This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6499.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3499.87 3199.99 16100.00 1
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13799.91 2899.15 8399.97 3499.50 70100.00 199.90 24
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13199.93 2599.95 3299.89 3899.71 2299.96 5599.51 6899.97 5599.84 39
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19698.93 15499.95 8199.60 159
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16399.65 5099.97 5599.69 88
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 5999.80 6899.93 3899.93 2198.54 17099.93 9799.59 5599.98 4199.76 68
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7299.84 5599.94 3599.91 2899.13 8899.96 5599.83 3399.99 1699.83 43
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 11999.82 6299.90 4999.90 3397.97 23399.86 22999.42 8199.96 6899.80 50
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9099.97 1699.89 5399.89 3899.53 4599.99 899.36 8999.96 6899.65 119
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24099.79 1299.97 19100.00 199.43 23499.94 1999.64 2899.94 7999.83 3399.99 1699.98 4
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 17999.41 28699.51 4799.95 6499.66 4899.89 12698.96 347
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 21999.38 29699.57 4099.95 6499.69 4599.90 11699.15 305
ab-mvs99.33 14099.28 13799.47 19299.57 20599.39 17899.78 1499.43 27398.87 23199.57 19099.82 8098.06 22699.87 21098.69 17699.73 22899.15 305
FE-MVS97.85 31897.42 33299.15 27299.44 26598.75 26699.77 1698.20 38495.85 38699.33 26199.80 9088.86 38599.88 19696.40 34599.12 34298.81 365
FA-MVS(test-final)98.52 27598.32 28099.10 28099.48 25098.67 27199.77 1698.60 36697.35 35699.63 16499.80 9093.07 34699.84 26297.92 23299.30 32898.78 368
MVSFormer99.41 11699.44 9899.31 24499.57 20598.40 29499.77 1699.80 8499.73 7899.63 16499.30 31598.02 22899.98 2199.43 7699.69 24399.55 181
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8499.73 7899.97 2099.92 2599.77 1999.98 2199.43 76100.00 199.90 24
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21099.54 6399.92 10599.63 134
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21799.39 29499.57 4099.93 9799.64 5299.86 15599.20 294
test250694.73 38394.59 38495.15 39999.59 19085.90 42599.75 2274.01 42799.89 3799.71 13799.86 5979.00 41699.90 16399.52 6799.99 1699.65 119
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21099.59 5599.74 22399.71 79
DVP-MVS++99.38 12499.25 14399.77 5999.03 35999.77 5699.74 2499.61 18699.18 18799.76 11499.61 21999.00 10799.92 12397.72 25399.60 27599.62 145
FOURS199.83 6599.89 1099.74 2499.71 13199.69 9299.63 164
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41099.78 7299.88 6299.88 4793.66 34099.97 3499.61 5399.95 8199.64 129
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 5999.70 8999.92 4399.93 2199.45 4999.97 3499.36 89100.00 199.85 37
NR-MVSNet99.40 11899.31 12599.68 10999.43 26899.55 14099.73 2799.50 25499.46 14199.88 6299.36 30297.54 26099.87 21098.97 14699.87 14799.63 134
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33599.37 15999.61 17999.71 15094.73 32899.81 30297.70 25899.88 13599.58 171
ECVR-MVScopyleft97.73 32398.04 30296.78 38799.59 19090.81 41999.72 3090.43 42199.89 3799.86 7199.86 5993.60 34199.89 18299.46 7399.99 1699.65 119
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9699.90 3199.82 8299.83 7398.45 18599.87 21099.51 6899.97 5599.86 34
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
Gipumacopyleft99.57 7199.59 6699.49 18699.98 399.71 8599.72 3099.84 6599.81 6599.94 3599.78 11098.91 12199.71 34298.41 19099.95 8199.05 334
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test111197.74 32298.16 29596.49 39399.60 18589.86 42399.71 3491.21 41999.89 3799.88 6299.87 5293.73 33999.90 16399.56 6099.99 1699.70 82
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19699.98 1100.00 199.98 4
GG-mvs-BLEND97.36 37897.59 41896.87 36399.70 3588.49 42494.64 41797.26 41780.66 40799.12 41091.50 40696.50 41396.08 417
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33699.65 10599.89 5399.90 3396.20 31099.94 7999.42 8199.92 10599.67 102
UGNet99.38 12499.34 11899.49 18698.90 37098.90 25599.70 3599.35 29599.86 4698.57 35699.81 8798.50 18099.93 9799.38 8599.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32099.48 13499.56 19799.77 11994.89 32599.93 9798.72 17399.89 12699.63 134
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27799.42 16899.70 3599.56 21999.23 18099.35 25599.80 9099.17 8199.95 6498.21 20699.84 16499.59 166
gg-mvs-nofinetune95.87 37495.17 37997.97 36098.19 41096.95 36099.69 4289.23 42399.89 3796.24 41199.94 1981.19 40599.51 40293.99 40098.20 39097.44 409
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 281
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 9999.78 7299.93 3899.89 3897.94 23499.92 12399.65 5099.98 4199.62 145
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9299.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 5999.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
GBi-Net99.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
test199.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13699.67 9899.82 8299.83 7398.98 11199.90 16399.24 10899.97 5599.53 194
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28199.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13199.72 8299.84 7799.78 11098.67 15299.97 3499.30 10199.95 8199.80 50
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 10999.58 12599.85 7499.69 16598.18 21999.94 7999.28 10699.95 8199.83 43
QAPM98.40 28997.99 30599.65 12599.39 27799.47 15099.67 5099.52 24591.70 40998.78 33899.80 9098.55 16899.95 6494.71 39099.75 21699.53 194
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 10999.86 4699.74 12799.79 10098.27 20799.85 24799.37 8899.93 10199.83 43
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10499.64 10799.93 3899.85 6398.66 15499.84 26299.88 2999.99 1699.71 79
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 10999.60 12299.92 4399.87 5298.75 14199.86 22999.90 2599.99 1699.73 73
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 11999.62 11299.84 7799.71 15098.62 15899.96 5599.30 10199.96 6899.86 34
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 11999.70 8999.84 7799.73 13598.56 16799.96 5599.29 10499.94 9499.83 43
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3499.75 41100.00 199.84 39
OpenMVScopyleft98.12 1098.23 30297.89 31899.26 25799.19 33199.26 20599.65 5999.69 14391.33 41098.14 37699.77 11998.28 20599.96 5595.41 37999.55 28898.58 380
MGCFI-Net99.02 21399.01 19899.06 28899.11 34798.60 28299.63 6199.67 15199.63 10998.58 35497.65 41099.07 9799.57 39298.85 15698.92 35799.03 338
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8199.96 6899.65 119
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28699.47 13899.76 11499.78 11098.13 22199.86 22998.70 17499.68 24899.49 216
Anonymous2024052199.44 10699.42 10299.49 18699.89 3898.96 24799.62 6499.76 10499.85 5299.82 8299.88 4796.39 30399.97 3499.59 5599.98 4199.55 181
RRT-MVS99.08 20099.00 20299.33 23699.27 31598.65 27799.62 6499.93 3299.66 10299.67 15299.82 8095.27 32399.93 9798.64 18099.09 34599.41 244
LFMVS98.46 28398.19 29399.26 25799.24 32198.52 28799.62 6496.94 40299.87 4399.31 26999.58 23591.04 36699.81 30298.68 17799.42 31399.45 229
VDDNet98.97 22598.82 23599.42 20899.71 14498.81 26099.62 6498.68 35999.81 6599.38 25199.80 9094.25 33299.85 24798.79 16499.32 32699.59 166
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14399.85 5299.80 9399.81 8798.81 12999.91 14599.47 7299.88 13599.70 82
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 28899.47 15099.62 6499.50 25499.44 14699.12 30099.78 11098.77 13899.94 7997.87 23999.72 23499.62 145
sasdasda99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
canonicalmvs99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13699.93 2599.78 10399.68 17699.10 9099.78 31599.45 7499.96 6899.83 43
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15197.72 33799.35 25599.25 32699.23 7599.92 12397.21 30099.82 18199.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 30697.95 30998.99 29399.03 35998.24 30299.61 7098.72 35796.81 37498.73 34199.51 26194.06 33399.86 22996.91 31398.20 39098.86 361
Vis-MVSNet (Re-imp)98.77 24998.58 25599.34 23399.78 10598.88 25699.61 7099.56 21999.11 20499.24 28199.56 24693.00 34899.78 31597.43 28099.89 12699.35 259
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7299.46 14199.75 11999.56 24699.63 3099.95 6499.43 7699.88 13599.62 145
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9699.71 8499.90 4999.69 16598.85 12799.90 16397.25 29799.78 20899.15 305
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7299.39 15799.82 8299.84 6999.38 5699.91 14599.38 8599.93 10199.80 50
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35899.72 8299.91 4699.60 22799.43 5099.81 30299.81 3899.53 29599.73 73
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 25999.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9399.96 6899.78 59
MIMVSNet98.43 28598.20 29099.11 27899.53 22798.38 29899.58 7998.61 36498.96 21799.33 26199.76 12290.92 36899.81 30297.38 28399.76 21499.15 305
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18699.54 12699.80 9399.64 19297.79 24599.95 6499.21 11299.94 9499.84 39
LS3D99.24 15699.11 16599.61 15198.38 40599.79 4899.57 8299.68 14699.61 11699.15 29599.71 15098.70 14799.91 14597.54 27399.68 24899.13 313
EGC-MVSNET89.05 38685.52 38999.64 13299.89 3899.78 5199.56 8499.52 24524.19 42149.96 42299.83 7399.15 8399.92 12397.71 25599.85 15999.21 290
EU-MVSNet99.39 12299.62 5798.72 32699.88 4396.44 37099.56 8499.85 5999.90 3199.90 4999.85 6398.09 22399.83 27799.58 5899.95 8199.90 24
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9098.77 24899.80 9399.85 6399.64 2899.85 24798.70 17499.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re98.69 25898.48 26399.31 24499.55 21999.42 16899.54 8798.38 37899.32 16698.72 34298.71 38596.76 29099.21 40996.01 36099.35 32299.31 270
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 7999.95 1299.98 4199.94 16
MVSMamba_PlusPlus99.55 7799.58 6999.47 19299.68 16499.40 17599.52 8999.70 13699.92 2899.77 11199.86 5998.28 20599.96 5599.54 6399.90 11699.05 334
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8199.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 29999.86 34
test_vis1_n99.68 4799.79 2999.36 23099.94 1898.18 30999.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5599.97 499.96 6899.95 13
balanced_conf0399.50 8599.50 8699.50 18499.42 27399.49 14799.52 8999.75 10999.86 4699.78 10399.71 15098.20 21699.90 16399.39 8499.88 13599.10 316
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13698.35 29699.51 21799.50 26499.31 6499.88 19698.18 21199.84 16499.69 88
wuyk23d97.58 33099.13 15892.93 40099.69 15699.49 14799.52 8999.77 9997.97 32299.96 2499.79 10099.84 1299.94 7995.85 36999.82 18179.36 418
test_f99.75 3499.88 799.37 22699.96 798.21 30699.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 7999.97 499.99 1699.97 9
VDD-MVS99.20 17299.11 16599.44 20299.43 26898.98 24399.50 9698.32 38199.80 6899.56 19799.69 16596.99 28499.85 24798.99 14299.73 22899.50 211
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14398.99 21399.75 11999.71 15098.79 13499.93 9798.46 18899.85 15999.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DSMNet-mixed99.48 9199.65 5298.95 29899.71 14497.27 35299.50 9699.82 7299.59 12499.41 24399.85 6399.62 33100.00 199.53 6699.89 12699.59 166
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16698.07 31699.52 21199.69 16598.57 16599.92 12397.18 30299.79 20399.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvs1_n99.68 4799.81 2599.28 25199.95 1597.93 32999.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
MonoMVSNet98.23 30298.32 28097.99 35898.97 36696.62 36799.49 10098.42 37499.62 11299.40 24899.79 10095.51 32098.58 41797.68 26695.98 41598.76 371
test_fmvs299.72 3899.85 1799.34 23399.91 3098.08 32099.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
tttt051797.62 32897.20 33898.90 31199.76 11797.40 34999.48 10294.36 41299.06 20999.70 14199.49 26884.55 40299.94 7998.73 17299.65 25999.36 256
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13699.81 6599.69 14499.58 23597.66 25799.86 22999.17 12199.44 30999.67 102
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8199.82 6299.71 13799.72 14296.60 29399.98 2199.75 4199.23 33999.82 49
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
Anonymous20240521198.75 25198.46 26599.63 13999.34 29799.66 10399.47 10597.65 39499.28 17199.56 19799.50 26493.15 34499.84 26298.62 18199.58 28199.40 246
FMVSNet299.35 13299.28 13799.55 17199.49 24599.35 19099.45 10999.57 21499.44 14699.70 14199.74 13197.21 27499.87 21099.03 13999.94 9499.44 234
TAMVS99.49 8999.45 9599.63 13999.48 25099.42 16899.45 10999.57 21499.66 10299.78 10399.83 7397.85 24199.86 22999.44 7599.96 6899.61 155
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8499.71 8499.72 13299.69 16599.15 8399.83 27799.32 9899.94 9499.53 194
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7298.33 30199.50 21999.78 11097.90 23699.65 37996.78 32299.83 17299.44 234
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 5998.79 24499.41 24399.60 22798.92 11999.92 12398.02 22299.92 10599.43 240
CostFormer96.71 35396.79 35296.46 39498.90 37090.71 42099.41 11498.68 35994.69 40298.14 37699.34 31086.32 39899.80 30997.60 27098.07 39898.88 359
Patchmatch-test98.10 31097.98 30798.48 33899.27 31596.48 36999.40 11599.07 34098.81 24199.23 28299.57 24290.11 37999.87 21096.69 32699.64 26199.09 321
baseline197.73 32397.33 33498.96 29699.30 30897.73 33899.40 11598.42 37499.33 16599.46 22899.21 33591.18 36499.82 28798.35 19491.26 41999.32 266
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20399.24 17899.86 7199.70 15898.55 16899.82 28799.79 3999.95 8199.60 159
mvsmamba99.08 20098.95 21699.45 19899.36 28599.18 22399.39 11798.81 35399.37 15999.35 25599.70 15896.36 30599.94 7998.66 17899.59 27999.22 287
EPMVS96.53 35696.32 35497.17 38598.18 41192.97 40799.39 11789.95 42298.21 30898.61 35199.59 23286.69 39799.72 33896.99 30899.23 33998.81 365
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23198.34 30099.01 31099.50 26498.53 17499.93 9797.18 30299.78 20899.66 111
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 17998.38 28999.06 30899.27 32198.79 13499.94 7997.51 27699.82 18199.66 111
FMVSNet597.80 32097.25 33799.42 20898.83 37998.97 24599.38 12099.80 8498.87 23199.25 27899.69 16580.60 40899.91 14598.96 14899.90 11699.38 250
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9699.53 12899.67 15299.78 11099.19 7999.86 22997.32 28699.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9099.83 6099.88 6299.85 6398.42 18999.90 16399.60 5499.73 22899.49 216
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33999.47 27598.47 18199.88 19697.62 26799.73 22899.67 102
X-MVStestdata96.09 36894.87 38099.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33961.30 43098.47 18199.88 19697.62 26799.73 22899.67 102
MVS_Test99.28 14699.31 12599.19 26799.35 28898.79 26399.36 12799.49 25899.17 19299.21 28799.67 18098.78 13699.66 37399.09 13499.66 25799.10 316
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21498.54 27399.54 20498.99 36296.81 28899.93 9796.97 31099.53 29599.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_vis1_n_192099.72 3899.88 799.27 25499.93 2497.84 33299.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
EIA-MVS99.12 19399.01 19899.45 19899.36 28599.62 11999.34 12999.79 9098.41 28598.84 32998.89 37598.75 14199.84 26298.15 21599.51 29998.89 358
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30299.76 6399.34 12999.97 1998.93 22399.91 4699.79 10098.68 14999.93 9796.80 32199.56 28499.30 272
ttmdpeth99.48 9199.55 7999.29 24899.76 11798.16 31199.33 13299.95 3099.79 7099.36 25399.89 3899.13 8899.77 32399.09 13499.64 26199.93 18
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13299.53 24099.27 17299.42 23799.63 20398.21 21499.95 6497.83 24699.79 20399.65 119
VNet99.18 17999.06 18299.56 16899.24 32199.36 18799.33 13299.31 30499.67 9899.47 22499.57 24296.48 29799.84 26299.15 12499.30 32899.47 224
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13599.74 11599.18 18799.69 14499.75 12798.41 19099.84 26297.85 24299.70 23999.10 316
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13599.50 25498.35 29698.97 31299.48 27198.37 19699.92 12395.95 36699.75 21699.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 24898.54 26099.49 18698.89 37399.19 22199.32 13599.67 15199.65 10599.72 13299.79 10091.87 35899.95 6498.00 22699.97 5599.33 263
tpm97.15 34296.95 34597.75 36998.91 36994.24 39999.32 13597.96 38897.71 33898.29 36699.32 31186.72 39699.92 12398.10 22096.24 41499.09 321
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13599.77 9999.53 12899.77 11199.76 12299.26 7299.78 31597.77 24799.88 13599.60 159
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14099.59 20398.36 29199.36 25399.37 29898.80 13399.91 14597.43 28099.75 21699.68 94
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14099.59 20398.41 28599.32 26499.36 30298.73 14599.93 9797.29 28899.74 22399.67 102
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14099.59 20398.36 29199.35 25599.38 29698.61 16099.93 9797.43 28099.75 21699.67 102
test_cas_vis1_n_192099.76 3399.86 1399.45 19899.93 2498.40 29499.30 14399.98 1299.94 2399.99 799.89 3899.80 1599.97 3499.96 999.97 5599.97 9
131498.00 31597.90 31798.27 35298.90 37097.45 34799.30 14399.06 34294.98 39797.21 39999.12 34598.43 18799.67 36895.58 37698.56 38097.71 407
MVS95.72 37894.63 38398.99 29398.56 39997.98 32899.30 14398.86 34972.71 41997.30 39699.08 35098.34 20099.74 33389.21 40998.33 38599.26 278
tpmvs97.39 33797.69 32596.52 39298.41 40491.76 41299.30 14398.94 34897.74 33697.85 38799.55 25392.40 35599.73 33696.25 35298.73 37398.06 403
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14399.63 17699.61 11699.71 13799.56 24698.76 13999.96 5599.14 13099.92 10599.68 94
CR-MVSNet98.35 29498.20 29098.83 31899.05 35598.12 31399.30 14399.67 15197.39 35499.16 29399.79 10091.87 35899.91 14598.78 16898.77 36698.44 389
RPMNet98.60 26598.53 26198.83 31899.05 35598.12 31399.30 14399.62 17999.86 4699.16 29399.74 13192.53 35299.92 12398.75 17098.77 36698.44 389
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15099.90 4399.71 8499.79 9999.73 13599.54 4399.84 26299.36 8999.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15099.61 18699.87 4399.74 12799.76 12298.69 14899.87 21098.20 20799.80 19899.75 71
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15299.56 21998.19 31099.14 29799.29 31898.84 12899.92 12397.53 27599.80 19899.64 129
Anonymous2023120699.35 13299.31 12599.47 19299.74 13599.06 23999.28 15299.74 11599.23 18099.72 13299.53 25797.63 25999.88 19699.11 13299.84 16499.48 220
test_040299.22 16599.14 15699.45 19899.79 9899.43 16599.28 15299.68 14699.54 12699.40 24899.56 24699.07 9799.82 28796.01 36099.96 6899.11 314
h-mvs3398.61 26298.34 27899.44 20299.60 18598.67 27199.27 15599.44 27099.68 9499.32 26499.49 26892.50 353100.00 199.24 10896.51 41299.65 119
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15599.61 18699.19 18699.57 19099.64 19298.76 13999.90 16397.29 28899.62 26599.56 178
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.41 19099.91 14597.27 29199.61 27299.54 189
RE-MVS-def99.13 15899.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.57 16597.27 29199.61 27299.54 189
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15799.35 29598.77 24899.57 19099.70 15899.27 7199.88 19697.71 25599.75 21699.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 12499.44 9899.21 26499.58 19598.09 31799.26 15799.46 26599.62 11299.75 11999.67 18098.54 17099.85 24799.15 12499.92 10599.68 94
CVMVSNet98.61 26298.88 22797.80 36799.58 19593.60 40499.26 15799.64 17499.66 10299.72 13299.67 18093.26 34399.93 9799.30 10199.81 19199.87 32
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15799.76 10499.32 16699.80 9399.78 11099.29 6699.87 21099.15 12499.91 11599.66 111
dmvs_testset97.27 34096.83 35098.59 33399.46 26097.55 34399.25 16396.84 40398.78 24697.24 39897.67 40997.11 28098.97 41386.59 41898.54 38199.27 276
test072699.69 15699.80 4699.24 16499.57 21499.16 19499.73 13199.65 19098.35 198
EI-MVSNet-UG-set99.48 9199.50 8699.42 20899.57 20598.65 27799.24 16499.46 26599.68 9499.80 9399.66 18598.99 10999.89 18299.19 11699.90 11699.72 76
EI-MVSNet-Vis-set99.47 9999.49 8899.42 20899.57 20598.66 27499.24 16499.46 26599.67 9899.79 9999.65 19098.97 11399.89 18299.15 12499.89 12699.71 79
EPNet98.13 30897.77 32399.18 26994.57 42497.99 32399.24 16497.96 38899.74 7797.29 39799.62 21093.13 34599.97 3498.59 18299.83 17299.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 28098.11 29899.64 13299.73 13899.58 13499.24 16499.76 10489.94 41299.42 23799.56 24697.76 24899.86 22997.74 25299.82 18199.47 224
PatchT98.45 28498.32 28098.83 31898.94 36898.29 30199.24 16498.82 35299.84 5599.08 30499.76 12291.37 36199.94 7998.82 16099.00 35298.26 395
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16499.71 13199.27 17299.93 3899.90 3399.70 2499.93 9798.99 14299.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 32197.66 32898.12 35699.14 33895.36 38999.22 17198.75 35696.97 36998.25 36899.64 19290.90 36999.94 7996.51 33899.56 28499.08 327
ADS-MVSNet97.72 32697.67 32797.86 36599.14 33894.65 39799.22 17198.86 34996.97 36998.25 36899.64 19290.90 36999.84 26296.51 33899.56 28499.08 327
tpm296.35 36196.22 35696.73 39098.88 37591.75 41399.21 17398.51 36993.27 40597.89 38499.21 33584.83 40199.70 34596.04 35998.18 39398.75 372
reproduce_monomvs97.40 33697.46 33097.20 38399.05 35591.91 41199.20 17499.18 33199.84 5599.86 7199.75 12780.67 40699.83 27799.69 4599.95 8199.85 37
MVStest198.22 30498.09 29998.62 33099.04 35896.23 37699.20 17499.92 3499.44 14699.98 1399.87 5285.87 39999.67 36899.91 2499.57 28399.95 13
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17499.54 23199.13 20099.82 8299.63 20398.91 12199.92 12397.85 24299.70 23999.58 171
OPU-MVS99.29 24899.12 34299.44 16199.20 17499.40 29099.00 10798.84 41496.54 33699.60 27599.58 171
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17499.55 22598.22 30799.32 26499.35 30798.65 15699.91 14596.86 31699.74 22399.62 145
PMVScopyleft92.94 2198.82 24598.81 23698.85 31499.84 6197.99 32399.20 17499.47 26299.71 8499.42 23799.82 8098.09 22399.47 40493.88 40199.85 15999.07 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 34897.07 34196.24 39698.68 39690.30 42299.19 18098.38 37897.35 35698.23 37099.59 23287.23 38999.82 28796.27 35198.73 37398.59 378
SR-MVS99.19 17599.00 20299.74 8199.51 23499.72 8399.18 18199.60 19798.85 23499.47 22499.58 23598.38 19599.92 12396.92 31299.54 29399.57 176
thres100view90096.39 36096.03 36097.47 37599.63 17895.93 38199.18 18197.57 39598.75 25298.70 34597.31 41687.04 39199.67 36887.62 41398.51 38296.81 413
thres600view796.60 35596.16 35797.93 36299.63 17896.09 38099.18 18197.57 39598.77 24898.72 34297.32 41587.04 39199.72 33888.57 41098.62 37897.98 404
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18199.60 19798.55 27099.57 19099.67 18099.03 10599.94 7997.01 30799.80 19899.69 88
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 25298.44 26799.64 13299.61 18399.38 18099.18 18199.55 22596.49 37799.27 27699.37 29897.11 28099.92 12395.74 37399.67 25499.62 145
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18699.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18699.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
ambc99.20 26699.35 28898.53 28599.17 18699.46 26599.67 15299.80 9098.46 18499.70 34597.92 23299.70 23999.38 250
PatchmatchNetpermissive97.65 32797.80 32097.18 38498.82 38292.49 40899.17 18698.39 37798.12 31298.79 33699.58 23590.71 37399.89 18297.23 29899.41 31499.16 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 19698.95 21699.59 15699.13 34099.59 13099.17 18699.65 16697.88 33099.25 27899.46 27898.97 11399.80 30997.26 29399.82 18199.37 253
MAR-MVS98.24 30197.92 31599.19 26798.78 38799.65 10999.17 18699.14 33695.36 39298.04 37998.81 38197.47 26299.72 33895.47 37899.06 34698.21 398
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19299.72 12897.99 32099.42 23799.60 22798.81 12999.93 9796.91 31399.74 22399.66 111
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19299.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37399.78 5199.15 19499.66 15699.34 16398.92 31999.24 33197.69 25199.98 2198.11 21799.28 33198.81 365
MDTV_nov1_ep1397.73 32498.70 39590.83 41899.15 19498.02 38798.51 27698.82 33199.61 21990.98 36799.66 37396.89 31598.92 357
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19699.31 30499.16 19499.62 17399.61 21998.35 19899.91 14597.88 23699.72 23499.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19699.61 18699.92 12397.88 23699.72 23499.77 63
test_post199.14 19651.63 43289.54 38399.82 28796.86 316
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19699.58 21299.25 17699.81 8999.62 21098.24 20999.84 26299.83 3399.97 5599.64 129
MDTV_nov1_ep13_2view91.44 41699.14 19697.37 35599.21 28791.78 36096.75 32399.03 338
API-MVS98.38 29098.39 27298.35 34498.83 37999.26 20599.14 19699.18 33198.59 26798.66 34798.78 38298.61 16099.57 39294.14 39699.56 28496.21 415
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20299.65 16697.97 32299.42 23799.61 21998.86 12699.87 21096.45 34499.68 24899.49 216
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26099.73 7899.13 20299.52 24597.40 35399.57 19099.64 19298.93 11699.83 27797.61 26999.79 20399.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20299.85 5999.79 7099.76 11499.72 14299.33 6399.82 28799.21 11299.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20299.65 16698.99 21399.64 16099.72 14299.39 5299.86 22998.23 20499.81 19199.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20699.68 14699.49 13399.80 9399.79 10099.01 10699.93 9798.24 20399.82 18199.73 73
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20699.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 206100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
ETV-MVS99.18 17999.18 15099.16 27099.34 29799.28 20199.12 20699.79 9099.48 13498.93 31698.55 39299.40 5199.93 9798.51 18699.52 29898.28 394
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20699.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21199.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
test_fmvs199.48 9199.65 5298.97 29599.54 22197.16 35599.11 21199.98 1299.78 7299.96 2499.81 8798.72 14699.97 3499.95 1299.97 5599.79 57
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21199.62 17999.18 18799.89 5399.72 14298.66 15499.87 21099.88 2999.97 5599.66 111
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21499.98 1299.99 399.98 1399.91 2899.68 2699.93 9799.93 1999.99 1699.99 2
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21499.61 18699.20 18599.84 7799.73 13598.67 15299.84 26299.86 3299.98 4199.64 129
tpmrst97.73 32398.07 30196.73 39098.71 39492.00 41099.10 21498.86 34998.52 27598.92 31999.54 25591.90 35699.82 28798.02 22299.03 35098.37 391
FMVSNet398.80 24798.63 24999.32 24199.13 34098.72 26899.10 21499.48 25999.23 18099.62 17399.64 19292.57 35099.86 22998.96 14899.90 11699.39 248
thisisatest053097.45 33496.95 34598.94 29999.68 16497.73 33899.09 21894.19 41498.61 26699.56 19799.30 31584.30 40399.93 9798.27 20099.54 29399.16 303
MTMP99.09 21898.59 367
v14899.40 11899.41 10499.39 22099.76 11798.94 24999.09 21899.59 20399.17 19299.81 8999.61 21998.41 19099.69 35199.32 9899.94 9499.53 194
MVP-Stereo99.16 18599.08 17699.43 20699.48 25099.07 23799.08 22199.55 22598.63 26299.31 26999.68 17698.19 21799.78 31598.18 21199.58 28199.45 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 35096.98 34496.16 39798.85 37790.59 42199.08 22199.32 30092.37 40697.73 39399.46 27891.15 36599.69 35196.07 35898.80 36398.21 398
MVSTER98.47 28298.22 28899.24 26299.06 35498.35 30099.08 22199.46 26599.27 17299.75 11999.66 18588.61 38699.85 24799.14 13099.92 10599.52 204
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22499.98 1299.99 399.98 1399.90 3399.88 899.92 12399.93 1999.99 1699.98 4
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
MM99.18 17999.05 18699.55 17199.35 28898.81 26099.05 22597.79 39399.99 399.48 22299.59 23296.29 30899.95 6499.94 1699.98 4199.88 28
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20699.25 31999.69 9699.05 22599.82 7299.50 13198.97 31299.05 35398.98 11199.98 2198.20 20799.24 33798.62 375
v192192099.56 7499.57 7399.55 17199.75 12999.11 22999.05 22599.61 18699.15 19899.88 6299.71 15099.08 9599.87 21099.90 2599.97 5599.66 111
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 22999.04 23099.87 5199.71 8499.47 22499.79 10098.24 20999.98 2199.38 8599.96 6899.83 43
Fast-Effi-MVS+99.02 21398.87 22899.46 19599.38 28099.50 14699.04 23099.79 9097.17 36498.62 35098.74 38499.34 6299.95 6498.32 19799.41 31498.92 354
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23099.60 19799.18 18799.87 7099.72 14299.08 9599.85 24799.89 2899.98 4199.66 111
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23399.96 2599.99 399.97 2099.84 6999.58 3899.93 9799.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23399.96 2599.99 399.97 2099.84 6999.78 1799.92 12399.92 2199.99 1699.92 22
alignmvs98.28 29797.96 30899.25 26099.12 34298.93 25299.03 23398.42 37499.64 10798.72 34297.85 40790.86 37199.62 38398.88 15599.13 34199.19 297
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23699.89 4599.60 12299.82 8299.62 21098.81 12999.89 18299.43 7699.86 15599.47 224
mvs_anonymous99.28 14699.39 10698.94 29999.19 33197.81 33499.02 23699.55 22599.78 7299.85 7499.80 9098.24 20999.86 22999.57 5999.50 30299.15 305
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 23899.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24099.62 11999.01 23899.57 21496.80 37599.54 20499.63 20398.29 20499.91 14595.24 38299.71 23799.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 27898.19 29399.41 21598.33 40799.56 13799.01 23899.59 20395.44 39199.57 19099.80 9095.64 31699.46 40696.47 34299.92 10599.21 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
DCV-MVSNet98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
tfpn200view996.30 36395.89 36297.53 37299.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38296.81 413
v124099.56 7499.58 6999.51 18299.80 8699.00 24199.00 24199.65 16699.15 19899.90 4999.75 12799.09 9299.88 19699.90 2599.96 6899.67 102
thres40096.40 35995.89 36297.92 36399.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38297.98 404
test_vis1_rt99.45 10499.46 9399.41 21599.71 14498.63 28098.99 24699.96 2599.03 21199.95 3299.12 34598.75 14199.84 26299.82 3799.82 18199.77 63
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24699.67 15199.48 13499.55 20299.36 30294.92 32499.86 22998.95 15296.57 41199.45 229
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31399.22 21598.99 24699.40 28399.08 20599.58 18799.64 19298.90 12499.83 27797.44 27999.75 21699.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23499.58 13498.98 24999.60 19799.43 15299.70 14199.36 30297.70 24999.88 19699.20 11599.87 14799.59 166
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25099.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25699.56 13798.97 25099.61 18699.43 15299.67 15299.28 31997.85 24199.95 6499.17 12199.81 19199.65 119
CDS-MVSNet99.22 16599.13 15899.50 18499.35 28899.11 22998.96 25299.54 23199.46 14199.61 17999.70 15896.31 30699.83 27799.34 9399.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25399.53 24098.27 30599.53 20999.73 13598.75 14199.87 21097.70 25899.83 17299.68 94
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25399.86 5498.85 23499.81 8999.73 13598.40 19499.92 12398.36 19399.83 17299.17 301
SD-MVS99.01 21999.30 13098.15 35499.50 24099.40 17598.94 25599.61 18699.22 18499.75 11999.82 8099.54 4395.51 42197.48 27799.87 14799.54 189
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20299.90 3698.66 27498.94 25599.91 3897.97 32299.79 9999.73 13599.05 10299.97 3499.15 12499.99 1699.68 94
testing396.48 35895.63 36999.01 29299.23 32397.81 33498.90 25799.10 33998.72 25397.84 38897.92 40672.44 42299.85 24797.21 30099.33 32499.35 259
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28699.80 8697.83 33398.89 25899.72 12899.29 16899.63 16499.70 15896.47 29899.89 18298.17 21399.82 18199.50 211
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 25999.66 15697.11 36899.47 22499.60 22799.07 9799.89 18296.18 35599.85 15999.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 33996.84 34998.89 31299.29 31099.45 15998.87 26099.48 25986.54 41599.44 23099.74 13197.34 26999.86 22991.61 40599.28 33197.37 411
tmp_tt95.75 37795.42 37196.76 38889.90 42694.42 39898.86 26197.87 39278.01 41799.30 27499.69 16597.70 24995.89 41999.29 10498.14 39599.95 13
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23299.71 8598.86 26199.19 33098.47 28198.59 35399.06 35298.08 22599.91 14596.94 31199.60 27599.60 159
IterMVS-LS99.41 11699.47 8999.25 26099.81 8098.09 31798.85 26399.76 10499.62 11299.83 8199.64 19298.54 17099.97 3499.15 12499.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 14599.26 14199.37 22699.75 12998.81 26098.84 26499.89 4598.38 28999.75 11999.04 35599.36 6199.86 22999.08 13699.25 33599.45 229
F-COLMAP98.74 25298.45 26699.62 14899.57 20599.47 15098.84 26499.65 16696.31 38198.93 31699.19 33897.68 25299.87 21096.52 33799.37 31999.53 194
baseline296.83 34996.28 35598.46 34099.09 35296.91 36298.83 26693.87 41797.23 36196.23 41298.36 39788.12 38799.90 16396.68 32798.14 39598.57 381
DU-MVS99.33 14099.21 14799.71 10199.43 26899.56 13798.83 26699.53 24099.38 15899.67 15299.36 30297.67 25399.95 6499.17 12199.81 19199.63 134
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26699.86 5499.68 9499.65 15999.88 4797.67 25399.87 21099.03 13999.86 15599.76 68
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26699.72 12898.36 29199.60 18299.71 15098.92 11999.91 14597.08 30599.84 16499.40 246
MSLP-MVS++99.05 20799.09 17498.91 30599.21 32698.36 29998.82 27099.47 26298.85 23498.90 32299.56 24698.78 13699.09 41198.57 18399.68 24899.26 278
9.1498.64 24799.45 26498.81 27199.60 19797.52 34799.28 27599.56 24698.53 17499.83 27795.36 38199.64 261
D2MVS99.22 16599.19 14999.29 24899.69 15698.74 26798.81 27199.41 27698.55 27099.68 14799.69 16598.13 22199.87 21098.82 16099.98 4199.24 281
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27199.66 15699.42 15699.75 11999.66 18599.20 7899.76 32698.98 14499.99 1699.36 256
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27499.54 23198.94 22099.14 29799.25 32697.24 27299.82 28795.84 37099.78 20899.60 159
plane_prior298.80 27498.94 220
JIA-IIPM98.06 31297.92 31598.50 33798.59 39897.02 35998.80 27498.51 36999.88 4297.89 38499.87 5291.89 35799.90 16398.16 21497.68 40498.59 378
PAPM_NR98.36 29198.04 30299.33 23699.48 25098.93 25298.79 27799.28 31197.54 34598.56 35798.57 39097.12 27999.69 35194.09 39798.90 36199.38 250
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 27899.88 4998.66 25999.96 2499.79 10097.45 26399.93 9799.34 9399.99 1699.78 59
hse-mvs298.52 27598.30 28399.16 27099.29 31098.60 28298.77 27999.02 34499.68 9499.32 26499.04 35592.50 35399.85 24799.24 10897.87 40299.03 338
MVS_030498.61 26298.30 28399.52 17997.88 41698.95 24898.76 28094.11 41599.84 5599.32 26499.57 24295.57 31999.95 6499.68 4799.98 4199.68 94
MS-PatchMatch99.00 22198.97 21399.09 28199.11 34798.19 30798.76 28099.33 29898.49 27999.44 23099.58 23598.21 21499.69 35198.20 20799.62 26599.39 248
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28299.60 19798.55 27099.76 11499.69 16598.23 21399.92 12396.39 34699.75 21699.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 26898.37 27499.26 25799.43 26898.40 29498.74 28299.13 33898.10 31399.21 28799.24 33194.82 32699.90 16397.86 24098.77 36699.49 216
AUN-MVS97.82 31997.38 33399.14 27599.27 31598.53 28598.72 28499.02 34498.10 31397.18 40099.03 35989.26 38499.85 24797.94 23197.91 40099.03 338
sss98.90 23698.77 24099.27 25499.48 25098.44 29198.72 28499.32 30097.94 32699.37 25299.35 30796.31 30699.91 14598.85 15699.63 26499.47 224
CANet99.11 19699.05 18699.28 25198.83 37998.56 28498.71 28699.41 27699.25 17699.23 28299.22 33397.66 25799.94 7999.19 11699.97 5599.33 263
AdaColmapbinary98.60 26598.35 27799.38 22399.12 34299.22 21598.67 28799.42 27597.84 33498.81 33299.27 32197.32 27099.81 30295.14 38499.53 29599.10 316
ETVMVS96.14 36795.22 37798.89 31298.80 38398.01 32298.66 28898.35 38098.71 25597.18 40096.31 42974.23 42199.75 33096.64 33298.13 39798.90 356
testing9995.86 37595.19 37897.87 36498.76 39095.03 39398.62 28998.44 37398.68 25796.67 40696.66 42474.31 42099.69 35196.51 33898.03 39998.90 356
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29099.63 17696.84 37399.44 23099.58 23598.81 12999.91 14597.70 25899.82 18199.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 24598.57 25699.58 15999.21 32699.31 19698.61 29099.25 31798.65 26098.43 36399.26 32497.86 23999.81 30296.55 33599.27 33499.61 155
Syy-MVS98.17 30797.85 31999.15 27298.50 40298.79 26398.60 29299.21 32797.89 32896.76 40496.37 42795.47 32199.57 39299.10 13398.73 37399.09 321
myMVS_eth3d95.63 37994.73 38198.34 34698.50 40296.36 37298.60 29299.21 32797.89 32896.76 40496.37 42772.10 42399.57 39294.38 39298.73 37399.09 321
BH-RMVSNet98.41 28798.14 29699.21 26499.21 32698.47 28898.60 29298.26 38298.35 29698.93 31699.31 31397.20 27799.66 37394.32 39399.10 34499.51 206
testing1196.05 37095.41 37297.97 36098.78 38795.27 39198.59 29598.23 38398.86 23396.56 40796.91 42075.20 41899.69 35197.26 29398.29 38798.93 352
LF4IMVS99.01 21998.92 22299.27 25499.71 14499.28 20198.59 29599.77 9998.32 30299.39 25099.41 28698.62 15899.84 26296.62 33499.84 16498.69 373
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29799.48 25998.50 27799.52 21199.63 20399.14 8699.76 32697.89 23599.77 21299.51 206
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29799.07 34098.40 28799.04 30999.25 32698.51 17999.80 30997.31 28799.51 29999.65 119
PVSNet_BlendedMVS99.03 21199.01 19899.09 28199.54 22197.99 32398.58 29799.82 7297.62 34199.34 25999.71 15098.52 17799.77 32397.98 22799.97 5599.52 204
OMC-MVS98.90 23698.72 24299.44 20299.39 27799.42 16898.58 29799.64 17497.31 35899.44 23099.62 21098.59 16299.69 35196.17 35699.79 20399.22 287
diffmvspermissive99.34 13799.32 12399.39 22099.67 17098.77 26598.57 30199.81 8199.61 11699.48 22299.41 28698.47 18199.86 22998.97 14699.90 11699.53 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon98.50 27898.23 28799.31 24499.49 24599.46 15498.56 30299.63 17694.86 40098.85 32899.37 29897.81 24399.59 39096.08 35799.44 30998.88 359
new-patchmatchnet99.35 13299.57 7398.71 32899.82 7296.62 36798.55 30399.75 10999.50 13199.88 6299.87 5299.31 6499.88 19699.43 76100.00 199.62 145
pmmvs599.19 17599.11 16599.42 20899.76 11798.88 25698.55 30399.73 11998.82 23999.72 13299.62 21096.56 29499.82 28799.32 9899.95 8199.56 178
BH-untuned98.22 30498.09 29998.58 33599.38 28097.24 35398.55 30398.98 34797.81 33599.20 29298.76 38397.01 28399.65 37994.83 38798.33 38598.86 361
testing22295.60 38194.59 38498.61 33198.66 39797.45 34798.54 30697.90 39198.53 27496.54 40896.47 42670.62 42599.81 30295.91 36898.15 39498.56 382
CNVR-MVS98.99 22498.80 23899.56 16899.25 31999.43 16598.54 30699.27 31298.58 26898.80 33499.43 28398.53 17499.70 34597.22 29999.59 27999.54 189
thres20096.09 36895.68 36897.33 38099.48 25096.22 37798.53 30897.57 39598.06 31798.37 36596.73 42286.84 39599.61 38886.99 41698.57 37996.16 416
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 30999.82 7297.65 34099.43 23499.16 33996.42 30099.91 14599.07 13799.84 16499.80 50
EPNet_dtu97.62 32897.79 32297.11 38696.67 42192.31 40998.51 31098.04 38699.24 17895.77 41399.47 27593.78 33899.66 37398.98 14499.62 26599.37 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 29197.99 30599.48 19099.32 30399.24 21298.50 31199.51 25095.19 39698.58 35498.96 36996.95 28599.83 27795.63 37499.25 33599.37 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 31397.55 32999.46 19599.47 25699.44 16198.50 31199.62 17986.79 41399.07 30799.26 32498.26 20899.62 38397.28 29099.73 22899.31 270
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG96.53 35695.95 36198.29 35198.87 37696.31 37498.48 31398.07 38598.83 23897.32 39596.54 42579.81 41199.62 38396.84 31998.74 37098.95 349
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
TR-MVS97.44 33597.15 34098.32 34798.53 40097.46 34698.47 31497.91 39096.85 37298.21 37198.51 39496.42 30099.51 40292.16 40497.29 40797.98 404
FPMVS96.32 36295.50 37098.79 32299.60 18598.17 31098.46 31898.80 35497.16 36596.28 40999.63 20382.19 40499.09 41188.45 41198.89 36299.10 316
WBMVS97.50 33397.18 33998.48 33898.85 37795.89 38398.44 31999.52 24599.53 12899.52 21199.42 28580.10 40999.86 22999.24 10899.95 8199.68 94
plane_prior99.24 21298.42 32097.87 33199.71 237
WR-MVS99.11 19698.93 21899.66 11999.30 30899.42 16898.42 32099.37 29199.04 21099.57 19099.20 33796.89 28699.86 22998.66 17899.87 14799.70 82
testing9196.00 37195.32 37598.02 35798.76 39095.39 38898.38 32298.65 36398.82 23996.84 40396.71 42375.06 41999.71 34296.46 34398.23 38998.98 346
MVS-HIRNet97.86 31798.22 28896.76 38899.28 31391.53 41598.38 32292.60 41899.13 20099.31 26999.96 1597.18 27899.68 36398.34 19599.83 17299.07 332
N_pmnet98.73 25498.53 26199.35 23299.72 14198.67 27198.34 32494.65 41198.35 29699.79 9999.68 17698.03 22799.93 9798.28 19999.92 10599.44 234
CNLPA98.57 27098.34 27899.28 25199.18 33499.10 23498.34 32499.41 27698.48 28098.52 35898.98 36597.05 28299.78 31595.59 37599.50 30298.96 347
CDPH-MVS98.56 27198.20 29099.61 15199.50 24099.46 15498.32 32699.41 27695.22 39499.21 28799.10 34998.34 20099.82 28795.09 38699.66 25799.56 178
Effi-MVS+99.06 20498.97 21399.34 23399.31 30498.98 24398.31 32799.91 3898.81 24198.79 33698.94 37199.14 8699.84 26298.79 16498.74 37099.20 294
save fliter99.53 22799.25 20898.29 32899.38 29099.07 207
WB-MVSnew98.34 29698.14 29698.96 29698.14 41497.90 33198.27 32997.26 40198.63 26298.80 33498.00 40597.77 24699.90 16397.37 28498.98 35399.09 321
Patchmatch-RL test98.60 26598.36 27599.33 23699.77 11399.07 23798.27 32999.87 5198.91 22699.74 12799.72 14290.57 37599.79 31298.55 18499.85 15999.11 314
jason99.16 18599.11 16599.32 24199.75 12998.44 29198.26 33199.39 28698.70 25699.74 12799.30 31598.54 17099.97 3498.48 18799.82 18199.55 181
jason: jason.
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33299.73 11998.39 28899.63 16499.43 28399.70 2499.90 16397.34 28598.64 37799.44 234
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31499.64 17697.16 35598.23 33399.33 29898.93 22399.56 19799.66 18597.39 26799.83 27798.29 19899.88 13599.55 181
YYNet198.95 23198.99 20998.84 31699.64 17697.14 35798.22 33499.32 30098.92 22599.59 18599.66 18597.40 26599.83 27798.27 20099.90 11699.55 181
CANet_DTU98.91 23498.85 23099.09 28198.79 38598.13 31298.18 33599.31 30499.48 13498.86 32799.51 26196.56 29499.95 6499.05 13899.95 8199.19 297
MG-MVS98.52 27598.39 27298.94 29999.15 33797.39 35098.18 33599.21 32798.89 23099.23 28299.63 20397.37 26899.74 33394.22 39599.61 27299.69 88
SCA98.11 30998.36 27597.36 37899.20 32992.99 40698.17 33798.49 37198.24 30699.10 30399.57 24296.01 31399.94 7996.86 31699.62 26599.14 310
TSAR-MVS + GP.99.12 19399.04 19299.38 22399.34 29799.16 22498.15 33899.29 30898.18 31199.63 16499.62 21099.18 8099.68 36398.20 20799.74 22399.30 272
new_pmnet98.88 24098.89 22698.84 31699.70 15297.62 34198.15 33899.50 25497.98 32199.62 17399.54 25598.15 22099.94 7997.55 27299.84 16498.95 349
PatchMatch-RL98.68 25998.47 26499.30 24799.44 26599.28 20198.14 34099.54 23197.12 36799.11 30199.25 32697.80 24499.70 34596.51 33899.30 32898.93 352
xiu_mvs_v2_base99.02 21399.11 16598.77 32399.37 28298.09 31798.13 34199.51 25099.47 13899.42 23798.54 39399.38 5699.97 3498.83 15899.33 32498.24 396
lupinMVS98.96 22898.87 22899.24 26299.57 20598.40 29498.12 34299.18 33198.28 30499.63 16499.13 34198.02 22899.97 3498.22 20599.69 24399.35 259
DELS-MVS99.34 13799.30 13099.48 19099.51 23499.36 18798.12 34299.53 24099.36 16299.41 24399.61 21999.22 7699.87 21099.21 11299.68 24899.20 294
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 28899.35 19098.11 34499.41 27694.83 40197.92 38298.99 36298.02 22899.85 247
train_agg98.35 29497.95 30999.57 16599.35 28899.35 19098.11 34499.41 27694.90 39897.92 38298.99 36298.02 22899.85 24795.38 38099.44 30999.50 211
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24298.09 34699.90 4398.95 21999.78 10399.58 23599.57 4099.93 9799.48 7199.95 8199.79 57
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34699.80 8497.14 36699.46 22899.40 29096.11 31199.89 18299.01 14199.84 16499.84 39
test_899.34 29799.31 19698.08 34899.40 28394.90 39897.87 38698.97 36798.02 22899.84 262
IterMVS-SCA-FT99.00 22199.16 15298.51 33699.75 12995.90 38298.07 34999.84 6599.84 5599.89 5399.73 13596.01 31399.99 899.33 96100.00 199.63 134
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 34999.83 6798.64 26199.89 5399.60 22792.57 350100.00 199.33 9699.97 5599.72 76
IterMVS98.97 22599.16 15298.42 34199.74 13595.64 38698.06 35199.83 6799.83 6099.85 7499.74 13196.10 31299.99 899.27 107100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS96.21 36695.78 36697.49 37398.53 40093.83 40398.04 35293.94 41698.96 21798.46 36298.17 40179.86 41099.87 21096.99 30899.06 34698.78 368
新几何298.04 352
BH-w/o97.20 34197.01 34397.76 36899.08 35395.69 38598.03 35498.52 36895.76 38897.96 38198.02 40395.62 31799.47 40492.82 40397.25 40898.12 402
无先验98.01 35599.23 32195.83 38799.85 24795.79 37299.44 234
pmmvs499.13 19199.06 18299.36 23099.57 20599.10 23498.01 35599.25 31798.78 24699.58 18799.44 28298.24 20999.76 32698.74 17199.93 10199.22 287
PS-MVSNAJ99.00 22199.08 17698.76 32499.37 28298.10 31698.00 35799.51 25099.47 13899.41 24398.50 39599.28 6899.97 3498.83 15899.34 32398.20 400
test_prior499.19 22198.00 357
HQP-NCC99.31 30497.98 35997.45 35098.15 372
ACMP_Plane99.31 30497.98 35997.45 35098.15 372
HQP-MVS98.36 29198.02 30499.39 22099.31 30498.94 24997.98 35999.37 29197.45 35098.15 37298.83 37896.67 29199.70 34594.73 38899.67 25499.53 194
UnsupCasMVSNet_bld98.55 27298.27 28699.40 21799.56 21699.37 18397.97 36299.68 14697.49 34999.08 30499.35 30795.41 32299.82 28797.70 25898.19 39299.01 344
test_prior297.95 36397.87 33198.05 37899.05 35397.90 23695.99 36399.49 304
旧先验297.94 36495.33 39398.94 31599.88 19696.75 323
MVEpermissive92.54 2296.66 35496.11 35898.31 34999.68 16497.55 34397.94 36495.60 40999.37 15990.68 42098.70 38696.56 29498.61 41686.94 41799.55 28898.77 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 366
MVS_111021_HR99.12 19399.02 19599.40 21799.50 24099.11 22997.92 36699.71 13198.76 25199.08 30499.47 27599.17 8199.54 39697.85 24299.76 21499.54 189
MVS_111021_LR99.13 19199.03 19499.42 20899.58 19599.32 19597.91 36899.73 11998.68 25799.31 26999.48 27199.09 9299.66 37397.70 25899.77 21299.29 275
mvsany_test199.44 10699.45 9599.40 21799.37 28298.64 27997.90 36999.59 20399.27 17299.92 4399.82 8099.74 2099.93 9799.55 6299.87 14799.63 134
pmmvs398.08 31197.80 32098.91 30599.41 27597.69 34097.87 37099.66 15695.87 38599.50 21999.51 26190.35 37799.97 3498.55 18499.47 30699.08 327
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37099.74 11598.36 29199.66 15799.68 17699.71 2299.90 16396.84 31999.88 13599.43 240
test22299.51 23499.08 23697.83 37299.29 30895.21 39598.68 34699.31 31397.28 27199.38 31799.43 240
miper_lstm_enhance98.65 26198.60 25098.82 32199.20 32997.33 35197.78 37399.66 15699.01 21299.59 18599.50 26494.62 32999.85 24798.12 21699.90 11699.26 278
TinyColmap98.97 22598.93 21899.07 28699.46 26098.19 30797.75 37499.75 10998.79 24499.54 20499.70 15898.97 11399.62 38396.63 33399.83 17299.41 244
our_test_398.85 24399.09 17498.13 35599.66 17194.90 39697.72 37599.58 21299.07 20799.64 16099.62 21098.19 21799.93 9798.41 19099.95 8199.55 181
testdata197.72 37597.86 333
ET-MVSNet_ETH3D96.78 35096.07 35998.91 30599.26 31897.92 33097.70 37796.05 40797.96 32592.37 41998.43 39687.06 39099.90 16398.27 20097.56 40598.91 355
c3_l98.72 25598.71 24398.72 32699.12 34297.22 35497.68 37899.56 21998.90 22799.54 20499.48 27196.37 30499.73 33697.88 23699.88 13599.21 290
ppachtmachnet_test98.89 23999.12 16298.20 35399.66 17195.24 39297.63 37999.68 14699.08 20599.78 10399.62 21098.65 15699.88 19698.02 22299.96 6899.48 220
PAPR97.56 33197.07 34199.04 29098.80 38398.11 31597.63 37999.25 31794.56 40398.02 38098.25 40097.43 26499.68 36390.90 40898.74 37099.33 263
test0.0.03 197.37 33896.91 34898.74 32597.72 41797.57 34297.60 38197.36 40098.00 31899.21 28798.02 40390.04 38099.79 31298.37 19295.89 41698.86 361
PVSNet_Blended98.70 25798.59 25299.02 29199.54 22197.99 32397.58 38299.82 7295.70 38999.34 25998.98 36598.52 17799.77 32397.98 22799.83 17299.30 272
PMMVS98.49 28098.29 28599.11 27898.96 36798.42 29397.54 38399.32 30097.53 34698.47 36198.15 40297.88 23899.82 28797.46 27899.24 33799.09 321
MSDG99.08 20098.98 21299.37 22699.60 18599.13 22797.54 38399.74 11598.84 23799.53 20999.55 25399.10 9099.79 31297.07 30699.86 15599.18 299
test12329.31 38833.05 39318.08 40425.93 42812.24 42997.53 38510.93 42911.78 42224.21 42350.08 43421.04 4278.60 42323.51 42232.43 42233.39 419
CLD-MVS98.76 25098.57 25699.33 23699.57 20598.97 24597.53 38599.55 22596.41 37899.27 27699.13 34199.07 9799.78 31596.73 32599.89 12699.23 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 25998.71 24398.60 33299.10 34996.84 36497.52 38799.54 23198.94 22099.58 18799.48 27196.25 30999.76 32698.01 22599.93 10199.21 290
miper_ehance_all_eth98.59 26898.59 25298.59 33398.98 36597.07 35897.49 38899.52 24598.50 27799.52 21199.37 29896.41 30299.71 34297.86 24099.62 26599.00 345
cl____98.54 27398.41 27098.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.85 33699.78 31597.97 22999.89 12699.17 301
DIV-MVS_self_test98.54 27398.42 26998.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.87 33599.78 31597.97 22999.89 12699.18 299
test-LLR97.15 34296.95 34597.74 37098.18 41195.02 39497.38 39196.10 40498.00 31897.81 38998.58 38890.04 38099.91 14597.69 26498.78 36498.31 392
TESTMET0.1,196.24 36495.84 36597.41 37798.24 40993.84 40297.38 39195.84 40898.43 28297.81 38998.56 39179.77 41299.89 18297.77 24798.77 36698.52 383
test-mter96.23 36595.73 36797.74 37098.18 41195.02 39497.38 39196.10 40497.90 32797.81 38998.58 38879.12 41599.91 14597.69 26498.78 36498.31 392
IB-MVS95.41 2095.30 38294.46 38697.84 36698.76 39095.33 39097.33 39496.07 40696.02 38495.37 41697.41 41476.17 41799.96 5597.54 27395.44 41898.22 397
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 29797.94 31399.32 24199.36 28599.11 22997.31 39598.78 35596.88 37198.84 32999.11 34897.77 24699.61 38894.03 39999.36 32099.23 285
thisisatest051596.98 34696.42 35398.66 32999.42 27397.47 34597.27 39694.30 41397.24 36099.15 29598.86 37785.01 40099.87 21097.10 30499.39 31698.63 374
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32499.75 6997.25 39799.47 26298.72 25399.66 15799.70 15899.29 6699.63 38298.07 22199.81 19199.62 145
cl2297.56 33197.28 33598.40 34298.37 40696.75 36597.24 39899.37 29197.31 35899.41 24399.22 33387.30 38899.37 40897.70 25899.62 26599.08 327
GA-MVS97.99 31697.68 32698.93 30299.52 23298.04 32197.19 39999.05 34398.32 30298.81 33298.97 36789.89 38299.41 40798.33 19699.05 34899.34 262
CL-MVSNet_self_test98.71 25698.56 25999.15 27299.22 32498.66 27497.14 40099.51 25098.09 31599.54 20499.27 32196.87 28799.74 33398.43 18998.96 35499.03 338
KD-MVS_2432*160095.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
miper_refine_blended95.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
USDC98.96 22898.93 21899.05 28999.54 22197.99 32397.07 40399.80 8498.21 30899.75 11999.77 11998.43 18799.64 38197.90 23499.88 13599.51 206
miper_enhance_ethall98.03 31397.94 31398.32 34798.27 40896.43 37196.95 40499.41 27696.37 38099.43 23498.96 36994.74 32799.69 35197.71 25599.62 26598.83 364
CHOSEN 280x42098.41 28798.41 27098.40 34299.34 29795.89 38396.94 40599.44 27098.80 24399.25 27899.52 25993.51 34299.98 2198.94 15399.98 4199.32 266
PCF-MVS96.03 1896.73 35295.86 36499.33 23699.44 26599.16 22496.87 40699.44 27086.58 41498.95 31499.40 29094.38 33199.88 19687.93 41299.80 19898.95 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 38933.33 39115.79 40526.03 4279.81 43096.77 40715.67 42811.55 42323.87 42450.74 43319.03 4288.53 42423.21 42333.07 42129.03 420
PVSNet97.47 1598.42 28698.44 26798.35 34499.46 26096.26 37596.70 40899.34 29797.68 33999.00 31199.13 34197.40 26599.72 33897.59 27199.68 24899.08 327
PAPM95.61 38094.71 38298.31 34999.12 34296.63 36696.66 40998.46 37290.77 41196.25 41098.68 38793.01 34799.69 35181.60 41997.86 40398.62 375
cascas96.99 34596.82 35197.48 37497.57 42095.64 38696.43 41099.56 21991.75 40897.13 40297.61 41395.58 31898.63 41596.68 32799.11 34398.18 401
kuosan85.65 38784.57 39088.90 40397.91 41577.11 42796.37 41187.62 42685.24 41685.45 42196.83 42169.94 42690.98 42245.90 42195.83 41798.62 375
PVSNet_095.53 1995.85 37695.31 37697.47 37598.78 38793.48 40595.72 41299.40 28396.18 38397.37 39497.73 40895.73 31599.58 39195.49 37781.40 42099.36 256
E-PMN97.14 34497.43 33196.27 39598.79 38591.62 41495.54 41399.01 34699.44 14698.88 32399.12 34592.78 34999.68 36394.30 39499.03 35097.50 408
dongtai89.37 38588.91 38890.76 40199.19 33177.46 42695.47 41487.82 42592.28 40794.17 41898.82 38071.22 42495.54 42063.85 42097.34 40699.27 276
EMVS96.96 34797.28 33595.99 39898.76 39091.03 41795.26 41598.61 36499.34 16398.92 31998.88 37693.79 33799.66 37392.87 40299.05 34897.30 412
test_method91.72 38492.32 38789.91 40293.49 42570.18 42890.28 41699.56 21961.71 42095.39 41599.52 25993.90 33499.94 7998.76 16998.27 38899.62 145
mmdepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
test_blank8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.88 39033.17 3920.00 4060.00 4290.00 4310.00 41799.62 1790.00 4240.00 42599.13 34199.82 130.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas16.61 39122.14 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 199.28 680.00 4250.00 4240.00 4230.00 421
sosnet-low-res8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
Regformer8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.26 40211.02 4050.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.16 3390.00 4290.00 4250.00 4240.00 4230.00 421
uanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS96.36 37295.20 383
MSC_two_6792asdad99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
PC_three_145297.56 34299.68 14799.41 28699.09 9297.09 41896.66 32999.60 27599.62 145
No_MVS99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
test_one_060199.63 17899.76 6399.55 22599.23 18099.31 26999.61 21998.59 162
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.43 26899.61 12599.43 27396.38 37999.11 30199.07 35197.86 23999.92 12394.04 39899.49 304
IU-MVS99.69 15699.77 5699.22 32497.50 34899.69 14497.75 25199.70 23999.77 63
test_241102_TWO99.54 23199.13 20099.76 11499.63 20398.32 20399.92 12397.85 24299.69 24399.75 71
test_241102_ONE99.69 15699.82 3799.54 23199.12 20399.82 8299.49 26898.91 12199.52 401
test_0728_THIRD99.18 18799.62 17399.61 21998.58 16499.91 14597.72 25399.80 19899.77 63
GSMVS99.14 310
test_part299.62 18299.67 10199.55 202
sam_mvs190.81 37299.14 310
sam_mvs90.52 376
MTGPAbinary99.53 240
test_post52.41 43190.25 37899.86 229
patchmatchnet-post99.62 21090.58 37499.94 79
gm-plane-assit97.59 41889.02 42493.47 40498.30 39899.84 26296.38 347
test9_res95.10 38599.44 30999.50 211
agg_prior294.58 39199.46 30899.50 211
agg_prior99.35 28899.36 18799.39 28697.76 39299.85 247
TestCases99.63 13999.78 10599.64 11299.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
test_prior99.46 19599.35 28899.22 21599.39 28699.69 35199.48 220
新几何199.52 17999.50 24099.22 21599.26 31495.66 39098.60 35299.28 31997.67 25399.89 18295.95 36699.32 32699.45 229
旧先验199.49 24599.29 19999.26 31499.39 29497.67 25399.36 32099.46 228
原ACMM199.37 22699.47 25698.87 25899.27 31296.74 37698.26 36799.32 31197.93 23599.82 28795.96 36599.38 31799.43 240
testdata299.89 18295.99 363
segment_acmp98.37 196
testdata99.42 20899.51 23498.93 25299.30 30796.20 38298.87 32699.40 29098.33 20299.89 18296.29 35099.28 33199.44 234
test1299.54 17699.29 31099.33 19399.16 33498.43 36397.54 26099.82 28799.47 30699.48 220
plane_prior799.58 19599.38 180
plane_prior699.47 25699.26 20597.24 272
plane_prior599.54 23199.82 28795.84 37099.78 20899.60 159
plane_prior499.25 326
plane_prior399.31 19698.36 29199.14 297
plane_prior199.51 234
n20.00 430
nn0.00 430
door-mid99.83 67
lessismore_v099.64 13299.86 5399.38 18090.66 42099.89 5399.83 7394.56 33099.97 3499.56 6099.92 10599.57 176
LGP-MVS_train99.74 8199.82 7299.63 11799.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
test1199.29 308
door99.77 99
HQP5-MVS98.94 249
BP-MVS94.73 388
HQP4-MVS98.15 37299.70 34599.53 194
HQP3-MVS99.37 29199.67 254
HQP2-MVS96.67 291
NP-MVS99.40 27699.13 22798.83 378
ACMMP++_ref99.94 94
ACMMP++99.79 203
Test By Simon98.41 190
ITE_SJBPF99.38 22399.63 17899.44 16199.73 11998.56 26999.33 26199.53 25798.88 12599.68 36396.01 36099.65 25999.02 343
DeepMVS_CXcopyleft97.98 35999.69 15696.95 36099.26 31475.51 41895.74 41498.28 39996.47 29899.62 38391.23 40797.89 40197.38 410