CHOSEN 1792x2688 | | | 76.24 56 | 74.03 76 | 82.88 1 | 83.09 116 | 62.84 2 | 85.73 112 | 85.39 100 | 69.79 20 | 64.87 135 | 83.49 181 | 41.52 151 | 93.69 30 | 70.55 88 | 81.82 73 | 92.12 36 |
|
MG-MVS | | | 78.42 23 | 76.99 38 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 30 | 88.51 46 | 64.83 74 | 73.52 52 | 88.09 125 | 48.07 64 | 92.19 56 | 62.24 145 | 84.53 54 | 91.53 52 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 7 | 59.33 6 | 92.10 9 | 90.95 9 | 65.68 60 | 80.67 18 | 94.42 3 | 59.41 9 | 95.89 12 | 86.74 3 | 89.75 7 | 92.94 18 |
|
LFMVS | | | 78.52 21 | 77.14 36 | 82.67 4 | 89.58 13 | 58.90 8 | 91.27 19 | 88.05 51 | 63.22 97 | 74.63 40 | 90.83 66 | 41.38 152 | 94.40 23 | 75.42 57 | 79.90 95 | 94.72 2 |
|
DVP-MVS++. | | | 82.44 3 | 82.38 5 | 82.62 5 | 91.77 4 | 57.49 17 | 84.98 136 | 88.88 31 | 58.00 193 | 83.60 6 | 93.39 13 | 67.21 2 | 96.39 4 | 81.64 17 | 91.98 4 | 93.98 5 |
|
DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 6 | 80.12 187 | 59.50 5 | 92.24 8 | 90.72 10 | 69.37 23 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 34 | 74.02 68 | 93.25 2 | 94.80 1 |
|
CSCG | | | 80.41 13 | 79.72 14 | 82.49 6 | 89.12 25 | 57.67 15 | 89.29 42 | 91.54 3 | 59.19 167 | 71.82 73 | 90.05 89 | 59.72 8 | 96.04 10 | 78.37 35 | 88.40 14 | 93.75 7 |
|
SED-MVS | | | 81.92 7 | 81.75 8 | 82.44 8 | 89.48 17 | 56.89 28 | 92.48 3 | 88.94 29 | 57.50 208 | 84.61 4 | 94.09 4 | 58.81 11 | 96.37 6 | 82.28 12 | 87.60 18 | 94.06 3 |
|
DVP-MVS |  | | 81.30 9 | 81.00 11 | 82.20 9 | 89.40 20 | 57.45 19 | 92.34 5 | 89.99 16 | 57.71 202 | 81.91 12 | 93.64 11 | 55.17 19 | 96.44 2 | 81.68 14 | 87.13 22 | 92.72 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 82.20 9 | 89.50 15 | 57.73 13 | 92.34 5 | 88.88 31 | | | | | 96.39 4 | 81.68 14 | 87.13 22 | 92.47 26 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 11 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 27 | 93.09 20 | 54.15 26 | 95.57 13 | 85.80 4 | 85.87 39 | 93.31 11 |
|
DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 12 | 86.80 45 | 56.89 28 | 92.77 2 | 86.30 84 | 77.83 1 | 77.88 24 | 92.13 35 | 60.24 6 | 94.78 22 | 78.97 30 | 89.61 8 | 93.69 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 47 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 16 | 89.82 1 | 92.55 3 | 94.06 3 |
|
PS-MVSNAJ | | | 80.06 14 | 79.52 16 | 81.68 14 | 85.58 60 | 60.97 3 | 91.69 11 | 87.02 69 | 70.62 13 | 80.75 17 | 93.22 17 | 37.77 183 | 92.50 48 | 82.75 9 | 86.25 36 | 91.57 50 |
|
MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 45 | | 91.10 6 | | | | | 96.22 8 | 81.46 19 | 86.80 29 | 92.34 30 |
|
No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 45 | | 91.10 6 | | | | | 96.22 8 | 81.46 19 | 86.80 29 | 92.34 30 |
|
xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 15 | 85.03 76 | 60.73 4 | 91.65 13 | 86.86 72 | 70.30 18 | 80.77 16 | 93.07 21 | 37.63 188 | 92.28 54 | 82.73 10 | 85.71 40 | 91.57 50 |
|
CNVR-MVS | | | 81.76 8 | 81.90 7 | 81.33 18 | 90.04 10 | 57.70 14 | 91.71 10 | 88.87 33 | 70.31 17 | 77.64 26 | 93.87 8 | 52.58 33 | 93.91 28 | 84.17 5 | 87.92 16 | 92.39 28 |
|
MVS | | | 76.91 45 | 75.48 56 | 81.23 19 | 84.56 81 | 55.21 62 | 80.23 246 | 91.64 2 | 58.65 183 | 65.37 127 | 91.48 53 | 45.72 94 | 95.05 17 | 72.11 83 | 89.52 10 | 93.44 9 |
|
VDDNet | | | 74.37 81 | 72.13 98 | 81.09 20 | 79.58 191 | 56.52 35 | 90.02 27 | 86.70 77 | 52.61 263 | 71.23 81 | 87.20 137 | 31.75 257 | 93.96 27 | 74.30 66 | 75.77 125 | 92.79 22 |
|
NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 49 | 67.71 38 | 73.81 48 | 92.75 24 | 46.88 77 | 93.28 32 | 78.79 33 | 84.07 57 | 91.50 54 |
|
API-MVS | | | 74.17 84 | 72.07 101 | 80.49 22 | 90.02 11 | 58.55 9 | 87.30 75 | 84.27 135 | 57.51 207 | 65.77 124 | 87.77 132 | 41.61 149 | 95.97 11 | 51.71 229 | 82.63 63 | 86.94 152 |
|
3Dnovator | | 64.70 6 | 74.46 80 | 72.48 90 | 80.41 23 | 82.84 128 | 55.40 57 | 83.08 187 | 88.61 42 | 67.61 40 | 59.85 188 | 88.66 114 | 34.57 228 | 93.97 26 | 58.42 178 | 88.70 12 | 91.85 44 |
|
DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 24 | 89.27 24 | 55.08 68 | 88.70 50 | 87.92 54 | 55.55 237 | 81.21 15 | 93.69 10 | 56.51 16 | 94.27 25 | 78.36 36 | 85.70 41 | 91.51 53 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DWT-MVSNet_test | | | 75.47 69 | 73.87 78 | 80.29 24 | 87.33 41 | 57.05 25 | 82.86 193 | 87.96 53 | 72.59 6 | 67.29 105 | 87.79 130 | 51.61 38 | 91.52 69 | 54.75 209 | 72.63 153 | 92.29 32 |
|
MAR-MVS | | | 76.76 50 | 75.60 55 | 80.21 26 | 90.87 8 | 54.68 81 | 89.14 43 | 89.11 24 | 62.95 100 | 70.54 87 | 92.33 32 | 41.05 153 | 94.95 18 | 57.90 187 | 86.55 33 | 91.00 67 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
SD-MVS | | | 76.18 57 | 74.85 67 | 80.18 27 | 85.39 67 | 56.90 27 | 85.75 110 | 82.45 171 | 56.79 221 | 74.48 44 | 91.81 43 | 43.72 120 | 90.75 89 | 74.61 63 | 78.65 102 | 92.91 19 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
Effi-MVS+ | | | 75.24 71 | 73.61 80 | 80.16 28 | 81.92 144 | 57.42 21 | 85.21 123 | 76.71 275 | 60.68 140 | 73.32 55 | 89.34 102 | 47.30 73 | 91.63 66 | 68.28 101 | 79.72 96 | 91.42 55 |
|
SMA-MVS |  | | 79.10 19 | 78.76 19 | 80.12 29 | 84.42 83 | 55.87 48 | 87.58 68 | 86.76 75 | 61.48 126 | 80.26 19 | 93.10 18 | 46.53 82 | 92.41 51 | 79.97 26 | 88.77 11 | 92.08 37 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 74.21 83 | 72.25 95 | 80.11 30 | 81.45 161 | 56.47 36 | 86.32 97 | 79.65 215 | 58.19 189 | 66.36 115 | 92.29 34 | 36.11 214 | 90.66 91 | 67.39 105 | 82.49 64 | 93.18 15 |
|
CANet | | | 80.90 10 | 81.17 10 | 80.09 31 | 87.62 38 | 54.21 90 | 91.60 14 | 86.47 80 | 73.13 5 | 79.89 21 | 93.10 18 | 49.88 55 | 92.98 35 | 84.09 6 | 84.75 52 | 93.08 16 |
|
IB-MVS | | 68.87 2 | 74.01 86 | 72.03 103 | 79.94 32 | 83.04 119 | 55.50 52 | 90.24 26 | 88.65 38 | 67.14 43 | 61.38 175 | 81.74 208 | 53.21 29 | 94.28 24 | 60.45 164 | 62.41 229 | 90.03 89 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HPM-MVS++ |  | | 80.50 12 | 80.71 12 | 79.88 33 | 87.34 40 | 55.20 63 | 89.93 30 | 87.55 64 | 66.04 59 | 79.46 22 | 93.00 22 | 53.10 30 | 91.76 64 | 80.40 25 | 89.56 9 | 92.68 24 |
|
CS-MVS | | | 80.02 15 | 80.13 13 | 79.68 34 | 83.44 103 | 56.75 31 | 91.66 12 | 87.84 55 | 70.41 16 | 75.69 33 | 92.06 39 | 51.47 41 | 92.80 39 | 81.17 22 | 87.42 21 | 89.49 100 |
|
xxxxxxxxxxxxxcwj | | | 77.31 39 | 76.54 42 | 79.61 35 | 85.35 68 | 56.34 39 | 89.31 40 | 72.84 309 | 61.55 122 | 74.63 40 | 92.38 30 | 47.75 69 | 91.35 73 | 78.18 39 | 86.85 27 | 91.15 62 |
|
QAPM | | | 71.88 118 | 69.33 138 | 79.52 36 | 82.20 141 | 54.30 88 | 86.30 98 | 88.77 36 | 56.61 225 | 59.72 190 | 87.48 135 | 33.90 235 | 95.36 14 | 47.48 254 | 81.49 76 | 88.90 115 |
|
VDD-MVS | | | 76.08 59 | 74.97 65 | 79.44 37 | 84.27 88 | 53.33 116 | 91.13 20 | 85.88 91 | 65.33 67 | 72.37 67 | 89.34 102 | 32.52 247 | 92.76 42 | 77.90 42 | 75.96 122 | 92.22 35 |
|
MVS_111021_HR | | | 76.39 55 | 75.38 59 | 79.42 38 | 85.33 70 | 56.47 36 | 88.15 56 | 84.97 117 | 65.15 72 | 66.06 119 | 89.88 92 | 43.79 117 | 92.16 57 | 75.03 60 | 80.03 93 | 89.64 97 |
|
SteuartSystems-ACMMP | | | 77.08 42 | 76.33 48 | 79.34 39 | 80.98 168 | 55.31 58 | 89.76 35 | 86.91 71 | 62.94 101 | 71.65 75 | 91.56 51 | 42.33 136 | 92.56 47 | 77.14 46 | 83.69 59 | 90.15 87 |
Skip Steuart: Steuart Systems R&D Blog. |
test12 | | | | | 79.24 40 | 86.89 44 | 56.08 44 | | 85.16 112 | | 72.27 69 | | 47.15 75 | 91.10 80 | | 85.93 38 | 90.54 78 |
|
APDe-MVS | | | 78.44 22 | 78.20 23 | 79.19 41 | 88.56 26 | 54.55 85 | 89.76 35 | 87.77 59 | 55.91 232 | 78.56 23 | 92.49 28 | 48.20 63 | 92.65 46 | 79.49 27 | 83.04 61 | 90.39 80 |
|
lupinMVS | | | 78.38 24 | 78.11 26 | 79.19 41 | 83.02 120 | 55.24 60 | 91.57 15 | 84.82 121 | 69.12 24 | 76.67 29 | 92.02 40 | 44.82 106 | 90.23 105 | 80.83 23 | 80.09 90 | 92.08 37 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 30 | 77.63 30 | 79.13 43 | 88.52 27 | 55.12 65 | 89.95 29 | 85.98 90 | 68.31 28 | 71.33 80 | 92.75 24 | 45.52 96 | 90.37 98 | 71.15 86 | 85.14 48 | 91.91 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 78.17 28 | 77.86 29 | 79.12 44 | 84.30 85 | 54.22 89 | 87.71 61 | 84.57 129 | 67.70 39 | 77.70 25 | 92.11 38 | 50.90 46 | 89.95 110 | 78.18 39 | 77.54 109 | 93.20 14 |
|
PHI-MVS | | | 77.49 36 | 77.00 37 | 78.95 45 | 85.33 70 | 50.69 175 | 88.57 52 | 88.59 44 | 58.14 190 | 73.60 49 | 93.31 15 | 43.14 129 | 93.79 29 | 73.81 69 | 88.53 13 | 92.37 29 |
|
test_yl | | | 75.85 63 | 74.83 68 | 78.91 46 | 88.08 34 | 51.94 149 | 91.30 17 | 89.28 20 | 57.91 196 | 71.19 82 | 89.20 105 | 42.03 143 | 92.77 40 | 69.41 93 | 75.07 133 | 92.01 40 |
|
DCV-MVSNet | | | 75.85 63 | 74.83 68 | 78.91 46 | 88.08 34 | 51.94 149 | 91.30 17 | 89.28 20 | 57.91 196 | 71.19 82 | 89.20 105 | 42.03 143 | 92.77 40 | 69.41 93 | 75.07 133 | 92.01 40 |
|
Regformer-1 | | | 77.80 33 | 77.44 33 | 78.88 48 | 87.78 36 | 52.44 138 | 87.60 63 | 90.08 14 | 68.86 25 | 72.49 66 | 91.79 44 | 47.69 71 | 94.90 20 | 73.57 72 | 77.05 111 | 89.31 103 |
|
casdiffmvs | | | 77.36 38 | 76.85 39 | 78.88 48 | 80.40 184 | 54.66 83 | 87.06 81 | 85.88 91 | 72.11 8 | 71.57 77 | 88.63 118 | 50.89 48 | 90.35 99 | 76.00 50 | 79.11 99 | 91.63 47 |
|
ETH3D cwj APD-0.16 | | | 78.36 25 | 78.19 24 | 78.86 50 | 84.21 89 | 52.68 132 | 86.70 90 | 89.02 27 | 59.13 173 | 75.37 35 | 92.49 28 | 49.06 60 | 93.20 33 | 80.67 24 | 87.08 24 | 90.71 73 |
|
PAPM | | | 76.76 50 | 76.07 52 | 78.81 51 | 80.20 185 | 59.11 7 | 86.86 88 | 86.23 85 | 68.60 26 | 70.18 89 | 88.84 112 | 51.57 39 | 87.16 189 | 65.48 122 | 86.68 31 | 90.15 87 |
|
MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 52 | 82.99 122 | 52.71 131 | 85.04 133 | 88.63 40 | 66.08 56 | 86.77 3 | 92.75 24 | 72.05 1 | 91.46 71 | 83.35 7 | 93.53 1 | 92.23 33 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepC-MVS | | 67.15 4 | 76.90 47 | 76.27 49 | 78.80 52 | 80.70 177 | 55.02 69 | 86.39 95 | 86.71 76 | 66.96 45 | 67.91 101 | 89.97 91 | 48.03 65 | 91.41 72 | 75.60 54 | 84.14 56 | 89.96 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_part1 | | | 73.80 90 | 72.13 98 | 78.79 54 | 85.92 51 | 58.26 10 | 90.60 24 | 86.85 73 | 63.98 82 | 63.95 149 | 81.54 211 | 52.08 37 | 92.24 55 | 64.93 131 | 59.32 246 | 85.87 177 |
|
ETH3D-3000-0.1 | | | 78.73 20 | 78.71 20 | 78.78 55 | 85.58 60 | 52.40 139 | 88.42 54 | 89.03 26 | 60.01 147 | 76.06 32 | 92.80 23 | 48.34 61 | 92.88 37 | 81.66 16 | 86.48 34 | 91.04 65 |
|
ACMMP_NAP | | | 76.43 54 | 75.66 54 | 78.73 56 | 81.92 144 | 54.67 82 | 84.06 159 | 85.35 102 | 61.10 131 | 72.99 57 | 91.50 52 | 40.25 161 | 91.00 82 | 76.84 47 | 86.98 25 | 90.51 79 |
|
baseline | | | 76.86 48 | 76.24 50 | 78.71 57 | 80.47 183 | 54.20 92 | 83.90 164 | 84.88 120 | 71.38 11 | 71.51 78 | 89.15 107 | 50.51 49 | 90.55 95 | 75.71 52 | 78.65 102 | 91.39 56 |
|
jason | | | 77.01 43 | 76.45 46 | 78.69 58 | 79.69 190 | 54.74 77 | 90.56 25 | 83.99 144 | 68.26 29 | 74.10 46 | 90.91 63 | 42.14 140 | 89.99 109 | 79.30 29 | 79.12 98 | 91.36 58 |
jason: jason. |
ET-MVSNet_ETH3D | | | 75.23 72 | 74.08 75 | 78.67 59 | 84.52 82 | 55.59 50 | 88.92 46 | 89.21 22 | 68.06 34 | 53.13 273 | 90.22 82 | 49.71 56 | 87.62 180 | 72.12 82 | 70.82 168 | 92.82 21 |
|
CostFormer | | | 73.89 89 | 72.30 94 | 78.66 60 | 82.36 140 | 56.58 32 | 75.56 277 | 85.30 105 | 66.06 57 | 70.50 88 | 76.88 257 | 57.02 14 | 89.06 126 | 68.27 102 | 68.74 182 | 90.33 82 |
|
MVS_Test | | | 75.85 63 | 74.93 66 | 78.62 61 | 84.08 91 | 55.20 63 | 83.99 162 | 85.17 111 | 68.07 33 | 73.38 54 | 82.76 191 | 50.44 50 | 89.00 132 | 65.90 118 | 80.61 83 | 91.64 46 |
|
CDPH-MVS | | | 76.05 60 | 75.19 61 | 78.62 61 | 86.51 47 | 54.98 71 | 87.32 73 | 84.59 128 | 58.62 184 | 70.75 85 | 90.85 65 | 43.10 131 | 90.63 93 | 70.50 89 | 84.51 55 | 90.24 83 |
|
TSAR-MVS + GP. | | | 77.82 32 | 77.59 31 | 78.49 63 | 85.25 72 | 50.27 192 | 90.02 27 | 90.57 11 | 56.58 226 | 74.26 45 | 91.60 50 | 54.26 24 | 92.16 57 | 75.87 51 | 79.91 94 | 93.05 17 |
|
ETV-MVS | | | 77.17 40 | 76.74 41 | 78.48 64 | 81.80 146 | 54.55 85 | 86.13 101 | 85.33 103 | 68.20 30 | 73.10 56 | 90.52 75 | 45.23 99 | 90.66 91 | 79.37 28 | 80.95 78 | 90.22 84 |
|
TSAR-MVS + MP. | | | 78.31 27 | 78.26 22 | 78.48 64 | 81.33 164 | 56.31 41 | 81.59 223 | 86.41 81 | 69.61 22 | 81.72 14 | 88.16 124 | 55.09 21 | 88.04 168 | 74.12 67 | 86.31 35 | 91.09 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 76.91 45 | 76.40 47 | 78.45 66 | 85.68 55 | 55.42 54 | 87.59 66 | 84.00 142 | 57.84 199 | 72.99 57 | 90.98 59 | 44.99 101 | 88.58 145 | 78.19 37 | 85.32 46 | 91.34 60 |
|
PAPR | | | 75.20 73 | 74.13 74 | 78.41 67 | 88.31 31 | 55.10 67 | 84.31 151 | 85.66 94 | 63.76 87 | 67.55 103 | 90.73 67 | 43.48 125 | 89.40 122 | 66.36 114 | 77.03 113 | 90.73 72 |
|
testtj | | | 76.96 44 | 76.48 45 | 78.40 68 | 89.89 12 | 53.67 100 | 88.72 49 | 86.15 87 | 54.56 250 | 74.86 38 | 92.31 33 | 44.38 111 | 91.97 62 | 75.19 59 | 82.24 67 | 89.54 99 |
|
alignmvs | | | 78.08 29 | 77.98 27 | 78.39 69 | 83.53 101 | 53.22 119 | 89.77 34 | 85.45 97 | 66.11 54 | 76.59 31 | 91.99 42 | 54.07 27 | 89.05 128 | 77.34 45 | 77.00 114 | 92.89 20 |
|
test_prior3 | | | 77.59 35 | 77.33 35 | 78.39 69 | 86.35 48 | 54.91 74 | 89.04 44 | 85.45 97 | 61.88 117 | 73.55 50 | 91.46 54 | 48.01 66 | 89.70 116 | 74.73 61 | 85.46 43 | 90.55 75 |
|
test_prior | | | | | 78.39 69 | 86.35 48 | 54.91 74 | | 85.45 97 | | | | | 89.70 116 | | | 90.55 75 |
|
SF-MVS | | | 77.64 34 | 77.42 34 | 78.32 72 | 83.75 99 | 52.47 137 | 86.63 92 | 87.80 56 | 58.78 181 | 74.63 40 | 92.38 30 | 47.75 69 | 91.35 73 | 78.18 39 | 86.85 27 | 91.15 62 |
|
ZNCC-MVS | | | 75.82 66 | 75.02 64 | 78.23 73 | 83.88 97 | 53.80 96 | 86.91 87 | 86.05 89 | 59.71 152 | 67.85 102 | 90.55 72 | 42.23 138 | 91.02 81 | 72.66 80 | 85.29 47 | 89.87 93 |
|
VNet | | | 77.99 31 | 77.92 28 | 78.19 74 | 87.43 39 | 50.12 195 | 90.93 22 | 91.41 4 | 67.48 41 | 75.12 36 | 90.15 86 | 46.77 79 | 91.00 82 | 73.52 73 | 78.46 104 | 93.44 9 |
|
Regformer-2 | | | 77.15 41 | 76.82 40 | 78.14 75 | 87.78 36 | 51.84 153 | 87.60 63 | 89.12 23 | 67.23 42 | 71.93 72 | 91.79 44 | 46.03 88 | 93.53 31 | 72.85 78 | 77.05 111 | 89.05 112 |
|
EIA-MVS | | | 75.92 62 | 75.18 62 | 78.13 76 | 85.14 73 | 51.60 159 | 87.17 79 | 85.32 104 | 64.69 75 | 68.56 95 | 90.53 73 | 45.79 93 | 91.58 67 | 67.21 107 | 82.18 70 | 91.20 61 |
|
HFP-MVS | | | 74.37 81 | 73.13 84 | 78.10 77 | 84.30 85 | 53.68 98 | 85.58 115 | 84.36 132 | 56.82 219 | 65.78 122 | 90.56 70 | 40.70 158 | 90.90 85 | 69.18 96 | 80.88 79 | 89.71 94 |
|
#test# | | | 74.86 79 | 73.78 79 | 78.10 77 | 84.30 85 | 53.68 98 | 86.95 84 | 84.36 132 | 59.00 177 | 65.78 122 | 90.56 70 | 40.70 158 | 90.90 85 | 71.48 84 | 80.88 79 | 89.71 94 |
|
agg_prior1 | | | 76.68 52 | 76.24 50 | 78.00 79 | 85.64 58 | 54.92 72 | 87.55 69 | 83.61 151 | 57.99 195 | 72.53 64 | 91.05 56 | 45.36 97 | 88.10 165 | 77.76 43 | 84.68 53 | 90.99 68 |
|
tpm2 | | | 70.82 132 | 68.44 147 | 77.98 80 | 80.78 175 | 56.11 43 | 74.21 287 | 81.28 190 | 60.24 145 | 68.04 100 | 75.27 275 | 52.26 35 | 88.50 150 | 55.82 203 | 68.03 186 | 89.33 102 |
|
thisisatest0515 | | | 73.64 94 | 72.20 96 | 77.97 81 | 81.63 150 | 53.01 126 | 86.69 91 | 88.81 35 | 62.53 106 | 64.06 146 | 85.65 157 | 52.15 36 | 92.50 48 | 58.43 176 | 69.84 175 | 88.39 128 |
|
EPNet | | | 78.36 25 | 78.49 21 | 77.97 81 | 85.49 63 | 52.04 147 | 89.36 39 | 84.07 141 | 73.22 4 | 77.03 28 | 91.72 47 | 49.32 59 | 90.17 107 | 73.46 74 | 82.77 62 | 91.69 45 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 69.37 1 | 80.65 11 | 81.56 9 | 77.94 83 | 85.46 66 | 49.56 206 | 90.99 21 | 86.66 78 | 70.58 14 | 80.07 20 | 95.30 1 | 56.18 17 | 90.97 84 | 82.57 11 | 86.22 37 | 93.28 12 |
|
GST-MVS | | | 74.87 78 | 73.90 77 | 77.77 84 | 83.30 109 | 53.45 109 | 85.75 110 | 85.29 106 | 59.22 166 | 66.50 114 | 89.85 93 | 40.94 154 | 90.76 88 | 70.94 87 | 83.35 60 | 89.10 111 |
|
GG-mvs-BLEND | | | | | 77.77 84 | 86.68 46 | 50.61 176 | 68.67 319 | 88.45 47 | | 68.73 94 | 87.45 136 | 59.15 10 | 90.67 90 | 54.83 206 | 87.67 17 | 92.03 39 |
|
Regformer-3 | | | 76.02 61 | 75.47 57 | 77.70 86 | 85.49 63 | 51.47 163 | 85.12 129 | 90.19 13 | 68.52 27 | 69.36 90 | 90.66 68 | 46.45 83 | 94.81 21 | 70.25 91 | 73.16 145 | 86.81 160 |
|
CS-MVS-test | | | 76.81 49 | 76.52 44 | 77.66 87 | 83.47 102 | 52.38 141 | 89.87 33 | 85.55 95 | 65.32 68 | 71.75 74 | 90.53 73 | 47.76 68 | 92.73 43 | 72.24 81 | 82.22 69 | 87.87 137 |
|
cascas | | | 69.01 164 | 66.13 192 | 77.66 87 | 79.36 192 | 55.41 56 | 86.99 82 | 83.75 147 | 56.69 223 | 58.92 207 | 81.35 212 | 24.31 305 | 92.10 60 | 53.23 215 | 70.61 169 | 85.46 185 |
|
3Dnovator+ | | 62.71 7 | 72.29 113 | 70.50 119 | 77.65 89 | 83.40 107 | 51.29 169 | 87.32 73 | 86.40 82 | 59.01 176 | 58.49 217 | 88.32 120 | 32.40 248 | 91.27 75 | 57.04 195 | 82.15 71 | 90.38 81 |
|
MVSFormer | | | 73.53 95 | 72.19 97 | 77.57 90 | 83.02 120 | 55.24 60 | 81.63 220 | 81.44 185 | 50.28 277 | 76.67 29 | 90.91 63 | 44.82 106 | 86.11 217 | 60.83 156 | 80.09 90 | 91.36 58 |
|
APD-MVS |  | | 76.15 58 | 75.68 53 | 77.54 91 | 88.52 27 | 53.44 110 | 87.26 78 | 85.03 116 | 53.79 254 | 74.91 37 | 91.68 49 | 43.80 116 | 90.31 101 | 74.36 64 | 81.82 73 | 88.87 116 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Fast-Effi-MVS+ | | | 72.73 104 | 71.15 115 | 77.48 92 | 82.75 131 | 54.76 76 | 86.77 89 | 80.64 197 | 63.05 99 | 65.93 120 | 84.01 172 | 44.42 110 | 89.03 129 | 56.45 200 | 76.36 121 | 88.64 122 |
|
EPMVS | | | 68.45 175 | 65.44 209 | 77.47 93 | 84.91 77 | 56.17 42 | 71.89 307 | 81.91 178 | 61.72 120 | 60.85 180 | 72.49 297 | 36.21 213 | 87.06 192 | 47.32 255 | 71.62 161 | 89.17 109 |
|
PatchmatchNet |  | | 67.07 207 | 63.63 227 | 77.40 94 | 83.10 114 | 58.03 11 | 72.11 305 | 77.77 254 | 58.85 180 | 59.37 197 | 70.83 310 | 37.84 182 | 84.93 247 | 42.96 277 | 69.83 176 | 89.26 104 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
RRT_test8_iter05 | | | 72.74 103 | 71.20 113 | 77.36 95 | 87.25 42 | 53.51 104 | 88.68 51 | 89.53 18 | 65.20 71 | 61.32 176 | 81.27 213 | 45.89 90 | 92.48 50 | 65.99 116 | 55.65 287 | 86.10 171 |
|
region2R | | | 73.75 92 | 72.55 89 | 77.33 96 | 83.90 96 | 52.98 127 | 85.54 118 | 84.09 140 | 56.83 218 | 65.10 130 | 90.45 76 | 37.34 196 | 90.24 104 | 68.89 98 | 80.83 82 | 88.77 120 |
|
WTY-MVS | | | 77.47 37 | 77.52 32 | 77.30 97 | 88.33 30 | 46.25 269 | 88.46 53 | 90.32 12 | 71.40 10 | 72.32 68 | 91.72 47 | 53.44 28 | 92.37 52 | 66.28 115 | 75.42 128 | 93.28 12 |
|
OpenMVS |  | 61.00 11 | 69.99 147 | 67.55 166 | 77.30 97 | 78.37 218 | 54.07 94 | 84.36 149 | 85.76 93 | 57.22 212 | 56.71 245 | 87.67 133 | 30.79 264 | 92.83 38 | 43.04 275 | 84.06 58 | 85.01 191 |
|
zzz-MVS | | | 74.15 85 | 73.11 85 | 77.27 99 | 81.54 156 | 53.57 102 | 84.02 161 | 81.31 187 | 59.41 159 | 68.39 97 | 90.96 61 | 36.07 215 | 89.01 130 | 73.80 70 | 82.45 65 | 89.23 105 |
|
MTAPA | | | 72.73 104 | 71.22 112 | 77.27 99 | 81.54 156 | 53.57 102 | 67.06 322 | 81.31 187 | 59.41 159 | 68.39 97 | 90.96 61 | 36.07 215 | 89.01 130 | 73.80 70 | 82.45 65 | 89.23 105 |
|
PAPM_NR | | | 71.80 119 | 69.98 129 | 77.26 101 | 81.54 156 | 53.34 115 | 78.60 263 | 85.25 109 | 53.46 256 | 60.53 185 | 88.66 114 | 45.69 95 | 89.24 124 | 56.49 197 | 79.62 97 | 89.19 108 |
|
ACMMPR | | | 73.76 91 | 72.61 87 | 77.24 102 | 83.92 95 | 52.96 128 | 85.58 115 | 84.29 134 | 56.82 219 | 65.12 129 | 90.45 76 | 37.24 198 | 90.18 106 | 69.18 96 | 80.84 81 | 88.58 124 |
|
hse-mvs3 | | | 73.95 87 | 72.89 86 | 77.15 103 | 80.17 186 | 50.37 185 | 84.68 143 | 83.33 154 | 68.08 31 | 71.97 70 | 88.65 117 | 42.50 134 | 91.15 78 | 78.82 31 | 57.78 267 | 89.91 92 |
|
MP-MVS-pluss | | | 75.54 68 | 75.03 63 | 77.04 104 | 81.37 163 | 52.65 134 | 84.34 150 | 84.46 130 | 61.16 129 | 69.14 91 | 91.76 46 | 39.98 167 | 88.99 134 | 78.19 37 | 84.89 51 | 89.48 101 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HyFIR lowres test | | | 69.94 149 | 67.58 163 | 77.04 104 | 77.11 238 | 57.29 22 | 81.49 228 | 79.11 229 | 58.27 188 | 58.86 209 | 80.41 220 | 42.33 136 | 86.96 195 | 61.91 148 | 68.68 183 | 86.87 154 |
|
DP-MVS Recon | | | 71.99 117 | 70.31 122 | 77.01 106 | 90.65 9 | 53.44 110 | 89.37 38 | 82.97 165 | 56.33 229 | 63.56 157 | 89.47 99 | 34.02 232 | 92.15 59 | 54.05 212 | 72.41 155 | 85.43 186 |
|
Anonymous20240529 | | | 69.71 152 | 67.28 171 | 77.00 107 | 83.78 98 | 50.36 186 | 88.87 48 | 85.10 115 | 47.22 294 | 64.03 147 | 83.37 183 | 27.93 280 | 92.10 60 | 57.78 189 | 67.44 190 | 88.53 126 |
|
baseline2 | | | 75.15 74 | 74.54 72 | 76.98 108 | 81.67 149 | 51.74 156 | 83.84 165 | 91.94 1 | 69.97 19 | 58.98 204 | 86.02 152 | 59.73 7 | 91.73 65 | 68.37 100 | 70.40 172 | 87.48 144 |
|
MP-MVS |  | | 74.99 77 | 74.33 73 | 76.95 109 | 82.89 126 | 53.05 125 | 85.63 114 | 83.50 153 | 57.86 198 | 67.25 106 | 90.24 81 | 43.38 126 | 88.85 140 | 76.03 49 | 82.23 68 | 88.96 114 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mvs_anonymous | | | 72.29 113 | 70.74 116 | 76.94 110 | 82.85 127 | 54.72 79 | 78.43 264 | 81.54 183 | 63.77 86 | 61.69 174 | 79.32 227 | 51.11 43 | 85.31 236 | 62.15 147 | 75.79 124 | 90.79 71 |
|
XVS | | | 72.92 101 | 71.62 105 | 76.81 111 | 83.41 104 | 52.48 135 | 84.88 140 | 83.20 160 | 58.03 191 | 63.91 150 | 89.63 97 | 35.50 221 | 89.78 113 | 65.50 120 | 80.50 85 | 88.16 129 |
|
X-MVStestdata | | | 65.85 224 | 62.20 233 | 76.81 111 | 83.41 104 | 52.48 135 | 84.88 140 | 83.20 160 | 58.03 191 | 63.91 150 | 4.82 369 | 35.50 221 | 89.78 113 | 65.50 120 | 80.50 85 | 88.16 129 |
|
PGM-MVS | | | 72.60 106 | 71.20 113 | 76.80 113 | 82.95 123 | 52.82 130 | 83.07 188 | 82.14 172 | 56.51 227 | 63.18 159 | 89.81 94 | 35.68 220 | 89.76 115 | 67.30 106 | 80.19 89 | 87.83 138 |
|
Anonymous202405211 | | | 70.11 141 | 67.88 156 | 76.79 114 | 87.20 43 | 47.24 256 | 89.49 37 | 77.38 262 | 54.88 246 | 66.14 117 | 86.84 143 | 20.93 324 | 91.54 68 | 56.45 200 | 71.62 161 | 91.59 48 |
|
tpm cat1 | | | 66.28 218 | 62.78 229 | 76.77 115 | 81.40 162 | 57.14 24 | 70.03 314 | 77.19 264 | 53.00 260 | 58.76 212 | 70.73 313 | 46.17 84 | 86.73 202 | 43.27 274 | 64.46 209 | 86.44 166 |
|
PVSNet_Blended | | | 76.53 53 | 76.54 42 | 76.50 116 | 85.91 52 | 51.83 154 | 88.89 47 | 84.24 138 | 67.82 36 | 69.09 92 | 89.33 104 | 46.70 80 | 88.13 163 | 75.43 55 | 81.48 77 | 89.55 98 |
|
Regformer-4 | | | 75.06 76 | 74.59 71 | 76.47 117 | 85.49 63 | 50.33 188 | 85.12 129 | 88.61 42 | 66.42 48 | 68.48 96 | 90.66 68 | 44.15 112 | 92.68 44 | 69.24 95 | 73.16 145 | 86.39 168 |
|
diffmvs | | | 75.11 75 | 74.65 70 | 76.46 118 | 78.52 214 | 53.35 114 | 83.28 184 | 79.94 207 | 70.51 15 | 71.64 76 | 88.72 113 | 46.02 89 | 86.08 223 | 77.52 44 | 75.75 126 | 89.96 90 |
|
PVSNet_Blended_VisFu | | | 73.40 97 | 72.44 91 | 76.30 119 | 81.32 165 | 54.70 80 | 85.81 106 | 78.82 233 | 63.70 88 | 64.53 139 | 85.38 161 | 47.11 76 | 87.38 186 | 67.75 104 | 77.55 108 | 86.81 160 |
|
BH-RMVSNet | | | 70.08 143 | 68.01 153 | 76.27 120 | 84.21 89 | 51.22 171 | 87.29 76 | 79.33 226 | 58.96 179 | 63.63 156 | 86.77 144 | 33.29 241 | 90.30 103 | 44.63 269 | 73.96 139 | 87.30 149 |
|
CLD-MVS | | | 75.60 67 | 75.39 58 | 76.24 121 | 80.69 178 | 52.40 139 | 90.69 23 | 86.20 86 | 74.40 3 | 65.01 133 | 88.93 109 | 42.05 142 | 90.58 94 | 76.57 48 | 73.96 139 | 85.73 179 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GeoE | | | 69.96 148 | 67.88 156 | 76.22 122 | 81.11 167 | 51.71 157 | 84.15 155 | 76.74 274 | 59.83 150 | 60.91 179 | 84.38 168 | 41.56 150 | 88.10 165 | 51.67 230 | 70.57 170 | 88.84 117 |
|
1314 | | | 71.11 127 | 69.41 135 | 76.22 122 | 79.32 194 | 50.49 180 | 80.23 246 | 85.14 114 | 59.44 158 | 58.93 206 | 88.89 111 | 33.83 237 | 89.60 120 | 61.49 151 | 77.42 110 | 88.57 125 |
|
thisisatest0530 | | | 70.47 139 | 68.56 145 | 76.20 124 | 79.78 189 | 51.52 162 | 83.49 176 | 88.58 45 | 57.62 205 | 58.60 213 | 82.79 190 | 51.03 45 | 91.48 70 | 52.84 220 | 62.36 231 | 85.59 184 |
|
HY-MVS | | 67.03 5 | 73.90 88 | 73.14 82 | 76.18 125 | 84.70 80 | 47.36 253 | 75.56 277 | 86.36 83 | 66.27 51 | 70.66 86 | 83.91 174 | 51.05 44 | 89.31 123 | 67.10 108 | 72.61 154 | 91.88 43 |
|
gg-mvs-nofinetune | | | 67.43 196 | 64.53 220 | 76.13 126 | 85.95 50 | 47.79 248 | 64.38 326 | 88.28 48 | 39.34 332 | 66.62 110 | 41.27 353 | 58.69 13 | 89.00 132 | 49.64 241 | 86.62 32 | 91.59 48 |
|
原ACMM1 | | | | | 76.13 126 | 84.89 78 | 54.59 84 | | 85.26 108 | 51.98 267 | 66.70 108 | 87.07 141 | 40.15 164 | 89.70 116 | 51.23 232 | 85.06 50 | 84.10 201 |
|
GA-MVS | | | 69.04 162 | 66.70 181 | 76.06 128 | 75.11 260 | 52.36 142 | 83.12 186 | 80.23 203 | 63.32 95 | 60.65 183 | 79.22 229 | 30.98 263 | 88.37 153 | 61.25 152 | 66.41 196 | 87.46 145 |
|
mPP-MVS | | | 71.79 120 | 70.38 121 | 76.04 129 | 82.65 135 | 52.06 146 | 84.45 147 | 81.78 180 | 55.59 236 | 62.05 172 | 89.68 96 | 33.48 239 | 88.28 160 | 65.45 125 | 78.24 106 | 87.77 140 |
|
MVSTER | | | 73.25 98 | 72.33 92 | 76.01 130 | 85.54 62 | 53.76 97 | 83.52 170 | 87.16 67 | 67.06 44 | 63.88 152 | 81.66 209 | 52.77 31 | 90.44 96 | 64.66 132 | 64.69 207 | 83.84 212 |
|
CP-MVS | | | 72.59 108 | 71.46 108 | 76.00 131 | 82.93 125 | 52.32 144 | 86.93 86 | 82.48 170 | 55.15 241 | 63.65 155 | 90.44 79 | 35.03 225 | 88.53 149 | 68.69 99 | 77.83 107 | 87.15 150 |
|
HPM-MVS |  | | 72.60 106 | 71.50 107 | 75.89 132 | 82.02 142 | 51.42 165 | 80.70 240 | 83.05 162 | 56.12 231 | 64.03 147 | 89.53 98 | 37.55 190 | 88.37 153 | 70.48 90 | 80.04 92 | 87.88 136 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
114514_t | | | 69.87 150 | 67.88 156 | 75.85 133 | 88.38 29 | 52.35 143 | 86.94 85 | 83.68 148 | 53.70 255 | 55.68 255 | 85.60 158 | 30.07 269 | 91.20 76 | 55.84 202 | 71.02 166 | 83.99 205 |
|
PMMVS | | | 72.98 100 | 72.05 102 | 75.78 134 | 83.57 100 | 48.60 227 | 84.08 157 | 82.85 167 | 61.62 121 | 68.24 99 | 90.33 80 | 28.35 275 | 87.78 176 | 72.71 79 | 76.69 116 | 90.95 69 |
|
DROMVSNet | | | 75.30 70 | 75.20 60 | 75.62 135 | 80.98 168 | 49.00 217 | 87.43 70 | 84.68 126 | 63.49 94 | 70.97 84 | 90.15 86 | 42.86 133 | 91.14 79 | 74.33 65 | 81.90 72 | 86.71 162 |
|
MS-PatchMatch | | | 72.34 111 | 71.26 111 | 75.61 136 | 82.38 139 | 55.55 51 | 88.00 57 | 89.95 17 | 65.38 65 | 56.51 249 | 80.74 219 | 32.28 250 | 92.89 36 | 57.95 186 | 88.10 15 | 78.39 285 |
|
xiu_mvs_v1_base_debu | | | 71.60 121 | 70.29 123 | 75.55 137 | 77.26 233 | 53.15 120 | 85.34 119 | 79.37 220 | 55.83 233 | 72.54 61 | 90.19 83 | 22.38 315 | 86.66 204 | 73.28 75 | 76.39 118 | 86.85 156 |
|
xiu_mvs_v1_base | | | 71.60 121 | 70.29 123 | 75.55 137 | 77.26 233 | 53.15 120 | 85.34 119 | 79.37 220 | 55.83 233 | 72.54 61 | 90.19 83 | 22.38 315 | 86.66 204 | 73.28 75 | 76.39 118 | 86.85 156 |
|
xiu_mvs_v1_base_debi | | | 71.60 121 | 70.29 123 | 75.55 137 | 77.26 233 | 53.15 120 | 85.34 119 | 79.37 220 | 55.83 233 | 72.54 61 | 90.19 83 | 22.38 315 | 86.66 204 | 73.28 75 | 76.39 118 | 86.85 156 |
|
CANet_DTU | | | 73.71 93 | 73.14 82 | 75.40 140 | 82.61 136 | 50.05 196 | 84.67 145 | 79.36 223 | 69.72 21 | 75.39 34 | 90.03 90 | 29.41 271 | 85.93 229 | 67.99 103 | 79.11 99 | 90.22 84 |
|
ACMMP |  | | 70.81 133 | 69.29 139 | 75.39 141 | 81.52 160 | 51.92 151 | 83.43 177 | 83.03 163 | 56.67 224 | 58.80 211 | 88.91 110 | 31.92 255 | 88.58 145 | 65.89 119 | 73.39 144 | 85.67 180 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SCA | | | 63.84 234 | 60.01 251 | 75.32 142 | 78.58 212 | 57.92 12 | 61.61 334 | 77.53 258 | 56.71 222 | 57.75 229 | 70.77 311 | 31.97 253 | 79.91 291 | 48.80 245 | 56.36 274 | 88.13 132 |
|
ab-mvs | | | 70.65 135 | 69.11 141 | 75.29 143 | 80.87 174 | 46.23 270 | 73.48 291 | 85.24 110 | 59.99 148 | 66.65 109 | 80.94 216 | 43.13 130 | 88.69 141 | 63.58 137 | 68.07 185 | 90.95 69 |
|
TR-MVS | | | 69.71 152 | 67.85 159 | 75.27 144 | 82.94 124 | 48.48 233 | 87.40 72 | 80.86 194 | 57.15 214 | 64.61 138 | 87.08 140 | 32.67 246 | 89.64 119 | 46.38 261 | 71.55 163 | 87.68 142 |
|
v2v482 | | | 69.55 158 | 67.64 162 | 75.26 145 | 72.32 292 | 53.83 95 | 84.93 139 | 81.94 175 | 65.37 66 | 60.80 181 | 79.25 228 | 41.62 148 | 88.98 135 | 63.03 140 | 59.51 243 | 82.98 228 |
|
PCF-MVS | | 61.03 10 | 70.10 142 | 68.40 148 | 75.22 146 | 77.15 237 | 51.99 148 | 79.30 259 | 82.12 173 | 56.47 228 | 61.88 173 | 86.48 150 | 43.98 113 | 87.24 188 | 55.37 204 | 72.79 152 | 86.43 167 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 72.34 111 | 71.44 109 | 75.03 147 | 79.02 200 | 51.56 160 | 88.00 57 | 83.68 148 | 65.45 61 | 64.48 140 | 85.13 162 | 37.35 194 | 88.62 143 | 66.70 110 | 73.12 147 | 84.91 193 |
|
AdaColmap |  | | 67.86 186 | 65.48 206 | 75.00 148 | 88.15 33 | 54.99 70 | 86.10 102 | 76.63 277 | 49.30 283 | 57.80 226 | 86.65 147 | 29.39 272 | 88.94 138 | 45.10 267 | 70.21 173 | 81.06 257 |
|
EI-MVSNet-Vis-set | | | 73.19 99 | 72.60 88 | 74.99 149 | 82.56 137 | 49.80 202 | 82.55 200 | 89.00 28 | 66.17 53 | 65.89 121 | 88.98 108 | 43.83 115 | 92.29 53 | 65.38 129 | 69.01 180 | 82.87 230 |
|
tpmrst | | | 71.04 128 | 69.77 131 | 74.86 150 | 83.19 113 | 55.86 49 | 75.64 276 | 78.73 237 | 67.88 35 | 64.99 134 | 73.73 283 | 49.96 54 | 79.56 294 | 65.92 117 | 67.85 189 | 89.14 110 |
|
1121 | | | 68.79 170 | 66.77 178 | 74.82 151 | 83.08 117 | 53.46 106 | 80.23 246 | 71.53 319 | 45.47 309 | 66.31 116 | 87.19 138 | 34.02 232 | 85.13 243 | 52.78 222 | 80.36 87 | 85.87 177 |
|
v1144 | | | 68.81 168 | 66.82 176 | 74.80 152 | 72.34 291 | 53.46 106 | 84.68 143 | 81.77 181 | 64.25 79 | 60.28 186 | 77.91 239 | 40.23 162 | 88.95 136 | 60.37 165 | 59.52 242 | 81.97 236 |
|
v1192 | | | 67.96 185 | 65.74 201 | 74.63 153 | 71.79 294 | 53.43 112 | 84.06 159 | 80.99 193 | 63.19 98 | 59.56 194 | 77.46 246 | 37.50 193 | 88.65 142 | 58.20 181 | 58.93 249 | 81.79 239 |
|
BH-w/o | | | 70.02 145 | 68.51 146 | 74.56 154 | 82.77 129 | 50.39 184 | 86.60 93 | 78.14 248 | 59.77 151 | 59.65 191 | 85.57 159 | 39.27 172 | 87.30 187 | 49.86 239 | 74.94 135 | 85.99 172 |
|
SR-MVS | | | 70.92 131 | 69.73 132 | 74.50 155 | 83.38 108 | 50.48 181 | 84.27 152 | 79.35 224 | 48.96 286 | 66.57 113 | 90.45 76 | 33.65 238 | 87.11 190 | 66.42 112 | 74.56 136 | 85.91 175 |
|
tttt0517 | | | 68.33 178 | 66.29 187 | 74.46 156 | 78.08 220 | 49.06 214 | 80.88 237 | 89.08 25 | 54.40 252 | 54.75 259 | 80.77 218 | 51.31 42 | 90.33 100 | 49.35 243 | 58.01 261 | 83.99 205 |
|
TESTMET0.1,1 | | | 72.86 102 | 72.33 92 | 74.46 156 | 81.98 143 | 50.77 173 | 85.13 126 | 85.47 96 | 66.09 55 | 67.30 104 | 83.69 179 | 37.27 197 | 83.57 260 | 65.06 130 | 78.97 101 | 89.05 112 |
|
nrg030 | | | 72.27 115 | 71.56 106 | 74.42 158 | 75.93 252 | 50.60 177 | 86.97 83 | 83.21 159 | 62.75 103 | 67.15 107 | 84.38 168 | 50.07 52 | 86.66 204 | 71.19 85 | 62.37 230 | 85.99 172 |
|
RPMNet | | | 59.29 263 | 54.25 286 | 74.42 158 | 73.97 275 | 56.57 33 | 60.52 337 | 76.98 268 | 35.72 344 | 57.49 235 | 58.87 346 | 37.73 186 | 85.26 239 | 27.01 338 | 59.93 240 | 81.42 247 |
|
Vis-MVSNet |  | | 70.61 136 | 69.34 137 | 74.42 158 | 80.95 173 | 48.49 232 | 86.03 104 | 77.51 259 | 58.74 182 | 65.55 126 | 87.78 131 | 34.37 229 | 85.95 228 | 52.53 227 | 80.61 83 | 88.80 118 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 71.14 125 | 70.07 128 | 74.33 161 | 79.18 197 | 46.52 263 | 83.81 166 | 86.49 79 | 56.32 230 | 57.95 223 | 84.90 166 | 54.23 25 | 89.14 125 | 58.14 182 | 69.65 177 | 87.33 147 |
|
EI-MVSNet-UG-set | | | 72.37 110 | 71.73 104 | 74.29 162 | 81.60 152 | 49.29 212 | 81.85 215 | 88.64 39 | 65.29 70 | 65.05 131 | 88.29 121 | 43.18 127 | 91.83 63 | 63.74 136 | 67.97 187 | 81.75 240 |
|
OPM-MVS | | | 70.75 134 | 69.58 133 | 74.26 163 | 75.55 257 | 51.34 167 | 86.05 103 | 83.29 158 | 61.94 116 | 62.95 162 | 85.77 156 | 34.15 231 | 88.44 151 | 65.44 126 | 71.07 165 | 82.99 227 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
v144192 | | | 67.86 186 | 65.76 200 | 74.16 164 | 71.68 296 | 53.09 123 | 84.14 156 | 80.83 195 | 62.85 102 | 59.21 201 | 77.28 249 | 39.30 171 | 88.00 169 | 58.67 175 | 57.88 265 | 81.40 249 |
|
HQP_MVS | | | 70.96 130 | 69.91 130 | 74.12 165 | 77.95 222 | 49.57 204 | 85.76 108 | 82.59 168 | 63.60 91 | 62.15 169 | 83.28 185 | 36.04 217 | 88.30 158 | 65.46 123 | 72.34 156 | 84.49 196 |
|
v1921920 | | | 67.45 195 | 65.23 213 | 74.10 166 | 71.51 299 | 52.90 129 | 83.75 168 | 80.44 200 | 62.48 108 | 59.12 203 | 77.13 250 | 36.98 201 | 87.90 170 | 57.53 191 | 58.14 259 | 81.49 244 |
|
v8 | | | 67.25 201 | 64.99 216 | 74.04 167 | 72.89 285 | 53.31 117 | 82.37 205 | 80.11 205 | 61.54 124 | 54.29 264 | 76.02 271 | 42.89 132 | 88.41 152 | 58.43 176 | 56.36 274 | 80.39 266 |
|
VPNet | | | 72.07 116 | 71.42 110 | 74.04 167 | 78.64 211 | 47.17 257 | 89.91 32 | 87.97 52 | 72.56 7 | 64.66 136 | 85.04 164 | 41.83 147 | 88.33 156 | 61.17 153 | 60.97 236 | 86.62 163 |
|
v1240 | | | 66.99 208 | 64.68 218 | 73.93 169 | 71.38 302 | 52.66 133 | 83.39 181 | 79.98 206 | 61.97 115 | 58.44 220 | 77.11 251 | 35.25 223 | 87.81 172 | 56.46 199 | 58.15 257 | 81.33 252 |
|
BH-untuned | | | 68.28 179 | 66.40 184 | 73.91 170 | 81.62 151 | 50.01 197 | 85.56 117 | 77.39 261 | 57.63 204 | 57.47 237 | 83.69 179 | 36.36 212 | 87.08 191 | 44.81 268 | 73.08 150 | 84.65 195 |
|
v148 | | | 68.24 181 | 66.35 185 | 73.88 171 | 71.76 295 | 51.47 163 | 84.23 153 | 81.90 179 | 63.69 89 | 58.94 205 | 76.44 262 | 43.72 120 | 87.78 176 | 60.63 158 | 55.86 284 | 82.39 233 |
|
V42 | | | 67.66 190 | 65.60 205 | 73.86 172 | 70.69 307 | 53.63 101 | 81.50 226 | 78.61 240 | 63.85 85 | 59.49 196 | 77.49 245 | 37.98 180 | 87.65 179 | 62.33 143 | 58.43 254 | 80.29 267 |
|
Fast-Effi-MVS+-dtu | | | 66.53 215 | 64.10 224 | 73.84 173 | 72.41 290 | 52.30 145 | 84.73 142 | 75.66 284 | 59.51 156 | 56.34 250 | 79.11 231 | 28.11 278 | 85.85 230 | 57.74 190 | 63.29 219 | 83.35 217 |
|
v10 | | | 66.61 214 | 64.20 223 | 73.83 174 | 72.59 288 | 53.37 113 | 81.88 214 | 79.91 209 | 61.11 130 | 54.09 266 | 75.60 273 | 40.06 166 | 88.26 161 | 56.47 198 | 56.10 280 | 79.86 273 |
|
APD-MVS_3200maxsize | | | 69.62 157 | 68.23 151 | 73.80 175 | 81.58 154 | 48.22 239 | 81.91 213 | 79.50 218 | 48.21 288 | 64.24 145 | 89.75 95 | 31.91 256 | 87.55 182 | 63.08 139 | 73.85 141 | 85.64 182 |
|
AUN-MVS | | | 68.20 182 | 66.35 185 | 73.76 176 | 76.37 242 | 47.45 251 | 79.52 256 | 79.52 217 | 60.98 134 | 62.34 167 | 86.02 152 | 36.59 211 | 86.94 196 | 62.32 144 | 53.47 302 | 86.89 153 |
|
PVSNet_BlendedMVS | | | 73.42 96 | 73.30 81 | 73.76 176 | 85.91 52 | 51.83 154 | 86.18 100 | 84.24 138 | 65.40 64 | 69.09 92 | 80.86 217 | 46.70 80 | 88.13 163 | 75.43 55 | 65.92 202 | 81.33 252 |
|
hse-mvs2 | | | 71.44 124 | 70.68 117 | 73.73 178 | 76.34 243 | 47.44 252 | 79.45 257 | 79.47 219 | 68.08 31 | 71.97 70 | 86.01 154 | 42.50 134 | 86.93 197 | 78.82 31 | 53.46 303 | 86.83 159 |
|
baseline1 | | | 72.51 109 | 72.12 100 | 73.69 179 | 85.05 74 | 44.46 286 | 83.51 174 | 86.13 88 | 71.61 9 | 64.64 137 | 87.97 128 | 55.00 22 | 89.48 121 | 59.07 171 | 56.05 281 | 87.13 151 |
|
abl_6 | | | 68.03 183 | 66.15 191 | 73.66 180 | 78.54 213 | 48.48 233 | 79.77 251 | 78.04 249 | 47.39 293 | 63.70 154 | 88.25 122 | 28.21 276 | 89.06 126 | 60.17 168 | 71.25 164 | 83.45 216 |
|
CDS-MVSNet | | | 70.48 138 | 69.43 134 | 73.64 181 | 77.56 228 | 48.83 224 | 83.51 174 | 77.45 260 | 63.27 96 | 62.33 168 | 85.54 160 | 43.85 114 | 83.29 264 | 57.38 194 | 74.00 138 | 88.79 119 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PVSNet | | 62.49 8 | 69.27 160 | 67.81 160 | 73.64 181 | 84.41 84 | 51.85 152 | 84.63 146 | 77.80 253 | 66.42 48 | 59.80 189 | 84.95 165 | 22.14 319 | 80.44 283 | 55.03 205 | 75.11 132 | 88.62 123 |
|
PS-MVSNAJss | | | 68.78 171 | 67.17 173 | 73.62 183 | 73.01 282 | 48.33 238 | 84.95 138 | 84.81 122 | 59.30 165 | 58.91 208 | 79.84 223 | 37.77 183 | 88.86 139 | 62.83 141 | 63.12 224 | 83.67 214 |
|
TAMVS | | | 69.51 159 | 68.16 152 | 73.56 184 | 76.30 246 | 48.71 226 | 82.57 198 | 77.17 265 | 62.10 112 | 61.32 176 | 84.23 170 | 41.90 145 | 83.46 262 | 54.80 208 | 73.09 149 | 88.50 127 |
|
UGNet | | | 68.71 172 | 67.11 174 | 73.50 185 | 80.55 182 | 47.61 249 | 84.08 157 | 78.51 242 | 59.45 157 | 65.68 125 | 82.73 194 | 23.78 307 | 85.08 245 | 52.80 221 | 76.40 117 | 87.80 139 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mvs-test1 | | | 69.04 162 | 67.57 165 | 73.44 186 | 75.17 258 | 51.68 158 | 86.57 94 | 74.48 293 | 62.15 110 | 62.07 171 | 85.79 155 | 30.59 265 | 87.48 183 | 65.40 127 | 65.94 201 | 81.18 256 |
|
test1172 | | | 69.64 156 | 68.38 149 | 73.41 187 | 82.77 129 | 48.84 223 | 82.79 195 | 78.34 246 | 47.02 297 | 65.27 128 | 90.07 88 | 31.17 261 | 86.09 221 | 64.51 133 | 73.49 143 | 85.31 187 |
|
Anonymous20231211 | | | 66.08 222 | 63.67 226 | 73.31 188 | 83.07 118 | 48.75 225 | 86.01 105 | 84.67 127 | 45.27 310 | 56.54 247 | 76.67 260 | 28.06 279 | 88.95 136 | 52.78 222 | 59.95 239 | 82.23 234 |
|
æ–°å‡ ä½•1 | | | | | 73.30 189 | 83.10 114 | 53.48 105 | | 71.43 320 | 45.55 307 | 66.14 117 | 87.17 139 | 33.88 236 | 80.54 281 | 48.50 248 | 80.33 88 | 85.88 176 |
|
FMVSNet3 | | | 68.84 166 | 67.40 169 | 73.19 190 | 85.05 74 | 48.53 230 | 85.71 113 | 85.36 101 | 60.90 136 | 57.58 232 | 79.15 230 | 42.16 139 | 86.77 200 | 47.25 256 | 63.40 215 | 84.27 200 |
|
thres200 | | | 68.71 172 | 67.27 172 | 73.02 191 | 84.73 79 | 46.76 260 | 85.03 134 | 87.73 60 | 62.34 109 | 59.87 187 | 83.45 182 | 43.15 128 | 88.32 157 | 31.25 322 | 67.91 188 | 83.98 207 |
|
PVSNet_0 | | 57.04 13 | 61.19 255 | 57.24 266 | 73.02 191 | 77.45 230 | 50.31 190 | 79.43 258 | 77.36 263 | 63.96 84 | 47.51 305 | 72.45 299 | 25.03 302 | 83.78 257 | 52.76 225 | 19.22 361 | 84.96 192 |
|
dp | | | 64.41 230 | 61.58 237 | 72.90 193 | 82.40 138 | 54.09 93 | 72.53 297 | 76.59 278 | 60.39 143 | 55.68 255 | 70.39 314 | 35.18 224 | 76.90 316 | 39.34 285 | 61.71 233 | 87.73 141 |
|
FMVSNet2 | | | 67.57 192 | 65.79 199 | 72.90 193 | 82.71 132 | 47.97 247 | 85.15 125 | 84.93 118 | 58.55 185 | 56.71 245 | 78.26 237 | 36.72 208 | 86.67 203 | 46.15 263 | 62.94 226 | 84.07 202 |
|
XXY-MVS | | | 70.18 140 | 69.28 140 | 72.89 195 | 77.64 226 | 42.88 301 | 85.06 132 | 87.50 65 | 62.58 105 | 62.66 166 | 82.34 201 | 43.64 122 | 89.83 112 | 58.42 178 | 63.70 214 | 85.96 174 |
|
CR-MVSNet | | | 62.47 248 | 59.04 258 | 72.77 196 | 73.97 275 | 56.57 33 | 60.52 337 | 71.72 315 | 60.04 146 | 57.49 235 | 65.86 328 | 38.94 173 | 80.31 284 | 42.86 278 | 59.93 240 | 81.42 247 |
|
EI-MVSNet | | | 69.70 154 | 68.70 144 | 72.68 197 | 75.00 263 | 48.90 221 | 79.54 254 | 87.16 67 | 61.05 132 | 63.88 152 | 83.74 177 | 45.87 91 | 90.44 96 | 57.42 193 | 64.68 208 | 78.70 278 |
|
HPM-MVS_fast | | | 67.86 186 | 66.28 188 | 72.61 198 | 80.67 179 | 48.34 237 | 81.18 232 | 75.95 283 | 50.81 276 | 59.55 195 | 88.05 127 | 27.86 281 | 85.98 225 | 58.83 173 | 73.58 142 | 83.51 215 |
|
MVP-Stereo | | | 70.97 129 | 70.44 120 | 72.59 199 | 76.03 251 | 51.36 166 | 85.02 135 | 86.99 70 | 60.31 144 | 56.53 248 | 78.92 232 | 40.11 165 | 90.00 108 | 60.00 169 | 90.01 6 | 76.41 307 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS_111021_LR | | | 69.07 161 | 67.91 154 | 72.54 200 | 77.27 232 | 49.56 206 | 79.77 251 | 73.96 299 | 59.33 164 | 60.73 182 | 87.82 129 | 30.19 268 | 81.53 272 | 69.94 92 | 72.19 158 | 86.53 164 |
|
IS-MVSNet | | | 68.80 169 | 67.55 166 | 72.54 200 | 78.50 215 | 43.43 296 | 81.03 234 | 79.35 224 | 59.12 174 | 57.27 240 | 86.71 145 | 46.05 87 | 87.70 178 | 44.32 270 | 75.60 127 | 86.49 165 |
|
VPA-MVSNet | | | 71.12 126 | 70.66 118 | 72.49 202 | 78.75 206 | 44.43 288 | 87.64 62 | 90.02 15 | 63.97 83 | 65.02 132 | 81.58 210 | 42.14 140 | 87.42 185 | 63.42 138 | 63.38 218 | 85.63 183 |
|
SR-MVS-dyc-post | | | 68.27 180 | 66.87 175 | 72.48 203 | 80.96 170 | 48.14 242 | 81.54 224 | 76.98 268 | 46.42 302 | 62.75 164 | 89.42 100 | 31.17 261 | 86.09 221 | 60.52 162 | 72.06 159 | 83.19 223 |
|
bset_n11_16_dypcd | | | 65.51 226 | 63.21 228 | 72.41 204 | 68.84 316 | 50.15 193 | 81.25 230 | 72.40 311 | 59.17 171 | 59.20 202 | 78.66 234 | 25.69 298 | 85.27 238 | 66.80 109 | 56.88 272 | 81.80 238 |
|
miper_enhance_ethall | | | 69.77 151 | 68.90 143 | 72.38 205 | 78.93 203 | 49.91 199 | 83.29 183 | 78.85 231 | 64.90 73 | 59.37 197 | 79.46 225 | 52.77 31 | 85.16 242 | 63.78 135 | 58.72 250 | 82.08 235 |
|
cl-mvsnet2 | | | 68.85 165 | 67.69 161 | 72.35 206 | 78.07 221 | 49.98 198 | 82.45 203 | 78.48 243 | 62.50 107 | 58.46 218 | 77.95 238 | 49.99 53 | 85.17 241 | 62.55 142 | 58.72 250 | 81.90 237 |
|
MSDG | | | 59.44 262 | 55.14 282 | 72.32 207 | 74.69 266 | 50.71 174 | 74.39 286 | 73.58 302 | 44.44 316 | 43.40 319 | 77.52 244 | 19.45 328 | 90.87 87 | 31.31 321 | 57.49 269 | 75.38 313 |
|
v7n | | | 62.50 247 | 59.27 256 | 72.20 208 | 67.25 328 | 49.83 201 | 77.87 266 | 80.12 204 | 52.50 264 | 48.80 296 | 73.07 291 | 32.10 251 | 87.90 170 | 46.83 259 | 54.92 290 | 78.86 276 |
|
1112_ss | | | 70.05 144 | 69.37 136 | 72.10 209 | 80.77 176 | 42.78 302 | 85.12 129 | 76.75 273 | 59.69 153 | 61.19 178 | 92.12 36 | 47.48 72 | 83.84 255 | 53.04 218 | 68.21 184 | 89.66 96 |
|
miper_ehance_all_eth | | | 68.70 174 | 67.58 163 | 72.08 210 | 76.91 239 | 49.48 209 | 82.47 202 | 78.45 244 | 62.68 104 | 58.28 222 | 77.88 240 | 50.90 46 | 85.01 246 | 61.91 148 | 58.72 250 | 81.75 240 |
|
eth_miper_zixun_eth | | | 66.98 209 | 65.28 212 | 72.06 211 | 75.61 256 | 50.40 183 | 81.00 235 | 76.97 271 | 62.00 113 | 56.99 242 | 76.97 253 | 44.84 105 | 85.58 231 | 58.75 174 | 54.42 294 | 80.21 268 |
|
LPG-MVS_test | | | 66.44 217 | 64.58 219 | 72.02 212 | 74.42 269 | 48.60 227 | 83.07 188 | 80.64 197 | 54.69 248 | 53.75 269 | 83.83 175 | 25.73 296 | 86.98 193 | 60.33 166 | 64.71 205 | 80.48 264 |
|
LGP-MVS_train | | | | | 72.02 212 | 74.42 269 | 48.60 227 | | 80.64 197 | 54.69 248 | 53.75 269 | 83.83 175 | 25.73 296 | 86.98 193 | 60.33 166 | 64.71 205 | 80.48 264 |
|
ACMP | | 61.11 9 | 66.24 220 | 64.33 221 | 72.00 214 | 74.89 265 | 49.12 213 | 83.18 185 | 79.83 210 | 55.41 239 | 52.29 278 | 82.68 195 | 25.83 294 | 86.10 219 | 60.89 155 | 63.94 212 | 80.78 260 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
GBi-Net | | | 67.09 205 | 65.47 207 | 71.96 215 | 82.71 132 | 46.36 265 | 83.52 170 | 83.31 155 | 58.55 185 | 57.58 232 | 76.23 266 | 36.72 208 | 86.20 213 | 47.25 256 | 63.40 215 | 83.32 218 |
|
test1 | | | 67.09 205 | 65.47 207 | 71.96 215 | 82.71 132 | 46.36 265 | 83.52 170 | 83.31 155 | 58.55 185 | 57.58 232 | 76.23 266 | 36.72 208 | 86.20 213 | 47.25 256 | 63.40 215 | 83.32 218 |
|
FMVSNet1 | | | 64.57 229 | 62.11 234 | 71.96 215 | 77.32 231 | 46.36 265 | 83.52 170 | 83.31 155 | 52.43 265 | 54.42 262 | 76.23 266 | 27.80 282 | 86.20 213 | 42.59 279 | 61.34 235 | 83.32 218 |
|
cl-mvsnet____ | | | 67.43 196 | 65.93 196 | 71.95 218 | 76.33 244 | 48.02 245 | 82.58 197 | 79.12 228 | 61.30 128 | 56.72 244 | 76.92 255 | 46.12 85 | 86.44 211 | 57.98 184 | 56.31 276 | 81.38 251 |
|
cl-mvsnet1 | | | 67.43 196 | 65.93 196 | 71.94 219 | 76.33 244 | 48.01 246 | 82.57 198 | 79.11 229 | 61.31 127 | 56.73 243 | 76.92 255 | 46.09 86 | 86.43 212 | 57.98 184 | 56.31 276 | 81.39 250 |
|
Patchmatch-RL test | | | 58.72 273 | 54.32 285 | 71.92 220 | 63.91 341 | 44.25 290 | 61.73 333 | 55.19 349 | 57.38 210 | 49.31 294 | 54.24 350 | 37.60 189 | 80.89 277 | 62.19 146 | 47.28 321 | 90.63 74 |
|
cl_fuxian | | | 67.97 184 | 66.66 182 | 71.91 221 | 76.20 248 | 49.31 211 | 82.13 209 | 78.00 251 | 61.99 114 | 57.64 231 | 76.94 254 | 49.41 57 | 84.93 247 | 60.62 159 | 57.01 271 | 81.49 244 |
|
tfpn200view9 | | | 67.57 192 | 66.13 192 | 71.89 222 | 84.05 92 | 45.07 281 | 83.40 179 | 87.71 62 | 60.79 137 | 57.79 227 | 82.76 191 | 43.53 123 | 87.80 173 | 28.80 328 | 66.36 197 | 82.78 231 |
|
MIMVSNet | | | 63.12 240 | 60.29 249 | 71.61 223 | 75.92 253 | 46.65 261 | 65.15 323 | 81.94 175 | 59.14 172 | 54.65 260 | 69.47 317 | 25.74 295 | 80.63 280 | 41.03 282 | 69.56 179 | 87.55 143 |
|
test-LLR | | | 69.65 155 | 69.01 142 | 71.60 224 | 78.67 208 | 48.17 240 | 85.13 126 | 79.72 212 | 59.18 169 | 63.13 160 | 82.58 196 | 36.91 203 | 80.24 285 | 60.56 160 | 75.17 130 | 86.39 168 |
|
test-mter | | | 68.36 176 | 67.29 170 | 71.60 224 | 78.67 208 | 48.17 240 | 85.13 126 | 79.72 212 | 53.38 257 | 63.13 160 | 82.58 196 | 27.23 286 | 80.24 285 | 60.56 160 | 75.17 130 | 86.39 168 |
|
sss | | | 70.49 137 | 70.13 127 | 71.58 226 | 81.59 153 | 39.02 323 | 80.78 239 | 84.71 125 | 59.34 162 | 66.61 111 | 88.09 125 | 37.17 199 | 85.52 232 | 61.82 150 | 71.02 166 | 90.20 86 |
|
tpmvs | | | 62.45 249 | 59.42 254 | 71.53 227 | 83.93 94 | 54.32 87 | 70.03 314 | 77.61 257 | 51.91 268 | 53.48 272 | 68.29 321 | 37.91 181 | 86.66 204 | 33.36 312 | 58.27 255 | 73.62 325 |
|
ACMM | | 58.35 12 | 64.35 231 | 62.01 235 | 71.38 228 | 74.21 272 | 48.51 231 | 82.25 207 | 79.66 214 | 47.61 291 | 54.54 261 | 80.11 221 | 25.26 299 | 86.00 224 | 51.26 231 | 63.16 222 | 79.64 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH | | 53.70 16 | 59.78 260 | 55.94 277 | 71.28 229 | 76.59 241 | 48.35 236 | 80.15 249 | 76.11 281 | 49.74 281 | 41.91 325 | 73.45 290 | 16.50 342 | 90.31 101 | 31.42 320 | 57.63 268 | 75.17 315 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ppachtmachnet_test | | | 58.56 275 | 54.34 284 | 71.24 230 | 71.42 300 | 54.74 77 | 81.84 216 | 72.27 312 | 49.02 285 | 45.86 313 | 68.99 320 | 26.27 291 | 83.30 263 | 30.12 324 | 43.23 334 | 75.69 310 |
|
thres100view900 | | | 66.87 211 | 65.42 210 | 71.24 230 | 83.29 110 | 43.15 298 | 81.67 219 | 87.78 57 | 59.04 175 | 55.92 253 | 82.18 203 | 43.73 118 | 87.80 173 | 28.80 328 | 66.36 197 | 82.78 231 |
|
thres400 | | | 67.40 199 | 66.13 192 | 71.19 232 | 84.05 92 | 45.07 281 | 83.40 179 | 87.71 62 | 60.79 137 | 57.79 227 | 82.76 191 | 43.53 123 | 87.80 173 | 28.80 328 | 66.36 197 | 80.71 262 |
|
our_test_3 | | | 59.11 267 | 55.08 283 | 71.18 233 | 71.42 300 | 53.29 118 | 81.96 211 | 74.52 292 | 48.32 287 | 42.08 323 | 69.28 319 | 28.14 277 | 82.15 268 | 34.35 309 | 45.68 329 | 78.11 290 |
|
CPTT-MVS | | | 67.15 204 | 65.84 198 | 71.07 234 | 80.96 170 | 50.32 189 | 81.94 212 | 74.10 296 | 46.18 305 | 57.91 224 | 87.64 134 | 29.57 270 | 81.31 274 | 64.10 134 | 70.18 174 | 81.56 243 |
|
NR-MVSNet | | | 67.25 201 | 65.99 195 | 71.04 235 | 73.27 280 | 43.91 292 | 85.32 122 | 84.75 124 | 66.05 58 | 53.65 271 | 82.11 204 | 45.05 100 | 85.97 227 | 47.55 253 | 56.18 279 | 83.24 221 |
|
tpm | | | 68.36 176 | 67.48 168 | 70.97 236 | 79.93 188 | 51.34 167 | 76.58 273 | 78.75 236 | 67.73 37 | 63.54 158 | 74.86 277 | 48.33 62 | 72.36 337 | 53.93 213 | 63.71 213 | 89.21 107 |
|
TranMVSNet+NR-MVSNet | | | 66.94 210 | 65.61 204 | 70.93 237 | 73.45 277 | 43.38 297 | 83.02 190 | 84.25 136 | 65.31 69 | 58.33 221 | 81.90 207 | 39.92 168 | 85.52 232 | 49.43 242 | 54.89 291 | 83.89 211 |
|
EG-PatchMatch MVS | | | 62.40 250 | 59.59 252 | 70.81 238 | 73.29 279 | 49.05 215 | 85.81 106 | 84.78 123 | 51.85 270 | 44.19 314 | 73.48 289 | 15.52 345 | 89.85 111 | 40.16 283 | 67.24 191 | 73.54 326 |
|
test_djsdf | | | 63.84 234 | 61.56 238 | 70.70 239 | 68.78 317 | 44.69 285 | 81.63 220 | 81.44 185 | 50.28 277 | 52.27 279 | 76.26 265 | 26.72 289 | 86.11 217 | 60.83 156 | 55.84 285 | 81.29 255 |
|
UA-Net | | | 67.32 200 | 66.23 189 | 70.59 240 | 78.85 204 | 41.23 315 | 73.60 289 | 75.45 287 | 61.54 124 | 66.61 111 | 84.53 167 | 38.73 176 | 86.57 209 | 42.48 280 | 74.24 137 | 83.98 207 |
|
thres600view7 | | | 66.46 216 | 65.12 214 | 70.47 241 | 83.41 104 | 43.80 294 | 82.15 208 | 87.78 57 | 59.37 161 | 56.02 252 | 82.21 202 | 43.73 118 | 86.90 198 | 26.51 339 | 64.94 204 | 80.71 262 |
|
UniMVSNet (Re) | | | 67.71 189 | 66.80 177 | 70.45 242 | 74.44 268 | 42.93 300 | 82.42 204 | 84.90 119 | 63.69 89 | 59.63 192 | 80.99 215 | 47.18 74 | 85.23 240 | 51.17 233 | 56.75 273 | 83.19 223 |
|
IterMVS-LS | | | 66.63 213 | 65.36 211 | 70.42 243 | 75.10 261 | 48.90 221 | 81.45 229 | 76.69 276 | 61.05 132 | 55.71 254 | 77.10 252 | 45.86 92 | 83.65 259 | 57.44 192 | 57.88 265 | 78.70 278 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 68.82 167 | 68.29 150 | 70.40 244 | 75.71 255 | 42.59 304 | 84.23 153 | 86.78 74 | 66.31 50 | 58.51 214 | 82.45 198 | 51.57 39 | 84.64 251 | 53.11 216 | 55.96 282 | 83.96 209 |
|
jajsoiax | | | 63.21 239 | 60.84 244 | 70.32 245 | 68.33 322 | 44.45 287 | 81.23 231 | 81.05 192 | 53.37 258 | 50.96 288 | 77.81 242 | 17.49 337 | 85.49 234 | 59.31 170 | 58.05 260 | 81.02 258 |
|
mvs_tets | | | 62.96 242 | 60.55 246 | 70.19 246 | 68.22 325 | 44.24 291 | 80.90 236 | 80.74 196 | 52.99 261 | 50.82 290 | 77.56 243 | 16.74 340 | 85.44 235 | 59.04 172 | 57.94 262 | 80.89 259 |
|
pmmvs4 | | | 63.34 238 | 61.07 243 | 70.16 247 | 70.14 309 | 50.53 179 | 79.97 250 | 71.41 321 | 55.08 242 | 54.12 265 | 78.58 235 | 32.79 245 | 82.09 270 | 50.33 236 | 57.22 270 | 77.86 291 |
|
DU-MVS | | | 66.84 212 | 65.74 201 | 70.16 247 | 73.27 280 | 42.59 304 | 81.50 226 | 82.92 166 | 63.53 93 | 58.51 214 | 82.11 204 | 40.75 155 | 84.64 251 | 53.11 216 | 55.96 282 | 83.24 221 |
|
Effi-MVS+-dtu | | | 66.24 220 | 64.96 217 | 70.08 249 | 75.17 258 | 49.64 203 | 82.01 210 | 74.48 293 | 62.15 110 | 57.83 225 | 76.08 270 | 30.59 265 | 83.79 256 | 65.40 127 | 60.93 237 | 76.81 300 |
|
IterMVS | | | 63.77 236 | 61.67 236 | 70.08 249 | 72.68 287 | 51.24 170 | 80.44 242 | 75.51 285 | 60.51 142 | 51.41 283 | 73.70 286 | 32.08 252 | 78.91 296 | 54.30 211 | 54.35 295 | 80.08 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS | | | 67.58 191 | 66.76 179 | 70.04 251 | 75.92 253 | 45.06 284 | 86.23 99 | 85.28 107 | 64.31 78 | 58.50 216 | 81.00 214 | 44.80 108 | 82.00 271 | 49.21 244 | 55.57 288 | 83.06 226 |
|
Test_1112_low_res | | | 67.18 203 | 66.23 189 | 70.02 252 | 78.75 206 | 41.02 316 | 83.43 177 | 73.69 301 | 57.29 211 | 58.45 219 | 82.39 200 | 45.30 98 | 80.88 278 | 50.50 235 | 66.26 200 | 88.16 129 |
|
D2MVS | | | 63.49 237 | 61.39 240 | 69.77 253 | 69.29 314 | 48.93 220 | 78.89 261 | 77.71 256 | 60.64 141 | 49.70 292 | 72.10 305 | 27.08 287 | 83.48 261 | 54.48 210 | 62.65 227 | 76.90 299 |
|
RRT_MVS | | | 65.43 228 | 64.01 225 | 69.68 254 | 81.54 156 | 50.15 193 | 82.31 206 | 76.78 272 | 55.25 240 | 60.64 184 | 82.00 206 | 25.18 300 | 79.00 295 | 60.96 154 | 51.45 309 | 79.89 272 |
|
XVG-OURS | | | 61.88 252 | 59.34 255 | 69.49 255 | 65.37 333 | 46.27 268 | 64.80 325 | 73.49 304 | 47.04 296 | 57.41 239 | 82.85 189 | 25.15 301 | 78.18 300 | 53.00 219 | 64.98 203 | 84.01 204 |
|
XVG-OURS-SEG-HR | | | 62.02 251 | 59.54 253 | 69.46 256 | 65.30 334 | 45.88 272 | 65.06 324 | 73.57 303 | 46.45 301 | 57.42 238 | 83.35 184 | 26.95 288 | 78.09 302 | 53.77 214 | 64.03 210 | 84.42 198 |
|
FIs | | | 70.00 146 | 70.24 126 | 69.30 257 | 77.93 224 | 38.55 325 | 83.99 162 | 87.72 61 | 66.86 46 | 57.66 230 | 84.17 171 | 52.28 34 | 85.31 236 | 52.72 226 | 68.80 181 | 84.02 203 |
|
Baseline_NR-MVSNet | | | 65.49 227 | 64.27 222 | 69.13 258 | 74.37 271 | 41.65 311 | 83.39 181 | 78.85 231 | 59.56 155 | 59.62 193 | 76.88 257 | 40.75 155 | 87.44 184 | 49.99 237 | 55.05 289 | 78.28 287 |
|
TransMVSNet (Re) | | | 62.82 243 | 60.76 245 | 69.02 259 | 73.98 274 | 41.61 312 | 86.36 96 | 79.30 227 | 56.90 216 | 52.53 276 | 76.44 262 | 41.85 146 | 87.60 181 | 38.83 286 | 40.61 339 | 77.86 291 |
|
anonymousdsp | | | 60.46 259 | 57.65 263 | 68.88 260 | 63.63 342 | 45.09 280 | 72.93 295 | 78.63 239 | 46.52 300 | 51.12 285 | 72.80 295 | 21.46 322 | 83.07 265 | 57.79 188 | 53.97 296 | 78.47 282 |
|
ADS-MVSNet | | | 56.17 289 | 51.95 298 | 68.84 261 | 80.60 180 | 53.07 124 | 55.03 344 | 70.02 327 | 44.72 313 | 51.00 286 | 61.19 339 | 22.83 311 | 78.88 297 | 28.54 331 | 53.63 298 | 74.57 319 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 265 | 56.00 276 | 68.83 262 | 71.13 304 | 44.30 289 | 83.64 169 | 75.02 290 | 46.42 302 | 46.48 310 | 73.03 292 | 18.69 332 | 88.14 162 | 27.74 335 | 61.80 232 | 74.05 322 |
|
Patchmatch-test | | | 53.33 303 | 48.17 310 | 68.81 263 | 73.31 278 | 42.38 308 | 42.98 353 | 58.23 346 | 32.53 349 | 38.79 336 | 70.77 311 | 39.66 169 | 73.51 331 | 25.18 342 | 52.06 307 | 90.55 75 |
|
pm-mvs1 | | | 64.12 232 | 62.56 230 | 68.78 264 | 71.68 296 | 38.87 324 | 82.89 192 | 81.57 182 | 55.54 238 | 53.89 268 | 77.82 241 | 37.73 186 | 86.74 201 | 48.46 249 | 53.49 301 | 80.72 261 |
|
miper_lstm_enhance | | | 63.91 233 | 62.30 232 | 68.75 265 | 75.06 262 | 46.78 259 | 69.02 318 | 81.14 191 | 59.68 154 | 52.76 275 | 72.39 300 | 40.71 157 | 77.99 306 | 56.81 196 | 53.09 304 | 81.48 246 |
|
OMC-MVS | | | 65.97 223 | 65.06 215 | 68.71 266 | 72.97 283 | 42.58 306 | 78.61 262 | 75.35 288 | 54.72 247 | 59.31 199 | 86.25 151 | 33.30 240 | 77.88 308 | 57.99 183 | 67.05 192 | 85.66 181 |
|
DP-MVS | | | 59.24 264 | 56.12 275 | 68.63 267 | 88.24 32 | 50.35 187 | 82.51 201 | 64.43 338 | 41.10 330 | 46.70 308 | 78.77 233 | 24.75 304 | 88.57 148 | 22.26 347 | 56.29 278 | 66.96 345 |
|
tfpnnormal | | | 61.47 254 | 59.09 257 | 68.62 268 | 76.29 247 | 41.69 310 | 81.14 233 | 85.16 112 | 54.48 251 | 51.32 284 | 73.63 287 | 32.32 249 | 86.89 199 | 21.78 349 | 55.71 286 | 77.29 297 |
|
UniMVSNet_ETH3D | | | 62.51 246 | 60.49 247 | 68.57 269 | 68.30 323 | 40.88 318 | 73.89 288 | 79.93 208 | 51.81 271 | 54.77 258 | 79.61 224 | 24.80 303 | 81.10 275 | 49.93 238 | 61.35 234 | 83.73 213 |
|
CL-MVSNet_2432*1600 | | | 62.98 241 | 61.14 242 | 68.50 270 | 65.86 331 | 42.96 299 | 84.37 148 | 82.98 164 | 60.98 134 | 53.95 267 | 72.70 296 | 40.43 160 | 83.71 258 | 41.10 281 | 47.93 317 | 78.83 277 |
|
ACMH+ | | 54.58 15 | 58.55 276 | 55.24 279 | 68.50 270 | 74.68 267 | 45.80 275 | 80.27 244 | 70.21 326 | 47.15 295 | 42.77 322 | 75.48 274 | 16.73 341 | 85.98 225 | 35.10 307 | 54.78 292 | 73.72 324 |
|
lessismore_v0 | | | | | 67.98 272 | 64.76 338 | 41.25 314 | | 45.75 358 | | 36.03 342 | 65.63 330 | 19.29 330 | 84.11 253 | 35.67 299 | 21.24 360 | 78.59 281 |
|
K. test v3 | | | 54.04 299 | 49.42 307 | 67.92 273 | 68.55 319 | 42.57 307 | 75.51 279 | 63.07 341 | 52.07 266 | 39.21 333 | 64.59 332 | 19.34 329 | 82.21 267 | 37.11 292 | 25.31 357 | 78.97 275 |
|
pmmvs5 | | | 62.80 244 | 61.18 241 | 67.66 274 | 69.53 313 | 42.37 309 | 82.65 196 | 75.19 289 | 54.30 253 | 52.03 281 | 78.51 236 | 31.64 258 | 80.67 279 | 48.60 247 | 58.15 257 | 79.95 271 |
|
PatchT | | | 56.60 285 | 52.97 292 | 67.48 275 | 72.94 284 | 46.16 271 | 57.30 342 | 73.78 300 | 38.77 334 | 54.37 263 | 57.26 349 | 37.52 191 | 78.06 303 | 32.02 317 | 52.79 305 | 78.23 289 |
|
Patchmtry | | | 56.56 286 | 52.95 293 | 67.42 276 | 72.53 289 | 50.59 178 | 59.05 339 | 71.72 315 | 37.86 338 | 46.92 306 | 65.86 328 | 38.94 173 | 80.06 288 | 36.94 295 | 46.72 326 | 71.60 336 |
|
SixPastTwentyTwo | | | 54.37 296 | 50.10 303 | 67.21 277 | 70.70 306 | 41.46 313 | 74.73 284 | 64.69 337 | 47.56 292 | 39.12 334 | 69.49 316 | 18.49 334 | 84.69 250 | 31.87 318 | 34.20 350 | 75.48 312 |
|
pmmvs6 | | | 59.64 261 | 57.15 267 | 67.09 278 | 66.01 329 | 36.86 332 | 80.50 241 | 78.64 238 | 45.05 312 | 49.05 295 | 73.94 282 | 27.28 285 | 86.10 219 | 43.96 272 | 49.94 312 | 78.31 286 |
|
testdata | | | | | 67.08 279 | 77.59 227 | 45.46 278 | | 69.20 329 | 44.47 315 | 71.50 79 | 88.34 119 | 31.21 260 | 70.76 342 | 52.20 228 | 75.88 123 | 85.03 190 |
|
CNLPA | | | 60.59 258 | 58.44 261 | 67.05 280 | 79.21 196 | 47.26 255 | 79.75 253 | 64.34 339 | 42.46 328 | 51.90 282 | 83.94 173 | 27.79 283 | 75.41 321 | 37.12 291 | 59.49 244 | 78.47 282 |
|
KD-MVS_2432*1600 | | | 59.04 269 | 56.44 272 | 66.86 281 | 79.07 198 | 45.87 273 | 72.13 303 | 80.42 201 | 55.03 243 | 48.15 298 | 71.01 308 | 36.73 206 | 78.05 304 | 35.21 303 | 30.18 355 | 76.67 301 |
|
miper_refine_blended | | | 59.04 269 | 56.44 272 | 66.86 281 | 79.07 198 | 45.87 273 | 72.13 303 | 80.42 201 | 55.03 243 | 48.15 298 | 71.01 308 | 36.73 206 | 78.05 304 | 35.21 303 | 30.18 355 | 76.67 301 |
|
TAPA-MVS | | 56.12 14 | 61.82 253 | 60.18 250 | 66.71 283 | 78.48 216 | 37.97 328 | 75.19 282 | 76.41 280 | 46.82 298 | 57.04 241 | 86.52 149 | 27.67 284 | 77.03 314 | 26.50 340 | 67.02 193 | 85.14 189 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_0402 | | | 56.45 287 | 53.03 291 | 66.69 284 | 76.78 240 | 50.31 190 | 81.76 217 | 69.61 328 | 42.79 326 | 43.88 315 | 72.13 303 | 22.82 313 | 86.46 210 | 16.57 358 | 50.94 310 | 63.31 351 |
|
PLC |  | 52.38 18 | 60.89 256 | 58.97 259 | 66.68 285 | 81.77 147 | 45.70 276 | 78.96 260 | 74.04 298 | 43.66 322 | 47.63 302 | 83.19 187 | 23.52 310 | 77.78 311 | 37.47 288 | 60.46 238 | 76.55 306 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ADS-MVSNet2 | | | 55.21 295 | 51.44 299 | 66.51 286 | 80.60 180 | 49.56 206 | 55.03 344 | 65.44 335 | 44.72 313 | 51.00 286 | 61.19 339 | 22.83 311 | 75.41 321 | 28.54 331 | 53.63 298 | 74.57 319 |
|
FC-MVSNet-test | | | 67.49 194 | 67.91 154 | 66.21 287 | 76.06 249 | 33.06 342 | 80.82 238 | 87.18 66 | 64.44 77 | 54.81 257 | 82.87 188 | 50.40 51 | 82.60 266 | 48.05 251 | 66.55 195 | 82.98 228 |
|
JIA-IIPM | | | 52.33 307 | 47.77 313 | 66.03 288 | 71.20 303 | 46.92 258 | 40.00 357 | 76.48 279 | 37.10 339 | 46.73 307 | 37.02 355 | 32.96 242 | 77.88 308 | 35.97 298 | 52.45 306 | 73.29 328 |
|
LCM-MVSNet-Re | | | 58.82 272 | 56.54 270 | 65.68 289 | 79.31 195 | 29.09 354 | 61.39 336 | 45.79 357 | 60.73 139 | 37.65 338 | 72.47 298 | 31.42 259 | 81.08 276 | 49.66 240 | 70.41 171 | 86.87 154 |
|
XVG-ACMP-BASELINE | | | 56.03 290 | 52.85 294 | 65.58 290 | 61.91 347 | 40.95 317 | 63.36 327 | 72.43 310 | 45.20 311 | 46.02 311 | 74.09 280 | 9.20 356 | 78.12 301 | 45.13 266 | 58.27 255 | 77.66 294 |
|
pmmvs-eth3d | | | 55.97 291 | 52.78 295 | 65.54 291 | 61.02 349 | 46.44 264 | 75.36 281 | 67.72 332 | 49.61 282 | 43.65 317 | 67.58 324 | 21.63 321 | 77.04 313 | 44.11 271 | 44.33 331 | 73.15 330 |
|
MDA-MVSNet_test_wron | | | 53.82 301 | 49.95 305 | 65.43 292 | 70.13 310 | 49.05 215 | 72.30 300 | 71.65 318 | 44.23 319 | 31.85 353 | 63.13 335 | 23.68 309 | 74.01 326 | 33.25 314 | 39.35 342 | 73.23 329 |
|
YYNet1 | | | 53.82 301 | 49.96 304 | 65.41 293 | 70.09 311 | 48.95 218 | 72.30 300 | 71.66 317 | 44.25 318 | 31.89 352 | 63.07 336 | 23.73 308 | 73.95 327 | 33.26 313 | 39.40 341 | 73.34 327 |
|
PatchMatch-RL | | | 56.66 284 | 53.75 289 | 65.37 294 | 77.91 225 | 45.28 279 | 69.78 316 | 60.38 344 | 41.35 329 | 47.57 303 | 73.73 283 | 16.83 339 | 76.91 315 | 36.99 294 | 59.21 247 | 73.92 323 |
|
Vis-MVSNet (Re-imp) | | | 65.52 225 | 65.63 203 | 65.17 295 | 77.49 229 | 30.54 349 | 75.49 280 | 77.73 255 | 59.34 162 | 52.26 280 | 86.69 146 | 49.38 58 | 80.53 282 | 37.07 293 | 75.28 129 | 84.42 198 |
|
FMVSNet5 | | | 58.61 274 | 56.45 271 | 65.10 296 | 77.20 236 | 39.74 320 | 74.77 283 | 77.12 266 | 50.27 279 | 43.28 320 | 67.71 323 | 26.15 293 | 76.90 316 | 36.78 296 | 54.78 292 | 78.65 280 |
|
EPNet_dtu | | | 66.25 219 | 66.71 180 | 64.87 297 | 78.66 210 | 34.12 337 | 82.80 194 | 75.51 285 | 61.75 119 | 64.47 143 | 86.90 142 | 37.06 200 | 72.46 336 | 43.65 273 | 69.63 178 | 88.02 135 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UnsupCasMVSNet_eth | | | 57.56 280 | 55.15 281 | 64.79 298 | 64.57 339 | 33.12 341 | 73.17 294 | 83.87 146 | 58.98 178 | 41.75 326 | 70.03 315 | 22.54 314 | 79.92 289 | 46.12 264 | 35.31 345 | 81.32 254 |
|
LS3D | | | 56.40 288 | 53.82 288 | 64.12 299 | 81.12 166 | 45.69 277 | 73.42 292 | 66.14 334 | 35.30 348 | 43.24 321 | 79.88 222 | 22.18 318 | 79.62 293 | 19.10 355 | 64.00 211 | 67.05 344 |
|
UnsupCasMVSNet_bld | | | 53.86 300 | 50.53 302 | 63.84 300 | 63.52 343 | 34.75 335 | 71.38 308 | 81.92 177 | 46.53 299 | 38.95 335 | 57.93 347 | 20.55 325 | 80.20 287 | 39.91 284 | 34.09 351 | 76.57 305 |
|
USDC | | | 54.36 297 | 51.23 300 | 63.76 301 | 64.29 340 | 37.71 329 | 62.84 332 | 73.48 306 | 56.85 217 | 35.47 343 | 71.94 306 | 9.23 355 | 78.43 298 | 38.43 287 | 48.57 314 | 75.13 316 |
|
Anonymous20231206 | | | 59.08 268 | 57.59 264 | 63.55 302 | 68.77 318 | 32.14 347 | 80.26 245 | 79.78 211 | 50.00 280 | 49.39 293 | 72.39 300 | 26.64 290 | 78.36 299 | 33.12 315 | 57.94 262 | 80.14 269 |
|
CMPMVS |  | 40.41 21 | 55.34 293 | 52.64 296 | 63.46 303 | 60.88 350 | 43.84 293 | 61.58 335 | 71.06 322 | 30.43 351 | 36.33 340 | 74.63 279 | 24.14 306 | 75.44 320 | 48.05 251 | 66.62 194 | 71.12 339 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OurMVSNet-221017-0 | | | 52.39 306 | 48.73 308 | 63.35 304 | 65.21 335 | 38.42 326 | 68.54 320 | 64.95 336 | 38.19 335 | 39.57 332 | 71.43 307 | 13.23 349 | 79.92 289 | 37.16 290 | 40.32 340 | 71.72 335 |
|
MDA-MVSNet-bldmvs | | | 51.56 309 | 47.75 314 | 63.00 305 | 71.60 298 | 47.32 254 | 69.70 317 | 72.12 313 | 43.81 321 | 27.65 357 | 63.38 334 | 21.97 320 | 75.96 318 | 27.30 337 | 32.19 352 | 65.70 348 |
|
F-COLMAP | | | 55.96 292 | 53.65 290 | 62.87 306 | 72.76 286 | 42.77 303 | 74.70 285 | 70.37 325 | 40.03 331 | 41.11 329 | 79.36 226 | 17.77 336 | 73.70 330 | 32.80 316 | 53.96 297 | 72.15 332 |
|
test0.0.03 1 | | | 62.54 245 | 62.44 231 | 62.86 307 | 72.28 293 | 29.51 351 | 82.93 191 | 78.78 234 | 59.18 169 | 53.07 274 | 82.41 199 | 36.91 203 | 77.39 312 | 37.45 289 | 58.96 248 | 81.66 242 |
|
CVMVSNet | | | 60.85 257 | 60.44 248 | 62.07 308 | 75.00 263 | 32.73 344 | 79.54 254 | 73.49 304 | 36.98 340 | 56.28 251 | 83.74 177 | 29.28 273 | 69.53 345 | 46.48 260 | 63.23 220 | 83.94 210 |
|
ambc | | | | | 62.06 309 | 53.98 357 | 29.38 352 | 35.08 359 | 79.65 215 | | 41.37 327 | 59.96 342 | 6.27 362 | 82.15 268 | 35.34 302 | 38.22 343 | 74.65 318 |
|
PEN-MVS | | | 58.35 278 | 57.15 267 | 61.94 310 | 67.55 327 | 34.39 336 | 77.01 269 | 78.35 245 | 51.87 269 | 47.72 301 | 76.73 259 | 33.91 234 | 73.75 329 | 34.03 310 | 47.17 322 | 77.68 293 |
|
MVS-HIRNet | | | 49.01 313 | 44.71 317 | 61.92 311 | 76.06 249 | 46.61 262 | 63.23 329 | 54.90 350 | 24.77 355 | 33.56 348 | 36.60 357 | 21.28 323 | 75.88 319 | 29.49 325 | 62.54 228 | 63.26 352 |
|
LTVRE_ROB | | 45.45 19 | 52.73 304 | 49.74 306 | 61.69 312 | 69.78 312 | 34.99 334 | 44.52 351 | 67.60 333 | 43.11 325 | 43.79 316 | 74.03 281 | 18.54 333 | 81.45 273 | 28.39 333 | 57.94 262 | 68.62 342 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WR-MVS_H | | | 58.91 271 | 58.04 262 | 61.54 313 | 69.07 315 | 33.83 339 | 76.91 270 | 81.99 174 | 51.40 273 | 48.17 297 | 74.67 278 | 40.23 162 | 74.15 325 | 31.78 319 | 48.10 315 | 76.64 304 |
|
CP-MVSNet | | | 58.54 277 | 57.57 265 | 61.46 314 | 68.50 320 | 33.96 338 | 76.90 271 | 78.60 241 | 51.67 272 | 47.83 300 | 76.60 261 | 34.99 226 | 72.79 334 | 35.45 300 | 47.58 318 | 77.64 295 |
|
MVS_0304 | | | 56.72 283 | 55.17 280 | 61.37 315 | 70.71 305 | 36.80 333 | 75.74 274 | 68.75 330 | 44.11 320 | 52.53 276 | 68.20 322 | 15.05 346 | 74.53 324 | 42.98 276 | 58.44 253 | 72.79 331 |
|
PS-CasMVS | | | 58.12 279 | 57.03 269 | 61.37 315 | 68.24 324 | 33.80 340 | 76.73 272 | 78.01 250 | 51.20 274 | 47.54 304 | 76.20 269 | 32.85 243 | 72.76 335 | 35.17 305 | 47.37 320 | 77.55 296 |
|
Anonymous20240521 | | | 51.65 308 | 48.42 309 | 61.34 317 | 56.43 355 | 39.65 322 | 73.57 290 | 73.47 307 | 36.64 342 | 36.59 339 | 63.98 333 | 10.75 352 | 72.25 338 | 35.35 301 | 49.01 313 | 72.11 333 |
|
CHOSEN 280x420 | | | 57.53 281 | 56.38 274 | 60.97 318 | 74.01 273 | 48.10 244 | 46.30 350 | 54.31 351 | 48.18 289 | 50.88 289 | 77.43 247 | 38.37 179 | 59.16 353 | 54.83 206 | 63.14 223 | 75.66 311 |
|
DTE-MVSNet | | | 57.03 282 | 55.73 278 | 60.95 319 | 65.94 330 | 32.57 345 | 75.71 275 | 77.09 267 | 51.16 275 | 46.65 309 | 76.34 264 | 32.84 244 | 73.22 333 | 30.94 323 | 44.87 330 | 77.06 298 |
|
IterMVS-SCA-FT | | | 59.12 266 | 58.81 260 | 60.08 320 | 70.68 308 | 45.07 281 | 80.42 243 | 74.25 295 | 43.54 323 | 50.02 291 | 73.73 283 | 31.97 253 | 56.74 354 | 51.06 234 | 53.60 300 | 78.42 284 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 310 | 48.05 311 | 59.47 321 | 67.81 326 | 40.57 319 | 71.25 309 | 62.72 343 | 36.49 343 | 36.19 341 | 73.51 288 | 13.48 348 | 73.92 328 | 20.71 351 | 50.26 311 | 63.92 350 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
testgi | | | 54.25 298 | 52.57 297 | 59.29 322 | 62.76 345 | 21.65 363 | 72.21 302 | 70.47 324 | 53.25 259 | 41.94 324 | 77.33 248 | 14.28 347 | 77.95 307 | 29.18 327 | 51.72 308 | 78.28 287 |
|
TinyColmap | | | 48.15 315 | 44.49 319 | 59.13 323 | 65.73 332 | 38.04 327 | 63.34 328 | 62.86 342 | 38.78 333 | 29.48 355 | 67.23 326 | 6.46 361 | 73.30 332 | 24.59 343 | 41.90 337 | 66.04 346 |
|
test20.03 | | | 55.22 294 | 54.07 287 | 58.68 324 | 63.14 344 | 25.00 358 | 77.69 267 | 74.78 291 | 52.64 262 | 43.43 318 | 72.39 300 | 26.21 292 | 74.76 323 | 29.31 326 | 47.05 324 | 76.28 308 |
|
EU-MVSNet | | | 52.63 305 | 50.72 301 | 58.37 325 | 62.69 346 | 28.13 356 | 72.60 296 | 75.97 282 | 30.94 350 | 40.76 331 | 72.11 304 | 20.16 326 | 70.80 341 | 35.11 306 | 46.11 327 | 76.19 309 |
|
MIMVSNet1 | | | 50.35 311 | 47.81 312 | 57.96 326 | 61.53 348 | 27.80 357 | 67.40 321 | 74.06 297 | 43.25 324 | 33.31 351 | 65.38 331 | 16.03 343 | 71.34 339 | 21.80 348 | 47.55 319 | 74.75 317 |
|
pmmvs3 | | | 45.53 319 | 41.55 322 | 57.44 327 | 48.97 361 | 39.68 321 | 70.06 313 | 57.66 347 | 28.32 353 | 34.06 346 | 57.29 348 | 8.50 357 | 66.85 347 | 34.86 308 | 34.26 349 | 65.80 347 |
|
DIV-MVS_2432*1600 | | | 49.24 312 | 46.85 315 | 56.44 328 | 54.32 356 | 22.87 360 | 57.39 341 | 73.36 308 | 44.36 317 | 37.98 337 | 59.30 345 | 18.97 331 | 71.17 340 | 33.48 311 | 42.44 335 | 75.26 314 |
|
PM-MVS | | | 46.92 317 | 43.76 321 | 56.41 329 | 52.18 358 | 32.26 346 | 63.21 330 | 38.18 362 | 37.99 337 | 40.78 330 | 66.20 327 | 5.09 364 | 65.42 348 | 48.19 250 | 41.99 336 | 71.54 337 |
|
AllTest | | | 47.32 316 | 44.66 318 | 55.32 330 | 65.08 336 | 37.50 330 | 62.96 331 | 54.25 352 | 35.45 346 | 33.42 349 | 72.82 293 | 9.98 353 | 59.33 351 | 24.13 344 | 43.84 332 | 69.13 340 |
|
TestCases | | | | | 55.32 330 | 65.08 336 | 37.50 330 | | 54.25 352 | 35.45 346 | 33.42 349 | 72.82 293 | 9.98 353 | 59.33 351 | 24.13 344 | 43.84 332 | 69.13 340 |
|
new-patchmatchnet | | | 48.21 314 | 46.55 316 | 53.18 332 | 57.73 353 | 18.19 367 | 70.24 312 | 71.02 323 | 45.70 306 | 33.70 347 | 60.23 341 | 18.00 335 | 69.86 344 | 27.97 334 | 34.35 348 | 71.49 338 |
|
ITE_SJBPF | | | | | 51.84 333 | 58.03 352 | 31.94 348 | | 53.57 354 | 36.67 341 | 41.32 328 | 75.23 276 | 11.17 351 | 51.57 358 | 25.81 341 | 48.04 316 | 72.02 334 |
|
RPSCF | | | 45.77 318 | 44.13 320 | 50.68 334 | 57.67 354 | 29.66 350 | 54.92 346 | 45.25 359 | 26.69 354 | 45.92 312 | 75.92 272 | 17.43 338 | 45.70 362 | 27.44 336 | 45.95 328 | 76.67 301 |
|
ANet_high | | | 34.39 324 | 29.59 329 | 48.78 335 | 30.34 369 | 22.28 361 | 55.53 343 | 63.79 340 | 38.11 336 | 15.47 361 | 36.56 358 | 6.94 358 | 59.98 350 | 13.93 360 | 5.64 369 | 64.08 349 |
|
TDRefinement | | | 40.91 321 | 38.37 324 | 48.55 336 | 50.45 359 | 33.03 343 | 58.98 340 | 50.97 355 | 28.50 352 | 29.89 354 | 67.39 325 | 6.21 363 | 54.51 355 | 17.67 357 | 35.25 346 | 58.11 353 |
|
DSMNet-mixed | | | 38.35 322 | 35.36 325 | 47.33 337 | 48.11 362 | 14.91 369 | 37.87 358 | 36.60 364 | 19.18 359 | 34.37 345 | 59.56 344 | 15.53 344 | 53.01 357 | 20.14 353 | 46.89 325 | 74.07 321 |
|
N_pmnet | | | 41.25 320 | 39.77 323 | 45.66 338 | 68.50 320 | 0.82 376 | 72.51 298 | 0.38 376 | 35.61 345 | 35.26 344 | 61.51 338 | 20.07 327 | 67.74 346 | 23.51 346 | 40.63 338 | 68.42 343 |
|
LCM-MVSNet | | | 28.07 327 | 23.85 332 | 40.71 339 | 27.46 372 | 18.93 366 | 30.82 360 | 46.19 356 | 12.76 363 | 16.40 360 | 34.70 360 | 1.90 371 | 48.69 361 | 20.25 352 | 24.22 358 | 54.51 355 |
|
FPMVS | | | 35.40 323 | 33.67 326 | 40.57 340 | 46.34 363 | 28.74 355 | 41.05 355 | 57.05 348 | 20.37 358 | 22.27 359 | 53.38 351 | 6.87 359 | 44.94 363 | 8.62 362 | 47.11 323 | 48.01 358 |
|
new_pmnet | | | 33.56 325 | 31.89 328 | 38.59 341 | 49.01 360 | 20.42 364 | 51.01 347 | 37.92 363 | 20.58 356 | 23.45 358 | 46.79 352 | 6.66 360 | 49.28 360 | 20.00 354 | 31.57 354 | 46.09 359 |
|
PMMVS2 | | | 26.71 329 | 22.98 333 | 37.87 342 | 36.89 366 | 8.51 373 | 42.51 354 | 29.32 370 | 19.09 360 | 13.01 363 | 37.54 354 | 2.23 369 | 53.11 356 | 14.54 359 | 11.71 362 | 51.99 356 |
|
Gipuma |  | | 27.47 328 | 24.26 331 | 37.12 343 | 60.55 351 | 29.17 353 | 11.68 364 | 60.00 345 | 14.18 362 | 10.52 366 | 15.12 366 | 2.20 370 | 63.01 349 | 8.39 363 | 35.65 344 | 19.18 362 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LF4IMVS | | | 33.04 326 | 32.55 327 | 34.52 344 | 40.96 364 | 22.03 362 | 44.45 352 | 35.62 365 | 20.42 357 | 28.12 356 | 62.35 337 | 5.03 365 | 31.88 368 | 21.61 350 | 34.42 347 | 49.63 357 |
|
test_method | | | 24.09 331 | 21.07 335 | 33.16 345 | 27.67 371 | 8.35 374 | 26.63 361 | 35.11 367 | 3.40 368 | 14.35 362 | 36.98 356 | 3.46 368 | 35.31 367 | 19.08 356 | 22.95 359 | 55.81 354 |
|
PMVS |  | 19.57 22 | 25.07 330 | 22.43 334 | 32.99 346 | 23.12 373 | 22.98 359 | 40.98 356 | 35.19 366 | 15.99 361 | 11.95 365 | 35.87 359 | 1.47 373 | 49.29 359 | 5.41 367 | 31.90 353 | 26.70 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 16.60 23 | 17.34 335 | 13.39 338 | 29.16 347 | 28.43 370 | 19.72 365 | 13.73 363 | 23.63 371 | 7.23 367 | 7.96 367 | 21.41 362 | 0.80 374 | 36.08 366 | 6.97 364 | 10.39 363 | 31.69 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 19.16 332 | 18.40 336 | 21.44 348 | 36.19 367 | 13.63 370 | 47.59 348 | 30.89 368 | 10.73 364 | 5.91 369 | 16.59 364 | 3.66 367 | 39.77 364 | 5.95 366 | 8.14 364 | 10.92 364 |
|
EMVS | | | 18.42 333 | 17.66 337 | 20.71 349 | 34.13 368 | 12.64 371 | 46.94 349 | 29.94 369 | 10.46 366 | 5.58 370 | 14.93 367 | 4.23 366 | 38.83 365 | 5.24 368 | 7.51 366 | 10.67 365 |
|
DeepMVS_CX |  | | | | 13.10 350 | 21.34 374 | 8.99 372 | | 10.02 374 | 10.59 365 | 7.53 368 | 30.55 361 | 1.82 372 | 14.55 369 | 6.83 365 | 7.52 365 | 15.75 363 |
|
wuyk23d | | | 9.11 337 | 8.77 341 | 10.15 351 | 40.18 365 | 16.76 368 | 20.28 362 | 1.01 375 | 2.58 369 | 2.66 371 | 0.98 370 | 0.23 375 | 12.49 370 | 4.08 369 | 6.90 367 | 1.19 367 |
|
tmp_tt | | | 9.44 336 | 10.68 339 | 5.73 352 | 2.49 375 | 4.21 375 | 10.48 365 | 18.04 372 | 0.34 370 | 12.59 364 | 20.49 363 | 11.39 350 | 7.03 371 | 13.84 361 | 6.46 368 | 5.95 366 |
|
testmvs | | | 6.14 339 | 8.18 342 | 0.01 353 | 0.01 376 | 0.00 378 | 73.40 293 | 0.00 377 | 0.00 371 | 0.02 372 | 0.15 371 | 0.00 376 | 0.00 372 | 0.02 370 | 0.00 370 | 0.02 368 |
|
test123 | | | 6.01 340 | 8.01 343 | 0.01 353 | 0.00 377 | 0.01 377 | 71.93 306 | 0.00 377 | 0.00 371 | 0.02 372 | 0.11 372 | 0.00 376 | 0.00 372 | 0.02 370 | 0.00 370 | 0.02 368 |
|
test_blank | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 18.33 334 | 24.44 330 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 89.40 19 | 0.00 371 | 0.00 374 | 92.02 40 | 38.55 177 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 3.15 341 | 4.20 344 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 37.77 183 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
ab-mvs-re | | | 7.68 338 | 10.24 340 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 92.12 36 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 377 | 0.00 378 | 0.00 366 | 0.00 377 | 0.00 371 | 0.00 374 | 0.00 373 | 0.00 376 | 0.00 372 | 0.00 372 | 0.00 370 | 0.00 370 |
|
FOURS1 | | | | | | 83.24 111 | 49.90 200 | 84.98 136 | 78.76 235 | 47.71 290 | 73.42 53 | | | | | | |
|
PC_three_1452 | | | | | | | | | | 66.58 47 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 18 | 89.74 2 | 91.98 4 | 93.98 5 |
|
test_one_0601 | | | | | | 89.39 22 | 57.29 22 | | 88.09 50 | 57.21 213 | 82.06 11 | 93.39 13 | 54.94 23 | | | | |
|
eth-test2 | | | | | | 0.00 377 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 377 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 89.55 14 | 53.46 106 | | 84.38 131 | 57.02 215 | 73.97 47 | 91.03 57 | 44.57 109 | 91.17 77 | 75.41 58 | 81.78 75 | |
|
RE-MVS-def | | | | 66.66 182 | | 80.96 170 | 48.14 242 | 81.54 224 | 76.98 268 | 46.42 302 | 62.75 164 | 89.42 100 | 29.28 273 | | 60.52 162 | 72.06 159 | 83.19 223 |
|
IU-MVS | | | | | | 89.48 17 | 57.49 17 | | 91.38 5 | 66.22 52 | 88.26 1 | | | | 82.83 8 | 87.60 18 | 92.44 27 |
|
test_241102_TWO | | | | | | | | | 88.76 37 | 57.50 208 | 83.60 6 | 94.09 4 | 56.14 18 | 96.37 6 | 82.28 12 | 87.43 20 | 92.55 25 |
|
test_241102_ONE | | | | | | 89.48 17 | 56.89 28 | | 88.94 29 | 57.53 206 | 84.61 4 | 93.29 16 | 58.81 11 | 96.45 1 | | | |
|
9.14 | | | | 78.19 24 | | 85.67 57 | | 88.32 55 | 88.84 34 | 59.89 149 | 74.58 43 | 92.62 27 | 46.80 78 | 92.66 45 | 81.40 21 | 85.62 42 | |
|
save fliter | | | | | | 85.35 68 | 56.34 39 | 89.31 40 | 81.46 184 | 61.55 122 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 58.00 193 | 81.91 12 | 93.64 11 | 56.54 15 | 96.44 2 | 81.64 17 | 86.86 26 | 92.23 33 |
|
test0726 | | | | | | 89.40 20 | 57.45 19 | 92.32 7 | 88.63 40 | 57.71 202 | 83.14 9 | 93.96 7 | 55.17 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 132 |
|
test_part2 | | | | | | 89.33 23 | 55.48 53 | | | | 82.27 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 175 | | | | 88.13 132 |
|
sam_mvs | | | | | | | | | | | | | 35.99 219 | | | | |
|
MTGPA |  | | | | | | | | 81.31 187 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 311 | | | | 14.72 368 | 34.33 230 | 83.86 254 | 48.80 245 | | |
|
test_post | | | | | | | | | | | | 16.22 365 | 37.52 191 | 84.72 249 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 343 | 38.41 178 | 79.91 291 | | | |
|
MTMP | | | | | | | | 87.27 77 | 15.34 373 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 111 | 54.21 90 | | | 70.91 12 | | 88.23 123 | | 95.25 15 | 66.37 113 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 34 | 85.44 45 | 91.39 56 |
|
TEST9 | | | | | | 85.68 55 | 55.42 54 | 87.59 66 | 84.00 142 | 57.72 201 | 72.99 57 | 90.98 59 | 44.87 104 | 88.58 145 | | | |
|
test_8 | | | | | | 85.72 54 | 55.31 58 | 87.60 63 | 83.88 145 | 57.84 199 | 72.84 60 | 90.99 58 | 44.99 101 | 88.34 155 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 53 | 85.11 49 | 91.01 66 |
|
agg_prior | | | | | | 85.64 58 | 54.92 72 | | 83.61 151 | | 72.53 64 | | | 88.10 165 | | | |
|
test_prior4 | | | | | | | 56.39 38 | 87.15 80 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 44 | | 61.88 117 | 73.55 50 | 91.46 54 | 48.01 66 | | 74.73 61 | 85.46 43 | |
|
旧先验2 | | | | | | | | 81.73 218 | | 45.53 308 | 74.66 39 | | | 70.48 343 | 58.31 180 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 222 | | | | | | | | | |
|
旧先验1 | | | | | | 81.57 155 | 47.48 250 | | 71.83 314 | | | 88.66 114 | 36.94 202 | | | 78.34 105 | 88.67 121 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 124 | 78.00 251 | 49.08 284 | | | | 85.13 243 | 52.78 222 | | 87.45 146 |
|
原ACMM2 | | | | | | | | 83.77 167 | | | | | | | | | |
|
test222 | | | | | | 79.36 192 | 50.97 172 | 77.99 265 | 67.84 331 | 42.54 327 | 62.84 163 | 86.53 148 | 30.26 267 | | | 76.91 115 | 85.23 188 |
|
testdata2 | | | | | | | | | | | | | | 77.81 310 | 45.64 265 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 103 | | | | |
|
testdata1 | | | | | | | | 77.55 268 | | 64.14 80 | | | | | | | |
|
plane_prior7 | | | | | | 77.95 222 | 48.46 235 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 217 | 49.39 210 | | | | | | 36.04 217 | | | | |
|
plane_prior5 | | | | | | | | | 82.59 168 | | | | | 88.30 158 | 65.46 123 | 72.34 156 | 84.49 196 |
|
plane_prior4 | | | | | | | | | | | | 83.28 185 | | | | | |
|
plane_prior3 | | | | | | | 48.95 218 | | | 64.01 81 | 62.15 169 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 108 | | 63.60 91 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 219 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 204 | 87.43 70 | | 64.57 76 | | | | | | 72.84 151 | |
|
n2 | | | | | | | | | 0.00 377 | | | | | | | | |
|
nn | | | | | | | | | 0.00 377 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 361 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 136 | | | | | | | | |
|
door | | | | | | | | | 43.27 360 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 160 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 200 | | 88.00 57 | | 65.45 61 | 64.48 140 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 200 | | 88.00 57 | | 65.45 61 | 64.48 140 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 110 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 143 | | | 88.61 144 | | | 84.91 193 |
|
HQP3-MVS | | | | | | | | | 83.68 148 | | | | | | | 73.12 147 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 194 | | | | |
|
NP-MVS | | | | | | 78.76 205 | 50.43 182 | | | | | 85.12 163 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 295 | 71.13 310 | | 54.95 245 | 59.29 200 | | 36.76 205 | | 46.33 262 | | 87.32 148 |
|
MDTV_nov1_ep13 | | | | 61.56 238 | | 81.68 148 | 55.12 65 | 72.41 299 | 78.18 247 | 59.19 167 | 58.85 210 | 69.29 318 | 34.69 227 | 86.16 216 | 36.76 297 | 62.96 225 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 221 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 245 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 170 | | | | |
|