This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1788.16 3394.17 9286.07 4598.48 1797.22 19
EC-MVSNet88.01 7588.32 7387.09 9289.28 17772.03 15790.31 5596.31 380.88 8185.12 19889.67 22684.47 7295.46 4782.56 8396.26 11093.77 118
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
SF-MVS90.27 3590.80 4288.68 7392.86 8377.09 10491.19 4195.74 581.38 7492.28 5993.80 10286.89 4994.64 7485.52 5197.51 7094.30 91
CS-MVS-test87.00 8786.43 10188.71 7189.46 17377.46 9889.42 8095.73 677.87 11881.64 26887.25 26682.43 9594.53 8077.65 13996.46 10194.14 98
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7776.26 11689.65 7195.55 787.72 2293.89 2794.94 4791.62 393.44 12478.35 12798.76 395.61 48
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 984.81 6993.16 13491.10 197.53 6996.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 7787.40 8589.68 5291.59 12183.40 4889.50 7695.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
TestCases89.68 5291.59 12183.40 4895.44 979.47 9588.00 14393.03 12182.66 9191.47 17870.81 21496.14 11594.16 96
9.1489.29 5991.84 11688.80 8995.32 1175.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 66
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1290.28 992.11 6195.03 4589.75 2094.93 6679.95 11198.27 2595.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7685.17 3592.47 2695.05 1387.65 2393.21 4094.39 7290.09 1795.08 6186.67 3597.60 6394.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 6091.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
bld_raw_dy_0_6489.10 6290.28 4885.56 12792.90 7962.28 26092.93 1394.80 1588.13 2094.98 1297.01 771.37 22795.87 1884.15 6596.25 11198.52 7
CS-MVS88.14 7287.67 8089.54 5789.56 17079.18 7890.47 5294.77 1679.37 9984.32 21889.33 23083.87 7694.53 8082.45 8494.89 16794.90 66
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1790.65 790.33 9293.95 9784.50 7195.37 5180.87 10195.50 14294.53 80
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1875.79 14092.94 4494.96 4688.36 2895.01 6490.70 298.40 1995.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
sasdasda85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
canonicalmvs85.50 11286.14 10683.58 17487.97 20967.13 20387.55 10694.32 1973.44 16988.47 13087.54 25986.45 5591.06 19275.76 16393.76 19992.54 168
LCM-MVSNet-Re83.48 16085.06 12878.75 25985.94 26155.75 32980.05 25294.27 2176.47 12996.09 594.54 6283.31 8589.75 23759.95 30994.89 16790.75 225
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5894.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6493.67 3494.82 5191.18 495.52 4285.36 5298.73 695.23 59
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3692.51 5595.13 4390.65 995.34 5288.06 898.15 3395.95 41
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15087.09 23465.22 22384.16 16494.23 2477.89 11791.28 7793.66 10884.35 7392.71 14680.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8991.29 7693.97 9287.93 3895.87 1888.65 497.96 4494.12 99
nrg03087.85 8088.49 7185.91 11790.07 16369.73 17987.86 10394.20 2774.04 15892.70 5394.66 5585.88 6391.50 17779.72 11497.32 7496.50 31
DeepC-MVS82.31 489.15 6089.08 6389.37 5993.64 6279.07 7988.54 9494.20 2773.53 16689.71 10594.82 5185.09 6595.77 3084.17 6498.03 3793.26 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf05_1185.73 11085.77 11785.60 12588.77 19367.74 20191.49 3794.17 2971.86 20188.07 14092.18 15368.84 24295.06 6281.20 9795.33 14693.99 103
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6788.83 2495.51 4487.16 2997.60 6392.73 157
RE-MVS-def92.61 494.13 5188.95 592.87 1494.16 3088.75 1493.79 2994.43 6790.64 1087.16 2997.60 6392.73 157
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21294.16 3074.80 15175.72 33092.59 13748.69 34595.56 3973.48 19282.91 35883.85 329
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 3082.52 6392.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2191.92 1189.14 6392.97 7878.04 8992.84 1694.14 3483.33 5493.90 2595.73 2788.77 2596.41 287.60 1897.98 4192.98 151
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4589.66 5490.92 3191.27 13581.66 6291.25 3994.13 3588.89 1188.83 12394.26 7777.55 15195.86 2284.88 5795.87 13095.24 58
test_one_060193.85 5873.27 13594.11 3686.57 2693.47 3894.64 5988.42 26
DVP-MVS++90.07 3891.09 3287.00 9491.55 12672.64 14396.19 294.10 3785.33 3493.49 3694.64 5981.12 11995.88 1687.41 2295.94 12692.48 170
test_0728_SECOND86.79 9994.25 4572.45 15190.54 4994.10 3795.88 1686.42 3697.97 4292.02 194
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6778.65 8389.15 8394.05 3984.68 4193.90 2594.11 8788.13 3496.30 484.51 6197.81 5191.70 204
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8294.05 3979.03 10492.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4389.84 5190.41 3994.91 3684.50 4489.49 7793.98 4179.68 9392.09 6293.89 10083.80 7893.10 13782.67 8298.04 3593.64 124
MGCFI-Net85.04 12285.95 10982.31 20887.52 22263.59 23986.23 13193.96 4273.46 16788.07 14087.83 25486.46 5490.87 20176.17 15893.89 19792.47 172
baseline85.20 11985.93 11083.02 18886.30 25162.37 25884.55 15793.96 4274.48 15587.12 15592.03 15482.30 10091.94 16778.39 12594.21 18894.74 74
casdiffmvspermissive85.21 11885.85 11483.31 18286.17 25662.77 25083.03 19793.93 4474.69 15388.21 13792.68 13682.29 10191.89 17077.87 13893.75 20295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5189.37 5890.28 4294.47 4285.95 2386.84 11893.91 4580.07 9086.75 16693.26 11493.64 290.93 19684.60 6090.75 26693.97 105
test072694.16 4972.56 14790.63 4693.90 4683.61 5193.75 3194.49 6489.76 18
MSP-MVS89.08 6388.16 7491.83 1895.76 1786.14 2192.75 1793.90 4678.43 11289.16 11892.25 15072.03 22296.36 388.21 790.93 26092.98 151
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5893.90 4680.32 8691.74 6994.41 7088.17 3295.98 1186.37 3897.99 3993.96 106
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2493.87 4988.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7392.19 188
ACMH76.49 1489.34 5591.14 3183.96 16192.50 9170.36 17589.55 7393.84 5081.89 6994.70 1495.44 3490.69 888.31 26083.33 7098.30 2493.20 140
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6489.88 5086.22 11191.63 12077.07 10589.82 6593.77 5178.90 10592.88 4592.29 14886.11 6090.22 21886.24 4397.24 7691.36 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5280.98 8091.38 7393.80 10287.20 4695.80 2587.10 3197.69 5893.93 107
test_241102_TWO93.71 5383.77 4893.49 3694.27 7489.27 2195.84 2386.03 4697.82 5092.04 193
SED-MVS90.46 3391.64 1786.93 9694.18 4672.65 14190.47 5293.69 5483.77 4894.11 2394.27 7490.28 1495.84 2386.03 4697.92 4592.29 181
test_241102_ONE94.18 4672.65 14193.69 5483.62 5094.11 2393.78 10490.28 1495.50 46
ACMMP_NAP90.65 2891.07 3589.42 5895.93 1579.54 7689.95 6293.68 5677.65 12091.97 6594.89 4888.38 2795.45 4889.27 397.87 4993.27 137
HQP_MVS87.75 8287.43 8488.70 7293.45 6476.42 11389.45 7893.61 5779.44 9786.55 17192.95 12674.84 18295.22 5680.78 10395.83 13294.46 81
plane_prior593.61 5795.22 5680.78 10395.83 13294.46 81
XVG-OURS89.18 5988.83 6890.23 4394.28 4486.11 2285.91 13393.60 5980.16 8889.13 12093.44 11283.82 7790.98 19483.86 6895.30 15193.60 126
TAPA-MVS77.73 1285.71 11184.83 13288.37 7788.78 19279.72 7387.15 11393.50 6069.17 22585.80 18989.56 22780.76 12392.13 16273.21 20195.51 14193.25 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6182.82 6192.60 5493.97 9288.19 3196.29 587.61 1798.20 3094.39 88
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 13783.91 15385.52 12888.58 19870.40 17484.50 16193.37 6278.76 10984.07 22678.72 36580.39 12795.13 6073.82 18792.98 21991.04 218
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6383.16 5691.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 167
ACMM79.39 990.65 2890.99 3789.63 5495.03 3383.53 4789.62 7293.35 6479.20 10193.83 2893.60 11090.81 792.96 14085.02 5698.45 1892.41 174
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 18181.23 20285.10 13487.95 21169.17 18983.22 19493.33 6570.42 21378.58 30679.77 35777.29 15494.20 8971.51 21088.96 28791.93 198
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9894.03 8986.57 5295.80 2587.35 2497.62 6194.20 92
X-MVStestdata85.04 12282.70 17192.08 895.64 2386.25 1892.64 1993.33 6585.07 3789.99 9816.05 40986.57 5295.80 2587.35 2497.62 6194.20 92
WR-MVS_H89.91 4691.31 2985.71 12396.32 962.39 25789.54 7593.31 6890.21 1095.57 995.66 2981.42 11695.90 1580.94 10098.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2193.30 6981.91 6890.88 8694.21 7987.75 3995.87 1887.60 1897.71 5793.83 112
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2293.29 7081.99 6691.47 7193.96 9588.35 2995.56 3987.74 1397.74 5692.85 154
iter_conf0583.19 16582.97 16683.85 16489.06 18261.92 26882.41 21993.28 7165.43 26584.98 20289.78 22368.44 24494.48 8276.66 15296.64 9195.15 62
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2293.25 7281.99 6691.40 7294.17 8387.51 4295.87 1887.74 1397.76 5493.99 103
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4493.24 7375.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5493.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4191.88 1484.48 14696.57 558.88 30388.95 8593.19 7491.62 496.01 696.16 2187.02 4795.60 3678.69 12498.72 898.97 3
testf189.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
APD_test289.30 5689.12 6189.84 4888.67 19485.64 3190.61 4793.17 7586.02 3093.12 4195.30 3684.94 6689.44 24274.12 18196.10 11894.45 83
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10993.17 7576.02 13488.64 12691.22 17784.24 7593.37 12777.97 13797.03 8195.52 49
dcpmvs_284.23 14285.14 12781.50 22088.61 19761.98 26782.90 20393.11 7868.66 23392.77 5192.39 14278.50 14087.63 26676.99 15092.30 22994.90 66
OurMVSNet-221017-090.01 4289.74 5390.83 3293.16 7480.37 6891.91 3393.11 7881.10 7895.32 1097.24 572.94 20994.85 6885.07 5497.78 5297.26 16
FC-MVSNet-test85.93 10787.05 9182.58 20292.25 9956.44 32485.75 13793.09 8077.33 12391.94 6694.65 5674.78 18493.41 12675.11 17198.58 1397.88 8
APD-MVScopyleft89.54 5289.63 5589.26 6192.57 8881.34 6490.19 5793.08 8180.87 8291.13 7893.19 11586.22 5995.97 1282.23 8897.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11686.27 10382.60 20191.86 11357.31 31785.10 14993.05 8275.83 13991.02 8193.97 9273.57 19892.91 14473.97 18498.02 3897.58 13
v7n90.13 3690.96 3887.65 8891.95 10971.06 16989.99 6093.05 8286.53 2794.29 1996.27 1882.69 9094.08 9686.25 4297.63 6097.82 9
PHI-MVS86.38 9785.81 11588.08 8188.44 20277.34 10189.35 8193.05 8273.15 17984.76 20887.70 25678.87 13894.18 9080.67 10596.29 10692.73 157
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8582.59 6288.52 12994.37 7386.74 5095.41 5086.32 3998.21 2893.19 141
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 6889.62 5684.73 14190.46 15465.27 22288.86 8793.02 8687.15 2493.05 4397.10 682.28 10292.02 16676.70 15197.99 3996.88 25
MSLP-MVS++85.00 12586.03 10881.90 21291.84 11671.56 16686.75 12393.02 8675.95 13787.12 15589.39 22877.98 14489.40 24577.46 14294.78 17284.75 315
DP-MVS88.60 6789.01 6487.36 9091.30 13377.50 9787.55 10692.97 8887.95 2189.62 10992.87 12984.56 7093.89 10277.65 13996.62 9390.70 228
ANet_high83.17 16785.68 11975.65 30381.24 32545.26 38679.94 25492.91 8983.83 4791.33 7496.88 1180.25 12985.92 29568.89 23895.89 12995.76 43
UniMVSNet (Re)86.87 8886.98 9386.55 10393.11 7568.48 19283.80 17792.87 9080.37 8489.61 11191.81 16277.72 14894.18 9075.00 17298.53 1596.99 24
test_prior86.32 10790.59 15271.99 15892.85 9194.17 9292.80 155
DTE-MVSNet89.98 4391.91 1384.21 15696.51 757.84 31388.93 8692.84 9291.92 396.16 396.23 1986.95 4895.99 1079.05 12198.57 1498.80 6
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9388.22 1888.53 12897.64 283.45 8394.55 7986.02 4898.60 1296.67 27
OPM-MVS89.80 4789.97 4989.27 6094.76 3979.86 7286.76 12292.78 9478.78 10792.51 5593.64 10988.13 3493.84 10584.83 5897.55 6694.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 3991.92 1184.47 14796.56 658.83 30689.04 8492.74 9591.40 596.12 496.06 2387.23 4595.57 3879.42 11998.74 599.00 2
HQP3-MVS92.68 9694.47 180
HQP-MVS84.61 13084.06 14986.27 10991.19 13670.66 17184.77 15092.68 9673.30 17480.55 28390.17 21772.10 21894.61 7577.30 14694.47 18093.56 129
mamv481.86 19281.52 19482.87 19685.42 26862.26 26282.66 20992.62 9865.43 26579.34 30090.22 21369.65 23394.15 9574.14 18094.16 19192.21 186
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1892.60 9983.09 5791.54 7094.25 7887.67 4195.51 4487.21 2898.11 3493.12 145
MVSMamba_pp81.67 19481.33 19882.70 20085.24 27162.25 26482.88 20492.53 10062.64 28479.42 29690.65 20269.37 23693.26 13174.78 17494.44 18292.58 165
CLD-MVS83.18 16682.64 17384.79 13989.05 18367.82 20077.93 28492.52 10168.33 23585.07 19981.54 34182.06 10592.96 14069.35 23097.91 4793.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 19881.25 20082.03 21084.27 28862.87 24876.47 30892.49 10270.97 20981.64 26883.83 31475.03 17992.70 14774.29 17692.22 23590.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15284.01 15083.57 17687.22 22865.61 22186.55 12792.40 10378.64 11081.34 27384.18 31283.65 8192.93 14274.22 17787.87 30392.17 189
DP-MVS Recon84.05 14783.22 15986.52 10491.73 11975.27 12283.23 19392.40 10372.04 19882.04 25888.33 24477.91 14693.95 10066.17 25995.12 15790.34 239
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10570.25 21789.35 11790.68 19982.85 8994.57 7779.55 11695.95 12592.00 195
test_fmvsmvis_n_192085.22 11785.36 12584.81 13885.80 26376.13 11985.15 14892.32 10661.40 30191.33 7490.85 19383.76 8086.16 29284.31 6293.28 21192.15 190
CPTT-MVS89.39 5488.98 6690.63 3695.09 3286.95 1292.09 2992.30 10779.74 9287.50 15192.38 14381.42 11693.28 12983.07 7497.24 7691.67 205
DU-MVS86.80 9186.99 9286.21 11293.24 7267.02 20683.16 19592.21 10881.73 7090.92 8291.97 15577.20 15593.99 9874.16 17898.35 2197.61 11
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9185.94 26178.30 8586.93 11692.20 10965.94 25689.16 11893.16 11783.10 8689.89 23187.81 1194.43 18393.35 133
v1086.54 9587.10 8984.84 13788.16 20863.28 24386.64 12592.20 10975.42 14692.81 5094.50 6374.05 19394.06 9783.88 6796.28 10797.17 20
MCST-MVS84.36 13583.93 15285.63 12491.59 12171.58 16483.52 18392.13 11161.82 29483.96 22889.75 22579.93 13393.46 12378.33 12894.34 18591.87 199
Vis-MVSNetpermissive86.86 8986.58 9887.72 8592.09 10577.43 10087.35 11092.09 11278.87 10684.27 22394.05 8878.35 14293.65 10980.54 10791.58 24892.08 192
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 5890.91 4084.37 14896.34 858.61 30988.66 9392.06 11390.78 695.67 795.17 4281.80 11295.54 4179.00 12298.69 998.95 4
CDPH-MVS86.17 10485.54 12188.05 8392.25 9975.45 12183.85 17492.01 11465.91 25886.19 18091.75 16583.77 7994.98 6577.43 14496.71 9093.73 119
DeepC-MVS_fast80.27 886.23 10085.65 12087.96 8491.30 13376.92 10687.19 11191.99 11570.56 21284.96 20390.69 19880.01 13195.14 5978.37 12695.78 13691.82 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 7087.90 7789.56 5693.31 6977.96 9287.94 10291.97 11670.73 21194.19 2296.67 1276.94 16194.57 7783.07 7496.28 10796.15 33
MVS_Test82.47 17683.22 15980.22 24182.62 31357.75 31582.54 21591.96 11771.16 20882.89 24692.52 14177.41 15290.50 21280.04 11087.84 30492.40 175
F-COLMAP84.97 12683.42 15689.63 5492.39 9383.40 4888.83 8891.92 11873.19 17880.18 29189.15 23477.04 15993.28 12965.82 26592.28 23292.21 186
APD_test188.40 6887.91 7689.88 4789.50 17286.65 1689.98 6191.91 11984.26 4390.87 8793.92 9982.18 10389.29 24673.75 18894.81 17193.70 120
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4391.87 12072.61 18892.16 6095.23 4166.01 25695.59 3786.02 4897.78 5297.24 17
ZD-MVS92.22 10180.48 6791.85 12171.22 20790.38 9092.98 12386.06 6196.11 681.99 9196.75 89
CSCG86.26 9986.47 10085.60 12590.87 14674.26 12787.98 10191.85 12180.35 8589.54 11588.01 24879.09 13692.13 16275.51 16595.06 15990.41 237
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27078.25 8685.82 13691.82 12365.33 27188.55 12792.35 14782.62 9389.80 23386.87 3294.32 18693.18 142
PCF-MVS74.62 1582.15 18380.92 20685.84 12089.43 17472.30 15380.53 24791.82 12357.36 33687.81 14689.92 22177.67 14993.63 11158.69 31495.08 15891.58 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 125
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12584.07 4592.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 180
PVSNet_Blended_VisFu81.55 19680.49 21184.70 14391.58 12473.24 13684.21 16391.67 12762.86 28380.94 27687.16 26867.27 24992.87 14569.82 22788.94 28887.99 278
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11492.86 8367.02 20682.55 21491.56 12883.08 5890.92 8291.82 16178.25 14393.99 9874.16 17898.35 2197.49 14
v124084.30 13884.51 14183.65 17187.65 21961.26 27482.85 20591.54 12967.94 24290.68 8990.65 20271.71 22493.64 11082.84 7994.78 17296.07 36
原ACMM184.60 14492.81 8674.01 12891.50 13062.59 28582.73 24990.67 20176.53 16894.25 8669.24 23195.69 13985.55 306
test1191.46 131
CANet83.79 15382.85 16986.63 10186.17 25672.21 15683.76 17891.43 13277.24 12574.39 34287.45 26275.36 17695.42 4977.03 14992.83 22292.25 185
v119284.57 13184.69 13784.21 15687.75 21562.88 24783.02 19891.43 13269.08 22789.98 10090.89 19072.70 21393.62 11482.41 8594.97 16496.13 34
alignmvs83.94 15183.98 15183.80 16587.80 21467.88 19984.54 15991.42 13473.27 17788.41 13387.96 24972.33 21690.83 20276.02 16194.11 19292.69 161
test_fmvsmconf_n85.88 10885.51 12286.99 9584.77 27878.21 8785.40 14491.39 13565.32 27287.72 14791.81 16282.33 9889.78 23486.68 3494.20 18992.99 150
GeoE85.45 11585.81 11584.37 14890.08 16167.07 20585.86 13591.39 13572.33 19487.59 14990.25 21284.85 6892.37 15678.00 13591.94 24193.66 121
v886.22 10186.83 9684.36 15087.82 21362.35 25986.42 12891.33 13776.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14397.01 23
TranMVSNet+NR-MVSNet87.86 7988.76 7085.18 13394.02 5464.13 23384.38 16291.29 13884.88 4092.06 6393.84 10186.45 5593.73 10773.22 19698.66 1097.69 10
HPM-MVS++copyleft88.93 6588.45 7290.38 4094.92 3585.85 2789.70 6791.27 13978.20 11486.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 240
CNVR-MVS87.81 8187.68 7988.21 8092.87 8177.30 10385.25 14591.23 14077.31 12487.07 16091.47 17182.94 8894.71 7184.67 5996.27 10992.62 164
v192192084.23 14284.37 14583.79 16687.64 22061.71 26982.91 20291.20 14167.94 24290.06 9590.34 20972.04 22193.59 11682.32 8694.91 16596.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6495.72 2176.74 10892.49 2591.19 14267.85 24486.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6991.11 14379.26 10089.68 10694.81 5482.44 9487.74 26476.54 15488.74 29196.61 29
NCCC87.36 8486.87 9588.83 6792.32 9778.84 8286.58 12691.09 14478.77 10884.85 20790.89 19080.85 12295.29 5381.14 9895.32 14892.34 178
v14419284.24 14184.41 14383.71 17087.59 22161.57 27082.95 20191.03 14567.82 24589.80 10390.49 20673.28 20693.51 12181.88 9494.89 16796.04 38
MSC_two_6792asdad88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
No_MVS88.81 6891.55 12677.99 9091.01 14696.05 887.45 2098.17 3192.40 175
DVP-MVScopyleft90.06 3991.32 2886.29 10894.16 4972.56 14790.54 4991.01 14683.61 5193.75 3194.65 5689.76 1895.78 2886.42 3697.97 4290.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13384.72 13584.00 15987.67 21862.55 25482.97 20090.93 14970.32 21689.80 10390.99 18573.50 19993.48 12281.69 9594.65 17795.97 39
DPM-MVS80.10 22379.18 22982.88 19590.71 15069.74 17878.87 27390.84 15060.29 31675.64 33285.92 28767.28 24893.11 13671.24 21291.79 24285.77 304
IU-MVS94.18 4672.64 14390.82 15156.98 33989.67 10785.78 5097.92 4593.28 136
PAPM_NR83.23 16483.19 16183.33 18190.90 14565.98 21788.19 9890.78 15278.13 11680.87 27887.92 25273.49 20192.42 15370.07 22488.40 29391.60 207
Anonymous2024052986.20 10287.13 8883.42 17990.19 15964.55 23084.55 15790.71 15385.85 3289.94 10195.24 4082.13 10490.40 21469.19 23496.40 10495.31 55
test1286.57 10290.74 14872.63 14590.69 15482.76 24879.20 13594.80 6995.32 14892.27 183
PLCcopyleft73.85 1682.09 18480.31 21387.45 8990.86 14780.29 6985.88 13490.65 15568.17 23876.32 32286.33 27973.12 20892.61 15061.40 30290.02 27689.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 4889.27 6091.30 2593.51 6384.79 4089.89 6490.63 15670.00 22094.55 1696.67 1287.94 3793.59 11684.27 6395.97 12395.52 49
114514_t83.10 16982.54 17684.77 14092.90 7969.10 19086.65 12490.62 15754.66 34981.46 27090.81 19576.98 16094.38 8372.62 20496.18 11390.82 224
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15862.51 28675.32 33684.61 30774.99 18092.30 15959.48 31288.04 30190.68 229
test_fmvsm_n_192083.60 15782.89 16885.74 12285.22 27277.74 9584.12 16690.48 15959.87 32086.45 17991.12 18175.65 17385.89 29882.28 8790.87 26293.58 127
NR-MVSNet86.00 10586.22 10485.34 13193.24 7264.56 22982.21 22790.46 16080.99 7988.42 13291.97 15577.56 15093.85 10372.46 20698.65 1197.61 11
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16161.70 29875.43 33387.07 27169.11 23991.44 18060.68 30692.24 23390.11 244
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16157.36 33675.43 33378.30 36769.11 23991.44 18060.68 30687.70 30684.42 320
Gipumacopyleft84.44 13486.33 10278.78 25884.20 28973.57 13189.55 7390.44 16184.24 4484.38 21594.89 4876.35 17280.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 17382.59 17582.58 20286.44 24466.69 21089.94 6390.36 16467.97 24184.94 20592.58 13972.71 21292.18 16170.63 22087.73 30588.85 267
TEST992.34 9579.70 7483.94 17090.32 16565.41 27084.49 21290.97 18682.03 10693.63 111
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7483.94 17090.32 16565.79 25984.49 21290.97 18681.93 10893.63 11181.21 9696.54 9690.88 222
test_892.09 10578.87 8183.82 17590.31 16765.79 25984.36 21690.96 18881.93 10893.44 124
agg_prior91.58 12477.69 9690.30 16884.32 21893.18 133
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16881.56 7290.02 9791.20 17982.40 9690.81 20373.58 19194.66 17694.56 77
jajsoiax89.41 5388.81 6991.19 2893.38 6784.72 4189.70 6790.29 17069.27 22494.39 1796.38 1686.02 6293.52 12083.96 6695.92 12895.34 53
diffmvspermissive80.40 21480.48 21280.17 24279.02 35160.04 28877.54 29190.28 17166.65 25482.40 25287.33 26573.50 19987.35 26977.98 13689.62 28093.13 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 16183.37 15883.75 16883.16 30863.33 24281.31 23790.23 17269.51 22390.91 8490.81 19574.16 19192.29 16080.06 10990.22 27395.62 47
anonymousdsp89.73 4988.88 6792.27 789.82 16886.67 1490.51 5190.20 17369.87 22195.06 1196.14 2284.28 7493.07 13887.68 1596.34 10597.09 21
c3_l81.64 19581.59 19081.79 21880.86 33159.15 30078.61 27790.18 17468.36 23487.20 15387.11 27069.39 23591.62 17578.16 13294.43 18394.60 76
eth_miper_zixun_eth80.84 20580.22 21782.71 19881.41 32360.98 28077.81 28690.14 17567.31 24986.95 16387.24 26764.26 26492.31 15875.23 16991.61 24694.85 72
MVSFormer82.23 17981.57 19284.19 15885.54 26669.26 18591.98 3190.08 17671.54 20276.23 32385.07 30258.69 29994.27 8486.26 4088.77 28989.03 264
test_djsdf89.62 5089.01 6491.45 2292.36 9482.98 5391.98 3190.08 17671.54 20294.28 2196.54 1481.57 11494.27 8486.26 4096.49 9997.09 21
AdaColmapbinary83.66 15583.69 15583.57 17690.05 16472.26 15486.29 13090.00 17878.19 11581.65 26787.16 26883.40 8494.24 8761.69 29994.76 17584.21 324
3Dnovator80.37 784.80 12784.71 13685.06 13586.36 24974.71 12488.77 9090.00 17875.65 14284.96 20393.17 11674.06 19291.19 18778.28 12991.09 25489.29 258
IterMVS-LS84.73 12884.98 13083.96 16187.35 22563.66 23783.25 19189.88 18076.06 13289.62 10992.37 14673.40 20492.52 15178.16 13294.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18142.68 39788.20 13883.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
save fliter93.75 5977.44 9986.31 12989.72 18270.80 210
v2v48284.09 14584.24 14783.62 17287.13 23061.40 27182.71 20889.71 18372.19 19789.55 11391.41 17270.70 23193.20 13281.02 9993.76 19996.25 32
miper_ehance_all_eth80.34 21680.04 22281.24 22579.82 34158.95 30277.66 28889.66 18465.75 26285.99 18785.11 29868.29 24591.42 18276.03 16092.03 23793.33 134
tt080588.09 7489.79 5282.98 18993.26 7163.94 23691.10 4289.64 18585.07 3790.91 8491.09 18289.16 2291.87 17182.03 8995.87 13093.13 143
Fast-Effi-MVS+81.04 20380.57 20882.46 20687.50 22363.22 24478.37 28089.63 18668.01 23981.87 26182.08 33582.31 9992.65 14967.10 25188.30 29991.51 210
Fast-Effi-MVS+-dtu82.54 17581.41 19685.90 11885.60 26476.53 11183.07 19689.62 18773.02 18179.11 30383.51 31780.74 12490.24 21768.76 24089.29 28290.94 220
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5589.57 18888.51 1790.11 9495.12 4490.98 688.92 25077.55 14197.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 18882.00 18281.93 21184.42 28468.22 19488.50 9589.48 18966.92 25181.80 26591.86 15772.59 21490.16 22071.19 21391.25 25387.40 287
test_040288.65 6689.58 5785.88 11992.55 8972.22 15584.01 16889.44 19088.63 1694.38 1895.77 2686.38 5893.59 11679.84 11295.21 15291.82 200
KD-MVS_self_test81.93 18983.14 16378.30 26884.75 27952.75 34780.37 24989.42 19170.24 21890.26 9393.39 11374.55 18986.77 28068.61 24396.64 9195.38 52
MSDG80.06 22479.99 22480.25 24083.91 29468.04 19877.51 29289.19 19277.65 12081.94 25983.45 31976.37 17186.31 28763.31 28786.59 32086.41 296
ambc82.98 18990.55 15364.86 22688.20 9789.15 19389.40 11693.96 9571.67 22591.38 18478.83 12396.55 9592.71 160
pmmvs686.52 9688.06 7581.90 21292.22 10162.28 26084.66 15589.15 19383.54 5389.85 10297.32 488.08 3686.80 27970.43 22297.30 7596.62 28
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19558.05 33083.59 23380.69 34564.41 26391.20 18673.16 20292.03 23792.33 179
CNLPA83.55 15983.10 16484.90 13689.34 17683.87 4684.54 15988.77 19679.09 10283.54 23688.66 24174.87 18181.73 33066.84 25492.29 23189.11 260
LF4IMVS82.75 17181.93 18385.19 13282.08 31480.15 7085.53 14088.76 19768.01 23985.58 19287.75 25571.80 22386.85 27874.02 18393.87 19888.58 269
VPA-MVSNet83.47 16184.73 13379.69 24890.29 15757.52 31681.30 23988.69 19876.29 13087.58 15094.44 6680.60 12687.20 27166.60 25796.82 8794.34 89
IS-MVSNet86.66 9486.82 9786.17 11492.05 10766.87 20991.21 4088.64 19986.30 2989.60 11292.59 13769.22 23894.91 6773.89 18597.89 4896.72 26
BH-untuned80.96 20480.99 20480.84 23188.55 19968.23 19380.33 25088.46 20072.79 18586.55 17186.76 27474.72 18691.77 17461.79 29888.99 28682.52 349
Effi-MVS+-dtu85.82 10983.38 15793.14 387.13 23091.15 287.70 10588.42 20174.57 15483.56 23585.65 28978.49 14194.21 8872.04 20892.88 22194.05 102
UniMVSNet_ETH3D89.12 6190.72 4384.31 15497.00 264.33 23289.67 7088.38 20288.84 1394.29 1997.57 390.48 1391.26 18572.57 20597.65 5997.34 15
FA-MVS(test-final)83.13 16883.02 16583.43 17886.16 25866.08 21688.00 10088.36 20375.55 14385.02 20092.75 13465.12 26192.50 15274.94 17391.30 25291.72 202
TinyColmap81.25 20082.34 17977.99 27585.33 26960.68 28482.32 22288.33 20471.26 20686.97 16292.22 15277.10 15886.98 27562.37 29195.17 15486.31 298
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19088.29 20569.16 22667.83 37783.72 31560.93 28189.47 23969.22 23389.70 27990.88 222
GBi-Net82.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
test182.02 18682.07 18081.85 21486.38 24661.05 27786.83 11988.27 20672.43 18986.00 18495.64 3063.78 26890.68 20765.95 26193.34 20893.82 113
FMVSNet184.55 13285.45 12381.85 21490.27 15861.05 27786.83 11988.27 20678.57 11189.66 10895.64 3075.43 17590.68 20769.09 23595.33 14693.82 113
SixPastTwentyTwo87.20 8687.45 8386.45 10592.52 9069.19 18887.84 10488.05 20981.66 7194.64 1596.53 1565.94 25794.75 7083.02 7696.83 8695.41 51
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 21052.14 36383.65 23291.25 17663.24 27186.65 28254.66 34194.11 19285.17 310
EPP-MVSNet85.47 11485.04 12986.77 10091.52 12969.37 18391.63 3687.98 21181.51 7387.05 16191.83 16066.18 25595.29 5370.75 21796.89 8395.64 46
MAR-MVS80.24 21978.74 23584.73 14186.87 24078.18 8885.75 13787.81 21265.67 26477.84 31178.50 36673.79 19690.53 21161.59 30190.87 26285.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 17882.61 17481.30 22286.29 25269.79 17788.71 9187.67 21378.42 11382.15 25784.15 31377.98 14491.59 17665.39 26892.75 22382.51 350
pm-mvs183.69 15484.95 13179.91 24490.04 16559.66 29382.43 21887.44 21475.52 14487.85 14595.26 3981.25 11885.65 30268.74 24196.04 12094.42 86
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21555.94 34275.16 33876.53 38263.97 26691.16 18865.00 27290.97 25988.06 276
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13265.19 22472.47 34587.31 21646.79 38080.29 28784.30 31052.70 33092.10 16551.88 36186.73 31890.22 240
TransMVSNet (Re)84.02 14885.74 11878.85 25791.00 14355.20 33482.29 22387.26 21779.65 9488.38 13495.52 3383.00 8786.88 27767.97 24996.60 9494.45 83
xiu_mvs_v1_base_debu80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
xiu_mvs_v1_base_debi80.84 20580.14 21982.93 19288.31 20371.73 16079.53 25987.17 21865.43 26579.59 29382.73 32976.94 16190.14 22373.22 19688.33 29586.90 292
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22165.79 25984.32 21885.10 29958.96 29890.88 20075.36 16892.03 23793.84 111
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23461.40 27175.26 32387.13 22161.25 30574.38 34377.22 37776.94 16190.94 19564.63 27784.83 34583.35 337
MVS_111021_HR84.63 12984.34 14685.49 13090.18 16075.86 12079.23 26887.13 22173.35 17185.56 19389.34 22983.60 8290.50 21276.64 15394.05 19490.09 245
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23661.30 27375.55 32187.12 22461.24 30674.45 34178.79 36477.20 15590.93 19664.62 27884.80 34683.32 338
1112_ss74.82 27973.74 28078.04 27489.57 16960.04 28876.49 30787.09 22554.31 35073.66 34779.80 35560.25 28786.76 28158.37 31684.15 35087.32 288
cl____80.42 21380.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.37 24786.18 18289.21 23263.08 27390.16 22076.31 15695.80 13493.65 123
DIV-MVS_self_test80.43 21280.23 21581.02 22979.99 33959.25 29777.07 29787.02 22667.38 24686.19 18089.22 23163.09 27290.16 22076.32 15595.80 13493.66 121
EG-PatchMatch MVS84.08 14684.11 14883.98 16092.22 10172.61 14682.20 22987.02 22672.63 18788.86 12191.02 18478.52 13991.11 19073.41 19391.09 25488.21 272
Baseline_NR-MVSNet84.00 14985.90 11278.29 26991.47 13153.44 34382.29 22387.00 22979.06 10389.55 11395.72 2877.20 15586.14 29372.30 20798.51 1695.28 56
MM87.64 8387.15 8789.09 6489.51 17176.39 11588.68 9286.76 23084.54 4283.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 87
PAPM71.77 30470.06 31876.92 28986.39 24553.97 33876.62 30586.62 23153.44 35463.97 39384.73 30657.79 30792.34 15739.65 39481.33 36984.45 319
FMVSNet281.31 19981.61 18980.41 23886.38 24658.75 30783.93 17286.58 23272.43 18987.65 14892.98 12363.78 26890.22 21866.86 25293.92 19692.27 183
BH-w/o76.57 25976.07 26178.10 27286.88 23965.92 21877.63 28986.33 23365.69 26380.89 27779.95 35468.97 24190.74 20553.01 35285.25 33477.62 379
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3787.00 1191.89 3486.28 2341.09 4102.23 41295.98 2481.87 11189.48 23879.76 11395.96 12491.10 217
BH-RMVSNet80.53 21080.22 21781.49 22187.19 22966.21 21577.79 28786.23 23574.21 15783.69 23188.50 24273.25 20790.75 20463.18 28887.90 30287.52 285
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15655.95 32573.40 34186.17 23650.70 37373.14 34885.94 28658.31 30185.90 29756.51 32683.22 35587.20 289
fmvsm_l_conf0.5_n82.06 18581.54 19383.60 17383.94 29273.90 12983.35 18886.10 23758.97 32283.80 23090.36 20874.23 19086.94 27682.90 7790.22 27389.94 247
ab-mvs79.67 22780.56 20976.99 28788.48 20056.93 32084.70 15486.06 23868.95 22980.78 28093.08 11875.30 17784.62 31056.78 32490.90 26189.43 254
SDMVSNet81.90 19183.17 16278.10 27288.81 19062.45 25676.08 31486.05 23973.67 16383.41 23793.04 11982.35 9780.65 33770.06 22595.03 16091.21 214
v14882.31 17782.48 17781.81 21785.59 26559.66 29381.47 23686.02 24072.85 18288.05 14290.65 20270.73 23090.91 19875.15 17091.79 24294.87 68
Anonymous2024052180.18 22181.25 20076.95 28883.15 30960.84 28282.46 21785.99 24168.76 23186.78 16493.73 10759.13 29677.44 35173.71 18997.55 6692.56 166
MVS73.21 29372.59 29575.06 30880.97 32860.81 28381.64 23485.92 24246.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24369.04 22886.00 18490.44 20751.75 33590.09 22665.95 26193.34 20891.72 202
UGNet82.78 17081.64 18786.21 11286.20 25576.24 11786.86 11785.68 24477.07 12673.76 34692.82 13069.64 23491.82 17369.04 23793.69 20390.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 20685.62 24558.09 32991.41 18367.95 25084.48 318
fmvsm_l_conf0.5_n_a81.46 19780.87 20783.25 18383.73 29773.21 13783.00 19985.59 24658.22 32882.96 24590.09 21972.30 21786.65 28281.97 9289.95 27789.88 248
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27985.19 30563.54 28479.21 37782.59 345
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13582.49 25086.57 27558.01 30290.02 22962.74 28992.73 22489.10 261
MVP-Stereo75.81 26873.51 28482.71 19889.35 17573.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30689.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 12184.53 14086.88 9784.01 29172.76 14083.91 17385.18 25280.44 8388.75 12485.49 29180.08 13091.92 16882.02 9090.85 26495.97 39
EI-MVSNet-UG-set85.04 12284.44 14286.85 9883.87 29572.52 14983.82 17585.15 25380.27 8788.75 12485.45 29379.95 13291.90 16981.92 9390.80 26596.13 34
EI-MVSNet82.61 17282.42 17883.20 18583.25 30563.66 23783.50 18485.07 25476.06 13286.55 17185.10 29973.41 20290.25 21578.15 13490.67 26895.68 45
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27677.49 29385.07 25460.78 31186.55 17188.68 24043.14 38090.25 21573.69 19090.67 26892.42 173
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28164.69 38185.04 25663.98 27983.20 24188.22 24556.67 31278.79 34873.22 19693.12 21592.78 156
WR-MVS83.56 15884.40 14481.06 22893.43 6654.88 33578.67 27685.02 25781.24 7690.74 8891.56 16972.85 21091.08 19168.00 24898.04 3597.23 18
MG-MVS80.32 21780.94 20578.47 26588.18 20652.62 35082.29 22385.01 25872.01 19979.24 30292.54 14069.36 23793.36 12870.65 21989.19 28589.45 252
h-mvs3384.25 14082.76 17088.72 7091.82 11882.60 5684.00 16984.98 25971.27 20486.70 16790.55 20563.04 27493.92 10178.26 13094.20 18989.63 250
VDD-MVS84.23 14284.58 13983.20 18591.17 13965.16 22583.25 19184.97 26079.79 9187.18 15494.27 7474.77 18590.89 19969.24 23196.54 9693.55 131
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 15987.84 25350.44 34171.62 36777.42 14588.53 29290.72 226
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26261.60 30083.09 24492.82 13073.89 19587.01 27268.33 24786.41 32291.37 211
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26673.50 33984.80 26357.61 33482.24 25487.54 25951.31 33687.65 26570.40 22393.19 21491.23 213
FE-MVS79.98 22578.86 23183.36 18086.47 24366.45 21389.73 6684.74 26472.80 18484.22 22591.38 17344.95 37193.60 11563.93 28191.50 24990.04 246
MIMVSNet183.63 15684.59 13880.74 23294.06 5362.77 25082.72 20784.53 26577.57 12290.34 9195.92 2576.88 16785.83 30061.88 29797.42 7193.62 125
VNet79.31 22880.27 21476.44 29587.92 21253.95 33975.58 32084.35 26674.39 15682.23 25590.72 19772.84 21184.39 31360.38 30893.98 19590.97 219
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26745.14 38782.89 24684.22 31148.37 34670.36 37073.40 19487.03 31488.52 270
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26851.06 36974.85 34079.10 36155.10 32368.83 37668.86 23979.20 37882.58 346
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 26943.31 39479.40 29779.39 35943.47 37668.55 37869.05 23684.91 34282.10 353
hse-mvs283.47 16181.81 18588.47 7491.03 14282.27 5782.61 21083.69 27071.27 20486.70 16786.05 28563.04 27492.41 15478.26 13093.62 20690.71 227
AUN-MVS81.18 20178.78 23388.39 7690.93 14482.14 5882.51 21683.67 27164.69 27680.29 28785.91 28851.07 33792.38 15576.29 15793.63 20590.65 231
MVS_030486.35 9885.92 11187.66 8789.21 18073.16 13888.40 9683.63 27281.27 7580.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
MVS_111021_LR84.28 13983.76 15485.83 12189.23 17983.07 5180.99 24383.56 27372.71 18686.07 18389.07 23581.75 11386.19 29177.11 14893.36 20788.24 271
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24684.38 34979.15 376
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16663.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 31085.18 30649.87 36681.67 36586.14 299
patch_mono-278.89 23179.39 22777.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29889.89 22275.18 17872.97 36273.32 19592.30 22991.15 216
TR-MVS76.77 25775.79 26279.72 24786.10 25965.79 21977.14 29583.02 27765.20 27381.40 27182.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23279.75 29281.80 33850.62 33989.46 24066.85 25385.64 33089.72 249
tfpnnormal81.79 19382.95 16778.31 26788.93 18755.40 33080.83 24682.85 27976.81 12785.90 18894.14 8474.58 18886.51 28466.82 25595.68 14093.01 149
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16383.41 23793.04 11980.96 12177.65 35058.62 31595.03 16091.21 214
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27581.18 24182.52 28162.45 28983.34 23987.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
Anonymous20240521180.51 21181.19 20378.49 26488.48 20057.26 31876.63 30482.49 28281.21 7784.30 22192.24 15167.99 24686.24 28862.22 29295.13 15591.98 197
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 13982.43 28339.76 40185.64 19188.76 23844.71 37387.88 26373.86 18685.88 32984.16 325
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32282.99 32462.17 29590.64 27189.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 25075.40 26683.06 18789.00 18572.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29488.76 25554.64 34292.37 22887.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28884.83 30949.58 36882.65 36185.11 311
jason77.42 24975.75 26382.43 20787.10 23369.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28689.00 24870.74 21889.27 28489.03 264
jason: jason.
旧先验191.97 10871.77 15981.78 28891.84 15973.92 19493.65 20483.61 332
VPNet80.25 21881.68 18675.94 30192.46 9247.98 37376.70 30281.67 28973.45 16884.87 20692.82 13074.66 18786.51 28461.66 30096.85 8493.33 134
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32860.04 39956.16 32877.77 38280.68 370
TSAR-MVS + GP.83.95 15082.69 17287.72 8589.27 17881.45 6383.72 17981.58 29174.73 15285.66 19086.06 28472.56 21592.69 14875.44 16795.21 15289.01 266
VDDNet84.35 13685.39 12481.25 22395.13 3159.32 29685.42 14381.11 29286.41 2887.41 15296.21 2073.61 19790.61 21066.33 25896.85 8493.81 116
IterMVS-SCA-FT80.64 20979.41 22684.34 15283.93 29369.66 18076.28 31081.09 29372.43 18986.47 17790.19 21560.46 28493.15 13577.45 14386.39 32390.22 240
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29888.21 24660.50 28369.12 37458.33 31877.62 38487.04 290
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25682.85 36078.52 378
lupinMVS76.37 26374.46 27582.09 20985.54 26669.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29988.94 24969.85 22688.77 28988.07 274
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23851.34 35873.20 34280.63 29768.30 23681.80 26588.40 24366.92 25180.90 33455.35 33694.90 16693.12 145
新几何182.95 19193.96 5578.56 8480.24 29855.45 34483.93 22991.08 18371.19 22888.33 25965.84 26493.07 21681.95 355
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19591.75 16567.96 24785.24 30468.57 24592.18 23681.06 368
TAMVS78.08 24276.36 25783.23 18490.62 15172.87 13979.08 26980.01 30061.72 29781.35 27286.92 27363.96 26788.78 25450.61 36293.01 21888.04 277
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22474.41 12680.86 24579.67 30155.68 34384.69 20990.31 21160.91 28285.42 30362.20 29391.59 24787.88 281
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24289.16 23359.90 29084.46 31168.61 24385.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18479.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22177.54 38581.08 366
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30584.26 31565.60 26791.36 25189.56 251
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 15836.68 39278.98 34547.87 37692.45 22787.95 279
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31981.75 32955.37 33577.70 38374.94 384
test22293.31 6976.54 10979.38 26377.79 30952.59 35882.36 25390.84 19466.83 25291.69 24481.25 363
fmvsm_s_conf0.1_n_a82.58 17481.93 18384.50 14587.68 21773.35 13286.14 13277.70 31061.64 29985.02 20091.62 16777.75 14786.24 28882.79 8087.07 31293.91 109
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31584.97 30757.72 32287.05 31385.51 307
EPNet80.37 21578.41 24086.23 11076.75 36573.28 13487.18 11277.45 31276.24 13168.14 37488.93 23765.41 26093.85 10369.47 22996.12 11791.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 18281.59 19083.94 16386.87 24071.57 16585.19 14777.42 31362.27 29384.47 21491.33 17476.43 16985.91 29683.14 7187.14 31094.33 90
fmvsm_s_conf0.5_n_a82.21 18081.51 19584.32 15386.56 24273.35 13285.46 14177.30 31461.81 29584.51 21190.88 19277.36 15386.21 29082.72 8186.97 31793.38 132
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28678.95 36352.03 33265.53 39165.77 26677.45 38679.95 374
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28190.96 18875.44 17469.35 37356.13 32988.33 29585.86 303
fmvsm_s_conf0.5_n81.91 19081.30 19983.75 16886.02 26071.56 16684.73 15377.11 31762.44 29084.00 22790.68 19976.42 17085.89 29883.14 7187.11 31193.81 116
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21276.90 31850.50 37575.72 33092.38 14348.07 34884.07 31768.72 24282.91 35883.85 329
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 21976.90 31873.81 16185.56 19392.38 14348.07 34883.98 31863.36 28695.31 15090.92 221
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26273.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 12084.73 13386.37 10691.13 14069.63 18185.45 14276.68 32184.06 4692.44 5796.99 962.03 27794.65 7380.58 10693.24 21294.83 73
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19783.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21690.68 26789.17 259
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 3959.12 39376.45 32355.06 34675.31 33782.36 33255.74 31854.82 40347.02 37887.24 30983.52 333
thisisatest053079.07 22977.33 24984.26 15587.13 23064.58 22883.66 18175.95 32468.86 23085.22 19787.36 26438.10 38893.57 11975.47 16694.28 18794.62 75
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28582.35 22175.79 32566.49 25558.39 40381.06 34453.68 32685.98 29453.55 34792.97 22085.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29570.64 36948.46 37379.35 37581.66 357
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 17988.86 12188.99 23666.94 25081.23 33364.71 27588.22 30091.64 206
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32180.67 33652.86 35387.59 30784.77 314
tttt051781.07 20279.58 22585.52 12888.99 18666.45 21387.03 11575.51 32973.76 16288.32 13690.20 21437.96 39094.16 9479.36 12095.13 15595.93 42
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28280.97 27487.93 25162.83 27671.90 36555.24 33795.01 16392.00 195
Anonymous2023120671.38 30971.88 30169.88 34086.31 25054.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28972.06 36444.35 38793.23 21383.23 340
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
door-mid74.45 335
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 25089.35 255
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25778.81 30586.28 28256.36 31481.63 33156.63 32579.04 37987.87 282
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
tfpn200view974.86 27874.23 27776.74 29386.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25689.31 256
thres40075.14 27274.23 27777.86 27886.24 25352.12 35279.24 26673.87 33973.34 17281.82 26384.60 30846.02 35688.80 25151.98 35790.99 25692.66 162
LFMVS80.15 22280.56 20978.89 25689.19 18155.93 32685.22 14673.78 34182.96 5984.28 22292.72 13557.38 30890.07 22763.80 28295.75 13790.68 229
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 21978.56 30780.57 34846.20 35488.20 26146.99 37989.29 28284.32 321
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23770.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25281.84 26289.93 22072.08 22066.92 38646.05 38392.54 22687.01 291
thres100view90075.45 27075.05 27076.66 29487.27 22651.88 35581.07 24273.26 34675.68 14183.25 24086.37 27845.54 36288.80 25151.98 35790.99 25689.31 256
thres600view775.97 26675.35 26877.85 27987.01 23651.84 35680.45 24873.26 34675.20 14883.10 24386.31 28145.54 36289.05 24755.03 33992.24 23392.66 162
wuyk23d75.13 27379.30 22862.63 37375.56 37575.18 12380.89 24473.10 34875.06 15094.76 1395.32 3587.73 4052.85 40434.16 40397.11 7959.85 400
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29769.06 37548.57 37281.67 36582.55 347
door72.57 350
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33874.77 35945.82 38482.96 35681.60 358
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33164.40 39444.90 38581.44 36875.76 382
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21380.28 28991.50 17064.21 26574.72 36146.96 38094.58 17887.82 283
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 18971.97 35574.04 15882.23 25589.78 22357.38 30889.41 24457.22 32395.41 14393.05 147
MIMVSNet71.09 31171.59 30369.57 34387.23 22750.07 36778.91 27171.83 35660.20 31871.26 35791.76 16455.08 32476.09 35541.06 39287.02 31582.54 348
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30465.36 39250.21 36381.01 37181.25 363
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31378.84 34762.20 29386.04 32885.23 309
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28487.01 27258.11 32082.63 36383.88 326
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24870.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
test_f64.31 35665.85 34659.67 38166.54 40662.24 26557.76 39770.96 36240.13 39984.36 21682.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
lessismore_v085.95 11691.10 14170.99 17070.91 36391.79 6794.42 6961.76 27892.93 14279.52 11893.03 21793.93 107
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21685.26 3475.92 31670.09 36564.34 27776.09 32681.25 34365.87 25878.07 34953.86 34483.82 35271.48 388
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11448.95 36983.68 18069.91 36772.30 19584.26 22494.20 8051.89 33489.82 23263.58 28396.02 12194.87 68
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
test111178.53 23878.85 23277.56 28192.22 10147.49 37582.61 21069.24 37072.43 18985.28 19694.20 8051.91 33390.07 22765.36 26996.45 10295.11 63
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16586.33 27945.79 36182.59 32569.63 22890.65 27081.54 359
SSC-MVS77.55 24781.64 18765.29 36790.46 15420.33 41373.56 33868.28 37285.44 3388.18 13994.64 5970.93 22981.33 33271.25 21192.03 23794.20 92
WB-MVS76.06 26580.01 22364.19 37089.96 16720.58 41272.18 34768.19 37383.21 5586.46 17893.49 11170.19 23278.97 34665.96 26090.46 27293.02 148
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29486.62 295
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3674.65 32967.39 37571.94 20077.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 15885.40 29459.80 29267.25 38459.66 31183.54 35385.92 302
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15785.39 29559.82 29167.32 38359.79 31083.50 35485.96 300
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
PM-MVS80.20 22079.00 23083.78 16788.17 20786.66 1581.31 23766.81 38169.64 22288.33 13590.19 21564.58 26283.63 32171.99 20990.03 27581.06 368
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25971.89 36638.21 39985.04 33887.69 284
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21365.18 38792.97 12533.64 39783.06 32253.52 34869.61 39978.79 377
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16571.77 35592.79 13344.38 37475.65 35864.53 27985.37 33282.18 352
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27885.66 305
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 28079.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32565.91 39035.40 40147.01 40559.25 401
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29366.35 38848.97 37178.57 38060.81 399
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31768.23 38132.07 40669.46 40068.17 393
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25358.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18380.97 27482.08 33519.80 41487.33 27065.12 27191.68 24592.13 191
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25056.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18049.95 34376.43 35438.74 39671.92 39455.84 403
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18255.88 40386.68 2564.62 39297.01 730.36 40183.97 31944.78 38682.94 35776.26 381
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16555.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32749.76 40632.68 40589.41 28172.15 387
test250674.12 28573.39 28576.28 29891.85 11444.20 38984.06 16748.20 40872.30 19581.90 26094.20 8027.22 40989.77 23564.81 27496.02 12194.87 68
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21055.46 32063.12 39641.72 39181.30 37069.09 392
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29087.05 27252.83 32963.09 39751.92 36072.44 39279.84 375
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31159.35 40146.16 38158.96 40465.93 395
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31644.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4533.14 413
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1610.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
PC_three_145258.96 32390.06 9591.33 17480.66 12593.03 13975.78 16295.94 12692.48 170
eth-test20.00 419
eth-test0.00 419
OPU-MVS88.27 7991.89 11277.83 9390.47 5291.22 17781.12 11994.68 7274.48 17595.35 14592.29 181
test_0728_THIRD85.33 3493.75 3194.65 5687.44 4395.78 2887.41 2298.21 2892.98 151
GSMVS83.88 326
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
test9_res80.83 10296.45 10290.57 232
agg_prior279.68 11596.16 11490.22 240
test_prior478.97 8084.59 156
test_prior283.37 18775.43 14584.58 21091.57 16881.92 11079.54 11796.97 82
旧先验281.73 23256.88 34086.54 17684.90 30872.81 203
新几何281.72 233
原ACMM282.26 226
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata179.62 25873.95 160
plane_prior793.45 6477.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior492.95 126
plane_prior376.85 10777.79 11986.55 171
plane_prior289.45 7879.44 97
plane_prior192.83 85
plane_prior76.42 11387.15 11375.94 13895.03 160
HQP5-MVS70.66 171
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
BP-MVS77.30 146
HQP4-MVS80.56 28294.61 7593.56 129
HQP2-MVS72.10 218
NP-MVS91.95 10974.55 12590.17 217
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
ACMMP++_ref95.74 138
ACMMP++97.35 72
Test By Simon79.09 136