This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12488.63 3666.08 6486.77 392.75 3072.05 191.46 6383.35 1793.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3493.09 2554.15 2895.57 1285.80 885.87 3693.31 11
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3192.13 3960.24 694.78 1978.97 4189.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12788.88 2658.00 20483.60 693.39 1667.21 296.39 481.64 2891.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 7993.25 294.80 1
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2293.64 1152.40 3693.27 3088.85 486.56 3092.61 26
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3393.87 752.58 3593.91 2684.17 1287.92 1592.39 30
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 21884.61 494.09 358.81 1196.37 682.28 2387.60 1794.06 3
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2591.09 6055.43 1990.09 10385.01 1080.40 8091.99 43
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2195.30 156.18 1790.97 7882.57 2286.22 3493.28 13
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2393.10 2349.88 5692.98 3284.09 1484.75 4893.08 17
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21281.91 1393.64 1155.17 2096.44 281.68 2687.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2493.00 2853.10 3291.76 5780.40 3489.56 892.68 25
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18071.82 7790.05 8859.72 996.04 1078.37 4788.40 1393.75 7
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 24881.21 1693.69 1056.51 1694.27 2278.36 4885.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 1893.22 2237.77 18792.50 4282.75 2086.25 3391.57 53
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1793.07 2737.63 19292.28 4782.73 2185.71 3791.57 53
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5292.75 3046.88 7793.28 2978.79 4484.07 5391.50 57
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13383.68 14267.85 3869.36 9590.24 8060.20 792.10 5284.14 1380.40 8092.82 21
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 13880.26 2093.10 2346.53 8292.41 4479.97 3588.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3591.72 5049.32 6090.17 10273.46 8382.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22586.41 7469.61 2481.72 1588.16 12455.09 2288.04 17074.12 7886.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24378.56 2892.49 3548.20 6392.65 4079.49 3683.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
9.1478.19 2485.67 5388.32 5088.84 2959.89 16374.58 4692.62 3346.80 7892.66 3981.40 3285.62 39
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3692.02 4344.82 10890.23 10080.83 3380.09 8492.08 38
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 3891.99 4554.07 2989.05 12877.34 5677.00 11092.89 20
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4090.15 8646.77 7991.00 7573.52 8278.46 10193.44 9
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3292.11 4250.90 4789.95 10678.18 5177.54 10793.20 15
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8492.75 3045.52 9590.37 9371.15 9285.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23774.26 4991.60 5554.26 2692.16 4975.87 6279.91 8893.05 18
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 26888.46 4990.32 1171.40 1372.32 7391.72 5053.44 3092.37 4566.28 11975.42 12493.28 13
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19274.63 4492.38 3647.75 6891.35 6578.18 5186.85 2591.15 66
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8388.35 11951.58 4091.22 6879.02 4079.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6491.98 4745.10 10091.27 6675.02 7184.56 4990.84 72
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 10974.63 4490.83 6941.38 15494.40 2075.42 6879.90 8994.72 2
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20173.60 5393.31 1943.14 13193.79 2773.81 8088.53 1292.37 31
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5588.09 12548.07 6492.19 4862.24 14784.53 5091.53 55
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8088.63 11750.89 4990.35 9476.00 6179.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6090.52 7445.23 9990.66 8679.37 3780.95 7290.22 85
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7191.62 5445.53 9490.99 7774.48 7482.51 6091.23 64
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9789.33 10346.70 8088.13 16675.43 6681.48 7189.55 102
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5090.91 6642.14 14289.99 10579.30 3879.12 9591.36 61
jason: jason.
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 20972.99 6190.98 6344.99 10288.58 14778.19 4985.32 4291.34 63
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11371.65 7891.56 5642.33 13892.56 4177.14 5783.69 5590.15 88
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10489.97 9048.03 6591.41 6475.60 6584.14 5289.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16084.88 11471.38 1471.51 8189.15 10650.51 5090.55 9075.71 6378.65 9991.39 59
PAPM76.76 4676.07 4778.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9488.84 11151.57 4187.16 19765.48 12586.68 2890.15 88
APD-MVScopyleft76.15 5375.68 4877.54 8188.52 2753.44 10587.26 7385.03 11053.79 26574.91 4291.68 5243.80 11890.31 9674.36 7581.82 6788.87 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP76.43 4975.66 4978.73 5281.92 13354.67 7984.06 15685.35 9561.10 14372.99 6191.50 5740.25 16391.00 7576.84 5886.98 2390.51 79
MAR-MVS76.76 4675.60 5080.21 2690.87 754.68 7889.14 4189.11 2062.95 11270.54 9292.33 3741.05 15594.95 1757.90 19186.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsm_n_192075.56 6275.54 5175.61 12974.60 26849.51 19681.82 21774.08 29766.52 5580.40 1993.46 1546.95 7689.72 11286.69 575.30 12587.61 147
MVS76.91 4175.48 5281.23 1884.56 7355.21 6080.23 25191.64 258.65 19465.37 13091.48 5845.72 9295.05 1672.11 9089.52 993.44 9
CLD-MVS75.60 6175.39 5376.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13588.93 10842.05 14490.58 8976.57 5973.96 13685.73 185
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR76.39 5075.38 5479.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12289.88 9143.79 11992.16 4975.03 7080.03 8789.64 100
EC-MVSNet75.30 6475.20 5575.62 12880.98 16049.00 20687.43 6584.68 12163.49 10470.97 8890.15 8642.86 13591.14 7274.33 7681.90 6686.71 166
CDPH-MVS76.05 5575.19 5678.62 5786.51 4454.98 6987.32 6884.59 12358.62 19570.75 8990.85 6843.10 13390.63 8870.50 9684.51 5190.24 84
EIA-MVS75.92 5675.18 5778.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10090.53 7345.79 9191.58 6067.21 11282.18 6491.20 65
MP-MVS-pluss75.54 6375.03 5877.04 9481.37 15552.65 12884.34 14784.46 12561.16 14169.14 9691.76 4939.98 17088.99 13378.19 4984.89 4789.48 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS75.82 6075.02 5978.23 6883.88 8753.80 9486.91 8186.05 8159.71 16667.85 10590.55 7242.23 14091.02 7472.66 8885.29 4389.87 97
VDD-MVS76.08 5474.97 6079.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7289.34 10132.52 25692.76 3877.90 5375.96 11892.22 36
MVS_Test75.85 5774.93 6178.62 5784.08 8155.20 6183.99 15885.17 10568.07 3573.38 5782.76 19650.44 5189.00 13165.90 12180.61 7691.64 49
SD-MVS76.18 5274.85 6280.18 2885.39 5956.90 2485.75 10282.45 16656.79 23274.48 4791.81 4843.72 12290.75 8474.61 7378.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_yl75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
DCV-MVSNet75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
diffmvspermissive75.11 6974.65 6576.46 10978.52 21053.35 10983.28 18279.94 20870.51 1871.64 7988.72 11246.02 8886.08 23177.52 5475.75 12289.96 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.15 6874.54 6676.98 9981.67 14351.74 14683.84 16291.94 169.97 2158.98 21186.02 15459.73 891.73 5868.37 10570.40 16987.48 149
MP-MVScopyleft74.99 7074.33 6776.95 10082.89 11553.05 12085.63 10683.50 14757.86 20867.25 10890.24 8043.38 12888.85 14176.03 6082.23 6388.96 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR75.20 6774.13 6878.41 6488.31 3155.10 6584.31 14885.66 8763.76 9767.55 10690.73 7043.48 12789.40 11966.36 11877.03 10990.73 74
fmvsm_s_conf0.5_n74.48 7274.12 6975.56 13176.96 23647.85 24385.32 11469.80 33164.16 8878.74 2693.48 1445.51 9689.29 12186.48 666.62 19689.55 102
ET-MVSNet_ETH3D75.23 6674.08 7078.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28490.22 8249.71 5787.62 18972.12 8970.82 16492.82 21
test_fmvsmconf_n74.41 7474.05 7175.49 13574.16 27448.38 22582.66 19572.57 31067.05 4875.11 4192.88 2946.35 8387.81 17583.93 1571.71 15590.28 83
CHOSEN 1792x268876.24 5174.03 7282.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13783.49 18641.52 15393.69 2870.55 9581.82 6792.12 37
GST-MVS74.87 7173.90 7377.77 7683.30 9953.45 10485.75 10285.29 9959.22 17966.50 11789.85 9240.94 15690.76 8370.94 9483.35 5689.10 114
Effi-MVS+75.24 6573.61 7480.16 2981.92 13357.42 1985.21 11676.71 27460.68 15473.32 5889.34 10147.30 7291.63 5968.28 10679.72 9191.42 58
PVSNet_BlendedMVS73.42 9273.30 7573.76 18085.91 4851.83 14486.18 9284.24 13265.40 7369.09 9780.86 22746.70 8088.13 16675.43 6665.92 20581.33 262
fmvsm_s_conf0.1_n73.80 8373.26 7675.43 13673.28 28347.80 24484.57 14369.43 33363.34 10678.40 2993.29 2044.73 11189.22 12385.99 766.28 20389.26 107
fmvsm_s_conf0.5_n_a73.68 8873.15 7775.29 14275.45 25648.05 23683.88 16168.84 33663.43 10578.60 2793.37 1845.32 9788.92 13885.39 964.04 21688.89 118
test_fmvsmconf0.1_n73.69 8773.15 7775.34 13970.71 31148.26 22982.15 20771.83 31466.75 5174.47 4892.59 3444.89 10587.78 18083.59 1671.35 15989.97 93
CANet_DTU73.71 8673.14 7975.40 13782.61 12450.05 18284.67 14079.36 22469.72 2375.39 3990.03 8929.41 28085.93 23767.99 10879.11 9690.22 85
HY-MVS67.03 573.90 8173.14 7976.18 11784.70 7147.36 25075.56 28286.36 7666.27 5970.66 9183.91 17851.05 4589.31 12067.10 11372.61 14891.88 45
HFP-MVS74.37 7573.13 8178.10 7184.30 7753.68 9785.58 10784.36 12756.82 23065.78 12690.56 7140.70 16190.90 7969.18 10180.88 7389.71 98
h-mvs3373.95 8072.89 8277.15 9280.17 18050.37 17484.68 13883.33 14868.08 3371.97 7588.65 11642.50 13691.15 7178.82 4257.78 27989.91 96
ACMMPR73.76 8472.61 8377.24 9183.92 8552.96 12385.58 10784.29 12856.82 23065.12 13190.45 7537.24 20390.18 10169.18 10180.84 7488.58 127
EI-MVSNet-Vis-set73.19 9572.60 8474.99 15182.56 12549.80 18982.55 20089.00 2266.17 6165.89 12588.98 10743.83 11792.29 4665.38 13269.01 17882.87 238
region2R73.75 8572.55 8577.33 8583.90 8652.98 12285.54 11084.09 13456.83 22965.10 13290.45 7537.34 20190.24 9968.89 10380.83 7588.77 123
3Dnovator64.70 674.46 7372.48 8680.41 2482.84 11755.40 5483.08 18788.61 3867.61 4359.85 19488.66 11334.57 23893.97 2458.42 18188.70 1191.85 46
PVSNet_Blended_VisFu73.40 9372.44 8776.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14285.38 16247.11 7587.38 19467.75 10977.55 10686.81 165
test250672.91 9872.43 8874.32 16380.12 18144.18 29383.19 18484.77 11864.02 9065.97 12387.43 13747.67 6988.72 14259.08 17279.66 9290.08 90
TESTMET0.1,172.86 9972.33 8974.46 15781.98 13250.77 16285.13 11985.47 8966.09 6367.30 10783.69 18337.27 20283.57 26665.06 13378.97 9889.05 115
MVSTER73.25 9472.33 8976.01 12285.54 5653.76 9683.52 16787.16 6167.06 4763.88 15581.66 21952.77 3390.44 9164.66 13464.69 21283.84 220
CostFormer73.89 8272.30 9178.66 5682.36 12856.58 2875.56 28285.30 9866.06 6570.50 9376.88 27157.02 1489.06 12768.27 10768.74 18090.33 82
MSLP-MVS++74.21 7772.25 9280.11 3181.45 15356.47 3386.32 8979.65 21658.19 20066.36 11892.29 3836.11 21990.66 8667.39 11082.49 6193.18 16
iter_conf0573.51 9172.24 9377.33 8587.93 3655.97 4387.90 5770.81 32468.72 2864.04 15084.36 17247.54 7090.87 8071.11 9367.75 18885.13 195
thisisatest051573.64 8972.20 9477.97 7381.63 14453.01 12186.69 8488.81 3062.53 12064.06 14985.65 15852.15 3992.50 4258.43 17969.84 17288.39 132
MVSFormer73.53 9072.19 9577.57 8083.02 10955.24 5881.63 22281.44 18350.28 29076.67 3690.91 6644.82 10886.11 22660.83 15880.09 8491.36 61
VDDNet74.37 7572.13 9681.09 1979.58 18756.52 3290.02 2686.70 7052.61 27571.23 8587.20 14031.75 26693.96 2574.30 7775.77 12192.79 23
baseline172.51 10672.12 9773.69 18385.05 6544.46 28783.51 17186.13 8071.61 1264.64 13987.97 12855.00 2389.48 11759.07 17356.05 29287.13 156
API-MVS74.17 7872.07 9880.49 2290.02 1158.55 887.30 7084.27 12957.51 21765.77 12787.77 13141.61 15195.97 1151.71 23782.63 5986.94 157
fmvsm_s_conf0.1_n_a72.82 10072.05 9975.12 14770.95 31047.97 23982.72 19468.43 33862.52 12178.17 3093.08 2644.21 11488.86 13984.82 1163.54 22288.54 129
PMMVS72.98 9672.05 9975.78 12683.57 9048.60 21784.08 15482.85 16161.62 13468.24 10290.33 7928.35 28487.78 18072.71 8776.69 11290.95 70
IB-MVS68.87 274.01 7972.03 10179.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18281.74 21853.21 3194.28 2160.45 16662.41 23890.03 92
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 10771.73 10274.29 16481.60 14649.29 20081.85 21588.64 3565.29 7865.05 13388.29 12243.18 12991.83 5663.74 13767.97 18581.75 249
XVS72.92 9771.62 10376.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 15389.63 9635.50 22689.78 10965.50 12380.50 7888.16 133
nrg03072.27 11271.56 10474.42 15975.93 25050.60 16686.97 7883.21 15362.75 11567.15 10984.38 17050.07 5386.66 21271.19 9162.37 23985.99 179
HPM-MVScopyleft72.60 10371.50 10575.89 12482.02 13151.42 15480.70 24483.05 15656.12 24264.03 15189.53 9737.55 19588.37 15570.48 9780.04 8687.88 140
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 10571.46 10676.00 12382.93 11452.32 13586.93 8082.48 16555.15 25263.65 15790.44 7835.03 23488.53 15168.69 10477.83 10587.15 155
HQP-MVS72.34 10871.44 10775.03 14979.02 19751.56 15088.00 5383.68 14265.45 7064.48 14385.13 16337.35 19988.62 14566.70 11473.12 14284.91 199
VPNet72.07 11371.42 10874.04 17078.64 20847.17 25589.91 3187.97 4872.56 964.66 13885.04 16541.83 14988.33 15961.17 15660.97 24586.62 167
MS-PatchMatch72.34 10871.26 10975.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25680.74 22932.28 25992.89 3357.95 19088.10 1478.39 297
MTAPA72.73 10171.22 11077.27 8981.54 15053.57 9967.06 33481.31 18559.41 17368.39 10190.96 6536.07 22189.01 13073.80 8182.45 6289.23 109
PGM-MVS72.60 10371.20 11176.80 10582.95 11252.82 12583.07 18882.14 16856.51 23863.18 16289.81 9335.68 22589.76 11167.30 11180.19 8387.83 141
Fast-Effi-MVS+72.73 10171.15 11277.48 8282.75 11954.76 7286.77 8380.64 19663.05 11165.93 12484.01 17644.42 11389.03 12956.45 20776.36 11788.64 125
ECVR-MVScopyleft71.81 11871.00 11374.26 16580.12 18143.49 29884.69 13782.16 16764.02 9064.64 13987.43 13735.04 23389.21 12461.24 15579.66 9290.08 90
test_fmvsmconf0.01_n71.97 11570.95 11475.04 14866.21 33747.87 24280.35 24870.08 32865.85 6972.69 6691.68 5239.99 16987.67 18482.03 2569.66 17489.58 101
mvs_anonymous72.29 11070.74 11576.94 10182.85 11654.72 7578.43 26881.54 18163.77 9661.69 17979.32 23951.11 4485.31 24462.15 14975.79 12090.79 73
hse-mvs271.44 12570.68 11673.73 18276.34 24147.44 24979.45 26079.47 22068.08 3371.97 7586.01 15642.50 13686.93 20578.82 4253.46 31686.83 164
VPA-MVSNet71.12 12870.66 11772.49 20678.75 20344.43 28987.64 6090.02 1263.97 9365.02 13481.58 22142.14 14287.42 19363.42 13963.38 22785.63 189
SDMVSNet71.89 11670.62 11875.70 12781.70 14051.61 14873.89 29488.72 3366.58 5261.64 18082.38 20937.63 19289.48 11777.44 5565.60 20686.01 177
3Dnovator+62.71 772.29 11070.50 11977.65 7983.40 9751.29 15887.32 6886.40 7559.01 18758.49 22488.32 12132.40 25791.27 6657.04 20082.15 6590.38 81
MVP-Stereo70.97 13270.44 12072.59 20376.03 24951.36 15585.02 12686.99 6460.31 15856.53 25578.92 24540.11 16790.00 10460.00 17090.01 676.41 319
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test111171.06 13070.42 12172.97 19679.48 18841.49 31984.82 13482.74 16264.20 8762.98 16587.43 13735.20 22987.92 17258.54 17878.42 10289.49 104
test_fmvsmvis_n_192071.29 12670.38 12274.00 17271.04 30948.79 21379.19 26364.62 34662.75 11566.73 11091.99 4540.94 15688.35 15783.00 1873.18 14184.85 201
mPP-MVS71.79 12070.38 12276.04 12182.65 12352.06 13784.45 14481.78 17855.59 24762.05 17789.68 9533.48 24888.28 16365.45 12878.24 10487.77 143
DP-MVS Recon71.99 11470.31 12477.01 9690.65 853.44 10589.37 3782.97 15956.33 24063.56 16089.47 9834.02 24292.15 5154.05 22072.41 14985.43 192
xiu_mvs_v1_base_debu71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base_debi71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
FIs70.00 14970.24 12869.30 26377.93 22038.55 33383.99 15887.72 5566.86 5057.66 23784.17 17552.28 3785.31 24452.72 23468.80 17984.02 211
sss70.49 14070.13 12971.58 23181.59 14739.02 33080.78 24384.71 12059.34 17566.61 11488.09 12537.17 20485.52 24061.82 15271.02 16290.20 87
EPP-MVSNet71.14 12770.07 13074.33 16279.18 19446.52 26183.81 16386.49 7256.32 24157.95 23084.90 16854.23 2789.14 12658.14 18669.65 17587.33 152
PAPM_NR71.80 11969.98 13177.26 9081.54 15053.34 11078.60 26785.25 10253.46 26860.53 19088.66 11345.69 9389.24 12256.49 20479.62 9489.19 111
HQP_MVS70.96 13369.91 13274.12 16877.95 21849.57 19185.76 10082.59 16363.60 10162.15 17583.28 19036.04 22288.30 16165.46 12672.34 15084.49 203
tpmrst71.04 13169.77 13374.86 15283.19 10355.86 4675.64 28178.73 23867.88 3764.99 13673.73 30049.96 5579.56 30365.92 12067.85 18789.14 113
SR-MVS70.92 13469.73 13474.50 15683.38 9850.48 17084.27 14979.35 22548.96 30066.57 11690.45 7533.65 24787.11 19866.42 11674.56 13385.91 182
iter_conf_final71.46 12469.68 13576.81 10286.03 4653.49 10084.73 13574.37 29460.27 15966.28 11984.36 17235.14 23190.87 8065.41 13070.51 16786.05 176
OPM-MVS70.75 13769.58 13674.26 16575.55 25551.34 15686.05 9583.29 15261.94 13062.95 16685.77 15734.15 24188.44 15365.44 12971.07 16182.99 235
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet70.48 14169.43 13773.64 18477.56 22548.83 21283.51 17177.45 26063.27 10862.33 17285.54 16143.85 11683.29 27057.38 19974.00 13588.79 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131471.11 12969.41 13876.22 11379.32 19150.49 16980.23 25185.14 10859.44 17258.93 21388.89 11033.83 24689.60 11661.49 15377.42 10888.57 128
1112_ss70.05 14769.37 13972.10 21380.77 16942.78 30785.12 12276.75 27259.69 16761.19 18492.12 4047.48 7183.84 26153.04 22768.21 18289.66 99
Vis-MVSNetpermissive70.61 13969.34 14074.42 15980.95 16548.49 22286.03 9677.51 25958.74 19365.55 12987.78 13034.37 23985.95 23652.53 23580.61 7688.80 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM71.88 11769.33 14179.52 3582.20 13054.30 8686.30 9088.77 3156.61 23659.72 19687.48 13533.90 24495.36 1347.48 26581.49 7088.90 117
ACMMPcopyleft70.81 13669.29 14275.39 13881.52 15251.92 14283.43 17483.03 15756.67 23558.80 21888.91 10931.92 26488.58 14765.89 12273.39 14085.67 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XXY-MVS70.18 14369.28 14372.89 19977.64 22242.88 30685.06 12387.50 5962.58 11962.66 17082.34 21143.64 12489.83 10858.42 18163.70 22185.96 181
ab-mvs70.65 13869.11 14475.29 14280.87 16646.23 26973.48 29885.24 10359.99 16266.65 11280.94 22643.13 13288.69 14363.58 13868.07 18390.95 70
test-LLR69.65 15869.01 14571.60 22978.67 20548.17 23185.13 11979.72 21359.18 18263.13 16382.58 20336.91 20880.24 29460.56 16275.17 12786.39 172
miper_enhance_ethall69.77 15468.90 14672.38 20978.93 20049.91 18583.29 18178.85 23264.90 8059.37 20479.46 23752.77 3385.16 24963.78 13658.72 26182.08 244
EI-MVSNet69.70 15768.70 14772.68 20175.00 26248.90 21079.54 25787.16 6161.05 14463.88 15583.74 18145.87 8990.44 9157.42 19864.68 21378.70 290
thisisatest053070.47 14268.56 14876.20 11579.78 18551.52 15283.49 17388.58 4057.62 21558.60 22082.79 19551.03 4691.48 6252.84 22962.36 24085.59 190
BH-w/o70.02 14868.51 14974.56 15582.77 11850.39 17386.60 8678.14 24959.77 16559.65 19785.57 16039.27 17587.30 19549.86 24874.94 13285.99 179
tpm270.82 13568.44 15077.98 7280.78 16856.11 3974.21 29381.28 18760.24 16068.04 10375.27 28952.26 3888.50 15255.82 21168.03 18489.33 106
PCF-MVS61.03 1070.10 14568.40 15175.22 14677.15 23451.99 13979.30 26282.12 16956.47 23961.88 17886.48 15243.98 11587.24 19655.37 21272.79 14786.43 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192068.59 17668.31 15269.44 26269.16 32241.51 31884.63 14168.58 33758.80 19173.26 5988.37 11825.30 30780.60 28979.10 3967.55 18986.23 174
UniMVSNet_NR-MVSNet68.82 16968.29 15370.40 24975.71 25342.59 30984.23 15086.78 6766.31 5858.51 22182.45 20651.57 4184.64 25753.11 22555.96 29383.96 217
APD-MVS_3200maxsize69.62 15968.23 15473.80 17981.58 14848.22 23081.91 21379.50 21948.21 30364.24 14889.75 9431.91 26587.55 19163.08 14173.85 13885.64 188
TAMVS69.51 16168.16 15573.56 18776.30 24448.71 21682.57 19877.17 26562.10 12661.32 18384.23 17441.90 14783.46 26854.80 21673.09 14488.50 131
BH-RMVSNet70.08 14668.01 15676.27 11184.21 8051.22 16087.29 7179.33 22758.96 18963.63 15886.77 14633.29 25090.30 9844.63 28173.96 13687.30 154
FC-MVSNet-test67.49 19767.91 15766.21 29576.06 24733.06 35280.82 24287.18 6064.44 8454.81 26882.87 19350.40 5282.60 27248.05 26266.55 19882.98 236
MVS_111021_LR69.07 16367.91 15772.54 20477.27 22949.56 19379.77 25573.96 30059.33 17760.73 18887.82 12930.19 27681.53 27869.94 9872.19 15286.53 168
GeoE69.96 15167.88 15976.22 11381.11 15951.71 14784.15 15276.74 27359.83 16460.91 18584.38 17041.56 15288.10 16851.67 23870.57 16688.84 120
Anonymous20240521170.11 14467.88 15976.79 10687.20 4047.24 25489.49 3577.38 26254.88 25766.14 12086.84 14520.93 33791.54 6156.45 20771.62 15691.59 51
114514_t69.87 15367.88 15975.85 12588.38 2952.35 13486.94 7983.68 14253.70 26655.68 26285.60 15930.07 27791.20 6955.84 21071.02 16283.99 213
TR-MVS69.71 15567.85 16275.27 14482.94 11348.48 22387.40 6780.86 19357.15 22564.61 14187.08 14232.67 25589.64 11546.38 27271.55 15887.68 146
PVSNet62.49 869.27 16267.81 16373.64 18484.41 7651.85 14384.63 14177.80 25366.42 5659.80 19584.95 16722.14 33280.44 29255.03 21375.11 12988.62 126
cl2268.85 16767.69 16472.35 21078.07 21749.98 18482.45 20378.48 24462.50 12258.46 22577.95 25149.99 5485.17 24862.55 14458.72 26181.90 247
v2v48269.55 16067.64 16575.26 14572.32 29653.83 9384.93 13081.94 17265.37 7560.80 18779.25 24141.62 15088.98 13463.03 14259.51 25482.98 236
miper_ehance_all_eth68.70 17567.58 16672.08 21476.91 23749.48 19782.47 20278.45 24562.68 11758.28 22977.88 25350.90 4785.01 25261.91 15058.72 26181.75 249
HyFIR lowres test69.94 15267.58 16677.04 9477.11 23557.29 2081.49 23079.11 23058.27 19958.86 21680.41 23042.33 13886.96 20361.91 15068.68 18186.87 159
IS-MVSNet68.80 17167.55 16872.54 20478.50 21143.43 30081.03 23679.35 22559.12 18557.27 24786.71 14746.05 8787.70 18344.32 28375.60 12386.49 169
OpenMVScopyleft61.00 1169.99 15067.55 16877.30 8778.37 21454.07 9284.36 14685.76 8657.22 22356.71 25287.67 13330.79 27292.83 3543.04 28884.06 5485.01 197
tpm68.36 17867.48 17070.97 24179.93 18451.34 15676.58 27978.75 23767.73 4063.54 16174.86 29148.33 6272.36 34853.93 22163.71 22089.21 110
FMVSNet368.84 16867.40 17173.19 19285.05 6548.53 22085.71 10585.36 9460.90 15057.58 23979.15 24342.16 14186.77 20847.25 26763.40 22484.27 207
test-mter68.36 17867.29 17271.60 22978.67 20548.17 23185.13 11979.72 21353.38 26963.13 16382.58 20327.23 29480.24 29460.56 16275.17 12786.39 172
Anonymous2024052969.71 15567.28 17377.00 9783.78 8850.36 17588.87 4585.10 10947.22 30864.03 15183.37 18827.93 28892.10 5257.78 19467.44 19088.53 130
thres20068.71 17367.27 17473.02 19484.73 7046.76 25885.03 12587.73 5462.34 12459.87 19383.45 18743.15 13088.32 16031.25 33667.91 18683.98 215
PS-MVSNAJss68.78 17267.17 17573.62 18673.01 28648.33 22884.95 12984.81 11659.30 17858.91 21579.84 23537.77 18788.86 13962.83 14363.12 23383.67 223
UGNet68.71 17367.11 17673.50 18880.55 17547.61 24684.08 15478.51 24359.45 17165.68 12882.73 19923.78 31885.08 25152.80 23076.40 11387.80 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS-dyc-post68.27 18266.87 17772.48 20780.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9931.17 27086.09 23060.52 16472.06 15383.19 231
v114468.81 17066.82 17874.80 15372.34 29553.46 10284.68 13881.77 17964.25 8660.28 19177.91 25240.23 16488.95 13560.37 16759.52 25381.97 245
UniMVSNet (Re)67.71 19166.80 17970.45 24774.44 26942.93 30582.42 20484.90 11363.69 9959.63 19880.99 22547.18 7385.23 24751.17 24256.75 28483.19 231
WR-MVS67.58 19466.76 18070.04 25675.92 25145.06 28586.23 9185.28 10064.31 8558.50 22381.00 22444.80 11082.00 27749.21 25455.57 29883.06 234
EPNet_dtu66.25 22466.71 18164.87 30578.66 20734.12 34782.80 19375.51 28561.75 13264.47 14686.90 14437.06 20572.46 34743.65 28669.63 17688.02 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS69.04 16466.70 18276.06 12075.11 25852.36 13383.12 18680.23 20363.32 10760.65 18979.22 24230.98 27188.37 15561.25 15466.41 19987.46 150
RE-MVS-def66.66 18380.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9929.28 28260.52 16472.06 15383.19 231
c3_l67.97 18566.66 18371.91 22576.20 24649.31 19982.13 20978.00 25161.99 12857.64 23876.94 26849.41 5884.93 25360.62 16157.01 28381.49 253
test_cas_vis1_n_192067.10 20866.60 18568.59 27565.17 34543.23 30283.23 18369.84 33055.34 25170.67 9087.71 13224.70 31476.66 32878.57 4664.20 21585.89 183
FA-MVS(test-final)69.00 16666.60 18576.19 11683.48 9347.96 24174.73 28982.07 17057.27 22262.18 17478.47 24936.09 22092.89 3353.76 22371.32 16087.73 144
BH-untuned68.28 18166.40 18773.91 17481.62 14550.01 18385.56 10977.39 26157.63 21457.47 24483.69 18336.36 21787.08 19944.81 27973.08 14584.65 202
AUN-MVS68.20 18466.35 18873.76 18076.37 24047.45 24879.52 25979.52 21860.98 14662.34 17186.02 15436.59 21686.94 20462.32 14653.47 31586.89 158
v14868.24 18366.35 18873.88 17571.76 29951.47 15384.23 15081.90 17663.69 9958.94 21276.44 27643.72 12287.78 18060.63 16055.86 29582.39 242
tttt051768.33 18066.29 19074.46 15778.08 21649.06 20280.88 24189.08 2154.40 26254.75 27080.77 22851.31 4390.33 9549.35 25258.01 27383.99 213
HPM-MVS_fast67.86 18766.28 19172.61 20280.67 17248.34 22781.18 23475.95 28350.81 28859.55 20188.05 12727.86 28985.98 23358.83 17573.58 13983.51 224
UA-Net67.32 20366.23 19270.59 24578.85 20141.23 32273.60 29675.45 28761.54 13666.61 11484.53 16938.73 18086.57 21742.48 29374.24 13483.98 215
Test_1112_low_res67.18 20666.23 19270.02 25778.75 20341.02 32383.43 17473.69 30257.29 22158.45 22682.39 20845.30 9880.88 28450.50 24466.26 20488.16 133
tfpn200view967.57 19566.13 19471.89 22684.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20082.78 240
thres40067.40 20266.13 19471.19 23784.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20080.71 271
cascas69.01 16566.13 19477.66 7879.36 18955.41 5386.99 7783.75 14156.69 23458.92 21481.35 22324.31 31692.10 5253.23 22470.61 16585.46 191
dmvs_re67.61 19366.00 19772.42 20881.86 13543.45 29964.67 33980.00 20669.56 2560.07 19285.00 16634.71 23687.63 18751.48 23966.68 19486.17 175
NR-MVSNet67.25 20465.99 19871.04 24073.27 28443.91 29485.32 11484.75 11966.05 6653.65 28282.11 21445.05 10185.97 23547.55 26456.18 29083.24 229
sd_testset67.79 19065.95 19973.32 18981.70 14046.33 26668.99 32680.30 20266.58 5261.64 18082.38 20930.45 27487.63 18755.86 20965.60 20686.01 177
cl____67.43 19965.93 20071.95 22276.33 24248.02 23782.58 19779.12 22961.30 14056.72 25176.92 26946.12 8586.44 21957.98 18856.31 28781.38 261
DIV-MVS_self_test67.43 19965.93 20071.94 22376.33 24248.01 23882.57 19879.11 23061.31 13956.73 25076.92 26946.09 8686.43 22057.98 18856.31 28781.39 260
CPTT-MVS67.15 20765.84 20271.07 23980.96 16250.32 17781.94 21274.10 29646.18 31857.91 23187.64 13429.57 27981.31 28064.10 13570.18 17181.56 252
FMVSNet267.57 19565.79 20372.90 19782.71 12047.97 23985.15 11884.93 11258.55 19656.71 25278.26 25036.72 21386.67 21146.15 27462.94 23584.07 210
v14419267.86 18765.76 20474.16 16771.68 30053.09 11884.14 15380.83 19462.85 11459.21 20977.28 26239.30 17488.00 17158.67 17757.88 27781.40 259
v119267.96 18665.74 20574.63 15471.79 29853.43 10784.06 15680.99 19263.19 11059.56 20077.46 25937.50 19888.65 14458.20 18558.93 26081.79 248
DU-MVS66.84 21765.74 20570.16 25273.27 28442.59 30981.50 22882.92 16063.53 10358.51 22182.11 21440.75 15884.64 25753.11 22555.96 29383.24 229
Vis-MVSNet (Re-imp)65.52 23065.63 20765.17 30377.49 22630.54 35975.49 28577.73 25559.34 17552.26 29286.69 14849.38 5980.53 29137.07 30775.28 12684.42 205
TranMVSNet+NR-MVSNet66.94 21465.61 20870.93 24273.45 28043.38 30183.02 19084.25 13065.31 7758.33 22881.90 21739.92 17185.52 24049.43 25154.89 30383.89 219
V4267.66 19265.60 20973.86 17670.69 31353.63 9881.50 22878.61 24163.85 9559.49 20377.49 25837.98 18487.65 18562.33 14558.43 26480.29 276
AdaColmapbinary67.86 18765.48 21075.00 15088.15 3354.99 6886.10 9476.63 27649.30 29757.80 23386.65 14929.39 28188.94 13745.10 27870.21 17081.06 266
GBi-Net67.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
test167.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
EPMVS68.45 17765.44 21377.47 8384.91 6856.17 3871.89 31481.91 17561.72 13360.85 18672.49 31436.21 21887.06 20047.32 26671.62 15689.17 112
thres100view90066.87 21665.42 21471.24 23583.29 10043.15 30381.67 22187.78 5159.04 18655.92 26082.18 21343.73 12087.80 17728.80 34366.36 20082.78 240
IterMVS-LS66.63 21865.36 21570.42 24875.10 25948.90 21081.45 23176.69 27561.05 14455.71 26177.10 26545.86 9083.65 26557.44 19757.88 27778.70 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth66.98 21365.28 21672.06 21575.61 25450.40 17281.00 23776.97 27162.00 12756.99 24976.97 26744.84 10785.58 23958.75 17654.42 30780.21 277
v192192067.45 19865.23 21774.10 16971.51 30352.90 12483.75 16580.44 19962.48 12359.12 21077.13 26336.98 20687.90 17357.53 19658.14 27181.49 253
thres600view766.46 22165.12 21870.47 24683.41 9443.80 29682.15 20787.78 5159.37 17456.02 25982.21 21243.73 12086.90 20626.51 35564.94 20980.71 271
OMC-MVS65.97 22865.06 21968.71 27272.97 28742.58 31178.61 26675.35 28854.72 25859.31 20686.25 15333.30 24977.88 31757.99 18767.05 19285.66 187
v867.25 20464.99 22074.04 17072.89 28953.31 11282.37 20580.11 20561.54 13654.29 27576.02 28542.89 13488.41 15458.43 17956.36 28580.39 275
Effi-MVS+-dtu66.24 22564.96 22170.08 25475.17 25749.64 19082.01 21074.48 29362.15 12557.83 23276.08 28430.59 27383.79 26265.40 13160.93 24676.81 312
mvsmamba66.93 21564.88 22273.09 19375.06 26047.26 25283.36 18069.21 33462.64 11855.68 26281.43 22229.72 27889.20 12563.35 14063.50 22382.79 239
v124066.99 21264.68 22373.93 17371.38 30652.66 12783.39 17879.98 20761.97 12958.44 22777.11 26435.25 22887.81 17556.46 20658.15 26981.33 262
LPG-MVS_test66.44 22264.58 22472.02 21674.42 27048.60 21783.07 18880.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
gg-mvs-nofinetune67.43 19964.53 22576.13 11885.95 4747.79 24564.38 34088.28 4439.34 34366.62 11341.27 37758.69 1389.00 13149.64 25086.62 2991.59 51
ACMP61.11 966.24 22564.33 22672.00 21874.89 26449.12 20183.18 18579.83 21155.41 25052.29 29082.68 20025.83 30386.10 22860.89 15763.94 21980.78 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Baseline_NR-MVSNet65.49 23164.27 22769.13 26474.37 27241.65 31683.39 17878.85 23259.56 16959.62 19976.88 27140.75 15887.44 19249.99 24655.05 30178.28 299
v1066.61 21964.20 22873.83 17872.59 29253.37 10881.88 21479.91 21061.11 14254.09 27775.60 28740.06 16888.26 16456.47 20556.10 29179.86 281
Fast-Effi-MVS+-dtu66.53 22064.10 22973.84 17772.41 29452.30 13684.73 13575.66 28459.51 17056.34 25779.11 24428.11 28685.85 23857.74 19563.29 22883.35 225
Anonymous2023121166.08 22763.67 23073.31 19083.07 10748.75 21486.01 9784.67 12245.27 32256.54 25476.67 27428.06 28788.95 13552.78 23159.95 24882.23 243
PatchmatchNetpermissive67.07 21163.63 23177.40 8483.10 10458.03 972.11 31277.77 25458.85 19059.37 20470.83 32737.84 18684.93 25342.96 28969.83 17389.26 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
myMVS_eth3d63.52 24263.56 23263.40 31281.73 13834.28 34580.97 23881.02 19060.93 14855.06 26682.64 20148.00 6780.81 28523.42 36558.32 26575.10 329
tpm cat166.28 22362.78 23376.77 10781.40 15457.14 2270.03 32177.19 26453.00 27258.76 21970.73 33046.17 8486.73 21043.27 28764.46 21486.44 170
pm-mvs164.12 23662.56 23468.78 27071.68 30038.87 33182.89 19281.57 18055.54 24953.89 27977.82 25437.73 19086.74 20948.46 26053.49 31480.72 270
test0.0.03 162.54 25262.44 23562.86 31672.28 29729.51 36782.93 19178.78 23559.18 18253.07 28582.41 20736.91 20877.39 32137.45 30358.96 25981.66 251
miper_lstm_enhance63.91 23762.30 23668.75 27175.06 26046.78 25769.02 32581.14 18859.68 16852.76 28772.39 31740.71 16077.99 31556.81 20353.09 31781.48 255
X-MVStestdata65.85 22962.20 23776.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 1534.82 39635.50 22689.78 10965.50 12380.50 7888.16 133
FMVSNet164.57 23262.11 23871.96 21977.32 22846.36 26383.52 16783.31 14952.43 27754.42 27376.23 28027.80 29086.20 22242.59 29261.34 24483.32 226
ACMM58.35 1264.35 23462.01 23971.38 23374.21 27348.51 22182.25 20679.66 21547.61 30654.54 27280.11 23125.26 30886.00 23251.26 24063.16 23179.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS63.77 24061.67 24070.08 25472.68 29151.24 15980.44 24675.51 28560.51 15651.41 29573.70 30332.08 26178.91 30554.30 21854.35 30880.08 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp64.41 23361.58 24172.90 19782.40 12654.09 9172.53 30476.59 27760.39 15755.68 26270.39 33135.18 23076.90 32639.34 29961.71 24287.73 144
test_djsdf63.84 23861.56 24270.70 24468.78 32444.69 28681.63 22281.44 18350.28 29052.27 29176.26 27926.72 29786.11 22660.83 15855.84 29681.29 265
MDTV_nov1_ep1361.56 24281.68 14255.12 6372.41 30678.18 24859.19 18058.85 21769.29 33534.69 23786.16 22536.76 31162.96 234
D2MVS63.49 24361.39 24469.77 25869.29 32148.93 20978.89 26577.71 25660.64 15549.70 30572.10 32227.08 29583.48 26754.48 21762.65 23676.90 311
Syy-MVS61.51 26161.35 24562.00 31981.73 13830.09 36280.97 23881.02 19060.93 14855.06 26682.64 20135.09 23280.81 28516.40 38058.32 26575.10 329
tt080563.39 24461.31 24669.64 25969.36 32038.87 33178.00 26985.48 8848.82 30155.66 26581.66 21924.38 31586.37 22149.04 25559.36 25783.68 222
pmmvs562.80 25161.18 24767.66 28269.53 31942.37 31482.65 19675.19 28954.30 26452.03 29378.51 24831.64 26780.67 28748.60 25858.15 26979.95 280
CL-MVSNet_self_test62.98 24861.14 24868.50 27765.86 34042.96 30484.37 14582.98 15860.98 14653.95 27872.70 31340.43 16283.71 26441.10 29447.93 33178.83 289
pmmvs463.34 24561.07 24970.16 25270.14 31550.53 16879.97 25471.41 32155.08 25354.12 27678.58 24732.79 25482.09 27650.33 24557.22 28277.86 303
RRT_MVS63.68 24161.01 25071.70 22773.48 27945.98 27181.19 23376.08 28154.33 26352.84 28679.27 24022.21 33087.65 18554.13 21955.54 29981.46 256
jajsoiax63.21 24660.84 25170.32 25068.33 32944.45 28881.23 23281.05 18953.37 27050.96 30077.81 25517.49 35185.49 24259.31 17158.05 27281.02 267
TransMVSNet (Re)62.82 25060.76 25269.02 26573.98 27641.61 31786.36 8879.30 22856.90 22752.53 28876.44 27641.85 14887.60 19038.83 30040.61 35577.86 303
mvs_tets62.96 24960.55 25370.19 25168.22 33244.24 29280.90 24080.74 19552.99 27350.82 30277.56 25616.74 35585.44 24359.04 17457.94 27480.89 268
UniMVSNet_ETH3D62.51 25360.49 25468.57 27668.30 33040.88 32573.89 29479.93 20951.81 28354.77 26979.61 23624.80 31281.10 28149.93 24761.35 24383.73 221
CVMVSNet60.85 26560.44 25562.07 31775.00 26232.73 35479.54 25773.49 30536.98 35156.28 25883.74 18129.28 28269.53 35646.48 27163.23 22983.94 218
FE-MVS64.15 23560.43 25675.30 14180.85 16749.86 18768.28 33078.37 24650.26 29359.31 20673.79 29926.19 30191.92 5540.19 29666.67 19584.12 208
MIMVSNet63.12 24760.29 25771.61 22875.92 25146.65 25965.15 33681.94 17259.14 18454.65 27169.47 33425.74 30480.63 28841.03 29569.56 17787.55 148
testing359.97 26860.19 25859.32 33177.60 22330.01 36481.75 21981.79 17753.54 26750.34 30379.94 23248.99 6176.91 32417.19 37850.59 32471.03 354
TAPA-MVS56.12 1461.82 26060.18 25966.71 29178.48 21237.97 33675.19 28776.41 27946.82 31157.04 24886.52 15127.67 29277.03 32326.50 35667.02 19385.14 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA63.84 23860.01 26075.32 14078.58 20957.92 1061.61 35077.53 25856.71 23357.75 23670.77 32831.97 26279.91 30048.80 25656.36 28588.13 136
EG-PatchMatch MVS62.40 25759.59 26170.81 24373.29 28249.05 20385.81 9884.78 11751.85 28244.19 33073.48 30615.52 36089.85 10740.16 29767.24 19173.54 340
XVG-OURS-SEG-HR62.02 25859.54 26269.46 26165.30 34345.88 27265.06 33773.57 30446.45 31457.42 24583.35 18926.95 29678.09 31153.77 22264.03 21784.42 205
tpmvs62.45 25659.42 26371.53 23283.93 8454.32 8570.03 32177.61 25751.91 28053.48 28368.29 33837.91 18586.66 21233.36 32658.27 26773.62 339
XVG-OURS61.88 25959.34 26469.49 26065.37 34246.27 26764.80 33873.49 30547.04 31057.41 24682.85 19425.15 30978.18 30953.00 22864.98 20884.01 212
v7n62.50 25459.27 26572.20 21267.25 33549.83 18877.87 27180.12 20452.50 27648.80 31073.07 30832.10 26087.90 17346.83 27054.92 30278.86 288
tfpnnormal61.47 26259.09 26668.62 27476.29 24541.69 31581.14 23585.16 10654.48 26151.32 29673.63 30432.32 25886.89 20721.78 36955.71 29777.29 309
CR-MVSNet62.47 25559.04 26772.77 20073.97 27756.57 2960.52 35371.72 31660.04 16157.49 24265.86 34438.94 17780.31 29342.86 29059.93 24981.42 257
PLCcopyleft52.38 1860.89 26458.97 26866.68 29381.77 13745.70 27678.96 26474.04 29943.66 33347.63 31683.19 19223.52 32177.78 32037.47 30260.46 24776.55 318
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT59.12 27658.81 26960.08 32970.68 31445.07 28280.42 24774.25 29543.54 33450.02 30473.73 30031.97 26256.74 37151.06 24353.60 31378.42 296
CNLPA60.59 26658.44 27067.05 28879.21 19347.26 25279.75 25664.34 34842.46 33951.90 29483.94 17727.79 29175.41 33337.12 30559.49 25578.47 294
dmvs_testset57.65 29058.21 27155.97 34274.62 2679.82 39863.75 34163.34 35067.23 4548.89 30983.68 18539.12 17676.14 32923.43 36459.80 25181.96 246
WR-MVS_H58.91 28158.04 27261.54 32369.07 32333.83 34976.91 27681.99 17151.40 28548.17 31174.67 29240.23 16474.15 33631.78 33348.10 32976.64 316
anonymousdsp60.46 26757.65 27368.88 26663.63 35345.09 28172.93 30278.63 24046.52 31351.12 29772.80 31221.46 33583.07 27157.79 19353.97 30978.47 294
Anonymous2023120659.08 27857.59 27463.55 31068.77 32532.14 35780.26 25079.78 21250.00 29449.39 30672.39 31726.64 29878.36 30833.12 32957.94 27480.14 278
CP-MVSNet58.54 28757.57 27561.46 32468.50 32733.96 34876.90 27778.60 24251.67 28447.83 31476.60 27534.99 23572.79 34535.45 31447.58 33377.64 307
PVSNet_057.04 1361.19 26357.24 27673.02 19477.45 22750.31 17879.43 26177.36 26363.96 9447.51 31972.45 31625.03 31083.78 26352.76 23319.22 38684.96 198
pmmvs659.64 27157.15 27767.09 28666.01 33836.86 34080.50 24578.64 23945.05 32449.05 30873.94 29827.28 29386.10 22843.96 28549.94 32678.31 298
PEN-MVS58.35 28857.15 27761.94 32067.55 33434.39 34477.01 27578.35 24751.87 28147.72 31576.73 27333.91 24373.75 34034.03 32447.17 33777.68 305
PS-CasMVS58.12 28957.03 27961.37 32568.24 33133.80 35076.73 27878.01 25051.20 28647.54 31876.20 28332.85 25272.76 34635.17 31947.37 33577.55 308
bld_raw_dy_0_6459.75 27057.01 28067.96 28066.73 33645.30 27977.59 27359.97 35650.49 28947.15 32177.03 26617.45 35279.06 30456.92 20259.76 25279.51 283
LCM-MVSNet-Re58.82 28256.54 28165.68 29779.31 19229.09 37061.39 35245.79 36860.73 15337.65 35672.47 31531.42 26881.08 28249.66 24970.41 16886.87 159
FMVSNet558.61 28456.45 28265.10 30477.20 23339.74 32774.77 28877.12 26650.27 29243.28 33667.71 33926.15 30276.90 32636.78 31054.78 30478.65 292
KD-MVS_2432*160059.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_refine_blended59.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
CHOSEN 280x42057.53 29256.38 28560.97 32774.01 27548.10 23546.30 37154.31 36248.18 30450.88 30177.43 26038.37 18359.16 36954.83 21463.14 23275.66 323
DP-MVS59.24 27456.12 28668.63 27388.24 3250.35 17682.51 20164.43 34741.10 34146.70 32478.77 24624.75 31388.57 15022.26 36756.29 28966.96 360
OpenMVS_ROBcopyleft53.19 1759.20 27556.00 28768.83 26871.13 30844.30 29083.64 16675.02 29046.42 31546.48 32673.03 30918.69 34588.14 16527.74 35161.80 24174.05 336
ACMH53.70 1659.78 26955.94 28871.28 23476.59 23948.35 22680.15 25376.11 28049.74 29541.91 34173.45 30716.50 35790.31 9631.42 33457.63 28075.17 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet57.03 29355.73 28960.95 32865.94 33932.57 35575.71 28077.09 26751.16 28746.65 32576.34 27832.84 25373.22 34430.94 33744.87 34677.06 310
ACMH+54.58 1558.55 28655.24 29068.50 27774.68 26645.80 27580.27 24970.21 32747.15 30942.77 33875.48 28816.73 35685.98 23335.10 32154.78 30473.72 338
UnsupCasMVSNet_eth57.56 29155.15 29164.79 30664.57 35033.12 35173.17 30183.87 14058.98 18841.75 34270.03 33222.54 32679.92 29846.12 27535.31 36381.32 264
MSDG59.44 27255.14 29272.32 21174.69 26550.71 16374.39 29273.58 30344.44 32843.40 33577.52 25719.45 34190.87 8031.31 33557.49 28175.38 325
our_test_359.11 27755.08 29371.18 23871.42 30453.29 11381.96 21174.52 29248.32 30242.08 33969.28 33628.14 28582.15 27434.35 32345.68 34578.11 302
ppachtmachnet_test58.56 28554.34 29471.24 23571.42 30454.74 7381.84 21672.27 31249.02 29945.86 32968.99 33726.27 29983.30 26930.12 33843.23 35075.69 322
Patchmatch-RL test58.72 28354.32 29571.92 22463.91 35244.25 29161.73 34955.19 36057.38 22049.31 30754.24 36837.60 19480.89 28362.19 14847.28 33690.63 75
RPMNet59.29 27354.25 29674.42 15973.97 27756.57 2960.52 35376.98 26835.72 35557.49 24258.87 36337.73 19085.26 24627.01 35459.93 24981.42 257
test20.0355.22 30454.07 29758.68 33463.14 35525.00 37577.69 27274.78 29152.64 27443.43 33472.39 31726.21 30074.76 33529.31 34147.05 33976.28 320
LS3D56.40 29853.82 29864.12 30781.12 15845.69 27773.42 29966.14 34235.30 35943.24 33779.88 23322.18 33179.62 30219.10 37564.00 21867.05 359
PatchMatch-RL56.66 29453.75 29965.37 30277.91 22145.28 28069.78 32360.38 35441.35 34047.57 31773.73 30016.83 35476.91 32436.99 30859.21 25873.92 337
F-COLMAP55.96 30253.65 30062.87 31572.76 29042.77 30874.70 29170.37 32640.03 34241.11 34679.36 23817.77 35073.70 34132.80 33053.96 31072.15 346
test_040256.45 29753.03 30166.69 29276.78 23850.31 17881.76 21869.61 33242.79 33743.88 33172.13 32022.82 32586.46 21816.57 37950.94 32363.31 368
PatchT56.60 29552.97 30267.48 28372.94 28846.16 27057.30 36173.78 30138.77 34554.37 27457.26 36637.52 19678.06 31232.02 33152.79 31878.23 301
Patchmtry56.56 29652.95 30367.42 28472.53 29350.59 16759.05 35771.72 31637.86 34946.92 32265.86 34438.94 17780.06 29736.94 30946.72 34171.60 350
XVG-ACMP-BASELINE56.03 30052.85 30465.58 29861.91 35840.95 32463.36 34272.43 31145.20 32346.02 32774.09 2969.20 37178.12 31045.13 27758.27 26777.66 306
pmmvs-eth3d55.97 30152.78 30565.54 29961.02 36046.44 26275.36 28667.72 34049.61 29643.65 33367.58 34021.63 33477.04 32244.11 28444.33 34773.15 344
CMPMVSbinary40.41 2155.34 30352.64 30663.46 31160.88 36143.84 29561.58 35171.06 32230.43 36736.33 35874.63 29324.14 31775.44 33248.05 26266.62 19671.12 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.25 30852.57 30759.29 33262.76 35621.65 38272.21 30970.47 32553.25 27141.94 34077.33 26114.28 36177.95 31629.18 34251.72 32278.28 299
test_fmvs153.60 31352.54 30856.78 33858.07 36330.26 36068.95 32742.19 37432.46 36263.59 15982.56 20511.55 36460.81 36358.25 18455.27 30079.28 284
ADS-MVSNet56.17 29951.95 30968.84 26780.60 17353.07 11955.03 36470.02 32944.72 32551.00 29861.19 35622.83 32378.88 30628.54 34653.63 31174.57 333
ADS-MVSNet255.21 30551.44 31066.51 29480.60 17349.56 19355.03 36465.44 34344.72 32551.00 29861.19 35622.83 32375.41 33328.54 34653.63 31174.57 333
USDC54.36 30751.23 31163.76 30964.29 35137.71 33762.84 34773.48 30756.85 22835.47 36171.94 3239.23 37078.43 30738.43 30148.57 32875.13 328
test_fmvs1_n52.55 31751.19 31256.65 33951.90 37330.14 36167.66 33142.84 37332.27 36362.30 17382.02 2169.12 37260.84 36257.82 19254.75 30678.99 286
EU-MVSNet52.63 31650.72 31358.37 33562.69 35728.13 37272.60 30375.97 28230.94 36640.76 34872.11 32120.16 33970.80 35235.11 32046.11 34376.19 321
UnsupCasMVSNet_bld53.86 31050.53 31463.84 30863.52 35434.75 34371.38 31581.92 17446.53 31238.95 35257.93 36420.55 33880.20 29639.91 29834.09 37076.57 317
SixPastTwentyTwo54.37 30650.10 31567.21 28570.70 31241.46 32074.73 28964.69 34547.56 30739.12 35169.49 33318.49 34884.69 25631.87 33234.20 36975.48 324
YYNet153.82 31149.96 31665.41 30170.09 31748.95 20772.30 30771.66 31844.25 33031.89 37063.07 35223.73 31973.95 33833.26 32739.40 35773.34 341
MDA-MVSNet_test_wron53.82 31149.95 31765.43 30070.13 31649.05 20372.30 30771.65 31944.23 33131.85 37163.13 35123.68 32074.01 33733.25 32839.35 35873.23 343
LTVRE_ROB45.45 1952.73 31549.74 31861.69 32269.78 31834.99 34244.52 37267.60 34143.11 33643.79 33274.03 29718.54 34781.45 27928.39 34857.94 27468.62 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_n51.19 32249.66 31955.76 34351.26 37429.85 36567.20 33338.86 37832.12 36459.50 20279.86 2348.78 37358.23 37056.95 20152.46 31979.19 285
K. test v354.04 30949.42 32067.92 28168.55 32642.57 31275.51 28463.07 35152.07 27839.21 35064.59 34819.34 34282.21 27337.11 30625.31 37978.97 287
OurMVSNet-221017-052.39 31848.73 32163.35 31365.21 34438.42 33468.54 32964.95 34438.19 34639.57 34971.43 32413.23 36379.92 29837.16 30440.32 35671.72 349
Anonymous2024052151.65 32048.42 32261.34 32656.43 36739.65 32973.57 29773.47 30836.64 35336.59 35763.98 34910.75 36772.25 34935.35 31549.01 32772.11 347
Patchmatch-test53.33 31448.17 32368.81 26973.31 28142.38 31342.98 37458.23 35732.53 36138.79 35370.77 32839.66 17273.51 34225.18 35852.06 32190.55 76
COLMAP_ROBcopyleft43.60 2050.90 32348.05 32459.47 33067.81 33340.57 32671.25 31662.72 35336.49 35436.19 35973.51 30513.48 36273.92 33920.71 37150.26 32563.92 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 32447.81 32557.96 33661.53 35927.80 37367.40 33274.06 29843.25 33533.31 36965.38 34716.03 35871.34 35021.80 36847.55 33474.75 331
JIA-IIPM52.33 31947.77 32666.03 29671.20 30746.92 25640.00 37976.48 27837.10 35046.73 32337.02 37932.96 25177.88 31735.97 31252.45 32073.29 342
MDA-MVSNet-bldmvs51.56 32147.75 32763.00 31471.60 30247.32 25169.70 32472.12 31343.81 33227.65 37863.38 35021.97 33375.96 33027.30 35332.19 37165.70 365
KD-MVS_self_test49.24 32546.85 32856.44 34054.32 36822.87 37857.39 36073.36 30944.36 32937.98 35559.30 36218.97 34471.17 35133.48 32542.44 35175.26 326
new-patchmatchnet48.21 32746.55 32953.18 34657.73 36518.19 39070.24 31971.02 32345.70 31933.70 36560.23 35818.00 34969.86 35527.97 35034.35 36771.49 352
MVS-HIRNet49.01 32644.71 33061.92 32176.06 24746.61 26063.23 34454.90 36124.77 37333.56 36636.60 38121.28 33675.88 33129.49 34062.54 23763.26 369
AllTest47.32 32944.66 33155.32 34465.08 34637.50 33862.96 34654.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
TinyColmap48.15 32844.49 33259.13 33365.73 34138.04 33563.34 34362.86 35238.78 34429.48 37367.23 3426.46 38173.30 34324.59 36041.90 35366.04 363
test_fmvs245.89 33144.32 33350.62 34945.85 38224.70 37658.87 35937.84 38125.22 37252.46 28974.56 2947.07 37654.69 37249.28 25347.70 33272.48 345
RPSCF45.77 33244.13 33450.68 34857.67 36629.66 36654.92 36645.25 37026.69 37145.92 32875.92 28617.43 35345.70 38227.44 35245.95 34476.67 313
PM-MVS46.92 33043.76 33556.41 34152.18 37232.26 35663.21 34538.18 37937.99 34840.78 34766.20 3435.09 38465.42 35948.19 26141.99 35271.54 351
mvsany_test143.38 33442.57 33645.82 35350.96 37526.10 37455.80 36227.74 39127.15 37047.41 32074.39 29518.67 34644.95 38344.66 28036.31 36166.40 362
pmmvs345.53 33341.55 33757.44 33748.97 37839.68 32870.06 32057.66 35828.32 36934.06 36457.29 3658.50 37466.85 35834.86 32234.26 36865.80 364
N_pmnet41.25 33539.77 33845.66 35468.50 3270.82 40472.51 3050.38 40335.61 35635.26 36261.51 35520.07 34067.74 35723.51 36340.63 35468.42 358
test_vis1_rt40.29 33738.64 33945.25 35548.91 37930.09 36259.44 35627.07 39224.52 37438.48 35451.67 3736.71 37949.44 37744.33 28246.59 34256.23 371
TDRefinement40.91 33638.37 34048.55 35150.45 37633.03 35358.98 35850.97 36628.50 36829.89 37267.39 3416.21 38354.51 37317.67 37735.25 36458.11 370
WB-MVS37.41 34036.37 34140.54 36054.23 36910.43 39765.29 33543.75 37134.86 36027.81 37754.63 36724.94 31163.21 3606.81 39215.00 38747.98 379
test_fmvs337.95 33935.75 34244.55 35635.50 38818.92 38648.32 36834.00 38618.36 38041.31 34561.58 3542.29 39148.06 38142.72 29137.71 36066.66 361
DSMNet-mixed38.35 33835.36 34347.33 35248.11 38014.91 39437.87 38036.60 38219.18 37834.37 36359.56 36115.53 35953.01 37520.14 37346.89 34074.07 335
SSC-MVS35.20 34234.30 34437.90 36252.58 3718.65 40061.86 34841.64 37531.81 36525.54 37952.94 37223.39 32259.28 3686.10 39312.86 38845.78 381
FPMVS35.40 34133.67 34540.57 35946.34 38128.74 37141.05 37657.05 35920.37 37722.27 38153.38 3706.87 37844.94 3848.62 38647.11 33848.01 378
LF4IMVS33.04 34632.55 34634.52 36540.96 38322.03 38044.45 37335.62 38320.42 37628.12 37662.35 3535.03 38531.88 39521.61 37034.42 36649.63 377
new_pmnet33.56 34531.89 34738.59 36149.01 37720.42 38351.01 36737.92 38020.58 37523.45 38046.79 3756.66 38049.28 37920.00 37431.57 37346.09 380
EGC-MVSNET33.75 34430.42 34843.75 35764.94 34836.21 34160.47 35540.70 3770.02 3970.10 39853.79 3697.39 37560.26 36411.09 38535.23 36534.79 383
ANet_high34.39 34329.59 34948.78 35030.34 39222.28 37955.53 36363.79 34938.11 34715.47 38536.56 3826.94 37759.98 36513.93 3825.64 39664.08 366
mvsany_test328.00 34825.98 35034.05 36628.97 39315.31 39234.54 38318.17 39716.24 38129.30 37453.37 3712.79 38933.38 39430.01 33920.41 38553.45 374
test_f27.12 35024.85 35133.93 36726.17 39815.25 39330.24 38722.38 39612.53 38628.23 37549.43 3742.59 39034.34 39325.12 35926.99 37752.20 375
cdsmvs_eth3d_5k18.33 36024.44 3520.00 3820.00 4030.00 4060.00 39389.40 160.00 3980.00 40192.02 4338.55 1810.00 3990.00 4000.00 3970.00 397
APD_test126.46 35224.41 35332.62 37037.58 38521.74 38140.50 37830.39 38811.45 38716.33 38443.76 3761.63 39641.62 38511.24 38426.82 37834.51 384
Gipumacopyleft27.47 34924.26 35437.12 36460.55 36229.17 36911.68 39160.00 35514.18 38310.52 39215.12 3932.20 39363.01 3618.39 38735.65 36219.18 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 34723.85 35540.71 35827.46 39718.93 38530.82 38646.19 36712.76 38516.40 38334.70 3841.90 39448.69 38020.25 37224.22 38054.51 373
PMMVS226.71 35122.98 35637.87 36336.89 3868.51 40142.51 37529.32 39019.09 37913.01 38737.54 3782.23 39253.11 37414.54 38111.71 38951.99 376
test_vis3_rt24.79 35422.95 35730.31 37128.59 39418.92 38637.43 38117.27 39912.90 38421.28 38229.92 3881.02 39836.35 38828.28 34929.82 37635.65 382
PMVScopyleft19.57 2225.07 35322.43 35832.99 36923.12 39922.98 37740.98 37735.19 38415.99 38211.95 39135.87 3831.47 39749.29 3785.41 39531.90 37226.70 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 35521.07 35933.16 36827.67 3968.35 40226.63 38835.11 3853.40 39414.35 38636.98 3803.46 38835.31 39019.08 37622.95 38155.81 372
testf121.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
APD_test221.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
E-PMN19.16 35818.40 36221.44 37536.19 38713.63 39547.59 36930.89 38710.73 3885.91 39516.59 3913.66 38739.77 3865.95 3948.14 39110.92 391
EMVS18.42 35917.66 36320.71 37634.13 38912.64 39646.94 37029.94 38910.46 3905.58 39614.93 3944.23 38638.83 3875.24 3967.51 39310.67 392
MVEpermissive16.60 2317.34 36113.39 36429.16 37228.43 39519.72 38413.73 39023.63 3957.23 3937.96 39321.41 3890.80 39936.08 3896.97 39010.39 39031.69 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 36210.68 3655.73 3792.49 4014.21 40310.48 39218.04 3980.34 39612.59 38820.49 39011.39 3657.03 39813.84 3836.46 3955.95 393
ab-mvs-re7.68 36410.24 3660.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 40192.12 400.00 4030.00 3990.00 4000.00 3970.00 397
wuyk23d9.11 3638.77 36710.15 37840.18 38416.76 39120.28 3891.01 4022.58 3952.66 3970.98 3970.23 40212.49 3974.08 3976.90 3941.19 394
testmvs6.14 3658.18 3680.01 3800.01 4020.00 40673.40 3000.00 4040.00 3980.02 3990.15 3980.00 4030.00 3990.02 3980.00 3970.02 395
test1236.01 3668.01 3690.01 3800.00 4030.01 40571.93 3130.00 4040.00 3980.02 3990.11 3990.00 4030.00 3990.02 3980.00 3970.02 395
pcd_1.5k_mvsjas3.15 3674.20 3700.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 40037.77 1870.00 3990.00 4000.00 3970.00 397
test_blank0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
Regformer0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
WAC-MVS34.28 34522.56 366
FOURS183.24 10149.90 18684.98 12778.76 23647.71 30573.42 56
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
test_one_060189.39 2257.29 2088.09 4657.21 22482.06 1293.39 1654.94 24
eth-test20.00 403
eth-test0.00 403
ZD-MVS89.55 1453.46 10284.38 12657.02 22673.97 5191.03 6144.57 11291.17 7075.41 6981.78 69
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 1987.60 1792.44 29
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3257.50 21883.60 694.09 356.14 1896.37 682.28 2387.43 1992.55 27
test_241102_ONE89.48 1756.89 2588.94 2457.53 21684.61 493.29 2058.81 1196.45 1
save fliter85.35 6056.34 3689.31 3981.46 18261.55 135
test_0728_THIRD58.00 20481.91 1393.64 1156.54 1596.44 281.64 2886.86 2492.23 34
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2687.13 2092.47 28
test072689.40 2057.45 1792.32 788.63 3657.71 21283.14 993.96 655.17 20
GSMVS88.13 136
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 17988.13 136
sam_mvs35.99 224
ambc62.06 31853.98 37029.38 36835.08 38279.65 21641.37 34359.96 3596.27 38282.15 27435.34 31638.22 35974.65 332
MTGPAbinary81.31 185
test_post170.84 31814.72 39534.33 24083.86 26048.80 256
test_post16.22 39237.52 19684.72 255
patchmatchnet-post59.74 36038.41 18279.91 300
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 32888.45 4268.73 9987.45 13659.15 1090.67 8554.83 21487.67 1692.03 40
MTMP87.27 7215.34 400
gm-plane-assit83.24 10154.21 8870.91 1588.23 12395.25 1466.37 117
test9_res78.72 4585.44 4191.39 59
TEST985.68 5155.42 5187.59 6284.00 13657.72 21172.99 6190.98 6344.87 10688.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 20972.84 6590.99 6244.99 10288.34 158
agg_prior275.65 6485.11 4591.01 68
agg_prior85.64 5454.92 7083.61 14672.53 7088.10 168
TestCases55.32 34465.08 34637.50 33854.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13173.55 5491.46 5948.01 6674.73 7285.46 40
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
旧先验281.73 22045.53 32174.66 4370.48 35458.31 183
新几何281.61 224
新几何173.30 19183.10 10453.48 10171.43 32045.55 32066.14 12087.17 14133.88 24580.54 29048.50 25980.33 8285.88 184
旧先验181.57 14947.48 24771.83 31488.66 11336.94 20778.34 10388.67 124
无先验85.19 11778.00 25149.08 29885.13 25052.78 23187.45 151
原ACMM283.77 164
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 27966.70 11187.07 14340.15 16689.70 11351.23 24185.06 4684.10 209
test22279.36 18950.97 16177.99 27067.84 33942.54 33862.84 16786.53 15030.26 27576.91 11185.23 193
testdata277.81 31945.64 276
segment_acmp44.97 104
testdata67.08 28777.59 22445.46 27869.20 33544.47 32771.50 8288.34 12031.21 26970.76 35352.20 23675.88 11985.03 196
testdata177.55 27464.14 89
test1279.24 3986.89 4156.08 4085.16 10672.27 7447.15 7491.10 7385.93 3590.54 78
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 222
plane_prior582.59 16388.30 16165.46 12672.34 15084.49 203
plane_prior483.28 190
plane_prior348.95 20764.01 9262.15 175
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 146
n20.00 404
nn0.00 404
door-mid41.31 376
lessismore_v067.98 27964.76 34941.25 32145.75 36936.03 36065.63 34619.29 34384.11 25935.67 31321.24 38478.59 293
LGP-MVS_train72.02 21674.42 27048.60 21780.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
test1184.25 130
door43.27 372
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 143
ACMP_Plane79.02 19788.00 5365.45 7064.48 143
BP-MVS66.70 114
HQP4-MVS64.47 14688.61 14684.91 199
HQP3-MVS83.68 14273.12 142
HQP2-MVS37.35 199
NP-MVS78.76 20250.43 17185.12 164
MDTV_nov1_ep13_2view43.62 29771.13 31754.95 25659.29 20836.76 21046.33 27387.32 153
ACMMP++_ref63.20 230
ACMMP++59.38 256
Test By Simon39.38 173
ITE_SJBPF51.84 34758.03 36431.94 35853.57 36536.67 35241.32 34475.23 29011.17 36651.57 37625.81 35748.04 33072.02 348
DeepMVS_CXcopyleft13.10 37721.34 4008.99 39910.02 40110.59 3897.53 39430.55 3871.82 39514.55 3966.83 3917.52 39215.75 390