This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3299.53 3898.99 56
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4698.68 15598.04 156
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14299.23 493.45 8299.57 1495.34 2899.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18699.57 1495.86 1599.69 1499.46 18
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 13999.73 1399.59 13
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 26896.48 2195.38 14593.63 28194.89 5597.94 23495.38 2796.92 26795.17 300
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16096.71 899.42 3393.99 4599.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26493.12 7397.94 2798.54 2581.19 26999.63 695.48 2399.69 1499.60 12
EPP-MVSNet93.91 13793.68 14394.59 12298.08 8285.55 18397.44 1294.03 27394.22 5094.94 16996.19 17982.07 25899.57 1487.28 22598.89 12698.65 107
LS3D96.11 4795.83 6396.95 3694.75 27494.20 1997.34 1397.98 7597.31 1195.32 15096.77 13793.08 9799.20 8091.79 11598.16 20697.44 214
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 3899.38 5998.92 72
MVSFormer92.18 18792.23 17992.04 21894.74 27580.06 25697.15 1597.37 12388.98 17488.83 31792.79 30277.02 30299.60 996.41 996.75 27496.46 257
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 23999.45 2795.52 2199.66 2199.36 24
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26796.24 2596.28 10196.36 16882.88 24799.35 6088.19 20599.52 4198.96 64
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 7899.74 1299.50 17
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13595.10 4699.40 4693.47 6399.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3499.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EGC-MVSNET80.97 34875.73 36196.67 4298.85 2494.55 1596.83 2396.60 1832.44 3975.32 39898.25 3792.24 11598.02 22691.85 11399.21 9097.45 212
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16596.39 16594.77 5899.42 3393.17 7999.44 5098.58 119
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16299.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4099.84 399.66 6
FE-MVS89.06 25788.29 26491.36 24094.78 27279.57 27196.77 2890.99 32284.87 25492.96 23496.29 17260.69 37698.80 13980.18 30797.11 25895.71 287
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25094.79 24393.56 7999.49 2493.47 6399.05 10697.89 176
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25287.06 14296.63 3197.28 13791.82 11094.34 18997.41 8890.60 15798.65 16792.47 9898.11 21097.70 196
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20396.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7099.84 399.72 2
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19396.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8799.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19296.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7599.82 799.62 10
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18796.49 15594.56 6499.39 4993.57 5699.05 10698.93 68
X-MVStestdata90.70 21288.45 25997.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18726.89 39594.56 6499.39 4993.57 5699.05 10698.93 68
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24194.52 25393.95 7699.49 2493.62 5599.22 8997.51 209
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14096.68 14794.50 6699.42 3393.10 8199.26 8298.99 56
QAPM92.88 16492.77 16593.22 17495.82 23483.31 21096.45 3997.35 12983.91 26493.75 20496.77 13789.25 17598.88 12184.56 26697.02 26197.49 210
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27098.85 1291.77 12695.49 33491.72 11799.08 10295.02 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16195.15 22686.60 21599.50 2193.43 6996.81 27198.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12194.85 5699.42 3393.49 6098.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12195.40 2993.49 6098.84 13398.00 161
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17797.12 11591.85 12499.40 4693.45 6598.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28393.73 27993.52 8199.55 1891.81 11499.45 4797.58 203
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18696.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 2999.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15396.57 15395.02 5099.41 3993.63 5499.11 10198.94 66
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12095.63 2399.39 4993.31 7298.88 12898.75 92
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20696.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8399.81 899.70 3
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13396.47 15695.37 3099.27 7493.78 5099.14 9998.48 125
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13596.61 15194.93 5499.41 3993.78 5099.15 9899.00 54
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 17897.23 10691.33 13599.16 8393.25 7698.30 19298.46 126
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15499.05 9986.43 24199.60 2699.10 47
test250685.42 31584.57 31887.96 32397.81 10366.53 37796.14 5856.35 40089.04 17293.55 21198.10 4242.88 40098.68 16388.09 20999.18 9498.67 105
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14495.09 4799.43 3292.99 8698.71 15198.50 122
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21296.72 14594.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 14996.36 16895.68 2199.44 2994.41 3699.28 7998.97 62
FA-MVS(test-final)91.81 19291.85 19091.68 22994.95 26579.99 26096.00 6293.44 28587.80 20094.02 19797.29 10277.60 29398.45 18988.04 21197.49 24396.61 249
GBi-Net93.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
test193.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19695.99 6396.56 18692.38 8597.03 6798.53 2690.12 16498.98 10788.78 19799.16 9798.65 107
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21397.78 6391.21 14097.77 25291.06 13097.06 25998.80 86
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21595.93 6794.84 25494.86 4198.49 1598.74 1681.45 26399.60 994.69 3199.39 5899.15 39
ambc92.98 17896.88 15683.01 21995.92 6896.38 19696.41 9297.48 8688.26 18297.80 24789.96 16798.93 12598.12 151
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5881.77 23295.90 6998.32 2493.93 5697.53 4297.56 7688.48 17999.40 4692.91 8899.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12793.56 7999.37 5794.29 3999.42 5298.99 56
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 21995.46 21388.89 17798.98 10789.80 16998.82 13997.80 187
ab-mvs92.40 18092.62 17291.74 22597.02 14881.65 23495.84 7195.50 23486.95 21792.95 23597.56 7690.70 15597.50 26879.63 31597.43 24796.06 272
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23188.41 18897.09 6198.08 4478.69 28398.87 12595.63 1799.53 3898.81 84
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 4899.49 4299.36 24
ECVR-MVScopyleft90.12 23490.16 22890.00 28697.81 10372.68 35395.76 7578.54 39189.04 17295.36 14898.10 4270.51 33298.64 16887.10 22799.18 9498.67 105
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15394.99 5299.36 5893.48 6299.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 18592.13 18392.68 19394.53 28484.10 20295.70 7697.03 15382.44 28591.14 28196.42 15988.47 18098.38 19485.95 24697.47 24595.55 295
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12896.28 17495.22 4099.42 3393.17 7999.06 10398.88 77
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15399.60 2698.72 97
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26188.20 20498.66 15997.79 188
test111190.39 22390.61 21989.74 29098.04 8871.50 35995.59 8179.72 38889.41 16495.94 11798.14 3970.79 33198.81 13688.52 20299.32 6898.90 74
canonicalmvs94.59 10894.69 11194.30 13495.60 24987.03 14395.59 8198.24 3491.56 12195.21 15992.04 31994.95 5398.66 16591.45 12597.57 24197.20 228
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14794.37 7099.32 6992.41 9999.05 10698.64 112
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15099.60 995.43 2699.53 3899.57 14
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 21896.47 2293.40 21597.46 8795.31 3595.47 33586.18 24598.78 14489.11 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 13194.27 12793.31 17198.87 2182.36 22795.51 8691.78 31697.19 1296.32 9698.60 2284.24 23598.75 14787.09 22898.83 13898.81 84
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 18995.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 25890.17 16099.42 5298.99 56
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19098.07 4592.02 12099.44 2993.38 7197.67 23797.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
FIs94.90 9795.35 8393.55 16198.28 6981.76 23395.33 9098.14 4993.05 7697.07 6397.18 11187.65 19399.29 7091.72 11799.69 1499.61 11
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12596.87 13295.26 3799.45 2792.77 8999.21 9099.00 54
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7399.29 7497.95 169
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20593.12 9598.06 22186.28 24498.61 16197.95 169
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6699.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6699.31 6998.53 121
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17395.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20199.04 11198.78 88
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 5899.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19190.10 16699.33 6890.11 16299.66 2199.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 17998.37 6581.92 23195.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
UGNet93.08 15792.50 17594.79 10893.87 29987.99 12595.07 10194.26 27090.64 14287.33 34497.67 6986.89 20998.49 18388.10 20898.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 24488.90 25392.55 20197.00 14979.73 26895.03 10383.65 37589.88 15695.30 15194.79 24353.64 38899.39 4991.99 10898.79 14398.54 120
LFMVS91.33 20391.16 20891.82 22296.27 20279.36 27595.01 10485.61 36396.04 3094.82 17497.06 11972.03 32798.46 18884.96 26198.70 15397.65 200
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28791.92 12398.78 14389.11 18999.24 8596.92 237
GG-mvs-BLEND83.24 36285.06 39371.03 36194.99 10665.55 39874.09 39275.51 39244.57 39594.46 35059.57 39087.54 37984.24 385
EU-MVSNet87.39 29586.71 29989.44 29493.40 30676.11 32494.93 10790.00 33057.17 39195.71 13197.37 9164.77 35997.68 26092.67 9494.37 32894.52 322
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11879.49 27394.86 10897.12 14889.59 16296.87 7497.65 7090.40 16198.34 19989.08 19099.35 6198.75 92
MTMP94.82 10954.62 401
PHI-MVS94.34 11893.80 13795.95 5995.65 24591.67 6294.82 10997.86 8587.86 19993.04 23194.16 26491.58 13098.78 14390.27 15598.96 12197.41 215
gg-mvs-nofinetune82.10 34181.02 34385.34 34787.46 38371.04 36094.74 11167.56 39796.44 2379.43 38798.99 645.24 39496.15 32067.18 38292.17 36188.85 376
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13396.25 1499.00 10693.10 8199.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 8895.73 6793.55 16196.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16195.42 2894.36 35392.72 9399.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 19991.61 19491.26 24594.16 29086.26 16794.66 11494.82 25591.17 13092.13 26591.08 33290.03 16997.06 29279.09 32297.35 25190.45 373
v1094.68 10695.27 8992.90 18596.57 17680.15 25294.65 11597.57 11090.68 14197.43 4898.00 5188.18 18399.15 8494.84 3099.55 3799.41 20
v894.65 10795.29 8792.74 19096.65 17079.77 26794.59 11697.17 14391.86 10397.47 4797.93 5588.16 18499.08 9494.32 3799.47 4399.38 22
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14296.17 18293.42 8599.34 6389.30 18098.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10683.15 21694.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17299.59 2899.08 48
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3599.34 6498.80 86
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21695.59 20786.93 20798.95 11489.26 18498.51 17398.60 117
plane_prior294.56 12091.74 115
tfpnnormal94.27 12094.87 10392.48 20397.71 11280.88 24794.55 12295.41 23893.70 6196.67 8497.72 6691.40 13498.18 21387.45 22199.18 9498.36 131
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 13992.91 10298.72 15291.19 12899.42 5298.32 133
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14598.84 13397.57 204
MIMVSNet87.13 30386.54 30288.89 30596.05 21976.11 32494.39 12588.51 33581.37 29188.27 33296.75 14172.38 32495.52 33265.71 38595.47 30195.03 305
K. test v393.37 14793.27 15793.66 15798.05 8582.62 22394.35 12686.62 35396.05 2997.51 4398.85 1276.59 30999.65 393.21 7798.20 20498.73 96
MVS_030493.92 13693.68 14394.64 11795.94 22985.83 17794.34 12788.14 34192.98 7791.09 28297.68 6786.73 21299.36 5896.64 799.59 2898.72 97
Vis-MVSNet (Re-imp)90.42 22090.16 22891.20 24997.66 11877.32 30794.33 12887.66 34691.20 12992.99 23295.13 22875.40 31498.28 20277.86 32799.19 9297.99 164
ANet_high94.83 10096.28 3790.47 27196.65 17073.16 34894.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 14899.68 1899.53 15
iter_conf_final90.23 23089.32 24392.95 18194.65 28181.46 23894.32 13095.40 24085.61 23892.84 23795.37 22254.58 38599.13 8892.16 10298.94 12498.25 139
MM95.22 9487.21 13894.31 13190.92 32494.48 4692.80 23997.52 8185.27 22899.49 2496.58 899.57 3598.97 62
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15695.85 1899.12 9190.45 14599.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 22888.87 25494.66 11594.82 26991.85 5794.22 13494.75 25880.91 29487.52 34288.07 36586.63 21497.87 24276.67 33896.21 28594.25 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 16892.73 16992.95 18195.40 25481.98 23094.18 13595.53 23388.63 18296.05 11397.37 9181.31 26598.81 13687.38 22498.67 15798.06 153
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18094.15 13695.44 23583.25 27095.51 13798.05 4692.54 11197.19 28695.55 2097.46 24698.94 66
Anonymous2024052192.86 16693.57 14890.74 26596.57 17675.50 33194.15 13695.60 22489.38 16595.90 12097.90 6180.39 27397.96 23292.60 9699.68 1898.75 92
GeoE94.55 11094.68 11394.15 13797.23 13985.11 18894.14 13897.34 13088.71 18195.26 15495.50 21294.65 6199.12 9190.94 13498.40 17998.23 140
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14596.03 18794.66 6099.08 9490.70 14098.97 119
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25595.22 22591.03 14799.25 7592.11 10398.69 15497.90 174
HY-MVS82.50 1886.81 30785.93 30989.47 29393.63 30377.93 29794.02 14191.58 31975.68 33283.64 36893.64 28077.40 29697.42 27471.70 36692.07 36293.05 353
Effi-MVS+-dtu93.90 13892.60 17397.77 394.74 27596.67 594.00 14295.41 23889.94 15491.93 26992.13 31790.12 16498.97 11187.68 21897.48 24497.67 199
Effi-MVS+92.79 16792.74 16792.94 18395.10 26283.30 21194.00 14297.53 11491.36 12589.35 31390.65 34194.01 7598.66 16587.40 22395.30 30796.88 241
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17193.97 14493.28 28794.49 4596.24 10397.78 6387.99 18998.79 14088.92 19399.14 9998.34 132
h-mvs3392.89 16391.99 18695.58 7796.97 15090.55 7693.94 14594.01 27689.23 16893.95 19996.19 17976.88 30599.14 8691.02 13195.71 29597.04 233
EPNet89.80 24588.25 26794.45 13083.91 39586.18 16893.87 14687.07 35191.16 13180.64 38494.72 24578.83 28198.89 12085.17 25398.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs392.42 17992.40 17892.46 20593.80 30287.28 13693.86 14797.05 15276.86 32896.25 10298.66 1882.87 24891.26 37195.44 2596.83 27098.82 82
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9299.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 12694.58 11693.04 17695.91 23083.13 21793.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29698.54 16996.96 236
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13799.76 1099.38 22
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14184.37 19493.73 15195.26 24384.45 25995.76 12598.00 5191.85 12497.21 28395.62 1897.82 22998.98 60
PAPM_NR91.03 20790.81 21491.68 22996.73 16581.10 24493.72 15296.35 19788.19 19288.77 32392.12 31885.09 23197.25 28182.40 28593.90 33796.68 248
baseline94.26 12294.80 10592.64 19496.08 21780.99 24593.69 15398.04 6890.80 13894.89 17296.32 17093.19 9298.48 18791.68 11998.51 17398.43 128
dcpmvs_293.96 13495.01 9990.82 26397.60 12074.04 34393.68 15498.85 789.80 15897.82 2997.01 12491.14 14599.21 7890.56 14398.59 16499.19 36
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 17993.65 15595.23 24483.30 26895.13 16097.56 7692.22 11697.17 28795.51 2297.41 24898.64 112
F-COLMAP92.28 18491.06 20995.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32594.04 26788.41 18198.55 17980.17 30895.99 28997.39 219
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
FMVSNet587.82 28486.56 30191.62 23192.31 32279.81 26693.49 15894.81 25783.26 26991.36 27596.93 12852.77 39097.49 27076.07 34298.03 21797.55 207
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12695.14 4299.51 2091.74 11699.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 15192.85 16494.50 12695.70 24187.45 13393.45 16095.76 21991.58 12095.25 15692.42 31381.96 26098.72 15291.61 12097.87 22797.33 223
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11694.11 7497.75 25596.26 1198.72 14996.89 239
114514_t90.51 21789.80 23792.63 19698.00 9182.24 22893.40 16297.29 13565.84 38289.40 31294.80 24286.99 20598.75 14783.88 27198.61 16196.89 239
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 16996.69 16784.37 19493.38 16395.13 24684.50 25895.40 14497.55 8091.77 12697.20 28495.59 1997.79 23098.69 104
DeepC-MVS_fast89.96 793.73 14093.44 15294.60 12196.14 21387.90 12693.36 16497.14 14585.53 24193.90 20295.45 21491.30 13798.59 17489.51 17598.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6196.22 4094.26 13598.19 7685.77 17893.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12499.29 7497.88 177
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26195.70 1698.48 17697.74 194
sd_testset93.94 13594.39 11992.61 19897.93 9683.24 21293.17 16995.04 24893.65 6595.51 13798.63 2094.49 6795.89 32781.72 29299.35 6198.70 101
MSLP-MVS++93.25 15393.88 13591.37 23996.34 19582.81 22293.11 17097.74 9889.37 16694.08 19295.29 22490.40 16196.35 31790.35 15098.25 19794.96 307
baseline187.62 28987.31 28488.54 31294.71 27874.27 34193.10 17188.20 33986.20 22492.18 26493.04 29573.21 32195.52 33279.32 31985.82 38295.83 282
plane_prior88.12 12293.01 17288.98 17498.06 214
thres100view90087.35 29686.89 29588.72 30896.14 21373.09 34993.00 17385.31 36692.13 9593.26 22190.96 33463.42 36598.28 20271.27 36996.54 27994.79 315
Patchmtry90.11 23589.92 23490.66 26790.35 36077.00 31192.96 17492.81 29490.25 15194.74 17896.93 12867.11 34397.52 26785.17 25398.98 11497.46 211
LF4IMVS92.72 17092.02 18594.84 10695.65 24591.99 5492.92 17596.60 18385.08 25092.44 25393.62 28286.80 21096.35 31786.81 23098.25 19796.18 268
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19090.14 16399.34 6392.11 10399.64 2499.16 38
TAPA-MVS88.58 1092.49 17791.75 19394.73 11096.50 18389.69 8692.91 17697.68 10178.02 32192.79 24094.10 26590.85 14997.96 23284.76 26498.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 27187.52 28292.20 20996.33 19679.36 27592.81 17884.01 37486.44 22093.67 20792.68 30653.62 38999.25 7589.65 17498.45 17798.00 161
EIA-MVS92.35 18292.03 18493.30 17295.81 23683.97 20492.80 17998.17 4587.71 20389.79 30787.56 36691.17 14499.18 8287.97 21397.27 25296.77 245
iter_conf0588.94 26488.09 27491.50 23692.74 31776.97 31492.80 17995.92 21582.82 27993.65 20895.37 22249.41 39299.13 8890.82 13699.28 7998.40 130
thres600view787.66 28787.10 29389.36 29796.05 21973.17 34792.72 18185.31 36691.89 10293.29 21890.97 33363.42 36598.39 19173.23 35796.99 26696.51 252
wuyk23d87.83 28390.79 21578.96 37290.46 35988.63 11092.72 18190.67 32791.65 11998.68 1197.64 7196.06 1577.53 39459.84 38999.41 5670.73 392
test_fmvs290.62 21690.40 22591.29 24491.93 33685.46 18492.70 18396.48 19274.44 34194.91 17197.59 7475.52 31390.57 37393.44 6696.56 27897.84 182
V4293.43 14693.58 14792.97 17995.34 25881.22 24292.67 18496.49 19187.25 21196.20 10796.37 16787.32 19998.85 12892.39 10098.21 20298.85 81
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20583.23 21392.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10198.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13395.04 4898.56 17792.77 8999.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_vis1_n89.01 26089.01 24989.03 30292.57 31982.46 22692.62 18796.06 20973.02 35190.40 29395.77 20174.86 31589.68 37990.78 13894.98 31394.95 308
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19190.10 16699.41 3991.60 12199.58 3399.26 30
FMVSNet390.78 21090.32 22792.16 21493.03 31479.92 26292.54 18994.95 25186.17 22695.10 16296.01 18869.97 33498.75 14786.74 23198.38 18397.82 185
hse-mvs292.24 18691.20 20595.38 8396.16 21190.65 7592.52 19092.01 31489.23 16893.95 19992.99 29776.88 30598.69 16191.02 13196.03 28796.81 243
MVS_Test92.57 17693.29 15490.40 27493.53 30575.85 32792.52 19096.96 15888.73 17992.35 25896.70 14690.77 15098.37 19892.53 9795.49 30096.99 235
CR-MVSNet87.89 28187.12 29290.22 27991.01 35178.93 28292.52 19092.81 29473.08 35089.10 31496.93 12867.11 34397.64 26388.80 19692.70 35594.08 329
RPMNet90.31 22990.14 23190.81 26491.01 35178.93 28292.52 19098.12 5191.91 10189.10 31496.89 13168.84 33699.41 3990.17 16092.70 35594.08 329
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20496.25 17798.03 297.02 29392.08 10595.55 29898.45 127
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32085.98 17292.44 19594.69 26093.70 6196.12 11195.81 19691.24 13898.86 12693.76 5398.22 20198.98 60
Anonymous20240521192.58 17492.50 17592.83 18896.55 17883.22 21492.43 19691.64 31894.10 5295.59 13496.64 14981.88 26297.50 26885.12 25798.52 17197.77 190
AUN-MVS90.05 23988.30 26395.32 8896.09 21690.52 7792.42 19792.05 31382.08 28888.45 32992.86 29965.76 35398.69 16188.91 19496.07 28696.75 247
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32185.87 17592.42 19794.69 26093.67 6496.13 11095.84 19591.20 14198.86 12693.78 5098.23 19999.03 52
NCCC94.08 13093.54 15095.70 7596.49 18489.90 8392.39 19996.91 16490.64 14292.33 26194.60 25090.58 15898.96 11290.21 15997.70 23598.23 140
casdiffmvspermissive94.32 11994.80 10592.85 18796.05 21981.44 23992.35 20098.05 6491.53 12295.75 12796.80 13693.35 8798.49 18391.01 13398.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS92.99 16092.74 16793.72 15695.86 23286.30 16592.33 20197.84 8891.70 11892.81 23886.17 37692.22 11699.19 8188.03 21297.73 23295.66 291
EI-MVSNet92.99 16093.26 15892.19 21092.12 33079.21 28092.32 20294.67 26291.77 11395.24 15795.85 19387.14 20398.49 18391.99 10898.26 19598.86 78
CVMVSNet85.16 31784.72 31586.48 33892.12 33070.19 36492.32 20288.17 34056.15 39290.64 28995.85 19367.97 34196.69 30588.78 19790.52 37192.56 358
test_fmvs1_n88.73 27088.38 26189.76 28992.06 33282.53 22492.30 20496.59 18571.14 36092.58 24795.41 21968.55 33789.57 38191.12 12995.66 29697.18 229
OMC-MVS94.22 12593.69 14295.81 6997.25 13891.27 6492.27 20597.40 12287.10 21594.56 18295.42 21693.74 7798.11 21886.62 23598.85 13298.06 153
PM-MVS93.33 14892.67 17195.33 8696.58 17594.06 2192.26 20692.18 30785.92 23096.22 10596.61 15185.64 22695.99 32690.35 15098.23 19995.93 277
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20697.84 8894.91 4096.80 7895.78 20090.42 15999.41 3991.60 12199.58 3399.29 29
AdaColmapbinary91.63 19691.36 20292.47 20495.56 25086.36 16392.24 20896.27 19988.88 17889.90 30492.69 30591.65 12998.32 20077.38 33497.64 23892.72 357
PVSNet_Blended_VisFu91.63 19691.20 20592.94 18397.73 11083.95 20592.14 20997.46 11878.85 31792.35 25894.98 23484.16 23699.08 9486.36 24296.77 27395.79 284
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5780.82 24892.08 21096.68 17993.82 5996.29 9998.56 2490.10 16697.75 25590.10 16499.66 2199.24 32
Fast-Effi-MVS+-dtu92.77 16992.16 18094.58 12494.66 28088.25 12092.05 21196.65 18189.62 16190.08 29991.23 32992.56 11098.60 17286.30 24396.27 28496.90 238
save fliter97.46 13088.05 12492.04 21297.08 15087.63 206
PatchT87.51 29288.17 27285.55 34590.64 35466.91 37492.02 21386.09 35792.20 9389.05 31697.16 11264.15 36196.37 31689.21 18792.98 35393.37 348
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21496.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12198.12 20998.03 159
v14419293.20 15693.54 15092.16 21496.05 21978.26 29491.95 21597.14 14584.98 25295.96 11596.11 18387.08 20499.04 10293.79 4998.84 13399.17 37
VNet92.67 17292.96 16091.79 22396.27 20280.15 25291.95 21594.98 25092.19 9494.52 18496.07 18587.43 19797.39 27784.83 26298.38 18397.83 183
131486.46 30986.33 30686.87 33691.65 34374.54 33691.94 21794.10 27274.28 34284.78 36187.33 37083.03 24695.00 34478.72 32391.16 36891.06 370
MVS84.98 31984.30 32087.01 33391.03 35077.69 30391.94 21794.16 27159.36 39084.23 36587.50 36885.66 22496.80 30271.79 36493.05 35286.54 383
SDMVSNet94.43 11495.02 9892.69 19297.93 9682.88 22191.92 21995.99 21493.65 6595.51 13798.63 2094.60 6396.48 31087.57 21999.35 6198.70 101
tfpn200view987.05 30486.52 30388.67 30995.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27994.79 315
thres40087.20 30086.52 30389.24 30195.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27996.51 252
v192192093.26 15193.61 14692.19 21096.04 22378.31 29391.88 22297.24 13985.17 24696.19 10996.19 17986.76 21199.05 9994.18 4198.84 13399.22 33
XXY-MVS92.58 17493.16 15990.84 26297.75 10779.84 26391.87 22396.22 20485.94 22995.53 13697.68 6792.69 10894.48 34983.21 27597.51 24298.21 142
IterMVS-LS93.78 13994.28 12592.27 20796.27 20279.21 28091.87 22396.78 17391.77 11396.57 8997.07 11887.15 20298.74 15091.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 14393.81 13692.57 20096.28 20179.61 27091.86 22596.96 15886.95 21795.91 11996.32 17087.65 19398.96 11293.51 5998.88 12899.13 41
v119293.49 14493.78 13892.62 19796.16 21179.62 26991.83 22697.22 14186.07 22796.10 11296.38 16687.22 20099.02 10494.14 4298.88 12899.22 33
v124093.29 14993.71 14192.06 21796.01 22477.89 29991.81 22797.37 12385.12 24896.69 8396.40 16186.67 21399.07 9894.51 3398.76 14699.22 33
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22796.80 17289.66 16093.90 20295.44 21592.80 10698.72 15292.74 9198.52 17198.32 133
v2v48293.29 14993.63 14592.29 20696.35 19478.82 28791.77 22996.28 19888.45 18695.70 13296.26 17686.02 22198.90 11893.02 8498.81 14199.14 40
EPNet_dtu85.63 31384.37 31989.40 29686.30 38874.33 34091.64 23088.26 33784.84 25572.96 39389.85 34371.27 33097.69 25976.60 33997.62 23996.18 268
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 22188.92 25194.85 10596.53 18290.02 8191.58 23196.48 19280.16 30086.14 35092.18 31585.73 22398.25 20776.87 33794.61 32496.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 15793.76 13991.03 25398.60 3975.83 32991.51 23295.62 22391.84 10795.74 12897.10 11789.31 17498.32 20085.07 26099.06 10398.93 68
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23398.17 4590.72 13995.30 15196.47 15687.94 19096.98 29491.41 12697.61 24098.30 136
HQP-NCC96.36 19191.37 23487.16 21288.81 319
ACMP_Plane96.36 19191.37 23487.16 21288.81 319
HQP-MVS92.09 18891.49 19993.88 15096.36 19184.89 19091.37 23497.31 13287.16 21288.81 31993.40 28884.76 23298.60 17286.55 23897.73 23298.14 149
MCST-MVS92.91 16292.51 17494.10 14097.52 12585.72 18091.36 23797.13 14780.33 29992.91 23694.24 26091.23 13998.72 15289.99 16697.93 22497.86 179
v14892.87 16593.29 15491.62 23196.25 20577.72 30291.28 23895.05 24789.69 15995.93 11896.04 18687.34 19898.38 19490.05 16597.99 22098.78 88
tpmvs84.22 32583.97 32384.94 35087.09 38565.18 38191.21 23988.35 33682.87 27885.21 35490.96 33465.24 35796.75 30379.60 31885.25 38392.90 355
CANet92.38 18191.99 18693.52 16693.82 30183.46 20991.14 24097.00 15589.81 15786.47 34894.04 26787.90 19199.21 7889.50 17698.27 19497.90 174
CNLPA91.72 19491.20 20593.26 17396.17 21091.02 6791.14 24095.55 23190.16 15290.87 28493.56 28586.31 21794.40 35279.92 31497.12 25794.37 325
DP-MVS Recon92.31 18391.88 18993.60 15997.18 14386.87 14791.10 24297.37 12384.92 25392.08 26694.08 26688.59 17898.20 21083.50 27298.14 20895.73 286
OpenMVS_ROBcopyleft85.12 1689.52 24889.05 24790.92 25894.58 28381.21 24391.10 24293.41 28677.03 32793.41 21393.99 27183.23 24397.80 24779.93 31294.80 31993.74 340
TSAR-MVS + GP.93.07 15992.41 17795.06 9995.82 23490.87 7290.97 24492.61 30288.04 19594.61 18193.79 27888.08 18597.81 24689.41 17798.39 18296.50 255
MVP-Stereo90.07 23888.92 25193.54 16396.31 19886.49 15790.93 24595.59 22879.80 30191.48 27395.59 20780.79 27097.39 27778.57 32591.19 36796.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 25288.75 25591.03 25390.10 36376.62 31990.85 24694.67 26282.27 28695.24 15795.79 19761.09 37498.49 18390.49 14498.26 19597.97 168
pmmvs-eth3d91.54 19890.73 21793.99 14295.76 23987.86 12890.83 24793.98 27778.23 32094.02 19796.22 17882.62 25496.83 30186.57 23698.33 18997.29 225
CANet_DTU89.85 24389.17 24591.87 22092.20 32780.02 25990.79 24895.87 21786.02 22882.53 37591.77 32280.01 27498.57 17685.66 25097.70 23597.01 234
SSC-MVS90.16 23292.96 16081.78 36697.88 9948.48 39890.75 24987.69 34596.02 3196.70 8297.63 7285.60 22797.80 24785.73 24998.60 16399.06 50
test_prior489.91 8290.74 250
TinyColmap92.00 19092.76 16689.71 29195.62 24877.02 31090.72 25196.17 20787.70 20495.26 15496.29 17292.54 11196.45 31281.77 29098.77 14595.66 291
CDPH-MVS92.67 17291.83 19195.18 9696.94 15288.46 11890.70 25297.07 15177.38 32392.34 26095.08 23192.67 10998.88 12185.74 24898.57 16698.20 143
test_vis1_n_192089.45 24989.85 23688.28 31893.59 30476.71 31890.67 25397.78 9679.67 30590.30 29696.11 18376.62 30892.17 36790.31 15293.57 34295.96 275
DSMNet-mixed82.21 33881.56 33784.16 35789.57 36970.00 36890.65 25477.66 39354.99 39383.30 37197.57 7577.89 29290.50 37566.86 38395.54 29991.97 362
TEST996.45 18789.46 9090.60 25596.92 16279.09 31390.49 29094.39 25691.31 13698.88 121
train_agg92.71 17191.83 19195.35 8496.45 18789.46 9090.60 25596.92 16279.37 30890.49 29094.39 25691.20 14198.88 12188.66 20098.43 17897.72 195
PatchmatchNetpermissive85.22 31684.64 31686.98 33489.51 37069.83 36990.52 25787.34 34978.87 31687.22 34592.74 30466.91 34596.53 30781.77 29086.88 38094.58 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 18989.14 10090.51 25896.89 16579.37 30890.42 29294.36 25891.20 14198.82 131
test_yl90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
DCV-MVSNet90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
tpm281.46 34380.35 35084.80 35189.90 36465.14 38290.44 25985.36 36565.82 38382.05 37892.44 31157.94 37996.69 30570.71 37388.49 37792.56 358
test_fmvs187.59 29087.27 28688.54 31288.32 37881.26 24190.43 26295.72 22170.55 36691.70 27194.63 24868.13 33889.42 38290.59 14295.34 30694.94 310
test_vis3_rt90.40 22190.03 23291.52 23592.58 31888.95 10390.38 26397.72 10073.30 34897.79 3097.51 8477.05 30187.10 38689.03 19194.89 31598.50 122
CostFormer83.09 33282.21 33585.73 34489.27 37267.01 37390.35 26486.47 35470.42 36783.52 37093.23 29361.18 37396.85 30077.21 33588.26 37893.34 349
TAMVS90.16 23289.05 24793.49 16896.49 18486.37 16290.34 26592.55 30380.84 29792.99 23294.57 25281.94 26198.20 21073.51 35598.21 20295.90 280
EPMVS81.17 34780.37 34983.58 36085.58 39165.08 38390.31 26671.34 39677.31 32585.80 35291.30 32859.38 37792.70 36579.99 30982.34 38992.96 354
CMPMVSbinary68.83 2287.28 29785.67 31192.09 21688.77 37685.42 18590.31 26694.38 26670.02 36988.00 33593.30 29073.78 32094.03 35775.96 34496.54 27996.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2685.85 39965.36 35596.00 32579.61 316
test_prior290.21 26889.33 16790.77 28694.81 24090.41 16088.21 20398.55 167
MVS_111021_LR93.66 14193.28 15694.80 10796.25 20590.95 6990.21 26895.43 23787.91 19693.74 20694.40 25592.88 10496.38 31590.39 14798.28 19397.07 230
WR-MVS93.49 14493.72 14092.80 18997.57 12380.03 25890.14 27195.68 22293.70 6196.62 8695.39 22087.21 20199.04 10287.50 22099.64 2499.33 26
tpmrst82.85 33582.93 33182.64 36387.65 38058.99 39490.14 27187.90 34475.54 33483.93 36691.63 32566.79 34895.36 33881.21 29881.54 39093.57 347
PVSNet_BlendedMVS90.35 22689.96 23391.54 23494.81 27078.80 28990.14 27196.93 16079.43 30788.68 32695.06 23286.27 21898.15 21680.27 30498.04 21697.68 198
BH-untuned90.68 21390.90 21090.05 28595.98 22579.57 27190.04 27494.94 25287.91 19694.07 19393.00 29687.76 19297.78 25179.19 32195.17 31092.80 356
新几何290.02 275
旧先验290.00 27668.65 37492.71 24396.52 30885.15 255
无先验89.94 27795.75 22070.81 36498.59 17481.17 29994.81 313
xiu_mvs_v1_base_debu91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base_debi91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
mvs_anonymous90.37 22591.30 20487.58 32892.17 32968.00 37289.84 28194.73 25983.82 26693.22 22597.40 8987.54 19597.40 27687.94 21495.05 31297.34 222
test20.0390.80 20990.85 21390.63 26895.63 24779.24 27889.81 28292.87 29389.90 15594.39 18696.40 16185.77 22295.27 34273.86 35499.05 10697.39 219
testing383.66 32882.52 33387.08 33295.84 23365.84 37989.80 28377.17 39488.17 19390.84 28588.63 36030.95 40298.11 21884.05 26997.19 25597.28 226
WB-MVS89.44 25092.15 18281.32 36797.73 11048.22 39989.73 28487.98 34395.24 3696.05 11396.99 12585.18 22996.95 29582.45 28497.97 22198.78 88
1112_ss88.42 27487.41 28391.45 23796.69 16780.99 24589.72 28596.72 17873.37 34787.00 34690.69 33977.38 29798.20 21081.38 29593.72 34095.15 302
UnsupCasMVSNet_eth90.33 22790.34 22690.28 27694.64 28280.24 25089.69 28695.88 21685.77 23293.94 20195.69 20481.99 25992.98 36484.21 26891.30 36697.62 201
MG-MVS89.54 24789.80 23788.76 30794.88 26672.47 35589.60 28792.44 30585.82 23189.48 31195.98 18982.85 24997.74 25781.87 28995.27 30896.08 271
Patchmatch-test86.10 31186.01 30886.38 34290.63 35574.22 34289.57 28886.69 35285.73 23489.81 30692.83 30065.24 35791.04 37277.82 33095.78 29493.88 337
Anonymous2023120688.77 26888.29 26490.20 28196.31 19878.81 28889.56 28993.49 28474.26 34392.38 25695.58 21082.21 25595.43 33772.07 36398.75 14896.34 261
dmvs_re84.69 32283.94 32486.95 33592.24 32482.93 22089.51 29087.37 34884.38 26185.37 35385.08 38072.44 32386.59 38768.05 37991.03 37091.33 367
DeepPCF-MVS90.46 694.20 12693.56 14996.14 5295.96 22692.96 4389.48 29197.46 11885.14 24796.23 10495.42 21693.19 9298.08 22090.37 14998.76 14697.38 221
test_cas_vis1_n_192088.25 27788.27 26688.20 32092.19 32878.92 28489.45 29295.44 23575.29 33893.23 22495.65 20671.58 32890.23 37788.05 21093.55 34395.44 297
SCA87.43 29487.21 28888.10 32292.01 33471.98 35789.43 29388.11 34282.26 28788.71 32492.83 30078.65 28497.59 26479.61 31693.30 34694.75 317
testgi90.38 22491.34 20387.50 32997.49 12771.54 35889.43 29395.16 24588.38 18994.54 18394.68 24792.88 10493.09 36371.60 36797.85 22897.88 177
JIA-IIPM85.08 31883.04 32991.19 25087.56 38186.14 16989.40 29584.44 37388.98 17482.20 37697.95 5456.82 38296.15 32076.55 34083.45 38691.30 368
原ACMM289.34 296
tpm84.38 32484.08 32285.30 34890.47 35863.43 38889.34 29685.63 36277.24 32687.62 34095.03 23361.00 37597.30 28079.26 32091.09 36995.16 301
MVS_111021_HR93.63 14293.42 15394.26 13596.65 17086.96 14689.30 29896.23 20288.36 19093.57 21094.60 25093.45 8297.77 25290.23 15898.38 18398.03 159
tpm cat180.61 35179.46 35484.07 35888.78 37565.06 38489.26 29988.23 33862.27 38881.90 38089.66 35162.70 37095.29 34171.72 36580.60 39191.86 365
CDS-MVSNet89.55 24688.22 27093.53 16495.37 25786.49 15789.26 29993.59 28079.76 30391.15 28092.31 31477.12 30098.38 19477.51 33297.92 22595.71 287
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 20590.86 21292.53 20295.45 25382.53 22489.25 30196.52 19085.00 25189.91 30388.55 36292.94 10098.84 12984.72 26595.44 30296.22 266
BH-RMVSNet90.47 21990.44 22390.56 27095.21 26178.65 29189.15 30293.94 27888.21 19192.74 24294.22 26186.38 21697.88 23978.67 32495.39 30495.14 303
thres20085.85 31285.18 31387.88 32694.44 28572.52 35489.08 30386.21 35588.57 18591.44 27488.40 36364.22 36098.00 22868.35 37895.88 29393.12 350
USDC89.02 25889.08 24688.84 30695.07 26374.50 33888.97 30496.39 19573.21 34993.27 22096.28 17482.16 25796.39 31477.55 33198.80 14295.62 294
testdata188.96 30588.44 187
pmmvs587.87 28287.14 29090.07 28393.26 30976.97 31488.89 30692.18 30773.71 34688.36 33093.89 27576.86 30796.73 30480.32 30396.81 27196.51 252
dmvs_testset78.23 35878.99 35575.94 37491.99 33555.34 39788.86 30778.70 39082.69 28081.64 38279.46 38975.93 31185.74 38948.78 39582.85 38886.76 382
patch_mono-292.46 17892.72 17091.71 22796.65 17078.91 28588.85 30897.17 14383.89 26592.45 25296.76 13989.86 17097.09 29090.24 15798.59 16499.12 43
test22296.95 15185.27 18788.83 30993.61 27965.09 38490.74 28794.85 23984.62 23497.36 25093.91 335
baseline283.38 33081.54 33988.90 30491.38 34672.84 35288.78 31081.22 38378.97 31479.82 38687.56 36661.73 37297.80 24774.30 35290.05 37396.05 273
diffmvspermissive91.74 19391.93 18891.15 25193.06 31278.17 29588.77 31197.51 11786.28 22292.42 25493.96 27288.04 18797.46 27190.69 14196.67 27697.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.88 32589.42 37161.52 39088.74 31287.41 34773.99 34484.96 36094.01 27065.25 35695.53 33178.02 32693.16 348
D2MVS89.93 24189.60 24290.92 25894.03 29578.40 29288.69 31394.85 25378.96 31593.08 22895.09 23074.57 31696.94 29688.19 20598.96 12197.41 215
TR-MVS87.70 28587.17 28989.27 29994.11 29279.26 27788.69 31391.86 31581.94 28990.69 28889.79 34782.82 25097.42 27472.65 36191.98 36391.14 369
PatchMatch-RL89.18 25388.02 27692.64 19495.90 23192.87 4588.67 31591.06 32180.34 29890.03 30191.67 32483.34 24194.42 35176.35 34194.84 31890.64 372
PAPR87.65 28886.77 29890.27 27792.85 31677.38 30688.56 31696.23 20276.82 33084.98 35989.75 34986.08 22097.16 28872.33 36293.35 34596.26 265
MDTV_nov1_ep13_2view42.48 40288.45 31767.22 37883.56 36966.80 34672.86 36094.06 331
jason89.17 25488.32 26291.70 22895.73 24080.07 25588.10 31893.22 28871.98 35690.09 29892.79 30278.53 28798.56 17787.43 22297.06 25996.46 257
jason: jason.
mvsany_test389.11 25688.21 27191.83 22191.30 34890.25 7988.09 31978.76 38976.37 33196.43 9198.39 3383.79 23890.43 37686.57 23694.20 33294.80 314
BH-w/o87.21 29987.02 29487.79 32794.77 27377.27 30887.90 32093.21 29081.74 29089.99 30288.39 36483.47 24096.93 29871.29 36892.43 35989.15 374
MS-PatchMatch88.05 28087.75 27888.95 30393.28 30777.93 29787.88 32192.49 30475.42 33592.57 24893.59 28480.44 27294.24 35681.28 29692.75 35494.69 320
DELS-MVS92.05 18992.16 18091.72 22694.44 28580.13 25487.62 32297.25 13887.34 21092.22 26393.18 29489.54 17398.73 15189.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 32682.20 33689.41 29589.04 37376.37 32387.57 32390.98 32372.71 35484.46 36292.45 30968.08 33996.48 31070.58 37483.97 38495.38 298
ADS-MVSNet82.25 33781.55 33884.34 35689.04 37365.30 38087.57 32385.13 37072.71 35484.46 36292.45 30968.08 33992.33 36670.58 37483.97 38495.38 298
IterMVS-SCA-FT91.65 19591.55 19591.94 21993.89 29879.22 27987.56 32593.51 28391.53 12295.37 14796.62 15078.65 28498.90 11891.89 11294.95 31497.70 196
IterMVS90.18 23190.16 22890.21 28093.15 31075.98 32687.56 32592.97 29286.43 22194.09 19196.40 16178.32 28897.43 27387.87 21594.69 32297.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 29386.58 30090.25 27896.80 16477.75 30187.53 32796.25 20069.73 37186.47 34893.61 28375.67 31297.88 23979.95 31093.20 34795.11 304
c3_l91.32 20491.42 20091.00 25692.29 32376.79 31787.52 32896.42 19485.76 23394.72 18093.89 27582.73 25198.16 21590.93 13598.55 16798.04 156
UnsupCasMVSNet_bld88.50 27388.03 27589.90 28795.52 25178.88 28687.39 32994.02 27579.32 31193.06 22994.02 26980.72 27194.27 35475.16 34793.08 35196.54 250
lupinMVS88.34 27687.31 28491.45 23794.74 27580.06 25687.23 33092.27 30671.10 36188.83 31791.15 33077.02 30298.53 18086.67 23496.75 27495.76 285
pmmvs488.95 26387.70 28092.70 19194.30 28885.60 18287.22 33192.16 30974.62 34089.75 30994.19 26277.97 29196.41 31382.71 27996.36 28396.09 270
WTY-MVS86.93 30686.50 30588.24 31994.96 26474.64 33487.19 33292.07 31278.29 31988.32 33191.59 32678.06 29094.27 35474.88 34893.15 34995.80 283
ET-MVSNet_ETH3D86.15 31084.27 32191.79 22393.04 31381.28 24087.17 33386.14 35679.57 30683.65 36788.66 35957.10 38098.18 21387.74 21795.40 30395.90 280
MVS-HIRNet78.83 35780.60 34873.51 37693.07 31147.37 40087.10 33478.00 39268.94 37377.53 38997.26 10371.45 32994.62 34763.28 38888.74 37678.55 391
xiu_mvs_v2_base89.00 26189.19 24488.46 31694.86 26874.63 33586.97 33595.60 22480.88 29587.83 33788.62 36191.04 14698.81 13682.51 28394.38 32791.93 363
DPM-MVS89.35 25188.40 26092.18 21396.13 21584.20 20086.96 33696.15 20875.40 33687.36 34391.55 32783.30 24298.01 22782.17 28896.62 27794.32 327
eth_miper_zixun_eth90.72 21190.61 21991.05 25292.04 33376.84 31686.91 33796.67 18085.21 24594.41 18593.92 27379.53 27798.26 20689.76 17197.02 26198.06 153
dp79.28 35578.62 35781.24 36885.97 39056.45 39586.91 33785.26 36872.97 35281.45 38389.17 35856.01 38495.45 33673.19 35876.68 39291.82 366
sss87.23 29886.82 29688.46 31693.96 29677.94 29686.84 33992.78 29777.59 32287.61 34191.83 32178.75 28291.92 36877.84 32894.20 33295.52 296
miper_ehance_all_eth90.48 21890.42 22490.69 26691.62 34476.57 32086.83 34096.18 20683.38 26794.06 19492.66 30782.20 25698.04 22289.79 17097.02 26197.45 212
CLD-MVS91.82 19191.41 20193.04 17696.37 18983.65 20886.82 34197.29 13584.65 25792.27 26289.67 35092.20 11897.85 24583.95 27099.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 21490.56 22190.91 26091.85 33776.98 31386.75 34295.36 24185.53 24194.06 19494.89 23777.36 29997.98 23190.27 15598.98 11497.76 191
DIV-MVS_self_test90.65 21490.56 22190.91 26091.85 33776.99 31286.75 34295.36 24185.52 24394.06 19494.89 23777.37 29897.99 23090.28 15498.97 11997.76 191
PS-MVSNAJ88.86 26688.99 25088.48 31594.88 26674.71 33386.69 34495.60 22480.88 29587.83 33787.37 36990.77 15098.82 13182.52 28294.37 32891.93 363
PVSNet_Blended88.74 26988.16 27390.46 27394.81 27078.80 28986.64 34596.93 16074.67 33988.68 32689.18 35786.27 21898.15 21680.27 30496.00 28894.44 324
MSDG90.82 20890.67 21891.26 24594.16 29083.08 21886.63 34696.19 20590.60 14491.94 26891.89 32089.16 17695.75 32980.96 30194.51 32594.95 308
cl2289.02 25888.50 25890.59 26989.76 36576.45 32186.62 34794.03 27382.98 27792.65 24492.49 30872.05 32697.53 26688.93 19297.02 26197.78 189
CL-MVSNet_self_test90.04 24089.90 23590.47 27195.24 26077.81 30086.60 34892.62 30185.64 23693.25 22393.92 27383.84 23796.06 32479.93 31298.03 21797.53 208
PCF-MVS84.52 1789.12 25587.71 27993.34 17096.06 21885.84 17686.58 34997.31 13268.46 37593.61 20993.89 27587.51 19698.52 18167.85 38098.11 21095.66 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_f86.65 30887.13 29185.19 34990.28 36186.11 17086.52 35091.66 31769.76 37095.73 13097.21 11069.51 33581.28 39389.15 18894.40 32688.17 379
Patchmatch-RL test88.81 26788.52 25789.69 29295.33 25979.94 26186.22 35192.71 29878.46 31895.80 12494.18 26366.25 35195.33 34089.22 18698.53 17093.78 338
Syy-MVS84.81 32084.93 31484.42 35591.71 34163.36 38985.89 35281.49 38181.03 29285.13 35681.64 38777.44 29595.00 34485.94 24794.12 33594.91 311
myMVS_eth3d79.62 35478.26 35883.72 35991.71 34161.25 39185.89 35281.49 38181.03 29285.13 35681.64 38732.12 40195.00 34471.17 37294.12 33594.91 311
FPMVS84.50 32383.28 32788.16 32196.32 19794.49 1685.76 35485.47 36483.09 27485.20 35594.26 25963.79 36486.58 38863.72 38791.88 36583.40 386
IB-MVS77.21 1983.11 33181.05 34289.29 29891.15 34975.85 32785.66 35586.00 35879.70 30482.02 37986.61 37248.26 39398.39 19177.84 32892.22 36093.63 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 20690.88 21191.55 23394.68 27980.16 25185.49 35692.14 31090.41 14994.93 17095.79 19785.10 23096.93 29885.15 25594.19 33497.57 204
test_vis1_rt85.58 31484.58 31788.60 31187.97 37986.76 14985.45 35793.59 28066.43 37987.64 33989.20 35679.33 27885.38 39081.59 29389.98 37493.66 342
new-patchmatchnet88.97 26290.79 21583.50 36194.28 28955.83 39685.34 35893.56 28286.18 22595.47 14095.73 20383.10 24496.51 30985.40 25298.06 21498.16 147
miper_enhance_ethall88.42 27487.87 27790.07 28388.67 37775.52 33085.10 35995.59 22875.68 33292.49 24989.45 35378.96 28097.88 23987.86 21697.02 26196.81 243
HyFIR lowres test87.19 30185.51 31292.24 20897.12 14780.51 24985.03 36096.06 20966.11 38191.66 27292.98 29870.12 33399.14 8675.29 34695.23 30997.07 230
pmmvs380.83 34978.96 35686.45 33987.23 38477.48 30584.87 36182.31 37863.83 38685.03 35889.50 35249.66 39193.10 36273.12 35995.10 31188.78 378
test0.0.03 182.48 33681.47 34085.48 34689.70 36673.57 34684.73 36281.64 38083.07 27588.13 33486.61 37262.86 36889.10 38466.24 38490.29 37293.77 339
N_pmnet88.90 26587.25 28793.83 15494.40 28793.81 3584.73 36287.09 35079.36 31093.26 22192.43 31279.29 27991.68 36977.50 33397.22 25496.00 274
GA-MVS87.70 28586.82 29690.31 27593.27 30877.22 30984.72 36492.79 29685.11 24989.82 30590.07 34266.80 34697.76 25484.56 26694.27 33195.96 275
ppachtmachnet_test88.61 27288.64 25688.50 31491.76 33970.99 36284.59 36592.98 29179.30 31292.38 25693.53 28679.57 27697.45 27286.50 24097.17 25697.07 230
CHOSEN 1792x268887.19 30185.92 31091.00 25697.13 14679.41 27484.51 36695.60 22464.14 38590.07 30094.81 24078.26 28997.14 28973.34 35695.38 30596.46 257
thisisatest051584.72 32182.99 33089.90 28792.96 31575.33 33284.36 36783.42 37677.37 32488.27 33286.65 37153.94 38798.72 15282.56 28197.40 24995.67 290
cascas87.02 30586.28 30789.25 30091.56 34576.45 32184.33 36896.78 17371.01 36286.89 34785.91 37781.35 26496.94 29683.09 27695.60 29794.35 326
new_pmnet81.22 34581.01 34481.86 36590.92 35370.15 36584.03 36980.25 38770.83 36385.97 35189.78 34867.93 34284.65 39167.44 38191.90 36490.78 371
PAPM81.91 34280.11 35287.31 33193.87 29972.32 35684.02 37093.22 28869.47 37276.13 39189.84 34472.15 32597.23 28253.27 39389.02 37592.37 360
our_test_387.55 29187.59 28187.44 33091.76 33970.48 36383.83 37190.55 32879.79 30292.06 26792.17 31678.63 28695.63 33084.77 26394.73 32096.22 266
miper_lstm_enhance89.90 24289.80 23790.19 28291.37 34777.50 30483.82 37295.00 24984.84 25593.05 23094.96 23576.53 31095.20 34389.96 16798.67 15797.86 179
test-LLR83.58 32983.17 32884.79 35289.68 36766.86 37583.08 37384.52 37183.07 27582.85 37384.78 38162.86 36893.49 36082.85 27794.86 31694.03 332
TESTMET0.1,179.09 35678.04 35982.25 36487.52 38264.03 38783.08 37380.62 38570.28 36880.16 38583.22 38444.13 39690.56 37479.95 31093.36 34492.15 361
test-mter81.21 34680.01 35384.79 35289.68 36766.86 37583.08 37384.52 37173.85 34582.85 37384.78 38143.66 39793.49 36082.85 27794.86 31694.03 332
test1239.49 36412.01 3671.91 3802.87 4021.30 40582.38 3761.34 4051.36 3982.84 3996.56 3972.45 4030.97 3992.73 3985.56 3973.47 395
PMMVS83.00 33381.11 34188.66 31083.81 39686.44 16082.24 37785.65 36161.75 38982.07 37785.64 37879.75 27591.59 37075.99 34393.09 35087.94 380
KD-MVS_2432*160082.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
miper_refine_blended82.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
mvsany_test183.91 32782.93 33186.84 33786.18 38985.93 17381.11 38075.03 39570.80 36588.57 32894.63 24883.08 24587.38 38580.39 30286.57 38187.21 381
YYNet188.17 27888.24 26887.93 32492.21 32673.62 34580.75 38188.77 33382.51 28494.99 16895.11 22982.70 25293.70 35883.33 27393.83 33896.48 256
MDA-MVSNet_test_wron88.16 27988.23 26987.93 32492.22 32573.71 34480.71 38288.84 33282.52 28394.88 17395.14 22782.70 25293.61 35983.28 27493.80 33996.46 257
testmvs9.02 36511.42 3681.81 3812.77 4031.13 40679.44 3831.90 4041.18 3992.65 4006.80 3961.95 4040.87 4002.62 3993.45 3983.44 396
PVSNet76.22 2082.89 33482.37 33484.48 35493.96 29664.38 38678.60 38488.61 33471.50 35884.43 36486.36 37574.27 31794.60 34869.87 37693.69 34194.46 323
PVSNet_070.34 2174.58 35972.96 36279.47 37190.63 35566.24 37873.26 38583.40 37763.67 38778.02 38878.35 39172.53 32289.59 38056.68 39160.05 39582.57 389
E-PMN80.72 35080.86 34580.29 37085.11 39268.77 37172.96 38681.97 37987.76 20283.25 37283.01 38562.22 37189.17 38377.15 33694.31 33082.93 387
CHOSEN 280x42080.04 35377.97 36086.23 34390.13 36274.53 33772.87 38789.59 33166.38 38076.29 39085.32 37956.96 38195.36 33869.49 37794.72 32188.79 377
EMVS80.35 35280.28 35180.54 36984.73 39469.07 37072.54 38880.73 38487.80 20081.66 38181.73 38662.89 36789.84 37875.79 34594.65 32382.71 388
PMMVS281.31 34483.44 32674.92 37590.52 35746.49 40169.19 38985.23 36984.30 26287.95 33694.71 24676.95 30484.36 39264.07 38698.09 21293.89 336
tmp_tt37.97 36244.33 36518.88 37911.80 40121.54 40363.51 39045.66 4034.23 39651.34 39650.48 39459.08 37822.11 39844.50 39668.35 39413.00 394
MVEpermissive59.87 2373.86 36072.65 36377.47 37387.00 38774.35 33961.37 39160.93 39967.27 37769.69 39486.49 37481.24 26872.33 39556.45 39283.45 38685.74 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 36148.94 36454.93 37739.68 40012.38 40428.59 39290.09 3296.82 39541.10 39778.41 39054.41 38670.69 39650.12 39451.26 39681.72 390
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.35 36331.13 3660.00 3820.00 4040.00 4070.00 39395.58 2300.00 4000.00 40191.15 33093.43 840.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.56 36610.09 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40090.77 1500.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.56 36610.08 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40190.69 3390.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS61.25 39174.55 349
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
PC_three_145275.31 33795.87 12295.75 20292.93 10196.34 31987.18 22698.68 15598.04 156
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 404
eth-test0.00 404
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17695.79 19792.76 10799.39 4988.72 19998.40 179
IU-MVS98.51 5186.66 15496.83 17072.74 35395.83 12393.00 8599.29 7498.64 112
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7399.25 8398.49 124
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12196.48 1098.95 114
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4699.42 5298.89 75
GSMVS94.75 317
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 34994.75 317
sam_mvs66.41 350
MTGPAbinary97.62 105
test_post6.07 39865.74 35495.84 328
patchmatchnet-post91.71 32366.22 35297.59 264
gm-plane-assit87.08 38659.33 39371.22 35983.58 38397.20 28473.95 353
test9_res88.16 20798.40 17997.83 183
agg_prior287.06 22998.36 18897.98 165
agg_prior96.20 20888.89 10696.88 16690.21 29798.78 143
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
test_prior94.61 11895.95 22787.23 13797.36 12898.68 16397.93 171
新几何193.17 17597.16 14487.29 13594.43 26567.95 37691.29 27694.94 23686.97 20698.23 20881.06 30097.75 23193.98 334
旧先验196.20 20884.17 20194.82 25595.57 21189.57 17297.89 22696.32 262
原ACMM192.87 18696.91 15584.22 19997.01 15476.84 32989.64 31094.46 25488.00 18898.70 15981.53 29498.01 21995.70 289
testdata298.03 22380.24 306
segment_acmp92.14 119
testdata91.03 25396.87 15782.01 22994.28 26971.55 35792.46 25195.42 21685.65 22597.38 27982.64 28097.27 25293.70 341
test1294.43 13195.95 22786.75 15096.24 20189.76 30889.79 17198.79 14097.95 22397.75 193
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 207
plane_prior597.81 9198.95 11489.26 18498.51 17398.60 117
plane_prior495.59 207
plane_prior388.43 11990.35 15093.31 216
plane_prior197.38 132
n20.00 406
nn0.00 406
door-mid92.13 311
lessismore_v093.87 15198.05 8583.77 20780.32 38697.13 6097.91 5977.49 29499.11 9392.62 9598.08 21398.74 95
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
test1196.65 181
door91.26 320
HQP5-MVS84.89 190
BP-MVS86.55 238
HQP4-MVS88.81 31998.61 17098.15 148
HQP3-MVS97.31 13297.73 232
HQP2-MVS84.76 232
NP-MVS96.82 16287.10 14193.40 288
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 156
ITE_SJBPF95.95 5997.34 13593.36 4096.55 18991.93 10094.82 17495.39 22091.99 12197.08 29185.53 25197.96 22297.41 215
DeepMVS_CXcopyleft53.83 37870.38 39964.56 38548.52 40233.01 39465.50 39574.21 39356.19 38346.64 39738.45 39770.07 39350.30 393