This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2898.44 11097.96 999.55 4899.94 497.18 21100.00 193.81 19999.94 5499.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2899.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2198.64 6998.47 299.13 7799.92 1396.38 30100.00 199.74 27100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1198.69 6198.20 399.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 4598.43 118100.00 199.99 5100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4598.43 11896.48 5199.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2898.43 11897.27 2799.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9198.44 11097.48 2199.64 3799.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4598.32 15597.28 2599.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS96.60 11695.56 13999.72 1296.85 23699.22 1998.31 29898.94 3891.57 21590.90 23199.61 9586.66 20199.96 5797.36 12899.88 6899.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2198.62 7398.02 899.90 299.95 397.33 17100.00 199.54 34100.00 1100.00 1
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16499.44 1997.33 2499.00 8299.72 7894.03 8299.98 4398.73 73100.00 1100.00 1
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9199.65 1198.17 498.75 9599.75 6792.76 11599.94 7299.88 1799.44 10499.94 70
CANet98.27 4897.82 6499.63 1699.72 7499.10 2299.98 1198.51 9697.00 3598.52 10499.71 8087.80 18999.95 6499.75 2599.38 10799.83 87
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4598.56 8197.56 1999.44 5899.85 3095.38 46100.00 199.31 4499.99 2199.87 83
HY-MVS92.50 797.79 7197.17 8599.63 1698.98 11499.32 897.49 31899.52 1495.69 7298.32 11497.41 22293.32 9899.77 11898.08 10395.75 19399.81 89
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10498.38 14493.19 15899.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22098.47 10398.14 599.08 7899.91 1493.09 106100.00 199.04 5499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS98.10 5797.60 7099.60 2198.92 12199.28 1699.89 8699.52 1495.58 7598.24 11999.39 11493.33 9799.74 12497.98 10995.58 19699.78 95
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2898.43 11894.35 11299.71 3199.86 2695.94 3499.85 9999.69 3299.98 3299.99 23
PAPR98.52 3298.16 4599.58 2399.97 398.77 3999.95 4598.43 11895.35 8198.03 12299.75 6794.03 8299.98 4398.11 10099.83 7299.99 23
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6198.34 15296.38 5699.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon98.41 4198.02 5399.56 2499.97 398.70 4599.92 7098.44 11092.06 20298.40 11199.84 4195.68 40100.00 198.19 9599.71 8399.97 55
ACMMP_NAP98.49 3498.14 4699.54 2699.66 7898.62 5299.85 10798.37 14794.68 10099.53 5199.83 4392.87 111100.00 198.66 7899.84 7199.99 23
3Dnovator+91.53 1196.31 12895.24 14799.52 2796.88 23598.64 5199.72 15098.24 16695.27 8488.42 28298.98 14782.76 23299.94 7297.10 13699.83 7299.96 61
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7498.39 14097.20 3199.46 5699.85 3095.53 4499.79 11399.86 18100.00 199.99 23
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 7998.21 16993.53 14899.81 1399.89 1994.70 6299.86 9899.84 1999.93 6099.96 61
DELS-MVS98.54 3098.22 4099.50 2999.15 10598.65 50100.00 198.58 7797.70 1498.21 12099.24 12792.58 12199.94 7298.63 8199.94 5499.92 77
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1198.86 4997.10 3299.80 1599.94 495.92 36100.00 199.51 35100.00 1100.00 1
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9198.33 15393.97 13399.76 2699.87 2494.99 5799.75 12298.55 83100.00 199.98 48
131496.84 10495.96 12399.48 3396.74 24398.52 5598.31 29898.86 4995.82 6889.91 24398.98 14787.49 19299.96 5797.80 11599.73 8299.96 61
test_prior99.43 3499.94 1398.49 5798.65 6799.80 11199.99 23
test1299.43 3499.74 6998.56 5498.40 13799.65 3694.76 6099.75 12299.98 3299.99 23
新几何199.42 3699.75 6898.27 6098.63 7292.69 17599.55 4899.82 4694.40 67100.00 191.21 23499.94 5499.99 23
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13198.38 14496.73 4599.88 499.74 7394.89 5999.59 13999.80 2299.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9198.36 14894.08 12599.74 2899.73 7594.08 8099.74 12499.42 4099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
canonicalmvs97.09 9796.32 10999.39 3998.93 11998.95 2699.72 15097.35 25194.45 10597.88 12799.42 11086.71 20099.52 14198.48 8593.97 21399.72 102
MP-MVS-pluss98.07 5897.64 6899.38 4099.74 6998.41 5999.74 14298.18 17393.35 15296.45 15999.85 3092.64 11899.97 5398.91 6299.89 6699.77 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA98.29 4797.96 5899.30 4199.85 5497.93 7299.39 20198.28 16295.76 7097.18 14199.88 2192.74 116100.00 198.67 7699.88 6899.99 23
alignmvs97.81 6997.33 7999.25 4298.77 13498.66 4899.99 498.44 11094.40 11198.41 10999.47 10693.65 9299.42 15298.57 8294.26 20999.67 108
thres20096.96 9996.21 11299.22 4398.97 11598.84 3499.85 10799.71 693.17 15996.26 16598.88 16289.87 16799.51 14294.26 18894.91 20399.31 168
test_yl97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
DCV-MVSNet97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
tfpn200view996.79 10695.99 11799.19 4698.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.27 173
thres100view90096.74 11095.92 12999.18 4798.90 12698.77 3999.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.84 19694.57 20499.27 173
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1198.44 11096.85 3899.80 1599.91 1497.57 899.85 9999.44 3999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
sss97.57 7897.03 9099.18 4798.37 15398.04 6699.73 14799.38 2293.46 15098.76 9399.06 13891.21 14499.89 8796.33 14997.01 16999.62 119
ZNCC-MVS98.31 4598.03 5299.17 5099.88 4997.59 8199.94 6198.44 11094.31 11598.50 10699.82 4693.06 10799.99 3698.30 9399.99 2199.93 72
GST-MVS98.27 4897.97 5599.17 5099.92 3197.57 8299.93 6798.39 14094.04 13198.80 8999.74 7392.98 108100.00 198.16 9799.76 8099.93 72
PS-MVSNAJ98.44 3898.20 4299.16 5298.80 13298.92 2799.54 18098.17 17497.34 2399.85 799.85 3091.20 14599.89 8799.41 4199.67 8598.69 203
thres40096.78 10795.99 11799.16 5298.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.16 180
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6199.78 5894.34 7299.96 5798.92 6099.95 4999.99 23
X-MVStestdata93.83 19292.06 22499.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6141.37 38594.34 7299.96 5798.92 6099.95 4999.99 23
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4598.61 7494.77 9599.31 6899.85 3094.22 76100.00 198.70 7499.98 3299.98 48
thres600view796.69 11395.87 13299.14 5698.90 12698.78 3899.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.44 20894.50 20799.16 180
114514_t97.41 8696.83 9499.14 5699.51 8997.83 7399.89 8698.27 16488.48 27999.06 7999.66 9190.30 16299.64 13896.32 15099.97 4299.96 61
PAPM98.60 2798.42 2899.14 5696.05 25698.96 2599.90 7999.35 2496.68 4798.35 11399.66 9196.45 2998.51 19299.45 3899.89 6699.96 61
VNet97.21 9396.57 10399.13 6098.97 11597.82 7499.03 24599.21 2894.31 11599.18 7698.88 16286.26 20699.89 8798.93 5994.32 20899.69 105
QAPM95.40 15594.17 17299.10 6196.92 23097.71 7699.40 19798.68 6389.31 25888.94 27098.89 16182.48 23399.96 5793.12 21599.83 7299.62 119
3Dnovator91.47 1296.28 13195.34 14499.08 6296.82 23897.47 9099.45 19498.81 5395.52 7889.39 25799.00 14481.97 23699.95 6497.27 13099.83 7299.84 86
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2898.55 8794.87 9399.45 5799.85 3094.07 81100.00 198.67 76100.00 199.98 48
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4598.60 7594.77 9599.31 6899.84 4193.73 90100.00 198.70 7499.98 3299.98 48
MP-MVScopyleft98.23 5397.97 5599.03 6599.94 1397.17 10199.95 4598.39 14094.70 9998.26 11899.81 5091.84 139100.00 198.85 6699.97 4299.93 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 4198.21 4199.03 6599.86 5397.10 10299.98 1198.80 5590.78 23999.62 4099.78 5895.30 47100.00 199.80 2299.93 6099.99 23
xiu_mvs_v2_base98.23 5397.97 5599.02 6798.69 13798.66 4899.52 18298.08 18597.05 3399.86 599.86 2690.65 15799.71 12899.39 4398.63 12898.69 203
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6799.90 196.81 4398.67 9899.77 6093.92 8499.89 8799.27 4699.94 5499.96 61
PGM-MVS98.34 4498.13 4798.99 6999.92 3197.00 10599.75 13999.50 1793.90 13899.37 6599.76 6293.24 103100.00 197.75 12299.96 4699.98 48
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4598.42 12997.50 2099.52 5399.88 2197.43 1699.71 12899.50 3699.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS98.39 4398.20 4298.97 7199.97 396.92 10999.95 4598.38 14495.04 8798.61 10299.80 5193.39 95100.00 198.64 79100.00 199.98 48
原ACMM198.96 7299.73 7296.99 10698.51 9694.06 12899.62 4099.85 3094.97 5899.96 5795.11 16499.95 4999.92 77
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29099.42 2197.03 3499.02 8199.09 13599.35 198.21 22499.73 2999.78 7999.77 96
SR-MVS98.46 3698.30 3998.93 7499.88 4997.04 10399.84 11198.35 15094.92 9199.32 6799.80 5193.35 9699.78 11599.30 4599.95 4999.96 61
CNLPA97.76 7397.38 7698.92 7599.53 8696.84 11199.87 9198.14 18193.78 14196.55 15799.69 8492.28 12999.98 4397.13 13499.44 10499.93 72
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2198.39 14094.43 10798.90 8699.87 2494.30 74100.00 199.04 5499.99 2199.99 23
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2197.92 20098.07 698.76 9399.55 10095.00 5699.94 7299.91 1597.68 15299.99 23
PVSNet_Blended97.94 6097.64 6898.83 7899.59 8196.99 106100.00 199.10 2995.38 8098.27 11699.08 13689.00 18199.95 6499.12 4999.25 11399.57 132
APD-MVS_3200maxsize98.25 5198.08 5198.78 7999.81 6096.60 11899.82 11998.30 16093.95 13599.37 6599.77 6092.84 11299.76 12198.95 5799.92 6399.97 55
EPNet98.49 3498.40 2998.77 8099.62 8096.80 11399.90 7999.51 1697.60 1699.20 7399.36 11793.71 9199.91 8197.99 10798.71 12799.61 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-Vis-set98.27 4898.11 4998.75 8199.83 5796.59 11999.40 19798.51 9695.29 8398.51 10599.76 6293.60 9499.71 12898.53 8499.52 9699.95 68
SR-MVS-dyc-post98.31 4598.17 4498.71 8299.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6793.28 10199.78 11598.90 6399.92 6399.97 55
PAPM_NR98.12 5697.93 6098.70 8399.94 1396.13 13799.82 11998.43 11894.56 10397.52 13399.70 8294.40 6799.98 4397.00 13999.98 3299.99 23
HPM-MVS_fast97.80 7097.50 7398.68 8499.79 6296.42 12299.88 8898.16 17891.75 21298.94 8499.54 10291.82 14099.65 13797.62 12599.99 2199.99 23
HPM-MVScopyleft97.96 5997.72 6698.68 8499.84 5696.39 12599.90 7998.17 17492.61 18098.62 10199.57 9991.87 13899.67 13598.87 6599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu97.27 9096.81 9598.66 8698.81 13196.67 11599.92 7098.64 6994.51 10496.38 16398.49 18889.05 18099.88 9397.10 13698.34 13399.43 154
ACMMPcopyleft97.74 7497.44 7598.66 8699.92 3196.13 13799.18 22599.45 1894.84 9496.41 16299.71 8091.40 14299.99 3697.99 10798.03 14799.87 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
lupinMVS97.85 6597.60 7098.62 8897.28 21997.70 7899.99 497.55 23095.50 7999.43 5999.67 8990.92 15298.71 18198.40 8799.62 8899.45 151
MVS_Test96.46 12195.74 13498.61 8998.18 16697.23 9699.31 21197.15 27191.07 23298.84 8797.05 23588.17 18898.97 16594.39 18497.50 15599.61 122
CANet_DTU96.76 10896.15 11398.60 9098.78 13397.53 8399.84 11197.63 21997.25 3099.20 7399.64 9381.36 24399.98 4392.77 21998.89 12298.28 209
EI-MVSNet-UG-set98.14 5597.99 5498.60 9099.80 6196.27 12899.36 20698.50 10195.21 8598.30 11599.75 6793.29 10099.73 12798.37 8999.30 11199.81 89
thisisatest051597.41 8697.02 9198.59 9297.71 19797.52 8499.97 2198.54 9091.83 20897.45 13699.04 13997.50 999.10 16294.75 17796.37 18099.16 180
test250697.53 7997.19 8398.58 9398.66 13996.90 11098.81 26899.77 594.93 8997.95 12498.96 15192.51 12399.20 15694.93 16998.15 14099.64 114
CPTT-MVS97.64 7797.32 8098.58 9399.97 395.77 14699.96 2898.35 15089.90 25298.36 11299.79 5491.18 14899.99 3698.37 8999.99 2199.99 23
xiu_mvs_v1_base_debu97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base_debi97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
GG-mvs-BLEND98.54 9898.21 16398.01 6793.87 35798.52 9397.92 12597.92 21099.02 297.94 24098.17 9699.58 9399.67 108
baseline195.78 14394.86 15998.54 9898.47 14998.07 6499.06 23897.99 19092.68 17694.13 19798.62 17993.28 10198.69 18393.79 20185.76 27398.84 195
MVS_111021_LR98.42 4098.38 3198.53 10099.39 9495.79 14599.87 9199.86 296.70 4698.78 9099.79 5492.03 13599.90 8399.17 4899.86 7099.88 81
ab-mvs94.69 17193.42 19398.51 10198.07 17196.26 12996.49 33698.68 6390.31 24694.54 18997.00 23776.30 28899.71 12895.98 15593.38 21899.56 133
AdaColmapbinary97.23 9296.80 9698.51 10199.99 195.60 15599.09 23198.84 5293.32 15496.74 15299.72 7886.04 207100.00 198.01 10599.43 10699.94 70
gg-mvs-nofinetune93.51 20491.86 23098.47 10397.72 19597.96 7192.62 36198.51 9674.70 36397.33 13869.59 37698.91 397.79 24497.77 12099.56 9499.67 108
API-MVS97.86 6497.66 6798.47 10399.52 8795.41 16199.47 19198.87 4891.68 21398.84 8799.85 3092.34 12899.99 3698.44 8699.96 46100.00 1
PVSNet91.05 1397.13 9496.69 9998.45 10599.52 8795.81 14499.95 4599.65 1194.73 9799.04 8099.21 12984.48 22099.95 6494.92 17098.74 12699.58 131
DeepC-MVS94.51 496.92 10296.40 10898.45 10599.16 10495.90 14299.66 15898.06 18696.37 5994.37 19399.49 10583.29 23099.90 8397.63 12499.61 9199.55 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 15894.10 17398.43 10798.55 14395.99 14097.91 31497.31 25690.35 24589.48 25699.22 12885.19 21599.89 8790.40 25598.47 13199.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testdata98.42 10899.47 9195.33 16498.56 8193.78 14199.79 2399.85 3093.64 9399.94 7294.97 16899.94 54100.00 1
Test_1112_low_res95.72 14494.83 16098.42 10897.79 18796.41 12399.65 16096.65 31792.70 17492.86 21296.13 26592.15 13299.30 15391.88 22893.64 21599.55 134
1112_ss96.01 13795.20 14998.42 10897.80 18696.41 12399.65 16096.66 31692.71 17392.88 21199.40 11292.16 13199.30 15391.92 22793.66 21499.55 134
jason97.24 9196.86 9398.38 11195.73 26997.32 9499.97 2197.40 24895.34 8298.60 10399.54 10287.70 19098.56 18997.94 11099.47 10099.25 175
jason: jason.
OpenMVScopyleft90.15 1594.77 16993.59 18798.33 11296.07 25597.48 8999.56 17698.57 7990.46 24286.51 30598.95 15678.57 27199.94 7293.86 19599.74 8197.57 225
LFMVS94.75 17093.56 18998.30 11399.03 10995.70 15198.74 27397.98 19287.81 28998.47 10799.39 11467.43 33499.53 14098.01 10595.20 20299.67 108
UA-Net96.54 11895.96 12398.27 11498.23 16195.71 15098.00 31298.45 10693.72 14498.41 10999.27 12288.71 18599.66 13691.19 23597.69 15199.44 153
ETV-MVS97.92 6297.80 6598.25 11598.14 16996.48 12099.98 1197.63 21995.61 7499.29 7199.46 10892.55 12298.82 17199.02 5698.54 12999.46 149
thisisatest053097.10 9596.72 9898.22 11697.60 20196.70 11499.92 7098.54 9091.11 23197.07 14398.97 14997.47 1299.03 16393.73 20496.09 18398.92 190
Effi-MVS+96.30 12995.69 13598.16 11797.85 18396.26 12997.41 31997.21 26490.37 24498.65 10098.58 18286.61 20298.70 18297.11 13597.37 16099.52 141
TESTMET0.1,196.74 11096.26 11098.16 11797.36 21296.48 12099.96 2898.29 16191.93 20595.77 17698.07 20295.54 4298.29 21690.55 25098.89 12299.70 103
IB-MVS92.85 694.99 16393.94 17898.16 11797.72 19595.69 15299.99 498.81 5394.28 11792.70 21396.90 23995.08 5199.17 15996.07 15373.88 34999.60 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FA-MVS(test-final)95.86 14095.09 15398.15 12097.74 19095.62 15496.31 34098.17 17491.42 22396.26 16596.13 26590.56 15999.47 15092.18 22497.07 16599.35 163
MAR-MVS97.43 8197.19 8398.15 12099.47 9194.79 18299.05 24298.76 5692.65 17898.66 9999.82 4688.52 18699.98 4398.12 9999.63 8799.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
diffmvspermissive97.00 9896.64 10098.09 12297.64 19996.17 13699.81 12197.19 26594.67 10198.95 8399.28 11986.43 20398.76 17698.37 8997.42 15899.33 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS96.53 11996.01 11698.09 12298.43 15096.12 13996.36 33899.43 2093.53 14897.64 13195.04 30694.41 6698.38 20891.13 23698.11 14399.75 98
PLCcopyleft95.54 397.93 6197.89 6398.05 12499.82 5894.77 18399.92 7098.46 10593.93 13697.20 14099.27 12295.44 4599.97 5397.41 12799.51 9899.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D95.84 14295.11 15298.02 12599.85 5495.10 17498.74 27398.50 10187.22 29693.66 20199.86 2687.45 19399.95 6490.94 24299.81 7899.02 188
MVSFormer96.94 10096.60 10197.95 12697.28 21997.70 7899.55 17897.27 26091.17 22899.43 5999.54 10290.92 15296.89 29394.67 18099.62 8899.25 175
PatchMatch-RL96.04 13695.40 14197.95 12699.59 8195.22 17099.52 18299.07 3293.96 13496.49 15898.35 19682.28 23499.82 11090.15 25899.22 11598.81 197
test_fmvsm_n_192098.44 3898.61 2197.92 12899.27 10095.18 172100.00 198.90 4398.05 799.80 1599.73 7592.64 11899.99 3699.58 3399.51 9898.59 205
tttt051796.85 10396.49 10597.92 12897.48 20795.89 14399.85 10798.54 9090.72 24096.63 15498.93 16097.47 1299.02 16493.03 21695.76 19298.85 194
test_fmvsmvis_n_192097.67 7697.59 7297.91 13097.02 22695.34 16399.95 4598.45 10697.87 1097.02 14499.59 9689.64 16999.98 4399.41 4199.34 11098.42 206
DP-MVS94.54 17693.42 19397.91 13099.46 9394.04 19698.93 25497.48 24081.15 34590.04 24099.55 10087.02 19899.95 6488.97 26898.11 14399.73 100
casdiffmvs_mvgpermissive96.43 12295.94 12697.89 13297.44 20895.47 15799.86 10497.29 25893.35 15296.03 16999.19 13085.39 21398.72 18097.89 11497.04 16799.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.18 15894.31 17097.80 13398.17 16795.23 16999.76 13697.53 23492.52 18794.27 19599.25 12676.84 28298.80 17290.89 24499.54 9599.35 163
EC-MVSNet97.38 8897.24 8197.80 13397.41 20995.64 15399.99 497.06 28194.59 10299.63 3899.32 11889.20 17998.14 22698.76 7199.23 11499.62 119
FE-MVS95.70 14895.01 15697.79 13598.21 16394.57 18495.03 35298.69 6188.90 27097.50 13596.19 26292.60 12099.49 14889.99 26097.94 14999.31 168
test-LLR96.47 12096.04 11597.78 13697.02 22695.44 15899.96 2898.21 16994.07 12695.55 17896.38 25693.90 8698.27 22090.42 25398.83 12499.64 114
test-mter96.39 12595.93 12797.78 13697.02 22695.44 15899.96 2898.21 16991.81 21095.55 17896.38 25695.17 4898.27 22090.42 25398.83 12499.64 114
casdiffmvspermissive96.42 12495.97 12297.77 13897.30 21794.98 17599.84 11197.09 27893.75 14396.58 15699.26 12585.07 21698.78 17497.77 12097.04 16799.54 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS97.53 7997.46 7497.76 13998.04 17394.84 17999.98 1197.61 22494.41 11097.90 12699.59 9692.40 12698.87 16998.04 10499.13 11899.59 125
baseline96.43 12295.98 11997.76 13997.34 21395.17 17399.51 18497.17 26893.92 13796.90 14799.28 11985.37 21498.64 18697.50 12696.86 17399.46 149
cascas94.64 17493.61 18497.74 14197.82 18596.26 12999.96 2897.78 21285.76 31494.00 19897.54 21876.95 28199.21 15597.23 13295.43 19897.76 220
CS-MVS-test97.88 6397.94 5997.70 14299.28 9995.20 17199.98 1197.15 27195.53 7799.62 4099.79 5492.08 13498.38 20898.75 7299.28 11299.52 141
test_cas_vis1_n_192096.59 11796.23 11197.65 14398.22 16294.23 19299.99 497.25 26297.77 1299.58 4799.08 13677.10 27899.97 5397.64 12399.45 10398.74 201
ET-MVSNet_ETH3D94.37 18293.28 19997.64 14498.30 15597.99 6899.99 497.61 22494.35 11271.57 36599.45 10996.23 3195.34 33896.91 14485.14 28099.59 125
CHOSEN 1792x268896.81 10596.53 10497.64 14498.91 12593.07 21999.65 16099.80 395.64 7395.39 18198.86 16784.35 22399.90 8396.98 14099.16 11699.95 68
UGNet95.33 15794.57 16497.62 14698.55 14394.85 17898.67 28199.32 2595.75 7196.80 15196.27 26072.18 31399.96 5794.58 18299.05 12098.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvsany_test197.82 6897.90 6297.55 14798.77 13493.04 22299.80 12597.93 19796.95 3799.61 4699.68 8890.92 15299.83 10899.18 4798.29 13899.80 91
mvs_anonymous95.65 15095.03 15597.53 14898.19 16595.74 14899.33 20897.49 23990.87 23690.47 23597.10 23188.23 18797.16 27295.92 15697.66 15399.68 106
Fast-Effi-MVS+95.02 16294.19 17197.52 14997.88 18094.55 18599.97 2197.08 27988.85 27294.47 19297.96 20984.59 21998.41 20089.84 26297.10 16499.59 125
ECVR-MVScopyleft95.66 14995.05 15497.51 15098.66 13993.71 20598.85 26598.45 10694.93 8996.86 14898.96 15175.22 29999.20 15695.34 16198.15 14099.64 114
TR-MVS94.54 17693.56 18997.49 15197.96 17694.34 19098.71 27697.51 23790.30 24794.51 19198.69 17475.56 29498.77 17592.82 21895.99 18599.35 163
Vis-MVSNetpermissive95.72 14495.15 15197.45 15297.62 20094.28 19199.28 21798.24 16694.27 11996.84 14998.94 15879.39 26298.76 17693.25 20998.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet96.29 13095.90 13097.45 15298.13 17094.80 18199.08 23397.61 22492.02 20495.54 18098.96 15190.64 15898.08 22993.73 20497.41 15999.47 148
CS-MVS97.79 7197.91 6197.43 15499.10 10694.42 18899.99 497.10 27695.07 8699.68 3499.75 6792.95 10998.34 21298.38 8899.14 11799.54 137
OMC-MVS97.28 8997.23 8297.41 15599.76 6693.36 21799.65 16097.95 19596.03 6597.41 13799.70 8289.61 17099.51 14296.73 14698.25 13999.38 158
MSDG94.37 18293.36 19797.40 15698.88 12893.95 20099.37 20497.38 24985.75 31690.80 23299.17 13284.11 22599.88 9386.35 29898.43 13298.36 208
PatchmatchNetpermissive95.94 13995.45 14097.39 15797.83 18494.41 18996.05 34598.40 13792.86 16497.09 14295.28 30194.21 7898.07 23189.26 26698.11 14399.70 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111195.57 15194.98 15797.37 15898.56 14193.37 21698.86 26398.45 10694.95 8896.63 15498.95 15675.21 30099.11 16195.02 16798.14 14299.64 114
baseline296.71 11296.49 10597.37 15895.63 27695.96 14199.74 14298.88 4792.94 16391.61 22398.97 14997.72 798.62 18794.83 17498.08 14697.53 226
HyFIR lowres test96.66 11596.43 10797.36 16099.05 10893.91 20199.70 15299.80 390.54 24196.26 16598.08 20192.15 13298.23 22396.84 14595.46 19799.93 72
Vis-MVSNet (Re-imp)96.32 12795.98 11997.35 16197.93 17894.82 18099.47 19198.15 18091.83 20895.09 18599.11 13491.37 14397.47 25593.47 20797.43 15699.74 99
SDMVSNet94.80 16693.96 17797.33 16298.92 12195.42 16099.59 17098.99 3592.41 19192.55 21697.85 21175.81 29398.93 16897.90 11391.62 22497.64 221
SCA94.69 17193.81 18297.33 16297.10 22294.44 18698.86 26398.32 15593.30 15596.17 16895.59 28076.48 28697.95 23891.06 23897.43 15699.59 125
CSCG97.10 9597.04 8997.27 16499.89 4591.92 24899.90 7999.07 3288.67 27595.26 18499.82 4693.17 10599.98 4398.15 9899.47 10099.90 79
RPMNet89.76 28587.28 30097.19 16596.29 24992.66 23192.01 36498.31 15770.19 36996.94 14585.87 36887.25 19599.78 11562.69 37195.96 18699.13 184
tpmrst96.27 13295.98 11997.13 16697.96 17693.15 21896.34 33998.17 17492.07 20098.71 9795.12 30493.91 8598.73 17894.91 17296.62 17499.50 145
CDS-MVSNet96.34 12696.07 11497.13 16697.37 21194.96 17699.53 18197.91 20191.55 21695.37 18298.32 19795.05 5397.13 27593.80 20095.75 19399.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet94.79 16794.02 17597.11 16897.87 18193.79 20294.24 35398.16 17890.07 24996.43 16094.48 32490.29 16398.19 22587.44 28597.23 16199.36 161
GeoE94.36 18493.48 19196.99 16997.29 21893.54 20999.96 2896.72 31488.35 28293.43 20298.94 15882.05 23598.05 23288.12 28096.48 17899.37 160
EPP-MVSNet96.69 11396.60 10196.96 17097.74 19093.05 22199.37 20498.56 8188.75 27395.83 17599.01 14296.01 3298.56 18996.92 14397.20 16399.25 175
dp95.05 16194.43 16696.91 17197.99 17592.73 22996.29 34197.98 19289.70 25595.93 17294.67 31993.83 8998.45 19786.91 29796.53 17699.54 137
TAPA-MVS92.12 894.42 18093.60 18696.90 17299.33 9791.78 25299.78 12898.00 18989.89 25394.52 19099.47 10691.97 13699.18 15869.90 36099.52 9699.73 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
F-COLMAP96.93 10196.95 9296.87 17399.71 7591.74 25399.85 10797.95 19593.11 16195.72 17799.16 13392.35 12799.94 7295.32 16299.35 10998.92 190
GA-MVS93.83 19292.84 20696.80 17495.73 26993.57 20799.88 8897.24 26392.57 18492.92 20996.66 24878.73 26997.67 24987.75 28394.06 21299.17 179
CostFormer96.10 13395.88 13196.78 17597.03 22592.55 23597.08 32797.83 20990.04 25198.72 9694.89 31395.01 5598.29 21696.54 14895.77 19199.50 145
VDDNet93.12 21391.91 22896.76 17696.67 24692.65 23398.69 27998.21 16982.81 33997.75 13099.28 11961.57 35399.48 14998.09 10294.09 21198.15 211
PMMVS96.76 10896.76 9796.76 17698.28 15892.10 24399.91 7497.98 19294.12 12399.53 5199.39 11486.93 19998.73 17896.95 14297.73 15099.45 151
PVSNet_BlendedMVS96.05 13595.82 13396.72 17899.59 8196.99 10699.95 4599.10 2994.06 12898.27 11695.80 27189.00 18199.95 6499.12 4987.53 26493.24 323
BH-w/o95.71 14695.38 14396.68 17998.49 14892.28 23999.84 11197.50 23892.12 19992.06 22198.79 17184.69 21898.67 18595.29 16399.66 8699.09 186
EPNet_dtu95.71 14695.39 14296.66 18098.92 12193.41 21499.57 17498.90 4396.19 6397.52 13398.56 18492.65 11797.36 25777.89 34398.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS95.85 14195.58 13896.65 18197.07 22393.50 21099.17 22697.82 21091.39 22595.02 18698.01 20392.20 13097.30 26493.75 20395.83 19099.14 183
h-mvs3394.92 16494.36 16796.59 18298.85 12991.29 26498.93 25498.94 3895.90 6698.77 9198.42 19590.89 15599.77 11897.80 11570.76 35498.72 202
Anonymous2024052992.10 23690.65 24796.47 18398.82 13090.61 27598.72 27598.67 6675.54 36093.90 20098.58 18266.23 33899.90 8394.70 17990.67 22698.90 193
tpm cat193.51 20492.52 21796.47 18397.77 18891.47 26396.13 34398.06 18680.98 34692.91 21093.78 33289.66 16898.87 16987.03 29396.39 17999.09 186
nrg03093.51 20492.53 21696.45 18594.36 29497.20 9799.81 12197.16 27091.60 21489.86 24597.46 22086.37 20497.68 24895.88 15780.31 31994.46 245
MVSTER95.53 15295.22 14896.45 18598.56 14197.72 7599.91 7497.67 21792.38 19391.39 22597.14 22997.24 1897.30 26494.80 17587.85 25894.34 260
iter_conf0596.07 13495.95 12596.44 18798.43 15097.52 8499.91 7496.85 30494.16 12192.49 21897.98 20798.20 497.34 25997.26 13188.29 25194.45 250
Anonymous20240521193.10 21491.99 22696.40 18899.10 10689.65 29498.88 25997.93 19783.71 33394.00 19898.75 17368.79 32699.88 9395.08 16691.71 22399.68 106
tpmvs94.28 18693.57 18896.40 18898.55 14391.50 26295.70 35198.55 8787.47 29192.15 22094.26 32891.42 14198.95 16788.15 27895.85 18998.76 199
PVSNet_088.03 1991.80 24390.27 25596.38 19098.27 15990.46 27999.94 6199.61 1393.99 13286.26 31197.39 22471.13 32099.89 8798.77 7067.05 36498.79 198
tpm295.47 15395.18 15096.35 19196.91 23191.70 25796.96 33097.93 19788.04 28698.44 10895.40 29093.32 9897.97 23594.00 19195.61 19599.38 158
iter_conf_final96.01 13795.93 12796.28 19298.38 15297.03 10499.87 9197.03 28494.05 13092.61 21497.98 20798.01 597.34 25997.02 13888.39 25094.47 244
VDD-MVS93.77 19692.94 20496.27 19398.55 14390.22 28398.77 27297.79 21190.85 23796.82 15099.42 11061.18 35599.77 11898.95 5794.13 21098.82 196
BH-untuned95.18 15894.83 16096.22 19498.36 15491.22 26599.80 12597.32 25590.91 23591.08 22898.67 17583.51 22798.54 19194.23 18999.61 9198.92 190
VPA-MVSNet92.70 22391.55 23596.16 19595.09 28296.20 13498.88 25999.00 3491.02 23491.82 22295.29 30076.05 29297.96 23795.62 16081.19 30794.30 261
FIs94.10 18893.43 19296.11 19694.70 28996.82 11299.58 17298.93 4292.54 18589.34 25997.31 22587.62 19197.10 27894.22 19086.58 26994.40 252
Patchmatch-test92.65 22691.50 23696.10 19796.85 23690.49 27891.50 36697.19 26582.76 34090.23 23795.59 28095.02 5498.00 23477.41 34596.98 17099.82 88
FMVSNet392.69 22491.58 23395.99 19898.29 15697.42 9299.26 21997.62 22189.80 25489.68 24995.32 29681.62 24196.27 31887.01 29485.65 27494.29 262
CR-MVSNet93.45 20792.62 21195.94 19996.29 24992.66 23192.01 36496.23 32992.62 17996.94 14593.31 33791.04 14996.03 32879.23 33695.96 18699.13 184
UniMVSNet (Re)93.07 21592.13 22195.88 20094.84 28696.24 13399.88 8898.98 3692.49 18989.25 26195.40 29087.09 19797.14 27493.13 21478.16 33094.26 263
XXY-MVS91.82 23990.46 24995.88 20093.91 30295.40 16298.87 26297.69 21588.63 27787.87 28797.08 23274.38 30697.89 24191.66 23084.07 28994.35 259
VPNet91.81 24090.46 24995.85 20294.74 28895.54 15698.98 24898.59 7692.14 19890.77 23397.44 22168.73 32897.54 25394.89 17377.89 33294.46 245
test_vis1_n_192095.44 15495.31 14595.82 20398.50 14788.74 30299.98 1197.30 25797.84 1199.85 799.19 13066.82 33699.97 5398.82 6799.46 10298.76 199
FC-MVSNet-test93.81 19493.15 20195.80 20494.30 29696.20 13499.42 19698.89 4592.33 19589.03 26997.27 22787.39 19496.83 29793.20 21086.48 27094.36 256
sd_testset93.55 20392.83 20795.74 20598.92 12190.89 27098.24 30198.85 5192.41 19192.55 21697.85 21171.07 32198.68 18493.93 19391.62 22497.64 221
NR-MVSNet91.56 24890.22 25695.60 20694.05 29995.76 14798.25 30098.70 6091.16 23080.78 33996.64 25083.23 23196.57 30791.41 23277.73 33494.46 245
patch_mono-298.24 5299.12 595.59 20799.67 7786.91 32399.95 4598.89 4597.60 1699.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 81
miper_enhance_ethall94.36 18493.98 17695.49 20898.68 13895.24 16899.73 14797.29 25893.28 15689.86 24595.97 26994.37 7197.05 28192.20 22384.45 28594.19 269
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 20894.61 29195.28 16699.83 11799.08 3191.49 21789.21 26496.86 24287.14 19696.73 30193.20 21077.52 33594.46 245
DU-MVS92.46 22991.45 23895.49 20894.05 29995.28 16699.81 12198.74 5792.25 19789.21 26496.64 25081.66 23996.73 30193.20 21077.52 33594.46 245
WR-MVS92.31 23291.25 24095.48 21194.45 29395.29 16599.60 16998.68 6390.10 24888.07 28596.89 24080.68 25196.80 29993.14 21379.67 32394.36 256
dcpmvs_297.42 8598.09 5095.42 21299.58 8487.24 31999.23 22196.95 29394.28 11798.93 8599.73 7594.39 7099.16 16099.89 1699.82 7699.86 85
FMVSNet291.02 25689.56 26995.41 21397.53 20395.74 14898.98 24897.41 24787.05 29788.43 28095.00 30971.34 31796.24 32085.12 30685.21 27994.25 265
test_vis1_n93.61 20293.03 20395.35 21495.86 26286.94 32199.87 9196.36 32796.85 3899.54 5098.79 17152.41 36599.83 10898.64 7998.97 12199.29 172
AUN-MVS93.28 20892.60 21295.34 21598.29 15690.09 28699.31 21198.56 8191.80 21196.35 16498.00 20489.38 17398.28 21892.46 22069.22 35997.64 221
cl2293.77 19693.25 20095.33 21699.49 9094.43 18799.61 16898.09 18390.38 24389.16 26795.61 27890.56 15997.34 25991.93 22684.45 28594.21 268
hse-mvs294.38 18194.08 17495.31 21798.27 15990.02 28899.29 21698.56 8195.90 6698.77 9198.00 20490.89 15598.26 22297.80 11569.20 36097.64 221
MVS-HIRNet86.22 30783.19 32095.31 21796.71 24590.29 28292.12 36397.33 25462.85 37086.82 30070.37 37569.37 32597.49 25475.12 35297.99 14898.15 211
mvsmamba94.10 18893.72 18395.25 21993.57 30794.13 19499.67 15796.45 32593.63 14791.34 22797.77 21486.29 20597.22 27096.65 14788.10 25594.40 252
PatchT90.38 27188.75 28695.25 21995.99 25890.16 28491.22 36897.54 23276.80 35597.26 13986.01 36791.88 13796.07 32766.16 36895.91 18899.51 143
pmmvs492.10 23691.07 24395.18 22192.82 32794.96 17699.48 19096.83 30687.45 29288.66 27696.56 25483.78 22696.83 29789.29 26584.77 28393.75 308
MIMVSNet90.30 27488.67 28795.17 22296.45 24891.64 25992.39 36297.15 27185.99 31190.50 23493.19 33966.95 33594.86 34582.01 32593.43 21699.01 189
XVG-OURS-SEG-HR94.79 16794.70 16395.08 22398.05 17289.19 29799.08 23397.54 23293.66 14594.87 18799.58 9878.78 26899.79 11397.31 12993.40 21796.25 232
XVG-OURS94.82 16594.74 16295.06 22498.00 17489.19 29799.08 23397.55 23094.10 12494.71 18899.62 9480.51 25499.74 12496.04 15493.06 22296.25 232
v2v48291.30 24990.07 26295.01 22593.13 31693.79 20299.77 13197.02 28588.05 28589.25 26195.37 29480.73 25097.15 27387.28 28980.04 32294.09 283
AllTest92.48 22891.64 23195.00 22699.01 11088.43 30898.94 25396.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
TestCases95.00 22699.01 11088.43 30896.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
JIA-IIPM91.76 24690.70 24694.94 22896.11 25487.51 31793.16 36098.13 18275.79 35997.58 13277.68 37392.84 11297.97 23588.47 27596.54 17599.33 166
HQP-MVS94.61 17594.50 16594.92 22995.78 26391.85 24999.87 9197.89 20296.82 4093.37 20398.65 17680.65 25298.39 20497.92 11189.60 22894.53 239
bld_raw_dy_0_6492.74 22192.03 22594.87 23093.09 32093.46 21199.12 22895.41 34692.84 16790.44 23697.54 21878.08 27597.04 28393.94 19287.77 26094.11 281
v114491.09 25589.83 26394.87 23093.25 31593.69 20699.62 16796.98 29086.83 30389.64 25394.99 31080.94 24797.05 28185.08 30781.16 30893.87 302
HQP_MVS94.49 17994.36 16794.87 23095.71 27291.74 25399.84 11197.87 20496.38 5693.01 20798.59 18080.47 25698.37 21097.79 11889.55 23194.52 241
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23093.69 30693.98 19999.69 15398.65 6791.03 23388.44 27896.83 24680.05 25996.18 32190.26 25776.89 34394.45 250
miper_ehance_all_eth93.16 21192.60 21294.82 23497.57 20293.56 20899.50 18697.07 28088.75 27388.85 27295.52 28490.97 15196.74 30090.77 24684.45 28594.17 270
V4291.28 25190.12 26194.74 23593.42 31293.46 21199.68 15597.02 28587.36 29389.85 24795.05 30581.31 24497.34 25987.34 28880.07 32193.40 318
EI-MVSNet93.73 19893.40 19694.74 23596.80 23992.69 23099.06 23897.67 21788.96 26791.39 22599.02 14088.75 18497.30 26491.07 23787.85 25894.22 266
v119290.62 26789.25 27694.72 23793.13 31693.07 21999.50 18697.02 28586.33 30889.56 25595.01 30779.22 26497.09 28082.34 32381.16 30894.01 289
v890.54 26889.17 27794.66 23893.43 31193.40 21599.20 22396.94 29785.76 31487.56 29194.51 32281.96 23797.19 27184.94 30878.25 32993.38 320
test0.0.03 193.86 19193.61 18494.64 23995.02 28592.18 24299.93 6798.58 7794.07 12687.96 28698.50 18793.90 8694.96 34381.33 32893.17 21996.78 229
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 33692.19 24199.12 22897.38 24992.51 18888.45 27796.99 23891.20 14597.29 26794.36 18587.71 26194.36 256
tt080591.28 25190.18 25894.60 24196.26 25187.55 31698.39 29698.72 5889.00 26489.22 26398.47 19262.98 34998.96 16690.57 24988.00 25797.28 227
v14419290.79 26289.52 27194.59 24293.11 31992.77 22599.56 17696.99 28886.38 30789.82 24894.95 31280.50 25597.10 27883.98 31380.41 31793.90 299
tpm93.70 20093.41 19594.58 24395.36 28087.41 31897.01 32896.90 30090.85 23796.72 15394.14 32990.40 16196.84 29690.75 24788.54 24799.51 143
v1090.25 27688.82 28494.57 24493.53 30993.43 21399.08 23396.87 30385.00 32387.34 29794.51 32280.93 24897.02 28882.85 32079.23 32493.26 322
CLD-MVS94.06 19093.90 17994.55 24596.02 25790.69 27299.98 1197.72 21396.62 5091.05 23098.85 17077.21 27798.47 19398.11 10089.51 23394.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____92.31 23291.58 23394.52 24697.33 21592.77 22599.57 17496.78 31186.97 30187.56 29195.51 28589.43 17296.62 30588.60 27182.44 29894.16 275
c3_l92.53 22791.87 22994.52 24697.40 21092.99 22399.40 19796.93 29887.86 28788.69 27595.44 28889.95 16696.44 31190.45 25280.69 31694.14 279
v192192090.46 26989.12 27894.50 24892.96 32492.46 23699.49 18896.98 29086.10 31089.61 25495.30 29778.55 27297.03 28682.17 32480.89 31594.01 289
UniMVSNet_ETH3D90.06 28188.58 28894.49 24994.67 29088.09 31397.81 31697.57 22983.91 33288.44 27897.41 22257.44 35997.62 25191.41 23288.59 24697.77 219
DIV-MVS_self_test92.32 23191.60 23294.47 25097.31 21692.74 22799.58 17296.75 31286.99 30087.64 28995.54 28289.55 17196.50 30988.58 27282.44 29894.17 270
test_djsdf92.83 21992.29 22094.47 25091.90 33992.46 23699.55 17897.27 26091.17 22889.96 24196.07 26881.10 24596.89 29394.67 18088.91 23794.05 286
OPM-MVS93.21 20992.80 20894.44 25293.12 31890.85 27199.77 13197.61 22496.19 6391.56 22498.65 17675.16 30198.47 19393.78 20289.39 23493.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v124090.20 27788.79 28594.44 25293.05 32292.27 24099.38 20296.92 29985.89 31289.36 25894.87 31477.89 27697.03 28680.66 33181.08 31194.01 289
IterMVS-LS92.69 22492.11 22294.43 25496.80 23992.74 22799.45 19496.89 30188.98 26589.65 25295.38 29388.77 18396.34 31590.98 24182.04 30194.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp91.79 24590.92 24494.41 25590.76 35092.93 22498.93 25497.17 26889.08 26087.46 29495.30 29778.43 27496.92 29292.38 22188.73 24293.39 319
test_fmvs195.35 15695.68 13794.36 25698.99 11384.98 33299.96 2896.65 31797.60 1699.73 2998.96 15171.58 31699.93 7998.31 9299.37 10898.17 210
tfpnnormal89.29 29287.61 29894.34 25794.35 29594.13 19498.95 25298.94 3883.94 33084.47 32195.51 28574.84 30297.39 25677.05 34880.41 31791.48 346
CP-MVSNet91.23 25390.22 25694.26 25893.96 30192.39 23899.09 23198.57 7988.95 26886.42 30896.57 25379.19 26596.37 31390.29 25678.95 32594.02 287
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 25999.00 11288.04 31498.42 29596.70 31582.30 34288.43 28099.01 14276.97 28099.85 9986.11 30196.50 17794.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax91.92 23891.18 24194.15 26091.35 34590.95 26899.00 24797.42 24592.61 18087.38 29597.08 23272.46 31297.36 25794.53 18388.77 24194.13 280
WR-MVS_H91.30 24990.35 25294.15 26094.17 29892.62 23499.17 22698.94 3888.87 27186.48 30794.46 32684.36 22196.61 30688.19 27778.51 32893.21 324
Anonymous2023121189.86 28388.44 29094.13 26298.93 11990.68 27398.54 28798.26 16576.28 35686.73 30195.54 28270.60 32297.56 25290.82 24580.27 32094.15 276
GBi-Net90.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
test190.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
FMVSNet188.50 29686.64 30294.08 26395.62 27791.97 24498.43 29296.95 29383.00 33786.08 31394.72 31559.09 35796.11 32381.82 32784.07 28994.17 270
LTVRE_ROB88.28 1890.29 27589.05 28194.02 26695.08 28390.15 28597.19 32397.43 24384.91 32683.99 32397.06 23474.00 30898.28 21884.08 31187.71 26193.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 29187.81 29794.01 26793.40 31391.93 24798.62 28496.48 32486.25 30983.86 32496.14 26473.68 30997.04 28386.16 30075.73 34793.04 327
mvs_tets91.81 24091.08 24294.00 26891.63 34390.58 27698.67 28197.43 24392.43 19087.37 29697.05 23571.76 31497.32 26394.75 17788.68 24394.11 281
PS-CasMVS90.63 26689.51 27293.99 26993.83 30391.70 25798.98 24898.52 9388.48 27986.15 31296.53 25575.46 29596.31 31788.83 26978.86 32793.95 295
ACMM91.95 1092.88 21892.52 21793.98 27095.75 26889.08 30099.77 13197.52 23693.00 16289.95 24297.99 20676.17 29098.46 19693.63 20688.87 23994.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n94.25 18794.36 16793.92 27197.68 19883.70 33899.90 7996.57 32097.40 2299.67 3598.88 16261.82 35299.92 8098.23 9499.13 11898.14 213
v14890.70 26389.63 26793.92 27192.97 32390.97 26799.75 13996.89 30187.51 29088.27 28395.01 30781.67 23897.04 28387.40 28777.17 34093.75 308
DeepPCF-MVS95.94 297.71 7598.98 1293.92 27199.63 7981.76 35099.96 2898.56 8199.47 199.19 7599.99 194.16 79100.00 199.92 1299.93 60100.00 1
CVMVSNet94.68 17394.94 15893.89 27496.80 23986.92 32299.06 23898.98 3694.45 10594.23 19699.02 14085.60 20995.31 33990.91 24395.39 19999.43 154
eth_miper_zixun_eth92.41 23091.93 22793.84 27597.28 21990.68 27398.83 26696.97 29288.57 27889.19 26695.73 27589.24 17896.69 30389.97 26181.55 30494.15 276
RRT_MVS93.14 21292.92 20593.78 27693.31 31490.04 28799.66 15897.69 21592.53 18688.91 27197.76 21584.36 22196.93 29195.10 16586.99 26794.37 255
ACMP92.05 992.74 22192.42 21993.73 27795.91 26188.72 30399.81 12197.53 23494.13 12287.00 29998.23 19874.07 30798.47 19396.22 15288.86 24093.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n89.65 28788.29 29293.72 27892.22 33490.56 27799.07 23797.10 27685.42 32186.73 30194.72 31580.06 25897.13 27581.14 32978.12 33193.49 316
LPG-MVS_test92.96 21692.71 21093.71 27995.43 27888.67 30499.75 13997.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
LGP-MVS_train93.71 27995.43 27888.67 30497.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
KD-MVS_2432*160088.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
miper_refine_blended88.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
ACMH89.72 1790.64 26589.63 26793.66 28395.64 27588.64 30698.55 28597.45 24189.03 26281.62 33497.61 21769.75 32498.41 20089.37 26487.62 26393.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS90.19 27889.06 28093.57 28493.06 32190.90 26999.06 23898.47 10388.11 28485.91 31496.30 25976.67 28395.94 33187.07 29176.91 34293.89 300
ADS-MVSNet293.80 19593.88 18093.55 28597.87 18185.94 32694.24 35396.84 30590.07 24996.43 16094.48 32490.29 16395.37 33787.44 28597.23 16199.36 161
pmmvs590.17 27989.09 27993.40 28692.10 33789.77 29399.74 14295.58 34385.88 31387.24 29895.74 27373.41 31096.48 31088.54 27383.56 29293.95 295
dmvs_re93.20 21093.15 20193.34 28796.54 24783.81 33798.71 27698.51 9691.39 22592.37 21998.56 18478.66 27097.83 24393.89 19489.74 22798.38 207
Patchmtry89.70 28688.49 28993.33 28896.24 25289.94 29291.37 36796.23 32978.22 35387.69 28893.31 33791.04 14996.03 32880.18 33582.10 30094.02 287
Fast-Effi-MVS+-dtu93.72 19993.86 18193.29 28997.06 22486.16 32499.80 12596.83 30692.66 17792.58 21597.83 21381.39 24297.67 24989.75 26396.87 17296.05 236
D2MVS92.76 22092.59 21593.27 29095.13 28189.54 29699.69 15399.38 2292.26 19687.59 29094.61 32185.05 21797.79 24491.59 23188.01 25692.47 336
ppachtmachnet_test89.58 28888.35 29193.25 29192.40 33290.44 28099.33 20896.73 31385.49 31985.90 31595.77 27281.09 24696.00 33076.00 35182.49 29793.30 321
TransMVSNet (Re)87.25 30385.28 31093.16 29293.56 30891.03 26698.54 28794.05 36283.69 33481.09 33796.16 26375.32 29696.40 31276.69 34968.41 36192.06 340
our_test_390.39 27089.48 27493.12 29392.40 33289.57 29599.33 20896.35 32887.84 28885.30 31794.99 31084.14 22496.09 32680.38 33284.56 28493.71 313
IterMVS90.91 25890.17 25993.12 29396.78 24290.42 28198.89 25797.05 28389.03 26286.49 30695.42 28976.59 28595.02 34187.22 29084.09 28893.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC90.00 28288.96 28293.10 29594.81 28788.16 31298.71 27695.54 34493.66 14583.75 32597.20 22865.58 34098.31 21583.96 31487.49 26592.85 330
miper_lstm_enhance91.81 24091.39 23993.06 29697.34 21389.18 29999.38 20296.79 31086.70 30487.47 29395.22 30290.00 16595.86 33288.26 27681.37 30694.15 276
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 24489.96 28998.89 25796.99 28888.95 26886.63 30395.67 27676.48 28695.00 34287.04 29284.04 29193.84 304
DTE-MVSNet89.40 29088.24 29392.88 29892.66 32989.95 29099.10 23098.22 16887.29 29485.12 31996.22 26176.27 28995.30 34083.56 31775.74 34693.41 317
Baseline_NR-MVSNet90.33 27389.51 27292.81 29992.84 32589.95 29099.77 13193.94 36384.69 32889.04 26895.66 27781.66 23996.52 30890.99 24076.98 34191.97 342
ACMH+89.98 1690.35 27289.54 27092.78 30095.99 25886.12 32598.81 26897.18 26789.38 25783.14 32797.76 21568.42 33098.43 19889.11 26786.05 27293.78 307
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30585.61 32798.52 28997.44 24292.77 17189.90 24496.85 24366.64 33798.39 20492.29 22288.61 24493.89 300
ITE_SJBPF92.38 30295.69 27485.14 33095.71 33992.81 16889.33 26098.11 20070.23 32398.42 19985.91 30288.16 25493.59 315
MVP-Stereo90.93 25790.45 25192.37 30391.25 34788.76 30198.05 31196.17 33187.27 29584.04 32295.30 29778.46 27397.27 26983.78 31599.70 8491.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu94.53 17895.30 14692.22 30497.77 18882.54 34399.59 17097.06 28194.92 9195.29 18395.37 29485.81 20897.89 24194.80 17597.07 16596.23 234
MDA-MVSNet_test_wron85.51 31183.32 31992.10 30590.96 34888.58 30799.20 22396.52 32279.70 35057.12 37592.69 34179.11 26693.86 35477.10 34777.46 33793.86 303
YYNet185.50 31283.33 31892.00 30690.89 34988.38 31199.22 22296.55 32179.60 35157.26 37492.72 34079.09 26793.78 35577.25 34677.37 33893.84 304
TinyColmap87.87 30286.51 30391.94 30795.05 28485.57 32897.65 31794.08 36184.40 32981.82 33396.85 24362.14 35198.33 21380.25 33486.37 27191.91 343
testgi89.01 29488.04 29591.90 30893.49 31084.89 33399.73 14795.66 34193.89 14085.14 31898.17 19959.68 35694.66 34777.73 34488.88 23896.16 235
MDA-MVSNet-bldmvs84.09 32081.52 32791.81 30991.32 34688.00 31598.67 28195.92 33680.22 34855.60 37693.32 33668.29 33193.60 35773.76 35376.61 34493.82 306
MS-PatchMatch90.65 26490.30 25491.71 31094.22 29785.50 32998.24 30197.70 21488.67 27586.42 30896.37 25867.82 33298.03 23383.62 31699.62 8891.60 344
LCM-MVSNet-Re92.31 23292.60 21291.43 31197.53 20379.27 36099.02 24691.83 37292.07 20080.31 34094.38 32783.50 22895.48 33597.22 13397.58 15499.54 137
TDRefinement84.76 31582.56 32391.38 31274.58 37984.80 33497.36 32094.56 35984.73 32780.21 34196.12 26763.56 34798.39 20487.92 28163.97 36890.95 350
pmmvs685.69 30883.84 31591.26 31390.00 35684.41 33597.82 31596.15 33275.86 35881.29 33695.39 29261.21 35496.87 29583.52 31873.29 35092.50 335
SixPastTwentyTwo88.73 29588.01 29690.88 31491.85 34082.24 34598.22 30495.18 35388.97 26682.26 33096.89 24071.75 31596.67 30484.00 31282.98 29393.72 312
FMVSNet588.32 29787.47 29990.88 31496.90 23488.39 31097.28 32195.68 34082.60 34184.67 32092.40 34579.83 26091.16 36676.39 35081.51 30593.09 325
OurMVSNet-221017-089.81 28489.48 27490.83 31691.64 34281.21 35298.17 30695.38 34891.48 21885.65 31697.31 22572.66 31197.29 26788.15 27884.83 28293.97 294
lessismore_v090.53 31790.58 35180.90 35595.80 33777.01 35495.84 27066.15 33996.95 28983.03 31975.05 34893.74 311
test_040285.58 30983.94 31490.50 31893.81 30485.04 33198.55 28595.20 35276.01 35779.72 34495.13 30364.15 34696.26 31966.04 36986.88 26890.21 355
K. test v388.05 29987.24 30190.47 31991.82 34182.23 34698.96 25197.42 24589.05 26176.93 35595.60 27968.49 32995.42 33685.87 30381.01 31393.75 308
LF4IMVS89.25 29388.85 28390.45 32092.81 32881.19 35398.12 30794.79 35591.44 22086.29 31097.11 23065.30 34398.11 22888.53 27485.25 27892.07 339
pmmvs-eth3d84.03 32181.97 32590.20 32184.15 36887.09 32098.10 30994.73 35783.05 33674.10 36387.77 36265.56 34194.01 35181.08 33069.24 35889.49 361
UnsupCasMVSNet_eth85.52 31083.99 31290.10 32289.36 35883.51 33996.65 33497.99 19089.14 25975.89 35993.83 33163.25 34893.92 35281.92 32667.90 36392.88 329
OpenMVS_ROBcopyleft79.82 2083.77 32381.68 32690.03 32388.30 36182.82 34098.46 29095.22 35173.92 36576.00 35891.29 34955.00 36196.94 29068.40 36388.51 24890.34 353
EG-PatchMatch MVS85.35 31383.81 31689.99 32490.39 35281.89 34898.21 30596.09 33381.78 34474.73 36193.72 33351.56 36797.12 27779.16 33988.61 24490.96 349
Patchmatch-RL test86.90 30485.98 30889.67 32584.45 36775.59 36389.71 37192.43 36986.89 30277.83 35290.94 35194.22 7693.63 35687.75 28369.61 35699.79 92
EU-MVSNet90.14 28090.34 25389.54 32692.55 33081.06 35498.69 27998.04 18891.41 22486.59 30496.84 24580.83 24993.31 35986.20 29981.91 30294.26 263
test_vis1_rt86.87 30586.05 30789.34 32796.12 25378.07 36199.87 9183.54 38392.03 20378.21 35089.51 35445.80 36999.91 8196.25 15193.11 22190.03 356
new_pmnet84.49 31982.92 32289.21 32890.03 35582.60 34296.89 33295.62 34280.59 34775.77 36089.17 35565.04 34494.79 34672.12 35781.02 31290.23 354
Anonymous2024052185.15 31483.81 31689.16 32988.32 36082.69 34198.80 27095.74 33879.72 34981.53 33590.99 35065.38 34294.16 35072.69 35581.11 31090.63 352
Anonymous2023120686.32 30685.42 30989.02 33089.11 35980.53 35899.05 24295.28 34985.43 32082.82 32893.92 33074.40 30593.44 35866.99 36581.83 30393.08 326
RPSCF91.80 24392.79 20988.83 33198.15 16869.87 36798.11 30896.60 31983.93 33194.33 19499.27 12279.60 26199.46 15191.99 22593.16 22097.18 228
UnsupCasMVSNet_bld79.97 33477.03 33888.78 33285.62 36681.98 34793.66 35897.35 25175.51 36170.79 36683.05 37048.70 36894.91 34478.31 34260.29 37389.46 362
MIMVSNet182.58 32580.51 33188.78 33286.68 36484.20 33696.65 33495.41 34678.75 35278.59 34892.44 34251.88 36689.76 36965.26 37078.95 32592.38 338
test_fmvs289.47 28989.70 26688.77 33494.54 29275.74 36299.83 11794.70 35894.71 9891.08 22896.82 24754.46 36297.78 24692.87 21788.27 25292.80 331
CL-MVSNet_self_test84.50 31883.15 32188.53 33586.00 36581.79 34998.82 26797.35 25185.12 32283.62 32690.91 35276.66 28491.40 36569.53 36160.36 37292.40 337
DSMNet-mixed88.28 29888.24 29388.42 33689.64 35775.38 36498.06 31089.86 37685.59 31888.20 28492.14 34776.15 29191.95 36478.46 34196.05 18497.92 215
KD-MVS_self_test83.59 32482.06 32488.20 33786.93 36380.70 35697.21 32296.38 32682.87 33882.49 32988.97 35667.63 33392.32 36273.75 35462.30 37191.58 345
pmmvs380.27 33177.77 33687.76 33880.32 37482.43 34498.23 30391.97 37172.74 36778.75 34687.97 36157.30 36090.99 36770.31 35962.37 37089.87 357
test20.0384.72 31783.99 31286.91 33988.19 36280.62 35798.88 25995.94 33588.36 28178.87 34594.62 32068.75 32789.11 37066.52 36775.82 34591.00 348
new-patchmatchnet81.19 32779.34 33486.76 34082.86 37180.36 35997.92 31395.27 35082.09 34372.02 36486.87 36462.81 35090.74 36871.10 35863.08 36989.19 364
EGC-MVSNET69.38 33663.76 34686.26 34190.32 35381.66 35196.24 34293.85 3640.99 3863.22 38792.33 34652.44 36492.92 36059.53 37484.90 28184.21 369
PM-MVS80.47 33078.88 33585.26 34283.79 37072.22 36595.89 34991.08 37385.71 31776.56 35788.30 35836.64 37393.90 35382.39 32269.57 35789.66 360
mvsany_test382.12 32681.14 32885.06 34381.87 37270.41 36697.09 32692.14 37091.27 22777.84 35188.73 35739.31 37295.49 33490.75 24771.24 35389.29 363
test_method80.79 32979.70 33384.08 34492.83 32667.06 36999.51 18495.42 34554.34 37481.07 33893.53 33444.48 37092.22 36378.90 34077.23 33992.94 328
CMPMVSbinary61.59 2184.75 31685.14 31183.57 34590.32 35362.54 37296.98 32997.59 22874.33 36469.95 36796.66 24864.17 34598.32 21487.88 28288.41 24989.84 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.23 34677.17 37762.61 37187.38 37394.55 36076.72 35686.65 36530.16 37496.36 31484.85 30969.86 35590.73 351
DeepMVS_CXcopyleft82.92 34795.98 26058.66 37796.01 33492.72 17278.34 34995.51 28558.29 35898.08 22982.57 32185.29 27792.03 341
APD_test181.15 32880.92 32981.86 34892.45 33159.76 37696.04 34693.61 36673.29 36677.06 35396.64 25044.28 37196.16 32272.35 35682.52 29689.67 359
test_f78.40 33577.59 33780.81 34980.82 37362.48 37396.96 33093.08 36883.44 33574.57 36284.57 36927.95 37892.63 36184.15 31072.79 35287.32 368
test_fmvs379.99 33380.17 33279.45 35084.02 36962.83 37099.05 24293.49 36788.29 28380.06 34386.65 36528.09 37788.00 37188.63 27073.27 35187.54 367
N_pmnet80.06 33280.78 33077.89 35191.94 33845.28 38698.80 27056.82 38978.10 35480.08 34293.33 33577.03 27995.76 33368.14 36482.81 29492.64 332
dmvs_testset83.79 32286.07 30676.94 35292.14 33548.60 38496.75 33390.27 37589.48 25678.65 34798.55 18679.25 26386.65 37566.85 36682.69 29595.57 237
LCM-MVSNet67.77 34164.73 34476.87 35362.95 38556.25 37989.37 37293.74 36544.53 37761.99 36980.74 37120.42 38486.53 37669.37 36259.50 37487.84 365
PMMVS267.15 34264.15 34576.14 35470.56 38262.07 37493.89 35687.52 38058.09 37160.02 37078.32 37222.38 38184.54 37759.56 37347.03 37781.80 370
test_vis3_rt68.82 33766.69 34275.21 35576.24 37860.41 37596.44 33768.71 38875.13 36250.54 37969.52 37716.42 38796.32 31680.27 33366.92 36568.89 375
Gipumacopyleft66.95 34365.00 34372.79 35691.52 34467.96 36866.16 37895.15 35447.89 37658.54 37367.99 37829.74 37587.54 37450.20 37877.83 33362.87 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf168.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
APD_test268.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
tmp_tt65.23 34462.94 34772.13 35944.90 38850.03 38381.05 37589.42 37938.45 37848.51 38099.90 1854.09 36378.70 38091.84 22918.26 38287.64 366
FPMVS68.72 33868.72 33968.71 36065.95 38344.27 38895.97 34894.74 35651.13 37553.26 37790.50 35325.11 38083.00 37860.80 37280.97 31478.87 373
ANet_high56.10 34552.24 34867.66 36149.27 38756.82 37883.94 37482.02 38470.47 36833.28 38464.54 37917.23 38669.16 38245.59 38023.85 38177.02 374
MVEpermissive53.74 2251.54 34847.86 35262.60 36259.56 38650.93 38079.41 37677.69 38535.69 38136.27 38361.76 3825.79 39169.63 38137.97 38236.61 37867.24 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 34651.34 35060.97 36340.80 38934.68 38974.82 37789.62 37837.55 37928.67 38572.12 3747.09 38981.63 37943.17 38168.21 36266.59 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 34752.18 34952.67 36471.51 38045.40 38593.62 35976.60 38636.01 38043.50 38164.13 38027.11 37967.31 38331.06 38326.06 37945.30 382
EMVS51.44 34951.22 35152.11 36570.71 38144.97 38794.04 35575.66 38735.34 38242.40 38261.56 38328.93 37665.87 38427.64 38424.73 38045.49 381
test12337.68 35139.14 35433.31 36619.94 39024.83 39198.36 2979.75 39115.53 38451.31 37887.14 36319.62 38517.74 38647.10 3793.47 38557.36 379
testmvs40.60 35044.45 35329.05 36719.49 39114.11 39299.68 15518.47 39020.74 38364.59 36898.48 19110.95 38817.09 38756.66 37711.01 38355.94 380
wuyk23d20.37 35320.84 35618.99 36865.34 38427.73 39050.43 3797.67 3929.50 3858.01 3866.34 3866.13 39026.24 38523.40 38510.69 3842.99 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.02 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.43 35231.24 3550.00 3690.00 3920.00 3930.00 38098.09 1830.00 3870.00 38899.67 8983.37 2290.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.60 35510.13 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38891.20 1450.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.28 35411.04 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.40 1120.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.92 3197.66 8099.95 4598.36 14895.58 7599.52 53
PC_three_145296.96 3699.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1198.41 13396.63 4899.75 2799.93 1197.49 10
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.92 3198.57 5398.52 9392.34 19499.31 6899.83 4395.06 5299.80 11199.70 3199.97 42
RE-MVS-def98.13 4799.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6792.95 10998.90 6399.92 6399.97 55
IU-MVS99.93 2499.31 998.41 13397.71 1399.84 10100.00 1100.00 1100.00 1
test_241102_TWO98.43 11897.27 2799.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11897.26 2999.80 1599.88 2196.71 24100.00 1
9.1498.38 3199.87 5199.91 7498.33 15393.22 15799.78 2499.89 1994.57 6499.85 9999.84 1999.97 42
save fliter99.82 5898.79 3799.96 2898.40 13797.66 15
test_0728_THIRD96.48 5199.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test072699.93 2499.29 1499.96 2898.42 12997.28 2599.86 599.94 497.22 19
GSMVS99.59 125
test_part299.89 4599.25 1799.49 55
sam_mvs194.72 6199.59 125
sam_mvs94.25 75
MTGPAbinary98.28 162
test_post195.78 35059.23 38493.20 10497.74 24791.06 238
test_post63.35 38194.43 6598.13 227
patchmatchnet-post91.70 34895.12 4997.95 238
MTMP99.87 9196.49 323
gm-plane-assit96.97 22993.76 20491.47 21998.96 15198.79 17394.92 170
test9_res99.71 3099.99 21100.00 1
TEST999.92 3198.92 2799.96 2898.43 11893.90 13899.71 3199.86 2695.88 3799.85 99
test_899.92 3198.88 3099.96 2898.43 11894.35 11299.69 3399.85 3095.94 3499.85 99
agg_prior299.48 37100.00 1100.00 1
agg_prior99.93 2498.77 3998.43 11899.63 3899.85 99
test_prior498.05 6599.94 61
test_prior299.95 4595.78 6999.73 2999.76 6296.00 3399.78 24100.00 1
旧先验299.46 19394.21 12099.85 799.95 6496.96 141
新几何299.40 197
旧先验199.76 6697.52 8498.64 6999.85 3095.63 4199.94 5499.99 23
无先验99.49 18898.71 5993.46 150100.00 194.36 18599.99 23
原ACMM299.90 79
test22299.55 8597.41 9399.34 20798.55 8791.86 20799.27 7299.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 251
segment_acmp96.68 26
testdata199.28 21796.35 60
plane_prior795.71 27291.59 261
plane_prior695.76 26791.72 25680.47 256
plane_prior597.87 20498.37 21097.79 11889.55 23194.52 241
plane_prior498.59 180
plane_prior391.64 25996.63 4893.01 207
plane_prior299.84 11196.38 56
plane_prior195.73 269
plane_prior91.74 25399.86 10496.76 4489.59 230
n20.00 393
nn0.00 393
door-mid89.69 377
test1198.44 110
door90.31 374
HQP5-MVS91.85 249
HQP-NCC95.78 26399.87 9196.82 4093.37 203
ACMP_Plane95.78 26399.87 9196.82 4093.37 203
BP-MVS97.92 111
HQP4-MVS93.37 20398.39 20494.53 239
HQP3-MVS97.89 20289.60 228
HQP2-MVS80.65 252
NP-MVS95.77 26691.79 25198.65 176
MDTV_nov1_ep13_2view96.26 12996.11 34491.89 20698.06 12194.40 6794.30 18799.67 108
MDTV_nov1_ep1395.69 13597.90 17994.15 19395.98 34798.44 11093.12 16097.98 12395.74 27395.10 5098.58 18890.02 25996.92 171
ACMMP++_ref87.04 266
ACMMP++88.23 253
Test By Simon92.82 114