DVP-MVS++. | | | 81.24 39 | 82.74 40 | 76.76 88 | 83.14 102 | 60.90 141 | 91.64 1 | 85.49 35 | 74.03 23 | 84.93 56 | 90.38 63 | 66.82 113 | 85.90 37 | 77.43 33 | 90.78 120 | 83.49 134 |
|
FOURS1 | | | | | | 89.19 25 | 77.84 16 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 77 | 75.40 30 | 91.60 3 | 87.80 8 | 73.52 26 | 88.90 11 | 93.06 6 | 71.39 75 | 81.53 121 | 81.53 3 | 92.15 89 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 33 | 81.19 5 | 88.84 4 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 13 | 79.37 13 | 84.79 67 | 74.51 51 | 96.15 2 | 92.88 7 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 5 | 84.43 65 | 71.96 42 | 84.70 62 | 90.56 50 | 77.12 26 | 86.18 27 | 79.24 18 | 95.36 13 | 82.49 168 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 26 | 87.65 6 | 85.89 31 | 71.03 45 | 85.85 41 | 90.58 49 | 78.77 17 | 85.78 41 | 79.37 16 | 95.17 17 | 84.62 102 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 48 | 79.27 8 | 87.56 7 | 86.08 28 | 77.48 13 | 88.12 14 | 91.53 27 | 81.18 8 | 84.31 76 | 78.12 24 | 94.47 37 | 84.15 120 |
|
LS3D | | | 80.99 46 | 80.85 55 | 81.41 30 | 78.37 165 | 71.37 55 | 87.45 8 | 85.87 32 | 77.48 13 | 81.98 91 | 89.95 77 | 69.14 90 | 85.26 54 | 66.15 109 | 91.24 104 | 87.61 51 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 54 | 79.18 9 | 87.23 9 | 86.27 23 | 77.51 11 | 87.65 19 | 90.73 45 | 79.20 14 | 85.58 48 | 78.11 25 | 94.46 38 | 84.89 92 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 54 | 79.18 9 | 87.23 9 | 86.27 23 | 77.51 11 | 87.65 19 | 90.73 45 | 81.38 7 | | 78.11 25 | 94.46 38 | 84.89 92 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 109 | 74.39 36 | 87.18 11 | 88.18 7 | 78.98 7 | 86.11 39 | 91.47 29 | 79.70 12 | 85.76 42 | 66.91 108 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 46 | 64.94 90 | 81.05 104 | 88.38 106 | 57.10 204 | 87.10 8 | 79.75 8 | 83.87 224 | 84.31 116 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 92 | 72.41 36 | 85.11 55 | 90.85 41 | 76.65 30 | 84.89 64 | 79.30 17 | 94.63 34 | 82.35 171 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 20 | 87.06 14 | 84.23 73 | 70.19 51 | 83.86 73 | 90.72 47 | 75.20 42 | 86.27 22 | 79.41 15 | 94.25 52 | 83.95 123 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 28 | 87.01 15 | 84.27 69 | 70.23 49 | 84.47 65 | 90.43 55 | 76.79 27 | 85.94 33 | 79.58 11 | 94.23 53 | 82.82 158 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 22 | 87.01 15 | 84.19 74 | 70.23 49 | 84.49 64 | 90.67 48 | 75.15 43 | 86.37 19 | 79.58 11 | 94.26 51 | 84.18 119 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 35 | 77.71 17 | 86.81 17 | 85.25 42 | 77.42 15 | 86.15 37 | 90.24 70 | 81.69 5 | 85.94 33 | 77.77 29 | 93.58 67 | 83.09 148 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 58 | 72.71 29 | 82.87 82 | 90.39 61 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 57 | 84.64 100 |
|
X-MVStestdata | | | 76.81 84 | 74.79 103 | 82.85 10 | 89.43 16 | 77.61 18 | 86.80 18 | 84.66 58 | 72.71 29 | 82.87 82 | 9.95 367 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 57 | 84.64 100 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 48 | 88.94 29 | 67.52 87 | 86.61 20 | 81.38 112 | 51.71 223 | 77.15 151 | 91.42 32 | 65.49 127 | 87.20 6 | 79.44 14 | 87.17 181 | 84.51 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 79 | 66.72 95 | 86.54 21 | 85.11 45 | 72.00 41 | 86.65 33 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 50 | 83.47 137 |
|
CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 22 | 82.03 101 | 68.80 56 | 80.92 107 | 88.52 103 | 72.00 68 | 82.39 108 | 74.80 47 | 93.04 73 | 81.14 187 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 23 | 83.59 83 | 71.31 43 | 81.26 102 | 90.96 38 | 74.57 51 | 84.69 68 | 78.41 22 | 94.78 28 | 82.74 162 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 26 | 73.28 46 | 86.32 24 | 85.97 30 | 67.39 64 | 84.02 71 | 90.39 61 | 74.73 48 | 86.46 16 | 80.73 7 | 94.43 42 | 84.60 105 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 34 | 75.83 27 | 86.27 25 | 86.89 18 | 73.69 25 | 86.17 36 | 91.70 24 | 78.23 20 | 85.20 58 | 79.45 13 | 94.91 25 | 88.15 45 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 28 | 73.29 45 | 85.94 26 | 85.13 44 | 68.58 60 | 84.14 70 | 90.21 72 | 73.37 61 | 86.41 17 | 79.09 19 | 93.98 60 | 84.30 118 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 73 | 71.00 59 | 85.53 27 | 84.78 52 | 70.91 46 | 85.64 44 | 90.41 58 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 82 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 112 | 73.53 44 | 85.50 28 | 87.45 14 | 74.11 21 | 86.45 34 | 90.52 53 | 80.02 11 | 84.48 71 | 77.73 30 | 94.34 49 | 85.93 73 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 39 | 74.40 35 | 85.24 29 | 87.21 16 | 70.69 48 | 85.14 54 | 90.42 57 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 38 | 80.50 6 | 85.12 30 | 85.22 43 | 81.06 3 | 87.20 28 | 90.28 69 | 79.20 14 | 85.58 48 | 78.04 27 | 94.08 56 | 83.55 132 |
|
SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 42 | 88.90 31 | 69.52 71 | 85.12 30 | 84.76 53 | 63.53 104 | 84.23 69 | 91.47 29 | 72.02 67 | 87.16 7 | 79.74 10 | 94.36 47 | 84.61 103 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 32 | 80.63 128 | 72.08 39 | 84.93 56 | 90.79 42 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 196 |
|
MTMP | | | | | | | | 84.83 33 | 19.26 374 | | | | | | | | |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 123 | 84.80 34 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 70 | 68.08 93 | 97.05 1 | 96.93 1 |
|
UA-Net | | | 81.56 37 | 82.28 44 | 79.40 54 | 88.91 30 | 69.16 78 | 84.67 35 | 80.01 142 | 75.34 17 | 79.80 119 | 94.91 2 | 69.79 87 | 80.25 149 | 72.63 63 | 94.46 38 | 88.78 41 |
|
#test# | | | 82.40 30 | 82.71 41 | 81.48 27 | 89.25 21 | 75.69 28 | 84.47 36 | 84.27 69 | 64.45 94 | 84.47 65 | 90.43 55 | 76.79 27 | 85.94 33 | 76.01 39 | 94.23 53 | 82.82 158 |
|
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 132 | 72.03 49 | 84.38 37 | 86.23 26 | 77.28 16 | 80.65 110 | 90.18 73 | 59.80 176 | 87.58 4 | 73.06 60 | 91.34 102 | 89.01 33 |
|
MVSFormer | | | 69.93 169 | 69.03 182 | 72.63 155 | 74.93 209 | 59.19 156 | 83.98 38 | 75.72 195 | 52.27 216 | 63.53 297 | 76.74 270 | 43.19 276 | 80.56 141 | 72.28 68 | 78.67 279 | 78.14 235 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 41 | 81.42 131 | 71.24 57 | 83.98 38 | 75.72 195 | 52.27 216 | 87.37 27 | 92.25 16 | 68.04 103 | 80.56 141 | 72.28 68 | 91.15 107 | 90.32 20 |
|
APD-MVS |  | | 81.13 43 | 81.73 48 | 79.36 55 | 84.47 84 | 70.53 64 | 83.85 40 | 83.70 81 | 69.43 55 | 83.67 75 | 88.96 99 | 75.89 36 | 86.41 17 | 72.62 64 | 92.95 74 | 81.14 187 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test0726 | | | | | | 86.16 56 | 60.78 143 | 83.81 41 | 85.10 46 | 72.48 34 | 85.27 53 | 89.96 76 | 78.57 18 | | | | |
|
DVP-MVS |  | | 81.15 42 | 83.12 35 | 75.24 110 | 86.16 56 | 60.78 143 | 83.77 42 | 80.58 131 | 72.48 34 | 85.83 42 | 90.41 58 | 78.57 18 | 85.69 44 | 75.86 42 | 94.39 43 | 79.24 220 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 76.57 91 | 86.20 53 | 60.57 146 | 83.77 42 | 85.49 35 | | | | | 85.90 37 | 75.86 42 | 94.39 43 | 83.25 144 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 89 | 86.12 58 | 61.06 137 | 83.62 44 | 84.72 55 | 72.61 32 | 87.38 25 | 89.70 80 | 77.48 24 | 85.89 39 | 75.29 45 | 94.39 43 | 83.08 149 |
|
OPU-MVS | | | | | 78.65 66 | 83.44 100 | 66.85 94 | 83.62 44 | | | | 86.12 158 | 66.82 113 | 86.01 31 | 61.72 146 | 89.79 141 | 83.08 149 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 80 | 83.62 44 | 84.98 48 | 64.77 91 | 83.97 72 | 91.02 37 | 75.53 41 | 85.93 36 | 82.00 2 | 94.36 47 | 83.35 142 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 92 | 69.77 70 | 83.58 47 | 84.63 60 | 72.13 38 | 82.85 84 | 88.36 107 | 75.00 46 | 86.79 12 | 71.99 72 | 92.84 76 | 82.44 169 |
|
HPM-MVS++ |  | | 79.89 57 | 79.80 63 | 80.18 45 | 89.02 27 | 78.44 13 | 83.49 48 | 80.18 139 | 64.71 93 | 78.11 139 | 88.39 105 | 65.46 128 | 83.14 96 | 77.64 32 | 91.20 105 | 78.94 223 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 80 | 82.03 123 | 64.40 115 | 83.41 49 | 88.46 6 | 65.28 85 | 84.29 67 | 89.18 90 | 73.73 59 | 83.22 94 | 76.01 39 | 93.77 62 | 84.81 96 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 94 | 83.57 96 | 67.83 86 | 83.39 50 | 85.35 41 | 64.42 95 | 86.14 38 | 87.07 123 | 74.02 55 | 80.97 134 | 77.70 31 | 92.32 87 | 80.62 203 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 68 | 88.17 40 | 73.96 38 | 83.11 51 | 84.52 64 | 66.40 74 | 87.45 23 | 89.16 93 | 81.02 9 | 80.52 144 | 74.27 53 | 95.73 7 | 80.98 192 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 62 | 85.36 70 | 67.25 89 | 82.91 52 | 84.98 48 | 73.52 26 | 85.43 50 | 90.03 74 | 76.37 31 | 86.97 11 | 74.56 50 | 94.02 59 | 82.62 164 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 64 | 85.18 71 | 65.18 107 | 82.74 53 | 85.49 35 | 65.45 80 | 78.23 136 | 89.11 94 | 60.83 167 | 86.15 28 | 71.09 74 | 90.94 112 | 84.82 94 |
|
plane_prior2 | | | | | | | | 82.74 53 | | 65.45 80 | | | | | | | |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 55 | 80.63 128 | 72.08 39 | 84.93 56 | 90.79 42 | 74.65 49 | 84.42 73 | 80.98 4 | 94.75 29 | 80.82 196 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 50 | 69.44 73 | 82.30 56 | 86.08 28 | 66.80 69 | 86.70 32 | 89.99 75 | 81.64 6 | 85.95 32 | 74.35 52 | 96.11 3 | 85.81 75 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 83 | 90.35 6 | 82.82 2 | 82.15 57 | 79.22 151 | 74.08 22 | 87.16 30 | 91.97 19 | 84.80 2 | 76.97 205 | 64.98 119 | 93.61 65 | 72.28 282 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 26 | 86.70 49 | 70.03 69 | 82.06 58 | 87.00 17 | 59.89 133 | 80.91 108 | 90.53 51 | 72.19 65 | 88.56 1 | 73.67 57 | 94.52 36 | 85.92 74 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 24 | 82.04 59 | 85.40 39 | 67.96 62 | 84.91 60 | 90.88 39 | 75.59 38 | 86.57 15 | 78.16 23 | 94.71 32 | 83.82 124 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 43 | 70.41 65 | 82.04 59 | 86.35 20 | 69.77 53 | 87.75 16 | 91.13 34 | 81.83 3 | 86.20 25 | 77.13 37 | 95.96 5 | 86.08 69 |
|
F-COLMAP | | | 75.29 97 | 73.99 114 | 79.18 56 | 81.73 128 | 71.90 50 | 81.86 61 | 82.98 89 | 59.86 134 | 72.27 224 | 84.00 185 | 64.56 137 | 83.07 99 | 51.48 225 | 87.19 180 | 82.56 167 |
|
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 32 | 68.44 82 | 81.57 62 | 86.33 22 | 63.17 110 | 85.38 51 | 91.26 33 | 76.33 32 | 84.67 69 | 83.30 1 | 94.96 23 | 86.17 68 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM_NR | | | 73.91 113 | 74.16 112 | 73.16 138 | 81.90 125 | 53.50 192 | 81.28 63 | 81.40 111 | 66.17 75 | 73.30 212 | 83.31 196 | 59.96 172 | 83.10 98 | 58.45 173 | 81.66 248 | 82.87 156 |
|
API-MVS | | | 70.97 158 | 71.51 158 | 69.37 192 | 75.20 206 | 55.94 176 | 80.99 64 | 76.84 186 | 62.48 115 | 71.24 239 | 77.51 265 | 61.51 159 | 80.96 138 | 52.04 221 | 85.76 195 | 71.22 291 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 34 | 80.62 139 | 70.71 63 | 80.91 65 | 84.76 53 | 62.54 114 | 81.77 94 | 86.65 140 | 71.46 73 | 83.53 88 | 67.95 98 | 92.44 84 | 89.60 23 |
|
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 49 | 84.81 78 | 73.93 39 | 80.65 66 | 76.50 189 | 51.98 221 | 87.40 24 | 91.86 21 | 76.09 35 | 78.53 175 | 68.58 88 | 90.20 129 | 86.69 64 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 84 | 81.16 135 | 62.39 127 | 80.51 67 | 87.80 8 | 73.02 28 | 87.57 21 | 91.08 36 | 80.28 10 | 82.44 107 | 64.82 120 | 96.10 4 | 87.21 56 |
|
EPP-MVSNet | | | 73.86 114 | 73.38 127 | 75.31 107 | 78.19 167 | 53.35 194 | 80.45 68 | 77.32 182 | 65.11 88 | 76.47 172 | 86.80 129 | 49.47 242 | 83.77 82 | 53.89 213 | 92.72 82 | 88.81 40 |
|
jajsoiax | | | 78.51 70 | 78.16 78 | 79.59 52 | 84.65 81 | 73.83 41 | 80.42 69 | 76.12 191 | 51.33 229 | 87.19 29 | 91.51 28 | 73.79 58 | 78.44 179 | 68.27 91 | 90.13 134 | 86.49 66 |
|
PHI-MVS | | | 74.92 103 | 74.36 110 | 76.61 90 | 76.40 192 | 62.32 128 | 80.38 70 | 83.15 87 | 54.16 197 | 73.23 213 | 80.75 221 | 62.19 152 | 83.86 81 | 68.02 94 | 90.92 115 | 83.65 131 |
|
QAPM | | | 69.18 182 | 69.26 178 | 68.94 202 | 71.61 256 | 52.58 198 | 80.37 71 | 78.79 159 | 49.63 247 | 73.51 207 | 85.14 173 | 53.66 221 | 79.12 164 | 55.11 200 | 75.54 297 | 75.11 258 |
|
9.14 | | | | 80.22 59 | | 80.68 137 | | 80.35 72 | 87.69 11 | 59.90 132 | 83.00 80 | 88.20 110 | 74.57 51 | 81.75 119 | 73.75 56 | 93.78 61 | |
|
DROMVSNet | | | 77.08 82 | 77.39 83 | 76.14 99 | 76.86 189 | 56.87 172 | 80.32 73 | 87.52 13 | 63.45 106 | 74.66 195 | 84.52 178 | 69.87 86 | 84.94 62 | 69.76 84 | 89.59 144 | 86.60 65 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 87 | 80.67 138 | 64.57 112 | 80.26 74 | 87.60 12 | 60.74 127 | 82.47 88 | 88.03 115 | 71.73 70 | 81.81 117 | 73.12 59 | 93.61 65 | 85.09 87 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 65 | 80.48 140 | 64.16 116 | 80.24 75 | 82.06 100 | 61.89 118 | 88.77 12 | 93.32 4 | 57.15 202 | 82.60 106 | 70.08 80 | 92.80 78 | 89.25 27 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 61 | 87.01 42 | 72.91 47 | 80.23 76 | 85.56 34 | 66.56 73 | 85.64 44 | 89.57 82 | 69.12 91 | 80.55 143 | 72.51 65 | 93.37 69 | 83.48 136 |
|
anonymousdsp | | | 78.60 68 | 77.80 80 | 81.00 37 | 78.01 171 | 74.34 37 | 80.09 77 | 76.12 191 | 50.51 238 | 89.19 10 | 90.88 39 | 71.45 74 | 77.78 197 | 73.38 58 | 90.60 125 | 90.90 16 |
|
Gipuma |  | | 69.55 174 | 72.83 139 | 59.70 288 | 63.63 321 | 53.97 188 | 80.08 78 | 75.93 193 | 64.24 97 | 73.49 208 | 88.93 100 | 57.89 198 | 62.46 313 | 59.75 166 | 91.55 98 | 62.67 340 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
plane_prior | | | | | | | 65.18 107 | 80.06 79 | | 61.88 119 | | | | | | 89.91 138 | |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 81 | 76.33 92 | 79.70 50 | 83.90 94 | 67.94 84 | 80.06 79 | 83.75 80 | 56.73 164 | 74.88 189 | 85.32 170 | 65.54 126 | 87.79 2 | 65.61 115 | 91.14 108 | 83.35 142 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NCCC | | | 78.25 75 | 78.04 79 | 78.89 63 | 85.61 67 | 69.45 72 | 79.80 81 | 80.99 123 | 65.77 77 | 75.55 181 | 86.25 153 | 67.42 107 | 85.42 50 | 70.10 79 | 90.88 118 | 81.81 180 |
|
IS-MVSNet | | | 75.10 100 | 75.42 101 | 74.15 122 | 79.23 154 | 48.05 227 | 79.43 82 | 78.04 172 | 70.09 52 | 79.17 126 | 88.02 116 | 53.04 223 | 83.60 85 | 58.05 176 | 93.76 64 | 90.79 17 |
|
AdaColmap |  | | 74.22 111 | 74.56 105 | 73.20 137 | 81.95 124 | 60.97 139 | 79.43 82 | 80.90 124 | 65.57 79 | 72.54 221 | 81.76 212 | 70.98 78 | 85.26 54 | 47.88 255 | 90.00 135 | 73.37 270 |
|
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 58 | 86.86 47 | 69.39 74 | 79.41 84 | 84.00 79 | 65.64 78 | 85.54 48 | 89.28 86 | 76.32 33 | 83.47 89 | 74.03 54 | 93.57 68 | 84.35 115 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 70 | 87.00 43 | 67.23 90 | 79.24 85 | 88.61 5 | 56.65 166 | 84.29 67 | 89.18 90 | 73.73 59 | 83.22 94 | 76.01 39 | 93.77 62 | 84.81 96 |
|
save fliter | | | | | | 87.00 43 | 67.23 90 | 79.24 85 | 77.94 174 | 56.65 166 | | | | | | | |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 96 | 78.67 164 | 55.81 177 | 79.22 87 | 82.51 97 | 70.72 47 | 87.54 22 | 92.44 14 | 68.00 104 | 81.34 122 | 72.84 61 | 91.72 91 | 91.69 10 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 82 | 80.09 143 | 66.16 100 | 79.08 88 | 86.13 27 | 57.55 156 | 80.93 106 | 87.76 118 | 71.98 69 | 82.73 104 | 72.11 71 | 92.83 77 | 83.25 144 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 101 | 81.86 126 | 65.33 105 | 79.05 89 | 84.63 60 | 74.83 20 | 80.41 113 | 86.27 151 | 71.68 71 | 83.45 90 | 62.45 143 | 92.40 85 | 78.92 224 |
|
ACMH | | 63.62 14 | 77.50 79 | 80.11 60 | 69.68 190 | 79.61 147 | 56.28 174 | 78.81 90 | 83.62 82 | 63.41 108 | 87.14 31 | 90.23 71 | 76.11 34 | 73.32 240 | 67.58 100 | 94.44 41 | 79.44 218 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_MVS | | | 73.80 116 | 71.19 162 | 81.60 24 | 71.04 259 | 70.33 67 | 78.78 91 | 74.91 205 | 56.96 160 | 77.83 143 | 85.56 168 | 32.82 323 | 87.39 5 | 71.16 73 | 91.68 93 | 87.07 60 |
|
MSLP-MVS++ | | | 74.48 109 | 75.78 96 | 70.59 174 | 84.66 80 | 62.40 126 | 78.65 92 | 84.24 72 | 60.55 129 | 77.71 146 | 81.98 208 | 63.12 142 | 77.64 199 | 62.95 140 | 88.14 159 | 71.73 287 |
|
AllTest | | | 77.66 77 | 77.43 82 | 78.35 71 | 79.19 156 | 70.81 60 | 78.60 93 | 88.64 3 | 65.37 83 | 80.09 117 | 88.17 111 | 70.33 81 | 78.43 180 | 55.60 195 | 90.90 116 | 85.81 75 |
|
PS-MVSNAJss | | | 77.54 78 | 77.35 84 | 78.13 75 | 84.88 76 | 66.37 98 | 78.55 94 | 79.59 147 | 53.48 206 | 86.29 35 | 92.43 15 | 62.39 149 | 80.25 149 | 67.90 99 | 90.61 124 | 87.77 48 |
|
Effi-MVS+-dtu | | | 75.43 95 | 72.28 145 | 84.91 2 | 77.05 181 | 83.58 1 | 78.47 95 | 77.70 176 | 57.68 151 | 74.89 188 | 78.13 259 | 64.80 134 | 84.26 77 | 56.46 187 | 85.32 202 | 86.88 61 |
|
3Dnovator | | 65.95 11 | 71.50 154 | 71.22 161 | 72.34 159 | 73.16 240 | 63.09 124 | 78.37 96 | 78.32 167 | 57.67 153 | 72.22 226 | 84.61 176 | 54.77 215 | 78.47 177 | 60.82 155 | 81.07 253 | 75.45 254 |
|
ETH3 D test6400 | | | 75.73 92 | 76.00 94 | 74.92 111 | 81.75 127 | 56.93 170 | 78.31 97 | 84.60 62 | 52.83 212 | 77.15 151 | 85.14 173 | 68.59 95 | 84.03 79 | 65.44 116 | 90.20 129 | 83.82 124 |
|
OpenMVS |  | 62.51 15 | 68.76 187 | 68.75 187 | 68.78 207 | 70.56 267 | 53.91 189 | 78.29 98 | 77.35 181 | 48.85 254 | 70.22 250 | 83.52 189 | 52.65 226 | 76.93 206 | 55.31 199 | 81.99 240 | 75.49 253 |
|
test_part1 | | | 76.97 83 | 78.21 77 | 73.25 136 | 77.87 173 | 45.76 251 | 78.27 99 | 87.26 15 | 66.69 71 | 85.31 52 | 91.43 31 | 55.95 213 | 84.24 78 | 65.71 113 | 95.43 12 | 89.75 22 |
|
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 117 | 89.46 15 | 42.69 275 | 78.24 100 | 82.24 98 | 78.21 10 | 89.57 9 | 92.10 18 | 68.05 102 | 85.59 47 | 66.04 111 | 95.62 9 | 94.88 5 |
|
114514_t | | | 73.40 123 | 73.33 130 | 73.64 128 | 84.15 91 | 57.11 169 | 78.20 101 | 80.02 141 | 43.76 289 | 72.55 220 | 86.07 161 | 64.00 139 | 83.35 93 | 60.14 161 | 91.03 111 | 80.45 206 |
|
PLC |  | 62.01 16 | 71.79 152 | 70.28 170 | 76.33 95 | 80.31 142 | 68.63 81 | 78.18 102 | 81.24 115 | 54.57 189 | 67.09 276 | 80.63 223 | 59.44 177 | 81.74 120 | 46.91 262 | 84.17 219 | 78.63 225 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 73 | 85.86 65 | 67.40 88 | 78.12 103 | 81.50 108 | 63.92 99 | 77.51 148 | 86.56 144 | 68.43 99 | 84.82 66 | 73.83 55 | 91.61 96 | 82.26 174 |
|
TAPA-MVS | | 65.27 12 | 75.16 99 | 74.29 111 | 77.77 77 | 74.86 212 | 68.08 83 | 77.89 104 | 84.04 78 | 55.15 179 | 76.19 177 | 83.39 191 | 66.91 111 | 80.11 154 | 60.04 163 | 90.14 133 | 85.13 86 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_prior4 | | | | | | | 70.14 68 | 77.57 105 | | | | | | | | | |
|
EPNet | | | 69.10 183 | 67.32 207 | 74.46 114 | 68.33 283 | 61.27 136 | 77.56 106 | 63.57 284 | 60.95 125 | 56.62 327 | 82.75 201 | 51.53 232 | 81.24 125 | 54.36 210 | 90.20 129 | 80.88 195 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 75.76 91 | 74.37 109 | 79.93 46 | 74.81 213 | 77.53 20 | 77.53 107 | 79.30 150 | 59.44 136 | 78.88 128 | 89.80 79 | 71.26 76 | 73.09 242 | 57.45 178 | 80.89 256 | 89.17 30 |
|
CSCG | | | 74.12 112 | 74.39 108 | 73.33 133 | 79.35 151 | 61.66 133 | 77.45 108 | 81.98 102 | 62.47 116 | 79.06 127 | 80.19 230 | 61.83 154 | 78.79 170 | 59.83 165 | 87.35 174 | 79.54 217 |
|
HQP-NCC | | | | | | 82.37 116 | | 77.32 109 | | 59.08 137 | 71.58 232 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 116 | | 77.32 109 | | 59.08 137 | 71.58 232 | | | | | | |
|
HQP-MVS | | | 75.24 98 | 75.01 102 | 75.94 100 | 82.37 116 | 58.80 162 | 77.32 109 | 84.12 75 | 59.08 137 | 71.58 232 | 85.96 163 | 58.09 192 | 85.30 53 | 67.38 104 | 89.16 149 | 83.73 130 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 38 | 72.74 151 | 89.84 8 | 37.34 317 | 77.16 112 | 81.81 104 | 80.45 4 | 90.92 3 | 92.95 7 | 74.57 51 | 86.12 30 | 63.65 131 | 94.68 33 | 94.76 6 |
|
PS-CasMVS | | | 80.41 52 | 82.86 39 | 73.07 140 | 89.93 7 | 39.21 299 | 77.15 113 | 81.28 114 | 79.74 6 | 90.87 4 | 92.73 11 | 75.03 45 | 84.93 63 | 63.83 130 | 95.19 16 | 95.07 3 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 68 | 86.46 51 | 74.79 34 | 77.15 113 | 85.39 40 | 66.73 70 | 80.39 114 | 88.85 101 | 74.43 54 | 78.33 185 | 74.73 49 | 85.79 194 | 82.35 171 |
|
PEN-MVS | | | 80.46 51 | 82.91 37 | 73.11 139 | 89.83 9 | 39.02 302 | 77.06 115 | 82.61 95 | 80.04 5 | 90.60 6 | 92.85 9 | 74.93 47 | 85.21 57 | 63.15 139 | 95.15 18 | 95.09 2 |
|
CS-MVS-test | | | 73.63 118 | 73.74 120 | 73.30 135 | 75.80 202 | 51.70 199 | 77.02 116 | 86.83 19 | 61.29 121 | 68.47 265 | 79.23 243 | 65.42 129 | 85.14 61 | 64.04 125 | 85.55 196 | 83.07 151 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 143 | 89.66 13 | 39.06 301 | 76.76 117 | 80.46 133 | 78.91 8 | 90.32 7 | 91.70 24 | 68.49 97 | 84.89 64 | 63.40 136 | 95.12 19 | 95.01 4 |
|
SixPastTwentyTwo | | | 75.77 90 | 76.34 91 | 74.06 123 | 81.69 129 | 54.84 182 | 76.47 118 | 75.49 197 | 64.10 98 | 87.73 18 | 92.24 17 | 50.45 238 | 81.30 124 | 67.41 102 | 91.46 99 | 86.04 71 |
|
TEST9 | | | | | | 85.47 68 | 69.32 76 | 76.42 119 | 78.69 160 | 53.73 204 | 76.97 154 | 86.74 134 | 66.84 112 | 81.10 128 | | | |
|
train_agg | | | 76.38 87 | 76.55 89 | 75.86 102 | 85.47 68 | 69.32 76 | 76.42 119 | 78.69 160 | 54.00 199 | 76.97 154 | 86.74 134 | 66.60 116 | 81.10 128 | 72.50 66 | 91.56 97 | 77.15 243 |
|
Vis-MVSNet |  | | 74.85 107 | 74.56 105 | 75.72 103 | 81.63 130 | 64.64 111 | 76.35 121 | 79.06 153 | 62.85 112 | 73.33 211 | 88.41 104 | 62.54 147 | 79.59 160 | 63.94 129 | 82.92 232 | 82.94 154 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 87 | 82.52 19 | 84.39 88 | 77.04 25 | 76.35 121 | 84.05 77 | 56.66 165 | 80.27 115 | 85.31 171 | 68.56 96 | 87.03 10 | 67.39 103 | 91.26 103 | 83.50 133 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 67 | 86.11 61 | 74.96 33 | 76.33 123 | 84.95 50 | 66.89 66 | 82.75 85 | 88.99 98 | 66.82 113 | 78.37 183 | 74.80 47 | 90.76 123 | 82.40 170 |
|
test_8 | | | | | | 85.09 74 | 67.89 85 | 76.26 124 | 78.66 162 | 54.00 199 | 76.89 159 | 86.72 136 | 66.60 116 | 80.89 139 | | | |
|
agg_prior1 | | | 75.89 89 | 76.41 90 | 74.31 119 | 84.44 86 | 66.02 101 | 76.12 125 | 78.62 163 | 54.40 191 | 76.95 156 | 86.85 128 | 66.44 119 | 80.34 146 | 72.45 67 | 91.42 100 | 76.57 247 |
|
CDPH-MVS | | | 77.33 80 | 77.06 88 | 78.14 74 | 84.21 89 | 63.98 118 | 76.07 126 | 83.45 84 | 54.20 195 | 77.68 147 | 87.18 119 | 69.98 84 | 85.37 51 | 68.01 95 | 92.72 82 | 85.08 89 |
|
CNLPA | | | 73.44 121 | 73.03 136 | 74.66 112 | 78.27 166 | 75.29 31 | 75.99 127 | 78.49 165 | 65.39 82 | 75.67 179 | 83.22 200 | 61.23 163 | 66.77 296 | 53.70 215 | 85.33 201 | 81.92 179 |
|
UGNet | | | 70.20 165 | 69.05 181 | 73.65 127 | 76.24 194 | 63.64 119 | 75.87 128 | 72.53 222 | 61.48 120 | 60.93 311 | 86.14 157 | 52.37 227 | 77.12 204 | 50.67 232 | 85.21 203 | 80.17 211 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v10 | | | 75.69 93 | 76.20 93 | 74.16 121 | 74.44 224 | 48.69 218 | 75.84 129 | 82.93 91 | 59.02 140 | 85.92 40 | 89.17 92 | 58.56 187 | 82.74 103 | 70.73 76 | 89.14 152 | 91.05 13 |
|
test_prior3 | | | 76.71 86 | 77.19 85 | 75.27 108 | 82.15 121 | 59.85 152 | 75.57 130 | 84.33 67 | 58.92 141 | 76.53 170 | 86.78 131 | 67.83 105 | 83.39 91 | 69.81 82 | 92.76 80 | 82.58 165 |
|
test_prior2 | | | | | | | | 75.57 130 | | 58.92 141 | 76.53 170 | 86.78 131 | 67.83 105 | | 69.81 82 | 92.76 80 | |
|
mvs-test1 | | | 73.81 115 | 70.69 167 | 83.18 5 | 77.05 181 | 81.39 3 | 75.39 132 | 77.70 176 | 57.68 151 | 71.19 241 | 74.72 285 | 64.80 134 | 83.66 84 | 56.46 187 | 81.19 252 | 84.50 111 |
|
PAPR | | | 69.20 181 | 68.66 190 | 70.82 171 | 75.15 208 | 47.77 231 | 75.31 133 | 81.11 118 | 49.62 248 | 66.33 278 | 79.27 242 | 61.53 158 | 82.96 100 | 48.12 253 | 81.50 250 | 81.74 181 |
|
v8 | | | 75.07 101 | 75.64 98 | 73.35 132 | 73.42 236 | 47.46 236 | 75.20 134 | 81.45 110 | 60.05 131 | 85.64 44 | 89.26 87 | 58.08 194 | 81.80 118 | 69.71 85 | 87.97 164 | 90.79 17 |
|
tttt0517 | | | 69.46 175 | 67.79 202 | 74.46 114 | 75.34 204 | 52.72 196 | 75.05 135 | 63.27 286 | 54.69 186 | 78.87 129 | 84.37 180 | 26.63 352 | 81.15 126 | 63.95 127 | 87.93 165 | 89.51 24 |
|
TSAR-MVS + GP. | | | 73.08 129 | 71.60 156 | 77.54 79 | 78.99 162 | 70.73 62 | 74.96 136 | 69.38 254 | 60.73 128 | 74.39 199 | 78.44 254 | 57.72 199 | 82.78 102 | 60.16 160 | 89.60 143 | 79.11 222 |
|
MAR-MVS | | | 67.72 201 | 66.16 216 | 72.40 158 | 74.45 223 | 64.99 110 | 74.87 137 | 77.50 180 | 48.67 255 | 65.78 282 | 68.58 340 | 57.01 206 | 77.79 196 | 46.68 264 | 81.92 241 | 74.42 263 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
无先验 | | | | | | | | 74.82 138 | 70.94 245 | 47.75 265 | | | | 76.85 209 | 54.47 206 | | 72.09 284 |
|
CANet | | | 73.00 134 | 71.84 150 | 76.48 93 | 75.82 200 | 61.28 135 | 74.81 139 | 80.37 136 | 63.17 110 | 62.43 301 | 80.50 225 | 61.10 165 | 85.16 60 | 64.00 126 | 84.34 218 | 83.01 153 |
|
PVSNet_Blended_VisFu | | | 70.04 166 | 68.88 184 | 73.53 131 | 82.71 113 | 63.62 120 | 74.81 139 | 81.95 103 | 48.53 257 | 67.16 275 | 79.18 246 | 51.42 233 | 78.38 182 | 54.39 209 | 79.72 271 | 78.60 226 |
|
MCST-MVS | | | 73.42 122 | 73.34 129 | 73.63 129 | 81.28 133 | 59.17 158 | 74.80 141 | 83.13 88 | 45.50 275 | 72.84 216 | 83.78 188 | 65.15 131 | 80.99 132 | 64.54 121 | 89.09 154 | 80.73 201 |
|
原ACMM2 | | | | | | | | 74.78 142 | | | | | | | | | |
|
Anonymous20231211 | | | 75.54 94 | 77.19 85 | 70.59 174 | 77.67 178 | 45.70 253 | 74.73 143 | 80.19 138 | 68.80 56 | 82.95 81 | 92.91 8 | 66.26 120 | 76.76 211 | 58.41 174 | 92.77 79 | 89.30 26 |
|
Effi-MVS+ | | | 72.10 149 | 72.28 145 | 71.58 164 | 74.21 229 | 50.33 207 | 74.72 144 | 82.73 93 | 62.62 113 | 70.77 244 | 76.83 269 | 69.96 85 | 80.97 134 | 60.20 158 | 78.43 281 | 83.45 139 |
|
K. test v3 | | | 73.67 117 | 73.61 124 | 73.87 125 | 79.78 145 | 55.62 180 | 74.69 145 | 62.04 295 | 66.16 76 | 84.76 61 | 93.23 5 | 49.47 242 | 80.97 134 | 65.66 114 | 86.67 187 | 85.02 91 |
|
MG-MVS | | | 70.47 163 | 71.34 160 | 67.85 218 | 79.26 153 | 40.42 294 | 74.67 146 | 75.15 204 | 58.41 144 | 68.74 264 | 88.14 114 | 56.08 212 | 83.69 83 | 59.90 164 | 81.71 247 | 79.43 219 |
|
UniMVSNet_ETH3D | | | 76.74 85 | 79.02 68 | 69.92 189 | 89.27 20 | 43.81 263 | 74.47 147 | 71.70 228 | 72.33 37 | 85.50 49 | 93.65 3 | 77.98 22 | 76.88 208 | 54.60 205 | 91.64 94 | 89.08 31 |
|
GeoE | | | 73.14 127 | 73.77 119 | 71.26 169 | 78.09 169 | 52.64 197 | 74.32 148 | 79.56 148 | 56.32 169 | 76.35 175 | 83.36 195 | 70.76 79 | 77.96 193 | 63.32 137 | 81.84 243 | 83.18 147 |
|
DP-MVS Recon | | | 73.57 120 | 72.69 140 | 76.23 97 | 82.85 111 | 63.39 121 | 74.32 148 | 82.96 90 | 57.75 150 | 70.35 248 | 81.98 208 | 64.34 138 | 84.41 75 | 49.69 239 | 89.95 137 | 80.89 194 |
|
ambc | | | | | 70.10 185 | 77.74 176 | 50.21 209 | 74.28 150 | 77.93 175 | | 79.26 125 | 88.29 109 | 54.11 220 | 79.77 157 | 64.43 122 | 91.10 109 | 80.30 208 |
|
nrg030 | | | 74.87 106 | 75.99 95 | 71.52 166 | 74.90 211 | 49.88 214 | 74.10 151 | 82.58 96 | 54.55 190 | 83.50 77 | 89.21 89 | 71.51 72 | 75.74 220 | 61.24 149 | 92.34 86 | 88.94 36 |
|
canonicalmvs | | | 72.29 148 | 73.38 127 | 69.04 198 | 74.23 225 | 47.37 237 | 73.93 152 | 83.18 86 | 54.36 192 | 76.61 167 | 81.64 214 | 72.03 66 | 75.34 224 | 57.12 180 | 87.28 177 | 84.40 113 |
|
CANet_DTU | | | 64.04 236 | 63.83 233 | 64.66 245 | 68.39 280 | 42.97 273 | 73.45 153 | 74.50 209 | 52.05 220 | 54.78 334 | 75.44 280 | 43.99 271 | 70.42 271 | 53.49 217 | 78.41 282 | 80.59 204 |
|
ETV-MVS | | | 72.72 141 | 72.16 148 | 74.38 118 | 76.90 187 | 55.95 175 | 73.34 154 | 84.67 57 | 62.04 117 | 72.19 227 | 70.81 320 | 65.90 124 | 85.24 56 | 58.64 171 | 84.96 209 | 81.95 178 |
|
PCF-MVS | | 63.80 13 | 72.70 142 | 71.69 152 | 75.72 103 | 78.10 168 | 60.01 151 | 73.04 155 | 81.50 108 | 45.34 279 | 79.66 120 | 84.35 181 | 65.15 131 | 82.65 105 | 48.70 247 | 89.38 148 | 84.50 111 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-3 | | | 72.86 139 | 72.28 145 | 74.62 113 | 74.74 215 | 60.18 149 | 72.91 156 | 71.76 227 | 64.74 92 | 78.42 134 | 72.07 310 | 67.00 110 | 76.28 215 | 67.97 97 | 80.91 254 | 87.39 53 |
|
Regformer-4 | | | 74.64 108 | 73.67 121 | 77.55 78 | 74.74 215 | 64.49 114 | 72.91 156 | 75.42 199 | 67.45 63 | 80.24 116 | 72.07 310 | 68.98 92 | 80.19 153 | 70.29 78 | 80.91 254 | 87.98 46 |
|
Regformer-1 | | | 74.28 110 | 73.63 123 | 76.21 98 | 74.22 226 | 64.12 117 | 72.77 158 | 75.46 198 | 66.86 68 | 79.27 124 | 72.08 308 | 69.29 89 | 78.74 171 | 68.73 87 | 84.02 222 | 85.77 80 |
|
Regformer-2 | | | 75.32 96 | 74.47 107 | 77.88 76 | 74.22 226 | 66.65 96 | 72.77 158 | 77.54 178 | 68.47 61 | 80.44 112 | 72.08 308 | 70.60 80 | 80.97 134 | 70.08 80 | 84.02 222 | 86.01 72 |
|
test_0402 | | | 78.17 76 | 79.48 66 | 74.24 120 | 83.50 97 | 59.15 159 | 72.52 160 | 74.60 208 | 75.34 17 | 88.69 13 | 91.81 22 | 75.06 44 | 82.37 109 | 65.10 117 | 88.68 157 | 81.20 185 |
|
EU-MVSNet | | | 60.82 261 | 60.80 259 | 60.86 282 | 68.37 281 | 41.16 284 | 72.27 161 | 68.27 261 | 26.96 361 | 69.08 257 | 75.71 275 | 32.09 329 | 67.44 288 | 55.59 197 | 78.90 276 | 73.97 265 |
|
EI-MVSNet-Vis-set | | | 72.78 140 | 71.87 149 | 75.54 105 | 74.77 214 | 59.02 160 | 72.24 162 | 71.56 231 | 63.92 99 | 78.59 130 | 71.59 316 | 66.22 121 | 78.60 173 | 67.58 100 | 80.32 262 | 89.00 34 |
|
v1192 | | | 73.40 123 | 73.42 125 | 73.32 134 | 74.65 221 | 48.67 219 | 72.21 163 | 81.73 105 | 52.76 213 | 81.85 92 | 84.56 177 | 57.12 203 | 82.24 113 | 68.58 88 | 87.33 175 | 89.06 32 |
|
baseline | | | 73.10 128 | 73.96 115 | 70.51 176 | 71.46 257 | 46.39 247 | 72.08 164 | 84.40 66 | 55.95 172 | 76.62 166 | 86.46 147 | 67.20 108 | 78.03 192 | 64.22 124 | 87.27 178 | 87.11 59 |
|
EI-MVSNet-UG-set | | | 72.63 143 | 71.68 153 | 75.47 106 | 74.67 218 | 58.64 165 | 72.02 165 | 71.50 232 | 63.53 104 | 78.58 132 | 71.39 319 | 65.98 122 | 78.53 175 | 67.30 106 | 80.18 264 | 89.23 28 |
|
v1144 | | | 73.29 126 | 73.39 126 | 73.01 141 | 74.12 230 | 48.11 226 | 72.01 166 | 81.08 121 | 53.83 203 | 81.77 94 | 84.68 175 | 58.07 195 | 81.91 115 | 68.10 92 | 86.86 183 | 88.99 35 |
|
GBi-Net | | | 68.30 193 | 68.79 185 | 66.81 230 | 73.14 241 | 40.68 290 | 71.96 167 | 73.03 214 | 54.81 181 | 74.72 192 | 90.36 66 | 48.63 251 | 75.20 226 | 47.12 259 | 85.37 198 | 84.54 106 |
|
test1 | | | 68.30 193 | 68.79 185 | 66.81 230 | 73.14 241 | 40.68 290 | 71.96 167 | 73.03 214 | 54.81 181 | 74.72 192 | 90.36 66 | 48.63 251 | 75.20 226 | 47.12 259 | 85.37 198 | 84.54 106 |
|
FMVSNet1 | | | 71.06 156 | 72.48 142 | 66.81 230 | 77.65 179 | 40.68 290 | 71.96 167 | 73.03 214 | 61.14 123 | 79.45 123 | 90.36 66 | 60.44 169 | 75.20 226 | 50.20 236 | 88.05 161 | 84.54 106 |
|
v1921920 | | | 72.96 137 | 72.98 137 | 72.89 147 | 74.67 218 | 47.58 234 | 71.92 170 | 80.69 127 | 51.70 224 | 81.69 98 | 83.89 186 | 56.58 209 | 82.25 112 | 68.34 90 | 87.36 173 | 88.82 39 |
|
v144192 | | | 72.99 135 | 73.06 135 | 72.77 149 | 74.58 222 | 47.48 235 | 71.90 171 | 80.44 134 | 51.57 225 | 81.46 100 | 84.11 184 | 58.04 196 | 82.12 114 | 67.98 96 | 87.47 171 | 88.70 42 |
|
v1240 | | | 73.06 131 | 73.14 132 | 72.84 148 | 74.74 215 | 47.27 239 | 71.88 172 | 81.11 118 | 51.80 222 | 82.28 90 | 84.21 182 | 56.22 211 | 82.34 110 | 68.82 86 | 87.17 181 | 88.91 37 |
|
FC-MVSNet-test | | | 73.32 125 | 74.78 104 | 68.93 203 | 79.21 155 | 36.57 319 | 71.82 173 | 79.54 149 | 57.63 155 | 82.57 87 | 90.38 63 | 59.38 180 | 78.99 166 | 57.91 177 | 94.56 35 | 91.23 12 |
|
IterMVS-LS | | | 73.01 133 | 73.12 134 | 72.66 153 | 73.79 233 | 49.90 211 | 71.63 174 | 78.44 166 | 58.22 145 | 80.51 111 | 86.63 141 | 58.15 191 | 79.62 158 | 62.51 141 | 88.20 158 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 70.70 160 | 70.88 164 | 70.16 182 | 82.64 115 | 58.80 162 | 71.48 175 | 73.64 212 | 54.98 180 | 76.55 168 | 81.77 211 | 61.10 165 | 78.94 167 | 54.87 202 | 80.84 257 | 72.74 277 |
|
LF4IMVS | | | 67.50 203 | 67.31 208 | 68.08 215 | 58.86 345 | 61.93 129 | 71.43 176 | 75.90 194 | 44.67 284 | 72.42 223 | 80.20 229 | 57.16 201 | 70.44 270 | 58.99 170 | 86.12 191 | 71.88 285 |
|
v2v482 | | | 72.55 146 | 72.58 141 | 72.43 157 | 72.92 248 | 46.72 242 | 71.41 177 | 79.13 152 | 55.27 177 | 81.17 103 | 85.25 172 | 55.41 214 | 81.13 127 | 67.25 107 | 85.46 197 | 89.43 25 |
|
Fast-Effi-MVS+-dtu | | | 70.00 167 | 68.74 188 | 73.77 126 | 73.47 235 | 64.53 113 | 71.36 178 | 78.14 171 | 55.81 174 | 68.84 263 | 74.71 286 | 65.36 130 | 75.75 219 | 52.00 222 | 79.00 275 | 81.03 189 |
|
新几何2 | | | | | | | | 71.33 179 | | | | | | | | | |
|
EI-MVSNet | | | 69.61 173 | 69.01 183 | 71.41 168 | 73.94 231 | 49.90 211 | 71.31 180 | 71.32 236 | 58.22 145 | 75.40 184 | 70.44 322 | 58.16 190 | 75.85 216 | 62.51 141 | 79.81 268 | 88.48 43 |
|
CVMVSNet | | | 59.21 273 | 58.44 276 | 61.51 274 | 73.94 231 | 47.76 232 | 71.31 180 | 64.56 279 | 26.91 362 | 60.34 313 | 70.44 322 | 36.24 313 | 67.65 286 | 53.57 216 | 68.66 335 | 69.12 310 |
|
thisisatest0530 | | | 67.05 210 | 65.16 221 | 72.73 152 | 73.10 244 | 50.55 206 | 71.26 182 | 63.91 282 | 50.22 240 | 74.46 198 | 80.75 221 | 26.81 351 | 80.25 149 | 59.43 167 | 86.50 188 | 87.37 54 |
|
旧先验2 | | | | | | | | 71.17 183 | | 45.11 281 | 78.54 133 | | | 61.28 318 | 59.19 169 | | |
|
FIs | | | 72.56 144 | 73.80 117 | 68.84 206 | 78.74 163 | 37.74 313 | 71.02 184 | 79.83 143 | 56.12 170 | 80.88 109 | 89.45 84 | 58.18 189 | 78.28 186 | 56.63 183 | 93.36 70 | 90.51 19 |
|
TranMVSNet+NR-MVSNet | | | 76.13 88 | 77.66 81 | 71.56 165 | 84.61 82 | 42.57 277 | 70.98 185 | 78.29 169 | 68.67 59 | 83.04 79 | 89.26 87 | 72.99 63 | 80.75 140 | 55.58 198 | 95.47 10 | 91.35 11 |
|
casdiffmvs | | | 73.06 131 | 73.84 116 | 70.72 172 | 71.32 258 | 46.71 243 | 70.93 186 | 84.26 71 | 55.62 175 | 77.46 149 | 87.10 120 | 67.09 109 | 77.81 195 | 63.95 127 | 86.83 184 | 87.64 50 |
|
CR-MVSNet | | | 58.96 274 | 58.49 275 | 60.36 285 | 66.37 298 | 48.24 224 | 70.93 186 | 56.40 317 | 32.87 346 | 61.35 305 | 86.66 138 | 33.19 321 | 63.22 312 | 48.50 250 | 70.17 327 | 69.62 305 |
|
RPMNet | | | 65.77 218 | 65.08 228 | 67.84 219 | 66.37 298 | 48.24 224 | 70.93 186 | 86.27 23 | 54.66 187 | 61.35 305 | 86.77 133 | 33.29 320 | 85.67 46 | 55.93 192 | 70.17 327 | 69.62 305 |
|
LFMVS | | | 67.06 209 | 67.89 200 | 64.56 246 | 78.02 170 | 38.25 308 | 70.81 189 | 59.60 301 | 65.18 87 | 71.06 242 | 86.56 144 | 43.85 272 | 75.22 225 | 46.35 265 | 89.63 142 | 80.21 210 |
|
DPM-MVS | | | 69.98 168 | 69.22 180 | 72.26 161 | 82.69 114 | 58.82 161 | 70.53 190 | 81.23 116 | 47.79 264 | 64.16 290 | 80.21 228 | 51.32 234 | 83.12 97 | 60.14 161 | 84.95 210 | 74.83 260 |
|
hse-mvs3 | | | 73.08 129 | 71.61 155 | 77.48 80 | 83.89 95 | 72.89 48 | 70.47 191 | 71.12 243 | 54.28 193 | 77.89 140 | 83.41 190 | 49.04 245 | 80.98 133 | 63.62 132 | 90.77 122 | 78.58 227 |
|
MVS_111021_LR | | | 72.10 149 | 71.82 151 | 72.95 144 | 79.53 149 | 73.90 40 | 70.45 192 | 66.64 266 | 56.87 161 | 76.81 163 | 81.76 212 | 68.78 93 | 71.76 260 | 61.81 144 | 83.74 226 | 73.18 272 |
|
UniMVSNet (Re) | | | 75.00 102 | 75.48 100 | 73.56 130 | 83.14 102 | 47.92 229 | 70.41 193 | 81.04 122 | 63.67 102 | 79.54 121 | 86.37 149 | 62.83 143 | 81.82 116 | 57.10 181 | 95.25 15 | 90.94 15 |
|
TinyColmap | | | 67.98 197 | 69.28 177 | 64.08 250 | 67.98 287 | 46.82 241 | 70.04 194 | 75.26 202 | 53.05 209 | 77.36 150 | 86.79 130 | 59.39 179 | 72.59 250 | 45.64 268 | 88.01 163 | 72.83 275 |
|
VDDNet | | | 71.60 153 | 73.13 133 | 67.02 229 | 86.29 52 | 41.11 285 | 69.97 195 | 66.50 267 | 68.72 58 | 74.74 191 | 91.70 24 | 59.90 173 | 75.81 218 | 48.58 249 | 91.72 91 | 84.15 120 |
|
EPNet_dtu | | | 58.93 275 | 58.52 274 | 60.16 287 | 67.91 288 | 47.70 233 | 69.97 195 | 58.02 305 | 49.73 245 | 47.28 355 | 73.02 304 | 38.14 305 | 62.34 314 | 36.57 320 | 85.99 193 | 70.43 297 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 69.84 170 | 70.71 166 | 67.24 225 | 67.49 292 | 43.25 271 | 69.87 197 | 81.22 117 | 52.69 214 | 71.57 235 | 86.68 137 | 62.09 153 | 74.51 234 | 66.05 110 | 78.74 277 | 83.96 122 |
|
alignmvs | | | 70.54 162 | 71.00 163 | 69.15 197 | 73.50 234 | 48.04 228 | 69.85 198 | 79.62 144 | 53.94 202 | 76.54 169 | 82.00 207 | 59.00 183 | 74.68 232 | 57.32 179 | 87.21 179 | 84.72 98 |
|
GG-mvs-BLEND | | | | | 52.24 313 | 60.64 336 | 29.21 356 | 69.73 199 | 42.41 355 | | 45.47 357 | 52.33 361 | 20.43 367 | 68.16 283 | 25.52 359 | 65.42 342 | 59.36 347 |
|
CS-MVS | | | 69.29 179 | 69.70 174 | 68.07 216 | 70.59 264 | 42.36 279 | 69.70 200 | 84.56 63 | 53.13 208 | 67.96 268 | 76.74 270 | 59.41 178 | 83.56 86 | 60.33 157 | 84.84 211 | 78.28 232 |
|
pmmvs-eth3d | | | 64.41 232 | 63.27 240 | 67.82 220 | 75.81 201 | 60.18 149 | 69.49 201 | 62.05 294 | 38.81 318 | 74.13 201 | 82.23 206 | 43.76 273 | 68.65 280 | 42.53 281 | 80.63 261 | 74.63 261 |
|
DU-MVS | | | 74.91 104 | 75.57 99 | 72.93 145 | 83.50 97 | 45.79 249 | 69.47 202 | 80.14 140 | 65.22 86 | 81.74 96 | 87.08 121 | 61.82 155 | 81.07 130 | 56.21 190 | 94.98 21 | 91.93 8 |
|
EIA-MVS | | | 68.59 190 | 67.16 209 | 72.90 146 | 75.18 207 | 55.64 179 | 69.39 203 | 81.29 113 | 52.44 215 | 64.53 286 | 70.69 321 | 60.33 170 | 82.30 111 | 54.27 211 | 76.31 292 | 80.75 200 |
|
PAPM | | | 61.79 256 | 60.37 262 | 66.05 237 | 76.09 197 | 41.87 281 | 69.30 204 | 76.79 188 | 40.64 310 | 53.80 340 | 79.62 238 | 44.38 269 | 82.92 101 | 29.64 348 | 73.11 313 | 73.36 271 |
|
UniMVSNet_NR-MVSNet | | | 74.90 105 | 75.65 97 | 72.64 154 | 83.04 107 | 45.79 249 | 69.26 205 | 78.81 157 | 66.66 72 | 81.74 96 | 86.88 127 | 63.26 141 | 81.07 130 | 56.21 190 | 94.98 21 | 91.05 13 |
|
MVP-Stereo | | | 61.56 257 | 59.22 268 | 68.58 209 | 79.28 152 | 60.44 147 | 69.20 206 | 71.57 230 | 43.58 292 | 56.42 328 | 78.37 255 | 39.57 300 | 76.46 214 | 34.86 329 | 60.16 351 | 68.86 312 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
hse-mvs2 | | | 72.32 147 | 70.66 168 | 77.31 85 | 83.10 106 | 71.77 51 | 69.19 207 | 71.45 234 | 54.28 193 | 77.89 140 | 78.26 256 | 49.04 245 | 79.23 162 | 63.62 132 | 89.13 153 | 80.92 193 |
|
AUN-MVS | | | 70.22 164 | 67.88 201 | 77.22 86 | 82.96 110 | 71.61 52 | 69.08 208 | 71.39 235 | 49.17 251 | 71.70 230 | 78.07 260 | 37.62 310 | 79.21 163 | 61.81 144 | 89.15 151 | 80.82 196 |
|
gg-mvs-nofinetune | | | 55.75 287 | 56.75 287 | 52.72 312 | 62.87 323 | 28.04 358 | 68.92 209 | 41.36 362 | 71.09 44 | 50.80 347 | 92.63 12 | 20.74 366 | 66.86 293 | 29.97 346 | 72.41 315 | 63.25 337 |
|
Baseline_NR-MVSNet | | | 70.62 161 | 73.19 131 | 62.92 265 | 76.97 184 | 34.44 335 | 68.84 210 | 70.88 246 | 60.25 130 | 79.50 122 | 90.53 51 | 61.82 155 | 69.11 278 | 54.67 204 | 95.27 14 | 85.22 83 |
|
v148 | | | 69.38 178 | 69.39 176 | 69.36 193 | 69.14 279 | 44.56 258 | 68.83 211 | 72.70 220 | 54.79 184 | 78.59 130 | 84.12 183 | 54.69 216 | 76.74 212 | 59.40 168 | 82.20 238 | 86.79 62 |
|
FMVSNet2 | | | 67.48 204 | 68.21 196 | 65.29 241 | 73.14 241 | 38.94 303 | 68.81 212 | 71.21 242 | 54.81 181 | 76.73 165 | 86.48 146 | 48.63 251 | 74.60 233 | 47.98 254 | 86.11 192 | 82.35 171 |
|
MVS_111021_HR | | | 72.98 136 | 72.97 138 | 72.99 142 | 80.82 136 | 65.47 104 | 68.81 212 | 72.77 219 | 57.67 153 | 75.76 178 | 82.38 205 | 71.01 77 | 77.17 203 | 61.38 148 | 86.15 190 | 76.32 248 |
|
Anonymous20240529 | | | 72.56 144 | 73.79 118 | 68.86 205 | 76.89 188 | 45.21 255 | 68.80 214 | 77.25 184 | 67.16 65 | 76.89 159 | 90.44 54 | 65.95 123 | 74.19 237 | 50.75 231 | 90.00 135 | 87.18 58 |
|
Anonymous20240521 | | | 63.55 238 | 66.07 217 | 55.99 303 | 66.18 303 | 44.04 262 | 68.77 215 | 68.80 256 | 46.99 269 | 72.57 219 | 85.84 165 | 39.87 297 | 50.22 335 | 53.40 219 | 92.23 88 | 73.71 269 |
|
CLD-MVS | | | 72.88 138 | 72.36 144 | 74.43 116 | 77.03 183 | 54.30 186 | 68.77 215 | 83.43 85 | 52.12 218 | 76.79 164 | 74.44 289 | 69.54 88 | 83.91 80 | 55.88 193 | 93.25 72 | 85.09 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
1314 | | | 59.83 269 | 58.86 272 | 62.74 266 | 65.71 306 | 44.78 257 | 68.59 217 | 72.63 221 | 33.54 345 | 61.05 309 | 67.29 346 | 43.62 274 | 71.26 263 | 49.49 241 | 67.84 338 | 72.19 283 |
|
1121 | | | 69.23 180 | 68.26 193 | 72.12 162 | 88.36 37 | 71.40 54 | 68.59 217 | 62.06 293 | 43.80 288 | 74.75 190 | 86.18 154 | 52.92 224 | 76.85 209 | 54.47 206 | 83.27 230 | 68.12 313 |
|
MVS | | | 60.62 264 | 59.97 264 | 62.58 267 | 68.13 285 | 47.28 238 | 68.59 217 | 73.96 211 | 32.19 347 | 59.94 316 | 68.86 338 | 50.48 237 | 77.64 199 | 41.85 286 | 75.74 294 | 62.83 338 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 242 | 63.28 239 | 63.07 262 | 69.81 272 | 45.34 254 | 68.52 220 | 67.14 263 | 43.74 290 | 70.61 246 | 79.22 244 | 47.90 255 | 72.66 246 | 48.75 246 | 73.84 311 | 71.21 292 |
|
PM-MVS | | | 64.49 229 | 63.61 236 | 67.14 228 | 76.68 190 | 75.15 32 | 68.49 221 | 42.85 354 | 51.17 232 | 77.85 142 | 80.51 224 | 45.76 258 | 66.31 299 | 52.83 220 | 76.35 291 | 59.96 346 |
|
BH-untuned | | | 69.39 177 | 69.46 175 | 69.18 196 | 77.96 172 | 56.88 171 | 68.47 222 | 77.53 179 | 56.77 163 | 77.79 144 | 79.63 237 | 60.30 171 | 80.20 152 | 46.04 266 | 80.65 259 | 70.47 296 |
|
testdata1 | | | | | | | | 68.34 223 | | 57.24 158 | | | | | | | |
|
tpm2 | | | 56.12 285 | 54.64 298 | 60.55 284 | 66.24 301 | 36.01 323 | 68.14 224 | 56.77 316 | 33.60 344 | 58.25 322 | 75.52 279 | 30.25 344 | 74.33 236 | 33.27 335 | 69.76 331 | 71.32 289 |
|
cl_fuxian | | | 69.82 171 | 69.89 172 | 69.61 191 | 66.24 301 | 43.48 267 | 68.12 225 | 79.61 146 | 51.43 227 | 77.72 145 | 80.18 231 | 54.61 218 | 78.15 191 | 63.62 132 | 87.50 170 | 87.20 57 |
|
CMPMVS |  | 48.73 20 | 61.54 258 | 60.89 258 | 63.52 256 | 61.08 333 | 51.55 201 | 68.07 226 | 68.00 262 | 33.88 340 | 65.87 280 | 81.25 217 | 37.91 308 | 67.71 285 | 49.32 242 | 82.60 235 | 71.31 290 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test222 | | | | | | 87.30 41 | 69.15 79 | 67.85 227 | 59.59 302 | 41.06 306 | 73.05 215 | 85.72 167 | 48.03 254 | | | 80.65 259 | 66.92 319 |
|
VDD-MVS | | | 70.81 159 | 71.44 159 | 68.91 204 | 79.07 161 | 46.51 244 | 67.82 228 | 70.83 247 | 61.23 122 | 74.07 203 | 88.69 102 | 59.86 174 | 75.62 221 | 51.11 228 | 90.28 128 | 84.61 103 |
|
ab-mvs | | | 64.11 235 | 65.13 224 | 61.05 279 | 71.99 254 | 38.03 312 | 67.59 229 | 68.79 257 | 49.08 253 | 65.32 283 | 86.26 152 | 58.02 197 | 66.85 294 | 39.33 298 | 79.79 270 | 78.27 233 |
|
eth_miper_zixun_eth | | | 69.42 176 | 68.73 189 | 71.50 167 | 67.99 286 | 46.42 245 | 67.58 230 | 78.81 157 | 50.72 236 | 78.13 138 | 80.34 227 | 50.15 240 | 80.34 146 | 60.18 159 | 84.65 212 | 87.74 49 |
|
CostFormer | | | 57.35 283 | 56.14 291 | 60.97 280 | 63.76 320 | 38.43 305 | 67.50 231 | 60.22 299 | 37.14 326 | 59.12 319 | 76.34 273 | 32.78 324 | 71.99 257 | 39.12 300 | 69.27 332 | 72.47 279 |
|
Patchmtry | | | 60.91 260 | 63.01 243 | 54.62 306 | 66.10 304 | 26.27 362 | 67.47 232 | 56.40 317 | 54.05 198 | 72.04 228 | 86.66 138 | 33.19 321 | 60.17 320 | 43.69 276 | 87.45 172 | 77.42 241 |
|
USDC | | | 62.80 247 | 63.10 242 | 61.89 271 | 65.19 309 | 43.30 270 | 67.42 233 | 74.20 210 | 35.80 332 | 72.25 225 | 84.48 179 | 45.67 260 | 71.95 258 | 37.95 310 | 84.97 206 | 70.42 298 |
|
xiu_mvs_v1_base_debu | | | 67.87 198 | 67.07 210 | 70.26 179 | 79.13 158 | 61.90 130 | 67.34 234 | 71.25 239 | 47.98 260 | 67.70 270 | 74.19 295 | 61.31 160 | 72.62 247 | 56.51 184 | 78.26 283 | 76.27 249 |
|
xiu_mvs_v1_base | | | 67.87 198 | 67.07 210 | 70.26 179 | 79.13 158 | 61.90 130 | 67.34 234 | 71.25 239 | 47.98 260 | 67.70 270 | 74.19 295 | 61.31 160 | 72.62 247 | 56.51 184 | 78.26 283 | 76.27 249 |
|
xiu_mvs_v1_base_debi | | | 67.87 198 | 67.07 210 | 70.26 179 | 79.13 158 | 61.90 130 | 67.34 234 | 71.25 239 | 47.98 260 | 67.70 270 | 74.19 295 | 61.31 160 | 72.62 247 | 56.51 184 | 78.26 283 | 76.27 249 |
|
Vis-MVSNet (Re-imp) | | | 62.74 248 | 63.21 241 | 61.34 277 | 72.19 252 | 31.56 348 | 67.31 237 | 53.87 324 | 53.60 205 | 69.88 252 | 83.37 193 | 40.52 294 | 70.98 265 | 41.40 288 | 86.78 186 | 81.48 184 |
|
jason | | | 64.47 230 | 62.84 244 | 69.34 195 | 76.91 186 | 59.20 155 | 67.15 238 | 65.67 269 | 35.29 333 | 65.16 284 | 76.74 270 | 44.67 267 | 70.68 266 | 54.74 203 | 79.28 274 | 78.14 235 |
jason: jason. |
RRT_test8_iter05 | | | 65.80 217 | 65.13 224 | 67.80 221 | 67.02 296 | 40.85 289 | 67.13 239 | 75.33 200 | 49.73 245 | 72.69 218 | 81.32 215 | 24.45 362 | 77.37 202 | 61.69 147 | 86.82 185 | 85.18 85 |
|
miper_ehance_all_eth | | | 68.36 192 | 68.16 198 | 68.98 200 | 65.14 312 | 43.34 269 | 67.07 240 | 78.92 156 | 49.11 252 | 76.21 176 | 77.72 262 | 53.48 222 | 77.92 194 | 61.16 151 | 84.59 214 | 85.68 81 |
|
pmmvs6 | | | 71.82 151 | 73.66 122 | 66.31 236 | 75.94 199 | 42.01 280 | 66.99 241 | 72.53 222 | 63.45 106 | 76.43 173 | 92.78 10 | 72.95 64 | 69.69 274 | 51.41 226 | 90.46 126 | 87.22 55 |
|
PatchmatchNet |  | | 54.60 293 | 54.27 299 | 55.59 304 | 65.17 311 | 39.08 300 | 66.92 242 | 51.80 335 | 39.89 312 | 58.39 320 | 73.12 303 | 31.69 332 | 58.33 324 | 43.01 280 | 58.38 357 | 69.38 308 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MSDG | | | 67.47 205 | 67.48 206 | 67.46 223 | 70.70 263 | 54.69 184 | 66.90 243 | 78.17 170 | 60.88 126 | 70.41 247 | 74.76 283 | 61.22 164 | 73.18 241 | 47.38 258 | 76.87 289 | 74.49 262 |
|
cl-mvsnet2 | | | 67.14 207 | 66.51 214 | 69.03 199 | 63.20 322 | 43.46 268 | 66.88 244 | 76.25 190 | 49.22 250 | 74.48 197 | 77.88 261 | 45.49 262 | 77.40 201 | 60.64 156 | 84.59 214 | 86.24 67 |
|
TAMVS | | | 65.31 221 | 63.75 234 | 69.97 188 | 82.23 120 | 59.76 154 | 66.78 245 | 63.37 285 | 45.20 280 | 69.79 253 | 79.37 241 | 47.42 257 | 72.17 253 | 34.48 330 | 85.15 205 | 77.99 239 |
|
test_post1 | | | | | | | | 66.63 246 | | | | 2.08 369 | 30.66 342 | 59.33 322 | 40.34 295 | | |
|
FMVSNet3 | | | 65.00 225 | 65.16 221 | 64.52 247 | 69.47 275 | 37.56 316 | 66.63 246 | 70.38 249 | 51.55 226 | 74.72 192 | 83.27 197 | 37.89 309 | 74.44 235 | 47.12 259 | 85.37 198 | 81.57 183 |
|
mvs_anonymous | | | 65.08 224 | 65.49 220 | 63.83 253 | 63.79 319 | 37.60 315 | 66.52 248 | 69.82 252 | 43.44 293 | 73.46 209 | 86.08 160 | 58.79 186 | 71.75 261 | 51.90 223 | 75.63 296 | 82.15 175 |
|
wuyk23d | | | 61.97 253 | 66.25 215 | 49.12 323 | 58.19 349 | 60.77 145 | 66.32 249 | 52.97 331 | 55.93 173 | 90.62 5 | 86.91 126 | 73.07 62 | 35.98 363 | 20.63 365 | 91.63 95 | 50.62 354 |
|
tpm cat1 | | | 54.02 297 | 52.63 305 | 58.19 297 | 64.85 315 | 39.86 297 | 66.26 250 | 57.28 311 | 32.16 348 | 56.90 325 | 70.39 324 | 32.75 325 | 65.30 302 | 34.29 331 | 58.79 354 | 69.41 307 |
|
Fast-Effi-MVS+ | | | 68.81 186 | 68.30 192 | 70.35 178 | 74.66 220 | 48.61 220 | 66.06 251 | 78.32 167 | 50.62 237 | 71.48 238 | 75.54 277 | 68.75 94 | 79.59 160 | 50.55 234 | 78.73 278 | 82.86 157 |
|
V42 | | | 71.06 156 | 70.83 165 | 71.72 163 | 67.25 293 | 47.14 240 | 65.94 252 | 80.35 137 | 51.35 228 | 83.40 78 | 83.23 198 | 59.25 181 | 78.80 169 | 65.91 112 | 80.81 258 | 89.23 28 |
|
cl-mvsnet____ | | | 68.26 196 | 68.26 193 | 68.29 212 | 64.98 313 | 43.67 265 | 65.89 253 | 74.67 206 | 50.04 243 | 76.86 161 | 82.42 204 | 48.74 249 | 75.38 222 | 60.92 154 | 89.81 139 | 85.80 79 |
|
cl-mvsnet1 | | | 68.27 195 | 68.26 193 | 68.29 212 | 64.98 313 | 43.67 265 | 65.89 253 | 74.67 206 | 50.04 243 | 76.86 161 | 82.43 203 | 48.74 249 | 75.38 222 | 60.94 153 | 89.81 139 | 85.81 75 |
|
tpmvs | | | 55.84 286 | 55.45 296 | 57.01 300 | 60.33 337 | 33.20 342 | 65.89 253 | 59.29 303 | 47.52 267 | 56.04 329 | 73.60 298 | 31.05 339 | 68.06 284 | 40.64 293 | 64.64 343 | 69.77 303 |
|
lupinMVS | | | 63.36 239 | 61.49 254 | 68.97 201 | 74.93 209 | 59.19 156 | 65.80 256 | 64.52 280 | 34.68 338 | 63.53 297 | 74.25 293 | 43.19 276 | 70.62 267 | 53.88 214 | 78.67 279 | 77.10 244 |
|
TransMVSNet (Re) | | | 69.62 172 | 71.63 154 | 63.57 255 | 76.51 191 | 35.93 325 | 65.75 257 | 71.29 238 | 61.05 124 | 75.02 186 | 89.90 78 | 65.88 125 | 70.41 272 | 49.79 238 | 89.48 146 | 84.38 114 |
|
NR-MVSNet | | | 73.62 119 | 74.05 113 | 72.33 160 | 83.50 97 | 43.71 264 | 65.65 258 | 77.32 182 | 64.32 96 | 75.59 180 | 87.08 121 | 62.45 148 | 81.34 122 | 54.90 201 | 95.63 8 | 91.93 8 |
|
BH-w/o | | | 64.81 226 | 64.29 231 | 66.36 235 | 76.08 198 | 54.71 183 | 65.61 259 | 75.23 203 | 50.10 242 | 71.05 243 | 71.86 315 | 54.33 219 | 79.02 165 | 38.20 308 | 76.14 293 | 65.36 328 |
|
PVSNet_BlendedMVS | | | 65.38 220 | 64.30 230 | 68.61 208 | 69.81 272 | 49.36 215 | 65.60 260 | 78.96 154 | 45.50 275 | 59.98 314 | 78.61 252 | 51.82 229 | 78.20 188 | 44.30 272 | 84.11 220 | 78.27 233 |
|
thres100view900 | | | 61.17 259 | 61.09 256 | 61.39 276 | 72.14 253 | 35.01 331 | 65.42 261 | 56.99 314 | 55.23 178 | 70.71 245 | 79.90 233 | 32.07 330 | 72.09 254 | 35.61 326 | 81.73 244 | 77.08 245 |
|
CDS-MVSNet | | | 64.33 233 | 62.66 246 | 69.35 194 | 80.44 141 | 58.28 166 | 65.26 262 | 65.66 270 | 44.36 285 | 67.30 274 | 75.54 277 | 43.27 275 | 71.77 259 | 37.68 311 | 84.44 217 | 78.01 238 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 58.57 278 | 58.04 278 | 60.17 286 | 70.17 270 | 41.07 286 | 65.19 263 | 53.38 329 | 43.34 296 | 61.00 310 | 73.48 299 | 45.20 263 | 69.38 276 | 40.34 295 | 70.31 326 | 70.05 300 |
|
HY-MVS | | 49.31 19 | 57.96 280 | 57.59 281 | 59.10 292 | 66.85 297 | 36.17 322 | 65.13 264 | 65.39 273 | 39.24 315 | 54.69 336 | 78.14 258 | 44.28 270 | 67.18 291 | 33.75 334 | 70.79 323 | 73.95 266 |
|
ET-MVSNet_ETH3D | | | 63.32 240 | 60.69 260 | 71.20 170 | 70.15 271 | 55.66 178 | 65.02 265 | 64.32 281 | 43.28 297 | 68.99 259 | 72.05 314 | 25.46 358 | 78.19 190 | 54.16 212 | 82.80 233 | 79.74 216 |
|
diffmvs | | | 67.42 206 | 67.50 205 | 67.20 226 | 62.26 326 | 45.21 255 | 64.87 266 | 77.04 185 | 48.21 258 | 71.74 229 | 79.70 236 | 58.40 188 | 71.17 264 | 64.99 118 | 80.27 263 | 85.22 83 |
|
miper_enhance_ethall | | | 65.86 216 | 65.05 229 | 68.28 214 | 61.62 330 | 42.62 276 | 64.74 267 | 77.97 173 | 42.52 298 | 73.42 210 | 72.79 305 | 49.66 241 | 77.68 198 | 58.12 175 | 84.59 214 | 84.54 106 |
|
thres600view7 | | | 61.82 255 | 61.38 255 | 63.12 261 | 71.81 255 | 34.93 332 | 64.64 268 | 56.99 314 | 54.78 185 | 70.33 249 | 79.74 235 | 32.07 330 | 72.42 252 | 38.61 304 | 83.46 228 | 82.02 176 |
|
BH-RMVSNet | | | 68.69 189 | 68.20 197 | 70.14 183 | 76.40 192 | 53.90 190 | 64.62 269 | 73.48 213 | 58.01 147 | 73.91 205 | 81.78 210 | 59.09 182 | 78.22 187 | 48.59 248 | 77.96 286 | 78.31 230 |
|
pm-mvs1 | | | 68.40 191 | 69.85 173 | 64.04 252 | 73.10 244 | 39.94 296 | 64.61 270 | 70.50 248 | 55.52 176 | 73.97 204 | 89.33 85 | 63.91 140 | 68.38 282 | 49.68 240 | 88.02 162 | 83.81 126 |
|
pmmvs4 | | | 60.78 262 | 59.04 270 | 66.00 238 | 73.06 246 | 57.67 168 | 64.53 271 | 60.22 299 | 36.91 327 | 65.96 279 | 77.27 266 | 39.66 299 | 68.54 281 | 38.87 301 | 74.89 303 | 71.80 286 |
|
WR-MVS | | | 71.20 155 | 72.48 142 | 67.36 224 | 84.98 75 | 35.70 327 | 64.43 272 | 68.66 258 | 65.05 89 | 81.49 99 | 86.43 148 | 57.57 200 | 76.48 213 | 50.36 235 | 93.32 71 | 89.90 21 |
|
tpmrst | | | 50.15 312 | 51.38 311 | 46.45 330 | 56.05 355 | 24.77 364 | 64.40 273 | 49.98 339 | 36.14 329 | 53.32 341 | 69.59 331 | 35.16 315 | 48.69 337 | 39.24 299 | 58.51 356 | 65.89 325 |
|
VPA-MVSNet | | | 68.71 188 | 70.37 169 | 63.72 254 | 76.13 196 | 38.06 311 | 64.10 274 | 71.48 233 | 56.60 168 | 74.10 202 | 88.31 108 | 64.78 136 | 69.72 273 | 47.69 257 | 90.15 132 | 83.37 141 |
|
MIMVSNet1 | | | 66.57 212 | 69.23 179 | 58.59 295 | 81.26 134 | 37.73 314 | 64.06 275 | 57.62 307 | 57.02 159 | 78.40 135 | 90.75 44 | 62.65 144 | 58.10 326 | 41.77 287 | 89.58 145 | 79.95 212 |
|
MVS_0304 | | | 62.51 250 | 62.27 248 | 63.25 259 | 69.39 276 | 48.47 221 | 64.05 276 | 62.48 288 | 59.69 135 | 54.10 339 | 81.04 219 | 45.71 259 | 66.31 299 | 41.38 289 | 82.58 236 | 74.96 259 |
|
IterMVS | | | 63.12 243 | 62.48 247 | 65.02 244 | 66.34 300 | 52.86 195 | 63.81 277 | 62.25 289 | 46.57 272 | 71.51 237 | 80.40 226 | 44.60 268 | 66.82 295 | 51.38 227 | 75.47 298 | 75.38 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 67.68 202 | 66.07 217 | 72.49 156 | 73.34 238 | 58.20 167 | 63.80 278 | 65.55 272 | 48.10 259 | 76.91 158 | 82.64 202 | 45.20 263 | 78.84 168 | 61.20 150 | 77.89 287 | 80.44 207 |
|
DELS-MVS | | | 68.83 185 | 68.31 191 | 70.38 177 | 70.55 268 | 48.31 222 | 63.78 279 | 82.13 99 | 54.00 199 | 68.96 260 | 75.17 281 | 58.95 184 | 80.06 155 | 58.55 172 | 82.74 234 | 82.76 160 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
bset_n11_16_dypcd | | | 66.91 211 | 65.84 219 | 70.12 184 | 72.95 247 | 53.54 191 | 63.64 280 | 68.65 259 | 48.54 256 | 72.54 221 | 74.28 292 | 40.58 293 | 78.54 174 | 63.52 135 | 87.82 166 | 78.29 231 |
|
xiu_mvs_v2_base | | | 64.43 231 | 63.96 232 | 65.85 240 | 77.72 177 | 51.32 203 | 63.63 281 | 72.31 225 | 45.06 283 | 61.70 302 | 69.66 330 | 62.56 145 | 73.93 239 | 49.06 244 | 73.91 309 | 72.31 281 |
|
tfpnnormal | | | 66.48 213 | 67.93 199 | 62.16 270 | 73.40 237 | 36.65 318 | 63.45 282 | 64.99 275 | 55.97 171 | 72.82 217 | 87.80 117 | 57.06 205 | 69.10 279 | 48.31 252 | 87.54 168 | 80.72 202 |
|
TR-MVS | | | 64.59 227 | 63.54 237 | 67.73 222 | 75.75 203 | 50.83 205 | 63.39 283 | 70.29 250 | 49.33 249 | 71.55 236 | 74.55 287 | 50.94 235 | 78.46 178 | 40.43 294 | 75.69 295 | 73.89 267 |
|
PS-MVSNAJ | | | 64.27 234 | 63.73 235 | 65.90 239 | 77.82 175 | 51.42 202 | 63.33 284 | 72.33 224 | 45.09 282 | 61.60 303 | 68.04 341 | 62.39 149 | 73.95 238 | 49.07 243 | 73.87 310 | 72.34 280 |
|
tfpn200view9 | | | 60.35 266 | 59.97 264 | 61.51 274 | 70.78 261 | 35.35 329 | 63.27 285 | 57.47 308 | 53.00 210 | 68.31 266 | 77.09 267 | 32.45 327 | 72.09 254 | 35.61 326 | 81.73 244 | 77.08 245 |
|
thres400 | | | 60.77 263 | 59.97 264 | 63.15 260 | 70.78 261 | 35.35 329 | 63.27 285 | 57.47 308 | 53.00 210 | 68.31 266 | 77.09 267 | 32.45 327 | 72.09 254 | 35.61 326 | 81.73 244 | 82.02 176 |
|
test_yl | | | 65.11 222 | 65.09 226 | 65.18 242 | 70.59 264 | 40.86 287 | 63.22 287 | 72.79 217 | 57.91 148 | 68.88 261 | 79.07 249 | 42.85 279 | 74.89 230 | 45.50 269 | 84.97 206 | 79.81 213 |
|
DCV-MVSNet | | | 65.11 222 | 65.09 226 | 65.18 242 | 70.59 264 | 40.86 287 | 63.22 287 | 72.79 217 | 57.91 148 | 68.88 261 | 79.07 249 | 42.85 279 | 74.89 230 | 45.50 269 | 84.97 206 | 79.81 213 |
|
baseline1 | | | 57.82 281 | 58.36 277 | 56.19 302 | 69.17 278 | 30.76 352 | 62.94 289 | 55.21 320 | 46.04 274 | 63.83 293 | 78.47 253 | 41.20 287 | 63.68 309 | 39.44 297 | 68.99 333 | 74.13 264 |
|
baseline2 | | | 55.57 290 | 52.74 304 | 64.05 251 | 65.26 308 | 44.11 261 | 62.38 290 | 54.43 323 | 39.03 316 | 51.21 345 | 67.35 345 | 33.66 319 | 72.45 251 | 37.14 316 | 64.22 345 | 75.60 252 |
|
FPMVS | | | 59.43 272 | 60.07 263 | 57.51 299 | 77.62 180 | 71.52 53 | 62.33 291 | 50.92 336 | 57.40 157 | 69.40 255 | 80.00 232 | 39.14 301 | 61.92 316 | 37.47 314 | 66.36 340 | 39.09 363 |
|
DWT-MVSNet_test | | | 53.04 300 | 51.12 313 | 58.77 294 | 61.23 331 | 38.67 304 | 62.16 292 | 57.74 306 | 38.24 319 | 51.76 344 | 59.07 357 | 21.36 365 | 67.40 289 | 44.80 271 | 63.76 346 | 70.25 299 |
|
PatchMatch-RL | | | 58.68 277 | 57.72 280 | 61.57 273 | 76.21 195 | 73.59 43 | 61.83 293 | 49.00 343 | 47.30 268 | 61.08 307 | 68.97 335 | 50.16 239 | 59.01 323 | 36.06 325 | 68.84 334 | 52.10 353 |
|
cascas | | | 64.59 227 | 62.77 245 | 70.05 186 | 75.27 205 | 50.02 210 | 61.79 294 | 71.61 229 | 42.46 299 | 63.68 295 | 68.89 337 | 49.33 244 | 80.35 145 | 47.82 256 | 84.05 221 | 79.78 215 |
|
LCM-MVSNet-Re | | | 69.10 183 | 71.57 157 | 61.70 272 | 70.37 269 | 34.30 337 | 61.45 295 | 79.62 144 | 56.81 162 | 89.59 8 | 88.16 113 | 68.44 98 | 72.94 243 | 42.30 282 | 87.33 175 | 77.85 240 |
|
1112_ss | | | 59.48 271 | 58.99 271 | 60.96 281 | 77.84 174 | 42.39 278 | 61.42 296 | 68.45 260 | 37.96 322 | 59.93 317 | 67.46 343 | 45.11 265 | 65.07 303 | 40.89 292 | 71.81 318 | 75.41 255 |
|
IB-MVS | | 49.67 18 | 59.69 270 | 56.96 285 | 67.90 217 | 68.19 284 | 50.30 208 | 61.42 296 | 65.18 274 | 47.57 266 | 55.83 331 | 67.15 347 | 23.77 363 | 79.60 159 | 43.56 278 | 79.97 266 | 73.79 268 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_Blended | | | 62.90 246 | 61.64 251 | 66.69 233 | 69.81 272 | 49.36 215 | 61.23 298 | 78.96 154 | 42.04 300 | 59.98 314 | 68.86 338 | 51.82 229 | 78.20 188 | 44.30 272 | 77.77 288 | 72.52 278 |
|
GA-MVS | | | 62.91 245 | 61.66 250 | 66.66 234 | 67.09 295 | 44.49 259 | 61.18 299 | 69.36 255 | 51.33 229 | 69.33 256 | 74.47 288 | 36.83 311 | 74.94 229 | 50.60 233 | 74.72 304 | 80.57 205 |
|
MS-PatchMatch | | | 55.59 289 | 54.89 297 | 57.68 298 | 69.18 277 | 49.05 217 | 61.00 300 | 62.93 287 | 35.98 330 | 58.36 321 | 68.93 336 | 36.71 312 | 66.59 297 | 37.62 313 | 63.30 347 | 57.39 349 |
|
MVSTER | | | 63.29 241 | 61.60 253 | 68.36 210 | 59.77 342 | 46.21 248 | 60.62 301 | 71.32 236 | 41.83 301 | 75.40 184 | 79.12 247 | 30.25 344 | 75.85 216 | 56.30 189 | 79.81 268 | 83.03 152 |
|
thisisatest0515 | | | 60.48 265 | 57.86 279 | 68.34 211 | 67.25 293 | 46.42 245 | 60.58 302 | 62.14 290 | 40.82 308 | 63.58 296 | 69.12 333 | 26.28 354 | 78.34 184 | 48.83 245 | 82.13 239 | 80.26 209 |
|
tpm | | | 50.60 310 | 52.42 307 | 45.14 335 | 65.18 310 | 26.29 361 | 60.30 303 | 43.50 352 | 37.41 324 | 57.01 324 | 79.09 248 | 30.20 346 | 42.32 356 | 32.77 337 | 66.36 340 | 66.81 322 |
|
VPNet | | | 65.58 219 | 67.56 203 | 59.65 289 | 79.72 146 | 30.17 353 | 60.27 304 | 62.14 290 | 54.19 196 | 71.24 239 | 86.63 141 | 58.80 185 | 67.62 287 | 44.17 275 | 90.87 119 | 81.18 186 |
|
MIMVSNet | | | 54.39 294 | 56.12 292 | 49.20 321 | 72.57 249 | 30.91 351 | 59.98 305 | 48.43 345 | 41.66 302 | 55.94 330 | 83.86 187 | 41.19 288 | 50.42 334 | 26.05 355 | 75.38 300 | 66.27 324 |
|
HyFIR lowres test | | | 63.01 244 | 60.47 261 | 70.61 173 | 83.04 107 | 54.10 187 | 59.93 306 | 72.24 226 | 33.67 343 | 69.00 258 | 75.63 276 | 38.69 303 | 76.93 206 | 36.60 319 | 75.45 299 | 80.81 199 |
|
Patchmatch-RL test | | | 59.95 268 | 59.12 269 | 62.44 268 | 72.46 250 | 54.61 185 | 59.63 307 | 47.51 347 | 41.05 307 | 74.58 196 | 74.30 291 | 31.06 338 | 65.31 301 | 51.61 224 | 79.85 267 | 67.39 316 |
|
PatchT | | | 53.35 299 | 56.47 289 | 43.99 339 | 64.19 317 | 17.46 370 | 59.15 308 | 43.10 353 | 52.11 219 | 54.74 335 | 86.95 125 | 29.97 347 | 49.98 336 | 43.62 277 | 74.40 307 | 64.53 336 |
|
JIA-IIPM | | | 54.03 296 | 51.62 308 | 61.25 278 | 59.14 344 | 55.21 181 | 59.10 309 | 47.72 346 | 50.85 234 | 50.31 351 | 85.81 166 | 20.10 368 | 63.97 307 | 36.16 324 | 55.41 362 | 64.55 335 |
|
Anonymous202405211 | | | 66.02 215 | 66.89 213 | 63.43 258 | 74.22 226 | 38.14 309 | 59.00 310 | 66.13 268 | 63.33 109 | 69.76 254 | 85.95 164 | 51.88 228 | 70.50 269 | 44.23 274 | 87.52 169 | 81.64 182 |
|
MDTV_nov1_ep13 | | | | 54.05 300 | | 65.54 307 | 29.30 355 | 59.00 310 | 55.22 319 | 35.96 331 | 52.44 342 | 75.98 274 | 30.77 341 | 59.62 321 | 38.21 307 | 73.33 312 | |
|
thres200 | | | 57.55 282 | 57.02 284 | 59.17 291 | 67.89 289 | 34.93 332 | 58.91 312 | 57.25 312 | 50.24 239 | 64.01 291 | 71.46 318 | 32.49 326 | 71.39 262 | 31.31 340 | 79.57 272 | 71.19 293 |
|
ANet_high | | | 67.08 208 | 69.94 171 | 58.51 296 | 57.55 350 | 27.09 359 | 58.43 313 | 76.80 187 | 63.56 103 | 82.40 89 | 91.93 20 | 59.82 175 | 64.98 304 | 50.10 237 | 88.86 156 | 83.46 138 |
|
ppachtmachnet_test | | | 60.26 267 | 59.61 267 | 62.20 269 | 67.70 290 | 44.33 260 | 58.18 314 | 60.96 298 | 40.75 309 | 65.80 281 | 72.57 306 | 41.23 286 | 63.92 308 | 46.87 263 | 82.42 237 | 78.33 229 |
|
DIV-MVS_2432*1600 | | | 66.38 214 | 67.51 204 | 62.97 264 | 61.76 328 | 34.39 336 | 58.11 315 | 75.30 201 | 50.84 235 | 77.12 153 | 85.42 169 | 56.84 207 | 69.44 275 | 51.07 229 | 91.16 106 | 85.08 89 |
|
Test_1112_low_res | | | 58.78 276 | 58.69 273 | 59.04 293 | 79.41 150 | 38.13 310 | 57.62 316 | 66.98 265 | 34.74 336 | 59.62 318 | 77.56 264 | 42.92 278 | 63.65 310 | 38.66 303 | 70.73 324 | 75.35 257 |
|
VNet | | | 64.01 237 | 65.15 223 | 60.57 283 | 73.28 239 | 35.61 328 | 57.60 317 | 67.08 264 | 54.61 188 | 66.76 277 | 83.37 193 | 56.28 210 | 66.87 292 | 42.19 283 | 85.20 204 | 79.23 221 |
|
DSMNet-mixed | | | 43.18 329 | 44.66 330 | 38.75 347 | 54.75 362 | 28.88 357 | 57.06 318 | 27.42 372 | 13.47 367 | 47.27 356 | 77.67 263 | 38.83 302 | 39.29 362 | 25.32 360 | 60.12 352 | 48.08 356 |
|
CL-MVSNet_2432*1600 | | | 62.44 251 | 63.40 238 | 59.55 290 | 72.34 251 | 32.38 344 | 56.39 319 | 64.84 276 | 51.21 231 | 67.46 273 | 81.01 220 | 50.75 236 | 63.51 311 | 38.47 306 | 88.12 160 | 82.75 161 |
|
D2MVS | | | 62.58 249 | 61.05 257 | 67.20 226 | 63.85 318 | 47.92 229 | 56.29 320 | 69.58 253 | 39.32 313 | 70.07 251 | 78.19 257 | 34.93 316 | 72.68 245 | 53.44 218 | 83.74 226 | 81.00 191 |
|
FMVSNet5 | | | 55.08 292 | 55.54 295 | 53.71 307 | 65.80 305 | 33.50 341 | 56.22 321 | 52.50 333 | 43.72 291 | 61.06 308 | 83.38 192 | 25.46 358 | 54.87 329 | 30.11 345 | 81.64 249 | 72.75 276 |
|
MVS-HIRNet | | | 45.53 322 | 47.29 322 | 40.24 345 | 62.29 325 | 26.82 360 | 56.02 322 | 37.41 367 | 29.74 357 | 43.69 364 | 81.27 216 | 33.96 318 | 55.48 328 | 24.46 361 | 56.79 358 | 38.43 364 |
|
pmmvs3 | | | 46.71 320 | 45.09 327 | 51.55 315 | 56.76 353 | 48.25 223 | 55.78 323 | 39.53 366 | 24.13 365 | 50.35 350 | 63.40 351 | 15.90 373 | 51.08 333 | 29.29 350 | 70.69 325 | 55.33 352 |
|
pmmvs5 | | | 52.49 304 | 52.58 306 | 52.21 314 | 54.99 361 | 32.38 344 | 55.45 324 | 53.84 325 | 32.15 349 | 55.49 333 | 74.81 282 | 38.08 306 | 57.37 327 | 34.02 332 | 74.40 307 | 66.88 320 |
|
our_test_3 | | | 56.46 284 | 56.51 288 | 56.30 301 | 67.70 290 | 39.66 298 | 55.36 325 | 52.34 334 | 40.57 311 | 63.85 292 | 69.91 329 | 40.04 296 | 58.22 325 | 43.49 279 | 75.29 302 | 71.03 295 |
|
EPMVS | | | 45.74 321 | 46.53 324 | 43.39 340 | 54.14 365 | 22.33 367 | 55.02 326 | 35.00 369 | 34.69 337 | 51.09 346 | 70.20 326 | 25.92 356 | 42.04 358 | 37.19 315 | 55.50 361 | 65.78 326 |
|
dp | | | 44.09 328 | 44.88 329 | 41.72 344 | 58.53 347 | 23.18 366 | 54.70 327 | 42.38 357 | 34.80 335 | 44.25 362 | 65.61 349 | 24.48 361 | 44.80 348 | 29.77 347 | 49.42 364 | 57.18 350 |
|
CHOSEN 1792x2688 | | | 58.09 279 | 56.30 290 | 63.45 257 | 79.95 144 | 50.93 204 | 54.07 328 | 65.59 271 | 28.56 358 | 61.53 304 | 74.33 290 | 41.09 289 | 66.52 298 | 33.91 333 | 67.69 339 | 72.92 274 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 369 | 53.74 329 | | 31.57 353 | 44.89 359 | | 29.90 348 | | 32.93 336 | | 71.48 288 |
|
test-LLR | | | 50.43 311 | 50.69 316 | 49.64 319 | 60.76 334 | 41.87 281 | 53.18 330 | 45.48 350 | 43.41 294 | 49.41 352 | 60.47 355 | 29.22 349 | 44.73 349 | 42.09 284 | 72.14 316 | 62.33 342 |
|
TESTMET0.1,1 | | | 45.17 323 | 44.93 328 | 45.89 332 | 56.02 356 | 38.31 306 | 53.18 330 | 41.94 360 | 27.85 359 | 44.86 360 | 56.47 358 | 17.93 370 | 41.50 360 | 38.08 309 | 68.06 336 | 57.85 348 |
|
test-mter | | | 48.56 316 | 48.20 321 | 49.64 319 | 60.76 334 | 41.87 281 | 53.18 330 | 45.48 350 | 31.91 352 | 49.41 352 | 60.47 355 | 18.34 369 | 44.73 349 | 42.09 284 | 72.14 316 | 62.33 342 |
|
Anonymous20231206 | | | 54.13 295 | 55.82 293 | 49.04 324 | 70.89 260 | 35.96 324 | 51.73 333 | 50.87 337 | 34.86 334 | 62.49 300 | 79.22 244 | 42.52 282 | 44.29 351 | 27.95 353 | 81.88 242 | 66.88 320 |
|
XXY-MVS | | | 55.19 291 | 57.40 283 | 48.56 325 | 64.45 316 | 34.84 334 | 51.54 334 | 53.59 326 | 38.99 317 | 63.79 294 | 79.43 239 | 56.59 208 | 45.57 343 | 36.92 318 | 71.29 320 | 65.25 329 |
|
test20.03 | | | 55.74 288 | 57.51 282 | 50.42 316 | 59.89 341 | 32.09 346 | 50.63 335 | 49.01 342 | 50.11 241 | 65.07 285 | 83.23 198 | 45.61 261 | 48.11 339 | 30.22 344 | 83.82 225 | 71.07 294 |
|
UnsupCasMVSNet_eth | | | 52.26 305 | 53.29 303 | 49.16 322 | 55.08 360 | 33.67 340 | 50.03 336 | 58.79 304 | 37.67 323 | 63.43 299 | 74.75 284 | 41.82 284 | 45.83 342 | 38.59 305 | 59.42 353 | 67.98 315 |
|
testgi | | | 54.00 298 | 56.86 286 | 45.45 333 | 58.20 348 | 25.81 363 | 49.05 337 | 49.50 341 | 45.43 278 | 67.84 269 | 81.17 218 | 51.81 231 | 43.20 355 | 29.30 349 | 79.41 273 | 67.34 318 |
|
Patchmatch-test | | | 47.93 317 | 49.96 318 | 41.84 342 | 57.42 351 | 24.26 365 | 48.75 338 | 41.49 361 | 39.30 314 | 56.79 326 | 73.48 299 | 30.48 343 | 33.87 364 | 29.29 350 | 72.61 314 | 67.39 316 |
|
UnsupCasMVSNet_bld | | | 50.01 313 | 51.03 315 | 46.95 326 | 58.61 346 | 32.64 343 | 48.31 339 | 53.27 330 | 34.27 339 | 60.47 312 | 71.53 317 | 41.40 285 | 47.07 340 | 30.68 342 | 60.78 350 | 61.13 344 |
|
PVSNet | | 43.83 21 | 51.56 309 | 51.17 312 | 52.73 311 | 68.34 282 | 38.27 307 | 48.22 340 | 53.56 327 | 36.41 328 | 54.29 337 | 64.94 350 | 34.60 317 | 54.20 332 | 30.34 343 | 69.87 329 | 65.71 327 |
|
MDA-MVSNet-bldmvs | | | 62.34 252 | 61.73 249 | 64.16 248 | 61.64 329 | 49.90 211 | 48.11 341 | 57.24 313 | 53.31 207 | 80.95 105 | 79.39 240 | 49.00 247 | 61.55 317 | 45.92 267 | 80.05 265 | 81.03 189 |
|
PMMVS | | | 44.69 325 | 43.95 332 | 46.92 327 | 50.05 369 | 53.47 193 | 48.08 342 | 42.40 356 | 22.36 366 | 44.01 363 | 53.05 360 | 42.60 281 | 45.49 344 | 31.69 339 | 61.36 349 | 41.79 361 |
|
miper_lstm_enhance | | | 61.97 253 | 61.63 252 | 62.98 263 | 60.04 338 | 45.74 252 | 47.53 343 | 70.95 244 | 44.04 286 | 73.06 214 | 78.84 251 | 39.72 298 | 60.33 319 | 55.82 194 | 84.64 213 | 82.88 155 |
|
ADS-MVSNet2 | | | 48.76 315 | 47.25 323 | 53.29 310 | 55.90 357 | 40.54 293 | 47.34 344 | 54.99 322 | 31.41 354 | 50.48 348 | 72.06 312 | 31.23 335 | 54.26 331 | 25.93 356 | 55.93 359 | 65.07 330 |
|
ADS-MVSNet | | | 44.62 326 | 45.58 325 | 41.73 343 | 55.90 357 | 20.83 368 | 47.34 344 | 39.94 365 | 31.41 354 | 50.48 348 | 72.06 312 | 31.23 335 | 39.31 361 | 25.93 356 | 55.93 359 | 65.07 330 |
|
WTY-MVS | | | 49.39 314 | 50.31 317 | 46.62 329 | 61.22 332 | 32.00 347 | 46.61 346 | 49.77 340 | 33.87 341 | 54.12 338 | 69.55 332 | 41.96 283 | 45.40 345 | 31.28 341 | 64.42 344 | 62.47 341 |
|
test0.0.03 1 | | | 47.72 318 | 48.31 320 | 45.93 331 | 55.53 359 | 29.39 354 | 46.40 347 | 41.21 363 | 43.41 294 | 55.81 332 | 67.65 342 | 29.22 349 | 43.77 354 | 25.73 358 | 69.87 329 | 64.62 334 |
|
test123 | | | 4.43 340 | 5.78 343 | 0.39 354 | 0.97 376 | 0.28 377 | 46.33 348 | 0.45 377 | 0.31 371 | 0.62 372 | 1.50 371 | 0.61 377 | 0.11 373 | 0.56 370 | 0.63 370 | 0.77 369 |
|
sss | | | 47.59 319 | 48.32 319 | 45.40 334 | 56.73 354 | 33.96 338 | 45.17 349 | 48.51 344 | 32.11 351 | 52.37 343 | 65.79 348 | 40.39 295 | 41.91 359 | 31.85 338 | 61.97 348 | 60.35 345 |
|
KD-MVS_2432*1600 | | | 52.05 307 | 51.58 309 | 53.44 308 | 52.11 366 | 31.20 349 | 44.88 350 | 64.83 277 | 41.53 303 | 64.37 287 | 70.03 327 | 15.61 374 | 64.20 305 | 36.25 321 | 74.61 305 | 64.93 332 |
|
miper_refine_blended | | | 52.05 307 | 51.58 309 | 53.44 308 | 52.11 366 | 31.20 349 | 44.88 350 | 64.83 277 | 41.53 303 | 64.37 287 | 70.03 327 | 15.61 374 | 64.20 305 | 36.25 321 | 74.61 305 | 64.93 332 |
|
testmvs | | | 4.06 341 | 5.28 344 | 0.41 353 | 0.64 377 | 0.16 378 | 42.54 352 | 0.31 378 | 0.26 372 | 0.50 373 | 1.40 372 | 0.77 376 | 0.17 372 | 0.56 370 | 0.55 371 | 0.90 368 |
|
PVSNet_0 | | 36.71 22 | 41.12 331 | 40.78 334 | 42.14 341 | 59.97 339 | 40.13 295 | 40.97 353 | 42.24 359 | 30.81 356 | 44.86 360 | 49.41 363 | 40.70 292 | 45.12 347 | 23.15 362 | 34.96 366 | 41.16 362 |
|
YYNet1 | | | 52.58 302 | 53.50 301 | 49.85 317 | 54.15 364 | 36.45 321 | 40.53 354 | 46.55 349 | 38.09 321 | 75.52 182 | 73.31 302 | 41.08 290 | 43.88 352 | 41.10 290 | 71.14 322 | 69.21 309 |
|
MDA-MVSNet_test_wron | | | 52.57 303 | 53.49 302 | 49.81 318 | 54.24 363 | 36.47 320 | 40.48 355 | 46.58 348 | 38.13 320 | 75.47 183 | 73.32 301 | 41.05 291 | 43.85 353 | 40.98 291 | 71.20 321 | 69.10 311 |
|
new_pmnet | | | 37.55 333 | 39.80 336 | 30.79 348 | 56.83 352 | 16.46 371 | 39.35 356 | 30.65 370 | 25.59 363 | 45.26 358 | 61.60 354 | 24.54 360 | 28.02 367 | 21.60 363 | 52.80 363 | 47.90 357 |
|
E-PMN | | | 45.17 323 | 45.36 326 | 44.60 337 | 50.07 368 | 42.75 274 | 38.66 357 | 42.29 358 | 46.39 273 | 39.55 365 | 51.15 362 | 26.00 355 | 45.37 346 | 37.68 311 | 76.41 290 | 45.69 360 |
|
EMVS | | | 44.61 327 | 44.45 331 | 45.10 336 | 48.91 370 | 43.00 272 | 37.92 358 | 41.10 364 | 46.75 271 | 38.00 367 | 48.43 364 | 26.42 353 | 46.27 341 | 37.11 317 | 75.38 300 | 46.03 359 |
|
N_pmnet | | | 52.06 306 | 51.11 314 | 54.92 305 | 59.64 343 | 71.03 58 | 37.42 359 | 61.62 297 | 33.68 342 | 57.12 323 | 72.10 307 | 37.94 307 | 31.03 365 | 29.13 352 | 71.35 319 | 62.70 339 |
|
new-patchmatchnet | | | 52.89 301 | 55.76 294 | 44.26 338 | 59.94 340 | 6.31 373 | 37.36 360 | 50.76 338 | 41.10 305 | 64.28 289 | 79.82 234 | 44.77 266 | 48.43 338 | 36.24 323 | 87.61 167 | 78.03 237 |
|
CHOSEN 280x420 | | | 41.62 330 | 39.89 335 | 46.80 328 | 61.81 327 | 51.59 200 | 33.56 361 | 35.74 368 | 27.48 360 | 37.64 368 | 53.53 359 | 23.24 364 | 42.09 357 | 27.39 354 | 58.64 355 | 46.72 358 |
|
PMMVS2 | | | 37.74 332 | 40.87 333 | 28.36 349 | 42.41 372 | 5.35 374 | 24.61 362 | 27.75 371 | 32.15 349 | 47.85 354 | 70.27 325 | 35.85 314 | 29.51 366 | 19.08 366 | 67.85 337 | 50.22 355 |
|
MVE |  | 27.91 23 | 36.69 334 | 35.64 337 | 39.84 346 | 43.37 371 | 35.85 326 | 19.49 363 | 24.61 373 | 24.68 364 | 39.05 366 | 62.63 353 | 38.67 304 | 27.10 368 | 21.04 364 | 47.25 365 | 56.56 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 11.98 337 | 14.73 340 | 3.72 352 | 2.28 375 | 4.62 375 | 19.44 364 | 14.50 375 | 0.47 370 | 21.55 369 | 9.58 368 | 25.78 357 | 4.57 371 | 11.61 368 | 27.37 367 | 1.96 367 |
|
test_method | | | 19.26 335 | 19.12 339 | 19.71 350 | 9.09 374 | 1.91 376 | 7.79 365 | 53.44 328 | 1.42 369 | 10.27 371 | 35.80 365 | 17.42 371 | 25.11 369 | 12.44 367 | 24.38 368 | 32.10 365 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 17.71 336 | 23.62 338 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 70.17 251 | 0.00 373 | 0.00 374 | 74.25 293 | 68.16 101 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 5.20 339 | 6.93 342 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 62.39 149 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 5.62 338 | 7.50 341 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 67.46 343 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
MSC_two_6792asdad | | | | | 79.02 59 | 83.14 102 | 67.03 92 | | 80.75 125 | | | | | 86.24 23 | 77.27 35 | 94.85 26 | 83.78 127 |
|
PC_three_1452 | | | | | | | | | | 46.98 270 | 81.83 93 | 86.28 150 | 66.55 118 | 84.47 72 | 63.31 138 | 90.78 120 | 83.49 134 |
|
No_MVS | | | | | 79.02 59 | 83.14 102 | 67.03 92 | | 80.75 125 | | | | | 86.24 23 | 77.27 35 | 94.85 26 | 83.78 127 |
|
test_one_0601 | | | | | | 85.84 66 | 61.45 134 | | 85.63 33 | 75.27 19 | 85.62 47 | 90.38 63 | 76.72 29 | | | | |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 83.91 93 | 69.36 75 | | 81.09 120 | 58.91 143 | 82.73 86 | 89.11 94 | 75.77 37 | 86.63 13 | 72.73 62 | 92.93 75 | |
|
IU-MVS | | | | | | 86.12 58 | 60.90 141 | | 80.38 135 | 45.49 277 | 81.31 101 | | | | 75.64 44 | 94.39 43 | 84.65 99 |
|
test_241102_TWO | | | | | | | | | 84.80 51 | 72.61 32 | 84.93 56 | 89.70 80 | 77.73 23 | 85.89 39 | 75.29 45 | 94.22 55 | 83.25 144 |
|
test_241102_ONE | | | | | | 86.12 58 | 61.06 137 | | 84.72 55 | 72.64 31 | 87.38 25 | 89.47 83 | 77.48 24 | 85.74 43 | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 23 | 85.83 42 | 90.41 58 | 75.58 39 | 85.69 44 | 77.43 33 | 94.74 31 | 84.31 116 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 300 |
|
test_part2 | | | | | | 85.90 62 | 66.44 97 | | | | 84.61 63 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 333 | | | | 70.05 300 |
|
sam_mvs | | | | | | | | | | | | | 31.21 337 | | | | |
|
MTGPA |  | | | | | | | | 80.63 128 | | | | | | | | |
|
test_post | | | | | | | | | | | | 1.99 370 | 30.91 340 | 54.76 330 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 334 | 31.32 334 | 69.38 276 | | | |
|
gm-plane-assit | | | | | | 62.51 324 | 33.91 339 | | | 37.25 325 | | 62.71 352 | | 72.74 244 | 38.70 302 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 70 | 91.37 101 | 77.40 242 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 77 | 90.93 114 | 78.55 228 |
|
agg_prior | | | | | | 84.44 86 | 66.02 101 | | 78.62 163 | | 76.95 156 | | | 80.34 146 | | | |
|
TestCases | | | | | 78.35 71 | 79.19 156 | 70.81 60 | | 88.64 3 | 65.37 83 | 80.09 117 | 88.17 111 | 70.33 81 | 78.43 180 | 55.60 195 | 90.90 116 | 85.81 75 |
|
test_prior | | | | | 75.27 108 | 82.15 121 | 59.85 152 | | 84.33 67 | | | | | 83.39 91 | | | 82.58 165 |
|
新几何1 | | | | | 69.99 187 | 88.37 36 | 71.34 56 | | 62.08 292 | 43.85 287 | 74.99 187 | 86.11 159 | 52.85 225 | 70.57 268 | 50.99 230 | 83.23 231 | 68.05 314 |
|
旧先验1 | | | | | | 84.55 83 | 60.36 148 | | 63.69 283 | | | 87.05 124 | 54.65 217 | | | 83.34 229 | 69.66 304 |
|
原ACMM1 | | | | | 73.90 124 | 85.90 62 | 65.15 109 | | 81.67 106 | 50.97 233 | 74.25 200 | 86.16 156 | 61.60 157 | 83.54 87 | 56.75 182 | 91.08 110 | 73.00 273 |
|
testdata2 | | | | | | | | | | | | | | 67.30 290 | 48.34 251 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 100 | | | | |
|
testdata | | | | | 64.13 249 | 85.87 64 | 63.34 122 | | 61.80 296 | 47.83 263 | 76.42 174 | 86.60 143 | 48.83 248 | 62.31 315 | 54.46 208 | 81.26 251 | 66.74 323 |
|
test12 | | | | | 76.51 92 | 82.28 119 | 60.94 140 | | 81.64 107 | | 73.60 206 | | 64.88 133 | 85.19 59 | | 90.42 127 | 83.38 140 |
|
plane_prior7 | | | | | | 85.18 71 | 66.21 99 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 90 | 65.31 106 | | | | | | 60.83 167 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 35 | | | | | 86.15 28 | 71.09 74 | 90.94 112 | 84.82 94 |
|
plane_prior4 | | | | | | | | | | | | 89.11 94 | | | | | |
|
plane_prior3 | | | | | | | 65.67 103 | | | 63.82 101 | 78.23 136 | | | | | | |
|
plane_prior1 | | | | | | 84.46 85 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 321 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 150 | 79.60 148 | 56.83 173 | | 57.37 310 | | 83.80 74 | 89.01 97 | 47.45 256 | 78.74 171 | 64.39 123 | 86.49 189 | 82.69 163 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 43 | 70.41 65 | | 86.35 20 | 69.77 53 | 87.75 16 | 91.13 34 | 81.83 3 | 86.20 25 | 77.13 37 | 95.96 5 | 86.08 69 |
|
test11 | | | | | | | | | 82.71 94 | | | | | | | | |
|
door | | | | | | | | | 52.91 332 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 162 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 104 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 231 | | | 85.31 52 | | | 83.74 129 |
|
HQP3-MVS | | | | | | | | | 84.12 75 | | | | | | | 89.16 149 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 192 | | | | |
|
NP-MVS | | | | | | 83.34 101 | 63.07 125 | | | | | 85.97 162 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 147 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 90 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 145 | | | | |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 185 | 73.60 42 | | 80.48 132 | 66.87 67 | 83.64 76 | 86.18 154 | 70.25 83 | 79.90 156 | 61.12 152 | 88.95 155 | 87.56 52 |
|
DeepMVS_CX |  | | | | 11.83 351 | 15.51 373 | 13.86 372 | | 11.25 376 | 5.76 368 | 20.85 370 | 26.46 366 | 17.06 372 | 9.22 370 | 9.69 369 | 13.82 369 | 12.42 366 |
|