27368.30 22581.80 24388.40 21866.92 23280.90 31255.35 30394.90 15993.12 129
new-patchmatchnet70.10 29373.37 26760.29 33881.23 29116.95 36659.54 34974.62 30562.93 26780.97 25187.93 22662.83 25571.90 33555.24 30495.01 15592.00 173
CostFormer69.98 29668.68 30173.87 29177.14 32650.72 33479.26 24974.51 30751.94 33270.97 32484.75 28045.16 33687.49 25755.16 30579.23 33683.40 300
thres600view775.97 24975.35 25177.85 26487.01 21851.84 32580.45 23273.26 31875.20 14583.10 22386.31 25245.54 32889.05 23855.03 30692.24 21892.66 148
EMVS61.10 32460.81 32561.99 33365.96 36255.86 29553.10 35658.97 35767.06 23856.89 36063.33 35740.98 34667.03 34754.79 30786.18 29663.08 352
USDC76.63 24276.73 23876.34 27983.46 27157.20 28780.02 23788.04 19752.14 33083.65 21491.25 15863.24 24986.65 27154.66 30894.11 17985.17 278
CDS-MVSNet77.32 23475.40 24983.06 17689.00 17672.48 14277.90 26882.17 26260.81 28478.94 27483.49 29259.30 27288.76 24654.64 30992.37 21587.93 250
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit75.42 34144.97 35252.17 32872.36 35187.90 25354.10 310
PatchMatch-RL74.48 26373.22 26878.27 25787.70 20085.26 3375.92 29470.09 33564.34 26376.09 29481.25 31665.87 23878.07 32153.86 31183.82 31571.48 346
EPNet_dtu72.87 27571.33 28777.49 26777.72 32360.55 25682.35 20275.79 29866.49 24358.39 35981.06 31753.68 30285.98 27953.55 31292.97 20585.95 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM69.41 29966.64 31177.70 26573.19 35071.24 15875.67 29565.56 34670.42 20365.18 34392.97 11233.64 36083.06 30253.52 31369.61 35678.79 337
baseline269.77 29766.89 30778.41 25379.51 31158.09 27976.23 29269.57 33757.50 30364.82 34777.45 33946.02 32288.44 24853.08 31477.83 34088.70 241
KD-MVS_2432*160066.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
miper_refine_blended66.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
BH-w/o76.57 24376.07 24478.10 25986.88 22165.92 19977.63 27286.33 22265.69 25280.89 25379.95 32768.97 22390.74 20553.01 31785.25 30377.62 338
pmmvs570.73 28970.07 29372.72 29777.03 32852.73 31674.14 30775.65 30150.36 34272.17 31885.37 26955.42 29780.67 31452.86 31887.59 28584.77 282
tpm67.95 30368.08 30467.55 32078.74 32043.53 35475.60 29667.10 34454.92 31472.23 31788.10 22242.87 34475.97 32752.21 31980.95 33283.15 305
MVP-Stereo75.81 25173.51 26682.71 18689.35 16973.62 12780.06 23585.20 23760.30 28873.96 31087.94 22557.89 28489.45 23552.02 32074.87 34785.06 280
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 25275.05 25276.66 27687.27 20851.88 32481.07 22573.26 31875.68 13883.25 22086.37 24945.54 32888.80 24251.98 32190.99 24089.31 229
tfpn200view974.86 26074.23 25976.74 27586.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24089.31 229
thres40075.14 25474.23 25977.86 26386.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24092.66 148
HyFIR lowres test75.12 25672.66 27482.50 19291.44 12965.19 20472.47 31787.31 20546.79 34680.29 26284.30 28552.70 30492.10 16451.88 32486.73 29090.22 215
TAMVS78.08 22676.36 24083.23 17390.62 15072.87 13279.08 25380.01 27761.72 27781.35 24986.92 24363.96 24588.78 24550.61 32593.01 20388.04 247
sss66.92 30667.26 30665.90 32477.23 32551.10 33264.79 34071.72 33052.12 33170.13 32680.18 32557.96 28265.36 35350.21 32681.01 33181.25 327
FPMVS72.29 28072.00 28073.14 29588.63 18285.00 3574.65 30667.39 33971.94 19077.80 28387.66 23050.48 31075.83 32849.95 32779.51 33358.58 357
tpm cat166.76 30965.21 31571.42 30477.09 32750.62 33578.01 26573.68 31644.89 35168.64 32979.00 33145.51 33082.42 30749.91 32870.15 35381.23 329
CHOSEN 1792x268872.45 27770.56 28878.13 25890.02 16563.08 22368.72 33083.16 25442.99 35575.92 29685.46 26557.22 28885.18 28849.87 32981.67 32686.14 268
HY-MVS64.64 1873.03 27372.47 27874.71 28883.36 27254.19 30582.14 21181.96 26356.76 30869.57 32886.21 25460.03 26684.83 29249.58 33082.65 32385.11 279
MDTV_nov1_ep13_2view27.60 36570.76 32346.47 34861.27 35145.20 33449.18 33183.75 295
PMMVS61.65 32060.38 32665.47 32765.40 36369.26 17363.97 34361.73 35336.80 36060.11 35468.43 35359.42 27166.35 35048.97 33278.57 33960.81 354
WTY-MVS67.91 30468.35 30266.58 32380.82 29848.12 34165.96 33972.60 32253.67 32071.20 32281.68 31358.97 27569.06 34248.57 33381.67 32682.55 310
UnsupCasMVSNet_bld69.21 30069.68 29567.82 31979.42 31251.15 33067.82 33575.79 29854.15 31777.47 28685.36 27059.26 27370.64 33748.46 33479.35 33581.66 321
tpm268.45 30266.83 30873.30 29478.93 31948.50 33979.76 24071.76 32947.50 34569.92 32783.60 29042.07 34588.40 24948.44 33579.51 33383.01 307
Patchmatch-test65.91 31367.38 30561.48 33675.51 33943.21 35568.84 32963.79 34962.48 27172.80 31583.42 29444.89 33859.52 35748.27 33686.45 29281.70 320
FMVSNet572.10 28171.69 28273.32 29381.57 28653.02 31476.77 28378.37 28563.31 26576.37 28991.85 14436.68 35578.98 31847.87 33792.45 21487.95 249
dp60.70 32660.29 32861.92 33472.04 35638.67 35970.83 32264.08 34851.28 33560.75 35277.28 34036.59 35671.58 33647.41 33862.34 35975.52 341
N_pmnet70.20 29168.80 30074.38 29080.91 29484.81 3859.12 35176.45 29655.06 31375.31 30482.36 30755.74 29454.82 35847.02 33987.24 28783.52 297
thres20072.34 27971.55 28574.70 28983.48 27051.60 32675.02 30273.71 31570.14 20978.56 27780.57 32146.20 32088.20 25246.99 34089.29 26284.32 287
test20.0373.75 26874.59 25671.22 30581.11 29251.12 33170.15 32672.10 32670.42 20380.28 26491.50 15564.21 24374.72 33246.96 34194.58 16887.82 253
pmmvs362.47 31760.02 32969.80 30971.58 35764.00 21570.52 32458.44 35839.77 35766.05 33875.84 34527.10 36872.28 33346.15 34284.77 31273.11 344
testgi72.36 27874.61 25465.59 32580.56 30242.82 35668.29 33173.35 31766.87 24081.84 24089.93 19772.08 20766.92 34846.05 34392.54 21387.01 261
PVSNet58.17 2166.41 31165.63 31468.75 31581.96 28249.88 33862.19 34772.51 32451.03 33668.04 33275.34 34750.84 30874.77 33045.82 34482.96 31981.60 322
gg-mvs-nofinetune68.96 30169.11 29768.52 31876.12 33645.32 34983.59 16755.88 36086.68 2564.62 34897.01 730.36 36383.97 29944.78 34582.94 32076.26 340
Anonymous2023120671.38 28671.88 28169.88 30886.31 23054.37 30470.39 32574.62 30552.57 32676.73 28788.76 21359.94 26772.06 33444.35 34693.23 19783.23 304
CHOSEN 280x42059.08 32756.52 33266.76 32276.51 33164.39 21149.62 35759.00 35643.86 35355.66 36168.41 35435.55 35768.21 34443.25 34776.78 34567.69 351
ADS-MVSNet265.87 31463.64 31972.55 30073.16 35156.92 28967.10 33674.81 30449.74 34366.04 33982.97 29846.71 31777.26 32342.29 34869.96 35483.46 298
ADS-MVSNet61.90 31962.19 32261.03 33773.16 35136.42 36067.10 33661.75 35249.74 34366.04 33982.97 29846.71 31763.21 35542.29 34869.96 35483.46 298
DSMNet-mixed60.98 32561.61 32459.09 34072.88 35345.05 35174.70 30546.61 36526.20 36165.34 34290.32 18855.46 29663.12 35641.72 35081.30 33069.09 350
MIMVSNet71.09 28771.59 28369.57 31187.23 20950.07 33778.91 25471.83 32860.20 29071.26 32191.76 14955.08 29976.09 32641.06 35187.02 28982.54 311
test0.0.03 164.66 31664.36 31765.57 32675.03 34446.89 34664.69 34161.58 35462.43 27371.18 32377.54 33743.41 34168.47 34340.75 35282.65 32381.35 324
PAPM71.77 28370.06 29476.92 27186.39 22553.97 30676.62 28686.62 22053.44 32163.97 34984.73 28157.79 28592.34 15639.65 35381.33 32984.45 285
MVS-HIRNet61.16 32362.92 32055.87 34179.09 31635.34 36171.83 31957.98 35946.56 34759.05 35691.14 16349.95 31176.43 32538.74 35471.92 35155.84 358
GG-mvs-BLEND67.16 32173.36 34946.54 34884.15 15055.04 36158.64 35861.95 35929.93 36483.87 30038.71 35576.92 34471.07 347
new_pmnet55.69 32957.66 33149.76 34375.47 34030.59 36359.56 34851.45 36343.62 35462.49 35075.48 34640.96 34749.15 36137.39 35672.52 34969.55 349
PVSNet_051.08 2256.10 32854.97 33359.48 33975.12 34353.28 31355.16 35461.89 35144.30 35259.16 35562.48 35854.22 30165.91 35235.40 35747.01 36059.25 356
wuyk23d75.13 25579.30 21162.63 33175.56 33875.18 12180.89 22773.10 32075.06 14794.76 1195.32 3487.73 4152.85 35934.16 35897.11 8359.85 355
MVEpermissive40.22 2351.82 33150.47 33455.87 34162.66 36551.91 32331.61 36039.28 36640.65 35650.76 36274.98 34856.24 29344.67 36233.94 35964.11 35871.04 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS255.64 33059.27 33044.74 34464.30 36412.32 36740.60 35849.79 36453.19 32265.06 34684.81 27953.60 30349.76 36032.68 36089.41 26172.15 345
test_method30.46 33229.60 33533.06 34517.99 3673.84 36913.62 36173.92 3112.79 36318.29 36553.41 36028.53 36543.25 36322.56 36135.27 36252.11 359
tmp_tt20.25 33424.50 3377.49 3474.47 3688.70 36834.17 35925.16 3681.00 36432.43 36418.49 36239.37 3509.21 36521.64 36243.75 3614.57 361
DeepMVS_CXcopyleft24.13 34632.95 36629.49 36421.63 36912.07 36237.95 36345.07 36130.84 36219.21 36417.94 36333.06 36323.69 360
test1236.27 3378.08 3400.84 3481.11 3700.57 37062.90 3440.82 3700.54 3651.07 3672.75 3671.26 3710.30 3661.04 3641.26 3651.66 362
testmvs5.91 3387.65 3410.72 3491.20 3690.37 37159.14 3500.67 3710.49 3661.11 3662.76 3660.94 3720.24 3671.02 3651.47 3641.55 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k20.81 33327.75 3360.00 3500.00 3710.00 3720.00 36285.44 2320.00 3670.00 36882.82 30281.46 1110.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.41 3368.55 3390.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36876.94 1550.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re6.65 3358.87 3380.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36879.80 3280.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE94.18 4872.65 13493.69 4983.62 4394.11 2293.78 9790.28 1595.50 44
save fliter93.75 6177.44 9886.31 12089.72 16870.80 199
test072694.16 5172.56 13990.63 4293.90 4183.61 4493.75 3094.49 5889.76 19
GSMVS83.88 290
test_part293.86 6077.77 9392.84 45
sam_mvs146.11 32183.88 290
sam_mvs45.92 326
MTGPAbinary91.81 114
test_post3.10 36545.43 33177.22 324
patchmatchnet-post81.71 31245.93 32587.01 261
MTMP90.66 4033.14 367
TEST992.34 9679.70 7583.94 15590.32 15165.41 25884.49 19990.97 16982.03 10293.63 112
test_892.09 10578.87 8383.82 16090.31 15365.79 24884.36 20290.96 17181.93 10493.44 124
agg_prior91.58 12377.69 9490.30 15484.32 20393.18 132
test_prior478.97 8284.59 142
test_prior86.32 10590.59 15171.99 14992.85 8694.17 9192.80 140
新几何281.72 214
旧先验191.97 10871.77 15181.78 26591.84 14573.92 18393.65 18983.61 296
原ACMM282.26 207
test22293.31 7276.54 11179.38 24777.79 28752.59 32582.36 23190.84 17566.83 23391.69 22981.25 327
segment_acmp81.94 103
testdata179.62 24273.95 158
test1286.57 10090.74 14772.63 13790.69 14182.76 22679.20 13194.80 6995.32 14292.27 164
plane_prior793.45 6777.31 102
plane_prior692.61 8876.54 11174.84 172
plane_prior492.95 113
plane_prior376.85 10977.79 11286.55 163
plane_prior289.45 6979.44 93
plane_prior192.83 86
plane_prior76.42 11487.15 10475.94 13595.03 154
n20.00 372
nn0.00 372
door-mid74.45 308
test1191.46 121
door72.57 323
HQP5-MVS70.66 161
HQP-NCC91.19 13484.77 13773.30 16880.55 259
ACMP_Plane91.19 13484.77 13773.30 16880.55 259
HQP4-MVS80.56 25894.61 7693.56 117
HQP3-MVS92.68 9294.47 170
HQP2-MVS72.10 205
NP-MVS91.95 10974.55 12390.17 194
ACMMP++_ref95.74 132
ACMMP++97.35 76
Test By Simon79.09 132