| DPM-MVS | | | 97.86 8 | 97.25 22 | 99.68 1 | 98.25 98 | 99.10 1 | 99.76 21 | 97.78 75 | 96.61 12 | 98.15 43 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 172 | 99.80 26 | 99.94 18 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 90 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 90 | | | | | 99.98 9 | 99.55 13 | 99.83 15 | 99.96 10 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 33 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| MM | | | 97.76 11 | 97.39 20 | 98.86 5 | 98.30 97 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 41 | 98.96 70 | 85.84 134 | 99.90 50 | 99.72 3 | 98.80 96 | 99.85 30 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 4 | 95.96 99 | 99.33 22 | 92.62 25 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| MVS | | | 93.92 126 | 92.28 156 | 98.83 7 | 95.69 210 | 96.82 8 | 96.22 312 | 98.17 36 | 84.89 280 | 84.34 257 | 98.61 106 | 79.32 225 | 99.83 73 | 93.88 143 | 99.43 61 | 99.86 29 |
|
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 92 | | | | | 99.98 9 | 99.64 8 | 99.82 19 | 99.96 10 |
|
| MVS_0304 | | | 97.81 9 | 97.51 15 | 98.74 9 | 98.97 73 | 96.57 11 | 99.91 2 | 98.17 36 | 97.45 3 | 98.76 26 | 98.97 65 | 86.69 114 | 99.96 28 | 99.72 3 | 98.92 90 | 99.69 58 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 10 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| DELS-MVS | | | 97.12 25 | 96.60 38 | 98.68 11 | 98.03 108 | 96.57 11 | 99.84 9 | 97.84 62 | 96.36 18 | 95.20 119 | 98.24 126 | 88.17 80 | 99.83 73 | 96.11 97 | 99.60 50 | 99.64 68 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CANet | | | 97.00 28 | 96.49 40 | 98.55 12 | 98.86 84 | 96.10 16 | 99.83 10 | 97.52 133 | 95.90 19 | 97.21 69 | 98.90 79 | 82.66 186 | 99.93 39 | 98.71 29 | 98.80 96 | 99.63 70 |
|
| WTY-MVS | | | 95.97 60 | 95.11 85 | 98.54 13 | 97.62 119 | 96.65 9 | 99.44 62 | 98.74 15 | 92.25 93 | 95.21 118 | 98.46 119 | 86.56 119 | 99.46 121 | 95.00 124 | 92.69 196 | 99.50 84 |
|
| HY-MVS | | 88.56 7 | 95.29 85 | 94.23 100 | 98.48 14 | 97.72 115 | 96.41 13 | 94.03 349 | 98.74 15 | 92.42 89 | 95.65 111 | 94.76 244 | 86.52 120 | 99.49 115 | 95.29 116 | 92.97 192 | 99.53 79 |
|
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 113 | 99.06 10 | 94.45 41 | 96.42 93 | 98.70 98 | 88.81 71 | 99.74 91 | 95.35 113 | 99.86 12 | 99.97 7 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 24 | 99.55 44 | 97.68 92 | 93.01 74 | 99.23 10 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 23 | 99.29 80 | 97.72 83 | 94.50 38 | 98.64 30 | 99.54 3 | 93.32 18 | 99.97 21 | 99.58 11 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 27 | 99.77 18 | 97.72 83 | 94.17 44 | 99.30 8 | 99.54 3 | 93.32 18 | 99.98 9 | 99.70 5 | 99.81 23 | 99.99 1 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 32 | 99.72 24 | 97.47 143 | 93.95 49 | 99.07 15 | 99.46 10 | 93.18 21 | 99.97 21 | 99.64 8 | 99.82 19 | 99.69 58 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PS-MVSNAJ | | | 96.87 31 | 96.40 43 | 98.29 19 | 97.35 134 | 97.29 5 | 99.03 119 | 97.11 184 | 95.83 20 | 98.97 19 | 99.14 45 | 82.48 189 | 99.60 106 | 98.60 33 | 99.08 78 | 98.00 197 |
|
| sasdasda | | | 95.02 92 | 93.96 113 | 98.20 21 | 97.53 126 | 95.92 17 | 98.71 149 | 96.19 246 | 91.78 100 | 95.86 104 | 98.49 113 | 79.53 222 | 99.03 152 | 96.12 95 | 91.42 227 | 99.66 64 |
|
| canonicalmvs | | | 95.02 92 | 93.96 113 | 98.20 21 | 97.53 126 | 95.92 17 | 98.71 149 | 96.19 246 | 91.78 100 | 95.86 104 | 98.49 113 | 79.53 222 | 99.03 152 | 96.12 95 | 91.42 227 | 99.66 64 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 142 | 91.84 167 | 98.17 23 | 95.73 209 | 95.08 35 | 98.92 131 | 97.04 191 | 91.42 111 | 81.48 302 | 97.60 149 | 74.60 252 | 99.79 85 | 90.84 181 | 98.97 86 | 99.64 68 |
|
| HPM-MVS++ |  | | 97.72 12 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 45 | 99.19 90 | 97.75 78 | 95.66 24 | 98.21 42 | 99.29 23 | 91.10 34 | 99.99 5 | 97.68 60 | 99.87 9 | 99.68 60 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 51 | 99.81 12 | 97.88 58 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 26 | 99.98 9 | 98.25 50 | 99.93 1 | 99.94 18 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 52 | 98.85 135 | 97.64 105 | 96.51 16 | 95.88 102 | 99.39 18 | 87.35 99 | 99.99 5 | 96.61 85 | 99.69 38 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 38 | 99.44 62 | 97.45 146 | 89.60 160 | 98.70 27 | 99.42 17 | 90.42 48 | 99.72 92 | 98.47 41 | 99.65 40 | 99.77 46 |
|
| xiu_mvs_v2_base | | | 96.66 37 | 96.17 52 | 98.11 28 | 97.11 150 | 96.96 6 | 99.01 122 | 97.04 191 | 95.51 27 | 98.86 23 | 99.11 53 | 82.19 197 | 99.36 133 | 98.59 35 | 98.14 118 | 98.00 197 |
|
| MGCFI-Net | | | 94.89 94 | 93.84 120 | 98.06 29 | 97.49 129 | 95.55 21 | 98.64 160 | 96.10 253 | 91.60 105 | 95.75 108 | 98.46 119 | 79.31 226 | 98.98 156 | 95.95 101 | 91.24 231 | 99.65 67 |
|
| alignmvs | | | 95.77 70 | 95.00 88 | 98.06 29 | 97.35 134 | 95.68 20 | 99.71 26 | 97.50 138 | 91.50 107 | 96.16 97 | 98.61 106 | 86.28 125 | 99.00 154 | 96.19 93 | 91.74 215 | 99.51 82 |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 31 | 99.30 54 | 94.20 59 | 99.16 96 | 97.65 104 | 89.55 164 | 99.22 12 | 99.52 8 | 90.34 51 | 99.99 5 | 98.32 47 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DP-MVS Recon | | | 95.85 66 | 95.15 82 | 97.95 32 | 99.87 2 | 94.38 55 | 99.60 39 | 97.48 141 | 86.58 249 | 94.42 132 | 99.13 47 | 87.36 98 | 99.98 9 | 93.64 148 | 98.33 114 | 99.48 86 |
|
| PAPR | | | 96.35 47 | 95.82 62 | 97.94 33 | 99.63 18 | 94.19 60 | 99.42 67 | 97.55 125 | 92.43 87 | 93.82 147 | 99.12 49 | 87.30 100 | 99.91 46 | 94.02 140 | 99.06 80 | 99.74 50 |
|
| 1314 | | | 93.44 141 | 91.98 164 | 97.84 34 | 95.24 224 | 94.38 55 | 96.22 312 | 97.92 56 | 90.18 142 | 82.28 285 | 97.71 144 | 77.63 240 | 99.80 81 | 91.94 171 | 98.67 102 | 99.34 101 |
|
| test12 | | | | | 97.83 35 | 99.33 53 | 94.45 52 | | 97.55 125 | | 97.56 59 | | 88.60 74 | 99.50 114 | | 99.71 36 | 99.55 77 |
|
| balanced_conf03 | | | 96.83 32 | 96.51 39 | 97.81 36 | 97.60 122 | 95.15 34 | 98.40 195 | 96.77 208 | 93.00 76 | 98.69 28 | 96.19 214 | 89.75 59 | 98.76 165 | 98.45 42 | 99.72 32 | 99.51 82 |
|
| ACMMP_NAP | | | 96.59 41 | 96.18 49 | 97.81 36 | 98.82 85 | 93.55 69 | 98.88 134 | 97.59 118 | 90.66 125 | 97.98 53 | 99.14 45 | 86.59 117 | 100.00 1 | 96.47 89 | 99.46 57 | 99.89 25 |
|
| SD-MVS | | | 97.51 16 | 97.40 19 | 97.81 36 | 99.01 72 | 93.79 66 | 99.33 78 | 97.38 156 | 93.73 60 | 98.83 25 | 99.02 61 | 90.87 41 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 46 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APDe-MVS |  | | 97.53 15 | 97.47 16 | 97.70 39 | 99.58 30 | 93.63 67 | 99.56 43 | 97.52 133 | 93.59 64 | 98.01 52 | 99.12 49 | 90.80 42 | 99.55 109 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CDPH-MVS | | | 96.56 43 | 96.18 49 | 97.70 39 | 99.59 28 | 93.92 63 | 99.13 107 | 97.44 149 | 89.02 177 | 97.90 55 | 99.22 30 | 88.90 70 | 99.49 115 | 94.63 132 | 99.79 27 | 99.68 60 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 18 | 97.63 41 | 99.65 16 | 93.21 77 | 99.70 27 | 98.13 42 | 94.61 36 | 97.78 58 | 99.46 10 | 89.85 57 | 99.81 79 | 97.97 54 | 99.91 6 | 99.88 26 |
|
| APD-MVS |  | | 96.95 29 | 96.72 35 | 97.63 41 | 99.51 41 | 93.58 68 | 99.16 96 | 97.44 149 | 90.08 147 | 98.59 32 | 99.07 54 | 89.06 65 | 99.42 126 | 97.92 55 | 99.66 39 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| sss | | | 94.85 99 | 93.94 115 | 97.58 43 | 96.43 176 | 94.09 62 | 98.93 129 | 99.16 8 | 89.50 165 | 95.27 117 | 97.85 134 | 81.50 205 | 99.65 101 | 92.79 164 | 94.02 182 | 98.99 130 |
|
| PAPM | | | 96.35 47 | 95.94 58 | 97.58 43 | 94.10 269 | 95.25 26 | 98.93 129 | 98.17 36 | 94.26 43 | 93.94 143 | 98.72 94 | 89.68 60 | 97.88 212 | 96.36 90 | 99.29 69 | 99.62 72 |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 45 | 99.57 33 | 93.17 78 | 99.38 71 | 97.66 97 | 90.18 142 | 98.39 37 | 99.18 36 | 90.94 37 | 99.66 97 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| VNet | | | 95.08 91 | 94.26 99 | 97.55 46 | 98.07 106 | 93.88 64 | 98.68 154 | 98.73 17 | 90.33 139 | 97.16 72 | 97.43 158 | 79.19 227 | 99.53 112 | 96.91 78 | 91.85 213 | 99.24 109 |
|
| MVSMamba_PlusPlus | | | 95.73 74 | 95.15 82 | 97.44 47 | 97.28 139 | 94.35 57 | 98.26 210 | 96.75 209 | 83.09 308 | 97.84 56 | 95.97 222 | 89.59 61 | 98.48 180 | 97.86 57 | 99.73 31 | 99.49 85 |
|
| lupinMVS | | | 96.32 49 | 95.94 58 | 97.44 47 | 95.05 242 | 94.87 39 | 99.86 5 | 96.50 226 | 93.82 58 | 98.04 50 | 98.77 88 | 85.52 136 | 98.09 199 | 96.98 75 | 98.97 86 | 99.37 96 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 13 | 97.80 11 | 97.42 49 | 97.59 123 | 92.91 88 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 24 | 90.90 39 | 99.94 35 | 99.57 12 | 98.66 103 | 99.40 93 |
|
| fmvsm_l_conf0.5_n | | | 97.65 14 | 97.72 12 | 97.41 50 | 97.51 128 | 92.78 90 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 29 | 90.42 48 | 99.92 41 | 99.55 13 | 98.50 108 | 99.55 77 |
|
| æ–°å‡ ä½•1 | | | | | 97.40 51 | 98.92 81 | 92.51 96 | | 97.77 77 | 85.52 267 | 96.69 88 | 99.06 56 | 88.08 84 | 99.89 53 | 84.88 251 | 99.62 46 | 99.79 38 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 17 | 97.39 52 | 99.12 65 | 93.49 72 | 98.52 177 | 97.50 138 | 94.46 39 | 98.99 17 | 98.64 102 | 91.58 31 | 99.08 151 | 98.49 40 | 99.83 15 | 99.60 73 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| 3Dnovator | | 87.35 11 | 93.17 154 | 91.77 170 | 97.37 53 | 95.41 220 | 93.07 81 | 98.82 138 | 97.85 61 | 91.53 106 | 82.56 278 | 97.58 151 | 71.97 279 | 99.82 76 | 91.01 178 | 99.23 73 | 99.22 112 |
|
| MP-MVS-pluss | | | 95.80 68 | 95.30 77 | 97.29 54 | 98.95 77 | 92.66 91 | 98.59 171 | 97.14 180 | 88.95 180 | 93.12 156 | 99.25 26 | 85.62 135 | 99.94 35 | 96.56 87 | 99.48 56 | 99.28 106 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| test_yl | | | 95.27 86 | 94.60 93 | 97.28 55 | 98.53 93 | 92.98 84 | 99.05 117 | 98.70 18 | 86.76 246 | 94.65 129 | 97.74 142 | 87.78 87 | 99.44 122 | 95.57 109 | 92.61 197 | 99.44 90 |
|
| DCV-MVSNet | | | 95.27 86 | 94.60 93 | 97.28 55 | 98.53 93 | 92.98 84 | 99.05 117 | 98.70 18 | 86.76 246 | 94.65 129 | 97.74 142 | 87.78 87 | 99.44 122 | 95.57 109 | 92.61 197 | 99.44 90 |
|
| EPNet | | | 96.82 33 | 96.68 37 | 97.25 57 | 98.65 90 | 93.10 80 | 99.48 53 | 98.76 14 | 96.54 13 | 97.84 56 | 98.22 127 | 87.49 92 | 99.66 97 | 95.35 113 | 97.78 125 | 99.00 129 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PHI-MVS | | | 96.65 40 | 96.46 42 | 97.21 58 | 99.34 50 | 91.77 104 | 99.70 27 | 98.05 46 | 86.48 254 | 98.05 49 | 99.20 32 | 89.33 63 | 99.96 28 | 98.38 43 | 99.62 46 | 99.90 22 |
|
| CANet_DTU | | | 94.31 117 | 93.35 132 | 97.20 59 | 97.03 155 | 94.71 47 | 98.62 163 | 95.54 302 | 95.61 25 | 97.21 69 | 98.47 117 | 71.88 280 | 99.84 69 | 88.38 211 | 97.46 133 | 97.04 224 |
|
| QAPM | | | 91.41 188 | 89.49 211 | 97.17 60 | 95.66 212 | 93.42 73 | 98.60 169 | 97.51 135 | 80.92 344 | 81.39 303 | 97.41 159 | 72.89 272 | 99.87 58 | 82.33 282 | 98.68 101 | 98.21 190 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 61 | 98.88 83 | 91.62 107 | 99.58 41 | 96.54 224 | 95.09 32 | 96.84 79 | 98.63 104 | 91.16 32 | 99.77 88 | 99.04 24 | 96.42 152 | 99.81 35 |
|
| 114514_t | | | 94.06 121 | 93.05 140 | 97.06 62 | 99.08 69 | 92.26 99 | 98.97 127 | 97.01 196 | 82.58 320 | 92.57 163 | 98.22 127 | 80.68 214 | 99.30 139 | 89.34 201 | 99.02 83 | 99.63 70 |
|
| jason | | | 95.40 83 | 94.86 90 | 97.03 63 | 92.91 301 | 94.23 58 | 99.70 27 | 96.30 237 | 93.56 65 | 96.73 87 | 98.52 109 | 81.46 207 | 97.91 209 | 96.08 98 | 98.47 111 | 98.96 133 |
| jason: jason. |
| test_prior | | | | | 97.01 64 | 99.58 30 | 91.77 104 | | 97.57 123 | | | | | 99.49 115 | | | 99.79 38 |
|
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 21 | 97.01 64 | 97.38 132 | 91.46 111 | 99.75 22 | 97.66 97 | 94.14 48 | 98.13 44 | 99.26 24 | 92.16 30 | 99.66 97 | 97.91 56 | 99.64 42 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v1_base_debu | | | 94.73 103 | 93.98 110 | 96.99 66 | 95.19 228 | 95.24 27 | 98.62 163 | 96.50 226 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 275 | 99.15 144 | 97.03 72 | 96.74 147 | 96.58 236 |
|
| xiu_mvs_v1_base | | | 94.73 103 | 93.98 110 | 96.99 66 | 95.19 228 | 95.24 27 | 98.62 163 | 96.50 226 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 275 | 99.15 144 | 97.03 72 | 96.74 147 | 96.58 236 |
|
| xiu_mvs_v1_base_debi | | | 94.73 103 | 93.98 110 | 96.99 66 | 95.19 228 | 95.24 27 | 98.62 163 | 96.50 226 | 92.99 77 | 97.52 60 | 98.83 85 | 72.37 275 | 99.15 144 | 97.03 72 | 96.74 147 | 96.58 236 |
|
| GG-mvs-BLEND | | | | | 96.98 69 | 96.53 171 | 94.81 44 | 87.20 390 | 97.74 79 | | 93.91 144 | 96.40 207 | 96.56 2 | 96.94 265 | 95.08 120 | 98.95 89 | 99.20 113 |
|
| thres200 | | | 93.69 134 | 92.59 152 | 96.97 70 | 97.76 114 | 94.74 46 | 99.35 76 | 99.36 2 | 89.23 170 | 91.21 188 | 96.97 183 | 83.42 167 | 98.77 163 | 85.08 247 | 90.96 232 | 97.39 212 |
|
| MTAPA | | | 96.09 55 | 95.80 65 | 96.96 71 | 99.29 55 | 91.19 115 | 97.23 274 | 97.45 146 | 92.58 84 | 94.39 134 | 99.24 28 | 86.43 123 | 99.99 5 | 96.22 92 | 99.40 64 | 99.71 54 |
|
| ZNCC-MVS | | | 96.09 55 | 95.81 64 | 96.95 72 | 99.42 47 | 91.19 115 | 99.55 44 | 97.53 129 | 89.72 155 | 95.86 104 | 98.94 76 | 86.59 117 | 99.97 21 | 95.13 119 | 99.56 52 | 99.68 60 |
|
| GST-MVS | | | 95.97 60 | 95.66 70 | 96.90 73 | 99.49 45 | 91.22 113 | 99.45 61 | 97.48 141 | 89.69 156 | 95.89 101 | 98.72 94 | 86.37 124 | 99.95 32 | 94.62 133 | 99.22 74 | 99.52 80 |
|
| thres100view900 | | | 93.34 147 | 92.15 160 | 96.90 73 | 97.62 119 | 94.84 41 | 99.06 116 | 99.36 2 | 87.96 215 | 90.47 199 | 96.78 195 | 83.29 170 | 98.75 166 | 84.11 263 | 90.69 234 | 97.12 219 |
|
| tfpn200view9 | | | 93.43 142 | 92.27 157 | 96.90 73 | 97.68 117 | 94.84 41 | 99.18 92 | 99.36 2 | 88.45 194 | 90.79 191 | 96.90 187 | 83.31 168 | 98.75 166 | 84.11 263 | 90.69 234 | 97.12 219 |
|
| HFP-MVS | | | 96.42 46 | 96.26 46 | 96.90 73 | 99.69 8 | 90.96 126 | 99.47 55 | 97.81 69 | 90.54 133 | 96.88 76 | 99.05 57 | 87.57 90 | 99.96 28 | 95.65 104 | 99.72 32 | 99.78 41 |
|
| gg-mvs-nofinetune | | | 90.00 221 | 87.71 246 | 96.89 77 | 96.15 192 | 94.69 48 | 85.15 397 | 97.74 79 | 68.32 396 | 92.97 159 | 60.16 410 | 96.10 4 | 96.84 268 | 93.89 142 | 98.87 93 | 99.14 117 |
|
| XVS | | | 96.47 45 | 96.37 44 | 96.77 78 | 99.62 22 | 90.66 134 | 99.43 65 | 97.58 120 | 92.41 90 | 96.86 77 | 98.96 70 | 87.37 95 | 99.87 58 | 95.65 104 | 99.43 61 | 99.78 41 |
|
| X-MVStestdata | | | 90.69 206 | 88.66 229 | 96.77 78 | 99.62 22 | 90.66 134 | 99.43 65 | 97.58 120 | 92.41 90 | 96.86 77 | 29.59 422 | 87.37 95 | 99.87 58 | 95.65 104 | 99.43 61 | 99.78 41 |
|
| thres600view7 | | | 93.18 152 | 92.00 163 | 96.75 80 | 97.62 119 | 94.92 36 | 99.07 113 | 99.36 2 | 87.96 215 | 90.47 199 | 96.78 195 | 83.29 170 | 98.71 170 | 82.93 277 | 90.47 238 | 96.61 234 |
|
| PVSNet_Blended | | | 95.94 63 | 95.66 70 | 96.75 80 | 98.77 87 | 91.61 108 | 99.88 4 | 98.04 48 | 93.64 63 | 94.21 137 | 97.76 140 | 83.50 164 | 99.87 58 | 97.41 64 | 97.75 126 | 98.79 153 |
|
| ACMMPR | | | 96.28 51 | 96.14 56 | 96.73 82 | 99.68 9 | 90.47 138 | 99.47 55 | 97.80 71 | 90.54 133 | 96.83 81 | 99.03 59 | 86.51 121 | 99.95 32 | 95.65 104 | 99.72 32 | 99.75 49 |
|
| thres400 | | | 93.39 144 | 92.27 157 | 96.73 82 | 97.68 117 | 94.84 41 | 99.18 92 | 99.36 2 | 88.45 194 | 90.79 191 | 96.90 187 | 83.31 168 | 98.75 166 | 84.11 263 | 90.69 234 | 96.61 234 |
|
| MVS_111021_HR | | | 96.69 36 | 96.69 36 | 96.72 84 | 98.58 92 | 91.00 125 | 99.14 104 | 99.45 1 | 93.86 55 | 95.15 120 | 98.73 92 | 88.48 75 | 99.76 89 | 97.23 70 | 99.56 52 | 99.40 93 |
|
| region2R | | | 96.30 50 | 96.17 52 | 96.70 85 | 99.70 7 | 90.31 140 | 99.46 59 | 97.66 97 | 90.55 132 | 97.07 73 | 99.07 54 | 86.85 109 | 99.97 21 | 95.43 111 | 99.74 29 | 99.81 35 |
|
| UBG | | | 95.73 74 | 95.41 75 | 96.69 86 | 96.97 156 | 93.23 76 | 99.13 107 | 97.79 73 | 91.28 114 | 94.38 135 | 96.78 195 | 92.37 28 | 98.56 176 | 96.17 94 | 93.84 184 | 98.26 184 |
|
| MVS_Test | | | 93.67 137 | 92.67 149 | 96.69 86 | 96.72 166 | 92.66 91 | 97.22 275 | 96.03 259 | 87.69 226 | 95.12 121 | 94.03 252 | 81.55 203 | 98.28 188 | 89.17 205 | 96.46 150 | 99.14 117 |
|
| ab-mvs | | | 91.05 199 | 89.17 217 | 96.69 86 | 95.96 201 | 91.72 106 | 92.62 363 | 97.23 170 | 85.61 266 | 89.74 210 | 93.89 259 | 68.55 302 | 99.42 126 | 91.09 176 | 87.84 247 | 98.92 141 |
|
| CHOSEN 280x420 | | | 96.80 34 | 96.85 28 | 96.66 89 | 97.85 113 | 94.42 54 | 94.76 340 | 98.36 28 | 92.50 86 | 95.62 112 | 97.52 153 | 97.92 1 | 97.38 248 | 98.31 48 | 98.80 96 | 98.20 191 |
|
| test_fmvsmconf_n | | | 96.78 35 | 96.84 29 | 96.61 90 | 95.99 200 | 90.25 141 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 36 | 98.92 77 | 85.34 144 | 99.88 54 | 99.12 22 | 99.08 78 | 99.70 55 |
|
| MVSFormer | | | 94.71 106 | 94.08 107 | 96.61 90 | 95.05 242 | 94.87 39 | 97.77 247 | 96.17 249 | 86.84 243 | 98.04 50 | 98.52 109 | 85.52 136 | 95.99 316 | 89.83 191 | 98.97 86 | 98.96 133 |
|
| API-MVS | | | 94.78 101 | 94.18 104 | 96.59 92 | 99.21 61 | 90.06 153 | 98.80 141 | 97.78 75 | 83.59 300 | 93.85 145 | 99.21 31 | 83.79 161 | 99.97 21 | 92.37 167 | 99.00 84 | 99.74 50 |
|
| test2506 | | | 94.80 100 | 94.21 101 | 96.58 93 | 96.41 178 | 92.18 100 | 98.01 233 | 98.96 11 | 90.82 122 | 93.46 152 | 97.28 162 | 85.92 131 | 98.45 181 | 89.82 193 | 97.19 139 | 99.12 120 |
|
| baseline1 | | | 92.61 164 | 91.28 179 | 96.58 93 | 97.05 154 | 94.63 49 | 97.72 252 | 96.20 244 | 89.82 153 | 88.56 219 | 96.85 191 | 86.85 109 | 97.82 216 | 88.42 210 | 80.10 300 | 97.30 214 |
|
| PAPM_NR | | | 95.43 80 | 95.05 87 | 96.57 95 | 99.42 47 | 90.14 146 | 98.58 173 | 97.51 135 | 90.65 127 | 92.44 165 | 98.90 79 | 87.77 89 | 99.90 50 | 90.88 180 | 99.32 66 | 99.68 60 |
|
| MP-MVS |  | | 96.00 57 | 95.82 62 | 96.54 96 | 99.47 46 | 90.13 148 | 99.36 75 | 97.41 153 | 90.64 128 | 95.49 114 | 98.95 73 | 85.51 138 | 99.98 9 | 96.00 100 | 99.59 51 | 99.52 80 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MSP-MVS | | | 97.77 10 | 98.18 2 | 96.53 97 | 99.54 36 | 90.14 146 | 99.41 68 | 97.70 88 | 95.46 28 | 98.60 31 | 99.19 33 | 95.71 5 | 99.49 115 | 98.15 52 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| OpenMVS |  | 85.28 14 | 90.75 204 | 88.84 224 | 96.48 98 | 93.58 288 | 93.51 71 | 98.80 141 | 97.41 153 | 82.59 319 | 78.62 332 | 97.49 155 | 68.00 309 | 99.82 76 | 84.52 257 | 98.55 107 | 96.11 247 |
|
| DeepC-MVS | | 91.02 4 | 94.56 112 | 93.92 116 | 96.46 99 | 97.16 146 | 90.76 130 | 98.39 199 | 97.11 184 | 93.92 51 | 88.66 218 | 98.33 122 | 78.14 237 | 99.85 67 | 95.02 122 | 98.57 106 | 98.78 155 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PGM-MVS | | | 95.85 66 | 95.65 72 | 96.45 100 | 99.50 42 | 89.77 161 | 98.22 213 | 98.90 13 | 89.19 172 | 96.74 86 | 98.95 73 | 85.91 133 | 99.92 41 | 93.94 141 | 99.46 57 | 99.66 64 |
|
| thisisatest0515 | | | 94.75 102 | 94.19 102 | 96.43 101 | 96.13 197 | 92.64 94 | 99.47 55 | 97.60 114 | 87.55 229 | 93.17 155 | 97.59 150 | 94.71 12 | 98.42 182 | 88.28 212 | 93.20 189 | 98.24 188 |
|
| LFMVS | | | 92.23 174 | 90.84 189 | 96.42 102 | 98.24 100 | 91.08 122 | 98.24 212 | 96.22 243 | 83.39 303 | 94.74 127 | 98.31 123 | 61.12 349 | 98.85 159 | 94.45 135 | 92.82 193 | 99.32 102 |
|
| CP-MVS | | | 96.22 52 | 96.15 55 | 96.42 102 | 99.67 10 | 89.62 164 | 99.70 27 | 97.61 112 | 90.07 148 | 96.00 98 | 99.16 39 | 87.43 93 | 99.92 41 | 96.03 99 | 99.72 32 | 99.70 55 |
|
| test_fmvsmconf0.1_n | | | 95.94 63 | 95.79 66 | 96.40 104 | 92.42 307 | 89.92 157 | 99.79 17 | 96.85 203 | 96.53 15 | 97.22 68 | 98.67 100 | 82.71 185 | 99.84 69 | 98.92 27 | 98.98 85 | 99.43 92 |
|
| mPP-MVS | | | 95.90 65 | 95.75 67 | 96.38 105 | 99.58 30 | 89.41 168 | 99.26 85 | 97.41 153 | 90.66 125 | 94.82 124 | 98.95 73 | 86.15 129 | 99.98 9 | 95.24 118 | 99.64 42 | 99.74 50 |
|
| testing11 | | | 95.33 84 | 94.98 89 | 96.37 106 | 97.20 141 | 92.31 97 | 99.29 80 | 97.68 92 | 90.59 129 | 94.43 131 | 97.20 169 | 90.79 43 | 98.60 174 | 95.25 117 | 92.38 201 | 98.18 192 |
|
| CNLPA | | | 93.64 138 | 92.74 147 | 96.36 107 | 98.96 76 | 90.01 156 | 99.19 90 | 95.89 280 | 86.22 257 | 89.40 213 | 98.85 84 | 80.66 215 | 99.84 69 | 88.57 209 | 96.92 145 | 99.24 109 |
|
| PVSNet_Blended_VisFu | | | 94.67 107 | 94.11 105 | 96.34 108 | 97.14 147 | 91.10 120 | 99.32 79 | 97.43 151 | 92.10 97 | 91.53 181 | 96.38 210 | 83.29 170 | 99.68 95 | 93.42 155 | 96.37 153 | 98.25 185 |
|
| ETVMVS | | | 94.50 113 | 93.90 118 | 96.31 109 | 97.48 130 | 92.98 84 | 99.07 113 | 97.86 60 | 88.09 210 | 94.40 133 | 96.90 187 | 88.35 77 | 97.28 252 | 90.72 185 | 92.25 207 | 98.66 165 |
|
| PVSNet | | 87.13 12 | 93.69 134 | 92.83 146 | 96.28 110 | 97.99 109 | 90.22 144 | 99.38 71 | 98.93 12 | 91.42 111 | 93.66 149 | 97.68 145 | 71.29 287 | 99.64 103 | 87.94 217 | 97.20 138 | 98.98 131 |
|
| reproduce-ours | | | 96.66 37 | 96.80 32 | 96.22 111 | 98.95 77 | 89.03 176 | 98.62 163 | 97.38 156 | 93.42 66 | 96.80 84 | 99.36 19 | 88.92 68 | 99.80 81 | 98.51 38 | 99.26 71 | 99.82 32 |
|
| our_new_method | | | 96.66 37 | 96.80 32 | 96.22 111 | 98.95 77 | 89.03 176 | 98.62 163 | 97.38 156 | 93.42 66 | 96.80 84 | 99.36 19 | 88.92 68 | 99.80 81 | 98.51 38 | 99.26 71 | 99.82 32 |
|
| testing91 | | | 94.88 96 | 94.44 96 | 96.21 113 | 97.19 143 | 91.90 103 | 99.23 87 | 97.66 97 | 89.91 151 | 93.66 149 | 97.05 180 | 90.21 53 | 98.50 177 | 93.52 150 | 91.53 224 | 98.25 185 |
|
| 1112_ss | | | 92.71 160 | 91.55 174 | 96.20 114 | 95.56 214 | 91.12 118 | 98.48 185 | 94.69 338 | 88.29 204 | 86.89 236 | 98.50 111 | 87.02 106 | 98.66 172 | 84.75 252 | 89.77 242 | 98.81 151 |
|
| 原ACMM1 | | | | | 96.18 115 | 99.03 71 | 90.08 149 | | 97.63 109 | 88.98 178 | 97.00 74 | 98.97 65 | 88.14 83 | 99.71 93 | 88.23 213 | 99.62 46 | 98.76 157 |
|
| Test_1112_low_res | | | 92.27 173 | 90.97 185 | 96.18 115 | 95.53 216 | 91.10 120 | 98.47 187 | 94.66 339 | 88.28 205 | 86.83 237 | 93.50 270 | 87.00 107 | 98.65 173 | 84.69 253 | 89.74 243 | 98.80 152 |
|
| testing99 | | | 94.88 96 | 94.45 95 | 96.17 117 | 97.20 141 | 91.91 102 | 99.20 89 | 97.66 97 | 89.95 150 | 93.68 148 | 97.06 178 | 90.28 52 | 98.50 177 | 93.52 150 | 91.54 221 | 98.12 194 |
|
| EI-MVSNet-Vis-set | | | 95.76 71 | 95.63 74 | 96.17 117 | 99.14 64 | 90.33 139 | 98.49 183 | 97.82 66 | 91.92 98 | 94.75 126 | 98.88 83 | 87.06 105 | 99.48 119 | 95.40 112 | 97.17 141 | 98.70 160 |
|
| PCF-MVS | | 89.78 5 | 91.26 192 | 89.63 208 | 96.16 119 | 95.44 218 | 91.58 110 | 95.29 335 | 96.10 253 | 85.07 275 | 82.75 272 | 97.45 157 | 78.28 236 | 99.78 87 | 80.60 297 | 95.65 168 | 97.12 219 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| AdaColmap |  | | 93.82 131 | 93.06 139 | 96.10 120 | 99.88 1 | 89.07 173 | 98.33 204 | 97.55 125 | 86.81 245 | 90.39 201 | 98.65 101 | 75.09 249 | 99.98 9 | 93.32 156 | 97.53 131 | 99.26 108 |
|
| SR-MVS | | | 96.13 54 | 96.16 54 | 96.07 121 | 99.42 47 | 89.04 174 | 98.59 171 | 97.33 163 | 90.44 136 | 96.84 79 | 99.12 49 | 86.75 111 | 99.41 129 | 97.47 63 | 99.44 60 | 99.76 48 |
|
| test_fmvsmconf0.01_n | | | 94.14 120 | 93.51 128 | 96.04 122 | 86.79 379 | 89.19 169 | 99.28 83 | 95.94 267 | 95.70 21 | 95.50 113 | 98.49 113 | 73.27 267 | 99.79 85 | 98.28 49 | 98.32 116 | 99.15 116 |
|
| casdiffmvs_mvg |  | | 94.00 123 | 93.33 133 | 96.03 123 | 95.22 226 | 90.90 128 | 99.09 111 | 95.99 260 | 90.58 130 | 91.55 180 | 97.37 160 | 79.91 218 | 98.06 201 | 95.01 123 | 95.22 172 | 99.13 119 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| reproduce_model | | | 96.57 42 | 96.75 34 | 96.02 124 | 98.93 80 | 88.46 198 | 98.56 174 | 97.34 162 | 93.18 72 | 96.96 75 | 99.35 21 | 88.69 73 | 99.80 81 | 98.53 37 | 99.21 77 | 99.79 38 |
|
| Effi-MVS+ | | | 93.87 129 | 93.15 138 | 96.02 124 | 95.79 206 | 90.76 130 | 96.70 296 | 95.78 286 | 86.98 240 | 95.71 109 | 97.17 173 | 79.58 220 | 98.01 206 | 94.57 134 | 96.09 160 | 99.31 103 |
|
| ETV-MVS | | | 96.00 57 | 96.00 57 | 96.00 126 | 96.56 169 | 91.05 123 | 99.63 37 | 96.61 216 | 93.26 71 | 97.39 64 | 98.30 124 | 86.62 116 | 98.13 196 | 98.07 53 | 97.57 128 | 98.82 150 |
|
| HPM-MVS |  | | 95.41 82 | 95.22 80 | 95.99 127 | 99.29 55 | 89.14 171 | 99.17 95 | 97.09 188 | 87.28 234 | 95.40 115 | 98.48 116 | 84.93 148 | 99.38 131 | 95.64 108 | 99.65 40 | 99.47 88 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| IB-MVS | | 89.43 6 | 92.12 176 | 90.83 191 | 95.98 128 | 95.40 221 | 90.78 129 | 99.81 12 | 98.06 45 | 91.23 116 | 85.63 246 | 93.66 265 | 90.63 44 | 98.78 162 | 91.22 175 | 71.85 361 | 98.36 180 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| testing222 | | | 94.48 114 | 94.00 109 | 95.95 129 | 97.30 136 | 92.27 98 | 98.82 138 | 97.92 56 | 89.20 171 | 94.82 124 | 97.26 164 | 87.13 102 | 97.32 251 | 91.95 170 | 91.56 219 | 98.25 185 |
|
| CHOSEN 1792x2688 | | | 94.35 116 | 93.82 121 | 95.95 129 | 97.40 131 | 88.74 191 | 98.41 192 | 98.27 30 | 92.18 95 | 91.43 182 | 96.40 207 | 78.88 228 | 99.81 79 | 93.59 149 | 97.81 122 | 99.30 104 |
|
| ET-MVSNet_ETH3D | | | 92.56 166 | 91.45 176 | 95.88 131 | 96.39 180 | 94.13 61 | 99.46 59 | 96.97 199 | 92.18 95 | 66.94 390 | 98.29 125 | 94.65 14 | 94.28 360 | 94.34 136 | 83.82 278 | 99.24 109 |
|
| EI-MVSNet-UG-set | | | 95.43 80 | 95.29 78 | 95.86 132 | 99.07 70 | 89.87 158 | 98.43 189 | 97.80 71 | 91.78 100 | 94.11 139 | 98.77 88 | 86.25 127 | 99.48 119 | 94.95 126 | 96.45 151 | 98.22 189 |
|
| diffmvs |  | | 94.59 110 | 94.19 102 | 95.81 133 | 95.54 215 | 90.69 132 | 98.70 152 | 95.68 294 | 91.61 103 | 95.96 99 | 97.81 136 | 80.11 216 | 98.06 201 | 96.52 88 | 95.76 165 | 98.67 162 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMMP |  | | 94.67 107 | 94.30 98 | 95.79 134 | 99.25 57 | 88.13 203 | 98.41 192 | 98.67 21 | 90.38 138 | 91.43 182 | 98.72 94 | 82.22 196 | 99.95 32 | 93.83 145 | 95.76 165 | 99.29 105 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| cascas | | | 90.93 201 | 89.33 215 | 95.76 135 | 95.69 210 | 93.03 83 | 98.99 124 | 96.59 218 | 80.49 346 | 86.79 238 | 94.45 247 | 65.23 332 | 98.60 174 | 93.52 150 | 92.18 208 | 95.66 251 |
|
| baseline | | | 93.91 127 | 93.30 134 | 95.72 136 | 95.10 239 | 90.07 150 | 97.48 262 | 95.91 277 | 91.03 118 | 93.54 151 | 97.68 145 | 79.58 220 | 98.02 205 | 94.27 137 | 95.14 173 | 99.08 125 |
|
| test_fmvsmvis_n_1920 | | | 95.47 79 | 95.40 76 | 95.70 137 | 94.33 262 | 90.22 144 | 99.70 27 | 96.98 198 | 96.80 7 | 92.75 160 | 98.89 81 | 82.46 192 | 99.92 41 | 98.36 44 | 98.33 114 | 96.97 227 |
|
| HPM-MVS_fast | | | 94.89 94 | 94.62 92 | 95.70 137 | 99.11 66 | 88.44 199 | 99.14 104 | 97.11 184 | 85.82 262 | 95.69 110 | 98.47 117 | 83.46 166 | 99.32 138 | 93.16 158 | 99.63 45 | 99.35 99 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 139 | 97.94 110 | 89.61 165 | 99.93 1 | 98.48 23 | 97.08 5 | 99.08 14 | 99.13 47 | 88.17 80 | 99.93 39 | 99.11 23 | 99.06 80 | 97.47 210 |
|
| FA-MVS(test-final) | | | 92.22 175 | 91.08 183 | 95.64 140 | 96.05 199 | 88.98 179 | 91.60 373 | 97.25 166 | 86.99 237 | 91.84 171 | 92.12 290 | 83.03 176 | 99.00 154 | 86.91 227 | 93.91 183 | 98.93 139 |
|
| RRT-MVS | | | 93.39 144 | 92.64 150 | 95.64 140 | 96.11 198 | 88.75 190 | 97.40 263 | 95.77 288 | 89.46 167 | 92.70 162 | 95.42 233 | 72.98 269 | 98.81 161 | 96.91 78 | 96.97 143 | 99.37 96 |
|
| APD-MVS_3200maxsize | | | 95.64 77 | 95.65 72 | 95.62 142 | 99.24 58 | 87.80 209 | 98.42 190 | 97.22 171 | 88.93 182 | 96.64 91 | 98.98 64 | 85.49 139 | 99.36 133 | 96.68 82 | 99.27 70 | 99.70 55 |
|
| casdiffmvs |  | | 93.98 125 | 93.43 129 | 95.61 143 | 95.07 241 | 89.86 159 | 98.80 141 | 95.84 285 | 90.98 119 | 92.74 161 | 97.66 147 | 79.71 219 | 98.10 198 | 94.72 130 | 95.37 171 | 98.87 145 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPMVS | | | 92.59 165 | 91.59 173 | 95.59 144 | 97.22 140 | 90.03 154 | 91.78 370 | 98.04 48 | 90.42 137 | 91.66 176 | 90.65 328 | 86.49 122 | 97.46 243 | 81.78 288 | 96.31 155 | 99.28 106 |
|
| TESTMET0.1,1 | | | 93.82 131 | 93.26 136 | 95.49 145 | 95.21 227 | 90.25 141 | 99.15 101 | 97.54 128 | 89.18 173 | 91.79 172 | 94.87 242 | 89.13 64 | 97.63 233 | 86.21 235 | 96.29 157 | 98.60 166 |
|
| MAR-MVS | | | 94.43 115 | 94.09 106 | 95.45 146 | 99.10 68 | 87.47 219 | 98.39 199 | 97.79 73 | 88.37 199 | 94.02 142 | 99.17 38 | 78.64 233 | 99.91 46 | 92.48 166 | 98.85 94 | 98.96 133 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| thisisatest0530 | | | 94.00 123 | 93.52 127 | 95.43 147 | 95.76 208 | 90.02 155 | 98.99 124 | 97.60 114 | 86.58 249 | 91.74 173 | 97.36 161 | 94.78 11 | 98.34 184 | 86.37 233 | 92.48 200 | 97.94 199 |
|
| SR-MVS-dyc-post | | | 95.75 72 | 95.86 61 | 95.41 148 | 99.22 59 | 87.26 229 | 98.40 195 | 97.21 172 | 89.63 158 | 96.67 89 | 98.97 65 | 86.73 113 | 99.36 133 | 96.62 83 | 99.31 67 | 99.60 73 |
|
| CSCG | | | 94.87 98 | 94.71 91 | 95.36 149 | 99.54 36 | 86.49 239 | 99.34 77 | 98.15 40 | 82.71 318 | 90.15 204 | 99.25 26 | 89.48 62 | 99.86 63 | 94.97 125 | 98.82 95 | 99.72 53 |
|
| mvsmamba | | | 94.27 118 | 93.91 117 | 95.35 150 | 96.42 177 | 88.61 193 | 97.77 247 | 96.38 232 | 91.17 117 | 94.05 141 | 95.27 236 | 78.41 235 | 97.96 208 | 97.36 66 | 98.40 112 | 99.48 86 |
|
| UA-Net | | | 93.30 148 | 92.62 151 | 95.34 151 | 96.27 185 | 88.53 197 | 95.88 323 | 96.97 199 | 90.90 120 | 95.37 116 | 97.07 177 | 82.38 194 | 99.10 150 | 83.91 267 | 94.86 176 | 98.38 176 |
|
| DP-MVS | | | 88.75 244 | 86.56 263 | 95.34 151 | 98.92 81 | 87.45 220 | 97.64 258 | 93.52 363 | 70.55 387 | 81.49 301 | 97.25 166 | 74.43 255 | 99.88 54 | 71.14 358 | 94.09 181 | 98.67 162 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 60 | 96.19 47 | 95.31 153 | 96.51 173 | 89.01 178 | 99.81 12 | 98.39 26 | 95.46 28 | 99.19 13 | 99.16 39 | 81.44 208 | 99.91 46 | 98.83 28 | 96.97 143 | 97.01 226 |
|
| fmvsm_s_conf0.5_n | | | 96.19 53 | 96.49 40 | 95.30 154 | 97.37 133 | 89.16 170 | 99.86 5 | 98.47 24 | 95.68 23 | 98.87 22 | 99.15 42 | 82.44 193 | 99.92 41 | 99.14 21 | 97.43 134 | 96.83 230 |
|
| MVS_111021_LR | | | 95.78 69 | 95.94 58 | 95.28 155 | 98.19 103 | 87.69 210 | 98.80 141 | 99.26 7 | 93.39 68 | 95.04 122 | 98.69 99 | 84.09 158 | 99.76 89 | 96.96 76 | 99.06 80 | 98.38 176 |
|
| testdata | | | | | 95.26 156 | 98.20 101 | 87.28 226 | | 97.60 114 | 85.21 271 | 98.48 35 | 99.15 42 | 88.15 82 | 98.72 169 | 90.29 188 | 99.45 59 | 99.78 41 |
|
| fmvsm_s_conf0.1_n | | | 95.56 78 | 95.68 69 | 95.20 157 | 94.35 261 | 89.10 172 | 99.50 51 | 97.67 96 | 94.76 35 | 98.68 29 | 99.03 59 | 81.13 211 | 99.86 63 | 98.63 32 | 97.36 136 | 96.63 233 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 88 | 95.15 82 | 95.18 158 | 92.06 313 | 88.94 182 | 99.29 80 | 97.53 129 | 94.46 39 | 98.98 18 | 98.99 63 | 79.99 217 | 99.85 67 | 98.24 51 | 96.86 146 | 96.73 231 |
|
| ECVR-MVS |  | | 92.29 171 | 91.33 178 | 95.15 159 | 96.41 178 | 87.84 208 | 98.10 226 | 94.84 331 | 90.82 122 | 91.42 184 | 97.28 162 | 65.61 328 | 98.49 179 | 90.33 187 | 97.19 139 | 99.12 120 |
|
| UGNet | | | 91.91 181 | 90.85 188 | 95.10 160 | 97.06 153 | 88.69 192 | 98.01 233 | 98.24 33 | 92.41 90 | 92.39 167 | 93.61 266 | 60.52 351 | 99.68 95 | 88.14 214 | 97.25 137 | 96.92 228 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CPTT-MVS | | | 94.60 109 | 94.43 97 | 95.09 161 | 99.66 12 | 86.85 234 | 99.44 62 | 97.47 143 | 83.22 305 | 94.34 136 | 98.96 70 | 82.50 187 | 99.55 109 | 94.81 127 | 99.50 55 | 98.88 143 |
|
| mvs_anonymous | | | 92.50 167 | 91.65 172 | 95.06 162 | 96.60 168 | 89.64 163 | 97.06 280 | 96.44 230 | 86.64 248 | 84.14 258 | 93.93 257 | 82.49 188 | 96.17 310 | 91.47 173 | 96.08 161 | 99.35 99 |
|
| PatchmatchNet |  | | 92.05 180 | 91.04 184 | 95.06 162 | 96.17 191 | 89.04 174 | 91.26 378 | 97.26 165 | 89.56 163 | 90.64 195 | 90.56 334 | 88.35 77 | 97.11 257 | 79.53 301 | 96.07 162 | 99.03 128 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| FE-MVS | | | 91.38 190 | 90.16 202 | 95.05 164 | 96.46 175 | 87.53 217 | 89.69 387 | 97.84 62 | 82.97 311 | 92.18 169 | 92.00 296 | 84.07 159 | 98.93 158 | 80.71 295 | 95.52 169 | 98.68 161 |
|
| BH-RMVSNet | | | 91.25 194 | 89.99 203 | 95.03 165 | 96.75 165 | 88.55 195 | 98.65 158 | 94.95 328 | 87.74 223 | 87.74 225 | 97.80 137 | 68.27 305 | 98.14 195 | 80.53 298 | 97.49 132 | 98.41 173 |
|
| Vis-MVSNet |  | | 92.64 162 | 91.85 166 | 95.03 165 | 95.12 235 | 88.23 200 | 98.48 185 | 96.81 204 | 91.61 103 | 92.16 170 | 97.22 168 | 71.58 285 | 98.00 207 | 85.85 242 | 97.81 122 | 98.88 143 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 92.12 176 | 91.19 181 | 94.94 167 | 96.15 192 | 87.36 223 | 98.12 223 | 94.84 331 | 90.85 121 | 90.97 189 | 97.26 164 | 65.60 329 | 98.37 183 | 89.74 196 | 97.14 142 | 99.07 127 |
|
| SPE-MVS-test | | | 95.98 59 | 96.34 45 | 94.90 168 | 98.06 107 | 87.66 213 | 99.69 34 | 96.10 253 | 93.66 61 | 98.35 40 | 99.05 57 | 86.28 125 | 97.66 230 | 96.96 76 | 98.90 92 | 99.37 96 |
|
| HyFIR lowres test | | | 93.68 136 | 93.29 135 | 94.87 169 | 97.57 125 | 88.04 205 | 98.18 217 | 98.47 24 | 87.57 228 | 91.24 187 | 95.05 240 | 85.49 139 | 97.46 243 | 93.22 157 | 92.82 193 | 99.10 123 |
|
| PLC |  | 91.07 3 | 94.23 119 | 94.01 108 | 94.87 169 | 99.17 63 | 87.49 218 | 99.25 86 | 96.55 223 | 88.43 197 | 91.26 186 | 98.21 129 | 85.92 131 | 99.86 63 | 89.77 195 | 97.57 128 | 97.24 217 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EC-MVSNet | | | 95.09 90 | 95.17 81 | 94.84 171 | 95.42 219 | 88.17 201 | 99.48 53 | 95.92 272 | 91.47 108 | 97.34 66 | 98.36 121 | 82.77 181 | 97.41 247 | 97.24 69 | 98.58 105 | 98.94 138 |
|
| SCA | | | 90.64 208 | 89.25 216 | 94.83 172 | 94.95 246 | 88.83 186 | 96.26 309 | 97.21 172 | 90.06 149 | 90.03 205 | 90.62 330 | 66.61 320 | 96.81 270 | 83.16 273 | 94.36 179 | 98.84 146 |
|
| TR-MVS | | | 90.77 203 | 89.44 212 | 94.76 173 | 96.31 183 | 88.02 206 | 97.92 237 | 95.96 264 | 85.52 267 | 88.22 222 | 97.23 167 | 66.80 319 | 98.09 199 | 84.58 255 | 92.38 201 | 98.17 193 |
|
| CDS-MVSNet | | | 93.47 140 | 93.04 141 | 94.76 173 | 94.75 253 | 89.45 167 | 98.82 138 | 97.03 193 | 87.91 217 | 90.97 189 | 96.48 205 | 89.06 65 | 96.36 293 | 89.50 197 | 92.81 195 | 98.49 170 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| baseline2 | | | 94.04 122 | 93.80 122 | 94.74 175 | 93.07 300 | 90.25 141 | 98.12 223 | 98.16 39 | 89.86 152 | 86.53 239 | 96.95 184 | 95.56 6 | 98.05 203 | 91.44 174 | 94.53 177 | 95.93 249 |
|
| OMC-MVS | | | 93.90 128 | 93.62 125 | 94.73 176 | 98.63 91 | 87.00 232 | 98.04 232 | 96.56 222 | 92.19 94 | 92.46 164 | 98.73 92 | 79.49 224 | 99.14 148 | 92.16 169 | 94.34 180 | 98.03 196 |
|
| VDDNet | | | 90.08 220 | 88.54 234 | 94.69 177 | 94.41 260 | 87.68 211 | 98.21 215 | 96.40 231 | 76.21 368 | 93.33 154 | 97.75 141 | 54.93 372 | 98.77 163 | 94.71 131 | 90.96 232 | 97.61 208 |
|
| SDMVSNet | | | 91.09 196 | 89.91 204 | 94.65 178 | 96.80 162 | 90.54 137 | 97.78 245 | 97.81 69 | 88.34 201 | 85.73 243 | 95.26 237 | 66.44 323 | 98.26 189 | 94.25 138 | 86.75 252 | 95.14 252 |
|
| tpmrst | | | 92.78 159 | 92.16 159 | 94.65 178 | 96.27 185 | 87.45 220 | 91.83 369 | 97.10 187 | 89.10 176 | 94.68 128 | 90.69 325 | 88.22 79 | 97.73 228 | 89.78 194 | 91.80 214 | 98.77 156 |
|
| EIA-MVS | | | 95.11 89 | 95.27 79 | 94.64 180 | 96.34 182 | 86.51 238 | 99.59 40 | 96.62 215 | 92.51 85 | 94.08 140 | 98.64 102 | 86.05 130 | 98.24 191 | 95.07 121 | 98.50 108 | 99.18 114 |
|
| RPMNet | | | 85.07 303 | 81.88 322 | 94.64 180 | 93.47 290 | 86.24 247 | 84.97 399 | 97.21 172 | 64.85 403 | 90.76 193 | 78.80 401 | 80.95 213 | 99.27 140 | 53.76 402 | 92.17 209 | 98.41 173 |
|
| LS3D | | | 90.19 216 | 88.72 227 | 94.59 182 | 98.97 73 | 86.33 246 | 96.90 286 | 96.60 217 | 74.96 374 | 84.06 260 | 98.74 91 | 75.78 246 | 99.83 73 | 74.93 334 | 97.57 128 | 97.62 207 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 183 | 99.21 61 | 83.73 299 | 99.62 38 | 98.25 31 | 95.28 30 | 99.38 6 | 98.91 78 | 92.28 29 | 99.94 35 | 99.61 10 | 99.22 74 | 99.78 41 |
|
| Fast-Effi-MVS+ | | | 91.72 183 | 90.79 192 | 94.49 183 | 95.89 202 | 87.40 222 | 99.54 49 | 95.70 292 | 85.01 278 | 89.28 215 | 95.68 228 | 77.75 239 | 97.57 240 | 83.22 272 | 95.06 174 | 98.51 169 |
|
| IS-MVSNet | | | 93.00 157 | 92.51 153 | 94.49 183 | 96.14 194 | 87.36 223 | 98.31 207 | 95.70 292 | 88.58 190 | 90.17 203 | 97.50 154 | 83.02 177 | 97.22 253 | 87.06 222 | 96.07 162 | 98.90 142 |
|
| VDD-MVS | | | 91.24 195 | 90.18 201 | 94.45 186 | 97.08 152 | 85.84 265 | 98.40 195 | 96.10 253 | 86.99 237 | 93.36 153 | 98.16 130 | 54.27 374 | 99.20 141 | 96.59 86 | 90.63 237 | 98.31 183 |
|
| CS-MVS | | | 95.75 72 | 96.19 47 | 94.40 187 | 97.88 112 | 86.22 249 | 99.66 35 | 96.12 252 | 92.69 83 | 98.07 48 | 98.89 81 | 87.09 103 | 97.59 236 | 96.71 80 | 98.62 104 | 99.39 95 |
|
| test-LLR | | | 93.11 155 | 92.68 148 | 94.40 187 | 94.94 247 | 87.27 227 | 99.15 101 | 97.25 166 | 90.21 140 | 91.57 177 | 94.04 250 | 84.89 149 | 97.58 237 | 85.94 239 | 96.13 158 | 98.36 180 |
|
| test-mter | | | 93.27 150 | 92.89 145 | 94.40 187 | 94.94 247 | 87.27 227 | 99.15 101 | 97.25 166 | 88.95 180 | 91.57 177 | 94.04 250 | 88.03 85 | 97.58 237 | 85.94 239 | 96.13 158 | 98.36 180 |
|
| GA-MVS | | | 90.10 219 | 88.69 228 | 94.33 190 | 92.44 306 | 87.97 207 | 99.08 112 | 96.26 241 | 89.65 157 | 86.92 235 | 93.11 278 | 68.09 307 | 96.96 263 | 82.54 281 | 90.15 239 | 98.05 195 |
|
| nrg030 | | | 90.23 214 | 88.87 223 | 94.32 191 | 91.53 325 | 93.54 70 | 98.79 145 | 95.89 280 | 88.12 209 | 84.55 254 | 94.61 246 | 78.80 231 | 96.88 267 | 92.35 168 | 75.21 325 | 92.53 271 |
|
| Anonymous202405211 | | | 88.84 238 | 87.03 257 | 94.27 192 | 98.14 105 | 84.18 293 | 98.44 188 | 95.58 300 | 76.79 366 | 89.34 214 | 96.88 190 | 53.42 378 | 99.54 111 | 87.53 221 | 87.12 251 | 99.09 124 |
|
| PatchMatch-RL | | | 91.47 186 | 90.54 196 | 94.26 193 | 98.20 101 | 86.36 245 | 96.94 284 | 97.14 180 | 87.75 222 | 88.98 216 | 95.75 226 | 71.80 282 | 99.40 130 | 80.92 293 | 97.39 135 | 97.02 225 |
|
| TAPA-MVS | | 87.50 9 | 90.35 211 | 89.05 220 | 94.25 194 | 98.48 95 | 85.17 278 | 98.42 190 | 96.58 221 | 82.44 325 | 87.24 231 | 98.53 108 | 82.77 181 | 98.84 160 | 59.09 396 | 97.88 121 | 98.72 158 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test_cas_vis1_n_1920 | | | 93.86 130 | 93.74 123 | 94.22 195 | 95.39 222 | 86.08 255 | 99.73 23 | 96.07 257 | 96.38 17 | 97.19 71 | 97.78 139 | 65.46 331 | 99.86 63 | 96.71 80 | 98.92 90 | 96.73 231 |
|
| TAMVS | | | 92.62 163 | 92.09 162 | 94.20 196 | 94.10 269 | 87.68 211 | 98.41 192 | 96.97 199 | 87.53 230 | 89.74 210 | 96.04 220 | 84.77 153 | 96.49 286 | 88.97 207 | 92.31 204 | 98.42 172 |
|
| tttt0517 | | | 93.30 148 | 93.01 142 | 94.17 197 | 95.57 213 | 86.47 240 | 98.51 180 | 97.60 114 | 85.99 260 | 90.55 196 | 97.19 171 | 94.80 10 | 98.31 185 | 85.06 248 | 91.86 212 | 97.74 201 |
|
| dp | | | 90.16 218 | 88.83 225 | 94.14 198 | 96.38 181 | 86.42 241 | 91.57 374 | 97.06 190 | 84.76 282 | 88.81 217 | 90.19 346 | 84.29 156 | 97.43 246 | 75.05 333 | 91.35 230 | 98.56 167 |
|
| dcpmvs_2 | | | 95.67 76 | 96.18 49 | 94.12 199 | 98.82 85 | 84.22 292 | 97.37 267 | 95.45 307 | 90.70 124 | 95.77 107 | 98.63 104 | 90.47 46 | 98.68 171 | 99.20 20 | 99.22 74 | 99.45 89 |
|
| CostFormer | | | 92.89 158 | 92.48 154 | 94.12 199 | 94.99 244 | 85.89 262 | 92.89 359 | 97.00 197 | 86.98 240 | 95.00 123 | 90.78 321 | 90.05 56 | 97.51 241 | 92.92 162 | 91.73 216 | 98.96 133 |
|
| ADS-MVSNet | | | 88.99 233 | 87.30 252 | 94.07 201 | 96.21 188 | 87.56 216 | 87.15 391 | 96.78 207 | 83.01 309 | 89.91 207 | 87.27 371 | 78.87 229 | 97.01 262 | 74.20 341 | 92.27 205 | 97.64 204 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 151 | 93.00 143 | 94.06 202 | 96.14 194 | 86.71 237 | 98.68 154 | 96.70 211 | 88.30 203 | 89.71 212 | 97.64 148 | 85.43 142 | 96.39 291 | 88.06 216 | 96.32 154 | 99.08 125 |
|
| h-mvs33 | | | 92.47 168 | 91.95 165 | 94.05 203 | 97.13 148 | 85.01 281 | 98.36 202 | 98.08 44 | 93.85 56 | 96.27 95 | 96.73 198 | 83.19 173 | 99.43 125 | 95.81 102 | 68.09 372 | 97.70 203 |
|
| MSDG | | | 88.29 253 | 86.37 265 | 94.04 204 | 96.90 158 | 86.15 253 | 96.52 299 | 94.36 349 | 77.89 361 | 79.22 327 | 96.95 184 | 69.72 294 | 99.59 107 | 73.20 349 | 92.58 199 | 96.37 244 |
|
| EPP-MVSNet | | | 93.75 133 | 93.67 124 | 94.01 205 | 95.86 204 | 85.70 267 | 98.67 156 | 97.66 97 | 84.46 285 | 91.36 185 | 97.18 172 | 91.16 32 | 97.79 218 | 92.93 161 | 93.75 185 | 98.53 168 |
|
| FMVSNet3 | | | 88.81 242 | 87.08 256 | 93.99 206 | 96.52 172 | 94.59 50 | 98.08 230 | 96.20 244 | 85.85 261 | 82.12 288 | 91.60 305 | 74.05 260 | 95.40 340 | 79.04 305 | 80.24 297 | 91.99 290 |
|
| WBMVS | | | 91.35 191 | 90.49 197 | 93.94 207 | 96.97 156 | 93.40 74 | 99.27 84 | 96.71 210 | 87.40 232 | 83.10 270 | 91.76 302 | 92.38 27 | 96.23 307 | 88.95 208 | 77.89 309 | 92.17 283 |
|
| Anonymous20240529 | | | 87.66 264 | 85.58 277 | 93.92 208 | 97.59 123 | 85.01 281 | 98.13 221 | 97.13 182 | 66.69 401 | 88.47 220 | 96.01 221 | 55.09 370 | 99.51 113 | 87.00 224 | 84.12 274 | 97.23 218 |
|
| BH-w/o | | | 92.32 170 | 91.79 169 | 93.91 209 | 96.85 159 | 86.18 251 | 99.11 110 | 95.74 290 | 88.13 208 | 84.81 251 | 97.00 182 | 77.26 242 | 97.91 209 | 89.16 206 | 98.03 119 | 97.64 204 |
|
| MVSTER | | | 92.71 160 | 92.32 155 | 93.86 210 | 97.29 137 | 92.95 87 | 99.01 122 | 96.59 218 | 90.09 146 | 85.51 247 | 94.00 254 | 94.61 15 | 96.56 280 | 90.77 184 | 83.03 285 | 92.08 287 |
|
| PVSNet_BlendedMVS | | | 93.36 146 | 93.20 137 | 93.84 211 | 98.77 87 | 91.61 108 | 99.47 55 | 98.04 48 | 91.44 109 | 94.21 137 | 92.63 286 | 83.50 164 | 99.87 58 | 97.41 64 | 83.37 283 | 90.05 348 |
|
| tpm2 | | | 91.77 182 | 91.09 182 | 93.82 212 | 94.83 251 | 85.56 270 | 92.51 364 | 97.16 179 | 84.00 291 | 93.83 146 | 90.66 327 | 87.54 91 | 97.17 254 | 87.73 219 | 91.55 220 | 98.72 158 |
|
| tpm cat1 | | | 88.89 236 | 87.27 253 | 93.76 213 | 95.79 206 | 85.32 275 | 90.76 383 | 97.09 188 | 76.14 369 | 85.72 245 | 88.59 360 | 82.92 178 | 98.04 204 | 76.96 320 | 91.43 226 | 97.90 200 |
|
| PVSNet_0 | | 83.28 16 | 87.31 268 | 85.16 283 | 93.74 214 | 94.78 252 | 84.59 287 | 98.91 132 | 98.69 20 | 89.81 154 | 78.59 334 | 93.23 275 | 61.95 345 | 99.34 137 | 94.75 128 | 55.72 401 | 97.30 214 |
|
| GeoE | | | 90.60 209 | 89.56 209 | 93.72 215 | 95.10 239 | 85.43 271 | 99.41 68 | 94.94 329 | 83.96 293 | 87.21 232 | 96.83 194 | 74.37 256 | 97.05 261 | 80.50 299 | 93.73 186 | 98.67 162 |
|
| VPNet | | | 88.30 252 | 86.57 262 | 93.49 216 | 91.95 316 | 91.35 112 | 98.18 217 | 97.20 176 | 88.61 188 | 84.52 255 | 94.89 241 | 62.21 344 | 96.76 273 | 89.34 201 | 72.26 358 | 92.36 273 |
|
| MonoMVSNet | | | 90.69 206 | 89.78 206 | 93.45 217 | 91.78 320 | 84.97 283 | 96.51 300 | 94.44 343 | 90.56 131 | 85.96 242 | 90.97 317 | 78.61 234 | 96.27 306 | 95.35 113 | 83.79 279 | 99.11 122 |
|
| VPA-MVSNet | | | 89.10 232 | 87.66 247 | 93.45 217 | 92.56 304 | 91.02 124 | 97.97 236 | 98.32 29 | 86.92 242 | 86.03 241 | 92.01 294 | 68.84 301 | 97.10 259 | 90.92 179 | 75.34 324 | 92.23 279 |
|
| tpmvs | | | 89.16 231 | 87.76 244 | 93.35 219 | 97.19 143 | 84.75 286 | 90.58 385 | 97.36 160 | 81.99 331 | 84.56 253 | 89.31 357 | 83.98 160 | 98.17 194 | 74.85 336 | 90.00 241 | 97.12 219 |
|
| BH-untuned | | | 91.46 187 | 90.84 189 | 93.33 220 | 96.51 173 | 84.83 285 | 98.84 137 | 95.50 304 | 86.44 256 | 83.50 262 | 96.70 199 | 75.49 248 | 97.77 220 | 86.78 230 | 97.81 122 | 97.40 211 |
|
| FMVSNet2 | | | 86.90 272 | 84.79 291 | 93.24 221 | 95.11 236 | 92.54 95 | 97.67 257 | 95.86 284 | 82.94 312 | 80.55 309 | 91.17 314 | 62.89 341 | 95.29 342 | 77.23 317 | 79.71 303 | 91.90 291 |
|
| FIs | | | 90.70 205 | 89.87 205 | 93.18 222 | 92.29 308 | 91.12 118 | 98.17 219 | 98.25 31 | 89.11 175 | 83.44 263 | 94.82 243 | 82.26 195 | 96.17 310 | 87.76 218 | 82.76 287 | 92.25 277 |
|
| CR-MVSNet | | | 88.83 240 | 87.38 251 | 93.16 223 | 93.47 290 | 86.24 247 | 84.97 399 | 94.20 352 | 88.92 183 | 90.76 193 | 86.88 375 | 84.43 154 | 94.82 352 | 70.64 359 | 92.17 209 | 98.41 173 |
|
| UniMVSNet (Re) | | | 89.50 229 | 88.32 237 | 93.03 224 | 92.21 310 | 90.96 126 | 98.90 133 | 98.39 26 | 89.13 174 | 83.22 264 | 92.03 292 | 81.69 202 | 96.34 299 | 86.79 229 | 72.53 354 | 91.81 292 |
|
| F-COLMAP | | | 92.07 179 | 91.75 171 | 93.02 225 | 98.16 104 | 82.89 311 | 98.79 145 | 95.97 262 | 86.54 251 | 87.92 223 | 97.80 137 | 78.69 232 | 99.65 101 | 85.97 237 | 95.93 164 | 96.53 239 |
|
| reproduce_monomvs | | | 92.11 178 | 91.82 168 | 92.98 226 | 98.25 98 | 90.55 136 | 98.38 201 | 97.93 55 | 94.81 33 | 80.46 311 | 92.37 288 | 96.46 3 | 97.17 254 | 94.06 139 | 73.61 343 | 91.23 316 |
|
| mvsany_test1 | | | 94.57 111 | 95.09 86 | 92.98 226 | 95.84 205 | 82.07 321 | 98.76 147 | 95.24 320 | 92.87 82 | 96.45 92 | 98.71 97 | 84.81 151 | 99.15 144 | 97.68 60 | 95.49 170 | 97.73 202 |
|
| NR-MVSNet | | | 87.74 263 | 86.00 271 | 92.96 228 | 91.46 326 | 90.68 133 | 96.65 297 | 97.42 152 | 88.02 213 | 73.42 363 | 93.68 263 | 77.31 241 | 95.83 326 | 84.26 259 | 71.82 362 | 92.36 273 |
|
| XXY-MVS | | | 87.75 260 | 86.02 270 | 92.95 229 | 90.46 338 | 89.70 162 | 97.71 254 | 95.90 278 | 84.02 290 | 80.95 305 | 94.05 249 | 67.51 314 | 97.10 259 | 85.16 246 | 78.41 306 | 92.04 289 |
|
| Patchmatch-test | | | 86.25 286 | 84.06 303 | 92.82 230 | 94.42 259 | 82.88 312 | 82.88 406 | 94.23 351 | 71.58 383 | 79.39 325 | 90.62 330 | 89.00 67 | 96.42 290 | 63.03 386 | 91.37 229 | 99.16 115 |
|
| DU-MVS | | | 88.83 240 | 87.51 248 | 92.79 231 | 91.46 326 | 90.07 150 | 98.71 149 | 97.62 111 | 88.87 184 | 83.21 265 | 93.68 263 | 74.63 250 | 95.93 320 | 86.95 225 | 72.47 355 | 92.36 273 |
|
| PMMVS | | | 93.62 139 | 93.90 118 | 92.79 231 | 96.79 164 | 81.40 327 | 98.85 135 | 96.81 204 | 91.25 115 | 96.82 82 | 98.15 131 | 77.02 243 | 98.13 196 | 93.15 159 | 96.30 156 | 98.83 149 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 226 | 88.55 233 | 92.75 233 | 92.17 311 | 90.07 150 | 98.74 148 | 98.15 40 | 88.37 199 | 83.21 265 | 93.98 255 | 82.86 179 | 95.93 320 | 86.95 225 | 72.47 355 | 92.25 277 |
|
| sd_testset | | | 89.23 230 | 88.05 243 | 92.74 234 | 96.80 162 | 85.33 274 | 95.85 326 | 97.03 193 | 88.34 201 | 85.73 243 | 95.26 237 | 61.12 349 | 97.76 225 | 85.61 243 | 86.75 252 | 95.14 252 |
|
| EPNet_dtu | | | 92.28 172 | 92.15 160 | 92.70 235 | 97.29 137 | 84.84 284 | 98.64 160 | 97.82 66 | 92.91 80 | 93.02 158 | 97.02 181 | 85.48 141 | 95.70 331 | 72.25 355 | 94.89 175 | 97.55 209 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepPCF-MVS | | 93.56 1 | 96.55 44 | 97.84 10 | 92.68 236 | 98.71 89 | 78.11 358 | 99.70 27 | 97.71 87 | 98.18 1 | 97.36 65 | 99.76 1 | 90.37 50 | 99.94 35 | 99.27 16 | 99.54 54 | 99.99 1 |
|
| FC-MVSNet-test | | | 90.22 215 | 89.40 213 | 92.67 237 | 91.78 320 | 89.86 159 | 97.89 238 | 98.22 34 | 88.81 185 | 82.96 271 | 94.66 245 | 81.90 201 | 95.96 318 | 85.89 241 | 82.52 290 | 92.20 282 |
|
| WR-MVS | | | 88.54 250 | 87.22 255 | 92.52 238 | 91.93 318 | 89.50 166 | 98.56 174 | 97.84 62 | 86.99 237 | 81.87 296 | 93.81 260 | 74.25 259 | 95.92 322 | 85.29 245 | 74.43 334 | 92.12 285 |
|
| UWE-MVS | | | 93.18 152 | 93.40 131 | 92.50 239 | 96.56 169 | 83.55 301 | 98.09 229 | 97.84 62 | 89.50 165 | 91.72 174 | 96.23 213 | 91.08 35 | 96.70 274 | 86.28 234 | 93.33 188 | 97.26 216 |
|
| MIMVSNet | | | 84.48 311 | 81.83 323 | 92.42 240 | 91.73 322 | 87.36 223 | 85.52 394 | 94.42 347 | 81.40 337 | 81.91 294 | 87.58 365 | 51.92 381 | 92.81 373 | 73.84 344 | 88.15 246 | 97.08 223 |
|
| HQP-MVS | | | 91.50 185 | 91.23 180 | 92.29 241 | 93.95 274 | 86.39 243 | 99.16 96 | 96.37 233 | 93.92 51 | 87.57 226 | 96.67 201 | 73.34 264 | 97.77 220 | 93.82 146 | 86.29 255 | 92.72 267 |
|
| miper_enhance_ethall | | | 90.33 212 | 89.70 207 | 92.22 242 | 97.12 149 | 88.93 184 | 98.35 203 | 95.96 264 | 88.60 189 | 83.14 269 | 92.33 289 | 87.38 94 | 96.18 309 | 86.49 232 | 77.89 309 | 91.55 302 |
|
| PatchT | | | 85.44 299 | 83.19 309 | 92.22 242 | 93.13 299 | 83.00 307 | 83.80 405 | 96.37 233 | 70.62 386 | 90.55 196 | 79.63 400 | 84.81 151 | 94.87 350 | 58.18 398 | 91.59 218 | 98.79 153 |
|
| AUN-MVS | | | 90.17 217 | 89.50 210 | 92.19 244 | 96.21 188 | 82.67 315 | 97.76 250 | 97.53 129 | 88.05 211 | 91.67 175 | 96.15 215 | 83.10 175 | 97.47 242 | 88.11 215 | 66.91 378 | 96.43 242 |
|
| HQP_MVS | | | 91.26 192 | 90.95 186 | 92.16 245 | 93.84 281 | 86.07 257 | 99.02 120 | 96.30 237 | 93.38 69 | 86.99 233 | 96.52 203 | 72.92 270 | 97.75 226 | 93.46 153 | 86.17 258 | 92.67 269 |
|
| hse-mvs2 | | | 91.67 184 | 91.51 175 | 92.15 246 | 96.22 187 | 82.61 317 | 97.74 251 | 97.53 129 | 93.85 56 | 96.27 95 | 96.15 215 | 83.19 173 | 97.44 245 | 95.81 102 | 66.86 379 | 96.40 243 |
|
| CLD-MVS | | | 91.06 198 | 90.71 193 | 92.10 247 | 94.05 273 | 86.10 254 | 99.55 44 | 96.29 240 | 94.16 46 | 84.70 252 | 97.17 173 | 69.62 296 | 97.82 216 | 94.74 129 | 86.08 260 | 92.39 272 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TranMVSNet+NR-MVSNet | | | 87.75 260 | 86.31 266 | 92.07 248 | 90.81 334 | 88.56 194 | 98.33 204 | 97.18 177 | 87.76 221 | 81.87 296 | 93.90 258 | 72.45 274 | 95.43 338 | 83.13 275 | 71.30 365 | 92.23 279 |
|
| test_vis1_n_1920 | | | 93.08 156 | 93.42 130 | 92.04 249 | 96.31 183 | 79.36 345 | 99.83 10 | 96.06 258 | 96.72 9 | 98.53 34 | 98.10 132 | 58.57 356 | 99.91 46 | 97.86 57 | 98.79 99 | 96.85 229 |
|
| cl22 | | | 89.57 227 | 88.79 226 | 91.91 250 | 97.94 110 | 87.62 214 | 97.98 235 | 96.51 225 | 85.03 276 | 82.37 284 | 91.79 299 | 83.65 162 | 96.50 284 | 85.96 238 | 77.89 309 | 91.61 299 |
|
| XVG-OURS | | | 90.83 202 | 90.49 197 | 91.86 251 | 95.23 225 | 81.25 331 | 95.79 328 | 95.92 272 | 88.96 179 | 90.02 206 | 98.03 133 | 71.60 284 | 99.35 136 | 91.06 177 | 87.78 248 | 94.98 255 |
|
| XVG-OURS-SEG-HR | | | 90.95 200 | 90.66 195 | 91.83 252 | 95.18 231 | 81.14 334 | 95.92 320 | 95.92 272 | 88.40 198 | 90.33 202 | 97.85 134 | 70.66 290 | 99.38 131 | 92.83 163 | 88.83 244 | 94.98 255 |
|
| tpm | | | 89.67 225 | 88.95 222 | 91.82 253 | 92.54 305 | 81.43 326 | 92.95 358 | 95.92 272 | 87.81 219 | 90.50 198 | 89.44 354 | 84.99 147 | 95.65 332 | 83.67 270 | 82.71 288 | 98.38 176 |
|
| pmmvs4 | | | 87.58 266 | 86.17 269 | 91.80 254 | 89.58 349 | 88.92 185 | 97.25 272 | 95.28 316 | 82.54 321 | 80.49 310 | 93.17 277 | 75.62 247 | 96.05 315 | 82.75 278 | 78.90 304 | 90.42 339 |
|
| GBi-Net | | | 86.67 277 | 84.96 285 | 91.80 254 | 95.11 236 | 88.81 187 | 96.77 290 | 95.25 317 | 82.94 312 | 82.12 288 | 90.25 341 | 62.89 341 | 94.97 347 | 79.04 305 | 80.24 297 | 91.62 296 |
|
| test1 | | | 86.67 277 | 84.96 285 | 91.80 254 | 95.11 236 | 88.81 187 | 96.77 290 | 95.25 317 | 82.94 312 | 82.12 288 | 90.25 341 | 62.89 341 | 94.97 347 | 79.04 305 | 80.24 297 | 91.62 296 |
|
| FMVSNet1 | | | 83.94 320 | 81.32 329 | 91.80 254 | 91.94 317 | 88.81 187 | 96.77 290 | 95.25 317 | 77.98 357 | 78.25 337 | 90.25 341 | 50.37 388 | 94.97 347 | 73.27 348 | 77.81 314 | 91.62 296 |
|
| v2v482 | | | 87.27 269 | 85.76 274 | 91.78 258 | 89.59 348 | 87.58 215 | 98.56 174 | 95.54 302 | 84.53 284 | 82.51 279 | 91.78 300 | 73.11 268 | 96.47 287 | 82.07 284 | 74.14 340 | 91.30 313 |
|
| tt0805 | | | 86.50 282 | 84.79 291 | 91.63 259 | 91.97 314 | 81.49 325 | 96.49 301 | 97.38 156 | 82.24 327 | 82.44 280 | 95.82 225 | 51.22 384 | 98.25 190 | 84.55 256 | 80.96 296 | 95.13 254 |
|
| OPM-MVS | | | 89.76 224 | 89.15 218 | 91.57 260 | 90.53 337 | 85.58 269 | 98.11 225 | 95.93 270 | 92.88 81 | 86.05 240 | 96.47 206 | 67.06 318 | 97.87 213 | 89.29 204 | 86.08 260 | 91.26 315 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| miper_ehance_all_eth | | | 88.94 235 | 88.12 241 | 91.40 261 | 95.32 223 | 86.93 233 | 97.85 242 | 95.55 301 | 84.19 288 | 81.97 293 | 91.50 307 | 84.16 157 | 95.91 323 | 84.69 253 | 77.89 309 | 91.36 310 |
|
| v1144 | | | 86.83 274 | 85.31 282 | 91.40 261 | 89.75 346 | 87.21 231 | 98.31 207 | 95.45 307 | 83.22 305 | 82.70 274 | 90.78 321 | 73.36 263 | 96.36 293 | 79.49 302 | 74.69 331 | 90.63 336 |
|
| EI-MVSNet | | | 89.87 223 | 89.38 214 | 91.36 263 | 94.32 263 | 85.87 263 | 97.61 259 | 96.59 218 | 85.10 273 | 85.51 247 | 97.10 175 | 81.30 210 | 96.56 280 | 83.85 269 | 83.03 285 | 91.64 294 |
|
| UniMVSNet_ETH3D | | | 85.65 298 | 83.79 306 | 91.21 264 | 90.41 339 | 80.75 339 | 95.36 333 | 95.78 286 | 78.76 355 | 81.83 299 | 94.33 248 | 49.86 389 | 96.66 275 | 84.30 258 | 83.52 282 | 96.22 245 |
|
| v1192 | | | 86.32 285 | 84.71 293 | 91.17 265 | 89.53 351 | 86.40 242 | 98.13 221 | 95.44 309 | 82.52 322 | 82.42 282 | 90.62 330 | 71.58 285 | 96.33 300 | 77.23 317 | 74.88 328 | 90.79 328 |
|
| v8 | | | 86.11 287 | 84.45 298 | 91.10 266 | 89.99 341 | 86.85 234 | 97.24 273 | 95.36 314 | 81.99 331 | 79.89 319 | 89.86 350 | 74.53 254 | 96.39 291 | 78.83 309 | 72.32 357 | 90.05 348 |
|
| c3_l | | | 88.19 255 | 87.23 254 | 91.06 267 | 94.97 245 | 86.17 252 | 97.72 252 | 95.38 312 | 83.43 302 | 81.68 300 | 91.37 309 | 82.81 180 | 95.72 330 | 84.04 266 | 73.70 342 | 91.29 314 |
|
| IterMVS-LS | | | 88.34 251 | 87.44 249 | 91.04 268 | 94.10 269 | 85.85 264 | 98.10 226 | 95.48 305 | 85.12 272 | 82.03 292 | 91.21 313 | 81.35 209 | 95.63 333 | 83.86 268 | 75.73 322 | 91.63 295 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PS-MVSNAJss | | | 89.54 228 | 89.05 220 | 91.00 269 | 88.77 359 | 84.36 290 | 97.39 264 | 95.97 262 | 88.47 191 | 81.88 295 | 93.80 261 | 82.48 189 | 96.50 284 | 89.34 201 | 83.34 284 | 92.15 284 |
|
| V42 | | | 87.00 271 | 85.68 276 | 90.98 270 | 89.91 342 | 86.08 255 | 98.32 206 | 95.61 298 | 83.67 299 | 82.72 273 | 90.67 326 | 74.00 261 | 96.53 282 | 81.94 287 | 74.28 337 | 90.32 341 |
|
| Anonymous20231211 | | | 84.72 306 | 82.65 318 | 90.91 271 | 97.71 116 | 84.55 288 | 97.28 270 | 96.67 212 | 66.88 400 | 79.18 328 | 90.87 320 | 58.47 357 | 96.60 277 | 82.61 280 | 74.20 338 | 91.59 301 |
|
| v144192 | | | 86.40 283 | 84.89 288 | 90.91 271 | 89.48 352 | 85.59 268 | 98.21 215 | 95.43 310 | 82.45 324 | 82.62 277 | 90.58 333 | 72.79 273 | 96.36 293 | 78.45 312 | 74.04 341 | 90.79 328 |
|
| cl____ | | | 87.82 257 | 86.79 261 | 90.89 273 | 94.88 249 | 85.43 271 | 97.81 243 | 95.24 320 | 82.91 316 | 80.71 308 | 91.22 312 | 81.97 200 | 95.84 325 | 81.34 290 | 75.06 326 | 91.40 309 |
|
| DIV-MVS_self_test | | | 87.82 257 | 86.81 260 | 90.87 274 | 94.87 250 | 85.39 273 | 97.81 243 | 95.22 325 | 82.92 315 | 80.76 307 | 91.31 311 | 81.99 198 | 95.81 327 | 81.36 289 | 75.04 327 | 91.42 308 |
|
| v10 | | | 85.73 296 | 84.01 304 | 90.87 274 | 90.03 340 | 86.73 236 | 97.20 276 | 95.22 325 | 81.25 339 | 79.85 320 | 89.75 351 | 73.30 266 | 96.28 305 | 76.87 321 | 72.64 353 | 89.61 356 |
|
| test_vis1_n | | | 90.40 210 | 90.27 200 | 90.79 276 | 91.55 324 | 76.48 364 | 99.12 109 | 94.44 343 | 94.31 42 | 97.34 66 | 96.95 184 | 43.60 398 | 99.42 126 | 97.57 62 | 97.60 127 | 96.47 240 |
|
| v1921920 | | | 86.02 288 | 84.44 299 | 90.77 277 | 89.32 354 | 85.20 276 | 98.10 226 | 95.35 315 | 82.19 328 | 82.25 286 | 90.71 323 | 70.73 288 | 96.30 304 | 76.85 322 | 74.49 333 | 90.80 327 |
|
| v1240 | | | 85.77 295 | 84.11 302 | 90.73 278 | 89.26 355 | 85.15 279 | 97.88 240 | 95.23 324 | 81.89 334 | 82.16 287 | 90.55 335 | 69.60 297 | 96.31 301 | 75.59 331 | 74.87 329 | 90.72 333 |
|
| MVS-HIRNet | | | 79.01 346 | 75.13 359 | 90.66 279 | 93.82 284 | 81.69 324 | 85.16 396 | 93.75 358 | 54.54 406 | 74.17 358 | 59.15 412 | 57.46 360 | 96.58 279 | 63.74 383 | 94.38 178 | 93.72 260 |
|
| dmvs_re | | | 88.69 246 | 88.06 242 | 90.59 280 | 93.83 283 | 78.68 352 | 95.75 329 | 96.18 248 | 87.99 214 | 84.48 256 | 96.32 211 | 67.52 313 | 96.94 265 | 84.98 250 | 85.49 264 | 96.14 246 |
|
| test_fmvs1 | | | 92.35 169 | 92.94 144 | 90.57 281 | 97.19 143 | 75.43 370 | 99.55 44 | 94.97 327 | 95.20 31 | 96.82 82 | 97.57 152 | 59.59 354 | 99.84 69 | 97.30 67 | 98.29 117 | 96.46 241 |
|
| ACMH | | 83.09 17 | 84.60 308 | 82.61 319 | 90.57 281 | 93.18 298 | 82.94 308 | 96.27 307 | 94.92 330 | 81.01 342 | 72.61 372 | 93.61 266 | 56.54 362 | 97.79 218 | 74.31 339 | 81.07 295 | 90.99 322 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tfpnnormal | | | 83.65 322 | 81.35 328 | 90.56 283 | 91.37 328 | 88.06 204 | 97.29 269 | 97.87 59 | 78.51 356 | 76.20 344 | 90.91 318 | 64.78 333 | 96.47 287 | 61.71 389 | 73.50 346 | 87.13 379 |
|
| AllTest | | | 84.97 304 | 83.12 310 | 90.52 284 | 96.82 160 | 78.84 350 | 95.89 321 | 92.17 376 | 77.96 359 | 75.94 347 | 95.50 230 | 55.48 366 | 99.18 142 | 71.15 356 | 87.14 249 | 93.55 261 |
|
| TestCases | | | | | 90.52 284 | 96.82 160 | 78.84 350 | | 92.17 376 | 77.96 359 | 75.94 347 | 95.50 230 | 55.48 366 | 99.18 142 | 71.15 356 | 87.14 249 | 93.55 261 |
|
| ACMM | | 86.95 13 | 88.77 243 | 88.22 239 | 90.43 286 | 93.61 287 | 81.34 329 | 98.50 181 | 95.92 272 | 87.88 218 | 83.85 261 | 95.20 239 | 67.20 316 | 97.89 211 | 86.90 228 | 84.90 267 | 92.06 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pm-mvs1 | | | 84.68 307 | 82.78 315 | 90.40 287 | 89.58 349 | 85.18 277 | 97.31 268 | 94.73 336 | 81.93 333 | 76.05 346 | 92.01 294 | 65.48 330 | 96.11 313 | 78.75 310 | 69.14 369 | 89.91 351 |
|
| KD-MVS_2432*1600 | | | 82.98 325 | 80.52 334 | 90.38 288 | 94.32 263 | 88.98 179 | 92.87 360 | 95.87 282 | 80.46 347 | 73.79 360 | 87.49 368 | 82.76 183 | 93.29 368 | 70.56 360 | 46.53 412 | 88.87 365 |
|
| miper_refine_blended | | | 82.98 325 | 80.52 334 | 90.38 288 | 94.32 263 | 88.98 179 | 92.87 360 | 95.87 282 | 80.46 347 | 73.79 360 | 87.49 368 | 82.76 183 | 93.29 368 | 70.56 360 | 46.53 412 | 88.87 365 |
|
| v148 | | | 86.38 284 | 85.06 284 | 90.37 290 | 89.47 353 | 84.10 294 | 98.52 177 | 95.48 305 | 83.80 295 | 80.93 306 | 90.22 344 | 74.60 252 | 96.31 301 | 80.92 293 | 71.55 363 | 90.69 334 |
|
| pmmvs5 | | | 85.87 290 | 84.40 301 | 90.30 291 | 88.53 363 | 84.23 291 | 98.60 169 | 93.71 359 | 81.53 336 | 80.29 313 | 92.02 293 | 64.51 334 | 95.52 335 | 82.04 286 | 78.34 307 | 91.15 318 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 309 | 82.72 317 | 90.18 292 | 92.89 302 | 83.18 306 | 93.15 356 | 94.74 335 | 78.99 352 | 75.14 354 | 92.69 284 | 65.64 327 | 97.63 233 | 69.46 363 | 81.82 293 | 89.74 353 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| USDC | | | 84.74 305 | 82.93 311 | 90.16 293 | 91.73 322 | 83.54 302 | 95.00 338 | 93.30 365 | 88.77 186 | 73.19 365 | 93.30 273 | 53.62 377 | 97.65 232 | 75.88 329 | 81.54 294 | 89.30 359 |
|
| ACMP | | 87.39 10 | 88.71 245 | 88.24 238 | 90.12 294 | 93.91 279 | 81.06 335 | 98.50 181 | 95.67 295 | 89.43 168 | 80.37 312 | 95.55 229 | 65.67 326 | 97.83 215 | 90.55 186 | 84.51 269 | 91.47 304 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_fmvs1_n | | | 91.07 197 | 91.41 177 | 90.06 295 | 94.10 269 | 74.31 374 | 99.18 92 | 94.84 331 | 94.81 33 | 96.37 94 | 97.46 156 | 50.86 387 | 99.82 76 | 97.14 71 | 97.90 120 | 96.04 248 |
|
| eth_miper_zixun_eth | | | 87.76 259 | 87.00 258 | 90.06 295 | 94.67 255 | 82.65 316 | 97.02 283 | 95.37 313 | 84.19 288 | 81.86 298 | 91.58 306 | 81.47 206 | 95.90 324 | 83.24 271 | 73.61 343 | 91.61 299 |
|
| LPG-MVS_test | | | 88.86 237 | 88.47 235 | 90.06 295 | 93.35 295 | 80.95 336 | 98.22 213 | 95.94 267 | 87.73 224 | 83.17 267 | 96.11 217 | 66.28 324 | 97.77 220 | 90.19 189 | 85.19 265 | 91.46 305 |
|
| LGP-MVS_train | | | | | 90.06 295 | 93.35 295 | 80.95 336 | | 95.94 267 | 87.73 224 | 83.17 267 | 96.11 217 | 66.28 324 | 97.77 220 | 90.19 189 | 85.19 265 | 91.46 305 |
|
| test0.0.03 1 | | | 88.96 234 | 88.61 230 | 90.03 299 | 91.09 331 | 84.43 289 | 98.97 127 | 97.02 195 | 90.21 140 | 80.29 313 | 96.31 212 | 84.89 149 | 91.93 385 | 72.98 350 | 85.70 263 | 93.73 259 |
|
| jajsoiax | | | 87.35 267 | 86.51 264 | 89.87 300 | 87.75 373 | 81.74 323 | 97.03 281 | 95.98 261 | 88.47 191 | 80.15 315 | 93.80 261 | 61.47 346 | 96.36 293 | 89.44 199 | 84.47 271 | 91.50 303 |
|
| ADS-MVSNet2 | | | 87.62 265 | 86.88 259 | 89.86 301 | 96.21 188 | 79.14 348 | 87.15 391 | 92.99 366 | 83.01 309 | 89.91 207 | 87.27 371 | 78.87 229 | 92.80 374 | 74.20 341 | 92.27 205 | 97.64 204 |
|
| test_djsdf | | | 88.26 254 | 87.73 245 | 89.84 302 | 88.05 368 | 82.21 319 | 97.77 247 | 96.17 249 | 86.84 243 | 82.41 283 | 91.95 298 | 72.07 278 | 95.99 316 | 89.83 191 | 84.50 270 | 91.32 312 |
|
| ppachtmachnet_test | | | 83.63 323 | 81.57 326 | 89.80 303 | 89.01 356 | 85.09 280 | 97.13 278 | 94.50 342 | 78.84 353 | 76.14 345 | 91.00 316 | 69.78 293 | 94.61 357 | 63.40 384 | 74.36 335 | 89.71 355 |
|
| CP-MVSNet | | | 86.54 280 | 85.45 280 | 89.79 304 | 91.02 333 | 82.78 314 | 97.38 266 | 97.56 124 | 85.37 269 | 79.53 324 | 93.03 279 | 71.86 281 | 95.25 343 | 79.92 300 | 73.43 349 | 91.34 311 |
|
| WB-MVSnew | | | 88.69 246 | 88.34 236 | 89.77 305 | 94.30 267 | 85.99 260 | 98.14 220 | 97.31 164 | 87.15 236 | 87.85 224 | 96.07 219 | 69.91 291 | 95.52 335 | 72.83 352 | 91.47 225 | 87.80 372 |
|
| mvs_tets | | | 87.09 270 | 86.22 267 | 89.71 306 | 87.87 369 | 81.39 328 | 96.73 295 | 95.90 278 | 88.19 207 | 79.99 317 | 93.61 266 | 59.96 353 | 96.31 301 | 89.40 200 | 84.34 272 | 91.43 307 |
|
| D2MVS | | | 87.96 256 | 87.39 250 | 89.70 307 | 91.84 319 | 83.40 303 | 98.31 207 | 98.49 22 | 88.04 212 | 78.23 338 | 90.26 340 | 73.57 262 | 96.79 272 | 84.21 260 | 83.53 281 | 88.90 364 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 310 | 82.82 312 | 89.70 307 | 96.72 166 | 78.85 349 | 95.89 321 | 92.83 369 | 71.55 384 | 77.54 342 | 95.89 224 | 59.40 355 | 99.14 148 | 67.26 373 | 88.26 245 | 91.11 320 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| WR-MVS_H | | | 86.53 281 | 85.49 279 | 89.66 309 | 91.04 332 | 83.31 305 | 97.53 261 | 98.20 35 | 84.95 279 | 79.64 321 | 90.90 319 | 78.01 238 | 95.33 341 | 76.29 326 | 72.81 351 | 90.35 340 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 238 | 88.59 232 | 89.58 310 | 93.44 293 | 78.18 356 | 98.65 158 | 94.62 340 | 88.46 193 | 84.12 259 | 95.37 235 | 68.91 299 | 96.52 283 | 82.06 285 | 91.70 217 | 94.06 258 |
|
| anonymousdsp | | | 86.69 276 | 85.75 275 | 89.53 311 | 86.46 381 | 82.94 308 | 96.39 303 | 95.71 291 | 83.97 292 | 79.63 322 | 90.70 324 | 68.85 300 | 95.94 319 | 86.01 236 | 84.02 275 | 89.72 354 |
|
| our_test_3 | | | 84.47 312 | 82.80 313 | 89.50 312 | 89.01 356 | 83.90 297 | 97.03 281 | 94.56 341 | 81.33 338 | 75.36 353 | 90.52 336 | 71.69 283 | 94.54 358 | 68.81 367 | 76.84 318 | 90.07 346 |
|
| Patchmtry | | | 83.61 324 | 81.64 324 | 89.50 312 | 93.36 294 | 82.84 313 | 84.10 402 | 94.20 352 | 69.47 393 | 79.57 323 | 86.88 375 | 84.43 154 | 94.78 353 | 68.48 369 | 74.30 336 | 90.88 325 |
|
| PS-CasMVS | | | 85.81 293 | 84.58 296 | 89.49 314 | 90.77 335 | 82.11 320 | 97.20 276 | 97.36 160 | 84.83 281 | 79.12 329 | 92.84 282 | 67.42 315 | 95.16 345 | 78.39 313 | 73.25 350 | 91.21 317 |
|
| v7n | | | 84.42 313 | 82.75 316 | 89.43 315 | 88.15 366 | 81.86 322 | 96.75 293 | 95.67 295 | 80.53 345 | 78.38 336 | 89.43 355 | 69.89 292 | 96.35 298 | 73.83 345 | 72.13 359 | 90.07 346 |
|
| JIA-IIPM | | | 85.97 289 | 84.85 289 | 89.33 316 | 93.23 297 | 73.68 377 | 85.05 398 | 97.13 182 | 69.62 392 | 91.56 179 | 68.03 408 | 88.03 85 | 96.96 263 | 77.89 315 | 93.12 190 | 97.34 213 |
|
| MS-PatchMatch | | | 86.75 275 | 85.92 272 | 89.22 317 | 91.97 314 | 82.47 318 | 96.91 285 | 96.14 251 | 83.74 296 | 77.73 340 | 93.53 269 | 58.19 358 | 97.37 250 | 76.75 323 | 98.35 113 | 87.84 370 |
|
| IterMVS | | | 85.81 293 | 84.67 294 | 89.22 317 | 93.51 289 | 83.67 300 | 96.32 306 | 94.80 334 | 85.09 274 | 78.69 330 | 90.17 347 | 66.57 322 | 93.17 370 | 79.48 303 | 77.42 316 | 90.81 326 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ACMH+ | | 83.78 15 | 84.21 315 | 82.56 321 | 89.15 319 | 93.73 286 | 79.16 347 | 96.43 302 | 94.28 350 | 81.09 341 | 74.00 359 | 94.03 252 | 54.58 373 | 97.67 229 | 76.10 327 | 78.81 305 | 90.63 336 |
|
| TransMVSNet (Re) | | | 81.97 330 | 79.61 340 | 89.08 320 | 89.70 347 | 84.01 295 | 97.26 271 | 91.85 382 | 78.84 353 | 73.07 369 | 91.62 304 | 67.17 317 | 95.21 344 | 67.50 372 | 59.46 395 | 88.02 369 |
|
| PEN-MVS | | | 85.21 301 | 83.93 305 | 89.07 321 | 89.89 344 | 81.31 330 | 97.09 279 | 97.24 169 | 84.45 286 | 78.66 331 | 92.68 285 | 68.44 304 | 94.87 350 | 75.98 328 | 70.92 366 | 91.04 321 |
|
| miper_lstm_enhance | | | 86.90 272 | 86.20 268 | 89.00 322 | 94.53 258 | 81.19 332 | 96.74 294 | 95.24 320 | 82.33 326 | 80.15 315 | 90.51 337 | 81.99 198 | 94.68 356 | 80.71 295 | 73.58 345 | 91.12 319 |
|
| IterMVS-SCA-FT | | | 85.73 296 | 84.64 295 | 89.00 322 | 93.46 292 | 82.90 310 | 96.27 307 | 94.70 337 | 85.02 277 | 78.62 332 | 90.35 339 | 66.61 320 | 93.33 367 | 79.38 304 | 77.36 317 | 90.76 330 |
|
| MVP-Stereo | | | 86.61 279 | 85.83 273 | 88.93 324 | 88.70 361 | 83.85 298 | 96.07 317 | 94.41 348 | 82.15 329 | 75.64 351 | 91.96 297 | 67.65 312 | 96.45 289 | 77.20 319 | 98.72 100 | 86.51 382 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Baseline_NR-MVSNet | | | 85.83 292 | 84.82 290 | 88.87 325 | 88.73 360 | 83.34 304 | 98.63 162 | 91.66 384 | 80.41 349 | 82.44 280 | 91.35 310 | 74.63 250 | 95.42 339 | 84.13 262 | 71.39 364 | 87.84 370 |
|
| XVG-ACMP-BASELINE | | | 85.86 291 | 84.95 287 | 88.57 326 | 89.90 343 | 77.12 362 | 94.30 344 | 95.60 299 | 87.40 232 | 82.12 288 | 92.99 281 | 53.42 378 | 97.66 230 | 85.02 249 | 83.83 276 | 90.92 324 |
|
| LCM-MVSNet-Re | | | 88.59 249 | 88.61 230 | 88.51 327 | 95.53 216 | 72.68 383 | 96.85 288 | 88.43 403 | 88.45 194 | 73.14 366 | 90.63 329 | 75.82 245 | 94.38 359 | 92.95 160 | 95.71 167 | 98.48 171 |
|
| CVMVSNet | | | 90.30 213 | 90.91 187 | 88.46 328 | 94.32 263 | 73.58 378 | 97.61 259 | 97.59 118 | 90.16 145 | 88.43 221 | 97.10 175 | 76.83 244 | 92.86 371 | 82.64 279 | 93.54 187 | 98.93 139 |
|
| DTE-MVSNet | | | 84.14 317 | 82.80 313 | 88.14 329 | 88.95 358 | 79.87 342 | 96.81 289 | 96.24 242 | 83.50 301 | 77.60 341 | 92.52 287 | 67.89 311 | 94.24 361 | 72.64 353 | 69.05 370 | 90.32 341 |
|
| ITE_SJBPF | | | | | 87.93 330 | 92.26 309 | 76.44 365 | | 93.47 364 | 87.67 227 | 79.95 318 | 95.49 232 | 56.50 363 | 97.38 248 | 75.24 332 | 82.33 291 | 89.98 350 |
|
| TinyColmap | | | 80.42 339 | 77.94 344 | 87.85 331 | 92.09 312 | 78.58 353 | 93.74 350 | 89.94 396 | 74.99 373 | 69.77 378 | 91.78 300 | 46.09 394 | 97.58 237 | 65.17 381 | 77.89 309 | 87.38 374 |
|
| Effi-MVS+-dtu | | | 89.97 222 | 90.68 194 | 87.81 332 | 95.15 232 | 71.98 385 | 97.87 241 | 95.40 311 | 91.92 98 | 87.57 226 | 91.44 308 | 74.27 258 | 96.84 268 | 89.45 198 | 93.10 191 | 94.60 257 |
|
| pmmvs6 | | | 79.90 341 | 77.31 348 | 87.67 333 | 84.17 389 | 78.13 357 | 95.86 325 | 93.68 360 | 67.94 397 | 72.67 371 | 89.62 353 | 50.98 386 | 95.75 328 | 74.80 337 | 66.04 380 | 89.14 362 |
|
| kuosan | | | 84.40 314 | 83.34 308 | 87.60 334 | 95.87 203 | 79.21 346 | 92.39 365 | 96.87 202 | 76.12 370 | 73.79 360 | 93.98 255 | 81.51 204 | 90.63 389 | 64.13 382 | 75.42 323 | 92.95 264 |
|
| FMVSNet5 | | | 82.29 328 | 80.54 333 | 87.52 335 | 93.79 285 | 84.01 295 | 93.73 351 | 92.47 373 | 76.92 364 | 74.27 357 | 86.15 379 | 63.69 339 | 89.24 398 | 69.07 366 | 74.79 330 | 89.29 360 |
|
| myMVS_eth3d | | | 88.68 248 | 89.07 219 | 87.50 336 | 95.14 233 | 79.74 343 | 97.68 255 | 96.66 213 | 86.52 252 | 82.63 275 | 96.84 192 | 85.22 146 | 89.89 393 | 69.43 364 | 91.54 221 | 92.87 265 |
|
| MDA-MVSNet_test_wron | | | 79.65 344 | 77.05 349 | 87.45 337 | 87.79 372 | 80.13 340 | 96.25 310 | 94.44 343 | 73.87 378 | 51.80 406 | 87.47 370 | 68.04 308 | 92.12 383 | 66.02 377 | 67.79 375 | 90.09 344 |
|
| YYNet1 | | | 79.64 345 | 77.04 350 | 87.43 338 | 87.80 371 | 79.98 341 | 96.23 311 | 94.44 343 | 73.83 379 | 51.83 405 | 87.53 366 | 67.96 310 | 92.07 384 | 66.00 378 | 67.75 376 | 90.23 343 |
|
| Patchmatch-RL test | | | 81.90 332 | 80.13 336 | 87.23 339 | 80.71 399 | 70.12 392 | 84.07 403 | 88.19 404 | 83.16 307 | 70.57 374 | 82.18 391 | 87.18 101 | 92.59 376 | 82.28 283 | 62.78 386 | 98.98 131 |
|
| MDA-MVSNet-bldmvs | | | 77.82 355 | 74.75 361 | 87.03 340 | 88.33 364 | 78.52 354 | 96.34 305 | 92.85 368 | 75.57 371 | 48.87 408 | 87.89 363 | 57.32 361 | 92.49 379 | 60.79 391 | 64.80 384 | 90.08 345 |
|
| mmtdpeth | | | 83.69 321 | 82.59 320 | 86.99 341 | 92.82 303 | 76.98 363 | 96.16 315 | 91.63 385 | 82.89 317 | 92.41 166 | 82.90 386 | 54.95 371 | 98.19 193 | 96.27 91 | 53.27 404 | 85.81 386 |
|
| EG-PatchMatch MVS | | | 79.92 340 | 77.59 346 | 86.90 342 | 87.06 378 | 77.90 360 | 96.20 314 | 94.06 354 | 74.61 375 | 66.53 392 | 88.76 359 | 40.40 403 | 96.20 308 | 67.02 374 | 83.66 280 | 86.61 380 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 354 | 75.06 360 | 86.77 343 | 83.81 391 | 77.94 359 | 96.38 304 | 91.53 388 | 67.54 398 | 68.38 383 | 87.13 374 | 43.94 396 | 96.08 314 | 55.03 401 | 81.83 292 | 86.29 384 |
|
| pmmvs-eth3d | | | 78.71 349 | 76.16 354 | 86.38 344 | 80.25 402 | 81.19 332 | 94.17 347 | 92.13 378 | 77.97 358 | 66.90 391 | 82.31 390 | 55.76 364 | 92.56 377 | 73.63 347 | 62.31 389 | 85.38 390 |
|
| testing3 | | | 87.75 260 | 88.22 239 | 86.36 345 | 94.66 256 | 77.41 361 | 99.52 50 | 97.95 54 | 86.05 259 | 81.12 304 | 96.69 200 | 86.18 128 | 89.31 397 | 61.65 390 | 90.12 240 | 92.35 276 |
|
| test_0402 | | | 78.81 348 | 76.33 353 | 86.26 346 | 91.18 330 | 78.44 355 | 95.88 323 | 91.34 390 | 68.55 394 | 70.51 376 | 89.91 349 | 52.65 380 | 94.99 346 | 47.14 407 | 79.78 302 | 85.34 392 |
|
| testgi | | | 82.29 328 | 81.00 331 | 86.17 347 | 87.24 376 | 74.84 373 | 97.39 264 | 91.62 386 | 88.63 187 | 75.85 350 | 95.42 233 | 46.07 395 | 91.55 386 | 66.87 376 | 79.94 301 | 92.12 285 |
|
| TDRefinement | | | 78.01 353 | 75.31 357 | 86.10 348 | 70.06 413 | 73.84 376 | 93.59 354 | 91.58 387 | 74.51 376 | 73.08 368 | 91.04 315 | 49.63 391 | 97.12 256 | 74.88 335 | 59.47 394 | 87.33 376 |
|
| mvs5depth | | | 78.17 352 | 75.56 356 | 85.97 349 | 80.43 401 | 76.44 365 | 85.46 395 | 89.24 401 | 76.39 367 | 78.17 339 | 88.26 361 | 51.73 382 | 95.73 329 | 69.31 365 | 61.09 391 | 85.73 387 |
|
| MVStest1 | | | 76.56 358 | 73.43 364 | 85.96 350 | 86.30 383 | 80.88 338 | 94.26 345 | 91.74 383 | 61.98 405 | 58.53 401 | 89.96 348 | 69.30 298 | 91.47 388 | 59.26 395 | 49.56 410 | 85.52 389 |
|
| SixPastTwentyTwo | | | 82.63 327 | 81.58 325 | 85.79 351 | 88.12 367 | 71.01 388 | 95.17 336 | 92.54 372 | 84.33 287 | 72.93 370 | 92.08 291 | 60.41 352 | 95.61 334 | 74.47 338 | 74.15 339 | 90.75 331 |
|
| OurMVSNet-221017-0 | | | 84.13 318 | 83.59 307 | 85.77 352 | 87.81 370 | 70.24 390 | 94.89 339 | 93.65 361 | 86.08 258 | 76.53 343 | 93.28 274 | 61.41 347 | 96.14 312 | 80.95 292 | 77.69 315 | 90.93 323 |
|
| UnsupCasMVSNet_eth | | | 78.90 347 | 76.67 352 | 85.58 353 | 82.81 395 | 74.94 372 | 91.98 368 | 96.31 236 | 84.64 283 | 65.84 394 | 87.71 364 | 51.33 383 | 92.23 381 | 72.89 351 | 56.50 400 | 89.56 357 |
|
| ttmdpeth | | | 79.80 343 | 77.91 345 | 85.47 354 | 83.34 392 | 75.75 367 | 95.32 334 | 91.45 389 | 76.84 365 | 74.81 355 | 91.71 303 | 53.98 376 | 94.13 362 | 72.42 354 | 61.29 390 | 86.51 382 |
|
| test_vis1_rt | | | 81.31 335 | 80.05 338 | 85.11 355 | 91.29 329 | 70.66 389 | 98.98 126 | 77.39 418 | 85.76 264 | 68.80 381 | 82.40 389 | 36.56 405 | 99.44 122 | 92.67 165 | 86.55 254 | 85.24 393 |
|
| lessismore_v0 | | | | | 85.08 356 | 85.59 385 | 69.28 393 | | 90.56 394 | | 67.68 387 | 90.21 345 | 54.21 375 | 95.46 337 | 73.88 343 | 62.64 387 | 90.50 338 |
|
| UnsupCasMVSNet_bld | | | 73.85 365 | 70.14 369 | 84.99 357 | 79.44 403 | 75.73 368 | 88.53 388 | 95.24 320 | 70.12 390 | 61.94 398 | 74.81 405 | 41.41 401 | 93.62 365 | 68.65 368 | 51.13 408 | 85.62 388 |
|
| mamv4 | | | 91.41 188 | 93.57 126 | 84.91 358 | 97.11 150 | 58.11 405 | 95.68 331 | 95.93 270 | 82.09 330 | 89.78 209 | 95.71 227 | 90.09 55 | 98.24 191 | 97.26 68 | 98.50 108 | 98.38 176 |
|
| K. test v3 | | | 81.04 336 | 79.77 339 | 84.83 359 | 87.41 374 | 70.23 391 | 95.60 332 | 93.93 356 | 83.70 298 | 67.51 388 | 89.35 356 | 55.76 364 | 93.58 366 | 76.67 324 | 68.03 373 | 90.67 335 |
|
| Anonymous20231206 | | | 80.76 337 | 79.42 341 | 84.79 360 | 84.78 387 | 72.98 380 | 96.53 298 | 92.97 367 | 79.56 350 | 74.33 356 | 88.83 358 | 61.27 348 | 92.15 382 | 60.59 392 | 75.92 321 | 89.24 361 |
|
| RPSCF | | | 85.33 300 | 85.55 278 | 84.67 361 | 94.63 257 | 62.28 400 | 93.73 351 | 93.76 357 | 74.38 377 | 85.23 250 | 97.06 178 | 64.09 335 | 98.31 185 | 80.98 291 | 86.08 260 | 93.41 263 |
|
| CL-MVSNet_self_test | | | 79.89 342 | 78.34 343 | 84.54 362 | 81.56 397 | 75.01 371 | 96.88 287 | 95.62 297 | 81.10 340 | 75.86 349 | 85.81 380 | 68.49 303 | 90.26 391 | 63.21 385 | 56.51 399 | 88.35 367 |
|
| LF4IMVS | | | 81.94 331 | 81.17 330 | 84.25 363 | 87.23 377 | 68.87 395 | 93.35 355 | 91.93 381 | 83.35 304 | 75.40 352 | 93.00 280 | 49.25 392 | 96.65 276 | 78.88 308 | 78.11 308 | 87.22 378 |
|
| test_fmvs2 | | | 85.10 302 | 85.45 280 | 84.02 364 | 89.85 345 | 65.63 398 | 98.49 183 | 92.59 371 | 90.45 135 | 85.43 249 | 93.32 271 | 43.94 396 | 96.59 278 | 90.81 182 | 84.19 273 | 89.85 352 |
|
| Anonymous20240521 | | | 78.63 350 | 76.90 351 | 83.82 365 | 82.82 394 | 72.86 381 | 95.72 330 | 93.57 362 | 73.55 381 | 72.17 373 | 84.79 382 | 49.69 390 | 92.51 378 | 65.29 380 | 74.50 332 | 86.09 385 |
|
| MIMVSNet1 | | | 75.92 360 | 73.30 365 | 83.81 366 | 81.29 398 | 75.57 369 | 92.26 366 | 92.05 379 | 73.09 382 | 67.48 389 | 86.18 378 | 40.87 402 | 87.64 402 | 55.78 400 | 70.68 367 | 88.21 368 |
|
| dongtai | | | 81.36 334 | 80.61 332 | 83.62 367 | 94.25 268 | 73.32 379 | 95.15 337 | 96.81 204 | 73.56 380 | 69.79 377 | 92.81 283 | 81.00 212 | 86.80 404 | 52.08 405 | 70.06 368 | 90.75 331 |
|
| EU-MVSNet | | | 84.19 316 | 84.42 300 | 83.52 368 | 88.64 362 | 67.37 396 | 96.04 318 | 95.76 289 | 85.29 270 | 78.44 335 | 93.18 276 | 70.67 289 | 91.48 387 | 75.79 330 | 75.98 320 | 91.70 293 |
|
| new_pmnet | | | 76.02 359 | 73.71 363 | 82.95 369 | 83.88 390 | 72.85 382 | 91.26 378 | 92.26 375 | 70.44 388 | 62.60 397 | 81.37 393 | 47.64 393 | 92.32 380 | 61.85 388 | 72.10 360 | 83.68 398 |
|
| Syy-MVS | | | 84.10 319 | 84.53 297 | 82.83 370 | 95.14 233 | 65.71 397 | 97.68 255 | 96.66 213 | 86.52 252 | 82.63 275 | 96.84 192 | 68.15 306 | 89.89 393 | 45.62 408 | 91.54 221 | 92.87 265 |
|
| KD-MVS_self_test | | | 77.47 356 | 75.88 355 | 82.24 371 | 81.59 396 | 68.93 394 | 92.83 362 | 94.02 355 | 77.03 363 | 73.14 366 | 83.39 385 | 55.44 368 | 90.42 390 | 67.95 370 | 57.53 398 | 87.38 374 |
|
| pmmvs3 | | | 72.86 366 | 69.76 371 | 82.17 372 | 73.86 409 | 74.19 375 | 94.20 346 | 89.01 402 | 64.23 404 | 67.72 386 | 80.91 397 | 41.48 400 | 88.65 400 | 62.40 387 | 54.02 403 | 83.68 398 |
|
| DSMNet-mixed | | | 81.60 333 | 81.43 327 | 82.10 373 | 84.36 388 | 60.79 401 | 93.63 353 | 86.74 406 | 79.00 351 | 79.32 326 | 87.15 373 | 63.87 337 | 89.78 395 | 66.89 375 | 91.92 211 | 95.73 250 |
|
| new-patchmatchnet | | | 74.80 364 | 72.40 367 | 81.99 374 | 78.36 405 | 72.20 384 | 94.44 342 | 92.36 374 | 77.06 362 | 63.47 396 | 79.98 399 | 51.04 385 | 88.85 399 | 60.53 393 | 54.35 402 | 84.92 395 |
|
| test20.03 | | | 78.51 351 | 77.48 347 | 81.62 375 | 83.07 393 | 71.03 387 | 96.11 316 | 92.83 369 | 81.66 335 | 69.31 380 | 89.68 352 | 57.53 359 | 87.29 403 | 58.65 397 | 68.47 371 | 86.53 381 |
|
| CMPMVS |  | 58.40 21 | 80.48 338 | 80.11 337 | 81.59 376 | 85.10 386 | 59.56 403 | 94.14 348 | 95.95 266 | 68.54 395 | 60.71 399 | 93.31 272 | 55.35 369 | 97.87 213 | 83.06 276 | 84.85 268 | 87.33 376 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PM-MVS | | | 74.88 363 | 72.85 366 | 80.98 377 | 78.98 404 | 64.75 399 | 90.81 382 | 85.77 407 | 80.95 343 | 68.23 385 | 82.81 387 | 29.08 409 | 92.84 372 | 76.54 325 | 62.46 388 | 85.36 391 |
|
| mvsany_test3 | | | 75.85 361 | 74.52 362 | 79.83 378 | 73.53 410 | 60.64 402 | 91.73 371 | 87.87 405 | 83.91 294 | 70.55 375 | 82.52 388 | 31.12 407 | 93.66 364 | 86.66 231 | 62.83 385 | 85.19 394 |
|
| ambc | | | | | 79.60 379 | 72.76 412 | 56.61 406 | 76.20 410 | 92.01 380 | | 68.25 384 | 80.23 398 | 23.34 411 | 94.73 354 | 73.78 346 | 60.81 392 | 87.48 373 |
|
| EGC-MVSNET | | | 60.70 375 | 55.37 379 | 76.72 380 | 86.35 382 | 71.08 386 | 89.96 386 | 84.44 411 | 0.38 423 | 1.50 424 | 84.09 384 | 37.30 404 | 88.10 401 | 40.85 412 | 73.44 348 | 70.97 408 |
|
| DeepMVS_CX |  | | | | 76.08 381 | 90.74 336 | 51.65 414 | | 90.84 392 | 86.47 255 | 57.89 402 | 87.98 362 | 35.88 406 | 92.60 375 | 65.77 379 | 65.06 383 | 83.97 397 |
|
| test_f | | | 71.94 367 | 70.82 368 | 75.30 382 | 72.77 411 | 53.28 410 | 91.62 372 | 89.66 399 | 75.44 372 | 64.47 395 | 78.31 402 | 20.48 413 | 89.56 396 | 78.63 311 | 66.02 381 | 83.05 401 |
|
| test_fmvs3 | | | 75.09 362 | 75.19 358 | 74.81 383 | 77.45 406 | 54.08 409 | 95.93 319 | 90.64 393 | 82.51 323 | 73.29 364 | 81.19 394 | 22.29 412 | 86.29 405 | 85.50 244 | 67.89 374 | 84.06 396 |
|
| APD_test1 | | | 68.93 370 | 66.98 373 | 74.77 384 | 80.62 400 | 53.15 411 | 87.97 389 | 85.01 409 | 53.76 407 | 59.26 400 | 87.52 367 | 25.19 410 | 89.95 392 | 56.20 399 | 67.33 377 | 81.19 402 |
|
| test_method | | | 70.10 369 | 68.66 372 | 74.41 385 | 86.30 383 | 55.84 407 | 94.47 341 | 89.82 397 | 35.18 414 | 66.15 393 | 84.75 383 | 30.54 408 | 77.96 415 | 70.40 362 | 60.33 393 | 89.44 358 |
|
| dmvs_testset | | | 77.17 357 | 78.99 342 | 71.71 386 | 87.25 375 | 38.55 423 | 91.44 375 | 81.76 414 | 85.77 263 | 69.49 379 | 95.94 223 | 69.71 295 | 84.37 406 | 52.71 404 | 76.82 319 | 92.21 281 |
|
| LCM-MVSNet | | | 60.07 376 | 56.37 378 | 71.18 387 | 54.81 422 | 48.67 415 | 82.17 407 | 89.48 400 | 37.95 412 | 49.13 407 | 69.12 406 | 13.75 420 | 81.76 407 | 59.28 394 | 51.63 407 | 83.10 400 |
|
| N_pmnet | | | 70.19 368 | 69.87 370 | 71.12 388 | 88.24 365 | 30.63 427 | 95.85 326 | 28.70 426 | 70.18 389 | 68.73 382 | 86.55 377 | 64.04 336 | 93.81 363 | 53.12 403 | 73.46 347 | 88.94 363 |
|
| PMMVS2 | | | 58.97 377 | 55.07 380 | 70.69 389 | 62.72 417 | 55.37 408 | 85.97 393 | 80.52 415 | 49.48 408 | 45.94 409 | 68.31 407 | 15.73 418 | 80.78 411 | 49.79 406 | 37.12 414 | 75.91 403 |
|
| test_vis3_rt | | | 61.29 374 | 58.75 377 | 68.92 390 | 67.41 414 | 52.84 412 | 91.18 380 | 59.23 425 | 66.96 399 | 41.96 413 | 58.44 413 | 11.37 421 | 94.72 355 | 74.25 340 | 57.97 397 | 59.20 412 |
|
| WB-MVS | | | 66.44 371 | 66.29 374 | 66.89 391 | 74.84 407 | 44.93 418 | 93.00 357 | 84.09 412 | 71.15 385 | 55.82 403 | 81.63 392 | 63.79 338 | 80.31 413 | 21.85 417 | 50.47 409 | 75.43 404 |
|
| SSC-MVS | | | 65.42 372 | 65.20 375 | 66.06 392 | 73.96 408 | 43.83 419 | 92.08 367 | 83.54 413 | 69.77 391 | 54.73 404 | 80.92 396 | 63.30 340 | 79.92 414 | 20.48 418 | 48.02 411 | 74.44 405 |
|
| FPMVS | | | 61.57 373 | 60.32 376 | 65.34 393 | 60.14 420 | 42.44 421 | 91.02 381 | 89.72 398 | 44.15 409 | 42.63 412 | 80.93 395 | 19.02 414 | 80.59 412 | 42.50 409 | 72.76 352 | 73.00 406 |
|
| ANet_high | | | 50.71 382 | 46.17 385 | 64.33 394 | 44.27 424 | 52.30 413 | 76.13 411 | 78.73 416 | 64.95 402 | 27.37 417 | 55.23 414 | 14.61 419 | 67.74 417 | 36.01 413 | 18.23 417 | 72.95 407 |
|
| testf1 | | | 56.38 378 | 53.73 381 | 64.31 395 | 64.84 415 | 45.11 416 | 80.50 408 | 75.94 420 | 38.87 410 | 42.74 410 | 75.07 403 | 11.26 422 | 81.19 409 | 41.11 410 | 53.27 404 | 66.63 409 |
|
| APD_test2 | | | 56.38 378 | 53.73 381 | 64.31 395 | 64.84 415 | 45.11 416 | 80.50 408 | 75.94 420 | 38.87 410 | 42.74 410 | 75.07 403 | 11.26 422 | 81.19 409 | 41.11 410 | 53.27 404 | 66.63 409 |
|
| Gipuma |  | | 54.77 380 | 52.22 384 | 62.40 397 | 86.50 380 | 59.37 404 | 50.20 415 | 90.35 395 | 36.52 413 | 41.20 414 | 49.49 415 | 18.33 416 | 81.29 408 | 32.10 414 | 65.34 382 | 46.54 415 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 53.66 381 | 52.86 383 | 56.05 398 | 32.75 426 | 41.97 422 | 73.42 412 | 76.12 419 | 21.91 419 | 39.68 415 | 96.39 209 | 42.59 399 | 65.10 418 | 78.00 314 | 14.92 419 | 61.08 411 |
|
| PMVS |  | 41.42 23 | 45.67 383 | 42.50 386 | 55.17 399 | 34.28 425 | 32.37 425 | 66.24 413 | 78.71 417 | 30.72 415 | 22.04 420 | 59.59 411 | 4.59 424 | 77.85 416 | 27.49 415 | 58.84 396 | 55.29 413 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 44.00 22 | 41.70 384 | 37.64 389 | 53.90 400 | 49.46 423 | 43.37 420 | 65.09 414 | 66.66 422 | 26.19 418 | 25.77 419 | 48.53 416 | 3.58 426 | 63.35 419 | 26.15 416 | 27.28 415 | 54.97 414 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 41.02 385 | 40.93 387 | 41.29 401 | 61.97 418 | 33.83 424 | 84.00 404 | 65.17 423 | 27.17 416 | 27.56 416 | 46.72 417 | 17.63 417 | 60.41 420 | 19.32 419 | 18.82 416 | 29.61 416 |
|
| EMVS | | | 39.96 386 | 39.88 388 | 40.18 402 | 59.57 421 | 32.12 426 | 84.79 401 | 64.57 424 | 26.27 417 | 26.14 418 | 44.18 420 | 18.73 415 | 59.29 421 | 17.03 420 | 17.67 418 | 29.12 417 |
|
| wuyk23d | | | 16.71 389 | 16.73 393 | 16.65 403 | 60.15 419 | 25.22 428 | 41.24 416 | 5.17 427 | 6.56 420 | 5.48 423 | 3.61 423 | 3.64 425 | 22.72 422 | 15.20 421 | 9.52 420 | 1.99 420 |
|
| test123 | | | 16.58 390 | 19.47 392 | 7.91 404 | 3.59 428 | 5.37 429 | 94.32 343 | 1.39 429 | 2.49 422 | 13.98 422 | 44.60 419 | 2.91 427 | 2.65 423 | 11.35 423 | 0.57 422 | 15.70 418 |
|
| testmvs | | | 18.81 388 | 23.05 391 | 6.10 405 | 4.48 427 | 2.29 430 | 97.78 245 | 3.00 428 | 3.27 421 | 18.60 421 | 62.71 409 | 1.53 428 | 2.49 424 | 14.26 422 | 1.80 421 | 13.50 419 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 22.52 387 | 30.03 390 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 97.17 178 | 0.00 424 | 0.00 425 | 98.77 88 | 74.35 257 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 6.87 392 | 9.16 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 82.48 189 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 8.21 391 | 10.94 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 98.50 111 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 79.74 343 | | | | | | | | 67.75 371 | | |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 182 | 99.55 44 | 97.47 143 | 91.32 113 | 98.12 46 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 94.60 37 | 99.41 4 | 99.12 49 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 37 | | 97.64 105 | 93.14 73 | 98.93 21 | 99.45 14 | 93.45 17 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 75 | | 97.61 112 | 87.78 220 | 97.41 63 | 99.16 39 | 90.15 54 | 99.56 108 | 98.35 45 | 99.70 37 | |
|
| RE-MVS-def | | | | 95.70 68 | | 99.22 59 | 87.26 229 | 98.40 195 | 97.21 172 | 89.63 158 | 96.67 89 | 98.97 65 | 85.24 145 | | 96.62 83 | 99.31 67 | 99.60 73 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 24 | | 97.73 82 | 95.54 26 | 99.54 3 | | | | 99.69 7 | 99.81 23 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 83 | 94.17 44 | 99.23 10 | 99.54 3 | 93.14 23 | 99.98 9 | 99.70 5 | 99.82 19 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 27 | | 97.72 83 | 94.16 46 | 99.30 8 | 99.49 9 | 93.32 18 | 99.98 9 | | | |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 51 | 97.49 140 | 89.41 169 | 98.59 32 | 99.43 16 | 89.78 58 | 99.69 94 | 98.69 30 | 99.62 46 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 65 | 99.65 36 | 97.63 109 | 95.69 22 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 93.01 74 | 99.07 15 | 99.46 10 | 94.66 13 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| test0726 | | | | | | 99.66 12 | 95.20 32 | 99.77 18 | 97.70 88 | 93.95 49 | 99.35 7 | 99.54 3 | 93.18 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 146 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 22 | | | | 98.13 44 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 76 | | | | 98.84 146 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 104 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 146 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 384 | | | | 41.37 421 | 85.38 143 | 96.36 293 | 83.16 273 | | |
|
| test_post | | | | | | | | | | | | 46.00 418 | 87.37 95 | 97.11 257 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 381 | 88.73 72 | 96.81 270 | | | |
|
| MTMP | | | | | | | | 99.21 88 | 91.09 391 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.69 254 | 88.14 202 | | | 88.22 206 | | 97.20 169 | | 98.29 187 | 90.79 183 | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 78 | 99.38 71 | 97.66 97 | 89.57 162 | 98.39 37 | 99.18 36 | 90.88 40 | 99.66 97 | | | |
|
| test_8 | | | | | | 99.55 35 | 93.07 81 | 99.37 74 | 97.64 105 | 90.18 142 | 98.36 39 | 99.19 33 | 90.94 37 | 99.64 103 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 59 | 99.87 9 | 99.91 21 |
|
| agg_prior | | | | | | 99.54 36 | 92.66 91 | | 97.64 105 | | 97.98 53 | | | 99.61 105 | | | |
|
| test_prior4 | | | | | | | 92.00 101 | 99.41 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 110 | 98.12 46 | 98.97 65 | 90.43 47 | | 98.33 46 | 99.81 23 | |
|
| 旧先验2 | | | | | | | | 98.67 156 | | 85.75 265 | 98.96 20 | | | 98.97 157 | 93.84 144 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 210 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 89 | | 97.74 79 | | | 99.15 42 | 91.05 36 | | | 99.33 65 | 99.60 73 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 177 | 97.82 66 | 87.20 235 | | | | 99.90 50 | 87.64 220 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 153 | | | | | | | | | |
|
| test222 | | | | | | 98.32 96 | 91.21 114 | 98.08 230 | 97.58 120 | 83.74 296 | 95.87 103 | 99.02 61 | 86.74 112 | | | 99.64 42 | 99.81 35 |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 261 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 45 | | | | |
|
| testdata1 | | | | | | | | 97.89 238 | | 92.43 87 | | | | | | | |
|
| plane_prior7 | | | | | | 93.84 281 | 85.73 266 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 278 | 86.02 259 | | | | | | 72.92 270 | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 237 | | | | | 97.75 226 | 93.46 153 | 86.17 258 | 92.67 269 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 203 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 261 | | | 93.65 62 | 86.99 233 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 120 | | 93.38 69 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 280 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 257 | 99.14 104 | | 93.81 59 | | | | | | 86.26 257 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 410 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 92 | | | | | | | | |
|
| door | | | | | | | | | 85.30 408 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 243 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 93.95 274 | | 99.16 96 | | 93.92 51 | 87.57 226 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 274 | | 99.16 96 | | 93.92 51 | 87.57 226 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 146 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 226 | | | 97.77 220 | | | 92.72 267 |
|
| HQP3-MVS | | | | | | | | | 96.37 233 | | | | | | | 86.29 255 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 264 | | | | |
|
| NP-MVS | | | | | | 93.94 277 | 86.22 249 | | | | | 96.67 201 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 117 | 91.38 376 | | 87.45 231 | 93.08 157 | | 86.67 115 | | 87.02 223 | | 98.95 137 |
|
| MDTV_nov1_ep13 | | | | 90.47 199 | | 96.14 194 | 88.55 195 | 91.34 377 | 97.51 135 | 89.58 161 | 92.24 168 | 90.50 338 | 86.99 108 | 97.61 235 | 77.64 316 | 92.34 203 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 289 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 276 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 163 | | | | |
|