This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5199.27 199.54 1
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13191.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4198.48 1797.22 19
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2797.60 6492.73 148
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5188.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4387.16 2797.60 6492.73 148
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9090.15 1695.67 3386.82 3097.34 7492.19 175
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6086.67 3197.60 6494.18 92
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9890.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6479.95 10198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1697.98 4292.98 142
PS-CasMVS90.06 3991.92 1184.47 14396.56 658.83 29389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3779.42 11098.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15196.51 757.84 30088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 11298.57 1498.80 6
PEN-MVS90.03 4191.88 1484.48 14296.57 558.88 29088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3578.69 11598.72 898.97 3
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3487.35 2298.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
SED-MVS90.46 3391.64 1786.93 9394.18 4672.65 13590.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4297.92 4692.29 169
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11684.07 4292.00 6494.40 7186.63 5195.28 5488.59 598.31 2392.30 168
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8194.00 9188.26 3095.71 3187.28 2598.39 2092.55 157
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12797.64 283.45 8194.55 7786.02 4498.60 1296.67 27
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11289.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12278.35 11898.76 395.61 48
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4387.21 2698.11 3593.12 138
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9588.35 2995.56 3887.74 1197.74 5792.85 145
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9994.03 8986.57 5295.80 2487.35 2297.62 6294.20 90
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9288.19 3196.29 487.61 1598.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1197.76 5593.99 100
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8591.29 7693.97 9287.93 3895.87 1888.65 497.96 4594.12 96
DVP-MVScopyleft90.06 3991.32 2886.29 10594.16 4972.56 14190.54 4891.01 13683.61 4893.75 3094.65 5789.76 1895.78 2786.42 3297.97 4390.55 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
WR-MVS_H89.91 4691.31 2985.71 12196.32 962.39 24789.54 7493.31 6490.21 1095.57 995.66 2981.42 11195.90 1480.94 9098.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8794.21 7987.75 3995.87 1887.60 1697.71 5893.83 108
ACMH76.49 1489.34 5591.14 3183.96 15692.50 9270.36 16789.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25383.33 6798.30 2493.20 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++90.07 3891.09 3287.00 9291.55 12772.64 13796.19 294.10 3485.33 3293.49 3694.64 6081.12 11495.88 1687.41 2095.94 12592.48 159
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8788.13 3496.30 384.51 5997.81 5291.70 190
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 13792.94 4494.96 4788.36 2895.01 6290.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11691.97 6594.89 4988.38 2795.45 4789.27 397.87 5093.27 131
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7691.38 7393.80 10287.20 4695.80 2487.10 2997.69 5993.93 104
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9793.83 2793.60 10990.81 792.96 13785.02 5398.45 1892.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n90.13 3690.96 3887.65 8891.95 11071.06 16189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8794.08 9486.25 3897.63 6197.82 8
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8291.74 6994.41 7088.17 3295.98 1086.37 3497.99 4093.96 103
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12894.37 7386.74 5095.41 4986.32 3598.21 2993.19 135
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet89.27 5890.91 4084.37 14496.34 858.61 29688.66 9192.06 10590.78 695.67 795.17 4381.80 10795.54 4079.00 11398.69 998.95 4
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10191.19 4095.74 581.38 7092.28 5993.80 10286.89 4994.64 7285.52 4797.51 7194.30 89
UniMVSNet_ETH3D89.12 6190.72 4384.31 14997.00 264.33 22389.67 6988.38 19388.84 1394.29 1897.57 390.48 1391.26 18272.57 19297.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17888.51 1790.11 9595.12 4590.98 688.92 24377.55 13297.07 8283.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10092.87 4693.74 10590.60 1195.21 5782.87 7298.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LS3D90.60 3090.34 4791.38 2489.03 18184.23 4593.58 694.68 1690.65 790.33 9393.95 9784.50 6995.37 5080.87 9195.50 14294.53 79
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 8978.78 10392.51 5593.64 10888.13 3493.84 10384.83 5697.55 6794.10 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS88.96 6389.88 4986.22 10891.63 12177.07 10289.82 6493.77 4778.90 10192.88 4592.29 14486.11 5890.22 21386.24 3997.24 7791.36 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8992.09 6293.89 10083.80 7693.10 13482.67 7498.04 3693.64 119
tt080588.09 7489.79 5182.98 17993.26 7363.94 22791.10 4189.64 17585.07 3590.91 8591.09 17489.16 2291.87 16882.03 8195.87 12993.13 136
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7495.32 1097.24 572.94 19894.85 6685.07 5197.78 5397.26 16
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12394.26 7777.55 14595.86 2184.88 5595.87 12995.24 58
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7891.13 7993.19 11386.22 5795.97 1182.23 8097.18 7990.45 222
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121188.40 6789.62 5584.73 13890.46 15565.27 21388.86 8693.02 8187.15 2393.05 4397.10 682.28 9792.02 16376.70 14297.99 4096.88 25
test_040288.65 6589.58 5685.88 11792.55 9072.22 14984.01 16089.44 18088.63 1694.38 1795.77 2686.38 5693.59 11479.84 10295.21 15191.82 186
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4180.07 8686.75 16093.26 11293.64 290.93 19284.60 5890.75 25793.97 102
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 8092.89 12587.27 4493.78 10483.69 6697.55 67
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14670.00 21494.55 1596.67 1187.94 3793.59 11484.27 6195.97 12295.52 49
testf189.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 18985.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23474.12 16896.10 11794.45 82
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16389.71 10694.82 5285.09 6395.77 2984.17 6298.03 3893.26 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16671.54 19594.28 2096.54 1381.57 10994.27 8386.26 3696.49 10097.09 21
DP-MVS88.60 6689.01 6387.36 9091.30 13477.50 9487.55 10592.97 8387.95 2089.62 11092.87 12684.56 6893.89 10077.65 13096.62 9490.70 214
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 8887.50 14592.38 14081.42 11193.28 12783.07 6997.24 7791.67 191
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16369.87 21595.06 1196.14 2184.28 7293.07 13587.68 1396.34 10697.09 21
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12993.60 5580.16 8489.13 12093.44 11083.82 7590.98 19083.86 6595.30 15093.60 121
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16069.27 21894.39 1696.38 1586.02 6093.52 11883.96 6395.92 12795.34 53
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12994.02 5464.13 22484.38 15391.29 12884.88 3892.06 6393.84 10186.45 5493.73 10573.22 18398.66 1097.69 9
nrg03087.85 8088.49 7085.91 11590.07 16369.73 17187.86 10294.20 2574.04 15592.70 5394.66 5685.88 6191.50 17479.72 10597.32 7596.50 31
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12978.20 11086.69 16392.28 14580.36 12395.06 6186.17 4096.49 10090.22 226
EC-MVSNet88.01 7588.32 7287.09 9189.28 17572.03 15190.31 5496.31 380.88 7785.12 19189.67 21184.47 7095.46 4682.56 7596.26 11193.77 113
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10889.16 11992.25 14672.03 21096.36 288.21 790.93 25192.98 142
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs686.52 9488.06 7481.90 19992.22 10262.28 25084.66 14689.15 18383.54 5089.85 10397.32 488.08 3686.80 27070.43 20897.30 7696.62 28
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11184.26 4090.87 8893.92 9982.18 9889.29 23873.75 17594.81 17093.70 115
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10191.97 10870.73 20494.19 2196.67 1176.94 15494.57 7583.07 6996.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11792.36 2689.06 18577.34 11993.63 3595.83 2565.40 24195.90 1485.01 5498.23 2797.49 13
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10592.49 2491.19 13267.85 23886.63 16494.84 5179.58 12995.96 1287.62 1494.50 17894.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 10085.25 13891.23 13077.31 12187.07 15491.47 16482.94 8594.71 6984.67 5796.27 11092.62 155
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9584.32 20789.33 21783.87 7494.53 7882.45 7694.89 16694.90 65
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10793.17 7076.02 13188.64 12691.22 16984.24 7393.37 12577.97 12897.03 8395.52 49
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14687.09 22665.22 21484.16 15594.23 2277.89 11391.28 7793.66 10784.35 7192.71 14380.07 9894.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo87.20 8587.45 8386.45 10292.52 9169.19 18087.84 10388.05 20181.66 6794.64 1496.53 1465.94 23894.75 6883.02 7196.83 8895.41 51
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 11089.45 7793.61 5379.44 9386.55 16592.95 12374.84 17395.22 5580.78 9395.83 13194.46 80
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10991.09 4291.87 11272.61 18292.16 6095.23 4166.01 23795.59 3686.02 4497.78 5397.24 17
Anonymous2024052986.20 10087.13 8783.42 16990.19 15964.55 22184.55 14890.71 14385.85 3189.94 10295.24 4082.13 9990.40 20969.19 22096.40 10595.31 55
v1086.54 9387.10 8884.84 13388.16 20363.28 23386.64 12392.20 10275.42 14392.81 5094.50 6374.05 18394.06 9583.88 6496.28 10897.17 20
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11192.86 8467.02 19682.55 20291.56 11983.08 5490.92 8391.82 15678.25 13893.99 9674.16 16698.35 2197.49 13
FC-MVSNet-test85.93 10487.05 9082.58 19092.25 10056.44 31185.75 13293.09 7577.33 12091.94 6694.65 5774.78 17593.41 12475.11 16098.58 1397.88 7
DU-MVS86.80 9086.99 9186.21 10993.24 7467.02 19683.16 18692.21 10181.73 6690.92 8391.97 15077.20 14893.99 9674.16 16698.35 2197.61 10
UniMVSNet (Re)86.87 8786.98 9286.55 10093.11 7768.48 18483.80 16992.87 8580.37 8089.61 11291.81 15777.72 14294.18 8975.00 16198.53 1596.99 24
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13379.26 9689.68 10794.81 5582.44 9087.74 25776.54 14588.74 27896.61 29
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12491.09 13478.77 10484.85 19890.89 18280.85 11795.29 5281.14 8895.32 14792.34 166
v886.22 9986.83 9584.36 14687.82 20762.35 24986.42 12691.33 12776.78 12592.73 5294.48 6573.41 19293.72 10683.10 6895.41 14397.01 23
IS-MVSNet86.66 9286.82 9686.17 11192.05 10866.87 19991.21 3988.64 19086.30 2889.60 11392.59 13469.22 22194.91 6573.89 17297.89 4996.72 26
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9787.35 10892.09 10478.87 10284.27 21294.05 8878.35 13793.65 10780.54 9791.58 23992.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG86.26 9786.47 9885.60 12390.87 14774.26 12587.98 10091.85 11380.35 8189.54 11688.01 23579.09 13192.13 15975.51 15495.06 15890.41 223
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9589.42 7995.73 677.87 11481.64 25587.25 25182.43 9194.53 7877.65 13096.46 10294.14 95
Gipumacopyleft84.44 12886.33 10078.78 24584.20 27473.57 12889.55 7290.44 15184.24 4184.38 20494.89 4976.35 16380.40 31976.14 14996.80 9082.36 326
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs85.35 11086.27 10182.60 18991.86 11457.31 30485.10 14193.05 7775.83 13691.02 8293.97 9273.57 18892.91 14173.97 17198.02 3997.58 12
NR-MVSNet86.00 10286.22 10285.34 12793.24 7464.56 22082.21 21490.46 15080.99 7588.42 13091.97 15077.56 14493.85 10172.46 19398.65 1197.61 10
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17892.38 9870.25 21189.35 11890.68 19082.85 8694.57 7579.55 10795.95 12492.00 181
canonicalmvs85.50 10786.14 10483.58 16587.97 20467.13 19487.55 10594.32 1873.44 16588.47 12987.54 24586.45 5491.06 18975.76 15393.76 19392.54 158
MSLP-MVS++85.00 11886.03 10581.90 19991.84 11771.56 15986.75 12193.02 8175.95 13487.12 14989.39 21577.98 13989.40 23777.46 13394.78 17184.75 294
baseline85.20 11385.93 10683.02 17886.30 24162.37 24884.55 14893.96 3974.48 15287.12 14992.03 14982.30 9591.94 16478.39 11694.21 18594.74 73
MVS_030486.35 9685.92 10787.66 8789.21 17873.16 13288.40 9583.63 26281.27 7180.87 26494.12 8671.49 21495.71 3187.79 1096.50 9994.11 97
Baseline_NR-MVSNet84.00 14385.90 10878.29 25691.47 13253.44 33082.29 21087.00 22179.06 9989.55 11495.72 2877.20 14886.14 28172.30 19498.51 1695.28 56
casdiffmvspermissive85.21 11285.85 10983.31 17286.17 24762.77 24083.03 18893.93 4074.69 15088.21 13592.68 13382.29 9691.89 16777.87 12993.75 19595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE85.45 10985.81 11084.37 14490.08 16167.07 19585.86 13191.39 12672.33 18887.59 14390.25 20084.85 6692.37 15378.00 12691.94 23393.66 116
PHI-MVS86.38 9585.81 11088.08 8188.44 19777.34 9889.35 8093.05 7773.15 17484.76 19987.70 24278.87 13394.18 8980.67 9596.29 10792.73 148
TransMVSNet (Re)84.02 14285.74 11278.85 24491.00 14455.20 32182.29 21087.26 20979.65 9088.38 13295.52 3383.00 8486.88 26867.97 23596.60 9594.45 82
ANet_high83.17 16085.68 11375.65 29081.24 30045.26 36979.94 24192.91 8483.83 4491.33 7496.88 1080.25 12485.92 28368.89 22495.89 12895.76 43
DeepC-MVS_fast80.27 886.23 9885.65 11487.96 8491.30 13476.92 10387.19 10991.99 10770.56 20584.96 19490.69 18980.01 12695.14 5878.37 11795.78 13691.82 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS86.17 10185.54 11588.05 8392.25 10075.45 11883.85 16692.01 10665.91 25086.19 17391.75 15983.77 7794.98 6377.43 13596.71 9293.73 114
FMVSNet184.55 12685.45 11681.85 20190.27 15861.05 26386.83 11788.27 19878.57 10789.66 10995.64 3075.43 16690.68 20269.09 22195.33 14693.82 109
VDDNet84.35 13085.39 11781.25 21095.13 3159.32 28385.42 13781.11 28386.41 2787.41 14696.21 1973.61 18790.61 20566.33 24496.85 8693.81 112
test_fmvsmvis_n_192085.22 11185.36 11884.81 13485.80 25276.13 11585.15 14092.32 9961.40 28391.33 7490.85 18483.76 7886.16 28084.31 6093.28 20492.15 177
train_agg85.98 10385.28 11988.07 8292.34 9679.70 7483.94 16290.32 15565.79 25184.49 20290.97 17881.93 10393.63 10981.21 8796.54 9790.88 208
dcpmvs_284.23 13685.14 12081.50 20788.61 19261.98 25482.90 19393.11 7368.66 22792.77 5192.39 13978.50 13587.63 25976.99 14192.30 22294.90 65
LCM-MVSNet-Re83.48 15485.06 12178.75 24685.94 25155.75 31680.05 23994.27 1976.47 12696.09 594.54 6283.31 8389.75 22959.95 29294.89 16690.75 211
EPP-MVSNet85.47 10885.04 12286.77 9791.52 13069.37 17591.63 3687.98 20381.51 6987.05 15591.83 15566.18 23695.29 5270.75 20396.89 8595.64 46
IterMVS-LS84.73 12284.98 12383.96 15687.35 21763.66 22883.25 18289.88 17076.06 12989.62 11092.37 14373.40 19492.52 14878.16 12394.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs183.69 14884.95 12479.91 23190.04 16559.66 28082.43 20687.44 20675.52 14187.85 14095.26 3981.25 11385.65 28868.74 22796.04 11994.42 85
TAPA-MVS77.73 1285.71 10684.83 12588.37 7788.78 18879.72 7387.15 11193.50 5669.17 21985.80 18289.56 21280.76 11892.13 15973.21 18895.51 14193.25 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet83.47 15584.73 12679.69 23590.29 15757.52 30381.30 22688.69 18976.29 12787.58 14494.44 6680.60 12187.20 26366.60 24396.82 8994.34 88
K. test v385.14 11484.73 12686.37 10391.13 14169.63 17385.45 13676.68 30884.06 4392.44 5796.99 862.03 25894.65 7180.58 9693.24 20594.83 72
v114484.54 12784.72 12884.00 15487.67 21162.55 24482.97 19090.93 13970.32 21089.80 10490.99 17773.50 18993.48 12081.69 8694.65 17695.97 39
3Dnovator80.37 784.80 12184.71 12985.06 13186.36 23974.71 12288.77 8990.00 16875.65 13984.96 19493.17 11474.06 18291.19 18478.28 12091.09 24589.29 242
v119284.57 12584.69 13084.21 15187.75 20962.88 23783.02 18991.43 12369.08 22189.98 10190.89 18272.70 20293.62 11282.41 7794.97 16396.13 34
MIMVSNet183.63 15084.59 13180.74 21994.06 5362.77 24082.72 19684.53 25577.57 11890.34 9295.92 2476.88 16085.83 28661.88 28097.42 7293.62 120
VDD-MVS84.23 13684.58 13283.20 17591.17 14065.16 21683.25 18284.97 25079.79 8787.18 14894.27 7474.77 17690.89 19569.24 21796.54 9793.55 126
EI-MVSNet-Vis-set85.12 11584.53 13386.88 9484.01 27572.76 13483.91 16585.18 24280.44 7988.75 12485.49 27680.08 12591.92 16582.02 8290.85 25595.97 39
v124084.30 13284.51 13483.65 16387.65 21261.26 26082.85 19491.54 12067.94 23690.68 9090.65 19271.71 21293.64 10882.84 7394.78 17196.07 36
bld_raw_dy_0_6484.85 12084.44 13586.07 11393.73 6074.93 12188.57 9281.90 27870.44 20691.28 7795.18 4256.62 29389.28 23985.15 5097.09 8193.99 100
EI-MVSNet-UG-set85.04 11684.44 13586.85 9583.87 27872.52 14383.82 16785.15 24380.27 8388.75 12485.45 27879.95 12791.90 16681.92 8490.80 25696.13 34
v14419284.24 13584.41 13783.71 16287.59 21461.57 25682.95 19191.03 13567.82 23989.80 10490.49 19573.28 19593.51 11981.88 8594.89 16696.04 38
WR-MVS83.56 15284.40 13881.06 21593.43 6854.88 32278.67 26385.02 24781.24 7290.74 8991.56 16272.85 19991.08 18868.00 23498.04 3697.23 18
v192192084.23 13684.37 13983.79 15987.64 21361.71 25582.91 19291.20 13167.94 23690.06 9690.34 19772.04 20993.59 11482.32 7894.91 16496.07 36
MVS_111021_HR84.63 12384.34 14085.49 12690.18 16075.86 11679.23 25587.13 21373.35 16685.56 18689.34 21683.60 8090.50 20776.64 14394.05 18990.09 231
v2v48284.09 13984.24 14183.62 16487.13 22261.40 25782.71 19789.71 17372.19 19189.55 11491.41 16570.70 21793.20 12981.02 8993.76 19396.25 32
EG-PatchMatch MVS84.08 14084.11 14283.98 15592.22 10272.61 14082.20 21687.02 21872.63 18188.86 12191.02 17678.52 13491.11 18773.41 18091.09 24588.21 256
HQP-MVS84.61 12484.06 14386.27 10691.19 13770.66 16384.77 14292.68 9173.30 16980.55 26990.17 20472.10 20694.61 7377.30 13794.47 17993.56 124
Effi-MVS+83.90 14684.01 14483.57 16687.22 22065.61 21286.55 12592.40 9678.64 10681.34 26084.18 29783.65 7992.93 13974.22 16587.87 28992.17 176
alignmvs83.94 14583.98 14583.80 15887.80 20867.88 19184.54 15091.42 12573.27 17288.41 13187.96 23672.33 20590.83 19776.02 15194.11 18792.69 152
MCST-MVS84.36 12983.93 14685.63 12291.59 12271.58 15883.52 17592.13 10361.82 27883.96 21789.75 21079.93 12893.46 12178.33 11994.34 18291.87 185
ETV-MVS84.31 13183.91 14785.52 12488.58 19370.40 16684.50 15293.37 5878.76 10584.07 21678.72 34780.39 12295.13 5973.82 17492.98 21291.04 204
MVS_111021_LR84.28 13383.76 14885.83 11989.23 17783.07 5180.99 23083.56 26372.71 18086.07 17689.07 22281.75 10886.19 27977.11 13993.36 20088.24 255
AdaColmapbinary83.66 14983.69 14983.57 16690.05 16472.26 14886.29 12890.00 16878.19 11181.65 25487.16 25383.40 8294.24 8661.69 28294.76 17484.21 299
F-COLMAP84.97 11983.42 15089.63 5592.39 9483.40 4888.83 8791.92 11073.19 17380.18 27789.15 22177.04 15293.28 12765.82 25092.28 22592.21 174
Effi-MVS+-dtu85.82 10583.38 15193.14 387.13 22291.15 287.70 10488.42 19274.57 15183.56 22285.65 27478.49 13694.21 8772.04 19592.88 21494.05 99
V4283.47 15583.37 15283.75 16183.16 28463.33 23281.31 22490.23 16269.51 21790.91 8590.81 18674.16 18192.29 15780.06 9990.22 26395.62 47
MVS_Test82.47 16883.22 15380.22 22882.62 29057.75 30282.54 20391.96 10971.16 20182.89 23292.52 13877.41 14690.50 20780.04 10087.84 29092.40 163
DP-MVS Recon84.05 14183.22 15386.52 10191.73 12075.27 11983.23 18492.40 9672.04 19282.04 24588.33 23177.91 14193.95 9866.17 24595.12 15690.34 225
PAPM_NR83.23 15883.19 15583.33 17190.90 14665.98 20888.19 9790.78 14278.13 11280.87 26487.92 23973.49 19192.42 15070.07 21088.40 28091.60 193
SDMVSNet81.90 17983.17 15678.10 25988.81 18662.45 24676.08 30086.05 23073.67 16083.41 22493.04 11682.35 9380.65 31870.06 21195.03 15991.21 200
KD-MVS_self_test81.93 17883.14 15778.30 25584.75 26452.75 33480.37 23689.42 18170.24 21290.26 9493.39 11174.55 18086.77 27168.61 22996.64 9395.38 52
CNLPA83.55 15383.10 15884.90 13289.34 17483.87 4684.54 15088.77 18779.09 9883.54 22388.66 22874.87 17281.73 31266.84 24092.29 22489.11 244
FA-MVS(test-final)83.13 16183.02 15983.43 16886.16 24966.08 20788.00 9988.36 19475.55 14085.02 19392.75 13165.12 24292.50 14974.94 16291.30 24391.72 188
tfpnnormal81.79 18082.95 16078.31 25488.93 18455.40 31780.83 23382.85 26976.81 12485.90 18194.14 8474.58 17986.51 27466.82 24195.68 14093.01 141
test_fmvsm_n_192083.60 15182.89 16185.74 12085.22 25877.74 9284.12 15790.48 14959.87 29986.45 17291.12 17375.65 16485.89 28582.28 7990.87 25393.58 122
CANet83.79 14782.85 16286.63 9886.17 24772.21 15083.76 17091.43 12377.24 12274.39 32587.45 24775.36 16795.42 4877.03 14092.83 21592.25 173
h-mvs3384.25 13482.76 16388.72 7091.82 11982.60 5684.00 16184.98 24971.27 19786.70 16190.55 19463.04 25593.92 9978.26 12194.20 18689.63 234
X-MVStestdata85.04 11682.70 16492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9916.05 38286.57 5295.80 2487.35 2297.62 6294.20 90
TSAR-MVS + GP.83.95 14482.69 16587.72 8589.27 17681.45 6383.72 17181.58 28274.73 14985.66 18386.06 26972.56 20492.69 14575.44 15695.21 15189.01 250
CLD-MVS83.18 15982.64 16684.79 13589.05 18067.82 19277.93 27192.52 9468.33 22985.07 19281.54 32582.06 10092.96 13769.35 21697.91 4893.57 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS82.28 17082.61 16781.30 20986.29 24269.79 16988.71 9087.67 20578.42 10982.15 24384.15 29877.98 13991.59 17365.39 25392.75 21682.51 325
QAPM82.59 16682.59 16882.58 19086.44 23466.69 20089.94 6290.36 15467.97 23584.94 19692.58 13672.71 20192.18 15870.63 20687.73 29188.85 251
114514_t83.10 16282.54 16984.77 13792.90 8169.10 18286.65 12290.62 14754.66 32381.46 25790.81 18676.98 15394.38 8272.62 19196.18 11290.82 210
v14882.31 16982.48 17081.81 20485.59 25459.66 28081.47 22386.02 23172.85 17788.05 13790.65 19270.73 21690.91 19475.15 15991.79 23494.87 67
EI-MVSNet82.61 16582.42 17183.20 17583.25 28263.66 22883.50 17685.07 24476.06 12986.55 16585.10 28473.41 19290.25 21078.15 12590.67 25995.68 45
TinyColmap81.25 18582.34 17277.99 26285.33 25760.68 27182.32 20988.33 19671.26 19986.97 15692.22 14877.10 15186.98 26762.37 27495.17 15386.31 278
GBi-Net82.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
test182.02 17582.07 17381.85 20186.38 23661.05 26386.83 11788.27 19872.43 18386.00 17795.64 3063.78 24990.68 20265.95 24693.34 20193.82 109
OpenMVScopyleft76.72 1381.98 17782.00 17581.93 19884.42 26968.22 18688.50 9489.48 17966.92 24481.80 25291.86 15272.59 20390.16 21571.19 19991.25 24487.40 268
LF4IMVS82.75 16481.93 17685.19 12882.08 29180.15 7085.53 13588.76 18868.01 23385.58 18587.75 24171.80 21186.85 26974.02 17093.87 19288.58 253
hse-mvs283.47 15581.81 17788.47 7491.03 14382.27 5782.61 19883.69 26071.27 19786.70 16186.05 27063.04 25592.41 15178.26 12193.62 19990.71 213
VPNet80.25 20481.68 17875.94 28892.46 9347.98 36076.70 28981.67 28073.45 16484.87 19792.82 12774.66 17886.51 27461.66 28396.85 8693.33 128
UGNet82.78 16381.64 17986.21 10986.20 24676.24 11386.86 11585.68 23577.07 12373.76 32892.82 12769.64 21891.82 17069.04 22393.69 19690.56 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet281.31 18481.61 18080.41 22586.38 23658.75 29483.93 16486.58 22372.43 18387.65 14292.98 12063.78 24990.22 21366.86 23893.92 19192.27 171
c3_l81.64 18181.59 18181.79 20580.86 30659.15 28778.61 26490.18 16468.36 22887.20 14787.11 25569.39 21991.62 17278.16 12394.43 18194.60 75
MVSFormer82.23 17181.57 18284.19 15385.54 25569.26 17791.98 3190.08 16671.54 19576.23 30785.07 28758.69 27994.27 8386.26 3688.77 27689.03 248
Fast-Effi-MVS+-dtu82.54 16781.41 18385.90 11685.60 25376.53 10883.07 18789.62 17773.02 17679.11 28783.51 30280.74 11990.24 21268.76 22689.29 26990.94 206
sd_testset79.95 21281.39 18475.64 29188.81 18658.07 29876.16 29982.81 27073.67 16083.41 22493.04 11680.96 11677.65 32658.62 29895.03 15991.21 200
Anonymous2024052180.18 20781.25 18576.95 27583.15 28560.84 26882.46 20585.99 23268.76 22586.78 15893.73 10659.13 27677.44 32773.71 17697.55 6792.56 156
DELS-MVS81.44 18381.25 18582.03 19784.27 27362.87 23876.47 29492.49 9570.97 20281.64 25583.83 29975.03 17092.70 14474.29 16492.22 22890.51 221
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS82.19 17281.23 18785.10 13087.95 20569.17 18183.22 18593.33 6170.42 20778.58 29079.77 34177.29 14794.20 8871.51 19788.96 27491.93 184
Anonymous20240521180.51 19681.19 18878.49 25188.48 19557.26 30576.63 29182.49 27281.21 7384.30 21092.24 14767.99 22786.24 27862.22 27595.13 15491.98 183
BH-untuned80.96 18980.99 18980.84 21888.55 19468.23 18580.33 23788.46 19172.79 17986.55 16586.76 25974.72 17791.77 17161.79 28188.99 27382.52 324
MG-MVS80.32 20380.94 19078.47 25288.18 20152.62 33782.29 21085.01 24872.01 19379.24 28692.54 13769.36 22093.36 12670.65 20589.19 27289.45 236
PCF-MVS74.62 1582.15 17380.92 19185.84 11889.43 17272.30 14780.53 23491.82 11557.36 31387.81 14189.92 20777.67 14393.63 10958.69 29795.08 15791.58 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.04 18880.57 19282.46 19487.50 21563.22 23478.37 26789.63 17668.01 23381.87 24882.08 32082.31 9492.65 14667.10 23788.30 28591.51 196
LFMVS80.15 20880.56 19378.89 24389.19 17955.93 31385.22 13973.78 32882.96 5584.28 21192.72 13257.38 28890.07 22263.80 26595.75 13790.68 215
ab-mvs79.67 21380.56 19376.99 27488.48 19556.93 30784.70 14586.06 22968.95 22380.78 26693.08 11575.30 16884.62 29656.78 30790.90 25289.43 238
PVSNet_Blended_VisFu81.55 18280.49 19584.70 14091.58 12573.24 13184.21 15491.67 11862.86 27180.94 26287.16 25367.27 23092.87 14269.82 21388.94 27587.99 260
diffmvspermissive80.40 19980.48 19680.17 22979.02 32660.04 27577.54 27890.28 16166.65 24782.40 23887.33 25073.50 18987.35 26277.98 12789.62 26793.13 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PLCcopyleft73.85 1682.09 17480.31 19787.45 8990.86 14880.29 6985.88 13090.65 14568.17 23176.32 30686.33 26473.12 19792.61 14761.40 28590.02 26589.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet79.31 21480.27 19876.44 28287.92 20653.95 32675.58 30684.35 25674.39 15382.23 24190.72 18872.84 20084.39 29860.38 29193.98 19090.97 205
cl____80.42 19880.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.37 24186.18 17589.21 21963.08 25490.16 21576.31 14795.80 13493.65 118
DIV-MVS_self_test80.43 19780.23 19981.02 21679.99 31459.25 28477.07 28487.02 21867.38 24086.19 17389.22 21863.09 25390.16 21576.32 14695.80 13493.66 116
eth_miper_zixun_eth80.84 19080.22 20182.71 18781.41 29860.98 26677.81 27390.14 16567.31 24286.95 15787.24 25264.26 24592.31 15575.23 15891.61 23794.85 71
BH-RMVSNet80.53 19580.22 20181.49 20887.19 22166.21 20677.79 27486.23 22774.21 15483.69 21988.50 22973.25 19690.75 19963.18 27187.90 28887.52 266
xiu_mvs_v1_base_debu80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
xiu_mvs_v1_base_debi80.84 19080.14 20382.93 18288.31 19871.73 15479.53 24687.17 21065.43 25779.59 27982.73 31476.94 15490.14 21873.22 18388.33 28186.90 273
miper_ehance_all_eth80.34 20280.04 20681.24 21279.82 31658.95 28977.66 27589.66 17465.75 25485.99 18085.11 28368.29 22691.42 17976.03 15092.03 23093.33 128
MSDG80.06 21079.99 20780.25 22783.91 27768.04 19077.51 27989.19 18277.65 11681.94 24683.45 30476.37 16286.31 27763.31 27086.59 30186.41 276
tttt051781.07 18779.58 20885.52 12488.99 18366.45 20387.03 11375.51 31673.76 15988.32 13490.20 20137.96 37194.16 9379.36 11195.13 15495.93 42
IterMVS-SCA-FT80.64 19479.41 20984.34 14883.93 27669.66 17276.28 29681.09 28472.43 18386.47 17190.19 20260.46 26493.15 13277.45 13486.39 30490.22 226
patch_mono-278.89 21779.39 21077.41 27184.78 26368.11 18875.60 30483.11 26660.96 28879.36 28389.89 20875.18 16972.97 33873.32 18292.30 22291.15 202
wuyk23d75.13 25879.30 21162.63 34875.56 35075.18 12080.89 23173.10 33475.06 14794.76 1295.32 3587.73 4052.85 37834.16 37797.11 8059.85 375
DPM-MVS80.10 20979.18 21282.88 18590.71 15169.74 17078.87 26090.84 14060.29 29575.64 31585.92 27267.28 22993.11 13371.24 19891.79 23485.77 284
PM-MVS80.20 20679.00 21383.78 16088.17 20286.66 1581.31 22466.81 36269.64 21688.33 13390.19 20264.58 24383.63 30471.99 19690.03 26481.06 343
iter_conf_final80.36 20178.88 21484.79 13586.29 24266.36 20586.95 11486.25 22668.16 23282.09 24489.48 21336.59 37494.51 8079.83 10394.30 18393.50 127
FE-MVS79.98 21178.86 21583.36 17086.47 23366.45 20389.73 6584.74 25472.80 17884.22 21591.38 16644.95 35293.60 11363.93 26491.50 24090.04 232
test111178.53 22578.85 21677.56 26892.22 10247.49 36282.61 19869.24 35472.43 18385.28 18994.20 8051.91 31490.07 22265.36 25496.45 10395.11 62
AUN-MVS81.18 18678.78 21788.39 7690.93 14582.14 5882.51 20483.67 26164.69 26480.29 27385.91 27351.07 31892.38 15276.29 14893.63 19890.65 217
mvs_anonymous78.13 22878.76 21876.23 28779.24 32350.31 35378.69 26284.82 25261.60 28283.09 23192.82 12773.89 18587.01 26468.33 23386.41 30391.37 197
MAR-MVS80.24 20578.74 21984.73 13886.87 23278.18 8585.75 13287.81 20465.67 25677.84 29578.50 34873.79 18690.53 20661.59 28490.87 25385.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft78.44 22678.63 22077.88 26491.85 11548.95 35683.68 17269.91 35272.30 18984.26 21394.20 8051.89 31589.82 22663.58 26696.02 12094.87 67
FMVSNet378.80 22178.55 22179.57 23782.89 28956.89 30981.76 21885.77 23469.04 22286.00 17790.44 19651.75 31690.09 22165.95 24693.34 20191.72 188
test_yl78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
DCV-MVSNet78.71 22378.51 22279.32 24084.32 27158.84 29178.38 26585.33 23975.99 13282.49 23686.57 26058.01 28290.02 22462.74 27292.73 21789.10 245
EPNet80.37 20078.41 22486.23 10776.75 34073.28 12987.18 11077.45 30276.24 12868.14 35088.93 22465.41 24093.85 10169.47 21596.12 11691.55 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet78.88 21878.28 22580.68 22279.58 31762.64 24282.58 20094.16 2774.80 14875.72 31392.59 13448.69 32695.56 3873.48 17982.91 33383.85 304
cl2278.97 21678.21 22681.24 21277.74 33059.01 28877.46 28187.13 21365.79 25184.32 20785.10 28458.96 27890.88 19675.36 15792.03 23093.84 107
PAPR78.84 21978.10 22781.07 21485.17 25960.22 27482.21 21490.57 14862.51 27375.32 31984.61 29274.99 17192.30 15659.48 29588.04 28790.68 215
PVSNet_BlendedMVS78.80 22177.84 22881.65 20684.43 26763.41 23079.49 24990.44 15161.70 28175.43 31687.07 25669.11 22291.44 17760.68 28992.24 22690.11 230
Vis-MVSNet (Re-imp)77.82 23177.79 22977.92 26388.82 18551.29 34783.28 18071.97 34174.04 15582.23 24189.78 20957.38 28889.41 23657.22 30695.41 14393.05 140
Patchmtry76.56 24677.46 23073.83 30079.37 32246.60 36682.41 20776.90 30573.81 15885.56 18692.38 14048.07 32983.98 30163.36 26995.31 14990.92 207
OpenMVS_ROBcopyleft70.19 1777.77 23377.46 23078.71 24784.39 27061.15 26181.18 22882.52 27162.45 27583.34 22687.37 24866.20 23588.66 24964.69 26085.02 31586.32 277
CL-MVSNet_self_test76.81 24277.38 23275.12 29486.90 23051.34 34573.20 32680.63 28868.30 23081.80 25288.40 23066.92 23280.90 31555.35 31994.90 16593.12 138
iter_conf0578.81 22077.35 23383.21 17482.98 28860.75 27084.09 15888.34 19563.12 26984.25 21489.48 21331.41 37994.51 8076.64 14395.83 13194.38 87
thisisatest053079.07 21577.33 23484.26 15087.13 22264.58 21983.66 17375.95 31168.86 22485.22 19087.36 24938.10 36993.57 11775.47 15594.28 18494.62 74
CANet_DTU77.81 23277.05 23580.09 23081.37 29959.90 27883.26 18188.29 19769.16 22067.83 35383.72 30060.93 26189.47 23169.22 21989.70 26690.88 208
pmmvs-eth3d78.42 22777.04 23682.57 19287.44 21674.41 12480.86 23279.67 29255.68 31984.69 20090.31 19960.91 26285.42 28962.20 27691.59 23887.88 263
miper_enhance_ethall77.83 23076.93 23780.51 22376.15 34658.01 29975.47 30888.82 18658.05 30783.59 22180.69 32964.41 24491.20 18373.16 18992.03 23092.33 167
MDA-MVSNet-bldmvs77.47 23476.90 23879.16 24279.03 32564.59 21866.58 35275.67 31473.15 17488.86 12188.99 22366.94 23181.23 31464.71 25988.22 28691.64 192
xiu_mvs_v2_base77.19 23776.75 23978.52 25087.01 22861.30 25975.55 30787.12 21661.24 28574.45 32478.79 34677.20 14890.93 19264.62 26284.80 32283.32 313
USDC76.63 24476.73 24076.34 28483.46 28057.20 30680.02 24088.04 20252.14 33783.65 22091.25 16863.24 25286.65 27354.66 32494.11 18785.17 289
PS-MVSNAJ77.04 23976.53 24178.56 24987.09 22661.40 25775.26 30987.13 21361.25 28474.38 32677.22 35776.94 15490.94 19164.63 26184.83 32183.35 312
TAMVS78.08 22976.36 24283.23 17390.62 15272.87 13379.08 25680.01 29161.72 28081.35 25986.92 25863.96 24888.78 24750.61 34293.01 21188.04 259
IterMVS76.91 24076.34 24378.64 24880.91 30464.03 22576.30 29579.03 29564.88 26383.11 22989.16 22059.90 27084.46 29768.61 22985.15 31487.42 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS74.44 26976.19 24469.21 32784.61 26552.43 33871.70 33177.18 30460.73 29180.60 26790.96 18075.44 16569.35 34856.13 31288.33 28185.86 283
miper_lstm_enhance76.45 24876.10 24577.51 26976.72 34160.97 26764.69 35685.04 24663.98 26683.20 22888.22 23256.67 29278.79 32473.22 18393.12 20892.78 147
BH-w/o76.57 24576.07 24678.10 25986.88 23165.92 20977.63 27686.33 22465.69 25580.89 26379.95 33868.97 22490.74 20053.01 33385.25 31377.62 354
TR-MVS76.77 24375.79 24779.72 23486.10 25065.79 21077.14 28283.02 26765.20 26181.40 25882.10 31866.30 23490.73 20155.57 31685.27 31282.65 319
jason77.42 23575.75 24882.43 19587.10 22569.27 17677.99 27081.94 27751.47 34177.84 29585.07 28760.32 26689.00 24170.74 20489.27 27189.03 248
jason: jason.
MVSTER77.09 23875.70 24981.25 21075.27 35461.08 26277.49 28085.07 24460.78 29086.55 16588.68 22743.14 36190.25 21073.69 17790.67 25992.42 161
D2MVS76.84 24175.67 25080.34 22680.48 31262.16 25373.50 32384.80 25357.61 31182.24 24087.54 24551.31 31787.65 25870.40 20993.19 20791.23 199
PVSNet_Blended76.49 24775.40 25179.76 23384.43 26763.41 23075.14 31090.44 15157.36 31375.43 31678.30 34969.11 22291.44 17760.68 28987.70 29284.42 297
CDS-MVSNet77.32 23675.40 25183.06 17789.00 18272.48 14477.90 27282.17 27560.81 28978.94 28883.49 30359.30 27488.76 24854.64 32592.37 22187.93 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres600view775.97 25175.35 25377.85 26687.01 22851.84 34380.45 23573.26 33275.20 14583.10 23086.31 26645.54 34389.05 24055.03 32292.24 22692.66 153
test_fmvs375.72 25475.20 25477.27 27275.01 35769.47 17478.93 25784.88 25146.67 35587.08 15387.84 24050.44 32271.62 34277.42 13688.53 27990.72 212
thres100view90075.45 25575.05 25576.66 28187.27 21851.88 34281.07 22973.26 33275.68 13883.25 22786.37 26345.54 34388.80 24451.98 33790.99 24789.31 240
cascas76.29 25074.81 25680.72 22184.47 26662.94 23673.89 32187.34 20755.94 31875.16 32176.53 36163.97 24791.16 18565.00 25690.97 25088.06 258
GA-MVS75.83 25274.61 25779.48 23981.87 29359.25 28473.42 32482.88 26868.68 22679.75 27881.80 32250.62 32089.46 23266.85 23985.64 30989.72 233
testgi72.36 28474.61 25765.59 34180.56 31142.82 37668.29 34473.35 33166.87 24581.84 24989.93 20672.08 20866.92 36146.05 36192.54 21987.01 272
test20.0373.75 27374.59 25971.22 31581.11 30251.12 34970.15 33972.10 34070.42 20780.28 27591.50 16364.21 24674.72 33746.96 35894.58 17787.82 265
lupinMVS76.37 24974.46 26082.09 19685.54 25569.26 17776.79 28780.77 28750.68 34876.23 30782.82 31258.69 27988.94 24269.85 21288.77 27688.07 257
EU-MVSNet75.12 25974.43 26177.18 27383.11 28659.48 28285.71 13482.43 27339.76 37585.64 18488.76 22544.71 35487.88 25673.86 17385.88 30884.16 300
tfpn200view974.86 26374.23 26276.74 28086.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24789.31 240
thres40075.14 25774.23 26277.86 26586.24 24452.12 33979.24 25373.87 32673.34 16781.82 25084.60 29346.02 33788.80 24451.98 33790.99 24792.66 153
ppachtmachnet_test74.73 26674.00 26476.90 27780.71 30956.89 30971.53 33378.42 29758.24 30579.32 28582.92 31157.91 28584.26 29965.60 25291.36 24289.56 235
1112_ss74.82 26473.74 26578.04 26189.57 16860.04 27576.49 29387.09 21754.31 32473.66 32979.80 33960.25 26786.76 27258.37 29984.15 32687.32 269
Patchmatch-RL test74.48 26773.68 26676.89 27884.83 26266.54 20172.29 32969.16 35557.70 30986.76 15986.33 26445.79 34282.59 30769.63 21490.65 26181.54 334
CMPMVSbinary59.41 2075.12 25973.57 26779.77 23275.84 34967.22 19381.21 22782.18 27450.78 34676.50 30387.66 24355.20 30382.99 30662.17 27890.64 26289.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline173.26 27673.54 26872.43 31184.92 26147.79 36179.89 24274.00 32465.93 24978.81 28986.28 26756.36 29581.63 31356.63 30879.04 35487.87 264
MVP-Stereo75.81 25373.51 26982.71 18789.35 17373.62 12780.06 23885.20 24160.30 29473.96 32787.94 23757.89 28689.45 23352.02 33674.87 36585.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test250674.12 27073.39 27076.28 28591.85 11544.20 37284.06 15948.20 38372.30 18981.90 24794.20 8027.22 38689.77 22764.81 25896.02 12094.87 67
new-patchmatchnet70.10 30373.37 27160.29 35581.23 30116.95 38759.54 36574.62 31962.93 27080.97 26187.93 23862.83 25771.90 34155.24 32095.01 16292.00 181
PatchMatch-RL74.48 26773.22 27278.27 25787.70 21085.26 3475.92 30270.09 35064.34 26576.09 30981.25 32765.87 23978.07 32553.86 32783.82 32771.48 363
Test_1112_low_res73.90 27273.08 27376.35 28390.35 15655.95 31273.40 32586.17 22850.70 34773.14 33085.94 27158.31 28185.90 28456.51 30983.22 33087.20 270
CR-MVSNet74.00 27173.04 27476.85 27979.58 31762.64 24282.58 20076.90 30550.50 34975.72 31392.38 14048.07 32984.07 30068.72 22882.91 33383.85 304
pmmvs474.92 26272.98 27580.73 22084.95 26071.71 15776.23 29777.59 30152.83 33177.73 29986.38 26256.35 29684.97 29357.72 30587.05 29685.51 286
test_fmvs273.57 27472.80 27675.90 28972.74 36968.84 18377.07 28484.32 25745.14 36182.89 23284.22 29648.37 32770.36 34573.40 18187.03 29788.52 254
ET-MVSNet_ETH3D75.28 25672.77 27782.81 18683.03 28768.11 18877.09 28376.51 30960.67 29277.60 30080.52 33338.04 37091.15 18670.78 20290.68 25889.17 243
PatchT70.52 29972.76 27863.79 34779.38 32133.53 38277.63 27665.37 36473.61 16271.77 33792.79 13044.38 35575.65 33464.53 26385.37 31182.18 327
HyFIR lowres test75.12 25972.66 27982.50 19391.44 13365.19 21572.47 32887.31 20846.79 35480.29 27384.30 29552.70 31192.10 16251.88 34186.73 29990.22 226
MVS73.21 27872.59 28075.06 29580.97 30360.81 26981.64 22185.92 23346.03 35971.68 33877.54 35268.47 22589.77 22755.70 31585.39 31074.60 360
SCA73.32 27572.57 28175.58 29281.62 29555.86 31478.89 25971.37 34661.73 27974.93 32283.42 30560.46 26487.01 26458.11 30382.63 33883.88 301
131473.22 27772.56 28275.20 29380.41 31357.84 30081.64 22185.36 23851.68 34073.10 33176.65 36061.45 26085.19 29163.54 26779.21 35282.59 320
HY-MVS64.64 1873.03 27972.47 28374.71 29683.36 28154.19 32482.14 21781.96 27656.76 31769.57 34686.21 26860.03 26884.83 29549.58 34782.65 33685.11 290
UnsupCasMVSNet_eth71.63 29172.30 28469.62 32476.47 34352.70 33670.03 34080.97 28559.18 30079.36 28388.21 23360.50 26369.12 34958.33 30177.62 35987.04 271
FPMVS72.29 28672.00 28573.14 30488.63 19185.00 3674.65 31467.39 35671.94 19477.80 29787.66 24350.48 32175.83 33349.95 34479.51 34858.58 377
Anonymous2023120671.38 29371.88 28669.88 32286.31 24054.37 32370.39 33774.62 31952.57 33376.73 30288.76 22559.94 26972.06 34044.35 36593.23 20683.23 315
FMVSNet572.10 28771.69 28773.32 30281.57 29653.02 33376.77 28878.37 29863.31 26776.37 30491.85 15336.68 37378.98 32247.87 35492.45 22087.95 261
our_test_371.85 28871.59 28872.62 30880.71 30953.78 32769.72 34171.71 34558.80 30278.03 29280.51 33456.61 29478.84 32362.20 27686.04 30785.23 288
MIMVSNet71.09 29571.59 28869.57 32587.23 21950.07 35478.91 25871.83 34260.20 29771.26 33991.76 15855.08 30576.09 33141.06 37087.02 29882.54 323
test_vis1_n_192071.30 29471.58 29070.47 31877.58 33359.99 27774.25 31584.22 25851.06 34374.85 32379.10 34355.10 30468.83 35168.86 22579.20 35382.58 321
thres20072.34 28571.55 29174.70 29783.48 27951.60 34475.02 31173.71 32970.14 21378.56 29180.57 33246.20 33588.20 25446.99 35789.29 26984.32 298
CVMVSNet72.62 28271.41 29276.28 28583.25 28260.34 27383.50 17679.02 29637.77 37876.33 30585.10 28449.60 32587.41 26170.54 20777.54 36081.08 341
EPNet_dtu72.87 28171.33 29377.49 27077.72 33160.55 27282.35 20875.79 31266.49 24858.39 37881.06 32853.68 30785.98 28253.55 32892.97 21385.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt71.42 29270.67 29473.64 30169.66 37570.46 16566.97 35189.73 17142.68 37188.20 13683.04 30743.77 35660.07 37365.35 25586.66 30090.39 224
CHOSEN 1792x268872.45 28370.56 29578.13 25890.02 16663.08 23568.72 34383.16 26542.99 36975.92 31185.46 27757.22 29085.18 29249.87 34681.67 34086.14 279
thisisatest051573.00 28070.52 29680.46 22481.45 29759.90 27873.16 32774.31 32357.86 30876.08 31077.78 35137.60 37292.12 16165.00 25691.45 24189.35 239
YYNet170.06 30470.44 29768.90 32873.76 36153.42 33158.99 36867.20 35858.42 30487.10 15185.39 28059.82 27167.32 35859.79 29383.50 32985.96 280
MDA-MVSNet_test_wron70.05 30570.44 29768.88 32973.84 36053.47 32958.93 36967.28 35758.43 30387.09 15285.40 27959.80 27267.25 35959.66 29483.54 32885.92 282
test_fmvs1_n70.94 29670.41 29972.53 31073.92 35966.93 19875.99 30184.21 25943.31 36879.40 28279.39 34243.47 35768.55 35369.05 22284.91 31882.10 328
MS-PatchMatch70.93 29770.22 30073.06 30581.85 29462.50 24573.82 32277.90 29952.44 33475.92 31181.27 32655.67 30081.75 31155.37 31877.70 35874.94 359
pmmvs570.73 29870.07 30172.72 30777.03 33852.73 33574.14 31675.65 31550.36 35072.17 33685.37 28155.42 30280.67 31752.86 33487.59 29384.77 293
PAPM71.77 28970.06 30276.92 27686.39 23553.97 32576.62 29286.62 22253.44 32863.97 36884.73 29157.79 28792.34 15439.65 37281.33 34484.45 296
test_vis1_n70.29 30069.99 30371.20 31675.97 34866.50 20276.69 29080.81 28644.22 36475.43 31677.23 35650.00 32368.59 35266.71 24282.85 33578.52 353
EGC-MVSNET74.79 26569.99 30389.19 6394.89 3787.00 1191.89 3486.28 2251.09 3832.23 38595.98 2381.87 10689.48 23079.76 10495.96 12391.10 203
UnsupCasMVSNet_bld69.21 31169.68 30567.82 33479.42 32051.15 34867.82 34875.79 31254.15 32577.47 30185.36 28259.26 27570.64 34448.46 35179.35 35081.66 332
tpmvs70.16 30269.56 30671.96 31374.71 35848.13 35879.63 24475.45 31765.02 26270.26 34381.88 32145.34 34885.68 28758.34 30075.39 36482.08 329
test_cas_vis1_n_192069.20 31269.12 30769.43 32673.68 36262.82 23970.38 33877.21 30346.18 35880.46 27278.95 34552.03 31365.53 36665.77 25177.45 36179.95 349
gg-mvs-nofinetune68.96 31369.11 30868.52 33376.12 34745.32 36883.59 17455.88 37886.68 2464.62 36797.01 730.36 38183.97 30244.78 36482.94 33276.26 356
test_fmvs169.57 30969.05 30971.14 31769.15 37665.77 21173.98 31983.32 26442.83 37077.77 29878.27 35043.39 36068.50 35468.39 23284.38 32579.15 351
IB-MVS62.13 1971.64 29068.97 31079.66 23680.80 30862.26 25173.94 32076.90 30563.27 26868.63 34976.79 35933.83 37791.84 16959.28 29687.26 29484.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchmatchNetpermissive69.71 30868.83 31172.33 31277.66 33253.60 32879.29 25169.99 35157.66 31072.53 33482.93 31046.45 33480.08 32160.91 28872.09 36883.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet70.20 30168.80 31274.38 29880.91 30484.81 3959.12 36776.45 31055.06 32175.31 32082.36 31755.74 29954.82 37747.02 35687.24 29583.52 308
CostFormer69.98 30668.68 31373.87 29977.14 33650.72 35179.26 25274.51 32151.94 33970.97 34284.75 29045.16 35187.49 26055.16 32179.23 35183.40 311
WTY-MVS67.91 31668.35 31466.58 33880.82 30748.12 35965.96 35372.60 33553.67 32771.20 34081.68 32458.97 27769.06 35048.57 35081.67 34082.55 322
MDTV_nov1_ep1368.29 31578.03 32943.87 37374.12 31772.22 33952.17 33567.02 35585.54 27545.36 34780.85 31655.73 31384.42 324
tpm67.95 31568.08 31667.55 33578.74 32843.53 37475.60 30467.10 36154.92 32272.23 33588.10 23442.87 36275.97 33252.21 33580.95 34783.15 316
Patchmatch-test65.91 32567.38 31761.48 35375.51 35143.21 37568.84 34263.79 36662.48 27472.80 33383.42 30544.89 35359.52 37548.27 35386.45 30281.70 331
sss66.92 31867.26 31865.90 34077.23 33551.10 35064.79 35571.72 34452.12 33870.13 34480.18 33657.96 28465.36 36750.21 34381.01 34681.25 338
dmvs_re66.81 32166.98 31966.28 33976.87 33958.68 29571.66 33272.24 33860.29 29569.52 34773.53 36652.38 31264.40 36944.90 36381.44 34375.76 357
baseline269.77 30766.89 32078.41 25379.51 31958.09 29776.23 29769.57 35357.50 31264.82 36677.45 35446.02 33788.44 25053.08 33077.83 35688.70 252
tpm268.45 31466.83 32173.30 30378.93 32748.50 35779.76 24371.76 34347.50 35369.92 34583.60 30142.07 36388.40 25148.44 35279.51 34883.01 318
test-LLR67.21 31766.74 32268.63 33176.45 34455.21 31967.89 34567.14 35962.43 27665.08 36372.39 36743.41 35869.37 34661.00 28684.89 31981.31 336
tpmrst66.28 32466.69 32365.05 34472.82 36839.33 37778.20 26870.69 34953.16 33067.88 35280.36 33548.18 32874.75 33658.13 30270.79 37081.08 341
JIA-IIPM69.41 31066.64 32477.70 26773.19 36471.24 16075.67 30365.56 36370.42 20765.18 36292.97 12233.64 37883.06 30553.52 32969.61 37478.79 352
test_f64.31 33165.85 32559.67 35666.54 38062.24 25257.76 37070.96 34740.13 37384.36 20582.09 31946.93 33151.67 37961.99 27981.89 33965.12 371
KD-MVS_2432*160066.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
miper_refine_blended66.87 31965.81 32670.04 32067.50 37747.49 36262.56 36079.16 29361.21 28677.98 29380.61 33025.29 38882.48 30853.02 33184.92 31680.16 347
PVSNet58.17 2166.41 32365.63 32868.75 33081.96 29249.88 35562.19 36272.51 33751.03 34468.04 35175.34 36450.84 31974.77 33545.82 36282.96 33181.60 333
tpm cat166.76 32265.21 32971.42 31477.09 33750.62 35278.01 26973.68 33044.89 36268.64 34879.00 34445.51 34582.42 31049.91 34570.15 37181.23 340
test0.0.03 164.66 33064.36 33065.57 34275.03 35646.89 36564.69 35661.58 37162.43 27671.18 34177.54 35243.41 35868.47 35540.75 37182.65 33681.35 335
test_vis1_rt65.64 32764.09 33170.31 31966.09 38170.20 16861.16 36381.60 28138.65 37672.87 33269.66 37052.84 30960.04 37456.16 31177.77 35780.68 345
test-mter65.00 32963.79 33268.63 33176.45 34455.21 31967.89 34567.14 35950.98 34565.08 36372.39 36728.27 38469.37 34661.00 28684.89 31981.31 336
ADS-MVSNet265.87 32663.64 33372.55 30973.16 36556.92 30867.10 34974.81 31849.74 35166.04 35782.97 30846.71 33277.26 32842.29 36769.96 37283.46 309
mvsany_test365.48 32862.97 33473.03 30669.99 37476.17 11464.83 35443.71 38543.68 36680.25 27687.05 25752.83 31063.09 37251.92 34072.44 36779.84 350
MVS-HIRNet61.16 33862.92 33555.87 35979.09 32435.34 38171.83 33057.98 37746.56 35659.05 37591.14 17249.95 32476.43 33038.74 37371.92 36955.84 378
EPMVS62.47 33262.63 33662.01 34970.63 37338.74 37874.76 31252.86 38053.91 32667.71 35480.01 33739.40 36766.60 36255.54 31768.81 37680.68 345
dmvs_testset60.59 34262.54 33754.72 36177.26 33427.74 38574.05 31861.00 37260.48 29365.62 36067.03 37455.93 29868.23 35632.07 38069.46 37568.17 368
ADS-MVSNet61.90 33462.19 33861.03 35473.16 36536.42 38067.10 34961.75 36949.74 35166.04 35782.97 30846.71 33263.21 37042.29 36769.96 37283.46 309
E-PMN61.59 33661.62 33961.49 35266.81 37955.40 31753.77 37360.34 37366.80 24658.90 37665.50 37540.48 36666.12 36455.72 31486.25 30562.95 373
DSMNet-mixed60.98 34061.61 34059.09 35872.88 36745.05 37074.70 31346.61 38426.20 38065.34 36190.32 19855.46 30163.12 37141.72 36981.30 34569.09 367
EMVS61.10 33960.81 34161.99 35065.96 38255.86 31453.10 37458.97 37567.06 24356.89 37963.33 37640.98 36467.03 36054.79 32386.18 30663.08 372
PMMVS61.65 33560.38 34265.47 34365.40 38469.26 17763.97 35861.73 37036.80 37960.11 37368.43 37259.42 27366.35 36348.97 34978.57 35560.81 374
TESTMET0.1,161.29 33760.32 34364.19 34672.06 37051.30 34667.89 34562.09 36745.27 36060.65 37269.01 37127.93 38564.74 36856.31 31081.65 34276.53 355
dp60.70 34160.29 34461.92 35172.04 37138.67 37970.83 33464.08 36551.28 34260.75 37177.28 35536.59 37471.58 34347.41 35562.34 37875.52 358
pmmvs362.47 33260.02 34569.80 32371.58 37264.00 22670.52 33658.44 37639.77 37466.05 35675.84 36227.10 38772.28 33946.15 36084.77 32373.11 361
PMMVS255.64 34759.27 34644.74 36364.30 38512.32 38840.60 37649.79 38253.19 32965.06 36584.81 28953.60 30849.76 38032.68 37989.41 26872.15 362
new_pmnet55.69 34657.66 34749.76 36275.47 35230.59 38359.56 36451.45 38143.62 36762.49 36975.48 36340.96 36549.15 38137.39 37572.52 36669.55 366
CHOSEN 280x42059.08 34356.52 34866.76 33776.51 34264.39 22249.62 37559.00 37443.86 36555.66 38068.41 37335.55 37668.21 35743.25 36676.78 36367.69 369
mvsany_test158.48 34456.47 34964.50 34565.90 38368.21 18756.95 37142.11 38638.30 37765.69 35977.19 35856.96 29159.35 37646.16 35958.96 37965.93 370
PVSNet_051.08 2256.10 34554.97 35059.48 35775.12 35553.28 33255.16 37261.89 36844.30 36359.16 37462.48 37754.22 30665.91 36535.40 37647.01 38059.25 376
MVEpermissive40.22 2351.82 34850.47 35155.87 35962.66 38651.91 34131.61 37839.28 38740.65 37250.76 38174.98 36556.24 29744.67 38233.94 37864.11 37771.04 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34929.60 35233.06 36417.99 3883.84 39013.62 37973.92 3252.79 38218.29 38453.41 37928.53 38343.25 38322.56 38135.27 38252.11 379
cdsmvs_eth3d_5k20.81 35027.75 3530.00 3690.00 3920.00 3930.00 38085.44 2370.00 3870.00 38882.82 31281.46 1100.00 3880.00 3860.00 3860.00 384
tmp_tt20.25 35124.50 3547.49 3664.47 3898.70 38934.17 37725.16 3891.00 38432.43 38318.49 38139.37 3689.21 38521.64 38243.75 3814.57 381
ab-mvs-re6.65 3528.87 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38879.80 3390.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.41 3538.55 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38776.94 1540.00 3880.00 3860.00 3860.00 384
test1236.27 3548.08 3570.84 3671.11 3910.57 39162.90 3590.82 3910.54 3851.07 3872.75 3861.26 3900.30 3861.04 3841.26 3851.66 382
testmvs5.91 3557.65 3580.72 3681.20 3900.37 39259.14 3660.67 3920.49 3861.11 3862.76 3850.94 3910.24 3871.02 3851.47 3841.55 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
PC_three_145258.96 30190.06 9691.33 16780.66 12093.03 13675.78 15295.94 12592.48 159
No_MVS88.81 6891.55 12777.99 8791.01 13696.05 787.45 1898.17 3292.40 163
test_one_060193.85 5873.27 13094.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 392
eth-test0.00 392
ZD-MVS92.22 10280.48 6791.85 11371.22 20090.38 9192.98 12086.06 5996.11 581.99 8396.75 91
IU-MVS94.18 4672.64 13790.82 14156.98 31589.67 10885.78 4697.92 4693.28 130
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16981.12 11494.68 7074.48 16395.35 14592.29 169
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4297.82 5192.04 179
test_241102_ONE94.18 4672.65 13593.69 5083.62 4794.11 2293.78 10490.28 1495.50 45
save fliter93.75 5977.44 9686.31 12789.72 17270.80 203
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 2098.21 2992.98 142
test_0728_SECOND86.79 9694.25 4572.45 14590.54 4894.10 3495.88 1686.42 3297.97 4392.02 180
test072694.16 4972.56 14190.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
GSMVS83.88 301
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 33683.88 301
sam_mvs45.92 341
ambc82.98 17990.55 15464.86 21788.20 9689.15 18389.40 11793.96 9571.67 21391.38 18178.83 11496.55 9692.71 151
MTGPAbinary91.81 116
test_post178.85 2613.13 38345.19 35080.13 32058.11 303
test_post3.10 38445.43 34677.22 329
patchmatchnet-post81.71 32345.93 34087.01 264
GG-mvs-BLEND67.16 33673.36 36346.54 36784.15 15655.04 37958.64 37761.95 37829.93 38283.87 30338.71 37476.92 36271.07 364
MTMP90.66 4433.14 388
gm-plane-assit75.42 35344.97 37152.17 33572.36 36987.90 25554.10 326
test9_res80.83 9296.45 10390.57 218
TEST992.34 9679.70 7483.94 16290.32 15565.41 26084.49 20290.97 17882.03 10193.63 109
test_892.09 10678.87 8183.82 16790.31 15765.79 25184.36 20590.96 18081.93 10393.44 122
agg_prior279.68 10696.16 11390.22 226
agg_prior91.58 12577.69 9390.30 15884.32 20793.18 130
TestCases89.68 5391.59 12283.40 4895.44 979.47 9188.00 13893.03 11882.66 8891.47 17570.81 20096.14 11494.16 93
test_prior478.97 8084.59 147
test_prior283.37 17975.43 14284.58 20191.57 16181.92 10579.54 10896.97 84
test_prior86.32 10490.59 15371.99 15292.85 8694.17 9192.80 146
旧先验281.73 21956.88 31686.54 17084.90 29472.81 190
新几何281.72 220
新几何182.95 18193.96 5578.56 8480.24 28955.45 32083.93 21891.08 17571.19 21588.33 25265.84 24993.07 20981.95 330
旧先验191.97 10971.77 15381.78 27991.84 15473.92 18493.65 19783.61 307
无先验82.81 19585.62 23658.09 30691.41 18067.95 23684.48 295
原ACMM282.26 213
原ACMM184.60 14192.81 8774.01 12691.50 12162.59 27282.73 23590.67 19176.53 16194.25 8569.24 21795.69 13985.55 285
test22293.31 7176.54 10679.38 25077.79 30052.59 33282.36 23990.84 18566.83 23391.69 23681.25 338
testdata286.43 27663.52 268
segment_acmp81.94 102
testdata79.54 23892.87 8272.34 14680.14 29059.91 29885.47 18891.75 15967.96 22885.24 29068.57 23192.18 22981.06 343
testdata179.62 24573.95 157
test1286.57 9990.74 14972.63 13990.69 14482.76 23479.20 13094.80 6795.32 14792.27 171
plane_prior793.45 6677.31 99
plane_prior692.61 8876.54 10674.84 173
plane_prior593.61 5395.22 5580.78 9395.83 13194.46 80
plane_prior492.95 123
plane_prior376.85 10477.79 11586.55 165
plane_prior289.45 7779.44 93
plane_prior192.83 86
plane_prior76.42 11087.15 11175.94 13595.03 159
n20.00 393
nn0.00 393
door-mid74.45 322
lessismore_v085.95 11491.10 14270.99 16270.91 34891.79 6794.42 6961.76 25992.93 13979.52 10993.03 21093.93 104
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4185.36 4898.73 695.23 59
test1191.46 122
door72.57 336
HQP5-MVS70.66 163
HQP-NCC91.19 13784.77 14273.30 16980.55 269
ACMP_Plane91.19 13784.77 14273.30 16980.55 269
BP-MVS77.30 137
HQP4-MVS80.56 26894.61 7393.56 124
HQP3-MVS92.68 9194.47 179
HQP2-MVS72.10 206
NP-MVS91.95 11074.55 12390.17 204
MDTV_nov1_ep13_2view27.60 38670.76 33546.47 35761.27 37045.20 34949.18 34883.75 306
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 131
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15881.56 6890.02 9891.20 17182.40 9290.81 19873.58 17894.66 17594.56 76
DeepMVS_CXcopyleft24.13 36532.95 38729.49 38421.63 39012.07 38137.95 38245.07 38030.84 38019.21 38417.94 38333.06 38323.69 380