This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24386.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12082.70 16892.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
VDDNet84.35 13485.39 12181.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2291.09 4052.23 40795.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
IU-MVS94.18 4672.64 14590.82 14456.98 33589.67 10885.78 5097.92 4693.28 137
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
MIMVSNet183.63 15484.59 13580.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
新几何182.95 19193.96 5578.56 8480.24 29555.45 34083.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 352
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 5777.77 9492.84 48
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
bld_raw_dy_0_6484.85 12484.44 13986.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior793.45 6677.31 102
WR-MVS83.56 15684.40 14281.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
test22293.31 7176.54 10979.38 26077.79 30652.59 35482.36 25190.84 19466.83 24591.69 24181.25 360
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
DU-MVS86.80 9186.99 9286.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
NR-MVSNet86.00 10586.22 10485.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
114514_t83.10 16682.54 17384.77 14192.90 8169.10 19286.65 12490.62 15054.66 34581.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
testdata79.54 24892.87 8272.34 15480.14 29659.91 31685.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 365
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
plane_prior192.83 86
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28282.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 303
plane_prior692.61 8876.54 10974.84 180
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 21481.68 18375.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
F-COLMAP84.97 12383.42 15489.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
TEST992.34 9679.70 7483.94 17090.32 15865.41 26784.49 20990.97 18682.03 10493.63 110
train_agg85.98 10685.28 12388.07 8392.34 9679.70 7483.94 17090.32 15865.79 25884.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
NCCC87.36 8486.87 9588.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
FC-MVSNet-test85.93 10787.05 9182.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
CDPH-MVS86.17 10485.54 11888.05 8492.25 10075.45 12283.85 17492.01 10765.91 25786.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
test111178.53 23578.85 22877.56 27892.22 10247.49 37282.61 20869.24 36772.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
pmmvs686.52 9688.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
EG-PatchMatch MVS84.08 14484.11 14683.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
test_892.09 10678.87 8183.82 17590.31 16065.79 25884.36 21390.96 18881.93 10693.44 123
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9486.82 9786.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 329
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
NP-MVS91.95 11074.55 12790.17 215
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
FIs85.35 11486.27 10382.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
test250674.12 28273.39 28276.28 29591.85 11544.20 38684.06 16748.20 40572.30 19381.90 25994.20 8127.22 40689.77 23164.81 27196.02 12194.87 67
ECVR-MVScopyleft78.44 23678.63 23277.88 27491.85 11548.95 36683.68 18069.91 36472.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
MSLP-MVS++85.00 12286.03 10781.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 312
h-mvs3384.25 13882.76 16788.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
DP-MVS Recon84.05 14583.22 15786.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
MCST-MVS84.36 13383.93 15085.63 12691.59 12271.58 16683.52 18392.13 10461.82 29183.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
PVSNet_Blended_VisFu81.55 19180.49 20684.70 14491.58 12573.24 13884.21 16291.67 12062.86 28180.94 27587.16 26567.27 24292.87 14369.82 22488.94 28587.99 275
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
EPP-MVSNet85.47 11285.04 12686.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
Baseline_NR-MVSNet84.00 14785.90 11078.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
HyFIR lowres test75.12 27172.66 29182.50 20391.44 13365.19 22572.47 34287.31 21146.79 37680.29 28684.30 30752.70 32592.10 16351.88 35886.73 31590.22 237
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
HQP-MVS84.61 12884.06 14786.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
VDD-MVS84.23 14084.58 13683.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
K. test v385.14 11884.73 13086.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
lessismore_v085.95 11891.10 14270.99 17270.91 36091.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
hse-mvs283.47 15981.81 18288.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
TransMVSNet (Re)84.02 14685.74 11578.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
AUN-MVS81.18 19678.78 22988.39 7790.93 14582.14 5882.51 21483.67 26764.69 27380.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
PAPM_NR83.23 16283.19 15983.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 29091.60 204
CSCG86.26 9986.47 10085.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
PLCcopyleft73.85 1682.09 18180.31 20887.45 9090.86 14880.29 6985.88 13390.65 14868.17 23676.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
DPM-MVS80.10 21979.18 22482.88 19590.71 15169.74 18078.87 27090.84 14360.29 31375.64 32985.92 28467.28 24193.11 13471.24 20991.79 23985.77 301
TAMVS78.08 23976.36 25483.23 18390.62 15272.87 14179.08 26680.01 29761.72 29481.35 27186.92 27063.96 26188.78 25150.61 35993.01 21588.04 274
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
SSC-MVS77.55 24481.64 18465.29 36490.46 15520.33 40973.56 33568.28 36985.44 3288.18 13994.64 6070.93 22681.33 32971.25 20892.03 23494.20 92
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15755.95 32273.40 33886.17 23250.70 36973.14 34585.94 28358.31 29585.90 29456.51 32383.22 35287.20 286
VPA-MVSNet83.47 15984.73 13079.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
FMVSNet184.55 13085.45 12081.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
Anonymous2024052986.20 10287.13 8883.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
MVS_111021_HR84.63 12784.34 14485.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
GeoE85.45 11385.81 11384.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
RPSCF88.00 7686.93 9491.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28896.61 29
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
AdaColmapbinary83.66 15383.69 15383.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 321
pm-mvs183.69 15284.95 12879.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16763.08 24568.72 36583.16 27142.99 39175.92 32585.46 28957.22 30485.18 30349.87 36381.67 36286.14 296
WB-MVS76.06 26280.01 21864.19 36789.96 16820.58 40872.18 34468.19 37083.21 5486.46 17693.49 11270.19 22978.97 34365.96 25790.46 26993.02 149
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
1112_ss74.82 27673.74 27778.04 27189.57 17060.04 28576.49 30487.09 22054.31 34673.66 34479.80 35260.25 28186.76 27858.37 31384.15 34787.32 285
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
MM87.64 8387.15 8789.09 6589.51 17276.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
APD_test188.40 6787.91 7589.88 4789.50 17386.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
CS-MVS-test87.00 8786.43 10188.71 7289.46 17477.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
PCF-MVS74.62 1582.15 18080.92 20185.84 12289.43 17572.30 15580.53 24491.82 11657.36 33387.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 26573.51 28182.71 19789.35 17673.62 13280.06 24885.20 24760.30 31273.96 34187.94 24957.89 30089.45 23752.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15783.10 16284.90 13689.34 17783.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32766.84 25192.29 22889.11 257
EC-MVSNet88.01 7588.32 7287.09 9389.28 17872.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17981.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
MVS_111021_LR84.28 13783.76 15285.83 12389.23 18083.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
MVS_030486.35 9885.92 10987.66 8889.21 18173.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
LFMVS80.15 21880.56 20478.89 25389.19 18255.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
CLD-MVS83.18 16382.64 17084.79 13989.05 18367.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
CDS-MVSNet77.32 24775.40 26383.06 18789.00 18572.48 15277.90 28282.17 28160.81 30778.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 19779.58 22085.52 12888.99 18666.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
tfpnnormal81.79 18982.95 16478.31 26488.93 18755.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
testing371.53 30470.79 30673.77 31188.89 18841.86 39376.60 30359.12 39572.83 18180.97 27382.08 33219.80 41187.33 26765.12 26891.68 24292.13 188
Vis-MVSNet (Re-imp)77.82 24177.79 24177.92 27388.82 18951.29 35783.28 18971.97 35274.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
SDMVSNet81.90 18883.17 16078.10 26988.81 19062.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33470.06 22295.03 16091.21 211
sd_testset79.95 22281.39 19375.64 30188.81 19058.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34758.62 31295.03 16091.21 211
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19279.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testf189.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
FPMVS72.29 29872.00 29773.14 31588.63 19585.00 3674.65 32667.39 37271.94 19877.80 31087.66 25550.48 33575.83 35449.95 36179.51 37058.58 399
dcpmvs_284.23 14085.14 12481.50 21788.61 19661.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
ETV-MVS84.31 13583.91 15185.52 12888.58 19770.40 17684.50 16093.37 5878.76 10884.07 22478.72 36280.39 12595.13 6073.82 18492.98 21691.04 215
BH-untuned80.96 19980.99 19980.84 22888.55 19868.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28382.52 346
Anonymous20240521180.51 20681.19 19878.49 26188.48 19957.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
ab-mvs79.67 22380.56 20476.99 28488.48 19956.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
PHI-MVS86.38 9785.81 11388.08 8288.44 20177.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26479.59 29282.73 32676.94 15990.14 21973.22 19388.33 29286.90 289
MG-MVS80.32 21380.94 20078.47 26288.18 20552.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28289.45 249
PM-MVS80.20 21679.00 22583.78 16788.17 20686.66 1581.31 23466.81 37869.64 22088.33 13590.19 21364.58 25683.63 31871.99 20690.03 27281.06 365
v1086.54 9587.10 8984.84 13788.16 20763.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
canonicalmvs85.50 11186.14 10683.58 17487.97 20867.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
EIA-MVS82.19 17881.23 19785.10 13487.95 20969.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28491.93 195
VNet79.31 22480.27 20976.44 29287.92 21053.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 31060.38 30593.98 19490.97 216
v886.22 10186.83 9684.36 15187.82 21162.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
alignmvs83.94 14983.98 14983.80 16587.80 21267.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
v119284.57 12984.69 13484.21 15787.75 21362.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21485.26 3475.92 31370.09 36264.34 27476.09 32381.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14687.68 21573.35 13486.14 13177.70 30761.64 29685.02 19891.62 16777.75 14586.24 28582.79 8187.07 30993.91 109
v114484.54 13184.72 13284.00 16087.67 21662.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
v124084.30 13684.51 13883.65 17187.65 21761.26 27082.85 20491.54 12267.94 24190.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
v192192084.23 14084.37 14383.79 16687.64 21861.71 26582.91 20291.20 13467.94 24190.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
v14419284.24 13984.41 14183.71 17087.59 21961.57 26682.95 20191.03 13867.82 24489.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
Fast-Effi-MVS+81.04 19880.57 20382.46 20487.50 22063.22 24478.37 27789.63 17968.01 23881.87 26082.08 33282.31 9792.65 14767.10 24888.30 29691.51 207
pmmvs-eth3d78.42 23777.04 24882.57 20287.44 22174.41 12880.86 24279.67 29855.68 33984.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 278
IterMVS-LS84.73 12684.98 12783.96 16287.35 22263.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 26775.05 26776.66 29187.27 22351.88 35281.07 23973.26 34375.68 14183.25 23886.37 27545.54 35788.80 24851.98 35490.99 25389.31 253
MIMVSNet71.09 30871.59 30069.57 34087.23 22450.07 36478.91 26871.83 35360.20 31571.26 35491.76 16455.08 31976.09 35241.06 38987.02 31282.54 345
Effi-MVS+83.90 15084.01 14883.57 17587.22 22565.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 30092.17 186
BH-RMVSNet80.53 20580.22 21281.49 21887.19 22666.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29987.52 282
thisisatest053079.07 22577.33 24684.26 15687.13 22764.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
v2v48284.09 14384.24 14583.62 17287.13 22761.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
jason77.42 24675.75 26082.43 20587.10 23069.27 18677.99 28081.94 28351.47 36377.84 30885.07 29960.32 28089.00 24570.74 21589.27 28189.03 261
jason: jason.
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23161.40 26775.26 32087.13 21661.25 30274.38 34077.22 37476.94 15990.94 19264.63 27484.83 34283.35 334
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15187.09 23165.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23361.30 26975.55 31887.12 21961.24 30374.45 33878.79 36177.20 15390.93 19364.62 27584.80 34383.32 335
thres600view775.97 26375.35 26577.85 27687.01 23351.84 35380.45 24573.26 34375.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
CL-MVSNet_self_test76.81 25377.38 24475.12 30486.90 23551.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 33155.35 33394.90 16693.12 146
BH-w/o76.57 25676.07 25878.10 26986.88 23665.92 21977.63 28686.33 22865.69 26280.89 27679.95 35168.97 23690.74 20153.01 34985.25 33177.62 376
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16486.87 23771.57 16785.19 14677.42 31062.27 29084.47 21191.33 17476.43 16785.91 29383.14 7287.14 30794.33 90
MAR-MVS80.24 21578.74 23184.73 14286.87 23778.18 8885.75 13687.81 20765.67 26377.84 30878.50 36373.79 19490.53 20761.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15486.56 23973.35 13485.46 14077.30 31161.81 29284.51 20890.88 19277.36 15186.21 28782.72 8286.97 31493.38 133
FE-MVS79.98 22178.86 22783.36 17986.47 24066.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
QAPM82.59 17082.59 17282.58 20086.44 24166.69 21089.94 6290.36 15767.97 24084.94 20292.58 14072.71 21092.18 15970.63 21787.73 30288.85 264
PAPM71.77 30170.06 31576.92 28686.39 24253.97 33576.62 30286.62 22653.44 35063.97 39084.73 30357.79 30192.34 15539.65 39181.33 36684.45 316
GBi-Net82.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet281.31 19481.61 18680.41 23586.38 24358.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
3Dnovator80.37 784.80 12584.71 13385.06 13586.36 24674.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
Anonymous2023120671.38 30671.88 29869.88 33786.31 24754.37 33370.39 35874.62 32952.57 35576.73 31588.76 23759.94 28372.06 36144.35 38493.23 21083.23 337
baseline85.20 11785.93 10883.02 18886.30 24862.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
iter_conf_final80.36 21178.88 22684.79 13986.29 24966.36 21586.95 11586.25 23068.16 23782.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
API-MVS82.28 17582.61 17181.30 21986.29 24969.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 347
tfpn200view974.86 27574.23 27476.74 29086.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35490.99 25392.66 163
UGNet82.78 16781.64 18486.21 11386.20 25376.24 11786.86 11785.68 24077.07 12673.76 34392.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15182.85 16686.63 10286.17 25472.21 15883.76 17891.43 12577.24 12574.39 33987.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
casdiffmvspermissive85.21 11685.85 11283.31 18186.17 25462.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(test-final)83.13 16583.02 16383.43 17786.16 25666.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
TR-MVS76.77 25475.79 25979.72 24486.10 25765.79 22077.14 29283.02 27365.20 27081.40 27082.10 33066.30 24690.73 20255.57 33085.27 33082.65 341
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16886.02 25871.56 16884.73 15277.11 31462.44 28784.00 22590.68 19976.42 16885.89 29583.14 7287.11 30893.81 116
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11692.20 10265.94 25589.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
LCM-MVSNet-Re83.48 15885.06 12578.75 25685.94 25955.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
test_fmvsmvis_n_192085.22 11585.36 12284.81 13885.80 26176.13 11985.15 14792.32 9961.40 29891.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 12085.60 26276.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27990.94 217
v14882.31 17482.48 17481.81 21485.59 26359.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
MVSFormer82.23 17681.57 18984.19 15985.54 26469.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28689.03 261
lupinMVS76.37 26074.46 27282.09 20685.54 26469.26 18776.79 29780.77 29350.68 37076.23 32082.82 32458.69 29388.94 24669.85 22388.77 28688.07 271
TinyColmap81.25 19582.34 17677.99 27285.33 26660.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 295
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13591.82 11665.33 26888.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
test_fmvsm_n_192083.60 15582.89 16585.74 12485.22 26877.74 9584.12 16590.48 15259.87 31786.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
PAPR78.84 22978.10 23981.07 22485.17 26960.22 28482.21 22490.57 15162.51 28375.32 33384.61 30474.99 17892.30 15759.48 30988.04 29890.68 226
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16576.23 30877.59 30852.83 35377.73 31286.38 27456.35 31084.97 30457.72 31987.05 31085.51 304
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25274.00 33465.93 25678.81 30286.28 27956.36 30981.63 32856.63 32279.04 37687.87 279
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21172.29 34369.16 36857.70 32986.76 16386.33 27645.79 35682.59 32269.63 22590.65 26781.54 356
patch_mono-278.89 22779.39 22277.41 28184.78 27368.11 19875.60 31583.11 27260.96 30679.36 29689.89 22075.18 17672.97 35973.32 19292.30 22691.15 213
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14391.39 12865.32 26987.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
KD-MVS_self_test81.93 18683.14 16178.30 26584.75 27552.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30980.60 28090.96 18875.44 17269.35 37056.13 32688.33 29285.86 300
cascas76.29 26174.81 26880.72 23184.47 27762.94 24673.89 33387.34 21055.94 33875.16 33576.53 37963.97 26091.16 18665.00 26990.97 25688.06 273
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27863.41 24079.49 25990.44 15461.70 29575.43 33087.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 24075.14 32190.44 15457.36 33375.43 33078.30 36469.11 23491.44 17860.68 30387.70 30384.42 317
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20884.42 28068.22 19688.50 9589.48 18266.92 25081.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 284
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24278.71 25784.39 28161.15 27181.18 23882.52 27762.45 28683.34 23787.37 26066.20 24788.66 25364.69 27385.02 33686.32 294
test_yl78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DELS-MVS81.44 19381.25 19582.03 20784.27 28462.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13286.33 10278.78 25584.20 28573.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33676.14 15996.80 9082.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32279.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17383.94 28873.90 13183.35 18886.10 23358.97 31983.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
IterMVS-SCA-FT80.64 20479.41 22184.34 15383.93 28969.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 32090.22 237
MSDG80.06 22079.99 21980.25 23783.91 29068.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31786.41 293
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23570.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
fmvsm_l_conf0.5_n_a81.46 19280.87 20283.25 18283.73 29373.21 13983.00 19985.59 24258.22 32582.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37689.29 27984.32 318
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 25088.04 20552.14 35983.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 307
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 30168.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27569.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28566.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22781.96 28256.76 33769.57 36686.21 28060.03 28284.83 30649.58 36582.65 35885.11 308
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24770.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
EI-MVSNet82.61 16982.42 17583.20 18583.25 30163.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18479.02 30237.77 40076.33 31885.10 29649.60 33987.41 26570.54 21877.54 38281.08 363
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25271.89 36338.21 39685.04 33587.69 281
V4283.47 15983.37 15683.75 16883.16 30463.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
Anonymous2024052180.18 21781.25 19576.95 28583.15 30560.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34873.71 18697.55 6792.56 166
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13882.43 27939.76 39785.64 18988.76 23744.71 36887.88 26073.86 18385.88 32684.16 322
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19683.03 30768.11 19877.09 29376.51 31960.67 31077.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
iter_conf0578.81 23077.35 24583.21 18482.98 30860.75 28084.09 16688.34 19863.12 27984.25 22289.48 22531.41 39594.51 8176.64 15395.83 13294.38 88
FMVSNet378.80 23178.55 23379.57 24782.89 30956.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
MVS_Test82.47 17383.22 15780.22 23882.62 31057.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30192.40 173
LF4IMVS82.75 16881.93 18085.19 13282.08 31180.15 7085.53 13988.76 19168.01 23885.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33374.77 35645.82 38182.96 35381.60 355
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32789.72 246
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25573.82 33477.90 30552.44 35675.92 32581.27 33955.67 31481.75 32655.37 33277.70 38074.94 381
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29970.81 35872.36 38961.37 27479.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29970.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26971.37 35761.73 29374.93 33683.42 31760.46 27887.01 26958.11 31782.63 36083.88 323
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27776.37 31791.85 15836.68 38778.98 34247.87 37392.45 22487.95 276
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32876.08 32477.78 36737.60 38692.12 16265.00 26991.45 24789.35 252
eth_miper_zixun_eth80.84 20080.22 21282.71 19781.41 32060.98 27677.81 28390.14 16867.31 24886.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 19088.29 20069.16 22467.83 37483.72 31260.93 27589.47 23569.22 23089.70 27690.88 219
ANet_high83.17 16485.68 11675.65 30081.24 32245.26 38379.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 28080.97 27387.93 25062.83 27071.90 36255.24 33495.01 16392.00 192
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21180.28 28891.50 17064.21 25974.72 35846.96 37794.58 17887.82 280
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23185.92 23846.03 38171.68 35377.54 36968.47 23789.77 23155.70 32985.39 32874.60 382
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32955.74 31354.82 39947.02 37587.24 30683.52 330
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23576.30 30679.03 30164.88 27283.11 24089.16 23259.90 28484.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 19081.59 18781.79 21580.86 32859.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29169.06 37248.57 36981.67 36282.55 344
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 26173.94 33276.90 31563.27 27868.63 37076.79 37633.83 39291.84 17059.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32178.03 30580.51 34756.61 30878.84 34462.20 29086.04 32585.23 306
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32479.32 29882.92 32357.91 29984.26 31265.60 26491.36 24889.56 248
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 25181.84 26189.93 21872.08 21866.92 38346.05 38092.54 22387.01 288
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26373.50 33684.80 25957.61 33182.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23185.36 24451.68 36273.10 34676.65 37861.45 27385.19 30263.54 28179.21 37482.59 342
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.37 24686.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22167.38 24586.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
miper_ehance_all_eth80.34 21280.04 21781.24 22279.82 33858.95 29977.66 28589.66 17765.75 26185.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25282.58 21076.90 31550.50 37175.72 32792.38 14448.07 34384.07 31468.72 23982.91 35583.85 326
RPMNet78.88 22878.28 23780.68 23279.58 33962.64 25282.58 21094.16 2774.80 15175.72 32792.59 13848.69 34095.56 3973.48 18982.91 35583.85 326
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33264.82 38877.45 37146.02 35188.44 25453.08 34677.83 37888.70 265
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31485.36 29459.26 28970.64 36648.46 37079.35 37281.66 354
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28665.37 38173.61 16571.77 35292.79 13444.38 36975.65 35564.53 27685.37 32982.18 349
Patchmtry76.56 25777.46 24273.83 31079.37 34446.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31563.36 28395.31 15090.92 218
mvs_anonymous78.13 23878.76 23076.23 29779.24 34550.31 36378.69 27284.82 25861.60 29783.09 24292.82 13173.89 19387.01 26968.33 24486.41 31991.37 208
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 18049.95 33876.43 35138.74 39371.92 39155.84 400
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22866.58 37475.67 32473.15 17788.86 12288.99 23566.94 24381.23 33064.71 27288.22 29791.64 203
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28890.28 16466.65 25382.40 25087.33 26273.50 19787.35 26677.98 13789.62 27793.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25371.76 35447.50 37569.92 36483.60 31342.07 37788.40 25548.44 37179.51 37083.01 340
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24642.87 37675.97 35352.21 35280.95 36983.15 338
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28745.36 36180.85 33255.73 32784.42 345
cl2278.97 22678.21 23881.24 22277.74 35259.01 29877.46 29187.13 21665.79 25884.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21875.79 32266.49 25458.39 40081.06 34153.68 32185.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26169.99 36357.66 33072.53 34982.93 32246.45 34880.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26451.06 36574.85 33779.10 35855.10 31868.83 37368.86 23679.20 37582.58 343
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 31165.62 38267.03 39655.93 31268.23 37832.07 40369.46 39768.17 390
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 29865.36 38950.21 36081.01 36881.25 360
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26274.51 33151.94 36170.97 35784.75 30245.16 36587.49 26455.16 33579.23 37383.40 333
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27973.68 34044.89 38468.64 36979.00 35945.51 35982.42 32549.91 36270.15 39381.23 362
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29355.42 31680.67 33352.86 35087.59 30484.77 311
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31369.52 36773.53 38652.38 32664.40 39144.90 38281.44 36575.76 379
EPNet80.37 21078.41 23686.23 11176.75 36273.28 13687.18 11177.45 30976.24 13168.14 37188.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27764.69 37885.04 25263.98 27683.20 23988.22 24456.67 30678.79 34573.22 19393.12 21292.78 157
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23249.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31879.36 29688.21 24560.50 27769.12 37158.33 31577.62 38187.04 287
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28865.08 38572.39 38743.41 37269.37 36861.00 30084.89 34081.31 358
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 18958.05 32783.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18255.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21276.69 30080.81 29244.22 38675.43 33077.23 37350.00 33768.59 37466.71 25382.85 35778.52 375
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20381.21 23782.18 28050.78 36876.50 31687.66 25555.20 31782.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24173.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28472.80 34883.42 31744.89 36759.52 39748.27 37286.45 31881.70 353
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 37949.15 40337.39 39772.52 38869.55 388
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27277.49 29085.07 25060.78 30886.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32065.91 38735.40 39847.01 40259.25 398
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28871.18 35677.54 36943.41 37268.47 37740.75 39082.65 35881.35 357
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18478.93 26784.88 25746.67 37787.08 15787.84 25250.44 33671.62 36477.42 14688.53 28990.72 223
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25475.45 32765.02 27170.26 36281.88 33445.34 36285.68 29858.34 31475.39 38682.08 351
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20875.99 31284.21 26543.31 39079.40 29579.39 35643.47 37168.55 37569.05 23384.91 33982.10 350
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32287.09 15685.40 29159.80 28667.25 38159.66 30883.54 35085.92 299
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32387.10 15585.39 29259.82 28567.32 38059.79 30783.50 35185.96 297
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24970.38 35977.21 31246.18 38080.46 28578.95 36052.03 32765.53 38865.77 26377.45 38379.95 371
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16455.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 17075.67 31465.56 38070.42 21165.18 38492.97 12633.64 39383.06 31953.52 34569.61 39678.79 374
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 32046.71 34677.26 34942.29 38669.96 39483.46 331
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 32046.71 34663.21 39242.29 38669.96 39483.46 331
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20955.46 31563.12 39341.72 38881.30 36769.09 389
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27870.69 36153.16 35267.88 37380.36 34848.18 34274.75 35758.13 31670.79 39281.08 363
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19377.07 29484.32 26345.14 38382.89 24484.22 30848.37 34170.36 36773.40 19187.03 31188.52 267
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38871.58 36547.41 37462.34 40075.52 380
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23670.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38166.60 38455.54 33168.81 39880.68 367
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28987.05 26952.83 32463.09 39451.92 35772.44 38979.84 372
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17566.97 37389.73 17442.68 39388.20 13883.04 31943.77 37060.07 39565.35 26786.66 31690.39 235
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 22173.98 33183.32 27042.83 39277.77 31178.27 36543.39 37468.50 37668.39 24384.38 34679.15 373
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30477.98 30680.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25258.90 39865.50 39740.48 38066.12 38655.72 32886.25 32262.95 395
test_f64.31 35365.85 34359.67 37866.54 40262.24 26257.76 39270.96 35940.13 39584.36 21382.09 33146.93 34551.67 40161.99 29381.89 36165.12 393
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17861.16 38581.60 28738.65 39872.87 34769.66 39252.84 32360.04 39656.16 32577.77 37980.68 367
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24956.89 40163.33 39840.98 37867.03 38254.79 33786.18 32363.08 394
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19756.95 39342.11 40838.30 39965.69 38177.19 37556.96 30559.35 39846.16 37858.96 40165.93 392
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18763.97 38061.73 39036.80 40160.11 39568.43 39459.42 28766.35 38548.97 36878.57 37760.81 396
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 30153.60 32249.76 40232.68 40289.41 27872.15 384
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31144.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3829.21 40721.64 40543.75 4034.57 403
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2430.00 4090.00 41082.82 32481.46 1130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
PC_three_145258.96 32090.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
GSMVS83.88 323
sam_mvs146.11 35083.88 323
sam_mvs45.92 355
MTGPAbinary91.81 118
test_post178.85 2713.13 40545.19 36480.13 33758.11 317
test_post3.10 40645.43 36077.22 350
patchmatchnet-post81.71 33645.93 35487.01 269
MTMP90.66 4433.14 410
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
旧先验281.73 22956.88 33686.54 17484.90 30572.81 200
新几何281.72 230
无先验82.81 20585.62 24158.09 32691.41 18167.95 24784.48 315
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 415
nn0.00 415
door-mid74.45 332
test1191.46 124
door72.57 347
HQP5-MVS70.66 173
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36349.18 36683.75 328
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134