DVP-MVS++ | | | 81.24 39 | 82.74 40 | 76.76 93 | 83.14 103 | 60.90 147 | 91.64 1 | 85.49 34 | 74.03 23 | 84.93 58 | 90.38 68 | 66.82 114 | 85.90 39 | 77.43 33 | 90.78 123 | 83.49 142 |
|
FOURS1 | | | | | | 89.19 25 | 77.84 16 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 78 | 75.40 30 | 91.60 3 | 87.80 8 | 73.52 26 | 88.90 11 | 93.06 6 | 71.39 75 | 81.53 125 | 81.53 3 | 92.15 93 | 88.91 41 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 33 | 81.19 5 | 88.84 4 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 13 | 79.37 13 | 84.79 68 | 74.51 51 | 96.15 2 | 92.88 7 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 5 | 84.43 64 | 71.96 42 | 84.70 64 | 90.56 55 | 77.12 26 | 86.18 26 | 79.24 18 | 95.36 13 | 82.49 175 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 26 | 87.65 6 | 85.89 30 | 71.03 45 | 85.85 42 | 90.58 54 | 78.77 17 | 85.78 43 | 79.37 16 | 95.17 17 | 84.62 109 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 49 | 79.27 8 | 87.56 7 | 86.08 27 | 77.48 13 | 88.12 14 | 91.53 30 | 81.18 8 | 84.31 77 | 78.12 24 | 94.47 38 | 84.15 128 |
|
LS3D | | | 80.99 46 | 80.85 55 | 81.41 29 | 78.37 173 | 71.37 56 | 87.45 8 | 85.87 31 | 77.48 13 | 81.98 96 | 89.95 82 | 69.14 91 | 85.26 56 | 66.15 113 | 91.24 107 | 87.61 55 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 49 | 79.20 14 | 85.58 50 | 78.11 25 | 94.46 39 | 84.89 97 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 55 | 79.18 9 | 87.23 9 | 86.27 22 | 77.51 11 | 87.65 19 | 90.73 49 | 81.38 7 | | 78.11 25 | 94.46 39 | 84.89 97 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 111 | 74.39 37 | 87.18 11 | 88.18 7 | 78.98 7 | 86.11 40 | 91.47 32 | 79.70 12 | 85.76 44 | 66.91 112 | 95.46 11 | 87.89 51 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 45 | 64.94 90 | 81.05 109 | 88.38 114 | 57.10 207 | 87.10 7 | 79.75 8 | 83.87 230 | 84.31 124 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 92 | 72.41 36 | 85.11 57 | 90.85 45 | 76.65 30 | 84.89 65 | 79.30 17 | 94.63 35 | 82.35 178 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 20 | 87.06 14 | 84.23 72 | 70.19 51 | 83.86 77 | 90.72 51 | 75.20 42 | 86.27 21 | 79.41 15 | 94.25 53 | 83.95 131 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 26 | 89.25 21 | 75.69 28 | 87.01 15 | 84.27 68 | 70.23 49 | 84.47 68 | 90.43 60 | 76.79 27 | 85.94 35 | 79.58 11 | 94.23 54 | 82.82 165 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 22 | 87.01 15 | 84.19 73 | 70.23 49 | 84.49 67 | 90.67 52 | 75.15 43 | 86.37 18 | 79.58 11 | 94.26 52 | 84.18 127 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 35 | 77.71 17 | 86.81 17 | 85.25 41 | 77.42 15 | 86.15 38 | 90.24 75 | 81.69 5 | 85.94 35 | 77.77 29 | 93.58 68 | 83.09 156 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 86 | 90.39 66 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 107 |
|
X-MVStestdata | | | 76.81 87 | 74.79 108 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 57 | 72.71 29 | 82.87 86 | 9.95 374 | 73.86 56 | 86.31 19 | 78.84 20 | 94.03 58 | 84.64 107 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 48 | 88.94 29 | 67.52 87 | 86.61 20 | 81.38 114 | 51.71 228 | 77.15 155 | 91.42 35 | 65.49 129 | 87.20 5 | 79.44 14 | 87.17 189 | 84.51 118 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 59 | 84.80 80 | 66.72 95 | 86.54 21 | 85.11 44 | 72.00 41 | 86.65 33 | 91.75 25 | 78.20 21 | 87.04 8 | 77.93 28 | 94.32 51 | 83.47 145 |
|
CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 39 | 89.20 24 | 78.75 12 | 86.48 22 | 82.03 103 | 68.80 56 | 80.92 112 | 88.52 110 | 72.00 68 | 82.39 110 | 74.80 47 | 93.04 77 | 81.14 194 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 23 | 83.59 83 | 71.31 43 | 81.26 107 | 90.96 42 | 74.57 51 | 84.69 69 | 78.41 22 | 94.78 28 | 82.74 169 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 28 | 89.14 26 | 73.28 47 | 86.32 24 | 85.97 29 | 67.39 64 | 84.02 74 | 90.39 66 | 74.73 48 | 86.46 15 | 80.73 7 | 94.43 43 | 84.60 112 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 34 | 75.83 27 | 86.27 25 | 86.89 18 | 73.69 25 | 86.17 37 | 91.70 26 | 78.23 20 | 85.20 60 | 79.45 13 | 94.91 25 | 88.15 49 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 31 | 88.99 28 | 73.29 46 | 85.94 26 | 85.13 43 | 68.58 60 | 84.14 73 | 90.21 77 | 73.37 61 | 86.41 16 | 79.09 19 | 93.98 61 | 84.30 126 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 30 | 85.14 74 | 71.00 60 | 85.53 27 | 84.78 51 | 70.91 46 | 85.64 45 | 90.41 63 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 88 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 32 | 82.83 114 | 73.53 45 | 85.50 28 | 87.45 14 | 74.11 21 | 86.45 35 | 90.52 58 | 80.02 11 | 84.48 72 | 77.73 30 | 94.34 50 | 85.93 78 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 39 | 74.40 36 | 85.24 29 | 87.21 16 | 70.69 48 | 85.14 56 | 90.42 62 | 78.99 16 | 86.62 13 | 80.83 6 | 94.93 24 | 86.79 66 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 38 | 80.50 6 | 85.12 30 | 85.22 42 | 81.06 3 | 87.20 28 | 90.28 74 | 79.20 14 | 85.58 50 | 78.04 27 | 94.08 57 | 83.55 140 |
|
SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 41 | 88.90 31 | 69.52 71 | 85.12 30 | 84.76 52 | 63.53 104 | 84.23 72 | 91.47 32 | 72.02 67 | 87.16 6 | 79.74 10 | 94.36 48 | 84.61 110 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 34 | 91.16 2 | 78.16 14 | 84.87 32 | 80.63 130 | 72.08 39 | 84.93 58 | 90.79 46 | 74.65 49 | 84.42 74 | 80.98 4 | 94.75 29 | 80.82 203 |
|
MTMP | | | | | | | | 84.83 33 | 19.26 381 | | | | | | | | |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 24 | 91.50 1 | 63.30 124 | 84.80 34 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 71 | 68.08 97 | 97.05 1 | 96.93 1 |
|
UA-Net | | | 81.56 37 | 82.28 44 | 79.40 56 | 88.91 30 | 69.16 78 | 84.67 35 | 80.01 145 | 75.34 17 | 79.80 124 | 94.91 2 | 69.79 87 | 80.25 153 | 72.63 66 | 94.46 39 | 88.78 45 |
|
#test# | | | 82.40 30 | 82.71 41 | 81.48 26 | 89.25 21 | 75.69 28 | 84.47 36 | 84.27 68 | 64.45 94 | 84.47 68 | 90.43 60 | 76.79 27 | 85.94 35 | 76.01 39 | 94.23 54 | 82.82 165 |
|
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 134 | 72.03 50 | 84.38 37 | 86.23 25 | 77.28 16 | 80.65 115 | 90.18 78 | 59.80 180 | 87.58 4 | 73.06 63 | 91.34 105 | 89.01 37 |
|
EGC-MVSNET | | | 64.77 231 | 61.17 262 | 75.60 110 | 86.90 47 | 74.47 35 | 84.04 38 | 68.62 263 | 0.60 376 | 1.13 378 | 91.61 29 | 65.32 132 | 74.15 243 | 64.01 129 | 88.28 166 | 78.17 241 |
|
MVSFormer | | | 69.93 174 | 69.03 186 | 72.63 160 | 74.93 219 | 59.19 162 | 83.98 39 | 75.72 201 | 52.27 221 | 63.53 304 | 76.74 280 | 43.19 283 | 80.56 145 | 72.28 71 | 78.67 287 | 78.14 242 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 40 | 81.42 133 | 71.24 58 | 83.98 39 | 75.72 201 | 52.27 221 | 87.37 27 | 92.25 16 | 68.04 104 | 80.56 145 | 72.28 71 | 91.15 110 | 90.32 23 |
|
APD-MVS |  | | 81.13 43 | 81.73 48 | 79.36 57 | 84.47 85 | 70.53 65 | 83.85 41 | 83.70 81 | 69.43 55 | 83.67 79 | 88.96 104 | 75.89 36 | 86.41 16 | 72.62 67 | 92.95 78 | 81.14 194 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test0726 | | | | | | 86.16 57 | 60.78 149 | 83.81 42 | 85.10 45 | 72.48 34 | 85.27 55 | 89.96 81 | 78.57 18 | | | | |
|
DVP-MVS |  | | 81.15 42 | 83.12 35 | 75.24 116 | 86.16 57 | 60.78 149 | 83.77 43 | 80.58 133 | 72.48 34 | 85.83 43 | 90.41 63 | 78.57 18 | 85.69 46 | 75.86 42 | 94.39 44 | 79.24 228 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 76.57 96 | 86.20 54 | 60.57 152 | 83.77 43 | 85.49 34 | | | | | 85.90 39 | 75.86 42 | 94.39 44 | 83.25 152 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 94 | 86.12 59 | 61.06 143 | 83.62 45 | 84.72 54 | 72.61 32 | 87.38 25 | 89.70 85 | 77.48 24 | 85.89 41 | 75.29 45 | 94.39 44 | 83.08 157 |
|
OPU-MVS | | | | | 78.65 68 | 83.44 101 | 66.85 94 | 83.62 45 | | | | 86.12 166 | 66.82 114 | 86.01 31 | 61.72 150 | 89.79 145 | 83.08 157 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 55 | 89.28 19 | 69.09 80 | 83.62 45 | 84.98 47 | 64.77 91 | 83.97 75 | 91.02 41 | 75.53 41 | 85.93 38 | 82.00 2 | 94.36 48 | 83.35 150 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 52 | 83.95 93 | 69.77 70 | 83.58 48 | 84.63 59 | 72.13 38 | 82.85 88 | 88.36 115 | 75.00 46 | 86.79 11 | 71.99 75 | 92.84 80 | 82.44 176 |
|
HPM-MVS++ |  | | 79.89 57 | 79.80 63 | 80.18 44 | 89.02 27 | 78.44 13 | 83.49 49 | 80.18 142 | 64.71 93 | 78.11 144 | 88.39 113 | 65.46 130 | 83.14 97 | 77.64 32 | 91.20 108 | 78.94 231 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 84 | 82.03 125 | 64.40 116 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 70 | 89.18 95 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 103 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 99 | 83.57 97 | 67.83 86 | 83.39 51 | 85.35 40 | 64.42 95 | 86.14 39 | 87.07 131 | 74.02 55 | 80.97 138 | 77.70 31 | 92.32 91 | 80.62 211 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RRT_MVS | | | 78.18 77 | 77.69 82 | 79.66 53 | 83.14 103 | 61.34 140 | 83.29 52 | 80.34 140 | 57.43 158 | 86.65 33 | 91.79 24 | 50.52 241 | 86.01 31 | 71.36 76 | 94.65 34 | 91.62 12 |
|
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 70 | 88.17 40 | 73.96 39 | 83.11 53 | 84.52 63 | 66.40 74 | 87.45 23 | 89.16 98 | 81.02 9 | 80.52 148 | 74.27 53 | 95.73 7 | 80.98 199 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 64 | 85.36 71 | 67.25 89 | 82.91 54 | 84.98 47 | 73.52 26 | 85.43 51 | 90.03 79 | 76.37 31 | 86.97 10 | 74.56 50 | 94.02 60 | 82.62 171 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 66 | 85.18 72 | 65.18 107 | 82.74 55 | 85.49 34 | 65.45 80 | 78.23 141 | 89.11 99 | 60.83 170 | 86.15 27 | 71.09 77 | 90.94 115 | 84.82 101 |
|
plane_prior2 | | | | | | | | 82.74 55 | | 65.45 80 | | | | | | | |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 34 | 91.16 2 | 78.16 14 | 82.72 57 | 80.63 130 | 72.08 39 | 84.93 58 | 90.79 46 | 74.65 49 | 84.42 74 | 80.98 4 | 94.75 29 | 80.82 203 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 42 | 86.50 51 | 69.44 73 | 82.30 58 | 86.08 27 | 66.80 69 | 86.70 32 | 89.99 80 | 81.64 6 | 85.95 34 | 74.35 52 | 96.11 3 | 85.81 80 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 87 | 90.35 6 | 82.82 2 | 82.15 59 | 79.22 156 | 74.08 22 | 87.16 30 | 91.97 20 | 84.80 2 | 76.97 207 | 64.98 123 | 93.61 66 | 72.28 289 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 25 | 86.70 50 | 70.03 69 | 82.06 60 | 87.00 17 | 59.89 133 | 80.91 113 | 90.53 56 | 72.19 65 | 88.56 1 | 73.67 58 | 94.52 37 | 85.92 79 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 24 | 82.04 61 | 85.40 38 | 67.96 62 | 84.91 62 | 90.88 43 | 75.59 38 | 86.57 14 | 78.16 23 | 94.71 32 | 83.82 132 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 37 | 87.00 43 | 70.41 66 | 82.04 61 | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 37 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 74 |
|
F-COLMAP | | | 75.29 102 | 73.99 120 | 79.18 58 | 81.73 130 | 71.90 51 | 81.86 63 | 82.98 89 | 59.86 134 | 72.27 228 | 84.00 192 | 64.56 139 | 83.07 100 | 51.48 230 | 87.19 188 | 82.56 174 |
|
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 32 | 68.44 82 | 81.57 64 | 86.33 21 | 63.17 110 | 85.38 52 | 91.26 36 | 76.33 32 | 84.67 70 | 83.30 1 | 94.96 23 | 86.17 73 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM_NR | | | 73.91 119 | 74.16 118 | 73.16 143 | 81.90 127 | 53.50 198 | 81.28 65 | 81.40 113 | 66.17 75 | 73.30 217 | 83.31 204 | 59.96 176 | 83.10 99 | 58.45 177 | 81.66 256 | 82.87 163 |
|
API-MVS | | | 70.97 163 | 71.51 164 | 69.37 197 | 75.20 216 | 55.94 182 | 80.99 66 | 76.84 192 | 62.48 115 | 71.24 244 | 77.51 275 | 61.51 162 | 80.96 142 | 52.04 226 | 85.76 203 | 71.22 299 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 33 | 80.62 142 | 70.71 64 | 80.91 67 | 84.76 52 | 62.54 114 | 81.77 99 | 86.65 148 | 71.46 73 | 83.53 89 | 67.95 102 | 92.44 88 | 89.60 26 |
|
bld_raw_conf005 | | | 78.24 76 | 77.73 81 | 79.77 46 | 80.62 142 | 61.50 138 | 80.87 68 | 84.09 76 | 55.76 176 | 85.28 54 | 92.08 19 | 53.44 226 | 86.02 30 | 74.22 54 | 93.21 74 | 91.79 10 |
|
CS-MVS | | | 76.51 90 | 76.00 97 | 78.06 79 | 77.02 192 | 64.77 111 | 80.78 69 | 82.66 95 | 60.39 129 | 74.15 205 | 83.30 205 | 69.65 88 | 82.07 117 | 69.27 89 | 86.75 194 | 87.36 59 |
|
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 49 | 84.81 79 | 73.93 40 | 80.65 70 | 76.50 195 | 51.98 226 | 87.40 24 | 91.86 22 | 76.09 35 | 78.53 178 | 68.58 92 | 90.20 132 | 86.69 69 |
|
mvsmamba | | | 77.20 83 | 76.37 93 | 79.69 51 | 80.34 146 | 61.52 137 | 80.58 71 | 82.12 101 | 53.54 211 | 83.93 76 | 91.03 40 | 49.49 248 | 85.97 33 | 73.26 61 | 93.08 76 | 91.59 13 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 88 | 81.16 137 | 62.39 130 | 80.51 72 | 87.80 8 | 73.02 28 | 87.57 21 | 91.08 39 | 80.28 10 | 82.44 108 | 64.82 124 | 96.10 4 | 87.21 61 |
|
EPP-MVSNet | | | 73.86 120 | 73.38 132 | 75.31 113 | 78.19 175 | 53.35 200 | 80.45 73 | 77.32 187 | 65.11 88 | 76.47 176 | 86.80 137 | 49.47 249 | 83.77 83 | 53.89 218 | 92.72 86 | 88.81 44 |
|
jajsoiax | | | 78.51 70 | 78.16 78 | 79.59 54 | 84.65 82 | 73.83 42 | 80.42 74 | 76.12 197 | 51.33 234 | 87.19 29 | 91.51 31 | 73.79 58 | 78.44 182 | 68.27 95 | 90.13 137 | 86.49 71 |
|
PHI-MVS | | | 74.92 108 | 74.36 115 | 76.61 95 | 76.40 202 | 62.32 131 | 80.38 75 | 83.15 87 | 54.16 201 | 73.23 218 | 80.75 231 | 62.19 155 | 83.86 82 | 68.02 98 | 90.92 118 | 83.65 139 |
|
QAPM | | | 69.18 186 | 69.26 182 | 68.94 207 | 71.61 265 | 52.58 204 | 80.37 76 | 78.79 164 | 49.63 252 | 73.51 212 | 85.14 180 | 53.66 224 | 79.12 168 | 55.11 204 | 75.54 305 | 75.11 265 |
|
9.14 | | | | 80.22 59 | | 80.68 140 | | 80.35 77 | 87.69 11 | 59.90 132 | 83.00 84 | 88.20 118 | 74.57 51 | 81.75 123 | 73.75 57 | 93.78 62 | |
|
DROMVSNet | | | 77.08 85 | 77.39 85 | 76.14 104 | 76.86 199 | 56.87 178 | 80.32 78 | 87.52 13 | 63.45 106 | 74.66 199 | 84.52 185 | 69.87 86 | 84.94 63 | 69.76 87 | 89.59 148 | 86.60 70 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 91 | 80.67 141 | 64.57 113 | 80.26 79 | 87.60 12 | 60.74 126 | 82.47 93 | 88.03 123 | 71.73 70 | 81.81 121 | 73.12 62 | 93.61 66 | 85.09 92 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 67 | 80.48 144 | 64.16 117 | 80.24 80 | 82.06 102 | 61.89 118 | 88.77 12 | 93.32 4 | 57.15 205 | 82.60 107 | 70.08 83 | 92.80 82 | 89.25 31 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 63 | 87.01 42 | 72.91 48 | 80.23 81 | 85.56 33 | 66.56 73 | 85.64 45 | 89.57 87 | 69.12 92 | 80.55 147 | 72.51 68 | 93.37 70 | 83.48 144 |
|
test_low_dy_conf_001 | | | 76.29 92 | 75.63 103 | 78.24 75 | 81.15 138 | 62.81 128 | 80.22 82 | 79.33 154 | 48.16 263 | 84.62 65 | 90.62 53 | 49.85 246 | 82.43 109 | 73.56 59 | 93.19 75 | 89.48 28 |
|
anonymousdsp | | | 78.60 68 | 77.80 80 | 81.00 36 | 78.01 179 | 74.34 38 | 80.09 83 | 76.12 197 | 50.51 243 | 89.19 10 | 90.88 43 | 71.45 74 | 77.78 200 | 73.38 60 | 90.60 128 | 90.90 19 |
|
Gipuma |  | | 69.55 179 | 72.83 144 | 59.70 295 | 63.63 329 | 53.97 195 | 80.08 84 | 75.93 199 | 64.24 97 | 73.49 213 | 88.93 105 | 57.89 201 | 62.46 319 | 59.75 170 | 91.55 101 | 62.67 347 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
plane_prior | | | | | | | 65.18 107 | 80.06 85 | | 61.88 119 | | | | | | 89.91 142 | |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 84 | 76.33 95 | 79.70 50 | 83.90 95 | 67.94 84 | 80.06 85 | 83.75 80 | 56.73 165 | 74.88 193 | 85.32 177 | 65.54 128 | 87.79 2 | 65.61 119 | 91.14 111 | 83.35 150 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NCCC | | | 78.25 75 | 78.04 79 | 78.89 65 | 85.61 68 | 69.45 72 | 79.80 87 | 80.99 125 | 65.77 77 | 75.55 185 | 86.25 161 | 67.42 108 | 85.42 52 | 70.10 82 | 90.88 121 | 81.81 187 |
|
IS-MVSNet | | | 75.10 105 | 75.42 106 | 74.15 128 | 79.23 159 | 48.05 233 | 79.43 88 | 78.04 177 | 70.09 52 | 79.17 131 | 88.02 124 | 53.04 227 | 83.60 87 | 58.05 180 | 93.76 65 | 90.79 20 |
|
AdaColmap |  | | 74.22 117 | 74.56 110 | 73.20 142 | 81.95 126 | 60.97 145 | 79.43 88 | 80.90 126 | 65.57 79 | 72.54 226 | 81.76 222 | 70.98 78 | 85.26 56 | 47.88 260 | 90.00 138 | 73.37 277 |
|
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 60 | 86.86 48 | 69.39 74 | 79.41 90 | 84.00 79 | 65.64 78 | 85.54 49 | 89.28 91 | 76.32 33 | 83.47 90 | 74.03 55 | 93.57 69 | 84.35 123 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 72 | 87.00 43 | 67.23 90 | 79.24 91 | 88.61 5 | 56.65 167 | 84.29 70 | 89.18 95 | 73.73 59 | 83.22 95 | 76.01 39 | 93.77 63 | 84.81 103 |
|
save fliter | | | | | | 87.00 43 | 67.23 90 | 79.24 91 | 77.94 179 | 56.65 167 | | | | | | | |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 101 | 78.67 172 | 55.81 184 | 79.22 93 | 82.51 98 | 70.72 47 | 87.54 22 | 92.44 14 | 68.00 105 | 81.34 126 | 72.84 64 | 91.72 95 | 91.69 11 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 86 | 80.09 148 | 66.16 100 | 79.08 94 | 86.13 26 | 57.55 157 | 80.93 111 | 87.76 126 | 71.98 69 | 82.73 105 | 72.11 74 | 92.83 81 | 83.25 152 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 106 | 81.86 128 | 65.33 105 | 79.05 95 | 84.63 59 | 74.83 20 | 80.41 118 | 86.27 159 | 71.68 71 | 83.45 91 | 62.45 146 | 92.40 89 | 78.92 232 |
|
CS-MVS-test | | | 74.89 111 | 74.23 117 | 76.86 92 | 77.01 193 | 62.94 127 | 78.98 96 | 84.61 61 | 58.62 144 | 70.17 256 | 80.80 230 | 66.74 117 | 81.96 118 | 61.74 149 | 89.40 154 | 85.69 86 |
|
ACMH | | 63.62 14 | 77.50 81 | 80.11 60 | 69.68 195 | 79.61 152 | 56.28 180 | 78.81 97 | 83.62 82 | 63.41 108 | 87.14 31 | 90.23 76 | 76.11 34 | 73.32 246 | 67.58 104 | 94.44 42 | 79.44 226 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSLP-MVS++ | | | 74.48 115 | 75.78 100 | 70.59 180 | 84.66 81 | 62.40 129 | 78.65 98 | 84.24 71 | 60.55 128 | 77.71 150 | 81.98 218 | 63.12 145 | 77.64 202 | 62.95 143 | 88.14 168 | 71.73 294 |
|
AllTest | | | 77.66 79 | 77.43 84 | 78.35 73 | 79.19 161 | 70.81 61 | 78.60 99 | 88.64 3 | 65.37 83 | 80.09 122 | 88.17 119 | 70.33 81 | 78.43 183 | 55.60 199 | 90.90 119 | 85.81 80 |
|
PS-MVSNAJss | | | 77.54 80 | 77.35 86 | 78.13 78 | 84.88 77 | 66.37 98 | 78.55 100 | 79.59 150 | 53.48 212 | 86.29 36 | 92.43 15 | 62.39 152 | 80.25 153 | 67.90 103 | 90.61 127 | 87.77 52 |
|
Effi-MVS+-dtu | | | 75.43 100 | 72.28 151 | 84.91 2 | 77.05 189 | 83.58 1 | 78.47 101 | 77.70 181 | 57.68 152 | 74.89 192 | 78.13 269 | 64.80 136 | 84.26 78 | 56.46 191 | 85.32 209 | 86.88 65 |
|
3Dnovator | | 65.95 11 | 71.50 158 | 71.22 167 | 72.34 165 | 73.16 250 | 63.09 125 | 78.37 102 | 78.32 172 | 57.67 154 | 72.22 230 | 84.61 183 | 54.77 218 | 78.47 180 | 60.82 160 | 81.07 261 | 75.45 261 |
|
ETH3 D test6400 | | | 75.73 97 | 76.00 97 | 74.92 117 | 81.75 129 | 56.93 176 | 78.31 103 | 84.60 62 | 52.83 217 | 77.15 155 | 85.14 180 | 68.59 96 | 84.03 80 | 65.44 120 | 90.20 132 | 83.82 132 |
|
OpenMVS |  | 62.51 15 | 68.76 191 | 68.75 191 | 68.78 212 | 70.56 274 | 53.91 196 | 78.29 104 | 77.35 186 | 48.85 259 | 70.22 255 | 83.52 197 | 52.65 230 | 76.93 208 | 55.31 203 | 81.99 248 | 75.49 260 |
|
test_part1 | | | 76.97 86 | 78.21 77 | 73.25 141 | 77.87 181 | 45.76 258 | 78.27 105 | 87.26 15 | 66.69 71 | 85.31 53 | 91.43 34 | 55.95 216 | 84.24 79 | 65.71 117 | 95.43 12 | 89.75 25 |
|
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 123 | 89.46 15 | 42.69 282 | 78.24 106 | 82.24 99 | 78.21 10 | 89.57 9 | 92.10 18 | 68.05 103 | 85.59 49 | 66.04 115 | 95.62 9 | 94.88 5 |
|
114514_t | | | 73.40 127 | 73.33 135 | 73.64 134 | 84.15 92 | 57.11 175 | 78.20 107 | 80.02 144 | 43.76 295 | 72.55 225 | 86.07 169 | 64.00 142 | 83.35 94 | 60.14 165 | 91.03 114 | 80.45 214 |
|
PLC |  | 62.01 16 | 71.79 156 | 70.28 175 | 76.33 100 | 80.31 147 | 68.63 81 | 78.18 108 | 81.24 117 | 54.57 191 | 67.09 282 | 80.63 233 | 59.44 181 | 81.74 124 | 46.91 267 | 84.17 225 | 78.63 233 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 76 | 85.86 66 | 67.40 88 | 78.12 109 | 81.50 110 | 63.92 99 | 77.51 152 | 86.56 152 | 68.43 100 | 84.82 67 | 73.83 56 | 91.61 99 | 82.26 181 |
|
TAPA-MVS | | 65.27 12 | 75.16 104 | 74.29 116 | 77.77 81 | 74.86 222 | 68.08 83 | 77.89 110 | 84.04 78 | 55.15 181 | 76.19 181 | 83.39 199 | 66.91 112 | 80.11 158 | 60.04 167 | 90.14 136 | 85.13 91 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_prior4 | | | | | | | 70.14 68 | 77.57 111 | | | | | | | | | |
|
EPNet | | | 69.10 187 | 67.32 211 | 74.46 120 | 68.33 292 | 61.27 142 | 77.56 112 | 63.57 289 | 60.95 124 | 56.62 334 | 82.75 211 | 51.53 236 | 81.24 129 | 54.36 214 | 90.20 132 | 80.88 202 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 75.76 96 | 74.37 114 | 79.93 45 | 74.81 223 | 77.53 20 | 77.53 113 | 79.30 155 | 59.44 136 | 78.88 133 | 89.80 84 | 71.26 76 | 73.09 248 | 57.45 182 | 80.89 264 | 89.17 34 |
|
CSCG | | | 74.12 118 | 74.39 113 | 73.33 139 | 79.35 156 | 61.66 136 | 77.45 114 | 81.98 104 | 62.47 116 | 79.06 132 | 80.19 240 | 61.83 157 | 78.79 174 | 59.83 169 | 87.35 182 | 79.54 225 |
|
HQP-NCC | | | | | | 82.37 118 | | 77.32 115 | | 59.08 137 | 71.58 236 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 118 | | 77.32 115 | | 59.08 137 | 71.58 236 | | | | | | |
|
HQP-MVS | | | 75.24 103 | 75.01 107 | 75.94 105 | 82.37 118 | 58.80 168 | 77.32 115 | 84.12 74 | 59.08 137 | 71.58 236 | 85.96 171 | 58.09 195 | 85.30 55 | 67.38 108 | 89.16 156 | 83.73 138 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 38 | 72.74 156 | 89.84 8 | 37.34 321 | 77.16 118 | 81.81 106 | 80.45 4 | 90.92 3 | 92.95 7 | 74.57 51 | 86.12 29 | 63.65 135 | 94.68 33 | 94.76 6 |
|
PS-CasMVS | | | 80.41 52 | 82.86 39 | 73.07 145 | 89.93 7 | 39.21 304 | 77.15 119 | 81.28 116 | 79.74 6 | 90.87 4 | 92.73 11 | 75.03 45 | 84.93 64 | 63.83 134 | 95.19 16 | 95.07 3 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 70 | 86.46 52 | 74.79 34 | 77.15 119 | 85.39 39 | 66.73 70 | 80.39 119 | 88.85 106 | 74.43 54 | 78.33 188 | 74.73 49 | 85.79 202 | 82.35 178 |
|
PEN-MVS | | | 80.46 51 | 82.91 37 | 73.11 144 | 89.83 9 | 39.02 307 | 77.06 121 | 82.61 96 | 80.04 5 | 90.60 6 | 92.85 9 | 74.93 47 | 85.21 59 | 63.15 142 | 95.15 18 | 95.09 2 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 148 | 89.66 13 | 39.06 306 | 76.76 122 | 80.46 135 | 78.91 8 | 90.32 7 | 91.70 26 | 68.49 98 | 84.89 65 | 63.40 139 | 95.12 19 | 95.01 4 |
|
SixPastTwentyTwo | | | 75.77 95 | 76.34 94 | 74.06 129 | 81.69 131 | 54.84 189 | 76.47 123 | 75.49 203 | 64.10 98 | 87.73 18 | 92.24 17 | 50.45 243 | 81.30 128 | 67.41 106 | 91.46 102 | 86.04 76 |
|
TEST9 | | | | | | 85.47 69 | 69.32 76 | 76.42 124 | 78.69 165 | 53.73 209 | 76.97 158 | 86.74 142 | 66.84 113 | 81.10 132 | | | |
|
train_agg | | | 76.38 91 | 76.55 91 | 75.86 107 | 85.47 69 | 69.32 76 | 76.42 124 | 78.69 165 | 54.00 204 | 76.97 158 | 86.74 142 | 66.60 118 | 81.10 132 | 72.50 69 | 91.56 100 | 77.15 250 |
|
Vis-MVSNet |  | | 74.85 113 | 74.56 110 | 75.72 108 | 81.63 132 | 64.64 112 | 76.35 126 | 79.06 158 | 62.85 112 | 73.33 216 | 88.41 112 | 62.54 150 | 79.59 164 | 63.94 133 | 82.92 240 | 82.94 161 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 89 | 82.52 19 | 84.39 89 | 77.04 25 | 76.35 126 | 84.05 77 | 56.66 166 | 80.27 120 | 85.31 178 | 68.56 97 | 87.03 9 | 67.39 107 | 91.26 106 | 83.50 141 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 69 | 86.11 62 | 74.96 33 | 76.33 128 | 84.95 49 | 66.89 66 | 82.75 90 | 88.99 103 | 66.82 114 | 78.37 186 | 74.80 47 | 90.76 126 | 82.40 177 |
|
test_8 | | | | | | 85.09 75 | 67.89 85 | 76.26 129 | 78.66 167 | 54.00 204 | 76.89 163 | 86.72 144 | 66.60 118 | 80.89 143 | | | |
|
agg_prior1 | | | 75.89 94 | 76.41 92 | 74.31 125 | 84.44 87 | 66.02 101 | 76.12 130 | 78.62 168 | 54.40 193 | 76.95 160 | 86.85 136 | 66.44 121 | 80.34 150 | 72.45 70 | 91.42 103 | 76.57 254 |
|
CDPH-MVS | | | 77.33 82 | 77.06 90 | 78.14 77 | 84.21 90 | 63.98 119 | 76.07 131 | 83.45 84 | 54.20 199 | 77.68 151 | 87.18 127 | 69.98 84 | 85.37 53 | 68.01 99 | 92.72 86 | 85.08 94 |
|
CNLPA | | | 73.44 125 | 73.03 141 | 74.66 118 | 78.27 174 | 75.29 31 | 75.99 132 | 78.49 170 | 65.39 82 | 75.67 183 | 83.22 209 | 61.23 166 | 66.77 302 | 53.70 220 | 85.33 208 | 81.92 186 |
|
UGNet | | | 70.20 170 | 69.05 185 | 73.65 133 | 76.24 204 | 63.64 120 | 75.87 133 | 72.53 226 | 61.48 120 | 60.93 318 | 86.14 165 | 52.37 231 | 77.12 206 | 50.67 237 | 85.21 210 | 80.17 219 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v10 | | | 75.69 98 | 76.20 96 | 74.16 127 | 74.44 234 | 48.69 224 | 75.84 134 | 82.93 91 | 59.02 140 | 85.92 41 | 89.17 97 | 58.56 190 | 82.74 104 | 70.73 79 | 89.14 159 | 91.05 16 |
|
test_prior3 | | | 76.71 89 | 77.19 87 | 75.27 114 | 82.15 123 | 59.85 158 | 75.57 135 | 84.33 66 | 58.92 141 | 76.53 174 | 86.78 139 | 67.83 106 | 83.39 92 | 69.81 85 | 92.76 84 | 82.58 172 |
|
test_prior2 | | | | | | | | 75.57 135 | | 58.92 141 | 76.53 174 | 86.78 139 | 67.83 106 | | 69.81 85 | 92.76 84 | |
|
mvs-test1 | | | 73.81 121 | 70.69 172 | 83.18 5 | 77.05 189 | 81.39 3 | 75.39 137 | 77.70 181 | 57.68 152 | 71.19 246 | 74.72 294 | 64.80 136 | 83.66 86 | 56.46 191 | 81.19 260 | 84.50 119 |
|
PAPR | | | 69.20 185 | 68.66 194 | 70.82 177 | 75.15 218 | 47.77 237 | 75.31 138 | 81.11 120 | 49.62 253 | 66.33 284 | 79.27 252 | 61.53 161 | 82.96 101 | 48.12 258 | 81.50 258 | 81.74 188 |
|
v8 | | | 75.07 106 | 75.64 102 | 73.35 138 | 73.42 246 | 47.46 242 | 75.20 139 | 81.45 112 | 60.05 131 | 85.64 45 | 89.26 92 | 58.08 197 | 81.80 122 | 69.71 88 | 87.97 173 | 90.79 20 |
|
tttt0517 | | | 69.46 180 | 67.79 206 | 74.46 120 | 75.34 214 | 52.72 202 | 75.05 140 | 63.27 291 | 54.69 188 | 78.87 134 | 84.37 187 | 26.63 359 | 81.15 130 | 63.95 131 | 87.93 174 | 89.51 27 |
|
TSAR-MVS + GP. | | | 73.08 133 | 71.60 162 | 77.54 83 | 78.99 168 | 70.73 63 | 74.96 141 | 69.38 258 | 60.73 127 | 74.39 203 | 78.44 263 | 57.72 202 | 82.78 103 | 60.16 164 | 89.60 147 | 79.11 230 |
|
MAR-MVS | | | 67.72 205 | 66.16 220 | 72.40 164 | 74.45 233 | 64.99 110 | 74.87 142 | 77.50 185 | 48.67 260 | 65.78 288 | 68.58 348 | 57.01 209 | 77.79 199 | 46.68 270 | 81.92 249 | 74.42 270 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
无先验 | | | | | | | | 74.82 143 | 70.94 249 | 47.75 270 | | | | 76.85 211 | 54.47 210 | | 72.09 291 |
|
CANet | | | 73.00 138 | 71.84 156 | 76.48 98 | 75.82 211 | 61.28 141 | 74.81 144 | 80.37 138 | 63.17 110 | 62.43 308 | 80.50 235 | 61.10 168 | 85.16 62 | 64.00 130 | 84.34 224 | 83.01 160 |
|
PVSNet_Blended_VisFu | | | 70.04 171 | 68.88 188 | 73.53 137 | 82.71 115 | 63.62 121 | 74.81 144 | 81.95 105 | 48.53 261 | 67.16 281 | 79.18 255 | 51.42 237 | 78.38 185 | 54.39 213 | 79.72 279 | 78.60 234 |
|
MCST-MVS | | | 73.42 126 | 73.34 134 | 73.63 135 | 81.28 135 | 59.17 164 | 74.80 146 | 83.13 88 | 45.50 280 | 72.84 222 | 83.78 195 | 65.15 133 | 80.99 136 | 64.54 125 | 89.09 161 | 80.73 208 |
|
原ACMM2 | | | | | | | | 74.78 147 | | | | | | | | | |
|
Anonymous20231211 | | | 75.54 99 | 77.19 87 | 70.59 180 | 77.67 186 | 45.70 260 | 74.73 148 | 80.19 141 | 68.80 56 | 82.95 85 | 92.91 8 | 66.26 122 | 76.76 213 | 58.41 178 | 92.77 83 | 89.30 30 |
|
Effi-MVS+ | | | 72.10 153 | 72.28 151 | 71.58 170 | 74.21 239 | 50.33 213 | 74.72 149 | 82.73 93 | 62.62 113 | 70.77 249 | 76.83 279 | 69.96 85 | 80.97 138 | 60.20 162 | 78.43 289 | 83.45 147 |
|
K. test v3 | | | 73.67 122 | 73.61 129 | 73.87 131 | 79.78 150 | 55.62 187 | 74.69 150 | 62.04 300 | 66.16 76 | 84.76 63 | 93.23 5 | 49.47 249 | 80.97 138 | 65.66 118 | 86.67 195 | 85.02 96 |
|
MG-MVS | | | 70.47 168 | 71.34 166 | 67.85 222 | 79.26 158 | 40.42 299 | 74.67 151 | 75.15 209 | 58.41 145 | 68.74 271 | 88.14 122 | 56.08 215 | 83.69 85 | 59.90 168 | 81.71 255 | 79.43 227 |
|
UniMVSNet_ETH3D | | | 76.74 88 | 79.02 68 | 69.92 194 | 89.27 20 | 43.81 270 | 74.47 152 | 71.70 232 | 72.33 37 | 85.50 50 | 93.65 3 | 77.98 22 | 76.88 210 | 54.60 209 | 91.64 97 | 89.08 35 |
|
GeoE | | | 73.14 131 | 73.77 125 | 71.26 175 | 78.09 177 | 52.64 203 | 74.32 153 | 79.56 151 | 56.32 170 | 76.35 179 | 83.36 203 | 70.76 79 | 77.96 196 | 63.32 140 | 81.84 251 | 83.18 155 |
|
DP-MVS Recon | | | 73.57 124 | 72.69 145 | 76.23 102 | 82.85 113 | 63.39 122 | 74.32 153 | 82.96 90 | 57.75 151 | 70.35 253 | 81.98 218 | 64.34 141 | 84.41 76 | 49.69 244 | 89.95 140 | 80.89 201 |
|
ambc | | | | | 70.10 190 | 77.74 184 | 50.21 215 | 74.28 155 | 77.93 180 | | 79.26 130 | 88.29 117 | 54.11 223 | 79.77 161 | 64.43 126 | 91.10 112 | 80.30 216 |
|
nrg030 | | | 74.87 112 | 75.99 99 | 71.52 172 | 74.90 221 | 49.88 220 | 74.10 156 | 82.58 97 | 54.55 192 | 83.50 81 | 89.21 94 | 71.51 72 | 75.74 222 | 61.24 153 | 92.34 90 | 88.94 40 |
|
canonicalmvs | | | 72.29 152 | 73.38 132 | 69.04 203 | 74.23 235 | 47.37 243 | 73.93 157 | 83.18 86 | 54.36 194 | 76.61 171 | 81.64 224 | 72.03 66 | 75.34 226 | 57.12 184 | 87.28 185 | 84.40 121 |
|
CANet_DTU | | | 64.04 242 | 63.83 239 | 64.66 249 | 68.39 289 | 42.97 280 | 73.45 158 | 74.50 213 | 52.05 225 | 54.78 341 | 75.44 289 | 43.99 278 | 70.42 277 | 53.49 222 | 78.41 290 | 80.59 212 |
|
ETV-MVS | | | 72.72 145 | 72.16 154 | 74.38 124 | 76.90 197 | 55.95 181 | 73.34 159 | 84.67 56 | 62.04 117 | 72.19 231 | 70.81 328 | 65.90 126 | 85.24 58 | 58.64 175 | 84.96 216 | 81.95 185 |
|
PCF-MVS | | 63.80 13 | 72.70 146 | 71.69 158 | 75.72 108 | 78.10 176 | 60.01 157 | 73.04 160 | 81.50 110 | 45.34 284 | 79.66 125 | 84.35 188 | 65.15 133 | 82.65 106 | 48.70 252 | 89.38 155 | 84.50 119 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-3 | | | 72.86 143 | 72.28 151 | 74.62 119 | 74.74 225 | 60.18 155 | 72.91 161 | 71.76 231 | 64.74 92 | 78.42 139 | 72.07 318 | 67.00 111 | 76.28 217 | 67.97 101 | 80.91 262 | 87.39 57 |
|
Regformer-4 | | | 74.64 114 | 73.67 126 | 77.55 82 | 74.74 225 | 64.49 115 | 72.91 161 | 75.42 205 | 67.45 63 | 80.24 121 | 72.07 318 | 68.98 93 | 80.19 157 | 70.29 81 | 80.91 262 | 87.98 50 |
|
Regformer-1 | | | 74.28 116 | 73.63 128 | 76.21 103 | 74.22 236 | 64.12 118 | 72.77 163 | 75.46 204 | 66.86 68 | 79.27 129 | 72.08 316 | 69.29 90 | 78.74 175 | 68.73 91 | 84.02 228 | 85.77 85 |
|
Regformer-2 | | | 75.32 101 | 74.47 112 | 77.88 80 | 74.22 236 | 66.65 96 | 72.77 163 | 77.54 183 | 68.47 61 | 80.44 117 | 72.08 316 | 70.60 80 | 80.97 138 | 70.08 83 | 84.02 228 | 86.01 77 |
|
test_0402 | | | 78.17 78 | 79.48 66 | 74.24 126 | 83.50 98 | 59.15 165 | 72.52 165 | 74.60 212 | 75.34 17 | 88.69 13 | 91.81 23 | 75.06 44 | 82.37 111 | 65.10 121 | 88.68 165 | 81.20 192 |
|
EU-MVSNet | | | 60.82 269 | 60.80 267 | 60.86 289 | 68.37 290 | 41.16 290 | 72.27 166 | 68.27 265 | 26.96 367 | 69.08 264 | 75.71 284 | 32.09 336 | 67.44 294 | 55.59 201 | 78.90 284 | 73.97 272 |
|
EI-MVSNet-Vis-set | | | 72.78 144 | 71.87 155 | 75.54 111 | 74.77 224 | 59.02 166 | 72.24 167 | 71.56 235 | 63.92 99 | 78.59 135 | 71.59 324 | 66.22 123 | 78.60 177 | 67.58 104 | 80.32 270 | 89.00 38 |
|
v1192 | | | 73.40 127 | 73.42 130 | 73.32 140 | 74.65 231 | 48.67 225 | 72.21 168 | 81.73 107 | 52.76 218 | 81.85 97 | 84.56 184 | 57.12 206 | 82.24 115 | 68.58 92 | 87.33 183 | 89.06 36 |
|
iter_conf05 | | | 67.34 211 | 65.62 223 | 72.50 161 | 69.82 280 | 47.06 247 | 72.19 169 | 76.86 191 | 45.32 285 | 72.86 221 | 82.85 210 | 20.53 372 | 83.73 84 | 61.13 156 | 89.02 162 | 86.70 68 |
|
baseline | | | 73.10 132 | 73.96 121 | 70.51 182 | 71.46 266 | 46.39 254 | 72.08 170 | 84.40 65 | 55.95 173 | 76.62 170 | 86.46 155 | 67.20 109 | 78.03 195 | 64.22 128 | 87.27 186 | 87.11 64 |
|
EI-MVSNet-UG-set | | | 72.63 147 | 71.68 159 | 75.47 112 | 74.67 228 | 58.64 171 | 72.02 171 | 71.50 236 | 63.53 104 | 78.58 137 | 71.39 327 | 65.98 124 | 78.53 178 | 67.30 110 | 80.18 272 | 89.23 32 |
|
v1144 | | | 73.29 130 | 73.39 131 | 73.01 146 | 74.12 240 | 48.11 232 | 72.01 172 | 81.08 123 | 53.83 208 | 81.77 99 | 84.68 182 | 58.07 198 | 81.91 119 | 68.10 96 | 86.86 191 | 88.99 39 |
|
dcpmvs_2 | | | 71.02 162 | 72.65 146 | 66.16 240 | 76.06 209 | 50.49 212 | 71.97 173 | 79.36 153 | 50.34 244 | 82.81 89 | 83.63 196 | 64.38 140 | 67.27 296 | 61.54 151 | 83.71 234 | 80.71 210 |
|
GBi-Net | | | 68.30 197 | 68.79 189 | 66.81 233 | 73.14 251 | 40.68 295 | 71.96 174 | 73.03 218 | 54.81 183 | 74.72 196 | 90.36 71 | 48.63 258 | 75.20 228 | 47.12 264 | 85.37 205 | 84.54 114 |
|
test1 | | | 68.30 197 | 68.79 189 | 66.81 233 | 73.14 251 | 40.68 295 | 71.96 174 | 73.03 218 | 54.81 183 | 74.72 196 | 90.36 71 | 48.63 258 | 75.20 228 | 47.12 264 | 85.37 205 | 84.54 114 |
|
FMVSNet1 | | | 71.06 160 | 72.48 148 | 66.81 233 | 77.65 187 | 40.68 295 | 71.96 174 | 73.03 218 | 61.14 122 | 79.45 128 | 90.36 71 | 60.44 172 | 75.20 228 | 50.20 241 | 88.05 170 | 84.54 114 |
|
v1921920 | | | 72.96 141 | 72.98 142 | 72.89 152 | 74.67 228 | 47.58 240 | 71.92 177 | 80.69 129 | 51.70 229 | 81.69 103 | 83.89 193 | 56.58 212 | 82.25 114 | 68.34 94 | 87.36 181 | 88.82 43 |
|
v144192 | | | 72.99 139 | 73.06 140 | 72.77 154 | 74.58 232 | 47.48 241 | 71.90 178 | 80.44 136 | 51.57 230 | 81.46 105 | 84.11 191 | 58.04 199 | 82.12 116 | 67.98 100 | 87.47 179 | 88.70 46 |
|
v1240 | | | 73.06 135 | 73.14 137 | 72.84 153 | 74.74 225 | 47.27 245 | 71.88 179 | 81.11 120 | 51.80 227 | 82.28 95 | 84.21 189 | 56.22 214 | 82.34 112 | 68.82 90 | 87.17 189 | 88.91 41 |
|
FC-MVSNet-test | | | 73.32 129 | 74.78 109 | 68.93 208 | 79.21 160 | 36.57 323 | 71.82 180 | 79.54 152 | 57.63 156 | 82.57 92 | 90.38 68 | 59.38 183 | 78.99 170 | 57.91 181 | 94.56 36 | 91.23 15 |
|
IterMVS-LS | | | 73.01 137 | 73.12 139 | 72.66 158 | 73.79 243 | 49.90 217 | 71.63 181 | 78.44 171 | 58.22 146 | 80.51 116 | 86.63 149 | 58.15 194 | 79.62 162 | 62.51 144 | 88.20 167 | 88.48 47 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 70.70 165 | 70.88 169 | 70.16 188 | 82.64 117 | 58.80 168 | 71.48 182 | 73.64 216 | 54.98 182 | 76.55 172 | 81.77 221 | 61.10 168 | 78.94 171 | 54.87 206 | 80.84 265 | 72.74 284 |
|
LF4IMVS | | | 67.50 207 | 67.31 212 | 68.08 220 | 58.86 352 | 61.93 132 | 71.43 183 | 75.90 200 | 44.67 290 | 72.42 227 | 80.20 239 | 57.16 204 | 70.44 276 | 58.99 174 | 86.12 199 | 71.88 292 |
|
v2v482 | | | 72.55 150 | 72.58 147 | 72.43 163 | 72.92 257 | 46.72 249 | 71.41 184 | 79.13 157 | 55.27 179 | 81.17 108 | 85.25 179 | 55.41 217 | 81.13 131 | 67.25 111 | 85.46 204 | 89.43 29 |
|
Fast-Effi-MVS+-dtu | | | 70.00 172 | 68.74 192 | 73.77 132 | 73.47 245 | 64.53 114 | 71.36 185 | 78.14 176 | 55.81 175 | 68.84 270 | 74.71 295 | 65.36 131 | 75.75 221 | 52.00 227 | 79.00 283 | 81.03 196 |
|
新几何2 | | | | | | | | 71.33 186 | | | | | | | | | |
|
EI-MVSNet | | | 69.61 178 | 69.01 187 | 71.41 174 | 73.94 241 | 49.90 217 | 71.31 187 | 71.32 240 | 58.22 146 | 75.40 188 | 70.44 330 | 58.16 193 | 75.85 218 | 62.51 144 | 79.81 276 | 88.48 47 |
|
CVMVSNet | | | 59.21 281 | 58.44 284 | 61.51 281 | 73.94 241 | 47.76 238 | 71.31 187 | 64.56 283 | 26.91 368 | 60.34 320 | 70.44 330 | 36.24 321 | 67.65 292 | 53.57 221 | 68.66 343 | 69.12 317 |
|
thisisatest0530 | | | 67.05 215 | 65.16 227 | 72.73 157 | 73.10 254 | 50.55 211 | 71.26 189 | 63.91 287 | 50.22 246 | 74.46 202 | 80.75 231 | 26.81 358 | 80.25 153 | 59.43 171 | 86.50 196 | 87.37 58 |
|
旧先验2 | | | | | | | | 71.17 190 | | 45.11 287 | 78.54 138 | | | 61.28 324 | 59.19 173 | | |
|
FIs | | | 72.56 148 | 73.80 123 | 68.84 211 | 78.74 171 | 37.74 317 | 71.02 191 | 79.83 146 | 56.12 171 | 80.88 114 | 89.45 89 | 58.18 192 | 78.28 189 | 56.63 187 | 93.36 71 | 90.51 22 |
|
TranMVSNet+NR-MVSNet | | | 76.13 93 | 77.66 83 | 71.56 171 | 84.61 83 | 42.57 284 | 70.98 192 | 78.29 174 | 68.67 59 | 83.04 83 | 89.26 92 | 72.99 63 | 80.75 144 | 55.58 202 | 95.47 10 | 91.35 14 |
|
casdiffmvs | | | 73.06 135 | 73.84 122 | 70.72 178 | 71.32 267 | 46.71 250 | 70.93 193 | 84.26 70 | 55.62 177 | 77.46 153 | 87.10 128 | 67.09 110 | 77.81 198 | 63.95 131 | 86.83 192 | 87.64 54 |
|
CR-MVSNet | | | 58.96 282 | 58.49 283 | 60.36 292 | 66.37 306 | 48.24 230 | 70.93 193 | 56.40 322 | 32.87 352 | 61.35 312 | 86.66 146 | 33.19 329 | 63.22 318 | 48.50 255 | 70.17 335 | 69.62 312 |
|
RPMNet | | | 65.77 221 | 65.08 233 | 67.84 223 | 66.37 306 | 48.24 230 | 70.93 193 | 86.27 22 | 54.66 189 | 61.35 312 | 86.77 141 | 33.29 328 | 85.67 48 | 55.93 196 | 70.17 335 | 69.62 312 |
|
LFMVS | | | 67.06 214 | 67.89 204 | 64.56 250 | 78.02 178 | 38.25 312 | 70.81 196 | 59.60 306 | 65.18 87 | 71.06 247 | 86.56 152 | 43.85 279 | 75.22 227 | 46.35 271 | 89.63 146 | 80.21 218 |
|
DPM-MVS | | | 69.98 173 | 69.22 184 | 72.26 167 | 82.69 116 | 58.82 167 | 70.53 197 | 81.23 118 | 47.79 269 | 64.16 296 | 80.21 238 | 51.32 238 | 83.12 98 | 60.14 165 | 84.95 217 | 74.83 267 |
|
h-mvs33 | | | 73.08 133 | 71.61 161 | 77.48 84 | 83.89 96 | 72.89 49 | 70.47 198 | 71.12 247 | 54.28 195 | 77.89 145 | 83.41 198 | 49.04 252 | 80.98 137 | 63.62 136 | 90.77 125 | 78.58 235 |
|
MVS_111021_LR | | | 72.10 153 | 71.82 157 | 72.95 149 | 79.53 154 | 73.90 41 | 70.45 199 | 66.64 270 | 56.87 162 | 76.81 167 | 81.76 222 | 68.78 94 | 71.76 266 | 61.81 147 | 83.74 232 | 73.18 279 |
|
UniMVSNet (Re) | | | 75.00 107 | 75.48 105 | 73.56 136 | 83.14 103 | 47.92 235 | 70.41 200 | 81.04 124 | 63.67 102 | 79.54 126 | 86.37 157 | 62.83 146 | 81.82 120 | 57.10 185 | 95.25 15 | 90.94 18 |
|
TinyColmap | | | 67.98 201 | 69.28 181 | 64.08 254 | 67.98 296 | 46.82 248 | 70.04 201 | 75.26 207 | 53.05 214 | 77.36 154 | 86.79 138 | 59.39 182 | 72.59 256 | 45.64 275 | 88.01 172 | 72.83 282 |
|
VDDNet | | | 71.60 157 | 73.13 138 | 67.02 232 | 86.29 53 | 41.11 291 | 69.97 202 | 66.50 271 | 68.72 58 | 74.74 195 | 91.70 26 | 59.90 177 | 75.81 220 | 48.58 254 | 91.72 95 | 84.15 128 |
|
EPNet_dtu | | | 58.93 283 | 58.52 282 | 60.16 294 | 67.91 297 | 47.70 239 | 69.97 202 | 58.02 310 | 49.73 251 | 47.28 361 | 73.02 312 | 38.14 311 | 62.34 320 | 36.57 327 | 85.99 201 | 70.43 305 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 69.84 175 | 70.71 171 | 67.24 228 | 67.49 301 | 43.25 278 | 69.87 204 | 81.22 119 | 52.69 219 | 71.57 239 | 86.68 145 | 62.09 156 | 74.51 237 | 66.05 114 | 78.74 285 | 83.96 130 |
|
alignmvs | | | 70.54 167 | 71.00 168 | 69.15 202 | 73.50 244 | 48.04 234 | 69.85 205 | 79.62 147 | 53.94 207 | 76.54 173 | 82.00 217 | 59.00 186 | 74.68 235 | 57.32 183 | 87.21 187 | 84.72 105 |
|
GG-mvs-BLEND | | | | | 52.24 320 | 60.64 343 | 29.21 362 | 69.73 206 | 42.41 361 | | 45.47 363 | 52.33 368 | 20.43 373 | 68.16 289 | 25.52 366 | 65.42 350 | 59.36 354 |
|
pmmvs-eth3d | | | 64.41 238 | 63.27 246 | 67.82 224 | 75.81 212 | 60.18 155 | 69.49 207 | 62.05 299 | 38.81 325 | 74.13 206 | 82.23 216 | 43.76 280 | 68.65 286 | 42.53 288 | 80.63 269 | 74.63 268 |
|
DU-MVS | | | 74.91 109 | 75.57 104 | 72.93 150 | 83.50 98 | 45.79 256 | 69.47 208 | 80.14 143 | 65.22 86 | 81.74 101 | 87.08 129 | 61.82 158 | 81.07 134 | 56.21 194 | 94.98 21 | 91.93 8 |
|
EIA-MVS | | | 68.59 194 | 67.16 213 | 72.90 151 | 75.18 217 | 55.64 186 | 69.39 209 | 81.29 115 | 52.44 220 | 64.53 292 | 70.69 329 | 60.33 173 | 82.30 113 | 54.27 215 | 76.31 300 | 80.75 207 |
|
PAPM | | | 61.79 263 | 60.37 270 | 66.05 241 | 76.09 207 | 41.87 287 | 69.30 210 | 76.79 194 | 40.64 317 | 53.80 347 | 79.62 248 | 44.38 276 | 82.92 102 | 29.64 355 | 73.11 321 | 73.36 278 |
|
UniMVSNet_NR-MVSNet | | | 74.90 110 | 75.65 101 | 72.64 159 | 83.04 109 | 45.79 256 | 69.26 211 | 78.81 162 | 66.66 72 | 81.74 101 | 86.88 135 | 63.26 144 | 81.07 134 | 56.21 194 | 94.98 21 | 91.05 16 |
|
MVP-Stereo | | | 61.56 264 | 59.22 276 | 68.58 214 | 79.28 157 | 60.44 153 | 69.20 212 | 71.57 234 | 43.58 298 | 56.42 335 | 78.37 264 | 39.57 306 | 76.46 216 | 34.86 336 | 60.16 358 | 68.86 319 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
hse-mvs2 | | | 72.32 151 | 70.66 173 | 77.31 89 | 83.10 108 | 71.77 52 | 69.19 213 | 71.45 238 | 54.28 195 | 77.89 145 | 78.26 265 | 49.04 252 | 79.23 166 | 63.62 136 | 89.13 160 | 80.92 200 |
|
AUN-MVS | | | 70.22 169 | 67.88 205 | 77.22 90 | 82.96 112 | 71.61 53 | 69.08 214 | 71.39 239 | 49.17 256 | 71.70 234 | 78.07 270 | 37.62 316 | 79.21 167 | 61.81 147 | 89.15 158 | 80.82 203 |
|
gg-mvs-nofinetune | | | 55.75 295 | 56.75 295 | 52.72 319 | 62.87 331 | 28.04 364 | 68.92 215 | 41.36 368 | 71.09 44 | 50.80 353 | 92.63 12 | 20.74 371 | 66.86 299 | 29.97 353 | 72.41 323 | 63.25 344 |
|
Baseline_NR-MVSNet | | | 70.62 166 | 73.19 136 | 62.92 271 | 76.97 194 | 34.44 339 | 68.84 216 | 70.88 250 | 60.25 130 | 79.50 127 | 90.53 56 | 61.82 158 | 69.11 284 | 54.67 208 | 95.27 14 | 85.22 89 |
|
v148 | | | 69.38 183 | 69.39 180 | 69.36 198 | 69.14 288 | 44.56 265 | 68.83 217 | 72.70 224 | 54.79 186 | 78.59 135 | 84.12 190 | 54.69 219 | 76.74 214 | 59.40 172 | 82.20 246 | 86.79 66 |
|
FMVSNet2 | | | 67.48 208 | 68.21 200 | 65.29 245 | 73.14 251 | 38.94 308 | 68.81 218 | 71.21 246 | 54.81 183 | 76.73 169 | 86.48 154 | 48.63 258 | 74.60 236 | 47.98 259 | 86.11 200 | 82.35 178 |
|
MVS_111021_HR | | | 72.98 140 | 72.97 143 | 72.99 147 | 80.82 139 | 65.47 104 | 68.81 218 | 72.77 223 | 57.67 154 | 75.76 182 | 82.38 215 | 71.01 77 | 77.17 205 | 61.38 152 | 86.15 198 | 76.32 255 |
|
Anonymous20240529 | | | 72.56 148 | 73.79 124 | 68.86 210 | 76.89 198 | 45.21 262 | 68.80 220 | 77.25 189 | 67.16 65 | 76.89 163 | 90.44 59 | 65.95 125 | 74.19 242 | 50.75 236 | 90.00 138 | 87.18 63 |
|
Anonymous20240521 | | | 63.55 244 | 66.07 221 | 55.99 310 | 66.18 311 | 44.04 269 | 68.77 221 | 68.80 260 | 46.99 274 | 72.57 224 | 85.84 173 | 39.87 303 | 50.22 341 | 53.40 224 | 92.23 92 | 73.71 276 |
|
CLD-MVS | | | 72.88 142 | 72.36 150 | 74.43 122 | 77.03 191 | 54.30 193 | 68.77 221 | 83.43 85 | 52.12 223 | 76.79 168 | 74.44 298 | 69.54 89 | 83.91 81 | 55.88 197 | 93.25 73 | 85.09 92 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
1314 | | | 59.83 277 | 58.86 280 | 62.74 272 | 65.71 314 | 44.78 264 | 68.59 223 | 72.63 225 | 33.54 351 | 61.05 316 | 67.29 354 | 43.62 281 | 71.26 269 | 49.49 246 | 67.84 346 | 72.19 290 |
|
1121 | | | 69.23 184 | 68.26 197 | 72.12 168 | 88.36 37 | 71.40 55 | 68.59 223 | 62.06 298 | 43.80 294 | 74.75 194 | 86.18 162 | 52.92 228 | 76.85 211 | 54.47 210 | 83.27 238 | 68.12 320 |
|
MVS | | | 60.62 272 | 59.97 272 | 62.58 273 | 68.13 294 | 47.28 244 | 68.59 223 | 73.96 215 | 32.19 353 | 59.94 323 | 68.86 346 | 50.48 242 | 77.64 202 | 41.85 293 | 75.74 302 | 62.83 345 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 248 | 63.28 245 | 63.07 267 | 69.81 281 | 45.34 261 | 68.52 226 | 67.14 267 | 43.74 296 | 70.61 251 | 79.22 253 | 47.90 262 | 72.66 252 | 48.75 251 | 73.84 319 | 71.21 300 |
|
PM-MVS | | | 64.49 235 | 63.61 242 | 67.14 231 | 76.68 200 | 75.15 32 | 68.49 227 | 42.85 360 | 51.17 237 | 77.85 147 | 80.51 234 | 45.76 265 | 66.31 305 | 52.83 225 | 76.35 299 | 59.96 353 |
|
BH-untuned | | | 69.39 182 | 69.46 179 | 69.18 201 | 77.96 180 | 56.88 177 | 68.47 228 | 77.53 184 | 56.77 164 | 77.79 148 | 79.63 247 | 60.30 174 | 80.20 156 | 46.04 273 | 80.65 267 | 70.47 304 |
|
testdata1 | | | | | | | | 68.34 229 | | 57.24 160 | | | | | | | |
|
tpm2 | | | 56.12 293 | 54.64 306 | 60.55 291 | 66.24 309 | 36.01 327 | 68.14 230 | 56.77 320 | 33.60 350 | 58.25 329 | 75.52 288 | 30.25 351 | 74.33 240 | 33.27 342 | 69.76 339 | 71.32 297 |
|
c3_l | | | 69.82 176 | 69.89 177 | 69.61 196 | 66.24 309 | 43.48 274 | 68.12 231 | 79.61 149 | 51.43 232 | 77.72 149 | 80.18 241 | 54.61 221 | 78.15 194 | 63.62 136 | 87.50 178 | 87.20 62 |
|
CMPMVS |  | 48.73 20 | 61.54 265 | 60.89 265 | 63.52 261 | 61.08 340 | 51.55 206 | 68.07 232 | 68.00 266 | 33.88 346 | 65.87 286 | 81.25 226 | 37.91 314 | 67.71 291 | 49.32 247 | 82.60 243 | 71.31 298 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test222 | | | | | | 87.30 41 | 69.15 79 | 67.85 233 | 59.59 307 | 41.06 313 | 73.05 220 | 85.72 175 | 48.03 261 | | | 80.65 267 | 66.92 326 |
|
VDD-MVS | | | 70.81 164 | 71.44 165 | 68.91 209 | 79.07 166 | 46.51 251 | 67.82 234 | 70.83 251 | 61.23 121 | 74.07 208 | 88.69 107 | 59.86 178 | 75.62 223 | 51.11 233 | 90.28 131 | 84.61 110 |
|
ab-mvs | | | 64.11 241 | 65.13 230 | 61.05 286 | 71.99 263 | 38.03 316 | 67.59 235 | 68.79 261 | 49.08 258 | 65.32 289 | 86.26 160 | 58.02 200 | 66.85 300 | 39.33 305 | 79.79 278 | 78.27 239 |
|
eth_miper_zixun_eth | | | 69.42 181 | 68.73 193 | 71.50 173 | 67.99 295 | 46.42 252 | 67.58 236 | 78.81 162 | 50.72 241 | 78.13 143 | 80.34 237 | 50.15 245 | 80.34 150 | 60.18 163 | 84.65 218 | 87.74 53 |
|
CostFormer | | | 57.35 291 | 56.14 299 | 60.97 287 | 63.76 328 | 38.43 309 | 67.50 237 | 60.22 304 | 37.14 332 | 59.12 326 | 76.34 282 | 32.78 331 | 71.99 263 | 39.12 307 | 69.27 340 | 72.47 286 |
|
Patchmtry | | | 60.91 268 | 63.01 249 | 54.62 313 | 66.10 312 | 26.27 369 | 67.47 238 | 56.40 322 | 54.05 203 | 72.04 232 | 86.66 146 | 33.19 329 | 60.17 326 | 43.69 283 | 87.45 180 | 77.42 248 |
|
USDC | | | 62.80 253 | 63.10 248 | 61.89 278 | 65.19 317 | 43.30 277 | 67.42 239 | 74.20 214 | 35.80 338 | 72.25 229 | 84.48 186 | 45.67 267 | 71.95 264 | 37.95 317 | 84.97 213 | 70.42 306 |
|
xiu_mvs_v1_base_debu | | | 67.87 202 | 67.07 214 | 70.26 185 | 79.13 163 | 61.90 133 | 67.34 240 | 71.25 243 | 47.98 265 | 67.70 275 | 74.19 303 | 61.31 163 | 72.62 253 | 56.51 188 | 78.26 291 | 76.27 256 |
|
xiu_mvs_v1_base | | | 67.87 202 | 67.07 214 | 70.26 185 | 79.13 163 | 61.90 133 | 67.34 240 | 71.25 243 | 47.98 265 | 67.70 275 | 74.19 303 | 61.31 163 | 72.62 253 | 56.51 188 | 78.26 291 | 76.27 256 |
|
xiu_mvs_v1_base_debi | | | 67.87 202 | 67.07 214 | 70.26 185 | 79.13 163 | 61.90 133 | 67.34 240 | 71.25 243 | 47.98 265 | 67.70 275 | 74.19 303 | 61.31 163 | 72.62 253 | 56.51 188 | 78.26 291 | 76.27 256 |
|
test2506 | | | 61.23 266 | 60.85 266 | 62.38 275 | 78.80 169 | 27.88 365 | 67.33 243 | 37.42 373 | 54.23 197 | 67.55 278 | 88.68 108 | 17.87 377 | 74.39 239 | 46.33 272 | 89.41 152 | 84.86 99 |
|
Vis-MVSNet (Re-imp) | | | 62.74 254 | 63.21 247 | 61.34 284 | 72.19 261 | 31.56 352 | 67.31 244 | 53.87 330 | 53.60 210 | 69.88 259 | 83.37 201 | 40.52 300 | 70.98 271 | 41.40 295 | 86.78 193 | 81.48 191 |
|
jason | | | 64.47 236 | 62.84 250 | 69.34 200 | 76.91 196 | 59.20 161 | 67.15 245 | 65.67 273 | 35.29 339 | 65.16 290 | 76.74 280 | 44.67 274 | 70.68 272 | 54.74 207 | 79.28 282 | 78.14 242 |
jason: jason. |
miper_ehance_all_eth | | | 68.36 196 | 68.16 202 | 68.98 205 | 65.14 320 | 43.34 276 | 67.07 246 | 78.92 161 | 49.11 257 | 76.21 180 | 77.72 272 | 53.48 225 | 77.92 197 | 61.16 155 | 84.59 220 | 85.68 87 |
|
pmmvs6 | | | 71.82 155 | 73.66 127 | 66.31 239 | 75.94 210 | 42.01 286 | 66.99 247 | 72.53 226 | 63.45 106 | 76.43 177 | 92.78 10 | 72.95 64 | 69.69 280 | 51.41 231 | 90.46 129 | 87.22 60 |
|
ECVR-MVS |  | | 64.82 229 | 65.22 225 | 63.60 259 | 78.80 169 | 31.14 355 | 66.97 248 | 56.47 321 | 54.23 197 | 69.94 258 | 88.68 108 | 37.23 317 | 74.81 234 | 45.28 278 | 89.41 152 | 84.86 99 |
|
PatchmatchNet |  | | 54.60 301 | 54.27 307 | 55.59 311 | 65.17 319 | 39.08 305 | 66.92 249 | 51.80 341 | 39.89 319 | 58.39 327 | 73.12 311 | 31.69 339 | 58.33 330 | 43.01 287 | 58.38 364 | 69.38 315 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MSDG | | | 67.47 209 | 67.48 210 | 67.46 226 | 70.70 271 | 54.69 191 | 66.90 250 | 78.17 175 | 60.88 125 | 70.41 252 | 74.76 292 | 61.22 167 | 73.18 247 | 47.38 263 | 76.87 297 | 74.49 269 |
|
cl22 | | | 67.14 212 | 66.51 218 | 69.03 204 | 63.20 330 | 43.46 275 | 66.88 251 | 76.25 196 | 49.22 255 | 74.48 201 | 77.88 271 | 45.49 269 | 77.40 204 | 60.64 161 | 84.59 220 | 86.24 72 |
|
TAMVS | | | 65.31 224 | 63.75 240 | 69.97 193 | 82.23 122 | 59.76 160 | 66.78 252 | 63.37 290 | 45.20 286 | 69.79 260 | 79.37 251 | 47.42 264 | 72.17 259 | 34.48 337 | 85.15 212 | 77.99 246 |
|
test_post1 | | | | | | | | 66.63 253 | | | | 2.08 376 | 30.66 349 | 59.33 328 | 40.34 302 | | |
|
FMVSNet3 | | | 65.00 228 | 65.16 227 | 64.52 251 | 69.47 284 | 37.56 320 | 66.63 253 | 70.38 253 | 51.55 231 | 74.72 196 | 83.27 206 | 37.89 315 | 74.44 238 | 47.12 264 | 85.37 205 | 81.57 190 |
|
mvs_anonymous | | | 65.08 227 | 65.49 224 | 63.83 257 | 63.79 327 | 37.60 319 | 66.52 255 | 69.82 256 | 43.44 299 | 73.46 214 | 86.08 168 | 58.79 189 | 71.75 267 | 51.90 228 | 75.63 304 | 82.15 182 |
|
wuyk23d | | | 61.97 260 | 66.25 219 | 49.12 330 | 58.19 356 | 60.77 151 | 66.32 256 | 52.97 337 | 55.93 174 | 90.62 5 | 86.91 134 | 73.07 62 | 35.98 370 | 20.63 372 | 91.63 98 | 50.62 361 |
|
tpm cat1 | | | 54.02 305 | 52.63 313 | 58.19 304 | 64.85 323 | 39.86 302 | 66.26 257 | 57.28 315 | 32.16 354 | 56.90 332 | 70.39 332 | 32.75 332 | 65.30 308 | 34.29 338 | 58.79 361 | 69.41 314 |
|
Fast-Effi-MVS+ | | | 68.81 190 | 68.30 196 | 70.35 184 | 74.66 230 | 48.61 226 | 66.06 258 | 78.32 172 | 50.62 242 | 71.48 242 | 75.54 286 | 68.75 95 | 79.59 164 | 50.55 239 | 78.73 286 | 82.86 164 |
|
V42 | | | 71.06 160 | 70.83 170 | 71.72 169 | 67.25 302 | 47.14 246 | 65.94 259 | 80.35 139 | 51.35 233 | 83.40 82 | 83.23 207 | 59.25 184 | 78.80 173 | 65.91 116 | 80.81 266 | 89.23 32 |
|
cl____ | | | 68.26 200 | 68.26 197 | 68.29 217 | 64.98 321 | 43.67 272 | 65.89 260 | 74.67 210 | 50.04 249 | 76.86 165 | 82.42 214 | 48.74 256 | 75.38 224 | 60.92 159 | 89.81 143 | 85.80 84 |
|
DIV-MVS_self_test | | | 68.27 199 | 68.26 197 | 68.29 217 | 64.98 321 | 43.67 272 | 65.89 260 | 74.67 210 | 50.04 249 | 76.86 165 | 82.43 213 | 48.74 256 | 75.38 224 | 60.94 158 | 89.81 143 | 85.81 80 |
|
tpmvs | | | 55.84 294 | 55.45 304 | 57.01 307 | 60.33 344 | 33.20 346 | 65.89 260 | 59.29 308 | 47.52 272 | 56.04 336 | 73.60 306 | 31.05 346 | 68.06 290 | 40.64 300 | 64.64 351 | 69.77 310 |
|
lupinMVS | | | 63.36 245 | 61.49 260 | 68.97 206 | 74.93 219 | 59.19 162 | 65.80 263 | 64.52 284 | 34.68 344 | 63.53 304 | 74.25 301 | 43.19 283 | 70.62 273 | 53.88 219 | 78.67 287 | 77.10 251 |
|
TransMVSNet (Re) | | | 69.62 177 | 71.63 160 | 63.57 260 | 76.51 201 | 35.93 329 | 65.75 264 | 71.29 242 | 61.05 123 | 75.02 190 | 89.90 83 | 65.88 127 | 70.41 278 | 49.79 243 | 89.48 150 | 84.38 122 |
|
NR-MVSNet | | | 73.62 123 | 74.05 119 | 72.33 166 | 83.50 98 | 43.71 271 | 65.65 265 | 77.32 187 | 64.32 96 | 75.59 184 | 87.08 129 | 62.45 151 | 81.34 126 | 54.90 205 | 95.63 8 | 91.93 8 |
|
BH-w/o | | | 64.81 230 | 64.29 236 | 66.36 238 | 76.08 208 | 54.71 190 | 65.61 266 | 75.23 208 | 50.10 248 | 71.05 248 | 71.86 323 | 54.33 222 | 79.02 169 | 38.20 315 | 76.14 301 | 65.36 335 |
|
PVSNet_BlendedMVS | | | 65.38 223 | 64.30 235 | 68.61 213 | 69.81 281 | 49.36 221 | 65.60 267 | 78.96 159 | 45.50 280 | 59.98 321 | 78.61 261 | 51.82 233 | 78.20 191 | 44.30 279 | 84.11 226 | 78.27 239 |
|
test1111 | | | 64.62 232 | 65.19 226 | 62.93 270 | 79.01 167 | 29.91 359 | 65.45 268 | 54.41 329 | 54.09 202 | 71.47 243 | 88.48 111 | 37.02 318 | 74.29 241 | 46.83 269 | 89.94 141 | 84.58 113 |
|
thres100view900 | | | 61.17 267 | 61.09 263 | 61.39 283 | 72.14 262 | 35.01 335 | 65.42 269 | 56.99 318 | 55.23 180 | 70.71 250 | 79.90 243 | 32.07 337 | 72.09 260 | 35.61 333 | 81.73 252 | 77.08 252 |
|
CDS-MVSNet | | | 64.33 239 | 62.66 252 | 69.35 199 | 80.44 145 | 58.28 172 | 65.26 270 | 65.66 274 | 44.36 291 | 67.30 280 | 75.54 286 | 43.27 282 | 71.77 265 | 37.68 318 | 84.44 223 | 78.01 245 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 58.57 286 | 58.04 286 | 60.17 293 | 70.17 278 | 41.07 292 | 65.19 271 | 53.38 335 | 43.34 302 | 61.00 317 | 73.48 307 | 45.20 270 | 69.38 282 | 40.34 302 | 70.31 334 | 70.05 307 |
|
HY-MVS | | 49.31 19 | 57.96 288 | 57.59 289 | 59.10 299 | 66.85 305 | 36.17 326 | 65.13 272 | 65.39 277 | 39.24 322 | 54.69 343 | 78.14 268 | 44.28 277 | 67.18 297 | 33.75 341 | 70.79 331 | 73.95 273 |
|
ET-MVSNet_ETH3D | | | 63.32 246 | 60.69 268 | 71.20 176 | 70.15 279 | 55.66 185 | 65.02 273 | 64.32 285 | 43.28 303 | 68.99 266 | 72.05 322 | 25.46 365 | 78.19 193 | 54.16 217 | 82.80 241 | 79.74 224 |
|
diffmvs | | | 67.42 210 | 67.50 209 | 67.20 229 | 62.26 334 | 45.21 262 | 64.87 274 | 77.04 190 | 48.21 262 | 71.74 233 | 79.70 246 | 58.40 191 | 71.17 270 | 64.99 122 | 80.27 271 | 85.22 89 |
|
miper_enhance_ethall | | | 65.86 220 | 65.05 234 | 68.28 219 | 61.62 338 | 42.62 283 | 64.74 275 | 77.97 178 | 42.52 304 | 73.42 215 | 72.79 313 | 49.66 247 | 77.68 201 | 58.12 179 | 84.59 220 | 84.54 114 |
|
thres600view7 | | | 61.82 262 | 61.38 261 | 63.12 266 | 71.81 264 | 34.93 336 | 64.64 276 | 56.99 318 | 54.78 187 | 70.33 254 | 79.74 245 | 32.07 337 | 72.42 258 | 38.61 311 | 83.46 236 | 82.02 183 |
|
BH-RMVSNet | | | 68.69 193 | 68.20 201 | 70.14 189 | 76.40 202 | 53.90 197 | 64.62 277 | 73.48 217 | 58.01 148 | 73.91 210 | 81.78 220 | 59.09 185 | 78.22 190 | 48.59 253 | 77.96 294 | 78.31 238 |
|
pm-mvs1 | | | 68.40 195 | 69.85 178 | 64.04 256 | 73.10 254 | 39.94 301 | 64.61 278 | 70.50 252 | 55.52 178 | 73.97 209 | 89.33 90 | 63.91 143 | 68.38 288 | 49.68 245 | 88.02 171 | 83.81 134 |
|
pmmvs4 | | | 60.78 270 | 59.04 278 | 66.00 242 | 73.06 256 | 57.67 174 | 64.53 279 | 60.22 304 | 36.91 333 | 65.96 285 | 77.27 276 | 39.66 305 | 68.54 287 | 38.87 308 | 74.89 311 | 71.80 293 |
|
WR-MVS | | | 71.20 159 | 72.48 148 | 67.36 227 | 84.98 76 | 35.70 331 | 64.43 280 | 68.66 262 | 65.05 89 | 81.49 104 | 86.43 156 | 57.57 203 | 76.48 215 | 50.36 240 | 93.32 72 | 89.90 24 |
|
tpmrst | | | 50.15 319 | 51.38 319 | 46.45 337 | 56.05 362 | 24.77 371 | 64.40 281 | 49.98 345 | 36.14 335 | 53.32 348 | 69.59 339 | 35.16 323 | 48.69 344 | 39.24 306 | 58.51 363 | 65.89 332 |
|
VPA-MVSNet | | | 68.71 192 | 70.37 174 | 63.72 258 | 76.13 206 | 38.06 315 | 64.10 282 | 71.48 237 | 56.60 169 | 74.10 207 | 88.31 116 | 64.78 138 | 69.72 279 | 47.69 262 | 90.15 135 | 83.37 149 |
|
MIMVSNet1 | | | 66.57 216 | 69.23 183 | 58.59 302 | 81.26 136 | 37.73 318 | 64.06 283 | 57.62 311 | 57.02 161 | 78.40 140 | 90.75 48 | 62.65 147 | 58.10 332 | 41.77 294 | 89.58 149 | 79.95 220 |
|
MVS_0304 | | | 62.51 257 | 62.27 254 | 63.25 264 | 69.39 285 | 48.47 227 | 64.05 284 | 62.48 293 | 59.69 135 | 54.10 346 | 81.04 228 | 45.71 266 | 66.31 305 | 41.38 296 | 82.58 244 | 74.96 266 |
|
IterMVS | | | 63.12 249 | 62.48 253 | 65.02 248 | 66.34 308 | 52.86 201 | 63.81 285 | 62.25 294 | 46.57 277 | 71.51 241 | 80.40 236 | 44.60 275 | 66.82 301 | 51.38 232 | 75.47 306 | 75.38 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 67.68 206 | 66.07 221 | 72.49 162 | 73.34 248 | 58.20 173 | 63.80 286 | 65.55 276 | 48.10 264 | 76.91 162 | 82.64 212 | 45.20 270 | 78.84 172 | 61.20 154 | 77.89 295 | 80.44 215 |
|
DELS-MVS | | | 68.83 189 | 68.31 195 | 70.38 183 | 70.55 275 | 48.31 228 | 63.78 287 | 82.13 100 | 54.00 204 | 68.96 267 | 75.17 290 | 58.95 187 | 80.06 159 | 58.55 176 | 82.74 242 | 82.76 167 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
xiu_mvs_v2_base | | | 64.43 237 | 63.96 238 | 65.85 244 | 77.72 185 | 51.32 208 | 63.63 288 | 72.31 229 | 45.06 289 | 61.70 309 | 69.66 338 | 62.56 148 | 73.93 245 | 49.06 249 | 73.91 317 | 72.31 288 |
|
tfpnnormal | | | 66.48 217 | 67.93 203 | 62.16 277 | 73.40 247 | 36.65 322 | 63.45 289 | 64.99 279 | 55.97 172 | 72.82 223 | 87.80 125 | 57.06 208 | 69.10 285 | 48.31 257 | 87.54 176 | 80.72 209 |
|
TR-MVS | | | 64.59 233 | 63.54 243 | 67.73 225 | 75.75 213 | 50.83 210 | 63.39 290 | 70.29 254 | 49.33 254 | 71.55 240 | 74.55 296 | 50.94 239 | 78.46 181 | 40.43 301 | 75.69 303 | 73.89 274 |
|
PS-MVSNAJ | | | 64.27 240 | 63.73 241 | 65.90 243 | 77.82 183 | 51.42 207 | 63.33 291 | 72.33 228 | 45.09 288 | 61.60 310 | 68.04 349 | 62.39 152 | 73.95 244 | 49.07 248 | 73.87 318 | 72.34 287 |
|
tfpn200view9 | | | 60.35 274 | 59.97 272 | 61.51 281 | 70.78 269 | 35.35 333 | 63.27 292 | 57.47 312 | 53.00 215 | 68.31 272 | 77.09 277 | 32.45 334 | 72.09 260 | 35.61 333 | 81.73 252 | 77.08 252 |
|
thres400 | | | 60.77 271 | 59.97 272 | 63.15 265 | 70.78 269 | 35.35 333 | 63.27 292 | 57.47 312 | 53.00 215 | 68.31 272 | 77.09 277 | 32.45 334 | 72.09 260 | 35.61 333 | 81.73 252 | 82.02 183 |
|
test_yl | | | 65.11 225 | 65.09 231 | 65.18 246 | 70.59 272 | 40.86 293 | 63.22 294 | 72.79 221 | 57.91 149 | 68.88 268 | 79.07 258 | 42.85 286 | 74.89 232 | 45.50 276 | 84.97 213 | 79.81 221 |
|
DCV-MVSNet | | | 65.11 225 | 65.09 231 | 65.18 246 | 70.59 272 | 40.86 293 | 63.22 294 | 72.79 221 | 57.91 149 | 68.88 268 | 79.07 258 | 42.85 286 | 74.89 232 | 45.50 276 | 84.97 213 | 79.81 221 |
|
baseline1 | | | 57.82 289 | 58.36 285 | 56.19 309 | 69.17 287 | 30.76 357 | 62.94 296 | 55.21 325 | 46.04 279 | 63.83 300 | 78.47 262 | 41.20 294 | 63.68 315 | 39.44 304 | 68.99 341 | 74.13 271 |
|
baseline2 | | | 55.57 298 | 52.74 312 | 64.05 255 | 65.26 316 | 44.11 268 | 62.38 297 | 54.43 328 | 39.03 323 | 51.21 351 | 67.35 353 | 33.66 327 | 72.45 257 | 37.14 323 | 64.22 353 | 75.60 259 |
|
FPMVS | | | 59.43 280 | 60.07 271 | 57.51 306 | 77.62 188 | 71.52 54 | 62.33 298 | 50.92 342 | 57.40 159 | 69.40 262 | 80.00 242 | 39.14 307 | 61.92 322 | 37.47 321 | 66.36 348 | 39.09 370 |
|
PatchMatch-RL | | | 58.68 285 | 57.72 288 | 61.57 280 | 76.21 205 | 73.59 44 | 61.83 299 | 49.00 349 | 47.30 273 | 61.08 314 | 68.97 343 | 50.16 244 | 59.01 329 | 36.06 332 | 68.84 342 | 52.10 360 |
|
cascas | | | 64.59 233 | 62.77 251 | 70.05 191 | 75.27 215 | 50.02 216 | 61.79 300 | 71.61 233 | 42.46 305 | 63.68 302 | 68.89 345 | 49.33 251 | 80.35 149 | 47.82 261 | 84.05 227 | 79.78 223 |
|
LCM-MVSNet-Re | | | 69.10 187 | 71.57 163 | 61.70 279 | 70.37 276 | 34.30 341 | 61.45 301 | 79.62 147 | 56.81 163 | 89.59 8 | 88.16 121 | 68.44 99 | 72.94 249 | 42.30 289 | 87.33 183 | 77.85 247 |
|
1112_ss | | | 59.48 279 | 58.99 279 | 60.96 288 | 77.84 182 | 42.39 285 | 61.42 302 | 68.45 264 | 37.96 328 | 59.93 324 | 67.46 351 | 45.11 272 | 65.07 309 | 40.89 299 | 71.81 326 | 75.41 262 |
|
IB-MVS | | 49.67 18 | 59.69 278 | 56.96 293 | 67.90 221 | 68.19 293 | 50.30 214 | 61.42 302 | 65.18 278 | 47.57 271 | 55.83 338 | 67.15 355 | 23.77 369 | 79.60 163 | 43.56 285 | 79.97 274 | 73.79 275 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_Blended | | | 62.90 252 | 61.64 257 | 66.69 236 | 69.81 281 | 49.36 221 | 61.23 304 | 78.96 159 | 42.04 306 | 59.98 321 | 68.86 346 | 51.82 233 | 78.20 191 | 44.30 279 | 77.77 296 | 72.52 285 |
|
GA-MVS | | | 62.91 251 | 61.66 256 | 66.66 237 | 67.09 304 | 44.49 266 | 61.18 305 | 69.36 259 | 51.33 234 | 69.33 263 | 74.47 297 | 36.83 319 | 74.94 231 | 50.60 238 | 74.72 312 | 80.57 213 |
|
MS-PatchMatch | | | 55.59 297 | 54.89 305 | 57.68 305 | 69.18 286 | 49.05 223 | 61.00 306 | 62.93 292 | 35.98 336 | 58.36 328 | 68.93 344 | 36.71 320 | 66.59 303 | 37.62 320 | 63.30 354 | 57.39 356 |
|
patch_mono-2 | | | 62.73 255 | 64.08 237 | 58.68 301 | 70.36 277 | 55.87 183 | 60.84 307 | 64.11 286 | 41.23 311 | 64.04 297 | 78.22 266 | 60.00 175 | 48.80 343 | 54.17 216 | 83.71 234 | 71.37 296 |
|
MVSTER | | | 63.29 247 | 61.60 259 | 68.36 215 | 59.77 349 | 46.21 255 | 60.62 308 | 71.32 240 | 41.83 307 | 75.40 188 | 79.12 256 | 30.25 351 | 75.85 218 | 56.30 193 | 79.81 276 | 83.03 159 |
|
thisisatest0515 | | | 60.48 273 | 57.86 287 | 68.34 216 | 67.25 302 | 46.42 252 | 60.58 309 | 62.14 295 | 40.82 315 | 63.58 303 | 69.12 341 | 26.28 361 | 78.34 187 | 48.83 250 | 82.13 247 | 80.26 217 |
|
tpm | | | 50.60 317 | 52.42 315 | 45.14 342 | 65.18 318 | 26.29 368 | 60.30 310 | 43.50 358 | 37.41 330 | 57.01 331 | 79.09 257 | 30.20 353 | 42.32 363 | 32.77 344 | 66.36 348 | 66.81 329 |
|
VPNet | | | 65.58 222 | 67.56 207 | 59.65 296 | 79.72 151 | 30.17 358 | 60.27 311 | 62.14 295 | 54.19 200 | 71.24 244 | 86.63 149 | 58.80 188 | 67.62 293 | 44.17 282 | 90.87 122 | 81.18 193 |
|
MIMVSNet | | | 54.39 302 | 56.12 300 | 49.20 328 | 72.57 258 | 30.91 356 | 59.98 312 | 48.43 351 | 41.66 308 | 55.94 337 | 83.86 194 | 41.19 295 | 50.42 340 | 26.05 362 | 75.38 308 | 66.27 331 |
|
HyFIR lowres test | | | 63.01 250 | 60.47 269 | 70.61 179 | 83.04 109 | 54.10 194 | 59.93 313 | 72.24 230 | 33.67 349 | 69.00 265 | 75.63 285 | 38.69 309 | 76.93 208 | 36.60 326 | 75.45 307 | 80.81 206 |
|
Patchmatch-RL test | | | 59.95 276 | 59.12 277 | 62.44 274 | 72.46 259 | 54.61 192 | 59.63 314 | 47.51 353 | 41.05 314 | 74.58 200 | 74.30 300 | 31.06 345 | 65.31 307 | 51.61 229 | 79.85 275 | 67.39 323 |
|
PatchT | | | 53.35 307 | 56.47 297 | 43.99 346 | 64.19 325 | 17.46 377 | 59.15 315 | 43.10 359 | 52.11 224 | 54.74 342 | 86.95 133 | 29.97 354 | 49.98 342 | 43.62 284 | 74.40 315 | 64.53 343 |
|
JIA-IIPM | | | 54.03 304 | 51.62 316 | 61.25 285 | 59.14 351 | 55.21 188 | 59.10 316 | 47.72 352 | 50.85 239 | 50.31 357 | 85.81 174 | 20.10 374 | 63.97 313 | 36.16 331 | 55.41 369 | 64.55 342 |
|
Anonymous202405211 | | | 66.02 219 | 66.89 217 | 63.43 263 | 74.22 236 | 38.14 313 | 59.00 317 | 66.13 272 | 63.33 109 | 69.76 261 | 85.95 172 | 51.88 232 | 70.50 275 | 44.23 281 | 87.52 177 | 81.64 189 |
|
MDTV_nov1_ep13 | | | | 54.05 308 | | 65.54 315 | 29.30 361 | 59.00 317 | 55.22 324 | 35.96 337 | 52.44 349 | 75.98 283 | 30.77 348 | 59.62 327 | 38.21 314 | 73.33 320 | |
|
thres200 | | | 57.55 290 | 57.02 292 | 59.17 298 | 67.89 298 | 34.93 336 | 58.91 319 | 57.25 316 | 50.24 245 | 64.01 298 | 71.46 326 | 32.49 333 | 71.39 268 | 31.31 347 | 79.57 280 | 71.19 301 |
|
ANet_high | | | 67.08 213 | 69.94 176 | 58.51 303 | 57.55 357 | 27.09 366 | 58.43 320 | 76.80 193 | 63.56 103 | 82.40 94 | 91.93 21 | 59.82 179 | 64.98 310 | 50.10 242 | 88.86 164 | 83.46 146 |
|
ppachtmachnet_test | | | 60.26 275 | 59.61 275 | 62.20 276 | 67.70 299 | 44.33 267 | 58.18 321 | 60.96 303 | 40.75 316 | 65.80 287 | 72.57 314 | 41.23 293 | 63.92 314 | 46.87 268 | 82.42 245 | 78.33 237 |
|
KD-MVS_self_test | | | 66.38 218 | 67.51 208 | 62.97 269 | 61.76 336 | 34.39 340 | 58.11 322 | 75.30 206 | 50.84 240 | 77.12 157 | 85.42 176 | 56.84 210 | 69.44 281 | 51.07 234 | 91.16 109 | 85.08 94 |
|
Test_1112_low_res | | | 58.78 284 | 58.69 281 | 59.04 300 | 79.41 155 | 38.13 314 | 57.62 323 | 66.98 269 | 34.74 342 | 59.62 325 | 77.56 274 | 42.92 285 | 63.65 316 | 38.66 310 | 70.73 332 | 75.35 264 |
|
VNet | | | 64.01 243 | 65.15 229 | 60.57 290 | 73.28 249 | 35.61 332 | 57.60 324 | 67.08 268 | 54.61 190 | 66.76 283 | 83.37 201 | 56.28 213 | 66.87 298 | 42.19 290 | 85.20 211 | 79.23 229 |
|
DSMNet-mixed | | | 43.18 336 | 44.66 337 | 38.75 354 | 54.75 369 | 28.88 363 | 57.06 325 | 27.42 379 | 13.47 373 | 47.27 362 | 77.67 273 | 38.83 308 | 39.29 369 | 25.32 367 | 60.12 359 | 48.08 363 |
|
CL-MVSNet_self_test | | | 62.44 258 | 63.40 244 | 59.55 297 | 72.34 260 | 32.38 348 | 56.39 326 | 64.84 280 | 51.21 236 | 67.46 279 | 81.01 229 | 50.75 240 | 63.51 317 | 38.47 313 | 88.12 169 | 82.75 168 |
|
D2MVS | | | 62.58 256 | 61.05 264 | 67.20 229 | 63.85 326 | 47.92 235 | 56.29 327 | 69.58 257 | 39.32 320 | 70.07 257 | 78.19 267 | 34.93 324 | 72.68 251 | 53.44 223 | 83.74 232 | 81.00 198 |
|
FMVSNet5 | | | 55.08 300 | 55.54 303 | 53.71 314 | 65.80 313 | 33.50 345 | 56.22 328 | 52.50 339 | 43.72 297 | 61.06 315 | 83.38 200 | 25.46 365 | 54.87 335 | 30.11 352 | 81.64 257 | 72.75 283 |
|
MVS-HIRNet | | | 45.53 329 | 47.29 329 | 40.24 352 | 62.29 333 | 26.82 367 | 56.02 329 | 37.41 374 | 29.74 363 | 43.69 370 | 81.27 225 | 33.96 326 | 55.48 334 | 24.46 368 | 56.79 365 | 38.43 371 |
|
pmmvs3 | | | 46.71 327 | 45.09 334 | 51.55 322 | 56.76 360 | 48.25 229 | 55.78 330 | 39.53 372 | 24.13 371 | 50.35 356 | 63.40 359 | 15.90 380 | 51.08 339 | 29.29 357 | 70.69 333 | 55.33 359 |
|
pmmvs5 | | | 52.49 311 | 52.58 314 | 52.21 321 | 54.99 368 | 32.38 348 | 55.45 331 | 53.84 331 | 32.15 355 | 55.49 340 | 74.81 291 | 38.08 312 | 57.37 333 | 34.02 339 | 74.40 315 | 66.88 327 |
|
our_test_3 | | | 56.46 292 | 56.51 296 | 56.30 308 | 67.70 299 | 39.66 303 | 55.36 332 | 52.34 340 | 40.57 318 | 63.85 299 | 69.91 337 | 40.04 302 | 58.22 331 | 43.49 286 | 75.29 310 | 71.03 303 |
|
EPMVS | | | 45.74 328 | 46.53 331 | 43.39 347 | 54.14 372 | 22.33 374 | 55.02 333 | 35.00 376 | 34.69 343 | 51.09 352 | 70.20 334 | 25.92 363 | 42.04 365 | 37.19 322 | 55.50 368 | 65.78 333 |
|
dp | | | 44.09 335 | 44.88 336 | 41.72 351 | 58.53 354 | 23.18 373 | 54.70 334 | 42.38 363 | 34.80 341 | 44.25 368 | 65.61 357 | 24.48 368 | 44.80 355 | 29.77 354 | 49.42 371 | 57.18 357 |
|
CHOSEN 1792x2688 | | | 58.09 287 | 56.30 298 | 63.45 262 | 79.95 149 | 50.93 209 | 54.07 335 | 65.59 275 | 28.56 364 | 61.53 311 | 74.33 299 | 41.09 296 | 66.52 304 | 33.91 340 | 67.69 347 | 72.92 281 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 376 | 53.74 336 | | 31.57 359 | 44.89 365 | | 29.90 355 | | 32.93 343 | | 71.48 295 |
|
test-LLR | | | 50.43 318 | 50.69 323 | 49.64 326 | 60.76 341 | 41.87 287 | 53.18 337 | 45.48 356 | 43.41 300 | 49.41 358 | 60.47 363 | 29.22 356 | 44.73 356 | 42.09 291 | 72.14 324 | 62.33 349 |
|
TESTMET0.1,1 | | | 45.17 330 | 44.93 335 | 45.89 339 | 56.02 363 | 38.31 310 | 53.18 337 | 41.94 366 | 27.85 365 | 44.86 366 | 56.47 365 | 17.93 376 | 41.50 367 | 38.08 316 | 68.06 344 | 57.85 355 |
|
test-mter | | | 48.56 323 | 48.20 328 | 49.64 326 | 60.76 341 | 41.87 287 | 53.18 337 | 45.48 356 | 31.91 358 | 49.41 358 | 60.47 363 | 18.34 375 | 44.73 356 | 42.09 291 | 72.14 324 | 62.33 349 |
|
Anonymous20231206 | | | 54.13 303 | 55.82 301 | 49.04 331 | 70.89 268 | 35.96 328 | 51.73 340 | 50.87 343 | 34.86 340 | 62.49 307 | 79.22 253 | 42.52 289 | 44.29 358 | 27.95 360 | 81.88 250 | 66.88 327 |
|
XXY-MVS | | | 55.19 299 | 57.40 291 | 48.56 332 | 64.45 324 | 34.84 338 | 51.54 341 | 53.59 332 | 38.99 324 | 63.79 301 | 79.43 249 | 56.59 211 | 45.57 350 | 36.92 325 | 71.29 328 | 65.25 336 |
|
test20.03 | | | 55.74 296 | 57.51 290 | 50.42 323 | 59.89 348 | 32.09 350 | 50.63 342 | 49.01 348 | 50.11 247 | 65.07 291 | 83.23 207 | 45.61 268 | 48.11 346 | 30.22 351 | 83.82 231 | 71.07 302 |
|
UnsupCasMVSNet_eth | | | 52.26 312 | 53.29 311 | 49.16 329 | 55.08 367 | 33.67 344 | 50.03 343 | 58.79 309 | 37.67 329 | 63.43 306 | 74.75 293 | 41.82 291 | 45.83 349 | 38.59 312 | 59.42 360 | 67.98 322 |
|
testgi | | | 54.00 306 | 56.86 294 | 45.45 340 | 58.20 355 | 25.81 370 | 49.05 344 | 49.50 347 | 45.43 283 | 67.84 274 | 81.17 227 | 51.81 235 | 43.20 362 | 29.30 356 | 79.41 281 | 67.34 325 |
|
Patchmatch-test | | | 47.93 324 | 49.96 325 | 41.84 349 | 57.42 358 | 24.26 372 | 48.75 345 | 41.49 367 | 39.30 321 | 56.79 333 | 73.48 307 | 30.48 350 | 33.87 371 | 29.29 357 | 72.61 322 | 67.39 323 |
|
UnsupCasMVSNet_bld | | | 50.01 320 | 51.03 322 | 46.95 333 | 58.61 353 | 32.64 347 | 48.31 346 | 53.27 336 | 34.27 345 | 60.47 319 | 71.53 325 | 41.40 292 | 47.07 347 | 30.68 349 | 60.78 357 | 61.13 351 |
|
PVSNet | | 43.83 21 | 51.56 316 | 51.17 320 | 52.73 318 | 68.34 291 | 38.27 311 | 48.22 347 | 53.56 333 | 36.41 334 | 54.29 344 | 64.94 358 | 34.60 325 | 54.20 338 | 30.34 350 | 69.87 337 | 65.71 334 |
|
MDA-MVSNet-bldmvs | | | 62.34 259 | 61.73 255 | 64.16 252 | 61.64 337 | 49.90 217 | 48.11 348 | 57.24 317 | 53.31 213 | 80.95 110 | 79.39 250 | 49.00 254 | 61.55 323 | 45.92 274 | 80.05 273 | 81.03 196 |
|
PMMVS | | | 44.69 332 | 43.95 339 | 46.92 334 | 50.05 376 | 53.47 199 | 48.08 349 | 42.40 362 | 22.36 372 | 44.01 369 | 53.05 367 | 42.60 288 | 45.49 351 | 31.69 346 | 61.36 356 | 41.79 368 |
|
miper_lstm_enhance | | | 61.97 260 | 61.63 258 | 62.98 268 | 60.04 345 | 45.74 259 | 47.53 350 | 70.95 248 | 44.04 292 | 73.06 219 | 78.84 260 | 39.72 304 | 60.33 325 | 55.82 198 | 84.64 219 | 82.88 162 |
|
ADS-MVSNet2 | | | 48.76 322 | 47.25 330 | 53.29 317 | 55.90 364 | 40.54 298 | 47.34 351 | 54.99 327 | 31.41 360 | 50.48 354 | 72.06 320 | 31.23 342 | 54.26 337 | 25.93 363 | 55.93 366 | 65.07 337 |
|
ADS-MVSNet | | | 44.62 333 | 45.58 332 | 41.73 350 | 55.90 364 | 20.83 375 | 47.34 351 | 39.94 371 | 31.41 360 | 50.48 354 | 72.06 320 | 31.23 342 | 39.31 368 | 25.93 363 | 55.93 366 | 65.07 337 |
|
WTY-MVS | | | 49.39 321 | 50.31 324 | 46.62 336 | 61.22 339 | 32.00 351 | 46.61 353 | 49.77 346 | 33.87 347 | 54.12 345 | 69.55 340 | 41.96 290 | 45.40 352 | 31.28 348 | 64.42 352 | 62.47 348 |
|
test0.0.03 1 | | | 47.72 325 | 48.31 327 | 45.93 338 | 55.53 366 | 29.39 360 | 46.40 354 | 41.21 369 | 43.41 300 | 55.81 339 | 67.65 350 | 29.22 356 | 43.77 361 | 25.73 365 | 69.87 337 | 64.62 341 |
|
test123 | | | 4.43 347 | 5.78 350 | 0.39 361 | 0.97 383 | 0.28 384 | 46.33 355 | 0.45 384 | 0.31 378 | 0.62 379 | 1.50 378 | 0.61 384 | 0.11 380 | 0.56 377 | 0.63 377 | 0.77 376 |
|
sss | | | 47.59 326 | 48.32 326 | 45.40 341 | 56.73 361 | 33.96 342 | 45.17 356 | 48.51 350 | 32.11 357 | 52.37 350 | 65.79 356 | 40.39 301 | 41.91 366 | 31.85 345 | 61.97 355 | 60.35 352 |
|
KD-MVS_2432*1600 | | | 52.05 314 | 51.58 317 | 53.44 315 | 52.11 373 | 31.20 353 | 44.88 357 | 64.83 281 | 41.53 309 | 64.37 293 | 70.03 335 | 15.61 381 | 64.20 311 | 36.25 328 | 74.61 313 | 64.93 339 |
|
miper_refine_blended | | | 52.05 314 | 51.58 317 | 53.44 315 | 52.11 373 | 31.20 353 | 44.88 357 | 64.83 281 | 41.53 309 | 64.37 293 | 70.03 335 | 15.61 381 | 64.20 311 | 36.25 328 | 74.61 313 | 64.93 339 |
|
testmvs | | | 4.06 348 | 5.28 351 | 0.41 360 | 0.64 384 | 0.16 385 | 42.54 359 | 0.31 385 | 0.26 379 | 0.50 380 | 1.40 379 | 0.77 383 | 0.17 379 | 0.56 377 | 0.55 378 | 0.90 375 |
|
PVSNet_0 | | 36.71 22 | 41.12 338 | 40.78 341 | 42.14 348 | 59.97 346 | 40.13 300 | 40.97 360 | 42.24 365 | 30.81 362 | 44.86 366 | 49.41 370 | 40.70 299 | 45.12 354 | 23.15 369 | 34.96 373 | 41.16 369 |
|
YYNet1 | | | 52.58 309 | 53.50 309 | 49.85 324 | 54.15 371 | 36.45 325 | 40.53 361 | 46.55 355 | 38.09 327 | 75.52 186 | 73.31 310 | 41.08 297 | 43.88 359 | 41.10 297 | 71.14 330 | 69.21 316 |
|
MDA-MVSNet_test_wron | | | 52.57 310 | 53.49 310 | 49.81 325 | 54.24 370 | 36.47 324 | 40.48 362 | 46.58 354 | 38.13 326 | 75.47 187 | 73.32 309 | 41.05 298 | 43.85 360 | 40.98 298 | 71.20 329 | 69.10 318 |
|
new_pmnet | | | 37.55 340 | 39.80 343 | 30.79 355 | 56.83 359 | 16.46 378 | 39.35 363 | 30.65 377 | 25.59 369 | 45.26 364 | 61.60 362 | 24.54 367 | 28.02 374 | 21.60 370 | 52.80 370 | 47.90 364 |
|
E-PMN | | | 45.17 330 | 45.36 333 | 44.60 344 | 50.07 375 | 42.75 281 | 38.66 364 | 42.29 364 | 46.39 278 | 39.55 371 | 51.15 369 | 26.00 362 | 45.37 353 | 37.68 318 | 76.41 298 | 45.69 367 |
|
EMVS | | | 44.61 334 | 44.45 338 | 45.10 343 | 48.91 377 | 43.00 279 | 37.92 365 | 41.10 370 | 46.75 276 | 38.00 373 | 48.43 371 | 26.42 360 | 46.27 348 | 37.11 324 | 75.38 308 | 46.03 366 |
|
N_pmnet | | | 52.06 313 | 51.11 321 | 54.92 312 | 59.64 350 | 71.03 59 | 37.42 366 | 61.62 302 | 33.68 348 | 57.12 330 | 72.10 315 | 37.94 313 | 31.03 372 | 29.13 359 | 71.35 327 | 62.70 346 |
|
new-patchmatchnet | | | 52.89 308 | 55.76 302 | 44.26 345 | 59.94 347 | 6.31 380 | 37.36 367 | 50.76 344 | 41.10 312 | 64.28 295 | 79.82 244 | 44.77 273 | 48.43 345 | 36.24 330 | 87.61 175 | 78.03 244 |
|
CHOSEN 280x420 | | | 41.62 337 | 39.89 342 | 46.80 335 | 61.81 335 | 51.59 205 | 33.56 368 | 35.74 375 | 27.48 366 | 37.64 374 | 53.53 366 | 23.24 370 | 42.09 364 | 27.39 361 | 58.64 362 | 46.72 365 |
|
PMMVS2 | | | 37.74 339 | 40.87 340 | 28.36 356 | 42.41 379 | 5.35 381 | 24.61 369 | 27.75 378 | 32.15 355 | 47.85 360 | 70.27 333 | 35.85 322 | 29.51 373 | 19.08 373 | 67.85 345 | 50.22 362 |
|
MVE |  | 27.91 23 | 36.69 341 | 35.64 344 | 39.84 353 | 43.37 378 | 35.85 330 | 19.49 370 | 24.61 380 | 24.68 370 | 39.05 372 | 62.63 361 | 38.67 310 | 27.10 375 | 21.04 371 | 47.25 372 | 56.56 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 11.98 344 | 14.73 347 | 3.72 359 | 2.28 382 | 4.62 382 | 19.44 371 | 14.50 382 | 0.47 377 | 21.55 375 | 9.58 375 | 25.78 364 | 4.57 378 | 11.61 375 | 27.37 374 | 1.96 374 |
|
test_method | | | 19.26 342 | 19.12 346 | 19.71 357 | 9.09 381 | 1.91 383 | 7.79 372 | 53.44 334 | 1.42 375 | 10.27 377 | 35.80 372 | 17.42 378 | 25.11 376 | 12.44 374 | 24.38 375 | 32.10 372 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 17.71 343 | 23.62 345 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 70.17 255 | 0.00 380 | 0.00 381 | 74.25 301 | 68.16 102 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 5.20 346 | 6.93 349 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 62.39 152 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 5.62 345 | 7.50 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 67.46 351 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 79.02 61 | 83.14 103 | 67.03 92 | | 80.75 127 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 135 |
|
PC_three_1452 | | | | | | | | | | 46.98 275 | 81.83 98 | 86.28 158 | 66.55 120 | 84.47 73 | 63.31 141 | 90.78 123 | 83.49 142 |
|
No_MVS | | | | | 79.02 61 | 83.14 103 | 67.03 92 | | 80.75 127 | | | | | 86.24 22 | 77.27 35 | 94.85 26 | 83.78 135 |
|
test_one_0601 | | | | | | 85.84 67 | 61.45 139 | | 85.63 32 | 75.27 19 | 85.62 48 | 90.38 68 | 76.72 29 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 94 | 69.36 75 | | 81.09 122 | 58.91 143 | 82.73 91 | 89.11 99 | 75.77 37 | 86.63 12 | 72.73 65 | 92.93 79 | |
|
IU-MVS | | | | | | 86.12 59 | 60.90 147 | | 80.38 137 | 45.49 282 | 81.31 106 | | | | 75.64 44 | 94.39 44 | 84.65 106 |
|
test_241102_TWO | | | | | | | | | 84.80 50 | 72.61 32 | 84.93 58 | 89.70 85 | 77.73 23 | 85.89 41 | 75.29 45 | 94.22 56 | 83.25 152 |
|
test_241102_ONE | | | | | | 86.12 59 | 61.06 143 | | 84.72 54 | 72.64 31 | 87.38 25 | 89.47 88 | 77.48 24 | 85.74 45 | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 23 | 85.83 43 | 90.41 63 | 75.58 39 | 85.69 46 | 77.43 33 | 94.74 31 | 84.31 124 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 307 |
|
test_part2 | | | | | | 85.90 63 | 66.44 97 | | | | 84.61 66 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 340 | | | | 70.05 307 |
|
sam_mvs | | | | | | | | | | | | | 31.21 344 | | | | |
|
MTGPA |  | | | | | | | | 80.63 130 | | | | | | | | |
|
test_post | | | | | | | | | | | | 1.99 377 | 30.91 347 | 54.76 336 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 342 | 31.32 341 | 69.38 282 | | | |
|
gm-plane-assit | | | | | | 62.51 332 | 33.91 343 | | | 37.25 331 | | 62.71 360 | | 72.74 250 | 38.70 309 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 73 | 91.37 104 | 77.40 249 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 80 | 90.93 117 | 78.55 236 |
|
agg_prior | | | | | | 84.44 87 | 66.02 101 | | 78.62 168 | | 76.95 160 | | | 80.34 150 | | | |
|
TestCases | | | | | 78.35 73 | 79.19 161 | 70.81 61 | | 88.64 3 | 65.37 83 | 80.09 122 | 88.17 119 | 70.33 81 | 78.43 183 | 55.60 199 | 90.90 119 | 85.81 80 |
|
test_prior | | | | | 75.27 114 | 82.15 123 | 59.85 158 | | 84.33 66 | | | | | 83.39 92 | | | 82.58 172 |
|
新几何1 | | | | | 69.99 192 | 88.37 36 | 71.34 57 | | 62.08 297 | 43.85 293 | 74.99 191 | 86.11 167 | 52.85 229 | 70.57 274 | 50.99 235 | 83.23 239 | 68.05 321 |
|
旧先验1 | | | | | | 84.55 84 | 60.36 154 | | 63.69 288 | | | 87.05 132 | 54.65 220 | | | 83.34 237 | 69.66 311 |
|
原ACMM1 | | | | | 73.90 130 | 85.90 63 | 65.15 109 | | 81.67 108 | 50.97 238 | 74.25 204 | 86.16 164 | 61.60 160 | 83.54 88 | 56.75 186 | 91.08 113 | 73.00 280 |
|
testdata2 | | | | | | | | | | | | | | 67.30 295 | 48.34 256 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 101 | | | | |
|
testdata | | | | | 64.13 253 | 85.87 65 | 63.34 123 | | 61.80 301 | 47.83 268 | 76.42 178 | 86.60 151 | 48.83 255 | 62.31 321 | 54.46 212 | 81.26 259 | 66.74 330 |
|
test12 | | | | | 76.51 97 | 82.28 121 | 60.94 146 | | 81.64 109 | | 73.60 211 | | 64.88 135 | 85.19 61 | | 90.42 130 | 83.38 148 |
|
plane_prior7 | | | | | | 85.18 72 | 66.21 99 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 91 | 65.31 106 | | | | | | 60.83 170 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 34 | | | | | 86.15 27 | 71.09 77 | 90.94 115 | 84.82 101 |
|
plane_prior4 | | | | | | | | | | | | 89.11 99 | | | | | |
|
plane_prior3 | | | | | | | 65.67 103 | | | 63.82 101 | 78.23 141 | | | | | | |
|
plane_prior1 | | | | | | 84.46 86 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 326 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 155 | 79.60 153 | 56.83 179 | | 57.37 314 | | 83.80 78 | 89.01 102 | 47.45 263 | 78.74 175 | 64.39 127 | 86.49 197 | 82.69 170 |
|
LGP-MVS_train | | | | | 80.90 37 | 87.00 43 | 70.41 66 | | 86.35 19 | 69.77 53 | 87.75 16 | 91.13 37 | 81.83 3 | 86.20 24 | 77.13 37 | 95.96 5 | 86.08 74 |
|
test11 | | | | | | | | | 82.71 94 | | | | | | | | |
|
door | | | | | | | | | 52.91 338 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 168 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 108 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 235 | | | 85.31 54 | | | 83.74 137 |
|
HQP3-MVS | | | | | | | | | 84.12 74 | | | | | | | 89.16 156 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 195 | | | | |
|
NP-MVS | | | | | | 83.34 102 | 63.07 126 | | | | | 85.97 170 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 151 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 94 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 148 | | | | |
|
ITE_SJBPF | | | | | 80.35 43 | 76.94 195 | 73.60 43 | | 80.48 134 | 66.87 67 | 83.64 80 | 86.18 162 | 70.25 83 | 79.90 160 | 61.12 157 | 88.95 163 | 87.56 56 |
|
DeepMVS_CX |  | | | | 11.83 358 | 15.51 380 | 13.86 379 | | 11.25 383 | 5.76 374 | 20.85 376 | 26.46 373 | 17.06 379 | 9.22 377 | 9.69 376 | 13.82 376 | 12.42 373 |
|