This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18096.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 4998.46 2594.62 5898.84 13894.64 1799.53 3598.99 55
DVP-MVS++95.93 5396.34 3494.70 11796.54 17186.66 15598.45 498.22 3393.26 7097.54 3897.36 7593.12 8999.38 5693.88 3498.68 14898.04 149
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3696.95 1495.46 13199.23 493.45 7799.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7094.15 5198.93 399.07 588.07 18699.57 1395.86 999.69 1599.46 18
UniMVSNet_ETH3D97.13 697.72 395.35 8999.51 287.38 13697.70 897.54 11198.16 298.94 299.33 297.84 499.08 10090.73 13099.73 1499.59 12
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8495.95 10896.41 13896.71 899.42 3193.99 3399.36 5799.13 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet93.91 13093.68 13694.59 12598.08 7885.55 17997.44 1094.03 26494.22 5094.94 15696.19 15682.07 25299.57 1387.28 21298.89 12098.65 99
LS3D96.11 4895.83 6296.95 3794.75 26294.20 1997.34 1197.98 7397.31 1195.32 13796.77 11393.08 9199.20 8591.79 10898.16 20497.44 206
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4193.11 7296.48 8097.36 7596.92 699.34 6494.31 2399.38 5698.92 69
MVSFormer92.18 18292.23 17192.04 21694.74 26480.06 24497.15 1397.37 12188.98 17488.83 30092.79 28477.02 29099.60 896.41 496.75 26696.46 246
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12188.98 17498.26 2298.86 1093.35 8299.60 896.41 499.45 4399.66 6
IS-MVSNet94.49 11094.35 11794.92 10798.25 6986.46 16097.13 1594.31 25996.24 2496.28 9396.36 14682.88 24199.35 6188.19 19399.52 3798.96 62
Anonymous2023121196.60 2597.13 1295.00 10597.46 12486.35 16597.11 1698.24 3197.58 898.72 898.97 793.15 8899.15 8993.18 6999.74 1399.50 16
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10687.68 20398.45 1898.77 1594.20 6799.50 2096.70 399.40 5499.53 14
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3792.26 8796.33 8696.84 11195.10 4399.40 4593.47 5299.33 6199.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS96.46 3296.64 2295.93 6397.68 10989.38 9996.90 1998.41 1792.52 7997.43 4497.92 4595.11 4299.50 2094.45 1999.30 6698.92 69
EGC-MVSNET80.97 32975.73 34196.67 4498.85 2294.55 1596.83 2096.60 1822.44 3765.32 37798.25 3192.24 11098.02 23391.85 10699.21 8397.45 204
v7n96.82 1097.31 1095.33 9198.54 4386.81 15096.83 2098.07 5796.59 2098.46 1798.43 2792.91 9699.52 1896.25 699.76 1199.65 8
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5492.67 7795.08 15196.39 14394.77 5499.42 3193.17 7099.44 4698.58 112
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2196.69 1796.86 6697.56 6095.48 2598.77 15690.11 15299.44 4698.31 129
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1495.24 9799.02 1286.44 16196.78 2498.08 5497.42 998.48 1697.86 4991.76 12299.63 694.23 2699.84 399.66 6
CS-MVS95.77 5995.58 7096.37 5296.84 15391.72 6396.73 2599.06 594.23 4992.48 23394.79 22693.56 7399.49 2393.47 5299.05 10297.89 170
pmmvs696.80 1397.36 995.15 10199.12 887.82 13196.68 2697.86 8496.10 2698.14 2499.28 397.94 398.21 21791.38 12199.69 1599.42 19
3Dnovator92.54 394.80 9994.90 9494.47 13295.47 24287.06 14396.63 2797.28 13691.82 10694.34 17697.41 6990.60 15498.65 17792.47 9098.11 21097.70 187
PS-CasMVS96.69 2097.43 594.49 13199.13 684.09 19796.61 2897.97 7697.91 598.64 1398.13 3495.24 3699.65 393.39 6099.84 399.72 2
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2898.35 2095.81 3197.55 3797.44 6896.51 999.40 4594.06 3099.23 8098.85 78
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 3097.61 10687.57 20698.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
PEN-MVS96.69 2097.39 894.61 12099.16 484.50 18896.54 3198.05 6198.06 498.64 1398.25 3195.01 4899.65 392.95 7999.83 699.68 4
DTE-MVSNet96.74 1797.43 594.67 11899.13 684.68 18796.51 3297.94 8298.14 398.67 1298.32 2995.04 4599.69 293.27 6699.82 899.62 10
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3397.95 7994.58 4194.38 17496.49 13294.56 5999.39 5093.57 4499.05 10298.93 65
X-MVStestdata90.70 20988.45 25197.44 1798.56 3893.99 2796.50 3397.95 7994.58 4194.38 17426.89 37494.56 5999.39 5093.57 4499.05 10298.93 65
DROMVSNet95.44 7095.62 6994.89 10896.93 14887.69 13296.48 3599.14 493.93 5792.77 22594.52 23493.95 7099.49 2393.62 4399.22 8297.51 201
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3697.74 9792.59 7895.47 12996.68 12394.50 6199.42 3193.10 7399.26 7698.99 55
QAPM92.88 15992.77 15893.22 17595.82 22483.31 20496.45 3697.35 12883.91 25793.75 19296.77 11389.25 17498.88 13084.56 25097.02 25597.49 202
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3897.42 11986.96 21598.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
Gipumacopyleft95.31 7995.80 6493.81 15797.99 9190.91 7296.42 3997.95 7996.69 1791.78 25498.85 1291.77 12195.49 32991.72 11199.08 9895.02 293
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 7594.63 10897.48 1498.67 2994.05 2396.41 4098.18 3791.26 12395.12 14795.15 20586.60 21599.50 2093.43 5896.81 26398.89 72
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4198.12 4795.66 3397.00 5997.03 9694.85 5299.42 3193.49 4898.84 12798.00 154
RE-MVS-def96.66 2098.07 7995.27 896.37 4198.12 4795.66 3397.00 5997.03 9695.40 2793.49 4898.84 12798.00 154
TSAR-MVS + MP.94.96 8994.75 10095.57 8398.86 2188.69 10996.37 4196.81 17085.23 23994.75 16497.12 9191.85 12099.40 4593.45 5498.33 18398.62 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test95.32 7695.10 8995.96 5996.86 15290.75 7696.33 4499.20 293.99 5391.03 26593.73 26293.52 7699.55 1791.81 10799.45 4397.58 195
ACMH88.36 1296.59 2797.43 594.07 14498.56 3885.33 18196.33 4498.30 2494.66 4098.72 898.30 3097.51 598.00 23594.87 1499.59 2798.86 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4697.96 7792.26 8795.28 14096.57 13095.02 4799.41 3893.63 4299.11 9798.94 64
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4798.25 2895.51 3596.99 6197.05 9595.63 2199.39 5093.31 6398.88 12298.75 87
CP-MVSNet96.19 4696.80 1794.38 13798.99 1483.82 20096.31 4797.53 11397.60 798.34 1997.52 6391.98 11899.63 693.08 7599.81 999.70 3
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4997.98 7392.35 8495.63 12396.47 13395.37 2899.27 7793.78 3899.14 9398.48 118
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4997.96 7792.35 8495.57 12696.61 12894.93 5199.41 3893.78 3899.15 9299.00 53
3Dnovator+92.74 295.86 5795.77 6596.13 5496.81 15790.79 7596.30 4997.82 9096.13 2594.74 16597.23 8591.33 13299.16 8893.25 6798.30 18898.46 120
MIMVSNet195.52 6795.45 7495.72 7799.14 589.02 10396.23 5296.87 16693.73 6197.87 2798.49 2490.73 15199.05 10586.43 22799.60 2599.10 46
test250685.42 30084.57 30287.96 31097.81 9766.53 36296.14 5356.35 37989.04 17293.55 19998.10 3542.88 38198.68 17288.09 19799.18 8898.67 97
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5498.07 5795.17 3796.82 6896.73 12095.09 4499.43 3092.99 7898.71 14498.50 116
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5597.78 9692.73 7493.48 20096.72 12194.23 6699.42 3191.99 10099.29 6999.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5698.16 4491.74 11195.34 13696.36 14695.68 1999.44 2694.41 2199.28 7498.97 61
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5798.06 6095.76 3296.89 6496.85 10894.85 5299.42 3193.35 6298.81 13598.53 114
GBi-Net93.21 14892.96 15393.97 14795.40 24484.29 19095.99 5896.56 18588.63 18295.10 14898.53 2181.31 25998.98 11686.74 21898.38 17698.65 99
test193.21 14892.96 15393.97 14795.40 24484.29 19095.99 5896.56 18588.63 18295.10 14898.53 2181.31 25998.98 11686.74 21898.38 17698.65 99
FMVSNet194.84 9695.13 8793.97 14797.60 11484.29 19095.99 5896.56 18592.38 8197.03 5898.53 2190.12 16298.98 11688.78 18399.16 9198.65 99
RPSCF95.58 6694.89 9597.62 897.58 11696.30 495.97 6197.53 11392.42 8093.41 20197.78 5091.21 13897.77 25691.06 12397.06 25398.80 82
SixPastTwentyTwo94.91 9095.21 8493.98 14698.52 4683.19 20795.93 6294.84 24594.86 3998.49 1598.74 1681.45 25799.60 894.69 1699.39 5599.15 38
ambc92.98 17996.88 15083.01 21195.92 6396.38 19596.41 8197.48 6688.26 18297.80 25289.96 15798.93 11998.12 144
FC-MVSNet-test95.32 7695.88 5893.62 16098.49 5581.77 22195.90 6498.32 2193.93 5797.53 4097.56 6088.48 17999.40 4592.91 8099.83 699.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6597.62 10394.46 4596.29 9096.94 10193.56 7399.37 5894.29 2499.42 4898.99 55
CPTT-MVS94.74 10094.12 12596.60 4598.15 7493.01 4495.84 6697.66 10189.21 17193.28 20795.46 19488.89 17698.98 11689.80 15998.82 13397.80 180
ab-mvs92.40 17592.62 16591.74 22297.02 14281.65 22395.84 6695.50 23086.95 21692.95 22197.56 6090.70 15297.50 26979.63 29797.43 24496.06 261
nrg03096.32 4196.55 2695.62 8097.83 9688.55 11595.77 6898.29 2792.68 7598.03 2697.91 4695.13 4098.95 12393.85 3699.49 3899.36 24
ECVR-MVScopyleft90.12 22890.16 22090.00 27897.81 9772.68 33695.76 6978.54 37289.04 17295.36 13598.10 3570.51 31698.64 17887.10 21499.18 8898.67 97
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 7098.01 7093.34 6996.64 7596.57 13094.99 4999.36 6093.48 5199.34 5998.82 80
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 18092.13 17492.68 19294.53 27384.10 19695.70 7097.03 15182.44 27491.14 26496.42 13788.47 18098.38 20385.95 23297.47 24395.55 283
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7298.01 7092.08 9295.74 11996.28 15195.22 3799.42 3193.17 7099.06 9998.88 74
ACMH+88.43 1196.48 3096.82 1695.47 8698.54 4389.06 10295.65 7398.61 1196.10 2698.16 2397.52 6396.90 798.62 17990.30 14399.60 2598.72 93
test111190.39 21890.61 21289.74 28198.04 8471.50 34295.59 7479.72 37189.41 16295.94 11098.14 3370.79 31598.81 14588.52 18999.32 6398.90 71
canonicalmvs94.59 10594.69 10394.30 13895.60 23987.03 14595.59 7498.24 3191.56 11795.21 14692.04 30294.95 5098.66 17591.45 11997.57 24097.20 220
SF-MVS95.88 5695.88 5895.87 6998.12 7589.65 9195.58 7698.56 1291.84 10396.36 8496.68 12394.37 6499.32 7092.41 9299.05 10298.64 103
PS-MVSNAJss96.01 5196.04 5295.89 6898.82 2488.51 11795.57 7797.88 8388.72 18098.81 698.86 1090.77 14799.60 895.43 1199.53 3599.57 13
test_part194.39 11294.55 11093.92 15196.14 20382.86 21295.54 7898.09 5395.36 3698.27 2098.36 2875.91 29899.44 2693.41 5999.84 399.47 17
PMVScopyleft87.21 1494.97 8895.33 7993.91 15298.97 1597.16 295.54 7895.85 21596.47 2193.40 20397.46 6795.31 3395.47 33086.18 23198.78 13989.11 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 12794.27 12293.31 17298.87 2082.36 21695.51 8091.78 30697.19 1296.32 8798.60 1884.24 23298.75 15787.09 21598.83 13298.81 81
pm-mvs195.43 7195.94 5593.93 15098.38 5985.08 18495.46 8197.12 14791.84 10397.28 4998.46 2595.30 3497.71 26190.17 15099.42 4898.99 55
Vis-MVSNetpermissive95.50 6895.48 7395.56 8498.11 7689.40 9895.35 8298.22 3392.36 8394.11 17898.07 3792.02 11599.44 2693.38 6197.67 23697.85 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 4786.69 15395.34 8398.18 3791.85 10097.63 3397.37 7295.58 22
FIs94.90 9195.35 7793.55 16398.28 6581.76 22295.33 8498.14 4593.05 7397.07 5497.18 8887.65 19399.29 7391.72 11199.69 1599.61 11
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8498.30 2491.40 12095.76 11796.87 10795.26 3599.45 2592.77 8199.21 8399.00 53
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8498.25 2891.78 10797.07 5497.22 8696.38 1399.28 7592.07 9899.59 2799.11 43
AllTest94.88 9394.51 11396.00 5798.02 8692.17 5295.26 8798.43 1490.48 14195.04 15396.74 11892.54 10697.86 24785.11 24298.98 11197.98 158
SED-MVS96.00 5296.41 3294.76 11498.51 4786.97 14695.21 8898.10 5091.95 9497.63 3397.25 8396.48 1199.35 6193.29 6499.29 6997.95 162
OPU-MVS95.15 10196.84 15389.43 9695.21 8895.66 18293.12 8998.06 22886.28 23098.61 15397.95 162
DVP-MVScopyleft95.82 5896.18 4294.72 11698.51 4786.69 15395.20 9097.00 15391.85 10097.40 4797.35 7895.58 2299.34 6493.44 5699.31 6498.13 143
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10998.55 4186.72 15295.20 9098.22 3399.38 5693.44 5699.31 6498.53 114
Anonymous2024052995.50 6895.83 6294.50 12997.33 13085.93 17395.19 9296.77 17496.64 1997.61 3698.05 3893.23 8598.79 14888.60 18899.04 10898.78 84
#test#95.89 5495.51 7297.04 3198.51 4793.37 4095.14 9397.98 7389.34 16595.63 12396.47 13395.37 2899.27 7791.99 10099.14 9398.48 118
SMA-MVScopyleft95.77 5995.54 7196.47 5198.27 6691.19 6895.09 9497.79 9586.48 21997.42 4697.51 6594.47 6399.29 7393.55 4699.29 6998.93 65
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8095.28 8295.26 9697.75 10187.21 14095.08 9597.37 12193.92 5997.65 3295.90 16790.10 16599.33 6990.11 15299.66 2199.26 29
TransMVSNet (Re)95.27 8296.04 5292.97 18098.37 6181.92 22095.07 9696.76 17593.97 5697.77 2998.57 1995.72 1897.90 24188.89 18199.23 8099.08 47
UGNet93.08 15192.50 16894.79 11393.87 28887.99 12795.07 9694.26 26190.64 13887.33 32597.67 5586.89 21098.49 19488.10 19698.71 14497.91 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 23988.90 24592.55 19997.00 14379.73 25595.03 9883.65 36089.88 15395.30 13894.79 22653.64 36899.39 5091.99 10098.79 13898.54 113
LFMVS91.33 19991.16 20191.82 21996.27 19279.36 26195.01 9985.61 34896.04 2994.82 16197.06 9472.03 31298.46 20084.96 24598.70 14697.65 191
CSCG94.69 10294.75 10094.52 12897.55 11887.87 12995.01 9997.57 10992.68 7596.20 9893.44 26991.92 11998.78 15289.11 17699.24 7996.92 228
GG-mvs-BLEND83.24 34485.06 37371.03 34494.99 10165.55 37774.09 37175.51 37144.57 37694.46 34359.57 36987.54 35984.24 364
EU-MVSNet87.39 28286.71 28589.44 28593.40 29376.11 30794.93 10290.00 31757.17 37095.71 12197.37 7264.77 34097.68 26392.67 8694.37 31594.52 304
KD-MVS_self_test94.10 12594.73 10292.19 20897.66 11179.49 25994.86 10397.12 14789.59 16096.87 6597.65 5690.40 15998.34 20789.08 17799.35 5898.75 87
MTMP94.82 10454.62 380
PHI-MVS94.34 11693.80 13095.95 6095.65 23591.67 6494.82 10497.86 8487.86 19893.04 21894.16 24691.58 12698.78 15290.27 14598.96 11797.41 207
testtj94.81 9894.42 11496.01 5697.23 13290.51 8094.77 10697.85 8791.29 12294.92 15895.66 18291.71 12399.40 4588.07 19898.25 19498.11 145
gg-mvs-nofinetune82.10 32281.02 32485.34 33287.46 36471.04 34394.74 10767.56 37696.44 2279.43 36698.99 645.24 37596.15 31667.18 36192.17 34388.85 358
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10798.03 6690.82 13397.15 5296.85 10896.25 1599.00 11593.10 7399.33 6198.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 8395.73 6693.55 16396.62 16588.88 10894.67 10998.05 6191.26 12397.25 5196.40 13995.42 2694.36 34692.72 8599.19 8697.40 210
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 19491.61 18691.26 23794.16 27986.26 16894.66 11094.82 24691.17 12692.13 24891.08 31590.03 16897.06 28979.09 30497.35 24790.45 355
v1094.68 10395.27 8392.90 18596.57 16880.15 24094.65 11197.57 10990.68 13797.43 4498.00 4188.18 18399.15 8994.84 1599.55 3499.41 20
v894.65 10495.29 8192.74 19096.65 16179.77 25494.59 11297.17 14291.86 9997.47 4397.93 4488.16 18499.08 10094.32 2299.47 3999.38 22
APD-MVScopyleft95.00 8794.69 10395.93 6397.38 12790.88 7394.59 11297.81 9189.22 17095.46 13196.17 15993.42 8099.34 6489.30 16898.87 12597.56 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8495.67 6893.58 16297.76 10083.15 20894.58 11497.58 10893.39 6897.05 5798.04 3993.25 8498.51 19389.75 16299.59 2799.08 47
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6594.57 11598.03 6690.42 14496.37 8397.35 7895.68 1999.25 7994.44 2099.34 5998.80 82
HQP_MVS94.26 12093.93 12795.23 9897.71 10588.12 12394.56 11697.81 9191.74 11193.31 20495.59 18486.93 20798.95 12389.26 17298.51 16598.60 110
plane_prior294.56 11691.74 111
tfpnnormal94.27 11994.87 9692.48 20297.71 10580.88 23594.55 11895.41 23293.70 6296.67 7497.72 5391.40 13098.18 22187.45 20899.18 8898.36 125
XVG-ACMP-BASELINE95.68 6395.34 7896.69 4398.40 5793.04 4394.54 11998.05 6190.45 14396.31 8896.76 11592.91 9698.72 16291.19 12299.42 4898.32 127
DP-MVS95.62 6495.84 6194.97 10697.16 13788.62 11294.54 11997.64 10296.94 1596.58 7897.32 8193.07 9298.72 16290.45 13598.84 12797.57 196
MIMVSNet87.13 29086.54 28888.89 29596.05 21076.11 30794.39 12188.51 32281.37 28088.27 31496.75 11772.38 30995.52 32765.71 36495.47 29295.03 292
K. test v393.37 14093.27 15093.66 15998.05 8182.62 21494.35 12286.62 33796.05 2897.51 4198.85 1276.59 29699.65 393.21 6898.20 20298.73 92
Vis-MVSNet (Re-imp)90.42 21690.16 22091.20 24197.66 11177.32 29294.33 12387.66 33091.20 12592.99 21995.13 20775.40 30098.28 21077.86 30999.19 8697.99 157
ANet_high94.83 9796.28 3790.47 26396.65 16173.16 33194.33 12398.74 1096.39 2398.09 2598.93 893.37 8198.70 16890.38 13899.68 1899.53 14
ACMP88.15 1395.71 6295.43 7696.54 4798.17 7391.73 6294.24 12598.08 5489.46 16196.61 7796.47 13395.85 1799.12 9590.45 13599.56 3398.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 22388.87 24694.66 11994.82 25891.85 5994.22 12694.75 24980.91 28187.52 32388.07 34786.63 21497.87 24676.67 32096.21 27694.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 16392.73 16292.95 18295.40 24481.98 21994.18 12795.53 22988.63 18296.05 10597.37 7281.31 25998.81 14587.38 21198.67 15098.06 146
Anonymous2024052192.86 16193.57 14090.74 25796.57 16875.50 31494.15 12895.60 22189.38 16395.90 11397.90 4880.39 26697.96 23992.60 8899.68 1898.75 87
GeoE94.55 10794.68 10594.15 14197.23 13285.11 18394.14 12997.34 12988.71 18195.26 14195.50 19294.65 5799.12 9590.94 12798.40 17198.23 134
9.1494.81 9797.49 12194.11 13098.37 1887.56 20795.38 13396.03 16394.66 5699.08 10090.70 13198.97 115
HPM-MVS++copyleft95.02 8694.39 11596.91 3897.88 9493.58 3894.09 13196.99 15591.05 12892.40 23895.22 20491.03 14599.25 7992.11 9598.69 14797.90 168
ETH3D-3000-0.194.86 9494.55 11095.81 7097.61 11389.72 8994.05 13298.37 1888.09 19395.06 15295.85 16992.58 10499.10 9990.33 14298.99 11098.62 107
HY-MVS82.50 1886.81 29485.93 29589.47 28493.63 29177.93 28294.02 13391.58 30875.68 31883.64 34693.64 26377.40 28597.42 27571.70 34792.07 34493.05 335
Effi-MVS+-dtu93.90 13192.60 16697.77 494.74 26496.67 394.00 13495.41 23289.94 15091.93 25292.13 30090.12 16298.97 12087.68 20597.48 24297.67 190
Effi-MVS+92.79 16292.74 16092.94 18395.10 25283.30 20594.00 13497.53 11391.36 12189.35 29690.65 32494.01 6998.66 17587.40 21095.30 29796.88 231
VDD-MVS94.37 11394.37 11694.40 13697.49 12186.07 17193.97 13693.28 27694.49 4496.24 9497.78 5087.99 18998.79 14888.92 17999.14 9398.34 126
h-mvs3392.89 15891.99 17795.58 8296.97 14490.55 7893.94 13794.01 26789.23 16893.95 18696.19 15676.88 29399.14 9191.02 12495.71 28697.04 224
EPNet89.80 24088.25 25694.45 13483.91 37586.18 16993.87 13887.07 33591.16 12780.64 36394.72 22878.83 27398.89 12985.17 23798.89 12098.28 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS91.39 495.43 7195.33 7995.71 7897.67 11090.17 8293.86 13998.02 6887.35 20896.22 9697.99 4294.48 6299.05 10592.73 8499.68 1897.93 164
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 12394.58 10993.04 17795.91 22183.13 20993.79 14099.19 392.00 9398.84 598.04 3993.64 7299.02 11181.28 27998.54 16196.96 227
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8598.26 6787.69 13293.75 14197.86 8495.96 3097.48 4297.14 9095.33 3299.44 2690.79 12999.76 1199.38 22
PAPM_NR91.03 20390.81 20791.68 22696.73 15981.10 23293.72 14296.35 19688.19 19188.77 30692.12 30185.09 22897.25 28282.40 26993.90 32196.68 238
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14397.62 10394.46 4596.29 9096.94 10193.56 7399.37 5894.29 2499.42 4898.99 55
baseline94.26 12094.80 9892.64 19396.08 20880.99 23393.69 14398.04 6590.80 13494.89 15996.32 14893.19 8698.48 19891.68 11398.51 16598.43 122
dcpmvs_293.96 12995.01 9190.82 25597.60 11474.04 32693.68 14598.85 789.80 15597.82 2897.01 9991.14 14399.21 8390.56 13398.59 15599.19 35
MVS_030490.96 20490.15 22393.37 16993.17 29787.06 14393.62 14692.43 29589.60 15982.25 35495.50 19282.56 24897.83 25084.41 25297.83 22895.22 287
F-COLMAP92.28 17991.06 20295.95 6097.52 11991.90 5893.53 14797.18 14183.98 25688.70 30894.04 24988.41 18198.55 19080.17 29095.99 28097.39 211
FMVSNet587.82 27286.56 28791.62 22792.31 31179.81 25393.49 14894.81 24883.26 26191.36 25896.93 10352.77 37097.49 27176.07 32498.03 21797.55 199
DPE-MVScopyleft95.89 5495.88 5895.92 6597.93 9389.83 8893.46 14998.30 2492.37 8297.75 3096.95 10095.14 3999.51 1991.74 11099.28 7498.41 124
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 14592.85 15694.50 12995.70 23187.45 13493.45 15095.76 21791.58 11695.25 14392.42 29681.96 25498.72 16291.61 11497.87 22697.33 215
114514_t90.51 21389.80 22992.63 19598.00 8882.24 21793.40 15197.29 13465.84 36189.40 29594.80 22586.99 20598.75 15783.88 25598.61 15396.89 230
DeepC-MVS_fast89.96 793.73 13393.44 14494.60 12496.14 20387.90 12893.36 15297.14 14485.53 23693.90 18995.45 19591.30 13498.59 18489.51 16598.62 15297.31 216
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6793.25 15398.32 2187.89 19796.86 6697.38 7195.55 2499.39 5095.47 1099.47 3999.11 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6196.22 4094.26 13998.19 7285.77 17693.24 15497.24 13896.88 1697.69 3197.77 5294.12 6899.13 9391.54 11899.29 6997.88 171
MSLP-MVS++93.25 14793.88 12891.37 23396.34 18682.81 21393.11 15597.74 9789.37 16494.08 18095.29 20390.40 15996.35 31390.35 14098.25 19494.96 294
baseline187.62 27787.31 27288.54 30194.71 26874.27 32493.10 15688.20 32686.20 22492.18 24793.04 27773.21 30695.52 32779.32 30185.82 36195.83 271
plane_prior88.12 12393.01 15788.98 17498.06 214
thres100view90087.35 28386.89 28188.72 29896.14 20373.09 33293.00 15885.31 35192.13 9193.26 20990.96 31763.42 34698.28 21071.27 35096.54 27094.79 297
Patchmtry90.11 22989.92 22790.66 25990.35 34277.00 29692.96 15992.81 28390.25 14794.74 16596.93 10367.11 32497.52 26885.17 23798.98 11197.46 203
LF4IMVS92.72 16592.02 17694.84 11195.65 23591.99 5692.92 16096.60 18285.08 24692.44 23693.62 26486.80 21196.35 31386.81 21798.25 19496.18 257
UniMVSNet (Re)95.32 7695.15 8695.80 7297.79 9988.91 10592.91 16198.07 5793.46 6796.31 8895.97 16690.14 16199.34 6492.11 9599.64 2399.16 37
TAPA-MVS88.58 1092.49 17391.75 18594.73 11596.50 17589.69 9092.91 16197.68 10078.02 30992.79 22494.10 24790.85 14697.96 23984.76 24898.16 20496.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 25987.52 27092.20 20796.33 18779.36 26192.81 16384.01 35986.44 22093.67 19592.68 28853.62 36999.25 7989.65 16498.45 16998.00 154
EIA-MVS92.35 17792.03 17593.30 17395.81 22683.97 19892.80 16498.17 4187.71 20189.79 29087.56 34891.17 14299.18 8787.97 20097.27 24896.77 235
ETH3D cwj APD-0.1693.99 12893.38 14695.80 7296.82 15589.92 8592.72 16598.02 6884.73 25293.65 19695.54 19191.68 12499.22 8288.78 18398.49 16898.26 133
thres600view787.66 27587.10 27989.36 28896.05 21073.17 33092.72 16585.31 35191.89 9893.29 20690.97 31663.42 34698.39 20173.23 33896.99 26096.51 241
wuyk23d87.83 27190.79 20878.96 35290.46 34188.63 11192.72 16590.67 31491.65 11598.68 1197.64 5796.06 1677.53 37359.84 36899.41 5370.73 371
V4293.43 13993.58 13992.97 18095.34 24881.22 23092.67 16896.49 19087.25 21096.20 9896.37 14587.32 19998.85 13792.39 9498.21 20098.85 78
OPM-MVS95.61 6595.45 7496.08 5598.49 5591.00 7092.65 16997.33 13090.05 14996.77 7196.85 10895.04 4598.56 18892.77 8199.06 9998.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DU-MVS95.28 8095.12 8895.75 7697.75 10188.59 11392.58 17097.81 9193.99 5396.80 6995.90 16790.10 16599.41 3891.60 11599.58 3199.26 29
FMVSNet390.78 20790.32 21992.16 21293.03 30279.92 24992.54 17194.95 24186.17 22695.10 14896.01 16469.97 31898.75 15786.74 21898.38 17697.82 178
hse-mvs292.24 18191.20 19895.38 8896.16 20190.65 7792.52 17292.01 30489.23 16893.95 18692.99 27976.88 29398.69 17091.02 12496.03 27896.81 233
MVS_Test92.57 17293.29 14790.40 26693.53 29275.85 31092.52 17296.96 15688.73 17992.35 24196.70 12290.77 14798.37 20692.53 8995.49 29196.99 226
CR-MVSNet87.89 26987.12 27890.22 27191.01 33378.93 26892.52 17292.81 28373.08 33489.10 29796.93 10367.11 32497.64 26488.80 18292.70 33794.08 311
RPMNet90.31 22490.14 22490.81 25691.01 33378.93 26892.52 17298.12 4791.91 9789.10 29796.89 10668.84 31999.41 3890.17 15092.70 33794.08 311
RRT_MVS91.36 19890.05 22595.29 9589.21 35488.15 12292.51 17694.89 24386.73 21895.54 12795.68 18161.82 35399.30 7294.91 1399.13 9698.43 122
XVG-OURS-SEG-HR95.38 7395.00 9296.51 4898.10 7794.07 2092.46 17798.13 4690.69 13693.75 19296.25 15498.03 297.02 29092.08 9795.55 28998.45 121
EI-MVSNet-Vis-set94.36 11494.28 12094.61 12092.55 30985.98 17292.44 17894.69 25293.70 6296.12 10395.81 17391.24 13698.86 13593.76 4198.22 19998.98 60
Anonymous20240521192.58 17092.50 16892.83 18896.55 17083.22 20692.43 17991.64 30794.10 5295.59 12596.64 12681.88 25697.50 26985.12 24198.52 16397.77 182
AUN-MVS90.05 23388.30 25495.32 9496.09 20790.52 7992.42 18092.05 30382.08 27788.45 31192.86 28165.76 33498.69 17088.91 18096.07 27796.75 237
EI-MVSNet-UG-set94.35 11594.27 12294.59 12592.46 31085.87 17492.42 18094.69 25293.67 6696.13 10295.84 17291.20 13998.86 13593.78 3898.23 19799.03 51
Regformer-394.28 11894.23 12494.46 13392.78 30786.28 16792.39 18294.70 25193.69 6595.97 10695.56 18991.34 13198.48 19893.45 5498.14 20698.62 107
Regformer-494.90 9194.67 10695.59 8192.78 30789.02 10392.39 18295.91 21294.50 4396.41 8195.56 18992.10 11499.01 11394.23 2698.14 20698.74 90
NCCC94.08 12693.54 14295.70 7996.49 17689.90 8792.39 18296.91 16290.64 13892.33 24494.60 23190.58 15598.96 12190.21 14997.70 23498.23 134
casdiffmvs94.32 11794.80 9892.85 18796.05 21081.44 22792.35 18598.05 6191.53 11895.75 11896.80 11293.35 8298.49 19491.01 12698.32 18598.64 103
ETV-MVS92.99 15592.74 16093.72 15895.86 22386.30 16692.33 18697.84 8891.70 11492.81 22386.17 35892.22 11199.19 8688.03 19997.73 23095.66 279
EI-MVSNet92.99 15593.26 15192.19 20892.12 31779.21 26692.32 18794.67 25491.77 10995.24 14495.85 16987.14 20398.49 19491.99 10098.26 19198.86 75
CVMVSNet85.16 30284.72 30086.48 32292.12 31770.19 34792.32 18788.17 32756.15 37190.64 27295.85 16967.97 32296.69 30188.78 18390.52 35292.56 341
OMC-MVS94.22 12293.69 13595.81 7097.25 13191.27 6692.27 18997.40 12087.10 21494.56 16995.42 19793.74 7198.11 22686.62 22298.85 12698.06 146
PM-MVS93.33 14192.67 16495.33 9196.58 16794.06 2192.26 19092.18 29785.92 23096.22 9696.61 12885.64 22695.99 32290.35 14098.23 19795.93 266
UniMVSNet_NR-MVSNet95.35 7495.21 8495.76 7597.69 10888.59 11392.26 19097.84 8894.91 3896.80 6995.78 17790.42 15699.41 3891.60 11599.58 3199.29 28
AdaColmapbinary91.63 19191.36 19492.47 20395.56 24086.36 16492.24 19296.27 19888.88 17889.90 28692.69 28791.65 12598.32 20877.38 31697.64 23792.72 340
mvs-test193.07 15391.80 18396.89 3994.74 26495.83 692.17 19395.41 23289.94 15089.85 28790.59 32590.12 16298.88 13087.68 20595.66 28795.97 264
PVSNet_Blended_VisFu91.63 19191.20 19892.94 18397.73 10483.95 19992.14 19497.46 11778.85 30492.35 24194.98 21584.16 23399.08 10086.36 22896.77 26595.79 273
ETH3 D test640091.91 18691.25 19793.89 15396.59 16684.41 18992.10 19597.72 9978.52 30591.82 25393.78 26188.70 17799.13 9383.61 25698.39 17498.14 141
Baseline_NR-MVSNet94.47 11195.09 9092.60 19798.50 5480.82 23692.08 19696.68 17893.82 6096.29 9098.56 2090.10 16597.75 25990.10 15499.66 2199.24 31
Fast-Effi-MVS+-dtu92.77 16492.16 17294.58 12794.66 27088.25 12092.05 19796.65 18089.62 15890.08 28191.23 31292.56 10598.60 18286.30 22996.27 27596.90 229
xxxxxxxxxxxxxcwj95.03 8594.93 9395.33 9197.46 12488.05 12592.04 19898.42 1687.63 20496.36 8496.68 12394.37 6499.32 7092.41 9299.05 10298.64 103
save fliter97.46 12488.05 12592.04 19897.08 14987.63 204
PatchT87.51 27988.17 26085.55 32990.64 33666.91 35792.02 20086.09 34192.20 8989.05 29997.16 8964.15 34296.37 31289.21 17592.98 33593.37 330
EG-PatchMatch MVS94.54 10994.67 10694.14 14297.87 9586.50 15792.00 20196.74 17688.16 19296.93 6397.61 5893.04 9397.90 24191.60 11598.12 20998.03 152
v14419293.20 15093.54 14292.16 21296.05 21078.26 27991.95 20297.14 14484.98 24895.96 10796.11 16087.08 20499.04 10893.79 3798.84 12799.17 36
VNet92.67 16792.96 15391.79 22096.27 19280.15 24091.95 20294.98 24092.19 9094.52 17196.07 16187.43 19797.39 27884.83 24698.38 17697.83 176
131486.46 29586.33 29286.87 32191.65 32574.54 31991.94 20494.10 26374.28 32684.78 33987.33 35283.03 24095.00 33978.72 30591.16 35091.06 352
112190.26 22589.23 23593.34 17097.15 13987.40 13591.94 20494.39 25767.88 35691.02 26694.91 21886.91 20998.59 18481.17 28297.71 23394.02 316
MVS84.98 30484.30 30487.01 31991.03 33277.69 28891.94 20494.16 26259.36 36984.23 34387.50 35085.66 22496.80 29871.79 34593.05 33486.54 362
tfpn200view987.05 29186.52 28988.67 29995.77 22772.94 33391.89 20786.00 34390.84 13192.61 22989.80 32963.93 34398.28 21071.27 35096.54 27094.79 297
thres40087.20 28786.52 28989.24 29295.77 22772.94 33391.89 20786.00 34390.84 13192.61 22989.80 32963.93 34398.28 21071.27 35096.54 27096.51 241
v192192093.26 14593.61 13892.19 20896.04 21478.31 27891.88 20997.24 13885.17 24196.19 10096.19 15686.76 21299.05 10594.18 2898.84 12799.22 32
Regformer-194.55 10794.33 11895.19 9992.83 30588.54 11691.87 21095.84 21693.99 5395.95 10895.04 21292.00 11698.79 14893.14 7298.31 18698.23 134
Regformer-294.86 9494.55 11095.77 7492.83 30589.98 8491.87 21096.40 19394.38 4796.19 10095.04 21292.47 10999.04 10893.49 4898.31 18698.28 131
XXY-MVS92.58 17093.16 15290.84 25497.75 10179.84 25091.87 21096.22 20385.94 22995.53 12897.68 5492.69 10294.48 34283.21 26097.51 24198.21 137
IterMVS-LS93.78 13294.28 12092.27 20596.27 19279.21 26691.87 21096.78 17291.77 10996.57 7997.07 9387.15 20298.74 16091.99 10099.03 10998.86 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 13693.81 12992.57 19896.28 19179.61 25791.86 21496.96 15686.95 21695.91 11296.32 14887.65 19398.96 12193.51 4798.88 12299.13 40
v119293.49 13793.78 13192.62 19696.16 20179.62 25691.83 21597.22 14086.07 22796.10 10496.38 14487.22 20099.02 11194.14 2998.88 12299.22 32
v124093.29 14293.71 13492.06 21596.01 21577.89 28491.81 21697.37 12185.12 24496.69 7396.40 13986.67 21399.07 10494.51 1898.76 14199.22 32
CNVR-MVS94.58 10694.29 11995.46 8796.94 14689.35 10091.81 21696.80 17189.66 15793.90 18995.44 19692.80 10098.72 16292.74 8398.52 16398.32 127
v2v48293.29 14293.63 13792.29 20496.35 18578.82 27291.77 21896.28 19788.45 18695.70 12296.26 15386.02 22198.90 12793.02 7698.81 13599.14 39
RRT_test8_iter0588.21 26588.17 26088.33 30691.62 32666.82 36191.73 21996.60 18286.34 22294.14 17795.38 20247.72 37499.11 9791.78 10998.26 19199.06 49
EPNet_dtu85.63 29984.37 30389.40 28786.30 36974.33 32391.64 22088.26 32484.84 25072.96 37289.85 32771.27 31497.69 26276.60 32197.62 23896.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 21788.92 24394.85 11096.53 17490.02 8391.58 22196.48 19180.16 28786.14 33192.18 29885.73 22398.25 21576.87 31994.61 31296.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 15193.76 13291.03 24598.60 3575.83 31291.51 22295.62 22091.84 10395.74 11997.10 9289.31 17398.32 20885.07 24499.06 9998.93 65
XVG-OURS94.72 10194.12 12596.50 4998.00 8894.23 1891.48 22398.17 4190.72 13595.30 13896.47 13387.94 19096.98 29191.41 12097.61 23998.30 130
HQP-NCC96.36 18291.37 22487.16 21188.81 302
ACMP_Plane96.36 18291.37 22487.16 21188.81 302
HQP-MVS92.09 18391.49 19193.88 15496.36 18284.89 18591.37 22497.31 13187.16 21188.81 30293.40 27084.76 22998.60 18286.55 22497.73 23098.14 141
MCST-MVS92.91 15792.51 16794.10 14397.52 11985.72 17791.36 22797.13 14680.33 28692.91 22294.24 24291.23 13798.72 16289.99 15697.93 22397.86 173
v14892.87 16093.29 14791.62 22796.25 19577.72 28791.28 22895.05 23889.69 15695.93 11196.04 16287.34 19898.38 20390.05 15597.99 22098.78 84
tpmvs84.22 30883.97 30784.94 33487.09 36665.18 36591.21 22988.35 32382.87 26985.21 33490.96 31765.24 33896.75 29979.60 30085.25 36292.90 337
CANet92.38 17691.99 17793.52 16793.82 29083.46 20391.14 23097.00 15389.81 15486.47 32994.04 24987.90 19199.21 8389.50 16698.27 19097.90 168
CNLPA91.72 18991.20 19893.26 17496.17 20091.02 6991.14 23095.55 22890.16 14890.87 26793.56 26786.31 21794.40 34579.92 29697.12 25294.37 307
DP-MVS Recon92.31 17891.88 18093.60 16197.18 13686.87 14991.10 23297.37 12184.92 24992.08 24994.08 24888.59 17898.20 21883.50 25798.14 20695.73 275
OpenMVS_ROBcopyleft85.12 1689.52 24389.05 24090.92 25094.58 27281.21 23191.10 23293.41 27577.03 31593.41 20193.99 25383.23 23897.80 25279.93 29494.80 30793.74 323
TSAR-MVS + GP.93.07 15392.41 17095.06 10495.82 22490.87 7490.97 23492.61 29188.04 19494.61 16893.79 26088.08 18597.81 25189.41 16798.39 17496.50 244
MVP-Stereo90.07 23288.92 24393.54 16596.31 18986.49 15890.93 23595.59 22579.80 28891.48 25695.59 18480.79 26397.39 27878.57 30791.19 34996.76 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 24588.75 24791.03 24590.10 34476.62 30290.85 23694.67 25482.27 27595.24 14495.79 17461.09 35698.49 19490.49 13498.26 19197.97 161
pmmvs-eth3d91.54 19390.73 21093.99 14595.76 22987.86 13090.83 23793.98 26878.23 30894.02 18596.22 15582.62 24796.83 29786.57 22398.33 18397.29 217
CANet_DTU89.85 23889.17 23791.87 21892.20 31580.02 24790.79 23895.87 21486.02 22882.53 35391.77 30580.01 26798.57 18785.66 23497.70 23497.01 225
test_prior489.91 8690.74 239
TinyColmap92.00 18592.76 15989.71 28295.62 23877.02 29590.72 24096.17 20687.70 20295.26 14196.29 15092.54 10696.45 30881.77 27498.77 14095.66 279
CDPH-MVS92.67 16791.83 18195.18 10096.94 14688.46 11890.70 24197.07 15077.38 31192.34 24395.08 21092.67 10398.88 13085.74 23398.57 15798.20 138
DSMNet-mixed82.21 31981.56 31884.16 34089.57 35070.00 35190.65 24277.66 37454.99 37283.30 34997.57 5977.89 28390.50 36566.86 36295.54 29091.97 345
TEST996.45 17889.46 9490.60 24396.92 16079.09 30090.49 27394.39 23891.31 13398.88 130
train_agg92.71 16691.83 18195.35 8996.45 17889.46 9490.60 24396.92 16079.37 29590.49 27394.39 23891.20 13998.88 13088.66 18798.43 17097.72 186
PatchmatchNetpermissive85.22 30184.64 30186.98 32089.51 35169.83 35290.52 24587.34 33378.87 30387.22 32692.74 28666.91 32696.53 30481.77 27486.88 36094.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 18089.14 10190.51 24696.89 16379.37 29590.42 27594.36 24091.20 13998.82 140
test_yl90.11 22989.73 23291.26 23794.09 28279.82 25190.44 24792.65 28890.90 12993.19 21393.30 27273.90 30398.03 23082.23 27096.87 26195.93 266
DCV-MVSNet90.11 22989.73 23291.26 23794.09 28279.82 25190.44 24792.65 28890.90 12993.19 21393.30 27273.90 30398.03 23082.23 27096.87 26195.93 266
tpm281.46 32480.35 33184.80 33589.90 34565.14 36690.44 24785.36 35065.82 36282.05 35792.44 29457.94 36096.69 30170.71 35388.49 35792.56 341
agg_prior192.60 16991.76 18495.10 10396.20 19788.89 10690.37 25096.88 16479.67 29290.21 27894.41 23691.30 13498.78 15288.46 19098.37 18197.64 192
CostFormer83.09 31382.21 31685.73 32889.27 35367.01 35690.35 25186.47 33870.42 34783.52 34893.23 27561.18 35596.85 29677.21 31788.26 35893.34 331
TAMVS90.16 22789.05 24093.49 16896.49 17686.37 16390.34 25292.55 29280.84 28492.99 21994.57 23381.94 25598.20 21873.51 33698.21 20095.90 269
EPMVS81.17 32880.37 33083.58 34285.58 37165.08 36790.31 25371.34 37577.31 31385.80 33391.30 31159.38 35892.70 35879.99 29182.34 36892.96 336
CMPMVSbinary68.83 2287.28 28485.67 29792.09 21488.77 35885.42 18090.31 25394.38 25870.02 34988.00 31793.30 27273.78 30594.03 35075.96 32696.54 27096.83 232
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2555.85 37865.36 33696.00 32179.61 298
test_prior393.29 14292.85 15694.61 12095.95 21887.23 13890.21 25597.36 12689.33 16690.77 26894.81 22290.41 15798.68 17288.21 19198.55 15897.93 164
test_prior290.21 25589.33 16690.77 26894.81 22290.41 15788.21 19198.55 158
MVS_111021_LR93.66 13493.28 14994.80 11296.25 19590.95 7190.21 25595.43 23187.91 19593.74 19494.40 23792.88 9896.38 31190.39 13798.28 18997.07 221
WR-MVS93.49 13793.72 13392.80 18997.57 11780.03 24690.14 25995.68 21993.70 6296.62 7695.39 20087.21 20199.04 10887.50 20799.64 2399.33 25
tpmrst82.85 31682.93 31482.64 34587.65 36058.99 37590.14 25987.90 32975.54 32083.93 34491.63 30866.79 32995.36 33381.21 28181.54 36993.57 329
PVSNet_BlendedMVS90.35 22189.96 22691.54 23094.81 25978.80 27490.14 25996.93 15879.43 29488.68 30995.06 21186.27 21898.15 22480.27 28798.04 21697.68 189
BH-untuned90.68 21090.90 20390.05 27795.98 21679.57 25890.04 26294.94 24287.91 19594.07 18193.00 27887.76 19297.78 25579.19 30395.17 30092.80 338
新几何290.02 263
旧先验290.00 26468.65 35392.71 22796.52 30585.15 239
无先验89.94 26595.75 21870.81 34698.59 18481.17 28294.81 296
xiu_mvs_v1_base_debu91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26090.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
xiu_mvs_v1_base91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26090.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
xiu_mvs_v1_base_debi91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26090.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
DWT-MVSNet_test80.74 33179.18 33685.43 33187.51 36366.87 35889.87 26986.01 34274.20 32880.86 36280.62 36848.84 37296.68 30381.54 27683.14 36792.75 339
mvs_anonymous90.37 22091.30 19687.58 31592.17 31668.00 35589.84 27094.73 25083.82 25993.22 21297.40 7087.54 19597.40 27787.94 20195.05 30297.34 214
test20.0390.80 20690.85 20690.63 26095.63 23779.24 26489.81 27192.87 28289.90 15294.39 17396.40 13985.77 22295.27 33773.86 33599.05 10297.39 211
1112_ss88.42 26287.41 27191.45 23196.69 16080.99 23389.72 27296.72 17773.37 33287.00 32790.69 32277.38 28698.20 21881.38 27893.72 32495.15 289
UnsupCasMVSNet_eth90.33 22290.34 21890.28 26894.64 27180.24 23889.69 27395.88 21385.77 23293.94 18895.69 18081.99 25392.98 35784.21 25391.30 34897.62 193
MG-MVS89.54 24289.80 22988.76 29794.88 25572.47 33889.60 27492.44 29485.82 23189.48 29495.98 16582.85 24297.74 26081.87 27395.27 29896.08 260
Patchmatch-test86.10 29786.01 29486.38 32690.63 33774.22 32589.57 27586.69 33685.73 23489.81 28992.83 28265.24 33891.04 36377.82 31295.78 28593.88 320
Anonymous2023120688.77 25788.29 25590.20 27396.31 18978.81 27389.56 27693.49 27474.26 32792.38 23995.58 18782.21 24995.43 33272.07 34498.75 14396.34 250
DeepPCF-MVS90.46 694.20 12393.56 14196.14 5395.96 21792.96 4589.48 27797.46 11785.14 24296.23 9595.42 19793.19 8698.08 22790.37 13998.76 14197.38 213
SCA87.43 28187.21 27588.10 30992.01 32071.98 34089.43 27888.11 32882.26 27688.71 30792.83 28278.65 27597.59 26579.61 29893.30 32894.75 299
testgi90.38 21991.34 19587.50 31697.49 12171.54 34189.43 27895.16 23788.38 18894.54 17094.68 23092.88 9893.09 35671.60 34897.85 22797.88 171
JIA-IIPM85.08 30383.04 31291.19 24287.56 36186.14 17089.40 28084.44 35888.98 17482.20 35597.95 4356.82 36396.15 31676.55 32283.45 36591.30 350
原ACMM289.34 281
tpm84.38 30784.08 30685.30 33390.47 34063.43 37289.34 28185.63 34777.24 31487.62 32195.03 21461.00 35797.30 28179.26 30291.09 35195.16 288
MVS_111021_HR93.63 13593.42 14594.26 13996.65 16186.96 14889.30 28396.23 20188.36 18993.57 19894.60 23193.45 7797.77 25690.23 14898.38 17698.03 152
tpm cat180.61 33379.46 33584.07 34188.78 35765.06 36889.26 28488.23 32562.27 36781.90 35989.66 33562.70 35195.29 33671.72 34680.60 37091.86 348
CDS-MVSNet89.55 24188.22 25993.53 16695.37 24786.49 15889.26 28493.59 27179.76 29091.15 26392.31 29777.12 28998.38 20377.51 31497.92 22495.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 20190.86 20592.53 20095.45 24382.53 21589.25 28696.52 18985.00 24789.91 28588.55 34492.94 9498.84 13884.72 24995.44 29396.22 255
BH-RMVSNet90.47 21590.44 21690.56 26295.21 25178.65 27689.15 28793.94 26988.21 19092.74 22694.22 24386.38 21697.88 24378.67 30695.39 29595.14 290
thres20085.85 29885.18 29987.88 31394.44 27472.52 33789.08 28886.21 33988.57 18591.44 25788.40 34564.22 34198.00 23568.35 35895.88 28493.12 332
USDC89.02 24989.08 23988.84 29695.07 25374.50 32188.97 28996.39 19473.21 33393.27 20896.28 15182.16 25196.39 31077.55 31398.80 13795.62 282
testdata188.96 29088.44 187
pmmvs587.87 27087.14 27790.07 27593.26 29676.97 29988.89 29192.18 29773.71 33188.36 31293.89 25776.86 29596.73 30080.32 28696.81 26396.51 241
patch_mono-292.46 17492.72 16391.71 22496.65 16178.91 27088.85 29297.17 14283.89 25892.45 23596.76 11589.86 16997.09 28790.24 14798.59 15599.12 42
test22296.95 14585.27 18288.83 29393.61 27065.09 36390.74 27094.85 22184.62 23197.36 24693.91 318
baseline283.38 31181.54 32088.90 29491.38 32972.84 33588.78 29481.22 36678.97 30179.82 36587.56 34861.73 35497.80 25274.30 33390.05 35496.05 262
diffmvs91.74 18891.93 17991.15 24393.06 30078.17 28088.77 29597.51 11686.28 22392.42 23793.96 25488.04 18797.46 27290.69 13296.67 26897.82 178
MDTV_nov1_ep1383.88 30889.42 35261.52 37388.74 29687.41 33273.99 32984.96 33894.01 25265.25 33795.53 32678.02 30893.16 330
D2MVS89.93 23689.60 23490.92 25094.03 28478.40 27788.69 29794.85 24478.96 30293.08 21595.09 20974.57 30196.94 29288.19 19398.96 11797.41 207
TR-MVS87.70 27387.17 27689.27 29094.11 28179.26 26388.69 29791.86 30581.94 27890.69 27189.79 33182.82 24397.42 27572.65 34291.98 34591.14 351
PatchMatch-RL89.18 24688.02 26492.64 19395.90 22292.87 4788.67 29991.06 31080.34 28590.03 28391.67 30783.34 23694.42 34476.35 32394.84 30690.64 354
PAPR87.65 27686.77 28490.27 26992.85 30477.38 29188.56 30096.23 20176.82 31784.98 33789.75 33386.08 22097.16 28572.33 34393.35 32796.26 254
MDTV_nov1_ep13_2view42.48 38088.45 30167.22 35883.56 34766.80 32772.86 34194.06 313
jason89.17 24788.32 25391.70 22595.73 23080.07 24388.10 30293.22 27771.98 33990.09 28092.79 28478.53 27898.56 18887.43 20997.06 25396.46 246
jason: jason.
BH-w/o87.21 28687.02 28087.79 31494.77 26177.27 29387.90 30393.21 27981.74 27989.99 28488.39 34683.47 23596.93 29471.29 34992.43 34189.15 356
MS-PatchMatch88.05 26887.75 26688.95 29393.28 29477.93 28287.88 30492.49 29375.42 32192.57 23193.59 26680.44 26594.24 34981.28 27992.75 33694.69 302
DELS-MVS92.05 18492.16 17291.72 22394.44 27480.13 24287.62 30597.25 13787.34 20992.22 24693.18 27689.54 17298.73 16189.67 16398.20 20296.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 30982.20 31789.41 28689.04 35576.37 30687.57 30690.98 31172.71 33784.46 34092.45 29268.08 32096.48 30770.58 35483.97 36395.38 285
ADS-MVSNet82.25 31881.55 31984.34 33989.04 35565.30 36487.57 30685.13 35572.71 33784.46 34092.45 29268.08 32092.33 35970.58 35483.97 36395.38 285
IterMVS-SCA-FT91.65 19091.55 18791.94 21793.89 28779.22 26587.56 30893.51 27391.53 11895.37 13496.62 12778.65 27598.90 12791.89 10594.95 30397.70 187
IterMVS90.18 22690.16 22090.21 27293.15 29875.98 30987.56 30892.97 28186.43 22194.09 17996.40 13978.32 27997.43 27487.87 20294.69 31097.23 218
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 28086.58 28690.25 27096.80 15877.75 28687.53 31096.25 19969.73 35086.47 32993.61 26575.67 29997.88 24379.95 29293.20 32995.11 291
c3_l91.32 20091.42 19291.00 24892.29 31276.79 30187.52 31196.42 19285.76 23394.72 16793.89 25782.73 24498.16 22390.93 12898.55 15898.04 149
UnsupCasMVSNet_bld88.50 26188.03 26389.90 27995.52 24178.88 27187.39 31294.02 26679.32 29893.06 21694.02 25180.72 26494.27 34775.16 32993.08 33396.54 239
lupinMVS88.34 26487.31 27291.45 23194.74 26480.06 24487.23 31392.27 29671.10 34388.83 30091.15 31377.02 29098.53 19186.67 22196.75 26695.76 274
pmmvs488.95 25387.70 26892.70 19194.30 27785.60 17887.22 31492.16 29974.62 32589.75 29294.19 24477.97 28296.41 30982.71 26496.36 27496.09 259
WTY-MVS86.93 29386.50 29188.24 30794.96 25474.64 31787.19 31592.07 30278.29 30788.32 31391.59 30978.06 28194.27 34774.88 33093.15 33195.80 272
ET-MVSNet_ETH3D86.15 29684.27 30591.79 22093.04 30181.28 22987.17 31686.14 34079.57 29383.65 34588.66 34257.10 36198.18 22187.74 20495.40 29495.90 269
MVS-HIRNet78.83 33880.60 32973.51 35593.07 29947.37 37887.10 31778.00 37368.94 35277.53 36897.26 8271.45 31394.62 34063.28 36788.74 35678.55 370
xiu_mvs_v2_base89.00 25189.19 23688.46 30494.86 25774.63 31886.97 31895.60 22180.88 28287.83 31988.62 34391.04 14498.81 14582.51 26894.38 31491.93 346
DPM-MVS89.35 24488.40 25292.18 21196.13 20684.20 19486.96 31996.15 20775.40 32287.36 32491.55 31083.30 23798.01 23482.17 27296.62 26994.32 309
eth_miper_zixun_eth90.72 20890.61 21291.05 24492.04 31976.84 30086.91 32096.67 17985.21 24094.41 17293.92 25579.53 27098.26 21489.76 16197.02 25598.06 146
dp79.28 33678.62 33881.24 34885.97 37056.45 37686.91 32085.26 35372.97 33581.45 36189.17 34156.01 36595.45 33173.19 33976.68 37191.82 349
sss87.23 28586.82 28288.46 30493.96 28577.94 28186.84 32292.78 28677.59 31087.61 32291.83 30478.75 27491.92 36077.84 31094.20 31995.52 284
miper_ehance_all_eth90.48 21490.42 21790.69 25891.62 32676.57 30386.83 32396.18 20583.38 26094.06 18292.66 28982.20 25098.04 22989.79 16097.02 25597.45 204
CLD-MVS91.82 18791.41 19393.04 17796.37 18083.65 20286.82 32497.29 13484.65 25392.27 24589.67 33492.20 11297.85 24983.95 25499.47 3997.62 193
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 21190.56 21490.91 25291.85 32176.98 29886.75 32595.36 23585.53 23694.06 18294.89 21977.36 28897.98 23890.27 14598.98 11197.76 183
DIV-MVS_self_test90.65 21190.56 21490.91 25291.85 32176.99 29786.75 32595.36 23585.52 23894.06 18294.89 21977.37 28797.99 23790.28 14498.97 11597.76 183
PS-MVSNAJ88.86 25588.99 24288.48 30394.88 25574.71 31686.69 32795.60 22180.88 28287.83 31987.37 35190.77 14798.82 14082.52 26794.37 31591.93 346
PVSNet_Blended88.74 25888.16 26290.46 26594.81 25978.80 27486.64 32896.93 15874.67 32488.68 30989.18 34086.27 21898.15 22480.27 28796.00 27994.44 306
MSDG90.82 20590.67 21191.26 23794.16 27983.08 21086.63 32996.19 20490.60 14091.94 25191.89 30389.16 17595.75 32480.96 28594.51 31394.95 295
cl2289.02 24988.50 25090.59 26189.76 34676.45 30486.62 33094.03 26482.98 26892.65 22892.49 29072.05 31197.53 26788.93 17897.02 25597.78 181
CL-MVSNet_self_test90.04 23489.90 22890.47 26395.24 25077.81 28586.60 33192.62 29085.64 23593.25 21193.92 25583.84 23496.06 32079.93 29498.03 21797.53 200
PCF-MVS84.52 1789.12 24887.71 26793.34 17096.06 20985.84 17586.58 33297.31 13168.46 35493.61 19793.89 25787.51 19698.52 19267.85 35998.11 21095.66 279
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Patchmatch-RL test88.81 25688.52 24989.69 28395.33 24979.94 24886.22 33392.71 28778.46 30695.80 11694.18 24566.25 33295.33 33589.22 17498.53 16293.78 321
FPMVS84.50 30683.28 31088.16 30896.32 18894.49 1685.76 33485.47 34983.09 26585.20 33594.26 24163.79 34586.58 37063.72 36691.88 34783.40 365
IB-MVS77.21 1983.11 31281.05 32389.29 28991.15 33175.85 31085.66 33586.00 34379.70 29182.02 35886.61 35448.26 37398.39 20177.84 31092.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 20290.88 20491.55 22994.68 26980.16 23985.49 33692.14 30090.41 14594.93 15795.79 17485.10 22796.93 29485.15 23994.19 32097.57 196
new-patchmatchnet88.97 25290.79 20883.50 34394.28 27855.83 37785.34 33793.56 27286.18 22595.47 12995.73 17983.10 23996.51 30685.40 23698.06 21498.16 139
miper_enhance_ethall88.42 26287.87 26590.07 27588.67 35975.52 31385.10 33895.59 22575.68 31892.49 23289.45 33778.96 27297.88 24387.86 20397.02 25596.81 233
HyFIR lowres test87.19 28885.51 29892.24 20697.12 14180.51 23785.03 33996.06 20866.11 36091.66 25592.98 28070.12 31799.14 9175.29 32895.23 29997.07 221
pmmvs380.83 33078.96 33786.45 32387.23 36577.48 29084.87 34082.31 36363.83 36585.03 33689.50 33649.66 37193.10 35573.12 34095.10 30188.78 360
test0.0.03 182.48 31781.47 32185.48 33089.70 34773.57 32984.73 34181.64 36583.07 26688.13 31686.61 35462.86 34989.10 36966.24 36390.29 35393.77 322
N_pmnet88.90 25487.25 27493.83 15694.40 27693.81 3684.73 34187.09 33479.36 29793.26 20992.43 29579.29 27191.68 36177.50 31597.22 25096.00 263
GA-MVS87.70 27386.82 28290.31 26793.27 29577.22 29484.72 34392.79 28585.11 24589.82 28890.07 32666.80 32797.76 25884.56 25094.27 31895.96 265
ppachtmachnet_test88.61 26088.64 24888.50 30291.76 32370.99 34584.59 34492.98 28079.30 29992.38 23993.53 26879.57 26997.45 27386.50 22697.17 25197.07 221
CHOSEN 1792x268887.19 28885.92 29691.00 24897.13 14079.41 26084.51 34595.60 22164.14 36490.07 28294.81 22278.26 28097.14 28673.34 33795.38 29696.46 246
thisisatest051584.72 30582.99 31389.90 27992.96 30375.33 31584.36 34683.42 36177.37 31288.27 31486.65 35353.94 36798.72 16282.56 26697.40 24595.67 278
cascas87.02 29286.28 29389.25 29191.56 32876.45 30484.33 34796.78 17271.01 34486.89 32885.91 35981.35 25896.94 29283.09 26195.60 28894.35 308
bset_n11_16_dypcd89.99 23589.15 23892.53 20094.75 26281.34 22884.19 34887.56 33185.13 24393.77 19192.46 29172.82 30799.01 11392.46 9199.21 8397.23 218
new_pmnet81.22 32681.01 32581.86 34790.92 33570.15 34884.03 34980.25 37070.83 34585.97 33289.78 33267.93 32384.65 37167.44 36091.90 34690.78 353
PAPM81.91 32380.11 33387.31 31893.87 28872.32 33984.02 35093.22 27769.47 35176.13 37089.84 32872.15 31097.23 28353.27 37289.02 35592.37 343
our_test_387.55 27887.59 26987.44 31791.76 32370.48 34683.83 35190.55 31579.79 28992.06 25092.17 29978.63 27795.63 32584.77 24794.73 30896.22 255
miper_lstm_enhance89.90 23789.80 22990.19 27491.37 33077.50 28983.82 35295.00 23984.84 25093.05 21794.96 21676.53 29795.20 33889.96 15798.67 15097.86 173
test-LLR83.58 31083.17 31184.79 33689.68 34866.86 35983.08 35384.52 35683.07 26682.85 35184.78 36262.86 34993.49 35382.85 26294.86 30494.03 314
TESTMET0.1,179.09 33778.04 33982.25 34687.52 36264.03 37183.08 35380.62 36870.28 34880.16 36483.22 36544.13 37790.56 36479.95 29293.36 32692.15 344
test-mter81.21 32780.01 33484.79 33689.68 34866.86 35983.08 35384.52 35673.85 33082.85 35184.78 36243.66 37893.49 35382.85 26294.86 30494.03 314
test1239.49 34412.01 3471.91 3592.87 3821.30 38382.38 3561.34 3841.36 3772.84 3786.56 3762.45 3820.97 3782.73 3765.56 3763.47 374
PMMVS83.00 31481.11 32288.66 30083.81 37686.44 16182.24 35785.65 34661.75 36882.07 35685.64 36079.75 26891.59 36275.99 32593.09 33287.94 361
KD-MVS_2432*160082.17 32080.75 32786.42 32482.04 37770.09 34981.75 35890.80 31282.56 27090.37 27689.30 33842.90 37996.11 31874.47 33192.55 33993.06 333
miper_refine_blended82.17 32080.75 32786.42 32482.04 37770.09 34981.75 35890.80 31282.56 27090.37 27689.30 33842.90 37996.11 31874.47 33192.55 33993.06 333
YYNet188.17 26688.24 25787.93 31192.21 31473.62 32880.75 36088.77 32082.51 27394.99 15595.11 20882.70 24593.70 35183.33 25893.83 32296.48 245
MDA-MVSNet_test_wron88.16 26788.23 25887.93 31192.22 31373.71 32780.71 36188.84 31982.52 27294.88 16095.14 20682.70 24593.61 35283.28 25993.80 32396.46 246
testmvs9.02 34511.42 3481.81 3602.77 3831.13 38479.44 3621.90 3831.18 3782.65 3796.80 3751.95 3830.87 3792.62 3773.45 3773.44 375
PVSNet76.22 2082.89 31582.37 31584.48 33893.96 28564.38 37078.60 36388.61 32171.50 34184.43 34286.36 35774.27 30294.60 34169.87 35693.69 32594.46 305
PVSNet_070.34 2174.58 33972.96 34279.47 35190.63 33766.24 36373.26 36483.40 36263.67 36678.02 36778.35 37072.53 30889.59 36756.68 37060.05 37482.57 368
E-PMN80.72 33280.86 32680.29 35085.11 37268.77 35472.96 36581.97 36487.76 20083.25 35083.01 36662.22 35289.17 36877.15 31894.31 31782.93 366
CHOSEN 280x42080.04 33577.97 34086.23 32790.13 34374.53 32072.87 36689.59 31866.38 35976.29 36985.32 36156.96 36295.36 33369.49 35794.72 30988.79 359
EMVS80.35 33480.28 33280.54 34984.73 37469.07 35372.54 36780.73 36787.80 19981.66 36081.73 36762.89 34889.84 36675.79 32794.65 31182.71 367
PMMVS281.31 32583.44 30974.92 35490.52 33946.49 37969.19 36885.23 35484.30 25587.95 31894.71 22976.95 29284.36 37264.07 36598.09 21293.89 319
tmp_tt37.97 34244.33 34518.88 35811.80 38121.54 38163.51 36945.66 3824.23 37551.34 37550.48 37359.08 35922.11 37744.50 37468.35 37313.00 373
MVEpermissive59.87 2373.86 34072.65 34377.47 35387.00 36874.35 32261.37 37060.93 37867.27 35769.69 37386.49 35681.24 26272.33 37456.45 37183.45 36585.74 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34148.94 34454.93 35639.68 38012.38 38228.59 37190.09 3166.82 37441.10 37678.41 36954.41 36670.69 37550.12 37351.26 37581.72 369
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.35 34331.13 3460.00 3610.00 3840.00 3850.00 37295.58 2270.00 3790.00 38091.15 31393.43 790.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.56 34610.09 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37990.77 1470.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.56 34610.08 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38090.69 3220.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
MSC_two_6792asdad95.90 6696.54 17189.57 9296.87 16699.41 3894.06 3099.30 6698.72 93
PC_three_145275.31 32395.87 11495.75 17892.93 9596.34 31587.18 21398.68 14898.04 149
No_MVS95.90 6696.54 17189.57 9296.87 16699.41 3894.06 3099.30 6698.72 93
test_one_060198.26 6787.14 14198.18 3794.25 4896.99 6197.36 7595.13 40
eth-test20.00 384
eth-test0.00 384
ZD-MVS97.23 13290.32 8197.54 11184.40 25494.78 16395.79 17492.76 10199.39 5088.72 18698.40 171
IU-MVS98.51 4786.66 15596.83 16972.74 33695.83 11593.00 7799.29 6998.64 103
test_241102_TWO98.10 5091.95 9497.54 3897.25 8395.37 2899.35 6193.29 6499.25 7798.49 117
test_241102_ONE98.51 4786.97 14698.10 5091.85 10097.63 3397.03 9696.48 1198.95 123
test_0728_THIRD93.26 7097.40 4797.35 7894.69 5599.34 6493.88 3499.42 4898.89 72
GSMVS94.75 299
test_part298.21 7189.41 9796.72 72
sam_mvs166.64 33094.75 299
sam_mvs66.41 331
MTGPAbinary97.62 103
test_post6.07 37765.74 33595.84 323
patchmatchnet-post91.71 30666.22 33397.59 265
gm-plane-assit87.08 36759.33 37471.22 34283.58 36497.20 28473.95 334
test9_res88.16 19598.40 17197.83 176
agg_prior287.06 21698.36 18297.98 158
agg_prior96.20 19788.89 10696.88 16490.21 27898.78 152
TestCases96.00 5798.02 8692.17 5298.43 1490.48 14195.04 15396.74 11892.54 10697.86 24785.11 24298.98 11197.98 158
test_prior94.61 12095.95 21887.23 13897.36 12698.68 17297.93 164
新几何193.17 17697.16 13787.29 13794.43 25667.95 35591.29 25994.94 21786.97 20698.23 21681.06 28497.75 22993.98 317
旧先验196.20 19784.17 19594.82 24695.57 18889.57 17197.89 22596.32 251
原ACMM192.87 18696.91 14984.22 19397.01 15276.84 31689.64 29394.46 23588.00 18898.70 16881.53 27798.01 21995.70 277
testdata298.03 23080.24 289
segment_acmp92.14 113
testdata91.03 24596.87 15182.01 21894.28 26071.55 34092.46 23495.42 19785.65 22597.38 28082.64 26597.27 24893.70 324
test1294.43 13595.95 21886.75 15196.24 20089.76 29189.79 17098.79 14897.95 22297.75 185
plane_prior797.71 10588.68 110
plane_prior697.21 13588.23 12186.93 207
plane_prior597.81 9198.95 12389.26 17298.51 16598.60 110
plane_prior495.59 184
plane_prior388.43 11990.35 14693.31 204
plane_prior197.38 127
n20.00 385
nn0.00 385
door-mid92.13 301
lessismore_v093.87 15598.05 8183.77 20180.32 36997.13 5397.91 4677.49 28499.11 9792.62 8798.08 21398.74 90
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2891.78 10797.07 5497.22 8696.38 1399.28 7592.07 9899.59 2799.11 43
test1196.65 180
door91.26 309
HQP5-MVS84.89 185
BP-MVS86.55 224
HQP4-MVS88.81 30298.61 18098.15 140
HQP3-MVS97.31 13197.73 230
HQP2-MVS84.76 229
NP-MVS96.82 15587.10 14293.40 270
ACMMP++_ref98.82 133
ACMMP++99.25 77
Test By Simon90.61 153
ITE_SJBPF95.95 6097.34 12993.36 4296.55 18891.93 9694.82 16195.39 20091.99 11797.08 28885.53 23597.96 22197.41 207
DeepMVS_CXcopyleft53.83 35770.38 37964.56 36948.52 38133.01 37365.50 37474.21 37256.19 36446.64 37638.45 37570.07 37250.30 372