This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 1096.45 1898.79 890.17 1099.99 189.33 10899.25 699.70 3
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
MVS90.60 8988.64 11396.50 594.25 15390.53 893.33 26497.21 2077.59 26878.88 21797.31 7971.52 18599.69 3989.60 10398.03 5499.27 20
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7397.08 9183.32 4599.69 3992.83 6598.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1697.10 2695.17 292.11 6698.46 2287.33 2499.97 297.21 1799.31 499.63 7
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3295.79 14092.42 1496.24 1998.18 3071.04 19099.17 8296.77 2097.39 7296.79 147
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3395.68 14592.06 1696.01 2298.14 3470.83 19398.96 9596.74 2296.57 9096.76 150
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4798.09 889.99 3792.34 6296.97 9581.30 5598.99 9388.54 11498.88 2099.20 22
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 1096.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3197.65 1288.57 5589.82 9797.22 8579.29 7099.06 9089.57 10488.73 16498.73 38
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 1097.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11494.64 20288.49 5792.99 5897.31 7972.68 17198.57 11393.38 5788.58 16599.36 16
HY-MVS84.06 691.63 6690.37 8495.39 1596.12 10288.25 1390.22 30197.58 1488.33 6190.50 9091.96 19679.26 7199.06 9090.29 9789.07 15998.88 30
test_0728_SECOND95.14 1699.04 1486.14 3399.06 1096.77 5099.84 1297.90 998.85 2199.45 10
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1996.38 10288.04 6693.01 5797.45 7279.20 7398.60 11193.25 6088.76 16398.99 28
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4396.64 7093.64 991.74 7198.54 1880.17 6499.90 592.28 7098.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+82.88 889.63 10687.85 12694.99 1994.49 14986.76 2997.84 5395.74 14286.10 10475.47 26296.02 11765.00 22599.51 5882.91 17197.07 7998.72 39
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3796.77 5088.38 5997.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5297.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5696.93 3592.45 1395.69 2398.50 2085.38 3199.85 1094.75 4099.18 798.65 42
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4997.96 986.38 10093.65 4895.74 12270.16 19898.95 9793.39 5588.87 16298.43 53
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8196.77 5085.32 11897.92 398.70 1583.09 4799.84 1295.79 2999.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2494.90 3397.66 6078.84 7797.56 15494.64 4397.46 6798.62 44
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3299.10 999.00 26
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5896.74 5586.11 10396.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 1096.46 9188.75 5096.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6296.43 9584.02 15295.07 3198.74 1482.93 4899.38 6595.42 3598.51 3498.32 58
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9996.20 11587.73 7488.40 11798.12 3578.71 8099.76 2587.99 12196.28 9298.74 34
3Dnovator82.32 1089.33 11187.64 13194.42 3193.73 16785.70 4197.73 6296.75 5486.73 9976.21 25095.93 11862.17 23999.68 4181.67 17797.81 5997.88 89
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2595.96 13080.57 21688.08 12297.63 6676.84 10799.89 785.67 13894.88 10698.13 72
PAPM92.87 4092.40 4894.30 3392.25 21287.85 1796.40 16196.38 10291.07 2388.72 11396.90 9682.11 5297.37 17190.05 9997.70 6297.67 106
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 6096.19 11789.59 4296.66 1598.17 3384.33 3699.60 4896.09 2498.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.25 3598.34 4685.55 4496.35 10592.36 6180.84 5699.22 7498.31 4797.98 84
test_yl91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
DCV-MVSNet91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
jason92.73 4392.23 5394.21 3890.50 25087.30 2498.65 2095.09 17590.61 2892.76 6097.13 8875.28 14097.30 17493.32 5896.75 8898.02 77
jason: jason.
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13496.65 6786.24 10194.27 4297.99 4477.94 8999.83 1693.39 5598.57 3398.39 55
131488.94 11887.20 14494.17 3993.21 18085.73 4093.33 26496.64 7082.89 18175.98 25396.36 11166.83 21399.39 6483.52 16596.02 9797.39 126
LFMVS89.27 11387.64 13194.16 4197.16 8885.52 4597.18 10194.66 19979.17 24989.63 10196.57 10955.35 29098.22 13089.52 10689.54 15598.74 34
QAPM86.88 16084.51 18193.98 4294.04 16085.89 3897.19 10096.05 12673.62 30075.12 26595.62 12862.02 24299.74 3270.88 27196.06 9696.30 165
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2196.93 3590.71 2793.08 5698.70 1579.98 6599.21 7594.12 4899.07 1198.63 43
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4596.41 9785.79 11095.00 3298.28 2784.32 3999.18 8197.35 1698.77 2799.28 19
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3995.29 16991.57 1893.81 4697.45 7286.64 2799.43 6396.28 2394.01 11699.20 22
CANet_DTU90.98 8190.04 9193.83 4694.76 13986.23 3296.32 16693.12 27793.11 1193.71 4796.82 10263.08 23599.48 6084.29 14895.12 10595.77 174
API-MVS90.18 9788.97 10893.80 4798.66 2882.95 9597.50 8095.63 14875.16 28986.31 13697.69 5872.49 17399.90 581.26 17996.07 9598.56 46
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2997.64 1394.57 495.36 2596.88 9879.96 6699.12 8791.30 7896.11 9497.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5496.65 6784.50 14095.16 2798.09 3784.33 3699.36 6895.91 2898.96 1998.16 69
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6796.26 11083.00 17993.22 5498.24 2881.31 5499.21 7589.12 10998.74 2998.14 71
MVSFormer91.36 7390.57 7893.73 5193.00 18888.08 1594.80 23394.48 21080.74 21294.90 3397.13 8878.84 7795.10 28083.77 15697.46 6798.02 77
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9796.09 12282.41 19094.65 3898.21 2981.96 5398.81 10594.65 4298.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19296.42 9691.26 2197.49 1096.80 10386.50 2898.49 11795.54 3399.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 1792x268891.07 8090.21 8793.64 5395.18 12683.53 8596.26 16996.13 11988.92 4984.90 14993.10 18472.86 16999.62 4788.86 11195.67 10297.79 98
MVS_Test90.29 9689.18 10593.62 5595.23 12384.93 6294.41 23894.66 19984.31 14590.37 9391.02 21175.13 14297.82 14483.11 16994.42 11198.12 73
sss90.87 8589.96 9393.60 5694.15 15683.84 7997.14 10798.13 785.93 10889.68 9996.09 11671.67 18299.30 7087.69 12489.16 15897.66 107
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2589.53 10396.21 11376.42 11499.57 5294.29 4595.81 10197.29 131
xiu_mvs_v1_base_debu90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base_debi90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
OpenMVScopyleft79.58 1486.09 17383.62 19793.50 6190.95 24186.71 3097.44 8495.83 13875.35 28672.64 28495.72 12357.42 27699.64 4571.41 26595.85 10094.13 203
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34597.00 2988.32 11994.30 16391.23 596.21 22288.49 11697.43 7098.00 82
ab-mvs87.08 15784.94 17693.48 6393.34 17983.67 8288.82 30995.70 14481.18 20584.55 15590.14 22862.72 23698.94 9985.49 14082.54 21897.85 93
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2197.13 2382.60 18894.09 4598.49 2180.35 5999.85 1094.74 4198.62 3298.83 31
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7498.27 689.16 4789.71 9897.14 8779.77 6799.56 5493.65 5397.94 5698.02 77
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22796.13 11984.65 13686.10 13997.65 6479.24 7299.75 3083.20 16796.88 8398.56 46
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15796.04 12784.68 13589.12 10798.37 2477.48 9899.74 3293.31 5998.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IB-MVS85.34 488.67 12787.14 14793.26 6893.12 18684.32 7198.76 1797.27 1887.19 8979.36 21490.45 22183.92 4298.53 11584.41 14769.79 29196.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune85.48 18582.90 20793.24 6994.51 14885.82 3979.22 34996.97 3161.19 34987.33 12853.01 36590.58 696.07 22486.07 13697.23 7697.81 97
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6896.50 8785.00 12891.05 8297.74 5778.38 8399.80 2490.48 9098.34 4698.07 75
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1496.59 7789.50 4394.18 4498.36 2583.68 4499.45 6294.77 3998.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs_mvgpermissive91.13 7990.45 8193.17 7292.99 19183.58 8497.46 8394.56 20787.69 7587.19 13094.98 15174.50 15297.60 15191.88 7692.79 13198.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
新几何193.12 7397.44 7881.60 12396.71 5974.54 29491.22 8097.57 6779.13 7499.51 5877.40 21798.46 3898.26 65
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8197.18 2277.06 27784.64 15497.98 4683.98 4199.52 5690.72 8797.33 7399.23 21
Effi-MVS+90.70 8789.90 9693.09 7593.61 16883.48 8695.20 21792.79 28283.22 17191.82 6995.70 12471.82 18197.48 16491.25 7993.67 12198.32 58
test_prior93.09 7598.68 2681.91 11196.40 9999.06 9098.29 62
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 9096.38 10284.71 13490.90 8597.40 7777.55 9799.76 2589.75 10297.74 6197.72 102
thisisatest051590.95 8390.26 8593.01 7894.03 16284.27 7397.91 4996.67 6483.18 17286.87 13395.51 13288.66 1697.85 14380.46 18489.01 16096.92 143
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7296.70 6085.20 12391.75 7097.97 4878.47 8299.71 3690.95 8198.41 4198.12 73
ET-MVSNet_ETH3D90.01 10089.03 10692.95 8094.38 15086.77 2898.14 3496.31 10889.30 4563.33 33096.72 10790.09 1193.63 31190.70 8882.29 21998.46 51
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18495.98 12990.76 2683.76 16596.76 10473.24 16799.71 3691.67 7796.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline188.85 12287.49 13792.93 8295.21 12586.85 2795.47 20594.61 20487.29 8483.11 17294.99 15080.70 5796.89 19682.28 17373.72 26695.05 188
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8896.78 4492.20 1597.11 1198.29 2693.46 199.10 8896.01 2599.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27696.33 10687.92 6990.20 9498.18 3076.71 11199.76 2592.57 6998.09 5197.96 87
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7696.51 8585.22 12191.94 6897.98 4677.26 10099.67 4390.83 8598.37 4498.18 67
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7296.69 6285.20 12391.57 7297.92 4977.01 10599.67 4390.95 8198.41 4198.00 82
baseline90.76 8690.10 9092.74 8792.90 19482.56 9994.60 23594.56 20787.69 7589.06 10995.67 12673.76 16097.51 16190.43 9492.23 14098.16 69
thres20088.92 11987.65 13092.73 8896.30 9685.62 4397.85 5298.86 184.38 14484.82 15093.99 17275.12 14398.01 13570.86 27286.67 17994.56 198
PVSNet82.34 989.02 11687.79 12892.71 8995.49 11781.50 12497.70 6497.29 1787.76 7385.47 14395.12 14556.90 27998.90 10180.33 18594.02 11597.71 104
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5895.87 13788.26 6286.39 13593.94 17376.77 10999.27 7188.80 11394.00 11796.31 164
test250690.96 8290.39 8292.65 9193.54 17182.46 10396.37 16297.35 1686.78 9787.55 12595.25 13577.83 9397.50 16284.07 15094.80 10797.98 84
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7497.83 5477.24 10299.59 4990.46 9198.07 5298.02 77
X-MVStestdata86.26 17184.14 19092.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7420.73 37677.24 10299.59 4990.46 9198.07 5298.02 77
casdiffmvspermissive90.95 8390.39 8292.63 9292.82 19582.53 10096.83 13294.47 21287.69 7588.47 11595.56 13174.04 15797.54 15890.90 8492.74 13297.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas86.50 16684.48 18392.55 9592.64 20085.95 3597.04 11795.07 17775.32 28780.50 20191.02 21154.33 29797.98 13686.79 13487.62 17393.71 211
tfpn200view988.48 13287.15 14592.47 9696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18694.17 200
114514_t88.79 12587.57 13592.45 9798.21 5381.74 11996.99 11895.45 15875.16 28982.48 17695.69 12568.59 20398.50 11680.33 18595.18 10497.10 137
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 17093.62 25687.79 7290.40 9295.93 11873.44 16597.42 16693.62 5492.55 13497.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9396.20 11585.63 11290.53 8997.66 6078.14 8799.70 3892.12 7298.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary88.81 12387.61 13492.39 10099.33 479.95 15696.70 14495.58 14977.51 26983.05 17396.69 10861.90 24599.72 3584.29 14893.47 12497.50 119
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2796.40 9984.75 13190.48 9198.09 3777.40 9999.21 7591.15 8098.23 5097.92 88
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2697.21 2092.58 1297.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
thres100view90088.30 13886.95 15192.33 10296.10 10384.90 6397.14 10798.85 282.69 18683.41 16793.66 17875.43 13497.93 13769.04 28086.24 18694.17 200
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21197.27 1883.83 16090.89 8697.78 5676.12 12099.56 5488.82 11297.93 5897.66 107
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4795.21 17289.77 4193.11 5596.83 10077.23 10497.50 16295.74 3095.38 10397.44 122
thres40088.42 13587.15 14592.23 10696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18693.45 215
VDDNet86.44 16784.51 18192.22 10791.56 23181.83 11597.10 11394.64 20269.50 32787.84 12395.19 14048.01 31397.92 14289.82 10186.92 17796.89 144
EPMVS87.47 15585.90 16192.18 10895.41 11982.26 10787.00 32596.28 10985.88 10984.23 15685.57 29275.07 14496.26 21971.14 27092.50 13598.03 76
FA-MVS(test-final)87.71 15186.23 15892.17 10994.19 15580.55 14287.16 32496.07 12582.12 19585.98 14088.35 24872.04 18098.49 11780.26 18789.87 15397.48 121
thres600view788.06 14386.70 15592.15 11096.10 10385.17 5697.14 10798.85 282.70 18583.41 16793.66 17875.43 13497.82 14467.13 29085.88 19093.45 215
PCF-MVS84.09 586.77 16485.00 17592.08 11192.06 22283.07 9392.14 28494.47 21279.63 23976.90 23694.78 15471.15 18899.20 7972.87 25691.05 14893.98 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9496.09 12285.12 12588.45 11697.66 6075.53 13099.68 4189.83 10098.02 5597.88 89
VDD-MVS88.28 13987.02 15092.06 11395.09 12880.18 15497.55 7594.45 21483.09 17589.10 10895.92 12047.97 31498.49 11793.08 6486.91 17897.52 118
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14696.87 3888.20 6389.19 10697.55 7178.69 8199.14 8490.29 9790.94 14995.80 173
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23193.86 24186.91 9391.33 7796.76 10485.20 3298.06 13496.90 1997.60 6498.27 64
1112_ss88.60 13087.47 13992.00 11693.21 18080.97 13296.47 15492.46 28583.64 16680.86 19897.30 8180.24 6297.62 15077.60 21285.49 19497.40 125
PatchmatchNetpermissive86.83 16285.12 17391.95 11794.12 15782.27 10686.55 32995.64 14784.59 13882.98 17484.99 30477.26 10095.96 23368.61 28491.34 14797.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res88.03 14486.73 15391.94 11893.15 18380.88 13496.44 15792.41 28783.59 16880.74 20091.16 20980.18 6397.59 15277.48 21585.40 19597.36 127
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11895.73 14382.07 19689.50 10597.19 8675.59 12998.93 10090.91 8397.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_anonymous88.68 12687.62 13391.86 12094.80 13881.69 12193.53 26094.92 18282.03 19778.87 21890.43 22275.77 12595.34 26685.04 14393.16 12898.55 48
MAR-MVS90.63 8890.22 8691.86 12098.47 4278.20 20997.18 10196.61 7383.87 15988.18 12198.18 3068.71 20299.75 3083.66 16197.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521184.41 20181.93 22091.85 12296.78 9378.41 19997.44 8491.34 30370.29 32384.06 15794.26 16441.09 33898.96 9579.46 19582.65 21798.17 68
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14595.76 14182.19 19491.97 6798.07 4176.44 11398.64 10993.71 5297.27 7598.45 52
FE-MVS86.06 17484.15 18991.78 12494.33 15279.81 15984.58 33796.61 7376.69 27985.00 14787.38 26170.71 19498.37 12570.39 27591.70 14597.17 135
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15496.83 4187.92 6988.30 12097.36 7877.84 9299.13 8689.43 10789.45 15695.37 183
CNLPA86.96 15885.37 16791.72 12697.59 7279.34 17597.21 9791.05 30874.22 29578.90 21696.75 10667.21 21098.95 9774.68 24290.77 15096.88 145
ECVR-MVScopyleft88.35 13787.25 14391.65 12793.54 17179.40 17296.56 15090.78 31386.78 9785.57 14295.25 13557.25 27797.56 15484.73 14694.80 10797.98 84
RPMNet79.85 26175.92 28091.64 12890.16 25679.75 16279.02 35195.44 15958.43 35882.27 18372.55 35573.03 16898.41 12446.10 35986.25 18496.75 151
ACMMPcopyleft90.39 9389.97 9291.64 12897.58 7378.21 20896.78 13796.72 5884.73 13384.72 15297.23 8471.22 18799.63 4688.37 11992.41 13797.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HyFIR lowres test89.36 11088.60 11491.63 13094.91 13680.76 13795.60 20195.53 15182.56 18984.03 15891.24 20878.03 8896.81 20287.07 13188.41 16897.32 128
SCA85.63 18183.64 19691.60 13192.30 20881.86 11492.88 27695.56 15084.85 12982.52 17585.12 30258.04 26895.39 26373.89 25087.58 17597.54 114
thisisatest053089.65 10589.02 10791.53 13293.46 17780.78 13696.52 15196.67 6481.69 20183.79 16494.90 15288.85 1597.68 14877.80 20787.49 17696.14 167
BH-RMVSNet86.84 16185.28 16891.49 13395.35 12180.26 15196.95 12592.21 28982.86 18381.77 19195.46 13359.34 25997.64 14969.79 27893.81 12096.57 155
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17696.77 5088.49 5788.64 11497.07 9272.33 17599.19 8093.13 6396.48 9196.43 158
test111188.11 14287.04 14991.35 13593.15 18378.79 19096.57 14890.78 31386.88 9585.04 14695.20 13957.23 27897.39 16983.88 15394.59 10997.87 91
TESTMET0.1,189.83 10289.34 10391.31 13692.54 20280.19 15397.11 11096.57 7986.15 10286.85 13491.83 20079.32 6996.95 19281.30 17892.35 13896.77 149
tpmrst88.36 13687.38 14191.31 13694.36 15179.92 15787.32 32295.26 17185.32 11888.34 11886.13 28680.60 5896.70 20683.78 15585.34 19797.30 130
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31896.17 11885.94 10787.27 12994.31 16290.27 995.65 25294.04 4995.86 9995.53 179
UGNet87.73 15086.55 15691.27 13995.16 12779.11 18196.35 16496.23 11288.14 6487.83 12490.48 22050.65 30499.09 8980.13 19094.03 11495.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive88.67 12787.82 12791.24 14092.68 19678.82 18796.95 12593.85 24287.55 7887.07 13295.13 14463.43 23397.21 17977.58 21396.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20791.28 7997.42 7677.92 9198.98 9479.85 19398.51 3496.59 154
iter_conf0590.14 9889.79 9891.17 14295.85 10986.93 2697.68 6688.67 33489.93 3881.73 19292.80 18690.37 896.03 22590.44 9380.65 22590.56 231
CostFormer89.08 11588.39 11891.15 14393.13 18579.15 18088.61 31296.11 12183.14 17389.58 10286.93 27083.83 4396.87 19888.22 12085.92 18997.42 123
CDS-MVSNet89.50 10888.96 10991.14 14491.94 22780.93 13397.09 11495.81 13984.26 14884.72 15294.20 16780.31 6095.64 25383.37 16688.96 16196.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS81.47 24678.28 26291.04 14598.14 5578.48 19595.09 22686.97 34061.14 35071.12 29392.78 18959.59 25599.38 6553.11 34586.61 18095.27 187
HPM-MVS_fast90.38 9590.17 8991.03 14697.61 7077.35 23297.15 10695.48 15579.51 24188.79 11196.90 9671.64 18498.81 10587.01 13297.44 6996.94 140
GA-MVS85.79 17984.04 19191.02 14789.47 26980.27 15096.90 12994.84 18885.57 11380.88 19789.08 23656.56 28396.47 21377.72 21085.35 19696.34 161
baseline290.39 9390.21 8790.93 14890.86 24480.99 13195.20 21797.41 1586.03 10680.07 21094.61 15790.58 697.47 16587.29 12889.86 15494.35 199
Fast-Effi-MVS+87.93 14786.94 15290.92 14994.04 16079.16 17998.26 3093.72 25281.29 20483.94 16292.90 18569.83 19996.68 20776.70 22391.74 14496.93 141
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1894.73 19490.36 3494.84 3597.89 5077.94 8997.15 18594.28 4797.80 6098.70 40
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16795.52 15379.82 23591.03 8397.88 5174.70 14798.54 11492.11 7396.89 8297.77 99
nrg03086.79 16385.43 16590.87 15288.76 27485.34 4797.06 11694.33 21984.31 14580.45 20391.98 19572.36 17496.36 21688.48 11771.13 27890.93 228
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5275.76 12698.61 11091.99 7496.79 8697.75 100
Anonymous2024052983.15 22080.60 23990.80 15395.74 11178.27 20396.81 13594.92 18260.10 35481.89 18992.54 19045.82 32298.82 10479.25 19878.32 24895.31 185
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4395.34 16789.19 4688.90 11097.28 8377.56 9697.73 14790.77 8696.86 8598.20 66
OMC-MVS88.80 12488.16 12290.72 15695.30 12277.92 21894.81 23294.51 20986.80 9684.97 14896.85 9967.53 20698.60 11185.08 14287.62 17395.63 176
FMVSNet384.71 19582.71 21090.70 15794.55 14387.71 1995.92 18694.67 19881.73 20075.82 25788.08 25366.99 21194.47 29671.23 26775.38 25989.91 247
tpm287.35 15686.26 15790.62 15892.93 19378.67 19288.06 31795.99 12879.33 24487.40 12686.43 28180.28 6196.40 21480.23 18885.73 19396.79 147
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4294.40 21687.44 8092.99 5897.11 9074.59 15196.87 19893.75 5197.08 7897.11 136
TAMVS88.48 13287.79 12890.56 16091.09 23979.18 17896.45 15695.88 13583.64 16683.12 17193.33 18075.94 12395.74 24882.40 17288.27 16996.75 151
BH-w/o88.24 14087.47 13990.54 16195.03 13378.54 19497.41 8993.82 24384.08 15078.23 22494.51 16069.34 20197.21 17980.21 18994.58 11095.87 172
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2494.93 18189.32 4494.54 4097.67 5978.91 7697.02 18993.80 5097.32 7498.49 49
TR-MVS86.30 17084.93 17790.42 16394.63 14177.58 22796.57 14893.82 24380.30 22582.42 17895.16 14258.74 26397.55 15674.88 24087.82 17296.13 168
iter_conf_final89.51 10789.21 10490.39 16495.60 11484.44 6997.22 9589.09 32789.11 4882.07 18692.80 18687.03 2596.03 22589.10 11080.89 22290.70 229
tpm cat183.63 21281.38 22890.39 16493.53 17678.19 21085.56 33595.09 17570.78 32178.51 22183.28 31774.80 14697.03 18866.77 29184.05 20295.95 169
h-mvs3389.30 11288.95 11090.36 16695.07 13076.04 25296.96 12497.11 2590.39 3292.22 6495.10 14674.70 14798.86 10293.14 6165.89 32396.16 166
PVSNet_BlendedMVS90.05 9989.96 9390.33 16797.47 7683.86 7798.02 4696.73 5687.98 6789.53 10389.61 23376.42 11499.57 5294.29 4579.59 23287.57 300
dp84.30 20382.31 21590.28 16894.24 15477.97 21486.57 32895.53 15179.94 23480.75 19985.16 30071.49 18696.39 21563.73 30783.36 20796.48 157
UA-Net88.92 11988.48 11790.24 16994.06 15977.18 23693.04 27294.66 19987.39 8291.09 8193.89 17474.92 14598.18 13375.83 23391.43 14695.35 184
MVSTER89.25 11488.92 11190.24 16995.98 10684.66 6696.79 13695.36 16487.19 8980.33 20590.61 21990.02 1295.97 23085.38 14178.64 24190.09 243
IS-MVSNet88.67 12788.16 12290.20 17193.61 16876.86 24096.77 13993.07 27884.02 15283.62 16695.60 12974.69 15096.24 22178.43 20693.66 12297.49 120
testdata90.13 17295.92 10774.17 27496.49 9073.49 30394.82 3797.99 4478.80 7997.93 13783.53 16497.52 6698.29 62
CR-MVSNet83.53 21381.36 22990.06 17390.16 25679.75 16279.02 35191.12 30584.24 14982.27 18380.35 33175.45 13293.67 31063.37 31086.25 18496.75 151
VPNet84.69 19682.92 20690.01 17489.01 27383.45 8796.71 14295.46 15785.71 11179.65 21292.18 19356.66 28296.01 22983.05 17067.84 31190.56 231
BH-untuned86.95 15985.94 16089.99 17594.52 14577.46 22996.78 13793.37 26881.80 19976.62 24093.81 17766.64 21497.02 18976.06 23093.88 11995.48 181
test-LLR88.48 13287.98 12489.98 17692.26 21077.23 23497.11 11095.96 13083.76 16386.30 13791.38 20472.30 17696.78 20480.82 18191.92 14295.94 170
test-mter88.95 11788.60 11489.98 17692.26 21077.23 23497.11 11095.96 13085.32 11886.30 13791.38 20476.37 11696.78 20480.82 18191.92 14295.94 170
ADS-MVSNet81.26 24978.36 26189.96 17893.78 16479.78 16079.48 34793.60 25773.09 30680.14 20779.99 33462.15 24095.24 27259.49 32283.52 20494.85 190
PVSNet_077.72 1581.70 24378.95 25989.94 17990.77 24776.72 24395.96 18396.95 3385.01 12770.24 30088.53 24652.32 30098.20 13186.68 13544.08 36494.89 189
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1596.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
EPP-MVSNet89.76 10389.72 9989.87 18193.78 16476.02 25597.22 9596.51 8579.35 24385.11 14595.01 14984.82 3497.10 18787.46 12788.21 17096.50 156
tpmvs83.04 22380.77 23489.84 18295.43 11877.96 21585.59 33495.32 16875.31 28876.27 24883.70 31473.89 15897.41 16759.53 32181.93 22094.14 202
GeoE86.36 16885.20 16989.83 18393.17 18276.13 25097.53 7692.11 29079.58 24080.99 19694.01 17166.60 21596.17 22373.48 25489.30 15797.20 134
FMVSNet282.79 22780.44 24189.83 18392.66 19785.43 4695.42 20794.35 21779.06 25274.46 26987.28 26256.38 28594.31 29969.72 27974.68 26389.76 249
PLCcopyleft83.97 788.00 14587.38 14189.83 18398.02 5976.46 24597.16 10594.43 21579.26 24881.98 18796.28 11269.36 20099.27 7177.71 21192.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPA-MVSNet85.32 18683.83 19289.77 18690.25 25382.63 9896.36 16397.07 2783.03 17881.21 19589.02 23861.58 24696.31 21885.02 14470.95 28090.36 234
tttt051788.57 13188.19 12189.71 18793.00 18875.99 25695.67 19796.67 6480.78 21181.82 19094.40 16188.97 1497.58 15376.05 23186.31 18395.57 178
CLD-MVS87.97 14687.48 13889.44 18892.16 21780.54 14498.14 3494.92 18291.41 1979.43 21395.40 13462.34 23897.27 17790.60 8982.90 21390.50 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS83.84 20882.00 21989.35 18987.13 29481.38 12595.72 19594.26 22280.15 22975.92 25590.63 21861.96 24496.52 21178.98 20173.28 27190.14 239
CPTT-MVS89.72 10489.87 9789.29 19098.33 4773.30 28097.70 6495.35 16675.68 28587.40 12697.44 7570.43 19598.25 12989.56 10596.90 8196.33 163
MSDG80.62 25777.77 26689.14 19193.43 17877.24 23391.89 28790.18 31769.86 32668.02 30791.94 19852.21 30198.84 10359.32 32483.12 20891.35 223
TAPA-MVS81.61 1285.02 19183.67 19489.06 19296.79 9273.27 28295.92 18694.79 19274.81 29280.47 20296.83 10071.07 18998.19 13249.82 35392.57 13395.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D82.22 23779.94 25089.06 19297.43 7974.06 27693.20 27092.05 29161.90 34473.33 27795.21 13859.35 25899.21 7554.54 34192.48 13693.90 208
PatchMatch-RL85.00 19283.66 19589.02 19495.86 10874.55 27192.49 28093.60 25779.30 24679.29 21591.47 20258.53 26598.45 12170.22 27692.17 14194.07 205
HQP-MVS87.91 14887.55 13688.98 19592.08 21978.48 19597.63 6894.80 19090.52 2982.30 17994.56 15865.40 22197.32 17287.67 12583.01 21091.13 224
Vis-MVSNet (Re-imp)88.88 12188.87 11288.91 19693.89 16374.43 27296.93 12794.19 22584.39 14383.22 17095.67 12678.24 8594.70 29078.88 20294.40 11297.61 112
NR-MVSNet83.35 21581.52 22788.84 19788.76 27481.31 12794.45 23795.16 17384.65 13667.81 30890.82 21570.36 19694.87 28674.75 24166.89 32090.33 236
Patchmatch-test78.25 27574.72 28888.83 19891.20 23674.10 27573.91 36288.70 33359.89 35566.82 31485.12 30278.38 8394.54 29448.84 35579.58 23397.86 92
tpm85.55 18384.47 18488.80 19990.19 25575.39 26388.79 31094.69 19584.83 13083.96 16185.21 29878.22 8694.68 29176.32 22978.02 25096.34 161
HQP_MVS87.50 15487.09 14888.74 20091.86 22877.96 21597.18 10194.69 19589.89 3981.33 19394.15 16864.77 22797.30 17487.08 12982.82 21490.96 226
MIMVSNet79.18 27075.99 27988.72 20187.37 29380.66 13979.96 34691.82 29477.38 27174.33 27081.87 32341.78 33490.74 34166.36 29783.10 20994.76 192
FIs86.73 16586.10 15988.61 20290.05 25880.21 15296.14 17796.95 3385.56 11578.37 22392.30 19176.73 11095.28 27079.51 19479.27 23590.35 235
UniMVSNet (Re)85.31 18784.23 18788.55 20389.75 26280.55 14296.72 14096.89 3785.42 11678.40 22288.93 23975.38 13695.52 26078.58 20468.02 30889.57 251
PatchT79.75 26276.85 27388.42 20489.55 26775.49 26277.37 35594.61 20463.07 34082.46 17773.32 35375.52 13193.41 31551.36 34884.43 20096.36 159
WR-MVS84.32 20282.96 20588.41 20589.38 27180.32 14796.59 14796.25 11183.97 15476.63 23990.36 22367.53 20694.86 28775.82 23470.09 28990.06 245
GBi-Net82.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
test182.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
FMVSNet179.50 26676.54 27688.39 20688.47 27981.95 10894.30 24493.38 26573.14 30572.04 28985.66 28843.86 32593.84 30665.48 29972.53 27289.38 254
DU-MVS84.57 19883.33 20288.28 20988.76 27479.36 17396.43 15995.41 16385.42 11678.11 22590.82 21567.61 20495.14 27779.14 19968.30 30590.33 236
AUN-MVS86.25 17285.57 16388.26 21093.57 17073.38 27895.45 20695.88 13583.94 15685.47 14394.21 16673.70 16396.67 20883.54 16364.41 32794.73 196
hse-mvs288.22 14188.21 12088.25 21193.54 17173.41 27795.41 20895.89 13490.39 3292.22 6494.22 16574.70 14796.66 20993.14 6164.37 32894.69 197
v2v48283.46 21481.86 22188.25 21186.19 30479.65 16796.34 16594.02 23481.56 20277.32 23088.23 25065.62 21896.03 22577.77 20869.72 29389.09 264
UniMVSNet_NR-MVSNet85.49 18484.59 17988.21 21389.44 27079.36 17396.71 14296.41 9785.22 12178.11 22590.98 21376.97 10695.14 27779.14 19968.30 30590.12 240
miper_enhance_ethall85.95 17685.20 16988.19 21494.85 13779.76 16196.00 18194.06 23382.98 18077.74 22788.76 24179.42 6895.46 26280.58 18372.42 27389.36 257
OPM-MVS85.84 17785.10 17488.06 21588.34 28077.83 22295.72 19594.20 22487.89 7180.45 20394.05 17058.57 26497.26 17883.88 15382.76 21689.09 264
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS89.46 10989.92 9588.06 21594.64 14069.57 31696.22 17194.95 18087.27 8591.37 7696.54 11065.88 21797.39 16988.54 11493.89 11897.23 132
test_vis1_n_192089.95 10190.59 7788.03 21792.36 20468.98 31999.12 694.34 21893.86 893.64 4997.01 9451.54 30299.59 4996.76 2196.71 8995.53 179
cl2285.11 19084.17 18887.92 21895.06 13278.82 18795.51 20394.22 22379.74 23776.77 23787.92 25575.96 12295.68 24979.93 19272.42 27389.27 258
TranMVSNet+NR-MVSNet83.24 21981.71 22387.83 21987.71 28878.81 18996.13 17994.82 18984.52 13976.18 25190.78 21764.07 23094.60 29274.60 24566.59 32290.09 243
pmmvs482.54 23180.79 23387.79 22086.11 30680.49 14693.55 25993.18 27477.29 27273.35 27689.40 23565.26 22495.05 28475.32 23773.61 26787.83 293
v114482.90 22681.27 23087.78 22186.29 30279.07 18496.14 17793.93 23680.05 23177.38 22886.80 27265.50 21995.93 23575.21 23870.13 28688.33 285
F-COLMAP84.50 20083.44 20187.67 22295.22 12472.22 28895.95 18493.78 24875.74 28476.30 24795.18 14159.50 25798.45 12172.67 25886.59 18192.35 221
FC-MVSNet-test85.96 17585.39 16687.66 22389.38 27178.02 21295.65 19996.87 3885.12 12577.34 22991.94 19876.28 11894.74 28977.09 21878.82 23990.21 238
tt080581.20 25179.06 25887.61 22486.50 29872.97 28593.66 25595.48 15574.11 29676.23 24991.99 19441.36 33797.40 16877.44 21674.78 26292.45 219
v119282.31 23680.55 24087.60 22585.94 30878.47 19895.85 19293.80 24679.33 24476.97 23586.51 27663.33 23495.87 23873.11 25570.13 28688.46 281
EI-MVSNet85.80 17885.20 16987.59 22691.55 23277.41 23095.13 22195.36 16480.43 22280.33 20594.71 15573.72 16195.97 23076.96 22178.64 24189.39 252
XVG-OURS85.18 18884.38 18587.59 22690.42 25271.73 29991.06 29794.07 23282.00 19883.29 16995.08 14756.42 28497.55 15683.70 16083.42 20693.49 214
V4283.04 22381.53 22687.57 22886.27 30379.09 18395.87 19094.11 23080.35 22477.22 23286.79 27365.32 22396.02 22877.74 20970.14 28587.61 299
v14419282.43 23280.73 23687.54 22985.81 31178.22 20595.98 18293.78 24879.09 25177.11 23386.49 27764.66 22995.91 23674.20 24869.42 29488.49 279
miper_ehance_all_eth84.57 19883.60 19887.50 23092.64 20078.25 20495.40 20993.47 26179.28 24776.41 24487.64 25876.53 11295.24 27278.58 20472.42 27389.01 269
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25471.45 30291.29 29494.09 23181.37 20383.90 16395.22 13760.30 25297.53 16085.58 13984.42 20193.50 213
v192192082.02 24080.23 24487.41 23285.62 31377.92 21895.79 19493.69 25378.86 25576.67 23886.44 27962.50 23795.83 24072.69 25769.77 29288.47 280
Anonymous2023121179.72 26377.19 27087.33 23395.59 11577.16 23795.18 22094.18 22659.31 35672.57 28586.20 28547.89 31695.66 25074.53 24669.24 29789.18 260
v881.88 24180.06 24887.32 23486.63 29779.04 18594.41 23893.65 25578.77 25673.19 27985.57 29266.87 21295.81 24173.84 25267.61 31387.11 307
IterMVS-LS83.93 20682.80 20987.31 23591.46 23577.39 23195.66 19893.43 26380.44 22075.51 26187.26 26473.72 16195.16 27676.99 21970.72 28289.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124081.70 24379.83 25287.30 23685.50 31477.70 22695.48 20493.44 26278.46 26076.53 24186.44 27960.85 24995.84 23971.59 26470.17 28488.35 284
c3_l83.80 20982.65 21187.25 23792.10 21877.74 22595.25 21493.04 27978.58 25876.01 25287.21 26675.25 14195.11 27977.54 21468.89 29988.91 275
UniMVSNet_ETH3D80.86 25578.75 26087.22 23886.31 30172.02 29391.95 28593.76 25173.51 30175.06 26690.16 22743.04 33195.66 25076.37 22878.55 24593.98 206
v1081.43 24779.53 25487.11 23986.38 29978.87 18694.31 24393.43 26377.88 26473.24 27885.26 29665.44 22095.75 24572.14 26167.71 31286.72 311
ACMH75.40 1777.99 27774.96 28487.10 24090.67 24876.41 24693.19 27191.64 29872.47 31263.44 32987.61 25943.34 32897.16 18258.34 32673.94 26587.72 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba85.17 18984.54 18087.05 24187.94 28575.11 26696.22 17187.79 33886.91 9378.55 22091.77 20164.93 22695.91 23686.94 13379.80 22890.12 240
v14882.41 23580.89 23286.99 24286.18 30576.81 24196.27 16893.82 24380.49 21975.28 26486.11 28767.32 20995.75 24575.48 23667.03 31988.42 283
EPNet_dtu87.65 15287.89 12586.93 24394.57 14271.37 30396.72 14096.50 8788.56 5687.12 13195.02 14875.91 12494.01 30466.62 29290.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl____83.27 21782.12 21686.74 24492.20 21375.95 25795.11 22393.27 27178.44 26174.82 26787.02 26974.19 15595.19 27474.67 24369.32 29589.09 264
DIV-MVS_self_test83.27 21782.12 21686.74 24492.19 21475.92 25995.11 22393.26 27278.44 26174.81 26887.08 26874.19 15595.19 27474.66 24469.30 29689.11 263
PS-MVSNAJss84.91 19384.30 18686.74 24485.89 31074.40 27394.95 22894.16 22783.93 15776.45 24390.11 22971.04 19095.77 24383.16 16879.02 23890.06 245
pmmvs581.34 24879.54 25386.73 24785.02 32176.91 23896.22 17191.65 29777.65 26773.55 27388.61 24355.70 28894.43 29774.12 24973.35 27088.86 276
MS-PatchMatch83.05 22281.82 22286.72 24889.64 26579.10 18294.88 23094.59 20679.70 23870.67 29689.65 23250.43 30696.82 20170.82 27495.99 9884.25 335
eth_miper_zixun_eth83.12 22182.01 21886.47 24991.85 23074.80 26894.33 24293.18 27479.11 25075.74 26087.25 26572.71 17095.32 26876.78 22267.13 31789.27 258
LPG-MVS_test84.20 20483.49 20086.33 25090.88 24273.06 28395.28 21194.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
LGP-MVS_train86.33 25090.88 24273.06 28394.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
ACMP81.66 1184.00 20583.22 20486.33 25091.53 23472.95 28695.91 18893.79 24783.70 16573.79 27292.22 19254.31 29896.89 19683.98 15179.74 23189.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tfpnnormal78.14 27675.42 28286.31 25388.33 28179.24 17694.41 23896.22 11373.51 30169.81 30285.52 29455.43 28995.75 24547.65 35767.86 31083.95 338
ACMM80.70 1383.72 21182.85 20886.31 25391.19 23772.12 29195.88 18994.29 22180.44 22077.02 23491.96 19655.24 29197.14 18679.30 19780.38 22689.67 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6482.13 23880.76 23586.24 25585.78 31275.03 26794.40 24182.62 35883.12 17476.46 24290.96 21453.83 29994.55 29381.04 18078.60 24489.14 262
pm-mvs180.05 26078.02 26486.15 25685.42 31575.81 26095.11 22392.69 28477.13 27470.36 29887.43 26058.44 26695.27 27171.36 26664.25 32987.36 305
ppachtmachnet_test77.19 28574.22 29386.13 25785.39 31678.22 20593.98 25191.36 30271.74 31767.11 31184.87 30556.67 28193.37 31652.21 34664.59 32686.80 310
D2MVS82.67 22981.55 22586.04 25887.77 28776.47 24495.21 21696.58 7882.66 18770.26 29985.46 29560.39 25195.80 24276.40 22779.18 23685.83 325
USDC78.65 27276.25 27785.85 25987.58 28974.60 27089.58 30490.58 31684.05 15163.13 33188.23 25040.69 34196.86 20066.57 29475.81 25786.09 321
KD-MVS_2432*160077.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
miper_refine_blended77.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
RRT_MVS83.88 20783.27 20385.71 26287.53 29272.12 29195.35 21094.33 21983.81 16175.86 25691.28 20760.55 25095.09 28283.93 15276.76 25389.90 248
ADS-MVSNet279.57 26577.53 26785.71 26293.78 16472.13 29079.48 34786.11 34673.09 30680.14 20779.99 33462.15 24090.14 34659.49 32283.52 20494.85 190
mvsany_test187.58 15388.22 11985.67 26489.78 26167.18 32695.25 21487.93 33683.96 15588.79 11197.06 9372.52 17294.53 29592.21 7186.45 18295.30 186
Patchmtry77.36 28474.59 28985.67 26489.75 26275.75 26177.85 35491.12 30560.28 35271.23 29180.35 33175.45 13293.56 31257.94 32767.34 31687.68 296
test_fmvs187.79 14988.52 11685.62 26692.98 19264.31 33397.88 5192.42 28687.95 6892.24 6395.82 12147.94 31598.44 12395.31 3694.09 11394.09 204
MVP-Stereo82.65 23081.67 22485.59 26786.10 30778.29 20293.33 26492.82 28177.75 26669.17 30687.98 25459.28 26095.76 24471.77 26296.88 8382.73 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Fast-Effi-MVS+-dtu83.33 21682.60 21285.50 26889.55 26769.38 31796.09 18091.38 30082.30 19175.96 25491.41 20356.71 28095.58 25875.13 23984.90 19991.54 222
our_test_377.90 27975.37 28385.48 26985.39 31676.74 24293.63 25691.67 29673.39 30465.72 32184.65 30758.20 26793.13 31857.82 32867.87 30986.57 314
test_vis1_n85.60 18285.70 16285.33 27084.79 32364.98 33196.83 13291.61 29987.36 8391.00 8494.84 15336.14 34697.18 18195.66 3193.03 12993.82 209
v7n79.32 26977.34 26885.28 27184.05 33272.89 28793.38 26293.87 24075.02 29170.68 29584.37 30859.58 25695.62 25567.60 28667.50 31487.32 306
IterMVS80.67 25679.16 25685.20 27289.79 26076.08 25192.97 27491.86 29380.28 22671.20 29285.14 30157.93 27191.34 33572.52 25970.74 28188.18 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs1_n86.34 16986.72 15485.17 27387.54 29163.64 33896.91 12892.37 28887.49 7991.33 7795.58 13040.81 34098.46 12095.00 3893.49 12393.41 217
ACMH+76.62 1677.47 28374.94 28585.05 27491.07 24071.58 30193.26 26890.01 31871.80 31664.76 32488.55 24441.62 33596.48 21262.35 31371.00 27987.09 308
jajsoiax82.12 23981.15 23185.03 27584.19 32970.70 30594.22 24893.95 23583.07 17673.48 27489.75 23149.66 30995.37 26582.24 17479.76 22989.02 268
mvs_tets81.74 24280.71 23784.84 27684.22 32870.29 30893.91 25293.78 24882.77 18473.37 27589.46 23447.36 31995.31 26981.99 17579.55 23488.92 274
LTVRE_ROB73.68 1877.99 27775.74 28184.74 27790.45 25172.02 29386.41 33091.12 30572.57 31166.63 31687.27 26354.95 29496.98 19156.29 33675.98 25485.21 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.51 25879.10 25784.73 27889.63 26674.66 26992.98 27391.81 29580.05 23171.06 29485.18 29958.04 26891.40 33472.48 26070.70 28388.12 289
Baseline_NR-MVSNet81.22 25080.07 24784.68 27985.32 31975.12 26596.48 15388.80 33076.24 28377.28 23186.40 28267.61 20494.39 29875.73 23566.73 32184.54 332
miper_lstm_enhance81.66 24580.66 23884.67 28091.19 23771.97 29591.94 28693.19 27377.86 26572.27 28785.26 29673.46 16493.42 31473.71 25367.05 31888.61 277
test_djsdf83.00 22582.45 21484.64 28184.07 33169.78 31394.80 23394.48 21080.74 21275.41 26387.70 25761.32 24895.10 28083.77 15679.76 22989.04 267
TransMVSNet (Re)76.94 28774.38 29184.62 28285.92 30975.25 26495.28 21189.18 32673.88 29967.22 30986.46 27859.64 25494.10 30259.24 32552.57 35384.50 333
Patchmatch-RL test76.65 28974.01 29684.55 28377.37 35364.23 33478.49 35382.84 35778.48 25964.63 32573.40 35276.05 12191.70 33376.99 21957.84 34297.72 102
AllTest75.92 29273.06 29984.47 28492.18 21567.29 32491.07 29684.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
TestCases84.47 28492.18 21567.29 32484.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
MVS-HIRNet71.36 31467.00 31984.46 28690.58 24969.74 31479.15 35087.74 33946.09 36261.96 33750.50 36645.14 32395.64 25353.74 34388.11 17188.00 291
JIA-IIPM79.00 27177.20 26984.40 28789.74 26464.06 33675.30 35995.44 15962.15 34381.90 18859.08 36378.92 7595.59 25766.51 29585.78 19293.54 212
LCM-MVSNet-Re83.75 21083.54 19984.39 28893.54 17164.14 33592.51 27984.03 35383.90 15866.14 31986.59 27567.36 20892.68 31984.89 14592.87 13096.35 160
anonymousdsp80.98 25479.97 24984.01 28981.73 33970.44 30792.49 28093.58 25977.10 27672.98 28186.31 28357.58 27294.90 28579.32 19678.63 24386.69 312
COLMAP_ROBcopyleft73.24 1975.74 29473.00 30083.94 29092.38 20369.08 31891.85 28886.93 34161.48 34765.32 32290.27 22442.27 33396.93 19550.91 35075.63 25885.80 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE79.38 26877.90 26583.81 29184.98 32267.14 32889.03 30893.18 27480.26 22872.87 28288.15 25238.55 34296.26 21976.05 23178.05 24988.02 290
CP-MVSNet81.01 25380.08 24683.79 29287.91 28670.51 30694.29 24795.65 14680.83 21072.54 28688.84 24063.71 23192.32 32368.58 28568.36 30488.55 278
WR-MVS_H81.02 25280.09 24583.79 29288.08 28471.26 30494.46 23696.54 8280.08 23072.81 28386.82 27170.36 19692.65 32064.18 30467.50 31487.46 304
test0.0.03 182.79 22782.48 21383.74 29486.81 29672.22 28896.52 15195.03 17883.76 16373.00 28093.20 18172.30 17688.88 34864.15 30577.52 25190.12 240
Effi-MVS+-dtu84.61 19784.90 17883.72 29591.96 22563.14 34094.95 22893.34 26985.57 11379.79 21187.12 26761.99 24395.61 25683.55 16285.83 19192.41 220
EG-PatchMatch MVS74.92 29772.02 30383.62 29683.76 33573.28 28193.62 25792.04 29268.57 32958.88 34683.80 31331.87 35695.57 25956.97 33478.67 24082.00 349
MVS_030478.43 27376.70 27483.60 29788.22 28269.81 31292.91 27595.10 17472.32 31378.71 21980.29 33333.78 35293.37 31668.77 28380.23 22787.63 297
pmmvs674.65 29971.67 30483.60 29779.13 34769.94 31093.31 26790.88 31261.05 35165.83 32084.15 31143.43 32794.83 28866.62 29260.63 33886.02 322
PS-CasMVS80.27 25979.18 25583.52 29987.56 29069.88 31194.08 25095.29 16980.27 22772.08 28888.51 24759.22 26192.23 32567.49 28768.15 30788.45 282
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 34371.82 29793.60 25888.22 33562.37 34261.98 33683.15 31835.31 35095.47 26145.08 36075.88 25682.82 341
FMVSNet576.46 29074.16 29483.35 30190.05 25876.17 24989.58 30489.85 31971.39 31965.29 32380.42 33050.61 30587.70 35361.05 31969.24 29786.18 319
PEN-MVS79.47 26778.26 26383.08 30286.36 30068.58 32093.85 25394.77 19379.76 23671.37 29088.55 24459.79 25392.46 32164.50 30365.40 32488.19 287
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32471.85 29691.74 29091.32 30467.63 33046.73 36081.09 32855.11 29290.42 34455.91 33859.76 33986.31 317
YYNet173.53 30470.43 31082.85 30484.52 32671.73 29991.69 29191.37 30167.63 33046.79 35981.21 32755.04 29390.43 34355.93 33759.70 34086.38 316
TinyColmap72.41 30968.99 31782.68 30588.11 28369.59 31588.41 31385.20 34865.55 33657.91 34984.82 30630.80 35895.94 23451.38 34768.70 30082.49 346
CVMVSNet84.83 19485.57 16382.63 30691.55 23260.38 34895.13 22195.03 17880.60 21582.10 18594.71 15566.40 21690.19 34574.30 24790.32 15197.31 129
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35773.38 27889.39 30789.43 32372.69 31060.34 34377.79 34046.43 32191.26 33766.42 29657.06 34382.51 344
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32179.99 23369.37 30491.30 20641.60 33695.33 26762.86 31274.63 26486.24 318
DTE-MVSNet78.37 27477.06 27182.32 30985.22 32067.17 32793.40 26193.66 25478.71 25770.53 29788.29 24959.06 26292.23 32561.38 31763.28 33387.56 301
test_040272.68 30869.54 31482.09 31088.67 27771.81 29892.72 27886.77 34361.52 34662.21 33583.91 31243.22 32993.76 30934.60 36572.23 27680.72 353
MDA-MVSNet-bldmvs71.45 31367.94 31881.98 31185.33 31868.50 32192.35 28388.76 33170.40 32242.99 36181.96 32246.57 32091.31 33648.75 35654.39 34786.11 320
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 35166.33 32987.24 32393.89 23980.38 22357.90 35081.59 32442.91 33290.56 34265.18 30148.51 35887.01 309
SixPastTwentyTwo76.04 29174.32 29281.22 31384.54 32561.43 34691.16 29589.30 32577.89 26364.04 32686.31 28348.23 31194.29 30063.54 30963.84 33187.93 292
RPSCF77.73 28076.63 27581.06 31488.66 27855.76 35887.77 31987.88 33764.82 33974.14 27192.79 18849.22 31096.81 20267.47 28876.88 25290.62 230
UnsupCasMVSNet_bld68.60 32164.50 32580.92 31574.63 36067.80 32283.97 33992.94 28065.12 33854.63 35568.23 35935.97 34792.17 32760.13 32044.83 36282.78 342
CL-MVSNet_self_test75.81 29374.14 29580.83 31678.33 34967.79 32394.22 24893.52 26077.28 27369.82 30181.54 32561.47 24789.22 34757.59 33053.51 34985.48 327
OurMVSNet-221017-077.18 28676.06 27880.55 31783.78 33460.00 35090.35 30091.05 30877.01 27866.62 31787.92 25547.73 31794.03 30371.63 26368.44 30387.62 298
Anonymous2023120675.29 29673.64 29780.22 31880.75 34063.38 33993.36 26390.71 31573.09 30667.12 31083.70 31450.33 30790.85 34053.63 34470.10 28886.44 315
lessismore_v079.98 31980.59 34258.34 35380.87 36058.49 34783.46 31643.10 33093.89 30563.11 31148.68 35787.72 294
K. test v373.62 30171.59 30579.69 32082.98 33659.85 35190.85 29988.83 32977.13 27458.90 34582.11 32143.62 32691.72 33265.83 29854.10 34887.50 303
TDRefinement69.20 31965.78 32379.48 32166.04 36762.21 34288.21 31486.12 34562.92 34161.03 34185.61 29133.23 35394.16 30155.82 33953.02 35182.08 348
testgi74.88 29873.40 29879.32 32280.13 34461.75 34393.21 26986.64 34479.49 24266.56 31891.06 21035.51 34988.67 34956.79 33571.25 27787.56 301
CMPMVSbinary54.94 2175.71 29574.56 29079.17 32379.69 34555.98 35589.59 30393.30 27060.28 35253.85 35689.07 23747.68 31896.33 21776.55 22481.02 22185.22 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs279.59 26479.90 25178.67 32482.86 33755.82 35795.20 21789.55 32181.09 20680.12 20989.80 23034.31 35193.51 31387.82 12278.36 24786.69 312
test_vis1_rt73.96 30072.40 30278.64 32583.91 33361.16 34795.63 20068.18 37176.32 28060.09 34474.77 34729.01 36097.54 15887.74 12375.94 25577.22 357
Anonymous2024052172.06 31269.91 31278.50 32677.11 35461.67 34591.62 29390.97 31065.52 33762.37 33479.05 33736.32 34590.96 33957.75 32968.52 30282.87 340
MIMVSNet169.44 31766.65 32177.84 32776.48 35662.84 34187.42 32188.97 32866.96 33557.75 35179.72 33632.77 35585.83 35846.32 35863.42 33284.85 331
new-patchmatchnet68.85 32065.93 32277.61 32873.57 36263.94 33790.11 30288.73 33271.62 31855.08 35473.60 35140.84 33987.22 35551.35 34948.49 35981.67 352
LF4IMVS72.36 31070.82 30776.95 32979.18 34656.33 35486.12 33186.11 34669.30 32863.06 33286.66 27433.03 35492.25 32465.33 30068.64 30182.28 347
EU-MVSNet76.92 28876.95 27276.83 33084.10 33054.73 36091.77 28992.71 28372.74 30969.57 30388.69 24258.03 27087.43 35464.91 30270.00 29088.33 285
PM-MVS69.32 31866.93 32076.49 33173.60 36155.84 35685.91 33279.32 36474.72 29361.09 34078.18 33921.76 36391.10 33870.86 27256.90 34482.51 344
pmmvs365.75 32462.18 32776.45 33267.12 36664.54 33288.68 31185.05 34954.77 36157.54 35273.79 35029.40 35986.21 35755.49 34047.77 36078.62 355
ambc76.02 33368.11 36451.43 36164.97 36789.59 32060.49 34274.49 34917.17 36692.46 32161.50 31652.85 35284.17 336
test20.0372.36 31071.15 30675.98 33477.79 35059.16 35292.40 28289.35 32474.09 29761.50 33884.32 30948.09 31285.54 35950.63 35162.15 33683.24 339
KD-MVS_self_test70.97 31569.31 31575.95 33576.24 35955.39 35987.45 32090.94 31170.20 32462.96 33377.48 34144.01 32488.09 35061.25 31853.26 35084.37 334
DSMNet-mixed73.13 30672.45 30175.19 33677.51 35246.82 36585.09 33682.01 35967.61 33469.27 30581.33 32650.89 30386.28 35654.54 34183.80 20392.46 218
new_pmnet66.18 32363.18 32675.18 33776.27 35861.74 34483.79 34084.66 35056.64 35951.57 35771.85 35831.29 35787.93 35149.98 35262.55 33475.86 358
mvsany_test367.19 32265.34 32472.72 33863.08 36848.57 36383.12 34278.09 36572.07 31461.21 33977.11 34322.94 36287.78 35278.59 20351.88 35481.80 350
test_fmvs369.56 31669.19 31670.67 33969.01 36347.05 36490.87 29886.81 34271.31 32066.79 31577.15 34216.40 36783.17 36281.84 17662.51 33581.79 351
test_f64.01 32562.13 32869.65 34063.00 36945.30 37083.66 34180.68 36161.30 34855.70 35372.62 35414.23 36984.64 36069.84 27758.11 34179.00 354
EGC-MVSNET52.46 33247.56 33567.15 34181.98 33860.11 34982.54 34472.44 3690.11 3790.70 38074.59 34825.11 36183.26 36129.04 36761.51 33758.09 364
APD_test156.56 32853.58 33165.50 34267.93 36546.51 36777.24 35772.95 36838.09 36442.75 36275.17 34613.38 37082.78 36340.19 36354.53 34667.23 363
LCM-MVSNet52.52 33148.24 33465.35 34347.63 37841.45 37272.55 36383.62 35531.75 36637.66 36457.92 3649.19 37676.76 36649.26 35444.60 36377.84 356
PMMVS250.90 33346.31 33664.67 34455.53 37246.67 36677.30 35671.02 37040.89 36334.16 36759.32 3629.83 37576.14 36840.09 36428.63 37071.21 359
N_pmnet61.30 32660.20 32964.60 34584.32 32717.00 38391.67 29210.98 38261.77 34558.45 34878.55 33849.89 30891.83 33142.27 36263.94 33084.97 330
DeepMVS_CXcopyleft64.06 34678.53 34843.26 37168.11 37369.94 32538.55 36376.14 34518.53 36579.34 36443.72 36141.62 36769.57 361
test_method56.77 32754.53 33063.49 34776.49 35540.70 37375.68 35874.24 36719.47 37348.73 35871.89 35719.31 36465.80 37357.46 33147.51 36183.97 337
test_vis3_rt54.10 33051.04 33363.27 34858.16 37046.08 36984.17 33849.32 38156.48 36036.56 36549.48 3688.03 37791.91 33067.29 28949.87 35551.82 367
FPMVS55.09 32952.93 33261.57 34955.98 37140.51 37483.11 34383.41 35637.61 36534.95 36671.95 35614.40 36876.95 36529.81 36665.16 32567.25 362
ANet_high46.22 33441.28 34161.04 35039.91 38046.25 36870.59 36476.18 36658.87 35723.09 37248.00 36912.58 37266.54 37228.65 36813.62 37370.35 360
testf145.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
APD_test245.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
Gipumacopyleft45.11 33742.05 33954.30 35380.69 34151.30 36235.80 37183.81 35428.13 36727.94 37134.53 37111.41 37476.70 36721.45 37154.65 34534.90 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft34.80 2339.19 33935.53 34250.18 35429.72 38130.30 37859.60 36966.20 37426.06 37017.91 37449.53 3673.12 38074.09 36918.19 37349.40 35646.14 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 34029.49 34546.92 35541.86 37936.28 37750.45 37056.52 37818.75 37418.28 37337.84 3702.41 38158.41 37418.71 37220.62 37146.06 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 33841.93 34040.38 35620.10 38226.84 37961.93 36859.09 37714.81 37528.51 37080.58 32935.53 34848.33 37763.70 30813.11 37445.96 370
E-PMN32.70 34132.39 34333.65 35753.35 37425.70 38074.07 36153.33 37921.08 37117.17 37533.63 37311.85 37354.84 37512.98 37414.04 37220.42 372
EMVS31.70 34231.45 34432.48 35850.72 37723.95 38174.78 36052.30 38020.36 37216.08 37631.48 37412.80 37153.60 37611.39 37513.10 37519.88 373
wuyk23d14.10 34413.89 34714.72 35955.23 37322.91 38233.83 3723.56 3834.94 3764.11 3772.28 3792.06 38219.66 37810.23 3768.74 3761.59 376
test1239.07 34611.73 3491.11 3600.50 3840.77 38489.44 3060.20 3850.34 3782.15 37910.72 3780.34 3830.32 3791.79 3780.08 3782.23 374
testmvs9.92 34512.94 3480.84 3610.65 3830.29 38593.78 2540.39 3840.42 3772.85 37815.84 3770.17 3840.30 3802.18 3770.21 3771.91 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k21.43 34328.57 3460.00 3620.00 3850.00 3860.00 37395.93 1330.00 3800.00 38197.66 6063.57 2320.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.92 3487.89 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38071.04 1900.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.11 34710.81 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.30 810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.51 3978.01 21398.13 3796.21 11483.04 17794.39 41
PC_three_145291.12 2298.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
test_one_060198.91 1884.56 6896.70 6088.06 6596.57 1698.77 1088.04 20
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.09 883.22 9196.60 7682.88 18293.61 5098.06 4282.93 4899.14 8495.51 3498.49 37
RE-MVS-def91.18 7197.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5273.36 16691.99 7496.79 8697.75 100
IU-MVS99.03 1585.34 4796.86 4092.05 1798.74 198.15 498.97 1799.42 13
test_241102_TWO96.78 4488.72 5297.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
test_241102_ONE99.03 1585.03 5996.78 4488.72 5297.79 498.90 588.48 1799.82 18
9.1494.26 2498.10 5798.14 3496.52 8484.74 13294.83 3698.80 782.80 5099.37 6795.95 2798.42 40
save fliter98.24 5183.34 8998.61 2396.57 7991.32 20
test_0728_THIRD88.38 5996.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
test072699.05 985.18 5299.11 996.78 4488.75 5097.65 998.91 287.69 22
GSMVS97.54 114
test_part298.90 1985.14 5896.07 21
sam_mvs177.59 9597.54 114
sam_mvs75.35 139
MTGPAbinary96.33 106
test_post185.88 33330.24 37573.77 15995.07 28373.89 250
test_post33.80 37276.17 11995.97 230
patchmatchnet-post77.09 34477.78 9495.39 263
MTMP97.53 7668.16 372
gm-plane-assit92.27 20979.64 16884.47 14295.15 14397.93 13785.81 137
test9_res96.00 2699.03 1398.31 60
TEST998.64 3183.71 8097.82 5496.65 6784.29 14795.16 2798.09 3784.39 3599.36 68
test_898.63 3383.64 8397.81 5696.63 7284.50 14095.10 2998.11 3684.33 3699.23 73
agg_prior294.30 4499.00 1598.57 45
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 83
test_prior482.34 10597.75 61
test_prior298.37 2886.08 10594.57 3998.02 4383.14 4695.05 3798.79 26
旧先验296.97 12374.06 29896.10 2097.76 14688.38 118
新几何296.42 160
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
无先验96.87 13096.78 4477.39 27099.52 5679.95 19198.43 53
原ACMM296.84 131
test22296.15 10178.41 19995.87 19096.46 9171.97 31589.66 10097.45 7276.33 11798.24 4998.30 61
testdata299.48 6076.45 226
segment_acmp82.69 51
testdata195.57 20287.44 80
plane_prior791.86 22877.55 228
plane_prior691.98 22477.92 21864.77 227
plane_prior594.69 19597.30 17487.08 12982.82 21490.96 226
plane_prior494.15 168
plane_prior377.75 22490.17 3681.33 193
plane_prior297.18 10189.89 39
plane_prior191.95 226
plane_prior77.96 21597.52 7990.36 3482.96 212
n20.00 386
nn0.00 386
door-mid79.75 363
test1196.50 87
door80.13 362
HQP5-MVS78.48 195
HQP-NCC92.08 21997.63 6890.52 2982.30 179
ACMP_Plane92.08 21997.63 6890.52 2982.30 179
BP-MVS87.67 125
HQP4-MVS82.30 17997.32 17291.13 224
HQP3-MVS94.80 19083.01 210
HQP2-MVS65.40 221
NP-MVS92.04 22378.22 20594.56 158
MDTV_nov1_ep13_2view81.74 11986.80 32680.65 21485.65 14174.26 15476.52 22596.98 139
MDTV_nov1_ep1383.69 19394.09 15881.01 13086.78 32796.09 12283.81 16184.75 15184.32 30974.44 15396.54 21063.88 30685.07 198
ACMMP++_ref78.45 246
ACMMP++79.05 237
Test By Simon71.65 183