This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17097.42 9396.78 4792.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2294.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
DVP-MVS++.96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5388.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4788.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
DeepPCF-MVS89.82 194.61 1796.17 589.91 18897.09 10270.21 31698.99 1496.69 6695.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2495.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3394.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 9988.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5886.11 9896.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3093.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3692.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4687.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 19896.42 10491.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12889.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10585.79 10695.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5385.32 11797.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11194.07 795.34 2797.80 6876.83 11899.87 897.08 1897.64 7398.89 30
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29691.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18091.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12599.20 22
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2794.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7284.50 14195.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 13999.02 1396.59 8289.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9185.29 12095.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3690.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12298.37 2896.40 10886.08 10094.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8684.38 14594.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7593.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.26 2898.10 6598.14 3596.52 9284.74 13294.83 3798.80 982.80 5499.37 7295.95 2698.42 46
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7883.60 17094.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10384.02 15595.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2689.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2889.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10583.94 15894.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 92
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13098.64 2197.13 2182.60 19094.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13382.41 19294.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS93.87 3793.58 3894.75 2693.00 19988.08 1699.15 495.50 16591.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15092.42 1296.24 1898.18 3571.04 19999.17 9296.77 1997.39 8096.79 155
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
CS-MVS93.12 4493.27 4192.64 10593.86 17783.12 10098.85 1694.85 20088.61 5494.19 4597.42 8879.02 8597.02 19294.89 4097.77 7097.78 105
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15592.06 1496.01 2198.14 4070.83 20298.96 10796.74 2096.57 9996.76 158
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7286.24 9694.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3088.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 135
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11697.08 12196.92 3888.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 139
#test#92.99 4792.99 4692.98 8998.71 2781.12 14297.77 6096.70 6385.75 10791.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 5991.02 2489.53 11296.21 12576.42 12599.57 5394.29 4795.81 11197.29 139
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12183.00 18193.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
ETV-MVS92.72 5592.87 4992.28 11894.54 15781.89 12497.98 4895.21 18389.77 3893.11 5996.83 11377.23 11397.50 16995.74 2995.38 11397.44 129
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14297.58 7696.70 6385.20 12391.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15096.47 15996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
XVS92.69 5792.71 5192.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8297.83 6777.24 11199.59 5190.46 9798.07 6298.02 84
region2R92.72 5592.70 5392.79 9898.68 2980.53 16097.53 8096.51 9385.22 12191.94 7497.98 5777.26 10999.67 4490.83 9198.37 5398.18 70
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15797.58 7696.69 6685.20 12391.57 8097.92 6177.01 11599.67 4490.95 8798.41 4898.00 89
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 6479.73 17997.33 9896.20 12685.63 10990.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12897.63 7196.50 9585.00 12891.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
CP-MVS92.54 6292.60 5692.34 11598.50 4579.90 17398.40 2696.40 10884.75 13190.48 9998.09 4677.40 10899.21 8491.15 8698.23 5997.92 95
PAPM92.87 5092.40 5894.30 3692.25 22087.85 1896.40 16896.38 11291.07 2288.72 12296.90 10982.11 5997.37 17590.05 10497.70 7297.67 113
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16496.04 13784.68 13589.12 11798.37 2977.48 10799.74 3293.31 6198.38 5297.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15092.88 27996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
SR-MVS92.16 6692.27 6191.83 13498.37 5178.41 21196.67 15295.76 15182.19 19691.97 7398.07 5076.44 12498.64 12293.71 5297.27 8298.45 52
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11288.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 16898.99 29
jason92.73 5492.23 6394.21 4190.50 25987.30 2598.65 2095.09 18690.61 2792.76 6597.13 10175.28 15297.30 17893.32 6096.75 9898.02 84
jason: jason.
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13597.40 9596.38 11284.71 13490.90 9397.40 9077.55 10699.76 2489.75 10897.74 7197.72 109
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12687.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
CS-MVS-test91.92 7092.11 6691.37 14494.00 17579.66 18098.39 2794.38 22887.14 9092.87 6497.05 10677.17 11496.97 19591.44 8296.55 10097.47 128
DROMVSNet91.73 7392.11 6690.58 16693.54 18577.77 23498.07 4394.40 22787.44 7992.99 6297.11 10374.59 16396.87 20293.75 5197.08 8697.11 144
EIA-MVS91.73 7392.05 6890.78 16294.52 15876.40 25798.06 4495.34 17789.19 4488.90 12097.28 9677.56 10597.73 15690.77 9296.86 9598.20 68
test117291.64 7792.00 6990.54 16898.20 6174.48 28096.45 16295.65 15681.97 20091.63 7998.02 5275.76 13798.61 12393.16 6397.17 8498.52 49
CHOSEN 280x42091.71 7691.85 7091.29 14794.94 14782.69 10687.89 32096.17 12985.94 10387.27 13794.31 16990.27 895.65 25594.04 5095.86 10995.53 188
mPP-MVS91.88 7191.82 7192.07 12498.38 5078.63 20597.29 9996.09 13385.12 12588.45 12597.66 7275.53 14299.68 4289.83 10698.02 6597.88 96
PGM-MVS91.93 6991.80 7292.32 11798.27 5679.74 17895.28 21597.27 1783.83 16390.89 9497.78 6976.12 13199.56 5588.82 11797.93 6897.66 114
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12697.60 8281.17 14196.61 15396.87 4088.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15495.80 181
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 16998.73 39
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15697.47 8597.18 2077.06 28084.64 15897.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
MVS_111021_LR91.60 8091.64 7691.47 14395.74 12278.79 20396.15 18296.77 5388.49 5788.64 12397.07 10572.33 18599.19 8993.13 6696.48 10196.43 166
HPM-MVScopyleft91.62 7991.53 7791.89 13097.88 7479.22 19096.99 12695.73 15382.07 19789.50 11497.19 9975.59 14198.93 11390.91 8997.94 6697.54 121
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post91.29 8791.45 7890.80 16097.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6575.76 13798.61 12391.99 7996.79 9697.75 107
APD-MVS_3200maxsize91.23 8991.35 7990.89 15897.89 7376.35 25896.30 17495.52 16479.82 23791.03 9297.88 6474.70 15998.54 12892.11 7896.89 9297.77 106
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21488.49 5792.99 6297.31 9272.68 18298.57 12793.38 5988.58 17199.36 16
EI-MVSNet-UG-set91.35 8691.22 8091.73 13597.39 9380.68 15496.47 15996.83 4387.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16195.37 191
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9593.65 5395.74 13370.16 20798.95 11093.39 5788.87 16798.43 53
RE-MVS-def91.18 8397.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6573.36 17791.99 7996.79 9697.75 107
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12495.95 19095.98 13990.76 2583.76 17096.76 11773.24 17899.71 3691.67 8196.96 9097.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14080.57 21888.08 13197.63 7776.84 11799.89 785.67 14194.88 11998.13 76
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 12995.03 22996.13 13084.65 13786.10 14797.65 7679.24 8299.75 3083.20 16996.88 9398.56 46
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11297.77 6095.87 14788.26 6386.39 14393.94 18076.77 11999.27 7788.80 11894.00 12696.31 172
diffmvs91.17 9090.74 8892.44 11293.11 19882.50 11196.25 17793.62 26687.79 7390.40 10095.93 13073.44 17697.42 17293.62 5492.55 14097.41 131
MVSFormer91.36 8590.57 8993.73 5693.00 19988.08 1694.80 23494.48 22180.74 21494.90 3597.13 10178.84 8795.10 28483.77 15697.46 7598.02 84
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
casdiffmvs90.95 9390.39 9292.63 10692.82 20482.53 10996.83 13994.47 22387.69 7688.47 12495.56 14174.04 16897.54 16690.90 9092.74 13897.83 101
HY-MVS84.06 691.63 7890.37 9395.39 1696.12 11488.25 1490.22 30397.58 1488.33 6290.50 9891.96 20179.26 8199.06 10190.29 10289.07 16498.88 31
thisisatest051590.95 9390.26 9493.01 8894.03 17484.27 7697.91 5196.67 6883.18 17586.87 14195.51 14288.66 1597.85 15280.46 18489.01 16596.92 151
MAR-MVS90.63 9990.22 9591.86 13198.47 4778.20 22197.18 10696.61 7883.87 16288.18 13098.18 3568.71 21299.75 3083.66 16197.15 8597.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline290.39 10590.21 9690.93 15690.86 25380.99 14695.20 22097.41 1586.03 10280.07 21394.61 16490.58 697.47 17187.29 13189.86 15994.35 207
CHOSEN 1792x268891.07 9190.21 9693.64 6095.18 13883.53 8996.26 17696.13 13088.92 4784.90 15393.10 19172.86 18099.62 4988.86 11695.67 11297.79 104
HPM-MVS_fast90.38 10790.17 9891.03 15497.61 8177.35 24397.15 11195.48 16679.51 24388.79 12196.90 10971.64 19398.81 11887.01 13597.44 7796.94 148
baseline90.76 9690.10 9992.74 10092.90 20382.56 10894.60 23694.56 21987.69 7689.06 11995.67 13773.76 17197.51 16890.43 9992.23 14698.16 72
CANet_DTU90.98 9290.04 10093.83 5194.76 15286.23 3296.32 17393.12 28993.11 1093.71 5296.82 11563.08 24599.48 6284.29 15195.12 11895.77 182
ACMMPcopyleft90.39 10589.97 10191.64 13797.58 8478.21 22096.78 14396.72 6184.73 13384.72 15697.23 9771.22 19699.63 4888.37 12492.41 14397.08 146
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_BlendedMVS90.05 11089.96 10290.33 17497.47 8783.86 8198.02 4796.73 5987.98 6889.53 11289.61 23576.42 12599.57 5394.29 4779.59 23487.57 303
sss90.87 9589.96 10293.60 6394.15 16883.84 8397.14 11298.13 785.93 10489.68 10896.09 12871.67 19199.30 7687.69 12789.16 16397.66 114
PMMVS89.46 11989.92 10488.06 22694.64 15369.57 32396.22 17894.95 19387.27 8491.37 8596.54 12265.88 22897.39 17488.54 11993.89 12797.23 141
Effi-MVS+90.70 9789.90 10593.09 8493.61 18283.48 9095.20 22092.79 29483.22 17491.82 7595.70 13571.82 19097.48 17091.25 8593.67 13098.32 58
CPTT-MVS89.72 11589.87 10689.29 20098.33 5373.30 28997.70 6895.35 17675.68 28687.40 13497.44 8770.43 20498.25 13989.56 11196.90 9196.33 171
112190.66 9889.82 10793.16 8197.39 9381.71 13393.33 26696.66 7174.45 29691.38 8297.55 8279.27 8099.52 5779.95 19098.43 4598.26 66
DWT-MVSNet_test90.52 10489.80 10892.70 10395.73 12482.20 11693.69 25796.55 8888.34 6187.04 14095.34 14586.53 2597.55 16376.32 22888.66 17098.34 56
EPP-MVSNet89.76 11489.72 10989.87 18993.78 17876.02 26597.22 10096.51 9379.35 24585.11 15195.01 15884.82 3297.10 19087.46 13088.21 17696.50 164
abl_689.80 11389.71 11090.07 18096.53 10775.52 27194.48 23795.04 18981.12 20889.22 11597.00 10768.83 21198.96 10789.86 10595.27 11495.73 183
xiu_mvs_v1_base_debu90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base_debi90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
TESTMET0.1,189.83 11289.34 11491.31 14592.54 21180.19 16897.11 11596.57 8486.15 9786.85 14291.83 20579.32 7896.95 19681.30 17992.35 14496.77 157
MVS_Test90.29 10889.18 11593.62 6295.23 13584.93 6494.41 24094.66 21184.31 14790.37 10191.02 21475.13 15497.82 15383.11 17194.42 12198.12 77
ET-MVSNet_ETH3D90.01 11189.03 11692.95 9194.38 16486.77 2898.14 3596.31 11989.30 4363.33 33196.72 11990.09 1093.63 31390.70 9482.29 22498.46 51
thisisatest053089.65 11689.02 11791.53 14193.46 18980.78 15296.52 15696.67 6881.69 20383.79 16994.90 16088.85 1497.68 15777.80 20787.49 18296.14 175
API-MVS90.18 10988.97 11893.80 5298.66 3282.95 10497.50 8495.63 15975.16 29086.31 14497.69 7172.49 18399.90 581.26 18096.07 10598.56 46
CDS-MVSNet89.50 11888.96 11991.14 15291.94 23680.93 14897.09 11995.81 14984.26 15084.72 15694.20 17480.31 6995.64 25683.37 16788.96 16696.85 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
hse-mvs389.30 12288.95 12090.36 17295.07 14276.04 26296.96 13297.11 2390.39 3192.22 7095.10 15574.70 15998.86 11593.14 6465.89 32496.16 174
MVSTER89.25 12488.92 12190.24 17695.98 11884.66 6996.79 14295.36 17487.19 8880.33 20890.61 22190.02 1195.97 23385.38 14478.64 24390.09 246
Vis-MVSNet (Re-imp)88.88 13188.87 12288.91 20693.89 17674.43 28196.93 13594.19 23584.39 14483.22 17595.67 13778.24 9694.70 29478.88 20394.40 12297.61 119
MVS90.60 10088.64 12396.50 594.25 16690.53 893.33 26697.21 1977.59 27178.88 22097.31 9271.52 19499.69 4089.60 10998.03 6499.27 20
test-mter88.95 12788.60 12489.98 18492.26 21877.23 24597.11 11595.96 14085.32 11786.30 14591.38 20876.37 12796.78 20880.82 18191.92 14895.94 178
HyFIR lowres test89.36 12088.60 12491.63 13994.91 14980.76 15395.60 20695.53 16282.56 19184.03 16391.24 21178.03 9996.81 20687.07 13488.41 17497.32 135
UA-Net88.92 12988.48 12690.24 17694.06 17177.18 24793.04 27594.66 21187.39 8191.09 9093.89 18174.92 15798.18 14375.83 23391.43 15195.35 192
CostFormer89.08 12588.39 12791.15 15193.13 19679.15 19388.61 31496.11 13283.14 17689.58 11186.93 27283.83 4296.87 20288.22 12585.92 19497.42 130
hse-mvs288.22 15088.21 12888.25 22293.54 18573.41 28695.41 21395.89 14490.39 3192.22 7094.22 17274.70 15996.66 21393.14 6464.37 32994.69 205
tttt051788.57 14188.19 12989.71 19593.00 19975.99 26695.67 20396.67 6880.78 21381.82 19494.40 16888.97 1397.58 16176.05 23186.31 18895.57 187
IS-MVSNet88.67 13788.16 13090.20 17893.61 18276.86 25096.77 14593.07 29084.02 15583.62 17195.60 14074.69 16296.24 22678.43 20693.66 13197.49 127
OMC-MVS88.80 13488.16 13090.72 16395.30 13477.92 23094.81 23394.51 22086.80 9384.97 15296.85 11267.53 21798.60 12585.08 14687.62 17995.63 185
test-LLR88.48 14287.98 13289.98 18492.26 21877.23 24597.11 11595.96 14083.76 16586.30 14591.38 20872.30 18696.78 20880.82 18191.92 14895.94 178
EPNet_dtu87.65 15887.89 13386.93 25194.57 15571.37 31096.72 14796.50 9588.56 5687.12 13895.02 15775.91 13594.01 30666.62 28990.00 15895.42 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+82.88 889.63 11787.85 13494.99 2094.49 16286.76 2997.84 5595.74 15286.10 9975.47 26496.02 12965.00 23699.51 6082.91 17397.07 8798.72 40
Vis-MVSNetpermissive88.67 13787.82 13591.24 14992.68 20578.82 20096.95 13393.85 25287.55 7887.07 13995.13 15363.43 24397.21 18377.58 21396.15 10397.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS88.48 14287.79 13690.56 16791.09 24879.18 19196.45 16295.88 14583.64 16883.12 17693.33 18775.94 13495.74 25182.40 17488.27 17596.75 159
PVSNet82.34 989.02 12687.79 13692.71 10295.49 12981.50 13797.70 6897.29 1687.76 7485.47 14995.12 15456.90 28898.90 11480.33 18594.02 12497.71 111
thres20088.92 12987.65 13892.73 10196.30 10985.62 4597.85 5498.86 184.38 14584.82 15493.99 17975.12 15598.01 14470.86 27286.67 18594.56 206
LFMVS89.27 12387.64 13994.16 4497.16 10085.52 4797.18 10694.66 21179.17 25189.63 11096.57 12155.35 29998.22 14089.52 11289.54 16098.74 35
3Dnovator82.32 1089.33 12187.64 13994.42 3393.73 18185.70 4397.73 6696.75 5786.73 9476.21 25295.93 13062.17 25099.68 4281.67 17897.81 6997.88 96
mvs_anonymous88.68 13687.62 14191.86 13194.80 15181.69 13493.53 26294.92 19482.03 19878.87 22190.43 22575.77 13695.34 26985.04 14793.16 13698.55 48
AdaColmapbinary88.81 13387.61 14292.39 11499.33 479.95 17196.70 15195.58 16077.51 27283.05 17896.69 12061.90 25799.72 3584.29 15193.47 13297.50 126
114514_t88.79 13587.57 14392.45 11198.21 6081.74 13196.99 12695.45 16875.16 29082.48 18195.69 13668.59 21398.50 13080.33 18595.18 11797.10 145
HQP-MVS87.91 15687.55 14488.98 20592.08 22778.48 20797.63 7194.80 20390.52 2882.30 18494.56 16565.40 23297.32 17687.67 12883.01 21591.13 228
baseline188.85 13287.49 14592.93 9395.21 13786.85 2795.47 21094.61 21687.29 8283.11 17794.99 15980.70 6596.89 20082.28 17573.72 26495.05 195
CLD-MVS87.97 15487.48 14689.44 19792.16 22580.54 15998.14 3594.92 19491.41 1779.43 21695.40 14462.34 24897.27 18190.60 9582.90 21890.50 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o88.24 14987.47 14790.54 16895.03 14578.54 20697.41 9493.82 25384.08 15378.23 22794.51 16769.34 21097.21 18380.21 18894.58 12095.87 180
1112_ss88.60 14087.47 14792.00 12793.21 19280.97 14796.47 15992.46 29883.64 16880.86 20197.30 9480.24 7197.62 15977.60 21285.49 19997.40 132
tpmrst88.36 14687.38 14991.31 14594.36 16579.92 17287.32 32495.26 18285.32 11788.34 12786.13 28880.60 6696.70 21083.78 15585.34 20297.30 138
PLCcopyleft83.97 788.00 15387.38 14989.83 19198.02 6976.46 25597.16 11094.43 22679.26 25081.98 19196.28 12469.36 20999.27 7777.71 21192.25 14593.77 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131488.94 12887.20 15194.17 4293.21 19285.73 4293.33 26696.64 7582.89 18375.98 25596.36 12366.83 22499.39 6783.52 16696.02 10797.39 133
mvs-test186.83 16987.17 15285.81 26791.96 23365.24 33697.90 5393.34 28085.57 11084.51 16095.14 15261.99 25497.19 18583.55 16290.55 15695.00 196
tfpn200view988.48 14287.15 15392.47 11096.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19194.17 208
thres40088.42 14587.15 15392.23 11996.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19193.45 221
IB-MVS85.34 488.67 13787.14 15593.26 7693.12 19784.32 7398.76 1797.27 1787.19 8879.36 21790.45 22483.92 4198.53 12984.41 15069.79 29196.93 149
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HQP_MVS87.50 15987.09 15688.74 21191.86 23777.96 22797.18 10694.69 20789.89 3681.33 19694.15 17564.77 23797.30 17887.08 13282.82 21990.96 230
VDD-MVS88.28 14887.02 15792.06 12595.09 14080.18 16997.55 7994.45 22583.09 17789.10 11895.92 13247.97 32198.49 13193.08 6786.91 18497.52 125
thres100view90088.30 14786.95 15892.33 11696.10 11584.90 6597.14 11298.85 282.69 18883.41 17293.66 18575.43 14697.93 14669.04 27886.24 19194.17 208
Fast-Effi-MVS+87.93 15586.94 15990.92 15794.04 17279.16 19298.26 3193.72 26281.29 20683.94 16792.90 19269.83 20896.68 21176.70 22291.74 15096.93 149
Test_1112_low_res88.03 15286.73 16091.94 12993.15 19580.88 14996.44 16492.41 29983.59 17180.74 20391.16 21280.18 7297.59 16077.48 21585.40 20097.36 134
thres600view788.06 15186.70 16192.15 12296.10 11585.17 5897.14 11298.85 282.70 18783.41 17293.66 18575.43 14697.82 15367.13 28785.88 19593.45 221
UGNet87.73 15786.55 16291.27 14895.16 13979.11 19496.35 17096.23 12388.14 6587.83 13390.48 22250.65 31199.09 10080.13 18994.03 12395.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RRT_test8_iter0587.14 16286.41 16389.32 19994.41 16381.10 14497.06 12395.33 17884.67 13676.27 25090.48 22283.60 4496.33 22185.10 14570.78 28090.53 235
tpm287.35 16186.26 16490.62 16592.93 20278.67 20488.06 31995.99 13879.33 24687.40 13486.43 28380.28 7096.40 21880.23 18785.73 19896.79 155
FIs86.73 17386.10 16588.61 21390.05 26780.21 16796.14 18396.95 3485.56 11378.37 22692.30 19676.73 12095.28 27379.51 19479.27 23790.35 238
RRT_MVS86.89 16685.96 16689.68 19695.01 14684.13 7796.33 17294.98 19284.20 15280.10 21292.07 19970.52 20395.01 28883.30 16877.14 25289.91 250
BH-untuned86.95 16585.94 16789.99 18394.52 15877.46 24096.78 14393.37 27981.80 20176.62 24393.81 18466.64 22597.02 19276.06 23093.88 12895.48 189
EPMVS87.47 16085.90 16892.18 12195.41 13182.26 11587.00 32696.28 12085.88 10584.23 16185.57 29475.07 15696.26 22471.14 27092.50 14198.03 83
AUN-MVS86.25 17985.57 16988.26 22193.57 18473.38 28795.45 21195.88 14583.94 15885.47 14994.21 17373.70 17496.67 21283.54 16464.41 32894.73 204
CVMVSNet84.83 19885.57 16982.63 30991.55 24160.38 35095.13 22395.03 19080.60 21782.10 19094.71 16266.40 22790.19 34574.30 24790.32 15797.31 137
nrg03086.79 17185.43 17190.87 15988.76 28285.34 4997.06 12394.33 23084.31 14780.45 20691.98 20072.36 18496.36 22088.48 12271.13 27790.93 232
FC-MVSNet-test85.96 18185.39 17287.66 23389.38 27978.02 22495.65 20596.87 4085.12 12577.34 23291.94 20376.28 12994.74 29377.09 21778.82 24190.21 242
CNLPA86.96 16485.37 17391.72 13697.59 8379.34 18897.21 10291.05 31874.22 29778.90 21996.75 11867.21 22198.95 11074.68 24290.77 15596.88 153
BH-RMVSNet86.84 16885.28 17491.49 14295.35 13380.26 16696.95 13392.21 30082.86 18581.77 19595.46 14359.34 27097.64 15869.79 27693.81 12996.57 163
GeoE86.36 17685.20 17589.83 19193.17 19476.13 26097.53 8092.11 30179.58 24280.99 19994.01 17866.60 22696.17 22873.48 25489.30 16297.20 143
miper_enhance_ethall85.95 18285.20 17588.19 22594.85 15079.76 17596.00 18794.06 24482.98 18277.74 23088.76 24579.42 7795.46 26580.58 18372.42 27289.36 261
EI-MVSNet85.80 18485.20 17587.59 23591.55 24177.41 24195.13 22395.36 17480.43 22480.33 20894.71 16273.72 17295.97 23376.96 22078.64 24389.39 256
XVG-OURS-SEG-HR85.74 18685.16 17887.49 24090.22 26371.45 30991.29 29794.09 24281.37 20583.90 16895.22 14660.30 26397.53 16785.58 14284.42 20693.50 219
PatchmatchNetpermissive86.83 16985.12 17991.95 12894.12 16982.27 11486.55 33095.64 15884.59 13982.98 17984.99 30677.26 10995.96 23668.61 28291.34 15297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS85.84 18385.10 18088.06 22688.34 28877.83 23395.72 20194.20 23487.89 7280.45 20694.05 17758.57 27597.26 18283.88 15482.76 22189.09 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS84.09 586.77 17285.00 18192.08 12392.06 23083.07 10192.14 28794.47 22379.63 24176.90 23994.78 16171.15 19799.20 8872.87 25691.05 15393.98 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs87.08 16384.94 18293.48 7093.34 19183.67 8788.82 31195.70 15481.18 20784.55 15990.14 23162.72 24698.94 11285.49 14382.54 22397.85 99
TR-MVS86.30 17784.93 18390.42 17094.63 15477.58 23896.57 15593.82 25380.30 22782.42 18395.16 15058.74 27497.55 16374.88 24087.82 17896.13 176
Effi-MVS+-dtu84.61 20284.90 18483.72 29891.96 23363.14 34394.95 23093.34 28085.57 11079.79 21487.12 26961.99 25495.61 25983.55 16285.83 19692.41 224
UniMVSNet_NR-MVSNet85.49 18984.59 18588.21 22489.44 27879.36 18696.71 14996.41 10585.22 12178.11 22890.98 21676.97 11695.14 28079.14 20068.30 30590.12 244
VDDNet86.44 17584.51 18692.22 12091.56 24081.83 12797.10 11894.64 21469.50 32687.84 13295.19 14848.01 32097.92 15189.82 10786.92 18396.89 152
QAPM86.88 16784.51 18693.98 4694.04 17285.89 3897.19 10596.05 13673.62 30175.12 26795.62 13962.02 25399.74 3270.88 27196.06 10696.30 173
cascas86.50 17484.48 18892.55 10992.64 20985.95 3597.04 12595.07 18875.32 28880.50 20491.02 21454.33 30697.98 14586.79 13687.62 17993.71 217
tpm85.55 18884.47 18988.80 21090.19 26475.39 27388.79 31294.69 20784.83 13083.96 16685.21 30078.22 9794.68 29576.32 22878.02 25096.34 169
XVG-OURS85.18 19384.38 19087.59 23590.42 26171.73 30691.06 30094.07 24382.00 19983.29 17495.08 15656.42 29397.55 16383.70 16083.42 21193.49 220
PS-MVSNAJss84.91 19784.30 19186.74 25285.89 31474.40 28294.95 23094.16 23783.93 16076.45 24590.11 23271.04 19995.77 24683.16 17079.02 24090.06 248
UniMVSNet (Re)85.31 19284.23 19288.55 21489.75 27080.55 15896.72 14796.89 3985.42 11478.40 22588.93 24375.38 14895.52 26378.58 20468.02 30889.57 254
cl-mvsnet285.11 19484.17 19387.92 22895.06 14478.82 20095.51 20894.22 23379.74 23976.77 24087.92 25875.96 13395.68 25279.93 19272.42 27289.27 262
X-MVStestdata86.26 17884.14 19492.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8220.73 36977.24 11199.59 5190.46 9798.07 6298.02 84
GA-MVS85.79 18584.04 19591.02 15589.47 27780.27 16596.90 13694.84 20185.57 11080.88 20089.08 23956.56 29296.47 21777.72 21085.35 20196.34 169
VPA-MVSNet85.32 19183.83 19689.77 19490.25 26282.63 10796.36 16997.07 2583.03 18081.21 19889.02 24161.58 25896.31 22385.02 14870.95 27990.36 237
MDTV_nov1_ep1383.69 19794.09 17081.01 14586.78 32896.09 13383.81 16484.75 15584.32 31174.44 16496.54 21463.88 30385.07 203
TAPA-MVS81.61 1285.02 19583.67 19889.06 20296.79 10473.27 29195.92 19294.79 20574.81 29380.47 20596.83 11371.07 19898.19 14249.82 35092.57 13995.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 19683.66 19989.02 20495.86 12074.55 27992.49 28393.60 26779.30 24879.29 21891.47 20658.53 27698.45 13370.22 27592.17 14794.07 212
SCA85.63 18783.64 20091.60 14092.30 21681.86 12692.88 27995.56 16184.85 12982.52 18085.12 30458.04 27995.39 26673.89 25087.58 18197.54 121
OpenMVScopyleft79.58 1486.09 18083.62 20193.50 6890.95 25086.71 3097.44 8795.83 14875.35 28772.64 28695.72 13457.42 28799.64 4671.41 26595.85 11094.13 211
miper_ehance_all_eth84.57 20383.60 20287.50 23992.64 20978.25 21695.40 21493.47 27179.28 24976.41 24687.64 26176.53 12395.24 27578.58 20472.42 27289.01 272
LCM-MVSNet-Re83.75 21583.54 20384.39 29193.54 18564.14 33992.51 28284.03 35583.90 16166.14 32086.59 27767.36 21992.68 32084.89 14992.87 13796.35 168
LPG-MVS_test84.20 21083.49 20486.33 25890.88 25173.06 29295.28 21594.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
F-COLMAP84.50 20583.44 20587.67 23295.22 13672.22 29695.95 19093.78 25875.74 28576.30 24995.18 14959.50 26898.45 13372.67 25886.59 18792.35 225
DU-MVS84.57 20383.33 20688.28 22088.76 28279.36 18696.43 16695.41 17385.42 11478.11 22890.82 21767.61 21595.14 28079.14 20068.30 30590.33 239
ACMP81.66 1184.00 21183.22 20786.33 25891.53 24372.95 29495.91 19493.79 25783.70 16773.79 27492.22 19754.31 30796.89 20083.98 15379.74 23389.16 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WR-MVS84.32 20882.96 20888.41 21689.38 27980.32 16296.59 15496.25 12283.97 15776.63 24290.36 22667.53 21794.86 29175.82 23470.09 28990.06 248
VPNet84.69 20182.92 20990.01 18289.01 28183.45 9196.71 14995.46 16785.71 10879.65 21592.18 19856.66 29196.01 23283.05 17267.84 31190.56 234
gg-mvs-nofinetune85.48 19082.90 21093.24 7794.51 16185.82 3979.22 34596.97 3261.19 34787.33 13653.01 35990.58 696.07 22986.07 13997.23 8397.81 103
test_part184.72 19982.85 21190.34 17395.73 12484.79 6896.75 14694.10 24179.05 25775.97 25689.51 23667.69 21495.94 23779.34 19667.50 31490.30 241
ACMM80.70 1383.72 21682.85 21186.31 26191.19 24672.12 29995.88 19594.29 23180.44 22277.02 23791.96 20155.24 30097.14 18979.30 19880.38 22989.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bset_n11_16_dypcd84.35 20782.83 21388.91 20682.54 33882.07 11894.12 25193.47 27185.39 11678.55 22388.98 24262.23 24995.11 28286.75 13773.42 26689.55 255
IterMVS-LS83.93 21282.80 21487.31 24491.46 24477.39 24295.66 20493.43 27480.44 22275.51 26387.26 26673.72 17295.16 27976.99 21870.72 28289.39 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet384.71 20082.71 21590.70 16494.55 15687.71 2095.92 19294.67 21081.73 20275.82 25988.08 25666.99 22294.47 29871.23 26775.38 25889.91 250
cl_fuxian83.80 21482.65 21687.25 24692.10 22677.74 23695.25 21893.04 29178.58 26176.01 25487.21 26875.25 15395.11 28277.54 21468.89 29988.91 278
Fast-Effi-MVS+-dtu83.33 22182.60 21785.50 27389.55 27569.38 32496.09 18691.38 31082.30 19375.96 25791.41 20756.71 28995.58 26175.13 23984.90 20491.54 226
test0.0.03 182.79 23282.48 21883.74 29786.81 30172.22 29696.52 15695.03 19083.76 16573.00 28293.20 18872.30 18688.88 34864.15 30277.52 25190.12 244
test_djsdf83.00 23082.45 21984.64 28484.07 33369.78 32094.80 23494.48 22180.74 21475.41 26587.70 26061.32 26095.10 28483.77 15679.76 23189.04 270
dp84.30 20982.31 22090.28 17594.24 16777.97 22686.57 32995.53 16279.94 23680.75 20285.16 30271.49 19596.39 21963.73 30483.36 21296.48 165
cl-mvsnet____83.27 22282.12 22186.74 25292.20 22175.95 26795.11 22593.27 28378.44 26474.82 26987.02 27174.19 16695.19 27774.67 24369.32 29589.09 267
cl-mvsnet183.27 22282.12 22186.74 25292.19 22275.92 26895.11 22593.26 28478.44 26474.81 27087.08 27074.19 16695.19 27774.66 24469.30 29689.11 266
eth_miper_zixun_eth83.12 22682.01 22386.47 25791.85 23974.80 27694.33 24393.18 28679.11 25275.74 26287.25 26772.71 18195.32 27176.78 22167.13 31889.27 262
XXY-MVS83.84 21382.00 22489.35 19887.13 29981.38 13895.72 20194.26 23280.15 23175.92 25890.63 22061.96 25696.52 21578.98 20273.28 27090.14 243
Anonymous20240521184.41 20681.93 22591.85 13396.78 10578.41 21197.44 8791.34 31370.29 32284.06 16294.26 17141.09 34398.96 10779.46 19582.65 22298.17 71
v2v48283.46 21981.86 22688.25 22286.19 30879.65 18196.34 17194.02 24581.56 20477.32 23388.23 25365.62 22996.03 23077.77 20869.72 29389.09 267
MS-PatchMatch83.05 22781.82 22786.72 25689.64 27379.10 19594.88 23294.59 21879.70 24070.67 29889.65 23450.43 31396.82 20570.82 27495.99 10884.25 337
TranMVSNet+NR-MVSNet83.24 22481.71 22887.83 22987.71 29578.81 20296.13 18594.82 20284.52 14076.18 25390.78 21964.07 24094.60 29674.60 24566.59 32390.09 246
MVP-Stereo82.65 23581.67 22985.59 27286.10 31178.29 21493.33 26692.82 29377.75 26969.17 30887.98 25759.28 27195.76 24771.77 26296.88 9382.73 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS82.67 23481.55 23086.04 26587.77 29476.47 25495.21 21996.58 8382.66 18970.26 30185.46 29760.39 26295.80 24576.40 22679.18 23885.83 327
V4283.04 22881.53 23187.57 23786.27 30779.09 19695.87 19694.11 24080.35 22677.22 23586.79 27565.32 23496.02 23177.74 20970.14 28587.61 302
NR-MVSNet83.35 22081.52 23288.84 20888.76 28281.31 14094.45 23995.16 18484.65 13767.81 31090.82 21770.36 20594.87 29074.75 24166.89 32190.33 239
tpm cat183.63 21781.38 23390.39 17193.53 18878.19 22285.56 33695.09 18670.78 32078.51 22483.28 31974.80 15897.03 19166.77 28884.05 20795.95 177
CR-MVSNet83.53 21881.36 23490.06 18190.16 26579.75 17679.02 34791.12 31584.24 15182.27 18880.35 33375.45 14493.67 31263.37 30786.25 18996.75 159
v114482.90 23181.27 23587.78 23186.29 30679.07 19796.14 18393.93 24780.05 23377.38 23186.80 27465.50 23095.93 23975.21 23870.13 28688.33 288
jajsoiax82.12 24381.15 23685.03 27884.19 33170.70 31294.22 24993.95 24683.07 17873.48 27689.75 23349.66 31695.37 26882.24 17679.76 23189.02 271
v14882.41 24080.89 23786.99 25086.18 30976.81 25196.27 17593.82 25380.49 22175.28 26686.11 28967.32 22095.75 24875.48 23667.03 32088.42 286
pmmvs482.54 23680.79 23887.79 23086.11 31080.49 16193.55 26193.18 28677.29 27573.35 27889.40 23865.26 23595.05 28775.32 23773.61 26587.83 296
tpmvs83.04 22880.77 23989.84 19095.43 13077.96 22785.59 33595.32 17975.31 28976.27 25083.70 31673.89 16997.41 17359.53 31881.93 22594.14 210
v14419282.43 23780.73 24087.54 23885.81 31578.22 21795.98 18893.78 25879.09 25377.11 23686.49 27964.66 23995.91 24074.20 24869.42 29488.49 282
mvs_tets81.74 24680.71 24184.84 27984.22 33070.29 31593.91 25493.78 25882.77 18673.37 27789.46 23747.36 32595.31 27281.99 17779.55 23688.92 277
miper_lstm_enhance81.66 24980.66 24284.67 28391.19 24671.97 30291.94 28993.19 28577.86 26872.27 28985.26 29873.46 17593.42 31573.71 25367.05 31988.61 280
Anonymous2024052983.15 22580.60 24390.80 16095.74 12278.27 21596.81 14194.92 19460.10 35281.89 19392.54 19545.82 32898.82 11779.25 19978.32 24895.31 193
v119282.31 24180.55 24487.60 23485.94 31278.47 21095.85 19893.80 25679.33 24676.97 23886.51 27863.33 24495.87 24173.11 25570.13 28688.46 284
FMVSNet282.79 23280.44 24589.83 19192.66 20685.43 4895.42 21294.35 22979.06 25474.46 27187.28 26456.38 29494.31 30169.72 27774.68 26189.76 252
GBi-Net82.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
test182.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
v192192082.02 24480.23 24887.41 24185.62 31677.92 23095.79 20093.69 26378.86 25876.67 24186.44 28162.50 24795.83 24372.69 25769.77 29288.47 283
WR-MVS_H81.02 25580.09 24983.79 29588.08 29271.26 31194.46 23896.54 8980.08 23272.81 28586.82 27370.36 20592.65 32164.18 30167.50 31487.46 307
CP-MVSNet81.01 25680.08 25083.79 29587.91 29370.51 31394.29 24895.65 15680.83 21272.54 28888.84 24463.71 24192.32 32468.58 28368.36 30488.55 281
Baseline_NR-MVSNet81.22 25480.07 25184.68 28285.32 32275.12 27596.48 15888.80 33676.24 28477.28 23486.40 28467.61 21594.39 30075.73 23566.73 32284.54 334
v881.88 24580.06 25287.32 24386.63 30279.04 19894.41 24093.65 26578.77 25973.19 28185.57 29466.87 22395.81 24473.84 25267.61 31387.11 310
anonymousdsp80.98 25779.97 25384.01 29281.73 33970.44 31492.49 28393.58 26977.10 27972.98 28386.31 28557.58 28394.90 28979.32 19778.63 24586.69 315
LS3D82.22 24279.94 25489.06 20297.43 9074.06 28593.20 27392.05 30261.90 34373.33 27995.21 14759.35 26999.21 8454.54 33892.48 14293.90 215
v124081.70 24779.83 25587.30 24585.50 31777.70 23795.48 20993.44 27378.46 26376.53 24486.44 28160.85 26195.84 24271.59 26470.17 28488.35 287
pmmvs581.34 25279.54 25686.73 25585.02 32476.91 24996.22 17891.65 30877.65 27073.55 27588.61 24755.70 29794.43 29974.12 24973.35 26988.86 279
v1081.43 25179.53 25787.11 24886.38 30378.87 19994.31 24493.43 27477.88 26773.24 28085.26 29865.44 23195.75 24872.14 26167.71 31286.72 314
PS-CasMVS80.27 26279.18 25883.52 30287.56 29769.88 31894.08 25295.29 18080.27 22972.08 29088.51 25159.22 27292.23 32667.49 28568.15 30788.45 285
IterMVS80.67 25979.16 25985.20 27689.79 26976.08 26192.97 27791.86 30480.28 22871.20 29485.14 30357.93 28291.34 33572.52 25970.74 28188.18 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 26179.10 26084.73 28189.63 27474.66 27792.98 27691.81 30680.05 23371.06 29685.18 30158.04 27991.40 33472.48 26070.70 28388.12 292
PVSNet_077.72 1581.70 24778.95 26189.94 18790.77 25676.72 25395.96 18996.95 3485.01 12770.24 30288.53 25052.32 30898.20 14186.68 13844.08 35994.89 197
UniMVSNet_ETH3D80.86 25878.75 26287.22 24786.31 30572.02 30091.95 28893.76 26173.51 30275.06 26890.16 23043.04 33795.66 25376.37 22778.55 24693.98 213
ADS-MVSNet81.26 25378.36 26389.96 18693.78 17879.78 17479.48 34393.60 26773.09 30780.14 21079.99 33662.15 25195.24 27559.49 31983.52 20994.85 198
DP-MVS81.47 25078.28 26491.04 15398.14 6378.48 20795.09 22886.97 34361.14 34871.12 29592.78 19459.59 26699.38 6853.11 34286.61 18695.27 194
PEN-MVS79.47 26978.26 26583.08 30586.36 30468.58 32693.85 25594.77 20679.76 23871.37 29288.55 24859.79 26492.46 32264.50 30065.40 32588.19 290
pm-mvs180.05 26378.02 26686.15 26385.42 31875.81 26995.11 22592.69 29677.13 27770.36 30087.43 26358.44 27795.27 27471.36 26664.25 33087.36 308
XVG-ACMP-BASELINE79.38 27077.90 26783.81 29484.98 32567.14 33389.03 31093.18 28680.26 23072.87 28488.15 25538.55 34696.26 22476.05 23178.05 24988.02 293
MSDG80.62 26077.77 26889.14 20193.43 19077.24 24491.89 29090.18 32569.86 32568.02 30991.94 20352.21 30998.84 11659.32 32183.12 21391.35 227
ADS-MVSNet279.57 26777.53 26985.71 27093.78 17872.13 29879.48 34386.11 34873.09 30780.14 21079.99 33662.15 25190.14 34659.49 31983.52 20994.85 198
v7n79.32 27177.34 27085.28 27584.05 33472.89 29593.38 26493.87 25175.02 29270.68 29784.37 31059.58 26795.62 25867.60 28467.50 31487.32 309
JIA-IIPM79.00 27377.20 27184.40 29089.74 27264.06 34075.30 35495.44 16962.15 34281.90 19259.08 35778.92 8695.59 26066.51 29285.78 19793.54 218
Anonymous2023121179.72 26677.19 27287.33 24295.59 12777.16 24895.18 22294.18 23659.31 35472.57 28786.20 28747.89 32295.66 25374.53 24669.24 29789.18 264
DTE-MVSNet78.37 27677.06 27382.32 31285.22 32367.17 33293.40 26393.66 26478.71 26070.53 29988.29 25259.06 27392.23 32661.38 31463.28 33487.56 304
EU-MVSNet76.92 29076.95 27476.83 33184.10 33254.73 36091.77 29292.71 29572.74 31069.57 30588.69 24658.03 28187.43 35364.91 29970.00 29088.33 288
PatchT79.75 26576.85 27588.42 21589.55 27575.49 27277.37 35194.61 21663.07 33982.46 18273.32 35075.52 14393.41 31651.36 34584.43 20596.36 167
MVS_030478.43 27576.70 27683.60 30088.22 29069.81 31992.91 27895.10 18572.32 31478.71 22280.29 33533.78 35493.37 31768.77 28180.23 23087.63 300
RPSCF77.73 28276.63 27781.06 31788.66 28655.76 35887.77 32187.88 34164.82 33874.14 27392.79 19349.22 31796.81 20667.47 28676.88 25390.62 233
FMVSNet179.50 26876.54 27888.39 21788.47 28781.95 11994.30 24593.38 27673.14 30672.04 29185.66 29043.86 33193.84 30865.48 29672.53 27189.38 258
USDC78.65 27476.25 27985.85 26687.58 29674.60 27889.58 30690.58 32484.05 15463.13 33288.23 25340.69 34596.86 20466.57 29175.81 25686.09 323
OurMVSNet-221017-077.18 28876.06 28080.55 32083.78 33560.00 35190.35 30291.05 31877.01 28166.62 31887.92 25847.73 32394.03 30571.63 26368.44 30387.62 301
MIMVSNet79.18 27275.99 28188.72 21287.37 29880.66 15579.96 34291.82 30577.38 27474.33 27281.87 32541.78 34090.74 34166.36 29483.10 21494.76 200
RPMNet79.85 26475.92 28291.64 13790.16 26579.75 17679.02 34795.44 16958.43 35682.27 18872.55 35173.03 17998.41 13546.10 35686.25 18996.75 159
LTVRE_ROB73.68 1877.99 27975.74 28384.74 28090.45 26072.02 30086.41 33191.12 31572.57 31266.63 31787.27 26554.95 30396.98 19456.29 33375.98 25485.21 331
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal78.14 27875.42 28486.31 26188.33 28979.24 18994.41 24096.22 12473.51 30269.81 30485.52 29655.43 29895.75 24847.65 35467.86 31083.95 340
our_test_377.90 28175.37 28585.48 27485.39 31976.74 25293.63 25891.67 30773.39 30565.72 32284.65 30958.20 27893.13 31957.82 32567.87 30986.57 316
ACMH75.40 1777.99 27974.96 28687.10 24990.67 25776.41 25693.19 27491.64 30972.47 31363.44 33087.61 26243.34 33497.16 18658.34 32373.94 26387.72 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+76.62 1677.47 28574.94 28785.05 27791.07 24971.58 30893.26 27190.01 32671.80 31664.76 32588.55 24841.62 34196.48 21662.35 31071.00 27887.09 311
KD-MVS_2432*160077.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
miper_refine_blended77.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
Patchmatch-test78.25 27774.72 29088.83 20991.20 24574.10 28473.91 35788.70 33959.89 35366.82 31685.12 30478.38 9494.54 29748.84 35279.58 23597.86 98
Patchmtry77.36 28674.59 29185.67 27189.75 27075.75 27077.85 35091.12 31560.28 35071.23 29380.35 33375.45 14493.56 31457.94 32467.34 31787.68 299
CMPMVSbinary54.94 2175.71 29774.56 29279.17 32679.69 34555.98 35689.59 30593.30 28260.28 35053.85 35489.07 24047.68 32496.33 22176.55 22381.02 22685.22 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)76.94 28974.38 29384.62 28585.92 31375.25 27495.28 21589.18 33373.88 30067.22 31186.46 28059.64 26594.10 30459.24 32252.57 35084.50 335
SixPastTwentyTwo76.04 29374.32 29481.22 31684.54 32761.43 34991.16 29889.30 33277.89 26664.04 32786.31 28548.23 31894.29 30263.54 30663.84 33287.93 295
ppachtmachnet_test77.19 28774.22 29586.13 26485.39 31978.22 21793.98 25391.36 31271.74 31767.11 31384.87 30756.67 29093.37 31752.21 34364.59 32786.80 313
FMVSNet576.46 29274.16 29683.35 30490.05 26776.17 25989.58 30689.85 32771.39 31965.29 32480.42 33250.61 31287.70 35261.05 31669.24 29786.18 321
CL-MVSNet_2432*160075.81 29574.14 29780.83 31978.33 34967.79 32994.22 24993.52 27077.28 27669.82 30381.54 32761.47 25989.22 34757.59 32753.51 34685.48 329
Patchmatch-RL test76.65 29174.01 29884.55 28677.37 35364.23 33878.49 34982.84 35978.48 26264.63 32673.40 34976.05 13291.70 33376.99 21857.84 34097.72 109
Anonymous2023120675.29 29873.64 29980.22 32180.75 34063.38 34293.36 26590.71 32373.09 30767.12 31283.70 31650.33 31490.85 34053.63 34170.10 28886.44 317
testgi74.88 30073.40 30079.32 32580.13 34461.75 34693.21 27286.64 34679.49 24466.56 31991.06 21335.51 35288.67 34956.79 33271.25 27687.56 304
AllTest75.92 29473.06 30184.47 28792.18 22367.29 33091.07 29984.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
COLMAP_ROBcopyleft73.24 1975.74 29673.00 30283.94 29392.38 21269.08 32591.85 29186.93 34461.48 34665.32 32390.27 22742.27 33996.93 19950.91 34775.63 25785.80 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DSMNet-mixed73.13 30772.45 30375.19 33777.51 35246.82 36385.09 33782.01 36067.61 33369.27 30781.33 32850.89 31086.28 35554.54 33883.80 20892.46 223
EG-PatchMatch MVS74.92 29972.02 30483.62 29983.76 33673.28 29093.62 25992.04 30368.57 32858.88 34583.80 31531.87 35895.57 26256.97 33178.67 24282.00 351
pmmvs674.65 30171.67 30583.60 30079.13 34769.94 31793.31 27090.88 32261.05 34965.83 32184.15 31343.43 33394.83 29266.62 28960.63 33786.02 324
K. test v373.62 30271.59 30679.69 32382.98 33759.85 35290.85 30188.83 33577.13 27758.90 34482.11 32343.62 33291.72 33265.83 29554.10 34587.50 306
test20.0372.36 31171.15 30775.98 33577.79 35059.16 35392.40 28589.35 33174.09 29861.50 33984.32 31148.09 31985.54 35850.63 34862.15 33683.24 341
LF4IMVS72.36 31170.82 30876.95 33079.18 34656.33 35586.12 33286.11 34869.30 32763.06 33386.66 27633.03 35692.25 32565.33 29768.64 30182.28 349
pmmvs-eth3d73.59 30370.66 30982.38 31076.40 35773.38 28789.39 30989.43 33072.69 31160.34 34377.79 34246.43 32791.26 33766.42 29357.06 34182.51 346
UnsupCasMVSNet_eth73.25 30670.57 31081.30 31577.53 35166.33 33487.24 32593.89 25080.38 22557.90 34981.59 32642.91 33890.56 34265.18 29848.51 35387.01 312
YYNet173.53 30570.43 31182.85 30784.52 32871.73 30691.69 29491.37 31167.63 32946.79 35781.21 32955.04 30290.43 34355.93 33459.70 33986.38 318
MDA-MVSNet_test_wron73.54 30470.43 31182.86 30684.55 32671.85 30391.74 29391.32 31467.63 32946.73 35881.09 33055.11 30190.42 34455.91 33559.76 33886.31 319
Anonymous2024052172.06 31369.91 31378.50 32777.11 35461.67 34891.62 29690.97 32065.52 33662.37 33579.05 33936.32 34990.96 33957.75 32668.52 30282.87 342
OpenMVS_ROBcopyleft68.52 2073.02 30869.57 31483.37 30380.54 34371.82 30493.60 26088.22 34062.37 34161.98 33783.15 32035.31 35395.47 26445.08 35775.88 25582.82 343
test_040272.68 30969.54 31582.09 31388.67 28571.81 30592.72 28186.77 34561.52 34562.21 33683.91 31443.22 33593.76 31134.60 36172.23 27580.72 353
DIV-MVS_2432*160070.97 31669.31 31675.95 33676.24 35955.39 35987.45 32290.94 32170.20 32362.96 33477.48 34344.01 33088.09 35061.25 31553.26 34784.37 336
TinyColmap72.41 31068.99 31782.68 30888.11 29169.59 32288.41 31585.20 35065.55 33557.91 34884.82 30830.80 36095.94 23751.38 34468.70 30082.49 348
MDA-MVSNet-bldmvs71.45 31467.94 31881.98 31485.33 32168.50 32792.35 28688.76 33770.40 32142.99 35981.96 32446.57 32691.31 33648.75 35354.39 34486.11 322
MVS-HIRNet71.36 31567.00 31984.46 28990.58 25869.74 32179.15 34687.74 34246.09 35961.96 33850.50 36045.14 32995.64 25653.74 34088.11 17788.00 294
PM-MVS69.32 31866.93 32076.49 33273.60 36155.84 35785.91 33379.32 36474.72 29461.09 34078.18 34121.76 36291.10 33870.86 27256.90 34282.51 346
MIMVSNet169.44 31766.65 32177.84 32876.48 35662.84 34487.42 32388.97 33466.96 33457.75 35079.72 33832.77 35785.83 35746.32 35563.42 33384.85 333
new-patchmatchnet68.85 32065.93 32277.61 32973.57 36263.94 34190.11 30488.73 33871.62 31855.08 35273.60 34840.84 34487.22 35451.35 34648.49 35481.67 352
TDRefinement69.20 31965.78 32379.48 32466.04 36562.21 34588.21 31686.12 34762.92 34061.03 34185.61 29333.23 35594.16 30355.82 33653.02 34882.08 350
UnsupCasMVSNet_bld68.60 32164.50 32480.92 31874.63 36067.80 32883.97 33892.94 29265.12 33754.63 35368.23 35535.97 35092.17 32860.13 31744.83 35782.78 344
new_pmnet66.18 32263.18 32575.18 33876.27 35861.74 34783.79 33984.66 35256.64 35751.57 35571.85 35431.29 35987.93 35149.98 34962.55 33575.86 356
pmmvs365.75 32362.18 32676.45 33367.12 36464.54 33788.68 31385.05 35154.77 35857.54 35173.79 34729.40 36186.21 35655.49 33747.77 35578.62 354
N_pmnet61.30 32460.20 32764.60 34184.32 32917.00 37691.67 29510.98 37561.77 34458.45 34778.55 34049.89 31591.83 33142.27 35963.94 33184.97 332
test_method56.77 32554.53 32863.49 34376.49 35540.70 36875.68 35374.24 36619.47 36748.73 35671.89 35319.31 36365.80 36657.46 32847.51 35683.97 339
FPMVS55.09 32652.93 32961.57 34455.98 36640.51 36983.11 34083.41 35837.61 36134.95 36271.95 35214.40 36676.95 36029.81 36265.16 32667.25 360
LCM-MVSNet52.52 32748.24 33065.35 33947.63 37141.45 36772.55 35883.62 35731.75 36237.66 36157.92 3589.19 37276.76 36149.26 35144.60 35877.84 355
PMMVS250.90 32846.31 33164.67 34055.53 36746.67 36477.30 35271.02 36740.89 36034.16 36359.32 3569.83 37176.14 36340.09 36028.63 36371.21 357
Gipumacopyleft45.11 33042.05 33254.30 34680.69 34151.30 36235.80 36483.81 35628.13 36327.94 36534.53 36411.41 37076.70 36221.45 36454.65 34334.90 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 33141.93 33340.38 34920.10 37526.84 37261.93 36159.09 37114.81 36928.51 36480.58 33135.53 35148.33 37063.70 30513.11 36745.96 363
ANet_high46.22 32941.28 33461.04 34539.91 37346.25 36570.59 35976.18 36558.87 35523.09 36648.00 36212.58 36866.54 36528.65 36313.62 36670.35 358
PMVScopyleft34.80 2339.19 33235.53 33550.18 34729.72 37430.30 37159.60 36266.20 37026.06 36417.91 36849.53 3613.12 37374.09 36418.19 36649.40 35146.14 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 33432.39 33633.65 35053.35 36925.70 37374.07 35653.33 37321.08 36517.17 36933.63 36611.85 36954.84 36812.98 36714.04 36520.42 365
EMVS31.70 33531.45 33732.48 35150.72 37023.95 37474.78 35552.30 37420.36 36616.08 37031.48 36712.80 36753.60 36911.39 36813.10 36819.88 366
MVEpermissive35.65 2233.85 33329.49 33846.92 34841.86 37236.28 37050.45 36356.52 37218.75 36818.28 36737.84 3632.41 37458.41 36718.71 36520.62 36446.06 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k21.43 33628.57 3390.00 3550.00 3780.00 3790.00 36695.93 1430.00 3730.00 37497.66 7263.57 2420.00 3740.00 3720.00 3720.00 370
wuyk23d14.10 33713.89 34014.72 35255.23 36822.91 37533.83 3653.56 3764.94 3704.11 3712.28 3722.06 37519.66 37110.23 3698.74 3691.59 369
testmvs9.92 33812.94 3410.84 3540.65 3760.29 37893.78 2560.39 3770.42 3712.85 37215.84 3700.17 3770.30 3732.18 3700.21 3701.91 368
test1239.07 33911.73 3421.11 3530.50 3770.77 37789.44 3080.20 3780.34 3722.15 37310.72 3710.34 3760.32 3721.79 3710.08 3712.23 367
ab-mvs-re8.11 34010.81 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.30 940.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.92 3417.89 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37371.04 1990.00 3740.00 3720.00 3720.00 370
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS198.51 4478.01 22598.13 3896.21 12583.04 17994.39 43
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
No_MVS97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
test_one_060198.91 2084.56 7196.70 6388.06 6696.57 1598.77 1288.04 19
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.09 983.22 9796.60 8182.88 18493.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
IU-MVS99.03 1685.34 4996.86 4292.05 1598.74 198.15 398.97 1799.42 13
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
test_241102_TWO96.78 4788.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
test_241102_ONE99.03 1685.03 6196.78 4788.72 5197.79 498.90 688.48 1699.82 17
save fliter98.24 5783.34 9398.61 2396.57 8491.32 18
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5399.84 1297.90 898.85 2299.45 10
test072699.05 1085.18 5499.11 896.78 4788.75 4997.65 898.91 387.69 21
GSMVS97.54 121
test_part298.90 2185.14 6096.07 20
sam_mvs177.59 10497.54 121
sam_mvs75.35 151
ambc76.02 33468.11 36351.43 36164.97 36089.59 32860.49 34274.49 34617.17 36592.46 32261.50 31352.85 34984.17 338
MTGPAbinary96.33 116
test_post185.88 33430.24 36873.77 17095.07 28673.89 250
test_post33.80 36576.17 13095.97 233
patchmatchnet-post77.09 34477.78 10395.39 266
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34197.00 2888.32 12894.30 17091.23 596.21 22788.49 12197.43 7898.00 89
MTMP97.53 8068.16 368
gm-plane-assit92.27 21779.64 18284.47 14395.15 15197.93 14685.81 140
test9_res96.00 2599.03 1398.31 61
TEST998.64 3583.71 8597.82 5696.65 7284.29 14995.16 2898.09 4684.39 3499.36 74
test_898.63 3783.64 8897.81 5896.63 7784.50 14195.10 3098.11 4584.33 3599.23 80
agg_prior294.30 4699.00 1598.57 45
agg_prior98.59 3983.13 9896.56 8694.19 4599.16 93
TestCases84.47 28792.18 22367.29 33084.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
test_prior482.34 11397.75 65
test_prior298.37 2886.08 10094.57 4198.02 5283.14 4795.05 3898.79 27
test_prior93.09 8498.68 2981.91 12296.40 10899.06 10198.29 63
旧先验296.97 13174.06 29996.10 1997.76 15588.38 123
新几何296.42 167
新几何193.12 8297.44 8981.60 13696.71 6274.54 29591.22 8997.57 7879.13 8499.51 6077.40 21698.46 4398.26 66
旧先验197.39 9379.58 18396.54 8998.08 4984.00 3997.42 7997.62 118
无先验96.87 13796.78 4777.39 27399.52 5779.95 19098.43 53
原ACMM296.84 138
原ACMM191.22 15097.77 7778.10 22396.61 7881.05 20991.28 8797.42 8877.92 10198.98 10679.85 19398.51 3896.59 162
test22296.15 11378.41 21195.87 19696.46 9971.97 31589.66 10997.45 8476.33 12898.24 5898.30 62
testdata299.48 6276.45 225
segment_acmp82.69 56
testdata90.13 17995.92 11974.17 28396.49 9873.49 30494.82 3897.99 5578.80 8997.93 14683.53 16597.52 7498.29 63
testdata195.57 20787.44 79
test1294.25 3898.34 5285.55 4696.35 11592.36 6880.84 6399.22 8298.31 5697.98 91
plane_prior791.86 23777.55 239
plane_prior691.98 23277.92 23064.77 237
plane_prior594.69 20797.30 17887.08 13282.82 21990.96 230
plane_prior494.15 175
plane_prior377.75 23590.17 3481.33 196
plane_prior297.18 10689.89 36
plane_prior191.95 235
plane_prior77.96 22797.52 8390.36 3382.96 217
n20.00 379
nn0.00 379
door-mid79.75 363
lessismore_v079.98 32280.59 34258.34 35480.87 36158.49 34683.46 31843.10 33693.89 30763.11 30848.68 35287.72 297
LGP-MVS_train86.33 25890.88 25173.06 29294.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
test1196.50 95
door80.13 362
HQP5-MVS78.48 207
HQP-NCC92.08 22797.63 7190.52 2882.30 184
ACMP_Plane92.08 22797.63 7190.52 2882.30 184
BP-MVS87.67 128
HQP4-MVS82.30 18497.32 17691.13 228
HQP3-MVS94.80 20383.01 215
HQP2-MVS65.40 232
NP-MVS92.04 23178.22 21794.56 165
MDTV_nov1_ep13_2view81.74 13186.80 32780.65 21685.65 14874.26 16576.52 22496.98 147
ACMMP++_ref78.45 247
ACMMP++79.05 239
Test By Simon71.65 192
ITE_SJBPF82.38 31087.00 30065.59 33589.55 32979.99 23569.37 30691.30 21041.60 34295.33 27062.86 30974.63 26286.24 320
DeepMVS_CXcopyleft64.06 34278.53 34843.26 36668.11 36969.94 32438.55 36076.14 34518.53 36479.34 35943.72 35841.62 36069.57 359