This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 596.68 294.95 9
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7494.46 2467.93 8195.95 5184.20 4594.39 5293.23 81
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 795.65 2794.47 30
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2195.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1096.63 494.88 13
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4896.48 894.88 13
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 896.41 1293.33 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 896.41 1294.21 41
3Dnovator+77.84 485.48 5184.47 6488.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18593.37 5260.40 17896.75 2577.20 10793.73 6195.29 4
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 4994.44 2770.78 5596.61 3184.53 3994.89 4093.66 61
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5694.52 2068.81 7796.65 2984.53 3994.90 3994.00 49
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4394.32 3071.76 4696.93 1885.53 2995.79 2294.32 37
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6094.52 2069.09 7396.70 2684.37 4194.83 4394.03 48
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 494.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13292.83 1793.30 3279.67 1684.57 5992.27 7671.47 4995.02 8584.24 4493.46 6295.13 5
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7594.17 3467.45 8696.60 3283.06 5394.50 4994.07 46
X-MVStestdata80.37 13577.83 17288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7512.47 38167.45 8696.60 3283.06 5394.50 4994.07 46
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8794.25 3266.44 9596.24 4082.88 5794.28 5593.38 75
ACMMPcopyleft85.89 4685.39 5187.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11193.82 4764.33 11596.29 3882.67 6390.69 9293.23 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7294.40 2972.24 4296.28 3985.65 2895.30 3493.62 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2496.01 1794.79 20
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1596.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5393.99 4370.67 5796.82 2184.18 4695.01 3693.90 53
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2296.44 993.05 88
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3294.65 1967.31 8895.77 5384.80 3692.85 6692.84 95
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14292.36 2893.78 1878.97 2783.51 7891.20 10170.65 5895.15 7681.96 6694.89 4094.77 21
EC-MVSNet86.01 4286.38 3784.91 8489.31 13066.27 15692.32 2993.63 2179.37 1984.17 6691.88 8369.04 7695.43 6483.93 4793.77 6093.01 91
EPP-MVSNet83.40 7583.02 7584.57 9290.13 10064.47 19792.32 2990.73 12774.45 11479.35 12591.10 10469.05 7595.12 7772.78 15387.22 13294.13 43
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14885.22 4491.90 8269.47 6996.42 3683.28 5295.94 1994.35 35
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 16984.19 185.01 4595.18 1369.93 6497.20 1391.63 195.60 2894.99 8
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7393.95 4569.77 6796.01 4785.15 3094.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3432.83 386
HPM-MVS_fast85.35 5584.95 6086.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 8994.09 3762.60 13495.54 5980.93 7392.93 6593.57 70
CPTT-MVS83.73 6783.33 7184.92 8393.28 4970.86 6892.09 3690.38 13568.75 22279.57 12292.83 6660.60 17493.04 17480.92 7491.56 8390.86 157
APD-MVS_3200maxsize85.97 4485.88 4686.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3594.51 2365.80 10595.61 5683.04 5592.51 7093.53 73
SR-MVS-dyc-post85.77 4785.61 4986.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2565.00 11395.56 5782.75 5891.87 7892.50 106
RE-MVS-def85.48 5093.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2563.87 11982.75 5891.87 7892.50 106
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14588.58 2194.52 2073.36 3496.49 3584.26 4295.01 3692.70 97
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4174.83 2393.78 13587.63 2094.27 5693.65 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2396.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 11679.50 13285.03 7788.01 17968.97 9991.59 4292.00 8766.63 24675.15 22592.16 7857.70 19295.45 6263.52 23088.76 11590.66 164
IS-MVSNet83.15 7882.81 7884.18 10989.94 10963.30 22291.59 4288.46 20079.04 2479.49 12392.16 7865.10 11094.28 11167.71 19991.86 8094.95 9
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2595.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4675.75 2096.00 4887.80 1894.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba81.69 10180.74 10784.56 9387.45 19966.72 14991.26 4785.89 24574.66 10878.23 14990.56 11754.33 21794.91 8780.73 7883.54 18292.04 124
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6493.36 5371.44 5096.76 2480.82 7595.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 7083.14 7285.14 7390.08 10268.71 10791.25 4992.44 6979.12 2278.92 13191.00 11060.42 17695.38 6878.71 9286.32 14591.33 139
plane_prior291.25 4979.12 22
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3893.47 5173.02 3997.00 1784.90 3294.94 3894.10 44
API-MVS81.99 9581.23 9984.26 10790.94 8570.18 8191.10 5289.32 16571.51 16578.66 13788.28 17665.26 10895.10 8264.74 22691.23 8787.51 262
RRT_MVS80.35 13679.22 14183.74 13087.63 19365.46 17591.08 5388.92 18773.82 12676.44 19390.03 12649.05 27994.25 11676.84 11179.20 23691.51 133
EPNet83.72 6882.92 7786.14 5884.22 25069.48 8991.05 5485.27 25181.30 576.83 18091.65 8766.09 10095.56 5776.00 12293.85 5993.38 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5396.67 2887.67 1996.37 1494.09 45
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8191.07 10675.94 1895.19 7479.94 8494.38 5393.55 71
MSLP-MVS++85.43 5385.76 4884.45 9991.93 7270.24 7590.71 5792.86 5377.46 4684.22 6492.81 6867.16 9092.94 17680.36 8094.35 5490.16 183
3Dnovator76.31 583.38 7682.31 8586.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21092.83 6658.56 18594.72 9873.24 14992.71 6892.13 120
OpenMVScopyleft72.83 1079.77 14678.33 16184.09 11385.17 23469.91 8390.57 5990.97 12066.70 24272.17 25991.91 8154.70 21493.96 12361.81 25090.95 9088.41 247
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1795.99 1894.34 36
MVSFormer82.85 8482.05 8985.24 7187.35 20070.21 7690.50 6190.38 13568.55 22581.32 10289.47 14161.68 14993.46 15278.98 8990.26 9792.05 122
test_djsdf80.30 13779.32 13783.27 14383.98 25665.37 17990.50 6190.38 13568.55 22576.19 19888.70 16256.44 20393.46 15278.98 8980.14 22490.97 154
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
nrg03083.88 6583.53 6884.96 8086.77 21569.28 9590.46 6492.67 6174.79 10582.95 8291.33 9872.70 4093.09 17080.79 7779.28 23492.50 106
canonicalmvs85.91 4585.87 4786.04 5989.84 11169.44 9390.45 6593.00 4376.70 6888.01 2791.23 9973.28 3693.91 13081.50 6988.80 11494.77 21
plane_prior68.71 10790.38 6677.62 3886.16 149
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8694.23 3372.13 4497.09 1584.83 3595.37 3193.65 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 7382.80 7985.43 6890.25 9868.74 10590.30 6890.13 14576.33 7780.87 11092.89 6461.00 16694.20 11772.45 15890.97 8993.35 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7194.42 2867.87 8396.64 3082.70 6294.57 4893.66 61
LPG-MVS_test82.08 9281.27 9884.50 9589.23 13468.76 10390.22 6991.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
Anonymous2023121178.97 16977.69 18082.81 16690.54 9364.29 20190.11 7191.51 10765.01 26476.16 20288.13 18550.56 25893.03 17569.68 18277.56 25191.11 146
ACMM73.20 880.78 12479.84 12583.58 13389.31 13068.37 11589.99 7291.60 10470.28 18677.25 17089.66 13453.37 22793.53 14874.24 13882.85 19088.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 10880.57 11084.36 10289.42 12268.69 11089.97 7391.50 11074.46 11375.04 22990.41 12053.82 22394.54 10377.56 10382.91 18989.86 203
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf_final80.63 12679.35 13684.46 9889.36 12667.70 12989.85 7484.49 26173.19 14178.30 14788.94 15545.98 29894.56 10179.59 8684.48 16691.11 146
LFMVS81.82 9881.23 9983.57 13491.89 7363.43 22089.84 7581.85 29777.04 5783.21 7993.10 5752.26 23593.43 15471.98 15989.95 10493.85 54
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14384.86 5292.89 6476.22 1796.33 3784.89 3495.13 3594.40 33
MAR-MVS81.84 9780.70 10885.27 7091.32 7971.53 5389.82 7690.92 12169.77 19778.50 14186.21 23562.36 14094.52 10565.36 22092.05 7689.77 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3495.29 1270.86 5496.00 4888.78 1396.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 5984.96 5985.45 6792.07 7068.07 12289.78 7990.86 12582.48 284.60 5893.20 5669.35 7095.22 7371.39 16490.88 9193.07 87
alignmvs85.48 5185.32 5485.96 6189.51 11969.47 9089.74 8092.47 6876.17 7987.73 3091.46 9570.32 6093.78 13581.51 6888.95 11194.63 25
VDDNet81.52 10680.67 10984.05 11890.44 9564.13 20489.73 8185.91 24471.11 17183.18 8093.48 4950.54 25993.49 14973.40 14688.25 12294.54 29
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10291.43 9670.34 5997.23 1284.26 4293.36 6394.37 34
114514_t80.68 12579.51 13184.20 10894.09 3867.27 13989.64 8391.11 11858.75 32374.08 24090.72 11458.10 18895.04 8469.70 18189.42 10990.30 179
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9689.57 8493.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2795.72 2494.58 26
UGNet80.83 11879.59 13084.54 9488.04 17768.09 12189.42 8588.16 20276.95 5876.22 19789.46 14349.30 27493.94 12668.48 19490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 17377.83 17281.43 19585.17 23460.30 26389.41 8690.90 12271.21 16977.17 17688.73 16146.38 29393.21 15972.57 15678.96 23790.79 158
AdaColmapbinary80.58 13079.42 13384.06 11693.09 5468.91 10089.36 8788.97 18469.27 20675.70 20789.69 13357.20 19995.77 5363.06 23588.41 12187.50 263
PS-MVSNAJss82.07 9381.31 9784.34 10486.51 21867.27 13989.27 8891.51 10771.75 15779.37 12490.22 12463.15 12894.27 11277.69 10282.36 19791.49 136
jajsoiax79.29 16077.96 16783.27 14384.68 24466.57 15289.25 8990.16 14469.20 21075.46 21289.49 14045.75 30393.13 16876.84 11180.80 21490.11 187
mvs_tets79.13 16477.77 17683.22 14784.70 24366.37 15489.17 9090.19 14369.38 20475.40 21589.46 14344.17 31193.15 16676.78 11480.70 21690.14 184
HQP-NCC89.33 12789.17 9076.41 7177.23 172
ACMP_Plane89.33 12789.17 9076.41 7177.23 172
HQP-MVS82.61 8782.02 9084.37 10189.33 12766.98 14589.17 9092.19 8276.41 7177.23 17290.23 12360.17 17995.11 7977.47 10485.99 15291.03 151
LS3D76.95 21674.82 22983.37 14090.45 9467.36 13889.15 9486.94 23061.87 29969.52 28790.61 11651.71 24794.53 10446.38 34786.71 14088.21 249
OPM-MVS83.50 7282.95 7685.14 7388.79 15170.95 6589.13 9591.52 10677.55 4380.96 10991.75 8560.71 16994.50 10679.67 8586.51 14389.97 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.85.71 4985.33 5386.84 4691.34 7872.50 3589.07 9687.28 22476.41 7185.80 3790.22 12474.15 3195.37 7181.82 6791.88 7792.65 101
test_prior472.60 3389.01 97
GeoE81.71 10081.01 10483.80 12989.51 11964.45 19888.97 9888.73 19571.27 16878.63 13889.76 13266.32 9793.20 16269.89 17986.02 15193.74 59
Anonymous2024052980.19 14078.89 14884.10 11190.60 9164.75 19188.95 9990.90 12265.97 25480.59 11291.17 10349.97 26493.73 14169.16 18782.70 19493.81 57
VDD-MVS83.01 8382.36 8484.96 8091.02 8366.40 15388.91 10088.11 20377.57 4084.39 6293.29 5452.19 23693.91 13077.05 10988.70 11694.57 28
Effi-MVS+83.62 7183.08 7385.24 7188.38 16667.45 13488.89 10189.15 17575.50 9182.27 9088.28 17669.61 6894.45 10877.81 10187.84 12493.84 56
ACMH+68.96 1476.01 23074.01 23882.03 18388.60 15865.31 18088.86 10287.55 21870.25 18767.75 30087.47 19841.27 32893.19 16458.37 27975.94 27287.60 259
test_prior288.85 10375.41 9284.91 4993.54 4874.28 2983.31 5195.86 20
iter_conf0580.00 14478.70 15083.91 12787.84 18365.83 16588.84 10484.92 25671.61 16278.70 13488.94 15543.88 31394.56 10179.28 8784.28 16991.33 139
DP-MVS Recon83.11 8182.09 8886.15 5794.44 1970.92 6788.79 10592.20 8170.53 18279.17 12791.03 10964.12 11796.03 4568.39 19690.14 9991.50 135
Effi-MVS+-dtu80.03 14278.57 15484.42 10085.13 23868.74 10588.77 10688.10 20474.99 10174.97 23083.49 28557.27 19893.36 15573.53 14380.88 21291.18 144
TEST993.26 5072.96 2488.75 10791.89 9368.44 22885.00 4793.10 5774.36 2895.41 66
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10791.89 9368.69 22385.00 4793.10 5774.43 2695.41 6684.97 3195.71 2593.02 90
ETV-MVS84.90 6284.67 6285.59 6689.39 12468.66 11188.74 10992.64 6579.97 1484.10 6785.71 24469.32 7195.38 6880.82 7591.37 8592.72 96
PVSNet_Blended_VisFu82.62 8681.83 9484.96 8090.80 8969.76 8688.74 10991.70 10269.39 20378.96 12988.46 17165.47 10794.87 9374.42 13588.57 11790.24 181
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14188.69 11193.04 3879.64 1785.33 4292.54 7373.30 3594.50 10683.49 4991.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5272.57 3488.68 11291.84 9768.69 22384.87 5193.10 5774.43 2695.16 75
test_fmvsm_n_192085.29 5685.34 5285.13 7586.12 22269.93 8288.65 11390.78 12669.97 19288.27 2393.98 4471.39 5191.54 22088.49 1690.45 9493.91 51
ACMH67.68 1675.89 23173.93 23981.77 18888.71 15566.61 15188.62 11489.01 18169.81 19566.78 31286.70 22041.95 32791.51 22355.64 30078.14 24687.17 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 4885.29 5687.17 4293.49 4771.08 6088.58 11592.42 7268.32 23084.61 5793.48 4972.32 4196.15 4479.00 8895.43 3094.28 39
DP-MVS76.78 21874.57 23183.42 13793.29 4869.46 9288.55 11683.70 27363.98 27870.20 27588.89 15854.01 22294.80 9546.66 34481.88 20286.01 295
WR-MVS_H78.51 17978.49 15578.56 25588.02 17856.38 31088.43 11792.67 6177.14 5373.89 24187.55 19566.25 9889.24 26458.92 27373.55 30490.06 193
F-COLMAP76.38 22674.33 23682.50 17689.28 13266.95 14888.41 11889.03 17964.05 27666.83 31188.61 16646.78 29192.89 17757.48 28678.55 23987.67 257
GBi-Net78.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
test178.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
FMVSNet177.44 20676.12 21281.40 19786.81 21463.01 22888.39 11989.28 16670.49 18374.39 23787.28 20049.06 27891.11 23260.91 25778.52 24090.09 189
tttt051779.40 15777.91 16983.90 12888.10 17463.84 20888.37 12284.05 26971.45 16676.78 18289.12 15149.93 26794.89 9170.18 17583.18 18792.96 93
v7n78.97 16977.58 18383.14 15083.45 26565.51 17288.32 12391.21 11473.69 12972.41 25686.32 23457.93 18993.81 13469.18 18675.65 27590.11 187
COLMAP_ROBcopyleft66.92 1773.01 26170.41 27380.81 21587.13 20965.63 17088.30 12484.19 26862.96 28663.80 33587.69 19038.04 34192.56 18546.66 34474.91 29184.24 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs82.07 9382.42 8181.04 20988.80 15058.34 27888.26 12593.49 2676.93 5978.47 14391.04 10769.92 6592.34 19569.87 18084.97 15992.44 110
EIA-MVS83.31 7782.80 7984.82 8689.59 11565.59 17188.21 12692.68 6074.66 10878.96 12986.42 23169.06 7495.26 7275.54 12890.09 10093.62 68
PLCcopyleft70.83 1178.05 19176.37 21083.08 15391.88 7467.80 12688.19 12789.46 16164.33 27269.87 28488.38 17353.66 22493.58 14358.86 27482.73 19287.86 254
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 7483.45 6983.28 14292.74 6262.28 23888.17 12889.50 16075.22 9581.49 10192.74 7266.75 9195.11 7972.85 15291.58 8292.45 109
TAPA-MVS73.13 979.15 16377.94 16882.79 16989.59 11562.99 23188.16 12991.51 10765.77 25577.14 17791.09 10560.91 16793.21 15950.26 32787.05 13492.17 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 6483.87 6684.49 9784.12 25269.37 9488.15 13087.96 20870.01 19083.95 7093.23 5568.80 7891.51 22388.61 1489.96 10392.57 102
h-mvs3383.15 7882.19 8686.02 6090.56 9270.85 6988.15 13089.16 17476.02 8284.67 5491.39 9761.54 15295.50 6082.71 6075.48 27991.72 129
bld_raw_dy_0_6477.29 21175.98 21381.22 20385.04 24065.47 17488.14 13277.56 33069.20 21073.77 24289.40 14942.24 32488.85 27476.78 11481.64 20489.33 217
PS-CasMVS78.01 19378.09 16577.77 26787.71 18954.39 33088.02 13391.22 11377.50 4573.26 24688.64 16560.73 16888.41 27961.88 24873.88 30190.53 170
OMC-MVS82.69 8581.97 9284.85 8588.75 15367.42 13587.98 13490.87 12474.92 10279.72 12091.65 8762.19 14493.96 12375.26 13086.42 14493.16 85
v879.97 14579.02 14682.80 16784.09 25364.50 19687.96 13590.29 14274.13 12175.24 22386.81 21362.88 13393.89 13274.39 13675.40 28390.00 195
FC-MVSNet-test81.52 10682.02 9080.03 23088.42 16555.97 31587.95 13693.42 2977.10 5577.38 16790.98 11269.96 6391.79 21368.46 19584.50 16492.33 111
CP-MVSNet78.22 18478.34 16077.84 26587.83 18454.54 32887.94 13791.17 11677.65 3773.48 24488.49 17062.24 14388.43 27862.19 24474.07 29790.55 169
PAPM_NR83.02 8282.41 8284.82 8692.47 6766.37 15487.93 13891.80 9873.82 12677.32 16990.66 11567.90 8294.90 9070.37 17389.48 10893.19 84
PEN-MVS77.73 19977.69 18077.84 26587.07 21053.91 33387.91 13991.18 11577.56 4273.14 24888.82 16061.23 16189.17 26559.95 26372.37 31290.43 173
ECVR-MVScopyleft79.61 14879.26 13980.67 21890.08 10254.69 32687.89 14077.44 33374.88 10380.27 11492.79 6948.96 28192.45 18868.55 19392.50 7194.86 16
v1079.74 14778.67 15182.97 16084.06 25464.95 18687.88 14190.62 12973.11 14275.11 22686.56 22761.46 15594.05 12273.68 14175.55 27789.90 201
test250677.30 21076.49 20679.74 23690.08 10252.02 34287.86 14263.10 37174.88 10380.16 11792.79 6938.29 34092.35 19468.74 19292.50 7194.86 16
casdiffmvspermissive85.11 5885.14 5785.01 7887.20 20765.77 16987.75 14392.83 5577.84 3684.36 6392.38 7572.15 4393.93 12981.27 7190.48 9395.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 11780.31 11682.42 17787.85 18262.33 23687.74 14491.33 11280.55 877.99 15789.86 12965.23 10992.62 18267.05 20875.24 28892.30 113
EI-MVSNet-Vis-set84.19 6383.81 6785.31 6988.18 17167.85 12587.66 14589.73 15680.05 1382.95 8289.59 13870.74 5694.82 9480.66 7984.72 16293.28 80
UniMVSNet (Re)81.60 10581.11 10183.09 15288.38 16664.41 19987.60 14693.02 4278.42 3178.56 14088.16 18069.78 6693.26 15869.58 18376.49 26391.60 130
CNLPA78.08 18976.79 19981.97 18590.40 9671.07 6187.59 14784.55 26066.03 25372.38 25789.64 13557.56 19486.04 29759.61 26683.35 18488.79 238
DTE-MVSNet76.99 21476.80 19877.54 27286.24 22053.06 34187.52 14890.66 12877.08 5672.50 25488.67 16460.48 17589.52 25957.33 28970.74 32390.05 194
无先验87.48 14988.98 18260.00 31194.12 12067.28 20488.97 230
FMVSNet278.20 18677.21 18981.20 20487.60 19462.89 23287.47 15089.02 18071.63 15975.29 22287.28 20054.80 21091.10 23562.38 24279.38 23289.61 211
EI-MVSNet-UG-set83.81 6683.38 7085.09 7687.87 18167.53 13387.44 15189.66 15779.74 1582.23 9189.41 14770.24 6194.74 9779.95 8383.92 17292.99 92
thisisatest053079.40 15777.76 17784.31 10587.69 19165.10 18487.36 15284.26 26770.04 18977.42 16688.26 17849.94 26594.79 9670.20 17484.70 16393.03 89
CANet_DTU80.61 12779.87 12482.83 16485.60 22963.17 22787.36 15288.65 19676.37 7575.88 20488.44 17253.51 22693.07 17173.30 14789.74 10692.25 115
test111179.43 15579.18 14380.15 22889.99 10753.31 33987.33 15477.05 33675.04 10080.23 11692.77 7148.97 28092.33 19668.87 19092.40 7394.81 19
baseline84.93 6084.98 5884.80 8887.30 20565.39 17887.30 15592.88 5277.62 3884.04 6992.26 7771.81 4593.96 12381.31 7090.30 9695.03 7
UniMVSNet_ETH3D79.10 16578.24 16381.70 18986.85 21260.24 26487.28 15688.79 18974.25 11776.84 17990.53 11949.48 27091.56 21967.98 19782.15 19893.29 79
anonymousdsp78.60 17777.15 19082.98 15980.51 31767.08 14387.24 15789.53 15965.66 25775.16 22487.19 20652.52 23092.25 19877.17 10879.34 23389.61 211
UniMVSNet_NR-MVSNet81.88 9681.54 9682.92 16188.46 16363.46 21887.13 15892.37 7380.19 1178.38 14489.14 15071.66 4893.05 17270.05 17676.46 26492.25 115
DPM-MVS84.93 6084.29 6586.84 4690.20 9973.04 2287.12 15993.04 3869.80 19682.85 8591.22 10073.06 3896.02 4676.72 11694.63 4691.46 138
v114480.03 14279.03 14583.01 15783.78 25964.51 19487.11 16090.57 13171.96 15678.08 15586.20 23661.41 15693.94 12674.93 13177.23 25290.60 167
v2v48280.23 13879.29 13883.05 15583.62 26164.14 20387.04 16189.97 14973.61 13178.18 15287.22 20461.10 16493.82 13376.11 11976.78 26191.18 144
DU-MVS81.12 11380.52 11282.90 16287.80 18563.46 21887.02 16291.87 9579.01 2578.38 14489.07 15265.02 11193.05 17270.05 17676.46 26492.20 117
v14419279.47 15378.37 15982.78 17083.35 26663.96 20686.96 16390.36 13869.99 19177.50 16485.67 24760.66 17193.77 13774.27 13776.58 26290.62 165
Fast-Effi-MVS+-dtu78.02 19276.49 20682.62 17483.16 27466.96 14786.94 16487.45 22272.45 14871.49 26684.17 27454.79 21391.58 21867.61 20080.31 22189.30 218
v119279.59 15078.43 15883.07 15483.55 26364.52 19386.93 16590.58 13070.83 17577.78 16085.90 24059.15 18293.94 12673.96 14077.19 25490.76 160
EPNet_dtu75.46 23774.86 22877.23 27682.57 28854.60 32786.89 16683.09 28571.64 15866.25 31985.86 24255.99 20488.04 28354.92 30286.55 14289.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 167
VPA-MVSNet80.60 12880.55 11180.76 21688.07 17660.80 25586.86 16791.58 10575.67 8980.24 11589.45 14563.34 12290.25 24970.51 17279.22 23591.23 143
v192192079.22 16178.03 16682.80 16783.30 26863.94 20786.80 16990.33 13969.91 19477.48 16585.53 25058.44 18693.75 13973.60 14276.85 25990.71 163
IterMVS-LS80.06 14179.38 13482.11 18185.89 22463.20 22586.79 17089.34 16474.19 11875.45 21386.72 21666.62 9292.39 19172.58 15576.86 25890.75 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 24074.56 23277.86 26485.50 23157.10 29886.78 17186.09 24372.17 15471.53 26587.34 19963.01 13289.31 26356.84 29461.83 34987.17 270
Baseline_NR-MVSNet78.15 18878.33 16177.61 27085.79 22556.21 31386.78 17185.76 24773.60 13277.93 15887.57 19365.02 11188.99 26867.14 20775.33 28587.63 258
PAPR81.66 10480.89 10683.99 12390.27 9764.00 20586.76 17391.77 10168.84 22177.13 17889.50 13967.63 8494.88 9267.55 20188.52 11993.09 86
Vis-MVSNet (Re-imp)78.36 18278.45 15678.07 26388.64 15751.78 34686.70 17479.63 31974.14 12075.11 22690.83 11361.29 16089.75 25558.10 28291.60 8192.69 99
pmmvs674.69 24373.39 24578.61 25381.38 30657.48 29386.64 17587.95 20964.99 26570.18 27686.61 22350.43 26089.52 25962.12 24670.18 32588.83 236
v124078.99 16877.78 17582.64 17383.21 27063.54 21586.62 17690.30 14169.74 20077.33 16885.68 24657.04 20093.76 13873.13 15076.92 25690.62 165
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17792.02 8579.45 1885.88 3694.80 1668.07 8096.21 4186.69 2695.34 3293.23 81
旧先验286.56 17858.10 32787.04 3188.98 26974.07 139
FMVSNet377.88 19676.85 19780.97 21286.84 21362.36 23586.52 17988.77 19071.13 17075.34 21786.66 22254.07 22191.10 23562.72 23779.57 22889.45 214
dcpmvs_285.63 5086.15 4384.06 11691.71 7564.94 18786.47 18091.87 9573.63 13086.60 3393.02 6276.57 1591.87 21283.36 5092.15 7495.35 2
pm-mvs177.25 21276.68 20478.93 24984.22 25058.62 27686.41 18188.36 20171.37 16773.31 24588.01 18661.22 16289.15 26664.24 22873.01 30989.03 226
EI-MVSNet80.52 13179.98 12182.12 18084.28 24863.19 22686.41 18188.95 18574.18 11978.69 13587.54 19666.62 9292.43 18972.57 15680.57 21890.74 162
CVMVSNet72.99 26272.58 25274.25 30284.28 24850.85 35286.41 18183.45 27944.56 35973.23 24787.54 19649.38 27285.70 29965.90 21678.44 24286.19 290
NR-MVSNet80.23 13879.38 13482.78 17087.80 18563.34 22186.31 18491.09 11979.01 2572.17 25989.07 15267.20 8992.81 18166.08 21575.65 27592.20 117
v14878.72 17477.80 17481.47 19482.73 28461.96 24286.30 18588.08 20573.26 13976.18 19985.47 25262.46 13892.36 19371.92 16073.82 30290.09 189
新几何286.29 186
test_yl81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DCV-MVSNet81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
PVSNet_BlendedMVS80.60 12880.02 12082.36 17988.85 14565.40 17686.16 18992.00 8769.34 20578.11 15386.09 23966.02 10294.27 11271.52 16182.06 19987.39 264
MVS_Test83.15 7883.06 7483.41 13986.86 21163.21 22486.11 19092.00 8774.31 11582.87 8489.44 14670.03 6293.21 15977.39 10688.50 12093.81 57
BH-untuned79.47 15378.60 15382.05 18289.19 13665.91 16386.07 19188.52 19972.18 15375.42 21487.69 19061.15 16393.54 14760.38 26086.83 13886.70 283
MVS_111021_HR85.14 5784.75 6186.32 5491.65 7672.70 2985.98 19290.33 13976.11 8082.08 9291.61 9071.36 5294.17 11981.02 7292.58 6992.08 121
jason81.39 10980.29 11784.70 9086.63 21769.90 8485.95 19386.77 23263.24 28181.07 10889.47 14161.08 16592.15 20178.33 9790.07 10292.05 122
jason: jason.
test_040272.79 26470.44 27279.84 23488.13 17265.99 16185.93 19484.29 26565.57 25867.40 30685.49 25146.92 29092.61 18335.88 36574.38 29680.94 344
OurMVSNet-221017-074.26 24672.42 25479.80 23583.76 26059.59 27185.92 19586.64 23366.39 24866.96 30987.58 19239.46 33491.60 21765.76 21869.27 32888.22 248
hse-mvs281.72 9980.94 10584.07 11588.72 15467.68 13085.87 19687.26 22576.02 8284.67 5488.22 17961.54 15293.48 15082.71 6073.44 30691.06 149
EG-PatchMatch MVS74.04 24971.82 25880.71 21784.92 24167.42 13585.86 19788.08 20566.04 25264.22 33183.85 27835.10 34992.56 18557.44 28780.83 21382.16 338
AUN-MVS79.21 16277.60 18284.05 11888.71 15567.61 13185.84 19887.26 22569.08 21477.23 17288.14 18453.20 22993.47 15175.50 12973.45 30591.06 149
thres100view90076.50 22175.55 21979.33 24489.52 11856.99 29985.83 19983.23 28273.94 12376.32 19587.12 20851.89 24491.95 20748.33 33583.75 17589.07 220
CLD-MVS82.31 8981.65 9584.29 10688.47 16267.73 12885.81 20092.35 7475.78 8578.33 14686.58 22664.01 11894.35 10976.05 12187.48 12990.79 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 25571.26 26579.70 23785.08 23957.89 28685.57 20183.56 27671.03 17365.66 32185.88 24142.10 32592.57 18459.11 27163.34 34788.65 242
xiu_mvs_v1_base_debu80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base_debi80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
V4279.38 15978.24 16382.83 16481.10 31165.50 17385.55 20589.82 15271.57 16478.21 15086.12 23860.66 17193.18 16575.64 12575.46 28189.81 206
lupinMVS81.39 10980.27 11884.76 8987.35 20070.21 7685.55 20586.41 23662.85 28881.32 10288.61 16661.68 14992.24 19978.41 9690.26 9791.83 126
Fast-Effi-MVS+80.81 11979.92 12283.47 13588.85 14564.51 19485.53 20789.39 16370.79 17678.49 14285.06 26267.54 8593.58 14367.03 20986.58 14192.32 112
thres600view776.50 22175.44 22079.68 23889.40 12357.16 29685.53 20783.23 28273.79 12876.26 19687.09 20951.89 24491.89 21048.05 34083.72 17890.00 195
DELS-MVS85.41 5485.30 5585.77 6388.49 16167.93 12485.52 20993.44 2778.70 2883.63 7789.03 15474.57 2495.71 5580.26 8294.04 5893.66 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 22475.37 22479.55 24389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17589.07 220
thres40076.50 22175.37 22479.86 23389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17590.00 195
MVS_111021_LR82.61 8782.11 8784.11 11088.82 14871.58 5285.15 21286.16 24174.69 10780.47 11391.04 10762.29 14190.55 24680.33 8190.08 10190.20 182
baseline176.98 21576.75 20277.66 26888.13 17255.66 31885.12 21381.89 29573.04 14476.79 18188.90 15762.43 13987.78 28663.30 23471.18 32189.55 213
WR-MVS79.49 15279.22 14180.27 22688.79 15158.35 27785.06 21488.61 19878.56 2977.65 16288.34 17463.81 12190.66 24564.98 22477.22 25391.80 128
ET-MVSNet_ETH3D78.63 17676.63 20584.64 9186.73 21669.47 9085.01 21584.61 25969.54 20166.51 31786.59 22450.16 26291.75 21476.26 11884.24 17092.69 99
OpenMVS_ROBcopyleft64.09 1970.56 28168.19 28777.65 26980.26 31859.41 27385.01 21582.96 28758.76 32265.43 32382.33 29937.63 34391.23 23145.34 35276.03 27182.32 335
BH-RMVSNet79.61 14878.44 15783.14 15089.38 12565.93 16284.95 21787.15 22773.56 13378.19 15189.79 13156.67 20293.36 15559.53 26786.74 13990.13 185
BH-w/o78.21 18577.33 18880.84 21488.81 14965.13 18384.87 21887.85 21369.75 19874.52 23684.74 26761.34 15893.11 16958.24 28185.84 15484.27 316
TDRefinement67.49 30264.34 31176.92 27873.47 35861.07 25184.86 21982.98 28659.77 31358.30 35385.13 26026.06 36187.89 28447.92 34160.59 35481.81 340
Anonymous20240521178.25 18377.01 19281.99 18491.03 8260.67 25784.77 22083.90 27170.65 18180.00 11891.20 10141.08 33091.43 22565.21 22185.26 15793.85 54
TAMVS78.89 17177.51 18483.03 15687.80 18567.79 12784.72 22185.05 25467.63 23476.75 18387.70 18962.25 14290.82 24158.53 27887.13 13390.49 171
131476.53 22075.30 22680.21 22783.93 25762.32 23784.66 22288.81 18860.23 30970.16 27884.07 27655.30 20790.73 24467.37 20383.21 18687.59 261
MVS78.19 18776.99 19481.78 18785.66 22766.99 14484.66 22290.47 13355.08 34272.02 26185.27 25563.83 12094.11 12166.10 21489.80 10584.24 317
tfpnnormal74.39 24473.16 24878.08 26286.10 22358.05 28184.65 22487.53 21970.32 18571.22 26885.63 24854.97 20889.86 25343.03 35675.02 29086.32 287
TR-MVS77.44 20676.18 21181.20 20488.24 17063.24 22384.61 22586.40 23767.55 23677.81 15986.48 23054.10 22093.15 16657.75 28582.72 19387.20 269
AllTest70.96 27568.09 29079.58 24185.15 23663.62 21184.58 22679.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
FA-MVS(test-final)80.96 11579.91 12384.10 11188.30 16965.01 18584.55 22790.01 14873.25 14079.61 12187.57 19358.35 18794.72 9871.29 16586.25 14792.56 103
EU-MVSNet68.53 29867.61 29871.31 32478.51 33747.01 36284.47 22884.27 26642.27 36266.44 31884.79 26640.44 33283.76 31358.76 27668.54 33383.17 328
VNet82.21 9082.41 8281.62 19090.82 8860.93 25284.47 22889.78 15376.36 7684.07 6891.88 8364.71 11490.26 24870.68 17088.89 11293.66 61
xiu_mvs_v2_base81.69 10181.05 10283.60 13289.15 13768.03 12384.46 23090.02 14770.67 17981.30 10586.53 22963.17 12794.19 11875.60 12788.54 11888.57 244
VPNet78.69 17578.66 15278.76 25188.31 16855.72 31784.45 23186.63 23476.79 6378.26 14890.55 11859.30 18189.70 25766.63 21077.05 25590.88 156
PVSNet_Blended80.98 11480.34 11582.90 16288.85 14565.40 17684.43 23292.00 8767.62 23578.11 15385.05 26366.02 10294.27 11271.52 16189.50 10789.01 227
MVP-Stereo76.12 22874.46 23581.13 20785.37 23269.79 8584.42 23387.95 20965.03 26367.46 30485.33 25453.28 22891.73 21658.01 28383.27 18581.85 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 16677.70 17983.17 14987.60 19468.23 11984.40 23486.20 24067.49 23776.36 19486.54 22861.54 15290.79 24261.86 24987.33 13090.49 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 27268.51 28479.21 24783.04 27757.78 28984.35 23576.91 33772.90 14762.99 33882.86 29339.27 33591.09 23761.65 25152.66 36588.75 239
PS-MVSNAJ81.69 10181.02 10383.70 13189.51 11968.21 12084.28 23690.09 14670.79 17681.26 10685.62 24963.15 12894.29 11075.62 12688.87 11388.59 243
patch_mono-283.65 6984.54 6380.99 21090.06 10665.83 16584.21 23788.74 19471.60 16385.01 4592.44 7474.51 2583.50 31682.15 6592.15 7493.64 67
test22291.50 7768.26 11884.16 23883.20 28454.63 34379.74 11991.63 8958.97 18391.42 8486.77 281
testdata184.14 23975.71 86
c3_l78.75 17277.91 16981.26 20182.89 28161.56 24784.09 24089.13 17769.97 19275.56 20884.29 27366.36 9692.09 20373.47 14575.48 27990.12 186
MVSTER79.01 16777.88 17182.38 17883.07 27564.80 19084.08 24188.95 18569.01 21878.69 13587.17 20754.70 21492.43 18974.69 13280.57 21889.89 202
ab-mvs79.51 15178.97 14781.14 20688.46 16360.91 25383.84 24289.24 17170.36 18479.03 12888.87 15963.23 12690.21 25065.12 22282.57 19592.28 114
PAPM77.68 20376.40 20981.51 19387.29 20661.85 24383.78 24389.59 15864.74 26671.23 26788.70 16262.59 13593.66 14252.66 31387.03 13589.01 227
diffmvspermissive82.10 9181.88 9382.76 17283.00 27863.78 21083.68 24489.76 15472.94 14682.02 9389.85 13065.96 10490.79 24282.38 6487.30 13193.71 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 17877.76 17781.08 20882.66 28661.56 24783.65 24589.15 17568.87 22075.55 20983.79 28166.49 9492.03 20473.25 14876.39 26689.64 210
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26283.65 24587.72 21662.13 29773.05 24986.72 21662.58 13689.97 25262.11 24780.80 21490.59 168
PCF-MVS73.52 780.38 13378.84 14985.01 7887.71 18968.99 9883.65 24591.46 11163.00 28577.77 16190.28 12166.10 9995.09 8361.40 25388.22 12390.94 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 22974.27 23781.62 19083.20 27164.67 19283.60 24889.75 15569.75 19871.85 26287.09 20932.78 35292.11 20269.99 17880.43 22088.09 250
cl2278.07 19077.01 19281.23 20282.37 29361.83 24483.55 24987.98 20768.96 21975.06 22883.87 27761.40 15791.88 21173.53 14376.39 26689.98 198
XVG-OURS-SEG-HR80.81 11979.76 12683.96 12585.60 22968.78 10283.54 25090.50 13270.66 18076.71 18491.66 8660.69 17091.26 22976.94 11081.58 20591.83 126
IB-MVS68.01 1575.85 23273.36 24683.31 14184.76 24266.03 15883.38 25185.06 25370.21 18869.40 28881.05 31045.76 30294.66 10065.10 22375.49 27889.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 19477.15 19080.36 22387.57 19860.21 26583.37 25287.78 21566.11 25075.37 21687.06 21163.27 12490.48 24761.38 25482.43 19690.40 175
test_vis1_n_192075.52 23675.78 21474.75 29879.84 32457.44 29483.26 25385.52 24962.83 28979.34 12686.17 23745.10 30779.71 33278.75 9181.21 20987.10 276
Anonymous2024052168.80 29567.22 30273.55 30674.33 35254.11 33183.18 25485.61 24858.15 32661.68 34180.94 31330.71 35781.27 32757.00 29273.34 30885.28 304
eth_miper_zixun_eth77.92 19576.69 20381.61 19283.00 27861.98 24183.15 25589.20 17369.52 20274.86 23284.35 27261.76 14892.56 18571.50 16372.89 31090.28 180
FE-MVS77.78 19875.68 21684.08 11488.09 17566.00 16083.13 25687.79 21468.42 22978.01 15685.23 25745.50 30595.12 7759.11 27185.83 15591.11 146
cl____77.72 20076.76 20080.58 21982.49 29060.48 26083.09 25787.87 21169.22 20874.38 23885.22 25862.10 14591.53 22171.09 16675.41 28289.73 209
DIV-MVS_self_test77.72 20076.76 20080.58 21982.48 29160.48 26083.09 25787.86 21269.22 20874.38 23885.24 25662.10 14591.53 22171.09 16675.40 28389.74 208
thres20075.55 23574.47 23478.82 25087.78 18857.85 28783.07 25983.51 27772.44 15075.84 20584.42 26952.08 23991.75 21447.41 34283.64 17986.86 279
XVG-OURS80.41 13279.23 14083.97 12485.64 22869.02 9783.03 26090.39 13471.09 17277.63 16391.49 9454.62 21691.35 22775.71 12483.47 18391.54 132
miper_enhance_ethall77.87 19776.86 19680.92 21381.65 30061.38 24982.68 26188.98 18265.52 25975.47 21082.30 30065.76 10692.00 20672.95 15176.39 26689.39 215
mvs_anonymous79.42 15679.11 14480.34 22484.45 24757.97 28482.59 26287.62 21767.40 23876.17 20188.56 16968.47 7989.59 25870.65 17186.05 15093.47 74
baseline275.70 23373.83 24281.30 20083.26 26961.79 24582.57 26380.65 30666.81 23966.88 31083.42 28657.86 19192.19 20063.47 23179.57 22889.91 200
cascas76.72 21974.64 23082.99 15885.78 22665.88 16482.33 26489.21 17260.85 30572.74 25181.02 31147.28 28893.75 13967.48 20285.02 15889.34 216
RPSCF73.23 25971.46 26078.54 25682.50 28959.85 26782.18 26582.84 28858.96 32071.15 26989.41 14745.48 30684.77 30858.82 27571.83 31791.02 153
thisisatest051577.33 20975.38 22383.18 14885.27 23363.80 20982.11 26683.27 28165.06 26275.91 20383.84 27949.54 26994.27 11267.24 20586.19 14891.48 137
pmmvs-eth3d70.50 28267.83 29478.52 25777.37 34166.18 15781.82 26781.51 29958.90 32163.90 33480.42 31842.69 31986.28 29658.56 27765.30 34383.11 330
MS-PatchMatch73.83 25172.67 25177.30 27583.87 25866.02 15981.82 26784.66 25861.37 30368.61 29582.82 29447.29 28788.21 28059.27 26884.32 16877.68 353
pmmvs571.55 27070.20 27675.61 28777.83 33856.39 30981.74 26980.89 30257.76 32967.46 30484.49 26849.26 27585.32 30457.08 29175.29 28685.11 309
Test_1112_low_res76.40 22575.44 22079.27 24589.28 13258.09 28081.69 27087.07 22859.53 31672.48 25586.67 22161.30 15989.33 26260.81 25980.15 22390.41 174
IterMVS74.29 24572.94 25078.35 25981.53 30363.49 21781.58 27182.49 29068.06 23269.99 28183.69 28351.66 24885.54 30065.85 21771.64 31886.01 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 23873.87 24180.11 22982.69 28564.85 18981.57 27283.47 27869.16 21270.49 27284.15 27551.95 24288.15 28169.23 18572.14 31587.34 266
test_vis1_n69.85 28969.21 28071.77 31872.66 36255.27 32281.48 27376.21 34052.03 34975.30 22183.20 28928.97 35876.22 35274.60 13378.41 24483.81 323
pmmvs474.03 25071.91 25780.39 22281.96 29668.32 11681.45 27482.14 29359.32 31769.87 28485.13 26052.40 23388.13 28260.21 26274.74 29384.73 313
GA-MVS76.87 21775.17 22781.97 18582.75 28362.58 23381.44 27586.35 23972.16 15574.74 23382.89 29246.20 29792.02 20568.85 19181.09 21091.30 142
test_fmvs1_n70.86 27770.24 27572.73 31372.51 36355.28 32181.27 27679.71 31851.49 35278.73 13384.87 26427.54 36077.02 34476.06 12079.97 22685.88 298
test_fmvs170.93 27670.52 27072.16 31673.71 35555.05 32380.82 27778.77 32451.21 35378.58 13984.41 27031.20 35676.94 34575.88 12380.12 22584.47 315
CostFormer75.24 24173.90 24079.27 24582.65 28758.27 27980.80 27882.73 28961.57 30075.33 22083.13 29055.52 20591.07 23864.98 22478.34 24588.45 245
MIMVSNet168.58 29766.78 30573.98 30480.07 32151.82 34580.77 27984.37 26264.40 27059.75 34982.16 30336.47 34583.63 31542.73 35770.33 32486.48 286
CL-MVSNet_self_test72.37 26771.46 26075.09 29379.49 33153.53 33580.76 28085.01 25569.12 21370.51 27182.05 30457.92 19084.13 31152.27 31566.00 34187.60 259
MSDG73.36 25770.99 26680.49 22184.51 24665.80 16780.71 28186.13 24265.70 25665.46 32283.74 28244.60 30890.91 24051.13 32076.89 25784.74 312
tpm273.26 25871.46 26078.63 25283.34 26756.71 30480.65 28280.40 31156.63 33673.55 24382.02 30551.80 24691.24 23056.35 29878.42 24387.95 251
XXY-MVS75.41 23975.56 21874.96 29483.59 26257.82 28880.59 28383.87 27266.54 24774.93 23188.31 17563.24 12580.09 33162.16 24576.85 25986.97 277
test_cas_vis1_n_192073.76 25273.74 24373.81 30575.90 34559.77 26880.51 28482.40 29158.30 32581.62 10085.69 24544.35 31076.41 35076.29 11778.61 23885.23 305
EGC-MVSNET52.07 33647.05 34067.14 33983.51 26460.71 25680.50 28567.75 3620.07 3840.43 38575.85 35024.26 36481.54 32528.82 37062.25 34859.16 369
SDMVSNet80.38 13380.18 11980.99 21089.03 14364.94 18780.45 28689.40 16275.19 9776.61 18889.98 12760.61 17387.69 28776.83 11383.55 18090.33 177
HyFIR lowres test77.53 20575.40 22283.94 12689.59 11566.62 15080.36 28788.64 19756.29 33876.45 19085.17 25957.64 19393.28 15761.34 25583.10 18891.91 125
D2MVS74.82 24273.21 24779.64 24079.81 32562.56 23480.34 28887.35 22364.37 27168.86 29282.66 29646.37 29490.10 25167.91 19881.24 20886.25 288
TinyColmap67.30 30564.81 30974.76 29781.92 29856.68 30580.29 28981.49 30060.33 30756.27 36083.22 28724.77 36387.66 28845.52 35069.47 32779.95 348
LCM-MVSNet-Re77.05 21376.94 19577.36 27387.20 20751.60 34780.06 29080.46 31075.20 9667.69 30186.72 21662.48 13788.98 26963.44 23289.25 11091.51 133
test_fmvs268.35 30067.48 30070.98 32669.50 36651.95 34480.05 29176.38 33949.33 35574.65 23584.38 27123.30 36675.40 35774.51 13475.17 28985.60 300
FMVSNet569.50 29067.96 29174.15 30382.97 28055.35 32080.01 29282.12 29462.56 29363.02 33681.53 30736.92 34481.92 32348.42 33474.06 29885.17 308
SCA74.22 24772.33 25579.91 23284.05 25562.17 23979.96 29379.29 32266.30 24972.38 25780.13 32051.95 24288.60 27659.25 26977.67 25088.96 231
tpmrst72.39 26572.13 25673.18 31180.54 31649.91 35679.91 29479.08 32363.11 28371.69 26479.95 32255.32 20682.77 32165.66 21973.89 30086.87 278
PatchmatchNetpermissive73.12 26071.33 26378.49 25883.18 27260.85 25479.63 29578.57 32564.13 27371.73 26379.81 32551.20 25185.97 29857.40 28876.36 26988.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 26670.90 26776.80 28088.60 15867.38 13779.53 29676.17 34162.75 29169.36 28982.00 30645.51 30484.89 30753.62 30880.58 21778.12 352
CMPMVSbinary51.72 2170.19 28568.16 28876.28 28273.15 36057.55 29279.47 29783.92 27048.02 35656.48 35984.81 26543.13 31686.42 29562.67 24081.81 20384.89 310
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND75.38 29181.59 30255.80 31679.32 29869.63 35767.19 30773.67 35443.24 31588.90 27350.41 32284.50 16481.45 341
LTVRE_ROB69.57 1376.25 22774.54 23381.41 19688.60 15864.38 20079.24 29989.12 17870.76 17869.79 28687.86 18749.09 27793.20 16256.21 29980.16 22286.65 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 26771.71 25974.35 30182.19 29452.00 34379.22 30077.29 33464.56 26872.95 25083.68 28451.35 24983.26 31958.33 28075.80 27387.81 255
ppachtmachnet_test70.04 28667.34 30178.14 26179.80 32661.13 25079.19 30180.59 30759.16 31965.27 32479.29 32646.75 29287.29 28949.33 33166.72 33686.00 297
USDC70.33 28368.37 28576.21 28380.60 31556.23 31279.19 30186.49 23560.89 30461.29 34285.47 25231.78 35589.47 26153.37 31076.21 27082.94 334
sd_testset77.70 20277.40 18578.60 25489.03 14360.02 26679.00 30385.83 24675.19 9776.61 18889.98 12754.81 20985.46 30262.63 24183.55 18090.33 177
PM-MVS66.41 31064.14 31273.20 31073.92 35456.45 30778.97 30464.96 36963.88 28064.72 32880.24 31919.84 36983.44 31766.24 21164.52 34579.71 349
tpmvs71.09 27469.29 27976.49 28182.04 29556.04 31478.92 30581.37 30164.05 27667.18 30878.28 33549.74 26889.77 25449.67 33072.37 31283.67 324
test_post178.90 3065.43 38348.81 28385.44 30359.25 269
CHOSEN 1792x268877.63 20475.69 21583.44 13689.98 10868.58 11378.70 30787.50 22056.38 33775.80 20686.84 21258.67 18491.40 22661.58 25285.75 15690.34 176
test-LLR72.94 26372.43 25374.48 29981.35 30758.04 28278.38 30877.46 33166.66 24369.95 28279.00 32948.06 28479.24 33366.13 21284.83 16086.15 291
TESTMET0.1,169.89 28869.00 28272.55 31479.27 33456.85 30078.38 30874.71 34757.64 33068.09 29877.19 34237.75 34276.70 34663.92 22984.09 17184.10 320
test-mter71.41 27170.39 27474.48 29981.35 30758.04 28278.38 30877.46 33160.32 30869.95 28279.00 32936.08 34779.24 33366.13 21284.83 16086.15 291
Anonymous2023120668.60 29667.80 29571.02 32580.23 31950.75 35378.30 31180.47 30956.79 33566.11 32082.63 29746.35 29578.95 33543.62 35575.70 27483.36 327
tpm cat170.57 28068.31 28677.35 27482.41 29257.95 28578.08 31280.22 31452.04 34868.54 29677.66 34052.00 24187.84 28551.77 31672.07 31686.25 288
our_test_369.14 29267.00 30375.57 28879.80 32658.80 27477.96 31377.81 32859.55 31562.90 33978.25 33647.43 28683.97 31251.71 31767.58 33583.93 322
KD-MVS_self_test68.81 29467.59 29972.46 31574.29 35345.45 36477.93 31487.00 22963.12 28263.99 33378.99 33142.32 32184.77 30856.55 29764.09 34687.16 272
WTY-MVS75.65 23475.68 21675.57 28886.40 21956.82 30177.92 31582.40 29165.10 26176.18 19987.72 18863.13 13180.90 32860.31 26181.96 20089.00 229
test20.0367.45 30366.95 30468.94 33275.48 34944.84 36977.50 31677.67 32966.66 24363.01 33783.80 28047.02 28978.40 33742.53 35868.86 33283.58 325
EPMVS69.02 29368.16 28871.59 31979.61 32949.80 35877.40 31766.93 36362.82 29070.01 27979.05 32745.79 30177.86 34156.58 29675.26 28787.13 273
test_fmvs363.36 32161.82 32467.98 33762.51 37346.96 36377.37 31874.03 34945.24 35867.50 30378.79 33212.16 37772.98 36572.77 15466.02 34083.99 321
gg-mvs-nofinetune69.95 28767.96 29175.94 28483.07 27554.51 32977.23 31970.29 35563.11 28370.32 27462.33 36443.62 31488.69 27553.88 30787.76 12584.62 314
MDTV_nov1_ep1369.97 27783.18 27253.48 33677.10 32080.18 31560.45 30669.33 29080.44 31748.89 28286.90 29151.60 31878.51 241
LF4IMVS64.02 31962.19 32369.50 33170.90 36453.29 34076.13 32177.18 33552.65 34758.59 35180.98 31223.55 36576.52 34853.06 31266.66 33778.68 351
sss73.60 25373.64 24473.51 30782.80 28255.01 32476.12 32281.69 29862.47 29474.68 23485.85 24357.32 19778.11 33960.86 25880.93 21187.39 264
testgi66.67 30866.53 30667.08 34075.62 34841.69 37575.93 32376.50 33866.11 25065.20 32786.59 22435.72 34874.71 35943.71 35473.38 30784.84 311
CR-MVSNet73.37 25571.27 26479.67 23981.32 30965.19 18175.92 32480.30 31259.92 31272.73 25281.19 30852.50 23186.69 29259.84 26477.71 24887.11 274
RPMNet73.51 25470.49 27182.58 17581.32 30965.19 18175.92 32492.27 7657.60 33172.73 25276.45 34552.30 23495.43 6448.14 33977.71 24887.11 274
MIMVSNet70.69 27969.30 27874.88 29584.52 24556.35 31175.87 32679.42 32064.59 26767.76 29982.41 29841.10 32981.54 32546.64 34681.34 20686.75 282
test0.0.03 168.00 30167.69 29768.90 33377.55 33947.43 36075.70 32772.95 35266.66 24366.56 31382.29 30148.06 28475.87 35444.97 35374.51 29583.41 326
dmvs_re71.14 27370.58 26972.80 31281.96 29659.68 26975.60 32879.34 32168.55 22569.27 29180.72 31649.42 27176.54 34752.56 31477.79 24782.19 337
dmvs_testset62.63 32264.11 31358.19 35078.55 33624.76 38575.28 32965.94 36667.91 23360.34 34576.01 34753.56 22573.94 36331.79 36867.65 33475.88 357
PMMVS69.34 29168.67 28371.35 32375.67 34762.03 24075.17 33073.46 35050.00 35468.68 29379.05 32752.07 24078.13 33861.16 25682.77 19173.90 359
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32173.48 35751.47 34975.16 33185.19 25265.20 26060.78 34480.93 31542.35 32077.20 34357.12 29053.69 36485.44 302
MDTV_nov1_ep13_2view37.79 37775.16 33155.10 34166.53 31449.34 27353.98 30687.94 252
pmmvs357.79 32854.26 33268.37 33664.02 37256.72 30375.12 33365.17 36740.20 36452.93 36469.86 36120.36 36875.48 35645.45 35155.25 36372.90 361
dp66.80 30665.43 30870.90 32779.74 32848.82 35975.12 33374.77 34559.61 31464.08 33277.23 34142.89 31780.72 32948.86 33366.58 33883.16 329
Patchmtry70.74 27869.16 28175.49 29080.72 31354.07 33274.94 33580.30 31258.34 32470.01 27981.19 30852.50 23186.54 29353.37 31071.09 32285.87 299
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 22156.44 30874.37 33680.73 30562.06 29870.17 27782.23 30242.86 31883.31 31854.77 30384.45 16787.32 267
MDA-MVSNet-bldmvs66.68 30763.66 31675.75 28579.28 33360.56 25973.92 33778.35 32664.43 26950.13 36679.87 32444.02 31283.67 31446.10 34856.86 35783.03 332
UnsupCasMVSNet_bld63.70 32061.53 32670.21 32973.69 35651.39 35072.82 33881.89 29555.63 34057.81 35571.80 35738.67 33778.61 33649.26 33252.21 36680.63 345
PatchT68.46 29967.85 29370.29 32880.70 31443.93 37172.47 33974.88 34460.15 31070.55 27076.57 34449.94 26581.59 32450.58 32174.83 29285.34 303
miper_lstm_enhance74.11 24873.11 24977.13 27780.11 32059.62 27072.23 34086.92 23166.76 24170.40 27382.92 29156.93 20182.92 32069.06 18872.63 31188.87 234
MVS-HIRNet59.14 32757.67 33063.57 34481.65 30043.50 37271.73 34165.06 36839.59 36651.43 36557.73 37038.34 33982.58 32239.53 36273.95 29964.62 366
APD_test153.31 33349.93 33863.42 34565.68 37050.13 35571.59 34266.90 36434.43 37140.58 37071.56 3588.65 38276.27 35134.64 36755.36 36263.86 367
Patchmatch-RL test70.24 28467.78 29677.61 27077.43 34059.57 27271.16 34370.33 35462.94 28768.65 29472.77 35550.62 25785.49 30169.58 18366.58 33887.77 256
test1236.12 3538.11 3560.14 3670.06 3910.09 39171.05 3440.03 3920.04 3860.25 3871.30 3860.05 3900.03 3870.21 3850.01 3850.29 382
ANet_high50.57 33846.10 34263.99 34348.67 38439.13 37670.99 34580.85 30361.39 30231.18 37357.70 37117.02 37273.65 36431.22 36915.89 38179.18 350
KD-MVS_2432*160066.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
miper_refine_blended66.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
test_vis1_rt60.28 32658.42 32965.84 34167.25 36955.60 31970.44 34860.94 37344.33 36059.00 35066.64 36224.91 36268.67 37062.80 23669.48 32673.25 360
testmvs6.04 3548.02 3570.10 3680.08 3900.03 39269.74 3490.04 3910.05 3850.31 3861.68 3850.02 3910.04 3860.24 3840.02 3840.25 383
N_pmnet52.79 33453.26 33351.40 35878.99 3357.68 38969.52 3503.89 38951.63 35157.01 35774.98 35240.83 33165.96 37337.78 36464.67 34480.56 347
FPMVS53.68 33251.64 33459.81 34965.08 37151.03 35169.48 35169.58 35841.46 36340.67 36972.32 35616.46 37370.00 36924.24 37665.42 34258.40 371
DSMNet-mixed57.77 32956.90 33160.38 34867.70 36835.61 37869.18 35253.97 37832.30 37457.49 35679.88 32340.39 33368.57 37138.78 36372.37 31276.97 354
new-patchmatchnet61.73 32461.73 32561.70 34672.74 36124.50 38669.16 35378.03 32761.40 30156.72 35875.53 35138.42 33876.48 34945.95 34957.67 35684.13 319
YYNet165.03 31562.91 32071.38 32075.85 34656.60 30669.12 35474.66 34857.28 33354.12 36277.87 33845.85 30074.48 36049.95 32861.52 35183.05 331
MDA-MVSNet_test_wron65.03 31562.92 31971.37 32175.93 34456.73 30269.09 35574.73 34657.28 33354.03 36377.89 33745.88 29974.39 36149.89 32961.55 35082.99 333
PVSNet_057.27 2061.67 32559.27 32868.85 33479.61 32957.44 29468.01 35673.44 35155.93 33958.54 35270.41 36044.58 30977.55 34247.01 34335.91 37471.55 362
ADS-MVSNet266.20 31463.33 31774.82 29679.92 32258.75 27567.55 35775.19 34353.37 34565.25 32575.86 34842.32 32180.53 33041.57 35968.91 33085.18 306
ADS-MVSNet64.36 31862.88 32168.78 33579.92 32247.17 36167.55 35771.18 35353.37 34565.25 32575.86 34842.32 32173.99 36241.57 35968.91 33085.18 306
mvsany_test162.30 32361.26 32765.41 34269.52 36554.86 32566.86 35949.78 38046.65 35768.50 29783.21 28849.15 27666.28 37256.93 29360.77 35275.11 358
LCM-MVSNet54.25 33049.68 33967.97 33853.73 38145.28 36766.85 36080.78 30435.96 37039.45 37162.23 3668.70 38178.06 34048.24 33851.20 36780.57 346
test_vis3_rt49.26 33947.02 34156.00 35354.30 37845.27 36866.76 36148.08 38136.83 36844.38 36853.20 3737.17 38464.07 37456.77 29555.66 36058.65 370
testf145.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
APD_test245.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
JIA-IIPM66.32 31162.82 32276.82 27977.09 34261.72 24665.34 36475.38 34258.04 32864.51 32962.32 36542.05 32686.51 29451.45 31969.22 32982.21 336
PMVScopyleft37.38 2244.16 34340.28 34655.82 35540.82 38642.54 37365.12 36563.99 37034.43 37124.48 37757.12 3723.92 38776.17 35317.10 37955.52 36148.75 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 33750.29 33752.78 35768.58 36734.94 38063.71 36656.63 37739.73 36544.95 36765.47 36321.93 36758.48 37634.98 36656.62 35864.92 365
mvsany_test353.99 33151.45 33561.61 34755.51 37744.74 37063.52 36745.41 38443.69 36158.11 35476.45 34517.99 37063.76 37554.77 30347.59 37076.34 356
Patchmatch-test64.82 31763.24 31869.57 33079.42 33249.82 35763.49 36869.05 36051.98 35059.95 34880.13 32050.91 25370.98 36640.66 36173.57 30387.90 253
ambc75.24 29273.16 35950.51 35463.05 36987.47 22164.28 33077.81 33917.80 37189.73 25657.88 28460.64 35385.49 301
test_f52.09 33550.82 33655.90 35453.82 38042.31 37459.42 37058.31 37636.45 36956.12 36170.96 35912.18 37657.79 37753.51 30956.57 35967.60 363
CHOSEN 280x42066.51 30964.71 31071.90 31781.45 30463.52 21657.98 37168.95 36153.57 34462.59 34076.70 34346.22 29675.29 35855.25 30179.68 22776.88 355
E-PMN31.77 34530.64 34835.15 36252.87 38227.67 38257.09 37247.86 38224.64 37716.40 38233.05 37811.23 37854.90 37914.46 38118.15 37922.87 378
EMVS30.81 34729.65 34934.27 36350.96 38325.95 38456.58 37346.80 38324.01 37815.53 38330.68 37912.47 37554.43 38012.81 38217.05 38022.43 379
PMMVS240.82 34438.86 34746.69 35953.84 37916.45 38748.61 37449.92 37937.49 36731.67 37260.97 3678.14 38356.42 37828.42 37130.72 37667.19 364
wuyk23d16.82 35115.94 35419.46 36558.74 37431.45 38139.22 3753.74 3906.84 3816.04 3842.70 3841.27 38924.29 38410.54 38314.40 3832.63 381
tmp_tt18.61 35021.40 35310.23 3664.82 38910.11 38834.70 37630.74 3871.48 38323.91 37926.07 38028.42 35913.41 38527.12 37215.35 3827.17 380
Gipumacopyleft45.18 34241.86 34555.16 35677.03 34351.52 34832.50 37780.52 30832.46 37327.12 37635.02 3779.52 38075.50 35522.31 37760.21 35538.45 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 34825.89 35243.81 36044.55 38535.46 37928.87 37839.07 38518.20 37918.58 38140.18 3762.68 38847.37 38217.07 38023.78 37848.60 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 34629.28 35038.23 36127.03 3886.50 39020.94 37962.21 3724.05 38222.35 38052.50 37413.33 37447.58 38127.04 37334.04 37560.62 368
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k19.96 34926.61 3510.00 3690.00 3920.00 3930.00 38089.26 1690.00 3870.00 38888.61 16661.62 1510.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.26 3557.02 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38763.15 1280.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.23 3529.64 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38886.72 2160.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
PC_three_145268.21 23192.02 1294.00 4182.09 595.98 5084.58 3896.68 294.95 9
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS94.38 2572.22 4392.67 6170.98 17487.75 2994.07 3874.01 3296.70 2684.66 3794.84 42
IU-MVS95.30 271.25 5692.95 5166.81 23992.39 688.94 1296.63 494.85 18
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1096.58 694.26 40
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 596.57 794.67 23
GSMVS88.96 231
test_part295.06 872.65 3191.80 13
sam_mvs151.32 25088.96 231
sam_mvs50.01 263
MTGPAbinary92.02 85
test_post5.46 38250.36 26184.24 310
patchmatchnet-post74.00 35351.12 25288.60 276
gm-plane-assit81.40 30553.83 33462.72 29280.94 31392.39 19163.40 233
test9_res84.90 3295.70 2692.87 94
agg_prior282.91 5695.45 2992.70 97
agg_prior92.85 5971.94 5091.78 10084.41 6194.93 86
TestCases79.58 24185.15 23663.62 21179.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 51
新几何183.42 13793.13 5270.71 7085.48 25057.43 33281.80 9791.98 8063.28 12392.27 19764.60 22792.99 6487.27 268
旧先验191.96 7165.79 16886.37 23893.08 6169.31 7292.74 6788.74 240
原ACMM184.35 10393.01 5768.79 10192.44 6963.96 27981.09 10791.57 9166.06 10195.45 6267.19 20694.82 4488.81 237
testdata291.01 23962.37 243
segment_acmp73.08 37
testdata79.97 23190.90 8664.21 20284.71 25759.27 31885.40 4192.91 6362.02 14789.08 26768.95 18991.37 8586.63 285
test1286.80 4892.63 6470.70 7191.79 9982.71 8871.67 4796.16 4394.50 4993.54 72
plane_prior790.08 10268.51 114
plane_prior689.84 11168.70 10960.42 176
plane_prior592.44 6995.38 6878.71 9286.32 14591.33 139
plane_prior491.00 110
plane_prior368.60 11278.44 3078.92 131
plane_prior189.90 110
n20.00 393
nn0.00 393
door-mid69.98 356
lessismore_v078.97 24881.01 31257.15 29765.99 36561.16 34382.82 29439.12 33691.34 22859.67 26546.92 37188.43 246
LGP-MVS_train84.50 9589.23 13468.76 10391.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
test1192.23 79
door69.44 359
HQP5-MVS66.98 145
BP-MVS77.47 104
HQP4-MVS77.24 17195.11 7991.03 151
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 179
NP-MVS89.62 11468.32 11690.24 122
ACMMP++_ref81.95 201
ACMMP++81.25 207
Test By Simon64.33 115
ITE_SJBPF78.22 26081.77 29960.57 25883.30 28069.25 20767.54 30287.20 20536.33 34687.28 29054.34 30574.62 29486.80 280
DeepMVS_CXcopyleft27.40 36440.17 38726.90 38324.59 38817.44 38023.95 37848.61 3759.77 37926.48 38318.06 37824.47 37728.83 377