This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 16100.00 191.79 17299.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13499.90 5099.72 398.80 9699.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9999.33 2292.62 25100.00 198.99 2599.93 199.98 6
MVS93.92 12692.28 15698.83 795.69 21096.82 896.22 31298.17 3684.89 28084.34 25798.61 10679.32 22599.83 7393.88 14399.43 6199.86 29
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11499.96 2899.72 398.92 9099.69 58
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 11998.24 12688.17 8099.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18699.93 3998.71 2998.80 9699.63 70
WTY-MVS95.97 6095.11 8598.54 1397.62 11996.65 999.44 6298.74 1592.25 9395.21 11898.46 11986.56 11999.46 12195.00 12492.69 19699.50 84
HY-MVS88.56 795.29 8594.23 10098.48 1497.72 11596.41 1394.03 34998.74 1592.42 8995.65 11194.76 24486.52 12099.49 11595.29 11692.97 19299.53 79
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11399.06 1094.45 4196.42 9398.70 9888.81 7199.74 9195.35 11399.86 1299.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8394.50 3898.64 3099.54 393.32 1899.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 1899.98 999.70 599.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2199.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 11997.11 18495.83 2098.97 1999.14 4582.48 18999.60 10698.60 3399.08 7898.00 197
sasdasda95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
canonicalmvs95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
3Dnovator+87.72 893.43 14291.84 16798.17 2395.73 20995.08 3598.92 13197.04 19191.42 11181.48 30297.60 14974.60 25299.79 8590.84 18198.97 8699.64 68
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9097.75 7895.66 2498.21 4299.29 2391.10 3499.99 597.68 6099.87 999.68 60
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5896.54 1398.84 2499.46 1092.55 2699.98 998.25 5099.93 199.94 18
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13597.64 10596.51 1695.88 10299.39 1887.35 9999.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16098.70 2799.42 1790.42 4899.72 9298.47 4199.65 4099.77 46
xiu_mvs_v2_base96.66 3796.17 5298.11 2897.11 15096.96 699.01 12297.04 19195.51 2798.86 2399.11 5382.19 19799.36 13398.59 3598.14 11898.00 197
MGCFI-Net94.89 9493.84 12098.06 2997.49 12995.55 2198.64 16096.10 25391.60 10595.75 10898.46 11979.31 22698.98 15695.95 10191.24 23199.65 67
alignmvs95.77 7095.00 8898.06 2997.35 13495.68 2099.71 2697.50 13891.50 10796.16 9798.61 10686.28 12599.00 15496.19 9391.74 21599.51 82
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5999.16 9697.65 10489.55 16499.22 1299.52 890.34 5199.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 6695.15 8297.95 3299.87 294.38 5599.60 3997.48 14186.58 24994.42 13299.13 4787.36 9899.98 993.64 14898.33 11499.48 86
PAPR96.35 4795.82 6297.94 3399.63 1894.19 6099.42 6797.55 12592.43 8793.82 14799.12 4987.30 10099.91 4694.02 14099.06 8099.74 50
131493.44 14191.98 16497.84 3495.24 22494.38 5596.22 31297.92 5690.18 14282.28 28597.71 14477.63 24099.80 8191.94 17198.67 10299.34 101
test1297.83 3599.33 5394.45 5297.55 12597.56 5988.60 7499.50 11499.71 3699.55 77
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19596.77 20893.00 7698.69 2896.19 21489.75 5998.76 16598.45 4299.72 3299.51 82
ACMMP_NAP96.59 4196.18 4997.81 3698.82 8593.55 6998.88 13497.59 11890.66 12597.98 5399.14 4586.59 117100.00 196.47 8999.46 5799.89 25
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6699.33 7897.38 15693.73 6098.83 2599.02 6190.87 4199.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6799.56 4397.52 13393.59 6498.01 5299.12 4990.80 4299.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 4396.18 4997.70 3999.59 2893.92 6399.13 10797.44 14989.02 17797.90 5599.22 3088.90 7099.49 11594.63 13299.79 2799.68 60
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3697.78 5899.46 1089.85 5799.81 7997.97 5499.91 699.88 26
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 6899.16 9697.44 14990.08 14798.59 3299.07 5489.06 6599.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 9993.94 11597.58 4396.43 17694.09 6298.93 12999.16 889.50 16595.27 11797.85 13481.50 20599.65 10192.79 16494.02 18298.99 130
PAPM96.35 4795.94 5897.58 4394.10 26995.25 2698.93 12998.17 3694.26 4393.94 14398.72 9489.68 6097.88 21296.36 9099.29 6999.62 72
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9790.18 14298.39 3799.18 3690.94 3799.66 9798.58 3699.85 1399.88 26
VNet95.08 9194.26 9997.55 4698.07 10693.88 6498.68 15498.73 1790.33 13997.16 7297.43 15879.19 22799.53 11296.91 7891.85 21399.24 109
MVSMamba_PlusPlus95.73 7495.15 8297.44 4797.28 13994.35 5798.26 21096.75 20983.09 30897.84 5695.97 22289.59 6198.48 18097.86 5799.73 3199.49 85
lupinMVS96.32 4995.94 5897.44 4795.05 24294.87 3999.86 596.50 22693.82 5898.04 5098.77 8885.52 13698.09 19996.98 7598.97 8699.37 96
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 8899.86 598.04 4896.70 1099.58 299.26 2490.90 3999.94 3599.57 1298.66 10399.40 93
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9099.85 898.05 4696.78 899.60 199.23 2990.42 4899.92 4199.55 1398.50 10899.55 77
新几何197.40 5198.92 8192.51 9697.77 7785.52 26796.69 8899.06 5688.08 8499.89 5384.88 25199.62 4699.79 38
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7298.52 17797.50 13894.46 3998.99 1798.64 10291.58 3199.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator87.35 1193.17 15491.77 17097.37 5395.41 22093.07 8198.82 13897.85 6191.53 10682.56 27897.58 15171.97 27999.82 7691.01 17899.23 7399.22 112
MP-MVS-pluss95.80 6895.30 7797.29 5498.95 7792.66 9198.59 17197.14 18088.95 18093.12 15699.25 2685.62 13599.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
DCV-MVSNet95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
EPNet96.82 3396.68 3797.25 5798.65 9093.10 8099.48 5398.76 1496.54 1397.84 5698.22 12787.49 9299.66 9795.35 11397.78 12599.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 4096.46 4297.21 5899.34 5091.77 10499.70 2798.05 4686.48 25498.05 4999.20 3289.33 6399.96 2898.38 4399.62 4699.90 22
CANet_DTU94.31 11793.35 13297.20 5997.03 15594.71 4798.62 16395.54 30295.61 2597.21 6998.47 11771.88 28099.84 6988.38 21197.46 13397.04 224
QAPM91.41 18889.49 21197.17 6095.66 21293.42 7398.60 16997.51 13580.92 34481.39 30397.41 15972.89 27299.87 5882.33 28298.68 10198.21 190
TSAR-MVS + GP.96.95 2996.91 2697.07 6198.88 8391.62 10799.58 4196.54 22495.09 3296.84 7998.63 10491.16 3299.77 8899.04 2496.42 15299.81 35
114514_t94.06 12193.05 14097.06 6299.08 6992.26 9998.97 12797.01 19682.58 32092.57 16398.22 12780.68 21499.30 13989.34 20199.02 8399.63 70
jason95.40 8394.86 9097.03 6392.91 30194.23 5899.70 2796.30 23793.56 6596.73 8798.52 10981.46 20797.91 20996.08 9898.47 11198.96 133
jason: jason.
test_prior97.01 6499.58 3091.77 10497.57 12399.49 11599.79 38
SteuartSystems-ACMMP97.25 1997.34 2197.01 6497.38 13291.46 11199.75 2297.66 9794.14 4898.13 4499.26 2492.16 3099.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base_debi94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
GG-mvs-BLEND96.98 6996.53 17194.81 4487.20 39097.74 7993.91 14496.40 20796.56 296.94 26595.08 12098.95 8999.20 113
thres20093.69 13492.59 15296.97 7097.76 11494.74 4699.35 7699.36 289.23 17091.21 18896.97 18383.42 16798.77 16385.08 24790.96 23297.39 212
MTAPA96.09 5595.80 6596.96 7199.29 5591.19 11597.23 27497.45 14692.58 8494.39 13499.24 2886.43 12399.99 596.22 9299.40 6499.71 54
ZNCC-MVS96.09 5595.81 6496.95 7299.42 4791.19 11599.55 4497.53 12989.72 15595.86 10498.94 7686.59 11799.97 2195.13 11999.56 5299.68 60
GST-MVS95.97 6095.66 7096.90 7399.49 4591.22 11399.45 6197.48 14189.69 15695.89 10198.72 9486.37 12499.95 3294.62 13399.22 7499.52 80
thres100view90093.34 14792.15 16096.90 7397.62 11994.84 4199.06 11699.36 287.96 21590.47 19996.78 19583.29 17098.75 16684.11 26390.69 23497.12 219
tfpn200view993.43 14292.27 15796.90 7397.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23497.12 219
HFP-MVS96.42 4696.26 4696.90 7399.69 890.96 12699.47 5597.81 6990.54 13396.88 7699.05 5787.57 9099.96 2895.65 10499.72 3299.78 41
gg-mvs-nofinetune90.00 22187.71 24696.89 7796.15 19294.69 4885.15 39797.74 7968.32 39692.97 15960.16 41096.10 496.84 26893.89 14298.87 9399.14 117
XVS96.47 4596.37 4496.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7798.96 7087.37 9599.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20688.66 22996.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7729.59 42287.37 9599.87 5895.65 10499.43 6199.78 41
thres600view793.18 15292.00 16396.75 8097.62 11994.92 3699.07 11399.36 287.96 21590.47 19996.78 19583.29 17098.71 17082.93 27790.47 23896.61 234
PVSNet_Blended95.94 6395.66 7096.75 8098.77 8791.61 10899.88 498.04 4893.64 6394.21 13797.76 14083.50 16499.87 5897.41 6497.75 12698.79 153
ACMMPR96.28 5196.14 5696.73 8299.68 990.47 13899.47 5597.80 7190.54 13396.83 8199.03 5986.51 12199.95 3295.65 10499.72 3299.75 49
thres40093.39 14492.27 15796.73 8297.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23496.61 234
MVS_111021_HR96.69 3696.69 3696.72 8498.58 9291.00 12599.14 10499.45 193.86 5595.15 12098.73 9288.48 7599.76 8997.23 7099.56 5299.40 93
region2R96.30 5096.17 5296.70 8599.70 790.31 14099.46 5997.66 9790.55 13297.07 7399.07 5486.85 10999.97 2195.43 11199.74 2999.81 35
UBG95.73 7495.41 7596.69 8696.97 15693.23 7699.13 10797.79 7391.28 11494.38 13596.78 19592.37 2898.56 17696.17 9493.84 18498.26 184
MVS_Test93.67 13792.67 14996.69 8696.72 16692.66 9197.22 27596.03 25987.69 22695.12 12194.03 25281.55 20398.28 18889.17 20596.46 15099.14 117
ab-mvs91.05 19989.17 21796.69 8695.96 20191.72 10692.62 36397.23 17085.61 26689.74 21093.89 25968.55 30299.42 12691.09 17687.84 24798.92 141
CHOSEN 280x42096.80 3496.85 2896.66 8997.85 11394.42 5494.76 34098.36 2892.50 8695.62 11297.52 15397.92 197.38 24898.31 4898.80 9698.20 191
test_fmvsmconf_n96.78 3596.84 2996.61 9095.99 20090.25 14199.90 398.13 4296.68 1198.42 3698.92 7785.34 14499.88 5499.12 2299.08 7899.70 55
MVSFormer94.71 10694.08 10796.61 9095.05 24294.87 3997.77 24796.17 24986.84 24398.04 5098.52 10985.52 13695.99 31689.83 19198.97 8698.96 133
API-MVS94.78 10194.18 10496.59 9299.21 6190.06 15398.80 14197.78 7583.59 30093.85 14599.21 3183.79 16199.97 2192.37 16799.00 8499.74 50
test250694.80 10094.21 10196.58 9396.41 17892.18 10098.01 23398.96 1190.82 12293.46 15297.28 16285.92 13198.45 18189.82 19397.19 13999.12 120
baseline192.61 16491.28 17996.58 9397.05 15494.63 4997.72 25296.20 24489.82 15388.56 21996.85 19186.85 10997.82 21688.42 21080.10 30097.30 214
PAPM_NR95.43 8095.05 8796.57 9599.42 4790.14 14698.58 17397.51 13590.65 12792.44 16598.90 7987.77 8999.90 5090.88 18099.32 6699.68 60
MP-MVScopyleft96.00 5795.82 6296.54 9699.47 4690.13 14899.36 7597.41 15390.64 12895.49 11498.95 7385.51 13899.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 1098.18 296.53 9799.54 3690.14 14699.41 6897.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OpenMVScopyleft85.28 1490.75 20488.84 22496.48 9893.58 28893.51 7198.80 14197.41 15382.59 31978.62 33297.49 15568.00 30999.82 7684.52 25798.55 10796.11 247
DeepC-MVS91.02 494.56 11293.92 11696.46 9997.16 14690.76 13098.39 19997.11 18493.92 5188.66 21898.33 12278.14 23799.85 6795.02 12298.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 6695.65 7296.45 10099.50 4289.77 16198.22 21398.90 1389.19 17296.74 8698.95 7385.91 13399.92 4193.94 14199.46 5799.66 64
thisisatest051594.75 10294.19 10296.43 10196.13 19792.64 9499.47 5597.60 11487.55 22993.17 15597.59 15094.71 1298.42 18288.28 21293.20 18998.24 188
LFMVS92.23 17490.84 18996.42 10298.24 10091.08 12298.24 21296.22 24383.39 30394.74 12798.31 12361.12 34998.85 15994.45 13592.82 19399.32 102
CP-MVS96.22 5296.15 5596.42 10299.67 1089.62 16499.70 2797.61 11290.07 14896.00 9899.16 3987.43 9399.92 4196.03 9999.72 3299.70 55
test_fmvsmconf0.1_n95.94 6395.79 6696.40 10492.42 30789.92 15799.79 1796.85 20396.53 1597.22 6898.67 10082.71 18599.84 6998.92 2798.98 8599.43 92
mPP-MVS95.90 6595.75 6796.38 10599.58 3089.41 16899.26 8597.41 15390.66 12594.82 12498.95 7386.15 12999.98 995.24 11899.64 4299.74 50
testing1195.33 8494.98 8996.37 10697.20 14192.31 9799.29 8097.68 9290.59 12994.43 13197.20 16990.79 4398.60 17495.25 11792.38 20198.18 192
CNLPA93.64 13892.74 14796.36 10798.96 7690.01 15699.19 9095.89 28086.22 25789.40 21398.85 8480.66 21599.84 6988.57 20996.92 14599.24 109
PVSNet_Blended_VisFu94.67 10794.11 10596.34 10897.14 14791.10 12099.32 7997.43 15192.10 9791.53 18196.38 21083.29 17099.68 9593.42 15596.37 15398.25 185
ETVMVS94.50 11393.90 11896.31 10997.48 13092.98 8499.07 11397.86 6088.09 21094.40 13396.90 18788.35 7797.28 25290.72 18592.25 20798.66 165
PVSNet87.13 1293.69 13492.83 14696.28 11097.99 10990.22 14499.38 7198.93 1291.42 11193.66 14997.68 14571.29 28799.64 10387.94 21797.20 13898.98 131
reproduce-ours96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
testing9194.88 9694.44 9696.21 11397.19 14391.90 10399.23 8797.66 9789.91 15193.66 14997.05 18090.21 5398.50 17793.52 15091.53 22498.25 185
1112_ss92.71 16091.55 17496.20 11495.56 21491.12 11898.48 18594.69 33888.29 20486.89 23698.50 11187.02 10698.66 17284.75 25289.77 24298.81 151
原ACMM196.18 11599.03 7190.08 14997.63 10988.98 17897.00 7498.97 6588.14 8399.71 9388.23 21399.62 4698.76 157
Test_1112_low_res92.27 17390.97 18596.18 11595.53 21691.10 12098.47 18794.66 33988.28 20586.83 23793.50 27087.00 10798.65 17384.69 25389.74 24398.80 152
testing9994.88 9694.45 9596.17 11797.20 14191.91 10299.20 8997.66 9789.95 15093.68 14897.06 17890.28 5298.50 17793.52 15091.54 22198.12 194
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11799.14 6490.33 13998.49 18397.82 6691.92 9894.75 12698.88 8387.06 10599.48 11995.40 11297.17 14198.70 160
PCF-MVS89.78 591.26 19289.63 20896.16 11995.44 21891.58 11095.29 33596.10 25385.07 27582.75 27297.45 15778.28 23699.78 8780.60 29795.65 16897.12 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 13193.06 13996.10 12099.88 189.07 17398.33 20497.55 12586.81 24590.39 20198.65 10175.09 24999.98 993.32 15697.53 13199.26 108
SR-MVS96.13 5496.16 5496.07 12199.42 4789.04 17498.59 17197.33 16390.44 13696.84 7999.12 4986.75 11199.41 12997.47 6399.44 6099.76 48
test_fmvsmconf0.01_n94.14 12093.51 12896.04 12286.79 37989.19 16999.28 8395.94 26795.70 2195.50 11398.49 11373.27 26799.79 8598.28 4998.32 11699.15 116
casdiffmvs_mvgpermissive94.00 12393.33 13396.03 12395.22 22690.90 12899.09 11195.99 26090.58 13091.55 18097.37 16079.91 21898.06 20195.01 12395.22 17299.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
reproduce_model96.57 4296.75 3496.02 12498.93 8088.46 19898.56 17497.34 16293.18 7296.96 7599.35 2188.69 7399.80 8198.53 3799.21 7799.79 38
Effi-MVS+93.87 12993.15 13896.02 12495.79 20690.76 13096.70 29695.78 28686.98 24095.71 10997.17 17379.58 22098.01 20694.57 13496.09 16099.31 103
ETV-MVS96.00 5796.00 5796.00 12696.56 16991.05 12399.63 3796.61 21693.26 7197.39 6498.30 12486.62 11698.13 19698.07 5397.57 12898.82 150
HPM-MVScopyleft95.41 8295.22 8095.99 12799.29 5589.14 17199.17 9597.09 18887.28 23495.40 11598.48 11684.93 14899.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IB-MVS89.43 692.12 17690.83 19195.98 12895.40 22190.78 12999.81 1298.06 4591.23 11685.63 24693.66 26590.63 4498.78 16291.22 17571.85 36198.36 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing22294.48 11494.00 10995.95 12997.30 13692.27 9898.82 13897.92 5689.20 17194.82 12497.26 16487.13 10297.32 25191.95 17091.56 21998.25 185
CHOSEN 1792x268894.35 11693.82 12195.95 12997.40 13188.74 19198.41 19298.27 3092.18 9591.43 18296.40 20778.88 22899.81 7993.59 14997.81 12299.30 104
ET-MVSNet_ETH3D92.56 16691.45 17695.88 13196.39 18094.13 6199.46 5996.97 19992.18 9566.94 39098.29 12594.65 1494.28 36094.34 13683.82 27899.24 109
EI-MVSNet-UG-set95.43 8095.29 7895.86 13299.07 7089.87 15898.43 18997.80 7191.78 10094.11 13998.77 8886.25 12799.48 11994.95 12696.45 15198.22 189
diffmvspermissive94.59 11094.19 10295.81 13395.54 21590.69 13298.70 15295.68 29491.61 10395.96 9997.81 13680.11 21698.06 20196.52 8895.76 16598.67 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 10794.30 9895.79 13499.25 5788.13 20398.41 19298.67 2190.38 13891.43 18298.72 9482.22 19699.95 3293.83 14595.76 16599.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 20189.33 21595.76 13595.69 21093.03 8398.99 12496.59 21880.49 34686.79 23894.45 24765.23 33298.60 17493.52 15092.18 20895.66 251
baseline93.91 12793.30 13495.72 13695.10 23990.07 15097.48 26295.91 27791.03 11893.54 15197.68 14579.58 22098.02 20594.27 13795.14 17399.08 125
test_fmvsmvis_n_192095.47 7995.40 7695.70 13794.33 26290.22 14499.70 2796.98 19896.80 792.75 16098.89 8182.46 19299.92 4198.36 4498.33 11496.97 227
HPM-MVS_fast94.89 9494.62 9295.70 13799.11 6688.44 19999.14 10497.11 18485.82 26295.69 11098.47 11783.46 16699.32 13893.16 15899.63 4599.35 99
test_fmvsm_n_192097.08 2797.55 1495.67 13997.94 11089.61 16599.93 198.48 2397.08 599.08 1499.13 4788.17 8099.93 3999.11 2399.06 8097.47 210
FA-MVS(test-final)92.22 17591.08 18395.64 14096.05 19988.98 17991.60 37397.25 16686.99 23791.84 17192.12 29083.03 17699.00 15486.91 22793.91 18398.93 139
RRT-MVS93.39 14492.64 15095.64 14096.11 19888.75 19097.40 26395.77 28889.46 16792.70 16295.42 23372.98 26998.81 16196.91 7896.97 14399.37 96
APD-MVS_3200maxsize95.64 7795.65 7295.62 14299.24 5887.80 20998.42 19097.22 17188.93 18296.64 9198.98 6485.49 13999.36 13396.68 8299.27 7099.70 55
casdiffmvspermissive93.98 12593.43 12995.61 14395.07 24189.86 15998.80 14195.84 28590.98 11992.74 16197.66 14779.71 21998.10 19894.72 13095.37 17198.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS92.59 16591.59 17395.59 14497.22 14090.03 15491.78 37098.04 4890.42 13791.66 17690.65 32886.49 12297.46 24381.78 28896.31 15599.28 106
TESTMET0.1,193.82 13193.26 13695.49 14595.21 22790.25 14199.15 10197.54 12889.18 17391.79 17294.87 24289.13 6497.63 23386.21 23596.29 15798.60 166
MAR-MVS94.43 11594.09 10695.45 14699.10 6887.47 21998.39 19997.79 7388.37 19994.02 14299.17 3878.64 23399.91 4692.48 16698.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 12393.52 12795.43 14795.76 20890.02 15598.99 12497.60 11486.58 24991.74 17397.36 16194.78 1198.34 18486.37 23392.48 20097.94 199
SR-MVS-dyc-post95.75 7295.86 6195.41 14899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6586.73 11399.36 13396.62 8399.31 6799.60 73
CSCG94.87 9894.71 9195.36 14999.54 3686.49 23999.34 7798.15 4082.71 31890.15 20499.25 2689.48 6299.86 6394.97 12598.82 9599.72 53
mvsmamba94.27 11893.91 11795.35 15096.42 17788.61 19397.77 24796.38 23291.17 11794.05 14195.27 23678.41 23597.96 20897.36 6698.40 11299.48 86
UA-Net93.30 14892.62 15195.34 15196.27 18588.53 19795.88 32396.97 19990.90 12095.37 11697.07 17782.38 19499.10 15083.91 26794.86 17698.38 176
DP-MVS88.75 24486.56 26395.34 15198.92 8187.45 22097.64 25893.52 36370.55 38781.49 30197.25 16674.43 25599.88 5471.14 35894.09 18198.67 162
fmvsm_s_conf0.5_n_a95.97 6096.19 4795.31 15396.51 17389.01 17899.81 1298.39 2695.46 2899.19 1399.16 3981.44 20899.91 4698.83 2896.97 14397.01 226
fmvsm_s_conf0.5_n96.19 5396.49 4095.30 15497.37 13389.16 17099.86 598.47 2495.68 2398.87 2299.15 4282.44 19399.92 4199.14 2197.43 13496.83 230
MVS_111021_LR95.78 6995.94 5895.28 15598.19 10387.69 21098.80 14199.26 793.39 6895.04 12298.69 9984.09 15899.76 8996.96 7699.06 8098.38 176
testdata95.26 15698.20 10187.28 22697.60 11485.21 27198.48 3599.15 4288.15 8298.72 16990.29 18899.45 5999.78 41
fmvsm_s_conf0.1_n95.56 7895.68 6995.20 15794.35 26189.10 17299.50 5197.67 9694.76 3598.68 2999.03 5981.13 21199.86 6398.63 3297.36 13696.63 233
fmvsm_s_conf0.1_n_a95.16 8895.15 8295.18 15892.06 31388.94 18299.29 8097.53 12994.46 3998.98 1898.99 6379.99 21799.85 6798.24 5196.86 14696.73 231
ECVR-MVScopyleft92.29 17191.33 17895.15 15996.41 17887.84 20898.10 22694.84 33190.82 12291.42 18497.28 16265.61 32898.49 17990.33 18797.19 13999.12 120
UGNet91.91 18190.85 18895.10 16097.06 15388.69 19298.01 23398.24 3392.41 9092.39 16793.61 26660.52 35199.68 9588.14 21497.25 13796.92 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS94.60 10994.43 9795.09 16199.66 1286.85 23499.44 6297.47 14383.22 30594.34 13698.96 7082.50 18799.55 10994.81 12799.50 5598.88 143
mvs_anonymous92.50 16791.65 17295.06 16296.60 16889.64 16397.06 28096.44 23086.64 24884.14 25893.93 25782.49 18896.17 31091.47 17396.08 16199.35 99
PatchmatchNetpermissive92.05 18091.04 18495.06 16296.17 19189.04 17491.26 37897.26 16589.56 16390.64 19590.56 33488.35 7797.11 25779.53 30196.07 16299.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS91.38 19090.16 20295.05 16496.46 17587.53 21789.69 38797.84 6282.97 31192.18 16992.00 29684.07 15998.93 15880.71 29595.52 16998.68 161
BH-RMVSNet91.25 19489.99 20395.03 16596.75 16588.55 19598.65 15894.95 32887.74 22387.74 22597.80 13768.27 30598.14 19580.53 29897.49 13298.41 173
Vis-MVSNetpermissive92.64 16291.85 16695.03 16595.12 23588.23 20098.48 18596.81 20491.61 10392.16 17097.22 16871.58 28598.00 20785.85 24297.81 12298.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111192.12 17691.19 18194.94 16796.15 19287.36 22398.12 22394.84 33190.85 12190.97 18997.26 16465.60 32998.37 18389.74 19697.14 14299.07 127
SPE-MVS-test95.98 5996.34 4594.90 16898.06 10787.66 21399.69 3496.10 25393.66 6198.35 4099.05 5786.28 12597.66 23096.96 7698.90 9299.37 96
HyFIR lowres test93.68 13693.29 13594.87 16997.57 12588.04 20598.18 21798.47 2487.57 22891.24 18795.05 24085.49 13997.46 24393.22 15792.82 19399.10 123
PLCcopyleft91.07 394.23 11994.01 10894.87 16999.17 6387.49 21899.25 8696.55 22388.43 19791.26 18698.21 12985.92 13199.86 6389.77 19597.57 12897.24 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet95.09 9095.17 8194.84 17195.42 21988.17 20199.48 5395.92 27291.47 10897.34 6698.36 12182.77 18197.41 24797.24 6998.58 10598.94 138
SCA90.64 20889.25 21694.83 17294.95 24688.83 18696.26 30997.21 17290.06 14990.03 20590.62 33066.61 32096.81 27083.16 27394.36 17998.84 146
TR-MVS90.77 20389.44 21294.76 17396.31 18388.02 20697.92 23795.96 26485.52 26788.22 22297.23 16766.80 31998.09 19984.58 25592.38 20198.17 193
CDS-MVSNet93.47 14093.04 14194.76 17394.75 25389.45 16798.82 13897.03 19387.91 21790.97 18996.48 20589.06 6596.36 29389.50 19792.81 19598.49 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 12293.80 12294.74 17593.07 30090.25 14198.12 22398.16 3989.86 15286.53 23996.95 18495.56 698.05 20391.44 17494.53 17795.93 249
OMC-MVS93.90 12893.62 12594.73 17698.63 9187.00 23298.04 23296.56 22292.19 9492.46 16498.73 9279.49 22499.14 14892.16 16994.34 18098.03 196
VDDNet90.08 22088.54 23494.69 17794.41 26087.68 21198.21 21596.40 23176.21 36893.33 15497.75 14154.93 37298.77 16394.71 13190.96 23297.61 208
SDMVSNet91.09 19689.91 20494.65 17896.80 16290.54 13797.78 24597.81 6988.34 20185.73 24395.26 23766.44 32398.26 18994.25 13886.75 25295.14 252
tpmrst92.78 15992.16 15994.65 17896.27 18587.45 22091.83 36997.10 18789.10 17694.68 12890.69 32588.22 7997.73 22889.78 19491.80 21498.77 156
EIA-MVS95.11 8995.27 7994.64 18096.34 18286.51 23899.59 4096.62 21592.51 8594.08 14098.64 10286.05 13098.24 19195.07 12198.50 10899.18 114
RPMNet85.07 30381.88 32294.64 18093.47 29086.24 24784.97 39997.21 17264.85 40390.76 19378.80 40180.95 21399.27 14053.76 40292.17 20998.41 173
LS3D90.19 21688.72 22794.59 18298.97 7386.33 24696.90 28696.60 21774.96 37484.06 26098.74 9175.78 24699.83 7374.93 33497.57 12897.62 207
patch_mono-297.10 2697.97 894.49 18399.21 6183.73 29999.62 3898.25 3195.28 3099.38 698.91 7892.28 2999.94 3599.61 1099.22 7499.78 41
Fast-Effi-MVS+91.72 18390.79 19294.49 18395.89 20287.40 22299.54 4995.70 29285.01 27889.28 21595.68 22877.75 23997.57 24083.22 27295.06 17498.51 169
IS-MVSNet93.00 15792.51 15394.49 18396.14 19487.36 22398.31 20795.70 29288.58 19090.17 20397.50 15483.02 17797.22 25387.06 22296.07 16298.90 142
VDD-MVS91.24 19590.18 20194.45 18697.08 15285.84 26598.40 19596.10 25386.99 23793.36 15398.16 13054.27 37499.20 14196.59 8690.63 23798.31 183
CS-MVS95.75 7296.19 4794.40 18797.88 11286.22 24999.66 3596.12 25292.69 8398.07 4898.89 8187.09 10397.59 23696.71 8098.62 10499.39 95
test-LLR93.11 15592.68 14894.40 18794.94 24787.27 22799.15 10197.25 16690.21 14091.57 17794.04 25084.89 14997.58 23785.94 23996.13 15898.36 180
test-mter93.27 15092.89 14594.40 18794.94 24787.27 22799.15 10197.25 16688.95 18091.57 17794.04 25088.03 8597.58 23785.94 23996.13 15898.36 180
GA-MVS90.10 21988.69 22894.33 19092.44 30687.97 20799.08 11296.26 24189.65 15786.92 23593.11 27868.09 30796.96 26382.54 28190.15 23998.05 195
nrg03090.23 21488.87 22394.32 19191.53 32593.54 7098.79 14595.89 28088.12 20984.55 25494.61 24678.80 23196.88 26792.35 16875.21 32592.53 271
Anonymous20240521188.84 23887.03 25794.27 19298.14 10584.18 29398.44 18895.58 30076.79 36689.34 21496.88 19053.42 37899.54 11187.53 22187.12 25199.09 124
PatchMatch-RL91.47 18690.54 19694.26 19398.20 10186.36 24596.94 28497.14 18087.75 22288.98 21695.75 22671.80 28299.40 13080.92 29397.39 13597.02 225
TAPA-MVS87.50 990.35 21189.05 22094.25 19498.48 9585.17 27898.42 19096.58 22182.44 32587.24 23198.53 10882.77 18198.84 16059.09 39697.88 12198.72 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192093.86 13093.74 12394.22 19595.39 22286.08 25599.73 2396.07 25796.38 1797.19 7197.78 13965.46 33199.86 6396.71 8098.92 9096.73 231
TAMVS92.62 16392.09 16294.20 19694.10 26987.68 21198.41 19296.97 19987.53 23089.74 21096.04 22084.77 15396.49 28688.97 20792.31 20498.42 172
tttt051793.30 14893.01 14294.17 19795.57 21386.47 24098.51 18097.60 11485.99 26090.55 19697.19 17194.80 1098.31 18585.06 24891.86 21297.74 201
dp90.16 21888.83 22594.14 19896.38 18186.42 24191.57 37497.06 19084.76 28288.81 21790.19 34684.29 15697.43 24675.05 33391.35 23098.56 167
dcpmvs_295.67 7696.18 4994.12 19998.82 8584.22 29297.37 26795.45 30790.70 12495.77 10798.63 10490.47 4698.68 17199.20 2099.22 7499.45 89
CostFormer92.89 15892.48 15494.12 19994.99 24485.89 26292.89 35997.00 19786.98 24095.00 12390.78 32190.05 5697.51 24192.92 16291.73 21698.96 133
ADS-MVSNet88.99 23387.30 25294.07 20196.21 18887.56 21687.15 39196.78 20783.01 30989.91 20787.27 37178.87 22997.01 26274.20 34192.27 20597.64 204
Vis-MVSNet (Re-imp)93.26 15193.00 14394.06 20296.14 19486.71 23798.68 15496.70 21188.30 20389.71 21297.64 14885.43 14296.39 29188.06 21696.32 15499.08 125
h-mvs3392.47 16891.95 16594.05 20397.13 14885.01 28198.36 20298.08 4493.85 5696.27 9596.73 19883.19 17399.43 12595.81 10268.09 37297.70 203
MSDG88.29 25386.37 26594.04 20496.90 15886.15 25396.52 29994.36 34977.89 36179.22 32796.95 18469.72 29499.59 10773.20 34992.58 19996.37 244
EPP-MVSNet93.75 13393.67 12494.01 20595.86 20485.70 26798.67 15697.66 9784.46 28591.36 18597.18 17291.16 3297.79 21892.93 16193.75 18598.53 168
FMVSNet388.81 24287.08 25693.99 20696.52 17294.59 5098.08 23096.20 24485.85 26182.12 28891.60 30574.05 26095.40 34079.04 30580.24 29791.99 290
WBMVS91.35 19190.49 19793.94 20796.97 15693.40 7499.27 8496.71 21087.40 23283.10 27091.76 30292.38 2796.23 30788.95 20877.89 30992.17 283
Anonymous2024052987.66 26485.58 27793.92 20897.59 12385.01 28198.13 22197.13 18266.69 40188.47 22096.01 22155.09 37099.51 11387.00 22484.12 27497.23 218
BH-w/o92.32 17091.79 16993.91 20996.85 15986.18 25199.11 11095.74 29088.13 20884.81 25197.00 18277.26 24297.91 20989.16 20698.03 11997.64 204
MVSTER92.71 16092.32 15593.86 21097.29 13792.95 8799.01 12296.59 21890.09 14685.51 24794.00 25494.61 1596.56 28090.77 18483.03 28592.08 287
PVSNet_BlendedMVS93.36 14693.20 13793.84 21198.77 8791.61 10899.47 5598.04 4891.44 10994.21 13792.63 28683.50 16499.87 5897.41 6483.37 28390.05 348
tpm291.77 18291.09 18293.82 21294.83 25185.56 27092.51 36497.16 17984.00 29193.83 14690.66 32787.54 9197.17 25487.73 21991.55 22098.72 158
tpm cat188.89 23687.27 25393.76 21395.79 20685.32 27590.76 38397.09 18876.14 36985.72 24588.59 36082.92 17898.04 20476.96 32091.43 22697.90 200
PVSNet_083.28 1687.31 26885.16 28393.74 21494.78 25284.59 28798.91 13298.69 2089.81 15478.59 33493.23 27561.95 34599.34 13794.75 12855.72 40197.30 214
GeoE90.60 20989.56 20993.72 21595.10 23985.43 27199.41 6894.94 32983.96 29387.21 23296.83 19474.37 25697.05 26180.50 29993.73 18698.67 162
VPNet88.30 25286.57 26293.49 21691.95 31691.35 11298.18 21797.20 17688.61 18884.52 25594.89 24162.21 34496.76 27389.34 20172.26 35892.36 273
MonoMVSNet90.69 20689.78 20693.45 21791.78 32084.97 28396.51 30094.44 34390.56 13185.96 24290.97 31778.61 23496.27 30695.35 11383.79 27999.11 122
VPA-MVSNet89.10 23287.66 24793.45 21792.56 30491.02 12497.97 23698.32 2986.92 24286.03 24192.01 29468.84 30197.10 25990.92 17975.34 32492.23 279
tpmvs89.16 23187.76 24493.35 21997.19 14384.75 28690.58 38597.36 16081.99 33184.56 25389.31 35783.98 16098.17 19474.85 33690.00 24197.12 219
BH-untuned91.46 18790.84 18993.33 22096.51 17384.83 28598.84 13795.50 30486.44 25683.50 26296.70 19975.49 24897.77 22086.78 23097.81 12297.40 211
FMVSNet286.90 27284.79 29193.24 22195.11 23692.54 9597.67 25795.86 28482.94 31280.55 30991.17 31462.89 34195.29 34277.23 31779.71 30391.90 291
FIs90.70 20589.87 20593.18 22292.29 30891.12 11898.17 21998.25 3189.11 17583.44 26394.82 24382.26 19596.17 31087.76 21882.76 28792.25 277
CR-MVSNet88.83 24087.38 25193.16 22393.47 29086.24 24784.97 39994.20 35288.92 18390.76 19386.88 37584.43 15494.82 35270.64 35992.17 20998.41 173
UniMVSNet (Re)89.50 22988.32 23793.03 22492.21 31090.96 12698.90 13398.39 2689.13 17483.22 26492.03 29281.69 20296.34 29986.79 22972.53 35491.81 292
F-COLMAP92.07 17991.75 17193.02 22598.16 10482.89 31198.79 14595.97 26286.54 25187.92 22397.80 13778.69 23299.65 10185.97 23795.93 16496.53 239
reproduce_monomvs92.11 17891.82 16892.98 22698.25 9890.55 13698.38 20197.93 5594.81 3380.46 31192.37 28896.46 397.17 25494.06 13973.61 34391.23 316
mvsany_test194.57 11195.09 8692.98 22695.84 20582.07 32198.76 14795.24 32092.87 8296.45 9298.71 9784.81 15199.15 14497.68 6095.49 17097.73 202
NR-MVSNet87.74 26386.00 27192.96 22891.46 32690.68 13396.65 29797.42 15288.02 21373.42 36393.68 26377.31 24195.83 32684.26 25971.82 36292.36 273
XXY-MVS87.75 26086.02 27092.95 22990.46 33889.70 16297.71 25495.90 27884.02 29080.95 30594.05 24967.51 31497.10 25985.16 24678.41 30692.04 289
Patchmatch-test86.25 28684.06 30392.82 23094.42 25982.88 31282.88 40694.23 35171.58 38379.39 32590.62 33089.00 6796.42 29063.03 38691.37 22999.16 115
DU-MVS88.83 24087.51 24892.79 23191.46 32690.07 15098.71 14997.62 11188.87 18483.21 26593.68 26374.63 25095.93 32086.95 22572.47 35592.36 273
PMMVS93.62 13993.90 11892.79 23196.79 16481.40 32798.85 13596.81 20491.25 11596.82 8298.15 13177.02 24398.13 19693.15 15996.30 15698.83 149
UniMVSNet_NR-MVSNet89.60 22688.55 23392.75 23392.17 31190.07 15098.74 14898.15 4088.37 19983.21 26593.98 25582.86 17995.93 32086.95 22572.47 35592.25 277
sd_testset89.23 23088.05 24392.74 23496.80 16285.33 27495.85 32697.03 19388.34 20185.73 24395.26 23761.12 34997.76 22585.61 24386.75 25295.14 252
EPNet_dtu92.28 17292.15 16092.70 23597.29 13784.84 28498.64 16097.82 6692.91 8093.02 15897.02 18185.48 14195.70 33172.25 35594.89 17597.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 4497.84 1092.68 23698.71 8978.11 35899.70 2797.71 8798.18 197.36 6599.76 190.37 5099.94 3599.27 1699.54 5499.99 1
FC-MVSNet-test90.22 21589.40 21392.67 23791.78 32089.86 15997.89 23898.22 3488.81 18582.96 27194.66 24581.90 20195.96 31885.89 24182.52 29092.20 282
WR-MVS88.54 25087.22 25592.52 23891.93 31889.50 16698.56 17497.84 6286.99 23781.87 29693.81 26074.25 25995.92 32285.29 24574.43 33492.12 285
UWE-MVS93.18 15293.40 13192.50 23996.56 16983.55 30198.09 22997.84 6289.50 16591.72 17496.23 21391.08 3596.70 27486.28 23493.33 18897.26 216
MIMVSNet84.48 31181.83 32392.42 24091.73 32287.36 22385.52 39494.42 34781.40 33781.91 29487.58 36551.92 38192.81 37373.84 34488.15 24697.08 223
HQP-MVS91.50 18591.23 18092.29 24193.95 27486.39 24399.16 9696.37 23393.92 5187.57 22696.67 20173.34 26497.77 22093.82 14686.29 25592.72 267
miper_enhance_ethall90.33 21289.70 20792.22 24297.12 14988.93 18498.35 20395.96 26488.60 18983.14 26992.33 28987.38 9496.18 30986.49 23277.89 30991.55 302
PatchT85.44 29983.19 30992.22 24293.13 29983.00 30783.80 40596.37 23370.62 38690.55 19679.63 40084.81 15194.87 35058.18 39891.59 21898.79 153
AUN-MVS90.17 21789.50 21092.19 24496.21 18882.67 31597.76 25097.53 12988.05 21191.67 17596.15 21583.10 17597.47 24288.11 21566.91 37896.43 242
HQP_MVS91.26 19290.95 18692.16 24593.84 28186.07 25799.02 12096.30 23793.38 6986.99 23396.52 20372.92 27097.75 22693.46 15386.17 25892.67 269
hse-mvs291.67 18491.51 17592.15 24696.22 18782.61 31797.74 25197.53 12993.85 5696.27 9596.15 21583.19 17397.44 24595.81 10266.86 37996.40 243
CLD-MVS91.06 19890.71 19392.10 24794.05 27386.10 25499.55 4496.29 24094.16 4684.70 25297.17 17369.62 29697.82 21694.74 12986.08 26092.39 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 26086.31 26692.07 24890.81 33488.56 19498.33 20497.18 17787.76 22181.87 29693.90 25872.45 27495.43 33883.13 27571.30 36592.23 279
test_vis1_n_192093.08 15693.42 13092.04 24996.31 18379.36 34599.83 1096.06 25896.72 998.53 3498.10 13258.57 35699.91 4697.86 5798.79 9996.85 229
cl2289.57 22788.79 22691.91 25097.94 11087.62 21497.98 23596.51 22585.03 27682.37 28491.79 29983.65 16296.50 28485.96 23877.89 30991.61 299
XVG-OURS90.83 20290.49 19791.86 25195.23 22581.25 33195.79 32895.92 27288.96 17990.02 20698.03 13371.60 28499.35 13691.06 17787.78 24894.98 255
XVG-OURS-SEG-HR90.95 20090.66 19591.83 25295.18 23181.14 33495.92 32095.92 27288.40 19890.33 20297.85 13470.66 29099.38 13192.83 16388.83 24494.98 255
tpm89.67 22588.95 22291.82 25392.54 30581.43 32692.95 35895.92 27287.81 21990.50 19889.44 35484.99 14795.65 33283.67 27082.71 28898.38 176
pmmvs487.58 26686.17 26991.80 25489.58 34988.92 18597.25 27295.28 31682.54 32180.49 31093.17 27775.62 24796.05 31582.75 27878.90 30490.42 339
GBi-Net86.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
test186.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
FMVSNet183.94 32081.32 32991.80 25491.94 31788.81 18796.77 29095.25 31777.98 35778.25 33790.25 34150.37 38894.97 34773.27 34877.81 31491.62 296
v2v48287.27 26985.76 27491.78 25889.59 34887.58 21598.56 17495.54 30284.53 28482.51 27991.78 30073.11 26896.47 28782.07 28474.14 34091.30 313
tt080586.50 28284.79 29191.63 25991.97 31481.49 32596.49 30197.38 15682.24 32782.44 28095.82 22551.22 38498.25 19084.55 25680.96 29695.13 254
OPM-MVS89.76 22489.15 21891.57 26090.53 33785.58 26998.11 22595.93 27092.88 8186.05 24096.47 20667.06 31897.87 21389.29 20486.08 26091.26 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth88.94 23588.12 24191.40 26195.32 22386.93 23397.85 24295.55 30184.19 28881.97 29391.50 30784.16 15795.91 32384.69 25377.89 30991.36 310
v114486.83 27485.31 28291.40 26189.75 34687.21 23198.31 20795.45 30783.22 30582.70 27490.78 32173.36 26396.36 29379.49 30274.69 33190.63 336
EI-MVSNet89.87 22389.38 21491.36 26394.32 26385.87 26397.61 25996.59 21885.10 27385.51 24797.10 17581.30 21096.56 28083.85 26983.03 28591.64 294
UniMVSNet_ETH3D85.65 29883.79 30691.21 26490.41 33980.75 33995.36 33395.78 28678.76 35581.83 29994.33 24849.86 38996.66 27584.30 25883.52 28296.22 245
v119286.32 28584.71 29391.17 26589.53 35186.40 24298.13 22195.44 30982.52 32282.42 28290.62 33071.58 28596.33 30077.23 31774.88 32890.79 328
v886.11 28784.45 29891.10 26689.99 34186.85 23497.24 27395.36 31481.99 33179.89 31989.86 35074.53 25496.39 29178.83 30972.32 35790.05 348
c3_l88.19 25587.23 25491.06 26794.97 24586.17 25297.72 25295.38 31283.43 30281.68 30091.37 30982.81 18095.72 33084.04 26673.70 34291.29 314
IterMVS-LS88.34 25187.44 24991.04 26894.10 26985.85 26498.10 22695.48 30585.12 27282.03 29291.21 31381.35 20995.63 33383.86 26875.73 32291.63 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 22889.05 22091.00 26988.77 35984.36 29097.39 26495.97 26288.47 19181.88 29593.80 26182.48 18996.50 28489.34 20183.34 28492.15 284
V4287.00 27185.68 27690.98 27089.91 34286.08 25598.32 20695.61 29883.67 29982.72 27390.67 32674.00 26196.53 28281.94 28774.28 33790.32 341
Anonymous2023121184.72 30682.65 31890.91 27197.71 11684.55 28897.28 27096.67 21266.88 40079.18 32890.87 32058.47 35796.60 27782.61 28074.20 33891.59 301
v14419286.40 28384.89 28890.91 27189.48 35285.59 26898.21 21595.43 31082.45 32482.62 27790.58 33372.79 27396.36 29378.45 31274.04 34190.79 328
cl____87.82 25786.79 26190.89 27394.88 24985.43 27197.81 24395.24 32082.91 31680.71 30891.22 31281.97 20095.84 32581.34 29075.06 32691.40 309
DIV-MVS_self_test87.82 25786.81 26090.87 27494.87 25085.39 27397.81 24395.22 32582.92 31580.76 30791.31 31181.99 19895.81 32781.36 28975.04 32791.42 308
v1085.73 29684.01 30490.87 27490.03 34086.73 23697.20 27695.22 32581.25 33979.85 32089.75 35173.30 26696.28 30576.87 32172.64 35389.61 356
test_vis1_n90.40 21090.27 20090.79 27691.55 32476.48 36499.12 10994.44 34394.31 4297.34 6696.95 18443.60 39899.42 12697.57 6297.60 12796.47 240
v192192086.02 28884.44 29990.77 27789.32 35485.20 27698.10 22695.35 31582.19 32882.25 28690.71 32370.73 28896.30 30476.85 32274.49 33390.80 327
v124085.77 29584.11 30290.73 27889.26 35585.15 27997.88 24095.23 32481.89 33482.16 28790.55 33569.60 29796.31 30175.59 33174.87 32990.72 333
MVS-HIRNet79.01 34675.13 35990.66 27993.82 28481.69 32485.16 39693.75 35854.54 40674.17 35859.15 41257.46 36096.58 27963.74 38394.38 17893.72 260
dmvs_re88.69 24688.06 24290.59 28093.83 28378.68 35295.75 32996.18 24887.99 21484.48 25696.32 21167.52 31396.94 26584.98 25085.49 26496.14 246
test_fmvs192.35 16992.94 14490.57 28197.19 14375.43 37099.55 4494.97 32795.20 3196.82 8297.57 15259.59 35499.84 6997.30 6798.29 11796.46 241
ACMH83.09 1784.60 30882.61 31990.57 28193.18 29882.94 30896.27 30794.92 33081.01 34272.61 37293.61 26656.54 36297.79 21874.31 33981.07 29590.99 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 32281.35 32890.56 28391.37 32888.06 20497.29 26997.87 5978.51 35676.20 34490.91 31864.78 33396.47 28761.71 38973.50 34687.13 379
AllTest84.97 30483.12 31090.52 28496.82 16078.84 35095.89 32192.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
TestCases90.52 28496.82 16078.84 35092.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
ACMM86.95 1388.77 24388.22 23990.43 28693.61 28781.34 32998.50 18195.92 27287.88 21883.85 26195.20 23967.20 31697.89 21186.90 22884.90 26792.06 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 30782.78 31590.40 28789.58 34985.18 27797.31 26894.73 33681.93 33376.05 34692.01 29465.48 33096.11 31378.75 31069.14 36989.91 351
KD-MVS_2432*160082.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
miper_refine_blended82.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
v14886.38 28485.06 28490.37 29089.47 35384.10 29498.52 17795.48 30583.80 29580.93 30690.22 34474.60 25296.31 30180.92 29371.55 36390.69 334
pmmvs585.87 29084.40 30190.30 29188.53 36384.23 29198.60 16993.71 35981.53 33680.29 31392.02 29364.51 33495.52 33582.04 28678.34 30791.15 318
LTVRE_ROB81.71 1984.59 30982.72 31790.18 29292.89 30283.18 30693.15 35694.74 33578.99 35275.14 35492.69 28465.64 32797.63 23369.46 36381.82 29389.74 353
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 30582.93 31190.16 29391.73 32283.54 30295.00 33893.30 36588.77 18673.19 36593.30 27353.62 37797.65 23275.88 32981.54 29489.30 359
ACMP87.39 1088.71 24588.24 23890.12 29493.91 27981.06 33598.50 18195.67 29589.43 16880.37 31295.55 22965.67 32697.83 21590.55 18684.51 26991.47 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs1_n91.07 19791.41 17790.06 29594.10 26974.31 37499.18 9294.84 33194.81 3396.37 9497.46 15650.86 38799.82 7697.14 7197.90 12096.04 248
eth_miper_zixun_eth87.76 25987.00 25890.06 29594.67 25582.65 31697.02 28395.37 31384.19 28881.86 29891.58 30681.47 20695.90 32483.24 27173.61 34391.61 299
LPG-MVS_test88.86 23788.47 23590.06 29593.35 29580.95 33698.22 21395.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
LGP-MVS_train90.06 29593.35 29580.95 33695.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
test0.0.03 188.96 23488.61 23090.03 29991.09 33184.43 28998.97 12797.02 19590.21 14080.29 31396.31 21284.89 14991.93 38572.98 35085.70 26393.73 259
jajsoiax87.35 26786.51 26489.87 30087.75 37381.74 32397.03 28195.98 26188.47 19180.15 31593.80 26161.47 34696.36 29389.44 19984.47 27191.50 303
ADS-MVSNet287.62 26586.88 25989.86 30196.21 18879.14 34887.15 39192.99 36683.01 30989.91 20787.27 37178.87 22992.80 37474.20 34192.27 20597.64 204
test_djsdf88.26 25487.73 24589.84 30288.05 36882.21 31997.77 24796.17 24986.84 24382.41 28391.95 29872.07 27895.99 31689.83 19184.50 27091.32 312
ppachtmachnet_test83.63 32381.57 32689.80 30389.01 35685.09 28097.13 27894.50 34278.84 35376.14 34591.00 31669.78 29394.61 35763.40 38474.36 33589.71 355
CP-MVSNet86.54 28085.45 28089.79 30491.02 33382.78 31497.38 26697.56 12485.37 26979.53 32493.03 27971.86 28195.25 34379.92 30073.43 34991.34 311
WB-MVSnew88.69 24688.34 23689.77 30594.30 26785.99 26098.14 22097.31 16487.15 23687.85 22496.07 21969.91 29195.52 33572.83 35291.47 22587.80 372
mvs_tets87.09 27086.22 26789.71 30687.87 36981.39 32896.73 29595.90 27888.19 20779.99 31793.61 26659.96 35396.31 30189.40 20084.34 27291.43 307
D2MVS87.96 25687.39 25089.70 30791.84 31983.40 30398.31 20798.49 2288.04 21278.23 33890.26 34073.57 26296.79 27284.21 26083.53 28188.90 364
COLMAP_ROBcopyleft82.69 1884.54 31082.82 31289.70 30796.72 16678.85 34995.89 32192.83 36971.55 38477.54 34295.89 22459.40 35599.14 14867.26 37388.26 24591.11 320
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 28185.49 27989.66 30991.04 33283.31 30597.53 26198.20 3584.95 27979.64 32190.90 31978.01 23895.33 34176.29 32672.81 35190.35 340
Fast-Effi-MVS+-dtu88.84 23888.59 23289.58 31093.44 29378.18 35698.65 15894.62 34088.46 19384.12 25995.37 23568.91 29996.52 28382.06 28591.70 21794.06 258
anonymousdsp86.69 27685.75 27589.53 31186.46 38182.94 30896.39 30395.71 29183.97 29279.63 32290.70 32468.85 30095.94 31986.01 23684.02 27589.72 354
our_test_384.47 31282.80 31389.50 31289.01 35683.90 29797.03 28194.56 34181.33 33875.36 35390.52 33671.69 28394.54 35868.81 36776.84 31890.07 346
Patchmtry83.61 32481.64 32489.50 31293.36 29482.84 31384.10 40294.20 35269.47 39379.57 32386.88 37584.43 15494.78 35368.48 36974.30 33690.88 325
PS-CasMVS85.81 29384.58 29689.49 31490.77 33582.11 32097.20 27697.36 16084.83 28179.12 32992.84 28267.42 31595.16 34578.39 31373.25 35091.21 317
v7n84.42 31382.75 31689.43 31588.15 36681.86 32296.75 29395.67 29580.53 34578.38 33689.43 35569.89 29296.35 29873.83 34572.13 35990.07 346
JIA-IIPM85.97 28984.85 28989.33 31693.23 29773.68 37785.05 39897.13 18269.62 39291.56 17968.03 40888.03 8596.96 26377.89 31593.12 19097.34 213
MS-PatchMatch86.75 27585.92 27289.22 31791.97 31482.47 31896.91 28596.14 25183.74 29677.73 34093.53 26958.19 35897.37 25076.75 32398.35 11387.84 370
IterMVS85.81 29384.67 29489.22 31793.51 28983.67 30096.32 30694.80 33485.09 27478.69 33090.17 34766.57 32293.17 37079.48 30377.42 31690.81 326
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 31582.56 32189.15 31993.73 28679.16 34796.43 30294.28 35081.09 34174.00 35994.03 25254.58 37397.67 22976.10 32778.81 30590.63 336
TransMVSNet (Re)81.97 33079.61 34089.08 32089.70 34784.01 29597.26 27191.85 38278.84 35373.07 36991.62 30467.17 31795.21 34467.50 37259.46 39588.02 369
PEN-MVS85.21 30183.93 30589.07 32189.89 34481.31 33097.09 27997.24 16984.45 28678.66 33192.68 28568.44 30494.87 35075.98 32870.92 36691.04 321
miper_lstm_enhance86.90 27286.20 26889.00 32294.53 25881.19 33296.74 29495.24 32082.33 32680.15 31590.51 33781.99 19894.68 35680.71 29573.58 34591.12 319
IterMVS-SCA-FT85.73 29684.64 29589.00 32293.46 29282.90 31096.27 30794.70 33785.02 27778.62 33290.35 33966.61 32093.33 36779.38 30477.36 31790.76 330
MVP-Stereo86.61 27985.83 27388.93 32488.70 36183.85 29896.07 31794.41 34882.15 32975.64 35191.96 29767.65 31296.45 28977.20 31998.72 10086.51 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 29284.82 29088.87 32588.73 36083.34 30498.63 16291.66 38480.41 34982.44 28091.35 31074.63 25095.42 33984.13 26271.39 36487.84 370
XVG-ACMP-BASELINE85.86 29184.95 28788.57 32689.90 34377.12 36294.30 34495.60 29987.40 23282.12 28892.99 28153.42 37897.66 23085.02 24983.83 27690.92 324
LCM-MVSNet-Re88.59 24988.61 23088.51 32795.53 21672.68 38396.85 28888.43 40388.45 19473.14 36690.63 32975.82 24594.38 35992.95 16095.71 16798.48 171
CVMVSNet90.30 21390.91 18788.46 32894.32 26373.58 37897.61 25997.59 11890.16 14588.43 22197.10 17576.83 24492.86 37182.64 27993.54 18798.93 139
DTE-MVSNet84.14 31782.80 31388.14 32988.95 35879.87 34296.81 28996.24 24283.50 30177.60 34192.52 28767.89 31194.24 36172.64 35369.05 37090.32 341
ITE_SJBPF87.93 33092.26 30976.44 36593.47 36487.67 22779.95 31895.49 23256.50 36397.38 24875.24 33282.33 29189.98 350
TinyColmap80.42 33977.94 34487.85 33192.09 31278.58 35393.74 35089.94 39674.99 37369.77 37891.78 30046.09 39497.58 23765.17 38177.89 30987.38 374
Effi-MVS+-dtu89.97 22290.68 19487.81 33295.15 23271.98 38597.87 24195.40 31191.92 9887.57 22691.44 30874.27 25896.84 26889.45 19893.10 19194.60 257
pmmvs679.90 34177.31 34887.67 33384.17 38978.13 35795.86 32593.68 36067.94 39772.67 37189.62 35350.98 38695.75 32874.80 33766.04 38089.14 362
kuosan84.40 31483.34 30887.60 33495.87 20379.21 34692.39 36596.87 20276.12 37073.79 36093.98 25581.51 20490.63 38964.13 38275.42 32392.95 264
FMVSNet582.29 32880.54 33387.52 33593.79 28584.01 29593.73 35192.47 37376.92 36474.27 35786.15 37963.69 33989.24 39869.07 36674.79 33089.29 360
myMVS_eth3d88.68 24889.07 21987.50 33695.14 23379.74 34397.68 25596.66 21386.52 25282.63 27596.84 19285.22 14689.89 39369.43 36491.54 22192.87 265
MDA-MVSNet_test_wron79.65 34477.05 34987.45 33787.79 37280.13 34096.25 31094.44 34373.87 37851.80 40687.47 37068.04 30892.12 38366.02 37767.79 37590.09 344
YYNet179.64 34577.04 35087.43 33887.80 37179.98 34196.23 31194.44 34373.83 37951.83 40587.53 36667.96 31092.07 38466.00 37867.75 37690.23 343
Patchmatch-RL test81.90 33280.13 33687.23 33980.71 39970.12 39284.07 40388.19 40483.16 30770.57 37482.18 39187.18 10192.59 37682.28 28362.78 38698.98 131
MDA-MVSNet-bldmvs77.82 35574.75 36187.03 34088.33 36478.52 35496.34 30592.85 36875.57 37148.87 40887.89 36357.32 36192.49 37960.79 39164.80 38490.08 345
mmtdpeth83.69 32182.59 32086.99 34192.82 30376.98 36396.16 31591.63 38582.89 31792.41 16682.90 38654.95 37198.19 19396.27 9153.27 40485.81 386
EG-PatchMatch MVS79.92 34077.59 34686.90 34287.06 37877.90 36096.20 31494.06 35474.61 37566.53 39288.76 35940.40 40396.20 30867.02 37483.66 28086.61 380
OpenMVS_ROBcopyleft73.86 2077.99 35475.06 36086.77 34383.81 39177.94 35996.38 30491.53 38867.54 39868.38 38387.13 37443.94 39696.08 31455.03 40181.83 29286.29 384
pmmvs-eth3d78.71 34976.16 35486.38 34480.25 40281.19 33294.17 34792.13 37877.97 35866.90 39182.31 39055.76 36492.56 37773.63 34762.31 38985.38 390
testing387.75 26088.22 23986.36 34594.66 25677.41 36199.52 5097.95 5486.05 25981.12 30496.69 20086.18 12889.31 39761.65 39090.12 24092.35 276
test_040278.81 34876.33 35386.26 34691.18 33078.44 35595.88 32391.34 39068.55 39470.51 37689.91 34952.65 38094.99 34647.14 40779.78 30285.34 392
testgi82.29 32881.00 33186.17 34787.24 37674.84 37397.39 26491.62 38688.63 18775.85 35095.42 23346.07 39591.55 38666.87 37679.94 30192.12 285
TDRefinement78.01 35375.31 35786.10 34870.06 41373.84 37693.59 35491.58 38774.51 37673.08 36891.04 31549.63 39197.12 25674.88 33559.47 39487.33 376
mvs5depth78.17 35275.56 35685.97 34980.43 40176.44 36585.46 39589.24 40176.39 36778.17 33988.26 36151.73 38295.73 32969.31 36561.09 39185.73 387
MVStest176.56 35873.43 36485.96 35086.30 38380.88 33894.26 34591.74 38361.98 40558.53 40189.96 34869.30 29891.47 38859.26 39549.56 41085.52 389
SixPastTwentyTwo82.63 32781.58 32585.79 35188.12 36771.01 38895.17 33692.54 37284.33 28772.93 37092.08 29160.41 35295.61 33474.47 33874.15 33990.75 331
OurMVSNet-221017-084.13 31883.59 30785.77 35287.81 37070.24 39094.89 33993.65 36186.08 25876.53 34393.28 27461.41 34796.14 31280.95 29277.69 31590.93 323
UnsupCasMVSNet_eth78.90 34776.67 35285.58 35382.81 39574.94 37291.98 36896.31 23684.64 28365.84 39487.71 36451.33 38392.23 38172.89 35156.50 40089.56 357
ttmdpeth79.80 34377.91 34585.47 35483.34 39275.75 36795.32 33491.45 38976.84 36574.81 35591.71 30353.98 37694.13 36272.42 35461.29 39086.51 382
test_vis1_rt81.31 33580.05 33885.11 35591.29 32970.66 38998.98 12677.39 41885.76 26468.80 38182.40 38936.56 40599.44 12292.67 16586.55 25485.24 393
lessismore_v085.08 35685.59 38569.28 39390.56 39467.68 38790.21 34554.21 37595.46 33773.88 34362.64 38790.50 338
UnsupCasMVSNet_bld73.85 36570.14 36984.99 35779.44 40375.73 36888.53 38895.24 32070.12 39061.94 39874.81 40541.41 40193.62 36568.65 36851.13 40885.62 388
mamv491.41 18893.57 12684.91 35897.11 15058.11 40595.68 33195.93 27082.09 33089.78 20995.71 22790.09 5598.24 19197.26 6898.50 10898.38 176
K. test v381.04 33679.77 33984.83 35987.41 37470.23 39195.60 33293.93 35683.70 29867.51 38889.35 35655.76 36493.58 36676.67 32468.03 37390.67 335
Anonymous2023120680.76 33779.42 34184.79 36084.78 38772.98 38096.53 29892.97 36779.56 35074.33 35688.83 35861.27 34892.15 38260.59 39275.92 32189.24 361
RPSCF85.33 30085.55 27884.67 36194.63 25762.28 40093.73 35193.76 35774.38 37785.23 25097.06 17864.09 33598.31 18580.98 29186.08 26093.41 263
CL-MVSNet_self_test79.89 34278.34 34384.54 36281.56 39775.01 37196.88 28795.62 29781.10 34075.86 34985.81 38068.49 30390.26 39163.21 38556.51 39988.35 367
LF4IMVS81.94 33181.17 33084.25 36387.23 37768.87 39593.35 35591.93 38183.35 30475.40 35293.00 28049.25 39296.65 27678.88 30878.11 30887.22 378
test_fmvs285.10 30285.45 28084.02 36489.85 34565.63 39898.49 18392.59 37190.45 13585.43 24993.32 27143.94 39696.59 27890.81 18284.19 27389.85 352
Anonymous2024052178.63 35076.90 35183.82 36582.82 39472.86 38195.72 33093.57 36273.55 38172.17 37384.79 38249.69 39092.51 37865.29 38074.50 33286.09 385
MIMVSNet175.92 36073.30 36583.81 36681.29 39875.57 36992.26 36692.05 37973.09 38267.48 38986.18 37840.87 40287.64 40255.78 40070.68 36788.21 368
dongtai81.36 33480.61 33283.62 36794.25 26873.32 37995.15 33796.81 20473.56 38069.79 37792.81 28381.00 21286.80 40452.08 40570.06 36890.75 331
EU-MVSNet84.19 31684.42 30083.52 36888.64 36267.37 39696.04 31895.76 28985.29 27078.44 33593.18 27670.67 28991.48 38775.79 33075.98 32091.70 293
new_pmnet76.02 35973.71 36382.95 36983.88 39072.85 38291.26 37892.26 37570.44 38862.60 39781.37 39347.64 39392.32 38061.85 38872.10 36083.68 398
Syy-MVS84.10 31984.53 29782.83 37095.14 23365.71 39797.68 25596.66 21386.52 25282.63 27596.84 19268.15 30689.89 39345.62 40891.54 22192.87 265
KD-MVS_self_test77.47 35675.88 35582.24 37181.59 39668.93 39492.83 36294.02 35577.03 36373.14 36683.39 38555.44 36890.42 39067.95 37057.53 39887.38 374
pmmvs372.86 36669.76 37182.17 37273.86 40974.19 37594.20 34689.01 40264.23 40467.72 38680.91 39741.48 40088.65 40062.40 38754.02 40383.68 398
DSMNet-mixed81.60 33381.43 32782.10 37384.36 38860.79 40193.63 35386.74 40679.00 35179.32 32687.15 37363.87 33789.78 39566.89 37591.92 21195.73 250
new-patchmatchnet74.80 36472.40 36781.99 37478.36 40572.20 38494.44 34292.36 37477.06 36263.47 39679.98 39951.04 38588.85 39960.53 39354.35 40284.92 395
test20.0378.51 35177.48 34781.62 37583.07 39371.03 38796.11 31692.83 36981.66 33569.31 38089.68 35257.53 35987.29 40358.65 39768.47 37186.53 381
CMPMVSbinary58.40 2180.48 33880.11 33781.59 37685.10 38659.56 40394.14 34895.95 26668.54 39560.71 39993.31 27255.35 36997.87 21383.06 27684.85 26887.33 376
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 36372.85 36680.98 37778.98 40464.75 39990.81 38285.77 40780.95 34368.23 38582.81 38729.08 40992.84 37276.54 32562.46 38885.36 391
mvsany_test375.85 36174.52 36279.83 37873.53 41060.64 40291.73 37187.87 40583.91 29470.55 37582.52 38831.12 40793.66 36486.66 23162.83 38585.19 394
ambc79.60 37972.76 41256.61 40676.20 41092.01 38068.25 38480.23 39823.34 41194.73 35473.78 34660.81 39287.48 373
EGC-MVSNET60.70 37555.37 37976.72 38086.35 38271.08 38689.96 38684.44 4110.38 4231.50 42484.09 38437.30 40488.10 40140.85 41273.44 34870.97 408
DeepMVS_CXcopyleft76.08 38190.74 33651.65 41490.84 39286.47 25557.89 40287.98 36235.88 40692.60 37565.77 37965.06 38383.97 397
test_f71.94 36770.82 36875.30 38272.77 41153.28 41091.62 37289.66 39975.44 37264.47 39578.31 40220.48 41389.56 39678.63 31166.02 38183.05 401
test_fmvs375.09 36275.19 35874.81 38377.45 40654.08 40995.93 31990.64 39382.51 32373.29 36481.19 39422.29 41286.29 40585.50 24467.89 37484.06 396
APD_test168.93 37066.98 37374.77 38480.62 40053.15 41187.97 38985.01 40953.76 40759.26 40087.52 36725.19 41089.95 39256.20 39967.33 37781.19 402
test_method70.10 36968.66 37274.41 38586.30 38355.84 40794.47 34189.82 39735.18 41466.15 39384.75 38330.54 40877.96 41570.40 36260.33 39389.44 358
dmvs_testset77.17 35778.99 34271.71 38687.25 37538.55 42391.44 37581.76 41485.77 26369.49 37995.94 22369.71 29584.37 40652.71 40476.82 31992.21 281
LCM-MVSNet60.07 37656.37 37871.18 38754.81 42248.67 41582.17 40789.48 40037.95 41249.13 40769.12 40613.75 42081.76 40759.28 39451.63 40783.10 400
N_pmnet70.19 36869.87 37071.12 38888.24 36530.63 42795.85 32628.70 42670.18 38968.73 38286.55 37764.04 33693.81 36353.12 40373.46 34788.94 363
PMMVS258.97 37755.07 38070.69 38962.72 41755.37 40885.97 39380.52 41549.48 40845.94 40968.31 40715.73 41880.78 41149.79 40637.12 41475.91 403
test_vis3_rt61.29 37458.75 37768.92 39067.41 41452.84 41291.18 38059.23 42566.96 39941.96 41358.44 41311.37 42194.72 35574.25 34057.97 39759.20 412
WB-MVS66.44 37166.29 37466.89 39174.84 40744.93 41893.00 35784.09 41271.15 38555.82 40381.63 39263.79 33880.31 41321.85 41750.47 40975.43 404
SSC-MVS65.42 37265.20 37566.06 39273.96 40843.83 41992.08 36783.54 41369.77 39154.73 40480.92 39663.30 34079.92 41420.48 41848.02 41174.44 405
FPMVS61.57 37360.32 37665.34 39360.14 42042.44 42191.02 38189.72 39844.15 40942.63 41280.93 39519.02 41480.59 41242.50 40972.76 35273.00 406
ANet_high50.71 38246.17 38564.33 39444.27 42452.30 41376.13 41178.73 41664.95 40227.37 41755.23 41414.61 41967.74 41736.01 41318.23 41772.95 407
testf156.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
APD_test256.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
Gipumacopyleft54.77 38052.22 38462.40 39786.50 38059.37 40450.20 41590.35 39536.52 41341.20 41449.49 41518.33 41681.29 40832.10 41465.34 38246.54 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 38152.86 38356.05 39832.75 42641.97 42273.42 41276.12 41921.91 41939.68 41596.39 20942.59 39965.10 41878.00 31414.92 41961.08 411
PMVScopyleft41.42 2345.67 38342.50 38655.17 39934.28 42532.37 42566.24 41378.71 41730.72 41522.04 42059.59 4114.59 42477.85 41627.49 41558.84 39655.29 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 38437.64 38953.90 40049.46 42343.37 42065.09 41466.66 42226.19 41825.77 41948.53 4163.58 42663.35 41926.15 41627.28 41554.97 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 38540.93 38741.29 40161.97 41833.83 42484.00 40465.17 42327.17 41627.56 41646.72 41717.63 41760.41 42019.32 41918.82 41629.61 416
EMVS39.96 38639.88 38840.18 40259.57 42132.12 42684.79 40164.57 42426.27 41726.14 41844.18 42018.73 41559.29 42117.03 42017.67 41829.12 417
wuyk23d16.71 38916.73 39316.65 40360.15 41925.22 42841.24 4165.17 4276.56 4205.48 4233.61 4233.64 42522.72 42215.20 4219.52 4201.99 420
test12316.58 39019.47 3927.91 4043.59 4285.37 42994.32 3431.39 4292.49 42213.98 42244.60 4192.91 4272.65 42311.35 4230.57 42215.70 418
testmvs18.81 38823.05 3916.10 4054.48 4272.29 43097.78 2453.00 4283.27 42118.60 42162.71 4091.53 4282.49 42414.26 4221.80 42113.50 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k22.52 38730.03 3900.00 4060.00 4290.00 4310.00 41797.17 1780.00 4240.00 42598.77 8874.35 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.87 3929.16 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42482.48 1890.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.21 39110.94 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42598.50 1110.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.74 34367.75 371
FOURS199.50 4288.94 18299.55 4497.47 14391.32 11398.12 46
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 17
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.67 1093.28 7597.61 11287.78 22097.41 6399.16 3990.15 5499.56 10898.35 4599.70 37
RE-MVS-def95.70 6899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6585.24 14596.62 8399.31 6799.60 73
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2399.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 1899.98 9
9.1496.87 2799.34 5099.50 5197.49 14089.41 16998.59 3299.43 1689.78 5899.69 9498.69 3099.62 46
save fliter99.34 5093.85 6599.65 3697.63 10995.69 22
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 21
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7698.84 146
sam_mvs87.08 104
MTGPAbinary97.45 146
test_post190.74 38441.37 42185.38 14396.36 29383.16 273
test_post46.00 41887.37 9597.11 257
patchmatchnet-post84.86 38188.73 7296.81 270
MTMP99.21 8891.09 391
gm-plane-assit94.69 25488.14 20288.22 20697.20 16998.29 18790.79 183
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7899.38 7197.66 9789.57 16298.39 3799.18 3690.88 4099.66 97
test_899.55 3593.07 8199.37 7497.64 10590.18 14298.36 3999.19 3390.94 3799.64 103
agg_prior297.84 5999.87 999.91 21
agg_prior99.54 3692.66 9197.64 10597.98 5399.61 105
test_prior492.00 10199.41 68
test_prior299.57 4291.43 11098.12 4698.97 6590.43 4798.33 4699.81 23
旧先验298.67 15685.75 26598.96 2098.97 15793.84 144
新几何298.26 210
旧先验198.97 7392.90 8997.74 7999.15 4291.05 3699.33 6599.60 73
无先验98.52 17797.82 6687.20 23599.90 5087.64 22099.85 30
原ACMM298.69 153
test22298.32 9691.21 11498.08 23097.58 12083.74 29695.87 10399.02 6186.74 11299.64 4299.81 35
testdata299.88 5484.16 261
segment_acmp90.56 45
testdata197.89 23892.43 87
plane_prior793.84 28185.73 266
plane_prior693.92 27886.02 25972.92 270
plane_prior596.30 23797.75 22693.46 15386.17 25892.67 269
plane_prior496.52 203
plane_prior385.91 26193.65 6286.99 233
plane_prior299.02 12093.38 69
plane_prior193.90 280
plane_prior86.07 25799.14 10493.81 5986.26 257
n20.00 430
nn0.00 430
door-mid84.90 410
test1197.68 92
door85.30 408
HQP5-MVS86.39 243
HQP-NCC93.95 27499.16 9693.92 5187.57 226
ACMP_Plane93.95 27499.16 9693.92 5187.57 226
BP-MVS93.82 146
HQP4-MVS87.57 22697.77 22092.72 267
HQP3-MVS96.37 23386.29 255
HQP2-MVS73.34 264
NP-MVS93.94 27786.22 24996.67 201
MDTV_nov1_ep13_2view91.17 11791.38 37687.45 23193.08 15786.67 11587.02 22398.95 137
MDTV_nov1_ep1390.47 19996.14 19488.55 19591.34 37797.51 13589.58 16192.24 16890.50 33886.99 10897.61 23577.64 31692.34 203
ACMMP++_ref82.64 289
ACMMP++83.83 276
Test By Simon83.62 163