DVP-MVS++ | | | 81.24 35 | 82.74 37 | 76.76 80 | 83.14 96 | 60.90 135 | 91.64 1 | 85.49 29 | 74.03 21 | 84.93 56 | 90.38 64 | 66.82 105 | 85.90 36 | 77.43 30 | 90.78 114 | 83.49 134 |
|
FOURS1 | | | | | | 89.19 23 | 77.84 12 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 7 | 81.94 20 | 84.82 73 | 75.40 25 | 91.60 3 | 87.80 7 | 73.52 24 | 88.90 11 | 93.06 6 | 71.39 68 | 81.53 112 | 81.53 3 | 92.15 82 | 88.91 38 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 31 | 81.19 4 | 88.84 4 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 64 | 74.51 46 | 96.15 2 | 92.88 7 |
|
CP-MVS | | | 84.12 8 | 84.55 10 | 82.80 10 | 89.42 17 | 79.74 5 | 88.19 5 | 84.43 57 | 71.96 38 | 84.70 61 | 90.56 52 | 77.12 25 | 86.18 25 | 79.24 17 | 95.36 12 | 82.49 164 |
|
ACMMP |  | | 84.22 6 | 84.84 8 | 82.35 17 | 89.23 21 | 76.66 22 | 87.65 6 | 85.89 25 | 71.03 41 | 85.85 42 | 90.58 51 | 78.77 16 | 85.78 40 | 79.37 15 | 95.17 16 | 84.62 103 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LS3D | | | 80.99 41 | 80.85 49 | 81.41 25 | 78.37 161 | 71.37 50 | 87.45 7 | 85.87 26 | 77.48 12 | 81.98 91 | 89.95 78 | 69.14 85 | 85.26 52 | 66.15 99 | 91.24 96 | 87.61 52 |
|
SR-MVS-dyc-post | | | 84.75 3 | 85.26 5 | 83.21 3 | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 79.20 14 | 85.58 47 | 78.11 23 | 94.46 36 | 84.89 92 |
|
RE-MVS-def | | | | 85.50 3 | | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 81.38 7 | | 78.11 23 | 94.46 36 | 84.89 92 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 11 | 84.11 15 | 82.68 12 | 82.97 104 | 74.39 32 | 87.18 10 | 88.18 6 | 78.98 6 | 86.11 40 | 91.47 30 | 79.70 12 | 85.76 41 | 66.91 98 | 95.46 11 | 87.89 48 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MSP-MVS | | | 80.49 45 | 79.67 58 | 82.96 5 | 89.70 11 | 77.46 19 | 87.16 11 | 85.10 39 | 64.94 85 | 81.05 104 | 88.38 111 | 57.10 196 | 87.10 7 | 79.75 7 | 83.87 221 | 84.31 118 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 84.01 10 | 84.39 11 | 82.88 6 | 90.65 3 | 81.38 3 | 87.08 12 | 82.79 82 | 72.41 34 | 85.11 55 | 90.85 44 | 76.65 28 | 84.89 61 | 79.30 16 | 94.63 33 | 82.35 166 |
|
region2R | | | 83.54 14 | 83.86 19 | 82.58 14 | 89.82 9 | 77.53 16 | 87.06 13 | 84.23 63 | 70.19 47 | 83.86 71 | 90.72 49 | 75.20 40 | 86.27 20 | 79.41 14 | 94.25 50 | 83.95 125 |
|
HFP-MVS | | | 83.39 17 | 84.03 16 | 81.48 23 | 89.25 20 | 75.69 24 | 87.01 14 | 84.27 60 | 70.23 45 | 84.47 64 | 90.43 57 | 76.79 26 | 85.94 33 | 79.58 10 | 94.23 51 | 82.82 156 |
|
ACMMPR | | | 83.62 12 | 83.93 17 | 82.69 11 | 89.78 10 | 77.51 18 | 87.01 14 | 84.19 64 | 70.23 45 | 84.49 63 | 90.67 50 | 75.15 41 | 86.37 17 | 79.58 10 | 94.26 49 | 84.18 121 |
|
SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 18 | 88.52 33 | 77.71 13 | 86.81 16 | 85.25 36 | 77.42 13 | 86.15 38 | 90.24 71 | 81.69 5 | 85.94 33 | 77.77 26 | 93.58 61 | 83.09 147 |
|
XVS | | | 83.51 15 | 83.73 20 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 90.39 62 | 73.86 52 | 86.31 18 | 78.84 19 | 94.03 53 | 84.64 101 |
|
X-MVStestdata | | | 76.81 77 | 74.79 99 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 9.95 373 | 73.86 52 | 86.31 18 | 78.84 19 | 94.03 53 | 84.64 101 |
|
TSAR-MVS + MP. | | | 79.05 57 | 78.81 62 | 79.74 42 | 88.94 27 | 67.52 83 | 86.61 19 | 81.38 104 | 51.71 218 | 77.15 146 | 91.42 32 | 65.49 119 | 87.20 5 | 79.44 13 | 87.17 181 | 84.51 113 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 82.88 23 | 84.14 14 | 79.08 52 | 84.80 75 | 66.72 90 | 86.54 20 | 85.11 38 | 72.00 37 | 86.65 31 | 91.75 24 | 78.20 20 | 87.04 8 | 77.93 25 | 94.32 48 | 83.47 137 |
|
CPTT-MVS | | | 81.51 34 | 81.76 43 | 80.76 34 | 89.20 22 | 78.75 9 | 86.48 21 | 82.03 93 | 68.80 52 | 80.92 106 | 88.52 107 | 72.00 63 | 82.39 98 | 74.80 42 | 93.04 68 | 81.14 182 |
|
MP-MVS |  | | 83.19 18 | 83.54 23 | 82.14 19 | 90.54 4 | 79.00 8 | 86.42 22 | 83.59 73 | 71.31 39 | 81.26 102 | 90.96 39 | 74.57 47 | 84.69 65 | 78.41 21 | 94.78 27 | 82.74 159 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 20 | 83.68 21 | 81.45 24 | 89.14 24 | 73.28 42 | 86.32 23 | 85.97 24 | 67.39 58 | 84.02 68 | 90.39 62 | 74.73 45 | 86.46 14 | 80.73 6 | 94.43 40 | 84.60 106 |
|
HPM-MVS_fast | | | 84.59 4 | 85.10 6 | 83.06 4 | 88.60 32 | 75.83 23 | 86.27 24 | 86.89 15 | 73.69 23 | 86.17 37 | 91.70 25 | 78.23 19 | 85.20 56 | 79.45 12 | 94.91 24 | 88.15 47 |
|
GST-MVS | | | 82.79 24 | 83.27 29 | 81.34 27 | 88.99 26 | 73.29 41 | 85.94 25 | 85.13 37 | 68.58 56 | 84.14 67 | 90.21 73 | 73.37 56 | 86.41 15 | 79.09 18 | 93.98 56 | 84.30 120 |
|
SteuartSystems-ACMMP | | | 83.07 21 | 83.64 22 | 81.35 26 | 85.14 68 | 71.00 54 | 85.53 26 | 84.78 45 | 70.91 42 | 85.64 45 | 90.41 59 | 75.55 38 | 87.69 3 | 79.75 7 | 95.08 19 | 85.36 83 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS_3200maxsize | | | 83.57 13 | 84.33 12 | 81.31 28 | 82.83 107 | 73.53 40 | 85.50 27 | 87.45 12 | 74.11 19 | 86.45 35 | 90.52 55 | 80.02 10 | 84.48 68 | 77.73 27 | 94.34 47 | 85.93 74 |
|
HPM-MVS |  | | 84.12 8 | 84.63 9 | 82.60 13 | 88.21 35 | 74.40 31 | 85.24 28 | 87.21 13 | 70.69 44 | 85.14 54 | 90.42 58 | 78.99 15 | 86.62 12 | 80.83 5 | 94.93 23 | 86.79 63 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SMA-MVS |  | | 82.12 28 | 82.68 38 | 80.43 36 | 88.90 29 | 69.52 65 | 85.12 29 | 84.76 46 | 63.53 98 | 84.23 66 | 91.47 30 | 72.02 62 | 87.16 6 | 79.74 9 | 94.36 45 | 84.61 104 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 83.19 18 | 83.87 18 | 81.13 30 | 91.16 2 | 78.16 11 | 84.87 30 | 80.63 122 | 72.08 36 | 84.93 56 | 90.79 45 | 74.65 46 | 84.42 70 | 80.98 4 | 94.75 28 | 80.82 192 |
|
MTMP | | | | | | | | 84.83 31 | 19.26 380 | | | | | | | | |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 21 | 91.50 1 | 63.30 114 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 67 | 68.08 83 | 97.05 1 | 96.93 1 |
|
UA-Net | | | 81.56 33 | 82.28 40 | 79.40 49 | 88.91 28 | 69.16 72 | 84.67 33 | 80.01 136 | 75.34 15 | 79.80 117 | 94.91 2 | 69.79 82 | 80.25 139 | 72.63 58 | 94.46 36 | 88.78 42 |
|
3Dnovator+ | | 73.19 2 | 81.08 39 | 80.48 51 | 82.87 7 | 81.41 125 | 72.03 45 | 84.38 34 | 86.23 22 | 77.28 14 | 80.65 110 | 90.18 74 | 59.80 169 | 87.58 4 | 73.06 55 | 91.34 94 | 89.01 34 |
|
EGC-MVSNET | | | 64.77 220 | 61.17 251 | 75.60 96 | 86.90 42 | 74.47 30 | 84.04 35 | 68.62 253 | 0.60 375 | 1.13 377 | 91.61 28 | 65.32 122 | 74.15 228 | 64.01 115 | 88.28 158 | 78.17 232 |
|
MVSFormer | | | 69.93 162 | 69.03 174 | 72.63 146 | 74.93 205 | 59.19 148 | 83.98 36 | 75.72 192 | 52.27 210 | 63.53 300 | 76.74 274 | 43.19 269 | 80.56 132 | 72.28 62 | 78.67 276 | 78.14 233 |
|
test_djsdf | | | 78.88 59 | 78.27 69 | 80.70 35 | 81.42 124 | 71.24 52 | 83.98 36 | 75.72 192 | 52.27 210 | 87.37 26 | 92.25 16 | 68.04 96 | 80.56 132 | 72.28 62 | 91.15 99 | 90.32 22 |
|
APD-MVS |  | | 81.13 38 | 81.73 44 | 79.36 50 | 84.47 80 | 70.53 59 | 83.85 38 | 83.70 71 | 69.43 51 | 83.67 73 | 88.96 99 | 75.89 34 | 86.41 15 | 72.62 59 | 92.95 69 | 81.14 182 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test0726 | | | | | | 86.16 51 | 60.78 137 | 83.81 39 | 85.10 39 | 72.48 32 | 85.27 53 | 89.96 77 | 78.57 17 | | | | |
|
DVP-MVS |  | | 81.15 37 | 83.12 32 | 75.24 101 | 86.16 51 | 60.78 137 | 83.77 40 | 80.58 124 | 72.48 32 | 85.83 43 | 90.41 59 | 78.57 17 | 85.69 43 | 75.86 37 | 94.39 41 | 79.24 219 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 76.57 83 | 86.20 48 | 60.57 140 | 83.77 40 | 85.49 29 | | | | | 85.90 36 | 75.86 37 | 94.39 41 | 83.25 144 |
|
SED-MVS | | | 81.78 31 | 83.48 24 | 76.67 81 | 86.12 53 | 61.06 131 | 83.62 42 | 84.72 48 | 72.61 30 | 87.38 24 | 89.70 81 | 77.48 23 | 85.89 38 | 75.29 40 | 94.39 41 | 83.08 148 |
|
OPU-MVS | | | | | 78.65 61 | 83.44 94 | 66.85 89 | 83.62 42 | | | | 86.12 159 | 66.82 105 | 86.01 29 | 61.72 136 | 89.79 135 | 83.08 148 |
|
ACMMP_NAP | | | 82.33 27 | 83.28 28 | 79.46 48 | 89.28 18 | 69.09 74 | 83.62 42 | 84.98 41 | 64.77 86 | 83.97 69 | 91.02 38 | 75.53 39 | 85.93 35 | 82.00 2 | 94.36 45 | 83.35 142 |
|
HPM-MVS++ |  | | 79.89 51 | 79.80 57 | 80.18 39 | 89.02 25 | 78.44 10 | 83.49 45 | 80.18 133 | 64.71 87 | 78.11 135 | 88.39 110 | 65.46 120 | 83.14 87 | 77.64 29 | 91.20 97 | 78.94 222 |
|
SF-MVS | | | 80.72 43 | 81.80 42 | 77.48 73 | 82.03 117 | 64.40 107 | 83.41 46 | 88.46 5 | 65.28 78 | 84.29 65 | 89.18 91 | 73.73 55 | 83.22 86 | 76.01 36 | 93.77 58 | 84.81 98 |
|
SD-MVS | | | 80.28 49 | 81.55 47 | 76.47 86 | 83.57 90 | 67.83 80 | 83.39 47 | 85.35 35 | 64.42 88 | 86.14 39 | 87.07 126 | 74.02 51 | 80.97 126 | 77.70 28 | 92.32 80 | 80.62 199 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RRT_MVS | | | 78.18 68 | 77.69 73 | 79.66 46 | 83.14 96 | 61.34 128 | 83.29 48 | 80.34 131 | 57.43 151 | 86.65 31 | 91.79 23 | 50.52 228 | 86.01 29 | 71.36 65 | 94.65 32 | 91.62 11 |
|
ACMM | | 69.25 9 | 82.11 29 | 83.31 27 | 78.49 63 | 88.17 36 | 73.96 34 | 83.11 49 | 84.52 56 | 66.40 66 | 87.45 22 | 89.16 93 | 81.02 8 | 80.52 135 | 74.27 48 | 95.73 7 | 80.98 188 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 30 | 83.02 33 | 78.95 57 | 85.36 65 | 67.25 85 | 82.91 50 | 84.98 41 | 73.52 24 | 85.43 51 | 90.03 75 | 76.37 29 | 86.97 10 | 74.56 45 | 94.02 55 | 82.62 161 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HQP_MVS | | | 78.77 60 | 78.78 64 | 78.72 59 | 85.18 66 | 65.18 99 | 82.74 51 | 85.49 29 | 65.45 73 | 78.23 132 | 89.11 94 | 60.83 159 | 86.15 26 | 71.09 66 | 90.94 106 | 84.82 96 |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 73 | | | | | | | |
|
ACMP | | 69.50 8 | 82.64 25 | 83.38 26 | 80.40 37 | 86.50 45 | 69.44 67 | 82.30 53 | 86.08 23 | 66.80 62 | 86.70 30 | 89.99 76 | 81.64 6 | 85.95 32 | 74.35 47 | 96.11 3 | 85.81 76 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PMVS |  | 70.70 6 | 81.70 32 | 83.15 31 | 77.36 75 | 90.35 5 | 82.82 2 | 82.15 54 | 79.22 147 | 74.08 20 | 87.16 28 | 91.97 19 | 84.80 2 | 76.97 194 | 64.98 108 | 93.61 60 | 72.28 281 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS | | 72.44 4 | 81.00 40 | 80.83 50 | 81.50 22 | 86.70 44 | 70.03 64 | 82.06 55 | 87.00 14 | 59.89 126 | 80.91 107 | 90.53 53 | 72.19 60 | 88.56 1 | 73.67 52 | 94.52 35 | 85.92 75 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 15 | 89.57 13 | 77.21 20 | 82.04 56 | 85.40 33 | 67.96 57 | 84.91 59 | 90.88 42 | 75.59 36 | 86.57 13 | 78.16 22 | 94.71 30 | 83.82 126 |
|
LPG-MVS_test | | | 83.47 16 | 84.33 12 | 80.90 32 | 87.00 39 | 70.41 60 | 82.04 56 | 86.35 16 | 69.77 49 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 71 |
|
F-COLMAP | | | 75.29 90 | 73.99 110 | 79.18 51 | 81.73 121 | 71.90 46 | 81.86 58 | 82.98 79 | 59.86 127 | 72.27 218 | 84.00 185 | 64.56 128 | 83.07 90 | 51.48 219 | 87.19 180 | 82.56 163 |
|
MP-MVS-pluss | | | 82.54 26 | 83.46 25 | 79.76 41 | 88.88 30 | 68.44 76 | 81.57 59 | 86.33 18 | 63.17 104 | 85.38 52 | 91.26 33 | 76.33 30 | 84.67 66 | 83.30 1 | 94.96 22 | 86.17 70 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM_NR | | | 73.91 107 | 74.16 108 | 73.16 126 | 81.90 119 | 53.50 185 | 81.28 60 | 81.40 103 | 66.17 67 | 73.30 206 | 83.31 197 | 59.96 165 | 83.10 89 | 58.45 167 | 81.66 248 | 82.87 154 |
|
API-MVS | | | 70.97 151 | 71.51 152 | 69.37 185 | 75.20 202 | 55.94 168 | 80.99 61 | 76.84 182 | 62.48 109 | 71.24 234 | 77.51 269 | 61.51 151 | 80.96 129 | 52.04 215 | 85.76 196 | 71.22 291 |
|
OMC-MVS | | | 79.41 55 | 78.79 63 | 81.28 29 | 80.62 132 | 70.71 58 | 80.91 62 | 84.76 46 | 62.54 108 | 81.77 94 | 86.65 141 | 71.46 66 | 83.53 81 | 67.95 87 | 92.44 76 | 89.60 24 |
|
CS-MVS | | | 76.51 79 | 76.00 89 | 78.06 70 | 77.02 178 | 64.77 104 | 80.78 63 | 82.66 85 | 60.39 122 | 74.15 193 | 83.30 198 | 69.65 83 | 82.07 105 | 69.27 76 | 86.75 186 | 87.36 55 |
|
mvs_tets | | | 78.93 58 | 78.67 65 | 79.72 43 | 84.81 74 | 73.93 35 | 80.65 64 | 76.50 185 | 51.98 215 | 87.40 23 | 91.86 21 | 76.09 33 | 78.53 165 | 68.58 78 | 90.20 123 | 86.69 66 |
|
mvsmamba | | | 77.20 74 | 76.37 84 | 79.69 45 | 80.34 135 | 61.52 126 | 80.58 65 | 82.12 91 | 53.54 201 | 83.93 70 | 91.03 37 | 49.49 234 | 85.97 31 | 73.26 54 | 93.08 67 | 91.59 12 |
|
ACMH+ | | 66.64 10 | 81.20 36 | 82.48 39 | 77.35 76 | 81.16 129 | 62.39 119 | 80.51 66 | 87.80 7 | 73.02 26 | 87.57 20 | 91.08 36 | 80.28 9 | 82.44 97 | 64.82 109 | 96.10 4 | 87.21 57 |
|
EPP-MVSNet | | | 73.86 108 | 73.38 120 | 75.31 99 | 78.19 163 | 53.35 187 | 80.45 67 | 77.32 177 | 65.11 81 | 76.47 165 | 86.80 131 | 49.47 235 | 83.77 75 | 53.89 206 | 92.72 74 | 88.81 41 |
|
jajsoiax | | | 78.51 63 | 78.16 70 | 79.59 47 | 84.65 77 | 73.83 37 | 80.42 68 | 76.12 187 | 51.33 224 | 87.19 27 | 91.51 29 | 73.79 54 | 78.44 169 | 68.27 81 | 90.13 127 | 86.49 68 |
|
PHI-MVS | | | 74.92 98 | 74.36 105 | 76.61 82 | 76.40 188 | 62.32 120 | 80.38 69 | 83.15 77 | 54.16 191 | 73.23 207 | 80.75 225 | 62.19 144 | 83.86 74 | 68.02 84 | 90.92 109 | 83.65 132 |
|
QAPM | | | 69.18 173 | 69.26 170 | 68.94 196 | 71.61 251 | 52.58 191 | 80.37 70 | 78.79 155 | 49.63 243 | 73.51 201 | 85.14 173 | 53.66 212 | 79.12 155 | 55.11 193 | 75.54 294 | 75.11 257 |
|
9.14 | | | | 80.22 53 | | 80.68 131 | | 80.35 71 | 87.69 10 | 59.90 125 | 83.00 79 | 88.20 114 | 74.57 47 | 81.75 110 | 73.75 51 | 93.78 57 | |
|
DROMVSNet | | | 77.08 76 | 77.39 76 | 76.14 90 | 76.86 185 | 56.87 164 | 80.32 72 | 87.52 11 | 63.45 100 | 74.66 187 | 84.52 178 | 69.87 81 | 84.94 59 | 69.76 74 | 89.59 138 | 86.60 67 |
|
OurMVSNet-221017-0 | | | 78.57 62 | 78.53 67 | 78.67 60 | 80.48 133 | 64.16 108 | 80.24 73 | 82.06 92 | 61.89 112 | 88.77 12 | 93.32 4 | 57.15 194 | 82.60 96 | 70.08 72 | 92.80 71 | 89.25 28 |
|
XVG-ACMP-BASELINE | | | 80.54 44 | 81.06 48 | 78.98 56 | 87.01 38 | 72.91 43 | 80.23 74 | 85.56 28 | 66.56 65 | 85.64 45 | 89.57 83 | 69.12 86 | 80.55 134 | 72.51 60 | 93.37 63 | 83.48 136 |
|
anonymousdsp | | | 78.60 61 | 77.80 72 | 81.00 31 | 78.01 167 | 74.34 33 | 80.09 75 | 76.12 187 | 50.51 234 | 89.19 10 | 90.88 42 | 71.45 67 | 77.78 187 | 73.38 53 | 90.60 119 | 90.90 18 |
|
Gipuma |  | | 69.55 167 | 72.83 132 | 59.70 284 | 63.63 318 | 53.97 182 | 80.08 76 | 75.93 190 | 64.24 90 | 73.49 202 | 88.93 100 | 57.89 190 | 62.46 308 | 59.75 159 | 91.55 91 | 62.67 341 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
plane_prior | | | | | | | 65.18 99 | 80.06 77 | | 61.88 113 | | | | | | 89.91 132 | |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 75 | 76.33 86 | 79.70 44 | 83.90 88 | 67.94 78 | 80.06 77 | 83.75 70 | 56.73 158 | 74.88 182 | 85.32 170 | 65.54 118 | 87.79 2 | 65.61 104 | 91.14 100 | 83.35 142 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NCCC | | | 78.25 67 | 78.04 71 | 78.89 58 | 85.61 62 | 69.45 66 | 79.80 79 | 80.99 115 | 65.77 69 | 75.55 174 | 86.25 154 | 67.42 99 | 85.42 48 | 70.10 71 | 90.88 112 | 81.81 175 |
|
IS-MVSNet | | | 75.10 94 | 75.42 96 | 74.15 110 | 79.23 147 | 48.05 231 | 79.43 80 | 78.04 168 | 70.09 48 | 79.17 123 | 88.02 119 | 53.04 214 | 83.60 79 | 58.05 170 | 93.76 59 | 90.79 19 |
|
AdaColmap |  | | 74.22 105 | 74.56 101 | 73.20 125 | 81.95 118 | 60.97 133 | 79.43 80 | 80.90 116 | 65.57 71 | 72.54 216 | 81.76 216 | 70.98 73 | 85.26 52 | 47.88 251 | 90.00 128 | 73.37 269 |
|
OPM-MVS | | | 80.99 41 | 81.63 46 | 79.07 53 | 86.86 43 | 69.39 68 | 79.41 82 | 84.00 69 | 65.64 70 | 85.54 49 | 89.28 87 | 76.32 31 | 83.47 82 | 74.03 49 | 93.57 62 | 84.35 117 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
save fliter | | | | | | 87.00 39 | 67.23 86 | 79.24 83 | 77.94 170 | 56.65 160 | | | | | | | |
|
v7n | | | 79.37 56 | 80.41 52 | 76.28 88 | 78.67 160 | 55.81 170 | 79.22 84 | 82.51 88 | 70.72 43 | 87.54 21 | 92.44 14 | 68.00 97 | 81.34 114 | 72.84 56 | 91.72 84 | 91.69 10 |
|
DP-MVS | | | 78.44 66 | 79.29 60 | 75.90 92 | 81.86 120 | 65.33 97 | 79.05 85 | 84.63 54 | 74.83 18 | 80.41 112 | 86.27 152 | 71.68 64 | 83.45 83 | 62.45 132 | 92.40 77 | 78.92 223 |
|
CS-MVS-test | | | 74.89 101 | 74.23 107 | 76.86 79 | 77.01 179 | 62.94 117 | 78.98 86 | 84.61 55 | 58.62 138 | 70.17 245 | 80.80 224 | 66.74 108 | 81.96 106 | 61.74 135 | 89.40 144 | 85.69 81 |
|
ACMH | | 63.62 14 | 77.50 72 | 80.11 54 | 69.68 183 | 79.61 140 | 56.28 166 | 78.81 87 | 83.62 72 | 63.41 102 | 87.14 29 | 90.23 72 | 76.11 32 | 73.32 231 | 67.58 89 | 94.44 39 | 79.44 217 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
bld_raw_dy_0_64 | | | 72.85 130 | 72.76 133 | 73.09 128 | 85.08 70 | 64.80 103 | 78.72 88 | 64.22 281 | 51.92 216 | 83.13 77 | 90.26 70 | 39.21 293 | 69.91 267 | 70.73 68 | 91.60 89 | 84.56 108 |
|
MSLP-MVS++ | | | 74.48 104 | 75.78 91 | 70.59 168 | 84.66 76 | 62.40 118 | 78.65 89 | 84.24 62 | 60.55 121 | 77.71 141 | 81.98 212 | 63.12 134 | 77.64 189 | 62.95 129 | 88.14 160 | 71.73 286 |
|
AllTest | | | 77.66 70 | 77.43 75 | 78.35 65 | 79.19 149 | 70.81 55 | 78.60 90 | 88.64 3 | 65.37 76 | 80.09 115 | 88.17 115 | 70.33 75 | 78.43 170 | 55.60 188 | 90.90 110 | 85.81 76 |
|
PS-MVSNAJss | | | 77.54 71 | 77.35 77 | 78.13 69 | 84.88 72 | 66.37 92 | 78.55 91 | 79.59 142 | 53.48 202 | 86.29 36 | 92.43 15 | 62.39 141 | 80.25 139 | 67.90 88 | 90.61 118 | 87.77 49 |
|
Effi-MVS+-dtu | | | 75.43 89 | 72.28 140 | 84.91 2 | 77.05 176 | 83.58 1 | 78.47 92 | 77.70 172 | 57.68 146 | 74.89 181 | 78.13 263 | 64.80 126 | 84.26 72 | 56.46 181 | 85.32 202 | 86.88 62 |
|
3Dnovator | | 65.95 11 | 71.50 145 | 71.22 155 | 72.34 152 | 73.16 235 | 63.09 115 | 78.37 93 | 78.32 162 | 57.67 147 | 72.22 220 | 84.61 176 | 54.77 206 | 78.47 167 | 60.82 146 | 81.07 252 | 75.45 252 |
|
OpenMVS |  | 62.51 15 | 68.76 178 | 68.75 179 | 68.78 201 | 70.56 260 | 53.91 183 | 78.29 94 | 77.35 176 | 48.85 250 | 70.22 244 | 83.52 190 | 52.65 216 | 76.93 195 | 55.31 192 | 81.99 238 | 75.49 251 |
|
WR-MVS_H | | | 80.22 50 | 82.17 41 | 74.39 106 | 89.46 14 | 42.69 279 | 78.24 95 | 82.24 89 | 78.21 9 | 89.57 9 | 92.10 18 | 68.05 95 | 85.59 46 | 66.04 101 | 95.62 9 | 94.88 5 |
|
114514_t | | | 73.40 114 | 73.33 123 | 73.64 118 | 84.15 86 | 57.11 162 | 78.20 96 | 80.02 135 | 43.76 284 | 72.55 215 | 86.07 162 | 64.00 131 | 83.35 85 | 60.14 153 | 91.03 105 | 80.45 202 |
|
PLC |  | 62.01 16 | 71.79 143 | 70.28 163 | 76.33 87 | 80.31 136 | 68.63 75 | 78.18 97 | 81.24 107 | 54.57 182 | 67.09 275 | 80.63 227 | 59.44 170 | 81.74 111 | 46.91 258 | 84.17 218 | 78.63 224 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNVR-MVS | | | 78.49 64 | 78.59 66 | 78.16 67 | 85.86 60 | 67.40 84 | 78.12 98 | 81.50 100 | 63.92 92 | 77.51 143 | 86.56 145 | 68.43 92 | 84.82 63 | 73.83 50 | 91.61 88 | 82.26 169 |
|
TAPA-MVS | | 65.27 12 | 75.16 93 | 74.29 106 | 77.77 71 | 74.86 208 | 68.08 77 | 77.89 99 | 84.04 68 | 55.15 172 | 76.19 170 | 83.39 192 | 66.91 103 | 80.11 143 | 60.04 155 | 90.14 126 | 85.13 87 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_prior4 | | | | | | | 70.14 63 | 77.57 100 | | | | | | | | | |
|
EPNet | | | 69.10 174 | 67.32 198 | 74.46 103 | 68.33 279 | 61.27 130 | 77.56 101 | 63.57 285 | 60.95 118 | 56.62 331 | 82.75 205 | 51.53 223 | 81.24 117 | 54.36 202 | 90.20 123 | 80.88 191 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FE-MVS | | | 68.29 187 | 66.96 205 | 72.26 154 | 74.16 222 | 54.24 180 | 77.55 102 | 73.42 208 | 57.65 149 | 72.66 213 | 84.91 174 | 32.02 328 | 81.49 113 | 48.43 246 | 81.85 241 | 81.04 184 |
|
RPSCF | | | 75.76 84 | 74.37 104 | 79.93 40 | 74.81 209 | 77.53 16 | 77.53 103 | 79.30 146 | 59.44 130 | 78.88 125 | 89.80 80 | 71.26 69 | 73.09 233 | 57.45 172 | 80.89 253 | 89.17 31 |
|
CSCG | | | 74.12 106 | 74.39 103 | 73.33 123 | 79.35 144 | 61.66 125 | 77.45 104 | 81.98 94 | 62.47 110 | 79.06 124 | 80.19 234 | 61.83 146 | 78.79 162 | 59.83 157 | 87.35 174 | 79.54 216 |
|
HQP-NCC | | | | | | 82.37 111 | | 77.32 105 | | 59.08 131 | 71.58 226 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 111 | | 77.32 105 | | 59.08 131 | 71.58 226 | | | | | | |
|
HQP-MVS | | | 75.24 92 | 75.01 98 | 75.94 91 | 82.37 111 | 58.80 154 | 77.32 105 | 84.12 65 | 59.08 131 | 71.58 226 | 85.96 164 | 58.09 184 | 85.30 51 | 67.38 94 | 89.16 146 | 83.73 131 |
|
DTE-MVSNet | | | 80.35 48 | 82.89 35 | 72.74 142 | 89.84 7 | 37.34 320 | 77.16 108 | 81.81 96 | 80.45 3 | 90.92 3 | 92.95 7 | 74.57 47 | 86.12 28 | 63.65 121 | 94.68 31 | 94.76 6 |
|
PS-CasMVS | | | 80.41 47 | 82.86 36 | 73.07 129 | 89.93 6 | 39.21 302 | 77.15 109 | 81.28 106 | 79.74 5 | 90.87 4 | 92.73 11 | 75.03 43 | 84.93 60 | 63.83 120 | 95.19 15 | 95.07 3 |
|
XVG-OURS-SEG-HR | | | 79.62 52 | 79.99 55 | 78.49 63 | 86.46 46 | 74.79 29 | 77.15 109 | 85.39 34 | 66.73 63 | 80.39 113 | 88.85 101 | 74.43 50 | 78.33 175 | 74.73 44 | 85.79 195 | 82.35 166 |
|
PEN-MVS | | | 80.46 46 | 82.91 34 | 73.11 127 | 89.83 8 | 39.02 305 | 77.06 111 | 82.61 86 | 80.04 4 | 90.60 6 | 92.85 9 | 74.93 44 | 85.21 55 | 63.15 128 | 95.15 17 | 95.09 2 |
|
CP-MVSNet | | | 79.48 54 | 81.65 45 | 72.98 132 | 89.66 12 | 39.06 304 | 76.76 112 | 80.46 126 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 90 | 84.89 61 | 63.40 125 | 95.12 18 | 95.01 4 |
|
tt0805 | | | 76.12 82 | 78.43 68 | 69.20 189 | 81.32 126 | 41.37 287 | 76.72 113 | 77.64 173 | 63.78 95 | 82.06 90 | 87.88 120 | 79.78 11 | 79.05 156 | 64.33 113 | 92.40 77 | 87.17 60 |
|
SixPastTwentyTwo | | | 75.77 83 | 76.34 85 | 74.06 111 | 81.69 122 | 54.84 175 | 76.47 114 | 75.49 194 | 64.10 91 | 87.73 17 | 92.24 17 | 50.45 230 | 81.30 116 | 67.41 91 | 91.46 92 | 86.04 73 |
|
APD_test1 | | | 75.04 96 | 75.38 97 | 74.02 112 | 69.89 266 | 70.15 62 | 76.46 115 | 79.71 138 | 65.50 72 | 82.99 80 | 88.60 106 | 66.94 102 | 72.35 244 | 59.77 158 | 88.54 156 | 79.56 213 |
|
FA-MVS(test-final) | | | 71.27 146 | 71.06 156 | 71.92 156 | 73.96 224 | 52.32 193 | 76.45 116 | 76.12 187 | 59.07 134 | 74.04 197 | 86.18 155 | 52.18 218 | 79.43 152 | 59.75 159 | 81.76 243 | 84.03 123 |
|
TEST9 | | | | | | 85.47 63 | 69.32 70 | 76.42 117 | 78.69 156 | 53.73 199 | 76.97 148 | 86.74 135 | 66.84 104 | 81.10 120 | | | |
|
train_agg | | | 76.38 80 | 76.55 83 | 75.86 93 | 85.47 63 | 69.32 70 | 76.42 117 | 78.69 156 | 54.00 194 | 76.97 148 | 86.74 135 | 66.60 109 | 81.10 120 | 72.50 61 | 91.56 90 | 77.15 242 |
|
Vis-MVSNet |  | | 74.85 103 | 74.56 101 | 75.72 94 | 81.63 123 | 64.64 105 | 76.35 119 | 79.06 149 | 62.85 106 | 73.33 205 | 88.41 109 | 62.54 139 | 79.59 150 | 63.94 119 | 82.92 230 | 82.94 152 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DeepPCF-MVS | | 71.07 5 | 78.48 65 | 77.14 79 | 82.52 16 | 84.39 83 | 77.04 21 | 76.35 119 | 84.05 67 | 56.66 159 | 80.27 114 | 85.31 171 | 68.56 89 | 87.03 9 | 67.39 93 | 91.26 95 | 83.50 133 |
|
XVG-OURS | | | 79.51 53 | 79.82 56 | 78.58 62 | 86.11 56 | 74.96 28 | 76.33 121 | 84.95 43 | 66.89 60 | 82.75 85 | 88.99 98 | 66.82 105 | 78.37 173 | 74.80 42 | 90.76 117 | 82.40 165 |
|
test_8 | | | | | | 85.09 69 | 67.89 79 | 76.26 122 | 78.66 158 | 54.00 194 | 76.89 152 | 86.72 137 | 66.60 109 | 80.89 130 | | | |
|
testf1 | | | 75.66 86 | 76.57 81 | 72.95 133 | 67.07 292 | 67.62 81 | 76.10 123 | 80.68 120 | 64.95 83 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 254 | 60.46 148 | 91.13 101 | 79.56 213 |
|
APD_test2 | | | 75.66 86 | 76.57 81 | 72.95 133 | 67.07 292 | 67.62 81 | 76.10 123 | 80.68 120 | 64.95 83 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 254 | 60.46 148 | 91.13 101 | 79.56 213 |
|
CDPH-MVS | | | 77.33 73 | 77.06 80 | 78.14 68 | 84.21 84 | 63.98 109 | 76.07 125 | 83.45 74 | 54.20 189 | 77.68 142 | 87.18 122 | 69.98 79 | 85.37 49 | 68.01 85 | 92.72 74 | 85.08 89 |
|
CNLPA | | | 73.44 112 | 73.03 129 | 74.66 102 | 78.27 162 | 75.29 26 | 75.99 126 | 78.49 160 | 65.39 75 | 75.67 172 | 83.22 202 | 61.23 155 | 66.77 291 | 53.70 208 | 85.33 201 | 81.92 174 |
|
iter_conf_final | | | 68.69 180 | 67.00 204 | 73.76 116 | 73.68 228 | 52.33 192 | 75.96 127 | 73.54 206 | 50.56 233 | 69.90 248 | 82.85 203 | 24.76 364 | 83.73 76 | 65.40 105 | 86.33 190 | 85.22 84 |
|
UGNet | | | 70.20 158 | 69.05 173 | 73.65 117 | 76.24 190 | 63.64 110 | 75.87 128 | 72.53 217 | 61.48 114 | 60.93 314 | 86.14 158 | 52.37 217 | 77.12 193 | 50.67 226 | 85.21 203 | 80.17 207 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v10 | | | 75.69 85 | 76.20 87 | 74.16 109 | 74.44 218 | 48.69 221 | 75.84 129 | 82.93 81 | 59.02 135 | 85.92 41 | 89.17 92 | 58.56 179 | 82.74 94 | 70.73 68 | 89.14 149 | 91.05 15 |
|
test_prior2 | | | | | | | | 75.57 130 | | 58.92 136 | 76.53 164 | 86.78 133 | 67.83 98 | | 69.81 73 | 92.76 73 | |
|
PAPR | | | 69.20 172 | 68.66 182 | 70.82 165 | 75.15 204 | 47.77 235 | 75.31 131 | 81.11 110 | 49.62 244 | 66.33 277 | 79.27 246 | 61.53 150 | 82.96 91 | 48.12 249 | 81.50 250 | 81.74 176 |
|
v8 | | | 75.07 95 | 75.64 93 | 73.35 122 | 73.42 231 | 47.46 240 | 75.20 132 | 81.45 102 | 60.05 124 | 85.64 45 | 89.26 88 | 58.08 186 | 81.80 109 | 69.71 75 | 87.97 165 | 90.79 19 |
|
tttt0517 | | | 69.46 168 | 67.79 193 | 74.46 103 | 75.34 200 | 52.72 189 | 75.05 133 | 63.27 287 | 54.69 179 | 78.87 126 | 84.37 180 | 26.63 355 | 81.15 118 | 63.95 117 | 87.93 166 | 89.51 25 |
|
TSAR-MVS + GP. | | | 73.08 120 | 71.60 150 | 77.54 72 | 78.99 156 | 70.73 57 | 74.96 134 | 69.38 248 | 60.73 120 | 74.39 191 | 78.44 257 | 57.72 191 | 82.78 93 | 60.16 152 | 89.60 137 | 79.11 221 |
|
MAR-MVS | | | 67.72 194 | 66.16 209 | 72.40 151 | 74.45 217 | 64.99 102 | 74.87 135 | 77.50 175 | 48.67 251 | 65.78 281 | 68.58 338 | 57.01 198 | 77.79 186 | 46.68 261 | 81.92 239 | 74.42 262 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
无先验 | | | | | | | | 74.82 136 | 70.94 239 | 47.75 260 | | | | 76.85 198 | 54.47 199 | | 72.09 283 |
|
CANet | | | 73.00 125 | 71.84 144 | 76.48 85 | 75.82 197 | 61.28 129 | 74.81 137 | 80.37 129 | 63.17 104 | 62.43 304 | 80.50 229 | 61.10 157 | 85.16 58 | 64.00 116 | 84.34 217 | 83.01 151 |
|
PVSNet_Blended_VisFu | | | 70.04 159 | 68.88 176 | 73.53 121 | 82.71 108 | 63.62 111 | 74.81 137 | 81.95 95 | 48.53 252 | 67.16 274 | 79.18 249 | 51.42 224 | 78.38 172 | 54.39 201 | 79.72 268 | 78.60 225 |
|
MCST-MVS | | | 73.42 113 | 73.34 122 | 73.63 119 | 81.28 127 | 59.17 150 | 74.80 139 | 83.13 78 | 45.50 270 | 72.84 211 | 83.78 188 | 65.15 123 | 80.99 124 | 64.54 110 | 89.09 151 | 80.73 196 |
|
原ACMM2 | | | | | | | | 74.78 140 | | | | | | | | | |
|
Anonymous20231211 | | | 75.54 88 | 77.19 78 | 70.59 168 | 77.67 173 | 45.70 257 | 74.73 141 | 80.19 132 | 68.80 52 | 82.95 81 | 92.91 8 | 66.26 112 | 76.76 199 | 58.41 168 | 92.77 72 | 89.30 27 |
|
Effi-MVS+ | | | 72.10 140 | 72.28 140 | 71.58 158 | 74.21 221 | 50.33 204 | 74.72 142 | 82.73 83 | 62.62 107 | 70.77 238 | 76.83 273 | 69.96 80 | 80.97 126 | 60.20 150 | 78.43 278 | 83.45 139 |
|
K. test v3 | | | 73.67 109 | 73.61 117 | 73.87 114 | 79.78 138 | 55.62 173 | 74.69 143 | 62.04 295 | 66.16 68 | 84.76 60 | 93.23 5 | 49.47 235 | 80.97 126 | 65.66 103 | 86.67 187 | 85.02 91 |
|
MG-MVS | | | 70.47 156 | 71.34 154 | 67.85 211 | 79.26 146 | 40.42 297 | 74.67 144 | 75.15 198 | 58.41 139 | 68.74 263 | 88.14 118 | 56.08 204 | 83.69 78 | 59.90 156 | 81.71 247 | 79.43 218 |
|
UniMVSNet_ETH3D | | | 76.74 78 | 79.02 61 | 69.92 182 | 89.27 19 | 43.81 267 | 74.47 145 | 71.70 222 | 72.33 35 | 85.50 50 | 93.65 3 | 77.98 21 | 76.88 197 | 54.60 198 | 91.64 86 | 89.08 32 |
|
GeoE | | | 73.14 118 | 73.77 115 | 71.26 163 | 78.09 165 | 52.64 190 | 74.32 146 | 79.56 143 | 56.32 162 | 76.35 168 | 83.36 196 | 70.76 74 | 77.96 183 | 63.32 126 | 81.84 242 | 83.18 146 |
|
DP-MVS Recon | | | 73.57 111 | 72.69 134 | 76.23 89 | 82.85 106 | 63.39 112 | 74.32 146 | 82.96 80 | 57.75 145 | 70.35 242 | 81.98 212 | 64.34 130 | 84.41 71 | 49.69 233 | 89.95 130 | 80.89 190 |
|
ambc | | | | | 70.10 178 | 77.74 171 | 50.21 206 | 74.28 148 | 77.93 171 | | 79.26 122 | 88.29 113 | 54.11 211 | 79.77 146 | 64.43 111 | 91.10 103 | 80.30 204 |
|
nrg030 | | | 74.87 102 | 75.99 90 | 71.52 160 | 74.90 207 | 49.88 215 | 74.10 149 | 82.58 87 | 54.55 183 | 83.50 75 | 89.21 90 | 71.51 65 | 75.74 207 | 61.24 139 | 92.34 79 | 88.94 37 |
|
canonicalmvs | | | 72.29 139 | 73.38 120 | 69.04 192 | 74.23 219 | 47.37 241 | 73.93 150 | 83.18 76 | 54.36 184 | 76.61 161 | 81.64 218 | 72.03 61 | 75.34 211 | 57.12 174 | 87.28 177 | 84.40 115 |
|
CANet_DTU | | | 64.04 231 | 63.83 228 | 64.66 238 | 68.39 276 | 42.97 277 | 73.45 151 | 74.50 202 | 52.05 214 | 54.78 338 | 75.44 283 | 43.99 264 | 70.42 265 | 53.49 210 | 78.41 279 | 80.59 200 |
|
ETV-MVS | | | 72.72 132 | 72.16 142 | 74.38 107 | 76.90 183 | 55.95 167 | 73.34 152 | 84.67 51 | 62.04 111 | 72.19 221 | 70.81 317 | 65.90 116 | 85.24 54 | 58.64 165 | 84.96 209 | 81.95 173 |
|
PCF-MVS | | 63.80 13 | 72.70 133 | 71.69 146 | 75.72 94 | 78.10 164 | 60.01 144 | 73.04 153 | 81.50 100 | 45.34 274 | 79.66 118 | 84.35 181 | 65.15 123 | 82.65 95 | 48.70 242 | 89.38 145 | 84.50 114 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs_mvg |  | | 75.26 91 | 76.18 88 | 72.52 147 | 72.87 243 | 49.47 216 | 72.94 154 | 84.71 50 | 59.49 129 | 80.90 108 | 88.81 102 | 70.07 78 | 79.71 147 | 67.40 92 | 88.39 157 | 88.40 46 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test_0402 | | | 78.17 69 | 79.48 59 | 74.24 108 | 83.50 91 | 59.15 151 | 72.52 155 | 74.60 201 | 75.34 15 | 88.69 13 | 91.81 22 | 75.06 42 | 82.37 99 | 65.10 106 | 88.68 155 | 81.20 180 |
|
EU-MVSNet | | | 60.82 258 | 60.80 256 | 60.86 278 | 68.37 277 | 41.16 288 | 72.27 156 | 68.27 255 | 26.96 357 | 69.08 255 | 75.71 278 | 32.09 325 | 67.44 283 | 55.59 190 | 78.90 273 | 73.97 264 |
|
EI-MVSNet-Vis-set | | | 72.78 131 | 71.87 143 | 75.54 97 | 74.77 210 | 59.02 152 | 72.24 157 | 71.56 225 | 63.92 92 | 78.59 127 | 71.59 313 | 66.22 113 | 78.60 164 | 67.58 89 | 80.32 259 | 89.00 35 |
|
v1192 | | | 73.40 114 | 73.42 118 | 73.32 124 | 74.65 215 | 48.67 222 | 72.21 158 | 81.73 97 | 52.76 207 | 81.85 92 | 84.56 177 | 57.12 195 | 82.24 103 | 68.58 78 | 87.33 175 | 89.06 33 |
|
iter_conf05 | | | 67.34 200 | 65.62 212 | 72.50 148 | 69.82 267 | 47.06 245 | 72.19 159 | 76.86 181 | 45.32 275 | 72.86 210 | 82.85 203 | 20.53 371 | 83.73 76 | 61.13 142 | 89.02 152 | 86.70 65 |
|
baseline | | | 73.10 119 | 73.96 111 | 70.51 170 | 71.46 252 | 46.39 252 | 72.08 160 | 84.40 58 | 55.95 165 | 76.62 160 | 86.46 148 | 67.20 100 | 78.03 182 | 64.22 114 | 87.27 178 | 87.11 61 |
|
EI-MVSNet-UG-set | | | 72.63 134 | 71.68 147 | 75.47 98 | 74.67 212 | 58.64 157 | 72.02 161 | 71.50 226 | 63.53 98 | 78.58 129 | 71.39 316 | 65.98 114 | 78.53 165 | 67.30 96 | 80.18 261 | 89.23 29 |
|
v1144 | | | 73.29 117 | 73.39 119 | 73.01 130 | 74.12 223 | 48.11 229 | 72.01 162 | 81.08 113 | 53.83 198 | 81.77 94 | 84.68 175 | 58.07 187 | 81.91 107 | 68.10 82 | 86.86 183 | 88.99 36 |
|
dcpmvs_2 | | | 71.02 150 | 72.65 135 | 66.16 229 | 76.06 195 | 50.49 202 | 71.97 163 | 79.36 145 | 50.34 235 | 82.81 84 | 83.63 189 | 64.38 129 | 67.27 285 | 61.54 137 | 83.71 225 | 80.71 198 |
|
GBi-Net | | | 68.30 185 | 68.79 177 | 66.81 222 | 73.14 236 | 40.68 293 | 71.96 164 | 73.03 209 | 54.81 174 | 74.72 184 | 90.36 67 | 48.63 244 | 75.20 213 | 47.12 255 | 85.37 198 | 84.54 109 |
|
test1 | | | 68.30 185 | 68.79 177 | 66.81 222 | 73.14 236 | 40.68 293 | 71.96 164 | 73.03 209 | 54.81 174 | 74.72 184 | 90.36 67 | 48.63 244 | 75.20 213 | 47.12 255 | 85.37 198 | 84.54 109 |
|
FMVSNet1 | | | 71.06 148 | 72.48 137 | 66.81 222 | 77.65 174 | 40.68 293 | 71.96 164 | 73.03 209 | 61.14 116 | 79.45 121 | 90.36 67 | 60.44 161 | 75.20 213 | 50.20 230 | 88.05 162 | 84.54 109 |
|
v1921920 | | | 72.96 128 | 72.98 130 | 72.89 138 | 74.67 212 | 47.58 238 | 71.92 167 | 80.69 119 | 51.70 219 | 81.69 98 | 83.89 186 | 56.58 201 | 82.25 102 | 68.34 80 | 87.36 173 | 88.82 40 |
|
v144192 | | | 72.99 126 | 73.06 128 | 72.77 140 | 74.58 216 | 47.48 239 | 71.90 168 | 80.44 127 | 51.57 220 | 81.46 100 | 84.11 184 | 58.04 188 | 82.12 104 | 67.98 86 | 87.47 171 | 88.70 43 |
|
v1240 | | | 73.06 122 | 73.14 125 | 72.84 139 | 74.74 211 | 47.27 243 | 71.88 169 | 81.11 110 | 51.80 217 | 82.28 89 | 84.21 182 | 56.22 203 | 82.34 100 | 68.82 77 | 87.17 181 | 88.91 38 |
|
FC-MVSNet-test | | | 73.32 116 | 74.78 100 | 68.93 197 | 79.21 148 | 36.57 322 | 71.82 170 | 79.54 144 | 57.63 150 | 82.57 87 | 90.38 64 | 59.38 172 | 78.99 158 | 57.91 171 | 94.56 34 | 91.23 14 |
|
IterMVS-LS | | | 73.01 124 | 73.12 127 | 72.66 144 | 73.79 227 | 49.90 211 | 71.63 171 | 78.44 161 | 58.22 140 | 80.51 111 | 86.63 142 | 58.15 183 | 79.62 148 | 62.51 130 | 88.20 159 | 88.48 44 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 70.70 153 | 70.88 158 | 70.16 176 | 82.64 110 | 58.80 154 | 71.48 172 | 73.64 205 | 54.98 173 | 76.55 162 | 81.77 215 | 61.10 157 | 78.94 159 | 54.87 195 | 80.84 254 | 72.74 276 |
|
LF4IMVS | | | 67.50 196 | 67.31 199 | 68.08 209 | 58.86 341 | 61.93 121 | 71.43 173 | 75.90 191 | 44.67 280 | 72.42 217 | 80.20 233 | 57.16 193 | 70.44 264 | 58.99 164 | 86.12 192 | 71.88 284 |
|
v2v482 | | | 72.55 137 | 72.58 136 | 72.43 150 | 72.92 242 | 46.72 247 | 71.41 174 | 79.13 148 | 55.27 170 | 81.17 103 | 85.25 172 | 55.41 205 | 81.13 119 | 67.25 97 | 85.46 197 | 89.43 26 |
|
Fast-Effi-MVS+-dtu | | | 70.00 160 | 68.74 180 | 73.77 115 | 73.47 230 | 64.53 106 | 71.36 175 | 78.14 167 | 55.81 167 | 68.84 262 | 74.71 288 | 65.36 121 | 75.75 206 | 52.00 216 | 79.00 272 | 81.03 185 |
|
新几何2 | | | | | | | | 71.33 176 | | | | | | | | | |
|
EI-MVSNet | | | 69.61 166 | 69.01 175 | 71.41 162 | 73.94 225 | 49.90 211 | 71.31 177 | 71.32 230 | 58.22 140 | 75.40 177 | 70.44 319 | 58.16 182 | 75.85 203 | 62.51 130 | 79.81 265 | 88.48 44 |
|
CVMVSNet | | | 59.21 270 | 58.44 273 | 61.51 270 | 73.94 225 | 47.76 236 | 71.31 177 | 64.56 278 | 26.91 358 | 60.34 316 | 70.44 319 | 36.24 308 | 67.65 281 | 53.57 209 | 68.66 335 | 69.12 310 |
|
thisisatest0530 | | | 67.05 204 | 65.16 216 | 72.73 143 | 73.10 239 | 50.55 201 | 71.26 179 | 63.91 283 | 50.22 237 | 74.46 190 | 80.75 225 | 26.81 354 | 80.25 139 | 59.43 161 | 86.50 188 | 87.37 54 |
|
旧先验2 | | | | | | | | 71.17 180 | | 45.11 277 | 78.54 130 | | | 61.28 313 | 59.19 163 | | |
|
FIs | | | 72.56 135 | 73.80 113 | 68.84 200 | 78.74 159 | 37.74 316 | 71.02 181 | 79.83 137 | 56.12 163 | 80.88 109 | 89.45 85 | 58.18 181 | 78.28 176 | 56.63 177 | 93.36 64 | 90.51 21 |
|
TranMVSNet+NR-MVSNet | | | 76.13 81 | 77.66 74 | 71.56 159 | 84.61 78 | 42.57 281 | 70.98 182 | 78.29 164 | 68.67 55 | 83.04 78 | 89.26 88 | 72.99 58 | 80.75 131 | 55.58 191 | 95.47 10 | 91.35 13 |
|
casdiffmvs |  | | 73.06 122 | 73.84 112 | 70.72 166 | 71.32 253 | 46.71 248 | 70.93 183 | 84.26 61 | 55.62 168 | 77.46 144 | 87.10 123 | 67.09 101 | 77.81 185 | 63.95 117 | 86.83 184 | 87.64 51 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CR-MVSNet | | | 58.96 271 | 58.49 272 | 60.36 281 | 66.37 295 | 48.24 227 | 70.93 183 | 56.40 318 | 32.87 341 | 61.35 308 | 86.66 139 | 33.19 317 | 63.22 307 | 48.50 245 | 70.17 327 | 69.62 305 |
|
RPMNet | | | 65.77 210 | 65.08 222 | 67.84 212 | 66.37 295 | 48.24 227 | 70.93 183 | 86.27 19 | 54.66 180 | 61.35 308 | 86.77 134 | 33.29 316 | 85.67 45 | 55.93 185 | 70.17 327 | 69.62 305 |
|
LFMVS | | | 67.06 203 | 67.89 191 | 64.56 239 | 78.02 166 | 38.25 311 | 70.81 186 | 59.60 302 | 65.18 80 | 71.06 236 | 86.56 145 | 43.85 265 | 75.22 212 | 46.35 262 | 89.63 136 | 80.21 206 |
|
DPM-MVS | | | 69.98 161 | 69.22 172 | 72.26 154 | 82.69 109 | 58.82 153 | 70.53 187 | 81.23 108 | 47.79 259 | 64.16 291 | 80.21 232 | 51.32 225 | 83.12 88 | 60.14 153 | 84.95 210 | 74.83 259 |
|
h-mvs33 | | | 73.08 120 | 71.61 149 | 77.48 73 | 83.89 89 | 72.89 44 | 70.47 188 | 71.12 237 | 54.28 185 | 77.89 136 | 83.41 191 | 49.04 238 | 80.98 125 | 63.62 122 | 90.77 116 | 78.58 226 |
|
MVS_111021_LR | | | 72.10 140 | 71.82 145 | 72.95 133 | 79.53 142 | 73.90 36 | 70.45 189 | 66.64 261 | 56.87 155 | 76.81 156 | 81.76 216 | 68.78 87 | 71.76 252 | 61.81 133 | 83.74 223 | 73.18 271 |
|
UniMVSNet (Re) | | | 75.00 97 | 75.48 95 | 73.56 120 | 83.14 96 | 47.92 233 | 70.41 190 | 81.04 114 | 63.67 96 | 79.54 119 | 86.37 150 | 62.83 135 | 81.82 108 | 57.10 175 | 95.25 14 | 90.94 17 |
|
TinyColmap | | | 67.98 190 | 69.28 169 | 64.08 243 | 67.98 283 | 46.82 246 | 70.04 191 | 75.26 196 | 53.05 204 | 77.36 145 | 86.79 132 | 59.39 171 | 72.59 241 | 45.64 267 | 88.01 164 | 72.83 274 |
|
VDDNet | | | 71.60 144 | 73.13 126 | 67.02 221 | 86.29 47 | 41.11 289 | 69.97 192 | 66.50 262 | 68.72 54 | 74.74 183 | 91.70 25 | 59.90 166 | 75.81 205 | 48.58 244 | 91.72 84 | 84.15 122 |
|
EPNet_dtu | | | 58.93 272 | 58.52 271 | 60.16 283 | 67.91 284 | 47.70 237 | 69.97 192 | 58.02 306 | 49.73 242 | 47.28 359 | 73.02 305 | 38.14 298 | 62.34 309 | 36.57 323 | 85.99 194 | 70.43 298 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 69.84 163 | 70.71 160 | 67.24 217 | 67.49 288 | 43.25 275 | 69.87 194 | 81.22 109 | 52.69 208 | 71.57 229 | 86.68 138 | 62.09 145 | 74.51 222 | 66.05 100 | 78.74 274 | 83.96 124 |
|
alignmvs | | | 70.54 155 | 71.00 157 | 69.15 191 | 73.50 229 | 48.04 232 | 69.85 195 | 79.62 139 | 53.94 197 | 76.54 163 | 82.00 211 | 59.00 175 | 74.68 220 | 57.32 173 | 87.21 179 | 84.72 99 |
|
GG-mvs-BLEND | | | | | 52.24 315 | 60.64 332 | 29.21 361 | 69.73 196 | 42.41 358 | | 45.47 362 | 52.33 366 | 20.43 372 | 68.16 278 | 25.52 365 | 65.42 344 | 59.36 350 |
|
pmmvs-eth3d | | | 64.41 227 | 63.27 235 | 67.82 213 | 75.81 198 | 60.18 143 | 69.49 197 | 62.05 294 | 38.81 314 | 74.13 194 | 82.23 210 | 43.76 266 | 68.65 275 | 42.53 282 | 80.63 258 | 74.63 260 |
|
DU-MVS | | | 74.91 99 | 75.57 94 | 72.93 136 | 83.50 91 | 45.79 254 | 69.47 198 | 80.14 134 | 65.22 79 | 81.74 96 | 87.08 124 | 61.82 147 | 81.07 122 | 56.21 183 | 94.98 20 | 91.93 8 |
|
EIA-MVS | | | 68.59 182 | 67.16 200 | 72.90 137 | 75.18 203 | 55.64 172 | 69.39 199 | 81.29 105 | 52.44 209 | 64.53 287 | 70.69 318 | 60.33 162 | 82.30 101 | 54.27 203 | 76.31 289 | 80.75 195 |
|
PAPM | | | 61.79 252 | 60.37 259 | 66.05 230 | 76.09 193 | 41.87 284 | 69.30 200 | 76.79 184 | 40.64 306 | 53.80 344 | 79.62 242 | 44.38 262 | 82.92 92 | 29.64 352 | 73.11 311 | 73.36 270 |
|
UniMVSNet_NR-MVSNet | | | 74.90 100 | 75.65 92 | 72.64 145 | 83.04 102 | 45.79 254 | 69.26 201 | 78.81 153 | 66.66 64 | 81.74 96 | 86.88 130 | 63.26 133 | 81.07 122 | 56.21 183 | 94.98 20 | 91.05 15 |
|
MVP-Stereo | | | 61.56 253 | 59.22 265 | 68.58 203 | 79.28 145 | 60.44 141 | 69.20 202 | 71.57 224 | 43.58 287 | 56.42 332 | 78.37 258 | 39.57 292 | 76.46 202 | 34.86 333 | 60.16 355 | 68.86 312 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
hse-mvs2 | | | 72.32 138 | 70.66 161 | 77.31 77 | 83.10 101 | 71.77 47 | 69.19 203 | 71.45 228 | 54.28 185 | 77.89 136 | 78.26 259 | 49.04 238 | 79.23 153 | 63.62 122 | 89.13 150 | 80.92 189 |
|
AUN-MVS | | | 70.22 157 | 67.88 192 | 77.22 78 | 82.96 105 | 71.61 48 | 69.08 204 | 71.39 229 | 49.17 247 | 71.70 224 | 78.07 264 | 37.62 303 | 79.21 154 | 61.81 133 | 89.15 148 | 80.82 192 |
|
gg-mvs-nofinetune | | | 55.75 285 | 56.75 284 | 52.72 314 | 62.87 320 | 28.04 363 | 68.92 205 | 41.36 365 | 71.09 40 | 50.80 351 | 92.63 12 | 20.74 370 | 66.86 288 | 29.97 350 | 72.41 313 | 63.25 338 |
|
Baseline_NR-MVSNet | | | 70.62 154 | 73.19 124 | 62.92 260 | 76.97 180 | 34.44 338 | 68.84 206 | 70.88 240 | 60.25 123 | 79.50 120 | 90.53 53 | 61.82 147 | 69.11 273 | 54.67 197 | 95.27 13 | 85.22 84 |
|
v148 | | | 69.38 171 | 69.39 168 | 69.36 186 | 69.14 275 | 44.56 262 | 68.83 207 | 72.70 215 | 54.79 177 | 78.59 127 | 84.12 183 | 54.69 207 | 76.74 200 | 59.40 162 | 82.20 236 | 86.79 63 |
|
FMVSNet2 | | | 67.48 197 | 68.21 187 | 65.29 234 | 73.14 236 | 38.94 306 | 68.81 208 | 71.21 236 | 54.81 174 | 76.73 158 | 86.48 147 | 48.63 244 | 74.60 221 | 47.98 250 | 86.11 193 | 82.35 166 |
|
MVS_111021_HR | | | 72.98 127 | 72.97 131 | 72.99 131 | 80.82 130 | 65.47 96 | 68.81 208 | 72.77 214 | 57.67 147 | 75.76 171 | 82.38 209 | 71.01 72 | 77.17 192 | 61.38 138 | 86.15 191 | 76.32 246 |
|
Anonymous20240529 | | | 72.56 135 | 73.79 114 | 68.86 199 | 76.89 184 | 45.21 259 | 68.80 210 | 77.25 179 | 67.16 59 | 76.89 152 | 90.44 56 | 65.95 115 | 74.19 227 | 50.75 225 | 90.00 128 | 87.18 59 |
|
Anonymous20240521 | | | 63.55 233 | 66.07 210 | 55.99 301 | 66.18 300 | 44.04 266 | 68.77 211 | 68.80 250 | 46.99 264 | 72.57 214 | 85.84 166 | 39.87 289 | 50.22 331 | 53.40 213 | 92.23 81 | 73.71 268 |
|
CLD-MVS | | | 72.88 129 | 72.36 139 | 74.43 105 | 77.03 177 | 54.30 179 | 68.77 211 | 83.43 75 | 52.12 212 | 76.79 157 | 74.44 291 | 69.54 84 | 83.91 73 | 55.88 186 | 93.25 66 | 85.09 88 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
1314 | | | 59.83 266 | 58.86 269 | 62.74 261 | 65.71 303 | 44.78 261 | 68.59 213 | 72.63 216 | 33.54 340 | 61.05 312 | 67.29 344 | 43.62 267 | 71.26 257 | 49.49 236 | 67.84 339 | 72.19 282 |
|
MVS | | | 60.62 261 | 59.97 261 | 62.58 262 | 68.13 281 | 47.28 242 | 68.59 213 | 73.96 204 | 32.19 342 | 59.94 319 | 68.86 335 | 50.48 229 | 77.64 189 | 41.85 287 | 75.74 291 | 62.83 339 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 237 | 63.28 234 | 63.07 256 | 69.81 268 | 45.34 258 | 68.52 215 | 67.14 258 | 43.74 285 | 70.61 240 | 79.22 247 | 47.90 248 | 72.66 237 | 48.75 241 | 73.84 308 | 71.21 292 |
|
PM-MVS | | | 64.49 224 | 63.61 231 | 67.14 220 | 76.68 186 | 75.15 27 | 68.49 216 | 42.85 357 | 51.17 227 | 77.85 138 | 80.51 228 | 45.76 251 | 66.31 294 | 52.83 214 | 76.35 288 | 59.96 349 |
|
BH-untuned | | | 69.39 170 | 69.46 167 | 69.18 190 | 77.96 168 | 56.88 163 | 68.47 217 | 77.53 174 | 56.77 157 | 77.79 139 | 79.63 241 | 60.30 163 | 80.20 142 | 46.04 264 | 80.65 256 | 70.47 297 |
|
testdata1 | | | | | | | | 68.34 218 | | 57.24 153 | | | | | | | |
|
tpm2 | | | 56.12 283 | 54.64 296 | 60.55 280 | 66.24 298 | 36.01 326 | 68.14 219 | 56.77 316 | 33.60 339 | 58.25 326 | 75.52 282 | 30.25 343 | 74.33 225 | 33.27 339 | 69.76 331 | 71.32 289 |
|
c3_l | | | 69.82 164 | 69.89 165 | 69.61 184 | 66.24 298 | 43.48 271 | 68.12 220 | 79.61 141 | 51.43 222 | 77.72 140 | 80.18 235 | 54.61 209 | 78.15 181 | 63.62 122 | 87.50 170 | 87.20 58 |
|
CMPMVS |  | 48.73 20 | 61.54 254 | 60.89 254 | 63.52 250 | 61.08 329 | 51.55 195 | 68.07 221 | 68.00 256 | 33.88 335 | 65.87 279 | 81.25 220 | 37.91 301 | 67.71 280 | 49.32 237 | 82.60 233 | 71.31 290 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test222 | | | | | | 87.30 37 | 69.15 73 | 67.85 222 | 59.59 303 | 41.06 302 | 73.05 209 | 85.72 168 | 48.03 247 | | | 80.65 256 | 66.92 318 |
|
VDD-MVS | | | 70.81 152 | 71.44 153 | 68.91 198 | 79.07 154 | 46.51 249 | 67.82 223 | 70.83 241 | 61.23 115 | 74.07 196 | 88.69 103 | 59.86 167 | 75.62 208 | 51.11 222 | 90.28 122 | 84.61 104 |
|
ab-mvs | | | 64.11 230 | 65.13 219 | 61.05 275 | 71.99 249 | 38.03 315 | 67.59 224 | 68.79 251 | 49.08 249 | 65.32 283 | 86.26 153 | 58.02 189 | 66.85 289 | 39.33 300 | 79.79 267 | 78.27 230 |
|
eth_miper_zixun_eth | | | 69.42 169 | 68.73 181 | 71.50 161 | 67.99 282 | 46.42 250 | 67.58 225 | 78.81 153 | 50.72 231 | 78.13 134 | 80.34 231 | 50.15 232 | 80.34 137 | 60.18 151 | 84.65 211 | 87.74 50 |
|
CostFormer | | | 57.35 280 | 56.14 288 | 60.97 276 | 63.76 317 | 38.43 308 | 67.50 226 | 60.22 300 | 37.14 321 | 59.12 323 | 76.34 276 | 32.78 320 | 71.99 249 | 39.12 303 | 69.27 332 | 72.47 278 |
|
Patchmtry | | | 60.91 257 | 63.01 238 | 54.62 306 | 66.10 301 | 26.27 368 | 67.47 227 | 56.40 318 | 54.05 193 | 72.04 222 | 86.66 139 | 33.19 317 | 60.17 315 | 43.69 276 | 87.45 172 | 77.42 240 |
|
USDC | | | 62.80 242 | 63.10 237 | 61.89 267 | 65.19 306 | 43.30 274 | 67.42 228 | 74.20 203 | 35.80 327 | 72.25 219 | 84.48 179 | 45.67 253 | 71.95 250 | 37.95 313 | 84.97 206 | 70.42 299 |
|
xiu_mvs_v1_base_debu | | | 67.87 191 | 67.07 201 | 70.26 173 | 79.13 151 | 61.90 122 | 67.34 229 | 71.25 233 | 47.98 255 | 67.70 267 | 74.19 296 | 61.31 152 | 72.62 238 | 56.51 178 | 78.26 280 | 76.27 247 |
|
xiu_mvs_v1_base | | | 67.87 191 | 67.07 201 | 70.26 173 | 79.13 151 | 61.90 122 | 67.34 229 | 71.25 233 | 47.98 255 | 67.70 267 | 74.19 296 | 61.31 152 | 72.62 238 | 56.51 178 | 78.26 280 | 76.27 247 |
|
xiu_mvs_v1_base_debi | | | 67.87 191 | 67.07 201 | 70.26 173 | 79.13 151 | 61.90 122 | 67.34 229 | 71.25 233 | 47.98 255 | 67.70 267 | 74.19 296 | 61.31 152 | 72.62 238 | 56.51 178 | 78.26 280 | 76.27 247 |
|
test2506 | | | 61.23 255 | 60.85 255 | 62.38 264 | 78.80 157 | 27.88 364 | 67.33 232 | 37.42 370 | 54.23 187 | 67.55 270 | 88.68 104 | 17.87 376 | 74.39 224 | 46.33 263 | 89.41 142 | 84.86 94 |
|
Vis-MVSNet (Re-imp) | | | 62.74 243 | 63.21 236 | 61.34 273 | 72.19 247 | 31.56 351 | 67.31 233 | 53.87 326 | 53.60 200 | 69.88 249 | 83.37 194 | 40.52 286 | 70.98 259 | 41.40 290 | 86.78 185 | 81.48 179 |
|
jason | | | 64.47 225 | 62.84 239 | 69.34 188 | 76.91 182 | 59.20 147 | 67.15 234 | 65.67 267 | 35.29 328 | 65.16 284 | 76.74 274 | 44.67 260 | 70.68 260 | 54.74 196 | 79.28 271 | 78.14 233 |
jason: jason. |
miper_ehance_all_eth | | | 68.36 184 | 68.16 189 | 68.98 194 | 65.14 309 | 43.34 273 | 67.07 235 | 78.92 152 | 49.11 248 | 76.21 169 | 77.72 266 | 53.48 213 | 77.92 184 | 61.16 141 | 84.59 213 | 85.68 82 |
|
pmmvs6 | | | 71.82 142 | 73.66 116 | 66.31 228 | 75.94 196 | 42.01 283 | 66.99 236 | 72.53 217 | 63.45 100 | 76.43 166 | 92.78 10 | 72.95 59 | 69.69 269 | 51.41 220 | 90.46 120 | 87.22 56 |
|
ECVR-MVS |  | | 64.82 218 | 65.22 214 | 63.60 248 | 78.80 157 | 31.14 354 | 66.97 237 | 56.47 317 | 54.23 187 | 69.94 247 | 88.68 104 | 37.23 304 | 74.81 219 | 45.28 271 | 89.41 142 | 84.86 94 |
|
PatchmatchNet |  | | 54.60 292 | 54.27 297 | 55.59 302 | 65.17 308 | 39.08 303 | 66.92 238 | 51.80 337 | 39.89 308 | 58.39 324 | 73.12 304 | 31.69 331 | 58.33 319 | 43.01 281 | 58.38 361 | 69.38 308 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MSDG | | | 67.47 198 | 67.48 197 | 67.46 215 | 70.70 257 | 54.69 177 | 66.90 239 | 78.17 165 | 60.88 119 | 70.41 241 | 74.76 286 | 61.22 156 | 73.18 232 | 47.38 254 | 76.87 286 | 74.49 261 |
|
cl22 | | | 67.14 201 | 66.51 207 | 69.03 193 | 63.20 319 | 43.46 272 | 66.88 240 | 76.25 186 | 49.22 246 | 74.48 189 | 77.88 265 | 45.49 255 | 77.40 191 | 60.64 147 | 84.59 213 | 86.24 69 |
|
TAMVS | | | 65.31 213 | 63.75 229 | 69.97 181 | 82.23 115 | 59.76 146 | 66.78 241 | 63.37 286 | 45.20 276 | 69.79 250 | 79.37 245 | 47.42 250 | 72.17 245 | 34.48 334 | 85.15 205 | 77.99 237 |
|
test_post1 | | | | | | | | 66.63 242 | | | | 2.08 375 | 30.66 341 | 59.33 317 | 40.34 297 | | |
|
FMVSNet3 | | | 65.00 217 | 65.16 216 | 64.52 240 | 69.47 271 | 37.56 319 | 66.63 242 | 70.38 243 | 51.55 221 | 74.72 184 | 83.27 199 | 37.89 302 | 74.44 223 | 47.12 255 | 85.37 198 | 81.57 178 |
|
mvs_anonymous | | | 65.08 216 | 65.49 213 | 63.83 246 | 63.79 316 | 37.60 318 | 66.52 244 | 69.82 246 | 43.44 288 | 73.46 203 | 86.08 161 | 58.79 178 | 71.75 253 | 51.90 217 | 75.63 293 | 82.15 170 |
|
wuyk23d | | | 61.97 249 | 66.25 208 | 49.12 327 | 58.19 345 | 60.77 139 | 66.32 245 | 52.97 333 | 55.93 166 | 90.62 5 | 86.91 129 | 73.07 57 | 35.98 368 | 20.63 371 | 91.63 87 | 50.62 358 |
|
tpm cat1 | | | 54.02 296 | 52.63 304 | 58.19 294 | 64.85 312 | 39.86 300 | 66.26 246 | 57.28 311 | 32.16 343 | 56.90 329 | 70.39 321 | 32.75 321 | 65.30 297 | 34.29 335 | 58.79 358 | 69.41 307 |
|
Fast-Effi-MVS+ | | | 68.81 177 | 68.30 184 | 70.35 172 | 74.66 214 | 48.61 223 | 66.06 247 | 78.32 162 | 50.62 232 | 71.48 232 | 75.54 280 | 68.75 88 | 79.59 150 | 50.55 228 | 78.73 275 | 82.86 155 |
|
V42 | | | 71.06 148 | 70.83 159 | 71.72 157 | 67.25 289 | 47.14 244 | 65.94 248 | 80.35 130 | 51.35 223 | 83.40 76 | 83.23 200 | 59.25 173 | 78.80 161 | 65.91 102 | 80.81 255 | 89.23 29 |
|
cl____ | | | 68.26 189 | 68.26 185 | 68.29 206 | 64.98 310 | 43.67 269 | 65.89 249 | 74.67 199 | 50.04 240 | 76.86 154 | 82.42 208 | 48.74 242 | 75.38 209 | 60.92 145 | 89.81 133 | 85.80 80 |
|
DIV-MVS_self_test | | | 68.27 188 | 68.26 185 | 68.29 206 | 64.98 310 | 43.67 269 | 65.89 249 | 74.67 199 | 50.04 240 | 76.86 154 | 82.43 207 | 48.74 242 | 75.38 209 | 60.94 144 | 89.81 133 | 85.81 76 |
|
tpmvs | | | 55.84 284 | 55.45 294 | 57.01 297 | 60.33 333 | 33.20 345 | 65.89 249 | 59.29 304 | 47.52 262 | 56.04 333 | 73.60 299 | 31.05 338 | 68.06 279 | 40.64 295 | 64.64 345 | 69.77 303 |
|
lupinMVS | | | 63.36 234 | 61.49 249 | 68.97 195 | 74.93 205 | 59.19 148 | 65.80 252 | 64.52 279 | 34.68 333 | 63.53 300 | 74.25 294 | 43.19 269 | 70.62 261 | 53.88 207 | 78.67 276 | 77.10 243 |
|
TransMVSNet (Re) | | | 69.62 165 | 71.63 148 | 63.57 249 | 76.51 187 | 35.93 328 | 65.75 253 | 71.29 232 | 61.05 117 | 75.02 179 | 89.90 79 | 65.88 117 | 70.41 266 | 49.79 232 | 89.48 140 | 84.38 116 |
|
NR-MVSNet | | | 73.62 110 | 74.05 109 | 72.33 153 | 83.50 91 | 43.71 268 | 65.65 254 | 77.32 177 | 64.32 89 | 75.59 173 | 87.08 124 | 62.45 140 | 81.34 114 | 54.90 194 | 95.63 8 | 91.93 8 |
|
BH-w/o | | | 64.81 219 | 64.29 225 | 66.36 227 | 76.08 194 | 54.71 176 | 65.61 255 | 75.23 197 | 50.10 239 | 71.05 237 | 71.86 312 | 54.33 210 | 79.02 157 | 38.20 311 | 76.14 290 | 65.36 328 |
|
PVSNet_BlendedMVS | | | 65.38 212 | 64.30 224 | 68.61 202 | 69.81 268 | 49.36 217 | 65.60 256 | 78.96 150 | 45.50 270 | 59.98 317 | 78.61 255 | 51.82 220 | 78.20 178 | 44.30 272 | 84.11 219 | 78.27 230 |
|
test1111 | | | 64.62 221 | 65.19 215 | 62.93 259 | 79.01 155 | 29.91 358 | 65.45 257 | 54.41 325 | 54.09 192 | 71.47 233 | 88.48 108 | 37.02 305 | 74.29 226 | 46.83 260 | 89.94 131 | 84.58 107 |
|
thres100view900 | | | 61.17 256 | 61.09 252 | 61.39 272 | 72.14 248 | 35.01 334 | 65.42 258 | 56.99 314 | 55.23 171 | 70.71 239 | 79.90 237 | 32.07 326 | 72.09 246 | 35.61 329 | 81.73 244 | 77.08 244 |
|
CDS-MVSNet | | | 64.33 228 | 62.66 241 | 69.35 187 | 80.44 134 | 58.28 158 | 65.26 259 | 65.66 268 | 44.36 281 | 67.30 273 | 75.54 280 | 43.27 268 | 71.77 251 | 37.68 314 | 84.44 216 | 78.01 236 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 58.57 275 | 58.04 275 | 60.17 282 | 70.17 264 | 41.07 290 | 65.19 260 | 53.38 331 | 43.34 291 | 61.00 313 | 73.48 300 | 45.20 256 | 69.38 271 | 40.34 297 | 70.31 326 | 70.05 300 |
|
HY-MVS | | 49.31 19 | 57.96 277 | 57.59 278 | 59.10 289 | 66.85 294 | 36.17 325 | 65.13 261 | 65.39 271 | 39.24 311 | 54.69 340 | 78.14 262 | 44.28 263 | 67.18 286 | 33.75 338 | 70.79 322 | 73.95 265 |
|
ET-MVSNet_ETH3D | | | 63.32 235 | 60.69 257 | 71.20 164 | 70.15 265 | 55.66 171 | 65.02 262 | 64.32 280 | 43.28 292 | 68.99 257 | 72.05 311 | 25.46 361 | 78.19 180 | 54.16 205 | 82.80 231 | 79.74 212 |
|
diffmvs |  | | 67.42 199 | 67.50 196 | 67.20 218 | 62.26 323 | 45.21 259 | 64.87 263 | 77.04 180 | 48.21 253 | 71.74 223 | 79.70 240 | 58.40 180 | 71.17 258 | 64.99 107 | 80.27 260 | 85.22 84 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
miper_enhance_ethall | | | 65.86 209 | 65.05 223 | 68.28 208 | 61.62 327 | 42.62 280 | 64.74 264 | 77.97 169 | 42.52 293 | 73.42 204 | 72.79 306 | 49.66 233 | 77.68 188 | 58.12 169 | 84.59 213 | 84.54 109 |
|
thres600view7 | | | 61.82 251 | 61.38 250 | 63.12 255 | 71.81 250 | 34.93 335 | 64.64 265 | 56.99 314 | 54.78 178 | 70.33 243 | 79.74 239 | 32.07 326 | 72.42 243 | 38.61 307 | 83.46 227 | 82.02 171 |
|
BH-RMVSNet | | | 68.69 180 | 68.20 188 | 70.14 177 | 76.40 188 | 53.90 184 | 64.62 266 | 73.48 207 | 58.01 142 | 73.91 199 | 81.78 214 | 59.09 174 | 78.22 177 | 48.59 243 | 77.96 283 | 78.31 229 |
|
pm-mvs1 | | | 68.40 183 | 69.85 166 | 64.04 245 | 73.10 239 | 39.94 299 | 64.61 267 | 70.50 242 | 55.52 169 | 73.97 198 | 89.33 86 | 63.91 132 | 68.38 277 | 49.68 234 | 88.02 163 | 83.81 127 |
|
pmmvs4 | | | 60.78 259 | 59.04 267 | 66.00 231 | 73.06 241 | 57.67 161 | 64.53 268 | 60.22 300 | 36.91 322 | 65.96 278 | 77.27 270 | 39.66 291 | 68.54 276 | 38.87 304 | 74.89 300 | 71.80 285 |
|
WR-MVS | | | 71.20 147 | 72.48 137 | 67.36 216 | 84.98 71 | 35.70 330 | 64.43 269 | 68.66 252 | 65.05 82 | 81.49 99 | 86.43 149 | 57.57 192 | 76.48 201 | 50.36 229 | 93.32 65 | 89.90 23 |
|
tpmrst | | | 50.15 314 | 51.38 311 | 46.45 334 | 56.05 352 | 24.77 370 | 64.40 270 | 49.98 341 | 36.14 324 | 53.32 345 | 69.59 328 | 35.16 310 | 48.69 335 | 39.24 301 | 58.51 360 | 65.89 324 |
|
VPA-MVSNet | | | 68.71 179 | 70.37 162 | 63.72 247 | 76.13 192 | 38.06 314 | 64.10 271 | 71.48 227 | 56.60 161 | 74.10 195 | 88.31 112 | 64.78 127 | 69.72 268 | 47.69 253 | 90.15 125 | 83.37 141 |
|
MIMVSNet1 | | | 66.57 205 | 69.23 171 | 58.59 292 | 81.26 128 | 37.73 317 | 64.06 272 | 57.62 307 | 57.02 154 | 78.40 131 | 90.75 46 | 62.65 136 | 58.10 321 | 41.77 288 | 89.58 139 | 79.95 208 |
|
MVS_0304 | | | 62.51 246 | 62.27 243 | 63.25 253 | 69.39 272 | 48.47 224 | 64.05 273 | 62.48 289 | 59.69 128 | 54.10 343 | 81.04 222 | 45.71 252 | 66.31 294 | 41.38 291 | 82.58 234 | 74.96 258 |
|
IterMVS | | | 63.12 238 | 62.48 242 | 65.02 237 | 66.34 297 | 52.86 188 | 63.81 274 | 62.25 290 | 46.57 267 | 71.51 231 | 80.40 230 | 44.60 261 | 66.82 290 | 51.38 221 | 75.47 295 | 75.38 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 67.68 195 | 66.07 210 | 72.49 149 | 73.34 233 | 58.20 159 | 63.80 275 | 65.55 270 | 48.10 254 | 76.91 151 | 82.64 206 | 45.20 256 | 78.84 160 | 61.20 140 | 77.89 284 | 80.44 203 |
|
DELS-MVS | | | 68.83 176 | 68.31 183 | 70.38 171 | 70.55 261 | 48.31 225 | 63.78 276 | 82.13 90 | 54.00 194 | 68.96 258 | 75.17 284 | 58.95 176 | 80.06 144 | 58.55 166 | 82.74 232 | 82.76 157 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
xiu_mvs_v2_base | | | 64.43 226 | 63.96 227 | 65.85 233 | 77.72 172 | 51.32 197 | 63.63 277 | 72.31 220 | 45.06 279 | 61.70 305 | 69.66 327 | 62.56 137 | 73.93 230 | 49.06 239 | 73.91 306 | 72.31 280 |
|
tfpnnormal | | | 66.48 206 | 67.93 190 | 62.16 266 | 73.40 232 | 36.65 321 | 63.45 278 | 64.99 273 | 55.97 164 | 72.82 212 | 87.80 121 | 57.06 197 | 69.10 274 | 48.31 248 | 87.54 168 | 80.72 197 |
|
TR-MVS | | | 64.59 222 | 63.54 232 | 67.73 214 | 75.75 199 | 50.83 200 | 63.39 279 | 70.29 244 | 49.33 245 | 71.55 230 | 74.55 289 | 50.94 226 | 78.46 168 | 40.43 296 | 75.69 292 | 73.89 266 |
|
PS-MVSNAJ | | | 64.27 229 | 63.73 230 | 65.90 232 | 77.82 170 | 51.42 196 | 63.33 280 | 72.33 219 | 45.09 278 | 61.60 306 | 68.04 339 | 62.39 141 | 73.95 229 | 49.07 238 | 73.87 307 | 72.34 279 |
|
tfpn200view9 | | | 60.35 263 | 59.97 261 | 61.51 270 | 70.78 255 | 35.35 332 | 63.27 281 | 57.47 308 | 53.00 205 | 68.31 264 | 77.09 271 | 32.45 323 | 72.09 246 | 35.61 329 | 81.73 244 | 77.08 244 |
|
thres400 | | | 60.77 260 | 59.97 261 | 63.15 254 | 70.78 255 | 35.35 332 | 63.27 281 | 57.47 308 | 53.00 205 | 68.31 264 | 77.09 271 | 32.45 323 | 72.09 246 | 35.61 329 | 81.73 244 | 82.02 171 |
|
test_yl | | | 65.11 214 | 65.09 220 | 65.18 235 | 70.59 258 | 40.86 291 | 63.22 283 | 72.79 212 | 57.91 143 | 68.88 260 | 79.07 252 | 42.85 272 | 74.89 217 | 45.50 268 | 84.97 206 | 79.81 209 |
|
DCV-MVSNet | | | 65.11 214 | 65.09 220 | 65.18 235 | 70.59 258 | 40.86 291 | 63.22 283 | 72.79 212 | 57.91 143 | 68.88 260 | 79.07 252 | 42.85 272 | 74.89 217 | 45.50 268 | 84.97 206 | 79.81 209 |
|
baseline1 | | | 57.82 278 | 58.36 274 | 56.19 300 | 69.17 274 | 30.76 356 | 62.94 285 | 55.21 321 | 46.04 269 | 63.83 295 | 78.47 256 | 41.20 280 | 63.68 304 | 39.44 299 | 68.99 333 | 74.13 263 |
|
baseline2 | | | 55.57 288 | 52.74 303 | 64.05 244 | 65.26 305 | 44.11 265 | 62.38 286 | 54.43 324 | 39.03 312 | 51.21 349 | 67.35 343 | 33.66 315 | 72.45 242 | 37.14 319 | 64.22 347 | 75.60 250 |
|
FPMVS | | | 59.43 269 | 60.07 260 | 57.51 296 | 77.62 175 | 71.52 49 | 62.33 287 | 50.92 338 | 57.40 152 | 69.40 253 | 80.00 236 | 39.14 294 | 61.92 311 | 37.47 317 | 66.36 342 | 39.09 369 |
|
PatchMatch-RL | | | 58.68 274 | 57.72 277 | 61.57 269 | 76.21 191 | 73.59 39 | 61.83 288 | 49.00 345 | 47.30 263 | 61.08 310 | 68.97 332 | 50.16 231 | 59.01 318 | 36.06 328 | 68.84 334 | 52.10 357 |
|
cascas | | | 64.59 222 | 62.77 240 | 70.05 179 | 75.27 201 | 50.02 208 | 61.79 289 | 71.61 223 | 42.46 294 | 63.68 297 | 68.89 334 | 49.33 237 | 80.35 136 | 47.82 252 | 84.05 220 | 79.78 211 |
|
LCM-MVSNet-Re | | | 69.10 174 | 71.57 151 | 61.70 268 | 70.37 262 | 34.30 340 | 61.45 290 | 79.62 139 | 56.81 156 | 89.59 8 | 88.16 117 | 68.44 91 | 72.94 234 | 42.30 283 | 87.33 175 | 77.85 239 |
|
1112_ss | | | 59.48 268 | 58.99 268 | 60.96 277 | 77.84 169 | 42.39 282 | 61.42 291 | 68.45 254 | 37.96 317 | 59.93 320 | 67.46 341 | 45.11 258 | 65.07 298 | 40.89 294 | 71.81 317 | 75.41 253 |
|
IB-MVS | | 49.67 18 | 59.69 267 | 56.96 282 | 67.90 210 | 68.19 280 | 50.30 205 | 61.42 291 | 65.18 272 | 47.57 261 | 55.83 335 | 67.15 345 | 23.77 367 | 79.60 149 | 43.56 278 | 79.97 263 | 73.79 267 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_Blended | | | 62.90 241 | 61.64 246 | 66.69 225 | 69.81 268 | 49.36 217 | 61.23 293 | 78.96 150 | 42.04 295 | 59.98 317 | 68.86 335 | 51.82 220 | 78.20 178 | 44.30 272 | 77.77 285 | 72.52 277 |
|
GA-MVS | | | 62.91 240 | 61.66 245 | 66.66 226 | 67.09 291 | 44.49 263 | 61.18 294 | 69.36 249 | 51.33 224 | 69.33 254 | 74.47 290 | 36.83 306 | 74.94 216 | 50.60 227 | 74.72 301 | 80.57 201 |
|
MS-PatchMatch | | | 55.59 287 | 54.89 295 | 57.68 295 | 69.18 273 | 49.05 220 | 61.00 295 | 62.93 288 | 35.98 325 | 58.36 325 | 68.93 333 | 36.71 307 | 66.59 292 | 37.62 316 | 63.30 349 | 57.39 353 |
|
patch_mono-2 | | | 62.73 244 | 64.08 226 | 58.68 291 | 70.36 263 | 55.87 169 | 60.84 296 | 64.11 282 | 41.23 300 | 64.04 292 | 78.22 260 | 60.00 164 | 48.80 334 | 54.17 204 | 83.71 225 | 71.37 288 |
|
MVSTER | | | 63.29 236 | 61.60 248 | 68.36 204 | 59.77 338 | 46.21 253 | 60.62 297 | 71.32 230 | 41.83 296 | 75.40 177 | 79.12 250 | 30.25 343 | 75.85 203 | 56.30 182 | 79.81 265 | 83.03 150 |
|
thisisatest0515 | | | 60.48 262 | 57.86 276 | 68.34 205 | 67.25 289 | 46.42 250 | 60.58 298 | 62.14 291 | 40.82 304 | 63.58 299 | 69.12 330 | 26.28 357 | 78.34 174 | 48.83 240 | 82.13 237 | 80.26 205 |
|
tpm | | | 50.60 312 | 52.42 306 | 45.14 339 | 65.18 307 | 26.29 367 | 60.30 299 | 43.50 355 | 37.41 319 | 57.01 328 | 79.09 251 | 30.20 345 | 42.32 357 | 32.77 341 | 66.36 342 | 66.81 321 |
|
VPNet | | | 65.58 211 | 67.56 194 | 59.65 285 | 79.72 139 | 30.17 357 | 60.27 300 | 62.14 291 | 54.19 190 | 71.24 234 | 86.63 142 | 58.80 177 | 67.62 282 | 44.17 275 | 90.87 113 | 81.18 181 |
|
MIMVSNet | | | 54.39 293 | 56.12 289 | 49.20 325 | 72.57 244 | 30.91 355 | 59.98 301 | 48.43 347 | 41.66 297 | 55.94 334 | 83.86 187 | 41.19 281 | 50.42 330 | 26.05 361 | 75.38 297 | 66.27 323 |
|
HyFIR lowres test | | | 63.01 239 | 60.47 258 | 70.61 167 | 83.04 102 | 54.10 181 | 59.93 302 | 72.24 221 | 33.67 338 | 69.00 256 | 75.63 279 | 38.69 296 | 76.93 195 | 36.60 322 | 75.45 296 | 80.81 194 |
|
Patchmatch-RL test | | | 59.95 265 | 59.12 266 | 62.44 263 | 72.46 245 | 54.61 178 | 59.63 303 | 47.51 350 | 41.05 303 | 74.58 188 | 74.30 293 | 31.06 337 | 65.31 296 | 51.61 218 | 79.85 264 | 67.39 315 |
|
PatchT | | | 53.35 298 | 56.47 286 | 43.99 344 | 64.19 314 | 17.46 376 | 59.15 304 | 43.10 356 | 52.11 213 | 54.74 339 | 86.95 128 | 29.97 346 | 49.98 332 | 43.62 277 | 74.40 304 | 64.53 336 |
|
JIA-IIPM | | | 54.03 295 | 51.62 308 | 61.25 274 | 59.14 340 | 55.21 174 | 59.10 305 | 47.72 348 | 50.85 229 | 50.31 355 | 85.81 167 | 20.10 373 | 63.97 302 | 36.16 327 | 55.41 366 | 64.55 335 |
|
Anonymous202405211 | | | 66.02 208 | 66.89 206 | 63.43 252 | 74.22 220 | 38.14 312 | 59.00 306 | 66.13 264 | 63.33 103 | 69.76 251 | 85.95 165 | 51.88 219 | 70.50 263 | 44.23 274 | 87.52 169 | 81.64 177 |
|
MDTV_nov1_ep13 | | | | 54.05 299 | | 65.54 304 | 29.30 360 | 59.00 306 | 55.22 320 | 35.96 326 | 52.44 346 | 75.98 277 | 30.77 340 | 59.62 316 | 38.21 310 | 73.33 310 | |
|
thres200 | | | 57.55 279 | 57.02 281 | 59.17 287 | 67.89 285 | 34.93 335 | 58.91 308 | 57.25 312 | 50.24 236 | 64.01 293 | 71.46 315 | 32.49 322 | 71.39 256 | 31.31 344 | 79.57 269 | 71.19 293 |
|
test_fmvs3 | | | 56.78 281 | 55.99 290 | 59.12 288 | 53.96 363 | 48.09 230 | 58.76 309 | 66.22 263 | 27.54 355 | 76.66 159 | 68.69 337 | 25.32 363 | 51.31 328 | 53.42 212 | 73.38 309 | 77.97 238 |
|
ANet_high | | | 67.08 202 | 69.94 164 | 58.51 293 | 57.55 346 | 27.09 365 | 58.43 310 | 76.80 183 | 63.56 97 | 82.40 88 | 91.93 20 | 59.82 168 | 64.98 299 | 50.10 231 | 88.86 154 | 83.46 138 |
|
ppachtmachnet_test | | | 60.26 264 | 59.61 264 | 62.20 265 | 67.70 286 | 44.33 264 | 58.18 311 | 60.96 298 | 40.75 305 | 65.80 280 | 72.57 307 | 41.23 279 | 63.92 303 | 46.87 259 | 82.42 235 | 78.33 228 |
|
KD-MVS_self_test | | | 66.38 207 | 67.51 195 | 62.97 258 | 61.76 325 | 34.39 339 | 58.11 312 | 75.30 195 | 50.84 230 | 77.12 147 | 85.42 169 | 56.84 199 | 69.44 270 | 51.07 223 | 91.16 98 | 85.08 89 |
|
Test_1112_low_res | | | 58.78 273 | 58.69 270 | 59.04 290 | 79.41 143 | 38.13 313 | 57.62 313 | 66.98 260 | 34.74 331 | 59.62 322 | 77.56 268 | 42.92 271 | 63.65 305 | 38.66 306 | 70.73 323 | 75.35 255 |
|
VNet | | | 64.01 232 | 65.15 218 | 60.57 279 | 73.28 234 | 35.61 331 | 57.60 314 | 67.08 259 | 54.61 181 | 66.76 276 | 83.37 194 | 56.28 202 | 66.87 287 | 42.19 284 | 85.20 204 | 79.23 220 |
|
DSMNet-mixed | | | 43.18 334 | 44.66 334 | 38.75 352 | 54.75 359 | 28.88 362 | 57.06 315 | 27.42 376 | 13.47 372 | 47.27 360 | 77.67 267 | 38.83 295 | 39.29 365 | 25.32 366 | 60.12 356 | 48.08 360 |
|
test_vis1_n | | | 51.27 311 | 50.41 318 | 53.83 307 | 56.99 348 | 50.01 209 | 56.75 316 | 60.53 299 | 25.68 360 | 59.74 321 | 57.86 361 | 29.40 348 | 47.41 340 | 43.10 280 | 63.66 348 | 64.08 337 |
|
test_fmvs2 | | | 54.80 291 | 54.11 298 | 56.88 298 | 51.76 367 | 49.95 210 | 56.70 317 | 65.80 266 | 26.22 359 | 69.42 252 | 65.25 348 | 31.82 329 | 49.98 332 | 49.63 235 | 70.36 325 | 70.71 296 |
|
CL-MVSNet_self_test | | | 62.44 247 | 63.40 233 | 59.55 286 | 72.34 246 | 32.38 347 | 56.39 318 | 64.84 275 | 51.21 226 | 67.46 271 | 81.01 223 | 50.75 227 | 63.51 306 | 38.47 309 | 88.12 161 | 82.75 158 |
|
D2MVS | | | 62.58 245 | 61.05 253 | 67.20 218 | 63.85 315 | 47.92 233 | 56.29 319 | 69.58 247 | 39.32 309 | 70.07 246 | 78.19 261 | 34.93 311 | 72.68 236 | 53.44 211 | 83.74 223 | 81.00 187 |
|
FMVSNet5 | | | 55.08 290 | 55.54 293 | 53.71 308 | 65.80 302 | 33.50 344 | 56.22 320 | 52.50 335 | 43.72 286 | 61.06 311 | 83.38 193 | 25.46 361 | 54.87 324 | 30.11 349 | 81.64 249 | 72.75 275 |
|
MVS-HIRNet | | | 45.53 325 | 47.29 324 | 40.24 350 | 62.29 322 | 26.82 366 | 56.02 321 | 37.41 371 | 29.74 352 | 43.69 369 | 81.27 219 | 33.96 313 | 55.48 323 | 24.46 367 | 56.79 362 | 38.43 370 |
|
test_fmvs1_n | | | 52.70 300 | 52.01 307 | 54.76 304 | 53.83 364 | 50.36 203 | 55.80 322 | 65.90 265 | 24.96 362 | 65.39 282 | 60.64 357 | 27.69 352 | 48.46 336 | 45.88 266 | 67.99 337 | 65.46 327 |
|
pmmvs3 | | | 46.71 322 | 45.09 331 | 51.55 318 | 56.76 350 | 48.25 226 | 55.78 323 | 39.53 369 | 24.13 365 | 50.35 354 | 63.40 350 | 15.90 379 | 51.08 329 | 29.29 354 | 70.69 324 | 55.33 356 |
|
pmmvs5 | | | 52.49 303 | 52.58 305 | 52.21 316 | 54.99 358 | 32.38 347 | 55.45 324 | 53.84 327 | 32.15 344 | 55.49 337 | 74.81 285 | 38.08 299 | 57.37 322 | 34.02 336 | 74.40 304 | 66.88 319 |
|
our_test_3 | | | 56.46 282 | 56.51 285 | 56.30 299 | 67.70 286 | 39.66 301 | 55.36 325 | 52.34 336 | 40.57 307 | 63.85 294 | 69.91 326 | 40.04 288 | 58.22 320 | 43.49 279 | 75.29 299 | 71.03 295 |
|
EPMVS | | | 45.74 324 | 46.53 326 | 43.39 345 | 54.14 362 | 22.33 373 | 55.02 326 | 35.00 373 | 34.69 332 | 51.09 350 | 70.20 323 | 25.92 359 | 42.04 359 | 37.19 318 | 55.50 365 | 65.78 325 |
|
dp | | | 44.09 331 | 44.88 333 | 41.72 349 | 58.53 343 | 23.18 372 | 54.70 327 | 42.38 360 | 34.80 330 | 44.25 367 | 65.61 347 | 24.48 366 | 44.80 349 | 29.77 351 | 49.42 368 | 57.18 354 |
|
test_fmvs1 | | | 51.51 310 | 50.86 316 | 53.48 309 | 49.72 370 | 49.35 219 | 54.11 328 | 64.96 274 | 24.64 364 | 63.66 298 | 59.61 360 | 28.33 351 | 48.45 337 | 45.38 270 | 67.30 341 | 62.66 342 |
|
CHOSEN 1792x2688 | | | 58.09 276 | 56.30 287 | 63.45 251 | 79.95 137 | 50.93 199 | 54.07 329 | 65.59 269 | 28.56 353 | 61.53 307 | 74.33 292 | 41.09 282 | 66.52 293 | 33.91 337 | 67.69 340 | 72.92 273 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 375 | 53.74 330 | | 31.57 348 | 44.89 364 | | 29.90 347 | | 32.93 340 | | 71.48 287 |
|
test-LLR | | | 50.43 313 | 50.69 317 | 49.64 323 | 60.76 330 | 41.87 284 | 53.18 331 | 45.48 353 | 43.41 289 | 49.41 356 | 60.47 358 | 29.22 349 | 44.73 350 | 42.09 285 | 72.14 315 | 62.33 345 |
|
TESTMET0.1,1 | | | 45.17 326 | 44.93 332 | 45.89 336 | 56.02 353 | 38.31 309 | 53.18 331 | 41.94 363 | 27.85 354 | 44.86 365 | 56.47 362 | 17.93 375 | 41.50 361 | 38.08 312 | 68.06 336 | 57.85 351 |
|
test-mter | | | 48.56 318 | 48.20 323 | 49.64 323 | 60.76 330 | 41.87 284 | 53.18 331 | 45.48 353 | 31.91 347 | 49.41 356 | 60.47 358 | 18.34 374 | 44.73 350 | 42.09 285 | 72.14 315 | 62.33 345 |
|
Anonymous20231206 | | | 54.13 294 | 55.82 291 | 49.04 328 | 70.89 254 | 35.96 327 | 51.73 334 | 50.87 339 | 34.86 329 | 62.49 303 | 79.22 247 | 42.52 275 | 44.29 352 | 27.95 358 | 81.88 240 | 66.88 319 |
|
XXY-MVS | | | 55.19 289 | 57.40 280 | 48.56 329 | 64.45 313 | 34.84 337 | 51.54 335 | 53.59 328 | 38.99 313 | 63.79 296 | 79.43 243 | 56.59 200 | 45.57 344 | 36.92 321 | 71.29 319 | 65.25 329 |
|
test20.03 | | | 55.74 286 | 57.51 279 | 50.42 320 | 59.89 337 | 32.09 349 | 50.63 336 | 49.01 344 | 50.11 238 | 65.07 285 | 83.23 200 | 45.61 254 | 48.11 339 | 30.22 348 | 83.82 222 | 71.07 294 |
|
UnsupCasMVSNet_eth | | | 52.26 304 | 53.29 302 | 49.16 326 | 55.08 357 | 33.67 343 | 50.03 337 | 58.79 305 | 37.67 318 | 63.43 302 | 74.75 287 | 41.82 277 | 45.83 343 | 38.59 308 | 59.42 357 | 67.98 314 |
|
testgi | | | 54.00 297 | 56.86 283 | 45.45 337 | 58.20 344 | 25.81 369 | 49.05 338 | 49.50 343 | 45.43 273 | 67.84 266 | 81.17 221 | 51.81 222 | 43.20 356 | 29.30 353 | 79.41 270 | 67.34 317 |
|
Patchmatch-test | | | 47.93 319 | 49.96 320 | 41.84 347 | 57.42 347 | 24.26 371 | 48.75 339 | 41.49 364 | 39.30 310 | 56.79 330 | 73.48 300 | 30.48 342 | 33.87 369 | 29.29 354 | 72.61 312 | 67.39 315 |
|
UnsupCasMVSNet_bld | | | 50.01 315 | 51.03 315 | 46.95 330 | 58.61 342 | 32.64 346 | 48.31 340 | 53.27 332 | 34.27 334 | 60.47 315 | 71.53 314 | 41.40 278 | 47.07 341 | 30.68 346 | 60.78 354 | 61.13 347 |
|
PVSNet | | 43.83 21 | 51.56 309 | 51.17 312 | 52.73 313 | 68.34 278 | 38.27 310 | 48.22 341 | 53.56 329 | 36.41 323 | 54.29 341 | 64.94 349 | 34.60 312 | 54.20 327 | 30.34 347 | 69.87 329 | 65.71 326 |
|
MDA-MVSNet-bldmvs | | | 62.34 248 | 61.73 244 | 64.16 241 | 61.64 326 | 49.90 211 | 48.11 342 | 57.24 313 | 53.31 203 | 80.95 105 | 79.39 244 | 49.00 240 | 61.55 312 | 45.92 265 | 80.05 262 | 81.03 185 |
|
PMMVS | | | 44.69 328 | 43.95 336 | 46.92 331 | 50.05 369 | 53.47 186 | 48.08 343 | 42.40 359 | 22.36 368 | 44.01 368 | 53.05 365 | 42.60 274 | 45.49 345 | 31.69 343 | 61.36 353 | 41.79 367 |
|
miper_lstm_enhance | | | 61.97 249 | 61.63 247 | 62.98 257 | 60.04 334 | 45.74 256 | 47.53 344 | 70.95 238 | 44.04 282 | 73.06 208 | 78.84 254 | 39.72 290 | 60.33 314 | 55.82 187 | 84.64 212 | 82.88 153 |
|
ADS-MVSNet2 | | | 48.76 317 | 47.25 325 | 53.29 312 | 55.90 354 | 40.54 296 | 47.34 345 | 54.99 323 | 31.41 349 | 50.48 352 | 72.06 309 | 31.23 334 | 54.26 326 | 25.93 362 | 55.93 363 | 65.07 330 |
|
ADS-MVSNet | | | 44.62 329 | 45.58 328 | 41.73 348 | 55.90 354 | 20.83 374 | 47.34 345 | 39.94 368 | 31.41 349 | 50.48 352 | 72.06 309 | 31.23 334 | 39.31 364 | 25.93 362 | 55.93 363 | 65.07 330 |
|
WTY-MVS | | | 49.39 316 | 50.31 319 | 46.62 333 | 61.22 328 | 32.00 350 | 46.61 347 | 49.77 342 | 33.87 336 | 54.12 342 | 69.55 329 | 41.96 276 | 45.40 346 | 31.28 345 | 64.42 346 | 62.47 343 |
|
test0.0.03 1 | | | 47.72 320 | 48.31 322 | 45.93 335 | 55.53 356 | 29.39 359 | 46.40 348 | 41.21 366 | 43.41 289 | 55.81 336 | 67.65 340 | 29.22 349 | 43.77 355 | 25.73 364 | 69.87 329 | 64.62 334 |
|
test123 | | | 4.43 346 | 5.78 349 | 0.39 360 | 0.97 382 | 0.28 383 | 46.33 349 | 0.45 383 | 0.31 377 | 0.62 378 | 1.50 377 | 0.61 383 | 0.11 379 | 0.56 376 | 0.63 376 | 0.77 375 |
|
sss | | | 47.59 321 | 48.32 321 | 45.40 338 | 56.73 351 | 33.96 341 | 45.17 350 | 48.51 346 | 32.11 346 | 52.37 347 | 65.79 346 | 40.39 287 | 41.91 360 | 31.85 342 | 61.97 351 | 60.35 348 |
|
KD-MVS_2432*1600 | | | 52.05 306 | 51.58 309 | 53.44 310 | 52.11 365 | 31.20 352 | 44.88 351 | 64.83 276 | 41.53 298 | 64.37 288 | 70.03 324 | 15.61 380 | 64.20 300 | 36.25 324 | 74.61 302 | 64.93 332 |
|
miper_refine_blended | | | 52.05 306 | 51.58 309 | 53.44 310 | 52.11 365 | 31.20 352 | 44.88 351 | 64.83 276 | 41.53 298 | 64.37 288 | 70.03 324 | 15.61 380 | 64.20 300 | 36.25 324 | 74.61 302 | 64.93 332 |
|
test_vis3_rt | | | 51.94 308 | 51.04 314 | 54.65 305 | 46.32 374 | 50.13 207 | 44.34 353 | 78.17 165 | 23.62 366 | 68.95 259 | 62.81 352 | 21.41 369 | 38.52 366 | 41.49 289 | 72.22 314 | 75.30 256 |
|
testmvs | | | 4.06 347 | 5.28 350 | 0.41 359 | 0.64 383 | 0.16 384 | 42.54 354 | 0.31 384 | 0.26 378 | 0.50 379 | 1.40 378 | 0.77 382 | 0.17 378 | 0.56 376 | 0.55 377 | 0.90 374 |
|
mvsany_test3 | | | 43.76 333 | 41.01 337 | 52.01 317 | 48.09 372 | 57.74 160 | 42.47 355 | 23.85 379 | 23.30 367 | 64.80 286 | 62.17 355 | 27.12 353 | 40.59 362 | 29.17 356 | 48.11 369 | 57.69 352 |
|
PVSNet_0 | | 36.71 22 | 41.12 336 | 40.78 339 | 42.14 346 | 59.97 335 | 40.13 298 | 40.97 356 | 42.24 362 | 30.81 351 | 44.86 365 | 49.41 369 | 40.70 285 | 45.12 348 | 23.15 368 | 34.96 372 | 41.16 368 |
|
YYNet1 | | | 52.58 301 | 53.50 300 | 49.85 321 | 54.15 361 | 36.45 324 | 40.53 357 | 46.55 352 | 38.09 316 | 75.52 175 | 73.31 303 | 41.08 283 | 43.88 353 | 41.10 292 | 71.14 321 | 69.21 309 |
|
MDA-MVSNet_test_wron | | | 52.57 302 | 53.49 301 | 49.81 322 | 54.24 360 | 36.47 323 | 40.48 358 | 46.58 351 | 38.13 315 | 75.47 176 | 73.32 302 | 41.05 284 | 43.85 354 | 40.98 293 | 71.20 320 | 69.10 311 |
|
test_vis1_rt | | | 46.70 323 | 45.24 330 | 51.06 319 | 44.58 375 | 51.04 198 | 39.91 359 | 67.56 257 | 21.84 370 | 51.94 348 | 50.79 368 | 33.83 314 | 39.77 363 | 35.25 332 | 61.50 352 | 62.38 344 |
|
new_pmnet | | | 37.55 339 | 39.80 341 | 30.79 354 | 56.83 349 | 16.46 377 | 39.35 360 | 30.65 374 | 25.59 361 | 45.26 363 | 61.60 356 | 24.54 365 | 28.02 373 | 21.60 369 | 52.80 367 | 47.90 361 |
|
E-PMN | | | 45.17 326 | 45.36 329 | 44.60 341 | 50.07 368 | 42.75 278 | 38.66 361 | 42.29 361 | 46.39 268 | 39.55 370 | 51.15 367 | 26.00 358 | 45.37 347 | 37.68 314 | 76.41 287 | 45.69 364 |
|
EMVS | | | 44.61 330 | 44.45 335 | 45.10 340 | 48.91 371 | 43.00 276 | 37.92 362 | 41.10 367 | 46.75 266 | 38.00 372 | 48.43 370 | 26.42 356 | 46.27 342 | 37.11 320 | 75.38 297 | 46.03 363 |
|
N_pmnet | | | 52.06 305 | 51.11 313 | 54.92 303 | 59.64 339 | 71.03 53 | 37.42 363 | 61.62 297 | 33.68 337 | 57.12 327 | 72.10 308 | 37.94 300 | 31.03 370 | 29.13 357 | 71.35 318 | 62.70 340 |
|
new-patchmatchnet | | | 52.89 299 | 55.76 292 | 44.26 343 | 59.94 336 | 6.31 379 | 37.36 364 | 50.76 340 | 41.10 301 | 64.28 290 | 79.82 238 | 44.77 259 | 48.43 338 | 36.24 326 | 87.61 167 | 78.03 235 |
|
mvsany_test1 | | | 37.88 337 | 35.74 342 | 44.28 342 | 47.28 373 | 49.90 211 | 36.54 365 | 24.37 378 | 19.56 371 | 45.76 361 | 53.46 364 | 32.99 319 | 37.97 367 | 26.17 360 | 35.52 371 | 44.99 366 |
|
test_f | | | 43.79 332 | 45.63 327 | 38.24 353 | 42.29 378 | 38.58 307 | 34.76 366 | 47.68 349 | 22.22 369 | 67.34 272 | 63.15 351 | 31.82 329 | 30.60 371 | 39.19 302 | 62.28 350 | 45.53 365 |
|
CHOSEN 280x420 | | | 41.62 335 | 39.89 340 | 46.80 332 | 61.81 324 | 51.59 194 | 33.56 367 | 35.74 372 | 27.48 356 | 37.64 373 | 53.53 363 | 23.24 368 | 42.09 358 | 27.39 359 | 58.64 359 | 46.72 362 |
|
PMMVS2 | | | 37.74 338 | 40.87 338 | 28.36 355 | 42.41 377 | 5.35 380 | 24.61 368 | 27.75 375 | 32.15 344 | 47.85 358 | 70.27 322 | 35.85 309 | 29.51 372 | 19.08 372 | 67.85 338 | 50.22 359 |
|
MVE |  | 27.91 23 | 36.69 340 | 35.64 343 | 39.84 351 | 43.37 376 | 35.85 329 | 19.49 369 | 24.61 377 | 24.68 363 | 39.05 371 | 62.63 354 | 38.67 297 | 27.10 374 | 21.04 370 | 47.25 370 | 56.56 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 11.98 343 | 14.73 346 | 3.72 358 | 2.28 381 | 4.62 381 | 19.44 370 | 14.50 381 | 0.47 376 | 21.55 374 | 9.58 374 | 25.78 360 | 4.57 377 | 11.61 374 | 27.37 373 | 1.96 373 |
|
test_method | | | 19.26 341 | 19.12 345 | 19.71 356 | 9.09 380 | 1.91 382 | 7.79 371 | 53.44 330 | 1.42 374 | 10.27 376 | 35.80 371 | 17.42 377 | 25.11 375 | 12.44 373 | 24.38 374 | 32.10 371 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 17.71 342 | 23.62 344 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 70.17 245 | 0.00 379 | 0.00 380 | 74.25 294 | 68.16 94 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 5.20 345 | 6.93 348 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 62.39 141 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 5.62 344 | 7.50 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 67.46 341 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
MSC_two_6792asdad | | | | | 79.02 54 | 83.14 96 | 67.03 87 | | 80.75 117 | | | | | 86.24 21 | 77.27 32 | 94.85 25 | 83.78 128 |
|
PC_three_1452 | | | | | | | | | | 46.98 265 | 81.83 93 | 86.28 151 | 66.55 111 | 84.47 69 | 63.31 127 | 90.78 114 | 83.49 134 |
|
No_MVS | | | | | 79.02 54 | 83.14 96 | 67.03 87 | | 80.75 117 | | | | | 86.24 21 | 77.27 32 | 94.85 25 | 83.78 128 |
|
test_one_0601 | | | | | | 85.84 61 | 61.45 127 | | 85.63 27 | 75.27 17 | 85.62 48 | 90.38 64 | 76.72 27 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 87 | 69.36 69 | | 81.09 112 | 58.91 137 | 82.73 86 | 89.11 94 | 75.77 35 | 86.63 11 | 72.73 57 | 92.93 70 | |
|
IU-MVS | | | | | | 86.12 53 | 60.90 135 | | 80.38 128 | 45.49 272 | 81.31 101 | | | | 75.64 39 | 94.39 41 | 84.65 100 |
|
test_241102_TWO | | | | | | | | | 84.80 44 | 72.61 30 | 84.93 56 | 89.70 81 | 77.73 22 | 85.89 38 | 75.29 40 | 94.22 52 | 83.25 144 |
|
test_241102_ONE | | | | | | 86.12 53 | 61.06 131 | | 84.72 48 | 72.64 29 | 87.38 24 | 89.47 84 | 77.48 23 | 85.74 42 | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 43 | 90.41 59 | 75.58 37 | 85.69 43 | 77.43 30 | 94.74 29 | 84.31 118 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 300 |
|
test_part2 | | | | | | 85.90 57 | 66.44 91 | | | | 84.61 62 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 332 | | | | 70.05 300 |
|
sam_mvs | | | | | | | | | | | | | 31.21 336 | | | | |
|
MTGPA |  | | | | | | | | 80.63 122 | | | | | | | | |
|
test_post | | | | | | | | | | | | 1.99 376 | 30.91 339 | 54.76 325 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 331 | 31.32 333 | 69.38 271 | | | |
|
gm-plane-assit | | | | | | 62.51 321 | 33.91 342 | | | 37.25 320 | | 62.71 353 | | 72.74 235 | 38.70 305 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 64 | 91.37 93 | 77.40 241 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 70 | 90.93 108 | 78.55 227 |
|
agg_prior | | | | | | 84.44 82 | 66.02 94 | | 78.62 159 | | 76.95 150 | | | 80.34 137 | | | |
|
TestCases | | | | | 78.35 65 | 79.19 149 | 70.81 55 | | 88.64 3 | 65.37 76 | 80.09 115 | 88.17 115 | 70.33 75 | 78.43 170 | 55.60 188 | 90.90 110 | 85.81 76 |
|
test_prior | | | | | 75.27 100 | 82.15 116 | 59.85 145 | | 84.33 59 | | | | | 83.39 84 | | | 82.58 162 |
|
新几何1 | | | | | 69.99 180 | 88.37 34 | 71.34 51 | | 62.08 293 | 43.85 283 | 74.99 180 | 86.11 160 | 52.85 215 | 70.57 262 | 50.99 224 | 83.23 229 | 68.05 313 |
|
旧先验1 | | | | | | 84.55 79 | 60.36 142 | | 63.69 284 | | | 87.05 127 | 54.65 208 | | | 83.34 228 | 69.66 304 |
|
原ACMM1 | | | | | 73.90 113 | 85.90 57 | 65.15 101 | | 81.67 98 | 50.97 228 | 74.25 192 | 86.16 157 | 61.60 149 | 83.54 80 | 56.75 176 | 91.08 104 | 73.00 272 |
|
testdata2 | | | | | | | | | | | | | | 67.30 284 | 48.34 247 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 93 | | | | |
|
testdata | | | | | 64.13 242 | 85.87 59 | 63.34 113 | | 61.80 296 | 47.83 258 | 76.42 167 | 86.60 144 | 48.83 241 | 62.31 310 | 54.46 200 | 81.26 251 | 66.74 322 |
|
test12 | | | | | 76.51 84 | 82.28 114 | 60.94 134 | | 81.64 99 | | 73.60 200 | | 64.88 125 | 85.19 57 | | 90.42 121 | 83.38 140 |
|
plane_prior7 | | | | | | 85.18 66 | 66.21 93 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 85 | 65.31 98 | | | | | | 60.83 159 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 29 | | | | | 86.15 26 | 71.09 66 | 90.94 106 | 84.82 96 |
|
plane_prior4 | | | | | | | | | | | | 89.11 94 | | | | | |
|
plane_prior3 | | | | | | | 65.67 95 | | | 63.82 94 | 78.23 132 | | | | | | |
|
plane_prior1 | | | | | | 84.46 81 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 322 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 141 | 79.60 141 | 56.83 165 | | 57.37 310 | | 83.80 72 | 89.01 97 | 47.45 249 | 78.74 163 | 64.39 112 | 86.49 189 | 82.69 160 |
|
LGP-MVS_train | | | | | 80.90 32 | 87.00 39 | 70.41 60 | | 86.35 16 | 69.77 49 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 71 |
|
test11 | | | | | | | | | 82.71 84 | | | | | | | | |
|
door | | | | | | | | | 52.91 334 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 154 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 94 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 225 | | | 85.31 50 | | | 83.74 130 |
|
HQP3-MVS | | | | | | | | | 84.12 65 | | | | | | | 89.16 146 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 184 | | | | |
|
NP-MVS | | | | | | 83.34 95 | 63.07 116 | | | | | 85.97 163 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 141 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 137 | | | | |
|
ITE_SJBPF | | | | | 80.35 38 | 76.94 181 | 73.60 38 | | 80.48 125 | 66.87 61 | 83.64 74 | 86.18 155 | 70.25 77 | 79.90 145 | 61.12 143 | 88.95 153 | 87.56 53 |
|
DeepMVS_CX |  | | | | 11.83 357 | 15.51 379 | 13.86 378 | | 11.25 382 | 5.76 373 | 20.85 375 | 26.46 372 | 17.06 378 | 9.22 376 | 9.69 375 | 13.82 375 | 12.42 372 |
|