This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3295.54 397.36 196.97 199.04 199.05 196.61 195.92 1285.07 4999.27 199.54 1
UniMVSNet_ETH3D89.12 6390.72 4584.31 14997.00 264.33 21289.67 6188.38 19088.84 1494.29 1897.57 390.48 1491.26 18772.57 18697.65 6097.34 14
PMVScopyleft80.48 690.08 4190.66 4688.34 8096.71 392.97 190.31 4889.57 17388.51 1890.11 9095.12 4190.98 788.92 24177.55 13597.07 8483.13 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1788.94 7691.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1792.02 2891.81 11484.07 3792.00 6094.40 6586.63 5395.28 5288.59 598.31 2492.30 160
PEN-MVS90.03 4491.88 1684.48 14396.57 658.88 27388.95 7593.19 7291.62 396.01 596.16 2087.02 4895.60 3278.69 11798.72 998.97 3
PS-CasMVS90.06 4291.92 1384.47 14496.56 758.83 27689.04 7492.74 9191.40 496.12 396.06 2287.23 4695.57 3379.42 11198.74 699.00 2
DTE-MVSNet89.98 4691.91 1584.21 15196.51 857.84 28188.93 7792.84 8891.92 296.16 296.23 1886.95 4995.99 879.05 11498.57 1598.80 6
CP-MVSNet89.27 6090.91 4284.37 14596.34 958.61 27888.66 8492.06 10590.78 595.67 695.17 3981.80 10895.54 3879.00 11598.69 1098.95 4
WR-MVS_H89.91 4991.31 3185.71 12396.32 1062.39 23489.54 6693.31 6590.21 995.57 895.66 2881.42 11295.90 1380.94 9298.80 398.84 5
MP-MVScopyleft91.14 2790.91 4291.83 2196.18 1186.88 1492.20 2593.03 8082.59 5788.52 12794.37 6886.74 5295.41 4786.32 3498.21 3093.19 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS91.69 1391.47 2492.37 696.04 1288.48 1092.72 1692.60 9483.09 5191.54 6794.25 7387.67 4295.51 4187.21 2498.11 3493.12 129
MP-MVS-pluss90.81 2991.08 3589.99 5195.97 1379.88 7288.13 8994.51 1875.79 13792.94 4194.96 4388.36 2895.01 6390.70 298.40 2095.09 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4496.29 1688.16 3494.17 9186.07 4098.48 1897.22 17
ACMMP_NAP90.65 3191.07 3789.42 6095.93 1579.54 7789.95 5493.68 5177.65 11391.97 6294.89 4588.38 2795.45 4589.27 397.87 5093.27 123
HPM-MVS_fast92.50 592.54 692.37 695.93 1585.81 3092.99 1194.23 2385.21 3192.51 5195.13 4090.65 1095.34 4988.06 998.15 3395.95 40
MSP-MVS89.08 6488.16 7591.83 2195.76 1786.14 2292.75 1593.90 4178.43 10789.16 11692.25 13772.03 20996.36 288.21 890.93 24492.98 134
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 2091.30 3291.87 1995.75 1885.90 2692.63 1993.30 6781.91 6590.88 8194.21 7487.75 4095.87 1587.60 1697.71 5893.83 101
ACMMPR91.49 1791.35 2891.92 1695.74 1985.88 2792.58 2093.25 7081.99 6391.40 7094.17 7587.51 4395.87 1587.74 1197.76 5493.99 94
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2083.05 5292.18 2694.22 2480.14 8591.29 7393.97 8487.93 3995.87 1588.65 497.96 4594.12 91
TSAR-MVS + MP.88.14 7487.82 7889.09 6595.72 2176.74 11092.49 2391.19 13167.85 23286.63 16294.84 4779.58 13095.96 1187.62 1494.50 16994.56 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2590.95 4191.93 1595.67 2285.85 2890.00 5193.90 4180.32 8291.74 6694.41 6488.17 3395.98 986.37 3397.99 4093.96 96
XVS91.54 1591.36 2692.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9394.03 8186.57 5595.80 2187.35 2097.62 6294.20 86
X-MVStestdata85.04 12082.70 16392.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9316.05 36386.57 5595.80 2187.35 2097.62 6294.20 86
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2584.67 4193.51 694.85 1482.88 5491.77 6593.94 9190.55 1395.73 2788.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2685.91 2593.35 994.16 2882.52 5892.39 5494.14 7789.15 2395.62 3187.35 2098.24 2894.56 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2891.01 3890.82 3895.45 2782.73 5591.75 3393.74 4780.98 7691.38 7193.80 9487.20 4795.80 2187.10 2897.69 5993.93 97
HFP-MVS91.30 2191.39 2591.02 3395.43 2884.66 4292.58 2093.29 6881.99 6391.47 6893.96 8788.35 2995.56 3487.74 1197.74 5692.85 138
#test#90.49 3690.31 5091.02 3395.43 2884.66 4290.65 4193.29 6877.00 12091.47 6893.96 8788.35 2995.56 3484.88 5297.74 5692.85 138
SMA-MVScopyleft90.31 3890.48 4889.83 5295.31 3079.52 7890.98 3993.24 7175.37 14492.84 4595.28 3585.58 6596.09 787.92 1097.76 5493.88 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1491.58 2191.96 1495.29 3187.62 1293.38 793.36 6083.16 5091.06 7694.00 8388.26 3195.71 2887.28 2398.39 2192.55 152
VDDNet84.35 13485.39 11981.25 20895.13 3259.32 26685.42 13281.11 26886.41 2787.41 14496.21 1973.61 18690.61 21066.33 23596.85 9093.81 106
CPTT-MVS89.39 5888.98 6790.63 4195.09 3386.95 1392.09 2792.30 10079.74 8887.50 14392.38 13081.42 11293.28 12983.07 7097.24 8091.67 184
ACMM79.39 990.65 3190.99 3989.63 5695.03 3483.53 4789.62 6393.35 6179.20 9693.83 2793.60 10190.81 892.96 14085.02 5198.45 1992.41 156
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1791.53 2291.39 2694.98 3582.95 5493.52 592.79 8988.22 1988.53 12697.64 283.45 8194.55 8086.02 4398.60 1396.67 26
HPM-MVS++copyleft88.93 6788.45 7490.38 4594.92 3685.85 2889.70 5891.27 12878.20 10986.69 16192.28 13680.36 12495.06 6286.17 3996.49 10490.22 215
XVG-ACMP-BASELINE89.98 4689.84 5390.41 4494.91 3784.50 4489.49 6893.98 3779.68 8992.09 5893.89 9283.80 7793.10 13882.67 7598.04 3593.64 113
SR-MVS92.23 892.34 991.91 1794.89 3887.85 1192.51 2293.87 4488.20 2093.24 3894.02 8290.15 1795.67 3086.82 2997.34 7792.19 168
OPM-MVS89.80 5089.97 5189.27 6294.76 3979.86 7386.76 11292.78 9078.78 10292.51 5193.64 10088.13 3593.84 10584.83 5497.55 6794.10 92
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4081.69 5990.00 5194.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
LGP-MVS_train90.82 3894.75 4081.69 5994.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
abl_693.02 493.16 492.60 494.73 4288.99 793.26 1094.19 2789.11 1194.43 1595.27 3691.86 395.09 6087.54 1898.02 3893.71 108
test117292.40 792.41 792.37 694.68 4389.04 691.98 2993.62 5290.14 1093.63 3594.16 7688.83 2495.51 4187.11 2797.54 7092.54 153
XVG-OURS-SEG-HR89.59 5489.37 6090.28 4794.47 4485.95 2486.84 10893.91 4080.07 8686.75 15893.26 10493.64 290.93 19784.60 5690.75 24993.97 95
ACMP79.16 1090.54 3490.60 4790.35 4694.36 4580.98 6589.16 7294.05 3579.03 9992.87 4393.74 9890.60 1295.21 5782.87 7398.76 494.87 63
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 6188.83 7090.23 4894.28 4686.11 2385.91 12393.60 5580.16 8489.13 11793.44 10283.82 7690.98 19583.86 6395.30 14593.60 115
test_0728_SECOND86.79 9794.25 4772.45 14390.54 4394.10 3495.88 1486.42 3197.97 4392.02 172
SED-MVS90.46 3791.64 1986.93 9494.18 4872.65 13490.47 4693.69 4983.77 4194.11 2294.27 6990.28 1595.84 1986.03 4197.92 4692.29 162
IU-MVS94.18 4872.64 13690.82 13856.98 30689.67 10485.78 4497.92 4693.28 122
test_241102_ONE94.18 4872.65 13493.69 4983.62 4394.11 2293.78 9790.28 1595.50 44
DVP-MVS90.06 4291.32 3086.29 10794.16 5172.56 13990.54 4391.01 13583.61 4493.75 3094.65 5389.76 1995.78 2486.42 3197.97 4390.55 210
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5172.56 13990.63 4293.90 4183.61 4493.75 3094.49 5889.76 19
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6188.83 2495.51 4187.16 2597.60 6492.73 143
RE-MVS-def92.61 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6190.64 1187.16 2597.60 6492.73 143
MIMVSNet183.63 15384.59 13480.74 21894.06 5562.77 22882.72 19184.53 24977.57 11590.34 8795.92 2376.88 16185.83 28261.88 26497.42 7593.62 114
TranMVSNet+NR-MVSNet87.86 7788.76 7285.18 13194.02 5664.13 21384.38 14891.29 12784.88 3492.06 5993.84 9386.45 5793.73 10873.22 17798.66 1197.69 9
新几何182.95 17993.96 5778.56 8780.24 27455.45 31183.93 21191.08 16471.19 21488.33 25065.84 24093.07 20081.95 319
112180.86 19179.81 20884.02 15493.93 5878.70 8581.64 21580.18 27555.43 31283.67 21391.15 16271.29 21391.41 18467.95 22793.06 20181.96 318
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 5980.97 6691.49 3593.48 5882.82 5592.60 5093.97 8488.19 3296.29 487.61 1598.20 3294.39 81
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 6077.77 9392.84 45
xxxxxxxxxxxxxcwj89.04 6589.13 6388.79 6893.75 6177.44 9886.31 12095.27 1070.80 19992.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
save fliter93.75 6177.44 9886.31 12089.72 16870.80 199
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6385.72 3196.79 195.51 688.86 1395.63 796.99 884.81 6993.16 13491.10 197.53 7196.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6486.15 2193.37 895.10 1290.28 892.11 5795.03 4289.75 2194.93 6579.95 10398.27 2795.04 62
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6289.08 6489.37 6193.64 6579.07 8188.54 8594.20 2573.53 16289.71 10294.82 4885.09 6695.77 2684.17 6098.03 3793.26 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvs_tets89.78 5189.27 6291.30 2893.51 6684.79 3989.89 5690.63 14370.00 21094.55 1496.67 1187.94 3893.59 11684.27 5995.97 12195.52 48
HQP_MVS87.75 8187.43 8488.70 7193.45 6776.42 11489.45 6993.61 5379.44 9386.55 16392.95 11374.84 17295.22 5580.78 9595.83 12694.46 77
plane_prior793.45 6777.31 102
WR-MVS83.56 15484.40 14081.06 21393.43 6954.88 30378.67 25985.02 24381.24 7290.74 8291.56 15472.85 19891.08 19368.00 22598.04 3597.23 16
DPE-MVScopyleft90.53 3591.08 3588.88 6693.38 7078.65 8689.15 7394.05 3584.68 3593.90 2494.11 7988.13 3596.30 384.51 5797.81 5291.70 183
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5788.81 7191.19 3293.38 7084.72 4089.70 5890.29 15769.27 21494.39 1696.38 1586.02 6393.52 12083.96 6195.92 12395.34 52
PS-MVSNAJss88.31 7287.90 7789.56 5993.31 7277.96 9187.94 9291.97 10870.73 20194.19 2196.67 1176.94 15594.57 7883.07 7096.28 11196.15 32
test22293.31 7276.54 11179.38 24777.79 28752.59 32582.36 23190.84 17566.83 23391.69 22981.25 327
DU-MVS86.80 8986.99 9086.21 11293.24 7467.02 19083.16 18292.21 10181.73 6790.92 7891.97 14177.20 14993.99 9774.16 16598.35 2297.61 10
NR-MVSNet86.00 10286.22 10185.34 12993.24 7464.56 20982.21 20890.46 14680.99 7588.42 12991.97 14177.56 14593.85 10372.46 18798.65 1297.61 10
OurMVSNet-221017-090.01 4589.74 5490.83 3793.16 7680.37 6991.91 3293.11 7481.10 7495.32 997.24 572.94 19794.85 6885.07 4997.78 5397.26 15
UniMVSNet (Re)86.87 8686.98 9186.55 10193.11 7768.48 18083.80 16292.87 8580.37 8089.61 10891.81 14877.72 14394.18 8975.00 16198.53 1696.99 22
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 7885.17 3492.47 2495.05 1387.65 2393.21 3994.39 6790.09 1895.08 6186.67 3097.60 6494.18 88
ACMH+77.89 1190.73 3091.50 2388.44 7793.00 7976.26 11689.65 6295.55 587.72 2293.89 2694.94 4491.62 493.44 12478.35 12198.76 495.61 47
APDe-MVS91.22 2491.92 1389.14 6492.97 8078.04 9092.84 1494.14 3283.33 4893.90 2495.73 2588.77 2696.41 187.60 1697.98 4292.98 134
114514_t83.10 16482.54 16884.77 13892.90 8169.10 17886.65 11490.62 14454.66 31581.46 24790.81 17676.98 15494.38 8172.62 18596.18 11590.82 201
testdata79.54 23892.87 8272.34 14480.14 27659.91 29185.47 18691.75 15067.96 22785.24 28668.57 22392.18 22181.06 332
CNVR-MVS87.81 8087.68 8088.21 8292.87 8277.30 10385.25 13391.23 12977.31 11787.07 15191.47 15682.94 8694.71 7184.67 5596.27 11392.62 150
SF-MVS90.27 3990.80 4488.68 7292.86 8477.09 10591.19 3895.74 381.38 7192.28 5593.80 9486.89 5094.64 7485.52 4597.51 7294.30 84
UniMVSNet_NR-MVSNet86.84 8887.06 8886.17 11492.86 8467.02 19082.55 19691.56 11883.08 5290.92 7891.82 14778.25 13993.99 9774.16 16598.35 2297.49 13
plane_prior192.83 86
原ACMM184.60 14292.81 8774.01 12691.50 12062.59 26982.73 22790.67 18176.53 16294.25 8469.24 21195.69 13385.55 274
plane_prior692.61 8876.54 11174.84 172
APD-MVScopyleft89.54 5589.63 5689.26 6392.57 8981.34 6490.19 4993.08 7680.87 7791.13 7493.19 10586.22 6095.97 1082.23 7997.18 8290.45 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6989.58 5885.88 11992.55 9072.22 14784.01 15389.44 17588.63 1794.38 1795.77 2486.38 5993.59 11679.84 10495.21 14691.82 180
SixPastTwentyTwo87.20 8487.45 8386.45 10392.52 9169.19 17687.84 9488.05 19681.66 6894.64 1396.53 1465.94 23794.75 7083.02 7296.83 9295.41 50
ACMH76.49 1489.34 5991.14 3483.96 15792.50 9270.36 16489.55 6493.84 4581.89 6694.70 1295.44 3390.69 988.31 25183.33 6898.30 2693.20 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 20581.68 17875.94 28292.46 9347.98 34276.70 28481.67 26673.45 16384.87 19292.82 11774.66 17786.51 27261.66 26796.85 9093.33 120
F-COLMAP84.97 12383.42 15289.63 5692.39 9483.40 4888.83 7991.92 11073.19 17280.18 26589.15 20877.04 15393.28 12965.82 24192.28 21792.21 167
test_djsdf89.62 5389.01 6591.45 2592.36 9582.98 5391.98 2990.08 16371.54 19194.28 2096.54 1381.57 11094.27 8286.26 3596.49 10497.09 19
TEST992.34 9679.70 7583.94 15590.32 15165.41 25884.49 19990.97 16982.03 10293.63 112
train_agg85.98 10485.28 12088.07 8492.34 9679.70 7583.94 15590.32 15165.79 24884.49 19990.97 16981.93 10493.63 11281.21 8896.54 10290.88 199
NCCC87.36 8286.87 9388.83 6792.32 9878.84 8486.58 11691.09 13378.77 10384.85 19390.89 17380.85 11895.29 5081.14 8995.32 14292.34 158
testtj89.51 5689.48 5989.59 5892.26 9980.80 6790.14 5093.54 5683.37 4790.57 8592.55 12784.99 6796.15 581.26 8796.61 9991.83 179
FC-MVSNet-test85.93 10587.05 8982.58 18992.25 10056.44 29285.75 12793.09 7577.33 11691.94 6394.65 5374.78 17493.41 12675.11 16098.58 1497.88 7
CDPH-MVS86.17 10185.54 11588.05 8592.25 10075.45 11983.85 15992.01 10665.91 24786.19 17091.75 15083.77 7894.98 6477.43 13896.71 9693.73 107
ZD-MVS92.22 10280.48 6891.85 11171.22 19690.38 8692.98 11086.06 6296.11 681.99 8196.75 95
pmmvs686.52 9388.06 7681.90 19892.22 10262.28 23784.66 14189.15 17983.54 4689.85 9897.32 488.08 3786.80 26770.43 20397.30 7996.62 27
EG-PatchMatch MVS84.08 14384.11 14483.98 15692.22 10272.61 13882.20 21087.02 21572.63 17988.86 11991.02 16778.52 13591.11 19273.41 17691.09 23688.21 244
test_892.09 10578.87 8383.82 16090.31 15365.79 24884.36 20290.96 17181.93 10493.44 124
Vis-MVSNetpermissive86.86 8786.58 9687.72 8792.09 10577.43 10087.35 10092.09 10478.87 10184.27 20894.05 8078.35 13893.65 11080.54 9991.58 23292.08 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9186.82 9586.17 11492.05 10766.87 19291.21 3788.64 18686.30 2889.60 10992.59 12469.22 22094.91 6673.89 16997.89 4996.72 24
旧先验191.97 10871.77 15181.78 26591.84 14573.92 18393.65 18983.61 296
v7n90.13 4090.96 4087.65 8991.95 10971.06 15989.99 5393.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 3797.63 6197.82 8
NP-MVS91.95 10974.55 12390.17 194
ETH3D-3000-0.188.85 6888.96 6888.52 7391.94 11177.27 10488.71 8295.26 1176.08 12890.66 8492.69 12284.48 7293.83 10683.38 6797.48 7494.47 76
OMC-MVS88.19 7387.52 8290.19 4991.94 11181.68 6187.49 9993.17 7376.02 13188.64 12491.22 15984.24 7493.37 12777.97 13197.03 8595.52 48
OPU-MVS88.27 8191.89 11377.83 9290.47 4691.22 15981.12 11594.68 7274.48 16295.35 14092.29 162
FIs85.35 11286.27 10082.60 18891.86 11457.31 28585.10 13593.05 7775.83 13691.02 7793.97 8473.57 18792.91 14473.97 16898.02 3897.58 12
9.1489.29 6191.84 11588.80 8095.32 975.14 14691.07 7592.89 11587.27 4593.78 10783.69 6597.55 67
MSLP-MVS++85.00 12286.03 10581.90 19891.84 11571.56 15786.75 11393.02 8175.95 13487.12 14789.39 20277.98 14089.40 23777.46 13694.78 16284.75 283
hse-mvs384.25 13882.76 16288.72 7091.82 11782.60 5684.00 15484.98 24571.27 19386.70 15990.55 18463.04 25293.92 10178.26 12494.20 17789.63 222
DP-MVS Recon84.05 14483.22 15586.52 10291.73 11875.27 12083.23 18092.40 9772.04 18882.04 23688.33 21977.91 14293.95 10066.17 23695.12 15190.34 214
SD-MVS88.96 6689.88 5286.22 11091.63 11977.07 10689.82 5793.77 4678.90 10092.88 4292.29 13586.11 6190.22 21986.24 3897.24 8091.36 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7687.40 8589.68 5491.59 12083.40 4889.50 6795.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
TestCases89.68 5491.59 12083.40 4895.44 779.47 9188.00 13693.03 10882.66 8991.47 17970.81 19596.14 11794.16 89
MCST-MVS84.36 13383.93 14885.63 12491.59 12071.58 15683.52 16892.13 10361.82 27583.96 21089.75 20079.93 12993.46 12378.33 12294.34 17491.87 178
agg_prior185.72 10785.20 12187.28 9391.58 12377.69 9483.69 16590.30 15466.29 24484.32 20391.07 16682.13 9893.18 13281.02 9096.36 10890.98 195
agg_prior91.58 12377.69 9490.30 15484.32 20393.18 132
PVSNet_Blended_VisFu81.55 18380.49 19584.70 14191.58 12373.24 13184.21 14991.67 11762.86 26880.94 25287.16 23967.27 23092.87 14569.82 20788.94 26887.99 248
EPP-MVSNet85.47 11085.04 12386.77 9891.52 12669.37 17091.63 3487.98 19981.51 7087.05 15291.83 14666.18 23695.29 5070.75 19896.89 8895.64 45
DeepPCF-MVS81.24 587.28 8386.21 10290.49 4391.48 12784.90 3783.41 17392.38 9970.25 20789.35 11490.68 18082.85 8794.57 7879.55 10795.95 12292.00 173
Baseline_NR-MVSNet84.00 14685.90 10778.29 25691.47 12853.44 31182.29 20487.00 21879.06 9889.55 11095.72 2777.20 14986.14 27872.30 18898.51 1795.28 55
HyFIR lowres test75.12 25672.66 27482.50 19291.44 12965.19 20472.47 31787.31 20546.79 34680.29 26284.30 28552.70 30492.10 16451.88 32486.73 29090.22 215
DP-MVS88.60 7089.01 6587.36 9291.30 13077.50 9787.55 9692.97 8387.95 2189.62 10692.87 11684.56 7093.89 10277.65 13396.62 9890.70 204
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8691.30 13076.92 10787.19 10291.99 10770.56 20284.96 18990.69 17980.01 12795.14 5878.37 12095.78 13091.82 180
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4889.66 5590.92 3691.27 13281.66 6291.25 3694.13 3388.89 1288.83 12194.26 7277.55 14695.86 1884.88 5295.87 12595.24 57
ETH3D cwj APD-0.1687.83 7987.62 8188.47 7591.21 13378.20 8887.26 10194.54 1772.05 18788.89 11892.31 13483.86 7594.24 8581.59 8696.87 8992.97 137
HQP-NCC91.19 13484.77 13773.30 16880.55 259
ACMP_Plane91.19 13484.77 13773.30 16880.55 259
HQP-MVS84.61 12784.06 14586.27 10891.19 13470.66 16184.77 13792.68 9273.30 16880.55 25990.17 19472.10 20594.61 7677.30 13994.47 17093.56 117
VDD-MVS84.23 14084.58 13583.20 17491.17 13765.16 20583.25 17884.97 24679.79 8787.18 14694.27 6974.77 17590.89 20069.24 21196.54 10293.55 119
K. test v385.14 11584.73 12886.37 10491.13 13869.63 16985.45 13176.68 29484.06 3992.44 5396.99 862.03 25694.65 7380.58 9893.24 19694.83 67
lessismore_v085.95 11691.10 13970.99 16070.91 33391.79 6494.42 6361.76 25792.93 14279.52 11093.03 20293.93 97
hse-mvs283.47 15781.81 17788.47 7591.03 14082.27 5782.61 19383.69 25171.27 19386.70 15986.05 25663.04 25292.41 15378.26 12493.62 19190.71 203
TransMVSNet (Re)84.02 14585.74 11178.85 24491.00 14155.20 30282.29 20487.26 20679.65 9088.38 13195.52 3283.00 8586.88 26567.97 22696.60 10094.45 79
AUN-MVS81.18 18778.78 21488.39 7890.93 14282.14 5882.51 19883.67 25264.69 26280.29 26285.91 25951.07 30792.38 15476.29 14893.63 19090.65 207
PAPM_NR83.23 16183.19 15783.33 17190.90 14365.98 19888.19 8890.78 13978.13 11180.87 25487.92 22773.49 19092.42 15270.07 20588.40 27291.60 186
CSCG86.26 9786.47 9785.60 12590.87 14474.26 12587.98 9091.85 11180.35 8189.54 11288.01 22379.09 13292.13 16175.51 15495.06 15390.41 213
PLCcopyleft73.85 1682.09 17680.31 19787.45 9190.86 14580.29 7085.88 12590.65 14268.17 22676.32 29186.33 25073.12 19692.61 15061.40 27090.02 25789.44 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3 D test640085.09 11784.87 12685.75 12290.80 14669.34 17185.90 12493.31 6565.43 25486.11 17389.95 19680.92 11794.86 6775.90 15295.57 13593.05 131
test1286.57 10090.74 14772.63 13790.69 14182.76 22679.20 13194.80 6995.32 14292.27 164
ITE_SJBPF90.11 5090.72 14884.97 3690.30 15481.56 6990.02 9291.20 16182.40 9290.81 20373.58 17494.66 16694.56 72
DPM-MVS80.10 21079.18 21282.88 18390.71 14969.74 16678.87 25690.84 13760.29 28975.64 30085.92 25867.28 22993.11 13771.24 19391.79 22785.77 273
TAMVS78.08 22676.36 24083.23 17390.62 15072.87 13279.08 25380.01 27761.72 27781.35 24986.92 24363.96 24588.78 24550.61 32593.01 20388.04 247
test_prior386.31 9686.31 9986.32 10590.59 15171.99 14983.37 17492.85 8675.43 14184.58 19791.57 15281.92 10694.17 9179.54 10896.97 8692.80 140
test_prior86.32 10590.59 15171.99 14992.85 8694.17 9192.80 140
ambc82.98 17890.55 15364.86 20688.20 8789.15 17989.40 11393.96 8771.67 21291.38 18678.83 11696.55 10192.71 146
Anonymous2023121188.40 7189.62 5784.73 13990.46 15465.27 20388.86 7893.02 8187.15 2493.05 4097.10 682.28 9692.02 16776.70 14397.99 4096.88 23
Test_1112_low_res73.90 26773.08 26976.35 27890.35 15555.95 29373.40 31486.17 22450.70 33973.14 31385.94 25758.31 27985.90 28156.51 29483.22 31887.20 258
VPA-MVSNet83.47 15784.73 12879.69 23590.29 15657.52 28481.30 22288.69 18576.29 12587.58 14294.44 6080.60 12187.20 26066.60 23496.82 9394.34 83
FMVSNet184.55 12985.45 11881.85 20090.27 15761.05 24886.83 10988.27 19378.57 10689.66 10595.64 2975.43 16690.68 20769.09 21595.33 14193.82 103
Anonymous2024052986.20 10087.13 8683.42 17090.19 15864.55 21084.55 14390.71 14085.85 2989.94 9695.24 3882.13 9890.40 21469.19 21496.40 10795.31 54
MVS_111021_HR84.63 12684.34 14285.49 12890.18 15975.86 11879.23 25287.13 21073.35 16585.56 18489.34 20383.60 8090.50 21276.64 14494.05 18190.09 220
GeoE85.45 11185.81 10984.37 14590.08 16067.07 18985.86 12691.39 12572.33 18487.59 14190.25 19084.85 6892.37 15578.00 12991.94 22693.66 110
RPSCF88.00 7586.93 9291.22 3190.08 16089.30 589.68 6091.11 13279.26 9589.68 10394.81 5182.44 9187.74 25576.54 14588.74 27196.61 28
nrg03087.85 7888.49 7385.91 11790.07 16269.73 16787.86 9394.20 2574.04 15692.70 4994.66 5285.88 6491.50 17879.72 10597.32 7896.50 30
AdaColmapbinary83.66 15283.69 15183.57 16890.05 16372.26 14686.29 12290.00 16578.19 11081.65 24587.16 23983.40 8294.24 8561.69 26694.76 16584.21 288
pm-mvs183.69 15184.95 12579.91 23090.04 16459.66 26382.43 20087.44 20375.52 14087.85 13895.26 3781.25 11485.65 28468.74 21996.04 12094.42 80
CHOSEN 1792x268872.45 27770.56 28878.13 25890.02 16563.08 22368.72 33083.16 25442.99 35575.92 29685.46 26557.22 28885.18 28849.87 32981.67 32686.14 268
anonymousdsp89.73 5288.88 6992.27 989.82 16686.67 1590.51 4590.20 16069.87 21195.06 1096.14 2184.28 7393.07 13987.68 1396.34 10997.09 19
1112_ss74.82 26173.74 26278.04 26089.57 16760.04 25976.49 28887.09 21454.31 31673.66 31279.80 32860.25 26586.76 27058.37 28484.15 31487.32 257
PCF-MVS74.62 1582.15 17580.92 19185.84 12089.43 16872.30 14580.53 23191.82 11357.36 30487.81 13989.92 19877.67 14493.63 11258.69 28395.08 15291.58 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 25173.51 26682.71 18689.35 16973.62 12780.06 23585.20 23760.30 28873.96 31087.94 22557.89 28489.45 23552.02 32074.87 34785.06 280
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15583.10 15984.90 13589.34 17083.87 4684.54 14588.77 18379.09 9783.54 21788.66 21674.87 17181.73 30966.84 23292.29 21689.11 233
TSAR-MVS + GP.83.95 14782.69 16487.72 8789.27 17181.45 6383.72 16481.58 26774.73 14985.66 18186.06 25572.56 20392.69 14875.44 15695.21 14689.01 239
MVS_111021_LR84.28 13783.76 15085.83 12189.23 17283.07 5180.99 22683.56 25372.71 17886.07 17489.07 21081.75 10986.19 27777.11 14193.36 19288.24 243
LFMVS80.15 20980.56 19378.89 24389.19 17355.93 29485.22 13473.78 31482.96 5384.28 20792.72 12157.38 28690.07 22863.80 25195.75 13190.68 205
CLD-MVS83.18 16282.64 16584.79 13789.05 17467.82 18677.93 26792.52 9568.33 22485.07 18881.54 31482.06 10092.96 14069.35 21097.91 4893.57 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3390.34 4991.38 2789.03 17584.23 4593.58 494.68 1690.65 690.33 8893.95 9084.50 7195.37 4880.87 9395.50 13794.53 75
CDS-MVSNet77.32 23475.40 24983.06 17689.00 17672.48 14277.90 26882.17 26260.81 28478.94 27483.49 29259.30 27288.76 24654.64 30992.37 21587.93 250
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 18879.58 20985.52 12688.99 17766.45 19687.03 10675.51 30273.76 16088.32 13390.20 19137.96 35394.16 9479.36 11295.13 14995.93 41
tfpnnormal81.79 18182.95 16078.31 25488.93 17855.40 29880.83 22982.85 25776.81 12185.90 17994.14 7774.58 17886.51 27266.82 23395.68 13493.01 133
test_part187.15 8587.82 7885.15 13288.88 17963.04 22487.98 9094.85 1482.52 5893.61 3695.73 2567.51 22895.71 2880.48 10098.83 296.69 25
Vis-MVSNet (Re-imp)77.82 22977.79 22677.92 26288.82 18051.29 32983.28 17671.97 32774.04 15682.23 23389.78 19957.38 28689.41 23657.22 29195.41 13893.05 131
TAPA-MVS77.73 1285.71 10884.83 12788.37 7988.78 18179.72 7487.15 10493.50 5769.17 21585.80 18089.56 20180.76 11992.13 16173.21 18295.51 13693.25 125
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FPMVS72.29 28072.00 28073.14 29588.63 18285.00 3574.65 30667.39 33971.94 19077.80 28387.66 23050.48 31075.83 32849.95 32779.51 33358.58 357
ETV-MVS84.31 13583.91 14985.52 12688.58 18370.40 16384.50 14793.37 5978.76 10484.07 20978.72 33380.39 12395.13 5973.82 17192.98 20491.04 194
BH-untuned80.96 19080.99 18980.84 21788.55 18468.23 18180.33 23488.46 18772.79 17786.55 16386.76 24574.72 17691.77 17561.79 26588.99 26682.52 312
Anonymous20240521180.51 19881.19 18778.49 25188.48 18557.26 28676.63 28582.49 25981.21 7384.30 20692.24 13867.99 22686.24 27662.22 26095.13 14991.98 176
ab-mvs79.67 21280.56 19376.99 26988.48 18556.93 28884.70 14086.06 22568.95 21980.78 25593.08 10775.30 16884.62 29356.78 29290.90 24589.43 227
PHI-MVS86.38 9585.81 10988.08 8388.44 18777.34 10189.35 7193.05 7773.15 17384.76 19487.70 22978.87 13494.18 8980.67 9796.29 11092.73 143
xiu_mvs_v1_base_debu80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
xiu_mvs_v1_base_debi80.84 19280.14 20382.93 18088.31 18871.73 15279.53 24387.17 20765.43 25479.59 26782.73 30476.94 15590.14 22473.22 17788.33 27386.90 262
MG-MVS80.32 20480.94 19078.47 25288.18 19152.62 31882.29 20485.01 24472.01 18979.24 27292.54 12869.36 21993.36 12870.65 20089.19 26589.45 225
PM-MVS80.20 20779.00 21383.78 16288.17 19286.66 1681.31 22066.81 34569.64 21288.33 13290.19 19264.58 24083.63 30171.99 19190.03 25681.06 332
v1086.54 9287.10 8784.84 13688.16 19363.28 22186.64 11592.20 10275.42 14392.81 4794.50 5774.05 18294.06 9683.88 6296.28 11197.17 18
canonicalmvs85.50 10986.14 10383.58 16787.97 19467.13 18887.55 9694.32 1973.44 16488.47 12887.54 23286.45 5791.06 19475.76 15393.76 18592.54 153
EIA-MVS82.19 17481.23 18685.10 13387.95 19569.17 17783.22 18193.33 6270.42 20378.58 27679.77 33077.29 14894.20 8871.51 19288.96 26791.93 177
VNet79.31 21380.27 19876.44 27787.92 19653.95 30775.58 29784.35 25074.39 15482.23 23390.72 17872.84 19984.39 29560.38 27793.98 18290.97 196
v886.22 9986.83 9484.36 14787.82 19762.35 23686.42 11891.33 12676.78 12292.73 4894.48 5973.41 19193.72 10983.10 6995.41 13897.01 21
alignmvs83.94 14883.98 14783.80 16087.80 19867.88 18584.54 14591.42 12473.27 17188.41 13087.96 22472.33 20490.83 20276.02 15194.11 17992.69 147
v119284.57 12884.69 13284.21 15187.75 19962.88 22683.02 18591.43 12269.08 21789.98 9590.89 17372.70 20193.62 11582.41 7694.97 15796.13 33
PatchMatch-RL74.48 26373.22 26878.27 25787.70 20085.26 3375.92 29470.09 33564.34 26376.09 29481.25 31665.87 23878.07 32153.86 31183.82 31571.48 346
v114484.54 13184.72 13084.00 15587.67 20162.55 23282.97 18690.93 13670.32 20689.80 10090.99 16873.50 18893.48 12281.69 8594.65 16795.97 38
v124084.30 13684.51 13783.65 16587.65 20261.26 24582.85 18991.54 11967.94 23090.68 8390.65 18271.71 21193.64 11182.84 7494.78 16296.07 35
v192192084.23 14084.37 14183.79 16187.64 20361.71 24082.91 18891.20 13067.94 23090.06 9190.34 18772.04 20893.59 11682.32 7894.91 15896.07 35
v14419284.24 13984.41 13983.71 16487.59 20461.57 24182.95 18791.03 13467.82 23389.80 10090.49 18573.28 19493.51 12181.88 8494.89 16096.04 37
Fast-Effi-MVS+81.04 18980.57 19282.46 19387.50 20563.22 22278.37 26389.63 17168.01 22781.87 23982.08 30982.31 9392.65 14967.10 22988.30 27791.51 189
pmmvs-eth3d78.42 22377.04 23482.57 19187.44 20674.41 12480.86 22879.67 27855.68 31084.69 19590.31 18960.91 26085.42 28562.20 26191.59 23187.88 251
IterMVS-LS84.73 12584.98 12483.96 15787.35 20763.66 21683.25 17889.88 16776.06 12989.62 10692.37 13373.40 19392.52 15178.16 12694.77 16495.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 25275.05 25276.66 27687.27 20851.88 32481.07 22573.26 31875.68 13883.25 22086.37 24945.54 32888.80 24251.98 32190.99 24089.31 229
MIMVSNet71.09 28771.59 28369.57 31187.23 20950.07 33778.91 25471.83 32860.20 29071.26 32191.76 14955.08 29976.09 32641.06 35187.02 28982.54 311
Effi-MVS+83.90 14984.01 14683.57 16887.22 21065.61 20186.55 11792.40 9778.64 10581.34 25084.18 28683.65 7992.93 14274.22 16487.87 28192.17 169
BH-RMVSNet80.53 19780.22 20181.49 20687.19 21166.21 19777.79 27086.23 22374.21 15583.69 21288.50 21773.25 19590.75 20463.18 25687.90 28087.52 254
thisisatest053079.07 21577.33 23184.26 15087.13 21264.58 20883.66 16675.95 29768.86 22085.22 18787.36 23638.10 35193.57 11975.47 15594.28 17594.62 69
Effi-MVS+-dtu85.82 10683.38 15393.14 387.13 21291.15 287.70 9588.42 18874.57 15183.56 21685.65 26078.49 13694.21 8772.04 18992.88 20694.05 93
mvs-test184.55 12982.12 17291.84 2087.13 21289.54 485.05 13688.42 18874.57 15180.60 25682.98 29778.49 13693.98 9972.04 18989.77 25892.00 173
v2v48284.09 14284.24 14383.62 16687.13 21261.40 24282.71 19289.71 16972.19 18689.55 11091.41 15770.70 21693.20 13181.02 9093.76 18596.25 31
jason77.42 23375.75 24682.43 19487.10 21669.27 17277.99 26681.94 26451.47 33477.84 28185.07 27560.32 26489.00 23970.74 19989.27 26489.03 237
jason: jason.
PS-MVSNAJ77.04 23776.53 23978.56 24987.09 21761.40 24275.26 30087.13 21061.25 28074.38 30977.22 34176.94 15590.94 19664.63 24884.83 31083.35 301
xiu_mvs_v2_base77.19 23576.75 23778.52 25087.01 21861.30 24475.55 29887.12 21361.24 28174.45 30778.79 33277.20 14990.93 19764.62 24984.80 31183.32 302
thres600view775.97 24975.35 25177.85 26487.01 21851.84 32580.45 23273.26 31875.20 14583.10 22386.31 25245.54 32889.05 23855.03 30692.24 21892.66 148
CL-MVSNet_2432*160076.81 24077.38 23075.12 28686.90 22051.34 32773.20 31580.63 27368.30 22581.80 24388.40 21866.92 23280.90 31255.35 30394.90 15993.12 129
BH-w/o76.57 24376.07 24478.10 25986.88 22165.92 19977.63 27286.33 22265.69 25280.89 25379.95 32768.97 22390.74 20553.01 31785.25 30377.62 338
MAR-MVS80.24 20678.74 21684.73 13986.87 22278.18 8985.75 12787.81 20165.67 25377.84 28178.50 33473.79 18590.53 21161.59 26990.87 24685.49 276
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS85.09 11785.49 11783.90 15986.75 22365.28 20287.53 9895.66 476.39 12481.90 23886.80 24480.98 11695.23 5479.09 11394.36 17391.17 193
QAPM82.59 16882.59 16782.58 18986.44 22466.69 19489.94 5590.36 15067.97 22984.94 19192.58 12672.71 20092.18 16070.63 20187.73 28388.85 240
PAPM71.77 28370.06 29476.92 27186.39 22553.97 30676.62 28686.62 22053.44 32163.97 34984.73 28157.79 28592.34 15639.65 35381.33 32984.45 285
GBi-Net82.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
test182.02 17782.07 17381.85 20086.38 22661.05 24886.83 10988.27 19372.43 18086.00 17595.64 2963.78 24690.68 20765.95 23793.34 19393.82 103
FMVSNet281.31 18581.61 18080.41 22486.38 22658.75 27783.93 15786.58 22172.43 18087.65 14092.98 11063.78 24690.22 21966.86 23093.92 18392.27 164
3Dnovator80.37 784.80 12484.71 13185.06 13486.36 22974.71 12288.77 8190.00 16575.65 13984.96 18993.17 10674.06 18191.19 18978.28 12391.09 23689.29 231
Anonymous2023120671.38 28671.88 28169.88 30886.31 23054.37 30470.39 32574.62 30552.57 32676.73 28788.76 21359.94 26772.06 33444.35 34693.23 19783.23 304
baseline85.20 11485.93 10683.02 17786.30 23162.37 23584.55 14393.96 3874.48 15387.12 14792.03 14082.30 9491.94 16878.39 11994.21 17694.74 68
API-MVS82.28 17282.61 16681.30 20786.29 23269.79 16588.71 8287.67 20278.42 10882.15 23584.15 28777.98 14091.59 17765.39 24392.75 20882.51 313
tfpn200view974.86 26074.23 25976.74 27586.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24089.31 229
thres40075.14 25474.23 25977.86 26386.24 23352.12 32179.24 25073.87 31273.34 16681.82 24184.60 28346.02 32288.80 24251.98 32190.99 24092.66 148
UGNet82.78 16581.64 17986.21 11286.20 23576.24 11786.86 10785.68 23077.07 11973.76 31192.82 11769.64 21791.82 17469.04 21693.69 18890.56 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15082.85 16186.63 9986.17 23672.21 14883.76 16391.43 12277.24 11874.39 30887.45 23475.36 16795.42 4677.03 14292.83 20792.25 166
casdiffmvs85.21 11385.85 10883.31 17286.17 23662.77 22883.03 18493.93 3974.69 15088.21 13492.68 12382.29 9591.89 17177.87 13293.75 18795.27 56
TR-MVS76.77 24175.79 24579.72 23486.10 23865.79 20077.14 27883.02 25565.20 25981.40 24882.10 30866.30 23490.73 20655.57 30085.27 30282.65 308
LCM-MVSNet-Re83.48 15685.06 12278.75 24685.94 23955.75 29780.05 23694.27 2076.47 12396.09 494.54 5683.31 8389.75 23259.95 27894.89 16090.75 202
bset_n11_16_dypcd79.19 21477.97 22482.86 18485.81 24066.85 19375.02 30279.31 27966.07 24583.50 21883.37 29655.04 30092.10 16478.63 11894.99 15689.63 222
Fast-Effi-MVS+-dtu82.54 16981.41 18385.90 11885.60 24176.53 11383.07 18389.62 17273.02 17579.11 27383.51 29180.74 12090.24 21868.76 21889.29 26290.94 197
v14882.31 17182.48 16981.81 20385.59 24259.66 26381.47 21886.02 22672.85 17688.05 13590.65 18270.73 21590.91 19975.15 15991.79 22794.87 63
MVSFormer82.23 17381.57 18284.19 15385.54 24369.26 17391.98 2990.08 16371.54 19176.23 29285.07 27558.69 27794.27 8286.26 3588.77 26989.03 237
lupinMVS76.37 24774.46 25782.09 19585.54 24369.26 17376.79 28280.77 27250.68 34076.23 29282.82 30258.69 27788.94 24069.85 20688.77 26988.07 245
TinyColmap81.25 18682.34 17177.99 26185.33 24560.68 25582.32 20388.33 19171.26 19586.97 15492.22 13977.10 15286.98 26462.37 25995.17 14886.31 267
PAPR78.84 21878.10 22381.07 21285.17 24660.22 25882.21 20890.57 14562.51 27075.32 30384.61 28274.99 17092.30 15859.48 28188.04 27990.68 205
pmmvs474.92 25972.98 27180.73 21984.95 24771.71 15576.23 29277.59 28852.83 32477.73 28486.38 24856.35 29284.97 28957.72 29087.05 28885.51 275
baseline173.26 27073.54 26572.43 30184.92 24847.79 34379.89 23974.00 31065.93 24678.81 27586.28 25356.36 29181.63 31056.63 29379.04 33887.87 252
Patchmatch-RL test74.48 26373.68 26376.89 27384.83 24966.54 19572.29 31869.16 33857.70 30086.76 15786.33 25045.79 32782.59 30469.63 20890.65 25381.54 323
DIV-MVS_2432*160081.93 18083.14 15878.30 25584.75 25052.75 31580.37 23389.42 17670.24 20890.26 8993.39 10374.55 17986.77 26868.61 22196.64 9795.38 51
XXY-MVS74.44 26576.19 24269.21 31284.61 25152.43 32071.70 32077.18 29060.73 28680.60 25690.96 17175.44 16569.35 34056.13 29688.33 27385.86 272
cascas76.29 24874.81 25380.72 22084.47 25262.94 22573.89 31087.34 20455.94 30975.16 30576.53 34463.97 24491.16 19065.00 24490.97 24388.06 246
PVSNet_BlendedMVS78.80 21977.84 22581.65 20584.43 25363.41 21879.49 24690.44 14761.70 27875.43 30187.07 24269.11 22191.44 18160.68 27592.24 21890.11 219
PVSNet_Blended76.49 24575.40 24979.76 23284.43 25363.41 21875.14 30190.44 14757.36 30475.43 30178.30 33569.11 22191.44 18160.68 27587.70 28484.42 286
OpenMVScopyleft76.72 1381.98 17982.00 17581.93 19784.42 25568.22 18288.50 8689.48 17466.92 23981.80 24391.86 14372.59 20290.16 22171.19 19491.25 23587.40 256
OpenMVS_ROBcopyleft70.19 1777.77 23177.46 22878.71 24784.39 25661.15 24681.18 22482.52 25862.45 27283.34 21987.37 23566.20 23588.66 24764.69 24785.02 30586.32 266
test_yl78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
DCV-MVSNet78.71 22178.51 21879.32 24084.32 25758.84 27478.38 26185.33 23475.99 13282.49 22886.57 24658.01 28090.02 22962.74 25792.73 20989.10 234
Regformer-385.06 11984.67 13386.22 11084.27 25973.43 12984.07 15185.26 23680.77 7888.62 12585.48 26380.56 12290.39 21581.99 8191.04 23894.85 65
Regformer-486.41 9485.71 11288.52 7384.27 25977.57 9684.07 15188.00 19882.82 5589.84 9985.48 26382.06 10092.77 14683.83 6491.04 23895.22 60
DELS-MVS81.44 18481.25 18482.03 19684.27 25962.87 22776.47 28992.49 9670.97 19881.64 24683.83 28875.03 16992.70 14774.29 16392.22 22090.51 211
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13286.33 9878.78 24584.20 26273.57 12889.55 6490.44 14784.24 3684.38 20194.89 4576.35 16480.40 31576.14 14996.80 9482.36 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-186.00 10285.50 11687.49 9084.18 26376.90 10883.52 16887.94 20082.18 6289.19 11585.07 27582.28 9691.89 17182.40 7792.72 21193.69 109
Regformer-286.74 9086.08 10488.73 6984.18 26379.20 8083.52 16889.33 17783.33 4889.92 9785.07 27583.23 8493.16 13483.39 6692.72 21193.83 101
MVS_030478.17 22477.23 23280.99 21684.13 26569.07 17981.39 21980.81 27176.28 12667.53 33689.11 20962.87 25486.77 26860.90 27492.01 22587.13 259
EI-MVSNet-Vis-set85.12 11684.53 13686.88 9584.01 26672.76 13383.91 15885.18 23880.44 7988.75 12285.49 26280.08 12691.92 16982.02 8090.85 24795.97 38
IterMVS-SCA-FT80.64 19679.41 21084.34 14883.93 26769.66 16876.28 29181.09 26972.43 18086.47 16990.19 19260.46 26293.15 13677.45 13786.39 29490.22 215
MSDG80.06 21179.99 20780.25 22683.91 26868.04 18477.51 27589.19 17877.65 11381.94 23783.45 29376.37 16386.31 27563.31 25586.59 29186.41 265
EI-MVSNet-UG-set85.04 12084.44 13886.85 9683.87 26972.52 14183.82 16085.15 23980.27 8388.75 12285.45 26679.95 12891.90 17081.92 8390.80 24896.13 33
thres20072.34 27971.55 28574.70 28983.48 27051.60 32675.02 30273.71 31570.14 20978.56 27780.57 32146.20 32088.20 25246.99 34089.29 26284.32 287
USDC76.63 24276.73 23876.34 27983.46 27157.20 28780.02 23788.04 19752.14 33083.65 21491.25 15863.24 24986.65 27154.66 30894.11 17985.17 278
HY-MVS64.64 1873.03 27372.47 27874.71 28883.36 27254.19 30582.14 21181.96 26356.76 30869.57 32886.21 25460.03 26684.83 29249.58 33082.65 32385.11 279
EI-MVSNet82.61 16782.42 17083.20 17483.25 27363.66 21683.50 17185.07 24076.06 12986.55 16385.10 27273.41 19190.25 21678.15 12890.67 25195.68 44
CVMVSNet72.62 27671.41 28676.28 28083.25 27360.34 25783.50 17179.02 28337.77 35976.33 29085.10 27249.60 31287.41 25870.54 20277.54 34381.08 330
V4283.47 15783.37 15483.75 16383.16 27563.33 22081.31 22090.23 15969.51 21390.91 8090.81 17674.16 18092.29 15980.06 10190.22 25595.62 46
Anonymous2024052180.18 20881.25 18476.95 27083.15 27660.84 25382.46 19985.99 22768.76 22186.78 15693.73 9959.13 27477.44 32273.71 17297.55 6792.56 151
EU-MVSNet75.12 25674.43 25877.18 26883.11 27759.48 26585.71 12982.43 26039.76 35885.64 18288.76 21344.71 33987.88 25473.86 17085.88 29884.16 289
ET-MVSNet_ETH3D75.28 25372.77 27282.81 18583.03 27868.11 18377.09 27976.51 29560.67 28777.60 28580.52 32238.04 35291.15 19170.78 19790.68 25089.17 232
FMVSNet378.80 21978.55 21779.57 23782.89 27956.89 29081.76 21285.77 22969.04 21886.00 17590.44 18651.75 30590.09 22765.95 23793.34 19391.72 182
MVS_Test82.47 17083.22 15580.22 22782.62 28057.75 28382.54 19791.96 10971.16 19782.89 22592.52 12977.41 14790.50 21280.04 10287.84 28292.40 157
LF4IMVS82.75 16681.93 17685.19 13082.08 28180.15 7185.53 13088.76 18468.01 22785.58 18387.75 22871.80 21086.85 26674.02 16793.87 18488.58 242
PVSNet58.17 2166.41 31165.63 31468.75 31581.96 28249.88 33862.19 34772.51 32451.03 33668.04 33275.34 34750.84 30874.77 33045.82 34482.96 31981.60 322
GA-MVS75.83 25074.61 25479.48 23981.87 28359.25 26773.42 31382.88 25668.68 22279.75 26681.80 31150.62 30989.46 23466.85 23185.64 29989.72 221
MS-PatchMatch70.93 28870.22 29273.06 29681.85 28462.50 23373.82 31177.90 28652.44 32775.92 29681.27 31555.67 29581.75 30855.37 30277.70 34174.94 342
SCA73.32 26972.57 27675.58 28481.62 28555.86 29578.89 25571.37 33261.73 27674.93 30683.42 29460.46 26287.01 26158.11 28882.63 32583.88 290
FMVSNet572.10 28171.69 28273.32 29381.57 28653.02 31476.77 28378.37 28563.31 26576.37 28991.85 14436.68 35578.98 31847.87 33792.45 21487.95 249
thisisatest051573.00 27470.52 28980.46 22381.45 28759.90 26173.16 31674.31 30957.86 29976.08 29577.78 33637.60 35492.12 16365.00 24491.45 23389.35 228
eth_miper_zixun_eth80.84 19280.22 20182.71 18681.41 28860.98 25177.81 26990.14 16267.31 23786.95 15587.24 23864.26 24292.31 15775.23 15891.61 23094.85 65
CANet_DTU77.81 23077.05 23380.09 22981.37 28959.90 26183.26 17788.29 19269.16 21667.83 33483.72 28960.93 25989.47 23369.22 21389.70 25990.88 199
ANet_high83.17 16385.68 11375.65 28381.24 29045.26 35079.94 23892.91 8483.83 4091.33 7296.88 1080.25 12585.92 28068.89 21795.89 12495.76 42
new-patchmatchnet70.10 29373.37 26760.29 33881.23 29116.95 36659.54 34974.62 30562.93 26780.97 25187.93 22662.83 25571.90 33555.24 30495.01 15592.00 173
test20.0373.75 26874.59 25671.22 30581.11 29251.12 33170.15 32672.10 32670.42 20380.28 26491.50 15564.21 24374.72 33246.96 34194.58 16887.82 253
MVS73.21 27272.59 27575.06 28780.97 29360.81 25481.64 21585.92 22846.03 34971.68 32077.54 33768.47 22489.77 23155.70 29985.39 30074.60 343
N_pmnet70.20 29168.80 30074.38 29080.91 29484.81 3859.12 35176.45 29655.06 31375.31 30482.36 30755.74 29454.82 35847.02 33987.24 28783.52 297
IterMVS76.91 23876.34 24178.64 24880.91 29464.03 21476.30 29079.03 28264.88 26183.11 22289.16 20759.90 26884.46 29468.61 22185.15 30487.42 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl_fuxian81.64 18281.59 18181.79 20480.86 29659.15 27078.61 26090.18 16168.36 22387.20 14587.11 24169.39 21891.62 17678.16 12694.43 17294.60 71
RRT_test8_iter0578.08 22677.52 22779.75 23380.84 29752.54 31980.61 23088.96 18167.77 23484.62 19689.29 20433.89 35892.10 16477.59 13494.15 17894.62 69
WTY-MVS67.91 30468.35 30266.58 32380.82 29848.12 34165.96 33972.60 32253.67 32071.20 32281.68 31358.97 27569.06 34248.57 33381.67 32682.55 310
IB-MVS62.13 1971.64 28468.97 29879.66 23680.80 29962.26 23873.94 30976.90 29163.27 26668.63 33076.79 34233.83 35991.84 17359.28 28287.26 28684.88 281
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 28271.59 28372.62 29980.71 30053.78 30869.72 32871.71 33158.80 29378.03 27880.51 32356.61 29078.84 31962.20 26186.04 29785.23 277
ppachtmachnet_test74.73 26274.00 26176.90 27280.71 30056.89 29071.53 32178.42 28458.24 29679.32 27182.92 30157.91 28384.26 29665.60 24291.36 23489.56 224
testgi72.36 27874.61 25465.59 32580.56 30242.82 35668.29 33173.35 31766.87 24081.84 24089.93 19772.08 20766.92 34846.05 34392.54 21387.01 261
RRT_MVS83.25 16081.08 18889.74 5380.55 30379.32 7986.41 11986.69 21972.33 18487.00 15391.08 16444.98 33795.55 3784.47 5896.24 11494.36 82
D2MVS76.84 23975.67 24880.34 22580.48 30462.16 23973.50 31284.80 24857.61 30282.24 23287.54 23251.31 30687.65 25670.40 20493.19 19891.23 192
131473.22 27172.56 27775.20 28580.41 30557.84 28181.64 21585.36 23351.68 33373.10 31476.65 34361.45 25885.19 28763.54 25279.21 33782.59 309
cl-mvsnet____80.42 20080.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.37 23686.18 17289.21 20663.08 25190.16 22176.31 14795.80 12893.65 112
cl-mvsnet180.43 19980.23 19981.02 21479.99 30659.25 26777.07 28087.02 21567.38 23586.19 17089.22 20563.09 25090.16 22176.32 14695.80 12893.66 110
miper_ehance_all_eth80.34 20380.04 20681.24 21079.82 30858.95 27277.66 27189.66 17065.75 25185.99 17885.11 27168.29 22591.42 18376.03 15092.03 22293.33 120
CR-MVSNet74.00 26673.04 27076.85 27479.58 30962.64 23082.58 19476.90 29150.50 34175.72 29892.38 13048.07 31584.07 29768.72 22082.91 32183.85 293
RPMNet78.88 21778.28 22180.68 22179.58 30962.64 23082.58 19494.16 2874.80 14875.72 29892.59 12448.69 31395.56 3473.48 17582.91 32183.85 293
baseline269.77 29766.89 30778.41 25379.51 31158.09 27976.23 29269.57 33757.50 30364.82 34777.45 33946.02 32288.44 24853.08 31477.83 34088.70 241
UnsupCasMVSNet_bld69.21 30069.68 29567.82 31979.42 31251.15 33067.82 33575.79 29854.15 31777.47 28685.36 27059.26 27370.64 33748.46 33479.35 33581.66 321
PatchT70.52 29072.76 27363.79 33079.38 31333.53 36277.63 27265.37 34773.61 16171.77 31992.79 12044.38 34075.65 32964.53 25085.37 30182.18 316
Patchmtry76.56 24477.46 22873.83 29279.37 31446.60 34782.41 20176.90 29173.81 15985.56 18492.38 13048.07 31583.98 29863.36 25495.31 14490.92 198
mvs_anonymous78.13 22578.76 21576.23 28179.24 31550.31 33678.69 25884.82 24761.60 27983.09 22492.82 11773.89 18487.01 26168.33 22486.41 29391.37 190
MVS-HIRNet61.16 32362.92 32055.87 34179.09 31635.34 36171.83 31957.98 35946.56 34759.05 35691.14 16349.95 31176.43 32538.74 35471.92 35155.84 358
MDA-MVSNet-bldmvs77.47 23276.90 23679.16 24279.03 31764.59 20766.58 33875.67 30073.15 17388.86 11988.99 21166.94 23181.23 31164.71 24688.22 27891.64 185
diffmvs80.40 20180.48 19680.17 22879.02 31860.04 25977.54 27490.28 15866.65 24282.40 23087.33 23773.50 18887.35 25977.98 13089.62 26093.13 128
tpm268.45 30266.83 30873.30 29478.93 31948.50 33979.76 24071.76 32947.50 34569.92 32783.60 29042.07 34588.40 24948.44 33579.51 33383.01 307
tpm67.95 30368.08 30467.55 32078.74 32043.53 35475.60 29667.10 34454.92 31472.23 31788.10 22242.87 34475.97 32752.21 31980.95 33283.15 305
MDTV_nov1_ep1368.29 30378.03 32143.87 35374.12 30872.22 32552.17 32867.02 33785.54 26145.36 33280.85 31355.73 29784.42 313
cl-mvsnet278.97 21678.21 22281.24 21077.74 32259.01 27177.46 27787.13 21065.79 24884.32 20385.10 27258.96 27690.88 20175.36 15792.03 22293.84 100
EPNet_dtu72.87 27571.33 28777.49 26777.72 32360.55 25682.35 20275.79 29866.49 24358.39 35981.06 31753.68 30285.98 27953.55 31292.97 20585.95 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 29868.83 29972.33 30277.66 32453.60 30979.29 24869.99 33657.66 30172.53 31682.93 30046.45 31980.08 31760.91 27372.09 35083.31 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sss66.92 30667.26 30665.90 32477.23 32551.10 33264.79 34071.72 33052.12 33170.13 32680.18 32557.96 28265.36 35350.21 32681.01 33181.25 327
CostFormer69.98 29668.68 30173.87 29177.14 32650.72 33479.26 24974.51 30751.94 33270.97 32484.75 28045.16 33687.49 25755.16 30579.23 33683.40 300
tpm cat166.76 30965.21 31571.42 30477.09 32750.62 33578.01 26573.68 31644.89 35168.64 32979.00 33145.51 33082.42 30749.91 32870.15 35381.23 329
pmmvs570.73 28970.07 29372.72 29777.03 32852.73 31674.14 30775.65 30150.36 34272.17 31885.37 26955.42 29780.67 31452.86 31887.59 28584.77 282
EPNet80.37 20278.41 22086.23 10976.75 32973.28 13087.18 10377.45 28976.24 12768.14 33188.93 21265.41 23993.85 10369.47 20996.12 11991.55 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 24676.10 24377.51 26676.72 33060.97 25264.69 34185.04 24263.98 26483.20 22188.22 22056.67 28978.79 32073.22 17793.12 19992.78 142
CHOSEN 280x42059.08 32756.52 33266.76 32276.51 33164.39 21149.62 35759.00 35643.86 35355.66 36168.41 35435.55 35768.21 34443.25 34776.78 34567.69 351
UnsupCasMVSNet_eth71.63 28572.30 27969.62 31076.47 33252.70 31770.03 32780.97 27059.18 29279.36 27088.21 22160.50 26169.12 34158.33 28677.62 34287.04 260
test-LLR67.21 30566.74 30968.63 31676.45 33355.21 30067.89 33267.14 34262.43 27365.08 34472.39 34943.41 34169.37 33861.00 27184.89 30881.31 325
test-mter65.00 31563.79 31868.63 31676.45 33355.21 30067.89 33267.14 34250.98 33765.08 34472.39 34928.27 36669.37 33861.00 27184.89 30881.31 325
miper_enhance_ethall77.83 22876.93 23580.51 22276.15 33558.01 28075.47 29988.82 18258.05 29883.59 21580.69 31864.41 24191.20 18873.16 18392.03 22292.33 159
gg-mvs-nofinetune68.96 30169.11 29768.52 31876.12 33645.32 34983.59 16755.88 36086.68 2564.62 34897.01 730.36 36383.97 29944.78 34582.94 32076.26 340
CMPMVSbinary59.41 2075.12 25673.57 26479.77 23175.84 33767.22 18781.21 22382.18 26150.78 33876.50 28887.66 23055.20 29882.99 30362.17 26390.64 25489.09 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 25579.30 21162.63 33175.56 33875.18 12180.89 22773.10 32075.06 14794.76 1195.32 3487.73 4152.85 35934.16 35897.11 8359.85 355
Patchmatch-test65.91 31367.38 30561.48 33675.51 33943.21 35568.84 32963.79 34962.48 27172.80 31583.42 29444.89 33859.52 35748.27 33686.45 29281.70 320
new_pmnet55.69 32957.66 33149.76 34375.47 34030.59 36359.56 34851.45 36343.62 35462.49 35075.48 34640.96 34749.15 36137.39 35672.52 34969.55 349
gm-plane-assit75.42 34144.97 35252.17 32872.36 35187.90 25354.10 310
MVSTER77.09 23675.70 24781.25 20875.27 34261.08 24777.49 27685.07 24060.78 28586.55 16388.68 21543.14 34390.25 21673.69 17390.67 25192.42 155
PVSNet_051.08 2256.10 32854.97 33359.48 33975.12 34353.28 31355.16 35461.89 35144.30 35259.16 35562.48 35854.22 30165.91 35235.40 35747.01 36059.25 356
test0.0.03 164.66 31664.36 31765.57 32675.03 34446.89 34664.69 34161.58 35462.43 27371.18 32377.54 33743.41 34168.47 34340.75 35282.65 32381.35 324
DWT-MVSNet_test66.43 31064.37 31672.63 29874.86 34550.86 33376.52 28772.74 32154.06 31865.50 34168.30 35532.13 36184.84 29161.63 26873.59 34882.19 315
tpmvs70.16 29269.56 29671.96 30374.71 34648.13 34079.63 24175.45 30365.02 26070.26 32581.88 31045.34 33385.68 28358.34 28575.39 34682.08 317
MDA-MVSNet_test_wron70.05 29570.44 29068.88 31473.84 34753.47 31058.93 35367.28 34058.43 29487.09 15085.40 26759.80 27067.25 34659.66 28083.54 31685.92 271
YYNet170.06 29470.44 29068.90 31373.76 34853.42 31258.99 35267.20 34158.42 29587.10 14985.39 26859.82 26967.32 34559.79 27983.50 31785.96 269
GG-mvs-BLEND67.16 32173.36 34946.54 34884.15 15055.04 36158.64 35861.95 35929.93 36483.87 30038.71 35576.92 34471.07 347
JIA-IIPM69.41 29966.64 31177.70 26573.19 35071.24 15875.67 29565.56 34670.42 20365.18 34392.97 11233.64 36083.06 30253.52 31369.61 35678.79 337
ADS-MVSNet265.87 31463.64 31972.55 30073.16 35156.92 28967.10 33674.81 30449.74 34366.04 33982.97 29846.71 31777.26 32342.29 34869.96 35483.46 298
ADS-MVSNet61.90 31962.19 32261.03 33773.16 35136.42 36067.10 33661.75 35249.74 34366.04 33982.97 29846.71 31763.21 35542.29 34869.96 35483.46 298
DSMNet-mixed60.98 32561.61 32459.09 34072.88 35345.05 35174.70 30546.61 36526.20 36165.34 34290.32 18855.46 29663.12 35641.72 35081.30 33069.09 350
tpmrst66.28 31266.69 31065.05 32872.82 35439.33 35778.20 26470.69 33453.16 32367.88 33380.36 32448.18 31474.75 33158.13 28770.79 35281.08 330
TESTMET0.1,161.29 32260.32 32764.19 32972.06 35551.30 32867.89 33262.09 35045.27 35060.65 35369.01 35227.93 36764.74 35456.31 29581.65 32876.53 339
dp60.70 32660.29 32861.92 33472.04 35638.67 35970.83 32264.08 34851.28 33560.75 35277.28 34036.59 35671.58 33647.41 33862.34 35975.52 341
pmmvs362.47 31760.02 32969.80 30971.58 35764.00 21570.52 32458.44 35839.77 35766.05 33875.84 34527.10 36872.28 33346.15 34284.77 31273.11 344
EPMVS62.47 31762.63 32162.01 33270.63 35838.74 35874.76 30452.86 36253.91 31967.71 33580.01 32639.40 34966.60 34955.54 30168.81 35780.68 334
KD-MVS_2432*160066.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
miper_refine_blended66.87 30765.81 31270.04 30667.50 35947.49 34462.56 34579.16 28061.21 28277.98 27980.61 31925.29 36982.48 30553.02 31584.92 30680.16 335
E-PMN61.59 32161.62 32361.49 33566.81 36155.40 29853.77 35560.34 35566.80 24158.90 35765.50 35640.48 34866.12 35155.72 29886.25 29562.95 353
EMVS61.10 32460.81 32561.99 33365.96 36255.86 29553.10 35658.97 35767.06 23856.89 36063.33 35740.98 34667.03 34754.79 30786.18 29663.08 352
PMMVS61.65 32060.38 32665.47 32765.40 36369.26 17363.97 34361.73 35336.80 36060.11 35468.43 35359.42 27166.35 35048.97 33278.57 33960.81 354
PMMVS255.64 33059.27 33044.74 34464.30 36412.32 36740.60 35849.79 36453.19 32265.06 34684.81 27953.60 30349.76 36032.68 36089.41 26172.15 345
MVEpermissive40.22 2351.82 33150.47 33455.87 34162.66 36551.91 32331.61 36039.28 36640.65 35650.76 36274.98 34856.24 29344.67 36233.94 35964.11 35871.04 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 34632.95 36629.49 36421.63 36912.07 36237.95 36345.07 36130.84 36219.21 36417.94 36333.06 36323.69 360
test_method30.46 33229.60 33533.06 34517.99 3673.84 36913.62 36173.92 3112.79 36318.29 36553.41 36028.53 36543.25 36322.56 36135.27 36252.11 359
tmp_tt20.25 33424.50 3377.49 3474.47 3688.70 36834.17 35925.16 3681.00 36432.43 36418.49 36239.37 3509.21 36521.64 36243.75 3614.57 361
testmvs5.91 3387.65 3410.72 3491.20 3690.37 37159.14 3500.67 3710.49 3661.11 3662.76 3660.94 3720.24 3671.02 3651.47 3641.55 363
test1236.27 3378.08 3400.84 3481.11 3700.57 37062.90 3440.82 3700.54 3651.07 3672.75 3671.26 3710.30 3661.04 3641.26 3651.66 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k20.81 33327.75 3360.00 3500.00 3710.00 3720.00 36285.44 2320.00 3670.00 36882.82 30281.46 1110.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.41 3368.55 3390.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36876.94 1550.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re6.65 3358.87 3380.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36879.80 3280.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO93.71 4883.77 4193.49 3794.27 6989.27 2295.84 1986.03 4197.82 5192.04 171
test_0728_THIRD85.33 3093.75 3094.65 5387.44 4495.78 2487.41 1998.21 3092.98 134
GSMVS83.88 290
sam_mvs146.11 32183.88 290
sam_mvs45.92 326
MTGPAbinary91.81 114
test_post178.85 2573.13 36445.19 33580.13 31658.11 288
test_post3.10 36545.43 33177.22 324
patchmatchnet-post81.71 31245.93 32587.01 261
MTMP90.66 4033.14 367
test9_res80.83 9496.45 10690.57 208
agg_prior279.68 10696.16 11690.22 215
test_prior478.97 8284.59 142
test_prior283.37 17475.43 14184.58 19791.57 15281.92 10679.54 10896.97 86
旧先验281.73 21356.88 30786.54 16884.90 29072.81 184
新几何281.72 214
无先验82.81 19085.62 23158.09 29791.41 18467.95 22784.48 284
原ACMM282.26 207
testdata286.43 27463.52 253
segment_acmp81.94 103
testdata179.62 24273.95 158
plane_prior593.61 5395.22 5580.78 9595.83 12694.46 77
plane_prior492.95 113
plane_prior376.85 10977.79 11286.55 163
plane_prior289.45 6979.44 93
plane_prior76.42 11487.15 10475.94 13595.03 154
n20.00 372
nn0.00 372
door-mid74.45 308
test1191.46 121
door72.57 323
HQP5-MVS70.66 161
BP-MVS77.30 139
HQP4-MVS80.56 25894.61 7693.56 117
HQP3-MVS92.68 9294.47 170
HQP2-MVS72.10 205
MDTV_nov1_ep13_2view27.60 36570.76 32346.47 34861.27 35145.20 33449.18 33183.75 295
ACMMP++_ref95.74 132
ACMMP++97.35 76
Test By Simon79.09 132