This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 24199.98 1698.96 32100.00 1100.00 199.96 499.42 255100.00 1100.00 1100.00 1
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
patch_mono-299.04 12599.79 696.81 32299.92 10490.47 370100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 137100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 119100.00 199.21 77100.00 1100.00 1100.00 199.99 109
PAPM99.78 1699.76 1299.85 8599.01 28299.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 215100.00 1100.00 1100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft98.56 299.70 3299.74 1699.58 143100.00 198.79 192100.00 199.54 7198.58 7299.96 119100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
DeepPCF-MVS98.03 498.54 17599.72 1994.98 34599.99 4984.94 384100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
API-MVS99.72 2699.70 2199.79 10399.97 8999.37 14399.96 24699.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
TSAR-MVS + GP.99.61 5899.69 2299.35 17399.99 4998.06 243100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
EPNet99.62 5699.69 2299.42 16299.99 4998.37 219100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 23599.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29999.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9499.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15099.99 61100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6899.97 8999.72 95100.00 199.47 7998.43 7899.88 160100.00 199.14 84100.00 199.97 83100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 23599.44 11698.35 8699.99 103100.00 199.04 9499.96 13799.98 73100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
F-COLMAP99.64 4899.64 3399.67 12599.99 4999.07 170100.00 199.44 11698.30 8999.90 155100.00 199.18 8099.99 9499.91 98100.00 199.94 135
MVS_030499.69 3599.63 3799.86 8199.96 9499.63 107100.00 199.92 3499.03 2099.97 114100.00 197.87 14999.96 137100.00 199.96 114100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 25299.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9699.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 150100.00 1100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 114100.00 198.97 99100.00 199.94 93100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12297.50 164100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13898.32 8899.94 145100.00 198.65 125100.00 199.96 85100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 153100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 159100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 157100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 48100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14599.81 8599.95 25299.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 229
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 29399.73 5698.16 9699.75 184100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12799.59 110100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
DELS-MVS99.62 5699.56 5499.82 9199.92 10499.45 133100.00 199.78 4798.92 3999.73 186100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 12099.58 111100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 157100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
dcpmvs_298.87 14899.53 5996.90 31699.87 11490.88 36999.94 25699.07 33498.20 94100.00 1100.00 198.69 12499.86 178100.00 1100.00 199.95 130
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13599.95 143100.00 198.39 136100.00 199.96 8599.99 98100.00 1
MM99.63 5199.52 6199.94 6399.99 4999.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 266100.00 1100.00 1
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 48100.00 199.42 13897.53 15999.77 181100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft99.59 6299.50 6499.89 73100.00 199.70 100100.00 199.42 13897.46 168100.00 1100.00 198.60 12899.96 13799.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsm_n_192099.55 6599.49 6699.73 11699.85 11699.19 162100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 40100.00 199.42 13897.82 12899.99 103100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.60 6199.49 6699.91 6899.99 4999.78 88100.00 199.42 13897.09 194100.00 1100.00 198.95 10399.96 13799.98 73100.00 1100.00 1
mvsany_test199.57 6399.48 6999.85 8599.86 11599.54 116100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
test_fmvsmconf_n99.56 6499.46 7099.86 8199.68 15999.58 111100.00 199.31 23898.92 3999.88 160100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
xiu_mvs_v2_base99.51 6799.41 7199.82 9199.70 15499.73 9499.92 25999.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 229
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 43100.00 1100.00 197.98 11299.84 164100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
PHI-MVS99.50 7099.39 7399.82 91100.00 199.45 133100.00 199.94 2296.38 250100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
test250699.48 7499.38 7499.75 11299.89 11099.51 12299.45 332100.00 198.38 8099.83 167100.00 198.86 11299.81 19399.25 19198.78 17199.94 135
CPTT-MVS99.49 7299.38 7499.85 85100.00 199.54 116100.00 199.42 13897.58 15499.98 109100.00 197.43 173100.00 199.99 61100.00 1100.00 1
OMC-MVS99.27 9999.38 7498.96 20599.95 9697.06 291100.00 199.40 18898.83 5399.88 160100.00 197.01 18399.86 17899.47 17799.84 13899.97 118
test_fmvsmvis_n_192099.46 7699.37 7799.73 11698.88 29999.18 164100.00 199.26 26698.85 4999.79 178100.00 197.70 158100.00 199.98 7399.86 133100.00 1
test_yl99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
PVSNet_Blended99.48 7499.36 8099.83 8999.98 8599.60 108100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 158
MAR-MVS99.49 7299.36 8099.89 7399.97 8999.66 10399.74 29499.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4399.64 311100.00 197.97 11499.84 16499.85 24298.94 10599.99 9499.86 10798.23 20199.95 130
CSCG99.28 9899.35 8299.05 19799.99 4997.15 287100.00 199.47 7997.44 17099.42 202100.00 197.83 154100.00 199.99 61100.00 1100.00 1
sss99.45 7799.34 8499.80 10199.76 14899.50 124100.00 199.91 3697.72 13599.98 10999.94 22298.45 134100.00 199.53 17498.75 17499.89 163
thisisatest051599.42 7999.31 8599.74 11399.59 19599.55 114100.00 199.46 9496.65 23399.92 150100.00 199.44 4699.85 18499.09 20399.63 15499.81 204
CS-MVS99.33 9099.27 8699.50 15199.99 4999.00 181100.00 199.13 31597.26 18599.96 119100.00 197.79 15599.64 21399.64 15699.67 15099.87 183
thisisatest053099.37 8499.27 8699.69 12299.59 19599.41 138100.00 199.46 9496.46 24399.90 155100.00 199.44 4699.85 18498.97 20699.58 15699.80 218
CS-MVS-test99.31 9499.27 8699.43 16099.99 4998.77 193100.00 199.19 29297.24 18699.96 119100.00 197.56 16599.70 21099.68 14799.81 14199.82 195
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7799.70 30499.99 1398.53 7399.90 155100.00 195.34 217100.00 199.92 96100.00 1100.00 1
114514_t99.39 8199.25 9099.81 9699.97 8999.48 131100.00 199.42 13895.53 281100.00 1100.00 198.37 13799.95 15099.97 83100.00 1100.00 1
PVSNet94.91 1899.30 9699.25 9099.44 158100.00 198.32 225100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 16999.73 145100.00 1
ETV-MVS99.34 8899.24 9299.64 13199.58 20099.33 145100.00 199.25 26897.57 15599.96 119100.00 197.44 17299.79 19599.70 13999.65 15299.81 204
CANet99.40 8099.24 9299.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 180100.00 195.28 21899.96 137100.00 199.99 9899.96 124
HyFIR lowres test99.32 9299.24 9299.58 14399.95 9699.26 152100.00 199.99 1396.72 22599.29 21499.91 22999.49 3999.47 24799.74 12898.08 209100.00 1
tttt051799.34 8899.23 9599.67 12599.57 20399.38 140100.00 199.46 9496.33 25499.89 158100.00 199.44 4699.84 18698.93 20899.46 15999.78 224
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
alignmvs99.38 8299.21 9699.91 6899.73 15199.92 48100.00 199.51 7697.61 150100.00 1100.00 199.06 8999.93 16699.83 11397.12 24299.90 158
testing1199.26 10199.19 10099.46 15599.64 18098.61 204100.00 199.43 12296.94 20399.92 15099.94 22299.43 5099.97 12599.67 15097.79 22899.82 195
EIA-MVS99.26 10199.19 10099.45 15799.63 18298.75 194100.00 199.27 26096.93 20499.95 143100.00 197.47 16999.79 19599.74 12899.72 14699.82 195
131499.38 8299.19 10099.96 4298.88 29999.89 6599.24 35399.93 3098.88 4498.79 252100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10799.82 12199.49 127100.00 199.95 1997.36 17599.63 191100.00 196.45 20399.95 15099.79 11999.65 15299.89 163
lupinMVS99.29 9799.16 10499.69 12299.45 23999.49 127100.00 199.15 30697.45 16999.97 114100.00 196.76 19499.76 20299.67 150100.00 199.81 204
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9699.80 13899.47 132100.00 199.35 22398.22 91100.00 1100.00 195.21 22199.99 9499.96 8599.86 13399.98 111
EPMVS99.25 10599.13 10699.60 13799.60 19199.20 16199.60 317100.00 196.93 20499.92 15099.36 31499.05 9199.71 20998.77 21898.94 16899.90 158
LS3D99.31 9499.13 10699.87 7899.99 4999.71 9699.55 32299.46 9497.32 18099.82 175100.00 196.85 19399.97 12599.14 198100.00 199.92 147
testing9199.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.82 17599.92 22799.05 9199.98 11899.62 16097.67 23499.81 204
testing9999.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.84 16499.92 22799.06 8999.98 11899.62 16097.67 23499.81 204
EC-MVSNet99.19 11199.09 11099.48 15499.42 24399.07 170100.00 199.21 28896.95 20299.96 119100.00 196.88 19299.48 24599.64 15699.79 14499.88 174
UWE-MVS99.18 11299.06 11199.51 14899.67 16498.80 191100.00 199.43 12296.80 21599.93 14999.86 23799.79 799.94 16297.78 26298.33 19699.80 218
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9198.92 29599.55 114100.00 199.23 27798.91 4199.75 18499.97 19794.79 22899.94 16299.94 9399.99 9899.97 118
thres20099.27 9999.04 11399.96 4299.81 12799.90 58100.00 199.94 2297.31 18299.83 16799.96 20997.04 179100.00 199.62 16097.88 21999.98 111
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.98 111
thres40099.26 10199.03 11499.95 5199.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.97 118
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 8999.84 11799.53 118100.00 199.38 20398.29 90100.00 1100.00 193.62 24299.99 9499.99 6199.93 12299.98 111
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.59 16497.85 22199.98 111
thres600view799.24 10899.00 11899.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.54 17297.77 22999.97 118
EPP-MVSNet99.10 12099.00 11899.40 16799.51 22298.68 20099.92 25999.43 12295.47 28799.65 190100.00 199.51 3399.76 20299.53 17498.00 21099.75 228
FE-MVS99.16 11598.99 12099.66 12899.65 17499.18 16499.58 31999.43 12295.24 29199.91 15399.59 29499.37 5899.97 12598.31 24199.81 14199.83 190
ETVMVS99.16 11598.98 12199.69 12299.67 16499.56 113100.00 199.45 10296.36 25199.98 10999.95 21798.65 12599.64 21399.11 20297.63 23799.88 174
PMMVS99.12 11898.97 12299.58 14399.57 20398.98 183100.00 199.30 24297.14 19199.96 119100.00 196.53 20299.82 19099.70 13998.49 18099.94 135
MVS99.22 10998.96 12399.98 2399.00 28699.95 3299.24 35399.94 2298.14 9998.88 242100.00 195.63 215100.00 199.85 109100.00 1100.00 1
TESTMET0.1,199.08 12198.96 12399.44 15899.63 18299.38 140100.00 199.45 10295.53 28199.48 198100.00 199.71 1399.02 27496.84 29199.99 9899.91 149
jason99.11 11998.96 12399.59 13999.17 26699.31 148100.00 199.13 31597.38 17499.83 167100.00 195.54 21699.72 20899.57 16899.97 11199.74 229
jason: jason.
PatchmatchNetpermissive99.03 12798.96 12399.26 18799.49 23098.33 22399.38 34099.45 10296.64 23499.96 11999.58 29699.49 3999.50 24397.63 26799.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CDS-MVSNet98.96 14098.95 12799.01 20199.48 23298.36 22199.93 25899.37 20696.79 21699.31 21399.83 24599.77 1098.91 28498.07 25197.98 21199.77 225
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
testing22299.14 11798.94 12899.73 11699.67 16499.51 122100.00 199.43 12296.90 20999.99 10399.90 23198.55 13199.86 17898.85 21397.18 24199.81 204
MDTV_nov1_ep1398.94 12899.53 21098.36 22199.39 33999.46 9496.54 23999.99 10399.63 28698.92 10899.86 17898.30 24498.71 175
baseline298.99 13698.93 13099.18 19299.26 26399.15 167100.00 199.46 9496.71 22696.79 338100.00 199.42 5399.25 26698.75 22099.94 11999.15 250
tpmrst98.98 13998.93 13099.14 19499.61 18997.74 26499.52 32699.36 21296.05 26499.98 10999.64 28299.04 9499.86 17898.94 20798.19 20499.82 195
test-LLR99.03 12798.91 13299.40 16799.40 25099.28 150100.00 199.45 10296.70 22799.42 20299.12 32399.31 6499.01 27596.82 29299.99 9899.91 149
CHOSEN 1792x268899.00 13398.91 13299.25 18899.90 10897.79 263100.00 199.99 1398.79 6098.28 282100.00 193.63 24199.95 15099.66 15499.95 117100.00 1
IS-MVSNet99.08 12198.91 13299.59 13999.65 17499.38 14099.78 28499.24 27396.70 22799.51 196100.00 198.44 13599.52 24098.47 23598.39 18899.88 174
CANet_DTU99.02 13198.90 13599.41 16399.88 11298.71 198100.00 199.29 24698.84 51100.00 1100.00 194.02 237100.00 198.08 25099.96 11499.52 244
Vis-MVSNet (Re-imp)98.99 13698.89 13699.29 18299.64 18098.89 18899.98 23599.31 23896.74 22299.48 198100.00 198.11 14299.10 27098.39 23798.34 19399.89 163
Effi-MVS+-dtu98.51 17998.86 13797.47 29299.77 14794.21 342100.00 198.94 35897.61 15099.91 15398.75 35095.89 20899.51 24299.36 18299.48 15898.68 256
UA-Net99.06 12398.83 13899.74 11399.52 21799.40 13999.08 37799.45 10297.64 14499.83 167100.00 195.80 21099.94 16298.35 23999.80 14399.88 174
test-mter98.96 14098.82 13999.40 16799.40 25099.28 150100.00 199.45 10295.44 29099.42 20299.12 32399.70 1499.01 27596.82 29299.99 9899.91 149
MVSFormer98.94 14398.82 13999.28 18599.45 23999.49 127100.00 199.13 31595.46 28899.97 114100.00 196.76 19498.59 31498.63 227100.00 199.74 229
BH-w/o98.82 15298.81 14198.88 21099.62 18796.71 299100.00 199.28 25297.09 19498.81 250100.00 194.91 22699.96 13799.54 172100.00 199.96 124
DeepC-MVS97.84 599.00 13398.80 14299.60 13799.93 10199.03 176100.00 199.40 18898.61 7199.33 212100.00 192.23 26499.95 15099.74 12899.96 11499.83 190
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PatchMatch-RL99.02 13198.78 14399.74 11399.99 4999.29 149100.00 1100.00 198.38 8099.89 15899.81 25193.14 25199.99 9497.85 26099.98 10899.95 130
iter_conf0598.73 15798.77 14498.60 22399.65 17499.22 159100.00 199.22 28096.68 23198.98 23599.97 19799.99 398.84 29299.29 18995.11 28097.75 273
CostFormer98.84 15098.77 14499.04 19999.41 24597.58 26999.67 30999.35 22394.66 30499.96 11999.36 31499.28 7299.74 20599.41 18097.81 22599.81 204
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30399.90 5899.98 23599.93 3098.95 3598.49 271100.00 192.91 253100.00 199.71 136100.00 1100.00 1
FA-MVS(test-final)99.00 13398.75 14799.73 11699.63 18299.43 13699.83 27499.43 12295.84 27299.52 19599.37 31397.84 15399.96 13797.63 26799.68 14899.79 221
VNet99.04 12598.75 14799.90 7199.81 12799.75 9199.50 32899.47 7998.36 84100.00 199.99 18494.66 230100.00 199.90 9997.09 24399.96 124
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
diffmvspermissive98.96 14098.73 14999.63 13299.54 20799.16 166100.00 199.18 29997.33 17999.96 119100.00 194.60 23199.91 16999.66 15498.33 19699.82 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS98.76 15598.73 14998.86 21199.44 24197.69 26599.57 32099.34 22996.57 23799.12 22499.81 25198.83 11699.16 26897.97 25797.91 21799.73 233
1112_ss98.91 14598.71 15299.51 14899.69 15598.75 19499.99 21199.15 30696.82 21398.84 247100.00 197.45 17099.89 17298.66 22397.75 23099.89 163
3Dnovator+95.58 1599.03 12798.71 15299.96 4298.99 28999.89 65100.00 199.51 7698.96 3298.32 279100.00 192.78 255100.00 199.87 106100.00 1100.00 1
QAPM98.99 13698.66 15499.96 4299.01 28299.87 7499.88 26899.93 3097.99 11098.68 256100.00 193.17 249100.00 199.32 186100.00 1100.00 1
MVS_Test98.93 14498.65 15599.77 11099.62 18799.50 12499.99 21199.19 29295.52 28399.96 11999.86 23796.54 20199.98 11898.65 22598.48 18199.82 195
BH-untuned98.64 16598.65 15598.60 22399.59 19596.17 305100.00 199.28 25296.67 23298.41 274100.00 194.52 23299.83 18799.41 180100.00 199.81 204
MSDG98.90 14798.63 15799.70 12199.92 10499.25 154100.00 199.37 20695.71 27599.40 208100.00 196.58 19899.95 15096.80 29499.94 11999.91 149
PVSNet_BlendedMVS98.71 15998.62 15898.98 20499.98 8599.60 108100.00 1100.00 197.23 187100.00 199.03 33296.57 19999.99 94100.00 194.75 28897.35 356
baseline198.91 14598.61 15999.81 9699.71 15299.77 8999.78 28499.44 11697.51 16398.81 25099.99 18498.25 13899.76 20298.60 23095.41 26199.89 163
dp98.72 15898.61 15999.03 20099.53 21097.39 27599.45 33299.39 20195.62 27899.94 14599.52 30498.83 11699.82 19096.77 29798.42 18599.89 163
mvs_anonymous98.80 15398.60 16199.38 17199.57 20399.24 156100.00 199.21 28895.87 26798.92 23899.82 24896.39 20499.03 27399.13 20098.50 17999.88 174
Test_1112_low_res98.83 15198.60 16199.51 14899.69 15598.75 19499.99 21199.14 31196.81 21498.84 24799.06 32797.45 17099.89 17298.66 22397.75 23099.89 163
tpm298.64 16598.58 16398.81 21499.42 24397.12 28899.69 30699.37 20693.63 33199.94 14599.67 27498.96 10299.47 24798.62 22997.95 21599.83 190
Fast-Effi-MVS+-dtu98.38 18998.56 16497.82 28299.58 20094.44 339100.00 199.16 30596.75 22099.51 19699.63 28695.03 22499.60 21597.71 26499.67 15099.42 246
DP-MVS98.86 14998.54 16599.81 9699.97 8999.45 13399.52 32699.40 18894.35 31598.36 275100.00 196.13 20599.97 12599.12 201100.00 1100.00 1
MVSTER98.58 17198.52 16698.77 21699.65 17499.68 102100.00 199.29 24695.63 27798.65 25799.80 25499.78 898.88 29098.59 23195.31 26697.73 302
myMVS_eth3d98.52 17798.51 16798.53 22799.50 22697.98 248100.00 199.57 6896.23 25798.07 292100.00 199.09 8797.81 36196.17 30497.96 21399.82 195
ADS-MVSNet298.28 19598.51 16797.62 28899.51 22295.03 31999.24 35399.41 18495.52 28399.96 11999.70 26697.57 16397.94 35897.11 28398.54 17799.88 174
ADS-MVSNet98.70 16198.51 16799.28 18599.51 22298.39 21699.24 35399.44 11695.52 28399.96 11999.70 26697.57 16399.58 22197.11 28398.54 17799.88 174
CVMVSNet98.56 17398.47 17098.82 21299.11 26997.67 26699.74 29499.47 7997.57 15599.06 230100.00 195.72 21298.97 28098.21 24797.33 24099.83 190
baseline98.69 16298.45 17199.41 16399.52 21798.67 201100.00 199.17 30497.03 19999.13 223100.00 193.17 24999.74 20599.70 13998.34 19399.81 204
fmvsm_s_conf0.1_n98.77 15498.42 17299.82 9199.47 23599.52 121100.00 199.27 26097.53 159100.00 1100.00 189.73 29699.96 13799.84 11299.93 12299.97 118
OpenMVScopyleft95.20 1798.76 15598.41 17399.78 10798.89 29899.81 8599.99 21199.76 4998.02 10898.02 297100.00 191.44 270100.00 199.63 15999.97 11199.55 242
AllTest98.55 17498.40 17498.99 20299.93 10197.35 278100.00 199.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
casdiffmvs_mvgpermissive98.64 16598.39 17599.40 16799.50 22698.60 205100.00 199.22 28096.85 21199.10 225100.00 192.75 25699.78 19999.71 13698.35 19299.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive98.65 16498.38 17699.46 15599.52 21798.74 197100.00 199.15 30696.91 20799.05 231100.00 192.75 25699.83 18799.70 13998.38 19099.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs98.59 17098.38 17699.23 18999.69 15597.90 25599.31 34899.47 7994.52 30999.68 18999.28 31897.64 16199.89 17297.71 26498.17 20699.89 163
testing398.44 18298.37 17898.65 22099.51 22298.32 225100.00 199.62 6696.43 24497.93 30299.99 18499.11 8597.81 36194.88 32497.80 22699.82 195
PCF-MVS98.23 398.69 16298.37 17899.62 13499.78 14599.02 17799.23 35899.06 34296.43 24498.08 291100.00 194.72 22999.95 15098.16 24899.91 12599.90 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.1_n_a98.71 15998.36 18099.78 10799.09 27299.42 137100.00 199.26 26697.42 172100.00 1100.00 189.78 29499.96 13799.82 11899.85 13699.97 118
XVG-OURS98.30 19298.36 18098.13 25799.58 20095.91 308100.00 199.36 21298.69 6599.23 216100.00 191.20 27399.92 16899.34 18497.82 22498.56 259
XVG-OURS-SEG-HR98.27 19698.31 18298.14 25499.59 19595.92 307100.00 199.36 21298.48 7599.21 217100.00 189.27 30399.94 16299.76 12699.17 16198.56 259
miper_enhance_ethall98.33 19198.27 18398.51 22899.66 17399.04 175100.00 199.22 28097.53 15998.51 26999.38 31299.49 3998.75 30198.02 25392.61 30897.76 263
test_cas_vis1_n_192098.63 16898.25 18499.77 11099.69 15599.32 146100.00 199.31 23898.84 5199.96 119100.00 187.42 32499.99 9499.14 19899.86 133100.00 1
Vis-MVSNetpermissive98.52 17798.25 18499.34 17499.68 15998.55 20799.68 30899.41 18497.34 17899.94 145100.00 190.38 28799.70 21099.03 20598.84 16999.76 227
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.60 16998.24 18699.67 12596.90 36999.21 16099.99 21199.04 34798.80 5799.57 19399.96 20990.12 28899.91 16999.89 10199.89 12799.90 158
Effi-MVS+98.58 17198.24 18699.61 13599.60 19199.26 15297.85 39399.10 32496.22 25999.97 11499.89 23293.75 23999.77 20099.43 17898.34 19399.81 204
RPSCF97.37 23598.24 18694.76 34899.80 13884.57 38599.99 21199.05 34494.95 29699.82 175100.00 194.03 236100.00 198.15 24998.38 19099.70 234
EPNet_dtu98.53 17698.23 18999.43 16099.92 10499.01 17999.96 24699.47 7998.80 5799.96 11999.96 20998.56 13099.30 26387.78 37699.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm98.24 19798.22 19098.32 24099.13 26895.79 31099.53 32599.12 32195.20 29299.96 11999.36 31497.58 16299.28 26597.41 27596.67 24999.88 174
COLMAP_ROBcopyleft97.10 798.29 19498.17 19198.65 22099.94 9997.39 27599.30 34999.40 18895.64 27697.75 311100.00 192.69 26099.95 15098.89 21099.92 12498.62 258
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ECVR-MVScopyleft98.43 18398.14 19299.32 17999.89 11098.21 23399.46 330100.00 198.38 8099.47 201100.00 187.91 31799.80 19499.35 18398.78 17199.94 135
test111198.42 18598.12 19399.29 18299.88 11298.15 23599.46 330100.00 198.36 8499.42 202100.00 187.91 31799.79 19599.31 18798.78 17199.94 135
cl2298.23 19898.11 19498.58 22699.82 12199.01 179100.00 199.28 25296.92 20698.33 27899.21 32098.09 14498.97 28098.72 22192.61 30897.76 263
UGNet98.41 18798.11 19499.31 18199.54 20798.55 20799.18 361100.00 198.64 7099.79 17899.04 33087.61 322100.00 199.30 18899.89 12799.40 247
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet98.49 18098.08 19699.73 11699.82 12199.53 11899.99 21199.45 10297.62 14699.38 20999.86 23790.06 29199.88 17699.92 9696.61 25199.79 221
BH-RMVSNet98.46 18198.08 19699.59 13999.61 18999.19 162100.00 199.28 25297.06 19898.95 236100.00 188.99 30699.82 19098.83 216100.00 199.77 225
cascas98.43 18398.07 19899.50 15199.65 17499.02 177100.00 199.22 28094.21 31899.72 18799.98 18992.03 26799.93 16699.68 14798.12 20799.54 243
PS-MVSNAJss98.03 20598.06 19997.94 27697.63 35097.33 28199.89 26699.23 27796.27 25698.03 29599.59 29498.75 12198.78 29698.52 23394.61 29197.70 318
mvsmamba98.13 20198.06 19998.32 24098.22 33098.50 210100.00 199.22 28096.41 24798.91 24099.96 20995.69 21398.73 30399.19 19794.95 28797.73 302
test_fmvs198.37 19098.04 20199.34 17499.84 11798.07 241100.00 199.00 35398.85 49100.00 1100.00 185.11 34499.96 13799.69 14699.88 129100.00 1
test0.0.03 198.12 20298.03 20298.39 23499.11 26998.07 241100.00 199.93 3096.70 22796.91 33499.95 21799.31 6498.19 33891.93 35098.44 18398.91 254
Fast-Effi-MVS+98.40 18898.02 20399.55 14799.63 18299.06 172100.00 199.15 30695.07 29399.42 20299.95 21793.26 24899.73 20797.44 27398.24 20099.87 183
ab-mvs98.42 18598.02 20399.61 13599.71 15299.00 18199.10 37499.64 6496.70 22799.04 23299.81 25190.64 28199.98 11899.64 15697.93 21699.84 187
SCA98.30 19297.98 20599.23 18999.41 24598.25 23099.99 21199.45 10296.91 20799.76 18399.58 29689.65 29899.54 23498.31 24198.79 17099.91 149
EI-MVSNet97.98 20797.93 20698.16 25399.11 26997.84 26099.74 29499.29 24694.39 31498.65 257100.00 197.21 17798.88 29097.62 26995.31 26697.75 273
dmvs_re97.54 22797.88 20796.54 32799.55 20690.35 37199.86 27099.46 9497.00 20099.41 207100.00 190.78 28099.30 26399.60 16395.24 27199.96 124
HQP-MVS97.73 21697.85 20897.39 29499.07 27494.82 323100.00 199.40 18899.04 1599.17 21899.97 19788.61 31299.57 22299.79 11995.58 25597.77 261
D2MVS97.63 22397.83 20997.05 30798.83 30694.60 335100.00 199.82 4096.89 21098.28 28299.03 33294.05 23599.47 24798.58 23294.97 28597.09 362
HQP_MVS97.71 21897.82 21097.37 29599.00 28694.80 326100.00 199.40 18899.00 2799.08 22899.97 19788.58 31499.55 23199.79 11995.57 25997.76 263
RRT_MVS97.77 21497.76 21197.78 28497.89 34397.06 291100.00 199.29 24695.74 27498.00 30099.97 19795.94 20798.55 32098.87 21294.18 29497.72 309
tpm cat198.05 20497.76 21198.92 20799.50 22697.10 29099.77 28999.30 24290.20 37099.72 18798.71 35197.71 15799.86 17896.75 29898.20 20399.81 204
iter_conf05_1198.21 19997.74 21399.65 13099.67 16499.06 172100.00 198.87 36497.84 12699.96 119100.00 183.57 35499.88 17699.72 131100.00 1100.00 1
TR-MVS98.14 20097.74 21399.33 17799.59 19598.28 22899.27 35099.21 28896.42 24699.15 22299.94 22288.87 30999.79 19598.88 21198.29 19899.93 145
CLD-MVS97.64 21997.74 21397.36 29699.01 28294.76 331100.00 199.34 22999.30 499.00 23399.97 19787.49 32399.57 22299.96 8595.58 25597.75 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FIs97.95 20897.73 21698.62 22298.53 31599.24 156100.00 199.43 12296.74 22297.87 30699.82 24895.27 21998.89 28798.78 21793.07 30397.74 296
CR-MVSNet98.02 20697.71 21798.93 20699.31 25798.86 18999.13 37199.00 35396.53 24099.96 11998.98 33696.94 18998.10 34891.18 35598.40 18699.84 187
miper_ehance_all_eth97.81 21297.66 21898.23 24699.49 23098.37 21999.99 21199.11 32294.78 29998.25 28699.21 32098.18 14098.57 31797.35 27992.61 30897.76 263
GeoE98.06 20397.65 21999.29 18299.47 23598.41 213100.00 199.19 29294.85 29898.88 242100.00 191.21 27299.59 21797.02 28598.19 20499.88 174
FC-MVSNet-test97.84 21097.63 22098.45 23198.30 32599.05 174100.00 199.43 12296.63 23697.61 31799.82 24895.19 22298.57 31798.64 22693.05 30497.73 302
Anonymous20240521197.87 20997.53 22198.90 20899.81 12796.70 30099.35 34399.46 9492.98 34698.83 24999.99 18490.63 282100.00 199.70 13997.03 244100.00 1
sd_testset97.81 21297.48 22298.79 21599.82 12196.80 29799.32 34599.45 10297.62 14699.38 20999.86 23785.56 34299.77 20099.72 13196.61 25199.79 221
IterMVS-LS97.56 22597.44 22397.92 27999.38 25497.90 25599.89 26699.10 32494.41 31398.32 27999.54 30397.21 17798.11 34597.50 27191.62 32497.75 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l97.58 22497.42 22498.06 26499.48 23298.16 23499.96 24699.10 32494.54 30898.13 29099.20 32297.87 14998.25 33797.28 28091.20 33297.75 273
Patchmatch-test97.83 21197.42 22499.06 19599.08 27397.66 26798.66 38799.21 28893.65 33098.25 28699.58 29699.47 4399.57 22290.25 36498.59 17699.95 130
ACMM97.17 697.37 23597.40 22697.29 30099.01 28294.64 334100.00 199.25 26898.07 10698.44 27399.98 18987.38 32599.55 23199.25 19195.19 27497.69 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf97.55 22697.38 22798.07 26097.50 35897.99 247100.00 199.13 31595.46 28898.47 27299.85 24292.01 26898.59 31498.63 22795.36 26497.62 339
TAPA-MVS96.40 1097.64 21997.37 22898.45 23199.94 9995.70 311100.00 199.40 18897.65 14299.53 194100.00 199.31 6499.66 21280.48 391100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DIV-MVS_self_test97.52 23097.35 22998.05 26899.46 23898.11 238100.00 199.10 32494.21 31897.62 31699.63 28697.65 16098.29 33496.47 29991.98 31997.76 263
cl____97.54 22797.32 23098.18 25099.47 23598.14 237100.00 199.10 32494.16 32197.60 31899.63 28697.52 16698.65 30896.47 29991.97 32097.76 263
LPG-MVS_test97.31 23797.32 23097.28 30198.85 30494.60 335100.00 199.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
eth_miper_zixun_eth97.47 23197.28 23298.06 26499.41 24597.94 25399.62 31599.08 33094.46 31298.19 28999.56 30096.91 19198.50 32396.78 29591.49 32797.74 296
miper_lstm_enhance97.40 23497.28 23297.75 28599.48 23297.52 270100.00 199.07 33494.08 32298.01 29899.61 29297.38 17497.98 35696.44 30291.47 32997.76 263
nrg03097.64 21997.27 23498.75 21798.34 32099.53 118100.00 199.22 28096.21 26098.27 28499.95 21794.40 23398.98 27899.23 19489.78 34497.75 273
GA-MVS97.72 21797.27 23499.06 19599.24 26497.93 254100.00 199.24 27395.80 27398.99 23499.64 28289.77 29599.36 25895.12 32197.62 23899.89 163
WB-MVSnew97.02 25397.24 23696.37 33199.44 24197.36 277100.00 199.43 12296.12 26399.35 21199.89 23293.60 24398.42 32988.91 37598.39 18893.33 390
test_vis1_n_192097.77 21497.24 23699.34 17499.79 14298.04 245100.00 199.25 26898.88 44100.00 1100.00 177.52 377100.00 199.88 10399.85 136100.00 1
LCM-MVSNet-Re96.52 27297.21 23894.44 34999.27 26185.80 38299.85 27296.61 39995.98 26592.75 37398.48 36093.97 23897.55 36899.58 16798.43 18499.98 111
OPM-MVS97.21 24097.18 23997.32 29998.08 33694.66 332100.00 199.28 25298.65 6998.92 23899.98 18986.03 33899.56 22698.28 24595.41 26197.72 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 24197.16 24097.27 30398.97 29194.58 338100.00 199.32 23397.97 11497.45 32299.98 18985.79 34099.56 22699.70 13995.24 27197.67 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bld_raw_dy_0_6497.64 21996.98 24199.63 13299.67 16498.94 186100.00 197.98 38397.85 12598.93 237100.00 183.23 35899.96 13799.72 13195.41 261100.00 1
FMVSNet397.30 23896.95 24298.37 23699.65 17499.25 15499.71 30299.28 25294.23 31698.53 26698.91 34393.30 24798.11 34595.31 31793.60 29797.73 302
IB-MVS96.24 1297.54 22796.95 24299.33 17799.67 16498.10 240100.00 199.47 7997.42 17299.26 21599.69 26998.83 11699.89 17299.43 17878.77 388100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp97.16 24396.88 24498.00 27297.08 36898.06 24399.81 27899.15 30694.58 30697.84 30799.62 29090.49 28498.60 31297.98 25495.32 26597.33 357
test_fmvs1_n97.43 23296.86 24599.15 19399.68 15997.48 27299.99 21198.98 35698.82 55100.00 1100.00 174.85 38299.96 13799.67 15099.70 147100.00 1
UniMVSNet (Re)97.29 23996.85 24698.59 22598.49 31699.13 168100.00 199.42 13896.52 24198.24 28898.90 34494.93 22598.89 28797.54 27087.61 36297.75 273
pmmvs497.17 24296.80 24798.27 24397.68 34998.64 203100.00 199.18 29994.22 31798.55 26499.71 26393.67 24098.47 32695.66 31192.57 31197.71 317
UniMVSNet_NR-MVSNet97.16 24396.80 24798.22 24798.38 31998.41 213100.00 199.45 10296.14 26297.76 30899.64 28295.05 22398.50 32397.98 25486.84 36697.75 273
jajsoiax97.07 24896.79 24997.89 28097.28 36697.12 28899.95 25299.19 29296.55 23897.31 32599.69 26987.35 32798.91 28498.70 22295.12 27997.66 329
MIMVSNet97.06 24996.73 25098.05 26899.38 25496.64 30298.47 38999.35 22393.41 33699.48 19898.53 35889.66 29797.70 36794.16 33398.11 20899.80 218
mvs_tets97.00 25496.69 25197.94 27697.41 36597.27 28399.60 31799.18 29996.51 24297.35 32499.69 26986.53 33398.91 28498.84 21495.09 28197.65 333
WR-MVS97.09 24696.64 25298.46 23098.43 31799.09 16999.97 24199.33 23195.62 27897.76 30899.67 27491.17 27498.56 31998.49 23489.28 35097.74 296
XXY-MVS97.14 24596.63 25398.67 21998.65 30998.92 18799.54 32499.29 24695.57 28097.63 31499.83 24587.79 32199.35 26098.39 23792.95 30597.75 273
LFMVS97.42 23396.62 25499.81 9699.80 13899.50 12499.16 36799.56 7094.48 311100.00 1100.00 179.35 372100.00 199.89 10197.37 23999.94 135
ACMH96.25 1196.77 26096.62 25497.21 30498.96 29294.43 34099.64 31199.33 23197.43 17196.55 34399.97 19783.52 35599.54 23499.07 20495.13 27897.66 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS96.17 29596.57 25695.00 34399.50 22687.37 380100.00 199.57 6896.23 25798.07 292100.00 192.41 26397.81 36185.34 38197.96 21399.82 195
h-mvs3397.03 25196.53 25798.51 22899.79 14295.90 30999.45 33299.45 10298.21 92100.00 199.78 25797.49 16799.99 9499.72 13174.92 39099.65 241
EU-MVSNet96.63 26896.53 25796.94 31497.59 35496.87 29599.76 29199.47 7996.35 25296.85 33699.78 25792.57 26196.27 38195.33 31691.08 33397.68 324
XVG-ACMP-BASELINE96.60 27096.52 25996.84 32098.41 31893.29 35199.99 21199.32 23397.76 13498.51 26999.29 31781.95 36399.54 23498.40 23695.03 28297.68 324
DU-MVS96.93 25696.49 26098.22 24798.31 32398.41 213100.00 199.37 20696.41 24797.76 30899.65 27892.14 26598.50 32397.98 25486.84 36697.75 273
MVP-Stereo96.51 27496.48 26196.60 32695.65 38094.25 34198.84 38498.16 37595.85 27195.23 35799.04 33092.54 26299.13 26992.98 34399.98 10896.43 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS96.76 26196.46 26297.63 28699.41 24596.89 29499.99 21199.13 31594.74 30297.59 31999.66 27689.63 30098.28 33595.71 30992.31 31497.72 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet97.03 25196.43 26398.82 21298.64 31099.32 14699.38 34099.47 7996.73 22498.91 24098.94 34187.00 32999.40 25699.23 19489.59 34597.76 263
IterMVS-SCA-FT96.72 26496.42 26497.62 28899.40 25096.83 29699.99 21199.14 31194.65 30597.55 32099.72 26189.65 29898.31 33395.62 31392.05 31797.73 302
hse-mvs296.79 25996.38 26598.04 27099.68 15995.54 31399.81 27899.42 13898.21 92100.00 199.80 25497.49 16799.46 25199.72 13173.27 39399.12 251
Patchmtry96.81 25896.37 26698.14 25499.31 25798.55 20798.91 38299.00 35390.45 36697.92 30398.98 33696.94 18998.12 34394.27 33091.53 32697.75 273
our_test_396.51 27496.35 26796.98 31297.61 35295.05 31899.98 23599.01 35294.68 30396.77 34099.06 32795.87 20998.14 34191.81 35192.37 31397.75 273
JIA-IIPM97.09 24696.34 26899.36 17298.88 29998.59 20699.81 27899.43 12284.81 38699.96 11990.34 39698.55 13199.52 24097.00 28698.28 19999.98 111
ACMH+96.20 1396.49 27796.33 26997.00 31099.06 27893.80 34599.81 27899.31 23897.32 18095.89 35499.97 19782.62 36199.54 23498.34 24094.63 29097.65 333
WR-MVS_H96.73 26296.32 27097.95 27598.26 32797.88 25799.72 30199.43 12295.06 29496.99 33198.68 35393.02 25298.53 32197.43 27488.33 35897.43 352
CP-MVSNet96.73 26296.25 27198.18 25098.21 33198.67 20199.77 28999.32 23395.06 29497.20 32899.65 27890.10 28998.19 33898.06 25288.90 35397.66 329
tt080596.52 27296.23 27297.40 29399.30 26093.55 34799.32 34599.45 10296.75 22097.88 30599.99 18479.99 37099.59 21797.39 27795.98 25499.06 253
Anonymous2024052996.93 25696.22 27399.05 19799.79 14297.30 28299.16 36799.47 7988.51 37698.69 255100.00 183.50 356100.00 199.83 11397.02 24599.83 190
v2v48296.70 26596.18 27498.27 24398.04 33798.39 216100.00 199.13 31594.19 32098.58 26299.08 32690.48 28598.67 30695.69 31090.44 34097.75 273
LF4IMVS96.19 29296.18 27496.23 33498.26 32792.09 361100.00 197.89 38697.82 12897.94 30199.87 23582.71 36099.38 25797.41 27593.71 29697.20 359
V4296.65 26796.16 27698.11 25998.17 33498.23 23199.99 21199.09 32993.97 32398.74 25499.05 32991.09 27598.82 29495.46 31589.90 34297.27 358
gg-mvs-nofinetune96.95 25596.10 27799.50 15199.41 24599.36 14499.07 37999.52 7283.69 38899.96 11983.60 404100.00 199.20 26799.68 14799.99 9899.96 124
LTVRE_ROB95.29 1696.32 28796.10 27796.99 31198.55 31393.88 34499.45 33299.28 25294.50 31096.46 34499.52 30484.86 34599.48 24597.26 28195.03 28297.59 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
X-MVStestdata97.04 25096.06 27999.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40799.16 81100.00 1100.00 1100.00 1100.00 1
NR-MVSNet96.63 26896.04 28098.38 23598.31 32398.98 18399.22 36099.35 22395.87 26794.43 36699.65 27892.73 25898.40 33096.78 29588.05 35997.75 273
TranMVSNet+NR-MVSNet96.45 27896.01 28197.79 28398.00 33997.62 268100.00 199.35 22395.98 26597.31 32599.64 28290.09 29098.00 35596.89 29086.80 36997.75 273
VDD-MVS96.58 27195.99 28298.34 23899.52 21795.33 31499.18 36199.38 20396.64 23499.77 181100.00 172.51 387100.00 1100.00 196.94 24799.70 234
OurMVSNet-221017-096.14 29995.98 28396.62 32597.49 36093.44 34999.92 25998.16 37595.86 26997.65 31399.95 21785.71 34198.78 29694.93 32394.18 29497.64 336
v114496.51 27495.97 28498.13 25797.98 34098.04 24599.99 21199.08 33093.51 33598.62 26098.98 33690.98 27998.62 30993.79 33790.79 33697.74 296
testgi96.18 29395.93 28596.93 31598.98 29094.20 343100.00 199.07 33497.16 19096.06 35199.86 23784.08 35297.79 36490.38 36397.80 22698.81 255
ppachtmachnet_test96.17 29595.89 28697.02 30997.61 35295.24 31599.99 21199.24 27393.31 34096.71 34199.62 29094.34 23498.07 35089.87 36592.30 31597.75 273
MS-PatchMatch95.66 31195.87 28795.05 34197.80 34689.25 37498.88 38399.30 24296.35 25296.86 33599.01 33481.35 36699.43 25393.30 34199.98 10896.46 373
v14896.29 28895.84 28897.63 28697.74 34796.53 303100.00 199.07 33493.52 33498.01 29899.42 31191.22 27198.60 31296.37 30387.22 36597.75 273
test_vis1_n96.69 26695.81 28999.32 17999.14 26797.98 24899.97 24198.98 35698.45 77100.00 1100.00 166.44 39399.99 9499.78 12599.57 157100.00 1
v14419296.40 28295.81 28998.17 25297.89 34398.11 23899.99 21199.06 34293.39 33798.75 25399.09 32590.43 28698.66 30793.10 34290.55 33997.75 273
GBi-Net96.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
test196.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
PS-CasMVS96.34 28695.78 29398.03 27198.18 33398.27 22999.71 30299.32 23394.75 30096.82 33799.65 27886.98 33098.15 34097.74 26388.85 35497.66 329
VPNet96.41 27995.76 29498.33 23998.61 31198.30 22799.48 32999.45 10296.98 20198.87 24499.88 23481.57 36498.93 28299.22 19687.82 36197.76 263
PVSNet_093.57 1996.41 27995.74 29598.41 23399.84 11795.22 316100.00 1100.00 198.08 10597.55 32099.78 25784.40 347100.00 1100.00 181.99 381100.00 1
v896.35 28595.73 29698.21 24998.11 33598.23 23199.94 25699.07 33492.66 35298.29 28199.00 33591.46 26998.77 29994.17 33188.83 35597.62 339
Anonymous2023121196.29 28895.70 29798.07 26099.80 13897.49 27199.15 36999.40 18889.11 37397.75 31199.45 30988.93 30898.98 27898.26 24689.47 34797.73 302
Baseline_NR-MVSNet96.16 29795.70 29797.56 29198.28 32696.79 298100.00 197.86 38791.93 35697.63 31499.47 30892.14 26598.35 33297.13 28286.83 36897.54 346
USDC95.90 30795.70 29796.50 32898.60 31292.56 359100.00 198.30 37397.77 13296.92 33299.94 22281.25 36799.45 25293.54 33994.96 28697.49 349
tfpnnormal96.36 28495.69 30098.37 23698.55 31398.71 19899.69 30699.45 10293.16 34496.69 34299.71 26388.44 31698.99 27794.17 33191.38 33097.41 353
AUN-MVS96.26 29095.67 30198.06 26499.68 15995.60 31299.82 27799.42 13896.78 21799.88 16099.80 25494.84 22799.47 24797.48 27273.29 39299.12 251
pmmvs595.94 30695.61 30296.95 31397.42 36394.66 332100.00 198.08 37993.60 33297.05 33099.43 31087.02 32898.46 32795.76 30792.12 31697.72 309
FMVSNet296.22 29195.60 30398.06 26499.53 21098.33 22399.45 33299.27 26093.71 32698.03 29598.84 34684.23 34998.10 34893.97 33593.40 30097.73 302
VDDNet96.39 28395.55 30498.90 20899.27 26197.45 27399.15 36999.92 3491.28 35999.98 109100.00 173.55 383100.00 199.85 10996.98 24699.24 248
v192192096.16 29795.50 30598.14 25497.88 34597.96 25199.99 21199.07 33493.33 33998.60 26199.24 31989.37 30298.71 30491.28 35490.74 33797.75 273
v1096.14 29995.50 30598.07 26098.19 33297.96 25199.83 27499.07 33492.10 35598.07 29298.94 34191.07 27698.61 31092.41 34989.82 34397.63 337
v119296.18 29395.49 30798.26 24598.01 33898.15 23599.99 21199.08 33093.36 33898.54 26598.97 33989.47 30198.89 28791.15 35690.82 33597.75 273
SixPastTwentyTwo95.71 31095.49 30796.38 33097.42 36393.01 35299.84 27398.23 37494.75 30095.98 35299.97 19785.35 34398.43 32894.71 32593.17 30297.69 322
dmvs_testset93.27 33295.48 30986.65 37298.74 30768.42 40199.92 25998.91 36196.19 26193.28 370100.00 191.06 27791.67 39789.64 36891.54 32599.86 185
ET-MVSNet_ETH3D96.41 27995.48 30999.20 19199.81 12799.75 91100.00 199.02 35097.30 18478.33 396100.00 197.73 15697.94 35899.70 13987.41 36399.92 147
PEN-MVS96.01 30495.48 30997.58 29097.74 34797.26 28499.90 26399.29 24694.55 30796.79 33899.55 30187.38 32597.84 36096.92 28987.24 36497.65 333
FMVSNet595.32 31595.43 31294.99 34499.39 25392.99 35499.25 35299.24 27390.45 36697.44 32398.45 36195.78 21194.39 39087.02 37791.88 32197.59 343
v7n96.06 30395.42 31397.99 27497.58 35597.35 27899.86 27099.11 32292.81 35197.91 30499.49 30690.99 27898.92 28392.51 34688.49 35797.70 318
v124095.96 30595.25 31498.07 26097.91 34297.87 25999.96 24699.07 33493.24 34298.64 25998.96 34088.98 30798.61 31089.58 36990.92 33497.75 273
test_fmvs295.17 31995.23 31595.01 34298.95 29488.99 37699.99 21197.77 38897.79 13098.58 26299.70 26673.36 38499.34 26195.88 30695.03 28296.70 370
DSMNet-mixed95.18 31895.21 31695.08 34096.03 37590.21 37299.65 31093.64 40592.91 34798.34 27797.40 37790.05 29295.51 38791.02 35797.86 22099.51 245
K. test v395.46 31495.14 31796.40 32997.53 35793.40 35099.99 21199.23 27795.49 28692.70 37499.73 26084.26 34898.12 34393.94 33693.38 30197.68 324
TinyColmap95.50 31395.12 31896.64 32498.69 30893.00 35399.40 33897.75 38996.40 24996.14 35099.87 23579.47 37199.50 24393.62 33894.72 28997.40 354
pm-mvs195.76 30995.01 31998.00 27298.23 32997.45 27399.24 35399.04 34793.13 34595.93 35399.72 26186.28 33498.84 29295.62 31387.92 36097.72 309
DTE-MVSNet95.52 31294.99 32097.08 30697.49 36096.45 304100.00 199.25 26893.82 32596.17 34999.57 29987.81 32097.18 36994.57 32686.26 37197.62 339
PatchT95.90 30794.95 32198.75 21799.03 28098.39 21699.08 37799.32 23385.52 38499.96 11994.99 38897.94 14698.05 35480.20 39298.47 18299.81 204
UniMVSNet_ETH3D95.28 31694.41 32297.89 28098.91 29695.14 31799.13 37199.35 22392.11 35497.17 32999.66 27670.28 39099.36 25897.88 25995.18 27599.16 249
APD_test193.07 33594.14 32389.85 36699.18 26572.49 39499.76 29198.90 36392.86 35096.35 34599.94 22275.56 38099.91 16986.73 37897.98 21197.15 361
UnsupCasMVSNet_eth94.25 32393.89 32495.34 33997.63 35092.13 36099.73 29999.36 21294.88 29792.78 37198.63 35582.72 35996.53 37794.57 32684.73 37397.36 355
RPMNet95.26 31793.82 32599.56 14699.31 25798.86 18999.13 37199.42 13879.82 39399.96 11995.13 38695.69 21399.98 11877.54 39698.40 18699.84 187
TransMVSNet (Re)94.78 32093.72 32697.93 27898.34 32097.88 25799.23 35897.98 38391.60 35794.55 36399.71 26387.89 31998.36 33189.30 37184.92 37297.56 345
test_040294.35 32293.70 32796.32 33297.92 34193.60 34699.61 31698.85 36688.19 37994.68 36299.48 30780.01 36998.58 31689.39 37095.15 27796.77 368
Patchmatch-RL test93.49 32993.63 32893.05 36091.78 39183.41 38698.21 39196.95 39691.58 35891.05 37697.64 37699.40 5695.83 38594.11 33481.95 38299.91 149
FMVSNet194.45 32193.63 32896.89 31798.87 30294.87 32099.18 36199.27 26090.95 36397.31 32598.81 34772.89 38698.07 35092.61 34492.81 30697.72 309
new_pmnet94.11 32793.47 33096.04 33696.60 37292.82 35599.97 24198.91 36190.21 36995.26 35698.05 37285.89 33998.14 34184.28 38392.01 31897.16 360
N_pmnet91.88 34293.37 33187.40 37197.24 36766.33 40499.90 26391.05 40789.77 37295.65 35598.58 35790.05 29298.11 34585.39 38092.72 30797.75 273
Anonymous2023120693.45 33093.17 33294.30 35295.00 38589.69 37399.98 23598.43 37293.30 34194.50 36598.59 35690.52 28395.73 38677.46 39790.73 33897.48 351
KD-MVS_2432*160094.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
miper_refine_blended94.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
test_vis1_rt93.10 33492.93 33593.58 35899.63 18285.07 38399.99 21193.71 40497.49 16590.96 37797.10 37860.40 39599.95 15099.24 19397.90 21895.72 380
pmmvs693.64 32892.87 33695.94 33797.47 36291.41 36698.92 38199.02 35087.84 38095.01 35999.61 29277.24 37898.77 29994.33 32986.41 37097.63 337
test20.0393.11 33392.85 33793.88 35795.19 38491.83 362100.00 198.87 36493.68 32992.76 37298.88 34589.20 30492.71 39577.88 39589.19 35197.09 362
Anonymous2024052193.29 33192.76 33894.90 34795.64 38191.27 36799.97 24198.82 36787.04 38194.71 36198.19 36783.86 35396.80 37284.04 38492.56 31296.64 371
MVS-HIRNet94.12 32692.73 33998.29 24299.33 25695.95 30699.38 34099.19 29274.54 39698.26 28586.34 40086.07 33699.06 27291.60 35399.87 13299.85 186
EG-PatchMatch MVS92.94 33692.49 34094.29 35395.87 37787.07 38199.07 37998.11 37893.19 34388.98 38398.66 35470.89 38899.08 27192.43 34895.21 27396.72 369
CMPMVSbinary66.12 2290.65 34892.04 34186.46 37396.18 37466.87 40398.03 39299.38 20383.38 38985.49 39199.55 30177.59 37698.80 29594.44 32894.31 29393.72 388
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet191.96 33991.20 34294.23 35494.94 38691.69 36499.34 34499.22 28088.23 37794.18 36798.45 36175.52 38193.41 39479.37 39391.49 32797.60 342
OpenMVS_ROBcopyleft88.34 2091.89 34191.12 34394.19 35595.55 38287.63 37999.26 35198.03 38086.61 38390.65 38196.82 38070.14 39198.78 29686.54 37996.50 25396.15 375
test_method91.04 34791.10 34490.85 36398.34 32077.63 390100.00 198.93 36076.69 39496.25 34898.52 35970.44 38997.98 35689.02 37491.74 32296.92 366
MDA-MVSNet_test_wron92.61 33791.09 34597.19 30596.71 37197.26 284100.00 199.14 31188.61 37567.90 40298.32 36689.03 30596.57 37690.47 36289.59 34597.74 296
YYNet192.44 33890.92 34697.03 30896.20 37397.06 29199.99 21199.14 31188.21 37867.93 40198.43 36388.63 31196.28 38090.64 35889.08 35297.74 296
pmmvs-eth3d91.73 34390.67 34794.92 34691.63 39392.71 35799.90 26398.54 37191.19 36088.08 38595.50 38479.31 37396.13 38290.55 36181.32 38495.91 379
TDRefinement91.93 34090.48 34896.27 33381.60 40492.65 35899.10 37497.61 39293.96 32493.77 36899.85 24280.03 36899.53 23997.82 26170.59 39496.63 372
CL-MVSNet_self_test91.07 34690.35 34993.24 35993.27 38889.16 37599.55 32299.25 26892.34 35395.23 35797.05 37988.86 31093.59 39380.67 39066.95 39696.96 365
WB-MVS88.24 35490.09 35082.68 37991.56 39469.51 399100.00 198.73 36990.72 36587.29 38898.12 36892.87 25485.01 40162.19 40289.34 34993.54 389
KD-MVS_self_test91.16 34590.09 35094.35 35194.44 38791.27 36799.74 29499.08 33090.82 36494.53 36494.91 38986.11 33594.78 38982.67 38668.52 39596.99 364
MDA-MVSNet-bldmvs91.65 34489.94 35296.79 32396.72 37096.70 30099.42 33798.94 35888.89 37466.97 40498.37 36481.43 36595.91 38489.24 37289.46 34897.75 273
SSC-MVS87.61 35589.47 35382.04 38090.63 39768.77 40099.99 21198.66 37090.34 36886.70 38998.08 36992.72 25984.12 40259.41 40588.71 35693.22 393
new-patchmatchnet90.30 35089.46 35492.84 36190.77 39688.55 37899.83 27498.80 36890.07 37187.86 38695.00 38778.77 37494.30 39184.86 38279.15 38695.68 382
pmmvs390.62 34989.36 35594.40 35090.53 39891.49 365100.00 196.73 39784.21 38793.65 36996.65 38182.56 36294.83 38882.28 38777.62 38996.89 367
mvsany_test389.36 35288.96 35690.56 36491.95 39078.97 38999.74 29496.59 40096.84 21289.25 38296.07 38252.59 39797.11 37095.17 32082.44 38095.58 383
UnsupCasMVSNet_bld89.50 35188.00 35793.99 35695.30 38388.86 37798.52 38899.28 25285.50 38587.80 38794.11 39061.63 39496.96 37190.63 35979.26 38596.15 375
PM-MVS88.39 35387.41 35891.31 36291.73 39282.02 38899.79 28396.62 39891.06 36290.71 38095.73 38348.60 39995.96 38390.56 36081.91 38395.97 378
test_fmvs387.19 35687.02 35987.71 37092.69 38976.64 39199.96 24697.27 39393.55 33390.82 37994.03 39138.00 40592.19 39693.49 34083.35 37994.32 385
test_f86.87 35786.06 36089.28 36791.45 39576.37 39299.87 26997.11 39491.10 36188.46 38493.05 39338.31 40496.66 37591.77 35283.46 37894.82 384
testf184.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
APD_test284.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
Gipumacopyleft84.73 35883.50 36388.40 36997.50 35882.21 38788.87 39899.05 34465.81 39885.71 39090.49 39553.70 39696.31 37978.64 39491.74 32286.67 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testmvs80.17 36181.95 36474.80 38458.54 41159.58 409100.00 187.14 41076.09 39599.61 192100.00 167.06 39274.19 40798.84 21450.30 40190.64 396
FPMVS77.92 36779.45 36573.34 38676.87 40746.81 41398.24 39099.05 34459.89 40173.55 39798.34 36536.81 40686.55 39980.96 38991.35 33186.65 398
test12379.44 36479.23 36680.05 38280.03 40571.72 395100.00 177.93 41362.52 39994.81 36099.69 26978.21 37574.53 40692.57 34527.33 40693.90 386
test_vis3_rt79.61 36278.19 36783.86 37688.68 39969.56 39899.81 27882.19 41286.78 38268.57 40084.51 40325.06 40998.26 33689.18 37378.94 38783.75 400
PMMVS279.15 36577.28 36884.76 37582.34 40372.66 39399.70 30495.11 40371.68 39784.78 39490.87 39432.05 40789.99 39875.53 40063.45 39991.64 394
LCM-MVSNet79.01 36676.93 36985.27 37478.28 40668.01 40296.57 39598.03 38055.10 40282.03 39593.27 39231.99 40893.95 39282.72 38574.37 39193.84 387
tmp_tt75.80 36874.26 37080.43 38152.91 41353.67 41287.42 40097.98 38361.80 40067.04 403100.00 176.43 37996.40 37896.47 29928.26 40591.23 395
EGC-MVSNET79.46 36374.04 37195.72 33896.00 37692.73 35699.09 37699.04 3475.08 40816.72 40898.71 35173.03 38598.74 30282.05 38896.64 25095.69 381
E-PMN70.72 36970.06 37272.69 38783.92 40265.48 40699.95 25292.72 40649.88 40472.30 39886.26 40147.17 40077.43 40453.83 40644.49 40275.17 404
EMVS69.88 37069.09 37372.24 38884.70 40165.82 40599.96 24687.08 41149.82 40571.51 39984.74 40249.30 39875.32 40550.97 40743.71 40375.59 403
PMVScopyleft60.66 2365.98 37365.05 37468.75 38955.06 41238.40 41488.19 39996.98 39548.30 40644.82 40788.52 39812.22 41286.49 40067.58 40183.79 37781.35 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive68.59 2167.22 37164.68 37574.84 38374.67 40962.32 40895.84 39690.87 40850.98 40358.72 40581.05 40512.20 41378.95 40361.06 40456.75 40083.24 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 37263.44 37673.88 38561.14 41063.45 40795.68 39787.18 40979.93 39247.35 40680.68 40622.35 41072.33 40861.24 40335.42 40485.88 399
cdsmvs_eth3d_5k24.41 37532.55 3770.00 3910.00 4140.00 4160.00 40299.39 2010.00 4090.00 410100.00 193.55 2440.00 4100.00 4090.00 4080.00 406
wuyk23d28.28 37429.73 37823.92 39075.89 40832.61 41566.50 40112.88 41416.09 40714.59 40916.59 40812.35 41132.36 40939.36 40813.36 4076.79 405
ab-mvs-re8.33 37611.11 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.24 37710.99 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 41098.75 1210.00 4100.00 4090.00 4080.00 406
test_blank0.07 3780.09 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.79 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.98 24895.74 308
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
eth-test20.00 414
eth-test0.00 414
ZD-MVS100.00 199.98 1799.80 4397.31 182100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
save fliter99.99 4999.93 43100.00 199.42 13898.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
GSMVS99.91 149
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7099.91 149
sam_mvs99.33 59
ambc88.45 36886.84 40070.76 39797.79 39498.02 38290.91 37895.14 38538.69 40398.51 32294.97 32284.23 37496.09 377
MTGPAbinary99.42 138
test_post199.32 34588.24 39999.33 5999.59 21798.31 241
test_post89.05 39799.49 3999.59 217
patchmatchnet-post97.79 37399.41 5599.54 234
GG-mvs-BLEND99.59 13999.54 20799.49 12799.17 36699.52 7299.96 11999.68 273100.00 199.33 26299.71 13699.99 9899.96 124
MTMP100.00 199.18 299
gm-plane-assit99.52 21797.26 28495.86 269100.00 199.43 25398.76 219
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
test_8100.00 199.91 51100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 138100.00 199.97 125
TestCases98.99 20299.93 10197.35 27899.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
test_prior499.93 43100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 125100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 150
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 258100.00 1100.00 1
旧先验199.99 4999.88 7299.82 40100.00 199.27 73100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 185100.00 1
原ACMM2100.00 1
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 176100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
testdata2100.00 197.36 278
segment_acmp99.55 25
testdata99.66 12899.99 4998.97 18599.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 190100.00 1100.00 1
testdata1100.00 198.77 63
test1299.95 5199.99 4999.89 6599.42 138100.00 199.24 7599.97 125100.00 1100.00 1
plane_prior799.00 28694.78 330
plane_prior699.06 27894.80 32688.58 314
plane_prior599.40 18899.55 23199.79 11995.57 25997.76 263
plane_prior499.97 197
plane_prior394.79 32999.03 2099.08 228
plane_prior2100.00 199.00 27
plane_prior199.02 281
plane_prior94.80 326100.00 199.03 2095.58 255
n20.00 415
nn0.00 415
door-mid96.32 401
lessismore_v096.05 33597.55 35691.80 36399.22 28091.87 37599.91 22983.50 35698.68 30592.48 34790.42 34197.68 324
LGP-MVS_train97.28 30198.85 30494.60 33599.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
test1199.42 138
door96.13 402
HQP5-MVS94.82 323
HQP-NCC99.07 274100.00 199.04 1599.17 218
ACMP_Plane99.07 274100.00 199.04 1599.17 218
BP-MVS99.79 119
HQP4-MVS99.17 21899.57 22297.77 261
HQP3-MVS99.40 18895.58 255
HQP2-MVS88.61 312
NP-MVS99.07 27494.81 32599.97 197
MDTV_nov1_ep13_2view99.24 15699.56 32196.31 25599.96 11998.86 11298.92 20999.89 163
ACMMP++_ref94.58 292
ACMMP++95.17 276
Test By Simon99.10 86
ITE_SJBPF96.84 32098.96 29293.49 34898.12 37798.12 10398.35 27699.97 19784.45 34699.56 22695.63 31295.25 27097.49 349
DeepMVS_CXcopyleft89.98 36598.90 29771.46 39699.18 29997.61 15096.92 33299.83 24586.07 33699.83 18796.02 30597.65 23698.65 257