This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5596.26 3072.84 2699.38 192.64 1995.93 997.08 10
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 3998.91 1796.83 195.06 1696.76 15
DELS-MVS90.05 790.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5694.91 7074.11 1998.91 1787.26 6295.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1395.72 1087.33 489.60 3096.26 3068.44 4698.74 2495.82 494.72 3195.90 46
EPNet87.84 2588.38 2186.23 8093.30 6466.05 13995.26 3294.84 2987.09 588.06 3694.53 7966.79 6397.34 7483.89 9491.68 7595.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1293.78 6686.89 689.68 2995.78 4065.94 7099.10 992.99 1693.91 4296.58 21
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20295.04 4195.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 36
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30696.72 894.41 4886.50 890.25 2397.83 175.46 1498.67 2592.78 1895.49 1297.32 6
CANet_DTU84.09 9083.52 8485.81 9290.30 14166.82 12091.87 16789.01 27085.27 986.09 5293.74 10347.71 27496.98 10077.90 13989.78 9893.65 140
MVSMamba_pp88.94 1688.82 1789.29 1394.04 4574.01 894.81 4892.74 11185.13 1090.37 2190.13 18168.40 4897.38 7089.42 4094.34 3696.47 28
CLD-MVS82.73 11582.35 11583.86 16187.90 20367.65 9995.45 2892.18 13585.06 1172.58 19492.27 13652.46 23095.78 14984.18 9079.06 19588.16 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1394.83 3084.83 1289.07 3396.80 1970.86 3599.06 1592.64 1995.71 1096.12 39
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1594.64 3984.42 1386.74 4796.20 3266.56 6698.76 2389.03 4894.56 3395.92 45
test_fmvsm_n_192087.69 2788.50 1985.27 11287.05 22463.55 20993.69 8991.08 18784.18 1490.17 2597.04 867.58 5797.99 3995.72 590.03 9594.26 114
PS-MVSNAJ88.14 1987.61 3089.71 692.06 9776.72 195.75 2093.26 9083.86 1589.55 3196.06 3653.55 21997.89 4391.10 3193.31 5394.54 106
DeepC-MVS_fast79.48 287.95 2388.00 2687.79 3195.86 2768.32 7995.74 2194.11 6083.82 1683.49 7796.19 3364.53 8898.44 3183.42 9794.88 2496.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4487.17 3584.82 12585.28 25662.55 23394.26 5989.78 23483.81 1787.78 3896.33 2965.33 7696.98 10094.40 1187.55 11794.95 84
xiu_mvs_v2_base87.92 2487.38 3489.55 1191.41 12176.43 395.74 2193.12 9883.53 1889.55 3195.95 3853.45 22397.68 5091.07 3292.62 6094.54 106
test_fmvsmconf0.1_n85.71 6086.08 5284.62 13980.83 31062.33 23893.84 8288.81 27883.50 1987.00 4596.01 3763.36 10696.93 10894.04 1287.29 12094.61 102
TSAR-MVS + MP.88.11 2188.64 1886.54 7091.73 11068.04 8990.36 22793.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5394.77 2595.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9897.64 297.94 1
WTY-MVS86.32 4785.81 5687.85 2992.82 7969.37 5695.20 3495.25 1782.71 2281.91 8894.73 7467.93 5597.63 5679.55 12482.25 16596.54 22
lupinMVS87.74 2687.77 2887.63 3889.24 16871.18 2596.57 1192.90 10682.70 2387.13 4295.27 5664.99 7995.80 14889.34 4391.80 7395.93 44
fmvsm_s_conf0.5_n86.39 4686.91 3984.82 12587.36 21763.54 21094.74 5090.02 22782.52 2490.14 2696.92 1362.93 11497.84 4695.28 882.26 16493.07 157
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8595.24 3394.49 4482.43 2588.90 3496.35 2771.89 3398.63 2688.76 4996.40 696.06 40
test_fmvsmconf0.01_n83.70 10183.52 8484.25 15475.26 36261.72 25292.17 14987.24 31282.36 2684.91 6595.41 4855.60 19596.83 11392.85 1785.87 13594.21 116
PVSNet_Blended86.73 4286.86 4186.31 7993.76 5167.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10997.29 7787.08 6591.38 8194.13 121
MSP-MVS90.38 591.87 185.88 8892.83 7764.03 19293.06 11394.33 5482.19 2893.65 396.15 3585.89 197.19 8491.02 3397.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5785.46 6287.18 4888.20 19672.42 1592.41 14392.77 10982.11 2980.34 10893.07 11668.27 5095.02 18378.39 13693.59 4994.09 123
jason86.40 4586.17 4987.11 5086.16 24170.54 3495.71 2492.19 13482.00 3084.58 6894.34 8961.86 12495.53 16987.76 5590.89 8795.27 71
jason: jason.
baseline181.84 13081.03 13184.28 15291.60 11366.62 12791.08 20591.66 16181.87 3174.86 17091.67 15069.98 4094.92 18971.76 18664.75 30291.29 202
CHOSEN 1792x268884.98 7383.45 8989.57 1089.94 14875.14 592.07 15692.32 12681.87 3175.68 16088.27 20460.18 14098.60 2780.46 11890.27 9494.96 83
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13582.95 29463.48 21294.03 7089.46 24681.69 3389.86 2796.74 2061.85 12597.75 4994.74 982.01 17092.81 165
test_vis1_n_192081.66 13282.01 11880.64 24382.24 29855.09 33394.76 4986.87 31481.67 3484.40 7094.63 7738.17 32294.67 19891.98 2683.34 15592.16 186
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5188.22 19569.35 5793.74 8891.89 14681.47 3580.10 11091.45 15364.80 8496.35 12887.23 6387.69 11595.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 11182.56 11184.35 14989.34 16062.02 24492.72 12693.76 6981.45 3682.73 8392.25 13860.11 14197.13 8987.69 5662.96 31493.91 132
hse-mvs281.12 14181.11 13081.16 23086.52 23257.48 31489.40 25291.16 18081.45 3682.73 8390.49 16960.11 14194.58 19987.69 5660.41 34191.41 196
ET-MVSNet_ETH3D84.01 9283.15 10186.58 6890.78 13470.89 3094.74 5094.62 4081.44 3858.19 33093.64 10673.64 2392.35 28382.66 10078.66 20096.50 27
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13285.73 25063.58 20793.79 8589.32 25281.42 3990.21 2496.91 1462.41 11997.67 5194.48 1080.56 18392.90 163
test_fmvsmvis_n_192083.80 9783.48 8784.77 12982.51 29663.72 20091.37 19183.99 34581.42 3977.68 14095.74 4258.37 16097.58 5993.38 1486.87 12393.00 160
testing1186.71 4386.44 4487.55 4093.54 5971.35 2293.65 9195.58 1181.36 4180.69 10292.21 13972.30 2996.46 12785.18 8083.43 15494.82 93
casdiffmvspermissive85.37 6684.87 7286.84 5788.25 19369.07 6193.04 11591.76 15381.27 4280.84 10192.07 14164.23 9096.06 14184.98 8387.43 11995.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5386.11 5085.70 9890.21 14367.02 11793.43 10591.92 14381.21 4384.13 7494.07 9860.93 13495.63 15989.28 4489.81 9694.46 112
DeepC-MVS77.85 385.52 6585.24 6586.37 7688.80 17866.64 12592.15 15093.68 7481.07 4476.91 15193.64 10662.59 11798.44 3185.50 7692.84 5994.03 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 7284.44 7686.71 6288.33 19068.73 6990.24 23291.82 15281.05 4581.18 9592.50 12863.69 9896.08 14084.45 8886.71 12995.32 66
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
iter_conf0583.65 10383.44 9084.28 15286.17 24068.61 7495.08 3989.82 23380.90 4778.08 13690.49 16969.08 4395.22 17984.29 8977.07 21689.02 230
mamv488.66 1888.41 2089.39 1294.02 4674.04 794.94 4592.69 11480.90 4790.32 2290.30 17468.33 4997.28 8189.47 3994.74 3096.84 14
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1396.47 28
diffmvspermissive84.28 8383.83 8185.61 10087.40 21568.02 9090.88 21189.24 25580.54 5081.64 9092.52 12759.83 14594.52 20687.32 6185.11 13994.29 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2988.19 2485.39 10686.95 22564.37 18294.30 5788.45 29080.51 5192.70 496.86 1569.98 4097.15 8895.83 388.08 11294.65 100
fmvsm_s_conf0.1_n_a84.76 7584.84 7384.53 14180.23 32063.50 21192.79 12388.73 28180.46 5289.84 2896.65 2260.96 13397.57 6193.80 1380.14 18592.53 172
VPNet78.82 18377.53 18582.70 18984.52 27066.44 13193.93 7492.23 12980.46 5272.60 19388.38 20249.18 25993.13 25072.47 17863.97 31188.55 239
testing9986.01 5385.47 6187.63 3893.62 5571.25 2493.47 10395.23 1880.42 5480.60 10491.95 14371.73 3496.50 12580.02 12182.22 16695.13 77
testing22285.18 6984.69 7486.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10792.27 13668.73 4595.19 18075.94 15083.27 15694.81 94
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 10095.08 2580.26 5680.53 10591.93 14470.43 3796.51 12480.32 11982.13 16895.37 61
sasdasda86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
canonicalmvs86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
fmvsm_l_conf0.5_n_a87.44 3188.15 2585.30 11087.10 22264.19 18994.41 5588.14 29980.24 5992.54 596.97 1069.52 4297.17 8595.89 288.51 10794.56 103
CS-MVS-test86.14 5187.01 3783.52 17192.63 8559.36 29495.49 2791.92 14380.09 6085.46 6095.53 4761.82 12695.77 15186.77 6993.37 5295.41 58
CS-MVS85.80 5886.65 4383.27 17992.00 10158.92 29995.31 3191.86 14879.97 6184.82 6695.40 4962.26 12095.51 17086.11 7392.08 6995.37 61
MVSTER82.47 11982.05 11683.74 16392.68 8469.01 6391.90 16693.21 9179.83 6272.14 20285.71 24474.72 1694.72 19475.72 15172.49 24887.50 250
HQP-NCC87.54 21194.06 6579.80 6374.18 175
ACMP_Plane87.54 21194.06 6579.80 6374.18 175
HQP-MVS81.14 13980.64 13782.64 19187.54 21163.66 20594.06 6591.70 15979.80 6374.18 17590.30 17451.63 23795.61 16177.63 14078.90 19688.63 236
baseline283.68 10283.42 9384.48 14487.37 21666.00 14190.06 23695.93 879.71 6669.08 23790.39 17277.92 696.28 13078.91 13181.38 17691.16 204
MGCFI-Net85.59 6485.73 5985.17 11691.41 12162.44 23492.87 12191.31 17379.65 6786.99 4695.14 6462.90 11596.12 13587.13 6484.13 15296.96 12
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17494.81 3179.65 6777.87 13894.09 9663.35 10797.90 4279.35 12579.36 19290.74 208
ETVMVS84.22 8783.71 8285.76 9592.58 8768.25 8492.45 14295.53 1479.54 6979.46 11891.64 15170.29 3894.18 21969.16 20982.76 16294.84 90
EIA-MVS84.84 7484.88 7184.69 13491.30 12362.36 23793.85 7992.04 13879.45 7079.33 12194.28 9262.42 11896.35 12880.05 12091.25 8495.38 60
dmvs_re76.93 21575.36 21881.61 22087.78 20860.71 27280.00 34587.99 30379.42 7169.02 23989.47 19046.77 27794.32 21063.38 26374.45 23189.81 220
plane_prior62.42 23593.85 7979.38 7278.80 198
dcpmvs_287.37 3287.55 3186.85 5695.04 3268.20 8690.36 22790.66 19979.37 7381.20 9493.67 10574.73 1596.55 12290.88 3492.00 7095.82 48
alignmvs87.28 3386.97 3888.24 2791.30 12371.14 2795.61 2593.56 7879.30 7487.07 4495.25 5868.43 4796.93 10887.87 5484.33 14796.65 17
TESTMET0.1,182.41 12081.98 11983.72 16688.08 19763.74 19892.70 12893.77 6879.30 7477.61 14287.57 21958.19 16394.08 22373.91 16686.68 13093.33 149
EI-MVSNet-UG-set83.14 10982.96 10283.67 16992.28 9163.19 21891.38 19094.68 3779.22 7676.60 15393.75 10262.64 11697.76 4878.07 13878.01 20390.05 217
PVSNet73.49 880.05 16178.63 16884.31 15090.92 13064.97 16792.47 14191.05 19079.18 7772.43 19990.51 16837.05 33794.06 22568.06 21886.00 13493.90 134
HY-MVS76.49 584.28 8383.36 9787.02 5492.22 9367.74 9684.65 30394.50 4379.15 7882.23 8687.93 21366.88 6296.94 10680.53 11782.20 16796.39 32
PVSNet_BlendedMVS83.38 10583.43 9183.22 18093.76 5167.53 10394.06 6593.61 7679.13 7981.00 9985.14 24763.19 10997.29 7787.08 6573.91 23784.83 304
plane_prior361.95 24779.09 8072.53 195
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 7193.76 6979.08 8178.88 12893.99 9962.25 12198.15 3685.93 7591.15 8594.15 120
test_cas_vis1_n_192080.45 15380.61 13879.97 26278.25 34657.01 32194.04 6988.33 29379.06 8282.81 8293.70 10438.65 31791.63 29890.82 3579.81 18791.27 203
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10068.97 6595.04 4192.70 11279.04 8381.50 9196.50 2558.98 15696.78 11483.49 9693.93 4196.29 34
IB-MVS77.80 482.18 12380.46 14287.35 4589.14 17070.28 3795.59 2695.17 2178.85 8470.19 22585.82 24270.66 3697.67 5172.19 18266.52 28894.09 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 11880.82 13388.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25892.48 13148.42 26598.52 2868.80 21494.40 3595.15 76
HQP_MVS80.34 15579.75 15182.12 20986.94 22662.42 23593.13 11191.31 17378.81 8672.53 19589.14 19550.66 24495.55 16776.74 14378.53 20188.39 242
plane_prior293.13 11178.81 86
MG-MVS87.11 3586.27 4589.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7692.94 11964.34 8996.94 10675.19 15594.09 3895.66 51
gm-plane-assit88.42 18667.04 11678.62 8991.83 14697.37 7176.57 145
VNet86.20 4985.65 6087.84 3093.92 4869.99 3995.73 2395.94 778.43 9086.00 5393.07 11658.22 16297.00 9685.22 7884.33 14796.52 23
tpm78.58 19077.03 19483.22 18085.94 24664.56 17183.21 31791.14 18378.31 9173.67 18279.68 31964.01 9292.09 28966.07 24271.26 25893.03 158
save fliter93.84 5067.89 9395.05 4092.66 11678.19 92
TSAR-MVS + GP.87.96 2288.37 2286.70 6393.51 6165.32 15795.15 3693.84 6578.17 9385.93 5494.80 7375.80 1398.21 3489.38 4288.78 10496.59 19
FIs79.47 17179.41 15879.67 26985.95 24459.40 29191.68 17893.94 6378.06 9468.96 24188.28 20366.61 6591.77 29566.20 24174.99 22787.82 247
sss82.71 11782.38 11483.73 16589.25 16559.58 28992.24 14794.89 2877.96 9579.86 11392.38 13356.70 18197.05 9177.26 14280.86 18094.55 104
PMMVS81.98 12982.04 11781.78 21689.76 15256.17 32591.13 20490.69 19677.96 9580.09 11193.57 10846.33 28494.99 18581.41 11087.46 11894.17 118
EC-MVSNet84.53 7985.04 6983.01 18389.34 16061.37 25894.42 5491.09 18577.91 9783.24 7894.20 9458.37 16095.40 17185.35 7791.41 8092.27 182
test111180.84 14680.02 14583.33 17787.87 20460.76 26992.62 13386.86 31577.86 9875.73 15991.39 15646.35 28294.70 19772.79 17388.68 10694.52 108
MVS_Test84.16 8983.20 9887.05 5391.56 11569.82 4689.99 24192.05 13777.77 9982.84 8186.57 23263.93 9496.09 13774.91 16089.18 10295.25 74
SteuartSystems-ACMMP86.82 4186.90 4086.58 6890.42 13866.38 13296.09 1793.87 6477.73 10084.01 7595.66 4363.39 10597.94 4087.40 6093.55 5095.42 57
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 18479.26 16277.43 29788.06 19849.71 35791.96 16491.95 14277.67 10176.56 15491.28 15858.51 15890.20 31956.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 10682.92 10484.37 14888.39 18863.18 21992.01 15991.35 17277.66 10278.49 13391.42 15464.58 8795.09 18273.19 16789.23 10094.85 87
ECVR-MVScopyleft81.29 13780.38 14384.01 15988.39 18861.96 24692.56 14086.79 31677.66 10276.63 15291.42 15446.34 28395.24 17874.36 16489.23 10094.85 87
tpmrst80.57 14979.14 16484.84 12490.10 14568.28 8181.70 32789.72 24177.63 10475.96 15779.54 32164.94 8192.71 26775.43 15377.28 21493.55 142
testdata189.21 25677.55 105
UniMVSNet_NR-MVSNet78.15 19777.55 18479.98 26084.46 27260.26 27992.25 14693.20 9377.50 10668.88 24286.61 23166.10 6892.13 28766.38 23862.55 31887.54 249
UA-Net80.02 16279.65 15281.11 23289.33 16257.72 31086.33 29689.00 27377.44 10781.01 9889.15 19459.33 15295.90 14661.01 27984.28 14989.73 223
PVSNet_Blended_VisFu83.97 9383.50 8685.39 10690.02 14666.59 12993.77 8691.73 15477.43 10877.08 15089.81 18663.77 9796.97 10279.67 12388.21 11092.60 169
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 35971.74 38077.42 10955.85 34187.77 21651.39 23980.69 38031.51 39065.92 29185.55 294
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21391.73 15477.12 11060.96 31586.35 23459.28 15391.80 29460.74 28061.34 33387.35 256
FC-MVSNet-test77.99 19978.08 17677.70 29284.89 26555.51 33090.27 23093.75 7276.87 11166.80 27487.59 21865.71 7390.23 31862.89 26973.94 23687.37 254
SD-MVS87.49 2987.49 3287.50 4293.60 5668.82 6893.90 7692.63 11976.86 11287.90 3795.76 4166.17 6797.63 5689.06 4791.48 7996.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba76.85 21975.71 21480.25 25183.07 29159.16 29691.44 18280.64 35976.84 11367.95 25486.33 23646.17 28794.24 21776.06 14872.92 24487.36 255
UGNet79.87 16578.68 16783.45 17689.96 14761.51 25592.13 15190.79 19476.83 11478.85 13086.33 23638.16 32396.17 13367.93 22187.17 12192.67 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18662.88 22889.77 24488.93 27476.78 11575.55 16493.10 11350.31 24795.38 17383.82 9587.02 12292.26 183
SDMVSNet80.26 15678.88 16684.40 14689.25 16567.63 10085.35 29993.02 10076.77 11670.84 21687.12 22647.95 27196.09 13785.04 8174.55 22889.48 227
sd_testset77.08 21475.37 21782.20 20589.25 16562.11 24382.06 32489.09 26676.77 11670.84 21687.12 22641.43 30895.01 18467.23 22874.55 22889.48 227
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19191.37 17176.63 11867.65 26186.21 23852.37 23191.55 30061.84 27560.81 33687.48 251
PAPR85.15 7084.47 7587.18 4896.02 2568.29 8091.85 16993.00 10376.59 11979.03 12495.00 6561.59 12797.61 5878.16 13789.00 10395.63 52
UniMVSNet (Re)77.58 20676.78 19879.98 26084.11 27860.80 26691.76 17493.17 9576.56 12069.93 23184.78 25163.32 10892.36 28264.89 25462.51 32086.78 266
DU-MVS76.86 21775.84 21179.91 26382.96 29260.26 27991.26 19791.54 16476.46 12168.88 24286.35 23456.16 18892.13 28766.38 23862.55 31887.35 256
OPM-MVS79.00 17878.09 17581.73 21783.52 28663.83 19591.64 18090.30 21376.36 12271.97 20489.93 18546.30 28595.17 18175.10 15677.70 20686.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 22275.74 21379.82 26684.60 26862.27 24192.60 13592.51 12376.06 12367.87 25985.34 24556.76 17990.24 31762.20 27363.69 31386.94 264
GA-MVS78.33 19576.23 20584.65 13683.65 28466.30 13591.44 18290.14 22176.01 12470.32 22384.02 26042.50 30494.72 19470.98 19177.00 21792.94 161
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26590.31 21275.84 12557.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 214
CDS-MVSNet81.43 13580.74 13483.52 17186.26 23764.45 17692.09 15490.65 20075.83 12673.95 18189.81 18663.97 9392.91 26071.27 18982.82 15993.20 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 14781.01 13280.20 25389.33 16257.05 31991.91 16594.71 3575.67 12775.01 16989.37 19163.13 11191.44 30667.19 22982.80 16192.12 187
CostFormer82.33 12181.15 12685.86 9089.01 17368.46 7682.39 32393.01 10175.59 12880.25 10981.57 28972.03 3294.96 18679.06 12977.48 21194.16 119
nrg03080.93 14479.86 14984.13 15683.69 28368.83 6793.23 10991.20 17875.55 12975.06 16888.22 20863.04 11394.74 19381.88 10566.88 28588.82 234
VDD-MVS83.06 11081.81 12186.81 5990.86 13267.70 9795.40 2991.50 16775.46 13081.78 8992.34 13540.09 31297.13 8986.85 6882.04 16995.60 53
Effi-MVS+-dtu76.14 22775.28 22078.72 28383.22 28855.17 33289.87 24287.78 30675.42 13167.98 25381.43 29145.08 29592.52 27675.08 15771.63 25388.48 240
test_prior295.10 3875.40 13285.25 6495.61 4567.94 5487.47 5994.77 25
MTAPA83.91 9483.38 9585.50 10291.89 10665.16 16281.75 32692.23 12975.32 13380.53 10595.21 6156.06 19197.16 8784.86 8592.55 6294.18 117
EPMVS78.49 19275.98 20986.02 8491.21 12569.68 5180.23 34191.20 17875.25 13472.48 19778.11 32954.65 20593.69 24157.66 29683.04 15794.69 96
miper_enhance_ethall78.86 18277.97 17881.54 22288.00 20165.17 16191.41 18489.15 26275.19 13568.79 24483.98 26167.17 6092.82 26272.73 17465.30 29386.62 271
v2v48277.42 20875.65 21582.73 18880.38 31667.13 11391.85 16990.23 21775.09 13669.37 23383.39 26753.79 21794.44 20871.77 18565.00 29986.63 270
VPA-MVSNet79.03 17778.00 17782.11 21285.95 24464.48 17593.22 11094.66 3875.05 13774.04 18084.95 24952.17 23293.52 24474.90 16167.04 28488.32 244
ACMMP_NAP86.05 5285.80 5786.80 6091.58 11467.53 10391.79 17193.49 8374.93 13884.61 6795.30 5359.42 15097.92 4186.13 7294.92 1994.94 85
thres20079.66 16778.33 17183.66 17092.54 8865.82 14793.06 11396.31 374.90 13973.30 18588.66 19759.67 14795.61 16147.84 33378.67 19989.56 226
TAMVS80.37 15479.45 15783.13 18285.14 25963.37 21391.23 19990.76 19574.81 14072.65 19288.49 19960.63 13692.95 25569.41 20581.95 17193.08 156
MP-MVS-pluss85.24 6885.13 6785.56 10191.42 11965.59 15191.54 18192.51 12374.56 14180.62 10395.64 4459.15 15497.00 9686.94 6793.80 4394.07 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 13679.99 14785.46 10390.39 14068.40 7786.88 29390.61 20174.41 14270.31 22484.67 25263.79 9692.32 28473.13 16885.70 13695.67 50
MAR-MVS84.18 8883.43 9186.44 7396.25 2165.93 14494.28 5894.27 5674.41 14279.16 12395.61 4553.99 21498.88 2169.62 20393.26 5494.50 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 15279.30 16184.05 15890.83 13364.36 18493.60 9489.42 24974.35 14469.09 23690.15 18055.23 19995.61 16164.61 25586.43 13392.17 185
thisisatest051583.41 10482.49 11286.16 8189.46 15968.26 8293.54 9794.70 3674.31 14575.75 15890.92 16172.62 2796.52 12369.64 20181.50 17593.71 138
Vis-MVSNet (Re-imp)79.24 17479.57 15378.24 28988.46 18452.29 34490.41 22589.12 26474.24 14669.13 23591.91 14565.77 7290.09 32159.00 29188.09 11192.33 176
SMA-MVScopyleft88.14 1988.29 2387.67 3393.21 6768.72 7093.85 7994.03 6274.18 14791.74 1196.67 2165.61 7498.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 19377.43 18681.17 22986.60 23157.45 31589.46 25191.16 18074.11 14874.40 17490.49 16955.52 19694.57 20174.73 16360.43 34091.48 194
3Dnovator+73.60 782.10 12780.60 13986.60 6690.89 13166.80 12295.20 3493.44 8574.05 14967.42 26492.49 13049.46 25597.65 5570.80 19391.68 7595.33 64
XVS83.87 9583.47 8885.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13494.31 9155.25 19797.41 6879.16 12791.58 7793.95 130
X-MVStestdata76.86 21774.13 23785.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13410.19 41055.25 19797.41 6879.16 12791.58 7793.95 130
MS-PatchMatch77.90 20376.50 20182.12 20985.99 24369.95 4291.75 17692.70 11273.97 15262.58 30884.44 25641.11 30995.78 14963.76 26192.17 6780.62 352
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18248.02 36480.07 34470.17 38373.96 15352.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 179
Vis-MVSNetpermissive80.92 14579.98 14883.74 16388.48 18361.80 24893.44 10488.26 29873.96 15377.73 13991.76 14749.94 25194.76 19165.84 24490.37 9394.65 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 16379.38 16081.72 21886.93 22861.17 25992.70 12891.54 16473.85 15575.62 16186.94 22849.84 25392.38 28072.21 18084.76 14391.60 191
OMC-MVS78.67 18977.91 18080.95 23985.76 24957.40 31688.49 26888.67 28473.85 15572.43 19992.10 14049.29 25894.55 20472.73 17477.89 20490.91 207
Fast-Effi-MVS+81.14 13980.01 14684.51 14390.24 14265.86 14594.12 6489.15 26273.81 15775.37 16688.26 20557.26 17094.53 20566.97 23284.92 14093.15 153
ZNCC-MVS85.33 6785.08 6886.06 8393.09 7265.65 14993.89 7793.41 8773.75 15879.94 11294.68 7660.61 13798.03 3882.63 10193.72 4694.52 108
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23189.42 24973.75 15868.63 24781.89 28251.31 24094.09 22271.69 18764.84 30084.66 305
v114476.73 22374.88 22282.27 20180.23 32066.60 12891.68 17890.21 21973.69 16069.06 23881.89 28252.73 22894.40 20969.21 20865.23 29685.80 288
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17690.23 21773.68 16167.13 26880.84 30255.92 19393.86 23968.95 21261.73 32985.76 291
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16269.97 22972.41 35857.82 16689.48 32552.99 31373.13 24190.64 210
XXY-MVS77.94 20176.44 20282.43 19582.60 29564.44 17792.01 15991.83 15173.59 16370.00 22885.82 24254.43 21094.76 19169.63 20268.02 27888.10 246
tfpn200view978.79 18577.43 18682.88 18592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20888.83 232
thres40078.68 18777.43 18682.43 19592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20887.48 251
FMVSNet377.73 20476.04 20882.80 18691.20 12668.99 6491.87 16791.99 14073.35 16667.04 26983.19 26956.62 18392.14 28659.80 28769.34 26587.28 258
GST-MVS84.63 7884.29 7885.66 9992.82 7965.27 15893.04 11593.13 9773.20 16778.89 12594.18 9559.41 15197.85 4581.45 10992.48 6393.86 135
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35285.00 33373.17 16848.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
MP-MVScopyleft85.02 7184.97 7085.17 11692.60 8664.27 18793.24 10892.27 12873.13 16979.63 11694.43 8261.90 12397.17 8585.00 8292.56 6194.06 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26790.07 22372.94 17359.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
BH-RMVSNet79.46 17277.65 18284.89 12291.68 11265.66 14893.55 9688.09 30172.93 17473.37 18491.12 16046.20 28696.12 13556.28 30085.61 13892.91 162
Syy-MVS69.65 29469.52 28670.03 34987.87 20443.21 38388.07 27389.01 27072.91 17563.11 30188.10 20945.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20449.45 35988.07 27389.01 27072.91 17563.11 30188.10 20963.63 9985.54 35232.73 38469.23 26881.32 344
IS-MVSNet80.14 15979.41 15882.33 19987.91 20260.08 28391.97 16388.27 29672.90 17771.44 21291.73 14961.44 12893.66 24262.47 27286.53 13193.24 150
PS-MVSNAJss77.26 21076.31 20480.13 25580.64 31459.16 29690.63 22291.06 18972.80 17868.58 24884.57 25453.55 21993.96 23372.97 16971.96 25287.27 259
9.1487.63 2993.86 4994.41 5594.18 5772.76 17986.21 5096.51 2466.64 6497.88 4490.08 3894.04 39
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20089.75 23672.67 18068.49 24981.42 29249.86 25294.27 21467.08 23065.02 29885.95 285
Effi-MVS+83.82 9682.76 10786.99 5589.56 15669.40 5391.35 19386.12 32372.59 18183.22 7992.81 12559.60 14896.01 14581.76 10687.80 11495.56 55
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33389.88 23172.58 18249.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
1112_ss80.56 15079.83 15082.77 18788.65 18060.78 26792.29 14588.36 29272.58 18272.46 19894.95 6665.09 7893.42 24766.38 23877.71 20594.10 122
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7294.37 5272.48 18492.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_0728_THIRD72.48 18490.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 30
cl2277.94 20176.78 19881.42 22487.57 21064.93 16990.67 21888.86 27772.45 18667.63 26282.68 27464.07 9192.91 26071.79 18465.30 29386.44 272
thres600view778.00 19876.66 20082.03 21491.93 10363.69 20391.30 19696.33 172.43 18770.46 22087.89 21460.31 13894.92 18942.64 35676.64 21987.48 251
IterMVS-LS76.49 22475.18 22180.43 24684.49 27162.74 23090.64 22088.80 27972.40 18865.16 28281.72 28560.98 13292.27 28567.74 22264.65 30486.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17978.22 17481.25 22785.33 25462.73 23189.53 24993.21 9172.39 18972.14 20290.13 18160.99 13194.72 19467.73 22372.49 24886.29 274
miper_ehance_all_eth77.60 20576.44 20281.09 23685.70 25164.41 18090.65 21988.64 28672.31 19067.37 26782.52 27564.77 8592.64 27370.67 19565.30 29386.24 276
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18889.71 24272.30 19168.17 25181.33 29451.75 23594.03 23067.94 22064.19 30685.77 289
thres100view90078.37 19377.01 19582.46 19491.89 10663.21 21791.19 20396.33 172.28 19270.45 22187.89 21460.31 13895.32 17445.16 34477.58 20888.83 232
PatchmatchNetpermissive77.46 20774.63 22685.96 8689.55 15770.35 3679.97 34689.55 24472.23 19370.94 21476.91 34057.03 17392.79 26554.27 30781.17 17794.74 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 7684.40 7785.72 9793.75 5365.01 16693.50 10093.19 9472.19 19479.22 12294.93 6859.04 15597.67 5181.55 10792.21 6594.49 111
ACMMPR84.37 8084.06 7985.28 11193.56 5864.37 18293.50 10093.15 9672.19 19478.85 13094.86 7156.69 18297.45 6581.55 10792.20 6694.02 128
131480.70 14878.95 16585.94 8787.77 20967.56 10187.91 27792.55 12272.17 19667.44 26393.09 11450.27 24897.04 9471.68 18887.64 11693.23 151
region2R84.36 8184.03 8085.36 10893.54 5964.31 18593.43 10592.95 10472.16 19778.86 12994.84 7256.97 17797.53 6381.38 11192.11 6894.24 115
Test_1112_low_res79.56 16978.60 16982.43 19588.24 19460.39 27892.09 15487.99 30372.10 19871.84 20587.42 22164.62 8693.04 25165.80 24577.30 21393.85 136
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20789.48 24571.98 19967.99 25281.22 29749.16 26193.90 23666.56 23464.56 30585.92 287
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 994.52 4271.92 20090.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 794.33 5471.92 20091.89 1097.11 673.77 21
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20285.38 32971.90 20265.20 28184.84 25041.46 30792.97 25466.50 23772.96 24387.73 248
LFMVS84.34 8282.73 10889.18 1494.76 3373.25 1194.99 4391.89 14671.90 20282.16 8793.49 11047.98 27097.05 9182.55 10284.82 14197.25 7
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25488.27 29671.88 20465.73 27781.65 28659.45 14992.81 26368.13 21760.53 33886.14 278
train_agg87.21 3487.42 3386.60 6694.18 4167.28 10894.16 6193.51 8071.87 20585.52 5895.33 5168.19 5197.27 8289.09 4694.90 2195.25 74
test_894.19 4067.19 11094.15 6393.42 8671.87 20585.38 6195.35 5068.19 5196.95 105
MDTV_nov1_ep1372.61 25789.06 17168.48 7580.33 33990.11 22271.84 20771.81 20675.92 34853.01 22593.92 23548.04 33073.38 239
ab-mvs80.18 15878.31 17285.80 9388.44 18565.49 15683.00 32092.67 11571.82 20877.36 14585.01 24854.50 20696.59 11876.35 14775.63 22595.32 66
ACMMPcopyleft81.49 13480.67 13683.93 16091.71 11162.90 22792.13 15192.22 13271.79 20971.68 20993.49 11050.32 24696.96 10378.47 13584.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 4086.85 4286.78 6193.47 6265.55 15395.39 3095.10 2271.77 21085.69 5796.52 2362.07 12298.77 2286.06 7495.60 1196.03 42
TEST994.18 4167.28 10894.16 6193.51 8071.75 21185.52 5895.33 5168.01 5397.27 82
WB-MVSnew77.14 21276.18 20780.01 25986.18 23963.24 21691.26 19794.11 6071.72 21273.52 18387.29 22445.14 29493.00 25356.98 29779.42 19083.80 313
c3_l76.83 22175.47 21680.93 24085.02 26264.18 19090.39 22688.11 30071.66 21366.65 27581.64 28763.58 10492.56 27469.31 20762.86 31586.04 282
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 594.44 4671.65 21492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4871.65 21492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 19
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 697.05 776.79 999.11 6
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24889.27 25471.65 21463.30 30080.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21689.11 26571.63 21867.41 26581.22 29747.36 27593.87 23765.46 25064.72 30385.77 289
SCA75.82 23772.76 25385.01 12086.63 23070.08 3881.06 33489.19 25871.60 21970.01 22777.09 33845.53 29090.25 31460.43 28273.27 24094.68 97
BH-untuned78.68 18777.08 19383.48 17589.84 14963.74 19892.70 12888.59 28771.57 22066.83 27388.65 19851.75 23595.39 17259.03 29084.77 14291.32 200
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28386.28 31971.56 22160.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 11382.44 11384.52 14292.83 7762.92 22692.76 12491.85 15071.52 22275.61 16394.24 9353.48 22296.99 9978.97 13090.73 8893.64 141
test-LLR80.10 16079.56 15481.72 21886.93 22861.17 25992.70 12891.54 16471.51 22375.62 16186.94 22853.83 21592.38 28072.21 18084.76 14391.60 191
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20089.45 24771.51 22362.51 30987.66 21753.83 21585.06 35650.16 32067.84 28185.58 292
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1896.85 1674.45 18
PGM-MVS83.25 10782.70 10984.92 12192.81 8164.07 19190.44 22392.20 13371.28 22677.23 14794.43 8255.17 20197.31 7679.33 12691.38 8193.37 146
thisisatest053081.15 13880.07 14484.39 14788.26 19265.63 15091.40 18694.62 4071.27 22770.93 21589.18 19372.47 2896.04 14265.62 24776.89 21891.49 193
cl____76.07 22874.67 22380.28 24985.15 25861.76 25090.12 23488.73 28171.16 22865.43 27981.57 28961.15 12992.95 25566.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22874.67 22380.28 24985.14 25961.75 25190.12 23488.73 28171.16 22865.42 28081.60 28861.15 12992.94 25966.54 23562.16 32486.14 278
dp75.01 24872.09 26383.76 16289.28 16466.22 13879.96 34789.75 23671.16 22867.80 26077.19 33751.81 23492.54 27550.39 31871.44 25792.51 173
iter_conf05_1184.06 9183.37 9686.15 8293.04 7366.63 12687.84 27990.21 21971.10 23181.47 9289.48 18968.80 4496.96 10375.97 14992.39 6494.87 86
FA-MVS(test-final)79.12 17677.23 19284.81 12890.54 13663.98 19381.35 33291.71 15671.09 23274.85 17182.94 27052.85 22697.05 9167.97 21981.73 17493.41 145
CP-MVS83.71 10083.40 9484.65 13693.14 7063.84 19494.59 5292.28 12771.03 23377.41 14494.92 6955.21 20096.19 13281.32 11290.70 8993.91 132
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25889.08 26770.94 23463.08 30379.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
CDPH-MVS85.71 6085.46 6286.46 7294.75 3467.19 11093.89 7792.83 10870.90 23583.09 8095.28 5463.62 10097.36 7280.63 11694.18 3794.84 90
GBi-Net75.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test175.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
FMVSNet276.07 22874.01 23982.26 20388.85 17567.66 9891.33 19491.61 16270.84 23665.98 27682.25 27848.03 26792.00 29158.46 29268.73 27387.10 261
SF-MVS87.03 3687.09 3686.84 5792.70 8367.45 10693.64 9293.76 6970.78 23986.25 4996.44 2666.98 6197.79 4788.68 5094.56 3395.28 70
ZD-MVS96.63 965.50 15593.50 8270.74 24085.26 6395.19 6264.92 8297.29 7787.51 5893.01 56
HyFIR lowres test81.03 14379.56 15485.43 10487.81 20768.11 8890.18 23390.01 22870.65 24172.95 18886.06 24063.61 10194.50 20775.01 15879.75 18993.67 139
MVP-Stereo77.12 21376.23 20579.79 26781.72 30366.34 13489.29 25390.88 19370.56 24262.01 31282.88 27149.34 25694.13 22065.55 24993.80 4378.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26359.64 28790.80 21489.07 26870.39 24362.95 30487.30 22338.28 32193.87 23772.89 17071.45 25685.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 10782.95 10384.17 15592.25 9262.88 22890.91 20891.86 14870.30 24477.12 14893.96 10056.75 18096.28 13082.04 10491.34 8393.34 147
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 18177.43 18683.29 17888.95 17462.02 24492.31 14486.23 32170.24 24571.34 21389.27 19254.43 21094.04 22863.31 26480.81 18293.81 137
tpm279.80 16677.95 17985.34 10988.28 19168.26 8281.56 32991.42 17070.11 24677.59 14380.50 30767.40 5994.26 21667.34 22677.35 21293.51 143
TR-MVS78.77 18677.37 19182.95 18490.49 13760.88 26593.67 9090.07 22370.08 24774.51 17391.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23789.90 23069.96 24861.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
PAPM_NR82.97 11281.84 12086.37 7694.10 4466.76 12387.66 28292.84 10769.96 24874.07 17993.57 10863.10 11297.50 6470.66 19690.58 9194.85 87
PCF-MVS73.15 979.29 17377.63 18384.29 15186.06 24265.96 14387.03 28991.10 18469.86 25069.79 23290.64 16457.54 16996.59 11864.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32588.88 27569.80 25161.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 301
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25264.59 28674.79 35232.79 35187.82 33753.99 30876.35 22191.42 195
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22389.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
LGP-MVS_train79.56 27384.31 27559.37 29289.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
APDe-MVScopyleft87.54 2887.84 2786.65 6496.07 2366.30 13594.84 4793.78 6669.35 25588.39 3596.34 2867.74 5697.66 5490.62 3693.44 5196.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 17078.53 17082.41 19887.22 21961.43 25789.75 24594.76 3269.29 25667.91 25688.06 21272.92 2595.63 15962.91 26873.90 23890.16 215
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25756.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 82
test_yl84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
DCV-MVSNet84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26390.04 22669.13 26062.85 30683.51 26531.16 36092.75 26670.83 19269.80 26185.43 297
DP-MVS Recon82.73 11581.65 12285.98 8597.31 467.06 11495.15 3691.99 14069.08 26176.50 15593.89 10154.48 20998.20 3570.76 19485.66 13792.69 166
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17184.55 33868.85 26268.99 24080.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
CHOSEN 280x42077.35 20976.95 19778.55 28487.07 22362.68 23269.71 37782.95 35268.80 26371.48 21187.27 22566.03 6984.00 36276.47 14682.81 16088.95 231
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10194.17 6094.15 5968.77 26490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 26989.76 23568.76 26562.70 30783.26 26829.49 36492.71 26770.51 19869.62 26385.34 299
MVS84.66 7782.86 10690.06 290.93 12974.56 687.91 27795.54 1368.55 26672.35 20194.71 7559.78 14698.90 1981.29 11394.69 3296.74 16
EPP-MVSNet81.79 13181.52 12382.61 19288.77 17960.21 28193.02 11793.66 7568.52 26772.90 18990.39 17272.19 3194.96 18674.93 15979.29 19492.67 167
CSCG86.87 3786.26 4688.72 1795.05 3170.79 3193.83 8495.33 1668.48 26877.63 14194.35 8873.04 2498.45 3084.92 8493.71 4796.92 13
testing370.38 28870.83 27369.03 35385.82 24843.93 38290.72 21790.56 20268.06 26960.24 31886.82 23064.83 8384.12 35826.33 39264.10 30879.04 365
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28890.30 21367.84 27059.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20586.90 31367.69 27163.32 29983.64 26344.33 29890.53 31162.04 27466.02 29085.46 296
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21489.30 25367.66 27262.91 30581.78 28449.11 26292.95 25560.29 28458.89 34684.22 308
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27372.79 19054.33 21259.83 28692.58 170
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28587.26 31167.64 27463.46 29883.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28692.03 13967.38 27560.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29089.75 23667.27 27659.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29289.24 25567.24 27959.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
cascas78.18 19675.77 21285.41 10587.14 22169.11 6092.96 11891.15 18266.71 28070.47 21986.07 23937.49 33196.48 12670.15 19979.80 18890.65 209
APD-MVScopyleft85.93 5585.99 5385.76 9595.98 2665.21 16093.59 9592.58 12166.54 28186.17 5195.88 3963.83 9597.00 9686.39 7192.94 5795.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 19175.92 21086.41 7585.93 24771.68 1892.74 12592.51 12366.49 28264.56 28791.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29788.58 28866.36 28358.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28385.99 32466.17 28459.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 307
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17384.94 33465.97 28560.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
MVSFormer83.75 9982.88 10586.37 7689.24 16871.18 2589.07 25990.69 19665.80 28687.13 4294.34 8964.99 7992.67 27072.83 17191.80 7395.27 71
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 25990.69 19665.80 28663.92 29382.03 28143.14 30392.67 27072.83 17168.53 27485.57 293
API-MVS82.28 12280.53 14087.54 4196.13 2270.59 3393.63 9391.04 19165.72 28875.45 16592.83 12456.11 19098.89 2064.10 25889.75 9993.15 153
原ACMM184.42 14593.21 6764.27 18793.40 8865.39 28979.51 11792.50 12858.11 16496.69 11665.27 25293.96 4092.32 177
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29879.92 36165.36 29054.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
QAPM79.95 16477.39 19087.64 3489.63 15471.41 2093.30 10793.70 7365.34 29167.39 26691.75 14847.83 27298.96 1657.71 29589.81 9692.54 171
HPM-MVS_fast80.25 15779.55 15682.33 19991.55 11659.95 28491.32 19589.16 26065.23 29274.71 17293.07 11647.81 27395.74 15274.87 16288.23 10991.31 201
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26292.77 10964.85 29360.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
FE-MVS75.97 23473.02 25084.82 12589.78 15065.56 15277.44 35791.07 18864.55 29472.66 19179.85 31746.05 28896.69 11654.97 30480.82 18192.21 184
SR-MVS82.81 11482.58 11083.50 17493.35 6361.16 26192.23 14891.28 17764.48 29581.27 9395.28 5453.71 21895.86 14782.87 9988.77 10593.49 144
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31477.15 36564.35 29647.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29489.45 24764.17 29758.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23890.32 20963.92 29863.56 29780.25 31236.35 34091.54 30154.46 30666.75 28686.64 267
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 33987.39 30863.86 29968.76 24589.62 18840.50 31191.72 29669.00 21174.25 23389.58 224
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30189.20 25763.77 30064.84 28584.44 25634.05 34891.86 29363.94 25970.89 26089.57 225
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26174.69 37363.68 30179.41 11991.59 15224.36 37487.77 33985.22 7876.26 22290.55 212
114514_t79.17 17577.67 18183.68 16895.32 2965.53 15492.85 12291.60 16363.49 30267.92 25590.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28775.67 36863.48 30378.08 13691.17 15920.16 38587.87 33684.65 8675.57 22690.01 218
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30191.39 18891.01 19263.35 30479.72 11594.62 7851.82 23396.14 13479.71 12287.93 11392.89 164
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29584.17 34063.29 30551.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33787.32 30963.22 30668.76 24590.12 18444.89 29691.59 29970.55 19774.09 23589.79 221
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29172.11 37863.21 30775.18 16790.17 17920.40 38385.76 35184.59 8774.42 23289.87 219
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22789.93 22963.17 30865.64 27886.04 24137.79 32994.10 22165.89 24371.52 25585.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 26969.76 28582.22 20490.98 12867.05 11578.22 35488.30 29463.10 30964.35 29274.98 35155.09 20294.27 21443.25 35069.57 26485.34 299
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31379.51 36362.86 31050.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
SR-MVS-dyc-post81.06 14280.70 13582.15 20792.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8051.26 24195.61 16178.77 13386.77 12792.28 179
RE-MVS-def80.48 14192.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8049.30 25778.77 13386.77 12792.28 179
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 13952.07 34589.19 25789.61 24362.69 31370.07 22692.67 12648.89 26494.32 21038.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 20075.33 21985.87 8993.73 5464.52 17294.85 4685.36 33062.52 31476.11 15690.18 17829.43 36597.29 7768.51 21677.24 21595.81 49
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32183.43 34862.52 31451.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
AdaColmapbinary78.94 18077.00 19684.76 13096.34 1765.86 14592.66 13287.97 30562.18 31670.56 21892.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
FOURS193.95 4761.77 24993.96 7291.92 14362.14 31786.57 48
无先验92.71 12792.61 12062.03 31897.01 9566.63 23393.97 129
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35185.88 32562.03 31858.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30588.88 27561.92 32062.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
tpm cat175.30 24472.21 26284.58 14088.52 18167.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13594.03 23053.77 31074.11 23491.93 189
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 30986.26 32061.83 32253.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27187.32 30961.75 32358.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15855.70 32983.49 31083.39 35061.24 32463.72 29682.76 27234.77 34593.03 25253.37 31277.59 20786.12 281
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28092.18 13561.23 32567.04 26986.49 23331.35 35994.58 19965.06 25367.12 28388.57 238
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7558.68 30290.64 22088.30 29460.90 32664.43 29190.53 16742.38 30594.57 20156.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25763.25 21587.72 28184.66 33660.83 32751.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24389.17 25960.55 32850.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
VDDNet80.50 15178.26 17387.21 4786.19 23869.79 4794.48 5391.31 17360.42 32979.34 12090.91 16238.48 32096.56 12182.16 10381.05 17895.27 71
CPTT-MVS79.59 16879.16 16380.89 24191.54 11759.80 28692.10 15388.54 28960.42 32972.96 18793.28 11248.27 26692.80 26478.89 13286.50 13290.06 216
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27085.06 33260.32 33152.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33254.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26582.90 35360.11 33355.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17743.22 30275.05 38574.26 16562.70 31787.25 260
新几何184.73 13192.32 9064.28 18691.46 16959.56 33679.77 11492.90 12056.95 17896.57 12063.40 26292.91 5893.34 147
旧先验292.00 16259.37 33787.54 4193.47 24675.39 154
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 22689.02 17257.72 31089.84 23258.65 34085.32 6294.09 9657.03 17393.28 24869.34 20690.56 9293.03 158
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27280.79 35758.59 34153.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19860.70 27368.01 38175.56 37057.57 34364.48 28869.87 36838.68 31584.10 35940.87 36167.89 27986.97 262
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19866.90 11968.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32740.87 36167.89 27986.97 262
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31881.23 35557.57 34334.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35089.05 26957.20 34746.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
MSDG69.54 29565.73 30580.96 23885.11 26163.71 20184.19 30583.28 35156.95 34854.50 34584.03 25931.50 35796.03 14342.87 35469.13 27083.14 325
F-COLMAP70.66 28468.44 29277.32 29986.37 23655.91 32788.00 27586.32 31856.94 34957.28 33888.07 21133.58 34992.49 27751.02 31668.37 27583.55 315
test22289.77 15161.60 25489.55 24789.42 24956.83 35077.28 14692.43 13252.76 22791.14 8693.09 155
CNLPA74.31 25372.30 26180.32 24791.49 11861.66 25390.85 21280.72 35856.67 35163.85 29590.64 16446.75 27890.84 30953.79 30975.99 22488.47 241
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31283.99 34556.18 35339.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31084.03 34156.17 35439.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25583.41 34955.48 35553.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31469.81 38454.38 35767.91 25684.54 25515.35 39081.22 37975.65 15266.16 28982.88 326
CVMVSNet74.04 25674.27 23473.33 33085.33 25443.94 38189.53 24988.39 29154.33 35870.37 22290.13 18149.17 26084.05 36061.83 27679.36 19291.99 188
Anonymous2024052976.84 22074.15 23684.88 12391.02 12764.95 16893.84 8291.09 18553.57 35973.00 18687.42 22135.91 34197.32 7569.14 21072.41 25092.36 175
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26486.78 31753.19 36057.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35375.64 36952.30 36141.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27679.71 36252.03 36252.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
Anonymous2023121173.08 26370.39 27981.13 23190.62 13563.33 21491.40 18690.06 22551.84 36464.46 29080.67 30536.49 33994.07 22463.83 26064.17 30785.98 284
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33141.59 35966.60 28788.74 235
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30785.23 33150.38 36947.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24676.11 36650.27 37057.69 33685.23 24639.68 31395.73 15333.35 38071.05 25981.78 342
bld_raw_dy_0_6476.92 21674.65 22583.71 16784.96 26471.37 2173.29 36989.16 26050.14 37162.32 31084.19 25867.48 5895.61 16172.10 18388.25 10884.14 309
gg-mvs-nofinetune77.18 21174.31 23385.80 9391.42 11968.36 7871.78 37194.72 3449.61 37277.12 14845.92 39577.41 893.98 23267.62 22493.16 5595.05 80
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29446.86 39456.06 19190.25 31449.53 32368.83 27185.95 285
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3042.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30875.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
LS3D69.17 29766.40 30177.50 29591.92 10456.12 32685.12 30080.37 36046.96 37856.50 34087.51 22037.25 33293.71 24032.52 38679.40 19182.68 333
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36475.94 36746.94 37958.96 32784.59 25331.40 35882.00 37647.76 33460.33 34286.04 282
RPMNet70.42 28765.68 30684.63 13883.15 28967.96 9170.25 37490.45 20346.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 210
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31486.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36172.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 78
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 265
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33873.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3020.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
eth-test20.00 419
eth-test0.00 419
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 24
GSMVS94.68 97
test_part296.29 1968.16 8790.78 16
sam_mvs157.85 16594.68 97
sam_mvs54.91 204
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
MTGPAbinary92.23 129
test_post178.95 34820.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36794.75 3378.67 13290.85 16377.91 794.56 20372.25 17993.74 4595.36 63
MTMP93.77 8632.52 414
test9_res89.41 4194.96 1895.29 68
agg_prior286.41 7094.75 2995.33 64
agg_prior94.16 4366.97 11893.31 8984.49 6996.75 115
test_prior467.18 11293.92 75
test_prior86.42 7494.71 3567.35 10793.10 9996.84 11295.05 80
新几何291.41 184
旧先验191.94 10260.74 27191.50 16794.36 8465.23 7791.84 7294.55 104
原ACMM292.01 159
testdata296.09 13761.26 278
segment_acmp65.94 70
test1287.09 5194.60 3668.86 6692.91 10582.67 8565.44 7597.55 6293.69 4894.84 90
plane_prior786.94 22661.51 255
plane_prior687.23 21862.32 23950.66 244
plane_prior591.31 17395.55 16776.74 14378.53 20188.39 242
plane_prior489.14 195
plane_prior187.15 220
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
test1193.01 101
door66.57 389
HQP5-MVS63.66 205
BP-MVS77.63 140
HQP4-MVS74.18 17595.61 16188.63 236
HQP3-MVS91.70 15978.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21463.04 22090.30 174
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213