This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268876.24 5174.03 7282.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13783.49 18641.52 15393.69 2870.55 9581.82 6792.12 37
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5588.09 12548.07 6492.19 4862.24 14784.53 5091.53 55
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 10974.63 4490.83 6941.38 15494.40 2075.42 6879.90 8994.72 2
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12788.88 2658.00 20483.60 693.39 1667.21 296.39 481.64 2891.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 7993.25 294.80 1
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18071.82 7790.05 8859.72 996.04 1078.37 4788.40 1393.75 7
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 21884.61 494.09 358.81 1196.37 682.28 2387.60 1794.06 3
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21281.91 1393.64 1155.17 2096.44 281.68 2687.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2687.13 2092.47 28
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3493.09 2554.15 2895.57 1285.80 885.87 3693.31 11
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3192.13 3960.24 694.78 1978.97 4189.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 1893.22 2237.77 18792.50 4282.75 2086.25 3391.57 53
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1793.07 2737.63 19292.28 4782.73 2185.71 3791.57 53
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3393.87 752.58 3593.91 2684.17 1287.92 1592.39 30
MVS76.91 4175.48 5281.23 1884.56 7355.21 6080.23 25191.64 258.65 19465.37 13091.48 5845.72 9295.05 1672.11 9089.52 993.44 9
VDDNet74.37 7572.13 9681.09 1979.58 18756.52 3290.02 2686.70 7052.61 27571.23 8587.20 14031.75 26693.96 2574.30 7775.77 12192.79 23
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5292.75 3046.88 7793.28 2978.79 4484.07 5391.50 57
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13383.68 14267.85 3869.36 9590.24 8060.20 792.10 5284.14 1380.40 8092.82 21
API-MVS74.17 7872.07 9880.49 2290.02 1158.55 887.30 7084.27 12957.51 21765.77 12787.77 13141.61 15195.97 1151.71 23782.63 5986.94 157
3Dnovator64.70 674.46 7372.48 8680.41 2482.84 11755.40 5483.08 18788.61 3867.61 4359.85 19488.66 11334.57 23893.97 2458.42 18188.70 1191.85 46
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 24881.21 1693.69 1056.51 1694.27 2278.36 4885.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS76.76 4675.60 5080.21 2690.87 754.68 7889.14 4189.11 2062.95 11270.54 9292.33 3741.05 15594.95 1757.90 19186.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2293.64 1152.40 3693.27 3088.85 486.56 3092.61 26
SD-MVS76.18 5274.85 6280.18 2885.39 5956.90 2485.75 10282.45 16656.79 23274.48 4791.81 4843.72 12290.75 8474.61 7378.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Effi-MVS+75.24 6573.61 7480.16 2981.92 13357.42 1985.21 11676.71 27460.68 15473.32 5889.34 10147.30 7291.63 5968.28 10679.72 9191.42 58
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 13880.26 2093.10 2346.53 8292.41 4479.97 3588.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++74.21 7772.25 9280.11 3181.45 15356.47 3386.32 8979.65 21658.19 20066.36 11892.29 3836.11 21990.66 8667.39 11082.49 6193.18 16
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2393.10 2349.88 5692.98 3284.09 1484.75 4893.08 17
IB-MVS68.87 274.01 7972.03 10179.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18281.74 21853.21 3194.28 2160.45 16662.41 23890.03 92
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2493.00 2853.10 3291.76 5780.40 3489.56 892.68 25
QAPM71.88 11769.33 14179.52 3582.20 13054.30 8686.30 9088.77 3156.61 23659.72 19687.48 13533.90 24495.36 1347.48 26581.49 7088.90 117
VDD-MVS76.08 5474.97 6079.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7289.34 10132.52 25692.76 3877.90 5375.96 11892.22 36
MVS_111021_HR76.39 5075.38 5479.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12289.88 9143.79 11992.16 4975.03 7080.03 8789.64 100
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11371.65 7891.56 5642.33 13892.56 4177.14 5783.69 5590.15 88
Skip Steuart: Steuart Systems R&D Blog.
test1279.24 3986.89 4156.08 4085.16 10672.27 7447.15 7491.10 7385.93 3590.54 78
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24378.56 2892.49 3548.20 6392.65 4079.49 3683.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3692.02 4344.82 10890.23 10080.83 3380.09 8492.08 38
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8388.35 11951.58 4091.22 6879.02 4079.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8492.75 3045.52 9590.37 9371.15 9285.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3292.11 4250.90 4789.95 10678.18 5177.54 10793.20 15
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20173.60 5393.31 1943.14 13193.79 2773.81 8088.53 1292.37 31
test_yl75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
DCV-MVSNet75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8088.63 11750.89 4990.35 9476.00 6179.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM76.76 4676.07 4778.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9488.84 11151.57 4187.16 19765.48 12586.68 2890.15 88
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12488.63 3666.08 6486.77 392.75 3072.05 191.46 6383.35 1793.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10489.97 9048.03 6591.41 6475.60 6584.14 5289.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP76.43 4975.66 4978.73 5281.92 13354.67 7984.06 15685.35 9561.10 14372.99 6191.50 5740.25 16391.00 7576.84 5886.98 2390.51 79
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16084.88 11471.38 1471.51 8189.15 10650.51 5090.55 9075.71 6378.65 9991.39 59
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5090.91 6642.14 14289.99 10579.30 3879.12 9591.36 61
jason: jason.
ET-MVSNet_ETH3D75.23 6674.08 7078.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28490.22 8249.71 5787.62 18972.12 8970.82 16492.82 21
CostFormer73.89 8272.30 9178.66 5682.36 12856.58 2875.56 28285.30 9866.06 6570.50 9376.88 27157.02 1489.06 12768.27 10768.74 18090.33 82
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2591.09 6055.43 1990.09 10385.01 1080.40 8091.99 43
MVS_Test75.85 5774.93 6178.62 5784.08 8155.20 6183.99 15885.17 10568.07 3573.38 5782.76 19650.44 5189.00 13165.90 12180.61 7691.64 49
CDPH-MVS76.05 5575.19 5678.62 5786.51 4454.98 6987.32 6884.59 12358.62 19570.75 8990.85 6843.10 13390.63 8870.50 9684.51 5190.24 84
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23774.26 4991.60 5554.26 2692.16 4975.87 6279.91 8893.05 18
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6090.52 7445.23 9990.66 8679.37 3780.95 7290.22 85
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22586.41 7469.61 2481.72 1588.16 12455.09 2288.04 17074.12 7886.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 20972.99 6190.98 6344.99 10288.58 14778.19 4985.32 4291.34 63
PAPR75.20 6774.13 6878.41 6488.31 3155.10 6584.31 14885.66 8763.76 9767.55 10690.73 7043.48 12789.40 11966.36 11877.03 10990.73 74
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 3891.99 4554.07 2989.05 12877.34 5677.00 11092.89 20
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19274.63 4492.38 3647.75 6891.35 6578.18 5186.85 2591.15 66
ZNCC-MVS75.82 6075.02 5978.23 6883.88 8753.80 9486.91 8186.05 8159.71 16667.85 10590.55 7242.23 14091.02 7472.66 8885.29 4389.87 97
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4090.15 8646.77 7991.00 7573.52 8278.46 10193.44 9
EIA-MVS75.92 5675.18 5778.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10090.53 7345.79 9191.58 6067.21 11282.18 6491.20 65
HFP-MVS74.37 7573.13 8178.10 7184.30 7753.68 9785.58 10784.36 12756.82 23065.78 12690.56 7140.70 16190.90 7969.18 10180.88 7389.71 98
tpm270.82 13568.44 15077.98 7280.78 16856.11 3974.21 29381.28 18760.24 16068.04 10375.27 28952.26 3888.50 15255.82 21168.03 18489.33 106
thisisatest051573.64 8972.20 9477.97 7381.63 14453.01 12186.69 8488.81 3062.53 12064.06 14985.65 15852.15 3992.50 4258.43 17969.84 17288.39 132
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3591.72 5049.32 6090.17 10273.46 8382.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2195.30 156.18 1790.97 7882.57 2286.22 3493.28 13
GST-MVS74.87 7173.90 7377.77 7683.30 9953.45 10485.75 10285.29 9959.22 17966.50 11789.85 9240.94 15690.76 8370.94 9483.35 5689.10 114
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 32888.45 4268.73 9987.45 13659.15 1090.67 8554.83 21487.67 1692.03 40
cascas69.01 16566.13 19477.66 7879.36 18955.41 5386.99 7783.75 14156.69 23458.92 21481.35 22324.31 31692.10 5253.23 22470.61 16585.46 191
3Dnovator+62.71 772.29 11070.50 11977.65 7983.40 9751.29 15887.32 6886.40 7559.01 18758.49 22488.32 12132.40 25791.27 6657.04 20082.15 6590.38 81
MVSFormer73.53 9072.19 9577.57 8083.02 10955.24 5881.63 22281.44 18350.28 29076.67 3690.91 6644.82 10886.11 22660.83 15880.09 8491.36 61
APD-MVScopyleft76.15 5375.68 4877.54 8188.52 2753.44 10587.26 7385.03 11053.79 26574.91 4291.68 5243.80 11890.31 9674.36 7581.82 6788.87 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+72.73 10171.15 11277.48 8282.75 11954.76 7286.77 8380.64 19663.05 11165.93 12484.01 17644.42 11389.03 12956.45 20776.36 11788.64 125
EPMVS68.45 17765.44 21377.47 8384.91 6856.17 3871.89 31481.91 17561.72 13360.85 18672.49 31436.21 21887.06 20047.32 26671.62 15689.17 112
PatchmatchNetpermissive67.07 21163.63 23177.40 8483.10 10458.03 972.11 31277.77 25458.85 19059.37 20470.83 32737.84 18684.93 25342.96 28969.83 17389.26 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
region2R73.75 8572.55 8577.33 8583.90 8652.98 12285.54 11084.09 13456.83 22965.10 13290.45 7537.34 20190.24 9968.89 10380.83 7588.77 123
iter_conf0573.51 9172.24 9377.33 8587.93 3655.97 4387.90 5770.81 32468.72 2864.04 15084.36 17247.54 7090.87 8071.11 9367.75 18885.13 195
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 26888.46 4990.32 1171.40 1372.32 7391.72 5053.44 3092.37 4566.28 11975.42 12493.28 13
OpenMVScopyleft61.00 1169.99 15067.55 16877.30 8778.37 21454.07 9284.36 14685.76 8657.22 22356.71 25287.67 13330.79 27292.83 3543.04 28884.06 5485.01 197
MTAPA72.73 10171.22 11077.27 8981.54 15053.57 9967.06 33481.31 18559.41 17368.39 10190.96 6536.07 22189.01 13073.80 8182.45 6289.23 109
PAPM_NR71.80 11969.98 13177.26 9081.54 15053.34 11078.60 26785.25 10253.46 26860.53 19088.66 11345.69 9389.24 12256.49 20479.62 9489.19 111
ACMMPR73.76 8472.61 8377.24 9183.92 8552.96 12385.58 10784.29 12856.82 23065.12 13190.45 7537.24 20390.18 10169.18 10180.84 7488.58 127
h-mvs3373.95 8072.89 8277.15 9280.17 18050.37 17484.68 13883.33 14868.08 3371.97 7588.65 11642.50 13691.15 7178.82 4257.78 27989.91 96
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6491.98 4745.10 10091.27 6675.02 7184.56 4990.84 72
MP-MVS-pluss75.54 6375.03 5877.04 9481.37 15552.65 12884.34 14784.46 12561.16 14169.14 9691.76 4939.98 17088.99 13378.19 4984.89 4789.48 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HyFIR lowres test69.94 15267.58 16677.04 9477.11 23557.29 2081.49 23079.11 23058.27 19958.86 21680.41 23042.33 13886.96 20361.91 15068.68 18186.87 159
DP-MVS Recon71.99 11470.31 12477.01 9690.65 853.44 10589.37 3782.97 15956.33 24063.56 16089.47 9834.02 24292.15 5154.05 22072.41 14985.43 192
Anonymous2024052969.71 15567.28 17377.00 9783.78 8850.36 17588.87 4585.10 10947.22 30864.03 15183.37 18827.93 28892.10 5257.78 19467.44 19088.53 130
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7191.62 5445.53 9490.99 7774.48 7482.51 6091.23 64
baseline275.15 6874.54 6676.98 9981.67 14351.74 14683.84 16291.94 169.97 2158.98 21186.02 15459.73 891.73 5868.37 10570.40 16987.48 149
MP-MVScopyleft74.99 7074.33 6776.95 10082.89 11553.05 12085.63 10683.50 14757.86 20867.25 10890.24 8043.38 12888.85 14176.03 6082.23 6388.96 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mvs_anonymous72.29 11070.74 11576.94 10182.85 11654.72 7578.43 26881.54 18163.77 9661.69 17979.32 23951.11 4485.31 24462.15 14975.79 12090.79 73
iter_conf_final71.46 12469.68 13576.81 10286.03 4653.49 10084.73 13574.37 29460.27 15966.28 11984.36 17235.14 23190.87 8065.41 13070.51 16786.05 176
XVS72.92 9771.62 10376.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 15389.63 9635.50 22689.78 10965.50 12380.50 7888.16 133
X-MVStestdata65.85 22962.20 23776.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 1534.82 39635.50 22689.78 10965.50 12380.50 7888.16 133
PGM-MVS72.60 10371.20 11176.80 10582.95 11252.82 12583.07 18882.14 16856.51 23863.18 16289.81 9335.68 22589.76 11167.30 11180.19 8387.83 141
Anonymous20240521170.11 14467.88 15976.79 10687.20 4047.24 25489.49 3577.38 26254.88 25766.14 12086.84 14520.93 33791.54 6156.45 20771.62 15691.59 51
tpm cat166.28 22362.78 23376.77 10781.40 15457.14 2270.03 32177.19 26453.00 27258.76 21970.73 33046.17 8486.73 21043.27 28764.46 21486.44 170
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9789.33 10346.70 8088.13 16675.43 6681.48 7189.55 102
diffmvspermissive75.11 6974.65 6576.46 10978.52 21053.35 10983.28 18279.94 20870.51 1871.64 7988.72 11246.02 8886.08 23177.52 5475.75 12289.96 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu73.40 9372.44 8776.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14285.38 16247.11 7587.38 19467.75 10977.55 10686.81 165
BH-RMVSNet70.08 14668.01 15676.27 11184.21 8051.22 16087.29 7179.33 22758.96 18963.63 15886.77 14633.29 25090.30 9844.63 28173.96 13687.30 154
CLD-MVS75.60 6175.39 5376.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13588.93 10842.05 14490.58 8976.57 5973.96 13685.73 185
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE69.96 15167.88 15976.22 11381.11 15951.71 14784.15 15276.74 27359.83 16460.91 18584.38 17041.56 15288.10 16851.67 23870.57 16688.84 120
131471.11 12969.41 13876.22 11379.32 19150.49 16980.23 25185.14 10859.44 17258.93 21388.89 11033.83 24689.60 11661.49 15377.42 10888.57 128
thisisatest053070.47 14268.56 14876.20 11579.78 18551.52 15283.49 17388.58 4057.62 21558.60 22082.79 19551.03 4691.48 6252.84 22962.36 24085.59 190
FA-MVS(test-final)69.00 16666.60 18576.19 11683.48 9347.96 24174.73 28982.07 17057.27 22262.18 17478.47 24936.09 22092.89 3353.76 22371.32 16087.73 144
HY-MVS67.03 573.90 8173.14 7976.18 11784.70 7147.36 25075.56 28286.36 7666.27 5970.66 9183.91 17851.05 4589.31 12067.10 11372.61 14891.88 45
gg-mvs-nofinetune67.43 19964.53 22576.13 11885.95 4747.79 24564.38 34088.28 4439.34 34366.62 11341.27 37758.69 1389.00 13149.64 25086.62 2991.59 51
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 27966.70 11187.07 14340.15 16689.70 11351.23 24185.06 4684.10 209
GA-MVS69.04 16466.70 18276.06 12075.11 25852.36 13383.12 18680.23 20363.32 10760.65 18979.22 24230.98 27188.37 15561.25 15466.41 19987.46 150
mPP-MVS71.79 12070.38 12276.04 12182.65 12352.06 13784.45 14481.78 17855.59 24762.05 17789.68 9533.48 24888.28 16365.45 12878.24 10487.77 143
MVSTER73.25 9472.33 8976.01 12285.54 5653.76 9683.52 16787.16 6167.06 4763.88 15581.66 21952.77 3390.44 9164.66 13464.69 21283.84 220
CP-MVS72.59 10571.46 10676.00 12382.93 11452.32 13586.93 8082.48 16555.15 25263.65 15790.44 7835.03 23488.53 15168.69 10477.83 10587.15 155
HPM-MVScopyleft72.60 10371.50 10575.89 12482.02 13151.42 15480.70 24483.05 15656.12 24264.03 15189.53 9737.55 19588.37 15570.48 9780.04 8687.88 140
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t69.87 15367.88 15975.85 12588.38 2952.35 13486.94 7983.68 14253.70 26655.68 26285.60 15930.07 27791.20 6955.84 21071.02 16283.99 213
PMMVS72.98 9672.05 9975.78 12683.57 9048.60 21784.08 15482.85 16161.62 13468.24 10290.33 7928.35 28487.78 18072.71 8776.69 11290.95 70
SDMVSNet71.89 11670.62 11875.70 12781.70 14051.61 14873.89 29488.72 3366.58 5261.64 18082.38 20937.63 19289.48 11777.44 5565.60 20686.01 177
EC-MVSNet75.30 6475.20 5575.62 12880.98 16049.00 20687.43 6584.68 12163.49 10470.97 8890.15 8642.86 13591.14 7274.33 7681.90 6686.71 166
test_fmvsm_n_192075.56 6275.54 5175.61 12974.60 26849.51 19681.82 21774.08 29766.52 5580.40 1993.46 1546.95 7689.72 11286.69 575.30 12587.61 147
MS-PatchMatch72.34 10871.26 10975.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25680.74 22932.28 25992.89 3357.95 19088.10 1478.39 297
fmvsm_s_conf0.5_n74.48 7274.12 6975.56 13176.96 23647.85 24385.32 11469.80 33164.16 8878.74 2693.48 1445.51 9689.29 12186.48 666.62 19689.55 102
xiu_mvs_v1_base_debu71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base_debi71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
test_fmvsmconf_n74.41 7474.05 7175.49 13574.16 27448.38 22582.66 19572.57 31067.05 4875.11 4192.88 2946.35 8387.81 17583.93 1571.71 15590.28 83
fmvsm_s_conf0.1_n73.80 8373.26 7675.43 13673.28 28347.80 24484.57 14369.43 33363.34 10678.40 2993.29 2044.73 11189.22 12385.99 766.28 20389.26 107
CANet_DTU73.71 8673.14 7975.40 13782.61 12450.05 18284.67 14079.36 22469.72 2375.39 3990.03 8929.41 28085.93 23767.99 10879.11 9690.22 85
ACMMPcopyleft70.81 13669.29 14275.39 13881.52 15251.92 14283.43 17483.03 15756.67 23558.80 21888.91 10931.92 26488.58 14765.89 12273.39 14085.67 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n73.69 8773.15 7775.34 13970.71 31148.26 22982.15 20771.83 31466.75 5174.47 4892.59 3444.89 10587.78 18083.59 1671.35 15989.97 93
SCA63.84 23860.01 26075.32 14078.58 20957.92 1061.61 35077.53 25856.71 23357.75 23670.77 32831.97 26279.91 30048.80 25656.36 28588.13 136
FE-MVS64.15 23560.43 25675.30 14180.85 16749.86 18768.28 33078.37 24650.26 29359.31 20673.79 29926.19 30191.92 5540.19 29666.67 19584.12 208
fmvsm_s_conf0.5_n_a73.68 8873.15 7775.29 14275.45 25648.05 23683.88 16168.84 33663.43 10578.60 2793.37 1845.32 9788.92 13885.39 964.04 21688.89 118
ab-mvs70.65 13869.11 14475.29 14280.87 16646.23 26973.48 29885.24 10359.99 16266.65 11280.94 22643.13 13288.69 14363.58 13868.07 18390.95 70
TR-MVS69.71 15567.85 16275.27 14482.94 11348.48 22387.40 6780.86 19357.15 22564.61 14187.08 14232.67 25589.64 11546.38 27271.55 15887.68 146
v2v48269.55 16067.64 16575.26 14572.32 29653.83 9384.93 13081.94 17265.37 7560.80 18779.25 24141.62 15088.98 13463.03 14259.51 25482.98 236
PCF-MVS61.03 1070.10 14568.40 15175.22 14677.15 23451.99 13979.30 26282.12 16956.47 23961.88 17886.48 15243.98 11587.24 19655.37 21272.79 14786.43 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.1_n_a72.82 10072.05 9975.12 14770.95 31047.97 23982.72 19468.43 33862.52 12178.17 3093.08 2644.21 11488.86 13984.82 1163.54 22288.54 129
test_fmvsmconf0.01_n71.97 11570.95 11475.04 14866.21 33747.87 24280.35 24870.08 32865.85 6972.69 6691.68 5239.99 16987.67 18482.03 2569.66 17489.58 101
HQP-MVS72.34 10871.44 10775.03 14979.02 19751.56 15088.00 5383.68 14265.45 7064.48 14385.13 16337.35 19988.62 14566.70 11473.12 14284.91 199
AdaColmapbinary67.86 18765.48 21075.00 15088.15 3354.99 6886.10 9476.63 27649.30 29757.80 23386.65 14929.39 28188.94 13745.10 27870.21 17081.06 266
EI-MVSNet-Vis-set73.19 9572.60 8474.99 15182.56 12549.80 18982.55 20089.00 2266.17 6165.89 12588.98 10743.83 11792.29 4665.38 13269.01 17882.87 238
tpmrst71.04 13169.77 13374.86 15283.19 10355.86 4675.64 28178.73 23867.88 3764.99 13673.73 30049.96 5579.56 30365.92 12067.85 18789.14 113
v114468.81 17066.82 17874.80 15372.34 29553.46 10284.68 13881.77 17964.25 8660.28 19177.91 25240.23 16488.95 13560.37 16759.52 25381.97 245
v119267.96 18665.74 20574.63 15471.79 29853.43 10784.06 15680.99 19263.19 11059.56 20077.46 25937.50 19888.65 14458.20 18558.93 26081.79 248
BH-w/o70.02 14868.51 14974.56 15582.77 11850.39 17386.60 8678.14 24959.77 16559.65 19785.57 16039.27 17587.30 19549.86 24874.94 13285.99 179
SR-MVS70.92 13469.73 13474.50 15683.38 9850.48 17084.27 14979.35 22548.96 30066.57 11690.45 7533.65 24787.11 19866.42 11674.56 13385.91 182
tttt051768.33 18066.29 19074.46 15778.08 21649.06 20280.88 24189.08 2154.40 26254.75 27080.77 22851.31 4390.33 9549.35 25258.01 27383.99 213
TESTMET0.1,172.86 9972.33 8974.46 15781.98 13250.77 16285.13 11985.47 8966.09 6367.30 10783.69 18337.27 20283.57 26665.06 13378.97 9889.05 115
nrg03072.27 11271.56 10474.42 15975.93 25050.60 16686.97 7883.21 15362.75 11567.15 10984.38 17050.07 5386.66 21271.19 9162.37 23985.99 179
RPMNet59.29 27354.25 29674.42 15973.97 27756.57 2960.52 35376.98 26835.72 35557.49 24258.87 36337.73 19085.26 24627.01 35459.93 24981.42 257
Vis-MVSNetpermissive70.61 13969.34 14074.42 15980.95 16548.49 22286.03 9677.51 25958.74 19365.55 12987.78 13034.37 23985.95 23652.53 23580.61 7688.80 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet71.14 12770.07 13074.33 16279.18 19446.52 26183.81 16386.49 7256.32 24157.95 23084.90 16854.23 2789.14 12658.14 18669.65 17587.33 152
test250672.91 9872.43 8874.32 16380.12 18144.18 29383.19 18484.77 11864.02 9065.97 12387.43 13747.67 6988.72 14259.08 17279.66 9290.08 90
EI-MVSNet-UG-set72.37 10771.73 10274.29 16481.60 14649.29 20081.85 21588.64 3565.29 7865.05 13388.29 12243.18 12991.83 5663.74 13767.97 18581.75 249
ECVR-MVScopyleft71.81 11871.00 11374.26 16580.12 18143.49 29884.69 13782.16 16764.02 9064.64 13987.43 13735.04 23389.21 12461.24 15579.66 9290.08 90
OPM-MVS70.75 13769.58 13674.26 16575.55 25551.34 15686.05 9583.29 15261.94 13062.95 16685.77 15734.15 24188.44 15365.44 12971.07 16182.99 235
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419267.86 18765.76 20474.16 16771.68 30053.09 11884.14 15380.83 19462.85 11459.21 20977.28 26239.30 17488.00 17158.67 17757.88 27781.40 259
HQP_MVS70.96 13369.91 13274.12 16877.95 21849.57 19185.76 10082.59 16363.60 10162.15 17583.28 19036.04 22288.30 16165.46 12672.34 15084.49 203
v192192067.45 19865.23 21774.10 16971.51 30352.90 12483.75 16580.44 19962.48 12359.12 21077.13 26336.98 20687.90 17357.53 19658.14 27181.49 253
v867.25 20464.99 22074.04 17072.89 28953.31 11282.37 20580.11 20561.54 13654.29 27576.02 28542.89 13488.41 15458.43 17956.36 28580.39 275
VPNet72.07 11371.42 10874.04 17078.64 20847.17 25589.91 3187.97 4872.56 964.66 13885.04 16541.83 14988.33 15961.17 15660.97 24586.62 167
test_fmvsmvis_n_192071.29 12670.38 12274.00 17271.04 30948.79 21379.19 26364.62 34662.75 11566.73 11091.99 4540.94 15688.35 15783.00 1873.18 14184.85 201
v124066.99 21264.68 22373.93 17371.38 30652.66 12783.39 17879.98 20761.97 12958.44 22777.11 26435.25 22887.81 17556.46 20658.15 26981.33 262
BH-untuned68.28 18166.40 18773.91 17481.62 14550.01 18385.56 10977.39 26157.63 21457.47 24483.69 18336.36 21787.08 19944.81 27973.08 14584.65 202
v14868.24 18366.35 18873.88 17571.76 29951.47 15384.23 15081.90 17663.69 9958.94 21276.44 27643.72 12287.78 18060.63 16055.86 29582.39 242
V4267.66 19265.60 20973.86 17670.69 31353.63 9881.50 22878.61 24163.85 9559.49 20377.49 25837.98 18487.65 18562.33 14558.43 26480.29 276
Fast-Effi-MVS+-dtu66.53 22064.10 22973.84 17772.41 29452.30 13684.73 13575.66 28459.51 17056.34 25779.11 24428.11 28685.85 23857.74 19563.29 22883.35 225
v1066.61 21964.20 22873.83 17872.59 29253.37 10881.88 21479.91 21061.11 14254.09 27775.60 28740.06 16888.26 16456.47 20556.10 29179.86 281
APD-MVS_3200maxsize69.62 15968.23 15473.80 17981.58 14848.22 23081.91 21379.50 21948.21 30364.24 14889.75 9431.91 26587.55 19163.08 14173.85 13885.64 188
AUN-MVS68.20 18466.35 18873.76 18076.37 24047.45 24879.52 25979.52 21860.98 14662.34 17186.02 15436.59 21686.94 20462.32 14653.47 31586.89 158
PVSNet_BlendedMVS73.42 9273.30 7573.76 18085.91 4851.83 14486.18 9284.24 13265.40 7369.09 9780.86 22746.70 8088.13 16675.43 6665.92 20581.33 262
hse-mvs271.44 12570.68 11673.73 18276.34 24147.44 24979.45 26079.47 22068.08 3371.97 7586.01 15642.50 13686.93 20578.82 4253.46 31686.83 164
baseline172.51 10672.12 9773.69 18385.05 6544.46 28783.51 17186.13 8071.61 1264.64 13987.97 12855.00 2389.48 11759.07 17356.05 29287.13 156
CDS-MVSNet70.48 14169.43 13773.64 18477.56 22548.83 21283.51 17177.45 26063.27 10862.33 17285.54 16143.85 11683.29 27057.38 19974.00 13588.79 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet62.49 869.27 16267.81 16373.64 18484.41 7651.85 14384.63 14177.80 25366.42 5659.80 19584.95 16722.14 33280.44 29255.03 21375.11 12988.62 126
PS-MVSNAJss68.78 17267.17 17573.62 18673.01 28648.33 22884.95 12984.81 11659.30 17858.91 21579.84 23537.77 18788.86 13962.83 14363.12 23383.67 223
TAMVS69.51 16168.16 15573.56 18776.30 24448.71 21682.57 19877.17 26562.10 12661.32 18384.23 17441.90 14783.46 26854.80 21673.09 14488.50 131
UGNet68.71 17367.11 17673.50 18880.55 17547.61 24684.08 15478.51 24359.45 17165.68 12882.73 19923.78 31885.08 25152.80 23076.40 11387.80 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sd_testset67.79 19065.95 19973.32 18981.70 14046.33 26668.99 32680.30 20266.58 5261.64 18082.38 20930.45 27487.63 18755.86 20965.60 20686.01 177
Anonymous2023121166.08 22763.67 23073.31 19083.07 10748.75 21486.01 9784.67 12245.27 32256.54 25476.67 27428.06 28788.95 13552.78 23159.95 24882.23 243
新几何173.30 19183.10 10453.48 10171.43 32045.55 32066.14 12087.17 14133.88 24580.54 29048.50 25980.33 8285.88 184
FMVSNet368.84 16867.40 17173.19 19285.05 6548.53 22085.71 10585.36 9460.90 15057.58 23979.15 24342.16 14186.77 20847.25 26763.40 22484.27 207
mvsmamba66.93 21564.88 22273.09 19375.06 26047.26 25283.36 18069.21 33462.64 11855.68 26281.43 22229.72 27889.20 12563.35 14063.50 22382.79 239
thres20068.71 17367.27 17473.02 19484.73 7046.76 25885.03 12587.73 5462.34 12459.87 19383.45 18743.15 13088.32 16031.25 33667.91 18683.98 215
PVSNet_057.04 1361.19 26357.24 27673.02 19477.45 22750.31 17879.43 26177.36 26363.96 9447.51 31972.45 31625.03 31083.78 26352.76 23319.22 38684.96 198
test111171.06 13070.42 12172.97 19679.48 18841.49 31984.82 13482.74 16264.20 8762.98 16587.43 13735.20 22987.92 17258.54 17878.42 10289.49 104
dp64.41 23361.58 24172.90 19782.40 12654.09 9172.53 30476.59 27760.39 15755.68 26270.39 33135.18 23076.90 32639.34 29961.71 24287.73 144
FMVSNet267.57 19565.79 20372.90 19782.71 12047.97 23985.15 11884.93 11258.55 19656.71 25278.26 25036.72 21386.67 21146.15 27462.94 23584.07 210
XXY-MVS70.18 14369.28 14372.89 19977.64 22242.88 30685.06 12387.50 5962.58 11962.66 17082.34 21143.64 12489.83 10858.42 18163.70 22185.96 181
CR-MVSNet62.47 25559.04 26772.77 20073.97 27756.57 2960.52 35371.72 31660.04 16157.49 24265.86 34438.94 17780.31 29342.86 29059.93 24981.42 257
EI-MVSNet69.70 15768.70 14772.68 20175.00 26248.90 21079.54 25787.16 6161.05 14463.88 15583.74 18145.87 8990.44 9157.42 19864.68 21378.70 290
HPM-MVS_fast67.86 18766.28 19172.61 20280.67 17248.34 22781.18 23475.95 28350.81 28859.55 20188.05 12727.86 28985.98 23358.83 17573.58 13983.51 224
MVP-Stereo70.97 13270.44 12072.59 20376.03 24951.36 15585.02 12686.99 6460.31 15856.53 25578.92 24540.11 16790.00 10460.00 17090.01 676.41 319
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_111021_LR69.07 16367.91 15772.54 20477.27 22949.56 19379.77 25573.96 30059.33 17760.73 18887.82 12930.19 27681.53 27869.94 9872.19 15286.53 168
IS-MVSNet68.80 17167.55 16872.54 20478.50 21143.43 30081.03 23679.35 22559.12 18557.27 24786.71 14746.05 8787.70 18344.32 28375.60 12386.49 169
VPA-MVSNet71.12 12870.66 11772.49 20678.75 20344.43 28987.64 6090.02 1263.97 9365.02 13481.58 22142.14 14287.42 19363.42 13963.38 22785.63 189
SR-MVS-dyc-post68.27 18266.87 17772.48 20780.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9931.17 27086.09 23060.52 16472.06 15383.19 231
dmvs_re67.61 19366.00 19772.42 20881.86 13543.45 29964.67 33980.00 20669.56 2560.07 19285.00 16634.71 23687.63 18751.48 23966.68 19486.17 175
miper_enhance_ethall69.77 15468.90 14672.38 20978.93 20049.91 18583.29 18178.85 23264.90 8059.37 20479.46 23752.77 3385.16 24963.78 13658.72 26182.08 244
cl2268.85 16767.69 16472.35 21078.07 21749.98 18482.45 20378.48 24462.50 12258.46 22577.95 25149.99 5485.17 24862.55 14458.72 26181.90 247
MSDG59.44 27255.14 29272.32 21174.69 26550.71 16374.39 29273.58 30344.44 32843.40 33577.52 25719.45 34190.87 8031.31 33557.49 28175.38 325
v7n62.50 25459.27 26572.20 21267.25 33549.83 18877.87 27180.12 20452.50 27648.80 31073.07 30832.10 26087.90 17346.83 27054.92 30278.86 288
1112_ss70.05 14769.37 13972.10 21380.77 16942.78 30785.12 12276.75 27259.69 16761.19 18492.12 4047.48 7183.84 26153.04 22768.21 18289.66 99
miper_ehance_all_eth68.70 17567.58 16672.08 21476.91 23749.48 19782.47 20278.45 24562.68 11758.28 22977.88 25350.90 4785.01 25261.91 15058.72 26181.75 249
eth_miper_zixun_eth66.98 21365.28 21672.06 21575.61 25450.40 17281.00 23776.97 27162.00 12756.99 24976.97 26744.84 10785.58 23958.75 17654.42 30780.21 277
LPG-MVS_test66.44 22264.58 22472.02 21674.42 27048.60 21783.07 18880.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
LGP-MVS_train72.02 21674.42 27048.60 21780.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
ACMP61.11 966.24 22564.33 22672.00 21874.89 26449.12 20183.18 18579.83 21155.41 25052.29 29082.68 20025.83 30386.10 22860.89 15763.94 21980.78 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GBi-Net67.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
test167.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
FMVSNet164.57 23262.11 23871.96 21977.32 22846.36 26383.52 16783.31 14952.43 27754.42 27376.23 28027.80 29086.20 22242.59 29261.34 24483.32 226
cl____67.43 19965.93 20071.95 22276.33 24248.02 23782.58 19779.12 22961.30 14056.72 25176.92 26946.12 8586.44 21957.98 18856.31 28781.38 261
DIV-MVS_self_test67.43 19965.93 20071.94 22376.33 24248.01 23882.57 19879.11 23061.31 13956.73 25076.92 26946.09 8686.43 22057.98 18856.31 28781.39 260
Patchmatch-RL test58.72 28354.32 29571.92 22463.91 35244.25 29161.73 34955.19 36057.38 22049.31 30754.24 36837.60 19480.89 28362.19 14847.28 33690.63 75
c3_l67.97 18566.66 18371.91 22576.20 24649.31 19982.13 20978.00 25161.99 12857.64 23876.94 26849.41 5884.93 25360.62 16157.01 28381.49 253
tfpn200view967.57 19566.13 19471.89 22684.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20082.78 240
RRT_MVS63.68 24161.01 25071.70 22773.48 27945.98 27181.19 23376.08 28154.33 26352.84 28679.27 24022.21 33087.65 18554.13 21955.54 29981.46 256
MIMVSNet63.12 24760.29 25771.61 22875.92 25146.65 25965.15 33681.94 17259.14 18454.65 27169.47 33425.74 30480.63 28841.03 29569.56 17787.55 148
test-LLR69.65 15869.01 14571.60 22978.67 20548.17 23185.13 11979.72 21359.18 18263.13 16382.58 20336.91 20880.24 29460.56 16275.17 12786.39 172
test-mter68.36 17867.29 17271.60 22978.67 20548.17 23185.13 11979.72 21353.38 26963.13 16382.58 20327.23 29480.24 29460.56 16275.17 12786.39 172
sss70.49 14070.13 12971.58 23181.59 14739.02 33080.78 24384.71 12059.34 17566.61 11488.09 12537.17 20485.52 24061.82 15271.02 16290.20 87
tpmvs62.45 25659.42 26371.53 23283.93 8454.32 8570.03 32177.61 25751.91 28053.48 28368.29 33837.91 18586.66 21233.36 32658.27 26773.62 339
ACMM58.35 1264.35 23462.01 23971.38 23374.21 27348.51 22182.25 20679.66 21547.61 30654.54 27280.11 23125.26 30886.00 23251.26 24063.16 23179.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH53.70 1659.78 26955.94 28871.28 23476.59 23948.35 22680.15 25376.11 28049.74 29541.91 34173.45 30716.50 35790.31 9631.42 33457.63 28075.17 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ppachtmachnet_test58.56 28554.34 29471.24 23571.42 30454.74 7381.84 21672.27 31249.02 29945.86 32968.99 33726.27 29983.30 26930.12 33843.23 35075.69 322
thres100view90066.87 21665.42 21471.24 23583.29 10043.15 30381.67 22187.78 5159.04 18655.92 26082.18 21343.73 12087.80 17728.80 34366.36 20082.78 240
thres40067.40 20266.13 19471.19 23784.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20080.71 271
our_test_359.11 27755.08 29371.18 23871.42 30453.29 11381.96 21174.52 29248.32 30242.08 33969.28 33628.14 28582.15 27434.35 32345.68 34578.11 302
CPTT-MVS67.15 20765.84 20271.07 23980.96 16250.32 17781.94 21274.10 29646.18 31857.91 23187.64 13429.57 27981.31 28064.10 13570.18 17181.56 252
NR-MVSNet67.25 20465.99 19871.04 24073.27 28443.91 29485.32 11484.75 11966.05 6653.65 28282.11 21445.05 10185.97 23547.55 26456.18 29083.24 229
tpm68.36 17867.48 17070.97 24179.93 18451.34 15676.58 27978.75 23767.73 4063.54 16174.86 29148.33 6272.36 34853.93 22163.71 22089.21 110
TranMVSNet+NR-MVSNet66.94 21465.61 20870.93 24273.45 28043.38 30183.02 19084.25 13065.31 7758.33 22881.90 21739.92 17185.52 24049.43 25154.89 30383.89 219
EG-PatchMatch MVS62.40 25759.59 26170.81 24373.29 28249.05 20385.81 9884.78 11751.85 28244.19 33073.48 30615.52 36089.85 10740.16 29767.24 19173.54 340
test_djsdf63.84 23861.56 24270.70 24468.78 32444.69 28681.63 22281.44 18350.28 29052.27 29176.26 27926.72 29786.11 22660.83 15855.84 29681.29 265
UA-Net67.32 20366.23 19270.59 24578.85 20141.23 32273.60 29675.45 28761.54 13666.61 11484.53 16938.73 18086.57 21742.48 29374.24 13483.98 215
thres600view766.46 22165.12 21870.47 24683.41 9443.80 29682.15 20787.78 5159.37 17456.02 25982.21 21243.73 12086.90 20626.51 35564.94 20980.71 271
UniMVSNet (Re)67.71 19166.80 17970.45 24774.44 26942.93 30582.42 20484.90 11363.69 9959.63 19880.99 22547.18 7385.23 24751.17 24256.75 28483.19 231
IterMVS-LS66.63 21865.36 21570.42 24875.10 25948.90 21081.45 23176.69 27561.05 14455.71 26177.10 26545.86 9083.65 26557.44 19757.88 27778.70 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet68.82 16968.29 15370.40 24975.71 25342.59 30984.23 15086.78 6766.31 5858.51 22182.45 20651.57 4184.64 25753.11 22555.96 29383.96 217
jajsoiax63.21 24660.84 25170.32 25068.33 32944.45 28881.23 23281.05 18953.37 27050.96 30077.81 25517.49 35185.49 24259.31 17158.05 27281.02 267
mvs_tets62.96 24960.55 25370.19 25168.22 33244.24 29280.90 24080.74 19552.99 27350.82 30277.56 25616.74 35585.44 24359.04 17457.94 27480.89 268
pmmvs463.34 24561.07 24970.16 25270.14 31550.53 16879.97 25471.41 32155.08 25354.12 27678.58 24732.79 25482.09 27650.33 24557.22 28277.86 303
DU-MVS66.84 21765.74 20570.16 25273.27 28442.59 30981.50 22882.92 16063.53 10358.51 22182.11 21440.75 15884.64 25753.11 22555.96 29383.24 229
Effi-MVS+-dtu66.24 22564.96 22170.08 25475.17 25749.64 19082.01 21074.48 29362.15 12557.83 23276.08 28430.59 27383.79 26265.40 13160.93 24676.81 312
IterMVS63.77 24061.67 24070.08 25472.68 29151.24 15980.44 24675.51 28560.51 15651.41 29573.70 30332.08 26178.91 30554.30 21854.35 30880.08 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS67.58 19466.76 18070.04 25675.92 25145.06 28586.23 9185.28 10064.31 8558.50 22381.00 22444.80 11082.00 27749.21 25455.57 29883.06 234
Test_1112_low_res67.18 20666.23 19270.02 25778.75 20341.02 32383.43 17473.69 30257.29 22158.45 22682.39 20845.30 9880.88 28450.50 24466.26 20488.16 133
D2MVS63.49 24361.39 24469.77 25869.29 32148.93 20978.89 26577.71 25660.64 15549.70 30572.10 32227.08 29583.48 26754.48 21762.65 23676.90 311
tt080563.39 24461.31 24669.64 25969.36 32038.87 33178.00 26985.48 8848.82 30155.66 26581.66 21924.38 31586.37 22149.04 25559.36 25783.68 222
XVG-OURS61.88 25959.34 26469.49 26065.37 34246.27 26764.80 33873.49 30547.04 31057.41 24682.85 19425.15 30978.18 30953.00 22864.98 20884.01 212
XVG-OURS-SEG-HR62.02 25859.54 26269.46 26165.30 34345.88 27265.06 33773.57 30446.45 31457.42 24583.35 18926.95 29678.09 31153.77 22264.03 21784.42 205
test_vis1_n_192068.59 17668.31 15269.44 26269.16 32241.51 31884.63 14168.58 33758.80 19173.26 5988.37 11825.30 30780.60 28979.10 3967.55 18986.23 174
FIs70.00 14970.24 12869.30 26377.93 22038.55 33383.99 15887.72 5566.86 5057.66 23784.17 17552.28 3785.31 24452.72 23468.80 17984.02 211
Baseline_NR-MVSNet65.49 23164.27 22769.13 26474.37 27241.65 31683.39 17878.85 23259.56 16959.62 19976.88 27140.75 15887.44 19249.99 24655.05 30178.28 299
TransMVSNet (Re)62.82 25060.76 25269.02 26573.98 27641.61 31786.36 8879.30 22856.90 22752.53 28876.44 27641.85 14887.60 19038.83 30040.61 35577.86 303
anonymousdsp60.46 26757.65 27368.88 26663.63 35345.09 28172.93 30278.63 24046.52 31351.12 29772.80 31221.46 33583.07 27157.79 19353.97 30978.47 294
ADS-MVSNet56.17 29951.95 30968.84 26780.60 17353.07 11955.03 36470.02 32944.72 32551.00 29861.19 35622.83 32378.88 30628.54 34653.63 31174.57 333
OpenMVS_ROBcopyleft53.19 1759.20 27556.00 28768.83 26871.13 30844.30 29083.64 16675.02 29046.42 31546.48 32673.03 30918.69 34588.14 16527.74 35161.80 24174.05 336
Patchmatch-test53.33 31448.17 32368.81 26973.31 28142.38 31342.98 37458.23 35732.53 36138.79 35370.77 32839.66 17273.51 34225.18 35852.06 32190.55 76
pm-mvs164.12 23662.56 23468.78 27071.68 30038.87 33182.89 19281.57 18055.54 24953.89 27977.82 25437.73 19086.74 20948.46 26053.49 31480.72 270
miper_lstm_enhance63.91 23762.30 23668.75 27175.06 26046.78 25769.02 32581.14 18859.68 16852.76 28772.39 31740.71 16077.99 31556.81 20353.09 31781.48 255
OMC-MVS65.97 22865.06 21968.71 27272.97 28742.58 31178.61 26675.35 28854.72 25859.31 20686.25 15333.30 24977.88 31757.99 18767.05 19285.66 187
DP-MVS59.24 27456.12 28668.63 27388.24 3250.35 17682.51 20164.43 34741.10 34146.70 32478.77 24624.75 31388.57 15022.26 36756.29 28966.96 360
tfpnnormal61.47 26259.09 26668.62 27476.29 24541.69 31581.14 23585.16 10654.48 26151.32 29673.63 30432.32 25886.89 20721.78 36955.71 29777.29 309
test_cas_vis1_n_192067.10 20866.60 18568.59 27565.17 34543.23 30283.23 18369.84 33055.34 25170.67 9087.71 13224.70 31476.66 32878.57 4664.20 21585.89 183
UniMVSNet_ETH3D62.51 25360.49 25468.57 27668.30 33040.88 32573.89 29479.93 20951.81 28354.77 26979.61 23624.80 31281.10 28149.93 24761.35 24383.73 221
CL-MVSNet_self_test62.98 24861.14 24868.50 27765.86 34042.96 30484.37 14582.98 15860.98 14653.95 27872.70 31340.43 16283.71 26441.10 29447.93 33178.83 289
ACMH+54.58 1558.55 28655.24 29068.50 27774.68 26645.80 27580.27 24970.21 32747.15 30942.77 33875.48 28816.73 35685.98 23335.10 32154.78 30473.72 338
lessismore_v067.98 27964.76 34941.25 32145.75 36936.03 36065.63 34619.29 34384.11 25935.67 31321.24 38478.59 293
bld_raw_dy_0_6459.75 27057.01 28067.96 28066.73 33645.30 27977.59 27359.97 35650.49 28947.15 32177.03 26617.45 35279.06 30456.92 20259.76 25279.51 283
K. test v354.04 30949.42 32067.92 28168.55 32642.57 31275.51 28463.07 35152.07 27839.21 35064.59 34819.34 34282.21 27337.11 30625.31 37978.97 287
pmmvs562.80 25161.18 24767.66 28269.53 31942.37 31482.65 19675.19 28954.30 26452.03 29378.51 24831.64 26780.67 28748.60 25858.15 26979.95 280
PatchT56.60 29552.97 30267.48 28372.94 28846.16 27057.30 36173.78 30138.77 34554.37 27457.26 36637.52 19678.06 31232.02 33152.79 31878.23 301
Patchmtry56.56 29652.95 30367.42 28472.53 29350.59 16759.05 35771.72 31637.86 34946.92 32265.86 34438.94 17780.06 29736.94 30946.72 34171.60 350
SixPastTwentyTwo54.37 30650.10 31567.21 28570.70 31241.46 32074.73 28964.69 34547.56 30739.12 35169.49 33318.49 34884.69 25631.87 33234.20 36975.48 324
pmmvs659.64 27157.15 27767.09 28666.01 33836.86 34080.50 24578.64 23945.05 32449.05 30873.94 29827.28 29386.10 22843.96 28549.94 32678.31 298
testdata67.08 28777.59 22445.46 27869.20 33544.47 32771.50 8288.34 12031.21 26970.76 35352.20 23675.88 11985.03 196
CNLPA60.59 26658.44 27067.05 28879.21 19347.26 25279.75 25664.34 34842.46 33951.90 29483.94 17727.79 29175.41 33337.12 30559.49 25578.47 294
KD-MVS_2432*160059.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_refine_blended59.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
TAPA-MVS56.12 1461.82 26060.18 25966.71 29178.48 21237.97 33675.19 28776.41 27946.82 31157.04 24886.52 15127.67 29277.03 32326.50 35667.02 19385.14 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_040256.45 29753.03 30166.69 29276.78 23850.31 17881.76 21869.61 33242.79 33743.88 33172.13 32022.82 32586.46 21816.57 37950.94 32363.31 368
PLCcopyleft52.38 1860.89 26458.97 26866.68 29381.77 13745.70 27678.96 26474.04 29943.66 33347.63 31683.19 19223.52 32177.78 32037.47 30260.46 24776.55 318
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet255.21 30551.44 31066.51 29480.60 17349.56 19355.03 36465.44 34344.72 32551.00 29861.19 35622.83 32375.41 33328.54 34653.63 31174.57 333
FC-MVSNet-test67.49 19767.91 15766.21 29576.06 24733.06 35280.82 24287.18 6064.44 8454.81 26882.87 19350.40 5282.60 27248.05 26266.55 19882.98 236
JIA-IIPM52.33 31947.77 32666.03 29671.20 30746.92 25640.00 37976.48 27837.10 35046.73 32337.02 37932.96 25177.88 31735.97 31252.45 32073.29 342
LCM-MVSNet-Re58.82 28256.54 28165.68 29779.31 19229.09 37061.39 35245.79 36860.73 15337.65 35672.47 31531.42 26881.08 28249.66 24970.41 16886.87 159
XVG-ACMP-BASELINE56.03 30052.85 30465.58 29861.91 35840.95 32463.36 34272.43 31145.20 32346.02 32774.09 2969.20 37178.12 31045.13 27758.27 26777.66 306
pmmvs-eth3d55.97 30152.78 30565.54 29961.02 36046.44 26275.36 28667.72 34049.61 29643.65 33367.58 34021.63 33477.04 32244.11 28444.33 34773.15 344
MDA-MVSNet_test_wron53.82 31149.95 31765.43 30070.13 31649.05 20372.30 30771.65 31944.23 33131.85 37163.13 35123.68 32074.01 33733.25 32839.35 35873.23 343
YYNet153.82 31149.96 31665.41 30170.09 31748.95 20772.30 30771.66 31844.25 33031.89 37063.07 35223.73 31973.95 33833.26 32739.40 35773.34 341
PatchMatch-RL56.66 29453.75 29965.37 30277.91 22145.28 28069.78 32360.38 35441.35 34047.57 31773.73 30016.83 35476.91 32436.99 30859.21 25873.92 337
Vis-MVSNet (Re-imp)65.52 23065.63 20765.17 30377.49 22630.54 35975.49 28577.73 25559.34 17552.26 29286.69 14849.38 5980.53 29137.07 30775.28 12684.42 205
FMVSNet558.61 28456.45 28265.10 30477.20 23339.74 32774.77 28877.12 26650.27 29243.28 33667.71 33926.15 30276.90 32636.78 31054.78 30478.65 292
EPNet_dtu66.25 22466.71 18164.87 30578.66 20734.12 34782.80 19375.51 28561.75 13264.47 14686.90 14437.06 20572.46 34743.65 28669.63 17688.02 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth57.56 29155.15 29164.79 30664.57 35033.12 35173.17 30183.87 14058.98 18841.75 34270.03 33222.54 32679.92 29846.12 27535.31 36381.32 264
LS3D56.40 29853.82 29864.12 30781.12 15845.69 27773.42 29966.14 34235.30 35943.24 33779.88 23322.18 33179.62 30219.10 37564.00 21867.05 359
UnsupCasMVSNet_bld53.86 31050.53 31463.84 30863.52 35434.75 34371.38 31581.92 17446.53 31238.95 35257.93 36420.55 33880.20 29639.91 29834.09 37076.57 317
USDC54.36 30751.23 31163.76 30964.29 35137.71 33762.84 34773.48 30756.85 22835.47 36171.94 3239.23 37078.43 30738.43 30148.57 32875.13 328
Anonymous2023120659.08 27857.59 27463.55 31068.77 32532.14 35780.26 25079.78 21250.00 29449.39 30672.39 31726.64 29878.36 30833.12 32957.94 27480.14 278
CMPMVSbinary40.41 2155.34 30352.64 30663.46 31160.88 36143.84 29561.58 35171.06 32230.43 36736.33 35874.63 29324.14 31775.44 33248.05 26266.62 19671.12 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
myMVS_eth3d63.52 24263.56 23263.40 31281.73 13834.28 34580.97 23881.02 19060.93 14855.06 26682.64 20148.00 6780.81 28523.42 36558.32 26575.10 329
OurMVSNet-221017-052.39 31848.73 32163.35 31365.21 34438.42 33468.54 32964.95 34438.19 34639.57 34971.43 32413.23 36379.92 29837.16 30440.32 35671.72 349
MDA-MVSNet-bldmvs51.56 32147.75 32763.00 31471.60 30247.32 25169.70 32472.12 31343.81 33227.65 37863.38 35021.97 33375.96 33027.30 35332.19 37165.70 365
F-COLMAP55.96 30253.65 30062.87 31572.76 29042.77 30874.70 29170.37 32640.03 34241.11 34679.36 23817.77 35073.70 34132.80 33053.96 31072.15 346
test0.0.03 162.54 25262.44 23562.86 31672.28 29729.51 36782.93 19178.78 23559.18 18253.07 28582.41 20736.91 20877.39 32137.45 30358.96 25981.66 251
CVMVSNet60.85 26560.44 25562.07 31775.00 26232.73 35479.54 25773.49 30536.98 35156.28 25883.74 18129.28 28269.53 35646.48 27163.23 22983.94 218
ambc62.06 31853.98 37029.38 36835.08 38279.65 21641.37 34359.96 3596.27 38282.15 27435.34 31638.22 35974.65 332
Syy-MVS61.51 26161.35 24562.00 31981.73 13830.09 36280.97 23881.02 19060.93 14855.06 26682.64 20135.09 23280.81 28516.40 38058.32 26575.10 329
PEN-MVS58.35 28857.15 27761.94 32067.55 33434.39 34477.01 27578.35 24751.87 28147.72 31576.73 27333.91 24373.75 34034.03 32447.17 33777.68 305
MVS-HIRNet49.01 32644.71 33061.92 32176.06 24746.61 26063.23 34454.90 36124.77 37333.56 36636.60 38121.28 33675.88 33129.49 34062.54 23763.26 369
LTVRE_ROB45.45 1952.73 31549.74 31861.69 32269.78 31834.99 34244.52 37267.60 34143.11 33643.79 33274.03 29718.54 34781.45 27928.39 34857.94 27468.62 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H58.91 28158.04 27261.54 32369.07 32333.83 34976.91 27681.99 17151.40 28548.17 31174.67 29240.23 16474.15 33631.78 33348.10 32976.64 316
CP-MVSNet58.54 28757.57 27561.46 32468.50 32733.96 34876.90 27778.60 24251.67 28447.83 31476.60 27534.99 23572.79 34535.45 31447.58 33377.64 307
PS-CasMVS58.12 28957.03 27961.37 32568.24 33133.80 35076.73 27878.01 25051.20 28647.54 31876.20 28332.85 25272.76 34635.17 31947.37 33577.55 308
Anonymous2024052151.65 32048.42 32261.34 32656.43 36739.65 32973.57 29773.47 30836.64 35336.59 35763.98 34910.75 36772.25 34935.35 31549.01 32772.11 347
CHOSEN 280x42057.53 29256.38 28560.97 32774.01 27548.10 23546.30 37154.31 36248.18 30450.88 30177.43 26038.37 18359.16 36954.83 21463.14 23275.66 323
DTE-MVSNet57.03 29355.73 28960.95 32865.94 33932.57 35575.71 28077.09 26751.16 28746.65 32576.34 27832.84 25373.22 34430.94 33744.87 34677.06 310
IterMVS-SCA-FT59.12 27658.81 26960.08 32970.68 31445.07 28280.42 24774.25 29543.54 33450.02 30473.73 30031.97 26256.74 37151.06 24353.60 31378.42 296
COLMAP_ROBcopyleft43.60 2050.90 32348.05 32459.47 33067.81 33340.57 32671.25 31662.72 35336.49 35436.19 35973.51 30513.48 36273.92 33920.71 37150.26 32563.92 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing359.97 26860.19 25859.32 33177.60 22330.01 36481.75 21981.79 17753.54 26750.34 30379.94 23248.99 6176.91 32417.19 37850.59 32471.03 354
testgi54.25 30852.57 30759.29 33262.76 35621.65 38272.21 30970.47 32553.25 27141.94 34077.33 26114.28 36177.95 31629.18 34251.72 32278.28 299
TinyColmap48.15 32844.49 33259.13 33365.73 34138.04 33563.34 34362.86 35238.78 34429.48 37367.23 3426.46 38173.30 34324.59 36041.90 35366.04 363
test20.0355.22 30454.07 29758.68 33463.14 35525.00 37577.69 27274.78 29152.64 27443.43 33472.39 31726.21 30074.76 33529.31 34147.05 33976.28 320
EU-MVSNet52.63 31650.72 31358.37 33562.69 35728.13 37272.60 30375.97 28230.94 36640.76 34872.11 32120.16 33970.80 35235.11 32046.11 34376.19 321
MIMVSNet150.35 32447.81 32557.96 33661.53 35927.80 37367.40 33274.06 29843.25 33533.31 36965.38 34716.03 35871.34 35021.80 36847.55 33474.75 331
pmmvs345.53 33341.55 33757.44 33748.97 37839.68 32870.06 32057.66 35828.32 36934.06 36457.29 3658.50 37466.85 35834.86 32234.26 36865.80 364
test_fmvs153.60 31352.54 30856.78 33858.07 36330.26 36068.95 32742.19 37432.46 36263.59 15982.56 20511.55 36460.81 36358.25 18455.27 30079.28 284
test_fmvs1_n52.55 31751.19 31256.65 33951.90 37330.14 36167.66 33142.84 37332.27 36362.30 17382.02 2169.12 37260.84 36257.82 19254.75 30678.99 286
KD-MVS_self_test49.24 32546.85 32856.44 34054.32 36822.87 37857.39 36073.36 30944.36 32937.98 35559.30 36218.97 34471.17 35133.48 32542.44 35175.26 326
PM-MVS46.92 33043.76 33556.41 34152.18 37232.26 35663.21 34538.18 37937.99 34840.78 34766.20 3435.09 38465.42 35948.19 26141.99 35271.54 351
dmvs_testset57.65 29058.21 27155.97 34274.62 2679.82 39863.75 34163.34 35067.23 4548.89 30983.68 18539.12 17676.14 32923.43 36459.80 25181.96 246
test_vis1_n51.19 32249.66 31955.76 34351.26 37429.85 36567.20 33338.86 37832.12 36459.50 20279.86 2348.78 37358.23 37056.95 20152.46 31979.19 285
AllTest47.32 32944.66 33155.32 34465.08 34637.50 33862.96 34654.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
TestCases55.32 34465.08 34637.50 33854.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
new-patchmatchnet48.21 32746.55 32953.18 34657.73 36518.19 39070.24 31971.02 32345.70 31933.70 36560.23 35818.00 34969.86 35527.97 35034.35 36771.49 352
ITE_SJBPF51.84 34758.03 36431.94 35853.57 36536.67 35241.32 34475.23 29011.17 36651.57 37625.81 35748.04 33072.02 348
RPSCF45.77 33244.13 33450.68 34857.67 36629.66 36654.92 36645.25 37026.69 37145.92 32875.92 28617.43 35345.70 38227.44 35245.95 34476.67 313
test_fmvs245.89 33144.32 33350.62 34945.85 38224.70 37658.87 35937.84 38125.22 37252.46 28974.56 2947.07 37654.69 37249.28 25347.70 33272.48 345
ANet_high34.39 34329.59 34948.78 35030.34 39222.28 37955.53 36363.79 34938.11 34715.47 38536.56 3826.94 37759.98 36513.93 3825.64 39664.08 366
TDRefinement40.91 33638.37 34048.55 35150.45 37633.03 35358.98 35850.97 36628.50 36829.89 37267.39 3416.21 38354.51 37317.67 37735.25 36458.11 370
DSMNet-mixed38.35 33835.36 34347.33 35248.11 38014.91 39437.87 38036.60 38219.18 37834.37 36359.56 36115.53 35953.01 37520.14 37346.89 34074.07 335
mvsany_test143.38 33442.57 33645.82 35350.96 37526.10 37455.80 36227.74 39127.15 37047.41 32074.39 29518.67 34644.95 38344.66 28036.31 36166.40 362
N_pmnet41.25 33539.77 33845.66 35468.50 3270.82 40472.51 3050.38 40335.61 35635.26 36261.51 35520.07 34067.74 35723.51 36340.63 35468.42 358
test_vis1_rt40.29 33738.64 33945.25 35548.91 37930.09 36259.44 35627.07 39224.52 37438.48 35451.67 3736.71 37949.44 37744.33 28246.59 34256.23 371
test_fmvs337.95 33935.75 34244.55 35635.50 38818.92 38648.32 36834.00 38618.36 38041.31 34561.58 3542.29 39148.06 38142.72 29137.71 36066.66 361
EGC-MVSNET33.75 34430.42 34843.75 35764.94 34836.21 34160.47 35540.70 3770.02 3970.10 39853.79 3697.39 37560.26 36411.09 38535.23 36534.79 383
LCM-MVSNet28.07 34723.85 35540.71 35827.46 39718.93 38530.82 38646.19 36712.76 38516.40 38334.70 3841.90 39448.69 38020.25 37224.22 38054.51 373
FPMVS35.40 34133.67 34540.57 35946.34 38128.74 37141.05 37657.05 35920.37 37722.27 38153.38 3706.87 37844.94 3848.62 38647.11 33848.01 378
WB-MVS37.41 34036.37 34140.54 36054.23 36910.43 39765.29 33543.75 37134.86 36027.81 37754.63 36724.94 31163.21 3606.81 39215.00 38747.98 379
new_pmnet33.56 34531.89 34738.59 36149.01 37720.42 38351.01 36737.92 38020.58 37523.45 38046.79 3756.66 38049.28 37920.00 37431.57 37346.09 380
SSC-MVS35.20 34234.30 34437.90 36252.58 3718.65 40061.86 34841.64 37531.81 36525.54 37952.94 37223.39 32259.28 3686.10 39312.86 38845.78 381
PMMVS226.71 35122.98 35637.87 36336.89 3868.51 40142.51 37529.32 39019.09 37913.01 38737.54 3782.23 39253.11 37414.54 38111.71 38951.99 376
Gipumacopyleft27.47 34924.26 35437.12 36460.55 36229.17 36911.68 39160.00 35514.18 38310.52 39215.12 3932.20 39363.01 3618.39 38735.65 36219.18 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS33.04 34632.55 34634.52 36540.96 38322.03 38044.45 37335.62 38320.42 37628.12 37662.35 3535.03 38531.88 39521.61 37034.42 36649.63 377
mvsany_test328.00 34825.98 35034.05 36628.97 39315.31 39234.54 38318.17 39716.24 38129.30 37453.37 3712.79 38933.38 39430.01 33920.41 38553.45 374
test_f27.12 35024.85 35133.93 36726.17 39815.25 39330.24 38722.38 39612.53 38628.23 37549.43 3742.59 39034.34 39325.12 35926.99 37752.20 375
test_method24.09 35521.07 35933.16 36827.67 3968.35 40226.63 38835.11 3853.40 39414.35 38636.98 3803.46 38835.31 39019.08 37622.95 38155.81 372
PMVScopyleft19.57 2225.07 35322.43 35832.99 36923.12 39922.98 37740.98 37735.19 38415.99 38211.95 39135.87 3831.47 39749.29 3785.41 39531.90 37226.70 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 35224.41 35332.62 37037.58 38521.74 38140.50 37830.39 38811.45 38716.33 38443.76 3761.63 39641.62 38511.24 38426.82 37834.51 384
test_vis3_rt24.79 35422.95 35730.31 37128.59 39418.92 38637.43 38117.27 39912.90 38421.28 38229.92 3881.02 39836.35 38828.28 34929.82 37635.65 382
MVEpermissive16.60 2317.34 36113.39 36429.16 37228.43 39519.72 38413.73 39023.63 3957.23 3937.96 39321.41 3890.80 39936.08 3896.97 39010.39 39031.69 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
APD_test221.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
E-PMN19.16 35818.40 36221.44 37536.19 38713.63 39547.59 36930.89 38710.73 3885.91 39516.59 3913.66 38739.77 3865.95 3948.14 39110.92 391
EMVS18.42 35917.66 36320.71 37634.13 38912.64 39646.94 37029.94 38910.46 3905.58 39614.93 3944.23 38638.83 3875.24 3967.51 39310.67 392
DeepMVS_CXcopyleft13.10 37721.34 4008.99 39910.02 40110.59 3897.53 39430.55 3871.82 39514.55 3966.83 3917.52 39215.75 390
wuyk23d9.11 3638.77 36710.15 37840.18 38416.76 39120.28 3891.01 4022.58 3952.66 3970.98 3970.23 40212.49 3974.08 3976.90 3941.19 394
tmp_tt9.44 36210.68 3655.73 3792.49 4014.21 40310.48 39218.04 3980.34 39612.59 38820.49 39011.39 3657.03 39813.84 3836.46 3955.95 393
testmvs6.14 3658.18 3680.01 3800.01 4020.00 40673.40 3000.00 4040.00 3980.02 3990.15 3980.00 4030.00 3990.02 3980.00 3970.02 395
test1236.01 3668.01 3690.01 3800.00 4030.01 40571.93 3130.00 4040.00 3980.02 3990.11 3990.00 4030.00 3990.02 3980.00 3970.02 395
test_blank0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
cdsmvs_eth3d_5k18.33 36024.44 3520.00 3820.00 4030.00 4060.00 39389.40 160.00 3980.00 40192.02 4338.55 1810.00 3990.00 4000.00 3970.00 397
pcd_1.5k_mvsjas3.15 3674.20 3700.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 40037.77 1870.00 3990.00 4000.00 3970.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
Regformer0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
ab-mvs-re7.68 36410.24 3660.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 40192.12 400.00 4030.00 3990.00 4000.00 3970.00 397
uanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
WAC-MVS34.28 34522.56 366
FOURS183.24 10149.90 18684.98 12778.76 23647.71 30573.42 56
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
test_one_060189.39 2257.29 2088.09 4657.21 22482.06 1293.39 1654.94 24
eth-test20.00 403
eth-test0.00 403
ZD-MVS89.55 1453.46 10284.38 12657.02 22673.97 5191.03 6144.57 11291.17 7075.41 6981.78 69
RE-MVS-def66.66 18380.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9929.28 28260.52 16472.06 15383.19 231
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 1987.60 1792.44 29
test_241102_TWO88.76 3257.50 21883.60 694.09 356.14 1896.37 682.28 2387.43 1992.55 27
test_241102_ONE89.48 1756.89 2588.94 2457.53 21684.61 493.29 2058.81 1196.45 1
9.1478.19 2485.67 5388.32 5088.84 2959.89 16374.58 4692.62 3346.80 7892.66 3981.40 3285.62 39
save fliter85.35 6056.34 3689.31 3981.46 18261.55 135
test_0728_THIRD58.00 20481.91 1393.64 1156.54 1596.44 281.64 2886.86 2492.23 34
test072689.40 2057.45 1792.32 788.63 3657.71 21283.14 993.96 655.17 20
GSMVS88.13 136
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 17988.13 136
sam_mvs35.99 224
MTGPAbinary81.31 185
test_post170.84 31814.72 39534.33 24083.86 26048.80 256
test_post16.22 39237.52 19684.72 255
patchmatchnet-post59.74 36038.41 18279.91 300
MTMP87.27 7215.34 400
gm-plane-assit83.24 10154.21 8870.91 1588.23 12395.25 1466.37 117
test9_res78.72 4585.44 4191.39 59
TEST985.68 5155.42 5187.59 6284.00 13657.72 21172.99 6190.98 6344.87 10688.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 20972.84 6590.99 6244.99 10288.34 158
agg_prior275.65 6485.11 4591.01 68
agg_prior85.64 5454.92 7083.61 14672.53 7088.10 168
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13173.55 5491.46 5948.01 6674.73 7285.46 40
旧先验281.73 22045.53 32174.66 4370.48 35458.31 183
新几何281.61 224
旧先验181.57 14947.48 24771.83 31488.66 11336.94 20778.34 10388.67 124
无先验85.19 11778.00 25149.08 29885.13 25052.78 23187.45 151
原ACMM283.77 164
test22279.36 18950.97 16177.99 27067.84 33942.54 33862.84 16786.53 15030.26 27576.91 11185.23 193
testdata277.81 31945.64 276
segment_acmp44.97 104
testdata177.55 27464.14 89
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 222
plane_prior582.59 16388.30 16165.46 12672.34 15084.49 203
plane_prior483.28 190
plane_prior348.95 20764.01 9262.15 175
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 146
n20.00 404
nn0.00 404
door-mid41.31 376
test1184.25 130
door43.27 372
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 143
ACMP_Plane79.02 19788.00 5365.45 7064.48 143
BP-MVS66.70 114
HQP4-MVS64.47 14688.61 14684.91 199
HQP3-MVS83.68 14273.12 142
HQP2-MVS37.35 199
NP-MVS78.76 20250.43 17185.12 164
MDTV_nov1_ep13_2view43.62 29771.13 31754.95 25659.29 20836.76 21046.33 27387.32 153
MDTV_nov1_ep1361.56 24281.68 14255.12 6372.41 30678.18 24859.19 18058.85 21769.29 33534.69 23786.16 22536.76 31162.96 234
ACMMP++_ref63.20 230
ACMMP++59.38 256
Test By Simon39.38 173