This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7399.99 599.86 21
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10999.84 8599.52 124
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 56
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 66
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6099.56 2999.95 3099.97 4
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15999.26 11699.02 16398.18 8499.88 8997.07 18399.45 24199.49 134
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17099.92 5499.57 96
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 113
FE-MVS95.66 32294.95 33597.77 27098.53 31695.28 28099.40 1696.09 37693.11 36697.96 27399.26 11079.10 39399.77 22292.40 36598.71 32798.27 354
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25698.13 30093.81 28699.97 599.26 4699.57 21299.43 165
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25398.46 27398.68 4299.93 4299.03 6299.85 8198.64 324
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35895.07 32898.48 23399.33 9588.41 34499.65 28996.13 26498.92 31698.07 363
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
test250692.39 37391.89 37593.89 38999.38 14082.28 41999.32 2366.03 42599.08 8898.77 19599.57 4566.26 41599.84 14498.71 8499.95 3099.54 113
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19398.62 21399.40 8396.82 18199.80 19295.88 27199.51 22998.75 312
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34097.70 14799.73 14497.89 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25698.51 26598.64 4499.93 4298.91 6899.85 8198.88 292
GG-mvs-BLEND94.76 37994.54 41892.13 36399.31 2780.47 42388.73 41791.01 41767.59 41298.16 41082.30 41394.53 40993.98 413
gg-mvs-nofinetune92.37 37591.20 37995.85 36195.80 41692.38 35899.31 2781.84 42299.75 891.83 41199.74 1568.29 40899.02 39287.15 40097.12 38696.16 405
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7699.93 4399.72 48
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20595.49 29099.80 11099.48 144
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 102
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7699.93 4399.77 37
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6696.87 20399.68 17299.49 134
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 79
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19299.66 60
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22699.33 9597.95 10499.90 6697.16 17499.67 17899.44 161
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26198.37 28298.72 3899.90 6699.05 6099.77 12598.77 309
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41799.11 7699.46 7599.58 4388.69 33899.86 11498.80 7599.95 3099.62 70
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41999.08 8899.36 9599.57 4588.47 34399.82 17198.52 9799.95 3099.54 113
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11498.00 12799.82 9599.50 130
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10299.89 7199.41 171
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40499.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6799.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27298.61 21598.38 28198.62 4799.87 10696.47 24199.67 17899.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36397.23 24497.87 27999.10 14786.11 35699.65 28991.65 37299.21 27998.82 297
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35998.86 10998.87 18297.62 33598.63 4698.96 39599.41 3898.29 34798.45 338
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17198.69 8699.88 7399.76 42
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8199.93 4399.79 32
LS3D98.63 12598.38 14899.36 6697.25 39099.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19296.58 22799.34 25698.92 284
EGC-MVSNET85.24 38380.54 38699.34 7599.77 2699.20 3899.08 5899.29 18412.08 42120.84 42299.42 7797.55 13499.85 12697.08 18299.72 15298.96 277
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34499.47 6996.55 19799.84 14498.56 9699.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14399.65 4699.45 7499.22 1599.76 22898.44 10099.77 12599.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12799.91 6199.68 56
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39497.69 29299.16 13496.91 17599.90 6690.89 38799.41 24699.07 256
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18799.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 266
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26599.28 10497.11 16599.84 14496.84 20699.32 25899.47 151
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13299.52 22799.35 200
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19297.88 13599.20 28099.48 144
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11495.92 27099.69 16799.04 262
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 70
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22998.94 16998.86 20798.75 3699.82 17197.53 15799.71 15799.56 102
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24599.17 5499.92 5499.76 42
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7797.63 15098.52 34199.16 249
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31595.50 38598.66 4399.50 34198.18 11398.71 32798.44 341
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14298.16 25698.62 25388.76 33799.73 24593.88 33399.79 11599.18 242
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39899.74 1098.78 19299.01 17284.45 36899.73 24597.44 16099.27 26799.25 225
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18599.91 1199.67 2797.15 16298.91 39899.76 1599.56 21599.92 11
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 331
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12698.77 7999.77 12598.60 327
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 79
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 78
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20299.35 9799.24 11597.83 10999.89 7797.88 13599.70 16499.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25098.82 18999.01 17297.71 11999.87 10696.29 25399.69 16799.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39896.29 36299.15 13896.56 19699.90 6692.90 35399.20 28097.89 370
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13499.37 9399.49 6798.75 3699.86 11498.20 11299.80 11099.71 49
wuyk23d96.06 30897.62 22591.38 39898.65 30198.57 9898.85 8796.95 36196.86 26699.90 1299.16 13499.18 1798.40 40689.23 39599.77 12577.18 418
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12999.92 5499.57 96
MonoMVSNet96.25 30496.53 29195.39 37396.57 40491.01 38098.82 9097.68 34198.57 12798.03 27099.37 8490.92 32397.78 41194.99 29893.88 41197.38 391
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36292.28 37795.17 38498.57 25989.90 33199.75 23591.20 38197.33 38398.10 361
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27299.82 27
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35297.03 25797.88 27899.23 11990.95 32299.87 10696.61 22599.00 30698.91 287
FMVSNet596.01 31095.20 32998.41 22397.53 37896.10 25198.74 9299.50 8997.22 24798.03 27099.04 16069.80 40699.88 8997.27 16899.71 15799.25 225
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25295.98 26899.76 13799.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13698.91 17298.81 21898.94 2599.91 6098.35 10499.73 14499.49 134
tttt051795.64 32394.98 33397.64 28499.36 14793.81 33098.72 9790.47 41298.08 16598.67 20698.34 28673.88 40299.92 5197.77 14299.51 22999.20 235
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20798.30 24598.40 27897.86 10899.89 7796.53 23899.72 15299.56 102
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15799.39 181
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 29099.79 2699.57 4592.85 30299.42 35999.79 1299.84 8599.60 79
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30398.63 25197.50 14199.83 16196.79 20899.53 22499.56 102
X-MVStestdata94.32 34492.59 36299.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30345.85 41997.50 14199.83 16196.79 20899.53 22499.56 102
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32399.68 4099.64 3491.88 31599.48 34799.82 799.87 7699.62 70
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21398.09 26498.68 23997.62 12899.89 7796.22 25699.62 19299.57 96
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11299.21 12196.99 17299.50 34196.55 23699.50 23699.26 224
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17197.97 12999.80 11099.29 218
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27396.71 21999.77 12599.50 130
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35799.59 2799.11 13399.27 10694.82 26099.79 20598.34 10599.63 18999.34 202
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28299.96 499.81 698.18 8499.45 35498.97 6699.79 11599.83 24
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20699.31 10897.71 32894.61 26799.88 8996.14 26299.19 28399.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18098.85 18398.04 31097.66 12299.84 14496.72 21799.81 9999.13 251
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 27099.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19098.90 17399.26 11096.12 21599.52 33595.72 28199.71 15799.32 209
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 37097.58 29999.63 3596.21 21199.90 6695.74 28099.54 22099.27 221
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37498.87 10899.11 13398.86 20790.40 32899.78 21697.36 16499.31 26099.19 240
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4298.65 8898.83 31999.76 42
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21398.58 22198.50 26997.97 10399.85 12696.57 22999.59 20399.53 121
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21898.44 23698.51 26597.83 10999.88 8996.46 24299.58 20899.58 91
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21398.56 22498.54 26197.75 11799.88 8996.57 22999.59 20399.58 91
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30599.35 8997.41 14798.18 40991.59 37499.67 17896.82 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29299.78 2799.82 596.14 21398.63 40499.82 799.93 4399.95 8
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25999.24 12198.89 20397.83 10999.81 18596.88 20299.49 23799.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19997.58 29998.66 24497.40 14899.88 8994.72 30799.60 19999.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12696.54 23799.42 24599.46 153
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13799.69 3899.46 7098.21 8299.92 5194.13 32699.30 26398.91 287
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26198.71 8499.76 13799.33 207
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11496.56 23399.39 24899.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23399.39 24899.45 157
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23598.11 26298.39 27998.00 9999.87 10696.86 20599.64 18699.55 109
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23597.17 17399.66 18399.63 69
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20595.63 28599.91 6198.86 294
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5197.16 17499.70 16499.56 102
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17198.09 11999.36 25299.59 85
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14898.98 15499.19 12497.76 11699.58 31596.57 22999.55 21898.97 275
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33697.33 22998.41 23998.67 24183.68 37599.69 26195.16 29699.31 26098.77 309
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37698.21 15298.40 24397.76 32686.88 34899.63 29595.42 29189.27 41698.95 278
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10599.90 6799.57 96
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38597.95 17296.56 35395.95 37590.70 32597.68 41288.32 39796.13 39998.11 360
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14698.88 17898.85 21097.53 13799.87 10696.14 26299.31 26099.48 144
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11796.34 39599.49 134
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32498.23 15099.54 5799.46 7095.02 25499.68 27098.24 10999.87 7699.87 18
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33397.83 28398.37 28294.90 25699.84 14493.85 33599.54 22099.51 127
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37895.54 37996.17 37294.77 26599.52 33589.62 39398.23 34897.72 381
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 18099.25 12099.16 13496.84 17899.78 21699.21 5199.84 8599.46 153
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22198.67 20698.39 27997.68 12099.85 12696.00 26699.51 22999.52 124
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18398.80 21994.80 26399.78 21698.13 11699.13 29199.31 213
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25898.69 20398.88 20498.00 9999.89 7795.87 27499.59 20399.58 91
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17698.90 17398.90 19798.00 9999.88 8996.15 26199.72 15299.58 91
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27198.83 18698.90 19797.80 11499.82 17195.68 28499.52 22799.38 188
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19198.04 26999.11 14497.22 15999.56 32098.57 9398.90 31798.71 315
Patchmtry97.35 24996.97 26098.50 21497.31 38996.47 24398.18 15498.92 26298.95 10398.78 19299.37 8485.44 36299.85 12695.96 26999.83 9299.17 246
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20297.39 31796.75 36196.77 18599.15 38990.16 39199.02 30494.88 412
test072699.50 10899.21 3298.17 15799.35 15097.97 17099.26 11699.06 15197.61 129
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14199.73 14499.66 60
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 14099.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17297.32 32099.58 4395.95 22898.75 40296.41 24599.22 27699.87 18
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29598.93 17098.82 21696.00 22099.83 16197.32 16699.73 14499.36 196
EPMVS93.72 35693.27 35595.09 37896.04 41387.76 40098.13 16085.01 42094.69 33796.92 33498.64 24978.47 39899.31 37495.04 29796.46 39498.20 356
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30298.06 26698.43 27697.80 11499.67 27395.69 28399.58 20899.20 235
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37696.91 33699.37 8485.44 36299.81 18597.39 16397.36 38197.81 375
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33699.34 9386.72 34999.87 10697.53 15797.36 38197.81 375
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16699.66 4399.02 16398.36 6599.88 8996.91 19599.62 19299.41 171
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26498.18 8498.75 40294.62 30899.48 23899.41 171
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
tpmvs95.02 33695.25 32694.33 38296.39 41085.87 40598.08 16896.83 36595.46 31995.51 38198.69 23785.91 35799.53 33194.16 32296.23 39797.58 386
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32191.22 38794.25 39496.68 36295.53 24099.03 39191.64 37397.18 38596.74 399
MVS93.19 36492.09 36896.50 34296.91 39794.03 31998.07 17098.06 33268.01 41794.56 39396.48 36695.96 22799.30 37683.84 40896.89 39096.17 404
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19699.04 14798.96 18598.84 3099.79 20597.43 16199.65 18499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22496.63 35095.55 38397.68 12099.80 19296.73 21699.27 26798.52 333
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 35098.98 15499.10 14797.52 13999.79 20596.45 24399.64 18699.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16399.40 8899.36 8898.58 5399.76 22898.78 7699.68 17299.59 85
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19699.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
thres100view90094.19 34793.67 35195.75 36499.06 21791.35 37298.03 17694.24 39698.33 14097.40 31594.98 39679.84 38799.62 29883.05 40998.08 35996.29 402
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 17099.08 13899.02 16397.61 12999.88 8996.99 18999.63 18999.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18999.63 18999.68 56
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14697.64 29497.99 31296.44 20299.95 2496.66 22298.93 31598.60 327
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20499.54 5799.50 6298.97 2399.84 14498.06 12299.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 315
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 12098.93 2699.75 23598.66 8799.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres600view794.45 34293.83 34896.29 34899.06 21791.53 36897.99 18694.24 39698.34 13997.44 31395.01 39479.84 38799.67 27384.33 40798.23 34897.66 383
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19699.34 9999.18 12897.54 13599.77 22297.79 14099.74 14199.04 262
CostFormer93.97 35293.78 34994.51 38197.53 37885.83 40797.98 18795.96 37889.29 40094.99 38798.63 25178.63 39599.62 29894.54 31096.50 39398.09 362
PatchT96.65 29096.35 29497.54 29597.40 38695.32 27997.98 18796.64 36899.33 5196.89 34099.42 7784.32 37099.81 18597.69 14997.49 37297.48 388
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15199.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
MVStest195.86 31595.60 31196.63 33995.87 41591.70 36697.93 19198.94 25698.03 16699.56 5399.66 2971.83 40498.26 40899.35 4099.24 27299.91 12
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 218
MTMP97.93 19191.91 409
ADS-MVSNet295.43 32894.98 33396.76 33798.14 34691.74 36597.92 19497.76 33790.23 39296.51 35698.91 19485.61 35999.85 12692.88 35496.90 38898.69 319
ADS-MVSNet95.24 33194.93 33696.18 35498.14 34690.10 39097.92 19497.32 35090.23 39296.51 35698.91 19485.61 35999.74 24092.88 35496.90 38898.69 319
EPNet96.14 30795.44 31998.25 23890.76 42395.50 27297.92 19494.65 39098.97 10092.98 40698.85 21089.12 33699.87 10695.99 26799.68 17299.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28698.46 23498.95 18995.93 22999.60 30596.51 23998.98 31099.31 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39299.54 3098.95 16299.14 14193.50 29099.92 5199.80 1199.96 2399.85 22
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15699.63 4999.04 16098.76 3595.33 41896.56 23399.74 14199.31 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm94.67 34094.34 34495.66 36697.68 37188.42 39697.88 19994.90 38894.46 34296.03 36998.56 26078.66 39499.79 20595.88 27195.01 40698.78 308
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27699.17 13199.21 12194.81 26299.77 22296.96 19399.88 7399.44 161
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
reproduce_monomvs95.00 33795.25 32694.22 38497.51 38383.34 41697.86 20398.44 31498.51 13299.29 10999.30 10167.68 41199.56 32098.89 7199.81 9999.77 37
thisisatest053095.27 33094.45 34197.74 27699.19 18594.37 30797.86 20390.20 41397.17 24998.22 25297.65 33273.53 40399.90 6696.90 20099.35 25498.95 278
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17998.95 16298.95 18987.06 34799.81 18597.77 14299.69 16799.23 230
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20699.55 7681.42 41496.51 35698.58 25895.53 24099.67 27393.41 34699.58 20898.98 272
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20799.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20799.25 19696.94 26198.78 19299.12 14398.02 9799.84 14497.13 17999.67 17899.59 85
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20799.57 6599.17 7299.35 9799.17 13298.35 6899.69 26198.46 9999.73 14499.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21099.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21199.82 2498.21 15299.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21299.49 9697.37 22699.19 12697.65 33298.96 2499.49 34496.50 24098.99 30899.34 202
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21299.24 20199.04 9399.41 8598.90 19797.65 12399.76 22897.70 14799.79 11599.39 181
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21499.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21499.27 19098.20 15697.79 28697.98 31394.90 25699.70 25794.42 31699.51 22999.45 157
plane_prior297.77 21498.20 156
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21799.28 18794.97 33198.72 20198.77 22597.04 16799.85 12693.79 33699.54 22099.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21799.09 23497.31 23298.75 19898.66 24497.56 13399.64 29296.10 26599.55 21899.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21999.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
MDTV_nov1_ep1395.22 32897.06 39683.20 41797.74 21996.16 37494.37 34696.99 33298.83 21383.95 37399.53 33193.90 33197.95 366
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22199.38 13798.93 10499.12 13298.73 23096.77 18599.86 11498.63 9099.80 11099.46 153
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22297.69 34099.20 6597.59 29895.90 37788.12 34699.55 32498.18 11398.96 31298.70 318
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22299.46 10997.25 23898.98 15498.99 17697.54 13599.84 14495.88 27199.74 14199.23 230
MDTV_nov1_ep13_2view74.92 42497.69 22490.06 39797.75 28985.78 35893.52 34298.69 319
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22599.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22599.81 2595.20 32799.54 5799.44 7591.56 31899.41 36099.78 1499.77 12599.40 180
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22599.40 13399.14 7499.06 14098.59 25796.71 19199.93 4298.57 9399.77 12599.53 121
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22599.38 13795.76 31098.81 19198.82 21698.36 6599.82 17194.75 30499.77 12599.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm293.09 36592.58 36394.62 38097.56 37486.53 40497.66 22995.79 38286.15 40794.07 39898.23 29575.95 39999.53 33190.91 38696.86 39197.81 375
dp93.47 35993.59 35293.13 39796.64 40381.62 42197.66 22996.42 37292.80 37196.11 36598.64 24978.55 39799.59 30993.31 34792.18 41598.16 358
dmvs_testset92.94 36892.21 36795.13 37698.59 30790.99 38197.65 23192.09 40796.95 26094.00 39993.55 40792.34 30996.97 41572.20 41892.52 41397.43 390
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38887.32 40297.65 23196.65 36795.30 32497.07 32798.69 23784.77 36599.75 23594.97 30098.64 33498.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23399.36 14597.15 25299.32 10699.18 12895.84 23299.84 14499.50 3499.91 6199.54 113
tpmrst95.07 33495.46 31793.91 38897.11 39384.36 41497.62 23496.96 36094.98 33096.35 36198.80 21985.46 36199.59 30995.60 28696.23 39797.79 378
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23499.35 15098.72 11698.76 19798.68 23992.57 30799.74 24097.76 14695.60 40399.34 202
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23699.50 8998.64 11897.39 31797.52 34098.12 9299.95 2496.90 20098.71 32798.38 348
tfpn200view994.03 35193.44 35395.78 36398.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35996.29 402
thres40094.14 34993.44 35396.24 35198.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35997.66 383
test_post197.59 23920.48 42383.07 37899.66 28494.16 322
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 24099.34 15697.51 20999.27 11299.15 13896.34 20899.80 19299.47 3699.93 4399.51 127
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 24099.16 22297.90 17899.28 11099.01 17295.98 22599.79 20599.33 4199.90 6799.51 127
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24299.36 14597.23 24499.38 9199.17 13296.02 21899.84 14499.57 2799.90 6799.54 113
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24298.87 27197.49 21299.06 14099.05 15880.72 38499.80 19298.44 10099.82 9599.37 190
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24499.25 19698.84 11299.06 14098.76 22796.76 18799.93 4298.57 9399.77 12599.50 130
9.1497.78 21099.07 21397.53 24599.32 16395.53 31798.54 22898.70 23697.58 13199.76 22894.32 32199.46 239
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24699.36 14597.41 22299.33 10099.20 12396.37 20699.82 17199.57 2799.92 5499.55 109
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24698.75 29597.46 21896.90 33997.83 32396.01 21999.84 14495.82 27899.35 25499.46 153
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24899.50 8998.10 16497.50 30795.51 38498.41 6299.88 8996.27 25499.24 27297.71 382
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24899.45 11397.16 25099.45 7899.24 11596.12 21599.85 12699.60 2599.88 7399.55 109
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 25099.23 20397.47 21397.90 27698.62 25397.04 16798.81 40197.55 15499.41 24698.94 282
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 25098.76 29295.81 30996.61 35296.47 36794.12 28199.17 38790.82 38897.78 36799.06 257
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25299.57 6599.37 4699.21 12499.61 3996.76 18799.83 16198.06 12299.83 9299.71 49
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25397.64 34499.11 7698.58 22197.98 31388.65 34199.79 20598.11 11797.39 37898.81 301
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25499.06 23798.30 14399.32 10698.97 18296.65 19399.62 29898.37 10399.85 8199.39 181
tpm cat193.29 36293.13 35993.75 39097.39 38784.74 41097.39 25597.65 34283.39 41294.16 39598.41 27782.86 37999.39 36391.56 37595.35 40597.14 394
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25697.65 34295.95 30595.53 38097.96 31782.11 38399.79 20596.31 25197.44 37598.80 306
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 33097.81 26798.41 33097.15 21697.37 25798.62 30683.86 41098.65 20998.37 28294.29 27699.68 27088.41 39698.62 33796.60 401
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25899.69 3998.16 16298.49 23299.29 10397.06 16699.97 598.29 10899.91 6199.76 42
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25899.68 4494.45 34498.99 15399.27 10696.87 17799.94 3697.13 17999.91 6199.57 96
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 26099.68 4497.30 23396.68 34897.46 34498.56 5499.80 19296.63 22398.20 35098.86 294
testing393.51 35892.09 36897.75 27498.60 30494.40 30697.32 26195.26 38797.56 20496.79 34695.50 38553.57 42499.77 22295.26 29498.97 31199.08 254
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26298.90 26597.37 22698.83 18699.46 7096.28 20999.79 20598.90 6998.16 35498.95 278
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26399.69 3994.61 33897.87 27998.05 30996.26 21098.32 40798.74 8198.18 35198.82 297
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26498.84 28096.10 29798.64 21098.65 24696.04 21799.36 36696.84 20699.14 28999.20 235
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26799.30 17692.93 36896.62 35198.00 31195.73 23599.68 27092.62 36298.46 34299.35 200
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26899.45 11394.82 33596.13 36496.51 36498.52 5699.91 6096.19 25898.83 31998.37 350
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26898.87 27199.20 6599.19 12698.99 17697.30 15299.85 12698.77 7999.79 11599.65 65
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26898.86 27699.20 6599.18 13098.97 18297.29 15499.85 12698.72 8399.78 12099.64 66
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27199.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9199.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_030497.44 24397.01 25998.72 18096.42 40896.74 23597.20 27291.97 40898.46 13598.30 24598.79 22192.74 30499.91 6099.30 4399.94 3899.52 124
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27298.87 27198.97 10099.06 14099.02 16396.00 22099.80 19298.58 9199.82 9599.60 79
CVMVSNet96.25 30497.21 24993.38 39599.10 20680.56 42297.20 27298.19 32796.94 26199.00 15299.02 16389.50 33499.80 19296.36 24999.59 20399.78 35
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27599.47 10696.31 29097.85 28298.20 29796.71 19199.52 33594.62 30899.72 15298.38 348
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27699.38 13794.87 33498.97 15898.99 17698.01 9899.88 8997.29 16799.70 16499.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27699.28 18795.54 31699.42 8399.19 12497.27 15599.63 29597.89 13299.97 1999.20 235
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27899.18 21597.10 25398.75 19898.92 19398.18 8499.65 28996.68 22199.56 21599.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
plane_prior97.65 18497.07 27996.72 27399.36 252
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41198.69 9097.02 28099.12 22988.90 40197.83 28398.86 20789.51 33398.90 39991.92 36799.51 22998.92 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28199.39 13597.67 19299.44 7998.99 17697.53 13799.89 7795.40 29299.68 17299.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28198.93 25997.25 23897.62 29598.34 28697.27 15599.57 31796.42 24499.33 25799.39 181
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28398.90 26597.63 19597.04 32997.93 31895.99 22499.66 28495.31 29398.82 32199.43 165
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28498.93 25995.58 31596.92 33497.66 33195.87 23199.53 33190.97 38499.14 28998.04 364
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28598.88 26995.84 30898.89 17598.96 18594.40 27299.69 26197.55 15499.95 3099.05 258
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28599.25 19695.02 32998.53 22998.51 26597.27 15599.47 35093.50 34499.51 22999.01 266
JIA-IIPM95.52 32695.03 33297.00 32296.85 39994.03 31996.93 28795.82 38199.20 6594.63 39299.71 1983.09 37799.60 30594.42 31694.64 40797.36 392
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28799.28 18783.58 41198.13 26097.78 32496.13 21499.40 36193.52 34299.29 26598.45 338
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28998.75 29595.89 30798.59 21998.67 24192.08 31399.74 24096.72 21799.81 9999.32 209
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29098.73 29895.66 31197.92 27497.70 33097.17 16199.66 28496.18 26099.23 27599.47 151
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29198.94 25698.57 12798.89 17598.50 26995.60 23899.85 12697.54 15699.85 8199.59 85
baseline293.73 35592.83 36196.42 34497.70 36891.28 37596.84 29289.77 41493.96 35692.44 40995.93 37679.14 39299.77 22292.94 35296.76 39298.21 355
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29399.35 15093.18 36497.71 29098.07 30895.00 25599.31 37493.97 32999.13 29198.42 345
EPNet_dtu94.93 33894.78 33895.38 37493.58 41987.68 40196.78 29495.69 38597.35 22889.14 41698.09 30688.15 34599.49 34494.95 30199.30 26398.98 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29597.92 33594.94 33297.12 32497.74 32791.11 32199.82 17193.89 33298.15 35599.18 242
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29699.05 24097.74 18896.93 33398.21 29695.59 23999.89 7797.86 13799.93 4399.19 240
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29798.48 31394.49 34097.27 32197.90 31992.77 30399.80 19296.57 22999.32 25899.16 249
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29799.58 5893.14 36596.89 34097.48 34292.11 31299.86 11496.91 19599.54 22099.57 96
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29998.26 32296.72 27398.44 23697.37 34995.20 24999.47 35091.89 36897.43 37698.44 341
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 30099.05 24093.77 35798.62 21398.83 21393.23 29199.75 23598.33 10799.76 13799.36 196
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30197.36 34796.70 27597.87 27997.98 31395.14 25199.44 35690.47 39098.58 33999.25 225
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30299.43 12394.49 34097.62 29599.18 12896.82 18199.67 27394.73 30599.93 4399.36 196
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30399.15 22798.35 13898.83 18699.11 14494.31 27599.85 12696.60 22698.72 32599.37 190
thres20093.72 35693.14 35895.46 37298.66 29791.29 37496.61 30494.63 39197.39 22496.83 34393.71 40679.88 38699.56 32082.40 41298.13 35695.54 411
ETVMVS92.60 37191.08 38097.18 31497.70 36893.65 33796.54 30595.70 38396.51 28094.68 39092.39 41461.80 42199.50 34186.97 40197.41 37798.40 346
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30599.48 9897.32 23199.11 13398.61 25599.33 1399.30 37696.23 25598.38 34399.28 220
save fliter99.11 20497.97 15496.53 30799.02 24898.24 149
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30899.62 5191.58 38298.84 18598.97 18292.36 30899.88 8996.76 21299.95 3099.67 59
TR-MVS95.55 32595.12 33196.86 33397.54 37693.94 32396.49 30996.53 37194.36 34797.03 33196.61 36394.26 27799.16 38886.91 40396.31 39697.47 389
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31399.48 9898.30 14399.69 3899.53 5897.44 14699.82 17198.84 7499.77 12599.49 134
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31399.06 23790.94 39195.59 37397.38 34894.41 27199.59 30990.93 38598.04 36499.05 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31599.58 5897.79 18698.53 22998.50 26996.76 18799.74 24097.95 13199.64 18699.34 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31699.06 23793.49 36297.36 31997.78 32495.75 23499.49 34493.44 34598.77 32298.52 333
testing9993.04 36791.98 37396.23 35297.53 37890.70 38696.35 31795.94 37996.87 26593.41 40593.43 40963.84 42099.59 30993.24 34997.19 38498.40 346
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31898.93 25996.91 26397.06 32897.39 34794.38 27399.45 35491.66 37199.18 28598.14 359
testing1193.08 36692.02 37096.26 35097.56 37490.83 38496.32 31995.70 38396.47 28492.66 40893.73 40564.36 41999.59 30993.77 33797.57 37098.37 350
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31998.66 30296.33 28899.23 12398.51 26597.48 14599.40 36197.16 17499.46 23999.02 265
HQP-NCC98.67 29296.29 32196.05 29895.55 376
ACMP_Plane98.67 29296.29 32196.05 29895.55 376
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32199.04 24396.05 29895.55 37696.84 35993.84 28499.54 32992.82 35699.26 27099.32 209
MVS-HIRNet94.32 34495.62 31090.42 39998.46 32275.36 42396.29 32189.13 41595.25 32595.38 38299.75 1392.88 30099.19 38694.07 32899.39 24896.72 400
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32599.44 11797.45 22099.06 14098.88 20497.99 10299.28 38094.38 32099.58 20899.18 242
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32699.27 19095.42 32098.28 24998.30 29093.16 29399.71 25394.99 29897.37 37998.87 293
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32798.79 28897.23 24495.14 38598.24 29393.22 29299.84 14497.34 16599.84 8599.04 262
Syy-MVS96.04 30995.56 31597.49 30097.10 39494.48 30496.18 32896.58 36995.65 31294.77 38892.29 41591.27 32099.36 36698.17 11598.05 36298.63 325
myMVS_eth3d91.92 38090.45 38296.30 34797.10 39490.90 38296.18 32896.58 36995.65 31294.77 38892.29 41553.88 42399.36 36689.59 39498.05 36298.63 325
testing9193.32 36192.27 36596.47 34397.54 37691.25 37696.17 33096.76 36697.18 24893.65 40493.50 40865.11 41899.63 29593.04 35197.45 37498.53 332
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33199.71 3697.47 21399.27 11299.16 13484.30 37199.62 29897.89 13299.77 12598.81 301
testing22291.96 37990.37 38396.72 33897.47 38592.59 35296.11 33294.76 38996.83 26792.90 40792.87 41257.92 42299.55 32486.93 40297.52 37198.00 368
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33399.30 17697.58 20198.10 26398.24 29398.25 7599.34 37096.69 22099.65 18499.12 252
WB-MVSnew95.73 32095.57 31496.23 35296.70 40290.70 38696.07 33493.86 39995.60 31497.04 32995.45 39196.00 22099.55 32491.04 38398.31 34698.43 343
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33599.01 25191.21 38897.79 28697.85 32296.89 17699.69 26192.75 35999.38 25199.39 181
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33693.41 40195.25 32599.47 7498.90 19795.63 23799.85 12696.91 19599.73 14499.27 221
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33799.50 8997.30 23399.05 14598.98 18099.35 1299.32 37395.72 28199.68 17299.18 242
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33799.27 19097.60 20097.99 27298.25 29298.15 9099.38 36596.87 20399.57 21299.42 168
TEST998.71 27898.08 14195.96 33999.03 24591.40 38595.85 37097.53 33896.52 19899.76 228
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33999.03 24591.64 38095.85 37097.53 33896.47 20099.76 22893.67 33899.16 28699.36 196
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34198.20 32592.62 37398.55 22698.54 26194.88 25999.52 33593.96 33099.44 24498.59 330
新几何295.93 342
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34298.12 33096.45 28597.92 27498.73 23093.77 28899.39 36391.19 38299.04 30099.33 207
UBG93.25 36392.32 36496.04 35997.72 36390.16 38995.92 34495.91 38096.03 30193.95 40193.04 41169.60 40799.52 33590.72 38997.98 36598.45 338
test_898.67 29298.01 14995.91 34599.02 24891.64 38095.79 37297.50 34196.47 20099.76 228
test_prior497.97 15495.86 346
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34698.42 31694.24 34898.50 23198.13 30094.82 26099.91 6097.22 17199.73 14499.43 165
jason: jason.
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34896.88 36496.11 29697.67 29398.67 24193.10 29599.85 12694.16 32299.22 27698.81 301
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34999.53 8391.51 38496.80 34598.48 27291.36 31999.83 16196.58 22799.53 22499.62 70
WBMVS95.18 33294.78 33896.37 34597.68 37189.74 39295.80 35098.73 29897.54 20798.30 24598.44 27570.06 40599.82 17196.62 22499.87 7699.54 113
旧先验295.76 35188.56 40397.52 30599.66 28494.48 312
test_prior295.74 35296.48 28396.11 36597.63 33495.92 23094.16 32299.20 280
无先验95.74 35298.74 29789.38 39999.73 24592.38 36699.22 234
BH-w/o95.13 33394.89 33795.86 36098.20 34291.31 37395.65 35497.37 34693.64 35896.52 35595.70 38193.04 29899.02 39288.10 39895.82 40297.24 393
FPMVS93.44 36092.23 36697.08 31999.25 17097.86 16495.61 35597.16 35492.90 36993.76 40398.65 24675.94 40095.66 41679.30 41697.49 37297.73 380
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35699.20 20797.73 18998.45 23598.71 23397.50 14199.82 17198.21 11199.59 20398.93 283
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test22298.92 24196.93 22795.54 35798.78 29085.72 40896.86 34298.11 30394.43 27099.10 29699.23 230
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35899.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8899.94 3899.49 134
原ACMM295.53 358
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 36099.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9899.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36197.97 33393.53 36098.16 25697.58 33693.81 28699.91 6096.77 21199.57 21299.17 246
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36298.84 28097.25 23897.48 30996.49 36598.31 7199.90 6696.34 25098.68 33296.15 406
testdata195.44 36396.32 289
UWE-MVS92.38 37491.76 37794.21 38597.16 39284.65 41195.42 36488.45 41695.96 30496.17 36395.84 38066.36 41499.71 25391.87 36998.64 33498.28 353
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36598.52 31193.60 35998.61 21598.65 24695.10 25299.60 30596.97 19299.79 11598.99 271
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36697.13 35594.13 35199.71 3499.33 9597.93 10599.30 37697.60 15398.94 31498.67 323
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36798.38 31997.25 23898.92 17198.95 18995.48 24499.73 24596.99 18998.74 32399.41 171
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36798.42 31697.26 23798.88 17898.95 18995.43 24599.73 24597.02 18698.72 32599.41 171
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36998.85 27997.25 23897.49 30895.99 37498.07 9399.90 6696.37 24798.67 33396.12 407
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 37099.50 8994.21 34999.01 15198.32 28986.61 35099.99 297.10 18199.84 8599.60 79
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 37099.53 8394.03 35498.97 15899.10 14795.29 24799.34 37095.84 27799.73 14499.30 216
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37299.31 16897.25 23898.74 20098.78 22390.07 32999.78 21697.19 17299.80 11099.11 253
pmmvs395.03 33594.40 34296.93 32697.70 36892.53 35495.08 37397.71 33988.57 40297.71 29098.08 30779.39 39199.82 17196.19 25899.11 29598.43 343
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37499.18 21596.88 26499.33 10098.78 22398.16 8899.28 38096.74 21499.62 19299.44 161
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37599.16 22297.05 25498.77 19598.72 23292.88 30099.64 29296.93 19499.76 13799.05 258
test0.0.03 194.51 34193.69 35096.99 32396.05 41293.61 33894.97 37693.49 40096.17 29397.57 30194.88 39882.30 38199.01 39493.60 34094.17 41098.37 350
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37798.84 28091.58 38296.05 36895.58 38295.68 23699.66 28495.59 28798.09 35898.76 311
PAPR95.29 32994.47 34097.75 27497.50 38495.14 28694.89 37898.71 30091.39 38695.35 38395.48 38794.57 26899.14 39084.95 40697.37 37998.97 275
test12317.04 39020.11 3937.82 40410.25 4284.91 42994.80 3794.47 4294.93 42210.00 42424.28 4219.69 4273.64 42310.14 42212.43 42214.92 419
ET-MVSNet_ETH3D94.30 34693.21 35697.58 28998.14 34694.47 30594.78 38093.24 40394.72 33689.56 41495.87 37878.57 39699.81 18596.91 19597.11 38798.46 335
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38199.18 21597.27 23698.56 22498.74 22991.89 31499.69 26197.06 18599.81 9999.05 258
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38199.43 12390.98 39097.62 29597.36 35096.82 18199.67 27394.73 30599.56 21598.98 272
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38199.21 20594.46 34298.06 26697.16 35497.57 13299.48 34794.46 31399.78 12098.95 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38499.09 23495.99 30398.69 20398.45 27492.73 30599.61 30496.79 20899.03 30198.82 297
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38499.16 22297.04 25598.63 21198.71 23388.68 34099.69 26197.00 18799.81 9999.00 270
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38499.16 22297.04 25598.63 21198.71 23388.69 33899.69 26197.00 18799.81 9999.01 266
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38798.97 25596.50 28199.04 14798.85 21095.98 22599.84 14497.26 16999.67 17899.41 171
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38899.40 13397.50 21098.82 18998.83 21396.83 18099.84 14497.50 15999.81 9999.71 49
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38999.05 24096.36 28799.21 12498.79 22196.39 20399.78 21696.74 21499.82 9599.34 202
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 39098.26 32291.94 37996.37 36097.25 35293.06 29799.43 35791.42 37798.74 32398.89 289
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39199.37 14197.65 19498.37 24498.29 29197.40 14899.33 37294.09 32799.22 27698.68 322
cl2295.79 31895.39 32296.98 32496.77 40192.79 34994.40 39298.53 31094.59 33997.89 27798.17 29982.82 38099.24 38296.37 24799.03 30198.92 284
IB-MVS91.63 1992.24 37790.90 38196.27 34997.22 39191.24 37794.36 39393.33 40292.37 37592.24 41094.58 40266.20 41699.89 7793.16 35094.63 40897.66 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39498.79 28896.58 27998.60 21798.19 29894.74 26699.64 29296.41 24598.84 31898.82 297
tmp_tt78.77 38578.73 38878.90 40158.45 42674.76 42594.20 39578.26 42439.16 41986.71 41892.82 41380.50 38575.19 42186.16 40592.29 41486.74 415
KD-MVS_2432*160092.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
miper_refine_blended92.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
test-LLR93.90 35393.85 34794.04 38696.53 40584.62 41294.05 39892.39 40596.17 29394.12 39695.07 39282.30 38199.67 27395.87 27498.18 35197.82 373
TESTMET0.1,192.19 37891.77 37693.46 39396.48 40782.80 41894.05 39891.52 41094.45 34494.00 39994.88 39866.65 41399.56 32095.78 27998.11 35798.02 365
test-mter92.33 37691.76 37794.04 38696.53 40584.62 41294.05 39892.39 40594.00 35594.12 39695.07 39265.63 41799.67 27395.87 27498.18 35197.82 373
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40197.93 33495.49 31896.68 34897.42 34683.21 37699.30 37696.22 25698.55 34099.01 266
thisisatest051594.12 35093.16 35796.97 32598.60 30492.90 34793.77 40290.61 41194.10 35296.91 33695.87 37874.99 40199.80 19294.52 31199.12 29498.20 356
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40992.27 36193.69 40398.89 26891.14 38998.30 24597.35 35190.58 32699.58 31596.31 25199.03 30198.60 327
testmvs17.12 38920.53 3926.87 40512.05 4274.20 43093.62 4046.73 4284.62 42310.41 42324.33 4208.28 4283.56 4249.69 42315.07 42112.86 420
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40598.88 26993.53 36094.65 39197.15 35586.17 35499.93 4297.41 16299.93 4398.73 314
PCF-MVS92.86 1894.36 34393.00 36098.42 22298.70 28297.56 18993.16 40699.11 23179.59 41597.55 30297.43 34592.19 31099.73 24579.85 41599.45 24197.97 369
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVEpermissive83.40 2292.50 37291.92 37494.25 38398.83 25991.64 36792.71 40783.52 42195.92 30686.46 41995.46 38895.20 24995.40 41780.51 41498.64 33495.73 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40897.72 33892.69 37296.49 35996.44 36893.72 28999.43 35793.61 33999.28 26698.71 315
PAPM91.88 38190.34 38496.51 34198.06 35192.56 35392.44 40997.17 35386.35 40690.38 41396.01 37386.61 35099.21 38570.65 41995.43 40497.75 379
cascas94.79 33994.33 34596.15 35896.02 41492.36 35992.34 41099.26 19585.34 40995.08 38694.96 39792.96 29998.53 40594.41 31998.59 33897.56 387
kuosan69.30 38768.95 39070.34 40387.68 42465.00 42791.11 41159.90 42669.02 41674.46 42188.89 41848.58 42668.03 42228.61 42172.33 42077.99 417
PVSNet_089.98 2191.15 38290.30 38593.70 39197.72 36384.34 41590.24 41297.42 34590.20 39593.79 40293.09 41090.90 32498.89 40086.57 40472.76 41997.87 372
dongtai76.24 38675.95 38977.12 40292.39 42067.91 42690.16 41359.44 42782.04 41389.42 41594.67 40149.68 42581.74 42048.06 42077.66 41881.72 416
E-PMN94.17 34894.37 34393.58 39296.86 39885.71 40890.11 41497.07 35698.17 15997.82 28597.19 35384.62 36798.94 39689.77 39297.68 36996.09 408
EMVS93.83 35494.02 34693.23 39696.83 40084.96 40989.77 41596.32 37397.92 17697.43 31496.36 37186.17 35498.93 39787.68 39997.73 36895.81 409
test_method79.78 38479.50 38780.62 40080.21 42545.76 42870.82 41698.41 31831.08 42080.89 42097.71 32884.85 36497.37 41391.51 37680.03 41798.75 312
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.66 38832.88 3910.00 4060.00 4290.00 4310.00 41799.10 2320.00 4240.00 42597.58 33699.21 160.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.17 39110.90 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42498.07 930.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.12 39210.83 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.48 3420.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.90 38291.37 378
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
PC_three_145293.27 36399.40 8898.54 26198.22 8097.00 41495.17 29599.45 24199.49 134
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
test_one_060199.39 13999.20 3899.31 16898.49 13398.66 20899.02 16397.64 126
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.01 22598.84 7899.07 23694.10 35298.05 26898.12 30296.36 20799.86 11492.70 36199.19 283
IU-MVS99.49 11599.15 5198.87 27192.97 36799.41 8596.76 21299.62 19299.66 60
test_241102_TWO99.30 17698.03 16699.26 11699.02 16397.51 14099.88 8996.91 19599.60 19999.66 60
test_241102_ONE99.49 11599.17 4399.31 16897.98 16999.66 4398.90 19798.36 6599.48 347
test_0728_THIRD98.17 15999.08 13899.02 16397.89 10699.88 8997.07 18399.71 15799.70 54
GSMVS98.81 301
test_part299.36 14799.10 6499.05 145
sam_mvs184.74 36698.81 301
sam_mvs84.29 372
MTGPAbinary99.20 207
test_post21.25 42283.86 37499.70 257
patchmatchnet-post98.77 22584.37 36999.85 126
gm-plane-assit94.83 41781.97 42088.07 40494.99 39599.60 30591.76 370
test9_res93.28 34899.15 28899.38 188
agg_prior292.50 36499.16 28699.37 190
agg_prior98.68 29197.99 15099.01 25195.59 37399.77 222
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 216
新几何198.91 15098.94 23597.76 17698.76 29287.58 40596.75 34798.10 30494.80 26399.78 21692.73 36099.00 30699.20 235
旧先验198.82 26297.45 19598.76 29298.34 28695.50 24399.01 30599.23 230
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37496.07 36798.10 30495.39 24699.71 25392.61 36398.99 30899.08 254
testdata299.79 20592.80 358
segment_acmp97.02 170
testdata98.09 24898.93 23795.40 27698.80 28790.08 39697.45 31298.37 28295.26 24899.70 25793.58 34198.95 31399.17 246
test1298.93 14698.58 30997.83 16798.66 30296.53 35495.51 24299.69 26199.13 29199.27 221
plane_prior799.19 18597.87 163
plane_prior698.99 22997.70 18294.90 256
plane_prior599.27 19099.70 25794.42 31699.51 22999.45 157
plane_prior497.98 313
plane_prior397.78 17597.41 22297.79 286
plane_prior199.05 220
n20.00 430
nn0.00 430
door-mid99.57 65
lessismore_v098.97 14099.73 3697.53 19186.71 41899.37 9399.52 6189.93 33099.92 5198.99 6599.72 15299.44 161
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
test1198.87 271
door99.41 130
HQP5-MVS96.79 231
BP-MVS92.82 356
HQP4-MVS95.56 37599.54 32999.32 209
HQP3-MVS99.04 24399.26 270
HQP2-MVS93.84 284
NP-MVS98.84 25797.39 19996.84 359
ACMMP++_ref99.77 125
ACMMP++99.68 172
Test By Simon96.52 198
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21098.28 24998.60 25697.64 12699.35 36993.86 33499.27 26798.79 307
DeepMVS_CXcopyleft93.44 39498.24 33994.21 31194.34 39364.28 41891.34 41294.87 40089.45 33592.77 41977.54 41793.14 41293.35 414