This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10698.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25596.48 2195.38 13393.63 26594.89 5297.94 22895.38 1696.92 25295.17 283
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25193.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26094.22 4794.94 15696.19 16482.07 24499.57 1487.28 21198.89 11998.65 98
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11788.98 16988.83 29992.79 28677.02 28799.60 996.41 496.75 25996.46 241
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11788.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11491.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25496.24 2596.28 9596.36 15382.88 23299.35 5888.19 19399.52 3998.96 61
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10187.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
EGC-MVSNET80.97 33075.73 34196.67 4298.85 2494.55 1596.83 2396.60 1772.44 3765.32 37798.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15099.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
FE-MVS89.06 24388.29 25091.36 22894.78 25779.57 25896.77 2890.99 31084.87 24392.96 22096.29 15760.69 35798.80 13780.18 28997.11 24395.71 270
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22793.56 7399.49 2493.47 5299.05 10297.89 163
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13191.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10187.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
X-MVStestdata90.70 20188.45 24597.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37494.56 6099.39 4893.57 4599.05 10298.93 64
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23793.95 7099.49 2493.62 4499.22 8597.51 195
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9292.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12383.91 25093.75 19196.77 12289.25 16498.88 11984.56 25097.02 24697.49 196
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11586.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21086.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16585.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26393.52 7599.55 1891.81 10399.45 4597.58 189
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16699.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16699.23 8298.19 133
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10897.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16193.73 5797.87 2798.49 2690.73 14399.05 9786.43 22799.60 2699.10 47
test250685.42 30084.57 30287.96 30997.81 10066.53 36296.14 5856.35 37989.04 16793.55 19898.10 3842.88 38198.68 16188.09 19799.18 9098.67 96
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27287.80 19494.02 18497.29 8977.60 27998.45 18788.04 19897.49 23196.61 233
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18088.63 17795.10 14998.53 2381.31 25198.98 10586.74 21798.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18088.63 17795.10 14998.53 2381.31 25198.98 10586.74 21798.38 17398.65 98
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18092.38 7997.03 6398.53 2390.12 15398.98 10588.78 18599.16 9398.65 98
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10892.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24194.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
ambc92.98 16896.88 14983.01 20895.92 6896.38 19096.41 8697.48 7488.26 17197.80 24289.96 15598.93 11898.12 139
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 9994.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9689.21 16693.28 20695.46 19788.89 16698.98 10589.80 15798.82 13297.80 174
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22786.95 21192.95 22197.56 6790.70 14497.50 26079.63 29797.43 23496.06 256
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22488.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33895.76 7578.54 37189.04 16795.36 13698.10 3870.51 31398.64 16687.10 21399.18 9098.67 96
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14782.44 26891.14 26696.42 14488.47 16998.38 19085.95 23297.47 23395.55 278
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14199.60 2698.72 92
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9793.38 6495.89 11497.23 9393.35 8197.66 25488.20 19298.66 15197.79 175
test111190.39 21290.61 20589.74 27898.04 8871.50 34495.59 8179.72 36989.41 15995.94 11098.14 3570.79 31298.81 13488.52 19099.32 6498.90 70
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30394.95 5098.66 16391.45 11497.57 22997.20 213
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21196.47 2293.40 20297.46 7595.31 3395.47 32086.18 23198.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30497.19 1296.32 9098.60 1984.24 22098.75 14587.09 21498.83 13198.81 80
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14291.84 10197.28 5398.46 2795.30 3497.71 25190.17 14899.42 5098.99 55
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24298.98 10997.98 152
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 18993.12 8998.06 21586.28 23098.61 15397.95 156
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 14991.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 16996.64 1997.61 3798.05 4293.23 8598.79 13888.60 18999.04 10798.78 84
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11793.92 5597.65 3395.90 17590.10 15599.33 6690.11 15099.66 2199.26 30
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17093.97 5297.77 3098.57 2095.72 1997.90 22988.89 18399.23 8299.08 48
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25790.64 13687.33 32697.67 6186.89 19898.49 18188.10 19698.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 23288.90 23992.55 18997.00 14279.73 25595.03 10383.65 35889.88 15095.30 13994.79 22753.64 36999.39 4891.99 9798.79 13698.54 110
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34696.04 3094.82 16197.06 10572.03 30998.46 18684.96 24598.70 14597.65 186
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10492.68 7396.20 10193.44 27191.92 11598.78 14189.11 17799.24 8196.92 222
GG-mvs-BLEND83.24 34485.06 37371.03 34694.99 10665.55 37774.09 37175.51 37144.57 37694.46 33359.57 36987.54 35984.24 364
EU-MVSNet87.39 28086.71 28489.44 28293.40 29076.11 30994.93 10790.00 31757.17 37095.71 12397.37 7964.77 34097.68 25392.67 8394.37 31394.52 303
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14289.59 15796.87 6997.65 6290.40 15098.34 19489.08 17899.35 5998.75 87
MTMP94.82 10954.62 380
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24891.58 12098.78 14190.27 14398.96 11597.41 201
gg-mvs-nofinetune82.10 32381.02 32585.34 33187.46 36371.04 34594.74 11167.56 37696.44 2379.43 36698.99 645.24 37596.15 30667.18 36192.17 34288.85 356
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24291.17 12492.13 25091.08 31690.03 15897.06 28079.09 30497.35 23790.45 353
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10490.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13791.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16898.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10393.39 6397.05 6298.04 4393.25 8498.51 18089.75 16099.59 2899.08 48
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19086.93 19698.95 11289.26 17298.51 16498.60 107
plane_prior294.56 12091.74 109
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 22993.70 5896.67 7897.72 5991.40 12498.18 20887.45 20799.18 9098.36 121
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9796.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
MIMVSNet87.13 28886.54 28788.89 29396.05 20676.11 30994.39 12588.51 32281.37 27488.27 31496.75 12672.38 30695.52 31765.71 36495.47 28695.03 288
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33696.05 2997.51 4198.85 1276.59 29399.65 393.21 6698.20 19498.73 91
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33091.20 12392.99 21895.13 21275.40 29798.28 19777.86 30999.19 8897.99 151
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33394.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
iter_conf_final90.23 21989.32 22992.95 17194.65 26681.46 22594.32 12995.40 23185.61 22992.84 22395.37 20654.58 36699.13 8692.16 9198.94 11798.25 128
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 21788.87 24094.66 11094.82 25491.85 5794.22 13194.75 24580.91 27587.52 32488.07 34886.63 20297.87 23676.67 32096.21 27094.25 309
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22688.63 17796.05 10797.37 7981.31 25198.81 13487.38 21098.67 14998.06 140
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31694.15 13395.60 21789.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12488.71 17695.26 14295.50 19594.65 5899.12 8990.94 12398.40 16998.23 129
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17194.66 5799.08 9290.70 12998.97 113
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15191.05 12692.40 24095.22 20991.03 13799.25 7392.11 9298.69 14697.90 161
HY-MVS82.50 1886.81 29285.93 29489.47 28193.63 28877.93 28394.02 13791.58 30775.68 31283.64 34793.64 26477.40 28197.42 26671.70 34792.07 34393.05 334
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 22989.94 14891.93 25492.13 30190.12 15398.97 10987.68 20597.48 23297.67 185
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10891.36 11989.35 29590.65 32594.01 6998.66 16387.40 20995.30 29296.88 225
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27494.49 4396.24 9797.78 5687.99 17898.79 13888.92 18199.14 9598.34 122
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26389.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
EPNet89.80 23388.25 25294.45 12483.91 37586.18 16393.87 14287.07 33491.16 12580.64 36394.72 22978.83 26798.89 11885.17 23798.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14676.86 30896.25 9698.66 1882.87 23391.26 35395.44 1496.83 25598.82 78
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27898.54 16096.96 221
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19188.19 18788.77 30592.12 30285.09 21697.25 27382.40 26893.90 32096.68 232
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32893.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
MVS_030490.96 19690.15 21793.37 15993.17 29487.06 13693.62 15092.43 29389.60 15682.25 35595.50 19582.56 24097.83 24084.41 25297.83 21895.22 282
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13683.98 24988.70 30794.04 25188.41 17098.55 17780.17 29095.99 27497.39 205
FMVSNet587.82 26986.56 28691.62 21992.31 30779.81 25393.49 15294.81 24483.26 25491.36 26096.93 11352.77 37197.49 26276.07 32498.03 20797.55 193
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21291.58 11495.25 14492.42 29781.96 24698.72 15091.61 10997.87 21697.33 209
114514_t90.51 20689.80 22392.63 18598.00 9182.24 21593.40 15597.29 12965.84 36189.40 29494.80 22686.99 19498.75 14583.88 25598.61 15396.89 224
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 13985.53 23093.90 18995.45 19891.30 12798.59 17289.51 16398.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13396.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9289.37 16194.08 17995.29 20890.40 15096.35 30390.35 13998.25 18794.96 290
baseline187.62 27487.31 26988.54 30094.71 26374.27 32693.10 16088.20 32686.20 21792.18 24993.04 27973.21 30495.52 31779.32 30185.82 36295.83 265
plane_prior88.12 11893.01 16188.98 16998.06 204
thres100view90087.35 28186.89 28088.72 29696.14 20073.09 33493.00 16285.31 34992.13 8993.26 20890.96 31863.42 34698.28 19771.27 35096.54 26494.79 296
Patchmtry90.11 22389.92 22190.66 25590.35 34077.00 29792.96 16392.81 28190.25 14594.74 16596.93 11367.11 32497.52 25985.17 23798.98 10997.46 197
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17785.08 23992.44 23893.62 26686.80 19996.35 30386.81 21698.25 18796.18 252
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17490.14 15299.34 6192.11 9299.64 2499.16 38
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9578.02 30192.79 22594.10 24990.85 13897.96 22684.76 24898.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 25787.52 26792.20 19796.33 18479.36 26292.81 16784.01 35786.44 21493.67 19492.68 29053.62 37099.25 7389.65 16298.45 16798.00 148
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 28987.56 34991.17 13499.18 8087.97 20097.27 23896.77 229
iter_conf0588.94 25088.09 25991.50 22492.74 30276.97 30092.80 16895.92 20882.82 26393.65 19595.37 20649.41 37399.13 8690.82 12599.28 7598.40 120
thres600view787.66 27287.10 27889.36 28596.05 20673.17 33292.72 17085.31 34991.89 9693.29 20590.97 31763.42 34698.39 18873.23 33896.99 25196.51 236
wuyk23d87.83 26890.79 20178.96 35290.46 33988.63 10792.72 17090.67 31491.65 11398.68 1197.64 6396.06 1577.53 37359.84 36899.41 5470.73 371
test_fmvs290.62 20590.40 21191.29 23291.93 31885.46 17692.70 17296.48 18674.44 32094.91 15897.59 6575.52 29690.57 35593.44 5596.56 26397.84 169
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18587.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12590.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_vis1_n89.01 24689.01 23589.03 29092.57 30482.46 21392.62 17696.06 20373.02 33090.40 27695.77 18574.86 29889.68 36090.78 12794.98 29894.95 291
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17590.10 15599.41 3891.60 11099.58 3299.26 30
FMVSNet390.78 19990.32 21392.16 20293.03 29979.92 24992.54 17894.95 23886.17 21995.10 14996.01 17269.97 31598.75 14586.74 21798.38 17397.82 172
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30289.23 16393.95 18692.99 28176.88 29098.69 15991.02 12096.03 27296.81 227
MVS_Test92.57 16493.29 14290.40 26293.53 28975.85 31292.52 17996.96 15288.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
CR-MVSNet87.89 26687.12 27790.22 26791.01 33178.93 26992.52 17992.81 28173.08 32989.10 29696.93 11367.11 32497.64 25588.80 18492.70 33694.08 310
RPMNet90.31 21890.14 21890.81 25291.01 33178.93 26992.52 17998.12 4791.91 9589.10 29696.89 11668.84 31799.41 3890.17 14892.70 33694.08 310
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30585.98 16792.44 18494.69 24793.70 5896.12 10595.81 18091.24 12898.86 12493.76 4298.22 19198.98 59
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30694.10 4995.59 12696.64 13481.88 24897.50 26085.12 24198.52 16297.77 177
AUN-MVS90.05 22788.30 24995.32 8896.09 20390.52 7792.42 18692.05 30182.08 27188.45 31192.86 28365.76 33498.69 15988.91 18296.07 27196.75 231
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30685.87 17092.42 18694.69 24793.67 6196.13 10495.84 17991.20 13198.86 12493.78 3998.23 18999.03 51
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15890.64 13692.33 24694.60 23490.58 14798.96 11090.21 14797.70 22398.23 129
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 35992.22 10999.19 7988.03 19997.73 22095.66 274
EI-MVSNet92.99 14893.26 14692.19 19892.12 31379.21 26792.32 19194.67 24991.77 10795.24 14595.85 17787.14 19298.49 18191.99 9798.26 18598.86 74
CVMVSNet85.16 30284.72 29986.48 32292.12 31370.19 34992.32 19188.17 32756.15 37190.64 27295.85 17767.97 32296.69 29288.78 18590.52 35192.56 339
test_fmvs1_n88.73 25688.38 24789.76 27792.06 31582.53 21192.30 19396.59 17971.14 33992.58 23295.41 20368.55 31889.57 36291.12 11895.66 28197.18 214
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11687.10 20994.56 16995.42 20093.74 7198.11 21386.62 22198.85 12598.06 140
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29585.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 260
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18490.42 14899.41 3891.60 11099.58 3299.29 29
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19388.88 17389.90 28692.69 28991.65 11998.32 19577.38 31697.64 22692.72 338
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11278.85 29792.35 24394.98 21884.16 22199.08 9286.36 22896.77 25895.79 267
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17393.82 5696.29 9398.56 2190.10 15597.75 24990.10 15299.66 2199.24 32
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17589.62 15590.08 28191.23 31392.56 10498.60 17086.30 22996.27 26996.90 223
save fliter97.46 12688.05 12092.04 20197.08 14487.63 200
PatchT87.51 27788.17 25785.55 32990.64 33466.91 35992.02 20286.09 34092.20 8789.05 29897.16 9964.15 34296.37 30289.21 17592.98 33493.37 329
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17188.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 13984.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23792.19 8894.52 17196.07 16987.43 18697.39 26984.83 24698.38 17397.83 170
131486.46 29486.33 29186.87 32091.65 32374.54 32191.94 20694.10 25974.28 32184.78 34087.33 35383.03 23195.00 32978.72 30591.16 34991.06 350
MVS84.98 30484.30 30487.01 31891.03 33077.69 28991.94 20694.16 25859.36 36984.23 34487.50 35185.66 21296.80 28971.79 34593.05 33386.54 362
tfpn200view987.05 28986.52 28888.67 29795.77 22272.94 33591.89 20886.00 34190.84 12992.61 23089.80 32963.93 34398.28 19771.27 35096.54 26494.79 296
thres40087.20 28586.52 28889.24 28995.77 22272.94 33591.89 20886.00 34190.84 12992.61 23089.80 32963.93 34398.28 19771.27 35096.54 26496.51 236
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13385.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19885.94 22295.53 12897.68 6092.69 10294.48 33283.21 25997.51 23098.21 131
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16791.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15286.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13586.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11785.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16689.66 15493.90 18995.44 19992.80 10098.72 15092.74 8098.52 16298.32 123
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19288.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
EPNet_dtu85.63 29884.37 30389.40 28486.30 36874.33 32591.64 21888.26 32484.84 24472.96 37289.85 32771.27 31197.69 25276.60 32197.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 21088.92 23794.85 10196.53 17190.02 8191.58 21996.48 18680.16 28186.14 33292.18 29985.73 21198.25 20276.87 31994.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31491.51 22095.62 21691.84 10195.74 12097.10 10389.31 16398.32 19585.07 24499.06 9998.93 64
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
HQP-NCC96.36 17991.37 22287.16 20688.81 301
ACMP_Plane96.36 17991.37 22287.16 20688.81 301
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12687.16 20688.81 30193.40 27284.76 21798.60 17086.55 22497.73 22098.14 137
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14180.33 28092.91 22294.24 24491.23 12998.72 15089.99 15497.93 21397.86 166
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23589.69 15395.93 11196.04 17087.34 18798.38 19090.05 15397.99 21098.78 84
tpmvs84.22 30883.97 30784.94 33487.09 36565.18 36591.21 22788.35 32382.87 26285.21 33590.96 31865.24 33896.75 29079.60 30085.25 36392.90 336
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 14989.81 15186.47 33094.04 25187.90 18099.21 7689.50 16498.27 18497.90 161
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22490.16 14690.87 26893.56 26986.31 20594.40 33579.92 29697.12 24294.37 306
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11784.92 24292.08 25194.08 25088.59 16798.20 20583.50 25698.14 19895.73 269
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24694.58 26881.21 23091.10 23093.41 27377.03 30793.41 20093.99 25583.23 22897.80 24279.93 29494.80 30493.74 321
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 28988.04 18994.61 16893.79 26288.08 17497.81 24189.41 16598.39 17296.50 239
MVP-Stereo90.07 22688.92 23793.54 15496.31 18686.49 15290.93 23395.59 22179.80 28291.48 25895.59 19080.79 25697.39 26978.57 30791.19 34896.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 23888.75 24191.03 24190.10 34376.62 30490.85 23494.67 24982.27 26995.24 14595.79 18161.09 35598.49 18190.49 13398.26 18597.97 155
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26478.23 30094.02 18496.22 16382.62 23996.83 28886.57 22298.33 17997.29 211
CANet_DTU89.85 23189.17 23191.87 20892.20 31180.02 24690.79 23695.87 21086.02 22182.53 35491.77 30680.01 26098.57 17485.66 23497.70 22397.01 219
test_prior489.91 8290.74 237
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20187.70 19895.26 14296.29 15792.54 10596.45 29881.77 27398.77 13895.66 274
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14577.38 30392.34 24595.08 21592.67 10398.88 11985.74 23398.57 15798.20 132
DSMNet-mixed82.21 32081.56 31984.16 34089.57 34970.00 35390.65 24077.66 37354.99 37283.30 35097.57 6677.89 27890.50 35766.86 36295.54 28491.97 343
TEST996.45 17589.46 9090.60 24196.92 15679.09 29390.49 27394.39 24091.31 12698.88 119
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24196.92 15679.37 28890.49 27394.39 24091.20 13198.88 11988.66 18898.43 16897.72 181
PatchmatchNetpermissive85.22 30184.64 30086.98 31989.51 35069.83 35490.52 24387.34 33278.87 29687.22 32792.74 28866.91 32696.53 29481.77 27386.88 36094.58 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 17789.14 9790.51 24496.89 15979.37 28890.42 27594.36 24291.20 13198.82 129
test_yl90.11 22389.73 22691.26 23394.09 27879.82 25190.44 24592.65 28690.90 12793.19 21293.30 27473.90 30198.03 21782.23 26996.87 25395.93 260
DCV-MVSNet90.11 22389.73 22691.26 23394.09 27879.82 25190.44 24592.65 28690.90 12793.19 21293.30 27473.90 30198.03 21782.23 26996.87 25395.93 260
tpm281.46 32580.35 33284.80 33589.90 34465.14 36690.44 24585.36 34865.82 36282.05 35892.44 29557.94 36096.69 29270.71 35388.49 35792.56 339
test_fmvs187.59 27587.27 27188.54 30088.32 35881.26 22890.43 24895.72 21470.55 34591.70 25694.63 23268.13 31989.42 36390.59 13195.34 29194.94 293
test_vis3_rt90.40 21090.03 21991.52 22392.58 30388.95 10090.38 24997.72 9473.30 32797.79 2997.51 7277.05 28687.10 36789.03 17994.89 30098.50 112
CostFormer83.09 31482.21 31785.73 32889.27 35267.01 35890.35 25086.47 33770.42 34683.52 34993.23 27761.18 35496.85 28777.21 31788.26 35893.34 330
TAMVS90.16 22189.05 23393.49 15896.49 17386.37 15790.34 25192.55 29080.84 27892.99 21894.57 23681.94 24798.20 20573.51 33698.21 19295.90 263
EPMVS81.17 32980.37 33183.58 34285.58 37165.08 36790.31 25271.34 37577.31 30585.80 33491.30 31259.38 35892.70 34879.99 29182.34 36892.96 335
CMPMVSbinary68.83 2287.28 28285.67 29692.09 20488.77 35685.42 17790.31 25294.38 25370.02 34888.00 31793.30 27473.78 30394.03 34075.96 32696.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2545.85 37865.36 33696.00 31179.61 298
test_prior290.21 25489.33 16290.77 26994.81 22490.41 14988.21 19198.55 158
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25495.43 22887.91 19093.74 19394.40 23992.88 9896.38 30190.39 13698.28 18397.07 215
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25795.68 21593.70 5896.62 8095.39 20487.21 19099.04 10087.50 20699.64 2499.33 26
tpmrst82.85 31782.93 31482.64 34587.65 36058.99 37590.14 25787.90 32975.54 31483.93 34591.63 30966.79 32995.36 32381.21 28081.54 36993.57 328
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25796.93 15479.43 28788.68 30895.06 21686.27 20698.15 21180.27 28698.04 20697.68 184
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26094.94 23987.91 19094.07 18093.00 28087.76 18197.78 24579.19 30395.17 29592.80 337
新几何290.02 261
旧先验290.00 26268.65 35392.71 22896.52 29585.15 239
无先验89.94 26395.75 21370.81 34398.59 17281.17 28194.81 294
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
mvs_anonymous90.37 21491.30 19087.58 31492.17 31268.00 35789.84 26794.73 24683.82 25293.22 21197.40 7787.54 18497.40 26887.94 20195.05 29797.34 208
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26892.87 28089.90 14994.39 17396.40 14685.77 21095.27 32773.86 33599.05 10297.39 205
1112_ss88.42 26087.41 26891.45 22596.69 15880.99 23289.72 26996.72 17273.37 32687.00 32890.69 32377.38 28298.20 20581.38 27793.72 32395.15 285
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27095.88 20985.77 22593.94 18895.69 18881.99 24592.98 34784.21 25391.30 34797.62 187
MG-MVS89.54 23589.80 22388.76 29594.88 25172.47 34089.60 27192.44 29285.82 22489.48 29395.98 17382.85 23497.74 25081.87 27295.27 29396.08 255
Patchmatch-test86.10 29686.01 29386.38 32690.63 33574.22 32789.57 27286.69 33585.73 22789.81 28892.83 28465.24 33891.04 35477.82 31295.78 27993.88 318
Anonymous2023120688.77 25488.29 25090.20 26996.31 18678.81 27489.56 27393.49 27174.26 32292.38 24195.58 19382.21 24195.43 32272.07 34498.75 14196.34 245
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27497.46 11285.14 23696.23 9895.42 20093.19 8698.08 21490.37 13898.76 13997.38 207
SCA87.43 27987.21 27388.10 30892.01 31771.98 34289.43 27588.11 32882.26 27088.71 30692.83 28478.65 27097.59 25679.61 29893.30 32794.75 298
testgi90.38 21391.34 18987.50 31597.49 12371.54 34389.43 27595.16 23488.38 18494.54 17094.68 23192.88 9893.09 34671.60 34897.85 21797.88 164
JIA-IIPM85.08 30383.04 31291.19 23887.56 36186.14 16489.40 27784.44 35688.98 16982.20 35697.95 4756.82 36396.15 30676.55 32283.45 36691.30 348
原ACMM289.34 278
tpm84.38 30784.08 30685.30 33290.47 33863.43 37289.34 27885.63 34577.24 30687.62 32295.03 21761.00 35697.30 27279.26 30291.09 35095.16 284
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28096.23 19688.36 18593.57 19794.60 23493.45 7697.77 24690.23 14698.38 17398.03 146
tpm cat180.61 33379.46 33684.07 34188.78 35565.06 36889.26 28188.23 32562.27 36781.90 36089.66 33562.70 35195.29 32671.72 34680.60 37091.86 346
CDS-MVSNet89.55 23488.22 25593.53 15595.37 24286.49 15289.26 28193.59 26779.76 28491.15 26592.31 29877.12 28598.38 19077.51 31497.92 21495.71 270
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28396.52 18485.00 24089.91 28588.55 34592.94 9498.84 12784.72 24995.44 28796.22 250
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28493.94 26588.21 18692.74 22794.22 24586.38 20497.88 23378.67 30695.39 28995.14 286
thres20085.85 29785.18 29887.88 31294.44 27072.52 33989.08 28586.21 33888.57 18091.44 25988.40 34664.22 34198.00 22268.35 35895.88 27893.12 331
USDC89.02 24489.08 23288.84 29495.07 24874.50 32388.97 28696.39 18973.21 32893.27 20796.28 15982.16 24396.39 30077.55 31398.80 13595.62 277
testdata188.96 28788.44 182
pmmvs587.87 26787.14 27590.07 27193.26 29376.97 30088.89 28892.18 29573.71 32588.36 31293.89 25976.86 29296.73 29180.32 28596.81 25696.51 236
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 28997.17 13783.89 25192.45 23796.76 12489.86 15997.09 27890.24 14598.59 15599.12 43
test22296.95 14485.27 17988.83 29093.61 26665.09 36390.74 27094.85 22384.62 21997.36 23693.91 316
baseline283.38 31281.54 32188.90 29291.38 32672.84 33788.78 29181.22 36478.97 29479.82 36587.56 34961.73 35397.80 24274.30 33390.05 35396.05 257
diffmvspermissive91.74 18191.93 17491.15 23993.06 29778.17 28188.77 29297.51 11186.28 21692.42 23993.96 25688.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.88 30889.42 35161.52 37388.74 29387.41 33173.99 32384.96 33994.01 25465.25 33795.53 31678.02 30893.16 329
D2MVS89.93 22989.60 22890.92 24694.03 28078.40 27888.69 29494.85 24078.96 29593.08 21495.09 21474.57 29996.94 28388.19 19398.96 11597.41 201
TR-MVS87.70 27087.17 27489.27 28794.11 27779.26 26488.69 29491.86 30381.94 27290.69 27189.79 33182.82 23597.42 26672.65 34291.98 34491.14 349
PatchMatch-RL89.18 23988.02 26192.64 18395.90 21792.87 4588.67 29691.06 30980.34 27990.03 28391.67 30883.34 22694.42 33476.35 32394.84 30390.64 352
PAPR87.65 27386.77 28390.27 26592.85 30177.38 29288.56 29796.23 19676.82 31084.98 33889.75 33386.08 20897.16 27672.33 34393.35 32696.26 249
MDTV_nov1_ep13_2view42.48 38088.45 29867.22 35783.56 34866.80 32772.86 34194.06 312
jason89.17 24088.32 24891.70 21695.73 22580.07 24288.10 29993.22 27571.98 33590.09 28092.79 28678.53 27398.56 17587.43 20897.06 24496.46 241
jason: jason.
mvsany_test389.11 24288.21 25691.83 20991.30 32890.25 7988.09 30078.76 37076.37 31196.43 8598.39 3083.79 22390.43 35886.57 22294.20 31794.80 295
BH-w/o87.21 28487.02 27987.79 31394.77 25877.27 29487.90 30193.21 27781.74 27389.99 28488.39 34783.47 22596.93 28571.29 34992.43 34089.15 354
MS-PatchMatch88.05 26587.75 26388.95 29193.28 29177.93 28387.88 30292.49 29175.42 31592.57 23393.59 26880.44 25894.24 33981.28 27892.75 33594.69 301
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30397.25 13287.34 20492.22 24893.18 27889.54 16298.73 14989.67 16198.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 30982.20 31889.41 28389.04 35376.37 30887.57 30490.98 31172.71 33384.46 34192.45 29368.08 32096.48 29770.58 35483.97 36495.38 280
ADS-MVSNet82.25 31981.55 32084.34 33989.04 35365.30 36487.57 30485.13 35372.71 33384.46 34192.45 29368.08 32092.33 34970.58 35483.97 36495.38 280
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30693.51 27091.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
IterMVS90.18 22090.16 21490.21 26893.15 29575.98 31187.56 30692.97 27986.43 21594.09 17896.40 14678.32 27497.43 26587.87 20294.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 27886.58 28590.25 26696.80 15677.75 28787.53 30896.25 19469.73 35086.47 33093.61 26775.67 29597.88 23379.95 29293.20 32895.11 287
c3_l91.32 19291.42 18691.00 24492.29 30876.79 30387.52 30996.42 18885.76 22694.72 16793.89 25982.73 23698.16 21090.93 12498.55 15898.04 143
UnsupCasMVSNet_bld88.50 25988.03 26089.90 27595.52 23678.88 27287.39 31094.02 26279.32 29193.06 21594.02 25380.72 25794.27 33775.16 32993.08 33296.54 234
lupinMVS88.34 26287.31 26991.45 22594.74 26080.06 24387.23 31192.27 29471.10 34088.83 29991.15 31477.02 28798.53 17886.67 22096.75 25995.76 268
pmmvs488.95 24987.70 26592.70 18194.30 27385.60 17487.22 31292.16 29774.62 31989.75 29194.19 24677.97 27796.41 29982.71 26396.36 26896.09 254
WTY-MVS86.93 29186.50 29088.24 30694.96 24974.64 31987.19 31392.07 30078.29 29988.32 31391.59 31078.06 27694.27 33774.88 33093.15 33095.80 266
ET-MVSNet_ETH3D86.15 29584.27 30591.79 21193.04 29881.28 22787.17 31486.14 33979.57 28683.65 34688.66 34357.10 36198.18 20887.74 20495.40 28895.90 263
MVS-HIRNet78.83 33880.60 33073.51 35593.07 29647.37 37887.10 31578.00 37268.94 35277.53 36897.26 9071.45 31094.62 33063.28 36788.74 35678.55 370
xiu_mvs_v2_base89.00 24789.19 23088.46 30494.86 25374.63 32086.97 31695.60 21780.88 27687.83 31988.62 34491.04 13698.81 13482.51 26794.38 31291.93 344
DPM-MVS89.35 23788.40 24692.18 20196.13 20284.20 19086.96 31796.15 20275.40 31687.36 32591.55 31183.30 22798.01 22182.17 27196.62 26294.32 308
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31676.84 30286.91 31896.67 17485.21 23494.41 17293.92 25779.53 26398.26 20189.76 15997.02 24698.06 140
dp79.28 33678.62 33881.24 34885.97 37056.45 37686.91 31885.26 35172.97 33181.45 36289.17 34256.01 36595.45 32173.19 33976.68 37191.82 347
sss87.23 28386.82 28188.46 30493.96 28177.94 28286.84 32092.78 28477.59 30287.61 32391.83 30578.75 26891.92 35077.84 31094.20 31795.52 279
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32476.57 30586.83 32196.18 20083.38 25394.06 18192.66 29182.20 24298.04 21689.79 15897.02 24697.45 198
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32297.29 12984.65 24692.27 24789.67 33492.20 11097.85 23983.95 25499.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____90.65 20390.56 20790.91 24891.85 31976.98 29986.75 32395.36 23285.53 23094.06 18194.89 22177.36 28497.98 22590.27 14398.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 31976.99 29886.75 32395.36 23285.52 23294.06 18194.89 22177.37 28397.99 22490.28 14298.97 11397.76 178
PS-MVSNAJ88.86 25288.99 23688.48 30394.88 25174.71 31886.69 32595.60 21780.88 27687.83 31987.37 35290.77 13998.82 12982.52 26694.37 31391.93 344
PVSNet_Blended88.74 25588.16 25890.46 26194.81 25578.80 27586.64 32696.93 15474.67 31888.68 30889.18 34186.27 20698.15 21180.27 28696.00 27394.44 305
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32796.19 19990.60 13891.94 25391.89 30489.16 16595.75 31480.96 28394.51 31094.95 291
cl2289.02 24488.50 24490.59 25789.76 34576.45 30686.62 32894.03 26082.98 26192.65 22992.49 29272.05 30897.53 25888.93 18097.02 24697.78 176
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 32992.62 28885.64 22893.25 21093.92 25783.84 22296.06 31079.93 29498.03 20797.53 194
PCF-MVS84.52 1789.12 24187.71 26493.34 16096.06 20585.84 17186.58 33097.31 12668.46 35493.61 19693.89 25987.51 18598.52 17967.85 35998.11 20095.66 274
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_f86.65 29387.13 27685.19 33390.28 34186.11 16586.52 33191.66 30569.76 34995.73 12297.21 9769.51 31681.28 37289.15 17694.40 31188.17 359
Patchmatch-RL test88.81 25388.52 24389.69 28095.33 24479.94 24886.22 33292.71 28578.46 29895.80 11794.18 24766.25 33295.33 32589.22 17498.53 16193.78 319
FPMVS84.50 30683.28 31088.16 30796.32 18594.49 1685.76 33385.47 34783.09 25885.20 33694.26 24363.79 34586.58 36863.72 36691.88 34683.40 365
IB-MVS77.21 1983.11 31381.05 32489.29 28691.15 32975.85 31285.66 33486.00 34179.70 28582.02 35986.61 35548.26 37498.39 18877.84 31092.22 34193.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33592.14 29890.41 14394.93 15795.79 18185.10 21596.93 28585.15 23994.19 31997.57 190
test_vis1_rt85.58 29984.58 30188.60 29987.97 35986.76 14485.45 33693.59 26766.43 35887.64 32189.20 34079.33 26485.38 36981.59 27589.98 35493.66 323
new-patchmatchnet88.97 24890.79 20183.50 34394.28 27455.83 37785.34 33793.56 26986.18 21895.47 12995.73 18783.10 22996.51 29685.40 23698.06 20498.16 135
miper_enhance_ethall88.42 26087.87 26290.07 27188.67 35775.52 31585.10 33895.59 22175.68 31292.49 23489.45 33778.96 26697.88 23387.86 20397.02 24696.81 227
HyFIR lowres test87.19 28685.51 29792.24 19697.12 14080.51 23685.03 33996.06 20366.11 36091.66 25792.98 28270.12 31499.14 8475.29 32895.23 29497.07 215
pmmvs380.83 33178.96 33786.45 32387.23 36477.48 29184.87 34082.31 36163.83 36585.03 33789.50 33649.66 37293.10 34573.12 34095.10 29688.78 358
test0.0.03 182.48 31881.47 32285.48 33089.70 34673.57 33184.73 34181.64 36383.07 25988.13 31686.61 35562.86 34989.10 36566.24 36390.29 35293.77 320
N_pmnet88.90 25187.25 27293.83 14594.40 27293.81 3584.73 34187.09 33379.36 29093.26 20892.43 29679.29 26591.68 35177.50 31597.22 24096.00 258
GA-MVS87.70 27086.82 28190.31 26393.27 29277.22 29584.72 34392.79 28385.11 23889.82 28790.07 32666.80 32797.76 24884.56 25094.27 31695.96 259
ppachtmachnet_test88.61 25888.64 24288.50 30291.76 32170.99 34784.59 34492.98 27879.30 29292.38 24193.53 27079.57 26297.45 26486.50 22697.17 24197.07 215
CHOSEN 1792x268887.19 28685.92 29591.00 24497.13 13979.41 26184.51 34595.60 21764.14 36490.07 28294.81 22478.26 27597.14 27773.34 33795.38 29096.46 241
thisisatest051584.72 30582.99 31389.90 27592.96 30075.33 31784.36 34683.42 35977.37 30488.27 31486.65 35453.94 36898.72 15082.56 26597.40 23595.67 273
cascas87.02 29086.28 29289.25 28891.56 32576.45 30684.33 34796.78 16771.01 34186.89 32985.91 36081.35 25096.94 28383.09 26095.60 28294.35 307
new_pmnet81.22 32781.01 32681.86 34790.92 33370.15 35084.03 34880.25 36870.83 34285.97 33389.78 33267.93 32384.65 37067.44 36091.90 34590.78 351
PAPM81.91 32480.11 33487.31 31793.87 28472.32 34184.02 34993.22 27569.47 35176.13 37089.84 32872.15 30797.23 27453.27 37289.02 35592.37 341
our_test_387.55 27687.59 26687.44 31691.76 32170.48 34883.83 35090.55 31579.79 28392.06 25292.17 30078.63 27295.63 31584.77 24794.73 30596.22 250
miper_lstm_enhance89.90 23089.80 22390.19 27091.37 32777.50 29083.82 35195.00 23684.84 24493.05 21694.96 21976.53 29495.20 32889.96 15598.67 14997.86 166
test-LLR83.58 31183.17 31184.79 33689.68 34766.86 36083.08 35284.52 35483.07 25982.85 35284.78 36362.86 34993.49 34382.85 26194.86 30194.03 313
TESTMET0.1,179.09 33778.04 33982.25 34687.52 36264.03 37183.08 35280.62 36670.28 34780.16 36483.22 36644.13 37790.56 35679.95 29293.36 32592.15 342
test-mter81.21 32880.01 33584.79 33689.68 34766.86 36083.08 35284.52 35473.85 32482.85 35284.78 36343.66 37893.49 34382.85 26194.86 30194.03 313
test1239.49 34412.01 3471.91 3592.87 3821.30 38382.38 3551.34 3841.36 3772.84 3786.56 3762.45 3820.97 3782.73 3765.56 3763.47 374
PMMVS83.00 31581.11 32388.66 29883.81 37686.44 15582.24 35685.65 34461.75 36882.07 35785.64 36179.75 26191.59 35275.99 32593.09 33187.94 360
KD-MVS_2432*160082.17 32180.75 32886.42 32482.04 37770.09 35181.75 35790.80 31282.56 26490.37 27789.30 33842.90 37996.11 30874.47 33192.55 33893.06 332
miper_refine_blended82.17 32180.75 32886.42 32482.04 37770.09 35181.75 35790.80 31282.56 26490.37 27789.30 33842.90 37996.11 30874.47 33192.55 33893.06 332
mvsany_test183.91 31082.93 31486.84 32186.18 36985.93 16881.11 35975.03 37470.80 34488.57 31094.63 23283.08 23087.38 36680.39 28486.57 36187.21 361
YYNet188.17 26388.24 25387.93 31092.21 31073.62 33080.75 36088.77 32082.51 26794.99 15595.11 21382.70 23793.70 34183.33 25793.83 32196.48 240
MDA-MVSNet_test_wron88.16 26488.23 25487.93 31092.22 30973.71 32980.71 36188.84 31982.52 26694.88 16095.14 21182.70 23793.61 34283.28 25893.80 32296.46 241
testmvs9.02 34511.42 3481.81 3602.77 3831.13 38479.44 3621.90 3831.18 3782.65 3796.80 3751.95 3830.87 3792.62 3773.45 3773.44 375
PVSNet76.22 2082.89 31682.37 31684.48 33893.96 28164.38 37078.60 36388.61 32171.50 33784.43 34386.36 35874.27 30094.60 33169.87 35693.69 32494.46 304
PVSNet_070.34 2174.58 33972.96 34279.47 35190.63 33566.24 36373.26 36483.40 36063.67 36678.02 36778.35 37072.53 30589.59 36156.68 37060.05 37482.57 368
E-PMN80.72 33280.86 32780.29 35085.11 37268.77 35672.96 36581.97 36287.76 19683.25 35183.01 36762.22 35289.17 36477.15 31894.31 31582.93 366
CHOSEN 280x42080.04 33577.97 34086.23 32790.13 34274.53 32272.87 36689.59 31866.38 35976.29 36985.32 36256.96 36295.36 32369.49 35794.72 30688.79 357
EMVS80.35 33480.28 33380.54 34984.73 37469.07 35572.54 36780.73 36587.80 19481.66 36181.73 36862.89 34889.84 35975.79 32794.65 30882.71 367
PMMVS281.31 32683.44 30974.92 35490.52 33746.49 37969.19 36885.23 35284.30 24887.95 31894.71 23076.95 28984.36 37164.07 36598.09 20293.89 317
tmp_tt37.97 34244.33 34518.88 35811.80 38121.54 38163.51 36945.66 3824.23 37551.34 37550.48 37359.08 35922.11 37744.50 37468.35 37313.00 373
MVEpermissive59.87 2373.86 34072.65 34377.47 35387.00 36774.35 32461.37 37060.93 37867.27 35669.69 37386.49 35781.24 25472.33 37456.45 37183.45 36685.74 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34148.94 34454.93 35639.68 38012.38 38228.59 37190.09 3166.82 37441.10 37678.41 36954.41 36770.69 37550.12 37351.26 37581.72 369
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.35 34331.13 3460.00 3610.00 3840.00 3850.00 37295.58 2230.00 3790.00 38091.15 31493.43 780.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.56 34610.09 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37990.77 1390.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.56 34610.08 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38090.69 3230.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16199.41 3894.06 3299.30 6798.72 92
PC_three_145275.31 31795.87 11595.75 18692.93 9596.34 30587.18 21298.68 14798.04 143
No_MVS95.90 6596.54 16889.57 8896.87 16199.41 3894.06 3299.30 6798.72 92
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
eth-test20.00 384
eth-test0.00 384
ZD-MVS97.23 13390.32 7897.54 10684.40 24794.78 16395.79 18192.76 10199.39 4888.72 18798.40 169
IU-MVS98.51 5186.66 14996.83 16472.74 33295.83 11693.00 7499.29 7098.64 103
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
GSMVS94.75 298
test_part298.21 7589.41 9396.72 76
sam_mvs166.64 33094.75 298
sam_mvs66.41 331
MTGPAbinary97.62 99
test_post6.07 37765.74 33595.84 313
patchmatchnet-post91.71 30766.22 33397.59 256
gm-plane-assit87.08 36659.33 37471.22 33883.58 36597.20 27573.95 334
test9_res88.16 19598.40 16997.83 170
agg_prior287.06 21598.36 17897.98 152
agg_prior96.20 19588.89 10396.88 16090.21 27998.78 141
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24298.98 10997.98 152
test_prior94.61 11295.95 21487.23 13297.36 12298.68 16197.93 158
新几何193.17 16597.16 13787.29 13094.43 25267.95 35591.29 26194.94 22086.97 19598.23 20381.06 28297.75 21993.98 315
旧先验196.20 19584.17 19194.82 24295.57 19489.57 16197.89 21596.32 246
原ACMM192.87 17696.91 14884.22 18997.01 14876.84 30989.64 29294.46 23888.00 17798.70 15781.53 27698.01 20995.70 272
testdata298.03 21780.24 288
segment_acmp92.14 111
testdata91.03 24196.87 15082.01 21694.28 25671.55 33692.46 23695.42 20085.65 21397.38 27182.64 26497.27 23893.70 322
test1294.43 12595.95 21486.75 14596.24 19589.76 29089.79 16098.79 13897.95 21297.75 180
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior597.81 8698.95 11289.26 17298.51 16498.60 107
plane_prior495.59 190
plane_prior388.43 11590.35 14493.31 203
plane_prior197.38 128
n20.00 385
nn0.00 385
door-mid92.13 299
lessismore_v093.87 14398.05 8583.77 19780.32 36797.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
test1196.65 175
door91.26 308
HQP5-MVS84.89 182
BP-MVS86.55 224
HQP4-MVS88.81 30198.61 16898.15 136
HQP3-MVS97.31 12697.73 220
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 272
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18391.93 9494.82 16195.39 20491.99 11397.08 27985.53 23597.96 21197.41 201
DeepMVS_CXcopyleft53.83 35770.38 37964.56 36948.52 38133.01 37365.50 37474.21 37256.19 36446.64 37638.45 37570.07 37250.30 372