Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 126 | 71.24 62 | 88.43 119 | 92.05 86 | 82.50 1 | 86.88 32 | 90.09 123 | 74.45 26 | 95.61 59 | 84.38 39 | 90.63 92 | 94.01 41 |
|
UA-Net | | | 85.08 67 | 84.96 66 | 85.45 75 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 130 | 82.48 2 | 84.60 63 | 93.20 60 | 69.35 73 | 95.22 81 | 71.39 158 | 90.88 90 | 93.07 85 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 126 | 70.93 70 | 88.43 119 | 91.39 115 | 82.14 3 | 86.65 34 | 90.09 123 | 74.39 29 | 95.01 91 | 83.97 47 | 90.63 92 | 93.97 43 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 106 | 70.94 69 | 89.70 84 | 92.59 65 | 81.78 4 | 81.32 105 | 91.43 94 | 70.34 62 | 97.23 9 | 84.26 42 | 93.36 65 | 94.37 25 |
|
Regformer-4 | | | 85.68 56 | 85.45 57 | 86.35 59 | 88.95 143 | 69.67 95 | 88.29 129 | 91.29 117 | 81.73 5 | 85.36 45 | 90.01 126 | 72.62 44 | 95.35 79 | 83.28 53 | 87.57 125 | 94.03 39 |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 48 | 92.83 54 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
EPNet | | | 83.72 75 | 82.92 83 | 86.14 66 | 84.22 245 | 69.48 99 | 91.05 51 | 85.27 250 | 81.30 7 | 76.83 173 | 91.65 85 | 66.09 102 | 95.56 61 | 76.00 120 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Regformer-3 | | | 85.23 63 | 85.07 64 | 85.70 73 | 88.95 143 | 69.01 107 | 88.29 129 | 89.91 155 | 80.95 8 | 85.01 49 | 90.01 126 | 72.45 45 | 94.19 120 | 82.50 67 | 87.57 125 | 93.90 47 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 60 | 93.00 42 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 71 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 178 | 93.37 57 | 60.40 183 | 96.75 22 | 77.20 108 | 93.73 63 | 95.29 2 |
|
TranMVSNet+NR-MVSNet | | | 80.84 123 | 80.31 122 | 82.42 180 | 87.85 181 | 62.33 235 | 87.74 146 | 91.33 116 | 80.55 11 | 77.99 151 | 89.86 128 | 65.23 111 | 92.62 186 | 67.05 199 | 75.24 280 | 92.30 111 |
|
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
UniMVSNet_NR-MVSNet | | | 81.88 103 | 81.54 103 | 82.92 164 | 88.46 163 | 63.46 217 | 87.13 159 | 92.37 72 | 80.19 14 | 78.38 141 | 89.14 148 | 71.66 53 | 93.05 176 | 70.05 169 | 76.46 255 | 92.25 113 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
EI-MVSNet-Vis-set | | | 84.19 71 | 83.81 73 | 85.31 77 | 88.18 171 | 67.85 135 | 87.66 147 | 89.73 160 | 80.05 16 | 82.95 85 | 89.59 137 | 70.74 60 | 94.82 100 | 80.66 81 | 84.72 161 | 93.28 77 |
|
ETV-MVS | | | 84.90 70 | 84.67 70 | 85.59 74 | 89.39 124 | 68.66 121 | 88.74 111 | 92.64 64 | 79.97 17 | 84.10 71 | 85.71 240 | 69.32 74 | 95.38 75 | 80.82 78 | 91.37 84 | 92.72 95 |
|
EI-MVSNet-UG-set | | | 83.81 73 | 83.38 76 | 85.09 84 | 87.87 180 | 67.53 141 | 87.44 153 | 89.66 162 | 79.74 18 | 82.23 94 | 89.41 146 | 70.24 64 | 94.74 103 | 79.95 85 | 83.92 169 | 92.99 90 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 70 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 178 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 78 | 94.17 38 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 140 | 77.83 174 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 78 | 12.47 362 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
HQP_MVS | | | 83.64 76 | 83.14 78 | 85.14 82 | 90.08 107 | 68.71 117 | 91.25 46 | 92.44 68 | 79.12 23 | 78.92 130 | 91.00 107 | 60.42 181 | 95.38 75 | 78.71 91 | 86.32 146 | 91.33 139 |
|
plane_prior2 | | | | | | | | 91.25 46 | | 79.12 23 | | | | | | | |
|
IS-MVSNet | | | 83.15 84 | 82.81 84 | 84.18 116 | 89.94 110 | 63.30 221 | 91.59 39 | 88.46 202 | 79.04 25 | 79.49 123 | 92.16 76 | 65.10 112 | 94.28 113 | 67.71 189 | 91.86 79 | 94.95 5 |
|
DU-MVS | | | 81.12 119 | 80.52 118 | 82.90 165 | 87.80 183 | 63.46 217 | 87.02 163 | 91.87 98 | 79.01 26 | 78.38 141 | 89.07 151 | 65.02 113 | 93.05 176 | 70.05 169 | 76.46 255 | 92.20 115 |
|
NR-MVSNet | | | 80.23 142 | 79.38 140 | 82.78 173 | 87.80 183 | 63.34 220 | 86.31 185 | 91.09 125 | 79.01 26 | 72.17 249 | 89.07 151 | 67.20 91 | 92.81 185 | 66.08 206 | 75.65 266 | 92.20 115 |
|
DELS-MVS | | | 85.41 60 | 85.30 61 | 85.77 72 | 88.49 161 | 67.93 134 | 85.52 210 | 93.44 27 | 78.70 28 | 83.63 80 | 89.03 153 | 74.57 25 | 95.71 58 | 80.26 84 | 94.04 61 | 93.66 58 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
WR-MVS | | | 79.49 155 | 79.22 145 | 80.27 226 | 88.79 151 | 58.35 274 | 85.06 215 | 88.61 200 | 78.56 29 | 77.65 156 | 88.34 170 | 63.81 124 | 90.66 245 | 64.98 215 | 77.22 243 | 91.80 128 |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 130 | | | | | | |
|
UniMVSNet (Re) | | | 81.60 111 | 81.11 108 | 83.09 155 | 88.38 166 | 64.41 198 | 87.60 148 | 93.02 41 | 78.42 31 | 78.56 137 | 88.16 176 | 69.78 69 | 93.26 163 | 69.58 176 | 76.49 254 | 91.60 130 |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
CS-MVS | | | 85.32 62 | 85.66 54 | 84.30 112 | 88.28 169 | 65.31 181 | 91.18 49 | 93.48 26 | 78.06 33 | 83.14 84 | 90.53 115 | 69.93 67 | 95.45 68 | 82.96 58 | 93.40 64 | 92.15 118 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 37 | 93.19 35 | 77.87 34 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 139 | 87.63 14 | 94.27 59 | 93.65 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
casdiffmvs | | | 85.11 66 | 85.14 63 | 85.01 86 | 87.20 202 | 65.77 172 | 87.75 145 | 92.83 54 | 77.84 35 | 84.36 68 | 92.38 74 | 72.15 48 | 93.93 133 | 81.27 74 | 90.48 94 | 95.33 1 |
|
CP-MVSNet | | | 78.22 186 | 78.34 162 | 77.84 263 | 87.83 182 | 54.54 318 | 87.94 141 | 91.17 122 | 77.65 36 | 73.48 234 | 88.49 166 | 62.24 149 | 88.43 278 | 62.19 234 | 74.07 288 | 90.55 165 |
|
plane_prior | | | | | | | 68.71 117 | 90.38 67 | | 77.62 37 | | | | | | 86.16 149 | |
|
baseline | | | 84.93 68 | 84.98 65 | 84.80 96 | 87.30 200 | 65.39 179 | 87.30 156 | 92.88 51 | 77.62 37 | 84.04 73 | 92.26 75 | 71.81 50 | 93.96 127 | 81.31 73 | 90.30 96 | 95.03 4 |
|
VDD-MVS | | | 83.01 89 | 82.36 90 | 84.96 88 | 91.02 89 | 66.40 159 | 88.91 102 | 88.11 205 | 77.57 39 | 84.39 67 | 93.29 59 | 52.19 238 | 93.91 134 | 77.05 110 | 88.70 115 | 94.57 21 |
|
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 63 | 77.57 39 | 83.84 75 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 65 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PEN-MVS | | | 77.73 200 | 77.69 181 | 77.84 263 | 87.07 205 | 53.91 323 | 87.91 143 | 91.18 121 | 77.56 41 | 73.14 238 | 88.82 157 | 61.23 167 | 89.17 266 | 59.95 253 | 72.37 303 | 90.43 169 |
|
OPM-MVS | | | 83.50 78 | 82.95 82 | 85.14 82 | 88.79 151 | 70.95 68 | 89.13 97 | 91.52 109 | 77.55 42 | 80.96 112 | 91.75 83 | 60.71 175 | 94.50 109 | 79.67 87 | 86.51 144 | 89.97 194 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 30 | 77.53 43 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
PS-CasMVS | | | 78.01 195 | 78.09 167 | 77.77 265 | 87.71 187 | 54.39 320 | 88.02 137 | 91.22 119 | 77.50 44 | 73.26 236 | 88.64 161 | 60.73 174 | 88.41 279 | 61.88 238 | 73.88 292 | 90.53 166 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 78 | 70.24 82 | 90.71 56 | 92.86 52 | 77.46 45 | 84.22 69 | 92.81 72 | 67.16 92 | 92.94 180 | 80.36 82 | 94.35 57 | 90.16 178 |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 58 | 77.33 46 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 46 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 48 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 48 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
3Dnovator | | 76.31 5 | 83.38 82 | 82.31 91 | 86.59 57 | 87.94 179 | 72.94 27 | 90.64 57 | 92.14 84 | 77.21 50 | 75.47 203 | 92.83 70 | 58.56 190 | 94.72 104 | 73.24 145 | 92.71 71 | 92.13 119 |
|
test_part1 | | | 82.78 91 | 82.08 95 | 84.89 92 | 90.66 95 | 66.97 153 | 90.96 52 | 92.93 50 | 77.19 51 | 80.53 116 | 90.04 125 | 63.44 125 | 95.39 74 | 76.04 119 | 76.90 247 | 92.31 110 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
WR-MVS_H | | | 78.51 180 | 78.49 156 | 78.56 253 | 88.02 177 | 56.38 306 | 88.43 119 | 92.67 60 | 77.14 53 | 73.89 232 | 87.55 190 | 66.25 100 | 89.24 265 | 58.92 263 | 73.55 295 | 90.06 188 |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 68 | 93.94 15 | 77.12 54 | 82.82 89 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 81.52 112 | 82.02 97 | 80.03 229 | 88.42 165 | 55.97 311 | 87.95 140 | 93.42 29 | 77.10 55 | 77.38 161 | 90.98 109 | 69.96 66 | 91.79 215 | 68.46 185 | 84.50 163 | 92.33 108 |
|
DTE-MVSNet | | | 76.99 213 | 76.80 199 | 77.54 270 | 86.24 215 | 53.06 330 | 87.52 150 | 90.66 132 | 77.08 56 | 72.50 244 | 88.67 160 | 60.48 180 | 89.52 260 | 57.33 279 | 70.74 314 | 90.05 189 |
|
LFMVS | | | 81.82 105 | 81.23 106 | 83.57 137 | 91.89 79 | 63.43 219 | 89.84 77 | 81.85 296 | 77.04 57 | 83.21 81 | 93.10 62 | 52.26 237 | 93.43 159 | 71.98 153 | 89.95 103 | 93.85 49 |
|
UGNet | | | 80.83 125 | 79.59 135 | 84.54 101 | 88.04 176 | 68.09 131 | 89.42 87 | 88.16 204 | 76.95 58 | 76.22 188 | 89.46 142 | 49.30 275 | 93.94 130 | 68.48 184 | 90.31 95 | 91.60 130 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FIs | | | 82.07 100 | 82.42 87 | 81.04 212 | 88.80 150 | 58.34 275 | 88.26 131 | 93.49 24 | 76.93 59 | 78.47 140 | 91.04 104 | 69.92 68 | 92.34 197 | 69.87 173 | 84.97 158 | 92.44 107 |
|
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 28 | 76.89 60 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 80 | 76.87 61 | 82.81 90 | 94.25 36 | 66.44 97 | 96.24 39 | 82.88 60 | 94.28 58 | 93.38 72 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 62 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
VPNet | | | 78.69 176 | 78.66 153 | 78.76 250 | 88.31 168 | 55.72 313 | 84.45 232 | 86.63 235 | 76.79 63 | 78.26 144 | 90.55 114 | 59.30 186 | 89.70 258 | 66.63 201 | 77.05 245 | 90.88 153 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 32 | 76.78 64 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 58 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 34 | 76.78 64 | 84.66 61 | 94.52 21 | 68.81 79 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
ACMMP |  | | 85.89 52 | 85.39 58 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 36 | 76.78 64 | 80.73 114 | 93.82 50 | 64.33 118 | 96.29 37 | 82.67 66 | 90.69 91 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 37 | 76.73 67 | 84.45 64 | 94.52 21 | 69.09 76 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 112 | 69.44 103 | 90.45 66 | 93.00 42 | 76.70 68 | 88.01 25 | 91.23 97 | 73.28 38 | 93.91 134 | 81.50 72 | 88.80 113 | 94.77 14 |
|
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 69 | 83.68 77 | 94.46 25 | 67.93 83 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 45 | 93.04 38 | 76.62 69 | 84.22 69 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 78 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 85.71 55 | 85.33 59 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 225 | 76.41 71 | 85.80 40 | 90.22 121 | 74.15 34 | 95.37 78 | 81.82 70 | 91.88 76 | 92.65 100 |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 166 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 92 | | 76.41 71 | 77.23 166 | | | | | | |
|
HQP-MVS | | | 82.61 94 | 82.02 97 | 84.37 107 | 89.33 126 | 66.98 151 | 89.17 92 | 92.19 82 | 76.41 71 | 77.23 166 | 90.23 120 | 60.17 184 | 95.11 85 | 77.47 105 | 85.99 152 | 91.03 148 |
|
CANet_DTU | | | 80.61 133 | 79.87 128 | 82.83 167 | 85.60 224 | 63.17 226 | 87.36 154 | 88.65 198 | 76.37 75 | 75.88 197 | 88.44 168 | 53.51 228 | 93.07 175 | 73.30 143 | 89.74 105 | 92.25 113 |
|
VNet | | | 82.21 97 | 82.41 88 | 81.62 194 | 90.82 93 | 60.93 251 | 84.47 229 | 89.78 157 | 76.36 76 | 84.07 72 | 91.88 82 | 64.71 117 | 90.26 248 | 70.68 163 | 88.89 111 | 93.66 58 |
|
Vis-MVSNet |  | | 83.46 79 | 82.80 85 | 85.43 76 | 90.25 103 | 68.74 115 | 90.30 69 | 90.13 149 | 76.33 77 | 80.87 113 | 92.89 68 | 61.00 172 | 94.20 119 | 72.45 152 | 90.97 88 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 53 | 93.59 21 | 76.27 78 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
alignmvs | | | 85.48 57 | 85.32 60 | 85.96 71 | 89.51 119 | 69.47 100 | 89.74 82 | 92.47 67 | 76.17 79 | 87.73 28 | 91.46 93 | 70.32 63 | 93.78 139 | 81.51 71 | 88.95 110 | 94.63 18 |
|
MVS_111021_HR | | | 85.14 65 | 84.75 69 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 193 | 90.33 143 | 76.11 80 | 82.08 95 | 91.61 88 | 71.36 55 | 94.17 122 | 81.02 75 | 92.58 73 | 92.08 120 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 29 | 93.33 31 | 76.07 81 | 83.81 76 | 93.95 48 | 69.77 70 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
hse-mvs3 | | | 83.15 84 | 82.19 92 | 86.02 70 | 90.56 97 | 70.85 73 | 88.15 136 | 89.16 177 | 76.02 82 | 84.67 59 | 91.39 95 | 61.54 158 | 95.50 65 | 82.71 63 | 75.48 270 | 91.72 129 |
|
hse-mvs2 | | | 81.72 106 | 80.94 112 | 84.07 120 | 88.72 154 | 67.68 139 | 85.87 197 | 87.26 226 | 76.02 82 | 84.67 59 | 88.22 175 | 61.54 158 | 93.48 155 | 82.71 63 | 73.44 297 | 91.06 146 |
|
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 39 | 94.10 8 | 75.90 84 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CLD-MVS | | | 82.31 96 | 81.65 102 | 84.29 113 | 88.47 162 | 67.73 138 | 85.81 201 | 92.35 73 | 75.78 85 | 78.33 143 | 86.58 223 | 64.01 121 | 94.35 111 | 76.05 118 | 87.48 130 | 90.79 155 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 86 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
testdata1 | | | | | | | | 84.14 239 | | 75.71 86 | | | | | | | |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 88 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
VPA-MVSNet | | | 80.60 134 | 80.55 117 | 80.76 217 | 88.07 175 | 60.80 254 | 86.86 168 | 91.58 108 | 75.67 89 | 80.24 118 | 89.45 144 | 63.34 127 | 90.25 249 | 70.51 165 | 79.22 228 | 91.23 142 |
|
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 38 | 75.53 90 | 83.86 74 | 94.42 31 | 67.87 85 | 96.64 27 | 82.70 65 | 94.57 51 | 93.66 58 |
|
Effi-MVS+ | | | 83.62 77 | 83.08 79 | 85.24 80 | 88.38 166 | 67.45 142 | 88.89 103 | 89.15 178 | 75.50 91 | 82.27 93 | 88.28 172 | 69.61 71 | 94.45 110 | 77.81 102 | 87.84 123 | 93.84 51 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 96 | 88.85 105 | 92.97 47 | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 50 | 95.86 18 | 93.91 45 |
|
test_prior2 | | | | | | | | 88.85 105 | | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
LPG-MVS_test | | | 82.08 99 | 81.27 105 | 84.50 102 | 89.23 134 | 68.76 113 | 90.22 71 | 91.94 94 | 75.37 94 | 76.64 179 | 91.51 90 | 54.29 221 | 94.91 94 | 78.44 95 | 83.78 170 | 89.83 199 |
|
LGP-MVS_train | | | | | 84.50 102 | 89.23 134 | 68.76 113 | | 91.94 94 | 75.37 94 | 76.64 179 | 91.51 90 | 54.29 221 | 94.91 94 | 78.44 95 | 83.78 170 | 89.83 199 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 32 | 75.23 96 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 58 |
|
MG-MVS | | | 83.41 80 | 83.45 75 | 83.28 145 | 92.74 66 | 62.28 237 | 88.17 134 | 89.50 165 | 75.22 97 | 81.49 104 | 92.74 73 | 66.75 93 | 95.11 85 | 72.85 148 | 91.58 81 | 92.45 106 |
|
LCM-MVSNet-Re | | | 77.05 212 | 76.94 196 | 77.36 271 | 87.20 202 | 51.60 334 | 80.06 285 | 80.46 309 | 75.20 98 | 67.69 290 | 86.72 212 | 62.48 143 | 88.98 270 | 63.44 223 | 89.25 109 | 91.51 133 |
|
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 23 | 75.17 99 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 91 | 91.79 38 | 92.28 75 | 75.07 100 | 86.40 35 | 94.58 20 | 65.00 115 | 95.56 61 | 84.34 41 | 92.60 72 | 92.90 92 |
|
Effi-MVS+-dtu | | | 80.03 146 | 78.57 155 | 84.42 105 | 85.13 233 | 68.74 115 | 88.77 108 | 88.10 206 | 74.99 101 | 74.97 222 | 83.49 276 | 57.27 202 | 93.36 160 | 73.53 138 | 80.88 205 | 91.18 143 |
|
mvs-test1 | | | 80.88 121 | 79.40 139 | 85.29 78 | 85.13 233 | 69.75 94 | 89.28 89 | 88.10 206 | 74.99 101 | 76.44 184 | 86.72 212 | 57.27 202 | 94.26 118 | 73.53 138 | 83.18 181 | 91.87 124 |
|
OMC-MVS | | | 82.69 92 | 81.97 99 | 84.85 93 | 88.75 153 | 67.42 143 | 87.98 138 | 90.87 129 | 74.92 103 | 79.72 121 | 91.65 85 | 62.19 150 | 93.96 127 | 75.26 127 | 86.42 145 | 93.16 83 |
|
nrg030 | | | 83.88 72 | 83.53 74 | 84.96 88 | 86.77 210 | 69.28 104 | 90.46 65 | 92.67 60 | 74.79 104 | 82.95 85 | 91.33 96 | 72.70 43 | 93.09 174 | 80.79 80 | 79.28 227 | 92.50 103 |
|
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 105 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 24 | 74.75 106 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
MVS_111021_LR | | | 82.61 94 | 82.11 93 | 84.11 117 | 88.82 148 | 71.58 56 | 85.15 213 | 86.16 242 | 74.69 107 | 80.47 117 | 91.04 104 | 62.29 147 | 90.55 246 | 80.33 83 | 90.08 101 | 90.20 177 |
|
EIA-MVS | | | 83.31 83 | 82.80 85 | 84.82 94 | 89.59 115 | 65.59 174 | 88.21 132 | 92.68 59 | 74.66 108 | 78.96 128 | 86.42 228 | 69.06 77 | 95.26 80 | 75.54 125 | 90.09 100 | 93.62 65 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 44 | 92.35 73 | 74.62 109 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 66 | 74.50 110 | 86.84 33 | 94.65 18 | 67.31 90 | 95.77 56 | 84.80 34 | 92.85 69 | 92.84 94 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 43 | 94.70 3 | 74.47 111 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
ACMP | | 74.13 6 | 81.51 114 | 80.57 116 | 84.36 108 | 89.42 122 | 68.69 120 | 89.97 76 | 91.50 113 | 74.46 112 | 75.04 221 | 90.41 117 | 53.82 226 | 94.54 106 | 77.56 104 | 82.91 184 | 89.86 198 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 100 | 90.13 105 | 64.47 196 | 92.32 26 | 90.73 131 | 74.45 113 | 79.35 125 | 91.10 101 | 69.05 78 | 95.12 84 | 72.78 149 | 87.22 133 | 94.13 34 |
|
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 63 | 89.69 161 | 74.31 114 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 63 | 91.17 122 | 74.31 114 | | | | | | | |
|
MVS_Test | | | 83.15 84 | 83.06 80 | 83.41 142 | 86.86 206 | 63.21 223 | 86.11 191 | 92.00 90 | 74.31 114 | 82.87 87 | 89.44 145 | 70.03 65 | 93.21 164 | 77.39 107 | 88.50 119 | 93.81 53 |
|
UniMVSNet_ETH3D | | | 79.10 167 | 78.24 165 | 81.70 193 | 86.85 207 | 60.24 261 | 87.28 157 | 88.79 191 | 74.25 117 | 76.84 172 | 90.53 115 | 49.48 272 | 91.56 221 | 67.98 187 | 82.15 193 | 93.29 76 |
|
IterMVS-LS | | | 80.06 145 | 79.38 140 | 82.11 184 | 85.89 219 | 63.20 224 | 86.79 171 | 89.34 168 | 74.19 118 | 75.45 206 | 86.72 212 | 66.62 94 | 92.39 194 | 72.58 150 | 76.86 249 | 90.75 157 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 80.52 137 | 79.98 126 | 82.12 183 | 84.28 243 | 63.19 225 | 86.41 182 | 88.95 188 | 74.18 119 | 78.69 133 | 87.54 191 | 66.62 94 | 92.43 192 | 72.57 151 | 80.57 211 | 90.74 158 |
|
Vis-MVSNet (Re-imp) | | | 78.36 184 | 78.45 157 | 78.07 261 | 88.64 157 | 51.78 333 | 86.70 175 | 79.63 317 | 74.14 120 | 75.11 218 | 90.83 110 | 61.29 166 | 89.75 256 | 58.10 272 | 91.60 80 | 92.69 98 |
|
v8 | | | 79.97 148 | 79.02 148 | 82.80 170 | 84.09 247 | 64.50 195 | 87.96 139 | 90.29 146 | 74.13 121 | 75.24 215 | 86.81 209 | 62.88 138 | 93.89 136 | 74.39 131 | 75.40 274 | 90.00 190 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 54 | 93.56 22 | 73.95 122 | 83.16 83 | 91.07 103 | 75.94 15 | 95.19 82 | 79.94 86 | 94.38 56 | 93.55 68 |
|
thres100view900 | | | 76.50 220 | 75.55 216 | 79.33 242 | 89.52 118 | 56.99 295 | 85.83 200 | 83.23 280 | 73.94 123 | 76.32 186 | 87.12 204 | 51.89 246 | 91.95 210 | 48.33 320 | 83.75 172 | 89.07 214 |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 42 | 94.75 1 | 73.93 124 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 55 | 86.77 20 | 95.76 24 | |
|
HPM-MVS_fast | | | 85.35 61 | 84.95 67 | 86.57 58 | 93.69 43 | 70.58 80 | 92.15 31 | 91.62 106 | 73.89 125 | 82.67 92 | 94.09 42 | 62.60 140 | 95.54 64 | 80.93 76 | 92.93 67 | 93.57 67 |
|
PAPM_NR | | | 83.02 88 | 82.41 88 | 84.82 94 | 92.47 72 | 66.37 160 | 87.93 142 | 91.80 100 | 73.82 126 | 77.32 163 | 90.66 112 | 67.90 84 | 94.90 96 | 70.37 166 | 89.48 107 | 93.19 82 |
|
thres600view7 | | | 76.50 220 | 75.44 218 | 79.68 236 | 89.40 123 | 57.16 292 | 85.53 208 | 83.23 280 | 73.79 127 | 76.26 187 | 87.09 205 | 51.89 246 | 91.89 213 | 48.05 325 | 83.72 175 | 90.00 190 |
|
v7n | | | 78.97 171 | 77.58 184 | 83.14 153 | 83.45 258 | 65.51 175 | 88.32 127 | 91.21 120 | 73.69 128 | 72.41 246 | 86.32 231 | 57.93 193 | 93.81 138 | 69.18 179 | 75.65 266 | 90.11 182 |
|
v2v482 | | | 80.23 142 | 79.29 143 | 83.05 158 | 83.62 255 | 64.14 202 | 87.04 162 | 89.97 152 | 73.61 129 | 78.18 147 | 87.22 200 | 61.10 170 | 93.82 137 | 76.11 117 | 76.78 252 | 91.18 143 |
|
Baseline_NR-MVSNet | | | 78.15 190 | 78.33 163 | 77.61 268 | 85.79 220 | 56.21 309 | 86.78 172 | 85.76 246 | 73.60 130 | 77.93 152 | 87.57 189 | 65.02 113 | 88.99 269 | 67.14 198 | 75.33 276 | 87.63 254 |
|
BH-RMVSNet | | | 79.61 152 | 78.44 158 | 83.14 153 | 89.38 125 | 65.93 167 | 84.95 218 | 87.15 228 | 73.56 131 | 78.19 146 | 89.79 130 | 56.67 207 | 93.36 160 | 59.53 257 | 86.74 140 | 90.13 180 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 98 | 91.93 33 | 92.99 44 | 73.54 132 | 85.94 37 | 94.51 24 | 65.80 107 | 95.61 59 | 83.04 57 | 92.51 74 | 93.53 70 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 55 | 86.23 63 | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 133 | 85.69 42 | 94.45 26 | 65.00 115 | 95.56 61 | 82.75 61 | 91.87 77 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 56 | | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 133 | 85.69 42 | 94.45 26 | 63.87 122 | | 82.75 61 | 91.87 77 | 92.50 103 |
|
abl_6 | | | 85.23 63 | 84.95 67 | 86.07 68 | 92.23 74 | 70.48 81 | 90.80 55 | 92.08 85 | 73.51 135 | 85.26 46 | 94.16 39 | 62.75 139 | 95.92 53 | 82.46 68 | 91.30 86 | 91.81 127 |
|
tfpn200view9 | | | 76.42 223 | 75.37 222 | 79.55 241 | 89.13 138 | 57.65 287 | 85.17 211 | 83.60 271 | 73.41 136 | 76.45 181 | 86.39 229 | 52.12 239 | 91.95 210 | 48.33 320 | 83.75 172 | 89.07 214 |
|
thres400 | | | 76.50 220 | 75.37 222 | 79.86 232 | 89.13 138 | 57.65 287 | 85.17 211 | 83.60 271 | 73.41 136 | 76.45 181 | 86.39 229 | 52.12 239 | 91.95 210 | 48.33 320 | 83.75 172 | 90.00 190 |
|
v148 | | | 78.72 175 | 77.80 175 | 81.47 198 | 82.73 278 | 61.96 241 | 86.30 186 | 88.08 208 | 73.26 138 | 76.18 190 | 85.47 247 | 62.46 144 | 92.36 196 | 71.92 154 | 73.82 293 | 90.09 184 |
|
v10 | | | 79.74 151 | 78.67 152 | 82.97 163 | 84.06 248 | 64.95 187 | 87.88 144 | 90.62 133 | 73.11 139 | 75.11 218 | 86.56 224 | 61.46 161 | 94.05 126 | 73.68 136 | 75.55 268 | 89.90 196 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 140 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
baseline1 | | | 76.98 214 | 76.75 203 | 77.66 266 | 88.13 172 | 55.66 314 | 85.12 214 | 81.89 294 | 73.04 141 | 76.79 174 | 88.90 154 | 62.43 145 | 87.78 286 | 63.30 225 | 71.18 312 | 89.55 208 |
|
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 36 | 92.83 54 | 73.01 142 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
diffmvs | | | 82.10 98 | 81.88 100 | 82.76 175 | 83.00 271 | 63.78 209 | 83.68 245 | 89.76 158 | 72.94 143 | 82.02 96 | 89.85 129 | 65.96 106 | 90.79 242 | 82.38 69 | 87.30 132 | 93.71 57 |
|
K. test v3 | | | 71.19 271 | 68.51 279 | 79.21 245 | 83.04 270 | 57.78 286 | 84.35 236 | 76.91 330 | 72.90 144 | 62.99 327 | 82.86 283 | 39.27 329 | 91.09 237 | 61.65 241 | 52.66 348 | 88.75 233 |
|
Fast-Effi-MVS+-dtu | | | 78.02 194 | 76.49 207 | 82.62 177 | 83.16 267 | 66.96 154 | 86.94 165 | 87.45 223 | 72.45 145 | 71.49 256 | 84.17 265 | 54.79 217 | 91.58 220 | 67.61 190 | 80.31 214 | 89.30 212 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 27 | 94.07 9 | 72.45 145 | 85.22 48 | 91.90 81 | 69.47 72 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
thres200 | | | 75.55 234 | 74.47 232 | 78.82 249 | 87.78 186 | 57.85 284 | 83.07 258 | 83.51 274 | 72.44 147 | 75.84 198 | 84.42 262 | 52.08 241 | 91.75 216 | 47.41 327 | 83.64 176 | 86.86 275 |
|
test_yl | | | 81.17 117 | 80.47 119 | 83.24 148 | 89.13 138 | 63.62 210 | 86.21 188 | 89.95 153 | 72.43 148 | 81.78 101 | 89.61 135 | 57.50 199 | 93.58 148 | 70.75 161 | 86.90 137 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 117 | 80.47 119 | 83.24 148 | 89.13 138 | 63.62 210 | 86.21 188 | 89.95 153 | 72.43 148 | 81.78 101 | 89.61 135 | 57.50 199 | 93.58 148 | 70.75 161 | 86.90 137 | 92.52 101 |
|
RRT_MVS | | | 79.88 149 | 78.38 160 | 84.38 106 | 85.42 227 | 70.60 79 | 88.71 113 | 88.75 196 | 72.30 150 | 78.83 132 | 89.14 148 | 44.44 305 | 92.18 203 | 78.50 94 | 79.33 226 | 90.35 172 |
|
BH-untuned | | | 79.47 156 | 78.60 154 | 82.05 186 | 89.19 136 | 65.91 168 | 86.07 192 | 88.52 201 | 72.18 151 | 75.42 207 | 87.69 186 | 61.15 169 | 93.54 152 | 60.38 250 | 86.83 139 | 86.70 279 |
|
TransMVSNet (Re) | | | 75.39 238 | 74.56 230 | 77.86 262 | 85.50 226 | 57.10 294 | 86.78 172 | 86.09 244 | 72.17 152 | 71.53 255 | 87.34 195 | 63.01 137 | 89.31 264 | 56.84 283 | 61.83 336 | 87.17 267 |
|
GA-MVS | | | 76.87 216 | 75.17 225 | 81.97 189 | 82.75 277 | 62.58 232 | 81.44 274 | 86.35 240 | 72.16 153 | 74.74 225 | 82.89 282 | 46.20 294 | 92.02 208 | 68.85 183 | 81.09 203 | 91.30 141 |
|
RRT_test8_iter05 | | | 78.38 183 | 77.40 186 | 81.34 203 | 86.00 218 | 58.86 270 | 86.55 180 | 91.26 118 | 72.13 154 | 75.91 195 | 87.42 194 | 44.97 302 | 93.73 145 | 77.02 111 | 75.30 277 | 91.45 138 |
|
v1144 | | | 80.03 146 | 79.03 147 | 83.01 160 | 83.78 253 | 64.51 193 | 87.11 161 | 90.57 135 | 71.96 155 | 78.08 150 | 86.20 233 | 61.41 162 | 93.94 130 | 74.93 128 | 77.23 242 | 90.60 163 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 156 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
PS-MVSNAJss | | | 82.07 100 | 81.31 104 | 84.34 110 | 86.51 213 | 67.27 147 | 89.27 90 | 91.51 110 | 71.75 157 | 79.37 124 | 90.22 121 | 63.15 133 | 94.27 114 | 77.69 103 | 82.36 192 | 91.49 135 |
|
EPNet_dtu | | | 75.46 235 | 74.86 226 | 77.23 275 | 82.57 282 | 54.60 317 | 86.89 167 | 83.09 284 | 71.64 158 | 66.25 308 | 85.86 238 | 55.99 209 | 88.04 283 | 54.92 290 | 86.55 143 | 89.05 219 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GBi-Net | | | 78.40 181 | 77.40 186 | 81.40 200 | 87.60 190 | 63.01 227 | 88.39 123 | 89.28 170 | 71.63 159 | 75.34 210 | 87.28 196 | 54.80 214 | 91.11 232 | 62.72 228 | 79.57 220 | 90.09 184 |
|
test1 | | | 78.40 181 | 77.40 186 | 81.40 200 | 87.60 190 | 63.01 227 | 88.39 123 | 89.28 170 | 71.63 159 | 75.34 210 | 87.28 196 | 54.80 214 | 91.11 232 | 62.72 228 | 79.57 220 | 90.09 184 |
|
FMVSNet2 | | | 78.20 188 | 77.21 190 | 81.20 207 | 87.60 190 | 62.89 231 | 87.47 152 | 89.02 183 | 71.63 159 | 75.29 214 | 87.28 196 | 54.80 214 | 91.10 235 | 62.38 232 | 79.38 224 | 89.61 206 |
|
V42 | | | 79.38 161 | 78.24 165 | 82.83 167 | 81.10 306 | 65.50 176 | 85.55 206 | 89.82 156 | 71.57 162 | 78.21 145 | 86.12 234 | 60.66 177 | 93.18 169 | 75.64 122 | 75.46 272 | 89.81 201 |
|
API-MVS | | | 81.99 102 | 81.23 106 | 84.26 114 | 90.94 90 | 70.18 88 | 91.10 50 | 89.32 169 | 71.51 163 | 78.66 135 | 88.28 172 | 65.26 110 | 95.10 88 | 64.74 217 | 91.23 87 | 87.51 258 |
|
tttt0517 | | | 79.40 159 | 77.91 171 | 83.90 132 | 88.10 174 | 63.84 207 | 88.37 126 | 84.05 266 | 71.45 164 | 76.78 175 | 89.12 150 | 49.93 269 | 94.89 97 | 70.18 168 | 83.18 181 | 92.96 91 |
|
pm-mvs1 | | | 77.25 210 | 76.68 205 | 78.93 248 | 84.22 245 | 58.62 273 | 86.41 182 | 88.36 203 | 71.37 165 | 73.31 235 | 88.01 182 | 61.22 168 | 89.15 267 | 64.24 219 | 73.01 300 | 89.03 220 |
|
GeoE | | | 81.71 107 | 81.01 111 | 83.80 133 | 89.51 119 | 64.45 197 | 88.97 100 | 88.73 197 | 71.27 166 | 78.63 136 | 89.76 131 | 66.32 99 | 93.20 166 | 69.89 172 | 86.02 151 | 93.74 56 |
|
FMVSNet3 | | | 77.88 198 | 76.85 198 | 80.97 213 | 86.84 208 | 62.36 234 | 86.52 181 | 88.77 192 | 71.13 167 | 75.34 210 | 86.66 219 | 54.07 224 | 91.10 235 | 62.72 228 | 79.57 220 | 89.45 209 |
|
VDDNet | | | 81.52 112 | 80.67 115 | 84.05 122 | 90.44 100 | 64.13 203 | 89.73 83 | 85.91 245 | 71.11 168 | 83.18 82 | 93.48 54 | 50.54 261 | 93.49 154 | 73.40 142 | 88.25 121 | 94.54 22 |
|
XVG-OURS | | | 80.41 138 | 79.23 144 | 83.97 129 | 85.64 223 | 69.02 106 | 83.03 259 | 90.39 138 | 71.09 169 | 77.63 157 | 91.49 92 | 54.62 220 | 91.35 227 | 75.71 121 | 83.47 177 | 91.54 132 |
|
SixPastTwentyTwo | | | 73.37 253 | 71.26 263 | 79.70 235 | 85.08 235 | 57.89 283 | 85.57 202 | 83.56 273 | 71.03 170 | 65.66 310 | 85.88 237 | 42.10 319 | 92.57 188 | 59.11 261 | 63.34 335 | 88.65 236 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 60 | 70.98 171 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
v1192 | | | 79.59 153 | 78.43 159 | 83.07 157 | 83.55 257 | 64.52 192 | 86.93 166 | 90.58 134 | 70.83 172 | 77.78 154 | 85.90 236 | 59.15 187 | 93.94 130 | 73.96 135 | 77.19 244 | 90.76 156 |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 58 | 94.05 13 | 70.80 173 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
Fast-Effi-MVS+ | | | 80.81 126 | 79.92 127 | 83.47 138 | 88.85 145 | 64.51 193 | 85.53 208 | 89.39 167 | 70.79 174 | 78.49 139 | 85.06 256 | 67.54 87 | 93.58 148 | 67.03 200 | 86.58 142 | 92.32 109 |
|
PS-MVSNAJ | | | 81.69 108 | 81.02 110 | 83.70 134 | 89.51 119 | 68.21 130 | 84.28 237 | 90.09 150 | 70.79 174 | 81.26 109 | 85.62 244 | 63.15 133 | 94.29 112 | 75.62 123 | 88.87 112 | 88.59 237 |
|
LTVRE_ROB | | 69.57 13 | 76.25 226 | 74.54 231 | 81.41 199 | 88.60 158 | 64.38 199 | 79.24 293 | 89.12 181 | 70.76 176 | 69.79 277 | 87.86 183 | 49.09 277 | 93.20 166 | 56.21 287 | 80.16 215 | 86.65 280 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
xiu_mvs_v2_base | | | 81.69 108 | 81.05 109 | 83.60 135 | 89.15 137 | 68.03 133 | 84.46 231 | 90.02 151 | 70.67 177 | 81.30 108 | 86.53 226 | 63.17 132 | 94.19 120 | 75.60 124 | 88.54 117 | 88.57 238 |
|
XVG-OURS-SEG-HR | | | 80.81 126 | 79.76 131 | 83.96 130 | 85.60 224 | 68.78 112 | 83.54 251 | 90.50 136 | 70.66 178 | 76.71 177 | 91.66 84 | 60.69 176 | 91.26 229 | 76.94 112 | 81.58 199 | 91.83 125 |
|
Anonymous202405211 | | | 78.25 185 | 77.01 193 | 81.99 188 | 91.03 88 | 60.67 255 | 84.77 221 | 83.90 268 | 70.65 179 | 80.00 119 | 91.20 99 | 41.08 324 | 91.43 225 | 65.21 212 | 85.26 156 | 93.85 49 |
|
DP-MVS Recon | | | 83.11 87 | 82.09 94 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 107 | 92.20 81 | 70.53 180 | 79.17 126 | 91.03 106 | 64.12 120 | 96.03 47 | 68.39 186 | 90.14 99 | 91.50 134 |
|
FMVSNet1 | | | 77.44 206 | 76.12 212 | 81.40 200 | 86.81 209 | 63.01 227 | 88.39 123 | 89.28 170 | 70.49 181 | 74.39 228 | 87.28 196 | 49.06 278 | 91.11 232 | 60.91 247 | 78.52 230 | 90.09 184 |
|
ab-mvs | | | 79.51 154 | 78.97 149 | 81.14 209 | 88.46 163 | 60.91 252 | 83.84 243 | 89.24 174 | 70.36 182 | 79.03 127 | 88.87 156 | 63.23 131 | 90.21 250 | 65.12 213 | 82.57 190 | 92.28 112 |
|
tfpnnormal | | | 74.39 242 | 73.16 245 | 78.08 260 | 86.10 217 | 58.05 278 | 84.65 226 | 87.53 220 | 70.32 183 | 71.22 258 | 85.63 243 | 54.97 213 | 89.86 254 | 43.03 341 | 75.02 281 | 86.32 283 |
|
ACMM | | 73.20 8 | 80.78 131 | 79.84 129 | 83.58 136 | 89.31 131 | 68.37 125 | 89.99 75 | 91.60 107 | 70.28 184 | 77.25 164 | 89.66 133 | 53.37 229 | 93.53 153 | 74.24 133 | 82.85 185 | 88.85 229 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 68.96 14 | 76.01 229 | 74.01 236 | 82.03 187 | 88.60 158 | 65.31 181 | 88.86 104 | 87.55 219 | 70.25 185 | 67.75 289 | 87.47 193 | 41.27 322 | 93.19 168 | 58.37 269 | 75.94 263 | 87.60 255 |
|
IB-MVS | | 68.01 15 | 75.85 231 | 73.36 243 | 83.31 144 | 84.76 237 | 66.03 163 | 83.38 252 | 85.06 252 | 70.21 186 | 69.40 279 | 81.05 300 | 45.76 298 | 94.66 105 | 65.10 214 | 75.49 269 | 89.25 213 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thisisatest0530 | | | 79.40 159 | 77.76 178 | 84.31 111 | 87.69 189 | 65.10 186 | 87.36 154 | 84.26 264 | 70.04 187 | 77.42 160 | 88.26 174 | 49.94 267 | 94.79 102 | 70.20 167 | 84.70 162 | 93.03 87 |
|
v144192 | | | 79.47 156 | 78.37 161 | 82.78 173 | 83.35 259 | 63.96 205 | 86.96 164 | 90.36 142 | 69.99 188 | 77.50 158 | 85.67 242 | 60.66 177 | 93.77 141 | 74.27 132 | 76.58 253 | 90.62 161 |
|
cl_fuxian | | | 78.75 174 | 77.91 171 | 81.26 205 | 82.89 275 | 61.56 246 | 84.09 241 | 89.13 180 | 69.97 189 | 75.56 201 | 84.29 264 | 66.36 98 | 92.09 206 | 73.47 141 | 75.48 270 | 90.12 181 |
|
bset_n11_16_dypcd | | | 77.12 211 | 75.47 217 | 82.06 185 | 81.12 305 | 65.99 165 | 81.37 275 | 83.20 282 | 69.94 190 | 76.09 194 | 83.38 278 | 47.75 283 | 92.26 199 | 78.51 93 | 77.91 236 | 87.95 246 |
|
v1921920 | | | 79.22 163 | 78.03 168 | 82.80 170 | 83.30 261 | 63.94 206 | 86.80 170 | 90.33 143 | 69.91 191 | 77.48 159 | 85.53 245 | 58.44 191 | 93.75 143 | 73.60 137 | 76.85 250 | 90.71 159 |
|
ACMH | | 67.68 16 | 75.89 230 | 73.93 237 | 81.77 192 | 88.71 155 | 66.61 157 | 88.62 115 | 89.01 184 | 69.81 192 | 66.78 301 | 86.70 217 | 41.95 321 | 91.51 224 | 55.64 288 | 78.14 235 | 87.17 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPM-MVS | | | 84.93 68 | 84.29 72 | 86.84 50 | 90.20 104 | 73.04 22 | 87.12 160 | 93.04 38 | 69.80 193 | 82.85 88 | 91.22 98 | 73.06 41 | 96.02 48 | 76.72 115 | 94.63 49 | 91.46 137 |
|
MAR-MVS | | | 81.84 104 | 80.70 114 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 127 | 69.77 194 | 78.50 138 | 86.21 232 | 62.36 146 | 94.52 108 | 65.36 211 | 92.05 75 | 89.77 202 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
XVG-ACMP-BASELINE | | | 76.11 228 | 74.27 235 | 81.62 194 | 83.20 264 | 64.67 191 | 83.60 249 | 89.75 159 | 69.75 195 | 71.85 252 | 87.09 205 | 32.78 346 | 92.11 205 | 69.99 171 | 80.43 213 | 88.09 245 |
|
BH-w/o | | | 78.21 187 | 77.33 189 | 80.84 215 | 88.81 149 | 65.13 185 | 84.87 219 | 87.85 215 | 69.75 195 | 74.52 227 | 84.74 260 | 61.34 164 | 93.11 173 | 58.24 271 | 85.84 154 | 84.27 309 |
|
v1240 | | | 78.99 170 | 77.78 176 | 82.64 176 | 83.21 263 | 63.54 214 | 86.62 177 | 90.30 145 | 69.74 197 | 77.33 162 | 85.68 241 | 57.04 205 | 93.76 142 | 73.13 146 | 76.92 246 | 90.62 161 |
|
ET-MVSNet_ETH3D | | | 78.63 177 | 76.63 206 | 84.64 99 | 86.73 211 | 69.47 100 | 85.01 216 | 84.61 257 | 69.54 198 | 66.51 306 | 86.59 221 | 50.16 264 | 91.75 216 | 76.26 116 | 84.24 167 | 92.69 98 |
|
eth_miper_zixun_eth | | | 77.92 197 | 76.69 204 | 81.61 196 | 83.00 271 | 61.98 240 | 83.15 255 | 89.20 176 | 69.52 199 | 74.86 224 | 84.35 263 | 61.76 154 | 92.56 189 | 71.50 157 | 72.89 301 | 90.28 175 |
|
PVSNet_Blended_VisFu | | | 82.62 93 | 81.83 101 | 84.96 88 | 90.80 94 | 69.76 93 | 88.74 111 | 91.70 105 | 69.39 200 | 78.96 128 | 88.46 167 | 65.47 109 | 94.87 99 | 74.42 130 | 88.57 116 | 90.24 176 |
|
mvs_tets | | | 79.13 166 | 77.77 177 | 83.22 150 | 84.70 238 | 66.37 160 | 89.17 92 | 90.19 147 | 69.38 201 | 75.40 208 | 89.46 142 | 44.17 307 | 93.15 170 | 76.78 114 | 80.70 209 | 90.14 179 |
|
PVSNet_BlendedMVS | | | 80.60 134 | 80.02 125 | 82.36 182 | 88.85 145 | 65.40 177 | 86.16 190 | 92.00 90 | 69.34 202 | 78.11 148 | 86.09 235 | 66.02 104 | 94.27 114 | 71.52 155 | 82.06 194 | 87.39 260 |
|
AdaColmap |  | | 80.58 136 | 79.42 138 | 84.06 121 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 187 | 69.27 203 | 75.70 200 | 89.69 132 | 57.20 204 | 95.77 56 | 63.06 227 | 88.41 120 | 87.50 259 |
|
ITE_SJBPF | | | | | 78.22 258 | 81.77 293 | 60.57 256 | | 83.30 278 | 69.25 204 | 67.54 291 | 87.20 201 | 36.33 339 | 87.28 290 | 54.34 292 | 74.62 285 | 86.80 276 |
|
cl-mvsnet____ | | | 77.72 201 | 76.76 201 | 80.58 219 | 82.49 284 | 60.48 258 | 83.09 256 | 87.87 213 | 69.22 205 | 74.38 229 | 85.22 252 | 62.10 151 | 91.53 222 | 71.09 159 | 75.41 273 | 89.73 204 |
|
cl-mvsnet1 | | | 77.72 201 | 76.76 201 | 80.58 219 | 82.48 285 | 60.48 258 | 83.09 256 | 87.86 214 | 69.22 205 | 74.38 229 | 85.24 251 | 62.10 151 | 91.53 222 | 71.09 159 | 75.40 274 | 89.74 203 |
|
jajsoiax | | | 79.29 162 | 77.96 169 | 83.27 146 | 84.68 239 | 66.57 158 | 89.25 91 | 90.16 148 | 69.20 207 | 75.46 205 | 89.49 139 | 45.75 299 | 93.13 172 | 76.84 113 | 80.80 207 | 90.11 182 |
|
IterMVS-SCA-FT | | | 75.43 236 | 73.87 239 | 80.11 228 | 82.69 279 | 64.85 188 | 81.57 272 | 83.47 276 | 69.16 208 | 70.49 263 | 84.15 266 | 51.95 244 | 88.15 281 | 69.23 178 | 72.14 306 | 87.34 262 |
|
CL-MVSNet_2432*1600 | | | 72.37 266 | 71.46 258 | 75.09 292 | 79.49 325 | 53.53 325 | 80.76 278 | 85.01 254 | 69.12 209 | 70.51 262 | 82.05 294 | 57.92 194 | 84.13 310 | 52.27 300 | 66.00 329 | 87.60 255 |
|
AUN-MVS | | | 79.21 164 | 77.60 183 | 84.05 122 | 88.71 155 | 67.61 140 | 85.84 199 | 87.26 226 | 69.08 210 | 77.23 166 | 88.14 180 | 53.20 231 | 93.47 156 | 75.50 126 | 73.45 296 | 91.06 146 |
|
xiu_mvs_v1_base_debu | | | 80.80 128 | 79.72 132 | 84.03 125 | 87.35 195 | 70.19 85 | 85.56 203 | 88.77 192 | 69.06 211 | 81.83 97 | 88.16 176 | 50.91 255 | 92.85 182 | 78.29 99 | 87.56 127 | 89.06 216 |
|
xiu_mvs_v1_base | | | 80.80 128 | 79.72 132 | 84.03 125 | 87.35 195 | 70.19 85 | 85.56 203 | 88.77 192 | 69.06 211 | 81.83 97 | 88.16 176 | 50.91 255 | 92.85 182 | 78.29 99 | 87.56 127 | 89.06 216 |
|
xiu_mvs_v1_base_debi | | | 80.80 128 | 79.72 132 | 84.03 125 | 87.35 195 | 70.19 85 | 85.56 203 | 88.77 192 | 69.06 211 | 81.83 97 | 88.16 176 | 50.91 255 | 92.85 182 | 78.29 99 | 87.56 127 | 89.06 216 |
|
MVSTER | | | 79.01 169 | 77.88 173 | 82.38 181 | 83.07 268 | 64.80 189 | 84.08 242 | 88.95 188 | 69.01 214 | 78.69 133 | 87.17 203 | 54.70 218 | 92.43 192 | 74.69 129 | 80.57 211 | 89.89 197 |
|
cl-mvsnet2 | | | 78.07 192 | 77.01 193 | 81.23 206 | 82.37 287 | 61.83 243 | 83.55 250 | 87.98 210 | 68.96 215 | 75.06 220 | 83.87 268 | 61.40 163 | 91.88 214 | 73.53 138 | 76.39 257 | 89.98 193 |
|
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 116 | 91.78 102 | 68.96 215 | 84.41 65 | 93.18 61 | 74.94 23 | 94.93 92 | 84.75 35 | 95.33 34 | 93.01 89 |
|
miper_ehance_all_eth | | | 78.59 179 | 77.76 178 | 81.08 211 | 82.66 280 | 61.56 246 | 83.65 246 | 89.15 178 | 68.87 217 | 75.55 202 | 83.79 272 | 66.49 96 | 92.03 207 | 73.25 144 | 76.39 257 | 89.64 205 |
|
PAPR | | | 81.66 110 | 80.89 113 | 83.99 128 | 90.27 102 | 64.00 204 | 86.76 174 | 91.77 104 | 68.84 218 | 77.13 171 | 89.50 138 | 67.63 86 | 94.88 98 | 67.55 191 | 88.52 118 | 93.09 84 |
|
CPTT-MVS | | | 83.73 74 | 83.33 77 | 84.92 91 | 93.28 50 | 70.86 72 | 92.09 32 | 90.38 139 | 68.75 219 | 79.57 122 | 92.83 70 | 60.60 179 | 93.04 178 | 80.92 77 | 91.56 82 | 90.86 154 |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 109 | 91.89 96 | 68.69 220 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 72 | 84.97 29 | 95.71 26 | 93.02 88 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 114 | 91.84 99 | 68.69 220 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 83 | | | |
|
MVSFormer | | | 82.85 90 | 82.05 96 | 85.24 80 | 87.35 195 | 70.21 83 | 90.50 61 | 90.38 139 | 68.55 222 | 81.32 105 | 89.47 140 | 61.68 155 | 93.46 157 | 78.98 89 | 90.26 97 | 92.05 121 |
|
test_djsdf | | | 80.30 141 | 79.32 142 | 83.27 146 | 83.98 250 | 65.37 180 | 90.50 61 | 90.38 139 | 68.55 222 | 76.19 189 | 88.70 158 | 56.44 208 | 93.46 157 | 78.98 89 | 80.14 217 | 90.97 151 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 109 | 91.89 96 | 68.44 224 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 72 | | | |
|
CDPH-MVS | | | 85.76 54 | 85.29 62 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 117 | 92.42 71 | 68.32 225 | 84.61 62 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 88 | 95.43 30 | 94.28 30 |
|
IterMVS | | | 74.29 243 | 72.94 247 | 78.35 257 | 81.53 297 | 63.49 216 | 81.58 271 | 82.49 289 | 68.06 226 | 69.99 272 | 83.69 274 | 51.66 250 | 85.54 300 | 65.85 208 | 71.64 309 | 86.01 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAMVS | | | 78.89 173 | 77.51 185 | 83.03 159 | 87.80 183 | 67.79 137 | 84.72 222 | 85.05 253 | 67.63 227 | 76.75 176 | 87.70 185 | 62.25 148 | 90.82 241 | 58.53 268 | 87.13 134 | 90.49 167 |
|
PVSNet_Blended | | | 80.98 120 | 80.34 121 | 82.90 165 | 88.85 145 | 65.40 177 | 84.43 233 | 92.00 90 | 67.62 228 | 78.11 148 | 85.05 257 | 66.02 104 | 94.27 114 | 71.52 155 | 89.50 106 | 89.01 221 |
|
TR-MVS | | | 77.44 206 | 76.18 211 | 81.20 207 | 88.24 170 | 63.24 222 | 84.61 227 | 86.40 238 | 67.55 229 | 77.81 153 | 86.48 227 | 54.10 223 | 93.15 170 | 57.75 275 | 82.72 188 | 87.20 266 |
|
CDS-MVSNet | | | 79.07 168 | 77.70 180 | 83.17 152 | 87.60 190 | 68.23 129 | 84.40 235 | 86.20 241 | 67.49 230 | 76.36 185 | 86.54 225 | 61.54 158 | 90.79 242 | 61.86 239 | 87.33 131 | 90.49 167 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 79.42 158 | 79.11 146 | 80.34 224 | 84.45 242 | 57.97 281 | 82.59 261 | 87.62 218 | 67.40 231 | 76.17 192 | 88.56 165 | 68.47 80 | 89.59 259 | 70.65 164 | 86.05 150 | 93.47 71 |
|
MVS_0304 | | | 72.48 263 | 70.89 266 | 77.24 274 | 82.20 288 | 59.68 264 | 84.11 240 | 83.49 275 | 67.10 232 | 66.87 299 | 80.59 306 | 35.00 343 | 87.40 288 | 59.07 262 | 79.58 219 | 84.63 307 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 49 | 66.81 233 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
baseline2 | | | 75.70 232 | 73.83 240 | 81.30 204 | 83.26 262 | 61.79 244 | 82.57 262 | 80.65 305 | 66.81 233 | 66.88 298 | 83.42 277 | 57.86 195 | 92.19 202 | 63.47 222 | 79.57 220 | 89.91 195 |
|
miper_lstm_enhance | | | 74.11 246 | 73.11 246 | 77.13 276 | 80.11 315 | 59.62 265 | 72.23 330 | 86.92 232 | 66.76 235 | 70.40 264 | 82.92 281 | 56.93 206 | 82.92 318 | 69.06 181 | 72.63 302 | 88.87 228 |
|
OpenMVS |  | 72.83 10 | 79.77 150 | 78.33 163 | 84.09 119 | 85.17 230 | 69.91 89 | 90.57 59 | 90.97 126 | 66.70 236 | 72.17 249 | 91.91 80 | 54.70 218 | 93.96 127 | 61.81 240 | 90.95 89 | 88.41 242 |
|
test-LLR | | | 72.94 261 | 72.43 250 | 74.48 297 | 81.35 301 | 58.04 279 | 78.38 301 | 77.46 326 | 66.66 237 | 69.95 273 | 79.00 319 | 48.06 281 | 79.24 329 | 66.13 203 | 84.83 159 | 86.15 287 |
|
test20.03 | | | 67.45 297 | 66.95 298 | 68.94 324 | 75.48 341 | 44.84 351 | 77.50 309 | 77.67 325 | 66.66 237 | 63.01 326 | 83.80 271 | 47.02 287 | 78.40 333 | 42.53 343 | 68.86 322 | 83.58 316 |
|
test0.0.03 1 | | | 68.00 295 | 67.69 292 | 68.90 325 | 77.55 332 | 47.43 346 | 75.70 319 | 72.95 342 | 66.66 237 | 66.56 302 | 82.29 291 | 48.06 281 | 75.87 344 | 44.97 338 | 74.51 286 | 83.41 317 |
|
QAPM | | | 80.88 121 | 79.50 137 | 85.03 85 | 88.01 178 | 68.97 109 | 91.59 39 | 92.00 90 | 66.63 240 | 75.15 217 | 92.16 76 | 57.70 196 | 95.45 68 | 63.52 221 | 88.76 114 | 90.66 160 |
|
XXY-MVS | | | 75.41 237 | 75.56 215 | 74.96 293 | 83.59 256 | 57.82 285 | 80.59 281 | 83.87 269 | 66.54 241 | 74.93 223 | 88.31 171 | 63.24 130 | 80.09 328 | 62.16 235 | 76.85 250 | 86.97 273 |
|
OurMVSNet-221017-0 | | | 74.26 244 | 72.42 251 | 79.80 234 | 83.76 254 | 59.59 266 | 85.92 196 | 86.64 234 | 66.39 242 | 66.96 297 | 87.58 188 | 39.46 328 | 91.60 219 | 65.76 209 | 69.27 318 | 88.22 243 |
|
SCA | | | 74.22 245 | 72.33 252 | 79.91 231 | 84.05 249 | 62.17 238 | 79.96 287 | 79.29 319 | 66.30 243 | 72.38 247 | 80.13 310 | 51.95 244 | 88.60 276 | 59.25 259 | 77.67 239 | 88.96 225 |
|
testgi | | | 66.67 302 | 66.53 300 | 67.08 330 | 75.62 340 | 41.69 355 | 75.93 315 | 76.50 331 | 66.11 244 | 65.20 316 | 86.59 221 | 35.72 341 | 74.71 348 | 43.71 339 | 73.38 298 | 84.84 304 |
|
HY-MVS | | 69.67 12 | 77.95 196 | 77.15 191 | 80.36 223 | 87.57 194 | 60.21 262 | 83.37 253 | 87.78 216 | 66.11 244 | 75.37 209 | 87.06 207 | 63.27 129 | 90.48 247 | 61.38 244 | 82.43 191 | 90.40 171 |
|
EG-PatchMatch MVS | | | 74.04 247 | 71.82 256 | 80.71 218 | 84.92 236 | 67.42 143 | 85.86 198 | 88.08 208 | 66.04 246 | 64.22 320 | 83.85 269 | 35.10 342 | 92.56 189 | 57.44 277 | 80.83 206 | 82.16 328 |
|
CNLPA | | | 78.08 191 | 76.79 200 | 81.97 189 | 90.40 101 | 71.07 64 | 87.59 149 | 84.55 258 | 66.03 247 | 72.38 247 | 89.64 134 | 57.56 198 | 86.04 297 | 59.61 256 | 83.35 178 | 88.79 232 |
|
Anonymous20240529 | | | 80.19 144 | 78.89 150 | 84.10 118 | 90.60 96 | 64.75 190 | 88.95 101 | 90.90 128 | 65.97 248 | 80.59 115 | 91.17 100 | 49.97 266 | 93.73 145 | 69.16 180 | 82.70 189 | 93.81 53 |
|
TAPA-MVS | | 73.13 9 | 79.15 165 | 77.94 170 | 82.79 172 | 89.59 115 | 62.99 230 | 88.16 135 | 91.51 110 | 65.77 249 | 77.14 170 | 91.09 102 | 60.91 173 | 93.21 164 | 50.26 312 | 87.05 135 | 92.17 117 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MSDG | | | 73.36 255 | 70.99 264 | 80.49 221 | 84.51 241 | 65.80 170 | 80.71 279 | 86.13 243 | 65.70 250 | 65.46 311 | 83.74 273 | 44.60 303 | 90.91 240 | 51.13 305 | 76.89 248 | 84.74 305 |
|
anonymousdsp | | | 78.60 178 | 77.15 191 | 82.98 162 | 80.51 312 | 67.08 149 | 87.24 158 | 89.53 164 | 65.66 251 | 75.16 216 | 87.19 202 | 52.52 232 | 92.25 200 | 77.17 109 | 79.34 225 | 89.61 206 |
|
test_0402 | | | 72.79 262 | 70.44 269 | 79.84 233 | 88.13 172 | 65.99 165 | 85.93 195 | 84.29 262 | 65.57 252 | 67.40 294 | 85.49 246 | 46.92 288 | 92.61 187 | 35.88 350 | 74.38 287 | 80.94 334 |
|
miper_enhance_ethall | | | 77.87 199 | 76.86 197 | 80.92 214 | 81.65 294 | 61.38 248 | 82.68 260 | 88.98 185 | 65.52 253 | 75.47 203 | 82.30 290 | 65.76 108 | 92.00 209 | 72.95 147 | 76.39 257 | 89.39 210 |
|
DWT-MVSNet_test | | | 73.70 250 | 71.86 255 | 79.21 245 | 82.91 274 | 58.94 269 | 82.34 263 | 82.17 291 | 65.21 254 | 71.05 260 | 78.31 324 | 44.21 306 | 90.17 251 | 63.29 226 | 77.28 241 | 88.53 239 |
|
UnsupCasMVSNet_eth | | | 67.33 298 | 65.99 301 | 71.37 314 | 73.48 348 | 51.47 336 | 75.16 321 | 85.19 251 | 65.20 255 | 60.78 333 | 80.93 305 | 42.35 315 | 77.20 339 | 57.12 280 | 53.69 347 | 85.44 296 |
|
WTY-MVS | | | 75.65 233 | 75.68 214 | 75.57 287 | 86.40 214 | 56.82 297 | 77.92 308 | 82.40 290 | 65.10 256 | 76.18 190 | 87.72 184 | 63.13 136 | 80.90 325 | 60.31 251 | 81.96 195 | 89.00 223 |
|
thisisatest0515 | | | 77.33 209 | 75.38 221 | 83.18 151 | 85.27 229 | 63.80 208 | 82.11 266 | 83.27 279 | 65.06 257 | 75.91 195 | 83.84 270 | 49.54 271 | 94.27 114 | 67.24 196 | 86.19 148 | 91.48 136 |
|
MVP-Stereo | | | 76.12 227 | 74.46 233 | 81.13 210 | 85.37 228 | 69.79 92 | 84.42 234 | 87.95 211 | 65.03 258 | 67.46 292 | 85.33 249 | 53.28 230 | 91.73 218 | 58.01 273 | 83.27 179 | 81.85 329 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Anonymous20231211 | | | 78.97 171 | 77.69 181 | 82.81 169 | 90.54 98 | 64.29 200 | 90.11 73 | 91.51 110 | 65.01 259 | 76.16 193 | 88.13 181 | 50.56 260 | 93.03 179 | 69.68 175 | 77.56 240 | 91.11 145 |
|
pmmvs6 | | | 74.69 241 | 73.39 242 | 78.61 252 | 81.38 300 | 57.48 290 | 86.64 176 | 87.95 211 | 64.99 260 | 70.18 267 | 86.61 220 | 50.43 262 | 89.52 260 | 62.12 236 | 70.18 316 | 88.83 230 |
|
PAPM | | | 77.68 203 | 76.40 209 | 81.51 197 | 87.29 201 | 61.85 242 | 83.78 244 | 89.59 163 | 64.74 261 | 71.23 257 | 88.70 158 | 62.59 141 | 93.66 147 | 52.66 299 | 87.03 136 | 89.01 221 |
|
MIMVSNet | | | 70.69 275 | 69.30 274 | 74.88 294 | 84.52 240 | 56.35 307 | 75.87 318 | 79.42 318 | 64.59 262 | 67.76 288 | 82.41 288 | 41.10 323 | 81.54 323 | 46.64 331 | 81.34 200 | 86.75 278 |
|
tpm | | | 72.37 266 | 71.71 257 | 74.35 299 | 82.19 289 | 52.00 331 | 79.22 294 | 77.29 328 | 64.56 263 | 72.95 240 | 83.68 275 | 51.35 251 | 83.26 317 | 58.33 270 | 75.80 264 | 87.81 251 |
|
MDA-MVSNet-bldmvs | | | 66.68 301 | 63.66 309 | 75.75 284 | 79.28 327 | 60.56 257 | 73.92 327 | 78.35 322 | 64.43 264 | 50.13 351 | 79.87 314 | 44.02 308 | 83.67 313 | 46.10 333 | 56.86 343 | 83.03 323 |
|
MIMVSNet1 | | | 68.58 292 | 66.78 299 | 73.98 302 | 80.07 316 | 51.82 332 | 80.77 277 | 84.37 259 | 64.40 265 | 59.75 337 | 82.16 293 | 36.47 338 | 83.63 314 | 42.73 342 | 70.33 315 | 86.48 282 |
|
D2MVS | | | 74.82 240 | 73.21 244 | 79.64 238 | 79.81 319 | 62.56 233 | 80.34 283 | 87.35 224 | 64.37 266 | 68.86 282 | 82.66 286 | 46.37 291 | 90.10 252 | 67.91 188 | 81.24 202 | 86.25 284 |
|
PLC |  | 70.83 11 | 78.05 193 | 76.37 210 | 83.08 156 | 91.88 80 | 67.80 136 | 88.19 133 | 89.46 166 | 64.33 267 | 69.87 275 | 88.38 169 | 53.66 227 | 93.58 148 | 58.86 264 | 82.73 187 | 87.86 250 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PatchmatchNet |  | | 73.12 258 | 71.33 261 | 78.49 256 | 83.18 265 | 60.85 253 | 79.63 289 | 78.57 321 | 64.13 268 | 71.73 253 | 79.81 315 | 51.20 253 | 85.97 298 | 57.40 278 | 76.36 260 | 88.66 235 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
KD-MVS_2432*1600 | | | 66.22 306 | 63.89 307 | 73.21 305 | 75.47 342 | 53.42 327 | 70.76 335 | 84.35 260 | 64.10 269 | 66.52 304 | 78.52 322 | 34.55 344 | 84.98 304 | 50.40 308 | 50.33 351 | 81.23 332 |
|
miper_refine_blended | | | 66.22 306 | 63.89 307 | 73.21 305 | 75.47 342 | 53.42 327 | 70.76 335 | 84.35 260 | 64.10 269 | 66.52 304 | 78.52 322 | 34.55 344 | 84.98 304 | 50.40 308 | 50.33 351 | 81.23 332 |
|
tpmvs | | | 71.09 272 | 69.29 275 | 76.49 280 | 82.04 290 | 56.04 310 | 78.92 298 | 81.37 300 | 64.05 271 | 67.18 296 | 78.28 325 | 49.74 270 | 89.77 255 | 49.67 315 | 72.37 303 | 83.67 315 |
|
F-COLMAP | | | 76.38 225 | 74.33 234 | 82.50 179 | 89.28 132 | 66.95 155 | 88.41 122 | 89.03 182 | 64.05 271 | 66.83 300 | 88.61 162 | 46.78 289 | 92.89 181 | 57.48 276 | 78.55 229 | 87.67 253 |
|
DP-MVS | | | 76.78 217 | 74.57 229 | 83.42 140 | 93.29 49 | 69.46 102 | 88.55 118 | 83.70 270 | 63.98 273 | 70.20 266 | 88.89 155 | 54.01 225 | 94.80 101 | 46.66 329 | 81.88 197 | 86.01 291 |
|
原ACMM1 | | | | | 84.35 109 | 93.01 59 | 68.79 111 | | 92.44 68 | 63.96 274 | 81.09 110 | 91.57 89 | 66.06 103 | 95.45 68 | 67.19 197 | 94.82 47 | 88.81 231 |
|
PM-MVS | | | 66.41 304 | 64.14 306 | 73.20 307 | 73.92 346 | 56.45 303 | 78.97 297 | 64.96 356 | 63.88 275 | 64.72 317 | 80.24 309 | 19.84 357 | 83.44 315 | 66.24 202 | 64.52 333 | 79.71 339 |
|
jason | | | 81.39 115 | 80.29 123 | 84.70 98 | 86.63 212 | 69.90 90 | 85.95 194 | 86.77 233 | 63.24 276 | 81.07 111 | 89.47 140 | 61.08 171 | 92.15 204 | 78.33 98 | 90.07 102 | 92.05 121 |
jason: jason. |
DIV-MVS_2432*1600 | | | 68.81 289 | 67.59 294 | 72.46 310 | 74.29 345 | 45.45 349 | 77.93 307 | 87.00 230 | 63.12 277 | 63.99 322 | 78.99 321 | 42.32 316 | 84.77 307 | 56.55 285 | 64.09 334 | 87.16 269 |
|
gg-mvs-nofinetune | | | 69.95 283 | 67.96 286 | 75.94 283 | 83.07 268 | 54.51 319 | 77.23 311 | 70.29 345 | 63.11 278 | 70.32 265 | 62.33 348 | 43.62 309 | 88.69 275 | 53.88 294 | 87.76 124 | 84.62 308 |
|
tpmrst | | | 72.39 264 | 72.13 253 | 73.18 308 | 80.54 311 | 49.91 342 | 79.91 288 | 79.08 320 | 63.11 278 | 71.69 254 | 79.95 312 | 55.32 211 | 82.77 319 | 65.66 210 | 73.89 291 | 86.87 274 |
|
PCF-MVS | | 73.52 7 | 80.38 139 | 78.84 151 | 85.01 86 | 87.71 187 | 68.99 108 | 83.65 246 | 91.46 114 | 63.00 280 | 77.77 155 | 90.28 118 | 66.10 101 | 95.09 89 | 61.40 243 | 88.22 122 | 90.94 152 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
COLMAP_ROB |  | 66.92 17 | 73.01 259 | 70.41 270 | 80.81 216 | 87.13 204 | 65.63 173 | 88.30 128 | 84.19 265 | 62.96 281 | 63.80 324 | 87.69 186 | 38.04 334 | 92.56 189 | 46.66 329 | 74.91 282 | 84.24 310 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Patchmatch-RL test | | | 70.24 280 | 67.78 291 | 77.61 268 | 77.43 333 | 59.57 267 | 71.16 332 | 70.33 344 | 62.94 282 | 68.65 284 | 72.77 342 | 50.62 259 | 85.49 301 | 69.58 176 | 66.58 327 | 87.77 252 |
|
lupinMVS | | | 81.39 115 | 80.27 124 | 84.76 97 | 87.35 195 | 70.21 83 | 85.55 206 | 86.41 237 | 62.85 283 | 81.32 105 | 88.61 162 | 61.68 155 | 92.24 201 | 78.41 97 | 90.26 97 | 91.83 125 |
|
EPMVS | | | 69.02 288 | 68.16 283 | 71.59 312 | 79.61 323 | 49.80 344 | 77.40 310 | 66.93 352 | 62.82 284 | 70.01 270 | 79.05 317 | 45.79 297 | 77.86 337 | 56.58 284 | 75.26 279 | 87.13 270 |
|
PatchMatch-RL | | | 72.38 265 | 70.90 265 | 76.80 279 | 88.60 158 | 67.38 145 | 79.53 290 | 76.17 332 | 62.75 285 | 69.36 280 | 82.00 296 | 45.51 300 | 84.89 306 | 53.62 295 | 80.58 210 | 78.12 342 |
|
gm-plane-assit | | | | | | 81.40 299 | 53.83 324 | | | 62.72 286 | | 80.94 303 | | 92.39 194 | 63.40 224 | | |
|
FMVSNet5 | | | 69.50 285 | 67.96 286 | 74.15 301 | 82.97 273 | 55.35 315 | 80.01 286 | 82.12 293 | 62.56 287 | 63.02 325 | 81.53 297 | 36.92 337 | 81.92 321 | 48.42 319 | 74.06 289 | 85.17 301 |
|
sss | | | 73.60 251 | 73.64 241 | 73.51 304 | 82.80 276 | 55.01 316 | 76.12 314 | 81.69 297 | 62.47 288 | 74.68 226 | 85.85 239 | 57.32 201 | 78.11 335 | 60.86 248 | 80.93 204 | 87.39 260 |
|
AllTest | | | 70.96 273 | 68.09 285 | 79.58 239 | 85.15 231 | 63.62 210 | 84.58 228 | 79.83 315 | 62.31 289 | 60.32 334 | 86.73 210 | 32.02 347 | 88.96 272 | 50.28 310 | 71.57 310 | 86.15 287 |
|
TestCases | | | | | 79.58 239 | 85.15 231 | 63.62 210 | | 79.83 315 | 62.31 289 | 60.32 334 | 86.73 210 | 32.02 347 | 88.96 272 | 50.28 310 | 71.57 310 | 86.15 287 |
|
1112_ss | | | 77.40 208 | 76.43 208 | 80.32 225 | 89.11 142 | 60.41 260 | 83.65 246 | 87.72 217 | 62.13 291 | 73.05 239 | 86.72 212 | 62.58 142 | 89.97 253 | 62.11 237 | 80.80 207 | 90.59 164 |
|
PVSNet | | 64.34 18 | 72.08 268 | 70.87 267 | 75.69 285 | 86.21 216 | 56.44 304 | 74.37 326 | 80.73 304 | 62.06 292 | 70.17 268 | 82.23 292 | 42.86 313 | 83.31 316 | 54.77 291 | 84.45 165 | 87.32 263 |
|
LS3D | | | 76.95 215 | 74.82 227 | 83.37 143 | 90.45 99 | 67.36 146 | 89.15 96 | 86.94 231 | 61.87 293 | 69.52 278 | 90.61 113 | 51.71 249 | 94.53 107 | 46.38 332 | 86.71 141 | 88.21 244 |
|
CostFormer | | | 75.24 239 | 73.90 238 | 79.27 243 | 82.65 281 | 58.27 276 | 80.80 276 | 82.73 288 | 61.57 294 | 75.33 213 | 83.13 280 | 55.52 210 | 91.07 238 | 64.98 215 | 78.34 234 | 88.45 240 |
|
new-patchmatchnet | | | 61.73 315 | 61.73 317 | 61.70 333 | 72.74 352 | 24.50 365 | 69.16 341 | 78.03 323 | 61.40 295 | 56.72 344 | 75.53 338 | 38.42 332 | 76.48 342 | 45.95 334 | 57.67 342 | 84.13 312 |
|
ANet_high | | | 50.57 324 | 46.10 327 | 63.99 331 | 48.67 363 | 39.13 356 | 70.99 334 | 80.85 302 | 61.39 296 | 31.18 356 | 57.70 353 | 17.02 359 | 73.65 352 | 31.22 352 | 15.89 361 | 79.18 340 |
|
MS-PatchMatch | | | 73.83 249 | 72.67 248 | 77.30 273 | 83.87 252 | 66.02 164 | 81.82 267 | 84.66 256 | 61.37 297 | 68.61 285 | 82.82 284 | 47.29 285 | 88.21 280 | 59.27 258 | 84.32 166 | 77.68 343 |
|
USDC | | | 70.33 279 | 68.37 280 | 76.21 282 | 80.60 310 | 56.23 308 | 79.19 295 | 86.49 236 | 60.89 298 | 61.29 331 | 85.47 247 | 31.78 349 | 89.47 262 | 53.37 296 | 76.21 261 | 82.94 325 |
|
cascas | | | 76.72 218 | 74.64 228 | 82.99 161 | 85.78 221 | 65.88 169 | 82.33 264 | 89.21 175 | 60.85 299 | 72.74 241 | 81.02 301 | 47.28 286 | 93.75 143 | 67.48 192 | 85.02 157 | 89.34 211 |
|
MDTV_nov1_ep13 | | | | 69.97 273 | | 83.18 265 | 53.48 326 | 77.10 312 | 80.18 314 | 60.45 300 | 69.33 281 | 80.44 307 | 48.89 279 | 86.90 291 | 51.60 303 | 78.51 231 | |
|
TinyColmap | | | 67.30 299 | 64.81 303 | 74.76 296 | 81.92 292 | 56.68 301 | 80.29 284 | 81.49 299 | 60.33 301 | 56.27 346 | 83.22 279 | 24.77 353 | 87.66 287 | 45.52 335 | 69.47 317 | 79.95 338 |
|
test-mter | | | 71.41 270 | 70.39 271 | 74.48 297 | 81.35 301 | 58.04 279 | 78.38 301 | 77.46 326 | 60.32 302 | 69.95 273 | 79.00 319 | 36.08 340 | 79.24 329 | 66.13 203 | 84.83 159 | 86.15 287 |
|
1314 | | | 76.53 219 | 75.30 224 | 80.21 227 | 83.93 251 | 62.32 236 | 84.66 223 | 88.81 190 | 60.23 303 | 70.16 269 | 84.07 267 | 55.30 212 | 90.73 244 | 67.37 193 | 83.21 180 | 87.59 257 |
|
PatchT | | | 68.46 294 | 67.85 288 | 70.29 320 | 80.70 309 | 43.93 352 | 72.47 329 | 74.88 335 | 60.15 304 | 70.55 261 | 76.57 334 | 49.94 267 | 81.59 322 | 50.58 306 | 74.83 283 | 85.34 297 |
|
无先验 | | | | | | | | 87.48 151 | 88.98 185 | 60.00 305 | | | | 94.12 123 | 67.28 194 | | 88.97 224 |
|
CR-MVSNet | | | 73.37 253 | 71.27 262 | 79.67 237 | 81.32 303 | 65.19 183 | 75.92 316 | 80.30 311 | 59.92 306 | 72.73 242 | 81.19 298 | 52.50 233 | 86.69 292 | 59.84 254 | 77.71 237 | 87.11 271 |
|
TDRefinement | | | 67.49 296 | 64.34 305 | 76.92 277 | 73.47 349 | 61.07 250 | 84.86 220 | 82.98 285 | 59.77 307 | 58.30 340 | 85.13 254 | 26.06 352 | 87.89 284 | 47.92 326 | 60.59 340 | 81.81 330 |
|
dp | | | 66.80 300 | 65.43 302 | 70.90 319 | 79.74 322 | 48.82 345 | 75.12 323 | 74.77 336 | 59.61 308 | 64.08 321 | 77.23 331 | 42.89 312 | 80.72 326 | 48.86 318 | 66.58 327 | 83.16 320 |
|
our_test_3 | | | 69.14 287 | 67.00 297 | 75.57 287 | 79.80 320 | 58.80 271 | 77.96 306 | 77.81 324 | 59.55 309 | 62.90 328 | 78.25 326 | 47.43 284 | 83.97 311 | 51.71 302 | 67.58 324 | 83.93 314 |
|
Test_1112_low_res | | | 76.40 224 | 75.44 218 | 79.27 243 | 89.28 132 | 58.09 277 | 81.69 270 | 87.07 229 | 59.53 310 | 72.48 245 | 86.67 218 | 61.30 165 | 89.33 263 | 60.81 249 | 80.15 216 | 90.41 170 |
|
pmmvs4 | | | 74.03 248 | 71.91 254 | 80.39 222 | 81.96 291 | 68.32 126 | 81.45 273 | 82.14 292 | 59.32 311 | 69.87 275 | 85.13 254 | 52.40 235 | 88.13 282 | 60.21 252 | 74.74 284 | 84.73 306 |
|
testdata | | | | | 79.97 230 | 90.90 91 | 64.21 201 | | 84.71 255 | 59.27 312 | 85.40 44 | 92.91 67 | 62.02 153 | 89.08 268 | 68.95 182 | 91.37 84 | 86.63 281 |
|
ppachtmachnet_test | | | 70.04 282 | 67.34 295 | 78.14 259 | 79.80 320 | 61.13 249 | 79.19 295 | 80.59 306 | 59.16 313 | 65.27 313 | 79.29 316 | 46.75 290 | 87.29 289 | 49.33 316 | 66.72 325 | 86.00 293 |
|
RPSCF | | | 73.23 257 | 71.46 258 | 78.54 254 | 82.50 283 | 59.85 263 | 82.18 265 | 82.84 287 | 58.96 314 | 71.15 259 | 89.41 146 | 45.48 301 | 84.77 307 | 58.82 265 | 71.83 308 | 91.02 150 |
|
pmmvs-eth3d | | | 70.50 278 | 67.83 289 | 78.52 255 | 77.37 334 | 66.18 162 | 81.82 267 | 81.51 298 | 58.90 315 | 63.90 323 | 80.42 308 | 42.69 314 | 86.28 296 | 58.56 267 | 65.30 331 | 83.11 321 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 277 | 68.19 282 | 77.65 267 | 80.26 313 | 59.41 268 | 85.01 216 | 82.96 286 | 58.76 316 | 65.43 312 | 82.33 289 | 37.63 336 | 91.23 231 | 45.34 337 | 76.03 262 | 82.32 326 |
|
114514_t | | | 80.68 132 | 79.51 136 | 84.20 115 | 94.09 36 | 67.27 147 | 89.64 85 | 91.11 124 | 58.75 317 | 74.08 231 | 90.72 111 | 58.10 192 | 95.04 90 | 69.70 174 | 89.42 108 | 90.30 174 |
|
Patchmtry | | | 70.74 274 | 69.16 276 | 75.49 289 | 80.72 308 | 54.07 322 | 74.94 325 | 80.30 311 | 58.34 318 | 70.01 270 | 81.19 298 | 52.50 233 | 86.54 293 | 53.37 296 | 71.09 313 | 85.87 294 |
|
Anonymous20240521 | | | 68.80 290 | 67.22 296 | 73.55 303 | 74.33 344 | 54.11 321 | 83.18 254 | 85.61 247 | 58.15 319 | 61.68 330 | 80.94 303 | 30.71 350 | 81.27 324 | 57.00 282 | 73.34 299 | 85.28 298 |
|
旧先验2 | | | | | | | | 86.56 179 | | 58.10 320 | 87.04 31 | | | 88.98 270 | 74.07 134 | | |
|
JIA-IIPM | | | 66.32 305 | 62.82 315 | 76.82 278 | 77.09 335 | 61.72 245 | 65.34 348 | 75.38 333 | 58.04 321 | 64.51 318 | 62.32 349 | 42.05 320 | 86.51 294 | 51.45 304 | 69.22 319 | 82.21 327 |
|
pmmvs5 | | | 71.55 269 | 70.20 272 | 75.61 286 | 77.83 331 | 56.39 305 | 81.74 269 | 80.89 301 | 57.76 322 | 67.46 292 | 84.49 261 | 49.26 276 | 85.32 303 | 57.08 281 | 75.29 278 | 85.11 302 |
|
TESTMET0.1,1 | | | 69.89 284 | 69.00 277 | 72.55 309 | 79.27 328 | 56.85 296 | 78.38 301 | 74.71 338 | 57.64 323 | 68.09 287 | 77.19 332 | 37.75 335 | 76.70 340 | 63.92 220 | 84.09 168 | 84.10 313 |
|
RPMNet | | | 73.51 252 | 70.49 268 | 82.58 178 | 81.32 303 | 65.19 183 | 75.92 316 | 92.27 76 | 57.60 324 | 72.73 242 | 76.45 335 | 52.30 236 | 95.43 71 | 48.14 324 | 77.71 237 | 87.11 271 |
|
新几何1 | | | | | 83.42 140 | 93.13 53 | 70.71 75 | | 85.48 248 | 57.43 325 | 81.80 100 | 91.98 79 | 63.28 128 | 92.27 198 | 64.60 218 | 92.99 66 | 87.27 264 |
|
1121 | | | 80.84 123 | 79.77 130 | 84.05 122 | 93.11 55 | 70.78 74 | 84.66 223 | 85.42 249 | 57.37 326 | 81.76 103 | 92.02 78 | 63.41 126 | 94.12 123 | 67.28 194 | 92.93 67 | 87.26 265 |
|
YYNet1 | | | 65.03 309 | 62.91 313 | 71.38 313 | 75.85 338 | 56.60 302 | 69.12 342 | 74.66 339 | 57.28 327 | 54.12 347 | 77.87 328 | 45.85 296 | 74.48 349 | 49.95 313 | 61.52 338 | 83.05 322 |
|
MDA-MVSNet_test_wron | | | 65.03 309 | 62.92 312 | 71.37 314 | 75.93 337 | 56.73 298 | 69.09 343 | 74.73 337 | 57.28 327 | 54.03 348 | 77.89 327 | 45.88 295 | 74.39 350 | 49.89 314 | 61.55 337 | 82.99 324 |
|
Anonymous20231206 | | | 68.60 291 | 67.80 290 | 71.02 318 | 80.23 314 | 50.75 340 | 78.30 304 | 80.47 308 | 56.79 329 | 66.11 309 | 82.63 287 | 46.35 292 | 78.95 331 | 43.62 340 | 75.70 265 | 83.36 318 |
|
tpm2 | | | 73.26 256 | 71.46 258 | 78.63 251 | 83.34 260 | 56.71 300 | 80.65 280 | 80.40 310 | 56.63 330 | 73.55 233 | 82.02 295 | 51.80 248 | 91.24 230 | 56.35 286 | 78.42 233 | 87.95 246 |
|
CHOSEN 1792x2688 | | | 77.63 204 | 75.69 213 | 83.44 139 | 89.98 109 | 68.58 123 | 78.70 300 | 87.50 221 | 56.38 331 | 75.80 199 | 86.84 208 | 58.67 189 | 91.40 226 | 61.58 242 | 85.75 155 | 90.34 173 |
|
HyFIR lowres test | | | 77.53 205 | 75.40 220 | 83.94 131 | 89.59 115 | 66.62 156 | 80.36 282 | 88.64 199 | 56.29 332 | 76.45 181 | 85.17 253 | 57.64 197 | 93.28 162 | 61.34 245 | 83.10 183 | 91.91 123 |
|
PVSNet_0 | | 57.27 20 | 61.67 316 | 59.27 319 | 68.85 326 | 79.61 323 | 57.44 291 | 68.01 344 | 73.44 341 | 55.93 333 | 58.54 339 | 70.41 345 | 44.58 304 | 77.55 338 | 47.01 328 | 35.91 354 | 71.55 348 |
|
UnsupCasMVSNet_bld | | | 63.70 314 | 61.53 318 | 70.21 321 | 73.69 347 | 51.39 337 | 72.82 328 | 81.89 294 | 55.63 334 | 57.81 341 | 71.80 344 | 38.67 331 | 78.61 332 | 49.26 317 | 52.21 349 | 80.63 335 |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 357 | 75.16 321 | | 55.10 335 | 66.53 303 | | 49.34 274 | | 53.98 293 | | 87.94 248 |
|
MVS | | | 78.19 189 | 76.99 195 | 81.78 191 | 85.66 222 | 66.99 150 | 84.66 223 | 90.47 137 | 55.08 336 | 72.02 251 | 85.27 250 | 63.83 123 | 94.11 125 | 66.10 205 | 89.80 104 | 84.24 310 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 238 | 83.20 282 | 54.63 337 | 79.74 120 | 91.63 87 | 58.97 188 | | | 91.42 83 | 86.77 277 |
|
CHOSEN 280x420 | | | 66.51 303 | 64.71 304 | 71.90 311 | 81.45 298 | 63.52 215 | 57.98 353 | 68.95 351 | 53.57 338 | 62.59 329 | 76.70 333 | 46.22 293 | 75.29 347 | 55.25 289 | 79.68 218 | 76.88 345 |
|
ADS-MVSNet2 | | | 66.20 308 | 63.33 310 | 74.82 295 | 79.92 317 | 58.75 272 | 67.55 345 | 75.19 334 | 53.37 339 | 65.25 314 | 75.86 336 | 42.32 316 | 80.53 327 | 41.57 344 | 68.91 320 | 85.18 299 |
|
ADS-MVSNet | | | 64.36 312 | 62.88 314 | 68.78 327 | 79.92 317 | 47.17 347 | 67.55 345 | 71.18 343 | 53.37 339 | 65.25 314 | 75.86 336 | 42.32 316 | 73.99 351 | 41.57 344 | 68.91 320 | 85.18 299 |
|
LF4IMVS | | | 64.02 313 | 62.19 316 | 69.50 323 | 70.90 353 | 53.29 329 | 76.13 313 | 77.18 329 | 52.65 341 | 58.59 338 | 80.98 302 | 23.55 354 | 76.52 341 | 53.06 298 | 66.66 326 | 78.68 341 |
|
tpm cat1 | | | 70.57 276 | 68.31 281 | 77.35 272 | 82.41 286 | 57.95 282 | 78.08 305 | 80.22 313 | 52.04 342 | 68.54 286 | 77.66 330 | 52.00 243 | 87.84 285 | 51.77 301 | 72.07 307 | 86.25 284 |
|
Patchmatch-test | | | 64.82 311 | 63.24 311 | 69.57 322 | 79.42 326 | 49.82 343 | 63.49 351 | 69.05 350 | 51.98 343 | 59.95 336 | 80.13 310 | 50.91 255 | 70.98 353 | 40.66 346 | 73.57 294 | 87.90 249 |
|
N_pmnet | | | 52.79 322 | 53.26 323 | 51.40 339 | 78.99 329 | 7.68 368 | 69.52 338 | 3.89 368 | 51.63 344 | 57.01 343 | 74.98 339 | 40.83 325 | 65.96 356 | 37.78 349 | 64.67 332 | 80.56 337 |
|
PMMVS | | | 69.34 286 | 68.67 278 | 71.35 316 | 75.67 339 | 62.03 239 | 75.17 320 | 73.46 340 | 50.00 345 | 68.68 283 | 79.05 317 | 52.07 242 | 78.13 334 | 61.16 246 | 82.77 186 | 73.90 346 |
|
CMPMVS |  | 51.72 21 | 70.19 281 | 68.16 283 | 76.28 281 | 73.15 351 | 57.55 289 | 79.47 291 | 83.92 267 | 48.02 346 | 56.48 345 | 84.81 258 | 43.13 311 | 86.42 295 | 62.67 231 | 81.81 198 | 84.89 303 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CVMVSNet | | | 72.99 260 | 72.58 249 | 74.25 300 | 84.28 243 | 50.85 339 | 86.41 182 | 83.45 277 | 44.56 347 | 73.23 237 | 87.54 191 | 49.38 273 | 85.70 299 | 65.90 207 | 78.44 232 | 86.19 286 |
|
EU-MVSNet | | | 68.53 293 | 67.61 293 | 71.31 317 | 78.51 330 | 47.01 348 | 84.47 229 | 84.27 263 | 42.27 348 | 66.44 307 | 84.79 259 | 40.44 326 | 83.76 312 | 58.76 266 | 68.54 323 | 83.17 319 |
|
FPMVS | | | 53.68 321 | 51.64 324 | 59.81 335 | 65.08 356 | 51.03 338 | 69.48 339 | 69.58 348 | 41.46 349 | 40.67 353 | 72.32 343 | 16.46 360 | 70.00 354 | 24.24 356 | 65.42 330 | 58.40 353 |
|
pmmvs3 | | | 57.79 318 | 54.26 322 | 68.37 328 | 64.02 357 | 56.72 299 | 75.12 323 | 65.17 354 | 40.20 350 | 52.93 349 | 69.86 346 | 20.36 356 | 75.48 346 | 45.45 336 | 55.25 346 | 72.90 347 |
|
new_pmnet | | | 50.91 323 | 50.29 325 | 52.78 338 | 68.58 354 | 34.94 360 | 63.71 350 | 56.63 359 | 39.73 351 | 44.95 352 | 65.47 347 | 21.93 355 | 58.48 357 | 34.98 351 | 56.62 344 | 64.92 350 |
|
MVS-HIRNet | | | 59.14 317 | 57.67 320 | 63.57 332 | 81.65 294 | 43.50 353 | 71.73 331 | 65.06 355 | 39.59 352 | 51.43 350 | 57.73 352 | 38.34 333 | 82.58 320 | 39.53 347 | 73.95 290 | 64.62 351 |
|
PMMVS2 | | | 40.82 327 | 38.86 330 | 46.69 340 | 53.84 359 | 16.45 366 | 48.61 356 | 49.92 361 | 37.49 353 | 31.67 355 | 60.97 351 | 8.14 367 | 56.42 358 | 28.42 353 | 30.72 356 | 67.19 349 |
|
LCM-MVSNet | | | 54.25 320 | 49.68 326 | 67.97 329 | 53.73 360 | 45.28 350 | 66.85 347 | 80.78 303 | 35.96 354 | 39.45 354 | 62.23 350 | 8.70 366 | 78.06 336 | 48.24 323 | 51.20 350 | 80.57 336 |
|
PMVS |  | 37.38 22 | 44.16 326 | 40.28 329 | 55.82 336 | 40.82 365 | 42.54 354 | 65.12 349 | 63.99 357 | 34.43 355 | 24.48 358 | 57.12 354 | 3.92 368 | 76.17 343 | 17.10 359 | 55.52 345 | 48.75 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 45.18 325 | 41.86 328 | 55.16 337 | 77.03 336 | 51.52 335 | 32.50 359 | 80.52 307 | 32.46 356 | 27.12 357 | 35.02 358 | 9.52 365 | 75.50 345 | 22.31 357 | 60.21 341 | 38.45 356 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DSMNet-mixed | | | 57.77 319 | 56.90 321 | 60.38 334 | 67.70 355 | 35.61 358 | 69.18 340 | 53.97 360 | 32.30 357 | 57.49 342 | 79.88 313 | 40.39 327 | 68.57 355 | 38.78 348 | 72.37 303 | 76.97 344 |
|
E-PMN | | | 31.77 328 | 30.64 331 | 35.15 343 | 52.87 361 | 27.67 362 | 57.09 354 | 47.86 362 | 24.64 358 | 16.40 363 | 33.05 359 | 11.23 363 | 54.90 359 | 14.46 361 | 18.15 359 | 22.87 358 |
|
EMVS | | | 30.81 330 | 29.65 332 | 34.27 344 | 50.96 362 | 25.95 364 | 56.58 355 | 46.80 363 | 24.01 359 | 15.53 364 | 30.68 360 | 12.47 362 | 54.43 360 | 12.81 362 | 17.05 360 | 22.43 359 |
|
MVE |  | 26.22 23 | 30.37 331 | 25.89 335 | 43.81 341 | 44.55 364 | 35.46 359 | 28.87 360 | 39.07 364 | 18.20 360 | 18.58 362 | 40.18 357 | 2.68 369 | 47.37 362 | 17.07 360 | 23.78 358 | 48.60 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 27.40 345 | 40.17 366 | 26.90 363 | | 24.59 367 | 17.44 361 | 23.95 359 | 48.61 356 | 9.77 364 | 26.48 363 | 18.06 358 | 24.47 357 | 28.83 357 |
|
wuyk23d | | | 16.82 334 | 15.94 337 | 19.46 346 | 58.74 358 | 31.45 361 | 39.22 357 | 3.74 369 | 6.84 362 | 6.04 365 | 2.70 365 | 1.27 370 | 24.29 364 | 10.54 363 | 14.40 363 | 2.63 361 |
|
test_method | | | 31.52 329 | 29.28 333 | 38.23 342 | 27.03 367 | 6.50 369 | 20.94 361 | 62.21 358 | 4.05 363 | 22.35 361 | 52.50 355 | 13.33 361 | 47.58 361 | 27.04 355 | 34.04 355 | 60.62 352 |
|
tmp_tt | | | 18.61 333 | 21.40 336 | 10.23 347 | 4.82 368 | 10.11 367 | 34.70 358 | 30.74 366 | 1.48 364 | 23.91 360 | 26.07 361 | 28.42 351 | 13.41 365 | 27.12 354 | 15.35 362 | 7.17 360 |
|
testmvs | | | 6.04 337 | 8.02 340 | 0.10 349 | 0.08 369 | 0.03 371 | 69.74 337 | 0.04 370 | 0.05 365 | 0.31 366 | 1.68 366 | 0.02 372 | 0.04 366 | 0.24 364 | 0.02 364 | 0.25 363 |
|
test123 | | | 6.12 336 | 8.11 339 | 0.14 348 | 0.06 370 | 0.09 370 | 71.05 333 | 0.03 371 | 0.04 366 | 0.25 367 | 1.30 367 | 0.05 371 | 0.03 367 | 0.21 365 | 0.01 365 | 0.29 362 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 19.96 332 | 26.61 334 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 89.26 173 | 0.00 367 | 0.00 368 | 88.61 162 | 61.62 157 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 5.26 338 | 7.02 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 63.15 133 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 7.23 335 | 9.64 338 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 86.72 212 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 225 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 252 | | | | 88.96 225 |
|
sam_mvs | | | | | | | | | | | | | 50.01 265 | | | | |
|
ambc | | | | | 75.24 291 | 73.16 350 | 50.51 341 | 63.05 352 | 87.47 222 | | 64.28 319 | 77.81 329 | 17.80 358 | 89.73 257 | 57.88 274 | 60.64 339 | 85.49 295 |
|
MTGPA |  | | | | | | | | 92.02 87 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 299 | | | | 5.43 364 | 48.81 280 | 85.44 302 | 59.25 259 | | |
|
test_post | | | | | | | | | | | | 5.46 363 | 50.36 263 | 84.24 309 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 340 | 51.12 254 | 88.60 276 | | | |
|
GG-mvs-BLEND | | | | | 75.38 290 | 81.59 296 | 55.80 312 | 79.32 292 | 69.63 347 | | 67.19 295 | 73.67 341 | 43.24 310 | 88.90 274 | 50.41 307 | 84.50 163 | 81.45 331 |
|
MTMP | | | | | | | | 92.18 30 | 32.83 365 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 59 | 95.45 29 | 92.70 96 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 102 | | 84.41 65 | | | 94.93 92 | | | |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 96 | | 92.97 47 | | | | | 95.48 66 | | | 93.91 45 |
|
新几何2 | | | | | | | | 86.29 187 | | | | | | | | | |
|
旧先验1 | | | | | | 91.96 77 | 65.79 171 | | 86.37 239 | | | 93.08 66 | 69.31 75 | | | 92.74 70 | 88.74 234 |
|
原ACMM2 | | | | | | | | 86.86 168 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 239 | 62.37 233 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 76 | | 91.79 101 | | 82.71 91 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 69 |
|
plane_prior7 | | | | | | 90.08 107 | 68.51 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 112 | 68.70 119 | | | | | | 60.42 181 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 68 | | | | | 95.38 75 | 78.71 91 | 86.32 146 | 91.33 139 |
|
plane_prior4 | | | | | | | | | | | | 91.00 107 | | | | | |
|
plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 346 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 247 | 81.01 307 | 57.15 293 | | 65.99 353 | | 61.16 332 | 82.82 284 | 39.12 330 | 91.34 228 | 59.67 255 | 46.92 353 | 88.43 241 |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 349 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 151 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 105 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 165 | | | 95.11 85 | | | 91.03 148 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 152 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 184 | | | | |
|
NP-MVS | | | | | | 89.62 114 | 68.32 126 | | | | | 90.24 119 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 196 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 201 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 118 | | | | |
|