| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 150 | 76.68 2 | 97.29 1 | 95.35 15 | 82.87 20 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 93 | 97.64 2 | 97.94 1 |
|
| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 51 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 9 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 13 | 92.12 95 | 71.10 25 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 40 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 69 | 73.88 7 | 97.01 4 | 94.40 50 | 88.32 3 | 85.71 52 | 94.91 68 | 74.11 19 | 98.91 17 | 87.26 59 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 16 | 96.45 12 | 69.38 51 | 96.89 5 | 94.44 46 | 71.65 211 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test0726 | | | | | | 96.40 15 | 69.99 36 | 96.76 7 | 94.33 54 | 71.92 197 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 128 | 93.00 72 | 58.16 301 | 96.72 8 | 94.41 48 | 86.50 8 | 90.25 21 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 22 | 96.40 15 | 69.99 36 | 96.64 9 | 94.52 42 | 71.92 197 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 32 | 96.64 9 | 94.37 52 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 21 |
|
| lupinMVS | | | 87.74 24 | 87.77 26 | 87.63 35 | 89.24 165 | 71.18 22 | 96.57 11 | 92.90 106 | 82.70 23 | 87.13 39 | 95.27 56 | 64.99 75 | 95.80 143 | 89.34 41 | 91.80 70 | 95.93 40 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 21 | 94.39 39 | 69.71 47 | 96.53 12 | 93.78 66 | 86.89 6 | 89.68 27 | 95.78 40 | 65.94 66 | 99.10 9 | 92.99 16 | 93.91 40 | 96.58 18 |
|
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 20 | 90.14 141 | 70.94 26 | 96.47 13 | 95.72 10 | 87.33 4 | 89.60 28 | 96.26 30 | 68.44 45 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 42 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 19 | 96.76 8 | 70.65 29 | 96.47 13 | 94.83 30 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 36 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 35 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 25 | 96.60 10 | 69.05 60 | 96.38 15 | 94.64 39 | 84.42 12 | 86.74 43 | 96.20 32 | 66.56 62 | 98.76 23 | 89.03 46 | 94.56 32 | 95.92 41 |
|
| PVSNet_Blended | | | 86.73 39 | 86.86 39 | 86.31 76 | 93.76 49 | 67.53 100 | 96.33 16 | 93.61 76 | 82.34 27 | 81.00 94 | 93.08 113 | 63.19 104 | 97.29 76 | 87.08 61 | 91.38 78 | 94.13 116 |
|
| SteuartSystems-ACMMP | | | 86.82 38 | 86.90 38 | 86.58 65 | 90.42 135 | 66.38 128 | 96.09 17 | 93.87 64 | 77.73 97 | 84.01 71 | 95.66 43 | 63.39 100 | 97.94 40 | 87.40 57 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_yl | | | 84.28 79 | 83.16 93 | 87.64 31 | 94.52 37 | 69.24 55 | 95.78 18 | 95.09 23 | 69.19 255 | 81.09 91 | 92.88 120 | 57.00 169 | 97.44 66 | 81.11 110 | 81.76 166 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 79 | 83.16 93 | 87.64 31 | 94.52 37 | 69.24 55 | 95.78 18 | 95.09 23 | 69.19 255 | 81.09 91 | 92.88 120 | 57.00 169 | 97.44 66 | 81.11 110 | 81.76 166 | 96.23 33 |
|
| PS-MVSNAJ | | | 88.14 17 | 87.61 28 | 89.71 6 | 92.06 96 | 76.72 1 | 95.75 20 | 93.26 90 | 83.86 14 | 89.55 29 | 96.06 36 | 53.55 212 | 97.89 43 | 91.10 31 | 93.31 51 | 94.54 101 |
|
| xiu_mvs_v2_base | | | 87.92 22 | 87.38 32 | 89.55 11 | 91.41 119 | 76.43 3 | 95.74 21 | 93.12 98 | 83.53 17 | 89.55 29 | 95.95 38 | 53.45 216 | 97.68 50 | 91.07 32 | 92.62 58 | 94.54 101 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 21 | 88.00 24 | 87.79 28 | 95.86 27 | 68.32 76 | 95.74 21 | 94.11 60 | 83.82 15 | 83.49 73 | 96.19 33 | 64.53 84 | 98.44 31 | 83.42 92 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VNet | | | 86.20 46 | 85.65 56 | 87.84 27 | 93.92 46 | 69.99 36 | 95.73 23 | 95.94 7 | 78.43 87 | 86.00 49 | 93.07 114 | 58.22 156 | 97.00 94 | 85.22 74 | 84.33 142 | 96.52 20 |
|
| jason | | | 86.40 42 | 86.17 46 | 87.11 47 | 86.16 237 | 70.54 31 | 95.71 24 | 92.19 132 | 82.00 30 | 84.58 64 | 94.34 87 | 61.86 118 | 95.53 163 | 87.76 52 | 90.89 84 | 95.27 67 |
| jason: jason. |
| alignmvs | | | 87.28 31 | 86.97 36 | 88.24 24 | 91.30 120 | 71.14 24 | 95.61 25 | 93.56 78 | 79.30 70 | 87.07 41 | 95.25 58 | 68.43 46 | 96.93 105 | 87.87 51 | 84.33 142 | 96.65 14 |
|
| IB-MVS | | 77.80 4 | 82.18 118 | 80.46 138 | 87.35 42 | 89.14 167 | 70.28 34 | 95.59 26 | 95.17 21 | 78.85 81 | 70.19 221 | 85.82 238 | 70.66 37 | 97.67 51 | 72.19 178 | 66.52 284 | 94.09 118 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CS-MVS-test | | | 86.14 48 | 87.01 35 | 83.52 166 | 92.63 84 | 59.36 289 | 95.49 27 | 91.92 141 | 80.09 57 | 85.46 56 | 95.53 47 | 61.82 121 | 95.77 146 | 86.77 65 | 93.37 50 | 95.41 54 |
|
| CLD-MVS | | | 82.73 110 | 82.35 110 | 83.86 157 | 87.90 200 | 67.65 96 | 95.45 28 | 92.18 133 | 85.06 10 | 72.58 190 | 92.27 134 | 52.46 223 | 95.78 144 | 84.18 85 | 79.06 189 | 88.16 241 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VDD-MVS | | | 83.06 105 | 81.81 116 | 86.81 56 | 90.86 129 | 67.70 94 | 95.40 29 | 91.50 164 | 75.46 127 | 81.78 85 | 92.34 133 | 40.09 305 | 97.13 87 | 86.85 64 | 82.04 163 | 95.60 49 |
|
| PHI-MVS | | | 86.83 37 | 86.85 40 | 86.78 58 | 93.47 60 | 65.55 149 | 95.39 30 | 95.10 22 | 71.77 207 | 85.69 53 | 96.52 23 | 62.07 116 | 98.77 22 | 86.06 70 | 95.60 11 | 96.03 38 |
|
| CS-MVS | | | 85.80 55 | 86.65 41 | 83.27 174 | 92.00 100 | 58.92 294 | 95.31 31 | 91.86 146 | 79.97 58 | 84.82 62 | 95.40 49 | 62.26 114 | 95.51 164 | 86.11 69 | 92.08 66 | 95.37 57 |
|
| EPNet | | | 87.84 23 | 88.38 19 | 86.23 77 | 93.30 63 | 66.05 135 | 95.26 32 | 94.84 29 | 87.09 5 | 88.06 34 | 94.53 77 | 66.79 59 | 97.34 73 | 83.89 89 | 91.68 72 | 95.29 64 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 31 | 95.10 30 | 68.23 82 | 95.24 33 | 94.49 44 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 34 | 98.63 26 | 88.76 47 | 96.40 6 | 96.06 36 |
|
| WTY-MVS | | | 86.32 44 | 85.81 53 | 87.85 26 | 92.82 77 | 69.37 53 | 95.20 34 | 95.25 17 | 82.71 22 | 81.91 84 | 94.73 72 | 67.93 52 | 97.63 56 | 79.55 120 | 82.25 159 | 96.54 19 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 122 | 80.60 135 | 86.60 63 | 90.89 128 | 66.80 119 | 95.20 34 | 93.44 85 | 74.05 146 | 67.42 260 | 92.49 128 | 49.46 248 | 97.65 55 | 70.80 188 | 91.68 72 | 95.33 60 |
|
| TSAR-MVS + GP. | | | 87.96 20 | 88.37 20 | 86.70 60 | 93.51 59 | 65.32 153 | 95.15 36 | 93.84 65 | 78.17 90 | 85.93 50 | 94.80 71 | 75.80 13 | 98.21 34 | 89.38 40 | 88.78 101 | 96.59 16 |
|
| DP-MVS Recon | | | 82.73 110 | 81.65 117 | 85.98 81 | 97.31 4 | 67.06 111 | 95.15 36 | 91.99 138 | 69.08 258 | 76.50 149 | 93.89 99 | 54.48 202 | 98.20 35 | 70.76 189 | 85.66 133 | 92.69 161 |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 129 | 85.25 60 | 95.61 45 | 67.94 51 | | 87.47 56 | 94.77 25 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 90 | 95.05 39 | 92.66 114 | 78.19 89 | | | | | | | |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 87 | 96.04 24 | 63.70 198 | 95.04 40 | 95.19 19 | 86.74 7 | 91.53 14 | 95.15 62 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 67 | 96.28 32 |
|
| MSLP-MVS++ | | | 86.27 45 | 85.91 52 | 87.35 42 | 92.01 99 | 68.97 63 | 95.04 40 | 92.70 111 | 79.04 79 | 81.50 87 | 96.50 25 | 58.98 151 | 96.78 110 | 83.49 91 | 93.93 39 | 96.29 30 |
|
| LFMVS | | | 84.34 78 | 82.73 102 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 144 | 71.90 199 | 82.16 83 | 93.49 108 | 47.98 263 | 97.05 89 | 82.55 97 | 84.82 137 | 97.25 7 |
|
| MG-MVS | | | 87.11 33 | 86.27 43 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 44 | 78.74 85 | 83.87 72 | 92.94 117 | 64.34 85 | 96.94 103 | 75.19 151 | 94.09 36 | 95.66 47 |
|
| Anonymous202405211 | | | 77.96 196 | 75.33 215 | 85.87 85 | 93.73 52 | 64.52 168 | 94.85 44 | 85.36 323 | 62.52 312 | 76.11 150 | 90.18 174 | 29.43 360 | 97.29 76 | 68.51 213 | 77.24 209 | 95.81 45 |
|
| APDe-MVS |  | | 87.54 26 | 87.84 25 | 86.65 61 | 96.07 23 | 66.30 131 | 94.84 45 | 93.78 66 | 69.35 252 | 88.39 33 | 96.34 28 | 67.74 53 | 97.66 54 | 90.62 36 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_vis1_n_1920 | | | 81.66 128 | 82.01 113 | 80.64 238 | 82.24 294 | 55.09 330 | 94.76 46 | 86.87 308 | 81.67 34 | 84.40 66 | 94.63 75 | 38.17 316 | 94.67 191 | 91.98 26 | 83.34 149 | 92.16 181 |
|
| fmvsm_s_conf0.5_n | | | 86.39 43 | 86.91 37 | 84.82 121 | 87.36 214 | 63.54 206 | 94.74 47 | 90.02 222 | 82.52 24 | 90.14 24 | 96.92 13 | 62.93 109 | 97.84 46 | 95.28 8 | 82.26 158 | 93.07 152 |
|
| ET-MVSNet_ETH3D | | | 84.01 87 | 83.15 95 | 86.58 65 | 90.78 131 | 70.89 27 | 94.74 47 | 94.62 40 | 81.44 38 | 58.19 327 | 93.64 104 | 73.64 23 | 92.35 279 | 82.66 95 | 78.66 194 | 96.50 24 |
|
| CP-MVS | | | 83.71 95 | 83.40 89 | 84.65 132 | 93.14 69 | 63.84 190 | 94.59 49 | 92.28 125 | 71.03 229 | 77.41 138 | 94.92 67 | 55.21 193 | 96.19 128 | 81.32 108 | 90.70 86 | 93.91 127 |
|
| VDDNet | | | 80.50 147 | 78.26 169 | 87.21 44 | 86.19 235 | 69.79 44 | 94.48 50 | 91.31 170 | 60.42 327 | 79.34 115 | 90.91 160 | 38.48 314 | 96.56 117 | 82.16 98 | 81.05 172 | 95.27 67 |
|
| EC-MVSNet | | | 84.53 75 | 85.04 65 | 83.01 178 | 89.34 157 | 61.37 253 | 94.42 51 | 91.09 181 | 77.91 94 | 83.24 74 | 94.20 92 | 58.37 154 | 95.40 165 | 85.35 73 | 91.41 77 | 92.27 177 |
|
| fmvsm_l_conf0.5_n_a | | | 87.44 29 | 88.15 23 | 85.30 106 | 87.10 219 | 64.19 185 | 94.41 52 | 88.14 293 | 80.24 56 | 92.54 5 | 96.97 10 | 69.52 43 | 97.17 83 | 95.89 2 | 88.51 104 | 94.56 98 |
|
| 9.14 | | | | 87.63 27 | | 93.86 47 | | 94.41 52 | 94.18 57 | 72.76 176 | 86.21 46 | 96.51 24 | 66.64 60 | 97.88 44 | 90.08 38 | 94.04 37 | |
|
| fmvsm_l_conf0.5_n | | | 87.49 27 | 88.19 22 | 85.39 102 | 86.95 222 | 64.37 178 | 94.30 54 | 88.45 284 | 80.51 49 | 92.70 4 | 96.86 15 | 69.98 41 | 97.15 86 | 95.83 3 | 88.08 108 | 94.65 95 |
|
| MAR-MVS | | | 84.18 84 | 83.43 86 | 86.44 70 | 96.25 21 | 65.93 140 | 94.28 55 | 94.27 56 | 74.41 139 | 79.16 118 | 95.61 45 | 53.99 207 | 98.88 21 | 69.62 200 | 93.26 52 | 94.50 105 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_fmvsmconf_n | | | 86.58 41 | 87.17 33 | 84.82 121 | 85.28 252 | 62.55 229 | 94.26 56 | 89.78 228 | 83.81 16 | 87.78 36 | 96.33 29 | 65.33 72 | 96.98 98 | 94.40 11 | 87.55 113 | 94.95 80 |
|
| DPE-MVS |  | | 88.77 16 | 89.21 16 | 87.45 40 | 96.26 20 | 67.56 98 | 94.17 57 | 94.15 59 | 68.77 261 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| TEST9 | | | | | | 94.18 41 | 67.28 105 | 94.16 58 | 93.51 80 | 71.75 208 | 85.52 54 | 95.33 51 | 68.01 50 | 97.27 80 | | | |
|
| train_agg | | | 87.21 32 | 87.42 31 | 86.60 63 | 94.18 41 | 67.28 105 | 94.16 58 | 93.51 80 | 71.87 202 | 85.52 54 | 95.33 51 | 68.19 48 | 97.27 80 | 89.09 44 | 94.90 21 | 95.25 70 |
|
| iter_conf05 | | | 83.27 101 | 82.70 103 | 84.98 116 | 93.32 62 | 71.84 15 | 94.16 58 | 81.76 348 | 82.74 21 | 73.83 177 | 88.40 196 | 72.77 27 | 94.61 192 | 82.10 99 | 75.21 221 | 88.48 235 |
|
| test_8 | | | | | | 94.19 40 | 67.19 107 | 94.15 61 | 93.42 86 | 71.87 202 | 85.38 57 | 95.35 50 | 68.19 48 | 96.95 102 | | | |
|
| Fast-Effi-MVS+ | | | 81.14 135 | 80.01 142 | 84.51 139 | 90.24 139 | 65.86 141 | 94.12 62 | 89.15 255 | 73.81 154 | 75.37 160 | 88.26 201 | 57.26 164 | 94.53 200 | 66.97 229 | 84.92 136 | 93.15 148 |
|
| HQP-NCC | | | | | | 87.54 208 | | 94.06 63 | | 79.80 60 | 74.18 170 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 208 | | 94.06 63 | | 79.80 60 | 74.18 170 | | | | | | |
|
| PVSNet_BlendedMVS | | | 83.38 99 | 83.43 86 | 83.22 175 | 93.76 49 | 67.53 100 | 94.06 63 | 93.61 76 | 79.13 75 | 81.00 94 | 85.14 243 | 63.19 104 | 97.29 76 | 87.08 61 | 73.91 232 | 84.83 302 |
|
| HQP-MVS | | | 81.14 135 | 80.64 133 | 82.64 186 | 87.54 208 | 63.66 201 | 94.06 63 | 91.70 156 | 79.80 60 | 74.18 170 | 90.30 171 | 51.63 230 | 95.61 156 | 77.63 137 | 78.90 190 | 88.63 231 |
|
| test_cas_vis1_n_1920 | | | 80.45 149 | 80.61 134 | 79.97 257 | 78.25 341 | 57.01 318 | 94.04 67 | 88.33 287 | 79.06 78 | 82.81 78 | 93.70 102 | 38.65 311 | 91.63 294 | 90.82 35 | 79.81 181 | 91.27 198 |
|
| fmvsm_s_conf0.1_n | | | 85.61 60 | 85.93 51 | 84.68 131 | 82.95 289 | 63.48 208 | 94.03 68 | 89.46 240 | 81.69 33 | 89.86 25 | 96.74 20 | 61.85 119 | 97.75 49 | 94.74 9 | 82.01 164 | 92.81 160 |
|
| MVS_111021_HR | | | 86.19 47 | 85.80 54 | 87.37 41 | 93.17 68 | 69.79 44 | 93.99 69 | 93.76 69 | 79.08 77 | 78.88 123 | 93.99 97 | 62.25 115 | 98.15 36 | 85.93 71 | 91.15 82 | 94.15 115 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 14 | 97.31 4 | 69.91 40 | 93.96 70 | 94.37 52 | 72.48 181 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 244 | 93.96 70 | 91.92 141 | 62.14 315 | 86.57 44 | | | | | | |
|
| VPNet | | | 78.82 179 | 77.53 181 | 82.70 184 | 84.52 265 | 66.44 127 | 93.93 72 | 92.23 127 | 80.46 50 | 72.60 189 | 88.38 198 | 49.18 252 | 93.13 245 | 72.47 174 | 63.97 308 | 88.55 234 |
|
| test_prior4 | | | | | | | 67.18 109 | 93.92 73 | | | | | | | | | |
|
| SD-MVS | | | 87.49 27 | 87.49 30 | 87.50 39 | 93.60 54 | 68.82 66 | 93.90 74 | 92.63 117 | 76.86 109 | 87.90 35 | 95.76 41 | 66.17 63 | 97.63 56 | 89.06 45 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ZNCC-MVS | | | 85.33 63 | 85.08 64 | 86.06 79 | 93.09 71 | 65.65 145 | 93.89 75 | 93.41 87 | 73.75 155 | 79.94 107 | 94.68 74 | 60.61 132 | 98.03 38 | 82.63 96 | 93.72 44 | 94.52 103 |
|
| CDPH-MVS | | | 85.71 57 | 85.46 58 | 86.46 69 | 94.75 34 | 67.19 107 | 93.89 75 | 92.83 108 | 70.90 231 | 83.09 76 | 95.28 54 | 63.62 96 | 97.36 71 | 80.63 112 | 94.18 35 | 94.84 85 |
|
| EIA-MVS | | | 84.84 70 | 84.88 67 | 84.69 130 | 91.30 120 | 62.36 232 | 93.85 77 | 92.04 136 | 79.45 66 | 79.33 116 | 94.28 90 | 62.42 112 | 96.35 124 | 80.05 116 | 91.25 81 | 95.38 56 |
|
| SMA-MVS |  | | 88.14 17 | 88.29 21 | 87.67 30 | 93.21 66 | 68.72 68 | 93.85 77 | 94.03 62 | 74.18 144 | 91.74 11 | 96.67 21 | 65.61 70 | 98.42 33 | 89.24 43 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| plane_prior | | | | | | | 62.42 230 | 93.85 77 | | 79.38 68 | | | | | | 78.80 192 | |
|
| test_fmvsmconf0.1_n | | | 85.71 57 | 86.08 49 | 84.62 135 | 80.83 305 | 62.33 233 | 93.84 80 | 88.81 271 | 83.50 18 | 87.00 42 | 96.01 37 | 63.36 101 | 96.93 105 | 94.04 12 | 87.29 116 | 94.61 97 |
|
| Anonymous20240529 | | | 76.84 215 | 74.15 231 | 84.88 119 | 91.02 124 | 64.95 164 | 93.84 80 | 91.09 181 | 53.57 356 | 73.00 182 | 87.42 217 | 35.91 335 | 97.32 74 | 69.14 207 | 72.41 245 | 92.36 170 |
|
| CSCG | | | 86.87 35 | 86.26 44 | 88.72 15 | 95.05 31 | 70.79 28 | 93.83 82 | 95.33 16 | 68.48 265 | 77.63 135 | 94.35 86 | 73.04 24 | 98.45 30 | 84.92 80 | 93.71 45 | 96.92 11 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 56 | 86.09 48 | 84.72 128 | 85.73 246 | 63.58 203 | 93.79 83 | 89.32 246 | 81.42 39 | 90.21 22 | 96.91 14 | 62.41 113 | 97.67 51 | 94.48 10 | 80.56 177 | 92.90 158 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 409 | | | | | | | | |
|
| PVSNet_Blended_VisFu | | | 83.97 88 | 83.50 82 | 85.39 102 | 90.02 143 | 66.59 125 | 93.77 84 | 91.73 152 | 77.43 105 | 77.08 144 | 89.81 181 | 63.77 93 | 96.97 100 | 79.67 119 | 88.21 106 | 92.60 164 |
|
| casdiffmvs_mvg |  | | 85.66 59 | 85.18 62 | 87.09 48 | 88.22 192 | 69.35 54 | 93.74 86 | 91.89 144 | 81.47 35 | 80.10 105 | 91.45 151 | 64.80 80 | 96.35 124 | 87.23 60 | 87.69 111 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsm_n_1920 | | | 87.69 25 | 88.50 18 | 85.27 108 | 87.05 221 | 63.55 205 | 93.69 87 | 91.08 183 | 84.18 13 | 90.17 23 | 97.04 8 | 67.58 54 | 97.99 39 | 95.72 5 | 90.03 92 | 94.26 109 |
|
| TR-MVS | | | 78.77 182 | 77.37 187 | 82.95 179 | 90.49 134 | 60.88 260 | 93.67 88 | 90.07 218 | 70.08 244 | 74.51 168 | 91.37 155 | 45.69 282 | 95.70 153 | 60.12 282 | 80.32 178 | 92.29 173 |
|
| testing11 | | | 86.71 40 | 86.44 42 | 87.55 37 | 93.54 57 | 71.35 19 | 93.65 89 | 95.58 11 | 81.36 41 | 80.69 97 | 92.21 137 | 72.30 30 | 96.46 123 | 85.18 76 | 83.43 148 | 94.82 88 |
|
| SF-MVS | | | 87.03 34 | 87.09 34 | 86.84 54 | 92.70 81 | 67.45 103 | 93.64 90 | 93.76 69 | 70.78 235 | 86.25 45 | 96.44 26 | 66.98 57 | 97.79 47 | 88.68 48 | 94.56 32 | 95.28 66 |
|
| API-MVS | | | 82.28 117 | 80.53 136 | 87.54 38 | 96.13 22 | 70.59 30 | 93.63 91 | 91.04 187 | 65.72 286 | 75.45 159 | 92.83 122 | 56.11 183 | 98.89 20 | 64.10 255 | 89.75 96 | 93.15 148 |
|
| BH-w/o | | | 80.49 148 | 79.30 157 | 84.05 154 | 90.83 130 | 64.36 180 | 93.60 92 | 89.42 243 | 74.35 141 | 69.09 232 | 90.15 176 | 55.23 192 | 95.61 156 | 64.61 252 | 86.43 129 | 92.17 180 |
|
| APD-MVS |  | | 85.93 52 | 85.99 50 | 85.76 91 | 95.98 26 | 65.21 156 | 93.59 93 | 92.58 119 | 66.54 279 | 86.17 47 | 95.88 39 | 63.83 91 | 97.00 94 | 86.39 67 | 92.94 55 | 95.06 75 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BH-RMVSNet | | | 79.46 168 | 77.65 178 | 84.89 118 | 91.68 110 | 65.66 144 | 93.55 94 | 88.09 295 | 72.93 171 | 73.37 180 | 91.12 158 | 46.20 279 | 96.12 131 | 56.28 297 | 85.61 134 | 92.91 157 |
|
| thisisatest0515 | | | 83.41 98 | 82.49 107 | 86.16 78 | 89.46 156 | 68.26 79 | 93.54 95 | 94.70 36 | 74.31 142 | 75.75 152 | 90.92 159 | 72.62 28 | 96.52 119 | 69.64 198 | 81.50 169 | 93.71 133 |
|
| canonicalmvs | | | 86.85 36 | 86.25 45 | 88.66 18 | 91.80 107 | 71.92 14 | 93.54 95 | 91.71 154 | 80.26 54 | 87.55 37 | 95.25 58 | 63.59 98 | 96.93 105 | 88.18 49 | 84.34 141 | 97.11 8 |
|
| testing91 | | | 85.93 52 | 85.31 60 | 87.78 29 | 93.59 55 | 71.47 17 | 93.50 97 | 95.08 25 | 80.26 54 | 80.53 100 | 91.93 142 | 70.43 38 | 96.51 120 | 80.32 115 | 82.13 162 | 95.37 57 |
|
| HFP-MVS | | | 84.73 72 | 84.40 73 | 85.72 93 | 93.75 51 | 65.01 162 | 93.50 97 | 93.19 94 | 72.19 191 | 79.22 117 | 94.93 66 | 59.04 150 | 97.67 51 | 81.55 103 | 92.21 62 | 94.49 106 |
|
| ACMMPR | | | 84.37 76 | 84.06 75 | 85.28 107 | 93.56 56 | 64.37 178 | 93.50 97 | 93.15 96 | 72.19 191 | 78.85 125 | 94.86 69 | 56.69 176 | 97.45 65 | 81.55 103 | 92.20 63 | 94.02 123 |
|
| testing99 | | | 86.01 50 | 85.47 57 | 87.63 35 | 93.62 53 | 71.25 21 | 93.47 100 | 95.23 18 | 80.42 52 | 80.60 99 | 91.95 141 | 71.73 35 | 96.50 121 | 80.02 117 | 82.22 160 | 95.13 73 |
|
| Vis-MVSNet |  | | 80.92 141 | 79.98 144 | 83.74 159 | 88.48 180 | 61.80 243 | 93.44 101 | 88.26 292 | 73.96 150 | 77.73 133 | 91.76 145 | 49.94 244 | 94.76 184 | 65.84 241 | 90.37 90 | 94.65 95 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ETV-MVS | | | 86.01 50 | 86.11 47 | 85.70 94 | 90.21 140 | 67.02 114 | 93.43 102 | 91.92 141 | 81.21 43 | 84.13 70 | 94.07 96 | 60.93 129 | 95.63 154 | 89.28 42 | 89.81 93 | 94.46 107 |
|
| region2R | | | 84.36 77 | 84.03 76 | 85.36 104 | 93.54 57 | 64.31 181 | 93.43 102 | 92.95 104 | 72.16 194 | 78.86 124 | 94.84 70 | 56.97 171 | 97.53 63 | 81.38 107 | 92.11 65 | 94.24 110 |
|
| QAPM | | | 79.95 160 | 77.39 186 | 87.64 31 | 89.63 151 | 71.41 18 | 93.30 104 | 93.70 73 | 65.34 289 | 67.39 262 | 91.75 146 | 47.83 265 | 98.96 16 | 57.71 292 | 89.81 93 | 92.54 166 |
|
| MP-MVS |  | | 85.02 67 | 84.97 66 | 85.17 112 | 92.60 85 | 64.27 183 | 93.24 105 | 92.27 126 | 73.13 166 | 79.63 111 | 94.43 80 | 61.90 117 | 97.17 83 | 85.00 78 | 92.56 59 | 94.06 121 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| nrg030 | | | 80.93 140 | 79.86 145 | 84.13 152 | 83.69 278 | 68.83 65 | 93.23 106 | 91.20 174 | 75.55 126 | 75.06 162 | 88.22 204 | 63.04 108 | 94.74 186 | 81.88 101 | 66.88 281 | 88.82 229 |
|
| VPA-MVSNet | | | 79.03 173 | 78.00 173 | 82.11 207 | 85.95 240 | 64.48 171 | 93.22 107 | 94.66 38 | 75.05 134 | 74.04 175 | 84.95 245 | 52.17 225 | 93.52 239 | 74.90 157 | 67.04 280 | 88.32 240 |
|
| HQP_MVS | | | 80.34 151 | 79.75 147 | 82.12 204 | 86.94 223 | 62.42 230 | 93.13 108 | 91.31 170 | 78.81 83 | 72.53 191 | 89.14 189 | 50.66 237 | 95.55 161 | 76.74 140 | 78.53 195 | 88.39 238 |
|
| plane_prior2 | | | | | | | | 93.13 108 | | 78.81 83 | | | | | | | |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 84 | 92.83 75 | 64.03 188 | 93.06 110 | 94.33 54 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 82 | 91.02 33 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| thres200 | | | 79.66 163 | 78.33 167 | 83.66 165 | 92.54 87 | 65.82 143 | 93.06 110 | 96.31 3 | 74.90 136 | 73.30 181 | 88.66 191 | 59.67 142 | 95.61 156 | 47.84 330 | 78.67 193 | 89.56 221 |
|
| GST-MVS | | | 84.63 74 | 84.29 74 | 85.66 95 | 92.82 77 | 65.27 154 | 93.04 112 | 93.13 97 | 73.20 164 | 78.89 120 | 94.18 93 | 59.41 146 | 97.85 45 | 81.45 105 | 92.48 61 | 93.86 130 |
|
| casdiffmvs |  | | 85.37 62 | 84.87 68 | 86.84 54 | 88.25 190 | 69.07 59 | 93.04 112 | 91.76 151 | 81.27 42 | 80.84 96 | 92.07 139 | 64.23 86 | 96.06 136 | 84.98 79 | 87.43 115 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPP-MVSNet | | | 81.79 126 | 81.52 118 | 82.61 187 | 88.77 176 | 60.21 276 | 93.02 114 | 93.66 75 | 68.52 264 | 72.90 185 | 90.39 169 | 72.19 32 | 94.96 179 | 74.93 155 | 79.29 188 | 92.67 162 |
|
| cascas | | | 78.18 192 | 75.77 208 | 85.41 101 | 87.14 218 | 69.11 57 | 92.96 115 | 91.15 178 | 66.71 278 | 70.47 215 | 86.07 235 | 37.49 325 | 96.48 122 | 70.15 194 | 79.80 182 | 90.65 204 |
|
| iter_conf_final | | | 81.74 127 | 80.93 128 | 84.18 150 | 92.66 83 | 69.10 58 | 92.94 116 | 82.80 346 | 79.01 80 | 74.85 165 | 88.40 196 | 61.83 120 | 94.61 192 | 79.36 121 | 76.52 214 | 88.83 226 |
|
| XVS | | | 83.87 90 | 83.47 84 | 85.05 113 | 93.22 64 | 63.78 192 | 92.92 117 | 92.66 114 | 73.99 147 | 78.18 129 | 94.31 89 | 55.25 190 | 97.41 68 | 79.16 124 | 91.58 74 | 93.95 125 |
|
| X-MVStestdata | | | 76.86 212 | 74.13 232 | 85.05 113 | 93.22 64 | 63.78 192 | 92.92 117 | 92.66 114 | 73.99 147 | 78.18 129 | 10.19 405 | 55.25 190 | 97.41 68 | 79.16 124 | 91.58 74 | 93.95 125 |
|
| 114514_t | | | 79.17 171 | 77.67 177 | 83.68 163 | 95.32 29 | 65.53 150 | 92.85 119 | 91.60 160 | 63.49 300 | 67.92 251 | 90.63 164 | 46.65 272 | 95.72 152 | 67.01 228 | 83.54 147 | 89.79 216 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 71 | 84.84 69 | 84.53 137 | 80.23 315 | 63.50 207 | 92.79 120 | 88.73 275 | 80.46 50 | 89.84 26 | 96.65 22 | 60.96 128 | 97.57 61 | 93.80 13 | 80.14 179 | 92.53 167 |
|
| mPP-MVS | | | 82.96 108 | 82.44 108 | 84.52 138 | 92.83 75 | 62.92 222 | 92.76 121 | 91.85 148 | 71.52 219 | 75.61 157 | 94.24 91 | 53.48 215 | 96.99 97 | 78.97 127 | 90.73 85 | 93.64 136 |
|
| OpenMVS |  | 70.45 11 | 78.54 187 | 75.92 206 | 86.41 72 | 85.93 243 | 71.68 16 | 92.74 122 | 92.51 121 | 66.49 280 | 64.56 284 | 91.96 140 | 43.88 292 | 98.10 37 | 54.61 302 | 90.65 87 | 89.44 224 |
|
| h-mvs33 | | | 83.01 106 | 82.56 106 | 84.35 145 | 89.34 157 | 62.02 239 | 92.72 123 | 93.76 69 | 81.45 36 | 82.73 79 | 92.25 136 | 60.11 136 | 97.13 87 | 87.69 53 | 62.96 311 | 93.91 127 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 124 | 92.61 118 | 62.03 316 | | | | 97.01 93 | 66.63 230 | | 93.97 124 |
|
| test-LLR | | | 80.10 156 | 79.56 150 | 81.72 213 | 86.93 225 | 61.17 254 | 92.70 125 | 91.54 161 | 71.51 220 | 75.62 155 | 86.94 224 | 53.83 208 | 92.38 276 | 72.21 176 | 84.76 139 | 91.60 186 |
|
| TESTMET0.1,1 | | | 82.41 115 | 81.98 114 | 83.72 162 | 88.08 194 | 63.74 194 | 92.70 125 | 93.77 68 | 79.30 70 | 77.61 136 | 87.57 215 | 58.19 157 | 94.08 218 | 73.91 162 | 86.68 126 | 93.33 144 |
|
| test-mter | | | 79.96 159 | 79.38 156 | 81.72 213 | 86.93 225 | 61.17 254 | 92.70 125 | 91.54 161 | 73.85 152 | 75.62 155 | 86.94 224 | 49.84 246 | 92.38 276 | 72.21 176 | 84.76 139 | 91.60 186 |
|
| BH-untuned | | | 78.68 183 | 77.08 189 | 83.48 170 | 89.84 146 | 63.74 194 | 92.70 125 | 88.59 281 | 71.57 217 | 66.83 269 | 88.65 192 | 51.75 228 | 95.39 166 | 59.03 287 | 84.77 138 | 91.32 195 |
|
| AdaColmap |  | | 78.94 176 | 77.00 192 | 84.76 126 | 96.34 17 | 65.86 141 | 92.66 129 | 87.97 299 | 62.18 314 | 70.56 214 | 92.37 132 | 43.53 293 | 97.35 72 | 64.50 253 | 82.86 152 | 91.05 201 |
|
| test1111 | | | 80.84 142 | 80.02 141 | 83.33 172 | 87.87 201 | 60.76 264 | 92.62 130 | 86.86 309 | 77.86 95 | 75.73 153 | 91.39 154 | 46.35 275 | 94.70 190 | 72.79 169 | 88.68 103 | 94.52 103 |
|
| testing222 | | | 85.18 65 | 84.69 70 | 86.63 62 | 92.91 74 | 69.91 40 | 92.61 131 | 95.80 9 | 80.31 53 | 80.38 102 | 92.27 134 | 68.73 44 | 95.19 173 | 75.94 146 | 83.27 150 | 94.81 89 |
|
| WR-MVS | | | 76.76 217 | 75.74 209 | 79.82 261 | 84.60 263 | 62.27 236 | 92.60 132 | 92.51 121 | 76.06 120 | 67.87 255 | 85.34 241 | 56.76 173 | 90.24 313 | 62.20 270 | 63.69 310 | 86.94 260 |
|
| 3Dnovator | | 73.91 6 | 82.69 113 | 80.82 129 | 88.31 23 | 89.57 152 | 71.26 20 | 92.60 132 | 94.39 51 | 78.84 82 | 67.89 254 | 92.48 129 | 48.42 258 | 98.52 28 | 68.80 211 | 94.40 34 | 95.15 72 |
|
| xiu_mvs_v1_base_debu | | | 82.16 119 | 81.12 122 | 85.26 109 | 86.42 230 | 68.72 68 | 92.59 134 | 90.44 202 | 73.12 167 | 84.20 67 | 94.36 82 | 38.04 319 | 95.73 148 | 84.12 86 | 86.81 120 | 91.33 192 |
|
| xiu_mvs_v1_base | | | 82.16 119 | 81.12 122 | 85.26 109 | 86.42 230 | 68.72 68 | 92.59 134 | 90.44 202 | 73.12 167 | 84.20 67 | 94.36 82 | 38.04 319 | 95.73 148 | 84.12 86 | 86.81 120 | 91.33 192 |
|
| xiu_mvs_v1_base_debi | | | 82.16 119 | 81.12 122 | 85.26 109 | 86.42 230 | 68.72 68 | 92.59 134 | 90.44 202 | 73.12 167 | 84.20 67 | 94.36 82 | 38.04 319 | 95.73 148 | 84.12 86 | 86.81 120 | 91.33 192 |
|
| ECVR-MVS |  | | 81.29 133 | 80.38 139 | 84.01 155 | 88.39 185 | 61.96 241 | 92.56 137 | 86.79 310 | 77.66 99 | 76.63 146 | 91.42 152 | 46.34 276 | 95.24 172 | 74.36 160 | 89.23 97 | 94.85 82 |
|
| PVSNet | | 73.49 8 | 80.05 157 | 78.63 164 | 84.31 146 | 90.92 127 | 64.97 163 | 92.47 138 | 91.05 186 | 79.18 73 | 72.43 195 | 90.51 166 | 37.05 331 | 94.06 220 | 68.06 215 | 86.00 130 | 93.90 129 |
|
| ETVMVS | | | 84.22 83 | 83.71 78 | 85.76 91 | 92.58 86 | 68.25 81 | 92.45 139 | 95.53 14 | 79.54 65 | 79.46 113 | 91.64 149 | 70.29 39 | 94.18 214 | 69.16 206 | 82.76 156 | 94.84 85 |
|
| PAPM | | | 85.89 54 | 85.46 58 | 87.18 45 | 88.20 193 | 72.42 13 | 92.41 140 | 92.77 109 | 82.11 29 | 80.34 103 | 93.07 114 | 68.27 47 | 95.02 176 | 78.39 133 | 93.59 47 | 94.09 118 |
|
| GeoE | | | 78.90 177 | 77.43 182 | 83.29 173 | 88.95 171 | 62.02 239 | 92.31 141 | 86.23 315 | 70.24 242 | 71.34 209 | 89.27 186 | 54.43 203 | 94.04 223 | 63.31 261 | 80.81 176 | 93.81 132 |
|
| 1112_ss | | | 80.56 146 | 79.83 146 | 82.77 182 | 88.65 177 | 60.78 262 | 92.29 142 | 88.36 286 | 72.58 179 | 72.46 194 | 94.95 64 | 65.09 74 | 93.42 242 | 66.38 235 | 77.71 199 | 94.10 117 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 193 | 77.55 180 | 79.98 255 | 84.46 267 | 60.26 274 | 92.25 143 | 93.20 93 | 77.50 103 | 68.88 238 | 86.61 227 | 66.10 64 | 92.13 283 | 66.38 235 | 62.55 315 | 87.54 245 |
|
| sss | | | 82.71 112 | 82.38 109 | 83.73 161 | 89.25 162 | 59.58 284 | 92.24 144 | 94.89 28 | 77.96 92 | 79.86 108 | 92.38 131 | 56.70 175 | 97.05 89 | 77.26 139 | 80.86 174 | 94.55 99 |
|
| SR-MVS | | | 82.81 109 | 82.58 105 | 83.50 169 | 93.35 61 | 61.16 256 | 92.23 145 | 91.28 173 | 64.48 293 | 81.27 88 | 95.28 54 | 53.71 211 | 95.86 142 | 82.87 94 | 88.77 102 | 93.49 139 |
|
| test_fmvsmconf0.01_n | | | 83.70 96 | 83.52 80 | 84.25 149 | 75.26 357 | 61.72 247 | 92.17 146 | 87.24 306 | 82.36 26 | 84.91 61 | 95.41 48 | 55.60 188 | 96.83 109 | 92.85 17 | 85.87 131 | 94.21 111 |
|
| DeepC-MVS | | 77.85 3 | 85.52 61 | 85.24 61 | 86.37 73 | 88.80 175 | 66.64 122 | 92.15 147 | 93.68 74 | 81.07 44 | 76.91 145 | 93.64 104 | 62.59 111 | 98.44 31 | 85.50 72 | 92.84 57 | 94.03 122 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UGNet | | | 79.87 161 | 78.68 163 | 83.45 171 | 89.96 144 | 61.51 250 | 92.13 148 | 90.79 190 | 76.83 111 | 78.85 125 | 86.33 232 | 38.16 317 | 96.17 129 | 67.93 218 | 87.17 117 | 92.67 162 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| ACMMP |  | | 81.49 130 | 80.67 132 | 83.93 156 | 91.71 109 | 62.90 223 | 92.13 148 | 92.22 130 | 71.79 206 | 71.68 205 | 93.49 108 | 50.32 239 | 96.96 101 | 78.47 132 | 84.22 146 | 91.93 184 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CPTT-MVS | | | 79.59 164 | 79.16 159 | 80.89 236 | 91.54 115 | 59.80 281 | 92.10 150 | 88.54 283 | 60.42 327 | 72.96 183 | 93.28 110 | 48.27 259 | 92.80 259 | 78.89 129 | 86.50 128 | 90.06 211 |
|
| Test_1112_low_res | | | 79.56 165 | 78.60 165 | 82.43 190 | 88.24 191 | 60.39 273 | 92.09 151 | 87.99 297 | 72.10 195 | 71.84 201 | 87.42 217 | 64.62 82 | 93.04 246 | 65.80 242 | 77.30 207 | 93.85 131 |
|
| CDS-MVSNet | | | 81.43 131 | 80.74 130 | 83.52 166 | 86.26 234 | 64.45 172 | 92.09 151 | 90.65 196 | 75.83 123 | 73.95 176 | 89.81 181 | 63.97 89 | 92.91 255 | 71.27 184 | 82.82 153 | 93.20 147 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CHOSEN 1792x2688 | | | 84.98 69 | 83.45 85 | 89.57 10 | 89.94 145 | 75.14 5 | 92.07 153 | 92.32 124 | 81.87 31 | 75.68 154 | 88.27 200 | 60.18 135 | 98.60 27 | 80.46 114 | 90.27 91 | 94.96 79 |
|
| tfpn200view9 | | | 78.79 181 | 77.43 182 | 82.88 180 | 92.21 93 | 64.49 169 | 92.05 154 | 96.28 4 | 73.48 161 | 71.75 203 | 88.26 201 | 60.07 138 | 95.32 168 | 45.16 341 | 77.58 202 | 88.83 226 |
|
| thres400 | | | 78.68 183 | 77.43 182 | 82.43 190 | 92.21 93 | 64.49 169 | 92.05 154 | 96.28 4 | 73.48 161 | 71.75 203 | 88.26 201 | 60.07 138 | 95.32 168 | 45.16 341 | 77.58 202 | 87.48 247 |
|
| test2506 | | | 83.29 100 | 82.92 98 | 84.37 144 | 88.39 185 | 63.18 215 | 92.01 156 | 91.35 169 | 77.66 99 | 78.49 128 | 91.42 152 | 64.58 83 | 95.09 175 | 73.19 163 | 89.23 97 | 94.85 82 |
|
| 原ACMM2 | | | | | | | | 92.01 156 | | | | | | | | | |
|
| XXY-MVS | | | 77.94 197 | 76.44 198 | 82.43 190 | 82.60 290 | 64.44 173 | 92.01 156 | 91.83 149 | 73.59 160 | 70.00 224 | 85.82 238 | 54.43 203 | 94.76 184 | 69.63 199 | 68.02 274 | 88.10 242 |
|
| 旧先验2 | | | | | | | | 92.00 159 | | 59.37 335 | 87.54 38 | | | 93.47 241 | 75.39 150 | | |
|
| IS-MVSNet | | | 80.14 155 | 79.41 154 | 82.33 194 | 87.91 199 | 60.08 278 | 91.97 160 | 88.27 290 | 72.90 174 | 71.44 208 | 91.73 147 | 61.44 123 | 93.66 237 | 62.47 269 | 86.53 127 | 93.24 145 |
|
| EPNet_dtu | | | 78.80 180 | 79.26 158 | 77.43 293 | 88.06 195 | 49.71 354 | 91.96 161 | 91.95 140 | 77.67 98 | 76.56 148 | 91.28 156 | 58.51 153 | 90.20 315 | 56.37 296 | 80.95 173 | 92.39 169 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| UWE-MVS | | | 80.81 143 | 81.01 127 | 80.20 248 | 89.33 159 | 57.05 316 | 91.91 162 | 94.71 35 | 75.67 124 | 75.01 163 | 89.37 185 | 63.13 106 | 91.44 302 | 67.19 226 | 82.80 155 | 92.12 182 |
|
| MVSTER | | | 82.47 114 | 82.05 111 | 83.74 159 | 92.68 82 | 69.01 61 | 91.90 163 | 93.21 91 | 79.83 59 | 72.14 198 | 85.71 240 | 74.72 16 | 94.72 187 | 75.72 147 | 72.49 243 | 87.50 246 |
|
| CANet_DTU | | | 84.09 86 | 83.52 80 | 85.81 88 | 90.30 138 | 66.82 117 | 91.87 164 | 89.01 263 | 85.27 9 | 86.09 48 | 93.74 101 | 47.71 267 | 96.98 98 | 77.90 136 | 89.78 95 | 93.65 135 |
|
| FMVSNet3 | | | 77.73 200 | 76.04 204 | 82.80 181 | 91.20 123 | 68.99 62 | 91.87 164 | 91.99 138 | 73.35 163 | 67.04 265 | 83.19 266 | 56.62 177 | 92.14 282 | 59.80 284 | 69.34 261 | 87.28 254 |
|
| v2v482 | | | 77.42 204 | 75.65 211 | 82.73 183 | 80.38 311 | 67.13 110 | 91.85 166 | 90.23 213 | 75.09 133 | 69.37 229 | 83.39 264 | 53.79 210 | 94.44 203 | 71.77 180 | 65.00 296 | 86.63 266 |
|
| PAPR | | | 85.15 66 | 84.47 71 | 87.18 45 | 96.02 25 | 68.29 77 | 91.85 166 | 93.00 103 | 76.59 116 | 79.03 119 | 95.00 63 | 61.59 122 | 97.61 58 | 78.16 134 | 89.00 100 | 95.63 48 |
|
| ACMMP_NAP | | | 86.05 49 | 85.80 54 | 86.80 57 | 91.58 112 | 67.53 100 | 91.79 168 | 93.49 83 | 74.93 135 | 84.61 63 | 95.30 53 | 59.42 145 | 97.92 41 | 86.13 68 | 94.92 19 | 94.94 81 |
|
| Baseline_NR-MVSNet | | | 73.99 253 | 72.83 248 | 77.48 292 | 80.78 306 | 59.29 290 | 91.79 168 | 84.55 330 | 68.85 259 | 68.99 236 | 80.70 300 | 56.16 181 | 92.04 286 | 62.67 267 | 60.98 332 | 81.11 343 |
|
| TransMVSNet (Re) | | | 70.07 287 | 67.66 293 | 77.31 296 | 80.62 310 | 59.13 293 | 91.78 170 | 84.94 327 | 65.97 283 | 60.08 317 | 80.44 305 | 50.78 236 | 91.87 288 | 48.84 323 | 45.46 373 | 80.94 345 |
|
| EI-MVSNet-Vis-set | | | 83.77 93 | 83.67 79 | 84.06 153 | 92.79 80 | 63.56 204 | 91.76 171 | 94.81 31 | 79.65 64 | 77.87 132 | 94.09 94 | 63.35 102 | 97.90 42 | 79.35 122 | 79.36 186 | 90.74 203 |
|
| UniMVSNet (Re) | | | 77.58 202 | 76.78 194 | 79.98 255 | 84.11 273 | 60.80 261 | 91.76 171 | 93.17 95 | 76.56 117 | 69.93 227 | 84.78 248 | 63.32 103 | 92.36 278 | 64.89 251 | 62.51 317 | 86.78 262 |
|
| MS-PatchMatch | | | 77.90 199 | 76.50 197 | 82.12 204 | 85.99 239 | 69.95 39 | 91.75 173 | 92.70 111 | 73.97 149 | 62.58 305 | 84.44 253 | 41.11 302 | 95.78 144 | 63.76 258 | 92.17 64 | 80.62 349 |
|
| v148 | | | 76.19 221 | 74.47 226 | 81.36 220 | 80.05 317 | 64.44 173 | 91.75 173 | 90.23 213 | 73.68 158 | 67.13 264 | 80.84 299 | 55.92 186 | 93.86 234 | 68.95 209 | 61.73 326 | 85.76 288 |
|
| FIs | | | 79.47 167 | 79.41 154 | 79.67 264 | 85.95 240 | 59.40 286 | 91.68 175 | 93.94 63 | 78.06 91 | 68.96 237 | 88.28 199 | 66.61 61 | 91.77 291 | 66.20 238 | 74.99 222 | 87.82 243 |
|
| v1144 | | | 76.73 218 | 74.88 218 | 82.27 196 | 80.23 315 | 66.60 124 | 91.68 175 | 90.21 215 | 73.69 157 | 69.06 234 | 81.89 279 | 52.73 221 | 94.40 204 | 69.21 205 | 65.23 293 | 85.80 285 |
|
| OPM-MVS | | | 79.00 174 | 78.09 171 | 81.73 212 | 83.52 281 | 63.83 191 | 91.64 177 | 90.30 209 | 76.36 119 | 71.97 200 | 89.93 180 | 46.30 278 | 95.17 174 | 75.10 152 | 77.70 200 | 86.19 274 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MP-MVS-pluss | | | 85.24 64 | 85.13 63 | 85.56 97 | 91.42 117 | 65.59 147 | 91.54 178 | 92.51 121 | 74.56 138 | 80.62 98 | 95.64 44 | 59.15 149 | 97.00 94 | 86.94 63 | 93.80 41 | 94.07 120 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| GA-MVS | | | 78.33 191 | 76.23 201 | 84.65 132 | 83.65 279 | 66.30 131 | 91.44 179 | 90.14 216 | 76.01 121 | 70.32 219 | 84.02 257 | 42.50 297 | 94.72 187 | 70.98 186 | 77.00 210 | 92.94 156 |
|
| mvsmamba | | | 76.85 214 | 75.71 210 | 80.25 246 | 83.07 286 | 59.16 291 | 91.44 179 | 80.64 353 | 76.84 110 | 67.95 250 | 86.33 232 | 46.17 280 | 94.24 212 | 76.06 145 | 72.92 239 | 87.36 251 |
|
| miper_enhance_ethall | | | 78.86 178 | 77.97 174 | 81.54 217 | 88.00 198 | 65.17 157 | 91.41 181 | 89.15 255 | 75.19 132 | 68.79 240 | 83.98 258 | 67.17 56 | 92.82 257 | 72.73 170 | 65.30 290 | 86.62 267 |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 181 | | | | | | | | | |
|
| thisisatest0530 | | | 81.15 134 | 80.07 140 | 84.39 143 | 88.26 189 | 65.63 146 | 91.40 183 | 94.62 40 | 71.27 224 | 70.93 211 | 89.18 187 | 72.47 29 | 96.04 137 | 65.62 244 | 76.89 211 | 91.49 188 |
|
| Anonymous20231211 | | | 73.08 259 | 70.39 275 | 81.13 226 | 90.62 132 | 63.33 210 | 91.40 183 | 90.06 220 | 51.84 361 | 64.46 287 | 80.67 302 | 36.49 333 | 94.07 219 | 63.83 257 | 64.17 304 | 85.98 281 |
|
| v144192 | | | 76.05 226 | 74.03 233 | 82.12 204 | 79.50 323 | 66.55 126 | 91.39 185 | 89.71 236 | 72.30 188 | 68.17 247 | 81.33 291 | 51.75 228 | 94.03 225 | 67.94 217 | 64.19 303 | 85.77 286 |
|
| APD-MVS_3200maxsize | | | 81.64 129 | 81.32 120 | 82.59 188 | 92.36 88 | 58.74 296 | 91.39 185 | 91.01 188 | 63.35 302 | 79.72 110 | 94.62 76 | 51.82 226 | 96.14 130 | 79.71 118 | 87.93 109 | 92.89 159 |
|
| EI-MVSNet-UG-set | | | 83.14 104 | 82.96 96 | 83.67 164 | 92.28 90 | 63.19 214 | 91.38 187 | 94.68 37 | 79.22 72 | 76.60 147 | 93.75 100 | 62.64 110 | 97.76 48 | 78.07 135 | 78.01 197 | 90.05 212 |
|
| test_fmvsmvis_n_1920 | | | 83.80 92 | 83.48 83 | 84.77 125 | 82.51 291 | 63.72 196 | 91.37 188 | 83.99 337 | 81.42 39 | 77.68 134 | 95.74 42 | 58.37 154 | 97.58 59 | 93.38 14 | 86.87 119 | 93.00 155 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 231 | 74.52 225 | 79.89 259 | 82.44 292 | 60.64 270 | 91.37 188 | 91.37 168 | 76.63 115 | 67.65 257 | 86.21 234 | 52.37 224 | 91.55 296 | 61.84 272 | 60.81 333 | 87.48 247 |
|
| Effi-MVS+ | | | 83.82 91 | 82.76 101 | 86.99 52 | 89.56 153 | 69.40 50 | 91.35 190 | 86.12 317 | 72.59 178 | 83.22 75 | 92.81 123 | 59.60 143 | 96.01 140 | 81.76 102 | 87.80 110 | 95.56 51 |
|
| FMVSNet2 | | | 76.07 223 | 74.01 234 | 82.26 198 | 88.85 172 | 67.66 95 | 91.33 191 | 91.61 159 | 70.84 232 | 65.98 272 | 82.25 275 | 48.03 260 | 92.00 287 | 58.46 289 | 68.73 269 | 87.10 257 |
|
| HPM-MVS_fast | | | 80.25 153 | 79.55 152 | 82.33 194 | 91.55 114 | 59.95 279 | 91.32 192 | 89.16 254 | 65.23 290 | 74.71 167 | 93.07 114 | 47.81 266 | 95.74 147 | 74.87 158 | 88.23 105 | 91.31 196 |
|
| thres600view7 | | | 78.00 194 | 76.66 196 | 82.03 209 | 91.93 102 | 63.69 199 | 91.30 193 | 96.33 1 | 72.43 184 | 70.46 216 | 87.89 210 | 60.31 133 | 94.92 182 | 42.64 353 | 76.64 212 | 87.48 247 |
|
| WB-MVSnew | | | 77.14 208 | 76.18 203 | 80.01 254 | 86.18 236 | 63.24 212 | 91.26 194 | 94.11 60 | 71.72 209 | 73.52 179 | 87.29 220 | 45.14 287 | 93.00 248 | 56.98 294 | 79.42 184 | 83.80 310 |
|
| DU-MVS | | | 76.86 212 | 75.84 207 | 79.91 258 | 82.96 287 | 60.26 274 | 91.26 194 | 91.54 161 | 76.46 118 | 68.88 238 | 86.35 230 | 56.16 181 | 92.13 283 | 66.38 235 | 62.55 315 | 87.35 252 |
|
| TAMVS | | | 80.37 150 | 79.45 153 | 83.13 177 | 85.14 255 | 63.37 209 | 91.23 196 | 90.76 191 | 74.81 137 | 72.65 188 | 88.49 193 | 60.63 131 | 92.95 250 | 69.41 202 | 81.95 165 | 93.08 151 |
|
| v1192 | | | 75.98 228 | 73.92 235 | 82.15 202 | 79.73 319 | 66.24 133 | 91.22 197 | 89.75 230 | 72.67 177 | 68.49 245 | 81.42 289 | 49.86 245 | 94.27 209 | 67.08 227 | 65.02 295 | 85.95 282 |
|
| test0.0.03 1 | | | 72.76 266 | 72.71 252 | 72.88 331 | 80.25 314 | 47.99 362 | 91.22 197 | 89.45 241 | 71.51 220 | 62.51 306 | 87.66 213 | 53.83 208 | 85.06 353 | 50.16 317 | 67.84 277 | 85.58 289 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 242 | 73.37 242 | 80.07 251 | 80.86 304 | 59.52 285 | 91.20 199 | 85.38 322 | 71.90 199 | 65.20 277 | 84.84 247 | 41.46 300 | 92.97 249 | 66.50 234 | 72.96 238 | 87.73 244 |
|
| thres100view900 | | | 78.37 189 | 77.01 191 | 82.46 189 | 91.89 105 | 63.21 213 | 91.19 200 | 96.33 1 | 72.28 189 | 70.45 217 | 87.89 210 | 60.31 133 | 95.32 168 | 45.16 341 | 77.58 202 | 88.83 226 |
|
| PMMVS | | | 81.98 124 | 82.04 112 | 81.78 211 | 89.76 149 | 56.17 322 | 91.13 201 | 90.69 192 | 77.96 92 | 80.09 106 | 93.57 106 | 46.33 277 | 94.99 178 | 81.41 106 | 87.46 114 | 94.17 113 |
|
| pmmvs5 | | | 73.35 258 | 71.52 265 | 78.86 277 | 78.64 337 | 60.61 271 | 91.08 202 | 86.90 307 | 67.69 269 | 63.32 296 | 83.64 260 | 44.33 291 | 90.53 307 | 62.04 271 | 66.02 287 | 85.46 293 |
|
| baseline1 | | | 81.84 125 | 81.03 126 | 84.28 148 | 91.60 111 | 66.62 123 | 91.08 202 | 91.66 158 | 81.87 31 | 74.86 164 | 91.67 148 | 69.98 41 | 94.92 182 | 71.76 181 | 64.75 299 | 91.29 197 |
|
| v1921920 | | | 75.63 236 | 73.49 241 | 82.06 208 | 79.38 324 | 66.35 129 | 91.07 204 | 89.48 239 | 71.98 196 | 67.99 248 | 81.22 294 | 49.16 254 | 93.90 231 | 66.56 231 | 64.56 302 | 85.92 284 |
|
| HPM-MVS |  | | 83.25 102 | 82.95 97 | 84.17 151 | 92.25 91 | 62.88 224 | 90.91 205 | 91.86 146 | 70.30 241 | 77.12 142 | 93.96 98 | 56.75 174 | 96.28 126 | 82.04 100 | 91.34 80 | 93.34 142 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SR-MVS-dyc-post | | | 81.06 138 | 80.70 131 | 82.15 202 | 92.02 97 | 58.56 298 | 90.90 206 | 90.45 199 | 62.76 309 | 78.89 120 | 94.46 78 | 51.26 234 | 95.61 156 | 78.77 130 | 86.77 123 | 92.28 174 |
|
| RE-MVS-def | | | | 80.48 137 | | 92.02 97 | 58.56 298 | 90.90 206 | 90.45 199 | 62.76 309 | 78.89 120 | 94.46 78 | 49.30 250 | | 78.77 130 | 86.77 123 | 92.28 174 |
|
| diffmvs |  | | 84.28 79 | 83.83 77 | 85.61 96 | 87.40 212 | 68.02 87 | 90.88 208 | 89.24 249 | 80.54 48 | 81.64 86 | 92.52 125 | 59.83 140 | 94.52 201 | 87.32 58 | 85.11 135 | 94.29 108 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CNLPA | | | 74.31 249 | 72.30 257 | 80.32 242 | 91.49 116 | 61.66 248 | 90.85 209 | 80.72 352 | 56.67 348 | 63.85 292 | 90.64 162 | 46.75 271 | 90.84 305 | 53.79 306 | 75.99 218 | 88.47 237 |
|
| NR-MVSNet | | | 76.05 226 | 74.59 222 | 80.44 240 | 82.96 287 | 62.18 237 | 90.83 210 | 91.73 152 | 77.12 107 | 60.96 312 | 86.35 230 | 59.28 148 | 91.80 290 | 60.74 277 | 61.34 330 | 87.35 252 |
|
| pm-mvs1 | | | 72.89 264 | 71.09 268 | 78.26 284 | 79.10 330 | 57.62 309 | 90.80 211 | 89.30 247 | 67.66 270 | 62.91 302 | 81.78 281 | 49.11 255 | 92.95 250 | 60.29 281 | 58.89 343 | 84.22 306 |
|
| ACMP | | 71.68 10 | 75.58 237 | 74.23 230 | 79.62 266 | 84.97 259 | 59.64 282 | 90.80 211 | 89.07 261 | 70.39 240 | 62.95 301 | 87.30 219 | 38.28 315 | 93.87 232 | 72.89 166 | 71.45 251 | 85.36 295 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v1240 | | | 75.21 241 | 72.98 246 | 81.88 210 | 79.20 326 | 66.00 137 | 90.75 213 | 89.11 258 | 71.63 215 | 67.41 261 | 81.22 294 | 47.36 268 | 93.87 232 | 65.46 247 | 64.72 300 | 85.77 286 |
|
| testing3 | | | 70.38 285 | 70.83 269 | 69.03 350 | 85.82 244 | 43.93 378 | 90.72 214 | 90.56 198 | 68.06 266 | 60.24 315 | 86.82 226 | 64.83 79 | 84.12 355 | 26.33 388 | 64.10 305 | 79.04 362 |
|
| cl22 | | | 77.94 197 | 76.78 194 | 81.42 219 | 87.57 207 | 64.93 165 | 90.67 215 | 88.86 270 | 72.45 183 | 67.63 258 | 82.68 271 | 64.07 87 | 92.91 255 | 71.79 179 | 65.30 290 | 86.44 268 |
|
| miper_ehance_all_eth | | | 77.60 201 | 76.44 198 | 81.09 231 | 85.70 247 | 64.41 176 | 90.65 216 | 88.64 280 | 72.31 187 | 67.37 263 | 82.52 272 | 64.77 81 | 92.64 269 | 70.67 190 | 65.30 290 | 86.24 272 |
|
| IterMVS-LS | | | 76.49 219 | 75.18 217 | 80.43 241 | 84.49 266 | 62.74 226 | 90.64 217 | 88.80 272 | 72.40 185 | 65.16 278 | 81.72 282 | 60.98 127 | 92.27 281 | 67.74 219 | 64.65 301 | 86.29 270 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PLC |  | 68.80 14 | 75.23 240 | 73.68 239 | 79.86 260 | 92.93 73 | 58.68 297 | 90.64 217 | 88.30 288 | 60.90 324 | 64.43 288 | 90.53 165 | 42.38 298 | 94.57 196 | 56.52 295 | 76.54 213 | 86.33 269 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PS-MVSNAJss | | | 77.26 206 | 76.31 200 | 80.13 250 | 80.64 309 | 59.16 291 | 90.63 219 | 91.06 185 | 72.80 175 | 68.58 244 | 84.57 251 | 53.55 212 | 93.96 228 | 72.97 165 | 71.96 247 | 87.27 255 |
|
| PGM-MVS | | | 83.25 102 | 82.70 103 | 84.92 117 | 92.81 79 | 64.07 187 | 90.44 220 | 92.20 131 | 71.28 223 | 77.23 141 | 94.43 80 | 55.17 194 | 97.31 75 | 79.33 123 | 91.38 78 | 93.37 141 |
|
| LPG-MVS_test | | | 75.82 232 | 74.58 223 | 79.56 268 | 84.31 270 | 59.37 287 | 90.44 220 | 89.73 233 | 69.49 250 | 64.86 279 | 88.42 194 | 38.65 311 | 94.30 207 | 72.56 172 | 72.76 240 | 85.01 300 |
|
| Vis-MVSNet (Re-imp) | | | 79.24 170 | 79.57 149 | 78.24 285 | 88.46 181 | 52.29 341 | 90.41 222 | 89.12 257 | 74.24 143 | 69.13 231 | 91.91 143 | 65.77 68 | 90.09 317 | 59.00 288 | 88.09 107 | 92.33 171 |
|
| c3_l | | | 76.83 216 | 75.47 212 | 80.93 235 | 85.02 258 | 64.18 186 | 90.39 223 | 88.11 294 | 71.66 210 | 66.65 271 | 81.64 284 | 63.58 99 | 92.56 270 | 69.31 204 | 62.86 312 | 86.04 279 |
|
| dcpmvs_2 | | | 87.37 30 | 87.55 29 | 86.85 53 | 95.04 32 | 68.20 83 | 90.36 224 | 90.66 195 | 79.37 69 | 81.20 89 | 93.67 103 | 74.73 15 | 96.55 118 | 90.88 34 | 92.00 67 | 95.82 44 |
|
| TSAR-MVS + MP. | | | 88.11 19 | 88.64 17 | 86.54 67 | 91.73 108 | 68.04 86 | 90.36 224 | 93.55 79 | 82.89 19 | 91.29 15 | 92.89 119 | 72.27 31 | 96.03 138 | 87.99 50 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ACMM | | 69.62 13 | 74.34 248 | 72.73 251 | 79.17 273 | 84.25 272 | 57.87 304 | 90.36 224 | 89.93 224 | 63.17 306 | 65.64 274 | 86.04 237 | 37.79 323 | 94.10 216 | 65.89 240 | 71.52 250 | 85.55 291 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FC-MVSNet-test | | | 77.99 195 | 78.08 172 | 77.70 288 | 84.89 260 | 55.51 327 | 90.27 227 | 93.75 72 | 76.87 108 | 66.80 270 | 87.59 214 | 65.71 69 | 90.23 314 | 62.89 266 | 73.94 231 | 87.37 250 |
|
| V42 | | | 76.46 220 | 74.55 224 | 82.19 201 | 79.14 329 | 67.82 91 | 90.26 228 | 89.42 243 | 73.75 155 | 68.63 243 | 81.89 279 | 51.31 233 | 94.09 217 | 71.69 182 | 64.84 297 | 84.66 303 |
|
| baseline | | | 85.01 68 | 84.44 72 | 86.71 59 | 88.33 187 | 68.73 67 | 90.24 229 | 91.82 150 | 81.05 45 | 81.18 90 | 92.50 126 | 63.69 94 | 96.08 135 | 84.45 84 | 86.71 125 | 95.32 62 |
|
| HyFIR lowres test | | | 81.03 139 | 79.56 150 | 85.43 100 | 87.81 204 | 68.11 85 | 90.18 230 | 90.01 223 | 70.65 237 | 72.95 184 | 86.06 236 | 63.61 97 | 94.50 202 | 75.01 154 | 79.75 183 | 93.67 134 |
|
| cl____ | | | 76.07 223 | 74.67 219 | 80.28 244 | 85.15 254 | 61.76 245 | 90.12 231 | 88.73 275 | 71.16 225 | 65.43 275 | 81.57 286 | 61.15 124 | 92.95 250 | 66.54 232 | 62.17 319 | 86.13 277 |
|
| DIV-MVS_self_test | | | 76.07 223 | 74.67 219 | 80.28 244 | 85.14 255 | 61.75 246 | 90.12 231 | 88.73 275 | 71.16 225 | 65.42 276 | 81.60 285 | 61.15 124 | 92.94 254 | 66.54 232 | 62.16 321 | 86.14 275 |
|
| baseline2 | | | 83.68 97 | 83.42 88 | 84.48 140 | 87.37 213 | 66.00 137 | 90.06 233 | 95.93 8 | 79.71 63 | 69.08 233 | 90.39 169 | 77.92 6 | 96.28 126 | 78.91 128 | 81.38 170 | 91.16 199 |
|
| CL-MVSNet_self_test | | | 69.92 288 | 68.09 292 | 75.41 311 | 73.25 364 | 55.90 325 | 90.05 234 | 89.90 225 | 69.96 245 | 61.96 309 | 76.54 338 | 51.05 235 | 87.64 337 | 49.51 321 | 50.59 365 | 82.70 329 |
|
| GBi-Net | | | 75.65 234 | 73.83 236 | 81.10 228 | 88.85 172 | 65.11 159 | 90.01 235 | 90.32 205 | 70.84 232 | 67.04 265 | 80.25 309 | 48.03 260 | 91.54 297 | 59.80 284 | 69.34 261 | 86.64 263 |
|
| test1 | | | 75.65 234 | 73.83 236 | 81.10 228 | 88.85 172 | 65.11 159 | 90.01 235 | 90.32 205 | 70.84 232 | 67.04 265 | 80.25 309 | 48.03 260 | 91.54 297 | 59.80 284 | 69.34 261 | 86.64 263 |
|
| FMVSNet1 | | | 72.71 268 | 69.91 279 | 81.10 228 | 83.60 280 | 65.11 159 | 90.01 235 | 90.32 205 | 63.92 296 | 63.56 294 | 80.25 309 | 36.35 334 | 91.54 297 | 54.46 303 | 66.75 282 | 86.64 263 |
|
| MVS_Test | | | 84.16 85 | 83.20 92 | 87.05 50 | 91.56 113 | 69.82 43 | 89.99 238 | 92.05 135 | 77.77 96 | 82.84 77 | 86.57 228 | 63.93 90 | 96.09 132 | 74.91 156 | 89.18 99 | 95.25 70 |
|
| Effi-MVS+-dtu | | | 76.14 222 | 75.28 216 | 78.72 279 | 83.22 283 | 55.17 329 | 89.87 239 | 87.78 300 | 75.42 128 | 67.98 249 | 81.43 288 | 45.08 288 | 92.52 272 | 75.08 153 | 71.63 248 | 88.48 235 |
|
| EG-PatchMatch MVS | | | 68.55 300 | 65.41 306 | 77.96 287 | 78.69 336 | 62.93 220 | 89.86 240 | 89.17 253 | 60.55 326 | 50.27 359 | 77.73 329 | 22.60 374 | 94.06 220 | 47.18 333 | 72.65 242 | 76.88 371 |
|
| RRT_MVS | | | 74.44 247 | 72.97 247 | 78.84 278 | 82.36 293 | 57.66 308 | 89.83 241 | 88.79 274 | 70.61 238 | 64.58 283 | 84.89 246 | 39.24 307 | 92.65 268 | 70.11 195 | 66.34 285 | 86.21 273 |
|
| MVS_111021_LR | | | 82.02 123 | 81.52 118 | 83.51 168 | 88.42 183 | 62.88 224 | 89.77 242 | 88.93 267 | 76.78 112 | 75.55 158 | 93.10 111 | 50.31 240 | 95.38 167 | 83.82 90 | 87.02 118 | 92.26 178 |
|
| tttt0517 | | | 79.50 166 | 78.53 166 | 82.41 193 | 87.22 216 | 61.43 252 | 89.75 243 | 94.76 32 | 69.29 253 | 67.91 252 | 88.06 208 | 72.92 25 | 95.63 154 | 62.91 265 | 73.90 233 | 90.16 210 |
|
| DP-MVS | | | 69.90 289 | 66.48 296 | 80.14 249 | 95.36 28 | 62.93 220 | 89.56 244 | 76.11 360 | 50.27 366 | 57.69 333 | 85.23 242 | 39.68 306 | 95.73 148 | 33.35 377 | 71.05 254 | 81.78 339 |
|
| test222 | | | | | | 89.77 148 | 61.60 249 | 89.55 245 | 89.42 243 | 56.83 347 | 77.28 140 | 92.43 130 | 52.76 220 | | | 91.14 83 | 93.09 150 |
|
| v8 | | | 75.35 238 | 73.26 243 | 81.61 215 | 80.67 308 | 66.82 117 | 89.54 246 | 89.27 248 | 71.65 211 | 63.30 297 | 80.30 308 | 54.99 196 | 94.06 220 | 67.33 224 | 62.33 318 | 83.94 308 |
|
| EI-MVSNet | | | 78.97 175 | 78.22 170 | 81.25 222 | 85.33 250 | 62.73 227 | 89.53 247 | 93.21 91 | 72.39 186 | 72.14 198 | 90.13 177 | 60.99 126 | 94.72 187 | 67.73 220 | 72.49 243 | 86.29 270 |
|
| CVMVSNet | | | 74.04 252 | 74.27 229 | 73.33 327 | 85.33 250 | 43.94 377 | 89.53 247 | 88.39 285 | 54.33 355 | 70.37 218 | 90.13 177 | 49.17 253 | 84.05 357 | 61.83 273 | 79.36 186 | 91.99 183 |
|
| AUN-MVS | | | 78.37 189 | 77.43 182 | 81.17 224 | 86.60 228 | 57.45 312 | 89.46 249 | 91.16 176 | 74.11 145 | 74.40 169 | 90.49 167 | 55.52 189 | 94.57 196 | 74.73 159 | 60.43 337 | 91.48 189 |
|
| hse-mvs2 | | | 81.12 137 | 81.11 125 | 81.16 225 | 86.52 229 | 57.48 311 | 89.40 250 | 91.16 176 | 81.45 36 | 82.73 79 | 90.49 167 | 60.11 136 | 94.58 194 | 87.69 53 | 60.41 338 | 91.41 191 |
|
| MVP-Stereo | | | 77.12 209 | 76.23 201 | 79.79 262 | 81.72 299 | 66.34 130 | 89.29 251 | 90.88 189 | 70.56 239 | 62.01 308 | 82.88 268 | 49.34 249 | 94.13 215 | 65.55 246 | 93.80 41 | 78.88 363 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| eth_miper_zixun_eth | | | 75.96 230 | 74.40 227 | 80.66 237 | 84.66 262 | 63.02 217 | 89.28 252 | 88.27 290 | 71.88 201 | 65.73 273 | 81.65 283 | 59.45 144 | 92.81 258 | 68.13 214 | 60.53 335 | 86.14 275 |
|
| OpenMVS_ROB |  | 61.12 18 | 66.39 315 | 62.92 323 | 76.80 304 | 76.51 352 | 57.77 305 | 89.22 253 | 83.41 341 | 55.48 352 | 53.86 346 | 77.84 328 | 26.28 368 | 93.95 229 | 34.90 374 | 68.76 268 | 78.68 365 |
|
| testdata1 | | | | | | | | 89.21 254 | | 77.55 102 | | | | | | | |
|
| TAPA-MVS | | 70.22 12 | 74.94 244 | 73.53 240 | 79.17 273 | 90.40 136 | 52.07 342 | 89.19 255 | 89.61 237 | 62.69 311 | 70.07 222 | 92.67 124 | 48.89 257 | 94.32 205 | 38.26 367 | 79.97 180 | 91.12 200 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 245 | 72.54 255 | 81.46 218 | 80.33 313 | 66.71 121 | 89.15 256 | 89.08 260 | 70.94 230 | 63.08 300 | 79.86 313 | 52.52 222 | 94.04 223 | 65.70 243 | 62.17 319 | 83.64 311 |
|
| MVSFormer | | | 83.75 94 | 82.88 99 | 86.37 73 | 89.24 165 | 71.18 22 | 89.07 257 | 90.69 192 | 65.80 284 | 87.13 39 | 94.34 87 | 64.99 75 | 92.67 265 | 72.83 167 | 91.80 70 | 95.27 67 |
|
| test_djsdf | | | 73.76 257 | 72.56 254 | 77.39 294 | 77.00 351 | 53.93 335 | 89.07 257 | 90.69 192 | 65.80 284 | 63.92 290 | 82.03 278 | 43.14 296 | 92.67 265 | 72.83 167 | 68.53 270 | 85.57 290 |
|
| test_fmvs1 | | | 74.07 251 | 73.69 238 | 75.22 312 | 78.91 333 | 47.34 366 | 89.06 259 | 74.69 367 | 63.68 299 | 79.41 114 | 91.59 150 | 24.36 369 | 87.77 336 | 85.22 74 | 76.26 216 | 90.55 207 |
|
| tfpnnormal | | | 70.10 286 | 67.36 294 | 78.32 282 | 83.45 282 | 60.97 259 | 88.85 260 | 92.77 109 | 64.85 291 | 60.83 313 | 78.53 322 | 43.52 294 | 93.48 240 | 31.73 384 | 61.70 327 | 80.52 350 |
|
| jajsoiax | | | 73.05 261 | 71.51 266 | 77.67 289 | 77.46 348 | 54.83 331 | 88.81 261 | 90.04 221 | 69.13 257 | 62.85 303 | 83.51 262 | 31.16 355 | 92.75 261 | 70.83 187 | 69.80 257 | 85.43 294 |
|
| pmmvs6 | | | 67.57 309 | 64.76 310 | 76.00 309 | 72.82 367 | 53.37 337 | 88.71 262 | 86.78 311 | 53.19 357 | 57.58 334 | 78.03 327 | 35.33 338 | 92.41 275 | 55.56 299 | 54.88 355 | 82.21 335 |
|
| ppachtmachnet_test | | | 67.72 307 | 63.70 318 | 79.77 263 | 78.92 331 | 66.04 136 | 88.68 263 | 82.90 345 | 60.11 331 | 55.45 339 | 75.96 344 | 39.19 308 | 90.55 306 | 39.53 362 | 52.55 361 | 82.71 328 |
|
| PVSNet_0 | | 68.08 15 | 71.81 274 | 68.32 291 | 82.27 196 | 84.68 261 | 62.31 235 | 88.68 263 | 90.31 208 | 75.84 122 | 57.93 332 | 80.65 303 | 37.85 322 | 94.19 213 | 69.94 196 | 29.05 395 | 90.31 209 |
|
| D2MVS | | | 73.80 255 | 72.02 260 | 79.15 275 | 79.15 328 | 62.97 218 | 88.58 265 | 90.07 218 | 72.94 170 | 59.22 321 | 78.30 323 | 42.31 299 | 92.70 264 | 65.59 245 | 72.00 246 | 81.79 338 |
|
| OMC-MVS | | | 78.67 185 | 77.91 176 | 80.95 234 | 85.76 245 | 57.40 313 | 88.49 266 | 88.67 278 | 73.85 152 | 72.43 195 | 92.10 138 | 49.29 251 | 94.55 199 | 72.73 170 | 77.89 198 | 90.91 202 |
|
| mvs_tets | | | 72.71 268 | 71.11 267 | 77.52 290 | 77.41 349 | 54.52 333 | 88.45 267 | 89.76 229 | 68.76 262 | 62.70 304 | 83.26 265 | 29.49 359 | 92.71 262 | 70.51 193 | 69.62 259 | 85.34 296 |
|
| our_test_3 | | | 68.29 303 | 64.69 311 | 79.11 276 | 78.92 331 | 64.85 166 | 88.40 268 | 85.06 325 | 60.32 329 | 52.68 349 | 76.12 343 | 40.81 303 | 89.80 320 | 44.25 346 | 55.65 351 | 82.67 331 |
|
| Anonymous20231206 | | | 67.53 310 | 65.78 301 | 72.79 332 | 74.95 358 | 47.59 364 | 88.23 269 | 87.32 303 | 61.75 321 | 58.07 329 | 77.29 332 | 37.79 323 | 87.29 342 | 42.91 349 | 63.71 309 | 83.48 315 |
|
| ACMH+ | | 65.35 16 | 67.65 308 | 64.55 312 | 76.96 302 | 84.59 264 | 57.10 315 | 88.08 270 | 80.79 351 | 58.59 339 | 53.00 348 | 81.09 298 | 26.63 367 | 92.95 250 | 46.51 335 | 61.69 328 | 80.82 346 |
|
| Syy-MVS | | | 69.65 291 | 69.52 283 | 70.03 346 | 87.87 201 | 43.21 379 | 88.07 271 | 89.01 263 | 72.91 172 | 63.11 298 | 88.10 205 | 45.28 286 | 85.54 349 | 22.07 392 | 69.23 264 | 81.32 341 |
|
| myMVS_eth3d | | | 72.58 272 | 72.74 250 | 72.10 339 | 87.87 201 | 49.45 356 | 88.07 271 | 89.01 263 | 72.91 172 | 63.11 298 | 88.10 205 | 63.63 95 | 85.54 349 | 32.73 381 | 69.23 264 | 81.32 341 |
|
| F-COLMAP | | | 70.66 281 | 68.44 289 | 77.32 295 | 86.37 233 | 55.91 324 | 88.00 273 | 86.32 312 | 56.94 346 | 57.28 335 | 88.07 207 | 33.58 344 | 92.49 273 | 51.02 313 | 68.37 271 | 83.55 312 |
|
| test_0402 | | | 64.54 325 | 61.09 331 | 74.92 316 | 84.10 274 | 60.75 265 | 87.95 274 | 79.71 356 | 52.03 359 | 52.41 350 | 77.20 333 | 32.21 350 | 91.64 293 | 23.14 390 | 61.03 331 | 72.36 379 |
|
| 1314 | | | 80.70 144 | 78.95 161 | 85.94 83 | 87.77 206 | 67.56 98 | 87.91 275 | 92.55 120 | 72.17 193 | 67.44 259 | 93.09 112 | 50.27 241 | 97.04 92 | 71.68 183 | 87.64 112 | 93.23 146 |
|
| MVS | | | 84.66 73 | 82.86 100 | 90.06 2 | 90.93 126 | 74.56 6 | 87.91 275 | 95.54 13 | 68.55 263 | 72.35 197 | 94.71 73 | 59.78 141 | 98.90 19 | 81.29 109 | 94.69 31 | 96.74 13 |
|
| tt0805 | | | 73.07 260 | 70.73 272 | 80.07 251 | 78.37 340 | 57.05 316 | 87.78 277 | 92.18 133 | 61.23 323 | 67.04 265 | 86.49 229 | 31.35 354 | 94.58 194 | 65.06 250 | 67.12 279 | 88.57 233 |
|
| ACMH | | 63.93 17 | 68.62 299 | 64.81 309 | 80.03 253 | 85.22 253 | 63.25 211 | 87.72 278 | 84.66 329 | 60.83 325 | 51.57 354 | 79.43 319 | 27.29 365 | 94.96 179 | 41.76 354 | 64.84 297 | 81.88 337 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| bld_raw_dy_0_64 | | | 71.59 277 | 69.71 282 | 77.22 298 | 77.82 347 | 58.12 302 | 87.71 279 | 73.66 369 | 68.01 267 | 61.90 310 | 84.29 255 | 33.68 343 | 88.43 328 | 69.91 197 | 70.43 256 | 85.11 299 |
|
| PAPM_NR | | | 82.97 107 | 81.84 115 | 86.37 73 | 94.10 44 | 66.76 120 | 87.66 280 | 92.84 107 | 69.96 245 | 74.07 174 | 93.57 106 | 63.10 107 | 97.50 64 | 70.66 191 | 90.58 88 | 94.85 82 |
|
| IterMVS-SCA-FT | | | 71.55 278 | 69.97 277 | 76.32 306 | 81.48 300 | 60.67 269 | 87.64 281 | 85.99 318 | 66.17 282 | 59.50 319 | 78.88 320 | 45.53 283 | 83.65 361 | 62.58 268 | 61.93 322 | 84.63 305 |
|
| IterMVS | | | 72.65 271 | 70.83 269 | 78.09 286 | 82.17 295 | 62.96 219 | 87.64 281 | 86.28 313 | 71.56 218 | 60.44 314 | 78.85 321 | 45.42 285 | 86.66 344 | 63.30 262 | 61.83 323 | 84.65 304 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| pmmvs4 | | | 73.92 254 | 71.81 263 | 80.25 246 | 79.17 327 | 65.24 155 | 87.43 283 | 87.26 305 | 67.64 272 | 63.46 295 | 83.91 259 | 48.96 256 | 91.53 300 | 62.94 264 | 65.49 289 | 83.96 307 |
|
| WR-MVS_H | | | 70.59 282 | 69.94 278 | 72.53 333 | 81.03 303 | 51.43 345 | 87.35 284 | 92.03 137 | 67.38 273 | 60.23 316 | 80.70 300 | 55.84 187 | 83.45 363 | 46.33 337 | 58.58 345 | 82.72 327 |
|
| test_fmvs1_n | | | 72.69 270 | 71.92 261 | 74.99 315 | 71.15 370 | 47.08 368 | 87.34 285 | 75.67 362 | 63.48 301 | 78.08 131 | 91.17 157 | 20.16 380 | 87.87 333 | 84.65 82 | 75.57 220 | 90.01 213 |
|
| CP-MVSNet | | | 70.50 283 | 69.91 279 | 72.26 336 | 80.71 307 | 51.00 348 | 87.23 286 | 90.30 209 | 67.84 268 | 59.64 318 | 82.69 270 | 50.23 242 | 82.30 371 | 51.28 312 | 59.28 341 | 83.46 316 |
|
| PCF-MVS | | 73.15 9 | 79.29 169 | 77.63 179 | 84.29 147 | 86.06 238 | 65.96 139 | 87.03 287 | 91.10 180 | 69.86 247 | 69.79 228 | 90.64 162 | 57.54 163 | 96.59 114 | 64.37 254 | 82.29 157 | 90.32 208 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PS-CasMVS | | | 69.86 290 | 69.13 285 | 72.07 340 | 80.35 312 | 50.57 350 | 87.02 288 | 89.75 230 | 67.27 274 | 59.19 322 | 82.28 274 | 46.58 273 | 82.24 372 | 50.69 314 | 59.02 342 | 83.39 318 |
|
| test_vis1_n | | | 71.63 276 | 70.73 272 | 74.31 322 | 69.63 376 | 47.29 367 | 86.91 289 | 72.11 373 | 63.21 305 | 75.18 161 | 90.17 175 | 20.40 378 | 85.76 348 | 84.59 83 | 74.42 227 | 89.87 214 |
|
| PEN-MVS | | | 69.46 293 | 68.56 287 | 72.17 338 | 79.27 325 | 49.71 354 | 86.90 290 | 89.24 249 | 67.24 277 | 59.08 323 | 82.51 273 | 47.23 269 | 83.54 362 | 48.42 325 | 57.12 346 | 83.25 319 |
|
| mvs_anonymous | | | 81.36 132 | 79.99 143 | 85.46 99 | 90.39 137 | 68.40 74 | 86.88 291 | 90.61 197 | 74.41 139 | 70.31 220 | 84.67 249 | 63.79 92 | 92.32 280 | 73.13 164 | 85.70 132 | 95.67 46 |
|
| v7n | | | 71.31 279 | 68.65 286 | 79.28 271 | 76.40 353 | 60.77 263 | 86.71 292 | 89.45 241 | 64.17 295 | 58.77 326 | 78.24 324 | 44.59 290 | 93.54 238 | 57.76 291 | 61.75 325 | 83.52 314 |
|
| test20.03 | | | 63.83 329 | 62.65 325 | 67.38 357 | 70.58 374 | 39.94 385 | 86.57 293 | 84.17 332 | 63.29 303 | 51.86 352 | 77.30 331 | 37.09 330 | 82.47 369 | 38.87 366 | 54.13 357 | 79.73 356 |
|
| UA-Net | | | 80.02 158 | 79.65 148 | 81.11 227 | 89.33 159 | 57.72 306 | 86.33 294 | 89.00 266 | 77.44 104 | 81.01 93 | 89.15 188 | 59.33 147 | 95.90 141 | 61.01 276 | 84.28 144 | 89.73 218 |
|
| DTE-MVSNet | | | 68.46 302 | 67.33 295 | 71.87 342 | 77.94 345 | 49.00 359 | 86.16 295 | 88.58 282 | 66.36 281 | 58.19 327 | 82.21 276 | 46.36 274 | 83.87 360 | 44.97 344 | 55.17 353 | 82.73 326 |
|
| testgi | | | 64.48 326 | 62.87 324 | 69.31 349 | 71.24 368 | 40.62 384 | 85.49 296 | 79.92 355 | 65.36 288 | 54.18 344 | 83.49 263 | 23.74 372 | 84.55 354 | 41.60 355 | 60.79 334 | 82.77 325 |
|
| SDMVSNet | | | 80.26 152 | 78.88 162 | 84.40 142 | 89.25 162 | 67.63 97 | 85.35 297 | 93.02 100 | 76.77 113 | 70.84 212 | 87.12 222 | 47.95 264 | 96.09 132 | 85.04 77 | 74.55 223 | 89.48 222 |
|
| LS3D | | | 69.17 294 | 66.40 298 | 77.50 291 | 91.92 103 | 56.12 323 | 85.12 298 | 80.37 354 | 46.96 373 | 56.50 337 | 87.51 216 | 37.25 326 | 93.71 235 | 32.52 383 | 79.40 185 | 82.68 330 |
|
| UniMVSNet_ETH3D | | | 72.74 267 | 70.53 274 | 79.36 270 | 78.62 338 | 56.64 320 | 85.01 299 | 89.20 251 | 63.77 298 | 64.84 281 | 84.44 253 | 34.05 342 | 91.86 289 | 63.94 256 | 70.89 255 | 89.57 220 |
|
| testmvs | | | 7.23 375 | 9.62 378 | 0.06 390 | 0.04 412 | 0.02 415 | 84.98 300 | 0.02 413 | 0.03 407 | 0.18 408 | 1.21 407 | 0.01 413 | 0.02 408 | 0.14 407 | 0.01 406 | 0.13 405 |
|
| HY-MVS | | 76.49 5 | 84.28 79 | 83.36 91 | 87.02 51 | 92.22 92 | 67.74 93 | 84.65 301 | 94.50 43 | 79.15 74 | 82.23 82 | 87.93 209 | 66.88 58 | 96.94 103 | 80.53 113 | 82.20 161 | 96.39 28 |
|
| N_pmnet | | | 50.55 350 | 49.11 353 | 54.88 370 | 77.17 350 | 4.02 413 | 84.36 302 | 2.00 411 | 48.59 369 | 45.86 372 | 68.82 367 | 32.22 349 | 82.80 368 | 31.58 385 | 51.38 363 | 77.81 369 |
|
| anonymousdsp | | | 71.14 280 | 69.37 284 | 76.45 305 | 72.95 365 | 54.71 332 | 84.19 303 | 88.88 268 | 61.92 318 | 62.15 307 | 79.77 315 | 38.14 318 | 91.44 302 | 68.90 210 | 67.45 278 | 83.21 320 |
|
| MSDG | | | 69.54 292 | 65.73 302 | 80.96 233 | 85.11 257 | 63.71 197 | 84.19 303 | 83.28 343 | 56.95 345 | 54.50 342 | 84.03 256 | 31.50 352 | 96.03 138 | 42.87 351 | 69.13 266 | 83.14 322 |
|
| Anonymous20240521 | | | 62.09 334 | 59.08 337 | 71.10 343 | 67.19 380 | 48.72 360 | 83.91 305 | 85.23 324 | 50.38 365 | 47.84 367 | 71.22 364 | 20.74 377 | 85.51 351 | 46.47 336 | 58.75 344 | 79.06 361 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 333 | 59.65 335 | 72.98 330 | 81.44 301 | 53.00 339 | 83.75 306 | 75.53 365 | 48.34 371 | 48.81 365 | 81.40 290 | 24.14 370 | 90.30 309 | 32.95 379 | 60.52 336 | 75.65 374 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| FMVSNet5 | | | 68.04 305 | 65.66 304 | 75.18 314 | 84.43 268 | 57.89 303 | 83.54 307 | 86.26 314 | 61.83 320 | 53.64 347 | 73.30 352 | 37.15 329 | 85.08 352 | 48.99 322 | 61.77 324 | 82.56 332 |
|
| MDA-MVSNet_test_wron | | | 63.78 330 | 60.16 333 | 74.64 317 | 78.15 343 | 60.41 272 | 83.49 308 | 84.03 333 | 56.17 351 | 39.17 385 | 71.59 361 | 37.22 327 | 83.24 366 | 42.87 351 | 48.73 367 | 80.26 353 |
|
| PatchMatch-RL | | | 72.06 273 | 69.98 276 | 78.28 283 | 89.51 155 | 55.70 326 | 83.49 308 | 83.39 342 | 61.24 322 | 63.72 293 | 82.76 269 | 34.77 339 | 93.03 247 | 53.37 309 | 77.59 201 | 86.12 278 |
|
| YYNet1 | | | 63.76 331 | 60.14 334 | 74.62 318 | 78.06 344 | 60.19 277 | 83.46 310 | 83.99 337 | 56.18 350 | 39.25 384 | 71.56 362 | 37.18 328 | 83.34 364 | 42.90 350 | 48.70 368 | 80.32 352 |
|
| SixPastTwentyTwo | | | 64.92 323 | 61.78 330 | 74.34 321 | 78.74 335 | 49.76 353 | 83.42 311 | 79.51 357 | 62.86 308 | 50.27 359 | 77.35 330 | 30.92 357 | 90.49 308 | 45.89 339 | 47.06 370 | 82.78 324 |
|
| test_fmvs2 | | | 65.78 320 | 64.84 308 | 68.60 352 | 66.54 381 | 41.71 381 | 83.27 312 | 69.81 379 | 54.38 354 | 67.91 252 | 84.54 252 | 15.35 385 | 81.22 376 | 75.65 148 | 66.16 286 | 82.88 323 |
|
| EU-MVSNet | | | 64.01 328 | 63.01 322 | 67.02 358 | 74.40 361 | 38.86 389 | 83.27 312 | 86.19 316 | 45.11 378 | 54.27 343 | 81.15 297 | 36.91 332 | 80.01 379 | 48.79 324 | 57.02 347 | 82.19 336 |
|
| K. test v3 | | | 63.09 332 | 59.61 336 | 73.53 326 | 76.26 354 | 49.38 358 | 83.27 312 | 77.15 359 | 64.35 294 | 47.77 368 | 72.32 357 | 28.73 361 | 87.79 335 | 49.93 319 | 36.69 386 | 83.41 317 |
|
| tpm | | | 78.58 186 | 77.03 190 | 83.22 175 | 85.94 242 | 64.56 167 | 83.21 315 | 91.14 179 | 78.31 88 | 73.67 178 | 79.68 316 | 64.01 88 | 92.09 285 | 66.07 239 | 71.26 253 | 93.03 153 |
|
| MDA-MVSNet-bldmvs | | | 61.54 337 | 57.70 341 | 73.05 329 | 79.53 322 | 57.00 319 | 83.08 316 | 81.23 349 | 57.57 340 | 34.91 388 | 72.45 354 | 32.79 346 | 86.26 347 | 35.81 371 | 41.95 378 | 75.89 373 |
|
| test_vis1_rt | | | 59.09 344 | 57.31 343 | 64.43 360 | 68.44 379 | 46.02 372 | 83.05 317 | 48.63 400 | 51.96 360 | 49.57 362 | 63.86 376 | 16.30 383 | 80.20 378 | 71.21 185 | 62.79 313 | 67.07 385 |
|
| ab-mvs | | | 80.18 154 | 78.31 168 | 85.80 89 | 88.44 182 | 65.49 152 | 83.00 318 | 92.67 113 | 71.82 205 | 77.36 139 | 85.01 244 | 54.50 199 | 96.59 114 | 76.35 144 | 75.63 219 | 95.32 62 |
|
| pmmvs-eth3d | | | 65.53 322 | 62.32 327 | 75.19 313 | 69.39 377 | 59.59 283 | 82.80 319 | 83.43 340 | 62.52 312 | 51.30 356 | 72.49 353 | 32.86 345 | 87.16 343 | 55.32 300 | 50.73 364 | 78.83 364 |
|
| new-patchmatchnet | | | 59.30 343 | 56.48 345 | 67.79 354 | 65.86 383 | 44.19 375 | 82.47 320 | 81.77 347 | 59.94 332 | 43.65 380 | 66.20 372 | 27.67 364 | 81.68 374 | 39.34 363 | 41.40 379 | 77.50 370 |
|
| CostFormer | | | 82.33 116 | 81.15 121 | 85.86 86 | 89.01 170 | 68.46 73 | 82.39 321 | 93.01 101 | 75.59 125 | 80.25 104 | 81.57 286 | 72.03 33 | 94.96 179 | 79.06 126 | 77.48 205 | 94.16 114 |
|
| sd_testset | | | 77.08 210 | 75.37 213 | 82.20 200 | 89.25 162 | 62.11 238 | 82.06 322 | 89.09 259 | 76.77 113 | 70.84 212 | 87.12 222 | 41.43 301 | 95.01 177 | 67.23 225 | 74.55 223 | 89.48 222 |
|
| miper_lstm_enhance | | | 73.05 261 | 71.73 264 | 77.03 299 | 83.80 276 | 58.32 300 | 81.76 323 | 88.88 268 | 69.80 248 | 61.01 311 | 78.23 325 | 57.19 165 | 87.51 340 | 65.34 248 | 59.53 340 | 85.27 298 |
|
| MTAPA | | | 83.91 89 | 83.38 90 | 85.50 98 | 91.89 105 | 65.16 158 | 81.75 324 | 92.23 127 | 75.32 130 | 80.53 100 | 95.21 60 | 56.06 184 | 97.16 85 | 84.86 81 | 92.55 60 | 94.18 112 |
|
| tpmrst | | | 80.57 145 | 79.14 160 | 84.84 120 | 90.10 142 | 68.28 78 | 81.70 325 | 89.72 235 | 77.63 101 | 75.96 151 | 79.54 318 | 64.94 77 | 92.71 262 | 75.43 149 | 77.28 208 | 93.55 137 |
|
| test123 | | | 6.92 376 | 9.21 379 | 0.08 389 | 0.03 413 | 0.05 414 | 81.65 326 | 0.01 414 | 0.02 408 | 0.14 409 | 0.85 408 | 0.03 412 | 0.02 408 | 0.12 408 | 0.00 407 | 0.16 404 |
|
| tpm2 | | | 79.80 162 | 77.95 175 | 85.34 105 | 88.28 188 | 68.26 79 | 81.56 327 | 91.42 167 | 70.11 243 | 77.59 137 | 80.50 304 | 67.40 55 | 94.26 211 | 67.34 223 | 77.35 206 | 93.51 138 |
|
| KD-MVS_2432*1600 | | | 69.03 296 | 66.37 299 | 77.01 300 | 85.56 248 | 61.06 257 | 81.44 328 | 90.25 211 | 67.27 274 | 58.00 330 | 76.53 339 | 54.49 200 | 87.63 338 | 48.04 327 | 35.77 387 | 82.34 333 |
|
| miper_refine_blended | | | 69.03 296 | 66.37 299 | 77.01 300 | 85.56 248 | 61.06 257 | 81.44 328 | 90.25 211 | 67.27 274 | 58.00 330 | 76.53 339 | 54.49 200 | 87.63 338 | 48.04 327 | 35.77 387 | 82.34 333 |
|
| FA-MVS(test-final) | | | 79.12 172 | 77.23 188 | 84.81 124 | 90.54 133 | 63.98 189 | 81.35 330 | 91.71 154 | 71.09 228 | 74.85 165 | 82.94 267 | 52.85 219 | 97.05 89 | 67.97 216 | 81.73 168 | 93.41 140 |
|
| UnsupCasMVSNet_eth | | | 65.79 319 | 63.10 321 | 73.88 323 | 70.71 372 | 50.29 352 | 81.09 331 | 89.88 226 | 72.58 179 | 49.25 364 | 74.77 350 | 32.57 348 | 87.43 341 | 55.96 298 | 41.04 380 | 83.90 309 |
|
| SCA | | | 75.82 232 | 72.76 249 | 85.01 115 | 86.63 227 | 70.08 35 | 81.06 332 | 89.19 252 | 71.60 216 | 70.01 223 | 77.09 335 | 45.53 283 | 90.25 310 | 60.43 279 | 73.27 235 | 94.68 92 |
|
| mvsany_test1 | | | 68.77 298 | 68.56 287 | 69.39 348 | 73.57 363 | 45.88 373 | 80.93 333 | 60.88 391 | 59.65 333 | 71.56 206 | 90.26 173 | 43.22 295 | 75.05 381 | 74.26 161 | 62.70 314 | 87.25 256 |
|
| OurMVSNet-221017-0 | | | 64.68 324 | 62.17 328 | 72.21 337 | 76.08 356 | 47.35 365 | 80.67 334 | 81.02 350 | 56.19 349 | 51.60 353 | 79.66 317 | 27.05 366 | 88.56 326 | 53.60 308 | 53.63 358 | 80.71 348 |
|
| XVG-OURS-SEG-HR | | | 74.70 246 | 73.08 244 | 79.57 267 | 78.25 341 | 57.33 314 | 80.49 335 | 87.32 303 | 63.22 304 | 68.76 241 | 90.12 179 | 44.89 289 | 91.59 295 | 70.55 192 | 74.09 230 | 89.79 216 |
|
| pmmvs3 | | | 55.51 347 | 51.50 352 | 67.53 356 | 57.90 392 | 50.93 349 | 80.37 336 | 73.66 369 | 40.63 386 | 44.15 379 | 64.75 375 | 16.30 383 | 78.97 380 | 44.77 345 | 40.98 382 | 72.69 377 |
|
| XVG-OURS | | | 74.25 250 | 72.46 256 | 79.63 265 | 78.45 339 | 57.59 310 | 80.33 337 | 87.39 302 | 63.86 297 | 68.76 241 | 89.62 183 | 40.50 304 | 91.72 292 | 69.00 208 | 74.25 228 | 89.58 219 |
|
| MDTV_nov1_ep13 | | | | 72.61 253 | | 89.06 168 | 68.48 72 | 80.33 337 | 90.11 217 | 71.84 204 | 71.81 202 | 75.92 345 | 53.01 218 | 93.92 230 | 48.04 327 | 73.38 234 | |
|
| EPMVS | | | 78.49 188 | 75.98 205 | 86.02 80 | 91.21 122 | 69.68 48 | 80.23 339 | 91.20 174 | 75.25 131 | 72.48 193 | 78.11 326 | 54.65 198 | 93.69 236 | 57.66 293 | 83.04 151 | 94.69 91 |
|
| AllTest | | | 61.66 335 | 58.06 339 | 72.46 334 | 79.57 320 | 51.42 346 | 80.17 340 | 68.61 381 | 51.25 362 | 45.88 370 | 81.23 292 | 19.86 381 | 86.58 345 | 38.98 364 | 57.01 348 | 79.39 358 |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 280 | 80.13 341 | | 67.65 271 | 72.79 186 | | 54.33 205 | | 59.83 283 | | 92.58 165 |
|
| LCM-MVSNet-Re | | | 72.93 263 | 71.84 262 | 76.18 308 | 88.49 179 | 48.02 361 | 80.07 342 | 70.17 378 | 73.96 150 | 52.25 351 | 80.09 312 | 49.98 243 | 88.24 330 | 67.35 222 | 84.23 145 | 92.28 174 |
|
| dmvs_re | | | 76.93 211 | 75.36 214 | 81.61 215 | 87.78 205 | 60.71 267 | 80.00 343 | 87.99 297 | 79.42 67 | 69.02 235 | 89.47 184 | 46.77 270 | 94.32 205 | 63.38 260 | 74.45 226 | 89.81 215 |
|
| PatchmatchNet |  | | 77.46 203 | 74.63 221 | 85.96 82 | 89.55 154 | 70.35 33 | 79.97 344 | 89.55 238 | 72.23 190 | 70.94 210 | 76.91 337 | 57.03 167 | 92.79 260 | 54.27 304 | 81.17 171 | 94.74 90 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dp | | | 75.01 243 | 72.09 259 | 83.76 158 | 89.28 161 | 66.22 134 | 79.96 345 | 89.75 230 | 71.16 225 | 67.80 256 | 77.19 334 | 51.81 227 | 92.54 271 | 50.39 315 | 71.44 252 | 92.51 168 |
|
| test_post1 | | | | | | | | 78.95 346 | | | | 20.70 403 | 53.05 217 | 91.50 301 | 60.43 279 | | |
|
| MIMVSNet1 | | | 60.16 341 | 57.33 342 | 68.67 351 | 69.71 375 | 44.13 376 | 78.92 347 | 84.21 331 | 55.05 353 | 44.63 377 | 71.85 359 | 23.91 371 | 81.54 375 | 32.63 382 | 55.03 354 | 80.35 351 |
|
| UnsupCasMVSNet_bld | | | 61.60 336 | 57.71 340 | 73.29 328 | 68.73 378 | 51.64 343 | 78.61 348 | 89.05 262 | 57.20 344 | 46.11 369 | 61.96 380 | 28.70 362 | 88.60 325 | 50.08 318 | 38.90 384 | 79.63 357 |
|
| XVG-ACMP-BASELINE | | | 68.04 305 | 65.53 305 | 75.56 310 | 74.06 362 | 52.37 340 | 78.43 349 | 85.88 319 | 62.03 316 | 58.91 325 | 81.21 296 | 20.38 379 | 91.15 304 | 60.69 278 | 68.18 272 | 83.16 321 |
|
| USDC | | | 67.43 312 | 64.51 313 | 76.19 307 | 77.94 345 | 55.29 328 | 78.38 350 | 85.00 326 | 73.17 165 | 48.36 366 | 80.37 306 | 21.23 376 | 92.48 274 | 52.15 311 | 64.02 307 | 80.81 347 |
|
| TinyColmap | | | 60.32 339 | 56.42 346 | 72.00 341 | 78.78 334 | 53.18 338 | 78.36 351 | 75.64 363 | 52.30 358 | 41.59 383 | 75.82 346 | 14.76 388 | 88.35 329 | 35.84 370 | 54.71 356 | 74.46 375 |
|
| tpmvs | | | 72.88 265 | 69.76 281 | 82.22 199 | 90.98 125 | 67.05 112 | 78.22 352 | 88.30 288 | 63.10 307 | 64.35 289 | 74.98 348 | 55.09 195 | 94.27 209 | 43.25 347 | 69.57 260 | 85.34 296 |
|
| tpm cat1 | | | 75.30 239 | 72.21 258 | 84.58 136 | 88.52 178 | 67.77 92 | 78.16 353 | 88.02 296 | 61.88 319 | 68.45 246 | 76.37 341 | 60.65 130 | 94.03 225 | 53.77 307 | 74.11 229 | 91.93 184 |
|
| CMPMVS |  | 48.56 21 | 66.77 314 | 64.41 315 | 73.84 324 | 70.65 373 | 50.31 351 | 77.79 354 | 85.73 321 | 45.54 377 | 44.76 376 | 82.14 277 | 35.40 337 | 90.14 316 | 63.18 263 | 74.54 225 | 81.07 344 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FE-MVS | | | 75.97 229 | 73.02 245 | 84.82 121 | 89.78 147 | 65.56 148 | 77.44 355 | 91.07 184 | 64.55 292 | 72.66 187 | 79.85 314 | 46.05 281 | 96.69 112 | 54.97 301 | 80.82 175 | 92.21 179 |
|
| PM-MVS | | | 59.40 342 | 56.59 344 | 67.84 353 | 63.63 384 | 41.86 380 | 76.76 356 | 63.22 388 | 59.01 336 | 51.07 357 | 72.27 358 | 11.72 391 | 83.25 365 | 61.34 274 | 50.28 366 | 78.39 367 |
|
| dmvs_testset | | | 65.55 321 | 66.45 297 | 62.86 362 | 79.87 318 | 22.35 405 | 76.55 357 | 71.74 375 | 77.42 106 | 55.85 338 | 87.77 212 | 51.39 232 | 80.69 377 | 31.51 387 | 65.92 288 | 85.55 291 |
|
| WB-MVS | | | 46.23 354 | 44.94 356 | 50.11 374 | 62.13 388 | 21.23 407 | 76.48 358 | 55.49 393 | 45.89 376 | 35.78 386 | 61.44 382 | 35.54 336 | 72.83 385 | 9.96 401 | 21.75 396 | 56.27 389 |
|
| TDRefinement | | | 55.28 348 | 51.58 351 | 66.39 359 | 59.53 391 | 46.15 371 | 76.23 359 | 72.80 371 | 44.60 379 | 42.49 381 | 76.28 342 | 15.29 386 | 82.39 370 | 33.20 378 | 43.75 375 | 70.62 381 |
|
| test_fmvs3 | | | 56.82 345 | 54.86 348 | 62.69 363 | 53.59 394 | 35.47 391 | 75.87 360 | 65.64 386 | 43.91 381 | 55.10 340 | 71.43 363 | 6.91 399 | 74.40 384 | 68.64 212 | 52.63 359 | 78.20 368 |
|
| RPSCF | | | 64.24 327 | 61.98 329 | 71.01 344 | 76.10 355 | 45.00 374 | 75.83 361 | 75.94 361 | 46.94 374 | 58.96 324 | 84.59 250 | 31.40 353 | 82.00 373 | 47.76 331 | 60.33 339 | 86.04 279 |
|
| KD-MVS_self_test | | | 60.87 338 | 58.60 338 | 67.68 355 | 66.13 382 | 39.93 386 | 75.63 362 | 84.70 328 | 57.32 343 | 49.57 362 | 68.45 368 | 29.55 358 | 82.87 367 | 48.09 326 | 47.94 369 | 80.25 354 |
|
| GG-mvs-BLEND | | | | | 86.53 68 | 91.91 104 | 69.67 49 | 75.02 363 | 94.75 33 | | 78.67 127 | 90.85 161 | 77.91 7 | 94.56 198 | 72.25 175 | 93.74 43 | 95.36 59 |
|
| SSC-MVS | | | 44.51 356 | 43.35 358 | 47.99 378 | 61.01 390 | 18.90 409 | 74.12 364 | 54.36 394 | 43.42 383 | 34.10 389 | 60.02 383 | 34.42 341 | 70.39 388 | 9.14 403 | 19.57 397 | 54.68 390 |
|
| MIMVSNet | | | 71.64 275 | 68.44 289 | 81.23 223 | 81.97 298 | 64.44 173 | 73.05 365 | 88.80 272 | 69.67 249 | 64.59 282 | 74.79 349 | 32.79 346 | 87.82 334 | 53.99 305 | 76.35 215 | 91.42 190 |
|
| gg-mvs-nofinetune | | | 77.18 207 | 74.31 228 | 85.80 89 | 91.42 117 | 68.36 75 | 71.78 366 | 94.72 34 | 49.61 367 | 77.12 142 | 45.92 390 | 77.41 8 | 93.98 227 | 67.62 221 | 93.16 53 | 95.05 76 |
|
| MVS-HIRNet | | | 60.25 340 | 55.55 347 | 74.35 320 | 84.37 269 | 56.57 321 | 71.64 367 | 74.11 368 | 34.44 388 | 45.54 374 | 42.24 395 | 31.11 356 | 89.81 318 | 40.36 361 | 76.10 217 | 76.67 372 |
|
| EGC-MVSNET | | | 42.35 357 | 38.09 360 | 55.11 369 | 74.57 359 | 46.62 370 | 71.63 368 | 55.77 392 | 0.04 406 | 0.24 407 | 62.70 378 | 14.24 389 | 74.91 383 | 17.59 395 | 46.06 372 | 43.80 392 |
|
| CR-MVSNet | | | 73.79 256 | 70.82 271 | 82.70 184 | 83.15 284 | 67.96 88 | 70.25 369 | 84.00 335 | 73.67 159 | 69.97 225 | 72.41 355 | 57.82 160 | 89.48 321 | 52.99 310 | 73.13 236 | 90.64 205 |
|
| RPMNet | | | 70.42 284 | 65.68 303 | 84.63 134 | 83.15 284 | 67.96 88 | 70.25 369 | 90.45 199 | 46.83 375 | 69.97 225 | 65.10 374 | 56.48 180 | 95.30 171 | 35.79 372 | 73.13 236 | 90.64 205 |
|
| Patchmatch-RL test | | | 68.17 304 | 64.49 314 | 79.19 272 | 71.22 369 | 53.93 335 | 70.07 371 | 71.54 377 | 69.22 254 | 56.79 336 | 62.89 377 | 56.58 178 | 88.61 324 | 69.53 201 | 52.61 360 | 95.03 78 |
|
| CHOSEN 280x420 | | | 77.35 205 | 76.95 193 | 78.55 280 | 87.07 220 | 62.68 228 | 69.71 372 | 82.95 344 | 68.80 260 | 71.48 207 | 87.27 221 | 66.03 65 | 84.00 359 | 76.47 143 | 82.81 154 | 88.95 225 |
|
| Patchmtry | | | 67.53 310 | 63.93 317 | 78.34 281 | 82.12 296 | 64.38 177 | 68.72 373 | 84.00 335 | 48.23 372 | 59.24 320 | 72.41 355 | 57.82 160 | 89.27 322 | 46.10 338 | 56.68 350 | 81.36 340 |
|
| LF4IMVS | | | 54.01 349 | 52.12 350 | 59.69 364 | 62.41 387 | 39.91 387 | 68.59 374 | 68.28 383 | 42.96 384 | 44.55 378 | 75.18 347 | 14.09 390 | 68.39 390 | 41.36 357 | 51.68 362 | 70.78 380 |
|
| new_pmnet | | | 49.31 351 | 46.44 354 | 57.93 365 | 62.84 386 | 40.74 383 | 68.47 375 | 62.96 389 | 36.48 387 | 35.09 387 | 57.81 384 | 14.97 387 | 72.18 386 | 32.86 380 | 46.44 371 | 60.88 387 |
|
| ADS-MVSNet2 | | | 66.90 313 | 63.44 320 | 77.26 297 | 88.06 195 | 60.70 268 | 68.01 376 | 75.56 364 | 57.57 340 | 64.48 285 | 69.87 365 | 38.68 309 | 84.10 356 | 40.87 358 | 67.89 275 | 86.97 258 |
|
| ADS-MVSNet | | | 68.54 301 | 64.38 316 | 81.03 232 | 88.06 195 | 66.90 116 | 68.01 376 | 84.02 334 | 57.57 340 | 64.48 285 | 69.87 365 | 38.68 309 | 89.21 323 | 40.87 358 | 67.89 275 | 86.97 258 |
|
| PatchT | | | 69.11 295 | 65.37 307 | 80.32 242 | 82.07 297 | 63.68 200 | 67.96 378 | 87.62 301 | 50.86 364 | 69.37 229 | 65.18 373 | 57.09 166 | 88.53 327 | 41.59 356 | 66.60 283 | 88.74 230 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 316 | 63.54 319 | 74.45 319 | 84.00 275 | 51.55 344 | 67.08 379 | 83.53 339 | 58.78 337 | 54.94 341 | 80.31 307 | 34.54 340 | 93.23 244 | 40.64 360 | 68.03 273 | 78.58 366 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_vis3_rt | | | 40.46 360 | 37.79 361 | 48.47 377 | 44.49 402 | 33.35 394 | 66.56 380 | 32.84 408 | 32.39 390 | 29.65 390 | 39.13 398 | 3.91 406 | 68.65 389 | 50.17 316 | 40.99 381 | 43.40 393 |
|
| FPMVS | | | 45.64 355 | 43.10 359 | 53.23 372 | 51.42 397 | 36.46 390 | 64.97 381 | 71.91 374 | 29.13 392 | 27.53 392 | 61.55 381 | 9.83 394 | 65.01 396 | 16.00 398 | 55.58 352 | 58.22 388 |
|
| DSMNet-mixed | | | 56.78 346 | 54.44 349 | 63.79 361 | 63.21 385 | 29.44 400 | 64.43 382 | 64.10 387 | 42.12 385 | 51.32 355 | 71.60 360 | 31.76 351 | 75.04 382 | 36.23 369 | 65.20 294 | 86.87 261 |
|
| ANet_high | | | 40.27 361 | 35.20 364 | 55.47 368 | 34.74 408 | 34.47 393 | 63.84 383 | 71.56 376 | 48.42 370 | 18.80 397 | 41.08 396 | 9.52 395 | 64.45 397 | 20.18 393 | 8.66 404 | 67.49 384 |
|
| mvsany_test3 | | | 48.86 352 | 46.35 355 | 56.41 366 | 46.00 400 | 31.67 396 | 62.26 384 | 47.25 401 | 43.71 382 | 45.54 374 | 68.15 369 | 10.84 392 | 64.44 398 | 57.95 290 | 35.44 389 | 73.13 376 |
|
| test_f | | | 46.58 353 | 43.45 357 | 55.96 367 | 45.18 401 | 32.05 395 | 61.18 385 | 49.49 399 | 33.39 389 | 42.05 382 | 62.48 379 | 7.00 398 | 65.56 394 | 47.08 334 | 43.21 377 | 70.27 382 |
|
| E-PMN | | | 24.61 368 | 24.00 372 | 26.45 385 | 43.74 403 | 18.44 410 | 60.86 386 | 39.66 404 | 15.11 400 | 9.53 404 | 22.10 401 | 6.52 400 | 46.94 403 | 8.31 404 | 10.14 401 | 13.98 401 |
|
| EMVS | | | 23.76 370 | 23.20 374 | 25.46 386 | 41.52 406 | 16.90 411 | 60.56 387 | 38.79 407 | 14.62 401 | 8.99 405 | 20.24 404 | 7.35 397 | 45.82 404 | 7.25 405 | 9.46 402 | 13.64 402 |
|
| PMMVS2 | | | 37.93 363 | 33.61 366 | 50.92 373 | 46.31 399 | 24.76 403 | 60.55 388 | 50.05 397 | 28.94 393 | 20.93 395 | 47.59 388 | 4.41 405 | 65.13 395 | 25.14 389 | 18.55 399 | 62.87 386 |
|
| APD_test1 | | | 40.50 359 | 37.31 362 | 50.09 375 | 51.88 395 | 35.27 392 | 59.45 389 | 52.59 396 | 21.64 395 | 26.12 393 | 57.80 385 | 4.56 403 | 66.56 392 | 22.64 391 | 39.09 383 | 48.43 391 |
|
| Patchmatch-test | | | 65.86 318 | 60.94 332 | 80.62 239 | 83.75 277 | 58.83 295 | 58.91 390 | 75.26 366 | 44.50 380 | 50.95 358 | 77.09 335 | 58.81 152 | 87.90 332 | 35.13 373 | 64.03 306 | 95.12 74 |
|
| JIA-IIPM | | | 66.06 317 | 62.45 326 | 76.88 303 | 81.42 302 | 54.45 334 | 57.49 391 | 88.67 278 | 49.36 368 | 63.86 291 | 46.86 389 | 56.06 184 | 90.25 310 | 49.53 320 | 68.83 267 | 85.95 282 |
|
| testf1 | | | 32.77 365 | 29.47 368 | 42.67 381 | 41.89 404 | 30.81 397 | 52.07 392 | 43.45 402 | 15.45 398 | 18.52 398 | 44.82 392 | 2.12 407 | 58.38 399 | 16.05 396 | 30.87 393 | 38.83 394 |
|
| APD_test2 | | | 32.77 365 | 29.47 368 | 42.67 381 | 41.89 404 | 30.81 397 | 52.07 392 | 43.45 402 | 15.45 398 | 18.52 398 | 44.82 392 | 2.12 407 | 58.38 399 | 16.05 396 | 30.87 393 | 38.83 394 |
|
| LCM-MVSNet | | | 40.54 358 | 35.79 363 | 54.76 371 | 36.92 407 | 30.81 397 | 51.41 394 | 69.02 380 | 22.07 394 | 24.63 394 | 45.37 391 | 4.56 403 | 65.81 393 | 33.67 376 | 34.50 390 | 67.67 383 |
|
| PMVS |  | 26.43 22 | 31.84 367 | 28.16 370 | 42.89 380 | 25.87 410 | 27.58 401 | 50.92 395 | 49.78 398 | 21.37 396 | 14.17 402 | 40.81 397 | 2.01 409 | 66.62 391 | 9.61 402 | 38.88 385 | 34.49 398 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ambc | | | | | 69.61 347 | 61.38 389 | 41.35 382 | 49.07 396 | 85.86 320 | | 50.18 361 | 66.40 371 | 10.16 393 | 88.14 331 | 45.73 340 | 44.20 374 | 79.32 360 |
|
| test_method | | | 38.59 362 | 35.16 365 | 48.89 376 | 54.33 393 | 21.35 406 | 45.32 397 | 53.71 395 | 7.41 403 | 28.74 391 | 51.62 387 | 8.70 396 | 52.87 401 | 33.73 375 | 32.89 391 | 72.47 378 |
|
| tmp_tt | | | 22.26 371 | 23.75 373 | 17.80 387 | 5.23 411 | 12.06 412 | 35.26 398 | 39.48 405 | 2.82 405 | 18.94 396 | 44.20 394 | 22.23 375 | 24.64 406 | 36.30 368 | 9.31 403 | 16.69 400 |
|
| MVE |  | 24.84 23 | 24.35 369 | 19.77 375 | 38.09 383 | 34.56 409 | 26.92 402 | 26.57 399 | 38.87 406 | 11.73 402 | 11.37 403 | 27.44 399 | 1.37 410 | 50.42 402 | 11.41 400 | 14.60 400 | 36.93 396 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 11.30 373 | 10.95 376 | 12.33 388 | 48.05 398 | 19.89 408 | 25.89 400 | 1.92 412 | 3.58 404 | 3.12 406 | 1.37 406 | 0.64 411 | 15.77 407 | 6.23 406 | 7.77 405 | 1.35 403 |
|
| Gipuma |  | | 34.91 364 | 31.44 367 | 45.30 379 | 70.99 371 | 39.64 388 | 19.85 401 | 72.56 372 | 20.10 397 | 16.16 401 | 21.47 402 | 5.08 402 | 71.16 387 | 13.07 399 | 43.70 376 | 25.08 399 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 19.86 372 | 26.47 371 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 93.45 84 | 0.00 409 | 0.00 410 | 95.27 56 | 49.56 247 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 4.46 377 | 5.95 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 53.55 212 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| ab-mvs-re | | | 7.91 374 | 10.55 377 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 94.95 64 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 407 | 0.00 406 |
|
| WAC-MVS | | | | | | | 49.45 356 | | | | | | | | 31.56 386 | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| PC_three_1452 | | | | | | | | | | 80.91 46 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 46 | | 94.18 57 | 71.42 222 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 151 | | 93.50 82 | 70.74 236 | 85.26 59 | 95.19 61 | 64.92 78 | 97.29 76 | 87.51 55 | 93.01 54 | |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 40 | | 95.18 20 | 80.75 47 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 25 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 211 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 16 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 51 | | 94.44 46 | 71.65 211 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 181 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 26 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 92 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 84 | | | | 90.78 16 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 159 | | | | 94.68 92 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 197 | | | | |
|
| MTGPA |  | | | | | | | | 92.23 127 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 23.01 400 | 56.49 179 | 92.67 265 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 370 | 57.62 162 | 90.25 310 | | | |
|
| gm-plane-assit | | | | | | 88.42 183 | 67.04 113 | | | 78.62 86 | | 91.83 144 | | 97.37 70 | 76.57 142 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 39 | 94.96 18 | 95.29 64 |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 66 | 94.75 29 | 95.33 60 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 115 | | 93.31 89 | | 84.49 65 | | | 96.75 111 | | | |
|
| TestCases | | | | | 72.46 334 | 79.57 320 | 51.42 346 | | 68.61 381 | 51.25 362 | 45.88 370 | 81.23 292 | 19.86 381 | 86.58 345 | 38.98 364 | 57.01 348 | 79.39 358 |
|
| test_prior | | | | | 86.42 71 | 94.71 35 | 67.35 104 | | 93.10 99 | | | | | 96.84 108 | | | 95.05 76 |
|
| æ–°å‡ ä½•1 | | | | | 84.73 127 | 92.32 89 | 64.28 182 | | 91.46 166 | 59.56 334 | 79.77 109 | 92.90 118 | 56.95 172 | 96.57 116 | 63.40 259 | 92.91 56 | 93.34 142 |
|
| 旧先验1 | | | | | | 91.94 101 | 60.74 266 | | 91.50 164 | | | 94.36 82 | 65.23 73 | | | 91.84 69 | 94.55 99 |
|
| 原ACMM1 | | | | | 84.42 141 | 93.21 66 | 64.27 183 | | 93.40 88 | 65.39 287 | 79.51 112 | 92.50 126 | 58.11 158 | 96.69 112 | 65.27 249 | 93.96 38 | 92.32 172 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 132 | 61.26 275 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 66 | | | | |
|
| testdata | | | | | 81.34 221 | 89.02 169 | 57.72 306 | | 89.84 227 | 58.65 338 | 85.32 58 | 94.09 94 | 57.03 167 | 93.28 243 | 69.34 203 | 90.56 89 | 93.03 153 |
|
| test12 | | | | | 87.09 48 | 94.60 36 | 68.86 64 | | 92.91 105 | | 82.67 81 | | 65.44 71 | 97.55 62 | | 93.69 46 | 94.84 85 |
|
| plane_prior7 | | | | | | 86.94 223 | 61.51 250 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 215 | 62.32 234 | | | | | | 50.66 237 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 170 | | | | | 95.55 161 | 76.74 140 | 78.53 195 | 88.39 238 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 189 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 242 | | | 79.09 76 | 72.53 191 | | | | | | |
|
| plane_prior1 | | | | | | 87.15 217 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 385 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 325 | 72.93 366 | 47.83 363 | | 61.72 390 | | 45.86 372 | 73.76 351 | 28.63 363 | 89.81 318 | 47.75 332 | 31.37 392 | 83.53 313 |
|
| LGP-MVS_train | | | | | 79.56 268 | 84.31 270 | 59.37 287 | | 89.73 233 | 69.49 250 | 64.86 279 | 88.42 194 | 38.65 311 | 94.30 207 | 72.56 172 | 72.76 240 | 85.01 300 |
|
| test11 | | | | | | | | | 93.01 101 | | | | | | | | |
|
| door | | | | | | | | | 66.57 384 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 201 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 137 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 170 | | | 95.61 156 | | | 88.63 231 |
|
| HQP3-MVS | | | | | | | | | 91.70 156 | | | | | | | 78.90 190 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 230 | | | | |
|
| NP-MVS | | | | | | 87.41 211 | 63.04 216 | | | | | 90.30 171 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 248 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 258 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 206 | | | | |
|
| ITE_SJBPF | | | | | 70.43 345 | 74.44 360 | 47.06 369 | | 77.32 358 | 60.16 330 | 54.04 345 | 83.53 261 | 23.30 373 | 84.01 358 | 43.07 348 | 61.58 329 | 80.21 355 |
|
| DeepMVS_CX |  | | | | 34.71 384 | 51.45 396 | 24.73 404 | | 28.48 410 | 31.46 391 | 17.49 400 | 52.75 386 | 5.80 401 | 42.60 405 | 18.18 394 | 19.42 398 | 36.81 397 |
|