This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5384.20 5594.39 5493.23 92
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
3Dnovator+77.84 485.48 5584.47 7488.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19993.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 4994.90 4094.00 55
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 43
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7594.52 2169.09 8196.70 2784.37 5194.83 4494.03 54
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3586.95 3185.90 6590.76 9267.57 14292.83 1793.30 3279.67 1784.57 7292.27 8671.47 5595.02 9084.24 5493.46 6695.13 6
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 52
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 52
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8476.87 6282.81 10294.25 3466.44 11296.24 4182.88 6794.28 5893.38 86
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12793.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM89.16 689.23 788.97 490.79 9173.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 60
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5584.80 4692.85 7092.84 108
CS-MVS-test86.29 4286.48 3785.71 6991.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8181.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8595.43 6883.93 5793.77 6493.01 104
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10264.47 20992.32 3090.73 13574.45 11779.35 14191.10 11669.05 8495.12 8272.78 16687.22 14494.13 49
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 41
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3532.83 413
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8792.93 6993.57 79
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14468.75 23879.57 13892.83 7660.60 19193.04 18280.92 8891.56 8890.86 172
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6592.51 7493.53 83
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2665.00 13095.56 6182.75 6891.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 119
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 13379.50 14985.03 8588.01 18868.97 10491.59 4392.00 9266.63 26675.15 24292.16 8857.70 20995.45 6663.52 24588.76 12690.66 180
IS-MVSNet83.15 9482.81 9484.18 12089.94 11163.30 23491.59 4388.46 21079.04 2579.49 13992.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7874.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16291.26 4885.89 25774.66 11178.23 16390.56 13054.33 23494.91 9280.73 9283.54 20292.04 139
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7993.36 6371.44 5696.76 2580.82 8995.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 8283.14 8685.14 8190.08 10468.71 11391.25 5092.44 7379.12 2378.92 14791.00 12260.42 19395.38 7278.71 10586.32 15791.33 156
plane_prior291.25 5079.12 23
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
API-MVS81.99 11281.23 11584.26 11890.94 8570.18 8291.10 5389.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 281
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19491.65 9766.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 51
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7979.94 9994.38 5693.55 81
MSLP-MVS++85.43 5785.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7992.81 7867.16 10692.94 18480.36 9494.35 5790.16 200
3Dnovator76.31 583.38 9082.31 10186.59 5287.94 18972.94 2890.64 5892.14 8977.21 5275.47 22492.83 7658.56 20294.72 10473.24 16292.71 7292.13 135
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26072.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
MVSFormer82.85 10082.05 10585.24 7987.35 21070.21 7790.50 6190.38 14468.55 24181.32 11889.47 15761.68 16693.46 15678.98 10290.26 10492.05 137
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 19090.50 6190.38 14468.55 24176.19 21188.70 17556.44 22093.46 15678.98 10280.14 24590.97 169
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
nrg03083.88 7683.53 8084.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9179.28 25592.50 119
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
plane_prior68.71 11390.38 6777.62 3986.16 161
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 8782.80 9585.43 7590.25 10068.74 11190.30 6990.13 15576.33 8080.87 12692.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
LPG-MVS_test82.08 10881.27 11484.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
Anonymous2023121178.97 18377.69 19482.81 18090.54 9564.29 21390.11 7291.51 11465.01 28476.16 21588.13 19850.56 27793.03 18369.68 19577.56 27191.11 162
ACMM73.20 880.78 14179.84 14283.58 14789.31 13568.37 12289.99 7391.60 11070.28 20077.25 18489.66 15053.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 12580.57 12784.36 10989.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13353.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LFMVS81.82 11581.23 11583.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 62
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
MAR-MVS81.84 11480.70 12585.27 7891.32 7971.53 5489.82 7690.92 12969.77 21378.50 15686.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6384.96 6485.45 7492.07 7068.07 13089.78 7990.86 13382.48 384.60 7193.20 6669.35 7895.22 7871.39 17790.88 9693.07 100
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7276.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
VDDNet81.52 12380.67 12684.05 13290.44 9764.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
CANet86.45 3886.10 4587.51 3790.09 10370.94 6789.70 8292.59 7081.78 481.32 11891.43 10670.34 6697.23 1384.26 5293.36 6794.37 40
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 61
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12758.10 20595.04 8969.70 19489.42 11790.30 196
iter_conf05_1184.86 7084.52 7285.87 6690.86 8867.18 15589.63 8592.15 8871.48 17484.64 6990.81 12668.82 8996.00 4978.50 10793.84 6394.43 36
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 56
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22867.31 14989.46 8983.07 29671.09 18286.96 4393.70 5569.02 8691.47 23788.79 1884.62 17993.44 85
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 9092.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23568.12 12889.43 9082.87 30170.27 20187.27 3993.80 5469.09 8191.58 22888.21 2683.65 19893.14 98
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9288.16 21276.95 5976.22 21089.46 15949.30 29393.94 12968.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9390.90 13071.21 17977.17 19088.73 17446.38 31293.21 16772.57 16978.96 25790.79 173
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 15089.40 9483.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9588.97 19569.27 22275.70 22089.69 14957.20 21695.77 5563.06 25088.41 13387.50 282
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30269.80 21187.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23167.27 15189.27 9791.51 11471.75 16679.37 14090.22 13963.15 14594.27 11677.69 11682.36 21891.49 152
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9890.16 15469.20 22775.46 22689.49 15645.75 32393.13 17676.84 12680.80 23590.11 204
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16889.17 9990.19 15369.38 22075.40 22989.46 15944.17 33293.15 17476.78 12880.70 23790.14 201
HQP-NCC89.33 13289.17 9976.41 7477.23 186
ACMP_Plane89.33 13289.17 9976.41 7477.23 186
HQP-MVS82.61 10382.02 10684.37 10889.33 13266.98 15889.17 9992.19 8676.41 7477.23 18690.23 13860.17 19695.11 8477.47 11985.99 16591.03 166
LS3D76.95 22974.82 24483.37 15490.45 9667.36 14889.15 10386.94 24161.87 32269.52 30790.61 12951.71 26694.53 10846.38 36586.71 15288.21 268
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12591.75 9560.71 18694.50 11079.67 10086.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10587.28 23476.41 7485.80 4990.22 13974.15 3195.37 7581.82 7791.88 8292.65 114
test_prior472.60 3489.01 106
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10788.73 20571.27 17878.63 15389.76 14866.32 11493.20 17069.89 19286.02 16493.74 68
Anonymous2024052980.19 15578.89 16384.10 12290.60 9364.75 20388.95 10890.90 13065.97 27480.59 12891.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
VDD-MVS83.01 9982.36 10084.96 8891.02 8366.40 16788.91 10988.11 21377.57 4184.39 7793.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14488.89 11089.15 18675.50 9482.27 10588.28 18969.61 7594.45 11277.81 11587.84 13693.84 64
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19188.86 11187.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11392.20 8570.53 19579.17 14391.03 12164.12 13496.03 4668.39 20990.14 10691.50 151
Effi-MVS+-dtu80.03 15778.57 16884.42 10785.13 25468.74 11188.77 11488.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 160
TEST993.26 5072.96 2588.75 11591.89 9968.44 24485.00 5993.10 6774.36 2895.41 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23985.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6779.97 1584.10 8285.71 25769.32 7995.38 7280.82 8991.37 9092.72 109
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8890.80 9069.76 8788.74 11791.70 10869.39 21978.96 14588.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 7087.65 20267.22 15388.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5272.57 3588.68 12091.84 10368.69 23984.87 6393.10 6774.43 2695.16 80
test_fmvsm_n_192085.29 6085.34 5785.13 8386.12 23669.93 8388.65 12190.78 13469.97 20788.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 58
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12289.01 19269.81 21066.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12392.42 7668.32 24684.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12483.70 28363.98 29870.20 29588.89 17154.01 23994.80 10146.66 36281.88 22486.01 314
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23568.08 24888.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 130
MVSMamba_pp84.98 6684.70 6785.80 6789.43 12667.63 14088.44 12692.64 6772.17 16284.54 7390.39 13468.88 8895.28 7681.45 8194.39 5494.49 33
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12792.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
F-COLMAP76.38 24074.33 25182.50 19089.28 13766.95 16188.41 12889.03 19064.05 29666.83 33288.61 17946.78 31092.89 18557.48 30278.55 25987.67 276
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12989.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13292.65 6572.35 15984.47 7490.26 13668.98 8795.69 5981.09 8594.45 5394.47 34
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13384.05 27971.45 17576.78 19689.12 16649.93 28694.89 9670.18 18883.18 20892.96 106
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13486.85 24367.48 25587.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 134
v7n78.97 18377.58 19783.14 16483.45 28665.51 18588.32 13591.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18388.30 13684.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
iter_conf0583.17 9382.90 9383.97 13887.59 20765.09 19688.29 13791.52 11272.35 15981.39 11790.13 14268.76 9294.84 9980.30 9685.75 16991.98 140
FIs82.07 10982.42 9781.04 22288.80 15558.34 29188.26 13893.49 2676.93 6078.47 15891.04 11969.92 7292.34 20369.87 19384.97 17492.44 123
EIA-MVS83.31 9282.80 9584.82 9489.59 11865.59 18488.21 13992.68 6174.66 11178.96 14586.42 24469.06 8395.26 7775.54 14190.09 10793.62 77
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 14089.46 17264.33 29269.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 8883.45 8183.28 15692.74 6262.28 25188.17 14189.50 17175.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14291.51 11465.77 27577.14 19191.09 11760.91 18493.21 16750.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14387.96 21870.01 20583.95 8593.23 6568.80 9191.51 23588.61 2089.96 11092.57 115
h-mvs3383.15 9482.19 10286.02 6290.56 9470.85 7088.15 14389.16 18576.02 8584.67 6691.39 10761.54 16995.50 6482.71 7075.48 30191.72 145
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14591.22 12077.50 4673.26 26588.64 17860.73 18588.41 29661.88 26473.88 32490.53 186
OMC-MVS82.69 10181.97 10884.85 9388.75 15867.42 14587.98 14690.87 13274.92 10579.72 13691.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
v879.97 15979.02 16182.80 18184.09 27364.50 20887.96 14790.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
FC-MVSNet-test81.52 12382.02 10680.03 24388.42 17255.97 32987.95 14893.42 2977.10 5677.38 18190.98 12469.96 7091.79 22168.46 20884.50 18092.33 124
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14991.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
PAPM_NR83.02 9882.41 9884.82 9492.47 6766.37 16887.93 15091.80 10473.82 12977.32 18390.66 12867.90 9894.90 9570.37 18689.48 11693.19 96
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15191.18 12277.56 4373.14 26788.82 17361.23 17889.17 28259.95 27972.37 33590.43 190
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10454.69 34387.89 15277.44 35174.88 10680.27 13092.79 7948.96 29992.45 19668.55 20692.50 7594.86 17
v1079.74 16178.67 16582.97 17484.06 27464.95 19887.88 15390.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
test250677.30 22476.49 22079.74 24990.08 10452.02 35987.86 15463.10 39474.88 10680.16 13392.79 7938.29 36392.35 20268.74 20592.50 7594.86 17
casdiffmvspermissive85.11 6285.14 6285.01 8687.20 21865.77 18287.75 15592.83 5677.84 3784.36 7892.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15691.33 11980.55 977.99 17189.86 14565.23 12692.62 19067.05 22175.24 31192.30 126
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15789.73 16680.05 1482.95 9789.59 15470.74 6394.82 10080.66 9384.72 17793.28 91
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15893.02 4278.42 3278.56 15588.16 19369.78 7393.26 16369.58 19676.49 28391.60 146
CNLPA78.08 20376.79 21381.97 19990.40 9871.07 6287.59 15984.55 27166.03 27372.38 27789.64 15157.56 21186.04 31559.61 28283.35 20588.79 256
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 16090.66 13677.08 5772.50 27488.67 17760.48 19289.52 27657.33 30570.74 34690.05 211
无先验87.48 16188.98 19360.00 33494.12 12367.28 21788.97 248
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16289.02 19171.63 16875.29 23787.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14387.44 16389.66 16779.74 1682.23 10689.41 16370.24 6894.74 10379.95 9883.92 19092.99 105
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19587.36 16484.26 27770.04 20477.42 18088.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16488.65 20676.37 7875.88 21788.44 18553.51 24393.07 17973.30 16089.74 11492.25 128
test111179.43 16979.18 15880.15 24189.99 10953.31 35687.33 16677.05 35475.04 10380.23 13292.77 8148.97 29892.33 20468.87 20392.40 7794.81 20
baseline84.93 6784.98 6384.80 9687.30 21665.39 18987.30 16792.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16888.79 19974.25 12076.84 19390.53 13249.48 28991.56 23067.98 21082.15 21993.29 90
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15687.24 16989.53 17065.66 27775.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
UniMVSNet_NR-MVSNet81.88 11381.54 11282.92 17588.46 16963.46 23087.13 17092.37 7780.19 1278.38 15989.14 16571.66 5493.05 18070.05 18976.46 28492.25 128
DPM-MVS84.93 6784.29 7586.84 4790.20 10173.04 2387.12 17193.04 3869.80 21182.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 155
v114480.03 15779.03 16083.01 17183.78 28064.51 20687.11 17290.57 14071.96 16578.08 16986.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17389.97 15973.61 13478.18 16687.22 21761.10 18193.82 13776.11 13276.78 28191.18 160
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17491.87 10179.01 2678.38 15989.07 16765.02 12893.05 18070.05 18976.46 28492.20 131
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17590.36 14769.99 20677.50 17885.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 16086.94 17687.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
v119279.59 16478.43 17283.07 16883.55 28464.52 20586.93 17790.58 13870.83 18677.78 17485.90 25359.15 19993.94 12973.96 15377.19 27490.76 175
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17883.09 29571.64 16766.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 179
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17991.58 11175.67 9280.24 13189.45 16163.34 13990.25 26370.51 18579.22 25691.23 159
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18190.33 14869.91 20977.48 17985.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18289.34 17574.19 12175.45 22786.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18386.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18385.76 25973.60 13577.93 17287.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
PAPR81.66 12180.89 12383.99 13790.27 9964.00 21786.76 18591.77 10768.84 23777.13 19289.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18679.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28570.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21677.33 18285.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9079.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23186.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7895.35 3
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15087.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16767.20 10592.81 18966.08 22875.65 29792.20 131
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21285.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
新几何286.29 198
test_yl81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15065.40 18786.16 20192.00 9269.34 22178.11 16786.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
MVS_Test83.15 9483.06 8883.41 15386.86 22263.21 23686.11 20292.00 9274.31 11882.87 9989.44 16270.03 6993.21 16777.39 12188.50 13293.81 65
BH-untuned79.47 16778.60 16782.05 19689.19 14165.91 17786.07 20388.52 20972.18 16175.42 22887.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14876.11 8382.08 10791.61 10071.36 5894.17 12281.02 8692.58 7392.08 136
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20586.77 24463.24 30381.07 12489.47 15761.08 18292.15 20978.33 11190.07 10992.05 137
jason: jason.
test_040272.79 28170.44 29279.84 24788.13 18165.99 17585.93 20684.29 27565.57 27867.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20786.64 24566.39 26866.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20887.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 164
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 20988.08 21566.04 27264.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21087.26 23569.08 23077.23 18688.14 19753.20 24793.47 15575.50 14273.45 32891.06 164
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21183.23 29273.94 12676.32 20887.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
CLD-MVS82.31 10581.65 11184.29 11488.47 16867.73 13785.81 21292.35 7875.78 8878.33 16186.58 23964.01 13594.35 11376.05 13487.48 14190.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21383.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
V4279.38 17378.24 17782.83 17881.10 33365.50 18685.55 21789.82 16271.57 17278.21 16486.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21786.41 24862.85 31081.32 11888.61 17961.68 16692.24 20778.41 11090.26 10491.83 142
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15064.51 20685.53 21989.39 17470.79 18778.49 15785.06 27567.54 10193.58 14767.03 22286.58 15392.32 125
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 21983.23 29273.79 13076.26 20987.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
DELS-MVS85.41 5885.30 6085.77 6888.49 16767.93 13385.52 22193.44 2778.70 2983.63 9289.03 16974.57 2495.71 5880.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 23875.37 23879.55 25689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15371.58 5385.15 22486.16 25374.69 11080.47 12991.04 11962.29 15890.55 26080.33 9590.08 10890.20 199
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22581.89 31073.04 15076.79 19588.90 17062.43 15687.78 30363.30 24971.18 34489.55 230
WR-MVS79.49 16679.22 15780.27 23988.79 15658.35 29085.06 22688.61 20878.56 3077.65 17688.34 18763.81 13890.66 25964.98 23777.22 27391.80 144
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22784.61 27069.54 21766.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22782.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17684.95 22987.15 23873.56 13678.19 16589.79 14756.67 21993.36 16059.53 28386.74 15190.13 202
BH-w/o78.21 19977.33 20280.84 22788.81 15465.13 19484.87 23087.85 22369.75 21474.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23182.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23283.90 28170.65 19480.00 13491.20 11341.08 35091.43 23965.21 23485.26 17293.85 62
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23385.05 26667.63 25176.75 19787.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23488.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
MVS78.19 20176.99 20881.78 20185.66 24166.99 15784.66 23490.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23687.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23786.40 24967.55 25377.81 17386.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23879.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19784.55 23990.01 15873.25 14679.61 13787.57 20658.35 20494.72 10471.29 17886.25 15992.56 116
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24084.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
VNet82.21 10682.41 9881.62 20490.82 8960.93 26584.47 24089.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14268.03 13284.46 24290.02 15770.67 19081.30 12186.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24386.63 24676.79 6478.26 16290.55 13159.30 19889.70 27466.63 22377.05 27590.88 171
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15065.40 18784.43 24492.00 9267.62 25278.11 16785.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24587.95 21965.03 28367.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24686.20 25267.49 25476.36 20786.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24776.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24890.09 15670.79 18781.26 12285.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
patch_mono-283.65 8184.54 7080.99 22390.06 10865.83 17984.21 24988.74 20471.60 17185.01 5792.44 8474.51 2583.50 33682.15 7592.15 7893.64 76
test22291.50 7768.26 12584.16 25083.20 29454.63 36879.74 13591.63 9958.97 20091.42 8986.77 300
testdata184.14 25175.71 89
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25289.13 18869.97 20775.56 22284.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20284.08 25388.95 19669.01 23478.69 15087.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25489.24 18270.36 19779.03 14488.87 17263.23 14390.21 26465.12 23582.57 21692.28 127
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25589.59 16964.74 28671.23 28788.70 17562.59 15293.66 14652.66 32987.03 14789.01 245
diffmvspermissive82.10 10781.88 10982.76 18683.00 29963.78 22283.68 25689.76 16472.94 15282.02 10889.85 14665.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25789.15 18668.87 23675.55 22383.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
1112_ss77.40 22276.43 22280.32 23889.11 14760.41 27583.65 25787.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
PCF-MVS73.52 780.38 14978.84 16485.01 8687.71 19968.99 10383.65 25791.46 11863.00 30777.77 17590.28 13566.10 11695.09 8861.40 26988.22 13590.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20483.60 26089.75 16569.75 21471.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26187.98 21768.96 23575.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26290.50 14170.66 19376.71 19891.66 9660.69 18791.26 24376.94 12581.58 22691.83 142
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17283.38 26385.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26487.78 22566.11 27075.37 23087.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26585.52 26162.83 31179.34 14286.17 25045.10 32779.71 35578.75 10481.21 23087.10 295
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26685.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26789.20 18469.52 21874.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17483.13 26887.79 22468.42 24578.01 17085.23 27045.50 32595.12 8259.11 28785.83 16891.11 162
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 26987.87 22169.22 22574.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 26987.86 22269.22 22574.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27183.51 28772.44 15675.84 21884.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27271.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27390.39 14371.09 18277.63 17791.49 10454.62 23391.35 24175.71 13783.47 20391.54 149
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27488.98 19365.52 27975.47 22482.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27587.62 22767.40 25676.17 21488.56 18268.47 9389.59 27570.65 18486.05 16393.47 84
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27680.65 32266.81 25766.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
cascas76.72 23274.64 24582.99 17285.78 24065.88 17882.33 27789.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27877.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 27982.84 30358.96 34471.15 28989.41 16345.48 32684.77 32858.82 29171.83 34091.02 168
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28083.27 29165.06 28275.91 21683.84 29649.54 28894.27 11667.24 21886.19 16091.48 153
bld_raw_dy_0_6482.00 11181.23 11584.34 11188.75 15866.52 16681.95 28191.90 9863.91 30075.26 23890.15 14169.37 7795.74 5777.66 11792.08 8090.76 175
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17181.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17381.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13758.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 24969.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20181.57 28783.47 28869.16 22870.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23683.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 158
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22184.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 14984.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23184.29 28746.20 31790.07 26664.33 24184.50 18091.58 148
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15484.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23583.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 153
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29059.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 22970.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
MSDG73.36 27470.99 28680.49 23484.51 26665.80 18080.71 30186.13 25465.70 27665.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26774.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11585.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
SDMVSNet80.38 14980.18 13680.99 22389.03 14864.94 19980.45 30689.40 17375.19 10076.61 20289.98 14360.61 19087.69 30476.83 12783.55 20090.33 194
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20485.17 27257.64 21093.28 16261.34 27183.10 20991.91 141
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29168.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 150
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 26972.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29371.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22373.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28872.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
sd_testset77.70 21677.40 19978.60 26989.03 14860.02 27979.00 32485.83 25875.19 10076.61 20289.98 14354.81 22685.46 32262.63 25683.55 20090.33 194
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29667.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 11068.58 11978.70 32887.50 23056.38 36275.80 21986.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26466.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26466.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26169.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28176.18 21287.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26163.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27065.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19275.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19275.92 34792.27 8057.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 293
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28767.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26166.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24169.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25060.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28060.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 28950.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 25970.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5284.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6695.45 3092.70 110
agg_prior92.85 5971.94 5191.78 10684.41 7694.93 91
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11291.98 9063.28 14092.27 20564.60 24092.99 6887.27 287
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8092.74 7188.74 259
原ACMM184.35 11093.01 5768.79 10792.44 7363.96 29981.09 12391.57 10166.06 11895.45 6667.19 21994.82 4588.81 255
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5396.16 4494.50 5093.54 82
plane_prior790.08 10468.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior592.44 7395.38 7278.71 10586.32 15791.33 156
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 147
plane_prior189.90 112
n20.00 420
nn0.00 420
door-mid69.98 379
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
test1192.23 83
door69.44 382
HQP5-MVS66.98 158
BP-MVS77.47 119
HQP4-MVS77.24 18595.11 8491.03 166
HQP3-MVS92.19 8685.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 137
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22467.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404