This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 16996.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6298.84 12894.64 3399.53 3998.99 56
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15498.45 498.22 3793.26 7197.54 4097.36 9393.12 9599.38 5593.88 4798.68 15598.04 154
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4096.95 1495.46 14499.23 493.45 8299.57 1495.34 2999.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7394.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11398.16 298.94 299.33 297.84 499.08 9390.73 13999.73 1399.59 13
tt080595.42 7695.93 5793.86 15198.75 3288.47 11797.68 994.29 26996.48 2195.38 14793.63 28194.89 5597.94 23495.38 2796.92 26995.17 305
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26593.12 7397.94 2798.54 2581.19 27399.63 695.48 2399.69 1499.60 12
EPP-MVSNet93.91 13793.68 14494.59 12198.08 8185.55 18497.44 1294.03 27494.22 5094.94 17196.19 18082.07 26199.57 1487.28 22598.89 12598.65 106
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7697.31 1195.32 15296.77 13893.08 9799.20 8091.79 11598.16 20697.44 212
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4693.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
MVSFormer92.18 18992.23 18192.04 21894.74 27780.06 25697.15 1597.37 12488.98 17488.83 31892.79 30277.02 30699.60 996.41 996.75 27696.46 257
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12488.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12191.25 12897.49 4498.14 3983.49 24299.45 2795.52 2199.66 2199.36 24
IS-MVSNet94.49 11294.35 12394.92 10298.25 7286.46 15997.13 1894.31 26896.24 2596.28 10196.36 16982.88 25099.35 6088.19 20599.52 4198.96 64
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16497.11 1998.24 3597.58 898.72 898.97 793.15 9499.15 8493.18 7999.74 1299.50 17
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 10887.68 20498.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4292.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1852.44 4065.32 40798.25 3792.24 11598.02 22691.85 11399.21 9097.45 210
v7n96.82 997.31 1095.33 8698.54 4786.81 14896.83 2398.07 6196.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 5892.67 8195.08 16796.39 16694.77 5899.42 3393.17 8099.44 5098.58 118
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16299.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5897.42 998.48 1697.86 6191.76 12899.63 694.23 4199.84 399.66 6
FE-MVS89.06 25988.29 26791.36 24094.78 27479.57 27196.77 2890.99 32484.87 25492.96 23696.29 17360.69 38098.80 13880.18 30997.11 26095.71 290
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25194.79 24393.56 7999.49 2493.47 6499.05 10697.89 174
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8696.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25487.06 14296.63 3197.28 13891.82 11094.34 19197.41 8790.60 15898.65 16692.47 9998.11 21097.70 194
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20496.61 3297.97 7897.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10887.57 20698.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19496.54 3498.05 6598.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19396.51 3597.94 8498.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18996.49 15694.56 6499.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21588.45 26197.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18926.89 40494.56 6499.39 4993.57 5799.05 10698.93 68
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24294.52 25393.95 7699.49 2493.62 5699.22 8997.51 207
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9992.59 8295.47 14296.68 14894.50 6699.42 3393.10 8299.26 8298.99 56
QAPM92.88 16692.77 16793.22 17595.82 23683.31 21196.45 3997.35 13083.91 26493.75 20696.77 13889.25 17798.88 12184.56 26897.02 26397.49 208
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12286.96 21598.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
Gipumacopyleft95.31 8495.80 6593.81 15497.99 9390.91 7096.42 4297.95 8196.69 1791.78 27198.85 1291.77 12695.49 34191.72 11799.08 10295.02 313
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4291.26 12695.12 16395.15 22686.60 21799.50 2193.43 7096.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12294.85 5699.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17285.23 24494.75 17997.12 11591.85 12499.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28493.73 27993.52 8199.55 1891.81 11499.45 4797.58 201
ACMH88.36 1296.59 2797.43 594.07 14098.56 4285.33 18796.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 22894.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7992.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 8091.98 12299.63 693.08 8499.81 899.70 3
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7692.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7992.35 8895.57 13796.61 15294.93 5499.41 3993.78 5199.15 9899.00 54
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9196.13 2694.74 18097.23 10591.33 13599.16 8393.25 7798.30 19298.46 125
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16893.73 6097.87 2898.49 2990.73 15599.05 9886.43 24199.60 2799.10 47
test250685.42 31884.57 32187.96 32597.81 10266.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16288.09 20999.18 9498.67 104
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6195.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9792.73 7893.48 21496.72 14694.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4991.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
FA-MVS(test-final)91.81 19491.85 19291.68 22994.95 26779.99 26096.00 6293.44 28687.80 19994.02 19997.29 10177.60 29798.45 18988.04 21197.49 24596.61 249
GBi-Net93.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
test193.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
FMVSNet194.84 9995.13 9493.97 14397.60 11984.29 19795.99 6396.56 18992.38 8597.03 6698.53 2690.12 16698.98 10688.78 19799.16 9798.65 106
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11592.42 8493.41 21597.78 6291.21 14097.77 25391.06 13097.06 26198.80 85
SixPastTwentyTwo94.91 9695.21 9093.98 14298.52 4983.19 21695.93 6794.84 25594.86 4198.49 1598.74 1681.45 26799.60 994.69 3299.39 5899.15 39
ambc92.98 17996.88 15583.01 22095.92 6896.38 19996.41 9297.48 8588.26 18497.80 24889.96 16798.93 12498.12 149
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5781.77 23395.90 6998.32 2593.93 5697.53 4297.56 7588.48 18199.40 4692.91 8999.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10694.46 4796.29 9996.94 12893.56 7999.37 5794.29 4099.42 5298.99 56
CPTT-MVS94.74 10294.12 13196.60 4398.15 7793.01 4295.84 7197.66 10389.21 17193.28 22195.46 21488.89 17998.98 10689.80 16998.82 13897.80 185
ab-mvs92.40 18292.62 17491.74 22597.02 14781.65 23595.84 7195.50 23686.95 21692.95 23797.56 7590.70 15697.50 27079.63 31797.43 24996.06 274
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
ECVR-MVScopyleft90.12 23690.16 23190.00 28897.81 10272.68 35595.76 7478.54 39989.04 17295.36 15098.10 4270.51 33698.64 16787.10 22799.18 9498.67 104
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7393.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19394.53 28584.10 20395.70 7597.03 15482.44 28691.14 28296.42 16088.47 18298.38 19485.95 24697.47 24795.55 299
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7392.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16890.30 15399.60 2798.72 96
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10493.38 6995.89 12197.23 10593.35 8797.66 26388.20 20498.66 15997.79 186
test111190.39 22690.61 22289.74 29298.04 8771.50 36195.59 8079.72 39689.41 16495.94 11798.14 3970.79 33598.81 13588.52 20299.32 6898.90 74
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 31994.95 5398.66 16491.45 12597.57 24397.20 226
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8298.56 1591.84 10796.36 9496.68 14894.37 7099.32 6992.41 10099.05 10698.64 111
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8397.88 8588.72 18098.81 698.86 1090.77 15199.60 995.43 2699.53 3999.57 14
PMVScopyleft87.21 1494.97 9495.33 8593.91 14898.97 1797.16 295.54 8495.85 22196.47 2293.40 21797.46 8695.31 3595.47 34286.18 24598.78 14389.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 13194.27 12793.31 17298.87 2182.36 22895.51 8591.78 31897.19 1296.32 9698.60 2284.24 23898.75 14687.09 22898.83 13798.81 84
pm-mvs195.43 7395.94 5593.93 14798.38 6285.08 19095.46 8697.12 14991.84 10797.28 5698.46 3095.30 3697.71 26090.17 16099.42 5298.99 56
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8798.22 3792.36 8794.11 19298.07 4492.02 12099.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 5086.69 15295.34 8898.18 4291.85 10497.63 3597.37 9095.58 24
FIs94.90 9795.35 8393.55 16198.28 6881.76 23495.33 8998.14 5093.05 7697.07 6297.18 11087.65 19599.29 7091.72 11799.69 1499.61 11
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 8998.30 2891.40 12495.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 8998.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
AllTest94.88 9894.51 11796.00 5698.02 8892.17 5095.26 9298.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14495.21 9398.10 5591.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
OPU-MVS95.15 9796.84 15989.43 9295.21 9395.66 20693.12 9598.06 22186.28 24498.61 16197.95 167
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15295.20 9597.00 15691.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9598.22 3799.38 5593.44 6799.31 6998.53 120
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17395.19 9796.77 17696.64 1997.61 3898.05 4593.23 9198.79 13988.60 20199.04 11198.78 87
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 9897.79 9686.48 21897.42 5097.51 8394.47 6999.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 9997.37 12493.92 5897.65 3495.90 19290.10 16899.33 6890.11 16299.66 2199.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 18098.37 6481.92 23295.07 10096.76 17793.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
UGNet93.08 15992.50 17794.79 10893.87 30287.99 12595.07 10094.26 27190.64 14287.33 34897.67 6886.89 21198.49 18388.10 20898.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 24688.90 25592.55 20197.00 14879.73 26895.03 10283.65 38089.88 15695.30 15394.79 24353.64 39199.39 4991.99 10898.79 14298.54 119
LFMVS91.33 20591.16 21091.82 22296.27 20179.36 27595.01 10385.61 36796.04 3094.82 17697.06 12072.03 33198.46 18884.96 26398.70 15297.65 198
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10397.57 11192.68 7996.20 10793.44 28791.92 12398.78 14289.11 18999.24 8596.92 237
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10565.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10690.00 33257.17 40095.71 13297.37 9064.77 36397.68 26292.67 9594.37 33294.52 331
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11779.49 27394.86 10797.12 14989.59 16296.87 7497.65 6990.40 16298.34 19989.08 19099.35 6198.75 91
MTMP94.82 10854.62 410
PHI-MVS94.34 11993.80 13895.95 5995.65 24791.67 6294.82 10897.86 8687.86 19893.04 23394.16 26491.58 13098.78 14290.27 15598.96 12197.41 213
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11067.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11098.03 7090.82 13797.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 8895.73 6793.55 16196.62 17388.88 10794.67 11298.05 6591.26 12697.25 5896.40 16295.42 2894.36 36192.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 20191.61 19691.26 24594.16 29186.26 16694.66 11394.82 25691.17 13092.13 26691.08 33290.03 17197.06 29679.09 32497.35 25390.45 382
v1094.68 10695.27 8992.90 18596.57 17580.15 25294.65 11497.57 11190.68 14197.43 4898.00 5088.18 18599.15 8494.84 3199.55 3899.41 20
v894.65 10795.29 8792.74 19096.65 16979.77 26794.59 11597.17 14491.86 10397.47 4797.93 5488.16 18699.08 9394.32 3899.47 4399.38 22
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11597.81 9289.22 17095.46 14496.17 18393.42 8599.34 6389.30 18098.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10583.15 21794.58 11797.58 11093.39 6897.05 6598.04 4793.25 9098.51 18289.75 17299.59 2999.08 48
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11898.03 7090.42 14896.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
HQP_MVS94.26 12293.93 13495.23 9397.71 11188.12 12294.56 11997.81 9291.74 11593.31 21895.59 20886.93 20998.95 11489.26 18498.51 17398.60 116
plane_prior294.56 11991.74 115
tfpnnormal94.27 12194.87 10392.48 20397.71 11180.88 24794.55 12195.41 24093.70 6196.67 8497.72 6591.40 13498.18 21387.45 22199.18 9498.36 130
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12298.05 6590.45 14796.31 9796.76 14092.91 10298.72 15191.19 12899.42 5298.32 132
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12297.64 10496.94 1596.58 8897.32 10093.07 9898.72 15190.45 14598.84 13297.57 202
MIMVSNet87.13 30686.54 30588.89 30796.05 22076.11 32694.39 12488.51 33781.37 29588.27 33396.75 14272.38 32895.52 33965.71 39095.47 30495.03 312
K. test v393.37 14993.27 15993.66 15798.05 8482.62 22494.35 12586.62 35696.05 2997.51 4398.85 1276.59 31399.65 393.21 7898.20 20498.73 95
MVS_030493.92 13693.68 14494.64 11695.94 23085.83 17794.34 12688.14 34392.98 7791.09 28397.68 6686.73 21499.36 5896.64 799.59 2998.72 96
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 24997.66 11777.32 30994.33 12787.66 34991.20 12992.99 23495.13 22875.40 31898.28 20277.86 32999.19 9297.99 162
ANet_high94.83 10096.28 3790.47 27296.65 16973.16 35094.33 12798.74 1296.39 2498.09 2598.93 893.37 8698.70 15890.38 14899.68 1899.53 15
MM94.41 11594.14 13095.22 9495.84 23487.21 13894.31 12990.92 32694.48 4692.80 24097.52 8085.27 23099.49 2496.58 899.57 3698.97 62
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13098.76 1186.25 22297.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 137
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13098.08 5889.46 16396.61 8796.47 15795.85 1899.12 9090.45 14599.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 23188.87 25694.66 11594.82 27191.85 5794.22 13294.75 25980.91 29987.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 17092.73 17192.95 18295.40 25681.98 23194.18 13395.53 23588.63 18296.05 11397.37 9081.31 26998.81 13587.38 22498.67 15798.06 151
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14697.36 13385.72 18094.15 13495.44 23783.25 27195.51 13998.05 4592.54 11197.19 28895.55 2097.46 24898.94 66
Anonymous2024052192.86 16893.57 15090.74 26596.57 17575.50 33394.15 13495.60 22789.38 16595.90 12097.90 6080.39 27797.96 23292.60 9799.68 1898.75 91
GeoE94.55 11094.68 11394.15 13697.23 13885.11 18994.14 13697.34 13188.71 18195.26 15695.50 21394.65 6199.12 9090.94 13498.40 17998.23 138
9.1494.81 10497.49 12694.11 13798.37 2187.56 20795.38 14796.03 18894.66 6099.08 9390.70 14098.97 119
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9893.58 3794.09 13896.99 15891.05 13292.40 25695.22 22591.03 14799.25 7592.11 10398.69 15397.90 172
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29894.02 13991.58 32175.68 34083.64 37493.64 28077.40 30097.42 27671.70 37192.07 37193.05 362
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14095.41 24089.94 15491.93 27092.13 31790.12 16698.97 11087.68 21897.48 24697.67 197
Effi-MVS+92.79 16992.74 16992.94 18395.10 26483.30 21294.00 14097.53 11591.36 12589.35 31490.65 34194.01 7598.66 16487.40 22395.30 31096.88 241
bld_raw_dy_0_6490.86 21090.99 21290.47 27293.95 29977.88 30193.99 14298.93 777.75 32897.03 6690.61 34281.82 26698.58 17585.18 25399.61 2694.95 315
VDD-MVS94.37 11694.37 12194.40 13197.49 12686.07 17193.97 14393.28 28894.49 4596.24 10397.78 6287.99 19198.79 13988.92 19399.14 9998.34 131
h-mvs3392.89 16591.99 18895.58 7796.97 14990.55 7693.94 14494.01 27789.23 16893.95 20196.19 18076.88 30999.14 8691.02 13195.71 29897.04 233
EPNet89.80 24788.25 27094.45 12983.91 40586.18 16893.87 14587.07 35491.16 13180.64 39394.72 24578.83 28698.89 12085.17 25598.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs392.42 18192.40 18092.46 20593.80 30587.28 13693.86 14697.05 15376.86 33596.25 10298.66 1882.87 25191.26 38095.44 2596.83 27298.82 82
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14698.02 7287.35 20896.22 10597.99 5294.48 6899.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 12694.58 11693.04 17795.91 23183.13 21893.79 14899.19 392.00 9798.84 598.04 4793.64 7899.02 10381.28 29898.54 16996.96 236
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 14997.86 8695.96 3297.48 4697.14 11395.33 3499.44 2990.79 13799.76 1099.38 22
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14084.37 19593.73 15095.26 24484.45 25995.76 12698.00 5091.85 12497.21 28595.62 1797.82 23198.98 60
PAPM_NR91.03 20990.81 21791.68 22996.73 16481.10 24493.72 15196.35 20088.19 19188.77 32492.12 31885.09 23397.25 28382.40 28793.90 34496.68 248
baseline94.26 12294.80 10592.64 19496.08 21880.99 24593.69 15298.04 6990.80 13894.89 17496.32 17193.19 9298.48 18791.68 11998.51 17398.43 127
dcpmvs_293.96 13495.01 9990.82 26397.60 11974.04 34593.68 15398.85 889.80 15897.82 2997.01 12591.14 14599.21 7890.56 14398.59 16499.19 36
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15296.72 16585.73 17993.65 15495.23 24583.30 26995.13 16297.56 7592.22 11697.17 28995.51 2297.41 25098.64 111
F-COLMAP92.28 18691.06 21195.95 5997.52 12491.90 5693.53 15597.18 14383.98 26388.70 32694.04 26788.41 18398.55 17980.17 31095.99 29297.39 217
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15698.60 1485.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 142
FMVSNet587.82 28786.56 30491.62 23192.31 33079.81 26693.49 15794.81 25883.26 27091.36 27696.93 12952.77 39397.49 27276.07 34698.03 21797.55 205
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 15898.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 15392.85 16694.50 12595.70 24387.45 13393.45 15995.76 22291.58 12095.25 15892.42 31381.96 26398.72 15191.61 12097.87 22997.33 221
test_fmvsmvis_n_192095.08 9195.40 8194.13 13896.66 16887.75 13093.44 16098.49 1685.57 23998.27 2097.11 11694.11 7497.75 25696.26 1198.72 14896.89 239
114514_t90.51 22089.80 24092.63 19698.00 9082.24 22993.40 16197.29 13665.84 39189.40 31394.80 24286.99 20798.75 14683.88 27398.61 16196.89 239
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17096.69 16684.37 19593.38 16295.13 24784.50 25895.40 14697.55 7991.77 12697.20 28695.59 1897.79 23298.69 103
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12096.14 21387.90 12693.36 16397.14 14685.53 24093.90 20495.45 21591.30 13798.59 17389.51 17598.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16498.32 2587.89 19796.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6196.22 4094.26 13498.19 7585.77 17893.24 16597.24 14096.88 1697.69 3397.77 6494.12 7399.13 8891.54 12499.29 7497.88 175
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16698.36 2285.61 23896.92 7398.02 4995.23 3998.38 19496.69 698.95 12398.09 150
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16798.07 6185.63 23797.08 6197.35 9690.86 14897.66 26395.70 1698.48 17697.74 192
sd_testset93.94 13594.39 11992.61 19897.93 9583.24 21393.17 16895.04 24993.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 100
MSLP-MVS++93.25 15593.88 13591.37 23996.34 19482.81 22393.11 16997.74 9989.37 16694.08 19495.29 22490.40 16296.35 32390.35 15098.25 19794.96 314
baseline187.62 29287.31 28788.54 31494.71 28074.27 34393.10 17088.20 34186.20 22492.18 26593.04 29573.21 32595.52 33979.32 32185.82 39195.83 285
plane_prior88.12 12293.01 17188.98 17498.06 214
thres100view90087.35 29986.89 29888.72 31096.14 21373.09 35193.00 17285.31 37092.13 9593.26 22390.96 33463.42 36998.28 20271.27 37496.54 28194.79 324
Patchmtry90.11 23789.92 23790.66 26790.35 37077.00 31392.96 17392.81 29690.25 15194.74 18096.93 12967.11 34797.52 26985.17 25598.98 11497.46 209
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17496.60 18585.08 25092.44 25493.62 28286.80 21296.35 32386.81 23098.25 19796.18 269
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17598.07 6193.46 6796.31 9795.97 19190.14 16599.34 6392.11 10399.64 2499.16 38
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18289.69 8692.91 17597.68 10278.02 32792.79 24194.10 26590.85 14997.96 23284.76 26698.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 27487.52 28592.20 20996.33 19579.36 27592.81 17784.01 37986.44 21993.67 20992.68 30653.62 39299.25 7589.65 17498.45 17798.00 159
EIA-MVS92.35 18492.03 18693.30 17395.81 23883.97 20592.80 17898.17 4687.71 20289.79 30887.56 37091.17 14499.18 8287.97 21397.27 25496.77 245
iter_conf0588.94 26688.09 27791.50 23692.74 32276.97 31692.80 17895.92 21882.82 28093.65 21095.37 22349.41 39599.13 8890.82 13699.28 7998.40 129
thres600view787.66 29087.10 29689.36 29996.05 22073.17 34992.72 18085.31 37091.89 10293.29 22090.97 33363.42 36998.39 19173.23 36296.99 26896.51 252
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18090.67 32991.65 11998.68 1197.64 7096.06 1577.53 40359.84 39799.41 5670.73 401
test_fmvs290.62 21990.40 22891.29 24491.93 34585.46 18592.70 18296.48 19574.44 35094.91 17397.59 7375.52 31790.57 38293.44 6796.56 28097.84 180
V4293.43 14893.58 14992.97 18095.34 26081.22 24292.67 18396.49 19487.25 21096.20 10796.37 16887.32 20198.85 12792.39 10198.21 20298.85 81
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20483.23 21492.66 18498.19 4093.06 7597.49 4497.15 11294.78 5798.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18597.33 13290.05 15396.77 8096.85 13495.04 4898.56 17792.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_vis1_n89.01 26289.01 25189.03 30492.57 32582.46 22792.62 18696.06 21273.02 36090.40 29495.77 20274.86 31989.68 38890.78 13894.98 31794.95 315
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18797.81 9293.99 5396.80 7895.90 19290.10 16899.41 3991.60 12199.58 3499.26 30
FMVSNet390.78 21390.32 23092.16 21493.03 31779.92 26292.54 18894.95 25286.17 22695.10 16496.01 18969.97 33898.75 14686.74 23198.38 18397.82 183
hse-mvs292.24 18891.20 20795.38 8396.16 21090.65 7592.52 18992.01 31689.23 16893.95 20192.99 29776.88 30998.69 16091.02 13196.03 29096.81 243
MVS_Test92.57 17893.29 15690.40 27693.53 30875.85 32992.52 18996.96 15988.73 17992.35 25996.70 14790.77 15198.37 19892.53 9895.49 30396.99 235
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28292.52 18992.81 29673.08 35989.10 31596.93 12967.11 34797.64 26588.80 19692.70 36494.08 338
RPMNet90.31 23290.14 23490.81 26491.01 36178.93 28292.52 18998.12 5291.91 10189.10 31596.89 13268.84 34099.41 3990.17 16092.70 36494.08 338
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15596.16 21086.26 16692.46 19396.72 17981.69 29395.77 12597.11 11690.83 15097.82 24695.58 1997.99 22197.11 228
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19398.13 5190.69 14093.75 20696.25 17898.03 297.02 29792.08 10595.55 30198.45 126
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11792.55 32685.98 17292.44 19594.69 26193.70 6196.12 11195.81 19791.24 13898.86 12593.76 5498.22 20198.98 60
Anonymous20240521192.58 17692.50 17792.83 18896.55 17783.22 21592.43 19691.64 32094.10 5295.59 13696.64 15081.88 26597.50 27085.12 25998.52 17197.77 188
AUN-MVS90.05 24188.30 26695.32 8896.09 21790.52 7792.42 19792.05 31582.08 29088.45 33092.86 29965.76 35798.69 16088.91 19496.07 28996.75 247
EI-MVSNet-UG-set94.35 11894.27 12794.59 12192.46 32985.87 17592.42 19794.69 26193.67 6496.13 11095.84 19691.20 14198.86 12593.78 5198.23 19999.03 52
NCCC94.08 13093.54 15295.70 7596.49 18389.90 8392.39 19996.91 16590.64 14292.33 26294.60 25090.58 15998.96 11190.21 15997.70 23798.23 138
casdiffmvspermissive94.32 12094.80 10592.85 18796.05 22081.44 23992.35 20098.05 6591.53 12295.75 12896.80 13793.35 8798.49 18391.01 13398.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS92.99 16292.74 16993.72 15695.86 23386.30 16592.33 20197.84 8991.70 11892.81 23986.17 38092.22 11699.19 8188.03 21297.73 23495.66 294
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16896.10 21685.66 18292.32 20296.57 18881.32 29695.63 13497.14 11390.19 16497.73 25995.37 2898.03 21797.07 229
EI-MVSNet92.99 16293.26 16092.19 21092.12 33879.21 28092.32 20294.67 26391.77 11395.24 15995.85 19487.14 20598.49 18391.99 10898.26 19598.86 78
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20288.17 34256.15 40190.64 29095.85 19467.97 34596.69 31188.78 19790.52 38092.56 367
test_fmvs1_n88.73 27388.38 26389.76 29192.06 34082.53 22592.30 20596.59 18771.14 36992.58 24895.41 22068.55 34189.57 39091.12 12995.66 29997.18 227
OMC-MVS94.22 12593.69 14395.81 6997.25 13791.27 6492.27 20697.40 12387.10 21494.56 18495.42 21793.74 7798.11 21886.62 23598.85 13198.06 151
PM-MVS93.33 15092.67 17395.33 8696.58 17494.06 2192.26 20792.18 30985.92 23096.22 10596.61 15285.64 22895.99 33290.35 15098.23 19995.93 280
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20797.84 8994.91 4096.80 7895.78 20190.42 16099.41 3991.60 12199.58 3499.29 29
AdaColmapbinary91.63 19891.36 20492.47 20495.56 25286.36 16392.24 20996.27 20288.88 17889.90 30592.69 30591.65 12998.32 20077.38 33697.64 24092.72 366
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18397.73 10983.95 20692.14 21097.46 11978.85 32392.35 25994.98 23484.16 23999.08 9386.36 24296.77 27595.79 287
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5680.82 24892.08 21196.68 18193.82 5996.29 9998.56 2490.10 16897.75 25690.10 16499.66 2199.24 32
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12394.66 28288.25 12092.05 21296.65 18389.62 16190.08 30091.23 32992.56 11098.60 17186.30 24396.27 28796.90 238
save fliter97.46 12988.05 12492.04 21397.08 15187.63 205
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21486.09 36092.20 9389.05 31797.16 11164.15 36596.37 32289.21 18792.98 36293.37 357
EG-PatchMatch MVS94.54 11194.67 11494.14 13797.87 10086.50 15692.00 21596.74 17888.16 19396.93 7297.61 7293.04 9997.90 23591.60 12198.12 20998.03 157
v14419293.20 15893.54 15292.16 21496.05 22078.26 29491.95 21697.14 14684.98 25295.96 11596.11 18487.08 20699.04 10193.79 5098.84 13299.17 37
VNet92.67 17492.96 16291.79 22396.27 20180.15 25291.95 21694.98 25192.19 9494.52 18696.07 18687.43 19997.39 27984.83 26498.38 18397.83 181
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21894.10 27374.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21894.16 27259.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
SDMVSNet94.43 11495.02 9892.69 19297.93 9582.88 22291.92 22095.99 21793.65 6595.51 13998.63 2094.60 6396.48 31687.57 21999.35 6198.70 100
tfpn200view987.05 30786.52 30688.67 31195.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28196.51 252
v192192093.26 15393.61 14892.19 21096.04 22478.31 29391.88 22397.24 14085.17 24696.19 10996.19 18086.76 21399.05 9894.18 4298.84 13299.22 33
XXY-MVS92.58 17693.16 16190.84 26297.75 10679.84 26391.87 22496.22 20785.94 22995.53 13897.68 6692.69 10894.48 35783.21 27797.51 24498.21 140
IterMVS-LS93.78 14094.28 12592.27 20796.27 20179.21 28091.87 22496.78 17491.77 11396.57 8997.07 11987.15 20498.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 14593.81 13692.57 20096.28 20079.61 27091.86 22696.96 15986.95 21695.91 11996.32 17187.65 19598.96 11193.51 6098.88 12799.13 41
v119293.49 14693.78 13992.62 19796.16 21079.62 26991.83 22797.22 14286.07 22796.10 11296.38 16787.22 20299.02 10394.14 4398.88 12799.22 33
v124093.29 15193.71 14292.06 21796.01 22577.89 30091.81 22897.37 12485.12 24896.69 8396.40 16286.67 21599.07 9794.51 3498.76 14599.22 33
CNVR-MVS94.58 10994.29 12495.46 8296.94 15189.35 9691.81 22896.80 17389.66 16093.90 20495.44 21692.80 10698.72 15192.74 9298.52 17198.32 132
v2v48293.29 15193.63 14692.29 20696.35 19378.82 28791.77 23096.28 20188.45 18695.70 13396.26 17786.02 22398.90 11893.02 8598.81 14099.14 40
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23188.26 33984.84 25572.96 40289.85 34471.27 33497.69 26176.60 34197.62 24196.18 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 22488.92 25394.85 10596.53 18190.02 8191.58 23296.48 19580.16 30586.14 35492.18 31585.73 22598.25 20776.87 33994.61 32896.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 15993.76 14091.03 25398.60 3975.83 33191.51 23395.62 22691.84 10795.74 12997.10 11889.31 17698.32 20085.07 26299.06 10398.93 68
XVG-OURS94.72 10394.12 13196.50 4798.00 9094.23 1891.48 23498.17 4690.72 13995.30 15396.47 15787.94 19296.98 29891.41 12697.61 24298.30 135
HQP-NCC96.36 19091.37 23587.16 21188.81 320
ACMP_Plane96.36 19091.37 23587.16 21188.81 320
HQP-MVS92.09 19091.49 20193.88 14996.36 19084.89 19191.37 23597.31 13387.16 21188.81 32093.40 28884.76 23598.60 17186.55 23897.73 23498.14 147
MCST-MVS92.91 16492.51 17694.10 13997.52 12485.72 18091.36 23897.13 14880.33 30492.91 23894.24 26091.23 13998.72 15189.99 16697.93 22697.86 177
v14892.87 16793.29 15691.62 23196.25 20477.72 30491.28 23995.05 24889.69 15995.93 11896.04 18787.34 20098.38 19490.05 16597.99 22198.78 87
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24088.35 33882.87 27985.21 35890.96 33465.24 36196.75 30979.60 32085.25 39292.90 364
CANet92.38 18391.99 18893.52 16693.82 30483.46 21091.14 24197.00 15689.81 15786.47 35294.04 26787.90 19399.21 7889.50 17698.27 19497.90 172
CNLPA91.72 19691.20 20793.26 17496.17 20991.02 6791.14 24195.55 23490.16 15290.87 28593.56 28586.31 21994.40 36079.92 31697.12 25994.37 334
DP-MVS Recon92.31 18591.88 19193.60 15997.18 14286.87 14791.10 24397.37 12484.92 25392.08 26794.08 26688.59 18098.20 21083.50 27498.14 20895.73 289
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 25894.58 28481.21 24391.10 24393.41 28777.03 33493.41 21593.99 27183.23 24697.80 24879.93 31494.80 32393.74 349
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24592.61 30488.04 19494.61 18393.79 27888.08 18797.81 24789.41 17798.39 18296.50 255
MVP-Stereo90.07 24088.92 25393.54 16396.31 19786.49 15790.93 24695.59 23179.80 30691.48 27495.59 20880.79 27497.39 27978.57 32791.19 37696.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 25488.75 25791.03 25390.10 37376.62 32190.85 24794.67 26382.27 28795.24 15995.79 19861.09 37898.49 18390.49 14498.26 19597.97 166
pmmvs-eth3d91.54 20090.73 22093.99 14195.76 24187.86 12890.83 24893.98 27878.23 32694.02 19996.22 17982.62 25796.83 30786.57 23698.33 18997.29 223
CANet_DTU89.85 24589.17 24791.87 22092.20 33580.02 25990.79 24995.87 22086.02 22882.53 38391.77 32280.01 27998.57 17685.66 25097.70 23797.01 234
SSC-MVS90.16 23492.96 16281.78 37597.88 9848.48 40790.75 25087.69 34896.02 3196.70 8297.63 7185.60 22997.80 24885.73 24998.60 16399.06 50
test_prior489.91 8290.74 251
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25296.17 21087.70 20395.26 15696.29 17392.54 11196.45 31881.77 29298.77 14495.66 294
CDPH-MVS92.67 17491.83 19395.18 9696.94 15188.46 11890.70 25397.07 15277.38 33092.34 26195.08 23192.67 10998.88 12185.74 24898.57 16698.20 141
test_vis1_n_192089.45 25189.85 23988.28 32093.59 30776.71 32090.67 25497.78 9779.67 31090.30 29796.11 18476.62 31292.17 37690.31 15293.57 34995.96 278
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25577.66 40154.99 40283.30 37897.57 7477.89 29690.50 38466.86 38895.54 30291.97 371
TEST996.45 18689.46 9090.60 25696.92 16379.09 31990.49 29194.39 25691.31 13698.88 121
train_agg92.71 17391.83 19395.35 8496.45 18689.46 9090.60 25696.92 16379.37 31390.49 29194.39 25691.20 14198.88 12188.66 20098.43 17897.72 193
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25887.34 35278.87 32287.22 34992.74 30466.91 34996.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 18889.14 10090.51 25996.89 16679.37 31390.42 29394.36 25891.20 14198.82 130
test_yl90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
DCV-MVSNet90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26085.36 36965.82 39282.05 38692.44 31157.94 38396.69 31170.71 37888.49 38692.56 367
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24190.43 26395.72 22470.55 37591.70 27294.63 24868.13 34289.42 39190.59 14295.34 30994.94 319
test_vis3_rt90.40 22490.03 23591.52 23592.58 32488.95 10390.38 26497.72 10173.30 35797.79 3097.51 8377.05 30587.10 39589.03 19194.89 31998.50 121
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26586.47 35770.42 37683.52 37693.23 29361.18 37796.85 30677.21 33788.26 38793.34 358
TAMVS90.16 23489.05 24993.49 16896.49 18386.37 16290.34 26692.55 30580.84 30292.99 23494.57 25281.94 26498.20 21073.51 36098.21 20295.90 283
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26771.34 40577.31 33285.80 35691.30 32859.38 38192.70 37479.99 31182.34 39892.96 363
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21688.77 38685.42 18690.31 26794.38 26770.02 37888.00 33693.30 29073.78 32494.03 36575.96 34896.54 28196.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2695.85 40865.36 35996.00 33179.61 318
test_prior290.21 26989.33 16790.77 28794.81 24090.41 16188.21 20398.55 167
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20490.95 6990.21 26995.43 23987.91 19593.74 20894.40 25592.88 10496.38 32190.39 14798.28 19397.07 229
WR-MVS93.49 14693.72 14192.80 18997.57 12280.03 25890.14 27295.68 22593.70 6196.62 8695.39 22187.21 20399.04 10187.50 22099.64 2499.33 26
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27287.90 34775.54 34283.93 37291.63 32566.79 35295.36 34581.21 30081.54 39993.57 356
PVSNet_BlendedMVS90.35 22989.96 23691.54 23494.81 27278.80 28990.14 27296.93 16179.43 31288.68 32795.06 23286.27 22098.15 21680.27 30698.04 21697.68 196
BH-untuned90.68 21690.90 21390.05 28795.98 22679.57 27190.04 27594.94 25387.91 19594.07 19593.00 29687.76 19497.78 25279.19 32395.17 31392.80 365
新几何290.02 276
旧先验290.00 27768.65 38392.71 24496.52 31485.15 257
无先验89.94 27895.75 22370.81 37398.59 17381.17 30194.81 322
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
mvs_anonymous90.37 22891.30 20687.58 33092.17 33768.00 37589.84 28294.73 26083.82 26693.22 22797.40 8887.54 19797.40 27887.94 21495.05 31697.34 220
test20.0390.80 21290.85 21690.63 26995.63 24979.24 27889.81 28392.87 29589.90 15594.39 18896.40 16285.77 22495.27 34973.86 35999.05 10697.39 217
testing383.66 33282.52 33787.08 33495.84 23465.84 38789.80 28477.17 40388.17 19290.84 28688.63 36230.95 41198.11 21884.05 27197.19 25797.28 224
WB-MVS89.44 25292.15 18481.32 37697.73 10948.22 40889.73 28587.98 34695.24 3696.05 11396.99 12685.18 23196.95 29982.45 28697.97 22398.78 87
1112_ss88.42 27787.41 28691.45 23796.69 16680.99 24589.72 28696.72 17973.37 35687.00 35090.69 33977.38 30198.20 21081.38 29793.72 34795.15 307
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28380.24 25089.69 28795.88 21985.77 23293.94 20395.69 20581.99 26292.98 37384.21 27091.30 37597.62 199
MG-MVS89.54 24989.80 24088.76 30994.88 26872.47 35789.60 28892.44 30785.82 23189.48 31295.98 19082.85 25297.74 25881.87 29195.27 31196.08 273
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 28986.69 35585.73 23489.81 30792.83 30065.24 36191.04 38177.82 33295.78 29793.88 346
Anonymous2023120688.77 27188.29 26790.20 28396.31 19778.81 28889.56 29093.49 28574.26 35292.38 25795.58 21182.21 25895.43 34472.07 36898.75 14796.34 261
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22189.51 29187.37 35184.38 26185.37 35785.08 38772.44 32786.59 39668.05 38491.03 37991.33 376
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22792.96 4389.48 29297.46 11985.14 24796.23 10495.42 21793.19 9298.08 22090.37 14998.76 14597.38 219
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28489.45 29395.44 23775.29 34793.23 22695.65 20771.58 33290.23 38688.05 21093.55 35195.44 301
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29488.11 34482.26 28888.71 32592.83 30078.65 28897.59 26679.61 31893.30 35494.75 326
testgi90.38 22791.34 20587.50 33197.49 12671.54 36089.43 29495.16 24688.38 18894.54 18594.68 24792.88 10493.09 37271.60 37297.85 23097.88 175
JIA-IIPM85.08 32183.04 33391.19 25087.56 39186.14 16989.40 29684.44 37888.98 17482.20 38497.95 5356.82 38696.15 32676.55 34383.45 39591.30 377
原ACMM289.34 297
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29785.63 36677.24 33387.62 34495.03 23361.00 37997.30 28279.26 32291.09 37895.16 306
MVS_111021_HR93.63 14393.42 15594.26 13496.65 16986.96 14689.30 29996.23 20588.36 18993.57 21294.60 25093.45 8297.77 25390.23 15898.38 18398.03 157
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30088.23 34062.27 39781.90 38889.66 35362.70 37495.29 34871.72 37080.60 40091.86 374
CDS-MVSNet89.55 24888.22 27393.53 16495.37 25986.49 15789.26 30093.59 28179.76 30891.15 28192.31 31477.12 30498.38 19477.51 33497.92 22795.71 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 20790.86 21592.53 20295.45 25582.53 22589.25 30296.52 19385.00 25189.91 30488.55 36492.94 10098.84 12884.72 26795.44 30596.22 267
BH-RMVSNet90.47 22290.44 22690.56 27195.21 26378.65 29189.15 30393.94 27988.21 19092.74 24394.22 26186.38 21897.88 23978.67 32695.39 30795.14 308
thres20085.85 31585.18 31687.88 32894.44 28672.52 35689.08 30486.21 35888.57 18591.44 27588.40 36564.22 36498.00 22868.35 38395.88 29693.12 359
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30596.39 19873.21 35893.27 22296.28 17582.16 26096.39 32077.55 33398.80 14195.62 297
testdata188.96 30688.44 187
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30792.18 30973.71 35588.36 33193.89 27576.86 31196.73 31080.32 30596.81 27396.51 252
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30878.70 39882.69 28181.64 39079.46 39875.93 31585.74 39848.78 40482.85 39786.76 391
patch_mono-292.46 18092.72 17291.71 22796.65 16978.91 28588.85 30997.17 14483.89 26592.45 25396.76 14089.86 17297.09 29390.24 15798.59 16499.12 43
test22296.95 15085.27 18888.83 31093.61 28065.09 39390.74 28894.85 23984.62 23797.36 25293.91 344
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31181.22 38978.97 32079.82 39587.56 37061.73 37697.80 24874.30 35690.05 38296.05 275
diffmvspermissive91.74 19591.93 19091.15 25193.06 31578.17 29588.77 31297.51 11886.28 22192.42 25593.96 27288.04 18997.46 27390.69 14196.67 27897.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31387.41 35073.99 35384.96 36494.01 27065.25 36095.53 33878.02 32893.16 357
D2MVS89.93 24389.60 24590.92 25894.03 29678.40 29288.69 31494.85 25478.96 32193.08 23095.09 23074.57 32096.94 30088.19 20598.96 12197.41 213
TR-MVS87.70 28887.17 29289.27 30194.11 29379.26 27788.69 31491.86 31781.94 29190.69 28989.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
PatchMatch-RL89.18 25588.02 27992.64 19495.90 23292.87 4588.67 31691.06 32380.34 30390.03 30291.67 32483.34 24494.42 35976.35 34494.84 32290.64 381
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31796.23 20576.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 266
MDTV_nov1_ep13_2view42.48 41188.45 31867.22 38783.56 37566.80 35072.86 36594.06 340
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 31981.00 39076.23 33987.98 33787.77 36984.98 23493.35 37062.85 39594.10 34295.98 277
jason89.17 25688.32 26491.70 22895.73 24280.07 25588.10 32093.22 28971.98 36590.09 29992.79 30278.53 29198.56 17787.43 22297.06 26196.46 257
jason: jason.
mvsany_test389.11 25888.21 27491.83 22191.30 35890.25 7988.09 32178.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23694.20 33794.80 323
BH-w/o87.21 30287.02 29787.79 32994.77 27577.27 31087.90 32293.21 29181.74 29289.99 30388.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29887.88 32392.49 30675.42 34392.57 24993.59 28480.44 27694.24 36481.28 29892.75 36394.69 329
DELS-MVS92.05 19192.16 18291.72 22694.44 28680.13 25487.62 32497.25 13987.34 20992.22 26493.18 29489.54 17598.73 15089.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32590.98 32572.71 36384.46 36692.45 30968.08 34396.48 31670.58 37983.97 39395.38 302
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32585.13 37472.71 36384.46 36692.45 30968.08 34392.33 37570.58 37983.97 39395.38 302
IterMVS-SCA-FT91.65 19791.55 19791.94 21993.89 30179.22 27987.56 32793.51 28491.53 12295.37 14996.62 15178.65 28898.90 11891.89 11294.95 31897.70 194
IterMVS90.18 23390.16 23190.21 28293.15 31375.98 32887.56 32792.97 29486.43 22094.09 19396.40 16278.32 29297.43 27587.87 21594.69 32697.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16377.75 30387.53 32996.25 20369.73 38086.47 35293.61 28375.67 31697.88 23979.95 31293.20 35695.11 311
c3_l91.32 20691.42 20291.00 25692.29 33176.79 31987.52 33096.42 19785.76 23394.72 18293.89 27582.73 25498.16 21590.93 13598.55 16798.04 154
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25378.88 28687.39 33194.02 27679.32 31793.06 23194.02 26980.72 27594.27 36275.16 35193.08 36096.54 250
lupinMVS88.34 27987.31 28791.45 23794.74 27780.06 25687.23 33292.27 30871.10 37088.83 31891.15 33077.02 30698.53 18086.67 23496.75 27695.76 288
pmmvs488.95 26587.70 28392.70 19194.30 28985.60 18387.22 33392.16 31174.62 34989.75 31094.19 26277.97 29596.41 31982.71 28196.36 28596.09 272
WTY-MVS86.93 30986.50 30888.24 32194.96 26674.64 33687.19 33492.07 31478.29 32588.32 33291.59 32678.06 29494.27 36274.88 35293.15 35895.80 286
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22393.04 31681.28 24087.17 33586.14 35979.57 31183.65 37388.66 36157.10 38498.18 21387.74 21795.40 30695.90 283
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33678.00 40068.94 38277.53 39897.26 10271.45 33394.62 35563.28 39488.74 38578.55 400
iter_conf05_1188.91 26788.32 26490.66 26793.95 29978.09 29686.98 33793.06 29279.35 31687.64 34289.80 34680.25 27898.96 11185.18 25398.69 15394.95 315
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33895.60 22780.88 30087.83 33988.62 36391.04 14698.81 13582.51 28594.38 33191.93 372
DPM-MVS89.35 25388.40 26292.18 21396.13 21584.20 20186.96 33996.15 21175.40 34487.36 34791.55 32783.30 24598.01 22782.17 29096.62 27994.32 336
eth_miper_zixun_eth90.72 21490.61 22291.05 25292.04 34176.84 31886.91 34096.67 18285.21 24594.41 18793.92 27379.53 28298.26 20689.76 17197.02 26398.06 151
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38895.45 34373.19 36376.68 40191.82 375
sss87.23 30186.82 29988.46 31893.96 29777.94 29786.84 34292.78 29977.59 32987.61 34591.83 32178.75 28791.92 37777.84 33094.20 33795.52 300
miper_ehance_all_eth90.48 22190.42 22790.69 26691.62 35376.57 32286.83 34396.18 20983.38 26894.06 19692.66 30782.20 25998.04 22289.79 17097.02 26397.45 210
CLD-MVS91.82 19391.41 20393.04 17796.37 18883.65 20986.82 34497.29 13684.65 25792.27 26389.67 35292.20 11897.85 24583.95 27299.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 21790.56 22490.91 26091.85 34676.98 31586.75 34595.36 24285.53 24094.06 19694.89 23777.36 30397.98 23190.27 15598.98 11497.76 189
DIV-MVS_self_test90.65 21790.56 22490.91 26091.85 34676.99 31486.75 34595.36 24285.52 24294.06 19694.89 23777.37 30297.99 23090.28 15498.97 11997.76 189
PS-MVSNAJ88.86 26988.99 25288.48 31794.88 26874.71 33586.69 34795.60 22780.88 30087.83 33987.37 37390.77 15198.82 13082.52 28494.37 33291.93 372
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27278.80 28986.64 34896.93 16174.67 34888.68 32789.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
MSDG90.82 21190.67 22191.26 24594.16 29183.08 21986.63 34996.19 20890.60 14491.94 26991.89 32089.16 17895.75 33680.96 30394.51 32994.95 315
cl2289.02 26088.50 26090.59 27089.76 37576.45 32386.62 35094.03 27482.98 27892.65 24592.49 30872.05 33097.53 26888.93 19297.02 26397.78 187
CL-MVSNet_self_test90.04 24289.90 23890.47 27295.24 26277.81 30286.60 35192.62 30385.64 23693.25 22593.92 27383.84 24096.06 33079.93 31498.03 21797.53 206
PCF-MVS84.52 1789.12 25787.71 28293.34 17196.06 21985.84 17686.58 35297.31 13368.46 38493.61 21193.89 27587.51 19898.52 18167.85 38598.11 21095.66 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_f86.65 31187.13 29485.19 35690.28 37186.11 17086.52 35391.66 31969.76 37995.73 13197.21 10969.51 33981.28 40289.15 18894.40 33088.17 388
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34188.10 36744.08 40396.90 30464.23 39196.36 28595.14 308
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22384.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 265
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26782.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 304
Patchmatch-RL test88.81 27088.52 25989.69 29495.33 26179.94 26186.22 35792.71 30078.46 32495.80 12494.18 26366.25 35595.33 34789.22 18698.53 17093.78 347
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29483.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 298
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24383.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 271
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29785.13 36081.64 39677.44 29995.00 35185.94 24794.12 34094.91 320
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29785.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 28981.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 308
FPMVS84.50 32683.28 33188.16 32396.32 19694.49 1685.76 36385.47 36883.09 27585.20 35994.26 25963.79 36886.58 39763.72 39391.88 37483.40 395
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 30982.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 20890.88 21491.55 23394.68 28180.16 25185.49 36592.14 31290.41 14994.93 17295.79 19885.10 23296.93 30285.15 25794.19 33997.57 202
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28166.43 38887.64 34289.20 35879.33 28385.38 39981.59 29589.98 38393.66 351
new-patchmatchnet88.97 26490.79 21883.50 37094.28 29055.83 40585.34 36793.56 28386.18 22595.47 14295.73 20483.10 24796.51 31585.40 25298.06 21498.16 145
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23175.68 34092.49 25089.45 35578.96 28597.88 23987.86 21697.02 26396.81 243
HyFIR lowres test87.19 30485.51 31592.24 20897.12 14680.51 24985.03 36996.06 21266.11 39091.66 27392.98 29870.12 33799.14 8675.29 35095.23 31297.07 229
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27688.13 33586.61 37662.86 37289.10 39366.24 38990.29 38193.77 348
N_pmnet88.90 26887.25 29093.83 15394.40 28893.81 3584.73 37187.09 35379.36 31593.26 22392.43 31279.29 28491.68 37877.50 33597.22 25696.00 276
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 24989.82 30690.07 34366.80 35097.76 25584.56 26894.27 33595.96 278
ppachtmachnet_test88.61 27588.64 25888.50 31691.76 34870.99 36484.59 37492.98 29379.30 31892.38 25793.53 28679.57 28197.45 27486.50 24097.17 25897.07 229
CHOSEN 1792x268887.19 30485.92 31391.00 25697.13 14579.41 27484.51 37595.60 22764.14 39490.07 30194.81 24078.26 29397.14 29273.34 36195.38 30896.46 257
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33386.65 37553.94 39098.72 15182.56 28397.40 25195.67 293
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17471.01 37186.89 35185.91 38181.35 26896.94 30083.09 27895.60 30094.35 335
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34684.65 40067.44 38691.90 37390.78 380
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 28969.47 38176.13 40089.84 34572.15 32997.23 28453.27 40289.02 38492.37 369
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30792.06 26892.17 31678.63 29095.63 33784.77 26594.73 32496.22 267
miper_lstm_enhance89.90 24489.80 24090.19 28491.37 35777.50 30683.82 38195.00 25084.84 25593.05 23294.96 23576.53 31495.20 35089.96 16798.67 15797.86 177
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27682.85 38084.78 38862.86 37293.49 36882.85 27994.86 32094.03 341
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 28091.59 37975.99 34793.09 35987.94 389
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17381.11 38975.03 40470.80 37488.57 32994.63 24883.08 24887.38 39480.39 30486.57 39087.21 390
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28594.99 17095.11 22982.70 25593.70 36683.33 27593.83 34596.48 256
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28494.88 17595.14 22782.70 25593.61 36783.28 27693.80 34696.46 257
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29764.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32194.60 35669.87 38193.69 34894.46 332
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32689.59 38956.68 39960.05 40482.57 398
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20183.25 37983.01 39462.22 37589.17 39277.15 33894.31 33482.93 396
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38595.36 34569.49 38294.72 32588.79 386
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 19981.66 38981.73 39562.89 37189.84 38775.79 34994.65 32782.71 397
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26287.95 33894.71 24676.95 30884.36 40164.07 39298.09 21293.89 345
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38222.11 40744.50 40568.35 40313.00 403
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27272.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2330.00 4090.00 41091.15 33093.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3390.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
PC_three_145275.31 34695.87 12295.75 20392.93 10196.34 32587.18 22698.68 15598.04 154
No_MVS95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
test_one_060198.26 7087.14 14098.18 4294.25 4896.99 7097.36 9395.13 43
eth-test20.00 414
eth-test0.00 414
ZD-MVS97.23 13890.32 7897.54 11384.40 26094.78 17895.79 19892.76 10799.39 4988.72 19998.40 179
IU-MVS98.51 5086.66 15496.83 17172.74 36295.83 12393.00 8699.29 7498.64 111
test_241102_TWO98.10 5591.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
test_241102_ONE98.51 5086.97 14498.10 5591.85 10497.63 3597.03 12296.48 1098.95 114
test_0728_THIRD93.26 7197.40 5297.35 9694.69 5999.34 6393.88 4799.42 5298.89 75
GSMVS94.75 326
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35394.75 326
sam_mvs66.41 354
MTGPAbinary97.62 106
test_post6.07 40765.74 35895.84 335
patchmatchnet-post91.71 32366.22 35697.59 266
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test9_res88.16 20798.40 17997.83 181
agg_prior287.06 22998.36 18897.98 163
agg_prior96.20 20788.89 10696.88 16790.21 29898.78 142
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
test_prior94.61 11795.95 22887.23 13797.36 12998.68 16297.93 169
新几何193.17 17697.16 14387.29 13594.43 26667.95 38591.29 27794.94 23686.97 20898.23 20881.06 30297.75 23393.98 343
旧先验196.20 20784.17 20294.82 25695.57 21289.57 17497.89 22896.32 262
原ACMM192.87 18696.91 15484.22 20097.01 15576.84 33689.64 31194.46 25488.00 19098.70 15881.53 29698.01 22095.70 292
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata91.03 25396.87 15682.01 23094.28 27071.55 36692.46 25295.42 21785.65 22797.38 28182.64 28297.27 25493.70 350
test1294.43 13095.95 22886.75 15096.24 20489.76 30989.79 17398.79 13997.95 22597.75 191
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 209
plane_prior597.81 9298.95 11489.26 18498.51 17398.60 116
plane_prior495.59 208
plane_prior388.43 11990.35 15093.31 218
plane_prior197.38 131
n20.00 415
nn0.00 415
door-mid92.13 313
lessismore_v093.87 15098.05 8483.77 20880.32 39497.13 6097.91 5877.49 29899.11 9292.62 9698.08 21398.74 94
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
test1196.65 183
door91.26 322
HQP5-MVS84.89 191
BP-MVS86.55 238
HQP4-MVS88.81 32098.61 16998.15 146
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 235
NP-MVS96.82 16187.10 14193.40 288
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 157
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19291.93 10094.82 17695.39 22191.99 12197.08 29485.53 25197.96 22497.41 213
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38746.64 40638.45 40670.07 40250.30 402