| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 10 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 9 | 100.00 1 | 99.85 19 |
|
| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 17 | 99.11 59 | 99.90 1 | 99.78 26 | 99.63 17 | 99.78 25 | 99.67 25 | 99.48 9 | 99.81 177 | 99.30 41 | 99.97 20 | 99.77 33 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| UA-Net | | | 99.47 13 | 99.40 20 | 99.70 2 | 99.49 114 | 99.29 19 | 99.80 3 | 99.72 30 | 99.82 3 | 99.04 141 | 99.81 5 | 98.05 87 | 99.96 12 | 98.85 68 | 99.99 5 | 99.86 18 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 19 | 99.34 15 | 99.69 4 | 99.58 52 | 99.90 2 | 99.86 18 | 99.78 8 | 99.58 6 | 99.95 23 | 99.00 60 | 99.95 30 | 99.78 31 |
|
| TDRefinement | | | 99.42 19 | 99.38 21 | 99.55 23 | 99.76 32 | 99.33 16 | 99.68 5 | 99.71 31 | 99.38 44 | 99.53 58 | 99.61 37 | 98.64 41 | 99.80 184 | 98.24 105 | 99.84 84 | 99.52 117 |
|
| OurMVSNet-221017-0 | | | 99.37 24 | 99.31 30 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 52 | 99.44 38 | 99.78 25 | 99.76 10 | 96.39 193 | 99.92 49 | 99.44 34 | 99.92 53 | 99.68 53 |
|
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 28 | 99.64 15 | 99.84 20 | 99.83 3 | 99.50 8 | 99.87 99 | 99.36 36 | 99.92 53 | 99.64 62 |
|
| Anonymous20231211 | | | 99.27 30 | 99.27 34 | 99.26 91 | 99.29 157 | 98.18 126 | 99.49 8 | 99.51 82 | 99.70 8 | 99.80 23 | 99.68 20 | 96.84 168 | 99.83 154 | 99.21 47 | 99.91 61 | 99.77 33 |
|
| RRT_MVS | | | 99.09 52 | 98.94 65 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 315 | 99.49 31 | 99.59 50 | 99.65 30 | 94.79 254 | 99.95 23 | 99.45 33 | 99.96 25 | 99.88 14 |
|
| v7n | | | 99.53 9 | 99.57 9 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 48 | 99.66 13 | 99.68 37 | 99.66 27 | 98.44 57 | 99.95 23 | 99.73 17 | 99.96 25 | 99.75 41 |
|
| DVP-MVS++ | | | 98.90 74 | 98.70 91 | 99.51 43 | 98.43 316 | 99.15 47 | 99.43 11 | 99.32 152 | 98.17 147 | 99.26 110 | 99.02 151 | 98.18 76 | 99.88 82 | 97.07 173 | 99.45 234 | 99.49 126 |
|
| FOURS1 | | | | | | 99.73 39 | 99.67 2 | 99.43 11 | 99.54 75 | 99.43 40 | 99.26 110 | | | | | | |
|
| sd_testset | | | 99.28 29 | 99.31 30 | 99.19 102 | 99.68 59 | 98.06 145 | 99.41 13 | 99.30 165 | 99.69 9 | 99.63 46 | 99.68 20 | 99.25 14 | 99.96 12 | 97.25 160 | 99.92 53 | 99.57 90 |
|
| mvsmamba | | | 99.24 37 | 99.15 48 | 99.49 48 | 99.83 20 | 98.85 74 | 99.41 13 | 99.55 70 | 99.54 27 | 99.40 81 | 99.52 57 | 95.86 220 | 99.91 58 | 99.32 38 | 99.95 30 | 99.70 50 |
|
| MIMVSNet1 | | | 99.38 23 | 99.32 28 | 99.55 23 | 99.86 15 | 99.19 37 | 99.41 13 | 99.59 50 | 99.59 23 | 99.71 31 | 99.57 42 | 97.12 153 | 99.90 63 | 99.21 47 | 99.87 76 | 99.54 107 |
|
| FE-MVS | | | 95.66 308 | 94.95 320 | 97.77 262 | 98.53 307 | 95.28 271 | 99.40 16 | 96.09 361 | 93.11 344 | 97.96 263 | 99.26 101 | 79.10 380 | 99.77 214 | 92.40 348 | 98.71 317 | 98.27 334 |
|
| MVSFormer | | | 98.26 167 | 98.43 132 | 97.77 262 | 98.88 245 | 93.89 319 | 99.39 17 | 99.56 66 | 99.11 72 | 98.16 247 | 98.13 288 | 93.81 276 | 99.97 4 | 99.26 42 | 99.57 205 | 99.43 157 |
|
| test_djsdf | | | 99.52 10 | 99.51 11 | 99.53 34 | 99.86 15 | 98.74 82 | 99.39 17 | 99.56 66 | 99.11 72 | 99.70 33 | 99.73 15 | 99.00 22 | 99.97 4 | 99.26 42 | 99.98 12 | 99.89 11 |
|
| CS-MVS | | | 99.13 47 | 99.10 52 | 99.24 96 | 99.06 211 | 99.15 47 | 99.36 19 | 99.88 11 | 99.36 48 | 98.21 244 | 98.46 262 | 98.68 40 | 99.93 39 | 99.03 58 | 99.85 80 | 98.64 315 |
|
| FA-MVS(test-final) | | | 96.99 266 | 96.82 258 | 97.50 289 | 98.70 277 | 94.78 285 | 99.34 20 | 96.99 344 | 95.07 306 | 98.48 226 | 99.33 90 | 88.41 330 | 99.65 280 | 96.13 251 | 98.92 306 | 98.07 343 |
|
| anonymousdsp | | | 99.51 11 | 99.47 16 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 20 | 99.69 34 | 98.93 97 | 99.65 43 | 99.72 16 | 98.93 26 | 99.95 23 | 99.11 51 | 100.00 1 | 99.82 23 |
|
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 20 | 99.71 31 | 99.27 58 | 99.90 12 | 99.74 13 | 99.68 4 | 99.97 4 | 99.55 27 | 99.99 5 | 99.88 14 |
|
| test2506 | | | 92.39 352 | 91.89 355 | 93.89 367 | 99.38 139 | 82.28 397 | 99.32 23 | 66.03 403 | 99.08 84 | 98.77 190 | 99.57 42 | 66.26 398 | 99.84 137 | 98.71 78 | 99.95 30 | 99.54 107 |
|
| WR-MVS_H | | | 99.33 26 | 99.22 38 | 99.65 5 | 99.71 48 | 99.24 25 | 99.32 23 | 99.55 70 | 99.46 35 | 99.50 65 | 99.34 88 | 97.30 142 | 99.93 39 | 98.90 65 | 99.93 42 | 99.77 33 |
|
| ab-mvs | | | 98.41 147 | 98.36 143 | 98.59 191 | 99.19 179 | 97.23 203 | 99.32 23 | 98.81 274 | 97.66 181 | 98.62 206 | 99.40 79 | 96.82 171 | 99.80 184 | 95.88 258 | 99.51 222 | 98.75 303 |
|
| Gipuma |  | | 99.03 58 | 99.16 43 | 98.64 180 | 99.94 2 | 98.51 102 | 99.32 23 | 99.75 29 | 99.58 25 | 98.60 210 | 99.62 34 | 98.22 72 | 99.51 324 | 97.70 140 | 99.73 140 | 97.89 349 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| CS-MVS-test | | | 99.13 47 | 99.09 53 | 99.26 91 | 99.13 196 | 98.97 66 | 99.31 27 | 99.88 11 | 99.44 38 | 98.16 247 | 98.51 254 | 98.64 41 | 99.93 39 | 98.91 64 | 99.85 80 | 98.88 283 |
|
| GG-mvs-BLEND | | | | | 94.76 359 | 94.54 395 | 92.13 351 | 99.31 27 | 80.47 401 | | 88.73 394 | 91.01 394 | 67.59 396 | 98.16 389 | 82.30 391 | 94.53 388 | 93.98 391 |
|
| gg-mvs-nofinetune | | | 92.37 353 | 91.20 358 | 95.85 342 | 95.80 393 | 92.38 346 | 99.31 27 | 81.84 400 | 99.75 5 | 91.83 389 | 99.74 13 | 68.29 393 | 99.02 373 | 87.15 380 | 97.12 365 | 96.16 383 |
|
| DTE-MVSNet | | | 99.43 18 | 99.35 23 | 99.66 4 | 99.71 48 | 99.30 17 | 99.31 27 | 99.51 82 | 99.64 15 | 99.56 51 | 99.46 66 | 98.23 69 | 99.97 4 | 98.78 71 | 99.93 42 | 99.72 44 |
|
| IS-MVSNet | | | 98.19 174 | 97.90 192 | 99.08 119 | 99.57 80 | 97.97 153 | 99.31 27 | 98.32 307 | 99.01 90 | 98.98 148 | 99.03 150 | 91.59 305 | 99.79 197 | 95.49 277 | 99.80 108 | 99.48 136 |
|
| FC-MVSNet-test | | | 99.27 30 | 99.25 36 | 99.34 73 | 99.77 29 | 98.37 111 | 99.30 32 | 99.57 59 | 99.61 22 | 99.40 81 | 99.50 59 | 97.12 153 | 99.85 120 | 99.02 59 | 99.94 38 | 99.80 27 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 14 | 99.33 78 | 99.80 23 | 98.63 89 | 99.29 33 | 99.63 44 | 99.30 55 | 99.65 43 | 99.60 39 | 99.16 20 | 99.82 164 | 99.07 54 | 99.83 91 | 99.56 96 |
|
| PS-CasMVS | | | 99.40 21 | 99.33 26 | 99.62 6 | 99.71 48 | 99.10 60 | 99.29 33 | 99.53 78 | 99.53 29 | 99.46 69 | 99.41 77 | 98.23 69 | 99.95 23 | 98.89 67 | 99.95 30 | 99.81 26 |
|
| PEN-MVS | | | 99.41 20 | 99.34 25 | 99.62 6 | 99.73 39 | 99.14 52 | 99.29 33 | 99.54 75 | 99.62 20 | 99.56 51 | 99.42 74 | 98.16 80 | 99.96 12 | 98.78 71 | 99.93 42 | 99.77 33 |
|
| EPP-MVSNet | | | 98.30 161 | 98.04 180 | 99.07 121 | 99.56 88 | 97.83 166 | 99.29 33 | 98.07 319 | 99.03 88 | 98.59 212 | 99.13 131 | 92.16 300 | 99.90 63 | 96.87 193 | 99.68 165 | 99.49 126 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 37 | 99.66 42 | 99.09 82 | 99.89 15 | 99.68 20 | 99.53 7 | 99.97 4 | 99.50 30 | 99.99 5 | 99.87 16 |
|
| SixPastTwentyTwo | | | 98.75 94 | 98.62 103 | 99.16 106 | 99.83 20 | 97.96 156 | 99.28 37 | 98.20 312 | 99.37 45 | 99.70 33 | 99.65 30 | 92.65 295 | 99.93 39 | 99.04 57 | 99.84 84 | 99.60 73 |
|
| TransMVSNet (Re) | | | 99.44 15 | 99.47 16 | 99.36 64 | 99.80 23 | 98.58 95 | 99.27 39 | 99.57 59 | 99.39 43 | 99.75 28 | 99.62 34 | 99.17 18 | 99.83 154 | 99.06 55 | 99.62 185 | 99.66 57 |
|
| 3Dnovator | | 98.27 2 | 98.81 85 | 98.73 84 | 99.05 128 | 98.76 264 | 97.81 171 | 99.25 40 | 99.30 165 | 98.57 118 | 98.55 219 | 99.33 90 | 97.95 95 | 99.90 63 | 97.16 164 | 99.67 171 | 99.44 153 |
|
| EC-MVSNet | | | 99.09 52 | 99.05 57 | 99.20 100 | 99.28 158 | 98.93 71 | 99.24 41 | 99.84 18 | 99.08 84 | 98.12 252 | 98.37 270 | 98.72 36 | 99.90 63 | 99.05 56 | 99.77 122 | 98.77 300 |
|
| test1111 | | | 96.49 286 | 96.82 258 | 95.52 350 | 99.42 134 | 87.08 383 | 99.22 42 | 87.14 395 | 99.11 72 | 99.46 69 | 99.58 41 | 88.69 324 | 99.86 108 | 98.80 70 | 99.95 30 | 99.62 66 |
|
| ECVR-MVS |  | | 96.42 288 | 96.61 273 | 95.85 342 | 99.38 139 | 88.18 379 | 99.22 42 | 86.00 397 | 99.08 84 | 99.36 90 | 99.57 42 | 88.47 329 | 99.82 164 | 98.52 92 | 99.95 30 | 99.54 107 |
|
| NR-MVSNet | | | 98.95 68 | 98.82 76 | 99.36 64 | 99.16 189 | 98.72 87 | 99.22 42 | 99.20 196 | 99.10 79 | 99.72 29 | 98.76 216 | 96.38 195 | 99.86 108 | 98.00 121 | 99.82 94 | 99.50 122 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 12 | 99.35 70 | 99.90 4 | 98.15 129 | 99.20 45 | 99.65 43 | 99.48 32 | 99.92 8 | 99.71 17 | 98.07 84 | 99.96 12 | 99.53 28 | 100.00 1 | 99.93 8 |
|
| GBi-Net | | | 98.65 115 | 98.47 126 | 99.17 103 | 98.90 239 | 98.24 120 | 99.20 45 | 99.44 109 | 98.59 115 | 98.95 155 | 99.55 48 | 94.14 268 | 99.86 108 | 97.77 135 | 99.69 160 | 99.41 163 |
|
| test1 | | | 98.65 115 | 98.47 126 | 99.17 103 | 98.90 239 | 98.24 120 | 99.20 45 | 99.44 109 | 98.59 115 | 98.95 155 | 99.55 48 | 94.14 268 | 99.86 108 | 97.77 135 | 99.69 160 | 99.41 163 |
|
| FMVSNet1 | | | 99.17 40 | 99.17 41 | 99.17 103 | 99.55 92 | 98.24 120 | 99.20 45 | 99.44 109 | 99.21 63 | 99.43 74 | 99.55 48 | 97.82 103 | 99.86 108 | 98.42 98 | 99.89 72 | 99.41 163 |
|
| K. test v3 | | | 98.00 188 | 97.66 210 | 99.03 131 | 99.79 25 | 97.56 186 | 99.19 49 | 92.47 383 | 99.62 20 | 99.52 60 | 99.66 27 | 89.61 318 | 99.96 12 | 99.25 44 | 99.81 98 | 99.56 96 |
|
| Vis-MVSNet |  | | 99.34 25 | 99.36 22 | 99.27 89 | 99.73 39 | 98.26 118 | 99.17 50 | 99.78 26 | 99.11 72 | 99.27 106 | 99.48 64 | 98.82 31 | 99.95 23 | 98.94 63 | 99.93 42 | 99.59 79 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| HPM-MVS |  | | 98.79 87 | 98.53 115 | 99.59 15 | 99.65 66 | 99.29 19 | 99.16 51 | 99.43 115 | 96.74 255 | 98.61 208 | 98.38 269 | 98.62 44 | 99.87 99 | 96.47 229 | 99.67 171 | 99.59 79 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MIMVSNet | | | 96.62 280 | 96.25 287 | 97.71 271 | 99.04 215 | 94.66 291 | 99.16 51 | 96.92 349 | 97.23 231 | 97.87 268 | 99.10 136 | 86.11 342 | 99.65 280 | 91.65 354 | 99.21 270 | 98.82 288 |
|
| tt0805 | | | 98.69 105 | 98.62 103 | 98.90 149 | 99.75 36 | 99.30 17 | 99.15 53 | 96.97 345 | 98.86 102 | 98.87 176 | 97.62 323 | 98.63 43 | 98.96 376 | 99.41 35 | 98.29 332 | 98.45 325 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 86 | 99.89 6 | 98.09 136 | 99.14 54 | 99.93 4 | 99.82 3 | 99.93 6 | 99.81 5 | 99.17 18 | 99.94 34 | 99.31 39 | 100.00 1 | 99.82 23 |
|
| FIs | | | 99.14 44 | 99.09 53 | 99.29 84 | 99.70 55 | 98.28 117 | 99.13 55 | 99.52 81 | 99.48 32 | 99.24 115 | 99.41 77 | 96.79 174 | 99.82 164 | 98.69 80 | 99.88 73 | 99.76 37 |
|
| CP-MVSNet | | | 99.21 39 | 99.09 53 | 99.56 21 | 99.65 66 | 98.96 70 | 99.13 55 | 99.34 145 | 99.42 41 | 99.33 95 | 99.26 101 | 97.01 161 | 99.94 34 | 98.74 75 | 99.93 42 | 99.79 28 |
|
| LS3D | | | 98.63 119 | 98.38 141 | 99.36 64 | 97.25 372 | 99.38 8 | 99.12 57 | 99.32 152 | 99.21 63 | 98.44 229 | 98.88 194 | 97.31 141 | 99.80 184 | 96.58 215 | 99.34 249 | 98.92 276 |
|
| bld_raw_dy_0_64 | | | 99.07 56 | 99.00 60 | 99.29 84 | 99.85 17 | 98.18 126 | 99.11 58 | 99.40 121 | 99.33 50 | 99.38 85 | 99.44 71 | 95.21 237 | 99.97 4 | 99.31 39 | 99.98 12 | 99.73 43 |
|
| EGC-MVSNET | | | 85.24 360 | 80.54 363 | 99.34 73 | 99.77 29 | 99.20 34 | 99.08 59 | 99.29 173 | 12.08 397 | 20.84 398 | 99.42 74 | 97.55 124 | 99.85 120 | 97.08 172 | 99.72 147 | 98.96 269 |
|
| Anonymous20240521 | | | 98.69 105 | 98.87 70 | 98.16 237 | 99.77 29 | 95.11 279 | 99.08 59 | 99.44 109 | 99.34 49 | 99.33 95 | 99.55 48 | 94.10 272 | 99.94 34 | 99.25 44 | 99.96 25 | 99.42 160 |
|
| UGNet | | | 98.53 135 | 98.45 129 | 98.79 162 | 97.94 344 | 96.96 219 | 99.08 59 | 98.54 297 | 99.10 79 | 96.82 329 | 99.47 65 | 96.55 187 | 99.84 137 | 98.56 91 | 99.94 38 | 99.55 103 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| ACMH | | 96.65 7 | 99.25 33 | 99.24 37 | 99.26 91 | 99.72 45 | 98.38 109 | 99.07 62 | 99.55 70 | 98.30 131 | 99.65 43 | 99.45 70 | 99.22 15 | 99.76 220 | 98.44 96 | 99.77 122 | 99.64 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| dcpmvs_2 | | | 98.78 89 | 99.11 50 | 97.78 261 | 99.56 88 | 93.67 325 | 99.06 63 | 99.86 13 | 99.50 30 | 99.66 40 | 99.26 101 | 97.21 150 | 99.99 2 | 98.00 121 | 99.91 61 | 99.68 53 |
|
| QAPM | | | 97.31 239 | 96.81 260 | 98.82 155 | 98.80 262 | 97.49 189 | 99.06 63 | 99.19 200 | 90.22 372 | 97.69 281 | 99.16 123 | 96.91 165 | 99.90 63 | 90.89 368 | 99.41 239 | 99.07 249 |
|
| test_fmvs3 | | | 99.12 49 | 99.41 19 | 98.25 229 | 99.76 32 | 95.07 280 | 99.05 65 | 99.94 2 | 97.78 174 | 99.82 21 | 99.84 2 | 98.56 50 | 99.71 245 | 99.96 1 | 99.96 25 | 99.97 3 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 105 | 98.51 117 | 99.24 96 | 98.81 259 | 98.40 107 | 99.02 66 | 99.19 200 | 98.99 91 | 98.07 256 | 99.28 97 | 97.11 155 | 99.84 137 | 96.84 196 | 99.32 251 | 99.47 143 |
|
| Anonymous20240529 | | | 98.93 70 | 98.87 70 | 99.12 111 | 99.19 179 | 98.22 125 | 99.01 67 | 98.99 245 | 99.25 59 | 99.54 54 | 99.37 80 | 97.04 157 | 99.80 184 | 97.89 126 | 99.52 220 | 99.35 194 |
|
| VDDNet | | | 98.21 172 | 97.95 186 | 99.01 133 | 99.58 76 | 97.74 176 | 99.01 67 | 97.29 338 | 99.67 12 | 98.97 152 | 99.50 59 | 90.45 313 | 99.80 184 | 97.88 129 | 99.20 271 | 99.48 136 |
|
| tfpnnormal | | | 98.90 74 | 98.90 69 | 98.91 146 | 99.67 63 | 97.82 169 | 99.00 69 | 99.44 109 | 99.45 36 | 99.51 64 | 99.24 106 | 98.20 75 | 99.86 108 | 95.92 257 | 99.69 160 | 99.04 255 |
|
| VPA-MVSNet | | | 99.30 28 | 99.30 32 | 99.28 86 | 99.49 114 | 98.36 114 | 99.00 69 | 99.45 105 | 99.63 17 | 99.52 60 | 99.44 71 | 98.25 67 | 99.88 82 | 99.09 53 | 99.84 84 | 99.62 66 |
|
| HPM-MVS_fast | | | 99.01 59 | 98.82 76 | 99.57 16 | 99.71 48 | 99.35 12 | 99.00 69 | 99.50 84 | 97.33 216 | 98.94 162 | 98.86 197 | 98.75 34 | 99.82 164 | 97.53 147 | 99.71 152 | 99.56 96 |
|
| nrg030 | | | 99.40 21 | 99.35 23 | 99.54 27 | 99.58 76 | 99.13 55 | 98.98 72 | 99.48 93 | 99.68 11 | 99.46 69 | 99.26 101 | 98.62 44 | 99.73 237 | 99.17 50 | 99.92 53 | 99.76 37 |
|
| canonicalmvs | | | 98.34 156 | 98.26 156 | 98.58 192 | 98.46 313 | 97.82 169 | 98.96 73 | 99.46 102 | 99.19 69 | 97.46 299 | 95.46 374 | 98.59 47 | 99.46 334 | 98.08 115 | 98.71 317 | 98.46 323 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 228 | 97.16 239 | 98.34 222 | 99.55 92 | 96.10 242 | 98.94 74 | 98.44 302 | 98.32 130 | 98.16 247 | 98.62 242 | 88.76 323 | 99.73 237 | 93.88 319 | 99.79 113 | 99.18 236 |
|
| LFMVS | | | 97.20 249 | 96.72 264 | 98.64 180 | 98.72 270 | 96.95 220 | 98.93 75 | 94.14 378 | 99.74 6 | 98.78 187 | 99.01 160 | 84.45 354 | 99.73 237 | 97.44 150 | 99.27 260 | 99.25 219 |
|
| test_vis3_rt | | | 99.14 44 | 99.17 41 | 99.07 121 | 99.78 26 | 98.38 109 | 98.92 76 | 99.94 2 | 97.80 172 | 99.91 11 | 99.67 25 | 97.15 152 | 98.91 379 | 99.76 14 | 99.56 208 | 99.92 9 |
|
| v8 | | | 99.01 59 | 99.16 43 | 98.57 194 | 99.47 123 | 96.31 239 | 98.90 77 | 99.47 100 | 99.03 88 | 99.52 60 | 99.57 42 | 96.93 164 | 99.81 177 | 99.60 23 | 99.98 12 | 99.60 73 |
|
| v10 | | | 98.97 65 | 99.11 50 | 98.55 199 | 99.44 128 | 96.21 241 | 98.90 77 | 99.55 70 | 98.73 107 | 99.48 66 | 99.60 39 | 96.63 184 | 99.83 154 | 99.70 20 | 99.99 5 | 99.61 72 |
|
| APDe-MVS |  | | 98.99 61 | 98.79 79 | 99.60 11 | 99.21 172 | 99.15 47 | 98.87 79 | 99.48 93 | 97.57 190 | 99.35 92 | 99.24 106 | 97.83 100 | 99.89 73 | 97.88 129 | 99.70 157 | 99.75 41 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP |  | | 98.75 94 | 98.50 119 | 99.52 39 | 99.56 88 | 99.16 43 | 98.87 79 | 99.37 130 | 97.16 236 | 98.82 184 | 99.01 160 | 97.71 109 | 99.87 99 | 96.29 240 | 99.69 160 | 99.54 107 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| OpenMVS |  | 96.65 7 | 97.09 257 | 96.68 267 | 98.32 223 | 98.32 324 | 97.16 211 | 98.86 81 | 99.37 130 | 89.48 376 | 96.29 347 | 99.15 127 | 96.56 186 | 99.90 63 | 92.90 336 | 99.20 271 | 97.89 349 |
|
| XXY-MVS | | | 99.14 44 | 99.15 48 | 99.10 115 | 99.76 32 | 97.74 176 | 98.85 82 | 99.62 45 | 98.48 123 | 99.37 88 | 99.49 63 | 98.75 34 | 99.86 108 | 98.20 108 | 99.80 108 | 99.71 45 |
|
| wuyk23d | | | 96.06 296 | 97.62 214 | 91.38 376 | 98.65 292 | 98.57 96 | 98.85 82 | 96.95 347 | 96.86 250 | 99.90 12 | 99.16 123 | 99.18 17 | 98.40 386 | 89.23 375 | 99.77 122 | 77.18 394 |
|
| SDMVSNet | | | 99.23 38 | 99.32 28 | 98.96 139 | 99.68 59 | 97.35 197 | 98.84 84 | 99.48 93 | 99.69 9 | 99.63 46 | 99.68 20 | 99.03 21 | 99.96 12 | 97.97 123 | 99.92 53 | 99.57 90 |
|
| HY-MVS | | 95.94 13 | 95.90 302 | 95.35 310 | 97.55 284 | 97.95 343 | 94.79 284 | 98.81 85 | 96.94 348 | 92.28 355 | 95.17 368 | 98.57 248 | 89.90 317 | 99.75 227 | 91.20 363 | 97.33 363 | 98.10 341 |
|
| SSC-MVS | | | 98.71 98 | 98.74 82 | 98.62 185 | 99.72 45 | 96.08 247 | 98.74 86 | 98.64 293 | 99.74 6 | 99.67 39 | 99.24 106 | 94.57 258 | 99.95 23 | 99.11 51 | 99.24 265 | 99.82 23 |
|
| FMVSNet5 | | | 96.01 298 | 95.20 314 | 98.41 216 | 97.53 363 | 96.10 242 | 98.74 86 | 99.50 84 | 97.22 234 | 98.03 261 | 99.04 148 | 69.80 392 | 99.88 82 | 97.27 158 | 99.71 152 | 99.25 219 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 61 | 98.85 74 | 99.41 60 | 99.58 76 | 99.10 60 | 98.74 86 | 99.56 66 | 99.09 82 | 99.33 95 | 99.19 114 | 98.40 59 | 99.72 244 | 95.98 255 | 99.76 133 | 99.42 160 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| GeoE | | | 99.05 57 | 98.99 63 | 99.25 94 | 99.44 128 | 98.35 115 | 98.73 89 | 99.56 66 | 98.42 124 | 98.91 165 | 98.81 208 | 98.94 25 | 99.91 58 | 98.35 100 | 99.73 140 | 99.49 126 |
|
| tttt0517 | | | 95.64 309 | 94.98 318 | 97.64 276 | 99.36 146 | 93.81 321 | 98.72 90 | 90.47 391 | 98.08 154 | 98.67 199 | 98.34 274 | 73.88 390 | 99.92 49 | 97.77 135 | 99.51 222 | 99.20 229 |
|
| CP-MVS | | | 98.70 102 | 98.42 134 | 99.52 39 | 99.36 146 | 99.12 57 | 98.72 90 | 99.36 134 | 97.54 195 | 98.30 239 | 98.40 266 | 97.86 99 | 99.89 73 | 96.53 226 | 99.72 147 | 99.56 96 |
|
| testf1 | | | 99.25 33 | 99.16 43 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 92 | 99.69 34 | 98.90 99 | 99.43 74 | 99.35 84 | 98.86 28 | 99.67 264 | 97.81 132 | 99.81 98 | 99.24 222 |
|
| APD_test2 | | | 99.25 33 | 99.16 43 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 92 | 99.69 34 | 98.90 99 | 99.43 74 | 99.35 84 | 98.86 28 | 99.67 264 | 97.81 132 | 99.81 98 | 99.24 222 |
|
| KD-MVS_self_test | | | 99.25 33 | 99.18 40 | 99.44 57 | 99.63 73 | 99.06 64 | 98.69 94 | 99.54 75 | 99.31 53 | 99.62 49 | 99.53 54 | 97.36 140 | 99.86 108 | 99.24 46 | 99.71 152 | 99.39 175 |
|
| test_vis1_n | | | 98.31 160 | 98.50 119 | 97.73 270 | 99.76 32 | 94.17 305 | 98.68 95 | 99.91 7 | 96.31 271 | 99.79 24 | 99.57 42 | 92.85 292 | 99.42 340 | 99.79 11 | 99.84 84 | 99.60 73 |
|
| XVS | | | 98.72 97 | 98.45 129 | 99.53 34 | 99.46 124 | 99.21 28 | 98.65 96 | 99.34 145 | 98.62 113 | 97.54 292 | 98.63 240 | 97.50 131 | 99.83 154 | 96.79 198 | 99.53 217 | 99.56 96 |
|
| X-MVStestdata | | | 94.32 328 | 92.59 346 | 99.53 34 | 99.46 124 | 99.21 28 | 98.65 96 | 99.34 145 | 98.62 113 | 97.54 292 | 45.85 395 | 97.50 131 | 99.83 154 | 96.79 198 | 99.53 217 | 99.56 96 |
|
| test_fmvs1_n | | | 98.09 182 | 98.28 153 | 97.52 287 | 99.68 59 | 93.47 328 | 98.63 98 | 99.93 4 | 95.41 301 | 99.68 37 | 99.64 32 | 91.88 304 | 99.48 329 | 99.82 6 | 99.87 76 | 99.62 66 |
|
| mPP-MVS | | | 98.64 117 | 98.34 146 | 99.54 27 | 99.54 97 | 99.17 39 | 98.63 98 | 99.24 190 | 97.47 200 | 98.09 255 | 98.68 228 | 97.62 118 | 99.89 73 | 96.22 243 | 99.62 185 | 99.57 90 |
|
| ambc | | | | | 98.24 231 | 98.82 256 | 95.97 250 | 98.62 100 | 99.00 244 | | 99.27 106 | 99.21 111 | 96.99 162 | 99.50 325 | 96.55 224 | 99.50 229 | 99.26 218 |
|
| FMVSNet2 | | | 98.49 140 | 98.40 136 | 98.75 172 | 98.90 239 | 97.14 213 | 98.61 101 | 99.13 218 | 98.59 115 | 99.19 120 | 99.28 97 | 94.14 268 | 99.82 164 | 97.97 123 | 99.80 108 | 99.29 212 |
|
| ACMH+ | | 96.62 9 | 99.08 55 | 99.00 60 | 99.33 78 | 99.71 48 | 98.83 76 | 98.60 102 | 99.58 52 | 99.11 72 | 99.53 58 | 99.18 117 | 98.81 32 | 99.67 264 | 96.71 209 | 99.77 122 | 99.50 122 |
|
| VDD-MVS | | | 98.56 127 | 98.39 139 | 99.07 121 | 99.13 196 | 98.07 142 | 98.59 103 | 97.01 343 | 99.59 23 | 99.11 127 | 99.27 99 | 94.82 249 | 99.79 197 | 98.34 101 | 99.63 182 | 99.34 196 |
|
| mvsany_test3 | | | 98.87 77 | 98.92 67 | 98.74 176 | 99.38 139 | 96.94 221 | 98.58 104 | 99.10 223 | 96.49 264 | 99.96 4 | 99.81 5 | 98.18 76 | 99.45 335 | 98.97 62 | 99.79 113 | 99.83 22 |
|
| MSP-MVS | | | 98.40 149 | 98.00 183 | 99.61 9 | 99.57 80 | 99.25 24 | 98.57 105 | 99.35 139 | 97.55 194 | 99.31 103 | 97.71 316 | 94.61 257 | 99.88 82 | 96.14 249 | 99.19 274 | 99.70 50 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CSCG | | | 98.68 110 | 98.50 119 | 99.20 100 | 99.45 127 | 98.63 89 | 98.56 106 | 99.57 59 | 97.87 167 | 98.85 177 | 98.04 298 | 97.66 112 | 99.84 137 | 96.72 207 | 99.81 98 | 99.13 244 |
|
| test_fmvs2 | | | 98.70 102 | 98.97 64 | 97.89 254 | 99.54 97 | 94.05 307 | 98.55 107 | 99.92 6 | 96.78 253 | 99.72 29 | 99.78 8 | 96.60 185 | 99.67 264 | 99.91 2 | 99.90 68 | 99.94 7 |
|
| RPSCF | | | 98.62 121 | 98.36 143 | 99.42 58 | 99.65 66 | 99.42 7 | 98.55 107 | 99.57 59 | 97.72 178 | 98.90 166 | 99.26 101 | 96.12 204 | 99.52 320 | 95.72 268 | 99.71 152 | 99.32 203 |
|
| DSMNet-mixed | | | 97.42 232 | 97.60 215 | 96.87 319 | 99.15 193 | 91.46 356 | 98.54 109 | 99.12 219 | 92.87 348 | 97.58 288 | 99.63 33 | 96.21 201 | 99.90 63 | 95.74 267 | 99.54 213 | 99.27 215 |
|
| Anonymous202405211 | | | 97.90 193 | 97.50 220 | 99.08 119 | 98.90 239 | 98.25 119 | 98.53 110 | 96.16 359 | 98.87 101 | 99.11 127 | 98.86 197 | 90.40 314 | 99.78 208 | 97.36 154 | 99.31 253 | 99.19 234 |
|
| WB-MVS | | | 98.52 138 | 98.55 112 | 98.43 214 | 99.65 66 | 95.59 258 | 98.52 111 | 98.77 280 | 99.65 14 | 99.52 60 | 99.00 163 | 94.34 264 | 99.93 39 | 98.65 83 | 98.83 309 | 99.76 37 |
|
| HFP-MVS | | | 98.71 98 | 98.44 131 | 99.51 43 | 99.49 114 | 99.16 43 | 98.52 111 | 99.31 157 | 97.47 200 | 98.58 214 | 98.50 258 | 97.97 94 | 99.85 120 | 96.57 217 | 99.59 196 | 99.53 114 |
|
| region2R | | | 98.69 105 | 98.40 136 | 99.54 27 | 99.53 100 | 99.17 39 | 98.52 111 | 99.31 157 | 97.46 205 | 98.44 229 | 98.51 254 | 97.83 100 | 99.88 82 | 96.46 230 | 99.58 201 | 99.58 85 |
|
| ACMMPR | | | 98.70 102 | 98.42 134 | 99.54 27 | 99.52 102 | 99.14 52 | 98.52 111 | 99.31 157 | 97.47 200 | 98.56 217 | 98.54 250 | 97.75 107 | 99.88 82 | 96.57 217 | 99.59 196 | 99.58 85 |
|
| PMVS |  | 91.26 20 | 97.86 199 | 97.94 188 | 97.65 274 | 99.71 48 | 97.94 158 | 98.52 111 | 98.68 289 | 98.99 91 | 97.52 294 | 99.35 84 | 97.41 137 | 98.18 388 | 91.59 356 | 99.67 171 | 96.82 376 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_f | | | 98.67 113 | 98.87 70 | 98.05 246 | 99.72 45 | 95.59 258 | 98.51 116 | 99.81 23 | 96.30 273 | 99.78 25 | 99.82 4 | 96.14 202 | 98.63 384 | 99.82 6 | 99.93 42 | 99.95 6 |
|
| TSAR-MVS + MP. | | | 98.63 119 | 98.49 123 | 99.06 127 | 99.64 70 | 97.90 160 | 98.51 116 | 98.94 247 | 96.96 244 | 99.24 115 | 98.89 193 | 97.83 100 | 99.81 177 | 96.88 192 | 99.49 230 | 99.48 136 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MP-MVS |  | | 98.46 143 | 98.09 174 | 99.54 27 | 99.57 80 | 99.22 27 | 98.50 118 | 99.19 200 | 97.61 187 | 97.58 288 | 98.66 233 | 97.40 138 | 99.88 82 | 94.72 293 | 99.60 192 | 99.54 107 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APD-MVS_3200maxsize | | | 98.84 81 | 98.61 107 | 99.53 34 | 99.19 179 | 99.27 22 | 98.49 119 | 99.33 150 | 98.64 109 | 99.03 144 | 98.98 168 | 97.89 97 | 99.85 120 | 96.54 225 | 99.42 238 | 99.46 145 |
|
| LCM-MVSNet-Re | | | 98.64 117 | 98.48 124 | 99.11 113 | 98.85 250 | 98.51 102 | 98.49 119 | 99.83 20 | 98.37 125 | 99.69 35 | 99.46 66 | 98.21 74 | 99.92 49 | 94.13 312 | 99.30 256 | 98.91 279 |
|
| baseline | | | 98.96 67 | 99.02 58 | 98.76 169 | 99.38 139 | 97.26 202 | 98.49 119 | 99.50 84 | 98.86 102 | 99.19 120 | 99.06 139 | 98.23 69 | 99.69 252 | 98.71 78 | 99.76 133 | 99.33 201 |
|
| SR-MVS-dyc-post | | | 98.81 85 | 98.55 112 | 99.57 16 | 99.20 176 | 99.38 8 | 98.48 122 | 99.30 165 | 98.64 109 | 98.95 155 | 98.96 173 | 97.49 134 | 99.86 108 | 96.56 221 | 99.39 241 | 99.45 149 |
|
| RE-MVS-def | | | | 98.58 110 | | 99.20 176 | 99.38 8 | 98.48 122 | 99.30 165 | 98.64 109 | 98.95 155 | 98.96 173 | 97.75 107 | | 96.56 221 | 99.39 241 | 99.45 149 |
|
| ZNCC-MVS | | | 98.68 110 | 98.40 136 | 99.54 27 | 99.57 80 | 99.21 28 | 98.46 124 | 99.29 173 | 97.28 222 | 98.11 253 | 98.39 267 | 98.00 90 | 99.87 99 | 96.86 195 | 99.64 179 | 99.55 103 |
|
| DP-MVS | | | 98.93 70 | 98.81 78 | 99.28 86 | 99.21 172 | 98.45 106 | 98.46 124 | 99.33 150 | 99.63 17 | 99.48 66 | 99.15 127 | 97.23 148 | 99.75 227 | 97.17 163 | 99.66 176 | 99.63 65 |
|
| test_0402 | | | 98.76 93 | 98.71 88 | 98.93 143 | 99.56 88 | 98.14 131 | 98.45 126 | 99.34 145 | 99.28 57 | 98.95 155 | 98.91 184 | 98.34 65 | 99.79 197 | 95.63 272 | 99.91 61 | 98.86 285 |
|
| MTAPA | | | 98.88 76 | 98.64 100 | 99.61 9 | 99.67 63 | 99.36 11 | 98.43 127 | 99.20 196 | 98.83 106 | 98.89 168 | 98.90 187 | 96.98 163 | 99.92 49 | 97.16 164 | 99.70 157 | 99.56 96 |
|
| VPNet | | | 98.87 77 | 98.83 75 | 99.01 133 | 99.70 55 | 97.62 185 | 98.43 127 | 99.35 139 | 99.47 34 | 99.28 104 | 99.05 146 | 96.72 180 | 99.82 164 | 98.09 114 | 99.36 245 | 99.59 79 |
|
| APD_test1 | | | 98.83 82 | 98.66 97 | 99.34 73 | 99.78 26 | 99.47 6 | 98.42 129 | 99.45 105 | 98.28 136 | 98.98 148 | 99.19 114 | 97.76 106 | 99.58 303 | 96.57 217 | 99.55 211 | 98.97 267 |
|
| Patchmatch-test | | | 96.55 281 | 96.34 282 | 97.17 305 | 98.35 322 | 93.06 332 | 98.40 130 | 97.79 324 | 97.33 216 | 98.41 232 | 98.67 230 | 83.68 361 | 99.69 252 | 95.16 283 | 99.31 253 | 98.77 300 |
|
| baseline1 | | | 95.96 301 | 95.44 305 | 97.52 287 | 98.51 310 | 93.99 313 | 98.39 131 | 96.09 361 | 98.21 140 | 98.40 236 | 97.76 314 | 86.88 334 | 99.63 286 | 95.42 278 | 89.27 394 | 98.95 270 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 40 | 99.07 56 | 99.46 56 | 99.37 145 | 98.87 73 | 98.39 131 | 99.42 118 | 99.42 41 | 99.36 90 | 99.06 139 | 98.38 60 | 99.95 23 | 98.34 101 | 99.90 68 | 99.57 90 |
|
| dmvs_re | | | 95.98 300 | 95.39 308 | 97.74 268 | 98.86 247 | 97.45 192 | 98.37 133 | 95.69 366 | 97.95 160 | 96.56 338 | 95.95 363 | 90.70 311 | 97.68 390 | 88.32 377 | 96.13 378 | 98.11 340 |
|
| SR-MVS | | | 98.71 98 | 98.43 132 | 99.57 16 | 99.18 186 | 99.35 12 | 98.36 134 | 99.29 173 | 98.29 134 | 98.88 172 | 98.85 200 | 97.53 127 | 99.87 99 | 96.14 249 | 99.31 253 | 99.48 136 |
|
| h-mvs33 | | | 97.77 208 | 97.33 232 | 99.10 115 | 99.21 172 | 97.84 165 | 98.35 135 | 98.57 296 | 99.11 72 | 98.58 214 | 99.02 151 | 88.65 327 | 99.96 12 | 98.11 112 | 96.34 374 | 99.49 126 |
|
| EU-MVSNet | | | 97.66 216 | 98.50 119 | 95.13 356 | 99.63 73 | 85.84 386 | 98.35 135 | 98.21 311 | 98.23 138 | 99.54 54 | 99.46 66 | 95.02 243 | 99.68 261 | 98.24 105 | 99.87 76 | 99.87 16 |
|
| iter_conf_final | | | 97.10 255 | 96.65 272 | 98.45 211 | 98.53 307 | 96.08 247 | 98.30 137 | 99.11 221 | 98.10 152 | 98.85 177 | 98.95 177 | 79.38 378 | 99.87 99 | 98.68 81 | 99.91 61 | 99.40 172 |
|
| CPTT-MVS | | | 97.84 205 | 97.36 229 | 99.27 89 | 99.31 153 | 98.46 105 | 98.29 138 | 99.27 179 | 94.90 311 | 97.83 272 | 98.37 270 | 94.90 245 | 99.84 137 | 93.85 321 | 99.54 213 | 99.51 119 |
|
| MAR-MVS | | | 96.47 287 | 95.70 295 | 98.79 162 | 97.92 345 | 99.12 57 | 98.28 139 | 98.60 295 | 92.16 356 | 95.54 363 | 96.17 360 | 94.77 255 | 99.52 320 | 89.62 373 | 98.23 333 | 97.72 360 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| V42 | | | 98.78 89 | 98.78 80 | 98.76 169 | 99.44 128 | 97.04 214 | 98.27 140 | 99.19 200 | 97.87 167 | 99.25 114 | 99.16 123 | 96.84 168 | 99.78 208 | 99.21 47 | 99.84 84 | 99.46 145 |
|
| GST-MVS | | | 98.61 122 | 98.30 151 | 99.52 39 | 99.51 104 | 99.20 34 | 98.26 141 | 99.25 185 | 97.44 208 | 98.67 199 | 98.39 267 | 97.68 110 | 99.85 120 | 96.00 253 | 99.51 222 | 99.52 117 |
|
| AllTest | | | 98.44 145 | 98.20 161 | 99.16 106 | 99.50 107 | 98.55 97 | 98.25 142 | 99.58 52 | 96.80 251 | 98.88 172 | 99.06 139 | 97.65 113 | 99.57 305 | 94.45 300 | 99.61 190 | 99.37 184 |
|
| VNet | | | 98.42 146 | 98.30 151 | 98.79 162 | 98.79 263 | 97.29 200 | 98.23 143 | 98.66 290 | 99.31 53 | 98.85 177 | 98.80 209 | 94.80 252 | 99.78 208 | 98.13 111 | 99.13 282 | 99.31 207 |
|
| PGM-MVS | | | 98.66 114 | 98.37 142 | 99.55 23 | 99.53 100 | 99.18 38 | 98.23 143 | 99.49 91 | 97.01 243 | 98.69 197 | 98.88 194 | 98.00 90 | 99.89 73 | 95.87 261 | 99.59 196 | 99.58 85 |
|
| LPG-MVS_test | | | 98.71 98 | 98.46 128 | 99.47 54 | 99.57 80 | 98.97 66 | 98.23 143 | 99.48 93 | 96.60 260 | 99.10 130 | 99.06 139 | 98.71 37 | 99.83 154 | 95.58 275 | 99.78 118 | 99.62 66 |
|
| SteuartSystems-ACMMP | | | 98.79 87 | 98.54 114 | 99.54 27 | 99.73 39 | 99.16 43 | 98.23 143 | 99.31 157 | 97.92 163 | 98.90 166 | 98.90 187 | 98.00 90 | 99.88 82 | 96.15 248 | 99.72 147 | 99.58 85 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 98.53 135 | 98.27 155 | 99.32 80 | 99.31 153 | 98.75 81 | 98.19 147 | 99.41 119 | 96.77 254 | 98.83 181 | 98.90 187 | 97.80 104 | 99.82 164 | 95.68 271 | 99.52 220 | 99.38 182 |
|
| MVS_Test | | | 98.18 175 | 98.36 143 | 97.67 272 | 98.48 311 | 94.73 288 | 98.18 148 | 99.02 239 | 97.69 179 | 98.04 260 | 99.11 134 | 97.22 149 | 99.56 308 | 98.57 88 | 98.90 307 | 98.71 306 |
|
| Patchmtry | | | 97.35 236 | 96.97 247 | 98.50 207 | 97.31 371 | 96.47 234 | 98.18 148 | 98.92 252 | 98.95 96 | 98.78 187 | 99.37 80 | 85.44 348 | 99.85 120 | 95.96 256 | 99.83 91 | 99.17 240 |
|
| API-MVS | | | 97.04 261 | 96.91 252 | 97.42 295 | 97.88 348 | 98.23 124 | 98.18 148 | 98.50 300 | 97.57 190 | 97.39 304 | 96.75 349 | 96.77 175 | 99.15 370 | 90.16 371 | 99.02 295 | 94.88 390 |
|
| test0726 | | | | | | 99.50 107 | 99.21 28 | 98.17 151 | 99.35 139 | 97.97 158 | 99.26 110 | 99.06 139 | 97.61 119 | | | | |
|
| test_vis1_n_1920 | | | 98.40 149 | 98.92 67 | 96.81 323 | 99.74 38 | 90.76 369 | 98.15 152 | 99.91 7 | 98.33 128 | 99.89 15 | 99.55 48 | 95.07 242 | 99.88 82 | 99.76 14 | 99.93 42 | 99.79 28 |
|
| Anonymous20231206 | | | 98.21 172 | 98.21 160 | 98.20 233 | 99.51 104 | 95.43 267 | 98.13 153 | 99.32 152 | 96.16 276 | 98.93 163 | 98.82 206 | 96.00 210 | 99.83 154 | 97.32 156 | 99.73 140 | 99.36 190 |
|
| EPMVS | | | 93.72 340 | 93.27 339 | 95.09 358 | 96.04 391 | 87.76 380 | 98.13 153 | 85.01 398 | 94.69 315 | 96.92 319 | 98.64 238 | 78.47 385 | 99.31 355 | 95.04 284 | 96.46 373 | 98.20 336 |
|
| PHI-MVS | | | 98.29 164 | 97.95 186 | 99.34 73 | 98.44 315 | 99.16 43 | 98.12 155 | 99.38 126 | 96.01 282 | 98.06 257 | 98.43 264 | 97.80 104 | 99.67 264 | 95.69 270 | 99.58 201 | 99.20 229 |
|
| CR-MVSNet | | | 96.28 292 | 95.95 290 | 97.28 300 | 97.71 355 | 94.22 301 | 98.11 156 | 98.92 252 | 92.31 354 | 96.91 321 | 99.37 80 | 85.44 348 | 99.81 177 | 97.39 153 | 97.36 361 | 97.81 354 |
|
| RPMNet | | | 97.02 262 | 96.93 248 | 97.30 299 | 97.71 355 | 94.22 301 | 98.11 156 | 99.30 165 | 99.37 45 | 96.91 321 | 99.34 88 | 86.72 335 | 99.87 99 | 97.53 147 | 97.36 361 | 97.81 354 |
|
| SED-MVS | | | 98.91 72 | 98.72 86 | 99.49 48 | 99.49 114 | 99.17 39 | 98.10 158 | 99.31 157 | 98.03 155 | 99.66 40 | 99.02 151 | 98.36 61 | 99.88 82 | 96.91 185 | 99.62 185 | 99.41 163 |
|
| OPU-MVS | | | | | 98.82 155 | 98.59 298 | 98.30 116 | 98.10 158 | | | | 98.52 253 | 98.18 76 | 98.75 383 | 94.62 294 | 99.48 231 | 99.41 163 |
|
| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 64 | 99.87 12 | 98.13 132 | 98.08 160 | 99.95 1 | 99.45 36 | 99.98 2 | 99.75 11 | 99.80 1 | 99.97 4 | 99.82 6 | 99.99 5 | 99.99 1 |
|
| tpmvs | | | 95.02 321 | 95.25 312 | 94.33 362 | 96.39 388 | 85.87 385 | 98.08 160 | 96.83 351 | 95.46 297 | 95.51 365 | 98.69 226 | 85.91 343 | 99.53 316 | 94.16 308 | 96.23 376 | 97.58 365 |
|
| 1314 | | | 95.74 306 | 95.60 299 | 96.17 337 | 97.53 363 | 92.75 340 | 98.07 162 | 98.31 308 | 91.22 365 | 94.25 377 | 96.68 350 | 95.53 228 | 99.03 372 | 91.64 355 | 97.18 364 | 96.74 377 |
|
| MVS | | | 93.19 346 | 92.09 350 | 96.50 329 | 96.91 378 | 94.03 310 | 98.07 162 | 98.06 320 | 68.01 393 | 94.56 376 | 96.48 354 | 95.96 216 | 99.30 357 | 83.84 386 | 96.89 369 | 96.17 382 |
|
| ACMM | | 96.08 12 | 98.91 72 | 98.73 84 | 99.48 51 | 99.55 92 | 99.14 52 | 98.07 162 | 99.37 130 | 97.62 184 | 99.04 141 | 98.96 173 | 98.84 30 | 99.79 197 | 97.43 151 | 99.65 177 | 99.49 126 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EIA-MVS | | | 98.00 188 | 97.74 202 | 98.80 159 | 98.72 270 | 98.09 136 | 98.05 165 | 99.60 49 | 97.39 211 | 96.63 335 | 95.55 370 | 97.68 110 | 99.80 184 | 96.73 206 | 99.27 260 | 98.52 321 |
|
| SMA-MVS |  | | 98.40 149 | 98.03 181 | 99.51 43 | 99.16 189 | 99.21 28 | 98.05 165 | 99.22 193 | 94.16 328 | 98.98 148 | 99.10 136 | 97.52 129 | 99.79 197 | 96.45 231 | 99.64 179 | 99.53 114 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| EG-PatchMatch MVS | | | 98.99 61 | 99.01 59 | 98.94 142 | 99.50 107 | 97.47 190 | 98.04 167 | 99.59 50 | 98.15 151 | 99.40 81 | 99.36 83 | 98.58 49 | 99.76 220 | 98.78 71 | 99.68 165 | 99.59 79 |
|
| test_cas_vis1_n_1920 | | | 98.33 157 | 98.68 94 | 97.27 301 | 99.69 57 | 92.29 348 | 98.03 168 | 99.85 15 | 97.62 184 | 99.96 4 | 99.62 34 | 93.98 273 | 99.74 232 | 99.52 29 | 99.86 79 | 99.79 28 |
|
| thres100view900 | | | 94.19 331 | 93.67 335 | 95.75 345 | 99.06 211 | 91.35 359 | 98.03 168 | 94.24 376 | 98.33 128 | 97.40 303 | 94.98 380 | 79.84 373 | 99.62 288 | 83.05 387 | 98.08 344 | 96.29 380 |
|
| DVP-MVS |  | | 98.77 92 | 98.52 116 | 99.52 39 | 99.50 107 | 99.21 28 | 98.02 170 | 98.84 269 | 97.97 158 | 99.08 132 | 99.02 151 | 97.61 119 | 99.88 82 | 96.99 179 | 99.63 182 | 99.48 136 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 99.60 11 | 99.50 107 | 99.23 26 | 98.02 170 | 99.32 152 | | | | | 99.88 82 | 96.99 179 | 99.63 182 | 99.68 53 |
|
| Effi-MVS+-dtu | | | 98.26 167 | 97.90 192 | 99.35 70 | 98.02 341 | 99.49 5 | 98.02 170 | 99.16 211 | 98.29 134 | 97.64 283 | 97.99 300 | 96.44 192 | 99.95 23 | 96.66 212 | 98.93 305 | 98.60 318 |
|
| DeepC-MVS | | 97.60 4 | 98.97 65 | 98.93 66 | 99.10 115 | 99.35 150 | 97.98 152 | 98.01 173 | 99.46 102 | 97.56 192 | 99.54 54 | 99.50 59 | 98.97 23 | 99.84 137 | 98.06 116 | 99.92 53 | 99.49 126 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmvis_n_1920 | | | 99.26 32 | 99.49 12 | 98.54 202 | 99.66 65 | 96.97 217 | 98.00 174 | 99.85 15 | 99.24 60 | 99.92 8 | 99.50 59 | 99.39 11 | 99.95 23 | 99.89 3 | 99.98 12 | 98.71 306 |
|
| casdiffmvs_mvg |  | | 99.12 49 | 99.16 43 | 98.99 135 | 99.43 133 | 97.73 178 | 98.00 174 | 99.62 45 | 99.22 61 | 99.55 53 | 99.22 110 | 98.93 26 | 99.75 227 | 98.66 82 | 99.81 98 | 99.50 122 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thres600view7 | | | 94.45 326 | 93.83 332 | 96.29 333 | 99.06 211 | 91.53 355 | 97.99 176 | 94.24 376 | 98.34 127 | 97.44 301 | 95.01 378 | 79.84 373 | 99.67 264 | 84.33 385 | 98.23 333 | 97.66 362 |
|
| PM-MVS | | | 98.82 83 | 98.72 86 | 99.12 111 | 99.64 70 | 98.54 100 | 97.98 177 | 99.68 39 | 97.62 184 | 99.34 94 | 99.18 117 | 97.54 125 | 99.77 214 | 97.79 134 | 99.74 137 | 99.04 255 |
|
| CostFormer | | | 93.97 336 | 93.78 333 | 94.51 361 | 97.53 363 | 85.83 387 | 97.98 177 | 95.96 363 | 89.29 378 | 94.99 371 | 98.63 240 | 78.63 382 | 99.62 288 | 94.54 296 | 96.50 372 | 98.09 342 |
|
| PatchT | | | 96.65 278 | 96.35 281 | 97.54 285 | 97.40 368 | 95.32 270 | 97.98 177 | 96.64 353 | 99.33 50 | 96.89 325 | 99.42 74 | 84.32 356 | 99.81 177 | 97.69 142 | 97.49 354 | 97.48 367 |
|
| fmvsm_s_conf0.1_n_a | | | 99.17 40 | 99.30 32 | 98.80 159 | 99.75 36 | 96.59 231 | 97.97 180 | 99.86 13 | 98.22 139 | 99.88 17 | 99.71 17 | 98.59 47 | 99.84 137 | 99.73 17 | 99.98 12 | 99.98 2 |
|
| test_fmvsm_n_1920 | | | 99.33 26 | 99.45 18 | 98.99 135 | 99.57 80 | 97.73 178 | 97.93 181 | 99.83 20 | 99.22 61 | 99.93 6 | 99.30 95 | 99.42 10 | 99.96 12 | 99.85 4 | 99.99 5 | 99.29 212 |
|
| MTMP | | | | | | | | 97.93 181 | 91.91 387 | | | | | | | | |
|
| ADS-MVSNet2 | | | 95.43 314 | 94.98 318 | 96.76 326 | 98.14 335 | 91.74 353 | 97.92 183 | 97.76 325 | 90.23 370 | 96.51 341 | 98.91 184 | 85.61 345 | 99.85 120 | 92.88 337 | 96.90 367 | 98.69 310 |
|
| ADS-MVSNet | | | 95.24 317 | 94.93 321 | 96.18 336 | 98.14 335 | 90.10 371 | 97.92 183 | 97.32 337 | 90.23 370 | 96.51 341 | 98.91 184 | 85.61 345 | 99.74 232 | 92.88 337 | 96.90 367 | 98.69 310 |
|
| EPNet | | | 96.14 295 | 95.44 305 | 98.25 229 | 90.76 399 | 95.50 264 | 97.92 183 | 94.65 370 | 98.97 93 | 92.98 386 | 98.85 200 | 89.12 322 | 99.87 99 | 95.99 254 | 99.68 165 | 99.39 175 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_0304 | | | 98.10 179 | 97.88 194 | 98.76 169 | 98.82 256 | 96.50 233 | 97.90 186 | 91.35 389 | 99.56 26 | 98.32 238 | 99.13 131 | 96.06 206 | 99.93 39 | 99.84 5 | 99.97 20 | 99.85 19 |
|
| MVP-Stereo | | | 98.08 183 | 97.92 190 | 98.57 194 | 98.96 227 | 96.79 225 | 97.90 186 | 99.18 204 | 96.41 267 | 98.46 227 | 98.95 177 | 95.93 217 | 99.60 295 | 96.51 227 | 98.98 300 | 99.31 207 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MM | | | | | 98.91 146 | | 96.97 217 | 97.89 188 | 94.44 372 | 99.54 27 | 98.95 155 | 99.14 130 | 93.50 280 | 99.92 49 | 99.80 10 | 99.96 25 | 99.85 19 |
|
| SD-MVS | | | 98.40 149 | 98.68 94 | 97.54 285 | 98.96 227 | 97.99 149 | 97.88 189 | 99.36 134 | 98.20 144 | 99.63 46 | 99.04 148 | 98.76 33 | 95.33 396 | 96.56 221 | 99.74 137 | 99.31 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| tpm | | | 94.67 324 | 94.34 328 | 95.66 347 | 97.68 359 | 88.42 376 | 97.88 189 | 94.90 369 | 94.46 320 | 96.03 353 | 98.56 249 | 78.66 381 | 99.79 197 | 95.88 258 | 95.01 385 | 98.78 299 |
|
| TAMVS | | | 98.24 170 | 98.05 179 | 98.80 159 | 99.07 207 | 97.18 209 | 97.88 189 | 98.81 274 | 96.66 259 | 99.17 125 | 99.21 111 | 94.81 251 | 99.77 214 | 96.96 183 | 99.88 73 | 99.44 153 |
|
| fmvsm_s_conf0.1_n | | | 99.16 43 | 99.33 26 | 98.64 180 | 99.71 48 | 96.10 242 | 97.87 192 | 99.85 15 | 98.56 120 | 99.90 12 | 99.68 20 | 98.69 39 | 99.85 120 | 99.72 19 | 99.98 12 | 99.97 3 |
|
| iter_conf05 | | | 96.54 282 | 96.07 288 | 97.92 251 | 97.90 347 | 94.50 295 | 97.87 192 | 99.14 217 | 97.73 176 | 98.89 168 | 98.95 177 | 75.75 388 | 99.87 99 | 98.50 93 | 99.92 53 | 99.40 172 |
|
| thisisatest0530 | | | 95.27 316 | 94.45 325 | 97.74 268 | 99.19 179 | 94.37 299 | 97.86 194 | 90.20 392 | 97.17 235 | 98.22 243 | 97.65 320 | 73.53 391 | 99.90 63 | 96.90 190 | 99.35 247 | 98.95 270 |
|
| FMVSNet3 | | | 97.50 224 | 97.24 235 | 98.29 227 | 98.08 339 | 95.83 254 | 97.86 194 | 98.91 254 | 97.89 166 | 98.95 155 | 98.95 177 | 87.06 333 | 99.81 177 | 97.77 135 | 99.69 160 | 99.23 224 |
|
| 114514_t | | | 96.50 285 | 95.77 292 | 98.69 177 | 99.48 121 | 97.43 194 | 97.84 196 | 99.55 70 | 81.42 391 | 96.51 341 | 98.58 247 | 95.53 228 | 99.67 264 | 93.41 331 | 99.58 201 | 98.98 264 |
|
| ACMMP_NAP | | | 98.75 94 | 98.48 124 | 99.57 16 | 99.58 76 | 99.29 19 | 97.82 197 | 99.25 185 | 96.94 246 | 98.78 187 | 99.12 133 | 98.02 88 | 99.84 137 | 97.13 169 | 99.67 171 | 99.59 79 |
|
| casdiffmvs |  | | 98.95 68 | 99.00 60 | 98.81 157 | 99.38 139 | 97.33 198 | 97.82 197 | 99.57 59 | 99.17 70 | 99.35 92 | 99.17 121 | 98.35 64 | 99.69 252 | 98.46 95 | 99.73 140 | 99.41 163 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.5_n_a | | | 99.10 51 | 99.20 39 | 98.78 165 | 99.55 92 | 96.59 231 | 97.79 199 | 99.82 22 | 98.21 140 | 99.81 22 | 99.53 54 | 98.46 56 | 99.84 137 | 99.70 20 | 99.97 20 | 99.90 10 |
|
| testgi | | | 98.32 158 | 98.39 139 | 98.13 238 | 99.57 80 | 95.54 261 | 97.78 200 | 99.49 91 | 97.37 213 | 99.19 120 | 97.65 320 | 98.96 24 | 99.49 326 | 96.50 228 | 98.99 298 | 99.34 196 |
|
| test20.03 | | | 98.78 89 | 98.77 81 | 98.78 165 | 99.46 124 | 97.20 207 | 97.78 200 | 99.24 190 | 99.04 87 | 99.41 78 | 98.90 187 | 97.65 113 | 99.76 220 | 97.70 140 | 99.79 113 | 99.39 175 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 10 | 99.34 73 | 99.78 26 | 98.11 133 | 97.77 202 | 99.90 9 | 99.33 50 | 99.97 3 | 99.66 27 | 99.71 3 | 99.96 12 | 99.79 11 | 99.99 5 | 99.96 5 |
|
| HQP_MVS | | | 97.99 191 | 97.67 207 | 98.93 143 | 99.19 179 | 97.65 182 | 97.77 202 | 99.27 179 | 98.20 144 | 97.79 275 | 97.98 301 | 94.90 245 | 99.70 248 | 94.42 302 | 99.51 222 | 99.45 149 |
|
| plane_prior2 | | | | | | | | 97.77 202 | | 98.20 144 | | | | | | | |
|
| APD-MVS |  | | 98.10 179 | 97.67 207 | 99.42 58 | 99.11 198 | 98.93 71 | 97.76 205 | 99.28 176 | 94.97 309 | 98.72 196 | 98.77 214 | 97.04 157 | 99.85 120 | 93.79 322 | 99.54 213 | 99.49 126 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.85 6 | 98.30 161 | 98.15 169 | 98.75 172 | 98.61 293 | 97.23 203 | 97.76 205 | 99.09 225 | 97.31 219 | 98.75 193 | 98.66 233 | 97.56 123 | 99.64 283 | 96.10 252 | 99.55 211 | 99.39 175 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| fmvsm_s_conf0.5_n | | | 99.09 52 | 99.26 35 | 98.61 188 | 99.55 92 | 96.09 245 | 97.74 207 | 99.81 23 | 98.55 121 | 99.85 19 | 99.55 48 | 98.60 46 | 99.84 137 | 99.69 22 | 99.98 12 | 99.89 11 |
|
| MDTV_nov1_ep13 | | | | 95.22 313 | | 97.06 377 | 83.20 395 | 97.74 207 | 96.16 359 | 94.37 324 | 96.99 317 | 98.83 203 | 83.95 359 | 99.53 316 | 93.90 317 | 97.95 350 | |
|
| UniMVSNet (Re) | | | 98.87 77 | 98.71 88 | 99.35 70 | 99.24 165 | 98.73 85 | 97.73 209 | 99.38 126 | 98.93 97 | 99.12 126 | 98.73 219 | 96.77 175 | 99.86 108 | 98.63 85 | 99.80 108 | 99.46 145 |
|
| alignmvs | | | 97.35 236 | 96.88 253 | 98.78 165 | 98.54 305 | 98.09 136 | 97.71 210 | 97.69 328 | 99.20 65 | 97.59 287 | 95.90 365 | 88.12 332 | 99.55 311 | 98.18 109 | 98.96 302 | 98.70 309 |
|
| XVG-ACMP-BASELINE | | | 98.56 127 | 98.34 146 | 99.22 99 | 99.54 97 | 98.59 94 | 97.71 210 | 99.46 102 | 97.25 225 | 98.98 148 | 98.99 164 | 97.54 125 | 99.84 137 | 95.88 258 | 99.74 137 | 99.23 224 |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 402 | 97.69 212 | | 90.06 375 | 97.75 278 | | 85.78 344 | | 93.52 327 | | 98.69 310 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 14 | 99.31 83 | 99.64 70 | 98.10 135 | 97.68 213 | 99.84 18 | 99.29 56 | 99.92 8 | 99.57 42 | 99.60 5 | 99.96 12 | 99.74 16 | 99.98 12 | 99.89 11 |
|
| test_fmvs1 | | | 97.72 211 | 97.94 188 | 97.07 310 | 98.66 290 | 92.39 345 | 97.68 213 | 99.81 23 | 95.20 305 | 99.54 54 | 99.44 71 | 91.56 306 | 99.41 341 | 99.78 13 | 99.77 122 | 99.40 172 |
|
| UniMVSNet_NR-MVSNet | | | 98.86 80 | 98.68 94 | 99.40 62 | 99.17 187 | 98.74 82 | 97.68 213 | 99.40 121 | 99.14 71 | 99.06 134 | 98.59 246 | 96.71 181 | 99.93 39 | 98.57 88 | 99.77 122 | 99.53 114 |
|
| ACMP | | 95.32 15 | 98.41 147 | 98.09 174 | 99.36 64 | 99.51 104 | 98.79 80 | 97.68 213 | 99.38 126 | 95.76 289 | 98.81 186 | 98.82 206 | 98.36 61 | 99.82 164 | 94.75 290 | 99.77 122 | 99.48 136 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| tpm2 | | | 93.09 347 | 92.58 347 | 94.62 360 | 97.56 361 | 86.53 384 | 97.66 217 | 95.79 365 | 86.15 385 | 94.07 381 | 98.23 283 | 75.95 386 | 99.53 316 | 90.91 367 | 96.86 370 | 97.81 354 |
|
| dp | | | 93.47 343 | 93.59 336 | 93.13 375 | 96.64 383 | 81.62 399 | 97.66 217 | 96.42 357 | 92.80 349 | 96.11 349 | 98.64 238 | 78.55 384 | 99.59 299 | 93.31 332 | 92.18 393 | 98.16 338 |
|
| dmvs_testset | | | 92.94 348 | 92.21 349 | 95.13 356 | 98.59 298 | 90.99 366 | 97.65 219 | 92.09 386 | 96.95 245 | 94.00 382 | 93.55 389 | 92.34 298 | 96.97 393 | 72.20 396 | 92.52 391 | 97.43 369 |
|
| PatchmatchNet |  | | 95.58 310 | 95.67 297 | 95.30 355 | 97.34 370 | 87.32 382 | 97.65 219 | 96.65 352 | 95.30 302 | 97.07 313 | 98.69 226 | 84.77 351 | 99.75 227 | 94.97 286 | 98.64 322 | 98.83 287 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v144192 | | | 98.54 133 | 98.57 111 | 98.45 211 | 99.21 172 | 95.98 249 | 97.63 221 | 99.36 134 | 97.15 238 | 99.32 101 | 99.18 117 | 95.84 221 | 99.84 137 | 99.50 30 | 99.91 61 | 99.54 107 |
|
| tpmrst | | | 95.07 319 | 95.46 303 | 93.91 366 | 97.11 374 | 84.36 393 | 97.62 222 | 96.96 346 | 94.98 308 | 96.35 346 | 98.80 209 | 85.46 347 | 99.59 299 | 95.60 273 | 96.23 376 | 97.79 357 |
|
| UnsupCasMVSNet_eth | | | 97.89 195 | 97.60 215 | 98.75 172 | 99.31 153 | 97.17 210 | 97.62 222 | 99.35 139 | 98.72 108 | 98.76 192 | 98.68 228 | 92.57 296 | 99.74 232 | 97.76 139 | 95.60 382 | 99.34 196 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 165 | 98.09 174 | 98.81 157 | 98.43 316 | 98.11 133 | 97.61 224 | 99.50 84 | 98.64 109 | 97.39 304 | 97.52 328 | 98.12 83 | 99.95 23 | 96.90 190 | 98.71 317 | 98.38 330 |
|
| tfpn200view9 | | | 94.03 335 | 93.44 337 | 95.78 344 | 98.93 231 | 91.44 357 | 97.60 225 | 94.29 374 | 97.94 161 | 97.10 311 | 94.31 386 | 79.67 375 | 99.62 288 | 83.05 387 | 98.08 344 | 96.29 380 |
|
| thres400 | | | 94.14 333 | 93.44 337 | 96.24 335 | 98.93 231 | 91.44 357 | 97.60 225 | 94.29 374 | 97.94 161 | 97.10 311 | 94.31 386 | 79.67 375 | 99.62 288 | 83.05 387 | 98.08 344 | 97.66 362 |
|
| test_post1 | | | | | | | | 97.59 227 | | | | 20.48 399 | 83.07 364 | 99.66 275 | 94.16 308 | | |
|
| v1144 | | | 98.60 123 | 98.66 97 | 98.41 216 | 99.36 146 | 95.90 251 | 97.58 228 | 99.34 145 | 97.51 196 | 99.27 106 | 99.15 127 | 96.34 198 | 99.80 184 | 99.47 32 | 99.93 42 | 99.51 119 |
|
| v2v482 | | | 98.56 127 | 98.62 103 | 98.37 220 | 99.42 134 | 95.81 255 | 97.58 228 | 99.16 211 | 97.90 165 | 99.28 104 | 99.01 160 | 95.98 214 | 99.79 197 | 99.33 37 | 99.90 68 | 99.51 119 |
|
| v1921920 | | | 98.54 133 | 98.60 108 | 98.38 219 | 99.20 176 | 95.76 257 | 97.56 230 | 99.36 134 | 97.23 231 | 99.38 85 | 99.17 121 | 96.02 208 | 99.84 137 | 99.57 25 | 99.90 68 | 99.54 107 |
|
| MVSTER | | | 96.86 270 | 96.55 277 | 97.79 260 | 97.91 346 | 94.21 303 | 97.56 230 | 98.87 260 | 97.49 199 | 99.06 134 | 99.05 146 | 80.72 370 | 99.80 184 | 98.44 96 | 99.82 94 | 99.37 184 |
|
| DU-MVS | | | 98.82 83 | 98.63 101 | 99.39 63 | 99.16 189 | 98.74 82 | 97.54 232 | 99.25 185 | 98.84 105 | 99.06 134 | 98.76 216 | 96.76 177 | 99.93 39 | 98.57 88 | 99.77 122 | 99.50 122 |
|
| 9.14 | | | | 97.78 199 | | 99.07 207 | | 97.53 233 | 99.32 152 | 95.53 295 | 98.54 221 | 98.70 225 | 97.58 121 | 99.76 220 | 94.32 307 | 99.46 232 | |
|
| v1192 | | | 98.60 123 | 98.66 97 | 98.41 216 | 99.27 160 | 95.88 252 | 97.52 234 | 99.36 134 | 97.41 209 | 99.33 95 | 99.20 113 | 96.37 196 | 99.82 164 | 99.57 25 | 99.92 53 | 99.55 103 |
|
| HPM-MVS++ |  | | 98.10 179 | 97.64 212 | 99.48 51 | 99.09 203 | 99.13 55 | 97.52 234 | 98.75 284 | 97.46 205 | 96.90 324 | 97.83 311 | 96.01 209 | 99.84 137 | 95.82 265 | 99.35 247 | 99.46 145 |
|
| ETV-MVS | | | 98.03 185 | 97.86 196 | 98.56 198 | 98.69 282 | 98.07 142 | 97.51 236 | 99.50 84 | 98.10 152 | 97.50 296 | 95.51 371 | 98.41 58 | 99.88 82 | 96.27 241 | 99.24 265 | 97.71 361 |
|
| v1240 | | | 98.55 131 | 98.62 103 | 98.32 223 | 99.22 170 | 95.58 260 | 97.51 236 | 99.45 105 | 97.16 236 | 99.45 72 | 99.24 106 | 96.12 204 | 99.85 120 | 99.60 23 | 99.88 73 | 99.55 103 |
|
| MSLP-MVS++ | | | 98.02 186 | 98.14 171 | 97.64 276 | 98.58 300 | 95.19 275 | 97.48 238 | 99.23 192 | 97.47 200 | 97.90 266 | 98.62 242 | 97.04 157 | 98.81 382 | 97.55 144 | 99.41 239 | 98.94 274 |
|
| PAPM_NR | | | 96.82 273 | 96.32 283 | 98.30 226 | 99.07 207 | 96.69 230 | 97.48 238 | 98.76 281 | 95.81 288 | 96.61 337 | 96.47 355 | 94.12 271 | 99.17 368 | 90.82 369 | 97.78 351 | 99.06 250 |
|
| Baseline_NR-MVSNet | | | 98.98 64 | 98.86 73 | 99.36 64 | 99.82 22 | 98.55 97 | 97.47 240 | 99.57 59 | 99.37 45 | 99.21 118 | 99.61 37 | 96.76 177 | 99.83 154 | 98.06 116 | 99.83 91 | 99.71 45 |
|
| hse-mvs2 | | | 97.46 228 | 97.07 243 | 98.64 180 | 98.73 268 | 97.33 198 | 97.45 241 | 97.64 331 | 99.11 72 | 98.58 214 | 97.98 301 | 88.65 327 | 99.79 197 | 98.11 112 | 97.39 358 | 98.81 292 |
|
| v148 | | | 98.45 144 | 98.60 108 | 98.00 249 | 99.44 128 | 94.98 281 | 97.44 242 | 99.06 228 | 98.30 131 | 99.32 101 | 98.97 170 | 96.65 183 | 99.62 288 | 98.37 99 | 99.85 80 | 99.39 175 |
|
| tpm cat1 | | | 93.29 345 | 93.13 343 | 93.75 368 | 97.39 369 | 84.74 390 | 97.39 243 | 97.65 329 | 83.39 390 | 94.16 378 | 98.41 265 | 82.86 365 | 99.39 344 | 91.56 357 | 95.35 384 | 97.14 372 |
|
| AUN-MVS | | | 96.24 294 | 95.45 304 | 98.60 190 | 98.70 277 | 97.22 205 | 97.38 244 | 97.65 329 | 95.95 284 | 95.53 364 | 97.96 305 | 82.11 369 | 99.79 197 | 96.31 238 | 97.44 356 | 98.80 297 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 304 | 95.18 315 | 97.81 259 | 98.41 320 | 97.15 212 | 97.37 245 | 98.62 294 | 83.86 388 | 98.65 202 | 98.37 270 | 94.29 266 | 99.68 261 | 88.41 376 | 98.62 324 | 96.60 379 |
|
| patch_mono-2 | | | 98.51 139 | 98.63 101 | 98.17 235 | 99.38 139 | 94.78 285 | 97.36 246 | 99.69 34 | 98.16 150 | 98.49 225 | 99.29 96 | 97.06 156 | 99.97 4 | 98.29 104 | 99.91 61 | 99.76 37 |
|
| PVSNet_Blended_VisFu | | | 98.17 177 | 98.15 169 | 98.22 232 | 99.73 39 | 95.15 276 | 97.36 246 | 99.68 39 | 94.45 322 | 98.99 147 | 99.27 99 | 96.87 167 | 99.94 34 | 97.13 169 | 99.91 61 | 99.57 90 |
|
| Effi-MVS+ | | | 98.02 186 | 97.82 198 | 98.62 185 | 98.53 307 | 97.19 208 | 97.33 248 | 99.68 39 | 97.30 220 | 96.68 333 | 97.46 332 | 98.56 50 | 99.80 184 | 96.63 213 | 98.20 335 | 98.86 285 |
|
| testing3 | | | 93.51 342 | 92.09 350 | 97.75 266 | 98.60 295 | 94.40 298 | 97.32 249 | 95.26 368 | 97.56 192 | 96.79 331 | 95.50 372 | 53.57 402 | 99.77 214 | 95.26 281 | 98.97 301 | 99.08 247 |
|
| mvs_anonymous | | | 97.83 207 | 98.16 168 | 96.87 319 | 98.18 333 | 91.89 352 | 97.31 250 | 98.90 255 | 97.37 213 | 98.83 181 | 99.46 66 | 96.28 199 | 99.79 197 | 98.90 65 | 98.16 339 | 98.95 270 |
|
| test_vis1_rt | | | 97.75 209 | 97.72 205 | 97.83 257 | 98.81 259 | 96.35 237 | 97.30 251 | 99.69 34 | 94.61 316 | 97.87 268 | 98.05 297 | 96.26 200 | 98.32 387 | 98.74 75 | 98.18 336 | 98.82 288 |
|
| test_yl | | | 96.69 275 | 96.29 284 | 97.90 252 | 98.28 326 | 95.24 272 | 97.29 252 | 97.36 334 | 98.21 140 | 98.17 245 | 97.86 308 | 86.27 338 | 99.55 311 | 94.87 288 | 98.32 330 | 98.89 280 |
|
| DCV-MVSNet | | | 96.69 275 | 96.29 284 | 97.90 252 | 98.28 326 | 95.24 272 | 97.29 252 | 97.36 334 | 98.21 140 | 98.17 245 | 97.86 308 | 86.27 338 | 99.55 311 | 94.87 288 | 98.32 330 | 98.89 280 |
|
| MS-PatchMatch | | | 97.68 214 | 97.75 201 | 97.45 293 | 98.23 331 | 93.78 322 | 97.29 252 | 98.84 269 | 96.10 278 | 98.64 203 | 98.65 235 | 96.04 207 | 99.36 347 | 96.84 196 | 99.14 280 | 99.20 229 |
|
| F-COLMAP | | | 97.30 240 | 96.68 267 | 99.14 109 | 99.19 179 | 98.39 108 | 97.27 255 | 99.30 165 | 92.93 346 | 96.62 336 | 98.00 299 | 95.73 223 | 99.68 261 | 92.62 345 | 98.46 328 | 99.35 194 |
|
| Fast-Effi-MVS+ | | | 97.67 215 | 97.38 227 | 98.57 194 | 98.71 273 | 97.43 194 | 97.23 256 | 99.45 105 | 94.82 313 | 96.13 348 | 96.51 352 | 98.52 52 | 99.91 58 | 96.19 245 | 98.83 309 | 98.37 332 |
|
| EI-MVSNet-UG-set | | | 98.69 105 | 98.71 88 | 98.62 185 | 99.10 200 | 96.37 236 | 97.23 256 | 98.87 260 | 99.20 65 | 99.19 120 | 98.99 164 | 97.30 142 | 99.85 120 | 98.77 74 | 99.79 113 | 99.65 61 |
|
| EI-MVSNet-Vis-set | | | 98.68 110 | 98.70 91 | 98.63 184 | 99.09 203 | 96.40 235 | 97.23 256 | 98.86 265 | 99.20 65 | 99.18 124 | 98.97 170 | 97.29 144 | 99.85 120 | 98.72 77 | 99.78 118 | 99.64 62 |
|
| IterMVS-LS | | | 98.55 131 | 98.70 91 | 98.09 239 | 99.48 121 | 94.73 288 | 97.22 259 | 99.39 124 | 98.97 93 | 99.38 85 | 99.31 94 | 96.00 210 | 99.93 39 | 98.58 86 | 99.97 20 | 99.60 73 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 98.40 149 | 98.51 117 | 98.04 247 | 99.10 200 | 94.73 288 | 97.20 260 | 98.87 260 | 98.97 93 | 99.06 134 | 99.02 151 | 96.00 210 | 99.80 184 | 98.58 86 | 99.82 94 | 99.60 73 |
|
| CVMVSNet | | | 96.25 293 | 97.21 237 | 93.38 373 | 99.10 200 | 80.56 400 | 97.20 260 | 98.19 314 | 96.94 246 | 99.00 146 | 99.02 151 | 89.50 320 | 99.80 184 | 96.36 236 | 99.59 196 | 99.78 31 |
|
| LF4IMVS | | | 97.90 193 | 97.69 206 | 98.52 204 | 99.17 187 | 97.66 181 | 97.19 262 | 99.47 100 | 96.31 271 | 97.85 271 | 98.20 285 | 96.71 181 | 99.52 320 | 94.62 294 | 99.72 147 | 98.38 330 |
|
| MP-MVS-pluss | | | 98.57 126 | 98.23 159 | 99.60 11 | 99.69 57 | 99.35 12 | 97.16 263 | 99.38 126 | 94.87 312 | 98.97 152 | 98.99 164 | 98.01 89 | 99.88 82 | 97.29 157 | 99.70 157 | 99.58 85 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| pmmvs-eth3d | | | 98.47 142 | 98.34 146 | 98.86 151 | 99.30 156 | 97.76 174 | 97.16 263 | 99.28 176 | 95.54 294 | 99.42 77 | 99.19 114 | 97.27 145 | 99.63 286 | 97.89 126 | 99.97 20 | 99.20 229 |
|
| OPM-MVS | | | 98.56 127 | 98.32 150 | 99.25 94 | 99.41 136 | 98.73 85 | 97.13 265 | 99.18 204 | 97.10 239 | 98.75 193 | 98.92 183 | 98.18 76 | 99.65 280 | 96.68 211 | 99.56 208 | 99.37 184 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| plane_prior | | | | | | | 97.65 182 | 97.07 266 | | 96.72 256 | | | | | | 99.36 245 | |
|
| CMPMVS |  | 75.91 23 | 96.29 291 | 95.44 305 | 98.84 153 | 96.25 389 | 98.69 88 | 97.02 267 | 99.12 219 | 88.90 379 | 97.83 272 | 98.86 197 | 89.51 319 | 98.90 380 | 91.92 350 | 99.51 222 | 98.92 276 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| DPE-MVS |  | | 98.59 125 | 98.26 156 | 99.57 16 | 99.27 160 | 99.15 47 | 97.01 268 | 99.39 124 | 97.67 180 | 99.44 73 | 98.99 164 | 97.53 127 | 99.89 73 | 95.40 279 | 99.68 165 | 99.66 57 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CNVR-MVS | | | 98.17 177 | 97.87 195 | 99.07 121 | 98.67 285 | 98.24 120 | 97.01 268 | 98.93 249 | 97.25 225 | 97.62 284 | 98.34 274 | 97.27 145 | 99.57 305 | 96.42 232 | 99.33 250 | 99.39 175 |
|
| NCCC | | | 97.86 199 | 97.47 224 | 99.05 128 | 98.61 293 | 98.07 142 | 96.98 270 | 98.90 255 | 97.63 183 | 97.04 315 | 97.93 306 | 95.99 213 | 99.66 275 | 95.31 280 | 98.82 311 | 99.43 157 |
|
| AdaColmap |  | | 97.14 254 | 96.71 265 | 98.46 210 | 98.34 323 | 97.80 172 | 96.95 271 | 98.93 249 | 95.58 293 | 96.92 319 | 97.66 319 | 95.87 219 | 99.53 316 | 90.97 365 | 99.14 280 | 98.04 344 |
|
| D2MVS | | | 97.84 205 | 97.84 197 | 97.83 257 | 99.14 194 | 94.74 287 | 96.94 272 | 98.88 258 | 95.84 287 | 98.89 168 | 98.96 173 | 94.40 262 | 99.69 252 | 97.55 144 | 99.95 30 | 99.05 251 |
|
| OMC-MVS | | | 97.88 197 | 97.49 221 | 99.04 130 | 98.89 244 | 98.63 89 | 96.94 272 | 99.25 185 | 95.02 307 | 98.53 222 | 98.51 254 | 97.27 145 | 99.47 332 | 93.50 329 | 99.51 222 | 99.01 259 |
|
| JIA-IIPM | | | 95.52 312 | 95.03 317 | 97.00 311 | 96.85 380 | 94.03 310 | 96.93 274 | 95.82 364 | 99.20 65 | 94.63 375 | 99.71 17 | 83.09 363 | 99.60 295 | 94.42 302 | 94.64 386 | 97.36 370 |
|
| TAPA-MVS | | 96.21 11 | 96.63 279 | 95.95 290 | 98.65 179 | 98.93 231 | 98.09 136 | 96.93 274 | 99.28 176 | 83.58 389 | 98.13 251 | 97.78 312 | 96.13 203 | 99.40 342 | 93.52 327 | 99.29 258 | 98.45 325 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CDS-MVSNet | | | 97.69 213 | 97.35 230 | 98.69 177 | 98.73 268 | 97.02 216 | 96.92 276 | 98.75 284 | 95.89 286 | 98.59 212 | 98.67 230 | 92.08 302 | 99.74 232 | 96.72 207 | 99.81 98 | 99.32 203 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MCST-MVS | | | 98.00 188 | 97.63 213 | 99.10 115 | 99.24 165 | 98.17 128 | 96.89 277 | 98.73 287 | 95.66 290 | 97.92 264 | 97.70 318 | 97.17 151 | 99.66 275 | 96.18 247 | 99.23 267 | 99.47 143 |
|
| WR-MVS | | | 98.40 149 | 98.19 163 | 99.03 131 | 99.00 220 | 97.65 182 | 96.85 278 | 98.94 247 | 98.57 118 | 98.89 168 | 98.50 258 | 95.60 226 | 99.85 120 | 97.54 146 | 99.85 80 | 99.59 79 |
|
| baseline2 | | | 93.73 339 | 92.83 345 | 96.42 330 | 97.70 357 | 91.28 362 | 96.84 279 | 89.77 393 | 93.96 334 | 92.44 387 | 95.93 364 | 79.14 379 | 99.77 214 | 92.94 335 | 96.76 371 | 98.21 335 |
|
| DP-MVS Recon | | | 97.33 238 | 96.92 250 | 98.57 194 | 99.09 203 | 97.99 149 | 96.79 280 | 99.35 139 | 93.18 342 | 97.71 279 | 98.07 296 | 95.00 244 | 99.31 355 | 93.97 315 | 99.13 282 | 98.42 329 |
|
| EPNet_dtu | | | 94.93 322 | 94.78 323 | 95.38 354 | 93.58 396 | 87.68 381 | 96.78 281 | 95.69 366 | 97.35 215 | 89.14 393 | 98.09 294 | 88.15 331 | 99.49 326 | 94.95 287 | 99.30 256 | 98.98 264 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 96.67 277 | 96.27 286 | 97.87 255 | 98.81 259 | 94.61 293 | 96.77 282 | 97.92 323 | 94.94 310 | 97.12 310 | 97.74 315 | 91.11 309 | 99.82 164 | 93.89 318 | 98.15 340 | 99.18 236 |
|
| CANet | | | 97.87 198 | 97.76 200 | 98.19 234 | 97.75 352 | 95.51 263 | 96.76 283 | 99.05 231 | 97.74 175 | 96.93 318 | 98.21 284 | 95.59 227 | 99.89 73 | 97.86 131 | 99.93 42 | 99.19 234 |
|
| sss | | | 97.21 248 | 96.93 248 | 98.06 244 | 98.83 253 | 95.22 274 | 96.75 284 | 98.48 301 | 94.49 318 | 97.27 307 | 97.90 307 | 92.77 293 | 99.80 184 | 96.57 217 | 99.32 251 | 99.16 243 |
|
| 1112_ss | | | 97.29 242 | 96.86 254 | 98.58 192 | 99.34 152 | 96.32 238 | 96.75 284 | 99.58 52 | 93.14 343 | 96.89 325 | 97.48 330 | 92.11 301 | 99.86 108 | 96.91 185 | 99.54 213 | 99.57 90 |
|
| BH-untuned | | | 96.83 271 | 96.75 263 | 97.08 308 | 98.74 267 | 93.33 329 | 96.71 286 | 98.26 309 | 96.72 256 | 98.44 229 | 97.37 337 | 95.20 238 | 99.47 332 | 91.89 351 | 97.43 357 | 98.44 327 |
|
| pmmvs5 | | | 97.64 217 | 97.49 221 | 98.08 242 | 99.14 194 | 95.12 278 | 96.70 287 | 99.05 231 | 93.77 335 | 98.62 206 | 98.83 203 | 93.23 281 | 99.75 227 | 98.33 103 | 99.76 133 | 99.36 190 |
|
| BH-RMVSNet | | | 96.83 271 | 96.58 276 | 97.58 280 | 98.47 312 | 94.05 307 | 96.67 288 | 97.36 334 | 96.70 258 | 97.87 268 | 97.98 301 | 95.14 240 | 99.44 337 | 90.47 370 | 98.58 326 | 99.25 219 |
|
| PVSNet_BlendedMVS | | | 97.55 223 | 97.53 218 | 97.60 278 | 98.92 235 | 93.77 323 | 96.64 289 | 99.43 115 | 94.49 318 | 97.62 284 | 99.18 117 | 96.82 171 | 99.67 264 | 94.73 291 | 99.93 42 | 99.36 190 |
|
| MDA-MVSNet-bldmvs | | | 97.94 192 | 97.91 191 | 98.06 244 | 99.44 128 | 94.96 282 | 96.63 290 | 99.15 216 | 98.35 126 | 98.83 181 | 99.11 134 | 94.31 265 | 99.85 120 | 96.60 214 | 98.72 315 | 99.37 184 |
|
| thres200 | | | 93.72 340 | 93.14 342 | 95.46 353 | 98.66 290 | 91.29 361 | 96.61 291 | 94.63 371 | 97.39 211 | 96.83 328 | 93.71 388 | 79.88 372 | 99.56 308 | 82.40 390 | 98.13 341 | 95.54 389 |
|
| XVG-OURS-SEG-HR | | | 98.49 140 | 98.28 153 | 99.14 109 | 99.49 114 | 98.83 76 | 96.54 292 | 99.48 93 | 97.32 218 | 99.11 127 | 98.61 244 | 99.33 13 | 99.30 357 | 96.23 242 | 98.38 329 | 99.28 214 |
|
| save fliter | | | | | | 99.11 198 | 97.97 153 | 96.53 293 | 99.02 239 | 98.24 137 | | | | | | | |
|
| CHOSEN 1792x2688 | | | 97.49 226 | 97.14 242 | 98.54 202 | 99.68 59 | 96.09 245 | 96.50 294 | 99.62 45 | 91.58 360 | 98.84 180 | 98.97 170 | 92.36 297 | 99.88 82 | 96.76 202 | 99.95 30 | 99.67 56 |
|
| TR-MVS | | | 95.55 311 | 95.12 316 | 96.86 322 | 97.54 362 | 93.94 314 | 96.49 295 | 96.53 356 | 94.36 325 | 97.03 316 | 96.61 351 | 94.26 267 | 99.16 369 | 86.91 381 | 96.31 375 | 97.47 368 |
|
| xiu_mvs_v1_base_debu | | | 97.86 199 | 98.17 165 | 96.92 316 | 98.98 224 | 93.91 316 | 96.45 296 | 99.17 208 | 97.85 169 | 98.41 232 | 97.14 344 | 98.47 53 | 99.92 49 | 98.02 118 | 99.05 288 | 96.92 373 |
|
| xiu_mvs_v1_base | | | 97.86 199 | 98.17 165 | 96.92 316 | 98.98 224 | 93.91 316 | 96.45 296 | 99.17 208 | 97.85 169 | 98.41 232 | 97.14 344 | 98.47 53 | 99.92 49 | 98.02 118 | 99.05 288 | 96.92 373 |
|
| xiu_mvs_v1_base_debi | | | 97.86 199 | 98.17 165 | 96.92 316 | 98.98 224 | 93.91 316 | 96.45 296 | 99.17 208 | 97.85 169 | 98.41 232 | 97.14 344 | 98.47 53 | 99.92 49 | 98.02 118 | 99.05 288 | 96.92 373 |
|
| new-patchmatchnet | | | 98.35 155 | 98.74 82 | 97.18 304 | 99.24 165 | 92.23 350 | 96.42 299 | 99.48 93 | 98.30 131 | 99.69 35 | 99.53 54 | 97.44 136 | 99.82 164 | 98.84 69 | 99.77 122 | 99.49 126 |
|
| PLC |  | 94.65 16 | 96.51 283 | 95.73 294 | 98.85 152 | 98.75 266 | 97.91 159 | 96.42 299 | 99.06 228 | 90.94 369 | 95.59 357 | 97.38 336 | 94.41 261 | 99.59 299 | 90.93 366 | 98.04 349 | 99.05 251 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| diffmvs |  | | 98.22 171 | 98.24 158 | 98.17 235 | 99.00 220 | 95.44 266 | 96.38 301 | 99.58 52 | 97.79 173 | 98.53 222 | 98.50 258 | 96.76 177 | 99.74 232 | 97.95 125 | 99.64 179 | 99.34 196 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PatchMatch-RL | | | 97.24 246 | 96.78 261 | 98.61 188 | 99.03 218 | 97.83 166 | 96.36 302 | 99.06 228 | 93.49 340 | 97.36 306 | 97.78 312 | 95.75 222 | 99.49 326 | 93.44 330 | 98.77 312 | 98.52 321 |
|
| CNLPA | | | 97.17 252 | 96.71 265 | 98.55 199 | 98.56 303 | 98.05 146 | 96.33 303 | 98.93 249 | 96.91 248 | 97.06 314 | 97.39 335 | 94.38 263 | 99.45 335 | 91.66 353 | 99.18 276 | 98.14 339 |
|
| TSAR-MVS + GP. | | | 98.18 175 | 97.98 184 | 98.77 168 | 98.71 273 | 97.88 161 | 96.32 304 | 98.66 290 | 96.33 269 | 99.23 117 | 98.51 254 | 97.48 135 | 99.40 342 | 97.16 164 | 99.46 232 | 99.02 258 |
|
| HQP-NCC | | | | | | 98.67 285 | | 96.29 305 | | 96.05 279 | 95.55 360 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 285 | | 96.29 305 | | 96.05 279 | 95.55 360 | | | | | | |
|
| HQP-MVS | | | 97.00 265 | 96.49 279 | 98.55 199 | 98.67 285 | 96.79 225 | 96.29 305 | 99.04 234 | 96.05 279 | 95.55 360 | 96.84 347 | 93.84 274 | 99.54 314 | 92.82 339 | 99.26 263 | 99.32 203 |
|
| MVS-HIRNet | | | 94.32 328 | 95.62 298 | 90.42 377 | 98.46 313 | 75.36 401 | 96.29 305 | 89.13 394 | 95.25 303 | 95.38 366 | 99.75 11 | 92.88 290 | 99.19 367 | 94.07 314 | 99.39 241 | 96.72 378 |
|
| TinyColmap | | | 97.89 195 | 97.98 184 | 97.60 278 | 98.86 247 | 94.35 300 | 96.21 309 | 99.44 109 | 97.45 207 | 99.06 134 | 98.88 194 | 97.99 93 | 99.28 361 | 94.38 306 | 99.58 201 | 99.18 236 |
|
| UnsupCasMVSNet_bld | | | 97.30 240 | 96.92 250 | 98.45 211 | 99.28 158 | 96.78 228 | 96.20 310 | 99.27 179 | 95.42 298 | 98.28 241 | 98.30 278 | 93.16 283 | 99.71 245 | 94.99 285 | 97.37 359 | 98.87 284 |
|
| CANet_DTU | | | 97.26 243 | 97.06 244 | 97.84 256 | 97.57 360 | 94.65 292 | 96.19 311 | 98.79 277 | 97.23 231 | 95.14 369 | 98.24 281 | 93.22 282 | 99.84 137 | 97.34 155 | 99.84 84 | 99.04 255 |
|
| Syy-MVS | | | 96.04 297 | 95.56 301 | 97.49 290 | 97.10 375 | 94.48 296 | 96.18 312 | 96.58 354 | 95.65 291 | 94.77 372 | 92.29 392 | 91.27 308 | 99.36 347 | 98.17 110 | 98.05 347 | 98.63 316 |
|
| myMVS_eth3d | | | 91.92 357 | 90.45 360 | 96.30 332 | 97.10 375 | 90.90 367 | 96.18 312 | 96.58 354 | 95.65 291 | 94.77 372 | 92.29 392 | 53.88 401 | 99.36 347 | 89.59 374 | 98.05 347 | 98.63 316 |
|
| Patchmatch-RL test | | | 97.26 243 | 97.02 246 | 97.99 250 | 99.52 102 | 95.53 262 | 96.13 314 | 99.71 31 | 97.47 200 | 99.27 106 | 99.16 123 | 84.30 357 | 99.62 288 | 97.89 126 | 99.77 122 | 98.81 292 |
|
| MVS_111021_LR | | | 98.30 161 | 98.12 172 | 98.83 154 | 99.16 189 | 98.03 147 | 96.09 315 | 99.30 165 | 97.58 189 | 98.10 254 | 98.24 281 | 98.25 67 | 99.34 351 | 96.69 210 | 99.65 177 | 99.12 245 |
|
| CDPH-MVS | | | 97.26 243 | 96.66 270 | 99.07 121 | 99.00 220 | 98.15 129 | 96.03 316 | 99.01 242 | 91.21 366 | 97.79 275 | 97.85 310 | 96.89 166 | 99.69 252 | 92.75 342 | 99.38 244 | 99.39 175 |
|
| N_pmnet | | | 97.63 218 | 97.17 238 | 98.99 135 | 99.27 160 | 97.86 163 | 95.98 317 | 93.41 380 | 95.25 303 | 99.47 68 | 98.90 187 | 95.63 225 | 99.85 120 | 96.91 185 | 99.73 140 | 99.27 215 |
|
| XVG-OURS | | | 98.53 135 | 98.34 146 | 99.11 113 | 99.50 107 | 98.82 78 | 95.97 318 | 99.50 84 | 97.30 220 | 99.05 139 | 98.98 168 | 99.35 12 | 99.32 354 | 95.72 268 | 99.68 165 | 99.18 236 |
|
| MVS_111021_HR | | | 98.25 169 | 98.08 177 | 98.75 172 | 99.09 203 | 97.46 191 | 95.97 318 | 99.27 179 | 97.60 188 | 97.99 262 | 98.25 280 | 98.15 82 | 99.38 346 | 96.87 193 | 99.57 205 | 99.42 160 |
|
| TEST9 | | | | | | 98.71 273 | 98.08 140 | 95.96 320 | 99.03 236 | 91.40 363 | 95.85 354 | 97.53 326 | 96.52 188 | 99.76 220 | | | |
|
| train_agg | | | 97.10 255 | 96.45 280 | 99.07 121 | 98.71 273 | 98.08 140 | 95.96 320 | 99.03 236 | 91.64 358 | 95.85 354 | 97.53 326 | 96.47 190 | 99.76 220 | 93.67 323 | 99.16 277 | 99.36 190 |
|
| new_pmnet | | | 96.99 266 | 96.76 262 | 97.67 272 | 98.72 270 | 94.89 283 | 95.95 322 | 98.20 312 | 92.62 351 | 98.55 219 | 98.54 250 | 94.88 248 | 99.52 320 | 93.96 316 | 99.44 237 | 98.59 320 |
|
| 新几何2 | | | | | | | | 95.93 323 | | | | | | | | | |
|
| MG-MVS | | | 96.77 274 | 96.61 273 | 97.26 302 | 98.31 325 | 93.06 332 | 95.93 323 | 98.12 318 | 96.45 266 | 97.92 264 | 98.73 219 | 93.77 278 | 99.39 344 | 91.19 364 | 99.04 291 | 99.33 201 |
|
| test_8 | | | | | | 98.67 285 | 98.01 148 | 95.91 325 | 99.02 239 | 91.64 358 | 95.79 356 | 97.50 329 | 96.47 190 | 99.76 220 | | | |
|
| test_prior4 | | | | | | | 97.97 153 | 95.86 326 | | | | | | | | | |
|
| jason | | | 97.45 230 | 97.35 230 | 97.76 265 | 99.24 165 | 93.93 315 | 95.86 326 | 98.42 303 | 94.24 326 | 98.50 224 | 98.13 288 | 94.82 249 | 99.91 58 | 97.22 161 | 99.73 140 | 99.43 157 |
| jason: jason. |
| SCA | | | 96.41 289 | 96.66 270 | 95.67 346 | 98.24 329 | 88.35 377 | 95.85 328 | 96.88 350 | 96.11 277 | 97.67 282 | 98.67 230 | 93.10 285 | 99.85 120 | 94.16 308 | 99.22 268 | 98.81 292 |
|
| Test_1112_low_res | | | 96.99 266 | 96.55 277 | 98.31 225 | 99.35 150 | 95.47 265 | 95.84 329 | 99.53 78 | 91.51 362 | 96.80 330 | 98.48 261 | 91.36 307 | 99.83 154 | 96.58 215 | 99.53 217 | 99.62 66 |
|
| 旧先验2 | | | | | | | | 95.76 330 | | 88.56 381 | 97.52 294 | | | 99.66 275 | 94.48 298 | | |
|
| test_prior2 | | | | | | | | 95.74 331 | | 96.48 265 | 96.11 349 | 97.63 322 | 95.92 218 | | 94.16 308 | 99.20 271 | |
|
| 无先验 | | | | | | | | 95.74 331 | 98.74 286 | 89.38 377 | | | | 99.73 237 | 92.38 349 | | 99.22 228 |
|
| BH-w/o | | | 95.13 318 | 94.89 322 | 95.86 341 | 98.20 332 | 91.31 360 | 95.65 333 | 97.37 333 | 93.64 336 | 96.52 340 | 95.70 368 | 93.04 288 | 99.02 373 | 88.10 378 | 95.82 381 | 97.24 371 |
|
| FPMVS | | | 93.44 344 | 92.23 348 | 97.08 308 | 99.25 164 | 97.86 163 | 95.61 334 | 97.16 340 | 92.90 347 | 93.76 385 | 98.65 235 | 75.94 387 | 95.66 394 | 79.30 394 | 97.49 354 | 97.73 359 |
|
| DELS-MVS | | | 98.27 165 | 98.20 161 | 98.48 208 | 98.86 247 | 96.70 229 | 95.60 335 | 99.20 196 | 97.73 176 | 98.45 228 | 98.71 222 | 97.50 131 | 99.82 164 | 98.21 107 | 99.59 196 | 98.93 275 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test222 | | | | | | 98.92 235 | 96.93 222 | 95.54 336 | 98.78 279 | 85.72 386 | 96.86 327 | 98.11 291 | 94.43 260 | | | 99.10 287 | 99.23 224 |
|
| IterMVS-SCA-FT | | | 97.85 204 | 98.18 164 | 96.87 319 | 99.27 160 | 91.16 365 | 95.53 337 | 99.25 185 | 99.10 79 | 99.41 78 | 99.35 84 | 93.10 285 | 99.96 12 | 98.65 83 | 99.94 38 | 99.49 126 |
|
| 原ACMM2 | | | | | | | | 95.53 337 | | | | | | | | | |
|
| IterMVS | | | 97.73 210 | 98.11 173 | 96.57 327 | 99.24 165 | 90.28 370 | 95.52 339 | 99.21 194 | 98.86 102 | 99.33 95 | 99.33 90 | 93.11 284 | 99.94 34 | 98.49 94 | 99.94 38 | 99.48 136 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| lupinMVS | | | 97.06 259 | 96.86 254 | 97.65 274 | 98.88 245 | 93.89 319 | 95.48 340 | 97.97 321 | 93.53 338 | 98.16 247 | 97.58 324 | 93.81 276 | 99.91 58 | 96.77 201 | 99.57 205 | 99.17 240 |
|
| xiu_mvs_v2_base | | | 97.16 253 | 97.49 221 | 96.17 337 | 98.54 305 | 92.46 343 | 95.45 341 | 98.84 269 | 97.25 225 | 97.48 298 | 96.49 353 | 98.31 66 | 99.90 63 | 96.34 237 | 98.68 320 | 96.15 384 |
|
| testdata1 | | | | | | | | 95.44 342 | | 96.32 270 | | | | | | | |
|
| pmmvs4 | | | 97.58 222 | 97.28 233 | 98.51 205 | 98.84 251 | 96.93 222 | 95.40 343 | 98.52 299 | 93.60 337 | 98.61 208 | 98.65 235 | 95.10 241 | 99.60 295 | 96.97 182 | 99.79 113 | 98.99 263 |
|
| mvsany_test1 | | | 97.60 219 | 97.54 217 | 97.77 262 | 97.72 353 | 95.35 269 | 95.36 344 | 97.13 341 | 94.13 329 | 99.71 31 | 99.33 90 | 97.93 96 | 99.30 357 | 97.60 143 | 98.94 304 | 98.67 314 |
|
| YYNet1 | | | 97.60 219 | 97.67 207 | 97.39 297 | 99.04 215 | 93.04 335 | 95.27 345 | 98.38 306 | 97.25 225 | 98.92 164 | 98.95 177 | 95.48 232 | 99.73 237 | 96.99 179 | 98.74 313 | 99.41 163 |
|
| MDA-MVSNet_test_wron | | | 97.60 219 | 97.66 210 | 97.41 296 | 99.04 215 | 93.09 331 | 95.27 345 | 98.42 303 | 97.26 224 | 98.88 172 | 98.95 177 | 95.43 233 | 99.73 237 | 97.02 176 | 98.72 315 | 99.41 163 |
|
| PS-MVSNAJ | | | 97.08 258 | 97.39 226 | 96.16 339 | 98.56 303 | 92.46 343 | 95.24 347 | 98.85 268 | 97.25 225 | 97.49 297 | 95.99 362 | 98.07 84 | 99.90 63 | 96.37 234 | 98.67 321 | 96.12 385 |
|
| HyFIR lowres test | | | 97.19 250 | 96.60 275 | 98.96 139 | 99.62 75 | 97.28 201 | 95.17 348 | 99.50 84 | 94.21 327 | 99.01 145 | 98.32 277 | 86.61 336 | 99.99 2 | 97.10 171 | 99.84 84 | 99.60 73 |
|
| USDC | | | 97.41 233 | 97.40 225 | 97.44 294 | 98.94 229 | 93.67 325 | 95.17 348 | 99.53 78 | 94.03 332 | 98.97 152 | 99.10 136 | 95.29 235 | 99.34 351 | 95.84 264 | 99.73 140 | 99.30 210 |
|
| miper_lstm_enhance | | | 97.18 251 | 97.16 239 | 97.25 303 | 98.16 334 | 92.85 337 | 95.15 350 | 99.31 157 | 97.25 225 | 98.74 195 | 98.78 212 | 90.07 315 | 99.78 208 | 97.19 162 | 99.80 108 | 99.11 246 |
|
| pmmvs3 | | | 95.03 320 | 94.40 326 | 96.93 315 | 97.70 357 | 92.53 342 | 95.08 351 | 97.71 327 | 88.57 380 | 97.71 279 | 98.08 295 | 79.39 377 | 99.82 164 | 96.19 245 | 99.11 286 | 98.43 328 |
|
| DeepPCF-MVS | | 96.93 5 | 98.32 158 | 98.01 182 | 99.23 98 | 98.39 321 | 98.97 66 | 95.03 352 | 99.18 204 | 96.88 249 | 99.33 95 | 98.78 212 | 98.16 80 | 99.28 361 | 96.74 204 | 99.62 185 | 99.44 153 |
|
| c3_l | | | 97.36 235 | 97.37 228 | 97.31 298 | 98.09 338 | 93.25 330 | 95.01 353 | 99.16 211 | 97.05 240 | 98.77 190 | 98.72 221 | 92.88 290 | 99.64 283 | 96.93 184 | 99.76 133 | 99.05 251 |
|
| test0.0.03 1 | | | 94.51 325 | 93.69 334 | 96.99 312 | 96.05 390 | 93.61 327 | 94.97 354 | 93.49 379 | 96.17 274 | 97.57 290 | 94.88 382 | 82.30 367 | 99.01 375 | 93.60 325 | 94.17 389 | 98.37 332 |
|
| PMMVS | | | 96.51 283 | 95.98 289 | 98.09 239 | 97.53 363 | 95.84 253 | 94.92 355 | 98.84 269 | 91.58 360 | 96.05 352 | 95.58 369 | 95.68 224 | 99.66 275 | 95.59 274 | 98.09 343 | 98.76 302 |
|
| PAPR | | | 95.29 315 | 94.47 324 | 97.75 266 | 97.50 367 | 95.14 277 | 94.89 356 | 98.71 288 | 91.39 364 | 95.35 367 | 95.48 373 | 94.57 258 | 99.14 371 | 84.95 384 | 97.37 359 | 98.97 267 |
|
| test123 | | | 17.04 365 | 20.11 368 | 7.82 380 | 10.25 403 | 4.91 405 | 94.80 357 | 4.47 405 | 4.93 398 | 10.00 400 | 24.28 397 | 9.69 403 | 3.64 399 | 10.14 398 | 12.43 398 | 14.92 395 |
|
| ET-MVSNet_ETH3D | | | 94.30 330 | 93.21 340 | 97.58 280 | 98.14 335 | 94.47 297 | 94.78 358 | 93.24 382 | 94.72 314 | 89.56 392 | 95.87 366 | 78.57 383 | 99.81 177 | 96.91 185 | 97.11 366 | 98.46 323 |
|
| eth_miper_zixun_eth | | | 97.23 247 | 97.25 234 | 97.17 305 | 98.00 342 | 92.77 339 | 94.71 359 | 99.18 204 | 97.27 223 | 98.56 217 | 98.74 218 | 91.89 303 | 99.69 252 | 97.06 175 | 99.81 98 | 99.05 251 |
|
| PVSNet_Blended | | | 96.88 269 | 96.68 267 | 97.47 292 | 98.92 235 | 93.77 323 | 94.71 359 | 99.43 115 | 90.98 368 | 97.62 284 | 97.36 338 | 96.82 171 | 99.67 264 | 94.73 291 | 99.56 208 | 98.98 264 |
|
| CLD-MVS | | | 97.49 226 | 97.16 239 | 98.48 208 | 99.07 207 | 97.03 215 | 94.71 359 | 99.21 194 | 94.46 320 | 98.06 257 | 97.16 342 | 97.57 122 | 99.48 329 | 94.46 299 | 99.78 118 | 98.95 270 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| miper_ehance_all_eth | | | 97.06 259 | 97.03 245 | 97.16 307 | 97.83 349 | 93.06 332 | 94.66 362 | 99.09 225 | 95.99 283 | 98.69 197 | 98.45 263 | 92.73 294 | 99.61 294 | 96.79 198 | 99.03 292 | 98.82 288 |
|
| cl____ | | | 97.02 262 | 96.83 257 | 97.58 280 | 97.82 350 | 94.04 309 | 94.66 362 | 99.16 211 | 97.04 241 | 98.63 204 | 98.71 222 | 88.68 326 | 99.69 252 | 97.00 177 | 99.81 98 | 99.00 262 |
|
| DIV-MVS_self_test | | | 97.02 262 | 96.84 256 | 97.58 280 | 97.82 350 | 94.03 310 | 94.66 362 | 99.16 211 | 97.04 241 | 98.63 204 | 98.71 222 | 88.69 324 | 99.69 252 | 97.00 177 | 99.81 98 | 99.01 259 |
|
| our_test_3 | | | 97.39 234 | 97.73 204 | 96.34 331 | 98.70 277 | 89.78 372 | 94.61 365 | 98.97 246 | 96.50 263 | 99.04 141 | 98.85 200 | 95.98 214 | 99.84 137 | 97.26 159 | 99.67 171 | 99.41 163 |
|
| PMMVS2 | | | 98.07 184 | 98.08 177 | 98.04 247 | 99.41 136 | 94.59 294 | 94.59 366 | 99.40 121 | 97.50 197 | 98.82 184 | 98.83 203 | 96.83 170 | 99.84 137 | 97.50 149 | 99.81 98 | 99.71 45 |
|
| ppachtmachnet_test | | | 97.50 224 | 97.74 202 | 96.78 325 | 98.70 277 | 91.23 364 | 94.55 367 | 99.05 231 | 96.36 268 | 99.21 118 | 98.79 211 | 96.39 193 | 99.78 208 | 96.74 204 | 99.82 94 | 99.34 196 |
|
| DPM-MVS | | | 96.32 290 | 95.59 300 | 98.51 205 | 98.76 264 | 97.21 206 | 94.54 368 | 98.26 309 | 91.94 357 | 96.37 345 | 97.25 340 | 93.06 287 | 99.43 338 | 91.42 359 | 98.74 313 | 98.89 280 |
|
| MSDG | | | 97.71 212 | 97.52 219 | 98.28 228 | 98.91 238 | 96.82 224 | 94.42 369 | 99.37 130 | 97.65 182 | 98.37 237 | 98.29 279 | 97.40 138 | 99.33 353 | 94.09 313 | 99.22 268 | 98.68 313 |
|
| cl22 | | | 95.79 305 | 95.39 308 | 96.98 313 | 96.77 382 | 92.79 338 | 94.40 370 | 98.53 298 | 94.59 317 | 97.89 267 | 98.17 287 | 82.82 366 | 99.24 363 | 96.37 234 | 99.03 292 | 98.92 276 |
|
| IB-MVS | | 91.63 19 | 92.24 355 | 90.90 359 | 96.27 334 | 97.22 373 | 91.24 363 | 94.36 371 | 93.33 381 | 92.37 353 | 92.24 388 | 94.58 385 | 66.20 399 | 99.89 73 | 93.16 334 | 94.63 387 | 97.66 362 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CL-MVSNet_self_test | | | 97.44 231 | 97.22 236 | 98.08 242 | 98.57 302 | 95.78 256 | 94.30 372 | 98.79 277 | 96.58 262 | 98.60 210 | 98.19 286 | 94.74 256 | 99.64 283 | 96.41 233 | 98.84 308 | 98.82 288 |
|
| tmp_tt | | | 78.77 362 | 78.73 365 | 78.90 379 | 58.45 401 | 74.76 403 | 94.20 373 | 78.26 402 | 39.16 395 | 86.71 395 | 92.82 391 | 80.50 371 | 75.19 398 | 86.16 383 | 92.29 392 | 86.74 393 |
|
| KD-MVS_2432*1600 | | | 92.87 349 | 91.99 352 | 95.51 351 | 91.37 397 | 89.27 373 | 94.07 374 | 98.14 316 | 95.42 298 | 97.25 308 | 96.44 356 | 67.86 394 | 99.24 363 | 91.28 361 | 96.08 379 | 98.02 345 |
|
| miper_refine_blended | | | 92.87 349 | 91.99 352 | 95.51 351 | 91.37 397 | 89.27 373 | 94.07 374 | 98.14 316 | 95.42 298 | 97.25 308 | 96.44 356 | 67.86 394 | 99.24 363 | 91.28 361 | 96.08 379 | 98.02 345 |
|
| test-LLR | | | 93.90 337 | 93.85 331 | 94.04 364 | 96.53 384 | 84.62 391 | 94.05 376 | 92.39 384 | 96.17 274 | 94.12 379 | 95.07 376 | 82.30 367 | 99.67 264 | 95.87 261 | 98.18 336 | 97.82 352 |
|
| TESTMET0.1,1 | | | 92.19 356 | 91.77 356 | 93.46 371 | 96.48 386 | 82.80 396 | 94.05 376 | 91.52 388 | 94.45 322 | 94.00 382 | 94.88 382 | 66.65 397 | 99.56 308 | 95.78 266 | 98.11 342 | 98.02 345 |
|
| test-mter | | | 92.33 354 | 91.76 357 | 94.04 364 | 96.53 384 | 84.62 391 | 94.05 376 | 92.39 384 | 94.00 333 | 94.12 379 | 95.07 376 | 65.63 400 | 99.67 264 | 95.87 261 | 98.18 336 | 97.82 352 |
|
| GA-MVS | | | 95.86 303 | 95.32 311 | 97.49 290 | 98.60 295 | 94.15 306 | 93.83 379 | 97.93 322 | 95.49 296 | 96.68 333 | 97.42 334 | 83.21 362 | 99.30 357 | 96.22 243 | 98.55 327 | 99.01 259 |
|
| thisisatest0515 | | | 94.12 334 | 93.16 341 | 96.97 314 | 98.60 295 | 92.90 336 | 93.77 380 | 90.61 390 | 94.10 330 | 96.91 321 | 95.87 366 | 74.99 389 | 99.80 184 | 94.52 297 | 99.12 285 | 98.20 336 |
|
| miper_enhance_ethall | | | 96.01 298 | 95.74 293 | 96.81 323 | 96.41 387 | 92.27 349 | 93.69 381 | 98.89 257 | 91.14 367 | 98.30 239 | 97.35 339 | 90.58 312 | 99.58 303 | 96.31 238 | 99.03 292 | 98.60 318 |
|
| testmvs | | | 17.12 364 | 20.53 367 | 6.87 381 | 12.05 402 | 4.20 406 | 93.62 382 | 6.73 404 | 4.62 399 | 10.41 399 | 24.33 396 | 8.28 404 | 3.56 400 | 9.69 399 | 15.07 397 | 12.86 396 |
|
| CHOSEN 280x420 | | | 95.51 313 | 95.47 302 | 95.65 348 | 98.25 328 | 88.27 378 | 93.25 383 | 98.88 258 | 93.53 338 | 94.65 374 | 97.15 343 | 86.17 340 | 99.93 39 | 97.41 152 | 99.93 42 | 98.73 305 |
|
| PCF-MVS | | 92.86 18 | 94.36 327 | 93.00 344 | 98.42 215 | 98.70 277 | 97.56 186 | 93.16 384 | 99.11 221 | 79.59 392 | 97.55 291 | 97.43 333 | 92.19 299 | 99.73 237 | 79.85 393 | 99.45 234 | 97.97 348 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVE |  | 83.40 22 | 92.50 351 | 91.92 354 | 94.25 363 | 98.83 253 | 91.64 354 | 92.71 385 | 83.52 399 | 95.92 285 | 86.46 396 | 95.46 374 | 95.20 238 | 95.40 395 | 80.51 392 | 98.64 322 | 95.73 388 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PVSNet | | 93.40 17 | 95.67 307 | 95.70 295 | 95.57 349 | 98.83 253 | 88.57 375 | 92.50 386 | 97.72 326 | 92.69 350 | 96.49 344 | 96.44 356 | 93.72 279 | 99.43 338 | 93.61 324 | 99.28 259 | 98.71 306 |
|
| PAPM | | | 91.88 358 | 90.34 361 | 96.51 328 | 98.06 340 | 92.56 341 | 92.44 387 | 97.17 339 | 86.35 384 | 90.38 391 | 96.01 361 | 86.61 336 | 99.21 366 | 70.65 397 | 95.43 383 | 97.75 358 |
|
| cascas | | | 94.79 323 | 94.33 329 | 96.15 340 | 96.02 392 | 92.36 347 | 92.34 388 | 99.26 184 | 85.34 387 | 95.08 370 | 94.96 381 | 92.96 289 | 98.53 385 | 94.41 305 | 98.59 325 | 97.56 366 |
|
| PVSNet_0 | | 89.98 21 | 91.15 359 | 90.30 362 | 93.70 369 | 97.72 353 | 84.34 394 | 90.24 389 | 97.42 332 | 90.20 373 | 93.79 384 | 93.09 390 | 90.90 310 | 98.89 381 | 86.57 382 | 72.76 396 | 97.87 351 |
|
| E-PMN | | | 94.17 332 | 94.37 327 | 93.58 370 | 96.86 379 | 85.71 388 | 90.11 390 | 97.07 342 | 98.17 147 | 97.82 274 | 97.19 341 | 84.62 353 | 98.94 377 | 89.77 372 | 97.68 353 | 96.09 386 |
|
| EMVS | | | 93.83 338 | 94.02 330 | 93.23 374 | 96.83 381 | 84.96 389 | 89.77 391 | 96.32 358 | 97.92 163 | 97.43 302 | 96.36 359 | 86.17 340 | 98.93 378 | 87.68 379 | 97.73 352 | 95.81 387 |
|
| test_method | | | 79.78 361 | 79.50 364 | 80.62 378 | 80.21 400 | 45.76 404 | 70.82 392 | 98.41 305 | 31.08 396 | 80.89 397 | 97.71 316 | 84.85 350 | 97.37 391 | 91.51 358 | 80.03 395 | 98.75 303 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 24.66 363 | 32.88 366 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 99.10 223 | 0.00 400 | 0.00 401 | 97.58 324 | 99.21 16 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 8.17 366 | 10.90 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 98.07 84 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 8.12 367 | 10.83 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 97.48 330 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 90.90 367 | | | | | | | | 91.37 360 | | |
|
| MSC_two_6792asdad | | | | | 99.32 80 | 98.43 316 | 98.37 111 | | 98.86 265 | | | | | 99.89 73 | 97.14 167 | 99.60 192 | 99.71 45 |
|
| PC_three_1452 | | | | | | | | | | 93.27 341 | 99.40 81 | 98.54 250 | 98.22 72 | 97.00 392 | 95.17 282 | 99.45 234 | 99.49 126 |
|
| No_MVS | | | | | 99.32 80 | 98.43 316 | 98.37 111 | | 98.86 265 | | | | | 99.89 73 | 97.14 167 | 99.60 192 | 99.71 45 |
|
| test_one_0601 | | | | | | 99.39 138 | 99.20 34 | | 99.31 157 | 98.49 122 | 98.66 201 | 99.02 151 | 97.64 116 | | | | |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.01 219 | 98.84 75 | | 99.07 227 | 94.10 330 | 98.05 259 | 98.12 290 | 96.36 197 | 99.86 108 | 92.70 344 | 99.19 274 | |
|
| IU-MVS | | | | | | 99.49 114 | 99.15 47 | | 98.87 260 | 92.97 345 | 99.41 78 | | | | 96.76 202 | 99.62 185 | 99.66 57 |
|
| test_241102_TWO | | | | | | | | | 99.30 165 | 98.03 155 | 99.26 110 | 99.02 151 | 97.51 130 | 99.88 82 | 96.91 185 | 99.60 192 | 99.66 57 |
|
| test_241102_ONE | | | | | | 99.49 114 | 99.17 39 | | 99.31 157 | 97.98 157 | 99.66 40 | 98.90 187 | 98.36 61 | 99.48 329 | | | |
|
| test_0728_THIRD | | | | | | | | | | 98.17 147 | 99.08 132 | 99.02 151 | 97.89 97 | 99.88 82 | 97.07 173 | 99.71 152 | 99.70 50 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.81 292 |
|
| test_part2 | | | | | | 99.36 146 | 99.10 60 | | | | 99.05 139 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 84.74 352 | | | | 98.81 292 |
|
| sam_mvs | | | | | | | | | | | | | 84.29 358 | | | | |
|
| MTGPA |  | | | | | | | | 99.20 196 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 21.25 398 | 83.86 360 | 99.70 248 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 214 | 84.37 355 | 99.85 120 | | | |
|
| gm-plane-assit | | | | | | 94.83 394 | 81.97 398 | | | 88.07 382 | | 94.99 379 | | 99.60 295 | 91.76 352 | | |
|
| test9_res | | | | | | | | | | | | | | | 93.28 333 | 99.15 279 | 99.38 182 |
|
| agg_prior2 | | | | | | | | | | | | | | | 92.50 347 | 99.16 277 | 99.37 184 |
|
| agg_prior | | | | | | 98.68 284 | 97.99 149 | | 99.01 242 | | 95.59 357 | | | 99.77 214 | | | |
|
| TestCases | | | | | 99.16 106 | 99.50 107 | 98.55 97 | | 99.58 52 | 96.80 251 | 98.88 172 | 99.06 139 | 97.65 113 | 99.57 305 | 94.45 300 | 99.61 190 | 99.37 184 |
|
| test_prior | | | | | 98.95 141 | 98.69 282 | 97.95 157 | | 99.03 236 | | | | | 99.59 299 | | | 99.30 210 |
|
| 新几何1 | | | | | 98.91 146 | 98.94 229 | 97.76 174 | | 98.76 281 | 87.58 383 | 96.75 332 | 98.10 292 | 94.80 252 | 99.78 208 | 92.73 343 | 99.00 297 | 99.20 229 |
|
| 旧先验1 | | | | | | 98.82 256 | 97.45 192 | | 98.76 281 | | | 98.34 274 | 95.50 231 | | | 99.01 296 | 99.23 224 |
|
| 原ACMM1 | | | | | 98.35 221 | 98.90 239 | 96.25 240 | | 98.83 273 | 92.48 352 | 96.07 351 | 98.10 292 | 95.39 234 | 99.71 245 | 92.61 346 | 98.99 298 | 99.08 247 |
|
| testdata2 | | | | | | | | | | | | | | 99.79 197 | 92.80 341 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 160 | | | | |
|
| testdata | | | | | 98.09 239 | 98.93 231 | 95.40 268 | | 98.80 276 | 90.08 374 | 97.45 300 | 98.37 270 | 95.26 236 | 99.70 248 | 93.58 326 | 98.95 303 | 99.17 240 |
|
| test12 | | | | | 98.93 143 | 98.58 300 | 97.83 166 | | 98.66 290 | | 96.53 339 | | 95.51 230 | 99.69 252 | | 99.13 282 | 99.27 215 |
|
| plane_prior7 | | | | | | 99.19 179 | 97.87 162 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 223 | 97.70 180 | | | | | | 94.90 245 | | | | |
|
| plane_prior5 | | | | | | | | | 99.27 179 | | | | | 99.70 248 | 94.42 302 | 99.51 222 | 99.45 149 |
|
| plane_prior4 | | | | | | | | | | | | 97.98 301 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 173 | | | 97.41 209 | 97.79 275 | | | | | | |
|
| plane_prior1 | | | | | | 99.05 214 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 99.57 59 | | | | | | | | |
|
| lessismore_v0 | | | | | 98.97 138 | 99.73 39 | 97.53 188 | | 86.71 396 | | 99.37 88 | 99.52 57 | 89.93 316 | 99.92 49 | 98.99 61 | 99.72 147 | 99.44 153 |
|
| LGP-MVS_train | | | | | 99.47 54 | 99.57 80 | 98.97 66 | | 99.48 93 | 96.60 260 | 99.10 130 | 99.06 139 | 98.71 37 | 99.83 154 | 95.58 275 | 99.78 118 | 99.62 66 |
|
| test11 | | | | | | | | | 98.87 260 | | | | | | | | |
|
| door | | | | | | | | | 99.41 119 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.79 225 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.82 339 | | |
|
| HQP4-MVS | | | | | | | | | | | 95.56 359 | | | 99.54 314 | | | 99.32 203 |
|
| HQP3-MVS | | | | | | | | | 99.04 234 | | | | | | | 99.26 263 | |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 274 | | | | |
|
| NP-MVS | | | | | | 98.84 251 | 97.39 196 | | | | | 96.84 347 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 122 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 165 | |
|
| Test By Simon | | | | | | | | | | | | | 96.52 188 | | | | |
|
| ITE_SJBPF | | | | | 98.87 150 | 99.22 170 | 98.48 104 | | 99.35 139 | 97.50 197 | 98.28 241 | 98.60 245 | 97.64 116 | 99.35 350 | 93.86 320 | 99.27 260 | 98.79 298 |
|
| DeepMVS_CX |  | | | | 93.44 372 | 98.24 329 | 94.21 303 | | 94.34 373 | 64.28 394 | 91.34 390 | 94.87 384 | 89.45 321 | 92.77 397 | 77.54 395 | 93.14 390 | 93.35 392 |
|