This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18798.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4499.98 299.85 5
mvs5depth98.06 5298.58 2696.51 20998.97 11489.65 26899.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16697.21 7199.76 5799.40 105
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3799.67 299.73 499.65 699.15 399.86 2697.22 7099.92 1499.77 13
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7198.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
DVP-MVS++97.96 5997.90 6598.12 8697.75 26795.40 10599.03 898.89 11096.62 10698.62 7898.30 13996.97 6999.75 7295.70 13599.25 20899.21 147
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 59
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12797.75 5399.89 2399.62 36
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4699.37 499.67 899.43 1795.61 14199.72 9398.12 3699.86 2899.73 22
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8798.53 2999.86 2899.95 2
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11098.49 3599.38 2399.14 4995.44 14799.84 3296.47 9899.80 5099.47 84
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31597.91 5797.30 19198.06 17788.46 28999.85 2993.85 23599.40 17699.32 122
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 4999.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
MVSFormer96.14 18996.36 18195.49 26297.68 27587.81 31098.67 1599.02 8196.50 11594.48 32196.15 31286.90 30699.92 698.73 2299.13 22398.74 229
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8196.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32898.31 4197.09 21195.45 33797.17 5698.50 36298.67 2597.45 34396.48 377
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 3995.62 16399.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7195.43 17597.41 18997.50 22797.98 1999.79 4795.58 14799.57 11299.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31098.36 3998.14 13497.98 18688.23 29399.71 10793.10 25699.72 7099.38 112
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4199.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
FE-MVS92.95 31092.22 31595.11 27597.21 31688.33 29598.54 2393.66 35989.91 32196.21 26798.14 16270.33 39599.50 19287.79 34998.24 30397.51 343
test250689.86 35489.16 35991.97 37298.95 11576.83 40998.54 2361.07 42496.20 12897.07 21299.16 4655.19 41899.69 12296.43 10099.83 4299.38 112
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3496.23 12799.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27397.19 25296.88 8099.86 2697.50 6399.73 6698.41 261
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5598.76 2796.79 22899.34 2696.61 9498.82 32896.38 10299.50 14396.98 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5099.22 1099.22 3498.96 6597.35 4499.92 697.79 5099.93 1199.79 11
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27093.65 18098.49 2898.88 11796.86 10197.11 20598.55 10795.82 13099.73 8795.94 12599.42 17199.13 162
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5599.36 599.29 2999.06 5697.27 4899.93 497.71 5599.91 1799.70 26
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5195.83 15499.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4699.33 699.30 2899.00 5997.27 4899.92 697.64 5999.92 1499.75 20
LS3D97.77 9097.50 11398.57 5196.24 34297.58 2898.45 3198.85 12698.58 3297.51 18097.94 19095.74 13799.63 15195.19 17198.97 24198.51 254
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29796.92 27096.81 8699.87 2496.87 8799.76 5798.51 254
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3598.43 3698.89 5798.83 7894.30 18199.81 4097.87 4599.91 1799.77 13
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 7995.88 15097.88 16398.22 15698.15 1699.74 8196.50 9799.62 9299.42 102
ab-mvs96.59 17096.59 16696.60 20298.64 15492.21 21898.35 3597.67 27194.45 21296.99 21798.79 7994.96 16399.49 19790.39 31499.07 23398.08 296
EGC-MVSNET83.08 38377.93 38698.53 5499.57 1997.55 3098.33 3898.57 1884.71 42110.38 42298.90 7395.60 14299.50 19295.69 13799.61 9898.55 250
test111194.53 26694.81 24393.72 32999.06 10081.94 38298.31 3983.87 41596.37 12098.49 9099.17 4581.49 34399.73 8796.64 9199.86 2899.49 75
ECVR-MVScopyleft94.37 27294.48 26194.05 32498.95 11583.10 37298.31 3982.48 41796.20 12898.23 12399.16 4681.18 34699.66 14195.95 12499.83 4299.38 112
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27797.01 26496.99 6899.82 3697.66 5899.64 8898.39 264
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9297.57 7299.27 3099.22 3598.32 1299.50 19297.09 7799.75 6499.50 67
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30198.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
FA-MVS(test-final)94.91 24494.89 23794.99 28397.51 29488.11 30398.27 4495.20 34192.40 28096.68 23698.60 10283.44 33499.28 26693.34 24898.53 28597.59 340
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13099.05 1799.01 4598.65 9795.37 14999.90 1697.57 6099.91 1799.77 13
GG-mvs-BLEND90.60 38391.00 41684.21 36698.23 4672.63 42382.76 41484.11 41556.14 41396.79 40172.20 41392.09 40490.78 412
GBi-Net96.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
test196.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17597.41 8399.00 4799.19 3895.47 14599.73 8795.83 13299.76 5799.30 127
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7197.40 8499.37 2499.08 5598.79 699.47 20297.74 5499.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 11998.23 4799.48 1799.27 3198.47 1199.55 17996.52 9699.53 12999.60 37
gg-mvs-nofinetune88.28 37086.96 37692.23 36992.84 41284.44 36298.19 5274.60 42099.08 1487.01 41199.47 1356.93 41098.23 38078.91 40295.61 38494.01 402
QAPM95.88 20095.57 21696.80 19197.90 24091.84 23398.18 5398.73 15888.41 34096.42 25398.13 16494.73 16599.75 7288.72 33898.94 24598.81 219
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15897.79 5999.42 2197.83 19894.40 17999.78 5195.91 12799.76 5799.46 86
MIMVSNet93.42 30092.86 30095.10 27798.17 21488.19 29798.13 5593.69 35692.07 28295.04 30998.21 15780.95 34999.03 31081.42 39498.06 31098.07 298
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3596.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10295.75 15897.91 16098.06 17796.89 7899.76 6695.32 16599.57 11299.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5595.96 14398.59 8298.69 9296.94 7199.81 4096.64 9199.58 10999.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4799.36 18299.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22495.60 9598.04 5998.70 16798.13 5096.93 22298.45 11895.30 15299.62 15695.64 14298.96 24299.24 144
MVSMamba_PlusPlus97.43 11897.98 6095.78 24698.88 12689.70 26698.03 6198.85 12699.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12197.73 330
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5298.04 5598.62 7898.66 9493.75 19599.78 5197.23 6999.84 3899.73 22
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 216
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22298.58 3298.78 6699.39 1898.21 1499.56 17592.65 26099.86 2899.52 60
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4298.34 4098.78 6698.52 11097.32 4599.45 21094.08 22599.67 8399.13 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
balanced_conf0396.88 15097.29 12395.63 25397.66 28089.47 27397.95 6698.89 11095.94 14597.77 17398.55 10792.23 23499.68 12797.05 8199.61 9897.73 330
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34099.26 998.39 10299.18 4287.85 30099.62 15695.13 18099.09 23099.35 120
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10296.11 13396.89 22597.45 22996.85 8399.78 5195.19 17199.63 9099.38 112
mvsmamba94.91 24494.41 26696.40 21897.65 28291.30 24297.92 6995.32 33991.50 29695.54 29698.38 12783.06 33799.68 12792.46 26597.84 31998.23 284
ANet_high98.31 3698.94 696.41 21799.33 5189.64 26997.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6199.98 299.77 13
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6398.31 4199.02 4498.74 8597.68 3099.61 16397.77 5299.85 3699.70 26
ambc96.56 20798.23 20491.68 23697.88 7298.13 24398.42 9898.56 10694.22 18399.04 30794.05 22899.35 18798.95 193
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 21998.79 2699.23 3398.86 7795.76 13699.61 16395.49 14999.36 18299.23 145
sasdasda97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
canonicalmvs97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19798.25 4699.13 3898.66 9496.65 9199.69 12293.92 23399.62 9298.91 203
MGCFI-Net97.20 13297.23 12897.08 17197.68 27593.71 17597.79 7799.09 6097.40 8496.59 24493.96 36197.67 3199.35 24796.43 10098.50 29098.17 292
Anonymous2024052197.07 13697.51 11195.76 24799.35 4988.18 29897.78 7898.40 20697.11 9498.34 11099.04 5789.58 27699.79 4798.09 3899.93 1199.30 127
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25897.64 21696.49 10199.72 9395.66 14099.37 17999.45 90
X-MVStestdata92.86 31190.83 34098.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25836.50 41996.49 10199.72 9395.66 14099.37 17999.45 90
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9298.40 3899.07 4298.98 6296.89 7899.75 7297.19 7499.79 5299.55 53
dcpmvs_297.12 13497.99 5994.51 30899.11 9284.00 36797.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 14899.78 5599.58 39
UGNet96.81 15796.56 16997.58 12496.64 33393.84 17097.75 8297.12 29496.47 11893.62 34598.88 7593.22 20599.53 18495.61 14499.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15096.04 13897.10 20697.73 21196.53 9899.78 5195.16 17599.50 14399.46 86
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22197.16 31891.96 23097.74 8498.84 13087.26 35194.36 32398.01 18393.95 19099.67 13590.70 30698.75 26697.35 350
RRT-MVS95.78 20496.25 18594.35 31496.68 33284.47 36197.72 8699.11 5297.23 9197.27 19398.72 8686.39 31099.79 4795.49 14997.67 33198.80 220
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
MonoMVSNet93.30 30493.96 28291.33 37994.14 40081.33 38797.68 8996.69 31295.38 17796.32 25898.42 12184.12 33096.76 40390.78 29992.12 40395.89 384
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11095.65 16198.51 8796.46 29792.15 23699.81 4095.14 17898.58 28499.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LFMVS95.32 22794.88 23896.62 20198.03 22691.47 23997.65 9190.72 39399.11 1297.89 16298.31 13579.20 35499.48 20093.91 23499.12 22698.93 199
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23797.65 9190.31 39798.89 2498.93 5399.36 2384.57 32699.92 697.81 4899.56 11599.39 110
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 22993.00 26398.16 13198.06 17795.89 12599.72 9395.67 13999.10 22999.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs397.38 12197.56 10696.84 18998.63 15892.81 20297.60 9499.61 1690.87 30698.76 7199.66 494.03 18797.90 38699.24 699.68 8199.81 9
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13096.00 14197.22 19597.62 21896.87 8299.76 6695.48 15399.43 16899.46 86
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13096.05 13697.49 18297.54 22397.07 6199.70 11595.61 14499.46 15599.30 127
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13696.05 13697.46 18797.63 21796.77 8799.76 6695.61 14499.46 15599.49 75
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6796.19 13098.48 9298.70 9194.72 16699.24 27694.37 21499.33 19599.17 154
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10597.10 9598.85 6098.88 7595.03 15999.67 13597.39 6799.65 8699.26 139
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.60 9699.76 6695.49 14999.20 21399.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.94 7195.49 14999.20 21399.26 139
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10797.72 6598.25 12198.13 16497.10 5899.75 7295.44 15799.24 21199.32 122
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3798.21 4899.25 3298.51 11298.21 1499.40 22894.79 19699.72 7099.32 122
Vis-MVSNet (Re-imp)95.11 23694.85 23995.87 24399.12 9189.17 27897.54 10494.92 34696.50 11596.58 24597.27 24783.64 33399.48 20088.42 34399.67 8398.97 191
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15896.27 12495.59 29497.75 20896.30 11399.78 5193.70 24199.48 15099.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13095.76 15696.93 22297.43 23197.26 5299.79 4796.06 11499.53 12999.45 90
tttt051793.31 30392.56 31195.57 25698.71 14787.86 30797.44 10787.17 40995.79 15597.47 18696.84 27464.12 40299.81 4096.20 11199.32 19799.02 185
v1097.55 10897.97 6196.31 22298.60 16289.64 26997.44 10799.02 8196.60 10898.72 7599.16 4693.48 20099.72 9398.76 2199.92 1499.58 39
v897.60 10498.06 5396.23 22498.71 14789.44 27497.43 10998.82 14497.29 9098.74 7399.10 5293.86 19199.68 12798.61 2699.94 899.56 50
PMVScopyleft89.60 1796.71 16596.97 14495.95 23899.51 2897.81 2097.42 11097.49 28297.93 5695.95 27798.58 10396.88 8096.91 39989.59 32699.36 18293.12 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13697.32 8898.06 14497.85 19796.65 9199.77 6195.00 18799.11 22799.32 122
FMVSNet593.39 30192.35 31296.50 21095.83 36390.81 25397.31 11298.27 22092.74 27296.27 26398.28 14462.23 40499.67 13590.86 29599.36 18299.03 182
HY-MVS91.43 1592.58 31591.81 32194.90 28896.49 33788.87 28497.31 11294.62 34885.92 36690.50 38996.84 27485.05 32199.40 22883.77 38795.78 38196.43 378
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9596.35 12398.13 13595.95 32395.99 12299.66 14194.36 21699.73 6698.59 246
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15897.69 6897.90 16197.96 18795.81 13499.82 3696.13 11399.61 9899.45 90
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15192.89 26996.01 27697.13 25492.23 23499.67 13592.24 26799.34 19099.17 154
EU-MVSNet94.25 27394.47 26293.60 33298.14 22082.60 37797.24 11792.72 37085.08 37598.48 9298.94 6782.59 34198.76 33597.47 6599.53 12999.44 100
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9294.93 19798.58 8398.92 6997.31 4699.41 22694.44 20999.43 16899.59 38
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6396.57 11398.07 14398.38 12796.22 11899.14 29094.71 20399.31 20098.52 253
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14695.96 14397.53 17897.40 23396.93 7399.77 6195.04 18499.35 18799.42 102
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 10996.58 11098.08 14197.87 19697.02 6699.76 6695.25 16899.59 10699.40 105
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 16396.67 16296.87 18697.96 23591.88 23197.15 12198.06 25295.59 16598.50 8998.62 9989.51 28099.65 14394.99 18999.60 10499.07 177
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14698.98 2198.74 7398.49 11395.80 13599.49 19795.04 18499.44 15999.11 170
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9895.75 15897.62 17597.59 22097.61 3799.77 6196.34 10599.44 15999.36 118
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6795.45 17297.55 17797.94 19097.11 5799.78 5194.77 19999.46 15599.48 81
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5595.32 17997.83 16997.88 19596.44 10699.72 9394.59 20899.39 17799.25 143
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6098.42 3799.03 4398.71 8996.93 7399.83 3497.09 7799.63 9099.56 50
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33298.59 3198.51 8798.72 8692.54 22799.58 16896.02 11999.49 14699.12 167
wuyk23d93.25 30695.20 22187.40 39796.07 35495.38 10797.04 12994.97 34495.33 17899.70 798.11 16898.14 1791.94 41577.76 40699.68 8174.89 415
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22393.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31799.06 23698.32 273
MAR-MVS94.21 27693.03 29697.76 11196.94 32797.44 3796.97 13397.15 29287.89 34992.00 37892.73 37992.14 23799.12 29483.92 38497.51 33996.73 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_vis1_n95.67 21095.89 20495.03 28098.18 21189.89 26496.94 13499.28 3188.25 34498.20 12598.92 6986.69 30997.19 39497.70 5798.82 26098.00 310
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18398.58 3298.78 6699.39 1897.80 2599.62 15694.98 19099.86 2899.52 60
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29596.58 11097.21 19798.19 15884.14 32899.78 5195.89 12896.17 37598.89 207
test072699.24 6195.51 9996.89 13798.89 11095.92 14798.64 7698.31 13597.06 62
baseline97.44 11697.78 8296.43 21498.52 17390.75 25496.84 13899.03 7996.51 11497.86 16798.02 18196.67 9099.36 24397.09 7799.47 15299.19 151
API-MVS95.09 23895.01 23195.31 26896.61 33494.02 16396.83 13997.18 29195.60 16495.79 28594.33 35894.54 17598.37 37385.70 36998.52 28693.52 404
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31599.27 3099.33 2894.04 18696.03 40797.14 7597.83 32099.78 12
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
test_fmvs1_n95.21 23195.28 21994.99 28398.15 21889.13 28196.81 14199.43 2386.97 35797.21 19798.92 6983.00 33897.13 39598.09 3898.94 24598.72 232
test_fmvs296.38 18196.45 17796.16 22997.85 24291.30 24296.81 14199.45 2189.24 32898.49 9099.38 2088.68 28797.62 39198.83 1899.32 19799.57 46
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13696.11 13399.08 4098.24 15197.87 2399.72 9395.44 15799.51 13999.14 160
OPU-MVS97.64 12198.01 22995.27 11596.79 14597.35 24296.97 6998.51 36191.21 28799.25 20899.14 160
PHI-MVS96.96 14496.53 17398.25 7597.48 29696.50 6396.76 14798.85 12693.52 24096.19 26996.85 27395.94 12399.42 21793.79 23799.43 16898.83 216
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14898.23 22595.92 14798.40 10098.28 14497.06 6299.71 10795.48 15399.52 13499.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14898.89 11099.75 7295.48 15399.52 13499.53 57
Anonymous20240521196.34 18295.98 19897.43 14398.25 20193.85 16996.74 14894.41 35197.72 6598.37 10398.03 18087.15 30599.53 18494.06 22699.07 23398.92 202
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14898.73 15891.61 29398.48 9298.36 12996.53 9899.68 12795.17 17399.54 12599.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15299.05 7198.67 2898.84 6198.45 11897.58 3899.88 2196.45 9999.86 2899.54 54
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15398.73 15898.66 2998.56 8498.41 12396.84 8499.69 12294.82 19499.81 4798.64 240
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15499.82 195.44 17499.64 1199.52 998.96 499.74 8199.38 399.86 2899.81 9
SSC-MVS95.92 19897.03 14192.58 36199.28 5578.39 39896.68 15595.12 34298.90 2399.11 3998.66 9491.36 25199.68 12795.00 18799.16 21999.67 28
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15598.83 13695.21 18298.36 10698.13 16498.13 1899.62 15696.04 11799.54 12599.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 30892.64 30994.62 30197.34 30987.20 32296.67 15793.02 36594.71 20296.51 25095.83 32681.64 34298.60 35490.00 32088.06 41198.07 298
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15899.15 4693.68 23798.89 5799.30 2996.42 10799.37 24099.03 1399.83 4299.66 30
MTMP96.55 15974.60 420
SD-MVS97.37 12397.70 8696.35 21998.14 22095.13 12496.54 16098.92 10795.94 14599.19 3598.08 17097.74 2895.06 40995.24 16999.54 12598.87 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16198.75 15596.36 12196.16 27096.77 28091.91 24699.46 20592.59 26299.20 21399.28 134
plane_prior296.50 16196.36 121
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 32998.69 596.42 16398.09 24695.86 15295.15 30495.54 33494.26 18299.81 4094.06 22698.51 28998.47 258
MM96.87 15196.62 16397.62 12297.72 27293.30 19096.39 16492.61 37397.90 5896.76 23398.64 9890.46 26399.81 4099.16 999.94 899.76 18
thres100view90091.76 33391.26 33393.26 33898.21 20584.50 36096.39 16490.39 39496.87 10096.33 25793.08 37173.44 38699.42 21778.85 40397.74 32495.85 385
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16498.98 9895.05 19198.06 14498.02 18195.86 12699.56 17594.37 21499.64 8899.00 186
Patchmtry95.03 24194.59 25696.33 22094.83 38990.82 25196.38 16797.20 28996.59 10997.49 18298.57 10477.67 36199.38 23592.95 25999.62 9298.80 220
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18799.09 9591.43 24196.37 16899.11 5294.19 22099.01 4599.25 3296.30 11399.38 23599.00 1499.88 2499.73 22
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 16998.79 14695.07 19097.88 16398.35 13097.24 5499.72 9396.05 11699.58 10999.45 90
VNet96.84 15296.83 15396.88 18598.06 22592.02 22896.35 17097.57 28197.70 6797.88 16397.80 20492.40 23299.54 18294.73 20198.96 24299.08 175
V4297.04 13797.16 13396.68 20098.59 16491.05 24696.33 17198.36 21194.60 20697.99 15098.30 13993.32 20299.62 15697.40 6699.53 12999.38 112
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17299.65 1295.59 16599.71 599.01 5897.66 3399.60 16599.44 299.83 4297.90 316
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17298.77 15192.96 26897.44 18897.58 22295.84 12799.74 8191.96 27099.35 18799.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 12997.49 11496.59 20399.47 3390.58 25696.27 17498.53 19097.77 6098.46 9598.41 12394.59 17299.68 12794.61 20499.29 20399.52 60
thres600view792.03 32891.43 32693.82 32698.19 20884.61 35996.27 17490.39 39496.81 10296.37 25693.11 36773.44 38699.49 19780.32 39897.95 31497.36 348
EPNet93.72 29192.62 31097.03 17687.61 42292.25 21696.27 17491.28 38696.74 10487.65 40897.39 23785.00 32299.64 14792.14 26899.48 15099.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 32291.83 32093.25 33996.18 34783.68 37096.27 17493.68 35876.97 41192.54 37499.18 4289.20 28598.55 35883.88 38598.60 28397.51 343
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 17899.06 6793.67 23898.64 7699.00 5996.23 11799.36 24398.99 1599.80 5099.53 57
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 17998.89 11093.71 23497.97 15497.75 20897.44 4099.63 15193.22 25399.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18099.02 8193.92 23098.62 7898.99 6197.69 2999.62 15696.18 11299.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18198.63 18193.82 23198.54 8598.33 13393.98 18899.05 30595.99 12299.45 15898.61 245
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18299.73 595.05 19199.60 1599.34 2698.68 899.72 9399.21 799.85 3699.76 18
MVS_Test96.27 18496.79 15794.73 29896.94 32786.63 33196.18 18298.33 21594.94 19596.07 27398.28 14495.25 15399.26 27097.21 7197.90 31798.30 277
CR-MVSNet93.29 30592.79 30394.78 29695.44 37688.15 29996.18 18297.20 28984.94 38094.10 32998.57 10477.67 36199.39 23295.17 17395.81 37896.81 368
RPMNet94.68 25894.60 25494.90 28895.44 37688.15 29996.18 18298.86 12297.43 7894.10 32998.49 11379.40 35399.76 6695.69 13795.81 37896.81 368
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18699.57 1795.66 16099.52 1698.71 8997.04 6499.64 14799.21 799.87 2698.69 236
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19198.79 13691.44 24096.14 18799.06 6794.19 22098.82 6398.98 6296.22 11899.38 23598.98 1699.86 2899.58 39
WB-MVS95.50 21696.62 16392.11 37199.21 7377.26 40896.12 18895.40 33898.62 3098.84 6198.26 14991.08 25499.50 19293.37 24698.70 27299.58 39
EIA-MVS96.04 19395.77 20996.85 18797.80 25592.98 19896.12 18899.16 4294.65 20493.77 34091.69 39295.68 13899.67 13594.18 22198.85 25697.91 315
Effi-MVS+96.19 18796.01 19596.71 19797.43 30292.19 22296.12 18899.10 5595.45 17293.33 35694.71 35097.23 5599.56 17593.21 25497.54 33798.37 266
alignmvs96.01 19595.52 21797.50 13497.77 26494.71 13396.07 19196.84 30497.48 7796.78 23294.28 35985.50 31999.40 22896.22 11098.73 27098.40 262
PatchT93.75 29093.57 28894.29 31895.05 38587.32 32096.05 19292.98 36697.54 7594.25 32498.72 8675.79 37499.24 27695.92 12695.81 37896.32 379
Patchmatch-test93.60 29693.25 29394.63 30096.14 35287.47 31696.04 19394.50 35093.57 23996.47 25196.97 26576.50 36998.61 35290.67 30798.41 29697.81 324
thisisatest053092.71 31491.76 32395.56 25898.42 18788.23 29696.03 19487.35 40894.04 22796.56 24795.47 33664.03 40399.77 6194.78 19899.11 22798.68 239
9.1496.69 16098.53 17296.02 19598.98 9893.23 25097.18 20097.46 22896.47 10399.62 15692.99 25799.32 197
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27494.15 15996.02 19598.43 20093.17 25897.30 19197.38 23995.48 14499.28 26693.74 23899.34 19098.88 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ttmdpeth94.05 28394.15 27593.75 32895.81 36585.32 34596.00 19794.93 34592.07 28294.19 32699.09 5385.73 31696.41 40690.98 29198.52 28699.53 57
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19799.64 1594.99 19499.43 2099.18 4298.51 1099.71 10799.13 1099.84 3899.67 28
114514_t93.96 28693.22 29496.19 22799.06 10090.97 24995.99 19998.94 10573.88 41493.43 35396.93 26892.38 23399.37 24089.09 33399.28 20498.25 283
FMVSNet395.26 23094.94 23296.22 22696.53 33690.06 26095.99 19997.66 27394.11 22497.99 15097.91 19480.22 35299.63 15194.60 20599.44 15998.96 192
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20198.20 22995.51 16995.06 30696.53 29394.10 18599.70 11594.29 21799.15 22099.13 162
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20199.18 4097.67 7199.00 4798.48 11797.64 3499.50 19296.96 8499.54 12599.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testgi96.07 19196.50 17694.80 29499.26 5787.69 31395.96 20398.58 18795.08 18998.02 14996.25 30897.92 2097.60 39288.68 34098.74 26799.11 170
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20398.97 10194.55 21098.82 6398.76 8497.31 4699.29 26497.20 7399.44 15999.38 112
PAPM_NR94.61 26294.17 27495.96 23698.36 19191.23 24495.93 20597.95 25492.98 26493.42 35494.43 35790.53 26198.38 37187.60 35396.29 37298.27 281
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20699.04 7897.51 7698.22 12497.81 20394.68 16999.78 5197.14 7599.75 6499.41 104
test_vis1_n_192095.77 20596.41 17993.85 32598.55 16984.86 35695.91 20799.71 692.72 27397.67 17498.90 7387.44 30398.73 33797.96 4298.85 25697.96 312
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 20899.41 2693.36 24599.00 4798.44 12096.46 10599.65 14399.09 1199.76 5799.45 90
131492.38 31892.30 31392.64 36095.42 37885.15 35095.86 20996.97 30185.40 37390.62 38693.06 37291.12 25397.80 38986.74 36495.49 38694.97 397
MVS90.02 34989.20 35692.47 36494.71 39086.90 32795.86 20996.74 31064.72 41690.62 38692.77 37792.54 22798.39 37079.30 40195.56 38592.12 408
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21199.32 2793.22 25198.91 5698.49 11396.31 11299.64 14799.07 1299.76 5799.40 105
casdiffmvspermissive97.50 11197.81 7796.56 20798.51 17591.04 24795.83 21199.09 6097.23 9198.33 11398.30 13997.03 6599.37 24096.58 9599.38 17899.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVStest191.89 33091.45 32593.21 34289.01 41984.87 35595.82 21395.05 34391.50 29698.75 7299.19 3857.56 40895.11 40897.78 5198.37 29799.64 35
tpmvs90.79 34590.87 33890.57 38492.75 41376.30 41095.79 21493.64 36091.04 30591.91 37996.26 30777.19 36798.86 32789.38 33089.85 40896.56 375
mvsany_test396.21 18695.93 20297.05 17397.40 30494.33 15295.76 21594.20 35389.10 32999.36 2599.60 893.97 18997.85 38795.40 16498.63 27998.99 189
MSLP-MVS++96.42 18096.71 15995.57 25697.82 25090.56 25895.71 21698.84 13094.72 20196.71 23597.39 23794.91 16498.10 38495.28 16699.02 23898.05 305
tfpn200view991.55 33591.00 33593.21 34298.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32495.85 385
Anonymous2023120695.27 22995.06 23095.88 24298.72 14489.37 27595.70 21797.85 26088.00 34796.98 21997.62 21891.95 24399.34 25089.21 33199.53 12998.94 195
thres40091.68 33491.00 33593.71 33098.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32497.36 348
reproduce_monomvs92.05 32792.26 31491.43 37795.42 37875.72 41395.68 22097.05 29894.47 21197.95 15798.35 13055.58 41599.05 30596.36 10399.44 15999.51 64
test20.0396.58 17296.61 16596.48 21298.49 17991.72 23595.68 22097.69 27096.81 10298.27 12097.92 19394.18 18498.71 34090.78 29999.66 8599.00 186
hse-mvs295.77 20595.09 22797.79 10997.84 24795.51 9995.66 22295.43 33796.58 11097.21 19796.16 31184.14 32899.54 18295.89 12896.92 35198.32 273
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22299.02 8198.11 5198.31 11697.69 21494.65 17199.85 2997.02 8299.71 7399.48 81
dmvs_re92.08 32691.27 33194.51 30897.16 31892.79 20595.65 22492.64 37294.11 22492.74 36790.98 39983.41 33594.44 41380.72 39794.07 39696.29 380
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22498.87 11997.57 7298.31 11697.83 19894.69 16799.85 2997.02 8299.71 7399.46 86
EPMVS89.26 36088.55 36291.39 37892.36 41479.11 39795.65 22479.86 41888.60 33893.12 35996.53 29370.73 39498.10 38490.75 30189.32 40996.98 357
MVP-Stereo95.69 20895.28 21996.92 18298.15 21893.03 19795.64 22798.20 22990.39 31496.63 24297.73 21191.63 24899.10 30091.84 27597.31 34798.63 242
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_cas_vis1_n_192095.34 22595.67 21194.35 31498.21 20586.83 32995.61 22899.26 3290.45 31398.17 13098.96 6584.43 32798.31 37696.74 9099.17 21897.90 316
test_f95.82 20395.88 20595.66 25297.61 28793.21 19595.61 22898.17 23586.98 35698.42 9899.47 1390.46 26394.74 41197.71 5598.45 29399.03 182
F-COLMAP95.30 22894.38 26798.05 9498.64 15496.04 7995.61 22898.66 17589.00 33293.22 35796.40 30292.90 21499.35 24787.45 35897.53 33898.77 226
AUN-MVS93.95 28892.69 30797.74 11297.80 25595.38 10795.57 23195.46 33691.26 30292.64 37196.10 31774.67 37799.55 17993.72 24096.97 35098.30 277
v14419296.69 16696.90 15196.03 23398.25 20188.92 28295.49 23298.77 15193.05 26198.09 13998.29 14392.51 23099.70 11598.11 3799.56 11599.47 84
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31794.39 14795.46 23398.73 15896.03 14094.72 31494.92 34796.28 11699.69 12293.81 23697.98 31298.09 295
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23498.86 12298.20 4998.37 10399.24 3394.69 16799.55 17995.98 12399.79 5299.65 33
LF4IMVS96.07 19195.63 21497.36 14998.19 20895.55 9695.44 23498.82 14492.29 28195.70 29196.55 29192.63 22298.69 34391.75 27999.33 19597.85 320
v192192096.72 16396.96 14695.99 23498.21 20588.79 28795.42 23698.79 14693.22 25198.19 12998.26 14992.68 21999.70 11598.34 3499.55 12199.49 75
plane_prior94.29 15395.42 23694.31 21798.93 247
v114496.84 15297.08 13796.13 23198.42 18789.28 27795.41 23898.67 17394.21 21897.97 15498.31 13593.06 20899.65 14398.06 4099.62 9299.45 90
ETV-MVS96.13 19095.90 20396.82 19097.76 26593.89 16795.40 23998.95 10495.87 15195.58 29591.00 39896.36 11199.72 9393.36 24798.83 25996.85 364
v124096.74 16097.02 14295.91 24198.18 21188.52 29095.39 24098.88 11793.15 25998.46 9598.40 12692.80 21699.71 10798.45 3199.49 14699.49 75
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24198.99 9592.45 27898.11 13698.31 13597.25 5399.77 6196.60 9399.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030495.71 20795.18 22397.33 15194.85 38792.82 20095.36 24290.89 39095.51 16995.61 29397.82 20188.39 29199.78 5198.23 3599.91 1799.40 105
v119296.83 15597.06 13996.15 23098.28 19789.29 27695.36 24298.77 15193.73 23398.11 13698.34 13293.02 21399.67 13598.35 3399.58 10999.50 67
v2v48296.78 15997.06 13995.95 23898.57 16688.77 28895.36 24298.26 22195.18 18597.85 16898.23 15392.58 22399.63 15197.80 4999.69 7799.45 90
test_fmvs194.51 26794.60 25494.26 31995.91 35787.92 30595.35 24599.02 8186.56 36196.79 22898.52 11082.64 34097.00 39897.87 4598.71 27197.88 318
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30692.08 22795.34 24697.65 27597.74 6398.29 11998.11 16895.05 15799.68 12797.50 6399.50 14399.56 50
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 30992.01 22995.33 24797.65 27597.74 6398.30 11898.14 16295.04 15899.69 12297.55 6199.52 13499.58 39
CostFormer89.75 35589.25 35391.26 38094.69 39178.00 40295.32 24891.98 37881.50 39490.55 38896.96 26771.06 39298.89 32388.59 34192.63 40196.87 362
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21599.28 5590.62 25595.31 24999.08 6388.40 34196.97 22098.17 16192.11 23899.78 5193.64 24299.21 21298.86 214
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21398.48 18191.52 23895.31 24998.45 19795.76 15697.48 18497.54 22389.53 27998.69 34394.43 21094.61 39399.13 162
EI-MVSNet96.63 16996.93 14795.74 24897.26 31488.13 30195.29 25197.65 27596.99 9697.94 15898.19 15892.55 22599.58 16896.91 8599.56 11599.50 67
CVMVSNet92.33 32092.79 30390.95 38197.26 31475.84 41295.29 25192.33 37581.86 39196.27 26398.19 15881.44 34498.46 36694.23 22098.29 30198.55 250
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25398.46 19694.58 20998.10 13898.07 17297.09 6099.39 23295.16 17599.44 15999.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS93.32 1294.93 24394.23 27097.04 17598.18 21194.51 14395.22 25498.73 15881.22 39696.25 26595.95 32393.80 19498.98 31589.89 32298.87 25397.62 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25598.99 9595.84 15398.78 6698.08 17096.84 8499.81 4093.98 23199.57 11299.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER94.21 27693.93 28395.05 27995.83 36386.46 33295.18 25697.65 27592.41 27997.94 15898.00 18572.39 38899.58 16896.36 10399.56 11599.12 167
PatchmatchNetpermissive91.98 32991.87 31992.30 36794.60 39279.71 39495.12 25793.59 36189.52 32593.61 34697.02 26277.94 35999.18 28390.84 29694.57 39598.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-LS96.92 14697.29 12395.79 24598.51 17588.13 30195.10 25898.66 17596.99 9698.46 9598.68 9392.55 22599.74 8196.91 8599.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 17296.97 14495.42 26598.63 15887.57 31495.09 25997.90 25795.91 14998.24 12297.96 18793.42 20199.39 23296.04 11799.52 13499.29 133
tpm288.47 36787.69 37090.79 38294.98 38677.34 40695.09 25991.83 37977.51 41089.40 40096.41 30067.83 39998.73 33783.58 38992.60 40296.29 380
OpenMVS_ROBcopyleft91.80 1493.64 29593.05 29595.42 26597.31 31391.21 24595.08 26196.68 31381.56 39396.88 22696.41 30090.44 26599.25 27285.39 37597.67 33195.80 387
TAMVS95.49 21794.94 23297.16 16298.31 19393.41 18895.07 26296.82 30691.09 30497.51 18097.82 20189.96 27299.42 21788.42 34399.44 15998.64 240
tpmrst90.31 34790.61 34589.41 38994.06 40172.37 42095.06 26393.69 35688.01 34692.32 37696.86 27277.45 36398.82 32891.04 28987.01 41297.04 356
ADS-MVSNet291.47 33790.51 34694.36 31395.51 37485.63 34095.05 26495.70 32783.46 38792.69 36896.84 27479.15 35599.41 22685.66 37190.52 40598.04 306
ADS-MVSNet90.95 34490.26 34893.04 34695.51 37482.37 37895.05 26493.41 36283.46 38792.69 36896.84 27479.15 35598.70 34185.66 37190.52 40598.04 306
tpm91.08 34290.85 33991.75 37495.33 38078.09 40095.03 26691.27 38788.75 33593.53 34997.40 23371.24 39099.30 26091.25 28693.87 39797.87 319
NCCC96.52 17495.99 19798.10 8797.81 25195.68 9295.00 26798.20 22995.39 17695.40 30096.36 30493.81 19399.45 21093.55 24498.42 29599.17 154
test_post194.98 26810.37 42376.21 37299.04 30789.47 328
AdaColmapbinary95.11 23694.62 25396.58 20497.33 31194.45 14694.92 26998.08 24793.15 25993.98 33695.53 33594.34 18099.10 30085.69 37098.61 28196.20 382
MDTV_nov1_ep13_2view57.28 42494.89 27080.59 39894.02 33478.66 35785.50 37397.82 322
CNVR-MVS96.92 14696.55 17098.03 9598.00 23395.54 9794.87 27198.17 23594.60 20696.38 25597.05 26095.67 13999.36 24395.12 18199.08 23199.19 151
OMC-MVS96.48 17696.00 19697.91 10298.30 19496.01 8294.86 27298.60 18391.88 28897.18 20097.21 25196.11 12099.04 30790.49 31399.34 19098.69 236
testing389.72 35688.26 36594.10 32397.66 28084.30 36594.80 27388.25 40694.66 20395.07 30592.51 38241.15 42499.43 21591.81 27698.44 29498.55 250
EPNet_dtu91.39 33890.75 34193.31 33790.48 41882.61 37694.80 27392.88 36793.39 24481.74 41694.90 34881.36 34599.11 29788.28 34598.87 25398.21 287
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 33094.31 39473.51 41894.80 27393.16 36486.75 36093.45 35297.40 23376.37 37098.55 35888.85 33696.43 367
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20194.29 15394.77 27698.07 25189.81 32297.97 15498.33 13393.11 20799.08 30295.46 15699.84 3898.89 207
test_yl94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
DCV-MVSNet94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
dmvs_testset87.30 37886.99 37588.24 39496.71 33177.48 40594.68 27986.81 41192.64 27489.61 39987.01 41385.91 31493.12 41461.04 41888.49 41094.13 401
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28098.17 23590.17 31896.21 26796.10 31795.14 15699.43 21594.13 22498.85 25699.13 162
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28099.02 8195.20 18398.15 13397.52 22598.83 598.43 36794.87 19296.41 36899.07 177
mvs_anonymous95.36 22496.07 19493.21 34296.29 34181.56 38494.60 28297.66 27393.30 24896.95 22198.91 7293.03 21299.38 23596.60 9397.30 34898.69 236
DP-MVS Recon95.55 21595.13 22596.80 19198.51 17593.99 16594.60 28298.69 16890.20 31795.78 28796.21 31092.73 21898.98 31590.58 30998.86 25597.42 347
save fliter98.48 18194.71 13394.53 28498.41 20495.02 193
patch_mono-296.59 17096.93 14795.55 25998.88 12687.12 32394.47 28599.30 2994.12 22396.65 24198.41 12394.98 16299.87 2495.81 13499.78 5599.66 30
tpm cat188.01 37287.33 37290.05 38894.48 39376.28 41194.47 28594.35 35273.84 41589.26 40195.61 33373.64 38298.30 37784.13 38386.20 41395.57 392
CANet95.86 20195.65 21396.49 21196.41 33990.82 25194.36 28798.41 20494.94 19592.62 37396.73 28392.68 21999.71 10795.12 18199.60 10498.94 195
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 28898.12 24497.34 8798.20 12597.33 24492.81 21599.75 7294.79 19699.81 4799.54 54
HQP-NCC97.85 24294.26 28993.18 25592.86 364
ACMP_Plane97.85 24294.26 28993.18 25592.86 364
HQP-MVS95.17 23594.58 25796.92 18297.85 24292.47 21294.26 28998.43 20093.18 25592.86 36495.08 34190.33 26699.23 27890.51 31198.74 26799.05 181
PLCcopyleft91.02 1694.05 28392.90 29997.51 13098.00 23395.12 12594.25 29298.25 22286.17 36391.48 38395.25 33991.01 25599.19 28285.02 37996.69 36398.22 286
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 27993.42 29096.23 22498.59 16490.85 25094.24 29398.85 12685.49 37092.97 36294.94 34586.01 31399.64 14791.78 27797.92 31598.20 288
MS-PatchMatch94.83 24894.91 23694.57 30596.81 33087.10 32494.23 29497.34 28688.74 33697.14 20297.11 25691.94 24498.23 38092.99 25797.92 31598.37 266
Fast-Effi-MVS+95.49 21795.07 22896.75 19597.67 27992.82 20094.22 29598.60 18391.61 29393.42 35492.90 37496.73 8999.70 11592.60 26197.89 31897.74 329
CMPMVSbinary73.10 2392.74 31391.39 32796.77 19493.57 40794.67 13694.21 29697.67 27180.36 40093.61 34696.60 28982.85 33997.35 39384.86 38098.78 26398.29 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 37188.05 36688.16 39692.85 41168.81 42294.17 29792.88 36785.47 37191.38 38496.14 31468.87 39898.81 33086.88 36383.80 41596.87 362
JIA-IIPM91.79 33290.69 34395.11 27593.80 40490.98 24894.16 29891.78 38096.38 11990.30 39299.30 2972.02 38998.90 32288.28 34590.17 40795.45 393
D2MVS95.18 23395.17 22495.21 27197.76 26587.76 31294.15 29997.94 25589.77 32396.99 21797.68 21587.45 30299.14 29095.03 18699.81 4798.74 229
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27095.23 11794.15 29996.90 30393.26 24998.04 14796.70 28494.41 17898.89 32394.77 19999.14 22198.37 266
PVSNet_BlendedMVS95.02 24294.93 23495.27 26997.79 26087.40 31894.14 30198.68 17088.94 33394.51 31998.01 18393.04 20999.30 26089.77 32499.49 14699.11 170
TinyColmap96.00 19696.34 18294.96 28597.90 24087.91 30694.13 30298.49 19494.41 21398.16 13197.76 20596.29 11598.68 34690.52 31099.42 17198.30 277
CNLPA95.04 23994.47 26296.75 19597.81 25195.25 11694.12 30397.89 25894.41 21394.57 31795.69 32890.30 26998.35 37486.72 36598.76 26596.64 372
BH-untuned94.69 25694.75 24694.52 30797.95 23887.53 31594.07 30497.01 29993.99 22897.10 20695.65 33092.65 22198.95 32087.60 35396.74 36097.09 354
pmmvs594.63 26194.34 26895.50 26197.63 28688.34 29494.02 30597.13 29387.15 35395.22 30397.15 25387.50 30199.27 26993.99 23099.26 20798.88 211
thres20091.00 34390.42 34792.77 35797.47 30083.98 36894.01 30691.18 38895.12 18895.44 29891.21 39673.93 37999.31 25777.76 40697.63 33595.01 396
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
test_vis1_rt94.03 28593.65 28695.17 27495.76 36993.42 18793.97 31098.33 21584.68 38193.17 35895.89 32592.53 22994.79 41093.50 24594.97 38997.31 351
CDS-MVSNet94.88 24794.12 27697.14 16497.64 28593.57 18193.96 31197.06 29790.05 31996.30 26296.55 29186.10 31299.47 20290.10 31899.31 20098.40 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 26094.21 27295.96 23695.90 35889.68 26793.92 31297.83 26493.19 25490.12 39495.64 33188.52 28899.57 17493.27 25299.47 15298.62 243
WTY-MVS93.55 29793.00 29895.19 27297.81 25187.86 30793.89 31396.00 32089.02 33194.07 33195.44 33886.27 31199.33 25287.69 35196.82 35798.39 264
sss94.22 27493.72 28595.74 24897.71 27389.95 26393.84 31496.98 30088.38 34293.75 34195.74 32787.94 29598.89 32391.02 29098.10 30898.37 266
baseline289.65 35888.44 36493.25 33995.62 37282.71 37493.82 31585.94 41288.89 33487.35 41092.54 38171.23 39199.33 25286.01 36694.60 39497.72 332
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31599.05 7195.19 18498.32 11497.70 21395.22 15498.41 36894.27 21898.13 30798.93 199
MVS_111021_LR96.82 15696.55 17097.62 12298.27 19995.34 11293.81 31798.33 21594.59 20896.56 24796.63 28896.61 9498.73 33794.80 19599.34 19098.78 223
BH-RMVSNet94.56 26494.44 26594.91 28697.57 28987.44 31793.78 31896.26 31693.69 23696.41 25496.50 29692.10 23999.00 31185.96 36797.71 32798.31 275
CDPH-MVS95.45 22294.65 24997.84 10798.28 19794.96 12893.73 31998.33 21585.03 37795.44 29896.60 28995.31 15199.44 21390.01 31999.13 22399.11 170
PatchMatch-RL94.61 26293.81 28497.02 17798.19 20895.72 8993.66 32097.23 28888.17 34594.94 31195.62 33291.43 24998.57 35587.36 35997.68 33096.76 370
TEST997.84 24795.23 11793.62 32198.39 20786.81 35893.78 33895.99 31994.68 16999.52 187
train_agg95.46 22194.66 24897.88 10497.84 24795.23 11793.62 32198.39 20787.04 35493.78 33895.99 31994.58 17399.52 18791.76 27898.90 24998.89 207
test_prior495.38 10793.61 323
test_897.81 25195.07 12693.54 32498.38 20987.04 35493.71 34295.96 32294.58 17399.52 187
TR-MVS92.54 31692.20 31693.57 33396.49 33786.66 33093.51 32594.73 34789.96 32094.95 31093.87 36290.24 27198.61 35281.18 39694.88 39095.45 393
新几何293.43 326
diffmvspermissive96.04 19396.23 18695.46 26497.35 30788.03 30493.42 32799.08 6394.09 22696.66 23996.93 26893.85 19299.29 26496.01 12198.67 27499.06 179
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32798.36 21194.74 20096.58 24596.76 28296.54 9798.99 31394.87 19299.27 20699.15 157
UnsupCasMVSNet_bld94.72 25594.26 26996.08 23298.62 16090.54 25993.38 32998.05 25390.30 31597.02 21596.80 27989.54 27799.16 28888.44 34296.18 37498.56 248
旧先验293.35 33077.95 40895.77 28998.67 34790.74 304
test_prior293.33 33194.21 21894.02 33496.25 30893.64 19791.90 27298.96 242
WB-MVSnew91.50 33691.29 32992.14 37094.85 38780.32 39293.29 33288.77 40488.57 33994.03 33392.21 38592.56 22498.28 37880.21 39997.08 34997.81 324
SCA93.38 30293.52 28992.96 35196.24 34281.40 38693.24 33394.00 35491.58 29594.57 31796.97 26587.94 29599.42 21789.47 32897.66 33398.06 302
无先验93.20 33497.91 25680.78 39799.40 22887.71 35097.94 314
MG-MVS94.08 28294.00 27994.32 31697.09 32185.89 33993.19 33595.96 32292.52 27594.93 31297.51 22689.54 27798.77 33387.52 35797.71 32798.31 275
MVS-HIRNet88.40 36890.20 34982.99 39897.01 32360.04 42393.11 33685.61 41384.45 38588.72 40499.09 5384.72 32598.23 38082.52 39196.59 36690.69 413
new-patchmatchnet95.67 21096.58 16792.94 35297.48 29680.21 39392.96 33798.19 23494.83 19898.82 6398.79 7993.31 20399.51 19195.83 13299.04 23799.12 167
ETVMVS87.62 37585.75 38293.22 34196.15 35183.26 37192.94 33890.37 39691.39 29990.37 39088.45 40951.93 42198.64 34973.76 41096.38 36997.75 328
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 24898.48 18188.76 28992.84 33997.25 28796.00 14197.59 17697.95 18991.38 25099.46 20593.16 25596.35 37098.99 189
原ACMM292.82 340
testdata192.77 34193.78 232
Test_1112_low_res93.53 29892.86 30095.54 26098.60 16288.86 28592.75 34298.69 16882.66 39092.65 37096.92 27084.75 32499.56 17590.94 29397.76 32398.19 289
USDC94.56 26494.57 25994.55 30697.78 26386.43 33492.75 34298.65 18085.96 36596.91 22497.93 19290.82 25898.74 33690.71 30599.59 10698.47 258
test22298.17 21493.24 19492.74 34497.61 28075.17 41294.65 31696.69 28590.96 25798.66 27697.66 334
jason94.39 27194.04 27895.41 26798.29 19587.85 30992.74 34496.75 30985.38 37495.29 30196.15 31288.21 29499.65 14394.24 21999.34 19098.74 229
jason: jason.
testing9189.67 35788.55 36293.04 34695.90 35881.80 38392.71 34693.71 35593.71 23490.18 39390.15 40457.11 40999.22 28087.17 36296.32 37198.12 294
testing9989.21 36188.04 36792.70 35995.78 36781.00 39092.65 34792.03 37693.20 25389.90 39790.08 40655.25 41699.14 29087.54 35595.95 37797.97 311
Patchmatch-RL test94.66 25994.49 26095.19 27298.54 17188.91 28392.57 34898.74 15791.46 29898.32 11497.75 20877.31 36698.81 33096.06 11499.61 9897.85 320
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29697.23 4492.56 34998.60 18392.84 27098.54 8597.40 23396.64 9398.78 33294.40 21399.41 17598.93 199
N_pmnet95.18 23394.23 27098.06 9097.85 24296.55 6292.49 35091.63 38189.34 32698.09 13997.41 23290.33 26699.06 30491.58 28099.31 20098.56 248
testing1188.93 36387.63 37192.80 35695.87 36081.49 38592.48 35191.54 38291.62 29288.27 40690.24 40255.12 41999.11 29787.30 36096.28 37397.81 324
Syy-MVS92.09 32591.80 32292.93 35395.19 38282.65 37592.46 35291.35 38490.67 31091.76 38187.61 41185.64 31898.50 36294.73 20196.84 35597.65 335
myMVS_eth3d87.16 38085.61 38391.82 37395.19 38279.32 39592.46 35291.35 38490.67 31091.76 38187.61 41141.96 42398.50 36282.66 39096.84 35597.65 335
BH-w/o92.14 32391.94 31892.73 35897.13 32085.30 34692.46 35295.64 32989.33 32794.21 32592.74 37889.60 27598.24 37981.68 39394.66 39294.66 398
IterMVS-SCA-FT95.86 20196.19 18894.85 29197.68 27585.53 34292.42 35597.63 27996.99 9698.36 10698.54 10987.94 29599.75 7297.07 8099.08 23199.27 138
IterMVS95.42 22395.83 20694.20 32097.52 29383.78 36992.41 35697.47 28495.49 17198.06 14498.49 11387.94 29599.58 16896.02 11999.02 23899.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing22287.35 37785.50 38492.93 35395.79 36682.83 37392.40 35790.10 40092.80 27188.87 40389.02 40748.34 42298.70 34175.40 40996.74 36097.27 352
DELS-MVS96.17 18896.23 18695.99 23497.55 29290.04 26192.38 35898.52 19194.13 22296.55 24997.06 25994.99 16199.58 16895.62 14399.28 20498.37 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 31991.69 32494.32 31696.23 34489.16 27992.27 35992.88 36784.39 38695.29 30196.35 30585.66 31796.74 40484.53 38297.56 33697.05 355
CHOSEN 1792x268894.10 28093.41 29196.18 22899.16 8090.04 26192.15 36098.68 17079.90 40196.22 26697.83 19887.92 29999.42 21789.18 33299.65 8699.08 175
xiu_mvs_v2_base94.22 27494.63 25292.99 35097.32 31284.84 35792.12 36197.84 26291.96 28694.17 32793.43 36596.07 12199.71 10791.27 28497.48 34094.42 399
lupinMVS93.77 28993.28 29295.24 27097.68 27587.81 31092.12 36196.05 31884.52 38394.48 32195.06 34386.90 30699.63 15193.62 24399.13 22398.27 281
pmmvs494.82 24994.19 27396.70 19897.42 30392.75 20692.09 36396.76 30886.80 35995.73 29097.22 25089.28 28398.89 32393.28 25199.14 22198.46 260
PAPR92.22 32191.27 33195.07 27895.73 37188.81 28691.97 36497.87 25985.80 36890.91 38592.73 37991.16 25298.33 37579.48 40095.76 38298.08 296
UWE-MVS87.57 37686.72 37890.13 38795.21 38173.56 41791.94 36583.78 41688.73 33793.00 36192.87 37555.22 41799.25 27281.74 39297.96 31397.59 340
PS-MVSNAJ94.10 28094.47 26293.00 34997.35 30784.88 35491.86 36697.84 26291.96 28694.17 32792.50 38395.82 13099.71 10791.27 28497.48 34094.40 400
c3_l95.20 23295.32 21894.83 29396.19 34686.43 33491.83 36798.35 21493.47 24297.36 19097.26 24888.69 28699.28 26695.41 16399.36 18298.78 223
test0.0.03 190.11 34889.21 35592.83 35593.89 40386.87 32891.74 36888.74 40592.02 28494.71 31591.14 39773.92 38094.48 41283.75 38892.94 39997.16 353
UBG88.29 36987.17 37391.63 37596.08 35378.21 39991.61 36991.50 38389.67 32489.71 39888.97 40859.01 40698.91 32181.28 39596.72 36297.77 327
FPMVS89.92 35388.63 36193.82 32698.37 19096.94 4991.58 37093.34 36388.00 34790.32 39197.10 25770.87 39391.13 41671.91 41496.16 37693.39 406
ET-MVSNet_ETH3D91.12 33989.67 35295.47 26396.41 33989.15 28091.54 37190.23 39889.07 33086.78 41292.84 37669.39 39799.44 21394.16 22296.61 36597.82 322
WBMVS91.11 34090.72 34292.26 36895.99 35577.98 40391.47 37295.90 32491.63 29195.90 28296.45 29859.60 40599.46 20589.97 32199.59 10699.33 121
PVSNet_Blended93.96 28693.65 28694.91 28697.79 26087.40 31891.43 37398.68 17084.50 38494.51 31994.48 35693.04 20999.30 26089.77 32498.61 28198.02 308
CLD-MVS95.47 22095.07 22896.69 19998.27 19992.53 20991.36 37498.67 17391.22 30395.78 28794.12 36095.65 14098.98 31590.81 29799.72 7098.57 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 24694.93 23494.75 29795.99 35586.12 33791.35 37598.49 19493.40 24397.12 20497.25 24986.87 30899.35 24795.08 18398.82 26098.78 223
cl____94.73 25194.64 25095.01 28195.85 36287.00 32591.33 37698.08 24793.34 24697.10 20697.33 24484.01 33299.30 26095.14 17899.56 11598.71 235
DIV-MVS_self_test94.73 25194.64 25095.01 28195.86 36187.00 32591.33 37698.08 24793.34 24697.10 20697.34 24384.02 33199.31 25795.15 17799.55 12198.72 232
miper_ehance_all_eth94.69 25694.70 24794.64 29995.77 36886.22 33691.32 37898.24 22491.67 29097.05 21396.65 28788.39 29199.22 28094.88 19198.34 29898.49 257
pmmvs390.00 35088.90 36093.32 33694.20 39985.34 34491.25 37992.56 37478.59 40593.82 33795.17 34067.36 40098.69 34389.08 33498.03 31195.92 383
HyFIR lowres test93.72 29192.65 30896.91 18498.93 12091.81 23491.23 38098.52 19182.69 38996.46 25296.52 29580.38 35199.90 1690.36 31598.79 26299.03 182
DPM-MVS93.68 29392.77 30696.42 21597.91 23992.54 20891.17 38197.47 28484.99 37993.08 36094.74 34989.90 27399.00 31187.54 35598.09 30997.72 332
CL-MVSNet_self_test95.04 23994.79 24595.82 24497.51 29489.79 26591.14 38296.82 30693.05 26196.72 23496.40 30290.82 25899.16 28891.95 27198.66 27698.50 256
miper_lstm_enhance94.81 25094.80 24494.85 29196.16 34886.45 33391.14 38298.20 22993.49 24197.03 21497.37 24184.97 32399.26 27095.28 16699.56 11598.83 216
cl2293.25 30692.84 30294.46 31094.30 39586.00 33891.09 38496.64 31490.74 30795.79 28596.31 30678.24 35898.77 33394.15 22398.34 29898.62 243
MSDG95.33 22695.13 22595.94 24097.40 30491.85 23291.02 38598.37 21095.30 18096.31 26195.99 31994.51 17698.38 37189.59 32697.65 33497.60 339
IB-MVS85.98 2088.63 36686.95 37793.68 33195.12 38484.82 35890.85 38690.17 39987.55 35088.48 40591.34 39558.01 40799.59 16687.24 36193.80 39896.63 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsany_test193.47 29993.03 29694.79 29594.05 40292.12 22390.82 38790.01 40185.02 37897.26 19498.28 14493.57 19897.03 39692.51 26495.75 38395.23 395
test12312.59 38915.49 3923.87 4046.07 4272.55 42990.75 3882.59 4292.52 4225.20 42413.02 4214.96 4271.85 4245.20 4229.09 4217.23 419
ppachtmachnet_test94.49 26894.84 24093.46 33596.16 34882.10 37990.59 38997.48 28390.53 31297.01 21697.59 22091.01 25599.36 24393.97 23299.18 21798.94 195
PMMVS92.39 31791.08 33496.30 22393.12 40992.81 20290.58 39095.96 32279.17 40491.85 38092.27 38490.29 27098.66 34889.85 32396.68 36497.43 346
our_test_394.20 27894.58 25793.07 34596.16 34881.20 38890.42 39196.84 30490.72 30897.14 20297.13 25490.47 26299.11 29794.04 22998.25 30298.91 203
YYNet194.73 25194.84 24094.41 31297.47 30085.09 35290.29 39295.85 32692.52 27597.53 17897.76 20591.97 24299.18 28393.31 25096.86 35498.95 193
MDA-MVSNet_test_wron94.73 25194.83 24294.42 31197.48 29685.15 35090.28 39395.87 32592.52 27597.48 18497.76 20591.92 24599.17 28793.32 24996.80 35998.94 195
GA-MVS92.83 31292.15 31794.87 29096.97 32487.27 32190.03 39496.12 31791.83 28994.05 33294.57 35176.01 37398.97 31992.46 26597.34 34698.36 271
miper_enhance_ethall93.14 30892.78 30594.20 32093.65 40585.29 34789.97 39597.85 26085.05 37696.15 27294.56 35285.74 31599.14 29093.74 23898.34 29898.17 292
test-LLR89.97 35289.90 35090.16 38594.24 39774.98 41489.89 39689.06 40292.02 28489.97 39590.77 40073.92 38098.57 35591.88 27397.36 34496.92 359
TESTMET0.1,187.20 37986.57 37989.07 39093.62 40672.84 41989.89 39687.01 41085.46 37289.12 40290.20 40356.00 41497.72 39090.91 29496.92 35196.64 372
test-mter87.92 37387.17 37390.16 38594.24 39774.98 41489.89 39689.06 40286.44 36289.97 39590.77 40054.96 42098.57 35591.88 27397.36 34496.92 359
PCF-MVS89.43 1892.12 32490.64 34496.57 20697.80 25593.48 18489.88 39998.45 19774.46 41396.04 27595.68 32990.71 26099.31 25773.73 41199.01 24096.91 361
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 34689.18 35894.17 32297.07 32285.44 34389.75 40087.58 40788.28 34393.69 34491.72 39165.27 40199.58 16890.59 30898.67 27497.50 345
KD-MVS_2432*160088.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
miper_refine_blended88.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
testmvs12.33 39015.23 3933.64 4055.77 4282.23 43088.99 4033.62 4282.30 4235.29 42313.09 4204.52 4281.95 4235.16 4238.32 4226.75 420
cascas91.89 33091.35 32893.51 33494.27 39685.60 34188.86 40498.61 18279.32 40392.16 37791.44 39489.22 28498.12 38390.80 29897.47 34296.82 367
PAPM87.64 37485.84 38193.04 34696.54 33584.99 35388.42 40595.57 33379.52 40283.82 41393.05 37380.57 35098.41 36862.29 41792.79 40095.71 388
PVSNet86.72 1991.10 34190.97 33791.49 37697.56 29178.04 40187.17 40694.60 34984.65 38292.34 37592.20 38687.37 30498.47 36585.17 37897.69 32997.96 312
PMMVS293.66 29494.07 27792.45 36597.57 28980.67 39186.46 40796.00 32093.99 22897.10 20697.38 23989.90 27397.82 38888.76 33799.47 15298.86 214
CHOSEN 280x42089.98 35189.19 35792.37 36695.60 37381.13 38986.22 40897.09 29581.44 39587.44 40993.15 36673.99 37899.47 20288.69 33999.07 23396.52 376
dongtai63.43 38563.37 38863.60 40183.91 42353.17 42585.14 40943.40 42777.91 40980.96 41779.17 41736.36 42577.10 41937.88 42045.63 41960.54 416
kuosan54.81 38754.94 39054.42 40274.43 42450.03 42684.98 41044.27 42661.80 41762.49 42170.43 41835.16 42658.04 42119.30 42141.61 42055.19 417
tmp_tt57.23 38662.50 38941.44 40334.77 42649.21 42783.93 41160.22 42515.31 41971.11 41979.37 41670.09 39644.86 42264.76 41682.93 41630.25 418
PVSNet_081.89 2184.49 38283.21 38588.34 39395.76 36974.97 41683.49 41292.70 37178.47 40687.94 40786.90 41483.38 33696.63 40573.44 41266.86 41893.40 405
E-PMN89.52 35989.78 35188.73 39193.14 40877.61 40483.26 41392.02 37794.82 19993.71 34293.11 36775.31 37596.81 40085.81 36896.81 35891.77 410
EMVS89.06 36289.22 35488.61 39293.00 41077.34 40682.91 41490.92 38994.64 20592.63 37291.81 39076.30 37197.02 39783.83 38696.90 35391.48 411
MVEpermissive73.61 2286.48 38185.92 38088.18 39596.23 34485.28 34881.78 41575.79 41986.01 36482.53 41591.88 38992.74 21787.47 41871.42 41594.86 39191.78 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.88 38466.13 38769.11 40062.68 42525.73 42849.76 41696.04 31914.32 42064.27 42091.69 39273.45 38588.05 41776.06 40866.94 41793.54 403
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.22 38832.30 3910.00 4060.00 4290.00 4310.00 41798.10 2450.00 4240.00 42595.06 34397.54 390.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.98 39110.65 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42495.82 1300.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.91 39210.55 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.94 3450.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.32 39585.41 374
MSC_two_6792asdad98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
PC_three_145287.24 35298.37 10397.44 23097.00 6796.78 40292.01 26999.25 20899.21 147
No_MVS98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
test_one_060199.05 10595.50 10298.87 11997.21 9398.03 14898.30 13996.93 73
eth-test20.00 429
eth-test0.00 429
ZD-MVS98.43 18695.94 8398.56 18990.72 30896.66 23997.07 25895.02 16099.74 8191.08 28898.93 247
IU-MVS99.22 6695.40 10598.14 24285.77 36998.36 10695.23 17099.51 13999.49 75
test_241102_TWO98.83 13696.11 13398.62 7898.24 15196.92 7699.72 9395.44 15799.49 14699.49 75
test_241102_ONE99.22 6695.35 11098.83 13696.04 13899.08 4098.13 16497.87 2399.33 252
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10795.70 13599.62 9299.58 39
GSMVS98.06 302
test_part299.03 10796.07 7898.08 141
sam_mvs177.80 36098.06 302
sam_mvs77.38 364
MTGPAbinary98.73 158
test_post10.87 42276.83 36899.07 303
patchmatchnet-post96.84 27477.36 36599.42 217
gm-plane-assit91.79 41571.40 42181.67 39290.11 40598.99 31384.86 380
test9_res91.29 28398.89 25299.00 186
agg_prior290.34 31698.90 24999.10 174
agg_prior97.80 25594.96 12898.36 21193.49 35099.53 184
TestCases98.06 9099.08 9696.16 7499.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
test_prior97.46 14097.79 26094.26 15798.42 20399.34 25098.79 222
新几何197.25 15898.29 19594.70 13597.73 26877.98 40794.83 31396.67 28692.08 24099.45 21088.17 34798.65 27897.61 338
旧先验197.80 25593.87 16897.75 26797.04 26193.57 19898.68 27398.72 232
原ACMM196.58 20498.16 21692.12 22398.15 24185.90 36793.49 35096.43 29992.47 23199.38 23587.66 35298.62 28098.23 284
testdata299.46 20587.84 348
segment_acmp95.34 150
testdata95.70 25198.16 21690.58 25697.72 26980.38 39995.62 29297.02 26292.06 24198.98 31589.06 33598.52 28697.54 342
test1297.46 14097.61 28794.07 16197.78 26693.57 34893.31 20399.42 21798.78 26398.89 207
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15599.46 20592.59 26299.20 21399.28 134
plane_prior496.77 280
plane_prior394.51 14395.29 18196.16 270
plane_prior198.49 179
n20.00 430
nn0.00 430
door-mid98.17 235
lessismore_v097.05 17399.36 4892.12 22384.07 41498.77 7098.98 6285.36 32099.74 8197.34 6899.37 17999.30 127
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
test1198.08 247
door97.81 265
HQP5-MVS92.47 212
BP-MVS90.51 311
HQP4-MVS92.87 36399.23 27899.06 179
HQP3-MVS98.43 20098.74 267
HQP2-MVS90.33 266
NP-MVS98.14 22093.72 17495.08 341
ACMMP++_ref99.52 134
ACMMP++99.55 121
Test By Simon94.51 176
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19395.63 16297.22 19597.30 24695.52 14398.55 35890.97 29298.90 24998.34 272
DeepMVS_CXcopyleft77.17 39990.94 41785.28 34874.08 42252.51 41880.87 41888.03 41075.25 37670.63 42059.23 41984.94 41475.62 414