This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 17196.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13294.64 1799.53 3598.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17899.57 1395.86 999.69 1599.46 18
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10598.16 298.94 299.33 297.84 499.08 9490.73 12499.73 1499.59 12
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet93.91 12593.68 13294.59 11898.08 7585.55 17097.44 894.03 25494.22 4794.94 14996.19 14882.07 24499.57 1387.28 20298.89 11198.65 92
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8699.20 7991.79 10298.16 19297.44 193
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
MVSFormer92.18 17792.23 16692.04 21094.74 25180.06 23697.15 1197.37 11588.98 16588.83 28992.79 27377.02 28299.60 896.41 496.75 25496.46 233
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
IS-MVSNet94.49 10694.35 11294.92 10298.25 6686.46 15197.13 1394.31 24996.24 2396.28 8996.36 13882.88 23399.35 5688.19 18499.52 3798.96 60
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2797.58 798.72 898.97 793.15 8499.15 8393.18 6499.74 1399.50 16
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19498.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5196.59 1998.46 1798.43 2792.91 9099.52 1796.25 699.76 1199.65 8
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14990.11 14499.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 4897.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20891.38 11599.69 1599.42 19
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13091.82 10094.34 16997.41 6590.60 14798.65 16992.47 8598.11 19897.70 177
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18896.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19798.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 17996.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17896.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16796.49 12494.56 5899.39 4593.57 4099.05 9498.93 63
X-MVStestdata90.70 20488.45 24497.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16726.89 36394.56 5899.39 4593.57 4099.05 9498.93 63
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
QAPM92.88 15592.77 15493.22 16895.82 21083.31 19596.45 3197.35 12283.91 24893.75 18596.77 10689.25 16698.88 12484.56 23897.02 24397.49 190
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20698.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
Gipumacopyleft95.31 7595.80 6393.81 15097.99 8790.91 6996.42 3497.95 7396.69 1691.78 24398.85 1291.77 11595.49 31791.72 10599.08 9095.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 7294.63 10397.48 1498.67 2794.05 2196.41 3598.18 3291.26 11895.12 14095.15 19686.60 20799.50 1993.43 5396.81 25198.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 145
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10396.37 3696.81 16185.23 23094.75 15797.12 8591.85 11499.40 4093.45 4998.33 17198.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22594.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19196.31 4197.53 10797.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8496.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17698.46 113
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 15993.73 5697.87 2698.49 2490.73 14499.05 9986.43 21599.60 2599.10 44
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19296.72 11394.23 6599.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18195.99 5196.56 17592.38 7597.03 5598.53 2190.12 15598.98 11088.78 17599.16 8398.65 92
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19397.78 4691.21 13297.77 24691.06 11797.06 24198.80 79
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23594.86 3898.49 1598.74 1681.45 24999.60 894.69 1699.39 5499.15 37
ambc92.98 17296.88 14283.01 20395.92 5696.38 18596.41 7797.48 6288.26 17497.80 24289.96 14998.93 11098.12 137
FC-MVSNet-test95.32 7395.88 5793.62 15398.49 5381.77 21395.90 5798.32 1793.93 5397.53 3797.56 5688.48 17199.40 4092.91 7599.83 699.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9589.21 16493.28 19995.46 18588.89 16898.98 11089.80 15198.82 12497.80 170
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22086.95 20792.95 21397.56 5690.70 14597.50 25979.63 28597.43 23296.06 249
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11793.85 3399.49 3899.36 24
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 17592.13 16992.68 18694.53 26084.10 18795.70 6297.03 14482.44 26491.14 25496.42 12988.47 17298.38 19485.95 22097.47 23195.55 271
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17090.30 13699.60 2598.72 90
canonicalmvs94.59 10194.69 9894.30 13195.60 22687.03 13795.59 6698.24 2791.56 11195.21 13992.04 29194.95 4998.66 16791.45 11397.57 22897.20 207
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 891.84 9796.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7788.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
test_part194.39 10894.55 10593.92 14496.14 18982.86 20495.54 6998.09 4795.36 3598.27 2098.36 2875.91 29099.44 2393.41 5499.84 399.47 17
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 6995.85 20596.47 2093.40 19597.46 6395.31 3395.47 31886.18 21998.78 13089.11 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 12394.27 11793.31 16598.87 1982.36 20895.51 7191.78 29697.19 1196.32 8398.60 1884.24 22498.75 15087.09 20398.83 12398.81 78
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17595.46 7297.12 14091.84 9797.28 4698.46 2595.30 3497.71 25190.17 14299.42 4798.99 53
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7398.22 2992.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22497.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 4586.69 14595.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
FIs94.90 8795.35 7493.55 15698.28 6381.76 21495.33 7598.14 3993.05 6797.07 5197.18 8287.65 18599.29 6891.72 10599.69 1599.61 11
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
AllTest94.88 8994.51 10896.00 5598.02 8292.17 5095.26 7898.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
OPU-MVS95.15 9696.84 14489.43 9095.21 7995.66 17393.12 8598.06 21986.28 21898.61 14397.95 153
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8197.00 14691.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8396.77 16596.64 1897.61 3498.05 3493.23 8198.79 14188.60 18099.04 9998.78 81
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15895.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 21097.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8697.37 11593.92 5497.65 3095.90 15990.10 15899.33 6490.11 14499.66 2199.26 29
TransMVSNet (Re)95.27 7896.04 5192.97 17398.37 5981.92 21295.07 8796.76 16693.97 5297.77 2798.57 1995.72 1897.90 23188.89 17399.23 7699.08 45
UGNet93.08 14792.50 16394.79 10793.87 27587.99 12195.07 8794.26 25190.64 13387.33 31497.67 5186.89 20298.49 18588.10 18798.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 23288.90 23892.55 19397.00 13679.73 24795.03 8983.65 35089.88 14895.30 13194.79 21753.64 35899.39 4591.99 9598.79 12998.54 106
LFMVS91.33 19491.16 19691.82 21396.27 17879.36 25395.01 9085.61 33896.04 2894.82 15497.06 8872.03 30498.46 19184.96 23398.70 13897.65 181
CSCG94.69 9894.75 9594.52 12197.55 11187.87 12395.01 9097.57 10392.68 6996.20 9493.44 25791.92 11398.78 14589.11 16899.24 7596.92 215
GG-mvs-BLEND83.24 33385.06 36071.03 33294.99 9265.55 36574.09 36075.51 36044.57 36694.46 33159.57 35787.54 34784.24 352
EU-MVSNet87.39 27586.71 27889.44 27593.40 28076.11 29894.93 9390.00 30757.17 35995.71 11597.37 6864.77 33097.68 25392.67 8194.37 30394.52 292
CS-MVS93.91 12594.22 12092.95 17595.65 22183.25 19794.91 9498.87 491.32 11691.32 24893.07 26592.24 10499.37 5291.90 10098.73 13596.21 244
DIV-MVS_2432*160094.10 12194.73 9792.19 20297.66 10579.49 25194.86 9597.12 14089.59 15496.87 6197.65 5290.40 15298.34 19889.08 16999.35 5798.75 84
MTMP94.82 9654.62 367
PHI-MVS94.34 11293.80 12695.95 5795.65 22191.67 6194.82 9697.86 7887.86 18993.04 21094.16 23591.58 12098.78 14590.27 13898.96 10897.41 194
testtj94.81 9494.42 10996.01 5497.23 12590.51 7694.77 9897.85 8191.29 11794.92 15195.66 17391.71 11799.40 4088.07 18898.25 18298.11 138
gg-mvs-nofinetune82.10 31481.02 31685.34 32187.46 35171.04 33194.74 9967.56 36496.44 2179.43 35598.99 645.24 36596.15 30467.18 34992.17 33188.85 346
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6090.82 12897.15 4996.85 10196.25 1599.00 10993.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 7995.73 6593.55 15696.62 15488.88 10294.67 10198.05 5591.26 11897.25 4896.40 13195.42 2694.36 33492.72 8099.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 18991.61 18191.26 23094.16 26686.26 15994.66 10294.82 23691.17 12192.13 23791.08 30490.03 16197.06 27879.09 29297.35 23590.45 343
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10390.68 13297.43 4198.00 3788.18 17599.15 8394.84 1599.55 3499.41 20
v894.65 10095.29 7892.74 18496.65 15179.77 24694.59 10497.17 13691.86 9397.47 4097.93 4088.16 17699.08 9494.32 2299.47 3999.38 22
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10497.81 8589.22 16395.46 12596.17 15193.42 7699.34 5989.30 16098.87 11697.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8095.67 6793.58 15597.76 9483.15 20094.58 10697.58 10293.39 6397.05 5498.04 3593.25 8098.51 18489.75 15499.59 2799.08 45
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6090.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
HQP_MVS94.26 11693.93 12395.23 9397.71 9988.12 11794.56 10897.81 8591.74 10593.31 19695.59 17586.93 19998.95 11789.26 16498.51 15398.60 103
plane_prior294.56 10891.74 105
tfpnnormal94.27 11594.87 9192.48 19697.71 9980.88 22794.55 11095.41 22293.70 5796.67 7097.72 4991.40 12498.18 21287.45 19899.18 8298.36 118
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5590.45 13896.31 8496.76 10892.91 9098.72 15591.19 11699.42 4798.32 120
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9696.94 1496.58 7497.32 7593.07 8798.72 15590.45 12898.84 11897.57 185
MIMVSNet87.13 28386.54 28188.89 28596.05 19676.11 29894.39 11388.51 31281.37 27088.27 30396.75 10972.38 30195.52 31565.71 35295.47 28095.03 280
K. test v393.37 13693.27 14693.66 15298.05 7882.62 20694.35 11486.62 32796.05 2797.51 3898.85 1276.59 28899.65 393.21 6398.20 19098.73 89
Vis-MVSNet (Re-imp)90.42 21190.16 21491.20 23497.66 10577.32 28394.33 11587.66 32091.20 12092.99 21195.13 19875.40 29298.28 20177.86 29799.19 8097.99 148
ANet_high94.83 9396.28 3690.47 25596.65 15173.16 32194.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16190.38 13199.68 1899.53 14
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 4889.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 21788.87 23994.66 11294.82 24591.85 5794.22 11894.75 23980.91 27187.52 31288.07 33686.63 20697.87 23676.67 30896.21 26494.25 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 15992.73 15892.95 17595.40 23181.98 21194.18 11995.53 21988.63 17396.05 10197.37 6881.31 25198.81 13987.38 20198.67 14098.06 139
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30594.15 12095.60 21189.38 15695.90 10897.90 4480.39 25897.96 22992.60 8399.68 1898.75 84
GeoE94.55 10394.68 10094.15 13497.23 12585.11 17494.14 12197.34 12388.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 15998.23 127
9.1494.81 9297.49 11494.11 12298.37 1487.56 19895.38 12796.03 15594.66 5599.08 9490.70 12598.97 106
HPM-MVS++copyleft95.02 8294.39 11096.91 3897.88 9093.58 3694.09 12396.99 14891.05 12392.40 22795.22 19591.03 13899.25 7492.11 9098.69 13997.90 159
ETH3D-3000-0.194.86 9094.55 10595.81 6597.61 10789.72 8594.05 12498.37 1488.09 18495.06 14595.85 16192.58 9899.10 9390.33 13598.99 10198.62 100
HY-MVS82.50 1886.81 28785.93 28889.47 27493.63 27877.93 27394.02 12591.58 29875.68 30883.64 33593.64 25177.40 27797.42 26571.70 33592.07 33293.05 323
Effi-MVS+-dtu93.90 12792.60 16197.77 494.74 25196.67 394.00 12695.41 22289.94 14591.93 24192.13 28990.12 15598.97 11487.68 19597.48 23097.67 180
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19694.00 12697.53 10791.36 11589.35 28590.65 31394.01 6898.66 16787.40 20095.30 28596.88 218
VDD-MVS94.37 10994.37 11194.40 12997.49 11486.07 16293.97 12893.28 26694.49 4396.24 9097.78 4687.99 18198.79 14188.92 17199.14 8598.34 119
hse-mvs392.89 15491.99 17295.58 7796.97 13790.55 7493.94 12994.01 25789.23 16193.95 17996.19 14876.88 28599.14 8591.02 11895.71 27497.04 211
EPNet89.80 23388.25 24994.45 12783.91 36286.18 16093.87 13087.07 32591.16 12280.64 35294.72 21878.83 26598.89 12385.17 22598.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6287.35 19996.22 9297.99 3894.48 6199.05 9992.73 7999.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 11994.58 10493.04 17095.91 20783.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10581.28 26798.54 14996.96 214
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
PAPM_NR91.03 19890.81 20291.68 21996.73 14981.10 22493.72 13496.35 18688.19 18288.77 29592.12 29085.09 22097.25 27282.40 25793.90 30996.68 225
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
baseline94.26 11694.80 9392.64 18796.08 19480.99 22593.69 13598.04 5990.80 12994.89 15296.32 14093.19 8298.48 18991.68 10798.51 15398.43 115
MVS_030490.96 19990.15 21693.37 16293.17 28487.06 13593.62 13792.43 28589.60 15382.25 34395.50 18382.56 24097.83 24084.41 24097.83 21695.22 275
F-COLMAP92.28 17491.06 19795.95 5797.52 11291.90 5693.53 13897.18 13583.98 24788.70 29794.04 23888.41 17398.55 18180.17 27895.99 26897.39 198
FMVSNet587.82 26586.56 28091.62 22092.31 29879.81 24593.49 13994.81 23883.26 25191.36 24796.93 9652.77 36097.49 26176.07 31298.03 20597.55 188
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 14192.85 15294.50 12295.70 21787.45 12793.45 14195.76 20791.58 11095.25 13692.42 28581.96 24698.72 15591.61 10897.87 21497.33 202
114514_t90.51 20889.80 22292.63 18998.00 8482.24 20993.40 14297.29 12865.84 35089.40 28494.80 21686.99 19798.75 15083.88 24398.61 14396.89 217
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 18987.90 12293.36 14397.14 13785.53 22793.90 18295.45 18691.30 12898.59 17589.51 15798.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1787.89 18896.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13296.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17282.81 20593.11 14697.74 9189.37 15794.08 17395.29 19490.40 15296.35 30290.35 13398.25 18294.96 282
baseline187.62 27087.31 26588.54 29194.71 25574.27 31593.10 14788.20 31686.20 21592.18 23693.04 26673.21 29895.52 31579.32 28985.82 34995.83 259
plane_prior88.12 11793.01 14888.98 16598.06 202
thres100view90087.35 27686.89 27488.72 28896.14 18973.09 32293.00 14985.31 34192.13 8593.26 20190.96 30663.42 33698.28 20171.27 33896.54 25894.79 285
Patchmtry90.11 22289.92 22090.66 25190.35 32977.00 28792.96 15092.81 27390.25 14294.74 15896.93 9667.11 31497.52 25885.17 22598.98 10297.46 191
LF4IMVS92.72 16192.02 17194.84 10595.65 22191.99 5492.92 15196.60 17385.08 23792.44 22593.62 25286.80 20396.35 30286.81 20598.25 18296.18 245
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5193.46 6296.31 8495.97 15890.14 15499.34 5992.11 9099.64 2399.16 36
TAPA-MVS88.58 1092.49 16991.75 18094.73 10996.50 16189.69 8692.91 15297.68 9478.02 29992.79 21694.10 23690.85 13997.96 22984.76 23698.16 19296.54 226
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 25287.52 26392.20 20196.33 17379.36 25392.81 15484.01 34986.44 21193.67 18892.68 27753.62 35999.25 7489.65 15698.45 15798.00 145
EIA-MVS92.35 17292.03 17093.30 16695.81 21283.97 18992.80 15598.17 3587.71 19289.79 27987.56 33791.17 13699.18 8187.97 19097.27 23696.77 222
ETH3D cwj APD-0.1693.99 12493.38 14295.80 6796.82 14589.92 8192.72 15698.02 6284.73 24393.65 18995.54 18291.68 11899.22 7788.78 17598.49 15698.26 126
thres600view787.66 26887.10 27289.36 27896.05 19673.17 32092.72 15685.31 34191.89 9293.29 19890.97 30563.42 33698.39 19273.23 32696.99 24896.51 228
wuyk23d87.83 26490.79 20378.96 34190.46 32888.63 10592.72 15690.67 30491.65 10998.68 1197.64 5396.06 1677.53 36159.84 35699.41 5270.73 359
V4293.43 13593.58 13592.97 17395.34 23581.22 22292.67 15996.49 18087.25 20196.20 9496.37 13787.32 19198.85 13192.39 8998.21 18898.85 75
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12490.05 14496.77 6796.85 10195.04 4498.56 17992.77 7699.06 9198.70 91
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8593.99 5096.80 6595.90 15990.10 15899.41 3591.60 10999.58 3199.26 29
FMVSNet390.78 20290.32 21392.16 20693.03 28979.92 24192.54 16294.95 23186.17 21795.10 14196.01 15669.97 30898.75 15086.74 20698.38 16497.82 168
hse-mvs292.24 17691.20 19395.38 8396.16 18790.65 7392.52 16392.01 29489.23 16193.95 17992.99 26876.88 28598.69 16391.02 11896.03 26696.81 220
MVS_Test92.57 16893.29 14390.40 25893.53 27975.85 30192.52 16396.96 14988.73 17092.35 23096.70 11490.77 14098.37 19792.53 8495.49 27996.99 213
CR-MVSNet87.89 26287.12 27190.22 26391.01 32078.93 26092.52 16392.81 27373.08 32389.10 28696.93 9667.11 31497.64 25488.80 17492.70 32594.08 299
RPMNet90.31 21890.14 21790.81 24891.01 32078.93 26092.52 16398.12 4191.91 9189.10 28696.89 9968.84 30999.41 3590.17 14292.70 32594.08 299
RRT_MVS91.36 19390.05 21895.29 9089.21 34188.15 11692.51 16794.89 23386.73 20995.54 12195.68 17261.82 34399.30 6794.91 1399.13 8898.43 115
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4090.69 13193.75 18596.25 14698.03 297.02 27992.08 9295.55 27798.45 114
EI-MVSNet-Vis-set94.36 11094.28 11594.61 11392.55 29685.98 16392.44 16994.69 24293.70 5796.12 9995.81 16591.24 13098.86 12993.76 3898.22 18798.98 58
Anonymous20240521192.58 16692.50 16392.83 18296.55 15983.22 19892.43 17091.64 29794.10 4995.59 11996.64 11881.88 24897.50 25985.12 22998.52 15197.77 172
AUN-MVS90.05 22688.30 24795.32 8996.09 19390.52 7592.42 17192.05 29382.08 26788.45 30092.86 27065.76 32498.69 16388.91 17296.07 26596.75 224
EI-MVSNet-UG-set94.35 11194.27 11794.59 11892.46 29785.87 16592.42 17194.69 24293.67 6196.13 9895.84 16491.20 13398.86 12993.78 3598.23 18599.03 49
Regformer-394.28 11494.23 11994.46 12692.78 29486.28 15892.39 17394.70 24193.69 6095.97 10295.56 18091.34 12598.48 18993.45 4998.14 19498.62 100
Regformer-494.90 8794.67 10195.59 7692.78 29489.02 9792.39 17395.91 20294.50 4296.41 7795.56 18092.10 10899.01 10794.23 2698.14 19498.74 87
NCCC94.08 12293.54 13895.70 7496.49 16289.90 8392.39 17396.91 15590.64 13392.33 23394.60 22190.58 14898.96 11590.21 14197.70 22298.23 127
casdiffmvs94.32 11394.80 9392.85 18196.05 19681.44 21992.35 17698.05 5591.53 11295.75 11296.80 10593.35 7898.49 18591.01 12098.32 17398.64 96
ETV-MVS92.99 15192.74 15693.72 15195.86 20986.30 15792.33 17797.84 8291.70 10892.81 21586.17 34792.22 10599.19 8088.03 18997.73 21895.66 267
EI-MVSNet92.99 15193.26 14792.19 20292.12 30479.21 25892.32 17894.67 24491.77 10395.24 13795.85 16187.14 19598.49 18591.99 9598.26 17998.86 72
CVMVSNet85.16 29484.72 29386.48 31192.12 30470.19 33592.32 17888.17 31756.15 36090.64 26195.85 16167.97 31296.69 29088.78 17590.52 34092.56 329
OMC-MVS94.22 11893.69 13195.81 6597.25 12491.27 6392.27 18097.40 11487.10 20594.56 16295.42 18893.74 6998.11 21786.62 21098.85 11798.06 139
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28785.92 22196.22 9296.61 12085.64 21895.99 31090.35 13398.23 18595.93 254
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8294.91 3796.80 6595.78 16990.42 14999.41 3591.60 10999.58 3199.29 28
AdaColmapbinary91.63 18691.36 18992.47 19795.56 22786.36 15592.24 18396.27 18888.88 16989.90 27592.69 27691.65 11998.32 19977.38 30497.64 22592.72 328
mvs-test193.07 14991.80 17896.89 3994.74 25195.83 692.17 18495.41 22289.94 14589.85 27690.59 31490.12 15598.88 12487.68 19595.66 27595.97 252
PVSNet_Blended_VisFu91.63 18691.20 19392.94 17797.73 9883.95 19092.14 18597.46 11178.85 29492.35 23094.98 20684.16 22599.08 9486.36 21696.77 25395.79 261
ETH3 D test640091.91 18191.25 19293.89 14696.59 15584.41 18092.10 18697.72 9378.52 29591.82 24293.78 25088.70 16999.13 8783.61 24498.39 16298.14 134
Baseline_NR-MVSNet94.47 10795.09 8692.60 19198.50 5280.82 22892.08 18796.68 16993.82 5596.29 8698.56 2090.10 15897.75 24990.10 14699.66 2199.24 31
Fast-Effi-MVS+-dtu92.77 16092.16 16794.58 12094.66 25788.25 11492.05 18896.65 17189.62 15290.08 27091.23 30192.56 9998.60 17386.30 21796.27 26396.90 216
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1287.63 19596.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
save fliter97.46 11788.05 11992.04 18997.08 14287.63 195
PatchT87.51 27288.17 25385.55 31890.64 32366.91 34592.02 19186.09 33192.20 8389.05 28897.16 8364.15 33296.37 30189.21 16792.98 32393.37 318
EG-PatchMatch MVS94.54 10594.67 10194.14 13597.87 9186.50 14892.00 19296.74 16788.16 18396.93 5997.61 5493.04 8897.90 23191.60 10998.12 19798.03 143
v14419293.20 14693.54 13892.16 20696.05 19678.26 27091.95 19397.14 13784.98 23995.96 10396.11 15287.08 19699.04 10293.79 3498.84 11899.17 35
VNet92.67 16392.96 14991.79 21496.27 17880.15 23291.95 19394.98 23092.19 8494.52 16496.07 15387.43 18997.39 26884.83 23498.38 16497.83 166
131486.46 28886.33 28586.87 31091.65 31274.54 31091.94 19594.10 25374.28 31584.78 32887.33 34183.03 23295.00 32778.72 29391.16 33891.06 340
112190.26 21989.23 22893.34 16397.15 13287.40 12891.94 19594.39 24767.88 34591.02 25594.91 20986.91 20198.59 17581.17 27097.71 22194.02 304
MVS84.98 29684.30 29687.01 30891.03 31977.69 27991.94 19594.16 25259.36 35884.23 33287.50 33985.66 21696.80 28771.79 33393.05 32286.54 350
tfpn200view987.05 28486.52 28288.67 28995.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25894.79 285
thres40087.20 28086.52 28289.24 28295.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25896.51 228
v192192093.26 14193.61 13492.19 20296.04 20078.31 26991.88 20097.24 13285.17 23296.19 9696.19 14886.76 20499.05 9994.18 2898.84 11899.22 32
Regformer-194.55 10394.33 11395.19 9492.83 29288.54 11091.87 20195.84 20693.99 5095.95 10495.04 20392.00 11098.79 14193.14 6798.31 17498.23 127
Regformer-294.86 9094.55 10595.77 6992.83 29289.98 8091.87 20196.40 18394.38 4696.19 9695.04 20392.47 10399.04 10293.49 4498.31 17498.28 124
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24291.87 20196.22 19385.94 22095.53 12297.68 5092.69 9694.48 33083.21 24897.51 22998.21 130
IterMVS-LS93.78 12894.28 11592.27 19996.27 17879.21 25891.87 20196.78 16391.77 10396.57 7597.07 8787.15 19498.74 15391.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 13293.81 12592.57 19296.28 17779.61 24991.86 20596.96 14986.95 20795.91 10796.32 14087.65 18598.96 11593.51 4398.88 11399.13 39
v119293.49 13393.78 12792.62 19096.16 18779.62 24891.83 20697.22 13486.07 21896.10 10096.38 13687.22 19299.02 10594.14 2998.88 11399.22 32
v124093.29 13893.71 13092.06 20996.01 20177.89 27591.81 20797.37 11585.12 23596.69 6996.40 13186.67 20599.07 9894.51 1898.76 13299.22 32
CNVR-MVS94.58 10294.29 11495.46 8296.94 13989.35 9491.81 20796.80 16289.66 15193.90 18295.44 18792.80 9498.72 15592.74 7898.52 15198.32 120
v2v48293.29 13893.63 13392.29 19896.35 17178.82 26391.77 20996.28 18788.45 17795.70 11696.26 14586.02 21398.90 12193.02 7198.81 12699.14 38
RRT_test8_iter0588.21 25888.17 25388.33 29691.62 31366.82 34991.73 21096.60 17386.34 21394.14 17095.38 19347.72 36499.11 9191.78 10398.26 17999.06 47
EPNet_dtu85.63 29284.37 29589.40 27786.30 35674.33 31491.64 21188.26 31484.84 24172.96 36189.85 31671.27 30697.69 25276.60 30997.62 22696.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 21288.92 23694.85 10496.53 16090.02 7991.58 21296.48 18180.16 27786.14 32092.18 28785.73 21598.25 20676.87 30794.61 30096.30 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30391.51 21395.62 21091.84 9795.74 11397.10 8689.31 16598.32 19985.07 23299.06 9198.93 63
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21498.17 3590.72 13095.30 13196.47 12587.94 18296.98 28091.41 11497.61 22798.30 123
HQP-NCC96.36 16891.37 21587.16 20288.81 291
ACMP_Plane96.36 16891.37 21587.16 20288.81 291
HQP-MVS92.09 17891.49 18693.88 14796.36 16884.89 17691.37 21597.31 12587.16 20288.81 29193.40 25884.76 22198.60 17386.55 21297.73 21898.14 134
MCST-MVS92.91 15392.51 16294.10 13697.52 11285.72 16891.36 21897.13 13980.33 27692.91 21494.24 23191.23 13198.72 15589.99 14897.93 21197.86 163
v14892.87 15693.29 14391.62 22096.25 18177.72 27891.28 21995.05 22889.69 15095.93 10696.04 15487.34 19098.38 19490.05 14797.99 20898.78 81
tpmvs84.22 30083.97 29984.94 32387.09 35365.18 35291.21 22088.35 31382.87 25985.21 32390.96 30665.24 32896.75 28879.60 28885.25 35092.90 325
CANet92.38 17191.99 17293.52 16093.82 27783.46 19491.14 22197.00 14689.81 14986.47 31894.04 23887.90 18399.21 7889.50 15898.27 17897.90 159
CNLPA91.72 18491.20 19393.26 16796.17 18691.02 6691.14 22195.55 21890.16 14390.87 25693.56 25586.31 20994.40 33379.92 28497.12 24094.37 295
DP-MVS Recon92.31 17391.88 17593.60 15497.18 12986.87 14191.10 22397.37 11584.92 24092.08 23894.08 23788.59 17098.20 20983.50 24598.14 19495.73 263
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24394.58 25981.21 22391.10 22393.41 26577.03 30593.41 19393.99 24283.23 23097.80 24279.93 28294.80 29593.74 311
TSAR-MVS + GP.93.07 14992.41 16595.06 9995.82 21090.87 7190.97 22592.61 28188.04 18594.61 16193.79 24988.08 17797.81 24189.41 15998.39 16296.50 231
MVP-Stereo90.07 22588.92 23693.54 15896.31 17586.49 14990.93 22695.59 21579.80 27891.48 24595.59 17580.79 25597.39 26878.57 29591.19 33796.76 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 23888.75 24091.03 23890.10 33176.62 29390.85 22794.67 24482.27 26595.24 13795.79 16661.09 34698.49 18590.49 12798.26 17997.97 152
pmmvs-eth3d91.54 18890.73 20593.99 13895.76 21587.86 12490.83 22893.98 25878.23 29894.02 17896.22 14782.62 23996.83 28686.57 21198.33 17197.29 204
CANet_DTU89.85 23189.17 23091.87 21292.20 30280.02 23990.79 22995.87 20486.02 21982.53 34291.77 29480.01 25998.57 17885.66 22297.70 22297.01 212
test_prior489.91 8290.74 230
TinyColmap92.00 18092.76 15589.71 27295.62 22577.02 28690.72 23196.17 19687.70 19395.26 13496.29 14292.54 10096.45 29781.77 26298.77 13195.66 267
CDPH-MVS92.67 16391.83 17695.18 9596.94 13988.46 11290.70 23297.07 14377.38 30192.34 23295.08 20192.67 9798.88 12485.74 22198.57 14598.20 131
DSMNet-mixed82.21 31181.56 31084.16 32989.57 33770.00 33990.65 23377.66 36254.99 36183.30 33897.57 5577.89 27590.50 35366.86 35095.54 27891.97 333
TEST996.45 16489.46 8890.60 23496.92 15379.09 29090.49 26294.39 22791.31 12798.88 124
train_agg92.71 16291.83 17695.35 8496.45 16489.46 8890.60 23496.92 15379.37 28590.49 26294.39 22791.20 13398.88 12488.66 17998.43 15897.72 176
PatchmatchNetpermissive85.22 29384.64 29486.98 30989.51 33869.83 34090.52 23687.34 32378.87 29387.22 31592.74 27566.91 31696.53 29381.77 26286.88 34894.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 16689.14 9590.51 23796.89 15679.37 28590.42 26494.36 22991.20 13398.82 134
test_yl90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
DCV-MVSNet90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
tpm281.46 31680.35 32384.80 32489.90 33265.14 35390.44 23885.36 34065.82 35182.05 34692.44 28357.94 35096.69 29070.71 34188.49 34592.56 329
agg_prior192.60 16591.76 17995.10 9896.20 18388.89 10090.37 24196.88 15779.67 28290.21 26794.41 22591.30 12898.78 14588.46 18198.37 16997.64 182
CostFormer83.09 30582.21 30885.73 31789.27 34067.01 34490.35 24286.47 32870.42 33683.52 33793.23 26361.18 34596.85 28577.21 30588.26 34693.34 319
TAMVS90.16 22189.05 23393.49 16196.49 16286.37 15490.34 24392.55 28280.84 27492.99 21194.57 22381.94 24798.20 20973.51 32498.21 18895.90 257
EPMVS81.17 32080.37 32283.58 33185.58 35865.08 35490.31 24471.34 36377.31 30385.80 32291.30 30059.38 34892.70 34679.99 27982.34 35692.96 324
CMPMVSbinary68.83 2287.28 27785.67 29092.09 20888.77 34585.42 17190.31 24494.38 24870.02 33888.00 30693.30 26073.78 29794.03 33875.96 31496.54 25896.83 219
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2465.85 36765.36 32696.00 30979.61 286
test_prior393.29 13892.85 15294.61 11395.95 20487.23 13190.21 24697.36 12089.33 15990.77 25794.81 21390.41 15098.68 16588.21 18298.55 14697.93 155
test_prior290.21 24689.33 15990.77 25794.81 21390.41 15088.21 18298.55 146
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18190.95 6890.21 24695.43 22187.91 18693.74 18794.40 22692.88 9296.38 30090.39 13098.28 17797.07 208
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25095.68 20993.70 5796.62 7295.39 19187.21 19399.04 10287.50 19799.64 2399.33 25
tpmrst82.85 30882.93 30682.64 33487.65 34758.99 36290.14 25087.90 31975.54 31083.93 33391.63 29766.79 31995.36 32181.21 26981.54 35793.57 317
PVSNet_BlendedMVS90.35 21589.96 21991.54 22394.81 24678.80 26590.14 25096.93 15179.43 28488.68 29895.06 20286.27 21098.15 21580.27 27598.04 20497.68 179
BH-untuned90.68 20590.90 19890.05 26995.98 20279.57 25090.04 25394.94 23287.91 18694.07 17493.00 26787.76 18497.78 24579.19 29195.17 28892.80 326
新几何290.02 254
旧先验290.00 25568.65 34292.71 21896.52 29485.15 227
无先验89.94 25695.75 20870.81 33598.59 17581.17 27094.81 284
xiu_mvs_v1_base_debu91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base_debi91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
DWT-MVSNet_test80.74 32279.18 32885.43 32087.51 35066.87 34689.87 26086.01 33274.20 31780.86 35180.62 35748.84 36296.68 29281.54 26483.14 35592.75 327
mvs_anonymous90.37 21491.30 19187.58 30492.17 30368.00 34389.84 26194.73 24083.82 24993.22 20497.40 6687.54 18797.40 26787.94 19195.05 29097.34 201
test20.0390.80 20190.85 20190.63 25295.63 22479.24 25689.81 26292.87 27289.90 14794.39 16696.40 13185.77 21495.27 32573.86 32399.05 9497.39 198
1112_ss88.42 25587.41 26491.45 22496.69 15080.99 22589.72 26396.72 16873.37 32187.00 31690.69 31177.38 27898.20 20981.38 26693.72 31295.15 277
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26094.64 25880.24 23089.69 26495.88 20385.77 22393.94 18195.69 17181.99 24592.98 34584.21 24191.30 33697.62 183
MG-MVS89.54 23589.80 22288.76 28794.88 24272.47 32789.60 26592.44 28485.82 22289.48 28395.98 15782.85 23497.74 25081.87 26195.27 28696.08 248
Patchmatch-test86.10 29086.01 28786.38 31590.63 32474.22 31689.57 26686.69 32685.73 22589.81 27892.83 27165.24 32891.04 35177.82 30095.78 27393.88 308
Anonymous2023120688.77 25088.29 24890.20 26596.31 17578.81 26489.56 26793.49 26474.26 31692.38 22895.58 17882.21 24195.43 32072.07 33298.75 13496.34 237
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5195.96 20392.96 4389.48 26897.46 11185.14 23396.23 9195.42 18893.19 8298.08 21890.37 13298.76 13297.38 200
SCA87.43 27487.21 26888.10 29992.01 30771.98 32989.43 26988.11 31882.26 26688.71 29692.83 27178.65 26797.59 25579.61 28693.30 31694.75 287
testgi90.38 21391.34 19087.50 30597.49 11471.54 33089.43 26995.16 22788.38 17994.54 16394.68 22092.88 9293.09 34471.60 33697.85 21597.88 161
JIA-IIPM85.08 29583.04 30491.19 23587.56 34886.14 16189.40 27184.44 34888.98 16582.20 34497.95 3956.82 35396.15 30476.55 31083.45 35391.30 338
原ACMM289.34 272
tpm84.38 29984.08 29885.30 32290.47 32763.43 35989.34 27285.63 33777.24 30487.62 31095.03 20561.00 34797.30 27179.26 29091.09 33995.16 276
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27496.23 19188.36 18093.57 19194.60 22193.45 7397.77 24690.23 14098.38 16498.03 143
tpm cat180.61 32479.46 32784.07 33088.78 34465.06 35589.26 27588.23 31562.27 35681.90 34889.66 32462.70 34195.29 32471.72 33480.60 35891.86 336
CDS-MVSNet89.55 23488.22 25293.53 15995.37 23486.49 14989.26 27593.59 26179.76 28091.15 25392.31 28677.12 28198.38 19477.51 30297.92 21295.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 19690.86 20092.53 19495.45 23082.53 20789.25 27796.52 17985.00 23889.91 27488.55 33392.94 8998.84 13284.72 23795.44 28196.22 242
BH-RMVSNet90.47 21090.44 21090.56 25495.21 23878.65 26789.15 27893.94 25988.21 18192.74 21794.22 23286.38 20897.88 23378.67 29495.39 28395.14 278
thres20085.85 29185.18 29287.88 30294.44 26172.52 32689.08 27986.21 32988.57 17691.44 24688.40 33464.22 33198.00 22568.35 34695.88 27293.12 320
USDC89.02 24289.08 23288.84 28695.07 24074.50 31288.97 28096.39 18473.21 32293.27 20096.28 14382.16 24396.39 29977.55 30198.80 12895.62 270
testdata188.96 28188.44 178
pmmvs587.87 26387.14 27090.07 26793.26 28376.97 29088.89 28292.18 28773.71 32088.36 30193.89 24676.86 28796.73 28980.32 27496.81 25196.51 228
test22296.95 13885.27 17388.83 28393.61 26065.09 35290.74 25994.85 21284.62 22397.36 23493.91 306
baseline283.38 30381.54 31288.90 28491.38 31672.84 32588.78 28481.22 35678.97 29179.82 35487.56 33761.73 34497.80 24274.30 32190.05 34296.05 250
diffmvs91.74 18391.93 17491.15 23693.06 28778.17 27188.77 28597.51 11086.28 21492.42 22693.96 24388.04 17997.46 26290.69 12696.67 25697.82 168
MDTV_nov1_ep1383.88 30089.42 33961.52 36088.74 28687.41 32273.99 31884.96 32794.01 24165.25 32795.53 31478.02 29693.16 318
D2MVS89.93 22989.60 22790.92 24394.03 27178.40 26888.69 28794.85 23478.96 29293.08 20795.09 20074.57 29396.94 28188.19 18498.96 10897.41 194
TR-MVS87.70 26687.17 26989.27 28094.11 26879.26 25588.69 28791.86 29581.94 26890.69 26089.79 32082.82 23597.42 26572.65 33091.98 33391.14 339
PatchMatch-RL89.18 23988.02 25792.64 18795.90 20892.87 4588.67 28991.06 30080.34 27590.03 27291.67 29683.34 22894.42 33276.35 31194.84 29490.64 342
PAPR87.65 26986.77 27790.27 26192.85 29177.38 28288.56 29096.23 19176.82 30784.98 32689.75 32286.08 21297.16 27572.33 33193.35 31596.26 241
MDTV_nov1_ep13_2view42.48 36788.45 29167.22 34783.56 33666.80 31772.86 32994.06 301
jason89.17 24088.32 24691.70 21895.73 21680.07 23588.10 29293.22 26771.98 32890.09 26992.79 27378.53 27098.56 17987.43 19997.06 24196.46 233
jason: jason.
BH-w/o87.21 27987.02 27387.79 30394.77 24877.27 28487.90 29393.21 26981.74 26989.99 27388.39 33583.47 22796.93 28371.29 33792.43 32989.15 344
MS-PatchMatch88.05 26187.75 25988.95 28393.28 28177.93 27387.88 29492.49 28375.42 31192.57 22293.59 25480.44 25794.24 33781.28 26792.75 32494.69 290
DELS-MVS92.05 17992.16 16791.72 21794.44 26180.13 23487.62 29597.25 13187.34 20092.22 23593.18 26489.54 16498.73 15489.67 15598.20 19096.30 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 30182.20 30989.41 27689.04 34276.37 29787.57 29690.98 30172.71 32684.46 32992.45 28168.08 31096.48 29670.58 34283.97 35195.38 273
ADS-MVSNet82.25 31081.55 31184.34 32889.04 34265.30 35187.57 29685.13 34572.71 32684.46 32992.45 28168.08 31092.33 34770.58 34283.97 35195.38 273
IterMVS-SCA-FT91.65 18591.55 18291.94 21193.89 27479.22 25787.56 29893.51 26391.53 11295.37 12896.62 11978.65 26798.90 12191.89 10194.95 29197.70 177
IterMVS90.18 22090.16 21490.21 26493.15 28575.98 30087.56 29892.97 27186.43 21294.09 17296.40 13178.32 27197.43 26487.87 19294.69 29897.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 27386.58 27990.25 26296.80 14877.75 27787.53 30096.25 18969.73 33986.47 31893.61 25375.67 29197.88 23379.95 28093.20 31795.11 279
cl_fuxian91.32 19591.42 18791.00 24192.29 29976.79 29287.52 30196.42 18285.76 22494.72 16093.89 24682.73 23698.16 21490.93 12298.55 14698.04 142
UnsupCasMVSNet_bld88.50 25488.03 25689.90 27095.52 22878.88 26287.39 30294.02 25679.32 28893.06 20894.02 24080.72 25694.27 33575.16 31793.08 32196.54 226
lupinMVS88.34 25787.31 26591.45 22494.74 25180.06 23687.23 30392.27 28671.10 33288.83 28991.15 30277.02 28298.53 18286.67 20996.75 25495.76 262
pmmvs488.95 24687.70 26192.70 18594.30 26485.60 16987.22 30492.16 28974.62 31489.75 28194.19 23377.97 27496.41 29882.71 25296.36 26296.09 247
WTY-MVS86.93 28686.50 28488.24 29794.96 24174.64 30887.19 30592.07 29278.29 29788.32 30291.59 29878.06 27394.27 33574.88 31893.15 31995.80 260
ET-MVSNet_ETH3D86.15 28984.27 29791.79 21493.04 28881.28 22187.17 30686.14 33079.57 28383.65 33488.66 33157.10 35198.18 21287.74 19495.40 28295.90 257
MVS-HIRNet78.83 32980.60 32173.51 34493.07 28647.37 36587.10 30778.00 36168.94 34177.53 35797.26 7671.45 30594.62 32863.28 35588.74 34478.55 358
xiu_mvs_v2_base89.00 24489.19 22988.46 29494.86 24474.63 30986.97 30895.60 21180.88 27287.83 30888.62 33291.04 13798.81 13982.51 25694.38 30291.93 334
DPM-MVS89.35 23788.40 24592.18 20596.13 19284.20 18586.96 30996.15 19775.40 31287.36 31391.55 29983.30 22998.01 22482.17 26096.62 25794.32 297
eth_miper_zixun_eth90.72 20390.61 20791.05 23792.04 30676.84 29186.91 31096.67 17085.21 23194.41 16593.92 24479.53 26298.26 20589.76 15397.02 24398.06 139
dp79.28 32778.62 33081.24 33785.97 35756.45 36386.91 31085.26 34372.97 32481.45 35089.17 33056.01 35595.45 31973.19 32776.68 35991.82 337
sss87.23 27886.82 27588.46 29493.96 27277.94 27286.84 31292.78 27677.59 30087.61 31191.83 29378.75 26691.92 34877.84 29894.20 30795.52 272
miper_ehance_all_eth90.48 20990.42 21190.69 25091.62 31376.57 29486.83 31396.18 19583.38 25094.06 17592.66 27882.20 24298.04 22089.79 15297.02 24397.45 192
CLD-MVS91.82 18291.41 18893.04 17096.37 16683.65 19386.82 31497.29 12884.65 24492.27 23489.67 32392.20 10697.85 23983.95 24299.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl-mvsnet____90.65 20690.56 20890.91 24591.85 30876.98 28986.75 31595.36 22585.53 22794.06 17594.89 21077.36 28097.98 22890.27 13898.98 10297.76 173
cl-mvsnet190.65 20690.56 20890.91 24591.85 30876.99 28886.75 31595.36 22585.52 22994.06 17594.89 21077.37 27997.99 22790.28 13798.97 10697.76 173
PS-MVSNAJ88.86 24888.99 23588.48 29394.88 24274.71 30786.69 31795.60 21180.88 27287.83 30887.37 34090.77 14098.82 13482.52 25594.37 30391.93 334
PVSNet_Blended88.74 25188.16 25590.46 25794.81 24678.80 26586.64 31896.93 15174.67 31388.68 29889.18 32986.27 21098.15 21580.27 27596.00 26794.44 294
MSDG90.82 20090.67 20691.26 23094.16 26683.08 20286.63 31996.19 19490.60 13591.94 24091.89 29289.16 16795.75 31280.96 27394.51 30194.95 283
cl-mvsnet289.02 24288.50 24390.59 25389.76 33376.45 29586.62 32094.03 25482.98 25892.65 21992.49 27972.05 30397.53 25788.93 17097.02 24397.78 171
CL-MVSNet_2432*160090.04 22789.90 22190.47 25595.24 23777.81 27686.60 32192.62 28085.64 22693.25 20393.92 24483.84 22696.06 30879.93 28298.03 20597.53 189
PCF-MVS84.52 1789.12 24187.71 26093.34 16396.06 19585.84 16686.58 32297.31 12568.46 34393.61 19093.89 24687.51 18898.52 18367.85 34798.11 19895.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Patchmatch-RL test88.81 24988.52 24289.69 27395.33 23679.94 24086.22 32392.71 27778.46 29695.80 11094.18 23466.25 32295.33 32389.22 16698.53 15093.78 309
FPMVS84.50 29883.28 30288.16 29896.32 17494.49 1485.76 32485.47 33983.09 25585.20 32494.26 23063.79 33586.58 35863.72 35491.88 33583.40 353
IB-MVS77.21 1983.11 30481.05 31589.29 27991.15 31875.85 30185.66 32586.00 33379.70 28182.02 34786.61 34348.26 36398.39 19277.84 29892.22 33093.63 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 19790.88 19991.55 22294.68 25680.16 23185.49 32692.14 29090.41 14094.93 15095.79 16685.10 21996.93 28385.15 22794.19 30897.57 185
new-patchmatchnet88.97 24590.79 20383.50 33294.28 26555.83 36485.34 32793.56 26286.18 21695.47 12395.73 17083.10 23196.51 29585.40 22498.06 20298.16 132
miper_enhance_ethall88.42 25587.87 25890.07 26788.67 34675.52 30485.10 32895.59 21575.68 30892.49 22389.45 32678.96 26497.88 23387.86 19397.02 24396.81 220
HyFIR lowres test87.19 28185.51 29192.24 20097.12 13480.51 22985.03 32996.06 19866.11 34991.66 24492.98 26970.12 30799.14 8575.29 31695.23 28797.07 208
pmmvs380.83 32178.96 32986.45 31287.23 35277.48 28184.87 33082.31 35363.83 35485.03 32589.50 32549.66 36193.10 34373.12 32895.10 28988.78 348
test0.0.03 182.48 30981.47 31385.48 31989.70 33473.57 31984.73 33181.64 35583.07 25688.13 30586.61 34362.86 33989.10 35766.24 35190.29 34193.77 310
N_pmnet88.90 24787.25 26793.83 14994.40 26393.81 3484.73 33187.09 32479.36 28793.26 20192.43 28479.29 26391.68 34977.50 30397.22 23896.00 251
GA-MVS87.70 26686.82 27590.31 25993.27 28277.22 28584.72 33392.79 27585.11 23689.82 27790.07 31566.80 31797.76 24884.56 23894.27 30695.96 253
ppachtmachnet_test88.61 25388.64 24188.50 29291.76 31070.99 33384.59 33492.98 27079.30 28992.38 22893.53 25679.57 26197.45 26386.50 21497.17 23997.07 208
CHOSEN 1792x268887.19 28185.92 28991.00 24197.13 13379.41 25284.51 33595.60 21164.14 35390.07 27194.81 21378.26 27297.14 27673.34 32595.38 28496.46 233
thisisatest051584.72 29782.99 30589.90 27092.96 29075.33 30684.36 33683.42 35177.37 30288.27 30386.65 34253.94 35798.72 15582.56 25497.40 23395.67 266
cascas87.02 28586.28 28689.25 28191.56 31576.45 29584.33 33796.78 16371.01 33386.89 31785.91 34881.35 25096.94 28183.09 24995.60 27694.35 296
bset_n11_16_dypcd89.99 22889.15 23192.53 19494.75 24981.34 22084.19 33887.56 32185.13 23493.77 18492.46 28072.82 29999.01 10792.46 8699.21 7897.23 205
new_pmnet81.22 31881.01 31781.86 33690.92 32270.15 33684.03 33980.25 36070.83 33485.97 32189.78 32167.93 31384.65 35967.44 34891.90 33490.78 341
PAPM81.91 31580.11 32587.31 30793.87 27572.32 32884.02 34093.22 26769.47 34076.13 35989.84 31772.15 30297.23 27353.27 36089.02 34392.37 331
our_test_387.55 27187.59 26287.44 30691.76 31070.48 33483.83 34190.55 30579.79 27992.06 23992.17 28878.63 26995.63 31384.77 23594.73 29696.22 242
miper_lstm_enhance89.90 23089.80 22290.19 26691.37 31777.50 28083.82 34295.00 22984.84 24193.05 20994.96 20776.53 28995.20 32689.96 14998.67 14097.86 163
test-LLR83.58 30283.17 30384.79 32589.68 33566.86 34783.08 34384.52 34683.07 25682.85 34084.78 35162.86 33993.49 34182.85 25094.86 29294.03 302
TESTMET0.1,179.09 32878.04 33182.25 33587.52 34964.03 35883.08 34380.62 35870.28 33780.16 35383.22 35444.13 36790.56 35279.95 28093.36 31492.15 332
test-mter81.21 31980.01 32684.79 32589.68 33566.86 34783.08 34384.52 34673.85 31982.85 34084.78 35143.66 36893.49 34182.85 25094.86 29294.03 302
test1239.49 33512.01 3381.91 3482.87 3691.30 37082.38 3461.34 3711.36 3652.84 3666.56 3652.45 3710.97 3662.73 3645.56 3643.47 362
PMMVS83.00 30681.11 31488.66 29083.81 36386.44 15282.24 34785.65 33661.75 35782.07 34585.64 34979.75 26091.59 35075.99 31393.09 32087.94 349
KD-MVS_2432*160082.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
miper_refine_blended82.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
YYNet188.17 25988.24 25087.93 30092.21 30173.62 31880.75 35088.77 31082.51 26394.99 14895.11 19982.70 23793.70 33983.33 24693.83 31096.48 232
MDA-MVSNet_test_wron88.16 26088.23 25187.93 30092.22 30073.71 31780.71 35188.84 30982.52 26294.88 15395.14 19782.70 23793.61 34083.28 24793.80 31196.46 233
testmvs9.02 33611.42 3391.81 3492.77 3701.13 37179.44 3521.90 3701.18 3662.65 3676.80 3641.95 3720.87 3672.62 3653.45 3653.44 363
PVSNet76.22 2082.89 30782.37 30784.48 32793.96 27264.38 35778.60 35388.61 31171.50 33084.43 33186.36 34674.27 29494.60 32969.87 34493.69 31394.46 293
PVSNet_070.34 2174.58 33072.96 33379.47 34090.63 32466.24 35073.26 35483.40 35263.67 35578.02 35678.35 35972.53 30089.59 35556.68 35860.05 36282.57 356
E-PMN80.72 32380.86 31880.29 33985.11 35968.77 34272.96 35581.97 35487.76 19183.25 33983.01 35562.22 34289.17 35677.15 30694.31 30582.93 354
CHOSEN 280x42080.04 32677.97 33286.23 31690.13 33074.53 31172.87 35689.59 30866.38 34876.29 35885.32 35056.96 35295.36 32169.49 34594.72 29788.79 347
EMVS80.35 32580.28 32480.54 33884.73 36169.07 34172.54 35780.73 35787.80 19081.66 34981.73 35662.89 33889.84 35475.79 31594.65 29982.71 355
PMMVS281.31 31783.44 30174.92 34390.52 32646.49 36669.19 35885.23 34484.30 24687.95 30794.71 21976.95 28484.36 36064.07 35398.09 20093.89 307
tmp_tt37.97 33344.33 33618.88 34711.80 36821.54 36863.51 35945.66 3694.23 36451.34 36450.48 36259.08 34922.11 36544.50 36268.35 36113.00 361
MVEpermissive59.87 2373.86 33172.65 33477.47 34287.00 35574.35 31361.37 36060.93 36667.27 34669.69 36286.49 34581.24 25472.33 36256.45 35983.45 35385.74 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 33248.94 33554.93 34539.68 36712.38 36928.59 36190.09 3066.82 36341.10 36578.41 35854.41 35670.69 36350.12 36151.26 36381.72 357
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.35 33431.13 3370.00 3500.00 3710.00 3720.00 36295.58 2170.00 3670.00 36891.15 30293.43 750.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.56 33710.09 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36890.77 1400.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.56 33710.08 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36890.69 3110.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS97.23 12590.32 7797.54 10584.40 24594.78 15695.79 16692.76 9599.39 4588.72 17898.40 159
IU-MVS98.51 4586.66 14796.83 16072.74 32595.83 10993.00 7299.29 6598.64 96
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
test_241102_ONE98.51 4586.97 13898.10 4491.85 9497.63 3197.03 9096.48 1198.95 117
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
sam_mvs166.64 32094.75 287
sam_mvs66.41 321
MTGPAbinary97.62 97
test_post6.07 36665.74 32595.84 311
patchmatchnet-post91.71 29566.22 32397.59 255
gm-plane-assit87.08 35459.33 36171.22 33183.58 35397.20 27473.95 322
test9_res88.16 18698.40 15997.83 166
agg_prior287.06 20498.36 17097.98 149
agg_prior96.20 18388.89 10096.88 15790.21 26798.78 145
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
test_prior94.61 11395.95 20487.23 13197.36 12098.68 16597.93 155
新几何193.17 16997.16 13087.29 13094.43 24667.95 34491.29 24994.94 20886.97 19898.23 20781.06 27297.75 21793.98 305
旧先验196.20 18384.17 18694.82 23695.57 17989.57 16397.89 21396.32 238
原ACMM192.87 18096.91 14184.22 18497.01 14576.84 30689.64 28294.46 22488.00 18098.70 16181.53 26598.01 20795.70 265
testdata298.03 22180.24 277
segment_acmp92.14 107
testdata91.03 23896.87 14382.01 21094.28 25071.55 32992.46 22495.42 18885.65 21797.38 27082.64 25397.27 23693.70 312
test1294.43 12895.95 20486.75 14396.24 19089.76 28089.79 16298.79 14197.95 21097.75 175
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 199
plane_prior597.81 8598.95 11789.26 16498.51 15398.60 103
plane_prior495.59 175
plane_prior388.43 11390.35 14193.31 196
plane_prior197.38 120
n20.00 372
nn0.00 372
door-mid92.13 291
lessismore_v093.87 14898.05 7883.77 19280.32 35997.13 5097.91 4277.49 27699.11 9192.62 8298.08 20198.74 87
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
test1196.65 171
door91.26 299
HQP5-MVS84.89 176
BP-MVS86.55 212
HQP4-MVS88.81 29198.61 17198.15 133
HQP3-MVS97.31 12597.73 218
HQP2-MVS84.76 221
NP-MVS96.82 14587.10 13493.40 258
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 146
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17891.93 9094.82 15495.39 19191.99 11197.08 27785.53 22397.96 20997.41 194
DeepMVS_CXcopyleft53.83 34670.38 36664.56 35648.52 36833.01 36265.50 36374.21 36156.19 35446.64 36438.45 36370.07 36050.30 360