This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17496.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13294.64 3699.53 3798.99 56
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5298.68 15898.04 159
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8094.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12298.16 398.94 399.33 397.84 499.08 9890.73 14799.73 1399.59 14
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27796.48 2495.38 15093.63 29294.89 5997.94 24095.38 2796.92 27695.17 318
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5199.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28294.22 5794.94 17896.19 19082.07 27099.57 1587.28 23598.89 12898.65 106
mvs5depth95.28 8895.82 7193.66 16296.42 19283.08 22497.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23294.06 4898.93 12599.87 1
LS3D96.11 5195.83 6996.95 4094.75 28494.20 2397.34 1397.98 8397.31 1295.32 15596.77 14693.08 10299.20 8591.79 12298.16 20997.44 220
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4399.38 5798.92 72
MVSFormer92.18 19892.23 19092.04 22594.74 28580.06 26397.15 1597.37 13388.98 18288.83 33192.79 31477.02 31399.60 1096.41 996.75 28396.46 268
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13388.98 18298.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27696.24 3196.28 10396.36 17882.88 25899.35 6288.19 21599.52 3998.96 64
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 8993.18 8499.74 1299.50 18
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11687.68 21498.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 6999.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 3999.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EGC-MVSNET80.97 36775.73 38496.67 4698.85 2394.55 1996.83 2296.60 1942.44 4215.32 42298.25 4092.24 12098.02 23191.85 12099.21 9097.45 218
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6896.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6592.67 8695.08 17396.39 17594.77 6299.42 3693.17 8599.44 4898.58 118
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 14990.11 17199.44 4898.31 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6597.42 1098.48 1797.86 6591.76 13499.63 894.23 4599.84 399.66 8
FE-MVS89.06 26888.29 27691.36 24794.78 28279.57 27896.77 2790.99 33384.87 26592.96 24696.29 18260.69 39098.80 14280.18 32097.11 26795.71 303
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26194.79 25493.56 8499.49 2893.47 6999.05 10697.89 181
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9496.10 3398.14 2899.28 597.94 398.21 21491.38 13699.69 1499.42 20
mvsmamba90.24 24189.43 25492.64 20095.52 26082.36 23496.64 3092.29 31681.77 30292.14 27696.28 18470.59 34499.10 9784.44 27895.22 32396.47 267
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26287.06 14596.63 3197.28 14791.82 11694.34 19897.41 9490.60 16498.65 17192.47 10598.11 21397.70 202
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8597.91 698.64 1498.13 4395.24 4099.65 593.39 7699.84 399.72 4
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11687.57 21698.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7298.06 598.64 1498.25 4095.01 5399.65 592.95 9399.83 599.68 6
MVSMamba_PlusPlus94.82 10595.89 6491.62 23897.82 10478.88 29396.52 3597.60 11897.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 276
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9198.14 498.67 1398.32 3795.04 5099.69 493.27 8199.82 799.62 12
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19696.49 16494.56 6999.39 5293.57 6299.05 10698.93 68
X-MVStestdata90.70 22388.45 27197.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19626.89 41994.56 6999.39 5293.57 6299.05 10698.93 68
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29094.49 3899.01 11399.80 3
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25294.52 26493.95 8199.49 2893.62 6199.22 8997.51 215
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10792.59 8795.47 14596.68 15694.50 7199.42 3693.10 8799.26 8298.99 56
QAPM92.88 17392.77 17593.22 18195.82 24083.31 21696.45 4197.35 13983.91 27593.75 21596.77 14689.25 18498.88 12584.56 27697.02 27097.49 216
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13186.96 22598.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8896.69 1991.78 28298.85 1491.77 13295.49 35191.72 12499.08 10295.02 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13495.12 16995.15 23786.60 22499.50 2293.43 7596.81 28098.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6698.84 13598.00 164
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6698.84 13598.00 164
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18185.23 25594.75 18697.12 12391.85 12999.40 4993.45 7198.33 19298.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29593.73 29093.52 8699.55 1991.81 12199.45 4597.58 209
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23494.87 3399.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8692.26 9695.28 15996.57 16295.02 5299.41 4293.63 6099.11 10198.94 66
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7898.88 13098.75 91
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12497.60 898.34 2097.52 8691.98 12799.63 893.08 8999.81 899.70 5
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8392.35 9395.63 13796.47 16595.37 3299.27 7893.78 5699.14 9998.48 126
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8692.35 9395.57 14096.61 16094.93 5899.41 4293.78 5699.15 9899.00 54
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 9996.13 3294.74 18797.23 11291.33 14199.16 8893.25 8298.30 19598.46 127
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17793.73 6797.87 3198.49 3190.73 16199.05 10386.43 25199.60 2599.10 47
balanced_conf0393.45 15494.17 13791.28 25295.81 24278.40 30096.20 6097.48 12888.56 19495.29 15897.20 11785.56 23799.21 8292.52 10498.91 12796.24 279
test250685.42 32884.57 33187.96 33297.81 10566.53 39396.14 6156.35 42289.04 18093.55 22198.10 4442.88 41998.68 16688.09 21999.18 9498.67 104
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6895.17 4396.82 7996.73 15395.09 4999.43 3592.99 9298.71 15498.50 123
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 119
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10592.73 8393.48 22296.72 15494.23 7699.42 3691.99 11599.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4199.28 8098.97 62
FA-MVS(test-final)91.81 20391.85 20191.68 23694.95 27579.99 26796.00 6693.44 29587.80 20994.02 20897.29 10877.60 30498.45 19488.04 22197.49 25296.61 259
GBi-Net93.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
test193.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19892.38 9097.03 6898.53 2890.12 17398.98 11188.78 20799.16 9798.65 106
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12492.42 8993.41 22497.78 6791.21 14697.77 25991.06 13997.06 26898.80 85
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22195.93 7194.84 26394.86 4898.49 1698.74 1881.45 27599.60 1094.69 3599.39 5699.15 39
ambc92.98 18596.88 15983.01 22695.92 7296.38 20896.41 9497.48 9288.26 19197.80 25489.96 17698.93 12598.12 154
FC-MVSNet-test95.32 8495.88 6593.62 16498.49 5681.77 24095.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9499.83 599.68 6
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 122
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11494.46 5496.29 10196.94 13693.56 8499.37 6094.29 4499.42 5098.99 56
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11189.21 17993.28 23195.46 22688.89 18698.98 11189.80 17898.82 14197.80 193
ab-mvs92.40 19092.62 18291.74 23297.02 15081.65 24295.84 7695.50 24486.95 22692.95 24797.56 8190.70 16297.50 27679.63 32897.43 25696.06 287
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 11893.85 5499.49 4099.36 25
ECVR-MVScopyleft90.12 24590.16 23990.00 29597.81 10572.68 36495.76 7978.54 41289.04 18095.36 15398.10 4470.51 34598.64 17287.10 23799.18 9498.67 104
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8093.34 7796.64 8796.57 16294.99 5499.36 6193.48 6899.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 19692.13 19492.68 19994.53 29384.10 20895.70 8097.03 16382.44 29691.14 29496.42 16988.47 18998.38 19985.95 25697.47 25495.55 312
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8092.08 10295.74 13296.28 18495.22 4299.42 3693.17 8599.06 10398.88 77
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17390.30 16299.60 2598.72 96
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11293.38 7695.89 12497.23 11293.35 9297.66 26988.20 21498.66 16297.79 194
sasdasda94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
test111190.39 23490.61 23089.74 29998.04 8971.50 37095.59 8579.72 40989.41 17295.94 12098.14 4270.79 34398.81 13988.52 21299.32 6998.90 74
canonicalmvs94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10699.05 10698.64 111
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9288.72 18898.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 22996.47 2593.40 22797.46 9395.31 3795.47 35286.18 25598.78 14789.11 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 13894.27 13493.31 17898.87 2182.36 23495.51 9391.78 32797.19 1396.32 9898.60 2584.24 24698.75 15087.09 23898.83 14098.81 84
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15891.84 11397.28 5898.46 3395.30 3897.71 26690.17 16999.42 5098.99 56
RRT-MVS92.28 19493.01 16990.07 29194.06 30473.01 36095.36 9597.88 9292.24 9895.16 16797.52 8678.51 29899.29 7390.55 15295.83 30697.92 177
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7797.67 24497.85 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
FIs94.90 10195.35 8993.55 16798.28 6981.76 24195.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7391.72 12499.69 1499.61 13
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9599.21 9099.00 54
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
MonoMVSNet88.46 28489.28 25585.98 36090.52 37770.07 37995.31 10194.81 26688.38 19793.47 22396.13 19473.21 33295.07 36182.61 29289.12 39692.81 377
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
MGCFI-Net94.44 12094.67 12093.75 15995.56 25885.47 18995.25 10398.24 4091.53 12995.04 17492.21 32794.94 5798.54 18491.56 13197.66 24597.24 233
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6291.95 10497.63 3897.25 11096.48 1099.35 6293.29 7999.29 7597.95 172
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22686.28 25498.61 16497.95 172
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16591.85 11097.40 5497.35 10395.58 2499.34 6593.44 7299.31 7098.13 153
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7299.31 7098.53 121
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18596.64 2197.61 4198.05 4793.23 9698.79 14388.60 21199.04 11198.78 87
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10486.48 22897.42 5297.51 9094.47 7499.29 7393.55 6499.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13393.92 6597.65 3795.90 20390.10 17599.33 7090.11 17199.66 2199.26 30
TransMVSNet (Re)95.27 9196.04 5692.97 18698.37 6381.92 23995.07 11196.76 18693.97 6297.77 3498.57 2695.72 2097.90 24188.89 20599.23 8699.08 48
UGNet93.08 16692.50 18594.79 11193.87 30987.99 12895.07 11194.26 27990.64 14987.33 36097.67 7486.89 21998.49 18888.10 21898.71 15497.91 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 25588.90 26592.55 20897.00 15179.73 27595.03 11383.65 39289.88 16495.30 15694.79 25453.64 40199.39 5291.99 11598.79 14698.54 119
LFMVS91.33 21491.16 21991.82 22996.27 20679.36 28295.01 11485.61 37996.04 3694.82 18397.06 12872.03 33998.46 19384.96 27198.70 15697.65 206
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12092.68 8496.20 10993.44 29891.92 12898.78 14689.11 19999.24 8596.92 247
GG-mvs-BLEND83.24 38485.06 41571.03 37294.99 11665.55 42074.09 41475.51 41444.57 41294.46 36959.57 41187.54 40184.24 407
EU-MVSNet87.39 30686.71 31189.44 30393.40 31676.11 33294.93 11790.00 34157.17 41495.71 13597.37 9764.77 37397.68 26892.67 10094.37 34394.52 343
KD-MVS_self_test94.10 13694.73 11592.19 21797.66 12079.49 28094.86 11897.12 15889.59 17096.87 7597.65 7590.40 16898.34 20489.08 20099.35 5998.75 91
MTMP94.82 11954.62 423
PHI-MVS94.34 12693.80 14695.95 6195.65 25291.67 6694.82 11997.86 9487.86 20893.04 24394.16 27591.58 13698.78 14690.27 16498.96 12297.41 221
gg-mvs-nofinetune82.10 35981.02 36185.34 36687.46 40571.04 37194.74 12167.56 41996.44 2679.43 40998.99 845.24 41096.15 33567.18 39992.17 38288.85 398
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7790.82 14497.15 6196.85 14296.25 1499.00 11093.10 8799.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 9295.73 7493.55 16796.62 17788.88 10994.67 12398.05 7291.26 13497.25 6096.40 17195.42 3094.36 37292.72 9999.19 9297.40 224
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 21091.61 20591.26 25394.16 29986.26 17094.66 12494.82 26491.17 13792.13 27791.08 34690.03 17897.06 30579.09 33597.35 26090.45 395
v1094.68 11195.27 9592.90 19196.57 17980.15 25994.65 12597.57 12090.68 14897.43 5098.00 5288.18 19299.15 8994.84 3499.55 3599.41 21
v894.65 11295.29 9392.74 19696.65 17379.77 27494.59 12697.17 15391.86 10997.47 4997.93 5788.16 19399.08 9894.32 4299.47 4199.38 23
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10089.22 17895.46 14796.17 19393.42 9099.34 6589.30 19098.87 13397.56 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 9395.67 7793.58 16697.76 10883.15 22294.58 12897.58 11993.39 7597.05 6798.04 4993.25 9598.51 18789.75 18199.59 2799.08 48
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7790.42 15696.37 9597.35 10395.68 2199.25 7994.44 4099.34 6398.80 85
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10091.74 12193.31 22895.59 22086.93 21798.95 11889.26 19498.51 17698.60 116
plane_prior294.56 13091.74 121
tfpnnormal94.27 12894.87 10892.48 21097.71 11480.88 25494.55 13295.41 24893.70 6896.67 8697.72 7291.40 14098.18 21887.45 23199.18 9498.36 132
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7290.45 15596.31 9996.76 14892.91 10798.72 15591.19 13799.42 5098.32 136
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11296.94 1796.58 9097.32 10793.07 10398.72 15590.45 15498.84 13597.57 210
MIMVSNet87.13 31486.54 31588.89 31496.05 22576.11 33294.39 13588.51 34881.37 30688.27 34696.75 15072.38 33695.52 34965.71 40295.47 31495.03 326
K. test v393.37 15693.27 16693.66 16298.05 8682.62 23094.35 13686.62 36796.05 3597.51 4698.85 1476.59 32099.65 593.21 8398.20 20798.73 95
Vis-MVSNet (Re-imp)90.42 23190.16 23991.20 25797.66 12077.32 31694.33 13787.66 35991.20 13692.99 24495.13 23975.40 32598.28 20777.86 34099.19 9297.99 167
ANet_high94.83 10496.28 4190.47 27996.65 17373.16 35894.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16290.38 15799.68 1799.53 16
MM94.41 12294.14 13895.22 9795.84 23887.21 14194.31 13990.92 33594.48 5392.80 25097.52 8685.27 23899.49 2896.58 899.57 3398.97 62
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23297.56 4298.66 2195.73 1998.44 19597.35 398.99 11498.27 141
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6589.46 17196.61 8996.47 16595.85 1899.12 9490.45 15499.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 23988.87 26694.66 11994.82 27991.85 6194.22 14294.75 26880.91 31087.52 35888.07 38086.63 22397.87 24876.67 35196.21 29794.25 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 17892.73 17992.95 18895.40 26481.98 23894.18 14395.53 24388.63 19096.05 11697.37 9781.31 27798.81 13987.38 23498.67 16098.06 156
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24583.25 28295.51 14298.05 4792.54 11697.19 29695.55 2197.46 25598.94 66
Anonymous2024052192.86 17693.57 15790.74 27396.57 17975.50 33994.15 14495.60 23589.38 17395.90 12397.90 6480.39 28497.96 23892.60 10299.68 1798.75 91
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14088.71 18995.26 16095.50 22594.65 6599.12 9490.94 14398.40 18298.23 143
9.1494.81 10997.49 12994.11 14798.37 2687.56 21795.38 15096.03 19994.66 6499.08 9890.70 14898.97 120
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14896.99 16791.05 13992.40 26695.22 23691.03 15399.25 7992.11 11098.69 15797.90 179
HY-MVS82.50 1886.81 32085.93 32289.47 30293.63 31377.93 30694.02 14991.58 33075.68 35383.64 38693.64 29177.40 30797.42 28271.70 38392.07 38393.05 374
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28596.67 694.00 15095.41 24889.94 16291.93 28192.13 33090.12 17398.97 11587.68 22897.48 25397.67 205
Effi-MVS+92.79 17792.74 17792.94 18995.10 27283.30 21794.00 15097.53 12491.36 13389.35 32790.65 35594.01 8098.66 16887.40 23395.30 32096.88 251
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15293.28 29794.49 5296.24 10597.78 6787.99 19898.79 14388.92 20399.14 9998.34 135
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15394.01 28589.23 17693.95 21096.19 19076.88 31699.14 9191.02 14095.71 30897.04 243
EPNet89.80 25688.25 27994.45 13283.91 41786.18 17293.87 15487.07 36591.16 13880.64 40694.72 25678.83 29298.89 12485.17 26398.89 12898.28 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs392.42 18992.40 18892.46 21293.80 31287.28 13993.86 15597.05 16276.86 34896.25 10498.66 2182.87 25991.26 39195.44 2496.83 27998.82 82
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15598.02 7987.35 21896.22 10797.99 5494.48 7399.05 10392.73 9899.68 1797.93 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 13394.58 12393.04 18395.91 23583.13 22393.79 15799.19 692.00 10398.84 698.04 4993.64 8399.02 10881.28 30998.54 17296.96 246
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15897.86 9495.96 3897.48 4897.14 12195.33 3699.44 3290.79 14599.76 1099.38 23
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17297.22 14384.37 20093.73 15995.26 25284.45 27095.76 12998.00 5291.85 12997.21 29395.62 1797.82 23698.98 60
PAPM_NR91.03 21890.81 22591.68 23696.73 16881.10 25193.72 16096.35 20988.19 20188.77 33792.12 33185.09 24197.25 29182.40 29793.90 35596.68 258
baseline94.26 12994.80 11092.64 20096.08 22380.99 25293.69 16198.04 7690.80 14594.89 18196.32 18093.19 9798.48 19291.68 12698.51 17698.43 130
dcpmvs_293.96 14195.01 10490.82 27197.60 12274.04 35393.68 16298.85 1089.80 16697.82 3297.01 13391.14 15199.21 8290.56 15198.59 16799.19 36
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16395.23 25383.30 28095.13 16897.56 8192.22 12197.17 29795.51 2297.41 25798.64 111
F-COLMAP92.28 19491.06 22095.95 6197.52 12791.90 6093.53 16497.18 15283.98 27488.70 33994.04 27888.41 19098.55 18380.17 32195.99 30197.39 225
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16598.60 1685.68 24697.42 5298.30 3895.34 3598.39 19696.85 498.98 11598.19 147
FMVSNet587.82 29586.56 31491.62 23892.31 33979.81 27393.49 16694.81 26683.26 28191.36 28896.93 13752.77 40397.49 27876.07 35798.03 22197.55 213
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16798.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12399.28 8098.41 131
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 16092.85 17494.50 12895.70 24887.45 13693.45 16895.76 23091.58 12695.25 16292.42 32581.96 27298.72 15591.61 12797.87 23497.33 229
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 16998.49 1985.57 25098.27 2197.11 12494.11 7997.75 26296.26 1198.72 15296.89 249
114514_t90.51 22889.80 24892.63 20398.00 9282.24 23693.40 17097.29 14565.84 40589.40 32694.80 25386.99 21598.75 15083.88 28298.61 16496.89 249
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17696.69 17084.37 20093.38 17195.13 25584.50 26995.40 14997.55 8591.77 13297.20 29495.59 1897.79 23798.69 103
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 21887.90 12993.36 17297.14 15585.53 25193.90 21395.45 22791.30 14398.59 17889.51 18498.62 16397.31 230
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17398.32 3087.89 20796.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17497.24 14996.88 1897.69 3697.77 7194.12 7899.13 9391.54 13299.29 7597.88 182
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17598.36 2785.61 24996.92 7498.02 5195.23 4198.38 19996.69 798.95 12498.09 155
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20488.62 11393.19 17698.07 6885.63 24897.08 6397.35 10390.86 15497.66 26995.70 1698.48 17997.74 200
sd_testset93.94 14294.39 12692.61 20597.93 9783.24 21893.17 17795.04 25793.65 7295.51 14298.63 2394.49 7295.89 34481.72 30499.35 5998.70 100
MSLP-MVS++93.25 16293.88 14391.37 24696.34 19982.81 22993.11 17897.74 10789.37 17494.08 20395.29 23590.40 16896.35 33290.35 15998.25 20094.96 328
baseline187.62 30087.31 29588.54 32194.71 28874.27 35093.10 17988.20 35286.20 23492.18 27593.04 30773.21 33295.52 34979.32 33285.82 40495.83 298
plane_prior88.12 12593.01 18088.98 18298.06 218
thres100view90087.35 30786.89 30788.72 31796.14 21873.09 35993.00 18185.31 38292.13 10193.26 23390.96 34863.42 37998.28 20771.27 38696.54 28994.79 336
Patchmtry90.11 24689.92 24590.66 27590.35 38177.00 32092.96 18292.81 30490.25 15994.74 18796.93 13767.11 35697.52 27585.17 26398.98 11597.46 217
LF4IMVS92.72 18092.02 19694.84 10995.65 25291.99 5892.92 18396.60 19485.08 26192.44 26493.62 29386.80 22096.35 33286.81 24098.25 20096.18 282
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18498.07 6893.46 7496.31 9995.97 20290.14 17299.34 6592.11 11099.64 2399.16 38
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18497.68 11078.02 33992.79 25194.10 27690.85 15597.96 23884.76 27498.16 20996.54 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_030492.88 17392.27 18994.69 11692.35 33886.03 17692.88 18689.68 34290.53 15291.52 28596.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
thisisatest053088.69 28187.52 29392.20 21696.33 20079.36 28292.81 18784.01 39186.44 22993.67 21892.68 31853.62 40299.25 7989.65 18398.45 18098.00 164
EIA-MVS92.35 19292.03 19593.30 17995.81 24283.97 21092.80 18898.17 5387.71 21289.79 32087.56 38291.17 15099.18 8787.97 22397.27 26196.77 255
thres600view787.66 29887.10 30489.36 30696.05 22573.17 35792.72 18985.31 38291.89 10893.29 23090.97 34763.42 37998.39 19673.23 37496.99 27596.51 262
wuyk23d87.83 29490.79 22678.96 39490.46 38088.63 11292.72 18990.67 33891.65 12598.68 1297.64 7696.06 1577.53 41659.84 41099.41 5470.73 414
test_fmvs290.62 22790.40 23691.29 25191.93 35485.46 19092.70 19196.48 20474.44 36394.91 18097.59 7975.52 32490.57 39493.44 7296.56 28897.84 188
V4293.43 15593.58 15692.97 18695.34 26881.22 24992.67 19296.49 20387.25 22096.20 10996.37 17787.32 20898.85 13192.39 10798.21 20598.85 81
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17096.25 20983.23 21992.66 19398.19 4793.06 8197.49 4797.15 12094.78 6198.71 16192.27 10898.72 15298.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19497.33 14190.05 16196.77 8296.85 14295.04 5098.56 18192.77 9599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_vis1_n89.01 27189.01 26189.03 31192.57 33382.46 23392.62 19596.06 22173.02 37390.40 30695.77 21474.86 32689.68 40090.78 14694.98 32894.95 329
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19697.81 10093.99 6096.80 8095.90 20390.10 17599.41 4291.60 12899.58 3199.26 30
FMVSNet390.78 22190.32 23892.16 22193.03 32479.92 26992.54 19794.95 26086.17 23695.10 17096.01 20069.97 34798.75 15086.74 24198.38 18697.82 191
hse-mvs292.24 19791.20 21695.38 8596.16 21590.65 7992.52 19892.01 32589.23 17693.95 21092.99 30976.88 31698.69 16491.02 14096.03 29996.81 253
MVS_Test92.57 18693.29 16390.40 28293.53 31575.85 33592.52 19896.96 16888.73 18792.35 26996.70 15590.77 15798.37 20392.53 10395.49 31396.99 245
CR-MVSNet87.89 29287.12 30390.22 28791.01 37078.93 28992.52 19892.81 30473.08 37289.10 32896.93 13767.11 35697.64 27188.80 20692.70 37694.08 350
RPMNet90.31 24090.14 24290.81 27291.01 37078.93 28992.52 19898.12 5991.91 10789.10 32896.89 14068.84 34999.41 4290.17 16992.70 37694.08 350
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16096.16 21586.26 17092.46 20296.72 18881.69 30495.77 12897.11 12490.83 15697.82 25295.58 1997.99 22597.11 238
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20298.13 5890.69 14793.75 21596.25 18898.03 297.02 30692.08 11295.55 31198.45 128
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33485.98 17792.44 20494.69 27093.70 6896.12 11495.81 20991.24 14498.86 12993.76 5998.22 20498.98 60
Anonymous20240521192.58 18492.50 18592.83 19496.55 18183.22 22092.43 20591.64 32994.10 5995.59 13996.64 15881.88 27497.50 27685.12 26798.52 17497.77 196
AUN-MVS90.05 25088.30 27595.32 9096.09 22290.52 8192.42 20692.05 32482.08 30088.45 34392.86 31165.76 36698.69 16488.91 20496.07 29896.75 257
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33785.87 18092.42 20694.69 27093.67 7196.13 11395.84 20791.20 14798.86 12993.78 5698.23 20299.03 52
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 20896.91 17490.64 14992.33 27294.60 26190.58 16598.96 11690.21 16897.70 24298.23 143
casdiffmvspermissive94.32 12794.80 11092.85 19396.05 22581.44 24692.35 20998.05 7291.53 12995.75 13196.80 14593.35 9298.49 18891.01 14298.32 19498.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS92.99 16992.74 17793.72 16195.86 23786.30 16992.33 21097.84 9791.70 12492.81 24986.17 39292.22 12199.19 8688.03 22297.73 23995.66 307
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17496.10 22185.66 18692.32 21196.57 19781.32 30795.63 13797.14 12190.19 17197.73 26595.37 2898.03 22197.07 239
EI-MVSNet92.99 16993.26 16792.19 21792.12 34779.21 28792.32 21194.67 27291.77 11995.24 16395.85 20587.14 21298.49 18891.99 11598.26 19898.86 78
CVMVSNet85.16 33084.72 32886.48 35392.12 34770.19 37592.32 21188.17 35356.15 41590.64 30295.85 20567.97 35496.69 32088.78 20790.52 39292.56 380
test_fmvs1_n88.73 28088.38 27389.76 29892.06 34982.53 23192.30 21496.59 19671.14 38392.58 25895.41 23268.55 35089.57 40291.12 13895.66 30997.18 237
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21597.40 13287.10 22494.56 19195.42 22993.74 8298.11 22386.62 24598.85 13498.06 156
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21692.18 31885.92 24096.22 10796.61 16085.64 23595.99 34290.35 15998.23 20295.93 293
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21697.84 9794.91 4796.80 8095.78 21390.42 16699.41 4291.60 12899.58 3199.29 29
AdaColmapbinary91.63 20791.36 21392.47 21195.56 25886.36 16792.24 21896.27 21188.88 18689.90 31792.69 31791.65 13598.32 20577.38 34797.64 24692.72 379
PVSNet_Blended_VisFu91.63 20791.20 21692.94 18997.73 11283.95 21192.14 21997.46 12978.85 33592.35 26994.98 24584.16 24799.08 9886.36 25296.77 28295.79 300
Baseline_NR-MVSNet94.47 11995.09 10292.60 20698.50 5580.82 25592.08 22096.68 19093.82 6696.29 10198.56 2790.10 17597.75 26290.10 17399.66 2199.24 32
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29088.25 12392.05 22196.65 19289.62 16990.08 31291.23 34392.56 11598.60 17686.30 25396.27 29696.90 248
save fliter97.46 13288.05 12792.04 22297.08 16087.63 215
PatchT87.51 30388.17 28485.55 36490.64 37466.91 39092.02 22386.09 37192.20 9989.05 33097.16 11964.15 37596.37 33189.21 19792.98 37493.37 369
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22496.74 18788.16 20396.93 7397.61 7893.04 10497.90 24191.60 12898.12 21298.03 162
v14419293.20 16593.54 15992.16 22196.05 22578.26 30391.95 22597.14 15584.98 26395.96 11896.11 19587.08 21399.04 10693.79 5598.84 13599.17 37
VNet92.67 18292.96 17091.79 23096.27 20680.15 25991.95 22594.98 25992.19 10094.52 19396.07 19787.43 20697.39 28584.83 27298.38 18697.83 189
131486.46 32286.33 31986.87 34991.65 36174.54 34591.94 22794.10 28174.28 36484.78 37787.33 38683.03 25795.00 36278.72 33691.16 38991.06 392
MVS84.98 33284.30 33387.01 34491.03 36977.69 31291.94 22794.16 28059.36 41384.23 38287.50 38485.66 23396.80 31771.79 38193.05 37386.54 405
SDMVSNet94.43 12195.02 10392.69 19897.93 9782.88 22891.92 22995.99 22693.65 7295.51 14298.63 2394.60 6796.48 32587.57 22999.35 5998.70 100
tfpn200view987.05 31686.52 31688.67 31895.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28994.79 336
thres40087.20 31186.52 31689.24 31095.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28996.51 262
v192192093.26 16093.61 15592.19 21796.04 22978.31 30291.88 23297.24 14985.17 25796.19 11296.19 19086.76 22199.05 10394.18 4698.84 13599.22 33
XXY-MVS92.58 18493.16 16890.84 27097.75 10979.84 27091.87 23396.22 21685.94 23995.53 14197.68 7392.69 11394.48 36883.21 28697.51 25198.21 145
IterMVS-LS93.78 14694.28 13292.27 21496.27 20679.21 28791.87 23396.78 18391.77 11996.57 9197.07 12787.15 21198.74 15391.99 11599.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 15193.81 14492.57 20796.28 20579.61 27791.86 23596.96 16886.95 22695.91 12296.32 18087.65 20298.96 11693.51 6598.88 13099.13 41
v119293.49 15293.78 14792.62 20496.16 21579.62 27691.83 23697.22 15186.07 23796.10 11596.38 17687.22 20999.02 10894.14 4798.88 13099.22 33
v124093.29 15893.71 15092.06 22496.01 23077.89 30891.81 23797.37 13385.12 25996.69 8596.40 17186.67 22299.07 10294.51 3798.76 14999.22 33
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23796.80 18289.66 16893.90 21395.44 22892.80 11198.72 15592.74 9798.52 17498.32 136
v2v48293.29 15893.63 15392.29 21396.35 19878.82 29591.77 23996.28 21088.45 19595.70 13696.26 18786.02 23098.90 12293.02 9098.81 14399.14 40
EPNet_dtu85.63 32684.37 33289.40 30586.30 41074.33 34991.64 24088.26 35084.84 26672.96 41589.85 35771.27 34297.69 26776.60 35297.62 24796.18 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 23288.92 26394.85 10896.53 18590.02 8591.58 24196.48 20480.16 31686.14 36692.18 32885.73 23298.25 21276.87 35094.61 33996.30 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 16693.76 14891.03 26198.60 3875.83 33791.51 24295.62 23491.84 11395.74 13297.10 12689.31 18398.32 20585.07 27099.06 10398.93 68
ttmdpeth86.91 31986.57 31387.91 33589.68 38874.24 35191.49 24387.09 36379.84 31789.46 32597.86 6565.42 36891.04 39281.57 30696.74 28598.44 129
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24498.17 5390.72 14695.30 15696.47 16587.94 19996.98 30791.41 13597.61 24898.30 139
HQP-NCC96.36 19591.37 24587.16 22188.81 333
ACMP_Plane96.36 19591.37 24587.16 22188.81 333
HQP-MVS92.09 19991.49 21093.88 15396.36 19584.89 19691.37 24597.31 14287.16 22188.81 33393.40 29984.76 24398.60 17686.55 24897.73 23998.14 152
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 24897.13 15780.33 31592.91 24894.24 27191.23 14598.72 15589.99 17597.93 23097.86 185
v14892.87 17593.29 16391.62 23896.25 20977.72 31191.28 24995.05 25689.69 16795.93 12196.04 19887.34 20798.38 19990.05 17497.99 22598.78 87
tpmvs84.22 33983.97 33784.94 37087.09 40765.18 40091.21 25088.35 34982.87 29085.21 37090.96 34865.24 37196.75 31879.60 33185.25 40592.90 376
reproduce_monomvs87.13 31486.90 30687.84 33790.92 37268.15 38591.19 25193.75 28885.84 24194.21 20095.83 20842.99 41697.10 30189.46 18697.88 23398.26 142
CANet92.38 19191.99 19793.52 17293.82 31183.46 21591.14 25297.00 16589.81 16586.47 36494.04 27887.90 20099.21 8289.50 18598.27 19797.90 179
CNLPA91.72 20591.20 21693.26 18096.17 21491.02 7191.14 25295.55 24290.16 16090.87 29693.56 29686.31 22694.40 37179.92 32797.12 26694.37 346
DP-MVS Recon92.31 19391.88 20093.60 16597.18 14586.87 15191.10 25497.37 13384.92 26492.08 27894.08 27788.59 18798.20 21583.50 28398.14 21195.73 302
OpenMVS_ROBcopyleft85.12 1689.52 25989.05 25990.92 26694.58 29281.21 25091.10 25493.41 29677.03 34793.41 22493.99 28283.23 25497.80 25479.93 32594.80 33493.74 361
MVStest184.79 33484.06 33686.98 34577.73 42274.76 34191.08 25685.63 37777.70 34096.86 7697.97 5541.05 42188.24 40692.22 10996.28 29597.94 174
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24090.87 7690.97 25792.61 31288.04 20494.61 19093.79 28988.08 19497.81 25389.41 18798.39 18596.50 265
MVP-Stereo90.07 24988.92 26393.54 16996.31 20286.49 16190.93 25895.59 23979.80 31891.48 28695.59 22080.79 28197.39 28578.57 33891.19 38896.76 256
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 26388.75 26791.03 26190.10 38476.62 32790.85 25994.67 27282.27 29795.24 16395.79 21061.09 38898.49 18890.49 15398.26 19897.97 171
pmmvs-eth3d91.54 20990.73 22893.99 14595.76 24687.86 13190.83 26093.98 28678.23 33894.02 20896.22 18982.62 26596.83 31686.57 24698.33 19297.29 231
CANet_DTU89.85 25489.17 25791.87 22792.20 34480.02 26690.79 26195.87 22886.02 23882.53 39691.77 33680.01 28598.57 18085.66 26097.70 24297.01 244
SSC-MVS90.16 24392.96 17081.78 38897.88 10048.48 42090.75 26287.69 35896.02 3796.70 8497.63 7785.60 23697.80 25485.73 25998.60 16699.06 50
test_prior489.91 8690.74 263
TinyColmap92.00 20192.76 17689.71 30095.62 25577.02 31990.72 26496.17 21987.70 21395.26 16096.29 18292.54 11696.45 32781.77 30298.77 14895.66 307
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26597.07 16177.38 34292.34 27195.08 24292.67 11498.88 12585.74 25898.57 16998.20 146
test_vis1_n_192089.45 26089.85 24788.28 32793.59 31476.71 32690.67 26697.78 10579.67 32290.30 30996.11 19576.62 31992.17 38790.31 16193.57 36095.96 291
DSMNet-mixed82.21 35681.56 35584.16 37889.57 39170.00 38090.65 26777.66 41454.99 41683.30 39097.57 8077.89 30390.50 39666.86 40095.54 31291.97 384
TEST996.45 19089.46 9390.60 26896.92 17279.09 33190.49 30394.39 26791.31 14298.88 125
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 26896.92 17279.37 32690.49 30394.39 26791.20 14798.88 12588.66 21098.43 18197.72 201
PatchmatchNetpermissive85.22 32984.64 32986.98 34589.51 39269.83 38190.52 27087.34 36278.87 33487.22 36192.74 31666.91 35896.53 32281.77 30286.88 40294.58 342
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 19389.14 10390.51 27196.89 17579.37 32690.42 30594.36 26991.20 14798.82 134
test_yl90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
DCV-MVSNet90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
tpm281.46 36280.35 36984.80 37189.90 38565.14 40190.44 27285.36 38165.82 40682.05 39992.44 32357.94 39396.69 32070.71 39088.49 39992.56 380
test_fmvs187.59 30187.27 29788.54 32188.32 40081.26 24890.43 27595.72 23270.55 38991.70 28394.63 25968.13 35189.42 40390.59 15095.34 31994.94 331
test_vis3_rt90.40 23290.03 24391.52 24392.58 33288.95 10690.38 27697.72 10973.30 37097.79 3397.51 9077.05 31287.10 40889.03 20194.89 33098.50 123
CostFormer83.09 34982.21 35285.73 36189.27 39467.01 38990.35 27786.47 36870.42 39083.52 38893.23 30461.18 38796.85 31577.21 34888.26 40093.34 370
TAMVS90.16 24389.05 25993.49 17496.49 18786.37 16690.34 27892.55 31380.84 31392.99 24494.57 26381.94 27398.20 21573.51 37298.21 20595.90 296
EPMVS81.17 36680.37 36883.58 38285.58 41365.08 40290.31 27971.34 41877.31 34585.80 36891.30 34259.38 39192.70 38579.99 32282.34 41192.96 375
CMPMVSbinary68.83 2287.28 30885.67 32492.09 22388.77 39885.42 19190.31 27994.38 27570.02 39288.00 34993.30 30173.78 33194.03 37675.96 35996.54 28996.83 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2815.85 42365.36 36996.00 34179.61 329
test_prior290.21 28189.33 17590.77 29894.81 25190.41 16788.21 21398.55 170
MVS_111021_LR93.66 14893.28 16594.80 11096.25 20990.95 7390.21 28195.43 24787.91 20593.74 21794.40 26692.88 10996.38 33090.39 15698.28 19697.07 239
WR-MVS93.49 15293.72 14992.80 19597.57 12580.03 26590.14 28495.68 23393.70 6896.62 8895.39 23387.21 21099.04 10687.50 23099.64 2399.33 26
tpmrst82.85 35382.93 34782.64 38587.65 40258.99 41690.14 28487.90 35775.54 35583.93 38491.63 33966.79 36195.36 35581.21 31181.54 41293.57 368
PVSNet_BlendedMVS90.35 23789.96 24491.54 24294.81 28078.80 29790.14 28496.93 17079.43 32588.68 34095.06 24386.27 22798.15 22180.27 31798.04 22097.68 204
BH-untuned90.68 22490.90 22190.05 29495.98 23179.57 27890.04 28794.94 26187.91 20594.07 20493.00 30887.76 20197.78 25879.19 33495.17 32492.80 378
新几何290.02 288
旧先验290.00 28968.65 39792.71 25496.52 32385.15 265
无先验89.94 29095.75 23170.81 38798.59 17881.17 31294.81 334
xiu_mvs_v1_base_debu91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base_debi91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
mvs_anonymous90.37 23691.30 21587.58 33992.17 34668.00 38689.84 29494.73 26983.82 27793.22 23797.40 9587.54 20497.40 28487.94 22495.05 32797.34 228
test20.0390.80 22090.85 22490.63 27695.63 25479.24 28589.81 29592.87 30389.90 16394.39 19596.40 17185.77 23195.27 35973.86 37199.05 10697.39 225
testing383.66 34482.52 34987.08 34395.84 23865.84 39889.80 29677.17 41688.17 20290.84 29788.63 37430.95 42498.11 22384.05 28097.19 26497.28 232
WB-MVS89.44 26192.15 19381.32 38997.73 11248.22 42189.73 29787.98 35695.24 4296.05 11696.99 13485.18 23996.95 30882.45 29697.97 22798.78 87
1112_ss88.42 28587.41 29491.45 24496.69 17080.99 25289.72 29896.72 18873.37 36987.00 36290.69 35377.38 30898.20 21581.38 30893.72 35895.15 320
UnsupCasMVSNet_eth90.33 23890.34 23790.28 28494.64 29180.24 25789.69 29995.88 22785.77 24393.94 21295.69 21781.99 27192.98 38484.21 27991.30 38797.62 207
MG-MVS89.54 25889.80 24888.76 31694.88 27672.47 36689.60 30092.44 31585.82 24289.48 32495.98 20182.85 26097.74 26481.87 30195.27 32196.08 286
Patchmatch-test86.10 32486.01 32186.38 35790.63 37574.22 35289.57 30186.69 36685.73 24589.81 31992.83 31265.24 37191.04 39277.82 34395.78 30793.88 358
Anonymous2023120688.77 27888.29 27690.20 28996.31 20278.81 29689.56 30293.49 29474.26 36592.38 26795.58 22382.21 26795.43 35472.07 38098.75 15196.34 272
dmvs_re84.69 33683.94 33886.95 34792.24 34182.93 22789.51 30387.37 36184.38 27285.37 36985.08 39972.44 33586.59 40968.05 39691.03 39191.33 389
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23292.96 4789.48 30497.46 12985.14 25896.23 10695.42 22993.19 9798.08 22590.37 15898.76 14997.38 227
test_cas_vis1_n_192088.25 28888.27 27888.20 32992.19 34578.92 29189.45 30595.44 24575.29 36093.23 23695.65 21971.58 34090.23 39888.05 22093.55 36295.44 314
SCA87.43 30587.21 29988.10 33192.01 35171.98 36889.43 30688.11 35482.26 29888.71 33892.83 31278.65 29497.59 27279.61 32993.30 36694.75 338
testgi90.38 23591.34 21487.50 34097.49 12971.54 36989.43 30695.16 25488.38 19794.54 19294.68 25892.88 10993.09 38371.60 38497.85 23597.88 182
JIA-IIPM85.08 33183.04 34591.19 25887.56 40386.14 17389.40 30884.44 39088.98 18282.20 39797.95 5656.82 39696.15 33576.55 35483.45 40891.30 390
原ACMM289.34 309
tpm84.38 33884.08 33585.30 36790.47 37963.43 40789.34 30985.63 37777.24 34687.62 35695.03 24461.00 38997.30 28879.26 33391.09 39095.16 319
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31196.23 21488.36 19993.57 22094.60 26193.45 8797.77 25990.23 16798.38 18698.03 162
tpm cat180.61 37079.46 37384.07 37988.78 39765.06 40389.26 31288.23 35162.27 41181.90 40189.66 36562.70 38495.29 35871.72 38280.60 41391.86 387
CDS-MVSNet89.55 25788.22 28293.53 17095.37 26786.49 16189.26 31293.59 29079.76 32091.15 29392.31 32677.12 31198.38 19977.51 34597.92 23195.71 303
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 21690.86 22392.53 20995.45 26382.53 23189.25 31496.52 20285.00 26289.91 31688.55 37692.94 10598.84 13284.72 27595.44 31596.22 280
BH-RMVSNet90.47 23090.44 23490.56 27895.21 27178.65 29989.15 31593.94 28788.21 20092.74 25394.22 27286.38 22597.88 24578.67 33795.39 31795.14 321
thres20085.85 32585.18 32687.88 33694.44 29472.52 36589.08 31686.21 36988.57 19391.44 28788.40 37764.22 37498.00 23468.35 39595.88 30593.12 371
USDC89.02 26989.08 25888.84 31595.07 27374.50 34788.97 31796.39 20773.21 37193.27 23296.28 18482.16 26996.39 32977.55 34498.80 14495.62 310
testdata188.96 31888.44 196
pmmvs587.87 29387.14 30190.07 29193.26 31976.97 32388.89 31992.18 31873.71 36888.36 34493.89 28676.86 31896.73 31980.32 31696.81 28096.51 262
dmvs_testset78.23 38178.99 37575.94 39691.99 35255.34 41988.86 32078.70 41182.69 29181.64 40379.46 41175.93 32285.74 41148.78 41782.85 41086.76 404
patch_mono-292.46 18892.72 18091.71 23496.65 17378.91 29288.85 32197.17 15383.89 27692.45 26396.76 14889.86 17997.09 30290.24 16698.59 16799.12 43
test22296.95 15385.27 19388.83 32293.61 28965.09 40790.74 29994.85 25084.62 24597.36 25993.91 356
baseline283.38 34781.54 35788.90 31391.38 36572.84 36388.78 32381.22 40278.97 33279.82 40887.56 38261.73 38697.80 25474.30 36890.05 39496.05 288
diffmvspermissive91.74 20491.93 19991.15 25993.06 32278.17 30488.77 32497.51 12786.28 23192.42 26593.96 28388.04 19697.46 27990.69 14996.67 28697.82 191
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.88 34089.42 39361.52 41088.74 32587.41 36073.99 36684.96 37694.01 28165.25 37095.53 34878.02 33993.16 369
D2MVS89.93 25289.60 25390.92 26694.03 30578.40 30088.69 32694.85 26278.96 33393.08 24095.09 24174.57 32796.94 30988.19 21598.96 12297.41 221
TR-MVS87.70 29687.17 30089.27 30894.11 30179.26 28488.69 32691.86 32681.94 30190.69 30189.79 36182.82 26197.42 28272.65 37891.98 38491.14 391
PatchMatch-RL89.18 26488.02 28792.64 20095.90 23692.87 4988.67 32891.06 33280.34 31490.03 31491.67 33883.34 25294.42 37076.35 35594.84 33390.64 394
PAPR87.65 29986.77 31090.27 28592.85 32977.38 31588.56 32996.23 21476.82 35084.98 37589.75 36386.08 22997.16 29972.33 37993.35 36596.26 278
MDTV_nov1_ep13_2view42.48 42488.45 33067.22 40183.56 38766.80 35972.86 37794.06 352
WB-MVSnew84.20 34083.89 33985.16 36991.62 36266.15 39788.44 33181.00 40376.23 35287.98 35087.77 38184.98 24293.35 38162.85 40894.10 35395.98 290
jason89.17 26588.32 27491.70 23595.73 24780.07 26288.10 33293.22 29871.98 37890.09 31192.79 31478.53 29798.56 18187.43 23297.06 26896.46 268
jason: jason.
mvsany_test389.11 26788.21 28391.83 22891.30 36790.25 8388.09 33378.76 41076.37 35196.43 9398.39 3683.79 25090.43 39786.57 24694.20 34894.80 335
BH-w/o87.21 31087.02 30587.79 33894.77 28377.27 31787.90 33493.21 30081.74 30389.99 31588.39 37883.47 25196.93 31171.29 38592.43 38089.15 396
MS-PatchMatch88.05 29187.75 28988.95 31293.28 31777.93 30687.88 33592.49 31475.42 35692.57 25993.59 29580.44 28394.24 37581.28 30992.75 37594.69 341
DELS-MVS92.05 20092.16 19191.72 23394.44 29480.13 26187.62 33697.25 14887.34 21992.22 27493.18 30689.54 18298.73 15489.67 18298.20 20796.30 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 34182.20 35389.41 30489.04 39576.37 33187.57 33790.98 33472.71 37684.46 37892.45 32168.08 35296.48 32570.58 39183.97 40695.38 315
ADS-MVSNet82.25 35581.55 35684.34 37689.04 39565.30 39987.57 33785.13 38672.71 37684.46 37892.45 32168.08 35292.33 38670.58 39183.97 40695.38 315
IterMVS-SCA-FT91.65 20691.55 20691.94 22693.89 30879.22 28687.56 33993.51 29391.53 12995.37 15296.62 15978.65 29498.90 12291.89 11994.95 32997.70 202
IterMVS90.18 24290.16 23990.21 28893.15 32075.98 33487.56 33992.97 30286.43 23094.09 20296.40 17178.32 29997.43 28187.87 22594.69 33797.23 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 30486.58 31290.25 28696.80 16777.75 31087.53 34196.25 21269.73 39486.47 36493.61 29475.67 32397.88 24579.95 32393.20 36895.11 324
c3_l91.32 21591.42 21191.00 26492.29 34076.79 32587.52 34296.42 20685.76 24494.72 18993.89 28682.73 26298.16 22090.93 14498.55 17098.04 159
UnsupCasMVSNet_bld88.50 28388.03 28689.90 29695.52 26078.88 29387.39 34394.02 28479.32 32993.06 24194.02 28080.72 28294.27 37375.16 36393.08 37296.54 260
lupinMVS88.34 28787.31 29591.45 24494.74 28580.06 26387.23 34492.27 31771.10 38488.83 33191.15 34477.02 31398.53 18586.67 24496.75 28395.76 301
pmmvs488.95 27487.70 29192.70 19794.30 29785.60 18787.22 34592.16 32074.62 36289.75 32294.19 27377.97 30296.41 32882.71 29096.36 29396.09 285
WTY-MVS86.93 31886.50 31888.24 32894.96 27474.64 34387.19 34692.07 32378.29 33788.32 34591.59 34078.06 30194.27 37374.88 36493.15 37095.80 299
ET-MVSNet_ETH3D86.15 32384.27 33491.79 23093.04 32381.28 24787.17 34786.14 37079.57 32383.65 38588.66 37357.10 39498.18 21887.74 22795.40 31695.90 296
MVS-HIRNet78.83 38080.60 36673.51 39893.07 32147.37 42287.10 34878.00 41368.94 39677.53 41197.26 10971.45 34194.62 36663.28 40788.74 39878.55 413
xiu_mvs_v2_base89.00 27289.19 25688.46 32594.86 27874.63 34486.97 34995.60 23580.88 31187.83 35288.62 37591.04 15298.81 13982.51 29594.38 34291.93 385
DPM-MVS89.35 26288.40 27292.18 22096.13 22084.20 20686.96 35096.15 22075.40 35787.36 35991.55 34183.30 25398.01 23282.17 30096.62 28794.32 348
eth_miper_zixun_eth90.72 22290.61 23091.05 26092.04 35076.84 32486.91 35196.67 19185.21 25694.41 19493.92 28479.53 28898.26 21189.76 18097.02 27098.06 156
dp79.28 37878.62 37881.24 39085.97 41256.45 41786.91 35185.26 38472.97 37481.45 40489.17 37256.01 39895.45 35373.19 37576.68 41491.82 388
sss87.23 30986.82 30888.46 32593.96 30677.94 30586.84 35392.78 30777.59 34187.61 35791.83 33578.75 29391.92 38877.84 34194.20 34895.52 313
miper_ehance_all_eth90.48 22990.42 23590.69 27491.62 36276.57 32886.83 35496.18 21883.38 27994.06 20592.66 31982.20 26898.04 22789.79 17997.02 27097.45 218
CLD-MVS91.82 20291.41 21293.04 18396.37 19383.65 21486.82 35597.29 14584.65 26892.27 27389.67 36492.20 12397.85 25183.95 28199.47 4197.62 207
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 22590.56 23290.91 26891.85 35576.98 32286.75 35695.36 25085.53 25194.06 20594.89 24877.36 31097.98 23790.27 16498.98 11597.76 197
DIV-MVS_self_test90.65 22590.56 23290.91 26891.85 35576.99 32186.75 35695.36 25085.52 25394.06 20594.89 24877.37 30997.99 23690.28 16398.97 12097.76 197
PS-MVSNAJ88.86 27688.99 26288.48 32494.88 27674.71 34286.69 35895.60 23580.88 31187.83 35287.37 38590.77 15798.82 13482.52 29494.37 34391.93 385
PVSNet_Blended88.74 27988.16 28590.46 28194.81 28078.80 29786.64 35996.93 17074.67 36188.68 34089.18 37186.27 22798.15 22180.27 31796.00 30094.44 345
MSDG90.82 21990.67 22991.26 25394.16 29983.08 22486.63 36096.19 21790.60 15191.94 28091.89 33489.16 18595.75 34680.96 31494.51 34094.95 329
cl2289.02 26988.50 27090.59 27789.76 38676.45 32986.62 36194.03 28282.98 28992.65 25592.49 32072.05 33897.53 27488.93 20297.02 27097.78 195
CL-MVSNet_self_test90.04 25189.90 24690.47 27995.24 27077.81 30986.60 36292.62 31185.64 24793.25 23593.92 28483.84 24996.06 33979.93 32598.03 22197.53 214
PCF-MVS84.52 1789.12 26687.71 29093.34 17796.06 22485.84 18186.58 36397.31 14268.46 39893.61 21993.89 28687.51 20598.52 18667.85 39798.11 21395.66 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_f86.65 32187.13 30285.19 36890.28 38286.11 17486.52 36491.66 32869.76 39395.73 13497.21 11669.51 34881.28 41589.15 19894.40 34188.17 401
UWE-MVS80.29 37379.10 37483.87 38091.97 35359.56 41486.50 36577.43 41575.40 35787.79 35488.10 37944.08 41496.90 31364.23 40496.36 29395.14 321
testing9183.56 34682.45 35086.91 34892.92 32767.29 38786.33 36688.07 35586.22 23384.26 38185.76 39448.15 40797.17 29776.27 35694.08 35496.27 277
testing22280.54 37178.53 37986.58 35292.54 33668.60 38486.24 36782.72 39683.78 27882.68 39584.24 40239.25 42295.94 34360.25 40995.09 32695.20 317
Patchmatch-RL test88.81 27788.52 26989.69 30195.33 26979.94 26886.22 36892.71 30878.46 33695.80 12794.18 27466.25 36495.33 35789.22 19698.53 17393.78 359
ETVMVS79.85 37677.94 38385.59 36292.97 32566.20 39686.13 36980.99 40481.41 30583.52 38883.89 40341.81 42094.98 36556.47 41394.25 34795.61 311
testing9982.94 35181.72 35486.59 35192.55 33466.53 39386.08 37085.70 37585.47 25483.95 38385.70 39545.87 40997.07 30476.58 35393.56 36196.17 284
Syy-MVS84.81 33384.93 32784.42 37591.71 35963.36 40885.89 37181.49 40081.03 30885.13 37281.64 40977.44 30695.00 36285.94 25794.12 35194.91 332
myMVS_eth3d79.62 37778.26 38083.72 38191.71 35961.25 41285.89 37181.49 40081.03 30885.13 37281.64 40932.12 42395.00 36271.17 38994.12 35194.91 332
testing1181.98 36080.52 36786.38 35792.69 33167.13 38885.79 37384.80 38782.16 29981.19 40585.41 39745.24 41096.88 31474.14 36993.24 36795.14 321
FPMVS84.50 33783.28 34388.16 33096.32 20194.49 2085.76 37485.47 38083.09 28685.20 37194.26 27063.79 37886.58 41063.72 40691.88 38683.40 408
IB-MVS77.21 1983.11 34881.05 36089.29 30791.15 36875.85 33585.66 37586.00 37279.70 32182.02 40086.61 38848.26 40598.39 19677.84 34192.22 38193.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 21790.88 22291.55 24194.68 28980.16 25885.49 37692.14 32190.41 15794.93 17995.79 21085.10 24096.93 31185.15 26594.19 35097.57 210
test_vis1_rt85.58 32784.58 33088.60 32087.97 40186.76 15385.45 37793.59 29066.43 40287.64 35589.20 37079.33 28985.38 41281.59 30589.98 39593.66 363
new-patchmatchnet88.97 27390.79 22683.50 38394.28 29855.83 41885.34 37893.56 29286.18 23595.47 14595.73 21683.10 25596.51 32485.40 26298.06 21898.16 150
miper_enhance_ethall88.42 28587.87 28890.07 29188.67 39975.52 33885.10 37995.59 23975.68 35392.49 26089.45 36778.96 29197.88 24587.86 22697.02 27096.81 253
HyFIR lowres test87.19 31285.51 32592.24 21597.12 14980.51 25685.03 38096.06 22166.11 40491.66 28492.98 31070.12 34699.14 9175.29 36295.23 32297.07 239
pmmvs380.83 36878.96 37686.45 35487.23 40677.48 31484.87 38182.31 39763.83 40985.03 37489.50 36649.66 40493.10 38273.12 37695.10 32588.78 400
test0.0.03 182.48 35481.47 35885.48 36589.70 38773.57 35684.73 38281.64 39983.07 28788.13 34886.61 38862.86 38289.10 40566.24 40190.29 39393.77 360
N_pmnet88.90 27587.25 29893.83 15794.40 29693.81 3984.73 38287.09 36379.36 32893.26 23392.43 32479.29 29091.68 38977.50 34697.22 26396.00 289
GA-MVS87.70 29686.82 30890.31 28393.27 31877.22 31884.72 38492.79 30685.11 26089.82 31890.07 35666.80 35997.76 26184.56 27694.27 34695.96 291
ppachtmachnet_test88.61 28288.64 26888.50 32391.76 35770.99 37384.59 38592.98 30179.30 33092.38 26793.53 29779.57 28797.45 28086.50 25097.17 26597.07 239
CHOSEN 1792x268887.19 31285.92 32391.00 26497.13 14879.41 28184.51 38695.60 23564.14 40890.07 31394.81 25178.26 30097.14 30073.34 37395.38 31896.46 268
thisisatest051584.72 33582.99 34689.90 29692.96 32675.33 34084.36 38783.42 39377.37 34388.27 34686.65 38753.94 40098.72 15582.56 29397.40 25895.67 306
cascas87.02 31786.28 32089.25 30991.56 36476.45 32984.33 38896.78 18371.01 38586.89 36385.91 39381.35 27696.94 30983.09 28795.60 31094.35 347
new_pmnet81.22 36481.01 36281.86 38790.92 37270.15 37684.03 38980.25 40870.83 38685.97 36789.78 36267.93 35584.65 41367.44 39891.90 38590.78 393
PAPM81.91 36180.11 37187.31 34293.87 30972.32 36784.02 39093.22 29869.47 39576.13 41389.84 35872.15 33797.23 29253.27 41589.02 39792.37 382
UBG80.28 37478.94 37784.31 37792.86 32861.77 40983.87 39183.31 39577.33 34482.78 39483.72 40447.60 40896.06 33965.47 40393.48 36395.11 324
our_test_387.55 30287.59 29287.44 34191.76 35770.48 37483.83 39290.55 33979.79 31992.06 27992.17 32978.63 29695.63 34784.77 27394.73 33596.22 280
WBMVS84.00 34283.48 34185.56 36392.71 33061.52 41083.82 39389.38 34479.56 32490.74 29993.20 30548.21 40697.28 28975.63 36198.10 21597.88 182
miper_lstm_enhance89.90 25389.80 24890.19 29091.37 36677.50 31383.82 39395.00 25884.84 26693.05 24294.96 24676.53 32195.20 36089.96 17698.67 16097.86 185
test-LLR83.58 34583.17 34484.79 37289.68 38866.86 39183.08 39584.52 38883.07 28782.85 39284.78 40062.86 38293.49 37982.85 28894.86 33194.03 353
TESTMET0.1,179.09 37978.04 38182.25 38687.52 40464.03 40683.08 39580.62 40670.28 39180.16 40783.22 40644.13 41390.56 39579.95 32393.36 36492.15 383
test-mter81.21 36580.01 37284.79 37289.68 38866.86 39183.08 39584.52 38873.85 36782.85 39284.78 40043.66 41593.49 37982.85 28894.86 33194.03 353
test1239.49 38912.01 3921.91 4042.87 4271.30 42982.38 3981.34 4291.36 4222.84 4236.56 4212.45 4270.97 4232.73 4225.56 4213.47 419
PMMVS83.00 35081.11 35988.66 31983.81 41886.44 16482.24 39985.65 37661.75 41282.07 39885.64 39679.75 28691.59 39075.99 35893.09 37187.94 402
KD-MVS_2432*160082.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
miper_refine_blended82.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
mvsany_test183.91 34382.93 34786.84 35086.18 41185.93 17881.11 40275.03 41770.80 38888.57 34294.63 25983.08 25687.38 40780.39 31586.57 40387.21 403
YYNet188.17 28988.24 28087.93 33392.21 34373.62 35580.75 40388.77 34682.51 29594.99 17795.11 24082.70 26393.70 37783.33 28493.83 35696.48 266
MDA-MVSNet_test_wron88.16 29088.23 28187.93 33392.22 34273.71 35480.71 40488.84 34582.52 29494.88 18295.14 23882.70 26393.61 37883.28 28593.80 35796.46 268
testmvs9.02 39011.42 3931.81 4052.77 4281.13 43079.44 4051.90 4281.18 4232.65 4246.80 4201.95 4280.87 4242.62 4233.45 4223.44 420
PVSNet76.22 2082.89 35282.37 35184.48 37493.96 30664.38 40578.60 40688.61 34771.50 38184.43 38086.36 39174.27 32894.60 36769.87 39393.69 35994.46 344
dongtai53.72 38453.79 38753.51 40179.69 42136.70 42577.18 40732.53 42771.69 37968.63 41760.79 41626.65 42573.11 41730.67 42036.29 41950.73 415
kuosan43.63 38644.25 39041.78 40266.04 42434.37 42675.56 40832.62 42653.25 41750.46 42051.18 41725.28 42649.13 42013.44 42130.41 42041.84 417
PVSNet_070.34 2174.58 38272.96 38579.47 39390.63 37566.24 39573.26 40983.40 39463.67 41078.02 41078.35 41372.53 33489.59 40156.68 41260.05 41782.57 411
E-PMN80.72 36980.86 36380.29 39285.11 41468.77 38372.96 41081.97 39887.76 21183.25 39183.01 40762.22 38589.17 40477.15 34994.31 34582.93 409
CHOSEN 280x42080.04 37577.97 38286.23 35990.13 38374.53 34672.87 41189.59 34366.38 40376.29 41285.32 39856.96 39595.36 35569.49 39494.72 33688.79 399
EMVS80.35 37280.28 37080.54 39184.73 41669.07 38272.54 41280.73 40587.80 20981.66 40281.73 40862.89 38189.84 39975.79 36094.65 33882.71 410
PMMVS281.31 36383.44 34274.92 39790.52 37746.49 42369.19 41385.23 38584.30 27387.95 35194.71 25776.95 31584.36 41464.07 40598.09 21693.89 357
tmp_tt37.97 38744.33 38918.88 40311.80 42621.54 42763.51 41445.66 4254.23 42051.34 41950.48 41859.08 39222.11 42244.50 41868.35 41613.00 418
MVEpermissive59.87 2373.86 38372.65 38677.47 39587.00 40974.35 34861.37 41560.93 42167.27 40069.69 41686.49 39081.24 28072.33 41856.45 41483.45 40885.74 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 38548.94 38854.93 39939.68 42512.38 42828.59 41690.09 3406.82 41941.10 42178.41 41254.41 39970.69 41950.12 41651.26 41881.72 412
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.35 38831.13 3910.00 4060.00 4290.00 4310.00 41795.58 2410.00 4240.00 42591.15 34493.43 890.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.56 39110.09 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42490.77 1570.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.56 39110.08 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42590.69 3530.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS61.25 41274.55 365
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
PC_three_145275.31 35995.87 12595.75 21592.93 10696.34 33487.18 23698.68 15898.04 159
No_MVS95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
eth-test20.00 429
eth-test0.00 429
ZD-MVS97.23 14190.32 8297.54 12284.40 27194.78 18595.79 21092.76 11299.39 5288.72 20998.40 182
IU-MVS98.51 4986.66 15896.83 18072.74 37595.83 12693.00 9199.29 7598.64 111
test_241102_TWO98.10 6291.95 10497.54 4397.25 11095.37 3299.35 6293.29 7999.25 8398.49 125
test_241102_ONE98.51 4986.97 14898.10 6291.85 11097.63 3897.03 13096.48 1098.95 118
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5299.42 5098.89 75
GSMVS94.75 338
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 338
sam_mvs66.41 363
MTGPAbinary97.62 114
test_post6.07 42265.74 36795.84 345
patchmatchnet-post91.71 33766.22 36597.59 272
gm-plane-assit87.08 40859.33 41571.22 38283.58 40597.20 29473.95 370
test9_res88.16 21798.40 18297.83 189
agg_prior287.06 23998.36 19197.98 168
agg_prior96.20 21288.89 10896.88 17690.21 31098.78 146
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
test_prior94.61 12095.95 23387.23 14097.36 13898.68 16697.93 175
新几何193.17 18297.16 14687.29 13894.43 27467.95 39991.29 28994.94 24786.97 21698.23 21381.06 31397.75 23893.98 355
旧先验196.20 21284.17 20794.82 26495.57 22489.57 18197.89 23296.32 273
原ACMM192.87 19296.91 15784.22 20597.01 16476.84 34989.64 32394.46 26588.00 19798.70 16281.53 30798.01 22495.70 305
testdata298.03 22880.24 319
segment_acmp92.14 124
testdata91.03 26196.87 16082.01 23794.28 27871.55 38092.46 26295.42 22985.65 23497.38 28782.64 29197.27 26193.70 362
test1294.43 13395.95 23386.75 15496.24 21389.76 32189.79 18098.79 14397.95 22997.75 199
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior597.81 10098.95 11889.26 19498.51 17698.60 116
plane_prior495.59 220
plane_prior388.43 12290.35 15893.31 228
plane_prior197.38 134
n20.00 430
nn0.00 430
door-mid92.13 322
lessismore_v093.87 15498.05 8683.77 21380.32 40797.13 6297.91 6277.49 30599.11 9692.62 10198.08 21798.74 94
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
test1196.65 192
door91.26 331
HQP5-MVS84.89 196
BP-MVS86.55 248
HQP4-MVS88.81 33398.61 17498.15 151
HQP3-MVS97.31 14297.73 239
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 299
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20191.93 10694.82 18395.39 23391.99 12697.08 30385.53 26197.96 22897.41 221
DeepMVS_CXcopyleft53.83 40070.38 42364.56 40448.52 42433.01 41865.50 41874.21 41556.19 39746.64 42138.45 41970.07 41550.30 416