| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 2 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 14 | 99.02 15 | 99.62 12 | 99.36 21 | 98.53 9 | 99.52 180 | 98.58 27 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 95 | 97.89 13 | 99.47 3 | 99.32 23 | 99.08 10 | 97.87 160 | 99.67 2 | 96.47 98 | 99.92 5 | 97.88 41 | 99.98 2 | 99.85 3 |
|
| TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 19 | 98.85 21 | 99.00 46 | 99.20 35 | 97.42 40 | 99.59 159 | 97.21 67 | 99.76 59 | 99.40 100 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 32 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 66 | 99.92 15 | 99.77 12 |
|
| OurMVSNet-221017-0 | | | 98.61 16 | 98.61 24 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 63 | 98.05 47 | 99.61 13 | 99.52 7 | 93.72 187 | 99.88 20 | 98.72 22 | 99.88 27 | 99.65 33 |
|
| DVP-MVS++ | | | 97.96 54 | 97.90 59 | 98.12 84 | 97.75 262 | 95.40 103 | 99.03 7 | 98.89 100 | 96.62 99 | 98.62 74 | 98.30 127 | 96.97 65 | 99.75 68 | 95.70 126 | 99.25 201 | 99.21 139 |
|
| FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 28 | 98.96 18 | 98.87 54 | | | | | | |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 24 | 99.01 16 | 99.63 11 | 99.66 3 | 99.27 2 | 99.68 124 | 97.75 49 | 99.89 26 | 99.62 36 |
|
| RRT_MVS | | | 97.95 58 | 97.79 72 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 302 | 97.99 49 | 99.15 36 | 99.35 23 | 89.84 264 | 99.90 14 | 98.64 24 | 99.90 24 | 99.82 6 |
|
| Anonymous20231211 | | | 98.55 20 | 98.76 13 | 97.94 99 | 98.79 130 | 94.37 147 | 98.84 11 | 99.15 41 | 99.37 3 | 99.67 7 | 99.43 15 | 95.61 133 | 99.72 88 | 98.12 33 | 99.86 31 | 99.73 22 |
|
| MIMVSNet1 | | | 98.51 23 | 98.45 29 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 100 | 98.49 31 | 99.38 22 | 99.14 46 | 95.44 139 | 99.84 30 | 96.47 91 | 99.80 51 | 99.47 80 |
|
| mvsmamba | | | 98.16 37 | 98.06 47 | 98.44 55 | 99.53 29 | 95.87 81 | 98.70 13 | 98.94 94 | 97.71 61 | 98.85 55 | 99.10 48 | 91.35 240 | 99.83 33 | 98.47 28 | 99.90 24 | 99.64 35 |
|
| EPP-MVSNet | | | 96.84 142 | 96.58 157 | 97.65 118 | 99.18 81 | 93.78 171 | 98.68 14 | 96.34 305 | 97.91 51 | 97.30 184 | 98.06 165 | 88.46 280 | 99.85 27 | 93.85 225 | 99.40 169 | 99.32 114 |
|
| v7n | | | 98.73 11 | 98.99 5 | 97.95 98 | 99.64 14 | 94.20 156 | 98.67 15 | 99.14 44 | 99.08 10 | 99.42 20 | 99.23 33 | 96.53 93 | 99.91 13 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| MVSFormer | | | 96.14 180 | 96.36 172 | 95.49 253 | 97.68 269 | 87.81 301 | 98.67 15 | 99.02 72 | 96.50 109 | 94.48 308 | 96.15 300 | 86.90 296 | 99.92 5 | 98.73 20 | 99.13 216 | 98.74 221 |
|
| test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 72 | 96.50 109 | 99.32 26 | 99.44 14 | 97.43 39 | 99.92 5 | 98.73 20 | 99.95 5 | 99.86 2 |
|
| tt0805 | | | 97.44 111 | 97.56 100 | 97.11 162 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 317 | 98.31 36 | 97.09 203 | 95.45 325 | 97.17 52 | 98.50 344 | 98.67 23 | 97.45 329 | 96.48 356 |
|
| anonymousdsp | | | 98.72 14 | 98.63 20 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 34 | 95.62 156 | 99.35 25 | 99.37 19 | 97.38 41 | 99.90 14 | 98.59 26 | 99.91 18 | 99.77 12 |
|
| HPM-MVS |  | | 98.11 43 | 97.83 69 | 98.92 21 | 99.42 42 | 97.46 31 | 98.57 20 | 99.05 63 | 95.43 167 | 97.41 182 | 97.50 216 | 97.98 19 | 99.79 45 | 95.58 138 | 99.57 107 | 99.50 63 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| IS-MVSNet | | | 96.93 137 | 96.68 152 | 97.70 114 | 99.25 63 | 94.00 162 | 98.57 20 | 96.74 300 | 98.36 34 | 98.14 129 | 97.98 174 | 88.23 283 | 99.71 104 | 93.10 246 | 99.72 70 | 99.38 105 |
|
| WR-MVS_H | | | 98.65 15 | 98.62 22 | 98.75 31 | 99.51 31 | 96.61 56 | 98.55 22 | 99.17 36 | 99.05 13 | 99.17 35 | 98.79 76 | 95.47 137 | 99.89 18 | 97.95 40 | 99.91 18 | 99.75 19 |
|
| FE-MVS | | | 92.95 298 | 92.22 302 | 95.11 267 | 97.21 307 | 88.33 286 | 98.54 23 | 93.66 344 | 89.91 302 | 96.21 256 | 98.14 150 | 70.33 381 | 99.50 185 | 87.79 335 | 98.24 292 | 97.51 323 |
|
| test2506 | | | 89.86 338 | 89.16 343 | 91.97 354 | 98.95 113 | 76.83 389 | 98.54 23 | 61.07 402 | 96.20 122 | 97.07 204 | 99.16 43 | 55.19 399 | 99.69 119 | 96.43 93 | 99.83 43 | 99.38 105 |
|
| mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 29 | 96.23 121 | 99.71 4 | 99.48 10 | 98.77 7 | 99.93 3 | 98.89 15 | 99.95 5 | 99.84 5 |
|
| CS-MVS | | | 98.09 44 | 98.01 52 | 98.32 65 | 98.45 178 | 96.69 52 | 98.52 26 | 99.69 5 | 98.07 46 | 96.07 262 | 97.19 241 | 96.88 75 | 99.86 24 | 97.50 59 | 99.73 66 | 98.41 253 |
|
| Gipuma |  | | 98.07 47 | 98.31 35 | 97.36 147 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 49 | 98.76 23 | 96.79 221 | 99.34 25 | 96.61 89 | 98.82 312 | 96.38 94 | 99.50 137 | 96.98 336 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 45 | 99.22 8 | 99.22 33 | 98.96 61 | 97.35 42 | 99.92 5 | 97.79 47 | 99.93 11 | 99.79 10 |
|
| 3Dnovator | | 96.53 2 | 97.61 99 | 97.64 89 | 97.50 132 | 97.74 265 | 93.65 177 | 98.49 28 | 98.88 106 | 96.86 94 | 97.11 197 | 98.55 101 | 95.82 122 | 99.73 83 | 95.94 116 | 99.42 164 | 99.13 156 |
|
| DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 49 | 99.36 4 | 99.29 28 | 99.06 52 | 97.27 46 | 99.93 3 | 97.71 51 | 99.91 18 | 99.70 26 |
|
| jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 46 | 95.83 147 | 99.67 7 | 99.37 19 | 98.25 13 | 99.92 5 | 98.77 18 | 99.94 8 | 99.82 6 |
|
| PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 41 | 99.33 5 | 99.30 27 | 99.00 55 | 97.27 46 | 99.92 5 | 97.64 55 | 99.92 15 | 99.75 19 |
|
| LS3D | | | 97.77 86 | 97.50 107 | 98.57 47 | 96.24 332 | 97.58 24 | 98.45 31 | 98.85 115 | 98.58 28 | 97.51 173 | 97.94 178 | 95.74 129 | 99.63 144 | 95.19 161 | 98.97 234 | 98.51 246 |
|
| CS-MVS-test | | | 97.91 69 | 97.84 66 | 98.14 82 | 98.52 167 | 96.03 77 | 98.38 34 | 99.67 6 | 98.11 44 | 95.50 283 | 96.92 259 | 96.81 81 | 99.87 22 | 96.87 81 | 99.76 59 | 98.51 246 |
|
| FC-MVSNet-test | | | 98.16 37 | 98.37 33 | 97.56 123 | 99.49 35 | 93.10 192 | 98.35 35 | 99.21 30 | 98.43 32 | 98.89 52 | 98.83 75 | 94.30 172 | 99.81 37 | 97.87 42 | 99.91 18 | 99.77 12 |
|
| HPM-MVS_fast | | | 98.32 30 | 98.13 40 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 70 | 95.88 143 | 97.88 157 | 98.22 144 | 98.15 16 | 99.74 77 | 96.50 90 | 99.62 91 | 99.42 97 |
|
| ab-mvs | | | 96.59 161 | 96.59 156 | 96.60 196 | 98.64 148 | 92.21 212 | 98.35 35 | 97.67 262 | 94.45 202 | 96.99 210 | 98.79 76 | 94.96 154 | 99.49 190 | 90.39 301 | 99.07 226 | 98.08 284 |
|
| EGC-MVSNET | | | 83.08 360 | 77.93 363 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 177 | 4.71 397 | 10.38 398 | 98.90 70 | 95.60 134 | 99.50 185 | 95.69 128 | 99.61 97 | 98.55 242 |
|
| test1111 | | | 94.53 255 | 94.81 232 | 93.72 319 | 99.06 102 | 81.94 369 | 98.31 39 | 83.87 394 | 96.37 114 | 98.49 86 | 99.17 42 | 81.49 329 | 99.73 83 | 96.64 84 | 99.86 31 | 99.49 71 |
|
| ECVR-MVS |  | | 94.37 261 | 94.48 250 | 94.05 315 | 98.95 113 | 83.10 360 | 98.31 39 | 82.48 395 | 96.20 122 | 98.23 118 | 99.16 43 | 81.18 332 | 99.66 136 | 95.95 115 | 99.83 43 | 99.38 105 |
|
| EC-MVSNet | | | 97.90 71 | 97.94 58 | 97.79 108 | 98.66 147 | 95.14 121 | 98.31 39 | 99.66 8 | 97.57 67 | 95.95 266 | 97.01 253 | 96.99 64 | 99.82 35 | 97.66 54 | 99.64 88 | 98.39 256 |
|
| pm-mvs1 | | | 98.47 24 | 98.67 18 | 97.86 104 | 99.52 30 | 94.58 139 | 98.28 42 | 99.00 81 | 97.57 67 | 99.27 29 | 99.22 34 | 98.32 12 | 99.50 185 | 97.09 73 | 99.75 64 | 99.50 63 |
|
| SixPastTwentyTwo | | | 97.49 107 | 97.57 99 | 97.26 153 | 99.56 21 | 92.33 208 | 98.28 42 | 96.97 291 | 98.30 38 | 99.45 18 | 99.35 23 | 88.43 281 | 99.89 18 | 98.01 38 | 99.76 59 | 99.54 54 |
|
| FA-MVS(test-final) | | | 94.91 233 | 94.89 226 | 94.99 275 | 97.51 284 | 88.11 294 | 98.27 44 | 95.20 329 | 92.40 267 | 96.68 229 | 98.60 96 | 83.44 321 | 99.28 256 | 93.34 238 | 98.53 278 | 97.59 321 |
|
| CP-MVSNet | | | 98.42 26 | 98.46 27 | 98.30 68 | 99.46 37 | 95.22 118 | 98.27 44 | 98.84 118 | 99.05 13 | 99.01 44 | 98.65 92 | 95.37 140 | 99.90 14 | 97.57 56 | 99.91 18 | 99.77 12 |
|
| GG-mvs-BLEND | | | | | 90.60 362 | 91.00 394 | 84.21 355 | 98.23 46 | 72.63 401 | | 82.76 392 | 84.11 393 | 56.14 397 | 96.79 382 | 72.20 391 | 92.09 382 | 90.78 390 |
|
| GBi-Net | | | 96.99 132 | 96.80 146 | 97.56 123 | 97.96 229 | 93.67 173 | 98.23 46 | 98.66 163 | 95.59 158 | 97.99 145 | 99.19 36 | 89.51 271 | 99.73 83 | 94.60 195 | 99.44 153 | 99.30 119 |
|
| test1 | | | 96.99 132 | 96.80 146 | 97.56 123 | 97.96 229 | 93.67 173 | 98.23 46 | 98.66 163 | 95.59 158 | 97.99 145 | 99.19 36 | 89.51 271 | 99.73 83 | 94.60 195 | 99.44 153 | 99.30 119 |
|
| FMVSNet1 | | | 97.95 58 | 98.08 44 | 97.56 123 | 99.14 93 | 93.67 173 | 98.23 46 | 98.66 163 | 97.41 78 | 99.00 46 | 99.19 36 | 95.47 137 | 99.73 83 | 95.83 123 | 99.76 59 | 99.30 119 |
|
| ACMH | | 93.61 9 | 98.44 25 | 98.76 13 | 97.51 128 | 99.43 40 | 93.54 179 | 98.23 46 | 99.05 63 | 97.40 79 | 99.37 23 | 99.08 51 | 98.79 6 | 99.47 195 | 97.74 50 | 99.71 73 | 99.50 63 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TransMVSNet (Re) | | | 98.38 28 | 98.67 18 | 97.51 128 | 99.51 31 | 93.39 185 | 98.20 51 | 98.87 108 | 98.23 40 | 99.48 16 | 99.27 30 | 98.47 11 | 99.55 172 | 96.52 89 | 99.53 123 | 99.60 38 |
|
| gg-mvs-nofinetune | | | 88.28 350 | 86.96 356 | 92.23 352 | 92.84 390 | 84.44 351 | 98.19 52 | 74.60 398 | 99.08 10 | 87.01 389 | 99.47 11 | 56.93 394 | 98.23 361 | 78.91 382 | 95.61 363 | 94.01 380 |
|
| QAPM | | | 95.88 191 | 95.57 206 | 96.80 185 | 97.90 235 | 91.84 227 | 98.18 53 | 98.73 146 | 88.41 318 | 96.42 243 | 98.13 152 | 94.73 156 | 99.75 68 | 88.72 324 | 98.94 238 | 98.81 212 |
|
| NR-MVSNet | | | 97.96 54 | 97.86 65 | 98.26 70 | 98.73 136 | 95.54 95 | 98.14 54 | 98.73 146 | 97.79 53 | 99.42 20 | 97.83 188 | 94.40 170 | 99.78 48 | 95.91 118 | 99.76 59 | 99.46 82 |
|
| MIMVSNet | | | 93.42 289 | 92.86 288 | 95.10 269 | 98.17 208 | 88.19 288 | 98.13 55 | 93.69 341 | 92.07 269 | 95.04 296 | 98.21 145 | 80.95 335 | 99.03 295 | 81.42 376 | 98.06 299 | 98.07 286 |
|
| PS-MVSNAJss | | | 98.53 22 | 98.63 20 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 30 | 96.91 92 | 99.75 2 | 99.45 13 | 95.82 122 | 99.92 5 | 98.80 17 | 99.96 4 | 99.89 1 |
|
| ACMMP |  | | 98.05 48 | 97.75 78 | 98.93 18 | 99.23 66 | 97.60 22 | 98.09 57 | 98.96 91 | 95.75 151 | 97.91 154 | 98.06 165 | 96.89 73 | 99.76 62 | 95.32 155 | 99.57 107 | 99.43 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APDe-MVS |  | | 98.14 39 | 98.03 50 | 98.47 54 | 98.72 138 | 96.04 75 | 98.07 58 | 99.10 49 | 95.96 137 | 98.59 78 | 98.69 87 | 96.94 67 | 99.81 37 | 96.64 84 | 99.58 104 | 99.57 47 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| bld_raw_dy_0_64 | | | 97.69 92 | 97.61 95 | 97.91 100 | 99.54 26 | 94.27 154 | 98.06 59 | 98.60 171 | 96.60 101 | 98.79 62 | 98.95 63 | 89.62 265 | 99.84 30 | 98.43 30 | 99.91 18 | 99.62 36 |
|
| Vis-MVSNet |  | | 98.27 33 | 98.34 34 | 98.07 86 | 99.33 54 | 95.21 120 | 98.04 60 | 99.46 17 | 97.32 82 | 97.82 164 | 99.11 47 | 96.75 83 | 99.86 24 | 97.84 44 | 99.36 175 | 99.15 151 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| 3Dnovator+ | | 96.13 3 | 97.73 88 | 97.59 97 | 98.15 81 | 98.11 218 | 95.60 92 | 98.04 60 | 98.70 155 | 98.13 43 | 96.93 215 | 98.45 110 | 95.30 143 | 99.62 149 | 95.64 133 | 98.96 235 | 99.24 136 |
|
| FIs | | | 97.93 65 | 98.07 45 | 97.48 136 | 99.38 49 | 92.95 195 | 98.03 62 | 99.11 47 | 98.04 48 | 98.62 74 | 98.66 89 | 93.75 186 | 99.78 48 | 97.23 65 | 99.84 40 | 99.73 22 |
|
| sd_testset | | | 97.97 52 | 98.12 41 | 97.51 128 | 99.41 43 | 93.44 182 | 97.96 63 | 98.25 211 | 98.58 28 | 98.78 63 | 99.39 16 | 98.21 14 | 99.56 168 | 92.65 250 | 99.86 31 | 99.52 59 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 35 | 98.11 42 | 98.64 43 | 99.21 76 | 97.35 35 | 97.96 63 | 99.16 37 | 98.34 35 | 98.78 63 | 98.52 103 | 97.32 43 | 99.45 202 | 94.08 215 | 99.67 83 | 99.13 156 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| VDDNet | | | 96.98 135 | 96.84 143 | 97.41 144 | 99.40 46 | 93.26 189 | 97.94 65 | 95.31 328 | 99.26 7 | 98.39 98 | 99.18 39 | 87.85 290 | 99.62 149 | 95.13 170 | 99.09 223 | 99.35 113 |
|
| CP-MVS | | | 97.92 66 | 97.56 100 | 98.99 10 | 98.99 111 | 97.82 15 | 97.93 66 | 98.96 91 | 96.11 127 | 96.89 218 | 97.45 218 | 96.85 78 | 99.78 48 | 95.19 161 | 99.63 90 | 99.38 105 |
|
| ANet_high | | | 98.31 31 | 98.94 6 | 96.41 211 | 99.33 54 | 89.64 261 | 97.92 67 | 99.56 16 | 99.27 6 | 99.66 9 | 99.50 9 | 97.67 31 | 99.83 33 | 97.55 57 | 99.98 2 | 99.77 12 |
|
| nrg030 | | | 98.54 21 | 98.62 22 | 98.32 65 | 99.22 69 | 95.66 91 | 97.90 68 | 99.08 55 | 98.31 36 | 99.02 43 | 98.74 82 | 97.68 30 | 99.61 156 | 97.77 48 | 99.85 38 | 99.70 26 |
|
| ambc | | | | | 96.56 201 | 98.23 198 | 91.68 230 | 97.88 69 | 98.13 233 | | 98.42 94 | 98.56 100 | 94.22 174 | 99.04 292 | 94.05 218 | 99.35 180 | 98.95 187 |
|
| Anonymous20240529 | | | 97.96 54 | 98.04 49 | 97.71 113 | 98.69 145 | 94.28 153 | 97.86 70 | 98.31 208 | 98.79 22 | 99.23 32 | 98.86 74 | 95.76 128 | 99.61 156 | 95.49 140 | 99.36 175 | 99.23 137 |
|
| canonicalmvs | | | 97.23 124 | 97.21 122 | 97.30 150 | 97.65 274 | 94.39 145 | 97.84 71 | 99.05 63 | 97.42 75 | 96.68 229 | 93.85 350 | 97.63 34 | 99.33 243 | 96.29 97 | 98.47 282 | 98.18 281 |
|
| tfpnnormal | | | 97.72 90 | 97.97 55 | 96.94 174 | 99.26 60 | 92.23 211 | 97.83 72 | 98.45 186 | 98.25 39 | 99.13 38 | 98.66 89 | 96.65 86 | 99.69 119 | 93.92 223 | 99.62 91 | 98.91 197 |
|
| Anonymous20240521 | | | 97.07 128 | 97.51 105 | 95.76 239 | 99.35 52 | 88.18 289 | 97.78 73 | 98.40 195 | 97.11 87 | 98.34 105 | 99.04 53 | 89.58 267 | 99.79 45 | 98.09 35 | 99.93 11 | 99.30 119 |
|
| XVS | | | 97.96 54 | 97.63 91 | 98.94 15 | 99.15 86 | 97.66 19 | 97.77 74 | 98.83 124 | 97.42 75 | 96.32 248 | 97.64 205 | 96.49 96 | 99.72 88 | 95.66 131 | 99.37 172 | 99.45 86 |
|
| X-MVStestdata | | | 92.86 299 | 90.83 325 | 98.94 15 | 99.15 86 | 97.66 19 | 97.77 74 | 98.83 124 | 97.42 75 | 96.32 248 | 36.50 395 | 96.49 96 | 99.72 88 | 95.66 131 | 99.37 172 | 99.45 86 |
|
| VPA-MVSNet | | | 98.27 33 | 98.46 27 | 97.70 114 | 99.06 102 | 93.80 169 | 97.76 76 | 99.00 81 | 98.40 33 | 99.07 42 | 98.98 58 | 96.89 73 | 99.75 68 | 97.19 70 | 99.79 53 | 99.55 53 |
|
| dcpmvs_2 | | | 97.12 126 | 97.99 54 | 94.51 300 | 99.11 95 | 84.00 356 | 97.75 77 | 99.65 9 | 97.38 80 | 99.14 37 | 98.42 112 | 95.16 146 | 99.96 2 | 95.52 139 | 99.78 56 | 99.58 40 |
|
| UGNet | | | 96.81 147 | 96.56 159 | 97.58 122 | 96.64 323 | 93.84 168 | 97.75 77 | 97.12 285 | 96.47 112 | 93.62 330 | 98.88 72 | 93.22 196 | 99.53 177 | 95.61 135 | 99.69 77 | 99.36 111 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| mPP-MVS | | | 97.91 69 | 97.53 103 | 99.04 4 | 99.22 69 | 97.87 14 | 97.74 79 | 98.78 138 | 96.04 132 | 97.10 198 | 97.73 200 | 96.53 93 | 99.78 48 | 95.16 165 | 99.50 137 | 99.46 82 |
|
| OpenMVS |  | 94.22 8 | 95.48 208 | 95.20 211 | 96.32 214 | 97.16 309 | 91.96 224 | 97.74 79 | 98.84 118 | 87.26 329 | 94.36 310 | 98.01 171 | 93.95 181 | 99.67 130 | 90.70 293 | 98.75 259 | 97.35 330 |
|
| testf1 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 21 | 97.69 63 | 98.92 50 | 98.77 79 | 97.80 25 | 99.25 262 | 96.27 98 | 99.69 77 | 98.76 219 |
|
| APD_test2 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 21 | 97.69 63 | 98.92 50 | 98.77 79 | 97.80 25 | 99.25 262 | 96.27 98 | 99.69 77 | 98.76 219 |
|
| MSP-MVS | | | 97.45 110 | 96.92 140 | 99.03 5 | 99.26 60 | 97.70 18 | 97.66 83 | 98.89 100 | 95.65 154 | 98.51 83 | 96.46 286 | 92.15 224 | 99.81 37 | 95.14 168 | 98.58 277 | 99.58 40 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| LFMVS | | | 95.32 216 | 94.88 227 | 96.62 195 | 98.03 220 | 91.47 233 | 97.65 84 | 90.72 374 | 99.11 9 | 97.89 156 | 98.31 123 | 79.20 340 | 99.48 193 | 93.91 224 | 99.12 219 | 98.93 193 |
|
| K. test v3 | | | 96.44 169 | 96.28 175 | 96.95 173 | 99.41 43 | 91.53 231 | 97.65 84 | 90.31 377 | 98.89 20 | 98.93 49 | 99.36 21 | 84.57 314 | 99.92 5 | 97.81 45 | 99.56 110 | 99.39 103 |
|
| TSAR-MVS + MP. | | | 97.42 113 | 97.23 121 | 98.00 95 | 99.38 49 | 95.00 125 | 97.63 86 | 98.20 219 | 93.00 250 | 98.16 126 | 98.06 165 | 95.89 117 | 99.72 88 | 95.67 130 | 99.10 222 | 99.28 126 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test_fmvs3 | | | 97.38 115 | 97.56 100 | 96.84 183 | 98.63 152 | 92.81 197 | 97.60 87 | 99.61 13 | 90.87 287 | 98.76 68 | 99.66 3 | 94.03 178 | 97.90 367 | 99.24 6 | 99.68 81 | 99.81 8 |
|
| region2R | | | 97.92 66 | 97.59 97 | 98.92 21 | 99.22 69 | 97.55 26 | 97.60 87 | 98.84 118 | 96.00 135 | 97.22 187 | 97.62 207 | 96.87 77 | 99.76 62 | 95.48 143 | 99.43 161 | 99.46 82 |
|
| HFP-MVS | | | 97.94 62 | 97.64 89 | 98.83 25 | 99.15 86 | 97.50 29 | 97.59 89 | 98.84 118 | 96.05 130 | 97.49 175 | 97.54 212 | 97.07 57 | 99.70 112 | 95.61 135 | 99.46 149 | 99.30 119 |
|
| ACMMPR | | | 97.95 58 | 97.62 93 | 98.94 15 | 99.20 78 | 97.56 25 | 97.59 89 | 98.83 124 | 96.05 130 | 97.46 180 | 97.63 206 | 96.77 82 | 99.76 62 | 95.61 135 | 99.46 149 | 99.49 71 |
|
| RPSCF | | | 97.87 74 | 97.51 105 | 98.95 14 | 99.15 86 | 98.43 6 | 97.56 91 | 99.06 59 | 96.19 124 | 98.48 88 | 98.70 86 | 94.72 157 | 99.24 265 | 94.37 204 | 99.33 188 | 99.17 148 |
|
| KD-MVS_self_test | | | 97.86 76 | 98.07 45 | 97.25 154 | 99.22 69 | 92.81 197 | 97.55 92 | 98.94 94 | 97.10 88 | 98.85 55 | 98.88 72 | 95.03 150 | 99.67 130 | 97.39 63 | 99.65 86 | 99.26 131 |
|
| SR-MVS-dyc-post | | | 98.14 39 | 97.84 66 | 99.02 6 | 98.81 126 | 98.05 9 | 97.55 92 | 98.86 111 | 97.77 54 | 98.20 120 | 98.07 160 | 96.60 91 | 99.76 62 | 95.49 140 | 99.20 206 | 99.26 131 |
|
| RE-MVS-def | | | | 97.88 64 | | 98.81 126 | 98.05 9 | 97.55 92 | 98.86 111 | 97.77 54 | 98.20 120 | 98.07 160 | 96.94 67 | | 95.49 140 | 99.20 206 | 99.26 131 |
|
| APD-MVS_3200maxsize | | | 98.13 42 | 97.90 59 | 98.79 29 | 98.79 130 | 97.31 36 | 97.55 92 | 98.92 97 | 97.72 59 | 98.25 116 | 98.13 152 | 97.10 54 | 99.75 68 | 95.44 147 | 99.24 204 | 99.32 114 |
|
| ACMH+ | | 93.58 10 | 98.23 36 | 98.31 35 | 97.98 97 | 99.39 47 | 95.22 118 | 97.55 92 | 99.20 32 | 98.21 41 | 99.25 31 | 98.51 105 | 98.21 14 | 99.40 220 | 94.79 186 | 99.72 70 | 99.32 114 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 225 | 94.85 228 | 95.87 236 | 99.12 94 | 89.17 269 | 97.54 97 | 94.92 332 | 96.50 109 | 96.58 235 | 97.27 236 | 83.64 320 | 99.48 193 | 88.42 329 | 99.67 83 | 98.97 185 |
|
| MP-MVS |  | | 97.64 96 | 97.18 123 | 99.00 9 | 99.32 56 | 97.77 17 | 97.49 98 | 98.73 146 | 96.27 118 | 95.59 281 | 97.75 197 | 96.30 106 | 99.78 48 | 93.70 231 | 99.48 144 | 99.45 86 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 97.92 66 | 97.62 93 | 98.83 25 | 99.32 56 | 97.24 39 | 97.45 99 | 98.84 118 | 95.76 149 | 96.93 215 | 97.43 220 | 97.26 48 | 99.79 45 | 96.06 105 | 99.53 123 | 99.45 86 |
|
| tttt0517 | | | 93.31 292 | 92.56 299 | 95.57 247 | 98.71 141 | 87.86 298 | 97.44 100 | 87.17 388 | 95.79 148 | 97.47 179 | 96.84 263 | 64.12 389 | 99.81 37 | 96.20 101 | 99.32 190 | 99.02 179 |
|
| v10 | | | 97.55 103 | 97.97 55 | 96.31 215 | 98.60 156 | 89.64 261 | 97.44 100 | 99.02 72 | 96.60 101 | 98.72 71 | 99.16 43 | 93.48 191 | 99.72 88 | 98.76 19 | 99.92 15 | 99.58 40 |
|
| v8 | | | 97.60 100 | 98.06 47 | 96.23 217 | 98.71 141 | 89.44 265 | 97.43 102 | 98.82 132 | 97.29 84 | 98.74 69 | 99.10 48 | 93.86 182 | 99.68 124 | 98.61 25 | 99.94 8 | 99.56 51 |
|
| PMVS |  | 89.60 17 | 96.71 155 | 96.97 135 | 95.95 231 | 99.51 31 | 97.81 16 | 97.42 103 | 97.49 273 | 97.93 50 | 95.95 266 | 98.58 97 | 96.88 75 | 96.91 380 | 89.59 312 | 99.36 175 | 93.12 385 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| SR-MVS | | | 98.00 51 | 97.66 85 | 99.01 8 | 98.77 134 | 97.93 11 | 97.38 104 | 98.83 124 | 97.32 82 | 98.06 139 | 97.85 187 | 96.65 86 | 99.77 57 | 95.00 177 | 99.11 220 | 99.32 114 |
|
| FMVSNet5 | | | 93.39 290 | 92.35 300 | 96.50 203 | 95.83 349 | 90.81 246 | 97.31 105 | 98.27 209 | 92.74 258 | 96.27 252 | 98.28 132 | 62.23 392 | 99.67 130 | 90.86 283 | 99.36 175 | 99.03 176 |
|
| HY-MVS | | 91.43 15 | 92.58 303 | 91.81 308 | 94.90 280 | 96.49 327 | 88.87 275 | 97.31 105 | 94.62 334 | 85.92 344 | 90.50 373 | 96.84 263 | 85.05 309 | 99.40 220 | 83.77 370 | 95.78 360 | 96.43 357 |
|
| CSCG | | | 97.40 114 | 97.30 116 | 97.69 116 | 98.95 113 | 94.83 128 | 97.28 107 | 98.99 84 | 96.35 117 | 98.13 130 | 95.95 311 | 95.99 115 | 99.66 136 | 94.36 206 | 99.73 66 | 98.59 238 |
|
| MTAPA | | | 98.14 39 | 97.84 66 | 99.06 3 | 99.44 39 | 97.90 12 | 97.25 108 | 98.73 146 | 97.69 63 | 97.90 155 | 97.96 175 | 95.81 126 | 99.82 35 | 96.13 104 | 99.61 97 | 99.45 86 |
|
| CPTT-MVS | | | 96.69 156 | 96.08 183 | 98.49 52 | 98.89 120 | 96.64 55 | 97.25 108 | 98.77 139 | 92.89 256 | 96.01 265 | 97.13 243 | 92.23 223 | 99.67 130 | 92.24 256 | 99.34 183 | 99.17 148 |
|
| EU-MVSNet | | | 94.25 262 | 94.47 251 | 93.60 322 | 98.14 214 | 82.60 364 | 97.24 110 | 92.72 355 | 85.08 353 | 98.48 88 | 98.94 64 | 82.59 327 | 98.76 319 | 97.47 61 | 99.53 123 | 99.44 95 |
|
| XXY-MVS | | | 97.54 104 | 97.70 79 | 97.07 166 | 99.46 37 | 92.21 212 | 97.22 111 | 99.00 81 | 94.93 188 | 98.58 79 | 98.92 66 | 97.31 44 | 99.41 218 | 94.44 199 | 99.43 161 | 99.59 39 |
|
| APD_test1 | | | 97.95 58 | 97.68 83 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 112 | 99.08 55 | 96.57 107 | 98.07 138 | 98.38 117 | 96.22 111 | 99.14 278 | 94.71 193 | 99.31 193 | 98.52 245 |
|
| GST-MVS | | | 97.82 81 | 97.49 108 | 98.81 27 | 99.23 66 | 97.25 38 | 97.16 113 | 98.79 134 | 95.96 137 | 97.53 171 | 97.40 222 | 96.93 69 | 99.77 57 | 95.04 174 | 99.35 180 | 99.42 97 |
|
| SteuartSystems-ACMMP | | | 98.02 50 | 97.76 77 | 98.79 29 | 99.43 40 | 97.21 41 | 97.15 114 | 98.90 99 | 96.58 104 | 98.08 136 | 97.87 186 | 97.02 62 | 99.76 62 | 95.25 158 | 99.59 102 | 99.40 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| FMVSNet2 | | | 96.72 153 | 96.67 153 | 96.87 180 | 97.96 229 | 91.88 225 | 97.15 114 | 98.06 243 | 95.59 158 | 98.50 85 | 98.62 95 | 89.51 271 | 99.65 138 | 94.99 179 | 99.60 100 | 99.07 171 |
|
| AllTest | | | 97.20 125 | 96.92 140 | 98.06 88 | 99.08 99 | 96.16 70 | 97.14 116 | 99.16 37 | 94.35 205 | 97.78 165 | 98.07 160 | 95.84 119 | 99.12 281 | 91.41 270 | 99.42 164 | 98.91 197 |
|
| DP-MVS | | | 97.87 74 | 97.89 62 | 97.81 107 | 98.62 154 | 94.82 129 | 97.13 117 | 98.79 134 | 98.98 17 | 98.74 69 | 98.49 106 | 95.80 127 | 99.49 190 | 95.04 174 | 99.44 153 | 99.11 164 |
|
| GeoE | | | 97.75 87 | 97.70 79 | 97.89 102 | 98.88 121 | 94.53 140 | 97.10 118 | 98.98 87 | 95.75 151 | 97.62 168 | 97.59 209 | 97.61 35 | 99.77 57 | 96.34 96 | 99.44 153 | 99.36 111 |
|
| PGM-MVS | | | 97.88 73 | 97.52 104 | 98.96 13 | 99.20 78 | 97.62 21 | 97.09 119 | 99.06 59 | 95.45 164 | 97.55 170 | 97.94 178 | 97.11 53 | 99.78 48 | 94.77 189 | 99.46 149 | 99.48 77 |
|
| LPG-MVS_test | | | 97.94 62 | 97.67 84 | 98.74 34 | 99.15 86 | 97.02 42 | 97.09 119 | 99.02 72 | 95.15 177 | 98.34 105 | 98.23 141 | 97.91 21 | 99.70 112 | 94.41 201 | 99.73 66 | 99.50 63 |
|
| SF-MVS | | | 97.60 100 | 97.39 111 | 98.22 75 | 98.93 117 | 95.69 88 | 97.05 121 | 99.10 49 | 95.32 170 | 97.83 163 | 97.88 185 | 96.44 100 | 99.72 88 | 94.59 198 | 99.39 170 | 99.25 135 |
|
| VDD-MVS | | | 97.37 117 | 97.25 119 | 97.74 111 | 98.69 145 | 94.50 143 | 97.04 122 | 95.61 321 | 98.59 27 | 98.51 83 | 98.72 83 | 92.54 216 | 99.58 161 | 96.02 110 | 99.49 140 | 99.12 161 |
|
| wuyk23d | | | 93.25 294 | 95.20 211 | 87.40 375 | 96.07 343 | 95.38 105 | 97.04 122 | 94.97 331 | 95.33 169 | 99.70 6 | 98.11 156 | 98.14 17 | 91.94 393 | 77.76 386 | 99.68 81 | 74.89 393 |
|
| LCM-MVSNet-Re | | | 97.33 120 | 97.33 115 | 97.32 149 | 98.13 217 | 93.79 170 | 96.99 124 | 99.65 9 | 96.74 97 | 99.47 17 | 98.93 65 | 96.91 72 | 99.84 30 | 90.11 304 | 99.06 229 | 98.32 265 |
|
| MAR-MVS | | | 94.21 265 | 93.03 284 | 97.76 110 | 96.94 318 | 97.44 33 | 96.97 125 | 97.15 283 | 87.89 327 | 92.00 362 | 92.73 364 | 92.14 225 | 99.12 281 | 83.92 367 | 97.51 325 | 96.73 350 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_vis1_n | | | 95.67 199 | 95.89 194 | 95.03 272 | 98.18 205 | 89.89 258 | 96.94 126 | 99.28 26 | 88.25 322 | 98.20 120 | 98.92 66 | 86.69 299 | 97.19 375 | 97.70 53 | 98.82 253 | 98.00 298 |
|
| SDMVSNet | | | 97.97 52 | 98.26 39 | 97.11 162 | 99.41 43 | 92.21 212 | 96.92 127 | 98.60 171 | 98.58 28 | 98.78 63 | 99.39 16 | 97.80 25 | 99.62 149 | 94.98 180 | 99.86 31 | 99.52 59 |
|
| h-mvs33 | | | 96.29 174 | 95.63 204 | 98.26 70 | 98.50 172 | 96.11 73 | 96.90 128 | 97.09 286 | 96.58 104 | 97.21 189 | 98.19 146 | 84.14 316 | 99.78 48 | 95.89 119 | 96.17 355 | 98.89 201 |
|
| test0726 | | | | | | 99.24 64 | 95.51 97 | 96.89 129 | 98.89 100 | 95.92 140 | 98.64 72 | 98.31 123 | 97.06 58 | | | | |
|
| baseline | | | 97.44 111 | 97.78 76 | 96.43 207 | 98.52 167 | 90.75 247 | 96.84 130 | 99.03 70 | 96.51 108 | 97.86 161 | 98.02 169 | 96.67 85 | 99.36 235 | 97.09 73 | 99.47 146 | 99.19 144 |
|
| API-MVS | | | 95.09 227 | 95.01 220 | 95.31 260 | 96.61 324 | 94.02 161 | 96.83 131 | 97.18 282 | 95.60 157 | 95.79 273 | 94.33 346 | 94.54 166 | 98.37 355 | 85.70 352 | 98.52 279 | 93.52 382 |
|
| test_vis3_rt | | | 97.04 129 | 96.98 134 | 97.23 156 | 98.44 179 | 95.88 80 | 96.82 132 | 99.67 6 | 90.30 296 | 99.27 29 | 99.33 27 | 94.04 177 | 96.03 386 | 97.14 71 | 97.83 307 | 99.78 11 |
|
| test_fmvs1_n | | | 95.21 220 | 95.28 209 | 94.99 275 | 98.15 212 | 89.13 272 | 96.81 133 | 99.43 20 | 86.97 335 | 97.21 189 | 98.92 66 | 83.00 324 | 97.13 376 | 98.09 35 | 98.94 238 | 98.72 224 |
|
| test_fmvs2 | | | 96.38 172 | 96.45 167 | 96.16 222 | 97.85 237 | 91.30 236 | 96.81 133 | 99.45 18 | 89.24 308 | 98.49 86 | 99.38 18 | 88.68 278 | 97.62 372 | 98.83 16 | 99.32 190 | 99.57 47 |
|
| iter_conf_final | | | 94.54 254 | 93.91 270 | 96.43 207 | 97.23 306 | 90.41 253 | 96.81 133 | 98.10 235 | 93.87 221 | 96.80 220 | 97.89 183 | 68.02 385 | 99.72 88 | 96.73 83 | 99.77 58 | 99.18 147 |
|
| SED-MVS | | | 97.94 62 | 97.90 59 | 98.07 86 | 99.22 69 | 95.35 108 | 96.79 136 | 98.83 124 | 96.11 127 | 99.08 40 | 98.24 139 | 97.87 23 | 99.72 88 | 95.44 147 | 99.51 133 | 99.14 154 |
|
| OPU-MVS | | | | | 97.64 119 | 98.01 223 | 95.27 113 | 96.79 136 | | | | 97.35 231 | 96.97 65 | 98.51 343 | 91.21 276 | 99.25 201 | 99.14 154 |
|
| PHI-MVS | | | 96.96 136 | 96.53 163 | 98.25 73 | 97.48 286 | 96.50 59 | 96.76 138 | 98.85 115 | 93.52 230 | 96.19 258 | 96.85 262 | 95.94 116 | 99.42 209 | 93.79 227 | 99.43 161 | 98.83 210 |
|
| DVP-MVS |  | | 97.78 85 | 97.65 86 | 98.16 79 | 99.24 64 | 95.51 97 | 96.74 139 | 98.23 214 | 95.92 140 | 98.40 96 | 98.28 132 | 97.06 58 | 99.71 104 | 95.48 143 | 99.52 128 | 99.26 131 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.25 73 | 99.23 66 | 95.49 101 | 96.74 139 | 98.89 100 | | | | | 99.75 68 | 95.48 143 | 99.52 128 | 99.53 57 |
|
| Anonymous202405211 | | | 96.34 173 | 95.98 188 | 97.43 141 | 98.25 195 | 93.85 167 | 96.74 139 | 94.41 337 | 97.72 59 | 98.37 99 | 98.03 168 | 87.15 295 | 99.53 177 | 94.06 216 | 99.07 226 | 98.92 196 |
|
| SMA-MVS |  | | 97.48 108 | 97.11 125 | 98.60 45 | 98.83 125 | 96.67 53 | 96.74 139 | 98.73 146 | 91.61 277 | 98.48 88 | 98.36 118 | 96.53 93 | 99.68 124 | 95.17 163 | 99.54 119 | 99.45 86 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| TranMVSNet+NR-MVSNet | | | 98.33 29 | 98.30 37 | 98.43 57 | 99.07 101 | 95.87 81 | 96.73 143 | 99.05 63 | 98.67 24 | 98.84 57 | 98.45 110 | 97.58 36 | 99.88 20 | 96.45 92 | 99.86 31 | 99.54 54 |
|
| test_0402 | | | 97.84 77 | 97.97 55 | 97.47 137 | 99.19 80 | 94.07 159 | 96.71 144 | 98.73 146 | 98.66 25 | 98.56 80 | 98.41 113 | 96.84 79 | 99.69 119 | 94.82 184 | 99.81 48 | 98.64 232 |
|
| test_fmvsmconf0.01_n | | | 98.57 17 | 98.74 16 | 98.06 88 | 99.39 47 | 94.63 136 | 96.70 145 | 99.82 1 | 95.44 166 | 99.64 10 | 99.52 7 | 98.96 4 | 99.74 77 | 99.38 3 | 99.86 31 | 99.81 8 |
|
| SSC-MVS | | | 95.92 189 | 97.03 132 | 92.58 345 | 99.28 58 | 78.39 380 | 96.68 146 | 95.12 330 | 98.90 19 | 99.11 39 | 98.66 89 | 91.36 239 | 99.68 124 | 95.00 177 | 99.16 212 | 99.67 28 |
|
| ACMM | | 93.33 11 | 98.05 48 | 97.79 72 | 98.85 24 | 99.15 86 | 97.55 26 | 96.68 146 | 98.83 124 | 95.21 173 | 98.36 102 | 98.13 152 | 98.13 18 | 99.62 149 | 96.04 108 | 99.54 119 | 99.39 103 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline1 | | | 93.14 296 | 92.64 297 | 94.62 293 | 97.34 299 | 87.20 314 | 96.67 148 | 93.02 350 | 94.71 193 | 96.51 240 | 95.83 314 | 81.64 328 | 98.60 336 | 90.00 307 | 88.06 389 | 98.07 286 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 83 | 98.01 52 | 97.18 157 | 99.17 82 | 92.51 204 | 96.57 149 | 99.15 41 | 93.68 227 | 98.89 52 | 99.30 28 | 96.42 101 | 99.37 232 | 99.03 11 | 99.83 43 | 99.66 30 |
|
| MTMP | | | | | | | | 96.55 150 | 74.60 398 | | | | | | | | |
|
| SD-MVS | | | 97.37 117 | 97.70 79 | 96.35 212 | 98.14 214 | 95.13 122 | 96.54 151 | 98.92 97 | 95.94 139 | 99.19 34 | 98.08 158 | 97.74 28 | 95.06 387 | 95.24 159 | 99.54 119 | 98.87 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HQP_MVS | | | 96.66 158 | 96.33 174 | 97.68 117 | 98.70 143 | 94.29 150 | 96.50 152 | 98.75 143 | 96.36 115 | 96.16 259 | 96.77 269 | 91.91 234 | 99.46 198 | 92.59 252 | 99.20 206 | 99.28 126 |
|
| plane_prior2 | | | | | | | | 96.50 152 | | 96.36 115 | | | | | | | |
|
| MVS_0304 | | | 96.62 160 | 96.40 170 | 97.28 151 | 97.91 233 | 92.30 209 | 96.47 154 | 89.74 381 | 97.52 71 | 95.38 287 | 98.63 94 | 92.76 206 | 99.81 37 | 99.28 4 | 99.93 11 | 99.75 19 |
|
| Effi-MVS+-dtu | | | 96.81 147 | 96.09 182 | 98.99 10 | 96.90 320 | 98.69 4 | 96.42 155 | 98.09 237 | 95.86 145 | 95.15 291 | 95.54 322 | 94.26 173 | 99.81 37 | 94.06 216 | 98.51 281 | 98.47 250 |
|
| MM | | | | | 97.62 120 | | 93.30 186 | 96.39 156 | 92.61 358 | 97.90 52 | 96.76 226 | 98.64 93 | 90.46 252 | 99.81 37 | 99.16 9 | 99.94 8 | 99.76 17 |
|
| thres100view900 | | | 91.76 319 | 91.26 318 | 93.26 328 | 98.21 199 | 84.50 350 | 96.39 156 | 90.39 375 | 96.87 93 | 96.33 247 | 93.08 357 | 73.44 372 | 99.42 209 | 78.85 383 | 97.74 311 | 95.85 363 |
|
| XVG-ACMP-BASELINE | | | 97.58 102 | 97.28 118 | 98.49 52 | 99.16 83 | 96.90 46 | 96.39 156 | 98.98 87 | 95.05 182 | 98.06 139 | 98.02 169 | 95.86 118 | 99.56 168 | 94.37 204 | 99.64 88 | 99.00 180 |
|
| Patchmtry | | | 95.03 230 | 94.59 245 | 96.33 213 | 94.83 368 | 90.82 244 | 96.38 159 | 97.20 280 | 96.59 103 | 97.49 175 | 98.57 98 | 77.67 347 | 99.38 227 | 92.95 249 | 99.62 91 | 98.80 213 |
|
| fmvsm_s_conf0.1_n | | | 97.73 88 | 98.02 51 | 96.85 181 | 99.09 98 | 91.43 235 | 96.37 160 | 99.11 47 | 94.19 210 | 99.01 44 | 99.25 31 | 96.30 106 | 99.38 227 | 99.00 12 | 99.88 27 | 99.73 22 |
|
| ACMMP_NAP | | | 97.89 72 | 97.63 91 | 98.67 40 | 99.35 52 | 96.84 47 | 96.36 161 | 98.79 134 | 95.07 181 | 97.88 157 | 98.35 119 | 97.24 50 | 99.72 88 | 96.05 107 | 99.58 104 | 99.45 86 |
|
| VNet | | | 96.84 142 | 96.83 144 | 96.88 179 | 98.06 219 | 92.02 222 | 96.35 162 | 97.57 272 | 97.70 62 | 97.88 157 | 97.80 193 | 92.40 221 | 99.54 175 | 94.73 191 | 98.96 235 | 99.08 169 |
|
| V42 | | | 97.04 129 | 97.16 124 | 96.68 194 | 98.59 158 | 91.05 239 | 96.33 163 | 98.36 200 | 94.60 197 | 97.99 145 | 98.30 127 | 93.32 193 | 99.62 149 | 97.40 62 | 99.53 123 | 99.38 105 |
|
| test_fmvsmvis_n_1920 | | | 98.08 45 | 98.47 26 | 96.93 175 | 99.03 108 | 93.29 187 | 96.32 164 | 99.65 9 | 95.59 158 | 99.71 4 | 99.01 54 | 97.66 32 | 99.60 158 | 99.44 2 | 99.83 43 | 97.90 303 |
|
| APD-MVS |  | | 97.00 131 | 96.53 163 | 98.41 59 | 98.55 163 | 96.31 66 | 96.32 164 | 98.77 139 | 92.96 255 | 97.44 181 | 97.58 211 | 95.84 119 | 99.74 77 | 91.96 259 | 99.35 180 | 99.19 144 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| VPNet | | | 97.26 123 | 97.49 108 | 96.59 197 | 99.47 36 | 90.58 249 | 96.27 166 | 98.53 179 | 97.77 54 | 98.46 91 | 98.41 113 | 94.59 163 | 99.68 124 | 94.61 194 | 99.29 196 | 99.52 59 |
|
| thres600view7 | | | 92.03 315 | 91.43 312 | 93.82 317 | 98.19 202 | 84.61 349 | 96.27 166 | 90.39 375 | 96.81 95 | 96.37 246 | 93.11 353 | 73.44 372 | 99.49 190 | 80.32 379 | 97.95 302 | 97.36 328 |
|
| EPNet | | | 93.72 279 | 92.62 298 | 97.03 170 | 87.61 399 | 92.25 210 | 96.27 166 | 91.28 368 | 96.74 97 | 87.65 386 | 97.39 226 | 85.00 310 | 99.64 141 | 92.14 257 | 99.48 144 | 99.20 143 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DSMNet-mixed | | | 92.19 310 | 91.83 307 | 93.25 329 | 96.18 337 | 83.68 359 | 96.27 166 | 93.68 343 | 76.97 388 | 92.54 358 | 99.18 39 | 89.20 276 | 98.55 340 | 83.88 368 | 98.60 276 | 97.51 323 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 95 | 97.83 69 | 97.13 161 | 98.80 128 | 92.51 204 | 96.25 170 | 99.06 59 | 93.67 228 | 98.64 72 | 99.00 55 | 96.23 110 | 99.36 235 | 98.99 13 | 99.80 51 | 99.53 57 |
|
| ACMP | | 92.54 13 | 97.47 109 | 97.10 126 | 98.55 49 | 99.04 107 | 96.70 51 | 96.24 171 | 98.89 100 | 93.71 225 | 97.97 149 | 97.75 197 | 97.44 38 | 99.63 144 | 93.22 243 | 99.70 76 | 99.32 114 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DeepC-MVS | | 95.41 4 | 97.82 81 | 97.70 79 | 98.16 79 | 98.78 133 | 95.72 86 | 96.23 172 | 99.02 72 | 93.92 220 | 98.62 74 | 98.99 57 | 97.69 29 | 99.62 149 | 96.18 103 | 99.87 29 | 99.15 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PM-MVS | | | 97.36 119 | 97.10 126 | 98.14 82 | 98.91 119 | 96.77 49 | 96.20 173 | 98.63 169 | 93.82 222 | 98.54 81 | 98.33 121 | 93.98 179 | 99.05 291 | 95.99 113 | 99.45 152 | 98.61 237 |
|
| test_fmvsmconf0.1_n | | | 98.41 27 | 98.54 25 | 98.03 93 | 99.16 83 | 94.61 137 | 96.18 174 | 99.73 3 | 95.05 182 | 99.60 14 | 99.34 25 | 98.68 8 | 99.72 88 | 99.21 7 | 99.85 38 | 99.76 17 |
|
| MVS_Test | | | 96.27 175 | 96.79 148 | 94.73 290 | 96.94 318 | 86.63 323 | 96.18 174 | 98.33 204 | 94.94 186 | 96.07 262 | 98.28 132 | 95.25 144 | 99.26 260 | 97.21 67 | 97.90 305 | 98.30 269 |
|
| CR-MVSNet | | | 93.29 293 | 92.79 291 | 94.78 288 | 95.44 359 | 88.15 290 | 96.18 174 | 97.20 280 | 84.94 358 | 94.10 315 | 98.57 98 | 77.67 347 | 99.39 224 | 95.17 163 | 95.81 357 | 96.81 347 |
|
| RPMNet | | | 94.68 246 | 94.60 243 | 94.90 280 | 95.44 359 | 88.15 290 | 96.18 174 | 98.86 111 | 97.43 74 | 94.10 315 | 98.49 106 | 79.40 339 | 99.76 62 | 95.69 128 | 95.81 357 | 96.81 347 |
|
| test_fmvsm_n_1920 | | | 98.08 45 | 98.29 38 | 97.43 141 | 98.88 121 | 93.95 164 | 96.17 178 | 99.57 14 | 95.66 153 | 99.52 15 | 98.71 85 | 97.04 60 | 99.64 141 | 99.21 7 | 99.87 29 | 98.69 228 |
|
| fmvsm_s_conf0.5_n | | | 97.62 98 | 97.89 62 | 96.80 185 | 98.79 130 | 91.44 234 | 96.14 179 | 99.06 59 | 94.19 210 | 98.82 59 | 98.98 58 | 96.22 111 | 99.38 227 | 98.98 14 | 99.86 31 | 99.58 40 |
|
| WB-MVS | | | 95.50 205 | 96.62 154 | 92.11 353 | 99.21 76 | 77.26 388 | 96.12 180 | 95.40 327 | 98.62 26 | 98.84 57 | 98.26 137 | 91.08 243 | 99.50 185 | 93.37 236 | 98.70 265 | 99.58 40 |
|
| EIA-MVS | | | 96.04 184 | 95.77 199 | 96.85 181 | 97.80 250 | 92.98 194 | 96.12 180 | 99.16 37 | 94.65 195 | 93.77 325 | 91.69 376 | 95.68 130 | 99.67 130 | 94.18 211 | 98.85 249 | 97.91 302 |
|
| Effi-MVS+ | | | 96.19 178 | 96.01 185 | 96.71 191 | 97.43 292 | 92.19 216 | 96.12 180 | 99.10 49 | 95.45 164 | 93.33 341 | 94.71 338 | 97.23 51 | 99.56 168 | 93.21 244 | 97.54 323 | 98.37 258 |
|
| alignmvs | | | 96.01 186 | 95.52 207 | 97.50 132 | 97.77 259 | 94.71 131 | 96.07 183 | 96.84 294 | 97.48 73 | 96.78 225 | 94.28 347 | 85.50 307 | 99.40 220 | 96.22 100 | 98.73 263 | 98.40 254 |
|
| PatchT | | | 93.75 278 | 93.57 275 | 94.29 309 | 95.05 366 | 87.32 312 | 96.05 184 | 92.98 351 | 97.54 70 | 94.25 311 | 98.72 83 | 75.79 360 | 99.24 265 | 95.92 117 | 95.81 357 | 96.32 358 |
|
| Patchmatch-test | | | 93.60 285 | 93.25 280 | 94.63 292 | 96.14 341 | 87.47 307 | 96.04 185 | 94.50 336 | 93.57 229 | 96.47 241 | 96.97 254 | 76.50 355 | 98.61 334 | 90.67 294 | 98.41 286 | 97.81 311 |
|
| thisisatest0530 | | | 92.71 302 | 91.76 310 | 95.56 249 | 98.42 181 | 88.23 287 | 96.03 186 | 87.35 387 | 94.04 217 | 96.56 237 | 95.47 324 | 64.03 390 | 99.77 57 | 94.78 188 | 99.11 220 | 98.68 231 |
|
| 9.14 | | | | 96.69 151 | | 98.53 166 | | 96.02 187 | 98.98 87 | 93.23 239 | 97.18 192 | 97.46 217 | 96.47 98 | 99.62 149 | 92.99 247 | 99.32 190 | |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 150 | 96.51 165 | 97.44 140 | 97.69 268 | 94.15 157 | 96.02 187 | 98.43 189 | 93.17 245 | 97.30 184 | 97.38 228 | 95.48 136 | 99.28 256 | 93.74 228 | 99.34 183 | 98.88 205 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf_n | | | 98.30 32 | 98.41 32 | 97.99 96 | 98.94 116 | 94.60 138 | 96.00 189 | 99.64 12 | 94.99 185 | 99.43 19 | 99.18 39 | 98.51 10 | 99.71 104 | 99.13 10 | 99.84 40 | 99.67 28 |
|
| 114514_t | | | 93.96 274 | 93.22 281 | 96.19 220 | 99.06 102 | 90.97 242 | 95.99 190 | 98.94 94 | 73.88 391 | 93.43 338 | 96.93 257 | 92.38 222 | 99.37 232 | 89.09 319 | 99.28 197 | 98.25 275 |
|
| FMVSNet3 | | | 95.26 219 | 94.94 221 | 96.22 219 | 96.53 326 | 90.06 254 | 95.99 190 | 97.66 264 | 94.11 214 | 97.99 145 | 97.91 182 | 80.22 338 | 99.63 144 | 94.60 195 | 99.44 153 | 98.96 186 |
|
| HPM-MVS++ |  | | 96.99 132 | 96.38 171 | 98.81 27 | 98.64 148 | 97.59 23 | 95.97 192 | 98.20 219 | 95.51 162 | 95.06 293 | 96.53 282 | 94.10 176 | 99.70 112 | 94.29 207 | 99.15 213 | 99.13 156 |
|
| casdiffmvs_mvg |  | | 97.83 78 | 98.11 42 | 97.00 172 | 98.57 160 | 92.10 220 | 95.97 192 | 99.18 35 | 97.67 66 | 99.00 46 | 98.48 109 | 97.64 33 | 99.50 185 | 96.96 78 | 99.54 119 | 99.40 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testgi | | | 96.07 182 | 96.50 166 | 94.80 286 | 99.26 60 | 87.69 304 | 95.96 194 | 98.58 176 | 95.08 180 | 98.02 144 | 96.25 296 | 97.92 20 | 97.60 373 | 88.68 326 | 98.74 260 | 99.11 164 |
|
| EG-PatchMatch MVS | | | 97.69 92 | 97.79 72 | 97.40 145 | 99.06 102 | 93.52 180 | 95.96 194 | 98.97 90 | 94.55 201 | 98.82 59 | 98.76 81 | 97.31 44 | 99.29 254 | 97.20 69 | 99.44 153 | 99.38 105 |
|
| iter_conf05 | | | 93.65 283 | 93.05 282 | 95.46 255 | 96.13 342 | 87.45 308 | 95.95 196 | 98.22 215 | 92.66 260 | 97.04 206 | 97.89 183 | 63.52 391 | 99.72 88 | 96.19 102 | 99.82 47 | 99.21 139 |
|
| PAPM_NR | | | 94.61 250 | 94.17 262 | 95.96 229 | 98.36 185 | 91.23 237 | 95.93 197 | 97.95 245 | 92.98 251 | 93.42 339 | 94.43 345 | 90.53 250 | 98.38 353 | 87.60 339 | 96.29 353 | 98.27 273 |
|
| UniMVSNet (Re) | | | 97.83 78 | 97.65 86 | 98.35 64 | 98.80 128 | 95.86 83 | 95.92 198 | 99.04 69 | 97.51 72 | 98.22 119 | 97.81 192 | 94.68 160 | 99.78 48 | 97.14 71 | 99.75 64 | 99.41 99 |
|
| test_vis1_n_1920 | | | 95.77 195 | 96.41 169 | 93.85 316 | 98.55 163 | 84.86 346 | 95.91 199 | 99.71 4 | 92.72 259 | 97.67 167 | 98.90 70 | 87.44 293 | 98.73 321 | 97.96 39 | 98.85 249 | 97.96 299 |
|
| 1314 | | | 92.38 306 | 92.30 301 | 92.64 344 | 95.42 361 | 85.15 341 | 95.86 200 | 96.97 291 | 85.40 351 | 90.62 370 | 93.06 358 | 91.12 242 | 97.80 370 | 86.74 347 | 95.49 365 | 94.97 375 |
|
| MVS | | | 90.02 333 | 89.20 340 | 92.47 348 | 94.71 369 | 86.90 319 | 95.86 200 | 96.74 300 | 64.72 393 | 90.62 370 | 92.77 362 | 92.54 216 | 98.39 352 | 79.30 381 | 95.56 364 | 92.12 386 |
|
| casdiffmvs |  | | 97.50 106 | 97.81 71 | 96.56 201 | 98.51 169 | 91.04 240 | 95.83 202 | 99.09 54 | 97.23 85 | 98.33 108 | 98.30 127 | 97.03 61 | 99.37 232 | 96.58 88 | 99.38 171 | 99.28 126 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpmvs | | | 90.79 329 | 90.87 323 | 90.57 363 | 92.75 391 | 76.30 390 | 95.79 203 | 93.64 345 | 91.04 286 | 91.91 363 | 96.26 295 | 77.19 353 | 98.86 311 | 89.38 316 | 89.85 386 | 96.56 354 |
|
| mvsany_test3 | | | 96.21 177 | 95.93 192 | 97.05 167 | 97.40 294 | 94.33 149 | 95.76 204 | 94.20 339 | 89.10 309 | 99.36 24 | 99.60 6 | 93.97 180 | 97.85 368 | 95.40 154 | 98.63 272 | 98.99 183 |
|
| MSLP-MVS++ | | | 96.42 171 | 96.71 150 | 95.57 247 | 97.82 245 | 90.56 251 | 95.71 205 | 98.84 118 | 94.72 192 | 96.71 228 | 97.39 226 | 94.91 155 | 98.10 365 | 95.28 156 | 99.02 231 | 98.05 293 |
|
| tfpn200view9 | | | 91.55 321 | 91.00 320 | 93.21 331 | 98.02 221 | 84.35 352 | 95.70 206 | 90.79 372 | 96.26 119 | 95.90 271 | 92.13 371 | 73.62 369 | 99.42 209 | 78.85 383 | 97.74 311 | 95.85 363 |
|
| Anonymous20231206 | | | 95.27 218 | 95.06 219 | 95.88 235 | 98.72 138 | 89.37 266 | 95.70 206 | 97.85 251 | 88.00 325 | 96.98 212 | 97.62 207 | 91.95 231 | 99.34 241 | 89.21 317 | 99.53 123 | 98.94 189 |
|
| thres400 | | | 91.68 320 | 91.00 320 | 93.71 320 | 98.02 221 | 84.35 352 | 95.70 206 | 90.79 372 | 96.26 119 | 95.90 271 | 92.13 371 | 73.62 369 | 99.42 209 | 78.85 383 | 97.74 311 | 97.36 328 |
|
| test20.03 | | | 96.58 163 | 96.61 155 | 96.48 205 | 98.49 173 | 91.72 229 | 95.68 209 | 97.69 261 | 96.81 95 | 98.27 115 | 97.92 181 | 94.18 175 | 98.71 324 | 90.78 287 | 99.66 85 | 99.00 180 |
|
| hse-mvs2 | | | 95.77 195 | 95.09 216 | 97.79 108 | 97.84 242 | 95.51 97 | 95.66 210 | 95.43 326 | 96.58 104 | 97.21 189 | 96.16 299 | 84.14 316 | 99.54 175 | 95.89 119 | 96.92 336 | 98.32 265 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 78 | 97.65 86 | 98.37 62 | 98.72 138 | 95.78 84 | 95.66 210 | 99.02 72 | 98.11 44 | 98.31 111 | 97.69 203 | 94.65 162 | 99.85 27 | 97.02 76 | 99.71 73 | 99.48 77 |
|
| dmvs_re | | | 92.08 314 | 91.27 316 | 94.51 300 | 97.16 309 | 92.79 200 | 95.65 212 | 92.64 357 | 94.11 214 | 92.74 351 | 90.98 383 | 83.41 322 | 94.44 391 | 80.72 378 | 94.07 375 | 96.29 359 |
|
| DU-MVS | | | 97.79 84 | 97.60 96 | 98.36 63 | 98.73 136 | 95.78 84 | 95.65 212 | 98.87 108 | 97.57 67 | 98.31 111 | 97.83 188 | 94.69 158 | 99.85 27 | 97.02 76 | 99.71 73 | 99.46 82 |
|
| EPMVS | | | 89.26 343 | 88.55 346 | 91.39 358 | 92.36 392 | 79.11 379 | 95.65 212 | 79.86 396 | 88.60 317 | 93.12 344 | 96.53 282 | 70.73 380 | 98.10 365 | 90.75 288 | 89.32 387 | 96.98 336 |
|
| MVP-Stereo | | | 95.69 197 | 95.28 209 | 96.92 176 | 98.15 212 | 93.03 193 | 95.64 215 | 98.20 219 | 90.39 295 | 96.63 234 | 97.73 200 | 91.63 236 | 99.10 286 | 91.84 264 | 97.31 333 | 98.63 234 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_cas_vis1_n_1920 | | | 95.34 214 | 95.67 201 | 94.35 306 | 98.21 199 | 86.83 321 | 95.61 216 | 99.26 27 | 90.45 294 | 98.17 125 | 98.96 61 | 84.43 315 | 98.31 358 | 96.74 82 | 99.17 211 | 97.90 303 |
|
| test_f | | | 95.82 194 | 95.88 195 | 95.66 244 | 97.61 277 | 93.21 191 | 95.61 216 | 98.17 225 | 86.98 334 | 98.42 94 | 99.47 11 | 90.46 252 | 94.74 389 | 97.71 51 | 98.45 283 | 99.03 176 |
|
| F-COLMAP | | | 95.30 217 | 94.38 255 | 98.05 92 | 98.64 148 | 96.04 75 | 95.61 216 | 98.66 163 | 89.00 312 | 93.22 342 | 96.40 290 | 92.90 203 | 99.35 239 | 87.45 343 | 97.53 324 | 98.77 218 |
|
| AUN-MVS | | | 93.95 276 | 92.69 295 | 97.74 111 | 97.80 250 | 95.38 105 | 95.57 219 | 95.46 325 | 91.26 283 | 92.64 355 | 96.10 305 | 74.67 363 | 99.55 172 | 93.72 230 | 96.97 335 | 98.30 269 |
|
| v144192 | | | 96.69 156 | 96.90 142 | 96.03 226 | 98.25 195 | 88.92 273 | 95.49 220 | 98.77 139 | 93.05 248 | 98.09 134 | 98.29 131 | 92.51 219 | 99.70 112 | 98.11 34 | 99.56 110 | 99.47 80 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 169 | 96.12 180 | 97.39 146 | 97.18 308 | 94.39 145 | 95.46 221 | 98.73 146 | 96.03 134 | 94.72 301 | 94.92 335 | 96.28 109 | 99.69 119 | 93.81 226 | 97.98 301 | 98.09 283 |
|
| Baseline_NR-MVSNet | | | 97.72 90 | 97.79 72 | 97.50 132 | 99.56 21 | 93.29 187 | 95.44 222 | 98.86 111 | 98.20 42 | 98.37 99 | 99.24 32 | 94.69 158 | 99.55 172 | 95.98 114 | 99.79 53 | 99.65 33 |
|
| LF4IMVS | | | 96.07 182 | 95.63 204 | 97.36 147 | 98.19 202 | 95.55 94 | 95.44 222 | 98.82 132 | 92.29 268 | 95.70 279 | 96.55 280 | 92.63 212 | 98.69 326 | 91.75 268 | 99.33 188 | 97.85 307 |
|
| v1921920 | | | 96.72 153 | 96.96 137 | 95.99 227 | 98.21 199 | 88.79 278 | 95.42 224 | 98.79 134 | 93.22 240 | 98.19 124 | 98.26 137 | 92.68 209 | 99.70 112 | 98.34 32 | 99.55 116 | 99.49 71 |
|
| plane_prior | | | | | | | 94.29 150 | 95.42 224 | | 94.31 207 | | | | | | 98.93 240 | |
|
| v1144 | | | 96.84 142 | 97.08 128 | 96.13 224 | 98.42 181 | 89.28 268 | 95.41 226 | 98.67 161 | 94.21 208 | 97.97 149 | 98.31 123 | 93.06 198 | 99.65 138 | 98.06 37 | 99.62 91 | 99.45 86 |
|
| ETV-MVS | | | 96.13 181 | 95.90 193 | 96.82 184 | 97.76 260 | 93.89 165 | 95.40 227 | 98.95 93 | 95.87 144 | 95.58 282 | 91.00 382 | 96.36 105 | 99.72 88 | 93.36 237 | 98.83 252 | 96.85 343 |
|
| v1240 | | | 96.74 150 | 97.02 133 | 95.91 234 | 98.18 205 | 88.52 281 | 95.39 228 | 98.88 106 | 93.15 246 | 98.46 91 | 98.40 116 | 92.80 205 | 99.71 104 | 98.45 29 | 99.49 140 | 99.49 71 |
|
| MP-MVS-pluss | | | 97.69 92 | 97.36 113 | 98.70 38 | 99.50 34 | 96.84 47 | 95.38 229 | 98.99 84 | 92.45 265 | 98.11 131 | 98.31 123 | 97.25 49 | 99.77 57 | 96.60 86 | 99.62 91 | 99.48 77 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| v1192 | | | 96.83 145 | 97.06 130 | 96.15 223 | 98.28 191 | 89.29 267 | 95.36 230 | 98.77 139 | 93.73 224 | 98.11 131 | 98.34 120 | 93.02 202 | 99.67 130 | 98.35 31 | 99.58 104 | 99.50 63 |
|
| v2v482 | | | 96.78 149 | 97.06 130 | 95.95 231 | 98.57 160 | 88.77 279 | 95.36 230 | 98.26 210 | 95.18 176 | 97.85 162 | 98.23 141 | 92.58 213 | 99.63 144 | 97.80 46 | 99.69 77 | 99.45 86 |
|
| test_fmvs1 | | | 94.51 256 | 94.60 243 | 94.26 310 | 95.91 345 | 87.92 296 | 95.35 232 | 99.02 72 | 86.56 339 | 96.79 221 | 98.52 103 | 82.64 326 | 97.00 379 | 97.87 42 | 98.71 264 | 97.88 305 |
|
| EI-MVSNet-Vis-set | | | 97.32 121 | 97.39 111 | 97.11 162 | 97.36 296 | 92.08 221 | 95.34 233 | 97.65 266 | 97.74 57 | 98.29 114 | 98.11 156 | 95.05 148 | 99.68 124 | 97.50 59 | 99.50 137 | 99.56 51 |
|
| EI-MVSNet-UG-set | | | 97.32 121 | 97.40 110 | 97.09 165 | 97.34 299 | 92.01 223 | 95.33 234 | 97.65 266 | 97.74 57 | 98.30 113 | 98.14 150 | 95.04 149 | 99.69 119 | 97.55 57 | 99.52 128 | 99.58 40 |
|
| CostFormer | | | 89.75 339 | 89.25 337 | 91.26 359 | 94.69 370 | 78.00 383 | 95.32 235 | 91.98 362 | 81.50 372 | 90.55 372 | 96.96 256 | 71.06 378 | 98.89 307 | 88.59 327 | 92.63 380 | 96.87 341 |
|
| PVSNet_Blended_VisFu | | | 95.95 188 | 95.80 197 | 96.42 209 | 99.28 58 | 90.62 248 | 95.31 236 | 99.08 55 | 88.40 319 | 96.97 213 | 98.17 149 | 92.11 226 | 99.78 48 | 93.64 232 | 99.21 205 | 98.86 208 |
|
| UnsupCasMVSNet_eth | | | 95.91 190 | 95.73 200 | 96.44 206 | 98.48 175 | 91.52 232 | 95.31 236 | 98.45 186 | 95.76 149 | 97.48 177 | 97.54 212 | 89.53 270 | 98.69 326 | 94.43 200 | 94.61 372 | 99.13 156 |
|
| EI-MVSNet | | | 96.63 159 | 96.93 138 | 95.74 240 | 97.26 304 | 88.13 292 | 95.29 238 | 97.65 266 | 96.99 89 | 97.94 152 | 98.19 146 | 92.55 214 | 99.58 161 | 96.91 79 | 99.56 110 | 99.50 63 |
|
| CVMVSNet | | | 92.33 308 | 92.79 291 | 90.95 360 | 97.26 304 | 75.84 392 | 95.29 238 | 92.33 360 | 81.86 369 | 96.27 252 | 98.19 146 | 81.44 330 | 98.46 348 | 94.23 210 | 98.29 290 | 98.55 242 |
|
| OPM-MVS | | | 97.54 104 | 97.25 119 | 98.41 59 | 99.11 95 | 96.61 56 | 95.24 240 | 98.46 185 | 94.58 200 | 98.10 133 | 98.07 160 | 97.09 56 | 99.39 224 | 95.16 165 | 99.44 153 | 99.21 139 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| TAPA-MVS | | 93.32 12 | 94.93 232 | 94.23 258 | 97.04 169 | 98.18 205 | 94.51 141 | 95.22 241 | 98.73 146 | 81.22 374 | 96.25 254 | 95.95 311 | 93.80 185 | 98.98 300 | 89.89 308 | 98.87 246 | 97.62 318 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DPE-MVS |  | | 97.64 96 | 97.35 114 | 98.50 51 | 98.85 124 | 96.18 69 | 95.21 242 | 98.99 84 | 95.84 146 | 98.78 63 | 98.08 158 | 96.84 79 | 99.81 37 | 93.98 221 | 99.57 107 | 99.52 59 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MVSTER | | | 94.21 265 | 93.93 269 | 95.05 271 | 95.83 349 | 86.46 324 | 95.18 243 | 97.65 266 | 92.41 266 | 97.94 152 | 98.00 173 | 72.39 374 | 99.58 161 | 96.36 95 | 99.56 110 | 99.12 161 |
|
| PatchmatchNet |  | | 91.98 316 | 91.87 306 | 92.30 351 | 94.60 371 | 79.71 376 | 95.12 244 | 93.59 346 | 89.52 305 | 93.61 331 | 97.02 251 | 77.94 345 | 99.18 271 | 90.84 284 | 94.57 374 | 98.01 297 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| IterMVS-LS | | | 96.92 138 | 97.29 117 | 95.79 238 | 98.51 169 | 88.13 292 | 95.10 245 | 98.66 163 | 96.99 89 | 98.46 91 | 98.68 88 | 92.55 214 | 99.74 77 | 96.91 79 | 99.79 53 | 99.50 63 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 96.58 163 | 96.97 135 | 95.42 257 | 98.63 152 | 87.57 305 | 95.09 246 | 97.90 248 | 95.91 142 | 98.24 117 | 97.96 175 | 93.42 192 | 99.39 224 | 96.04 108 | 99.52 128 | 99.29 125 |
|
| tpm2 | | | 88.47 348 | 87.69 352 | 90.79 361 | 94.98 367 | 77.34 386 | 95.09 246 | 91.83 363 | 77.51 387 | 89.40 380 | 96.41 288 | 67.83 386 | 98.73 321 | 83.58 372 | 92.60 381 | 96.29 359 |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 284 | 93.05 282 | 95.42 257 | 97.31 303 | 91.21 238 | 95.08 248 | 96.68 303 | 81.56 371 | 96.88 219 | 96.41 288 | 90.44 254 | 99.25 262 | 85.39 358 | 97.67 318 | 95.80 365 |
|
| TAMVS | | | 95.49 206 | 94.94 221 | 97.16 158 | 98.31 187 | 93.41 184 | 95.07 249 | 96.82 296 | 91.09 285 | 97.51 173 | 97.82 191 | 89.96 261 | 99.42 209 | 88.42 329 | 99.44 153 | 98.64 232 |
|
| tpmrst | | | 90.31 331 | 90.61 329 | 89.41 367 | 94.06 379 | 72.37 398 | 95.06 250 | 93.69 341 | 88.01 324 | 92.32 360 | 96.86 261 | 77.45 349 | 98.82 312 | 91.04 278 | 87.01 390 | 97.04 335 |
|
| ADS-MVSNet2 | | | 91.47 322 | 90.51 330 | 94.36 305 | 95.51 357 | 85.63 332 | 95.05 251 | 95.70 316 | 83.46 365 | 92.69 352 | 96.84 263 | 79.15 341 | 99.41 218 | 85.66 354 | 90.52 383 | 98.04 294 |
|
| ADS-MVSNet | | | 90.95 328 | 90.26 332 | 93.04 334 | 95.51 357 | 82.37 365 | 95.05 251 | 93.41 347 | 83.46 365 | 92.69 352 | 96.84 263 | 79.15 341 | 98.70 325 | 85.66 354 | 90.52 383 | 98.04 294 |
|
| tpm | | | 91.08 326 | 90.85 324 | 91.75 356 | 95.33 362 | 78.09 381 | 95.03 253 | 91.27 369 | 88.75 315 | 93.53 334 | 97.40 222 | 71.24 376 | 99.30 250 | 91.25 275 | 93.87 376 | 97.87 306 |
|
| NCCC | | | 96.52 165 | 95.99 187 | 98.10 85 | 97.81 246 | 95.68 89 | 95.00 254 | 98.20 219 | 95.39 168 | 95.40 286 | 96.36 292 | 93.81 184 | 99.45 202 | 93.55 234 | 98.42 285 | 99.17 148 |
|
| test_post1 | | | | | | | | 94.98 255 | | | | 10.37 399 | 76.21 358 | 99.04 292 | 89.47 314 | | |
|
| AdaColmap |  | | 95.11 225 | 94.62 242 | 96.58 198 | 97.33 301 | 94.45 144 | 94.92 256 | 98.08 238 | 93.15 246 | 93.98 321 | 95.53 323 | 94.34 171 | 99.10 286 | 85.69 353 | 98.61 274 | 96.20 361 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 402 | 94.89 257 | | 80.59 376 | 94.02 319 | | 78.66 343 | | 85.50 356 | | 97.82 309 |
|
| CNVR-MVS | | | 96.92 138 | 96.55 160 | 98.03 93 | 98.00 227 | 95.54 95 | 94.87 258 | 98.17 225 | 94.60 197 | 96.38 245 | 97.05 249 | 95.67 131 | 99.36 235 | 95.12 171 | 99.08 224 | 99.19 144 |
|
| OMC-MVS | | | 96.48 167 | 96.00 186 | 97.91 100 | 98.30 188 | 96.01 78 | 94.86 259 | 98.60 171 | 91.88 274 | 97.18 192 | 97.21 240 | 96.11 113 | 99.04 292 | 90.49 300 | 99.34 183 | 98.69 228 |
|
| testing3 | | | 89.72 340 | 88.26 348 | 94.10 314 | 97.66 273 | 84.30 354 | 94.80 260 | 88.25 385 | 94.66 194 | 95.07 292 | 92.51 367 | 41.15 402 | 99.43 207 | 91.81 265 | 98.44 284 | 98.55 242 |
|
| EPNet_dtu | | | 91.39 323 | 90.75 326 | 93.31 327 | 90.48 396 | 82.61 363 | 94.80 260 | 92.88 352 | 93.39 234 | 81.74 394 | 94.90 336 | 81.36 331 | 99.11 284 | 88.28 331 | 98.87 246 | 98.21 278 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MDTV_nov1_ep13 | | | | 91.28 315 | | 94.31 373 | 73.51 396 | 94.80 260 | 93.16 349 | 86.75 338 | 93.45 337 | 97.40 222 | 76.37 356 | 98.55 340 | 88.85 322 | 96.43 350 | |
|
| pmmvs-eth3d | | | 96.49 166 | 96.18 179 | 97.42 143 | 98.25 195 | 94.29 150 | 94.77 263 | 98.07 242 | 89.81 303 | 97.97 149 | 98.33 121 | 93.11 197 | 99.08 288 | 95.46 146 | 99.84 40 | 98.89 201 |
|
| test_yl | | | 94.40 258 | 94.00 266 | 95.59 245 | 96.95 316 | 89.52 263 | 94.75 264 | 95.55 323 | 96.18 125 | 96.79 221 | 96.14 302 | 81.09 333 | 99.18 271 | 90.75 288 | 97.77 308 | 98.07 286 |
|
| DCV-MVSNet | | | 94.40 258 | 94.00 266 | 95.59 245 | 96.95 316 | 89.52 263 | 94.75 264 | 95.55 323 | 96.18 125 | 96.79 221 | 96.14 302 | 81.09 333 | 99.18 271 | 90.75 288 | 97.77 308 | 98.07 286 |
|
| dmvs_testset | | | 87.30 355 | 86.99 355 | 88.24 372 | 96.71 322 | 77.48 385 | 94.68 266 | 86.81 390 | 92.64 261 | 89.61 379 | 87.01 391 | 85.91 303 | 93.12 392 | 61.04 396 | 88.49 388 | 94.13 379 |
|
| MCST-MVS | | | 96.24 176 | 95.80 197 | 97.56 123 | 98.75 135 | 94.13 158 | 94.66 267 | 98.17 225 | 90.17 299 | 96.21 256 | 96.10 305 | 95.14 147 | 99.43 207 | 94.13 214 | 98.85 249 | 99.13 156 |
|
| XVG-OURS-SEG-HR | | | 97.38 115 | 97.07 129 | 98.30 68 | 99.01 110 | 97.41 34 | 94.66 267 | 99.02 72 | 95.20 174 | 98.15 128 | 97.52 214 | 98.83 5 | 98.43 349 | 94.87 182 | 96.41 351 | 99.07 171 |
|
| mvs_anonymous | | | 95.36 213 | 96.07 184 | 93.21 331 | 96.29 331 | 81.56 370 | 94.60 269 | 97.66 264 | 93.30 237 | 96.95 214 | 98.91 69 | 93.03 201 | 99.38 227 | 96.60 86 | 97.30 334 | 98.69 228 |
|
| DP-MVS Recon | | | 95.55 204 | 95.13 214 | 96.80 185 | 98.51 169 | 93.99 163 | 94.60 269 | 98.69 156 | 90.20 298 | 95.78 275 | 96.21 298 | 92.73 208 | 98.98 300 | 90.58 296 | 98.86 248 | 97.42 327 |
|
| save fliter | | | | | | 98.48 175 | 94.71 131 | 94.53 271 | 98.41 193 | 95.02 184 | | | | | | | |
|
| patch_mono-2 | | | 96.59 161 | 96.93 138 | 95.55 250 | 98.88 121 | 87.12 315 | 94.47 272 | 99.30 24 | 94.12 213 | 96.65 233 | 98.41 113 | 94.98 153 | 99.87 22 | 95.81 125 | 99.78 56 | 99.66 30 |
|
| tpm cat1 | | | 88.01 352 | 87.33 353 | 90.05 366 | 94.48 372 | 76.28 391 | 94.47 272 | 94.35 338 | 73.84 392 | 89.26 381 | 95.61 321 | 73.64 368 | 98.30 359 | 84.13 366 | 86.20 391 | 95.57 370 |
|
| CANet | | | 95.86 192 | 95.65 203 | 96.49 204 | 96.41 329 | 90.82 244 | 94.36 274 | 98.41 193 | 94.94 186 | 92.62 357 | 96.73 272 | 92.68 209 | 99.71 104 | 95.12 171 | 99.60 100 | 98.94 189 |
|
| WR-MVS | | | 96.90 140 | 96.81 145 | 97.16 158 | 98.56 162 | 92.20 215 | 94.33 275 | 98.12 234 | 97.34 81 | 98.20 120 | 97.33 233 | 92.81 204 | 99.75 68 | 94.79 186 | 99.81 48 | 99.54 54 |
|
| HQP-NCC | | | | | | 97.85 237 | | 94.26 276 | | 93.18 242 | 92.86 348 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 237 | | 94.26 276 | | 93.18 242 | 92.86 348 | | | | | | |
|
| HQP-MVS | | | 95.17 224 | 94.58 246 | 96.92 176 | 97.85 237 | 92.47 206 | 94.26 276 | 98.43 189 | 93.18 242 | 92.86 348 | 95.08 329 | 90.33 255 | 99.23 267 | 90.51 298 | 98.74 260 | 99.05 175 |
|
| PLC |  | 91.02 16 | 94.05 272 | 92.90 287 | 97.51 128 | 98.00 227 | 95.12 123 | 94.25 279 | 98.25 211 | 86.17 341 | 91.48 367 | 95.25 327 | 91.01 244 | 99.19 270 | 85.02 362 | 96.69 346 | 98.22 277 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| 1112_ss | | | 94.12 268 | 93.42 277 | 96.23 217 | 98.59 158 | 90.85 243 | 94.24 280 | 98.85 115 | 85.49 348 | 92.97 346 | 94.94 333 | 86.01 302 | 99.64 141 | 91.78 266 | 97.92 303 | 98.20 279 |
|
| MS-PatchMatch | | | 94.83 236 | 94.91 225 | 94.57 297 | 96.81 321 | 87.10 316 | 94.23 281 | 97.34 277 | 88.74 316 | 97.14 194 | 97.11 245 | 91.94 232 | 98.23 361 | 92.99 247 | 97.92 303 | 98.37 258 |
|
| Fast-Effi-MVS+ | | | 95.49 206 | 95.07 217 | 96.75 189 | 97.67 272 | 92.82 196 | 94.22 282 | 98.60 171 | 91.61 277 | 93.42 339 | 92.90 360 | 96.73 84 | 99.70 112 | 92.60 251 | 97.89 306 | 97.74 312 |
|
| CMPMVS |  | 73.10 23 | 92.74 301 | 91.39 313 | 96.77 188 | 93.57 385 | 94.67 134 | 94.21 283 | 97.67 262 | 80.36 378 | 93.61 331 | 96.60 278 | 82.85 325 | 97.35 374 | 84.86 363 | 98.78 256 | 98.29 272 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| dp | | | 88.08 351 | 88.05 349 | 88.16 374 | 92.85 389 | 68.81 400 | 94.17 284 | 92.88 352 | 85.47 349 | 91.38 368 | 96.14 302 | 68.87 384 | 98.81 314 | 86.88 346 | 83.80 393 | 96.87 341 |
|
| JIA-IIPM | | | 91.79 318 | 90.69 327 | 95.11 267 | 93.80 382 | 90.98 241 | 94.16 285 | 91.78 364 | 96.38 113 | 90.30 375 | 99.30 28 | 72.02 375 | 98.90 306 | 88.28 331 | 90.17 385 | 95.45 371 |
|
| D2MVS | | | 95.18 222 | 95.17 213 | 95.21 263 | 97.76 260 | 87.76 303 | 94.15 286 | 97.94 246 | 89.77 304 | 96.99 210 | 97.68 204 | 87.45 292 | 99.14 278 | 95.03 176 | 99.81 48 | 98.74 221 |
|
| TSAR-MVS + GP. | | | 96.47 168 | 96.12 180 | 97.49 135 | 97.74 265 | 95.23 115 | 94.15 286 | 96.90 293 | 93.26 238 | 98.04 142 | 96.70 273 | 94.41 169 | 98.89 307 | 94.77 189 | 99.14 214 | 98.37 258 |
|
| PVSNet_BlendedMVS | | | 95.02 231 | 94.93 223 | 95.27 261 | 97.79 255 | 87.40 310 | 94.14 288 | 98.68 158 | 88.94 313 | 94.51 306 | 98.01 171 | 93.04 199 | 99.30 250 | 89.77 310 | 99.49 140 | 99.11 164 |
|
| TinyColmap | | | 96.00 187 | 96.34 173 | 94.96 277 | 97.90 235 | 87.91 297 | 94.13 289 | 98.49 183 | 94.41 203 | 98.16 126 | 97.76 194 | 96.29 108 | 98.68 329 | 90.52 297 | 99.42 164 | 98.30 269 |
|
| CNLPA | | | 95.04 228 | 94.47 251 | 96.75 189 | 97.81 246 | 95.25 114 | 94.12 290 | 97.89 249 | 94.41 203 | 94.57 304 | 95.69 316 | 90.30 258 | 98.35 356 | 86.72 348 | 98.76 258 | 96.64 351 |
|
| BH-untuned | | | 94.69 244 | 94.75 235 | 94.52 299 | 97.95 232 | 87.53 306 | 94.07 291 | 97.01 289 | 93.99 218 | 97.10 198 | 95.65 318 | 92.65 211 | 98.95 305 | 87.60 339 | 96.74 345 | 97.09 333 |
|
| pmmvs5 | | | 94.63 249 | 94.34 256 | 95.50 252 | 97.63 276 | 88.34 285 | 94.02 292 | 97.13 284 | 87.15 331 | 95.22 290 | 97.15 242 | 87.50 291 | 99.27 259 | 93.99 220 | 99.26 200 | 98.88 205 |
|
| thres200 | | | 91.00 327 | 90.42 331 | 92.77 342 | 97.47 290 | 83.98 357 | 94.01 293 | 91.18 370 | 95.12 179 | 95.44 284 | 91.21 380 | 73.93 365 | 99.31 247 | 77.76 386 | 97.63 321 | 95.01 374 |
|
| xiu_mvs_v1_base_debu | | | 95.62 201 | 95.96 189 | 94.60 294 | 98.01 223 | 88.42 282 | 93.99 294 | 98.21 216 | 92.98 251 | 95.91 268 | 94.53 341 | 96.39 102 | 99.72 88 | 95.43 150 | 98.19 293 | 95.64 367 |
|
| xiu_mvs_v1_base | | | 95.62 201 | 95.96 189 | 94.60 294 | 98.01 223 | 88.42 282 | 93.99 294 | 98.21 216 | 92.98 251 | 95.91 268 | 94.53 341 | 96.39 102 | 99.72 88 | 95.43 150 | 98.19 293 | 95.64 367 |
|
| xiu_mvs_v1_base_debi | | | 95.62 201 | 95.96 189 | 94.60 294 | 98.01 223 | 88.42 282 | 93.99 294 | 98.21 216 | 92.98 251 | 95.91 268 | 94.53 341 | 96.39 102 | 99.72 88 | 95.43 150 | 98.19 293 | 95.64 367 |
|
| test_vis1_rt | | | 94.03 273 | 93.65 273 | 95.17 266 | 95.76 352 | 93.42 183 | 93.97 297 | 98.33 204 | 84.68 359 | 93.17 343 | 95.89 313 | 92.53 218 | 94.79 388 | 93.50 235 | 94.97 368 | 97.31 331 |
|
| CDS-MVSNet | | | 94.88 235 | 94.12 263 | 97.14 160 | 97.64 275 | 93.57 178 | 93.96 298 | 97.06 288 | 90.05 300 | 96.30 251 | 96.55 280 | 86.10 301 | 99.47 195 | 90.10 305 | 99.31 193 | 98.40 254 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 94.65 248 | 94.21 260 | 95.96 229 | 95.90 346 | 89.68 260 | 93.92 299 | 97.83 255 | 93.19 241 | 90.12 376 | 95.64 319 | 88.52 279 | 99.57 167 | 93.27 242 | 99.47 146 | 98.62 235 |
|
| WTY-MVS | | | 93.55 286 | 93.00 286 | 95.19 264 | 97.81 246 | 87.86 298 | 93.89 300 | 96.00 310 | 89.02 311 | 94.07 317 | 95.44 326 | 86.27 300 | 99.33 243 | 87.69 337 | 96.82 342 | 98.39 256 |
|
| sss | | | 94.22 263 | 93.72 272 | 95.74 240 | 97.71 267 | 89.95 257 | 93.84 301 | 96.98 290 | 88.38 320 | 93.75 326 | 95.74 315 | 87.94 285 | 98.89 307 | 91.02 279 | 98.10 297 | 98.37 258 |
|
| baseline2 | | | 89.65 341 | 88.44 347 | 93.25 329 | 95.62 355 | 82.71 361 | 93.82 302 | 85.94 391 | 88.89 314 | 87.35 388 | 92.54 366 | 71.23 377 | 99.33 243 | 86.01 349 | 94.60 373 | 97.72 313 |
|
| XVG-OURS | | | 97.12 126 | 96.74 149 | 98.26 70 | 98.99 111 | 97.45 32 | 93.82 302 | 99.05 63 | 95.19 175 | 98.32 109 | 97.70 202 | 95.22 145 | 98.41 350 | 94.27 208 | 98.13 296 | 98.93 193 |
|
| MVS_111021_LR | | | 96.82 146 | 96.55 160 | 97.62 120 | 98.27 193 | 95.34 110 | 93.81 304 | 98.33 204 | 94.59 199 | 96.56 237 | 96.63 277 | 96.61 89 | 98.73 321 | 94.80 185 | 99.34 183 | 98.78 215 |
|
| BH-RMVSNet | | | 94.56 252 | 94.44 254 | 94.91 278 | 97.57 279 | 87.44 309 | 93.78 305 | 96.26 306 | 93.69 226 | 96.41 244 | 96.50 285 | 92.10 227 | 99.00 296 | 85.96 350 | 97.71 314 | 98.31 267 |
|
| CDPH-MVS | | | 95.45 211 | 94.65 238 | 97.84 106 | 98.28 191 | 94.96 126 | 93.73 306 | 98.33 204 | 85.03 355 | 95.44 284 | 96.60 278 | 95.31 142 | 99.44 205 | 90.01 306 | 99.13 216 | 99.11 164 |
|
| PatchMatch-RL | | | 94.61 250 | 93.81 271 | 97.02 171 | 98.19 202 | 95.72 86 | 93.66 307 | 97.23 279 | 88.17 323 | 94.94 298 | 95.62 320 | 91.43 237 | 98.57 337 | 87.36 344 | 97.68 317 | 96.76 349 |
|
| TEST9 | | | | | | 97.84 242 | 95.23 115 | 93.62 308 | 98.39 196 | 86.81 336 | 93.78 323 | 95.99 307 | 94.68 160 | 99.52 180 | | | |
|
| train_agg | | | 95.46 210 | 94.66 237 | 97.88 103 | 97.84 242 | 95.23 115 | 93.62 308 | 98.39 196 | 87.04 332 | 93.78 323 | 95.99 307 | 94.58 164 | 99.52 180 | 91.76 267 | 98.90 242 | 98.89 201 |
|
| test_prior4 | | | | | | | 95.38 105 | 93.61 310 | | | | | | | | | |
|
| test_8 | | | | | | 97.81 246 | 95.07 124 | 93.54 311 | 98.38 198 | 87.04 332 | 93.71 327 | 95.96 310 | 94.58 164 | 99.52 180 | | | |
|
| TR-MVS | | | 92.54 304 | 92.20 303 | 93.57 323 | 96.49 327 | 86.66 322 | 93.51 312 | 94.73 333 | 89.96 301 | 94.95 297 | 93.87 349 | 90.24 260 | 98.61 334 | 81.18 377 | 94.88 369 | 95.45 371 |
|
| 新几何2 | | | | | | | | 93.43 313 | | | | | | | | | |
|
| diffmvs |  | | 96.04 184 | 96.23 176 | 95.46 255 | 97.35 297 | 88.03 295 | 93.42 314 | 99.08 55 | 94.09 216 | 96.66 231 | 96.93 257 | 93.85 183 | 99.29 254 | 96.01 112 | 98.67 267 | 99.06 173 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_HR | | | 96.73 152 | 96.54 162 | 97.27 152 | 98.35 186 | 93.66 176 | 93.42 314 | 98.36 200 | 94.74 191 | 96.58 235 | 96.76 271 | 96.54 92 | 98.99 298 | 94.87 182 | 99.27 199 | 99.15 151 |
|
| UnsupCasMVSNet_bld | | | 94.72 243 | 94.26 257 | 96.08 225 | 98.62 154 | 90.54 252 | 93.38 316 | 98.05 244 | 90.30 296 | 97.02 208 | 96.80 268 | 89.54 268 | 99.16 276 | 88.44 328 | 96.18 354 | 98.56 240 |
|
| 旧先验2 | | | | | | | | 93.35 317 | | 77.95 386 | 95.77 277 | | | 98.67 330 | 90.74 291 | | |
|
| test_prior2 | | | | | | | | 93.33 318 | | 94.21 208 | 94.02 319 | 96.25 296 | 93.64 188 | | 91.90 261 | 98.96 235 | |
|
| SCA | | | 93.38 291 | 93.52 276 | 92.96 338 | 96.24 332 | 81.40 371 | 93.24 319 | 94.00 340 | 91.58 279 | 94.57 304 | 96.97 254 | 87.94 285 | 99.42 209 | 89.47 314 | 97.66 319 | 98.06 290 |
|
| 无先验 | | | | | | | | 93.20 320 | 97.91 247 | 80.78 375 | | | | 99.40 220 | 87.71 336 | | 97.94 301 |
|
| MG-MVS | | | 94.08 271 | 94.00 266 | 94.32 307 | 97.09 312 | 85.89 331 | 93.19 321 | 95.96 312 | 92.52 262 | 94.93 299 | 97.51 215 | 89.54 268 | 98.77 317 | 87.52 342 | 97.71 314 | 98.31 267 |
|
| MVS-HIRNet | | | 88.40 349 | 90.20 333 | 82.99 376 | 97.01 314 | 60.04 401 | 93.11 322 | 85.61 392 | 84.45 363 | 88.72 383 | 99.09 50 | 84.72 313 | 98.23 361 | 82.52 374 | 96.59 349 | 90.69 391 |
|
| new-patchmatchnet | | | 95.67 199 | 96.58 157 | 92.94 339 | 97.48 286 | 80.21 375 | 92.96 323 | 98.19 224 | 94.83 189 | 98.82 59 | 98.79 76 | 93.31 194 | 99.51 184 | 95.83 123 | 99.04 230 | 99.12 161 |
|
| MDA-MVSNet-bldmvs | | | 95.69 197 | 95.67 201 | 95.74 240 | 98.48 175 | 88.76 280 | 92.84 324 | 97.25 278 | 96.00 135 | 97.59 169 | 97.95 177 | 91.38 238 | 99.46 198 | 93.16 245 | 96.35 352 | 98.99 183 |
|
| 原ACMM2 | | | | | | | | 92.82 325 | | | | | | | | | |
|
| testdata1 | | | | | | | | 92.77 326 | | 93.78 223 | | | | | | | |
|
| Test_1112_low_res | | | 93.53 287 | 92.86 288 | 95.54 251 | 98.60 156 | 88.86 276 | 92.75 327 | 98.69 156 | 82.66 368 | 92.65 354 | 96.92 259 | 84.75 312 | 99.56 168 | 90.94 281 | 97.76 310 | 98.19 280 |
|
| USDC | | | 94.56 252 | 94.57 248 | 94.55 298 | 97.78 258 | 86.43 326 | 92.75 327 | 98.65 168 | 85.96 343 | 96.91 217 | 97.93 180 | 90.82 247 | 98.74 320 | 90.71 292 | 99.59 102 | 98.47 250 |
|
| test222 | | | | | | 98.17 208 | 93.24 190 | 92.74 329 | 97.61 271 | 75.17 389 | 94.65 303 | 96.69 274 | 90.96 246 | | | 98.66 269 | 97.66 315 |
|
| jason | | | 94.39 260 | 94.04 265 | 95.41 259 | 98.29 189 | 87.85 300 | 92.74 329 | 96.75 299 | 85.38 352 | 95.29 288 | 96.15 300 | 88.21 284 | 99.65 138 | 94.24 209 | 99.34 183 | 98.74 221 |
| jason: jason. |
| Patchmatch-RL test | | | 94.66 247 | 94.49 249 | 95.19 264 | 98.54 165 | 88.91 274 | 92.57 331 | 98.74 145 | 91.46 280 | 98.32 109 | 97.75 197 | 77.31 352 | 98.81 314 | 96.06 105 | 99.61 97 | 97.85 307 |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 140 | 96.43 168 | 98.31 67 | 97.48 286 | 97.23 40 | 92.56 332 | 98.60 171 | 92.84 257 | 98.54 81 | 97.40 222 | 96.64 88 | 98.78 316 | 94.40 203 | 99.41 168 | 98.93 193 |
|
| N_pmnet | | | 95.18 222 | 94.23 258 | 98.06 88 | 97.85 237 | 96.55 58 | 92.49 333 | 91.63 365 | 89.34 306 | 98.09 134 | 97.41 221 | 90.33 255 | 99.06 290 | 91.58 269 | 99.31 193 | 98.56 240 |
|
| Syy-MVS | | | 92.09 313 | 91.80 309 | 92.93 340 | 95.19 363 | 82.65 362 | 92.46 334 | 91.35 366 | 90.67 291 | 91.76 365 | 87.61 389 | 85.64 306 | 98.50 344 | 94.73 191 | 96.84 340 | 97.65 316 |
|
| myMVS_eth3d | | | 87.16 357 | 85.61 361 | 91.82 355 | 95.19 363 | 79.32 377 | 92.46 334 | 91.35 366 | 90.67 291 | 91.76 365 | 87.61 389 | 41.96 401 | 98.50 344 | 82.66 373 | 96.84 340 | 97.65 316 |
|
| BH-w/o | | | 92.14 311 | 91.94 305 | 92.73 343 | 97.13 311 | 85.30 337 | 92.46 334 | 95.64 318 | 89.33 307 | 94.21 312 | 92.74 363 | 89.60 266 | 98.24 360 | 81.68 375 | 94.66 371 | 94.66 376 |
|
| IterMVS-SCA-FT | | | 95.86 192 | 96.19 178 | 94.85 283 | 97.68 269 | 85.53 334 | 92.42 337 | 97.63 270 | 96.99 89 | 98.36 102 | 98.54 102 | 87.94 285 | 99.75 68 | 97.07 75 | 99.08 224 | 99.27 130 |
|
| IterMVS | | | 95.42 212 | 95.83 196 | 94.20 311 | 97.52 283 | 83.78 358 | 92.41 338 | 97.47 275 | 95.49 163 | 98.06 139 | 98.49 106 | 87.94 285 | 99.58 161 | 96.02 110 | 99.02 231 | 99.23 137 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DELS-MVS | | | 96.17 179 | 96.23 176 | 95.99 227 | 97.55 282 | 90.04 255 | 92.38 339 | 98.52 180 | 94.13 212 | 96.55 239 | 97.06 248 | 94.99 152 | 99.58 161 | 95.62 134 | 99.28 197 | 98.37 258 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| new_pmnet | | | 92.34 307 | 91.69 311 | 94.32 307 | 96.23 334 | 89.16 270 | 92.27 340 | 92.88 352 | 84.39 364 | 95.29 288 | 96.35 293 | 85.66 305 | 96.74 384 | 84.53 365 | 97.56 322 | 97.05 334 |
|
| CHOSEN 1792x2688 | | | 94.10 269 | 93.41 278 | 96.18 221 | 99.16 83 | 90.04 255 | 92.15 341 | 98.68 158 | 79.90 379 | 96.22 255 | 97.83 188 | 87.92 289 | 99.42 209 | 89.18 318 | 99.65 86 | 99.08 169 |
|
| xiu_mvs_v2_base | | | 94.22 263 | 94.63 241 | 92.99 337 | 97.32 302 | 84.84 347 | 92.12 342 | 97.84 253 | 91.96 272 | 94.17 313 | 93.43 351 | 96.07 114 | 99.71 104 | 91.27 273 | 97.48 326 | 94.42 377 |
|
| lupinMVS | | | 93.77 277 | 93.28 279 | 95.24 262 | 97.68 269 | 87.81 301 | 92.12 342 | 96.05 308 | 84.52 361 | 94.48 308 | 95.06 331 | 86.90 296 | 99.63 144 | 93.62 233 | 99.13 216 | 98.27 273 |
|
| pmmvs4 | | | 94.82 237 | 94.19 261 | 96.70 192 | 97.42 293 | 92.75 201 | 92.09 344 | 96.76 298 | 86.80 337 | 95.73 278 | 97.22 239 | 89.28 274 | 98.89 307 | 93.28 241 | 99.14 214 | 98.46 252 |
|
| PAPR | | | 92.22 309 | 91.27 316 | 95.07 270 | 95.73 354 | 88.81 277 | 91.97 345 | 97.87 250 | 85.80 346 | 90.91 369 | 92.73 364 | 91.16 241 | 98.33 357 | 79.48 380 | 95.76 361 | 98.08 284 |
|
| PS-MVSNAJ | | | 94.10 269 | 94.47 251 | 93.00 336 | 97.35 297 | 84.88 345 | 91.86 346 | 97.84 253 | 91.96 272 | 94.17 313 | 92.50 368 | 95.82 122 | 99.71 104 | 91.27 273 | 97.48 326 | 94.40 378 |
|
| c3_l | | | 95.20 221 | 95.32 208 | 94.83 285 | 96.19 336 | 86.43 326 | 91.83 347 | 98.35 203 | 93.47 232 | 97.36 183 | 97.26 237 | 88.69 277 | 99.28 256 | 95.41 153 | 99.36 175 | 98.78 215 |
|
| test0.0.03 1 | | | 90.11 332 | 89.21 339 | 92.83 341 | 93.89 381 | 86.87 320 | 91.74 348 | 88.74 384 | 92.02 270 | 94.71 302 | 91.14 381 | 73.92 366 | 94.48 390 | 83.75 371 | 92.94 378 | 97.16 332 |
|
| FPMVS | | | 89.92 337 | 88.63 345 | 93.82 317 | 98.37 184 | 96.94 45 | 91.58 349 | 93.34 348 | 88.00 325 | 90.32 374 | 97.10 246 | 70.87 379 | 91.13 394 | 71.91 392 | 96.16 356 | 93.39 384 |
|
| ET-MVSNet_ETH3D | | | 91.12 324 | 89.67 336 | 95.47 254 | 96.41 329 | 89.15 271 | 91.54 350 | 90.23 378 | 89.07 310 | 86.78 390 | 92.84 361 | 69.39 383 | 99.44 205 | 94.16 212 | 96.61 348 | 97.82 309 |
|
| PVSNet_Blended | | | 93.96 274 | 93.65 273 | 94.91 278 | 97.79 255 | 87.40 310 | 91.43 351 | 98.68 158 | 84.50 362 | 94.51 306 | 94.48 344 | 93.04 199 | 99.30 250 | 89.77 310 | 98.61 274 | 98.02 296 |
|
| CLD-MVS | | | 95.47 209 | 95.07 217 | 96.69 193 | 98.27 193 | 92.53 203 | 91.36 352 | 98.67 161 | 91.22 284 | 95.78 275 | 94.12 348 | 95.65 132 | 98.98 300 | 90.81 285 | 99.72 70 | 98.57 239 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| eth_miper_zixun_eth | | | 94.89 234 | 94.93 223 | 94.75 289 | 95.99 344 | 86.12 329 | 91.35 353 | 98.49 183 | 93.40 233 | 97.12 196 | 97.25 238 | 86.87 298 | 99.35 239 | 95.08 173 | 98.82 253 | 98.78 215 |
|
| cl____ | | | 94.73 239 | 94.64 239 | 95.01 273 | 95.85 348 | 87.00 317 | 91.33 354 | 98.08 238 | 93.34 235 | 97.10 198 | 97.33 233 | 84.01 319 | 99.30 250 | 95.14 168 | 99.56 110 | 98.71 227 |
|
| DIV-MVS_self_test | | | 94.73 239 | 94.64 239 | 95.01 273 | 95.86 347 | 87.00 317 | 91.33 354 | 98.08 238 | 93.34 235 | 97.10 198 | 97.34 232 | 84.02 318 | 99.31 247 | 95.15 167 | 99.55 116 | 98.72 224 |
|
| miper_ehance_all_eth | | | 94.69 244 | 94.70 236 | 94.64 291 | 95.77 351 | 86.22 328 | 91.32 356 | 98.24 213 | 91.67 276 | 97.05 205 | 96.65 276 | 88.39 282 | 99.22 269 | 94.88 181 | 98.34 287 | 98.49 249 |
|
| pmmvs3 | | | 90.00 334 | 88.90 344 | 93.32 326 | 94.20 378 | 85.34 336 | 91.25 357 | 92.56 359 | 78.59 383 | 93.82 322 | 95.17 328 | 67.36 387 | 98.69 326 | 89.08 320 | 98.03 300 | 95.92 362 |
|
| HyFIR lowres test | | | 93.72 279 | 92.65 296 | 96.91 178 | 98.93 117 | 91.81 228 | 91.23 358 | 98.52 180 | 82.69 367 | 96.46 242 | 96.52 284 | 80.38 337 | 99.90 14 | 90.36 302 | 98.79 255 | 99.03 176 |
|
| DPM-MVS | | | 93.68 281 | 92.77 294 | 96.42 209 | 97.91 233 | 92.54 202 | 91.17 359 | 97.47 275 | 84.99 357 | 93.08 345 | 94.74 337 | 89.90 262 | 99.00 296 | 87.54 341 | 98.09 298 | 97.72 313 |
|
| CL-MVSNet_self_test | | | 95.04 228 | 94.79 234 | 95.82 237 | 97.51 284 | 89.79 259 | 91.14 360 | 96.82 296 | 93.05 248 | 96.72 227 | 96.40 290 | 90.82 247 | 99.16 276 | 91.95 260 | 98.66 269 | 98.50 248 |
|
| miper_lstm_enhance | | | 94.81 238 | 94.80 233 | 94.85 283 | 96.16 338 | 86.45 325 | 91.14 360 | 98.20 219 | 93.49 231 | 97.03 207 | 97.37 230 | 84.97 311 | 99.26 260 | 95.28 156 | 99.56 110 | 98.83 210 |
|
| cl22 | | | 93.25 294 | 92.84 290 | 94.46 302 | 94.30 374 | 86.00 330 | 91.09 362 | 96.64 304 | 90.74 288 | 95.79 273 | 96.31 294 | 78.24 344 | 98.77 317 | 94.15 213 | 98.34 287 | 98.62 235 |
|
| MSDG | | | 95.33 215 | 95.13 214 | 95.94 233 | 97.40 294 | 91.85 226 | 91.02 363 | 98.37 199 | 95.30 171 | 96.31 250 | 95.99 307 | 94.51 167 | 98.38 353 | 89.59 312 | 97.65 320 | 97.60 320 |
|
| IB-MVS | | 85.98 20 | 88.63 347 | 86.95 357 | 93.68 321 | 95.12 365 | 84.82 348 | 90.85 364 | 90.17 379 | 87.55 328 | 88.48 384 | 91.34 379 | 58.01 393 | 99.59 159 | 87.24 345 | 93.80 377 | 96.63 353 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| mvsany_test1 | | | 93.47 288 | 93.03 284 | 94.79 287 | 94.05 380 | 92.12 217 | 90.82 365 | 90.01 380 | 85.02 356 | 97.26 186 | 98.28 132 | 93.57 189 | 97.03 377 | 92.51 254 | 95.75 362 | 95.23 373 |
|
| test123 | | | 12.59 364 | 15.49 367 | 3.87 380 | 6.07 402 | 2.55 405 | 90.75 366 | 2.59 405 | 2.52 398 | 5.20 400 | 13.02 397 | 4.96 403 | 1.85 400 | 5.20 398 | 9.09 397 | 7.23 395 |
|
| ppachtmachnet_test | | | 94.49 257 | 94.84 229 | 93.46 325 | 96.16 338 | 82.10 366 | 90.59 367 | 97.48 274 | 90.53 293 | 97.01 209 | 97.59 209 | 91.01 244 | 99.36 235 | 93.97 222 | 99.18 210 | 98.94 189 |
|
| PMMVS | | | 92.39 305 | 91.08 319 | 96.30 216 | 93.12 387 | 92.81 197 | 90.58 368 | 95.96 312 | 79.17 382 | 91.85 364 | 92.27 369 | 90.29 259 | 98.66 331 | 89.85 309 | 96.68 347 | 97.43 326 |
|
| our_test_3 | | | 94.20 267 | 94.58 246 | 93.07 333 | 96.16 338 | 81.20 372 | 90.42 369 | 96.84 294 | 90.72 289 | 97.14 194 | 97.13 243 | 90.47 251 | 99.11 284 | 94.04 219 | 98.25 291 | 98.91 197 |
|
| YYNet1 | | | 94.73 239 | 94.84 229 | 94.41 304 | 97.47 290 | 85.09 343 | 90.29 370 | 95.85 315 | 92.52 262 | 97.53 171 | 97.76 194 | 91.97 230 | 99.18 271 | 93.31 240 | 96.86 339 | 98.95 187 |
|
| MDA-MVSNet_test_wron | | | 94.73 239 | 94.83 231 | 94.42 303 | 97.48 286 | 85.15 341 | 90.28 371 | 95.87 314 | 92.52 262 | 97.48 177 | 97.76 194 | 91.92 233 | 99.17 275 | 93.32 239 | 96.80 344 | 98.94 189 |
|
| GA-MVS | | | 92.83 300 | 92.15 304 | 94.87 282 | 96.97 315 | 87.27 313 | 90.03 372 | 96.12 307 | 91.83 275 | 94.05 318 | 94.57 339 | 76.01 359 | 98.97 304 | 92.46 255 | 97.34 332 | 98.36 263 |
|
| miper_enhance_ethall | | | 93.14 296 | 92.78 293 | 94.20 311 | 93.65 383 | 85.29 338 | 89.97 373 | 97.85 251 | 85.05 354 | 96.15 261 | 94.56 340 | 85.74 304 | 99.14 278 | 93.74 228 | 98.34 287 | 98.17 282 |
|
| test-LLR | | | 89.97 336 | 89.90 334 | 90.16 364 | 94.24 376 | 74.98 393 | 89.89 374 | 89.06 382 | 92.02 270 | 89.97 377 | 90.77 384 | 73.92 366 | 98.57 337 | 91.88 262 | 97.36 330 | 96.92 338 |
|
| TESTMET0.1,1 | | | 87.20 356 | 86.57 358 | 89.07 368 | 93.62 384 | 72.84 397 | 89.89 374 | 87.01 389 | 85.46 350 | 89.12 382 | 90.20 386 | 56.00 398 | 97.72 371 | 90.91 282 | 96.92 336 | 96.64 351 |
|
| test-mter | | | 87.92 353 | 87.17 354 | 90.16 364 | 94.24 376 | 74.98 393 | 89.89 374 | 89.06 382 | 86.44 340 | 89.97 377 | 90.77 384 | 54.96 400 | 98.57 337 | 91.88 262 | 97.36 330 | 96.92 338 |
|
| PCF-MVS | | 89.43 18 | 92.12 312 | 90.64 328 | 96.57 200 | 97.80 250 | 93.48 181 | 89.88 377 | 98.45 186 | 74.46 390 | 96.04 264 | 95.68 317 | 90.71 249 | 99.31 247 | 73.73 389 | 99.01 233 | 96.91 340 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| thisisatest0515 | | | 90.43 330 | 89.18 342 | 94.17 313 | 97.07 313 | 85.44 335 | 89.75 378 | 87.58 386 | 88.28 321 | 93.69 329 | 91.72 375 | 65.27 388 | 99.58 161 | 90.59 295 | 98.67 267 | 97.50 325 |
|
| KD-MVS_2432*1600 | | | 88.93 345 | 87.74 350 | 92.49 346 | 88.04 397 | 81.99 367 | 89.63 379 | 95.62 319 | 91.35 281 | 95.06 293 | 93.11 353 | 56.58 395 | 98.63 332 | 85.19 359 | 95.07 366 | 96.85 343 |
|
| miper_refine_blended | | | 88.93 345 | 87.74 350 | 92.49 346 | 88.04 397 | 81.99 367 | 89.63 379 | 95.62 319 | 91.35 281 | 95.06 293 | 93.11 353 | 56.58 395 | 98.63 332 | 85.19 359 | 95.07 366 | 96.85 343 |
|
| testmvs | | | 12.33 365 | 15.23 368 | 3.64 381 | 5.77 403 | 2.23 406 | 88.99 381 | 3.62 404 | 2.30 399 | 5.29 399 | 13.09 396 | 4.52 404 | 1.95 399 | 5.16 399 | 8.32 398 | 6.75 396 |
|
| cascas | | | 91.89 317 | 91.35 314 | 93.51 324 | 94.27 375 | 85.60 333 | 88.86 382 | 98.61 170 | 79.32 381 | 92.16 361 | 91.44 378 | 89.22 275 | 98.12 364 | 90.80 286 | 97.47 328 | 96.82 346 |
|
| PAPM | | | 87.64 354 | 85.84 360 | 93.04 334 | 96.54 325 | 84.99 344 | 88.42 383 | 95.57 322 | 79.52 380 | 83.82 391 | 93.05 359 | 80.57 336 | 98.41 350 | 62.29 395 | 92.79 379 | 95.71 366 |
|
| PVSNet | | 86.72 19 | 91.10 325 | 90.97 322 | 91.49 357 | 97.56 281 | 78.04 382 | 87.17 384 | 94.60 335 | 84.65 360 | 92.34 359 | 92.20 370 | 87.37 294 | 98.47 347 | 85.17 361 | 97.69 316 | 97.96 299 |
|
| PMMVS2 | | | 93.66 282 | 94.07 264 | 92.45 349 | 97.57 279 | 80.67 374 | 86.46 385 | 96.00 310 | 93.99 218 | 97.10 198 | 97.38 228 | 89.90 262 | 97.82 369 | 88.76 323 | 99.47 146 | 98.86 208 |
|
| CHOSEN 280x420 | | | 89.98 335 | 89.19 341 | 92.37 350 | 95.60 356 | 81.13 373 | 86.22 386 | 97.09 286 | 81.44 373 | 87.44 387 | 93.15 352 | 73.99 364 | 99.47 195 | 88.69 325 | 99.07 226 | 96.52 355 |
|
| tmp_tt | | | 57.23 362 | 62.50 365 | 41.44 379 | 34.77 401 | 49.21 403 | 83.93 387 | 60.22 403 | 15.31 395 | 71.11 396 | 79.37 394 | 70.09 382 | 44.86 398 | 64.76 394 | 82.93 394 | 30.25 394 |
|
| PVSNet_0 | | 81.89 21 | 84.49 359 | 83.21 362 | 88.34 371 | 95.76 352 | 74.97 395 | 83.49 388 | 92.70 356 | 78.47 384 | 87.94 385 | 86.90 392 | 83.38 323 | 96.63 385 | 73.44 390 | 66.86 396 | 93.40 383 |
|
| E-PMN | | | 89.52 342 | 89.78 335 | 88.73 369 | 93.14 386 | 77.61 384 | 83.26 389 | 92.02 361 | 94.82 190 | 93.71 327 | 93.11 353 | 75.31 361 | 96.81 381 | 85.81 351 | 96.81 343 | 91.77 388 |
|
| EMVS | | | 89.06 344 | 89.22 338 | 88.61 370 | 93.00 388 | 77.34 386 | 82.91 390 | 90.92 371 | 94.64 196 | 92.63 356 | 91.81 374 | 76.30 357 | 97.02 378 | 83.83 369 | 96.90 338 | 91.48 389 |
|
| MVE |  | 73.61 22 | 86.48 358 | 85.92 359 | 88.18 373 | 96.23 334 | 85.28 339 | 81.78 391 | 75.79 397 | 86.01 342 | 82.53 393 | 91.88 373 | 92.74 207 | 87.47 396 | 71.42 393 | 94.86 370 | 91.78 387 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 66.88 361 | 66.13 364 | 69.11 378 | 62.68 400 | 25.73 404 | 49.76 392 | 96.04 309 | 14.32 396 | 64.27 397 | 91.69 376 | 73.45 371 | 88.05 395 | 76.06 388 | 66.94 395 | 93.54 381 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 24.22 363 | 32.30 366 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 98.10 235 | 0.00 400 | 0.00 401 | 95.06 331 | 97.54 37 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 7.98 366 | 10.65 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 95.82 122 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 7.91 367 | 10.55 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 94.94 333 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 79.32 377 | | | | | | | | 85.41 357 | | |
|
| MSC_two_6792asdad | | | | | 98.22 75 | 97.75 262 | 95.34 110 | | 98.16 229 | | | | | 99.75 68 | 95.87 121 | 99.51 133 | 99.57 47 |
|
| PC_three_1452 | | | | | | | | | | 87.24 330 | 98.37 99 | 97.44 219 | 97.00 63 | 96.78 383 | 92.01 258 | 99.25 201 | 99.21 139 |
|
| No_MVS | | | | | 98.22 75 | 97.75 262 | 95.34 110 | | 98.16 229 | | | | | 99.75 68 | 95.87 121 | 99.51 133 | 99.57 47 |
|
| test_one_0601 | | | | | | 99.05 106 | 95.50 100 | | 98.87 108 | 97.21 86 | 98.03 143 | 98.30 127 | 96.93 69 | | | | |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 98.43 180 | 95.94 79 | | 98.56 178 | 90.72 289 | 96.66 231 | 97.07 247 | 95.02 151 | 99.74 77 | 91.08 277 | 98.93 240 | |
|
| IU-MVS | | | | | | 99.22 69 | 95.40 103 | | 98.14 232 | 85.77 347 | 98.36 102 | | | | 95.23 160 | 99.51 133 | 99.49 71 |
|
| test_241102_TWO | | | | | | | | | 98.83 124 | 96.11 127 | 98.62 74 | 98.24 139 | 96.92 71 | 99.72 88 | 95.44 147 | 99.49 140 | 99.49 71 |
|
| test_241102_ONE | | | | | | 99.22 69 | 95.35 108 | | 98.83 124 | 96.04 132 | 99.08 40 | 98.13 152 | 97.87 23 | 99.33 243 | | | |
|
| test_0728_THIRD | | | | | | | | | | 96.62 99 | 98.40 96 | 98.28 132 | 97.10 54 | 99.71 104 | 95.70 126 | 99.62 91 | 99.58 40 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 290 |
|
| test_part2 | | | | | | 99.03 108 | 96.07 74 | | | | 98.08 136 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.80 346 | | | | 98.06 290 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 350 | | | | |
|
| MTGPA |  | | | | | | | | 98.73 146 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 10.87 398 | 76.83 354 | 99.07 289 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 263 | 77.36 351 | 99.42 209 | | | |
|
| gm-plane-assit | | | | | | 91.79 393 | 71.40 399 | | | 81.67 370 | | 90.11 387 | | 98.99 298 | 84.86 363 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 272 | 98.89 245 | 99.00 180 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 303 | 98.90 242 | 99.10 168 |
|
| agg_prior | | | | | | 97.80 250 | 94.96 126 | | 98.36 200 | | 93.49 335 | | | 99.53 177 | | | |
|
| TestCases | | | | | 98.06 88 | 99.08 99 | 96.16 70 | | 99.16 37 | 94.35 205 | 97.78 165 | 98.07 160 | 95.84 119 | 99.12 281 | 91.41 270 | 99.42 164 | 98.91 197 |
|
| test_prior | | | | | 97.46 138 | 97.79 255 | 94.26 155 | | 98.42 192 | | | | | 99.34 241 | | | 98.79 214 |
|
| 新几何1 | | | | | 97.25 154 | 98.29 189 | 94.70 133 | | 97.73 259 | 77.98 385 | 94.83 300 | 96.67 275 | 92.08 228 | 99.45 202 | 88.17 333 | 98.65 271 | 97.61 319 |
|
| 旧先验1 | | | | | | 97.80 250 | 93.87 166 | | 97.75 258 | | | 97.04 250 | 93.57 189 | | | 98.68 266 | 98.72 224 |
|
| 原ACMM1 | | | | | 96.58 198 | 98.16 210 | 92.12 217 | | 98.15 231 | 85.90 345 | 93.49 335 | 96.43 287 | 92.47 220 | 99.38 227 | 87.66 338 | 98.62 273 | 98.23 276 |
|
| testdata2 | | | | | | | | | | | | | | 99.46 198 | 87.84 334 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 141 | | | | |
|
| testdata | | | | | 95.70 243 | 98.16 210 | 90.58 249 | | 97.72 260 | 80.38 377 | 95.62 280 | 97.02 251 | 92.06 229 | 98.98 300 | 89.06 321 | 98.52 279 | 97.54 322 |
|
| test12 | | | | | 97.46 138 | 97.61 277 | 94.07 159 | | 97.78 257 | | 93.57 333 | | 93.31 194 | 99.42 209 | | 98.78 256 | 98.89 201 |
|
| plane_prior7 | | | | | | 98.70 143 | 94.67 134 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.38 183 | 94.37 147 | | | | | | 91.91 234 | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 143 | | | | | 99.46 198 | 92.59 252 | 99.20 206 | 99.28 126 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 269 | | | | | |
|
| plane_prior3 | | | | | | | 94.51 141 | | | 95.29 172 | 96.16 259 | | | | | | |
|
| plane_prior1 | | | | | | 98.49 173 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 225 | | | | | | | | |
|
| lessismore_v0 | | | | | 97.05 167 | 99.36 51 | 92.12 217 | | 84.07 393 | | 98.77 67 | 98.98 58 | 85.36 308 | 99.74 77 | 97.34 64 | 99.37 172 | 99.30 119 |
|
| LGP-MVS_train | | | | | 98.74 34 | 99.15 86 | 97.02 42 | | 99.02 72 | 95.15 177 | 98.34 105 | 98.23 141 | 97.91 21 | 99.70 112 | 94.41 201 | 99.73 66 | 99.50 63 |
|
| test11 | | | | | | | | | 98.08 238 | | | | | | | | |
|
| door | | | | | | | | | 97.81 256 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 92.47 206 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 298 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 347 | | | 99.23 267 | | | 99.06 173 |
|
| HQP3-MVS | | | | | | | | | 98.43 189 | | | | | | | 98.74 260 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 255 | | | | |
|
| NP-MVS | | | | | | 98.14 214 | 93.72 172 | | | | | 95.08 329 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 128 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 116 | |
|
| Test By Simon | | | | | | | | | | | | | 94.51 167 | | | | |
|
| ITE_SJBPF | | | | | 97.85 105 | 98.64 148 | 96.66 54 | | 98.51 182 | 95.63 155 | 97.22 187 | 97.30 235 | 95.52 135 | 98.55 340 | 90.97 280 | 98.90 242 | 98.34 264 |
|
| DeepMVS_CX |  | | | | 77.17 377 | 90.94 395 | 85.28 339 | | 74.08 400 | 52.51 394 | 80.87 395 | 88.03 388 | 75.25 362 | 70.63 397 | 59.23 397 | 84.94 392 | 75.62 392 |
|