This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 891.24 189.68 15076.68 297.29 195.35 1582.87 2091.58 1297.22 379.93 599.10 983.12 9397.64 297.94 1
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
MM90.87 291.52 288.92 1392.12 9571.10 2597.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 12
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 797.01 494.40 5088.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS89.94 990.36 1088.70 1696.45 1269.38 5196.89 594.44 4671.65 21192.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test072696.40 1569.99 3696.76 794.33 5471.92 19791.89 1097.11 673.77 21
DeepPCF-MVS81.17 189.72 1091.38 484.72 12893.00 7258.16 30196.72 894.41 4886.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
DVP-MVScopyleft89.41 1389.73 1488.45 2296.40 1569.99 3696.64 994.52 4271.92 19790.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1696.45 1270.43 3296.64 994.37 5299.15 291.91 2794.90 2196.51 21
lupinMVS87.74 2487.77 2687.63 3589.24 16571.18 2296.57 1192.90 10682.70 2387.13 3995.27 5664.99 7595.80 14389.34 4191.80 7095.93 40
CANet89.61 1289.99 1288.46 2194.39 3969.71 4796.53 1293.78 6686.89 689.68 2795.78 4065.94 6699.10 992.99 1693.91 4096.58 18
MVS_030490.01 890.50 988.53 2090.14 14170.94 2696.47 1395.72 1087.33 489.60 2896.26 3068.44 4598.74 2495.82 494.72 3095.90 42
CNVR-MVS90.32 690.89 788.61 1996.76 870.65 2996.47 1394.83 3084.83 1189.07 3196.80 1970.86 3699.06 1592.64 1995.71 1096.12 35
NCCC89.07 1589.46 1587.91 2596.60 1069.05 6096.38 1594.64 3984.42 1286.74 4396.20 3266.56 6298.76 2389.03 4694.56 3295.92 41
PVSNet_Blended86.73 3986.86 3986.31 7693.76 4967.53 10096.33 1693.61 7682.34 2781.00 9493.08 11363.19 10497.29 7687.08 6191.38 7894.13 116
SteuartSystems-ACMMP86.82 3886.90 3886.58 6590.42 13566.38 12896.09 1793.87 6477.73 9784.01 7195.66 4363.39 10097.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
test_yl84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
DCV-MVSNet84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9676.72 195.75 2093.26 9083.86 1489.55 2996.06 3653.55 21297.89 4391.10 3193.31 5194.54 101
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 11976.43 395.74 2193.12 9883.53 1789.55 2995.95 3853.45 21697.68 5091.07 3292.62 5894.54 101
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 2895.86 2768.32 7695.74 2194.11 6083.82 1583.49 7396.19 3364.53 8498.44 3183.42 9294.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet86.20 4685.65 5687.84 2793.92 4669.99 3695.73 2395.94 778.43 8786.00 4993.07 11458.22 15697.00 9485.22 7484.33 14296.52 20
jason86.40 4286.17 4687.11 4786.16 23770.54 3195.71 2492.19 13282.00 3084.58 6494.34 8761.86 11895.53 16387.76 5290.89 8495.27 67
jason: jason.
alignmvs87.28 3186.97 3688.24 2491.30 12071.14 2495.61 2593.56 7879.30 7087.07 4195.25 5868.43 4696.93 10587.87 5184.33 14296.65 14
IB-MVS77.80 482.18 11880.46 13887.35 4289.14 16770.28 3495.59 2695.17 2178.85 8170.19 22185.82 23870.66 3797.67 5172.19 17866.52 28494.09 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS-test86.14 4887.01 3583.52 16692.63 8459.36 28995.49 2791.92 14180.09 5785.46 5695.53 4761.82 12195.77 14686.77 6593.37 5095.41 54
CLD-MVS82.73 11082.35 11083.86 15787.90 20067.65 9695.45 2892.18 13385.06 1072.58 19092.27 13452.46 22395.78 14484.18 8579.06 18988.16 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDD-MVS83.06 10581.81 11686.81 5690.86 12967.70 9495.40 2991.50 16475.46 12781.78 8592.34 13340.09 30597.13 8786.85 6482.04 16395.60 49
PHI-MVS86.83 3786.85 4086.78 5893.47 6065.55 14995.39 3095.10 2271.77 20785.69 5396.52 2362.07 11698.77 2286.06 7095.60 1196.03 38
CS-MVS85.80 5586.65 4183.27 17492.00 10058.92 29495.31 3191.86 14679.97 5884.82 6295.40 4962.26 11495.51 16486.11 6992.08 6695.37 57
EPNet87.84 2388.38 1986.23 7793.30 6366.05 13595.26 3294.84 2987.09 588.06 3494.53 7766.79 5997.34 7383.89 8991.68 7295.29 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft89.37 1489.95 1387.64 3195.10 3068.23 8295.24 3394.49 4482.43 2588.90 3296.35 2771.89 3498.63 2688.76 4796.40 696.06 36
WTY-MVS86.32 4485.81 5387.85 2692.82 7769.37 5395.20 3495.25 1782.71 2281.91 8494.73 7267.93 5297.63 5679.55 12082.25 15996.54 19
3Dnovator+73.60 782.10 12280.60 13586.60 6390.89 12866.80 11995.20 3493.44 8574.05 14667.42 26092.49 12849.46 24897.65 5570.80 18891.68 7295.33 60
TSAR-MVS + GP.87.96 2088.37 2086.70 6093.51 5965.32 15395.15 3693.84 6578.17 9085.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
DP-MVS Recon82.73 11081.65 11785.98 8197.31 467.06 11195.15 3691.99 13869.08 25876.50 14993.89 9954.48 20298.20 3570.76 18985.66 13392.69 161
test_prior295.10 3875.40 12985.25 6095.61 4567.94 5187.47 5694.77 25
save fliter93.84 4867.89 9095.05 3992.66 11478.19 89
patch_mono-289.71 1190.99 685.85 8796.04 2463.70 19895.04 4095.19 1986.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
MSLP-MVS++86.27 4585.91 5287.35 4292.01 9968.97 6395.04 4092.70 11179.04 7981.50 8796.50 2558.98 15196.78 11083.49 9193.93 3996.29 30
LFMVS84.34 7882.73 10289.18 1294.76 3373.25 994.99 4291.89 14471.90 19982.16 8393.49 10847.98 26397.05 8982.55 9784.82 13797.25 7
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4394.49 4478.74 8583.87 7292.94 11764.34 8596.94 10375.19 15194.09 3695.66 47
Anonymous20240521177.96 19675.33 21585.87 8593.73 5264.52 16894.85 4485.36 32362.52 31276.11 15090.18 17429.43 36097.29 7668.51 21377.24 20995.81 45
APDe-MVScopyleft87.54 2687.84 2586.65 6196.07 2366.30 13194.84 4593.78 6669.35 25288.39 3396.34 2867.74 5397.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_vis1_n_192081.66 12882.01 11380.64 23882.24 29455.09 33094.76 4686.87 30881.67 3484.40 6694.63 7538.17 31694.67 19191.98 2683.34 14992.16 181
fmvsm_s_conf0.5_n86.39 4386.91 3784.82 12187.36 21463.54 20694.74 4790.02 22282.52 2490.14 2496.92 1362.93 10997.84 4695.28 882.26 15893.07 152
ET-MVSNet_ETH3D84.01 8783.15 9586.58 6590.78 13170.89 2794.74 4794.62 4081.44 3858.19 32793.64 10473.64 2392.35 27982.66 9578.66 19496.50 24
CP-MVS83.71 9583.40 8984.65 13293.14 6963.84 19094.59 4992.28 12571.03 22977.41 13894.92 6755.21 19396.19 12881.32 10890.70 8693.91 127
VDDNet80.50 14778.26 16987.21 4486.19 23569.79 4494.48 5091.31 17060.42 32779.34 11590.91 16038.48 31496.56 11782.16 9881.05 17295.27 67
EC-MVSNet84.53 7585.04 6583.01 17889.34 15761.37 25394.42 5191.09 18177.91 9483.24 7494.20 9258.37 15495.40 16585.35 7391.41 7792.27 177
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10687.10 21964.19 18594.41 5288.14 29380.24 5692.54 596.97 1069.52 4397.17 8395.89 288.51 10494.56 98
9.1487.63 2793.86 4794.41 5294.18 5772.76 17686.21 4696.51 2466.64 6097.88 4490.08 3894.04 37
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10286.95 22264.37 17894.30 5488.45 28480.51 4992.70 496.86 1569.98 4197.15 8695.83 388.08 10894.65 95
MAR-MVS84.18 8483.43 8686.44 7096.25 2165.93 14094.28 5594.27 5674.41 13979.16 11895.61 4553.99 20798.88 2169.62 20093.26 5294.50 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmconf_n86.58 4187.17 3384.82 12185.28 25262.55 22994.26 5689.78 22883.81 1687.78 3696.33 2965.33 7296.98 9894.40 1187.55 11394.95 80
DPE-MVScopyleft88.77 1689.21 1687.45 4096.26 2067.56 9894.17 5794.15 5968.77 26190.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TEST994.18 4167.28 10594.16 5893.51 8071.75 20885.52 5495.33 5168.01 5097.27 80
train_agg87.21 3287.42 3186.60 6394.18 4167.28 10594.16 5893.51 8071.87 20285.52 5495.33 5168.19 4897.27 8089.09 4494.90 2195.25 70
iter_conf0583.27 10182.70 10384.98 11693.32 6271.84 1594.16 5881.76 34882.74 2173.83 17788.40 19672.77 2794.61 19282.10 9975.21 22188.48 235
test_894.19 4067.19 10794.15 6193.42 8671.87 20285.38 5795.35 5068.19 4896.95 102
Fast-Effi-MVS+81.14 13580.01 14284.51 13990.24 13965.86 14194.12 6289.15 25573.81 15475.37 16088.26 20157.26 16494.53 20066.97 22984.92 13693.15 148
HQP-NCC87.54 20894.06 6379.80 6074.18 170
ACMP_Plane87.54 20894.06 6379.80 6074.18 170
PVSNet_BlendedMVS83.38 9983.43 8683.22 17593.76 4967.53 10094.06 6393.61 7679.13 7581.00 9485.14 24363.19 10497.29 7687.08 6173.91 23284.83 302
HQP-MVS81.14 13580.64 13382.64 18687.54 20863.66 20194.06 6391.70 15679.80 6074.18 17090.30 17151.63 23095.61 15677.63 13778.90 19088.63 231
test_cas_vis1_n_192080.45 14980.61 13479.97 25778.25 34157.01 31894.04 6788.33 28779.06 7882.81 7893.70 10238.65 31191.63 29490.82 3579.81 18191.27 198
fmvsm_s_conf0.1_n85.61 6085.93 5184.68 13182.95 28963.48 20894.03 6889.46 24081.69 3389.86 2596.74 2061.85 11997.75 4994.74 982.01 16492.81 160
MVS_111021_HR86.19 4785.80 5487.37 4193.17 6869.79 4493.99 6993.76 6979.08 7778.88 12393.99 9762.25 11598.15 3685.93 7191.15 8294.15 115
DVP-MVS++90.53 491.09 588.87 1497.31 469.91 4093.96 7094.37 5272.48 18192.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
FOURS193.95 4561.77 24493.96 7091.92 14162.14 31586.57 44
VPNet78.82 17977.53 18182.70 18484.52 26566.44 12793.93 7292.23 12780.46 5072.60 18988.38 19849.18 25293.13 24572.47 17463.97 30888.55 234
test_prior467.18 10993.92 73
SD-MVS87.49 2787.49 3087.50 3993.60 5468.82 6693.90 7492.63 11776.86 10987.90 3595.76 4166.17 6397.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZNCC-MVS85.33 6385.08 6486.06 7993.09 7165.65 14593.89 7593.41 8773.75 15579.94 10794.68 7460.61 13298.03 3882.63 9693.72 4494.52 103
CDPH-MVS85.71 5785.46 5886.46 6994.75 3467.19 10793.89 7592.83 10870.90 23183.09 7695.28 5463.62 9697.36 7180.63 11294.18 3594.84 85
EIA-MVS84.84 7084.88 6784.69 13091.30 12062.36 23293.85 7792.04 13679.45 6679.33 11694.28 9062.42 11296.35 12480.05 11691.25 8195.38 56
SMA-MVScopyleft88.14 1788.29 2187.67 3093.21 6668.72 6893.85 7794.03 6274.18 14491.74 1196.67 2165.61 7098.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior62.42 23093.85 7779.38 6878.80 192
test_fmvsmconf0.1_n85.71 5786.08 4984.62 13580.83 30562.33 23393.84 8088.81 27183.50 1887.00 4296.01 3763.36 10196.93 10594.04 1287.29 11694.61 97
Anonymous2024052976.84 21574.15 23184.88 11991.02 12464.95 16493.84 8091.09 18153.57 35673.00 18287.42 21735.91 33597.32 7469.14 20772.41 24592.36 170
CSCG86.87 3586.26 4488.72 1595.05 3170.79 2893.83 8295.33 1668.48 26577.63 13594.35 8673.04 2498.45 3084.92 8093.71 4596.92 11
fmvsm_s_conf0.5_n_a85.75 5686.09 4884.72 12885.73 24663.58 20393.79 8389.32 24681.42 3990.21 2296.91 1462.41 11397.67 5194.48 1080.56 17792.90 158
MTMP93.77 8432.52 409
PVSNet_Blended_VisFu83.97 8883.50 8285.39 10290.02 14366.59 12593.77 8491.73 15277.43 10577.08 14489.81 18163.77 9396.97 10079.67 11988.21 10692.60 164
casdiffmvs_mvgpermissive85.66 5985.18 6287.09 4888.22 19269.35 5493.74 8691.89 14481.47 3580.10 10591.45 15164.80 8096.35 12487.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192087.69 2588.50 1885.27 10887.05 22163.55 20593.69 8791.08 18384.18 1390.17 2397.04 867.58 5497.99 3995.72 590.03 9294.26 109
TR-MVS78.77 18277.37 18782.95 17990.49 13460.88 26093.67 8890.07 21870.08 24474.51 16891.37 15545.69 28295.70 15360.12 28280.32 17892.29 173
testing1186.71 4086.44 4287.55 3793.54 5771.35 1993.65 8995.58 1181.36 4180.69 9792.21 13772.30 3096.46 12385.18 7683.43 14894.82 88
SF-MVS87.03 3487.09 3486.84 5492.70 8167.45 10393.64 9093.76 6970.78 23586.25 4596.44 2666.98 5797.79 4788.68 4894.56 3295.28 66
API-MVS82.28 11780.53 13687.54 3896.13 2270.59 3093.63 9191.04 18765.72 28675.45 15992.83 12256.11 18398.89 2064.10 25589.75 9693.15 148
BH-w/o80.49 14879.30 15784.05 15490.83 13064.36 18093.60 9289.42 24374.35 14169.09 23290.15 17655.23 19295.61 15664.61 25286.43 12992.17 180
APD-MVScopyleft85.93 5285.99 5085.76 9195.98 2665.21 15693.59 9392.58 11966.54 27986.17 4795.88 3963.83 9197.00 9486.39 6792.94 5595.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BH-RMVSNet79.46 16877.65 17884.89 11891.68 11065.66 14493.55 9488.09 29572.93 17173.37 18091.12 15846.20 27996.12 13156.28 29785.61 13492.91 157
thisisatest051583.41 9882.49 10786.16 7889.46 15668.26 7993.54 9594.70 3674.31 14275.75 15290.92 15972.62 2896.52 11969.64 19881.50 16993.71 133
canonicalmvs86.85 3686.25 4588.66 1891.80 10771.92 1493.54 9591.71 15480.26 5487.55 3795.25 5863.59 9896.93 10588.18 4984.34 14197.11 8
testing9185.93 5285.31 6087.78 2993.59 5571.47 1793.50 9795.08 2580.26 5480.53 10091.93 14270.43 3896.51 12080.32 11582.13 16295.37 57
HFP-MVS84.73 7284.40 7385.72 9393.75 5165.01 16293.50 9793.19 9472.19 19179.22 11794.93 6659.04 15097.67 5181.55 10392.21 6294.49 106
ACMMPR84.37 7684.06 7585.28 10793.56 5664.37 17893.50 9793.15 9672.19 19178.85 12594.86 6956.69 17697.45 6581.55 10392.20 6394.02 123
testing9986.01 5085.47 5787.63 3593.62 5371.25 2193.47 10095.23 1880.42 5280.60 9991.95 14171.73 3596.50 12180.02 11782.22 16095.13 73
Vis-MVSNetpermissive80.92 14179.98 14483.74 15988.48 18061.80 24393.44 10188.26 29273.96 15077.73 13391.76 14549.94 24494.76 18465.84 24190.37 9094.65 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS86.01 5086.11 4785.70 9490.21 14067.02 11493.43 10291.92 14181.21 4384.13 7094.07 9660.93 12995.63 15489.28 4289.81 9394.46 107
region2R84.36 7784.03 7685.36 10493.54 5764.31 18193.43 10292.95 10472.16 19478.86 12494.84 7056.97 17197.53 6381.38 10792.11 6594.24 110
QAPM79.95 16077.39 18687.64 3189.63 15171.41 1893.30 10493.70 7365.34 28967.39 26291.75 14647.83 26598.96 1657.71 29289.81 9392.54 166
MP-MVScopyleft85.02 6784.97 6685.17 11292.60 8564.27 18393.24 10592.27 12673.13 16679.63 11194.43 8061.90 11797.17 8385.00 7892.56 5994.06 121
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03080.93 14079.86 14584.13 15283.69 27868.83 6593.23 10691.20 17475.55 12675.06 16288.22 20463.04 10894.74 18681.88 10166.88 28188.82 229
VPA-MVSNet79.03 17378.00 17382.11 20785.95 24064.48 17193.22 10794.66 3875.05 13474.04 17584.95 24552.17 22593.52 23974.90 15767.04 28088.32 240
HQP_MVS80.34 15179.75 14782.12 20486.94 22362.42 23093.13 10891.31 17078.81 8372.53 19189.14 18950.66 23795.55 16176.74 14078.53 19588.39 238
plane_prior293.13 10878.81 83
MSP-MVS90.38 591.87 185.88 8492.83 7564.03 18893.06 11094.33 5482.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20079.66 16378.33 16783.66 16592.54 8765.82 14393.06 11096.31 374.90 13673.30 18188.66 19159.67 14295.61 15647.84 33078.67 19389.56 221
GST-MVS84.63 7484.29 7485.66 9592.82 7765.27 15493.04 11293.13 9773.20 16478.89 12094.18 9359.41 14697.85 4581.45 10592.48 6193.86 130
casdiffmvspermissive85.37 6284.87 6886.84 5488.25 19069.07 5993.04 11291.76 15181.27 4280.84 9692.07 13964.23 8696.06 13684.98 7987.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet81.79 12681.52 11882.61 18788.77 17660.21 27693.02 11493.66 7568.52 26472.90 18590.39 16972.19 3294.96 17974.93 15579.29 18892.67 162
cascas78.18 19275.77 20885.41 10187.14 21869.11 5792.96 11591.15 17866.71 27870.47 21586.07 23537.49 32596.48 12270.15 19479.80 18290.65 204
iter_conf_final81.74 12780.93 12884.18 15092.66 8369.10 5892.94 11682.80 34679.01 8074.85 16588.40 19661.83 12094.61 19279.36 12176.52 21488.83 226
XVS83.87 9083.47 8485.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12994.31 8955.25 19097.41 6879.16 12491.58 7493.95 125
X-MVStestdata76.86 21274.13 23285.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12910.19 40555.25 19097.41 6879.16 12491.58 7493.95 125
114514_t79.17 17177.67 17783.68 16395.32 2965.53 15092.85 11991.60 16063.49 30067.92 25190.63 16446.65 27295.72 15267.01 22883.54 14789.79 216
fmvsm_s_conf0.1_n_a84.76 7184.84 6984.53 13780.23 31563.50 20792.79 12088.73 27580.46 5089.84 2696.65 2260.96 12897.57 6193.80 1380.14 17992.53 167
mPP-MVS82.96 10882.44 10884.52 13892.83 7562.92 22292.76 12191.85 14871.52 21975.61 15794.24 9153.48 21596.99 9778.97 12790.73 8593.64 136
OpenMVScopyleft70.45 1178.54 18775.92 20686.41 7285.93 24371.68 1692.74 12292.51 12166.49 28064.56 28491.96 14043.88 29298.10 3754.61 30290.65 8789.44 224
h-mvs3383.01 10682.56 10684.35 14589.34 15762.02 23992.72 12393.76 6981.45 3682.73 7992.25 13660.11 13697.13 8787.69 5362.96 31193.91 127
无先验92.71 12492.61 11862.03 31697.01 9366.63 23093.97 124
test-LLR80.10 15679.56 15081.72 21386.93 22561.17 25492.70 12591.54 16171.51 22075.62 15586.94 22453.83 20892.38 27672.21 17684.76 13991.60 186
TESTMET0.1,182.41 11581.98 11483.72 16288.08 19463.74 19492.70 12593.77 6879.30 7077.61 13687.57 21558.19 15794.08 21873.91 16286.68 12693.33 144
test-mter79.96 15979.38 15681.72 21386.93 22561.17 25492.70 12591.54 16173.85 15275.62 15586.94 22449.84 24692.38 27672.21 17684.76 13991.60 186
BH-untuned78.68 18377.08 18983.48 17089.84 14663.74 19492.70 12588.59 28171.57 21766.83 26988.65 19251.75 22895.39 16659.03 28784.77 13891.32 195
AdaColmapbinary78.94 17677.00 19284.76 12696.34 1765.86 14192.66 12987.97 29962.18 31470.56 21492.37 13243.53 29397.35 7264.50 25382.86 15291.05 201
test111180.84 14280.02 14183.33 17287.87 20160.76 26492.62 13086.86 30977.86 9575.73 15391.39 15446.35 27594.70 19072.79 16988.68 10394.52 103
testing22285.18 6584.69 7086.63 6292.91 7469.91 4092.61 13195.80 980.31 5380.38 10292.27 13468.73 4495.19 17375.94 14683.27 15094.81 89
WR-MVS76.76 21775.74 20979.82 26184.60 26362.27 23692.60 13292.51 12176.06 12067.87 25585.34 24156.76 17390.24 31362.20 27063.69 31086.94 260
3Dnovator73.91 682.69 11380.82 12988.31 2389.57 15271.26 2092.60 13294.39 5178.84 8267.89 25492.48 12948.42 25898.52 2868.80 21194.40 3495.15 72
xiu_mvs_v1_base_debu82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base_debi82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
ECVR-MVScopyleft81.29 13380.38 13984.01 15588.39 18561.96 24192.56 13786.79 31077.66 9976.63 14691.42 15246.34 27695.24 17274.36 16089.23 9794.85 82
PVSNet73.49 880.05 15778.63 16484.31 14690.92 12764.97 16392.47 13891.05 18679.18 7372.43 19590.51 16637.05 33194.06 22068.06 21586.00 13093.90 129
ETVMVS84.22 8383.71 7885.76 9192.58 8668.25 8192.45 13995.53 1479.54 6579.46 11391.64 14970.29 3994.18 21469.16 20682.76 15694.84 85
PAPM85.89 5485.46 5887.18 4588.20 19372.42 1392.41 14092.77 10982.11 2980.34 10393.07 11468.27 4795.02 17678.39 13393.59 4794.09 118
GeoE78.90 17777.43 18283.29 17388.95 17162.02 23992.31 14186.23 31570.24 24271.34 20989.27 18654.43 20394.04 22363.31 26180.81 17693.81 132
1112_ss80.56 14679.83 14682.77 18288.65 17760.78 26292.29 14288.36 28672.58 17972.46 19494.95 6465.09 7493.42 24266.38 23577.71 19994.10 117
UniMVSNet_NR-MVSNet78.15 19377.55 18079.98 25584.46 26760.26 27492.25 14393.20 9377.50 10368.88 23886.61 22766.10 6492.13 28366.38 23562.55 31587.54 245
sss82.71 11282.38 10983.73 16189.25 16259.58 28492.24 14494.89 2877.96 9279.86 10892.38 13156.70 17597.05 8977.26 13980.86 17494.55 99
SR-MVS82.81 10982.58 10583.50 16993.35 6161.16 25692.23 14591.28 17364.48 29381.27 8895.28 5453.71 21195.86 14282.87 9488.77 10293.49 139
test_fmvsmconf0.01_n83.70 9683.52 8084.25 14975.26 35761.72 24792.17 14687.24 30682.36 2684.91 6195.41 4855.60 18896.83 10992.85 1785.87 13194.21 111
DeepC-MVS77.85 385.52 6185.24 6186.37 7388.80 17566.64 12292.15 14793.68 7481.07 4476.91 14593.64 10462.59 11198.44 3185.50 7292.84 5794.03 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet79.87 16178.68 16383.45 17189.96 14461.51 25092.13 14890.79 19076.83 11178.85 12586.33 23238.16 31796.17 12967.93 21887.17 11792.67 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMPcopyleft81.49 13080.67 13283.93 15691.71 10962.90 22392.13 14892.22 13071.79 20671.68 20593.49 10850.32 23996.96 10178.47 13284.22 14691.93 184
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 16479.16 15980.89 23691.54 11559.80 28192.10 15088.54 28360.42 32772.96 18393.28 11048.27 25992.80 25978.89 12986.50 12890.06 211
Test_1112_low_res79.56 16578.60 16582.43 19088.24 19160.39 27392.09 15187.99 29772.10 19571.84 20187.42 21764.62 8293.04 24665.80 24277.30 20793.85 131
CDS-MVSNet81.43 13180.74 13083.52 16686.26 23464.45 17292.09 15190.65 19675.83 12373.95 17689.81 18163.97 8992.91 25571.27 18482.82 15393.20 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268884.98 6983.45 8589.57 1089.94 14575.14 592.07 15392.32 12481.87 3175.68 15488.27 20060.18 13598.60 2780.46 11490.27 9194.96 79
tfpn200view978.79 18177.43 18282.88 18092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20288.83 226
thres40078.68 18377.43 18282.43 19092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20287.48 247
test250683.29 10082.92 9884.37 14488.39 18563.18 21592.01 15691.35 16977.66 9978.49 12891.42 15264.58 8395.09 17573.19 16389.23 9794.85 82
原ACMM292.01 156
XXY-MVS77.94 19776.44 19882.43 19082.60 29064.44 17392.01 15691.83 14973.59 16070.00 22485.82 23854.43 20394.76 18469.63 19968.02 27488.10 242
旧先验292.00 15959.37 33587.54 3893.47 24175.39 150
IS-MVSNet80.14 15579.41 15482.33 19487.91 19960.08 27891.97 16088.27 29072.90 17471.44 20891.73 14761.44 12393.66 23762.47 26986.53 12793.24 145
EPNet_dtu78.80 18079.26 15877.43 29388.06 19549.71 35491.96 16191.95 14077.67 9876.56 14891.28 15658.51 15390.20 31556.37 29680.95 17392.39 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS80.81 14381.01 12780.20 24889.33 15957.05 31691.91 16294.71 3575.67 12475.01 16389.37 18563.13 10691.44 30267.19 22682.80 15592.12 182
MVSTER82.47 11482.05 11183.74 15992.68 8269.01 6191.90 16393.21 9179.83 5972.14 19885.71 24074.72 1694.72 18775.72 14772.49 24387.50 246
CANet_DTU84.09 8683.52 8085.81 8890.30 13866.82 11791.87 16489.01 26385.27 986.09 4893.74 10147.71 26796.98 9877.90 13689.78 9593.65 135
FMVSNet377.73 20076.04 20482.80 18191.20 12368.99 6291.87 16491.99 13873.35 16367.04 26583.19 26656.62 17792.14 28259.80 28469.34 26187.28 254
v2v48277.42 20475.65 21182.73 18380.38 31167.13 11091.85 16690.23 21375.09 13369.37 22983.39 26453.79 21094.44 20371.77 18065.00 29686.63 266
PAPR85.15 6684.47 7187.18 4596.02 2568.29 7791.85 16693.00 10376.59 11679.03 11995.00 6361.59 12297.61 5878.16 13489.00 10095.63 48
ACMMP_NAP86.05 4985.80 5486.80 5791.58 11267.53 10091.79 16893.49 8374.93 13584.61 6395.30 5359.42 14597.92 4186.13 6894.92 1994.94 81
Baseline_NR-MVSNet73.99 25372.83 24877.48 29280.78 30659.29 29091.79 16884.55 33068.85 25968.99 23680.70 30056.16 18192.04 28662.67 26760.98 33281.11 343
TransMVSNet (Re)70.07 28767.66 29377.31 29680.62 31059.13 29391.78 17084.94 32765.97 28360.08 31780.44 30550.78 23691.87 28848.84 32345.46 37380.94 345
EI-MVSNet-Vis-set83.77 9383.67 7984.06 15392.79 8063.56 20491.76 17194.81 3179.65 6477.87 13294.09 9463.35 10297.90 4279.35 12279.36 18690.74 203
UniMVSNet (Re)77.58 20276.78 19479.98 25584.11 27360.80 26191.76 17193.17 9576.56 11769.93 22784.78 24863.32 10392.36 27864.89 25162.51 31786.78 262
MS-PatchMatch77.90 19976.50 19782.12 20485.99 23969.95 3991.75 17392.70 11173.97 14962.58 30584.44 25341.11 30295.78 14463.76 25892.17 6480.62 349
v14876.19 22174.47 22681.36 22080.05 31764.44 17391.75 17390.23 21373.68 15867.13 26480.84 29955.92 18693.86 23468.95 20961.73 32685.76 288
FIs79.47 16779.41 15479.67 26485.95 24059.40 28691.68 17593.94 6378.06 9168.96 23788.28 19966.61 6191.77 29166.20 23874.99 22287.82 243
v114476.73 21874.88 21882.27 19680.23 31566.60 12491.68 17590.21 21573.69 15769.06 23481.89 27952.73 22194.40 20469.21 20565.23 29385.80 285
OPM-MVS79.00 17478.09 17181.73 21283.52 28163.83 19191.64 17790.30 20976.36 11971.97 20089.93 18046.30 27895.17 17475.10 15277.70 20086.19 274
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MP-MVS-pluss85.24 6485.13 6385.56 9791.42 11765.59 14791.54 17892.51 12174.56 13880.62 9895.64 4459.15 14997.00 9486.94 6393.80 4194.07 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GA-MVS78.33 19176.23 20184.65 13283.65 27966.30 13191.44 17990.14 21676.01 12170.32 21984.02 25742.50 29794.72 18770.98 18677.00 21092.94 156
mvsmamba76.85 21475.71 21080.25 24683.07 28659.16 29191.44 17980.64 35376.84 11067.95 25086.33 23246.17 28094.24 21276.06 14572.92 23987.36 251
miper_enhance_ethall78.86 17877.97 17481.54 21788.00 19865.17 15791.41 18189.15 25575.19 13268.79 24083.98 25867.17 5692.82 25772.73 17065.30 29086.62 267
新几何291.41 181
thisisatest053081.15 13480.07 14084.39 14388.26 18965.63 14691.40 18394.62 4071.27 22470.93 21189.18 18772.47 2996.04 13765.62 24476.89 21191.49 188
Anonymous2023121173.08 25970.39 27581.13 22690.62 13263.33 21091.40 18390.06 22051.84 36164.46 28780.67 30236.49 33394.07 21963.83 25764.17 30485.98 281
v14419276.05 22674.03 23382.12 20479.50 32366.55 12691.39 18589.71 23672.30 18868.17 24781.33 29151.75 22894.03 22567.94 21764.19 30385.77 286
APD-MVS_3200maxsize81.64 12981.32 12082.59 18892.36 8858.74 29691.39 18591.01 18863.35 30279.72 11094.62 7651.82 22696.14 13079.71 11887.93 10992.89 159
EI-MVSNet-UG-set83.14 10482.96 9683.67 16492.28 9063.19 21491.38 18794.68 3779.22 7276.60 14793.75 10062.64 11097.76 4878.07 13578.01 19790.05 212
test_fmvsmvis_n_192083.80 9283.48 8384.77 12582.51 29163.72 19691.37 18883.99 33781.42 3977.68 13495.74 4258.37 15497.58 5993.38 1486.87 11993.00 155
TranMVSNet+NR-MVSNet75.86 23174.52 22579.89 25982.44 29260.64 27091.37 18891.37 16876.63 11567.65 25786.21 23452.37 22491.55 29661.84 27260.81 33387.48 247
Effi-MVS+83.82 9182.76 10186.99 5289.56 15369.40 5091.35 19086.12 31772.59 17883.22 7592.81 12359.60 14396.01 14081.76 10287.80 11095.56 51
FMVSNet276.07 22374.01 23482.26 19888.85 17267.66 9591.33 19191.61 15970.84 23265.98 27282.25 27548.03 26092.00 28758.46 28968.73 26987.10 257
HPM-MVS_fast80.25 15379.55 15282.33 19491.55 11459.95 27991.32 19289.16 25465.23 29074.71 16793.07 11447.81 26695.74 14774.87 15888.23 10591.31 196
thres600view778.00 19476.66 19682.03 20991.93 10263.69 19991.30 19396.33 172.43 18470.46 21687.89 21060.31 13394.92 18242.64 35376.64 21287.48 247
WB-MVSnew77.14 20876.18 20380.01 25486.18 23663.24 21291.26 19494.11 6071.72 20973.52 17987.29 22045.14 28793.00 24856.98 29479.42 18483.80 310
DU-MVS76.86 21275.84 20779.91 25882.96 28760.26 27491.26 19491.54 16176.46 11868.88 23886.35 23056.16 18192.13 28366.38 23562.55 31587.35 252
TAMVS80.37 15079.45 15383.13 17785.14 25563.37 20991.23 19690.76 19174.81 13772.65 18888.49 19360.63 13192.95 25069.41 20281.95 16593.08 151
v119275.98 22873.92 23582.15 20279.73 31966.24 13391.22 19789.75 23072.67 17768.49 24581.42 28949.86 24594.27 20967.08 22765.02 29585.95 282
test0.0.03 172.76 26672.71 25272.88 33180.25 31447.99 36291.22 19789.45 24171.51 22062.51 30687.66 21353.83 20885.06 35350.16 31767.84 27785.58 289
Fast-Effi-MVS+-dtu75.04 24273.37 24280.07 25180.86 30459.52 28591.20 19985.38 32271.90 19965.20 27784.84 24741.46 30092.97 24966.50 23472.96 23887.73 244
thres100view90078.37 18977.01 19182.46 18991.89 10563.21 21391.19 20096.33 172.28 18970.45 21787.89 21060.31 13395.32 16845.16 34177.58 20288.83 226
PMMVS81.98 12482.04 11281.78 21189.76 14956.17 32291.13 20190.69 19277.96 9280.09 10693.57 10646.33 27794.99 17881.41 10687.46 11494.17 113
pmmvs573.35 25871.52 26578.86 27778.64 33760.61 27191.08 20286.90 30767.69 26963.32 29683.64 26044.33 29190.53 30762.04 27166.02 28785.46 293
baseline181.84 12581.03 12684.28 14891.60 11166.62 12391.08 20291.66 15881.87 3174.86 16491.67 14869.98 4194.92 18271.76 18164.75 29991.29 197
v192192075.63 23673.49 24182.06 20879.38 32466.35 12991.07 20489.48 23971.98 19667.99 24881.22 29449.16 25493.90 23166.56 23164.56 30285.92 284
HPM-MVScopyleft83.25 10282.95 9784.17 15192.25 9162.88 22490.91 20591.86 14670.30 24177.12 14293.96 9856.75 17496.28 12682.04 10091.34 8093.34 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post81.06 13880.70 13182.15 20292.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7851.26 23495.61 15678.77 13086.77 12392.28 174
RE-MVS-def80.48 13792.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7849.30 25078.77 13086.77 12392.28 174
diffmvspermissive84.28 7983.83 7785.61 9687.40 21268.02 8790.88 20889.24 24980.54 4881.64 8692.52 12559.83 14094.52 20187.32 5885.11 13594.29 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA74.31 24972.30 25780.32 24291.49 11661.66 24890.85 20980.72 35256.67 34863.85 29290.64 16246.75 27190.84 30553.79 30675.99 21888.47 237
NR-MVSNet76.05 22674.59 22280.44 24082.96 28762.18 23790.83 21091.73 15277.12 10760.96 31286.35 23059.28 14891.80 29060.74 27761.34 33087.35 252
pm-mvs172.89 26471.09 26878.26 28479.10 33057.62 30990.80 21189.30 24767.66 27062.91 30281.78 28149.11 25592.95 25060.29 28158.89 34384.22 306
ACMP71.68 1075.58 23774.23 23079.62 26684.97 25959.64 28290.80 21189.07 26170.39 24062.95 30187.30 21938.28 31593.87 23272.89 16671.45 25185.36 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124075.21 24172.98 24681.88 21079.20 32666.00 13790.75 21389.11 25871.63 21567.41 26181.22 29447.36 26893.87 23265.46 24764.72 30085.77 286
testing370.38 28570.83 26969.03 35085.82 24443.93 37890.72 21490.56 19868.06 26660.24 31586.82 22664.83 7984.12 35526.33 38864.10 30579.04 362
cl2277.94 19776.78 19481.42 21987.57 20764.93 16590.67 21588.86 27072.45 18367.63 25882.68 27164.07 8792.91 25571.79 17965.30 29086.44 268
miper_ehance_all_eth77.60 20176.44 19881.09 23185.70 24764.41 17690.65 21688.64 28072.31 18767.37 26382.52 27264.77 8192.64 26970.67 19065.30 29086.24 272
IterMVS-LS76.49 21975.18 21780.43 24184.49 26662.74 22690.64 21788.80 27272.40 18565.16 27881.72 28260.98 12792.27 28167.74 21964.65 30186.29 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft68.80 1475.23 24073.68 23979.86 26092.93 7358.68 29790.64 21788.30 28860.90 32464.43 28890.53 16542.38 29894.57 19656.52 29576.54 21386.33 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PS-MVSNAJss77.26 20676.31 20080.13 25080.64 30959.16 29190.63 21991.06 18572.80 17568.58 24484.57 25153.55 21293.96 22872.97 16571.96 24787.27 255
PGM-MVS83.25 10282.70 10384.92 11792.81 7964.07 18790.44 22092.20 13171.28 22377.23 14194.43 8055.17 19497.31 7579.33 12391.38 7893.37 141
LPG-MVS_test75.82 23274.58 22379.56 26884.31 27059.37 28790.44 22089.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
Vis-MVSNet (Re-imp)79.24 17079.57 14978.24 28588.46 18152.29 34190.41 22289.12 25774.24 14369.13 23191.91 14365.77 6890.09 31759.00 28888.09 10792.33 171
c3_l76.83 21675.47 21280.93 23585.02 25864.18 18690.39 22388.11 29471.66 21066.65 27181.64 28463.58 9992.56 27069.31 20462.86 31286.04 279
dcpmvs_287.37 3087.55 2986.85 5395.04 3268.20 8390.36 22490.66 19579.37 6981.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
TSAR-MVS + MP.88.11 1988.64 1786.54 6791.73 10868.04 8690.36 22493.55 7982.89 1991.29 1592.89 11972.27 3196.03 13887.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMM69.62 1374.34 24872.73 25179.17 27384.25 27257.87 30490.36 22489.93 22463.17 30665.64 27486.04 23737.79 32394.10 21665.89 24071.52 25085.55 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test77.99 19578.08 17277.70 28884.89 26055.51 32790.27 22793.75 7276.87 10866.80 27087.59 21465.71 6990.23 31462.89 26673.94 23187.37 250
V4276.46 22074.55 22482.19 20179.14 32967.82 9190.26 22889.42 24373.75 15568.63 24381.89 27951.31 23394.09 21771.69 18264.84 29784.66 303
baseline85.01 6884.44 7286.71 5988.33 18768.73 6790.24 22991.82 15081.05 4581.18 9092.50 12663.69 9496.08 13584.45 8486.71 12595.32 62
HyFIR lowres test81.03 13979.56 15085.43 10087.81 20468.11 8590.18 23090.01 22370.65 23772.95 18486.06 23663.61 9794.50 20275.01 15479.75 18393.67 134
cl____76.07 22374.67 21980.28 24485.15 25461.76 24590.12 23188.73 27571.16 22565.43 27581.57 28661.15 12492.95 25066.54 23262.17 31986.13 277
DIV-MVS_self_test76.07 22374.67 21980.28 24485.14 25561.75 24690.12 23188.73 27571.16 22565.42 27681.60 28561.15 12492.94 25466.54 23262.16 32186.14 275
baseline283.68 9783.42 8884.48 14087.37 21366.00 13790.06 23395.93 879.71 6369.08 23390.39 16977.92 696.28 12678.91 12881.38 17091.16 199
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23489.90 22569.96 24561.96 30976.54 33851.05 23587.64 33749.51 32150.59 36582.70 329
GBi-Net75.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test175.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
FMVSNet172.71 26869.91 27981.10 22883.60 28065.11 15990.01 23590.32 20563.92 29663.56 29480.25 30936.35 33491.54 29754.46 30366.75 28286.64 263
MVS_Test84.16 8583.20 9287.05 5091.56 11369.82 4389.99 23892.05 13577.77 9682.84 7786.57 22863.93 9096.09 13274.91 15689.18 9995.25 70
Effi-MVS+-dtu76.14 22275.28 21678.72 27983.22 28355.17 32989.87 23987.78 30075.42 12867.98 24981.43 28845.08 28892.52 27275.08 15371.63 24888.48 235
EG-PatchMatch MVS68.55 30065.41 30677.96 28778.69 33662.93 22089.86 24089.17 25360.55 32650.27 35977.73 32922.60 37494.06 22047.18 33372.65 24276.88 371
RRT_MVS74.44 24772.97 24778.84 27882.36 29357.66 30889.83 24188.79 27470.61 23864.58 28384.89 24639.24 30792.65 26870.11 19566.34 28586.21 273
MVS_111021_LR82.02 12381.52 11883.51 16888.42 18362.88 22489.77 24288.93 26776.78 11275.55 15893.10 11150.31 24095.38 16783.82 9087.02 11892.26 178
tttt051779.50 16678.53 16682.41 19387.22 21661.43 25289.75 24394.76 3269.29 25367.91 25288.06 20872.92 2595.63 15462.91 26573.90 23390.16 210
DP-MVS69.90 28966.48 29680.14 24995.36 2862.93 22089.56 24476.11 36050.27 36657.69 33385.23 24239.68 30695.73 14833.35 37771.05 25481.78 339
test22289.77 14861.60 24989.55 24589.42 24356.83 34777.28 14092.43 13052.76 22091.14 8393.09 150
v875.35 23873.26 24381.61 21580.67 30866.82 11789.54 24689.27 24871.65 21163.30 29780.30 30854.99 19694.06 22067.33 22462.33 31883.94 308
EI-MVSNet78.97 17578.22 17081.25 22285.33 25062.73 22789.53 24793.21 9172.39 18672.14 19890.13 17760.99 12694.72 18767.73 22072.49 24386.29 270
CVMVSNet74.04 25274.27 22973.33 32785.33 25043.94 37789.53 24788.39 28554.33 35570.37 21890.13 17749.17 25384.05 35761.83 27379.36 18691.99 183
AUN-MVS78.37 18977.43 18281.17 22486.60 22857.45 31289.46 24991.16 17674.11 14574.40 16990.49 16755.52 18994.57 19674.73 15960.43 33791.48 189
hse-mvs281.12 13781.11 12581.16 22586.52 22957.48 31189.40 25091.16 17681.45 3682.73 7990.49 16760.11 13694.58 19487.69 5360.41 33891.41 191
MVP-Stereo77.12 20976.23 20179.79 26281.72 29966.34 13089.29 25190.88 18970.56 23962.01 30882.88 26849.34 24994.13 21565.55 24693.80 4178.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
eth_miper_zixun_eth75.96 23074.40 22780.66 23784.66 26263.02 21789.28 25288.27 29071.88 20165.73 27381.65 28359.45 14492.81 25868.13 21460.53 33586.14 275
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25383.41 34155.48 35253.86 34677.84 32826.28 36893.95 22934.90 37468.76 26878.68 365
testdata189.21 25477.55 102
TAPA-MVS70.22 1274.94 24473.53 24079.17 27390.40 13652.07 34289.19 25589.61 23762.69 31170.07 22292.67 12448.89 25794.32 20538.26 36779.97 18091.12 200
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 24572.54 25581.46 21880.33 31366.71 12189.15 25689.08 26070.94 23063.08 30079.86 31352.52 22294.04 22365.70 24362.17 31983.64 311
MVSFormer83.75 9482.88 9986.37 7389.24 16571.18 2289.07 25790.69 19265.80 28487.13 3994.34 8764.99 7592.67 26572.83 16791.80 7095.27 67
test_djsdf73.76 25772.56 25477.39 29477.00 35153.93 33589.07 25790.69 19265.80 28463.92 29082.03 27843.14 29692.67 26572.83 16768.53 27085.57 290
test_fmvs174.07 25173.69 23875.22 31278.91 33347.34 36689.06 25974.69 36763.68 29979.41 11491.59 15024.36 36987.77 33685.22 7476.26 21690.55 207
tfpnnormal70.10 28667.36 29478.32 28283.45 28260.97 25988.85 26092.77 10964.85 29160.83 31378.53 32243.52 29493.48 24031.73 38461.70 32780.52 350
jajsoiax73.05 26171.51 26677.67 28977.46 34854.83 33188.81 26190.04 22169.13 25762.85 30383.51 26231.16 35592.75 26170.83 18769.80 25785.43 294
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26286.78 31153.19 35757.58 33478.03 32735.33 33892.41 27555.56 29954.88 35582.21 335
ppachtmachnet_test67.72 30763.70 31879.77 26378.92 33166.04 13688.68 26382.90 34560.11 33155.45 33975.96 34439.19 30890.55 30639.53 36252.55 36182.71 328
PVSNet_068.08 1571.81 27468.32 29182.27 19684.68 26162.31 23588.68 26390.31 20875.84 12257.93 33280.65 30337.85 32294.19 21369.94 19629.05 39590.31 209
D2MVS73.80 25572.02 26079.15 27579.15 32862.97 21888.58 26590.07 21872.94 17059.22 32178.30 32342.31 29992.70 26465.59 24572.00 24681.79 338
OMC-MVS78.67 18577.91 17680.95 23485.76 24557.40 31388.49 26688.67 27873.85 15272.43 19592.10 13849.29 25194.55 19972.73 17077.89 19890.91 202
mvs_tets72.71 26871.11 26777.52 29077.41 34954.52 33388.45 26789.76 22968.76 26262.70 30483.26 26529.49 35992.71 26270.51 19369.62 25985.34 296
our_test_368.29 30364.69 31179.11 27678.92 33164.85 16688.40 26885.06 32560.32 32952.68 34976.12 34340.81 30389.80 32044.25 34655.65 35182.67 331
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 26987.32 30361.75 32158.07 32977.29 33237.79 32387.29 34242.91 34963.71 30983.48 315
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26457.10 31588.08 27080.79 35158.59 33953.00 34881.09 29826.63 36792.95 25046.51 33561.69 32880.82 346
Syy-MVS69.65 29169.52 28370.03 34687.87 20143.21 37988.07 27189.01 26372.91 17263.11 29888.10 20545.28 28685.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27272.74 25072.10 33987.87 20149.45 35688.07 27189.01 26372.91 17263.11 29888.10 20563.63 9585.54 34932.73 38169.23 26481.32 341
F-COLMAP70.66 28168.44 28977.32 29586.37 23355.91 32488.00 27386.32 31256.94 34657.28 33588.07 20733.58 34492.49 27351.02 31368.37 27183.55 312
test_040264.54 32561.09 33174.92 31684.10 27460.75 26587.95 27479.71 35652.03 35952.41 35077.20 33332.21 35091.64 29323.14 39061.03 33172.36 379
131480.70 14478.95 16185.94 8387.77 20667.56 9887.91 27592.55 12072.17 19367.44 25993.09 11250.27 24197.04 9271.68 18387.64 11293.23 146
MVS84.66 7382.86 10090.06 290.93 12674.56 687.91 27595.54 1368.55 26372.35 19794.71 7359.78 14198.90 1981.29 10994.69 3196.74 13
tt080573.07 26070.73 27280.07 25178.37 34057.05 31687.78 27792.18 13361.23 32367.04 26586.49 22931.35 35494.58 19465.06 25067.12 27988.57 233
ACMH63.93 1768.62 29964.81 30980.03 25385.22 25363.25 21187.72 27884.66 32960.83 32551.57 35479.43 31927.29 36594.96 17941.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6471.59 27769.71 28277.22 29877.82 34758.12 30287.71 27973.66 36968.01 26761.90 31084.29 25533.68 34388.43 32869.91 19770.43 25685.11 299
PAPM_NR82.97 10781.84 11586.37 7394.10 4466.76 12087.66 28092.84 10769.96 24574.07 17493.57 10663.10 10797.50 6470.66 19190.58 8894.85 82
IterMVS-SCA-FT71.55 27869.97 27776.32 30681.48 30060.67 26987.64 28185.99 31866.17 28259.50 31978.88 32045.53 28383.65 36162.58 26861.93 32284.63 305
IterMVS72.65 27170.83 26978.09 28682.17 29562.96 21987.64 28186.28 31371.56 21860.44 31478.85 32145.42 28586.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs473.92 25471.81 26380.25 24679.17 32765.24 15587.43 28387.26 30567.64 27263.46 29583.91 25948.96 25691.53 30062.94 26465.49 28983.96 307
WR-MVS_H70.59 28269.94 27872.53 33381.03 30351.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18783.45 36346.33 33758.58 34582.72 327
test_fmvs1_n72.69 27071.92 26174.99 31571.15 37047.08 36887.34 28575.67 36263.48 30178.08 13191.17 15720.16 38087.87 33384.65 8275.57 22090.01 213
CP-MVSNet70.50 28369.91 27972.26 33680.71 30751.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24282.30 37151.28 31259.28 34183.46 316
PCF-MVS73.15 979.29 16977.63 17984.29 14786.06 23865.96 13987.03 28791.10 18069.86 24769.79 22890.64 16257.54 16396.59 11464.37 25482.29 15790.32 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS69.86 29069.13 28572.07 34080.35 31250.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27382.24 37250.69 31459.02 34283.39 318
test_vis1_n71.63 27670.73 27274.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16190.17 17520.40 37885.76 34884.59 8374.42 22789.87 214
PEN-MVS69.46 29368.56 28772.17 33879.27 32549.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26983.54 36248.42 32557.12 34683.25 319
mvs_anonymous81.36 13279.99 14385.46 9990.39 13768.40 7486.88 29190.61 19774.41 13970.31 22084.67 24963.79 9292.32 28073.13 16485.70 13295.67 46
v7n71.31 27968.65 28679.28 27176.40 35360.77 26386.71 29289.45 24164.17 29558.77 32678.24 32444.59 29093.54 23857.76 29161.75 32583.52 314
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33263.29 30351.86 35277.30 33137.09 33082.47 36938.87 36654.13 35779.73 356
UA-Net80.02 15879.65 14881.11 22789.33 15957.72 30686.33 29489.00 26677.44 10481.01 9389.15 18859.33 14795.90 14161.01 27684.28 14489.73 218
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34549.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27483.87 36044.97 34455.17 35382.73 326
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
SDMVSNet80.26 15278.88 16284.40 14289.25 16267.63 9785.35 29793.02 10076.77 11370.84 21287.12 22247.95 26496.09 13285.04 7774.55 22389.48 222
LS3D69.17 29466.40 29877.50 29191.92 10356.12 32385.12 29880.37 35446.96 37356.50 33787.51 21637.25 32693.71 23532.52 38379.40 18582.68 330
UniMVSNet_ETH3D72.74 26770.53 27479.36 27078.62 33856.64 32085.01 29989.20 25163.77 29864.84 28184.44 25334.05 34291.86 28963.94 25670.89 25589.57 220
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
HY-MVS76.49 584.28 7983.36 9187.02 5192.22 9267.74 9384.65 30194.50 4379.15 7482.23 8287.93 20966.88 5896.94 10380.53 11382.20 16196.39 28
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30779.77 31538.14 31891.44 30268.90 21067.45 27883.21 320
MSDG69.54 29265.73 30280.96 23385.11 25763.71 19784.19 30383.28 34356.95 34554.50 34284.03 25631.50 35296.03 13842.87 35169.13 26683.14 322
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32450.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30153.00 33983.75 30675.53 36548.34 37148.81 36581.40 29024.14 37090.30 30932.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet568.04 30565.66 30475.18 31484.43 26857.89 30383.54 30786.26 31461.83 32053.64 34773.30 35237.15 32985.08 35248.99 32261.77 32482.56 332
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34360.41 27283.49 30884.03 33356.17 35139.17 38571.59 36137.22 32783.24 36642.87 35148.73 36780.26 353
PatchMatch-RL72.06 27369.98 27678.28 28389.51 15555.70 32683.49 30883.39 34261.24 32263.72 29382.76 26934.77 33993.03 24753.37 30977.59 20186.12 278
YYNet163.76 33160.14 33474.62 31878.06 34460.19 27783.46 31083.99 33756.18 35039.25 38471.56 36237.18 32883.34 36442.90 35048.70 36880.32 352
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33549.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30845.89 33947.06 37082.78 324
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25284.54 25215.35 38581.22 37675.65 14866.16 28682.88 323
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31645.11 37854.27 34381.15 29736.91 33280.01 37948.79 32457.02 34782.19 336
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 35964.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
tpm78.58 18677.03 19083.22 17585.94 24264.56 16783.21 31591.14 17978.31 8873.67 17879.68 31664.01 8892.09 28566.07 23971.26 25393.03 153
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32257.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34686.26 34735.81 37141.95 37875.89 373
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18562.79 31367.07 385
ab-mvs80.18 15478.31 16885.80 8988.44 18265.49 15283.00 31892.67 11371.82 20577.36 13985.01 24454.50 19996.59 11476.35 14475.63 21995.32 62
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28382.80 31983.43 34062.52 31251.30 35672.49 35332.86 34587.16 34355.32 30050.73 36478.83 364
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
CostFormer82.33 11681.15 12185.86 8689.01 17068.46 7382.39 32193.01 10175.59 12580.25 10481.57 28672.03 3394.96 17979.06 12677.48 20594.16 114
sd_testset77.08 21075.37 21382.20 20089.25 16262.11 23882.06 32289.09 25976.77 11370.84 21287.12 22241.43 30195.01 17767.23 22574.55 22389.48 222
miper_lstm_enhance73.05 26171.73 26477.03 29983.80 27658.32 30081.76 32388.88 26869.80 24861.01 31178.23 32557.19 16587.51 34065.34 24859.53 34085.27 298
MTAPA83.91 8983.38 9085.50 9891.89 10565.16 15881.75 32492.23 12775.32 13080.53 10095.21 6056.06 18497.16 8584.86 8192.55 6094.18 112
tpmrst80.57 14579.14 16084.84 12090.10 14268.28 7881.70 32589.72 23577.63 10175.96 15179.54 31864.94 7792.71 26275.43 14977.28 20893.55 137
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
tpm279.80 16277.95 17585.34 10588.28 18868.26 7981.56 32791.42 16770.11 24377.59 13780.50 30467.40 5594.26 21167.34 22377.35 20693.51 138
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
FA-MVS(test-final)79.12 17277.23 18884.81 12490.54 13363.98 18981.35 33091.71 15471.09 22874.85 16582.94 26752.85 21997.05 8967.97 21681.73 16893.41 140
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 17949.25 36474.77 35032.57 34887.43 34155.96 29841.04 38083.90 309
SCA75.82 23272.76 24985.01 11586.63 22770.08 3581.06 33289.19 25271.60 21670.01 22377.09 33545.53 28390.25 31060.43 27973.27 23594.68 92
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20690.26 17343.22 29575.05 38174.26 16162.70 31487.25 256
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32653.60 30853.63 35880.71 348
XVG-OURS-SEG-HR74.70 24673.08 24479.57 26778.25 34157.33 31480.49 33587.32 30363.22 30468.76 24190.12 17944.89 28991.59 29570.55 19274.09 23089.79 216
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 36940.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
XVG-OURS74.25 25072.46 25679.63 26578.45 33957.59 31080.33 33787.39 30263.86 29768.76 24189.62 18340.50 30491.72 29269.00 20874.25 22889.58 219
MDTV_nov1_ep1372.61 25389.06 16868.48 7280.33 33790.11 21771.84 20471.81 20275.92 34553.01 21893.92 23048.04 32773.38 234
EPMVS78.49 18875.98 20586.02 8091.21 12269.68 4880.23 33991.20 17475.25 13172.48 19378.11 32654.65 19893.69 23657.66 29383.04 15194.69 91
AllTest61.66 33558.06 33972.46 33479.57 32051.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
MDTV_nov1_ep13_2view59.90 28080.13 34167.65 27172.79 18654.33 20559.83 28392.58 165
LCM-MVSNet-Re72.93 26371.84 26276.18 30888.49 17948.02 36180.07 34270.17 37873.96 15052.25 35180.09 31249.98 24388.24 33067.35 22284.23 14592.28 174
dmvs_re76.93 21175.36 21481.61 21587.78 20560.71 26780.00 34387.99 29779.42 6769.02 23589.47 18446.77 27094.32 20563.38 26074.45 22689.81 215
PatchmatchNetpermissive77.46 20374.63 22185.96 8289.55 15470.35 3379.97 34489.55 23872.23 19070.94 21076.91 33757.03 16792.79 26054.27 30481.17 17194.74 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp75.01 24372.09 25983.76 15889.28 16166.22 13479.96 34589.75 23071.16 22567.80 25677.19 33451.81 22792.54 27150.39 31571.44 25292.51 168
test_post178.95 34620.70 40353.05 21791.50 30160.43 279
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33155.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32550.08 31838.90 38479.63 357
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 31962.03 31658.91 32581.21 29620.38 37991.15 30460.69 27868.18 27283.16 321
USDC67.43 31264.51 31376.19 30777.94 34555.29 32878.38 35085.00 32673.17 16548.36 36680.37 30621.23 37692.48 27452.15 31164.02 30780.81 347
TinyColmap60.32 33956.42 34672.00 34178.78 33453.18 33878.36 35175.64 36352.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
tpmvs72.88 26569.76 28182.22 19990.98 12567.05 11278.22 35288.30 28863.10 30764.35 28974.98 34855.09 19594.27 20943.25 34769.57 26085.34 296
tpm cat175.30 23972.21 25884.58 13688.52 17867.77 9278.16 35388.02 29661.88 31968.45 24676.37 34160.65 13094.03 22553.77 30774.11 22991.93 184
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32145.54 37744.76 37682.14 27735.40 33790.14 31663.18 26374.54 22581.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FE-MVS75.97 22973.02 24584.82 12189.78 14765.56 14877.44 35591.07 18464.55 29272.66 18779.85 31446.05 28196.69 11254.97 30180.82 17592.21 179
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
dmvs_testset65.55 32166.45 29762.86 36279.87 31822.35 40576.55 35771.74 37577.42 10655.85 33887.77 21251.39 23280.69 37731.51 38765.92 28885.55 291
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33672.83 3859.96 40121.75 39656.27 389
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36146.94 37458.96 32484.59 25031.40 35382.00 37347.76 33160.33 33986.04 279
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32857.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
GG-mvs-BLEND86.53 6891.91 10469.67 4975.02 36394.75 3378.67 12790.85 16177.91 794.56 19872.25 17593.74 4395.36 59
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34170.39 3889.14 40319.57 39754.68 390
MIMVSNet71.64 27568.44 28981.23 22381.97 29864.44 17373.05 36588.80 27269.67 24964.59 28274.79 34932.79 34687.82 33453.99 30576.35 21591.42 190
gg-mvs-nofinetune77.18 20774.31 22885.80 8991.42 11768.36 7571.78 36694.72 3449.61 36777.12 14245.92 39077.41 893.98 22767.62 22193.16 5395.05 76
MVS-HIRNet60.25 34055.55 34774.35 32084.37 26956.57 32171.64 36774.11 36834.44 38845.54 37442.24 39531.11 35689.81 31840.36 36176.10 21776.67 372
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
CR-MVSNet73.79 25670.82 27182.70 18483.15 28467.96 8870.25 36984.00 33573.67 15969.97 22572.41 35557.82 16089.48 32152.99 31073.13 23690.64 205
RPMNet70.42 28465.68 30384.63 13483.15 28467.96 8870.25 36990.45 19946.83 37569.97 22565.10 37456.48 18095.30 17135.79 37273.13 23690.64 205
Patchmatch-RL test68.17 30464.49 31479.19 27271.22 36953.93 33570.07 37171.54 37769.22 25456.79 33662.89 37756.58 17888.61 32469.53 20152.61 36095.03 78
CHOSEN 280x42077.35 20576.95 19378.55 28087.07 22062.68 22869.71 37282.95 34468.80 26071.48 20787.27 22166.03 6584.00 35976.47 14382.81 15488.95 225
Patchmtry67.53 31063.93 31778.34 28182.12 29664.38 17768.72 37384.00 33548.23 37259.24 32072.41 35557.82 16089.27 32246.10 33856.68 35081.36 340
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
ADS-MVSNet266.90 31363.44 32077.26 29788.06 19560.70 26868.01 37675.56 36457.57 34064.48 28569.87 36538.68 30984.10 35640.87 35867.89 27586.97 258
ADS-MVSNet68.54 30164.38 31681.03 23288.06 19566.90 11668.01 37684.02 33457.57 34064.48 28569.87 36538.68 30989.21 32340.87 35867.89 27586.97 258
PatchT69.11 29565.37 30780.32 24282.07 29763.68 20067.96 37887.62 30150.86 36469.37 22965.18 37357.09 16688.53 32741.59 35666.60 28388.74 230
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27551.55 34467.08 37983.53 33958.78 33754.94 34180.31 30734.54 34093.23 24440.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 261
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
Patchmatch-test65.86 31860.94 33280.62 23983.75 27758.83 29558.91 39075.26 36644.50 38050.95 35877.09 33558.81 15287.90 33235.13 37364.03 30695.12 74
JIA-IIPM66.06 31762.45 32676.88 30381.42 30254.45 33457.49 39188.67 27849.36 36863.86 29146.86 38956.06 18490.25 31049.53 32068.83 26785.95 282
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc69.61 34761.38 38941.35 38249.07 39685.86 32050.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5649.56 2470.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2120.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 640.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
test_one_060196.32 1869.74 4694.18 5771.42 22290.67 1896.85 1674.45 18
eth-test20.00 414
eth-test0.00 414
ZD-MVS96.63 965.50 15193.50 8270.74 23685.26 5995.19 6164.92 7897.29 7687.51 5593.01 54
IU-MVS96.46 1169.91 4095.18 2080.75 4795.28 192.34 2195.36 1396.47 25
test_241102_TWO94.41 4871.65 21192.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 5194.44 4671.65 21192.11 697.05 776.79 999.11 6
test_0728_THIRD72.48 18190.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
GSMVS94.68 92
test_part296.29 1968.16 8490.78 16
sam_mvs157.85 15994.68 92
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post23.01 40056.49 17992.67 265
patchmatchnet-post67.62 37057.62 16290.25 310
gm-plane-assit88.42 18367.04 11378.62 8691.83 14497.37 7076.57 142
test9_res89.41 3994.96 1895.29 64
agg_prior286.41 6694.75 2995.33 60
agg_prior94.16 4366.97 11593.31 8984.49 6596.75 111
TestCases72.46 33479.57 32051.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
test_prior86.42 7194.71 3567.35 10493.10 9996.84 10895.05 76
新几何184.73 12792.32 8964.28 18291.46 16659.56 33479.77 10992.90 11856.95 17296.57 11663.40 25992.91 5693.34 142
旧先验191.94 10160.74 26691.50 16494.36 8265.23 7391.84 6994.55 99
原ACMM184.42 14193.21 6664.27 18393.40 8865.39 28779.51 11292.50 12658.11 15896.69 11265.27 24993.96 3892.32 172
testdata296.09 13261.26 275
segment_acmp65.94 66
testdata81.34 22189.02 16957.72 30689.84 22758.65 33885.32 5894.09 9457.03 16793.28 24369.34 20390.56 8993.03 153
test1287.09 4894.60 3668.86 6492.91 10582.67 8165.44 7197.55 6293.69 4694.84 85
plane_prior786.94 22361.51 250
plane_prior687.23 21562.32 23450.66 237
plane_prior591.31 17095.55 16176.74 14078.53 19588.39 238
plane_prior489.14 189
plane_prior361.95 24279.09 7672.53 191
plane_prior187.15 217
n20.00 415
nn0.00 415
door-mid66.01 385
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31847.75 33231.37 39283.53 313
LGP-MVS_train79.56 26884.31 27059.37 28789.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
test1193.01 101
door66.57 384
HQP5-MVS63.66 201
BP-MVS77.63 137
HQP4-MVS74.18 17095.61 15688.63 231
HQP3-MVS91.70 15678.90 190
HQP2-MVS51.63 230
NP-MVS87.41 21163.04 21690.30 171
ACMMP++_ref71.63 248
ACMMP++69.72 258
Test By Simon54.21 206
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35860.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397