This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1897.78 6896.61 1098.15 3999.53 793.62 17100.00 191.79 15599.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1599.19 2895.12 899.97 2199.90 199.92 399.99 1
MM98.86 596.83 799.81 999.13 997.66 298.29 3798.96 6485.84 11999.90 4899.72 398.80 9199.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2497.98 5197.18 395.96 9299.33 1992.62 26100.00 198.99 2399.93 199.98 6
MVS93.92 10992.28 13898.83 795.69 18996.82 896.22 29598.17 3784.89 26484.34 23898.61 10179.32 20799.83 7193.88 12899.43 5999.86 29
test_0728_SECOND98.77 899.66 1296.37 1499.72 2197.68 8599.98 999.64 799.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1397.99 5097.05 699.41 299.59 292.89 25100.00 198.99 2399.90 799.96 10
DELS-MVS97.12 2296.60 3298.68 1098.03 10296.57 1199.84 697.84 5796.36 1695.20 11098.24 11988.17 6699.83 7196.11 8499.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.53 1197.15 1998.67 1197.30 12496.52 1299.60 3698.88 1497.14 497.21 6498.94 7086.89 9499.91 4399.43 1398.91 8699.59 71
CANet97.00 2596.49 3398.55 1298.86 8096.10 1699.83 797.52 12395.90 1797.21 6498.90 7482.66 17199.93 3798.71 2798.80 9199.63 64
WTY-MVS95.97 5395.11 7698.54 1397.62 11396.65 999.44 6098.74 1692.25 8795.21 10998.46 11386.56 10499.46 11695.00 10892.69 18499.50 77
HY-MVS88.56 795.29 7594.23 8898.48 1497.72 10996.41 1394.03 32798.74 1692.42 8295.65 10294.76 22886.52 10599.49 11095.29 10192.97 18099.53 73
MG-MVS97.24 1796.83 2898.47 1599.79 595.71 1899.07 10799.06 1094.45 3896.42 8698.70 9388.81 5999.74 8695.35 9999.86 1299.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4297.68 8593.01 6899.23 899.45 1495.12 899.98 999.25 1699.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 7997.72 7694.50 3598.64 2699.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1597.72 7694.17 4199.30 699.54 393.32 1999.98 999.70 499.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2197.47 13393.95 4699.07 1399.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-MVSNAJ96.87 2896.40 3698.29 1997.35 12297.29 599.03 11397.11 17095.83 1898.97 1799.14 4082.48 17499.60 10198.60 3199.08 7398.00 178
canonicalmvs95.02 8293.96 10098.20 2197.53 11895.92 1798.71 14296.19 22791.78 9595.86 9798.49 10879.53 20599.03 14796.12 8391.42 20999.66 60
3Dnovator+87.72 893.43 12691.84 14998.17 2295.73 18895.08 3298.92 12597.04 17791.42 10481.48 28497.60 14274.60 23299.79 8090.84 16498.97 8199.64 62
HPM-MVS++copyleft97.72 1097.59 1198.14 2399.53 4094.76 4299.19 8597.75 7195.66 2298.21 3899.29 2091.10 3399.99 597.68 5399.87 999.68 56
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 997.88 5496.54 1198.84 2299.46 1092.55 2799.98 998.25 4499.93 199.94 18
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2499.61 2494.45 4998.85 12997.64 9596.51 1495.88 9599.39 1887.35 8599.99 596.61 7599.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 1996.92 2298.12 2699.11 6694.88 3599.44 6097.45 13689.60 14898.70 2499.42 1790.42 4499.72 8798.47 3699.65 3899.77 43
xiu_mvs_v2_base96.66 3396.17 4598.11 2797.11 13596.96 699.01 11697.04 17795.51 2598.86 2199.11 4882.19 18299.36 12898.59 3398.14 10998.00 178
alignmvs95.77 6395.00 7998.06 2897.35 12295.68 1999.71 2397.50 12891.50 10096.16 9098.61 10186.28 11099.00 14896.19 8291.74 20199.51 76
SMA-MVScopyleft97.24 1796.99 2198.00 2999.30 5494.20 5599.16 9197.65 9489.55 15299.22 1099.52 890.34 4699.99 598.32 4199.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 5995.15 7497.95 3099.87 294.38 5299.60 3697.48 13186.58 23394.42 12199.13 4287.36 8499.98 993.64 13398.33 10599.48 78
PAPR96.35 4095.82 5597.94 3199.63 1894.19 5699.42 6597.55 11592.43 8093.82 13399.12 4487.30 8699.91 4394.02 12499.06 7599.74 47
131493.44 12591.98 14697.84 3295.24 20394.38 5296.22 29597.92 5390.18 13282.28 26797.71 13777.63 21999.80 7991.94 15498.67 9799.34 90
test1297.83 3399.33 5394.45 4997.55 11597.56 5488.60 6199.50 10999.71 3499.55 72
ACMMP_NAP96.59 3596.18 4297.81 3498.82 8193.55 6698.88 12897.59 10890.66 11797.98 4999.14 4086.59 102100.00 196.47 7999.46 5599.89 25
SD-MVS97.51 1397.40 1697.81 3499.01 7293.79 6399.33 7697.38 14693.73 5798.83 2399.02 5690.87 3899.88 5298.69 2899.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1197.47 1397.70 3699.58 3093.63 6499.56 4197.52 12393.59 6198.01 4899.12 4490.80 3999.55 10499.26 1599.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 3696.18 4297.70 3699.59 2893.92 6099.13 10297.44 13989.02 16497.90 5199.22 2588.90 5899.49 11094.63 11799.79 2799.68 56
MSLP-MVS++97.50 1497.45 1597.63 3899.65 1693.21 7299.70 2498.13 4294.61 3397.78 5399.46 1089.85 4999.81 7797.97 4899.91 699.88 26
APD-MVScopyleft96.95 2696.72 2997.63 3899.51 4193.58 6599.16 9197.44 13990.08 13798.59 2899.07 4989.06 5599.42 12197.92 4999.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 8593.94 10197.58 4096.43 15894.09 5998.93 12399.16 889.50 15395.27 10897.85 12781.50 18999.65 9692.79 14894.02 17298.99 118
PAPM96.35 4095.94 5197.58 4094.10 24695.25 2498.93 12398.17 3794.26 4093.94 12998.72 8989.68 5197.88 19596.36 8099.29 6799.62 66
train_agg97.20 2097.08 2097.57 4299.57 3393.17 7399.38 6997.66 8990.18 13298.39 3399.18 3190.94 3599.66 9298.58 3499.85 1399.88 26
VNet95.08 8194.26 8797.55 4398.07 10093.88 6198.68 14698.73 1890.33 12997.16 6897.43 15179.19 20899.53 10796.91 6991.85 19999.24 98
lupinMVS96.32 4295.94 5197.44 4495.05 22194.87 3699.86 496.50 20793.82 5598.04 4698.77 8385.52 12198.09 18396.98 6698.97 8199.37 86
新几何197.40 4598.92 7792.51 8897.77 7085.52 25196.69 8199.06 5188.08 7099.89 5184.88 23399.62 4499.79 36
TSAR-MVS + MP.97.44 1597.46 1497.39 4699.12 6593.49 6998.52 16597.50 12894.46 3698.99 1598.64 9791.58 3099.08 14698.49 3599.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator87.35 1193.17 13791.77 15197.37 4795.41 19993.07 7698.82 13297.85 5691.53 9982.56 25997.58 14471.97 25999.82 7491.01 16199.23 6999.22 101
MP-MVS-pluss95.80 6195.30 6997.29 4898.95 7692.66 8398.59 16097.14 16688.95 16793.12 14099.25 2285.62 12099.94 3496.56 7799.48 5499.28 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
DCV-MVSNet95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
EPNet96.82 2996.68 3197.25 5198.65 8693.10 7599.48 5198.76 1596.54 1197.84 5298.22 12087.49 7899.66 9295.35 9997.78 11699.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 3496.46 3597.21 5299.34 5091.77 9399.70 2498.05 4686.48 23898.05 4599.20 2789.33 5399.96 2898.38 3799.62 4499.90 22
CANet_DTU94.31 10193.35 11397.20 5397.03 13994.71 4498.62 15495.54 27995.61 2397.21 6498.47 11171.88 26099.84 6788.38 19397.46 12497.04 204
QAPM91.41 17089.49 19097.17 5495.66 19193.42 7098.60 15897.51 12580.92 32581.39 28597.41 15272.89 25299.87 5682.33 26498.68 9698.21 173
TSAR-MVS + GP.96.95 2696.91 2397.07 5598.88 7991.62 9699.58 3996.54 20595.09 3096.84 7498.63 9991.16 3199.77 8399.04 2296.42 14299.81 33
114514_t94.06 10493.05 12297.06 5699.08 6992.26 8998.97 12197.01 18282.58 30292.57 14698.22 12080.68 19799.30 13489.34 18499.02 7899.63 64
jason95.40 7494.86 8097.03 5792.91 27894.23 5499.70 2496.30 21893.56 6296.73 8098.52 10481.46 19197.91 19296.08 8598.47 10398.96 121
jason: jason.
test_prior97.01 5899.58 3091.77 9397.57 11399.49 11099.79 36
SteuartSystems-ACMMP97.25 1697.34 1797.01 5897.38 12091.46 10099.75 1997.66 8994.14 4598.13 4099.26 2192.16 2999.66 9297.91 5099.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
GG-mvs-BLEND96.98 6396.53 15394.81 4187.20 36797.74 7293.91 13096.40 19496.56 296.94 24595.08 10498.95 8499.20 102
thres20093.69 11792.59 13496.97 6497.76 10894.74 4399.35 7499.36 289.23 15891.21 16996.97 17283.42 15298.77 15585.08 22990.96 21297.39 193
MTAPA96.09 4895.80 5896.96 6599.29 5591.19 10497.23 25897.45 13692.58 7794.39 12299.24 2486.43 10899.99 596.22 8199.40 6299.71 51
ZNCC-MVS96.09 4895.81 5796.95 6699.42 4791.19 10499.55 4297.53 11989.72 14395.86 9798.94 7086.59 10299.97 2195.13 10399.56 5099.68 56
GST-MVS95.97 5395.66 6396.90 6799.49 4591.22 10299.45 5997.48 13189.69 14495.89 9498.72 8986.37 10999.95 3194.62 11899.22 7099.52 74
thres100view90093.34 13092.15 14296.90 6797.62 11394.84 3899.06 10999.36 287.96 20190.47 18096.78 18383.29 15598.75 15784.11 24590.69 21497.12 199
tfpn200view993.43 12692.27 13996.90 6797.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21497.12 199
HFP-MVS96.42 3996.26 3996.90 6799.69 890.96 11599.47 5397.81 6390.54 12396.88 7199.05 5287.57 7699.96 2895.65 9099.72 3199.78 38
gg-mvs-nofinetune90.00 20087.71 22696.89 7196.15 17394.69 4585.15 37397.74 7268.32 37392.97 14360.16 38696.10 396.84 24893.89 12798.87 8899.14 106
XVS96.47 3896.37 3796.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7298.96 6487.37 8199.87 5695.65 9099.43 5999.78 38
X-MVStestdata90.69 18688.66 20996.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7229.59 39887.37 8199.87 5695.65 9099.43 5999.78 38
thres600view793.18 13692.00 14596.75 7497.62 11394.92 3399.07 10799.36 287.96 20190.47 18096.78 18383.29 15598.71 16182.93 25990.47 21896.61 214
PVSNet_Blended95.94 5695.66 6396.75 7498.77 8391.61 9799.88 398.04 4793.64 6094.21 12497.76 13383.50 14999.87 5697.41 5797.75 11798.79 141
ACMMPR96.28 4496.14 4996.73 7699.68 990.47 12699.47 5397.80 6590.54 12396.83 7699.03 5486.51 10699.95 3195.65 9099.72 3199.75 46
thres40093.39 12892.27 13996.73 7697.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21496.61 214
MVS_111021_HR96.69 3296.69 3096.72 7898.58 8891.00 11499.14 9999.45 193.86 5295.15 11198.73 8788.48 6299.76 8497.23 6199.56 5099.40 84
region2R96.30 4396.17 4596.70 7999.70 790.31 12899.46 5797.66 8990.55 12297.07 6999.07 4986.85 9599.97 2195.43 9799.74 2999.81 33
MVS_Test93.67 12092.67 13296.69 8096.72 14992.66 8397.22 25996.03 23887.69 21295.12 11294.03 23781.55 18898.28 17489.17 18896.46 14099.14 106
ab-mvs91.05 17989.17 19796.69 8095.96 18191.72 9592.62 34197.23 15685.61 25089.74 19093.89 24368.55 28099.42 12191.09 15987.84 22798.92 129
CHOSEN 280x42096.80 3096.85 2596.66 8297.85 10794.42 5194.76 31998.36 2992.50 7995.62 10397.52 14697.92 197.38 23198.31 4298.80 9198.20 174
test_fmvsmconf_n96.78 3196.84 2696.61 8395.99 18090.25 12999.90 298.13 4296.68 998.42 3298.92 7285.34 12999.88 5299.12 2099.08 7399.70 52
MVSFormer94.71 9294.08 9596.61 8395.05 22194.87 3697.77 23296.17 22986.84 22798.04 4698.52 10485.52 12195.99 29889.83 17498.97 8198.96 121
API-MVS94.78 8794.18 9296.59 8599.21 6190.06 14198.80 13497.78 6883.59 28493.85 13199.21 2683.79 14699.97 2192.37 15199.00 7999.74 47
test250694.80 8694.21 8996.58 8696.41 15992.18 9198.01 21898.96 1190.82 11493.46 13697.28 15585.92 11698.45 16789.82 17697.19 13099.12 109
baseline192.61 14791.28 16096.58 8697.05 13894.63 4697.72 23696.20 22589.82 14188.56 19996.85 17986.85 9597.82 19988.42 19280.10 28497.30 195
PAPM_NR95.43 7195.05 7896.57 8899.42 4790.14 13498.58 16297.51 12590.65 11992.44 14898.90 7487.77 7599.90 4890.88 16399.32 6499.68 56
MP-MVScopyleft96.00 5095.82 5596.54 8999.47 4690.13 13699.36 7397.41 14390.64 12095.49 10598.95 6785.51 12399.98 996.00 8799.59 4999.52 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 998.18 296.53 9099.54 3690.14 13499.41 6697.70 8195.46 2698.60 2799.19 2895.71 499.49 11098.15 4699.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OpenMVScopyleft85.28 1490.75 18488.84 20496.48 9193.58 26593.51 6898.80 13497.41 14382.59 30178.62 31397.49 14868.00 28799.82 7484.52 23998.55 10196.11 227
DeepC-MVS91.02 494.56 9893.92 10296.46 9297.16 13090.76 11998.39 18797.11 17093.92 4888.66 19898.33 11578.14 21699.85 6595.02 10698.57 10098.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 5995.65 6596.45 9399.50 4289.77 14998.22 19998.90 1389.19 15996.74 7998.95 6785.91 11899.92 3993.94 12699.46 5599.66 60
thisisatest051594.75 8894.19 9096.43 9496.13 17892.64 8699.47 5397.60 10487.55 21593.17 13997.59 14394.71 1398.42 16888.28 19493.20 17798.24 171
LFMVS92.23 15790.84 17096.42 9598.24 9491.08 11198.24 19896.22 22483.39 28794.74 11798.31 11661.12 32898.85 15294.45 12092.82 18199.32 91
CP-MVS96.22 4596.15 4896.42 9599.67 1089.62 15299.70 2497.61 10290.07 13896.00 9199.16 3487.43 7999.92 3996.03 8699.72 3199.70 52
test_fmvsmconf0.1_n95.94 5695.79 5996.40 9792.42 28389.92 14599.79 1496.85 18896.53 1397.22 6398.67 9582.71 17099.84 6798.92 2598.98 8099.43 83
mPP-MVS95.90 5895.75 6096.38 9899.58 3089.41 15699.26 8297.41 14390.66 11794.82 11598.95 6786.15 11499.98 995.24 10299.64 4099.74 47
CNLPA93.64 12192.74 13096.36 9998.96 7590.01 14499.19 8595.89 25886.22 24189.40 19398.85 7980.66 19899.84 6788.57 19196.92 13599.24 98
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10097.14 13291.10 10999.32 7797.43 14192.10 9291.53 16296.38 19783.29 15599.68 9093.42 13896.37 14398.25 170
PVSNet87.13 1293.69 11792.83 12996.28 10197.99 10390.22 13299.38 6998.93 1291.42 10493.66 13497.68 13871.29 26799.64 9887.94 20097.20 12998.98 119
1112_ss92.71 14391.55 15596.20 10295.56 19391.12 10798.48 17394.69 31588.29 19186.89 21698.50 10687.02 9198.66 16384.75 23489.77 22298.81 139
原ACMM196.18 10399.03 7190.08 13797.63 9988.98 16597.00 7098.97 6088.14 6999.71 8888.23 19599.62 4498.76 145
Test_1112_low_res92.27 15690.97 16696.18 10395.53 19591.10 10998.47 17594.66 31688.28 19286.83 21793.50 25487.00 9298.65 16484.69 23589.74 22398.80 140
EI-MVSNet-Vis-set95.76 6495.63 6796.17 10599.14 6490.33 12798.49 17197.82 6091.92 9394.75 11698.88 7887.06 9099.48 11495.40 9897.17 13298.70 148
PCF-MVS89.78 591.26 17289.63 18796.16 10695.44 19791.58 9995.29 31596.10 23385.07 25982.75 25397.45 15078.28 21599.78 8280.60 27995.65 15897.12 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 11493.06 12196.10 10799.88 189.07 16198.33 19197.55 11586.81 22990.39 18298.65 9675.09 22999.98 993.32 13997.53 12299.26 97
SR-MVS96.13 4796.16 4796.07 10899.42 4789.04 16298.59 16097.33 15090.44 12696.84 7499.12 4486.75 9799.41 12497.47 5699.44 5899.76 45
test_fmvsmconf0.01_n94.14 10393.51 11096.04 10986.79 35789.19 15799.28 8195.94 24695.70 1995.50 10498.49 10873.27 24799.79 8098.28 4398.32 10799.15 105
casdiffmvs_mvgpermissive94.00 10693.33 11496.03 11095.22 20590.90 11799.09 10595.99 23990.58 12191.55 16197.37 15379.91 20198.06 18595.01 10795.22 16299.13 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 11293.15 12096.02 11195.79 18590.76 11996.70 28095.78 26486.98 22495.71 10097.17 16479.58 20398.01 19094.57 11996.09 15099.31 92
ETV-MVS96.00 5096.00 5096.00 11296.56 15291.05 11299.63 3496.61 19793.26 6697.39 5998.30 11786.62 10198.13 18098.07 4797.57 11998.82 138
HPM-MVScopyleft95.41 7395.22 7295.99 11399.29 5589.14 15999.17 9097.09 17487.28 21995.40 10698.48 11084.93 13399.38 12695.64 9499.65 3899.47 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IB-MVS89.43 692.12 15990.83 17295.98 11495.40 20090.78 11899.81 998.06 4591.23 10885.63 22693.66 24990.63 4098.78 15491.22 15871.85 34298.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 1792x268894.35 10093.82 10495.95 11597.40 11988.74 17698.41 18098.27 3192.18 8991.43 16396.40 19478.88 20999.81 7793.59 13497.81 11399.30 93
ET-MVSNet_ETH3D92.56 14991.45 15795.88 11696.39 16194.13 5899.46 5796.97 18592.18 8966.94 36798.29 11894.65 1594.28 34094.34 12183.82 26199.24 98
EI-MVSNet-UG-set95.43 7195.29 7095.86 11799.07 7089.87 14698.43 17797.80 6591.78 9594.11 12698.77 8386.25 11299.48 11494.95 11096.45 14198.22 172
diffmvspermissive94.59 9694.19 9095.81 11895.54 19490.69 12198.70 14495.68 27191.61 9795.96 9297.81 12980.11 19998.06 18596.52 7895.76 15598.67 150
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 9394.30 8695.79 11999.25 5788.13 18698.41 18098.67 2290.38 12891.43 16398.72 8982.22 18199.95 3193.83 13095.76 15599.29 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 18189.33 19595.76 12095.69 18993.03 7898.99 11896.59 19980.49 32786.79 21894.45 23265.23 31198.60 16593.52 13592.18 19495.66 231
baseline93.91 11093.30 11595.72 12195.10 21890.07 13897.48 24695.91 25591.03 10993.54 13597.68 13879.58 20398.02 18994.27 12295.14 16399.08 113
test_fmvsmvis_n_192095.47 7095.40 6895.70 12294.33 24190.22 13299.70 2496.98 18496.80 792.75 14498.89 7682.46 17799.92 3998.36 3898.33 10596.97 207
HPM-MVS_fast94.89 8394.62 8295.70 12299.11 6688.44 18299.14 9997.11 17085.82 24695.69 10198.47 11183.46 15199.32 13393.16 14199.63 4399.35 88
test_fmvsm_n_192097.08 2497.55 1295.67 12497.94 10489.61 15399.93 198.48 2497.08 599.08 1299.13 4288.17 6699.93 3799.11 2199.06 7597.47 191
FA-MVS(test-final)92.22 15891.08 16495.64 12596.05 17988.98 16591.60 35097.25 15286.99 22191.84 15392.12 27283.03 16199.00 14886.91 21093.91 17398.93 127
APD-MVS_3200maxsize95.64 6895.65 6595.62 12699.24 5887.80 19298.42 17897.22 15788.93 16996.64 8498.98 5985.49 12499.36 12896.68 7299.27 6899.70 52
casdiffmvspermissive93.98 10893.43 11195.61 12795.07 22089.86 14798.80 13495.84 26390.98 11192.74 14597.66 14079.71 20298.10 18294.72 11495.37 16198.87 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS92.59 14891.59 15495.59 12897.22 12790.03 14291.78 34798.04 4790.42 12791.66 15790.65 30786.49 10797.46 22681.78 27096.31 14599.28 95
TESTMET0.1,193.82 11493.26 11795.49 12995.21 20690.25 12999.15 9697.54 11889.18 16091.79 15494.87 22589.13 5497.63 21686.21 21796.29 14798.60 153
MAR-MVS94.43 9994.09 9495.45 13099.10 6887.47 20298.39 18797.79 6788.37 18694.02 12899.17 3378.64 21499.91 4392.48 15098.85 8998.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 10693.52 10995.43 13195.76 18790.02 14398.99 11897.60 10486.58 23391.74 15597.36 15494.78 1298.34 17086.37 21692.48 18897.94 180
SR-MVS-dyc-post95.75 6595.86 5495.41 13299.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6086.73 9999.36 12896.62 7399.31 6599.60 67
CSCG94.87 8494.71 8195.36 13399.54 3686.49 22299.34 7598.15 4082.71 30090.15 18599.25 2289.48 5299.86 6194.97 10998.82 9099.72 50
UA-Net93.30 13192.62 13395.34 13496.27 16688.53 18195.88 30596.97 18590.90 11295.37 10797.07 16882.38 17999.10 14583.91 24994.86 16698.38 163
DP-MVS88.75 22586.56 24495.34 13498.92 7787.45 20397.64 24293.52 33970.55 36481.49 28397.25 15874.43 23599.88 5271.14 33894.09 17198.67 150
fmvsm_s_conf0.5_n_a95.97 5396.19 4095.31 13696.51 15589.01 16499.81 998.39 2795.46 2699.19 1199.16 3481.44 19299.91 4398.83 2696.97 13497.01 206
fmvsm_s_conf0.5_n96.19 4696.49 3395.30 13797.37 12189.16 15899.86 498.47 2595.68 2198.87 2099.15 3782.44 17899.92 3999.14 1997.43 12596.83 210
MVS_111021_LR95.78 6295.94 5195.28 13898.19 9787.69 19398.80 13499.26 793.39 6395.04 11398.69 9484.09 14399.76 8496.96 6799.06 7598.38 163
testdata95.26 13998.20 9587.28 20997.60 10485.21 25598.48 3199.15 3788.15 6898.72 16090.29 17199.45 5799.78 38
fmvsm_s_conf0.1_n95.56 6995.68 6295.20 14094.35 24089.10 16099.50 4997.67 8894.76 3298.68 2599.03 5481.13 19599.86 6198.63 3097.36 12796.63 213
fmvsm_s_conf0.1_n_a95.16 7895.15 7495.18 14192.06 28988.94 16899.29 7997.53 11994.46 3698.98 1698.99 5879.99 20099.85 6598.24 4596.86 13696.73 211
ECVR-MVScopyleft92.29 15491.33 15995.15 14296.41 15987.84 19198.10 21194.84 30890.82 11491.42 16597.28 15565.61 30798.49 16690.33 17097.19 13099.12 109
UGNet91.91 16390.85 16995.10 14397.06 13788.69 17798.01 21898.24 3492.41 8392.39 14993.61 25060.52 33099.68 9088.14 19697.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS94.60 9594.43 8595.09 14499.66 1286.85 21799.44 6097.47 13383.22 28994.34 12398.96 6482.50 17299.55 10494.81 11199.50 5398.88 131
mvs_anonymous92.50 15091.65 15395.06 14596.60 15189.64 15197.06 26496.44 21186.64 23284.14 23993.93 24182.49 17396.17 29191.47 15696.08 15199.35 88
PatchmatchNetpermissive92.05 16291.04 16595.06 14596.17 17289.04 16291.26 35597.26 15189.56 15190.64 17690.56 31388.35 6497.11 23779.53 28396.07 15299.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS91.38 17190.16 18295.05 14796.46 15787.53 20089.69 36497.84 5782.97 29492.18 15192.00 27884.07 14498.93 15180.71 27795.52 15998.68 149
BH-RMVSNet91.25 17489.99 18395.03 14896.75 14888.55 17998.65 15094.95 30587.74 20987.74 20497.80 13068.27 28398.14 17980.53 28097.49 12398.41 160
Vis-MVSNetpermissive92.64 14591.85 14895.03 14895.12 21488.23 18398.48 17396.81 18991.61 9792.16 15297.22 16071.58 26598.00 19185.85 22497.81 11398.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111192.12 15991.19 16294.94 15096.15 17387.36 20698.12 20894.84 30890.85 11390.97 17097.26 15765.60 30898.37 16989.74 17997.14 13399.07 115
CS-MVS-test95.98 5296.34 3894.90 15198.06 10187.66 19699.69 3196.10 23393.66 5898.35 3699.05 5286.28 11097.66 21396.96 6798.90 8799.37 86
HyFIR lowres test93.68 11993.29 11694.87 15297.57 11788.04 18898.18 20398.47 2587.57 21491.24 16895.05 22285.49 12497.46 22693.22 14092.82 18199.10 111
PLCcopyleft91.07 394.23 10294.01 9694.87 15299.17 6387.49 20199.25 8396.55 20488.43 18491.26 16798.21 12285.92 11699.86 6189.77 17897.57 11997.24 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EC-MVSNet95.09 8095.17 7394.84 15495.42 19888.17 18499.48 5195.92 25091.47 10197.34 6198.36 11482.77 16697.41 23097.24 6098.58 9998.94 126
SCA90.64 18789.25 19694.83 15594.95 22588.83 17296.26 29297.21 15890.06 13990.03 18690.62 30966.61 29896.81 25083.16 25594.36 16998.84 134
TR-MVS90.77 18389.44 19194.76 15696.31 16488.02 18997.92 22295.96 24385.52 25188.22 20297.23 15966.80 29798.09 18384.58 23792.38 18998.17 175
CDS-MVSNet93.47 12493.04 12394.76 15694.75 23289.45 15598.82 13297.03 17987.91 20390.97 17096.48 19289.06 5596.36 27589.50 18092.81 18398.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 10593.80 10594.74 15893.07 27790.25 12998.12 20898.16 3989.86 14086.53 22096.95 17395.56 698.05 18791.44 15794.53 16795.93 229
OMC-MVS93.90 11193.62 10894.73 15998.63 8787.00 21598.04 21796.56 20392.19 8892.46 14798.73 8779.49 20699.14 14392.16 15394.34 17098.03 177
VDDNet90.08 19988.54 21594.69 16094.41 23987.68 19498.21 20196.40 21276.21 34793.33 13897.75 13454.93 35098.77 15594.71 11590.96 21297.61 189
SDMVSNet91.09 17689.91 18494.65 16196.80 14590.54 12597.78 23097.81 6388.34 18885.73 22395.26 21966.44 30198.26 17594.25 12386.75 23295.14 232
tpmrst92.78 14292.16 14194.65 16196.27 16687.45 20391.83 34697.10 17389.10 16394.68 11890.69 30488.22 6597.73 21189.78 17791.80 20098.77 144
EIA-MVS95.11 7995.27 7194.64 16396.34 16386.51 22199.59 3896.62 19692.51 7894.08 12798.64 9786.05 11598.24 17795.07 10598.50 10299.18 103
RPMNet85.07 28481.88 30194.64 16393.47 26786.24 23184.97 37597.21 15864.85 38090.76 17478.80 37780.95 19699.27 13553.76 37992.17 19598.41 160
LS3D90.19 19588.72 20794.59 16598.97 7386.33 23096.90 27096.60 19874.96 35284.06 24198.74 8675.78 22699.83 7174.93 31697.57 11997.62 188
patch_mono-297.10 2397.97 894.49 16699.21 6183.73 28299.62 3598.25 3295.28 2899.38 498.91 7392.28 2899.94 3499.61 999.22 7099.78 38
Fast-Effi-MVS+91.72 16590.79 17394.49 16695.89 18287.40 20599.54 4795.70 26985.01 26289.28 19595.68 21077.75 21897.57 22383.22 25495.06 16498.51 156
IS-MVSNet93.00 14092.51 13594.49 16696.14 17587.36 20698.31 19495.70 26988.58 17790.17 18497.50 14783.02 16297.22 23487.06 20596.07 15298.90 130
VDD-MVS91.24 17590.18 18194.45 16997.08 13685.84 24898.40 18396.10 23386.99 22193.36 13798.16 12354.27 35299.20 13696.59 7690.63 21798.31 169
CS-MVS95.75 6596.19 4094.40 17097.88 10686.22 23399.66 3296.12 23292.69 7698.07 4498.89 7687.09 8897.59 21996.71 7098.62 9899.39 85
test-LLR93.11 13892.68 13194.40 17094.94 22687.27 21099.15 9697.25 15290.21 13091.57 15894.04 23584.89 13497.58 22085.94 22196.13 14898.36 166
test-mter93.27 13392.89 12894.40 17094.94 22687.27 21099.15 9697.25 15288.95 16791.57 15894.04 23588.03 7197.58 22085.94 22196.13 14898.36 166
iter_conf0593.48 12393.18 11994.39 17397.15 13194.17 5799.30 7892.97 34492.38 8686.70 21995.42 21595.67 596.59 25794.67 11684.32 25492.39 252
GA-MVS90.10 19888.69 20894.33 17492.44 28287.97 19099.08 10696.26 22289.65 14586.92 21593.11 26268.09 28596.96 24382.54 26390.15 21998.05 176
nrg03090.23 19388.87 20394.32 17591.53 30093.54 6798.79 13895.89 25888.12 19684.55 23594.61 23078.80 21296.88 24792.35 15275.21 30792.53 250
Anonymous20240521188.84 21987.03 23794.27 17698.14 9984.18 27698.44 17695.58 27776.79 34689.34 19496.88 17853.42 35599.54 10687.53 20487.12 23199.09 112
PatchMatch-RL91.47 16890.54 17794.26 17798.20 9586.36 22896.94 26897.14 16687.75 20888.98 19695.75 20971.80 26299.40 12580.92 27597.39 12697.02 205
TAPA-MVS87.50 990.35 19089.05 20094.25 17898.48 9185.17 26298.42 17896.58 20282.44 30787.24 21098.53 10382.77 16698.84 15359.09 37397.88 11298.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192093.86 11393.74 10694.22 17995.39 20186.08 23999.73 2096.07 23696.38 1597.19 6797.78 13265.46 31099.86 6196.71 7098.92 8596.73 211
TAMVS92.62 14692.09 14494.20 18094.10 24687.68 19498.41 18096.97 18587.53 21689.74 19096.04 20484.77 13896.49 26888.97 19092.31 19198.42 159
tttt051793.30 13193.01 12594.17 18195.57 19286.47 22398.51 16897.60 10485.99 24490.55 17797.19 16294.80 1198.31 17185.06 23091.86 19897.74 182
dp90.16 19788.83 20594.14 18296.38 16286.42 22491.57 35197.06 17684.76 26688.81 19790.19 32584.29 14197.43 22975.05 31591.35 21198.56 154
dcpmvs_295.67 6796.18 4294.12 18398.82 8184.22 27597.37 25095.45 28490.70 11695.77 9998.63 9990.47 4298.68 16299.20 1899.22 7099.45 80
CostFormer92.89 14192.48 13694.12 18394.99 22385.89 24592.89 33797.00 18386.98 22495.00 11490.78 30090.05 4897.51 22492.92 14591.73 20298.96 121
ADS-MVSNet88.99 21387.30 23294.07 18596.21 16987.56 19987.15 36896.78 19183.01 29289.91 18887.27 34878.87 21097.01 24274.20 32392.27 19297.64 185
Vis-MVSNet (Re-imp)93.26 13493.00 12694.06 18696.14 17586.71 22098.68 14696.70 19288.30 19089.71 19297.64 14185.43 12796.39 27388.06 19896.32 14499.08 113
h-mvs3392.47 15191.95 14794.05 18797.13 13385.01 26598.36 18998.08 4493.85 5396.27 8896.73 18583.19 15899.43 12095.81 8868.09 35297.70 184
MSDG88.29 23386.37 24694.04 18896.90 14186.15 23796.52 28394.36 32577.89 34279.22 30896.95 17369.72 27399.59 10273.20 33192.58 18796.37 224
EPP-MVSNet93.75 11693.67 10794.01 18995.86 18385.70 25098.67 14897.66 8984.46 26991.36 16697.18 16391.16 3197.79 20192.93 14493.75 17498.53 155
FMVSNet388.81 22387.08 23693.99 19096.52 15494.59 4798.08 21496.20 22585.85 24582.12 27091.60 28574.05 24095.40 32079.04 28780.24 28191.99 272
Anonymous2024052987.66 24585.58 25893.92 19197.59 11685.01 26598.13 20697.13 16866.69 37888.47 20096.01 20555.09 34999.51 10887.00 20784.12 25697.23 198
BH-w/o92.32 15391.79 15093.91 19296.85 14286.18 23599.11 10495.74 26788.13 19584.81 23197.00 17177.26 22197.91 19289.16 18998.03 11097.64 185
MVSTER92.71 14392.32 13793.86 19397.29 12592.95 8199.01 11696.59 19990.09 13685.51 22794.00 23994.61 1696.56 26190.77 16783.03 26892.08 269
PVSNet_BlendedMVS93.36 12993.20 11893.84 19498.77 8391.61 9799.47 5398.04 4791.44 10294.21 12492.63 26983.50 14999.87 5697.41 5783.37 26590.05 329
tpm291.77 16491.09 16393.82 19594.83 23085.56 25492.51 34297.16 16584.00 27593.83 13290.66 30687.54 7797.17 23587.73 20291.55 20598.72 146
iter_conf_final93.22 13593.04 12393.76 19697.03 13992.22 9099.05 11093.31 34192.11 9186.93 21495.42 21595.01 1096.59 25793.98 12584.48 25192.46 251
tpm cat188.89 21787.27 23393.76 19695.79 18585.32 25990.76 36097.09 17476.14 34885.72 22588.59 33882.92 16398.04 18876.96 30291.43 20897.90 181
PVSNet_083.28 1687.31 24985.16 26493.74 19894.78 23184.59 27098.91 12698.69 2189.81 14278.59 31593.23 25961.95 32499.34 13294.75 11255.72 37997.30 195
GeoE90.60 18889.56 18893.72 19995.10 21885.43 25599.41 6694.94 30683.96 27787.21 21196.83 18274.37 23697.05 24180.50 28193.73 17598.67 150
VPNet88.30 23286.57 24393.49 20091.95 29291.35 10198.18 20397.20 16288.61 17584.52 23694.89 22462.21 32396.76 25389.34 18472.26 33992.36 254
VPA-MVSNet89.10 21287.66 22793.45 20192.56 28091.02 11397.97 22198.32 3086.92 22686.03 22292.01 27668.84 27997.10 23990.92 16275.34 30692.23 260
tpmvs89.16 21187.76 22493.35 20297.19 12884.75 26990.58 36297.36 14881.99 31284.56 23489.31 33583.98 14598.17 17874.85 31890.00 22197.12 199
BH-untuned91.46 16990.84 17093.33 20396.51 15584.83 26898.84 13195.50 28186.44 24083.50 24396.70 18675.49 22897.77 20386.78 21397.81 11397.40 192
FMVSNet286.90 25384.79 27293.24 20495.11 21592.54 8797.67 24195.86 26282.94 29580.55 29191.17 29462.89 32095.29 32277.23 29979.71 28791.90 273
FIs90.70 18589.87 18593.18 20592.29 28491.12 10798.17 20598.25 3289.11 16283.44 24494.82 22782.26 18096.17 29187.76 20182.76 27092.25 258
CR-MVSNet88.83 22187.38 23193.16 20693.47 26786.24 23184.97 37594.20 32888.92 17090.76 17486.88 35284.43 13994.82 33270.64 33992.17 19598.41 160
UniMVSNet (Re)89.50 20988.32 21793.03 20792.21 28690.96 11598.90 12798.39 2789.13 16183.22 24692.03 27481.69 18796.34 28186.79 21272.53 33591.81 274
F-COLMAP92.07 16191.75 15293.02 20898.16 9882.89 29398.79 13895.97 24186.54 23587.92 20397.80 13078.69 21399.65 9685.97 21995.93 15496.53 219
mvsany_test194.57 9795.09 7792.98 20995.84 18482.07 30398.76 14095.24 29792.87 7596.45 8598.71 9284.81 13699.15 13997.68 5395.49 16097.73 183
NR-MVSNet87.74 24486.00 25292.96 21091.46 30190.68 12296.65 28197.42 14288.02 19973.42 34193.68 24777.31 22095.83 30884.26 24171.82 34392.36 254
XXY-MVS87.75 24186.02 25192.95 21190.46 31489.70 15097.71 23895.90 25684.02 27480.95 28794.05 23467.51 29297.10 23985.16 22878.41 29092.04 271
Patchmatch-test86.25 26784.06 28492.82 21294.42 23882.88 29482.88 38294.23 32771.58 36079.39 30690.62 30989.00 5796.42 27263.03 36491.37 21099.16 104
DU-MVS88.83 22187.51 22892.79 21391.46 30190.07 13898.71 14297.62 10188.87 17183.21 24793.68 24774.63 23095.93 30286.95 20872.47 33692.36 254
PMMVS93.62 12293.90 10392.79 21396.79 14781.40 31098.85 12996.81 18991.25 10796.82 7798.15 12477.02 22298.13 18093.15 14296.30 14698.83 137
UniMVSNet_NR-MVSNet89.60 20688.55 21492.75 21592.17 28790.07 13898.74 14198.15 4088.37 18683.21 24793.98 24082.86 16495.93 30286.95 20872.47 33692.25 258
sd_testset89.23 21088.05 22392.74 21696.80 14585.33 25895.85 30897.03 17988.34 18885.73 22395.26 21961.12 32897.76 20885.61 22586.75 23295.14 232
EPNet_dtu92.28 15592.15 14292.70 21797.29 12584.84 26798.64 15297.82 6092.91 7393.02 14297.02 17085.48 12695.70 31272.25 33594.89 16597.55 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 3797.84 1092.68 21898.71 8578.11 33999.70 2497.71 8098.18 197.36 6099.76 190.37 4599.94 3499.27 1499.54 5299.99 1
FC-MVSNet-test90.22 19489.40 19392.67 21991.78 29689.86 14797.89 22398.22 3588.81 17282.96 25294.66 22981.90 18695.96 30085.89 22382.52 27392.20 264
WR-MVS88.54 23087.22 23592.52 22091.93 29489.50 15498.56 16397.84 5786.99 22181.87 27893.81 24474.25 23995.92 30485.29 22774.43 31692.12 267
MIMVSNet84.48 29281.83 30292.42 22191.73 29787.36 20685.52 37194.42 32381.40 31881.91 27687.58 34251.92 35892.81 35273.84 32688.15 22697.08 203
HQP-MVS91.50 16791.23 16192.29 22293.95 25186.39 22699.16 9196.37 21493.92 4887.57 20596.67 18873.34 24497.77 20393.82 13186.29 23592.72 246
miper_enhance_ethall90.33 19189.70 18692.22 22397.12 13488.93 17098.35 19095.96 24388.60 17683.14 25192.33 27187.38 8096.18 28986.49 21577.89 29391.55 285
PatchT85.44 28083.19 28992.22 22393.13 27683.00 28983.80 38196.37 21470.62 36390.55 17779.63 37684.81 13694.87 33058.18 37591.59 20498.79 141
AUN-MVS90.17 19689.50 18992.19 22596.21 16982.67 29797.76 23497.53 11988.05 19791.67 15696.15 20083.10 16097.47 22588.11 19766.91 35896.43 222
HQP_MVS91.26 17290.95 16792.16 22693.84 25886.07 24199.02 11496.30 21893.38 6486.99 21296.52 19072.92 25097.75 20993.46 13686.17 23892.67 248
hse-mvs291.67 16691.51 15692.15 22796.22 16882.61 29997.74 23597.53 11993.85 5396.27 8896.15 20083.19 15897.44 22895.81 8866.86 35996.40 223
CLD-MVS91.06 17890.71 17492.10 22894.05 25086.10 23899.55 4296.29 22194.16 4384.70 23397.17 16469.62 27597.82 19994.74 11386.08 24092.39 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 24186.31 24792.07 22990.81 30988.56 17898.33 19197.18 16387.76 20781.87 27893.90 24272.45 25495.43 31883.13 25771.30 34692.23 260
test_vis1_n_192093.08 13993.42 11292.04 23096.31 16479.36 32799.83 796.06 23796.72 898.53 3098.10 12558.57 33599.91 4397.86 5198.79 9496.85 209
cl2289.57 20788.79 20691.91 23197.94 10487.62 19797.98 22096.51 20685.03 26082.37 26691.79 28183.65 14796.50 26685.96 22077.89 29391.61 282
XVG-OURS90.83 18290.49 17891.86 23295.23 20481.25 31495.79 31095.92 25088.96 16690.02 18798.03 12671.60 26499.35 13191.06 16087.78 22894.98 235
XVG-OURS-SEG-HR90.95 18090.66 17691.83 23395.18 21081.14 31795.92 30295.92 25088.40 18590.33 18397.85 12770.66 27099.38 12692.83 14688.83 22494.98 235
tpm89.67 20588.95 20291.82 23492.54 28181.43 30992.95 33695.92 25087.81 20590.50 17989.44 33284.99 13295.65 31383.67 25282.71 27198.38 163
pmmvs487.58 24786.17 25091.80 23589.58 32688.92 17197.25 25695.28 29382.54 30380.49 29293.17 26175.62 22796.05 29682.75 26078.90 28890.42 320
GBi-Net86.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
test186.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
FMVSNet183.94 30081.32 30891.80 23591.94 29388.81 17396.77 27495.25 29477.98 33878.25 31890.25 32050.37 36494.97 32773.27 33077.81 29791.62 279
v2v48287.27 25085.76 25591.78 23989.59 32587.58 19898.56 16395.54 27984.53 26882.51 26091.78 28273.11 24996.47 26982.07 26674.14 32291.30 296
mvsmamba89.99 20189.42 19291.69 24090.64 31286.34 22998.40 18392.27 35391.01 11084.80 23294.93 22376.12 22496.51 26592.81 14783.84 25892.21 262
tt080586.50 26384.79 27291.63 24191.97 29081.49 30896.49 28497.38 14682.24 30982.44 26195.82 20851.22 36098.25 17684.55 23880.96 28095.13 234
OPM-MVS89.76 20489.15 19891.57 24290.53 31385.58 25398.11 21095.93 24992.88 7486.05 22196.47 19367.06 29697.87 19689.29 18786.08 24091.26 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth88.94 21588.12 22191.40 24395.32 20286.93 21697.85 22795.55 27884.19 27281.97 27591.50 28784.16 14295.91 30584.69 23577.89 29391.36 293
v114486.83 25585.31 26391.40 24389.75 32387.21 21498.31 19495.45 28483.22 28982.70 25590.78 30073.36 24396.36 27579.49 28474.69 31390.63 317
EI-MVSNet89.87 20389.38 19491.36 24594.32 24285.87 24697.61 24396.59 19985.10 25785.51 22797.10 16681.30 19496.56 26183.85 25183.03 26891.64 277
UniMVSNet_ETH3D85.65 27983.79 28791.21 24690.41 31580.75 32195.36 31495.78 26478.76 33681.83 28194.33 23349.86 36596.66 25484.30 24083.52 26496.22 225
v119286.32 26684.71 27491.17 24789.53 32986.40 22598.13 20695.44 28682.52 30482.42 26390.62 30971.58 26596.33 28277.23 29974.88 31090.79 310
bld_raw_dy_0_6487.82 23786.71 24291.15 24889.54 32885.61 25197.37 25089.16 37789.26 15783.42 24594.50 23165.79 30496.18 28988.00 19983.37 26591.67 276
v886.11 26884.45 27991.10 24989.99 31886.85 21797.24 25795.36 29181.99 31279.89 30089.86 32874.53 23496.39 27378.83 29172.32 33890.05 329
c3_l88.19 23587.23 23491.06 25094.97 22486.17 23697.72 23695.38 28983.43 28681.68 28291.37 28982.81 16595.72 31184.04 24873.70 32491.29 297
IterMVS-LS88.34 23187.44 22991.04 25194.10 24685.85 24798.10 21195.48 28285.12 25682.03 27491.21 29381.35 19395.63 31483.86 25075.73 30591.63 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 20889.05 20091.00 25288.77 33784.36 27397.39 24795.97 24188.47 17881.88 27793.80 24582.48 17496.50 26689.34 18483.34 26792.15 265
V4287.00 25285.68 25790.98 25389.91 31986.08 23998.32 19395.61 27583.67 28382.72 25490.67 30574.00 24196.53 26381.94 26974.28 31990.32 322
Anonymous2023121184.72 28782.65 29890.91 25497.71 11084.55 27197.28 25496.67 19366.88 37779.18 30990.87 29958.47 33696.60 25682.61 26274.20 32091.59 284
v14419286.40 26484.89 26990.91 25489.48 33085.59 25298.21 20195.43 28782.45 30682.62 25890.58 31272.79 25396.36 27578.45 29474.04 32390.79 310
cl____87.82 23786.79 24190.89 25694.88 22885.43 25597.81 22895.24 29782.91 29980.71 29091.22 29281.97 18595.84 30781.34 27275.06 30891.40 292
DIV-MVS_self_test87.82 23786.81 24090.87 25794.87 22985.39 25797.81 22895.22 30282.92 29880.76 28991.31 29181.99 18395.81 30981.36 27175.04 30991.42 291
v1085.73 27784.01 28590.87 25790.03 31786.73 21997.20 26095.22 30281.25 32079.85 30189.75 32973.30 24696.28 28776.87 30372.64 33489.61 337
test_vis1_n90.40 18990.27 18090.79 25991.55 29976.48 34499.12 10394.44 32094.31 3997.34 6196.95 17343.60 37499.42 12197.57 5597.60 11896.47 220
v192192086.02 26984.44 28090.77 26089.32 33285.20 26098.10 21195.35 29282.19 31082.25 26890.71 30270.73 26896.30 28676.85 30474.49 31590.80 309
v124085.77 27684.11 28390.73 26189.26 33385.15 26397.88 22595.23 30181.89 31582.16 26990.55 31469.60 27696.31 28375.59 31374.87 31190.72 314
MVS-HIRNet79.01 32375.13 33590.66 26293.82 26181.69 30685.16 37293.75 33454.54 38274.17 33759.15 38857.46 33996.58 26063.74 36194.38 16893.72 240
dmvs_re88.69 22788.06 22290.59 26393.83 26078.68 33395.75 31196.18 22887.99 20084.48 23796.32 19867.52 29196.94 24584.98 23285.49 24496.14 226
test_fmvs192.35 15292.94 12790.57 26497.19 12875.43 34899.55 4294.97 30495.20 2996.82 7797.57 14559.59 33399.84 6797.30 5998.29 10896.46 221
ACMH83.09 1784.60 28982.61 29990.57 26493.18 27582.94 29096.27 29094.92 30781.01 32372.61 35093.61 25056.54 34197.79 20174.31 32181.07 27990.99 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 30181.35 30790.56 26691.37 30388.06 18797.29 25397.87 5578.51 33776.20 32490.91 29764.78 31296.47 26961.71 36773.50 32787.13 359
AllTest84.97 28583.12 29090.52 26796.82 14378.84 33195.89 30392.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
TestCases90.52 26796.82 14378.84 33192.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
ACMM86.95 1388.77 22488.22 21990.43 26993.61 26481.34 31298.50 16995.92 25087.88 20483.85 24295.20 22167.20 29497.89 19486.90 21184.90 24792.06 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 28882.78 29590.40 27089.58 32685.18 26197.31 25294.73 31381.93 31476.05 32692.01 27665.48 30996.11 29478.75 29269.14 34989.91 332
KD-MVS_2432*160082.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
miper_refine_blended82.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
v14886.38 26585.06 26590.37 27389.47 33184.10 27798.52 16595.48 28283.80 27980.93 28890.22 32374.60 23296.31 28380.92 27571.55 34490.69 315
pmmvs585.87 27184.40 28290.30 27488.53 34184.23 27498.60 15893.71 33581.53 31780.29 29492.02 27564.51 31395.52 31682.04 26878.34 29191.15 300
LTVRE_ROB81.71 1984.59 29082.72 29790.18 27592.89 27983.18 28893.15 33494.74 31278.99 33375.14 33492.69 26765.64 30697.63 21669.46 34381.82 27789.74 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 28682.93 29190.16 27691.73 29783.54 28495.00 31793.30 34288.77 17373.19 34393.30 25753.62 35497.65 21575.88 31181.54 27889.30 340
ACMP87.39 1088.71 22688.24 21890.12 27793.91 25681.06 31898.50 16995.67 27289.43 15480.37 29395.55 21165.67 30597.83 19890.55 16884.51 24991.47 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs1_n91.07 17791.41 15890.06 27894.10 24674.31 35299.18 8794.84 30894.81 3196.37 8797.46 14950.86 36399.82 7497.14 6297.90 11196.04 228
eth_miper_zixun_eth87.76 24087.00 23890.06 27894.67 23482.65 29897.02 26795.37 29084.19 27281.86 28091.58 28681.47 19095.90 30683.24 25373.61 32591.61 282
LPG-MVS_test88.86 21888.47 21690.06 27893.35 27280.95 31998.22 19995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
LGP-MVS_train90.06 27893.35 27280.95 31995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
test0.0.03 188.96 21488.61 21090.03 28291.09 30684.43 27298.97 12197.02 18190.21 13080.29 29496.31 19984.89 13491.93 36472.98 33285.70 24393.73 239
RRT_MVS88.91 21688.56 21389.93 28390.31 31681.61 30798.08 21496.38 21389.30 15682.41 26494.84 22673.15 24896.04 29790.38 16982.23 27592.15 265
jajsoiax87.35 24886.51 24589.87 28487.75 35181.74 30597.03 26595.98 24088.47 17880.15 29693.80 24561.47 32596.36 27589.44 18284.47 25291.50 286
ADS-MVSNet287.62 24686.88 23989.86 28596.21 16979.14 32987.15 36892.99 34383.01 29289.91 18887.27 34878.87 21092.80 35374.20 32392.27 19297.64 185
test_djsdf88.26 23487.73 22589.84 28688.05 34682.21 30197.77 23296.17 22986.84 22782.41 26491.95 28072.07 25895.99 29889.83 17484.50 25091.32 295
ppachtmachnet_test83.63 30281.57 30589.80 28789.01 33485.09 26497.13 26294.50 31978.84 33476.14 32591.00 29669.78 27294.61 33763.40 36274.36 31789.71 336
CP-MVSNet86.54 26185.45 26189.79 28891.02 30882.78 29697.38 24997.56 11485.37 25379.53 30593.03 26371.86 26195.25 32379.92 28273.43 33091.34 294
mvs_tets87.09 25186.22 24889.71 28987.87 34781.39 31196.73 27995.90 25688.19 19479.99 29893.61 25059.96 33296.31 28389.40 18384.34 25391.43 290
D2MVS87.96 23687.39 23089.70 29091.84 29583.40 28598.31 19498.49 2388.04 19878.23 31990.26 31973.57 24296.79 25284.21 24283.53 26388.90 345
COLMAP_ROBcopyleft82.69 1884.54 29182.82 29289.70 29096.72 14978.85 33095.89 30392.83 34771.55 36177.54 32295.89 20759.40 33499.14 14367.26 35288.26 22591.11 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 26285.49 26089.66 29291.04 30783.31 28797.53 24598.20 3684.95 26379.64 30290.90 29878.01 21795.33 32176.29 30872.81 33290.35 321
Fast-Effi-MVS+-dtu88.84 21988.59 21289.58 29393.44 27078.18 33798.65 15094.62 31788.46 18084.12 24095.37 21868.91 27796.52 26482.06 26791.70 20394.06 238
anonymousdsp86.69 25785.75 25689.53 29486.46 35982.94 29096.39 28695.71 26883.97 27679.63 30390.70 30368.85 27895.94 30186.01 21884.02 25789.72 335
our_test_384.47 29382.80 29389.50 29589.01 33483.90 28097.03 26594.56 31881.33 31975.36 33390.52 31571.69 26394.54 33868.81 34676.84 30190.07 327
Patchmtry83.61 30381.64 30389.50 29593.36 27182.84 29584.10 37894.20 32869.47 37079.57 30486.88 35284.43 13994.78 33368.48 34874.30 31890.88 307
PS-CasMVS85.81 27484.58 27789.49 29790.77 31082.11 30297.20 26097.36 14884.83 26579.12 31092.84 26667.42 29395.16 32578.39 29573.25 33191.21 299
v7n84.42 29482.75 29689.43 29888.15 34481.86 30496.75 27795.67 27280.53 32678.38 31789.43 33369.89 27196.35 28073.83 32772.13 34090.07 327
JIA-IIPM85.97 27084.85 27089.33 29993.23 27473.68 35585.05 37497.13 16869.62 36991.56 16068.03 38488.03 7196.96 24377.89 29793.12 17897.34 194
MS-PatchMatch86.75 25685.92 25389.22 30091.97 29082.47 30096.91 26996.14 23183.74 28077.73 32093.53 25358.19 33797.37 23376.75 30598.35 10487.84 351
IterMVS85.81 27484.67 27589.22 30093.51 26683.67 28396.32 28994.80 31185.09 25878.69 31190.17 32666.57 30093.17 34979.48 28577.42 29990.81 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 29582.56 30089.15 30293.73 26379.16 32896.43 28594.28 32681.09 32274.00 33894.03 23754.58 35197.67 21276.10 30978.81 28990.63 317
TransMVSNet (Re)81.97 30979.61 31889.08 30389.70 32484.01 27897.26 25591.85 36178.84 33473.07 34791.62 28467.17 29595.21 32467.50 35159.46 37388.02 350
PEN-MVS85.21 28283.93 28689.07 30489.89 32181.31 31397.09 26397.24 15584.45 27078.66 31292.68 26868.44 28294.87 33075.98 31070.92 34791.04 303
miper_lstm_enhance86.90 25386.20 24989.00 30594.53 23781.19 31596.74 27895.24 29782.33 30880.15 29690.51 31681.99 18394.68 33680.71 27773.58 32691.12 301
IterMVS-SCA-FT85.73 27784.64 27689.00 30593.46 26982.90 29296.27 29094.70 31485.02 26178.62 31390.35 31866.61 29893.33 34679.38 28677.36 30090.76 312
MVP-Stereo86.61 26085.83 25488.93 30788.70 33983.85 28196.07 29994.41 32482.15 31175.64 33191.96 27967.65 29096.45 27177.20 30198.72 9586.51 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 27384.82 27188.87 30888.73 33883.34 28698.63 15391.66 36280.41 33082.44 26191.35 29074.63 23095.42 31984.13 24471.39 34587.84 351
XVG-ACMP-BASELINE85.86 27284.95 26888.57 30989.90 32077.12 34394.30 32395.60 27687.40 21882.12 27092.99 26553.42 35597.66 21385.02 23183.83 25990.92 306
LCM-MVSNet-Re88.59 22988.61 21088.51 31095.53 19572.68 36096.85 27288.43 37988.45 18173.14 34490.63 30875.82 22594.38 33992.95 14395.71 15798.48 158
CVMVSNet90.30 19290.91 16888.46 31194.32 24273.58 35697.61 24397.59 10890.16 13588.43 20197.10 16676.83 22392.86 35082.64 26193.54 17698.93 127
DTE-MVSNet84.14 29782.80 29388.14 31288.95 33679.87 32496.81 27396.24 22383.50 28577.60 32192.52 27067.89 28994.24 34172.64 33469.05 35090.32 322
ITE_SJBPF87.93 31392.26 28576.44 34593.47 34087.67 21379.95 29995.49 21456.50 34297.38 23175.24 31482.33 27489.98 331
TinyColmap80.42 31777.94 32287.85 31492.09 28878.58 33493.74 32889.94 37274.99 35169.77 35591.78 28246.09 37097.58 22065.17 36077.89 29387.38 354
Effi-MVS+-dtu89.97 20290.68 17587.81 31595.15 21171.98 36297.87 22695.40 28891.92 9387.57 20591.44 28874.27 23896.84 24889.45 18193.10 17994.60 237
pmmvs679.90 31977.31 32587.67 31684.17 36678.13 33895.86 30793.68 33667.94 37472.67 34989.62 33150.98 36295.75 31074.80 31966.04 36089.14 343
FMVSNet582.29 30780.54 31187.52 31793.79 26284.01 27893.73 32992.47 35176.92 34574.27 33686.15 35663.69 31889.24 37569.07 34574.79 31289.29 341
myMVS_eth3d88.68 22889.07 19987.50 31895.14 21279.74 32597.68 23996.66 19486.52 23682.63 25696.84 18085.22 13189.89 37069.43 34491.54 20692.87 244
MDA-MVSNet_test_wron79.65 32177.05 32687.45 31987.79 35080.13 32296.25 29394.44 32073.87 35651.80 38287.47 34768.04 28692.12 36266.02 35667.79 35590.09 325
YYNet179.64 32277.04 32787.43 32087.80 34979.98 32396.23 29494.44 32073.83 35751.83 38187.53 34367.96 28892.07 36366.00 35767.75 35690.23 324
Patchmatch-RL test81.90 31180.13 31487.23 32180.71 37570.12 36984.07 37988.19 38083.16 29170.57 35282.18 36787.18 8792.59 35582.28 26562.78 36698.98 119
MDA-MVSNet-bldmvs77.82 33174.75 33787.03 32288.33 34278.52 33596.34 28892.85 34675.57 34948.87 38487.89 34057.32 34092.49 35860.79 36964.80 36490.08 326
EG-PatchMatch MVS79.92 31877.59 32386.90 32387.06 35677.90 34196.20 29794.06 33074.61 35366.53 36988.76 33740.40 37996.20 28867.02 35383.66 26286.61 360
OpenMVS_ROBcopyleft73.86 2077.99 33075.06 33686.77 32483.81 36877.94 34096.38 28791.53 36567.54 37568.38 36087.13 35143.94 37296.08 29555.03 37881.83 27686.29 363
pmmvs-eth3d78.71 32676.16 33186.38 32580.25 37781.19 31594.17 32592.13 35777.97 33966.90 36882.31 36655.76 34392.56 35673.63 32962.31 36985.38 366
testing387.75 24188.22 21986.36 32694.66 23577.41 34299.52 4897.95 5286.05 24381.12 28696.69 18786.18 11389.31 37461.65 36890.12 22092.35 257
test_040278.81 32576.33 33086.26 32791.18 30578.44 33695.88 30591.34 36668.55 37170.51 35489.91 32752.65 35794.99 32647.14 38379.78 28685.34 368
testgi82.29 30781.00 31086.17 32887.24 35474.84 35197.39 24791.62 36388.63 17475.85 33095.42 21546.07 37191.55 36566.87 35579.94 28592.12 267
TDRefinement78.01 32975.31 33386.10 32970.06 38873.84 35493.59 33291.58 36474.51 35473.08 34691.04 29549.63 36797.12 23674.88 31759.47 37287.33 356
SixPastTwentyTwo82.63 30681.58 30485.79 33088.12 34571.01 36595.17 31692.54 35084.33 27172.93 34892.08 27360.41 33195.61 31574.47 32074.15 32190.75 313
OurMVSNet-221017-084.13 29883.59 28885.77 33187.81 34870.24 36794.89 31893.65 33786.08 24276.53 32393.28 25861.41 32696.14 29380.95 27477.69 29890.93 305
UnsupCasMVSNet_eth78.90 32476.67 32985.58 33282.81 37174.94 35091.98 34596.31 21784.64 26765.84 37187.71 34151.33 35992.23 36072.89 33356.50 37889.56 338
test_vis1_rt81.31 31380.05 31685.11 33391.29 30470.66 36698.98 12077.39 39485.76 24868.80 35882.40 36536.56 38199.44 11792.67 14986.55 23485.24 369
lessismore_v085.08 33485.59 36269.28 37090.56 37067.68 36490.21 32454.21 35395.46 31773.88 32562.64 36790.50 319
UnsupCasMVSNet_bld73.85 34070.14 34484.99 33579.44 37875.73 34688.53 36595.24 29770.12 36761.94 37574.81 38141.41 37793.62 34468.65 34751.13 38585.62 365
K. test v381.04 31479.77 31784.83 33687.41 35270.23 36895.60 31393.93 33283.70 28267.51 36589.35 33455.76 34393.58 34576.67 30668.03 35390.67 316
Anonymous2023120680.76 31579.42 31984.79 33784.78 36472.98 35796.53 28292.97 34479.56 33174.33 33588.83 33661.27 32792.15 36160.59 37075.92 30489.24 342
RPSCF85.33 28185.55 25984.67 33894.63 23662.28 37793.73 32993.76 33374.38 35585.23 23097.06 16964.09 31498.31 17180.98 27386.08 24093.41 243
CL-MVSNet_self_test79.89 32078.34 32184.54 33981.56 37375.01 34996.88 27195.62 27481.10 32175.86 32985.81 35768.49 28190.26 36863.21 36356.51 37788.35 348
LF4IMVS81.94 31081.17 30984.25 34087.23 35568.87 37293.35 33391.93 36083.35 28875.40 33293.00 26449.25 36896.65 25578.88 29078.11 29287.22 358
test_fmvs285.10 28385.45 26184.02 34189.85 32265.63 37598.49 17192.59 34990.45 12585.43 22993.32 25543.94 37296.59 25790.81 16584.19 25589.85 333
Anonymous2024052178.63 32776.90 32883.82 34282.82 37072.86 35895.72 31293.57 33873.55 35872.17 35184.79 35949.69 36692.51 35765.29 35974.50 31486.09 364
MIMVSNet175.92 33573.30 34083.81 34381.29 37475.57 34792.26 34392.05 35873.09 35967.48 36686.18 35540.87 37887.64 37955.78 37770.68 34888.21 349
EU-MVSNet84.19 29684.42 28183.52 34488.64 34067.37 37396.04 30095.76 26685.29 25478.44 31693.18 26070.67 26991.48 36675.79 31275.98 30391.70 275
new_pmnet76.02 33473.71 33982.95 34583.88 36772.85 35991.26 35592.26 35470.44 36562.60 37481.37 36947.64 36992.32 35961.85 36672.10 34183.68 374
Syy-MVS84.10 29984.53 27882.83 34695.14 21265.71 37497.68 23996.66 19486.52 23682.63 25696.84 18068.15 28489.89 37045.62 38491.54 20692.87 244
KD-MVS_self_test77.47 33275.88 33282.24 34781.59 37268.93 37192.83 34094.02 33177.03 34473.14 34483.39 36255.44 34790.42 36767.95 34957.53 37687.38 354
pmmvs372.86 34169.76 34682.17 34873.86 38474.19 35394.20 32489.01 37864.23 38167.72 36380.91 37341.48 37688.65 37762.40 36554.02 38183.68 374
DSMNet-mixed81.60 31281.43 30682.10 34984.36 36560.79 37893.63 33186.74 38279.00 33279.32 30787.15 35063.87 31689.78 37266.89 35491.92 19795.73 230
new-patchmatchnet74.80 33972.40 34281.99 35078.36 38072.20 36194.44 32192.36 35277.06 34363.47 37379.98 37551.04 36188.85 37660.53 37154.35 38084.92 371
test20.0378.51 32877.48 32481.62 35183.07 36971.03 36496.11 29892.83 34781.66 31669.31 35789.68 33057.53 33887.29 38058.65 37468.47 35186.53 361
CMPMVSbinary58.40 2180.48 31680.11 31581.59 35285.10 36359.56 38094.14 32695.95 24568.54 37260.71 37693.31 25655.35 34897.87 19683.06 25884.85 24887.33 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 33872.85 34180.98 35378.98 37964.75 37690.81 35985.77 38380.95 32468.23 36282.81 36329.08 38592.84 35176.54 30762.46 36885.36 367
mvsany_test375.85 33674.52 33879.83 35473.53 38560.64 37991.73 34887.87 38183.91 27870.55 35382.52 36431.12 38393.66 34386.66 21462.83 36585.19 370
ambc79.60 35572.76 38756.61 38276.20 38692.01 35968.25 36180.23 37423.34 38794.73 33473.78 32860.81 37087.48 353
EGC-MVSNET60.70 35055.37 35476.72 35686.35 36071.08 36389.96 36384.44 3870.38 3991.50 40084.09 36137.30 38088.10 37840.85 38873.44 32970.97 384
DeepMVS_CXcopyleft76.08 35790.74 31151.65 39090.84 36886.47 23957.89 37887.98 33935.88 38292.60 35465.77 35865.06 36383.97 373
test_f71.94 34270.82 34375.30 35872.77 38653.28 38691.62 34989.66 37575.44 35064.47 37278.31 37820.48 38989.56 37378.63 29366.02 36183.05 377
test_fmvs375.09 33775.19 33474.81 35977.45 38154.08 38595.93 30190.64 36982.51 30573.29 34281.19 37022.29 38886.29 38185.50 22667.89 35484.06 372
APD_test168.93 34566.98 34874.77 36080.62 37653.15 38787.97 36685.01 38553.76 38359.26 37787.52 34425.19 38689.95 36956.20 37667.33 35781.19 378
test_method70.10 34468.66 34774.41 36186.30 36155.84 38394.47 32089.82 37335.18 39066.15 37084.75 36030.54 38477.96 39170.40 34260.33 37189.44 339
dmvs_testset77.17 33378.99 32071.71 36287.25 35338.55 39991.44 35281.76 39085.77 24769.49 35695.94 20669.71 27484.37 38252.71 38176.82 30292.21 262
LCM-MVSNet60.07 35156.37 35371.18 36354.81 39748.67 39182.17 38389.48 37637.95 38849.13 38369.12 38213.75 39681.76 38359.28 37251.63 38483.10 376
N_pmnet70.19 34369.87 34571.12 36488.24 34330.63 40395.85 30828.70 40270.18 36668.73 35986.55 35464.04 31593.81 34253.12 38073.46 32888.94 344
PMMVS258.97 35255.07 35570.69 36562.72 39255.37 38485.97 37080.52 39149.48 38445.94 38568.31 38315.73 39480.78 38749.79 38237.12 39075.91 379
test_vis3_rt61.29 34958.75 35268.92 36667.41 38952.84 38891.18 35759.23 40166.96 37641.96 38958.44 38911.37 39794.72 33574.25 32257.97 37559.20 388
WB-MVS66.44 34666.29 34966.89 36774.84 38244.93 39493.00 33584.09 38871.15 36255.82 37981.63 36863.79 31780.31 38921.85 39350.47 38675.43 380
SSC-MVS65.42 34765.20 35066.06 36873.96 38343.83 39592.08 34483.54 38969.77 36854.73 38080.92 37263.30 31979.92 39020.48 39448.02 38774.44 381
FPMVS61.57 34860.32 35165.34 36960.14 39542.44 39791.02 35889.72 37444.15 38542.63 38880.93 37119.02 39080.59 38842.50 38572.76 33373.00 382
ANet_high50.71 35746.17 36064.33 37044.27 39952.30 38976.13 38778.73 39264.95 37927.37 39355.23 39014.61 39567.74 39336.01 38918.23 39372.95 383
testf156.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
APD_test256.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
Gipumacopyleft54.77 35552.22 35962.40 37386.50 35859.37 38150.20 39190.35 37136.52 38941.20 39049.49 39118.33 39281.29 38432.10 39065.34 36246.54 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 35652.86 35856.05 37432.75 40141.97 39873.42 38876.12 39521.91 39539.68 39196.39 19642.59 37565.10 39478.00 29614.92 39561.08 387
PMVScopyleft41.42 2345.67 35842.50 36155.17 37534.28 40032.37 40166.24 38978.71 39330.72 39122.04 39659.59 3874.59 40077.85 39227.49 39158.84 37455.29 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 35937.64 36453.90 37649.46 39843.37 39665.09 39066.66 39826.19 39425.77 39548.53 3923.58 40263.35 39526.15 39227.28 39154.97 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 36040.93 36241.29 37761.97 39333.83 40084.00 38065.17 39927.17 39227.56 39246.72 39317.63 39360.41 39619.32 39518.82 39229.61 392
EMVS39.96 36139.88 36340.18 37859.57 39632.12 40284.79 37764.57 40026.27 39326.14 39444.18 39618.73 39159.29 39717.03 39617.67 39429.12 393
wuyk23d16.71 36416.73 36816.65 37960.15 39425.22 40441.24 3925.17 4036.56 3965.48 3993.61 3993.64 40122.72 39815.20 3979.52 3961.99 396
test12316.58 36519.47 3677.91 3803.59 4035.37 40594.32 3221.39 4052.49 39813.98 39844.60 3952.91 4032.65 39911.35 3990.57 39815.70 394
testmvs18.81 36323.05 3666.10 3814.48 4022.29 40697.78 2303.00 4043.27 39718.60 39762.71 3851.53 4042.49 40014.26 3981.80 39713.50 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k22.52 36230.03 3650.00 3820.00 4040.00 4070.00 39397.17 1640.00 4000.00 40198.77 8374.35 2370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.87 3679.16 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40082.48 1740.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.21 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.50 1060.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS79.74 32567.75 350
FOURS199.50 4288.94 16899.55 4297.47 13391.32 10698.12 42
PC_three_145294.60 3499.41 299.12 4495.50 799.96 2899.84 299.92 399.97 7
test_one_060199.59 2894.89 3497.64 9593.14 6798.93 1999.45 1493.45 18
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.67 1093.28 7197.61 10287.78 20697.41 5899.16 3490.15 4799.56 10398.35 3999.70 35
RE-MVS-def95.70 6199.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6085.24 13096.62 7399.31 6599.60 67
IU-MVS99.63 1895.38 2297.73 7595.54 2499.54 199.69 699.81 2399.99 1
test_241102_TWO97.72 7694.17 4199.23 899.54 393.14 2499.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 7694.16 4399.30 699.49 993.32 1999.98 9
9.1496.87 2499.34 5099.50 4997.49 13089.41 15598.59 2899.43 1689.78 5099.69 8998.69 2899.62 44
save fliter99.34 5093.85 6299.65 3397.63 9995.69 20
test_0728_THIRD93.01 6899.07 1399.46 1094.66 1499.97 2199.25 1699.82 1999.95 15
test072699.66 1295.20 3099.77 1597.70 8193.95 4699.35 599.54 393.18 22
GSMVS98.84 134
test_part299.54 3695.42 2098.13 40
sam_mvs188.39 6398.84 134
sam_mvs87.08 89
MTGPAbinary97.45 136
test_post190.74 36141.37 39785.38 12896.36 27583.16 255
test_post46.00 39487.37 8197.11 237
patchmatchnet-post84.86 35888.73 6096.81 250
MTMP99.21 8491.09 367
gm-plane-assit94.69 23388.14 18588.22 19397.20 16198.29 17390.79 166
test9_res98.60 3199.87 999.90 22
TEST999.57 3393.17 7399.38 6997.66 8989.57 15098.39 3399.18 3190.88 3799.66 92
test_899.55 3593.07 7699.37 7297.64 9590.18 13298.36 3599.19 2890.94 3599.64 98
agg_prior297.84 5299.87 999.91 21
agg_prior99.54 3692.66 8397.64 9597.98 4999.61 100
test_prior492.00 9299.41 66
test_prior299.57 4091.43 10398.12 4298.97 6090.43 4398.33 4099.81 23
旧先验298.67 14885.75 24998.96 1898.97 15093.84 129
新几何298.26 197
旧先验198.97 7392.90 8297.74 7299.15 3791.05 3499.33 6399.60 67
无先验98.52 16597.82 6087.20 22099.90 4887.64 20399.85 30
原ACMM298.69 145
test22298.32 9291.21 10398.08 21497.58 11083.74 28095.87 9699.02 5686.74 9899.64 4099.81 33
testdata299.88 5284.16 243
segment_acmp90.56 41
testdata197.89 22392.43 80
plane_prior793.84 25885.73 249
plane_prior693.92 25586.02 24372.92 250
plane_prior596.30 21897.75 20993.46 13686.17 23892.67 248
plane_prior496.52 190
plane_prior385.91 24493.65 5986.99 212
plane_prior299.02 11493.38 64
plane_prior193.90 257
plane_prior86.07 24199.14 9993.81 5686.26 237
n20.00 406
nn0.00 406
door-mid84.90 386
test1197.68 85
door85.30 384
HQP5-MVS86.39 226
HQP-NCC93.95 25199.16 9193.92 4887.57 205
ACMP_Plane93.95 25199.16 9193.92 4887.57 205
BP-MVS93.82 131
HQP4-MVS87.57 20597.77 20392.72 246
HQP3-MVS96.37 21486.29 235
HQP2-MVS73.34 244
NP-MVS93.94 25486.22 23396.67 188
MDTV_nov1_ep13_2view91.17 10691.38 35387.45 21793.08 14186.67 10087.02 20698.95 125
MDTV_nov1_ep1390.47 17996.14 17588.55 17991.34 35497.51 12589.58 14992.24 15090.50 31786.99 9397.61 21877.64 29892.34 190
ACMMP++_ref82.64 272
ACMMP++83.83 259
Test By Simon83.62 148