LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 12 | 85.07 49 | 99.27 1 | 99.54 1 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 63 | 85.72 31 | 96.79 1 | 95.51 6 | 88.86 13 | 95.63 7 | 96.99 8 | 84.81 69 | 93.16 134 | 91.10 1 | 97.53 71 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 44 | 96.29 16 | 88.16 34 | 94.17 91 | 86.07 40 | 98.48 18 | 97.22 17 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 7 | 93.26 10 | 94.19 27 | 89.11 11 | 94.43 15 | 95.27 36 | 91.86 3 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 90.64 11 | | 87.16 25 | 97.60 64 | 92.73 143 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 11 | 94.23 23 | 85.21 31 | 92.51 51 | 95.13 40 | 90.65 10 | 95.34 49 | 88.06 9 | 98.15 33 | 95.95 40 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 43 | 89.04 6 | 91.98 29 | 93.62 52 | 90.14 10 | 93.63 35 | 94.16 76 | 88.83 24 | 95.51 41 | 87.11 27 | 97.54 70 | 92.54 153 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 88.83 24 | 95.51 41 | 87.16 25 | 97.60 64 | 92.73 143 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 22 | 93.87 44 | 88.20 20 | 93.24 38 | 94.02 82 | 90.15 17 | 95.67 30 | 86.82 29 | 97.34 77 | 92.19 168 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 78 | 85.17 34 | 92.47 24 | 95.05 13 | 87.65 23 | 93.21 39 | 94.39 67 | 90.09 18 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 6 | 94.85 14 | 82.88 54 | 91.77 65 | 93.94 91 | 90.55 13 | 95.73 27 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 64 | 86.15 21 | 93.37 8 | 95.10 12 | 90.28 8 | 92.11 57 | 95.03 42 | 89.75 21 | 94.93 65 | 79.95 103 | 98.27 27 | 95.04 62 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 64 | 92.97 80 | 78.04 90 | 92.84 14 | 94.14 32 | 83.33 48 | 93.90 24 | 95.73 25 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 134 |
|
PS-CasMVS | | | 90.06 42 | 91.92 13 | 84.47 144 | 96.56 7 | 58.83 276 | 89.04 74 | 92.74 91 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 46 | 95.57 33 | 79.42 111 | 98.74 6 | 99.00 2 |
|
DTE-MVSNet | | | 89.98 46 | 91.91 15 | 84.21 151 | 96.51 8 | 57.84 281 | 88.93 77 | 92.84 88 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 49 | 95.99 8 | 79.05 114 | 98.57 15 | 98.80 6 |
|
PEN-MVS | | | 90.03 44 | 91.88 16 | 84.48 143 | 96.57 6 | 58.88 273 | 88.95 75 | 93.19 72 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 48 | 95.60 32 | 78.69 117 | 98.72 9 | 98.97 3 |
|
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 9 | 94.16 28 | 82.52 58 | 92.39 54 | 94.14 77 | 89.15 23 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 72 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 40 | 81.69 59 | 90.00 51 | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 94 | 94.18 48 | 72.65 134 | 90.47 46 | 93.69 49 | 83.77 41 | 94.11 22 | 94.27 69 | 90.28 15 | 95.84 19 | 86.03 41 | 97.92 46 | 92.29 162 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 28 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 52 | 88.59 5 | 98.31 24 | 92.30 160 |
|
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 7 | 93.36 60 | 83.16 50 | 91.06 76 | 94.00 83 | 88.26 31 | 95.71 28 | 87.28 23 | 98.39 21 | 92.55 152 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 5 | 92.79 89 | 88.22 19 | 88.53 126 | 97.64 2 | 83.45 81 | 94.55 80 | 86.02 43 | 98.60 13 | 96.67 26 |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 77 | 93.00 79 | 76.26 116 | 89.65 62 | 95.55 5 | 87.72 22 | 93.89 26 | 94.94 44 | 91.62 4 | 93.44 124 | 78.35 121 | 98.76 4 | 95.61 47 |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 16 | 92.60 94 | 83.09 51 | 91.54 67 | 94.25 73 | 87.67 42 | 95.51 41 | 87.21 24 | 98.11 34 | 93.12 129 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 20 | 93.29 68 | 81.99 63 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 138 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 94.03 81 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 59 | 80.97 66 | 91.49 35 | 93.48 58 | 82.82 55 | 92.60 50 | 93.97 84 | 88.19 32 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 20 | 93.25 70 | 81.99 63 | 91.40 70 | 94.17 75 | 87.51 43 | 95.87 15 | 87.74 11 | 97.76 54 | 93.99 94 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 26 | 94.22 24 | 80.14 85 | 91.29 73 | 93.97 84 | 87.93 39 | 95.87 15 | 88.65 4 | 97.96 45 | 94.12 91 |
|
DVP-MVS | | | 90.06 42 | 91.32 30 | 86.29 107 | 94.16 51 | 72.56 139 | 90.54 43 | 91.01 135 | 83.61 44 | 93.75 30 | 94.65 53 | 89.76 19 | 95.78 24 | 86.42 31 | 97.97 43 | 90.55 210 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
WR-MVS_H | | | 89.91 49 | 91.31 31 | 85.71 123 | 96.32 10 | 62.39 234 | 89.54 66 | 93.31 65 | 90.21 9 | 95.57 8 | 95.66 28 | 81.42 112 | 95.90 13 | 80.94 92 | 98.80 3 | 98.84 5 |
|
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 19 | 93.30 67 | 81.91 65 | 90.88 81 | 94.21 74 | 87.75 40 | 95.87 15 | 87.60 16 | 97.71 58 | 93.83 101 |
|
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 76 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 52 | 88.59 5 | 98.31 24 | 92.30 160 |
|
ACMH | | 76.49 14 | 89.34 59 | 91.14 34 | 83.96 157 | 92.50 92 | 70.36 164 | 89.55 64 | 93.84 45 | 81.89 66 | 94.70 12 | 95.44 33 | 90.69 9 | 88.31 251 | 83.33 68 | 98.30 26 | 93.20 126 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 90.53 35 | 91.08 35 | 88.88 66 | 93.38 70 | 78.65 86 | 89.15 73 | 94.05 35 | 84.68 35 | 93.90 24 | 94.11 79 | 88.13 35 | 96.30 3 | 84.51 57 | 97.81 52 | 91.70 183 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 90.81 29 | 91.08 35 | 89.99 51 | 95.97 13 | 79.88 72 | 88.13 89 | 94.51 18 | 75.79 137 | 92.94 41 | 94.96 43 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 90.65 31 | 91.07 37 | 89.42 60 | 95.93 15 | 79.54 77 | 89.95 54 | 93.68 51 | 77.65 113 | 91.97 62 | 94.89 45 | 88.38 27 | 95.45 45 | 89.27 3 | 97.87 50 | 93.27 123 |
|
GST-MVS | | | 90.96 28 | 91.01 38 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 33 | 93.74 47 | 80.98 76 | 91.38 71 | 93.80 94 | 87.20 47 | 95.80 21 | 87.10 28 | 97.69 59 | 93.93 97 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 39 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 63 | 93.35 61 | 79.20 96 | 93.83 27 | 93.60 101 | 90.81 8 | 92.96 140 | 85.02 51 | 98.45 19 | 92.41 156 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v7n | | | 90.13 40 | 90.96 40 | 87.65 89 | 91.95 109 | 71.06 159 | 89.99 53 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 88 | 94.08 95 | 86.25 37 | 97.63 61 | 97.82 8 |
|
PGM-MVS | | | 91.20 25 | 90.95 41 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 51 | 93.90 41 | 80.32 82 | 91.74 66 | 94.41 64 | 88.17 33 | 95.98 9 | 86.37 33 | 97.99 40 | 93.96 96 |
|
MP-MVS |  | | 91.14 27 | 90.91 42 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 25 | 93.03 80 | 82.59 57 | 88.52 127 | 94.37 68 | 86.74 52 | 95.41 47 | 86.32 34 | 98.21 30 | 93.19 127 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVSNet | | | 89.27 60 | 90.91 42 | 84.37 145 | 96.34 9 | 58.61 278 | 88.66 84 | 92.06 105 | 90.78 5 | 95.67 6 | 95.17 39 | 81.80 108 | 95.54 38 | 79.00 115 | 98.69 10 | 98.95 4 |
|
SF-MVS | | | 90.27 39 | 90.80 44 | 88.68 72 | 92.86 84 | 77.09 105 | 91.19 38 | 95.74 3 | 81.38 71 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
UniMVSNet_ETH3D | | | 89.12 63 | 90.72 45 | 84.31 149 | 97.00 2 | 64.33 212 | 89.67 61 | 88.38 190 | 88.84 14 | 94.29 18 | 97.57 3 | 90.48 14 | 91.26 187 | 72.57 186 | 97.65 60 | 97.34 14 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 46 | 88.34 80 | 96.71 3 | 92.97 1 | 90.31 48 | 89.57 173 | 88.51 18 | 90.11 90 | 95.12 41 | 90.98 7 | 88.92 241 | 77.55 135 | 97.07 84 | 83.13 306 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMP | | 79.16 10 | 90.54 34 | 90.60 47 | 90.35 46 | 94.36 45 | 80.98 65 | 89.16 72 | 94.05 35 | 79.03 99 | 92.87 43 | 93.74 98 | 90.60 12 | 95.21 57 | 82.87 73 | 98.76 4 | 94.87 63 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS |  | | 90.31 38 | 90.48 48 | 89.83 52 | 95.31 30 | 79.52 78 | 90.98 39 | 93.24 71 | 75.37 144 | 92.84 45 | 95.28 35 | 85.58 65 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
LS3D | | | 90.60 33 | 90.34 49 | 91.38 27 | 89.03 175 | 84.23 45 | 93.58 4 | 94.68 16 | 90.65 6 | 90.33 88 | 93.95 90 | 84.50 71 | 95.37 48 | 80.87 93 | 95.50 137 | 94.53 75 |
|
#test# | | | 90.49 36 | 90.31 50 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 41 | 93.29 68 | 77.00 120 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 84.88 52 | 97.74 56 | 92.85 138 |
|
OPM-MVS | | | 89.80 50 | 89.97 51 | 89.27 62 | 94.76 39 | 79.86 73 | 86.76 112 | 92.78 90 | 78.78 102 | 92.51 51 | 93.64 100 | 88.13 35 | 93.84 105 | 84.83 54 | 97.55 67 | 94.10 92 |
|
SD-MVS | | | 88.96 66 | 89.88 52 | 86.22 110 | 91.63 119 | 77.07 106 | 89.82 57 | 93.77 46 | 78.90 100 | 92.88 42 | 92.29 135 | 86.11 61 | 90.22 219 | 86.24 38 | 97.24 80 | 91.36 191 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVG-ACMP-BASELINE | | | 89.98 46 | 89.84 53 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 68 | 93.98 37 | 79.68 89 | 92.09 58 | 93.89 92 | 83.80 77 | 93.10 138 | 82.67 75 | 98.04 35 | 93.64 113 |
|
OurMVSNet-221017-0 | | | 90.01 45 | 89.74 54 | 90.83 37 | 93.16 76 | 80.37 69 | 91.91 32 | 93.11 74 | 81.10 74 | 95.32 9 | 97.24 5 | 72.94 197 | 94.85 68 | 85.07 49 | 97.78 53 | 97.26 15 |
|
3Dnovator+ | | 83.92 2 | 89.97 48 | 89.66 55 | 90.92 36 | 91.27 132 | 81.66 62 | 91.25 36 | 94.13 33 | 88.89 12 | 88.83 121 | 94.26 72 | 77.55 146 | 95.86 18 | 84.88 52 | 95.87 125 | 95.24 57 |
|
APD-MVS |  | | 89.54 55 | 89.63 56 | 89.26 63 | 92.57 89 | 81.34 64 | 90.19 49 | 93.08 76 | 80.87 77 | 91.13 74 | 93.19 105 | 86.22 60 | 95.97 10 | 82.23 79 | 97.18 82 | 90.45 212 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Anonymous20231211 | | | 88.40 71 | 89.62 57 | 84.73 139 | 90.46 154 | 65.27 203 | 88.86 78 | 93.02 81 | 87.15 24 | 93.05 40 | 97.10 6 | 82.28 96 | 92.02 167 | 76.70 143 | 97.99 40 | 96.88 23 |
|
test_0402 | | | 88.65 69 | 89.58 58 | 85.88 119 | 92.55 90 | 72.22 147 | 84.01 153 | 89.44 175 | 88.63 17 | 94.38 17 | 95.77 24 | 86.38 59 | 93.59 116 | 79.84 104 | 95.21 146 | 91.82 180 |
|
testtj | | | 89.51 56 | 89.48 59 | 89.59 58 | 92.26 99 | 80.80 67 | 90.14 50 | 93.54 56 | 83.37 47 | 90.57 85 | 92.55 127 | 84.99 67 | 96.15 5 | 81.26 87 | 96.61 99 | 91.83 179 |
|
XVG-OURS-SEG-HR | | | 89.59 54 | 89.37 60 | 90.28 47 | 94.47 44 | 85.95 24 | 86.84 108 | 93.91 40 | 80.07 86 | 86.75 158 | 93.26 104 | 93.64 2 | 90.93 197 | 84.60 56 | 90.75 249 | 93.97 95 |
|
9.14 | | | | 89.29 61 | | 91.84 115 | | 88.80 80 | 95.32 9 | 75.14 146 | 91.07 75 | 92.89 115 | 87.27 45 | 93.78 107 | 83.69 65 | 97.55 67 | |
|
mvs_tets | | | 89.78 51 | 89.27 62 | 91.30 28 | 93.51 66 | 84.79 39 | 89.89 56 | 90.63 143 | 70.00 210 | 94.55 14 | 96.67 11 | 87.94 38 | 93.59 116 | 84.27 59 | 95.97 121 | 95.52 48 |
|
xxxxxxxxxxxxxcwj | | | 89.04 65 | 89.13 63 | 88.79 68 | 93.75 61 | 77.44 98 | 86.31 120 | 95.27 10 | 70.80 199 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
DeepC-MVS | | 82.31 4 | 89.15 62 | 89.08 64 | 89.37 61 | 93.64 65 | 79.07 81 | 88.54 85 | 94.20 25 | 73.53 162 | 89.71 102 | 94.82 48 | 85.09 66 | 95.77 26 | 84.17 60 | 98.03 37 | 93.26 124 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_djsdf | | | 89.62 53 | 89.01 65 | 91.45 25 | 92.36 95 | 82.98 53 | 91.98 29 | 90.08 163 | 71.54 191 | 94.28 20 | 96.54 13 | 81.57 110 | 94.27 82 | 86.26 35 | 96.49 104 | 97.09 19 |
|
DP-MVS | | | 88.60 70 | 89.01 65 | 87.36 92 | 91.30 130 | 77.50 97 | 87.55 96 | 92.97 83 | 87.95 21 | 89.62 106 | 92.87 116 | 84.56 70 | 93.89 102 | 77.65 133 | 96.62 98 | 90.70 204 |
|
CPTT-MVS | | | 89.39 58 | 88.98 67 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 27 | 92.30 100 | 79.74 88 | 87.50 143 | 92.38 130 | 81.42 112 | 93.28 129 | 83.07 70 | 97.24 80 | 91.67 184 |
|
ETH3D-3000-0.1 | | | 88.85 68 | 88.96 68 | 88.52 73 | 91.94 111 | 77.27 104 | 88.71 82 | 95.26 11 | 76.08 128 | 90.66 84 | 92.69 122 | 84.48 72 | 93.83 106 | 83.38 67 | 97.48 74 | 94.47 76 |
|
anonymousdsp | | | 89.73 52 | 88.88 69 | 92.27 9 | 89.82 166 | 86.67 15 | 90.51 45 | 90.20 160 | 69.87 211 | 95.06 10 | 96.14 21 | 84.28 73 | 93.07 139 | 87.68 13 | 96.34 109 | 97.09 19 |
|
XVG-OURS | | | 89.18 61 | 88.83 70 | 90.23 48 | 94.28 46 | 86.11 23 | 85.91 123 | 93.60 55 | 80.16 84 | 89.13 117 | 93.44 102 | 83.82 76 | 90.98 195 | 83.86 63 | 95.30 145 | 93.60 115 |
|
jajsoiax | | | 89.41 57 | 88.81 71 | 91.19 32 | 93.38 70 | 84.72 40 | 89.70 58 | 90.29 157 | 69.27 214 | 94.39 16 | 96.38 15 | 86.02 63 | 93.52 120 | 83.96 61 | 95.92 123 | 95.34 52 |
|
TranMVSNet+NR-MVSNet | | | 87.86 77 | 88.76 72 | 85.18 131 | 94.02 56 | 64.13 213 | 84.38 148 | 91.29 127 | 84.88 34 | 92.06 59 | 93.84 93 | 86.45 57 | 93.73 108 | 73.22 177 | 98.66 11 | 97.69 9 |
|
nrg030 | | | 87.85 78 | 88.49 73 | 85.91 117 | 90.07 162 | 69.73 167 | 87.86 93 | 94.20 25 | 74.04 156 | 92.70 49 | 94.66 52 | 85.88 64 | 91.50 178 | 79.72 105 | 97.32 78 | 96.50 30 |
|
HPM-MVS++ |  | | 88.93 67 | 88.45 74 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 58 | 91.27 128 | 78.20 109 | 86.69 161 | 92.28 136 | 80.36 124 | 95.06 62 | 86.17 39 | 96.49 104 | 90.22 215 |
|
MSP-MVS | | | 89.08 64 | 88.16 75 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 15 | 93.90 41 | 78.43 107 | 89.16 116 | 92.25 137 | 72.03 209 | 96.36 2 | 88.21 8 | 90.93 244 | 92.98 134 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
pmmvs6 | | | 86.52 93 | 88.06 76 | 81.90 198 | 92.22 102 | 62.28 237 | 84.66 141 | 89.15 179 | 83.54 46 | 89.85 98 | 97.32 4 | 88.08 37 | 86.80 267 | 70.43 203 | 97.30 79 | 96.62 27 |
|
PS-MVSNAJss | | | 88.31 72 | 87.90 77 | 89.56 59 | 93.31 72 | 77.96 91 | 87.94 92 | 91.97 108 | 70.73 201 | 94.19 21 | 96.67 11 | 76.94 155 | 94.57 78 | 83.07 70 | 96.28 111 | 96.15 32 |
|
test_part1 | | | 87.15 85 | 87.82 78 | 85.15 132 | 88.88 179 | 63.04 224 | 87.98 90 | 94.85 14 | 82.52 58 | 93.61 36 | 95.73 25 | 67.51 228 | 95.71 28 | 80.48 100 | 98.83 2 | 96.69 25 |
|
TSAR-MVS + MP. | | | 88.14 74 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 110 | 92.49 23 | 91.19 131 | 67.85 232 | 86.63 162 | 94.84 47 | 79.58 130 | 95.96 11 | 87.62 14 | 94.50 169 | 94.56 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 87.81 80 | 87.68 80 | 88.21 82 | 92.87 82 | 77.30 103 | 85.25 133 | 91.23 129 | 77.31 117 | 87.07 151 | 91.47 156 | 82.94 86 | 94.71 71 | 84.67 55 | 96.27 113 | 92.62 150 |
|
ETH3D cwj APD-0.16 | | | 87.83 79 | 87.62 81 | 88.47 75 | 91.21 133 | 78.20 88 | 87.26 101 | 94.54 17 | 72.05 187 | 88.89 118 | 92.31 134 | 83.86 75 | 94.24 85 | 81.59 86 | 96.87 89 | 92.97 137 |
|
OMC-MVS | | | 88.19 73 | 87.52 82 | 90.19 49 | 91.94 111 | 81.68 61 | 87.49 99 | 93.17 73 | 76.02 131 | 88.64 124 | 91.22 159 | 84.24 74 | 93.37 127 | 77.97 131 | 97.03 85 | 95.52 48 |
|
SixPastTwentyTwo | | | 87.20 84 | 87.45 83 | 86.45 103 | 92.52 91 | 69.19 176 | 87.84 94 | 88.05 196 | 81.66 68 | 94.64 13 | 96.53 14 | 65.94 237 | 94.75 70 | 83.02 72 | 96.83 92 | 95.41 50 |
|
HQP_MVS | | | 87.75 81 | 87.43 84 | 88.70 71 | 93.45 67 | 76.42 114 | 89.45 69 | 93.61 53 | 79.44 93 | 86.55 163 | 92.95 113 | 74.84 172 | 95.22 55 | 80.78 95 | 95.83 126 | 94.46 77 |
|
AllTest | | | 87.97 76 | 87.40 85 | 89.68 54 | 91.59 120 | 83.40 48 | 89.50 67 | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 89 | 91.47 179 | 70.81 195 | 96.14 117 | 94.16 89 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 86 | 83.42 170 | 90.19 158 | 64.55 210 | 84.55 143 | 90.71 140 | 85.85 29 | 89.94 96 | 95.24 38 | 82.13 98 | 90.40 214 | 69.19 214 | 96.40 107 | 95.31 54 |
|
v10 | | | 86.54 92 | 87.10 87 | 84.84 136 | 88.16 193 | 63.28 221 | 86.64 115 | 92.20 102 | 75.42 143 | 92.81 47 | 94.50 57 | 74.05 182 | 94.06 96 | 83.88 62 | 96.28 111 | 97.17 18 |
|
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 114 | 92.86 84 | 67.02 190 | 82.55 196 | 91.56 118 | 83.08 52 | 90.92 78 | 91.82 147 | 78.25 139 | 93.99 97 | 74.16 165 | 98.35 22 | 97.49 13 |
|
FC-MVSNet-test | | | 85.93 105 | 87.05 89 | 82.58 189 | 92.25 100 | 56.44 292 | 85.75 127 | 93.09 75 | 77.33 116 | 91.94 63 | 94.65 53 | 74.78 174 | 93.41 126 | 75.11 160 | 98.58 14 | 97.88 7 |
|
DU-MVS | | | 86.80 89 | 86.99 90 | 86.21 112 | 93.24 74 | 67.02 190 | 83.16 182 | 92.21 101 | 81.73 67 | 90.92 78 | 91.97 141 | 77.20 149 | 93.99 97 | 74.16 165 | 98.35 22 | 97.61 10 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 91 | 86.55 101 | 93.11 77 | 68.48 180 | 83.80 162 | 92.87 85 | 80.37 80 | 89.61 108 | 91.81 148 | 77.72 143 | 94.18 89 | 75.00 161 | 98.53 16 | 96.99 22 |
|
RPSCF | | | 88.00 75 | 86.93 92 | 91.22 31 | 90.08 160 | 89.30 5 | 89.68 60 | 91.11 132 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 91 | 87.74 255 | 76.54 145 | 88.74 271 | 96.61 28 |
|
NCCC | | | 87.36 82 | 86.87 93 | 88.83 67 | 92.32 98 | 78.84 84 | 86.58 116 | 91.09 133 | 78.77 103 | 84.85 193 | 90.89 173 | 80.85 118 | 95.29 50 | 81.14 89 | 95.32 142 | 92.34 158 |
|
v8 | | | 86.22 99 | 86.83 94 | 84.36 147 | 87.82 197 | 62.35 236 | 86.42 118 | 91.33 126 | 76.78 122 | 92.73 48 | 94.48 59 | 73.41 191 | 93.72 109 | 83.10 69 | 95.41 138 | 97.01 21 |
|
IS-MVSNet | | | 86.66 91 | 86.82 95 | 86.17 114 | 92.05 107 | 66.87 192 | 91.21 37 | 88.64 186 | 86.30 28 | 89.60 109 | 92.59 124 | 69.22 220 | 94.91 66 | 73.89 169 | 97.89 49 | 96.72 24 |
|
Vis-MVSNet |  | | 86.86 87 | 86.58 96 | 87.72 87 | 92.09 105 | 77.43 100 | 87.35 100 | 92.09 104 | 78.87 101 | 84.27 208 | 94.05 80 | 78.35 138 | 93.65 110 | 80.54 99 | 91.58 232 | 92.08 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CSCG | | | 86.26 97 | 86.47 97 | 85.60 125 | 90.87 144 | 74.26 125 | 87.98 90 | 91.85 111 | 80.35 81 | 89.54 112 | 88.01 223 | 79.09 132 | 92.13 161 | 75.51 154 | 95.06 153 | 90.41 213 |
|
Gipuma |  | | 84.44 132 | 86.33 98 | 78.78 245 | 84.20 262 | 73.57 128 | 89.55 64 | 90.44 147 | 84.24 36 | 84.38 201 | 94.89 45 | 76.35 164 | 80.40 315 | 76.14 149 | 96.80 94 | 82.36 314 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_prior3 | | | 86.31 96 | 86.31 99 | 86.32 105 | 90.59 151 | 71.99 149 | 83.37 174 | 92.85 86 | 75.43 141 | 84.58 197 | 91.57 152 | 81.92 106 | 94.17 91 | 79.54 108 | 96.97 86 | 92.80 140 |
|
FIs | | | 85.35 112 | 86.27 100 | 82.60 188 | 91.86 114 | 57.31 285 | 85.10 135 | 93.05 77 | 75.83 136 | 91.02 77 | 93.97 84 | 73.57 187 | 92.91 144 | 73.97 168 | 98.02 38 | 97.58 12 |
|
NR-MVSNet | | | 86.00 102 | 86.22 101 | 85.34 129 | 93.24 74 | 64.56 209 | 82.21 208 | 90.46 146 | 80.99 75 | 88.42 129 | 91.97 141 | 77.56 145 | 93.85 103 | 72.46 187 | 98.65 12 | 97.61 10 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 83 | 86.21 102 | 90.49 43 | 91.48 127 | 84.90 37 | 83.41 173 | 92.38 99 | 70.25 207 | 89.35 114 | 90.68 180 | 82.85 87 | 94.57 78 | 79.55 107 | 95.95 122 | 92.00 173 |
|
canonicalmvs | | | 85.50 109 | 86.14 103 | 83.58 167 | 87.97 194 | 67.13 188 | 87.55 96 | 94.32 19 | 73.44 164 | 88.47 128 | 87.54 232 | 86.45 57 | 91.06 194 | 75.76 153 | 93.76 185 | 92.54 153 |
|
Regformer-2 | | | 86.74 90 | 86.08 104 | 88.73 69 | 84.18 263 | 79.20 80 | 83.52 168 | 89.33 177 | 83.33 48 | 89.92 97 | 85.07 275 | 83.23 84 | 93.16 134 | 83.39 66 | 92.72 211 | 93.83 101 |
|
MSLP-MVS++ | | | 85.00 122 | 86.03 105 | 81.90 198 | 91.84 115 | 71.56 157 | 86.75 113 | 93.02 81 | 75.95 134 | 87.12 147 | 89.39 202 | 77.98 140 | 89.40 237 | 77.46 136 | 94.78 162 | 84.75 283 |
|
baseline | | | 85.20 114 | 85.93 106 | 83.02 177 | 86.30 231 | 62.37 235 | 84.55 143 | 93.96 38 | 74.48 153 | 87.12 147 | 92.03 140 | 82.30 94 | 91.94 168 | 78.39 119 | 94.21 176 | 94.74 68 |
|
Baseline_NR-MVSNet | | | 84.00 146 | 85.90 107 | 78.29 256 | 91.47 128 | 53.44 311 | 82.29 204 | 87.00 218 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 149 | 86.14 278 | 72.30 188 | 98.51 17 | 95.28 55 |
|
casdiffmvs | | | 85.21 113 | 85.85 108 | 83.31 172 | 86.17 236 | 62.77 228 | 83.03 184 | 93.93 39 | 74.69 150 | 88.21 134 | 92.68 123 | 82.29 95 | 91.89 171 | 77.87 132 | 93.75 187 | 95.27 56 |
|
GeoE | | | 85.45 111 | 85.81 109 | 84.37 145 | 90.08 160 | 67.07 189 | 85.86 126 | 91.39 125 | 72.33 184 | 87.59 141 | 90.25 190 | 84.85 68 | 92.37 155 | 78.00 129 | 91.94 226 | 93.66 110 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 83 | 88.44 187 | 77.34 101 | 89.35 71 | 93.05 77 | 73.15 173 | 84.76 194 | 87.70 229 | 78.87 134 | 94.18 89 | 80.67 97 | 96.29 110 | 92.73 143 |
|
TransMVSNet (Re) | | | 84.02 145 | 85.74 111 | 78.85 244 | 91.00 141 | 55.20 302 | 82.29 204 | 87.26 206 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 85 | 86.88 265 | 67.97 226 | 96.60 100 | 94.45 79 |
|
Regformer-4 | | | 86.41 94 | 85.71 112 | 88.52 73 | 84.27 259 | 77.57 96 | 84.07 151 | 88.00 198 | 82.82 55 | 89.84 99 | 85.48 263 | 82.06 100 | 92.77 146 | 83.83 64 | 91.04 238 | 95.22 60 |
|
ANet_high | | | 83.17 163 | 85.68 113 | 75.65 283 | 81.24 290 | 45.26 350 | 79.94 238 | 92.91 84 | 83.83 40 | 91.33 72 | 96.88 10 | 80.25 125 | 85.92 280 | 68.89 217 | 95.89 124 | 95.76 42 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 114 | 87.96 86 | 91.30 130 | 76.92 107 | 87.19 102 | 91.99 107 | 70.56 202 | 84.96 189 | 90.69 179 | 80.01 127 | 95.14 58 | 78.37 120 | 95.78 130 | 91.82 180 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 86.17 101 | 85.54 115 | 88.05 85 | 92.25 100 | 75.45 119 | 83.85 159 | 92.01 106 | 65.91 247 | 86.19 170 | 91.75 150 | 83.77 78 | 94.98 64 | 77.43 138 | 96.71 96 | 93.73 107 |
|
Regformer-1 | | | 86.00 102 | 85.50 116 | 87.49 90 | 84.18 263 | 76.90 108 | 83.52 168 | 87.94 200 | 82.18 62 | 89.19 115 | 85.07 275 | 82.28 96 | 91.89 171 | 82.40 77 | 92.72 211 | 93.69 109 |
|
CS-MVS | | | 85.09 117 | 85.49 117 | 83.90 159 | 86.75 223 | 65.28 202 | 87.53 98 | 95.66 4 | 76.39 124 | 81.90 238 | 86.80 244 | 80.98 116 | 95.23 54 | 79.09 113 | 94.36 173 | 91.17 193 |
|
FMVSNet1 | | | 84.55 129 | 85.45 118 | 81.85 200 | 90.27 157 | 61.05 248 | 86.83 109 | 88.27 193 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 166 | 90.68 207 | 69.09 215 | 95.33 141 | 93.82 103 |
|
VDDNet | | | 84.35 134 | 85.39 119 | 81.25 208 | 95.13 32 | 59.32 266 | 85.42 132 | 81.11 268 | 86.41 27 | 87.41 144 | 96.21 19 | 73.61 186 | 90.61 210 | 66.33 235 | 96.85 90 | 93.81 106 |
|
train_agg | | | 85.98 104 | 85.28 120 | 88.07 84 | 92.34 96 | 79.70 75 | 83.94 155 | 90.32 151 | 65.79 248 | 84.49 199 | 90.97 169 | 81.93 104 | 93.63 112 | 81.21 88 | 96.54 102 | 90.88 199 |
|
agg_prior1 | | | 85.72 107 | 85.20 121 | 87.28 93 | 91.58 123 | 77.69 94 | 83.69 165 | 90.30 154 | 66.29 244 | 84.32 203 | 91.07 166 | 82.13 98 | 93.18 132 | 81.02 90 | 96.36 108 | 90.98 195 |
|
LCM-MVSNet-Re | | | 83.48 156 | 85.06 122 | 78.75 246 | 85.94 239 | 55.75 297 | 80.05 236 | 94.27 20 | 76.47 123 | 96.09 4 | 94.54 56 | 83.31 83 | 89.75 232 | 59.95 278 | 94.89 160 | 90.75 202 |
|
EPP-MVSNet | | | 85.47 110 | 85.04 123 | 86.77 98 | 91.52 126 | 69.37 170 | 91.63 34 | 87.98 199 | 81.51 70 | 87.05 152 | 91.83 146 | 66.18 236 | 95.29 50 | 70.75 198 | 96.89 88 | 95.64 45 |
|
IterMVS-LS | | | 84.73 125 | 84.98 124 | 83.96 157 | 87.35 207 | 63.66 216 | 83.25 178 | 89.88 167 | 76.06 129 | 89.62 106 | 92.37 133 | 73.40 193 | 92.52 151 | 78.16 126 | 94.77 164 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
pm-mvs1 | | | 83.69 151 | 84.95 125 | 79.91 230 | 90.04 164 | 59.66 263 | 82.43 200 | 87.44 203 | 75.52 140 | 87.85 138 | 95.26 37 | 81.25 114 | 85.65 284 | 68.74 219 | 96.04 120 | 94.42 80 |
|
ETH3 D test6400 | | | 85.09 117 | 84.87 126 | 85.75 122 | 90.80 146 | 69.34 171 | 85.90 124 | 93.31 65 | 65.43 254 | 86.11 173 | 89.95 196 | 80.92 117 | 94.86 67 | 75.90 152 | 95.57 135 | 93.05 131 |
|
TAPA-MVS | | 77.73 12 | 85.71 108 | 84.83 127 | 88.37 79 | 88.78 181 | 79.72 74 | 87.15 104 | 93.50 57 | 69.17 215 | 85.80 180 | 89.56 201 | 80.76 119 | 92.13 161 | 73.21 182 | 95.51 136 | 93.25 125 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
VPA-MVSNet | | | 83.47 157 | 84.73 128 | 79.69 235 | 90.29 156 | 57.52 284 | 81.30 222 | 88.69 185 | 76.29 125 | 87.58 142 | 94.44 60 | 80.60 121 | 87.20 260 | 66.60 234 | 96.82 93 | 94.34 83 |
|
K. test v3 | | | 85.14 115 | 84.73 128 | 86.37 104 | 91.13 138 | 69.63 169 | 85.45 131 | 76.68 294 | 84.06 39 | 92.44 53 | 96.99 8 | 62.03 256 | 94.65 73 | 80.58 98 | 93.24 196 | 94.83 67 |
|
v1144 | | | 84.54 131 | 84.72 130 | 84.00 155 | 87.67 201 | 62.55 232 | 82.97 186 | 90.93 136 | 70.32 206 | 89.80 100 | 90.99 168 | 73.50 188 | 93.48 122 | 81.69 85 | 94.65 167 | 95.97 38 |
|
3Dnovator | | 80.37 7 | 84.80 124 | 84.71 131 | 85.06 134 | 86.36 229 | 74.71 122 | 88.77 81 | 90.00 165 | 75.65 139 | 84.96 189 | 93.17 106 | 74.06 181 | 91.19 189 | 78.28 123 | 91.09 236 | 89.29 231 |
|
v1192 | | | 84.57 128 | 84.69 132 | 84.21 151 | 87.75 199 | 62.88 226 | 83.02 185 | 91.43 122 | 69.08 217 | 89.98 95 | 90.89 173 | 72.70 201 | 93.62 115 | 82.41 76 | 94.97 157 | 96.13 33 |
|
Regformer-3 | | | 85.06 119 | 84.67 133 | 86.22 110 | 84.27 259 | 73.43 129 | 84.07 151 | 85.26 236 | 80.77 78 | 88.62 125 | 85.48 263 | 80.56 122 | 90.39 215 | 81.99 81 | 91.04 238 | 94.85 65 |
|
MIMVSNet1 | | | 83.63 153 | 84.59 134 | 80.74 218 | 94.06 55 | 62.77 228 | 82.72 191 | 84.53 249 | 77.57 115 | 90.34 87 | 95.92 23 | 76.88 161 | 85.83 282 | 61.88 264 | 97.42 75 | 93.62 114 |
|
VDD-MVS | | | 84.23 140 | 84.58 135 | 83.20 174 | 91.17 137 | 65.16 205 | 83.25 178 | 84.97 246 | 79.79 87 | 87.18 146 | 94.27 69 | 74.77 175 | 90.89 200 | 69.24 211 | 96.54 102 | 93.55 119 |
|
EI-MVSNet-Vis-set | | | 85.12 116 | 84.53 136 | 86.88 95 | 84.01 266 | 72.76 133 | 83.91 158 | 85.18 238 | 80.44 79 | 88.75 122 | 85.49 262 | 80.08 126 | 91.92 169 | 82.02 80 | 90.85 247 | 95.97 38 |
|
v1240 | | | 84.30 136 | 84.51 137 | 83.65 165 | 87.65 202 | 61.26 245 | 82.85 189 | 91.54 119 | 67.94 230 | 90.68 83 | 90.65 182 | 71.71 211 | 93.64 111 | 82.84 74 | 94.78 162 | 96.07 35 |
|
EI-MVSNet-UG-set | | | 85.04 120 | 84.44 138 | 86.85 96 | 83.87 269 | 72.52 141 | 83.82 160 | 85.15 239 | 80.27 83 | 88.75 122 | 85.45 266 | 79.95 128 | 91.90 170 | 81.92 83 | 90.80 248 | 96.13 33 |
|
v144192 | | | 84.24 139 | 84.41 139 | 83.71 164 | 87.59 204 | 61.57 241 | 82.95 187 | 91.03 134 | 67.82 233 | 89.80 100 | 90.49 185 | 73.28 194 | 93.51 121 | 81.88 84 | 94.89 160 | 96.04 37 |
|
WR-MVS | | | 83.56 154 | 84.40 140 | 81.06 213 | 93.43 69 | 54.88 303 | 78.67 259 | 85.02 243 | 81.24 72 | 90.74 82 | 91.56 154 | 72.85 198 | 91.08 193 | 68.00 225 | 98.04 35 | 97.23 16 |
|
v1921920 | | | 84.23 140 | 84.37 141 | 83.79 161 | 87.64 203 | 61.71 240 | 82.91 188 | 91.20 130 | 67.94 230 | 90.06 91 | 90.34 187 | 72.04 208 | 93.59 116 | 82.32 78 | 94.91 158 | 96.07 35 |
|
MVS_111021_HR | | | 84.63 126 | 84.34 142 | 85.49 128 | 90.18 159 | 75.86 118 | 79.23 252 | 87.13 210 | 73.35 165 | 85.56 184 | 89.34 203 | 83.60 80 | 90.50 212 | 76.64 144 | 94.05 181 | 90.09 220 |
|
v2v482 | | | 84.09 142 | 84.24 143 | 83.62 166 | 87.13 212 | 61.40 242 | 82.71 192 | 89.71 169 | 72.19 186 | 89.55 110 | 91.41 157 | 70.70 216 | 93.20 131 | 81.02 90 | 93.76 185 | 96.25 31 |
|
EG-PatchMatch MVS | | | 84.08 143 | 84.11 144 | 83.98 156 | 92.22 102 | 72.61 138 | 82.20 210 | 87.02 215 | 72.63 179 | 88.86 119 | 91.02 167 | 78.52 135 | 91.11 192 | 73.41 176 | 91.09 236 | 88.21 244 |
|
HQP-MVS | | | 84.61 127 | 84.06 145 | 86.27 108 | 91.19 134 | 70.66 161 | 84.77 137 | 92.68 92 | 73.30 168 | 80.55 259 | 90.17 194 | 72.10 205 | 94.61 76 | 77.30 139 | 94.47 170 | 93.56 117 |
|
Effi-MVS+ | | | 83.90 149 | 84.01 146 | 83.57 168 | 87.22 210 | 65.61 201 | 86.55 117 | 92.40 97 | 78.64 105 | 81.34 250 | 84.18 286 | 83.65 79 | 92.93 142 | 74.22 164 | 87.87 281 | 92.17 169 |
|
alignmvs | | | 83.94 148 | 83.98 147 | 83.80 160 | 87.80 198 | 67.88 185 | 84.54 145 | 91.42 124 | 73.27 171 | 88.41 130 | 87.96 224 | 72.33 204 | 90.83 202 | 76.02 151 | 94.11 179 | 92.69 147 |
|
MCST-MVS | | | 84.36 133 | 83.93 148 | 85.63 124 | 91.59 120 | 71.58 156 | 83.52 168 | 92.13 103 | 61.82 275 | 83.96 210 | 89.75 200 | 79.93 129 | 93.46 123 | 78.33 122 | 94.34 174 | 91.87 178 |
|
ETV-MVS | | | 84.31 135 | 83.91 149 | 85.52 126 | 88.58 183 | 70.40 163 | 84.50 147 | 93.37 59 | 78.76 104 | 84.07 209 | 78.72 333 | 80.39 123 | 95.13 59 | 73.82 171 | 92.98 204 | 91.04 194 |
|
MVS_111021_LR | | | 84.28 137 | 83.76 150 | 85.83 121 | 89.23 172 | 83.07 51 | 80.99 226 | 83.56 253 | 72.71 178 | 86.07 174 | 89.07 210 | 81.75 109 | 86.19 277 | 77.11 141 | 93.36 192 | 88.24 243 |
|
AdaColmap |  | | 83.66 152 | 83.69 151 | 83.57 168 | 90.05 163 | 72.26 146 | 86.29 122 | 90.00 165 | 78.19 110 | 81.65 245 | 87.16 239 | 83.40 82 | 94.24 85 | 61.69 266 | 94.76 165 | 84.21 288 |
|
F-COLMAP | | | 84.97 123 | 83.42 152 | 89.63 56 | 92.39 94 | 83.40 48 | 88.83 79 | 91.92 110 | 73.19 172 | 80.18 265 | 89.15 208 | 77.04 153 | 93.28 129 | 65.82 241 | 92.28 217 | 92.21 167 |
|
Effi-MVS+-dtu | | | 85.82 106 | 83.38 153 | 93.14 3 | 87.13 212 | 91.15 2 | 87.70 95 | 88.42 188 | 74.57 151 | 83.56 216 | 85.65 260 | 78.49 136 | 94.21 87 | 72.04 189 | 92.88 206 | 94.05 93 |
|
V42 | | | 83.47 157 | 83.37 154 | 83.75 163 | 83.16 275 | 63.33 220 | 81.31 220 | 90.23 159 | 69.51 213 | 90.91 80 | 90.81 176 | 74.16 180 | 92.29 159 | 80.06 101 | 90.22 255 | 95.62 46 |
|
MVS_Test | | | 82.47 170 | 83.22 155 | 80.22 227 | 82.62 280 | 57.75 283 | 82.54 197 | 91.96 109 | 71.16 197 | 82.89 225 | 92.52 129 | 77.41 147 | 90.50 212 | 80.04 102 | 87.84 282 | 92.40 157 |
|
DP-MVS Recon | | | 84.05 144 | 83.22 155 | 86.52 102 | 91.73 118 | 75.27 120 | 83.23 180 | 92.40 97 | 72.04 188 | 82.04 236 | 88.33 219 | 77.91 142 | 93.95 100 | 66.17 236 | 95.12 151 | 90.34 214 |
|
PAPM_NR | | | 83.23 161 | 83.19 157 | 83.33 171 | 90.90 143 | 65.98 198 | 88.19 88 | 90.78 139 | 78.13 111 | 80.87 254 | 87.92 227 | 73.49 190 | 92.42 152 | 70.07 205 | 88.40 272 | 91.60 186 |
|
DIV-MVS_2432*1600 | | | 81.93 180 | 83.14 158 | 78.30 255 | 84.75 250 | 52.75 315 | 80.37 233 | 89.42 176 | 70.24 208 | 90.26 89 | 93.39 103 | 74.55 179 | 86.77 268 | 68.61 221 | 96.64 97 | 95.38 51 |
|
CNLPA | | | 83.55 155 | 83.10 159 | 84.90 135 | 89.34 170 | 83.87 46 | 84.54 145 | 88.77 183 | 79.09 97 | 83.54 217 | 88.66 216 | 74.87 171 | 81.73 309 | 66.84 232 | 92.29 216 | 89.11 233 |
|
tfpnnormal | | | 81.79 181 | 82.95 160 | 78.31 254 | 88.93 178 | 55.40 298 | 80.83 229 | 82.85 257 | 76.81 121 | 85.90 179 | 94.14 77 | 74.58 178 | 86.51 272 | 66.82 233 | 95.68 134 | 93.01 133 |
|
CANet | | | 83.79 150 | 82.85 161 | 86.63 99 | 86.17 236 | 72.21 148 | 83.76 163 | 91.43 122 | 77.24 118 | 74.39 308 | 87.45 234 | 75.36 167 | 95.42 46 | 77.03 142 | 92.83 207 | 92.25 166 |
|
hse-mvs3 | | | 84.25 138 | 82.76 162 | 88.72 70 | 91.82 117 | 82.60 56 | 84.00 154 | 84.98 245 | 71.27 193 | 86.70 159 | 90.55 184 | 63.04 252 | 93.92 101 | 78.26 124 | 94.20 177 | 89.63 222 |
|
X-MVStestdata | | | 85.04 120 | 82.70 163 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 16.05 363 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
TSAR-MVS + GP. | | | 83.95 147 | 82.69 164 | 87.72 87 | 89.27 171 | 81.45 63 | 83.72 164 | 81.58 267 | 74.73 149 | 85.66 181 | 86.06 255 | 72.56 203 | 92.69 148 | 75.44 156 | 95.21 146 | 89.01 239 |
|
CLD-MVS | | | 83.18 162 | 82.64 165 | 84.79 137 | 89.05 174 | 67.82 186 | 77.93 267 | 92.52 95 | 68.33 224 | 85.07 188 | 81.54 314 | 82.06 100 | 92.96 140 | 69.35 210 | 97.91 48 | 93.57 116 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
API-MVS | | | 82.28 172 | 82.61 166 | 81.30 207 | 86.29 232 | 69.79 165 | 88.71 82 | 87.67 202 | 78.42 108 | 82.15 235 | 84.15 287 | 77.98 140 | 91.59 177 | 65.39 243 | 92.75 208 | 82.51 313 |
|
QAPM | | | 82.59 168 | 82.59 167 | 82.58 189 | 86.44 224 | 66.69 194 | 89.94 55 | 90.36 150 | 67.97 229 | 84.94 191 | 92.58 126 | 72.71 200 | 92.18 160 | 70.63 201 | 87.73 283 | 88.85 240 |
|
114514_t | | | 83.10 164 | 82.54 168 | 84.77 138 | 92.90 81 | 69.10 178 | 86.65 114 | 90.62 144 | 54.66 315 | 81.46 247 | 90.81 176 | 76.98 154 | 94.38 81 | 72.62 185 | 96.18 115 | 90.82 201 |
|
v148 | | | 82.31 171 | 82.48 169 | 81.81 203 | 85.59 242 | 59.66 263 | 81.47 218 | 86.02 226 | 72.85 176 | 88.05 135 | 90.65 182 | 70.73 215 | 90.91 199 | 75.15 159 | 91.79 227 | 94.87 63 |
|
EI-MVSNet | | | 82.61 167 | 82.42 170 | 83.20 174 | 83.25 273 | 63.66 216 | 83.50 171 | 85.07 240 | 76.06 129 | 86.55 163 | 85.10 272 | 73.41 191 | 90.25 216 | 78.15 128 | 90.67 251 | 95.68 44 |
|
TinyColmap | | | 81.25 186 | 82.34 171 | 77.99 261 | 85.33 245 | 60.68 255 | 82.32 203 | 88.33 191 | 71.26 195 | 86.97 154 | 92.22 139 | 77.10 152 | 86.98 264 | 62.37 259 | 95.17 148 | 86.31 267 |
|
mvs-test1 | | | 84.55 129 | 82.12 172 | 91.84 20 | 87.13 212 | 89.54 4 | 85.05 136 | 88.42 188 | 74.57 151 | 80.60 256 | 82.98 297 | 78.49 136 | 93.98 99 | 72.04 189 | 89.77 258 | 92.00 173 |
|
GBi-Net | | | 82.02 177 | 82.07 173 | 81.85 200 | 86.38 226 | 61.05 248 | 86.83 109 | 88.27 193 | 72.43 180 | 86.00 175 | 95.64 29 | 63.78 246 | 90.68 207 | 65.95 237 | 93.34 193 | 93.82 103 |
|
test1 | | | 82.02 177 | 82.07 173 | 81.85 200 | 86.38 226 | 61.05 248 | 86.83 109 | 88.27 193 | 72.43 180 | 86.00 175 | 95.64 29 | 63.78 246 | 90.68 207 | 65.95 237 | 93.34 193 | 93.82 103 |
|
OpenMVS |  | 76.72 13 | 81.98 179 | 82.00 175 | 81.93 197 | 84.42 255 | 68.22 182 | 88.50 86 | 89.48 174 | 66.92 239 | 81.80 243 | 91.86 143 | 72.59 202 | 90.16 221 | 71.19 194 | 91.25 235 | 87.40 256 |
|
LF4IMVS | | | 82.75 166 | 81.93 176 | 85.19 130 | 82.08 281 | 80.15 71 | 85.53 130 | 88.76 184 | 68.01 227 | 85.58 183 | 87.75 228 | 71.80 210 | 86.85 266 | 74.02 167 | 93.87 184 | 88.58 242 |
|
hse-mvs2 | | | 83.47 157 | 81.81 177 | 88.47 75 | 91.03 140 | 82.27 57 | 82.61 193 | 83.69 251 | 71.27 193 | 86.70 159 | 86.05 256 | 63.04 252 | 92.41 153 | 78.26 124 | 93.62 191 | 90.71 203 |
|
VPNet | | | 80.25 205 | 81.68 178 | 75.94 282 | 92.46 93 | 47.98 342 | 76.70 284 | 81.67 266 | 73.45 163 | 84.87 192 | 92.82 117 | 74.66 177 | 86.51 272 | 61.66 267 | 96.85 90 | 93.33 120 |
|
UGNet | | | 82.78 165 | 81.64 179 | 86.21 112 | 86.20 235 | 76.24 117 | 86.86 107 | 85.68 230 | 77.07 119 | 73.76 311 | 92.82 117 | 69.64 217 | 91.82 174 | 69.04 216 | 93.69 188 | 90.56 209 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FMVSNet2 | | | 81.31 185 | 81.61 180 | 80.41 224 | 86.38 226 | 58.75 277 | 83.93 157 | 86.58 221 | 72.43 180 | 87.65 140 | 92.98 110 | 63.78 246 | 90.22 219 | 66.86 230 | 93.92 183 | 92.27 164 |
|
cl_fuxian | | | 81.64 182 | 81.59 181 | 81.79 204 | 80.86 296 | 59.15 270 | 78.61 260 | 90.18 161 | 68.36 223 | 87.20 145 | 87.11 241 | 69.39 218 | 91.62 176 | 78.16 126 | 94.43 172 | 94.60 71 |
|
MVSFormer | | | 82.23 173 | 81.57 182 | 84.19 153 | 85.54 243 | 69.26 173 | 91.98 29 | 90.08 163 | 71.54 191 | 76.23 292 | 85.07 275 | 58.69 277 | 94.27 82 | 86.26 35 | 88.77 269 | 89.03 237 |
|
Fast-Effi-MVS+-dtu | | | 82.54 169 | 81.41 183 | 85.90 118 | 85.60 241 | 76.53 113 | 83.07 183 | 89.62 172 | 73.02 175 | 79.11 273 | 83.51 291 | 80.74 120 | 90.24 218 | 68.76 218 | 89.29 262 | 90.94 197 |
|
Anonymous20240521 | | | 80.18 208 | 81.25 184 | 76.95 270 | 83.15 276 | 60.84 253 | 82.46 199 | 85.99 227 | 68.76 221 | 86.78 156 | 93.73 99 | 59.13 274 | 77.44 322 | 73.71 172 | 97.55 67 | 92.56 151 |
|
DELS-MVS | | | 81.44 184 | 81.25 184 | 82.03 196 | 84.27 259 | 62.87 227 | 76.47 289 | 92.49 96 | 70.97 198 | 81.64 246 | 83.83 288 | 75.03 169 | 92.70 147 | 74.29 163 | 92.22 220 | 90.51 211 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EIA-MVS | | | 82.19 174 | 81.23 186 | 85.10 133 | 87.95 195 | 69.17 177 | 83.22 181 | 93.33 62 | 70.42 203 | 78.58 276 | 79.77 330 | 77.29 148 | 94.20 88 | 71.51 192 | 88.96 267 | 91.93 177 |
|
Anonymous202405211 | | | 80.51 198 | 81.19 187 | 78.49 251 | 88.48 185 | 57.26 286 | 76.63 285 | 82.49 259 | 81.21 73 | 84.30 206 | 92.24 138 | 67.99 226 | 86.24 276 | 62.22 260 | 95.13 149 | 91.98 176 |
|
RRT_MVS | | | 83.25 160 | 81.08 188 | 89.74 53 | 80.55 303 | 79.32 79 | 86.41 119 | 86.69 219 | 72.33 184 | 87.00 153 | 91.08 164 | 44.98 337 | 95.55 37 | 84.47 58 | 96.24 114 | 94.36 82 |
|
BH-untuned | | | 80.96 190 | 80.99 189 | 80.84 217 | 88.55 184 | 68.23 181 | 80.33 234 | 88.46 187 | 72.79 177 | 86.55 163 | 86.76 245 | 74.72 176 | 91.77 175 | 61.79 265 | 88.99 266 | 82.52 312 |
|
MG-MVS | | | 80.32 204 | 80.94 190 | 78.47 252 | 88.18 191 | 52.62 318 | 82.29 204 | 85.01 244 | 72.01 189 | 79.24 272 | 92.54 128 | 69.36 219 | 93.36 128 | 70.65 200 | 89.19 265 | 89.45 225 |
|
PCF-MVS | | 74.62 15 | 82.15 175 | 80.92 191 | 85.84 120 | 89.43 168 | 72.30 145 | 80.53 231 | 91.82 113 | 57.36 304 | 87.81 139 | 89.92 198 | 77.67 144 | 93.63 112 | 58.69 283 | 95.08 152 | 91.58 187 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Fast-Effi-MVS+ | | | 81.04 189 | 80.57 192 | 82.46 193 | 87.50 205 | 63.22 222 | 78.37 263 | 89.63 171 | 68.01 227 | 81.87 239 | 82.08 309 | 82.31 93 | 92.65 149 | 67.10 229 | 88.30 277 | 91.51 189 |
|
LFMVS | | | 80.15 209 | 80.56 193 | 78.89 243 | 89.19 173 | 55.93 294 | 85.22 134 | 73.78 314 | 82.96 53 | 84.28 207 | 92.72 121 | 57.38 286 | 90.07 228 | 63.80 251 | 95.75 131 | 90.68 205 |
|
ab-mvs | | | 79.67 212 | 80.56 193 | 76.99 269 | 88.48 185 | 56.93 288 | 84.70 140 | 86.06 225 | 68.95 219 | 80.78 255 | 93.08 107 | 75.30 168 | 84.62 293 | 56.78 292 | 90.90 245 | 89.43 227 |
|
PVSNet_Blended_VisFu | | | 81.55 183 | 80.49 195 | 84.70 141 | 91.58 123 | 73.24 131 | 84.21 149 | 91.67 117 | 62.86 268 | 80.94 252 | 87.16 239 | 67.27 230 | 92.87 145 | 69.82 207 | 88.94 268 | 87.99 248 |
|
diffmvs | | | 80.40 201 | 80.48 196 | 80.17 228 | 79.02 318 | 60.04 259 | 77.54 274 | 90.28 158 | 66.65 242 | 82.40 230 | 87.33 237 | 73.50 188 | 87.35 259 | 77.98 130 | 89.62 260 | 93.13 128 |
|
PLC |  | 73.85 16 | 82.09 176 | 80.31 197 | 87.45 91 | 90.86 145 | 80.29 70 | 85.88 125 | 90.65 142 | 68.17 226 | 76.32 291 | 86.33 250 | 73.12 196 | 92.61 150 | 61.40 270 | 90.02 257 | 89.44 226 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VNet | | | 79.31 213 | 80.27 198 | 76.44 277 | 87.92 196 | 53.95 307 | 75.58 297 | 84.35 250 | 74.39 154 | 82.23 233 | 90.72 178 | 72.84 199 | 84.39 295 | 60.38 277 | 93.98 182 | 90.97 196 |
|
cl-mvsnet____ | | | 80.42 200 | 80.23 199 | 81.02 214 | 79.99 306 | 59.25 267 | 77.07 280 | 87.02 215 | 67.37 236 | 86.18 172 | 89.21 206 | 63.08 251 | 90.16 221 | 76.31 147 | 95.80 128 | 93.65 112 |
|
cl-mvsnet1 | | | 80.43 199 | 80.23 199 | 81.02 214 | 79.99 306 | 59.25 267 | 77.07 280 | 87.02 215 | 67.38 235 | 86.19 170 | 89.22 205 | 63.09 250 | 90.16 221 | 76.32 146 | 95.80 128 | 93.66 110 |
|
eth_miper_zixun_eth | | | 80.84 192 | 80.22 201 | 82.71 186 | 81.41 288 | 60.98 251 | 77.81 269 | 90.14 162 | 67.31 237 | 86.95 155 | 87.24 238 | 64.26 242 | 92.31 157 | 75.23 158 | 91.61 230 | 94.85 65 |
|
BH-RMVSNet | | | 80.53 197 | 80.22 201 | 81.49 206 | 87.19 211 | 66.21 197 | 77.79 270 | 86.23 223 | 74.21 155 | 83.69 212 | 88.50 217 | 73.25 195 | 90.75 204 | 63.18 256 | 87.90 280 | 87.52 254 |
|
xiu_mvs_v1_base_debu | | | 80.84 192 | 80.14 203 | 82.93 180 | 88.31 188 | 71.73 152 | 79.53 243 | 87.17 207 | 65.43 254 | 79.59 267 | 82.73 304 | 76.94 155 | 90.14 224 | 73.22 177 | 88.33 273 | 86.90 262 |
|
xiu_mvs_v1_base | | | 80.84 192 | 80.14 203 | 82.93 180 | 88.31 188 | 71.73 152 | 79.53 243 | 87.17 207 | 65.43 254 | 79.59 267 | 82.73 304 | 76.94 155 | 90.14 224 | 73.22 177 | 88.33 273 | 86.90 262 |
|
xiu_mvs_v1_base_debi | | | 80.84 192 | 80.14 203 | 82.93 180 | 88.31 188 | 71.73 152 | 79.53 243 | 87.17 207 | 65.43 254 | 79.59 267 | 82.73 304 | 76.94 155 | 90.14 224 | 73.22 177 | 88.33 273 | 86.90 262 |
|
miper_ehance_all_eth | | | 80.34 203 | 80.04 206 | 81.24 210 | 79.82 308 | 58.95 272 | 77.66 271 | 89.66 170 | 65.75 251 | 85.99 178 | 85.11 271 | 68.29 225 | 91.42 183 | 76.03 150 | 92.03 222 | 93.33 120 |
|
MSDG | | | 80.06 211 | 79.99 207 | 80.25 226 | 83.91 268 | 68.04 184 | 77.51 275 | 89.19 178 | 77.65 113 | 81.94 237 | 83.45 293 | 76.37 163 | 86.31 275 | 63.31 255 | 86.59 291 | 86.41 265 |
|
1121 | | | 80.86 191 | 79.81 208 | 84.02 154 | 93.93 58 | 78.70 85 | 81.64 215 | 80.18 275 | 55.43 312 | 83.67 213 | 91.15 162 | 71.29 213 | 91.41 184 | 67.95 227 | 93.06 201 | 81.96 318 |
|
tttt0517 | | | 81.07 188 | 79.58 209 | 85.52 126 | 88.99 177 | 66.45 196 | 87.03 106 | 75.51 302 | 73.76 160 | 88.32 133 | 90.20 191 | 37.96 353 | 94.16 94 | 79.36 112 | 95.13 149 | 95.93 41 |
|
IterMVS-SCA-FT | | | 80.64 196 | 79.41 210 | 84.34 148 | 83.93 267 | 69.66 168 | 76.28 291 | 81.09 269 | 72.43 180 | 86.47 169 | 90.19 192 | 60.46 262 | 93.15 136 | 77.45 137 | 86.39 294 | 90.22 215 |
|
wuyk23d | | | 75.13 255 | 79.30 211 | 62.63 331 | 75.56 338 | 75.18 121 | 80.89 227 | 73.10 320 | 75.06 147 | 94.76 11 | 95.32 34 | 87.73 41 | 52.85 359 | 34.16 358 | 97.11 83 | 59.85 355 |
|
DPM-MVS | | | 80.10 210 | 79.18 212 | 82.88 183 | 90.71 149 | 69.74 166 | 78.87 256 | 90.84 137 | 60.29 289 | 75.64 300 | 85.92 258 | 67.28 229 | 93.11 137 | 71.24 193 | 91.79 227 | 85.77 273 |
|
PM-MVS | | | 80.20 207 | 79.00 213 | 83.78 162 | 88.17 192 | 86.66 16 | 81.31 220 | 66.81 345 | 69.64 212 | 88.33 132 | 90.19 192 | 64.58 240 | 83.63 301 | 71.99 191 | 90.03 256 | 81.06 332 |
|
AUN-MVS | | | 81.18 187 | 78.78 214 | 88.39 78 | 90.93 142 | 82.14 58 | 82.51 198 | 83.67 252 | 64.69 262 | 80.29 262 | 85.91 259 | 51.07 307 | 92.38 154 | 76.29 148 | 93.63 190 | 90.65 207 |
|
mvs_anonymous | | | 78.13 225 | 78.76 215 | 76.23 281 | 79.24 315 | 50.31 336 | 78.69 258 | 84.82 247 | 61.60 279 | 83.09 224 | 92.82 117 | 73.89 184 | 87.01 261 | 68.33 224 | 86.41 293 | 91.37 190 |
|
MAR-MVS | | | 80.24 206 | 78.74 216 | 84.73 139 | 86.87 222 | 78.18 89 | 85.75 127 | 87.81 201 | 65.67 253 | 77.84 281 | 78.50 334 | 73.79 185 | 90.53 211 | 61.59 269 | 90.87 246 | 85.49 276 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FMVSNet3 | | | 78.80 219 | 78.55 217 | 79.57 237 | 82.89 279 | 56.89 290 | 81.76 212 | 85.77 229 | 69.04 218 | 86.00 175 | 90.44 186 | 51.75 305 | 90.09 227 | 65.95 237 | 93.34 193 | 91.72 182 |
|
test_yl | | | 78.71 221 | 78.51 218 | 79.32 240 | 84.32 257 | 58.84 274 | 78.38 261 | 85.33 234 | 75.99 132 | 82.49 228 | 86.57 246 | 58.01 280 | 90.02 229 | 62.74 257 | 92.73 209 | 89.10 234 |
|
DCV-MVSNet | | | 78.71 221 | 78.51 218 | 79.32 240 | 84.32 257 | 58.84 274 | 78.38 261 | 85.33 234 | 75.99 132 | 82.49 228 | 86.57 246 | 58.01 280 | 90.02 229 | 62.74 257 | 92.73 209 | 89.10 234 |
|
EPNet | | | 80.37 202 | 78.41 220 | 86.23 109 | 76.75 329 | 73.28 130 | 87.18 103 | 77.45 289 | 76.24 127 | 68.14 331 | 88.93 212 | 65.41 239 | 93.85 103 | 69.47 209 | 96.12 119 | 91.55 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPMNet | | | 78.88 217 | 78.28 221 | 80.68 221 | 79.58 309 | 62.64 230 | 82.58 194 | 94.16 28 | 74.80 148 | 75.72 298 | 92.59 124 | 48.69 313 | 95.56 34 | 73.48 175 | 82.91 321 | 83.85 293 |
|
cl-mvsnet2 | | | 78.97 216 | 78.21 222 | 81.24 210 | 77.74 322 | 59.01 271 | 77.46 277 | 87.13 210 | 65.79 248 | 84.32 203 | 85.10 272 | 58.96 276 | 90.88 201 | 75.36 157 | 92.03 222 | 93.84 100 |
|
PAPR | | | 78.84 218 | 78.10 223 | 81.07 212 | 85.17 246 | 60.22 258 | 82.21 208 | 90.57 145 | 62.51 270 | 75.32 303 | 84.61 282 | 74.99 170 | 92.30 158 | 59.48 281 | 88.04 279 | 90.68 205 |
|
bset_n11_16_dypcd | | | 79.19 214 | 77.97 224 | 82.86 184 | 85.81 240 | 66.85 193 | 75.02 302 | 79.31 279 | 66.07 245 | 83.50 218 | 83.37 296 | 55.04 300 | 92.10 164 | 78.63 118 | 94.99 156 | 89.63 222 |
|
PVSNet_BlendedMVS | | | 78.80 219 | 77.84 225 | 81.65 205 | 84.43 253 | 63.41 218 | 79.49 246 | 90.44 147 | 61.70 278 | 75.43 301 | 87.07 242 | 69.11 221 | 91.44 181 | 60.68 275 | 92.24 218 | 90.11 219 |
|
Vis-MVSNet (Re-imp) | | | 77.82 229 | 77.79 226 | 77.92 262 | 88.82 180 | 51.29 329 | 83.28 176 | 71.97 327 | 74.04 156 | 82.23 233 | 89.78 199 | 57.38 286 | 89.41 236 | 57.22 291 | 95.41 138 | 93.05 131 |
|
RRT_test8_iter05 | | | 78.08 226 | 77.52 227 | 79.75 233 | 80.84 297 | 52.54 319 | 80.61 230 | 88.96 181 | 67.77 234 | 84.62 196 | 89.29 204 | 33.89 358 | 92.10 164 | 77.59 134 | 94.15 178 | 94.62 69 |
|
Patchmtry | | | 76.56 244 | 77.46 228 | 73.83 292 | 79.37 314 | 46.60 347 | 82.41 201 | 76.90 291 | 73.81 159 | 85.56 184 | 92.38 130 | 48.07 315 | 83.98 298 | 63.36 254 | 95.31 144 | 90.92 198 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 231 | 77.46 228 | 78.71 247 | 84.39 256 | 61.15 246 | 81.18 224 | 82.52 258 | 62.45 272 | 83.34 219 | 87.37 235 | 66.20 235 | 88.66 247 | 64.69 247 | 85.02 305 | 86.32 266 |
|
CL-MVSNet_2432*1600 | | | 76.81 240 | 77.38 230 | 75.12 286 | 86.90 220 | 51.34 327 | 73.20 315 | 80.63 273 | 68.30 225 | 81.80 243 | 88.40 218 | 66.92 232 | 80.90 312 | 55.35 303 | 94.90 159 | 93.12 129 |
|
thisisatest0530 | | | 79.07 215 | 77.33 231 | 84.26 150 | 87.13 212 | 64.58 208 | 83.66 166 | 75.95 297 | 68.86 220 | 85.22 187 | 87.36 236 | 38.10 351 | 93.57 119 | 75.47 155 | 94.28 175 | 94.62 69 |
|
MVS_0304 | | | 78.17 224 | 77.23 232 | 80.99 216 | 84.13 265 | 69.07 179 | 81.39 219 | 80.81 271 | 76.28 126 | 67.53 336 | 89.11 209 | 62.87 254 | 86.77 268 | 60.90 274 | 92.01 225 | 87.13 259 |
|
CANet_DTU | | | 77.81 230 | 77.05 233 | 80.09 229 | 81.37 289 | 59.90 261 | 83.26 177 | 88.29 192 | 69.16 216 | 67.83 334 | 83.72 289 | 60.93 259 | 89.47 233 | 69.22 213 | 89.70 259 | 90.88 199 |
|
pmmvs-eth3d | | | 78.42 223 | 77.04 234 | 82.57 191 | 87.44 206 | 74.41 124 | 80.86 228 | 79.67 278 | 55.68 310 | 84.69 195 | 90.31 189 | 60.91 260 | 85.42 285 | 62.20 261 | 91.59 231 | 87.88 251 |
|
miper_enhance_ethall | | | 77.83 228 | 76.93 235 | 80.51 222 | 76.15 335 | 58.01 280 | 75.47 299 | 88.82 182 | 58.05 298 | 83.59 215 | 80.69 318 | 64.41 241 | 91.20 188 | 73.16 183 | 92.03 222 | 92.33 159 |
|
MDA-MVSNet-bldmvs | | | 77.47 232 | 76.90 236 | 79.16 242 | 79.03 317 | 64.59 207 | 66.58 338 | 75.67 300 | 73.15 173 | 88.86 119 | 88.99 211 | 66.94 231 | 81.23 311 | 64.71 246 | 88.22 278 | 91.64 185 |
|
xiu_mvs_v2_base | | | 77.19 235 | 76.75 237 | 78.52 250 | 87.01 218 | 61.30 244 | 75.55 298 | 87.12 213 | 61.24 281 | 74.45 307 | 78.79 332 | 77.20 149 | 90.93 197 | 64.62 249 | 84.80 311 | 83.32 302 |
|
USDC | | | 76.63 242 | 76.73 238 | 76.34 279 | 83.46 271 | 57.20 287 | 80.02 237 | 88.04 197 | 52.14 330 | 83.65 214 | 91.25 158 | 63.24 249 | 86.65 271 | 54.66 308 | 94.11 179 | 85.17 278 |
|
PS-MVSNAJ | | | 77.04 237 | 76.53 239 | 78.56 249 | 87.09 217 | 61.40 242 | 75.26 300 | 87.13 210 | 61.25 280 | 74.38 309 | 77.22 341 | 76.94 155 | 90.94 196 | 64.63 248 | 84.83 310 | 83.35 301 |
|
TAMVS | | | 78.08 226 | 76.36 240 | 83.23 173 | 90.62 150 | 72.87 132 | 79.08 253 | 80.01 277 | 61.72 277 | 81.35 249 | 86.92 243 | 63.96 245 | 88.78 245 | 50.61 325 | 93.01 203 | 88.04 247 |
|
IterMVS | | | 76.91 238 | 76.34 241 | 78.64 248 | 80.91 294 | 64.03 214 | 76.30 290 | 79.03 282 | 64.88 261 | 83.11 222 | 89.16 207 | 59.90 268 | 84.46 294 | 68.61 221 | 85.15 304 | 87.42 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XXY-MVS | | | 74.44 265 | 76.19 242 | 69.21 312 | 84.61 251 | 52.43 320 | 71.70 320 | 77.18 290 | 60.73 286 | 80.60 256 | 90.96 171 | 75.44 165 | 69.35 340 | 56.13 296 | 88.33 273 | 85.86 272 |
|
miper_lstm_enhance | | | 76.45 246 | 76.10 243 | 77.51 266 | 76.72 330 | 60.97 252 | 64.69 341 | 85.04 242 | 63.98 264 | 83.20 221 | 88.22 220 | 56.67 289 | 78.79 320 | 73.22 177 | 93.12 199 | 92.78 142 |
|
BH-w/o | | | 76.57 243 | 76.07 244 | 78.10 259 | 86.88 221 | 65.92 199 | 77.63 272 | 86.33 222 | 65.69 252 | 80.89 253 | 79.95 327 | 68.97 223 | 90.74 205 | 53.01 317 | 85.25 303 | 77.62 338 |
|
TR-MVS | | | 76.77 241 | 75.79 245 | 79.72 234 | 86.10 238 | 65.79 200 | 77.14 278 | 83.02 255 | 65.20 259 | 81.40 248 | 82.10 308 | 66.30 234 | 90.73 206 | 55.57 300 | 85.27 302 | 82.65 308 |
|
jason | | | 77.42 233 | 75.75 246 | 82.43 194 | 87.10 216 | 69.27 172 | 77.99 266 | 81.94 264 | 51.47 334 | 77.84 281 | 85.07 275 | 60.32 264 | 89.00 239 | 70.74 199 | 89.27 264 | 89.03 237 |
jason: jason. |
MVSTER | | | 77.09 236 | 75.70 247 | 81.25 208 | 75.27 342 | 61.08 247 | 77.49 276 | 85.07 240 | 60.78 285 | 86.55 163 | 88.68 215 | 43.14 343 | 90.25 216 | 73.69 173 | 90.67 251 | 92.42 155 |
|
D2MVS | | | 76.84 239 | 75.67 248 | 80.34 225 | 80.48 304 | 62.16 239 | 73.50 312 | 84.80 248 | 57.61 302 | 82.24 232 | 87.54 232 | 51.31 306 | 87.65 256 | 70.40 204 | 93.19 198 | 91.23 192 |
|
PVSNet_Blended | | | 76.49 245 | 75.40 249 | 79.76 232 | 84.43 253 | 63.41 218 | 75.14 301 | 90.44 147 | 57.36 304 | 75.43 301 | 78.30 335 | 69.11 221 | 91.44 181 | 60.68 275 | 87.70 284 | 84.42 286 |
|
CDS-MVSNet | | | 77.32 234 | 75.40 249 | 83.06 176 | 89.00 176 | 72.48 142 | 77.90 268 | 82.17 262 | 60.81 284 | 78.94 274 | 83.49 292 | 59.30 272 | 88.76 246 | 54.64 309 | 92.37 215 | 87.93 250 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thres600view7 | | | 75.97 249 | 75.35 251 | 77.85 264 | 87.01 218 | 51.84 325 | 80.45 232 | 73.26 318 | 75.20 145 | 83.10 223 | 86.31 252 | 45.54 328 | 89.05 238 | 55.03 306 | 92.24 218 | 92.66 148 |
|
thres100view900 | | | 75.45 252 | 75.05 252 | 76.66 276 | 87.27 208 | 51.88 324 | 81.07 225 | 73.26 318 | 75.68 138 | 83.25 220 | 86.37 249 | 45.54 328 | 88.80 242 | 51.98 321 | 90.99 240 | 89.31 229 |
|
cascas | | | 76.29 248 | 74.81 253 | 80.72 220 | 84.47 252 | 62.94 225 | 73.89 310 | 87.34 204 | 55.94 309 | 75.16 305 | 76.53 344 | 63.97 244 | 91.16 190 | 65.00 244 | 90.97 243 | 88.06 246 |
|
GA-MVS | | | 75.83 250 | 74.61 254 | 79.48 239 | 81.87 283 | 59.25 267 | 73.42 313 | 82.88 256 | 68.68 222 | 79.75 266 | 81.80 311 | 50.62 309 | 89.46 234 | 66.85 231 | 85.64 299 | 89.72 221 |
|
testgi | | | 72.36 278 | 74.61 254 | 65.59 325 | 80.56 302 | 42.82 356 | 68.29 331 | 73.35 317 | 66.87 240 | 81.84 240 | 89.93 197 | 72.08 207 | 66.92 348 | 46.05 343 | 92.54 213 | 87.01 261 |
|
test20.03 | | | 73.75 268 | 74.59 256 | 71.22 305 | 81.11 292 | 51.12 331 | 70.15 326 | 72.10 326 | 70.42 203 | 80.28 264 | 91.50 155 | 64.21 243 | 74.72 332 | 46.96 341 | 94.58 168 | 87.82 253 |
|
lupinMVS | | | 76.37 247 | 74.46 257 | 82.09 195 | 85.54 243 | 69.26 173 | 76.79 282 | 80.77 272 | 50.68 340 | 76.23 292 | 82.82 302 | 58.69 277 | 88.94 240 | 69.85 206 | 88.77 269 | 88.07 245 |
|
EU-MVSNet | | | 75.12 256 | 74.43 258 | 77.18 268 | 83.11 277 | 59.48 265 | 85.71 129 | 82.43 260 | 39.76 358 | 85.64 182 | 88.76 213 | 44.71 339 | 87.88 254 | 73.86 170 | 85.88 298 | 84.16 289 |
|
tfpn200view9 | | | 74.86 260 | 74.23 259 | 76.74 275 | 86.24 233 | 52.12 321 | 79.24 250 | 73.87 312 | 73.34 166 | 81.82 241 | 84.60 283 | 46.02 322 | 88.80 242 | 51.98 321 | 90.99 240 | 89.31 229 |
|
thres400 | | | 75.14 254 | 74.23 259 | 77.86 263 | 86.24 233 | 52.12 321 | 79.24 250 | 73.87 312 | 73.34 166 | 81.82 241 | 84.60 283 | 46.02 322 | 88.80 242 | 51.98 321 | 90.99 240 | 92.66 148 |
|
ppachtmachnet_test | | | 74.73 262 | 74.00 261 | 76.90 272 | 80.71 300 | 56.89 290 | 71.53 321 | 78.42 284 | 58.24 296 | 79.32 271 | 82.92 301 | 57.91 283 | 84.26 296 | 65.60 242 | 91.36 234 | 89.56 224 |
|
1112_ss | | | 74.82 261 | 73.74 262 | 78.04 260 | 89.57 167 | 60.04 259 | 76.49 288 | 87.09 214 | 54.31 316 | 73.66 312 | 79.80 328 | 60.25 265 | 86.76 270 | 58.37 284 | 84.15 314 | 87.32 257 |
|
Patchmatch-RL test | | | 74.48 263 | 73.68 263 | 76.89 273 | 84.83 249 | 66.54 195 | 72.29 318 | 69.16 338 | 57.70 300 | 86.76 157 | 86.33 250 | 45.79 327 | 82.59 304 | 69.63 208 | 90.65 253 | 81.54 323 |
|
CMPMVS |  | 59.41 20 | 75.12 256 | 73.57 264 | 79.77 231 | 75.84 337 | 67.22 187 | 81.21 223 | 82.18 261 | 50.78 338 | 76.50 288 | 87.66 230 | 55.20 298 | 82.99 303 | 62.17 263 | 90.64 254 | 89.09 236 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline1 | | | 73.26 270 | 73.54 265 | 72.43 301 | 84.92 248 | 47.79 343 | 79.89 239 | 74.00 310 | 65.93 246 | 78.81 275 | 86.28 253 | 56.36 291 | 81.63 310 | 56.63 293 | 79.04 338 | 87.87 252 |
|
MVP-Stereo | | | 75.81 251 | 73.51 266 | 82.71 186 | 89.35 169 | 73.62 127 | 80.06 235 | 85.20 237 | 60.30 288 | 73.96 310 | 87.94 225 | 57.89 284 | 89.45 235 | 52.02 320 | 74.87 347 | 85.06 280 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
new-patchmatchnet | | | 70.10 293 | 73.37 267 | 60.29 338 | 81.23 291 | 16.95 366 | 59.54 349 | 74.62 305 | 62.93 267 | 80.97 251 | 87.93 226 | 62.83 255 | 71.90 335 | 55.24 304 | 95.01 155 | 92.00 173 |
|
PatchMatch-RL | | | 74.48 263 | 73.22 268 | 78.27 257 | 87.70 200 | 85.26 33 | 75.92 294 | 70.09 335 | 64.34 263 | 76.09 294 | 81.25 316 | 65.87 238 | 78.07 321 | 53.86 311 | 83.82 315 | 71.48 346 |
|
Test_1112_low_res | | | 73.90 267 | 73.08 269 | 76.35 278 | 90.35 155 | 55.95 293 | 73.40 314 | 86.17 224 | 50.70 339 | 73.14 313 | 85.94 257 | 58.31 279 | 85.90 281 | 56.51 294 | 83.22 318 | 87.20 258 |
|
CR-MVSNet | | | 74.00 266 | 73.04 270 | 76.85 274 | 79.58 309 | 62.64 230 | 82.58 194 | 76.90 291 | 50.50 341 | 75.72 298 | 92.38 130 | 48.07 315 | 84.07 297 | 68.72 220 | 82.91 321 | 83.85 293 |
|
pmmvs4 | | | 74.92 259 | 72.98 271 | 80.73 219 | 84.95 247 | 71.71 155 | 76.23 292 | 77.59 288 | 52.83 324 | 77.73 284 | 86.38 248 | 56.35 292 | 84.97 289 | 57.72 290 | 87.05 288 | 85.51 275 |
|
ET-MVSNet_ETH3D | | | 75.28 253 | 72.77 272 | 82.81 185 | 83.03 278 | 68.11 183 | 77.09 279 | 76.51 295 | 60.67 287 | 77.60 285 | 80.52 322 | 38.04 352 | 91.15 191 | 70.78 197 | 90.68 250 | 89.17 232 |
|
PatchT | | | 70.52 290 | 72.76 273 | 63.79 330 | 79.38 313 | 33.53 362 | 77.63 272 | 65.37 347 | 73.61 161 | 71.77 319 | 92.79 120 | 44.38 340 | 75.65 329 | 64.53 250 | 85.37 301 | 82.18 316 |
|
HyFIR lowres test | | | 75.12 256 | 72.66 274 | 82.50 192 | 91.44 129 | 65.19 204 | 72.47 317 | 87.31 205 | 46.79 346 | 80.29 262 | 84.30 285 | 52.70 304 | 92.10 164 | 51.88 324 | 86.73 290 | 90.22 215 |
|
MVS | | | 73.21 272 | 72.59 275 | 75.06 287 | 80.97 293 | 60.81 254 | 81.64 215 | 85.92 228 | 46.03 349 | 71.68 320 | 77.54 337 | 68.47 224 | 89.77 231 | 55.70 299 | 85.39 300 | 74.60 343 |
|
SCA | | | 73.32 269 | 72.57 276 | 75.58 284 | 81.62 285 | 55.86 295 | 78.89 255 | 71.37 332 | 61.73 276 | 74.93 306 | 83.42 294 | 60.46 262 | 87.01 261 | 58.11 288 | 82.63 325 | 83.88 290 |
|
1314 | | | 73.22 271 | 72.56 277 | 75.20 285 | 80.41 305 | 57.84 281 | 81.64 215 | 85.36 233 | 51.68 333 | 73.10 314 | 76.65 343 | 61.45 258 | 85.19 287 | 63.54 252 | 79.21 337 | 82.59 309 |
|
HY-MVS | | 64.64 18 | 73.03 273 | 72.47 278 | 74.71 288 | 83.36 272 | 54.19 305 | 82.14 211 | 81.96 263 | 56.76 308 | 69.57 328 | 86.21 254 | 60.03 266 | 84.83 292 | 49.58 330 | 82.65 323 | 85.11 279 |
|
UnsupCasMVSNet_eth | | | 71.63 285 | 72.30 279 | 69.62 310 | 76.47 332 | 52.70 317 | 70.03 327 | 80.97 270 | 59.18 292 | 79.36 270 | 88.21 221 | 60.50 261 | 69.12 341 | 58.33 286 | 77.62 342 | 87.04 260 |
|
FPMVS | | | 72.29 280 | 72.00 280 | 73.14 295 | 88.63 182 | 85.00 35 | 74.65 306 | 67.39 339 | 71.94 190 | 77.80 283 | 87.66 230 | 50.48 310 | 75.83 328 | 49.95 327 | 79.51 333 | 58.58 357 |
|
Anonymous20231206 | | | 71.38 286 | 71.88 281 | 69.88 308 | 86.31 230 | 54.37 304 | 70.39 325 | 74.62 305 | 52.57 326 | 76.73 287 | 88.76 213 | 59.94 267 | 72.06 334 | 44.35 346 | 93.23 197 | 83.23 304 |
|
FMVSNet5 | | | 72.10 281 | 71.69 282 | 73.32 293 | 81.57 286 | 53.02 314 | 76.77 283 | 78.37 285 | 63.31 265 | 76.37 289 | 91.85 144 | 36.68 355 | 78.98 318 | 47.87 337 | 92.45 214 | 87.95 249 |
|
our_test_3 | | | 71.85 282 | 71.59 283 | 72.62 299 | 80.71 300 | 53.78 308 | 69.72 328 | 71.71 331 | 58.80 293 | 78.03 278 | 80.51 323 | 56.61 290 | 78.84 319 | 62.20 261 | 86.04 297 | 85.23 277 |
|
MIMVSNet | | | 71.09 287 | 71.59 283 | 69.57 311 | 87.23 209 | 50.07 337 | 78.91 254 | 71.83 328 | 60.20 290 | 71.26 321 | 91.76 149 | 55.08 299 | 76.09 326 | 41.06 351 | 87.02 289 | 82.54 311 |
|
thres200 | | | 72.34 279 | 71.55 285 | 74.70 289 | 83.48 270 | 51.60 326 | 75.02 302 | 73.71 315 | 70.14 209 | 78.56 277 | 80.57 321 | 46.20 320 | 88.20 252 | 46.99 340 | 89.29 262 | 84.32 287 |
|
CVMVSNet | | | 72.62 276 | 71.41 286 | 76.28 280 | 83.25 273 | 60.34 257 | 83.50 171 | 79.02 283 | 37.77 359 | 76.33 290 | 85.10 272 | 49.60 312 | 87.41 258 | 70.54 202 | 77.54 343 | 81.08 330 |
|
EPNet_dtu | | | 72.87 275 | 71.33 287 | 77.49 267 | 77.72 323 | 60.55 256 | 82.35 202 | 75.79 298 | 66.49 243 | 58.39 359 | 81.06 317 | 53.68 302 | 85.98 279 | 53.55 312 | 92.97 205 | 85.95 270 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 72.45 277 | 70.56 288 | 78.13 258 | 90.02 165 | 63.08 223 | 68.72 330 | 83.16 254 | 42.99 355 | 75.92 296 | 85.46 265 | 57.22 288 | 85.18 288 | 49.87 329 | 81.67 326 | 86.14 268 |
|
thisisatest0515 | | | 73.00 274 | 70.52 289 | 80.46 223 | 81.45 287 | 59.90 261 | 73.16 316 | 74.31 309 | 57.86 299 | 76.08 295 | 77.78 336 | 37.60 354 | 92.12 163 | 65.00 244 | 91.45 233 | 89.35 228 |
|
YYNet1 | | | 70.06 294 | 70.44 290 | 68.90 313 | 73.76 348 | 53.42 312 | 58.99 352 | 67.20 341 | 58.42 295 | 87.10 149 | 85.39 268 | 59.82 269 | 67.32 345 | 59.79 279 | 83.50 317 | 85.96 269 |
|
MDA-MVSNet_test_wron | | | 70.05 295 | 70.44 290 | 68.88 314 | 73.84 347 | 53.47 310 | 58.93 353 | 67.28 340 | 58.43 294 | 87.09 150 | 85.40 267 | 59.80 270 | 67.25 346 | 59.66 280 | 83.54 316 | 85.92 271 |
|
MS-PatchMatch | | | 70.93 288 | 70.22 292 | 73.06 296 | 81.85 284 | 62.50 233 | 73.82 311 | 77.90 286 | 52.44 327 | 75.92 296 | 81.27 315 | 55.67 295 | 81.75 308 | 55.37 302 | 77.70 341 | 74.94 342 |
|
pmmvs5 | | | 70.73 289 | 70.07 293 | 72.72 297 | 77.03 328 | 52.73 316 | 74.14 307 | 75.65 301 | 50.36 342 | 72.17 318 | 85.37 269 | 55.42 297 | 80.67 314 | 52.86 318 | 87.59 285 | 84.77 282 |
|
PAPM | | | 71.77 283 | 70.06 294 | 76.92 271 | 86.39 225 | 53.97 306 | 76.62 286 | 86.62 220 | 53.44 321 | 63.97 349 | 84.73 281 | 57.79 285 | 92.34 156 | 39.65 353 | 81.33 329 | 84.45 285 |
|
UnsupCasMVSNet_bld | | | 69.21 300 | 69.68 295 | 67.82 319 | 79.42 312 | 51.15 330 | 67.82 335 | 75.79 298 | 54.15 317 | 77.47 286 | 85.36 270 | 59.26 273 | 70.64 337 | 48.46 334 | 79.35 335 | 81.66 321 |
|
tpmvs | | | 70.16 292 | 69.56 296 | 71.96 303 | 74.71 346 | 48.13 340 | 79.63 241 | 75.45 303 | 65.02 260 | 70.26 325 | 81.88 310 | 45.34 333 | 85.68 283 | 58.34 285 | 75.39 346 | 82.08 317 |
|
gg-mvs-nofinetune | | | 68.96 301 | 69.11 297 | 68.52 318 | 76.12 336 | 45.32 349 | 83.59 167 | 55.88 360 | 86.68 25 | 64.62 348 | 97.01 7 | 30.36 363 | 83.97 299 | 44.78 345 | 82.94 320 | 76.26 340 |
|
IB-MVS | | 62.13 19 | 71.64 284 | 68.97 298 | 79.66 236 | 80.80 299 | 62.26 238 | 73.94 309 | 76.90 291 | 63.27 266 | 68.63 330 | 76.79 342 | 33.83 359 | 91.84 173 | 59.28 282 | 87.26 286 | 84.88 281 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PatchmatchNet |  | | 69.71 298 | 68.83 299 | 72.33 302 | 77.66 324 | 53.60 309 | 79.29 248 | 69.99 336 | 57.66 301 | 72.53 316 | 82.93 300 | 46.45 319 | 80.08 317 | 60.91 273 | 72.09 350 | 83.31 303 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 70.20 291 | 68.80 300 | 74.38 290 | 80.91 294 | 84.81 38 | 59.12 351 | 76.45 296 | 55.06 313 | 75.31 304 | 82.36 307 | 55.74 294 | 54.82 358 | 47.02 339 | 87.24 287 | 83.52 297 |
|
CostFormer | | | 69.98 296 | 68.68 301 | 73.87 291 | 77.14 326 | 50.72 334 | 79.26 249 | 74.51 307 | 51.94 332 | 70.97 324 | 84.75 280 | 45.16 336 | 87.49 257 | 55.16 305 | 79.23 336 | 83.40 300 |
|
WTY-MVS | | | 67.91 304 | 68.35 302 | 66.58 323 | 80.82 298 | 48.12 341 | 65.96 339 | 72.60 322 | 53.67 320 | 71.20 322 | 81.68 313 | 58.97 275 | 69.06 342 | 48.57 333 | 81.67 326 | 82.55 310 |
|
MDTV_nov1_ep13 | | | | 68.29 303 | | 78.03 321 | 43.87 353 | 74.12 308 | 72.22 325 | 52.17 328 | 67.02 337 | 85.54 261 | 45.36 332 | 80.85 313 | 55.73 297 | 84.42 313 | |
|
tpm | | | 67.95 303 | 68.08 304 | 67.55 320 | 78.74 320 | 43.53 354 | 75.60 296 | 67.10 344 | 54.92 314 | 72.23 317 | 88.10 222 | 42.87 344 | 75.97 327 | 52.21 319 | 80.95 332 | 83.15 305 |
|
Patchmatch-test | | | 65.91 313 | 67.38 305 | 61.48 336 | 75.51 339 | 43.21 355 | 68.84 329 | 63.79 349 | 62.48 271 | 72.80 315 | 83.42 294 | 44.89 338 | 59.52 357 | 48.27 336 | 86.45 292 | 81.70 320 |
|
sss | | | 66.92 306 | 67.26 306 | 65.90 324 | 77.23 325 | 51.10 332 | 64.79 340 | 71.72 330 | 52.12 331 | 70.13 326 | 80.18 325 | 57.96 282 | 65.36 353 | 50.21 326 | 81.01 331 | 81.25 327 |
|
baseline2 | | | 69.77 297 | 66.89 307 | 78.41 253 | 79.51 311 | 58.09 279 | 76.23 292 | 69.57 337 | 57.50 303 | 64.82 347 | 77.45 339 | 46.02 322 | 88.44 248 | 53.08 314 | 77.83 340 | 88.70 241 |
|
tpm2 | | | 68.45 302 | 66.83 308 | 73.30 294 | 78.93 319 | 48.50 339 | 79.76 240 | 71.76 329 | 47.50 345 | 69.92 327 | 83.60 290 | 42.07 345 | 88.40 249 | 48.44 335 | 79.51 333 | 83.01 307 |
|
test-LLR | | | 67.21 305 | 66.74 309 | 68.63 316 | 76.45 333 | 55.21 300 | 67.89 332 | 67.14 342 | 62.43 273 | 65.08 344 | 72.39 349 | 43.41 341 | 69.37 338 | 61.00 271 | 84.89 308 | 81.31 325 |
|
tpmrst | | | 66.28 312 | 66.69 310 | 65.05 328 | 72.82 354 | 39.33 357 | 78.20 264 | 70.69 334 | 53.16 323 | 67.88 333 | 80.36 324 | 48.18 314 | 74.75 331 | 58.13 287 | 70.79 352 | 81.08 330 |
|
JIA-IIPM | | | 69.41 299 | 66.64 311 | 77.70 265 | 73.19 350 | 71.24 158 | 75.67 295 | 65.56 346 | 70.42 203 | 65.18 343 | 92.97 112 | 33.64 360 | 83.06 302 | 53.52 313 | 69.61 356 | 78.79 337 |
|
KD-MVS_2432*1600 | | | 66.87 307 | 65.81 312 | 70.04 306 | 67.50 359 | 47.49 344 | 62.56 345 | 79.16 280 | 61.21 282 | 77.98 279 | 80.61 319 | 25.29 369 | 82.48 305 | 53.02 315 | 84.92 306 | 80.16 335 |
|
miper_refine_blended | | | 66.87 307 | 65.81 312 | 70.04 306 | 67.50 359 | 47.49 344 | 62.56 345 | 79.16 280 | 61.21 282 | 77.98 279 | 80.61 319 | 25.29 369 | 82.48 305 | 53.02 315 | 84.92 306 | 80.16 335 |
|
PVSNet | | 58.17 21 | 66.41 311 | 65.63 314 | 68.75 315 | 81.96 282 | 49.88 338 | 62.19 347 | 72.51 324 | 51.03 336 | 68.04 332 | 75.34 347 | 50.84 308 | 74.77 330 | 45.82 344 | 82.96 319 | 81.60 322 |
|
tpm cat1 | | | 66.76 309 | 65.21 315 | 71.42 304 | 77.09 327 | 50.62 335 | 78.01 265 | 73.68 316 | 44.89 351 | 68.64 329 | 79.00 331 | 45.51 330 | 82.42 307 | 49.91 328 | 70.15 353 | 81.23 329 |
|
DWT-MVSNet_test | | | 66.43 310 | 64.37 316 | 72.63 298 | 74.86 345 | 50.86 333 | 76.52 287 | 72.74 321 | 54.06 318 | 65.50 341 | 68.30 355 | 32.13 361 | 84.84 291 | 61.63 268 | 73.59 348 | 82.19 315 |
|
test0.0.03 1 | | | 64.66 316 | 64.36 317 | 65.57 326 | 75.03 344 | 46.89 346 | 64.69 341 | 61.58 354 | 62.43 273 | 71.18 323 | 77.54 337 | 43.41 341 | 68.47 343 | 40.75 352 | 82.65 323 | 81.35 324 |
|
test-mter | | | 65.00 315 | 63.79 318 | 68.63 316 | 76.45 333 | 55.21 300 | 67.89 332 | 67.14 342 | 50.98 337 | 65.08 344 | 72.39 349 | 28.27 366 | 69.37 338 | 61.00 271 | 84.89 308 | 81.31 325 |
|
ADS-MVSNet2 | | | 65.87 314 | 63.64 319 | 72.55 300 | 73.16 351 | 56.92 289 | 67.10 336 | 74.81 304 | 49.74 343 | 66.04 339 | 82.97 298 | 46.71 317 | 77.26 323 | 42.29 348 | 69.96 354 | 83.46 298 |
|
MVS-HIRNet | | | 61.16 323 | 62.92 320 | 55.87 341 | 79.09 316 | 35.34 361 | 71.83 319 | 57.98 359 | 46.56 347 | 59.05 356 | 91.14 163 | 49.95 311 | 76.43 325 | 38.74 354 | 71.92 351 | 55.84 358 |
|
EPMVS | | | 62.47 317 | 62.63 321 | 62.01 332 | 70.63 358 | 38.74 358 | 74.76 304 | 52.86 362 | 53.91 319 | 67.71 335 | 80.01 326 | 39.40 349 | 66.60 349 | 55.54 301 | 68.81 357 | 80.68 334 |
|
ADS-MVSNet | | | 61.90 319 | 62.19 322 | 61.03 337 | 73.16 351 | 36.42 360 | 67.10 336 | 61.75 352 | 49.74 343 | 66.04 339 | 82.97 298 | 46.71 317 | 63.21 355 | 42.29 348 | 69.96 354 | 83.46 298 |
|
E-PMN | | | 61.59 321 | 61.62 323 | 61.49 335 | 66.81 361 | 55.40 298 | 53.77 355 | 60.34 355 | 66.80 241 | 58.90 357 | 65.50 356 | 40.48 348 | 66.12 351 | 55.72 298 | 86.25 295 | 62.95 353 |
|
DSMNet-mixed | | | 60.98 325 | 61.61 324 | 59.09 340 | 72.88 353 | 45.05 351 | 74.70 305 | 46.61 365 | 26.20 361 | 65.34 342 | 90.32 188 | 55.46 296 | 63.12 356 | 41.72 350 | 81.30 330 | 69.09 350 |
|
EMVS | | | 61.10 324 | 60.81 325 | 61.99 333 | 65.96 362 | 55.86 295 | 53.10 356 | 58.97 357 | 67.06 238 | 56.89 360 | 63.33 357 | 40.98 346 | 67.03 347 | 54.79 307 | 86.18 296 | 63.08 352 |
|
PMMVS | | | 61.65 320 | 60.38 326 | 65.47 327 | 65.40 363 | 69.26 173 | 63.97 343 | 61.73 353 | 36.80 360 | 60.11 354 | 68.43 353 | 59.42 271 | 66.35 350 | 48.97 332 | 78.57 339 | 60.81 354 |
|
TESTMET0.1,1 | | | 61.29 322 | 60.32 327 | 64.19 329 | 72.06 355 | 51.30 328 | 67.89 332 | 62.09 350 | 45.27 350 | 60.65 353 | 69.01 352 | 27.93 367 | 64.74 354 | 56.31 295 | 81.65 328 | 76.53 339 |
|
dp | | | 60.70 326 | 60.29 328 | 61.92 334 | 72.04 356 | 38.67 359 | 70.83 322 | 64.08 348 | 51.28 335 | 60.75 352 | 77.28 340 | 36.59 356 | 71.58 336 | 47.41 338 | 62.34 359 | 75.52 341 |
|
pmmvs3 | | | 62.47 317 | 60.02 329 | 69.80 309 | 71.58 357 | 64.00 215 | 70.52 324 | 58.44 358 | 39.77 357 | 66.05 338 | 75.84 345 | 27.10 368 | 72.28 333 | 46.15 342 | 84.77 312 | 73.11 344 |
|
PMMVS2 | | | 55.64 330 | 59.27 330 | 44.74 344 | 64.30 364 | 12.32 367 | 40.60 358 | 49.79 364 | 53.19 322 | 65.06 346 | 84.81 279 | 53.60 303 | 49.76 360 | 32.68 360 | 89.41 261 | 72.15 345 |
|
new_pmnet | | | 55.69 329 | 57.66 331 | 49.76 343 | 75.47 340 | 30.59 363 | 59.56 348 | 51.45 363 | 43.62 354 | 62.49 350 | 75.48 346 | 40.96 347 | 49.15 361 | 37.39 356 | 72.52 349 | 69.55 349 |
|
CHOSEN 280x420 | | | 59.08 327 | 56.52 332 | 66.76 322 | 76.51 331 | 64.39 211 | 49.62 357 | 59.00 356 | 43.86 353 | 55.66 361 | 68.41 354 | 35.55 357 | 68.21 344 | 43.25 347 | 76.78 345 | 67.69 351 |
|
PVSNet_0 | | 51.08 22 | 56.10 328 | 54.97 333 | 59.48 339 | 75.12 343 | 53.28 313 | 55.16 354 | 61.89 351 | 44.30 352 | 59.16 355 | 62.48 358 | 54.22 301 | 65.91 352 | 35.40 357 | 47.01 360 | 59.25 356 |
|
MVE |  | 40.22 23 | 51.82 331 | 50.47 334 | 55.87 341 | 62.66 365 | 51.91 323 | 31.61 360 | 39.28 366 | 40.65 356 | 50.76 362 | 74.98 348 | 56.24 293 | 44.67 362 | 33.94 359 | 64.11 358 | 71.04 348 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 30.46 332 | 29.60 335 | 33.06 345 | 17.99 367 | 3.84 369 | 13.62 361 | 73.92 311 | 2.79 363 | 18.29 365 | 53.41 360 | 28.53 365 | 43.25 363 | 22.56 361 | 35.27 362 | 52.11 359 |
|
cdsmvs_eth3d_5k | | | 20.81 333 | 27.75 336 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 85.44 232 | 0.00 367 | 0.00 368 | 82.82 302 | 81.46 111 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
tmp_tt | | | 20.25 334 | 24.50 337 | 7.49 347 | 4.47 368 | 8.70 368 | 34.17 359 | 25.16 368 | 1.00 364 | 32.43 364 | 18.49 362 | 39.37 350 | 9.21 365 | 21.64 362 | 43.75 361 | 4.57 361 |
|
ab-mvs-re | | | 6.65 335 | 8.87 338 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 79.80 328 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 6.41 336 | 8.55 339 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 76.94 155 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
test123 | | | 6.27 337 | 8.08 340 | 0.84 348 | 1.11 370 | 0.57 370 | 62.90 344 | 0.82 370 | 0.54 365 | 1.07 367 | 2.75 367 | 1.26 371 | 0.30 366 | 1.04 364 | 1.26 365 | 1.66 362 |
|
testmvs | | | 5.91 338 | 7.65 341 | 0.72 349 | 1.20 369 | 0.37 371 | 59.14 350 | 0.67 371 | 0.49 366 | 1.11 366 | 2.76 366 | 0.94 372 | 0.24 367 | 1.02 365 | 1.47 364 | 1.55 363 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 92.22 102 | 80.48 68 | | 91.85 111 | 71.22 196 | 90.38 86 | 92.98 110 | 86.06 62 | 96.11 6 | 81.99 81 | 96.75 95 | |
|
IU-MVS | | | | | | 94.18 48 | 72.64 136 | | 90.82 138 | 56.98 306 | 89.67 104 | | | | 85.78 44 | 97.92 46 | 93.28 122 |
|
OPU-MVS | | | | | 88.27 81 | 91.89 113 | 77.83 92 | 90.47 46 | | | | 91.22 159 | 81.12 115 | 94.68 72 | 74.48 162 | 95.35 140 | 92.29 162 |
|
test_241102_TWO | | | | | | | | | 93.71 48 | 83.77 41 | 93.49 37 | 94.27 69 | 89.27 22 | 95.84 19 | 86.03 41 | 97.82 51 | 92.04 171 |
|
test_241102_ONE | | | | | | 94.18 48 | 72.65 134 | | 93.69 49 | 83.62 43 | 94.11 22 | 93.78 97 | 90.28 15 | 95.50 44 | | | |
|
save fliter | | | | | | 93.75 61 | 77.44 98 | 86.31 120 | 89.72 168 | 70.80 199 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 85.33 30 | 93.75 30 | 94.65 53 | 87.44 44 | 95.78 24 | 87.41 19 | 98.21 30 | 92.98 134 |
|
test_0728_SECOND | | | | | 86.79 97 | 94.25 47 | 72.45 143 | 90.54 43 | 94.10 34 | | | | | 95.88 14 | 86.42 31 | 97.97 43 | 92.02 172 |
|
test0726 | | | | | | 94.16 51 | 72.56 139 | 90.63 42 | 93.90 41 | 83.61 44 | 93.75 30 | 94.49 58 | 89.76 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 290 |
|
test_part2 | | | | | | 93.86 60 | 77.77 93 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 321 | | | | 83.88 290 |
|
sam_mvs | | | | | | | | | | | | | 45.92 326 | | | | |
|
ambc | | | | | 82.98 178 | 90.55 153 | 64.86 206 | 88.20 87 | 89.15 179 | | 89.40 113 | 93.96 87 | 71.67 212 | 91.38 186 | 78.83 116 | 96.55 101 | 92.71 146 |
|
MTGPA |  | | | | | | | | 91.81 114 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 257 | | | | 3.13 364 | 45.19 335 | 80.13 316 | 58.11 288 | | |
|
test_post | | | | | | | | | | | | 3.10 365 | 45.43 331 | 77.22 324 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 312 | 45.93 325 | 87.01 261 | | | |
|
GG-mvs-BLEND | | | | | 67.16 321 | 73.36 349 | 46.54 348 | 84.15 150 | 55.04 361 | | 58.64 358 | 61.95 359 | 29.93 364 | 83.87 300 | 38.71 355 | 76.92 344 | 71.07 347 |
|
MTMP | | | | | | | | 90.66 40 | 33.14 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 341 | 44.97 352 | | | 52.17 328 | | 72.36 351 | | 87.90 253 | 54.10 310 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 94 | 96.45 106 | 90.57 208 |
|
TEST9 | | | | | | 92.34 96 | 79.70 75 | 83.94 155 | 90.32 151 | 65.41 258 | 84.49 199 | 90.97 169 | 82.03 102 | 93.63 112 | | | |
|
test_8 | | | | | | 92.09 105 | 78.87 83 | 83.82 160 | 90.31 153 | 65.79 248 | 84.36 202 | 90.96 171 | 81.93 104 | 93.44 124 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 116 | 90.22 215 |
|
agg_prior | | | | | | 91.58 123 | 77.69 94 | | 90.30 154 | | 84.32 203 | | | 93.18 132 | | | |
|
TestCases | | | | | 89.68 54 | 91.59 120 | 83.40 48 | | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 89 | 91.47 179 | 70.81 195 | 96.14 117 | 94.16 89 |
|
test_prior4 | | | | | | | 78.97 82 | 84.59 142 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 174 | | 75.43 141 | 84.58 197 | 91.57 152 | 81.92 106 | | 79.54 108 | 96.97 86 | |
|
test_prior | | | | | 86.32 105 | 90.59 151 | 71.99 149 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 140 |
|
旧先验2 | | | | | | | | 81.73 213 | | 56.88 307 | 86.54 168 | | | 84.90 290 | 72.81 184 | | |
|
新几何2 | | | | | | | | 81.72 214 | | | | | | | | | |
|
新几何1 | | | | | 82.95 179 | 93.96 57 | 78.56 87 | | 80.24 274 | 55.45 311 | 83.93 211 | 91.08 164 | 71.19 214 | 88.33 250 | 65.84 240 | 93.07 200 | 81.95 319 |
|
旧先验1 | | | | | | 91.97 108 | 71.77 151 | | 81.78 265 | | | 91.84 145 | 73.92 183 | | | 93.65 189 | 83.61 296 |
|
无先验 | | | | | | | | 82.81 190 | 85.62 231 | 58.09 297 | | | | 91.41 184 | 67.95 227 | | 84.48 284 |
|
原ACMM2 | | | | | | | | 82.26 207 | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 142 | 92.81 87 | 74.01 126 | | 91.50 120 | 62.59 269 | 82.73 227 | 90.67 181 | 76.53 162 | 94.25 84 | 69.24 211 | 95.69 133 | 85.55 274 |
|
test222 | | | | | | 93.31 72 | 76.54 111 | 79.38 247 | 77.79 287 | 52.59 325 | 82.36 231 | 90.84 175 | 66.83 233 | | | 91.69 229 | 81.25 327 |
|
testdata2 | | | | | | | | | | | | | | 86.43 274 | 63.52 253 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 103 | | | | |
|
testdata | | | | | 79.54 238 | 92.87 82 | 72.34 144 | | 80.14 276 | 59.91 291 | 85.47 186 | 91.75 150 | 67.96 227 | 85.24 286 | 68.57 223 | 92.18 221 | 81.06 332 |
|
testdata1 | | | | | | | | 79.62 242 | | 73.95 158 | | | | | | | |
|
test12 | | | | | 86.57 100 | 90.74 147 | 72.63 137 | | 90.69 141 | | 82.76 226 | | 79.20 131 | 94.80 69 | | 95.32 142 | 92.27 164 |
|
plane_prior7 | | | | | | 93.45 67 | 77.31 102 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 111 | | | | | | 74.84 172 | | | | |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 95 | 95.83 126 | 94.46 77 |
|
plane_prior4 | | | | | | | | | | | | 92.95 113 | | | | | |
|
plane_prior3 | | | | | | | 76.85 109 | | | 77.79 112 | 86.55 163 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 69 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 114 | 87.15 104 | | 75.94 135 | | | | | | 95.03 154 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 308 | | | | | | | | |
|
lessismore_v0 | | | | | 85.95 116 | 91.10 139 | 70.99 160 | | 70.91 333 | | 91.79 64 | 94.42 63 | 61.76 257 | 92.93 142 | 79.52 110 | 93.03 202 | 93.93 97 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 40 | 81.69 59 | | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
door | | | | | | | | | 72.57 323 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 161 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 134 | | 84.77 137 | | 73.30 168 | 80.55 259 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 134 | | 84.77 137 | | 73.30 168 | 80.55 259 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 139 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 258 | | | 94.61 76 | | | 93.56 117 |
|
HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 170 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 205 | | | | |
|
NP-MVS | | | | | | 91.95 109 | 74.55 123 | | | | | 90.17 194 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 365 | 70.76 323 | | 46.47 348 | 61.27 351 | | 45.20 334 | | 49.18 331 | | 83.75 295 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 132 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 76 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 132 | | | | |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 148 | 84.97 36 | | 90.30 154 | 81.56 69 | 90.02 92 | 91.20 161 | 82.40 92 | 90.81 203 | 73.58 174 | 94.66 166 | 94.56 72 |
|
DeepMVS_CX |  | | | | 24.13 346 | 32.95 366 | 29.49 364 | | 21.63 369 | 12.07 362 | 37.95 363 | 45.07 361 | 30.84 362 | 19.21 364 | 17.94 363 | 33.06 363 | 23.69 360 |
|