This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6396.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4497.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
MVS93.92 11192.28 13598.83 695.69 18896.82 796.22 28198.17 3184.89 24784.34 22698.61 10179.32 20599.83 6193.88 12099.43 6899.86 32
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8399.98 1099.64 699.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4397.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7291.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5396.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12195.90 997.21 6098.90 7982.66 17499.93 3998.71 2098.80 9899.63 73
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1392.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 17799.50 86
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31298.74 1392.42 6895.65 10094.76 21286.52 11599.49 10895.29 9692.97 17399.53 82
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
DVP-MVS++.98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8393.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7494.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7494.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13293.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17195.83 1098.97 1399.14 4582.48 17799.60 9598.60 2399.08 8498.00 182
canonicalmvs95.02 8693.96 10398.20 2097.53 13095.92 1698.71 13196.19 22691.78 8195.86 9598.49 10979.53 20399.03 14496.12 7691.42 20099.66 69
3Dnovator+87.72 893.43 12691.84 14798.17 2195.73 18795.08 3298.92 11397.04 17891.42 9281.48 26997.60 14274.60 23099.79 6990.84 15598.97 8999.64 71
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6695.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 4996.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9296.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13589.60 13798.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12189.85 12898.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17895.51 1698.86 1699.11 5382.19 18399.36 12598.59 2598.14 11398.00 182
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12791.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19499.51 85
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14688.44 17498.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9189.55 14199.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13086.58 22094.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11492.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
131493.44 12591.98 14497.84 3395.24 20394.38 5496.22 28197.92 4790.18 11982.28 25197.71 13777.63 21799.80 6891.94 14498.67 10399.34 97
test1297.83 3499.33 6494.45 5197.55 11497.56 5188.60 6899.50 10799.71 3899.55 81
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10690.66 10497.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14693.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 27995.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6891.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12193.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 13989.02 15397.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3694.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 13990.08 12498.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 8993.94 10597.58 4396.43 16394.09 6098.93 11199.16 889.50 14295.27 10597.85 12881.50 19099.65 8892.79 13994.02 16598.99 123
PAPM96.35 4895.94 5697.58 4394.10 24195.25 2398.93 11198.17 3194.26 2493.94 12798.72 9289.68 5797.88 18596.36 7299.29 7899.62 75
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8690.18 11998.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1590.33 11597.16 6297.43 14979.19 20699.53 10196.91 6191.85 19299.24 107
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4592.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
lupinMVS96.32 5095.94 5697.44 4895.05 21994.87 3799.86 296.50 20593.82 3998.04 4198.77 8685.52 12998.09 17296.98 5998.97 8999.37 94
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4692.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28197.75 6685.50 23596.86 6999.01 6488.59 7099.90 4487.64 19199.60 5699.79 38
新几何197.40 5198.92 8992.51 9597.77 6585.52 23396.69 7899.06 5688.08 7999.89 4784.88 21999.62 5199.79 38
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12794.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9290.38 11397.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
3Dnovator87.35 1193.17 13691.77 14997.37 5495.41 20093.07 8098.82 12297.85 5291.53 8582.56 24597.58 14471.97 25799.82 6491.01 15299.23 8299.22 110
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16788.95 15693.12 13799.25 2785.62 12899.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1296.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 9999.70 1798.05 3986.48 22398.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
CANet_DTU94.31 10593.35 11497.20 6097.03 14794.71 4698.62 14795.54 27495.61 1497.21 6098.47 11171.88 25899.84 5988.38 18297.46 12697.04 206
QAPM91.41 16689.49 18397.17 6195.66 19193.42 7298.60 15197.51 12480.92 30581.39 27097.41 15072.89 25099.87 5182.33 24998.68 10298.21 177
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10499.58 3096.54 20395.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 13799.81 35
114514_t94.06 10793.05 12197.06 6399.08 8192.26 9798.97 10897.01 18282.58 28392.57 14398.22 12280.68 19699.30 13289.34 17299.02 8799.63 73
jason95.40 7794.86 8297.03 6492.91 27294.23 5699.70 1796.30 21693.56 4596.73 7798.52 10581.46 19297.91 18296.08 7898.47 10998.96 126
jason: jason.
test_prior397.07 2797.09 1997.01 6599.58 3391.77 9999.57 3197.57 11191.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
test_prior97.01 6599.58 3391.77 9997.57 11199.49 10899.79 38
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10899.75 1397.66 8694.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base_debi94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34297.74 6893.91 12896.40 18696.56 296.94 23495.08 9998.95 9299.20 111
thres20093.69 11892.59 13196.97 7297.76 11994.74 4499.35 6699.36 289.23 14691.21 16296.97 16883.42 15798.77 15085.08 21590.96 20397.39 195
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11498.69 13697.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11497.23 24497.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11499.55 3497.53 11889.72 13295.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10298.71 13197.90 4892.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11299.45 5197.48 13089.69 13395.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
thres100view90093.34 13092.15 14096.90 7797.62 12494.84 3999.06 9899.36 287.96 18990.47 17396.78 17683.29 16098.75 15284.11 23090.69 20597.12 201
tfpn200view993.43 12692.27 13696.90 7797.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20597.12 201
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12699.47 4497.81 5890.54 10996.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
#test#96.48 4496.34 4396.90 7799.69 990.96 12699.53 3997.81 5890.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
gg-mvs-nofinetune90.00 19387.71 21496.89 8296.15 17694.69 4785.15 34897.74 6868.32 35192.97 14160.16 36096.10 396.84 23693.89 11998.87 9399.14 114
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 10998.71 13197.88 4992.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
XVS96.47 4596.37 4196.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
X-MVStestdata90.69 18088.66 20096.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6929.59 37187.37 9299.87 5195.65 8599.43 6899.78 42
thres600view793.18 13592.00 14396.75 8697.62 12494.92 3499.07 9699.36 287.96 18990.47 17396.78 17683.29 16098.71 15682.93 24490.47 20996.61 210
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10599.88 198.04 4093.64 4394.21 12297.76 13383.50 15499.87 5197.41 4997.75 12098.79 145
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13799.47 4497.80 6090.54 10996.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
thres40093.39 12892.27 13696.73 8897.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20596.61 210
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12599.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
region2R96.30 5196.17 4896.70 9199.70 890.31 13999.46 4997.66 8690.55 10897.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
MVS_Test93.67 12192.67 12996.69 9296.72 15592.66 8897.22 24596.03 23387.69 20095.12 10994.03 22081.55 18998.28 16589.17 17696.46 13599.14 114
ab-mvs91.05 17289.17 18996.69 9295.96 18191.72 10292.62 32597.23 15785.61 23289.74 18393.89 22668.55 27799.42 11991.09 15087.84 21798.92 133
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30498.36 2392.50 6395.62 10197.52 14597.92 197.38 22098.31 3798.80 9898.20 178
MVSFormer94.71 9594.08 9896.61 9595.05 21994.87 3797.77 22196.17 22786.84 21498.04 4198.52 10585.52 12995.99 28389.83 16398.97 8998.96 126
API-MVS94.78 9094.18 9596.59 9699.21 7390.06 15098.80 12497.78 6383.59 26693.85 12999.21 3283.79 15199.97 2392.37 14199.00 8899.74 55
baseline192.61 14591.28 15696.58 9797.05 14694.63 4897.72 22596.20 22489.82 12988.56 19296.85 17486.85 10497.82 18988.42 18180.10 26597.30 197
PAPM_NR95.43 7495.05 8096.57 9899.42 5490.14 14398.58 15597.51 12490.65 10692.44 14598.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
MP-MVScopyleft96.00 5895.82 6096.54 9999.47 5190.13 14599.36 6597.41 14390.64 10795.49 10298.95 7385.51 13199.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 998.18 296.53 10099.54 4090.14 14399.41 5897.70 7995.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OpenMVScopyleft85.28 1490.75 17888.84 19596.48 10193.58 25893.51 7098.80 12497.41 14382.59 28278.62 29897.49 14768.00 28399.82 6484.52 22498.55 10796.11 220
DeepC-MVS91.02 494.56 10193.92 10696.46 10297.16 13990.76 13098.39 17997.11 17193.92 3288.66 19198.33 11678.14 21499.85 5895.02 10198.57 10698.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 6695.65 6996.45 10399.50 4789.77 15798.22 19198.90 1189.19 14796.74 7698.95 7385.91 12699.92 4093.94 11899.46 6499.66 69
thisisatest051594.75 9194.19 9396.43 10496.13 18092.64 9299.47 4497.60 10287.55 20393.17 13697.59 14394.71 1198.42 16088.28 18393.20 17098.24 175
LFMVS92.23 15390.84 16596.42 10598.24 10891.08 12298.24 19096.22 22383.39 26994.74 11498.31 11761.12 31698.85 14794.45 11492.82 17499.32 98
CP-MVS96.22 5396.15 5196.42 10599.67 1389.62 16199.70 1797.61 10090.07 12596.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
mPP-MVS95.90 6495.75 6596.38 10799.58 3389.41 16599.26 7297.41 14390.66 10494.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
CNLPA93.64 12292.74 12796.36 10898.96 8790.01 15399.19 7595.89 25186.22 22689.40 18698.85 8280.66 19799.84 5988.57 18096.92 13199.24 107
PVSNet_Blended_VisFu94.67 9694.11 9696.34 10997.14 14091.10 12099.32 7097.43 14192.10 7791.53 15696.38 18983.29 16099.68 8293.42 13096.37 13898.25 174
PVSNet87.13 1293.69 11892.83 12696.28 11097.99 11690.22 14299.38 6198.93 1091.42 9293.66 13297.68 13871.29 26599.64 9087.94 18897.20 12998.98 124
1112_ss92.71 14191.55 15396.20 11195.56 19491.12 11898.48 16694.69 30688.29 18086.89 20898.50 10787.02 10198.66 15784.75 22089.77 21298.81 143
原ACMM196.18 11299.03 8390.08 14697.63 9788.98 15497.00 6498.97 6688.14 7899.71 7788.23 18499.62 5198.76 149
Test_1112_low_res92.27 15290.97 16196.18 11295.53 19691.10 12098.47 16894.66 30788.28 18186.83 21093.50 23887.00 10298.65 15884.69 22189.74 21398.80 144
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11499.14 7690.33 13898.49 16597.82 5591.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13098.70 152
PCF-MVS89.78 591.26 16789.63 18096.16 11595.44 19891.58 10795.29 30096.10 23185.07 24282.75 24197.45 14878.28 21399.78 7080.60 26395.65 15497.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 11593.06 12096.10 11699.88 189.07 16798.33 18397.55 11486.81 21690.39 17598.65 9775.09 22699.98 1093.32 13197.53 12499.26 105
SR-MVS96.13 5596.16 5096.07 11799.42 5489.04 16898.59 15397.33 15190.44 11196.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
Effi-MVS+93.87 11493.15 11996.02 11895.79 18490.76 13096.70 26695.78 25886.98 21195.71 9897.17 16079.58 20198.01 18094.57 11296.09 14599.31 99
ETV-MVS96.00 5896.00 5496.00 11996.56 15991.05 12399.63 2596.61 19493.26 4997.39 5798.30 11886.62 11198.13 16998.07 4197.57 12198.82 142
HPM-MVScopyleft95.41 7695.22 7695.99 12099.29 6689.14 16699.17 7997.09 17587.28 20795.40 10398.48 11084.93 14099.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS95.86 6595.81 6295.98 12195.62 19291.26 11199.80 796.12 23092.15 7697.93 4798.45 11485.88 12797.55 21197.56 4798.80 9899.14 114
IB-MVS89.43 692.12 15490.83 16795.98 12195.40 20190.78 12999.81 598.06 3891.23 9785.63 21693.66 23290.63 4098.78 14991.22 14971.85 32498.36 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 1792x268894.35 10493.82 10895.95 12397.40 13188.74 17998.41 17398.27 2592.18 7491.43 15796.40 18678.88 20799.81 6693.59 12697.81 11699.30 100
ET-MVSNet_ETH3D92.56 14791.45 15595.88 12496.39 16494.13 5999.46 4996.97 18492.18 7466.94 34898.29 12094.65 1394.28 32694.34 11583.82 24499.24 107
EI-MVSNet-UG-set95.43 7495.29 7395.86 12599.07 8289.87 15498.43 17097.80 6091.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13698.22 176
diffmvs94.59 10094.19 9395.81 12695.54 19590.69 13298.70 13595.68 26591.61 8395.96 9097.81 13080.11 19898.06 17696.52 6895.76 15198.67 153
ACMMPcopyleft94.67 9694.30 9095.79 12799.25 6988.13 19098.41 17398.67 1990.38 11391.43 15798.72 9282.22 18299.95 3493.83 12295.76 15199.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 17589.33 18795.76 12895.69 18893.03 8298.99 10696.59 19680.49 30786.79 21194.45 21565.23 30198.60 15993.52 12792.18 18795.66 223
baseline93.91 11293.30 11595.72 12995.10 21690.07 14797.48 23395.91 24891.03 9993.54 13397.68 13879.58 20198.02 17994.27 11695.14 15699.08 119
HPM-MVS_fast94.89 8794.62 8495.70 13099.11 7888.44 18599.14 8997.11 17185.82 23095.69 9998.47 11183.46 15699.32 13193.16 13399.63 5099.35 95
APD-MVS_3200maxsize95.64 7395.65 6995.62 13199.24 7087.80 19598.42 17197.22 15888.93 15896.64 8198.98 6585.49 13299.36 12596.68 6299.27 7999.70 61
DWT-MVSNet_test94.36 10393.95 10495.62 13196.99 14889.47 16396.62 26897.38 14690.96 10193.07 13997.27 15293.73 1598.09 17285.86 21193.65 16899.29 101
casdiffmvs93.98 11093.43 11395.61 13395.07 21889.86 15598.80 12495.84 25690.98 10092.74 14297.66 14079.71 20098.10 17194.72 10895.37 15598.87 137
EPMVS92.59 14691.59 15295.59 13497.22 13790.03 15191.78 33098.04 4090.42 11291.66 15290.65 29086.49 11797.46 21581.78 25596.31 14099.28 103
TESTMET0.1,193.82 11593.26 11795.49 13595.21 20590.25 14099.15 8697.54 11789.18 14891.79 14994.87 21089.13 6197.63 20486.21 20496.29 14298.60 157
test117295.92 6396.07 5395.46 13699.42 5487.24 21498.51 16197.24 15590.29 11696.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
MAR-MVS94.43 10294.09 9795.45 13799.10 8087.47 20398.39 17997.79 6288.37 17794.02 12699.17 3978.64 21299.91 4292.48 14098.85 9498.96 126
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 10993.52 11295.43 13895.76 18690.02 15298.99 10697.60 10286.58 22091.74 15097.36 15194.78 1098.34 16186.37 20392.48 18197.94 184
SR-MVS-dyc-post95.75 7295.86 5995.41 13999.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
CSCG94.87 8894.71 8395.36 14099.54 4086.49 22499.34 6898.15 3482.71 28190.15 17899.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
UA-Net93.30 13192.62 13095.34 14196.27 16888.53 18495.88 29196.97 18490.90 10395.37 10497.07 16482.38 18099.10 14283.91 23494.86 15998.38 167
DP-MVS88.75 21686.56 23295.34 14198.92 8987.45 20497.64 22993.52 32970.55 34381.49 26897.25 15374.43 23499.88 4871.14 32194.09 16498.67 153
MVS_111021_LR95.78 6995.94 5695.28 14398.19 11187.69 19698.80 12499.26 793.39 4695.04 11098.69 9684.09 14999.76 7296.96 6099.06 8598.38 167
testdata95.26 14498.20 10987.28 20997.60 10285.21 23898.48 2899.15 4388.15 7798.72 15590.29 16099.45 6699.78 42
UGNet91.91 15890.85 16495.10 14597.06 14588.69 18098.01 20998.24 2792.41 6992.39 14693.61 23360.52 31799.68 8288.14 18597.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
abl_694.63 9894.48 8795.09 14698.61 10186.96 21798.06 20796.97 18489.31 14595.86 9598.56 10379.82 19999.64 9094.53 11398.65 10498.66 156
CPTT-MVS94.60 9994.43 8995.09 14699.66 1586.85 21999.44 5297.47 13283.22 27194.34 12198.96 7182.50 17599.55 9894.81 10599.50 6298.88 135
mvs_anonymous92.50 14891.65 15195.06 14896.60 15889.64 16097.06 25096.44 20986.64 21984.14 22793.93 22482.49 17696.17 27791.47 14696.08 14699.35 95
PatchmatchNetpermissive92.05 15691.04 16095.06 14896.17 17589.04 16891.26 33497.26 15289.56 14090.64 16990.56 29688.35 7497.11 22679.53 26796.07 14799.03 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-RMVSNet91.25 16989.99 17795.03 15096.75 15488.55 18298.65 14294.95 29987.74 19787.74 19797.80 13168.27 28098.14 16880.53 26497.49 12598.41 164
Vis-MVSNetpermissive92.64 14391.85 14695.03 15095.12 21288.23 18698.48 16696.81 18891.61 8392.16 14897.22 15671.58 26398.00 18185.85 21297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test95.20 8195.27 7494.98 15295.67 19088.17 18799.62 2795.84 25691.52 8697.42 5598.30 11885.07 13897.51 21295.81 8298.20 11299.26 105
HyFIR lowres test93.68 12093.29 11694.87 15397.57 12888.04 19298.18 19598.47 2187.57 20291.24 16195.05 20885.49 13297.46 21593.22 13292.82 17499.10 117
PLCcopyleft91.07 394.23 10694.01 9994.87 15399.17 7587.49 20299.25 7396.55 20188.43 17591.26 16098.21 12485.92 12599.86 5689.77 16697.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DROMVSNet95.09 8495.17 7794.84 15595.42 19988.17 18799.48 4295.92 24391.47 8897.34 5998.36 11582.77 17097.41 21997.24 5298.58 10598.94 131
SCA90.64 18189.25 18894.83 15694.95 22388.83 17596.26 27897.21 15990.06 12690.03 17990.62 29266.61 29396.81 23883.16 24094.36 16298.84 138
TR-MVS90.77 17789.44 18494.76 15796.31 16788.02 19397.92 21295.96 23785.52 23388.22 19597.23 15566.80 29298.09 17284.58 22392.38 18298.17 179
CDS-MVSNet93.47 12493.04 12294.76 15794.75 23089.45 16498.82 12297.03 18087.91 19190.97 16496.48 18489.06 6296.36 26289.50 16792.81 17698.49 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 10893.80 10994.74 15993.07 27090.25 14098.12 20098.16 3389.86 12786.53 21296.95 16995.56 598.05 17791.44 14794.53 16095.93 221
OMC-MVS93.90 11393.62 11194.73 16098.63 9987.00 21698.04 20896.56 20092.19 7392.46 14498.73 9079.49 20499.14 14092.16 14394.34 16398.03 181
VDDNet90.08 19288.54 20594.69 16194.41 23687.68 19798.21 19396.40 21076.21 32893.33 13597.75 13454.93 33598.77 15094.71 10990.96 20397.61 192
tpmrst92.78 14092.16 13994.65 16296.27 16887.45 20491.83 32997.10 17489.10 15194.68 11590.69 28788.22 7597.73 20089.78 16591.80 19398.77 148
EIA-MVS95.11 8395.27 7494.64 16396.34 16686.51 22399.59 2996.62 19392.51 6294.08 12598.64 9886.05 12498.24 16695.07 10098.50 10899.18 112
RPMNet85.07 27081.88 28794.64 16393.47 26086.24 23284.97 35097.21 15964.85 35790.76 16778.80 35480.95 19599.27 13353.76 35892.17 18898.41 164
LS3D90.19 18888.72 19894.59 16598.97 8586.33 23196.90 25696.60 19574.96 33284.06 22998.74 8975.78 22399.83 6174.93 30097.57 12197.62 191
RRT_MVS91.95 15791.09 15894.53 16696.71 15795.12 3198.64 14496.23 22289.04 15285.24 21995.06 20787.71 8596.43 25889.10 17882.06 25792.05 253
Fast-Effi-MVS+91.72 16090.79 16894.49 16795.89 18287.40 20699.54 3895.70 26385.01 24589.28 18895.68 19977.75 21697.57 21083.22 23995.06 15798.51 160
IS-MVSNet93.00 13892.51 13294.49 16796.14 17787.36 20798.31 18695.70 26388.58 16690.17 17797.50 14683.02 16697.22 22387.06 19496.07 14798.90 134
VDD-MVS91.24 17090.18 17694.45 16997.08 14485.84 24798.40 17696.10 23186.99 20993.36 13498.16 12554.27 33799.20 13496.59 6690.63 20898.31 173
test-LLR93.11 13792.68 12894.40 17094.94 22487.27 21099.15 8697.25 15390.21 11791.57 15394.04 21884.89 14197.58 20785.94 20896.13 14398.36 170
test-mter93.27 13392.89 12594.40 17094.94 22487.27 21099.15 8697.25 15388.95 15691.57 15394.04 21888.03 8097.58 20785.94 20896.13 14398.36 170
GA-MVS90.10 19188.69 19994.33 17292.44 27687.97 19499.08 9596.26 22089.65 13486.92 20793.11 24768.09 28196.96 23282.54 24890.15 21098.05 180
nrg03090.23 18688.87 19494.32 17391.53 29093.54 6998.79 12895.89 25188.12 18584.55 22494.61 21478.80 21096.88 23592.35 14275.21 28992.53 237
Anonymous20240521188.84 21087.03 22594.27 17498.14 11384.18 27298.44 16995.58 27276.79 32789.34 18796.88 17353.42 34099.54 10087.53 19387.12 22199.09 118
PatchMatch-RL91.47 16490.54 17294.26 17598.20 10986.36 23096.94 25497.14 16787.75 19688.98 18995.75 19871.80 26099.40 12280.92 26097.39 12797.02 207
TAPA-MVS87.50 990.35 18389.05 19194.25 17698.48 10585.17 25998.42 17196.58 19982.44 28787.24 20398.53 10482.77 17098.84 14859.09 35397.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TAMVS92.62 14492.09 14294.20 17794.10 24187.68 19798.41 17396.97 18487.53 20489.74 18396.04 19584.77 14496.49 25488.97 17992.31 18498.42 163
tttt051793.30 13193.01 12394.17 17895.57 19386.47 22598.51 16197.60 10285.99 22890.55 17097.19 15894.80 998.31 16285.06 21691.86 19197.74 186
dp90.16 19088.83 19694.14 17996.38 16586.42 22691.57 33197.06 17784.76 24988.81 19090.19 30884.29 14797.43 21875.05 29991.35 20298.56 158
CostFormer92.89 13992.48 13394.12 18094.99 22185.89 24492.89 32197.00 18386.98 21195.00 11190.78 28390.05 5197.51 21292.92 13791.73 19598.96 126
ADS-MVSNet88.99 20587.30 22094.07 18196.21 17187.56 20187.15 34396.78 19083.01 27489.91 18187.27 33078.87 20897.01 23174.20 30692.27 18597.64 188
Vis-MVSNet (Re-imp)93.26 13493.00 12494.06 18296.14 17786.71 22298.68 13896.70 19188.30 17989.71 18597.64 14185.43 13596.39 26088.06 18796.32 13999.08 119
hse-mvs392.47 14991.95 14594.05 18397.13 14185.01 26298.36 18198.08 3793.85 3796.27 8496.73 17883.19 16399.43 11895.81 8268.09 33497.70 187
MSDG88.29 22386.37 23494.04 18496.90 14986.15 23796.52 27094.36 31577.89 32379.22 29396.95 16969.72 27199.59 9673.20 31492.58 18096.37 218
EPP-MVSNet93.75 11793.67 11094.01 18595.86 18385.70 24998.67 14097.66 8684.46 25291.36 15997.18 15991.16 2997.79 19192.93 13693.75 16698.53 159
FMVSNet388.81 21487.08 22493.99 18696.52 16194.59 4998.08 20596.20 22485.85 22982.12 25491.60 26874.05 24095.40 30679.04 27180.24 26291.99 255
Anonymous2024052987.66 23385.58 24693.92 18797.59 12785.01 26298.13 19897.13 16966.69 35588.47 19396.01 19655.09 33499.51 10587.00 19684.12 24097.23 200
BH-w/o92.32 15091.79 14893.91 18896.85 15086.18 23599.11 9495.74 26188.13 18484.81 22197.00 16777.26 21997.91 18289.16 17798.03 11497.64 188
MVSTER92.71 14192.32 13493.86 18997.29 13592.95 8699.01 10496.59 19690.09 12385.51 21794.00 22294.61 1496.56 24890.77 15783.03 25092.08 251
PVSNet_BlendedMVS93.36 12993.20 11893.84 19098.77 9591.61 10599.47 4498.04 4091.44 8994.21 12292.63 25483.50 15499.87 5197.41 4983.37 24890.05 314
tpm291.77 15991.09 15893.82 19194.83 22885.56 25292.51 32697.16 16684.00 25893.83 13090.66 28987.54 8897.17 22487.73 19091.55 19898.72 150
tpm cat188.89 20887.27 22193.76 19295.79 18485.32 25690.76 33897.09 17576.14 32985.72 21588.59 32182.92 16798.04 17876.96 28591.43 19997.90 185
PVSNet_083.28 1687.31 23785.16 25193.74 19394.78 22984.59 26798.91 11498.69 1889.81 13078.59 30093.23 24261.95 31299.34 13094.75 10655.72 35697.30 197
GeoE90.60 18289.56 18193.72 19495.10 21685.43 25399.41 5894.94 30083.96 26087.21 20496.83 17574.37 23597.05 23080.50 26593.73 16798.67 153
test_part188.43 22086.68 23093.67 19597.56 12992.40 9698.12 20096.55 20182.26 28980.31 27893.16 24574.59 23296.62 24585.00 21872.61 31691.99 255
VPNet88.30 22286.57 23193.49 19691.95 28391.35 11098.18 19597.20 16388.61 16484.52 22594.89 20962.21 31196.76 24189.34 17272.26 32192.36 240
VPA-MVSNet89.10 20387.66 21593.45 19792.56 27491.02 12497.97 21198.32 2486.92 21386.03 21492.01 26068.84 27697.10 22890.92 15375.34 28892.23 245
tpmvs89.16 20287.76 21293.35 19897.19 13884.75 26690.58 34097.36 14981.99 29284.56 22389.31 31883.98 15098.17 16774.85 30290.00 21197.12 201
BH-untuned91.46 16590.84 16593.33 19996.51 16284.83 26598.84 12195.50 27686.44 22583.50 23296.70 17975.49 22597.77 19386.78 20197.81 11697.40 194
FMVSNet286.90 24184.79 25993.24 20095.11 21392.54 9497.67 22895.86 25582.94 27680.55 27591.17 27762.89 30895.29 30877.23 28279.71 26891.90 257
FIs90.70 17989.87 17893.18 20192.29 27791.12 11898.17 19798.25 2689.11 15083.44 23394.82 21182.26 18196.17 27787.76 18982.76 25292.25 243
CR-MVSNet88.83 21287.38 21993.16 20293.47 26086.24 23284.97 35094.20 31888.92 15990.76 16786.88 33484.43 14594.82 31870.64 32292.17 18898.41 164
UniMVSNet (Re)89.50 20188.32 20793.03 20392.21 27990.96 12698.90 11598.39 2289.13 14983.22 23492.03 25881.69 18896.34 26886.79 20072.53 31791.81 258
F-COLMAP92.07 15591.75 15093.02 20498.16 11282.89 28898.79 12895.97 23586.54 22287.92 19697.80 13178.69 21199.65 8885.97 20695.93 14996.53 215
NR-MVSNet87.74 23286.00 24092.96 20591.46 29190.68 13396.65 26797.42 14288.02 18873.42 32693.68 23077.31 21895.83 29484.26 22671.82 32592.36 240
RRT_test8_iter0591.04 17390.40 17592.95 20696.20 17489.75 15898.97 10896.38 21188.52 16782.00 25993.51 23790.69 3996.73 24290.43 15976.91 28392.38 239
XXY-MVS87.75 23086.02 23992.95 20690.46 30289.70 15997.71 22795.90 24984.02 25780.95 27194.05 21767.51 28797.10 22885.16 21478.41 27292.04 254
Patchmatch-test86.25 25484.06 26992.82 20894.42 23582.88 28982.88 35794.23 31771.58 34079.39 29190.62 29289.00 6496.42 25963.03 34591.37 20199.16 113
DU-MVS88.83 21287.51 21692.79 20991.46 29190.07 14798.71 13197.62 9988.87 16083.21 23593.68 23074.63 22895.93 28786.95 19772.47 31892.36 240
PMMVS93.62 12393.90 10792.79 20996.79 15381.40 30298.85 11996.81 18891.25 9696.82 7598.15 12677.02 22098.13 16993.15 13496.30 14198.83 141
bset_n11_16_dypcd89.07 20487.85 21192.76 21186.16 34490.66 13497.30 23895.62 26889.78 13183.94 23093.15 24674.85 22795.89 29291.34 14878.48 27191.74 259
UniMVSNet_NR-MVSNet89.60 19888.55 20492.75 21292.17 28090.07 14798.74 13098.15 3488.37 17783.21 23593.98 22382.86 16895.93 28786.95 19772.47 31892.25 243
EPNet_dtu92.28 15192.15 14092.70 21397.29 13584.84 26498.64 14497.82 5592.91 5693.02 14097.02 16685.48 13495.70 29872.25 31894.89 15897.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 4297.84 992.68 21498.71 9778.11 32899.70 1797.71 7898.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
FC-MVSNet-test90.22 18789.40 18592.67 21591.78 28789.86 15597.89 21398.22 2888.81 16182.96 24094.66 21381.90 18795.96 28585.89 21082.52 25592.20 247
WR-MVS88.54 21987.22 22392.52 21691.93 28589.50 16298.56 15697.84 5386.99 20981.87 26393.81 22774.25 23995.92 28985.29 21374.43 29892.12 249
MIMVSNet84.48 27881.83 28892.42 21791.73 28887.36 20785.52 34694.42 31381.40 29881.91 26187.58 32551.92 34392.81 33773.84 30988.15 21697.08 205
HQP-MVS91.50 16391.23 15792.29 21893.95 24586.39 22899.16 8096.37 21293.92 3287.57 19896.67 18073.34 24497.77 19393.82 12386.29 22392.72 233
miper_enhance_ethall90.33 18489.70 17992.22 21997.12 14288.93 17398.35 18295.96 23788.60 16583.14 23992.33 25687.38 9196.18 27686.49 20277.89 27591.55 269
PatchT85.44 26783.19 27492.22 21993.13 26983.00 28483.80 35696.37 21270.62 34290.55 17079.63 35384.81 14394.87 31658.18 35591.59 19798.79 145
AUN-MVS90.17 18989.50 18292.19 22196.21 17182.67 29297.76 22397.53 11888.05 18691.67 15196.15 19183.10 16597.47 21488.11 18666.91 33896.43 216
HQP_MVS91.26 16790.95 16292.16 22293.84 25286.07 24099.02 10296.30 21693.38 4786.99 20596.52 18272.92 24897.75 19893.46 12886.17 22692.67 235
hse-mvs291.67 16191.51 15492.15 22396.22 17082.61 29497.74 22497.53 11893.85 3796.27 8496.15 19183.19 16397.44 21795.81 8266.86 33996.40 217
CLD-MVS91.06 17190.71 16992.10 22494.05 24486.10 23899.55 3496.29 21994.16 2784.70 22297.17 16069.62 27297.82 18994.74 10786.08 22892.39 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 23086.31 23592.07 22590.81 29888.56 18198.33 18397.18 16487.76 19581.87 26393.90 22572.45 25295.43 30483.13 24271.30 32892.23 245
cl-mvsnet289.57 19988.79 19791.91 22697.94 11787.62 19997.98 21096.51 20485.03 24382.37 25091.79 26483.65 15296.50 25285.96 20777.89 27591.61 266
XVG-OURS90.83 17690.49 17391.86 22795.23 20481.25 30695.79 29695.92 24388.96 15590.02 18098.03 12771.60 26299.35 12991.06 15187.78 21894.98 224
XVG-OURS-SEG-HR90.95 17490.66 17191.83 22895.18 20981.14 30995.92 28895.92 24388.40 17690.33 17697.85 12870.66 26899.38 12392.83 13888.83 21494.98 224
tpm89.67 19788.95 19391.82 22992.54 27581.43 30192.95 32095.92 24387.81 19390.50 17289.44 31584.99 13995.65 29983.67 23782.71 25398.38 167
pmmvs487.58 23586.17 23891.80 23089.58 31288.92 17497.25 24295.28 28982.54 28480.49 27693.17 24475.62 22496.05 28282.75 24578.90 26990.42 305
GBi-Net86.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
test186.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
FMVSNet183.94 28681.32 29491.80 23091.94 28488.81 17696.77 26095.25 29077.98 31978.25 30390.25 30350.37 34794.97 31373.27 31377.81 27991.62 263
v2v48287.27 23885.76 24391.78 23489.59 31187.58 20098.56 15695.54 27484.53 25182.51 24691.78 26573.11 24796.47 25582.07 25174.14 30491.30 280
OPM-MVS89.76 19689.15 19091.57 23590.53 30185.58 25198.11 20295.93 24292.88 5886.05 21396.47 18567.06 29197.87 18689.29 17586.08 22891.26 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth88.94 20788.12 21091.40 23695.32 20286.93 21897.85 21795.55 27384.19 25581.97 26091.50 27084.16 14895.91 29084.69 22177.89 27591.36 277
v114486.83 24385.31 25091.40 23689.75 30987.21 21598.31 18695.45 27983.22 27182.70 24390.78 28373.36 24396.36 26279.49 26874.69 29590.63 302
EI-MVSNet89.87 19589.38 18691.36 23894.32 23785.87 24597.61 23096.59 19685.10 24085.51 21797.10 16281.30 19496.56 24883.85 23683.03 25091.64 261
UniMVSNet_ETH3D85.65 26683.79 27291.21 23990.41 30380.75 31395.36 29995.78 25878.76 31781.83 26694.33 21649.86 34896.66 24384.30 22583.52 24796.22 219
v119286.32 25384.71 26091.17 24089.53 31486.40 22798.13 19895.44 28182.52 28582.42 24890.62 29271.58 26396.33 26977.23 28274.88 29290.79 294
v886.11 25584.45 26491.10 24189.99 30586.85 21997.24 24395.36 28781.99 29279.89 28589.86 31174.53 23396.39 26078.83 27572.32 32090.05 314
cl_fuxian88.19 22587.23 22291.06 24294.97 22286.17 23697.72 22595.38 28583.43 26881.68 26791.37 27282.81 16995.72 29784.04 23373.70 30691.29 281
IterMVS-LS88.34 22187.44 21791.04 24394.10 24185.85 24698.10 20395.48 27785.12 23982.03 25891.21 27681.35 19395.63 30083.86 23575.73 28791.63 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 20089.05 19191.00 24488.77 32284.36 27097.39 23495.97 23588.47 16881.88 26293.80 22882.48 17796.50 25289.34 17283.34 24992.15 248
V4287.00 24085.68 24590.98 24589.91 30686.08 23998.32 18595.61 27083.67 26582.72 24290.67 28874.00 24196.53 25081.94 25474.28 30190.32 307
Anonymous2023121184.72 27382.65 28490.91 24697.71 12184.55 26897.28 24096.67 19266.88 35479.18 29490.87 28258.47 32196.60 24682.61 24774.20 30291.59 268
v14419286.40 25184.89 25690.91 24689.48 31585.59 25098.21 19395.43 28282.45 28682.62 24490.58 29572.79 25196.36 26278.45 27774.04 30590.79 294
cl-mvsnet____87.82 22786.79 22990.89 24894.88 22685.43 25397.81 21895.24 29382.91 28080.71 27491.22 27581.97 18695.84 29381.34 25775.06 29091.40 276
cl-mvsnet187.82 22786.81 22890.87 24994.87 22785.39 25597.81 21895.22 29782.92 27980.76 27391.31 27481.99 18495.81 29581.36 25675.04 29191.42 275
v1085.73 26484.01 27090.87 24990.03 30486.73 22197.20 24695.22 29781.25 30079.85 28689.75 31273.30 24696.28 27476.87 28672.64 31589.61 321
v192192086.02 25684.44 26590.77 25189.32 31785.20 25798.10 20395.35 28882.19 29082.25 25290.71 28570.73 26696.30 27376.85 28774.49 29790.80 293
v124085.77 26384.11 26890.73 25289.26 31885.15 26097.88 21595.23 29681.89 29582.16 25390.55 29769.60 27396.31 27075.59 29774.87 29390.72 299
MVS-HIRNet79.01 30875.13 31890.66 25393.82 25481.69 30085.16 34793.75 32454.54 35974.17 32259.15 36257.46 32496.58 24763.74 34294.38 16193.72 229
ACMH83.09 1784.60 27582.61 28590.57 25493.18 26882.94 28596.27 27694.92 30181.01 30372.61 33493.61 23356.54 32697.79 19174.31 30581.07 26190.99 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 28781.35 29390.56 25591.37 29388.06 19197.29 23997.87 5178.51 31876.20 30990.91 28064.78 30296.47 25561.71 34873.50 30987.13 343
AllTest84.97 27183.12 27590.52 25696.82 15178.84 32195.89 28992.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
TestCases90.52 25696.82 15178.84 32192.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
ACMM86.95 1388.77 21588.22 20990.43 25893.61 25781.34 30498.50 16395.92 24387.88 19283.85 23195.20 20667.20 28997.89 18486.90 19984.90 23492.06 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 27482.78 28090.40 25989.58 31285.18 25897.31 23794.73 30481.93 29476.05 31192.01 26065.48 30096.11 28078.75 27669.14 33189.91 317
KD-MVS_2432*160082.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
miper_refine_blended82.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
v14886.38 25285.06 25290.37 26289.47 31684.10 27398.52 15895.48 27783.80 26180.93 27290.22 30674.60 23096.31 27080.92 26071.55 32690.69 300
pmmvs585.87 25884.40 26790.30 26388.53 32684.23 27198.60 15193.71 32581.53 29780.29 27992.02 25964.51 30395.52 30282.04 25378.34 27391.15 284
LTVRE_ROB81.71 1984.59 27682.72 28290.18 26492.89 27383.18 28393.15 31994.74 30378.99 31475.14 31992.69 25265.64 29997.63 20469.46 32681.82 25989.74 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 27282.93 27690.16 26591.73 28883.54 27995.00 30293.30 33188.77 16273.19 32793.30 24053.62 33997.65 20375.88 29581.54 26089.30 324
ACMP87.39 1088.71 21788.24 20890.12 26693.91 25081.06 31098.50 16395.67 26689.43 14380.37 27795.55 20065.67 29897.83 18890.55 15884.51 23691.47 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth87.76 22987.00 22690.06 26794.67 23282.65 29397.02 25395.37 28684.19 25581.86 26591.58 26981.47 19195.90 29183.24 23873.61 30791.61 266
LPG-MVS_test88.86 20988.47 20690.06 26793.35 26580.95 31198.22 19195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
LGP-MVS_train90.06 26793.35 26580.95 31195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
test0.0.03 188.96 20688.61 20190.03 27091.09 29584.43 26998.97 10897.02 18190.21 11780.29 27996.31 19084.89 14191.93 34972.98 31585.70 23193.73 228
jajsoiax87.35 23686.51 23389.87 27187.75 33681.74 29997.03 25195.98 23488.47 16880.15 28193.80 22861.47 31396.36 26289.44 17084.47 23891.50 270
ADS-MVSNet287.62 23486.88 22789.86 27296.21 17179.14 31987.15 34392.99 33283.01 27489.91 18187.27 33078.87 20892.80 33874.20 30692.27 18597.64 188
test_djsdf88.26 22487.73 21389.84 27388.05 33182.21 29697.77 22196.17 22786.84 21482.41 24991.95 26372.07 25695.99 28389.83 16384.50 23791.32 279
ppachtmachnet_test83.63 28881.57 29189.80 27489.01 31985.09 26197.13 24894.50 31078.84 31576.14 31091.00 27969.78 27094.61 32363.40 34374.36 29989.71 320
CP-MVSNet86.54 24985.45 24989.79 27591.02 29782.78 29197.38 23697.56 11385.37 23679.53 29093.03 24871.86 25995.25 30979.92 26673.43 31191.34 278
mvs_tets87.09 23986.22 23689.71 27687.87 33281.39 30396.73 26595.90 24988.19 18379.99 28393.61 23359.96 31996.31 27089.40 17184.34 23991.43 274
D2MVS87.96 22687.39 21889.70 27791.84 28683.40 28098.31 18698.49 2088.04 18778.23 30490.26 30273.57 24296.79 24084.21 22783.53 24688.90 329
mvs-test191.57 16292.20 13889.70 27795.15 21074.34 33899.51 4095.40 28391.92 7891.02 16397.25 15374.27 23798.08 17589.45 16895.83 15096.67 209
COLMAP_ROBcopyleft82.69 1884.54 27782.82 27789.70 27796.72 15578.85 32095.89 28992.83 33571.55 34177.54 30795.89 19759.40 32099.14 14067.26 33388.26 21591.11 286
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 25085.49 24889.66 28091.04 29683.31 28297.53 23298.20 3084.95 24679.64 28790.90 28178.01 21595.33 30776.29 29272.81 31390.35 306
Fast-Effi-MVS+-dtu88.84 21088.59 20389.58 28193.44 26378.18 32698.65 14294.62 30888.46 17084.12 22895.37 20568.91 27496.52 25182.06 25291.70 19694.06 227
anonymousdsp86.69 24585.75 24489.53 28286.46 34282.94 28596.39 27295.71 26283.97 25979.63 28890.70 28668.85 27595.94 28686.01 20584.02 24189.72 319
our_test_384.47 27982.80 27889.50 28389.01 31983.90 27697.03 25194.56 30981.33 29975.36 31890.52 29871.69 26194.54 32468.81 32876.84 28490.07 312
Patchmtry83.61 28981.64 28989.50 28393.36 26482.84 29084.10 35394.20 31869.47 34879.57 28986.88 33484.43 14594.78 31968.48 33074.30 30090.88 291
PS-CasMVS85.81 26184.58 26389.49 28590.77 29982.11 29797.20 24697.36 14984.83 24879.12 29592.84 25167.42 28895.16 31178.39 27873.25 31291.21 283
v7n84.42 28082.75 28189.43 28688.15 32981.86 29896.75 26395.67 26680.53 30678.38 30289.43 31669.89 26996.35 26773.83 31072.13 32290.07 312
JIA-IIPM85.97 25784.85 25789.33 28793.23 26773.68 34185.05 34997.13 16969.62 34791.56 15568.03 35888.03 8096.96 23277.89 28093.12 17197.34 196
MS-PatchMatch86.75 24485.92 24189.22 28891.97 28282.47 29596.91 25596.14 22983.74 26277.73 30593.53 23658.19 32297.37 22276.75 28898.35 11087.84 335
IterMVS85.81 26184.67 26189.22 28893.51 25983.67 27896.32 27594.80 30285.09 24178.69 29690.17 30966.57 29593.17 33479.48 26977.42 28190.81 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 28182.56 28689.15 29093.73 25679.16 31896.43 27194.28 31681.09 30274.00 32394.03 22054.58 33697.67 20176.10 29378.81 27090.63 302
TransMVSNet (Re)81.97 29579.61 30389.08 29189.70 31084.01 27497.26 24191.85 34778.84 31573.07 33191.62 26767.17 29095.21 31067.50 33259.46 35188.02 334
PEN-MVS85.21 26983.93 27189.07 29289.89 30881.31 30597.09 24997.24 15584.45 25378.66 29792.68 25368.44 27994.87 31675.98 29470.92 32991.04 287
miper_lstm_enhance86.90 24186.20 23789.00 29394.53 23481.19 30796.74 26495.24 29382.33 28880.15 28190.51 29981.99 18494.68 32280.71 26273.58 30891.12 285
IterMVS-SCA-FT85.73 26484.64 26289.00 29393.46 26282.90 28796.27 27694.70 30585.02 24478.62 29890.35 30166.61 29393.33 33179.38 27077.36 28290.76 296
MVP-Stereo86.61 24885.83 24288.93 29588.70 32483.85 27796.07 28694.41 31482.15 29175.64 31691.96 26267.65 28696.45 25777.20 28498.72 10186.51 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 26084.82 25888.87 29688.73 32383.34 28198.63 14691.66 34880.41 31082.44 24791.35 27374.63 22895.42 30584.13 22971.39 32787.84 335
XVG-ACMP-BASELINE85.86 25984.95 25588.57 29789.90 30777.12 33194.30 30895.60 27187.40 20682.12 25492.99 25053.42 34097.66 20285.02 21783.83 24290.92 290
MVS_030484.13 28482.66 28388.52 29893.07 27080.15 31495.81 29598.21 2979.27 31286.85 20986.40 33741.33 35994.69 32176.36 29186.69 22290.73 298
LCM-MVSNet-Re88.59 21888.61 20188.51 29995.53 19672.68 34696.85 25888.43 36288.45 17173.14 32890.63 29175.82 22294.38 32592.95 13595.71 15398.48 162
CVMVSNet90.30 18590.91 16388.46 30094.32 23773.58 34297.61 23097.59 10690.16 12288.43 19497.10 16276.83 22192.86 33582.64 24693.54 16998.93 132
DTE-MVSNet84.14 28382.80 27888.14 30188.95 32179.87 31796.81 25996.24 22183.50 26777.60 30692.52 25567.89 28594.24 32772.64 31769.05 33290.32 307
ITE_SJBPF87.93 30292.26 27876.44 33293.47 33087.67 20179.95 28495.49 20356.50 32797.38 22075.24 29882.33 25689.98 316
TinyColmap80.42 30277.94 30687.85 30392.09 28178.58 32393.74 31389.94 35774.99 33169.77 33891.78 26546.09 35397.58 20765.17 34177.89 27587.38 338
Effi-MVS+-dtu89.97 19490.68 17087.81 30495.15 21071.98 34897.87 21695.40 28391.92 7887.57 19891.44 27174.27 23796.84 23689.45 16893.10 17294.60 226
pmmvs679.90 30477.31 30987.67 30584.17 34978.13 32795.86 29393.68 32667.94 35272.67 33389.62 31450.98 34695.75 29674.80 30366.04 34089.14 327
FMVSNet582.29 29380.54 29787.52 30693.79 25584.01 27493.73 31492.47 33876.92 32674.27 32186.15 33963.69 30789.24 35569.07 32774.79 29489.29 325
MDA-MVSNet_test_wron79.65 30677.05 31087.45 30787.79 33580.13 31596.25 27994.44 31173.87 33651.80 35987.47 32968.04 28292.12 34766.02 33767.79 33690.09 310
YYNet179.64 30777.04 31187.43 30887.80 33479.98 31696.23 28094.44 31173.83 33751.83 35887.53 32667.96 28492.07 34866.00 33867.75 33790.23 309
Patchmatch-RL test81.90 29780.13 30087.23 30980.71 35870.12 35384.07 35488.19 36383.16 27370.57 33682.18 34787.18 9892.59 34082.28 25062.78 34498.98 124
MDA-MVSNet-bldmvs77.82 31674.75 32087.03 31088.33 32778.52 32496.34 27492.85 33475.57 33048.87 36187.89 32357.32 32592.49 34360.79 34964.80 34390.08 311
EG-PatchMatch MVS79.92 30377.59 30786.90 31187.06 34077.90 33096.20 28494.06 32074.61 33366.53 35088.76 32040.40 36196.20 27567.02 33483.66 24586.61 344
OpenMVS_ROBcopyleft73.86 2077.99 31575.06 31986.77 31283.81 35177.94 32996.38 27391.53 35167.54 35368.38 34187.13 33343.94 35596.08 28155.03 35781.83 25886.29 347
pmmvs-eth3d78.71 31176.16 31586.38 31380.25 35981.19 30794.17 31092.13 34377.97 32066.90 34982.31 34655.76 32892.56 34173.63 31262.31 34785.38 350
test_040278.81 31076.33 31486.26 31491.18 29478.44 32595.88 29191.34 35268.55 34970.51 33789.91 31052.65 34294.99 31247.14 36179.78 26785.34 352
testgi82.29 29381.00 29686.17 31587.24 33874.84 33797.39 23491.62 34988.63 16375.85 31595.42 20446.07 35491.55 35066.87 33679.94 26692.12 249
TDRefinement78.01 31475.31 31786.10 31670.06 36573.84 34093.59 31791.58 35074.51 33473.08 33091.04 27849.63 35097.12 22574.88 30159.47 35087.33 340
SixPastTwentyTwo82.63 29281.58 29085.79 31788.12 33071.01 35095.17 30192.54 33784.33 25472.93 33292.08 25760.41 31895.61 30174.47 30474.15 30390.75 297
OurMVSNet-221017-084.13 28483.59 27385.77 31887.81 33370.24 35194.89 30393.65 32786.08 22776.53 30893.28 24161.41 31496.14 27980.95 25977.69 28090.93 289
UnsupCasMVSNet_eth78.90 30976.67 31385.58 31982.81 35474.94 33691.98 32896.31 21584.64 25065.84 35287.71 32451.33 34492.23 34572.89 31656.50 35589.56 322
lessismore_v085.08 32085.59 34569.28 35490.56 35567.68 34590.21 30754.21 33895.46 30373.88 30862.64 34590.50 304
UnsupCasMVSNet_bld73.85 32270.14 32584.99 32179.44 36075.73 33388.53 34195.24 29370.12 34661.94 35574.81 35541.41 35893.62 32968.65 32951.13 36085.62 349
K. test v381.04 29979.77 30284.83 32287.41 33770.23 35295.60 29893.93 32283.70 26467.51 34689.35 31755.76 32893.58 33076.67 28968.03 33590.67 301
Anonymous2023120680.76 30079.42 30484.79 32384.78 34772.98 34396.53 26992.97 33379.56 31174.33 32088.83 31961.27 31592.15 34660.59 35075.92 28689.24 326
RPSCF85.33 26885.55 24784.67 32494.63 23362.28 35993.73 31493.76 32374.38 33585.23 22097.06 16564.09 30498.31 16280.98 25886.08 22893.41 232
CL-MVSNet_2432*160079.89 30578.34 30584.54 32581.56 35675.01 33596.88 25795.62 26881.10 30175.86 31485.81 34068.49 27890.26 35363.21 34456.51 35488.35 332
LF4IMVS81.94 29681.17 29584.25 32687.23 33968.87 35693.35 31891.93 34683.35 27075.40 31793.00 24949.25 35196.65 24478.88 27478.11 27487.22 342
Anonymous2024052178.63 31276.90 31283.82 32782.82 35372.86 34495.72 29793.57 32873.55 33872.17 33584.79 34249.69 34992.51 34265.29 34074.50 29686.09 348
MIMVSNet175.92 31973.30 32283.81 32881.29 35775.57 33492.26 32792.05 34473.09 33967.48 34786.18 33840.87 36087.64 35855.78 35670.68 33088.21 333
EU-MVSNet84.19 28284.42 26683.52 32988.64 32567.37 35796.04 28795.76 26085.29 23778.44 30193.18 24370.67 26791.48 35175.79 29675.98 28591.70 260
new_pmnet76.02 31873.71 32182.95 33083.88 35072.85 34591.26 33492.26 34070.44 34462.60 35481.37 34847.64 35292.32 34461.85 34772.10 32383.68 355
DIV-MVS_2432*160077.47 31775.88 31682.24 33181.59 35568.93 35592.83 32494.02 32177.03 32573.14 32883.39 34455.44 33290.42 35267.95 33157.53 35387.38 338
pmmvs372.86 32369.76 32782.17 33273.86 36374.19 33994.20 30989.01 36164.23 35867.72 34480.91 35041.48 35788.65 35762.40 34654.02 35883.68 355
DSMNet-mixed81.60 29881.43 29282.10 33384.36 34860.79 36093.63 31686.74 36479.00 31379.32 29287.15 33263.87 30689.78 35466.89 33591.92 19095.73 222
new-patchmatchnet74.80 32172.40 32481.99 33478.36 36272.20 34794.44 30692.36 33977.06 32463.47 35379.98 35251.04 34588.85 35660.53 35154.35 35784.92 353
test20.0378.51 31377.48 30881.62 33583.07 35271.03 34996.11 28592.83 33581.66 29669.31 33989.68 31357.53 32387.29 35958.65 35468.47 33386.53 345
CMPMVSbinary58.40 2180.48 30180.11 30181.59 33685.10 34659.56 36194.14 31195.95 23968.54 35060.71 35693.31 23955.35 33397.87 18683.06 24384.85 23587.33 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 32072.85 32380.98 33778.98 36164.75 35890.81 33785.77 36580.95 30468.23 34382.81 34529.08 36492.84 33676.54 29062.46 34685.36 351
ambc79.60 33872.76 36456.61 36376.20 35992.01 34568.25 34280.23 35123.34 36594.73 32073.78 31160.81 34887.48 337
DeepMVS_CXcopyleft76.08 33990.74 30051.65 36790.84 35486.47 22457.89 35787.98 32235.88 36292.60 33965.77 33965.06 34283.97 354
test_method70.10 32568.66 32874.41 34086.30 34355.84 36494.47 30589.82 35835.18 36466.15 35184.75 34330.54 36377.96 36470.40 32560.33 34989.44 323
LCM-MVSNet60.07 32756.37 33071.18 34154.81 37148.67 36882.17 35889.48 36037.95 36249.13 36069.12 35613.75 37281.76 36059.28 35251.63 35983.10 357
N_pmnet70.19 32469.87 32671.12 34288.24 32830.63 37595.85 29428.70 37570.18 34568.73 34086.55 33664.04 30593.81 32853.12 35973.46 31088.94 328
PMMVS258.97 32855.07 33170.69 34362.72 36655.37 36585.97 34580.52 36849.48 36045.94 36268.31 35715.73 37080.78 36249.79 36037.12 36375.91 358
FPMVS61.57 32660.32 32965.34 34460.14 36942.44 37091.02 33689.72 35944.15 36142.63 36380.93 34919.02 36680.59 36342.50 36272.76 31473.00 359
ANet_high50.71 33146.17 33464.33 34544.27 37352.30 36676.13 36078.73 36964.95 35627.37 36755.23 36314.61 37167.74 36636.01 36318.23 36672.95 360
Gipumacopyleft54.77 32952.22 33362.40 34686.50 34159.37 36250.20 36490.35 35636.52 36341.20 36449.49 36418.33 36881.29 36132.10 36465.34 34146.54 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 33052.86 33256.05 34732.75 37541.97 37173.42 36176.12 37121.91 36939.68 36596.39 18842.59 35665.10 36778.00 27914.92 36861.08 361
PMVScopyleft41.42 2345.67 33242.50 33555.17 34834.28 37432.37 37366.24 36278.71 37030.72 36522.04 37059.59 3614.59 37377.85 36527.49 36558.84 35255.29 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 33337.64 33853.90 34949.46 37243.37 36965.09 36366.66 37226.19 36825.77 36948.53 3653.58 37563.35 36826.15 36627.28 36454.97 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33440.93 33641.29 35061.97 36733.83 37284.00 35565.17 37327.17 36627.56 36646.72 36617.63 36960.41 36919.32 36718.82 36529.61 365
EMVS39.96 33539.88 33740.18 35159.57 37032.12 37484.79 35264.57 37426.27 36726.14 36844.18 36918.73 36759.29 37017.03 36817.67 36729.12 366
wuyk23d16.71 33816.73 34216.65 35260.15 36825.22 37641.24 3655.17 3766.56 3705.48 3733.61 3723.64 37422.72 37115.20 3699.52 3691.99 369
test12316.58 33919.47 3417.91 3533.59 3775.37 37794.32 3071.39 3782.49 37213.98 37244.60 3682.91 3762.65 37211.35 3710.57 37115.70 367
testmvs18.81 33723.05 3406.10 3544.48 3762.29 37897.78 2203.00 3773.27 37118.60 37162.71 3591.53 3772.49 37314.26 3701.80 37013.50 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k22.52 33630.03 3390.00 3550.00 3780.00 3790.00 36697.17 1650.00 3730.00 37498.77 8674.35 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas6.87 3419.16 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37382.48 1770.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.21 34010.94 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37498.50 1070.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.50 4788.94 17299.55 3497.47 13291.32 9498.12 37
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
test_one_060199.59 3194.89 3597.64 9293.14 5098.93 1599.45 1693.45 17
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.67 1393.28 7497.61 10087.78 19497.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
RE-MVS-def95.70 6699.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6685.24 13796.62 6399.31 7699.60 77
IU-MVS99.63 2195.38 2197.73 7295.54 1599.54 199.69 599.81 2399.99 1
test_241102_TWO97.72 7494.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7494.16 2799.30 599.49 1093.32 1899.98 10
9.1496.87 2799.34 5899.50 4197.49 12989.41 14498.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
save fliter99.34 5893.85 6399.65 2397.63 9795.69 11
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
test072699.66 1595.20 2999.77 997.70 7993.95 3099.35 499.54 393.18 21
GSMVS98.84 138
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 138
sam_mvs87.08 99
MTGPAbinary97.45 135
test_post190.74 33941.37 37085.38 13696.36 26283.16 240
test_post46.00 36787.37 9297.11 226
patchmatchnet-post84.86 34188.73 6796.81 238
MTMP99.21 7491.09 353
gm-plane-assit94.69 23188.14 18988.22 18297.20 15798.29 16490.79 156
test9_res98.60 2399.87 999.90 24
TEST999.57 3793.17 7699.38 6197.66 8689.57 13998.39 3099.18 3790.88 3599.66 84
test_899.55 3993.07 8099.37 6497.64 9290.18 11998.36 3299.19 3490.94 3399.64 90
agg_prior297.84 4599.87 999.91 22
agg_prior99.54 4092.66 8897.64 9297.98 4499.61 93
test_prior492.00 9899.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
旧先验298.67 14085.75 23198.96 1498.97 14693.84 121
新几何298.26 189
旧先验198.97 8592.90 8797.74 6899.15 4391.05 3299.33 7499.60 77
无先验98.52 15897.82 5587.20 20899.90 4487.64 19199.85 33
原ACMM298.69 136
test22298.32 10691.21 11398.08 20597.58 10883.74 26295.87 9499.02 6086.74 10799.64 4799.81 35
testdata299.88 4884.16 228
segment_acmp90.56 42
testdata197.89 21392.43 65
plane_prior793.84 25285.73 248
plane_prior693.92 24986.02 24272.92 248
plane_prior596.30 21697.75 19893.46 12886.17 22692.67 235
plane_prior496.52 182
plane_prior385.91 24393.65 4286.99 205
plane_prior299.02 10293.38 47
plane_prior193.90 251
plane_prior86.07 24099.14 8993.81 4086.26 225
n20.00 379
nn0.00 379
door-mid84.90 367
test1197.68 83
door85.30 366
HQP5-MVS86.39 228
HQP-NCC93.95 24599.16 8093.92 3287.57 198
ACMP_Plane93.95 24599.16 8093.92 3287.57 198
BP-MVS93.82 123
HQP4-MVS87.57 19897.77 19392.72 233
HQP3-MVS96.37 21286.29 223
HQP2-MVS73.34 244
NP-MVS93.94 24886.22 23496.67 180
MDTV_nov1_ep13_2view91.17 11791.38 33287.45 20593.08 13886.67 11087.02 19598.95 130
MDTV_nov1_ep1390.47 17496.14 17788.55 18291.34 33397.51 12489.58 13892.24 14790.50 30086.99 10397.61 20677.64 28192.34 183
ACMMP++_ref82.64 254
ACMMP++83.83 242
Test By Simon83.62 153