This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6599.91 399.95 499.96 299.71 10099.91 1999.15 5399.97 1799.50 32100.00 199.90 4
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9399.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1299.86 599.92 699.69 5199.78 6899.92 1699.37 3199.88 15798.93 11199.95 4999.60 119
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2499.80 3299.93 1499.93 1398.54 13399.93 7199.59 2099.98 2199.76 37
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3799.84 2399.94 1199.91 1999.13 5799.96 3599.83 999.99 1299.83 18
Anonymous2023121199.62 3499.57 3999.76 4699.61 14699.60 10499.81 999.73 8199.82 2899.90 2299.90 2197.97 19499.86 19099.42 4399.96 4299.80 24
ab-mvs99.33 9899.28 9599.47 16599.57 16499.39 14999.78 1099.43 23798.87 18199.57 14899.82 4998.06 18699.87 17098.69 13199.73 19199.15 266
MVSFormer99.41 7399.44 5999.31 21599.57 16498.40 26299.77 1199.80 4799.73 4099.63 12599.30 26698.02 18999.98 799.43 3799.69 20699.55 145
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4799.73 4099.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 1899.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 2099.70 4899.91 2099.89 2599.60 1999.87 17099.59 2099.74 18499.71 46
K. test v398.87 20098.60 21099.69 8599.93 1399.46 12899.74 1594.97 35999.78 3599.88 3299.88 2893.66 29899.97 1799.61 1899.95 4999.64 90
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2499.70 4899.92 1899.93 1399.45 2299.97 1799.36 49100.00 199.85 13
NR-MVSNet99.40 7699.31 8399.68 8699.43 22699.55 11699.73 1699.50 21399.46 9899.88 3299.36 25297.54 22499.87 17098.97 10399.87 10999.63 95
IS-MVSNet99.03 17198.85 18899.55 14399.80 5699.25 18199.73 1699.15 29899.37 11199.61 13899.71 10094.73 28799.81 26297.70 20699.88 10099.58 133
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1199.72 1999.78 5899.90 799.82 5099.83 4398.45 14899.87 17099.51 3099.97 3099.86 11
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1699.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
Gipumacopyleft99.57 3899.59 3399.49 15999.98 399.71 6599.72 1999.84 3099.81 2999.94 1199.78 6698.91 8299.71 29898.41 14399.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GG-mvs-BLEND97.36 32797.59 36096.87 31899.70 2288.49 36994.64 36397.26 36680.66 36399.12 35891.50 35096.50 35896.08 360
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2099.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
SixPastTwentyTwo99.42 6999.30 8899.76 4699.92 1499.67 8199.70 2299.14 29999.65 6299.89 2699.90 2196.20 27099.94 5799.42 4399.92 7499.67 65
UGNet99.38 8299.34 7799.49 15998.90 32098.90 23199.70 2299.35 26199.86 1698.57 30699.81 5298.50 14399.93 7199.38 4699.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 14499.00 16199.66 9599.80 5699.43 13999.70 2299.24 28799.48 8999.56 15599.77 7394.89 28499.93 7198.72 12899.89 9299.63 95
3Dnovator99.15 299.43 6699.36 7599.65 10099.39 23799.42 14299.70 2299.56 17899.23 13299.35 20999.80 5499.17 5199.95 4598.21 16099.84 12399.59 128
gg-mvs-nofinetune95.87 32795.17 33197.97 31198.19 35496.95 31599.69 2889.23 36899.89 1196.24 35799.94 1281.19 36199.51 35193.99 34398.20 33897.44 352
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 899.69 2899.77 6199.78 3599.93 1499.89 2597.94 19599.92 9099.65 1699.98 2199.62 106
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8399.69 2899.92 699.67 5699.77 7399.75 8099.61 1799.98 799.35 5099.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4199.68 3199.85 2499.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
GBi-Net99.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
test199.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4199.68 3199.70 9799.67 5699.82 5099.83 4398.98 7399.90 12999.24 6699.97 3099.53 158
test_part198.63 22498.26 24799.75 5699.40 23599.49 12199.67 3599.68 10699.86 1699.88 3299.86 3686.73 35299.93 7199.34 5199.97 3099.81 23
DTE-MVSNet99.68 2399.61 3099.88 1199.80 5699.87 899.67 3599.71 9399.72 4399.84 4399.78 6698.67 11699.97 1799.30 5999.95 4999.80 24
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3599.75 7399.58 8199.85 4099.69 11398.18 17999.94 5799.28 6499.95 4999.83 18
QAPM98.40 25497.99 26599.65 10099.39 23799.47 12499.67 3599.52 20691.70 35498.78 29099.80 5498.55 13199.95 4594.71 33399.75 17599.53 158
FIs99.65 3099.58 3699.84 1999.84 3499.85 1299.66 3999.75 7399.86 1699.74 8999.79 6098.27 16899.85 20899.37 4899.93 7099.83 18
v899.68 2399.69 1899.65 10099.80 5699.40 14799.66 3999.76 6699.64 6499.93 1499.85 3798.66 11899.84 22599.88 699.99 1299.71 46
v1099.69 2199.69 1899.66 9599.81 5199.39 14999.66 3999.75 7399.60 7899.92 1899.87 3198.75 10799.86 19099.90 299.99 1299.73 42
PS-CasMVS99.66 2599.58 3699.89 799.80 5699.85 1299.66 3999.73 8199.62 6899.84 4399.71 10098.62 12299.96 3599.30 5999.96 4299.86 11
PEN-MVS99.66 2599.59 3399.89 799.83 3899.87 899.66 3999.73 8199.70 4899.84 4399.73 8798.56 13099.96 3599.29 6299.94 6299.83 18
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
OpenMVScopyleft98.12 1098.23 26797.89 27999.26 22499.19 28999.26 17799.65 4499.69 10391.33 35598.14 32899.77 7398.28 16799.96 3595.41 32299.55 24798.58 322
Anonymous2024052999.42 6999.34 7799.65 10099.53 18199.60 10499.63 4699.39 25099.47 9499.76 7599.78 6698.13 18199.86 19098.70 12999.68 20999.49 181
Anonymous2024052199.44 6599.42 6499.49 15999.89 2198.96 22199.62 4799.76 6699.85 2099.82 5099.88 2896.39 26599.97 1799.59 2099.98 2199.55 145
CS-MVS99.52 4999.54 4499.47 16599.51 19199.85 1299.62 4799.93 599.75 3899.34 21299.13 29499.39 2499.91 10899.43 3799.75 17598.66 316
LFMVS98.46 24898.19 25599.26 22499.24 28098.52 25499.62 4796.94 35199.87 1499.31 22199.58 18491.04 32399.81 26298.68 13299.42 27399.45 197
VDDNet98.97 18398.82 19399.42 18199.71 11198.81 23599.62 4798.68 31999.81 2999.38 20599.80 5494.25 29199.85 20898.79 12099.32 28799.59 128
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5099.62 4799.69 10399.85 2099.80 6099.81 5298.81 9299.91 10899.47 3499.88 10099.70 49
3Dnovator+98.92 399.35 8999.24 10399.67 8899.35 24799.47 12499.62 4799.50 21399.44 10199.12 25399.78 6698.77 10499.94 5797.87 19199.72 19799.62 106
canonicalmvs99.02 17399.00 16199.09 24699.10 30598.70 24199.61 5399.66 11599.63 6798.64 30097.65 36099.04 6999.54 34698.79 12098.92 31299.04 290
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9799.93 499.78 6899.68 12499.10 5899.78 27399.45 3599.96 4299.83 18
HPM-MVScopyleft99.25 11399.07 14099.78 3799.81 5199.75 5099.61 5399.67 11197.72 27899.35 20999.25 27899.23 4699.92 9097.21 24599.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 26997.95 26998.99 25599.03 31398.24 26999.61 5398.72 31896.81 31698.73 29499.51 21394.06 29299.86 19096.91 25998.20 33898.86 307
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20699.78 7298.88 23299.61 5399.56 17899.11 15399.24 23299.56 19593.00 30499.78 27397.43 22799.89 9299.35 228
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4799.60 5899.82 3799.46 9899.75 8099.56 19599.63 1499.95 4599.43 3799.88 10099.62 106
tfpnnormal99.43 6699.38 6999.60 12599.87 2899.75 5099.59 5999.78 5899.71 4499.90 2299.69 11398.85 9099.90 12997.25 24299.78 16699.15 266
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6399.59 5999.82 3799.39 10999.82 5099.84 4299.38 2999.91 10899.38 4699.93 7099.80 24
MIMVSNet98.43 25098.20 25299.11 24499.53 18198.38 26599.58 6198.61 32398.96 16899.33 21599.76 7690.92 32599.81 26297.38 23099.76 17299.15 266
CP-MVSNet99.54 4699.43 6299.87 1499.76 8499.82 2699.57 6299.61 14499.54 8299.80 6099.64 14197.79 20899.95 4599.21 6999.94 6299.84 14
LS3D99.24 11699.11 12599.61 12398.38 34999.79 3699.57 6299.68 10699.61 7299.15 24899.71 10098.70 11199.91 10897.54 22099.68 20999.13 273
EU-MVSNet99.39 8099.62 2698.72 28599.88 2496.44 32499.56 6499.85 2499.90 799.90 2299.85 3798.09 18399.83 23699.58 2399.95 4999.90 4
ACMH98.42 699.59 3799.54 4499.72 7699.86 3099.62 9699.56 6499.79 5398.77 19499.80 6099.85 3799.64 1399.85 20898.70 12999.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast99.43 6699.30 8899.80 2999.83 3899.81 2999.52 6699.70 9798.35 23899.51 17499.50 21699.31 3799.88 15798.18 16599.84 12399.69 52
wuyk23d97.58 29099.13 11892.93 34699.69 12199.49 12199.52 6699.77 6197.97 26499.96 899.79 6099.84 399.94 5795.85 31099.82 14279.36 361
VDD-MVS99.20 13399.11 12599.44 17599.43 22698.98 21799.50 6898.32 33599.80 3299.56 15599.69 11396.99 24999.85 20898.99 9999.73 19199.50 176
APDe-MVS99.48 5499.36 7599.85 1899.55 17599.81 2999.50 6899.69 10398.99 16399.75 8099.71 10098.79 9999.93 7198.46 14199.85 11999.80 24
DSMNet-mixed99.48 5499.65 2398.95 25899.71 11197.27 30899.50 6899.82 3799.59 8099.41 19899.85 3799.62 16100.00 199.53 2899.89 9299.59 128
ACMMPcopyleft99.25 11399.08 13699.74 6299.79 6699.68 7999.50 6899.65 12698.07 25899.52 16999.69 11398.57 12899.92 9097.18 24799.79 16099.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051797.62 28897.20 29798.90 27199.76 8497.40 30599.48 7294.36 36199.06 16099.70 10299.49 22184.55 35899.94 5798.73 12799.65 22399.36 225
VPNet99.46 6199.37 7299.71 8099.82 4499.59 10799.48 7299.70 9799.81 2999.69 10599.58 18497.66 22099.86 19099.17 7999.44 26899.67 65
Anonymous20240521198.75 21298.46 22699.63 11199.34 25799.66 8399.47 7497.65 34499.28 12399.56 15599.50 21693.15 30199.84 22598.62 13499.58 24199.40 214
MVS_030498.88 19898.71 20199.39 19498.85 32798.91 23099.45 7599.30 27398.56 21197.26 35099.68 12496.18 27199.96 3599.17 7999.94 6299.29 240
FMVSNet299.35 8999.28 9599.55 14399.49 20399.35 16299.45 7599.57 17399.44 10199.70 10299.74 8397.21 23999.87 17099.03 9699.94 6299.44 202
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14299.45 7599.57 17399.66 6099.78 6899.83 4397.85 20499.86 19099.44 3699.96 4299.61 115
baseline99.63 3199.62 2699.66 9599.80 5699.62 9699.44 7899.80 4799.71 4499.72 9599.69 11399.15 5399.83 23699.32 5699.94 6299.53 158
RPSCF99.18 14099.02 15599.64 10799.83 3899.85 1299.44 7899.82 3798.33 24399.50 17599.78 6697.90 19899.65 33396.78 26899.83 13399.44 202
CSCG99.37 8499.29 9399.60 12599.71 11199.46 12899.43 8099.85 2498.79 19199.41 19899.60 17698.92 8099.92 9098.02 17599.92 7499.43 208
CostFormer96.71 31196.79 31096.46 34198.90 32090.71 36599.41 8198.68 31994.69 34798.14 32899.34 26086.32 35599.80 26797.60 21798.07 34498.88 305
Patchmatch-test98.10 27297.98 26798.48 29499.27 27596.48 32399.40 8299.07 30298.81 18899.23 23399.57 19290.11 33699.87 17096.69 27299.64 22599.09 279
baseline197.73 28497.33 29298.96 25799.30 26897.73 29699.40 8298.42 33199.33 11799.46 18299.21 28791.18 32199.82 24698.35 14891.26 36299.32 234
V4299.56 4199.54 4499.63 11199.79 6699.46 12899.39 8499.59 16299.24 13099.86 3999.70 10798.55 13199.82 24699.79 1199.95 4999.60 119
EPMVS96.53 31496.32 31297.17 33398.18 35592.97 35399.39 8489.95 36798.21 25098.61 30299.59 18286.69 35499.72 29496.99 25599.23 29998.81 311
mPP-MVS99.19 13699.00 16199.76 4699.76 8499.68 7999.38 8699.54 18998.34 24299.01 26399.50 21698.53 13799.93 7197.18 24799.78 16699.66 75
CP-MVS99.23 11799.05 14699.75 5699.66 13699.66 8399.38 8699.62 13798.38 23199.06 26199.27 27398.79 9999.94 5797.51 22399.82 14299.66 75
FMVSNet597.80 28197.25 29599.42 18198.83 32998.97 21999.38 8699.80 4798.87 18199.25 22999.69 11380.60 36499.91 10898.96 10599.90 8499.38 219
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7299.70 8499.83 3899.70 7299.38 8699.78 5899.53 8499.67 11199.78 6699.19 4999.86 19097.32 23299.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DIV-MVS_2432*160099.63 3199.59 3399.76 4699.84 3499.90 499.37 9099.79 5399.83 2699.88 3299.85 3798.42 15199.90 12999.60 1999.73 19199.49 181
XVS99.27 11099.11 12599.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29299.47 22998.47 14499.88 15797.62 21499.73 19199.67 65
X-MVStestdata96.09 32294.87 33299.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29261.30 37098.47 14499.88 15797.62 21499.73 19199.67 65
MVS_Test99.28 10699.31 8399.19 23599.35 24798.79 23799.36 9399.49 21899.17 14199.21 23999.67 13098.78 10199.66 32699.09 9299.66 22099.10 276
MSP-MVS99.04 17098.79 19799.81 2699.78 7299.73 5999.35 9499.57 17398.54 21699.54 16298.99 31696.81 25399.93 7196.97 25699.53 25599.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EIA-MVS99.12 15399.01 15899.45 17399.36 24599.62 9699.34 9599.79 5398.41 22798.84 28298.89 33198.75 10799.84 22598.15 16999.51 25898.89 304
LCM-MVSNet-Re99.28 10699.15 11499.67 8899.33 26299.76 4799.34 9599.97 298.93 17399.91 2099.79 6098.68 11399.93 7196.80 26799.56 24399.30 237
MTAPA99.35 8999.20 10799.80 2999.81 5199.81 2999.33 9799.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
VNet99.18 14099.06 14299.56 14099.24 28099.36 15899.33 9799.31 27099.67 5699.47 17999.57 19296.48 25999.84 22599.15 8399.30 28999.47 191
abl_699.36 8799.23 10599.75 5699.71 11199.74 5699.33 9799.76 6699.07 15699.65 11999.63 15199.09 6099.92 9097.13 25099.76 17299.58 133
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8499.71 6599.32 10099.50 21398.35 23898.97 26599.48 22498.37 15899.92 9095.95 30899.75 17599.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 20898.54 22099.49 15998.89 32399.19 19799.32 10099.67 11199.65 6299.72 9599.79 6091.87 31599.95 4598.00 17999.97 3099.33 231
tpm97.15 30096.95 30497.75 31898.91 31994.24 34599.32 10097.96 33997.71 27998.29 31799.32 26286.72 35399.92 9098.10 17396.24 35999.09 279
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4799.32 10099.77 6199.53 8499.77 7399.76 7699.26 4599.78 27397.77 19999.88 10099.60 119
HFP-MVS99.25 11399.08 13699.76 4699.73 10499.70 7299.31 10499.59 16298.36 23399.36 20799.37 24798.80 9699.91 10897.43 22799.75 17599.68 58
region2R99.23 11799.05 14699.77 4099.76 8499.70 7299.31 10499.59 16298.41 22799.32 21799.36 25298.73 11099.93 7197.29 23499.74 18499.67 65
ACMMPR99.23 11799.06 14299.76 4699.74 10199.69 7699.31 10499.59 16298.36 23399.35 20999.38 24698.61 12499.93 7197.43 22799.75 17599.67 65
131498.00 27797.90 27898.27 30598.90 32097.45 30499.30 10799.06 30494.98 34197.21 35199.12 29998.43 14999.67 32295.58 31898.56 33097.71 350
112198.56 23498.24 24899.52 15099.49 20399.24 18699.30 10799.22 28995.77 33198.52 30999.29 26997.39 23199.85 20895.79 31399.34 28499.46 195
MVS95.72 33094.63 33498.99 25598.56 34597.98 29099.30 10798.86 31172.71 36397.30 34899.08 30398.34 16299.74 28989.21 35498.33 33599.26 243
tpmvs97.39 29597.69 28596.52 34098.41 34891.76 35899.30 10798.94 31097.74 27797.85 34099.55 20292.40 31199.73 29296.25 29498.73 32598.06 345
TranMVSNet+NR-MVSNet99.54 4699.47 5399.76 4699.58 15499.64 9099.30 10799.63 13499.61 7299.71 10099.56 19598.76 10599.96 3599.14 8999.92 7499.68 58
CR-MVSNet98.35 25998.20 25298.83 27799.05 31098.12 27799.30 10799.67 11197.39 29599.16 24699.79 6091.87 31599.91 10898.78 12398.77 31998.44 331
RPMNet98.60 22898.53 22298.83 27799.05 31098.12 27799.30 10799.62 13799.86 1699.16 24699.74 8392.53 30899.92 9098.75 12598.77 31998.44 331
DP-MVS99.48 5499.39 6799.74 6299.57 16499.62 9699.29 11499.61 14499.87 1499.74 8999.76 7698.69 11299.87 17098.20 16199.80 15599.75 40
ZNCC-MVS99.22 12699.04 15299.77 4099.76 8499.73 5999.28 11599.56 17898.19 25299.14 25099.29 26998.84 9199.92 9097.53 22299.80 15599.64 90
Anonymous2023120699.35 8999.31 8399.47 16599.74 10199.06 21499.28 11599.74 7899.23 13299.72 9599.53 20797.63 22299.88 15799.11 9199.84 12399.48 186
test_040299.22 12699.14 11599.45 17399.79 6699.43 13999.28 11599.68 10699.54 8299.40 20399.56 19599.07 6599.82 24696.01 30299.96 4299.11 274
hse-mvs398.61 22698.34 24099.44 17599.60 14898.67 24399.27 11899.44 23399.68 5299.32 21799.49 22192.50 309100.00 199.24 6696.51 35799.65 83
APD-MVS_3200maxsize99.31 10299.16 11199.74 6299.53 18199.75 5099.27 11899.61 14499.19 13799.57 14899.64 14198.76 10599.90 12997.29 23499.62 22899.56 142
SR-MVS-dyc-post99.27 11099.11 12599.73 7099.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.41 15299.91 10897.27 23799.61 23599.54 153
RE-MVS-def99.13 11899.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.57 12897.27 23799.61 23599.54 153
TSAR-MVS + MP.99.34 9499.24 10399.63 11199.82 4499.37 15599.26 12099.35 26198.77 19499.57 14899.70 10799.27 4499.88 15797.71 20499.75 17599.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 8299.44 5999.21 23299.58 15498.09 28199.26 12099.46 22899.62 6899.75 8099.67 13098.54 13399.85 20899.15 8399.92 7499.68 58
CVMVSNet98.61 22698.88 18597.80 31699.58 15493.60 34999.26 12099.64 13299.66 6099.72 9599.67 13093.26 30099.93 7199.30 5999.81 15099.87 9
RRT_test8_iter0597.35 29897.25 29597.63 32198.81 33393.13 35199.26 12099.89 1399.51 8699.83 4899.68 12479.03 36999.88 15799.53 2899.72 19799.89 8
EG-PatchMatch MVS99.57 3899.56 4399.62 12099.77 8099.33 16599.26 12099.76 6699.32 11899.80 6099.78 6699.29 3999.87 17099.15 8399.91 8399.66 75
DWT-MVSNet_test96.03 32495.80 32396.71 33998.50 34791.93 35799.25 12797.87 34295.99 32896.81 35497.61 36181.02 36299.66 32697.20 24697.98 34598.54 324
test072699.69 12199.80 3499.24 12899.57 17399.16 14399.73 9399.65 13998.35 160
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16498.65 24899.24 12899.46 22899.68 5299.80 6099.66 13498.99 7299.89 14399.19 7499.90 8499.72 43
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16498.66 24599.24 12899.46 22899.67 5699.79 6599.65 13998.97 7599.89 14399.15 8399.89 9299.71 46
EPNet98.13 27097.77 28399.18 23794.57 36697.99 28599.24 12897.96 33999.74 3997.29 34999.62 16093.13 30299.97 1798.59 13599.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 24598.11 26099.64 10799.73 10499.58 11099.24 12899.76 6689.94 35799.42 19099.56 19597.76 21099.86 19097.74 20299.82 14299.47 191
PatchT98.45 24998.32 24398.83 27798.94 31898.29 26899.24 12898.82 31499.84 2399.08 25799.76 7691.37 31899.94 5798.82 11899.00 30898.26 337
DeepC-MVS98.90 499.62 3499.61 3099.67 8899.72 10899.44 13599.24 12899.71 9399.27 12499.93 1499.90 2199.70 1199.93 7198.99 9999.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 28297.66 28898.12 30999.14 29595.36 33799.22 13598.75 31796.97 31098.25 32099.64 14190.90 32699.94 5796.51 28299.56 24399.08 282
ADS-MVSNet97.72 28697.67 28797.86 31499.14 29594.65 34399.22 13598.86 31196.97 31098.25 32099.64 14190.90 32699.84 22596.51 28299.56 24399.08 282
tpm296.35 31796.22 31496.73 33798.88 32691.75 35999.21 13798.51 32793.27 35097.89 33799.21 28784.83 35799.70 30096.04 30198.18 34198.75 314
test117299.23 11799.05 14699.74 6299.52 18699.75 5099.20 13899.61 14498.97 16599.48 17799.58 18498.41 15299.91 10897.15 24999.55 24799.57 139
SED-MVS99.40 7699.28 9599.77 4099.69 12199.82 2699.20 13899.54 18999.13 14999.82 5099.63 15198.91 8299.92 9097.85 19499.70 20399.58 133
OPU-MVS99.29 21899.12 29999.44 13599.20 13899.40 24199.00 7198.84 36196.54 28099.60 23899.58 133
GST-MVS99.16 14598.96 17299.75 5699.73 10499.73 5999.20 13899.55 18498.22 24999.32 21799.35 25798.65 12099.91 10896.86 26299.74 18499.62 106
PMVScopyleft92.94 2198.82 20598.81 19498.85 27399.84 3497.99 28599.20 13899.47 22499.71 4499.42 19099.82 4998.09 18399.47 35393.88 34499.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 30697.07 30096.24 34398.68 34390.30 36799.19 14398.38 33497.35 29798.23 32299.59 18287.23 34599.82 24696.27 29398.73 32598.59 320
SR-MVS99.19 13699.00 16199.74 6299.51 19199.72 6399.18 14499.60 15598.85 18399.47 17999.58 18498.38 15799.92 9096.92 25899.54 25399.57 139
thres100view90096.39 31696.03 31897.47 32499.63 14295.93 33199.18 14497.57 34598.75 19898.70 29797.31 36587.04 34799.67 32287.62 35898.51 33296.81 356
thres600view796.60 31396.16 31597.93 31299.63 14296.09 33099.18 14497.57 34598.77 19498.72 29597.32 36487.04 34799.72 29488.57 35598.62 32897.98 347
SteuartSystems-ACMMP99.30 10399.14 11599.76 4699.87 2899.66 8399.18 14499.60 15598.55 21399.57 14899.67 13099.03 7099.94 5797.01 25499.80 15599.69 52
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 21498.44 22999.64 10799.61 14699.38 15299.18 14499.55 18496.49 32099.27 22799.37 24797.11 24599.92 9095.74 31599.67 21699.62 106
ambc99.20 23499.35 24798.53 25299.17 14999.46 22899.67 11199.80 5498.46 14799.70 30097.92 18599.70 20399.38 219
Regformer-399.41 7399.41 6599.40 19199.52 18698.70 24199.17 14999.44 23399.62 6899.75 8099.60 17698.90 8599.85 20898.89 11399.84 12399.65 83
Regformer-499.45 6399.44 5999.50 15699.52 18698.94 22399.17 14999.53 19899.64 6499.76 7599.60 17698.96 7899.90 12998.91 11299.84 12399.67 65
PatchmatchNetpermissive97.65 28797.80 28097.18 33298.82 33292.49 35499.17 14998.39 33398.12 25498.79 28899.58 18490.71 33099.89 14397.23 24399.41 27499.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 15798.95 17499.59 12799.13 29799.59 10799.17 14999.65 12697.88 27099.25 22999.46 23298.97 7599.80 26797.26 23999.82 14299.37 222
MAR-MVS98.24 26697.92 27599.19 23598.78 33799.65 8899.17 14999.14 29995.36 33698.04 33298.81 33697.47 22699.72 29495.47 32199.06 30398.21 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 13399.01 15899.77 4099.75 9599.71 6599.16 15599.72 9097.99 26299.42 19099.60 17698.81 9299.93 7196.91 25999.74 18499.66 75
LPG-MVS_test99.22 12699.05 14699.74 6299.82 4499.63 9499.16 15599.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 32399.78 3999.15 15799.66 11599.34 11498.92 27299.24 28397.69 21399.98 798.11 17199.28 29198.81 311
MDTV_nov1_ep1397.73 28498.70 34290.83 36499.15 15798.02 33898.51 21898.82 28499.61 16990.98 32499.66 32696.89 26198.92 312
DVP-MVS99.32 10099.17 11099.77 4099.69 12199.80 3499.14 15999.31 27099.16 14399.62 13299.61 16998.35 16099.91 10897.88 18899.72 19799.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 11899.79 3699.14 15999.61 14499.92 9097.88 18899.72 19799.77 33
test_post199.14 15951.63 37289.54 34099.82 24696.86 262
v2v48299.50 5099.47 5399.58 13199.78 7299.25 18199.14 15999.58 17199.25 12899.81 5799.62 16098.24 17099.84 22599.83 999.97 3099.64 90
MDTV_nov1_ep13_2view91.44 36299.14 15997.37 29699.21 23991.78 31796.75 26999.03 291
API-MVS98.38 25598.39 23498.35 29998.83 32999.26 17799.14 15999.18 29598.59 20998.66 29998.78 33798.61 12499.57 34594.14 33999.56 24396.21 358
SF-MVS99.10 16198.93 17599.62 12099.58 15499.51 11999.13 16599.65 12697.97 26499.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
SMA-MVScopyleft99.19 13699.00 16199.73 7099.46 21999.73 5999.13 16599.52 20697.40 29499.57 14899.64 14198.93 7999.83 23697.61 21699.79 16099.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvs99.63 3199.61 3099.67 8899.79 6699.59 10799.13 16599.85 2499.79 3499.76 7599.72 9399.33 3699.82 24699.21 6999.94 6299.59 128
ACMM98.09 1199.46 6199.38 6999.72 7699.80 5699.69 7699.13 16599.65 12698.99 16399.64 12199.72 9399.39 2499.86 19098.23 15899.81 15099.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.18 14099.18 10999.16 23899.34 25799.28 17399.12 16999.79 5399.48 8998.93 26998.55 34699.40 2399.93 7198.51 13999.52 25798.28 336
AllTest99.21 13199.07 14099.63 11199.78 7299.64 9099.12 16999.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
v14419299.55 4499.54 4499.58 13199.78 7299.20 19699.11 17199.62 13799.18 13899.89 2699.72 9398.66 11899.87 17099.88 699.97 3099.66 75
v114499.54 4699.53 4999.59 12799.79 6699.28 17399.10 17299.61 14499.20 13699.84 4399.73 8798.67 11699.84 22599.86 899.98 2199.64 90
#test#99.12 15398.90 18399.76 4699.73 10499.70 7299.10 17299.59 16297.60 28399.36 20799.37 24798.80 9699.91 10896.84 26599.75 17599.68 58
tpmrst97.73 28498.07 26296.73 33798.71 34192.00 35699.10 17298.86 31198.52 21798.92 27299.54 20491.90 31399.82 24698.02 17599.03 30698.37 333
FMVSNet398.80 20798.63 20999.32 21299.13 29798.72 24099.10 17299.48 22099.23 13299.62 13299.64 14192.57 30699.86 19098.96 10599.90 8499.39 217
thisisatest053097.45 29396.95 30498.94 25999.68 13097.73 29699.09 17694.19 36398.61 20899.56 15599.30 26684.30 35999.93 7198.27 15599.54 25399.16 264
MTMP99.09 17698.59 325
v14899.40 7699.41 6599.39 19499.76 8498.94 22399.09 17699.59 16299.17 14199.81 5799.61 16998.41 15299.69 30699.32 5699.94 6299.53 158
MVP-Stereo99.16 14599.08 13699.43 17999.48 20999.07 21299.08 17999.55 18498.63 20599.31 22199.68 12498.19 17799.78 27398.18 16599.58 24199.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 30896.98 30396.16 34498.85 32790.59 36699.08 17999.32 26692.37 35297.73 34699.46 23291.15 32299.69 30696.07 30098.80 31698.21 340
MVSTER98.47 24798.22 25099.24 22999.06 30998.35 26799.08 17999.46 22899.27 12499.75 8099.66 13488.61 34299.85 20899.14 8999.92 7499.52 168
Fast-Effi-MVS+-dtu99.20 13399.12 12299.43 17999.25 27899.69 7699.05 18299.82 3799.50 8798.97 26599.05 30698.98 7399.98 798.20 16199.24 29798.62 318
v192192099.56 4199.57 3999.55 14399.75 9599.11 20499.05 18299.61 14499.15 14799.88 3299.71 10099.08 6399.87 17099.90 299.97 3099.66 75
Fast-Effi-MVS+99.02 17398.87 18699.46 16999.38 24099.50 12099.04 18499.79 5397.17 30598.62 30198.74 33999.34 3599.95 4598.32 15199.41 27498.92 302
v119299.57 3899.57 3999.57 13699.77 8099.22 19099.04 18499.60 15599.18 13899.87 3899.72 9399.08 6399.85 20899.89 599.98 2199.66 75
alignmvs98.28 26297.96 26899.25 22799.12 29998.93 22799.03 18698.42 33199.64 6498.72 29597.85 35890.86 32899.62 33798.88 11499.13 30099.19 258
test20.0399.55 4499.54 4499.58 13199.79 6699.37 15599.02 18799.89 1399.60 7899.82 5099.62 16098.81 9299.89 14399.43 3799.86 11699.47 191
mvs_anonymous99.28 10699.39 6798.94 25999.19 28997.81 29399.02 18799.55 18499.78 3599.85 4099.80 5498.24 17099.86 19099.57 2499.50 26099.15 266
APD-MVScopyleft98.87 20098.59 21299.71 8099.50 19899.62 9699.01 18999.57 17396.80 31799.54 16299.63 15198.29 16699.91 10895.24 32599.71 20199.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 24298.19 25599.41 18998.33 35199.56 11399.01 18999.59 16295.44 33599.57 14899.80 5495.64 27899.46 35596.47 28599.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
DCV-MVSNet98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
tfpn200view996.30 31995.89 31997.53 32299.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33296.81 356
v124099.56 4199.58 3699.51 15399.80 5699.00 21599.00 19199.65 12699.15 14799.90 2299.75 8099.09 6099.88 15799.90 299.96 4299.67 65
thres40096.40 31595.89 31997.92 31399.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33297.98 347
Regformer-199.32 10099.27 9899.47 16599.41 23298.95 22298.99 19699.48 22099.48 8999.66 11599.52 20998.78 10199.87 17098.36 14699.74 18499.60 119
Regformer-299.34 9499.27 9899.53 14999.41 23299.10 20898.99 19699.53 19899.47 9499.66 11599.52 20998.80 9699.89 14398.31 15299.74 18499.60 119
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 13099.45 13398.99 19699.67 11199.48 8999.55 16099.36 25294.92 28399.86 19098.95 10996.57 35699.45 197
DeepC-MVS_fast98.47 599.23 11799.12 12299.56 14099.28 27399.22 19098.99 19699.40 24799.08 15499.58 14599.64 14198.90 8599.83 23697.44 22699.75 17599.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS98.75 21298.54 22099.41 18998.14 35898.61 24998.98 20099.66 11599.31 11999.84 4399.75 8091.98 31299.98 799.20 7299.95 4999.62 106
UniMVSNet (Re)99.37 8499.26 10099.68 8699.51 19199.58 11098.98 20099.60 15599.43 10699.70 10299.36 25297.70 21199.88 15799.20 7299.87 10999.59 128
UniMVSNet_NR-MVSNet99.37 8499.25 10299.72 7699.47 21499.56 11398.97 20299.61 14499.43 10699.67 11199.28 27197.85 20499.95 4599.17 7999.81 15099.65 83
CDS-MVSNet99.22 12699.13 11899.50 15699.35 24799.11 20498.96 20399.54 18999.46 9899.61 13899.70 10796.31 26799.83 23699.34 5199.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 10699.11 12599.79 3499.75 9599.81 2998.95 20499.53 19898.27 24799.53 16799.73 8798.75 10799.87 17097.70 20699.83 13399.68 58
PM-MVS99.36 8799.29 9399.58 13199.83 3899.66 8398.95 20499.86 2098.85 18399.81 5799.73 8798.40 15699.92 9098.36 14699.83 13399.17 262
SD-MVS99.01 17799.30 8898.15 30799.50 19899.40 14798.94 20699.61 14499.22 13599.75 8099.82 4999.54 2195.51 36597.48 22499.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 7699.38 6999.44 17599.90 1998.66 24598.94 20699.91 997.97 26499.79 6599.73 8799.05 6899.97 1799.15 8399.99 1299.68 58
MDA-MVSNet-bldmvs99.06 16499.05 14699.07 25099.80 5697.83 29298.89 20899.72 9099.29 12099.63 12599.70 10796.47 26099.89 14398.17 16799.82 14299.50 176
testtj98.56 23498.17 25799.72 7699.45 22299.60 10498.88 20999.50 21396.88 31299.18 24599.48 22497.08 24699.92 9093.69 34599.38 27799.63 95
mvs-test198.83 20398.70 20499.22 23198.89 32399.65 8898.88 20999.66 11599.34 11498.29 31798.94 32697.69 21399.96 3598.11 17198.54 33198.04 346
ACMP97.51 1499.05 16798.84 19099.67 8899.78 7299.55 11698.88 20999.66 11597.11 30999.47 17999.60 17699.07 6599.89 14396.18 29799.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 29796.84 30898.89 27299.29 27099.45 13398.87 21299.48 22086.54 36099.44 18499.74 8397.34 23499.86 19091.61 34999.28 29197.37 354
tmp_tt95.75 32995.42 32796.76 33589.90 36894.42 34498.86 21397.87 34278.01 36199.30 22599.69 11397.70 21195.89 36499.29 6298.14 34299.95 1
HPM-MVS++copyleft98.96 18698.70 20499.74 6299.52 18699.71 6598.86 21399.19 29498.47 22398.59 30499.06 30598.08 18599.91 10896.94 25799.60 23899.60 119
IterMVS-LS99.41 7399.47 5399.25 22799.81 5198.09 28198.85 21599.76 6699.62 6899.83 4899.64 14198.54 13399.97 1799.15 8399.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 10599.26 10099.37 20199.75 9598.81 23598.84 21699.89 1398.38 23199.75 8099.04 30999.36 3499.86 19099.08 9399.25 29599.45 197
F-COLMAP98.74 21498.45 22799.62 12099.57 16499.47 12498.84 21699.65 12696.31 32498.93 26999.19 29197.68 21599.87 17096.52 28199.37 28199.53 158
baseline296.83 30796.28 31398.46 29599.09 30796.91 31798.83 21893.87 36497.23 30296.23 35898.36 35188.12 34399.90 12996.68 27398.14 34298.57 323
DU-MVS99.33 9899.21 10699.71 8099.43 22699.56 11398.83 21899.53 19899.38 11099.67 11199.36 25297.67 21699.95 4599.17 7999.81 15099.63 95
Baseline_NR-MVSNet99.49 5299.37 7299.82 2399.91 1599.84 1898.83 21899.86 2099.68 5299.65 11999.88 2897.67 21699.87 17099.03 9699.86 11699.76 37
XVG-ACMP-BASELINE99.23 11799.10 13399.63 11199.82 4499.58 11098.83 21899.72 9098.36 23399.60 14099.71 10098.92 8099.91 10897.08 25299.84 12399.40 214
MSLP-MVS++99.05 16799.09 13498.91 26599.21 28498.36 26698.82 22299.47 22498.85 18398.90 27599.56 19598.78 10199.09 35998.57 13699.68 20999.26 243
9.1498.64 20799.45 22298.81 22399.60 15597.52 28899.28 22699.56 19598.53 13799.83 23695.36 32499.64 225
D2MVS99.22 12699.19 10899.29 21899.69 12198.74 23998.81 22399.41 24098.55 21399.68 10799.69 11398.13 18199.87 17098.82 11899.98 2199.24 246
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8099.41 14698.81 22399.66 11599.42 10899.75 8099.66 13499.20 4899.76 28398.98 10199.99 1299.36 225
HQP_MVS98.90 19498.68 20699.55 14399.58 15499.24 18698.80 22699.54 18998.94 17099.14 25099.25 27897.24 23799.82 24695.84 31199.78 16699.60 119
plane_prior298.80 22698.94 170
JIA-IIPM98.06 27497.92 27598.50 29398.59 34497.02 31498.80 22698.51 32799.88 1397.89 33799.87 3191.89 31499.90 12998.16 16897.68 35098.59 320
PAPM_NR98.36 25698.04 26399.33 20899.48 20998.93 22798.79 22999.28 27897.54 28698.56 30798.57 34497.12 24499.69 30694.09 34098.90 31499.38 219
CHOSEN 1792x268899.39 8099.30 8899.65 10099.88 2499.25 18198.78 23099.88 1698.66 20299.96 899.79 6097.45 22799.93 7199.34 5199.99 1299.78 32
hse-mvs298.52 24098.30 24499.16 23899.29 27098.60 25098.77 23199.02 30699.68 5299.32 21799.04 30992.50 30999.85 20899.24 6697.87 34899.03 291
ETH3D-3000-0.198.77 20998.50 22499.59 12799.47 21499.53 11898.77 23199.60 15597.33 29899.23 23399.50 21697.91 19799.83 23695.02 32999.67 21699.41 212
MS-PatchMatch99.00 17998.97 17099.09 24699.11 30498.19 27398.76 23399.33 26498.49 22199.44 18499.58 18498.21 17499.69 30698.20 16199.62 22899.39 217
DPE-MVScopyleft99.14 14998.92 17999.82 2399.57 16499.77 4198.74 23499.60 15598.55 21399.76 7599.69 11398.23 17399.92 9096.39 28899.75 17599.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 23198.37 23699.26 22499.43 22698.40 26298.74 23499.13 30198.10 25599.21 23999.24 28394.82 28599.90 12997.86 19298.77 31999.49 181
zzz-MVS99.30 10399.14 11599.80 2999.81 5199.81 2998.73 23699.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
AUN-MVS97.82 28097.38 29199.14 24199.27 27598.53 25298.72 23799.02 30698.10 25597.18 35299.03 31389.26 34199.85 20897.94 18497.91 34699.03 291
sss98.90 19498.77 19899.27 22299.48 20998.44 25998.72 23799.32 26697.94 26899.37 20699.35 25796.31 26799.91 10898.85 11599.63 22799.47 191
CANet99.11 15799.05 14699.28 22098.83 32998.56 25198.71 23999.41 24099.25 12899.23 23399.22 28597.66 22099.94 5799.19 7499.97 3099.33 231
AdaColmapbinary98.60 22898.35 23999.38 19899.12 29999.22 19098.67 24099.42 23997.84 27598.81 28599.27 27397.32 23599.81 26295.14 32699.53 25599.10 276
MP-MVS-pluss99.14 14998.92 17999.80 2999.83 3899.83 2298.61 24199.63 13496.84 31599.44 18499.58 18498.81 9299.91 10897.70 20699.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 20598.57 21699.58 13199.21 28499.31 16898.61 24199.25 28498.65 20398.43 31499.26 27697.86 20299.81 26296.55 27999.27 29499.61 115
BH-RMVSNet98.41 25298.14 25999.21 23299.21 28498.47 25698.60 24398.26 33698.35 23898.93 26999.31 26497.20 24299.66 32694.32 33699.10 30299.51 170
LF4IMVS99.01 17798.92 17999.27 22299.71 11199.28 17398.59 24499.77 6198.32 24499.39 20499.41 23998.62 12299.84 22596.62 27899.84 12398.69 315
OPM-MVS99.26 11299.13 11899.63 11199.70 11899.61 10298.58 24599.48 22098.50 21999.52 16999.63 15199.14 5599.76 28397.89 18799.77 17099.51 170
MCST-MVS99.02 17398.81 19499.65 10099.58 15499.49 12198.58 24599.07 30298.40 22999.04 26299.25 27898.51 14299.80 26797.31 23399.51 25899.65 83
PVSNet_BlendedMVS99.03 17199.01 15899.09 24699.54 17697.99 28598.58 24599.82 3797.62 28299.34 21299.71 10098.52 14099.77 28197.98 18099.97 3099.52 168
OMC-MVS98.90 19498.72 20099.44 17599.39 23799.42 14298.58 24599.64 13297.31 29999.44 18499.62 16098.59 12699.69 30696.17 29899.79 16099.22 251
diffmvs99.34 9499.32 8299.39 19499.67 13598.77 23898.57 24999.81 4699.61 7299.48 17799.41 23998.47 14499.86 19098.97 10399.90 8499.53 158
DP-MVS Recon98.50 24298.23 24999.31 21599.49 20399.46 12898.56 25099.63 13494.86 34498.85 28199.37 24797.81 20699.59 34396.08 29999.44 26898.88 305
new-patchmatchnet99.35 8999.57 3998.71 28799.82 4496.62 32298.55 25199.75 7399.50 8799.88 3299.87 3199.31 3799.88 15799.43 37100.00 199.62 106
pmmvs599.19 13699.11 12599.42 18199.76 8498.88 23298.55 25199.73 8198.82 18799.72 9599.62 16096.56 25699.82 24699.32 5699.95 4999.56 142
BH-untuned98.22 26898.09 26198.58 29199.38 24097.24 30998.55 25198.98 30997.81 27699.20 24498.76 33897.01 24899.65 33394.83 33098.33 33598.86 307
CNVR-MVS98.99 18298.80 19699.56 14099.25 27899.43 13998.54 25499.27 27998.58 21098.80 28799.43 23798.53 13799.70 30097.22 24499.59 24099.54 153
thres20096.09 32295.68 32597.33 32999.48 20996.22 32798.53 25597.57 34598.06 25998.37 31696.73 36986.84 35199.61 34186.99 36198.57 32996.16 359
1112_ss99.05 16798.84 19099.67 8899.66 13699.29 17198.52 25699.82 3797.65 28199.43 18899.16 29296.42 26299.91 10899.07 9499.84 12399.80 24
EPNet_dtu97.62 28897.79 28297.11 33496.67 36392.31 35598.51 25798.04 33799.24 13095.77 35999.47 22993.78 29799.66 32698.98 10199.62 22899.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 25697.99 26599.48 16399.32 26399.24 18698.50 25899.51 20995.19 34098.58 30598.96 32496.95 25099.83 23695.63 31699.25 29599.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 27597.55 28999.46 16999.47 21499.44 13598.50 25899.62 13786.79 35899.07 26099.26 27698.26 16999.62 33797.28 23699.73 19199.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1698.50 24298.16 25899.51 15399.04 31299.39 14998.47 26099.47 22496.70 31998.78 29099.33 26197.62 22399.86 19094.69 33499.38 27799.28 242
xiu_mvs_v1_base_debu99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base_debi99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
TR-MVS97.44 29497.15 29998.32 30198.53 34697.46 30398.47 26097.91 34196.85 31498.21 32398.51 34896.42 26299.51 35192.16 34897.29 35297.98 347
FPMVS96.32 31895.50 32698.79 28199.60 14898.17 27598.46 26598.80 31597.16 30696.28 35599.63 15182.19 36099.09 35988.45 35698.89 31599.10 276
plane_prior99.24 18698.42 26697.87 27199.71 201
WR-MVS99.11 15798.93 17599.66 9599.30 26899.42 14298.42 26699.37 25799.04 16199.57 14899.20 28996.89 25199.86 19098.66 13399.87 10999.70 49
MVS-HIRNet97.86 27998.22 25096.76 33599.28 27391.53 36198.38 26892.60 36599.13 14999.31 22199.96 1097.18 24399.68 31798.34 14999.83 13399.07 287
ETH3 D test640097.76 28397.19 29899.50 15699.38 24099.26 17798.34 26999.49 21892.99 35198.54 30899.20 28995.92 27699.82 24691.14 35299.66 22099.40 214
N_pmnet98.73 21698.53 22299.35 20599.72 10898.67 24398.34 26994.65 36098.35 23899.79 6599.68 12498.03 18799.93 7198.28 15499.92 7499.44 202
CNLPA98.57 23398.34 24099.28 22099.18 29199.10 20898.34 26999.41 24098.48 22298.52 30998.98 31997.05 24799.78 27395.59 31799.50 26098.96 298
CDPH-MVS98.56 23498.20 25299.61 12399.50 19899.46 12898.32 27299.41 24095.22 33899.21 23999.10 30298.34 16299.82 24695.09 32899.66 22099.56 142
Effi-MVS+99.06 16498.97 17099.34 20699.31 26498.98 21798.31 27399.91 998.81 18898.79 28898.94 32699.14 5599.84 22598.79 12098.74 32399.20 256
xxxxxxxxxxxxxcwj99.11 15798.96 17299.54 14799.53 18199.25 18198.29 27499.76 6699.07 15699.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
save fliter99.53 18199.25 18198.29 27499.38 25699.07 156
Patchmatch-RL test98.60 22898.36 23799.33 20899.77 8099.07 21298.27 27699.87 1898.91 17699.74 8999.72 9390.57 33299.79 27098.55 13799.85 11999.11 274
jason99.16 14599.11 12599.32 21299.75 9598.44 25998.26 27799.39 25098.70 20099.74 8999.30 26698.54 13399.97 1798.48 14099.82 14299.55 145
jason: jason.
XVG-OURS-SEG-HR99.16 14598.99 16699.66 9599.84 3499.64 9098.25 27899.73 8198.39 23099.63 12599.43 23799.70 1199.90 12997.34 23198.64 32799.44 202
MDA-MVSNet_test_wron98.95 18998.99 16698.85 27399.64 14097.16 31198.23 27999.33 26498.93 17399.56 15599.66 13497.39 23199.83 23698.29 15399.88 10099.55 145
YYNet198.95 18998.99 16698.84 27599.64 14097.14 31298.22 28099.32 26698.92 17599.59 14399.66 13497.40 22999.83 23698.27 15599.90 8499.55 145
CANet_DTU98.91 19298.85 18899.09 24698.79 33598.13 27698.18 28199.31 27099.48 8998.86 28099.51 21396.56 25699.95 4599.05 9599.95 4999.19 258
MG-MVS98.52 24098.39 23498.94 25999.15 29497.39 30698.18 28199.21 29398.89 18099.23 23399.63 15197.37 23399.74 28994.22 33899.61 23599.69 52
SCA98.11 27198.36 23797.36 32799.20 28792.99 35298.17 28398.49 32998.24 24899.10 25699.57 19296.01 27499.94 5796.86 26299.62 22899.14 270
TSAR-MVS + GP.99.12 15399.04 15299.38 19899.34 25799.16 19998.15 28499.29 27598.18 25399.63 12599.62 16099.18 5099.68 31798.20 16199.74 18499.30 237
new_pmnet98.88 19898.89 18498.84 27599.70 11897.62 29998.15 28499.50 21397.98 26399.62 13299.54 20498.15 18099.94 5797.55 21999.84 12398.95 299
PatchMatch-RL98.68 22198.47 22599.30 21799.44 22499.28 17398.14 28699.54 18997.12 30899.11 25499.25 27897.80 20799.70 30096.51 28299.30 28998.93 301
xiu_mvs_v2_base99.02 17399.11 12598.77 28299.37 24398.09 28198.13 28799.51 20999.47 9499.42 19098.54 34799.38 2999.97 1798.83 11699.33 28698.24 338
lupinMVS98.96 18698.87 18699.24 22999.57 16498.40 26298.12 28899.18 29598.28 24699.63 12599.13 29498.02 18999.97 1798.22 15999.69 20699.35 228
DELS-MVS99.34 9499.30 8899.48 16399.51 19199.36 15898.12 28899.53 19899.36 11399.41 19899.61 16999.22 4799.87 17099.21 6999.68 20999.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 24799.35 16298.11 29099.41 24094.83 34697.92 33598.99 31698.02 18999.85 208
train_agg98.35 25997.95 26999.57 13699.35 24799.35 16298.11 29099.41 24094.90 34297.92 33598.99 31698.02 18999.85 20895.38 32399.44 26899.50 176
PMMVS299.48 5499.45 5799.57 13699.76 8498.99 21698.09 29299.90 1298.95 16999.78 6899.58 18499.57 2099.93 7199.48 3399.95 4999.79 30
Test_1112_low_res98.95 18998.73 19999.63 11199.68 13099.15 20198.09 29299.80 4797.14 30799.46 18299.40 24196.11 27299.89 14399.01 9899.84 12399.84 14
test_899.34 25799.31 16898.08 29499.40 24794.90 34297.87 33998.97 32298.02 18999.84 225
IterMVS-SCA-FT99.00 17999.16 11198.51 29299.75 9595.90 33298.07 29599.84 3099.84 2399.89 2699.73 8796.01 27499.99 599.33 54100.00 199.63 95
HyFIR lowres test98.91 19298.64 20799.73 7099.85 3399.47 12498.07 29599.83 3298.64 20499.89 2699.60 17692.57 306100.00 199.33 5499.97 3099.72 43
IterMVS98.97 18399.16 11198.42 29699.74 10195.64 33598.06 29799.83 3299.83 2699.85 4099.74 8396.10 27399.99 599.27 65100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何298.04 298
BH-w/o97.20 29997.01 30297.76 31799.08 30895.69 33498.03 29998.52 32695.76 33297.96 33498.02 35695.62 27999.47 35392.82 34797.25 35398.12 344
无先验98.01 30099.23 28895.83 33099.85 20895.79 31399.44 202
pmmvs499.13 15199.06 14299.36 20499.57 16499.10 20898.01 30099.25 28498.78 19399.58 14599.44 23698.24 17099.76 28398.74 12699.93 7099.22 251
PS-MVSNAJ99.00 17999.08 13698.76 28399.37 24398.10 28098.00 30299.51 20999.47 9499.41 19898.50 34999.28 4199.97 1798.83 11699.34 28498.20 342
test_prior499.19 19798.00 302
agg_prior198.33 26197.92 27599.57 13699.35 24799.36 15897.99 30499.39 25094.85 34597.76 34498.98 31998.03 18799.85 20895.49 31999.44 26899.51 170
HQP-NCC99.31 26497.98 30597.45 29198.15 324
ACMP_Plane99.31 26497.98 30597.45 29198.15 324
HQP-MVS98.36 25698.02 26499.39 19499.31 26498.94 22397.98 30599.37 25797.45 29198.15 32498.83 33496.67 25499.70 30094.73 33199.67 21699.53 158
UnsupCasMVSNet_bld98.55 23798.27 24699.40 19199.56 17499.37 15597.97 30899.68 10697.49 29099.08 25799.35 25795.41 28199.82 24697.70 20698.19 34099.01 296
test_prior398.62 22598.34 24099.46 16999.35 24799.22 19097.95 30999.39 25097.87 27198.05 33099.05 30697.90 19899.69 30695.99 30499.49 26299.48 186
test_prior297.95 30997.87 27198.05 33099.05 30697.90 19895.99 30499.49 262
旧先验297.94 31195.33 33798.94 26899.88 15796.75 269
MVEpermissive92.54 2296.66 31296.11 31698.31 30399.68 13097.55 30197.94 31195.60 35899.37 11190.68 36598.70 34096.56 25698.61 36386.94 36299.55 24798.77 313
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 313
MVS_111021_HR99.12 15399.02 15599.40 19199.50 19899.11 20497.92 31399.71 9398.76 19799.08 25799.47 22999.17 5199.54 34697.85 19499.76 17299.54 153
MVS_111021_LR99.13 15199.03 15499.42 18199.58 15499.32 16797.91 31599.73 8198.68 20199.31 22199.48 22499.09 6099.66 32697.70 20699.77 17099.29 240
pmmvs398.08 27397.80 28098.91 26599.41 23297.69 29897.87 31699.66 11595.87 32999.50 17599.51 21390.35 33499.97 1798.55 13799.47 26599.08 282
XVG-OURS99.21 13199.06 14299.65 10099.82 4499.62 9697.87 31699.74 7898.36 23399.66 11599.68 12499.71 999.90 12996.84 26599.88 10099.43 208
test22299.51 19199.08 21197.83 31899.29 27595.21 33998.68 29899.31 26497.28 23699.38 27799.43 208
miper_lstm_enhance98.65 22398.60 21098.82 28099.20 28797.33 30797.78 31999.66 11599.01 16299.59 14399.50 21694.62 28899.85 20898.12 17099.90 8499.26 243
TinyColmap98.97 18398.93 17599.07 25099.46 21998.19 27397.75 32099.75 7398.79 19199.54 16299.70 10798.97 7599.62 33796.63 27799.83 13399.41 212
our_test_398.85 20299.09 13498.13 30899.66 13694.90 34297.72 32199.58 17199.07 15699.64 12199.62 16098.19 17799.93 7198.41 14399.95 4999.55 145
testdata197.72 32197.86 274
ET-MVSNet_ETH3D96.78 30896.07 31798.91 26599.26 27797.92 29197.70 32396.05 35697.96 26792.37 36498.43 35087.06 34699.90 12998.27 15597.56 35198.91 303
cl_fuxian98.72 21798.71 20198.72 28599.12 29997.22 31097.68 32499.56 17898.90 17799.54 16299.48 22496.37 26699.73 29297.88 18899.88 10099.21 253
ppachtmachnet_test98.89 19799.12 12298.20 30699.66 13695.24 33997.63 32599.68 10699.08 15499.78 6899.62 16098.65 12099.88 15798.02 17599.96 4299.48 186
PAPR97.56 29197.07 30099.04 25398.80 33498.11 27997.63 32599.25 28494.56 34898.02 33398.25 35497.43 22899.68 31790.90 35398.74 32399.33 231
test0.0.03 197.37 29696.91 30798.74 28497.72 35997.57 30097.60 32797.36 35098.00 26099.21 23998.02 35690.04 33799.79 27098.37 14595.89 36098.86 307
PVSNet_Blended98.70 21998.59 21299.02 25499.54 17697.99 28597.58 32899.82 3795.70 33399.34 21298.98 31998.52 14099.77 28197.98 18099.83 13399.30 237
PMMVS98.49 24598.29 24599.11 24498.96 31798.42 26197.54 32999.32 26697.53 28798.47 31398.15 35597.88 20199.82 24697.46 22599.24 29799.09 279
MSDG99.08 16298.98 16999.37 20199.60 14899.13 20297.54 32999.74 7898.84 18699.53 16799.55 20299.10 5899.79 27097.07 25399.86 11699.18 260
test12329.31 33433.05 33918.08 34825.93 37012.24 37097.53 33110.93 37111.78 36524.21 36650.08 37421.04 3718.60 36623.51 36432.43 36533.39 362
CLD-MVS98.76 21198.57 21699.33 20899.57 16498.97 21997.53 33199.55 18496.41 32199.27 22799.13 29499.07 6599.78 27396.73 27199.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 22198.71 20198.60 28999.10 30596.84 31997.52 33399.54 18998.94 17099.58 14599.48 22496.25 26999.76 28398.01 17899.93 7099.21 253
miper_ehance_all_eth98.59 23198.59 21298.59 29098.98 31697.07 31397.49 33499.52 20698.50 21999.52 16999.37 24796.41 26499.71 29897.86 19299.62 22899.00 297
cl-mvsnet____98.54 23898.41 23298.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.85 29599.78 27397.97 18299.89 9299.17 262
cl-mvsnet198.54 23898.42 23198.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.87 29499.78 27397.97 18299.89 9299.18 260
test-LLR97.15 30096.95 30497.74 31998.18 35595.02 34097.38 33796.10 35398.00 26097.81 34198.58 34290.04 33799.91 10897.69 21298.78 31798.31 334
TESTMET0.1,196.24 32095.84 32297.41 32698.24 35393.84 34897.38 33795.84 35798.43 22497.81 34198.56 34579.77 36599.89 14397.77 19998.77 31998.52 325
test-mter96.23 32195.73 32497.74 31998.18 35595.02 34097.38 33796.10 35397.90 26997.81 34198.58 34279.12 36899.91 10897.69 21298.78 31798.31 334
IB-MVS95.41 2095.30 33294.46 33597.84 31598.76 33995.33 33897.33 34096.07 35596.02 32795.37 36297.41 36376.17 37099.96 3597.54 22095.44 36198.22 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 26297.94 27399.32 21299.36 24599.11 20497.31 34198.78 31696.88 31298.84 28299.11 30197.77 20999.61 34194.03 34299.36 28299.23 249
thisisatest051596.98 30496.42 31198.66 28899.42 23197.47 30297.27 34294.30 36297.24 30199.15 24898.86 33385.01 35699.87 17097.10 25199.39 27698.63 317
DeepPCF-MVS98.42 699.18 14099.02 15599.67 8899.22 28299.75 5097.25 34399.47 22498.72 19999.66 11599.70 10799.29 3999.63 33698.07 17499.81 15099.62 106
cl-mvsnet297.56 29197.28 29398.40 29798.37 35096.75 32097.24 34499.37 25797.31 29999.41 19899.22 28587.30 34499.37 35797.70 20699.62 22899.08 282
GA-MVS97.99 27897.68 28698.93 26299.52 18698.04 28497.19 34599.05 30598.32 24498.81 28598.97 32289.89 33999.41 35698.33 15099.05 30499.34 230
CL-MVSNet_2432*160098.71 21898.56 21999.15 24099.22 28298.66 24597.14 34699.51 20998.09 25799.54 16299.27 27396.87 25299.74 28998.43 14298.96 30999.03 291
KD-MVS_2432*160095.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
miper_refine_blended95.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
USDC98.96 18698.93 17599.05 25299.54 17697.99 28597.07 34999.80 4798.21 25099.75 8099.77 7398.43 14999.64 33597.90 18699.88 10099.51 170
miper_enhance_ethall98.03 27597.94 27398.32 30198.27 35296.43 32596.95 35099.41 24096.37 32399.43 18898.96 32494.74 28699.69 30697.71 20499.62 22898.83 310
CHOSEN 280x42098.41 25298.41 23298.40 29799.34 25795.89 33396.94 35199.44 23398.80 19099.25 22999.52 20993.51 29999.98 798.94 11099.98 2199.32 234
PCF-MVS96.03 1896.73 31095.86 32199.33 20899.44 22499.16 19996.87 35299.44 23386.58 35998.95 26799.40 24194.38 29099.88 15787.93 35799.80 15598.95 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 33533.33 33715.79 34926.03 3699.81 37196.77 35315.67 37011.55 36623.87 36750.74 37319.03 3728.53 36723.21 36533.07 36429.03 363
PVSNet97.47 1598.42 25198.44 22998.35 29999.46 21996.26 32696.70 35499.34 26397.68 28099.00 26499.13 29497.40 22999.72 29497.59 21899.68 20999.08 282
PAPM95.61 33194.71 33398.31 30399.12 29996.63 32196.66 35598.46 33090.77 35696.25 35698.68 34193.01 30399.69 30681.60 36397.86 34998.62 318
cascas96.99 30396.82 30997.48 32397.57 36295.64 33596.43 35699.56 17891.75 35397.13 35397.61 36195.58 28098.63 36296.68 27399.11 30198.18 343
bset_n11_16_dypcd98.69 22098.45 22799.42 18199.69 12198.52 25496.06 35796.80 35299.71 4499.73 9399.54 20495.14 28299.96 3599.39 4599.95 4999.79 30
PVSNet_095.53 1995.85 32895.31 33097.47 32498.78 33793.48 35095.72 35899.40 24796.18 32697.37 34797.73 35995.73 27799.58 34495.49 31981.40 36399.36 225
E-PMN97.14 30297.43 29096.27 34298.79 33591.62 36095.54 35999.01 30899.44 10198.88 27699.12 29992.78 30599.68 31794.30 33799.03 30697.50 351
EMVS96.96 30597.28 29395.99 34598.76 33991.03 36395.26 36098.61 32399.34 11498.92 27298.88 33293.79 29699.66 32692.87 34699.05 30497.30 355
test_method91.72 33392.32 33689.91 34793.49 36770.18 36990.28 36199.56 17861.71 36495.39 36199.52 20993.90 29399.94 5798.76 12498.27 33799.62 106
uanet_test8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.88 33633.17 3380.00 3500.00 3710.00 3720.00 36299.62 1370.00 3670.00 36899.13 29499.82 40.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas16.61 33722.14 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 199.28 410.00 3680.00 3660.00 3660.00 364
sosnet-low-res8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
Regformer8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.26 34411.02 3470.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.16 2920.00 3730.00 3680.00 3660.00 3660.00 364
uanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.43 22699.61 10299.43 23796.38 32299.11 25499.07 30497.86 20299.92 9094.04 34199.49 262
IU-MVS99.69 12199.77 4199.22 28997.50 28999.69 10597.75 20199.70 20399.77 33
test_241102_TWO99.54 18999.13 14999.76 7599.63 15198.32 16599.92 9097.85 19499.69 20699.75 40
test_241102_ONE99.69 12199.82 2699.54 18999.12 15299.82 5099.49 22198.91 8299.52 350
test_0728_THIRD99.18 13899.62 13299.61 16998.58 12799.91 10897.72 20399.80 15599.77 33
GSMVS99.14 270
test_part299.62 14599.67 8199.55 160
sam_mvs190.81 32999.14 270
sam_mvs90.52 333
MTGPAbinary99.53 198
test_post52.41 37190.25 33599.86 190
patchmatchnet-post99.62 16090.58 33199.94 57
gm-plane-assit97.59 36089.02 36893.47 34998.30 35299.84 22596.38 289
test9_res95.10 32799.44 26899.50 176
agg_prior294.58 33599.46 26799.50 176
agg_prior99.35 24799.36 15899.39 25097.76 34499.85 208
TestCases99.63 11199.78 7299.64 9099.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
test_prior99.46 16999.35 24799.22 19099.39 25099.69 30699.48 186
新几何199.52 15099.50 19899.22 19099.26 28195.66 33498.60 30399.28 27197.67 21699.89 14395.95 30899.32 28799.45 197
旧先验199.49 20399.29 17199.26 28199.39 24597.67 21699.36 28299.46 195
原ACMM199.37 20199.47 21498.87 23499.27 27996.74 31898.26 31999.32 26297.93 19699.82 24695.96 30799.38 27799.43 208
testdata299.89 14395.99 304
segment_acmp98.37 158
testdata99.42 18199.51 19198.93 22799.30 27396.20 32598.87 27999.40 24198.33 16499.89 14396.29 29299.28 29199.44 202
test1299.54 14799.29 27099.33 16599.16 29798.43 31497.54 22499.82 24699.47 26599.48 186
plane_prior799.58 15499.38 152
plane_prior699.47 21499.26 17797.24 237
plane_prior599.54 18999.82 24695.84 31199.78 16699.60 119
plane_prior499.25 278
plane_prior399.31 16898.36 23399.14 250
plane_prior199.51 191
n20.00 372
nn0.00 372
door-mid99.83 32
lessismore_v099.64 10799.86 3099.38 15290.66 36699.89 2699.83 4394.56 28999.97 1799.56 2599.92 7499.57 139
LGP-MVS_train99.74 6299.82 4499.63 9499.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
test1199.29 275
door99.77 61
HQP5-MVS98.94 223
BP-MVS94.73 331
HQP4-MVS98.15 32499.70 30099.53 158
HQP3-MVS99.37 25799.67 216
HQP2-MVS96.67 254
NP-MVS99.40 23599.13 20298.83 334
ACMMP++_ref99.94 62
ACMMP++99.79 160
Test By Simon98.41 152
ITE_SJBPF99.38 19899.63 14299.44 13599.73 8198.56 21199.33 21599.53 20798.88 8799.68 31796.01 30299.65 22399.02 295
DeepMVS_CXcopyleft97.98 31099.69 12196.95 31599.26 28175.51 36295.74 36098.28 35396.47 26099.62 33791.23 35197.89 34797.38 353