| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 2 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 14 | 99.02 15 | 99.62 12 | 99.36 21 | 98.53 9 | 99.52 181 | 98.58 29 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 94 | 97.89 13 | 99.47 3 | 99.32 25 | 99.08 10 | 97.87 162 | 99.67 2 | 96.47 98 | 99.92 5 | 97.88 42 | 99.98 2 | 99.85 3 |
|
| TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 20 | 98.85 21 | 99.00 46 | 99.20 35 | 97.42 40 | 99.59 159 | 97.21 68 | 99.76 58 | 99.40 100 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 35 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 67 | 99.92 16 | 99.77 12 |
|
| OurMVSNet-221017-0 | | | 98.61 16 | 98.61 24 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 66 | 98.05 47 | 99.61 13 | 99.52 7 | 93.72 189 | 99.88 20 | 98.72 24 | 99.88 27 | 99.65 33 |
|
| DVP-MVS++ | | | 97.96 54 | 97.90 59 | 98.12 84 | 97.75 263 | 95.40 103 | 99.03 7 | 98.89 103 | 96.62 99 | 98.62 76 | 98.30 128 | 96.97 65 | 99.75 67 | 95.70 126 | 99.25 203 | 99.21 140 |
|
| FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 31 | 98.96 18 | 98.87 56 | | | | | | |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 27 | 99.01 16 | 99.63 11 | 99.66 3 | 99.27 2 | 99.68 122 | 97.75 50 | 99.89 26 | 99.62 36 |
|
| RRT_MVS | | | 97.95 58 | 97.79 73 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 303 | 97.99 49 | 99.15 36 | 99.35 23 | 89.84 267 | 99.90 14 | 98.64 26 | 99.90 24 | 99.82 6 |
|
| Anonymous20231211 | | | 98.55 20 | 98.76 13 | 97.94 99 | 98.79 131 | 94.37 147 | 98.84 11 | 99.15 44 | 99.37 3 | 99.67 7 | 99.43 15 | 95.61 135 | 99.72 87 | 98.12 34 | 99.86 31 | 99.73 22 |
|
| MIMVSNet1 | | | 98.51 23 | 98.45 29 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 103 | 98.49 31 | 99.38 22 | 99.14 46 | 95.44 141 | 99.84 30 | 96.47 91 | 99.80 51 | 99.47 79 |
|
| mvsmamba | | | 98.16 37 | 98.06 47 | 98.44 55 | 99.53 28 | 95.87 81 | 98.70 13 | 98.94 97 | 97.71 61 | 98.85 57 | 99.10 48 | 91.35 243 | 99.83 32 | 98.47 30 | 99.90 24 | 99.64 35 |
|
| EPP-MVSNet | | | 96.84 144 | 96.58 159 | 97.65 117 | 99.18 80 | 93.78 170 | 98.68 14 | 96.34 306 | 97.91 51 | 97.30 186 | 98.06 166 | 88.46 283 | 99.85 27 | 93.85 225 | 99.40 171 | 99.32 115 |
|
| v7n | | | 98.73 11 | 98.99 5 | 97.95 98 | 99.64 14 | 94.20 155 | 98.67 15 | 99.14 47 | 99.08 10 | 99.42 20 | 99.23 33 | 96.53 93 | 99.91 13 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| MVSFormer | | | 96.14 182 | 96.36 174 | 95.49 253 | 97.68 271 | 87.81 303 | 98.67 15 | 99.02 75 | 96.50 108 | 94.48 309 | 96.15 300 | 86.90 300 | 99.92 5 | 98.73 22 | 99.13 218 | 98.74 221 |
|
| test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 75 | 96.50 108 | 99.32 26 | 99.44 14 | 97.43 39 | 99.92 5 | 98.73 22 | 99.95 5 | 99.86 2 |
|
| tt0805 | | | 97.44 112 | 97.56 101 | 97.11 162 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 318 | 98.31 36 | 97.09 205 | 95.45 325 | 97.17 52 | 98.50 352 | 98.67 25 | 97.45 332 | 96.48 365 |
|
| anonymousdsp | | | 98.72 14 | 98.63 20 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 37 | 95.62 155 | 99.35 25 | 99.37 19 | 97.38 41 | 99.90 14 | 98.59 28 | 99.91 19 | 99.77 12 |
|
| HPM-MVS |  | | 98.11 43 | 97.83 69 | 98.92 21 | 99.42 41 | 97.46 31 | 98.57 20 | 99.05 66 | 95.43 166 | 97.41 184 | 97.50 216 | 97.98 19 | 99.79 44 | 95.58 138 | 99.57 108 | 99.50 62 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| IS-MVSNet | | | 96.93 138 | 96.68 153 | 97.70 113 | 99.25 62 | 94.00 161 | 98.57 20 | 96.74 301 | 98.36 34 | 98.14 131 | 97.98 175 | 88.23 286 | 99.71 102 | 93.10 246 | 99.72 71 | 99.38 106 |
|
| WR-MVS_H | | | 98.65 15 | 98.62 22 | 98.75 31 | 99.51 30 | 96.61 56 | 98.55 22 | 99.17 39 | 99.05 13 | 99.17 35 | 98.79 75 | 95.47 139 | 99.89 18 | 97.95 41 | 99.91 19 | 99.75 19 |
|
| FE-MVS | | | 92.95 301 | 92.22 305 | 95.11 269 | 97.21 308 | 88.33 288 | 98.54 23 | 93.66 347 | 89.91 308 | 96.21 257 | 98.14 151 | 70.33 385 | 99.50 186 | 87.79 337 | 98.24 294 | 97.51 329 |
|
| test2506 | | | 89.86 342 | 89.16 347 | 91.97 362 | 98.95 112 | 76.83 397 | 98.54 23 | 61.07 411 | 96.20 121 | 97.07 206 | 99.16 43 | 55.19 405 | 99.69 117 | 96.43 93 | 99.83 43 | 99.38 106 |
|
| mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 32 | 96.23 120 | 99.71 4 | 99.48 10 | 98.77 7 | 99.93 3 | 98.89 17 | 99.95 5 | 99.84 5 |
|
| CS-MVS | | | 98.09 44 | 98.01 52 | 98.32 65 | 98.45 179 | 96.69 52 | 98.52 26 | 99.69 5 | 98.07 46 | 96.07 263 | 97.19 241 | 96.88 75 | 99.86 24 | 97.50 60 | 99.73 67 | 98.41 253 |
|
| Gipuma |  | | 98.07 47 | 98.31 35 | 97.36 146 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 52 | 98.76 23 | 96.79 222 | 99.34 25 | 96.61 89 | 98.82 318 | 96.38 94 | 99.50 139 | 96.98 345 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 48 | 99.22 8 | 99.22 33 | 98.96 61 | 97.35 42 | 99.92 5 | 97.79 48 | 99.93 11 | 99.79 10 |
|
| 3Dnovator | | 96.53 2 | 97.61 99 | 97.64 91 | 97.50 131 | 97.74 266 | 93.65 176 | 98.49 28 | 98.88 109 | 96.86 94 | 97.11 199 | 98.55 100 | 95.82 124 | 99.73 82 | 95.94 116 | 99.42 166 | 99.13 156 |
|
| DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 52 | 99.36 4 | 99.29 28 | 99.06 52 | 97.27 46 | 99.93 3 | 97.71 52 | 99.91 19 | 99.70 26 |
|
| jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 49 | 95.83 146 | 99.67 7 | 99.37 19 | 98.25 13 | 99.92 5 | 98.77 20 | 99.94 8 | 99.82 6 |
|
| PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 44 | 99.33 5 | 99.30 27 | 99.00 55 | 97.27 46 | 99.92 5 | 97.64 56 | 99.92 16 | 99.75 19 |
|
| LS3D | | | 97.77 86 | 97.50 108 | 98.57 47 | 96.24 335 | 97.58 24 | 98.45 31 | 98.85 118 | 98.58 28 | 97.51 175 | 97.94 179 | 95.74 131 | 99.63 144 | 95.19 161 | 98.97 236 | 98.51 246 |
|
| CS-MVS-test | | | 97.91 69 | 97.84 66 | 98.14 82 | 98.52 168 | 96.03 77 | 98.38 34 | 99.67 6 | 98.11 44 | 95.50 284 | 96.92 259 | 96.81 81 | 99.87 22 | 96.87 82 | 99.76 58 | 98.51 246 |
|
| FC-MVSNet-test | | | 98.16 37 | 98.37 33 | 97.56 122 | 99.49 34 | 93.10 191 | 98.35 35 | 99.21 33 | 98.43 32 | 98.89 54 | 98.83 74 | 94.30 174 | 99.81 36 | 97.87 43 | 99.91 19 | 99.77 12 |
|
| HPM-MVS_fast | | | 98.32 30 | 98.13 40 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 73 | 95.88 142 | 97.88 159 | 98.22 145 | 98.15 16 | 99.74 76 | 96.50 90 | 99.62 92 | 99.42 97 |
|
| ab-mvs | | | 96.59 163 | 96.59 158 | 96.60 197 | 98.64 149 | 92.21 213 | 98.35 35 | 97.67 263 | 94.45 201 | 96.99 212 | 98.79 75 | 94.96 156 | 99.49 191 | 90.39 303 | 99.07 228 | 98.08 285 |
|
| EGC-MVSNET | | | 83.08 370 | 77.93 373 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 179 | 4.71 406 | 10.38 407 | 98.90 69 | 95.60 136 | 99.50 186 | 95.69 128 | 99.61 98 | 98.55 242 |
|
| test1111 | | | 94.53 257 | 94.81 235 | 93.72 321 | 99.06 101 | 81.94 373 | 98.31 39 | 83.87 402 | 96.37 113 | 98.49 88 | 99.17 42 | 81.49 333 | 99.73 82 | 96.64 84 | 99.86 31 | 99.49 70 |
|
| ECVR-MVS |  | | 94.37 263 | 94.48 253 | 94.05 317 | 98.95 112 | 83.10 363 | 98.31 39 | 82.48 404 | 96.20 121 | 98.23 120 | 99.16 43 | 81.18 336 | 99.66 134 | 95.95 115 | 99.83 43 | 99.38 106 |
|
| EC-MVSNet | | | 97.90 71 | 97.94 58 | 97.79 107 | 98.66 148 | 95.14 121 | 98.31 39 | 99.66 8 | 97.57 67 | 95.95 267 | 97.01 253 | 96.99 64 | 99.82 34 | 97.66 55 | 99.64 89 | 98.39 256 |
|
| pm-mvs1 | | | 98.47 24 | 98.67 18 | 97.86 103 | 99.52 29 | 94.58 139 | 98.28 42 | 99.00 84 | 97.57 67 | 99.27 29 | 99.22 34 | 98.32 12 | 99.50 186 | 97.09 74 | 99.75 65 | 99.50 62 |
|
| SixPastTwentyTwo | | | 97.49 108 | 97.57 100 | 97.26 153 | 99.56 21 | 92.33 208 | 98.28 42 | 96.97 292 | 98.30 38 | 99.45 18 | 99.35 23 | 88.43 284 | 99.89 18 | 98.01 39 | 99.76 58 | 99.54 53 |
|
| FA-MVS(test-final) | | | 94.91 236 | 94.89 229 | 94.99 277 | 97.51 286 | 88.11 296 | 98.27 44 | 95.20 330 | 92.40 270 | 96.68 230 | 98.60 95 | 83.44 325 | 99.28 258 | 93.34 238 | 98.53 280 | 97.59 326 |
|
| CP-MVSNet | | | 98.42 26 | 98.46 27 | 98.30 68 | 99.46 36 | 95.22 118 | 98.27 44 | 98.84 121 | 99.05 13 | 99.01 44 | 98.65 91 | 95.37 142 | 99.90 14 | 97.57 57 | 99.91 19 | 99.77 12 |
|
| GG-mvs-BLEND | | | | | 90.60 370 | 91.00 404 | 84.21 357 | 98.23 46 | 72.63 410 | | 82.76 401 | 84.11 402 | 56.14 401 | 96.79 391 | 72.20 400 | 92.09 391 | 90.78 399 |
|
| GBi-Net | | | 96.99 133 | 96.80 147 | 97.56 122 | 97.96 230 | 93.67 172 | 98.23 46 | 98.66 166 | 95.59 157 | 97.99 147 | 99.19 36 | 89.51 273 | 99.73 82 | 94.60 195 | 99.44 155 | 99.30 120 |
|
| test1 | | | 96.99 133 | 96.80 147 | 97.56 122 | 97.96 230 | 93.67 172 | 98.23 46 | 98.66 166 | 95.59 157 | 97.99 147 | 99.19 36 | 89.51 273 | 99.73 82 | 94.60 195 | 99.44 155 | 99.30 120 |
|
| FMVSNet1 | | | 97.95 58 | 98.08 44 | 97.56 122 | 99.14 92 | 93.67 172 | 98.23 46 | 98.66 166 | 97.41 78 | 99.00 46 | 99.19 36 | 95.47 139 | 99.73 82 | 95.83 123 | 99.76 58 | 99.30 120 |
|
| ACMH | | 93.61 9 | 98.44 25 | 98.76 13 | 97.51 127 | 99.43 39 | 93.54 178 | 98.23 46 | 99.05 66 | 97.40 79 | 99.37 23 | 99.08 51 | 98.79 6 | 99.47 196 | 97.74 51 | 99.71 74 | 99.50 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TransMVSNet (Re) | | | 98.38 28 | 98.67 18 | 97.51 127 | 99.51 30 | 93.39 184 | 98.20 51 | 98.87 111 | 98.23 40 | 99.48 16 | 99.27 30 | 98.47 11 | 99.55 173 | 96.52 89 | 99.53 125 | 99.60 37 |
|
| gg-mvs-nofinetune | | | 88.28 357 | 86.96 363 | 92.23 359 | 92.84 400 | 84.44 353 | 98.19 52 | 74.60 407 | 99.08 10 | 87.01 398 | 99.47 11 | 56.93 398 | 98.23 370 | 78.91 389 | 95.61 372 | 94.01 389 |
|
| QAPM | | | 95.88 193 | 95.57 208 | 96.80 186 | 97.90 236 | 91.84 228 | 98.18 53 | 98.73 149 | 88.41 327 | 96.42 244 | 98.13 153 | 94.73 158 | 99.75 67 | 88.72 326 | 98.94 240 | 98.81 212 |
|
| NR-MVSNet | | | 97.96 54 | 97.86 65 | 98.26 70 | 98.73 137 | 95.54 95 | 98.14 54 | 98.73 149 | 97.79 53 | 99.42 20 | 97.83 188 | 94.40 172 | 99.78 47 | 95.91 118 | 99.76 58 | 99.46 81 |
|
| MIMVSNet | | | 93.42 292 | 92.86 291 | 95.10 271 | 98.17 209 | 88.19 290 | 98.13 55 | 93.69 344 | 92.07 272 | 95.04 297 | 98.21 146 | 80.95 339 | 99.03 301 | 81.42 382 | 98.06 301 | 98.07 287 |
|
| PS-MVSNAJss | | | 98.53 22 | 98.63 20 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 33 | 96.91 92 | 99.75 2 | 99.45 13 | 95.82 124 | 99.92 5 | 98.80 19 | 99.96 4 | 99.89 1 |
|
| ACMMP |  | | 98.05 48 | 97.75 80 | 98.93 18 | 99.23 65 | 97.60 22 | 98.09 57 | 98.96 94 | 95.75 150 | 97.91 156 | 98.06 166 | 96.89 73 | 99.76 61 | 95.32 155 | 99.57 108 | 99.43 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APDe-MVS |  | | 98.14 39 | 98.03 50 | 98.47 54 | 98.72 139 | 96.04 75 | 98.07 58 | 99.10 52 | 95.96 136 | 98.59 80 | 98.69 86 | 96.94 67 | 99.81 36 | 96.64 84 | 99.58 105 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| Vis-MVSNet |  | | 98.27 33 | 98.34 34 | 98.07 86 | 99.33 53 | 95.21 120 | 98.04 59 | 99.46 18 | 97.32 82 | 97.82 166 | 99.11 47 | 96.75 83 | 99.86 24 | 97.84 45 | 99.36 177 | 99.15 151 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| 3Dnovator+ | | 96.13 3 | 97.73 88 | 97.59 98 | 98.15 81 | 98.11 219 | 95.60 92 | 98.04 59 | 98.70 158 | 98.13 43 | 96.93 217 | 98.45 110 | 95.30 145 | 99.62 149 | 95.64 133 | 98.96 237 | 99.24 137 |
|
| FIs | | | 97.93 65 | 98.07 45 | 97.48 135 | 99.38 48 | 92.95 194 | 98.03 61 | 99.11 50 | 98.04 48 | 98.62 76 | 98.66 88 | 93.75 188 | 99.78 47 | 97.23 66 | 99.84 40 | 99.73 22 |
|
| sd_testset | | | 97.97 52 | 98.12 41 | 97.51 127 | 99.41 42 | 93.44 181 | 97.96 62 | 98.25 213 | 98.58 28 | 98.78 64 | 99.39 16 | 98.21 14 | 99.56 168 | 92.65 250 | 99.86 31 | 99.52 58 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 35 | 98.11 42 | 98.64 43 | 99.21 75 | 97.35 35 | 97.96 62 | 99.16 40 | 98.34 35 | 98.78 64 | 98.52 102 | 97.32 43 | 99.45 203 | 94.08 215 | 99.67 84 | 99.13 156 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| VDDNet | | | 96.98 136 | 96.84 144 | 97.41 143 | 99.40 45 | 93.26 188 | 97.94 64 | 95.31 329 | 99.26 7 | 98.39 100 | 99.18 39 | 87.85 293 | 99.62 149 | 95.13 170 | 99.09 225 | 99.35 114 |
|
| CP-MVS | | | 97.92 66 | 97.56 101 | 98.99 10 | 98.99 110 | 97.82 15 | 97.93 65 | 98.96 94 | 96.11 126 | 96.89 220 | 97.45 218 | 96.85 78 | 99.78 47 | 95.19 161 | 99.63 91 | 99.38 106 |
|
| ANet_high | | | 98.31 31 | 98.94 6 | 96.41 211 | 99.33 53 | 89.64 261 | 97.92 66 | 99.56 16 | 99.27 6 | 99.66 9 | 99.50 9 | 97.67 31 | 99.83 32 | 97.55 58 | 99.98 2 | 99.77 12 |
|
| nrg030 | | | 98.54 21 | 98.62 22 | 98.32 65 | 99.22 68 | 95.66 91 | 97.90 67 | 99.08 58 | 98.31 36 | 99.02 43 | 98.74 81 | 97.68 30 | 99.61 156 | 97.77 49 | 99.85 38 | 99.70 26 |
|
| ambc | | | | | 96.56 202 | 98.23 199 | 91.68 231 | 97.88 68 | 98.13 235 | | 98.42 96 | 98.56 99 | 94.22 176 | 99.04 298 | 94.05 218 | 99.35 182 | 98.95 187 |
|
| Anonymous20240529 | | | 97.96 54 | 98.04 49 | 97.71 112 | 98.69 146 | 94.28 153 | 97.86 69 | 98.31 210 | 98.79 22 | 99.23 32 | 98.86 73 | 95.76 130 | 99.61 156 | 95.49 140 | 99.36 177 | 99.23 138 |
|
| canonicalmvs | | | 97.23 125 | 97.21 123 | 97.30 149 | 97.65 276 | 94.39 145 | 97.84 70 | 99.05 66 | 97.42 75 | 96.68 230 | 93.85 352 | 97.63 34 | 99.33 245 | 96.29 97 | 98.47 284 | 98.18 281 |
|
| tfpnnormal | | | 97.72 90 | 97.97 55 | 96.94 175 | 99.26 59 | 92.23 212 | 97.83 71 | 98.45 188 | 98.25 39 | 99.13 38 | 98.66 88 | 96.65 86 | 99.69 117 | 93.92 223 | 99.62 92 | 98.91 197 |
|
| Anonymous20240521 | | | 97.07 129 | 97.51 106 | 95.76 239 | 99.35 51 | 88.18 291 | 97.78 72 | 98.40 197 | 97.11 87 | 98.34 107 | 99.04 53 | 89.58 269 | 99.79 44 | 98.09 36 | 99.93 11 | 99.30 120 |
|
| XVS | | | 97.96 54 | 97.63 93 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 73 | 98.83 127 | 97.42 75 | 96.32 249 | 97.64 205 | 96.49 96 | 99.72 87 | 95.66 131 | 99.37 174 | 99.45 85 |
|
| X-MVStestdata | | | 92.86 302 | 90.83 329 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 73 | 98.83 127 | 97.42 75 | 96.32 249 | 36.50 404 | 96.49 96 | 99.72 87 | 95.66 131 | 99.37 174 | 99.45 85 |
|
| VPA-MVSNet | | | 98.27 33 | 98.46 27 | 97.70 113 | 99.06 101 | 93.80 168 | 97.76 75 | 99.00 84 | 98.40 33 | 99.07 42 | 98.98 58 | 96.89 73 | 99.75 67 | 97.19 71 | 99.79 53 | 99.55 52 |
|
| dcpmvs_2 | | | 97.12 127 | 97.99 54 | 94.51 302 | 99.11 94 | 84.00 358 | 97.75 76 | 99.65 9 | 97.38 80 | 99.14 37 | 98.42 113 | 95.16 148 | 99.96 2 | 95.52 139 | 99.78 56 | 99.58 39 |
|
| UGNet | | | 96.81 149 | 96.56 161 | 97.58 121 | 96.64 324 | 93.84 167 | 97.75 76 | 97.12 286 | 96.47 111 | 93.62 332 | 98.88 71 | 93.22 198 | 99.53 178 | 95.61 135 | 99.69 78 | 99.36 112 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| mPP-MVS | | | 97.91 69 | 97.53 104 | 99.04 4 | 99.22 68 | 97.87 14 | 97.74 78 | 98.78 141 | 96.04 131 | 97.10 200 | 97.73 200 | 96.53 93 | 99.78 47 | 95.16 165 | 99.50 139 | 99.46 81 |
|
| OpenMVS |  | 94.22 8 | 95.48 210 | 95.20 213 | 96.32 214 | 97.16 310 | 91.96 225 | 97.74 78 | 98.84 121 | 87.26 338 | 94.36 311 | 98.01 172 | 93.95 183 | 99.67 128 | 90.70 295 | 98.75 261 | 97.35 336 |
|
| testf1 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 80 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 264 | 96.27 98 | 99.69 78 | 98.76 219 |
|
| APD_test2 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 80 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 264 | 96.27 98 | 99.69 78 | 98.76 219 |
|
| MSP-MVS | | | 97.45 111 | 96.92 141 | 99.03 5 | 99.26 59 | 97.70 18 | 97.66 82 | 98.89 103 | 95.65 153 | 98.51 85 | 96.46 286 | 92.15 227 | 99.81 36 | 95.14 168 | 98.58 279 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| LFMVS | | | 95.32 218 | 94.88 230 | 96.62 196 | 98.03 221 | 91.47 234 | 97.65 83 | 90.72 379 | 99.11 9 | 97.89 158 | 98.31 124 | 79.20 344 | 99.48 194 | 93.91 224 | 99.12 221 | 98.93 193 |
|
| K. test v3 | | | 96.44 171 | 96.28 177 | 96.95 174 | 99.41 42 | 91.53 232 | 97.65 83 | 90.31 383 | 98.89 20 | 98.93 50 | 99.36 21 | 84.57 318 | 99.92 5 | 97.81 46 | 99.56 111 | 99.39 104 |
|
| TSAR-MVS + MP. | | | 97.42 114 | 97.23 122 | 98.00 95 | 99.38 48 | 95.00 125 | 97.63 85 | 98.20 221 | 93.00 252 | 98.16 128 | 98.06 166 | 95.89 119 | 99.72 87 | 95.67 130 | 99.10 224 | 99.28 127 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test_fmvs3 | | | 97.38 116 | 97.56 101 | 96.84 184 | 98.63 153 | 92.81 196 | 97.60 86 | 99.61 13 | 90.87 292 | 98.76 69 | 99.66 3 | 94.03 180 | 97.90 376 | 99.24 6 | 99.68 82 | 99.81 8 |
|
| region2R | | | 97.92 66 | 97.59 98 | 98.92 21 | 99.22 68 | 97.55 26 | 97.60 86 | 98.84 121 | 96.00 134 | 97.22 189 | 97.62 207 | 96.87 77 | 99.76 61 | 95.48 143 | 99.43 163 | 99.46 81 |
|
| HFP-MVS | | | 97.94 62 | 97.64 91 | 98.83 25 | 99.15 85 | 97.50 29 | 97.59 88 | 98.84 121 | 96.05 129 | 97.49 177 | 97.54 212 | 97.07 57 | 99.70 110 | 95.61 135 | 99.46 151 | 99.30 120 |
|
| ACMMPR | | | 97.95 58 | 97.62 95 | 98.94 15 | 99.20 77 | 97.56 25 | 97.59 88 | 98.83 127 | 96.05 129 | 97.46 182 | 97.63 206 | 96.77 82 | 99.76 61 | 95.61 135 | 99.46 151 | 99.49 70 |
|
| RPSCF | | | 97.87 74 | 97.51 106 | 98.95 14 | 99.15 85 | 98.43 6 | 97.56 90 | 99.06 62 | 96.19 123 | 98.48 90 | 98.70 85 | 94.72 159 | 99.24 268 | 94.37 204 | 99.33 190 | 99.17 148 |
|
| KD-MVS_self_test | | | 97.86 76 | 98.07 45 | 97.25 154 | 99.22 68 | 92.81 196 | 97.55 91 | 98.94 97 | 97.10 88 | 98.85 57 | 98.88 71 | 95.03 152 | 99.67 128 | 97.39 64 | 99.65 87 | 99.26 132 |
|
| SR-MVS-dyc-post | | | 98.14 39 | 97.84 66 | 99.02 6 | 98.81 127 | 98.05 9 | 97.55 91 | 98.86 114 | 97.77 54 | 98.20 122 | 98.07 161 | 96.60 91 | 99.76 61 | 95.49 140 | 99.20 208 | 99.26 132 |
|
| RE-MVS-def | | | | 97.88 64 | | 98.81 127 | 98.05 9 | 97.55 91 | 98.86 114 | 97.77 54 | 98.20 122 | 98.07 161 | 96.94 67 | | 95.49 140 | 99.20 208 | 99.26 132 |
|
| APD-MVS_3200maxsize | | | 98.13 42 | 97.90 59 | 98.79 29 | 98.79 131 | 97.31 36 | 97.55 91 | 98.92 100 | 97.72 59 | 98.25 118 | 98.13 153 | 97.10 54 | 99.75 67 | 95.44 147 | 99.24 206 | 99.32 115 |
|
| ACMH+ | | 93.58 10 | 98.23 36 | 98.31 35 | 97.98 97 | 99.39 46 | 95.22 118 | 97.55 91 | 99.20 35 | 98.21 41 | 99.25 31 | 98.51 104 | 98.21 14 | 99.40 221 | 94.79 186 | 99.72 71 | 99.32 115 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 228 | 94.85 231 | 95.87 236 | 99.12 93 | 89.17 269 | 97.54 96 | 94.92 334 | 96.50 108 | 96.58 236 | 97.27 236 | 83.64 324 | 99.48 194 | 88.42 331 | 99.67 84 | 98.97 185 |
|
| MP-MVS |  | | 97.64 96 | 97.18 124 | 99.00 9 | 99.32 55 | 97.77 17 | 97.49 97 | 98.73 149 | 96.27 117 | 95.59 282 | 97.75 197 | 96.30 108 | 99.78 47 | 93.70 231 | 99.48 146 | 99.45 85 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 97.92 66 | 97.62 95 | 98.83 25 | 99.32 55 | 97.24 39 | 97.45 98 | 98.84 121 | 95.76 148 | 96.93 217 | 97.43 220 | 97.26 48 | 99.79 44 | 96.06 105 | 99.53 125 | 99.45 85 |
|
| tttt0517 | | | 93.31 295 | 92.56 302 | 95.57 247 | 98.71 142 | 87.86 300 | 97.44 99 | 87.17 396 | 95.79 147 | 97.47 181 | 96.84 263 | 64.12 392 | 99.81 36 | 96.20 101 | 99.32 192 | 99.02 179 |
|
| v10 | | | 97.55 104 | 97.97 55 | 96.31 215 | 98.60 157 | 89.64 261 | 97.44 99 | 99.02 75 | 96.60 101 | 98.72 72 | 99.16 43 | 93.48 193 | 99.72 87 | 98.76 21 | 99.92 16 | 99.58 39 |
|
| v8 | | | 97.60 100 | 98.06 47 | 96.23 217 | 98.71 142 | 89.44 265 | 97.43 101 | 98.82 135 | 97.29 84 | 98.74 70 | 99.10 48 | 93.86 184 | 99.68 122 | 98.61 27 | 99.94 8 | 99.56 50 |
|
| PMVS |  | 89.60 17 | 96.71 157 | 96.97 136 | 95.95 231 | 99.51 30 | 97.81 16 | 97.42 102 | 97.49 274 | 97.93 50 | 95.95 267 | 98.58 96 | 96.88 75 | 96.91 389 | 89.59 314 | 99.36 177 | 93.12 394 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| SR-MVS | | | 98.00 51 | 97.66 87 | 99.01 8 | 98.77 135 | 97.93 11 | 97.38 103 | 98.83 127 | 97.32 82 | 98.06 141 | 97.85 187 | 96.65 86 | 99.77 56 | 95.00 177 | 99.11 222 | 99.32 115 |
|
| FMVSNet5 | | | 93.39 293 | 92.35 303 | 96.50 204 | 95.83 355 | 90.81 247 | 97.31 104 | 98.27 211 | 92.74 261 | 96.27 253 | 98.28 133 | 62.23 395 | 99.67 128 | 90.86 285 | 99.36 177 | 99.03 176 |
|
| HY-MVS | | 91.43 15 | 92.58 306 | 91.81 311 | 94.90 282 | 96.49 330 | 88.87 277 | 97.31 104 | 94.62 336 | 85.92 353 | 90.50 377 | 96.84 263 | 85.05 313 | 99.40 221 | 83.77 375 | 95.78 369 | 96.43 366 |
|
| CSCG | | | 97.40 115 | 97.30 117 | 97.69 115 | 98.95 112 | 94.83 128 | 97.28 106 | 98.99 87 | 96.35 116 | 98.13 132 | 95.95 311 | 95.99 117 | 99.66 134 | 94.36 206 | 99.73 67 | 98.59 238 |
|
| MTAPA | | | 98.14 39 | 97.84 66 | 99.06 3 | 99.44 38 | 97.90 12 | 97.25 107 | 98.73 149 | 97.69 63 | 97.90 157 | 97.96 176 | 95.81 128 | 99.82 34 | 96.13 104 | 99.61 98 | 99.45 85 |
|
| CPTT-MVS | | | 96.69 158 | 96.08 185 | 98.49 52 | 98.89 121 | 96.64 55 | 97.25 107 | 98.77 142 | 92.89 258 | 96.01 266 | 97.13 243 | 92.23 226 | 99.67 128 | 92.24 256 | 99.34 185 | 99.17 148 |
|
| EU-MVSNet | | | 94.25 264 | 94.47 254 | 93.60 324 | 98.14 215 | 82.60 368 | 97.24 109 | 92.72 358 | 85.08 362 | 98.48 90 | 98.94 63 | 82.59 331 | 98.76 325 | 97.47 62 | 99.53 125 | 99.44 95 |
|
| XXY-MVS | | | 97.54 105 | 97.70 81 | 97.07 167 | 99.46 36 | 92.21 213 | 97.22 110 | 99.00 84 | 94.93 187 | 98.58 81 | 98.92 65 | 97.31 44 | 99.41 219 | 94.44 199 | 99.43 163 | 99.59 38 |
|
| APD_test1 | | | 97.95 58 | 97.68 85 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 111 | 99.08 58 | 96.57 106 | 98.07 140 | 98.38 118 | 96.22 113 | 99.14 282 | 94.71 193 | 99.31 195 | 98.52 245 |
|
| GST-MVS | | | 97.82 81 | 97.49 109 | 98.81 27 | 99.23 65 | 97.25 38 | 97.16 112 | 98.79 137 | 95.96 136 | 97.53 173 | 97.40 222 | 96.93 69 | 99.77 56 | 95.04 174 | 99.35 182 | 99.42 97 |
|
| SteuartSystems-ACMMP | | | 98.02 50 | 97.76 78 | 98.79 29 | 99.43 39 | 97.21 41 | 97.15 113 | 98.90 102 | 96.58 103 | 98.08 138 | 97.87 186 | 97.02 62 | 99.76 61 | 95.25 158 | 99.59 103 | 99.40 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| FMVSNet2 | | | 96.72 155 | 96.67 154 | 96.87 181 | 97.96 230 | 91.88 226 | 97.15 113 | 98.06 244 | 95.59 157 | 98.50 87 | 98.62 94 | 89.51 273 | 99.65 136 | 94.99 179 | 99.60 101 | 99.07 171 |
|
| AllTest | | | 97.20 126 | 96.92 141 | 98.06 88 | 99.08 98 | 96.16 70 | 97.14 115 | 99.16 40 | 94.35 204 | 97.78 167 | 98.07 161 | 95.84 121 | 99.12 286 | 91.41 272 | 99.42 166 | 98.91 197 |
|
| DP-MVS | | | 97.87 74 | 97.89 62 | 97.81 106 | 98.62 155 | 94.82 129 | 97.13 116 | 98.79 137 | 98.98 17 | 98.74 70 | 98.49 105 | 95.80 129 | 99.49 191 | 95.04 174 | 99.44 155 | 99.11 164 |
|
| GeoE | | | 97.75 87 | 97.70 81 | 97.89 101 | 98.88 122 | 94.53 140 | 97.10 117 | 98.98 90 | 95.75 150 | 97.62 170 | 97.59 209 | 97.61 35 | 99.77 56 | 96.34 96 | 99.44 155 | 99.36 112 |
|
| PGM-MVS | | | 97.88 73 | 97.52 105 | 98.96 13 | 99.20 77 | 97.62 21 | 97.09 118 | 99.06 62 | 95.45 163 | 97.55 172 | 97.94 179 | 97.11 53 | 99.78 47 | 94.77 189 | 99.46 151 | 99.48 76 |
|
| LPG-MVS_test | | | 97.94 62 | 97.67 86 | 98.74 34 | 99.15 85 | 97.02 42 | 97.09 118 | 99.02 75 | 95.15 176 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 201 | 99.73 67 | 99.50 62 |
|
| SF-MVS | | | 97.60 100 | 97.39 112 | 98.22 75 | 98.93 116 | 95.69 88 | 97.05 120 | 99.10 52 | 95.32 169 | 97.83 165 | 97.88 185 | 96.44 101 | 99.72 87 | 94.59 198 | 99.39 172 | 99.25 136 |
|
| VDD-MVS | | | 97.37 118 | 97.25 120 | 97.74 110 | 98.69 146 | 94.50 143 | 97.04 121 | 95.61 322 | 98.59 27 | 98.51 85 | 98.72 82 | 92.54 219 | 99.58 161 | 96.02 110 | 99.49 142 | 99.12 161 |
|
| wuyk23d | | | 93.25 297 | 95.20 213 | 87.40 384 | 96.07 347 | 95.38 105 | 97.04 121 | 94.97 333 | 95.33 168 | 99.70 6 | 98.11 157 | 98.14 17 | 91.94 402 | 77.76 393 | 99.68 82 | 74.89 402 |
|
| LCM-MVSNet-Re | | | 97.33 121 | 97.33 116 | 97.32 148 | 98.13 218 | 93.79 169 | 96.99 123 | 99.65 9 | 96.74 97 | 99.47 17 | 98.93 64 | 96.91 72 | 99.84 30 | 90.11 306 | 99.06 231 | 98.32 265 |
|
| MAR-MVS | | | 94.21 267 | 93.03 287 | 97.76 109 | 96.94 319 | 97.44 33 | 96.97 124 | 97.15 284 | 87.89 336 | 92.00 366 | 92.73 367 | 92.14 228 | 99.12 286 | 83.92 372 | 97.51 328 | 96.73 359 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_vis1_n | | | 95.67 201 | 95.89 196 | 95.03 274 | 98.18 206 | 89.89 258 | 96.94 125 | 99.28 29 | 88.25 331 | 98.20 122 | 98.92 65 | 86.69 303 | 97.19 384 | 97.70 54 | 98.82 255 | 98.00 299 |
|
| SDMVSNet | | | 97.97 52 | 98.26 39 | 97.11 162 | 99.41 42 | 92.21 213 | 96.92 126 | 98.60 174 | 98.58 28 | 98.78 64 | 99.39 16 | 97.80 25 | 99.62 149 | 94.98 180 | 99.86 31 | 99.52 58 |
|
| h-mvs33 | | | 96.29 176 | 95.63 206 | 98.26 70 | 98.50 173 | 96.11 73 | 96.90 127 | 97.09 287 | 96.58 103 | 97.21 191 | 98.19 147 | 84.14 320 | 99.78 47 | 95.89 119 | 96.17 363 | 98.89 201 |
|
| test0726 | | | | | | 99.24 63 | 95.51 97 | 96.89 128 | 98.89 103 | 95.92 139 | 98.64 74 | 98.31 124 | 97.06 58 | | | | |
|
| baseline | | | 97.44 112 | 97.78 77 | 96.43 208 | 98.52 168 | 90.75 248 | 96.84 129 | 99.03 73 | 96.51 107 | 97.86 163 | 98.02 170 | 96.67 85 | 99.36 237 | 97.09 74 | 99.47 148 | 99.19 145 |
|
| API-MVS | | | 95.09 230 | 95.01 223 | 95.31 260 | 96.61 325 | 94.02 160 | 96.83 130 | 97.18 283 | 95.60 156 | 95.79 274 | 94.33 347 | 94.54 168 | 98.37 363 | 85.70 357 | 98.52 281 | 93.52 391 |
|
| test_vis3_rt | | | 97.04 130 | 96.98 135 | 97.23 156 | 98.44 180 | 95.88 80 | 96.82 131 | 99.67 6 | 90.30 301 | 99.27 29 | 99.33 27 | 94.04 179 | 96.03 395 | 97.14 72 | 97.83 310 | 99.78 11 |
|
| test_fmvs1_n | | | 95.21 222 | 95.28 211 | 94.99 277 | 98.15 213 | 89.13 273 | 96.81 132 | 99.43 21 | 86.97 344 | 97.21 191 | 98.92 65 | 83.00 328 | 97.13 385 | 98.09 36 | 98.94 240 | 98.72 224 |
|
| test_fmvs2 | | | 96.38 174 | 96.45 169 | 96.16 222 | 97.85 238 | 91.30 237 | 96.81 132 | 99.45 19 | 89.24 315 | 98.49 88 | 99.38 18 | 88.68 280 | 97.62 381 | 98.83 18 | 99.32 192 | 99.57 46 |
|
| SED-MVS | | | 97.94 62 | 97.90 59 | 98.07 86 | 99.22 68 | 95.35 108 | 96.79 134 | 98.83 127 | 96.11 126 | 99.08 40 | 98.24 140 | 97.87 23 | 99.72 87 | 95.44 147 | 99.51 135 | 99.14 154 |
|
| OPU-MVS | | | | | 97.64 118 | 98.01 224 | 95.27 113 | 96.79 134 | | | | 97.35 231 | 96.97 65 | 98.51 351 | 91.21 278 | 99.25 203 | 99.14 154 |
|
| PHI-MVS | | | 96.96 137 | 96.53 165 | 98.25 73 | 97.48 288 | 96.50 59 | 96.76 136 | 98.85 118 | 93.52 229 | 96.19 259 | 96.85 262 | 95.94 118 | 99.42 210 | 93.79 227 | 99.43 163 | 98.83 210 |
|
| DVP-MVS |  | | 97.78 85 | 97.65 88 | 98.16 79 | 99.24 63 | 95.51 97 | 96.74 137 | 98.23 216 | 95.92 139 | 98.40 98 | 98.28 133 | 97.06 58 | 99.71 102 | 95.48 143 | 99.52 130 | 99.26 132 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.25 73 | 99.23 65 | 95.49 101 | 96.74 137 | 98.89 103 | | | | | 99.75 67 | 95.48 143 | 99.52 130 | 99.53 56 |
|
| Anonymous202405211 | | | 96.34 175 | 95.98 190 | 97.43 140 | 98.25 196 | 93.85 166 | 96.74 137 | 94.41 339 | 97.72 59 | 98.37 101 | 98.03 169 | 87.15 299 | 99.53 178 | 94.06 216 | 99.07 228 | 98.92 196 |
|
| SMA-MVS |  | | 97.48 109 | 97.11 126 | 98.60 45 | 98.83 126 | 96.67 53 | 96.74 137 | 98.73 149 | 91.61 281 | 98.48 90 | 98.36 119 | 96.53 93 | 99.68 122 | 95.17 163 | 99.54 121 | 99.45 85 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| TranMVSNet+NR-MVSNet | | | 98.33 29 | 98.30 37 | 98.43 57 | 99.07 100 | 95.87 81 | 96.73 141 | 99.05 66 | 98.67 24 | 98.84 59 | 98.45 110 | 97.58 36 | 99.88 20 | 96.45 92 | 99.86 31 | 99.54 53 |
|
| test_0402 | | | 97.84 77 | 97.97 55 | 97.47 136 | 99.19 79 | 94.07 158 | 96.71 142 | 98.73 149 | 98.66 25 | 98.56 82 | 98.41 114 | 96.84 79 | 99.69 117 | 94.82 184 | 99.81 48 | 98.64 232 |
|
| test_fmvsmconf0.01_n | | | 98.57 17 | 98.74 16 | 98.06 88 | 99.39 46 | 94.63 136 | 96.70 143 | 99.82 1 | 95.44 165 | 99.64 10 | 99.52 7 | 98.96 4 | 99.74 76 | 99.38 3 | 99.86 31 | 99.81 8 |
|
| SSC-MVS | | | 95.92 191 | 97.03 133 | 92.58 352 | 99.28 57 | 78.39 388 | 96.68 144 | 95.12 331 | 98.90 19 | 99.11 39 | 98.66 88 | 91.36 242 | 99.68 122 | 95.00 177 | 99.16 214 | 99.67 28 |
|
| ACMM | | 93.33 11 | 98.05 48 | 97.79 73 | 98.85 24 | 99.15 85 | 97.55 26 | 96.68 144 | 98.83 127 | 95.21 172 | 98.36 104 | 98.13 153 | 98.13 18 | 99.62 149 | 96.04 108 | 99.54 121 | 99.39 104 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline1 | | | 93.14 299 | 92.64 300 | 94.62 295 | 97.34 301 | 87.20 316 | 96.67 146 | 93.02 353 | 94.71 192 | 96.51 241 | 95.83 314 | 81.64 332 | 98.60 344 | 90.00 309 | 88.06 398 | 98.07 287 |
|
| bld_raw_dy_0_64 | | | 95.16 227 | 95.16 216 | 95.15 268 | 96.54 326 | 89.06 274 | 96.63 147 | 99.54 17 | 89.68 311 | 98.72 72 | 94.50 344 | 88.64 281 | 99.38 228 | 92.24 256 | 99.93 11 | 97.03 343 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 83 | 98.01 52 | 97.18 157 | 99.17 81 | 92.51 204 | 96.57 148 | 99.15 44 | 93.68 226 | 98.89 54 | 99.30 28 | 96.42 102 | 99.37 234 | 99.03 13 | 99.83 43 | 99.66 30 |
|
| MTMP | | | | | | | | 96.55 149 | 74.60 407 | | | | | | | | |
|
| SD-MVS | | | 97.37 118 | 97.70 81 | 96.35 212 | 98.14 215 | 95.13 122 | 96.54 150 | 98.92 100 | 95.94 138 | 99.19 34 | 98.08 159 | 97.74 28 | 95.06 396 | 95.24 159 | 99.54 121 | 98.87 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HQP_MVS | | | 96.66 160 | 96.33 176 | 97.68 116 | 98.70 144 | 94.29 150 | 96.50 151 | 98.75 146 | 96.36 114 | 96.16 260 | 96.77 269 | 91.91 237 | 99.46 199 | 92.59 252 | 99.20 208 | 99.28 127 |
|
| plane_prior2 | | | | | | | | 96.50 151 | | 96.36 114 | | | | | | | |
|
| MVS_0304 | | | 96.62 162 | 96.40 172 | 97.28 150 | 97.91 234 | 92.30 209 | 96.47 153 | 89.74 388 | 97.52 71 | 95.38 288 | 98.63 93 | 92.76 208 | 99.81 36 | 99.28 4 | 99.93 11 | 99.75 19 |
|
| Effi-MVS+-dtu | | | 96.81 149 | 96.09 184 | 98.99 10 | 96.90 321 | 98.69 4 | 96.42 154 | 98.09 238 | 95.86 144 | 95.15 292 | 95.54 322 | 94.26 175 | 99.81 36 | 94.06 216 | 98.51 283 | 98.47 250 |
|
| MM | | | 96.87 143 | 96.62 155 | 97.62 119 | 97.72 268 | 93.30 185 | 96.39 155 | 92.61 361 | 97.90 52 | 96.76 227 | 98.64 92 | 90.46 255 | 99.81 36 | 99.16 9 | 99.94 8 | 99.76 17 |
|
| thres100view900 | | | 91.76 322 | 91.26 322 | 93.26 330 | 98.21 200 | 84.50 352 | 96.39 155 | 90.39 380 | 96.87 93 | 96.33 248 | 93.08 359 | 73.44 376 | 99.42 210 | 78.85 390 | 97.74 314 | 95.85 372 |
|
| XVG-ACMP-BASELINE | | | 97.58 103 | 97.28 119 | 98.49 52 | 99.16 82 | 96.90 46 | 96.39 155 | 98.98 90 | 95.05 181 | 98.06 141 | 98.02 170 | 95.86 120 | 99.56 168 | 94.37 204 | 99.64 89 | 99.00 180 |
|
| Patchmtry | | | 95.03 233 | 94.59 248 | 96.33 213 | 94.83 378 | 90.82 245 | 96.38 158 | 97.20 281 | 96.59 102 | 97.49 177 | 98.57 97 | 77.67 351 | 99.38 228 | 92.95 249 | 99.62 92 | 98.80 213 |
|
| fmvsm_s_conf0.1_n | | | 97.73 88 | 98.02 51 | 96.85 182 | 99.09 97 | 91.43 236 | 96.37 159 | 99.11 50 | 94.19 209 | 99.01 44 | 99.25 31 | 96.30 108 | 99.38 228 | 99.00 14 | 99.88 27 | 99.73 22 |
|
| ACMMP_NAP | | | 97.89 72 | 97.63 93 | 98.67 40 | 99.35 51 | 96.84 47 | 96.36 160 | 98.79 137 | 95.07 180 | 97.88 159 | 98.35 120 | 97.24 50 | 99.72 87 | 96.05 107 | 99.58 105 | 99.45 85 |
|
| VNet | | | 96.84 144 | 96.83 145 | 96.88 180 | 98.06 220 | 92.02 223 | 96.35 161 | 97.57 273 | 97.70 62 | 97.88 159 | 97.80 193 | 92.40 224 | 99.54 176 | 94.73 191 | 98.96 237 | 99.08 169 |
|
| V42 | | | 97.04 130 | 97.16 125 | 96.68 195 | 98.59 159 | 91.05 240 | 96.33 162 | 98.36 202 | 94.60 196 | 97.99 147 | 98.30 128 | 93.32 195 | 99.62 149 | 97.40 63 | 99.53 125 | 99.38 106 |
|
| test_fmvsmvis_n_1920 | | | 98.08 45 | 98.47 26 | 96.93 176 | 99.03 107 | 93.29 186 | 96.32 163 | 99.65 9 | 95.59 157 | 99.71 4 | 99.01 54 | 97.66 32 | 99.60 158 | 99.44 2 | 99.83 43 | 97.90 305 |
|
| APD-MVS |  | | 97.00 132 | 96.53 165 | 98.41 59 | 98.55 164 | 96.31 66 | 96.32 163 | 98.77 142 | 92.96 257 | 97.44 183 | 97.58 211 | 95.84 121 | 99.74 76 | 91.96 261 | 99.35 182 | 99.19 145 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| VPNet | | | 97.26 124 | 97.49 109 | 96.59 198 | 99.47 35 | 90.58 250 | 96.27 165 | 98.53 181 | 97.77 54 | 98.46 93 | 98.41 114 | 94.59 165 | 99.68 122 | 94.61 194 | 99.29 198 | 99.52 58 |
|
| thres600view7 | | | 92.03 318 | 91.43 315 | 93.82 319 | 98.19 203 | 84.61 351 | 96.27 165 | 90.39 380 | 96.81 95 | 96.37 247 | 93.11 355 | 73.44 376 | 99.49 191 | 80.32 385 | 97.95 305 | 97.36 334 |
|
| EPNet | | | 93.72 282 | 92.62 301 | 97.03 171 | 87.61 409 | 92.25 211 | 96.27 165 | 91.28 373 | 96.74 97 | 87.65 395 | 97.39 226 | 85.00 314 | 99.64 140 | 92.14 259 | 99.48 146 | 99.20 144 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DSMNet-mixed | | | 92.19 313 | 91.83 310 | 93.25 331 | 96.18 340 | 83.68 361 | 96.27 165 | 93.68 346 | 76.97 397 | 92.54 362 | 99.18 39 | 89.20 278 | 98.55 348 | 83.88 373 | 98.60 278 | 97.51 329 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 95 | 97.83 69 | 97.13 161 | 98.80 129 | 92.51 204 | 96.25 169 | 99.06 62 | 93.67 227 | 98.64 74 | 99.00 55 | 96.23 112 | 99.36 237 | 98.99 15 | 99.80 51 | 99.53 56 |
|
| ACMP | | 92.54 13 | 97.47 110 | 97.10 127 | 98.55 49 | 99.04 106 | 96.70 51 | 96.24 170 | 98.89 103 | 93.71 223 | 97.97 151 | 97.75 197 | 97.44 38 | 99.63 144 | 93.22 243 | 99.70 77 | 99.32 115 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DeepC-MVS | | 95.41 4 | 97.82 81 | 97.70 81 | 98.16 79 | 98.78 134 | 95.72 86 | 96.23 171 | 99.02 75 | 93.92 219 | 98.62 76 | 98.99 57 | 97.69 29 | 99.62 149 | 96.18 103 | 99.87 29 | 99.15 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PM-MVS | | | 97.36 120 | 97.10 127 | 98.14 82 | 98.91 120 | 96.77 49 | 96.20 172 | 98.63 172 | 93.82 220 | 98.54 83 | 98.33 122 | 93.98 181 | 99.05 297 | 95.99 113 | 99.45 154 | 98.61 237 |
|
| test_fmvsmconf0.1_n | | | 98.41 27 | 98.54 25 | 98.03 93 | 99.16 82 | 94.61 137 | 96.18 173 | 99.73 3 | 95.05 181 | 99.60 14 | 99.34 25 | 98.68 8 | 99.72 87 | 99.21 7 | 99.85 38 | 99.76 17 |
|
| MVS_Test | | | 96.27 177 | 96.79 149 | 94.73 292 | 96.94 319 | 86.63 325 | 96.18 173 | 98.33 206 | 94.94 185 | 96.07 263 | 98.28 133 | 95.25 146 | 99.26 262 | 97.21 68 | 97.90 308 | 98.30 269 |
|
| CR-MVSNet | | | 93.29 296 | 92.79 294 | 94.78 290 | 95.44 367 | 88.15 292 | 96.18 173 | 97.20 281 | 84.94 367 | 94.10 316 | 98.57 97 | 77.67 351 | 99.39 225 | 95.17 163 | 95.81 366 | 96.81 356 |
|
| RPMNet | | | 94.68 249 | 94.60 246 | 94.90 282 | 95.44 367 | 88.15 292 | 96.18 173 | 98.86 114 | 97.43 74 | 94.10 316 | 98.49 105 | 79.40 343 | 99.76 61 | 95.69 128 | 95.81 366 | 96.81 356 |
|
| test_fmvsm_n_1920 | | | 98.08 45 | 98.29 38 | 97.43 140 | 98.88 122 | 93.95 163 | 96.17 177 | 99.57 14 | 95.66 152 | 99.52 15 | 98.71 84 | 97.04 60 | 99.64 140 | 99.21 7 | 99.87 29 | 98.69 228 |
|
| fmvsm_s_conf0.5_n | | | 97.62 98 | 97.89 62 | 96.80 186 | 98.79 131 | 91.44 235 | 96.14 178 | 99.06 62 | 94.19 209 | 98.82 61 | 98.98 58 | 96.22 113 | 99.38 228 | 98.98 16 | 99.86 31 | 99.58 39 |
|
| WB-MVS | | | 95.50 207 | 96.62 155 | 92.11 361 | 99.21 75 | 77.26 396 | 96.12 179 | 95.40 328 | 98.62 26 | 98.84 59 | 98.26 138 | 91.08 246 | 99.50 186 | 93.37 236 | 98.70 267 | 99.58 39 |
|
| EIA-MVS | | | 96.04 186 | 95.77 201 | 96.85 182 | 97.80 251 | 92.98 193 | 96.12 179 | 99.16 40 | 94.65 194 | 93.77 327 | 91.69 380 | 95.68 132 | 99.67 128 | 94.18 211 | 98.85 251 | 97.91 304 |
|
| Effi-MVS+ | | | 96.19 180 | 96.01 187 | 96.71 192 | 97.43 294 | 92.19 217 | 96.12 179 | 99.10 52 | 95.45 163 | 93.33 343 | 94.71 338 | 97.23 51 | 99.56 168 | 93.21 244 | 97.54 326 | 98.37 258 |
|
| alignmvs | | | 96.01 188 | 95.52 209 | 97.50 131 | 97.77 260 | 94.71 131 | 96.07 182 | 96.84 295 | 97.48 73 | 96.78 226 | 94.28 348 | 85.50 311 | 99.40 221 | 96.22 100 | 98.73 265 | 98.40 254 |
|
| PatchT | | | 93.75 281 | 93.57 277 | 94.29 311 | 95.05 375 | 87.32 314 | 96.05 183 | 92.98 354 | 97.54 70 | 94.25 312 | 98.72 82 | 75.79 364 | 99.24 268 | 95.92 117 | 95.81 366 | 96.32 367 |
|
| Patchmatch-test | | | 93.60 288 | 93.25 283 | 94.63 294 | 96.14 345 | 87.47 309 | 96.04 184 | 94.50 338 | 93.57 228 | 96.47 242 | 96.97 254 | 76.50 359 | 98.61 342 | 90.67 296 | 98.41 288 | 97.81 313 |
|
| thisisatest0530 | | | 92.71 305 | 91.76 313 | 95.56 249 | 98.42 182 | 88.23 289 | 96.03 185 | 87.35 395 | 94.04 216 | 96.56 238 | 95.47 324 | 64.03 393 | 99.77 56 | 94.78 188 | 99.11 222 | 98.68 231 |
|
| 9.14 | | | | 96.69 152 | | 98.53 167 | | 96.02 186 | 98.98 90 | 93.23 239 | 97.18 194 | 97.46 217 | 96.47 98 | 99.62 149 | 92.99 247 | 99.32 192 | |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 152 | 96.51 167 | 97.44 139 | 97.69 270 | 94.15 156 | 96.02 186 | 98.43 191 | 93.17 247 | 97.30 186 | 97.38 228 | 95.48 138 | 99.28 258 | 93.74 228 | 99.34 185 | 98.88 205 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf_n | | | 98.30 32 | 98.41 32 | 97.99 96 | 98.94 115 | 94.60 138 | 96.00 188 | 99.64 12 | 94.99 184 | 99.43 19 | 99.18 39 | 98.51 10 | 99.71 102 | 99.13 10 | 99.84 40 | 99.67 28 |
|
| 114514_t | | | 93.96 276 | 93.22 284 | 96.19 220 | 99.06 101 | 90.97 243 | 95.99 189 | 98.94 97 | 73.88 400 | 93.43 340 | 96.93 257 | 92.38 225 | 99.37 234 | 89.09 321 | 99.28 199 | 98.25 275 |
|
| FMVSNet3 | | | 95.26 221 | 94.94 224 | 96.22 219 | 96.53 329 | 90.06 254 | 95.99 189 | 97.66 265 | 94.11 213 | 97.99 147 | 97.91 183 | 80.22 342 | 99.63 144 | 94.60 195 | 99.44 155 | 98.96 186 |
|
| HPM-MVS++ |  | | 96.99 133 | 96.38 173 | 98.81 27 | 98.64 149 | 97.59 23 | 95.97 191 | 98.20 221 | 95.51 161 | 95.06 294 | 96.53 282 | 94.10 178 | 99.70 110 | 94.29 207 | 99.15 215 | 99.13 156 |
|
| casdiffmvs_mvg |  | | 97.83 78 | 98.11 42 | 97.00 173 | 98.57 161 | 92.10 221 | 95.97 191 | 99.18 38 | 97.67 66 | 99.00 46 | 98.48 109 | 97.64 33 | 99.50 186 | 96.96 79 | 99.54 121 | 99.40 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testgi | | | 96.07 184 | 96.50 168 | 94.80 288 | 99.26 59 | 87.69 306 | 95.96 193 | 98.58 178 | 95.08 179 | 98.02 146 | 96.25 296 | 97.92 20 | 97.60 382 | 88.68 328 | 98.74 262 | 99.11 164 |
|
| EG-PatchMatch MVS | | | 97.69 92 | 97.79 73 | 97.40 144 | 99.06 101 | 93.52 179 | 95.96 193 | 98.97 93 | 94.55 200 | 98.82 61 | 98.76 80 | 97.31 44 | 99.29 256 | 97.20 70 | 99.44 155 | 99.38 106 |
|
| iter_conf05 | | | 93.65 286 | 93.05 285 | 95.46 255 | 96.13 346 | 87.45 310 | 95.95 195 | 98.22 217 | 92.66 263 | 97.04 208 | 97.89 184 | 63.52 394 | 99.72 87 | 96.19 102 | 99.82 47 | 99.21 140 |
|
| PAPM_NR | | | 94.61 253 | 94.17 265 | 95.96 229 | 98.36 186 | 91.23 238 | 95.93 196 | 97.95 246 | 92.98 253 | 93.42 341 | 94.43 346 | 90.53 253 | 98.38 361 | 87.60 341 | 96.29 360 | 98.27 273 |
|
| UniMVSNet (Re) | | | 97.83 78 | 97.65 88 | 98.35 64 | 98.80 129 | 95.86 83 | 95.92 197 | 99.04 72 | 97.51 72 | 98.22 121 | 97.81 192 | 94.68 162 | 99.78 47 | 97.14 72 | 99.75 65 | 99.41 99 |
|
| test_vis1_n_1920 | | | 95.77 197 | 96.41 171 | 93.85 318 | 98.55 164 | 84.86 348 | 95.91 198 | 99.71 4 | 92.72 262 | 97.67 169 | 98.90 69 | 87.44 296 | 98.73 327 | 97.96 40 | 98.85 251 | 97.96 301 |
|
| fmvsm_l_conf0.5_n | | | 97.68 94 | 97.81 71 | 97.27 151 | 98.92 118 | 92.71 201 | 95.89 199 | 99.41 24 | 93.36 234 | 99.00 46 | 98.44 112 | 96.46 100 | 99.65 136 | 99.09 11 | 99.76 58 | 99.45 85 |
|
| 1314 | | | 92.38 309 | 92.30 304 | 92.64 351 | 95.42 369 | 85.15 343 | 95.86 200 | 96.97 292 | 85.40 360 | 90.62 374 | 93.06 360 | 91.12 245 | 97.80 379 | 86.74 352 | 95.49 374 | 94.97 384 |
|
| MVS | | | 90.02 337 | 89.20 344 | 92.47 355 | 94.71 379 | 86.90 321 | 95.86 200 | 96.74 301 | 64.72 402 | 90.62 374 | 92.77 365 | 92.54 219 | 98.39 360 | 79.30 388 | 95.56 373 | 92.12 395 |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 100 | 97.76 78 | 97.11 162 | 98.92 118 | 92.28 210 | 95.83 202 | 99.32 25 | 93.22 240 | 98.91 53 | 98.49 105 | 96.31 107 | 99.64 140 | 99.07 12 | 99.76 58 | 99.40 100 |
|
| casdiffmvs |  | | 97.50 107 | 97.81 71 | 96.56 202 | 98.51 170 | 91.04 241 | 95.83 202 | 99.09 57 | 97.23 85 | 98.33 110 | 98.30 128 | 97.03 61 | 99.37 234 | 96.58 88 | 99.38 173 | 99.28 127 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpmvs | | | 90.79 333 | 90.87 327 | 90.57 371 | 92.75 401 | 76.30 398 | 95.79 204 | 93.64 348 | 91.04 291 | 91.91 367 | 96.26 295 | 77.19 357 | 98.86 317 | 89.38 318 | 89.85 395 | 96.56 363 |
|
| mvsany_test3 | | | 96.21 179 | 95.93 194 | 97.05 168 | 97.40 296 | 94.33 149 | 95.76 205 | 94.20 341 | 89.10 316 | 99.36 24 | 99.60 6 | 93.97 182 | 97.85 377 | 95.40 154 | 98.63 274 | 98.99 183 |
|
| MSLP-MVS++ | | | 96.42 173 | 96.71 151 | 95.57 247 | 97.82 246 | 90.56 252 | 95.71 206 | 98.84 121 | 94.72 191 | 96.71 229 | 97.39 226 | 94.91 157 | 98.10 374 | 95.28 156 | 99.02 233 | 98.05 294 |
|
| tfpn200view9 | | | 91.55 324 | 91.00 324 | 93.21 334 | 98.02 222 | 84.35 354 | 95.70 207 | 90.79 377 | 96.26 118 | 95.90 272 | 92.13 375 | 73.62 373 | 99.42 210 | 78.85 390 | 97.74 314 | 95.85 372 |
|
| Anonymous20231206 | | | 95.27 220 | 95.06 222 | 95.88 235 | 98.72 139 | 89.37 266 | 95.70 207 | 97.85 252 | 88.00 334 | 96.98 214 | 97.62 207 | 91.95 234 | 99.34 243 | 89.21 319 | 99.53 125 | 98.94 189 |
|
| thres400 | | | 91.68 323 | 91.00 324 | 93.71 322 | 98.02 222 | 84.35 354 | 95.70 207 | 90.79 377 | 96.26 118 | 95.90 272 | 92.13 375 | 73.62 373 | 99.42 210 | 78.85 390 | 97.74 314 | 97.36 334 |
|
| test20.03 | | | 96.58 165 | 96.61 157 | 96.48 206 | 98.49 174 | 91.72 230 | 95.68 210 | 97.69 262 | 96.81 95 | 98.27 117 | 97.92 182 | 94.18 177 | 98.71 330 | 90.78 289 | 99.66 86 | 99.00 180 |
|
| hse-mvs2 | | | 95.77 197 | 95.09 219 | 97.79 107 | 97.84 243 | 95.51 97 | 95.66 211 | 95.43 327 | 96.58 103 | 97.21 191 | 96.16 299 | 84.14 320 | 99.54 176 | 95.89 119 | 96.92 340 | 98.32 265 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 78 | 97.65 88 | 98.37 62 | 98.72 139 | 95.78 84 | 95.66 211 | 99.02 75 | 98.11 44 | 98.31 113 | 97.69 203 | 94.65 164 | 99.85 27 | 97.02 77 | 99.71 74 | 99.48 76 |
|
| dmvs_re | | | 92.08 317 | 91.27 320 | 94.51 302 | 97.16 310 | 92.79 199 | 95.65 213 | 92.64 360 | 94.11 213 | 92.74 355 | 90.98 387 | 83.41 326 | 94.44 400 | 80.72 384 | 94.07 384 | 96.29 368 |
|
| DU-MVS | | | 97.79 84 | 97.60 97 | 98.36 63 | 98.73 137 | 95.78 84 | 95.65 213 | 98.87 111 | 97.57 67 | 98.31 113 | 97.83 188 | 94.69 160 | 99.85 27 | 97.02 77 | 99.71 74 | 99.46 81 |
|
| EPMVS | | | 89.26 348 | 88.55 350 | 91.39 366 | 92.36 402 | 79.11 387 | 95.65 213 | 79.86 405 | 88.60 325 | 93.12 347 | 96.53 282 | 70.73 384 | 98.10 374 | 90.75 290 | 89.32 396 | 96.98 345 |
|
| MVP-Stereo | | | 95.69 199 | 95.28 211 | 96.92 177 | 98.15 213 | 93.03 192 | 95.64 216 | 98.20 221 | 90.39 300 | 96.63 235 | 97.73 200 | 91.63 239 | 99.10 292 | 91.84 266 | 97.31 336 | 98.63 234 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_cas_vis1_n_1920 | | | 95.34 216 | 95.67 203 | 94.35 308 | 98.21 200 | 86.83 323 | 95.61 217 | 99.26 30 | 90.45 299 | 98.17 127 | 98.96 61 | 84.43 319 | 98.31 366 | 96.74 83 | 99.17 213 | 97.90 305 |
|
| test_f | | | 95.82 196 | 95.88 197 | 95.66 244 | 97.61 279 | 93.21 190 | 95.61 217 | 98.17 227 | 86.98 343 | 98.42 96 | 99.47 11 | 90.46 255 | 94.74 398 | 97.71 52 | 98.45 285 | 99.03 176 |
|
| F-COLMAP | | | 95.30 219 | 94.38 258 | 98.05 92 | 98.64 149 | 96.04 75 | 95.61 217 | 98.66 166 | 89.00 319 | 93.22 344 | 96.40 290 | 92.90 205 | 99.35 241 | 87.45 346 | 97.53 327 | 98.77 218 |
|
| AUN-MVS | | | 93.95 278 | 92.69 298 | 97.74 110 | 97.80 251 | 95.38 105 | 95.57 220 | 95.46 326 | 91.26 288 | 92.64 359 | 96.10 305 | 74.67 367 | 99.55 173 | 93.72 230 | 96.97 339 | 98.30 269 |
|
| v144192 | | | 96.69 158 | 96.90 143 | 96.03 226 | 98.25 196 | 88.92 275 | 95.49 221 | 98.77 142 | 93.05 250 | 98.09 136 | 98.29 132 | 92.51 222 | 99.70 110 | 98.11 35 | 99.56 111 | 99.47 79 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 171 | 96.12 182 | 97.39 145 | 97.18 309 | 94.39 145 | 95.46 222 | 98.73 149 | 96.03 133 | 94.72 302 | 94.92 335 | 96.28 111 | 99.69 117 | 93.81 226 | 97.98 303 | 98.09 284 |
|
| Baseline_NR-MVSNet | | | 97.72 90 | 97.79 73 | 97.50 131 | 99.56 21 | 93.29 186 | 95.44 223 | 98.86 114 | 98.20 42 | 98.37 101 | 99.24 32 | 94.69 160 | 99.55 173 | 95.98 114 | 99.79 53 | 99.65 33 |
|
| LF4IMVS | | | 96.07 184 | 95.63 206 | 97.36 146 | 98.19 203 | 95.55 94 | 95.44 223 | 98.82 135 | 92.29 271 | 95.70 280 | 96.55 280 | 92.63 214 | 98.69 333 | 91.75 270 | 99.33 190 | 97.85 309 |
|
| v1921920 | | | 96.72 155 | 96.96 138 | 95.99 227 | 98.21 200 | 88.79 280 | 95.42 225 | 98.79 137 | 93.22 240 | 98.19 126 | 98.26 138 | 92.68 211 | 99.70 110 | 98.34 33 | 99.55 118 | 99.49 70 |
|
| plane_prior | | | | | | | 94.29 150 | 95.42 225 | | 94.31 206 | | | | | | 98.93 242 | |
|
| v1144 | | | 96.84 144 | 97.08 129 | 96.13 224 | 98.42 182 | 89.28 268 | 95.41 227 | 98.67 164 | 94.21 207 | 97.97 151 | 98.31 124 | 93.06 200 | 99.65 136 | 98.06 38 | 99.62 92 | 99.45 85 |
|
| ETV-MVS | | | 96.13 183 | 95.90 195 | 96.82 185 | 97.76 261 | 93.89 164 | 95.40 228 | 98.95 96 | 95.87 143 | 95.58 283 | 91.00 386 | 96.36 106 | 99.72 87 | 93.36 237 | 98.83 254 | 96.85 352 |
|
| v1240 | | | 96.74 152 | 97.02 134 | 95.91 234 | 98.18 206 | 88.52 283 | 95.39 229 | 98.88 109 | 93.15 248 | 98.46 93 | 98.40 117 | 92.80 207 | 99.71 102 | 98.45 31 | 99.49 142 | 99.49 70 |
|
| MP-MVS-pluss | | | 97.69 92 | 97.36 114 | 98.70 38 | 99.50 33 | 96.84 47 | 95.38 230 | 98.99 87 | 92.45 268 | 98.11 133 | 98.31 124 | 97.25 49 | 99.77 56 | 96.60 86 | 99.62 92 | 99.48 76 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| v1192 | | | 96.83 147 | 97.06 131 | 96.15 223 | 98.28 192 | 89.29 267 | 95.36 231 | 98.77 142 | 93.73 222 | 98.11 133 | 98.34 121 | 93.02 204 | 99.67 128 | 98.35 32 | 99.58 105 | 99.50 62 |
|
| v2v482 | | | 96.78 151 | 97.06 131 | 95.95 231 | 98.57 161 | 88.77 281 | 95.36 231 | 98.26 212 | 95.18 175 | 97.85 164 | 98.23 142 | 92.58 215 | 99.63 144 | 97.80 47 | 99.69 78 | 99.45 85 |
|
| test_fmvs1 | | | 94.51 258 | 94.60 246 | 94.26 312 | 95.91 349 | 87.92 298 | 95.35 233 | 99.02 75 | 86.56 348 | 96.79 222 | 98.52 102 | 82.64 330 | 97.00 388 | 97.87 43 | 98.71 266 | 97.88 307 |
|
| EI-MVSNet-Vis-set | | | 97.32 122 | 97.39 112 | 97.11 162 | 97.36 298 | 92.08 222 | 95.34 234 | 97.65 267 | 97.74 57 | 98.29 116 | 98.11 157 | 95.05 150 | 99.68 122 | 97.50 60 | 99.50 139 | 99.56 50 |
|
| EI-MVSNet-UG-set | | | 97.32 122 | 97.40 111 | 97.09 166 | 97.34 301 | 92.01 224 | 95.33 235 | 97.65 267 | 97.74 57 | 98.30 115 | 98.14 151 | 95.04 151 | 99.69 117 | 97.55 58 | 99.52 130 | 99.58 39 |
|
| CostFormer | | | 89.75 343 | 89.25 341 | 91.26 367 | 94.69 380 | 78.00 391 | 95.32 236 | 91.98 366 | 81.50 381 | 90.55 376 | 96.96 256 | 71.06 382 | 98.89 313 | 88.59 329 | 92.63 389 | 96.87 350 |
|
| PVSNet_Blended_VisFu | | | 95.95 190 | 95.80 199 | 96.42 209 | 99.28 57 | 90.62 249 | 95.31 237 | 99.08 58 | 88.40 328 | 96.97 215 | 98.17 150 | 92.11 229 | 99.78 47 | 93.64 232 | 99.21 207 | 98.86 208 |
|
| UnsupCasMVSNet_eth | | | 95.91 192 | 95.73 202 | 96.44 207 | 98.48 176 | 91.52 233 | 95.31 237 | 98.45 188 | 95.76 148 | 97.48 179 | 97.54 212 | 89.53 272 | 98.69 333 | 94.43 200 | 94.61 381 | 99.13 156 |
|
| EI-MVSNet | | | 96.63 161 | 96.93 139 | 95.74 240 | 97.26 306 | 88.13 294 | 95.29 239 | 97.65 267 | 96.99 89 | 97.94 154 | 98.19 147 | 92.55 217 | 99.58 161 | 96.91 80 | 99.56 111 | 99.50 62 |
|
| CVMVSNet | | | 92.33 311 | 92.79 294 | 90.95 368 | 97.26 306 | 75.84 400 | 95.29 239 | 92.33 363 | 81.86 378 | 96.27 253 | 98.19 147 | 81.44 334 | 98.46 356 | 94.23 210 | 98.29 292 | 98.55 242 |
|
| OPM-MVS | | | 97.54 105 | 97.25 120 | 98.41 59 | 99.11 94 | 96.61 56 | 95.24 241 | 98.46 187 | 94.58 199 | 98.10 135 | 98.07 161 | 97.09 56 | 99.39 225 | 95.16 165 | 99.44 155 | 99.21 140 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| TAPA-MVS | | 93.32 12 | 94.93 235 | 94.23 261 | 97.04 170 | 98.18 206 | 94.51 141 | 95.22 242 | 98.73 149 | 81.22 383 | 96.25 255 | 95.95 311 | 93.80 187 | 98.98 306 | 89.89 310 | 98.87 248 | 97.62 323 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DPE-MVS |  | | 97.64 96 | 97.35 115 | 98.50 51 | 98.85 125 | 96.18 69 | 95.21 243 | 98.99 87 | 95.84 145 | 98.78 64 | 98.08 159 | 96.84 79 | 99.81 36 | 93.98 221 | 99.57 108 | 99.52 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MVSTER | | | 94.21 267 | 93.93 272 | 95.05 273 | 95.83 355 | 86.46 326 | 95.18 244 | 97.65 267 | 92.41 269 | 97.94 154 | 98.00 174 | 72.39 378 | 99.58 161 | 96.36 95 | 99.56 111 | 99.12 161 |
|
| PatchmatchNet |  | | 91.98 319 | 91.87 309 | 92.30 358 | 94.60 381 | 79.71 384 | 95.12 245 | 93.59 349 | 89.52 312 | 93.61 333 | 97.02 251 | 77.94 349 | 99.18 275 | 90.84 286 | 94.57 383 | 98.01 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| IterMVS-LS | | | 96.92 139 | 97.29 118 | 95.79 238 | 98.51 170 | 88.13 294 | 95.10 246 | 98.66 166 | 96.99 89 | 98.46 93 | 98.68 87 | 92.55 217 | 99.74 76 | 96.91 80 | 99.79 53 | 99.50 62 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 96.58 165 | 96.97 136 | 95.42 257 | 98.63 153 | 87.57 307 | 95.09 247 | 97.90 249 | 95.91 141 | 98.24 119 | 97.96 176 | 93.42 194 | 99.39 225 | 96.04 108 | 99.52 130 | 99.29 126 |
|
| tpm2 | | | 88.47 355 | 87.69 358 | 90.79 369 | 94.98 376 | 77.34 394 | 95.09 247 | 91.83 367 | 77.51 396 | 89.40 387 | 96.41 288 | 67.83 389 | 98.73 327 | 83.58 377 | 92.60 390 | 96.29 368 |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 287 | 93.05 285 | 95.42 257 | 97.31 305 | 91.21 239 | 95.08 249 | 96.68 304 | 81.56 380 | 96.88 221 | 96.41 288 | 90.44 257 | 99.25 264 | 85.39 363 | 97.67 321 | 95.80 374 |
|
| TAMVS | | | 95.49 208 | 94.94 224 | 97.16 158 | 98.31 188 | 93.41 183 | 95.07 250 | 96.82 297 | 91.09 290 | 97.51 175 | 97.82 191 | 89.96 264 | 99.42 210 | 88.42 331 | 99.44 155 | 98.64 232 |
|
| tpmrst | | | 90.31 335 | 90.61 333 | 89.41 376 | 94.06 389 | 72.37 407 | 95.06 251 | 93.69 344 | 88.01 333 | 92.32 364 | 96.86 261 | 77.45 353 | 98.82 318 | 91.04 280 | 87.01 399 | 97.04 342 |
|
| ADS-MVSNet2 | | | 91.47 326 | 90.51 334 | 94.36 307 | 95.51 365 | 85.63 334 | 95.05 252 | 95.70 317 | 83.46 374 | 92.69 356 | 96.84 263 | 79.15 345 | 99.41 219 | 85.66 359 | 90.52 392 | 98.04 295 |
|
| ADS-MVSNet | | | 90.95 332 | 90.26 336 | 93.04 337 | 95.51 365 | 82.37 369 | 95.05 252 | 93.41 350 | 83.46 374 | 92.69 356 | 96.84 263 | 79.15 345 | 98.70 331 | 85.66 359 | 90.52 392 | 98.04 295 |
|
| tpm | | | 91.08 330 | 90.85 328 | 91.75 364 | 95.33 370 | 78.09 389 | 95.03 254 | 91.27 374 | 88.75 322 | 93.53 336 | 97.40 222 | 71.24 380 | 99.30 252 | 91.25 277 | 93.87 385 | 97.87 308 |
|
| NCCC | | | 96.52 167 | 95.99 189 | 98.10 85 | 97.81 247 | 95.68 89 | 95.00 255 | 98.20 221 | 95.39 167 | 95.40 287 | 96.36 292 | 93.81 186 | 99.45 203 | 93.55 234 | 98.42 287 | 99.17 148 |
|
| test_post1 | | | | | | | | 94.98 256 | | | | 10.37 408 | 76.21 362 | 99.04 298 | 89.47 316 | | |
|
| AdaColmap |  | | 95.11 228 | 94.62 245 | 96.58 199 | 97.33 303 | 94.45 144 | 94.92 257 | 98.08 239 | 93.15 248 | 93.98 323 | 95.53 323 | 94.34 173 | 99.10 292 | 85.69 358 | 98.61 276 | 96.20 370 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 411 | 94.89 258 | | 80.59 385 | 94.02 321 | | 78.66 347 | | 85.50 361 | | 97.82 311 |
|
| CNVR-MVS | | | 96.92 139 | 96.55 162 | 98.03 93 | 98.00 228 | 95.54 95 | 94.87 259 | 98.17 227 | 94.60 196 | 96.38 246 | 97.05 249 | 95.67 133 | 99.36 237 | 95.12 171 | 99.08 226 | 99.19 145 |
|
| OMC-MVS | | | 96.48 169 | 96.00 188 | 97.91 100 | 98.30 189 | 96.01 78 | 94.86 260 | 98.60 174 | 91.88 277 | 97.18 194 | 97.21 240 | 96.11 115 | 99.04 298 | 90.49 302 | 99.34 185 | 98.69 228 |
|
| testing3 | | | 89.72 344 | 88.26 353 | 94.10 316 | 97.66 275 | 84.30 356 | 94.80 261 | 88.25 393 | 94.66 193 | 95.07 293 | 92.51 370 | 41.15 411 | 99.43 208 | 91.81 267 | 98.44 286 | 98.55 242 |
|
| EPNet_dtu | | | 91.39 327 | 90.75 330 | 93.31 329 | 90.48 406 | 82.61 367 | 94.80 261 | 92.88 355 | 93.39 233 | 81.74 403 | 94.90 336 | 81.36 335 | 99.11 289 | 88.28 333 | 98.87 248 | 98.21 278 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MDTV_nov1_ep13 | | | | 91.28 319 | | 94.31 383 | 73.51 405 | 94.80 261 | 93.16 352 | 86.75 347 | 93.45 339 | 97.40 222 | 76.37 360 | 98.55 348 | 88.85 324 | 96.43 355 | |
|
| pmmvs-eth3d | | | 96.49 168 | 96.18 181 | 97.42 142 | 98.25 196 | 94.29 150 | 94.77 264 | 98.07 243 | 89.81 309 | 97.97 151 | 98.33 122 | 93.11 199 | 99.08 294 | 95.46 146 | 99.84 40 | 98.89 201 |
|
| test_yl | | | 94.40 260 | 94.00 269 | 95.59 245 | 96.95 317 | 89.52 263 | 94.75 265 | 95.55 324 | 96.18 124 | 96.79 222 | 96.14 302 | 81.09 337 | 99.18 275 | 90.75 290 | 97.77 311 | 98.07 287 |
|
| DCV-MVSNet | | | 94.40 260 | 94.00 269 | 95.59 245 | 96.95 317 | 89.52 263 | 94.75 265 | 95.55 324 | 96.18 124 | 96.79 222 | 96.14 302 | 81.09 337 | 99.18 275 | 90.75 290 | 97.77 311 | 98.07 287 |
|
| dmvs_testset | | | 87.30 365 | 86.99 362 | 88.24 381 | 96.71 323 | 77.48 393 | 94.68 267 | 86.81 398 | 92.64 264 | 89.61 386 | 87.01 400 | 85.91 307 | 93.12 401 | 61.04 405 | 88.49 397 | 94.13 388 |
|
| MCST-MVS | | | 96.24 178 | 95.80 199 | 97.56 122 | 98.75 136 | 94.13 157 | 94.66 268 | 98.17 227 | 90.17 304 | 96.21 257 | 96.10 305 | 95.14 149 | 99.43 208 | 94.13 214 | 98.85 251 | 99.13 156 |
|
| XVG-OURS-SEG-HR | | | 97.38 116 | 97.07 130 | 98.30 68 | 99.01 109 | 97.41 34 | 94.66 268 | 99.02 75 | 95.20 173 | 98.15 130 | 97.52 214 | 98.83 5 | 98.43 357 | 94.87 182 | 96.41 356 | 99.07 171 |
|
| mvs_anonymous | | | 95.36 215 | 96.07 186 | 93.21 334 | 96.29 334 | 81.56 375 | 94.60 270 | 97.66 265 | 93.30 237 | 96.95 216 | 98.91 68 | 93.03 203 | 99.38 228 | 96.60 86 | 97.30 337 | 98.69 228 |
|
| DP-MVS Recon | | | 95.55 206 | 95.13 217 | 96.80 186 | 98.51 170 | 93.99 162 | 94.60 270 | 98.69 159 | 90.20 303 | 95.78 276 | 96.21 298 | 92.73 210 | 98.98 306 | 90.58 298 | 98.86 250 | 97.42 333 |
|
| save fliter | | | | | | 98.48 176 | 94.71 131 | 94.53 272 | 98.41 195 | 95.02 183 | | | | | | | |
|
| patch_mono-2 | | | 96.59 163 | 96.93 139 | 95.55 250 | 98.88 122 | 87.12 317 | 94.47 273 | 99.30 27 | 94.12 212 | 96.65 234 | 98.41 114 | 94.98 155 | 99.87 22 | 95.81 125 | 99.78 56 | 99.66 30 |
|
| tpm cat1 | | | 88.01 359 | 87.33 360 | 90.05 375 | 94.48 382 | 76.28 399 | 94.47 273 | 94.35 340 | 73.84 401 | 89.26 388 | 95.61 321 | 73.64 372 | 98.30 367 | 84.13 371 | 86.20 400 | 95.57 379 |
|
| CANet | | | 95.86 194 | 95.65 205 | 96.49 205 | 96.41 332 | 90.82 245 | 94.36 275 | 98.41 195 | 94.94 185 | 92.62 361 | 96.73 272 | 92.68 211 | 99.71 102 | 95.12 171 | 99.60 101 | 98.94 189 |
|
| WR-MVS | | | 96.90 141 | 96.81 146 | 97.16 158 | 98.56 163 | 92.20 216 | 94.33 276 | 98.12 236 | 97.34 81 | 98.20 122 | 97.33 233 | 92.81 206 | 99.75 67 | 94.79 186 | 99.81 48 | 99.54 53 |
|
| HQP-NCC | | | | | | 97.85 238 | | 94.26 277 | | 93.18 244 | 92.86 352 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 238 | | 94.26 277 | | 93.18 244 | 92.86 352 | | | | | | |
|
| HQP-MVS | | | 95.17 226 | 94.58 249 | 96.92 177 | 97.85 238 | 92.47 206 | 94.26 277 | 98.43 191 | 93.18 244 | 92.86 352 | 95.08 329 | 90.33 258 | 99.23 270 | 90.51 300 | 98.74 262 | 99.05 175 |
|
| PLC |  | 91.02 16 | 94.05 274 | 92.90 290 | 97.51 127 | 98.00 228 | 95.12 123 | 94.25 280 | 98.25 213 | 86.17 350 | 91.48 371 | 95.25 327 | 91.01 247 | 99.19 274 | 85.02 367 | 96.69 351 | 98.22 277 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| 1112_ss | | | 94.12 270 | 93.42 279 | 96.23 217 | 98.59 159 | 90.85 244 | 94.24 281 | 98.85 118 | 85.49 357 | 92.97 350 | 94.94 333 | 86.01 306 | 99.64 140 | 91.78 268 | 97.92 306 | 98.20 279 |
|
| MS-PatchMatch | | | 94.83 239 | 94.91 228 | 94.57 299 | 96.81 322 | 87.10 318 | 94.23 282 | 97.34 278 | 88.74 323 | 97.14 196 | 97.11 245 | 91.94 235 | 98.23 370 | 92.99 247 | 97.92 306 | 98.37 258 |
|
| Fast-Effi-MVS+ | | | 95.49 208 | 95.07 220 | 96.75 190 | 97.67 274 | 92.82 195 | 94.22 283 | 98.60 174 | 91.61 281 | 93.42 341 | 92.90 362 | 96.73 84 | 99.70 110 | 92.60 251 | 97.89 309 | 97.74 317 |
|
| CMPMVS |  | 73.10 23 | 92.74 304 | 91.39 316 | 96.77 189 | 93.57 395 | 94.67 134 | 94.21 284 | 97.67 263 | 80.36 387 | 93.61 333 | 96.60 278 | 82.85 329 | 97.35 383 | 84.86 368 | 98.78 258 | 98.29 272 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| dp | | | 88.08 358 | 88.05 354 | 88.16 383 | 92.85 399 | 68.81 409 | 94.17 285 | 92.88 355 | 85.47 358 | 91.38 372 | 96.14 302 | 68.87 388 | 98.81 320 | 86.88 351 | 83.80 402 | 96.87 350 |
|
| JIA-IIPM | | | 91.79 321 | 90.69 331 | 95.11 269 | 93.80 392 | 90.98 242 | 94.16 286 | 91.78 368 | 96.38 112 | 90.30 380 | 99.30 28 | 72.02 379 | 98.90 312 | 88.28 333 | 90.17 394 | 95.45 380 |
|
| D2MVS | | | 95.18 224 | 95.17 215 | 95.21 264 | 97.76 261 | 87.76 305 | 94.15 287 | 97.94 247 | 89.77 310 | 96.99 212 | 97.68 204 | 87.45 295 | 99.14 282 | 95.03 176 | 99.81 48 | 98.74 221 |
|
| TSAR-MVS + GP. | | | 96.47 170 | 96.12 182 | 97.49 134 | 97.74 266 | 95.23 115 | 94.15 287 | 96.90 294 | 93.26 238 | 98.04 144 | 96.70 273 | 94.41 171 | 98.89 313 | 94.77 189 | 99.14 216 | 98.37 258 |
|
| PVSNet_BlendedMVS | | | 95.02 234 | 94.93 226 | 95.27 261 | 97.79 256 | 87.40 312 | 94.14 289 | 98.68 161 | 88.94 320 | 94.51 307 | 98.01 172 | 93.04 201 | 99.30 252 | 89.77 312 | 99.49 142 | 99.11 164 |
|
| TinyColmap | | | 96.00 189 | 96.34 175 | 94.96 279 | 97.90 236 | 87.91 299 | 94.13 290 | 98.49 185 | 94.41 202 | 98.16 128 | 97.76 194 | 96.29 110 | 98.68 336 | 90.52 299 | 99.42 166 | 98.30 269 |
|
| CNLPA | | | 95.04 231 | 94.47 254 | 96.75 190 | 97.81 247 | 95.25 114 | 94.12 291 | 97.89 250 | 94.41 202 | 94.57 305 | 95.69 316 | 90.30 261 | 98.35 364 | 86.72 353 | 98.76 260 | 96.64 360 |
|
| BH-untuned | | | 94.69 247 | 94.75 238 | 94.52 301 | 97.95 233 | 87.53 308 | 94.07 292 | 97.01 290 | 93.99 217 | 97.10 200 | 95.65 318 | 92.65 213 | 98.95 311 | 87.60 341 | 96.74 349 | 97.09 340 |
|
| pmmvs5 | | | 94.63 252 | 94.34 259 | 95.50 252 | 97.63 278 | 88.34 287 | 94.02 293 | 97.13 285 | 87.15 340 | 95.22 291 | 97.15 242 | 87.50 294 | 99.27 261 | 93.99 220 | 99.26 202 | 98.88 205 |
|
| thres200 | | | 91.00 331 | 90.42 335 | 92.77 348 | 97.47 292 | 83.98 359 | 94.01 294 | 91.18 375 | 95.12 178 | 95.44 285 | 91.21 384 | 73.93 369 | 99.31 249 | 77.76 393 | 97.63 324 | 95.01 383 |
|
| xiu_mvs_v1_base_debu | | | 95.62 203 | 95.96 191 | 94.60 296 | 98.01 224 | 88.42 284 | 93.99 295 | 98.21 218 | 92.98 253 | 95.91 269 | 94.53 341 | 96.39 103 | 99.72 87 | 95.43 150 | 98.19 295 | 95.64 376 |
|
| xiu_mvs_v1_base | | | 95.62 203 | 95.96 191 | 94.60 296 | 98.01 224 | 88.42 284 | 93.99 295 | 98.21 218 | 92.98 253 | 95.91 269 | 94.53 341 | 96.39 103 | 99.72 87 | 95.43 150 | 98.19 295 | 95.64 376 |
|
| xiu_mvs_v1_base_debi | | | 95.62 203 | 95.96 191 | 94.60 296 | 98.01 224 | 88.42 284 | 93.99 295 | 98.21 218 | 92.98 253 | 95.91 269 | 94.53 341 | 96.39 103 | 99.72 87 | 95.43 150 | 98.19 295 | 95.64 376 |
|
| test_vis1_rt | | | 94.03 275 | 93.65 275 | 95.17 267 | 95.76 360 | 93.42 182 | 93.97 298 | 98.33 206 | 84.68 368 | 93.17 346 | 95.89 313 | 92.53 221 | 94.79 397 | 93.50 235 | 94.97 377 | 97.31 337 |
|
| CDS-MVSNet | | | 94.88 238 | 94.12 266 | 97.14 160 | 97.64 277 | 93.57 177 | 93.96 299 | 97.06 289 | 90.05 306 | 96.30 252 | 96.55 280 | 86.10 305 | 99.47 196 | 90.10 307 | 99.31 195 | 98.40 254 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 94.65 251 | 94.21 263 | 95.96 229 | 95.90 350 | 89.68 260 | 93.92 300 | 97.83 256 | 93.19 243 | 90.12 382 | 95.64 319 | 88.52 282 | 99.57 167 | 93.27 242 | 99.47 148 | 98.62 235 |
|
| WTY-MVS | | | 93.55 289 | 93.00 289 | 95.19 265 | 97.81 247 | 87.86 300 | 93.89 301 | 96.00 311 | 89.02 318 | 94.07 318 | 95.44 326 | 86.27 304 | 99.33 245 | 87.69 339 | 96.82 346 | 98.39 256 |
|
| sss | | | 94.22 265 | 93.72 274 | 95.74 240 | 97.71 269 | 89.95 257 | 93.84 302 | 96.98 291 | 88.38 329 | 93.75 328 | 95.74 315 | 87.94 288 | 98.89 313 | 91.02 281 | 98.10 299 | 98.37 258 |
|
| baseline2 | | | 89.65 346 | 88.44 352 | 93.25 331 | 95.62 363 | 82.71 365 | 93.82 303 | 85.94 399 | 88.89 321 | 87.35 397 | 92.54 369 | 71.23 381 | 99.33 245 | 86.01 354 | 94.60 382 | 97.72 318 |
|
| XVG-OURS | | | 97.12 127 | 96.74 150 | 98.26 70 | 98.99 110 | 97.45 32 | 93.82 303 | 99.05 66 | 95.19 174 | 98.32 111 | 97.70 202 | 95.22 147 | 98.41 358 | 94.27 208 | 98.13 298 | 98.93 193 |
|
| MVS_111021_LR | | | 96.82 148 | 96.55 162 | 97.62 119 | 98.27 194 | 95.34 110 | 93.81 305 | 98.33 206 | 94.59 198 | 96.56 238 | 96.63 277 | 96.61 89 | 98.73 327 | 94.80 185 | 99.34 185 | 98.78 215 |
|
| BH-RMVSNet | | | 94.56 255 | 94.44 257 | 94.91 280 | 97.57 281 | 87.44 311 | 93.78 306 | 96.26 307 | 93.69 225 | 96.41 245 | 96.50 285 | 92.10 230 | 99.00 302 | 85.96 355 | 97.71 317 | 98.31 267 |
|
| CDPH-MVS | | | 95.45 213 | 94.65 241 | 97.84 105 | 98.28 192 | 94.96 126 | 93.73 307 | 98.33 206 | 85.03 364 | 95.44 285 | 96.60 278 | 95.31 144 | 99.44 206 | 90.01 308 | 99.13 218 | 99.11 164 |
|
| PatchMatch-RL | | | 94.61 253 | 93.81 273 | 97.02 172 | 98.19 203 | 95.72 86 | 93.66 308 | 97.23 280 | 88.17 332 | 94.94 299 | 95.62 320 | 91.43 240 | 98.57 345 | 87.36 347 | 97.68 320 | 96.76 358 |
|
| TEST9 | | | | | | 97.84 243 | 95.23 115 | 93.62 309 | 98.39 198 | 86.81 345 | 93.78 325 | 95.99 307 | 94.68 162 | 99.52 181 | | | |
|
| train_agg | | | 95.46 212 | 94.66 240 | 97.88 102 | 97.84 243 | 95.23 115 | 93.62 309 | 98.39 198 | 87.04 341 | 93.78 325 | 95.99 307 | 94.58 166 | 99.52 181 | 91.76 269 | 98.90 244 | 98.89 201 |
|
| test_prior4 | | | | | | | 95.38 105 | 93.61 311 | | | | | | | | | |
|
| test_8 | | | | | | 97.81 247 | 95.07 124 | 93.54 312 | 98.38 200 | 87.04 341 | 93.71 329 | 95.96 310 | 94.58 166 | 99.52 181 | | | |
|
| TR-MVS | | | 92.54 307 | 92.20 306 | 93.57 325 | 96.49 330 | 86.66 324 | 93.51 313 | 94.73 335 | 89.96 307 | 94.95 298 | 93.87 351 | 90.24 263 | 98.61 342 | 81.18 383 | 94.88 378 | 95.45 380 |
|
| 新几何2 | | | | | | | | 93.43 314 | | | | | | | | | |
|
| diffmvs |  | | 96.04 186 | 96.23 178 | 95.46 255 | 97.35 299 | 88.03 297 | 93.42 315 | 99.08 58 | 94.09 215 | 96.66 232 | 96.93 257 | 93.85 185 | 99.29 256 | 96.01 112 | 98.67 269 | 99.06 173 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_HR | | | 96.73 154 | 96.54 164 | 97.27 151 | 98.35 187 | 93.66 175 | 93.42 315 | 98.36 202 | 94.74 190 | 96.58 236 | 96.76 271 | 96.54 92 | 98.99 304 | 94.87 182 | 99.27 201 | 99.15 151 |
|
| UnsupCasMVSNet_bld | | | 94.72 246 | 94.26 260 | 96.08 225 | 98.62 155 | 90.54 253 | 93.38 317 | 98.05 245 | 90.30 301 | 97.02 210 | 96.80 268 | 89.54 270 | 99.16 280 | 88.44 330 | 96.18 362 | 98.56 240 |
|
| 旧先验2 | | | | | | | | 93.35 318 | | 77.95 395 | 95.77 278 | | | 98.67 337 | 90.74 293 | | |
|
| test_prior2 | | | | | | | | 93.33 319 | | 94.21 207 | 94.02 321 | 96.25 296 | 93.64 190 | | 91.90 263 | 98.96 237 | |
|
| WB-MVSnew | | | 91.50 325 | 91.29 318 | 92.14 360 | 94.85 377 | 80.32 382 | 93.29 320 | 88.77 391 | 88.57 326 | 94.03 320 | 92.21 373 | 92.56 216 | 98.28 368 | 80.21 386 | 97.08 338 | 97.81 313 |
|
| SCA | | | 93.38 294 | 93.52 278 | 92.96 342 | 96.24 335 | 81.40 377 | 93.24 321 | 94.00 342 | 91.58 283 | 94.57 305 | 96.97 254 | 87.94 288 | 99.42 210 | 89.47 316 | 97.66 322 | 98.06 291 |
|
| 无先验 | | | | | | | | 93.20 322 | 97.91 248 | 80.78 384 | | | | 99.40 221 | 87.71 338 | | 97.94 303 |
|
| MG-MVS | | | 94.08 273 | 94.00 269 | 94.32 309 | 97.09 313 | 85.89 333 | 93.19 323 | 95.96 313 | 92.52 265 | 94.93 300 | 97.51 215 | 89.54 270 | 98.77 323 | 87.52 345 | 97.71 317 | 98.31 267 |
|
| MVS-HIRNet | | | 88.40 356 | 90.20 337 | 82.99 385 | 97.01 315 | 60.04 410 | 93.11 324 | 85.61 400 | 84.45 372 | 88.72 391 | 99.09 50 | 84.72 317 | 98.23 370 | 82.52 379 | 96.59 354 | 90.69 400 |
|
| new-patchmatchnet | | | 95.67 201 | 96.58 159 | 92.94 343 | 97.48 288 | 80.21 383 | 92.96 325 | 98.19 226 | 94.83 188 | 98.82 61 | 98.79 75 | 93.31 196 | 99.51 185 | 95.83 123 | 99.04 232 | 99.12 161 |
|
| ETVMVS | | | 87.62 362 | 85.75 369 | 93.22 333 | 96.15 344 | 83.26 362 | 92.94 326 | 90.37 382 | 91.39 285 | 90.37 378 | 88.45 396 | 51.93 408 | 98.64 339 | 73.76 397 | 96.38 357 | 97.75 316 |
|
| MDA-MVSNet-bldmvs | | | 95.69 199 | 95.67 203 | 95.74 240 | 98.48 176 | 88.76 282 | 92.84 327 | 97.25 279 | 96.00 134 | 97.59 171 | 97.95 178 | 91.38 241 | 99.46 199 | 93.16 245 | 96.35 358 | 98.99 183 |
|
| 原ACMM2 | | | | | | | | 92.82 328 | | | | | | | | | |
|
| testdata1 | | | | | | | | 92.77 329 | | 93.78 221 | | | | | | | |
|
| Test_1112_low_res | | | 93.53 290 | 92.86 291 | 95.54 251 | 98.60 157 | 88.86 278 | 92.75 330 | 98.69 159 | 82.66 377 | 92.65 358 | 96.92 259 | 84.75 316 | 99.56 168 | 90.94 283 | 97.76 313 | 98.19 280 |
|
| USDC | | | 94.56 255 | 94.57 251 | 94.55 300 | 97.78 259 | 86.43 328 | 92.75 330 | 98.65 171 | 85.96 352 | 96.91 219 | 97.93 181 | 90.82 250 | 98.74 326 | 90.71 294 | 99.59 103 | 98.47 250 |
|
| test222 | | | | | | 98.17 209 | 93.24 189 | 92.74 332 | 97.61 272 | 75.17 398 | 94.65 304 | 96.69 274 | 90.96 249 | | | 98.66 271 | 97.66 320 |
|
| jason | | | 94.39 262 | 94.04 268 | 95.41 259 | 98.29 190 | 87.85 302 | 92.74 332 | 96.75 300 | 85.38 361 | 95.29 289 | 96.15 300 | 88.21 287 | 99.65 136 | 94.24 209 | 99.34 185 | 98.74 221 |
| jason: jason. |
| testing91 | | | 89.67 345 | 88.55 350 | 93.04 337 | 95.90 350 | 81.80 374 | 92.71 334 | 93.71 343 | 93.71 223 | 90.18 381 | 90.15 392 | 57.11 397 | 99.22 272 | 87.17 350 | 96.32 359 | 98.12 283 |
|
| testing99 | | | 89.21 349 | 88.04 355 | 92.70 350 | 95.78 358 | 81.00 380 | 92.65 335 | 92.03 364 | 93.20 242 | 89.90 385 | 90.08 394 | 55.25 403 | 99.14 282 | 87.54 343 | 95.95 365 | 97.97 300 |
|
| Patchmatch-RL test | | | 94.66 250 | 94.49 252 | 95.19 265 | 98.54 166 | 88.91 276 | 92.57 336 | 98.74 148 | 91.46 284 | 98.32 111 | 97.75 197 | 77.31 356 | 98.81 320 | 96.06 105 | 99.61 98 | 97.85 309 |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 141 | 96.43 170 | 98.31 67 | 97.48 288 | 97.23 40 | 92.56 337 | 98.60 174 | 92.84 259 | 98.54 83 | 97.40 222 | 96.64 88 | 98.78 322 | 94.40 203 | 99.41 170 | 98.93 193 |
|
| N_pmnet | | | 95.18 224 | 94.23 261 | 98.06 88 | 97.85 238 | 96.55 58 | 92.49 338 | 91.63 369 | 89.34 313 | 98.09 136 | 97.41 221 | 90.33 258 | 99.06 296 | 91.58 271 | 99.31 195 | 98.56 240 |
|
| testing11 | | | 88.93 351 | 87.63 359 | 92.80 347 | 95.87 352 | 81.49 376 | 92.48 339 | 91.54 370 | 91.62 280 | 88.27 393 | 90.24 390 | 55.12 406 | 99.11 289 | 87.30 348 | 96.28 361 | 97.81 313 |
|
| Syy-MVS | | | 92.09 316 | 91.80 312 | 92.93 344 | 95.19 372 | 82.65 366 | 92.46 340 | 91.35 371 | 90.67 296 | 91.76 369 | 87.61 398 | 85.64 310 | 98.50 352 | 94.73 191 | 96.84 344 | 97.65 321 |
|
| myMVS_eth3d | | | 87.16 367 | 85.61 370 | 91.82 363 | 95.19 372 | 79.32 385 | 92.46 340 | 91.35 371 | 90.67 296 | 91.76 369 | 87.61 398 | 41.96 410 | 98.50 352 | 82.66 378 | 96.84 344 | 97.65 321 |
|
| BH-w/o | | | 92.14 314 | 91.94 308 | 92.73 349 | 97.13 312 | 85.30 339 | 92.46 340 | 95.64 319 | 89.33 314 | 94.21 313 | 92.74 366 | 89.60 268 | 98.24 369 | 81.68 381 | 94.66 380 | 94.66 385 |
|
| IterMVS-SCA-FT | | | 95.86 194 | 96.19 180 | 94.85 285 | 97.68 271 | 85.53 336 | 92.42 343 | 97.63 271 | 96.99 89 | 98.36 104 | 98.54 101 | 87.94 288 | 99.75 67 | 97.07 76 | 99.08 226 | 99.27 131 |
|
| IterMVS | | | 95.42 214 | 95.83 198 | 94.20 313 | 97.52 285 | 83.78 360 | 92.41 344 | 97.47 276 | 95.49 162 | 98.06 141 | 98.49 105 | 87.94 288 | 99.58 161 | 96.02 110 | 99.02 233 | 99.23 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testing222 | | | 87.35 364 | 85.50 371 | 92.93 344 | 95.79 357 | 82.83 364 | 92.40 345 | 90.10 386 | 92.80 260 | 88.87 390 | 89.02 395 | 48.34 409 | 98.70 331 | 75.40 396 | 96.74 349 | 97.27 338 |
|
| DELS-MVS | | | 96.17 181 | 96.23 178 | 95.99 227 | 97.55 284 | 90.04 255 | 92.38 346 | 98.52 182 | 94.13 211 | 96.55 240 | 97.06 248 | 94.99 154 | 99.58 161 | 95.62 134 | 99.28 199 | 98.37 258 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| new_pmnet | | | 92.34 310 | 91.69 314 | 94.32 309 | 96.23 337 | 89.16 270 | 92.27 347 | 92.88 355 | 84.39 373 | 95.29 289 | 96.35 293 | 85.66 309 | 96.74 393 | 84.53 370 | 97.56 325 | 97.05 341 |
|
| CHOSEN 1792x2688 | | | 94.10 271 | 93.41 280 | 96.18 221 | 99.16 82 | 90.04 255 | 92.15 348 | 98.68 161 | 79.90 388 | 96.22 256 | 97.83 188 | 87.92 292 | 99.42 210 | 89.18 320 | 99.65 87 | 99.08 169 |
|
| xiu_mvs_v2_base | | | 94.22 265 | 94.63 244 | 92.99 341 | 97.32 304 | 84.84 349 | 92.12 349 | 97.84 254 | 91.96 275 | 94.17 314 | 93.43 353 | 96.07 116 | 99.71 102 | 91.27 275 | 97.48 329 | 94.42 386 |
|
| lupinMVS | | | 93.77 279 | 93.28 282 | 95.24 262 | 97.68 271 | 87.81 303 | 92.12 349 | 96.05 309 | 84.52 370 | 94.48 309 | 95.06 331 | 86.90 300 | 99.63 144 | 93.62 233 | 99.13 218 | 98.27 273 |
|
| pmmvs4 | | | 94.82 240 | 94.19 264 | 96.70 193 | 97.42 295 | 92.75 200 | 92.09 351 | 96.76 299 | 86.80 346 | 95.73 279 | 97.22 239 | 89.28 276 | 98.89 313 | 93.28 241 | 99.14 216 | 98.46 252 |
|
| PAPR | | | 92.22 312 | 91.27 320 | 95.07 272 | 95.73 362 | 88.81 279 | 91.97 352 | 97.87 251 | 85.80 355 | 90.91 373 | 92.73 367 | 91.16 244 | 98.33 365 | 79.48 387 | 95.76 370 | 98.08 285 |
|
| UWE-MVS | | | 87.57 363 | 86.72 365 | 90.13 374 | 95.21 371 | 73.56 404 | 91.94 353 | 83.78 403 | 88.73 324 | 93.00 349 | 92.87 363 | 55.22 404 | 99.25 264 | 81.74 380 | 97.96 304 | 97.59 326 |
|
| PS-MVSNAJ | | | 94.10 271 | 94.47 254 | 93.00 340 | 97.35 299 | 84.88 347 | 91.86 354 | 97.84 254 | 91.96 275 | 94.17 314 | 92.50 371 | 95.82 124 | 99.71 102 | 91.27 275 | 97.48 329 | 94.40 387 |
|
| c3_l | | | 95.20 223 | 95.32 210 | 94.83 287 | 96.19 339 | 86.43 328 | 91.83 355 | 98.35 205 | 93.47 231 | 97.36 185 | 97.26 237 | 88.69 279 | 99.28 258 | 95.41 153 | 99.36 177 | 98.78 215 |
|
| test0.0.03 1 | | | 90.11 336 | 89.21 343 | 92.83 346 | 93.89 391 | 86.87 322 | 91.74 356 | 88.74 392 | 92.02 273 | 94.71 303 | 91.14 385 | 73.92 370 | 94.48 399 | 83.75 376 | 92.94 387 | 97.16 339 |
|
| FPMVS | | | 89.92 341 | 88.63 349 | 93.82 319 | 98.37 185 | 96.94 45 | 91.58 357 | 93.34 351 | 88.00 334 | 90.32 379 | 97.10 246 | 70.87 383 | 91.13 403 | 71.91 401 | 96.16 364 | 93.39 393 |
|
| iter_conf05_11 | | | 93.77 279 | 93.29 281 | 95.24 262 | 96.54 326 | 89.14 272 | 91.55 358 | 95.02 332 | 90.16 305 | 93.21 345 | 93.94 350 | 87.37 297 | 99.56 168 | 92.24 256 | 99.56 111 | 97.03 343 |
|
| ET-MVSNet_ETH3D | | | 91.12 328 | 89.67 340 | 95.47 254 | 96.41 332 | 89.15 271 | 91.54 359 | 90.23 384 | 89.07 317 | 86.78 399 | 92.84 364 | 69.39 387 | 99.44 206 | 94.16 212 | 96.61 353 | 97.82 311 |
|
| PVSNet_Blended | | | 93.96 276 | 93.65 275 | 94.91 280 | 97.79 256 | 87.40 312 | 91.43 360 | 98.68 161 | 84.50 371 | 94.51 307 | 94.48 345 | 93.04 201 | 99.30 252 | 89.77 312 | 98.61 276 | 98.02 297 |
|
| CLD-MVS | | | 95.47 211 | 95.07 220 | 96.69 194 | 98.27 194 | 92.53 203 | 91.36 361 | 98.67 164 | 91.22 289 | 95.78 276 | 94.12 349 | 95.65 134 | 98.98 306 | 90.81 287 | 99.72 71 | 98.57 239 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| eth_miper_zixun_eth | | | 94.89 237 | 94.93 226 | 94.75 291 | 95.99 348 | 86.12 331 | 91.35 362 | 98.49 185 | 93.40 232 | 97.12 198 | 97.25 238 | 86.87 302 | 99.35 241 | 95.08 173 | 98.82 255 | 98.78 215 |
|
| cl____ | | | 94.73 242 | 94.64 242 | 95.01 275 | 95.85 354 | 87.00 319 | 91.33 363 | 98.08 239 | 93.34 235 | 97.10 200 | 97.33 233 | 84.01 323 | 99.30 252 | 95.14 168 | 99.56 111 | 98.71 227 |
|
| DIV-MVS_self_test | | | 94.73 242 | 94.64 242 | 95.01 275 | 95.86 353 | 87.00 319 | 91.33 363 | 98.08 239 | 93.34 235 | 97.10 200 | 97.34 232 | 84.02 322 | 99.31 249 | 95.15 167 | 99.55 118 | 98.72 224 |
|
| miper_ehance_all_eth | | | 94.69 247 | 94.70 239 | 94.64 293 | 95.77 359 | 86.22 330 | 91.32 365 | 98.24 215 | 91.67 279 | 97.05 207 | 96.65 276 | 88.39 285 | 99.22 272 | 94.88 181 | 98.34 289 | 98.49 249 |
|
| pmmvs3 | | | 90.00 338 | 88.90 348 | 93.32 328 | 94.20 388 | 85.34 338 | 91.25 366 | 92.56 362 | 78.59 392 | 93.82 324 | 95.17 328 | 67.36 390 | 98.69 333 | 89.08 322 | 98.03 302 | 95.92 371 |
|
| HyFIR lowres test | | | 93.72 282 | 92.65 299 | 96.91 179 | 98.93 116 | 91.81 229 | 91.23 367 | 98.52 182 | 82.69 376 | 96.46 243 | 96.52 284 | 80.38 341 | 99.90 14 | 90.36 304 | 98.79 257 | 99.03 176 |
|
| DPM-MVS | | | 93.68 284 | 92.77 297 | 96.42 209 | 97.91 234 | 92.54 202 | 91.17 368 | 97.47 276 | 84.99 366 | 93.08 348 | 94.74 337 | 89.90 265 | 99.00 302 | 87.54 343 | 98.09 300 | 97.72 318 |
|
| CL-MVSNet_self_test | | | 95.04 231 | 94.79 237 | 95.82 237 | 97.51 286 | 89.79 259 | 91.14 369 | 96.82 297 | 93.05 250 | 96.72 228 | 96.40 290 | 90.82 250 | 99.16 280 | 91.95 262 | 98.66 271 | 98.50 248 |
|
| miper_lstm_enhance | | | 94.81 241 | 94.80 236 | 94.85 285 | 96.16 341 | 86.45 327 | 91.14 369 | 98.20 221 | 93.49 230 | 97.03 209 | 97.37 230 | 84.97 315 | 99.26 262 | 95.28 156 | 99.56 111 | 98.83 210 |
|
| cl22 | | | 93.25 297 | 92.84 293 | 94.46 304 | 94.30 384 | 86.00 332 | 91.09 371 | 96.64 305 | 90.74 293 | 95.79 274 | 96.31 294 | 78.24 348 | 98.77 323 | 94.15 213 | 98.34 289 | 98.62 235 |
|
| MSDG | | | 95.33 217 | 95.13 217 | 95.94 233 | 97.40 296 | 91.85 227 | 91.02 372 | 98.37 201 | 95.30 170 | 96.31 251 | 95.99 307 | 94.51 169 | 98.38 361 | 89.59 314 | 97.65 323 | 97.60 325 |
|
| IB-MVS | | 85.98 20 | 88.63 354 | 86.95 364 | 93.68 323 | 95.12 374 | 84.82 350 | 90.85 373 | 90.17 385 | 87.55 337 | 88.48 392 | 91.34 383 | 58.01 396 | 99.59 159 | 87.24 349 | 93.80 386 | 96.63 362 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| mvsany_test1 | | | 93.47 291 | 93.03 287 | 94.79 289 | 94.05 390 | 92.12 218 | 90.82 374 | 90.01 387 | 85.02 365 | 97.26 188 | 98.28 133 | 93.57 191 | 97.03 386 | 92.51 254 | 95.75 371 | 95.23 382 |
|
| test123 | | | 12.59 374 | 15.49 377 | 3.87 389 | 6.07 412 | 2.55 414 | 90.75 375 | 2.59 414 | 2.52 407 | 5.20 409 | 13.02 406 | 4.96 412 | 1.85 409 | 5.20 407 | 9.09 406 | 7.23 404 |
|
| ppachtmachnet_test | | | 94.49 259 | 94.84 232 | 93.46 327 | 96.16 341 | 82.10 370 | 90.59 376 | 97.48 275 | 90.53 298 | 97.01 211 | 97.59 209 | 91.01 247 | 99.36 237 | 93.97 222 | 99.18 212 | 98.94 189 |
|
| PMMVS | | | 92.39 308 | 91.08 323 | 96.30 216 | 93.12 397 | 92.81 196 | 90.58 377 | 95.96 313 | 79.17 391 | 91.85 368 | 92.27 372 | 90.29 262 | 98.66 338 | 89.85 311 | 96.68 352 | 97.43 332 |
|
| our_test_3 | | | 94.20 269 | 94.58 249 | 93.07 336 | 96.16 341 | 81.20 378 | 90.42 378 | 96.84 295 | 90.72 294 | 97.14 196 | 97.13 243 | 90.47 254 | 99.11 289 | 94.04 219 | 98.25 293 | 98.91 197 |
|
| YYNet1 | | | 94.73 242 | 94.84 232 | 94.41 306 | 97.47 292 | 85.09 345 | 90.29 379 | 95.85 316 | 92.52 265 | 97.53 173 | 97.76 194 | 91.97 233 | 99.18 275 | 93.31 240 | 96.86 343 | 98.95 187 |
|
| MDA-MVSNet_test_wron | | | 94.73 242 | 94.83 234 | 94.42 305 | 97.48 288 | 85.15 343 | 90.28 380 | 95.87 315 | 92.52 265 | 97.48 179 | 97.76 194 | 91.92 236 | 99.17 279 | 93.32 239 | 96.80 348 | 98.94 189 |
|
| GA-MVS | | | 92.83 303 | 92.15 307 | 94.87 284 | 96.97 316 | 87.27 315 | 90.03 381 | 96.12 308 | 91.83 278 | 94.05 319 | 94.57 339 | 76.01 363 | 98.97 310 | 92.46 255 | 97.34 335 | 98.36 263 |
|
| miper_enhance_ethall | | | 93.14 299 | 92.78 296 | 94.20 313 | 93.65 393 | 85.29 340 | 89.97 382 | 97.85 252 | 85.05 363 | 96.15 262 | 94.56 340 | 85.74 308 | 99.14 282 | 93.74 228 | 98.34 289 | 98.17 282 |
|
| test-LLR | | | 89.97 340 | 89.90 338 | 90.16 372 | 94.24 386 | 74.98 401 | 89.89 383 | 89.06 389 | 92.02 273 | 89.97 383 | 90.77 388 | 73.92 370 | 98.57 345 | 91.88 264 | 97.36 333 | 96.92 347 |
|
| TESTMET0.1,1 | | | 87.20 366 | 86.57 366 | 89.07 377 | 93.62 394 | 72.84 406 | 89.89 383 | 87.01 397 | 85.46 359 | 89.12 389 | 90.20 391 | 56.00 402 | 97.72 380 | 90.91 284 | 96.92 340 | 96.64 360 |
|
| test-mter | | | 87.92 360 | 87.17 361 | 90.16 372 | 94.24 386 | 74.98 401 | 89.89 383 | 89.06 389 | 86.44 349 | 89.97 383 | 90.77 388 | 54.96 407 | 98.57 345 | 91.88 264 | 97.36 333 | 96.92 347 |
|
| PCF-MVS | | 89.43 18 | 92.12 315 | 90.64 332 | 96.57 201 | 97.80 251 | 93.48 180 | 89.88 386 | 98.45 188 | 74.46 399 | 96.04 265 | 95.68 317 | 90.71 252 | 99.31 249 | 73.73 398 | 99.01 235 | 96.91 349 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| thisisatest0515 | | | 90.43 334 | 89.18 346 | 94.17 315 | 97.07 314 | 85.44 337 | 89.75 387 | 87.58 394 | 88.28 330 | 93.69 331 | 91.72 379 | 65.27 391 | 99.58 161 | 90.59 297 | 98.67 269 | 97.50 331 |
|
| KD-MVS_2432*1600 | | | 88.93 351 | 87.74 356 | 92.49 353 | 88.04 407 | 81.99 371 | 89.63 388 | 95.62 320 | 91.35 286 | 95.06 294 | 93.11 355 | 56.58 399 | 98.63 340 | 85.19 364 | 95.07 375 | 96.85 352 |
|
| miper_refine_blended | | | 88.93 351 | 87.74 356 | 92.49 353 | 88.04 407 | 81.99 371 | 89.63 388 | 95.62 320 | 91.35 286 | 95.06 294 | 93.11 355 | 56.58 399 | 98.63 340 | 85.19 364 | 95.07 375 | 96.85 352 |
|
| testmvs | | | 12.33 375 | 15.23 378 | 3.64 390 | 5.77 413 | 2.23 415 | 88.99 390 | 3.62 413 | 2.30 408 | 5.29 408 | 13.09 405 | 4.52 413 | 1.95 408 | 5.16 408 | 8.32 407 | 6.75 405 |
|
| cascas | | | 91.89 320 | 91.35 317 | 93.51 326 | 94.27 385 | 85.60 335 | 88.86 391 | 98.61 173 | 79.32 390 | 92.16 365 | 91.44 382 | 89.22 277 | 98.12 373 | 90.80 288 | 97.47 331 | 96.82 355 |
|
| PAPM | | | 87.64 361 | 85.84 368 | 93.04 337 | 96.54 326 | 84.99 346 | 88.42 392 | 95.57 323 | 79.52 389 | 83.82 400 | 93.05 361 | 80.57 340 | 98.41 358 | 62.29 404 | 92.79 388 | 95.71 375 |
|
| PVSNet | | 86.72 19 | 91.10 329 | 90.97 326 | 91.49 365 | 97.56 283 | 78.04 390 | 87.17 393 | 94.60 337 | 84.65 369 | 92.34 363 | 92.20 374 | 87.37 297 | 98.47 355 | 85.17 366 | 97.69 319 | 97.96 301 |
|
| PMMVS2 | | | 93.66 285 | 94.07 267 | 92.45 356 | 97.57 281 | 80.67 381 | 86.46 394 | 96.00 311 | 93.99 217 | 97.10 200 | 97.38 228 | 89.90 265 | 97.82 378 | 88.76 325 | 99.47 148 | 98.86 208 |
|
| CHOSEN 280x420 | | | 89.98 339 | 89.19 345 | 92.37 357 | 95.60 364 | 81.13 379 | 86.22 395 | 97.09 287 | 81.44 382 | 87.44 396 | 93.15 354 | 73.99 368 | 99.47 196 | 88.69 327 | 99.07 228 | 96.52 364 |
|
| tmp_tt | | | 57.23 372 | 62.50 375 | 41.44 388 | 34.77 411 | 49.21 412 | 83.93 396 | 60.22 412 | 15.31 404 | 71.11 405 | 79.37 403 | 70.09 386 | 44.86 407 | 64.76 403 | 82.93 403 | 30.25 403 |
|
| PVSNet_0 | | 81.89 21 | 84.49 369 | 83.21 372 | 88.34 380 | 95.76 360 | 74.97 403 | 83.49 397 | 92.70 359 | 78.47 393 | 87.94 394 | 86.90 401 | 83.38 327 | 96.63 394 | 73.44 399 | 66.86 405 | 93.40 392 |
|
| E-PMN | | | 89.52 347 | 89.78 339 | 88.73 378 | 93.14 396 | 77.61 392 | 83.26 398 | 92.02 365 | 94.82 189 | 93.71 329 | 93.11 355 | 75.31 365 | 96.81 390 | 85.81 356 | 96.81 347 | 91.77 397 |
|
| EMVS | | | 89.06 350 | 89.22 342 | 88.61 379 | 93.00 398 | 77.34 394 | 82.91 399 | 90.92 376 | 94.64 195 | 92.63 360 | 91.81 378 | 76.30 361 | 97.02 387 | 83.83 374 | 96.90 342 | 91.48 398 |
|
| MVE |  | 73.61 22 | 86.48 368 | 85.92 367 | 88.18 382 | 96.23 337 | 85.28 341 | 81.78 400 | 75.79 406 | 86.01 351 | 82.53 402 | 91.88 377 | 92.74 209 | 87.47 405 | 71.42 402 | 94.86 379 | 91.78 396 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 66.88 371 | 66.13 374 | 69.11 387 | 62.68 410 | 25.73 413 | 49.76 401 | 96.04 310 | 14.32 405 | 64.27 406 | 91.69 380 | 73.45 375 | 88.05 404 | 76.06 395 | 66.94 404 | 93.54 390 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 24.22 373 | 32.30 376 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 98.10 237 | 0.00 409 | 0.00 410 | 95.06 331 | 97.54 37 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 7.98 376 | 10.65 379 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 95.82 124 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 7.91 377 | 10.55 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 94.94 333 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 79.32 385 | | | | | | | | 85.41 362 | | |
|
| MSC_two_6792asdad | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 231 | | | | | 99.75 67 | 95.87 121 | 99.51 135 | 99.57 46 |
|
| PC_three_1452 | | | | | | | | | | 87.24 339 | 98.37 101 | 97.44 219 | 97.00 63 | 96.78 392 | 92.01 260 | 99.25 203 | 99.21 140 |
|
| No_MVS | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 231 | | | | | 99.75 67 | 95.87 121 | 99.51 135 | 99.57 46 |
|
| test_one_0601 | | | | | | 99.05 105 | 95.50 100 | | 98.87 111 | 97.21 86 | 98.03 145 | 98.30 128 | 96.93 69 | | | | |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 98.43 181 | 95.94 79 | | 98.56 180 | 90.72 294 | 96.66 232 | 97.07 247 | 95.02 153 | 99.74 76 | 91.08 279 | 98.93 242 | |
|
| IU-MVS | | | | | | 99.22 68 | 95.40 103 | | 98.14 234 | 85.77 356 | 98.36 104 | | | | 95.23 160 | 99.51 135 | 99.49 70 |
|
| test_241102_TWO | | | | | | | | | 98.83 127 | 96.11 126 | 98.62 76 | 98.24 140 | 96.92 71 | 99.72 87 | 95.44 147 | 99.49 142 | 99.49 70 |
|
| test_241102_ONE | | | | | | 99.22 68 | 95.35 108 | | 98.83 127 | 96.04 131 | 99.08 40 | 98.13 153 | 97.87 23 | 99.33 245 | | | |
|
| test_0728_THIRD | | | | | | | | | | 96.62 99 | 98.40 98 | 98.28 133 | 97.10 54 | 99.71 102 | 95.70 126 | 99.62 92 | 99.58 39 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 291 |
|
| test_part2 | | | | | | 99.03 107 | 96.07 74 | | | | 98.08 138 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.80 350 | | | | 98.06 291 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 354 | | | | |
|
| MTGPA |  | | | | | | | | 98.73 149 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 10.87 407 | 76.83 358 | 99.07 295 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 263 | 77.36 355 | 99.42 210 | | | |
|
| gm-plane-assit | | | | | | 91.79 403 | 71.40 408 | | | 81.67 379 | | 90.11 393 | | 98.99 304 | 84.86 368 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 274 | 98.89 247 | 99.00 180 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 305 | 98.90 244 | 99.10 168 |
|
| agg_prior | | | | | | 97.80 251 | 94.96 126 | | 98.36 202 | | 93.49 337 | | | 99.53 178 | | | |
|
| TestCases | | | | | 98.06 88 | 99.08 98 | 96.16 70 | | 99.16 40 | 94.35 204 | 97.78 167 | 98.07 161 | 95.84 121 | 99.12 286 | 91.41 272 | 99.42 166 | 98.91 197 |
|
| test_prior | | | | | 97.46 137 | 97.79 256 | 94.26 154 | | 98.42 194 | | | | | 99.34 243 | | | 98.79 214 |
|
| 新几何1 | | | | | 97.25 154 | 98.29 190 | 94.70 133 | | 97.73 260 | 77.98 394 | 94.83 301 | 96.67 275 | 92.08 231 | 99.45 203 | 88.17 335 | 98.65 273 | 97.61 324 |
|
| 旧先验1 | | | | | | 97.80 251 | 93.87 165 | | 97.75 259 | | | 97.04 250 | 93.57 191 | | | 98.68 268 | 98.72 224 |
|
| 原ACMM1 | | | | | 96.58 199 | 98.16 211 | 92.12 218 | | 98.15 233 | 85.90 354 | 93.49 337 | 96.43 287 | 92.47 223 | 99.38 228 | 87.66 340 | 98.62 275 | 98.23 276 |
|
| testdata2 | | | | | | | | | | | | | | 99.46 199 | 87.84 336 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 143 | | | | |
|
| testdata | | | | | 95.70 243 | 98.16 211 | 90.58 250 | | 97.72 261 | 80.38 386 | 95.62 281 | 97.02 251 | 92.06 232 | 98.98 306 | 89.06 323 | 98.52 281 | 97.54 328 |
|
| test12 | | | | | 97.46 137 | 97.61 279 | 94.07 158 | | 97.78 258 | | 93.57 335 | | 93.31 196 | 99.42 210 | | 98.78 258 | 98.89 201 |
|
| plane_prior7 | | | | | | 98.70 144 | 94.67 134 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.38 184 | 94.37 147 | | | | | | 91.91 237 | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 146 | | | | | 99.46 199 | 92.59 252 | 99.20 208 | 99.28 127 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 269 | | | | | |
|
| plane_prior3 | | | | | | | 94.51 141 | | | 95.29 171 | 96.16 260 | | | | | | |
|
| plane_prior1 | | | | | | 98.49 174 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 227 | | | | | | | | |
|
| lessismore_v0 | | | | | 97.05 168 | 99.36 50 | 92.12 218 | | 84.07 401 | | 98.77 68 | 98.98 58 | 85.36 312 | 99.74 76 | 97.34 65 | 99.37 174 | 99.30 120 |
|
| LGP-MVS_train | | | | | 98.74 34 | 99.15 85 | 97.02 42 | | 99.02 75 | 95.15 176 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 201 | 99.73 67 | 99.50 62 |
|
| test11 | | | | | | | | | 98.08 239 | | | | | | | | |
|
| door | | | | | | | | | 97.81 257 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 92.47 206 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 300 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 351 | | | 99.23 270 | | | 99.06 173 |
|
| HQP3-MVS | | | | | | | | | 98.43 191 | | | | | | | 98.74 262 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 258 | | | | |
|
| NP-MVS | | | | | | 98.14 215 | 93.72 171 | | | | | 95.08 329 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 130 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 118 | |
|
| Test By Simon | | | | | | | | | | | | | 94.51 169 | | | | |
|
| ITE_SJBPF | | | | | 97.85 104 | 98.64 149 | 96.66 54 | | 98.51 184 | 95.63 154 | 97.22 189 | 97.30 235 | 95.52 137 | 98.55 348 | 90.97 282 | 98.90 244 | 98.34 264 |
|
| DeepMVS_CX |  | | | | 77.17 386 | 90.94 405 | 85.28 341 | | 74.08 409 | 52.51 403 | 80.87 404 | 88.03 397 | 75.25 366 | 70.63 406 | 59.23 406 | 84.94 401 | 75.62 401 |
|