This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268876.24 5774.03 8182.88 183.09 11362.84 285.73 11185.39 10069.79 2964.87 14683.49 19541.52 16193.69 3070.55 10081.82 6892.12 39
MG-MVS78.42 2776.99 4382.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 5888.09 13148.07 7192.19 5362.24 15484.53 5191.53 59
LFMVS78.52 2477.14 4182.67 389.58 1358.90 791.27 1988.05 5463.22 11874.63 4790.83 7341.38 16294.40 2275.42 7279.90 9094.72 2
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13788.88 3258.00 21483.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 18959.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8493.25 294.80 1
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19071.82 8090.05 9259.72 996.04 1078.37 5188.40 1493.75 9
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22281.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 30
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3793.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
bld_raw_dy_0_6475.36 7373.18 8681.89 1187.91 4057.01 2486.77 8967.69 35078.56 165.01 14393.99 722.18 33994.84 1984.07 1772.45 15893.82 7
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22774.74 683.40 894.00 621.51 34494.70 2184.07 1789.68 793.82 7
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19592.50 4682.75 2486.25 3491.57 57
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20092.28 5282.73 2585.71 3891.57 57
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3693.87 952.58 4093.91 2884.17 1487.92 1692.39 32
MVS76.91 4775.48 6081.23 2084.56 7955.21 6580.23 26191.64 458.65 20465.37 13891.48 6245.72 9995.05 1672.11 9589.52 1093.44 11
VDDNet74.37 8572.13 10781.09 2179.58 19556.52 3790.02 2786.70 7752.61 28571.23 8887.20 14931.75 27493.96 2774.30 8275.77 12692.79 25
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
testing9178.30 3177.54 3580.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9488.04 13555.82 2292.65 4269.61 10475.00 13992.05 42
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5592.75 3446.88 8493.28 3178.79 4884.07 5491.50 61
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14483.68 14967.85 4569.36 10290.24 8460.20 792.10 5784.14 1580.40 8192.82 23
API-MVS74.17 8872.07 10980.49 2590.02 1158.55 887.30 7484.27 13657.51 22765.77 13587.77 14041.61 15995.97 1151.71 24582.63 6086.94 167
testing9978.45 2577.78 3280.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9388.09 13157.29 1592.63 4469.24 10775.13 13591.91 47
3Dnovator64.70 674.46 8372.48 9680.41 2882.84 12455.40 5983.08 19788.61 4567.61 5059.85 20488.66 11834.57 24593.97 2658.42 18888.70 1291.85 50
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25881.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS76.76 5275.60 5880.21 3090.87 754.68 8489.14 4289.11 2662.95 12270.54 9992.33 4141.05 16394.95 1757.90 19886.55 3291.00 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_030481.58 982.05 780.20 3182.36 13554.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 28
SD-MVS76.18 5874.85 7180.18 3285.39 6556.90 2885.75 10982.45 17356.79 24274.48 5091.81 5243.72 13090.75 8974.61 7878.65 10092.91 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9888.37 12357.69 1492.30 5075.25 7476.24 12291.20 70
Effi-MVS+75.24 7573.61 8380.16 3381.92 14157.42 1985.21 12676.71 28260.68 16573.32 6189.34 10547.30 7991.63 6468.28 11379.72 9291.42 62
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6886.76 7561.48 14880.26 2393.10 2746.53 8992.41 4879.97 3988.77 1192.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++74.21 8772.25 10280.11 3681.45 16156.47 3886.32 9679.65 22358.19 21066.36 12692.29 4236.11 22790.66 9167.39 11782.49 6293.18 18
CANet80.90 1181.17 1280.09 3787.62 4254.21 9491.60 1486.47 8073.13 1079.89 2693.10 2749.88 6392.98 3484.09 1684.75 4993.08 19
IB-MVS68.87 274.01 8972.03 11279.94 3883.04 11555.50 5490.24 2688.65 4167.14 5361.38 19281.74 22853.21 3694.28 2360.45 17362.41 24890.03 101
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7479.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 27
QAPM71.88 12869.33 15179.52 4082.20 13854.30 9286.30 9788.77 3856.61 24659.72 20687.48 14433.90 25295.36 1347.48 27381.49 7188.90 126
VDD-MVS76.08 6074.97 6979.44 4184.27 8653.33 11691.13 2085.88 9065.33 8472.37 7589.34 10532.52 26492.76 4077.90 5775.96 12392.22 38
MVS_111021_HR76.39 5675.38 6379.42 4285.33 6756.47 3888.15 5384.97 11865.15 8766.06 12989.88 9543.79 12792.16 5475.03 7580.03 8889.64 109
SteuartSystems-ACMMP77.08 4576.33 5079.34 4380.98 16855.31 6189.76 3486.91 7262.94 12371.65 8191.56 6042.33 14692.56 4577.14 6183.69 5690.15 97
Skip Steuart: Steuart Systems R&D Blog.
test1279.24 4486.89 4756.08 4585.16 11372.27 7747.15 8191.10 7985.93 3690.54 85
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25378.56 3192.49 3948.20 7092.65 4279.49 4083.04 5890.39 87
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1584.82 12269.12 3476.67 3992.02 4744.82 11690.23 10580.83 3780.09 8592.08 40
casdiffmvs_mvgpermissive77.75 3777.28 3879.16 4780.42 18554.44 9087.76 6285.46 9771.67 1671.38 8688.35 12551.58 4591.22 7479.02 4479.89 9191.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3877.22 4079.14 4886.95 4654.89 7787.18 7891.96 272.29 1371.17 9188.70 11755.19 2491.24 7365.18 13976.32 12191.29 68
DeepC-MVS_fast67.50 378.00 3477.63 3379.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8792.75 3445.52 10290.37 9871.15 9785.14 4591.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
PHI-MVS77.49 4077.00 4278.95 5185.33 6750.69 16988.57 4988.59 4658.14 21173.60 5693.31 2343.14 13993.79 2973.81 8588.53 1392.37 33
test_yl75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
DCV-MVSNet75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
casdiffmvspermissive77.36 4276.85 4478.88 5480.40 18654.66 8687.06 8185.88 9072.11 1471.57 8388.63 12250.89 5490.35 9976.00 6579.11 9791.63 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM76.76 5276.07 5478.81 5580.20 18759.11 686.86 8786.23 8568.60 3670.18 10188.84 11551.57 4687.16 20665.48 13286.68 2990.15 97
MSP-MVS82.30 683.47 178.80 5682.99 11852.71 13185.04 13488.63 4366.08 7186.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 4976.27 5178.80 5680.70 17855.02 7286.39 9486.71 7666.96 5667.91 11289.97 9448.03 7291.41 6975.60 6984.14 5389.96 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP76.43 5575.66 5778.73 5881.92 14154.67 8584.06 16685.35 10261.10 15472.99 6491.50 6140.25 17191.00 8176.84 6286.98 2490.51 86
baseline76.86 5076.24 5278.71 5980.47 18454.20 9683.90 17084.88 12171.38 2071.51 8489.15 11050.51 5590.55 9575.71 6778.65 10091.39 63
jason77.01 4676.45 4878.69 6079.69 19454.74 7990.56 2583.99 14568.26 3874.10 5390.91 7042.14 15089.99 11079.30 4279.12 9691.36 65
jason: jason.
ET-MVSNet_ETH3D75.23 7674.08 7978.67 6184.52 8055.59 5288.92 4489.21 2568.06 4353.13 29490.22 8649.71 6487.62 19572.12 9470.82 17492.82 23
CostFormer73.89 9272.30 10178.66 6282.36 13556.58 3375.56 29185.30 10566.06 7270.50 10076.88 28057.02 1689.06 13368.27 11468.74 19090.33 89
patch_mono-280.84 1281.59 1078.62 6390.34 953.77 10188.08 5488.36 5076.17 379.40 2891.09 6455.43 2390.09 10885.01 1280.40 8191.99 46
MVS_Test75.85 6574.93 7078.62 6384.08 8855.20 6683.99 16885.17 11268.07 4273.38 6082.76 20550.44 5689.00 13765.90 12880.61 7791.64 53
CDPH-MVS76.05 6175.19 6578.62 6386.51 5054.98 7487.32 7284.59 13058.62 20570.75 9490.85 7243.10 14190.63 9370.50 10184.51 5290.24 92
TSAR-MVS + GP.77.82 3677.59 3478.49 6685.25 6950.27 18690.02 2790.57 1556.58 24774.26 5291.60 5954.26 3192.16 5475.87 6679.91 8993.05 20
ETV-MVS77.17 4476.74 4578.48 6781.80 14454.55 8886.13 10085.33 10368.20 3973.10 6390.52 7845.23 10690.66 9179.37 4180.95 7390.22 93
TSAR-MVS + MP.78.31 3078.26 2578.48 6781.33 16456.31 4281.59 23586.41 8169.61 3181.72 1688.16 13055.09 2788.04 17674.12 8386.31 3391.09 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg76.91 4776.40 4978.45 6985.68 5755.42 5687.59 6684.00 14357.84 21972.99 6490.98 6744.99 11088.58 15378.19 5385.32 4391.34 67
PAPR75.20 7774.13 7778.41 7088.31 3255.10 7084.31 15885.66 9463.76 10567.55 11490.73 7443.48 13589.40 12466.36 12577.03 11090.73 81
alignmvs78.08 3377.98 2978.39 7183.53 9953.22 11989.77 3385.45 9866.11 6976.59 4191.99 4954.07 3489.05 13477.34 6077.00 11192.89 22
test_prior78.39 7186.35 5154.91 7685.45 9889.70 11890.55 83
SF-MVS77.64 3977.42 3778.32 7383.75 9652.47 13686.63 9287.80 5758.78 20274.63 4792.38 4047.75 7591.35 7078.18 5586.85 2691.15 72
ZNCC-MVS75.82 6875.02 6878.23 7483.88 9453.80 10086.91 8686.05 8859.71 17667.85 11390.55 7642.23 14891.02 8072.66 9385.29 4489.87 106
VNet77.99 3577.92 3078.19 7587.43 4350.12 18790.93 2391.41 867.48 5175.12 4390.15 9046.77 8691.00 8173.52 8778.46 10293.44 11
EIA-MVS75.92 6375.18 6678.13 7685.14 7051.60 15487.17 7985.32 10464.69 9068.56 10890.53 7745.79 9891.58 6567.21 11982.18 6591.20 70
HFP-MVS74.37 8573.13 9178.10 7784.30 8453.68 10385.58 11584.36 13456.82 24065.78 13490.56 7540.70 16990.90 8569.18 10880.88 7489.71 107
tpm270.82 14568.44 16077.98 7880.78 17656.11 4474.21 30281.28 19460.24 17068.04 11175.27 29852.26 4388.50 15855.82 21868.03 19489.33 115
thisisatest051573.64 9972.20 10477.97 7981.63 15253.01 12686.69 9188.81 3762.53 13064.06 15985.65 16752.15 4492.50 4658.43 18669.84 18288.39 141
EPNet78.36 2978.49 2477.97 7985.49 6352.04 14389.36 3984.07 14273.22 977.03 3891.72 5449.32 6790.17 10773.46 8882.77 5991.69 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8185.46 6449.56 19990.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
GST-MVS74.87 8173.90 8277.77 8283.30 10653.45 10985.75 10985.29 10659.22 18966.50 12589.85 9640.94 16490.76 8870.94 9983.35 5789.10 123
GG-mvs-BLEND77.77 8286.68 4950.61 17068.67 33788.45 4968.73 10787.45 14559.15 1090.67 9054.83 22187.67 1792.03 43
cascas69.01 17666.13 20577.66 8479.36 19755.41 5886.99 8283.75 14856.69 24458.92 22481.35 23324.31 32492.10 5753.23 23270.61 17685.46 200
3Dnovator+62.71 772.29 12070.50 13077.65 8583.40 10451.29 16387.32 7286.40 8259.01 19758.49 23488.32 12732.40 26591.27 7157.04 20782.15 6690.38 88
MVSFormer73.53 10072.19 10577.57 8683.02 11655.24 6381.63 23281.44 19050.28 29976.67 3990.91 7044.82 11686.11 23560.83 16580.09 8591.36 65
APD-MVScopyleft76.15 5975.68 5677.54 8788.52 2753.44 11087.26 7785.03 11753.79 27574.91 4591.68 5643.80 12690.31 10174.36 8081.82 6888.87 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+72.73 11171.15 12377.48 8882.75 12654.76 7886.77 8980.64 20363.05 12165.93 13184.01 18544.42 12189.03 13556.45 21476.36 12088.64 134
EPMVS68.45 18865.44 22477.47 8984.91 7456.17 4371.89 32381.91 18261.72 14360.85 19672.49 32336.21 22687.06 20947.32 27471.62 16689.17 121
PatchmatchNetpermissive67.07 22263.63 24277.40 9083.10 11158.03 972.11 32177.77 26258.85 20059.37 21470.83 33637.84 19484.93 26242.96 29869.83 18389.26 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
region2R73.75 9572.55 9577.33 9183.90 9352.98 12785.54 11984.09 14156.83 23965.10 14090.45 7937.34 20990.24 10468.89 11080.83 7688.77 132
iter_conf0573.51 10172.24 10377.33 9187.93 3955.97 4887.90 6170.81 33268.72 3564.04 16084.36 18247.54 7790.87 8671.11 9867.75 19885.13 204
WTY-MVS77.47 4177.52 3677.30 9388.33 3046.25 27788.46 5090.32 1671.40 1972.32 7691.72 5453.44 3592.37 4966.28 12675.42 12993.28 15
OpenMVScopyleft61.00 1169.99 16067.55 17977.30 9378.37 22354.07 9884.36 15685.76 9357.22 23356.71 26287.67 14230.79 28092.83 3743.04 29784.06 5585.01 206
MTAPA72.73 11171.22 12177.27 9581.54 15853.57 10567.06 34381.31 19259.41 18368.39 10990.96 6936.07 22989.01 13673.80 8682.45 6389.23 118
PAPM_NR71.80 13069.98 14277.26 9681.54 15853.34 11578.60 27785.25 10953.46 27860.53 20088.66 11845.69 10089.24 12756.49 21179.62 9589.19 120
ACMMPR73.76 9472.61 9377.24 9783.92 9252.96 12885.58 11584.29 13556.82 24065.12 13990.45 7937.24 21190.18 10669.18 10880.84 7588.58 136
h-mvs3373.95 9072.89 9277.15 9880.17 18850.37 18084.68 14883.33 15568.08 4071.97 7888.65 12142.50 14491.15 7778.82 4657.78 28889.91 105
CS-MVS-test77.20 4377.25 3977.05 9984.60 7849.04 21289.42 3785.83 9265.90 7572.85 6791.98 5145.10 10791.27 7175.02 7684.56 5090.84 79
MP-MVS-pluss75.54 7275.03 6777.04 10081.37 16352.65 13384.34 15784.46 13261.16 15269.14 10391.76 5339.98 17888.99 13978.19 5384.89 4889.48 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HyFIR lowres test69.94 16267.58 17777.04 10077.11 24457.29 2081.49 24079.11 23858.27 20958.86 22680.41 24042.33 14686.96 21261.91 15768.68 19186.87 169
DP-MVS Recon71.99 12570.31 13577.01 10290.65 853.44 11089.37 3882.97 16656.33 25063.56 17089.47 10234.02 25092.15 5654.05 22872.41 15985.43 201
Anonymous2024052969.71 16567.28 18477.00 10383.78 9550.36 18188.87 4685.10 11647.22 31764.03 16183.37 19727.93 29692.10 5757.78 20167.44 20088.53 139
CS-MVS76.77 5176.70 4676.99 10483.55 9848.75 22188.60 4885.18 11166.38 6472.47 7491.62 5845.53 10190.99 8374.48 7982.51 6191.23 69
baseline275.15 7874.54 7576.98 10581.67 15151.74 15183.84 17291.94 369.97 2858.98 22186.02 16359.73 891.73 6368.37 11270.40 17987.48 159
MP-MVScopyleft74.99 8074.33 7676.95 10682.89 12253.05 12585.63 11483.50 15457.86 21867.25 11690.24 8443.38 13688.85 14776.03 6482.23 6488.96 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mvs_anonymous72.29 12070.74 12676.94 10782.85 12354.72 8178.43 27881.54 18863.77 10461.69 18979.32 24951.11 4985.31 25362.15 15675.79 12590.79 80
ETVMVS75.80 6975.44 6176.89 10886.23 5250.38 17985.55 11891.42 771.30 2168.80 10687.94 13756.42 1989.24 12756.54 21074.75 14191.07 74
XVS72.92 10771.62 11476.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 16389.63 10035.50 23489.78 11465.50 13080.50 7988.16 142
X-MVStestdata65.85 24062.20 24876.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 1634.82 40535.50 23489.78 11465.50 13080.50 7988.16 142
PGM-MVS72.60 11371.20 12276.80 11182.95 11952.82 13083.07 19882.14 17556.51 24863.18 17289.81 9735.68 23389.76 11667.30 11880.19 8487.83 151
Anonymous20240521170.11 15467.88 17076.79 11287.20 4547.24 26389.49 3677.38 27054.88 26766.14 12786.84 15420.93 34791.54 6656.45 21471.62 16691.59 55
tpm cat166.28 23462.78 24476.77 11381.40 16257.14 2270.03 33077.19 27253.00 28258.76 22970.73 33946.17 9186.73 21943.27 29664.46 22486.44 180
PVSNet_Blended76.53 5476.54 4776.50 11485.91 5451.83 14988.89 4584.24 13967.82 4669.09 10489.33 10746.70 8788.13 17275.43 7081.48 7289.55 111
diffmvspermissive75.11 7974.65 7476.46 11578.52 21953.35 11483.28 19279.94 21570.51 2571.64 8288.72 11646.02 9586.08 24077.52 5875.75 12789.96 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu73.40 10372.44 9776.30 11681.32 16554.70 8285.81 10578.82 24263.70 10664.53 15285.38 17147.11 8287.38 20267.75 11677.55 10786.81 175
BH-RMVSNet70.08 15668.01 16776.27 11784.21 8751.22 16587.29 7579.33 23558.96 19963.63 16886.77 15533.29 25890.30 10344.63 29073.96 14587.30 164
CLD-MVS75.60 7075.39 6276.24 11880.69 17952.40 13790.69 2486.20 8674.40 865.01 14388.93 11242.05 15290.58 9476.57 6373.96 14585.73 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE69.96 16167.88 17076.22 11981.11 16751.71 15284.15 16276.74 28159.83 17460.91 19584.38 18041.56 16088.10 17451.67 24670.57 17788.84 129
131471.11 13969.41 14876.22 11979.32 19950.49 17480.23 26185.14 11559.44 18258.93 22388.89 11433.83 25489.60 12161.49 16077.42 10988.57 137
thisisatest053070.47 15268.56 15876.20 12179.78 19351.52 15783.49 18388.58 4757.62 22558.60 23082.79 20451.03 5191.48 6752.84 23762.36 25085.59 199
FA-MVS(test-final)69.00 17766.60 19676.19 12283.48 10047.96 25074.73 29882.07 17757.27 23262.18 18478.47 25936.09 22892.89 3553.76 23171.32 17087.73 154
HY-MVS67.03 573.90 9173.14 8976.18 12384.70 7747.36 25975.56 29186.36 8366.27 6670.66 9783.91 18751.05 5089.31 12567.10 12072.61 15791.88 49
gg-mvs-nofinetune67.43 21064.53 23676.13 12485.95 5347.79 25464.38 34988.28 5139.34 35266.62 12141.27 38658.69 1389.00 13749.64 25886.62 3091.59 55
原ACMM176.13 12484.89 7554.59 8785.26 10851.98 28966.70 11987.07 15240.15 17489.70 11851.23 24985.06 4784.10 218
GA-MVS69.04 17566.70 19376.06 12675.11 26952.36 13883.12 19680.23 21063.32 11660.65 19979.22 25230.98 27988.37 16161.25 16166.41 20987.46 160
mPP-MVS71.79 13170.38 13376.04 12782.65 13052.06 14284.45 15481.78 18555.59 25762.05 18789.68 9933.48 25688.28 16965.45 13578.24 10587.77 153
MVSTER73.25 10472.33 9976.01 12885.54 6253.76 10283.52 17787.16 6867.06 5463.88 16581.66 22952.77 3890.44 9664.66 14164.69 22283.84 229
CP-MVS72.59 11571.46 11776.00 12982.93 12152.32 14086.93 8582.48 17255.15 26263.65 16790.44 8235.03 24188.53 15768.69 11177.83 10687.15 165
HPM-MVScopyleft72.60 11371.50 11675.89 13082.02 13951.42 15980.70 25483.05 16356.12 25264.03 16189.53 10137.55 20388.37 16170.48 10280.04 8787.88 150
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t69.87 16367.88 17075.85 13188.38 2952.35 13986.94 8483.68 14953.70 27655.68 27285.60 16830.07 28591.20 7555.84 21771.02 17283.99 222
PMMVS72.98 10672.05 11075.78 13283.57 9748.60 22484.08 16482.85 16861.62 14468.24 11090.33 8328.35 29287.78 18672.71 9276.69 11590.95 77
SDMVSNet71.89 12770.62 12975.70 13381.70 14851.61 15373.89 30388.72 4066.58 5961.64 19082.38 21837.63 20089.48 12277.44 5965.60 21686.01 186
EC-MVSNet75.30 7475.20 6475.62 13480.98 16849.00 21387.43 6984.68 12863.49 11370.97 9290.15 9042.86 14391.14 7874.33 8181.90 6786.71 176
test_fmvsm_n_192075.56 7175.54 5975.61 13574.60 27949.51 20281.82 22774.08 30466.52 6280.40 2293.46 1946.95 8389.72 11786.69 775.30 13087.61 157
MS-PatchMatch72.34 11871.26 12075.61 13582.38 13455.55 5388.00 5589.95 1965.38 8256.51 26680.74 23932.28 26792.89 3557.95 19788.10 1578.39 306
fmvsm_s_conf0.5_n74.48 8274.12 7875.56 13776.96 24547.85 25285.32 12369.80 34064.16 9678.74 2993.48 1845.51 10389.29 12686.48 866.62 20689.55 111
xiu_mvs_v1_base_debu71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base_debi71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
test_fmvsmconf_n74.41 8474.05 8075.49 14174.16 28548.38 23382.66 20572.57 31767.05 5575.11 4492.88 3346.35 9087.81 18183.93 1971.71 16590.28 91
fmvsm_s_conf0.1_n73.80 9373.26 8575.43 14273.28 29447.80 25384.57 15369.43 34263.34 11578.40 3293.29 2444.73 11989.22 12985.99 966.28 21389.26 116
CANet_DTU73.71 9673.14 8975.40 14382.61 13150.05 18884.67 15079.36 23269.72 3075.39 4290.03 9329.41 28885.93 24667.99 11579.11 9790.22 93
ACMMPcopyleft70.81 14669.29 15275.39 14481.52 16051.92 14783.43 18483.03 16456.67 24558.80 22888.91 11331.92 27288.58 15365.89 12973.39 14985.67 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n73.69 9773.15 8775.34 14570.71 32248.26 23882.15 21771.83 32166.75 5874.47 5192.59 3844.89 11387.78 18683.59 2071.35 16989.97 102
SCA63.84 24960.01 27175.32 14678.58 21857.92 1061.61 35977.53 26656.71 24357.75 24670.77 33731.97 27079.91 31048.80 26456.36 29488.13 145
fmvsm_l_conf0.5_n_a75.88 6476.07 5475.31 14776.08 25648.34 23585.24 12570.62 33363.13 12081.45 1893.62 1649.98 6187.40 20187.76 676.77 11490.20 95
fmvsm_l_conf0.5_n75.95 6276.16 5375.31 14776.01 26048.44 23284.98 13771.08 32963.50 11281.70 1793.52 1750.00 5987.18 20587.80 576.87 11390.32 90
FE-MVS64.15 24660.43 26775.30 14980.85 17549.86 19368.28 33978.37 25450.26 30259.31 21673.79 30826.19 30991.92 6040.19 30566.67 20584.12 217
fmvsm_s_conf0.5_n_a73.68 9873.15 8775.29 15075.45 26748.05 24583.88 17168.84 34563.43 11478.60 3093.37 2245.32 10488.92 14485.39 1164.04 22688.89 127
ab-mvs70.65 14869.11 15475.29 15080.87 17446.23 27873.48 30785.24 11059.99 17266.65 12080.94 23643.13 14088.69 14963.58 14568.07 19390.95 77
TR-MVS69.71 16567.85 17375.27 15282.94 12048.48 23087.40 7180.86 20057.15 23564.61 15087.08 15132.67 26389.64 12046.38 28171.55 16887.68 156
v2v48269.55 17067.64 17675.26 15372.32 30753.83 9984.93 14181.94 17965.37 8360.80 19779.25 25141.62 15888.98 14063.03 14959.51 26382.98 245
PCF-MVS61.03 1070.10 15568.40 16175.22 15477.15 24351.99 14479.30 27282.12 17656.47 24961.88 18886.48 16143.98 12387.24 20455.37 21972.79 15686.43 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.1_n_a72.82 11072.05 11075.12 15570.95 32147.97 24882.72 20468.43 34762.52 13178.17 3393.08 3044.21 12288.86 14584.82 1363.54 23288.54 138
test_fmvsmconf0.01_n71.97 12670.95 12575.04 15666.21 34747.87 25180.35 25870.08 33765.85 7672.69 6991.68 5639.99 17787.67 19082.03 2969.66 18489.58 110
HQP-MVS72.34 11871.44 11875.03 15779.02 20651.56 15588.00 5583.68 14965.45 7864.48 15385.13 17237.35 20788.62 15166.70 12173.12 15184.91 208
AdaColmapbinary67.86 19865.48 22175.00 15888.15 3654.99 7386.10 10176.63 28449.30 30657.80 24386.65 15829.39 28988.94 14345.10 28770.21 18081.06 276
EI-MVSNet-Vis-set73.19 10572.60 9474.99 15982.56 13249.80 19582.55 21089.00 2866.17 6865.89 13288.98 11143.83 12592.29 5165.38 13869.01 18882.87 247
tpmrst71.04 14169.77 14474.86 16083.19 11055.86 5175.64 29078.73 24667.88 4464.99 14573.73 30949.96 6279.56 31365.92 12767.85 19789.14 122
v114468.81 18166.82 18974.80 16172.34 30653.46 10784.68 14881.77 18664.25 9460.28 20177.91 26240.23 17288.95 14160.37 17459.52 26281.97 254
v119267.96 19765.74 21674.63 16271.79 30953.43 11284.06 16680.99 19963.19 11959.56 21077.46 26937.50 20688.65 15058.20 19258.93 26981.79 257
BH-w/o70.02 15868.51 15974.56 16382.77 12550.39 17886.60 9378.14 25759.77 17559.65 20785.57 16939.27 18387.30 20349.86 25674.94 14085.99 188
SR-MVS70.92 14469.73 14574.50 16483.38 10550.48 17584.27 15979.35 23348.96 30966.57 12490.45 7933.65 25587.11 20766.42 12374.56 14285.91 191
tttt051768.33 19166.29 20174.46 16578.08 22549.06 20980.88 25189.08 2754.40 27254.75 28080.77 23851.31 4890.33 10049.35 26058.01 28283.99 222
TESTMET0.1,172.86 10972.33 9974.46 16581.98 14050.77 16785.13 12985.47 9666.09 7067.30 11583.69 19237.27 21083.57 27665.06 14078.97 9989.05 124
nrg03072.27 12271.56 11574.42 16775.93 26150.60 17186.97 8383.21 16062.75 12567.15 11784.38 18050.07 5886.66 22171.19 9662.37 24985.99 188
RPMNet59.29 28354.25 30674.42 16773.97 28856.57 3460.52 36276.98 27635.72 36457.49 25258.87 37237.73 19885.26 25527.01 36359.93 25981.42 266
Vis-MVSNetpermissive70.61 14969.34 15074.42 16780.95 17348.49 22986.03 10377.51 26758.74 20365.55 13787.78 13934.37 24785.95 24552.53 24380.61 7788.80 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet71.14 13770.07 14174.33 17079.18 20346.52 27083.81 17386.49 7956.32 25157.95 24084.90 17854.23 3289.14 13258.14 19369.65 18587.33 162
test250672.91 10872.43 9874.32 17180.12 18944.18 30283.19 19484.77 12564.02 9865.97 13087.43 14647.67 7688.72 14859.08 17979.66 9390.08 99
EI-MVSNet-UG-set72.37 11771.73 11374.29 17281.60 15449.29 20781.85 22588.64 4265.29 8665.05 14188.29 12843.18 13791.83 6163.74 14467.97 19581.75 258
ECVR-MVScopyleft71.81 12971.00 12474.26 17380.12 18943.49 30784.69 14782.16 17464.02 9864.64 14887.43 14635.04 24089.21 13061.24 16279.66 9390.08 99
OPM-MVS70.75 14769.58 14674.26 17375.55 26651.34 16186.05 10283.29 15961.94 14062.95 17685.77 16634.15 24988.44 15965.44 13671.07 17182.99 244
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419267.86 19865.76 21574.16 17571.68 31153.09 12384.14 16380.83 20162.85 12459.21 21977.28 27239.30 18288.00 17758.67 18457.88 28681.40 268
HQP_MVS70.96 14369.91 14374.12 17677.95 22749.57 19785.76 10782.59 17063.60 10962.15 18583.28 19936.04 23088.30 16765.46 13372.34 16084.49 212
v192192067.45 20965.23 22874.10 17771.51 31452.90 12983.75 17580.44 20662.48 13359.12 22077.13 27336.98 21487.90 17957.53 20358.14 28081.49 262
v867.25 21564.99 23174.04 17872.89 30053.31 11782.37 21580.11 21261.54 14654.29 28576.02 29442.89 14288.41 16058.43 18656.36 29480.39 285
VPNet72.07 12471.42 11974.04 17878.64 21747.17 26489.91 3287.97 5572.56 1264.66 14785.04 17541.83 15788.33 16561.17 16360.97 25586.62 177
test_fmvsmvis_n_192071.29 13670.38 13374.00 18071.04 32048.79 22079.19 27364.62 35662.75 12566.73 11891.99 4940.94 16488.35 16383.00 2273.18 15084.85 210
v124066.99 22364.68 23473.93 18171.38 31752.66 13283.39 18879.98 21461.97 13958.44 23777.11 27435.25 23687.81 18156.46 21358.15 27881.33 271
BH-untuned68.28 19266.40 19873.91 18281.62 15350.01 18985.56 11777.39 26957.63 22457.47 25483.69 19236.36 22587.08 20844.81 28873.08 15484.65 211
v14868.24 19466.35 19973.88 18371.76 31051.47 15884.23 16081.90 18363.69 10758.94 22276.44 28543.72 13087.78 18660.63 16755.86 30482.39 251
V4267.66 20365.60 22073.86 18470.69 32453.63 10481.50 23878.61 24963.85 10359.49 21377.49 26837.98 19287.65 19162.33 15258.43 27380.29 286
Fast-Effi-MVS+-dtu66.53 23164.10 24073.84 18572.41 30552.30 14184.73 14675.66 29259.51 18056.34 26779.11 25428.11 29485.85 24757.74 20263.29 23883.35 234
v1066.61 23064.20 23973.83 18672.59 30353.37 11381.88 22479.91 21761.11 15354.09 28775.60 29640.06 17688.26 17056.47 21256.10 30079.86 291
APD-MVS_3200maxsize69.62 16968.23 16573.80 18781.58 15648.22 23981.91 22379.50 22648.21 31264.24 15889.75 9831.91 27387.55 19763.08 14873.85 14785.64 197
AUN-MVS68.20 19566.35 19973.76 18876.37 24947.45 25779.52 26979.52 22560.98 15762.34 18186.02 16336.59 22486.94 21362.32 15353.47 32486.89 168
PVSNet_BlendedMVS73.42 10273.30 8473.76 18885.91 5451.83 14986.18 9984.24 13965.40 8169.09 10480.86 23746.70 8788.13 17275.43 7065.92 21581.33 271
hse-mvs271.44 13570.68 12773.73 19076.34 25047.44 25879.45 27079.47 22868.08 4071.97 7886.01 16542.50 14486.93 21478.82 4653.46 32586.83 174
baseline172.51 11672.12 10873.69 19185.05 7144.46 29583.51 18186.13 8771.61 1764.64 14887.97 13655.00 2889.48 12259.07 18056.05 30187.13 166
CDS-MVSNet70.48 15169.43 14773.64 19277.56 23448.83 21983.51 18177.45 26863.27 11762.33 18285.54 17043.85 12483.29 28057.38 20674.00 14488.79 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet62.49 869.27 17367.81 17473.64 19284.41 8251.85 14884.63 15177.80 26166.42 6359.80 20584.95 17722.14 34180.44 30255.03 22075.11 13688.62 135
PS-MVSNAJss68.78 18367.17 18673.62 19473.01 29748.33 23784.95 14084.81 12359.30 18858.91 22579.84 24537.77 19588.86 14562.83 15063.12 24383.67 232
TAMVS69.51 17168.16 16673.56 19576.30 25348.71 22382.57 20877.17 27362.10 13661.32 19384.23 18341.90 15583.46 27854.80 22373.09 15388.50 140
UGNet68.71 18467.11 18773.50 19680.55 18347.61 25584.08 16478.51 25159.45 18165.68 13682.73 20823.78 32685.08 26052.80 23876.40 11687.80 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sd_testset67.79 20165.95 21073.32 19781.70 14846.33 27568.99 33580.30 20966.58 5961.64 19082.38 21830.45 28287.63 19355.86 21665.60 21686.01 186
Anonymous2023121166.08 23863.67 24173.31 19883.07 11448.75 22186.01 10484.67 12945.27 33156.54 26476.67 28328.06 29588.95 14152.78 23959.95 25882.23 252
新几何173.30 19983.10 11153.48 10671.43 32745.55 32966.14 12787.17 15033.88 25380.54 30048.50 26780.33 8385.88 193
FMVSNet368.84 17967.40 18273.19 20085.05 7148.53 22785.71 11385.36 10160.90 16157.58 24979.15 25342.16 14986.77 21747.25 27563.40 23484.27 216
mvsmamba66.93 22664.88 23373.09 20175.06 27147.26 26183.36 19069.21 34362.64 12855.68 27281.43 23229.72 28689.20 13163.35 14763.50 23382.79 248
thres20068.71 18467.27 18573.02 20284.73 7646.76 26785.03 13587.73 6162.34 13459.87 20383.45 19643.15 13888.32 16631.25 34567.91 19683.98 224
PVSNet_057.04 1361.19 27457.24 28773.02 20277.45 23650.31 18479.43 27177.36 27163.96 10247.51 32972.45 32525.03 31883.78 27352.76 24119.22 39584.96 207
test111171.06 14070.42 13272.97 20479.48 19641.49 32884.82 14582.74 16964.20 9562.98 17587.43 14635.20 23787.92 17858.54 18578.42 10389.49 113
dp64.41 24461.58 25272.90 20582.40 13354.09 9772.53 31376.59 28560.39 16855.68 27270.39 34035.18 23876.90 33539.34 30861.71 25287.73 154
FMVSNet267.57 20665.79 21472.90 20582.71 12747.97 24885.15 12884.93 11958.55 20656.71 26278.26 26036.72 22186.67 22046.15 28362.94 24584.07 219
XXY-MVS70.18 15369.28 15372.89 20777.64 23142.88 31585.06 13387.50 6662.58 12962.66 18082.34 22143.64 13289.83 11358.42 18863.70 23185.96 190
CR-MVSNet62.47 26659.04 27872.77 20873.97 28856.57 3460.52 36271.72 32360.04 17157.49 25265.86 35338.94 18580.31 30342.86 29959.93 25981.42 266
WB-MVSnew69.36 17268.24 16472.72 20979.26 20149.40 20485.72 11288.85 3561.33 14964.59 15182.38 21834.57 24587.53 19846.82 27970.63 17581.22 275
EI-MVSNet69.70 16768.70 15772.68 21075.00 27348.90 21779.54 26787.16 6861.05 15563.88 16583.74 19045.87 9690.44 9657.42 20564.68 22378.70 299
HPM-MVS_fast67.86 19866.28 20272.61 21180.67 18048.34 23581.18 24475.95 29150.81 29859.55 21188.05 13427.86 29785.98 24258.83 18273.58 14883.51 233
MVP-Stereo70.97 14270.44 13172.59 21276.03 25951.36 16085.02 13686.99 7160.31 16956.53 26578.92 25540.11 17590.00 10960.00 17790.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_111021_LR69.07 17467.91 16872.54 21377.27 23849.56 19979.77 26573.96 30759.33 18760.73 19887.82 13830.19 28481.53 28869.94 10372.19 16286.53 178
IS-MVSNet68.80 18267.55 17972.54 21378.50 22043.43 30981.03 24679.35 23359.12 19557.27 25786.71 15646.05 9487.70 18944.32 29275.60 12886.49 179
VPA-MVSNet71.12 13870.66 12872.49 21578.75 21244.43 29787.64 6490.02 1763.97 10165.02 14281.58 23142.14 15087.42 20063.42 14663.38 23785.63 198
SR-MVS-dyc-post68.27 19366.87 18872.48 21680.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10331.17 27886.09 23960.52 17172.06 16383.19 240
dmvs_re67.61 20466.00 20872.42 21781.86 14343.45 30864.67 34880.00 21369.56 3260.07 20285.00 17634.71 24387.63 19351.48 24766.68 20486.17 185
miper_enhance_ethall69.77 16468.90 15672.38 21878.93 20949.91 19183.29 19178.85 24064.90 8859.37 21479.46 24752.77 3885.16 25863.78 14358.72 27082.08 253
cl2268.85 17867.69 17572.35 21978.07 22649.98 19082.45 21378.48 25262.50 13258.46 23577.95 26149.99 6085.17 25762.55 15158.72 27081.90 256
MSDG59.44 28255.14 30272.32 22074.69 27650.71 16874.39 30173.58 31044.44 33743.40 34477.52 26719.45 35190.87 8631.31 34457.49 29075.38 334
UWE-MVS72.17 12372.15 10672.21 22182.26 13744.29 29986.83 8889.58 2165.58 7765.82 13385.06 17445.02 10984.35 26854.07 22775.18 13287.99 149
v7n62.50 26559.27 27672.20 22267.25 34649.83 19477.87 28180.12 21152.50 28648.80 32073.07 31732.10 26887.90 17946.83 27854.92 31178.86 297
1112_ss70.05 15769.37 14972.10 22380.77 17742.78 31685.12 13276.75 28059.69 17761.19 19492.12 4447.48 7883.84 27153.04 23568.21 19289.66 108
miper_ehance_all_eth68.70 18667.58 17772.08 22476.91 24649.48 20382.47 21278.45 25362.68 12758.28 23977.88 26350.90 5285.01 26161.91 15758.72 27081.75 258
eth_miper_zixun_eth66.98 22465.28 22772.06 22575.61 26550.40 17781.00 24776.97 27962.00 13756.99 25976.97 27644.84 11585.58 24858.75 18354.42 31680.21 287
LPG-MVS_test66.44 23364.58 23572.02 22674.42 28148.60 22483.07 19880.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
LGP-MVS_train72.02 22674.42 28148.60 22480.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
ACMP61.11 966.24 23664.33 23772.00 22874.89 27549.12 20883.18 19579.83 21855.41 26052.29 30082.68 20925.83 31186.10 23760.89 16463.94 22980.78 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GBi-Net67.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
test167.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
FMVSNet164.57 24362.11 24971.96 22977.32 23746.36 27283.52 17783.31 15652.43 28754.42 28376.23 28927.80 29886.20 23142.59 30161.34 25483.32 235
cl____67.43 21065.93 21171.95 23276.33 25148.02 24682.58 20779.12 23761.30 15156.72 26176.92 27846.12 9286.44 22857.98 19556.31 29681.38 270
DIV-MVS_self_test67.43 21065.93 21171.94 23376.33 25148.01 24782.57 20879.11 23861.31 15056.73 26076.92 27846.09 9386.43 22957.98 19556.31 29681.39 269
Patchmatch-RL test58.72 29354.32 30571.92 23463.91 36244.25 30061.73 35855.19 36957.38 23049.31 31754.24 37737.60 20280.89 29362.19 15547.28 34590.63 82
c3_l67.97 19666.66 19471.91 23576.20 25549.31 20682.13 21978.00 25961.99 13857.64 24876.94 27749.41 6584.93 26260.62 16857.01 29281.49 262
tfpn200view967.57 20666.13 20571.89 23684.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21082.78 249
RRT_MVS63.68 25261.01 26171.70 23773.48 29045.98 28081.19 24376.08 28954.33 27352.84 29679.27 25022.21 33887.65 19154.13 22655.54 30881.46 265
MIMVSNet63.12 25860.29 26871.61 23875.92 26246.65 26865.15 34581.94 17959.14 19454.65 28169.47 34325.74 31280.63 29841.03 30469.56 18787.55 158
test-LLR69.65 16869.01 15571.60 23978.67 21448.17 24085.13 12979.72 22059.18 19263.13 17382.58 21236.91 21680.24 30460.56 16975.17 13386.39 182
test-mter68.36 18967.29 18371.60 23978.67 21448.17 24085.13 12979.72 22053.38 27963.13 17382.58 21227.23 30280.24 30460.56 16975.17 13386.39 182
sss70.49 15070.13 14071.58 24181.59 15539.02 33980.78 25384.71 12759.34 18566.61 12288.09 13137.17 21285.52 24961.82 15971.02 17290.20 95
tpmvs62.45 26759.42 27471.53 24283.93 9154.32 9170.03 33077.61 26551.91 29053.48 29368.29 34737.91 19386.66 22133.36 33558.27 27673.62 348
ACMM58.35 1264.35 24562.01 25071.38 24374.21 28448.51 22882.25 21679.66 22247.61 31554.54 28280.11 24125.26 31686.00 24151.26 24863.16 24179.64 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH53.70 1659.78 28055.94 29871.28 24476.59 24848.35 23480.15 26376.11 28849.74 30441.91 35073.45 31616.50 36690.31 10131.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ppachtmachnet_test58.56 29554.34 30471.24 24571.42 31554.74 7981.84 22672.27 31949.02 30845.86 33868.99 34626.27 30783.30 27930.12 34743.23 35975.69 331
thres100view90066.87 22765.42 22571.24 24583.29 10743.15 31281.67 23187.78 5859.04 19655.92 27082.18 22343.73 12887.80 18328.80 35266.36 21082.78 249
thres40067.40 21366.13 20571.19 24784.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21080.71 281
our_test_359.11 28755.08 30371.18 24871.42 31553.29 11881.96 22174.52 30048.32 31142.08 34869.28 34528.14 29382.15 28434.35 33245.68 35478.11 311
CPTT-MVS67.15 21865.84 21371.07 24980.96 17050.32 18381.94 22274.10 30346.18 32757.91 24187.64 14329.57 28781.31 29064.10 14270.18 18181.56 261
NR-MVSNet67.25 21565.99 20971.04 25073.27 29543.91 30385.32 12384.75 12666.05 7353.65 29282.11 22445.05 10885.97 24447.55 27256.18 29983.24 238
tpm68.36 18967.48 18170.97 25179.93 19251.34 16176.58 28878.75 24567.73 4763.54 17174.86 30048.33 6972.36 35753.93 22963.71 23089.21 119
TranMVSNet+NR-MVSNet66.94 22565.61 21970.93 25273.45 29143.38 31083.02 20084.25 13765.31 8558.33 23881.90 22739.92 17985.52 24949.43 25954.89 31283.89 228
EG-PatchMatch MVS62.40 26859.59 27270.81 25373.29 29349.05 21085.81 10584.78 12451.85 29244.19 33973.48 31515.52 36989.85 11240.16 30667.24 20173.54 349
test_djsdf63.84 24961.56 25370.70 25468.78 33544.69 29481.63 23281.44 19050.28 29952.27 30176.26 28826.72 30586.11 23560.83 16555.84 30581.29 274
UA-Net67.32 21466.23 20370.59 25578.85 21041.23 33173.60 30575.45 29561.54 14666.61 12284.53 17938.73 18886.57 22642.48 30274.24 14383.98 224
thres600view766.46 23265.12 22970.47 25683.41 10143.80 30582.15 21787.78 5859.37 18456.02 26982.21 22243.73 12886.90 21526.51 36464.94 21980.71 281
UniMVSNet (Re)67.71 20266.80 19070.45 25774.44 28042.93 31482.42 21484.90 12063.69 10759.63 20880.99 23547.18 8085.23 25651.17 25056.75 29383.19 240
IterMVS-LS66.63 22965.36 22670.42 25875.10 27048.90 21781.45 24176.69 28361.05 15555.71 27177.10 27545.86 9783.65 27557.44 20457.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet68.82 18068.29 16370.40 25975.71 26442.59 31884.23 16086.78 7466.31 6558.51 23182.45 21551.57 4684.64 26653.11 23355.96 30283.96 226
jajsoiax63.21 25760.84 26270.32 26068.33 34044.45 29681.23 24281.05 19653.37 28050.96 31077.81 26517.49 36185.49 25159.31 17858.05 28181.02 277
mvs_tets62.96 26060.55 26470.19 26168.22 34344.24 30180.90 25080.74 20252.99 28350.82 31277.56 26616.74 36485.44 25259.04 18157.94 28380.89 278
pmmvs463.34 25661.07 26070.16 26270.14 32650.53 17379.97 26471.41 32855.08 26354.12 28678.58 25732.79 26282.09 28650.33 25357.22 29177.86 312
DU-MVS66.84 22865.74 21670.16 26273.27 29542.59 31881.50 23882.92 16763.53 11158.51 23182.11 22440.75 16684.64 26653.11 23355.96 30283.24 238
Effi-MVS+-dtu66.24 23664.96 23270.08 26475.17 26849.64 19682.01 22074.48 30162.15 13557.83 24276.08 29330.59 28183.79 27265.40 13760.93 25676.81 321
IterMVS63.77 25161.67 25170.08 26472.68 30251.24 16480.44 25675.51 29360.51 16751.41 30573.70 31232.08 26978.91 31454.30 22554.35 31780.08 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS67.58 20566.76 19170.04 26675.92 26245.06 29386.23 9885.28 10764.31 9358.50 23381.00 23444.80 11882.00 28749.21 26255.57 30783.06 243
Test_1112_low_res67.18 21766.23 20370.02 26778.75 21241.02 33283.43 18473.69 30957.29 23158.45 23682.39 21745.30 10580.88 29450.50 25266.26 21488.16 142
D2MVS63.49 25461.39 25569.77 26869.29 33248.93 21678.89 27577.71 26460.64 16649.70 31572.10 33127.08 30383.48 27754.48 22462.65 24676.90 320
tt080563.39 25561.31 25769.64 26969.36 33138.87 34078.00 27985.48 9548.82 31055.66 27581.66 22924.38 32386.37 23049.04 26359.36 26683.68 231
XVG-OURS61.88 27059.34 27569.49 27065.37 35246.27 27664.80 34773.49 31247.04 31957.41 25682.85 20325.15 31778.18 31853.00 23664.98 21884.01 221
XVG-OURS-SEG-HR62.02 26959.54 27369.46 27165.30 35345.88 28165.06 34673.57 31146.45 32357.42 25583.35 19826.95 30478.09 32053.77 23064.03 22784.42 214
test_vis1_n_192068.59 18768.31 16269.44 27269.16 33341.51 32784.63 15168.58 34658.80 20173.26 6288.37 12325.30 31580.60 29979.10 4367.55 19986.23 184
FIs70.00 15970.24 13969.30 27377.93 22938.55 34283.99 16887.72 6266.86 5757.66 24784.17 18452.28 4285.31 25352.72 24268.80 18984.02 220
Baseline_NR-MVSNet65.49 24264.27 23869.13 27474.37 28341.65 32583.39 18878.85 24059.56 17959.62 20976.88 28040.75 16687.44 19949.99 25455.05 31078.28 308
TransMVSNet (Re)62.82 26160.76 26369.02 27573.98 28741.61 32686.36 9579.30 23656.90 23752.53 29876.44 28541.85 15687.60 19638.83 30940.61 36477.86 312
anonymousdsp60.46 27857.65 28468.88 27663.63 36345.09 28972.93 31178.63 24846.52 32251.12 30772.80 32121.46 34583.07 28157.79 20053.97 31878.47 303
ADS-MVSNet56.17 30951.95 31968.84 27780.60 18153.07 12455.03 37370.02 33844.72 33451.00 30861.19 36522.83 33178.88 31528.54 35553.63 32074.57 342
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27871.13 31944.30 29883.64 17675.02 29846.42 32446.48 33573.03 31818.69 35588.14 17127.74 36061.80 25174.05 345
Patchmatch-test53.33 32448.17 33368.81 27973.31 29242.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 83
pm-mvs164.12 24762.56 24568.78 28071.68 31138.87 34082.89 20281.57 18755.54 25953.89 28977.82 26437.73 19886.74 21848.46 26853.49 32380.72 280
miper_lstm_enhance63.91 24862.30 24768.75 28175.06 27146.78 26669.02 33481.14 19559.68 17852.76 29772.39 32640.71 16877.99 32456.81 20953.09 32681.48 264
OMC-MVS65.97 23965.06 23068.71 28272.97 29842.58 32078.61 27675.35 29654.72 26859.31 21686.25 16233.30 25777.88 32657.99 19467.05 20285.66 196
DP-MVS59.24 28456.12 29668.63 28388.24 3450.35 18282.51 21164.43 35741.10 35046.70 33378.77 25624.75 32188.57 15622.26 37656.29 29866.96 369
tfpnnormal61.47 27359.09 27768.62 28476.29 25441.69 32481.14 24585.16 11354.48 27151.32 30673.63 31332.32 26686.89 21621.78 37855.71 30677.29 318
test_cas_vis1_n_192067.10 21966.60 19668.59 28565.17 35543.23 31183.23 19369.84 33955.34 26170.67 9687.71 14124.70 32276.66 33778.57 5064.20 22585.89 192
UniMVSNet_ETH3D62.51 26460.49 26568.57 28668.30 34140.88 33473.89 30379.93 21651.81 29354.77 27979.61 24624.80 32081.10 29149.93 25561.35 25383.73 230
CL-MVSNet_self_test62.98 25961.14 25968.50 28765.86 35042.96 31384.37 15582.98 16560.98 15753.95 28872.70 32240.43 17083.71 27441.10 30347.93 34078.83 298
ACMH+54.58 1558.55 29655.24 30068.50 28774.68 27745.80 28480.27 25970.21 33647.15 31842.77 34775.48 29716.73 36585.98 24235.10 33054.78 31373.72 347
lessismore_v067.98 28964.76 35941.25 33045.75 37836.03 36965.63 35519.29 35384.11 26935.67 32221.24 39378.59 302
K. test v354.04 31949.42 33067.92 29068.55 33742.57 32175.51 29363.07 36152.07 28839.21 35964.59 35719.34 35282.21 28337.11 31525.31 38878.97 296
pmmvs562.80 26261.18 25867.66 29169.53 33042.37 32382.65 20675.19 29754.30 27452.03 30378.51 25831.64 27580.67 29748.60 26658.15 27879.95 290
PatchT56.60 30552.97 31267.48 29272.94 29946.16 27957.30 37073.78 30838.77 35454.37 28457.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
Patchmtry56.56 30652.95 31367.42 29372.53 30450.59 17259.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30736.94 31846.72 35071.60 359
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32341.46 32974.73 29864.69 35547.56 31639.12 36069.49 34218.49 35884.69 26531.87 34134.20 37875.48 333
pmmvs659.64 28157.15 28867.09 29566.01 34836.86 34980.50 25578.64 24745.05 33349.05 31873.94 30727.28 30186.10 23743.96 29449.94 33578.31 307
testdata67.08 29677.59 23345.46 28769.20 34444.47 33671.50 8588.34 12631.21 27770.76 36252.20 24475.88 12485.03 205
CNLPA60.59 27758.44 28167.05 29779.21 20247.26 26179.75 26664.34 35842.46 34851.90 30483.94 18627.79 29975.41 34237.12 31459.49 26478.47 303
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
TAPA-MVS56.12 1461.82 27160.18 27066.71 30078.48 22137.97 34575.19 29676.41 28746.82 32057.04 25886.52 16027.67 30077.03 33226.50 36567.02 20385.14 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_040256.45 30753.03 31166.69 30176.78 24750.31 18481.76 22869.61 34142.79 34643.88 34072.13 32922.82 33386.46 22716.57 38850.94 33263.31 377
PLCcopyleft52.38 1860.89 27558.97 27966.68 30281.77 14545.70 28578.96 27474.04 30643.66 34247.63 32683.19 20123.52 32977.78 32937.47 31160.46 25776.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18149.56 19955.03 37365.44 35344.72 33451.00 30861.19 36522.83 33175.41 34228.54 35553.63 32074.57 342
FC-MVSNet-test67.49 20867.91 16866.21 30476.06 25733.06 36180.82 25287.18 6764.44 9254.81 27882.87 20250.40 5782.60 28248.05 27066.55 20882.98 245
JIA-IIPM52.33 32947.77 33666.03 30571.20 31846.92 26540.00 38876.48 28637.10 35946.73 33237.02 38832.96 25977.88 32635.97 32152.45 32973.29 351
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 20029.09 37961.39 36145.79 37760.73 16437.65 36572.47 32431.42 27681.08 29249.66 25770.41 17886.87 169
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27175.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32749.05 21072.30 31671.65 32644.23 34031.85 38063.13 36023.68 32874.01 34633.25 33739.35 36773.23 352
YYNet153.82 32149.96 32665.41 31070.09 32848.95 21472.30 31671.66 32544.25 33931.89 37963.07 36123.73 32773.95 34733.26 33639.40 36673.34 350
PatchMatch-RL56.66 30453.75 30965.37 31177.91 23045.28 28869.78 33260.38 36441.35 34947.57 32773.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
Vis-MVSNet (Re-imp)65.52 24165.63 21865.17 31277.49 23530.54 36875.49 29477.73 26359.34 18552.26 30286.69 15749.38 6680.53 30137.07 31675.28 13184.42 214
FMVSNet558.61 29456.45 29265.10 31377.20 24239.74 33674.77 29777.12 27450.27 30143.28 34567.71 34826.15 31076.90 33536.78 31954.78 31378.65 301
EPNet_dtu66.25 23566.71 19264.87 31478.66 21634.12 35682.80 20375.51 29361.75 14264.47 15686.90 15337.06 21372.46 35643.65 29569.63 18688.02 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19841.75 35170.03 34122.54 33479.92 30846.12 28435.31 37281.32 273
LS3D56.40 30853.82 30864.12 31681.12 16645.69 28673.42 30866.14 35235.30 36843.24 34679.88 24322.18 33979.62 31219.10 38464.00 22867.05 368
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34880.20 30639.91 30734.09 37976.57 326
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23835.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
Anonymous2023120659.08 28857.59 28563.55 31968.77 33632.14 36680.26 26079.78 21950.00 30349.39 31672.39 32626.64 30678.36 31733.12 33857.94 28380.14 288
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32575.44 34148.05 27066.62 20671.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
myMVS_eth3d63.52 25363.56 24363.40 32181.73 14634.28 35480.97 24881.02 19760.93 15955.06 27682.64 21048.00 7480.81 29523.42 37458.32 27475.10 338
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35438.19 35539.57 35871.43 33313.23 37279.92 30837.16 31340.32 36571.72 358
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31347.32 26069.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
F-COLMAP55.96 31253.65 31062.87 32472.76 30142.77 31774.70 30070.37 33540.03 35141.11 35579.36 24817.77 36073.70 35032.80 33953.96 31972.15 355
test0.0.03 162.54 26362.44 24662.86 32572.28 30829.51 37682.93 20178.78 24359.18 19253.07 29582.41 21636.91 21677.39 33037.45 31258.96 26881.66 260
CVMVSNet60.85 27660.44 26662.07 32675.00 27332.73 36379.54 26773.49 31236.98 36056.28 26883.74 19029.28 29069.53 36546.48 28063.23 23983.94 227
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28435.34 32538.22 36874.65 341
Syy-MVS61.51 27261.35 25662.00 32881.73 14630.09 37180.97 24881.02 19760.93 15955.06 27682.64 21035.09 23980.81 29516.40 38958.32 27475.10 338
PEN-MVS58.35 29857.15 28861.94 32967.55 34534.39 35377.01 28478.35 25551.87 29147.72 32576.73 28233.91 25173.75 34934.03 33347.17 34677.68 314
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25746.61 26963.23 35354.90 37024.77 38233.56 37536.60 39021.28 34675.88 34029.49 34962.54 24763.26 378
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32934.99 35144.52 38167.60 35143.11 34543.79 34174.03 30618.54 35781.45 28928.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H58.91 29158.04 28361.54 33269.07 33433.83 35876.91 28581.99 17851.40 29548.17 32174.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
CP-MVSNet58.54 29757.57 28661.46 33368.50 33833.96 35776.90 28678.60 25051.67 29447.83 32476.60 28434.99 24272.79 35435.45 32347.58 34277.64 316
PS-CasMVS58.12 29957.03 29061.37 33468.24 34233.80 35976.73 28778.01 25851.20 29647.54 32876.20 29232.85 26072.76 35535.17 32847.37 34477.55 317
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28648.10 24446.30 38054.31 37148.18 31350.88 31177.43 27038.37 19159.16 37854.83 22163.14 24275.66 332
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27551.16 29746.65 33476.34 28732.84 26173.22 35330.94 34644.87 35577.06 319
IterMVS-SCA-FT59.12 28658.81 28060.08 33870.68 32545.07 29080.42 25774.25 30243.54 34350.02 31473.73 30931.97 27056.74 38051.06 25153.60 32278.42 305
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34440.57 33571.25 32562.72 36336.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing359.97 27960.19 26959.32 34077.60 23230.01 37381.75 22981.79 18453.54 27750.34 31379.94 24248.99 6876.91 33317.19 38750.59 33371.03 363
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28141.94 34977.33 27114.28 37077.95 32529.18 35151.72 33178.28 308
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36238.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28274.78 29952.64 28443.43 34372.39 32626.21 30874.76 34429.31 35047.05 34876.28 329
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 29030.94 37540.76 35772.11 33020.16 34970.80 36135.11 32946.11 35276.19 330
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16982.56 21411.55 37360.81 37258.25 19155.27 30979.28 293
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18382.02 2269.12 38160.84 37157.82 19954.75 31578.99 295
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35471.17 36033.48 33442.44 36075.26 335
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
dmvs_testset57.65 30058.21 28255.97 35174.62 2789.82 40763.75 35063.34 36067.23 5248.89 31983.68 19439.12 18476.14 33823.43 37359.80 26181.96 255
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21279.86 2448.78 38258.23 37956.95 20852.46 32879.19 294
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35969.86 36427.97 35934.35 37671.49 361
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29974.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35938.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 33074.39 30418.67 35644.95 39244.66 28936.31 37066.40 371
N_pmnet41.25 34539.77 34845.66 36368.50 3380.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 35067.74 36623.51 37240.63 36368.42 367
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 31963.21 3696.81 40115.00 39647.98 388
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33059.28 3776.10 40212.86 39745.78 390
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36514.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4738.55 1890.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 440.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10849.90 19284.98 13778.76 24447.71 31473.42 59
PC_three_145266.58 5987.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
test_one_060189.39 2257.29 2088.09 5357.21 23482.06 1393.39 2054.94 29
eth-test20.00 413
eth-test0.00 413
ZD-MVS89.55 1453.46 10784.38 13357.02 23673.97 5491.03 6544.57 12091.17 7675.41 7381.78 70
RE-MVS-def66.66 19480.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10329.28 29060.52 17172.06 16383.19 240
IU-MVS89.48 1757.49 1591.38 966.22 6788.26 182.83 2387.60 1892.44 31
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 29
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2458.81 1196.45 1
9.1478.19 2785.67 5988.32 5188.84 3659.89 17374.58 4992.62 3746.80 8592.66 4181.40 3685.62 40
save fliter85.35 6656.34 4189.31 4081.46 18961.55 145
test_0728_THIRD58.00 21481.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 36
test072689.40 2057.45 1792.32 888.63 4357.71 22283.14 1093.96 855.17 25
GSMVS88.13 145
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18788.13 145
sam_mvs35.99 232
MTGPAbinary81.31 192
test_post170.84 32714.72 40434.33 24883.86 27048.80 264
test_post16.22 40137.52 20484.72 264
patchmatchnet-post59.74 36938.41 19079.91 310
MTMP87.27 7615.34 409
gm-plane-assit83.24 10854.21 9470.91 2288.23 12995.25 1466.37 124
test9_res78.72 4985.44 4291.39 63
TEST985.68 5755.42 5687.59 6684.00 14357.72 22172.99 6490.98 6744.87 11488.58 153
test_885.72 5655.31 6187.60 6583.88 14657.84 21972.84 6890.99 6644.99 11088.34 164
agg_prior275.65 6885.11 4691.01 75
agg_prior85.64 6054.92 7583.61 15372.53 7388.10 174
test_prior456.39 4087.15 80
test_prior289.04 4361.88 14173.55 5791.46 6348.01 7374.73 7785.46 41
旧先验281.73 23045.53 33074.66 4670.48 36358.31 190
新几何281.61 234
旧先验181.57 15747.48 25671.83 32188.66 11836.94 21578.34 10488.67 133
无先验85.19 12778.00 25949.08 30785.13 25952.78 23987.45 161
原ACMM283.77 174
test22279.36 19750.97 16677.99 28067.84 34842.54 34762.84 17786.53 15930.26 28376.91 11285.23 202
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata177.55 28364.14 97
plane_prior777.95 22748.46 231
plane_prior678.42 22249.39 20536.04 230
plane_prior582.59 17088.30 16765.46 13372.34 16084.49 212
plane_prior483.28 199
plane_prior348.95 21464.01 10062.15 185
plane_prior285.76 10763.60 109
plane_prior178.31 224
plane_prior49.57 19787.43 6964.57 9172.84 155
n20.00 413
nn0.00 413
door-mid41.31 385
test1184.25 137
door43.27 381
HQP5-MVS51.56 155
HQP-NCC79.02 20688.00 5565.45 7864.48 153
ACMP_Plane79.02 20688.00 5565.45 7864.48 153
BP-MVS66.70 121
HQP4-MVS64.47 15688.61 15284.91 208
HQP3-MVS83.68 14973.12 151
HQP2-MVS37.35 207
NP-MVS78.76 21150.43 17685.12 173
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26659.29 21836.76 21846.33 28287.32 163
MDTV_nov1_ep1361.56 25381.68 15055.12 6872.41 31578.18 25659.19 19058.85 22769.29 34434.69 24486.16 23436.76 32062.96 244
ACMMP++_ref63.20 240
ACMMP++59.38 265
Test By Simon39.38 181