This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13799.25 699.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
MVS90.60 11588.64 14196.50 594.25 17490.53 893.33 29697.21 2277.59 30378.88 25097.31 9571.52 21599.69 4989.60 13298.03 5699.27 22
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9397.08 10983.32 5299.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8598.46 2687.33 2499.97 297.21 2999.31 499.63 7
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 6899.80 2599.16 197.96 5899.15 27
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16392.42 2196.24 2798.18 4171.04 22099.17 9896.77 3497.39 7796.79 170
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8894.71 497.08 1597.99 5578.69 9999.86 1099.15 297.85 6298.91 35
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14692.02 698.19 4595.68 16992.06 2596.01 3198.14 4570.83 22498.96 11296.74 3696.57 10096.76 173
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8196.97 11381.30 6698.99 11088.54 14498.88 2099.20 25
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11394.07 1095.34 3697.80 7076.83 13099.87 897.08 3197.64 6898.89 36
WTY-MVS92.65 6391.68 8095.56 1496.00 11288.90 1398.23 4397.65 1388.57 6989.82 11797.22 10379.29 8799.06 10789.57 13388.73 18998.73 46
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 18895.58 17391.12 3695.84 3293.87 20083.47 5198.37 14497.26 2798.81 2499.24 23
sasdasda92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
canonicalmvs92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
HY-MVS84.06 691.63 8990.37 10995.39 1996.12 10988.25 1790.22 33697.58 1588.33 7690.50 11091.96 23379.26 8899.06 10790.29 12589.07 18398.88 37
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6199.84 1397.90 1798.85 2199.45 10
alignmvs92.97 4892.26 6895.12 2195.54 13087.77 2298.67 2996.38 11488.04 8393.01 7097.45 8879.20 9098.60 12893.25 8188.76 18898.99 33
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 4998.06 5596.64 8193.64 1291.74 9198.54 2080.17 7799.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+82.88 889.63 13487.85 15494.99 2394.49 16886.76 3397.84 6795.74 16686.10 12575.47 29496.02 13665.00 25999.51 7182.91 20097.07 8698.72 47
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 5898.13 4996.77 6188.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7199.12 1296.78 5588.72 6697.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3299.85 1194.75 5999.18 798.65 50
MVSMamba_PlusPlus92.37 7291.55 8394.83 2795.37 13587.69 2495.60 22995.42 18974.65 33093.95 5892.81 21783.11 5497.70 17394.49 6398.53 3599.11 28
VNet92.11 7791.22 8994.79 2896.91 9586.98 3097.91 6397.96 1086.38 12193.65 6195.74 14170.16 22998.95 11493.39 7588.87 18798.43 61
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9696.77 6185.32 14297.92 398.70 1583.09 5599.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18091.03 3994.90 4497.66 7578.84 9597.56 18194.64 6297.46 7298.62 52
MGCFI-Net91.95 7991.03 9594.72 3195.68 12586.38 3596.93 14794.48 23888.25 7892.78 7497.24 10172.34 20398.46 13893.13 8588.43 19599.32 19
NCCC95.63 795.94 894.69 3299.21 685.15 6899.16 796.96 4194.11 995.59 3498.64 1785.07 3499.91 495.61 4699.10 999.00 31
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7697.77 7296.74 6686.11 12496.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6399.06 1796.46 10388.75 6496.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7696.43 10784.02 18295.07 4298.74 1482.93 5699.38 7895.42 5098.51 3698.32 66
PAPR92.74 5392.17 7194.45 3698.89 2084.87 7697.20 11696.20 13187.73 9288.40 14398.12 4678.71 9899.76 3187.99 15196.28 10398.74 42
3Dnovator82.32 1089.33 13887.64 15994.42 3793.73 19185.70 4797.73 7696.75 6586.73 12076.21 28395.93 13762.17 27399.68 5181.67 20897.81 6397.88 100
DP-MVS Recon91.72 8790.85 9694.34 3899.50 185.00 7398.51 3595.96 15080.57 25188.08 14897.63 8176.84 12899.89 785.67 16894.88 12298.13 83
PAPM92.87 5192.40 6394.30 3992.25 23987.85 2196.40 18396.38 11491.07 3888.72 13996.90 11482.11 6197.37 19890.05 12897.70 6697.67 118
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 7997.76 7496.19 13389.59 5796.66 2098.17 4484.33 4099.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.25 4198.34 4685.55 5596.35 11892.36 8080.84 6799.22 8998.31 4997.98 95
test_yl91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
DCV-MVSNet91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
jason92.73 5492.23 6994.21 4490.50 28487.30 2998.65 3095.09 20290.61 4492.76 7597.13 10675.28 16597.30 20193.32 7996.75 9798.02 88
jason: jason.
ACMMP_NAP93.46 4093.23 4694.17 4597.16 9284.28 8596.82 15596.65 7886.24 12294.27 5397.99 5577.94 10999.83 1793.39 7598.57 3498.39 63
131488.94 14587.20 17394.17 4593.21 20685.73 4693.33 29696.64 8182.89 21175.98 28696.36 12966.83 24699.39 7783.52 19496.02 11197.39 142
LFMVS89.27 14087.64 15994.16 4797.16 9285.52 5697.18 11894.66 22679.17 28489.63 12196.57 12755.35 32898.22 15089.52 13589.54 17898.74 42
QAPM86.88 19184.51 21293.98 4894.04 18485.89 4497.19 11796.05 14373.62 33775.12 29795.62 14762.02 27699.74 3870.88 30496.06 10996.30 189
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 8898.64 3196.93 4490.71 4293.08 6998.70 1579.98 8199.21 9094.12 6899.07 1198.63 51
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10198.04 5796.41 10985.79 13395.00 4398.28 3784.32 4399.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 10898.10 5195.29 19691.57 3093.81 5997.45 8886.64 2699.43 7696.28 3794.01 13499.20 25
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 7999.13 1196.15 13592.06 2597.92 398.52 2384.52 3899.74 3898.76 695.67 11697.22 151
CANet_DTU90.98 10790.04 11893.83 5394.76 15686.23 3796.32 18993.12 31693.11 1693.71 6096.82 12063.08 26999.48 7384.29 17895.12 12195.77 199
API-MVS90.18 12488.97 13493.80 5498.66 2882.95 10997.50 9595.63 17275.16 32586.31 16497.69 7372.49 20199.90 581.26 21096.07 10898.56 54
testing1192.48 6892.04 7593.78 5595.94 11686.00 4097.56 8897.08 3287.52 9789.32 12695.40 15384.60 3798.02 15791.93 10189.04 18497.32 145
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8298.29 4197.64 1494.57 695.36 3596.88 11679.96 8299.12 10391.30 10496.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
train_agg94.28 2794.45 2593.74 5798.64 3183.71 9397.82 6896.65 7884.50 16695.16 3798.09 4884.33 4099.36 8195.91 4298.96 1998.16 79
CDPH-MVS93.12 4492.91 5293.74 5798.65 3083.88 8997.67 8096.26 12583.00 20993.22 6798.24 3881.31 6599.21 9089.12 13898.74 3098.14 81
MVSFormer91.36 9690.57 10293.73 5993.00 21488.08 1994.80 26194.48 23880.74 24794.90 4497.13 10678.84 9595.10 31283.77 18597.46 7298.02 88
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6094.50 16784.30 8499.14 1096.00 14691.94 2897.91 598.60 1884.78 3699.77 2998.84 596.03 11097.08 159
UBG92.68 6292.35 6493.70 6195.61 12785.65 5297.25 11297.06 3487.92 8689.28 12795.03 17186.06 3198.07 15592.24 9490.69 17397.37 143
APD-MVScopyleft93.61 3893.59 3993.69 6298.76 2483.26 10497.21 11496.09 13982.41 22394.65 4998.21 3981.96 6398.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testing9191.90 8291.31 8893.66 6395.99 11385.68 4997.39 10696.89 4786.75 11988.85 13595.23 15983.93 4797.90 16688.91 13987.89 20297.41 139
TSAR-MVS + MP.94.79 2095.17 1893.64 6497.66 6984.10 8795.85 21796.42 10891.26 3497.49 1296.80 12186.50 2798.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 1792x268891.07 10590.21 11393.64 6495.18 14283.53 9896.26 19296.13 13688.92 6384.90 17993.10 21572.86 19699.62 5888.86 14095.67 11697.79 110
MVS_Test90.29 12389.18 13193.62 6695.23 13984.93 7494.41 26694.66 22684.31 17190.37 11391.02 24675.13 16797.82 16983.11 19894.42 12998.12 84
testing9991.91 8191.35 8693.60 6795.98 11485.70 4797.31 11096.92 4686.82 11588.91 13395.25 15684.26 4497.89 16788.80 14287.94 20197.21 153
sss90.87 11189.96 12193.60 6794.15 17883.84 9297.14 12598.13 785.93 13189.68 11996.09 13571.67 21299.30 8387.69 15489.16 18297.66 119
PVSNet_Blended93.13 4392.98 5193.57 6997.47 7783.86 9099.32 196.73 6791.02 4089.53 12396.21 13276.42 13799.57 6494.29 6595.81 11597.29 149
xiu_mvs_v1_base_debu90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base_debi90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
OpenMVScopyleft79.58 1486.09 20483.62 22993.50 7390.95 27386.71 3497.44 9995.83 16175.35 32272.64 31995.72 14257.42 31499.64 5571.41 29895.85 11494.13 235
GG-mvs-BLEND93.49 7494.94 15086.26 3681.62 38897.00 3788.32 14594.30 18891.23 596.21 25488.49 14697.43 7598.00 93
ab-mvs87.08 18784.94 20893.48 7593.34 20483.67 9588.82 34595.70 16881.18 23984.55 18690.14 26262.72 27098.94 11685.49 17082.54 25097.85 104
PHI-MVS93.59 3993.63 3893.48 7598.05 5881.76 13498.64 3197.13 2782.60 21994.09 5698.49 2580.35 7299.85 1194.74 6098.62 3398.83 38
MVS_111021_HR93.41 4193.39 4493.47 7797.34 8982.83 11097.56 8898.27 689.16 6289.71 11897.14 10579.77 8399.56 6693.65 7397.94 5998.02 88
PAPM_NR91.46 9390.82 9793.37 7898.50 4081.81 13395.03 25596.13 13684.65 16286.10 16797.65 7979.24 8999.75 3683.20 19696.88 9298.56 54
MP-MVS-pluss92.58 6592.35 6493.29 7997.30 9082.53 11496.44 17996.04 14484.68 16189.12 13098.37 3277.48 11899.74 3893.31 8098.38 4597.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IB-MVS85.34 488.67 15487.14 17693.26 8093.12 21284.32 8398.76 2697.27 2087.19 10979.36 24690.45 25583.92 4898.53 13384.41 17769.79 32696.93 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune85.48 21882.90 24093.24 8194.51 16685.82 4579.22 39396.97 4061.19 39087.33 15453.01 40990.58 696.07 25786.07 16597.23 8197.81 109
ZNCC-MVS92.75 5292.60 6093.23 8298.24 5181.82 13297.63 8196.50 9985.00 15391.05 10297.74 7278.38 10299.80 2590.48 11898.34 4898.07 86
SteuartSystems-ACMMP94.13 3294.44 2693.20 8395.41 13381.35 14499.02 2196.59 8889.50 5894.18 5598.36 3383.68 5099.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
ETVMVS90.99 10690.26 11093.19 8495.81 12085.64 5396.97 14297.18 2585.43 13988.77 13894.86 17782.00 6296.37 24682.70 20188.60 19097.57 126
casdiffmvs_mvgpermissive91.13 10290.45 10693.17 8592.99 21783.58 9797.46 9894.56 23587.69 9387.19 15794.98 17574.50 17897.60 17891.88 10292.79 15298.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
新几何193.12 8697.44 8181.60 14196.71 7074.54 33191.22 10097.57 8379.13 9199.51 7177.40 24998.46 4098.26 73
CSCG92.02 7891.65 8193.12 8698.53 3680.59 16497.47 9697.18 2577.06 31284.64 18597.98 5883.98 4699.52 6990.72 11497.33 7899.23 24
Effi-MVS+90.70 11389.90 12493.09 8893.61 19283.48 9995.20 24592.79 32283.22 20291.82 8995.70 14371.82 21197.48 19191.25 10593.67 14198.32 66
test_prior93.09 8898.68 2681.91 12796.40 11199.06 10798.29 70
GST-MVS92.43 7092.22 7093.04 9098.17 5481.64 13997.40 10596.38 11484.71 16090.90 10597.40 9377.55 11799.76 3189.75 13197.74 6597.72 114
thisisatest051590.95 10990.26 11093.01 9194.03 18684.27 8697.91 6396.67 7583.18 20386.87 16195.51 15188.66 1597.85 16880.46 21489.01 18596.92 166
HFP-MVS92.89 5092.86 5592.98 9298.71 2581.12 14797.58 8696.70 7185.20 14791.75 9097.97 6078.47 10199.71 4590.95 10798.41 4398.12 84
ET-MVSNet_ETH3D90.01 12689.03 13292.95 9394.38 17186.77 3298.14 4696.31 12289.30 6063.33 36896.72 12590.09 1093.63 34690.70 11682.29 25398.46 59
DeepC-MVS86.58 391.53 9291.06 9492.94 9494.52 16381.89 12895.95 20995.98 14890.76 4183.76 19696.76 12273.24 19499.71 4591.67 10396.96 8997.22 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline188.85 14987.49 16692.93 9595.21 14186.85 3195.47 23494.61 23287.29 10383.11 20394.99 17480.70 6996.89 22582.28 20473.72 29995.05 217
testing22291.09 10390.49 10592.87 9695.82 11985.04 7096.51 17497.28 1986.05 12789.13 12995.34 15580.16 7896.62 23985.82 16688.31 19796.96 162
test_fmvsmconf_n93.99 3494.36 2892.86 9792.82 22181.12 14799.26 496.37 11793.47 1395.16 3798.21 3979.00 9299.64 5598.21 1096.73 9897.83 106
MSP-MVS95.62 896.54 192.86 9798.31 4880.10 18197.42 10396.78 5592.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA92.45 6992.31 6692.86 9797.90 6180.85 15892.88 30896.33 11987.92 8690.20 11498.18 4176.71 13399.76 3192.57 9298.09 5397.96 98
region2R92.72 5692.70 5792.79 10098.68 2680.53 16997.53 9196.51 9785.22 14591.94 8897.98 5877.26 12099.67 5390.83 11298.37 4698.18 77
ACMMPR92.69 6092.67 5892.75 10198.66 2880.57 16597.58 8696.69 7385.20 14791.57 9297.92 6177.01 12599.67 5390.95 10798.41 4398.00 93
baseline90.76 11290.10 11692.74 10292.90 22082.56 11394.60 26394.56 23587.69 9389.06 13295.67 14573.76 18797.51 18890.43 12292.23 16198.16 79
thres20088.92 14687.65 15892.73 10396.30 10385.62 5497.85 6698.86 184.38 17084.82 18093.99 19775.12 16898.01 15870.86 30586.67 21194.56 230
PVSNet82.34 989.02 14387.79 15692.71 10495.49 13181.50 14297.70 7897.29 1887.76 9185.47 17395.12 16856.90 31798.90 11880.33 21594.02 13397.71 116
RRT-MVS89.67 13288.67 14092.67 10594.44 16981.08 14994.34 26994.45 24386.05 12785.79 16992.39 22363.39 26798.16 15493.22 8293.95 13698.76 41
PVSNet_Blended_VisFu91.24 9990.77 9892.66 10695.09 14482.40 11897.77 7295.87 16088.26 7786.39 16393.94 19876.77 13199.27 8488.80 14294.00 13596.31 188
test_fmvsmconf0.1_n93.08 4693.22 4792.65 10788.45 31780.81 15999.00 2295.11 20193.21 1594.00 5797.91 6376.84 12899.59 6097.91 1696.55 10197.54 127
test250690.96 10890.39 10792.65 10793.54 19582.46 11796.37 18497.35 1786.78 11787.55 15195.25 15677.83 11397.50 18984.07 18094.80 12397.98 95
XVS92.69 6092.71 5692.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9497.83 6977.24 12299.59 6090.46 12098.07 5498.02 88
X-MVStestdata86.26 20284.14 22292.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9420.73 42077.24 12299.59 6090.46 12098.07 5498.02 88
casdiffmvspermissive90.95 10990.39 10792.63 10992.82 22182.53 11496.83 15394.47 24187.69 9388.47 14195.56 15074.04 18497.54 18590.90 11092.74 15397.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas86.50 19784.48 21492.55 11292.64 22785.95 4197.04 13695.07 20475.32 32380.50 23191.02 24654.33 33597.98 15986.79 16387.62 20493.71 243
tfpn200view988.48 16087.15 17492.47 11396.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21894.17 232
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13880.96 15499.29 297.21 2294.50 797.29 1398.44 2782.15 6099.78 2898.56 797.68 6796.61 177
114514_t88.79 15287.57 16492.45 11498.21 5381.74 13596.99 13795.45 18475.16 32582.48 20795.69 14468.59 23498.50 13480.33 21595.18 12097.10 158
diffmvspermissive91.17 10190.74 9992.44 11693.11 21382.50 11696.25 19393.62 29287.79 9090.40 11295.93 13773.44 19297.42 19393.62 7492.55 15597.41 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft92.61 6492.67 5892.42 11798.13 5679.73 19197.33 10996.20 13185.63 13590.53 10997.66 7578.14 10799.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary88.81 15087.61 16292.39 11899.33 479.95 18296.70 16595.58 17377.51 30483.05 20496.69 12661.90 27999.72 4384.29 17893.47 14497.50 133
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 16082.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13599.80 2598.39 894.71 12595.22 215
CP-MVS92.54 6692.60 6092.34 11998.50 4079.90 18498.40 3896.40 11184.75 15790.48 11198.09 4877.40 11999.21 9091.15 10698.23 5297.92 99
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24798.43 3697.21 2292.58 1997.68 1097.65 7986.88 2599.83 1798.25 997.60 6999.33 18
thres100view90088.30 16686.95 18092.33 12196.10 11084.90 7597.14 12598.85 282.69 21783.41 19893.66 20575.43 15897.93 16069.04 31386.24 21894.17 232
PGM-MVS91.93 8091.80 7892.32 12398.27 5079.74 19095.28 23997.27 2083.83 19090.89 10697.78 7176.12 14399.56 6688.82 14197.93 6197.66 119
test_fmvsmconf0.01_n91.08 10490.68 10092.29 12482.43 37680.12 18097.94 6293.93 27092.07 2491.97 8697.60 8267.56 23899.53 6897.09 3095.56 11897.21 153
ETV-MVS92.72 5692.87 5392.28 12594.54 16281.89 12897.98 5995.21 19989.77 5693.11 6896.83 11877.23 12497.50 18995.74 4495.38 11997.44 137
fmvsm_s_conf0.1_n92.93 4993.16 4892.24 12690.52 28381.92 12698.42 3796.24 12791.17 3596.02 3098.35 3475.34 16499.74 3897.84 2094.58 12795.05 217
thres40088.42 16387.15 17492.23 12796.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21893.45 248
fmvsm_s_conf0.5_n_a93.34 4293.71 3692.22 12893.38 20381.71 13798.86 2596.98 3891.64 2996.85 1698.55 1975.58 15399.77 2997.88 1993.68 14095.18 216
VDDNet86.44 19884.51 21292.22 12891.56 26081.83 13197.10 13194.64 22969.50 36487.84 14995.19 16348.01 35597.92 16589.82 13086.92 20996.89 167
EPMVS87.47 18585.90 19292.18 13095.41 13382.26 12187.00 36396.28 12385.88 13284.23 18785.57 33075.07 16996.26 25071.14 30392.50 15698.03 87
test_fmvsmvis_n_192092.12 7692.10 7392.17 13190.87 27681.04 15098.34 4093.90 27492.71 1887.24 15697.90 6474.83 17199.72 4396.96 3296.20 10495.76 200
FA-MVS(test-final)87.71 18186.23 18992.17 13194.19 17680.55 16687.16 36296.07 14282.12 22885.98 16888.35 28472.04 20998.49 13580.26 21789.87 17697.48 135
thres600view788.06 17186.70 18692.15 13396.10 11085.17 6797.14 12598.85 282.70 21683.41 19893.66 20575.43 15897.82 16967.13 32285.88 22293.45 248
PCF-MVS84.09 586.77 19585.00 20792.08 13492.06 25183.07 10792.14 31794.47 24179.63 27476.90 27094.78 17971.15 21899.20 9572.87 28991.05 16993.98 238
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mPP-MVS91.88 8391.82 7792.07 13598.38 4478.63 21997.29 11196.09 13985.12 14988.45 14297.66 7575.53 15499.68 5189.83 12998.02 5797.88 100
fmvsm_s_conf0.1_n_a92.38 7192.49 6292.06 13688.08 32281.62 14097.97 6196.01 14590.62 4396.58 2298.33 3574.09 18399.71 4597.23 2893.46 14594.86 221
VDD-MVS88.28 16787.02 17992.06 13695.09 14480.18 17997.55 9094.45 24383.09 20589.10 13195.92 13947.97 35698.49 13593.08 8786.91 21097.52 132
EI-MVSNet-Vis-set91.84 8491.77 7992.04 13897.60 7281.17 14696.61 16796.87 4988.20 8089.19 12897.55 8778.69 9999.14 10090.29 12590.94 17095.80 198
dcpmvs_293.10 4593.46 4392.02 13997.77 6579.73 19194.82 25993.86 27786.91 11391.33 9796.76 12285.20 3398.06 15696.90 3397.60 6998.27 72
1112_ss88.60 15787.47 16892.00 14093.21 20680.97 15396.47 17692.46 32583.64 19780.86 22897.30 9880.24 7597.62 17777.60 24485.49 22697.40 141
PatchmatchNetpermissive86.83 19385.12 20591.95 14194.12 18182.27 12086.55 36795.64 17184.59 16482.98 20584.99 34277.26 12095.96 26468.61 31691.34 16897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res88.03 17286.73 18491.94 14293.15 20980.88 15796.44 17992.41 32783.59 19980.74 23091.16 24480.18 7697.59 17977.48 24785.40 22797.36 144
HPM-MVScopyleft91.62 9091.53 8491.89 14397.88 6379.22 20396.99 13795.73 16782.07 22989.50 12597.19 10475.59 15298.93 11790.91 10997.94 5997.54 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsmamba90.53 11990.08 11791.88 14494.81 15480.93 15593.94 28294.45 24388.24 7987.02 16092.35 22468.04 23595.80 27294.86 5797.03 8798.92 34
mvs_anonymous88.68 15387.62 16191.86 14594.80 15581.69 13893.53 29294.92 20982.03 23078.87 25190.43 25675.77 14895.34 29885.04 17393.16 14998.55 56
MAR-MVS90.63 11490.22 11291.86 14598.47 4278.20 23597.18 11896.61 8483.87 18988.18 14798.18 4168.71 23399.75 3683.66 19097.15 8497.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521184.41 23481.93 25591.85 14796.78 9778.41 22597.44 9991.34 34470.29 35984.06 18894.26 18941.09 38198.96 11279.46 22582.65 24998.17 78
SR-MVS92.16 7592.27 6791.83 14898.37 4578.41 22596.67 16695.76 16482.19 22791.97 8698.07 5276.44 13698.64 12693.71 7297.27 8098.45 60
FE-MVS86.06 20584.15 22191.78 14994.33 17379.81 18584.58 38096.61 8476.69 31585.00 17787.38 29770.71 22598.37 14470.39 30891.70 16697.17 156
reproduce-ours92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
our_new_method92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
EI-MVSNet-UG-set91.35 9791.22 8991.73 15297.39 8680.68 16296.47 17696.83 5287.92 8688.30 14697.36 9477.84 11299.13 10289.43 13689.45 17995.37 210
CNLPA86.96 18985.37 19991.72 15397.59 7379.34 20197.21 11491.05 34974.22 33278.90 24996.75 12467.21 24398.95 11474.68 27590.77 17196.88 168
ECVR-MVScopyleft88.35 16587.25 17291.65 15493.54 19579.40 19896.56 17190.78 35486.78 11785.57 17195.25 15657.25 31597.56 18184.73 17694.80 12397.98 95
RPMNet79.85 29675.92 31691.64 15590.16 29079.75 18879.02 39595.44 18558.43 40082.27 21472.55 39873.03 19598.41 14346.10 39686.25 21696.75 174
ACMMPcopyleft90.39 12089.97 12091.64 15597.58 7478.21 23496.78 15896.72 6984.73 15984.72 18397.23 10271.22 21799.63 5788.37 14992.41 15897.08 159
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HyFIR lowres test89.36 13788.60 14291.63 15794.91 15280.76 16195.60 22995.53 17682.56 22084.03 18991.24 24378.03 10896.81 23187.07 16188.41 19697.32 145
SCA85.63 21383.64 22891.60 15892.30 23581.86 13092.88 30895.56 17584.85 15582.52 20685.12 34058.04 30495.39 29573.89 28387.58 20697.54 127
thisisatest053089.65 13389.02 13391.53 15993.46 20180.78 16096.52 17296.67 7581.69 23583.79 19594.90 17688.85 1497.68 17477.80 23887.49 20796.14 191
reproduce_model92.53 6792.87 5391.50 16097.41 8377.14 26896.02 20595.91 15683.65 19692.45 7698.39 3179.75 8499.21 9095.27 5496.98 8898.14 81
BH-RMVSNet86.84 19285.28 20091.49 16195.35 13680.26 17596.95 14592.21 32982.86 21381.77 22295.46 15259.34 29397.64 17669.79 31193.81 13996.57 179
MVS_111021_LR91.60 9191.64 8291.47 16295.74 12378.79 21696.15 20096.77 6188.49 7188.64 14097.07 11072.33 20499.19 9693.13 8596.48 10296.43 182
test111188.11 17087.04 17891.35 16393.15 20978.79 21696.57 16990.78 35486.88 11485.04 17695.20 16257.23 31697.39 19683.88 18294.59 12697.87 102
TESTMET0.1,189.83 12989.34 13091.31 16492.54 22980.19 17897.11 12896.57 9186.15 12386.85 16291.83 23779.32 8696.95 22181.30 20992.35 15996.77 172
tpmrst88.36 16487.38 17091.31 16494.36 17279.92 18387.32 36095.26 19885.32 14288.34 14486.13 32380.60 7196.70 23583.78 18485.34 22997.30 148
CHOSEN 280x42091.71 8891.85 7691.29 16694.94 15082.69 11187.89 35696.17 13485.94 13087.27 15594.31 18790.27 895.65 28494.04 6995.86 11395.53 206
UGNet87.73 17986.55 18791.27 16795.16 14379.11 20796.35 18696.23 12888.14 8187.83 15090.48 25450.65 34599.09 10580.13 22094.03 13295.60 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet87.02 18885.61 19491.24 16894.14 17983.30 10393.88 28495.98 14884.30 17379.63 24392.01 22958.23 30197.68 17490.28 12782.02 25492.75 251
Vis-MVSNetpermissive88.67 15487.82 15591.24 16892.68 22378.82 21396.95 14593.85 27887.55 9687.07 15995.13 16763.43 26697.21 20677.58 24596.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
原ACMM191.22 17097.77 6578.10 23796.61 8481.05 24191.28 9997.42 9277.92 11198.98 11179.85 22398.51 3696.59 178
CostFormer89.08 14288.39 14691.15 17193.13 21179.15 20688.61 34896.11 13883.14 20489.58 12286.93 30683.83 4996.87 22788.22 15085.92 22197.42 138
CDS-MVSNet89.50 13588.96 13591.14 17291.94 25680.93 15597.09 13295.81 16284.26 17684.72 18394.20 19280.31 7395.64 28583.37 19588.96 18696.85 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS81.47 28078.28 29791.04 17398.14 5578.48 22195.09 25486.97 37961.14 39171.12 33092.78 22059.59 28999.38 7853.11 38086.61 21295.27 214
HPM-MVS_fast90.38 12290.17 11591.03 17497.61 7177.35 26297.15 12495.48 18179.51 27688.79 13696.90 11471.64 21498.81 12287.01 16297.44 7496.94 163
GA-MVS85.79 21084.04 22391.02 17589.47 30680.27 17496.90 15094.84 21585.57 13680.88 22789.08 27056.56 32196.47 24377.72 24185.35 22896.34 185
baseline290.39 12090.21 11390.93 17690.86 27780.99 15295.20 24597.41 1686.03 12980.07 24094.61 18290.58 697.47 19287.29 15889.86 17794.35 231
Fast-Effi-MVS+87.93 17586.94 18190.92 17794.04 18479.16 20598.26 4293.72 28881.29 23883.94 19392.90 21669.83 23096.68 23676.70 25591.74 16596.93 164
SPE-MVS-test92.98 4793.67 3790.90 17896.52 9976.87 27098.68 2894.73 22190.36 5094.84 4697.89 6577.94 10997.15 21294.28 6797.80 6498.70 48
APD-MVS_3200maxsize91.23 10091.35 8690.89 17997.89 6276.35 28096.30 19095.52 17879.82 27091.03 10397.88 6674.70 17398.54 13292.11 9796.89 9197.77 111
nrg03086.79 19485.43 19790.87 18088.76 31185.34 5897.06 13594.33 25284.31 17180.45 23391.98 23272.36 20296.36 24788.48 14771.13 31390.93 263
SR-MVS-dyc-post91.29 9891.45 8590.80 18197.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6775.76 14998.61 12791.99 9996.79 9597.75 112
Anonymous2024052983.15 25480.60 27490.80 18195.74 12378.27 22996.81 15694.92 20960.10 39581.89 21992.54 22145.82 36598.82 12179.25 22978.32 28195.31 212
EIA-MVS91.73 8592.05 7490.78 18394.52 16376.40 27998.06 5595.34 19489.19 6188.90 13497.28 10077.56 11697.73 17290.77 11396.86 9498.20 76
OMC-MVS88.80 15188.16 15090.72 18495.30 13777.92 24494.81 26094.51 23786.80 11684.97 17896.85 11767.53 23998.60 12885.08 17287.62 20495.63 202
FMVSNet384.71 22782.71 24490.70 18594.55 16187.71 2395.92 21194.67 22581.73 23475.82 28988.08 28966.99 24494.47 32971.23 30075.38 29289.91 280
tpm287.35 18686.26 18890.62 18692.93 21978.67 21888.06 35595.99 14779.33 27987.40 15286.43 31780.28 7496.40 24480.23 21885.73 22596.79 170
EC-MVSNet91.73 8592.11 7290.58 18793.54 19577.77 25198.07 5494.40 24887.44 9992.99 7197.11 10874.59 17796.87 22793.75 7197.08 8597.11 157
WBMVS87.73 17986.79 18290.56 18895.61 12785.68 4997.63 8195.52 17883.77 19278.30 25588.44 28286.14 3095.78 27482.54 20273.15 30590.21 271
TAMVS88.48 16087.79 15690.56 18891.09 27179.18 20496.45 17895.88 15883.64 19783.12 20293.33 21075.94 14695.74 28082.40 20388.27 19896.75 174
BH-w/o88.24 16887.47 16890.54 19095.03 14978.54 22097.41 10493.82 27984.08 18078.23 25694.51 18569.34 23297.21 20680.21 21994.58 12795.87 197
CS-MVS92.73 5493.48 4290.48 19196.27 10475.93 29098.55 3494.93 20889.32 5994.54 5197.67 7478.91 9497.02 21693.80 7097.32 7998.49 57
TR-MVS86.30 20184.93 20990.42 19294.63 15877.58 25796.57 16993.82 27980.30 26082.42 20995.16 16558.74 29797.55 18374.88 27387.82 20396.13 192
tpm cat183.63 24681.38 26390.39 19393.53 20078.19 23685.56 37495.09 20270.78 35778.51 25283.28 35774.80 17297.03 21566.77 32384.05 23495.95 194
h-mvs3389.30 13988.95 13690.36 19495.07 14676.04 28496.96 14497.11 3090.39 4892.22 8395.10 16974.70 17398.86 11993.14 8365.89 35996.16 190
PVSNet_BlendedMVS90.05 12589.96 12190.33 19597.47 7783.86 9098.02 5896.73 6787.98 8489.53 12389.61 26776.42 13799.57 6494.29 6579.59 26687.57 334
dp84.30 23682.31 24990.28 19694.24 17577.97 24086.57 36695.53 17679.94 26980.75 22985.16 33871.49 21696.39 24563.73 34083.36 23996.48 181
UA-Net88.92 14688.48 14590.24 19794.06 18377.18 26693.04 30494.66 22687.39 10191.09 10193.89 19974.92 17098.18 15375.83 26591.43 16795.35 211
MVSTER89.25 14188.92 13790.24 19795.98 11484.66 7896.79 15795.36 19187.19 10980.33 23590.61 25390.02 1195.97 26185.38 17178.64 27590.09 276
IS-MVSNet88.67 15488.16 15090.20 19993.61 19276.86 27196.77 16093.07 31784.02 18283.62 19795.60 14874.69 17696.24 25378.43 23793.66 14297.49 134
testdata90.13 20095.92 11774.17 30596.49 10273.49 34094.82 4897.99 5578.80 9797.93 16083.53 19397.52 7198.29 70
CR-MVSNet83.53 24781.36 26490.06 20190.16 29079.75 18879.02 39591.12 34684.24 17782.27 21480.35 37275.45 15693.67 34563.37 34386.25 21696.75 174
MonoMVSNet85.68 21284.22 21990.03 20288.43 31877.83 24892.95 30791.46 34087.28 10478.11 25785.96 32566.31 25094.81 32090.71 11576.81 28697.46 136
VPNet84.69 22882.92 23990.01 20389.01 31083.45 10096.71 16395.46 18385.71 13479.65 24292.18 22856.66 32096.01 26083.05 19967.84 34690.56 265
BH-untuned86.95 19085.94 19189.99 20494.52 16377.46 25996.78 15893.37 30581.80 23276.62 27493.81 20366.64 24797.02 21676.06 26293.88 13895.48 208
test-LLR88.48 16087.98 15289.98 20592.26 23777.23 26497.11 12895.96 15083.76 19386.30 16591.38 24072.30 20596.78 23380.82 21191.92 16395.94 195
test-mter88.95 14488.60 14289.98 20592.26 23777.23 26497.11 12895.96 15085.32 14286.30 16591.38 24076.37 13996.78 23380.82 21191.92 16395.94 195
ADS-MVSNet81.26 28378.36 29689.96 20793.78 18879.78 18679.48 39193.60 29373.09 34380.14 23779.99 37562.15 27495.24 30459.49 35683.52 23694.85 222
PVSNet_077.72 1581.70 27778.95 29489.94 20890.77 28076.72 27495.96 20896.95 4285.01 15270.24 33788.53 28052.32 33998.20 15186.68 16444.08 40594.89 220
DeepPCF-MVS89.82 194.61 2296.17 589.91 20997.09 9470.21 34298.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
EPP-MVSNet89.76 13089.72 12689.87 21093.78 18876.02 28797.22 11396.51 9779.35 27885.11 17595.01 17384.82 3597.10 21487.46 15788.21 19996.50 180
tpmvs83.04 25780.77 27089.84 21195.43 13277.96 24185.59 37395.32 19575.31 32476.27 28183.70 35373.89 18597.41 19459.53 35581.93 25694.14 234
GeoE86.36 19985.20 20189.83 21293.17 20876.13 28297.53 9192.11 33079.58 27580.99 22694.01 19666.60 24896.17 25673.48 28789.30 18097.20 155
FMVSNet282.79 26180.44 27689.83 21292.66 22485.43 5795.42 23694.35 25079.06 28774.46 30187.28 29856.38 32394.31 33269.72 31274.68 29689.76 281
PLCcopyleft83.97 788.00 17387.38 17089.83 21298.02 5976.46 27797.16 12294.43 24679.26 28381.98 21796.28 13169.36 23199.27 8477.71 24292.25 16093.77 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPA-MVSNet85.32 21983.83 22489.77 21590.25 28782.63 11296.36 18597.07 3383.03 20881.21 22589.02 27261.58 28096.31 24985.02 17470.95 31590.36 267
tttt051788.57 15888.19 14989.71 21693.00 21475.99 28895.67 22496.67 7580.78 24681.82 22094.40 18688.97 1397.58 18076.05 26386.31 21595.57 204
test_cas_vis1_n_192089.90 12890.02 11989.54 21790.14 29274.63 30098.71 2794.43 24693.04 1792.40 7996.35 13053.41 33899.08 10695.59 4796.16 10594.90 219
CLD-MVS87.97 17487.48 16789.44 21892.16 24480.54 16898.14 4694.92 20991.41 3279.43 24595.40 15362.34 27297.27 20490.60 11782.90 24590.50 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS83.84 24282.00 25489.35 21987.13 33181.38 14395.72 22294.26 25480.15 26475.92 28890.63 25261.96 27896.52 24178.98 23273.28 30490.14 273
CPTT-MVS89.72 13189.87 12589.29 22098.33 4773.30 31197.70 7895.35 19375.68 32187.40 15297.44 9170.43 22698.25 14989.56 13496.90 9096.33 187
sd_testset84.62 22983.11 23789.17 22194.14 17977.78 25091.54 32794.38 24984.30 17379.63 24392.01 22952.28 34096.98 21977.67 24382.02 25492.75 251
MSDG80.62 29277.77 30289.14 22293.43 20277.24 26391.89 32090.18 35869.86 36368.02 34491.94 23552.21 34198.84 12059.32 35883.12 24091.35 258
TAPA-MVS81.61 1285.02 22383.67 22689.06 22396.79 9673.27 31495.92 21194.79 21974.81 32880.47 23296.83 11871.07 21998.19 15249.82 38992.57 15495.71 201
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D82.22 27179.94 28589.06 22397.43 8274.06 30793.20 30292.05 33161.90 38573.33 31295.21 16159.35 29299.21 9054.54 37692.48 15793.90 240
PatchMatch-RL85.00 22483.66 22789.02 22595.86 11874.55 30292.49 31293.60 29379.30 28179.29 24791.47 23858.53 29998.45 14070.22 30992.17 16294.07 237
HQP-MVS87.91 17687.55 16588.98 22692.08 24878.48 22197.63 8194.80 21790.52 4582.30 21094.56 18365.40 25597.32 19987.67 15583.01 24291.13 259
Vis-MVSNet (Re-imp)88.88 14888.87 13988.91 22793.89 18774.43 30396.93 14794.19 25984.39 16983.22 20195.67 14578.24 10494.70 32378.88 23394.40 13097.61 124
NR-MVSNet83.35 24981.52 26288.84 22888.76 31181.31 14594.45 26595.16 20084.65 16267.81 34590.82 24970.36 22794.87 31774.75 27466.89 35690.33 269
Patchmatch-test78.25 30974.72 32488.83 22991.20 26774.10 30673.91 40688.70 37359.89 39666.82 35185.12 34078.38 10294.54 32748.84 39279.58 26797.86 103
tpm85.55 21584.47 21588.80 23090.19 28975.39 29588.79 34694.69 22284.83 15683.96 19285.21 33678.22 10594.68 32576.32 26178.02 28396.34 185
HQP_MVS87.50 18487.09 17788.74 23191.86 25777.96 24197.18 11894.69 22289.89 5481.33 22394.15 19364.77 26097.30 20187.08 15982.82 24690.96 261
MIMVSNet79.18 30575.99 31588.72 23287.37 33080.66 16379.96 38991.82 33477.38 30674.33 30281.87 36341.78 37790.74 37566.36 33083.10 24194.76 224
FIs86.73 19686.10 19088.61 23390.05 29380.21 17796.14 20196.95 4285.56 13878.37 25492.30 22576.73 13295.28 30279.51 22479.27 26990.35 268
UniMVSNet (Re)85.31 22084.23 21888.55 23489.75 29780.55 16696.72 16196.89 4785.42 14078.40 25388.93 27375.38 16095.52 29278.58 23568.02 34389.57 283
PatchT79.75 29776.85 30988.42 23589.55 30475.49 29477.37 39994.61 23263.07 38082.46 20873.32 39575.52 15593.41 35051.36 38384.43 23296.36 183
WR-MVS84.32 23582.96 23888.41 23689.38 30880.32 17196.59 16896.25 12683.97 18476.63 27390.36 25767.53 23994.86 31875.82 26670.09 32490.06 278
reproduce_monomvs87.80 17787.60 16388.40 23796.56 9880.26 17595.80 22096.32 12191.56 3173.60 30588.36 28388.53 1696.25 25290.47 11967.23 35288.67 309
GBi-Net82.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
test182.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
FMVSNet179.50 30176.54 31288.39 23888.47 31681.95 12394.30 27293.38 30273.14 34272.04 32485.66 32643.86 36893.84 34165.48 33272.53 30689.38 286
DU-MVS84.57 23183.33 23588.28 24188.76 31179.36 19996.43 18195.41 19085.42 14078.11 25790.82 24967.61 23695.14 30979.14 23068.30 34090.33 269
AUN-MVS86.25 20385.57 19588.26 24293.57 19473.38 30995.45 23595.88 15883.94 18685.47 17394.21 19173.70 19096.67 23783.54 19264.41 36394.73 228
hse-mvs288.22 16988.21 14888.25 24393.54 19573.41 30895.41 23795.89 15790.39 4892.22 8394.22 19074.70 17396.66 23893.14 8364.37 36494.69 229
v2v48283.46 24881.86 25688.25 24386.19 34279.65 19396.34 18794.02 26881.56 23677.32 26488.23 28665.62 25296.03 25877.77 23969.72 32889.09 296
UniMVSNet_NR-MVSNet85.49 21784.59 21188.21 24589.44 30779.36 19996.71 16396.41 10985.22 14578.11 25790.98 24876.97 12795.14 30979.14 23068.30 34090.12 274
miper_enhance_ethall85.95 20785.20 20188.19 24694.85 15379.76 18796.00 20694.06 26782.98 21077.74 26188.76 27579.42 8595.46 29480.58 21372.42 30789.36 289
OPM-MVS85.84 20885.10 20688.06 24788.34 31977.83 24895.72 22294.20 25887.89 8980.45 23394.05 19558.57 29897.26 20583.88 18282.76 24889.09 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS89.46 13689.92 12388.06 24794.64 15769.57 34896.22 19494.95 20787.27 10591.37 9696.54 12865.88 25197.39 19688.54 14493.89 13797.23 150
test_vis1_n_192089.95 12790.59 10188.03 24992.36 23168.98 35199.12 1294.34 25193.86 1193.64 6297.01 11251.54 34299.59 6096.76 3596.71 9995.53 206
cl2285.11 22284.17 22087.92 25095.06 14878.82 21395.51 23294.22 25779.74 27276.77 27187.92 29175.96 14595.68 28179.93 22272.42 30789.27 291
TranMVSNet+NR-MVSNet83.24 25381.71 25887.83 25187.71 32678.81 21596.13 20394.82 21684.52 16576.18 28490.78 25164.07 26394.60 32674.60 27866.59 35890.09 276
pmmvs482.54 26580.79 26987.79 25286.11 34480.49 17093.55 29193.18 31277.29 30773.35 31189.40 26965.26 25895.05 31575.32 27073.61 30087.83 328
v114482.90 26081.27 26587.78 25386.29 34079.07 21096.14 20193.93 27080.05 26677.38 26286.80 30865.50 25395.93 26675.21 27170.13 32188.33 320
dmvs_re84.10 23882.90 24087.70 25491.41 26573.28 31290.59 33493.19 31085.02 15177.96 26093.68 20457.92 30996.18 25575.50 26880.87 25893.63 244
F-COLMAP84.50 23383.44 23487.67 25595.22 14072.22 32095.95 20993.78 28475.74 32076.30 28095.18 16459.50 29198.45 14072.67 29186.59 21392.35 256
FC-MVSNet-test85.96 20685.39 19887.66 25689.38 30878.02 23895.65 22696.87 4985.12 14977.34 26391.94 23576.28 14194.74 32277.09 25078.82 27390.21 271
tt080581.20 28579.06 29387.61 25786.50 33672.97 31793.66 28795.48 18174.11 33376.23 28291.99 23141.36 38097.40 19577.44 24874.78 29592.45 254
v119282.31 27080.55 27587.60 25885.94 34678.47 22495.85 21793.80 28279.33 27976.97 26986.51 31263.33 26895.87 26873.11 28870.13 32188.46 316
EI-MVSNet85.80 20985.20 20187.59 25991.55 26177.41 26095.13 24995.36 19180.43 25780.33 23594.71 18073.72 18895.97 26176.96 25378.64 27589.39 284
XVG-OURS85.18 22184.38 21687.59 25990.42 28671.73 33191.06 33194.07 26682.00 23183.29 20095.08 17056.42 32297.55 18383.70 18983.42 23893.49 247
V4283.04 25781.53 26187.57 26186.27 34179.09 20995.87 21594.11 26480.35 25977.22 26686.79 30965.32 25796.02 25977.74 24070.14 32087.61 333
v14419282.43 26680.73 27187.54 26285.81 34978.22 23195.98 20793.78 28479.09 28677.11 26786.49 31364.66 26295.91 26774.20 28169.42 32988.49 314
UWE-MVS88.56 15988.91 13887.50 26394.17 17772.19 32295.82 21997.05 3584.96 15484.78 18193.51 20981.33 6494.75 32179.43 22689.17 18195.57 204
miper_ehance_all_eth84.57 23183.60 23087.50 26392.64 22778.25 23095.40 23893.47 29779.28 28276.41 27787.64 29476.53 13495.24 30478.58 23572.42 30789.01 301
XVG-OURS-SEG-HR85.74 21185.16 20487.49 26590.22 28871.45 33491.29 32894.09 26581.37 23783.90 19495.22 16060.30 28697.53 18785.58 16984.42 23393.50 246
v192192082.02 27380.23 27987.41 26685.62 35077.92 24495.79 22193.69 28978.86 29076.67 27286.44 31562.50 27195.83 27072.69 29069.77 32788.47 315
Anonymous2023121179.72 29877.19 30687.33 26795.59 12977.16 26795.18 24894.18 26059.31 39872.57 32086.20 32247.89 35895.66 28274.53 27969.24 33289.18 293
v881.88 27580.06 28387.32 26886.63 33579.04 21194.41 26693.65 29178.77 29173.19 31485.57 33066.87 24595.81 27173.84 28567.61 34887.11 342
IterMVS-LS83.93 24182.80 24387.31 26991.46 26477.39 26195.66 22593.43 30080.44 25575.51 29387.26 30073.72 18895.16 30876.99 25170.72 31789.39 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124081.70 27779.83 28787.30 27085.50 35177.70 25695.48 23393.44 29878.46 29576.53 27586.44 31560.85 28495.84 26971.59 29770.17 31988.35 319
c3_l83.80 24382.65 24587.25 27192.10 24777.74 25595.25 24293.04 31878.58 29376.01 28587.21 30275.25 16695.11 31177.54 24668.89 33488.91 307
UniMVSNet_ETH3D80.86 28978.75 29587.22 27286.31 33972.02 32591.95 31893.76 28773.51 33875.06 29890.16 26143.04 37495.66 28276.37 26078.55 27893.98 238
v1081.43 28179.53 28987.11 27386.38 33778.87 21294.31 27193.43 30077.88 29973.24 31385.26 33465.44 25495.75 27772.14 29467.71 34786.72 346
ACMH75.40 1777.99 31274.96 32087.10 27490.67 28176.41 27893.19 30391.64 33872.47 34963.44 36787.61 29543.34 37197.16 20958.34 36073.94 29887.72 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14882.41 26980.89 26886.99 27586.18 34376.81 27296.27 19193.82 27980.49 25475.28 29686.11 32467.32 24295.75 27775.48 26967.03 35588.42 318
EPNet_dtu87.65 18287.89 15386.93 27694.57 15971.37 33696.72 16196.50 9988.56 7087.12 15895.02 17275.91 14794.01 33866.62 32590.00 17595.42 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl____83.27 25182.12 25186.74 27792.20 24075.95 28995.11 25193.27 30878.44 29674.82 29987.02 30574.19 18195.19 30674.67 27669.32 33089.09 296
DIV-MVS_self_test83.27 25182.12 25186.74 27792.19 24175.92 29195.11 25193.26 30978.44 29674.81 30087.08 30474.19 18195.19 30674.66 27769.30 33189.11 295
PS-MVSNAJss84.91 22584.30 21786.74 27785.89 34874.40 30494.95 25694.16 26183.93 18776.45 27690.11 26371.04 22095.77 27583.16 19779.02 27290.06 278
pmmvs581.34 28279.54 28886.73 28085.02 35876.91 26996.22 19491.65 33777.65 30273.55 30688.61 27755.70 32694.43 33074.12 28273.35 30388.86 308
MS-PatchMatch83.05 25681.82 25786.72 28189.64 30179.10 20894.88 25894.59 23479.70 27370.67 33389.65 26650.43 34796.82 23070.82 30795.99 11284.25 371
eth_miper_zixun_eth83.12 25582.01 25386.47 28291.85 25974.80 29894.33 27093.18 31279.11 28575.74 29287.25 30172.71 19795.32 30076.78 25467.13 35389.27 291
LPG-MVS_test84.20 23783.49 23386.33 28390.88 27473.06 31595.28 23994.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
LGP-MVS_train86.33 28390.88 27473.06 31594.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
ACMP81.66 1184.00 24083.22 23686.33 28391.53 26372.95 31895.91 21393.79 28383.70 19573.79 30492.22 22654.31 33696.89 22583.98 18179.74 26489.16 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tfpnnormal78.14 31075.42 31886.31 28688.33 32079.24 20294.41 26696.22 12973.51 33869.81 33985.52 33255.43 32795.75 27747.65 39467.86 34583.95 374
ACMM80.70 1383.72 24582.85 24286.31 28691.19 26872.12 32495.88 21494.29 25380.44 25577.02 26891.96 23355.24 32997.14 21379.30 22880.38 26189.67 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs180.05 29578.02 30086.15 28885.42 35275.81 29295.11 25192.69 32477.13 30970.36 33587.43 29658.44 30095.27 30371.36 29964.25 36587.36 340
ppachtmachnet_test77.19 32174.22 32986.13 28985.39 35378.22 23193.98 27991.36 34371.74 35367.11 34884.87 34356.67 31993.37 35152.21 38164.59 36286.80 345
D2MVS82.67 26381.55 26086.04 29087.77 32576.47 27695.21 24496.58 9082.66 21870.26 33685.46 33360.39 28595.80 27276.40 25979.18 27085.83 361
USDC78.65 30776.25 31385.85 29187.58 32774.60 30189.58 34090.58 35784.05 18163.13 36988.23 28640.69 38596.86 22966.57 32775.81 29086.09 356
WB-MVSnew84.08 23983.51 23285.80 29291.34 26676.69 27595.62 22896.27 12481.77 23381.81 22192.81 21758.23 30194.70 32366.66 32487.06 20885.99 358
KD-MVS_2432*160077.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
miper_refine_blended77.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
ADS-MVSNet279.57 30077.53 30385.71 29593.78 18872.13 32379.48 39186.11 38673.09 34380.14 23779.99 37562.15 27490.14 38059.49 35683.52 23694.85 222
mvsany_test187.58 18388.22 14785.67 29689.78 29667.18 35895.25 24287.93 37583.96 18588.79 13697.06 11172.52 20094.53 32892.21 9586.45 21495.30 213
Patchmtry77.36 32074.59 32585.67 29689.75 29775.75 29377.85 39891.12 34660.28 39371.23 32880.35 37275.45 15693.56 34757.94 36167.34 35187.68 331
test_fmvs187.79 17888.52 14485.62 29892.98 21864.31 37097.88 6592.42 32687.95 8592.24 8295.82 14047.94 35798.44 14295.31 5394.09 13194.09 236
MVP-Stereo82.65 26481.67 25985.59 29986.10 34578.29 22893.33 29692.82 32177.75 30169.17 34387.98 29059.28 29495.76 27671.77 29596.88 9282.73 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Fast-Effi-MVS+-dtu83.33 25082.60 24685.50 30089.55 30469.38 34996.09 20491.38 34182.30 22475.96 28791.41 23956.71 31895.58 29075.13 27284.90 23191.54 257
our_test_377.90 31575.37 31985.48 30185.39 35376.74 27393.63 28891.67 33673.39 34165.72 35884.65 34558.20 30393.13 35257.82 36267.87 34486.57 349
test_vis1_n85.60 21485.70 19385.33 30284.79 36064.98 36896.83 15391.61 33987.36 10291.00 10494.84 17836.14 39197.18 20895.66 4593.03 15093.82 241
v7n79.32 30477.34 30485.28 30384.05 36972.89 31993.38 29493.87 27675.02 32770.68 33284.37 34659.58 29095.62 28767.60 31867.50 34987.32 341
IterMVS80.67 29179.16 29185.20 30489.79 29576.08 28392.97 30691.86 33380.28 26171.20 32985.14 33957.93 30891.34 36972.52 29270.74 31688.18 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs1_n86.34 20086.72 18585.17 30587.54 32963.64 37596.91 14992.37 32887.49 9891.33 9795.58 14940.81 38498.46 13895.00 5693.49 14393.41 250
ACMH+76.62 1677.47 31974.94 32185.05 30691.07 27271.58 33393.26 30090.01 35971.80 35264.76 36288.55 27841.62 37896.48 24262.35 34671.00 31487.09 343
jajsoiax82.12 27281.15 26785.03 30784.19 36670.70 33894.22 27693.95 26983.07 20673.48 30789.75 26549.66 35195.37 29782.24 20579.76 26289.02 300
mvs_tets81.74 27680.71 27284.84 30884.22 36570.29 34193.91 28393.78 28482.77 21573.37 31089.46 26847.36 36195.31 30181.99 20679.55 26888.92 306
LTVRE_ROB73.68 1877.99 31275.74 31784.74 30990.45 28572.02 32586.41 36891.12 34672.57 34866.63 35387.27 29954.95 33296.98 21956.29 37075.98 28785.21 365
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.51 29379.10 29284.73 31089.63 30274.66 29992.98 30591.81 33580.05 26671.06 33185.18 33758.04 30491.40 36872.48 29370.70 31888.12 324
Baseline_NR-MVSNet81.22 28480.07 28284.68 31185.32 35675.12 29796.48 17588.80 37076.24 31977.28 26586.40 31867.61 23694.39 33175.73 26766.73 35784.54 368
miper_lstm_enhance81.66 27980.66 27384.67 31291.19 26871.97 32791.94 31993.19 31077.86 30072.27 32285.26 33473.46 19193.42 34973.71 28667.05 35488.61 310
test_djsdf83.00 25982.45 24884.64 31384.07 36869.78 34594.80 26194.48 23880.74 24775.41 29587.70 29361.32 28395.10 31283.77 18579.76 26289.04 299
TransMVSNet (Re)76.94 32374.38 32784.62 31485.92 34775.25 29695.28 23989.18 36773.88 33667.22 34686.46 31459.64 28894.10 33659.24 35952.57 39084.50 369
Patchmatch-RL test76.65 32574.01 33284.55 31577.37 39364.23 37178.49 39782.84 39978.48 29464.63 36373.40 39476.05 14491.70 36776.99 25157.84 37897.72 114
AllTest75.92 32873.06 33684.47 31692.18 24267.29 35691.07 33084.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
TestCases84.47 31692.18 24267.29 35684.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
MVS-HIRNet71.36 35367.00 35984.46 31890.58 28269.74 34679.15 39487.74 37746.09 40661.96 37650.50 41045.14 36695.64 28553.74 37888.11 20088.00 326
JIA-IIPM79.00 30677.20 30584.40 31989.74 29964.06 37375.30 40395.44 18562.15 38481.90 21859.08 40778.92 9395.59 28966.51 32885.78 22493.54 245
LCM-MVSNet-Re83.75 24483.54 23184.39 32093.54 19564.14 37292.51 31184.03 39583.90 18866.14 35686.59 31167.36 24192.68 35384.89 17592.87 15196.35 184
anonymousdsp80.98 28879.97 28484.01 32181.73 37870.44 34092.49 31293.58 29577.10 31172.98 31686.31 31957.58 31094.90 31679.32 22778.63 27786.69 347
COLMAP_ROBcopyleft73.24 1975.74 33073.00 33783.94 32292.38 23069.08 35091.85 32186.93 38061.48 38865.32 36090.27 25842.27 37696.93 22450.91 38575.63 29185.80 362
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE79.38 30377.90 30183.81 32384.98 35967.14 36289.03 34493.18 31280.26 26372.87 31788.15 28838.55 38696.26 25076.05 26378.05 28288.02 325
CP-MVSNet81.01 28780.08 28183.79 32487.91 32470.51 33994.29 27595.65 17080.83 24472.54 32188.84 27463.71 26492.32 35768.58 31768.36 33988.55 311
WR-MVS_H81.02 28680.09 28083.79 32488.08 32271.26 33794.46 26496.54 9480.08 26572.81 31886.82 30770.36 22792.65 35464.18 33767.50 34987.46 339
test0.0.03 182.79 26182.48 24783.74 32686.81 33472.22 32096.52 17295.03 20583.76 19373.00 31593.20 21172.30 20588.88 38264.15 33877.52 28490.12 274
Effi-MVS+-dtu84.61 23084.90 21083.72 32791.96 25463.14 37894.95 25693.34 30685.57 13679.79 24187.12 30361.99 27795.61 28883.55 19185.83 22392.41 255
EG-PatchMatch MVS74.92 33372.02 34183.62 32883.76 37373.28 31293.62 28992.04 33268.57 36758.88 38683.80 35231.87 40095.57 29156.97 36878.67 27482.00 387
pmmvs674.65 33571.67 34283.60 32979.13 38669.94 34393.31 29990.88 35361.05 39265.83 35784.15 34943.43 37094.83 31966.62 32560.63 37486.02 357
PS-CasMVS80.27 29479.18 29083.52 33087.56 32869.88 34494.08 27895.29 19680.27 26272.08 32388.51 28159.22 29592.23 35967.49 31968.15 34288.45 317
OpenMVS_ROBcopyleft68.52 2073.02 34469.57 35183.37 33180.54 38271.82 32993.60 29088.22 37462.37 38361.98 37583.15 35835.31 39595.47 29345.08 39875.88 28982.82 377
FMVSNet576.46 32674.16 33083.35 33290.05 29376.17 28189.58 34089.85 36071.39 35565.29 36180.42 37150.61 34687.70 39061.05 35269.24 33286.18 354
PEN-MVS79.47 30278.26 29883.08 33386.36 33868.58 35293.85 28594.77 22079.76 27171.37 32688.55 27859.79 28792.46 35564.50 33665.40 36088.19 322
MDA-MVSNet_test_wron73.54 34070.43 34882.86 33484.55 36171.85 32891.74 32391.32 34567.63 36946.73 40281.09 36955.11 33090.42 37855.91 37259.76 37586.31 352
YYNet173.53 34170.43 34882.85 33584.52 36371.73 33191.69 32491.37 34267.63 36946.79 40181.21 36855.04 33190.43 37755.93 37159.70 37686.38 351
TinyColmap72.41 34668.99 35582.68 33688.11 32169.59 34788.41 34985.20 38865.55 37557.91 38984.82 34430.80 40295.94 26551.38 38268.70 33582.49 382
CVMVSNet84.83 22685.57 19582.63 33791.55 26160.38 38795.13 24995.03 20580.60 25082.10 21694.71 18066.40 24990.19 37974.30 28090.32 17497.31 147
pmmvs-eth3d73.59 33870.66 34682.38 33876.40 39773.38 30989.39 34389.43 36472.69 34760.34 38277.79 38146.43 36491.26 37166.42 32957.06 37982.51 380
ITE_SJBPF82.38 33887.00 33265.59 36689.55 36279.99 26869.37 34191.30 24241.60 37995.33 29962.86 34574.63 29786.24 353
DTE-MVSNet78.37 30877.06 30782.32 34085.22 35767.17 36193.40 29393.66 29078.71 29270.53 33488.29 28559.06 29692.23 35961.38 35063.28 36987.56 335
test_040272.68 34569.54 35282.09 34188.67 31471.81 33092.72 31086.77 38361.52 38762.21 37483.91 35143.22 37293.76 34434.60 40672.23 31080.72 393
MDA-MVSNet-bldmvs71.45 35167.94 35881.98 34285.33 35568.50 35392.35 31588.76 37170.40 35842.99 40581.96 36246.57 36391.31 37048.75 39354.39 38486.11 355
mmtdpeth78.04 31176.76 31081.86 34389.60 30366.12 36592.34 31687.18 37876.83 31485.55 17276.49 38646.77 36297.02 21690.85 11145.24 40282.43 383
mamv485.50 21686.76 18381.72 34493.23 20554.93 40189.95 33892.94 31969.96 36179.00 24892.20 22780.69 7094.22 33492.06 9890.77 17196.01 193
UnsupCasMVSNet_eth73.25 34270.57 34781.30 34577.53 39166.33 36487.24 36193.89 27580.38 25857.90 39081.59 36442.91 37590.56 37665.18 33448.51 39687.01 344
SixPastTwentyTwo76.04 32774.32 32881.22 34684.54 36261.43 38591.16 32989.30 36677.89 29864.04 36486.31 31948.23 35394.29 33363.54 34263.84 36787.93 327
myMVS_eth3d81.93 27482.18 25081.18 34792.13 24567.18 35893.97 28094.23 25582.43 22173.39 30893.57 20776.98 12687.86 38750.53 38782.34 25188.51 312
RPSCF77.73 31676.63 31181.06 34888.66 31555.76 39987.77 35787.88 37664.82 37874.14 30392.79 21949.22 35296.81 23167.47 32076.88 28590.62 264
UnsupCasMVSNet_bld68.60 36264.50 36680.92 34974.63 40267.80 35483.97 38292.94 31965.12 37754.63 39668.23 40335.97 39292.17 36160.13 35444.83 40382.78 378
CL-MVSNet_self_test75.81 32974.14 33180.83 35078.33 38967.79 35594.22 27693.52 29677.28 30869.82 33881.54 36661.47 28289.22 38157.59 36453.51 38685.48 363
OurMVSNet-221017-077.18 32276.06 31480.55 35183.78 37260.00 38990.35 33591.05 34977.01 31366.62 35487.92 29147.73 35994.03 33771.63 29668.44 33887.62 332
mvs5depth71.40 35268.36 35780.54 35275.31 40165.56 36779.94 39085.14 38969.11 36671.75 32581.59 36441.02 38293.94 33960.90 35350.46 39282.10 385
Anonymous2023120675.29 33273.64 33380.22 35380.75 37963.38 37793.36 29590.71 35673.09 34367.12 34783.70 35350.33 34890.85 37453.63 37970.10 32386.44 350
lessismore_v079.98 35480.59 38158.34 39380.87 40158.49 38783.46 35543.10 37393.89 34063.11 34448.68 39587.72 329
K. test v373.62 33771.59 34379.69 35582.98 37459.85 39090.85 33388.83 36977.13 30958.90 38582.11 36143.62 36991.72 36665.83 33154.10 38587.50 338
TDRefinement69.20 36065.78 36479.48 35666.04 41162.21 38188.21 35086.12 38562.92 38161.03 38085.61 32933.23 39794.16 33555.82 37353.02 38882.08 386
testing380.74 29081.17 26679.44 35791.15 27063.48 37697.16 12295.76 16480.83 24471.36 32793.15 21478.22 10587.30 39243.19 40079.67 26587.55 337
testgi74.88 33473.40 33479.32 35880.13 38361.75 38293.21 30186.64 38479.49 27766.56 35591.06 24535.51 39488.67 38356.79 36971.25 31287.56 335
CMPMVSbinary54.94 2175.71 33174.56 32679.17 35979.69 38455.98 39689.59 33993.30 30760.28 39353.85 39789.07 27147.68 36096.33 24876.55 25681.02 25785.22 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVStest166.93 36463.01 36878.69 36078.56 38771.43 33585.51 37586.81 38149.79 40548.57 40084.15 34953.46 33783.31 40043.14 40137.15 41181.34 392
test_fmvs279.59 29979.90 28678.67 36182.86 37555.82 39895.20 24589.55 36281.09 24080.12 23989.80 26434.31 39693.51 34887.82 15278.36 28086.69 347
test_vis1_rt73.96 33672.40 33978.64 36283.91 37061.16 38695.63 22768.18 41576.32 31660.09 38374.77 38929.01 40497.54 18587.74 15375.94 28877.22 398
Anonymous2024052172.06 34969.91 35078.50 36377.11 39461.67 38491.62 32690.97 35165.52 37662.37 37379.05 37836.32 39090.96 37357.75 36368.52 33782.87 376
MIMVSNet169.44 35866.65 36277.84 36476.48 39662.84 37987.42 35988.97 36866.96 37457.75 39179.72 37732.77 39985.83 39646.32 39563.42 36884.85 367
Syy-MVS77.97 31478.05 29977.74 36592.13 24556.85 39493.97 28094.23 25582.43 22173.39 30893.57 20757.95 30787.86 38732.40 40882.34 25188.51 312
new-patchmatchnet68.85 36165.93 36377.61 36673.57 40463.94 37490.11 33788.73 37271.62 35455.08 39573.60 39340.84 38387.22 39351.35 38448.49 39781.67 391
ttmdpeth69.58 35566.92 36177.54 36775.95 40062.40 38088.09 35284.32 39462.87 38265.70 35986.25 32136.53 38988.53 38455.65 37446.96 40181.70 390
kuosan73.55 33972.39 34077.01 36889.68 30066.72 36385.24 37793.44 29867.76 36860.04 38483.40 35671.90 21084.25 39945.34 39754.75 38180.06 394
LF4IMVS72.36 34770.82 34576.95 36979.18 38556.33 39586.12 37086.11 38669.30 36563.06 37086.66 31033.03 39892.25 35865.33 33368.64 33682.28 384
EU-MVSNet76.92 32476.95 30876.83 37084.10 36754.73 40291.77 32292.71 32372.74 34669.57 34088.69 27658.03 30687.43 39164.91 33570.00 32588.33 320
PM-MVS69.32 35966.93 36076.49 37173.60 40355.84 39785.91 37179.32 40574.72 32961.09 37978.18 38021.76 40791.10 37270.86 30556.90 38082.51 380
pmmvs365.75 36662.18 36976.45 37267.12 41064.54 36988.68 34785.05 39054.77 40457.54 39273.79 39229.40 40386.21 39555.49 37547.77 39978.62 396
ambc76.02 37368.11 40851.43 40364.97 41189.59 36160.49 38174.49 39117.17 41092.46 35561.50 34952.85 38984.17 372
test20.0372.36 34771.15 34475.98 37477.79 39059.16 39192.40 31489.35 36574.09 33461.50 37784.32 34748.09 35485.54 39750.63 38662.15 37283.24 375
KD-MVS_self_test70.97 35469.31 35375.95 37576.24 39955.39 40087.45 35890.94 35270.20 36062.96 37277.48 38244.01 36788.09 38561.25 35153.26 38784.37 370
DSMNet-mixed73.13 34372.45 33875.19 37677.51 39246.82 40785.09 37882.01 40067.61 37369.27 34281.33 36750.89 34486.28 39454.54 37683.80 23592.46 253
new_pmnet66.18 36563.18 36775.18 37776.27 39861.74 38383.79 38384.66 39156.64 40251.57 39871.85 40131.29 40187.93 38649.98 38862.55 37075.86 399
mvsany_test367.19 36365.34 36572.72 37863.08 41248.57 40583.12 38578.09 40672.07 35061.21 37877.11 38422.94 40687.78 38978.59 23451.88 39181.80 388
dongtai69.47 35768.98 35670.93 37986.87 33358.45 39288.19 35193.18 31263.98 37956.04 39380.17 37470.97 22379.24 40633.46 40747.94 39875.09 400
test_fmvs369.56 35669.19 35470.67 38069.01 40647.05 40690.87 33286.81 38171.31 35666.79 35277.15 38316.40 41183.17 40281.84 20762.51 37181.79 389
test_f64.01 36762.13 37069.65 38163.00 41345.30 41283.66 38480.68 40261.30 38955.70 39472.62 39714.23 41384.64 39869.84 31058.11 37779.00 395
dmvs_testset72.00 35073.36 33567.91 38283.83 37131.90 42285.30 37677.12 40782.80 21463.05 37192.46 22261.54 28182.55 40442.22 40371.89 31189.29 290
EGC-MVSNET52.46 37647.56 37967.15 38381.98 37760.11 38882.54 38772.44 4110.11 4230.70 42474.59 39025.11 40583.26 40129.04 41061.51 37358.09 408
APD_test156.56 37153.58 37565.50 38467.93 40946.51 40977.24 40172.95 41038.09 40842.75 40675.17 38813.38 41482.78 40340.19 40454.53 38367.23 405
LCM-MVSNet52.52 37548.24 37865.35 38547.63 42241.45 41472.55 40783.62 39731.75 41037.66 40857.92 4089.19 42076.76 41049.26 39044.60 40477.84 397
PMMVS250.90 37746.31 38064.67 38655.53 41646.67 40877.30 40071.02 41240.89 40734.16 41159.32 4069.83 41976.14 41240.09 40528.63 41471.21 401
N_pmnet61.30 36860.20 37164.60 38784.32 36417.00 42891.67 32510.98 42661.77 38658.45 38878.55 37949.89 35091.83 36542.27 40263.94 36684.97 366
DeepMVS_CXcopyleft64.06 38878.53 38843.26 41368.11 41769.94 36238.55 40776.14 38718.53 40979.34 40543.72 39941.62 40869.57 403
test_method56.77 37054.53 37463.49 38976.49 39540.70 41575.68 40274.24 40919.47 41748.73 39971.89 40019.31 40865.80 41757.46 36547.51 40083.97 373
test_vis3_rt54.10 37451.04 37763.27 39058.16 41446.08 41184.17 38149.32 42556.48 40336.56 40949.48 4128.03 42191.91 36467.29 32149.87 39351.82 411
FPMVS55.09 37352.93 37661.57 39155.98 41540.51 41683.11 38683.41 39837.61 40934.95 41071.95 39914.40 41276.95 40929.81 40965.16 36167.25 404
ANet_high46.22 37841.28 38561.04 39239.91 42446.25 41070.59 40876.18 40858.87 39923.09 41648.00 41312.58 41666.54 41628.65 41113.62 41770.35 402
WB-MVS57.26 36956.22 37260.39 39369.29 40535.91 42086.39 36970.06 41359.84 39746.46 40372.71 39651.18 34378.11 40715.19 41734.89 41267.14 406
SSC-MVS56.01 37254.96 37359.17 39468.42 40734.13 42184.98 37969.23 41458.08 40145.36 40471.67 40250.30 34977.46 40814.28 41832.33 41365.91 407
testf145.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
APD_test245.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
Gipumacopyleft45.11 38142.05 38354.30 39780.69 38051.30 40435.80 41583.81 39628.13 41127.94 41534.53 41511.41 41876.70 41121.45 41454.65 38234.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft34.80 2339.19 38335.53 38650.18 39829.72 42530.30 42359.60 41366.20 41826.06 41417.91 41849.53 4113.12 42474.09 41318.19 41649.40 39446.14 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 38429.49 38946.92 39941.86 42336.28 41950.45 41456.52 42218.75 41818.28 41737.84 4142.41 42558.41 41818.71 41520.62 41546.06 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 38241.93 38440.38 40020.10 42626.84 42461.93 41259.09 42114.81 41928.51 41480.58 37035.53 39348.33 42163.70 34113.11 41845.96 414
E-PMN32.70 38532.39 38733.65 40153.35 41825.70 42574.07 40553.33 42321.08 41517.17 41933.63 41711.85 41754.84 41912.98 41914.04 41620.42 416
EMVS31.70 38631.45 38832.48 40250.72 42123.95 42674.78 40452.30 42420.36 41616.08 42031.48 41812.80 41553.60 42011.39 42013.10 41919.88 417
wuyk23d14.10 38813.89 39114.72 40355.23 41722.91 42733.83 4163.56 4274.94 4204.11 4212.28 4232.06 42619.66 42210.23 4218.74 4201.59 420
test1239.07 39011.73 3931.11 4040.50 4280.77 42989.44 3420.20 4290.34 4222.15 42310.72 4220.34 4270.32 4231.79 4230.08 4222.23 418
testmvs9.92 38912.94 3920.84 4050.65 4270.29 43093.78 2860.39 4280.42 4212.85 42215.84 4210.17 4280.30 4242.18 4220.21 4211.91 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k21.43 38728.57 3900.00 4060.00 4290.00 4310.00 41795.93 1550.00 4240.00 42597.66 7563.57 2650.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.92 3927.89 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42471.04 2200.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.11 39110.81 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.30 980.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS67.18 35849.00 391
FOURS198.51 3978.01 23998.13 4996.21 13083.04 20794.39 52
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
test_one_060198.91 1884.56 8196.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.09 883.22 10596.60 8782.88 21293.61 6398.06 5382.93 5699.14 10095.51 4998.49 39
RE-MVS-def91.18 9397.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6773.36 19391.99 9996.79 9597.75 112
IU-MVS99.03 1585.34 5896.86 5192.05 2798.74 198.15 1198.97 1799.42 13
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7196.78 5588.72 6697.79 698.90 588.48 1799.82 19
9.1494.26 3198.10 5798.14 4696.52 9684.74 15894.83 4798.80 782.80 5899.37 8095.95 4198.42 42
save fliter98.24 5183.34 10298.61 3396.57 9191.32 33
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
test072699.05 985.18 6399.11 1596.78 5588.75 6497.65 1198.91 287.69 22
GSMVS97.54 127
test_part298.90 1985.14 6996.07 29
sam_mvs177.59 11597.54 127
sam_mvs75.35 163
MTGPAbinary96.33 119
test_post185.88 37230.24 41973.77 18695.07 31473.89 283
test_post33.80 41676.17 14295.97 261
patchmatchnet-post77.09 38577.78 11495.39 295
MTMP97.53 9168.16 416
gm-plane-assit92.27 23679.64 19484.47 16895.15 16697.93 16085.81 167
test9_res96.00 4099.03 1398.31 68
TEST998.64 3183.71 9397.82 6896.65 7884.29 17595.16 3798.09 4884.39 3999.36 81
test_898.63 3383.64 9697.81 7096.63 8384.50 16695.10 4098.11 4784.33 4099.23 88
agg_prior294.30 6499.00 1598.57 53
agg_prior98.59 3583.13 10696.56 9394.19 5499.16 99
test_prior482.34 11997.75 75
test_prior298.37 3986.08 12694.57 5098.02 5483.14 5395.05 5598.79 27
旧先验296.97 14274.06 33596.10 2897.76 17188.38 148
新几何296.42 182
旧先验197.39 8679.58 19596.54 9498.08 5184.00 4597.42 7697.62 123
无先验96.87 15196.78 5577.39 30599.52 6979.95 22198.43 61
原ACMM296.84 152
test22296.15 10878.41 22595.87 21596.46 10371.97 35189.66 12097.45 8876.33 14098.24 5198.30 69
testdata299.48 7376.45 258
segment_acmp82.69 59
testdata195.57 23187.44 99
plane_prior791.86 25777.55 258
plane_prior691.98 25377.92 24464.77 260
plane_prior594.69 22297.30 20187.08 15982.82 24690.96 261
plane_prior494.15 193
plane_prior377.75 25490.17 5281.33 223
plane_prior297.18 11889.89 54
plane_prior191.95 255
plane_prior77.96 24197.52 9490.36 5082.96 244
n20.00 430
nn0.00 430
door-mid79.75 404
test1196.50 99
door80.13 403
HQP5-MVS78.48 221
HQP-NCC92.08 24897.63 8190.52 4582.30 210
ACMP_Plane92.08 24897.63 8190.52 4582.30 210
BP-MVS87.67 155
HQP4-MVS82.30 21097.32 19991.13 259
HQP3-MVS94.80 21783.01 242
HQP2-MVS65.40 255
NP-MVS92.04 25278.22 23194.56 183
MDTV_nov1_ep13_2view81.74 13586.80 36480.65 24985.65 17074.26 18076.52 25796.98 161
MDTV_nov1_ep1383.69 22594.09 18281.01 15186.78 36596.09 13983.81 19184.75 18284.32 34774.44 17996.54 24063.88 33985.07 230
ACMMP++_ref78.45 279
ACMMP++79.05 271
Test By Simon71.65 213