This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 267100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 120100.00 199.21 77100.00 1100.00 1100.00 199.99 109
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 259100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 30099.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 154100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 44100.00 199.43 12297.50 165100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 25196.06 28099.98 23100.00 199.94 41100.00 199.75 5298.67 67100.00 166.97 40899.16 81100.00 1100.00 1100.00 1100.00 1
MVS99.22 10998.96 12399.98 2399.00 28799.95 3299.24 35499.94 2298.14 9998.88 243100.00 195.63 215100.00 199.85 109100.00 1100.00 1
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 41100.00 199.42 13897.82 12899.99 104100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 104100.00 199.72 12100.00 199.96 85100.00 1100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 52100.00 199.42 13897.62 147100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 59100.00 199.79 4597.97 11499.97 115100.00 198.97 99100.00 199.94 93100.00 1100.00 1
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 49100.00 199.42 13897.53 16099.77 182100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 49100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 52100.00 199.42 13898.32 8899.94 146100.00 198.65 125100.00 199.96 85100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 59100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 52100.00 199.48 7897.54 158100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 52100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 160100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5299.98 23699.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 66100.00 199.94 2297.23 18899.83 16899.96 21097.04 179100.00 199.59 16597.85 22199.98 111
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 66100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
131499.38 8299.19 10099.96 4298.88 30099.89 6699.24 35499.93 3098.88 4498.79 253100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 66100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
thres20099.27 9999.04 11399.96 4299.81 12799.90 59100.00 199.94 2297.31 18399.83 16899.96 21097.04 179100.00 199.62 16197.88 21999.98 111
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4499.64 312100.00 197.97 11499.84 16599.85 24398.94 10599.99 9499.86 10798.23 20199.95 130
QAPM98.99 13798.66 15599.96 4299.01 28399.87 7599.88 26999.93 3097.99 11098.68 257100.00 193.17 250100.00 199.32 187100.00 1100.00 1
3Dnovator+95.58 1599.03 12798.71 15399.96 4298.99 29099.89 66100.00 199.51 7698.96 3298.32 280100.00 192.78 256100.00 199.87 106100.00 1100.00 1
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30499.90 5999.98 23699.93 3098.95 3598.49 272100.00 192.91 254100.00 199.71 137100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 81100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 78100.00 199.79 4597.72 13599.95 144100.00 198.39 136100.00 199.96 8599.99 98100.00 1
test_yl99.51 6799.37 7799.95 5199.82 12199.90 59100.00 199.47 7997.48 167100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 59100.00 199.47 7997.48 167100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 75100.00 199.94 2297.13 19399.83 16899.96 21097.01 183100.00 199.59 16597.85 22199.98 111
thres600view799.24 10899.00 11899.95 5199.81 12799.87 75100.00 199.94 2297.13 19399.83 16899.96 21097.01 183100.00 199.54 17397.77 22999.97 118
thres40099.26 10199.03 11499.95 5199.81 12799.89 66100.00 199.94 2297.23 18899.83 16899.96 21097.04 179100.00 199.59 16597.85 22199.97 118
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 81100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
test1299.95 5199.99 4999.89 6699.42 138100.00 199.24 7599.97 125100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 83100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 44100.00 1100.00 197.98 11299.84 165100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7899.70 30599.99 1398.53 7399.90 156100.00 195.34 217100.00 199.92 96100.00 1100.00 1
MGCFI-Net99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
MM99.63 5199.52 6199.94 6399.99 4999.82 85100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 78100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 138100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
原ACMM199.93 67100.00 199.80 8899.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 177100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6799.95 9699.83 84100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 151100.00 1100.00 1100.00 1
alignmvs99.38 8299.21 9699.91 6999.73 15299.92 49100.00 199.51 7697.61 151100.00 1100.00 199.06 8999.93 16799.83 11397.12 24299.90 159
HPM-MVS_fast99.60 6199.49 6699.91 6999.99 4999.78 89100.00 199.42 13897.09 195100.00 1100.00 198.95 10399.96 13899.98 73100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6999.97 8999.72 96100.00 199.47 7998.43 7899.88 161100.00 199.14 84100.00 199.97 83100.00 1100.00 1
test_prior99.90 72100.00 199.75 9299.73 5699.97 125100.00 1
VNet99.04 12598.75 14799.90 7299.81 12799.75 9299.50 32999.47 7998.36 84100.00 199.99 18594.66 231100.00 199.90 9997.09 24399.96 124
CANet99.40 8099.24 9299.89 7499.99 4999.76 91100.00 199.73 5698.40 7999.78 181100.00 195.28 21899.96 138100.00 199.99 9899.96 124
HPM-MVScopyleft99.59 6299.50 6499.89 74100.00 199.70 101100.00 199.42 13897.46 169100.00 1100.00 198.60 12899.96 13899.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.65 4699.57 4999.89 7499.99 4999.66 10499.75 29499.73 5698.16 9699.75 185100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS99.49 7299.36 8099.89 7499.97 8999.66 10499.74 29599.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR99.70 3299.65 3199.88 7899.96 9499.70 101100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15199.99 61100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7999.99 4999.64 10699.95 25399.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 79100.00 199.64 10699.98 23699.44 11698.35 8699.99 104100.00 199.04 9499.96 13899.98 73100.00 1100.00 1
LS3D99.31 9499.13 10699.87 7999.99 4999.71 9799.55 32399.46 9497.32 18199.82 176100.00 196.85 19399.97 12599.14 199100.00 199.92 147
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8299.83 12099.58 112100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8299.81 12799.59 111100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8299.68 16099.58 112100.00 199.31 23898.92 3999.88 161100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
MVS_030499.69 3599.63 3799.86 8299.96 9499.63 108100.00 199.92 3499.03 2099.97 115100.00 197.87 14999.96 138100.00 199.96 114100.00 1
mvsany_test199.57 6399.48 6999.85 8699.86 11599.54 117100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8699.78 14599.81 8699.95 25399.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 230
CPTT-MVS99.49 7299.38 7499.85 86100.00 199.54 117100.00 199.42 13897.58 15599.98 110100.00 197.43 173100.00 199.99 61100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8699.01 28399.95 32100.00 199.75 5299.37 399.99 104100.00 199.76 1199.60 216100.00 1100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 9099.84 11799.53 119100.00 199.38 20398.29 90100.00 1100.00 193.62 24399.99 9499.99 6199.93 12299.98 111
PVSNet_Blended99.48 7499.36 8099.83 9099.98 8599.60 109100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 159
fmvsm_s_conf0.1_n98.77 15598.42 17399.82 9299.47 23699.52 122100.00 199.27 26197.53 160100.00 1100.00 189.73 29799.96 13899.84 11299.93 12299.97 118
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9298.92 29699.55 115100.00 199.23 27898.91 4199.75 18599.97 19894.79 22999.94 16399.94 9399.99 9899.97 118
xiu_mvs_v2_base99.51 6799.41 7199.82 9299.70 15599.73 9599.92 26099.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 230
DELS-MVS99.62 5699.56 5499.82 9299.92 10499.45 134100.00 199.78 4798.92 3999.73 187100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS99.50 7099.39 7399.82 92100.00 199.45 134100.00 199.94 2296.38 251100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9799.80 13899.47 133100.00 199.35 22398.22 91100.00 1100.00 195.21 22299.99 9499.96 8599.86 13399.98 111
LFMVS97.42 23496.62 25599.81 9799.80 13899.50 12599.16 36899.56 7094.48 312100.00 1100.00 179.35 373100.00 199.89 10197.37 23999.94 135
baseline198.91 14698.61 16099.81 9799.71 15399.77 9099.78 28599.44 11697.51 16498.81 25199.99 18598.25 13899.76 20398.60 23195.41 26299.89 164
114514_t99.39 8199.25 9099.81 9799.97 8999.48 132100.00 199.42 13895.53 282100.00 1100.00 198.37 13799.95 15199.97 83100.00 1100.00 1
DP-MVS98.86 15098.54 16699.81 9799.97 8999.45 13499.52 32799.40 18894.35 31698.36 276100.00 196.13 20599.97 12599.12 202100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10299.99 4999.97 2199.97 24299.98 1698.96 32100.00 1100.00 199.96 499.42 256100.00 1100.00 1100.00 1
sss99.45 7799.34 8499.80 10299.76 14899.50 125100.00 199.91 3697.72 13599.98 11099.94 22398.45 134100.00 199.53 17598.75 17499.89 164
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10499.67 16599.71 9799.78 28599.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 239
xiu_mvs_v1_base99.35 8599.21 9699.79 10499.67 16599.71 9799.78 28599.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 239
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10499.67 16599.71 9799.78 28599.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 239
API-MVS99.72 2699.70 2199.79 10499.97 8999.37 14499.96 24799.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
fmvsm_s_conf0.1_n_a98.71 16098.36 18199.78 10899.09 27399.42 138100.00 199.26 26797.42 173100.00 1100.00 189.78 29599.96 13899.82 11899.85 13699.97 118
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10899.82 12199.49 128100.00 199.95 1997.36 17699.63 192100.00 196.45 20399.95 15199.79 11999.65 15299.89 164
OpenMVScopyleft95.20 1798.76 15698.41 17499.78 10898.89 29999.81 8699.99 21299.76 4998.02 10898.02 298100.00 191.44 271100.00 199.63 16099.97 11199.55 243
test_cas_vis1_n_192098.63 16998.25 18599.77 11199.69 15699.32 147100.00 199.31 23898.84 5199.96 120100.00 187.42 32599.99 9499.14 19999.86 133100.00 1
MVS_Test98.93 14598.65 15699.77 11199.62 18899.50 12599.99 21299.19 29395.52 28499.96 12099.86 23896.54 20199.98 11898.65 22698.48 18199.82 196
test250699.48 7499.38 7499.75 11399.89 11099.51 12399.45 333100.00 198.38 8099.83 168100.00 198.86 11299.81 19499.25 19298.78 17199.94 135
thisisatest051599.42 7999.31 8599.74 11499.59 19699.55 115100.00 199.46 9496.65 23499.92 151100.00 199.44 4699.85 18599.09 20499.63 15499.81 205
UA-Net99.06 12398.83 13899.74 11499.52 21899.40 14099.08 37899.45 10297.64 14499.83 168100.00 195.80 21099.94 16398.35 24099.80 14399.88 175
PatchMatch-RL99.02 13298.78 14399.74 11499.99 4999.29 150100.00 1100.00 198.38 8099.89 15999.81 25293.14 25299.99 9497.85 26199.98 10899.95 130
testing22299.14 11798.94 12899.73 11799.67 16599.51 123100.00 199.43 12296.90 21099.99 10499.90 23298.55 13199.86 17998.85 21497.18 24199.81 205
test_fmvsmvis_n_192099.46 7699.37 7799.73 11798.88 30099.18 165100.00 199.26 26798.85 4999.79 179100.00 197.70 158100.00 199.98 7399.86 133100.00 1
SDMVSNet98.49 18198.08 19799.73 11799.82 12199.53 11999.99 21299.45 10297.62 14799.38 21099.86 23890.06 29299.88 17799.92 9696.61 25299.79 222
test_fmvsm_n_192099.55 6599.49 6699.73 11799.85 11699.19 163100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
FA-MVS(test-final)99.00 13498.75 14799.73 11799.63 18399.43 13799.83 27599.43 12295.84 27399.52 19699.37 31497.84 15399.96 13897.63 26899.68 14899.79 222
MSDG98.90 14898.63 15899.70 12299.92 10499.25 155100.00 199.37 20695.71 27699.40 209100.00 196.58 19899.95 15196.80 29599.94 11999.91 149
ETVMVS99.16 11598.98 12199.69 12399.67 16599.56 114100.00 199.45 10296.36 25299.98 11099.95 21898.65 12599.64 21499.11 20397.63 23799.88 175
thisisatest053099.37 8499.27 8699.69 12399.59 19699.41 139100.00 199.46 9496.46 24499.90 156100.00 199.44 4699.85 18598.97 20799.58 15699.80 219
lupinMVS99.29 9799.16 10499.69 12399.45 24099.49 128100.00 199.15 30797.45 17099.97 115100.00 196.76 19499.76 20399.67 151100.00 199.81 205
test_fmvsmconf0.01_n98.60 17098.24 18799.67 12696.90 37099.21 16199.99 21299.04 34898.80 5799.57 19499.96 21090.12 28999.91 17099.89 10199.89 12799.90 159
tttt051799.34 8899.23 9599.67 12699.57 20499.38 141100.00 199.46 9496.33 25599.89 159100.00 199.44 4699.84 18798.93 20999.46 15999.78 225
F-COLMAP99.64 4899.64 3399.67 12699.99 4999.07 171100.00 199.44 11698.30 8999.90 156100.00 199.18 8099.99 9499.91 98100.00 199.94 135
FE-MVS99.16 11598.99 12099.66 12999.65 17599.18 16599.58 32099.43 12295.24 29299.91 15499.59 29599.37 5899.97 12598.31 24299.81 14199.83 191
testdata99.66 12999.99 4998.97 18699.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 191100.00 1100.00 1
iter_conf05_1198.21 20097.74 21499.65 13199.67 16599.06 173100.00 198.87 36597.84 12699.96 120100.00 183.57 35599.88 17799.72 132100.00 1100.00 1
ETV-MVS99.34 8899.24 9299.64 13299.58 20199.33 146100.00 199.25 26997.57 15699.96 120100.00 197.44 17299.79 19699.70 14099.65 15299.81 205
bld_raw_dy_0_6497.64 22096.98 24299.63 13399.67 16598.94 187100.00 197.98 38497.85 12598.93 238100.00 183.23 35999.96 13899.72 13295.41 262100.00 1
diffmvspermissive98.96 14198.73 14999.63 13399.54 20899.16 167100.00 199.18 30097.33 18099.96 120100.00 194.60 23299.91 17099.66 15598.33 19699.82 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS98.23 398.69 16398.37 17999.62 13599.78 14599.02 17899.23 35999.06 34396.43 24598.08 292100.00 194.72 23099.95 15198.16 24999.91 12599.90 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+98.58 17298.24 18799.61 13699.60 19299.26 15397.85 39499.10 32596.22 26099.97 11599.89 23393.75 24099.77 20199.43 17998.34 19399.81 205
ab-mvs98.42 18698.02 20499.61 13699.71 15399.00 18299.10 37599.64 6496.70 22899.04 23399.81 25290.64 28299.98 11899.64 15797.93 21699.84 188
EPMVS99.25 10599.13 10699.60 13899.60 19299.20 16299.60 318100.00 196.93 20599.92 15199.36 31599.05 9199.71 21098.77 21998.94 16899.90 159
DeepC-MVS97.84 599.00 13498.80 14299.60 13899.93 10199.03 177100.00 199.40 18898.61 7199.33 213100.00 192.23 26599.95 15199.74 12999.96 11499.83 191
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GG-mvs-BLEND99.59 14099.54 20899.49 12899.17 36799.52 7299.96 12099.68 274100.00 199.33 26399.71 13799.99 9899.96 124
jason99.11 11998.96 12399.59 14099.17 26799.31 149100.00 199.13 31697.38 17599.83 168100.00 195.54 21699.72 20999.57 16999.97 11199.74 230
jason: jason.
BH-RMVSNet98.46 18298.08 19799.59 14099.61 19099.19 163100.00 199.28 25397.06 19998.95 237100.00 188.99 30799.82 19198.83 217100.00 199.77 226
IS-MVSNet99.08 12198.91 13299.59 14099.65 17599.38 14199.78 28599.24 27496.70 22899.51 197100.00 198.44 13599.52 24198.47 23698.39 18899.88 175
HyFIR lowres test99.32 9299.24 9299.58 14499.95 9699.26 153100.00 199.99 1396.72 22699.29 21599.91 23099.49 3999.47 24899.74 12998.08 209100.00 1
PMMVS99.12 11898.97 12299.58 14499.57 20498.98 184100.00 199.30 24297.14 19299.96 120100.00 196.53 20299.82 19199.70 14098.49 18099.94 135
PLCcopyleft98.56 299.70 3299.74 1699.58 144100.00 198.79 193100.00 199.54 7198.58 7299.96 120100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPMNet95.26 31893.82 32699.56 14799.31 25898.86 19099.13 37299.42 13879.82 39499.96 12095.13 38795.69 21399.98 11877.54 39798.40 18699.84 188
Fast-Effi-MVS+98.40 18998.02 20499.55 14899.63 18399.06 173100.00 199.15 30795.07 29499.42 20399.95 21893.26 24999.73 20897.44 27498.24 20099.87 184
UWE-MVS99.18 11299.06 11199.51 14999.67 16598.80 192100.00 199.43 12296.80 21699.93 15099.86 23899.79 799.94 16397.78 26398.33 19699.80 219
Test_1112_low_res98.83 15298.60 16299.51 14999.69 15698.75 19599.99 21299.14 31296.81 21598.84 24899.06 32897.45 17099.89 17398.66 22497.75 23099.89 164
1112_ss98.91 14698.71 15399.51 14999.69 15698.75 19599.99 21299.15 30796.82 21498.84 248100.00 197.45 17099.89 17398.66 22497.75 23099.89 164
CS-MVS99.33 9099.27 8699.50 15299.99 4999.00 182100.00 199.13 31697.26 18699.96 120100.00 197.79 15599.64 21499.64 15799.67 15099.87 184
gg-mvs-nofinetune96.95 25696.10 27899.50 15299.41 24699.36 14599.07 38099.52 7283.69 38999.96 12083.60 405100.00 199.20 26899.68 14899.99 9899.96 124
cascas98.43 18498.07 19999.50 15299.65 17599.02 178100.00 199.22 28194.21 31999.72 18899.98 19092.03 26899.93 16799.68 14898.12 20799.54 244
EC-MVSNet99.19 11199.09 11099.48 15599.42 24499.07 171100.00 199.21 28996.95 20399.96 120100.00 196.88 19299.48 24699.64 15799.79 14499.88 175
testing1199.26 10199.19 10099.46 15699.64 18198.61 205100.00 199.43 12296.94 20499.92 15199.94 22399.43 5099.97 12599.67 15197.79 22899.82 196
casdiffmvspermissive98.65 16598.38 17799.46 15699.52 21898.74 198100.00 199.15 30796.91 20899.05 232100.00 192.75 25799.83 18899.70 14098.38 19099.81 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS99.26 10199.19 10099.45 15899.63 18398.75 195100.00 199.27 26196.93 20599.95 144100.00 197.47 16999.79 19699.74 12999.72 14699.82 196
TESTMET0.1,199.08 12198.96 12399.44 15999.63 18399.38 141100.00 199.45 10295.53 28299.48 199100.00 199.71 1399.02 27596.84 29299.99 9899.91 149
PVSNet94.91 1899.30 9699.25 9099.44 159100.00 198.32 226100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 17099.73 145100.00 1
CS-MVS-test99.31 9499.27 8699.43 16199.99 4998.77 194100.00 199.19 29397.24 18799.96 120100.00 197.56 16599.70 21199.68 14899.81 14199.82 196
EPNet_dtu98.53 17798.23 19099.43 16199.92 10499.01 18099.96 24799.47 7998.80 5799.96 12099.96 21098.56 13099.30 26487.78 37799.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet99.62 5699.69 2299.42 16399.99 4998.37 220100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9199.18 11299.10 10899.41 16499.60 19298.43 212100.00 199.43 12296.76 21999.82 17699.92 22899.05 9199.98 11899.62 16197.67 23499.81 205
testing9999.18 11299.10 10899.41 16499.60 19298.43 212100.00 199.43 12296.76 21999.84 16599.92 22899.06 8999.98 11899.62 16197.67 23499.81 205
CANet_DTU99.02 13298.90 13599.41 16499.88 11298.71 199100.00 199.29 24798.84 51100.00 1100.00 194.02 238100.00 198.08 25199.96 11499.52 245
baseline98.69 16398.45 17299.41 16499.52 21898.67 202100.00 199.17 30597.03 20099.13 224100.00 193.17 25099.74 20699.70 14098.34 19399.81 205
test-LLR99.03 12798.91 13299.40 16899.40 25199.28 151100.00 199.45 10296.70 22899.42 20399.12 32499.31 6499.01 27696.82 29399.99 9899.91 149
test-mter98.96 14198.82 13999.40 16899.40 25199.28 151100.00 199.45 10295.44 29199.42 20399.12 32499.70 1499.01 27696.82 29399.99 9899.91 149
casdiffmvs_mvgpermissive98.64 16698.39 17699.40 16899.50 22798.60 206100.00 199.22 28196.85 21299.10 226100.00 192.75 25799.78 20099.71 13798.35 19299.81 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.10 12099.00 11899.40 16899.51 22398.68 20199.92 26099.43 12295.47 28899.65 191100.00 199.51 3399.76 20399.53 17598.00 21099.75 229
mvs_anonymous98.80 15498.60 16299.38 17299.57 20499.24 157100.00 199.21 28995.87 26898.92 23999.82 24996.39 20499.03 27499.13 20198.50 17999.88 175
JIA-IIPM97.09 24796.34 26999.36 17398.88 30098.59 20799.81 27999.43 12284.81 38799.96 12090.34 39798.55 13199.52 24197.00 28798.28 19999.98 111
TSAR-MVS + GP.99.61 5899.69 2299.35 17499.99 4998.06 244100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
test_vis1_n_192097.77 21597.24 23799.34 17599.79 14298.04 246100.00 199.25 26998.88 44100.00 1100.00 177.52 378100.00 199.88 10399.85 136100.00 1
test_fmvs198.37 19198.04 20299.34 17599.84 11798.07 242100.00 199.00 35498.85 49100.00 1100.00 185.11 34599.96 13899.69 14799.88 129100.00 1
Vis-MVSNetpermissive98.52 17898.25 18599.34 17599.68 16098.55 20899.68 30999.41 18497.34 17999.94 146100.00 190.38 28899.70 21199.03 20698.84 16999.76 228
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TR-MVS98.14 20197.74 21499.33 17899.59 19698.28 22999.27 35199.21 28996.42 24799.15 22399.94 22388.87 31099.79 19698.88 21298.29 19899.93 145
IB-MVS96.24 1297.54 22896.95 24399.33 17899.67 16598.10 241100.00 199.47 7997.42 17399.26 21699.69 27098.83 11699.89 17399.43 17978.77 389100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n96.69 26795.81 29099.32 18099.14 26897.98 24999.97 24298.98 35798.45 77100.00 1100.00 166.44 39499.99 9499.78 12599.57 157100.00 1
ECVR-MVScopyleft98.43 18498.14 19399.32 18099.89 11098.21 23499.46 331100.00 198.38 8099.47 202100.00 187.91 31899.80 19599.35 18498.78 17199.94 135
UGNet98.41 18898.11 19599.31 18299.54 20898.55 20899.18 362100.00 198.64 7099.79 17999.04 33187.61 323100.00 199.30 18999.89 12799.40 248
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111198.42 18698.12 19499.29 18399.88 11298.15 23699.46 331100.00 198.36 8499.42 203100.00 187.91 31899.79 19699.31 18898.78 17199.94 135
GeoE98.06 20497.65 22099.29 18399.47 23698.41 214100.00 199.19 29394.85 29998.88 243100.00 191.21 27399.59 21897.02 28698.19 20499.88 175
Vis-MVSNet (Re-imp)98.99 13798.89 13699.29 18399.64 18198.89 18999.98 23699.31 23896.74 22399.48 199100.00 198.11 14299.10 27198.39 23898.34 19399.89 164
ADS-MVSNet98.70 16298.51 16899.28 18699.51 22398.39 21799.24 35499.44 11695.52 28499.96 12099.70 26797.57 16399.58 22297.11 28498.54 17799.88 175
MVSFormer98.94 14498.82 13999.28 18699.45 24099.49 128100.00 199.13 31695.46 28999.97 115100.00 196.76 19498.59 31598.63 228100.00 199.74 230
PatchmatchNetpermissive99.03 12798.96 12399.26 18899.49 23198.33 22499.38 34199.45 10296.64 23599.96 12099.58 29799.49 3999.50 24497.63 26899.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 1792x268899.00 13498.91 13299.25 18999.90 10897.79 264100.00 199.99 1398.79 6098.28 283100.00 193.63 24299.95 15199.66 15599.95 117100.00 1
SCA98.30 19397.98 20699.23 19099.41 24698.25 23199.99 21299.45 10296.91 20899.76 18499.58 29789.65 29999.54 23598.31 24298.79 17099.91 149
tpmvs98.59 17198.38 17799.23 19099.69 15697.90 25699.31 34999.47 7994.52 31099.68 19099.28 31997.64 16199.89 17397.71 26598.17 20699.89 164
ET-MVSNet_ETH3D96.41 28095.48 31099.20 19299.81 12799.75 92100.00 199.02 35197.30 18578.33 397100.00 197.73 15697.94 35999.70 14087.41 36499.92 147
baseline298.99 13798.93 13099.18 19399.26 26499.15 168100.00 199.46 9496.71 22796.79 339100.00 199.42 5399.25 26798.75 22199.94 11999.15 251
test_fmvs1_n97.43 23396.86 24699.15 19499.68 16097.48 27399.99 21298.98 35798.82 55100.00 1100.00 174.85 38399.96 13899.67 15199.70 147100.00 1
tpmrst98.98 14098.93 13099.14 19599.61 19097.74 26599.52 32799.36 21296.05 26599.98 11099.64 28399.04 9499.86 17998.94 20898.19 20499.82 196
Patchmatch-test97.83 21297.42 22599.06 19699.08 27497.66 26898.66 38899.21 28993.65 33198.25 28799.58 29799.47 4399.57 22390.25 36598.59 17699.95 130
GA-MVS97.72 21897.27 23599.06 19699.24 26597.93 255100.00 199.24 27495.80 27498.99 23599.64 28389.77 29699.36 25995.12 32297.62 23899.89 164
Anonymous2024052996.93 25796.22 27499.05 19899.79 14297.30 28399.16 36899.47 7988.51 37798.69 256100.00 183.50 357100.00 199.83 11397.02 24599.83 191
CSCG99.28 9899.35 8299.05 19899.99 4997.15 288100.00 199.47 7997.44 17199.42 203100.00 197.83 154100.00 199.99 61100.00 1100.00 1
CostFormer98.84 15198.77 14499.04 20099.41 24697.58 27099.67 31099.35 22394.66 30599.96 12099.36 31599.28 7299.74 20699.41 18197.81 22599.81 205
dp98.72 15998.61 16099.03 20199.53 21197.39 27699.45 33399.39 20195.62 27999.94 14699.52 30598.83 11699.82 19196.77 29898.42 18599.89 164
CDS-MVSNet98.96 14198.95 12799.01 20299.48 23398.36 22299.93 25999.37 20696.79 21799.31 21499.83 24699.77 1098.91 28598.07 25297.98 21199.77 226
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
AllTest98.55 17598.40 17598.99 20399.93 10197.35 279100.00 199.40 18897.08 19799.09 22799.98 19093.37 24699.95 15196.94 28899.84 13899.68 237
TestCases98.99 20399.93 10197.35 27999.40 18897.08 19799.09 22799.98 19093.37 24699.95 15196.94 28899.84 13899.68 237
PVSNet_BlendedMVS98.71 16098.62 15998.98 20599.98 8599.60 109100.00 1100.00 197.23 188100.00 199.03 33396.57 19999.99 94100.00 194.75 28997.35 357
OMC-MVS99.27 9999.38 7498.96 20699.95 9697.06 292100.00 199.40 18898.83 5399.88 161100.00 197.01 18399.86 17999.47 17899.84 13899.97 118
CR-MVSNet98.02 20797.71 21898.93 20799.31 25898.86 19099.13 37299.00 35496.53 24199.96 12098.98 33796.94 18998.10 34991.18 35698.40 18699.84 188
tpm cat198.05 20597.76 21298.92 20899.50 22797.10 29199.77 29099.30 24290.20 37199.72 18898.71 35297.71 15799.86 17996.75 29998.20 20399.81 205
Anonymous20240521197.87 21097.53 22298.90 20999.81 12796.70 30199.35 34499.46 9492.98 34798.83 25099.99 18590.63 283100.00 199.70 14097.03 244100.00 1
VDDNet96.39 28495.55 30598.90 20999.27 26297.45 27499.15 37099.92 3491.28 36099.98 110100.00 173.55 384100.00 199.85 10996.98 24699.24 249
BH-w/o98.82 15398.81 14198.88 21199.62 18896.71 300100.00 199.28 25397.09 19598.81 251100.00 194.91 22799.96 13899.54 173100.00 199.96 124
TAMVS98.76 15698.73 14998.86 21299.44 24297.69 26699.57 32199.34 22996.57 23899.12 22599.81 25298.83 11699.16 26997.97 25897.91 21799.73 234
CVMVSNet98.56 17498.47 17198.82 21399.11 27097.67 26799.74 29599.47 7997.57 15699.06 231100.00 195.72 21298.97 28198.21 24897.33 24099.83 191
VPA-MVSNet97.03 25296.43 26498.82 21398.64 31199.32 14799.38 34199.47 7996.73 22598.91 24198.94 34287.00 33099.40 25799.23 19589.59 34697.76 264
tpm298.64 16698.58 16498.81 21599.42 24497.12 28999.69 30799.37 20693.63 33299.94 14699.67 27598.96 10299.47 24898.62 23097.95 21599.83 191
sd_testset97.81 21397.48 22398.79 21699.82 12196.80 29899.32 34699.45 10297.62 14799.38 21099.86 23885.56 34399.77 20199.72 13296.61 25299.79 222
MVSTER98.58 17298.52 16798.77 21799.65 17599.68 103100.00 199.29 24795.63 27898.65 25899.80 25599.78 898.88 29198.59 23295.31 26797.73 303
nrg03097.64 22097.27 23598.75 21898.34 32199.53 119100.00 199.22 28196.21 26198.27 28599.95 21894.40 23498.98 27999.23 19589.78 34597.75 274
PatchT95.90 30894.95 32298.75 21899.03 28198.39 21799.08 37899.32 23385.52 38599.96 12094.99 38997.94 14698.05 35580.20 39398.47 18299.81 205
XXY-MVS97.14 24696.63 25498.67 22098.65 31098.92 18899.54 32599.29 24795.57 28197.63 31599.83 24687.79 32299.35 26198.39 23892.95 30697.75 274
testing398.44 18398.37 17998.65 22199.51 22398.32 226100.00 199.62 6696.43 24597.93 30399.99 18599.11 8597.81 36294.88 32597.80 22699.82 196
COLMAP_ROBcopyleft97.10 798.29 19598.17 19298.65 22199.94 9997.39 27699.30 35099.40 18895.64 27797.75 312100.00 192.69 26199.95 15198.89 21199.92 12498.62 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs97.95 20997.73 21798.62 22398.53 31699.24 157100.00 199.43 12296.74 22397.87 30799.82 24995.27 21998.89 28898.78 21893.07 30497.74 297
iter_conf0598.73 15898.77 14498.60 22499.65 17599.22 160100.00 199.22 28196.68 23298.98 23699.97 19899.99 398.84 29399.29 19095.11 28197.75 274
BH-untuned98.64 16698.65 15698.60 22499.59 19696.17 306100.00 199.28 25396.67 23398.41 275100.00 194.52 23399.83 18899.41 181100.00 199.81 205
UniMVSNet (Re)97.29 24096.85 24798.59 22698.49 31799.13 169100.00 199.42 13896.52 24298.24 28998.90 34594.93 22698.89 28897.54 27187.61 36397.75 274
cl2298.23 19998.11 19598.58 22799.82 12199.01 180100.00 199.28 25396.92 20798.33 27999.21 32198.09 14498.97 28198.72 22292.61 30997.76 264
myMVS_eth3d98.52 17898.51 16898.53 22899.50 22797.98 249100.00 199.57 6896.23 25898.07 293100.00 199.09 8797.81 36296.17 30597.96 21399.82 196
h-mvs3397.03 25296.53 25898.51 22999.79 14295.90 31099.45 33399.45 10298.21 92100.00 199.78 25897.49 16799.99 9499.72 13274.92 39199.65 242
miper_enhance_ethall98.33 19298.27 18498.51 22999.66 17499.04 176100.00 199.22 28197.53 16098.51 27099.38 31399.49 3998.75 30298.02 25492.61 30997.76 264
WR-MVS97.09 24796.64 25398.46 23198.43 31899.09 17099.97 24299.33 23195.62 27997.76 30999.67 27591.17 27598.56 32098.49 23589.28 35197.74 297
FC-MVSNet-test97.84 21197.63 22198.45 23298.30 32699.05 175100.00 199.43 12296.63 23797.61 31899.82 24995.19 22398.57 31898.64 22793.05 30597.73 303
TAPA-MVS96.40 1097.64 22097.37 22998.45 23299.94 9995.70 312100.00 199.40 18897.65 14299.53 195100.00 199.31 6499.66 21380.48 392100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_093.57 1996.41 28095.74 29698.41 23499.84 11795.22 317100.00 1100.00 198.08 10597.55 32199.78 25884.40 348100.00 1100.00 181.99 382100.00 1
test0.0.03 198.12 20398.03 20398.39 23599.11 27098.07 242100.00 199.93 3096.70 22896.91 33599.95 21899.31 6498.19 33991.93 35198.44 18398.91 255
NR-MVSNet96.63 26996.04 28198.38 23698.31 32498.98 18499.22 36199.35 22395.87 26894.43 36799.65 27992.73 25998.40 33196.78 29688.05 36097.75 274
tfpnnormal96.36 28595.69 30198.37 23798.55 31498.71 19999.69 30799.45 10293.16 34596.69 34399.71 26488.44 31798.99 27894.17 33291.38 33197.41 354
FMVSNet397.30 23996.95 24398.37 23799.65 17599.25 15599.71 30399.28 25394.23 31798.53 26798.91 34493.30 24898.11 34695.31 31893.60 29897.73 303
VDD-MVS96.58 27295.99 28398.34 23999.52 21895.33 31599.18 36299.38 20396.64 23599.77 182100.00 172.51 388100.00 1100.00 196.94 24799.70 235
VPNet96.41 28095.76 29598.33 24098.61 31298.30 22899.48 33099.45 10296.98 20298.87 24599.88 23581.57 36598.93 28399.22 19787.82 36297.76 264
mvsmamba98.13 20298.06 20098.32 24198.22 33198.50 211100.00 199.22 28196.41 24898.91 24199.96 21095.69 21398.73 30499.19 19894.95 28897.73 303
tpm98.24 19898.22 19198.32 24199.13 26995.79 31199.53 32699.12 32295.20 29399.96 12099.36 31597.58 16299.28 26697.41 27696.67 25099.88 175
MVS-HIRNet94.12 32792.73 34098.29 24399.33 25795.95 30799.38 34199.19 29374.54 39798.26 28686.34 40186.07 33799.06 27391.60 35499.87 13299.85 187
v2v48296.70 26696.18 27598.27 24498.04 33898.39 217100.00 199.13 31694.19 32198.58 26399.08 32790.48 28698.67 30795.69 31190.44 34197.75 274
pmmvs497.17 24396.80 24898.27 24497.68 35098.64 204100.00 199.18 30094.22 31898.55 26599.71 26493.67 24198.47 32795.66 31292.57 31297.71 318
v119296.18 29495.49 30898.26 24698.01 33998.15 23699.99 21299.08 33193.36 33998.54 26698.97 34089.47 30298.89 28891.15 35790.82 33697.75 274
miper_ehance_all_eth97.81 21397.66 21998.23 24799.49 23198.37 22099.99 21299.11 32394.78 30098.25 28799.21 32198.18 14098.57 31897.35 28092.61 30997.76 264
UniMVSNet_NR-MVSNet97.16 24496.80 24898.22 24898.38 32098.41 214100.00 199.45 10296.14 26397.76 30999.64 28395.05 22498.50 32497.98 25586.84 36797.75 274
DU-MVS96.93 25796.49 26198.22 24898.31 32498.41 214100.00 199.37 20696.41 24897.76 30999.65 27992.14 26698.50 32497.98 25586.84 36797.75 274
v896.35 28695.73 29798.21 25098.11 33698.23 23299.94 25799.07 33592.66 35398.29 28299.00 33691.46 27098.77 30094.17 33288.83 35697.62 340
cl____97.54 22897.32 23198.18 25199.47 23698.14 238100.00 199.10 32594.16 32297.60 31999.63 28797.52 16698.65 30996.47 30091.97 32197.76 264
CP-MVSNet96.73 26396.25 27298.18 25198.21 33298.67 20299.77 29099.32 23395.06 29597.20 32999.65 27990.10 29098.19 33998.06 25388.90 35497.66 330
v14419296.40 28395.81 29098.17 25397.89 34498.11 23999.99 21299.06 34393.39 33898.75 25499.09 32690.43 28798.66 30893.10 34390.55 34097.75 274
EI-MVSNet97.98 20897.93 20798.16 25499.11 27097.84 26199.74 29599.29 24794.39 31598.65 258100.00 197.21 17798.88 29197.62 27095.31 26797.75 274
v192192096.16 29895.50 30698.14 25597.88 34697.96 25299.99 21299.07 33593.33 34098.60 26299.24 32089.37 30398.71 30591.28 35590.74 33897.75 274
XVG-OURS-SEG-HR98.27 19798.31 18398.14 25599.59 19695.92 308100.00 199.36 21298.48 7599.21 218100.00 189.27 30499.94 16399.76 12699.17 16198.56 260
Patchmtry96.81 25996.37 26798.14 25599.31 25898.55 20898.91 38399.00 35490.45 36797.92 30498.98 33796.94 18998.12 34494.27 33191.53 32797.75 274
v114496.51 27595.97 28598.13 25897.98 34198.04 24699.99 21299.08 33193.51 33698.62 26198.98 33790.98 28098.62 31093.79 33890.79 33797.74 297
XVG-OURS98.30 19398.36 18198.13 25899.58 20195.91 309100.00 199.36 21298.69 6599.23 217100.00 191.20 27499.92 16999.34 18597.82 22498.56 260
V4296.65 26896.16 27798.11 26098.17 33598.23 23299.99 21299.09 33093.97 32498.74 25599.05 33091.09 27698.82 29595.46 31689.90 34397.27 359
Anonymous2023121196.29 28995.70 29898.07 26199.80 13897.49 27299.15 37099.40 18889.11 37497.75 31299.45 31088.93 30998.98 27998.26 24789.47 34897.73 303
v124095.96 30695.25 31598.07 26197.91 34397.87 26099.96 24799.07 33593.24 34398.64 26098.96 34188.98 30898.61 31189.58 37090.92 33597.75 274
v1096.14 30095.50 30698.07 26198.19 33397.96 25299.83 27599.07 33592.10 35698.07 29398.94 34291.07 27798.61 31192.41 35089.82 34497.63 338
test_djsdf97.55 22797.38 22898.07 26197.50 35997.99 248100.00 199.13 31695.46 28998.47 27399.85 24392.01 26998.59 31598.63 22895.36 26597.62 340
AUN-MVS96.26 29195.67 30298.06 26599.68 16095.60 31399.82 27899.42 13896.78 21899.88 16199.80 25594.84 22899.47 24897.48 27373.29 39399.12 252
eth_miper_zixun_eth97.47 23297.28 23398.06 26599.41 24697.94 25499.62 31699.08 33194.46 31398.19 29099.56 30196.91 19198.50 32496.78 29691.49 32897.74 297
c3_l97.58 22597.42 22598.06 26599.48 23398.16 23599.96 24799.10 32594.54 30998.13 29199.20 32397.87 14998.25 33897.28 28191.20 33397.75 274
FMVSNet296.22 29295.60 30498.06 26599.53 21198.33 22499.45 33399.27 26193.71 32798.03 29698.84 34784.23 35098.10 34993.97 33693.40 30197.73 303
DIV-MVS_self_test97.52 23197.35 23098.05 26999.46 23998.11 239100.00 199.10 32594.21 31997.62 31799.63 28797.65 16098.29 33596.47 30091.98 32097.76 264
MIMVSNet97.06 25096.73 25198.05 26999.38 25596.64 30398.47 39099.35 22393.41 33799.48 19998.53 35989.66 29897.70 36894.16 33498.11 20899.80 219
hse-mvs296.79 26096.38 26698.04 27199.68 16095.54 31499.81 27999.42 13898.21 92100.00 199.80 25597.49 16799.46 25299.72 13273.27 39499.12 252
PS-CasMVS96.34 28795.78 29498.03 27298.18 33498.27 23099.71 30399.32 23394.75 30196.82 33899.65 27986.98 33198.15 34197.74 26488.85 35597.66 330
anonymousdsp97.16 24496.88 24598.00 27397.08 36998.06 24499.81 27999.15 30794.58 30797.84 30899.62 29190.49 28598.60 31397.98 25595.32 26697.33 358
pm-mvs195.76 31095.01 32098.00 27398.23 33097.45 27499.24 35499.04 34893.13 34695.93 35499.72 26286.28 33598.84 29395.62 31487.92 36197.72 310
v7n96.06 30495.42 31497.99 27597.58 35697.35 27999.86 27199.11 32392.81 35297.91 30599.49 30790.99 27998.92 28492.51 34788.49 35897.70 319
WR-MVS_H96.73 26396.32 27197.95 27698.26 32897.88 25899.72 30299.43 12295.06 29596.99 33298.68 35493.02 25398.53 32297.43 27588.33 35997.43 353
PS-MVSNAJss98.03 20698.06 20097.94 27797.63 35197.33 28299.89 26799.23 27896.27 25798.03 29699.59 29598.75 12198.78 29798.52 23494.61 29297.70 319
mvs_tets97.00 25596.69 25297.94 27797.41 36697.27 28499.60 31899.18 30096.51 24397.35 32599.69 27086.53 33498.91 28598.84 21595.09 28297.65 334
TransMVSNet (Re)94.78 32193.72 32797.93 27998.34 32197.88 25899.23 35997.98 38491.60 35894.55 36499.71 26487.89 32098.36 33289.30 37284.92 37397.56 346
IterMVS-LS97.56 22697.44 22497.92 28099.38 25597.90 25699.89 26799.10 32594.41 31498.32 28099.54 30497.21 17798.11 34697.50 27291.62 32597.75 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_ETH3D95.28 31794.41 32397.89 28198.91 29795.14 31899.13 37299.35 22392.11 35597.17 33099.66 27770.28 39199.36 25997.88 26095.18 27699.16 250
jajsoiax97.07 24996.79 25097.89 28197.28 36797.12 28999.95 25399.19 29396.55 23997.31 32699.69 27087.35 32898.91 28598.70 22395.12 28097.66 330
Fast-Effi-MVS+-dtu98.38 19098.56 16597.82 28399.58 20194.44 340100.00 199.16 30696.75 22199.51 19799.63 28795.03 22599.60 21697.71 26599.67 15099.42 247
TranMVSNet+NR-MVSNet96.45 27996.01 28297.79 28498.00 34097.62 269100.00 199.35 22395.98 26697.31 32699.64 28390.09 29198.00 35696.89 29186.80 37097.75 274
RRT_MVS97.77 21597.76 21297.78 28597.89 34497.06 292100.00 199.29 24795.74 27598.00 30199.97 19895.94 20798.55 32198.87 21394.18 29597.72 310
miper_lstm_enhance97.40 23597.28 23397.75 28699.48 23397.52 271100.00 199.07 33594.08 32398.01 29999.61 29397.38 17497.98 35796.44 30391.47 33097.76 264
v14896.29 28995.84 28997.63 28797.74 34896.53 304100.00 199.07 33593.52 33598.01 29999.42 31291.22 27298.60 31396.37 30487.22 36697.75 274
IterMVS96.76 26296.46 26397.63 28799.41 24696.89 29599.99 21299.13 31694.74 30397.59 32099.66 27789.63 30198.28 33695.71 31092.31 31597.72 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT96.72 26596.42 26597.62 28999.40 25196.83 29799.99 21299.14 31294.65 30697.55 32199.72 26289.65 29998.31 33495.62 31492.05 31897.73 303
ADS-MVSNet298.28 19698.51 16897.62 28999.51 22395.03 32099.24 35499.41 18495.52 28499.96 12099.70 26797.57 16397.94 35997.11 28498.54 17799.88 175
PEN-MVS96.01 30595.48 31097.58 29197.74 34897.26 28599.90 26499.29 24794.55 30896.79 33999.55 30287.38 32697.84 36196.92 29087.24 36597.65 334
Baseline_NR-MVSNet96.16 29895.70 29897.56 29298.28 32796.79 299100.00 197.86 38891.93 35797.63 31599.47 30992.14 26698.35 33397.13 28386.83 36997.54 347
Effi-MVS+-dtu98.51 18098.86 13797.47 29399.77 14794.21 343100.00 198.94 35997.61 15199.91 15498.75 35195.89 20899.51 24399.36 18399.48 15898.68 257
tt080596.52 27396.23 27397.40 29499.30 26193.55 34899.32 34699.45 10296.75 22197.88 30699.99 18579.99 37199.59 21897.39 27895.98 25599.06 254
HQP-MVS97.73 21797.85 20997.39 29599.07 27594.82 324100.00 199.40 18899.04 1599.17 21999.97 19888.61 31399.57 22399.79 11995.58 25697.77 262
HQP_MVS97.71 21997.82 21197.37 29699.00 28794.80 327100.00 199.40 18899.00 2799.08 22999.97 19888.58 31599.55 23299.79 11995.57 26097.76 264
CLD-MVS97.64 22097.74 21497.36 29799.01 28394.76 332100.00 199.34 22999.30 499.00 23499.97 19887.49 32499.57 22399.96 8595.58 25697.75 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
KD-MVS_2432*160094.15 32593.08 33497.35 29899.53 21197.83 26299.63 31499.19 29392.88 34996.29 34797.68 37598.84 11496.70 37489.73 36763.92 39897.53 348
miper_refine_blended94.15 32593.08 33497.35 29899.53 21197.83 26299.63 31499.19 29392.88 34996.29 34797.68 37598.84 11496.70 37489.73 36763.92 39897.53 348
OPM-MVS97.21 24197.18 24097.32 30098.08 33794.66 333100.00 199.28 25398.65 6998.92 23999.98 19086.03 33999.56 22798.28 24695.41 26297.72 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM97.17 697.37 23697.40 22797.29 30199.01 28394.64 335100.00 199.25 26998.07 10698.44 27499.98 19087.38 32699.55 23299.25 19295.19 27597.69 323
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 23897.32 23197.28 30298.85 30594.60 336100.00 199.37 20697.35 17798.85 24699.98 19086.66 33299.56 22799.55 17095.26 26997.70 319
LGP-MVS_train97.28 30298.85 30594.60 33699.37 20697.35 17798.85 24699.98 19086.66 33299.56 22799.55 17095.26 26997.70 319
ACMP97.00 897.19 24297.16 24197.27 30498.97 29294.58 339100.00 199.32 23397.97 11497.45 32399.98 19085.79 34199.56 22799.70 14095.24 27297.67 329
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH96.25 1196.77 26196.62 25597.21 30598.96 29394.43 34199.64 31299.33 23197.43 17296.55 34499.97 19883.52 35699.54 23599.07 20595.13 27997.66 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron92.61 33891.09 34697.19 30696.71 37297.26 285100.00 199.14 31288.61 37667.90 40398.32 36789.03 30696.57 37790.47 36389.59 34697.74 297
DTE-MVSNet95.52 31394.99 32197.08 30797.49 36196.45 305100.00 199.25 26993.82 32696.17 35099.57 30087.81 32197.18 37094.57 32786.26 37297.62 340
D2MVS97.63 22497.83 21097.05 30898.83 30794.60 336100.00 199.82 4096.89 21198.28 28399.03 33394.05 23699.47 24898.58 23394.97 28697.09 363
YYNet192.44 33990.92 34797.03 30996.20 37497.06 29299.99 21299.14 31288.21 37967.93 40298.43 36488.63 31296.28 38190.64 35989.08 35397.74 297
ppachtmachnet_test96.17 29695.89 28797.02 31097.61 35395.24 31699.99 21299.24 27493.31 34196.71 34299.62 29194.34 23598.07 35189.87 36692.30 31697.75 274
ACMH+96.20 1396.49 27896.33 27097.00 31199.06 27993.80 34699.81 27999.31 23897.32 18195.89 35599.97 19882.62 36299.54 23598.34 24194.63 29197.65 334
LTVRE_ROB95.29 1696.32 28896.10 27896.99 31298.55 31493.88 34599.45 33399.28 25394.50 31196.46 34599.52 30584.86 34699.48 24697.26 28295.03 28397.59 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
our_test_396.51 27596.35 26896.98 31397.61 35395.05 31999.98 23699.01 35394.68 30496.77 34199.06 32895.87 20998.14 34291.81 35292.37 31497.75 274
pmmvs595.94 30795.61 30396.95 31497.42 36494.66 333100.00 198.08 38093.60 33397.05 33199.43 31187.02 32998.46 32895.76 30892.12 31797.72 310
EU-MVSNet96.63 26996.53 25896.94 31597.59 35596.87 29699.76 29299.47 7996.35 25396.85 33799.78 25892.57 26296.27 38295.33 31791.08 33497.68 325
testgi96.18 29495.93 28696.93 31698.98 29194.20 344100.00 199.07 33597.16 19196.06 35299.86 23884.08 35397.79 36590.38 36497.80 22698.81 256
dcpmvs_298.87 14999.53 5996.90 31799.87 11490.88 37099.94 25799.07 33598.20 94100.00 1100.00 198.69 12499.86 179100.00 1100.00 199.95 130
GBi-Net96.07 30295.80 29296.89 31899.53 21194.87 32199.18 36299.27 26193.71 32798.53 26798.81 34884.23 35098.07 35195.31 31893.60 29897.72 310
test196.07 30295.80 29296.89 31899.53 21194.87 32199.18 36299.27 26193.71 32798.53 26798.81 34884.23 35098.07 35195.31 31893.60 29897.72 310
FMVSNet194.45 32293.63 32996.89 31898.87 30394.87 32199.18 36299.27 26190.95 36497.31 32698.81 34872.89 38798.07 35192.61 34592.81 30797.72 310
XVG-ACMP-BASELINE96.60 27196.52 26096.84 32198.41 31993.29 35299.99 21299.32 23397.76 13498.51 27099.29 31881.95 36499.54 23598.40 23795.03 28397.68 325
ITE_SJBPF96.84 32198.96 29393.49 34998.12 37898.12 10398.35 27799.97 19884.45 34799.56 22795.63 31395.25 27197.49 350
patch_mono-299.04 12599.79 696.81 32399.92 10490.47 371100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
MDA-MVSNet-bldmvs91.65 34589.94 35396.79 32496.72 37196.70 30199.42 33898.94 35988.89 37566.97 40598.37 36581.43 36695.91 38589.24 37389.46 34997.75 274
TinyColmap95.50 31495.12 31996.64 32598.69 30993.00 35499.40 33997.75 39096.40 25096.14 35199.87 23679.47 37299.50 24493.62 33994.72 29097.40 355
OurMVSNet-221017-096.14 30095.98 28496.62 32697.49 36193.44 35099.92 26098.16 37695.86 27097.65 31499.95 21885.71 34298.78 29794.93 32494.18 29597.64 337
MVP-Stereo96.51 27596.48 26296.60 32795.65 38194.25 34298.84 38598.16 37695.85 27295.23 35899.04 33192.54 26399.13 27092.98 34499.98 10896.43 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re97.54 22897.88 20896.54 32899.55 20790.35 37299.86 27199.46 9497.00 20199.41 208100.00 190.78 28199.30 26499.60 16495.24 27299.96 124
USDC95.90 30895.70 29896.50 32998.60 31392.56 360100.00 198.30 37497.77 13296.92 33399.94 22381.25 36899.45 25393.54 34094.96 28797.49 350
K. test v395.46 31595.14 31896.40 33097.53 35893.40 35199.99 21299.23 27895.49 28792.70 37599.73 26184.26 34998.12 34493.94 33793.38 30297.68 325
SixPastTwentyTwo95.71 31195.49 30896.38 33197.42 36493.01 35399.84 27498.23 37594.75 30195.98 35399.97 19885.35 34498.43 32994.71 32693.17 30397.69 323
WB-MVSnew97.02 25497.24 23796.37 33299.44 24297.36 278100.00 199.43 12296.12 26499.35 21299.89 23393.60 24498.42 33088.91 37698.39 18893.33 391
test_040294.35 32393.70 32896.32 33397.92 34293.60 34799.61 31798.85 36788.19 38094.68 36399.48 30880.01 37098.58 31789.39 37195.15 27896.77 369
TDRefinement91.93 34190.48 34996.27 33481.60 40592.65 35999.10 37597.61 39393.96 32593.77 36999.85 24380.03 36999.53 24097.82 26270.59 39596.63 373
LF4IMVS96.19 29396.18 27596.23 33598.26 32892.09 362100.00 197.89 38797.82 12897.94 30299.87 23682.71 36199.38 25897.41 27693.71 29797.20 360
lessismore_v096.05 33697.55 35791.80 36499.22 28191.87 37699.91 23083.50 35798.68 30692.48 34890.42 34297.68 325
new_pmnet94.11 32893.47 33196.04 33796.60 37392.82 35699.97 24298.91 36290.21 37095.26 35798.05 37385.89 34098.14 34284.28 38492.01 31997.16 361
pmmvs693.64 32992.87 33795.94 33897.47 36391.41 36798.92 38299.02 35187.84 38195.01 36099.61 29377.24 37998.77 30094.33 33086.41 37197.63 338
EGC-MVSNET79.46 36474.04 37295.72 33996.00 37792.73 35799.09 37799.04 3485.08 40916.72 40998.71 35273.03 38698.74 30382.05 38996.64 25195.69 382
UnsupCasMVSNet_eth94.25 32493.89 32595.34 34097.63 35192.13 36199.73 30099.36 21294.88 29892.78 37298.63 35682.72 36096.53 37894.57 32784.73 37497.36 356
DSMNet-mixed95.18 31995.21 31795.08 34196.03 37690.21 37399.65 31193.64 40692.91 34898.34 27897.40 37890.05 29395.51 38891.02 35897.86 22099.51 246
MS-PatchMatch95.66 31295.87 28895.05 34297.80 34789.25 37598.88 38499.30 24296.35 25396.86 33699.01 33581.35 36799.43 25493.30 34299.98 10896.46 374
test_fmvs295.17 32095.23 31695.01 34398.95 29588.99 37799.99 21297.77 38997.79 13098.58 26399.70 26773.36 38599.34 26295.88 30795.03 28396.70 371
Syy-MVS96.17 29696.57 25795.00 34499.50 22787.37 381100.00 199.57 6896.23 25898.07 293100.00 192.41 26497.81 36285.34 38297.96 21399.82 196
FMVSNet595.32 31695.43 31394.99 34599.39 25492.99 35599.25 35399.24 27490.45 36797.44 32498.45 36295.78 21194.39 39187.02 37891.88 32297.59 344
DeepPCF-MVS98.03 498.54 17699.72 1994.98 34699.99 4984.94 385100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
pmmvs-eth3d91.73 34490.67 34894.92 34791.63 39492.71 35899.90 26498.54 37291.19 36188.08 38695.50 38579.31 37496.13 38390.55 36281.32 38595.91 380
Anonymous2024052193.29 33292.76 33994.90 34895.64 38291.27 36899.97 24298.82 36887.04 38294.71 36298.19 36883.86 35496.80 37384.04 38592.56 31396.64 372
RPSCF97.37 23698.24 18794.76 34999.80 13884.57 38699.99 21299.05 34594.95 29799.82 176100.00 194.03 237100.00 198.15 25098.38 19099.70 235
LCM-MVSNet-Re96.52 27397.21 23994.44 35099.27 26285.80 38399.85 27396.61 40095.98 26692.75 37498.48 36193.97 23997.55 36999.58 16898.43 18499.98 111
pmmvs390.62 35089.36 35694.40 35190.53 39991.49 366100.00 196.73 39884.21 38893.65 37096.65 38282.56 36394.83 38982.28 38877.62 39096.89 368
KD-MVS_self_test91.16 34690.09 35194.35 35294.44 38891.27 36899.74 29599.08 33190.82 36594.53 36594.91 39086.11 33694.78 39082.67 38768.52 39696.99 365
Anonymous2023120693.45 33193.17 33394.30 35395.00 38689.69 37499.98 23698.43 37393.30 34294.50 36698.59 35790.52 28495.73 38777.46 39890.73 33997.48 352
EG-PatchMatch MVS92.94 33792.49 34194.29 35495.87 37887.07 38299.07 38098.11 37993.19 34488.98 38498.66 35570.89 38999.08 27292.43 34995.21 27496.72 370
MIMVSNet191.96 34091.20 34394.23 35594.94 38791.69 36599.34 34599.22 28188.23 37894.18 36898.45 36275.52 38293.41 39579.37 39491.49 32897.60 343
OpenMVS_ROBcopyleft88.34 2091.89 34291.12 34494.19 35695.55 38387.63 38099.26 35298.03 38186.61 38490.65 38296.82 38170.14 39298.78 29786.54 38096.50 25496.15 376
UnsupCasMVSNet_bld89.50 35288.00 35893.99 35795.30 38488.86 37898.52 38999.28 25385.50 38687.80 38894.11 39161.63 39596.96 37290.63 36079.26 38696.15 376
test20.0393.11 33492.85 33893.88 35895.19 38591.83 363100.00 198.87 36593.68 33092.76 37398.88 34689.20 30592.71 39677.88 39689.19 35297.09 363
test_vis1_rt93.10 33592.93 33693.58 35999.63 18385.07 38499.99 21293.71 40597.49 16690.96 37897.10 37960.40 39699.95 15199.24 19497.90 21895.72 381
CL-MVSNet_self_test91.07 34790.35 35093.24 36093.27 38989.16 37699.55 32399.25 26992.34 35495.23 35897.05 38088.86 31193.59 39480.67 39166.95 39796.96 366
Patchmatch-RL test93.49 33093.63 32993.05 36191.78 39283.41 38798.21 39296.95 39791.58 35991.05 37797.64 37799.40 5695.83 38694.11 33581.95 38399.91 149
new-patchmatchnet90.30 35189.46 35592.84 36290.77 39788.55 37999.83 27598.80 36990.07 37287.86 38795.00 38878.77 37594.30 39284.86 38379.15 38795.68 383
PM-MVS88.39 35487.41 35991.31 36391.73 39382.02 38999.79 28496.62 39991.06 36390.71 38195.73 38448.60 40095.96 38490.56 36181.91 38495.97 379
test_method91.04 34891.10 34590.85 36498.34 32177.63 391100.00 198.93 36176.69 39596.25 34998.52 36070.44 39097.98 35789.02 37591.74 32396.92 367
mvsany_test389.36 35388.96 35790.56 36591.95 39178.97 39099.74 29596.59 40196.84 21389.25 38396.07 38352.59 39897.11 37195.17 32182.44 38195.58 384
DeepMVS_CXcopyleft89.98 36698.90 29871.46 39799.18 30097.61 15196.92 33399.83 24686.07 33799.83 18896.02 30697.65 23698.65 258
APD_test193.07 33694.14 32489.85 36799.18 26672.49 39599.76 29298.90 36492.86 35196.35 34699.94 22375.56 38199.91 17086.73 37997.98 21197.15 362
test_f86.87 35886.06 36189.28 36891.45 39676.37 39399.87 27097.11 39591.10 36288.46 38593.05 39438.31 40596.66 37691.77 35383.46 37994.82 385
ambc88.45 36986.84 40170.76 39897.79 39598.02 38390.91 37995.14 38638.69 40498.51 32394.97 32384.23 37596.09 378
Gipumacopyleft84.73 35983.50 36488.40 37097.50 35982.21 38888.87 39999.05 34565.81 39985.71 39190.49 39653.70 39796.31 38078.64 39591.74 32386.67 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs387.19 35787.02 36087.71 37192.69 39076.64 39299.96 24797.27 39493.55 33490.82 38094.03 39238.00 40692.19 39793.49 34183.35 38094.32 386
N_pmnet91.88 34393.37 33287.40 37297.24 36866.33 40599.90 26491.05 40889.77 37395.65 35698.58 35890.05 29398.11 34685.39 38192.72 30897.75 274
dmvs_testset93.27 33395.48 31086.65 37398.74 30868.42 40299.92 26098.91 36296.19 26293.28 371100.00 191.06 27891.67 39889.64 36991.54 32699.86 186
CMPMVSbinary66.12 2290.65 34992.04 34286.46 37496.18 37566.87 40498.03 39399.38 20383.38 39085.49 39299.55 30277.59 37798.80 29694.44 32994.31 29493.72 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet79.01 36776.93 37085.27 37578.28 40768.01 40396.57 39698.03 38155.10 40382.03 39693.27 39331.99 40993.95 39382.72 38674.37 39293.84 388
PMMVS279.15 36677.28 36984.76 37682.34 40472.66 39499.70 30595.11 40471.68 39884.78 39590.87 39532.05 40889.99 39975.53 40163.45 40091.64 395
test_vis3_rt79.61 36378.19 36883.86 37788.68 40069.56 39999.81 27982.19 41386.78 38368.57 40184.51 40425.06 41098.26 33789.18 37478.94 38883.75 401
testf184.40 36084.79 36283.23 37895.71 37958.71 41198.79 38697.75 39081.58 39184.94 39398.07 37145.33 40297.73 36677.09 39983.85 37693.24 392
APD_test284.40 36084.79 36283.23 37895.71 37958.71 41198.79 38697.75 39081.58 39184.94 39398.07 37145.33 40297.73 36677.09 39983.85 37693.24 392
WB-MVS88.24 35590.09 35182.68 38091.56 39569.51 400100.00 198.73 37090.72 36687.29 38998.12 36992.87 25585.01 40262.19 40389.34 35093.54 390
SSC-MVS87.61 35689.47 35482.04 38190.63 39868.77 40199.99 21298.66 37190.34 36986.70 39098.08 37092.72 26084.12 40359.41 40688.71 35793.22 394
tmp_tt75.80 36974.26 37180.43 38252.91 41453.67 41387.42 40197.98 38461.80 40167.04 404100.00 176.43 38096.40 37996.47 30028.26 40691.23 396
test12379.44 36579.23 36780.05 38380.03 40671.72 396100.00 177.93 41462.52 40094.81 36199.69 27078.21 37674.53 40792.57 34627.33 40793.90 387
MVEpermissive68.59 2167.22 37264.68 37674.84 38474.67 41062.32 40995.84 39790.87 40950.98 40458.72 40681.05 40612.20 41478.95 40461.06 40556.75 40183.24 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 36281.95 36574.80 38558.54 41259.58 410100.00 187.14 41176.09 39699.61 193100.00 167.06 39374.19 40898.84 21550.30 40290.64 397
ANet_high66.05 37363.44 37773.88 38661.14 41163.45 40895.68 39887.18 41079.93 39347.35 40780.68 40722.35 41172.33 40961.24 40435.42 40585.88 400
FPMVS77.92 36879.45 36673.34 38776.87 40846.81 41498.24 39199.05 34559.89 40273.55 39898.34 36636.81 40786.55 40080.96 39091.35 33286.65 399
E-PMN70.72 37070.06 37372.69 38883.92 40365.48 40799.95 25392.72 40749.88 40572.30 39986.26 40247.17 40177.43 40553.83 40744.49 40375.17 405
EMVS69.88 37169.09 37472.24 38984.70 40265.82 40699.96 24787.08 41249.82 40671.51 40084.74 40349.30 39975.32 40650.97 40843.71 40475.59 404
PMVScopyleft60.66 2365.98 37465.05 37568.75 39055.06 41338.40 41588.19 40096.98 39648.30 40744.82 40888.52 39912.22 41386.49 40167.58 40283.79 37881.35 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 37529.73 37923.92 39175.89 40932.61 41666.50 40212.88 41516.09 40814.59 41016.59 40912.35 41232.36 41039.36 40913.36 4086.79 406
test_blank0.07 3790.09 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.79 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.41 37632.55 3780.00 3920.00 4150.00 4170.00 40399.39 2010.00 4100.00 411100.00 193.55 2450.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas8.24 37810.99 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 41198.75 1210.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.33 37711.11 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.01 3800.02 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.14 4110.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS97.98 24995.74 309
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
eth-test20.00 415
eth-test0.00 415
ZD-MVS100.00 199.98 1799.80 4397.31 183100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 52100.00 199.42 13897.62 147100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 158100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
save fliter99.99 4999.93 44100.00 199.42 13898.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
GSMVS99.91 149
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7099.91 149
sam_mvs99.33 59
MTGPAbinary99.42 138
test_post199.32 34688.24 40099.33 5999.59 21898.31 242
test_post89.05 39899.49 3999.59 218
patchmatchnet-post97.79 37499.41 5599.54 235
MTMP100.00 199.18 300
gm-plane-assit99.52 21897.26 28595.86 270100.00 199.43 25498.76 220
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
test_8100.00 199.91 52100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7399.42 138100.00 199.97 125
test_prior499.93 44100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 151
新几何2100.00 1
旧先验199.99 4999.88 7399.82 40100.00 199.27 73100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 186100.00 1
原ACMM2100.00 1
test22299.99 4999.90 59100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
testdata2100.00 197.36 279
segment_acmp99.55 25
testdata1100.00 198.77 63
plane_prior799.00 28794.78 331
plane_prior699.06 27994.80 32788.58 315
plane_prior599.40 18899.55 23299.79 11995.57 26097.76 264
plane_prior499.97 198
plane_prior394.79 33099.03 2099.08 229
plane_prior2100.00 199.00 27
plane_prior199.02 282
plane_prior94.80 327100.00 199.03 2095.58 256
n20.00 416
nn0.00 416
door-mid96.32 402
test1199.42 138
door96.13 403
HQP5-MVS94.82 324
HQP-NCC99.07 275100.00 199.04 1599.17 219
ACMP_Plane99.07 275100.00 199.04 1599.17 219
BP-MVS99.79 119
HQP4-MVS99.17 21999.57 22397.77 262
HQP3-MVS99.40 18895.58 256
HQP2-MVS88.61 313
NP-MVS99.07 27594.81 32699.97 198
MDTV_nov1_ep13_2view99.24 15799.56 32296.31 25699.96 12098.86 11298.92 21099.89 164
MDTV_nov1_ep1398.94 12899.53 21198.36 22299.39 34099.46 9496.54 24099.99 10499.63 28798.92 10899.86 17998.30 24598.71 175
ACMMP++_ref94.58 293
ACMMP++95.17 277
Test By Simon99.10 86