This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS82.30 583.47 178.80 4882.99 11152.71 12485.04 12188.63 3366.08 5586.77 392.75 2272.05 191.46 6183.35 893.53 192.23 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 2793.09 1954.15 2795.57 1285.80 385.87 3493.31 11
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7477.83 177.88 2492.13 3060.24 694.78 1978.97 3089.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12488.88 2458.00 18783.60 693.39 1267.21 296.39 481.64 1791.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 17559.50 592.24 890.72 969.37 2383.22 894.47 263.81 593.18 2974.02 6693.25 294.80 1
CNVR-MVS81.76 781.90 681.33 1790.04 1057.70 1291.71 988.87 2670.31 1777.64 2693.87 752.58 3493.91 2584.17 587.92 1592.39 28
SED-MVS81.92 681.75 782.44 789.48 1756.89 2592.48 388.94 2257.50 20184.61 494.09 358.81 1196.37 682.28 1387.60 1794.06 3
patch_mono-280.84 1081.59 878.62 5590.34 953.77 9388.08 5088.36 4076.17 279.40 2291.09 4955.43 1990.09 10185.01 480.40 7891.99 41
DeepPCF-MVS69.37 180.65 1181.56 977.94 7385.46 5849.56 19090.99 1986.66 6870.58 1580.07 1995.30 156.18 1790.97 7682.57 1286.22 3293.28 12
CANet80.90 981.17 1080.09 3087.62 3754.21 8691.60 1286.47 7073.13 679.89 2093.10 1749.88 5492.98 3084.09 784.75 4693.08 16
DVP-MVScopyleft81.30 881.00 1182.20 889.40 2057.45 1792.34 589.99 1357.71 19581.91 1293.64 1055.17 2096.44 281.68 1587.13 2092.72 23
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1280.71 1279.88 3287.34 3955.20 6089.93 2787.55 5566.04 5879.46 2193.00 2153.10 3191.76 5580.40 2389.56 892.68 24
CSCG80.41 1379.72 1382.49 589.12 2557.67 1389.29 3891.54 359.19 16371.82 6790.05 7759.72 996.04 1078.37 3588.40 1393.75 7
DPE-MVScopyleft79.82 1679.66 1480.29 2489.27 2455.08 6588.70 4487.92 4655.55 23181.21 1593.69 956.51 1694.27 2278.36 3685.70 3691.51 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ80.06 1479.52 1581.68 1385.58 5560.97 391.69 1087.02 6070.62 1480.75 1793.22 1637.77 17392.50 4082.75 1086.25 3191.57 51
xiu_mvs_v2_base79.86 1579.31 1681.53 1485.03 6760.73 491.65 1186.86 6370.30 1880.77 1693.07 2037.63 17892.28 4582.73 1185.71 3591.57 51
NCCC79.57 1779.23 1780.59 2089.50 1556.99 2391.38 1488.17 4267.71 3873.81 4392.75 2246.88 7293.28 2878.79 3384.07 5191.50 55
dcpmvs_279.33 1878.94 1880.49 2189.75 1256.54 3184.83 13083.68 13967.85 3569.36 8490.24 6960.20 792.10 5084.14 680.40 7892.82 20
SMA-MVScopyleft79.10 1978.76 1980.12 2884.42 7555.87 4587.58 6286.76 6561.48 12380.26 1893.10 1746.53 7792.41 4279.97 2488.77 1092.08 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EPNet78.36 2478.49 2077.97 7185.49 5752.04 13689.36 3684.07 13273.22 577.03 2891.72 4049.32 5890.17 10073.46 7082.77 5691.69 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 2578.26 2178.48 5981.33 15056.31 3781.59 21486.41 7169.61 2281.72 1488.16 11355.09 2288.04 16174.12 6586.31 3091.09 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVS78.44 2178.20 2279.19 3888.56 2654.55 8089.76 3187.77 5055.91 22678.56 2392.49 2648.20 6092.65 3879.49 2583.04 5590.39 78
9.1478.19 2385.67 5388.32 4888.84 2759.89 14674.58 3892.62 2546.80 7392.66 3781.40 2185.62 37
lupinMVS78.38 2378.11 2479.19 3883.02 10955.24 5791.57 1384.82 11269.12 2476.67 2992.02 3444.82 9990.23 9880.83 2280.09 8292.08 36
alignmvs78.08 2777.98 2578.39 6383.53 9253.22 11289.77 3085.45 8866.11 5376.59 3191.99 3654.07 2889.05 12277.34 4377.00 10892.89 19
VNet77.99 2977.92 2678.19 6787.43 3850.12 17890.93 2091.41 467.48 4175.12 3390.15 7546.77 7491.00 7373.52 6978.46 9993.44 9
canonicalmvs78.17 2677.86 2779.12 4284.30 7754.22 8587.71 5784.57 12167.70 3977.70 2592.11 3350.90 4589.95 10478.18 3977.54 10593.20 14
DeepC-MVS_fast67.50 378.00 2877.63 2879.13 4188.52 2755.12 6289.95 2685.98 7968.31 2771.33 7492.75 2245.52 8990.37 9171.15 7985.14 4291.91 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.77.82 3077.59 2978.49 5885.25 6350.27 17790.02 2490.57 1056.58 22074.26 4091.60 4454.26 2592.16 4775.87 4979.91 8693.05 17
WTY-MVS77.47 3477.52 3077.30 8588.33 3046.25 25588.46 4790.32 1171.40 1172.32 6391.72 4053.44 2992.37 4366.28 10675.42 12293.28 12
SF-MVS77.64 3277.42 3178.32 6583.75 8952.47 12986.63 8387.80 4758.78 17574.63 3692.38 2747.75 6491.35 6378.18 3986.85 2491.15 64
casdiffmvs_mvgpermissive77.75 3177.28 3279.16 4080.42 17154.44 8287.76 5685.46 8771.67 971.38 7388.35 10851.58 3891.22 6679.02 2979.89 8891.83 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 3677.25 3377.05 9184.60 7249.04 20189.42 3485.83 8265.90 5972.85 5591.98 3745.10 9291.27 6475.02 5884.56 4790.84 70
LFMVS78.52 2077.14 3482.67 389.58 1358.90 791.27 1788.05 4463.22 9674.63 3690.83 5841.38 14394.40 2075.42 5579.90 8794.72 2
PHI-MVS77.49 3377.00 3578.95 4385.33 6150.69 16188.57 4688.59 3658.14 18473.60 4493.31 1443.14 12093.79 2673.81 6788.53 1292.37 29
MG-MVS78.42 2276.99 3682.73 293.17 164.46 189.93 2788.51 3864.83 7173.52 4688.09 11448.07 6192.19 4662.24 13484.53 4891.53 53
casdiffmvspermissive77.36 3576.85 3778.88 4680.40 17254.66 7887.06 7485.88 8072.11 871.57 7088.63 10650.89 4790.35 9276.00 4879.11 9491.63 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS77.17 3776.74 3878.48 5981.80 13454.55 8086.13 9185.33 9368.20 2973.10 5190.52 6345.23 9190.66 8479.37 2680.95 7090.22 82
CS-MVS76.77 4476.70 3976.99 9683.55 9148.75 20988.60 4585.18 10166.38 4872.47 6191.62 4345.53 8890.99 7574.48 6182.51 5891.23 62
PVSNet_Blended76.53 4776.54 4076.50 10685.91 4851.83 14288.89 4284.24 12967.82 3669.09 8689.33 9246.70 7588.13 15775.43 5381.48 6989.55 97
jason77.01 3976.45 4178.69 5279.69 18054.74 7290.56 2283.99 13568.26 2874.10 4190.91 5542.14 13189.99 10379.30 2779.12 9391.36 59
jason: jason.
train_agg76.91 4076.40 4278.45 6185.68 5155.42 5187.59 6084.00 13357.84 19272.99 5290.98 5244.99 9488.58 13978.19 3785.32 4091.34 61
SteuartSystems-ACMMP77.08 3876.33 4379.34 3680.98 15455.31 5589.76 3186.91 6262.94 10071.65 6891.56 4542.33 12792.56 3977.14 4483.69 5390.15 85
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS67.15 476.90 4276.27 4478.80 4880.70 16455.02 6686.39 8586.71 6666.96 4467.91 9389.97 7948.03 6291.41 6275.60 5284.14 5089.96 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 4376.24 4578.71 5180.47 17054.20 8883.90 15684.88 11171.38 1271.51 7189.15 9550.51 4890.55 8875.71 5078.65 9791.39 57
PAPM76.76 4576.07 4678.81 4780.20 17359.11 686.86 8086.23 7568.60 2670.18 8388.84 10051.57 3987.16 18365.48 11286.68 2790.15 85
APD-MVScopyleft76.15 5275.68 4777.54 7988.52 2753.44 10387.26 7185.03 10753.79 24774.91 3491.68 4243.80 10790.31 9474.36 6281.82 6588.87 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP76.43 4875.66 4878.73 5081.92 13254.67 7784.06 15285.35 9261.10 12872.99 5291.50 4640.25 15191.00 7376.84 4586.98 2290.51 77
MAR-MVS76.76 4575.60 4980.21 2590.87 754.68 7689.14 3989.11 1962.95 9970.54 8192.33 2841.05 14494.95 1757.90 17886.55 2991.00 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS76.91 4075.48 5081.23 1884.56 7355.21 5980.23 23791.64 258.65 17765.37 11891.48 4745.72 8695.05 1672.11 7789.52 993.44 9
CLD-MVS75.60 6075.39 5176.24 11080.69 16552.40 13090.69 2186.20 7674.40 465.01 12388.93 9742.05 13390.58 8776.57 4673.96 13385.73 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR76.39 4975.38 5279.42 3585.33 6156.47 3388.15 4984.97 10865.15 6966.06 11089.88 8043.79 10892.16 4775.03 5780.03 8589.64 96
DROMVSNet75.30 6275.20 5375.62 12580.98 15449.00 20287.43 6384.68 11863.49 9370.97 7890.15 7542.86 12491.14 7074.33 6381.90 6486.71 156
CDPH-MVS76.05 5475.19 5478.62 5586.51 4454.98 6887.32 6684.59 12058.62 17870.75 7990.85 5743.10 12290.63 8670.50 8384.51 4990.24 81
EIA-MVS75.92 5575.18 5578.13 6885.14 6451.60 14687.17 7285.32 9464.69 7268.56 8990.53 6245.79 8591.58 5867.21 9982.18 6291.20 63
MP-MVS-pluss75.54 6175.03 5677.04 9281.37 14952.65 12684.34 14384.46 12261.16 12669.14 8591.76 3939.98 15788.99 12778.19 3784.89 4589.48 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS75.82 5975.02 5778.23 6683.88 8753.80 9286.91 7986.05 7859.71 14967.85 9490.55 6142.23 12991.02 7272.66 7585.29 4189.87 93
VDD-MVS76.08 5374.97 5879.44 3484.27 7953.33 10991.13 1885.88 8065.33 6672.37 6289.34 9032.52 23992.76 3677.90 4175.96 11692.22 34
MVS_Test75.85 5674.93 5978.62 5584.08 8155.20 6083.99 15485.17 10268.07 3273.38 4882.76 18250.44 4989.00 12565.90 10880.61 7491.64 47
SD-MVS76.18 5174.85 6080.18 2685.39 5956.90 2485.75 10082.45 16356.79 21574.48 3991.81 3843.72 11190.75 8274.61 6078.65 9792.91 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_yl75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
DCV-MVSNet75.85 5674.83 6178.91 4488.08 3451.94 13891.30 1589.28 1657.91 18971.19 7689.20 9342.03 13492.77 3469.41 8675.07 12792.01 39
diffmvspermissive75.11 6774.65 6376.46 10778.52 20453.35 10783.28 17779.94 20070.51 1671.64 6988.72 10146.02 8286.08 21777.52 4275.75 12089.96 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.15 6674.54 6476.98 9781.67 13751.74 14483.84 15791.94 169.97 1958.98 19686.02 14259.73 891.73 5668.37 9270.40 16387.48 139
MP-MVScopyleft74.99 6874.33 6576.95 9882.89 11553.05 11885.63 10483.50 14457.86 19167.25 9790.24 6943.38 11788.85 13376.03 4782.23 6188.96 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR75.20 6574.13 6678.41 6288.31 3155.10 6484.31 14485.66 8463.76 8667.55 9590.73 5943.48 11689.40 11566.36 10577.03 10790.73 72
ET-MVSNet_ETH3D75.23 6474.08 6778.67 5384.52 7455.59 4788.92 4189.21 1868.06 3353.13 26790.22 7149.71 5587.62 17572.12 7670.82 15892.82 20
CHOSEN 1792x268876.24 5074.03 6882.88 183.09 10662.84 285.73 10285.39 9069.79 2064.87 12583.49 17241.52 14293.69 2770.55 8281.82 6592.12 35
GST-MVS74.87 6973.90 6977.77 7483.30 9953.45 10285.75 10085.29 9659.22 16266.50 10589.85 8140.94 14590.76 8170.94 8183.35 5489.10 107
Effi-MVS+75.24 6373.61 7080.16 2781.92 13257.42 1985.21 11376.71 26660.68 13773.32 4989.34 9047.30 6891.63 5768.28 9379.72 8991.42 56
PVSNet_BlendedMVS73.42 8573.30 7173.76 16885.91 4851.83 14286.18 9084.24 12965.40 6369.09 8680.86 20946.70 7588.13 15775.43 5365.92 19581.33 246
CANet_DTU73.71 8173.14 7275.40 13082.61 12450.05 17984.67 13779.36 21669.72 2175.39 3290.03 7829.41 26285.93 22367.99 9579.11 9490.22 82
HY-MVS67.03 573.90 7773.14 7276.18 11584.70 7147.36 23875.56 26886.36 7366.27 5070.66 8083.91 16551.05 4389.31 11667.10 10072.61 14491.88 43
HFP-MVS74.37 7173.13 7478.10 6984.30 7753.68 9585.58 10584.36 12456.82 21365.78 11490.56 6040.70 14990.90 7769.18 8880.88 7189.71 94
h-mvs3373.95 7672.89 7577.15 9080.17 17450.37 17184.68 13583.33 14568.08 3071.97 6588.65 10542.50 12591.15 6978.82 3157.78 26289.91 92
ACMMPR73.76 7972.61 7677.24 8983.92 8552.96 12185.58 10584.29 12556.82 21365.12 11990.45 6437.24 18890.18 9969.18 8880.84 7288.58 119
EI-MVSNet-Vis-set73.19 8872.60 7774.99 14082.56 12549.80 18682.55 19289.00 2166.17 5265.89 11388.98 9643.83 10692.29 4465.38 11969.01 17182.87 223
region2R73.75 8072.55 7877.33 8383.90 8652.98 12085.54 10884.09 13156.83 21265.10 12090.45 6437.34 18690.24 9768.89 9080.83 7388.77 115
3Dnovator64.70 674.46 7072.48 7980.41 2382.84 11755.40 5483.08 18188.61 3567.61 4059.85 17988.66 10234.57 22193.97 2358.42 16888.70 1191.85 44
PVSNet_Blended_VisFu73.40 8672.44 8076.30 10881.32 15154.70 7585.81 9678.82 22663.70 8764.53 13085.38 15047.11 7187.38 18067.75 9677.55 10486.81 155
test250672.91 9172.43 8174.32 15280.12 17544.18 28083.19 17884.77 11564.02 7965.97 11187.43 12547.67 6588.72 13459.08 15979.66 9090.08 87
TESTMET0.1,172.86 9272.33 8274.46 14681.98 13150.77 15985.13 11685.47 8666.09 5467.30 9683.69 17037.27 18783.57 25265.06 12078.97 9689.05 108
MVSTER73.25 8772.33 8276.01 12085.54 5653.76 9483.52 16287.16 5867.06 4363.88 14381.66 20152.77 3290.44 8964.66 12164.69 20083.84 205
CostFormer73.89 7872.30 8478.66 5482.36 12856.58 2875.56 26885.30 9566.06 5670.50 8276.88 25257.02 1489.06 12168.27 9468.74 17390.33 80
MSLP-MVS++74.21 7372.25 8580.11 2981.45 14756.47 3386.32 8779.65 20858.19 18366.36 10692.29 2936.11 20490.66 8467.39 9782.49 5993.18 15
iter_conf0573.51 8472.24 8677.33 8387.93 3655.97 4387.90 5570.81 31368.72 2564.04 13884.36 15947.54 6690.87 7871.11 8067.75 18185.13 181
thisisatest051573.64 8272.20 8777.97 7181.63 13853.01 11986.69 8288.81 2862.53 10664.06 13785.65 14652.15 3792.50 4058.43 16669.84 16688.39 123
MVSFormer73.53 8372.19 8877.57 7883.02 10955.24 5781.63 21181.44 17950.28 27176.67 2990.91 5544.82 9986.11 21260.83 14580.09 8291.36 59
VDDNet74.37 7172.13 8981.09 1979.58 18156.52 3290.02 2486.70 6752.61 25671.23 7587.20 12831.75 24993.96 2474.30 6475.77 11992.79 22
baseline172.51 9872.12 9073.69 17185.05 6544.46 27483.51 16686.13 7771.61 1064.64 12787.97 11755.00 2389.48 11459.07 16056.05 27587.13 146
API-MVS74.17 7472.07 9180.49 2190.02 1158.55 887.30 6884.27 12657.51 20065.77 11587.77 12041.61 14095.97 1151.71 22382.63 5786.94 147
PMMVS72.98 8972.05 9275.78 12483.57 9048.60 21284.08 15082.85 15861.62 11968.24 9190.33 6828.35 26687.78 17072.71 7476.69 11090.95 68
IB-MVS68.87 274.01 7572.03 9379.94 3183.04 10855.50 4990.24 2388.65 3167.14 4261.38 16881.74 20053.21 3094.28 2160.45 15362.41 22390.03 89
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 9971.73 9474.29 15381.60 14049.29 19681.85 20688.64 3265.29 6865.05 12188.29 11143.18 11891.83 5463.74 12467.97 17881.75 233
XVS72.92 9071.62 9576.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 14189.63 8535.50 21189.78 10765.50 11080.50 7688.16 124
nrg03072.27 10471.56 9674.42 14875.93 24250.60 16386.97 7683.21 15062.75 10267.15 9884.38 15750.07 5186.66 19871.19 7862.37 22485.99 166
HPM-MVScopyleft72.60 9571.50 9775.89 12282.02 13051.42 15180.70 23183.05 15356.12 22564.03 13989.53 8637.55 18088.37 14770.48 8480.04 8487.88 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 9771.46 9876.00 12182.93 11452.32 13386.93 7882.48 16255.15 23463.65 14590.44 6735.03 21888.53 14368.69 9177.83 10387.15 145
HQP-MVS72.34 10071.44 9975.03 13879.02 19151.56 14788.00 5183.68 13965.45 6064.48 13185.13 15137.35 18488.62 13766.70 10173.12 13884.91 185
VPNet72.07 10571.42 10074.04 15978.64 20247.17 24389.91 2987.97 4572.56 764.66 12685.04 15341.83 13888.33 15061.17 14360.97 23086.62 157
MS-PatchMatch72.34 10071.26 10175.61 12682.38 12755.55 4888.00 5189.95 1465.38 6456.51 24180.74 21132.28 24292.89 3157.95 17788.10 1478.39 281
MTAPA72.73 9371.22 10277.27 8781.54 14453.57 9767.06 31881.31 18159.41 15668.39 9090.96 5436.07 20689.01 12473.80 6882.45 6089.23 102
PGM-MVS72.60 9571.20 10376.80 10382.95 11252.82 12383.07 18282.14 16556.51 22163.18 15089.81 8235.68 21089.76 10967.30 9880.19 8187.83 132
Fast-Effi-MVS+72.73 9371.15 10477.48 8082.75 11954.76 7186.77 8180.64 19063.05 9865.93 11284.01 16344.42 10389.03 12356.45 19476.36 11588.64 117
ECVR-MVScopyleft71.81 10871.00 10574.26 15480.12 17543.49 28584.69 13482.16 16464.02 7964.64 12787.43 12535.04 21789.21 11861.24 14279.66 9090.08 87
mvs_anonymous72.29 10270.74 10676.94 9982.85 11654.72 7478.43 25381.54 17763.77 8561.69 16779.32 22051.11 4285.31 23062.15 13675.79 11890.79 71
hse-mvs271.44 11570.68 10773.73 17076.34 23347.44 23779.45 24679.47 21268.08 3071.97 6586.01 14442.50 12586.93 19178.82 3153.46 29986.83 154
VPA-MVSNet71.12 11770.66 10872.49 19378.75 19744.43 27687.64 5890.02 1263.97 8265.02 12281.58 20342.14 13187.42 17963.42 12663.38 21285.63 175
3Dnovator+62.71 772.29 10270.50 10977.65 7783.40 9751.29 15587.32 6686.40 7259.01 17058.49 20988.32 11032.40 24091.27 6457.04 18782.15 6390.38 79
MVP-Stereo70.97 12170.44 11072.59 19076.03 24151.36 15285.02 12386.99 6160.31 14156.53 24078.92 22640.11 15590.00 10260.00 15790.01 676.41 303
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test111171.06 11970.42 11172.97 18379.48 18241.49 30484.82 13182.74 15964.20 7762.98 15387.43 12535.20 21487.92 16358.54 16578.42 10089.49 98
mPP-MVS71.79 11070.38 11276.04 11982.65 12352.06 13584.45 14081.78 17455.59 23062.05 16589.68 8433.48 23188.28 15465.45 11578.24 10287.77 134
DP-MVS Recon71.99 10670.31 11377.01 9490.65 853.44 10389.37 3582.97 15656.33 22363.56 14889.47 8734.02 22592.15 4954.05 20672.41 14585.43 178
xiu_mvs_v1_base_debu71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
xiu_mvs_v1_base_debi71.60 11170.29 11475.55 12777.26 22353.15 11385.34 10979.37 21355.83 22772.54 5790.19 7222.38 30686.66 19873.28 7176.39 11286.85 151
FIs70.00 13870.24 11769.30 24977.93 21438.55 31883.99 15487.72 5266.86 4557.66 22284.17 16252.28 3585.31 23052.72 22068.80 17284.02 196
sss70.49 12970.13 11871.58 21781.59 14139.02 31580.78 23084.71 11759.34 15866.61 10288.09 11437.17 18985.52 22661.82 13971.02 15690.20 84
EPP-MVSNet71.14 11670.07 11974.33 15179.18 18846.52 24983.81 15886.49 6956.32 22457.95 21584.90 15554.23 2689.14 12058.14 17369.65 16887.33 142
PAPM_NR71.80 10969.98 12077.26 8881.54 14453.34 10878.60 25285.25 9953.46 24960.53 17688.66 10245.69 8789.24 11756.49 19179.62 9289.19 104
HQP_MVS70.96 12269.91 12174.12 15777.95 21249.57 18885.76 9882.59 16063.60 9062.15 16383.28 17636.04 20788.30 15265.46 11372.34 14684.49 188
tpmrst71.04 12069.77 12274.86 14183.19 10355.86 4675.64 26778.73 23067.88 3464.99 12473.73 28149.96 5379.56 28765.92 10767.85 18089.14 106
SR-MVS70.92 12369.73 12374.50 14583.38 9850.48 16784.27 14579.35 21748.96 28166.57 10490.45 6433.65 23087.11 18466.42 10374.56 13085.91 169
iter_conf_final71.46 11469.68 12476.81 10086.03 4653.49 9884.73 13274.37 28660.27 14266.28 10784.36 15935.14 21690.87 7865.41 11770.51 16186.05 165
OPM-MVS70.75 12669.58 12574.26 15475.55 24751.34 15386.05 9383.29 14961.94 11562.95 15485.77 14534.15 22488.44 14565.44 11671.07 15582.99 220
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet70.48 13069.43 12673.64 17277.56 21848.83 20883.51 16677.45 25263.27 9562.33 16085.54 14943.85 10583.29 25657.38 18674.00 13288.79 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131471.11 11869.41 12776.22 11179.32 18550.49 16680.23 23785.14 10559.44 15558.93 19888.89 9933.83 22989.60 11361.49 14077.42 10688.57 120
1112_ss70.05 13669.37 12872.10 19980.77 16342.78 29285.12 11976.75 26459.69 15061.19 17092.12 3147.48 6783.84 24753.04 21368.21 17589.66 95
Vis-MVSNetpermissive70.61 12869.34 12974.42 14880.95 15948.49 21786.03 9477.51 25158.74 17665.55 11787.78 11934.37 22285.95 22252.53 22180.61 7488.80 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM71.88 10769.33 13079.52 3382.20 12954.30 8486.30 8888.77 2956.61 21959.72 18187.48 12333.90 22795.36 1347.48 25081.49 6888.90 110
ACMMPcopyleft70.81 12569.29 13175.39 13181.52 14651.92 14083.43 16983.03 15456.67 21858.80 20388.91 9831.92 24788.58 13965.89 10973.39 13785.67 172
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XXY-MVS70.18 13269.28 13272.89 18677.64 21642.88 29185.06 12087.50 5662.58 10562.66 15882.34 19343.64 11389.83 10658.42 16863.70 20785.96 168
ab-mvs70.65 12769.11 13375.29 13480.87 16046.23 25673.48 28385.24 10059.99 14566.65 10080.94 20843.13 12188.69 13563.58 12568.07 17690.95 68
test-LLR69.65 14769.01 13471.60 21578.67 19948.17 22485.13 11679.72 20559.18 16563.13 15182.58 18736.91 19380.24 27860.56 14975.17 12486.39 162
miper_enhance_ethall69.77 14368.90 13572.38 19578.93 19449.91 18283.29 17678.85 22464.90 7059.37 18979.46 21852.77 3285.16 23563.78 12358.72 24582.08 229
EI-MVSNet69.70 14668.70 13672.68 18875.00 25348.90 20679.54 24387.16 5861.05 12963.88 14383.74 16845.87 8390.44 8957.42 18564.68 20178.70 274
thisisatest053070.47 13168.56 13776.20 11379.78 17951.52 14983.49 16888.58 3757.62 19858.60 20582.79 18151.03 4491.48 6052.84 21562.36 22585.59 176
BH-w/o70.02 13768.51 13874.56 14482.77 11850.39 17086.60 8478.14 24159.77 14859.65 18285.57 14839.27 16287.30 18149.86 23374.94 12985.99 166
tpm270.82 12468.44 13977.98 7080.78 16256.11 3974.21 27981.28 18360.24 14368.04 9275.27 27052.26 3688.50 14455.82 19768.03 17789.33 100
PCF-MVS61.03 1070.10 13468.40 14075.22 13777.15 22751.99 13779.30 24882.12 16656.47 22261.88 16686.48 14043.98 10487.24 18255.37 19872.79 14386.43 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192068.59 16568.31 14169.44 24869.16 30741.51 30384.63 13868.58 32258.80 17473.26 5088.37 10725.30 28980.60 27379.10 2867.55 18286.23 164
UniMVSNet_NR-MVSNet68.82 15868.29 14270.40 23575.71 24542.59 29484.23 14686.78 6466.31 4958.51 20682.45 19051.57 3984.64 24353.11 21155.96 27683.96 202
APD-MVS_3200maxsize69.62 14868.23 14373.80 16781.58 14248.22 22381.91 20479.50 21148.21 28464.24 13689.75 8331.91 24887.55 17763.08 12873.85 13585.64 174
TAMVS69.51 15068.16 14473.56 17576.30 23648.71 21182.57 19077.17 25762.10 11161.32 16984.23 16141.90 13683.46 25454.80 20273.09 14088.50 122
BH-RMVSNet70.08 13568.01 14576.27 10984.21 8051.22 15787.29 6979.33 21958.96 17263.63 14686.77 13433.29 23390.30 9644.63 26673.96 13387.30 144
FC-MVSNet-test67.49 18467.91 14666.21 28076.06 23933.06 33680.82 22987.18 5764.44 7454.81 25182.87 17950.40 5082.60 25848.05 24766.55 18982.98 221
MVS_111021_LR69.07 15267.91 14672.54 19177.27 22249.56 19079.77 24173.96 29159.33 16060.73 17487.82 11830.19 25881.53 26469.94 8572.19 14886.53 158
GeoE69.96 14067.88 14876.22 11181.11 15351.71 14584.15 14876.74 26559.83 14760.91 17184.38 15741.56 14188.10 15951.67 22470.57 16088.84 112
Anonymous20240521170.11 13367.88 14876.79 10487.20 4047.24 24289.49 3377.38 25454.88 23966.14 10886.84 13320.93 31691.54 5956.45 19471.62 15191.59 49
114514_t69.87 14267.88 14875.85 12388.38 2952.35 13286.94 7783.68 13953.70 24855.68 24785.60 14730.07 25991.20 6755.84 19671.02 15683.99 198
TR-MVS69.71 14467.85 15175.27 13582.94 11348.48 21887.40 6580.86 18757.15 20864.61 12987.08 13032.67 23889.64 11246.38 25771.55 15387.68 137
PVSNet62.49 869.27 15167.81 15273.64 17284.41 7651.85 14184.63 13877.80 24566.42 4759.80 18084.95 15422.14 31180.44 27655.03 19975.11 12688.62 118
cl2268.85 15667.69 15372.35 19678.07 21149.98 18182.45 19578.48 23662.50 10758.46 21077.95 23249.99 5285.17 23462.55 13158.72 24581.90 231
v2v48269.55 14967.64 15475.26 13672.32 28353.83 9184.93 12781.94 16965.37 6560.80 17379.25 22241.62 13988.98 12863.03 12959.51 23882.98 221
miper_ehance_all_eth68.70 16467.58 15572.08 20076.91 22949.48 19382.47 19478.45 23762.68 10358.28 21477.88 23450.90 4585.01 23861.91 13758.72 24581.75 233
HyFIR lowres test69.94 14167.58 15577.04 9277.11 22857.29 2081.49 21979.11 22258.27 18258.86 20180.41 21242.33 12786.96 18961.91 13768.68 17486.87 149
IS-MVSNet68.80 16067.55 15772.54 19178.50 20543.43 28681.03 22579.35 21759.12 16857.27 23286.71 13546.05 8187.70 17244.32 26875.60 12186.49 159
OpenMVScopyleft61.00 1169.99 13967.55 15777.30 8578.37 20854.07 9084.36 14285.76 8357.22 20656.71 23787.67 12130.79 25592.83 3343.04 27384.06 5285.01 183
tpm68.36 16767.48 15970.97 22779.93 17851.34 15376.58 26478.75 22967.73 3763.54 14974.86 27248.33 5972.36 33053.93 20763.71 20689.21 103
FMVSNet368.84 15767.40 16073.19 17985.05 6548.53 21585.71 10385.36 9160.90 13357.58 22479.15 22442.16 13086.77 19447.25 25263.40 20984.27 192
test-mter68.36 16767.29 16171.60 21578.67 19948.17 22485.13 11679.72 20553.38 25063.13 15182.58 18727.23 27680.24 27860.56 14975.17 12486.39 162
Anonymous2024052969.71 14467.28 16277.00 9583.78 8850.36 17288.87 4385.10 10647.22 28964.03 13983.37 17427.93 27092.10 5057.78 18167.44 18388.53 121
thres20068.71 16267.27 16373.02 18184.73 7046.76 24685.03 12287.73 5162.34 10959.87 17883.45 17343.15 11988.32 15131.25 32267.91 17983.98 200
PS-MVSNAJss68.78 16167.17 16473.62 17473.01 27348.33 22284.95 12684.81 11359.30 16158.91 20079.84 21637.77 17388.86 13262.83 13063.12 21883.67 208
UGNet68.71 16267.11 16573.50 17680.55 16947.61 23484.08 15078.51 23559.45 15465.68 11682.73 18523.78 29885.08 23752.80 21676.40 11187.80 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS-dyc-post68.27 17166.87 16672.48 19480.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8831.17 25386.09 21660.52 15172.06 14983.19 216
v114468.81 15966.82 16774.80 14272.34 28253.46 10084.68 13581.77 17564.25 7660.28 17777.91 23340.23 15288.95 12960.37 15459.52 23781.97 230
UniMVSNet (Re)67.71 17966.80 16870.45 23374.44 25842.93 29082.42 19684.90 11063.69 8859.63 18380.99 20747.18 6985.23 23351.17 22756.75 26783.19 216
WR-MVS67.58 18166.76 16970.04 24275.92 24345.06 27286.23 8985.28 9764.31 7558.50 20881.00 20644.80 10182.00 26349.21 23955.57 28183.06 219
EPNet_dtu66.25 21066.71 17064.87 29078.66 20134.12 33182.80 18775.51 27761.75 11764.47 13486.90 13237.06 19072.46 32943.65 27169.63 16988.02 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS69.04 15366.70 17176.06 11875.11 24952.36 13183.12 18080.23 19663.32 9460.65 17579.22 22330.98 25488.37 14761.25 14166.41 19087.46 140
RE-MVS-def66.66 17280.96 15648.14 22681.54 21576.98 26046.42 29662.75 15689.42 8829.28 26460.52 15172.06 14983.19 216
c3_l67.97 17466.66 17271.91 21176.20 23849.31 19582.13 20078.00 24361.99 11357.64 22376.94 24949.41 5684.93 23960.62 14857.01 26681.49 237
FA-MVS(test-final)69.00 15566.60 17476.19 11483.48 9347.96 23274.73 27582.07 16757.27 20562.18 16278.47 23036.09 20592.89 3153.76 20971.32 15487.73 135
BH-untuned68.28 17066.40 17573.91 16281.62 13950.01 18085.56 10777.39 25357.63 19757.47 22983.69 17036.36 20287.08 18544.81 26473.08 14184.65 187
AUN-MVS68.20 17366.35 17673.76 16876.37 23247.45 23679.52 24579.52 21060.98 13162.34 15986.02 14236.59 20186.94 19062.32 13353.47 29886.89 148
v14868.24 17266.35 17673.88 16371.76 28651.47 15084.23 14681.90 17363.69 8858.94 19776.44 25743.72 11187.78 17060.63 14755.86 27882.39 227
tttt051768.33 16966.29 17874.46 14678.08 21049.06 19880.88 22889.08 2054.40 24454.75 25380.77 21051.31 4190.33 9349.35 23758.01 25683.99 198
HPM-MVS_fast67.86 17666.28 17972.61 18980.67 16648.34 22181.18 22375.95 27550.81 26959.55 18688.05 11627.86 27185.98 21958.83 16273.58 13683.51 209
UA-Net67.32 19066.23 18070.59 23178.85 19541.23 30773.60 28175.45 27961.54 12166.61 10284.53 15638.73 16686.57 20342.48 27974.24 13183.98 200
Test_1112_low_res67.18 19366.23 18070.02 24378.75 19741.02 30883.43 16973.69 29357.29 20458.45 21182.39 19245.30 9080.88 27050.50 22966.26 19488.16 124
tfpn200view967.57 18266.13 18271.89 21284.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19182.78 225
thres40067.40 18966.13 18271.19 22384.05 8245.07 26983.40 17187.71 5360.79 13457.79 21982.76 18243.53 11487.80 16728.80 32966.36 19180.71 255
cascas69.01 15466.13 18277.66 7679.36 18355.41 5386.99 7583.75 13856.69 21758.92 19981.35 20524.31 29692.10 5053.23 21070.61 15985.46 177
NR-MVSNet67.25 19165.99 18571.04 22673.27 27143.91 28185.32 11284.75 11666.05 5753.65 26582.11 19645.05 9385.97 22147.55 24956.18 27383.24 214
cl____67.43 18665.93 18671.95 20876.33 23448.02 22982.58 18979.12 22161.30 12556.72 23676.92 25046.12 7986.44 20557.98 17556.31 27081.38 245
DIV-MVS_self_test67.43 18665.93 18671.94 20976.33 23448.01 23082.57 19079.11 22261.31 12456.73 23576.92 25046.09 8086.43 20657.98 17556.31 27081.39 244
CPTT-MVS67.15 19465.84 18871.07 22580.96 15650.32 17481.94 20374.10 28846.18 29957.91 21687.64 12229.57 26181.31 26664.10 12270.18 16581.56 236
FMVSNet267.57 18265.79 18972.90 18482.71 12047.97 23185.15 11584.93 10958.55 17956.71 23778.26 23136.72 19886.67 19746.15 25962.94 22084.07 195
v14419267.86 17665.76 19074.16 15671.68 28753.09 11684.14 14980.83 18862.85 10159.21 19477.28 24339.30 16188.00 16258.67 16457.88 26081.40 243
v119267.96 17565.74 19174.63 14371.79 28553.43 10584.06 15280.99 18663.19 9759.56 18577.46 24037.50 18388.65 13658.20 17258.93 24481.79 232
DU-MVS66.84 20365.74 19170.16 23873.27 27142.59 29481.50 21782.92 15763.53 9258.51 20682.11 19640.75 14684.64 24353.11 21155.96 27683.24 214
Vis-MVSNet (Re-imp)65.52 21665.63 19365.17 28877.49 21930.54 34375.49 27177.73 24759.34 15852.26 27686.69 13649.38 5780.53 27537.07 29375.28 12384.42 190
TranMVSNet+NR-MVSNet66.94 20065.61 19470.93 22873.45 26843.38 28783.02 18484.25 12765.31 6758.33 21381.90 19939.92 15885.52 22649.43 23654.89 28683.89 204
V4267.66 18065.60 19573.86 16470.69 29853.63 9681.50 21778.61 23363.85 8459.49 18877.49 23937.98 17087.65 17362.33 13258.43 24980.29 260
AdaColmapbinary67.86 17665.48 19675.00 13988.15 3354.99 6786.10 9276.63 26849.30 27857.80 21886.65 13729.39 26388.94 13145.10 26370.21 16481.06 250
GBi-Net67.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
test167.09 19565.47 19771.96 20582.71 12046.36 25183.52 16283.31 14658.55 17957.58 22476.23 26136.72 19886.20 20847.25 25263.40 20983.32 211
EPMVS68.45 16665.44 19977.47 8184.91 6856.17 3871.89 29981.91 17261.72 11860.85 17272.49 29536.21 20387.06 18647.32 25171.62 15189.17 105
thres100view90066.87 20265.42 20071.24 22183.29 10043.15 28881.67 21087.78 4859.04 16955.92 24582.18 19543.73 10987.80 16728.80 32966.36 19182.78 225
IterMVS-LS66.63 20465.36 20170.42 23475.10 25048.90 20681.45 22076.69 26761.05 12955.71 24677.10 24645.86 8483.65 25157.44 18457.88 26078.70 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth66.98 19965.28 20272.06 20175.61 24650.40 16981.00 22676.97 26362.00 11256.99 23476.97 24844.84 9885.58 22558.75 16354.42 29080.21 261
v192192067.45 18565.23 20374.10 15871.51 29052.90 12283.75 16080.44 19362.48 10859.12 19577.13 24436.98 19187.90 16457.53 18358.14 25481.49 237
thres600view766.46 20765.12 20470.47 23283.41 9443.80 28382.15 19987.78 4859.37 15756.02 24482.21 19443.73 10986.90 19226.51 34164.94 19780.71 255
OMC-MVS65.97 21465.06 20568.71 25872.97 27442.58 29678.61 25175.35 28054.72 24059.31 19186.25 14133.30 23277.88 30157.99 17467.05 18585.66 173
v867.25 19164.99 20674.04 15972.89 27653.31 11082.37 19780.11 19861.54 12154.29 25876.02 26642.89 12388.41 14658.43 16656.36 26880.39 259
Effi-MVS+-dtu66.24 21164.96 20770.08 24075.17 24849.64 18782.01 20174.48 28562.15 11057.83 21776.08 26530.59 25683.79 24865.40 11860.93 23176.81 296
mvsmamba66.93 20164.88 20873.09 18075.06 25147.26 24083.36 17569.21 31962.64 10455.68 24781.43 20429.72 26089.20 11963.35 12763.50 20882.79 224
v124066.99 19864.68 20973.93 16171.38 29352.66 12583.39 17379.98 19961.97 11458.44 21277.11 24535.25 21387.81 16656.46 19358.15 25281.33 246
LPG-MVS_test66.44 20864.58 21072.02 20274.42 25948.60 21283.07 18280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
gg-mvs-nofinetune67.43 18664.53 21176.13 11685.95 4747.79 23364.38 32288.28 4139.34 32566.62 10141.27 35758.69 1389.00 12549.64 23586.62 2891.59 49
ACMP61.11 966.24 21164.33 21272.00 20474.89 25549.12 19783.18 17979.83 20355.41 23352.29 27482.68 18625.83 28586.10 21460.89 14463.94 20580.78 253
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Baseline_NR-MVSNet65.49 21764.27 21369.13 25074.37 26141.65 30183.39 17378.85 22459.56 15259.62 18476.88 25240.75 14687.44 17849.99 23155.05 28478.28 283
v1066.61 20564.20 21473.83 16672.59 27953.37 10681.88 20579.91 20261.11 12754.09 26075.60 26840.06 15688.26 15556.47 19256.10 27479.86 265
Fast-Effi-MVS+-dtu66.53 20664.10 21573.84 16572.41 28152.30 13484.73 13275.66 27659.51 15356.34 24279.11 22528.11 26885.85 22457.74 18263.29 21383.35 210
Anonymous2023121166.08 21363.67 21673.31 17783.07 10748.75 20986.01 9584.67 11945.27 30356.54 23976.67 25528.06 26988.95 12952.78 21759.95 23382.23 228
PatchmatchNetpermissive67.07 19763.63 21777.40 8283.10 10458.03 972.11 29777.77 24658.85 17359.37 18970.83 30837.84 17284.93 23942.96 27569.83 16789.26 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat166.28 20962.78 21876.77 10581.40 14857.14 2270.03 30677.19 25653.00 25358.76 20470.73 31146.17 7886.73 19643.27 27264.46 20286.44 160
pm-mvs164.12 22262.56 21968.78 25671.68 28738.87 31682.89 18681.57 17655.54 23253.89 26277.82 23537.73 17686.74 19548.46 24553.49 29780.72 254
test0.0.03 162.54 23762.44 22062.86 30072.28 28429.51 34982.93 18578.78 22759.18 16553.07 26882.41 19136.91 19377.39 30537.45 28958.96 24381.66 235
miper_lstm_enhance63.91 22362.30 22168.75 25775.06 25146.78 24569.02 31081.14 18459.68 15152.76 27072.39 29840.71 14877.99 29956.81 19053.09 30081.48 239
X-MVStestdata65.85 21562.20 22276.81 10083.41 9452.48 12784.88 12883.20 15158.03 18563.91 1414.82 37635.50 21189.78 10765.50 11080.50 7688.16 124
FMVSNet164.57 21862.11 22371.96 20577.32 22146.36 25183.52 16283.31 14652.43 25854.42 25676.23 26127.80 27286.20 20842.59 27861.34 22983.32 211
ACMM58.35 1264.35 22062.01 22471.38 21974.21 26248.51 21682.25 19879.66 20747.61 28754.54 25580.11 21325.26 29086.00 21851.26 22563.16 21679.64 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS63.77 22661.67 22570.08 24072.68 27851.24 15680.44 23375.51 27760.51 13951.41 27973.70 28432.08 24478.91 28954.30 20454.35 29180.08 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp64.41 21961.58 22672.90 18482.40 12654.09 8972.53 28976.59 26960.39 14055.68 24770.39 31235.18 21576.90 30939.34 28561.71 22787.73 135
test_djsdf63.84 22461.56 22770.70 23068.78 30944.69 27381.63 21181.44 17950.28 27152.27 27576.26 26026.72 27986.11 21260.83 14555.84 27981.29 249
MDTV_nov1_ep1361.56 22781.68 13655.12 6272.41 29178.18 24059.19 16358.85 20269.29 31634.69 22086.16 21136.76 29762.96 219
D2MVS63.49 22861.39 22969.77 24469.29 30648.93 20578.89 25077.71 24860.64 13849.70 28872.10 30327.08 27783.48 25354.48 20362.65 22176.90 295
tt080563.39 22961.31 23069.64 24569.36 30538.87 31678.00 25485.48 8548.82 28255.66 25081.66 20124.38 29586.37 20749.04 24059.36 24183.68 207
pmmvs562.80 23661.18 23167.66 26769.53 30442.37 29982.65 18875.19 28154.30 24652.03 27778.51 22931.64 25080.67 27148.60 24358.15 25279.95 264
CL-MVSNet_self_test62.98 23361.14 23268.50 26265.86 32442.96 28984.37 14182.98 15560.98 13153.95 26172.70 29440.43 15083.71 25041.10 28047.93 31378.83 273
pmmvs463.34 23061.07 23370.16 23870.14 30050.53 16579.97 24071.41 31055.08 23554.12 25978.58 22832.79 23782.09 26250.33 23057.22 26577.86 287
RRT_MVS63.68 22761.01 23471.70 21373.48 26745.98 25881.19 22276.08 27354.33 24552.84 26979.27 22122.21 30987.65 17354.13 20555.54 28281.46 240
jajsoiax63.21 23160.84 23570.32 23668.33 31444.45 27581.23 22181.05 18553.37 25150.96 28477.81 23617.49 33085.49 22859.31 15858.05 25581.02 251
TransMVSNet (Re)62.82 23560.76 23669.02 25173.98 26441.61 30286.36 8679.30 22056.90 21052.53 27176.44 25741.85 13787.60 17638.83 28640.61 33777.86 287
mvs_tets62.96 23460.55 23770.19 23768.22 31744.24 27980.90 22780.74 18952.99 25450.82 28677.56 23716.74 33485.44 22959.04 16157.94 25780.89 252
UniMVSNet_ETH3D62.51 23860.49 23868.57 26168.30 31540.88 31073.89 28079.93 20151.81 26454.77 25279.61 21724.80 29381.10 26749.93 23261.35 22883.73 206
CVMVSNet60.85 24960.44 23962.07 30175.00 25332.73 33879.54 24373.49 29636.98 33356.28 24383.74 16829.28 26469.53 33846.48 25663.23 21483.94 203
FE-MVS64.15 22160.43 24075.30 13380.85 16149.86 18468.28 31478.37 23850.26 27459.31 19173.79 28026.19 28391.92 5340.19 28266.67 18784.12 193
MIMVSNet63.12 23260.29 24171.61 21475.92 24346.65 24765.15 31981.94 16959.14 16754.65 25469.47 31525.74 28680.63 27241.03 28169.56 17087.55 138
TAPA-MVS56.12 1461.82 24560.18 24266.71 27678.48 20637.97 32175.19 27376.41 27146.82 29257.04 23386.52 13927.67 27477.03 30726.50 34267.02 18685.14 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA63.84 22460.01 24375.32 13278.58 20357.92 1061.61 33077.53 25056.71 21657.75 22170.77 30931.97 24579.91 28448.80 24156.36 26888.13 127
EG-PatchMatch MVS62.40 24259.59 24470.81 22973.29 27049.05 19985.81 9684.78 11451.85 26344.19 31273.48 28715.52 33989.85 10540.16 28367.24 18473.54 322
XVG-OURS-SEG-HR62.02 24359.54 24569.46 24765.30 32745.88 25965.06 32073.57 29546.45 29557.42 23083.35 17526.95 27878.09 29553.77 20864.03 20384.42 190
tpmvs62.45 24159.42 24671.53 21883.93 8454.32 8370.03 30677.61 24951.91 26153.48 26668.29 31937.91 17186.66 19833.36 31258.27 25073.62 321
XVG-OURS61.88 24459.34 24769.49 24665.37 32646.27 25464.80 32173.49 29647.04 29157.41 23182.85 18025.15 29178.18 29353.00 21464.98 19684.01 197
v7n62.50 23959.27 24872.20 19867.25 32049.83 18577.87 25680.12 19752.50 25748.80 29273.07 28932.10 24387.90 16446.83 25554.92 28578.86 272
tfpnnormal61.47 24659.09 24968.62 26076.29 23741.69 30081.14 22485.16 10354.48 24351.32 28073.63 28532.32 24186.89 19321.78 35255.71 28077.29 293
CR-MVSNet62.47 24059.04 25072.77 18773.97 26556.57 2960.52 33371.72 30560.04 14457.49 22765.86 32638.94 16380.31 27742.86 27659.93 23481.42 241
PLCcopyleft52.38 1860.89 24858.97 25166.68 27881.77 13545.70 26378.96 24974.04 29043.66 31547.63 29883.19 17823.52 30177.78 30437.47 28860.46 23276.55 302
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT59.12 25958.81 25260.08 31370.68 29945.07 26980.42 23474.25 28743.54 31650.02 28773.73 28131.97 24556.74 35151.06 22853.60 29678.42 280
CNLPA60.59 25058.44 25367.05 27379.21 18747.26 24079.75 24264.34 33142.46 32151.90 27883.94 16427.79 27375.41 31437.12 29159.49 23978.47 278
WR-MVS_H58.91 26458.04 25461.54 30669.07 30833.83 33376.91 26181.99 16851.40 26648.17 29374.67 27340.23 15274.15 31831.78 31948.10 31176.64 300
anonymousdsp60.46 25157.65 25568.88 25263.63 33645.09 26872.93 28778.63 23246.52 29451.12 28172.80 29321.46 31483.07 25757.79 18053.97 29278.47 278
Anonymous2023120659.08 26157.59 25663.55 29568.77 31032.14 34180.26 23679.78 20450.00 27549.39 28972.39 29826.64 28078.36 29233.12 31557.94 25780.14 262
CP-MVSNet58.54 27057.57 25761.46 30768.50 31233.96 33276.90 26278.60 23451.67 26547.83 29676.60 25634.99 21972.79 32735.45 30047.58 31577.64 291
PVSNet_057.04 1361.19 24757.24 25873.02 18177.45 22050.31 17579.43 24777.36 25563.96 8347.51 30172.45 29725.03 29283.78 24952.76 21919.22 36884.96 184
pmmvs659.64 25457.15 25967.09 27166.01 32236.86 32580.50 23278.64 23145.05 30549.05 29173.94 27927.28 27586.10 21443.96 27049.94 30878.31 282
PEN-MVS58.35 27157.15 25961.94 30367.55 31934.39 33077.01 26078.35 23951.87 26247.72 29776.73 25433.91 22673.75 32234.03 31047.17 31977.68 289
PS-CasMVS58.12 27257.03 26161.37 30868.24 31633.80 33476.73 26378.01 24251.20 26747.54 30076.20 26432.85 23572.76 32835.17 30547.37 31777.55 292
bld_raw_dy_0_6459.75 25357.01 26267.96 26566.73 32145.30 26677.59 25859.97 33850.49 27047.15 30377.03 24717.45 33179.06 28856.92 18959.76 23679.51 267
LCM-MVSNet-Re58.82 26556.54 26365.68 28279.31 18629.09 35261.39 33245.79 35060.73 13637.65 33872.47 29631.42 25181.08 26849.66 23470.41 16286.87 149
FMVSNet558.61 26756.45 26465.10 28977.20 22639.74 31274.77 27477.12 25850.27 27343.28 31867.71 32126.15 28476.90 30936.78 29654.78 28778.65 276
KD-MVS_2432*160059.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
miper_refine_blended59.04 26256.44 26566.86 27479.07 18945.87 26072.13 29580.42 19455.03 23648.15 29471.01 30636.73 19678.05 29735.21 30330.18 35676.67 297
CHOSEN 280x42057.53 27456.38 26760.97 31174.01 26348.10 22846.30 35154.31 34448.18 28550.88 28577.43 24138.37 16959.16 34954.83 20063.14 21775.66 307
DP-MVS59.24 25756.12 26868.63 25988.24 3250.35 17382.51 19364.43 33041.10 32346.70 30678.77 22724.75 29488.57 14222.26 35056.29 27266.96 342
OpenMVS_ROBcopyleft53.19 1759.20 25856.00 26968.83 25471.13 29544.30 27783.64 16175.02 28246.42 29646.48 30873.03 29018.69 32488.14 15627.74 33761.80 22674.05 318
ACMH53.70 1659.78 25255.94 27071.28 22076.59 23148.35 22080.15 23976.11 27249.74 27641.91 32373.45 28816.50 33690.31 9431.42 32057.63 26375.17 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet57.03 27555.73 27160.95 31265.94 32332.57 33975.71 26677.09 25951.16 26846.65 30776.34 25932.84 23673.22 32630.94 32344.87 32877.06 294
ACMH+54.58 1558.55 26955.24 27268.50 26274.68 25745.80 26280.27 23570.21 31647.15 29042.77 32075.48 26916.73 33585.98 21935.10 30754.78 28773.72 320
MVS_030456.72 27655.17 27361.37 30870.71 29636.80 32675.74 26568.75 32144.11 31352.53 27168.20 32015.05 34074.53 31742.98 27458.44 24872.79 327
UnsupCasMVSNet_eth57.56 27355.15 27464.79 29164.57 33333.12 33573.17 28683.87 13758.98 17141.75 32470.03 31322.54 30579.92 28246.12 26035.31 34581.32 248
MSDG59.44 25555.14 27572.32 19774.69 25650.71 16074.39 27873.58 29444.44 30943.40 31777.52 23819.45 32090.87 7831.31 32157.49 26475.38 309
our_test_359.11 26055.08 27671.18 22471.42 29153.29 11181.96 20274.52 28448.32 28342.08 32169.28 31728.14 26782.15 26034.35 30945.68 32778.11 286
ppachtmachnet_test58.56 26854.34 27771.24 22171.42 29154.74 7281.84 20772.27 30249.02 28045.86 31168.99 31826.27 28183.30 25530.12 32443.23 33275.69 306
Patchmatch-RL test58.72 26654.32 27871.92 21063.91 33544.25 27861.73 32955.19 34257.38 20349.31 29054.24 34937.60 17980.89 26962.19 13547.28 31890.63 73
RPMNet59.29 25654.25 27974.42 14873.97 26556.57 2960.52 33376.98 26035.72 33757.49 22758.87 34537.73 17685.26 23227.01 34059.93 23481.42 241
test20.0355.22 28754.07 28058.68 31763.14 33825.00 35777.69 25774.78 28352.64 25543.43 31672.39 29826.21 28274.76 31629.31 32747.05 32176.28 304
LS3D56.40 28153.82 28164.12 29281.12 15245.69 26473.42 28466.14 32635.30 34143.24 31979.88 21422.18 31079.62 28619.10 35864.00 20467.05 341
PatchMatch-RL56.66 27753.75 28265.37 28777.91 21545.28 26769.78 30860.38 33641.35 32247.57 29973.73 28116.83 33376.91 30836.99 29459.21 24273.92 319
F-COLMAP55.96 28553.65 28362.87 29972.76 27742.77 29374.70 27770.37 31540.03 32441.11 32879.36 21917.77 32973.70 32332.80 31653.96 29372.15 329
test_040256.45 28053.03 28466.69 27776.78 23050.31 17581.76 20869.61 31842.79 31943.88 31372.13 30122.82 30486.46 20416.57 36150.94 30663.31 350
PatchT56.60 27852.97 28567.48 26872.94 27546.16 25757.30 34173.78 29238.77 32754.37 25757.26 34837.52 18178.06 29632.02 31752.79 30178.23 285
Patchmtry56.56 27952.95 28667.42 26972.53 28050.59 16459.05 33771.72 30537.86 33146.92 30465.86 32638.94 16380.06 28136.94 29546.72 32371.60 333
XVG-ACMP-BASELINE56.03 28352.85 28765.58 28361.91 34140.95 30963.36 32372.43 30145.20 30446.02 30974.09 2779.20 35178.12 29445.13 26258.27 25077.66 290
pmmvs-eth3d55.97 28452.78 28865.54 28461.02 34346.44 25075.36 27267.72 32449.61 27743.65 31567.58 32221.63 31377.04 30644.11 26944.33 32973.15 326
CMPMVSbinary40.41 2155.34 28652.64 28963.46 29660.88 34443.84 28261.58 33171.06 31130.43 34736.33 34074.63 27424.14 29775.44 31348.05 24766.62 18871.12 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.25 29152.57 29059.29 31562.76 33921.65 36472.21 29470.47 31453.25 25241.94 32277.33 24214.28 34177.95 30029.18 32851.72 30578.28 283
test_fmvs153.60 29652.54 29156.78 32158.07 34630.26 34468.95 31142.19 35532.46 34363.59 14782.56 18911.55 34460.81 34458.25 17155.27 28379.28 268
ADS-MVSNet56.17 28251.95 29268.84 25380.60 16753.07 11755.03 34470.02 31744.72 30651.00 28261.19 33822.83 30278.88 29028.54 33253.63 29474.57 315
ADS-MVSNet255.21 28851.44 29366.51 27980.60 16749.56 19055.03 34465.44 32744.72 30651.00 28261.19 33822.83 30275.41 31428.54 33253.63 29474.57 315
USDC54.36 29051.23 29463.76 29464.29 33437.71 32262.84 32873.48 29856.85 21135.47 34371.94 3049.23 35078.43 29138.43 28748.57 31075.13 312
test_fmvs1_n52.55 30051.19 29556.65 32251.90 35430.14 34567.66 31542.84 35432.27 34462.30 16182.02 1989.12 35260.84 34357.82 17954.75 28978.99 270
EU-MVSNet52.63 29950.72 29658.37 31862.69 34028.13 35472.60 28875.97 27430.94 34640.76 33072.11 30220.16 31870.80 33435.11 30646.11 32576.19 305
UnsupCasMVSNet_bld53.86 29350.53 29763.84 29363.52 33734.75 32971.38 30081.92 17146.53 29338.95 33457.93 34620.55 31780.20 28039.91 28434.09 35276.57 301
SixPastTwentyTwo54.37 28950.10 29867.21 27070.70 29741.46 30574.73 27564.69 32947.56 28839.12 33369.49 31418.49 32784.69 24231.87 31834.20 35175.48 308
YYNet153.82 29449.96 29965.41 28670.09 30248.95 20372.30 29271.66 30744.25 31131.89 35263.07 33423.73 29973.95 32033.26 31339.40 33973.34 323
MDA-MVSNet_test_wron53.82 29449.95 30065.43 28570.13 30149.05 19972.30 29271.65 30844.23 31231.85 35363.13 33323.68 30074.01 31933.25 31439.35 34073.23 325
LTVRE_ROB45.45 1952.73 29849.74 30161.69 30569.78 30334.99 32844.52 35267.60 32543.11 31843.79 31474.03 27818.54 32681.45 26528.39 33457.94 25768.62 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_n51.19 30549.66 30255.76 32551.26 35529.85 34767.20 31738.86 35832.12 34559.50 18779.86 2158.78 35358.23 35056.95 18852.46 30279.19 269
K. test v354.04 29249.42 30367.92 26668.55 31142.57 29775.51 27063.07 33352.07 25939.21 33264.59 33019.34 32182.21 25937.11 29225.31 36178.97 271
OurMVSNet-221017-052.39 30148.73 30463.35 29765.21 32838.42 31968.54 31364.95 32838.19 32839.57 33171.43 30513.23 34379.92 28237.16 29040.32 33871.72 332
Anonymous2024052151.65 30348.42 30561.34 31056.43 35039.65 31473.57 28273.47 29936.64 33536.59 33963.98 33110.75 34772.25 33135.35 30149.01 30972.11 330
Patchmatch-test53.33 29748.17 30668.81 25573.31 26942.38 29842.98 35458.23 33932.53 34238.79 33570.77 30939.66 15973.51 32425.18 34452.06 30490.55 74
COLMAP_ROBcopyleft43.60 2050.90 30648.05 30759.47 31467.81 31840.57 31171.25 30162.72 33536.49 33636.19 34173.51 28613.48 34273.92 32120.71 35450.26 30763.92 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 30747.81 30857.96 31961.53 34227.80 35567.40 31674.06 28943.25 31733.31 35165.38 32916.03 33771.34 33221.80 35147.55 31674.75 313
JIA-IIPM52.33 30247.77 30966.03 28171.20 29446.92 24440.00 35976.48 27037.10 33246.73 30537.02 35932.96 23477.88 30135.97 29852.45 30373.29 324
MDA-MVSNet-bldmvs51.56 30447.75 31063.00 29871.60 28947.32 23969.70 30972.12 30343.81 31427.65 35963.38 33221.97 31275.96 31127.30 33932.19 35365.70 347
KD-MVS_self_test49.24 30846.85 31156.44 32354.32 35122.87 36057.39 34073.36 30044.36 31037.98 33759.30 34418.97 32371.17 33333.48 31142.44 33375.26 310
new-patchmatchnet48.21 31046.55 31253.18 32857.73 34818.19 37270.24 30471.02 31245.70 30033.70 34760.23 34018.00 32869.86 33727.97 33634.35 34971.49 335
MVS-HIRNet49.01 30944.71 31361.92 30476.06 23946.61 24863.23 32554.90 34324.77 35333.56 34836.60 36121.28 31575.88 31229.49 32662.54 22263.26 351
AllTest47.32 31244.66 31455.32 32665.08 32937.50 32362.96 32754.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
TinyColmap48.15 31144.49 31559.13 31665.73 32538.04 32063.34 32462.86 33438.78 32629.48 35567.23 3246.46 36173.30 32524.59 34641.90 33566.04 345
test_fmvs245.89 31444.32 31650.62 33145.85 36324.70 35858.87 33937.84 36125.22 35252.46 27374.56 2757.07 35654.69 35249.28 23847.70 31472.48 328
RPSCF45.77 31544.13 31750.68 33057.67 34929.66 34854.92 34645.25 35226.69 35145.92 31075.92 26717.43 33245.70 36227.44 33845.95 32676.67 297
PM-MVS46.92 31343.76 31856.41 32452.18 35332.26 34063.21 32638.18 35937.99 33040.78 32966.20 3255.09 36465.42 34148.19 24641.99 33471.54 334
mvsany_test143.38 31742.57 31945.82 33550.96 35626.10 35655.80 34227.74 37127.15 35047.41 30274.39 27618.67 32544.95 36344.66 26536.31 34366.40 344
pmmvs345.53 31641.55 32057.44 32048.97 35939.68 31370.06 30557.66 34028.32 34934.06 34657.29 3478.50 35466.85 34034.86 30834.26 35065.80 346
N_pmnet41.25 31839.77 32145.66 33668.50 3120.82 38372.51 2900.38 38335.61 33835.26 34461.51 33720.07 31967.74 33923.51 34940.63 33668.42 340
test_vis1_rt40.29 32038.64 32245.25 33748.91 36030.09 34659.44 33627.07 37224.52 35438.48 33651.67 3536.71 35949.44 35744.33 26746.59 32456.23 353
TDRefinement40.91 31938.37 32348.55 33350.45 35733.03 33758.98 33850.97 34828.50 34829.89 35467.39 3236.21 36354.51 35317.67 36035.25 34658.11 352
test_fmvs337.95 32235.75 32444.55 33835.50 36918.92 36848.32 34834.00 36618.36 36041.31 32761.58 3362.29 37148.06 36142.72 27737.71 34266.66 343
DSMNet-mixed38.35 32135.36 32547.33 33448.11 36114.91 37637.87 36036.60 36219.18 35834.37 34559.56 34315.53 33853.01 35520.14 35646.89 32274.07 317
FPMVS35.40 32333.67 32640.57 34146.34 36228.74 35341.05 35657.05 34120.37 35722.27 36153.38 3516.87 35844.94 3648.62 36747.11 32048.01 360
LF4IMVS33.04 32732.55 32734.52 34540.96 36422.03 36244.45 35335.62 36320.42 35628.12 35862.35 3355.03 36531.88 37521.61 35334.42 34849.63 359
new_pmnet33.56 32631.89 32838.59 34249.01 35820.42 36551.01 34737.92 36020.58 35523.45 36046.79 3556.66 36049.28 35920.00 35731.57 35546.09 361
EGC-MVSNET33.75 32530.42 32943.75 33964.94 33136.21 32760.47 33540.70 3570.02 3770.10 37853.79 3507.39 35560.26 34511.09 36635.23 34734.79 363
ANet_high34.39 32429.59 33048.78 33230.34 37322.28 36155.53 34363.79 33238.11 32915.47 36536.56 3626.94 35759.98 34613.93 3635.64 37664.08 348
mvsany_test328.00 32925.98 33134.05 34628.97 37415.31 37434.54 36318.17 37716.24 36129.30 35653.37 3522.79 36933.38 37430.01 32520.41 36753.45 356
test_f27.12 33124.85 33233.93 34726.17 37915.25 37530.24 36722.38 37612.53 36628.23 35749.43 3542.59 37034.34 37325.12 34526.99 35952.20 357
cdsmvs_eth3d_5k18.33 34124.44 3330.00 3620.00 3840.00 3850.00 37389.40 150.00 3780.00 38192.02 3438.55 1670.00 3790.00 3790.00 3770.00 377
APD_test126.46 33324.41 33432.62 35037.58 36621.74 36340.50 35830.39 36811.45 36716.33 36443.76 3561.63 37641.62 36511.24 36526.82 36034.51 364
Gipumacopyleft27.47 33024.26 33537.12 34460.55 34529.17 35111.68 37160.00 33714.18 36310.52 37215.12 3732.20 37363.01 3428.39 36835.65 34419.18 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 32823.85 33640.71 34027.46 37818.93 36730.82 36646.19 34912.76 36516.40 36334.70 3641.90 37448.69 36020.25 35524.22 36254.51 355
PMMVS226.71 33222.98 33737.87 34336.89 3678.51 38042.51 35529.32 37019.09 35913.01 36737.54 3582.23 37253.11 35414.54 36211.71 36951.99 358
test_vis3_rt24.79 33522.95 33830.31 35128.59 37518.92 36837.43 36117.27 37912.90 36421.28 36229.92 3681.02 37836.35 36828.28 33529.82 35835.65 362
PMVScopyleft19.57 2225.07 33422.43 33932.99 34923.12 38022.98 35940.98 35735.19 36415.99 36211.95 37135.87 3631.47 37749.29 3585.41 37431.90 35426.70 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 33621.07 34033.16 34827.67 3778.35 38126.63 36835.11 3653.40 37414.35 36636.98 3603.46 36835.31 37019.08 35922.95 36355.81 354
testf121.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
APD_test221.11 33719.08 34127.18 35330.56 37118.28 37033.43 36424.48 3738.02 37112.02 36933.50 3650.75 38035.09 3717.68 36921.32 36428.17 366
E-PMN19.16 33918.40 34321.44 35536.19 36813.63 37747.59 34930.89 36710.73 3685.91 37516.59 3713.66 36739.77 3665.95 3738.14 37110.92 371
EMVS18.42 34017.66 34420.71 35634.13 37012.64 37846.94 35029.94 36910.46 3705.58 37614.93 3744.23 36638.83 3675.24 3757.51 37310.67 372
MVEpermissive16.60 2317.34 34213.39 34529.16 35228.43 37619.72 36613.73 37023.63 3757.23 3737.96 37321.41 3690.80 37936.08 3696.97 37110.39 37031.69 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 34310.68 3465.73 3592.49 3824.21 38210.48 37218.04 3780.34 37612.59 36820.49 37011.39 3457.03 37813.84 3646.46 3755.95 373
ab-mvs-re7.68 34510.24 3470.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 38192.12 310.00 3830.00 3790.00 3790.00 3770.00 377
wuyk23d9.11 3448.77 34810.15 35840.18 36516.76 37320.28 3691.01 3822.58 3752.66 3770.98 3770.23 38212.49 3774.08 3766.90 3741.19 374
testmvs6.14 3468.18 3490.01 3600.01 3830.00 38573.40 2850.00 3840.00 3780.02 3790.15 3780.00 3830.00 3790.02 3770.00 3770.02 375
test1236.01 3478.01 3500.01 3600.00 3840.01 38471.93 2980.00 3840.00 3780.02 3790.11 3790.00 3830.00 3790.02 3770.00 3770.02 375
pcd_1.5k_mvsjas3.15 3484.20 3510.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 38037.77 1730.00 3790.00 3790.00 3770.00 377
test_blank0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
sosnet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
Regformer0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
uanet0.00 3490.00 3520.00 3620.00 3840.00 3850.00 3730.00 3840.00 3780.00 3810.00 3800.00 3830.00 3790.00 3790.00 3770.00 377
FOURS183.24 10149.90 18384.98 12478.76 22847.71 28673.42 47
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
PC_three_145266.58 4687.27 293.70 866.82 494.95 1789.74 291.98 493.98 5
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 1986.80 2592.34 30
test_one_060189.39 2257.29 2088.09 4357.21 20782.06 1193.39 1254.94 24
eth-test20.00 384
eth-test0.00 384
ZD-MVS89.55 1453.46 10084.38 12357.02 20973.97 4291.03 5044.57 10291.17 6875.41 5681.78 67
IU-MVS89.48 1757.49 1591.38 566.22 5188.26 182.83 987.60 1792.44 27
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 192.55 394.06 3
test_241102_TWO88.76 3057.50 20183.60 694.09 356.14 1896.37 682.28 1387.43 1992.55 25
test_241102_ONE89.48 1756.89 2588.94 2257.53 19984.61 493.29 1558.81 1196.45 1
save fliter85.35 6056.34 3689.31 3781.46 17861.55 120
test_0728_THIRD58.00 18781.91 1293.64 1056.54 1596.44 281.64 1786.86 2392.23 32
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2496.39 481.68 1587.13 2092.47 26
test072689.40 2057.45 1792.32 788.63 3357.71 19583.14 993.96 655.17 20
GSMVS88.13 127
test_part289.33 2355.48 5082.27 10
sam_mvs138.86 16588.13 127
sam_mvs35.99 209
ambc62.06 30253.98 35229.38 35035.08 36279.65 20841.37 32559.96 3416.27 36282.15 26035.34 30238.22 34174.65 314
MTGPAbinary81.31 181
test_post170.84 30314.72 37534.33 22383.86 24648.80 241
test_post16.22 37237.52 18184.72 241
patchmatchnet-post59.74 34238.41 16879.91 284
GG-mvs-BLEND77.77 7486.68 4350.61 16268.67 31288.45 3968.73 8887.45 12459.15 1090.67 8354.83 20087.67 1692.03 38
MTMP87.27 7015.34 380
gm-plane-assit83.24 10154.21 8670.91 1388.23 11295.25 1466.37 104
test9_res78.72 3485.44 3991.39 57
TEST985.68 5155.42 5187.59 6084.00 13357.72 19472.99 5290.98 5244.87 9788.58 139
test_885.72 5055.31 5587.60 5983.88 13657.84 19272.84 5690.99 5144.99 9488.34 149
agg_prior275.65 5185.11 4391.01 66
agg_prior85.64 5454.92 6983.61 14372.53 6088.10 159
TestCases55.32 32665.08 32937.50 32354.25 34535.45 33933.42 34972.82 2919.98 34859.33 34724.13 34743.84 33069.13 337
test_prior456.39 3587.15 73
test_prior289.04 4061.88 11673.55 4591.46 4848.01 6374.73 5985.46 38
test_prior78.39 6386.35 4554.91 7085.45 8889.70 11090.55 74
旧先验281.73 20945.53 30274.66 3570.48 33658.31 170
新几何281.61 213
新几何173.30 17883.10 10453.48 9971.43 30945.55 30166.14 10887.17 12933.88 22880.54 27448.50 24480.33 8085.88 170
旧先验181.57 14347.48 23571.83 30488.66 10236.94 19278.34 10188.67 116
无先验85.19 11478.00 24349.08 27985.13 23652.78 21787.45 141
原ACMM283.77 159
原ACMM176.13 11684.89 6954.59 7985.26 9851.98 26066.70 9987.07 13140.15 15489.70 11051.23 22685.06 4484.10 194
test22279.36 18350.97 15877.99 25567.84 32342.54 32062.84 15586.53 13830.26 25776.91 10985.23 179
testdata277.81 30345.64 261
segment_acmp44.97 96
testdata67.08 27277.59 21745.46 26569.20 32044.47 30871.50 7288.34 10931.21 25270.76 33552.20 22275.88 11785.03 182
testdata177.55 25964.14 78
test1279.24 3786.89 4156.08 4085.16 10372.27 6447.15 7091.10 7185.93 3390.54 76
plane_prior777.95 21248.46 219
plane_prior678.42 20749.39 19436.04 207
plane_prior582.59 16088.30 15265.46 11372.34 14684.49 188
plane_prior483.28 176
plane_prior348.95 20364.01 8162.15 163
plane_prior285.76 9863.60 90
plane_prior178.31 209
plane_prior49.57 18887.43 6364.57 7372.84 142
n20.00 384
nn0.00 384
door-mid41.31 356
lessismore_v067.98 26464.76 33241.25 30645.75 35136.03 34265.63 32819.29 32284.11 24535.67 29921.24 36678.59 277
LGP-MVS_train72.02 20274.42 25948.60 21280.64 19054.69 24153.75 26383.83 16625.73 28786.98 18760.33 15564.71 19880.48 257
test1184.25 127
door43.27 353
HQP5-MVS51.56 147
HQP-NCC79.02 19188.00 5165.45 6064.48 131
ACMP_Plane79.02 19188.00 5165.45 6064.48 131
BP-MVS66.70 101
HQP4-MVS64.47 13488.61 13884.91 185
HQP3-MVS83.68 13973.12 138
HQP2-MVS37.35 184
NP-MVS78.76 19650.43 16885.12 152
MDTV_nov1_ep13_2view43.62 28471.13 30254.95 23859.29 19336.76 19546.33 25887.32 143
ACMMP++_ref63.20 215
ACMMP++59.38 240
Test By Simon39.38 160
ITE_SJBPF51.84 32958.03 34731.94 34253.57 34736.67 33441.32 32675.23 27111.17 34651.57 35625.81 34348.04 31272.02 331
DeepMVS_CXcopyleft13.10 35721.34 3818.99 37910.02 38110.59 3697.53 37430.55 3671.82 37514.55 3766.83 3727.52 37215.75 370