This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1399.91 2099.90 599.96 199.92 999.90 1299.97 699.87 3499.81 599.95 4799.54 3499.99 1299.80 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 10
UA-Net99.78 1499.76 1599.86 1899.72 11699.71 7699.91 399.95 899.96 399.71 10899.91 2199.15 5699.97 1999.50 41100.00 199.90 4
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2699.91 299.89 499.71 9899.93 899.95 1199.89 2799.71 999.96 3799.51 3999.97 3899.84 15
TDRefinement99.72 2099.70 1899.77 4599.90 2499.85 1599.86 599.92 999.69 6499.78 7499.92 1899.37 3399.88 17398.93 12299.95 6199.60 130
pmmvs699.86 699.86 699.83 2699.94 1199.90 599.83 699.91 1299.85 3299.94 1299.95 1399.73 899.90 14299.65 1999.97 3899.69 60
OurMVSNet-221017-099.75 1699.71 1799.84 2499.96 499.83 2799.83 699.85 2899.80 4499.93 1599.93 1598.54 14299.93 7899.59 2499.98 2699.76 44
v7n99.82 1099.80 1099.88 1399.96 499.84 2299.82 899.82 4199.84 3599.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 19
Anonymous2023121199.62 4299.57 4899.76 5299.61 15699.60 11599.81 999.73 8699.82 4099.90 2799.90 2397.97 20799.86 20599.42 5299.96 5299.80 26
CS-MVS99.67 3199.70 1899.58 14399.53 19599.84 2299.79 1099.96 699.90 1299.61 14999.41 25399.51 2499.95 4799.66 1899.89 10398.96 314
CS-MVS-test99.68 2899.70 1899.64 11699.57 17799.83 2799.78 1199.97 299.92 1099.50 18899.38 26399.57 2099.95 4799.69 1699.90 9499.15 281
RRT_MVS99.67 3199.59 4199.91 299.94 1199.88 999.78 1199.27 29199.87 2499.91 2299.87 3498.04 19999.96 3799.68 1799.99 1299.90 4
ab-mvs99.33 10899.28 10499.47 17999.57 17799.39 16299.78 1199.43 24998.87 19599.57 16099.82 5898.06 19899.87 18598.69 14299.73 20499.15 281
MVSFormer99.41 8299.44 6899.31 22799.57 17798.40 27699.77 1499.80 5299.73 5399.63 13599.30 28498.02 20299.98 999.43 4799.69 21899.55 156
test_djsdf99.84 899.81 999.91 299.94 1199.84 2299.77 1499.80 5299.73 5399.97 699.92 1899.77 799.98 999.43 47100.00 199.90 4
bld_raw_conf00599.81 1199.79 1199.86 1899.94 1199.85 1599.77 1499.90 1599.97 299.92 1999.86 4199.21 5099.94 6299.59 2499.98 2699.78 34
pm-mvs199.79 1399.79 1199.78 4299.91 2099.83 2799.76 1799.87 2199.73 5399.89 3299.87 3499.63 1499.87 18599.54 3499.92 8499.63 105
mvsmamba99.74 1999.70 1899.85 2199.93 1799.83 2799.76 1799.81 5099.96 399.91 2299.81 6198.60 13399.94 6299.58 2999.98 2699.77 39
DROMVSNet99.69 2599.69 2399.68 9499.71 11999.91 299.76 1799.96 699.86 2799.51 18699.39 26199.57 2099.93 7899.64 2199.86 12899.20 270
test250694.73 34394.59 34595.15 35999.59 16285.90 38499.75 2074.01 38599.89 1799.71 10899.86 4179.00 38399.90 14299.52 3899.99 1299.65 91
TransMVSNet (Re)99.78 1499.77 1399.81 3199.91 2099.85 1599.75 2099.86 2499.70 6199.91 2299.89 2799.60 1999.87 18599.59 2499.74 19799.71 53
test_low_dy_conf_00199.75 1699.70 1899.90 599.94 1199.85 1599.74 2299.54 19999.88 2299.90 2799.89 2798.84 9799.95 4799.59 2499.98 2699.90 4
DVP-MVS++99.38 9199.25 11199.77 4599.03 32999.77 4999.74 2299.61 15099.18 15199.76 8199.61 18099.00 7699.92 9897.72 21699.60 25299.62 116
FOURS199.83 4499.89 899.74 2299.71 9899.69 6499.63 135
K. test v398.87 21098.60 22099.69 9399.93 1799.46 14199.74 2294.97 37299.78 4999.88 3899.88 3193.66 31199.97 1999.61 2299.95 6199.64 100
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 999.73 2699.85 2899.70 6199.92 1999.93 1599.45 2599.97 1999.36 59100.00 199.85 14
NR-MVSNet99.40 8599.31 9299.68 9499.43 24099.55 12799.73 2699.50 22599.46 11199.88 3899.36 27097.54 23799.87 18598.97 11499.87 12199.63 105
IS-MVSNet99.03 18198.85 19899.55 15699.80 6399.25 19499.73 2699.15 31399.37 12499.61 14999.71 11294.73 29999.81 27797.70 22199.88 11299.58 144
ECVR-MVScopyleft97.73 29598.04 27496.78 34799.59 16290.81 37899.72 2990.43 38199.89 1799.86 4699.86 4193.60 31299.89 15899.46 4499.99 1299.65 91
FC-MVSNet-test99.70 2299.65 2999.86 1899.88 3099.86 1499.72 2999.78 6399.90 1299.82 5699.83 5198.45 15799.87 18599.51 3999.97 3899.86 12
mvs_tets99.90 299.90 299.90 599.96 499.79 4399.72 2999.88 1999.92 1099.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
Gipumacopyleft99.57 4799.59 4199.49 17399.98 399.71 7699.72 2999.84 3499.81 4199.94 1299.78 7798.91 8899.71 31398.41 15499.95 6199.05 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test111197.74 29498.16 26896.49 35399.60 15889.86 38299.71 3391.21 37999.89 1799.88 3899.87 3493.73 31099.90 14299.56 3299.99 1299.70 56
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
jajsoiax99.89 399.89 399.89 999.96 499.78 4699.70 3499.86 2499.89 1799.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
SixPastTwentyTwo99.42 7899.30 9799.76 5299.92 1999.67 9299.70 3499.14 31499.65 7699.89 3299.90 2396.20 28399.94 6299.42 5299.92 8499.67 73
UGNet99.38 9199.34 8699.49 17398.90 33998.90 24599.70 3499.35 27399.86 2798.57 32199.81 6198.50 15299.93 7899.38 5499.98 2699.66 83
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 15499.00 17199.66 10499.80 6399.43 15299.70 3499.24 30099.48 10299.56 16799.77 8494.89 29699.93 7898.72 13999.89 10399.63 105
3Dnovator99.15 299.43 7599.36 8499.65 10999.39 25199.42 15599.70 3499.56 18799.23 14499.35 22499.80 6499.17 5499.95 4798.21 17199.84 13799.59 139
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1796.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
MIMVSNet199.66 3399.62 3499.80 3499.94 1199.87 1199.69 4099.77 6699.78 4999.93 1599.89 2797.94 20899.92 9899.65 1999.98 2699.62 116
Vis-MVSNetpermissive99.75 1699.74 1699.79 3999.88 3099.66 9499.69 4099.92 999.67 7099.77 7999.75 9399.61 1799.98 999.35 6099.98 2699.72 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 899.82 899.89 999.96 499.77 4999.68 4399.85 2899.95 599.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
GBi-Net99.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
test199.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
FMVSNet199.66 3399.63 3399.73 7899.78 8099.77 4999.68 4399.70 10499.67 7099.82 5699.83 5198.98 7999.90 14299.24 7899.97 3899.53 170
test_part198.63 23398.26 25699.75 6299.40 24999.49 13499.67 4799.68 11399.86 2799.88 3899.86 4186.73 36799.93 7899.34 6199.97 3899.81 25
DTE-MVSNet99.68 2899.61 3899.88 1399.80 6399.87 1199.67 4799.71 9899.72 5699.84 5199.78 7798.67 12399.97 1999.30 7199.95 6199.80 26
WR-MVS_H99.61 4499.53 5799.87 1699.80 6399.83 2799.67 4799.75 7899.58 9599.85 4899.69 12598.18 19199.94 6299.28 7699.95 6199.83 19
QAPM98.40 26497.99 27799.65 10999.39 25199.47 13799.67 4799.52 21791.70 36898.78 30599.80 6498.55 14099.95 4794.71 34899.75 18999.53 170
bld_raw_dy_0_6499.70 2299.65 2999.85 2199.95 1099.77 4999.66 5199.71 9899.95 599.91 2299.77 8498.35 170100.00 199.54 3499.99 1299.79 32
FIs99.65 3899.58 4599.84 2499.84 4099.85 1599.66 5199.75 7899.86 2799.74 9899.79 7098.27 17999.85 22399.37 5799.93 8099.83 19
v899.68 2899.69 2399.65 10999.80 6399.40 16099.66 5199.76 7199.64 7899.93 1599.85 4598.66 12599.84 24099.88 699.99 1299.71 53
v1099.69 2599.69 2399.66 10499.81 5899.39 16299.66 5199.75 7899.60 9299.92 1999.87 3498.75 11499.86 20599.90 299.99 1299.73 49
PS-CasMVS99.66 3399.58 4599.89 999.80 6399.85 1599.66 5199.73 8699.62 8299.84 5199.71 11298.62 12999.96 3799.30 7199.96 5299.86 12
PEN-MVS99.66 3399.59 4199.89 999.83 4499.87 1199.66 5199.73 8699.70 6199.84 5199.73 9998.56 13999.96 3799.29 7499.94 7299.83 19
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 12100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 15
OpenMVScopyleft98.12 1098.23 27797.89 29199.26 23699.19 30499.26 19099.65 5799.69 11091.33 36998.14 34399.77 8498.28 17899.96 3795.41 33799.55 26398.58 338
Anonymous2024052999.42 7899.34 8699.65 10999.53 19599.60 11599.63 5999.39 26299.47 10799.76 8199.78 7798.13 19399.86 20598.70 14099.68 22399.49 194
Anonymous2024052199.44 7499.42 7399.49 17399.89 2698.96 23599.62 6099.76 7199.85 3299.82 5699.88 3196.39 27899.97 1999.59 2499.98 2699.55 156
LFMVS98.46 25798.19 26599.26 23699.24 29598.52 26999.62 6096.94 36599.87 2499.31 23599.58 19791.04 33699.81 27798.68 14399.42 28999.45 210
VDDNet98.97 19398.82 20399.42 19499.71 11998.81 25099.62 6098.68 33499.81 4199.38 22099.80 6494.25 30399.85 22398.79 13199.32 30399.59 139
VPA-MVSNet99.66 3399.62 3499.79 3999.68 13999.75 6199.62 6099.69 11099.85 3299.80 6699.81 6198.81 9999.91 12299.47 4399.88 11299.70 56
3Dnovator+98.92 399.35 9999.24 11399.67 9799.35 26199.47 13799.62 6099.50 22599.44 11499.12 26899.78 7798.77 11199.94 6297.87 20299.72 21099.62 116
canonicalmvs99.02 18399.00 17199.09 25999.10 32098.70 25799.61 6599.66 12299.63 8198.64 31597.65 37799.04 7499.54 36098.79 13198.92 32899.04 306
nrg03099.70 2299.66 2799.82 2899.76 9299.84 2299.61 6599.70 10499.93 899.78 7499.68 13699.10 6299.78 28899.45 4599.96 5299.83 19
HPM-MVScopyleft99.25 12399.07 15099.78 4299.81 5899.75 6199.61 6599.67 11897.72 29299.35 22499.25 29699.23 4899.92 9897.21 26099.82 15699.67 73
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 27997.95 28198.99 26899.03 32998.24 28399.61 6598.72 33396.81 33198.73 30999.51 22794.06 30499.86 20596.91 27398.20 35498.86 324
Vis-MVSNet (Re-imp)98.77 21998.58 22599.34 21899.78 8098.88 24699.61 6599.56 18799.11 16799.24 24799.56 21093.00 31899.78 28897.43 24299.89 10399.35 241
GeoE99.69 2599.66 2799.78 4299.76 9299.76 5799.60 7099.82 4199.46 11199.75 8999.56 21099.63 1499.95 4799.43 4799.88 11299.62 116
tfpnnormal99.43 7599.38 7899.60 13799.87 3499.75 6199.59 7199.78 6399.71 5799.90 2799.69 12598.85 9699.90 14297.25 25799.78 18099.15 281
XXY-MVS99.71 2199.67 2699.81 3199.89 2699.72 7499.59 7199.82 4199.39 12299.82 5699.84 5099.38 3199.91 12299.38 5499.93 8099.80 26
dcpmvs_299.61 4499.64 3299.53 16299.79 7398.82 24999.58 7399.97 299.95 599.96 899.76 8898.44 15899.99 699.34 6199.96 5299.78 34
MIMVSNet98.43 26098.20 26299.11 25799.53 19598.38 27999.58 7398.61 33898.96 18299.33 22999.76 8890.92 33899.81 27797.38 24599.76 18699.15 281
CP-MVSNet99.54 5599.43 7199.87 1699.76 9299.82 3399.57 7599.61 15099.54 9699.80 6699.64 15297.79 22199.95 4799.21 8199.94 7299.84 15
LS3D99.24 12699.11 13599.61 13598.38 36699.79 4399.57 7599.68 11399.61 8699.15 26399.71 11298.70 11899.91 12297.54 23599.68 22399.13 289
EGC-MVSNET89.05 34585.52 34899.64 11699.89 2699.78 4699.56 7799.52 21724.19 37949.96 38099.83 5199.15 5699.92 9897.71 21899.85 13299.21 266
EU-MVSNet99.39 8999.62 3498.72 29899.88 3096.44 33999.56 7799.85 2899.90 1299.90 2799.85 4598.09 19599.83 25199.58 2999.95 6199.90 4
ACMH98.42 699.59 4699.54 5399.72 8499.86 3699.62 10799.56 7799.79 5898.77 20899.80 6699.85 4599.64 1399.85 22398.70 14099.89 10399.70 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast99.43 7599.30 9799.80 3499.83 4499.81 3699.52 8099.70 10498.35 25299.51 18699.50 23099.31 3999.88 17398.18 17699.84 13799.69 60
wuyk23d97.58 30299.13 12892.93 36099.69 13199.49 13499.52 8099.77 6697.97 27899.96 899.79 7099.84 399.94 6295.85 32599.82 15679.36 376
VDD-MVS99.20 14399.11 13599.44 18899.43 24098.98 23199.50 8298.32 35099.80 4499.56 16799.69 12596.99 26299.85 22398.99 11099.73 20499.50 189
APDe-MVS99.48 6399.36 8499.85 2199.55 18999.81 3699.50 8299.69 11098.99 17799.75 8999.71 11298.79 10699.93 7898.46 15299.85 13299.80 26
DSMNet-mixed99.48 6399.65 2998.95 27199.71 11997.27 32399.50 8299.82 4199.59 9499.41 21399.85 4599.62 16100.00 199.53 3799.89 10399.59 139
ACMMPcopyleft99.25 12399.08 14699.74 6899.79 7399.68 9099.50 8299.65 13298.07 27299.52 18199.69 12598.57 13799.92 9897.18 26199.79 17499.63 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051797.62 30097.20 30898.90 28499.76 9297.40 32099.48 8694.36 37499.06 17499.70 11199.49 23584.55 37399.94 6298.73 13899.65 23799.36 238
VPNet99.46 7099.37 8199.71 8899.82 5199.59 11899.48 8699.70 10499.81 4199.69 11499.58 19797.66 23399.86 20599.17 9099.44 28499.67 73
Anonymous20240521198.75 22298.46 23699.63 12399.34 27199.66 9499.47 8897.65 35899.28 13599.56 16799.50 23093.15 31599.84 24098.62 14599.58 25799.40 227
MVS_030498.88 20898.71 21199.39 20698.85 34698.91 24499.45 8999.30 28598.56 22597.26 36599.68 13696.18 28499.96 3799.17 9099.94 7299.29 253
FMVSNet299.35 9999.28 10499.55 15699.49 21799.35 17599.45 8999.57 18299.44 11499.70 11199.74 9597.21 25299.87 18599.03 10799.94 7299.44 215
TAMVS99.49 6199.45 6699.63 12399.48 22399.42 15599.45 8999.57 18299.66 7499.78 7499.83 5197.85 21799.86 20599.44 4699.96 5299.61 126
baseline99.63 3999.62 3499.66 10499.80 6399.62 10799.44 9299.80 5299.71 5799.72 10399.69 12599.15 5699.83 25199.32 6799.94 7299.53 170
RPSCF99.18 15099.02 16599.64 11699.83 4499.85 1599.44 9299.82 4198.33 25799.50 18899.78 7797.90 21199.65 34796.78 28299.83 14799.44 215
CSCG99.37 9499.29 10299.60 13799.71 11999.46 14199.43 9499.85 2898.79 20599.41 21399.60 18998.92 8699.92 9898.02 18699.92 8499.43 221
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33494.69 36198.14 34399.34 27886.32 37099.80 28297.60 23298.07 36098.88 322
Patchmatch-test98.10 28297.98 27998.48 30799.27 29096.48 33899.40 9699.07 31798.81 20299.23 24899.57 20790.11 35099.87 18596.69 28699.64 23999.09 295
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34699.33 13099.46 19799.21 30591.18 33499.82 26198.35 15991.26 37799.32 247
V4299.56 5099.54 5399.63 12399.79 7399.46 14199.39 9899.59 17099.24 14299.86 4699.70 11998.55 14099.82 26199.79 1199.95 6199.60 130
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26498.61 31799.59 19586.69 36999.72 30996.99 26999.23 31598.81 328
mPP-MVS99.19 14699.00 17199.76 5299.76 9299.68 9099.38 10099.54 19998.34 25699.01 27899.50 23098.53 14699.93 7897.18 26199.78 18099.66 83
CP-MVS99.23 12799.05 15699.75 6299.66 14599.66 9499.38 10099.62 14398.38 24599.06 27699.27 29198.79 10699.94 6297.51 23899.82 15699.66 83
FMVSNet597.80 29197.25 30799.42 19498.83 34898.97 23399.38 10099.80 5298.87 19599.25 24499.69 12580.60 37899.91 12298.96 11699.90 9499.38 232
COLMAP_ROBcopyleft98.06 1299.45 7299.37 8199.70 9299.83 4499.70 8399.38 10099.78 6399.53 9899.67 12199.78 7799.19 5299.86 20597.32 24799.87 12199.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test99.63 3999.59 4199.76 5299.84 4099.90 599.37 10499.79 5899.83 3899.88 3899.85 4598.42 16199.90 14299.60 2399.73 20499.49 194
XVS99.27 12099.11 13599.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30799.47 24398.47 15399.88 17397.62 22999.73 20499.67 73
X-MVStestdata96.09 33394.87 34299.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30761.30 38698.47 15399.88 17397.62 22999.73 20499.67 73
MVS_Test99.28 11699.31 9299.19 24799.35 26198.79 25299.36 10799.49 23099.17 15599.21 25499.67 14198.78 10899.66 34199.09 10399.66 23499.10 292
MSP-MVS99.04 18098.79 20799.81 3199.78 8099.73 7099.35 10899.57 18298.54 23099.54 17498.99 33396.81 26699.93 7896.97 27099.53 27199.77 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EIA-MVS99.12 16399.01 16899.45 18699.36 25999.62 10799.34 10999.79 5898.41 24198.84 29798.89 34898.75 11499.84 24098.15 18099.51 27498.89 321
LCM-MVSNet-Re99.28 11699.15 12499.67 9799.33 27699.76 5799.34 10999.97 298.93 18799.91 2299.79 7098.68 12099.93 7896.80 28199.56 25999.30 250
MTAPA99.35 9999.20 11799.80 3499.81 5899.81 3699.33 11199.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
VNet99.18 15099.06 15299.56 15399.24 29599.36 17199.33 11199.31 28299.67 7099.47 19399.57 20796.48 27299.84 24099.15 9499.30 30599.47 204
abl_699.36 9799.23 11599.75 6299.71 11999.74 6799.33 11199.76 7199.07 17099.65 12999.63 16299.09 6499.92 9897.13 26499.76 18699.58 144
MP-MVScopyleft99.06 17498.83 20299.76 5299.76 9299.71 7699.32 11499.50 22598.35 25298.97 28099.48 23898.37 16899.92 9895.95 32399.75 18999.63 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 21898.54 23099.49 17398.89 34299.19 21099.32 11499.67 11899.65 7699.72 10399.79 7091.87 32899.95 4798.00 19099.97 3899.33 244
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29398.29 33299.32 28086.72 36899.92 9898.10 18496.24 37499.09 295
ACMH+98.40 899.50 5999.43 7199.71 8899.86 3699.76 5799.32 11499.77 6699.53 9899.77 7999.76 8899.26 4799.78 28897.77 21099.88 11299.60 130
HFP-MVS99.25 12399.08 14699.76 5299.73 11299.70 8399.31 11899.59 17098.36 24799.36 22299.37 26598.80 10399.91 12297.43 24299.75 18999.68 66
region2R99.23 12799.05 15699.77 4599.76 9299.70 8399.31 11899.59 17098.41 24199.32 23199.36 27098.73 11799.93 7897.29 24999.74 19799.67 73
ACMMPR99.23 12799.06 15299.76 5299.74 10999.69 8799.31 11899.59 17098.36 24799.35 22499.38 26398.61 13199.93 7897.43 24299.75 18999.67 73
131498.00 28797.90 29098.27 31898.90 33997.45 31999.30 12199.06 31994.98 35597.21 36699.12 31698.43 15999.67 33795.58 33398.56 34697.71 365
112198.56 24398.24 25799.52 16499.49 21799.24 19999.30 12199.22 30495.77 34598.52 32499.29 28797.39 24499.85 22395.79 32899.34 30099.46 208
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32672.71 37797.30 36399.08 32098.34 17399.74 30489.21 36998.33 35199.26 256
tpmvs97.39 30797.69 29796.52 35298.41 36591.76 37199.30 12198.94 32597.74 29197.85 35599.55 21792.40 32599.73 30796.25 30998.73 34198.06 360
TranMVSNet+NR-MVSNet99.54 5599.47 6199.76 5299.58 16799.64 10199.30 12199.63 14099.61 8699.71 10899.56 21098.76 11299.96 3799.14 10099.92 8499.68 66
CR-MVSNet98.35 26998.20 26298.83 29099.05 32598.12 29199.30 12199.67 11897.39 31099.16 26199.79 7091.87 32899.91 12298.78 13498.77 33598.44 346
RPMNet98.60 23798.53 23298.83 29099.05 32598.12 29199.30 12199.62 14399.86 2799.16 26199.74 9592.53 32299.92 9898.75 13698.77 33598.44 346
DP-MVS99.48 6399.39 7699.74 6899.57 17799.62 10799.29 12899.61 15099.87 2499.74 9899.76 8898.69 11999.87 18598.20 17299.80 16999.75 47
ZNCC-MVS99.22 13699.04 16299.77 4599.76 9299.73 7099.28 12999.56 18798.19 26699.14 26599.29 28798.84 9799.92 9897.53 23799.80 16999.64 100
Anonymous2023120699.35 9999.31 9299.47 17999.74 10999.06 22899.28 12999.74 8399.23 14499.72 10399.53 22197.63 23599.88 17399.11 10299.84 13799.48 199
test_040299.22 13699.14 12599.45 18699.79 7399.43 15299.28 12999.68 11399.54 9699.40 21899.56 21099.07 7099.82 26196.01 31799.96 5299.11 290
h-mvs3398.61 23598.34 24999.44 18899.60 15898.67 25999.27 13299.44 24599.68 6699.32 23199.49 23592.50 323100.00 199.24 7896.51 37299.65 91
APD-MVS_3200maxsize99.31 11299.16 12199.74 6899.53 19599.75 6199.27 13299.61 15099.19 15099.57 16099.64 15298.76 11299.90 14297.29 24999.62 24299.56 153
iter_conf_final98.75 22298.54 23099.40 20299.33 27698.75 25499.26 13499.59 17099.80 4499.76 8199.58 19790.17 34999.92 9899.37 5799.97 3899.54 164
SR-MVS-dyc-post99.27 12099.11 13599.73 7899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.41 16299.91 12297.27 25299.61 24999.54 164
RE-MVS-def99.13 12899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.57 13797.27 25299.61 24999.54 164
TSAR-MVS + MP.99.34 10499.24 11399.63 12399.82 5199.37 16899.26 13499.35 27398.77 20899.57 16099.70 11999.27 4699.88 17397.71 21899.75 18999.65 91
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 9199.44 6899.21 24499.58 16798.09 29599.26 13499.46 24099.62 8299.75 8999.67 14198.54 14299.85 22399.15 9499.92 8499.68 66
CVMVSNet98.61 23598.88 19597.80 32999.58 16793.60 36499.26 13499.64 13899.66 7499.72 10399.67 14193.26 31499.93 7899.30 7199.81 16499.87 10
EG-PatchMatch MVS99.57 4799.56 5299.62 13299.77 8899.33 17899.26 13499.76 7199.32 13199.80 6699.78 7799.29 4199.87 18599.15 9499.91 9399.66 83
test072699.69 13199.80 4199.24 14199.57 18299.16 15799.73 10299.65 15098.35 170
EI-MVSNet-UG-set99.48 6399.50 5999.42 19499.57 17798.65 26499.24 14199.46 24099.68 6699.80 6699.66 14598.99 7899.89 15899.19 8599.90 9499.72 50
EI-MVSNet-Vis-set99.47 6999.49 6099.42 19499.57 17798.66 26199.24 14199.46 24099.67 7099.79 7199.65 15098.97 8199.89 15899.15 9499.89 10399.71 53
EPNet98.13 28097.77 29599.18 24994.57 38297.99 29999.24 14197.96 35499.74 5297.29 36499.62 17193.13 31699.97 1998.59 14699.83 14799.58 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 25498.11 27199.64 11699.73 11299.58 12199.24 14199.76 7189.94 37199.42 20599.56 21097.76 22399.86 20597.74 21599.82 15699.47 204
PatchT98.45 25998.32 25298.83 29098.94 33798.29 28299.24 14198.82 32999.84 3599.08 27299.76 8891.37 33199.94 6298.82 12999.00 32498.26 352
DeepC-MVS98.90 499.62 4299.61 3899.67 9799.72 11699.44 14899.24 14199.71 9899.27 13699.93 1599.90 2399.70 1199.93 7898.99 11099.99 1299.64 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 29297.66 30098.12 32299.14 31095.36 35299.22 14898.75 33296.97 32598.25 33599.64 15290.90 33999.94 6296.51 29799.56 25999.08 298
ADS-MVSNet97.72 29897.67 29997.86 32799.14 31094.65 35899.22 14898.86 32696.97 32598.25 33599.64 15290.90 33999.84 24096.51 29799.56 25999.08 298
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34293.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
test117299.23 12799.05 15699.74 6899.52 20199.75 6199.20 15199.61 15098.97 17999.48 19199.58 19798.41 16299.91 12297.15 26399.55 26399.57 150
SED-MVS99.40 8599.28 10499.77 4599.69 13199.82 3399.20 15199.54 19999.13 16399.82 5699.63 16298.91 8899.92 9897.85 20599.70 21599.58 144
OPU-MVS99.29 23099.12 31499.44 14899.20 15199.40 25799.00 7698.84 37596.54 29599.60 25299.58 144
GST-MVS99.16 15598.96 18299.75 6299.73 11299.73 7099.20 15199.55 19398.22 26399.32 23199.35 27598.65 12799.91 12296.86 27699.74 19799.62 116
PMVScopyleft92.94 2198.82 21598.81 20498.85 28699.84 4097.99 29999.20 15199.47 23699.71 5799.42 20599.82 5898.09 19599.47 36793.88 35999.85 13299.07 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34997.35 31298.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
SR-MVS99.19 14699.00 17199.74 6899.51 20699.72 7499.18 15799.60 16398.85 19799.47 19399.58 19798.38 16799.92 9896.92 27299.54 26999.57 150
thres100view90096.39 32796.03 32997.47 33699.63 15195.93 34699.18 15797.57 35998.75 21298.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
thres600view796.60 32496.16 32697.93 32599.63 15196.09 34599.18 15797.57 35998.77 20898.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
SteuartSystems-ACMMP99.30 11399.14 12599.76 5299.87 3499.66 9499.18 15799.60 16398.55 22799.57 16099.67 14199.03 7599.94 6297.01 26899.80 16999.69 60
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 22498.44 23899.64 11699.61 15699.38 16599.18 15799.55 19396.49 33599.27 24299.37 26597.11 25899.92 9895.74 33099.67 23099.62 116
ambc99.20 24699.35 26198.53 26799.17 16299.46 24099.67 12199.80 6498.46 15699.70 31597.92 19699.70 21599.38 232
Regformer-399.41 8299.41 7499.40 20299.52 20198.70 25799.17 16299.44 24599.62 8299.75 8999.60 18998.90 9199.85 22398.89 12499.84 13799.65 91
Regformer-499.45 7299.44 6899.50 17099.52 20198.94 23799.17 16299.53 20999.64 7899.76 8199.60 18998.96 8499.90 14298.91 12399.84 13799.67 73
PatchmatchNetpermissive97.65 29997.80 29297.18 34498.82 35192.49 36899.17 16298.39 34898.12 26898.79 30399.58 19790.71 34399.89 15897.23 25899.41 29099.16 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 16798.95 18499.59 13999.13 31299.59 11899.17 16299.65 13297.88 28499.25 24499.46 24698.97 8199.80 28297.26 25499.82 15699.37 235
MAR-MVS98.24 27697.92 28799.19 24798.78 35599.65 9999.17 16299.14 31495.36 35098.04 34798.81 35397.47 23999.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 14399.01 16899.77 4599.75 10399.71 7699.16 16899.72 9597.99 27699.42 20599.60 18998.81 9999.93 7896.91 27399.74 19799.66 83
LPG-MVS_test99.22 13699.05 15699.74 6899.82 5199.63 10599.16 16899.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
Effi-MVS+-dtu99.07 17398.92 18999.52 16498.89 34299.78 4699.15 17099.66 12299.34 12798.92 28799.24 30197.69 22699.98 998.11 18299.28 30798.81 328
MDTV_nov1_ep1397.73 29698.70 36090.83 37799.15 17098.02 35398.51 23298.82 29999.61 18090.98 33799.66 34196.89 27598.92 328
DVP-MVScopyleft99.32 11099.17 12099.77 4599.69 13199.80 4199.14 17299.31 28299.16 15799.62 14399.61 18098.35 17099.91 12297.88 19999.72 21099.61 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2699.70 12799.79 4399.14 17299.61 15099.92 9897.88 19999.72 21099.77 39
test_post199.14 17251.63 38889.54 35499.82 26196.86 276
v2v48299.50 5999.47 6199.58 14399.78 8099.25 19499.14 17299.58 18099.25 14099.81 6399.62 17198.24 18199.84 24099.83 999.97 3899.64 100
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 31199.21 25491.78 33096.75 28399.03 307
API-MVS98.38 26598.39 24398.35 31298.83 34899.26 19099.14 17299.18 31098.59 22398.66 31498.78 35498.61 13199.57 35994.14 35499.56 25996.21 373
SF-MVS99.10 17198.93 18599.62 13299.58 16799.51 13299.13 17899.65 13297.97 27899.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
SMA-MVScopyleft99.19 14699.00 17199.73 7899.46 23399.73 7099.13 17899.52 21797.40 30999.57 16099.64 15298.93 8599.83 25197.61 23199.79 17499.63 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvs99.63 3999.61 3899.67 9799.79 7399.59 11899.13 17899.85 2899.79 4799.76 8199.72 10599.33 3899.82 26199.21 8199.94 7299.59 139
ACMM98.09 1199.46 7099.38 7899.72 8499.80 6399.69 8799.13 17899.65 13298.99 17799.64 13199.72 10599.39 2799.86 20598.23 16999.81 16499.60 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.18 15099.18 11999.16 25099.34 27199.28 18699.12 18299.79 5899.48 10298.93 28498.55 36399.40 2699.93 7898.51 15099.52 27398.28 351
AllTest99.21 14199.07 15099.63 12399.78 8099.64 10199.12 18299.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
v14419299.55 5399.54 5399.58 14399.78 8099.20 20999.11 18499.62 14399.18 15199.89 3299.72 10598.66 12599.87 18599.88 699.97 3899.66 83
v114499.54 5599.53 5799.59 13999.79 7399.28 18699.10 18599.61 15099.20 14999.84 5199.73 9998.67 12399.84 24099.86 899.98 2699.64 100
iter_conf0598.46 25798.23 25899.15 25299.04 32797.99 29999.10 18599.61 15099.79 4799.76 8199.58 19787.88 35899.92 9899.31 7099.97 3899.53 170
#test#99.12 16398.90 19399.76 5299.73 11299.70 8399.10 18599.59 17097.60 29799.36 22299.37 26598.80 10399.91 12296.84 27999.75 18999.68 66
tpmrst97.73 29598.07 27396.73 35098.71 35992.00 37099.10 18598.86 32698.52 23198.92 28799.54 21991.90 32699.82 26198.02 18699.03 32298.37 348
FMVSNet398.80 21798.63 21999.32 22499.13 31298.72 25699.10 18599.48 23299.23 14499.62 14399.64 15292.57 32099.86 20598.96 11699.90 9499.39 230
thisisatest053097.45 30596.95 31598.94 27299.68 13997.73 31199.09 19094.19 37698.61 22299.56 16799.30 28484.30 37499.93 7898.27 16699.54 26999.16 279
MTMP99.09 19098.59 340
v14899.40 8599.41 7499.39 20699.76 9298.94 23799.09 19099.59 17099.17 15599.81 6399.61 18098.41 16299.69 32199.32 6799.94 7299.53 170
MVP-Stereo99.16 15599.08 14699.43 19299.48 22399.07 22699.08 19399.55 19398.63 21999.31 23599.68 13698.19 18999.78 28898.18 17699.58 25799.45 210
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27892.37 36697.73 36199.46 24691.15 33599.69 32196.07 31598.80 33298.21 355
MVSTER98.47 25698.22 26099.24 24199.06 32498.35 28199.08 19399.46 24099.27 13699.75 8999.66 14588.61 35699.85 22399.14 10099.92 8499.52 181
Fast-Effi-MVS+-dtu99.20 14399.12 13299.43 19299.25 29399.69 8799.05 19699.82 4199.50 10098.97 28099.05 32398.98 7999.98 998.20 17299.24 31398.62 334
v192192099.56 5099.57 4899.55 15699.75 10399.11 21799.05 19699.61 15099.15 16199.88 3899.71 11299.08 6899.87 18599.90 299.97 3899.66 83
patch_mono-299.51 5899.46 6599.64 11699.70 12799.11 21799.04 19899.87 2199.71 5799.47 19399.79 7098.24 18199.98 999.38 5499.96 5299.83 19
Fast-Effi-MVS+99.02 18398.87 19699.46 18299.38 25499.50 13399.04 19899.79 5897.17 32098.62 31698.74 35699.34 3799.95 4798.32 16299.41 29098.92 319
v119299.57 4799.57 4899.57 14999.77 8899.22 20399.04 19899.60 16399.18 15199.87 4599.72 10599.08 6899.85 22399.89 599.98 2699.66 83
alignmvs98.28 27297.96 28099.25 23999.12 31498.93 24199.03 20198.42 34699.64 7898.72 31097.85 37590.86 34199.62 35198.88 12599.13 31699.19 273
test20.0399.55 5399.54 5399.58 14399.79 7399.37 16899.02 20299.89 1799.60 9299.82 5699.62 17198.81 9999.89 15899.43 4799.86 12899.47 204
mvs_anonymous99.28 11699.39 7698.94 27299.19 30497.81 30899.02 20299.55 19399.78 4999.85 4899.80 6498.24 18199.86 20599.57 3199.50 27699.15 281
APD-MVScopyleft98.87 21098.59 22299.71 8899.50 21299.62 10799.01 20499.57 18296.80 33299.54 17499.63 16298.29 17799.91 12295.24 34099.71 21399.61 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 25198.19 26599.41 20198.33 36899.56 12499.01 20499.59 17095.44 34999.57 16099.80 6495.64 29199.46 36996.47 30099.92 8499.21 266
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
DCV-MVSNet98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
tfpn200view996.30 33095.89 33097.53 33499.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
v124099.56 5099.58 4599.51 16799.80 6399.00 22999.00 20699.65 13299.15 16199.90 2799.75 9399.09 6499.88 17399.90 299.96 5299.67 73
thres40096.40 32695.89 33097.92 32699.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
Regformer-199.32 11099.27 10799.47 17999.41 24698.95 23698.99 21199.48 23299.48 10299.66 12599.52 22398.78 10899.87 18598.36 15799.74 19799.60 130
Regformer-299.34 10499.27 10799.53 16299.41 24699.10 22298.99 21199.53 20999.47 10799.66 12599.52 22398.80 10399.89 15898.31 16399.74 19799.60 130
UnsupCasMVSNet_eth98.83 21398.57 22699.59 13999.68 13999.45 14698.99 21199.67 11899.48 10299.55 17299.36 27094.92 29599.86 20598.95 12096.57 37199.45 210
DeepC-MVS_fast98.47 599.23 12799.12 13299.56 15399.28 28899.22 20398.99 21199.40 25999.08 16899.58 15799.64 15298.90 9199.83 25197.44 24199.75 18999.63 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)99.37 9499.26 10999.68 9499.51 20699.58 12198.98 21599.60 16399.43 11999.70 11199.36 27097.70 22499.88 17399.20 8499.87 12199.59 139
UniMVSNet_NR-MVSNet99.37 9499.25 11199.72 8499.47 22899.56 12498.97 21699.61 15099.43 11999.67 12199.28 28997.85 21799.95 4799.17 9099.81 16499.65 91
CDS-MVSNet99.22 13699.13 12899.50 17099.35 26199.11 21798.96 21799.54 19999.46 11199.61 14999.70 11996.31 28099.83 25199.34 6199.88 11299.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 11699.11 13599.79 3999.75 10399.81 3698.95 21899.53 20998.27 26199.53 17999.73 9998.75 11499.87 18597.70 22199.83 14799.68 66
PM-MVS99.36 9799.29 10299.58 14399.83 4499.66 9498.95 21899.86 2498.85 19799.81 6399.73 9998.40 16699.92 9898.36 15799.83 14799.17 277
SD-MVS99.01 18799.30 9798.15 32099.50 21299.40 16098.94 22099.61 15099.22 14899.75 8999.82 5899.54 2395.51 38097.48 23999.87 12199.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 8599.38 7899.44 18899.90 2498.66 26198.94 22099.91 1297.97 27899.79 7199.73 9999.05 7399.97 1999.15 9499.99 1299.68 66
MDA-MVSNet-bldmvs99.06 17499.05 15699.07 26399.80 6397.83 30798.89 22299.72 9599.29 13299.63 13599.70 11996.47 27399.89 15898.17 17899.82 15699.50 189
testtj98.56 24398.17 26799.72 8499.45 23699.60 11598.88 22399.50 22596.88 32799.18 26099.48 23897.08 25999.92 9893.69 36099.38 29399.63 105
mvs-test198.83 21398.70 21499.22 24398.89 34299.65 9998.88 22399.66 12299.34 12798.29 33298.94 34397.69 22699.96 3798.11 18298.54 34798.04 361
ACMP97.51 1499.05 17798.84 20099.67 9799.78 8099.55 12798.88 22399.66 12297.11 32499.47 19399.60 18999.07 7099.89 15896.18 31299.85 13299.58 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14698.87 22699.48 23286.54 37499.44 19999.74 9597.34 24799.86 20591.61 36499.28 30797.37 369
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22495.89 37999.29 7498.14 35899.95 1
HPM-MVS++copyleft98.96 19698.70 21499.74 6899.52 20199.71 7698.86 22799.19 30998.47 23798.59 31999.06 32298.08 19799.91 12296.94 27199.60 25299.60 130
IterMVS-LS99.41 8299.47 6199.25 23999.81 5898.09 29598.85 22999.76 7199.62 8299.83 5599.64 15298.54 14299.97 1999.15 9499.99 1299.68 66
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 11599.26 10999.37 21399.75 10398.81 25098.84 23099.89 1798.38 24599.75 8999.04 32699.36 3699.86 20599.08 10499.25 31199.45 210
F-COLMAP98.74 22498.45 23799.62 13299.57 17799.47 13798.84 23099.65 13296.31 33998.93 28499.19 30997.68 22899.87 18596.52 29699.37 29799.53 170
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31796.23 37298.36 36888.12 35799.90 14296.68 28798.14 35898.57 339
DU-MVS99.33 10899.21 11699.71 8899.43 24099.56 12498.83 23299.53 20999.38 12399.67 12199.36 27097.67 22999.95 4799.17 9099.81 16499.63 105
Baseline_NR-MVSNet99.49 6199.37 8199.82 2899.91 2099.84 2298.83 23299.86 2499.68 6699.65 12999.88 3197.67 22999.87 18599.03 10799.86 12899.76 44
XVG-ACMP-BASELINE99.23 12799.10 14399.63 12399.82 5199.58 12198.83 23299.72 9598.36 24799.60 15299.71 11298.92 8699.91 12297.08 26699.84 13799.40 227
MSLP-MVS++99.05 17799.09 14498.91 27899.21 29998.36 28098.82 23699.47 23698.85 19798.90 29099.56 21098.78 10899.09 37398.57 14799.68 22399.26 256
9.1498.64 21799.45 23698.81 23799.60 16397.52 30399.28 24199.56 21098.53 14699.83 25195.36 33999.64 239
D2MVS99.22 13699.19 11899.29 23099.69 13198.74 25598.81 23799.41 25298.55 22799.68 11699.69 12598.13 19399.87 18598.82 12999.98 2699.24 259
pmmvs-eth3d99.48 6399.47 6199.51 16799.77 8899.41 15998.81 23799.66 12299.42 12199.75 8999.66 14599.20 5199.76 29898.98 11299.99 1299.36 238
HQP_MVS98.90 20498.68 21699.55 15699.58 16799.24 19998.80 24099.54 19998.94 18499.14 26599.25 29697.24 25099.82 26195.84 32699.78 18099.60 130
plane_prior298.80 24098.94 184
JIA-IIPM98.06 28497.92 28798.50 30698.59 36297.02 32998.80 24098.51 34299.88 2297.89 35299.87 3491.89 32799.90 14298.16 17997.68 36598.59 336
PAPM_NR98.36 26698.04 27499.33 22099.48 22398.93 24198.79 24399.28 29097.54 30198.56 32298.57 36197.12 25799.69 32194.09 35598.90 33099.38 232
CHOSEN 1792x268899.39 8999.30 9799.65 10999.88 3099.25 19498.78 24499.88 1998.66 21699.96 899.79 7097.45 24099.93 7899.34 6199.99 1299.78 34
hse-mvs298.52 24998.30 25399.16 25099.29 28598.60 26598.77 24599.02 32199.68 6699.32 23199.04 32692.50 32399.85 22399.24 7897.87 36399.03 307
ETH3D-3000-0.198.77 21998.50 23499.59 13999.47 22899.53 12998.77 24599.60 16397.33 31399.23 24899.50 23097.91 21099.83 25195.02 34499.67 23099.41 225
MS-PatchMatch99.00 18998.97 18099.09 25999.11 31998.19 28798.76 24799.33 27698.49 23599.44 19999.58 19798.21 18699.69 32198.20 17299.62 24299.39 230
DPE-MVScopyleft99.14 15998.92 18999.82 2899.57 17799.77 4998.74 24899.60 16398.55 22799.76 8199.69 12598.23 18599.92 9896.39 30399.75 18999.76 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 24098.37 24599.26 23699.43 24098.40 27698.74 24899.13 31698.10 26999.21 25499.24 30194.82 29799.90 14297.86 20398.77 33599.49 194
zzz-MVS99.30 11399.14 12599.80 3499.81 5899.81 3698.73 25099.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
AUN-MVS97.82 29097.38 30399.14 25499.27 29098.53 26798.72 25199.02 32198.10 26997.18 36799.03 33089.26 35599.85 22397.94 19597.91 36199.03 307
sss98.90 20498.77 20899.27 23499.48 22398.44 27398.72 25199.32 27897.94 28299.37 22199.35 27596.31 28099.91 12298.85 12699.63 24199.47 204
CANet99.11 16799.05 15699.28 23298.83 34898.56 26698.71 25399.41 25299.25 14099.23 24899.22 30397.66 23399.94 6299.19 8599.97 3899.33 244
AdaColmapbinary98.60 23798.35 24899.38 21099.12 31499.22 20398.67 25499.42 25197.84 28998.81 30099.27 29197.32 24899.81 27795.14 34199.53 27199.10 292
MP-MVS-pluss99.14 15998.92 18999.80 3499.83 4499.83 2798.61 25599.63 14096.84 33099.44 19999.58 19798.81 9999.91 12297.70 22199.82 15699.67 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 21598.57 22699.58 14399.21 29999.31 18198.61 25599.25 29798.65 21798.43 32999.26 29497.86 21599.81 27796.55 29499.27 31099.61 126
BH-RMVSNet98.41 26298.14 27099.21 24499.21 29998.47 27098.60 25798.26 35198.35 25298.93 28499.31 28297.20 25599.66 34194.32 35199.10 31899.51 183
LF4IMVS99.01 18798.92 18999.27 23499.71 11999.28 18698.59 25899.77 6698.32 25899.39 21999.41 25398.62 12999.84 24096.62 29399.84 13798.69 332
OPM-MVS99.26 12299.13 12899.63 12399.70 12799.61 11398.58 25999.48 23298.50 23399.52 18199.63 16299.14 5999.76 29897.89 19899.77 18499.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MCST-MVS99.02 18398.81 20499.65 10999.58 16799.49 13498.58 25999.07 31798.40 24399.04 27799.25 29698.51 15199.80 28297.31 24899.51 27499.65 91
PVSNet_BlendedMVS99.03 18199.01 16899.09 25999.54 19097.99 29998.58 25999.82 4197.62 29699.34 22799.71 11298.52 14999.77 29697.98 19199.97 3899.52 181
OMC-MVS98.90 20498.72 21099.44 18899.39 25199.42 15598.58 25999.64 13897.31 31499.44 19999.62 17198.59 13499.69 32196.17 31399.79 17499.22 264
diffmvs99.34 10499.32 9199.39 20699.67 14498.77 25398.57 26399.81 5099.61 8699.48 19199.41 25398.47 15399.86 20598.97 11499.90 9499.53 170
DP-MVS Recon98.50 25198.23 25899.31 22799.49 21799.46 14198.56 26499.63 14094.86 35898.85 29699.37 26597.81 21999.59 35796.08 31499.44 28498.88 322
new-patchmatchnet99.35 9999.57 4898.71 30099.82 5196.62 33798.55 26599.75 7899.50 10099.88 3899.87 3499.31 3999.88 17399.43 47100.00 199.62 116
pmmvs599.19 14699.11 13599.42 19499.76 9298.88 24698.55 26599.73 8698.82 20199.72 10399.62 17196.56 26999.82 26199.32 6799.95 6199.56 153
BH-untuned98.22 27898.09 27298.58 30499.38 25497.24 32498.55 26598.98 32497.81 29099.20 25998.76 35597.01 26199.65 34794.83 34598.33 35198.86 324
CNVR-MVS98.99 19298.80 20699.56 15399.25 29399.43 15298.54 26899.27 29198.58 22498.80 30299.43 25198.53 14699.70 31597.22 25999.59 25699.54 164
thres20096.09 33395.68 33597.33 34199.48 22396.22 34298.53 26997.57 35998.06 27398.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
1112_ss99.05 17798.84 20099.67 9799.66 14599.29 18498.52 27099.82 4197.65 29599.43 20399.16 31096.42 27599.91 12299.07 10599.84 13799.80 26
EPNet_dtu97.62 30097.79 29497.11 34696.67 37992.31 36998.51 27198.04 35299.24 14295.77 37399.47 24393.78 30999.66 34198.98 11299.62 24299.37 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 26697.99 27799.48 17799.32 27899.24 19998.50 27299.51 22195.19 35498.58 32098.96 34196.95 26399.83 25195.63 33199.25 31199.37 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 28597.55 30199.46 18299.47 22899.44 14898.50 27299.62 14386.79 37299.07 27599.26 29498.26 18099.62 35197.28 25199.73 20499.31 249
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1698.50 25198.16 26899.51 16799.04 32799.39 16298.47 27499.47 23696.70 33498.78 30599.33 27997.62 23699.86 20594.69 34999.38 29399.28 255
xiu_mvs_v1_base_debu99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base_debi99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32998.21 33898.51 36596.42 27599.51 36592.16 36397.29 36797.98 362
FPMVS96.32 32995.50 33698.79 29499.60 15898.17 28998.46 27998.80 33097.16 32196.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 292
plane_prior99.24 19998.42 28097.87 28599.71 213
WR-MVS99.11 16798.93 18599.66 10499.30 28399.42 15598.42 28099.37 26999.04 17599.57 16099.20 30796.89 26499.86 20598.66 14499.87 12199.70 56
MVS-HIRNet97.86 28998.22 26096.76 34899.28 28891.53 37498.38 28292.60 37899.13 16399.31 23599.96 1297.18 25699.68 33298.34 16099.83 14799.07 303
ETH3 D test640097.76 29397.19 30999.50 17099.38 25499.26 19098.34 28399.49 23092.99 36598.54 32399.20 30795.92 28999.82 26191.14 36799.66 23499.40 227
N_pmnet98.73 22698.53 23299.35 21799.72 11698.67 25998.34 28394.65 37398.35 25299.79 7199.68 13698.03 20099.93 7898.28 16599.92 8499.44 215
CNLPA98.57 24298.34 24999.28 23299.18 30699.10 22298.34 28399.41 25298.48 23698.52 32498.98 33697.05 26099.78 28895.59 33299.50 27698.96 314
CDPH-MVS98.56 24398.20 26299.61 13599.50 21299.46 14198.32 28699.41 25295.22 35299.21 25499.10 31998.34 17399.82 26195.09 34399.66 23499.56 153
Effi-MVS+99.06 17498.97 18099.34 21899.31 27998.98 23198.31 28799.91 1298.81 20298.79 30398.94 34399.14 5999.84 24098.79 13198.74 33999.20 270
xxxxxxxxxxxxxcwj99.11 16798.96 18299.54 16099.53 19599.25 19498.29 28899.76 7199.07 17099.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
save fliter99.53 19599.25 19498.29 28899.38 26899.07 170
Patchmatch-RL test98.60 23798.36 24699.33 22099.77 8899.07 22698.27 29099.87 2198.91 19099.74 9899.72 10590.57 34599.79 28598.55 14899.85 13299.11 290
jason99.16 15599.11 13599.32 22499.75 10398.44 27398.26 29199.39 26298.70 21499.74 9899.30 28498.54 14299.97 1998.48 15199.82 15699.55 156
jason: jason.
XVG-OURS-SEG-HR99.16 15598.99 17699.66 10499.84 4099.64 10198.25 29299.73 8698.39 24499.63 13599.43 25199.70 1199.90 14297.34 24698.64 34399.44 215
MDA-MVSNet_test_wron98.95 19998.99 17698.85 28699.64 14997.16 32698.23 29399.33 27698.93 18799.56 16799.66 14597.39 24499.83 25198.29 16499.88 11299.55 156
YYNet198.95 19998.99 17698.84 28899.64 14997.14 32798.22 29499.32 27898.92 18999.59 15599.66 14597.40 24299.83 25198.27 16699.90 9499.55 156
CANet_DTU98.91 20298.85 19899.09 25998.79 35398.13 29098.18 29599.31 28299.48 10298.86 29599.51 22796.56 26999.95 4799.05 10699.95 6199.19 273
MG-MVS98.52 24998.39 24398.94 27299.15 30997.39 32198.18 29599.21 30898.89 19499.23 24899.63 16297.37 24699.74 30494.22 35399.61 24999.69 60
SCA98.11 28198.36 24697.36 33999.20 30292.99 36698.17 29798.49 34498.24 26299.10 27199.57 20796.01 28799.94 6296.86 27699.62 24299.14 286
TSAR-MVS + GP.99.12 16399.04 16299.38 21099.34 27199.16 21298.15 29899.29 28798.18 26799.63 13599.62 17199.18 5399.68 33298.20 17299.74 19799.30 250
new_pmnet98.88 20898.89 19498.84 28899.70 12797.62 31498.15 29899.50 22597.98 27799.62 14399.54 21998.15 19299.94 6297.55 23499.84 13798.95 316
PatchMatch-RL98.68 23098.47 23599.30 22999.44 23899.28 18698.14 30099.54 19997.12 32399.11 26999.25 29697.80 22099.70 31596.51 29799.30 30598.93 318
xiu_mvs_v2_base99.02 18399.11 13598.77 29599.37 25798.09 29598.13 30199.51 22199.47 10799.42 20598.54 36499.38 3199.97 1998.83 12799.33 30298.24 353
lupinMVS98.96 19698.87 19699.24 24199.57 17798.40 27698.12 30299.18 31098.28 26099.63 13599.13 31298.02 20299.97 1998.22 17099.69 21899.35 241
DELS-MVS99.34 10499.30 9799.48 17799.51 20699.36 17198.12 30299.53 20999.36 12699.41 21399.61 18099.22 4999.87 18599.21 8199.68 22399.20 270
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 26199.35 17598.11 30499.41 25294.83 36097.92 35098.99 33398.02 20299.85 223
train_agg98.35 26997.95 28199.57 14999.35 26199.35 17598.11 30499.41 25294.90 35697.92 35098.99 33398.02 20299.85 22395.38 33899.44 28499.50 189
PMMVS299.48 6399.45 6699.57 14999.76 9298.99 23098.09 30699.90 1598.95 18399.78 7499.58 19799.57 2099.93 7899.48 4299.95 6199.79 32
Test_1112_low_res98.95 19998.73 20999.63 12399.68 13999.15 21498.09 30699.80 5297.14 32299.46 19799.40 25796.11 28599.89 15899.01 10999.84 13799.84 15
test_899.34 27199.31 18198.08 30899.40 25994.90 35697.87 35498.97 33998.02 20299.84 240
IterMVS-SCA-FT99.00 18999.16 12198.51 30599.75 10395.90 34798.07 30999.84 3499.84 3599.89 3299.73 9996.01 28799.99 699.33 65100.00 199.63 105
HyFIR lowres test98.91 20298.64 21799.73 7899.85 3999.47 13798.07 30999.83 3698.64 21899.89 3299.60 18992.57 320100.00 199.33 6599.97 3899.72 50
IterMVS98.97 19399.16 12198.42 30999.74 10995.64 35098.06 31199.83 3699.83 3899.85 4899.74 9596.10 28699.99 699.27 77100.00 199.63 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何298.04 312
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34195.76 34697.96 34998.02 37395.62 29299.47 36792.82 36297.25 36898.12 359
无先验98.01 31499.23 30195.83 34499.85 22395.79 32899.44 215
pmmvs499.13 16199.06 15299.36 21699.57 17799.10 22298.01 31499.25 29798.78 20799.58 15799.44 25098.24 18199.76 29898.74 13799.93 8099.22 264
PS-MVSNAJ99.00 18999.08 14698.76 29699.37 25798.10 29498.00 31699.51 22199.47 10799.41 21398.50 36699.28 4399.97 1998.83 12799.34 30098.20 357
test_prior499.19 21098.00 316
agg_prior198.33 27197.92 28799.57 14999.35 26199.36 17197.99 31899.39 26294.85 35997.76 35998.98 33698.03 20099.85 22395.49 33499.44 28499.51 183
HQP-NCC99.31 27997.98 31997.45 30698.15 339
ACMP_Plane99.31 27997.98 31997.45 30698.15 339
HQP-MVS98.36 26698.02 27699.39 20699.31 27998.94 23797.98 31999.37 26997.45 30698.15 33998.83 35196.67 26799.70 31594.73 34699.67 23099.53 170
UnsupCasMVSNet_bld98.55 24698.27 25599.40 20299.56 18899.37 16897.97 32299.68 11397.49 30599.08 27299.35 27595.41 29499.82 26197.70 22198.19 35699.01 312
test_prior398.62 23498.34 24999.46 18299.35 26199.22 20397.95 32399.39 26297.87 28598.05 34599.05 32397.90 21199.69 32195.99 31999.49 27899.48 199
test_prior297.95 32397.87 28598.05 34599.05 32397.90 21195.99 31999.49 278
旧先验297.94 32595.33 35198.94 28399.88 17396.75 283
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13997.55 31697.94 32595.60 37199.37 12490.68 37998.70 35796.56 26998.61 37786.94 37799.55 26398.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 327
MVS_111021_HR99.12 16399.02 16599.40 20299.50 21299.11 21797.92 32799.71 9898.76 21199.08 27299.47 24399.17 5499.54 36097.85 20599.76 18699.54 164
MVS_111021_LR99.13 16199.03 16499.42 19499.58 16799.32 18097.91 32999.73 8698.68 21599.31 23599.48 23899.09 6499.66 34197.70 22199.77 18499.29 253
pmmvs398.08 28397.80 29298.91 27899.41 24697.69 31397.87 33099.66 12295.87 34399.50 18899.51 22790.35 34799.97 1998.55 14899.47 28199.08 298
XVG-OURS99.21 14199.06 15299.65 10999.82 5199.62 10797.87 33099.74 8398.36 24799.66 12599.68 13699.71 999.90 14296.84 27999.88 11299.43 221
test22299.51 20699.08 22597.83 33299.29 28795.21 35398.68 31399.31 28297.28 24999.38 29399.43 221
miper_lstm_enhance98.65 23298.60 22098.82 29399.20 30297.33 32297.78 33399.66 12299.01 17699.59 15599.50 23094.62 30099.85 22398.12 18199.90 9499.26 256
TinyColmap98.97 19398.93 18599.07 26399.46 23398.19 28797.75 33499.75 7898.79 20599.54 17499.70 11998.97 8199.62 35196.63 29299.83 14799.41 225
our_test_398.85 21299.09 14498.13 32199.66 14594.90 35797.72 33599.58 18099.07 17099.64 13199.62 17198.19 18999.93 7898.41 15499.95 6199.55 156
testdata197.72 33597.86 288
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 28192.37 37898.43 36787.06 36199.90 14298.27 16697.56 36698.91 320
c3_l98.72 22798.71 21198.72 29899.12 31497.22 32597.68 33899.56 18798.90 19199.54 17499.48 23896.37 27999.73 30797.88 19999.88 11299.21 266
ppachtmachnet_test98.89 20799.12 13298.20 31999.66 14595.24 35497.63 33999.68 11399.08 16899.78 7499.62 17198.65 12799.88 17398.02 18699.96 5299.48 199
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29794.56 36298.02 34898.25 37197.43 24199.68 33290.90 36898.74 33999.33 244
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27499.21 25498.02 37390.04 35199.79 28598.37 15695.89 37598.86 324
PVSNet_Blended98.70 22998.59 22299.02 26799.54 19097.99 29997.58 34299.82 4195.70 34799.34 22798.98 33698.52 14999.77 29697.98 19199.83 14799.30 250
PMMVS98.49 25498.29 25499.11 25798.96 33698.42 27597.54 34399.32 27897.53 30298.47 32898.15 37297.88 21499.82 26197.46 24099.24 31399.09 295
MSDG99.08 17298.98 17999.37 21399.60 15899.13 21597.54 34399.74 8398.84 20099.53 17999.55 21799.10 6299.79 28597.07 26799.86 12899.18 275
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
CLD-MVS98.76 22198.57 22699.33 22099.57 17798.97 23397.53 34599.55 19396.41 33699.27 24299.13 31299.07 7099.78 28896.73 28599.89 10399.23 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 23098.71 21198.60 30299.10 32096.84 33497.52 34799.54 19998.94 18499.58 15799.48 23896.25 28299.76 29898.01 18999.93 8099.21 266
miper_ehance_all_eth98.59 24098.59 22298.59 30398.98 33597.07 32897.49 34899.52 21798.50 23399.52 18199.37 26596.41 27799.71 31397.86 20399.62 24299.00 313
cl____98.54 24798.41 24198.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.85 30799.78 28897.97 19399.89 10399.17 277
DIV-MVS_self_test98.54 24798.42 24098.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.87 30699.78 28897.97 19399.89 10399.18 275
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27497.81 35698.58 35990.04 35199.91 12297.69 22798.78 33398.31 349
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23897.81 35698.56 36279.77 37999.89 15897.77 21098.77 33598.52 340
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28397.81 35698.58 35979.12 38299.91 12297.69 22798.78 33398.31 349
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34295.37 37697.41 37976.17 38499.96 3797.54 23595.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 27297.94 28599.32 22499.36 25999.11 21797.31 35598.78 33196.88 32798.84 29799.11 31897.77 22299.61 35594.03 35799.36 29899.23 262
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31699.15 26398.86 35085.01 37199.87 18597.10 26599.39 29298.63 333
DeepPCF-MVS98.42 699.18 15099.02 16599.67 9799.22 29799.75 6197.25 35799.47 23698.72 21399.66 12599.70 11999.29 4199.63 35098.07 18599.81 16499.62 116
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26997.31 31499.41 21399.22 30387.30 35999.37 37197.70 22199.62 24299.08 298
GA-MVS97.99 28897.68 29898.93 27599.52 20198.04 29897.19 35999.05 32098.32 25898.81 30098.97 33989.89 35399.41 37098.33 16199.05 32099.34 243
CL-MVSNet_self_test98.71 22898.56 22999.15 25299.22 29798.66 26197.14 36099.51 22198.09 27199.54 17499.27 29196.87 26599.74 30498.43 15398.96 32599.03 307
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
USDC98.96 19698.93 18599.05 26599.54 19097.99 29997.07 36399.80 5298.21 26499.75 8999.77 8498.43 15999.64 34997.90 19799.88 11299.51 183
miper_enhance_ethall98.03 28597.94 28598.32 31498.27 36996.43 34096.95 36499.41 25296.37 33899.43 20398.96 34194.74 29899.69 32197.71 21899.62 24298.83 327
CHOSEN 280x42098.41 26298.41 24198.40 31099.34 27195.89 34896.94 36599.44 24598.80 20499.25 24499.52 22393.51 31399.98 998.94 12199.98 2699.32 247
PCF-MVS96.03 1896.73 32195.86 33299.33 22099.44 23899.16 21296.87 36699.44 24586.58 37398.95 28299.40 25794.38 30299.88 17387.93 37299.80 16998.95 316
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
PVSNet97.47 1598.42 26198.44 23898.35 31299.46 23396.26 34196.70 36899.34 27597.68 29499.00 27999.13 31297.40 24299.72 30997.59 23399.68 22399.08 298
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34590.77 37096.25 37098.68 35893.01 31799.69 32181.60 37897.86 36498.62 334
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18791.75 36797.13 36897.61 37895.58 29398.63 37696.68 28799.11 31798.18 358
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25996.18 34197.37 36297.73 37695.73 29099.58 35895.49 33481.40 37899.36 238
E-PMN97.14 31397.43 30296.27 35598.79 35391.62 37395.54 37299.01 32399.44 11498.88 29199.12 31692.78 31999.68 33294.30 35299.03 32297.50 366
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33899.34 12798.92 28798.88 34993.79 30899.66 34192.87 36199.05 32097.30 370
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18761.71 37895.39 37599.52 22393.90 30599.94 6298.76 13598.27 35399.62 116
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1430.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
PC_three_145297.56 29899.68 11699.41 25399.09 6497.09 37896.66 28999.60 25299.62 116
No_MVS99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
test_one_060199.63 15199.76 5799.55 19399.23 14499.31 23599.61 18098.59 134
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.43 24099.61 11399.43 24996.38 33799.11 26999.07 32197.86 21599.92 9894.04 35699.49 278
IU-MVS99.69 13199.77 4999.22 30497.50 30499.69 11497.75 21499.70 21599.77 39
test_241102_TWO99.54 19999.13 16399.76 8199.63 16298.32 17699.92 9897.85 20599.69 21899.75 47
test_241102_ONE99.69 13199.82 3399.54 19999.12 16699.82 5699.49 23598.91 8899.52 364
test_0728_THIRD99.18 15199.62 14399.61 18098.58 13699.91 12297.72 21699.80 16999.77 39
GSMVS99.14 286
test_part299.62 15599.67 9299.55 172
sam_mvs190.81 34299.14 286
sam_mvs90.52 346
MTGPAbinary99.53 209
test_post52.41 38790.25 34899.86 205
patchmatchnet-post99.62 17190.58 34499.94 62
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 24096.38 304
test9_res95.10 34299.44 28499.50 189
agg_prior294.58 35099.46 28399.50 189
agg_prior99.35 26199.36 17199.39 26297.76 35999.85 223
TestCases99.63 12399.78 8099.64 10199.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
test_prior99.46 18299.35 26199.22 20399.39 26299.69 32199.48 199
新几何199.52 16499.50 21299.22 20399.26 29495.66 34898.60 31899.28 28997.67 22999.89 15895.95 32399.32 30399.45 210
旧先验199.49 21799.29 18499.26 29499.39 26197.67 22999.36 29899.46 208
原ACMM199.37 21399.47 22898.87 24899.27 29196.74 33398.26 33499.32 28097.93 20999.82 26195.96 32299.38 29399.43 221
testdata299.89 15895.99 319
segment_acmp98.37 168
testdata99.42 19499.51 20698.93 24199.30 28596.20 34098.87 29499.40 25798.33 17599.89 15896.29 30799.28 30799.44 215
test1299.54 16099.29 28599.33 17899.16 31298.43 32997.54 23799.82 26199.47 28199.48 199
plane_prior799.58 16799.38 165
plane_prior699.47 22899.26 19097.24 250
plane_prior599.54 19999.82 26195.84 32699.78 18099.60 130
plane_prior499.25 296
plane_prior399.31 18198.36 24799.14 265
plane_prior199.51 206
n20.00 388
nn0.00 388
door-mid99.83 36
lessismore_v099.64 11699.86 3699.38 16590.66 38099.89 3299.83 5194.56 30199.97 1999.56 3299.92 8499.57 150
LGP-MVS_train99.74 6899.82 5199.63 10599.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
test1199.29 287
door99.77 66
HQP5-MVS98.94 237
BP-MVS94.73 346
HQP4-MVS98.15 33999.70 31599.53 170
HQP3-MVS99.37 26999.67 230
HQP2-MVS96.67 267
NP-MVS99.40 24999.13 21598.83 351
ACMMP++_ref99.94 72
ACMMP++99.79 174
Test By Simon98.41 162
ITE_SJBPF99.38 21099.63 15199.44 14899.73 8698.56 22599.33 22999.53 22198.88 9399.68 33296.01 31799.65 23799.02 311
DeepMVS_CXcopyleft97.98 32399.69 13196.95 33099.26 29475.51 37695.74 37498.28 37096.47 27399.62 35191.23 36697.89 36297.38 368