This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16299.93 9499.59 5199.98 4199.76 66
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22599.86 22299.42 7799.96 7099.80 47
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 333
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30199.87 4199.91 4499.87 4798.04 21899.96 5499.68 4499.99 1699.90 20
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26298.87 21999.57 18599.82 7398.06 21799.87 20398.69 16899.73 22399.15 295
FE-MVS97.85 30897.42 32199.15 26599.44 25998.75 26199.77 1598.20 37195.85 37399.33 25199.80 8388.86 37599.88 18996.40 33299.12 33498.81 350
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24498.67 26599.77 1598.60 35497.35 34399.63 15999.80 8393.07 33699.84 25597.92 22199.30 32098.78 353
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28699.77 1599.80 8099.73 7499.63 15999.30 30198.02 22099.98 2099.43 7299.69 23899.55 174
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15399.94 7799.58 5499.98 4199.77 60
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
test250694.73 37094.59 37195.15 38699.59 18685.90 41299.75 2274.01 41299.89 3599.71 13299.86 5479.00 40399.90 15799.52 6399.99 1699.65 112
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
DVP-MVS++99.38 11799.25 13699.77 5799.03 34999.77 5499.74 2499.61 17599.18 17499.76 10899.61 20599.00 10099.92 11697.72 24299.60 26999.62 138
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
K. test v398.87 23298.60 24199.69 10499.93 2599.46 15199.74 2494.97 39899.78 6899.88 6199.88 4293.66 33099.97 3399.61 4999.95 8399.64 122
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24399.46 13199.88 6199.36 28897.54 25299.87 20398.97 14099.87 14599.63 127
IS-MVSNet99.03 20398.85 22199.55 16899.80 8699.25 20399.73 2799.15 32499.37 14699.61 17499.71 13894.73 31899.81 29497.70 24799.88 13499.58 164
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18690.81 40699.72 3090.43 40899.89 3599.86 7199.86 5493.60 33199.89 17599.46 6999.99 1699.65 112
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17799.87 20399.51 6499.97 5699.86 32
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11299.71 33498.41 18099.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test111197.74 31298.16 28696.49 38099.60 18289.86 41099.71 3491.21 40699.89 3599.88 6199.87 4793.73 32999.90 15799.56 5799.99 1699.70 79
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32599.65 10099.89 5399.90 2996.20 30199.94 7799.42 7799.92 10599.67 95
UGNet99.38 11799.34 11199.49 18198.90 35998.90 24999.70 3599.35 28499.86 4598.57 34499.81 7998.50 17299.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31099.48 12499.56 19299.77 10894.89 31499.93 9498.72 16599.89 12499.63 127
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 20999.23 16699.35 24699.80 8399.17 7999.95 6398.21 19799.84 16299.59 159
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3596.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22699.92 11699.65 4699.98 4199.62 138
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10499.90 15799.24 10499.97 5699.53 187
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14399.97 3399.30 9799.95 8399.80 47
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11799.85 7399.69 15198.18 21099.94 7799.28 10299.95 8399.83 40
QAPM98.40 28197.99 29599.65 12199.39 27199.47 14799.67 4999.52 23591.70 39598.78 32899.80 8398.55 16099.95 6394.71 37799.75 21199.53 187
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 19999.85 24099.37 8399.93 10199.83 40
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 76
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11499.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 71
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10599.84 7699.71 13898.62 14999.96 5499.30 9799.96 7099.86 32
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 15999.96 5499.29 10099.94 9499.83 40
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 24899.19 32399.26 20099.65 5899.69 13791.33 39698.14 36499.77 10898.28 19899.96 5495.41 36699.55 28098.58 363
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27599.47 12899.76 10899.78 10198.13 21299.86 22298.70 16699.68 24399.49 210
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29599.97 3399.59 5199.98 4199.55 174
LFMVS98.46 27498.19 28499.26 24899.24 31398.52 27999.62 6296.94 38999.87 4199.31 25899.58 22191.04 35699.81 29498.68 16999.42 30599.45 223
VDDNet98.97 21598.82 22699.42 20199.71 14398.81 25599.62 6298.68 34799.81 6199.38 24399.80 8394.25 32299.85 24098.79 15799.32 31899.59 159
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12099.91 13999.47 6899.88 13499.70 79
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24399.44 13499.12 29099.78 10198.77 12999.94 7797.87 22899.72 22999.62 138
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32499.35 24699.25 31299.23 7399.92 11697.21 28899.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6798.72 34596.81 36198.73 33199.51 24894.06 32399.86 22296.91 30198.20 37898.86 346
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22699.78 10598.88 25199.61 6799.56 20999.11 19299.24 27199.56 23393.00 33899.78 30897.43 26899.89 12499.35 252
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7299.82 6799.46 13199.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7399.78 9299.71 8099.90 4999.69 15198.85 11899.90 15797.25 28599.78 20399.15 295
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7399.82 6799.39 14499.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7598.70 34699.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7599.97 1899.95 2099.96 2399.76 11198.44 17899.99 799.34 8899.96 7099.78 56
MIMVSNet98.43 27798.20 28199.11 27299.53 22198.38 29099.58 7598.61 35298.96 20599.33 25199.76 11190.92 35899.81 29497.38 27199.76 20999.15 295
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7899.61 17599.54 11899.80 9299.64 17897.79 23799.95 6399.21 10799.94 9499.84 36
LS3D99.24 14999.11 15899.61 14798.38 39299.79 4699.57 7899.68 14099.61 10899.15 28599.71 13898.70 13899.91 13997.54 26199.68 24399.13 303
EGC-MVSNET89.05 37285.52 37599.64 12899.89 3999.78 4999.56 8099.52 23524.19 40649.96 40799.83 6699.15 8199.92 11697.71 24499.85 15799.21 280
EU-MVSNet99.39 11599.62 5598.72 31899.88 4496.44 36199.56 8099.85 5499.90 2999.90 4999.85 5698.09 21499.83 27099.58 5499.95 8399.90 20
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8099.79 8698.77 23599.80 9299.85 5699.64 2899.85 24098.70 16699.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re98.69 24998.48 25499.31 23699.55 21399.42 16599.54 8398.38 36599.32 15298.72 33298.71 37296.76 28299.21 39796.01 34799.35 31499.31 263
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8499.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8599.81 7699.87 4199.81 8899.79 9396.78 28199.99 799.83 3299.51 29199.86 32
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30199.52 85100.00 199.86 45100.00 199.88 4298.99 10299.96 5499.97 499.96 7099.95 11
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8599.70 13198.35 28399.51 21199.50 25199.31 6299.88 18998.18 20299.84 16299.69 83
wuyk23d97.58 32099.13 15192.93 38799.69 15599.49 14599.52 8599.77 9597.97 30999.96 2399.79 9399.84 1299.94 7795.85 35699.82 17979.36 403
test_f99.75 3299.88 699.37 21999.96 798.21 29899.51 89100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9098.32 36899.80 6499.56 19299.69 15196.99 27699.85 24098.99 13699.73 22399.50 205
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9099.69 13798.99 20199.75 11499.71 13898.79 12599.93 9498.46 17899.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DSMNet-mixed99.48 8799.65 5098.95 29099.71 14397.27 34499.50 9099.82 6799.59 11699.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9099.65 15798.07 30399.52 20699.69 15198.57 15799.92 11697.18 29099.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32199.49 94100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31199.48 95100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
tttt051797.62 31897.20 32798.90 30399.76 11797.40 34199.48 9594.36 40099.06 19799.70 13699.49 25584.55 39299.94 7798.73 16499.65 25499.36 249
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9599.70 13199.81 6199.69 13999.58 22197.66 24999.86 22299.17 11699.44 30199.67 95
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9899.81 7699.82 5899.71 13299.72 13096.60 28599.98 2099.75 3999.23 33199.82 46
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
Anonymous20240521198.75 24298.46 25699.63 13599.34 29099.66 10199.47 9897.65 38099.28 15799.56 19299.50 25193.15 33499.84 25598.62 17199.58 27499.40 239
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10299.57 20499.44 13499.70 13699.74 11997.21 26699.87 20399.03 13399.94 9499.44 228
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10299.57 20499.66 9899.78 10199.83 6697.85 23399.86 22299.44 7199.96 7099.61 148
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10499.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10499.82 6798.33 28899.50 21399.78 10197.90 22899.65 37096.78 30999.83 17099.44 228
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10699.85 5498.79 23199.41 23699.60 21398.92 11099.92 11698.02 21199.92 10599.43 234
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10798.68 34794.69 38998.14 36499.34 29686.32 38999.80 30297.60 25898.07 38698.88 344
Patchmatch-test98.10 30097.98 29798.48 32999.27 30896.48 36099.40 10899.07 32998.81 22899.23 27299.57 22990.11 36999.87 20396.69 31399.64 25699.09 310
baseline197.73 31397.33 32398.96 28899.30 30197.73 33099.40 10898.42 36299.33 15199.46 22299.21 32191.18 35499.82 27998.35 18491.26 40499.32 259
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11099.59 19399.24 16499.86 7199.70 14598.55 16099.82 27999.79 3799.95 8399.60 152
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11089.95 40998.21 29598.61 34099.59 21886.69 38899.72 33096.99 29699.23 33198.81 350
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11299.54 22198.34 28799.01 30099.50 25198.53 16699.93 9497.18 29099.78 20399.66 104
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11299.62 16898.38 27699.06 29899.27 30798.79 12599.94 7797.51 26499.82 17999.66 104
FMVSNet597.80 31097.25 32699.42 20198.83 36698.97 24099.38 11299.80 8098.87 21999.25 26899.69 15180.60 39799.91 13998.96 14299.90 11599.38 243
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11299.78 9299.53 12099.67 14899.78 10199.19 7799.86 22297.32 27499.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11699.79 8699.83 5699.88 6199.85 5698.42 18199.90 15799.60 5099.73 22399.49 210
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32999.47 26298.47 17399.88 18997.62 25599.73 22399.67 95
X-MVStestdata96.09 35594.87 36799.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32961.30 41398.47 17399.88 18997.62 25599.73 22399.67 95
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 11999.49 24799.17 17999.21 27799.67 16698.78 12799.66 36499.09 12999.66 25299.10 306
MSP-MVS99.04 20298.79 23099.81 4099.78 10599.73 7699.35 12099.57 20498.54 26099.54 19998.99 34996.81 28099.93 9496.97 29899.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32499.34 121100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12199.79 8698.41 27298.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 343
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12199.97 1898.93 21199.91 4499.79 9398.68 14099.93 9496.80 30899.56 27699.30 265
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12499.53 23099.27 15899.42 23099.63 18998.21 20699.95 6397.83 23599.79 19899.65 112
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12499.31 29399.67 9499.47 21899.57 22996.48 28999.84 25599.15 11999.30 32099.47 218
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12699.74 11099.18 17499.69 13999.75 11698.41 18299.84 25597.85 23199.70 23499.10 306
MP-MVScopyleft99.06 19698.83 22599.76 6499.76 11799.71 8399.32 12699.50 24398.35 28398.97 30299.48 25898.37 18899.92 11695.95 35399.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 23998.54 25199.49 18198.89 36299.19 21899.32 12699.67 14499.65 10099.72 12799.79 9391.87 34899.95 6398.00 21599.97 5699.33 256
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12697.96 37497.71 32598.29 35499.32 29786.72 38799.92 11698.10 20996.24 40199.09 310
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12699.77 9599.53 12099.77 10699.76 11199.26 7099.78 30897.77 23699.88 13499.60 152
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13199.59 19398.36 27899.36 24599.37 28498.80 12499.91 13997.43 26899.75 21199.68 89
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13199.59 19398.41 27299.32 25499.36 28898.73 13699.93 9497.29 27699.74 21899.67 95
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13199.59 19398.36 27899.35 24699.38 28298.61 15199.93 9497.43 26899.75 21199.67 95
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28699.30 13499.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13499.06 33194.98 38497.21 38699.12 33198.43 17999.67 36095.58 36398.56 36897.71 392
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13498.86 33872.71 40497.30 38399.08 33698.34 19299.74 32589.21 39698.33 37399.26 270
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13498.94 33797.74 32397.85 37599.55 24092.40 34599.73 32896.25 33998.73 36198.06 388
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13499.63 16599.61 10899.71 13299.56 23398.76 13099.96 5499.14 12599.92 10599.68 89
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13499.67 14497.39 34199.16 28399.79 9391.87 34899.91 13998.78 16098.77 35598.44 374
RPMNet98.60 25598.53 25298.83 31099.05 34698.12 30499.30 13499.62 16899.86 4599.16 28399.74 11992.53 34299.92 11698.75 16298.77 35598.44 374
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14199.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14199.61 17599.87 4199.74 12299.76 11198.69 13999.87 20398.20 19899.80 19399.75 69
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14399.56 20998.19 29799.14 28799.29 30498.84 11999.92 11697.53 26399.80 19399.64 122
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14399.74 11099.23 16699.72 12799.53 24497.63 25199.88 18999.11 12799.84 16299.48 214
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14399.68 14099.54 11899.40 24199.56 23399.07 9499.82 27996.01 34799.96 7099.11 304
h-mvs3398.61 25398.34 26999.44 19599.60 18298.67 26599.27 14699.44 25999.68 9099.32 25499.49 25592.50 343100.00 199.24 10496.51 39999.65 112
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14699.61 17599.19 17399.57 18599.64 17898.76 13099.90 15797.29 27699.62 25999.56 171
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.41 18299.91 13997.27 27999.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.57 15797.27 27999.61 26699.54 182
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14899.35 28498.77 23599.57 18599.70 14599.27 6999.88 18997.71 24499.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30899.26 14899.46 25499.62 10599.75 11499.67 16698.54 16299.85 24099.15 11999.92 10599.68 89
CVMVSNet98.61 25398.88 21897.80 35599.58 19193.60 39299.26 14899.64 16399.66 9899.72 12799.67 16693.26 33399.93 9499.30 9799.81 18899.87 30
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14899.76 10099.32 15299.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
dmvs_testset97.27 32896.83 33898.59 32499.46 25497.55 33599.25 15496.84 39098.78 23397.24 38597.67 39697.11 27298.97 40186.59 40598.54 36999.27 269
bld_raw_dy_0_6498.97 21598.90 21699.17 26299.07 34399.24 20799.24 15599.93 2999.23 16699.87 6999.03 34595.48 31099.81 29498.29 18899.99 1698.47 372
test072699.69 15599.80 4499.24 15599.57 20499.16 18299.73 12699.65 17698.35 190
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27199.24 15599.46 25499.68 9099.80 9299.66 17198.99 10299.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26899.24 15599.46 25499.67 9499.79 9799.65 17698.97 10699.89 17599.15 11999.89 12499.71 76
EPNet98.13 29897.77 31399.18 26094.57 40997.99 31499.24 15597.96 37499.74 7397.29 38499.62 19693.13 33599.97 3398.59 17299.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 27198.11 28999.64 12899.73 13799.58 13299.24 15599.76 10089.94 39899.42 23099.56 23397.76 24099.86 22297.74 24199.82 17999.47 218
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15598.82 34199.84 5399.08 29499.76 11191.37 35199.94 7798.82 15399.00 34398.26 380
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15599.71 12699.27 15899.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 31197.66 31898.12 34599.14 32995.36 37799.22 16398.75 34496.97 35698.25 35699.64 17890.90 35999.94 7796.51 32599.56 27699.08 316
ADS-MVSNet97.72 31697.67 31797.86 35399.14 32994.65 38599.22 16398.86 33896.97 35698.25 35699.64 17890.90 35999.84 25596.51 32599.56 27699.08 316
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16598.51 35793.27 39297.89 37299.21 32184.83 39199.70 33796.04 34698.18 38198.75 356
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16699.54 22199.13 18899.82 8199.63 18998.91 11299.92 11697.85 23199.70 23499.58 164
OPU-MVS99.29 24099.12 33399.44 15899.20 16699.40 27699.00 10098.84 40296.54 32399.60 26999.58 164
GST-MVS99.16 17998.96 20699.75 7499.73 13799.73 7699.20 16699.55 21598.22 29499.32 25499.35 29398.65 14799.91 13996.86 30499.74 21899.62 138
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6197.99 31499.20 16699.47 25199.71 8099.42 23099.82 7398.09 21499.47 39293.88 38899.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17098.38 36597.35 34398.23 35899.59 21887.23 38099.82 27996.27 33898.73 36198.59 361
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17199.60 18798.85 22299.47 21899.58 22198.38 18799.92 11696.92 30099.54 28599.57 169
thres100view90096.39 34796.03 34897.47 36399.63 17595.93 37099.18 17197.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
thres600view796.60 34396.16 34597.93 35099.63 17596.09 36999.18 17197.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17199.60 18798.55 25799.57 18599.67 16699.03 9999.94 7797.01 29599.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 24398.44 25899.64 12899.61 18099.38 17599.18 17199.55 21596.49 36499.27 26699.37 28497.11 27299.92 11695.74 36099.67 24999.62 138
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17699.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17699.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
ambc99.20 25799.35 28198.53 27799.17 17699.46 25499.67 14899.80 8398.46 17699.70 33797.92 22199.70 23499.38 243
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17698.39 36498.12 29998.79 32699.58 22190.71 36399.89 17597.23 28699.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 19098.95 20799.59 15299.13 33199.59 12899.17 17699.65 15797.88 31799.25 26899.46 26598.97 10699.80 30297.26 28199.82 17999.37 246
MAR-MVS98.24 29397.92 30599.19 25898.78 37499.65 10799.17 17699.14 32595.36 37998.04 36798.81 36897.47 25499.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18299.72 12397.99 30799.42 23099.60 21398.81 12099.93 9496.91 30199.74 21899.66 104
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18299.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
Effi-MVS+-dtu99.07 19598.92 21299.52 17698.89 36299.78 4999.15 18499.66 14899.34 14998.92 30999.24 31797.69 24399.98 2098.11 20899.28 32398.81 350
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18498.02 37398.51 26398.82 32199.61 20590.98 35799.66 36496.89 30398.92 348
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18699.31 29399.16 18299.62 16899.61 20598.35 19099.91 13997.88 22599.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18699.61 17599.92 11697.88 22599.72 22999.77 60
test_post199.14 18651.63 41589.54 37399.82 27996.86 304
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18699.58 20299.25 16299.81 8899.62 19698.24 20199.84 25599.83 3299.97 5699.64 122
MDTV_nov1_ep13_2view91.44 40399.14 18697.37 34299.21 27791.78 35096.75 31099.03 325
API-MVS98.38 28298.39 26398.35 33498.83 36699.26 20099.14 18699.18 32198.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
SF-MVS99.10 19398.93 20899.62 14499.58 19199.51 14399.13 19299.65 15797.97 30999.42 23099.61 20598.86 11799.87 20396.45 33199.68 24399.49 210
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19299.52 23597.40 34099.57 18599.64 17898.93 10999.83 27097.61 25799.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19299.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19299.65 15798.99 20199.64 15599.72 13099.39 5099.86 22298.23 19599.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19699.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19699.79 8699.48 12498.93 30698.55 37999.40 4999.93 9498.51 17699.52 29098.28 379
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19699.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20099.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvs199.48 8799.65 5098.97 28799.54 21597.16 34799.11 20099.98 1199.78 6899.96 2399.81 7998.72 13799.97 3399.95 1299.97 5699.79 54
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20099.62 16899.18 17499.89 5399.72 13098.66 14599.87 20399.88 2999.97 5699.66 104
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20399.61 17599.20 17299.84 7699.73 12398.67 14399.84 25599.86 3199.98 4199.64 122
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20399.61 17599.79 6699.76 10899.58 22187.88 37899.92 11699.31 9699.97 5699.53 187
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20398.86 33898.52 26298.92 30999.54 24291.90 34699.82 27998.02 21199.03 34198.37 376
FMVSNet398.80 23898.63 24099.32 23399.13 33198.72 26399.10 20399.48 24899.23 16699.62 16899.64 17892.57 34099.86 22298.96 14299.90 11599.39 241
thisisatest053097.45 32396.95 33398.94 29199.68 16397.73 33099.09 20894.19 40298.61 25399.56 19299.30 30184.30 39399.93 9498.27 19299.54 28599.16 293
MTMP99.09 20898.59 355
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20899.59 19399.17 17999.81 8899.61 20598.41 18299.69 34399.32 9399.94 9499.53 187
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21199.55 21598.63 24999.31 25899.68 16298.19 20899.78 30898.18 20299.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21199.32 28992.37 39397.73 38199.46 26591.15 35599.69 34396.07 34598.80 35298.21 383
MVSTER98.47 27398.22 27999.24 25399.06 34598.35 29299.08 21199.46 25499.27 15899.75 11499.66 17188.61 37699.85 24099.14 12599.92 10599.52 198
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21499.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21597.79 37999.99 299.48 21699.59 21896.29 29999.95 6399.94 1699.98 4199.88 25
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21599.82 6799.50 12298.97 30299.05 33998.98 10499.98 2098.20 19899.24 32998.62 359
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21599.61 17599.15 18699.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21899.87 4699.71 8099.47 21899.79 9398.24 20199.98 2099.38 8099.96 7099.83 40
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21895.32 39799.99 299.68 14299.57 22998.30 19699.97 3399.94 1699.98 4199.88 25
Fast-Effi-MVS+99.02 20598.87 21999.46 18999.38 27499.50 14499.04 21899.79 8697.17 35198.62 33998.74 37199.34 6099.95 6398.32 18799.41 30698.92 339
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21899.60 18799.18 17499.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22299.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22299.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
alignmvs98.28 28997.96 29899.25 25199.12 33398.93 24699.03 22298.42 36299.64 10298.72 33297.85 39490.86 36199.62 37498.88 14999.13 33399.19 287
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22599.89 4099.60 11499.82 8199.62 19698.81 12099.89 17599.43 7299.86 15399.47 218
mvs_anonymous99.28 13999.39 10198.94 29199.19 32397.81 32699.02 22599.55 21599.78 6899.85 7399.80 8398.24 20199.86 22299.57 5699.50 29499.15 295
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22799.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
APD-MVScopyleft98.87 23298.59 24399.71 9999.50 23499.62 11799.01 22799.57 20496.80 36299.54 19999.63 18998.29 19799.91 13995.24 36999.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20898.33 39499.56 13599.01 22799.59 19395.44 37899.57 18599.80 8395.64 30799.46 39496.47 32999.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
tfpn200view996.30 35095.89 34997.53 36099.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23099.65 15799.15 18699.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
thres40096.40 34695.89 34997.92 35199.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27398.99 23599.96 2399.03 19999.95 3199.12 33198.75 13299.84 25599.82 3599.82 17999.77 60
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15299.68 16399.45 15698.99 23599.67 14499.48 12499.55 19799.36 28894.92 31399.86 22298.95 14696.57 39899.45 223
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23599.40 27299.08 19399.58 18299.64 17898.90 11599.83 27097.44 26799.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23899.60 18799.43 13999.70 13699.36 28897.70 24199.88 18999.20 11099.87 14599.59 159
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 23999.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 23999.61 17599.43 13999.67 14899.28 30597.85 23399.95 6399.17 11699.81 18899.65 112
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24199.54 22199.46 13199.61 17499.70 14596.31 29799.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24299.53 23098.27 29299.53 20499.73 12398.75 13299.87 20397.70 24799.83 17099.68 89
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24299.86 4998.85 22299.81 8899.73 12398.40 18699.92 11698.36 18399.83 17099.17 291
SD-MVS99.01 20999.30 12398.15 34399.50 23499.40 17198.94 24499.61 17599.22 17199.75 11499.82 7399.54 4195.51 40797.48 26599.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26898.94 24499.91 3397.97 30999.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
testing396.48 34595.63 35699.01 28499.23 31597.81 32698.90 24699.10 32898.72 24097.84 37697.92 39372.44 40999.85 24097.21 28899.33 31699.35 252
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 27999.80 8697.83 32598.89 24799.72 12399.29 15499.63 15999.70 14596.47 29099.89 17598.17 20499.82 17999.50 205
ACMP97.51 1499.05 19998.84 22399.67 10999.78 10599.55 13898.88 24899.66 14897.11 35599.47 21899.60 21399.07 9499.89 17596.18 34299.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30399.45 15698.87 24999.48 24886.54 40199.44 22499.74 11997.34 26199.86 22291.61 39299.28 32397.37 396
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25097.87 37878.01 40299.30 26399.69 15197.70 24195.89 40699.29 10098.14 38399.95 11
HPM-MVS++copyleft98.96 21998.70 23699.74 7999.52 22699.71 8398.86 25099.19 32098.47 26898.59 34299.06 33898.08 21699.91 13996.94 29999.60 26999.60 152
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30898.85 25299.76 10099.62 10599.83 8099.64 17898.54 16299.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25399.89 4098.38 27699.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
F-COLMAP98.74 24398.45 25799.62 14499.57 20199.47 14798.84 25399.65 15796.31 36898.93 30699.19 32497.68 24499.87 20396.52 32499.37 31199.53 187
baseline296.83 33796.28 34398.46 33099.09 34196.91 35498.83 25593.87 40497.23 34896.23 39998.36 38488.12 37799.90 15796.68 31498.14 38398.57 364
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25599.53 23099.38 14599.67 14899.36 28897.67 24599.95 6399.17 11699.81 18899.63 127
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25599.86 4999.68 9099.65 15499.88 4297.67 24599.87 20399.03 13399.86 15399.76 66
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25599.72 12398.36 27899.60 17799.71 13898.92 11099.91 13997.08 29399.84 16299.40 239
MSLP-MVS++99.05 19999.09 16798.91 29799.21 31898.36 29198.82 25999.47 25198.85 22298.90 31299.56 23398.78 12799.09 39998.57 17399.68 24399.26 270
9.1498.64 23899.45 25898.81 26099.60 18797.52 33499.28 26599.56 23398.53 16699.83 27095.36 36899.64 256
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26099.41 26598.55 25799.68 14299.69 15198.13 21299.87 20398.82 15399.98 4199.24 273
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26099.66 14899.42 14399.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
HQP_MVS98.90 22798.68 23799.55 16899.58 19199.24 20798.80 26399.54 22198.94 20899.14 28799.25 31297.24 26499.82 27995.84 35799.78 20399.60 152
plane_prior298.80 26398.94 208
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26398.51 35799.88 4097.89 37299.87 4791.89 34799.90 15798.16 20597.68 39298.59 361
PAPM_NR98.36 28398.04 29299.33 22999.48 24498.93 24698.79 26699.28 30097.54 33298.56 34598.57 37797.12 27199.69 34394.09 38498.90 35099.38 243
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26799.88 4498.66 24699.96 2399.79 9397.45 25599.93 9499.34 8899.99 1699.78 56
hse-mvs298.52 26698.30 27499.16 26399.29 30398.60 27598.77 26899.02 33399.68 9099.32 25499.04 34192.50 34399.85 24099.24 10497.87 39099.03 325
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33898.19 29998.76 26999.33 28798.49 26699.44 22499.58 22198.21 20699.69 34398.20 19899.62 25999.39 241
DPE-MVScopyleft99.14 18398.92 21299.82 3799.57 20199.77 5498.74 27099.60 18798.55 25799.76 10899.69 15198.23 20599.92 11696.39 33399.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 25898.37 26599.26 24899.43 26398.40 28698.74 27099.13 32798.10 30099.21 27799.24 31794.82 31599.90 15797.86 22998.77 35599.49 210
AUN-MVS97.82 30997.38 32299.14 26999.27 30898.53 27798.72 27299.02 33398.10 30097.18 38799.03 34589.26 37499.85 24097.94 22097.91 38899.03 325
sss98.90 22798.77 23199.27 24599.48 24498.44 28398.72 27299.32 28997.94 31399.37 24499.35 29396.31 29799.91 13998.85 15099.63 25899.47 218
CANet99.11 19099.05 17999.28 24298.83 36698.56 27698.71 27499.41 26599.25 16299.23 27299.22 31997.66 24999.94 7799.19 11199.97 5699.33 256
AdaColmapbinary98.60 25598.35 26899.38 21699.12 33399.22 21198.67 27599.42 26497.84 32198.81 32299.27 30797.32 26299.81 29495.14 37199.53 28799.10 306
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27698.35 36798.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 341
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27798.44 36198.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 341
MP-MVS-pluss99.14 18398.92 21299.80 4599.83 6599.83 2998.61 27899.63 16596.84 36099.44 22499.58 22198.81 12099.91 13997.70 24799.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 23698.57 24799.58 15699.21 31899.31 19198.61 27899.25 30798.65 24798.43 35199.26 31097.86 23199.81 29496.55 32299.27 32699.61 148
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25898.60 28099.21 31797.89 31596.76 39196.37 41095.47 31199.57 38299.10 12898.73 36199.09 310
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28099.21 31797.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 310
BH-RMVSNet98.41 27998.14 28799.21 25599.21 31898.47 28098.60 28098.26 36998.35 28398.93 30699.31 29997.20 26999.66 36494.32 38099.10 33699.51 200
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28398.23 37098.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 337
LF4IMVS99.01 20998.92 21299.27 24599.71 14399.28 19698.59 28399.77 9598.32 28999.39 24299.41 27298.62 14999.84 25596.62 32199.84 16298.69 357
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28599.48 24898.50 26499.52 20699.63 18999.14 8499.76 31897.89 22499.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MCST-MVS99.02 20598.81 22799.65 12199.58 19199.49 14598.58 28599.07 32998.40 27499.04 29999.25 31298.51 17199.80 30297.31 27599.51 29199.65 112
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31498.58 28599.82 6797.62 32899.34 24999.71 13898.52 16999.77 31697.98 21699.97 5699.52 198
OMC-MVS98.90 22798.72 23399.44 19599.39 27199.42 16598.58 28599.64 16397.31 34599.44 22499.62 19698.59 15499.69 34396.17 34399.79 19899.22 278
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 28999.81 7699.61 10899.48 21699.41 27298.47 17399.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon98.50 26998.23 27799.31 23699.49 23999.46 15198.56 29099.63 16594.86 38798.85 31899.37 28497.81 23599.59 38096.08 34499.44 30198.88 344
new-patchmatchnet99.35 12599.57 7198.71 32099.82 7296.62 35998.55 29199.75 10599.50 12299.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29199.73 11498.82 22699.72 12799.62 19696.56 28699.82 27999.32 9399.95 8399.56 171
BH-untuned98.22 29598.09 29098.58 32699.38 27497.24 34598.55 29198.98 33697.81 32299.20 28298.76 37097.01 27599.65 37094.83 37498.33 37398.86 346
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29497.90 37798.53 26196.54 39596.47 40970.62 41199.81 29495.91 35598.15 38298.56 365
CNVR-MVS98.99 21498.80 22999.56 16599.25 31199.43 16298.54 29499.27 30198.58 25598.80 32499.43 27098.53 16699.70 33797.22 28799.59 27399.54 182
thres20096.09 35595.68 35597.33 36899.48 24496.22 36698.53 29697.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
1112_ss99.05 19998.84 22399.67 10999.66 16999.29 19498.52 29799.82 6797.65 32799.43 22899.16 32596.42 29299.91 13999.07 13199.84 16299.80 47
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29898.04 37299.24 16495.77 40099.47 26293.78 32899.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 28397.99 29599.48 18599.32 29699.24 20798.50 29999.51 23995.19 38398.58 34398.96 35696.95 27799.83 27095.63 36199.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 30397.55 31999.46 18999.47 25099.44 15898.50 29999.62 16886.79 39999.07 29799.26 31098.26 20099.62 37497.28 27899.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30197.91 37696.85 35998.21 35998.51 38196.42 29299.51 39092.16 39197.29 39497.98 389
FPMVS96.32 34995.50 35798.79 31499.60 18298.17 30298.46 30598.80 34297.16 35296.28 39699.63 18982.19 39499.09 39988.45 39898.89 35199.10 306
plane_prior99.24 20798.42 30697.87 31899.71 232
WR-MVS99.11 19098.93 20899.66 11699.30 30199.42 16598.42 30699.37 28099.04 19899.57 18599.20 32396.89 27899.86 22298.66 17099.87 14599.70 79
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30898.65 35198.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 332
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30691.53 40298.38 30892.60 40599.13 18899.31 25899.96 1297.18 27099.68 35598.34 18599.83 17099.07 321
N_pmnet98.73 24598.53 25299.35 22599.72 14098.67 26598.34 31094.65 39998.35 28399.79 9799.68 16298.03 21999.93 9498.28 19199.92 10599.44 228
CNLPA98.57 26098.34 26999.28 24299.18 32599.10 23098.34 31099.41 26598.48 26798.52 34698.98 35297.05 27499.78 30895.59 36299.50 29498.96 333
CDPH-MVS98.56 26198.20 28199.61 14799.50 23499.46 15198.32 31299.41 26595.22 38199.21 27799.10 33598.34 19299.82 27995.09 37399.66 25299.56 171
Effi-MVS+99.06 19698.97 20499.34 22699.31 29798.98 23898.31 31399.91 3398.81 22898.79 32698.94 35899.14 8499.84 25598.79 15798.74 35999.20 284
save fliter99.53 22199.25 20398.29 31499.38 27999.07 195
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31597.26 38898.63 24998.80 32498.00 39297.77 23899.90 15797.37 27298.98 34499.09 310
Patchmatch-RL test98.60 25598.36 26699.33 22999.77 11399.07 23398.27 31599.87 4698.91 21499.74 12299.72 13090.57 36599.79 30598.55 17499.85 15799.11 304
jason99.16 17999.11 15899.32 23399.75 12898.44 28398.26 31799.39 27598.70 24399.74 12299.30 30198.54 16299.97 3398.48 17799.82 17999.55 174
jason: jason.
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11699.84 6199.64 11098.25 31899.73 11498.39 27599.63 15999.43 27099.70 2499.90 15797.34 27398.64 36599.44 228
MDA-MVSNet_test_wron98.95 22298.99 20098.85 30699.64 17397.16 34798.23 31999.33 28798.93 21199.56 19299.66 17197.39 25999.83 27098.29 18899.88 13499.55 174
YYNet198.95 22298.99 20098.84 30899.64 17397.14 34998.22 32099.32 28998.92 21399.59 18099.66 17197.40 25799.83 27098.27 19299.90 11599.55 174
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32199.31 29399.48 12498.86 31799.51 24896.56 28699.95 6399.05 13299.95 8399.19 287
MG-MVS98.52 26698.39 26398.94 29199.15 32897.39 34298.18 32199.21 31798.89 21899.23 27299.63 18997.37 26099.74 32594.22 38299.61 26699.69 83
SCA98.11 29998.36 26697.36 36699.20 32192.99 39498.17 32398.49 35998.24 29399.10 29399.57 22996.01 30499.94 7796.86 30499.62 25999.14 300
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32499.29 29798.18 29899.63 15999.62 19699.18 7899.68 35598.20 19899.74 21899.30 265
new_pmnet98.88 23198.89 21798.84 30899.70 15197.62 33398.15 32499.50 24397.98 30899.62 16899.54 24298.15 21199.94 7797.55 26099.84 16298.95 335
PatchMatch-RL98.68 25098.47 25599.30 23999.44 25999.28 19698.14 32699.54 22197.12 35499.11 29199.25 31297.80 23699.70 33796.51 32599.30 32098.93 337
xiu_mvs_v2_base99.02 20599.11 15898.77 31599.37 27698.09 30898.13 32799.51 23999.47 12899.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 381
lupinMVS98.96 21998.87 21999.24 25399.57 20198.40 28698.12 32899.18 32198.28 29199.63 15999.13 32798.02 22099.97 3398.22 19699.69 23899.35 252
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32899.53 23099.36 14899.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 28199.35 18598.11 33099.41 26594.83 38897.92 37098.99 34998.02 22099.85 240
train_agg98.35 28697.95 29999.57 16299.35 28199.35 18598.11 33099.41 26594.90 38597.92 37098.99 34998.02 22099.85 24095.38 36799.44 30199.50 205
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33299.90 3898.95 20799.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
Test_1112_low_res98.95 22298.73 23299.63 13599.68 16399.15 22298.09 33299.80 8097.14 35399.46 22299.40 27696.11 30299.89 17599.01 13599.84 16299.84 36
test_899.34 29099.31 19198.08 33499.40 27294.90 38597.87 37498.97 35498.02 22099.84 255
IterMVS-SCA-FT99.00 21199.16 14598.51 32799.75 12895.90 37198.07 33599.84 6099.84 5399.89 5399.73 12396.01 30499.99 799.33 91100.00 199.63 127
HyFIR lowres test98.91 22598.64 23899.73 8899.85 5899.47 14798.07 33599.83 6298.64 24899.89 5399.60 21392.57 340100.00 199.33 9199.97 5699.72 73
IterMVS98.97 21599.16 14598.42 33199.74 13495.64 37498.06 33799.83 6299.83 5699.85 7399.74 11996.10 30399.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33893.94 40398.96 20598.46 35098.17 38879.86 39899.87 20396.99 29699.06 33798.78 353
新几何298.04 338
BH-w/o97.20 32997.01 33197.76 35699.08 34295.69 37398.03 34098.52 35695.76 37597.96 36998.02 39095.62 30899.47 39292.82 39097.25 39598.12 387
无先验98.01 34199.23 31195.83 37499.85 24095.79 35999.44 228
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34199.25 30798.78 23399.58 18299.44 26998.24 20199.76 31898.74 16399.93 10199.22 278
PS-MVSNAJ99.00 21199.08 16998.76 31699.37 27698.10 30798.00 34399.51 23999.47 12899.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 385
test_prior499.19 21898.00 343
HQP-NCC99.31 29797.98 34597.45 33798.15 360
ACMP_Plane99.31 29797.98 34597.45 33798.15 360
HQP-MVS98.36 28398.02 29499.39 21399.31 29798.94 24397.98 34599.37 28097.45 33798.15 36098.83 36696.67 28399.70 33794.73 37599.67 24999.53 187
UnsupCasMVSNet_bld98.55 26298.27 27699.40 21099.56 21299.37 17897.97 34899.68 14097.49 33699.08 29499.35 29395.41 31299.82 27997.70 24798.19 38099.01 330
test_prior297.95 34997.87 31898.05 36699.05 33997.90 22895.99 35099.49 296
iter_conf05_1198.54 26398.33 27199.18 26099.07 34399.20 21697.94 35097.59 38199.17 17999.30 26398.92 36294.79 31699.86 22298.29 18899.89 12498.47 372
旧先验297.94 35095.33 38098.94 30599.88 18996.75 310
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16397.55 33597.94 35095.60 39699.37 14690.68 40698.70 37396.56 28698.61 40486.94 40499.55 28098.77 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 353
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35399.71 12698.76 23899.08 29499.47 26299.17 7999.54 38597.85 23199.76 20999.54 182
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35599.73 11498.68 24499.31 25899.48 25899.09 8999.66 36497.70 24799.77 20799.29 268
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27297.90 35699.59 19399.27 15899.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
pmmvs398.08 30197.80 31098.91 29799.41 26997.69 33297.87 35799.66 14895.87 37299.50 21399.51 24890.35 36799.97 3398.55 17499.47 29899.08 316
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35799.74 11098.36 27899.66 15299.68 16299.71 2299.90 15796.84 30799.88 13499.43 234
test22299.51 22899.08 23297.83 35999.29 29795.21 38298.68 33699.31 29997.28 26399.38 30999.43 234
miper_lstm_enhance98.65 25298.60 24198.82 31399.20 32197.33 34397.78 36099.66 14899.01 20099.59 18099.50 25194.62 31999.85 24098.12 20799.90 11599.26 270
TinyColmap98.97 21598.93 20899.07 27999.46 25498.19 29997.75 36199.75 10598.79 23199.54 19999.70 14598.97 10699.62 37496.63 32099.83 17099.41 238
our_test_398.85 23499.09 16798.13 34499.66 16994.90 38497.72 36299.58 20299.07 19599.64 15599.62 19698.19 20899.93 9498.41 18099.95 8399.55 174
testdata197.72 36297.86 320
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31097.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15798.27 19297.56 39398.91 340
c3_l98.72 24698.71 23498.72 31899.12 33397.22 34697.68 36599.56 20998.90 21599.54 19999.48 25896.37 29699.73 32897.88 22599.88 13499.21 280
ppachtmachnet_test98.89 23099.12 15598.20 34299.66 16995.24 38097.63 36699.68 14099.08 19399.78 10199.62 19698.65 14799.88 18998.02 21199.96 7099.48 214
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30794.56 39098.02 36898.25 38797.43 25699.68 35590.90 39598.74 35999.33 256
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18295.89 40298.86 346
PVSNet_Blended98.70 24898.59 24399.02 28399.54 21597.99 31497.58 36999.82 6795.70 37699.34 24998.98 35298.52 16999.77 31697.98 21699.83 17099.30 265
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 28997.53 33398.47 34998.15 38997.88 23099.82 27997.46 26699.24 32999.09 310
MSDG99.08 19498.98 20399.37 21999.60 18299.13 22397.54 37099.74 11098.84 22599.53 20499.55 24099.10 8799.79 30597.07 29499.86 15399.18 289
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
CLD-MVS98.76 24198.57 24799.33 22999.57 20198.97 24097.53 37299.55 21596.41 36599.27 26699.13 32799.07 9499.78 30896.73 31299.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 25098.71 23498.60 32399.10 33996.84 35697.52 37499.54 22198.94 20899.58 18299.48 25896.25 30099.76 31898.01 21499.93 10199.21 280
miper_ehance_all_eth98.59 25898.59 24398.59 32498.98 35597.07 35097.49 37599.52 23598.50 26499.52 20699.37 28496.41 29499.71 33497.86 22999.62 25999.00 331
cl____98.54 26398.41 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.85 32699.78 30897.97 21899.89 12499.17 291
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.87 32599.78 30897.97 21899.89 12499.18 289
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 13997.69 25398.78 35398.31 377
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17597.77 23698.77 35598.52 366
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 13997.69 25398.78 35398.31 377
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5497.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 28997.94 30399.32 23399.36 27999.11 22597.31 38298.78 34396.88 35898.84 31999.11 33497.77 23899.61 37894.03 38699.36 31299.23 276
thisisatest051596.98 33496.42 34198.66 32199.42 26897.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20397.10 29299.39 30898.63 358
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38499.47 25198.72 24099.66 15299.70 14599.29 6499.63 37398.07 21099.81 18899.62 138
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28097.31 34599.41 23699.22 31987.30 37999.37 39697.70 24799.62 25999.08 316
GA-MVS97.99 30697.68 31698.93 29499.52 22698.04 31297.19 38699.05 33298.32 28998.81 32298.97 35489.89 37299.41 39598.33 18699.05 33999.34 255
CL-MVSNet_self_test98.71 24798.56 25099.15 26599.22 31698.66 26897.14 38799.51 23998.09 30299.54 19999.27 30796.87 27999.74 32598.43 17998.96 34599.03 325
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
USDC98.96 21998.93 20899.05 28199.54 21597.99 31497.07 39099.80 8098.21 29599.75 11499.77 10898.43 17999.64 37297.90 22399.88 13499.51 200
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26596.37 36799.43 22898.96 35694.74 31799.69 34397.71 24499.62 25998.83 349
CHOSEN 280x42098.41 27998.41 26198.40 33299.34 29095.89 37296.94 39299.44 25998.80 23099.25 26899.52 24693.51 33299.98 2098.94 14799.98 4199.32 259
PCF-MVS96.03 1896.73 34095.86 35199.33 22999.44 25999.16 22096.87 39399.44 25986.58 40098.95 30499.40 27694.38 32199.88 18987.93 39999.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
PVSNet97.47 1598.42 27898.44 25898.35 33499.46 25496.26 36596.70 39599.34 28697.68 32699.00 30199.13 32797.40 25799.72 33097.59 25999.68 24399.08 316
PAPM95.61 36794.71 36998.31 33999.12 33396.63 35896.66 39698.46 36090.77 39796.25 39798.68 37493.01 33799.69 34381.60 40697.86 39198.62 359
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 20991.75 39497.13 38997.61 39895.58 30998.63 40396.68 31499.11 33598.18 386
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27296.18 37097.37 38297.73 39595.73 30699.58 38195.49 36481.40 40599.36 249
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33599.44 13498.88 31399.12 33192.78 33999.68 35594.30 38199.03 34197.50 393
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35299.34 14998.92 30998.88 36493.79 32799.66 36492.87 38999.05 33997.30 397
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 20961.71 40595.39 40299.52 24693.90 32499.94 7798.76 16198.27 37699.62 138
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32799.82 130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3250.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS96.36 36395.20 370
MSC_two_6792asdad99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
PC_three_145297.56 32999.68 14299.41 27299.09 8997.09 40596.66 31699.60 26999.62 138
No_MVS99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
test_one_060199.63 17599.76 6199.55 21599.23 16699.31 25899.61 20598.59 154
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.43 26399.61 12399.43 26296.38 36699.11 29199.07 33797.86 23199.92 11694.04 38599.49 296
IU-MVS99.69 15599.77 5499.22 31497.50 33599.69 13997.75 24099.70 23499.77 60
test_241102_TWO99.54 22199.13 18899.76 10899.63 18998.32 19599.92 11697.85 23199.69 23899.75 69
test_241102_ONE99.69 15599.82 3599.54 22199.12 19199.82 8199.49 25598.91 11299.52 389
test_0728_THIRD99.18 17499.62 16899.61 20598.58 15699.91 13997.72 24299.80 19399.77 60
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36299.14 300
sam_mvs90.52 366
MTGPAbinary99.53 230
test_post52.41 41490.25 36899.86 222
patchmatchnet-post99.62 19690.58 36499.94 77
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25596.38 334
test9_res95.10 37299.44 30199.50 205
agg_prior294.58 37899.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27597.76 38099.85 240
TestCases99.63 13599.78 10599.64 11099.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
test_prior99.46 18999.35 28199.22 21199.39 27599.69 34399.48 214
新几何199.52 17699.50 23499.22 21199.26 30495.66 37798.60 34199.28 30597.67 24599.89 17595.95 35399.32 31899.45 223
旧先验199.49 23999.29 19499.26 30499.39 28097.67 24599.36 31299.46 222
原ACMM199.37 21999.47 25098.87 25399.27 30196.74 36398.26 35599.32 29797.93 22799.82 27995.96 35299.38 30999.43 234
testdata299.89 17595.99 350
segment_acmp98.37 188
testdata99.42 20199.51 22898.93 24699.30 29696.20 36998.87 31699.40 27698.33 19499.89 17596.29 33799.28 32399.44 228
test1299.54 17399.29 30399.33 18899.16 32398.43 35197.54 25299.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 264
plane_prior599.54 22199.82 27995.84 35799.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 27899.14 287
plane_prior199.51 228
n20.00 415
nn0.00 415
door-mid99.83 62
lessismore_v099.64 12899.86 5499.38 17590.66 40799.89 5399.83 6694.56 32099.97 3399.56 5799.92 10599.57 169
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
test1199.29 297
door99.77 95
HQP5-MVS98.94 243
BP-MVS94.73 375
HQP4-MVS98.15 36099.70 33799.53 187
HQP3-MVS99.37 28099.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 182
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25699.33 25199.53 24498.88 11699.68 35596.01 34799.65 25499.02 329
DeepMVS_CXcopyleft97.98 34799.69 15596.95 35299.26 30475.51 40395.74 40198.28 38696.47 29099.62 37491.23 39497.89 38997.38 395