This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5199.27 199.54 1
UniMVSNet_ETH3D89.12 6190.72 4384.31 14997.00 264.33 22389.67 6988.38 19388.84 1394.29 1897.57 390.48 1391.26 18272.57 19297.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17888.51 1790.11 9595.12 4590.98 688.92 24377.55 13297.07 8283.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11684.07 4292.00 6494.40 7186.63 5195.28 5488.59 598.31 2392.30 168
PEN-MVS90.03 4191.88 1484.48 14296.57 558.88 29088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3578.69 11598.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14396.56 658.83 29389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3779.42 11098.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15196.51 757.84 30088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 11298.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14496.34 858.61 29688.66 9192.06 10590.78 695.67 795.17 4381.80 10795.54 4079.00 11398.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12196.32 962.39 24789.54 7493.31 6490.21 1095.57 995.66 2981.42 11195.90 1480.94 9098.80 298.84 5
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12894.37 7386.74 5095.41 4986.32 3598.21 2993.19 135
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4387.21 2698.11 3593.12 138
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13792.94 4494.96 4788.36 2895.01 6290.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4198.48 1797.22 19
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11691.97 6594.89 4988.38 2795.45 4789.27 397.87 5093.27 131
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5188.06 898.15 3495.95 41
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10889.16 11992.25 14672.03 21096.36 288.21 790.93 25192.98 142
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8794.21 7987.75 3995.87 1887.60 1697.71 5893.83 108
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1197.76 5593.99 100
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8591.29 7693.97 9287.93 3895.87 1888.65 497.96 4594.12 96
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10592.49 2491.19 13267.85 23886.63 16494.84 5179.58 12995.96 1287.62 1494.50 17894.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8291.74 6994.41 7088.17 3295.98 1086.37 3497.99 4093.96 103
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9994.03 8986.57 5295.80 2487.35 2297.62 6294.20 90
X-MVStestdata85.04 11682.70 16492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9916.05 38286.57 5295.80 2487.35 2297.62 6294.20 90
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9890.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3487.35 2298.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7691.38 7393.80 10287.20 4695.80 2487.10 2997.69 5993.93 104
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9588.35 2995.56 3887.74 1197.74 5792.85 145
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8194.00 9188.26 3095.71 3187.28 2598.39 2092.55 157
VDDNet84.35 13085.39 11781.25 21095.13 3159.32 28385.42 13781.11 28386.41 2787.41 14696.21 1973.61 18790.61 20566.33 24496.85 8693.81 112
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 8887.50 14592.38 14081.42 11193.28 12783.07 6997.24 7791.67 191
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9793.83 2793.60 10990.81 792.96 13785.02 5398.45 1892.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12797.64 283.45 8194.55 7786.02 4498.60 1296.67 27
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12978.20 11086.69 16392.28 14580.36 12395.06 6186.17 4096.49 10090.22 226
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8992.09 6293.89 10083.80 7693.10 13482.67 7498.04 3693.64 119
EGC-MVSNET74.79 26569.99 30389.19 6394.89 3787.00 1191.89 3486.28 2251.09 3832.23 38595.98 2381.87 10689.48 23079.76 10495.96 12391.10 203
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9090.15 1695.67 3386.82 3097.34 7492.19 175
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 8978.78 10392.51 5593.64 10888.13 3493.84 10384.83 5697.55 6794.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4180.07 8686.75 16093.26 11293.64 290.93 19284.60 5890.75 25793.97 102
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10092.87 4693.74 10590.60 1195.21 5782.87 7298.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12993.60 5580.16 8489.13 12093.44 11083.82 7590.98 19083.86 6595.30 15093.60 121
test_0728_SECOND86.79 9694.25 4572.45 14590.54 4894.10 3495.88 1686.42 3297.97 4392.02 180
SED-MVS90.46 3391.64 1786.93 9394.18 4672.65 13590.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4297.92 4692.29 169
IU-MVS94.18 4672.64 13790.82 14156.98 31589.67 10885.78 4697.92 4693.28 130
test_241102_ONE94.18 4672.65 13593.69 5083.62 4794.11 2293.78 10490.28 1495.50 45
DVP-MVScopyleft90.06 3991.32 2886.29 10594.16 4972.56 14190.54 4891.01 13683.61 4893.75 3094.65 5789.76 1895.78 2786.42 3297.97 4390.55 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14190.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4387.16 2797.60 6492.73 148
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2797.60 6492.73 148
MIMVSNet183.63 15084.59 13180.74 21994.06 5362.77 24082.72 19684.53 25577.57 11890.34 9295.92 2476.88 16085.83 28661.88 28097.42 7293.62 120
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12994.02 5464.13 22484.38 15391.29 12884.88 3892.06 6393.84 10186.45 5493.73 10573.22 18398.66 1097.69 9
新几何182.95 18193.96 5578.56 8480.24 28955.45 32083.93 21891.08 17571.19 21588.33 25265.84 24993.07 20981.95 330
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9288.19 3196.29 487.61 1598.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 5777.77 9192.84 48
test_one_060193.85 5873.27 13094.11 3386.57 2593.47 3894.64 6088.42 26
save fliter93.75 5977.44 9686.31 12789.72 17270.80 203
bld_raw_dy_0_6484.85 12084.44 13586.07 11393.73 6074.93 12188.57 9281.90 27870.44 20691.28 7795.18 4256.62 29389.28 23985.15 5097.09 8193.99 100
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13191.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6479.95 10198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16389.71 10694.82 5285.09 6395.77 2984.17 6298.03 3893.26 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11792.36 2689.06 18577.34 11993.63 3595.83 2565.40 24195.90 1485.01 5498.23 2797.49 13
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14670.00 21494.55 1596.67 1187.94 3793.59 11484.27 6195.97 12295.52 49
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 11089.45 7793.61 5379.44 9386.55 16592.95 12374.84 17395.22 5580.78 9395.83 13194.46 80
plane_prior793.45 6677.31 99
WR-MVS83.56 15284.40 13881.06 21593.43 6854.88 32278.67 26385.02 24781.24 7290.74 8991.56 16272.85 19991.08 18868.00 23498.04 3697.23 18
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8788.13 3496.30 384.51 5997.81 5291.70 190
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16069.27 21894.39 1696.38 1586.02 6093.52 11883.96 6395.92 12795.34 53
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10191.97 10870.73 20494.19 2196.67 1176.94 15494.57 7583.07 6996.28 10896.15 33
test22293.31 7176.54 10679.38 25077.79 30052.59 33282.36 23990.84 18566.83 23391.69 23681.25 338
tt080588.09 7489.79 5182.98 17993.26 7363.94 22791.10 4189.64 17585.07 3590.91 8591.09 17489.16 2291.87 16882.03 8195.87 12993.13 136
DU-MVS86.80 9086.99 9186.21 10993.24 7467.02 19683.16 18692.21 10181.73 6690.92 8391.97 15077.20 14893.99 9674.16 16698.35 2197.61 10
NR-MVSNet86.00 10286.22 10285.34 12793.24 7464.56 22082.21 21490.46 15080.99 7588.42 13091.97 15077.56 14493.85 10172.46 19398.65 1197.61 10
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7495.32 1097.24 572.94 19894.85 6685.07 5197.78 5397.26 16
UniMVSNet (Re)86.87 8786.98 9286.55 10093.11 7768.48 18483.80 16992.87 8580.37 8089.61 11291.81 15777.72 14294.18 8975.00 16198.53 1596.99 24
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6086.67 3197.60 6494.18 92
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11289.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12278.35 11898.76 395.61 48
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1697.98 4292.98 142
114514_t83.10 16282.54 16984.77 13792.90 8169.10 18286.65 12290.62 14754.66 32381.46 25790.81 18676.98 15394.38 8272.62 19196.18 11290.82 210
testdata79.54 23892.87 8272.34 14680.14 29059.91 29885.47 18891.75 15967.96 22885.24 29068.57 23192.18 22981.06 343
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 10085.25 13891.23 13077.31 12187.07 15491.47 16482.94 8594.71 6984.67 5796.27 11092.62 155
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10191.19 4095.74 581.38 7092.28 5993.80 10286.89 4994.64 7285.52 4797.51 7194.30 89
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11192.86 8467.02 19682.55 20291.56 11983.08 5490.92 8391.82 15678.25 13893.99 9674.16 16698.35 2197.49 13
plane_prior192.83 86
原ACMM184.60 14192.81 8774.01 12691.50 12162.59 27282.73 23590.67 19176.53 16194.25 8569.24 21795.69 13985.55 285
plane_prior692.61 8876.54 10674.84 173
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7891.13 7993.19 11386.22 5795.97 1182.23 8097.18 7990.45 222
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6589.58 5685.88 11792.55 9072.22 14984.01 16089.44 18088.63 1694.38 1795.77 2686.38 5693.59 11479.84 10295.21 15191.82 186
SixPastTwentyTwo87.20 8587.45 8386.45 10292.52 9169.19 18087.84 10388.05 20181.66 6794.64 1496.53 1465.94 23894.75 6883.02 7196.83 8895.41 51
ACMH76.49 1489.34 5591.14 3183.96 15692.50 9270.36 16789.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25383.33 6798.30 2493.20 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 20481.68 17875.94 28892.46 9347.98 36076.70 28981.67 28073.45 16484.87 19792.82 12774.66 17886.51 27461.66 28396.85 8693.33 128
F-COLMAP84.97 11983.42 15089.63 5592.39 9483.40 4888.83 8791.92 11073.19 17380.18 27789.15 22177.04 15293.28 12765.82 25092.28 22592.21 174
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16671.54 19594.28 2096.54 1381.57 10994.27 8386.26 3696.49 10097.09 21
TEST992.34 9679.70 7483.94 16290.32 15565.41 26084.49 20290.97 17882.03 10193.63 109
train_agg85.98 10385.28 11988.07 8292.34 9679.70 7483.94 16290.32 15565.79 25184.49 20290.97 17881.93 10393.63 10981.21 8796.54 9790.88 208
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12491.09 13478.77 10484.85 19890.89 18280.85 11795.29 5281.14 8895.32 14792.34 166
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10991.09 4291.87 11272.61 18292.16 6095.23 4166.01 23795.59 3686.02 4497.78 5397.24 17
FC-MVSNet-test85.93 10487.05 9082.58 19092.25 10056.44 31185.75 13293.09 7577.33 12091.94 6694.65 5774.78 17593.41 12475.11 16098.58 1397.88 7
CDPH-MVS86.17 10185.54 11588.05 8392.25 10075.45 11883.85 16692.01 10665.91 25086.19 17391.75 15983.77 7794.98 6377.43 13596.71 9293.73 114
test111178.53 22578.85 21677.56 26892.22 10247.49 36282.61 19869.24 35472.43 18385.28 18994.20 8051.91 31490.07 22265.36 25496.45 10395.11 62
ZD-MVS92.22 10280.48 6791.85 11371.22 20090.38 9192.98 12086.06 5996.11 581.99 8396.75 91
pmmvs686.52 9488.06 7481.90 19992.22 10262.28 25084.66 14689.15 18383.54 5089.85 10397.32 488.08 3686.80 27070.43 20897.30 7696.62 28
EG-PatchMatch MVS84.08 14084.11 14283.98 15592.22 10272.61 14082.20 21687.02 21872.63 18188.86 12191.02 17678.52 13491.11 18773.41 18091.09 24588.21 256
test_892.09 10678.87 8183.82 16790.31 15765.79 25184.36 20590.96 18081.93 10393.44 122
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9787.35 10892.09 10478.87 10284.27 21294.05 8878.35 13793.65 10780.54 9791.58 23992.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9286.82 9686.17 11192.05 10866.87 19991.21 3988.64 19086.30 2889.60 11392.59 13469.22 22194.91 6573.89 17297.89 4996.72 26
旧先验191.97 10971.77 15381.78 27991.84 15473.92 18493.65 19783.61 307
v7n90.13 3690.96 3887.65 8891.95 11071.06 16189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8794.08 9486.25 3897.63 6197.82 8
NP-MVS91.95 11074.55 12390.17 204
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10793.17 7076.02 13188.64 12691.22 16984.24 7393.37 12577.97 12897.03 8395.52 49
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16981.12 11494.68 7074.48 16395.35 14592.29 169
FIs85.35 11086.27 10182.60 18991.86 11457.31 30485.10 14193.05 7775.83 13691.02 8293.97 9273.57 18892.91 14173.97 17198.02 3997.58 12
test250674.12 27073.39 27076.28 28591.85 11544.20 37284.06 15948.20 38372.30 18981.90 24794.20 8027.22 38689.77 22764.81 25896.02 12094.87 67
ECVR-MVScopyleft78.44 22678.63 22077.88 26491.85 11548.95 35683.68 17269.91 35272.30 18984.26 21394.20 8051.89 31589.82 22663.58 26696.02 12094.87 67
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 8092.89 12587.27 4493.78 10483.69 6697.55 67
MSLP-MVS++85.00 11886.03 10581.90 19991.84 11771.56 15986.75 12193.02 8175.95 13487.12 14989.39 21577.98 13989.40 23777.46 13394.78 17184.75 294
h-mvs3384.25 13482.76 16388.72 7091.82 11982.60 5684.00 16184.98 24971.27 19786.70 16190.55 19463.04 25593.92 9978.26 12194.20 18689.63 234
DP-MVS Recon84.05 14183.22 15386.52 10191.73 12075.27 11983.23 18492.40 9672.04 19282.04 24588.33 23177.91 14193.95 9866.17 24595.12 15690.34 225
SD-MVS88.96 6389.88 4986.22 10891.63 12177.07 10289.82 6493.77 4778.90 10192.88 4592.29 14486.11 5890.22 21386.24 3997.24 7791.36 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
MCST-MVS84.36 12983.93 14685.63 12291.59 12271.58 15883.52 17592.13 10361.82 27883.96 21789.75 21079.93 12893.46 12178.33 11994.34 18291.87 185
agg_prior91.58 12577.69 9390.30 15884.32 20793.18 130
PVSNet_Blended_VisFu81.55 18280.49 19584.70 14091.58 12573.24 13184.21 15491.67 11862.86 27180.94 26287.16 25367.27 23092.87 14269.82 21388.94 27587.99 260
DVP-MVS++90.07 3891.09 3287.00 9291.55 12772.64 13796.19 294.10 3485.33 3293.49 3694.64 6081.12 11495.88 1687.41 2095.94 12592.48 159
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
No_MVS88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
EPP-MVSNet85.47 10885.04 12286.77 9791.52 13069.37 17591.63 3687.98 20381.51 6987.05 15591.83 15566.18 23695.29 5270.75 20396.89 8595.64 46
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17892.38 9870.25 21189.35 11890.68 19082.85 8694.57 7579.55 10795.95 12492.00 181
Baseline_NR-MVSNet84.00 14385.90 10878.29 25691.47 13253.44 33082.29 21087.00 22179.06 9989.55 11495.72 2877.20 14886.14 28172.30 19498.51 1695.28 56
HyFIR lowres test75.12 25972.66 27982.50 19391.44 13365.19 21572.47 32887.31 20846.79 35480.29 27384.30 29552.70 31192.10 16251.88 34186.73 29990.22 226
DP-MVS88.60 6689.01 6387.36 9091.30 13477.50 9487.55 10592.97 8387.95 2089.62 11092.87 12684.56 6893.89 10077.65 13096.62 9490.70 214
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8491.30 13476.92 10387.19 10991.99 10770.56 20584.96 19490.69 18980.01 12695.14 5878.37 11795.78 13691.82 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12394.26 7777.55 14595.86 2184.88 5595.87 12995.24 58
HQP-NCC91.19 13784.77 14273.30 16980.55 269
ACMP_Plane91.19 13784.77 14273.30 16980.55 269
HQP-MVS84.61 12484.06 14386.27 10691.19 13770.66 16384.77 14292.68 9173.30 16980.55 26990.17 20472.10 20694.61 7377.30 13794.47 17993.56 124
VDD-MVS84.23 13684.58 13283.20 17591.17 14065.16 21683.25 18284.97 25079.79 8787.18 14894.27 7474.77 17690.89 19569.24 21796.54 9793.55 126
K. test v385.14 11484.73 12686.37 10391.13 14169.63 17385.45 13676.68 30884.06 4392.44 5796.99 862.03 25894.65 7180.58 9693.24 20594.83 72
lessismore_v085.95 11491.10 14270.99 16270.91 34891.79 6794.42 6961.76 25992.93 13979.52 10993.03 21093.93 104
hse-mvs283.47 15581.81 17788.47 7491.03 14382.27 5782.61 19883.69 26071.27 19786.70 16186.05 27063.04 25592.41 15178.26 12193.62 19990.71 213
TransMVSNet (Re)84.02 14285.74 11278.85 24491.00 14455.20 32182.29 21087.26 20979.65 9088.38 13295.52 3383.00 8486.88 26867.97 23596.60 9594.45 82
AUN-MVS81.18 18678.78 21788.39 7690.93 14582.14 5882.51 20483.67 26164.69 26480.29 27385.91 27351.07 31892.38 15276.29 14893.63 19890.65 217
PAPM_NR83.23 15883.19 15583.33 17190.90 14665.98 20888.19 9790.78 14278.13 11280.87 26487.92 23973.49 19192.42 15070.07 21088.40 28091.60 193
CSCG86.26 9786.47 9885.60 12390.87 14774.26 12587.98 10091.85 11380.35 8189.54 11688.01 23579.09 13192.13 15975.51 15495.06 15890.41 223
PLCcopyleft73.85 1682.09 17480.31 19787.45 8990.86 14880.29 6985.88 13090.65 14568.17 23176.32 30686.33 26473.12 19792.61 14761.40 28590.02 26589.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test1286.57 9990.74 14972.63 13990.69 14482.76 23479.20 13094.80 6795.32 14792.27 171
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15881.56 6890.02 9891.20 17182.40 9290.81 19873.58 17894.66 17594.56 76
DPM-MVS80.10 20979.18 21282.88 18590.71 15169.74 17078.87 26090.84 14060.29 29575.64 31585.92 27267.28 22993.11 13371.24 19891.79 23485.77 284
TAMVS78.08 22976.36 24283.23 17390.62 15272.87 13379.08 25680.01 29161.72 28081.35 25986.92 25863.96 24888.78 24750.61 34293.01 21188.04 259
test_prior86.32 10490.59 15371.99 15292.85 8694.17 9192.80 146
ambc82.98 17990.55 15464.86 21788.20 9689.15 18389.40 11793.96 9571.67 21391.38 18178.83 11496.55 9692.71 151
Anonymous2023121188.40 6789.62 5584.73 13890.46 15565.27 21388.86 8693.02 8187.15 2393.05 4397.10 682.28 9792.02 16376.70 14297.99 4096.88 25
Test_1112_low_res73.90 27273.08 27376.35 28390.35 15655.95 31273.40 32586.17 22850.70 34773.14 33085.94 27158.31 28185.90 28456.51 30983.22 33087.20 270
VPA-MVSNet83.47 15584.73 12679.69 23590.29 15757.52 30381.30 22688.69 18976.29 12787.58 14494.44 6680.60 12187.20 26366.60 24396.82 8994.34 88
FMVSNet184.55 12685.45 11681.85 20190.27 15861.05 26386.83 11788.27 19878.57 10789.66 10995.64 3075.43 16690.68 20269.09 22195.33 14693.82 109
Anonymous2024052986.20 10087.13 8783.42 16990.19 15964.55 22184.55 14890.71 14385.85 3189.94 10295.24 4082.13 9990.40 20969.19 22096.40 10595.31 55
MVS_111021_HR84.63 12384.34 14085.49 12690.18 16075.86 11679.23 25587.13 21373.35 16685.56 18689.34 21683.60 8090.50 20776.64 14394.05 18990.09 231
GeoE85.45 10985.81 11084.37 14490.08 16167.07 19585.86 13191.39 12672.33 18887.59 14390.25 20084.85 6692.37 15378.00 12691.94 23393.66 116
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13379.26 9689.68 10794.81 5582.44 9087.74 25776.54 14588.74 27896.61 29
nrg03087.85 8088.49 7085.91 11590.07 16369.73 17187.86 10294.20 2574.04 15592.70 5394.66 5685.88 6191.50 17479.72 10597.32 7596.50 31
AdaColmapbinary83.66 14983.69 14983.57 16690.05 16472.26 14886.29 12890.00 16878.19 11181.65 25487.16 25383.40 8294.24 8661.69 28294.76 17484.21 299
pm-mvs183.69 14884.95 12479.91 23190.04 16559.66 28082.43 20687.44 20675.52 14187.85 14095.26 3981.25 11385.65 28868.74 22796.04 11994.42 85
CHOSEN 1792x268872.45 28370.56 29578.13 25890.02 16663.08 23568.72 34383.16 26542.99 36975.92 31185.46 27757.22 29085.18 29249.87 34681.67 34086.14 279
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16369.87 21595.06 1196.14 2184.28 7293.07 13587.68 1396.34 10697.09 21
1112_ss74.82 26473.74 26578.04 26189.57 16860.04 27576.49 29387.09 21754.31 32473.66 32979.80 33960.25 26786.76 27258.37 29984.15 32687.32 269
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9584.32 20789.33 21783.87 7494.53 7882.45 7694.89 16694.90 65
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11184.26 4090.87 8893.92 9982.18 9889.29 23873.75 17594.81 17093.70 115
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9589.42 7995.73 677.87 11481.64 25587.25 25182.43 9194.53 7877.65 13096.46 10294.14 95
PCF-MVS74.62 1582.15 17380.92 19185.84 11889.43 17272.30 14780.53 23491.82 11557.36 31387.81 14189.92 20777.67 14393.63 10958.69 29795.08 15791.58 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 25373.51 26982.71 18789.35 17373.62 12780.06 23885.20 24160.30 29473.96 32787.94 23757.89 28689.45 23352.02 33674.87 36585.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15383.10 15884.90 13289.34 17483.87 4684.54 15088.77 18779.09 9883.54 22388.66 22874.87 17281.73 31266.84 24092.29 22489.11 244
EC-MVSNet88.01 7588.32 7287.09 9189.28 17572.03 15190.31 5496.31 380.88 7785.12 19189.67 21184.47 7095.46 4682.56 7596.26 11193.77 113
TSAR-MVS + GP.83.95 14482.69 16587.72 8589.27 17681.45 6383.72 17181.58 28274.73 14985.66 18386.06 26972.56 20492.69 14575.44 15695.21 15189.01 250
MVS_111021_LR84.28 13383.76 14885.83 11989.23 17783.07 5180.99 23083.56 26372.71 18086.07 17689.07 22281.75 10886.19 27977.11 13993.36 20088.24 255
MVS_030486.35 9685.92 10787.66 8789.21 17873.16 13288.40 9583.63 26281.27 7180.87 26494.12 8671.49 21495.71 3187.79 1096.50 9994.11 97
LFMVS80.15 20880.56 19378.89 24389.19 17955.93 31385.22 13973.78 32882.96 5584.28 21192.72 13257.38 28890.07 22263.80 26595.75 13790.68 215
CLD-MVS83.18 15982.64 16684.79 13589.05 18067.82 19277.93 27192.52 9468.33 22985.07 19281.54 32582.06 10092.96 13769.35 21697.91 4893.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3090.34 4791.38 2489.03 18184.23 4593.58 694.68 1690.65 790.33 9393.95 9784.50 6995.37 5080.87 9195.50 14294.53 79
CDS-MVSNet77.32 23675.40 25183.06 17789.00 18272.48 14477.90 27282.17 27560.81 28978.94 28883.49 30359.30 27488.76 24854.64 32592.37 22187.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 18779.58 20885.52 12488.99 18366.45 20387.03 11375.51 31673.76 15988.32 13490.20 20137.96 37194.16 9379.36 11195.13 15495.93 42
tfpnnormal81.79 18082.95 16078.31 25488.93 18455.40 31780.83 23382.85 26976.81 12485.90 18194.14 8474.58 17986.51 27466.82 24195.68 14093.01 141
Vis-MVSNet (Re-imp)77.82 23177.79 22977.92 26388.82 18551.29 34783.28 18071.97 34174.04 15582.23 24189.78 20957.38 28889.41 23657.22 30695.41 14393.05 140
SDMVSNet81.90 17983.17 15678.10 25988.81 18662.45 24676.08 30086.05 23073.67 16083.41 22493.04 11682.35 9380.65 31870.06 21195.03 15991.21 200
sd_testset79.95 21281.39 18475.64 29188.81 18658.07 29876.16 29982.81 27073.67 16083.41 22493.04 11680.96 11677.65 32658.62 29895.03 15991.21 200
TAPA-MVS77.73 1285.71 10684.83 12588.37 7788.78 18879.72 7387.15 11193.50 5669.17 21985.80 18289.56 21280.76 11892.13 15973.21 18895.51 14193.25 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testf189.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
FPMVS72.29 28672.00 28573.14 30488.63 19185.00 3674.65 31467.39 35671.94 19477.80 29787.66 24350.48 32175.83 33349.95 34479.51 34858.58 377
dcpmvs_284.23 13685.14 12081.50 20788.61 19261.98 25482.90 19393.11 7368.66 22792.77 5192.39 13978.50 13587.63 25976.99 14192.30 22294.90 65
ETV-MVS84.31 13183.91 14785.52 12488.58 19370.40 16684.50 15293.37 5878.76 10584.07 21678.72 34780.39 12295.13 5973.82 17492.98 21291.04 204
BH-untuned80.96 18980.99 18980.84 21888.55 19468.23 18580.33 23788.46 19172.79 17986.55 16586.76 25974.72 17791.77 17161.79 28188.99 27382.52 324
Anonymous20240521180.51 19681.19 18878.49 25188.48 19557.26 30576.63 29182.49 27281.21 7384.30 21092.24 14767.99 22786.24 27862.22 27595.13 15491.98 183
ab-mvs79.67 21380.56 19376.99 27488.48 19556.93 30784.70 14586.06 22968.95 22380.78 26693.08 11575.30 16884.62 29656.78 30790.90 25289.43 238
PHI-MVS86.38 9585.81 11088.08 8188.44 19777.34 9889.35 8093.05 7773.15 17484.76 19987.70 24278.87 13394.18 8980.67 9596.29 10792.73 148
xiu_mvs_v1_base_debu80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base_debi80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
MG-MVS80.32 20380.94 19078.47 25288.18 20152.62 33782.29 21085.01 24872.01 19379.24 28692.54 13769.36 22093.36 12670.65 20589.19 27289.45 236
PM-MVS80.20 20679.00 21383.78 16088.17 20286.66 1581.31 22466.81 36269.64 21688.33 13390.19 20264.58 24383.63 30471.99 19690.03 26481.06 343
v1086.54 9387.10 8884.84 13388.16 20363.28 23386.64 12392.20 10275.42 14392.81 5094.50 6374.05 18394.06 9583.88 6496.28 10897.17 20
canonicalmvs85.50 10786.14 10483.58 16587.97 20467.13 19487.55 10594.32 1873.44 16588.47 12987.54 24586.45 5491.06 18975.76 15393.76 19392.54 158
EIA-MVS82.19 17281.23 18785.10 13087.95 20569.17 18183.22 18593.33 6170.42 20778.58 29079.77 34177.29 14794.20 8871.51 19788.96 27491.93 184
VNet79.31 21480.27 19876.44 28287.92 20653.95 32675.58 30684.35 25674.39 15382.23 24190.72 18872.84 20084.39 29860.38 29193.98 19090.97 205
v886.22 9986.83 9584.36 14687.82 20762.35 24986.42 12691.33 12776.78 12592.73 5294.48 6573.41 19293.72 10683.10 6895.41 14397.01 23
alignmvs83.94 14583.98 14583.80 15887.80 20867.88 19184.54 15091.42 12573.27 17288.41 13187.96 23672.33 20590.83 19776.02 15194.11 18792.69 152
v119284.57 12584.69 13084.21 15187.75 20962.88 23783.02 18991.43 12369.08 22189.98 10190.89 18272.70 20293.62 11282.41 7794.97 16396.13 34
PatchMatch-RL74.48 26773.22 27278.27 25787.70 21085.26 3475.92 30270.09 35064.34 26576.09 30981.25 32765.87 23978.07 32553.86 32783.82 32771.48 363
v114484.54 12784.72 12884.00 15487.67 21162.55 24482.97 19090.93 13970.32 21089.80 10490.99 17773.50 18993.48 12081.69 8694.65 17695.97 39
v124084.30 13284.51 13483.65 16387.65 21261.26 26082.85 19491.54 12067.94 23690.68 9090.65 19271.71 21293.64 10882.84 7394.78 17196.07 36
v192192084.23 13684.37 13983.79 15987.64 21361.71 25582.91 19291.20 13167.94 23690.06 9690.34 19772.04 20993.59 11482.32 7894.91 16496.07 36
v14419284.24 13584.41 13783.71 16287.59 21461.57 25682.95 19191.03 13567.82 23989.80 10490.49 19573.28 19593.51 11981.88 8594.89 16696.04 38
Fast-Effi-MVS+81.04 18880.57 19282.46 19487.50 21563.22 23478.37 26789.63 17668.01 23381.87 24882.08 32082.31 9492.65 14667.10 23788.30 28591.51 196
pmmvs-eth3d78.42 22777.04 23682.57 19287.44 21674.41 12480.86 23279.67 29255.68 31984.69 20090.31 19960.91 26285.42 28962.20 27691.59 23887.88 263
IterMVS-LS84.73 12284.98 12383.96 15687.35 21763.66 22883.25 18289.88 17076.06 12989.62 11092.37 14373.40 19492.52 14878.16 12394.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 25575.05 25576.66 28187.27 21851.88 34281.07 22973.26 33275.68 13883.25 22786.37 26345.54 34388.80 24451.98 33790.99 24789.31 240
MIMVSNet71.09 29571.59 28869.57 32587.23 21950.07 35478.91 25871.83 34260.20 29771.26 33991.76 15855.08 30576.09 33141.06 37087.02 29882.54 323
Effi-MVS+83.90 14684.01 14483.57 16687.22 22065.61 21286.55 12592.40 9678.64 10681.34 26084.18 29783.65 7992.93 13974.22 16587.87 28992.17 176
BH-RMVSNet80.53 19580.22 20181.49 20887.19 22166.21 20677.79 27486.23 22774.21 15483.69 21988.50 22973.25 19690.75 19963.18 27187.90 28887.52 266
thisisatest053079.07 21577.33 23484.26 15087.13 22264.58 21983.66 17375.95 31168.86 22485.22 19087.36 24938.10 36993.57 11775.47 15594.28 18494.62 74
Effi-MVS+-dtu85.82 10583.38 15193.14 387.13 22291.15 287.70 10488.42 19274.57 15183.56 22285.65 27478.49 13694.21 8772.04 19592.88 21494.05 99
v2v48284.09 13984.24 14183.62 16487.13 22261.40 25782.71 19789.71 17372.19 19189.55 11491.41 16570.70 21793.20 12981.02 8993.76 19396.25 32
jason77.42 23575.75 24882.43 19587.10 22569.27 17677.99 27081.94 27751.47 34177.84 29585.07 28760.32 26689.00 24170.74 20489.27 27189.03 248
jason: jason.
PS-MVSNAJ77.04 23976.53 24178.56 24987.09 22661.40 25775.26 30987.13 21361.25 28474.38 32677.22 35776.94 15490.94 19164.63 26184.83 32183.35 312
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14687.09 22665.22 21484.16 15594.23 2277.89 11391.28 7793.66 10784.35 7192.71 14380.07 9894.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v2_base77.19 23776.75 23978.52 25087.01 22861.30 25975.55 30787.12 21661.24 28574.45 32478.79 34677.20 14890.93 19264.62 26284.80 32283.32 313
thres600view775.97 25175.35 25377.85 26687.01 22851.84 34380.45 23573.26 33275.20 14583.10 23086.31 26645.54 34389.05 24055.03 32292.24 22692.66 153
CL-MVSNet_self_test76.81 24277.38 23275.12 29486.90 23051.34 34573.20 32680.63 28868.30 23081.80 25288.40 23066.92 23280.90 31555.35 31994.90 16593.12 138
BH-w/o76.57 24576.07 24678.10 25986.88 23165.92 20977.63 27686.33 22465.69 25580.89 26379.95 33868.97 22490.74 20053.01 33385.25 31377.62 354
MAR-MVS80.24 20578.74 21984.73 13886.87 23278.18 8585.75 13287.81 20465.67 25677.84 29578.50 34873.79 18690.53 20661.59 28490.87 25385.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FE-MVS79.98 21178.86 21583.36 17086.47 23366.45 20389.73 6584.74 25472.80 17884.22 21591.38 16644.95 35293.60 11363.93 26491.50 24090.04 232
QAPM82.59 16682.59 16882.58 19086.44 23466.69 20089.94 6290.36 15467.97 23584.94 19692.58 13672.71 20192.18 15870.63 20687.73 29188.85 251
PAPM71.77 28970.06 30276.92 27686.39 23553.97 32576.62 29286.62 22253.44 32863.97 36884.73 29157.79 28792.34 15439.65 37281.33 34484.45 296
GBi-Net82.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
test182.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
FMVSNet281.31 18481.61 18080.41 22586.38 23658.75 29483.93 16486.58 22372.43 18387.65 14292.98 12063.78 24990.22 21366.86 23893.92 19192.27 171
3Dnovator80.37 784.80 12184.71 12985.06 13186.36 23974.71 12288.77 8990.00 16875.65 13984.96 19493.17 11474.06 18291.19 18478.28 12091.09 24589.29 242
Anonymous2023120671.38 29371.88 28669.88 32286.31 24054.37 32370.39 33774.62 31952.57 33376.73 30288.76 22559.94 26972.06 34044.35 36593.23 20683.23 315
baseline85.20 11385.93 10683.02 17886.30 24162.37 24884.55 14893.96 3974.48 15287.12 14992.03 14982.30 9591.94 16478.39 11694.21 18594.74 73
iter_conf_final80.36 20178.88 21484.79 13586.29 24266.36 20586.95 11486.25 22668.16 23282.09 24489.48 21336.59 37494.51 8079.83 10394.30 18393.50 127
API-MVS82.28 17082.61 16781.30 20986.29 24269.79 16988.71 9087.67 20578.42 10982.15 24384.15 29877.98 13991.59 17365.39 25392.75 21682.51 325
tfpn200view974.86 26374.23 26276.74 28086.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24789.31 240
thres40075.14 25774.23 26277.86 26586.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24792.66 153
UGNet82.78 16381.64 17986.21 10986.20 24676.24 11386.86 11585.68 23577.07 12373.76 32892.82 12769.64 21891.82 17069.04 22393.69 19690.56 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 14782.85 16286.63 9886.17 24772.21 15083.76 17091.43 12377.24 12274.39 32587.45 24775.36 16795.42 4877.03 14092.83 21592.25 173
casdiffmvspermissive85.21 11285.85 10983.31 17286.17 24762.77 24083.03 18893.93 4074.69 15088.21 13592.68 13382.29 9691.89 16777.87 12993.75 19595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(test-final)83.13 16183.02 15983.43 16886.16 24966.08 20788.00 9988.36 19475.55 14085.02 19392.75 13165.12 24292.50 14974.94 16291.30 24391.72 188
TR-MVS76.77 24375.79 24779.72 23486.10 25065.79 21077.14 28283.02 26765.20 26181.40 25882.10 31866.30 23490.73 20155.57 31685.27 31282.65 319
LCM-MVSNet-Re83.48 15485.06 12178.75 24685.94 25155.75 31680.05 23994.27 1976.47 12696.09 594.54 6283.31 8389.75 22959.95 29294.89 16690.75 211
test_fmvsmvis_n_192085.22 11185.36 11884.81 13485.80 25276.13 11585.15 14092.32 9961.40 28391.33 7490.85 18483.76 7886.16 28084.31 6093.28 20492.15 177
Fast-Effi-MVS+-dtu82.54 16781.41 18385.90 11685.60 25376.53 10883.07 18789.62 17773.02 17679.11 28783.51 30280.74 11990.24 21268.76 22689.29 26990.94 206
v14882.31 16982.48 17081.81 20485.59 25459.66 28081.47 22386.02 23172.85 17788.05 13790.65 19270.73 21690.91 19475.15 15991.79 23494.87 67
MVSFormer82.23 17181.57 18284.19 15385.54 25569.26 17791.98 3190.08 16671.54 19576.23 30785.07 28758.69 27994.27 8386.26 3688.77 27689.03 248
lupinMVS76.37 24974.46 26082.09 19685.54 25569.26 17776.79 28780.77 28750.68 34876.23 30782.82 31258.69 27988.94 24269.85 21288.77 27688.07 257
TinyColmap81.25 18582.34 17277.99 26285.33 25760.68 27182.32 20988.33 19671.26 19986.97 15692.22 14877.10 15186.98 26762.37 27495.17 15386.31 278
test_fmvsm_n_192083.60 15182.89 16185.74 12085.22 25877.74 9284.12 15790.48 14959.87 29986.45 17291.12 17375.65 16485.89 28582.28 7990.87 25393.58 122
PAPR78.84 21978.10 22781.07 21485.17 25960.22 27482.21 21490.57 14862.51 27375.32 31984.61 29274.99 17192.30 15659.48 29588.04 28790.68 215
pmmvs474.92 26272.98 27580.73 22084.95 26071.71 15776.23 29777.59 30152.83 33177.73 29986.38 26256.35 29684.97 29357.72 30587.05 29685.51 286
baseline173.26 27673.54 26872.43 31184.92 26147.79 36179.89 24274.00 32465.93 24978.81 28986.28 26756.36 29581.63 31356.63 30879.04 35487.87 264
Patchmatch-RL test74.48 26773.68 26676.89 27884.83 26266.54 20172.29 32969.16 35557.70 30986.76 15986.33 26445.79 34282.59 30769.63 21490.65 26181.54 334
patch_mono-278.89 21779.39 21077.41 27184.78 26368.11 18875.60 30483.11 26660.96 28879.36 28389.89 20875.18 16972.97 33873.32 18292.30 22291.15 202
KD-MVS_self_test81.93 17883.14 15778.30 25584.75 26452.75 33480.37 23689.42 18170.24 21290.26 9493.39 11174.55 18086.77 27168.61 22996.64 9395.38 52
XXY-MVS74.44 26976.19 24469.21 32784.61 26552.43 33871.70 33177.18 30460.73 29180.60 26790.96 18075.44 16569.35 34856.13 31288.33 28185.86 283
cascas76.29 25074.81 25680.72 22184.47 26662.94 23673.89 32187.34 20755.94 31875.16 32176.53 36163.97 24791.16 18565.00 25690.97 25088.06 258
PVSNet_BlendedMVS78.80 22177.84 22881.65 20684.43 26763.41 23079.49 24990.44 15161.70 28175.43 31687.07 25669.11 22291.44 17760.68 28992.24 22690.11 230
PVSNet_Blended76.49 24775.40 25179.76 23384.43 26763.41 23075.14 31090.44 15157.36 31375.43 31678.30 34969.11 22291.44 17760.68 28987.70 29284.42 297
OpenMVScopyleft76.72 1381.98 17782.00 17581.93 19884.42 26968.22 18688.50 9489.48 17966.92 24481.80 25291.86 15272.59 20390.16 21571.19 19991.25 24487.40 268
OpenMVS_ROBcopyleft70.19 1777.77 23377.46 23078.71 24784.39 27061.15 26181.18 22882.52 27162.45 27583.34 22687.37 24866.20 23588.66 24964.69 26085.02 31586.32 277
test_yl78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
DCV-MVSNet78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
DELS-MVS81.44 18381.25 18582.03 19784.27 27362.87 23876.47 29492.49 9570.97 20281.64 25583.83 29975.03 17092.70 14474.29 16492.22 22890.51 221
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 12886.33 10078.78 24584.20 27473.57 12889.55 7290.44 15184.24 4184.38 20494.89 4976.35 16380.40 31976.14 14996.80 9082.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EI-MVSNet-Vis-set85.12 11584.53 13386.88 9484.01 27572.76 13483.91 16585.18 24280.44 7988.75 12485.49 27680.08 12591.92 16582.02 8290.85 25595.97 39
IterMVS-SCA-FT80.64 19479.41 20984.34 14883.93 27669.66 17276.28 29681.09 28472.43 18386.47 17190.19 20260.46 26493.15 13277.45 13486.39 30490.22 226
MSDG80.06 21079.99 20780.25 22783.91 27768.04 19077.51 27989.19 18277.65 11681.94 24683.45 30476.37 16286.31 27763.31 27086.59 30186.41 276
EI-MVSNet-UG-set85.04 11684.44 13586.85 9583.87 27872.52 14383.82 16785.15 24380.27 8388.75 12485.45 27879.95 12791.90 16681.92 8490.80 25696.13 34
thres20072.34 28571.55 29174.70 29783.48 27951.60 34475.02 31173.71 32970.14 21378.56 29180.57 33246.20 33588.20 25446.99 35789.29 26984.32 298
USDC76.63 24476.73 24076.34 28483.46 28057.20 30680.02 24088.04 20252.14 33783.65 22091.25 16863.24 25286.65 27354.66 32494.11 18785.17 289
HY-MVS64.64 1873.03 27972.47 28374.71 29683.36 28154.19 32482.14 21781.96 27656.76 31769.57 34686.21 26860.03 26884.83 29549.58 34782.65 33685.11 290
EI-MVSNet82.61 16582.42 17183.20 17583.25 28263.66 22883.50 17685.07 24476.06 12986.55 16585.10 28473.41 19290.25 21078.15 12590.67 25995.68 45
CVMVSNet72.62 28271.41 29276.28 28583.25 28260.34 27383.50 17679.02 29637.77 37876.33 30585.10 28449.60 32587.41 26170.54 20777.54 36081.08 341
V4283.47 15583.37 15283.75 16183.16 28463.33 23281.31 22490.23 16269.51 21790.91 8590.81 18674.16 18192.29 15780.06 9990.22 26395.62 47
Anonymous2024052180.18 20781.25 18576.95 27583.15 28560.84 26882.46 20585.99 23268.76 22586.78 15893.73 10659.13 27677.44 32773.71 17697.55 6792.56 156
EU-MVSNet75.12 25974.43 26177.18 27383.11 28659.48 28285.71 13482.43 27339.76 37585.64 18488.76 22544.71 35487.88 25673.86 17385.88 30884.16 300
ET-MVSNet_ETH3D75.28 25672.77 27782.81 18683.03 28768.11 18877.09 28376.51 30960.67 29277.60 30080.52 33338.04 37091.15 18670.78 20290.68 25889.17 243
iter_conf0578.81 22077.35 23383.21 17482.98 28860.75 27084.09 15888.34 19563.12 26984.25 21489.48 21331.41 37994.51 8076.64 14395.83 13194.38 87
FMVSNet378.80 22178.55 22179.57 23782.89 28956.89 30981.76 21885.77 23469.04 22286.00 17790.44 19651.75 31690.09 22165.95 24693.34 20191.72 188
MVS_Test82.47 16883.22 15380.22 22882.62 29057.75 30282.54 20391.96 10971.16 20182.89 23292.52 13877.41 14690.50 20780.04 10087.84 29092.40 163
LF4IMVS82.75 16481.93 17685.19 12882.08 29180.15 7085.53 13588.76 18868.01 23385.58 18587.75 24171.80 21186.85 26974.02 17093.87 19288.58 253
PVSNet58.17 2166.41 32365.63 32868.75 33081.96 29249.88 35562.19 36272.51 33751.03 34468.04 35175.34 36450.84 31974.77 33545.82 36282.96 33181.60 333
GA-MVS75.83 25274.61 25779.48 23981.87 29359.25 28473.42 32482.88 26868.68 22679.75 27881.80 32250.62 32089.46 23266.85 23985.64 30989.72 233
MS-PatchMatch70.93 29770.22 30073.06 30581.85 29462.50 24573.82 32277.90 29952.44 33475.92 31181.27 32655.67 30081.75 31155.37 31877.70 35874.94 359
SCA73.32 27572.57 28175.58 29281.62 29555.86 31478.89 25971.37 34661.73 27974.93 32283.42 30560.46 26487.01 26458.11 30382.63 33883.88 301
FMVSNet572.10 28771.69 28773.32 30281.57 29653.02 33376.77 28878.37 29863.31 26776.37 30491.85 15336.68 37378.98 32247.87 35492.45 22087.95 261
thisisatest051573.00 28070.52 29680.46 22481.45 29759.90 27873.16 32774.31 32357.86 30876.08 31077.78 35137.60 37292.12 16165.00 25691.45 24189.35 239
eth_miper_zixun_eth80.84 19080.22 20182.71 18781.41 29860.98 26677.81 27390.14 16567.31 24286.95 15787.24 25264.26 24592.31 15575.23 15891.61 23794.85 71
CANet_DTU77.81 23277.05 23580.09 23081.37 29959.90 27883.26 18188.29 19769.16 22067.83 35383.72 30060.93 26189.47 23169.22 21989.70 26690.88 208
ANet_high83.17 16085.68 11375.65 29081.24 30045.26 36979.94 24192.91 8483.83 4491.33 7496.88 1080.25 12485.92 28368.89 22495.89 12895.76 43
new-patchmatchnet70.10 30373.37 27160.29 35581.23 30116.95 38759.54 36574.62 31962.93 27080.97 26187.93 23862.83 25771.90 34155.24 32095.01 16292.00 181
test20.0373.75 27374.59 25971.22 31581.11 30251.12 34970.15 33972.10 34070.42 20780.28 27591.50 16364.21 24674.72 33746.96 35894.58 17787.82 265
MVS73.21 27872.59 28075.06 29580.97 30360.81 26981.64 22185.92 23346.03 35971.68 33877.54 35268.47 22589.77 22755.70 31585.39 31074.60 360
N_pmnet70.20 30168.80 31274.38 29880.91 30484.81 3959.12 36776.45 31055.06 32175.31 32082.36 31755.74 29954.82 37747.02 35687.24 29583.52 308
IterMVS76.91 24076.34 24378.64 24880.91 30464.03 22576.30 29579.03 29564.88 26383.11 22989.16 22059.90 27084.46 29768.61 22985.15 31487.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 18181.59 18181.79 20580.86 30659.15 28778.61 26490.18 16468.36 22887.20 14787.11 25569.39 21991.62 17278.16 12394.43 18194.60 75
WTY-MVS67.91 31668.35 31466.58 33880.82 30748.12 35965.96 35372.60 33553.67 32771.20 34081.68 32458.97 27769.06 35048.57 35081.67 34082.55 322
IB-MVS62.13 1971.64 29068.97 31079.66 23680.80 30862.26 25173.94 32076.90 30563.27 26868.63 34976.79 35933.83 37791.84 16959.28 29687.26 29484.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 28871.59 28872.62 30880.71 30953.78 32769.72 34171.71 34558.80 30278.03 29280.51 33456.61 29478.84 32362.20 27686.04 30785.23 288
ppachtmachnet_test74.73 26674.00 26476.90 27780.71 30956.89 30971.53 33378.42 29758.24 30579.32 28582.92 31157.91 28584.26 29965.60 25291.36 24289.56 235
testgi72.36 28474.61 25765.59 34180.56 31142.82 37668.29 34473.35 33166.87 24581.84 24989.93 20672.08 20866.92 36146.05 36192.54 21987.01 272
D2MVS76.84 24175.67 25080.34 22680.48 31262.16 25373.50 32384.80 25357.61 31182.24 24087.54 24551.31 31787.65 25870.40 20993.19 20791.23 199
131473.22 27772.56 28275.20 29380.41 31357.84 30081.64 22185.36 23851.68 34073.10 33176.65 36061.45 26085.19 29163.54 26779.21 35282.59 320
cl____80.42 19880.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.37 24186.18 17589.21 21963.08 25490.16 21576.31 14795.80 13493.65 118
DIV-MVS_self_test80.43 19780.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.38 24086.19 17389.22 21863.09 25390.16 21576.32 14695.80 13493.66 116
miper_ehance_all_eth80.34 20280.04 20681.24 21279.82 31658.95 28977.66 27589.66 17465.75 25485.99 18085.11 28368.29 22691.42 17976.03 15092.03 23093.33 128
CR-MVSNet74.00 27173.04 27476.85 27979.58 31762.64 24282.58 20076.90 30550.50 34975.72 31392.38 14048.07 32984.07 30068.72 22882.91 33383.85 304
RPMNet78.88 21878.28 22580.68 22279.58 31762.64 24282.58 20094.16 2774.80 14875.72 31392.59 13448.69 32695.56 3873.48 17982.91 33383.85 304
baseline269.77 30766.89 32078.41 25379.51 31958.09 29776.23 29769.57 35357.50 31264.82 36677.45 35446.02 33788.44 25053.08 33077.83 35688.70 252
UnsupCasMVSNet_bld69.21 31169.68 30567.82 33479.42 32051.15 34867.82 34875.79 31254.15 32577.47 30185.36 28259.26 27570.64 34448.46 35179.35 35081.66 332
PatchT70.52 29972.76 27863.79 34779.38 32133.53 38277.63 27665.37 36473.61 16271.77 33792.79 13044.38 35575.65 33464.53 26385.37 31182.18 327
Patchmtry76.56 24677.46 23073.83 30079.37 32246.60 36682.41 20776.90 30573.81 15885.56 18692.38 14048.07 32983.98 30163.36 26995.31 14990.92 207
mvs_anonymous78.13 22878.76 21876.23 28779.24 32350.31 35378.69 26284.82 25261.60 28283.09 23192.82 12773.89 18587.01 26468.33 23386.41 30391.37 197
MVS-HIRNet61.16 33862.92 33555.87 35979.09 32435.34 38171.83 33057.98 37746.56 35659.05 37591.14 17249.95 32476.43 33038.74 37371.92 36955.84 378
MDA-MVSNet-bldmvs77.47 23476.90 23879.16 24279.03 32564.59 21866.58 35275.67 31473.15 17488.86 12188.99 22366.94 23181.23 31464.71 25988.22 28691.64 192
diffmvspermissive80.40 19980.48 19680.17 22979.02 32660.04 27577.54 27890.28 16166.65 24782.40 23887.33 25073.50 18987.35 26277.98 12789.62 26793.13 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm268.45 31466.83 32173.30 30378.93 32748.50 35779.76 24371.76 34347.50 35369.92 34583.60 30142.07 36388.40 25148.44 35279.51 34883.01 318
tpm67.95 31568.08 31667.55 33578.74 32843.53 37475.60 30467.10 36154.92 32272.23 33588.10 23442.87 36275.97 33252.21 33580.95 34783.15 316
MDTV_nov1_ep1368.29 31578.03 32943.87 37374.12 31772.22 33952.17 33567.02 35585.54 27545.36 34780.85 31655.73 31384.42 324
cl2278.97 21678.21 22681.24 21277.74 33059.01 28877.46 28187.13 21365.79 25184.32 20785.10 28458.96 27890.88 19675.36 15792.03 23093.84 107
EPNet_dtu72.87 28171.33 29377.49 27077.72 33160.55 27282.35 20875.79 31266.49 24858.39 37881.06 32853.68 30785.98 28253.55 32892.97 21385.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 30868.83 31172.33 31277.66 33253.60 32879.29 25169.99 35157.66 31072.53 33482.93 31046.45 33480.08 32160.91 28872.09 36883.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192071.30 29471.58 29070.47 31877.58 33359.99 27774.25 31584.22 25851.06 34374.85 32379.10 34355.10 30468.83 35168.86 22579.20 35382.58 321
dmvs_testset60.59 34262.54 33754.72 36177.26 33427.74 38574.05 31861.00 37260.48 29365.62 36067.03 37455.93 29868.23 35632.07 38069.46 37568.17 368
sss66.92 31867.26 31865.90 34077.23 33551.10 35064.79 35571.72 34452.12 33870.13 34480.18 33657.96 28465.36 36750.21 34381.01 34681.25 338
CostFormer69.98 30668.68 31373.87 29977.14 33650.72 35179.26 25274.51 32151.94 33970.97 34284.75 29045.16 35187.49 26055.16 32179.23 35183.40 311
tpm cat166.76 32265.21 32971.42 31477.09 33750.62 35278.01 26973.68 33044.89 36268.64 34879.00 34445.51 34582.42 31049.91 34570.15 37181.23 340
pmmvs570.73 29870.07 30172.72 30777.03 33852.73 33574.14 31675.65 31550.36 35072.17 33685.37 28155.42 30280.67 31752.86 33487.59 29384.77 293
dmvs_re66.81 32166.98 31966.28 33976.87 33958.68 29571.66 33272.24 33860.29 29569.52 34773.53 36652.38 31264.40 36944.90 36381.44 34375.76 357
EPNet80.37 20078.41 22486.23 10776.75 34073.28 12987.18 11077.45 30276.24 12868.14 35088.93 22465.41 24093.85 10169.47 21596.12 11691.55 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 24876.10 24577.51 26976.72 34160.97 26764.69 35685.04 24663.98 26683.20 22888.22 23256.67 29278.79 32473.22 18393.12 20892.78 147
CHOSEN 280x42059.08 34356.52 34866.76 33776.51 34264.39 22249.62 37559.00 37443.86 36555.66 38068.41 37335.55 37668.21 35743.25 36676.78 36367.69 369
UnsupCasMVSNet_eth71.63 29172.30 28469.62 32476.47 34352.70 33670.03 34080.97 28559.18 30079.36 28388.21 23360.50 26369.12 34958.33 30177.62 35987.04 271
test-LLR67.21 31766.74 32268.63 33176.45 34455.21 31967.89 34567.14 35962.43 27665.08 36372.39 36743.41 35869.37 34661.00 28684.89 31981.31 336
test-mter65.00 32963.79 33268.63 33176.45 34455.21 31967.89 34567.14 35950.98 34565.08 36372.39 36728.27 38469.37 34661.00 28684.89 31981.31 336
miper_enhance_ethall77.83 23076.93 23780.51 22376.15 34658.01 29975.47 30888.82 18658.05 30783.59 22180.69 32964.41 24491.20 18373.16 18992.03 23092.33 167
gg-mvs-nofinetune68.96 31369.11 30868.52 33376.12 34745.32 36883.59 17455.88 37886.68 2464.62 36797.01 730.36 38183.97 30244.78 36482.94 33276.26 356
test_vis1_n70.29 30069.99 30371.20 31675.97 34866.50 20276.69 29080.81 28644.22 36475.43 31677.23 35650.00 32368.59 35266.71 24282.85 33578.52 353
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23275.84 34967.22 19381.21 22782.18 27450.78 34676.50 30387.66 24355.20 30382.99 30662.17 27890.64 26289.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 25879.30 21162.63 34875.56 35075.18 12080.89 23173.10 33475.06 14794.76 1295.32 3587.73 4052.85 37834.16 37797.11 8059.85 375
Patchmatch-test65.91 32567.38 31761.48 35375.51 35143.21 37568.84 34263.79 36662.48 27472.80 33383.42 30544.89 35359.52 37548.27 35386.45 30281.70 331
new_pmnet55.69 34657.66 34749.76 36275.47 35230.59 38359.56 36451.45 38143.62 36762.49 36975.48 36340.96 36549.15 38137.39 37572.52 36669.55 366
gm-plane-assit75.42 35344.97 37152.17 33572.36 36987.90 25554.10 326
MVSTER77.09 23875.70 24981.25 21075.27 35461.08 26277.49 28085.07 24460.78 29086.55 16588.68 22743.14 36190.25 21073.69 17790.67 25992.42 161
PVSNet_051.08 2256.10 34554.97 35059.48 35775.12 35553.28 33255.16 37261.89 36844.30 36359.16 37462.48 37754.22 30665.91 36535.40 37647.01 38059.25 376
test0.0.03 164.66 33064.36 33065.57 34275.03 35646.89 36564.69 35661.58 37162.43 27671.18 34177.54 35243.41 35868.47 35540.75 37182.65 33681.35 335
test_fmvs375.72 25475.20 25477.27 27275.01 35769.47 17478.93 25784.88 25146.67 35587.08 15387.84 24050.44 32271.62 34277.42 13688.53 27990.72 212
tpmvs70.16 30269.56 30671.96 31374.71 35848.13 35879.63 24475.45 31765.02 26270.26 34381.88 32145.34 34885.68 28758.34 30075.39 36482.08 329
test_fmvs1_n70.94 29670.41 29972.53 31073.92 35966.93 19875.99 30184.21 25943.31 36879.40 28279.39 34243.47 35768.55 35369.05 22284.91 31882.10 328
MDA-MVSNet_test_wron70.05 30570.44 29768.88 32973.84 36053.47 32958.93 36967.28 35758.43 30387.09 15285.40 27959.80 27267.25 35959.66 29483.54 32885.92 282
YYNet170.06 30470.44 29768.90 32873.76 36153.42 33158.99 36867.20 35858.42 30487.10 15185.39 28059.82 27167.32 35859.79 29383.50 32985.96 280
test_cas_vis1_n_192069.20 31269.12 30769.43 32673.68 36262.82 23970.38 33877.21 30346.18 35880.46 27278.95 34552.03 31365.53 36665.77 25177.45 36179.95 349
GG-mvs-BLEND67.16 33673.36 36346.54 36784.15 15655.04 37958.64 37761.95 37829.93 38283.87 30338.71 37476.92 36271.07 364
JIA-IIPM69.41 31066.64 32477.70 26773.19 36471.24 16075.67 30365.56 36370.42 20765.18 36292.97 12233.64 37883.06 30553.52 32969.61 37478.79 352
ADS-MVSNet265.87 32663.64 33372.55 30973.16 36556.92 30867.10 34974.81 31849.74 35166.04 35782.97 30846.71 33277.26 32842.29 36769.96 37283.46 309
ADS-MVSNet61.90 33462.19 33861.03 35473.16 36536.42 38067.10 34961.75 36949.74 35166.04 35782.97 30846.71 33263.21 37042.29 36769.96 37283.46 309
DSMNet-mixed60.98 34061.61 34059.09 35872.88 36745.05 37074.70 31346.61 38426.20 38065.34 36190.32 19855.46 30163.12 37141.72 36981.30 34569.09 367
tpmrst66.28 32466.69 32365.05 34472.82 36839.33 37778.20 26870.69 34953.16 33067.88 35280.36 33548.18 32874.75 33658.13 30270.79 37081.08 341
test_fmvs273.57 27472.80 27675.90 28972.74 36968.84 18377.07 28484.32 25745.14 36182.89 23284.22 29648.37 32770.36 34573.40 18187.03 29788.52 254
TESTMET0.1,161.29 33760.32 34364.19 34672.06 37051.30 34667.89 34562.09 36745.27 36060.65 37269.01 37127.93 38564.74 36856.31 31081.65 34276.53 355
dp60.70 34160.29 34461.92 35172.04 37138.67 37970.83 33464.08 36551.28 34260.75 37177.28 35536.59 37471.58 34347.41 35562.34 37875.52 358
pmmvs362.47 33260.02 34569.80 32371.58 37264.00 22670.52 33658.44 37639.77 37466.05 35675.84 36227.10 38772.28 33946.15 36084.77 32373.11 361
EPMVS62.47 33262.63 33662.01 34970.63 37338.74 37874.76 31252.86 38053.91 32667.71 35480.01 33739.40 36766.60 36255.54 31768.81 37680.68 345
mvsany_test365.48 32862.97 33473.03 30669.99 37476.17 11464.83 35443.71 38543.68 36680.25 27687.05 25752.83 31063.09 37251.92 34072.44 36779.84 350
test_vis3_rt71.42 29270.67 29473.64 30169.66 37570.46 16566.97 35189.73 17142.68 37188.20 13683.04 30743.77 35660.07 37365.35 25586.66 30090.39 224
test_fmvs169.57 30969.05 30971.14 31769.15 37665.77 21173.98 31983.32 26442.83 37077.77 29878.27 35043.39 36068.50 35468.39 23284.38 32579.15 351
KD-MVS_2432*160066.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
miper_refine_blended66.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
E-PMN61.59 33661.62 33961.49 35266.81 37955.40 31753.77 37360.34 37366.80 24658.90 37665.50 37540.48 36666.12 36455.72 31486.25 30562.95 373
test_f64.31 33165.85 32559.67 35666.54 38062.24 25257.76 37070.96 34740.13 37384.36 20582.09 31946.93 33151.67 37961.99 27981.89 33965.12 371
test_vis1_rt65.64 32764.09 33170.31 31966.09 38170.20 16861.16 36381.60 28138.65 37672.87 33269.66 37052.84 30960.04 37456.16 31177.77 35780.68 345
EMVS61.10 33960.81 34161.99 35065.96 38255.86 31453.10 37458.97 37567.06 24356.89 37963.33 37640.98 36467.03 36054.79 32386.18 30663.08 372
mvsany_test158.48 34456.47 34964.50 34565.90 38368.21 18756.95 37142.11 38638.30 37765.69 35977.19 35856.96 29159.35 37646.16 35958.96 37965.93 370
PMMVS61.65 33560.38 34265.47 34365.40 38469.26 17763.97 35861.73 37036.80 37960.11 37368.43 37259.42 27366.35 36348.97 34978.57 35560.81 374
PMMVS255.64 34759.27 34644.74 36364.30 38512.32 38840.60 37649.79 38253.19 32965.06 36584.81 28953.60 30849.76 38032.68 37989.41 26872.15 362
MVEpermissive40.22 2351.82 34850.47 35155.87 35962.66 38651.91 34131.61 37839.28 38740.65 37250.76 38174.98 36556.24 29744.67 38233.94 37864.11 37771.04 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 36532.95 38729.49 38421.63 39012.07 38137.95 38245.07 38030.84 38019.21 38417.94 38333.06 38323.69 380
test_method30.46 34929.60 35233.06 36417.99 3883.84 39013.62 37973.92 3252.79 38218.29 38453.41 37928.53 38343.25 38322.56 38135.27 38252.11 379
tmp_tt20.25 35124.50 3547.49 3664.47 3898.70 38934.17 37725.16 3891.00 38432.43 38318.49 38139.37 3689.21 38521.64 38243.75 3814.57 381
testmvs5.91 3557.65 3580.72 3681.20 3900.37 39259.14 3660.67 3920.49 3861.11 3862.76 3850.94 3910.24 3871.02 3851.47 3841.55 383
test1236.27 3548.08 3570.84 3671.11 3910.57 39162.90 3590.82 3910.54 3851.07 3872.75 3861.26 3900.30 3861.04 3841.26 3851.66 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
eth-test20.00 392
eth-test0.00 392
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k20.81 35027.75 3530.00 3690.00 3920.00 3930.00 38085.44 2370.00 3870.00 38882.82 31281.46 1100.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.41 3538.55 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38776.94 1540.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re6.65 3528.87 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38879.80 3390.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145258.96 30190.06 9691.33 16780.66 12093.03 13675.78 15295.94 12592.48 159
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4297.82 5192.04 179
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 2098.21 2992.98 142
GSMVS83.88 301
sam_mvs146.11 33683.88 301
sam_mvs45.92 341
MTGPAbinary91.81 116
test_post178.85 2613.13 38345.19 35080.13 32058.11 303
test_post3.10 38445.43 34677.22 329
patchmatchnet-post81.71 32345.93 34087.01 264
MTMP90.66 4433.14 388
test9_res80.83 9296.45 10390.57 218
agg_prior279.68 10696.16 11390.22 226
test_prior478.97 8084.59 147
test_prior283.37 17975.43 14284.58 20191.57 16181.92 10579.54 10896.97 84
旧先验281.73 21956.88 31686.54 17084.90 29472.81 190
新几何281.72 220
无先验82.81 19585.62 23658.09 30691.41 18067.95 23684.48 295
原ACMM282.26 213
testdata286.43 27663.52 268
segment_acmp81.94 102
testdata179.62 24573.95 157
plane_prior593.61 5395.22 5580.78 9395.83 13194.46 80
plane_prior492.95 123
plane_prior376.85 10477.79 11586.55 165
plane_prior289.45 7779.44 93
plane_prior76.42 11087.15 11175.94 13595.03 159
n20.00 393
nn0.00 393
door-mid74.45 322
test1191.46 122
door72.57 336
HQP5-MVS70.66 163
BP-MVS77.30 137
HQP4-MVS80.56 26894.61 7393.56 124
HQP3-MVS92.68 9194.47 179
HQP2-MVS72.10 206
MDTV_nov1_ep13_2view27.60 38670.76 33546.47 35761.27 37045.20 34949.18 34883.75 306
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 131