This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9897.64 297.94 1
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5596.26 3072.84 2699.38 192.64 1995.93 997.08 10
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 3998.91 1796.83 195.06 1696.76 15
DELS-MVS90.05 790.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5694.91 7074.11 1998.91 1787.26 6295.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 594.44 4671.65 21492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test072696.40 1569.99 3996.76 794.33 5471.92 20091.89 1097.11 673.77 21
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30696.72 894.41 4886.50 890.25 2397.83 175.46 1498.67 2592.78 1895.49 1297.32 6
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 994.52 4271.92 20090.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 24
lupinMVS87.74 2687.77 2887.63 3889.24 16871.18 2596.57 1192.90 10682.70 2387.13 4295.27 5664.99 7995.80 14889.34 4391.80 7395.93 44
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1293.78 6686.89 689.68 2995.78 4065.94 7099.10 992.99 1693.91 4296.58 21
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1395.72 1087.33 489.60 3096.26 3068.44 4698.74 2495.82 494.72 3195.90 46
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1394.83 3084.83 1289.07 3396.80 1970.86 3599.06 1592.64 1995.71 1096.12 39
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1594.64 3984.42 1386.74 4796.20 3266.56 6698.76 2389.03 4894.56 3395.92 45
PVSNet_Blended86.73 4286.86 4186.31 7993.76 5167.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10997.29 7787.08 6591.38 8194.13 121
SteuartSystems-ACMMP86.82 4186.90 4086.58 6890.42 13866.38 13296.09 1793.87 6477.73 10084.01 7595.66 4363.39 10597.94 4087.40 6093.55 5095.42 57
Skip Steuart: Steuart Systems R&D Blog.
test_yl84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
DCV-MVSNet84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
PS-MVSNAJ88.14 1987.61 3089.71 692.06 9776.72 195.75 2093.26 9083.86 1589.55 3196.06 3653.55 21997.89 4391.10 3193.31 5394.54 106
xiu_mvs_v2_base87.92 2487.38 3489.55 1191.41 12176.43 395.74 2193.12 9883.53 1889.55 3195.95 3853.45 22397.68 5091.07 3292.62 6094.54 106
DeepC-MVS_fast79.48 287.95 2388.00 2687.79 3195.86 2768.32 7995.74 2194.11 6083.82 1683.49 7796.19 3364.53 8898.44 3183.42 9794.88 2496.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet86.20 4985.65 6087.84 3093.92 4869.99 3995.73 2395.94 778.43 9086.00 5393.07 11658.22 16297.00 9685.22 7884.33 14796.52 23
jason86.40 4586.17 4987.11 5086.16 24170.54 3495.71 2492.19 13482.00 3084.58 6894.34 8961.86 12495.53 16987.76 5590.89 8795.27 71
jason: jason.
alignmvs87.28 3386.97 3888.24 2791.30 12371.14 2795.61 2593.56 7879.30 7487.07 4495.25 5868.43 4796.93 10887.87 5484.33 14796.65 17
IB-MVS77.80 482.18 12380.46 14287.35 4589.14 17070.28 3795.59 2695.17 2178.85 8470.19 22585.82 24270.66 3697.67 5172.19 18266.52 28894.09 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS-test86.14 5187.01 3783.52 17192.63 8559.36 29495.49 2791.92 14380.09 6085.46 6095.53 4761.82 12695.77 15186.77 6993.37 5295.41 58
CLD-MVS82.73 11582.35 11583.86 16187.90 20367.65 9995.45 2892.18 13585.06 1172.58 19492.27 13652.46 23095.78 14984.18 9079.06 19588.16 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDD-MVS83.06 11081.81 12186.81 5990.86 13267.70 9795.40 2991.50 16775.46 13081.78 8992.34 13540.09 31297.13 8986.85 6882.04 16995.60 53
PHI-MVS86.83 4086.85 4286.78 6193.47 6265.55 15395.39 3095.10 2271.77 21085.69 5796.52 2362.07 12298.77 2286.06 7495.60 1196.03 42
CS-MVS85.80 5886.65 4383.27 17992.00 10158.92 29995.31 3191.86 14879.97 6184.82 6695.40 4962.26 12095.51 17086.11 7392.08 6995.37 61
EPNet87.84 2588.38 2186.23 8093.30 6466.05 13995.26 3294.84 2987.09 588.06 3694.53 7966.79 6397.34 7483.89 9491.68 7595.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8595.24 3394.49 4482.43 2588.90 3496.35 2771.89 3398.63 2688.76 4996.40 696.06 40
WTY-MVS86.32 4785.81 5687.85 2992.82 7969.37 5695.20 3495.25 1782.71 2281.91 8894.73 7467.93 5597.63 5679.55 12482.25 16596.54 22
3Dnovator+73.60 782.10 12780.60 13986.60 6690.89 13166.80 12295.20 3493.44 8574.05 14967.42 26492.49 13049.46 25597.65 5570.80 19391.68 7595.33 64
TSAR-MVS + GP.87.96 2288.37 2286.70 6393.51 6165.32 15795.15 3693.84 6578.17 9385.93 5494.80 7375.80 1398.21 3489.38 4288.78 10496.59 19
DP-MVS Recon82.73 11581.65 12285.98 8597.31 467.06 11495.15 3691.99 14069.08 26176.50 15593.89 10154.48 20998.20 3570.76 19485.66 13792.69 166
test_prior295.10 3875.40 13285.25 6495.61 4567.94 5487.47 5994.77 25
iter_conf0583.65 10383.44 9084.28 15286.17 24068.61 7495.08 3989.82 23380.90 4778.08 13690.49 16969.08 4395.22 17984.29 8977.07 21689.02 230
save fliter93.84 5067.89 9395.05 4092.66 11678.19 92
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20295.04 4195.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 36
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10068.97 6595.04 4192.70 11279.04 8381.50 9196.50 2558.98 15696.78 11483.49 9693.93 4196.29 34
LFMVS84.34 8282.73 10889.18 1494.76 3373.25 1194.99 4391.89 14671.90 20282.16 8793.49 11047.98 27097.05 9182.55 10284.82 14197.25 7
MG-MVS87.11 3586.27 4589.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7692.94 11964.34 8996.94 10675.19 15594.09 3895.66 51
mamv488.66 1888.41 2089.39 1294.02 4674.04 794.94 4592.69 11480.90 4790.32 2290.30 17468.33 4997.28 8189.47 3994.74 3096.84 14
Anonymous20240521177.96 20075.33 21985.87 8993.73 5464.52 17294.85 4685.36 33062.52 31476.11 15690.18 17829.43 36597.29 7768.51 21677.24 21595.81 49
APDe-MVScopyleft87.54 2887.84 2786.65 6496.07 2366.30 13594.84 4793.78 6669.35 25588.39 3596.34 2867.74 5697.66 5490.62 3693.44 5196.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVSMamba_pp88.94 1688.82 1789.29 1394.04 4574.01 894.81 4892.74 11185.13 1090.37 2190.13 18168.40 4897.38 7089.42 4094.34 3696.47 28
test_vis1_n_192081.66 13282.01 11880.64 24382.24 29855.09 33394.76 4986.87 31481.67 3484.40 7094.63 7738.17 32294.67 19891.98 2683.34 15592.16 186
fmvsm_s_conf0.5_n86.39 4686.91 3984.82 12587.36 21763.54 21094.74 5090.02 22782.52 2490.14 2696.92 1362.93 11497.84 4695.28 882.26 16493.07 157
ET-MVSNet_ETH3D84.01 9283.15 10186.58 6890.78 13470.89 3094.74 5094.62 4081.44 3858.19 33093.64 10673.64 2392.35 28382.66 10078.66 20096.50 27
CP-MVS83.71 10083.40 9484.65 13693.14 7063.84 19494.59 5292.28 12771.03 23377.41 14494.92 6955.21 20096.19 13281.32 11290.70 8993.91 132
VDDNet80.50 15178.26 17387.21 4786.19 23869.79 4794.48 5391.31 17360.42 32979.34 12090.91 16238.48 32096.56 12182.16 10381.05 17895.27 71
EC-MVSNet84.53 7985.04 6983.01 18389.34 16061.37 25894.42 5491.09 18577.91 9783.24 7894.20 9458.37 16095.40 17185.35 7791.41 8092.27 182
fmvsm_l_conf0.5_n_a87.44 3188.15 2585.30 11087.10 22264.19 18994.41 5588.14 29980.24 5992.54 596.97 1069.52 4297.17 8595.89 288.51 10794.56 103
9.1487.63 2993.86 4994.41 5594.18 5772.76 17986.21 5096.51 2466.64 6497.88 4490.08 3894.04 39
fmvsm_l_conf0.5_n87.49 2988.19 2485.39 10686.95 22564.37 18294.30 5788.45 29080.51 5192.70 496.86 1569.98 4097.15 8895.83 388.08 11294.65 100
MAR-MVS84.18 8883.43 9186.44 7396.25 2165.93 14494.28 5894.27 5674.41 14279.16 12395.61 4553.99 21498.88 2169.62 20393.26 5494.50 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmconf_n86.58 4487.17 3584.82 12585.28 25662.55 23394.26 5989.78 23483.81 1787.78 3896.33 2965.33 7696.98 10094.40 1187.55 11794.95 84
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10194.17 6094.15 5968.77 26490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TEST994.18 4167.28 10894.16 6193.51 8071.75 21185.52 5895.33 5168.01 5397.27 82
train_agg87.21 3487.42 3386.60 6694.18 4167.28 10894.16 6193.51 8071.87 20585.52 5895.33 5168.19 5197.27 8289.09 4694.90 2195.25 74
test_894.19 4067.19 11094.15 6393.42 8671.87 20585.38 6195.35 5068.19 5196.95 105
Fast-Effi-MVS+81.14 13980.01 14684.51 14390.24 14265.86 14594.12 6489.15 26273.81 15775.37 16688.26 20557.26 17094.53 20566.97 23284.92 14093.15 153
HQP-NCC87.54 21194.06 6579.80 6374.18 175
ACMP_Plane87.54 21194.06 6579.80 6374.18 175
PVSNet_BlendedMVS83.38 10583.43 9183.22 18093.76 5167.53 10394.06 6593.61 7679.13 7981.00 9985.14 24763.19 10997.29 7787.08 6573.91 23784.83 304
HQP-MVS81.14 13980.64 13782.64 19187.54 21163.66 20594.06 6591.70 15979.80 6374.18 17590.30 17451.63 23795.61 16177.63 14078.90 19688.63 236
test_cas_vis1_n_192080.45 15380.61 13879.97 26278.25 34657.01 32194.04 6988.33 29379.06 8282.81 8293.70 10438.65 31791.63 29890.82 3579.81 18791.27 203
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13582.95 29463.48 21294.03 7089.46 24681.69 3389.86 2796.74 2061.85 12597.75 4994.74 982.01 17092.81 165
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 7193.76 6979.08 8178.88 12893.99 9962.25 12198.15 3685.93 7591.15 8594.15 120
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7294.37 5272.48 18492.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
FOURS193.95 4761.77 24993.96 7291.92 14362.14 31786.57 48
VPNet78.82 18377.53 18582.70 18984.52 27066.44 13193.93 7492.23 12980.46 5272.60 19388.38 20249.18 25993.13 25072.47 17863.97 31188.55 239
test_prior467.18 11293.92 75
SD-MVS87.49 2987.49 3287.50 4293.60 5668.82 6893.90 7692.63 11976.86 11287.90 3795.76 4166.17 6797.63 5689.06 4791.48 7996.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZNCC-MVS85.33 6785.08 6886.06 8393.09 7265.65 14993.89 7793.41 8773.75 15879.94 11294.68 7660.61 13798.03 3882.63 10193.72 4694.52 108
CDPH-MVS85.71 6085.46 6286.46 7294.75 3467.19 11093.89 7792.83 10870.90 23583.09 8095.28 5463.62 10097.36 7280.63 11694.18 3794.84 90
EIA-MVS84.84 7484.88 7184.69 13491.30 12362.36 23793.85 7992.04 13879.45 7079.33 12194.28 9262.42 11896.35 12880.05 12091.25 8495.38 60
SMA-MVScopyleft88.14 1988.29 2387.67 3393.21 6768.72 7093.85 7994.03 6274.18 14791.74 1196.67 2165.61 7498.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior62.42 23593.85 7979.38 7278.80 198
test_fmvsmconf0.1_n85.71 6086.08 5284.62 13980.83 31062.33 23893.84 8288.81 27883.50 1987.00 4596.01 3763.36 10696.93 10894.04 1287.29 12094.61 102
Anonymous2024052976.84 22074.15 23684.88 12391.02 12764.95 16893.84 8291.09 18553.57 35973.00 18687.42 22135.91 34197.32 7569.14 21072.41 25092.36 175
CSCG86.87 3786.26 4688.72 1795.05 3170.79 3193.83 8495.33 1668.48 26877.63 14194.35 8873.04 2498.45 3084.92 8493.71 4796.92 13
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13285.73 25063.58 20793.79 8589.32 25281.42 3990.21 2496.91 1462.41 11997.67 5194.48 1080.56 18392.90 163
MTMP93.77 8632.52 414
PVSNet_Blended_VisFu83.97 9383.50 8685.39 10690.02 14666.59 12993.77 8691.73 15477.43 10877.08 15089.81 18663.77 9796.97 10279.67 12388.21 11092.60 169
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5188.22 19569.35 5793.74 8891.89 14681.47 3580.10 11091.45 15364.80 8496.35 12887.23 6387.69 11595.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192087.69 2788.50 1985.27 11287.05 22463.55 20993.69 8991.08 18784.18 1490.17 2597.04 867.58 5797.99 3995.72 590.03 9594.26 114
TR-MVS78.77 18677.37 19182.95 18490.49 13760.88 26593.67 9090.07 22370.08 24774.51 17391.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
testing1186.71 4386.44 4487.55 4093.54 5971.35 2293.65 9195.58 1181.36 4180.69 10292.21 13972.30 2996.46 12785.18 8083.43 15494.82 93
SF-MVS87.03 3687.09 3686.84 5792.70 8367.45 10693.64 9293.76 6970.78 23986.25 4996.44 2666.98 6197.79 4788.68 5094.56 3395.28 70
API-MVS82.28 12280.53 14087.54 4196.13 2270.59 3393.63 9391.04 19165.72 28875.45 16592.83 12456.11 19098.89 2064.10 25889.75 9993.15 153
BH-w/o80.49 15279.30 16184.05 15890.83 13364.36 18493.60 9489.42 24974.35 14469.09 23690.15 18055.23 19995.61 16164.61 25586.43 13392.17 185
APD-MVScopyleft85.93 5585.99 5385.76 9595.98 2665.21 16093.59 9592.58 12166.54 28186.17 5195.88 3963.83 9597.00 9686.39 7192.94 5795.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BH-RMVSNet79.46 17277.65 18284.89 12291.68 11265.66 14893.55 9688.09 30172.93 17473.37 18491.12 16046.20 28696.12 13556.28 30085.61 13892.91 162
sasdasda86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
thisisatest051583.41 10482.49 11286.16 8189.46 15968.26 8293.54 9794.70 3674.31 14575.75 15890.92 16172.62 2796.52 12369.64 20181.50 17593.71 138
canonicalmvs86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 10095.08 2580.26 5680.53 10591.93 14470.43 3796.51 12480.32 11982.13 16895.37 61
HFP-MVS84.73 7684.40 7785.72 9793.75 5365.01 16693.50 10093.19 9472.19 19479.22 12294.93 6859.04 15597.67 5181.55 10792.21 6594.49 111
ACMMPR84.37 8084.06 7985.28 11193.56 5864.37 18293.50 10093.15 9672.19 19478.85 13094.86 7156.69 18297.45 6581.55 10792.20 6694.02 128
testing9986.01 5385.47 6187.63 3893.62 5571.25 2493.47 10395.23 1880.42 5480.60 10491.95 14371.73 3496.50 12580.02 12182.22 16695.13 77
Vis-MVSNetpermissive80.92 14579.98 14883.74 16388.48 18361.80 24893.44 10488.26 29873.96 15377.73 13991.76 14749.94 25194.76 19165.84 24490.37 9394.65 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS86.01 5386.11 5085.70 9890.21 14367.02 11793.43 10591.92 14381.21 4384.13 7494.07 9860.93 13495.63 15989.28 4489.81 9694.46 112
region2R84.36 8184.03 8085.36 10893.54 5964.31 18593.43 10592.95 10472.16 19778.86 12994.84 7256.97 17797.53 6381.38 11192.11 6894.24 115
QAPM79.95 16477.39 19087.64 3489.63 15471.41 2093.30 10793.70 7365.34 29167.39 26691.75 14847.83 27298.96 1657.71 29589.81 9692.54 171
MP-MVScopyleft85.02 7184.97 7085.17 11692.60 8664.27 18793.24 10892.27 12873.13 16979.63 11694.43 8261.90 12397.17 8585.00 8292.56 6194.06 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03080.93 14479.86 14984.13 15683.69 28368.83 6793.23 10991.20 17875.55 12975.06 16888.22 20863.04 11394.74 19381.88 10566.88 28588.82 234
VPA-MVSNet79.03 17778.00 17782.11 21285.95 24464.48 17593.22 11094.66 3875.05 13774.04 18084.95 24952.17 23293.52 24474.90 16167.04 28488.32 244
HQP_MVS80.34 15579.75 15182.12 20986.94 22662.42 23593.13 11191.31 17378.81 8672.53 19589.14 19550.66 24495.55 16776.74 14378.53 20188.39 242
plane_prior293.13 11178.81 86
MSP-MVS90.38 591.87 185.88 8892.83 7764.03 19293.06 11394.33 5482.19 2893.65 396.15 3585.89 197.19 8491.02 3397.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20079.66 16778.33 17183.66 17092.54 8865.82 14793.06 11396.31 374.90 13973.30 18588.66 19759.67 14795.61 16147.84 33378.67 19989.56 226
GST-MVS84.63 7884.29 7885.66 9992.82 7965.27 15893.04 11593.13 9773.20 16778.89 12594.18 9559.41 15197.85 4581.45 10992.48 6393.86 135
casdiffmvspermissive85.37 6684.87 7286.84 5788.25 19369.07 6193.04 11591.76 15381.27 4280.84 10192.07 14164.23 9096.06 14184.98 8387.43 11995.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet81.79 13181.52 12382.61 19288.77 17960.21 28193.02 11793.66 7568.52 26772.90 18990.39 17272.19 3194.96 18674.93 15979.29 19492.67 167
cascas78.18 19675.77 21285.41 10587.14 22169.11 6092.96 11891.15 18266.71 28070.47 21986.07 23937.49 33196.48 12670.15 19979.80 18890.65 209
XVS83.87 9583.47 8885.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13494.31 9155.25 19797.41 6879.16 12791.58 7793.95 130
X-MVStestdata76.86 21774.13 23785.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13410.19 41055.25 19797.41 6879.16 12791.58 7793.95 130
MGCFI-Net85.59 6485.73 5985.17 11691.41 12162.44 23492.87 12191.31 17379.65 6786.99 4695.14 6462.90 11596.12 13587.13 6484.13 15296.96 12
114514_t79.17 17577.67 18183.68 16895.32 2965.53 15492.85 12291.60 16363.49 30267.92 25590.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
fmvsm_s_conf0.1_n_a84.76 7584.84 7384.53 14180.23 32063.50 21192.79 12388.73 28180.46 5289.84 2896.65 2260.96 13397.57 6193.80 1380.14 18592.53 172
mPP-MVS82.96 11382.44 11384.52 14292.83 7762.92 22692.76 12491.85 15071.52 22275.61 16394.24 9353.48 22296.99 9978.97 13090.73 8893.64 141
OpenMVScopyleft70.45 1178.54 19175.92 21086.41 7585.93 24771.68 1892.74 12592.51 12366.49 28264.56 28791.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
h-mvs3383.01 11182.56 11184.35 14989.34 16062.02 24492.72 12693.76 6981.45 3682.73 8392.25 13860.11 14197.13 8987.69 5662.96 31493.91 132
无先验92.71 12792.61 12062.03 31897.01 9566.63 23393.97 129
test-LLR80.10 16079.56 15481.72 21886.93 22861.17 25992.70 12891.54 16471.51 22375.62 16186.94 22853.83 21592.38 28072.21 18084.76 14391.60 191
TESTMET0.1,182.41 12081.98 11983.72 16688.08 19763.74 19892.70 12893.77 6879.30 7477.61 14287.57 21958.19 16394.08 22373.91 16686.68 13093.33 149
test-mter79.96 16379.38 16081.72 21886.93 22861.17 25992.70 12891.54 16473.85 15575.62 16186.94 22849.84 25392.38 28072.21 18084.76 14391.60 191
BH-untuned78.68 18777.08 19383.48 17589.84 14963.74 19892.70 12888.59 28771.57 22066.83 27388.65 19851.75 23595.39 17259.03 29084.77 14291.32 200
AdaColmapbinary78.94 18077.00 19684.76 13096.34 1765.86 14592.66 13287.97 30562.18 31670.56 21892.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
test111180.84 14680.02 14583.33 17787.87 20460.76 26992.62 13386.86 31577.86 9875.73 15991.39 15646.35 28294.70 19772.79 17388.68 10694.52 108
testing22285.18 6984.69 7486.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10792.27 13668.73 4595.19 18075.94 15083.27 15694.81 94
WR-MVS76.76 22275.74 21379.82 26684.60 26862.27 24192.60 13592.51 12376.06 12367.87 25985.34 24556.76 17990.24 31762.20 27363.69 31386.94 264
3Dnovator73.91 682.69 11880.82 13388.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25892.48 13148.42 26598.52 2868.80 21494.40 3595.15 76
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
ECVR-MVScopyleft81.29 13780.38 14384.01 15988.39 18861.96 24692.56 14086.79 31677.66 10276.63 15291.42 15446.34 28395.24 17874.36 16489.23 10094.85 87
PVSNet73.49 880.05 16178.63 16884.31 15090.92 13064.97 16792.47 14191.05 19079.18 7772.43 19990.51 16837.05 33794.06 22568.06 21886.00 13493.90 134
ETVMVS84.22 8783.71 8285.76 9592.58 8768.25 8492.45 14295.53 1479.54 6979.46 11891.64 15170.29 3894.18 21969.16 20982.76 16294.84 90
PAPM85.89 5785.46 6287.18 4888.20 19672.42 1592.41 14392.77 10982.11 2980.34 10893.07 11668.27 5095.02 18378.39 13693.59 4994.09 123
GeoE78.90 18177.43 18683.29 17888.95 17462.02 24492.31 14486.23 32170.24 24571.34 21389.27 19254.43 21094.04 22863.31 26480.81 18293.81 137
1112_ss80.56 15079.83 15082.77 18788.65 18060.78 26792.29 14588.36 29272.58 18272.46 19894.95 6665.09 7893.42 24766.38 23877.71 20594.10 122
UniMVSNet_NR-MVSNet78.15 19777.55 18479.98 26084.46 27260.26 27992.25 14693.20 9377.50 10668.88 24286.61 23166.10 6892.13 28766.38 23862.55 31887.54 249
sss82.71 11782.38 11483.73 16589.25 16559.58 28992.24 14794.89 2877.96 9579.86 11392.38 13356.70 18197.05 9177.26 14280.86 18094.55 104
SR-MVS82.81 11482.58 11083.50 17493.35 6361.16 26192.23 14891.28 17764.48 29581.27 9395.28 5453.71 21895.86 14782.87 9988.77 10593.49 144
test_fmvsmconf0.01_n83.70 10183.52 8484.25 15475.26 36261.72 25292.17 14987.24 31282.36 2684.91 6595.41 4855.60 19596.83 11392.85 1785.87 13594.21 116
DeepC-MVS77.85 385.52 6585.24 6586.37 7688.80 17866.64 12592.15 15093.68 7481.07 4476.91 15193.64 10662.59 11798.44 3185.50 7692.84 5994.03 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet79.87 16578.68 16783.45 17689.96 14761.51 25592.13 15190.79 19476.83 11478.85 13086.33 23638.16 32396.17 13367.93 22187.17 12192.67 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMPcopyleft81.49 13480.67 13683.93 16091.71 11162.90 22792.13 15192.22 13271.79 20971.68 20993.49 11050.32 24696.96 10378.47 13584.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 16879.16 16380.89 24191.54 11759.80 28692.10 15388.54 28960.42 32972.96 18793.28 11248.27 26692.80 26478.89 13286.50 13290.06 216
Test_1112_low_res79.56 16978.60 16982.43 19588.24 19460.39 27892.09 15487.99 30372.10 19871.84 20587.42 22164.62 8693.04 25165.80 24577.30 21393.85 136
CDS-MVSNet81.43 13580.74 13483.52 17186.26 23764.45 17692.09 15490.65 20075.83 12673.95 18189.81 18663.97 9392.91 26071.27 18982.82 15993.20 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268884.98 7383.45 8989.57 1089.94 14875.14 592.07 15692.32 12681.87 3175.68 16088.27 20460.18 14098.60 2780.46 11890.27 9494.96 83
tfpn200view978.79 18577.43 18682.88 18592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20888.83 232
thres40078.68 18777.43 18682.43 19592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20887.48 251
test250683.29 10682.92 10484.37 14888.39 18863.18 21992.01 15991.35 17277.66 10278.49 13391.42 15464.58 8795.09 18273.19 16789.23 10094.85 87
原ACMM292.01 159
XXY-MVS77.94 20176.44 20282.43 19582.60 29564.44 17792.01 15991.83 15173.59 16370.00 22885.82 24254.43 21094.76 19169.63 20268.02 27888.10 246
旧先验292.00 16259.37 33787.54 4193.47 24675.39 154
IS-MVSNet80.14 15979.41 15882.33 19987.91 20260.08 28391.97 16388.27 29672.90 17771.44 21291.73 14961.44 12893.66 24262.47 27286.53 13193.24 150
EPNet_dtu78.80 18479.26 16277.43 29788.06 19849.71 35791.96 16491.95 14277.67 10176.56 15491.28 15858.51 15890.20 31956.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UWE-MVS80.81 14781.01 13280.20 25389.33 16257.05 31991.91 16594.71 3575.67 12775.01 16989.37 19163.13 11191.44 30667.19 22982.80 16192.12 187
MVSTER82.47 11982.05 11683.74 16392.68 8469.01 6391.90 16693.21 9179.83 6272.14 20285.71 24474.72 1694.72 19475.72 15172.49 24887.50 250
CANet_DTU84.09 9083.52 8485.81 9290.30 14166.82 12091.87 16789.01 27085.27 986.09 5293.74 10347.71 27496.98 10077.90 13989.78 9893.65 140
FMVSNet377.73 20476.04 20882.80 18691.20 12668.99 6491.87 16791.99 14073.35 16667.04 26983.19 26956.62 18392.14 28659.80 28769.34 26587.28 258
v2v48277.42 20875.65 21582.73 18880.38 31667.13 11391.85 16990.23 21775.09 13669.37 23383.39 26753.79 21794.44 20871.77 18565.00 29986.63 270
PAPR85.15 7084.47 7587.18 4896.02 2568.29 8091.85 16993.00 10376.59 11979.03 12495.00 6561.59 12797.61 5878.16 13789.00 10395.63 52
ACMMP_NAP86.05 5285.80 5786.80 6091.58 11467.53 10391.79 17193.49 8374.93 13884.61 6795.30 5359.42 15097.92 4186.13 7294.92 1994.94 85
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17184.55 33868.85 26268.99 24080.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17384.94 33465.97 28560.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17494.81 3179.65 6777.87 13894.09 9663.35 10797.90 4279.35 12579.36 19290.74 208
UniMVSNet (Re)77.58 20676.78 19879.98 26084.11 27860.80 26691.76 17493.17 9576.56 12069.93 23184.78 25163.32 10892.36 28264.89 25462.51 32086.78 266
MS-PatchMatch77.90 20376.50 20182.12 20985.99 24369.95 4291.75 17692.70 11273.97 15262.58 30884.44 25641.11 30995.78 14963.76 26192.17 6780.62 352
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17690.23 21773.68 16167.13 26880.84 30255.92 19393.86 23968.95 21261.73 32985.76 291
FIs79.47 17179.41 15879.67 26985.95 24459.40 29191.68 17893.94 6378.06 9468.96 24188.28 20366.61 6591.77 29566.20 24174.99 22787.82 247
v114476.73 22374.88 22282.27 20180.23 32066.60 12891.68 17890.21 21973.69 16069.06 23881.89 28252.73 22894.40 20969.21 20865.23 29685.80 288
OPM-MVS79.00 17878.09 17581.73 21783.52 28663.83 19591.64 18090.30 21376.36 12271.97 20489.93 18546.30 28595.17 18175.10 15677.70 20686.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MP-MVS-pluss85.24 6885.13 6785.56 10191.42 11965.59 15191.54 18192.51 12374.56 14180.62 10395.64 4459.15 15497.00 9686.94 6793.80 4394.07 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GA-MVS78.33 19576.23 20584.65 13683.65 28466.30 13591.44 18290.14 22176.01 12470.32 22384.02 26042.50 30494.72 19470.98 19177.00 21792.94 161
mvsmamba76.85 21975.71 21480.25 25183.07 29159.16 29691.44 18280.64 35976.84 11367.95 25486.33 23646.17 28794.24 21776.06 14872.92 24487.36 255
miper_enhance_ethall78.86 18277.97 17881.54 22288.00 20165.17 16191.41 18489.15 26275.19 13568.79 24483.98 26167.17 6092.82 26272.73 17465.30 29386.62 271
新几何291.41 184
thisisatest053081.15 13880.07 14484.39 14788.26 19265.63 15091.40 18694.62 4071.27 22770.93 21589.18 19372.47 2896.04 14265.62 24776.89 21891.49 193
Anonymous2023121173.08 26370.39 27981.13 23190.62 13563.33 21491.40 18690.06 22551.84 36464.46 29080.67 30536.49 33994.07 22463.83 26064.17 30785.98 284
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18889.71 24272.30 19168.17 25181.33 29451.75 23594.03 23067.94 22064.19 30685.77 289
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30191.39 18891.01 19263.35 30479.72 11594.62 7851.82 23396.14 13479.71 12287.93 11392.89 164
EI-MVSNet-UG-set83.14 10982.96 10283.67 16992.28 9163.19 21891.38 19094.68 3779.22 7676.60 15393.75 10262.64 11697.76 4878.07 13878.01 20390.05 217
test_fmvsmvis_n_192083.80 9783.48 8784.77 12982.51 29663.72 20091.37 19183.99 34581.42 3977.68 14095.74 4258.37 16097.58 5993.38 1486.87 12393.00 160
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19191.37 17176.63 11867.65 26186.21 23852.37 23191.55 30061.84 27560.81 33687.48 251
Effi-MVS+83.82 9682.76 10786.99 5589.56 15669.40 5391.35 19386.12 32372.59 18183.22 7992.81 12559.60 14896.01 14581.76 10687.80 11495.56 55
FMVSNet276.07 22874.01 23982.26 20388.85 17567.66 9891.33 19491.61 16270.84 23665.98 27682.25 27848.03 26792.00 29158.46 29268.73 27387.10 261
HPM-MVS_fast80.25 15779.55 15682.33 19991.55 11659.95 28491.32 19589.16 26065.23 29274.71 17293.07 11647.81 27395.74 15274.87 16288.23 10991.31 201
thres600view778.00 19876.66 20082.03 21491.93 10363.69 20391.30 19696.33 172.43 18770.46 22087.89 21460.31 13894.92 18942.64 35676.64 21987.48 251
WB-MVSnew77.14 21276.18 20780.01 25986.18 23963.24 21691.26 19794.11 6071.72 21273.52 18387.29 22445.14 29493.00 25356.98 29779.42 19083.80 313
DU-MVS76.86 21775.84 21179.91 26382.96 29260.26 27991.26 19791.54 16476.46 12168.88 24286.35 23456.16 18892.13 28766.38 23862.55 31887.35 256
TAMVS80.37 15479.45 15783.13 18285.14 25963.37 21391.23 19990.76 19574.81 14072.65 19288.49 19960.63 13692.95 25569.41 20581.95 17193.08 156
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20089.75 23672.67 18068.49 24981.42 29249.86 25294.27 21467.08 23065.02 29885.95 285
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20089.45 24771.51 22362.51 30987.66 21753.83 21585.06 35650.16 32067.84 28185.58 292
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20285.38 32971.90 20265.20 28184.84 25041.46 30792.97 25466.50 23772.96 24387.73 248
thres100view90078.37 19377.01 19582.46 19491.89 10663.21 21791.19 20396.33 172.28 19270.45 22187.89 21460.31 13895.32 17445.16 34477.58 20888.83 232
PMMVS81.98 12982.04 11781.78 21689.76 15256.17 32591.13 20490.69 19677.96 9580.09 11193.57 10846.33 28494.99 18581.41 11087.46 11894.17 118
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20586.90 31367.69 27163.32 29983.64 26344.33 29890.53 31162.04 27466.02 29085.46 296
baseline181.84 13081.03 13184.28 15291.60 11366.62 12791.08 20591.66 16181.87 3174.86 17091.67 15069.98 4094.92 18971.76 18664.75 30291.29 202
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20789.48 24571.98 19967.99 25281.22 29749.16 26193.90 23666.56 23464.56 30585.92 287
HPM-MVScopyleft83.25 10782.95 10384.17 15592.25 9262.88 22890.91 20891.86 14870.30 24477.12 14893.96 10056.75 18096.28 13082.04 10491.34 8393.34 147
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post81.06 14280.70 13582.15 20792.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8051.26 24195.61 16178.77 13386.77 12792.28 179
RE-MVS-def80.48 14192.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8049.30 25778.77 13386.77 12792.28 179
diffmvspermissive84.28 8383.83 8185.61 10087.40 21568.02 9090.88 21189.24 25580.54 5081.64 9092.52 12759.83 14594.52 20687.32 6185.11 13994.29 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA74.31 25372.30 26180.32 24791.49 11861.66 25390.85 21280.72 35856.67 35163.85 29590.64 16446.75 27890.84 30953.79 30975.99 22488.47 241
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21391.73 15477.12 11060.96 31586.35 23459.28 15391.80 29460.74 28061.34 33387.35 256
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21489.30 25367.66 27262.91 30581.78 28449.11 26292.95 25560.29 28458.89 34684.22 308
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26359.64 28790.80 21489.07 26870.39 24362.95 30487.30 22338.28 32193.87 23772.89 17071.45 25685.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21689.11 26571.63 21867.41 26581.22 29747.36 27593.87 23765.46 25064.72 30385.77 289
testing370.38 28870.83 27369.03 35385.82 24843.93 38290.72 21790.56 20268.06 26960.24 31886.82 23064.83 8384.12 35826.33 39264.10 30879.04 365
cl2277.94 20176.78 19881.42 22487.57 21064.93 16990.67 21888.86 27772.45 18667.63 26282.68 27464.07 9192.91 26071.79 18465.30 29386.44 272
miper_ehance_all_eth77.60 20576.44 20281.09 23685.70 25164.41 18090.65 21988.64 28672.31 19067.37 26782.52 27564.77 8592.64 27370.67 19565.30 29386.24 276
IterMVS-LS76.49 22475.18 22180.43 24684.49 27162.74 23090.64 22088.80 27972.40 18865.16 28281.72 28560.98 13292.27 28567.74 22264.65 30486.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7558.68 30290.64 22088.30 29460.90 32664.43 29190.53 16742.38 30594.57 20156.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PS-MVSNAJss77.26 21076.31 20480.13 25580.64 31459.16 29690.63 22291.06 18972.80 17868.58 24884.57 25453.55 21993.96 23372.97 16971.96 25287.27 259
PGM-MVS83.25 10782.70 10984.92 12192.81 8164.07 19190.44 22392.20 13371.28 22677.23 14794.43 8255.17 20197.31 7679.33 12691.38 8193.37 146
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22389.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
Vis-MVSNet (Re-imp)79.24 17479.57 15378.24 28988.46 18452.29 34490.41 22589.12 26474.24 14669.13 23591.91 14565.77 7290.09 32159.00 29188.09 11192.33 176
c3_l76.83 22175.47 21680.93 24085.02 26264.18 19090.39 22688.11 30071.66 21366.65 27581.64 28763.58 10492.56 27469.31 20762.86 31586.04 282
dcpmvs_287.37 3287.55 3186.85 5695.04 3268.20 8690.36 22790.66 19979.37 7381.20 9493.67 10574.73 1596.55 12290.88 3492.00 7095.82 48
TSAR-MVS + MP.88.11 2188.64 1886.54 7091.73 11068.04 8990.36 22793.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5394.77 2595.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22789.93 22963.17 30865.64 27886.04 24137.79 32994.10 22165.89 24371.52 25585.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test77.99 19978.08 17677.70 29284.89 26555.51 33090.27 23093.75 7276.87 11166.80 27487.59 21865.71 7390.23 31862.89 26973.94 23687.37 254
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23189.42 24973.75 15868.63 24781.89 28251.31 24094.09 22271.69 18764.84 30084.66 305
baseline85.01 7284.44 7686.71 6288.33 19068.73 6990.24 23291.82 15281.05 4581.18 9592.50 12863.69 9896.08 14084.45 8886.71 12995.32 66
HyFIR lowres test81.03 14379.56 15485.43 10487.81 20768.11 8890.18 23390.01 22870.65 24172.95 18886.06 24063.61 10194.50 20775.01 15879.75 18993.67 139
cl____76.07 22874.67 22380.28 24985.15 25861.76 25090.12 23488.73 28171.16 22865.43 27981.57 28961.15 12992.95 25566.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22874.67 22380.28 24985.14 25961.75 25190.12 23488.73 28171.16 22865.42 28081.60 28861.15 12992.94 25966.54 23562.16 32486.14 278
baseline283.68 10283.42 9384.48 14487.37 21666.00 14190.06 23695.93 879.71 6669.08 23790.39 17277.92 696.28 13078.91 13181.38 17691.16 204
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23789.90 23069.96 24861.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
GBi-Net75.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test175.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23890.32 20963.92 29863.56 29780.25 31236.35 34091.54 30154.46 30666.75 28686.64 267
MVS_Test84.16 8983.20 9887.05 5391.56 11569.82 4689.99 24192.05 13777.77 9982.84 8186.57 23263.93 9496.09 13774.91 16089.18 10295.25 74
Effi-MVS+-dtu76.14 22775.28 22078.72 28383.22 28855.17 33289.87 24287.78 30675.42 13167.98 25381.43 29145.08 29592.52 27675.08 15771.63 25388.48 240
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24389.17 25960.55 32850.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18662.88 22889.77 24488.93 27476.78 11575.55 16493.10 11350.31 24795.38 17383.82 9587.02 12292.26 183
tttt051779.50 17078.53 17082.41 19887.22 21961.43 25789.75 24594.76 3269.29 25667.91 25688.06 21272.92 2595.63 15962.91 26873.90 23890.16 215
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24676.11 36650.27 37057.69 33685.23 24639.68 31395.73 15333.35 38071.05 25981.78 342
test22289.77 15161.60 25489.55 24789.42 24956.83 35077.28 14692.43 13252.76 22791.14 8693.09 155
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24889.27 25471.65 21463.30 30080.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
EI-MVSNet78.97 17978.22 17481.25 22785.33 25462.73 23189.53 24993.21 9172.39 18972.14 20290.13 18160.99 13194.72 19467.73 22372.49 24886.29 274
CVMVSNet74.04 25674.27 23473.33 33085.33 25443.94 38189.53 24988.39 29154.33 35870.37 22290.13 18149.17 26084.05 36061.83 27679.36 19291.99 188
AUN-MVS78.37 19377.43 18681.17 22986.60 23157.45 31589.46 25191.16 18074.11 14874.40 17490.49 16955.52 19694.57 20174.73 16360.43 34091.48 194
hse-mvs281.12 14181.11 13081.16 23086.52 23257.48 31489.40 25291.16 18081.45 3682.73 8390.49 16960.11 14194.58 19987.69 5660.41 34191.41 196
MVP-Stereo77.12 21376.23 20579.79 26781.72 30366.34 13489.29 25390.88 19370.56 24262.01 31282.88 27149.34 25694.13 22065.55 24993.80 4378.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25488.27 29671.88 20465.73 27781.65 28659.45 14992.81 26368.13 21760.53 33886.14 278
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25583.41 34955.48 35553.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
testdata189.21 25677.55 105
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 13952.07 34589.19 25789.61 24362.69 31370.07 22692.67 12648.89 26494.32 21038.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25889.08 26770.94 23463.08 30379.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
MVSFormer83.75 9982.88 10586.37 7689.24 16871.18 2589.07 25990.69 19665.80 28687.13 4294.34 8964.99 7992.67 27072.83 17191.80 7395.27 71
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 25990.69 19665.80 28663.92 29382.03 28143.14 30392.67 27072.83 17168.53 27485.57 293
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26174.69 37363.68 30179.41 11991.59 15224.36 37487.77 33985.22 7876.26 22290.55 212
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26292.77 10964.85 29360.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26390.04 22669.13 26062.85 30683.51 26531.16 36092.75 26670.83 19269.80 26185.43 297
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26486.78 31753.19 36057.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26582.90 35360.11 33355.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26590.31 21275.84 12557.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 214
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26790.07 22372.94 17359.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
OMC-MVS78.67 18977.91 18080.95 23985.76 24957.40 31688.49 26888.67 28473.85 15572.43 19992.10 14049.29 25894.55 20472.73 17477.89 20490.91 207
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 26989.76 23568.76 26562.70 30783.26 26829.49 36492.71 26770.51 19869.62 26385.34 299
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27085.06 33260.32 33152.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27187.32 30961.75 32358.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27280.79 35758.59 34153.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
Syy-MVS69.65 29469.52 28670.03 34987.87 20443.21 38388.07 27389.01 27072.91 17563.11 30188.10 20945.28 29385.54 35222.07 39669.23 26881.32 344
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20449.45 35988.07 27389.01 27072.91 17563.11 30188.10 20963.63 9985.54 35232.73 38469.23 26881.32 344
F-COLMAP70.66 28468.44 29277.32 29986.37 23655.91 32788.00 27586.32 31856.94 34957.28 33888.07 21133.58 34992.49 27751.02 31668.37 27583.55 315
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27679.71 36252.03 36252.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
131480.70 14878.95 16585.94 8787.77 20967.56 10187.91 27792.55 12272.17 19667.44 26393.09 11450.27 24897.04 9471.68 18887.64 11693.23 151
MVS84.66 7782.86 10690.06 290.93 12974.56 687.91 27795.54 1368.55 26672.35 20194.71 7559.78 14698.90 1981.29 11394.69 3296.74 16
iter_conf05_1184.06 9183.37 9686.15 8293.04 7366.63 12687.84 27990.21 21971.10 23181.47 9289.48 18968.80 4496.96 10375.97 14992.39 6494.87 86
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28092.18 13561.23 32567.04 26986.49 23331.35 35994.58 19965.06 25367.12 28388.57 238
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25763.25 21587.72 28184.66 33660.83 32751.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR82.97 11281.84 12086.37 7694.10 4466.76 12387.66 28292.84 10769.96 24874.07 17993.57 10863.10 11297.50 6470.66 19690.58 9194.85 87
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28385.99 32466.17 28459.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 307
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28386.28 31971.56 22160.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28587.26 31167.64 27463.46 29883.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28692.03 13967.38 27560.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28775.67 36863.48 30378.08 13691.17 15920.16 38587.87 33684.65 8675.57 22690.01 218
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28890.30 21367.84 27059.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
PCF-MVS73.15 979.29 17377.63 18384.29 15186.06 24265.96 14387.03 28991.10 18469.86 25069.79 23290.64 16457.54 16996.59 11864.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29089.75 23667.27 27659.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29172.11 37863.21 30775.18 16790.17 17920.40 38385.76 35184.59 8774.42 23289.87 219
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29289.24 25567.24 27959.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
mvs_anonymous81.36 13679.99 14785.46 10390.39 14068.40 7786.88 29390.61 20174.41 14270.31 22484.67 25263.79 9692.32 28473.13 16885.70 13695.67 50
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29489.45 24764.17 29758.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29584.17 34063.29 30551.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
UA-Net80.02 16279.65 15281.11 23289.33 16257.72 31086.33 29689.00 27377.44 10781.01 9889.15 19459.33 15295.90 14661.01 27984.28 14989.73 223
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29788.58 28866.36 28358.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29879.92 36165.36 29054.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
SDMVSNet80.26 15678.88 16684.40 14689.25 16567.63 10085.35 29993.02 10076.77 11670.84 21687.12 22647.95 27196.09 13785.04 8174.55 22889.48 227
LS3D69.17 29766.40 30177.50 29591.92 10456.12 32685.12 30080.37 36046.96 37856.50 34087.51 22037.25 33293.71 24032.52 38679.40 19182.68 333
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30189.20 25763.77 30064.84 28584.44 25634.05 34891.86 29363.94 25970.89 26089.57 225
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3020.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
HY-MVS76.49 584.28 8383.36 9787.02 5492.22 9367.74 9684.65 30394.50 4379.15 7882.23 8687.93 21366.88 6296.94 10680.53 11782.20 16796.39 32
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3042.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30588.88 27561.92 32062.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
MSDG69.54 29565.73 30580.96 23885.11 26163.71 20184.19 30583.28 35156.95 34854.50 34584.03 25931.50 35796.03 14342.87 35469.13 27083.14 325
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30785.23 33150.38 36947.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30875.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 30986.26 32061.83 32253.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31084.03 34156.17 35439.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15855.70 32983.49 31083.39 35061.24 32463.72 29682.76 27234.77 34593.03 25253.37 31277.59 20786.12 281
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31283.99 34556.18 35339.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31379.51 36362.86 31050.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31469.81 38454.38 35767.91 25684.54 25515.35 39081.22 37975.65 15266.16 28982.88 326
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31486.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31477.15 36564.35 29647.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
tpm78.58 19077.03 19483.22 18085.94 24664.56 17183.21 31791.14 18378.31 9173.67 18279.68 31964.01 9292.09 28966.07 24271.26 25893.03 158
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31881.23 35557.57 34334.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
ab-mvs80.18 15878.31 17285.80 9388.44 18565.49 15683.00 32092.67 11571.82 20877.36 14585.01 24854.50 20696.59 11876.35 14775.63 22595.32 66
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32183.43 34862.52 31451.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
CostFormer82.33 12181.15 12685.86 9089.01 17368.46 7682.39 32393.01 10175.59 12880.25 10981.57 28972.03 3294.96 18679.06 12977.48 21194.16 119
sd_testset77.08 21475.37 21782.20 20589.25 16562.11 24382.06 32489.09 26676.77 11670.84 21687.12 22641.43 30895.01 18467.23 22874.55 22889.48 227
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32588.88 27569.80 25161.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 301
MTAPA83.91 9483.38 9585.50 10291.89 10665.16 16281.75 32692.23 12975.32 13380.53 10595.21 6156.06 19197.16 8784.86 8592.55 6294.18 117
tpmrst80.57 14979.14 16484.84 12490.10 14568.28 8181.70 32789.72 24177.63 10475.96 15779.54 32164.94 8192.71 26775.43 15377.28 21493.55 142
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
tpm279.80 16677.95 17985.34 10988.28 19168.26 8281.56 32991.42 17070.11 24677.59 14380.50 30767.40 5994.26 21667.34 22677.35 21293.51 143
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
FA-MVS(test-final)79.12 17677.23 19284.81 12890.54 13663.98 19381.35 33291.71 15671.09 23274.85 17182.94 27052.85 22697.05 9167.97 21981.73 17493.41 145
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33389.88 23172.58 18249.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
SCA75.82 23772.76 25385.01 12086.63 23070.08 3881.06 33489.19 25871.60 21970.01 22777.09 33845.53 29090.25 31460.43 28273.27 24094.68 97
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17743.22 30275.05 38574.26 16562.70 31787.25 260
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33787.32 30963.22 30668.76 24590.12 18444.89 29691.59 29970.55 19774.09 23589.79 221
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33873.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 33987.39 30863.86 29968.76 24589.62 18840.50 31191.72 29669.00 21174.25 23389.58 224
MDTV_nov1_ep1372.61 25789.06 17168.48 7580.33 33990.11 22271.84 20771.81 20675.92 34853.01 22593.92 23548.04 33073.38 239
EPMVS78.49 19275.98 20986.02 8491.21 12569.68 5180.23 34191.20 17875.25 13472.48 19778.11 32954.65 20593.69 24157.66 29683.04 15794.69 96
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27372.79 19054.33 21259.83 28692.58 170
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18248.02 36480.07 34470.17 38373.96 15352.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 179
dmvs_re76.93 21575.36 21881.61 22087.78 20860.71 27280.00 34587.99 30379.42 7169.02 23989.47 19046.77 27794.32 21063.38 26374.45 23189.81 220
PatchmatchNetpermissive77.46 20774.63 22685.96 8689.55 15770.35 3679.97 34689.55 24472.23 19370.94 21476.91 34057.03 17392.79 26554.27 30781.17 17794.74 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp75.01 24872.09 26383.76 16289.28 16466.22 13879.96 34789.75 23671.16 22867.80 26077.19 33751.81 23492.54 27550.39 31871.44 25792.51 173
test_post178.95 34820.70 40853.05 22491.50 30560.43 282
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35089.05 26957.20 34746.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35185.88 32562.03 31858.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35285.00 33373.17 16848.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35375.64 36952.30 36141.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
tpmvs72.88 26969.76 28582.22 20490.98 12867.05 11578.22 35488.30 29463.10 30964.35 29274.98 35155.09 20294.27 21443.25 35069.57 26485.34 299
tpm cat175.30 24472.21 26284.58 14088.52 18167.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13594.03 23053.77 31074.11 23491.93 189
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FE-MVS75.97 23473.02 25084.82 12589.78 15065.56 15277.44 35791.07 18864.55 29472.66 19179.85 31746.05 28896.69 11654.97 30480.82 18192.21 184
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 35971.74 38077.42 10955.85 34187.77 21651.39 23980.69 38031.51 39065.92 29185.55 294
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36172.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36475.94 36746.94 37958.96 32784.59 25331.40 35882.00 37647.76 33460.33 34286.04 282
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36794.75 3378.67 13290.85 16377.91 794.56 20372.25 17993.74 4595.36 63
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
bld_raw_dy_0_6476.92 21674.65 22583.71 16784.96 26471.37 2173.29 36989.16 26050.14 37162.32 31084.19 25867.48 5895.61 16172.10 18388.25 10884.14 309
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25264.59 28674.79 35232.79 35187.82 33753.99 30876.35 22191.42 195
gg-mvs-nofinetune77.18 21174.31 23385.80 9391.42 11968.36 7871.78 37194.72 3449.61 37277.12 14845.92 39577.41 893.98 23267.62 22493.16 5595.05 80
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16269.97 22972.41 35857.82 16689.48 32552.99 31373.13 24190.64 210
RPMNet70.42 28765.68 30684.63 13883.15 28967.96 9170.25 37490.45 20346.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 210
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25756.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 82
CHOSEN 280x42077.35 20976.95 19778.55 28487.07 22362.68 23269.71 37782.95 35268.80 26371.48 21187.27 22566.03 6984.00 36276.47 14682.81 16088.95 231
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19860.70 27368.01 38175.56 37057.57 34364.48 28869.87 36838.68 31584.10 35940.87 36167.89 27986.97 262
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19866.90 11968.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32740.87 36167.89 27986.97 262
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33141.59 35966.60 28788.74 235
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 265
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 78
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29446.86 39456.06 19190.25 31449.53 32368.83 27185.95 285
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
WAC-MVS49.45 35931.56 389
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1896.85 1674.45 18
eth-test20.00 419
eth-test0.00 419
ZD-MVS96.63 965.50 15593.50 8270.74 24085.26 6395.19 6264.92 8297.29 7787.51 5893.01 56
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1396.47 28
test_241102_TWO94.41 4871.65 21492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 19
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 697.05 776.79 999.11 6
test_0728_THIRD72.48 18490.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 30
GSMVS94.68 97
test_part296.29 1968.16 8790.78 16
sam_mvs157.85 16594.68 97
sam_mvs54.91 204
MTGPAbinary92.23 129
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
gm-plane-assit88.42 18667.04 11678.62 8991.83 14697.37 7176.57 145
test9_res89.41 4194.96 1895.29 68
agg_prior286.41 7094.75 2995.33 64
agg_prior94.16 4366.97 11893.31 8984.49 6996.75 115
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
test_prior86.42 7494.71 3567.35 10793.10 9996.84 11295.05 80
新几何184.73 13192.32 9064.28 18691.46 16959.56 33679.77 11492.90 12056.95 17896.57 12063.40 26292.91 5893.34 147
旧先验191.94 10260.74 27191.50 16794.36 8465.23 7791.84 7294.55 104
原ACMM184.42 14593.21 6764.27 18793.40 8865.39 28979.51 11792.50 12858.11 16496.69 11665.27 25293.96 4092.32 177
testdata296.09 13761.26 278
segment_acmp65.94 70
testdata81.34 22689.02 17257.72 31089.84 23258.65 34085.32 6294.09 9657.03 17393.28 24869.34 20690.56 9293.03 158
test1287.09 5194.60 3668.86 6692.91 10582.67 8565.44 7597.55 6293.69 4894.84 90
plane_prior786.94 22661.51 255
plane_prior687.23 21862.32 23950.66 244
plane_prior591.31 17395.55 16776.74 14378.53 20188.39 242
plane_prior489.14 195
plane_prior361.95 24779.09 8072.53 195
plane_prior187.15 220
n20.00 420
nn0.00 420
door-mid66.01 390
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
LGP-MVS_train79.56 27384.31 27559.37 29289.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
test1193.01 101
door66.57 389
HQP5-MVS63.66 205
BP-MVS77.63 140
HQP4-MVS74.18 17595.61 16188.63 236
HQP3-MVS91.70 15978.90 196
HQP2-MVS51.63 237
NP-MVS87.41 21463.04 22090.30 174
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33254.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402