This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16299.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
MVS93.92 11892.28 14798.83 795.69 19996.82 896.22 30498.17 3784.89 27384.34 24898.61 10579.32 21499.83 7393.88 13299.43 6099.86 29
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11398.24 12388.17 7299.83 7396.11 8899.60 4999.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 71
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 64
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11298.46 11786.56 11199.46 11895.00 11392.69 18899.50 78
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8695.65 10594.76 23886.52 11299.49 11295.29 10592.97 18499.53 74
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10399.86 1299.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 187
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
3Dnovator+87.72 893.43 13591.84 15898.17 2295.73 19895.08 3298.92 13297.04 18691.42 10781.48 29397.60 14674.60 23999.79 8290.84 17198.97 8299.64 62
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6397.45 14489.60 15498.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14596.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 187
alignmvs95.77 6695.00 8298.06 2897.35 12895.68 1999.71 2697.50 13691.50 10396.16 9398.61 10586.28 11799.00 15096.19 8691.74 20799.51 77
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9797.65 10289.55 15899.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3997.48 13986.58 24294.42 12699.13 4687.36 9099.98 993.64 13798.33 10899.48 79
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6897.55 12392.43 8493.82 13999.12 4887.30 9299.91 4594.02 12999.06 7699.74 47
131493.44 13491.98 15597.84 3295.24 21394.38 5296.22 30497.92 5590.18 13682.28 27697.71 14177.63 22699.80 8191.94 16198.67 9899.34 94
test1297.83 3399.33 5394.45 4997.55 12397.56 5788.60 6699.50 11199.71 3499.55 72
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13597.59 11690.66 12097.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10997.44 14789.02 17197.90 5499.22 2788.90 6399.49 11294.63 12299.79 2799.68 56
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9797.44 14790.08 14198.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 9193.94 10897.58 4096.43 16894.09 5998.93 13099.16 889.50 15995.27 11197.85 13181.50 19699.65 9892.79 15494.02 17598.99 122
PAPM96.35 4395.94 5497.58 4094.10 25795.25 2498.93 13098.17 3794.26 4493.94 13598.72 9389.68 5697.88 20296.36 8499.29 6899.62 66
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7297.66 9590.18 13698.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15498.73 1890.33 13397.16 7197.43 15579.19 21599.53 10996.91 7391.85 20599.24 102
lupinMVS96.32 4595.94 5497.44 4495.05 23194.87 3699.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19096.98 7098.97 8299.37 90
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 87
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 72
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8499.06 5588.08 7699.89 5384.88 24199.62 4599.79 36
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17397.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20993.07 7698.82 13997.85 6091.53 10282.56 26897.58 14871.97 26699.82 7691.01 16899.23 7099.22 105
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16897.14 17588.95 17493.12 14899.25 2385.62 12799.94 3496.56 8199.48 5599.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5498.76 1596.54 1397.84 5598.22 12487.49 8499.66 9495.35 10397.78 11999.00 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 9999.70 2798.05 4686.48 24798.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
CANet_DTU94.31 10993.35 12397.20 5597.03 14994.71 4498.62 16295.54 28895.61 2797.21 6798.47 11571.88 26799.84 6988.38 20197.46 12797.04 214
QAPM91.41 17989.49 20097.17 5695.66 20193.42 7098.60 16697.51 13380.92 33481.39 29497.41 15672.89 25999.87 5882.33 27298.68 9798.21 180
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10299.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
114514_t94.06 11393.05 13297.06 5899.08 6992.26 9498.97 12897.01 19182.58 31192.57 15498.22 12480.68 20499.30 13689.34 19299.02 7999.63 64
jason95.40 7794.86 8497.03 5992.91 28994.23 5499.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 19996.08 8998.47 10698.96 125
jason: jason.
test_prior97.01 6099.58 3091.77 9997.57 12199.49 11299.79 36
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12691.46 10699.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
GG-mvs-BLEND96.98 6596.53 16394.81 4187.20 37697.74 7793.91 13696.40 20396.56 296.94 25495.08 10998.95 8599.20 106
thres20093.69 12692.59 14396.97 6697.76 10994.74 4399.35 7799.36 289.23 16491.21 17896.97 18083.42 15998.77 15785.08 23790.96 22297.39 202
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 8194.39 12899.24 2586.43 11599.99 596.22 8599.40 6399.71 51
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4597.53 12789.72 14995.86 10098.94 7486.59 10999.97 2195.13 10899.56 5199.68 56
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6297.48 13989.69 15095.89 9798.72 9386.37 11699.95 3194.62 12399.22 7199.52 75
thres100view90093.34 13992.15 15196.90 6997.62 11494.84 3899.06 11799.36 287.96 20990.47 18996.78 19283.29 16298.75 15984.11 25390.69 22497.12 209
tfpn200view993.43 13592.27 14896.90 6997.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22497.12 209
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5697.81 6890.54 12796.88 7499.05 5687.57 8299.96 2895.65 9499.72 3199.78 38
gg-mvs-nofinetune90.00 21087.71 23796.89 7396.15 18394.69 4585.15 38297.74 7768.32 38292.97 15160.16 39596.10 396.84 25793.89 13198.87 8999.14 110
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9499.43 6099.78 38
X-MVStestdata90.69 19688.66 21996.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7529.59 40787.37 8799.87 5895.65 9499.43 6099.78 38
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11499.36 287.96 20990.47 18996.78 19283.29 16298.71 16382.93 26790.47 22896.61 224
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10399.88 498.04 4893.64 6494.21 13097.76 13783.50 15699.87 5897.41 6197.75 12098.79 145
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13499.47 5697.80 7090.54 12796.83 7999.03 5886.51 11399.95 3195.65 9499.72 3199.75 46
thres40093.39 13792.27 14896.73 7897.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22496.61 224
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10699.45 193.86 5695.15 11498.73 9188.48 6799.76 8697.23 6599.56 5199.40 87
region2R96.30 4696.17 4896.70 8199.70 790.31 13699.46 6097.66 9590.55 12697.07 7299.07 5386.85 10299.97 2195.43 10199.74 2999.81 33
MVS_Test93.67 12992.67 14196.69 8296.72 15892.66 8697.22 26896.03 24787.69 22095.12 11594.03 24681.55 19598.28 18189.17 19696.46 14399.14 110
ab-mvs91.05 18989.17 20796.69 8295.96 19191.72 10192.62 35097.23 16585.61 25989.74 19993.89 25268.55 28899.42 12391.09 16687.84 23798.92 133
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8395.62 10697.52 15097.92 197.38 23898.31 4498.80 9298.20 181
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 19090.25 13799.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
MVSFormer94.71 9894.08 10196.61 8595.05 23194.87 3697.77 24296.17 23886.84 23698.04 4998.52 10885.52 12895.99 30689.83 18298.97 8298.96 125
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14998.80 14297.78 7383.59 29393.85 13799.21 2983.79 15399.97 2192.37 15799.00 8099.74 47
test250694.80 9294.21 9596.58 8896.41 16992.18 9598.01 22898.96 1190.82 11793.46 14497.28 15985.92 12398.45 17489.82 18497.19 13399.12 113
baseline192.61 15691.28 16996.58 8897.05 14894.63 4697.72 24696.20 23489.82 14788.56 20896.85 18886.85 10297.82 20688.42 20080.10 29397.30 204
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14298.58 17097.51 13390.65 12292.44 15698.90 7887.77 8199.90 5090.88 17099.32 6599.68 56
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14499.36 7697.41 15190.64 12395.49 10898.95 7185.51 13099.98 996.00 9199.59 5099.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14299.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OpenMVScopyleft85.28 1490.75 19488.84 21496.48 9393.58 27693.51 6898.80 14297.41 15182.59 31078.62 32297.49 15268.00 29599.82 7684.52 24798.55 10396.11 237
iter_conf05_1194.23 11093.49 11996.46 9497.51 12191.32 10899.96 194.31 33595.62 2699.32 899.22 2757.79 34598.59 17098.00 5099.64 4099.46 81
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 14090.76 12698.39 19597.11 17993.92 5288.66 20798.33 11978.14 22399.85 6795.02 11198.57 10298.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 6295.65 6896.45 9699.50 4289.77 15798.22 20798.90 1389.19 16696.74 8298.95 7185.91 12599.92 4093.94 13099.46 5699.66 60
thisisatest051594.75 9494.19 9696.43 9796.13 18892.64 8999.47 5697.60 11287.55 22393.17 14797.59 14794.71 1298.42 17588.28 20293.20 18198.24 178
LFMVS92.23 16690.84 17996.42 9898.24 9591.08 11898.24 20696.22 23383.39 29694.74 12198.31 12061.12 33598.85 15494.45 12592.82 18599.32 95
CP-MVS96.22 4896.15 5196.42 9899.67 1089.62 16099.70 2797.61 11090.07 14296.00 9499.16 3887.43 8599.92 4096.03 9099.72 3199.70 52
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10092.42 29489.92 15399.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 86
mPP-MVS95.90 6195.75 6396.38 10199.58 3089.41 16499.26 8697.41 15190.66 12094.82 11898.95 7186.15 12199.98 995.24 10799.64 4099.74 47
testing1195.33 7894.98 8396.37 10297.20 13592.31 9299.29 8297.68 9090.59 12494.43 12597.20 16690.79 4198.60 16895.25 10692.38 19398.18 182
CNLPA93.64 13092.74 13996.36 10398.96 7590.01 15299.19 9195.89 26786.22 25089.40 20298.85 8380.66 20599.84 6988.57 19996.92 13899.24 102
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10497.14 14291.10 11699.32 8097.43 14992.10 9591.53 17196.38 20683.29 16299.68 9293.42 14496.37 14698.25 175
ETVMVS94.50 10593.90 11096.31 10597.48 12492.98 7999.07 11497.86 5988.09 20494.40 12796.90 18488.35 6997.28 24290.72 17592.25 19998.66 157
PVSNet87.13 1293.69 12692.83 13896.28 10697.99 10490.22 14099.38 7298.93 1291.42 10793.66 14197.68 14271.29 27499.64 10087.94 20797.20 13298.98 123
bld_raw_dy_0_6491.37 18189.75 19596.23 10797.51 12190.58 13299.16 9788.98 38795.64 2587.18 22299.20 3057.19 34998.66 16598.00 5084.86 25899.46 81
testing9194.88 8894.44 9096.21 10897.19 13791.90 9899.23 8897.66 9589.91 14593.66 14197.05 17790.21 5198.50 17193.52 13991.53 21698.25 175
1112_ss92.71 15291.55 16496.20 10995.56 20391.12 11498.48 18194.69 32488.29 19886.89 22698.50 11087.02 9898.66 16584.75 24289.77 23298.81 143
原ACMM196.18 11099.03 7190.08 14597.63 10788.98 17297.00 7398.97 6488.14 7599.71 9088.23 20399.62 4598.76 149
Test_1112_low_res92.27 16590.97 17596.18 11095.53 20591.10 11698.47 18394.66 32588.28 19986.83 22793.50 26387.00 9998.65 16784.69 24389.74 23398.80 144
testing9994.88 8894.45 8996.17 11297.20 13591.91 9799.20 9097.66 9589.95 14493.68 14097.06 17590.28 5098.50 17193.52 13991.54 21398.12 184
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11299.14 6490.33 13598.49 17997.82 6591.92 9694.75 12098.88 8287.06 9799.48 11695.40 10297.17 13598.70 152
PCF-MVS89.78 591.26 18289.63 19796.16 11495.44 20791.58 10595.29 32496.10 24285.07 26882.75 26297.45 15478.28 22299.78 8480.60 28795.65 16197.12 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 12393.06 13196.10 11599.88 189.07 16998.33 19997.55 12386.81 23890.39 19198.65 10075.09 23699.98 993.32 14597.53 12599.26 101
SR-MVS96.13 5096.16 5096.07 11699.42 4789.04 17098.59 16897.33 15890.44 13096.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
test_fmvsmconf0.01_n94.14 11293.51 11896.04 11786.79 36789.19 16599.28 8595.94 25595.70 2195.50 10798.49 11273.27 25499.79 8298.28 4598.32 11099.15 109
casdiffmvs_mvgpermissive94.00 11593.33 12496.03 11895.22 21590.90 12499.09 11295.99 24890.58 12591.55 17097.37 15779.91 20898.06 19295.01 11295.22 16599.13 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 12193.15 13096.02 11995.79 19590.76 12696.70 28995.78 27386.98 23395.71 10397.17 17079.58 21098.01 19794.57 12496.09 15399.31 96
ETV-MVS96.00 5396.00 5396.00 12096.56 16191.05 11999.63 3796.61 20693.26 7097.39 6298.30 12186.62 10898.13 18798.07 4997.57 12298.82 142
HPM-MVScopyleft95.41 7695.22 7595.99 12199.29 5589.14 16799.17 9697.09 18387.28 22795.40 10998.48 11484.93 14099.38 12895.64 9899.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IB-MVS89.43 692.12 16890.83 18195.98 12295.40 21090.78 12599.81 1298.06 4591.23 11185.63 23693.66 25890.63 4298.78 15691.22 16571.85 35198.36 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing22294.48 10694.00 10395.95 12397.30 13092.27 9398.82 13997.92 5589.20 16594.82 11897.26 16187.13 9497.32 24191.95 16091.56 21198.25 175
CHOSEN 1792x268894.35 10893.82 11295.95 12397.40 12588.74 18498.41 18898.27 3192.18 9391.43 17296.40 20378.88 21699.81 7993.59 13897.81 11699.30 97
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12596.39 17194.13 5899.46 6096.97 19492.18 9366.94 37698.29 12294.65 1494.28 34994.34 12683.82 27199.24 102
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 7089.87 15498.43 18597.80 7091.78 9894.11 13298.77 8786.25 11999.48 11694.95 11596.45 14498.22 179
diffmvspermissive94.59 10294.19 9695.81 12795.54 20490.69 12898.70 15295.68 28091.61 10095.96 9597.81 13380.11 20698.06 19296.52 8295.76 15898.67 154
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 9994.30 9295.79 12899.25 5788.13 19498.41 18898.67 2290.38 13291.43 17298.72 9382.22 18899.95 3193.83 13495.76 15899.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 19189.33 20595.76 12995.69 19993.03 7898.99 12596.59 20880.49 33686.79 22894.45 24165.23 31898.60 16893.52 13992.18 20095.66 241
baseline93.91 11993.30 12595.72 13095.10 22890.07 14697.48 25695.91 26491.03 11293.54 14397.68 14279.58 21098.02 19694.27 12795.14 16699.08 117
test_fmvsmvis_n_192095.47 7395.40 7195.70 13194.33 25190.22 14099.70 2796.98 19396.80 792.75 15298.89 8082.46 18499.92 4098.36 4098.33 10896.97 217
HPM-MVS_fast94.89 8794.62 8695.70 13199.11 6688.44 19099.14 10697.11 17985.82 25595.69 10498.47 11583.46 15899.32 13593.16 14799.63 4499.35 92
test_fmvsm_n_192097.08 2797.55 1495.67 13397.94 10589.61 16199.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 200
FA-MVS(test-final)92.22 16791.08 17395.64 13496.05 18988.98 17391.60 35997.25 16186.99 23091.84 16192.12 28183.03 16899.00 15086.91 21793.91 17698.93 131
APD-MVS_3200maxsize95.64 7195.65 6895.62 13599.24 5887.80 20098.42 18697.22 16688.93 17696.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
casdiffmvspermissive93.98 11793.43 12095.61 13695.07 23089.86 15598.80 14295.84 27290.98 11492.74 15397.66 14479.71 20998.10 18994.72 11995.37 16498.87 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS92.59 15791.59 16395.59 13797.22 13490.03 15091.78 35698.04 4890.42 13191.66 16690.65 31686.49 11497.46 23381.78 27896.31 14899.28 99
TESTMET0.1,193.82 12393.26 12795.49 13895.21 21690.25 13799.15 10397.54 12689.18 16791.79 16294.87 23589.13 5997.63 22386.21 22596.29 15098.60 158
MAR-MVS94.43 10794.09 10095.45 13999.10 6887.47 21098.39 19597.79 7288.37 19394.02 13499.17 3778.64 22199.91 4592.48 15698.85 9098.96 125
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 11593.52 11795.43 14095.76 19790.02 15198.99 12597.60 11286.58 24291.74 16397.36 15894.78 1198.34 17786.37 22392.48 19297.94 189
SR-MVS-dyc-post95.75 6895.86 5795.41 14199.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 67
CSCG94.87 9094.71 8595.36 14299.54 3686.49 23099.34 7898.15 4082.71 30990.15 19499.25 2389.48 5799.86 6394.97 11498.82 9199.72 50
UA-Net93.30 14092.62 14295.34 14396.27 17688.53 18995.88 31496.97 19490.90 11595.37 11097.07 17482.38 18699.10 14783.91 25794.86 16998.38 168
DP-MVS88.75 23586.56 25495.34 14398.92 7787.45 21197.64 25293.52 34970.55 37381.49 29297.25 16374.43 24299.88 5471.14 34794.09 17498.67 154
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14596.51 16589.01 17299.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 216
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14697.37 12789.16 16699.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 220
MVS_111021_LR95.78 6595.94 5495.28 14798.19 9887.69 20198.80 14299.26 793.39 6795.04 11698.69 9884.09 15099.76 8696.96 7199.06 7698.38 168
testdata95.26 14898.20 9687.28 21797.60 11285.21 26498.48 3499.15 4188.15 7498.72 16290.29 17999.45 5899.78 38
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14994.35 25089.10 16899.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 223
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15092.06 30088.94 17699.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 221
ECVR-MVScopyleft92.29 16391.33 16895.15 15196.41 16987.84 19998.10 22094.84 31790.82 11791.42 17497.28 15965.61 31498.49 17390.33 17897.19 13399.12 113
UGNet91.91 17290.85 17895.10 15297.06 14788.69 18598.01 22898.24 3492.41 8792.39 15793.61 25960.52 33799.68 9288.14 20497.25 13196.92 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS94.60 10194.43 9195.09 15399.66 1286.85 22599.44 6397.47 14183.22 29894.34 12998.96 6882.50 17999.55 10694.81 11699.50 5498.88 135
mvs_anonymous92.50 15991.65 16295.06 15496.60 16089.64 15997.06 27396.44 22086.64 24184.14 24993.93 25082.49 18096.17 29991.47 16396.08 15499.35 92
PatchmatchNetpermissive92.05 17191.04 17495.06 15496.17 18289.04 17091.26 36497.26 16089.56 15790.64 18590.56 32288.35 6997.11 24679.53 29196.07 15599.03 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS91.38 18090.16 19195.05 15696.46 16787.53 20889.69 37397.84 6182.97 30392.18 15992.00 28784.07 15198.93 15380.71 28595.52 16298.68 153
BH-RMVSNet91.25 18489.99 19295.03 15796.75 15788.55 18798.65 15894.95 31487.74 21787.74 21497.80 13468.27 29198.14 18680.53 28897.49 12698.41 165
Vis-MVSNetpermissive92.64 15491.85 15795.03 15795.12 22488.23 19198.48 18196.81 19891.61 10092.16 16097.22 16571.58 27298.00 19885.85 23297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111192.12 16891.19 17194.94 15996.15 18387.36 21498.12 21794.84 31790.85 11690.97 17997.26 16165.60 31598.37 17689.74 18797.14 13699.07 119
CS-MVS-test95.98 5596.34 4194.90 16098.06 10287.66 20499.69 3496.10 24293.66 6298.35 3999.05 5686.28 11797.66 22096.96 7198.90 8899.37 90
HyFIR lowres test93.68 12893.29 12694.87 16197.57 11988.04 19698.18 21198.47 2587.57 22291.24 17795.05 23285.49 13197.46 23393.22 14692.82 18599.10 115
PLCcopyleft91.07 394.23 11094.01 10294.87 16199.17 6387.49 20999.25 8796.55 21388.43 19191.26 17698.21 12685.92 12399.86 6389.77 18697.57 12297.24 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet95.09 8495.17 7694.84 16395.42 20888.17 19299.48 5495.92 25991.47 10497.34 6498.36 11882.77 17397.41 23797.24 6498.58 10198.94 130
SCA90.64 19789.25 20694.83 16494.95 23588.83 18096.26 30197.21 16790.06 14390.03 19590.62 31866.61 30696.81 25983.16 26394.36 17298.84 138
TR-MVS90.77 19389.44 20194.76 16596.31 17488.02 19797.92 23295.96 25285.52 26088.22 21197.23 16466.80 30598.09 19084.58 24592.38 19398.17 183
CDS-MVSNet93.47 13393.04 13394.76 16594.75 24289.45 16398.82 13997.03 18887.91 21190.97 17996.48 20189.06 6096.36 28489.50 18892.81 18798.49 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 11493.80 11394.74 16793.07 28890.25 13798.12 21798.16 3989.86 14686.53 23096.95 18195.56 698.05 19491.44 16494.53 17095.93 239
OMC-MVS93.90 12093.62 11694.73 16898.63 8787.00 22398.04 22796.56 21292.19 9292.46 15598.73 9179.49 21399.14 14592.16 15994.34 17398.03 186
VDDNet90.08 20988.54 22594.69 16994.41 24987.68 20298.21 20996.40 22176.21 35693.33 14697.75 13854.93 35998.77 15794.71 12090.96 22297.61 198
SDMVSNet91.09 18689.91 19394.65 17096.80 15490.54 13397.78 24097.81 6888.34 19585.73 23395.26 22966.44 30998.26 18294.25 12886.75 24295.14 242
tpmrst92.78 15192.16 15094.65 17096.27 17687.45 21191.83 35597.10 18289.10 17094.68 12290.69 31388.22 7197.73 21889.78 18591.80 20698.77 148
EIA-MVS95.11 8395.27 7494.64 17296.34 17386.51 22999.59 4196.62 20592.51 8294.08 13398.64 10186.05 12298.24 18495.07 11098.50 10499.18 107
RPMNet85.07 29481.88 31194.64 17293.47 27886.24 23984.97 38497.21 16764.85 38990.76 18378.80 38680.95 20399.27 13753.76 38892.17 20198.41 165
LS3D90.19 20588.72 21794.59 17498.97 7386.33 23896.90 27996.60 20774.96 36184.06 25198.74 9075.78 23399.83 7374.93 32497.57 12297.62 197
patch_mono-297.10 2697.97 894.49 17599.21 6183.73 29099.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
Fast-Effi-MVS+91.72 17490.79 18294.49 17595.89 19287.40 21399.54 5095.70 27885.01 27189.28 20495.68 22177.75 22597.57 23083.22 26295.06 16798.51 161
IS-MVSNet93.00 14992.51 14494.49 17596.14 18587.36 21498.31 20295.70 27888.58 18490.17 19397.50 15183.02 16997.22 24387.06 21296.07 15598.90 134
VDD-MVS91.24 18590.18 19094.45 17897.08 14685.84 25798.40 19196.10 24286.99 23093.36 14598.16 12754.27 36199.20 13896.59 8090.63 22798.31 174
CS-MVS95.75 6896.19 4394.40 17997.88 10786.22 24199.66 3596.12 24192.69 8098.07 4798.89 8087.09 9597.59 22696.71 7498.62 10099.39 89
test-LLR93.11 14792.68 14094.40 17994.94 23687.27 21899.15 10397.25 16190.21 13491.57 16794.04 24484.89 14197.58 22785.94 22996.13 15198.36 171
test-mter93.27 14292.89 13794.40 17994.94 23687.27 21899.15 10397.25 16188.95 17491.57 16794.04 24488.03 7797.58 22785.94 22996.13 15198.36 171
iter_conf0593.48 13293.18 12994.39 18297.15 14194.17 5799.30 8192.97 35392.38 9086.70 22995.42 22695.67 596.59 26794.67 12184.32 26492.39 261
GA-MVS90.10 20888.69 21894.33 18392.44 29387.97 19899.08 11396.26 23189.65 15186.92 22593.11 27168.09 29396.96 25282.54 27190.15 22998.05 185
nrg03090.23 20388.87 21394.32 18491.53 31193.54 6798.79 14695.89 26788.12 20384.55 24594.61 24078.80 21996.88 25692.35 15875.21 31692.53 260
Anonymous20240521188.84 22987.03 24894.27 18598.14 10084.18 28498.44 18495.58 28676.79 35589.34 20396.88 18753.42 36499.54 10887.53 21187.12 24199.09 116
PatchMatch-RL91.47 17790.54 18694.26 18698.20 9686.36 23696.94 27797.14 17587.75 21688.98 20595.75 22071.80 26999.40 12780.92 28397.39 12997.02 215
TAPA-MVS87.50 990.35 20089.05 21094.25 18798.48 9185.17 27098.42 18696.58 21182.44 31687.24 22098.53 10782.77 17398.84 15559.09 38297.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192093.86 12293.74 11494.22 18895.39 21186.08 24799.73 2396.07 24596.38 1797.19 7097.78 13665.46 31799.86 6396.71 7498.92 8696.73 221
TAMVS92.62 15592.09 15394.20 18994.10 25787.68 20298.41 18896.97 19487.53 22489.74 19996.04 21584.77 14596.49 27788.97 19892.31 19698.42 164
tttt051793.30 14093.01 13494.17 19095.57 20286.47 23198.51 17697.60 11285.99 25390.55 18697.19 16894.80 1098.31 17885.06 23891.86 20497.74 191
dp90.16 20788.83 21594.14 19196.38 17286.42 23291.57 36097.06 18584.76 27588.81 20690.19 33484.29 14897.43 23675.05 32391.35 22198.56 159
dcpmvs_295.67 7096.18 4594.12 19298.82 8184.22 28397.37 26095.45 29390.70 11995.77 10298.63 10390.47 4498.68 16499.20 2099.22 7199.45 83
CostFormer92.89 15092.48 14594.12 19294.99 23385.89 25492.89 34697.00 19286.98 23395.00 11790.78 30990.05 5397.51 23192.92 15191.73 20898.96 125
ADS-MVSNet88.99 22387.30 24394.07 19496.21 17987.56 20787.15 37796.78 20083.01 30189.91 19787.27 35778.87 21797.01 25174.20 33192.27 19797.64 194
Vis-MVSNet (Re-imp)93.26 14393.00 13594.06 19596.14 18586.71 22898.68 15496.70 20188.30 19789.71 20197.64 14585.43 13496.39 28288.06 20696.32 14799.08 117
h-mvs3392.47 16091.95 15694.05 19697.13 14385.01 27398.36 19798.08 4493.85 5796.27 9196.73 19483.19 16599.43 12295.81 9268.09 36197.70 193
MSDG88.29 24486.37 25694.04 19796.90 15086.15 24596.52 29294.36 33477.89 35179.22 31796.95 18169.72 28199.59 10473.20 33992.58 19196.37 234
EPP-MVSNet93.75 12593.67 11594.01 19895.86 19385.70 25998.67 15697.66 9584.46 27891.36 17597.18 16991.16 3097.79 20892.93 15093.75 17798.53 160
FMVSNet388.81 23387.08 24793.99 19996.52 16494.59 4798.08 22496.20 23485.85 25482.12 27991.60 29474.05 24795.40 32979.04 29580.24 29091.99 281
Anonymous2024052987.66 25585.58 26893.92 20097.59 11785.01 27398.13 21597.13 17766.69 38788.47 20996.01 21655.09 35899.51 11087.00 21484.12 26697.23 208
BH-w/o92.32 16291.79 15993.91 20196.85 15186.18 24399.11 11195.74 27688.13 20284.81 24197.00 17977.26 22897.91 19989.16 19798.03 11397.64 194
MVSTER92.71 15292.32 14693.86 20297.29 13292.95 8299.01 12396.59 20890.09 14085.51 23794.00 24894.61 1596.56 27090.77 17483.03 27792.08 278
PVSNet_BlendedMVS93.36 13893.20 12893.84 20398.77 8391.61 10399.47 5698.04 4891.44 10594.21 13092.63 27883.50 15699.87 5897.41 6183.37 27590.05 337
tpm291.77 17391.09 17293.82 20494.83 24085.56 26292.51 35197.16 17484.00 28493.83 13890.66 31587.54 8397.17 24487.73 20991.55 21298.72 150
tpm cat188.89 22787.27 24493.76 20595.79 19585.32 26790.76 36997.09 18376.14 35785.72 23588.59 34782.92 17098.04 19576.96 31091.43 21897.90 190
PVSNet_083.28 1687.31 25985.16 27493.74 20694.78 24184.59 27898.91 13398.69 2189.81 14878.59 32493.23 26861.95 33199.34 13494.75 11755.72 38897.30 204
GeoE90.60 19889.56 19893.72 20795.10 22885.43 26399.41 6994.94 31583.96 28687.21 22196.83 19174.37 24397.05 25080.50 28993.73 17898.67 154
VPNet88.30 24386.57 25393.49 20891.95 30391.35 10798.18 21197.20 17188.61 18284.52 24694.89 23462.21 33096.76 26289.34 19272.26 34892.36 263
VPA-MVSNet89.10 22287.66 23893.45 20992.56 29191.02 12097.97 23198.32 3086.92 23586.03 23292.01 28568.84 28797.10 24890.92 16975.34 31592.23 269
tpmvs89.16 22187.76 23593.35 21097.19 13784.75 27790.58 37197.36 15681.99 32184.56 24489.31 34483.98 15298.17 18574.85 32690.00 23197.12 209
BH-untuned91.46 17890.84 17993.33 21196.51 16584.83 27698.84 13895.50 29086.44 24983.50 25396.70 19575.49 23597.77 21086.78 22097.81 11697.40 201
FMVSNet286.90 26384.79 28293.24 21295.11 22592.54 9097.67 25195.86 27182.94 30480.55 30091.17 30362.89 32795.29 33177.23 30779.71 29691.90 282
FIs90.70 19589.87 19493.18 21392.29 29591.12 11498.17 21398.25 3289.11 16983.44 25494.82 23782.26 18796.17 29987.76 20882.76 27992.25 267
CR-MVSNet88.83 23187.38 24293.16 21493.47 27886.24 23984.97 38494.20 33888.92 17790.76 18386.88 36184.43 14694.82 34170.64 34892.17 20198.41 165
UniMVSNet (Re)89.50 21988.32 22893.03 21592.21 29790.96 12298.90 13498.39 2789.13 16883.22 25592.03 28381.69 19496.34 29086.79 21972.53 34491.81 283
F-COLMAP92.07 17091.75 16193.02 21698.16 9982.89 30298.79 14695.97 25086.54 24487.92 21297.80 13478.69 22099.65 9885.97 22795.93 15796.53 229
mvsany_test194.57 10395.09 8092.98 21795.84 19482.07 31298.76 14895.24 30692.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 192
NR-MVSNet87.74 25486.00 26292.96 21891.46 31290.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22795.83 31684.26 24971.82 35292.36 263
XXY-MVS87.75 25186.02 26192.95 21990.46 32589.70 15897.71 24895.90 26584.02 28380.95 29694.05 24367.51 30097.10 24885.16 23678.41 29992.04 280
Patchmatch-test86.25 27784.06 29492.82 22094.42 24882.88 30382.88 39194.23 33771.58 36979.39 31590.62 31889.00 6296.42 28163.03 37391.37 22099.16 108
DU-MVS88.83 23187.51 23992.79 22191.46 31290.07 14698.71 15097.62 10988.87 17883.21 25693.68 25674.63 23795.93 31086.95 21572.47 34592.36 263
PMMVS93.62 13193.90 11092.79 22196.79 15681.40 31998.85 13696.81 19891.25 11096.82 8098.15 12877.02 22998.13 18793.15 14896.30 14998.83 141
UniMVSNet_NR-MVSNet89.60 21688.55 22492.75 22392.17 29890.07 14698.74 14998.15 4088.37 19383.21 25693.98 24982.86 17195.93 31086.95 21572.47 34592.25 267
sd_testset89.23 22088.05 23492.74 22496.80 15485.33 26695.85 31797.03 18888.34 19585.73 23395.26 22961.12 33597.76 21585.61 23386.75 24295.14 242
EPNet_dtu92.28 16492.15 15192.70 22597.29 13284.84 27598.64 16097.82 6592.91 7793.02 15097.02 17885.48 13395.70 32072.25 34494.89 16897.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22698.71 8578.11 34899.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
FC-MVSNet-test90.22 20489.40 20392.67 22791.78 30789.86 15597.89 23398.22 3588.81 17982.96 26194.66 23981.90 19395.96 30885.89 23182.52 28292.20 273
WR-MVS88.54 24187.22 24692.52 22891.93 30589.50 16298.56 17197.84 6186.99 23081.87 28793.81 25374.25 24695.92 31285.29 23574.43 32592.12 276
UWE-MVS93.18 14493.40 12292.50 22996.56 16183.55 29298.09 22397.84 6189.50 15991.72 16496.23 20991.08 3396.70 26386.28 22493.33 18097.26 206
MIMVSNet84.48 30281.83 31292.42 23091.73 30887.36 21485.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23697.08 213
HQP-MVS91.50 17691.23 17092.29 23193.95 26286.39 23499.16 9796.37 22393.92 5287.57 21596.67 19773.34 25197.77 21093.82 13586.29 24592.72 256
miper_enhance_ethall90.33 20189.70 19692.22 23297.12 14488.93 17898.35 19895.96 25288.60 18383.14 26092.33 28087.38 8696.18 29886.49 22277.89 30291.55 293
PatchT85.44 29083.19 29992.22 23293.13 28783.00 29883.80 39096.37 22370.62 37290.55 18679.63 38584.81 14394.87 33958.18 38491.59 21098.79 145
AUN-MVS90.17 20689.50 19992.19 23496.21 17982.67 30697.76 24497.53 12788.05 20591.67 16596.15 21083.10 16797.47 23288.11 20566.91 36796.43 232
HQP_MVS91.26 18290.95 17692.16 23593.84 26986.07 24999.02 12196.30 22793.38 6886.99 22396.52 19972.92 25797.75 21693.46 14286.17 24892.67 258
hse-mvs291.67 17591.51 16592.15 23696.22 17882.61 30897.74 24597.53 12793.85 5796.27 9196.15 21083.19 16597.44 23595.81 9266.86 36896.40 233
CLD-MVS91.06 18890.71 18392.10 23794.05 26186.10 24699.55 4596.29 23094.16 4784.70 24397.17 17069.62 28397.82 20694.74 11886.08 25092.39 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23890.81 32088.56 18698.33 19997.18 17287.76 21581.87 28793.90 25172.45 26195.43 32783.13 26571.30 35592.23 269
test_vis1_n_192093.08 14893.42 12192.04 23996.31 17479.36 33699.83 1096.06 24696.72 998.53 3398.10 12958.57 34299.91 4597.86 5598.79 9596.85 219
cl2289.57 21788.79 21691.91 24097.94 10587.62 20597.98 23096.51 21585.03 26982.37 27591.79 29083.65 15496.50 27585.96 22877.89 30291.61 290
XVG-OURS90.83 19290.49 18791.86 24195.23 21481.25 32395.79 31995.92 25988.96 17390.02 19698.03 13071.60 27199.35 13391.06 16787.78 23894.98 245
XVG-OURS-SEG-HR90.95 19090.66 18591.83 24295.18 22081.14 32695.92 31195.92 25988.40 19290.33 19297.85 13170.66 27799.38 12892.83 15288.83 23494.98 245
tpm89.67 21588.95 21291.82 24392.54 29281.43 31892.95 34595.92 25987.81 21390.50 18889.44 34184.99 13995.65 32183.67 26082.71 28098.38 168
pmmvs487.58 25786.17 26091.80 24489.58 33788.92 17997.25 26595.28 30282.54 31280.49 30193.17 27075.62 23496.05 30482.75 26878.90 29790.42 328
GBi-Net86.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
FMVSNet183.94 31081.32 31891.80 24491.94 30488.81 18196.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
v2v48287.27 26085.76 26591.78 24889.59 33687.58 20698.56 17195.54 28884.53 27782.51 26991.78 29173.11 25696.47 27882.07 27474.14 33191.30 304
mvsmamba89.99 21189.42 20291.69 24990.64 32386.34 23798.40 19192.27 36291.01 11384.80 24294.93 23376.12 23196.51 27492.81 15383.84 26892.21 271
tt080586.50 27384.79 28291.63 25091.97 30181.49 31796.49 29397.38 15482.24 31882.44 27095.82 21951.22 36998.25 18384.55 24680.96 28995.13 244
OPM-MVS89.76 21489.15 20891.57 25190.53 32485.58 26198.11 21995.93 25892.88 7886.05 23196.47 20267.06 30497.87 20389.29 19586.08 25091.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth88.94 22588.12 23291.40 25295.32 21286.93 22497.85 23795.55 28784.19 28181.97 28491.50 29684.16 14995.91 31384.69 24377.89 30291.36 301
v114486.83 26585.31 27391.40 25289.75 33487.21 22298.31 20295.45 29383.22 29882.70 26490.78 30973.36 25096.36 28479.49 29274.69 32290.63 325
EI-MVSNet89.87 21389.38 20491.36 25494.32 25285.87 25597.61 25396.59 20885.10 26685.51 23797.10 17281.30 20196.56 27083.85 25983.03 27791.64 285
UniMVSNet_ETH3D85.65 28983.79 29791.21 25590.41 32680.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26484.30 24883.52 27496.22 235
v119286.32 27684.71 28491.17 25689.53 33986.40 23398.13 21595.44 29582.52 31382.42 27290.62 31871.58 27296.33 29177.23 30774.88 31990.79 318
v886.11 27884.45 28991.10 25789.99 32986.85 22597.24 26695.36 30081.99 32179.89 30989.86 33774.53 24196.39 28278.83 29972.32 34790.05 337
c3_l88.19 24687.23 24591.06 25894.97 23486.17 24497.72 24695.38 29883.43 29581.68 29191.37 29882.81 17295.72 31984.04 25673.70 33391.29 305
IterMVS-LS88.34 24287.44 24091.04 25994.10 25785.85 25698.10 22095.48 29185.12 26582.03 28391.21 30281.35 20095.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 21889.05 21091.00 26088.77 34784.36 28197.39 25795.97 25088.47 18581.88 28693.80 25482.48 18196.50 27589.34 19283.34 27692.15 274
V4287.00 26285.68 26790.98 26189.91 33086.08 24798.32 20195.61 28483.67 29282.72 26390.67 31474.00 24896.53 27281.94 27774.28 32890.32 330
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34396.60 26682.61 27074.20 32991.59 292
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20995.43 29682.45 31582.62 26790.58 32172.79 26096.36 28478.45 30274.04 33290.79 318
cl____87.82 24886.79 25290.89 26494.88 23885.43 26397.81 23895.24 30682.91 30880.71 29991.22 30181.97 19295.84 31581.34 28075.06 31791.40 300
DIV-MVS_self_test87.82 24886.81 25190.87 26594.87 23985.39 26597.81 23895.22 31182.92 30780.76 29891.31 30081.99 19095.81 31781.36 27975.04 31891.42 299
v1085.73 28784.01 29590.87 26590.03 32886.73 22797.20 26995.22 31181.25 32979.85 31089.75 33873.30 25396.28 29676.87 31172.64 34389.61 345
test_vis1_n90.40 19990.27 18990.79 26791.55 31076.48 35399.12 11094.44 32994.31 4397.34 6496.95 18143.60 38399.42 12397.57 5997.60 12196.47 230
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 22095.35 30182.19 31982.25 27790.71 31170.73 27596.30 29576.85 31274.49 32490.80 317
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23595.23 31081.89 32482.16 27890.55 32369.60 28496.31 29275.59 32174.87 32090.72 322
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27281.69 31585.16 38193.75 34454.54 39174.17 34659.15 39757.46 34796.58 26963.74 37094.38 17193.72 250
dmvs_re88.69 23788.06 23390.59 27193.83 27178.68 34295.75 32096.18 23787.99 20884.48 24796.32 20767.52 29996.94 25484.98 24085.49 25496.14 236
test_fmvs192.35 16192.94 13690.57 27297.19 13775.43 35799.55 4594.97 31395.20 3396.82 8097.57 14959.59 34099.84 6997.30 6398.29 11196.46 231
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28682.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20874.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 31181.35 31790.56 27491.37 31488.06 19597.29 26297.87 5878.51 34676.20 33390.91 30664.78 31996.47 27861.71 37673.50 33687.13 368
AllTest84.97 29583.12 30090.52 27596.82 15278.84 34095.89 31292.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
TestCases90.52 27596.82 15278.84 34092.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
ACMM86.95 1388.77 23488.22 23090.43 27793.61 27581.34 32198.50 17795.92 25987.88 21283.85 25295.20 23167.20 30297.89 20186.90 21884.90 25792.06 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 29882.78 30590.40 27889.58 33785.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31696.11 30278.75 30069.14 35889.91 340
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17395.48 29183.80 28880.93 29790.22 33274.60 23996.31 29280.92 28371.55 35390.69 323
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16693.71 34581.53 32680.29 30392.02 28464.51 32095.52 32482.04 27678.34 30091.15 308
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 29083.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31397.63 22369.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 29682.93 30190.16 28491.73 30883.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22275.88 31981.54 28789.30 348
ACMP87.39 1088.71 23688.24 22990.12 28593.91 26781.06 32798.50 17795.67 28189.43 16180.37 30295.55 22265.67 31297.83 20590.55 17684.51 26091.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs1_n91.07 18791.41 16790.06 28694.10 25774.31 36199.18 9394.84 31794.81 3596.37 9097.46 15350.86 37299.82 7697.14 6697.90 11496.04 238
eth_miper_zixun_eth87.76 25087.00 24990.06 28694.67 24482.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19795.90 31483.24 26173.61 33491.61 290
LPG-MVS_test88.86 22888.47 22690.06 28693.35 28380.95 32898.22 20795.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
LGP-MVS_train90.06 28693.35 28380.95 32895.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
test0.0.03 188.96 22488.61 22090.03 29091.09 31784.43 28098.97 12897.02 19090.21 13480.29 30396.31 20884.89 14191.93 37372.98 34085.70 25393.73 249
RRT_MVS88.91 22688.56 22389.93 29190.31 32781.61 31698.08 22496.38 22289.30 16382.41 27394.84 23673.15 25596.04 30590.38 17782.23 28492.15 274
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33296.36 28489.44 19084.47 26291.50 294
ADS-MVSNet287.62 25686.88 25089.86 29396.21 17979.14 33887.15 37792.99 35283.01 30189.91 19787.27 35778.87 21792.80 36274.20 33192.27 19797.64 194
test_djsdf88.26 24587.73 23689.84 29488.05 35682.21 31097.77 24296.17 23886.84 23682.41 27391.95 28972.07 26595.99 30689.83 18284.50 26191.32 303
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28094.61 34663.40 37174.36 32689.71 344
CP-MVSNet86.54 27185.45 27189.79 29691.02 31982.78 30597.38 25997.56 12285.37 26279.53 31493.03 27271.86 26895.25 33279.92 29073.43 33991.34 302
WB-MVSnew88.69 23788.34 22789.77 29794.30 25685.99 25298.14 21497.31 15987.15 22987.85 21396.07 21469.91 27895.52 32472.83 34291.47 21787.80 361
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 33996.31 29289.40 19184.34 26391.43 298
D2MVS87.96 24787.39 24189.70 29991.84 30683.40 29498.31 20298.49 2388.04 20678.23 32890.26 32873.57 24996.79 26184.21 25083.53 27388.90 353
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15878.85 33995.89 31292.83 35671.55 37077.54 33195.89 21859.40 34199.14 14567.26 36188.26 23591.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 27285.49 27089.66 30191.04 31883.31 29697.53 25598.20 3684.95 27279.64 31190.90 30778.01 22495.33 33076.29 31672.81 34190.35 329
Fast-Effi-MVS+-dtu88.84 22988.59 22289.58 30293.44 28178.18 34698.65 15894.62 32688.46 18784.12 25095.37 22868.91 28596.52 27382.06 27591.70 20994.06 248
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28695.94 30986.01 22684.02 26789.72 343
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27094.54 34768.81 35576.84 31090.07 335
Patchmtry83.61 31381.64 31389.50 30493.36 28282.84 30484.10 38794.20 33869.47 37979.57 31386.88 36184.43 14694.78 34268.48 35774.30 32790.88 315
PS-CasMVS85.81 28484.58 28789.49 30690.77 32182.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30195.16 33478.39 30373.25 34091.21 307
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 27996.35 28973.83 33572.13 34990.07 335
JIA-IIPM85.97 28084.85 28089.33 30893.23 28573.68 36485.05 38397.13 17769.62 37891.56 16968.03 39388.03 7796.96 25277.89 30593.12 18297.34 203
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30182.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34497.37 24076.75 31398.35 10787.84 359
IterMVS85.81 28484.67 28589.22 30993.51 27783.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30893.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27479.16 33796.43 29494.28 33681.09 33174.00 34794.03 24654.58 36097.67 21976.10 31778.81 29890.63 325
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33584.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30395.21 33367.50 36059.46 38288.02 358
PEN-MVS85.21 29283.93 29689.07 31389.89 33281.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29094.87 33975.98 31870.92 35691.04 311
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24781.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19094.68 34580.71 28573.58 33591.12 309
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 28082.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30693.33 35579.38 29477.36 30990.76 320
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29896.45 28077.20 30998.72 9686.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16191.66 37180.41 33982.44 27091.35 29974.63 23795.42 32884.13 25271.39 35487.84 359
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33177.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 22085.02 23983.83 26990.92 314
LCM-MVSNet-Re88.59 24088.61 22088.51 31995.53 20572.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23294.38 34892.95 14995.71 16098.48 163
CVMVSNet90.30 20290.91 17788.46 32094.32 25273.58 36597.61 25397.59 11690.16 13988.43 21097.10 17276.83 23092.86 35982.64 26993.54 17998.93 131
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29794.24 35072.64 34369.05 35990.32 330
ITE_SJBPF87.93 32292.26 29676.44 35493.47 35087.67 22179.95 30895.49 22556.50 35197.38 23875.24 32282.33 28389.98 339
TinyColmap80.42 32777.94 33287.85 32392.09 29978.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22765.17 36977.89 30287.38 363
Effi-MVS+-dtu89.97 21290.68 18487.81 32495.15 22171.98 37197.87 23695.40 29791.92 9687.57 21591.44 29774.27 24596.84 25789.45 18993.10 18394.60 247
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34667.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
FMVSNet582.29 31780.54 32187.52 32693.79 27384.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32589.24 38469.07 35474.79 32189.29 349
myMVS_eth3d88.68 23989.07 20987.50 32795.14 22279.74 33497.68 24996.66 20386.52 24582.63 26596.84 18985.22 13889.89 37969.43 35391.54 21392.87 254
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29492.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29692.07 37266.00 36667.75 36590.23 332
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9392.59 36482.28 27362.78 37598.98 123
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34892.49 36760.79 37864.80 37390.08 334
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 34074.61 36266.53 37888.76 34640.40 38896.20 29767.02 36283.66 27286.61 369
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
testing387.75 25188.22 23086.36 33594.66 24577.41 35199.52 5197.95 5486.05 25281.12 29596.69 19686.18 12089.31 38361.65 37790.12 23092.35 266
test_040278.81 33576.33 34086.26 33691.18 31678.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25791.62 37288.63 18175.85 33995.42 22646.07 38091.55 37466.87 36479.94 29492.12 276
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24574.88 32559.47 38187.33 365
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 33895.61 32374.47 32874.15 33090.75 321
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34786.08 25176.53 33293.28 26761.41 33396.14 30180.95 28277.69 30790.93 313
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
test_vis1_rt81.31 32380.05 32685.11 34291.29 31570.66 37598.98 12777.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15586.55 24485.24 378
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34283.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33492.15 37060.59 37975.92 31389.24 350
RPSCF85.33 29185.55 26984.67 34794.63 24662.28 38693.73 33893.76 34374.38 36485.23 24097.06 17564.09 32198.31 17880.98 28186.08 25093.41 253
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 28990.26 37763.21 37256.51 38688.35 356
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26578.88 29878.11 30187.22 367
test_fmvs285.10 29385.45 27184.02 35089.85 33365.63 38498.49 17992.59 35890.45 12985.43 23993.32 26443.94 38196.59 26790.81 17284.19 26589.85 341
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34873.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27691.48 37575.79 32075.98 31291.70 284
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
Syy-MVS84.10 30984.53 28882.83 35595.14 22265.71 38397.68 24996.66 20386.52 24582.63 26596.84 18968.15 29289.89 37945.62 39391.54 21392.87 254
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34177.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38664.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32389.78 38166.89 36391.92 20395.73 240
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34687.29 38958.65 38368.47 36086.53 370
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20383.06 26684.85 25987.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
DeepMVS_CXcopyleft76.08 36690.74 32251.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21769.71 28284.37 39152.71 39076.82 31192.21 271
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32293.81 35153.12 38973.46 33788.94 352
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32480.31 39821.85 40250.47 39575.43 389
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32679.92 39920.48 40348.02 39674.44 390
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20542.59 38465.10 40378.00 30414.92 40461.08 396
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2403.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8774.35 2440.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
FOURS199.50 4288.94 17699.55 4597.47 14191.32 10998.12 45
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
test_one_060199.59 2894.89 3497.64 10393.14 7198.93 2299.45 1493.45 17
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
RE-MVS-def95.70 6499.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6485.24 13796.62 7799.31 6699.60 67
IU-MVS99.63 1895.38 2297.73 8095.54 2899.54 399.69 699.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4799.30 999.49 993.32 1899.98 9
9.1496.87 2799.34 5099.50 5297.49 13889.41 16298.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
save fliter99.34 5093.85 6299.65 3697.63 10795.69 22
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
test072699.66 1295.20 3099.77 1897.70 8693.95 5099.35 799.54 393.18 21
GSMVS98.84 138
test_part299.54 3695.42 2098.13 43
sam_mvs188.39 6898.84 138
sam_mvs87.08 96
MTGPAbinary97.45 144
test_post190.74 37041.37 40685.38 13596.36 28483.16 263
test_post46.00 40387.37 8797.11 246
patchmatchnet-post84.86 36788.73 6596.81 259
MTMP99.21 8991.09 376
gm-plane-assit94.69 24388.14 19388.22 20097.20 16698.29 18090.79 173
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7399.38 7297.66 9589.57 15698.39 3699.18 3590.88 3899.66 94
test_899.55 3593.07 7699.37 7597.64 10390.18 13698.36 3899.19 3290.94 3599.64 100
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8697.64 10397.98 5299.61 102
test_prior492.00 9699.41 69
test_prior299.57 4391.43 10698.12 4598.97 6490.43 4598.33 4299.81 23
旧先验298.67 15685.75 25898.96 2198.97 15293.84 133
新几何298.26 205
旧先验198.97 7392.90 8497.74 7799.15 4191.05 3499.33 6499.60 67
无先验98.52 17397.82 6587.20 22899.90 5087.64 21099.85 30
原ACMM298.69 153
test22298.32 9291.21 11098.08 22497.58 11883.74 28995.87 9999.02 6086.74 10599.64 4099.81 33
testdata299.88 5484.16 251
segment_acmp90.56 43
testdata197.89 23392.43 84
plane_prior793.84 26985.73 258
plane_prior693.92 26686.02 25172.92 257
plane_prior596.30 22797.75 21693.46 14286.17 24892.67 258
plane_prior496.52 199
plane_prior385.91 25393.65 6386.99 223
plane_prior299.02 12193.38 68
plane_prior193.90 268
plane_prior86.07 24999.14 10693.81 6086.26 247
n20.00 415
nn0.00 415
door-mid84.90 395
test1197.68 90
door85.30 393
HQP5-MVS86.39 234
HQP-NCC93.95 26299.16 9793.92 5287.57 215
ACMP_Plane93.95 26299.16 9793.92 5287.57 215
BP-MVS93.82 135
HQP4-MVS87.57 21597.77 21092.72 256
HQP3-MVS96.37 22386.29 245
HQP2-MVS73.34 251
NP-MVS93.94 26586.22 24196.67 197
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14986.67 10787.02 21398.95 129
MDTV_nov1_ep1390.47 18896.14 18588.55 18791.34 36397.51 13389.58 15592.24 15890.50 32686.99 10097.61 22577.64 30692.34 195
ACMMP++_ref82.64 281
ACMMP++83.83 269
Test By Simon83.62 155