This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1799.68 198.25 9399.10 199.76 1297.78 6196.61 598.15 3299.53 793.62 17100.00 191.79 14299.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 999.19 2895.12 899.97 2199.90 199.92 399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1797.98 4697.18 295.96 8299.33 1992.62 26100.00 198.99 1899.93 199.98 6
MVS93.92 9992.28 12798.83 695.69 18296.82 796.22 27998.17 3384.89 24584.34 22498.61 9179.32 19599.83 6093.88 11599.43 5999.86 29
test_0728_SECOND98.77 799.66 1296.37 1299.72 1497.68 7899.98 999.64 699.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1399.80 897.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1899.90 799.96 10
DELS-MVS97.12 2196.60 2998.68 998.03 10296.57 1099.84 397.84 5196.36 995.20 9998.24 10888.17 6699.83 6096.11 7299.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2396.49 3098.55 1098.86 8096.10 1499.83 497.52 11495.90 1097.21 5698.90 6682.66 16499.93 3798.71 2098.80 8699.63 62
WTY-MVS95.97 4995.11 6798.54 1197.62 11296.65 899.44 4998.74 1492.25 7595.21 9898.46 10286.56 10299.46 10495.00 9692.69 17299.50 74
HY-MVS88.56 795.29 6794.23 7998.48 1297.72 10896.41 1194.03 31098.74 1492.42 7095.65 9294.76 20986.52 10399.49 9895.29 8992.97 16899.53 70
MG-MVS97.24 1696.83 2598.47 1399.79 595.71 1699.07 9499.06 994.45 2696.42 7698.70 8488.81 5999.74 7495.35 8799.86 1299.97 7
DVP-MVS++98.18 298.09 598.44 1499.61 2495.38 2099.55 3397.68 7893.01 5699.23 899.45 1495.12 899.98 999.25 1499.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1499.50 4295.39 1999.29 6897.72 6994.50 2498.64 2199.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS98.18 298.10 498.41 1699.63 1895.24 2399.77 997.72 6994.17 2999.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1799.66 1295.20 2899.72 1497.47 12493.95 3499.07 1199.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-MVSNAJ96.87 2696.40 3298.29 1797.35 12097.29 599.03 10097.11 16195.83 1198.97 1499.14 3882.48 16799.60 8998.60 2399.08 7398.00 173
canonicalmvs95.02 7393.96 9198.20 1997.53 11795.92 1598.71 12996.19 21391.78 8395.86 8798.49 9879.53 19399.03 13596.12 7191.42 19599.66 58
3Dnovator+87.72 893.43 11591.84 13898.17 2095.73 18195.08 3098.92 11297.04 16891.42 9281.48 26897.60 13074.60 22099.79 6990.84 15198.97 7899.64 60
HPM-MVS++copyleft97.72 1097.59 1198.14 2199.53 4094.76 4099.19 7297.75 6495.66 1398.21 3199.29 2091.10 3399.99 597.68 4299.87 999.68 54
NCCC98.12 598.11 398.13 2299.76 694.46 4699.81 697.88 4896.54 698.84 1899.46 1092.55 2799.98 998.25 3499.93 199.94 18
DeepC-MVS_fast93.52 297.16 2096.84 2498.13 2299.61 2494.45 4798.85 11697.64 8796.51 895.88 8599.39 1887.35 8499.99 596.61 6399.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 1896.92 2098.12 2499.11 6694.88 3399.44 4997.45 12789.60 13698.70 2099.42 1790.42 4499.72 7598.47 2899.65 3899.77 42
xiu_mvs_v2_base96.66 3096.17 4098.11 2597.11 13296.96 699.01 10397.04 16895.51 1698.86 1799.11 4582.19 17399.36 11698.59 2598.14 10198.00 173
alignmvs95.77 5795.00 7098.06 2697.35 12095.68 1799.71 1697.50 11991.50 8896.16 8098.61 9186.28 10899.00 13696.19 7091.74 18999.51 73
SMA-MVScopyleft97.24 1696.99 1998.00 2799.30 5494.20 5399.16 7897.65 8689.55 14099.22 1099.52 890.34 4699.99 598.32 3299.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 5395.15 6697.95 2899.87 294.38 5099.60 2897.48 12286.58 21894.42 11099.13 4087.36 8399.98 993.64 12098.33 9999.48 75
PAPR96.35 3795.82 5097.94 2999.63 1894.19 5499.42 5497.55 10792.43 6893.82 12299.12 4187.30 8599.91 4094.02 11199.06 7499.74 46
131493.44 11491.98 13597.84 3095.24 19594.38 5096.22 27997.92 4790.18 12082.28 25197.71 12577.63 20799.80 6891.94 14198.67 9199.34 86
test1297.83 3199.33 5394.45 4797.55 10797.56 4788.60 6199.50 9799.71 3499.55 69
ACMMP_NAP96.59 3296.18 3797.81 3298.82 8193.55 6498.88 11597.59 10090.66 10597.98 4299.14 3886.59 100100.00 196.47 6799.46 5599.89 25
SD-MVS97.51 1297.40 1597.81 3299.01 7293.79 6199.33 6597.38 13793.73 4598.83 1999.02 5290.87 3899.88 4698.69 2199.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.53 1197.47 1297.70 3499.58 3093.63 6299.56 3297.52 11493.59 4998.01 4199.12 4190.80 3999.55 9299.26 1399.79 2799.93 20
CDPH-MVS96.56 3396.18 3797.70 3499.59 2893.92 5899.13 8997.44 13089.02 15297.90 4499.22 2588.90 5899.49 9894.63 10599.79 2799.68 54
MSLP-MVS++97.50 1397.45 1497.63 3699.65 1693.21 7099.70 1798.13 3894.61 2297.78 4699.46 1089.85 4999.81 6697.97 3799.91 699.88 26
APD-MVScopyleft96.95 2496.72 2697.63 3699.51 4193.58 6399.16 7897.44 13090.08 12598.59 2399.07 4689.06 5599.42 10997.92 3899.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 7693.94 9297.58 3896.43 15294.09 5798.93 11099.16 889.50 14195.27 9797.85 11681.50 18099.65 8492.79 13594.02 16098.99 113
PAPM96.35 3795.94 4697.58 3894.10 23395.25 2298.93 11098.17 3394.26 2893.94 11898.72 8089.68 5197.88 18296.36 6899.29 6799.62 64
train_agg97.20 1997.08 1897.57 4099.57 3393.17 7199.38 5897.66 8190.18 12098.39 2799.18 3190.94 3599.66 8098.58 2699.85 1399.88 26
VNet95.08 7294.26 7897.55 4198.07 10093.88 5998.68 13398.73 1690.33 11797.16 5897.43 13979.19 19699.53 9596.91 5891.85 18799.24 94
lupinMVS96.32 3995.94 4697.44 4295.05 21194.87 3499.86 296.50 19393.82 4398.04 3998.77 7485.52 11798.09 17096.98 5598.97 7899.37 82
新几何197.40 4398.92 7792.51 8697.77 6385.52 23296.69 7199.06 4888.08 6999.89 4584.88 21899.62 4499.79 35
TSAR-MVS + MP.97.44 1497.46 1397.39 4499.12 6593.49 6798.52 15297.50 11994.46 2598.99 1398.64 8791.58 3099.08 13498.49 2799.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator87.35 1193.17 12691.77 14097.37 4595.41 19293.07 7498.82 11997.85 5091.53 8782.56 24397.58 13271.97 24699.82 6391.01 14899.23 6999.22 97
MP-MVS-pluss95.80 5595.30 6197.29 4698.95 7692.66 8198.59 14797.14 15788.95 15593.12 12999.25 2285.62 11699.94 3496.56 6599.48 5499.28 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
DCV-MVSNet95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
EPNet96.82 2796.68 2897.25 4998.65 8693.10 7399.48 4098.76 1396.54 697.84 4598.22 10987.49 7799.66 8095.35 8797.78 10899.00 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 3196.46 3197.21 5099.34 5091.77 9199.70 1798.05 4186.48 22198.05 3899.20 2789.33 5399.96 2898.38 2999.62 4499.90 22
CANet_DTU94.31 9293.35 10297.20 5197.03 13694.71 4298.62 14195.54 26295.61 1497.21 5698.47 10071.88 24799.84 5788.38 18097.46 11697.04 198
QAPM91.41 15989.49 17897.17 5295.66 18493.42 6898.60 14597.51 11680.92 30681.39 26997.41 14072.89 23999.87 4982.33 24998.68 9098.21 168
TSAR-MVS + GP.96.95 2496.91 2197.07 5398.88 7991.62 9499.58 3096.54 19195.09 2096.84 6498.63 8991.16 3199.77 7199.04 1796.42 13099.81 32
114514_t94.06 9493.05 11197.06 5499.08 6992.26 8798.97 10897.01 17282.58 28392.57 13498.22 10980.68 18699.30 12289.34 17199.02 7699.63 62
jason95.40 6694.86 7197.03 5592.91 26594.23 5299.70 1796.30 20493.56 5096.73 7098.52 9481.46 18297.91 17996.08 7398.47 9798.96 116
jason: jason.
test_prior97.01 5699.58 3091.77 9197.57 10599.49 9899.79 35
SteuartSystems-ACMMP97.25 1597.34 1697.01 5697.38 11991.46 9899.75 1397.66 8194.14 3398.13 3399.26 2192.16 2999.66 8097.91 3999.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base_debi94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
GG-mvs-BLEND96.98 6196.53 14894.81 3987.20 34797.74 6593.91 11996.40 17996.56 296.94 23195.08 9298.95 8199.20 98
thres20093.69 10692.59 12396.97 6297.76 10794.74 4199.35 6399.36 289.23 14691.21 15796.97 16083.42 14698.77 14385.08 21590.96 19897.39 187
MTAPA96.09 4495.80 5396.96 6399.29 5591.19 10297.23 24297.45 12792.58 6594.39 11199.24 2486.43 10699.99 596.22 6999.40 6299.71 50
ZNCC-MVS96.09 4495.81 5296.95 6499.42 4791.19 10299.55 3397.53 11189.72 13195.86 8798.94 6486.59 10099.97 2195.13 9199.56 5099.68 54
GST-MVS95.97 4995.66 5696.90 6599.49 4591.22 10099.45 4897.48 12289.69 13295.89 8498.72 8086.37 10799.95 3194.62 10699.22 7099.52 71
thres100view90093.34 11992.15 13196.90 6597.62 11294.84 3699.06 9699.36 287.96 18690.47 16896.78 16983.29 14998.75 14584.11 23090.69 20097.12 193
tfpn200view993.43 11592.27 12896.90 6597.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20097.12 193
HFP-MVS96.42 3696.26 3596.90 6599.69 890.96 11399.47 4297.81 5790.54 11196.88 6199.05 4987.57 7599.96 2895.65 7899.72 3199.78 37
gg-mvs-nofinetune90.00 18887.71 21096.89 6996.15 16794.69 4385.15 35397.74 6568.32 35392.97 13260.16 36696.10 396.84 23393.89 11498.87 8399.14 101
XVS96.47 3596.37 3396.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6298.96 5987.37 8099.87 4995.65 7899.43 5999.78 37
X-MVStestdata90.69 17488.66 19696.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6229.59 37887.37 8099.87 4995.65 7899.43 5999.78 37
thres600view793.18 12592.00 13496.75 7297.62 11294.92 3199.07 9499.36 287.96 18690.47 16896.78 16983.29 14998.71 14982.93 24490.47 20496.61 202
PVSNet_Blended95.94 5195.66 5696.75 7298.77 8391.61 9599.88 198.04 4293.64 4894.21 11397.76 12183.50 14399.87 4997.41 4697.75 10998.79 136
ACMMPR96.28 4196.14 4496.73 7499.68 990.47 12399.47 4297.80 5890.54 11196.83 6699.03 5186.51 10499.95 3195.65 7899.72 3199.75 45
thres40093.39 11792.27 12896.73 7497.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20096.61 202
MVS_111021_HR96.69 2996.69 2796.72 7698.58 8891.00 11299.14 8699.45 193.86 4095.15 10098.73 7888.48 6299.76 7297.23 5099.56 5099.40 80
region2R96.30 4096.17 4096.70 7799.70 790.31 12599.46 4697.66 8190.55 11097.07 5999.07 4686.85 9399.97 2195.43 8599.74 2999.81 32
MVS_Test93.67 10992.67 12196.69 7896.72 14492.66 8197.22 24396.03 22287.69 19795.12 10194.03 21881.55 17998.28 16289.17 17596.46 12899.14 101
ab-mvs91.05 16789.17 18596.69 7895.96 17491.72 9392.62 32397.23 14785.61 23189.74 17893.89 22468.55 26699.42 10991.09 14687.84 21298.92 124
CHOSEN 280x42096.80 2896.85 2396.66 8097.85 10694.42 4994.76 30298.36 2492.50 6795.62 9397.52 13497.92 197.38 21798.31 3398.80 8698.20 169
MVSFormer94.71 8394.08 8696.61 8195.05 21194.87 3497.77 21896.17 21486.84 21298.04 3998.52 9485.52 11795.99 28389.83 16198.97 7898.96 116
API-MVS94.78 7894.18 8396.59 8299.21 6190.06 13698.80 12197.78 6183.59 26593.85 12099.21 2683.79 14099.97 2192.37 13899.00 7799.74 46
test250694.80 7794.21 8096.58 8396.41 15392.18 8998.01 20598.96 1090.82 10293.46 12597.28 14385.92 11398.45 15589.82 16397.19 12099.12 104
baseline192.61 13691.28 14996.58 8397.05 13594.63 4497.72 22296.20 21189.82 12988.56 18796.85 16786.85 9397.82 18688.42 17980.10 26797.30 189
PAPM_NR95.43 6395.05 6996.57 8599.42 4790.14 12998.58 14997.51 11690.65 10792.44 13698.90 6687.77 7499.90 4390.88 15099.32 6499.68 54
MP-MVScopyleft96.00 4695.82 5096.54 8699.47 4690.13 13199.36 6297.41 13490.64 10895.49 9498.95 6185.51 11999.98 996.00 7599.59 4999.52 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 998.18 296.53 8799.54 3690.14 12999.41 5597.70 7495.46 1798.60 2299.19 2895.71 499.49 9898.15 3599.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OpenMVScopyleft85.28 1490.75 17288.84 19196.48 8893.58 25193.51 6698.80 12197.41 13482.59 28278.62 29697.49 13668.00 27299.82 6384.52 22498.55 9596.11 214
DeepC-MVS91.02 494.56 8993.92 9396.46 8997.16 12790.76 11798.39 17497.11 16193.92 3688.66 18698.33 10478.14 20499.85 5695.02 9498.57 9498.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 5395.65 5896.45 9099.50 4289.77 14398.22 18698.90 1289.19 14796.74 6998.95 6185.91 11599.92 3893.94 11399.46 5599.66 58
thisisatest051594.75 7994.19 8196.43 9196.13 17292.64 8499.47 4297.60 9687.55 20093.17 12897.59 13194.71 1398.42 15688.28 18193.20 16598.24 166
LFMVS92.23 14690.84 15996.42 9298.24 9491.08 10998.24 18596.22 21083.39 26894.74 10698.31 10561.12 30898.85 14094.45 10892.82 16999.32 87
CP-MVS96.22 4296.15 4396.42 9299.67 1089.62 14699.70 1797.61 9490.07 12696.00 8199.16 3487.43 7899.92 3896.03 7499.72 3199.70 51
mPP-MVS95.90 5295.75 5496.38 9499.58 3089.41 14999.26 6997.41 13490.66 10594.82 10498.95 6186.15 11199.98 995.24 9099.64 4099.74 46
CNLPA93.64 11092.74 11996.36 9598.96 7590.01 13999.19 7295.89 24186.22 22489.40 18198.85 7080.66 18799.84 5788.57 17896.92 12499.24 94
PVSNet_Blended_VisFu94.67 8494.11 8496.34 9697.14 12991.10 10799.32 6697.43 13292.10 8091.53 15096.38 18283.29 14999.68 7893.42 12596.37 13198.25 165
PVSNet87.13 1293.69 10692.83 11896.28 9797.99 10390.22 12899.38 5898.93 1191.42 9293.66 12397.68 12671.29 25499.64 8687.94 18797.20 11998.98 114
1112_ss92.71 13291.55 14496.20 9895.56 18691.12 10598.48 16094.69 29888.29 17786.89 20498.50 9687.02 9098.66 15184.75 21989.77 20798.81 134
原ACMM196.18 9999.03 7190.08 13297.63 9188.98 15397.00 6098.97 5588.14 6899.71 7688.23 18299.62 4498.76 140
Test_1112_low_res92.27 14590.97 15596.18 9995.53 18891.10 10798.47 16294.66 29988.28 17886.83 20693.50 23587.00 9198.65 15284.69 22089.74 20898.80 135
EI-MVSNet-Vis-set95.76 5895.63 6096.17 10199.14 6490.33 12498.49 15897.82 5491.92 8194.75 10598.88 6987.06 8999.48 10295.40 8697.17 12298.70 143
PCF-MVS89.78 591.26 16189.63 17596.16 10295.44 19091.58 9795.29 29896.10 21885.07 24082.75 23997.45 13878.28 20399.78 7080.60 26495.65 14697.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 10393.06 11096.10 10399.88 189.07 15198.33 17897.55 10786.81 21490.39 17098.65 8675.09 21799.98 993.32 12697.53 11499.26 93
SR-MVS96.13 4396.16 4296.07 10499.42 4789.04 15298.59 14797.33 14190.44 11496.84 6499.12 4186.75 9599.41 11297.47 4599.44 5899.76 44
casdiffmvs_mvgpermissive94.00 9693.33 10396.03 10595.22 19790.90 11599.09 9295.99 22390.58 10991.55 14997.37 14179.91 18998.06 17295.01 9595.22 15099.13 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 10293.15 10996.02 10695.79 17890.76 11796.70 26495.78 24786.98 20995.71 9097.17 15279.58 19198.01 17794.57 10796.09 13899.31 88
ETV-MVS96.00 4696.00 4596.00 10796.56 14791.05 11099.63 2696.61 18393.26 5497.39 5298.30 10686.62 9998.13 16798.07 3697.57 11198.82 133
HPM-MVScopyleft95.41 6595.22 6495.99 10899.29 5589.14 15099.17 7797.09 16587.28 20495.40 9598.48 9984.93 12799.38 11495.64 8299.65 3899.47 76
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IB-MVS89.43 692.12 14890.83 16195.98 10995.40 19390.78 11699.81 698.06 4091.23 9685.63 21393.66 23090.63 4098.78 14291.22 14571.85 32498.36 161
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 1792x268894.35 9193.82 9595.95 11097.40 11888.74 16498.41 16798.27 2692.18 7791.43 15196.40 17978.88 19799.81 6693.59 12197.81 10599.30 89
ET-MVSNet_ETH3D92.56 13891.45 14695.88 11196.39 15594.13 5699.46 4696.97 17492.18 7766.94 34998.29 10794.65 1594.28 32694.34 10983.82 24499.24 94
EI-MVSNet-UG-set95.43 6395.29 6295.86 11299.07 7089.87 14098.43 16497.80 5891.78 8394.11 11598.77 7486.25 11099.48 10294.95 9896.45 12998.22 167
diffmvspermissive94.59 8794.19 8195.81 11395.54 18790.69 11998.70 13195.68 25491.61 8595.96 8297.81 11880.11 18898.06 17296.52 6695.76 14398.67 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 8494.30 7795.79 11499.25 5788.13 17498.41 16798.67 2090.38 11691.43 15198.72 8082.22 17299.95 3193.83 11795.76 14399.29 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 16989.33 18395.76 11595.69 18293.03 7698.99 10596.59 18580.49 30886.79 20794.45 21365.23 29398.60 15393.52 12292.18 18295.66 218
baseline93.91 10093.30 10495.72 11695.10 20890.07 13397.48 23095.91 23891.03 9793.54 12497.68 12679.58 19198.02 17694.27 11095.14 15199.08 108
HPM-MVS_fast94.89 7494.62 7395.70 11799.11 6688.44 17099.14 8697.11 16185.82 22895.69 9198.47 10083.46 14599.32 12193.16 12899.63 4399.35 84
FA-MVS(test-final)92.22 14791.08 15395.64 11896.05 17388.98 15491.60 33197.25 14386.99 20691.84 14192.12 25383.03 15599.00 13686.91 19793.91 16198.93 122
APD-MVS_3200maxsize95.64 6295.65 5895.62 11999.24 5887.80 18098.42 16597.22 14888.93 15796.64 7498.98 5485.49 12099.36 11696.68 6099.27 6899.70 51
casdiffmvspermissive93.98 9893.43 10095.61 12095.07 21089.86 14198.80 12195.84 24690.98 9992.74 13397.66 12879.71 19098.10 16994.72 10295.37 14998.87 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS92.59 13791.59 14395.59 12197.22 12490.03 13791.78 32898.04 4290.42 11591.66 14590.65 28886.49 10597.46 21281.78 25596.31 13399.28 91
TESTMET0.1,193.82 10393.26 10695.49 12295.21 19890.25 12699.15 8397.54 11089.18 14891.79 14294.87 20689.13 5497.63 20286.21 20496.29 13598.60 148
MAR-MVS94.43 9094.09 8595.45 12399.10 6887.47 19098.39 17497.79 6088.37 17494.02 11799.17 3378.64 20299.91 4092.48 13798.85 8498.96 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 9693.52 9995.43 12495.76 18090.02 13898.99 10597.60 9686.58 21891.74 14397.36 14294.78 1298.34 15886.37 20392.48 17697.94 175
SR-MVS-dyc-post95.75 5995.86 4995.41 12599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5586.73 9799.36 11696.62 6199.31 6599.60 65
CSCG94.87 7594.71 7295.36 12699.54 3686.49 21099.34 6498.15 3682.71 28190.15 17399.25 2289.48 5299.86 5494.97 9798.82 8599.72 49
UA-Net93.30 12092.62 12295.34 12796.27 16088.53 16995.88 28996.97 17490.90 10095.37 9697.07 15682.38 17099.10 13383.91 23494.86 15498.38 158
DP-MVS88.75 21286.56 22895.34 12798.92 7787.45 19197.64 22693.52 32270.55 34581.49 26797.25 14674.43 22399.88 4671.14 32494.09 15998.67 145
MVS_111021_LR95.78 5695.94 4695.28 12998.19 9787.69 18198.80 12199.26 793.39 5195.04 10298.69 8584.09 13799.76 7296.96 5699.06 7498.38 158
testdata95.26 13098.20 9587.28 19797.60 9685.21 23698.48 2699.15 3688.15 6798.72 14890.29 15899.45 5799.78 37
ECVR-MVScopyleft92.29 14391.33 14895.15 13196.41 15387.84 17998.10 19894.84 29190.82 10291.42 15397.28 14365.61 29098.49 15490.33 15797.19 12099.12 104
UGNet91.91 15290.85 15895.10 13297.06 13488.69 16598.01 20598.24 2992.41 7192.39 13793.61 23160.52 30999.68 7888.14 18397.25 11896.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS94.60 8694.43 7695.09 13399.66 1286.85 20599.44 4997.47 12483.22 27094.34 11298.96 5982.50 16599.55 9294.81 9999.50 5398.88 126
mvs_anonymous92.50 13991.65 14295.06 13496.60 14689.64 14597.06 24896.44 19786.64 21784.14 22593.93 22282.49 16696.17 27691.47 14396.08 13999.35 84
PatchmatchNetpermissive92.05 15191.04 15495.06 13496.17 16689.04 15291.26 33597.26 14289.56 13990.64 16490.56 29488.35 6497.11 22379.53 26896.07 14099.03 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS91.38 16090.16 17195.05 13696.46 15187.53 18889.69 34497.84 5182.97 27592.18 13992.00 25984.07 13898.93 13980.71 26295.52 14798.68 144
BH-RMVSNet91.25 16389.99 17295.03 13796.75 14388.55 16798.65 13794.95 28887.74 19487.74 19297.80 11968.27 26998.14 16680.53 26597.49 11598.41 155
Vis-MVSNetpermissive92.64 13491.85 13795.03 13795.12 20488.23 17198.48 16096.81 17791.61 8592.16 14097.22 14871.58 25298.00 17885.85 21197.81 10598.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111192.12 14891.19 15194.94 13996.15 16787.36 19498.12 19594.84 29190.85 10190.97 15897.26 14565.60 29198.37 15789.74 16697.14 12399.07 110
CS-MVS-test95.98 4896.34 3494.90 14098.06 10187.66 18499.69 2396.10 21893.66 4698.35 3099.05 4986.28 10897.66 19996.96 5698.90 8299.37 82
HyFIR lowres test93.68 10893.29 10594.87 14197.57 11688.04 17698.18 19098.47 2287.57 19991.24 15695.05 20385.49 12097.46 21293.22 12792.82 16999.10 106
PLCcopyleft91.07 394.23 9394.01 8794.87 14199.17 6387.49 18999.25 7096.55 19088.43 17291.26 15598.21 11185.92 11399.86 5489.77 16597.57 11197.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DROMVSNet95.09 7195.17 6594.84 14395.42 19188.17 17299.48 4095.92 23391.47 8997.34 5498.36 10382.77 16097.41 21697.24 4998.58 9398.94 121
SCA90.64 17589.25 18494.83 14494.95 21588.83 16096.26 27697.21 14990.06 12790.03 17490.62 29066.61 28296.81 23583.16 24094.36 15798.84 129
TR-MVS90.77 17189.44 17994.76 14596.31 15888.02 17797.92 20995.96 22785.52 23288.22 19097.23 14766.80 28198.09 17084.58 22292.38 17798.17 170
CDS-MVSNet93.47 11393.04 11294.76 14594.75 22289.45 14898.82 11997.03 17087.91 18890.97 15896.48 17789.06 5596.36 26089.50 16792.81 17198.49 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 9593.80 9694.74 14793.07 26390.25 12698.12 19598.16 3589.86 12886.53 20996.95 16195.56 698.05 17491.44 14494.53 15595.93 216
OMC-MVS93.90 10193.62 9894.73 14898.63 8787.00 20398.04 20496.56 18992.19 7692.46 13598.73 7879.49 19499.14 13192.16 14094.34 15898.03 172
VDDNet90.08 18788.54 20294.69 14994.41 22887.68 18298.21 18896.40 19876.21 32993.33 12797.75 12254.93 32998.77 14394.71 10390.96 19897.61 184
tpmrst92.78 13192.16 13094.65 15096.27 16087.45 19191.83 32797.10 16489.10 15194.68 10790.69 28588.22 6597.73 19789.78 16491.80 18898.77 139
EIA-MVS95.11 7095.27 6394.64 15196.34 15786.51 20999.59 2996.62 18292.51 6694.08 11698.64 8786.05 11298.24 16495.07 9398.50 9699.18 99
RPMNet85.07 26881.88 28594.64 15193.47 25386.24 21984.97 35597.21 14964.85 36090.76 16278.80 35780.95 18599.27 12353.76 36292.17 18398.41 155
LS3D90.19 18388.72 19494.59 15398.97 7386.33 21896.90 25496.60 18474.96 33484.06 22798.74 7775.78 21499.83 6074.93 30297.57 11197.62 183
patch_mono-297.10 2297.97 894.49 15499.21 6183.73 26899.62 2798.25 2795.28 1899.38 498.91 6592.28 2899.94 3499.61 899.22 7099.78 37
Fast-Effi-MVS+91.72 15490.79 16294.49 15495.89 17587.40 19399.54 3895.70 25285.01 24389.28 18395.68 19377.75 20697.57 20983.22 23995.06 15298.51 151
IS-MVSNet93.00 12992.51 12494.49 15496.14 16987.36 19498.31 18195.70 25288.58 16590.17 17297.50 13583.02 15697.22 22087.06 19296.07 14098.90 125
VDD-MVS91.24 16490.18 17094.45 15797.08 13385.84 23598.40 17096.10 21886.99 20693.36 12698.16 11254.27 33199.20 12496.59 6490.63 20398.31 164
CS-MVS95.75 5996.19 3694.40 15897.88 10586.22 22199.66 2496.12 21792.69 6498.07 3798.89 6887.09 8797.59 20596.71 5998.62 9299.39 81
test-LLR93.11 12792.68 12094.40 15894.94 21687.27 19899.15 8397.25 14390.21 11891.57 14694.04 21684.89 12897.58 20685.94 20896.13 13698.36 161
test-mter93.27 12292.89 11794.40 15894.94 21687.27 19899.15 8397.25 14388.95 15591.57 14694.04 21688.03 7097.58 20685.94 20896.13 13698.36 161
iter_conf0593.48 11293.18 10894.39 16197.15 12894.17 5599.30 6792.97 32792.38 7486.70 20895.42 19895.67 596.59 24294.67 10484.32 23792.39 235
GA-MVS90.10 18688.69 19594.33 16292.44 26987.97 17899.08 9396.26 20889.65 13386.92 20393.11 24368.09 27096.96 22982.54 24890.15 20598.05 171
nrg03090.23 18188.87 19094.32 16391.53 28593.54 6598.79 12595.89 24188.12 18284.55 22294.61 21178.80 20096.88 23292.35 13975.21 28992.53 233
Anonymous20240521188.84 20687.03 22194.27 16498.14 9984.18 26298.44 16395.58 26076.79 32889.34 18296.88 16653.42 33499.54 9487.53 19187.12 21699.09 107
PatchMatch-RL91.47 15790.54 16694.26 16598.20 9586.36 21696.94 25297.14 15787.75 19388.98 18495.75 19271.80 24999.40 11380.92 26097.39 11797.02 199
TAPA-MVS87.50 990.35 17889.05 18794.25 16698.48 9185.17 24898.42 16596.58 18882.44 28887.24 19898.53 9382.77 16098.84 14159.09 35697.88 10498.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TAMVS92.62 13592.09 13394.20 16794.10 23387.68 18298.41 16796.97 17487.53 20189.74 17896.04 18884.77 13296.49 25388.97 17792.31 17998.42 154
tttt051793.30 12093.01 11494.17 16895.57 18586.47 21198.51 15597.60 9685.99 22690.55 16597.19 15094.80 1198.31 15985.06 21691.86 18697.74 177
dp90.16 18588.83 19294.14 16996.38 15686.42 21291.57 33297.06 16784.76 24788.81 18590.19 30684.29 13597.43 21575.05 30191.35 19798.56 149
dcpmvs_295.67 6196.18 3794.12 17098.82 8184.22 26197.37 23495.45 26790.70 10495.77 8998.63 8990.47 4298.68 15099.20 1699.22 7099.45 77
CostFormer92.89 13092.48 12594.12 17094.99 21385.89 23292.89 31997.00 17386.98 20995.00 10390.78 28190.05 4897.51 21092.92 13291.73 19098.96 116
ADS-MVSNet88.99 20087.30 21694.07 17296.21 16387.56 18787.15 34896.78 17983.01 27389.91 17687.27 32978.87 19897.01 22874.20 30992.27 18097.64 180
Vis-MVSNet (Re-imp)93.26 12393.00 11594.06 17396.14 16986.71 20898.68 13396.70 18088.30 17689.71 18097.64 12985.43 12396.39 25888.06 18596.32 13299.08 108
h-mvs3392.47 14091.95 13694.05 17497.13 13085.01 25198.36 17698.08 3993.85 4196.27 7896.73 17183.19 15299.43 10895.81 7668.09 33497.70 179
MSDG88.29 21886.37 23094.04 17596.90 13886.15 22596.52 26794.36 30877.89 32479.22 29196.95 16169.72 26099.59 9073.20 31792.58 17596.37 212
EPP-MVSNet93.75 10593.67 9794.01 17695.86 17685.70 23798.67 13597.66 8184.46 25091.36 15497.18 15191.16 3197.79 18892.93 13193.75 16298.53 150
FMVSNet388.81 21087.08 22093.99 17796.52 14994.59 4598.08 20196.20 21185.85 22782.12 25491.60 26674.05 22895.40 30579.04 27280.24 26491.99 253
Anonymous2024052987.66 22985.58 24293.92 17897.59 11585.01 25198.13 19397.13 15966.69 35888.47 18896.01 18955.09 32899.51 9687.00 19484.12 23997.23 192
BH-w/o92.32 14291.79 13993.91 17996.85 13986.18 22399.11 9195.74 25088.13 18184.81 21897.00 15977.26 20997.91 17989.16 17698.03 10297.64 180
MVSTER92.71 13292.32 12693.86 18097.29 12292.95 7999.01 10396.59 18590.09 12485.51 21494.00 22094.61 1696.56 24690.77 15483.03 25192.08 250
PVSNet_BlendedMVS93.36 11893.20 10793.84 18198.77 8391.61 9599.47 4298.04 4291.44 9094.21 11392.63 25083.50 14399.87 4997.41 4683.37 24890.05 311
tpm291.77 15391.09 15293.82 18294.83 22085.56 24192.51 32497.16 15684.00 25693.83 12190.66 28787.54 7697.17 22187.73 18991.55 19398.72 141
iter_conf_final93.22 12493.04 11293.76 18397.03 13692.22 8899.05 9793.31 32492.11 7986.93 20295.42 19895.01 1096.59 24293.98 11284.48 23492.46 234
tpm cat188.89 20487.27 21793.76 18395.79 17885.32 24590.76 34097.09 16576.14 33085.72 21288.59 31982.92 15798.04 17576.96 28791.43 19497.90 176
PVSNet_083.28 1687.31 23385.16 24893.74 18594.78 22184.59 25698.91 11398.69 1989.81 13078.59 29893.23 24061.95 30499.34 12094.75 10055.72 36197.30 189
GeoE90.60 17689.56 17693.72 18695.10 20885.43 24299.41 5594.94 28983.96 25887.21 19996.83 16874.37 22497.05 22780.50 26693.73 16398.67 145
VPNet88.30 21786.57 22793.49 18791.95 27791.35 9998.18 19097.20 15388.61 16384.52 22394.89 20562.21 30396.76 23889.34 17172.26 32192.36 237
VPA-MVSNet89.10 19987.66 21193.45 18892.56 26791.02 11197.97 20898.32 2586.92 21186.03 21192.01 25768.84 26597.10 22590.92 14975.34 28892.23 242
tpmvs89.16 19887.76 20893.35 18997.19 12584.75 25590.58 34297.36 13981.99 29384.56 22189.31 31683.98 13998.17 16574.85 30490.00 20697.12 193
BH-untuned91.46 15890.84 15993.33 19096.51 15084.83 25498.84 11895.50 26486.44 22383.50 22996.70 17275.49 21697.77 19086.78 20097.81 10597.40 186
FMVSNet286.90 23784.79 25693.24 19195.11 20592.54 8597.67 22595.86 24582.94 27680.55 27491.17 27562.89 30095.29 30777.23 28479.71 27091.90 254
FIs90.70 17389.87 17393.18 19292.29 27091.12 10598.17 19298.25 2789.11 15083.44 23094.82 20882.26 17196.17 27687.76 18882.76 25392.25 240
CR-MVSNet88.83 20887.38 21593.16 19393.47 25386.24 21984.97 35594.20 31188.92 15890.76 16286.88 33384.43 13394.82 31770.64 32592.17 18398.41 155
UniMVSNet (Re)89.50 19788.32 20493.03 19492.21 27290.96 11398.90 11498.39 2389.13 14983.22 23292.03 25581.69 17896.34 26686.79 19972.53 31791.81 255
F-COLMAP92.07 15091.75 14193.02 19598.16 9882.89 27998.79 12595.97 22586.54 22087.92 19197.80 11978.69 20199.65 8485.97 20695.93 14296.53 207
mvsany_test194.57 8895.09 6892.98 19695.84 17782.07 28998.76 12795.24 28092.87 6396.45 7598.71 8384.81 13099.15 12797.68 4295.49 14897.73 178
NR-MVSNet87.74 22886.00 23692.96 19791.46 28690.68 12096.65 26597.42 13388.02 18573.42 32493.68 22877.31 20895.83 29384.26 22671.82 32592.36 237
XXY-MVS87.75 22686.02 23592.95 19890.46 29989.70 14497.71 22495.90 23984.02 25580.95 27094.05 21567.51 27697.10 22585.16 21478.41 27392.04 252
Patchmatch-test86.25 25184.06 26792.82 19994.42 22782.88 28082.88 36294.23 31071.58 34279.39 28990.62 29089.00 5796.42 25763.03 34891.37 19699.16 100
DU-MVS88.83 20887.51 21292.79 20091.46 28690.07 13398.71 12997.62 9388.87 15983.21 23393.68 22874.63 21895.93 28786.95 19572.47 31892.36 237
PMMVS93.62 11193.90 9492.79 20096.79 14281.40 29698.85 11696.81 17791.25 9596.82 6798.15 11377.02 21098.13 16793.15 12996.30 13498.83 132
UniMVSNet_NR-MVSNet89.60 19488.55 20192.75 20292.17 27390.07 13398.74 12898.15 3688.37 17483.21 23393.98 22182.86 15895.93 28786.95 19572.47 31892.25 240
EPNet_dtu92.28 14492.15 13192.70 20397.29 12284.84 25398.64 13997.82 5492.91 6193.02 13197.02 15885.48 12295.70 29772.25 32194.89 15397.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 3497.84 1092.68 20498.71 8578.11 32399.70 1797.71 7398.18 197.36 5399.76 190.37 4599.94 3499.27 1299.54 5299.99 1
FC-MVSNet-test90.22 18289.40 18192.67 20591.78 28189.86 14197.89 21098.22 3088.81 16082.96 23894.66 21081.90 17795.96 28585.89 21082.52 25692.20 245
WR-MVS88.54 21587.22 21992.52 20691.93 27989.50 14798.56 15097.84 5186.99 20681.87 26293.81 22574.25 22795.92 28985.29 21374.43 29892.12 248
MIMVSNet84.48 27681.83 28692.42 20791.73 28287.36 19485.52 35194.42 30681.40 29981.91 26087.58 32351.92 33792.81 33873.84 31288.15 21197.08 197
HQP-MVS91.50 15691.23 15092.29 20893.95 23886.39 21499.16 7896.37 20093.92 3687.57 19396.67 17373.34 23297.77 19093.82 11886.29 21992.72 229
miper_enhance_ethall90.33 17989.70 17492.22 20997.12 13188.93 15898.35 17795.96 22788.60 16483.14 23792.33 25287.38 7996.18 27486.49 20277.89 27691.55 266
PatchT85.44 26483.19 27292.22 20993.13 26283.00 27583.80 36196.37 20070.62 34490.55 16579.63 35684.81 13094.87 31558.18 35891.59 19298.79 136
AUN-MVS90.17 18489.50 17792.19 21196.21 16382.67 28397.76 22097.53 11188.05 18391.67 14496.15 18483.10 15497.47 21188.11 18466.91 34096.43 210
HQP_MVS91.26 16190.95 15692.16 21293.84 24586.07 22899.02 10196.30 20493.38 5286.99 20096.52 17572.92 23797.75 19593.46 12386.17 22292.67 231
hse-mvs291.67 15591.51 14592.15 21396.22 16282.61 28597.74 22197.53 11193.85 4196.27 7896.15 18483.19 15297.44 21495.81 7666.86 34196.40 211
CLD-MVS91.06 16690.71 16392.10 21494.05 23786.10 22699.55 3396.29 20794.16 3184.70 22097.17 15269.62 26197.82 18694.74 10186.08 22492.39 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 22686.31 23192.07 21590.81 29488.56 16698.33 17897.18 15487.76 19281.87 26293.90 22372.45 24195.43 30383.13 24271.30 32892.23 242
test_vis1_n_192093.08 12893.42 10192.04 21696.31 15879.36 31299.83 496.06 22196.72 498.53 2598.10 11458.57 31499.91 4097.86 4098.79 8896.85 201
cl2289.57 19588.79 19391.91 21797.94 10487.62 18597.98 20796.51 19285.03 24182.37 25091.79 26283.65 14196.50 25185.96 20777.89 27691.61 263
XVG-OURS90.83 17090.49 16791.86 21895.23 19681.25 30095.79 29495.92 23388.96 15490.02 17598.03 11571.60 25199.35 11991.06 14787.78 21394.98 220
XVG-OURS-SEG-HR90.95 16890.66 16591.83 21995.18 20281.14 30395.92 28695.92 23388.40 17390.33 17197.85 11670.66 25799.38 11492.83 13388.83 20994.98 220
tpm89.67 19388.95 18991.82 22092.54 26881.43 29592.95 31895.92 23387.81 19090.50 16789.44 31384.99 12695.65 29883.67 23782.71 25498.38 158
pmmvs487.58 23186.17 23491.80 22189.58 31188.92 15997.25 24095.28 27682.54 28480.49 27593.17 24275.62 21596.05 28182.75 24578.90 27190.42 302
GBi-Net86.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
test186.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
FMVSNet183.94 28481.32 29291.80 22191.94 27888.81 16196.77 25895.25 27777.98 32078.25 30190.25 30150.37 34394.97 31273.27 31677.81 28091.62 260
v2v48287.27 23485.76 23991.78 22589.59 31087.58 18698.56 15095.54 26284.53 24982.51 24491.78 26373.11 23696.47 25482.07 25174.14 30491.30 277
mvsmamba89.99 18989.42 18091.69 22690.64 29786.34 21798.40 17092.27 33691.01 9884.80 21994.93 20476.12 21296.51 25092.81 13483.84 24192.21 244
tt080586.50 24784.79 25691.63 22791.97 27581.49 29496.49 26897.38 13782.24 29082.44 24595.82 19151.22 33998.25 16384.55 22380.96 26395.13 219
OPM-MVS89.76 19289.15 18691.57 22890.53 29885.58 24098.11 19795.93 23292.88 6286.05 21096.47 17867.06 28097.87 18389.29 17486.08 22491.26 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth88.94 20288.12 20791.40 22995.32 19486.93 20497.85 21495.55 26184.19 25381.97 25991.50 26884.16 13695.91 29084.69 22077.89 27691.36 274
v114486.83 23985.31 24791.40 22989.75 30887.21 20298.31 18195.45 26783.22 27082.70 24190.78 28173.36 23196.36 26079.49 26974.69 29590.63 299
EI-MVSNet89.87 19189.38 18291.36 23194.32 22985.87 23397.61 22796.59 18585.10 23885.51 21497.10 15481.30 18496.56 24683.85 23683.03 25191.64 258
UniMVSNet_ETH3D85.65 26383.79 27091.21 23290.41 30080.75 30795.36 29795.78 24778.76 31881.83 26594.33 21449.86 34496.66 23984.30 22583.52 24796.22 213
v119286.32 25084.71 25891.17 23389.53 31486.40 21398.13 19395.44 26982.52 28582.42 24790.62 29071.58 25296.33 26777.23 28474.88 29290.79 291
bld_raw_dy_0_6487.82 22286.71 22691.15 23489.54 31385.61 23897.37 23489.16 36089.26 14583.42 23194.50 21265.79 28796.18 27488.00 18683.37 24891.67 257
v886.11 25284.45 26291.10 23589.99 30386.85 20597.24 24195.36 27481.99 29379.89 28389.86 30974.53 22296.39 25878.83 27672.32 32090.05 311
c3_l88.19 22087.23 21891.06 23694.97 21486.17 22497.72 22295.38 27283.43 26781.68 26691.37 27082.81 15995.72 29684.04 23373.70 30691.29 278
IterMVS-LS88.34 21687.44 21391.04 23794.10 23385.85 23498.10 19895.48 26585.12 23782.03 25891.21 27481.35 18395.63 29983.86 23575.73 28791.63 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 19689.05 18791.00 23888.77 32284.36 25997.39 23195.97 22588.47 16681.88 26193.80 22682.48 16796.50 25189.34 17183.34 25092.15 246
V4287.00 23685.68 24190.98 23989.91 30486.08 22798.32 18095.61 25883.67 26482.72 24090.67 28674.00 22996.53 24881.94 25474.28 30190.32 304
Anonymous2023121184.72 27182.65 28290.91 24097.71 10984.55 25797.28 23896.67 18166.88 35779.18 29290.87 28058.47 31596.60 24182.61 24774.20 30291.59 265
v14419286.40 24884.89 25390.91 24089.48 31585.59 23998.21 18895.43 27082.45 28782.62 24290.58 29372.79 24096.36 26078.45 27974.04 30590.79 291
cl____87.82 22286.79 22590.89 24294.88 21885.43 24297.81 21595.24 28082.91 28080.71 27391.22 27381.97 17695.84 29281.34 25775.06 29091.40 273
DIV-MVS_self_test87.82 22286.81 22490.87 24394.87 21985.39 24497.81 21595.22 28582.92 27980.76 27291.31 27281.99 17495.81 29481.36 25675.04 29191.42 272
v1085.73 26184.01 26890.87 24390.03 30286.73 20797.20 24495.22 28581.25 30179.85 28489.75 31073.30 23496.28 27276.87 28872.64 31689.61 319
test_vis1_n90.40 17790.27 16990.79 24591.55 28476.48 32799.12 9094.44 30394.31 2797.34 5496.95 16143.60 35399.42 10997.57 4497.60 11096.47 208
v192192086.02 25384.44 26390.77 24689.32 31785.20 24698.10 19895.35 27582.19 29182.25 25290.71 28370.73 25596.30 27176.85 28974.49 29790.80 290
v124085.77 26084.11 26690.73 24789.26 31885.15 24997.88 21295.23 28481.89 29682.16 25390.55 29569.60 26296.31 26875.59 29974.87 29390.72 296
MVS-HIRNet79.01 30775.13 31890.66 24893.82 24781.69 29285.16 35293.75 31754.54 36274.17 32059.15 36857.46 31896.58 24563.74 34594.38 15693.72 225
test_fmvs192.35 14192.94 11690.57 24997.19 12575.43 33199.55 3394.97 28795.20 1996.82 6797.57 13359.59 31299.84 5797.30 4898.29 10096.46 209
ACMH83.09 1784.60 27382.61 28390.57 24993.18 26182.94 27696.27 27494.92 29081.01 30472.61 33393.61 23156.54 32097.79 18874.31 30781.07 26290.99 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 28581.35 29190.56 25191.37 28888.06 17597.29 23797.87 4978.51 31976.20 30790.91 27864.78 29496.47 25461.71 35173.50 30987.13 341
AllTest84.97 26983.12 27390.52 25296.82 14078.84 31695.89 28792.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
TestCases90.52 25296.82 14078.84 31692.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
ACMM86.95 1388.77 21188.22 20690.43 25493.61 25081.34 29898.50 15695.92 23387.88 18983.85 22895.20 20267.20 27897.89 18186.90 19884.90 23092.06 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 27282.78 27890.40 25589.58 31185.18 24797.31 23694.73 29681.93 29576.05 30992.01 25765.48 29296.11 27978.75 27769.14 33189.91 314
KD-MVS_2432*160082.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
miper_refine_blended82.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
v14886.38 24985.06 24990.37 25889.47 31684.10 26398.52 15295.48 26583.80 26080.93 27190.22 30474.60 22096.31 26880.92 26071.55 32690.69 297
pmmvs585.87 25584.40 26590.30 25988.53 32684.23 26098.60 14593.71 31881.53 29880.29 27792.02 25664.51 29595.52 30182.04 25378.34 27491.15 281
LTVRE_ROB81.71 1984.59 27482.72 28090.18 26092.89 26683.18 27493.15 31794.74 29578.99 31575.14 31792.69 24865.64 28997.63 20269.46 32981.82 26089.74 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 27082.93 27490.16 26191.73 28283.54 27095.00 30093.30 32588.77 16173.19 32693.30 23853.62 33397.65 20175.88 29781.54 26189.30 322
ACMP87.39 1088.71 21388.24 20590.12 26293.91 24381.06 30498.50 15695.67 25589.43 14280.37 27695.55 19465.67 28897.83 18590.55 15584.51 23291.47 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs1_n91.07 16591.41 14790.06 26394.10 23374.31 33599.18 7494.84 29194.81 2196.37 7797.46 13750.86 34299.82 6397.14 5197.90 10396.04 215
eth_miper_zixun_eth87.76 22587.00 22290.06 26394.67 22482.65 28497.02 25195.37 27384.19 25381.86 26491.58 26781.47 18195.90 29183.24 23873.61 30791.61 263
LPG-MVS_test88.86 20588.47 20390.06 26393.35 25880.95 30598.22 18695.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
LGP-MVS_train90.06 26393.35 25880.95 30595.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
test0.0.03 188.96 20188.61 19790.03 26791.09 29184.43 25898.97 10897.02 17190.21 11880.29 27796.31 18384.89 12891.93 35072.98 31885.70 22793.73 224
RRT_MVS88.91 20388.56 20089.93 26890.31 30181.61 29398.08 20196.38 19989.30 14482.41 24894.84 20773.15 23596.04 28290.38 15682.23 25892.15 246
jajsoiax87.35 23286.51 22989.87 26987.75 33681.74 29197.03 24995.98 22488.47 16680.15 27993.80 22661.47 30596.36 26089.44 16984.47 23591.50 267
ADS-MVSNet287.62 23086.88 22389.86 27096.21 16379.14 31487.15 34892.99 32683.01 27389.91 17687.27 32978.87 19892.80 33974.20 30992.27 18097.64 180
test_djsdf88.26 21987.73 20989.84 27188.05 33182.21 28797.77 21896.17 21486.84 21282.41 24891.95 26172.07 24595.99 28389.83 16184.50 23391.32 276
ppachtmachnet_test83.63 28681.57 28989.80 27289.01 31985.09 25097.13 24694.50 30278.84 31676.14 30891.00 27769.78 25994.61 32363.40 34674.36 29989.71 318
CP-MVSNet86.54 24585.45 24589.79 27391.02 29382.78 28297.38 23397.56 10685.37 23479.53 28893.03 24471.86 24895.25 30879.92 26773.43 31291.34 275
mvs_tets87.09 23586.22 23289.71 27487.87 33281.39 29796.73 26395.90 23988.19 18079.99 28193.61 23159.96 31196.31 26889.40 17084.34 23691.43 271
D2MVS87.96 22187.39 21489.70 27591.84 28083.40 27198.31 18198.49 2188.04 18478.23 30290.26 30073.57 23096.79 23784.21 22783.53 24688.90 327
COLMAP_ROBcopyleft82.69 1884.54 27582.82 27589.70 27596.72 14478.85 31595.89 28792.83 33071.55 34377.54 30595.89 19059.40 31399.14 13167.26 33688.26 21091.11 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 24685.49 24489.66 27791.04 29283.31 27397.53 22998.20 3284.95 24479.64 28590.90 27978.01 20595.33 30676.29 29472.81 31490.35 303
Fast-Effi-MVS+-dtu88.84 20688.59 19989.58 27893.44 25678.18 32198.65 13794.62 30088.46 16884.12 22695.37 20168.91 26396.52 24982.06 25291.70 19194.06 223
anonymousdsp86.69 24185.75 24089.53 27986.46 34282.94 27696.39 27095.71 25183.97 25779.63 28690.70 28468.85 26495.94 28686.01 20584.02 24089.72 317
our_test_384.47 27782.80 27689.50 28089.01 31983.90 26697.03 24994.56 30181.33 30075.36 31690.52 29671.69 25094.54 32468.81 33176.84 28490.07 309
Patchmtry83.61 28781.64 28789.50 28093.36 25782.84 28184.10 35894.20 31169.47 35079.57 28786.88 33384.43 13394.78 31868.48 33374.30 30090.88 288
PS-CasMVS85.81 25884.58 26189.49 28290.77 29582.11 28897.20 24497.36 13984.83 24679.12 29392.84 24767.42 27795.16 31078.39 28073.25 31391.21 280
v7n84.42 27882.75 27989.43 28388.15 32981.86 29096.75 26195.67 25580.53 30778.38 30089.43 31469.89 25896.35 26573.83 31372.13 32290.07 309
JIA-IIPM85.97 25484.85 25489.33 28493.23 26073.68 33885.05 35497.13 15969.62 34991.56 14868.03 36488.03 7096.96 22977.89 28293.12 16697.34 188
MS-PatchMatch86.75 24085.92 23789.22 28591.97 27582.47 28696.91 25396.14 21683.74 26177.73 30393.53 23458.19 31697.37 21976.75 29098.35 9887.84 333
IterMVS85.81 25884.67 25989.22 28593.51 25283.67 26996.32 27394.80 29485.09 23978.69 29490.17 30766.57 28493.17 33579.48 27077.42 28290.81 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 27982.56 28489.15 28793.73 24979.16 31396.43 26994.28 30981.09 30374.00 32194.03 21854.58 33097.67 19876.10 29578.81 27290.63 299
TransMVSNet (Re)81.97 29379.61 30289.08 28889.70 30984.01 26497.26 23991.85 34478.84 31673.07 33091.62 26567.17 27995.21 30967.50 33559.46 35588.02 332
PEN-MVS85.21 26683.93 26989.07 28989.89 30681.31 29997.09 24797.24 14684.45 25178.66 29592.68 24968.44 26894.87 31575.98 29670.92 32991.04 284
miper_lstm_enhance86.90 23786.20 23389.00 29094.53 22681.19 30196.74 26295.24 28082.33 28980.15 27990.51 29781.99 17494.68 32280.71 26273.58 30891.12 282
IterMVS-SCA-FT85.73 26184.64 26089.00 29093.46 25582.90 27896.27 27494.70 29785.02 24278.62 29690.35 29966.61 28293.33 33279.38 27177.36 28390.76 293
MVP-Stereo86.61 24485.83 23888.93 29288.70 32483.85 26796.07 28394.41 30782.15 29275.64 31491.96 26067.65 27596.45 25677.20 28698.72 8986.51 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 25784.82 25588.87 29388.73 32383.34 27298.63 14091.66 34580.41 31182.44 24591.35 27174.63 21895.42 30484.13 22971.39 32787.84 333
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29489.90 30577.12 32694.30 30695.60 25987.40 20382.12 25492.99 24653.42 33497.66 19985.02 21783.83 24290.92 287
MVS_030484.13 28282.66 28188.52 29593.07 26380.15 30895.81 29398.21 3179.27 31386.85 20586.40 33641.33 35794.69 32176.36 29386.69 21790.73 295
LCM-MVSNet-Re88.59 21488.61 19788.51 29695.53 18872.68 34396.85 25688.43 36288.45 16973.14 32790.63 28975.82 21394.38 32592.95 13095.71 14598.48 153
CVMVSNet90.30 18090.91 15788.46 29794.32 22973.58 33997.61 22797.59 10090.16 12388.43 18997.10 15476.83 21192.86 33682.64 24693.54 16498.93 122
DTE-MVSNet84.14 28182.80 27688.14 29888.95 32179.87 31196.81 25796.24 20983.50 26677.60 30492.52 25167.89 27494.24 32772.64 32069.05 33290.32 304
ITE_SJBPF87.93 29992.26 27176.44 32893.47 32387.67 19879.95 28295.49 19756.50 32197.38 21775.24 30082.33 25789.98 313
TinyColmap80.42 30177.94 30587.85 30092.09 27478.58 31893.74 31189.94 35574.99 33369.77 33891.78 26346.09 34997.58 20665.17 34477.89 27687.38 336
Effi-MVS+-dtu89.97 19090.68 16487.81 30195.15 20371.98 34597.87 21395.40 27191.92 8187.57 19391.44 26974.27 22696.84 23389.45 16893.10 16794.60 222
pmmvs679.90 30377.31 30887.67 30284.17 34978.13 32295.86 29193.68 31967.94 35472.67 33289.62 31250.98 34195.75 29574.80 30566.04 34289.14 325
FMVSNet582.29 29180.54 29587.52 30393.79 24884.01 26493.73 31292.47 33476.92 32774.27 31986.15 33863.69 29989.24 35869.07 33074.79 29489.29 323
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33580.13 30996.25 27794.44 30373.87 33851.80 36287.47 32868.04 27192.12 34866.02 34067.79 33790.09 307
YYNet179.64 30677.04 31087.43 30587.80 33479.98 31096.23 27894.44 30373.83 33951.83 36187.53 32467.96 27392.07 34966.00 34167.75 33890.23 306
Patchmatch-RL test81.90 29580.13 29887.23 30680.71 35870.12 35284.07 35988.19 36383.16 27270.57 33582.18 34987.18 8692.59 34182.28 25062.78 34898.98 114
MDA-MVSNet-bldmvs77.82 31574.75 32087.03 30788.33 32778.52 31996.34 27292.85 32975.57 33148.87 36487.89 32157.32 31992.49 34460.79 35264.80 34690.08 308
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 34077.90 32596.20 28194.06 31374.61 33566.53 35188.76 31840.40 35996.20 27367.02 33783.66 24586.61 342
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31986.77 30983.81 35177.94 32496.38 27191.53 34867.54 35568.38 34287.13 33243.94 35196.08 28055.03 36181.83 25986.29 345
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 36081.19 30194.17 30892.13 34077.97 32166.90 35082.31 34855.76 32292.56 34273.63 31562.31 35185.38 348
test_040278.81 30976.33 31386.26 31191.18 29078.44 32095.88 28991.34 34968.55 35170.51 33789.91 30852.65 33694.99 31147.14 36579.78 26985.34 350
testgi82.29 29181.00 29486.17 31287.24 33874.84 33497.39 23191.62 34688.63 16275.85 31395.42 19846.07 35091.55 35166.87 33979.94 26892.12 248
TDRefinement78.01 31375.31 31686.10 31370.06 36973.84 33793.59 31591.58 34774.51 33673.08 32991.04 27649.63 34697.12 22274.88 30359.47 35487.33 338
SixPastTwentyTwo82.63 29081.58 28885.79 31488.12 33071.01 34895.17 29992.54 33384.33 25272.93 33192.08 25460.41 31095.61 30074.47 30674.15 30390.75 294
OurMVSNet-221017-084.13 28283.59 27185.77 31587.81 33370.24 35094.89 30193.65 32086.08 22576.53 30693.28 23961.41 30696.14 27880.95 25977.69 28190.93 286
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 35474.94 33391.98 32696.31 20384.64 24865.84 35387.71 32251.33 33892.23 34672.89 31956.50 36089.56 320
test_vis1_rt81.31 29780.05 30085.11 31791.29 28970.66 34998.98 10777.39 37485.76 22968.80 34082.40 34736.56 36199.44 10592.67 13686.55 21885.24 351
lessismore_v085.08 31885.59 34569.28 35390.56 35367.68 34690.21 30554.21 33295.46 30273.88 31162.64 34990.50 301
UnsupCasMVSNet_bld73.85 32370.14 32784.99 31979.44 36175.73 32988.53 34595.24 28070.12 34861.94 35774.81 36141.41 35693.62 33068.65 33251.13 36785.62 347
K. test v381.04 29879.77 30184.83 32087.41 33770.23 35195.60 29693.93 31583.70 26367.51 34789.35 31555.76 32293.58 33176.67 29168.03 33590.67 298
Anonymous2023120680.76 29979.42 30384.79 32184.78 34772.98 34096.53 26692.97 32779.56 31274.33 31888.83 31761.27 30792.15 34760.59 35375.92 28689.24 324
RPSCF85.33 26585.55 24384.67 32294.63 22562.28 35993.73 31293.76 31674.38 33785.23 21797.06 15764.09 29698.31 15980.98 25886.08 22493.41 228
CL-MVSNet_self_test79.89 30478.34 30484.54 32381.56 35675.01 33296.88 25595.62 25781.10 30275.86 31285.81 33968.49 26790.26 35463.21 34756.51 35988.35 330
LF4IMVS81.94 29481.17 29384.25 32487.23 33968.87 35593.35 31691.93 34383.35 26975.40 31593.00 24549.25 34796.65 24078.88 27578.11 27587.22 340
test_fmvs285.10 26785.45 24584.02 32589.85 30765.63 35798.49 15892.59 33290.45 11385.43 21693.32 23643.94 35196.59 24290.81 15284.19 23889.85 315
Anonymous2024052178.63 31176.90 31183.82 32682.82 35372.86 34195.72 29593.57 32173.55 34072.17 33484.79 34149.69 34592.51 34365.29 34374.50 29686.09 346
MIMVSNet175.92 31873.30 32383.81 32781.29 35775.57 33092.26 32592.05 34173.09 34167.48 34886.18 33740.87 35887.64 36255.78 36070.68 33088.21 331
EU-MVSNet84.19 28084.42 26483.52 32888.64 32567.37 35696.04 28495.76 24985.29 23578.44 29993.18 24170.67 25691.48 35275.79 29875.98 28591.70 256
new_pmnet76.02 31773.71 32282.95 32983.88 35072.85 34291.26 33592.26 33770.44 34662.60 35681.37 35047.64 34892.32 34561.85 35072.10 32383.68 356
KD-MVS_self_test77.47 31675.88 31582.24 33081.59 35568.93 35492.83 32294.02 31477.03 32673.14 32783.39 34455.44 32690.42 35367.95 33457.53 35887.38 336
pmmvs372.86 32469.76 32982.17 33173.86 36574.19 33694.20 30789.01 36164.23 36167.72 34580.91 35341.48 35588.65 36062.40 34954.02 36383.68 356
DSMNet-mixed81.60 29681.43 29082.10 33284.36 34860.79 36093.63 31486.74 36579.00 31479.32 29087.15 33163.87 29889.78 35666.89 33891.92 18595.73 217
new-patchmatchnet74.80 32272.40 32581.99 33378.36 36372.20 34494.44 30492.36 33577.06 32563.47 35579.98 35551.04 34088.85 35960.53 35454.35 36284.92 353
test20.0378.51 31277.48 30781.62 33483.07 35271.03 34796.11 28292.83 33081.66 29769.31 33989.68 31157.53 31787.29 36358.65 35768.47 33386.53 343
CMPMVSbinary58.40 2180.48 30080.11 29981.59 33585.10 34659.56 36294.14 30995.95 22968.54 35260.71 35893.31 23755.35 32797.87 18383.06 24384.85 23187.33 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 32172.85 32480.98 33678.98 36264.75 35890.81 33985.77 36680.95 30568.23 34482.81 34529.08 36592.84 33776.54 29262.46 35085.36 349
mvsany_test375.85 31974.52 32179.83 33773.53 36660.64 36191.73 32987.87 36483.91 25970.55 33682.52 34631.12 36393.66 32986.66 20162.83 34785.19 352
ambc79.60 33872.76 36856.61 36476.20 36692.01 34268.25 34380.23 35423.34 36794.73 31973.78 31460.81 35287.48 335
EGC-MVSNET60.70 33155.37 33576.72 33986.35 34371.08 34689.96 34384.44 3700.38 3791.50 38084.09 34337.30 36088.10 36140.85 36973.44 31170.97 364
DeepMVS_CXcopyleft76.08 34090.74 29651.65 37290.84 35186.47 22257.89 36087.98 32035.88 36292.60 34065.77 34265.06 34583.97 355
test_f71.94 32570.82 32675.30 34172.77 36753.28 36891.62 33089.66 35875.44 33264.47 35478.31 35820.48 36989.56 35778.63 27866.02 34383.05 359
test_fmvs375.09 32075.19 31774.81 34277.45 36454.08 36795.93 28590.64 35282.51 28673.29 32581.19 35122.29 36886.29 36485.50 21267.89 33684.06 354
APD_test168.93 32866.98 33174.77 34380.62 35953.15 36987.97 34685.01 36853.76 36359.26 35987.52 32525.19 36689.95 35556.20 35967.33 33981.19 360
test_method70.10 32768.66 33074.41 34486.30 34455.84 36594.47 30389.82 35635.18 37066.15 35284.75 34230.54 36477.96 37170.40 32860.33 35389.44 321
LCM-MVSNet60.07 33256.37 33471.18 34554.81 37848.67 37382.17 36389.48 35937.95 36849.13 36369.12 36213.75 37681.76 36559.28 35551.63 36683.10 358
N_pmnet70.19 32669.87 32871.12 34688.24 32830.63 38295.85 29228.70 38270.18 34768.73 34186.55 33564.04 29793.81 32853.12 36373.46 31088.94 326
PMMVS258.97 33355.07 33670.69 34762.72 37355.37 36685.97 35080.52 37149.48 36445.94 36568.31 36315.73 37480.78 36949.79 36437.12 37075.91 361
test_vis3_rt61.29 33058.75 33368.92 34867.41 37052.84 37091.18 33759.23 38166.96 35641.96 36958.44 36911.37 37794.72 32074.25 30857.97 35759.20 368
FPMVS61.57 32960.32 33265.34 34960.14 37642.44 37791.02 33889.72 35744.15 36542.63 36880.93 35219.02 37080.59 37042.50 36672.76 31573.00 362
ANet_high50.71 33846.17 34164.33 35044.27 38052.30 37176.13 36778.73 37264.95 35927.37 37355.23 37014.61 37567.74 37336.01 37018.23 37372.95 363
testf156.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
APD_test256.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
Gipumacopyleft54.77 33652.22 34062.40 35386.50 34159.37 36350.20 37190.35 35436.52 36941.20 37049.49 37118.33 37281.29 36632.10 37165.34 34446.54 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 33752.86 33956.05 35432.75 38241.97 37873.42 36876.12 37521.91 37539.68 37196.39 18142.59 35465.10 37478.00 28114.92 37561.08 367
PMVScopyleft41.42 2345.67 33942.50 34255.17 35534.28 38132.37 38066.24 36978.71 37330.72 37122.04 37659.59 3674.59 38077.85 37227.49 37258.84 35655.29 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 34037.64 34553.90 35649.46 37943.37 37665.09 37066.66 37826.19 37425.77 37548.53 3723.58 38263.35 37526.15 37327.28 37154.97 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34140.93 34341.29 35761.97 37433.83 37984.00 36065.17 37927.17 37227.56 37246.72 37317.63 37360.41 37619.32 37418.82 37229.61 372
EMVS39.96 34239.88 34440.18 35859.57 37732.12 38184.79 35764.57 38026.27 37326.14 37444.18 37618.73 37159.29 37717.03 37517.67 37429.12 373
wuyk23d16.71 34516.73 34916.65 35960.15 37525.22 38341.24 3725.17 3836.56 3765.48 3793.61 3793.64 38122.72 37815.20 3769.52 3761.99 376
test12316.58 34619.47 3487.91 3603.59 3845.37 38494.32 3051.39 3852.49 37813.98 37844.60 3752.91 3832.65 37911.35 3780.57 37815.70 374
testmvs18.81 34423.05 3476.10 3614.48 3832.29 38597.78 2173.00 3843.27 37718.60 37762.71 3651.53 3842.49 38014.26 3771.80 37713.50 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k22.52 34330.03 3460.00 3620.00 3850.00 3860.00 37397.17 1550.00 3800.00 38198.77 7474.35 2250.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.87 3489.16 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38082.48 1670.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.21 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.50 960.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.50 4288.94 15799.55 3397.47 12491.32 9498.12 35
PC_three_145294.60 2399.41 299.12 4195.50 799.96 2899.84 299.92 399.97 7
test_one_060199.59 2894.89 3297.64 8793.14 5598.93 1699.45 1493.45 18
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.67 1093.28 6997.61 9487.78 19197.41 5199.16 3490.15 4799.56 9198.35 3099.70 35
RE-MVS-def95.70 5599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5585.24 12596.62 6199.31 6599.60 65
IU-MVS99.63 1895.38 2097.73 6895.54 1599.54 199.69 599.81 2399.99 1
test_241102_TWO97.72 6994.17 2999.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
test_241102_ONE99.63 1895.24 2397.72 6994.16 3199.30 699.49 993.32 1999.98 9
9.1496.87 2299.34 5099.50 3997.49 12189.41 14398.59 2399.43 1689.78 5099.69 7798.69 2199.62 44
save fliter99.34 5093.85 6099.65 2597.63 9195.69 12
test_0728_THIRD93.01 5699.07 1199.46 1094.66 1499.97 2199.25 1499.82 1999.95 15
test072699.66 1295.20 2899.77 997.70 7493.95 3499.35 599.54 393.18 22
GSMVS98.84 129
test_part299.54 3695.42 1898.13 33
sam_mvs188.39 6398.84 129
sam_mvs87.08 88
MTGPAbinary97.45 127
test_post190.74 34141.37 37785.38 12496.36 26083.16 240
test_post46.00 37487.37 8097.11 223
patchmatchnet-post84.86 34088.73 6096.81 235
MTMP99.21 7191.09 350
gm-plane-assit94.69 22388.14 17388.22 17997.20 14998.29 16190.79 153
test9_res98.60 2399.87 999.90 22
TEST999.57 3393.17 7199.38 5897.66 8189.57 13898.39 2799.18 3190.88 3799.66 80
test_899.55 3593.07 7499.37 6197.64 8790.18 12098.36 2999.19 2890.94 3599.64 86
agg_prior297.84 4199.87 999.91 21
agg_prior99.54 3692.66 8197.64 8797.98 4299.61 88
test_prior492.00 9099.41 55
test_prior299.57 3191.43 9198.12 3598.97 5590.43 4398.33 3199.81 23
旧先验298.67 13585.75 23098.96 1598.97 13893.84 116
新几何298.26 184
旧先验198.97 7392.90 8097.74 6599.15 3691.05 3499.33 6399.60 65
无先验98.52 15297.82 5487.20 20599.90 4387.64 19099.85 30
原ACMM298.69 132
test22298.32 9291.21 10198.08 20197.58 10283.74 26195.87 8699.02 5286.74 9699.64 4099.81 32
testdata299.88 4684.16 228
segment_acmp90.56 41
testdata197.89 21092.43 68
plane_prior793.84 24585.73 236
plane_prior693.92 24286.02 23072.92 237
plane_prior596.30 20497.75 19593.46 12386.17 22292.67 231
plane_prior496.52 175
plane_prior385.91 23193.65 4786.99 200
plane_prior299.02 10193.38 52
plane_prior193.90 244
plane_prior86.07 22899.14 8693.81 4486.26 221
n20.00 386
nn0.00 386
door-mid84.90 369
test1197.68 78
door85.30 367
HQP5-MVS86.39 214
HQP-NCC93.95 23899.16 7893.92 3687.57 193
ACMP_Plane93.95 23899.16 7893.92 3687.57 193
BP-MVS93.82 118
HQP4-MVS87.57 19397.77 19092.72 229
HQP3-MVS96.37 20086.29 219
HQP2-MVS73.34 232
NP-MVS93.94 24186.22 22196.67 173
MDTV_nov1_ep13_2view91.17 10491.38 33387.45 20293.08 13086.67 9887.02 19398.95 120
MDTV_nov1_ep1390.47 16896.14 16988.55 16791.34 33497.51 11689.58 13792.24 13890.50 29886.99 9297.61 20477.64 28392.34 178
ACMMP++_ref82.64 255
ACMMP++83.83 242
Test By Simon83.62 142