LTVRE_ROB | | 99.19 1 | 99.88 5 | 99.87 9 | 99.88 12 | 99.91 27 | 99.90 7 | 99.96 1 | 99.92 19 | 99.90 14 | 99.97 14 | 99.87 40 | 99.81 8 | 99.95 52 | 99.54 44 | 99.99 13 | 99.80 32 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LCM-MVSNet | | | 99.95 1 | 99.95 1 | 99.95 1 | 99.99 1 | 99.99 1 | 99.95 2 | 99.97 11 | 99.99 1 | 100.00 1 | 99.98 10 | 99.78 10 | 100.00 1 | 99.92 10 | 100.00 1 | 99.87 17 |
|
UA-Net | | | 99.78 16 | 99.76 22 | 99.86 18 | 99.72 125 | 99.71 76 | 99.91 3 | 99.95 18 | 99.96 3 | 99.71 118 | 99.91 24 | 99.15 67 | 99.97 23 | 99.50 51 | 100.00 1 | 99.90 12 |
|
UniMVSNet_ETH3D | | | 99.85 8 | 99.83 13 | 99.90 5 | 99.89 34 | 99.91 4 | 99.89 4 | 99.71 109 | 99.93 10 | 99.95 20 | 99.89 31 | 99.71 14 | 99.96 42 | 99.51 49 | 99.97 43 | 99.84 22 |
|
TDRefinement | | | 99.72 22 | 99.70 25 | 99.77 44 | 99.90 32 | 99.85 19 | 99.86 5 | 99.92 19 | 99.69 72 | 99.78 86 | 99.92 21 | 99.37 42 | 99.88 173 | 98.93 132 | 99.95 68 | 99.60 135 |
|
pmmvs6 | | | 99.86 7 | 99.86 11 | 99.83 25 | 99.94 16 | 99.90 7 | 99.83 6 | 99.91 22 | 99.85 34 | 99.94 22 | 99.95 13 | 99.73 13 | 99.90 142 | 99.65 30 | 99.97 43 | 99.69 68 |
|
OurMVSNet-221017-0 | | | 99.75 18 | 99.71 24 | 99.84 23 | 99.96 5 | 99.83 29 | 99.83 6 | 99.85 40 | 99.80 47 | 99.93 25 | 99.93 17 | 98.54 148 | 99.93 82 | 99.59 35 | 99.98 31 | 99.76 51 |
|
v7n | | | 99.82 13 | 99.80 17 | 99.88 12 | 99.96 5 | 99.84 24 | 99.82 8 | 99.82 53 | 99.84 37 | 99.94 22 | 99.91 24 | 99.13 72 | 99.96 42 | 99.83 18 | 99.99 13 | 99.83 26 |
|
Anonymous20231211 | | | 99.62 52 | 99.57 58 | 99.76 51 | 99.61 165 | 99.60 113 | 99.81 9 | 99.73 97 | 99.82 42 | 99.90 38 | 99.90 27 | 97.97 211 | 99.86 205 | 99.42 62 | 99.96 57 | 99.80 32 |
|
CS-MVS | | | 99.67 38 | 99.70 25 | 99.58 141 | 99.53 205 | 99.84 24 | 99.79 10 | 99.96 15 | 99.90 14 | 99.61 158 | 99.41 257 | 99.51 31 | 99.95 52 | 99.66 29 | 99.89 110 | 98.96 311 |
|
CS-MVS-test | | | 99.68 32 | 99.70 25 | 99.64 114 | 99.57 186 | 99.83 29 | 99.78 11 | 99.97 11 | 99.92 12 | 99.50 197 | 99.38 267 | 99.57 26 | 99.95 52 | 99.69 27 | 99.90 101 | 99.15 277 |
|
RRT_MVS | | | 99.67 38 | 99.59 51 | 99.91 2 | 99.94 16 | 99.88 12 | 99.78 11 | 99.27 287 | 99.87 26 | 99.91 32 | 99.87 40 | 98.04 204 | 99.96 42 | 99.68 28 | 99.99 13 | 99.90 12 |
|
ab-mvs | | | 99.33 118 | 99.28 115 | 99.47 171 | 99.57 186 | 99.39 158 | 99.78 11 | 99.43 247 | 98.87 199 | 99.57 169 | 99.82 62 | 98.06 203 | 99.87 187 | 98.69 152 | 99.73 208 | 99.15 277 |
|
FE-MVS | | | 97.85 288 | 97.42 301 | 99.15 247 | 99.44 242 | 98.75 242 | 99.77 14 | 98.20 349 | 95.85 344 | 99.33 234 | 99.80 71 | 88.86 354 | 99.88 173 | 96.40 307 | 99.12 315 | 98.81 325 |
|
FA-MVS(test-final) | | | 98.52 248 | 98.32 254 | 99.10 255 | 99.48 228 | 98.67 247 | 99.77 14 | 98.60 336 | 97.35 314 | 99.63 143 | 99.80 71 | 93.07 314 | 99.84 236 | 97.92 203 | 99.30 302 | 98.78 328 |
|
MVSFormer | | | 99.41 94 | 99.44 81 | 99.31 221 | 99.57 186 | 98.40 268 | 99.77 14 | 99.80 64 | 99.73 58 | 99.63 143 | 99.30 286 | 98.02 206 | 99.98 11 | 99.43 57 | 99.69 223 | 99.55 157 |
|
test_djsdf | | | 99.84 10 | 99.81 15 | 99.91 2 | 99.94 16 | 99.84 24 | 99.77 14 | 99.80 64 | 99.73 58 | 99.97 14 | 99.92 21 | 99.77 11 | 99.98 11 | 99.43 57 | 100.00 1 | 99.90 12 |
|
pm-mvs1 | | | 99.79 15 | 99.79 18 | 99.78 41 | 99.91 27 | 99.83 29 | 99.76 18 | 99.87 33 | 99.73 58 | 99.89 42 | 99.87 40 | 99.63 19 | 99.87 187 | 99.54 44 | 99.92 91 | 99.63 110 |
|
mvsmamba | | | 99.74 21 | 99.70 25 | 99.85 20 | 99.93 23 | 99.83 29 | 99.76 18 | 99.81 62 | 99.96 3 | 99.91 32 | 99.81 67 | 98.60 139 | 99.94 65 | 99.58 38 | 99.98 31 | 99.77 45 |
|
DROMVSNet | | | 99.69 29 | 99.69 29 | 99.68 92 | 99.71 128 | 99.91 4 | 99.76 18 | 99.96 15 | 99.86 29 | 99.51 195 | 99.39 265 | 99.57 26 | 99.93 82 | 99.64 32 | 99.86 138 | 99.20 266 |
|
test2506 | | | 94.73 341 | 94.59 343 | 95.15 357 | 99.59 171 | 85.90 382 | 99.75 21 | 74.01 383 | 99.89 20 | 99.71 118 | 99.86 47 | 79.00 381 | 99.90 142 | 99.52 48 | 99.99 13 | 99.65 97 |
|
TransMVSNet (Re) | | | 99.78 16 | 99.77 20 | 99.81 30 | 99.91 27 | 99.85 19 | 99.75 21 | 99.86 36 | 99.70 69 | 99.91 32 | 99.89 31 | 99.60 24 | 99.87 187 | 99.59 35 | 99.74 203 | 99.71 61 |
|
DVP-MVS++ | | | 99.38 102 | 99.25 121 | 99.77 44 | 99.03 328 | 99.77 50 | 99.74 23 | 99.61 159 | 99.18 156 | 99.76 93 | 99.61 191 | 99.00 86 | 99.92 102 | 97.72 224 | 99.60 254 | 99.62 121 |
|
FOURS1 | | | | | | 99.83 54 | 99.89 10 | 99.74 23 | 99.71 109 | 99.69 72 | 99.63 143 | | | | | | |
|
K. test v3 | | | 98.87 215 | 98.60 224 | 99.69 90 | 99.93 23 | 99.46 137 | 99.74 23 | 94.97 370 | 99.78 52 | 99.88 48 | 99.88 36 | 93.66 308 | 99.97 23 | 99.61 33 | 99.95 68 | 99.64 105 |
|
anonymousdsp | | | 99.80 14 | 99.77 20 | 99.90 5 | 99.96 5 | 99.88 12 | 99.73 26 | 99.85 40 | 99.70 69 | 99.92 29 | 99.93 17 | 99.45 33 | 99.97 23 | 99.36 69 | 100.00 1 | 99.85 21 |
|
NR-MVSNet | | | 99.40 96 | 99.31 103 | 99.68 92 | 99.43 245 | 99.55 125 | 99.73 26 | 99.50 228 | 99.46 115 | 99.88 48 | 99.36 273 | 97.54 237 | 99.87 187 | 98.97 124 | 99.87 130 | 99.63 110 |
|
IS-MVSNet | | | 99.03 186 | 98.85 203 | 99.55 153 | 99.80 73 | 99.25 188 | 99.73 26 | 99.15 308 | 99.37 130 | 99.61 158 | 99.71 125 | 94.73 296 | 99.81 275 | 97.70 229 | 99.88 119 | 99.58 147 |
|
ECVR-MVS |  | | 97.73 293 | 98.04 273 | 96.78 345 | 99.59 171 | 90.81 376 | 99.72 29 | 90.43 379 | 99.89 20 | 99.86 57 | 99.86 47 | 93.60 309 | 99.89 159 | 99.46 54 | 99.99 13 | 99.65 97 |
|
FC-MVSNet-test | | | 99.70 26 | 99.65 36 | 99.86 18 | 99.88 39 | 99.86 18 | 99.72 29 | 99.78 75 | 99.90 14 | 99.82 67 | 99.83 55 | 98.45 163 | 99.87 187 | 99.51 49 | 99.97 43 | 99.86 19 |
|
mvs_tets | | | 99.90 2 | 99.90 3 | 99.90 5 | 99.96 5 | 99.79 44 | 99.72 29 | 99.88 31 | 99.92 12 | 99.98 11 | 99.93 17 | 99.94 1 | 99.98 11 | 99.77 23 | 100.00 1 | 99.92 11 |
|
Gipuma |  | | 99.57 57 | 99.59 51 | 99.49 165 | 99.98 3 | 99.71 76 | 99.72 29 | 99.84 46 | 99.81 44 | 99.94 22 | 99.78 88 | 98.91 98 | 99.71 312 | 98.41 164 | 99.95 68 | 99.05 302 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test1111 | | | 97.74 292 | 98.16 268 | 96.49 351 | 99.60 167 | 89.86 380 | 99.71 33 | 91.21 377 | 99.89 20 | 99.88 48 | 99.87 40 | 93.73 307 | 99.90 142 | 99.56 41 | 99.99 13 | 99.70 64 |
|
test_vis3_rt | | | 99.89 3 | 99.90 3 | 99.87 15 | 99.98 3 | 99.75 62 | 99.70 34 | 100.00 1 | 99.73 58 | 100.00 1 | 99.89 31 | 99.79 9 | 99.88 173 | 99.98 1 | 100.00 1 | 99.98 1 |
|
GG-mvs-BLEND | | | | | 97.36 337 | 97.59 374 | 96.87 331 | 99.70 34 | 88.49 382 | | 94.64 375 | 97.26 380 | 80.66 375 | 99.12 370 | 91.50 364 | 96.50 371 | 96.08 373 |
|
jajsoiax | | | 99.89 3 | 99.89 5 | 99.89 8 | 99.96 5 | 99.78 47 | 99.70 34 | 99.86 36 | 99.89 20 | 99.98 11 | 99.90 27 | 99.94 1 | 99.98 11 | 99.75 24 | 100.00 1 | 99.90 12 |
|
SixPastTwentyTwo | | | 99.42 90 | 99.30 108 | 99.76 51 | 99.92 26 | 99.67 91 | 99.70 34 | 99.14 309 | 99.65 84 | 99.89 42 | 99.90 27 | 96.20 281 | 99.94 65 | 99.42 62 | 99.92 91 | 99.67 80 |
|
UGNet | | | 99.38 102 | 99.34 97 | 99.49 165 | 98.90 338 | 98.90 233 | 99.70 34 | 99.35 269 | 99.86 29 | 98.57 324 | 99.81 67 | 98.50 158 | 99.93 82 | 99.38 64 | 99.98 31 | 99.66 89 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EPP-MVSNet | | | 99.17 161 | 99.00 178 | 99.66 102 | 99.80 73 | 99.43 148 | 99.70 34 | 99.24 296 | 99.48 108 | 99.56 176 | 99.77 95 | 94.89 293 | 99.93 82 | 98.72 149 | 99.89 110 | 99.63 110 |
|
3Dnovator | | 99.15 2 | 99.43 87 | 99.36 95 | 99.65 107 | 99.39 253 | 99.42 151 | 99.70 34 | 99.56 194 | 99.23 149 | 99.35 229 | 99.80 71 | 99.17 65 | 99.95 52 | 98.21 179 | 99.84 147 | 99.59 142 |
|
gg-mvs-nofinetune | | | 95.87 335 | 95.17 339 | 97.97 322 | 98.19 369 | 96.95 328 | 99.69 41 | 89.23 381 | 99.89 20 | 96.24 369 | 99.94 16 | 81.19 374 | 99.51 363 | 93.99 358 | 98.20 352 | 97.44 365 |
|
MIMVSNet1 | | | 99.66 40 | 99.62 42 | 99.80 34 | 99.94 16 | 99.87 15 | 99.69 41 | 99.77 78 | 99.78 52 | 99.93 25 | 99.89 31 | 97.94 212 | 99.92 102 | 99.65 30 | 99.98 31 | 99.62 121 |
|
Vis-MVSNet |  | | 99.75 18 | 99.74 23 | 99.79 38 | 99.88 39 | 99.66 93 | 99.69 41 | 99.92 19 | 99.67 78 | 99.77 91 | 99.75 104 | 99.61 22 | 99.98 11 | 99.35 71 | 99.98 31 | 99.72 58 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PS-MVSNAJss | | | 99.84 10 | 99.82 14 | 99.89 8 | 99.96 5 | 99.77 50 | 99.68 44 | 99.85 40 | 99.95 5 | 99.98 11 | 99.92 21 | 99.28 52 | 99.98 11 | 99.75 24 | 100.00 1 | 99.94 8 |
|
GBi-Net | | | 99.42 90 | 99.31 103 | 99.73 74 | 99.49 223 | 99.77 50 | 99.68 44 | 99.70 115 | 99.44 118 | 99.62 152 | 99.83 55 | 97.21 251 | 99.90 142 | 98.96 126 | 99.90 101 | 99.53 171 |
|
test1 | | | 99.42 90 | 99.31 103 | 99.73 74 | 99.49 223 | 99.77 50 | 99.68 44 | 99.70 115 | 99.44 118 | 99.62 152 | 99.83 55 | 97.21 251 | 99.90 142 | 98.96 126 | 99.90 101 | 99.53 171 |
|
FMVSNet1 | | | 99.66 40 | 99.63 41 | 99.73 74 | 99.78 90 | 99.77 50 | 99.68 44 | 99.70 115 | 99.67 78 | 99.82 67 | 99.83 55 | 98.98 90 | 99.90 142 | 99.24 88 | 99.97 43 | 99.53 171 |
|
test_fmvs3 | | | 99.83 12 | 99.93 2 | 99.53 158 | 99.96 5 | 98.62 256 | 99.67 48 | 100.00 1 | 99.95 5 | 100.00 1 | 99.95 13 | 99.85 4 | 99.99 6 | 99.98 1 | 99.99 13 | 99.98 1 |
|
DTE-MVSNet | | | 99.68 32 | 99.61 46 | 99.88 12 | 99.80 73 | 99.87 15 | 99.67 48 | 99.71 109 | 99.72 62 | 99.84 62 | 99.78 88 | 98.67 129 | 99.97 23 | 99.30 81 | 99.95 68 | 99.80 32 |
|
WR-MVS_H | | | 99.61 54 | 99.53 68 | 99.87 15 | 99.80 73 | 99.83 29 | 99.67 48 | 99.75 88 | 99.58 101 | 99.85 59 | 99.69 138 | 98.18 196 | 99.94 65 | 99.28 86 | 99.95 68 | 99.83 26 |
|
QAPM | | | 98.40 263 | 97.99 276 | 99.65 107 | 99.39 253 | 99.47 133 | 99.67 48 | 99.52 220 | 91.70 366 | 98.78 309 | 99.80 71 | 98.55 146 | 99.95 52 | 94.71 349 | 99.75 196 | 99.53 171 |
|
bld_raw_dy_0_64 | | | 99.70 26 | 99.65 36 | 99.85 20 | 99.95 13 | 99.77 50 | 99.66 52 | 99.71 109 | 99.95 5 | 99.91 32 | 99.77 95 | 98.35 176 | 100.00 1 | 99.54 44 | 99.99 13 | 99.79 38 |
|
FIs | | | 99.65 45 | 99.58 55 | 99.84 23 | 99.84 50 | 99.85 19 | 99.66 52 | 99.75 88 | 99.86 29 | 99.74 108 | 99.79 81 | 98.27 185 | 99.85 222 | 99.37 67 | 99.93 87 | 99.83 26 |
|
v8 | | | 99.68 32 | 99.69 29 | 99.65 107 | 99.80 73 | 99.40 156 | 99.66 52 | 99.76 83 | 99.64 86 | 99.93 25 | 99.85 49 | 98.66 131 | 99.84 236 | 99.88 15 | 99.99 13 | 99.71 61 |
|
v10 | | | 99.69 29 | 99.69 29 | 99.66 102 | 99.81 68 | 99.39 158 | 99.66 52 | 99.75 88 | 99.60 98 | 99.92 29 | 99.87 40 | 98.75 118 | 99.86 205 | 99.90 11 | 99.99 13 | 99.73 56 |
|
PS-CasMVS | | | 99.66 40 | 99.58 55 | 99.89 8 | 99.80 73 | 99.85 19 | 99.66 52 | 99.73 97 | 99.62 89 | 99.84 62 | 99.71 125 | 98.62 135 | 99.96 42 | 99.30 81 | 99.96 57 | 99.86 19 |
|
PEN-MVS | | | 99.66 40 | 99.59 51 | 99.89 8 | 99.83 54 | 99.87 15 | 99.66 52 | 99.73 97 | 99.70 69 | 99.84 62 | 99.73 111 | 98.56 145 | 99.96 42 | 99.29 84 | 99.94 79 | 99.83 26 |
|
ANet_high | | | 99.88 5 | 99.87 9 | 99.91 2 | 99.99 1 | 99.91 4 | 99.65 58 | 100.00 1 | 99.90 14 | 100.00 1 | 99.97 11 | 99.61 22 | 99.97 23 | 99.75 24 | 100.00 1 | 99.84 22 |
|
OpenMVS |  | 98.12 10 | 98.23 275 | 97.89 289 | 99.26 232 | 99.19 304 | 99.26 185 | 99.65 58 | 99.69 121 | 91.33 367 | 98.14 343 | 99.77 95 | 98.28 184 | 99.96 42 | 95.41 339 | 99.55 265 | 98.58 337 |
|
Anonymous20240529 | | | 99.42 90 | 99.34 97 | 99.65 107 | 99.53 205 | 99.60 113 | 99.63 60 | 99.39 260 | 99.47 112 | 99.76 93 | 99.78 88 | 98.13 198 | 99.86 205 | 98.70 150 | 99.68 228 | 99.49 194 |
|
Anonymous20240521 | | | 99.44 85 | 99.42 85 | 99.49 165 | 99.89 34 | 98.96 225 | 99.62 61 | 99.76 83 | 99.85 34 | 99.82 67 | 99.88 36 | 96.39 276 | 99.97 23 | 99.59 35 | 99.98 31 | 99.55 157 |
|
LFMVS | | | 98.46 256 | 98.19 266 | 99.26 232 | 99.24 295 | 98.52 261 | 99.62 61 | 96.94 363 | 99.87 26 | 99.31 241 | 99.58 206 | 91.04 334 | 99.81 275 | 98.68 153 | 99.42 289 | 99.45 207 |
|
VDDNet | | | 98.97 198 | 98.82 208 | 99.42 184 | 99.71 128 | 98.81 238 | 99.62 61 | 98.68 330 | 99.81 44 | 99.38 226 | 99.80 71 | 94.25 300 | 99.85 222 | 98.79 141 | 99.32 300 | 99.59 142 |
|
VPA-MVSNet | | | 99.66 40 | 99.62 42 | 99.79 38 | 99.68 148 | 99.75 62 | 99.62 61 | 99.69 121 | 99.85 34 | 99.80 77 | 99.81 67 | 98.81 106 | 99.91 124 | 99.47 53 | 99.88 119 | 99.70 64 |
|
3Dnovator+ | | 98.92 3 | 99.35 110 | 99.24 123 | 99.67 95 | 99.35 263 | 99.47 133 | 99.62 61 | 99.50 228 | 99.44 118 | 99.12 272 | 99.78 88 | 98.77 115 | 99.94 65 | 97.87 210 | 99.72 214 | 99.62 121 |
|
canonicalmvs | | | 99.02 188 | 99.00 178 | 99.09 256 | 99.10 320 | 98.70 246 | 99.61 66 | 99.66 132 | 99.63 88 | 98.64 318 | 97.65 375 | 99.04 84 | 99.54 358 | 98.79 141 | 98.92 327 | 99.04 303 |
|
nrg030 | | | 99.70 26 | 99.66 34 | 99.82 27 | 99.76 102 | 99.84 24 | 99.61 66 | 99.70 115 | 99.93 10 | 99.78 86 | 99.68 149 | 99.10 73 | 99.78 287 | 99.45 55 | 99.96 57 | 99.83 26 |
|
HPM-MVS |  | | 99.25 131 | 99.07 158 | 99.78 41 | 99.81 68 | 99.75 62 | 99.61 66 | 99.67 128 | 97.72 295 | 99.35 229 | 99.25 297 | 99.23 59 | 99.92 102 | 97.21 268 | 99.82 164 | 99.67 80 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HY-MVS | | 98.23 9 | 98.21 277 | 97.95 280 | 98.99 265 | 99.03 328 | 98.24 275 | 99.61 66 | 98.72 328 | 96.81 332 | 98.73 312 | 99.51 233 | 94.06 301 | 99.86 205 | 96.91 279 | 98.20 352 | 98.86 321 |
|
Vis-MVSNet (Re-imp) | | | 98.77 223 | 98.58 229 | 99.34 211 | 99.78 90 | 98.88 234 | 99.61 66 | 99.56 194 | 99.11 173 | 99.24 253 | 99.56 218 | 93.00 316 | 99.78 287 | 97.43 250 | 99.89 110 | 99.35 236 |
|
GeoE | | | 99.69 29 | 99.66 34 | 99.78 41 | 99.76 102 | 99.76 58 | 99.60 71 | 99.82 53 | 99.46 115 | 99.75 100 | 99.56 218 | 99.63 19 | 99.95 52 | 99.43 57 | 99.88 119 | 99.62 121 |
|
tfpnnormal | | | 99.43 87 | 99.38 89 | 99.60 136 | 99.87 43 | 99.75 62 | 99.59 72 | 99.78 75 | 99.71 64 | 99.90 38 | 99.69 138 | 98.85 104 | 99.90 142 | 97.25 265 | 99.78 188 | 99.15 277 |
|
XXY-MVS | | | 99.71 25 | 99.67 33 | 99.81 30 | 99.89 34 | 99.72 74 | 99.59 72 | 99.82 53 | 99.39 128 | 99.82 67 | 99.84 54 | 99.38 40 | 99.91 124 | 99.38 64 | 99.93 87 | 99.80 32 |
|
tt0805 | | | 99.63 46 | 99.57 58 | 99.81 30 | 99.87 43 | 99.88 12 | 99.58 74 | 98.70 329 | 99.72 62 | 99.91 32 | 99.60 199 | 99.43 34 | 99.81 275 | 99.81 21 | 99.53 272 | 99.73 56 |
|
dcpmvs_2 | | | 99.61 54 | 99.64 40 | 99.53 158 | 99.79 83 | 98.82 237 | 99.58 74 | 99.97 11 | 99.95 5 | 99.96 16 | 99.76 99 | 98.44 164 | 99.99 6 | 99.34 72 | 99.96 57 | 99.78 41 |
|
MIMVSNet | | | 98.43 259 | 98.20 263 | 99.11 253 | 99.53 205 | 98.38 271 | 99.58 74 | 98.61 334 | 98.96 186 | 99.33 234 | 99.76 99 | 90.92 336 | 99.81 275 | 97.38 253 | 99.76 194 | 99.15 277 |
|
CP-MVSNet | | | 99.54 65 | 99.43 83 | 99.87 15 | 99.76 102 | 99.82 35 | 99.57 77 | 99.61 159 | 99.54 102 | 99.80 77 | 99.64 165 | 97.79 223 | 99.95 52 | 99.21 91 | 99.94 79 | 99.84 22 |
|
LS3D | | | 99.24 134 | 99.11 143 | 99.61 133 | 98.38 364 | 99.79 44 | 99.57 77 | 99.68 124 | 99.61 92 | 99.15 267 | 99.71 125 | 98.70 124 | 99.91 124 | 97.54 243 | 99.68 228 | 99.13 285 |
|
EGC-MVSNET | | | 89.05 343 | 85.52 346 | 99.64 114 | 99.89 34 | 99.78 47 | 99.56 79 | 99.52 220 | 24.19 377 | 49.96 378 | 99.83 55 | 99.15 67 | 99.92 102 | 97.71 226 | 99.85 142 | 99.21 262 |
|
EU-MVSNet | | | 99.39 100 | 99.62 42 | 98.72 296 | 99.88 39 | 96.44 337 | 99.56 79 | 99.85 40 | 99.90 14 | 99.90 38 | 99.85 49 | 98.09 200 | 99.83 251 | 99.58 38 | 99.95 68 | 99.90 12 |
|
ACMH | | 98.42 6 | 99.59 56 | 99.54 64 | 99.72 80 | 99.86 46 | 99.62 105 | 99.56 79 | 99.79 70 | 98.77 212 | 99.80 77 | 99.85 49 | 99.64 18 | 99.85 222 | 98.70 150 | 99.89 110 | 99.70 64 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvsany_test3 | | | 99.85 8 | 99.88 6 | 99.75 60 | 99.95 13 | 99.37 163 | 99.53 82 | 99.98 9 | 99.77 56 | 99.99 7 | 99.95 13 | 99.85 4 | 99.94 65 | 99.95 8 | 99.98 31 | 99.94 8 |
|
test_vis1_n | | | 99.68 32 | 99.79 18 | 99.36 208 | 99.94 16 | 98.18 282 | 99.52 83 | 100.00 1 | 99.86 29 | 100.00 1 | 99.88 36 | 98.99 88 | 99.96 42 | 99.97 4 | 99.96 57 | 99.95 6 |
|
HPM-MVS_fast | | | 99.43 87 | 99.30 108 | 99.80 34 | 99.83 54 | 99.81 38 | 99.52 83 | 99.70 115 | 98.35 256 | 99.51 195 | 99.50 236 | 99.31 48 | 99.88 173 | 98.18 184 | 99.84 147 | 99.69 68 |
|
wuyk23d | | | 97.58 300 | 99.13 136 | 92.93 358 | 99.69 140 | 99.49 131 | 99.52 83 | 99.77 78 | 97.97 282 | 99.96 16 | 99.79 81 | 99.84 6 | 99.94 65 | 95.85 329 | 99.82 164 | 79.36 374 |
|
test_f | | | 99.75 18 | 99.88 6 | 99.37 204 | 99.96 5 | 98.21 279 | 99.51 86 | 100.00 1 | 99.94 9 | 100.00 1 | 99.93 17 | 99.58 25 | 99.94 65 | 99.97 4 | 99.99 13 | 99.97 3 |
|
VDD-MVS | | | 99.20 150 | 99.11 143 | 99.44 178 | 99.43 245 | 98.98 221 | 99.50 87 | 98.32 347 | 99.80 47 | 99.56 176 | 99.69 138 | 96.99 260 | 99.85 222 | 98.99 120 | 99.73 208 | 99.50 189 |
|
APDe-MVS | | | 99.48 73 | 99.36 95 | 99.85 20 | 99.55 198 | 99.81 38 | 99.50 87 | 99.69 121 | 98.99 182 | 99.75 100 | 99.71 125 | 98.79 111 | 99.93 82 | 98.46 162 | 99.85 142 | 99.80 32 |
|
DSMNet-mixed | | | 99.48 73 | 99.65 36 | 98.95 269 | 99.71 128 | 97.27 320 | 99.50 87 | 99.82 53 | 99.59 100 | 99.41 219 | 99.85 49 | 99.62 21 | 100.00 1 | 99.53 47 | 99.89 110 | 99.59 142 |
|
ACMMP |  | | 99.25 131 | 99.08 154 | 99.74 65 | 99.79 83 | 99.68 89 | 99.50 87 | 99.65 141 | 98.07 276 | 99.52 190 | 99.69 138 | 98.57 143 | 99.92 102 | 97.18 269 | 99.79 183 | 99.63 110 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test_fmvs1_n | | | 99.68 32 | 99.81 15 | 99.28 226 | 99.95 13 | 97.93 301 | 99.49 91 | 100.00 1 | 99.82 42 | 99.99 7 | 99.89 31 | 99.21 61 | 99.98 11 | 99.97 4 | 99.98 31 | 99.93 10 |
|
test_fmvs2 | | | 99.72 22 | 99.85 12 | 99.34 211 | 99.91 27 | 98.08 292 | 99.48 92 | 100.00 1 | 99.90 14 | 99.99 7 | 99.91 24 | 99.50 32 | 99.98 11 | 99.98 1 | 99.99 13 | 99.96 5 |
|
tttt0517 | | | 97.62 298 | 97.20 307 | 98.90 282 | 99.76 102 | 97.40 317 | 99.48 92 | 94.36 372 | 99.06 178 | 99.70 121 | 99.49 240 | 84.55 371 | 99.94 65 | 98.73 148 | 99.65 239 | 99.36 233 |
|
VPNet | | | 99.46 81 | 99.37 92 | 99.71 85 | 99.82 61 | 99.59 115 | 99.48 92 | 99.70 115 | 99.81 44 | 99.69 124 | 99.58 206 | 97.66 234 | 99.86 205 | 99.17 100 | 99.44 285 | 99.67 80 |
|
testf1 | | | 99.63 46 | 99.60 49 | 99.72 80 | 99.94 16 | 99.95 2 | 99.47 95 | 99.89 27 | 99.43 123 | 99.88 48 | 99.80 71 | 99.26 56 | 99.90 142 | 98.81 139 | 99.88 119 | 99.32 242 |
|
APD_test2 | | | 99.63 46 | 99.60 49 | 99.72 80 | 99.94 16 | 99.95 2 | 99.47 95 | 99.89 27 | 99.43 123 | 99.88 48 | 99.80 71 | 99.26 56 | 99.90 142 | 98.81 139 | 99.88 119 | 99.32 242 |
|
Anonymous202405211 | | | 98.75 225 | 98.46 239 | 99.63 121 | 99.34 271 | 99.66 93 | 99.47 95 | 97.65 356 | 99.28 140 | 99.56 176 | 99.50 236 | 93.15 312 | 99.84 236 | 98.62 155 | 99.58 259 | 99.40 223 |
|
MVS_0304 | | | 98.88 213 | 98.71 216 | 99.39 197 | 98.85 344 | 98.91 232 | 99.45 98 | 99.30 281 | 98.56 229 | 97.26 363 | 99.68 149 | 96.18 282 | 99.96 42 | 99.17 100 | 99.94 79 | 99.29 250 |
|
FMVSNet2 | | | 99.35 110 | 99.28 115 | 99.55 153 | 99.49 223 | 99.35 170 | 99.45 98 | 99.57 189 | 99.44 118 | 99.70 121 | 99.74 107 | 97.21 251 | 99.87 187 | 99.03 117 | 99.94 79 | 99.44 212 |
|
TAMVS | | | 99.49 71 | 99.45 78 | 99.63 121 | 99.48 228 | 99.42 151 | 99.45 98 | 99.57 189 | 99.66 82 | 99.78 86 | 99.83 55 | 97.85 219 | 99.86 205 | 99.44 56 | 99.96 57 | 99.61 131 |
|
baseline | | | 99.63 46 | 99.62 42 | 99.66 102 | 99.80 73 | 99.62 105 | 99.44 101 | 99.80 64 | 99.71 64 | 99.72 113 | 99.69 138 | 99.15 67 | 99.83 251 | 99.32 77 | 99.94 79 | 99.53 171 |
|
RPSCF | | | 99.18 157 | 99.02 172 | 99.64 114 | 99.83 54 | 99.85 19 | 99.44 101 | 99.82 53 | 98.33 261 | 99.50 197 | 99.78 88 | 97.90 214 | 99.65 345 | 96.78 287 | 99.83 155 | 99.44 212 |
|
CSCG | | | 99.37 105 | 99.29 113 | 99.60 136 | 99.71 128 | 99.46 137 | 99.43 103 | 99.85 40 | 98.79 209 | 99.41 219 | 99.60 199 | 98.92 96 | 99.92 102 | 98.02 193 | 99.92 91 | 99.43 218 |
|
CostFormer | | | 96.71 320 | 96.79 319 | 96.46 352 | 98.90 338 | 90.71 377 | 99.41 104 | 98.68 330 | 94.69 360 | 98.14 343 | 99.34 281 | 86.32 368 | 99.80 281 | 97.60 240 | 98.07 358 | 98.88 319 |
|
Patchmatch-test | | | 98.10 280 | 97.98 278 | 98.48 305 | 99.27 290 | 96.48 336 | 99.40 105 | 99.07 312 | 98.81 206 | 99.23 254 | 99.57 215 | 90.11 348 | 99.87 187 | 96.69 291 | 99.64 241 | 99.09 292 |
|
baseline1 | | | 97.73 293 | 97.33 303 | 98.96 268 | 99.30 283 | 97.73 308 | 99.40 105 | 98.42 343 | 99.33 135 | 99.46 205 | 99.21 306 | 91.18 332 | 99.82 260 | 98.35 168 | 91.26 375 | 99.32 242 |
|
V42 | | | 99.56 60 | 99.54 64 | 99.63 121 | 99.79 83 | 99.46 137 | 99.39 107 | 99.59 177 | 99.24 147 | 99.86 57 | 99.70 132 | 98.55 146 | 99.82 260 | 99.79 22 | 99.95 68 | 99.60 135 |
|
EPMVS | | | 96.53 323 | 96.32 321 | 97.17 343 | 98.18 370 | 92.97 365 | 99.39 107 | 89.95 380 | 98.21 268 | 98.61 320 | 99.59 204 | 86.69 367 | 99.72 308 | 96.99 275 | 99.23 313 | 98.81 325 |
|
mPP-MVS | | | 99.19 153 | 99.00 178 | 99.76 51 | 99.76 102 | 99.68 89 | 99.38 109 | 99.54 206 | 98.34 260 | 99.01 282 | 99.50 236 | 98.53 152 | 99.93 82 | 97.18 269 | 99.78 188 | 99.66 89 |
|
CP-MVS | | | 99.23 135 | 99.05 164 | 99.75 60 | 99.66 154 | 99.66 93 | 99.38 109 | 99.62 152 | 98.38 249 | 99.06 280 | 99.27 292 | 98.79 111 | 99.94 65 | 97.51 246 | 99.82 164 | 99.66 89 |
|
FMVSNet5 | | | 97.80 290 | 97.25 306 | 99.42 184 | 98.83 346 | 98.97 223 | 99.38 109 | 99.80 64 | 98.87 199 | 99.25 250 | 99.69 138 | 80.60 376 | 99.91 124 | 98.96 126 | 99.90 101 | 99.38 227 |
|
COLMAP_ROB |  | 98.06 12 | 99.45 83 | 99.37 92 | 99.70 89 | 99.83 54 | 99.70 83 | 99.38 109 | 99.78 75 | 99.53 104 | 99.67 132 | 99.78 88 | 99.19 63 | 99.86 205 | 97.32 255 | 99.87 130 | 99.55 157 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
KD-MVS_self_test | | | 99.63 46 | 99.59 51 | 99.76 51 | 99.84 50 | 99.90 7 | 99.37 113 | 99.79 70 | 99.83 40 | 99.88 48 | 99.85 49 | 98.42 167 | 99.90 142 | 99.60 34 | 99.73 208 | 99.49 194 |
|
XVS | | | 99.27 128 | 99.11 143 | 99.75 60 | 99.71 128 | 99.71 76 | 99.37 113 | 99.61 159 | 99.29 137 | 98.76 310 | 99.47 247 | 98.47 159 | 99.88 173 | 97.62 237 | 99.73 208 | 99.67 80 |
|
X-MVStestdata | | | 96.09 331 | 94.87 340 | 99.75 60 | 99.71 128 | 99.71 76 | 99.37 113 | 99.61 159 | 99.29 137 | 98.76 310 | 61.30 384 | 98.47 159 | 99.88 173 | 97.62 237 | 99.73 208 | 99.67 80 |
|
MVS_Test | | | 99.28 124 | 99.31 103 | 99.19 242 | 99.35 263 | 98.79 240 | 99.36 116 | 99.49 232 | 99.17 161 | 99.21 259 | 99.67 154 | 98.78 113 | 99.66 339 | 99.09 113 | 99.66 237 | 99.10 288 |
|
MSP-MVS | | | 99.04 185 | 98.79 212 | 99.81 30 | 99.78 90 | 99.73 70 | 99.35 117 | 99.57 189 | 98.54 234 | 99.54 183 | 98.99 333 | 96.81 264 | 99.93 82 | 96.97 276 | 99.53 272 | 99.77 45 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
test_vis1_n_1920 | | | 99.72 22 | 99.88 6 | 99.27 229 | 99.93 23 | 97.84 303 | 99.34 118 | 100.00 1 | 99.99 1 | 99.99 7 | 99.82 62 | 99.87 3 | 99.99 6 | 99.97 4 | 99.99 13 | 99.97 3 |
|
EIA-MVS | | | 99.12 170 | 99.01 175 | 99.45 176 | 99.36 261 | 99.62 105 | 99.34 118 | 99.79 70 | 98.41 245 | 98.84 301 | 98.89 346 | 98.75 118 | 99.84 236 | 98.15 188 | 99.51 276 | 98.89 318 |
|
LCM-MVSNet-Re | | | 99.28 124 | 99.15 133 | 99.67 95 | 99.33 276 | 99.76 58 | 99.34 118 | 99.97 11 | 98.93 191 | 99.91 32 | 99.79 81 | 98.68 126 | 99.93 82 | 96.80 286 | 99.56 261 | 99.30 247 |
|
MTAPA | | | 99.35 110 | 99.20 126 | 99.80 34 | 99.81 68 | 99.81 38 | 99.33 121 | 99.53 215 | 99.27 141 | 99.42 213 | 99.63 175 | 98.21 192 | 99.95 52 | 97.83 217 | 99.79 183 | 99.65 97 |
|
VNet | | | 99.18 157 | 99.06 160 | 99.56 150 | 99.24 295 | 99.36 167 | 99.33 121 | 99.31 278 | 99.67 78 | 99.47 201 | 99.57 215 | 96.48 270 | 99.84 236 | 99.15 104 | 99.30 302 | 99.47 202 |
|
APD_test1 | | | 99.36 108 | 99.28 115 | 99.61 133 | 99.89 34 | 99.89 10 | 99.32 123 | 99.74 93 | 99.18 156 | 99.69 124 | 99.75 104 | 98.41 168 | 99.84 236 | 97.85 213 | 99.70 219 | 99.10 288 |
|
MP-MVS |  | | 99.06 179 | 98.83 207 | 99.76 51 | 99.76 102 | 99.71 76 | 99.32 123 | 99.50 228 | 98.35 256 | 98.97 284 | 99.48 243 | 98.37 174 | 99.92 102 | 95.95 327 | 99.75 196 | 99.63 110 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Patchmtry | | | 98.78 222 | 98.54 234 | 99.49 165 | 98.89 341 | 99.19 201 | 99.32 123 | 99.67 128 | 99.65 84 | 99.72 113 | 99.79 81 | 91.87 326 | 99.95 52 | 98.00 197 | 99.97 43 | 99.33 239 |
|
tpm | | | 97.15 309 | 96.95 313 | 97.75 329 | 98.91 337 | 94.24 358 | 99.32 123 | 97.96 352 | 97.71 296 | 98.29 333 | 99.32 282 | 86.72 366 | 99.92 102 | 98.10 191 | 96.24 372 | 99.09 292 |
|
ACMH+ | | 98.40 8 | 99.50 69 | 99.43 83 | 99.71 85 | 99.86 46 | 99.76 58 | 99.32 123 | 99.77 78 | 99.53 104 | 99.77 91 | 99.76 99 | 99.26 56 | 99.78 287 | 97.77 218 | 99.88 119 | 99.60 135 |
|
HFP-MVS | | | 99.25 131 | 99.08 154 | 99.76 51 | 99.73 122 | 99.70 83 | 99.31 128 | 99.59 177 | 98.36 251 | 99.36 228 | 99.37 269 | 98.80 110 | 99.91 124 | 97.43 250 | 99.75 196 | 99.68 74 |
|
region2R | | | 99.23 135 | 99.05 164 | 99.77 44 | 99.76 102 | 99.70 83 | 99.31 128 | 99.59 177 | 98.41 245 | 99.32 237 | 99.36 273 | 98.73 122 | 99.93 82 | 97.29 257 | 99.74 203 | 99.67 80 |
|
ACMMPR | | | 99.23 135 | 99.06 160 | 99.76 51 | 99.74 119 | 99.69 86 | 99.31 128 | 99.59 177 | 98.36 251 | 99.35 229 | 99.38 267 | 98.61 137 | 99.93 82 | 97.43 250 | 99.75 196 | 99.67 80 |
|
1314 | | | 98.00 285 | 97.90 288 | 98.27 316 | 98.90 338 | 97.45 316 | 99.30 131 | 99.06 314 | 94.98 355 | 97.21 364 | 99.12 316 | 98.43 165 | 99.67 335 | 95.58 336 | 98.56 345 | 97.71 363 |
|
MVS | | | 95.72 338 | 94.63 342 | 98.99 265 | 98.56 361 | 97.98 300 | 99.30 131 | 98.86 321 | 72.71 375 | 97.30 361 | 99.08 321 | 98.34 179 | 99.74 303 | 89.21 367 | 98.33 349 | 99.26 252 |
|
tpmvs | | | 97.39 305 | 97.69 295 | 96.52 350 | 98.41 363 | 91.76 369 | 99.30 131 | 98.94 320 | 97.74 294 | 97.85 354 | 99.55 225 | 92.40 323 | 99.73 306 | 96.25 314 | 98.73 340 | 98.06 359 |
|
TranMVSNet+NR-MVSNet | | | 99.54 65 | 99.47 72 | 99.76 51 | 99.58 176 | 99.64 99 | 99.30 131 | 99.63 149 | 99.61 92 | 99.71 118 | 99.56 218 | 98.76 116 | 99.96 42 | 99.14 110 | 99.92 91 | 99.68 74 |
|
CR-MVSNet | | | 98.35 268 | 98.20 263 | 98.83 288 | 99.05 325 | 98.12 285 | 99.30 131 | 99.67 128 | 97.39 312 | 99.16 265 | 99.79 81 | 91.87 326 | 99.91 124 | 98.78 144 | 98.77 334 | 98.44 345 |
|
RPMNet | | | 98.60 238 | 98.53 236 | 98.83 288 | 99.05 325 | 98.12 285 | 99.30 131 | 99.62 152 | 99.86 29 | 99.16 265 | 99.74 107 | 92.53 320 | 99.92 102 | 98.75 146 | 98.77 334 | 98.44 345 |
|
casdiffmvs_mvg |  | | 99.68 32 | 99.68 32 | 99.69 90 | 99.81 68 | 99.59 115 | 99.29 137 | 99.90 25 | 99.71 64 | 99.79 82 | 99.73 111 | 99.54 29 | 99.84 236 | 99.36 69 | 99.96 57 | 99.65 97 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DP-MVS | | | 99.48 73 | 99.39 87 | 99.74 65 | 99.57 186 | 99.62 105 | 99.29 137 | 99.61 159 | 99.87 26 | 99.74 108 | 99.76 99 | 98.69 125 | 99.87 187 | 98.20 180 | 99.80 178 | 99.75 54 |
|
ZNCC-MVS | | | 99.22 143 | 99.04 169 | 99.77 44 | 99.76 102 | 99.73 70 | 99.28 139 | 99.56 194 | 98.19 270 | 99.14 269 | 99.29 289 | 98.84 105 | 99.92 102 | 97.53 245 | 99.80 178 | 99.64 105 |
|
Anonymous20231206 | | | 99.35 110 | 99.31 103 | 99.47 171 | 99.74 119 | 99.06 218 | 99.28 139 | 99.74 93 | 99.23 149 | 99.72 113 | 99.53 229 | 97.63 236 | 99.88 173 | 99.11 112 | 99.84 147 | 99.48 198 |
|
test_0402 | | | 99.22 143 | 99.14 134 | 99.45 176 | 99.79 83 | 99.43 148 | 99.28 139 | 99.68 124 | 99.54 102 | 99.40 224 | 99.56 218 | 99.07 80 | 99.82 260 | 96.01 322 | 99.96 57 | 99.11 286 |
|
h-mvs33 | | | 98.61 236 | 98.34 252 | 99.44 178 | 99.60 167 | 98.67 247 | 99.27 142 | 99.44 244 | 99.68 74 | 99.32 237 | 99.49 240 | 92.50 321 | 100.00 1 | 99.24 88 | 96.51 370 | 99.65 97 |
|
APD-MVS_3200maxsize | | | 99.31 121 | 99.16 130 | 99.74 65 | 99.53 205 | 99.75 62 | 99.27 142 | 99.61 159 | 99.19 155 | 99.57 169 | 99.64 165 | 98.76 116 | 99.90 142 | 97.29 257 | 99.62 244 | 99.56 154 |
|
iter_conf_final | | | 98.75 225 | 98.54 234 | 99.40 193 | 99.33 276 | 98.75 242 | 99.26 144 | 99.59 177 | 99.80 47 | 99.76 93 | 99.58 206 | 90.17 347 | 99.92 102 | 99.37 67 | 99.97 43 | 99.54 165 |
|
SR-MVS-dyc-post | | | 99.27 128 | 99.11 143 | 99.73 74 | 99.54 199 | 99.74 68 | 99.26 144 | 99.62 152 | 99.16 163 | 99.52 190 | 99.64 165 | 98.41 168 | 99.91 124 | 97.27 260 | 99.61 251 | 99.54 165 |
|
RE-MVS-def | | | | 99.13 136 | | 99.54 199 | 99.74 68 | 99.26 144 | 99.62 152 | 99.16 163 | 99.52 190 | 99.64 165 | 98.57 143 | | 97.27 260 | 99.61 251 | 99.54 165 |
|
TSAR-MVS + MP. | | | 99.34 115 | 99.24 123 | 99.63 121 | 99.82 61 | 99.37 163 | 99.26 144 | 99.35 269 | 98.77 212 | 99.57 169 | 99.70 132 | 99.27 55 | 99.88 173 | 97.71 226 | 99.75 196 | 99.65 97 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EI-MVSNet | | | 99.38 102 | 99.44 81 | 99.21 239 | 99.58 176 | 98.09 289 | 99.26 144 | 99.46 239 | 99.62 89 | 99.75 100 | 99.67 154 | 98.54 148 | 99.85 222 | 99.15 104 | 99.92 91 | 99.68 74 |
|
CVMVSNet | | | 98.61 236 | 98.88 200 | 97.80 327 | 99.58 176 | 93.60 362 | 99.26 144 | 99.64 147 | 99.66 82 | 99.72 113 | 99.67 154 | 93.26 311 | 99.93 82 | 99.30 81 | 99.81 173 | 99.87 17 |
|
EG-PatchMatch MVS | | | 99.57 57 | 99.56 63 | 99.62 130 | 99.77 98 | 99.33 173 | 99.26 144 | 99.76 83 | 99.32 136 | 99.80 77 | 99.78 88 | 99.29 50 | 99.87 187 | 99.15 104 | 99.91 100 | 99.66 89 |
|
test0726 | | | | | | 99.69 140 | 99.80 42 | 99.24 151 | 99.57 189 | 99.16 163 | 99.73 112 | 99.65 163 | 98.35 176 | | | | |
|
EI-MVSNet-UG-set | | | 99.48 73 | 99.50 70 | 99.42 184 | 99.57 186 | 98.65 253 | 99.24 151 | 99.46 239 | 99.68 74 | 99.80 77 | 99.66 158 | 98.99 88 | 99.89 159 | 99.19 95 | 99.90 101 | 99.72 58 |
|
EI-MVSNet-Vis-set | | | 99.47 80 | 99.49 71 | 99.42 184 | 99.57 186 | 98.66 250 | 99.24 151 | 99.46 239 | 99.67 78 | 99.79 82 | 99.65 163 | 98.97 92 | 99.89 159 | 99.15 104 | 99.89 110 | 99.71 61 |
|
EPNet | | | 98.13 278 | 97.77 293 | 99.18 244 | 94.57 380 | 97.99 294 | 99.24 151 | 97.96 352 | 99.74 57 | 97.29 362 | 99.62 182 | 93.13 313 | 99.97 23 | 98.59 156 | 99.83 155 | 99.58 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
114514_t | | | 98.49 253 | 98.11 270 | 99.64 114 | 99.73 122 | 99.58 119 | 99.24 151 | 99.76 83 | 89.94 369 | 99.42 213 | 99.56 218 | 97.76 225 | 99.86 205 | 97.74 223 | 99.82 164 | 99.47 202 |
|
PatchT | | | 98.45 258 | 98.32 254 | 98.83 288 | 98.94 336 | 98.29 274 | 99.24 151 | 98.82 324 | 99.84 37 | 99.08 276 | 99.76 99 | 91.37 329 | 99.94 65 | 98.82 137 | 99.00 323 | 98.26 351 |
|
DeepC-MVS | | 98.90 4 | 99.62 52 | 99.61 46 | 99.67 95 | 99.72 125 | 99.44 144 | 99.24 151 | 99.71 109 | 99.27 141 | 99.93 25 | 99.90 27 | 99.70 16 | 99.93 82 | 98.99 120 | 99.99 13 | 99.64 105 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ADS-MVSNet2 | | | 97.78 291 | 97.66 298 | 98.12 320 | 99.14 310 | 95.36 350 | 99.22 158 | 98.75 327 | 96.97 327 | 98.25 335 | 99.64 165 | 90.90 337 | 99.94 65 | 96.51 302 | 99.56 261 | 99.08 295 |
|
ADS-MVSNet | | | 97.72 296 | 97.67 297 | 97.86 325 | 99.14 310 | 94.65 356 | 99.22 158 | 98.86 321 | 96.97 327 | 98.25 335 | 99.64 165 | 90.90 337 | 99.84 236 | 96.51 302 | 99.56 261 | 99.08 295 |
|
tpm2 | | | 96.35 326 | 96.22 323 | 96.73 348 | 98.88 343 | 91.75 370 | 99.21 160 | 98.51 339 | 93.27 363 | 97.89 351 | 99.21 306 | 84.83 370 | 99.70 314 | 96.04 321 | 98.18 355 | 98.75 330 |
|
SED-MVS | | | 99.40 96 | 99.28 115 | 99.77 44 | 99.69 140 | 99.82 35 | 99.20 161 | 99.54 206 | 99.13 169 | 99.82 67 | 99.63 175 | 98.91 98 | 99.92 102 | 97.85 213 | 99.70 219 | 99.58 147 |
|
OPU-MVS | | | | | 99.29 224 | 99.12 314 | 99.44 144 | 99.20 161 | | | | 99.40 261 | 99.00 86 | 98.84 373 | 96.54 300 | 99.60 254 | 99.58 147 |
|
GST-MVS | | | 99.16 162 | 98.96 189 | 99.75 60 | 99.73 122 | 99.73 70 | 99.20 161 | 99.55 200 | 98.22 267 | 99.32 237 | 99.35 278 | 98.65 133 | 99.91 124 | 96.86 282 | 99.74 203 | 99.62 121 |
|
PMVS |  | 92.94 21 | 98.82 219 | 98.81 209 | 98.85 284 | 99.84 50 | 97.99 294 | 99.20 161 | 99.47 236 | 99.71 64 | 99.42 213 | 99.82 62 | 98.09 200 | 99.47 365 | 93.88 359 | 99.85 142 | 99.07 300 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
dp | | | 96.86 315 | 97.07 309 | 96.24 354 | 98.68 359 | 90.30 379 | 99.19 165 | 98.38 346 | 97.35 314 | 98.23 337 | 99.59 204 | 87.23 359 | 99.82 260 | 96.27 313 | 98.73 340 | 98.59 335 |
|
SR-MVS | | | 99.19 153 | 99.00 178 | 99.74 65 | 99.51 212 | 99.72 74 | 99.18 166 | 99.60 171 | 98.85 201 | 99.47 201 | 99.58 206 | 98.38 173 | 99.92 102 | 96.92 278 | 99.54 270 | 99.57 152 |
|
thres100view900 | | | 96.39 325 | 96.03 327 | 97.47 334 | 99.63 160 | 95.93 344 | 99.18 166 | 97.57 357 | 98.75 216 | 98.70 315 | 97.31 379 | 87.04 361 | 99.67 335 | 87.62 371 | 98.51 346 | 96.81 369 |
|
thres600view7 | | | 96.60 322 | 96.16 324 | 97.93 323 | 99.63 160 | 96.09 343 | 99.18 166 | 97.57 357 | 98.77 212 | 98.72 313 | 97.32 378 | 87.04 361 | 99.72 308 | 88.57 368 | 98.62 343 | 97.98 360 |
|
SteuartSystems-ACMMP | | | 99.30 122 | 99.14 134 | 99.76 51 | 99.87 43 | 99.66 93 | 99.18 166 | 99.60 171 | 98.55 231 | 99.57 169 | 99.67 154 | 99.03 85 | 99.94 65 | 97.01 274 | 99.80 178 | 99.69 68 |
Skip Steuart: Steuart Systems R&D Blog. |
CPTT-MVS | | | 98.74 227 | 98.44 241 | 99.64 114 | 99.61 165 | 99.38 160 | 99.18 166 | 99.55 200 | 96.49 335 | 99.27 248 | 99.37 269 | 97.11 257 | 99.92 102 | 95.74 333 | 99.67 234 | 99.62 121 |
|
ambc | | | | | 99.20 241 | 99.35 263 | 98.53 259 | 99.17 171 | 99.46 239 | | 99.67 132 | 99.80 71 | 98.46 162 | 99.70 314 | 97.92 203 | 99.70 219 | 99.38 227 |
|
PatchmatchNet |  | | 97.65 297 | 97.80 290 | 97.18 342 | 98.82 349 | 92.49 366 | 99.17 171 | 98.39 345 | 98.12 272 | 98.79 307 | 99.58 206 | 90.71 341 | 99.89 159 | 97.23 266 | 99.41 290 | 99.16 275 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 99.11 173 | 98.95 190 | 99.59 138 | 99.13 312 | 99.59 115 | 99.17 171 | 99.65 141 | 97.88 288 | 99.25 250 | 99.46 250 | 98.97 92 | 99.80 281 | 97.26 262 | 99.82 164 | 99.37 230 |
|
MAR-MVS | | | 98.24 274 | 97.92 286 | 99.19 242 | 98.78 353 | 99.65 98 | 99.17 171 | 99.14 309 | 95.36 350 | 98.04 346 | 98.81 351 | 97.47 239 | 99.72 308 | 95.47 338 | 99.06 318 | 98.21 354 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PGM-MVS | | | 99.20 150 | 99.01 175 | 99.77 44 | 99.75 113 | 99.71 76 | 99.16 175 | 99.72 106 | 97.99 280 | 99.42 213 | 99.60 199 | 98.81 106 | 99.93 82 | 96.91 279 | 99.74 203 | 99.66 89 |
|
LPG-MVS_test | | | 99.22 143 | 99.05 164 | 99.74 65 | 99.82 61 | 99.63 103 | 99.16 175 | 99.73 97 | 97.56 300 | 99.64 139 | 99.69 138 | 99.37 42 | 99.89 159 | 96.66 294 | 99.87 130 | 99.69 68 |
|
Effi-MVS+-dtu | | | 99.07 178 | 98.92 195 | 99.52 160 | 98.89 341 | 99.78 47 | 99.15 177 | 99.66 132 | 99.34 133 | 98.92 291 | 99.24 302 | 97.69 228 | 99.98 11 | 98.11 190 | 99.28 305 | 98.81 325 |
|
MDTV_nov1_ep13 | | | | 97.73 294 | | 98.70 358 | 90.83 375 | 99.15 177 | 98.02 351 | 98.51 236 | 98.82 303 | 99.61 191 | 90.98 335 | 99.66 339 | 96.89 281 | 98.92 327 | |
|
DVP-MVS |  | | 99.32 120 | 99.17 129 | 99.77 44 | 99.69 140 | 99.80 42 | 99.14 179 | 99.31 278 | 99.16 163 | 99.62 152 | 99.61 191 | 98.35 176 | 99.91 124 | 97.88 207 | 99.72 214 | 99.61 131 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 99.83 25 | 99.70 136 | 99.79 44 | 99.14 179 | 99.61 159 | | | | | 99.92 102 | 97.88 207 | 99.72 214 | 99.77 45 |
|
test_post1 | | | | | | | | 99.14 179 | | | | 51.63 386 | 89.54 352 | 99.82 260 | 96.86 282 | | |
|
v2v482 | | | 99.50 69 | 99.47 72 | 99.58 141 | 99.78 90 | 99.25 188 | 99.14 179 | 99.58 187 | 99.25 145 | 99.81 74 | 99.62 182 | 98.24 187 | 99.84 236 | 99.83 18 | 99.97 43 | 99.64 105 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.44 373 | 99.14 179 | | 97.37 313 | 99.21 259 | | 91.78 328 | | 96.75 288 | | 99.03 304 |
|
API-MVS | | | 98.38 264 | 98.39 246 | 98.35 310 | 98.83 346 | 99.26 185 | 99.14 179 | 99.18 305 | 98.59 227 | 98.66 317 | 98.78 352 | 98.61 137 | 99.57 357 | 94.14 354 | 99.56 261 | 96.21 371 |
|
SF-MVS | | | 99.10 176 | 98.93 191 | 99.62 130 | 99.58 176 | 99.51 129 | 99.13 185 | 99.65 141 | 97.97 282 | 99.42 213 | 99.61 191 | 98.86 103 | 99.87 187 | 96.45 306 | 99.68 228 | 99.49 194 |
|
SMA-MVS |  | | 99.19 153 | 99.00 178 | 99.73 74 | 99.46 238 | 99.73 70 | 99.13 185 | 99.52 220 | 97.40 311 | 99.57 169 | 99.64 165 | 98.93 95 | 99.83 251 | 97.61 239 | 99.79 183 | 99.63 110 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
casdiffmvs |  | | 99.63 46 | 99.61 46 | 99.67 95 | 99.79 83 | 99.59 115 | 99.13 185 | 99.85 40 | 99.79 50 | 99.76 93 | 99.72 118 | 99.33 47 | 99.82 260 | 99.21 91 | 99.94 79 | 99.59 142 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMM | | 98.09 11 | 99.46 81 | 99.38 89 | 99.72 80 | 99.80 73 | 99.69 86 | 99.13 185 | 99.65 141 | 98.99 182 | 99.64 139 | 99.72 118 | 99.39 36 | 99.86 205 | 98.23 177 | 99.81 173 | 99.60 135 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 99.18 157 | 99.18 128 | 99.16 245 | 99.34 271 | 99.28 181 | 99.12 189 | 99.79 70 | 99.48 108 | 98.93 288 | 98.55 361 | 99.40 35 | 99.93 82 | 98.51 160 | 99.52 275 | 98.28 350 |
|
AllTest | | | 99.21 148 | 99.07 158 | 99.63 121 | 99.78 90 | 99.64 99 | 99.12 189 | 99.83 48 | 98.63 223 | 99.63 143 | 99.72 118 | 98.68 126 | 99.75 301 | 96.38 309 | 99.83 155 | 99.51 184 |
|
test_fmvs1 | | | 99.48 73 | 99.65 36 | 98.97 267 | 99.54 199 | 97.16 323 | 99.11 191 | 99.98 9 | 99.78 52 | 99.96 16 | 99.81 67 | 98.72 123 | 99.97 23 | 99.95 8 | 99.97 43 | 99.79 38 |
|
v144192 | | | 99.55 63 | 99.54 64 | 99.58 141 | 99.78 90 | 99.20 200 | 99.11 191 | 99.62 152 | 99.18 156 | 99.89 42 | 99.72 118 | 98.66 131 | 99.87 187 | 99.88 15 | 99.97 43 | 99.66 89 |
|
v1144 | | | 99.54 65 | 99.53 68 | 99.59 138 | 99.79 83 | 99.28 181 | 99.10 193 | 99.61 159 | 99.20 154 | 99.84 62 | 99.73 111 | 98.67 129 | 99.84 236 | 99.86 17 | 99.98 31 | 99.64 105 |
|
iter_conf05 | | | 98.46 256 | 98.23 259 | 99.15 247 | 99.04 327 | 97.99 294 | 99.10 193 | 99.61 159 | 99.79 50 | 99.76 93 | 99.58 206 | 87.88 357 | 99.92 102 | 99.31 80 | 99.97 43 | 99.53 171 |
|
tpmrst | | | 97.73 293 | 98.07 272 | 96.73 348 | 98.71 357 | 92.00 368 | 99.10 193 | 98.86 321 | 98.52 235 | 98.92 291 | 99.54 227 | 91.90 324 | 99.82 260 | 98.02 193 | 99.03 321 | 98.37 347 |
|
FMVSNet3 | | | 98.80 221 | 98.63 223 | 99.32 218 | 99.13 312 | 98.72 245 | 99.10 193 | 99.48 233 | 99.23 149 | 99.62 152 | 99.64 165 | 92.57 318 | 99.86 205 | 98.96 126 | 99.90 101 | 99.39 225 |
|
thisisatest0530 | | | 97.45 303 | 96.95 313 | 98.94 270 | 99.68 148 | 97.73 308 | 99.09 197 | 94.19 374 | 98.61 226 | 99.56 176 | 99.30 286 | 84.30 372 | 99.93 82 | 98.27 174 | 99.54 270 | 99.16 275 |
|
MTMP | | | | | | | | 99.09 197 | 98.59 337 | | | | | | | | |
|
v148 | | | 99.40 96 | 99.41 86 | 99.39 197 | 99.76 102 | 98.94 226 | 99.09 197 | 99.59 177 | 99.17 161 | 99.81 74 | 99.61 191 | 98.41 168 | 99.69 320 | 99.32 77 | 99.94 79 | 99.53 171 |
|
MVP-Stereo | | | 99.16 162 | 99.08 154 | 99.43 182 | 99.48 228 | 99.07 216 | 99.08 200 | 99.55 200 | 98.63 223 | 99.31 241 | 99.68 149 | 98.19 194 | 99.78 287 | 98.18 184 | 99.58 259 | 99.45 207 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpm cat1 | | | 96.78 317 | 96.98 312 | 96.16 355 | 98.85 344 | 90.59 378 | 99.08 200 | 99.32 274 | 92.37 364 | 97.73 359 | 99.46 250 | 91.15 333 | 99.69 320 | 96.07 320 | 98.80 331 | 98.21 354 |
|
MVSTER | | | 98.47 255 | 98.22 261 | 99.24 237 | 99.06 324 | 98.35 273 | 99.08 200 | 99.46 239 | 99.27 141 | 99.75 100 | 99.66 158 | 88.61 355 | 99.85 222 | 99.14 110 | 99.92 91 | 99.52 182 |
|
Fast-Effi-MVS+-dtu | | | 99.20 150 | 99.12 140 | 99.43 182 | 99.25 293 | 99.69 86 | 99.05 203 | 99.82 53 | 99.50 106 | 98.97 284 | 99.05 324 | 98.98 90 | 99.98 11 | 98.20 180 | 99.24 311 | 98.62 333 |
|
v1921920 | | | 99.56 60 | 99.57 58 | 99.55 153 | 99.75 113 | 99.11 208 | 99.05 203 | 99.61 159 | 99.15 167 | 99.88 48 | 99.71 125 | 99.08 78 | 99.87 187 | 99.90 11 | 99.97 43 | 99.66 89 |
|
patch_mono-2 | | | 99.51 68 | 99.46 76 | 99.64 114 | 99.70 136 | 99.11 208 | 99.04 205 | 99.87 33 | 99.71 64 | 99.47 201 | 99.79 81 | 98.24 187 | 99.98 11 | 99.38 64 | 99.96 57 | 99.83 26 |
|
Fast-Effi-MVS+ | | | 99.02 188 | 98.87 201 | 99.46 173 | 99.38 256 | 99.50 130 | 99.04 205 | 99.79 70 | 97.17 322 | 98.62 319 | 98.74 354 | 99.34 46 | 99.95 52 | 98.32 171 | 99.41 290 | 98.92 316 |
|
v1192 | | | 99.57 57 | 99.57 58 | 99.57 147 | 99.77 98 | 99.22 195 | 99.04 205 | 99.60 171 | 99.18 156 | 99.87 56 | 99.72 118 | 99.08 78 | 99.85 222 | 99.89 14 | 99.98 31 | 99.66 89 |
|
alignmvs | | | 98.28 270 | 97.96 279 | 99.25 235 | 99.12 314 | 98.93 229 | 99.03 208 | 98.42 343 | 99.64 86 | 98.72 313 | 97.85 373 | 90.86 339 | 99.62 349 | 98.88 133 | 99.13 314 | 99.19 269 |
|
test20.03 | | | 99.55 63 | 99.54 64 | 99.58 141 | 99.79 83 | 99.37 163 | 99.02 209 | 99.89 27 | 99.60 98 | 99.82 67 | 99.62 182 | 98.81 106 | 99.89 159 | 99.43 57 | 99.86 138 | 99.47 202 |
|
mvs_anonymous | | | 99.28 124 | 99.39 87 | 98.94 270 | 99.19 304 | 97.81 305 | 99.02 209 | 99.55 200 | 99.78 52 | 99.85 59 | 99.80 71 | 98.24 187 | 99.86 205 | 99.57 40 | 99.50 278 | 99.15 277 |
|
APD-MVS |  | | 98.87 215 | 98.59 226 | 99.71 85 | 99.50 218 | 99.62 105 | 99.01 211 | 99.57 189 | 96.80 333 | 99.54 183 | 99.63 175 | 98.29 183 | 99.91 124 | 95.24 342 | 99.71 217 | 99.61 131 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CMPMVS |  | 77.52 23 | 98.50 251 | 98.19 266 | 99.41 191 | 98.33 366 | 99.56 122 | 99.01 211 | 99.59 177 | 95.44 349 | 99.57 169 | 99.80 71 | 95.64 288 | 99.46 367 | 96.47 305 | 99.92 91 | 99.21 262 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_yl | | | 98.25 272 | 97.95 280 | 99.13 251 | 99.17 307 | 98.47 262 | 99.00 213 | 98.67 332 | 98.97 184 | 99.22 257 | 99.02 331 | 91.31 330 | 99.69 320 | 97.26 262 | 98.93 325 | 99.24 255 |
|
DCV-MVSNet | | | 98.25 272 | 97.95 280 | 99.13 251 | 99.17 307 | 98.47 262 | 99.00 213 | 98.67 332 | 98.97 184 | 99.22 257 | 99.02 331 | 91.31 330 | 99.69 320 | 97.26 262 | 98.93 325 | 99.24 255 |
|
tfpn200view9 | | | 96.30 328 | 95.89 328 | 97.53 332 | 99.58 176 | 96.11 341 | 99.00 213 | 97.54 360 | 98.43 242 | 98.52 326 | 96.98 381 | 86.85 363 | 99.67 335 | 87.62 371 | 98.51 346 | 96.81 369 |
|
v1240 | | | 99.56 60 | 99.58 55 | 99.51 162 | 99.80 73 | 99.00 219 | 99.00 213 | 99.65 141 | 99.15 167 | 99.90 38 | 99.75 104 | 99.09 75 | 99.88 173 | 99.90 11 | 99.96 57 | 99.67 80 |
|
thres400 | | | 96.40 324 | 95.89 328 | 97.92 324 | 99.58 176 | 96.11 341 | 99.00 213 | 97.54 360 | 98.43 242 | 98.52 326 | 96.98 381 | 86.85 363 | 99.67 335 | 87.62 371 | 98.51 346 | 97.98 360 |
|
test_vis1_rt | | | 99.45 83 | 99.46 76 | 99.41 191 | 99.71 128 | 98.63 255 | 98.99 218 | 99.96 15 | 99.03 180 | 99.95 20 | 99.12 316 | 98.75 118 | 99.84 236 | 99.82 20 | 99.82 164 | 99.77 45 |
|
UnsupCasMVSNet_eth | | | 98.83 218 | 98.57 230 | 99.59 138 | 99.68 148 | 99.45 142 | 98.99 218 | 99.67 128 | 99.48 108 | 99.55 181 | 99.36 273 | 94.92 292 | 99.86 205 | 98.95 130 | 96.57 369 | 99.45 207 |
|
DeepC-MVS_fast | | 98.47 5 | 99.23 135 | 99.12 140 | 99.56 150 | 99.28 288 | 99.22 195 | 98.99 218 | 99.40 257 | 99.08 174 | 99.58 166 | 99.64 165 | 98.90 101 | 99.83 251 | 97.44 249 | 99.75 196 | 99.63 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UniMVSNet (Re) | | | 99.37 105 | 99.26 119 | 99.68 92 | 99.51 212 | 99.58 119 | 98.98 221 | 99.60 171 | 99.43 123 | 99.70 121 | 99.36 273 | 97.70 226 | 99.88 173 | 99.20 94 | 99.87 130 | 99.59 142 |
|
UniMVSNet_NR-MVSNet | | | 99.37 105 | 99.25 121 | 99.72 80 | 99.47 234 | 99.56 122 | 98.97 222 | 99.61 159 | 99.43 123 | 99.67 132 | 99.28 290 | 97.85 219 | 99.95 52 | 99.17 100 | 99.81 173 | 99.65 97 |
|
CDS-MVSNet | | | 99.22 143 | 99.13 136 | 99.50 164 | 99.35 263 | 99.11 208 | 98.96 223 | 99.54 206 | 99.46 115 | 99.61 158 | 99.70 132 | 96.31 278 | 99.83 251 | 99.34 72 | 99.88 119 | 99.55 157 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMMP_NAP | | | 99.28 124 | 99.11 143 | 99.79 38 | 99.75 113 | 99.81 38 | 98.95 224 | 99.53 215 | 98.27 265 | 99.53 188 | 99.73 111 | 98.75 118 | 99.87 187 | 97.70 229 | 99.83 155 | 99.68 74 |
|
PM-MVS | | | 99.36 108 | 99.29 113 | 99.58 141 | 99.83 54 | 99.66 93 | 98.95 224 | 99.86 36 | 98.85 201 | 99.81 74 | 99.73 111 | 98.40 172 | 99.92 102 | 98.36 167 | 99.83 155 | 99.17 273 |
|
SD-MVS | | | 99.01 192 | 99.30 108 | 98.15 318 | 99.50 218 | 99.40 156 | 98.94 226 | 99.61 159 | 99.22 153 | 99.75 100 | 99.82 62 | 99.54 29 | 95.51 378 | 97.48 247 | 99.87 130 | 99.54 165 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PVSNet_Blended_VisFu | | | 99.40 96 | 99.38 89 | 99.44 178 | 99.90 32 | 98.66 250 | 98.94 226 | 99.91 22 | 97.97 282 | 99.79 82 | 99.73 111 | 99.05 83 | 99.97 23 | 99.15 104 | 99.99 13 | 99.68 74 |
|
MDA-MVSNet-bldmvs | | | 99.06 179 | 99.05 164 | 99.07 260 | 99.80 73 | 97.83 304 | 98.89 228 | 99.72 106 | 99.29 137 | 99.63 143 | 99.70 132 | 96.47 271 | 99.89 159 | 98.17 186 | 99.82 164 | 99.50 189 |
|
ACMP | | 97.51 14 | 99.05 182 | 98.84 205 | 99.67 95 | 99.78 90 | 99.55 125 | 98.88 229 | 99.66 132 | 97.11 326 | 99.47 201 | 99.60 199 | 99.07 80 | 99.89 159 | 96.18 317 | 99.85 142 | 99.58 147 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OpenMVS_ROB |  | 97.31 17 | 97.36 307 | 96.84 317 | 98.89 283 | 99.29 285 | 99.45 142 | 98.87 230 | 99.48 233 | 86.54 372 | 99.44 207 | 99.74 107 | 97.34 246 | 99.86 205 | 91.61 363 | 99.28 305 | 97.37 367 |
|
tmp_tt | | | 95.75 337 | 95.42 335 | 96.76 346 | 89.90 382 | 94.42 357 | 98.86 231 | 97.87 355 | 78.01 373 | 99.30 246 | 99.69 138 | 97.70 226 | 95.89 377 | 99.29 84 | 98.14 356 | 99.95 6 |
|
HPM-MVS++ |  | | 98.96 201 | 98.70 219 | 99.74 65 | 99.52 210 | 99.71 76 | 98.86 231 | 99.19 304 | 98.47 241 | 98.59 322 | 99.06 323 | 98.08 202 | 99.91 124 | 96.94 277 | 99.60 254 | 99.60 135 |
|
IterMVS-LS | | | 99.41 94 | 99.47 72 | 99.25 235 | 99.81 68 | 98.09 289 | 98.85 233 | 99.76 83 | 99.62 89 | 99.83 66 | 99.64 165 | 98.54 148 | 99.97 23 | 99.15 104 | 99.99 13 | 99.68 74 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
testgi | | | 99.29 123 | 99.26 119 | 99.37 204 | 99.75 113 | 98.81 238 | 98.84 234 | 99.89 27 | 98.38 249 | 99.75 100 | 99.04 326 | 99.36 45 | 99.86 205 | 99.08 114 | 99.25 309 | 99.45 207 |
|
F-COLMAP | | | 98.74 227 | 98.45 240 | 99.62 130 | 99.57 186 | 99.47 133 | 98.84 234 | 99.65 141 | 96.31 339 | 98.93 288 | 99.19 309 | 97.68 229 | 99.87 187 | 96.52 301 | 99.37 295 | 99.53 171 |
|
baseline2 | | | 96.83 316 | 96.28 322 | 98.46 306 | 99.09 322 | 96.91 330 | 98.83 236 | 93.87 375 | 97.23 319 | 96.23 370 | 98.36 366 | 88.12 356 | 99.90 142 | 96.68 292 | 98.14 356 | 98.57 338 |
|
DU-MVS | | | 99.33 118 | 99.21 125 | 99.71 85 | 99.43 245 | 99.56 122 | 98.83 236 | 99.53 215 | 99.38 129 | 99.67 132 | 99.36 273 | 97.67 230 | 99.95 52 | 99.17 100 | 99.81 173 | 99.63 110 |
|
Baseline_NR-MVSNet | | | 99.49 71 | 99.37 92 | 99.82 27 | 99.91 27 | 99.84 24 | 98.83 236 | 99.86 36 | 99.68 74 | 99.65 138 | 99.88 36 | 97.67 230 | 99.87 187 | 99.03 117 | 99.86 138 | 99.76 51 |
|
XVG-ACMP-BASELINE | | | 99.23 135 | 99.10 151 | 99.63 121 | 99.82 61 | 99.58 119 | 98.83 236 | 99.72 106 | 98.36 251 | 99.60 161 | 99.71 125 | 98.92 96 | 99.91 124 | 97.08 272 | 99.84 147 | 99.40 223 |
|
MSLP-MVS++ | | | 99.05 182 | 99.09 152 | 98.91 276 | 99.21 299 | 98.36 272 | 98.82 240 | 99.47 236 | 98.85 201 | 98.90 294 | 99.56 218 | 98.78 113 | 99.09 371 | 98.57 157 | 99.68 228 | 99.26 252 |
|
9.14 | | | | 98.64 221 | | 99.45 241 | | 98.81 241 | 99.60 171 | 97.52 305 | 99.28 247 | 99.56 218 | 98.53 152 | 99.83 251 | 95.36 341 | 99.64 241 | |
|
D2MVS | | | 99.22 143 | 99.19 127 | 99.29 224 | 99.69 140 | 98.74 244 | 98.81 241 | 99.41 250 | 98.55 231 | 99.68 127 | 99.69 138 | 98.13 198 | 99.87 187 | 98.82 137 | 99.98 31 | 99.24 255 |
|
pmmvs-eth3d | | | 99.48 73 | 99.47 72 | 99.51 162 | 99.77 98 | 99.41 155 | 98.81 241 | 99.66 132 | 99.42 127 | 99.75 100 | 99.66 158 | 99.20 62 | 99.76 297 | 98.98 122 | 99.99 13 | 99.36 233 |
|
HQP_MVS | | | 98.90 209 | 98.68 220 | 99.55 153 | 99.58 176 | 99.24 192 | 98.80 244 | 99.54 206 | 98.94 188 | 99.14 269 | 99.25 297 | 97.24 249 | 99.82 260 | 95.84 330 | 99.78 188 | 99.60 135 |
|
plane_prior2 | | | | | | | | 98.80 244 | | 98.94 188 | | | | | | | |
|
JIA-IIPM | | | 98.06 282 | 97.92 286 | 98.50 304 | 98.59 360 | 97.02 327 | 98.80 244 | 98.51 339 | 99.88 25 | 97.89 351 | 99.87 40 | 91.89 325 | 99.90 142 | 98.16 187 | 97.68 363 | 98.59 335 |
|
PAPM_NR | | | 98.36 265 | 98.04 273 | 99.33 214 | 99.48 228 | 98.93 229 | 98.79 247 | 99.28 286 | 97.54 303 | 98.56 325 | 98.57 359 | 97.12 256 | 99.69 320 | 94.09 355 | 98.90 329 | 99.38 227 |
|
CHOSEN 1792x2688 | | | 99.39 100 | 99.30 108 | 99.65 107 | 99.88 39 | 99.25 188 | 98.78 248 | 99.88 31 | 98.66 220 | 99.96 16 | 99.79 81 | 97.45 240 | 99.93 82 | 99.34 72 | 99.99 13 | 99.78 41 |
|
hse-mvs2 | | | 98.52 248 | 98.30 256 | 99.16 245 | 99.29 285 | 98.60 257 | 98.77 249 | 99.02 316 | 99.68 74 | 99.32 237 | 99.04 326 | 92.50 321 | 99.85 222 | 99.24 88 | 97.87 361 | 99.03 304 |
|
MS-PatchMatch | | | 99.00 194 | 98.97 187 | 99.09 256 | 99.11 319 | 98.19 280 | 98.76 250 | 99.33 272 | 98.49 239 | 99.44 207 | 99.58 206 | 98.21 192 | 99.69 320 | 98.20 180 | 99.62 244 | 99.39 225 |
|
DPE-MVS |  | | 99.14 166 | 98.92 195 | 99.82 27 | 99.57 186 | 99.77 50 | 98.74 251 | 99.60 171 | 98.55 231 | 99.76 93 | 99.69 138 | 98.23 191 | 99.92 102 | 96.39 308 | 99.75 196 | 99.76 51 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
WTY-MVS | | | 98.59 241 | 98.37 248 | 99.26 232 | 99.43 245 | 98.40 268 | 98.74 251 | 99.13 311 | 98.10 273 | 99.21 259 | 99.24 302 | 94.82 294 | 99.90 142 | 97.86 211 | 98.77 334 | 99.49 194 |
|
AUN-MVS | | | 97.82 289 | 97.38 302 | 99.14 250 | 99.27 290 | 98.53 259 | 98.72 253 | 99.02 316 | 98.10 273 | 97.18 365 | 99.03 330 | 89.26 353 | 99.85 222 | 97.94 202 | 97.91 359 | 99.03 304 |
|
sss | | | 98.90 209 | 98.77 213 | 99.27 229 | 99.48 228 | 98.44 265 | 98.72 253 | 99.32 274 | 97.94 286 | 99.37 227 | 99.35 278 | 96.31 278 | 99.91 124 | 98.85 134 | 99.63 243 | 99.47 202 |
|
CANet | | | 99.11 173 | 99.05 164 | 99.28 226 | 98.83 346 | 98.56 258 | 98.71 255 | 99.41 250 | 99.25 145 | 99.23 254 | 99.22 304 | 97.66 234 | 99.94 65 | 99.19 95 | 99.97 43 | 99.33 239 |
|
AdaColmap |  | | 98.60 238 | 98.35 251 | 99.38 201 | 99.12 314 | 99.22 195 | 98.67 256 | 99.42 249 | 97.84 292 | 98.81 304 | 99.27 292 | 97.32 247 | 99.81 275 | 95.14 343 | 99.53 272 | 99.10 288 |
|
MP-MVS-pluss | | | 99.14 166 | 98.92 195 | 99.80 34 | 99.83 54 | 99.83 29 | 98.61 257 | 99.63 149 | 96.84 331 | 99.44 207 | 99.58 206 | 98.81 106 | 99.91 124 | 97.70 229 | 99.82 164 | 99.67 80 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
NCCC | | | 98.82 219 | 98.57 230 | 99.58 141 | 99.21 299 | 99.31 176 | 98.61 257 | 99.25 293 | 98.65 221 | 98.43 330 | 99.26 295 | 97.86 217 | 99.81 275 | 96.55 299 | 99.27 308 | 99.61 131 |
|
BH-RMVSNet | | | 98.41 261 | 98.14 269 | 99.21 239 | 99.21 299 | 98.47 262 | 98.60 259 | 98.26 348 | 98.35 256 | 98.93 288 | 99.31 284 | 97.20 254 | 99.66 339 | 94.32 351 | 99.10 317 | 99.51 184 |
|
LF4IMVS | | | 99.01 192 | 98.92 195 | 99.27 229 | 99.71 128 | 99.28 181 | 98.59 260 | 99.77 78 | 98.32 262 | 99.39 225 | 99.41 257 | 98.62 135 | 99.84 236 | 96.62 298 | 99.84 147 | 98.69 331 |
|
OPM-MVS | | | 99.26 130 | 99.13 136 | 99.63 121 | 99.70 136 | 99.61 111 | 98.58 261 | 99.48 233 | 98.50 237 | 99.52 190 | 99.63 175 | 99.14 70 | 99.76 297 | 97.89 206 | 99.77 192 | 99.51 184 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MCST-MVS | | | 99.02 188 | 98.81 209 | 99.65 107 | 99.58 176 | 99.49 131 | 98.58 261 | 99.07 312 | 98.40 247 | 99.04 281 | 99.25 297 | 98.51 157 | 99.80 281 | 97.31 256 | 99.51 276 | 99.65 97 |
|
PVSNet_BlendedMVS | | | 99.03 186 | 99.01 175 | 99.09 256 | 99.54 199 | 97.99 294 | 98.58 261 | 99.82 53 | 97.62 299 | 99.34 232 | 99.71 125 | 98.52 155 | 99.77 295 | 97.98 198 | 99.97 43 | 99.52 182 |
|
OMC-MVS | | | 98.90 209 | 98.72 215 | 99.44 178 | 99.39 253 | 99.42 151 | 98.58 261 | 99.64 147 | 97.31 316 | 99.44 207 | 99.62 182 | 98.59 140 | 99.69 320 | 96.17 318 | 99.79 183 | 99.22 260 |
|
diffmvs |  | | 99.34 115 | 99.32 102 | 99.39 197 | 99.67 153 | 98.77 241 | 98.57 265 | 99.81 62 | 99.61 92 | 99.48 200 | 99.41 257 | 98.47 159 | 99.86 205 | 98.97 124 | 99.90 101 | 99.53 171 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DP-MVS Recon | | | 98.50 251 | 98.23 259 | 99.31 221 | 99.49 223 | 99.46 137 | 98.56 266 | 99.63 149 | 94.86 358 | 98.85 300 | 99.37 269 | 97.81 221 | 99.59 355 | 96.08 319 | 99.44 285 | 98.88 319 |
|
new-patchmatchnet | | | 99.35 110 | 99.57 58 | 98.71 298 | 99.82 61 | 96.62 335 | 98.55 267 | 99.75 88 | 99.50 106 | 99.88 48 | 99.87 40 | 99.31 48 | 99.88 173 | 99.43 57 | 100.00 1 | 99.62 121 |
|
pmmvs5 | | | 99.19 153 | 99.11 143 | 99.42 184 | 99.76 102 | 98.88 234 | 98.55 267 | 99.73 97 | 98.82 205 | 99.72 113 | 99.62 182 | 96.56 267 | 99.82 260 | 99.32 77 | 99.95 68 | 99.56 154 |
|
BH-untuned | | | 98.22 276 | 98.09 271 | 98.58 302 | 99.38 256 | 97.24 321 | 98.55 267 | 98.98 319 | 97.81 293 | 99.20 264 | 98.76 353 | 97.01 259 | 99.65 345 | 94.83 346 | 98.33 349 | 98.86 321 |
|
CNVR-MVS | | | 98.99 197 | 98.80 211 | 99.56 150 | 99.25 293 | 99.43 148 | 98.54 270 | 99.27 287 | 98.58 228 | 98.80 306 | 99.43 255 | 98.53 152 | 99.70 314 | 97.22 267 | 99.59 258 | 99.54 165 |
|
thres200 | | | 96.09 331 | 95.68 333 | 97.33 339 | 99.48 228 | 96.22 340 | 98.53 271 | 97.57 357 | 98.06 277 | 98.37 332 | 96.73 383 | 86.84 365 | 99.61 353 | 86.99 374 | 98.57 344 | 96.16 372 |
|
1112_ss | | | 99.05 182 | 98.84 205 | 99.67 95 | 99.66 154 | 99.29 179 | 98.52 272 | 99.82 53 | 97.65 298 | 99.43 211 | 99.16 310 | 96.42 273 | 99.91 124 | 99.07 115 | 99.84 147 | 99.80 32 |
|
EPNet_dtu | | | 97.62 298 | 97.79 292 | 97.11 344 | 96.67 377 | 92.31 367 | 98.51 273 | 98.04 350 | 99.24 147 | 95.77 371 | 99.47 247 | 93.78 306 | 99.66 339 | 98.98 122 | 99.62 244 | 99.37 230 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PLC |  | 97.35 16 | 98.36 265 | 97.99 276 | 99.48 169 | 99.32 278 | 99.24 192 | 98.50 274 | 99.51 224 | 95.19 354 | 98.58 323 | 98.96 340 | 96.95 261 | 99.83 251 | 95.63 334 | 99.25 309 | 99.37 230 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 97.92 13 | 98.03 283 | 97.55 299 | 99.46 173 | 99.47 234 | 99.44 144 | 98.50 274 | 99.62 152 | 86.79 370 | 99.07 279 | 99.26 295 | 98.26 186 | 99.62 349 | 97.28 259 | 99.73 208 | 99.31 246 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
xiu_mvs_v1_base_debu | | | 99.23 135 | 99.34 97 | 98.91 276 | 99.59 171 | 98.23 276 | 98.47 276 | 99.66 132 | 99.61 92 | 99.68 127 | 98.94 342 | 99.39 36 | 99.97 23 | 99.18 97 | 99.55 265 | 98.51 340 |
|
xiu_mvs_v1_base | | | 99.23 135 | 99.34 97 | 98.91 276 | 99.59 171 | 98.23 276 | 98.47 276 | 99.66 132 | 99.61 92 | 99.68 127 | 98.94 342 | 99.39 36 | 99.97 23 | 99.18 97 | 99.55 265 | 98.51 340 |
|
xiu_mvs_v1_base_debi | | | 99.23 135 | 99.34 97 | 98.91 276 | 99.59 171 | 98.23 276 | 98.47 276 | 99.66 132 | 99.61 92 | 99.68 127 | 98.94 342 | 99.39 36 | 99.97 23 | 99.18 97 | 99.55 265 | 98.51 340 |
|
TR-MVS | | | 97.44 304 | 97.15 308 | 98.32 312 | 98.53 362 | 97.46 315 | 98.47 276 | 97.91 354 | 96.85 330 | 98.21 338 | 98.51 363 | 96.42 273 | 99.51 363 | 92.16 362 | 97.29 365 | 97.98 360 |
|
FPMVS | | | 96.32 327 | 95.50 334 | 98.79 292 | 99.60 167 | 98.17 283 | 98.46 280 | 98.80 325 | 97.16 323 | 96.28 367 | 99.63 175 | 82.19 373 | 99.09 371 | 88.45 369 | 98.89 330 | 99.10 288 |
|
plane_prior | | | | | | | 99.24 192 | 98.42 281 | | 97.87 289 | | | | | | 99.71 217 | |
|
WR-MVS | | | 99.11 173 | 98.93 191 | 99.66 102 | 99.30 283 | 99.42 151 | 98.42 281 | 99.37 265 | 99.04 179 | 99.57 169 | 99.20 308 | 96.89 262 | 99.86 205 | 98.66 154 | 99.87 130 | 99.70 64 |
|
MVS-HIRNet | | | 97.86 287 | 98.22 261 | 96.76 346 | 99.28 288 | 91.53 372 | 98.38 283 | 92.60 376 | 99.13 169 | 99.31 241 | 99.96 12 | 97.18 255 | 99.68 330 | 98.34 169 | 99.83 155 | 99.07 300 |
|
N_pmnet | | | 98.73 229 | 98.53 236 | 99.35 210 | 99.72 125 | 98.67 247 | 98.34 284 | 94.65 371 | 98.35 256 | 99.79 82 | 99.68 149 | 98.03 205 | 99.93 82 | 98.28 173 | 99.92 91 | 99.44 212 |
|
CNLPA | | | 98.57 243 | 98.34 252 | 99.28 226 | 99.18 306 | 99.10 213 | 98.34 284 | 99.41 250 | 98.48 240 | 98.52 326 | 98.98 336 | 97.05 258 | 99.78 287 | 95.59 335 | 99.50 278 | 98.96 311 |
|
CDPH-MVS | | | 98.56 244 | 98.20 263 | 99.61 133 | 99.50 218 | 99.46 137 | 98.32 286 | 99.41 250 | 95.22 352 | 99.21 259 | 99.10 320 | 98.34 179 | 99.82 260 | 95.09 345 | 99.66 237 | 99.56 154 |
|
Effi-MVS+ | | | 99.06 179 | 98.97 187 | 99.34 211 | 99.31 279 | 98.98 221 | 98.31 287 | 99.91 22 | 98.81 206 | 98.79 307 | 98.94 342 | 99.14 70 | 99.84 236 | 98.79 141 | 98.74 338 | 99.20 266 |
|
save fliter | | | | | | 99.53 205 | 99.25 188 | 98.29 288 | 99.38 264 | 99.07 176 | | | | | | | |
|
Patchmatch-RL test | | | 98.60 238 | 98.36 249 | 99.33 214 | 99.77 98 | 99.07 216 | 98.27 289 | 99.87 33 | 98.91 194 | 99.74 108 | 99.72 118 | 90.57 343 | 99.79 284 | 98.55 158 | 99.85 142 | 99.11 286 |
|
jason | | | 99.16 162 | 99.11 143 | 99.32 218 | 99.75 113 | 98.44 265 | 98.26 290 | 99.39 260 | 98.70 218 | 99.74 108 | 99.30 286 | 98.54 148 | 99.97 23 | 98.48 161 | 99.82 164 | 99.55 157 |
jason: jason. |
XVG-OURS-SEG-HR | | | 99.16 162 | 98.99 183 | 99.66 102 | 99.84 50 | 99.64 99 | 98.25 291 | 99.73 97 | 98.39 248 | 99.63 143 | 99.43 255 | 99.70 16 | 99.90 142 | 97.34 254 | 98.64 342 | 99.44 212 |
|
MDA-MVSNet_test_wron | | | 98.95 204 | 98.99 183 | 98.85 284 | 99.64 158 | 97.16 323 | 98.23 292 | 99.33 272 | 98.93 191 | 99.56 176 | 99.66 158 | 97.39 244 | 99.83 251 | 98.29 172 | 99.88 119 | 99.55 157 |
|
YYNet1 | | | 98.95 204 | 98.99 183 | 98.84 286 | 99.64 158 | 97.14 325 | 98.22 293 | 99.32 274 | 98.92 193 | 99.59 164 | 99.66 158 | 97.40 242 | 99.83 251 | 98.27 174 | 99.90 101 | 99.55 157 |
|
CANet_DTU | | | 98.91 207 | 98.85 203 | 99.09 256 | 98.79 351 | 98.13 284 | 98.18 294 | 99.31 278 | 99.48 108 | 98.86 299 | 99.51 233 | 96.56 267 | 99.95 52 | 99.05 116 | 99.95 68 | 99.19 269 |
|
MG-MVS | | | 98.52 248 | 98.39 246 | 98.94 270 | 99.15 309 | 97.39 318 | 98.18 294 | 99.21 303 | 98.89 198 | 99.23 254 | 99.63 175 | 97.37 245 | 99.74 303 | 94.22 353 | 99.61 251 | 99.69 68 |
|
SCA | | | 98.11 279 | 98.36 249 | 97.36 337 | 99.20 302 | 92.99 364 | 98.17 296 | 98.49 341 | 98.24 266 | 99.10 275 | 99.57 215 | 96.01 285 | 99.94 65 | 96.86 282 | 99.62 244 | 99.14 282 |
|
TSAR-MVS + GP. | | | 99.12 170 | 99.04 169 | 99.38 201 | 99.34 271 | 99.16 203 | 98.15 297 | 99.29 283 | 98.18 271 | 99.63 143 | 99.62 182 | 99.18 64 | 99.68 330 | 98.20 180 | 99.74 203 | 99.30 247 |
|
new_pmnet | | | 98.88 213 | 98.89 199 | 98.84 286 | 99.70 136 | 97.62 311 | 98.15 297 | 99.50 228 | 97.98 281 | 99.62 152 | 99.54 227 | 98.15 197 | 99.94 65 | 97.55 242 | 99.84 147 | 98.95 313 |
|
PatchMatch-RL | | | 98.68 233 | 98.47 238 | 99.30 223 | 99.44 242 | 99.28 181 | 98.14 299 | 99.54 206 | 97.12 325 | 99.11 273 | 99.25 297 | 97.80 222 | 99.70 314 | 96.51 302 | 99.30 302 | 98.93 315 |
|
xiu_mvs_v2_base | | | 99.02 188 | 99.11 143 | 98.77 293 | 99.37 258 | 98.09 289 | 98.13 300 | 99.51 224 | 99.47 112 | 99.42 213 | 98.54 362 | 99.38 40 | 99.97 23 | 98.83 135 | 99.33 299 | 98.24 352 |
|
lupinMVS | | | 98.96 201 | 98.87 201 | 99.24 237 | 99.57 186 | 98.40 268 | 98.12 301 | 99.18 305 | 98.28 264 | 99.63 143 | 99.13 312 | 98.02 206 | 99.97 23 | 98.22 178 | 99.69 223 | 99.35 236 |
|
DELS-MVS | | | 99.34 115 | 99.30 108 | 99.48 169 | 99.51 212 | 99.36 167 | 98.12 301 | 99.53 215 | 99.36 132 | 99.41 219 | 99.61 191 | 99.22 60 | 99.87 187 | 99.21 91 | 99.68 228 | 99.20 266 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TEST9 | | | | | | 99.35 263 | 99.35 170 | 98.11 303 | 99.41 250 | 94.83 359 | 97.92 349 | 98.99 333 | 98.02 206 | 99.85 222 | | | |
|
train_agg | | | 98.35 268 | 97.95 280 | 99.57 147 | 99.35 263 | 99.35 170 | 98.11 303 | 99.41 250 | 94.90 356 | 97.92 349 | 98.99 333 | 98.02 206 | 99.85 222 | 95.38 340 | 99.44 285 | 99.50 189 |
|
PMMVS2 | | | 99.48 73 | 99.45 78 | 99.57 147 | 99.76 102 | 98.99 220 | 98.09 305 | 99.90 25 | 98.95 187 | 99.78 86 | 99.58 206 | 99.57 26 | 99.93 82 | 99.48 52 | 99.95 68 | 99.79 38 |
|
Test_1112_low_res | | | 98.95 204 | 98.73 214 | 99.63 121 | 99.68 148 | 99.15 205 | 98.09 305 | 99.80 64 | 97.14 324 | 99.46 205 | 99.40 261 | 96.11 283 | 99.89 159 | 99.01 119 | 99.84 147 | 99.84 22 |
|
test_8 | | | | | | 99.34 271 | 99.31 176 | 98.08 307 | 99.40 257 | 94.90 356 | 97.87 353 | 98.97 338 | 98.02 206 | 99.84 236 | | | |
|
IterMVS-SCA-FT | | | 99.00 194 | 99.16 130 | 98.51 303 | 99.75 113 | 95.90 345 | 98.07 308 | 99.84 46 | 99.84 37 | 99.89 42 | 99.73 111 | 96.01 285 | 99.99 6 | 99.33 75 | 100.00 1 | 99.63 110 |
|
HyFIR lowres test | | | 98.91 207 | 98.64 221 | 99.73 74 | 99.85 49 | 99.47 133 | 98.07 308 | 99.83 48 | 98.64 222 | 99.89 42 | 99.60 199 | 92.57 318 | 100.00 1 | 99.33 75 | 99.97 43 | 99.72 58 |
|
IterMVS | | | 98.97 198 | 99.16 130 | 98.42 307 | 99.74 119 | 95.64 348 | 98.06 310 | 99.83 48 | 99.83 40 | 99.85 59 | 99.74 107 | 96.10 284 | 99.99 6 | 99.27 87 | 100.00 1 | 99.63 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
新几何2 | | | | | | | | 98.04 311 | | | | | | | | | |
|
BH-w/o | | | 97.20 308 | 97.01 311 | 97.76 328 | 99.08 323 | 95.69 347 | 98.03 312 | 98.52 338 | 95.76 346 | 97.96 348 | 98.02 371 | 95.62 289 | 99.47 365 | 92.82 361 | 97.25 366 | 98.12 358 |
|
无先验 | | | | | | | | 98.01 313 | 99.23 297 | 95.83 345 | | | | 99.85 222 | 95.79 332 | | 99.44 212 |
|
pmmvs4 | | | 99.13 168 | 99.06 160 | 99.36 208 | 99.57 186 | 99.10 213 | 98.01 313 | 99.25 293 | 98.78 211 | 99.58 166 | 99.44 254 | 98.24 187 | 99.76 297 | 98.74 147 | 99.93 87 | 99.22 260 |
|
PS-MVSNAJ | | | 99.00 194 | 99.08 154 | 98.76 294 | 99.37 258 | 98.10 288 | 98.00 315 | 99.51 224 | 99.47 112 | 99.41 219 | 98.50 364 | 99.28 52 | 99.97 23 | 98.83 135 | 99.34 298 | 98.20 356 |
|
test_prior4 | | | | | | | 99.19 201 | 98.00 315 | | | | | | | | | |
|
HQP-NCC | | | | | | 99.31 279 | | 97.98 317 | | 97.45 308 | 98.15 339 | | | | | | |
|
ACMP_Plane | | | | | | 99.31 279 | | 97.98 317 | | 97.45 308 | 98.15 339 | | | | | | |
|
HQP-MVS | | | 98.36 265 | 98.02 275 | 99.39 197 | 99.31 279 | 98.94 226 | 97.98 317 | 99.37 265 | 97.45 308 | 98.15 339 | 98.83 349 | 96.67 265 | 99.70 314 | 94.73 347 | 99.67 234 | 99.53 171 |
|
UnsupCasMVSNet_bld | | | 98.55 245 | 98.27 258 | 99.40 193 | 99.56 197 | 99.37 163 | 97.97 320 | 99.68 124 | 97.49 307 | 99.08 276 | 99.35 278 | 95.41 291 | 99.82 260 | 97.70 229 | 98.19 354 | 99.01 309 |
|
test_prior2 | | | | | | | | 97.95 321 | | 97.87 289 | 98.05 345 | 99.05 324 | 97.90 214 | | 95.99 324 | 99.49 280 | |
|
旧先验2 | | | | | | | | 97.94 322 | | 95.33 351 | 98.94 287 | | | 99.88 173 | 96.75 288 | | |
|
MVE |  | 92.54 22 | 96.66 321 | 96.11 325 | 98.31 314 | 99.68 148 | 97.55 313 | 97.94 322 | 95.60 369 | 99.37 130 | 90.68 377 | 98.70 355 | 96.56 267 | 98.61 375 | 86.94 375 | 99.55 265 | 98.77 329 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
原ACMM2 | | | | | | | | 97.92 324 | | | | | | | | | |
|
MVS_111021_HR | | | 99.12 170 | 99.02 172 | 99.40 193 | 99.50 218 | 99.11 208 | 97.92 324 | 99.71 109 | 98.76 215 | 99.08 276 | 99.47 247 | 99.17 65 | 99.54 358 | 97.85 213 | 99.76 194 | 99.54 165 |
|
MVS_111021_LR | | | 99.13 168 | 99.03 171 | 99.42 184 | 99.58 176 | 99.32 175 | 97.91 326 | 99.73 97 | 98.68 219 | 99.31 241 | 99.48 243 | 99.09 75 | 99.66 339 | 97.70 229 | 99.77 192 | 99.29 250 |
|
mvsany_test1 | | | 99.44 85 | 99.45 78 | 99.40 193 | 99.37 258 | 98.64 254 | 97.90 327 | 99.59 177 | 99.27 141 | 99.92 29 | 99.82 62 | 99.74 12 | 99.93 82 | 99.55 43 | 99.87 130 | 99.63 110 |
|
pmmvs3 | | | 98.08 281 | 97.80 290 | 98.91 276 | 99.41 251 | 97.69 310 | 97.87 328 | 99.66 132 | 95.87 343 | 99.50 197 | 99.51 233 | 90.35 345 | 99.97 23 | 98.55 158 | 99.47 282 | 99.08 295 |
|
XVG-OURS | | | 99.21 148 | 99.06 160 | 99.65 107 | 99.82 61 | 99.62 105 | 97.87 328 | 99.74 93 | 98.36 251 | 99.66 136 | 99.68 149 | 99.71 14 | 99.90 142 | 96.84 285 | 99.88 119 | 99.43 218 |
|
test222 | | | | | | 99.51 212 | 99.08 215 | 97.83 330 | 99.29 283 | 95.21 353 | 98.68 316 | 99.31 284 | 97.28 248 | | | 99.38 293 | 99.43 218 |
|
miper_lstm_enhance | | | 98.65 235 | 98.60 224 | 98.82 291 | 99.20 302 | 97.33 319 | 97.78 331 | 99.66 132 | 99.01 181 | 99.59 164 | 99.50 236 | 94.62 297 | 99.85 222 | 98.12 189 | 99.90 101 | 99.26 252 |
|
TinyColmap | | | 98.97 198 | 98.93 191 | 99.07 260 | 99.46 238 | 98.19 280 | 97.75 332 | 99.75 88 | 98.79 209 | 99.54 183 | 99.70 132 | 98.97 92 | 99.62 349 | 96.63 297 | 99.83 155 | 99.41 222 |
|
our_test_3 | | | 98.85 217 | 99.09 152 | 98.13 319 | 99.66 154 | 94.90 355 | 97.72 333 | 99.58 187 | 99.07 176 | 99.64 139 | 99.62 182 | 98.19 194 | 99.93 82 | 98.41 164 | 99.95 68 | 99.55 157 |
|
testdata1 | | | | | | | | 97.72 333 | | 97.86 291 | | | | | | | |
|
ET-MVSNet_ETH3D | | | 96.78 317 | 96.07 326 | 98.91 276 | 99.26 292 | 97.92 302 | 97.70 335 | 96.05 367 | 97.96 285 | 92.37 376 | 98.43 365 | 87.06 360 | 99.90 142 | 98.27 174 | 97.56 364 | 98.91 317 |
|
c3_l | | | 98.72 230 | 98.71 216 | 98.72 296 | 99.12 314 | 97.22 322 | 97.68 336 | 99.56 194 | 98.90 195 | 99.54 183 | 99.48 243 | 96.37 277 | 99.73 306 | 97.88 207 | 99.88 119 | 99.21 262 |
|
ppachtmachnet_test | | | 98.89 212 | 99.12 140 | 98.20 317 | 99.66 154 | 95.24 352 | 97.63 337 | 99.68 124 | 99.08 174 | 99.78 86 | 99.62 182 | 98.65 133 | 99.88 173 | 98.02 193 | 99.96 57 | 99.48 198 |
|
PAPR | | | 97.56 301 | 97.07 309 | 99.04 263 | 98.80 350 | 98.11 287 | 97.63 337 | 99.25 293 | 94.56 361 | 98.02 347 | 98.25 369 | 97.43 241 | 99.68 330 | 90.90 366 | 98.74 338 | 99.33 239 |
|
test0.0.03 1 | | | 97.37 306 | 96.91 316 | 98.74 295 | 97.72 373 | 97.57 312 | 97.60 339 | 97.36 362 | 98.00 278 | 99.21 259 | 98.02 371 | 90.04 349 | 99.79 284 | 98.37 166 | 95.89 373 | 98.86 321 |
|
PVSNet_Blended | | | 98.70 232 | 98.59 226 | 99.02 264 | 99.54 199 | 97.99 294 | 97.58 340 | 99.82 53 | 95.70 347 | 99.34 232 | 98.98 336 | 98.52 155 | 99.77 295 | 97.98 198 | 99.83 155 | 99.30 247 |
|
PMMVS | | | 98.49 253 | 98.29 257 | 99.11 253 | 98.96 335 | 98.42 267 | 97.54 341 | 99.32 274 | 97.53 304 | 98.47 329 | 98.15 370 | 97.88 216 | 99.82 260 | 97.46 248 | 99.24 311 | 99.09 292 |
|
MSDG | | | 99.08 177 | 98.98 186 | 99.37 204 | 99.60 167 | 99.13 206 | 97.54 341 | 99.74 93 | 98.84 204 | 99.53 188 | 99.55 225 | 99.10 73 | 99.79 284 | 97.07 273 | 99.86 138 | 99.18 271 |
|
test123 | | | 29.31 344 | 33.05 349 | 18.08 360 | 25.93 384 | 12.24 384 | 97.53 343 | 10.93 385 | 11.78 378 | 24.21 379 | 50.08 388 | 21.04 383 | 8.60 379 | 23.51 377 | 32.43 378 | 33.39 375 |
|
CLD-MVS | | | 98.76 224 | 98.57 230 | 99.33 214 | 99.57 186 | 98.97 223 | 97.53 343 | 99.55 200 | 96.41 336 | 99.27 248 | 99.13 312 | 99.07 80 | 99.78 287 | 96.73 290 | 99.89 110 | 99.23 258 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
eth_miper_zixun_eth | | | 98.68 233 | 98.71 216 | 98.60 300 | 99.10 320 | 96.84 332 | 97.52 345 | 99.54 206 | 98.94 188 | 99.58 166 | 99.48 243 | 96.25 280 | 99.76 297 | 98.01 196 | 99.93 87 | 99.21 262 |
|
miper_ehance_all_eth | | | 98.59 241 | 98.59 226 | 98.59 301 | 98.98 334 | 97.07 326 | 97.49 346 | 99.52 220 | 98.50 237 | 99.52 190 | 99.37 269 | 96.41 275 | 99.71 312 | 97.86 211 | 99.62 244 | 99.00 310 |
|
cl____ | | | 98.54 246 | 98.41 244 | 98.92 274 | 99.03 328 | 97.80 306 | 97.46 347 | 99.59 177 | 98.90 195 | 99.60 161 | 99.46 250 | 93.85 304 | 99.78 287 | 97.97 200 | 99.89 110 | 99.17 273 |
|
DIV-MVS_self_test | | | 98.54 246 | 98.42 243 | 98.92 274 | 99.03 328 | 97.80 306 | 97.46 347 | 99.59 177 | 98.90 195 | 99.60 161 | 99.46 250 | 93.87 303 | 99.78 287 | 97.97 200 | 99.89 110 | 99.18 271 |
|
test-LLR | | | 97.15 309 | 96.95 313 | 97.74 330 | 98.18 370 | 95.02 353 | 97.38 349 | 96.10 364 | 98.00 278 | 97.81 355 | 98.58 357 | 90.04 349 | 99.91 124 | 97.69 235 | 98.78 332 | 98.31 348 |
|
TESTMET0.1,1 | | | 96.24 329 | 95.84 331 | 97.41 336 | 98.24 368 | 93.84 361 | 97.38 349 | 95.84 368 | 98.43 242 | 97.81 355 | 98.56 360 | 79.77 377 | 99.89 159 | 97.77 218 | 98.77 334 | 98.52 339 |
|
test-mter | | | 96.23 330 | 95.73 332 | 97.74 330 | 98.18 370 | 95.02 353 | 97.38 349 | 96.10 364 | 97.90 287 | 97.81 355 | 98.58 357 | 79.12 380 | 99.91 124 | 97.69 235 | 98.78 332 | 98.31 348 |
|
IB-MVS | | 95.41 20 | 95.30 340 | 94.46 344 | 97.84 326 | 98.76 355 | 95.33 351 | 97.33 352 | 96.07 366 | 96.02 342 | 95.37 374 | 97.41 377 | 76.17 382 | 99.96 42 | 97.54 243 | 95.44 374 | 98.22 353 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DPM-MVS | | | 98.28 270 | 97.94 284 | 99.32 218 | 99.36 261 | 99.11 208 | 97.31 353 | 98.78 326 | 96.88 329 | 98.84 301 | 99.11 319 | 97.77 224 | 99.61 353 | 94.03 357 | 99.36 296 | 99.23 258 |
|
thisisatest0515 | | | 96.98 313 | 96.42 320 | 98.66 299 | 99.42 250 | 97.47 314 | 97.27 354 | 94.30 373 | 97.24 318 | 99.15 267 | 98.86 348 | 85.01 369 | 99.87 187 | 97.10 271 | 99.39 292 | 98.63 332 |
|
DeepPCF-MVS | | 98.42 6 | 99.18 157 | 99.02 172 | 99.67 95 | 99.22 297 | 99.75 62 | 97.25 355 | 99.47 236 | 98.72 217 | 99.66 136 | 99.70 132 | 99.29 50 | 99.63 348 | 98.07 192 | 99.81 173 | 99.62 121 |
|
cl22 | | | 97.56 301 | 97.28 304 | 98.40 308 | 98.37 365 | 96.75 333 | 97.24 356 | 99.37 265 | 97.31 316 | 99.41 219 | 99.22 304 | 87.30 358 | 99.37 369 | 97.70 229 | 99.62 244 | 99.08 295 |
|
GA-MVS | | | 97.99 286 | 97.68 296 | 98.93 273 | 99.52 210 | 98.04 293 | 97.19 357 | 99.05 315 | 98.32 262 | 98.81 304 | 98.97 338 | 89.89 351 | 99.41 368 | 98.33 170 | 99.05 319 | 99.34 238 |
|
CL-MVSNet_self_test | | | 98.71 231 | 98.56 233 | 99.15 247 | 99.22 297 | 98.66 250 | 97.14 358 | 99.51 224 | 98.09 275 | 99.54 183 | 99.27 292 | 96.87 263 | 99.74 303 | 98.43 163 | 98.96 324 | 99.03 304 |
|
KD-MVS_2432*1600 | | | 95.89 333 | 95.41 336 | 97.31 340 | 94.96 378 | 93.89 359 | 97.09 359 | 99.22 300 | 97.23 319 | 98.88 295 | 99.04 326 | 79.23 378 | 99.54 358 | 96.24 315 | 96.81 367 | 98.50 343 |
|
miper_refine_blended | | | 95.89 333 | 95.41 336 | 97.31 340 | 94.96 378 | 93.89 359 | 97.09 359 | 99.22 300 | 97.23 319 | 98.88 295 | 99.04 326 | 79.23 378 | 99.54 358 | 96.24 315 | 96.81 367 | 98.50 343 |
|
USDC | | | 98.96 201 | 98.93 191 | 99.05 262 | 99.54 199 | 97.99 294 | 97.07 361 | 99.80 64 | 98.21 268 | 99.75 100 | 99.77 95 | 98.43 165 | 99.64 347 | 97.90 205 | 99.88 119 | 99.51 184 |
|
miper_enhance_ethall | | | 98.03 283 | 97.94 284 | 98.32 312 | 98.27 367 | 96.43 338 | 96.95 362 | 99.41 250 | 96.37 338 | 99.43 211 | 98.96 340 | 94.74 295 | 99.69 320 | 97.71 226 | 99.62 244 | 98.83 324 |
|
CHOSEN 280x420 | | | 98.41 261 | 98.41 244 | 98.40 308 | 99.34 271 | 95.89 346 | 96.94 363 | 99.44 244 | 98.80 208 | 99.25 250 | 99.52 231 | 93.51 310 | 99.98 11 | 98.94 131 | 99.98 31 | 99.32 242 |
|
PCF-MVS | | 96.03 18 | 96.73 319 | 95.86 330 | 99.33 214 | 99.44 242 | 99.16 203 | 96.87 364 | 99.44 244 | 86.58 371 | 98.95 286 | 99.40 261 | 94.38 299 | 99.88 173 | 87.93 370 | 99.80 178 | 98.95 313 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
testmvs | | | 28.94 345 | 33.33 347 | 15.79 361 | 26.03 383 | 9.81 385 | 96.77 365 | 15.67 384 | 11.55 379 | 23.87 380 | 50.74 387 | 19.03 384 | 8.53 380 | 23.21 378 | 33.07 377 | 29.03 376 |
|
PVSNet | | 97.47 15 | 98.42 260 | 98.44 241 | 98.35 310 | 99.46 238 | 96.26 339 | 96.70 366 | 99.34 271 | 97.68 297 | 99.00 283 | 99.13 312 | 97.40 242 | 99.72 308 | 97.59 241 | 99.68 228 | 99.08 295 |
|
PAPM | | | 95.61 339 | 94.71 341 | 98.31 314 | 99.12 314 | 96.63 334 | 96.66 367 | 98.46 342 | 90.77 368 | 96.25 368 | 98.68 356 | 93.01 315 | 99.69 320 | 81.60 376 | 97.86 362 | 98.62 333 |
|
cascas | | | 96.99 312 | 96.82 318 | 97.48 333 | 97.57 376 | 95.64 348 | 96.43 368 | 99.56 194 | 91.75 365 | 97.13 366 | 97.61 376 | 95.58 290 | 98.63 374 | 96.68 292 | 99.11 316 | 98.18 357 |
|
PVSNet_0 | | 95.53 19 | 95.85 336 | 95.31 338 | 97.47 334 | 98.78 353 | 93.48 363 | 95.72 369 | 99.40 257 | 96.18 341 | 97.37 360 | 97.73 374 | 95.73 287 | 99.58 356 | 95.49 337 | 81.40 376 | 99.36 233 |
|
E-PMN | | | 97.14 311 | 97.43 300 | 96.27 353 | 98.79 351 | 91.62 371 | 95.54 370 | 99.01 318 | 99.44 118 | 98.88 295 | 99.12 316 | 92.78 317 | 99.68 330 | 94.30 352 | 99.03 321 | 97.50 364 |
|
EMVS | | | 96.96 314 | 97.28 304 | 95.99 356 | 98.76 355 | 91.03 374 | 95.26 371 | 98.61 334 | 99.34 133 | 98.92 291 | 98.88 347 | 93.79 305 | 99.66 339 | 92.87 360 | 99.05 319 | 97.30 368 |
|
test_method | | | 91.72 342 | 92.32 345 | 89.91 359 | 93.49 381 | 70.18 383 | 90.28 372 | 99.56 194 | 61.71 376 | 95.39 373 | 99.52 231 | 93.90 302 | 99.94 65 | 98.76 145 | 98.27 351 | 99.62 121 |
|
test_blank | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 24.88 346 | 33.17 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 99.62 152 | 0.00 380 | 0.00 381 | 99.13 312 | 99.82 7 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 16.61 347 | 22.14 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 99.28 52 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.26 356 | 11.02 359 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 99.16 310 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 8.33 348 | 11.11 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 100.00 1 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 99.74 65 | 99.03 328 | 99.53 127 | | 99.23 297 | | | | | 99.92 102 | 97.77 218 | 99.69 223 | 99.78 41 |
|
PC_three_1452 | | | | | | | | | | 97.56 300 | 99.68 127 | 99.41 257 | 99.09 75 | 97.09 376 | 96.66 294 | 99.60 254 | 99.62 121 |
|
No_MVS | | | | | 99.74 65 | 99.03 328 | 99.53 127 | | 99.23 297 | | | | | 99.92 102 | 97.77 218 | 99.69 223 | 99.78 41 |
|
test_one_0601 | | | | | | 99.63 160 | 99.76 58 | | 99.55 200 | 99.23 149 | 99.31 241 | 99.61 191 | 98.59 140 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.43 245 | 99.61 111 | | 99.43 247 | 96.38 337 | 99.11 273 | 99.07 322 | 97.86 217 | 99.92 102 | 94.04 356 | 99.49 280 | |
|
IU-MVS | | | | | | 99.69 140 | 99.77 50 | | 99.22 300 | 97.50 306 | 99.69 124 | | | | 97.75 222 | 99.70 219 | 99.77 45 |
|
test_241102_TWO | | | | | | | | | 99.54 206 | 99.13 169 | 99.76 93 | 99.63 175 | 98.32 182 | 99.92 102 | 97.85 213 | 99.69 223 | 99.75 54 |
|
test_241102_ONE | | | | | | 99.69 140 | 99.82 35 | | 99.54 206 | 99.12 172 | 99.82 67 | 99.49 240 | 98.91 98 | 99.52 362 | | | |
|
test_0728_THIRD | | | | | | | | | | 99.18 156 | 99.62 152 | 99.61 191 | 98.58 142 | 99.91 124 | 97.72 224 | 99.80 178 | 99.77 45 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.14 282 |
|
test_part2 | | | | | | 99.62 164 | 99.67 91 | | | | 99.55 181 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 90.81 340 | | | | 99.14 282 |
|
sam_mvs | | | | | | | | | | | | | 90.52 344 | | | | |
|
MTGPA |  | | | | | | | | 99.53 215 | | | | | | | | |
|
test_post | | | | | | | | | | | | 52.41 385 | 90.25 346 | 99.86 205 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 99.62 182 | 90.58 342 | 99.94 65 | | | |
|
gm-plane-assit | | | | | | 97.59 374 | 89.02 381 | | | 93.47 362 | | 98.30 367 | | 99.84 236 | 96.38 309 | | |
|
test9_res | | | | | | | | | | | | | | | 95.10 344 | 99.44 285 | 99.50 189 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.58 350 | 99.46 284 | 99.50 189 |
|
agg_prior | | | | | | 99.35 263 | 99.36 167 | | 99.39 260 | | 97.76 358 | | | 99.85 222 | | | |
|
TestCases | | | | | 99.63 121 | 99.78 90 | 99.64 99 | | 99.83 48 | 98.63 223 | 99.63 143 | 99.72 118 | 98.68 126 | 99.75 301 | 96.38 309 | 99.83 155 | 99.51 184 |
|
test_prior | | | | | 99.46 173 | 99.35 263 | 99.22 195 | | 99.39 260 | | | | | 99.69 320 | | | 99.48 198 |
|
新几何1 | | | | | 99.52 160 | 99.50 218 | 99.22 195 | | 99.26 290 | 95.66 348 | 98.60 321 | 99.28 290 | 97.67 230 | 99.89 159 | 95.95 327 | 99.32 300 | 99.45 207 |
|
旧先验1 | | | | | | 99.49 223 | 99.29 179 | | 99.26 290 | | | 99.39 265 | 97.67 230 | | | 99.36 296 | 99.46 206 |
|
原ACMM1 | | | | | 99.37 204 | 99.47 234 | 98.87 236 | | 99.27 287 | 96.74 334 | 98.26 334 | 99.32 282 | 97.93 213 | 99.82 260 | 95.96 326 | 99.38 293 | 99.43 218 |
|
testdata2 | | | | | | | | | | | | | | 99.89 159 | 95.99 324 | | |
|
segment_acmp | | | | | | | | | | | | | 98.37 174 | | | | |
|
testdata | | | | | 99.42 184 | 99.51 212 | 98.93 229 | | 99.30 281 | 96.20 340 | 98.87 298 | 99.40 261 | 98.33 181 | 99.89 159 | 96.29 312 | 99.28 305 | 99.44 212 |
|
test12 | | | | | 99.54 157 | 99.29 285 | 99.33 173 | | 99.16 307 | | 98.43 330 | | 97.54 237 | 99.82 260 | | 99.47 282 | 99.48 198 |
|
plane_prior7 | | | | | | 99.58 176 | 99.38 160 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.47 234 | 99.26 185 | | | | | | 97.24 249 | | | | |
|
plane_prior5 | | | | | | | | | 99.54 206 | | | | | 99.82 260 | 95.84 330 | 99.78 188 | 99.60 135 |
|
plane_prior4 | | | | | | | | | | | | 99.25 297 | | | | | |
|
plane_prior3 | | | | | | | 99.31 176 | | | 98.36 251 | 99.14 269 | | | | | | |
|
plane_prior1 | | | | | | 99.51 212 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 99.83 48 | | | | | | | | |
|
lessismore_v0 | | | | | 99.64 114 | 99.86 46 | 99.38 160 | | 90.66 378 | | 99.89 42 | 99.83 55 | 94.56 298 | 99.97 23 | 99.56 41 | 99.92 91 | 99.57 152 |
|
LGP-MVS_train | | | | | 99.74 65 | 99.82 61 | 99.63 103 | | 99.73 97 | 97.56 300 | 99.64 139 | 99.69 138 | 99.37 42 | 99.89 159 | 96.66 294 | 99.87 130 | 99.69 68 |
|
test11 | | | | | | | | | 99.29 283 | | | | | | | | |
|
door | | | | | | | | | 99.77 78 | | | | | | | | |
|
HQP5-MVS | | | | | | | 98.94 226 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 94.73 347 | | |
|
HQP4-MVS | | | | | | | | | | | 98.15 339 | | | 99.70 314 | | | 99.53 171 |
|
HQP3-MVS | | | | | | | | | 99.37 265 | | | | | | | 99.67 234 | |
|
HQP2-MVS | | | | | | | | | | | | | 96.67 265 | | | | |
|
NP-MVS | | | | | | 99.40 252 | 99.13 206 | | | | | 98.83 349 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.94 79 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.79 183 | |
|
Test By Simon | | | | | | | | | | | | | 98.41 168 | | | | |
|
ITE_SJBPF | | | | | 99.38 201 | 99.63 160 | 99.44 144 | | 99.73 97 | 98.56 229 | 99.33 234 | 99.53 229 | 98.88 102 | 99.68 330 | 96.01 322 | 99.65 239 | 99.02 308 |
|
DeepMVS_CX |  | | | | 97.98 321 | 99.69 140 | 96.95 328 | | 99.26 290 | 75.51 374 | 95.74 372 | 98.28 368 | 96.47 271 | 99.62 349 | 91.23 365 | 97.89 360 | 97.38 366 |
|