This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS95.62 896.54 192.86 9498.31 4880.10 17597.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 29
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5498.13 5096.77 6188.38 7497.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6799.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
DeepPCF-MVS89.82 194.61 2296.17 589.91 20097.09 9070.21 33398.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 7998.46 2887.33 2499.97 297.21 2899.31 499.63 7
patch_mono-295.14 1396.08 792.33 11798.44 4377.84 24198.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 17
NCCC95.63 795.94 894.69 2899.21 685.15 6499.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 29
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5999.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 24
test_fmvsm_n_192094.81 1995.60 1192.45 11095.29 13080.96 15099.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 168
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7297.77 7396.74 6686.11 12196.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12699.25 699.70 3
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 45
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5894.50 15984.30 8199.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 150
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5094.42 16184.61 7699.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 142
MVS_030495.36 1095.20 1795.85 1194.89 14589.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 52
TSAR-MVS + MP.94.79 2095.17 1893.64 6197.66 6984.10 8495.85 21396.42 10791.26 3597.49 1396.80 11886.50 2798.49 13195.54 4999.03 1398.33 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7697.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft94.56 2394.75 2093.96 4898.84 2283.40 9898.04 5896.41 10885.79 12995.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9796.77 6185.32 13897.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 53
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 32
TSAR-MVS + GP.94.35 2594.50 2393.89 4997.38 8483.04 10598.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 22
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8797.08 10683.32 4999.69 4992.83 8198.70 3199.04 27
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg94.28 2694.45 2593.74 5598.64 3183.71 9097.82 6996.65 7884.50 16295.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 73
SteuartSystems-ACMMP94.13 3194.44 2693.20 8095.41 12681.35 14199.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 35
Skip Steuart: Steuart Systems R&D Blog.
MSLP-MVS++94.28 2694.39 2793.97 4798.30 4984.06 8598.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 46
test_fmvsmconf_n93.99 3394.36 2892.86 9492.82 21181.12 14499.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 99
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5696.64 8193.64 1491.74 8598.54 2080.17 7399.90 592.28 8698.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.26 3098.10 5798.14 4796.52 9584.74 15494.83 4798.80 782.80 5499.37 8095.95 4298.42 41
EPNet94.06 3294.15 3193.76 5497.27 8784.35 7998.29 4297.64 1594.57 695.36 3496.88 11379.96 7699.12 10091.30 9596.11 10297.82 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11594.56 15282.01 11999.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 205
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7796.43 10684.02 17695.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 62
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7596.97 11081.30 6298.99 10788.54 13398.88 2099.20 22
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12493.38 19481.71 13498.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 206
CS-MVS-test92.98 4693.67 3690.90 17196.52 9476.87 26098.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20594.28 6397.80 6398.70 43
PHI-MVS93.59 3893.63 3793.48 7298.05 5881.76 13198.64 3297.13 2882.60 21294.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 34
APD-MVScopyleft93.61 3793.59 3893.69 5998.76 2483.26 10197.21 11496.09 13782.41 21694.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS93.87 3593.58 3994.75 2793.00 20488.08 1799.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17494.64 5997.46 7198.62 47
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12192.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 20999.17 9596.77 3397.39 7696.79 161
CS-MVS92.73 5393.48 4190.48 18396.27 10075.93 28098.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 20993.80 6697.32 7898.49 53
dcpmvs_293.10 4493.46 4292.02 13597.77 6579.73 18594.82 25493.86 26686.91 10991.33 9196.76 11985.20 3198.06 15096.90 3297.60 6898.27 68
MVS_111021_HR93.41 4093.39 4393.47 7497.34 8582.83 10797.56 8998.27 689.16 6389.71 11297.14 10279.77 7799.56 6693.65 6997.94 5998.02 81
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13892.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21298.96 10996.74 3596.57 9596.76 164
ACMMP_NAP93.46 3993.23 4594.17 4297.16 8884.28 8296.82 15496.65 7886.24 11994.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 59
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10388.45 30580.81 15499.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 120
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12290.52 27381.92 12398.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 207
PVSNet_Blended93.13 4292.98 4893.57 6697.47 7683.86 8799.32 296.73 6791.02 4089.53 11796.21 12976.42 12999.57 6494.29 6195.81 11097.29 140
CDPH-MVS93.12 4392.91 4993.74 5598.65 3083.88 8697.67 8296.26 12383.00 20293.22 6698.24 3781.31 6199.21 8889.12 12798.74 3098.14 75
ETV-MVS92.72 5592.87 5092.28 12194.54 15481.89 12597.98 6095.21 19189.77 5793.11 6796.83 11577.23 11697.50 18295.74 4595.38 11497.44 129
HFP-MVS92.89 4992.86 5192.98 8998.71 2581.12 14497.58 8796.70 7185.20 14391.75 8497.97 5978.47 9399.71 4590.95 9898.41 4298.12 77
XVS92.69 5792.71 5292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8897.83 6877.24 11499.59 6090.46 10898.07 5398.02 81
region2R92.72 5592.70 5392.79 9798.68 2680.53 16497.53 9296.51 9685.22 14191.94 8297.98 5777.26 11299.67 5390.83 10298.37 4598.18 71
ACMMPR92.69 5792.67 5492.75 9898.66 2880.57 16097.58 8796.69 7385.20 14391.57 8697.92 6077.01 11799.67 5390.95 9898.41 4298.00 86
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 5679.73 18597.33 11096.20 12985.63 13190.53 10397.66 7478.14 9999.70 4892.12 8898.30 4997.85 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS92.75 5192.60 5693.23 7998.24 5181.82 12997.63 8396.50 9885.00 14991.05 9697.74 7178.38 9499.80 2590.48 10798.34 4798.07 79
CP-MVS92.54 6292.60 5692.34 11598.50 4079.90 17898.40 3996.40 11084.75 15390.48 10598.09 4777.40 11199.21 8891.15 9798.23 5197.92 92
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13288.08 30981.62 13797.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 211
PAPM92.87 5092.40 5994.30 3592.25 22987.85 1996.40 18296.38 11391.07 3888.72 13296.90 11182.11 5797.37 19190.05 11797.70 6597.67 111
MP-MVS-pluss92.58 6192.35 6093.29 7697.30 8682.53 11196.44 17896.04 14284.68 15789.12 12398.37 3177.48 11099.74 3893.31 7598.38 4497.59 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA92.45 6492.31 6192.86 9497.90 6180.85 15392.88 30096.33 11887.92 8490.20 10898.18 4076.71 12599.76 3192.57 8598.09 5297.96 91
SR-MVS92.16 6892.27 6291.83 14398.37 4578.41 21996.67 16595.76 15982.19 22091.97 8098.07 5176.44 12898.64 12393.71 6897.27 7998.45 56
alignmvs92.97 4792.26 6395.12 1995.54 12387.77 2098.67 3096.38 11388.04 8193.01 6997.45 8779.20 8398.60 12593.25 7688.76 18098.99 31
jason92.73 5392.23 6494.21 4190.50 27487.30 2698.65 3195.09 19490.61 4492.76 7297.13 10375.28 15797.30 19493.32 7496.75 9298.02 81
jason: jason.
GST-MVS92.43 6592.22 6593.04 8798.17 5481.64 13697.40 10696.38 11384.71 15690.90 9997.40 9277.55 10999.76 3189.75 12097.74 6497.72 107
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7297.20 11696.20 12987.73 8988.40 13698.12 4578.71 9199.76 3187.99 14096.28 9898.74 37
EC-MVSNet91.73 7892.11 6790.58 18093.54 18677.77 24498.07 5594.40 23687.44 9692.99 7097.11 10574.59 16996.87 21993.75 6797.08 8297.11 148
test_fmvsmvis_n_192092.12 6992.10 6892.17 12790.87 26681.04 14698.34 4193.90 26392.71 2087.24 14997.90 6374.83 16399.72 4396.96 3196.20 9995.76 190
EIA-MVS91.73 7892.05 6990.78 17694.52 15576.40 26998.06 5695.34 18689.19 6288.90 12797.28 9877.56 10897.73 16690.77 10396.86 8998.20 70
testing1192.48 6392.04 7093.78 5395.94 11286.00 3797.56 8997.08 3387.52 9489.32 12095.40 15084.60 3598.02 15191.93 9289.04 17697.32 136
CHOSEN 280x42091.71 8191.85 7191.29 15894.94 14282.69 10887.89 34496.17 13285.94 12687.27 14894.31 18390.27 995.65 27594.04 6595.86 10895.53 196
mPP-MVS91.88 7691.82 7292.07 13198.38 4478.63 21397.29 11296.09 13785.12 14588.45 13597.66 7475.53 14699.68 5189.83 11898.02 5697.88 93
PGM-MVS91.93 7391.80 7392.32 11998.27 5079.74 18495.28 23497.27 2183.83 18490.89 10097.78 7076.12 13599.56 6688.82 13097.93 6197.66 112
EI-MVSNet-Vis-set91.84 7791.77 7492.04 13497.60 7181.17 14396.61 16696.87 4988.20 7889.19 12197.55 8678.69 9299.14 9790.29 11490.94 16495.80 188
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11197.22 10079.29 8099.06 10489.57 12288.73 18198.73 41
CSCG92.02 7191.65 7693.12 8398.53 3680.59 15997.47 9797.18 2677.06 30584.64 17597.98 5783.98 4499.52 6990.72 10497.33 7799.23 21
MVS_111021_LR91.60 8491.64 7791.47 15495.74 11978.79 21096.15 19796.77 6188.49 7288.64 13397.07 10772.33 19499.19 9393.13 7996.48 9796.43 173
HPM-MVScopyleft91.62 8391.53 7891.89 13997.88 6379.22 19796.99 13795.73 16282.07 22289.50 11997.19 10175.59 14498.93 11490.91 10097.94 5997.54 120
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post91.29 9191.45 7990.80 17497.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6675.76 14198.61 12491.99 9096.79 9097.75 105
testing9991.91 7491.35 8093.60 6495.98 11085.70 4497.31 11196.92 4686.82 11288.91 12695.25 15384.26 4297.89 16188.80 13187.94 19197.21 144
APD-MVS_3200maxsize91.23 9391.35 8090.89 17297.89 6276.35 27096.30 18895.52 17279.82 26391.03 9797.88 6574.70 16598.54 12892.11 8996.89 8697.77 104
testing9191.90 7591.31 8293.66 6095.99 10985.68 4697.39 10796.89 4786.75 11688.85 12895.23 15683.93 4597.90 16088.91 12887.89 19297.41 131
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
EI-MVSNet-UG-set91.35 9091.22 8391.73 14597.39 8280.68 15796.47 17596.83 5287.92 8488.30 13997.36 9377.84 10499.13 9989.43 12589.45 17195.37 200
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6497.96 1086.38 11893.65 6095.74 13870.16 21798.95 11193.39 7188.87 17998.43 57
RE-MVS-def91.18 8697.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6673.36 18591.99 9096.79 9097.75 105
iter_conf05_1191.95 7291.17 8794.29 3696.33 9785.50 5299.61 191.84 32094.36 1097.89 698.51 2446.72 34898.24 14596.54 3698.75 2899.13 25
DeepC-MVS86.58 391.53 8591.06 8892.94 9194.52 15581.89 12595.95 20595.98 14690.76 4183.76 18696.76 11973.24 18699.71 4591.67 9496.96 8497.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 8090.85 8994.34 3499.50 185.00 6998.51 3695.96 14880.57 24488.08 14197.63 8076.84 12099.89 785.67 15894.88 11798.13 76
PAPM_NR91.46 8690.82 9093.37 7598.50 4081.81 13095.03 25096.13 13484.65 15886.10 15997.65 7879.24 8299.75 3683.20 18796.88 8798.56 49
PVSNet_Blended_VisFu91.24 9290.77 9192.66 10295.09 13682.40 11597.77 7395.87 15588.26 7786.39 15593.94 19476.77 12399.27 8488.80 13194.00 13096.31 179
diffmvspermissive91.17 9490.74 9292.44 11293.11 20382.50 11396.25 19193.62 28187.79 8790.40 10695.93 13473.44 18497.42 18693.62 7092.55 14997.41 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n91.08 9790.68 9392.29 12082.43 36480.12 17497.94 6393.93 25992.07 2691.97 8097.60 8167.56 22599.53 6897.09 2995.56 11397.21 144
test_vis1_n_192089.95 12090.59 9488.03 23992.36 22168.98 34299.12 1294.34 23993.86 1393.64 6197.01 10951.54 32899.59 6096.76 3496.71 9495.53 196
MVSFormer91.36 8990.57 9593.73 5793.00 20488.08 1794.80 25694.48 22980.74 24094.90 4497.13 10378.84 8895.10 30383.77 17697.46 7198.02 81
test_yl91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
DCV-MVSNet91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
testing22291.09 9690.49 9892.87 9395.82 11685.04 6696.51 17397.28 2086.05 12489.13 12295.34 15280.16 7496.62 23185.82 15688.31 18796.96 153
casdiffmvs_mvgpermissive91.13 9590.45 9993.17 8292.99 20783.58 9497.46 9994.56 22687.69 9087.19 15094.98 17174.50 17097.60 17191.88 9392.79 14698.34 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250690.96 10190.39 10092.65 10393.54 18682.46 11496.37 18397.35 1886.78 11487.55 14495.25 15377.83 10597.50 18284.07 17094.80 11897.98 88
casdiffmvspermissive90.95 10290.39 10092.63 10592.82 21182.53 11196.83 15294.47 23187.69 9088.47 13495.56 14774.04 17697.54 17890.90 10192.74 14797.83 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS84.06 691.63 8290.37 10295.39 1796.12 10588.25 1590.22 32797.58 1688.33 7690.50 10491.96 22579.26 8199.06 10490.29 11489.07 17598.88 33
ETVMVS90.99 9990.26 10393.19 8195.81 11785.64 4896.97 14297.18 2685.43 13588.77 13194.86 17382.00 5896.37 23882.70 19288.60 18297.57 119
thisisatest051590.95 10290.26 10393.01 8894.03 17784.27 8397.91 6496.67 7583.18 19686.87 15395.51 14888.66 1697.85 16280.46 20489.01 17796.92 157
MAR-MVS90.63 10790.22 10591.86 14098.47 4278.20 22997.18 11996.61 8483.87 18388.18 14098.18 4068.71 22199.75 3683.66 18197.15 8197.63 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline290.39 11290.21 10690.93 16990.86 26780.99 14895.20 24097.41 1786.03 12580.07 23294.61 17890.58 697.47 18587.29 14789.86 16994.35 221
CHOSEN 1792x268891.07 9890.21 10693.64 6195.18 13483.53 9596.26 19096.13 13488.92 6484.90 16993.10 21072.86 18899.62 5888.86 12995.67 11197.79 103
HPM-MVS_fast90.38 11490.17 10891.03 16797.61 7077.35 25397.15 12595.48 17479.51 26988.79 12996.90 11171.64 20398.81 11987.01 15197.44 7396.94 154
baseline90.76 10590.10 10992.74 9992.90 21082.56 11094.60 25894.56 22687.69 9089.06 12595.67 14273.76 17997.51 18190.43 11192.23 15598.16 73
CANet_DTU90.98 10090.04 11093.83 5194.76 14886.23 3496.32 18793.12 30393.11 1893.71 5996.82 11763.08 25599.48 7384.29 16895.12 11695.77 189
test_cas_vis1_n_192089.90 12190.02 11189.54 20890.14 28274.63 29198.71 2894.43 23493.04 1992.40 7396.35 12753.41 32499.08 10395.59 4896.16 10094.90 209
ACMMPcopyleft90.39 11289.97 11291.64 14897.58 7378.21 22896.78 15796.72 6984.73 15584.72 17397.23 9971.22 20699.63 5788.37 13892.41 15297.08 150
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_BlendedMVS90.05 11889.96 11390.33 18797.47 7683.86 8798.02 5996.73 6787.98 8289.53 11789.61 26176.42 12999.57 6494.29 6179.59 25987.57 325
sss90.87 10489.96 11393.60 6494.15 16983.84 8997.14 12698.13 785.93 12789.68 11396.09 13271.67 20199.30 8387.69 14389.16 17497.66 112
PMMVS89.46 12889.92 11588.06 23794.64 14969.57 33996.22 19294.95 19987.27 10191.37 9096.54 12565.88 23797.39 18988.54 13393.89 13197.23 141
Effi-MVS+90.70 10689.90 11693.09 8593.61 18383.48 9695.20 24092.79 30883.22 19591.82 8395.70 14071.82 20097.48 18491.25 9693.67 13598.32 62
CPTT-MVS89.72 12489.87 11789.29 21198.33 4773.30 30297.70 7995.35 18575.68 31387.40 14597.44 9070.43 21498.25 14489.56 12396.90 8596.33 178
iter_conf0590.14 11789.79 11891.17 16395.85 11586.93 2897.68 8188.67 36089.93 5481.73 21492.80 21390.37 896.03 24990.44 11080.65 25290.56 255
EPP-MVSNet89.76 12389.72 11989.87 20193.78 17976.02 27797.22 11396.51 9679.35 27185.11 16595.01 16984.82 3397.10 20787.46 14688.21 18996.50 171
xiu_mvs_v1_base_debu90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base_debi90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
TESTMET0.1,189.83 12289.34 12391.31 15692.54 21980.19 17297.11 12996.57 9086.15 12086.85 15491.83 22979.32 7996.95 21381.30 19992.35 15396.77 163
MVS_Test90.29 11589.18 12493.62 6395.23 13184.93 7094.41 26194.66 21884.31 16790.37 10791.02 24075.13 15997.82 16383.11 18994.42 12498.12 77
ET-MVSNet_ETH3D90.01 11989.03 12592.95 9094.38 16286.77 3098.14 4796.31 12089.30 6163.33 35696.72 12290.09 1193.63 33590.70 10582.29 24398.46 55
thisisatest053089.65 12589.02 12691.53 15293.46 19280.78 15596.52 17196.67 7581.69 22883.79 18594.90 17288.85 1597.68 16777.80 22887.49 19796.14 182
API-MVS90.18 11688.97 12793.80 5298.66 2882.95 10697.50 9695.63 16775.16 31786.31 15697.69 7272.49 19299.90 581.26 20096.07 10398.56 49
CDS-MVSNet89.50 12788.96 12891.14 16591.94 24680.93 15197.09 13395.81 15784.26 17284.72 17394.20 18880.31 6995.64 27683.37 18688.96 17896.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
h-mvs3389.30 13188.95 12990.36 18695.07 13876.04 27496.96 14497.11 3190.39 4892.22 7795.10 16674.70 16598.86 11693.14 7765.89 35096.16 181
MVSTER89.25 13388.92 13090.24 18995.98 11084.66 7596.79 15695.36 18387.19 10580.33 22790.61 24790.02 1295.97 25385.38 16178.64 26890.09 267
UWE-MVS88.56 15188.91 13187.50 25394.17 16872.19 31395.82 21597.05 3584.96 15084.78 17193.51 20481.33 6094.75 31279.43 21689.17 17395.57 194
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21893.89 17874.43 29496.93 14794.19 24884.39 16583.22 19195.67 14278.24 9694.70 31478.88 22394.40 12597.61 117
MVS90.60 10888.64 13396.50 594.25 16590.53 893.33 28997.21 2377.59 29678.88 24197.31 9471.52 20499.69 4989.60 12198.03 5599.27 20
test-mter88.95 13688.60 13489.98 19692.26 22777.23 25597.11 12995.96 14885.32 13886.30 15791.38 23376.37 13196.78 22580.82 20191.92 15795.94 185
HyFIR lowres test89.36 12988.60 13491.63 15094.91 14480.76 15695.60 22495.53 17082.56 21384.03 17991.24 23778.03 10096.81 22387.07 15088.41 18697.32 136
test_fmvs187.79 17088.52 13685.62 29092.98 20864.31 35897.88 6692.42 31287.95 8392.24 7695.82 13747.94 34398.44 13795.31 5294.09 12694.09 226
UA-Net88.92 13888.48 13790.24 18994.06 17477.18 25793.04 29794.66 21887.39 9891.09 9593.89 19574.92 16298.18 14975.83 25591.43 16195.35 201
CostFormer89.08 13488.39 13891.15 16493.13 20179.15 20088.61 33896.11 13683.14 19789.58 11686.93 29883.83 4796.87 21988.22 13985.92 21197.42 130
mvsany_test187.58 17488.22 13985.67 28889.78 28667.18 34995.25 23787.93 36283.96 17988.79 12997.06 10872.52 19194.53 31992.21 8786.45 20495.30 203
hse-mvs288.22 16288.21 14088.25 23393.54 18673.41 29995.41 23195.89 15290.39 4892.22 7794.22 18674.70 16596.66 23093.14 7764.37 35594.69 219
tttt051788.57 15088.19 14189.71 20793.00 20475.99 27895.67 21996.67 7580.78 23981.82 21194.40 18288.97 1497.58 17376.05 25386.31 20595.57 194
IS-MVSNet88.67 14688.16 14290.20 19193.61 18376.86 26196.77 15993.07 30484.02 17683.62 18795.60 14574.69 16896.24 24478.43 22793.66 13697.49 127
OMC-MVS88.80 14388.16 14290.72 17795.30 12977.92 23894.81 25594.51 22886.80 11384.97 16896.85 11467.53 22698.60 12585.08 16287.62 19495.63 192
test-LLR88.48 15287.98 14489.98 19692.26 22777.23 25597.11 12995.96 14883.76 18786.30 15791.38 23372.30 19596.78 22580.82 20191.92 15795.94 185
EPNet_dtu87.65 17387.89 14586.93 26794.57 15171.37 32796.72 16096.50 9888.56 7187.12 15195.02 16875.91 13994.01 32866.62 31590.00 16795.42 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+82.88 889.63 12687.85 14694.99 2194.49 16086.76 3197.84 6895.74 16186.10 12275.47 28596.02 13365.00 24599.51 7182.91 19197.07 8398.72 42
Vis-MVSNetpermissive88.67 14687.82 14791.24 16092.68 21378.82 20796.95 14593.85 26787.55 9387.07 15295.13 16463.43 25397.21 19977.58 23596.15 10197.70 110
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS88.48 15287.79 14890.56 18191.09 26179.18 19896.45 17795.88 15383.64 19083.12 19293.33 20575.94 13895.74 27182.40 19388.27 18896.75 165
PVSNet82.34 989.02 13587.79 14892.71 10195.49 12481.50 13997.70 7997.29 1987.76 8885.47 16395.12 16556.90 30498.90 11580.33 20594.02 12897.71 109
thres20088.92 13887.65 15092.73 10096.30 9985.62 4997.85 6798.86 184.38 16684.82 17093.99 19375.12 16098.01 15270.86 29586.67 20194.56 220
LFMVS89.27 13287.64 15194.16 4497.16 8885.52 5197.18 11994.66 21879.17 27789.63 11596.57 12455.35 31598.22 14689.52 12489.54 17098.74 37
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18285.70 4497.73 7796.75 6586.73 11776.21 27395.93 13462.17 25999.68 5181.67 19897.81 6297.88 93
mvs_anonymous88.68 14587.62 15391.86 14094.80 14781.69 13593.53 28594.92 20182.03 22378.87 24290.43 25075.77 14095.34 28985.04 16393.16 14398.55 51
AdaColmapbinary88.81 14287.61 15492.39 11499.33 479.95 17696.70 16495.58 16877.51 29783.05 19496.69 12361.90 26599.72 4384.29 16893.47 13897.50 126
114514_t88.79 14487.57 15592.45 11098.21 5381.74 13296.99 13795.45 17775.16 31782.48 19795.69 14168.59 22298.50 13080.33 20595.18 11597.10 149
HQP-MVS87.91 16987.55 15688.98 21792.08 23878.48 21597.63 8394.80 20990.52 4582.30 20194.56 17965.40 24197.32 19287.67 14483.01 23291.13 249
baseline188.85 14187.49 15792.93 9295.21 13386.85 2995.47 22894.61 22387.29 10083.11 19394.99 17080.70 6696.89 21782.28 19473.72 29295.05 207
CLD-MVS87.97 16787.48 15889.44 20992.16 23480.54 16398.14 4794.92 20191.41 3379.43 23795.40 15062.34 25897.27 19790.60 10682.90 23590.50 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o88.24 16187.47 15990.54 18295.03 14178.54 21497.41 10593.82 26884.08 17478.23 24794.51 18169.34 22097.21 19980.21 20994.58 12295.87 187
1112_ss88.60 14987.47 15992.00 13693.21 19680.97 14996.47 17592.46 31183.64 19080.86 22097.30 9680.24 7197.62 17077.60 23485.49 21697.40 133
tpmrst88.36 15687.38 16191.31 15694.36 16379.92 17787.32 34895.26 19085.32 13888.34 13786.13 31480.60 6796.70 22783.78 17585.34 21997.30 139
PLCcopyleft83.97 788.00 16687.38 16189.83 20398.02 5976.46 26797.16 12394.43 23479.26 27681.98 20896.28 12869.36 21999.27 8477.71 23292.25 15493.77 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ECVR-MVScopyleft88.35 15787.25 16391.65 14793.54 18679.40 19296.56 17090.78 34086.78 11485.57 16295.25 15357.25 30297.56 17484.73 16694.80 11897.98 88
131488.94 13787.20 16494.17 4293.21 19685.73 4393.33 28996.64 8182.89 20475.98 27696.36 12666.83 23399.39 7783.52 18596.02 10697.39 134
tfpn200view988.48 15287.15 16592.47 10996.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20894.17 222
thres40088.42 15587.15 16592.23 12396.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20893.45 238
IB-MVS85.34 488.67 14687.14 16793.26 7793.12 20284.32 8098.76 2797.27 2187.19 10579.36 23890.45 24983.92 4698.53 12984.41 16769.79 31896.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HQP_MVS87.50 17587.09 16888.74 22291.86 24777.96 23597.18 11994.69 21489.89 5581.33 21594.15 18964.77 24797.30 19487.08 14882.82 23690.96 251
test111188.11 16387.04 16991.35 15593.15 19978.79 21096.57 16890.78 34086.88 11185.04 16695.20 15957.23 30397.39 18983.88 17394.59 12197.87 95
VDD-MVS88.28 16087.02 17092.06 13295.09 13680.18 17397.55 9194.45 23383.09 19889.10 12495.92 13647.97 34298.49 13193.08 8086.91 20097.52 125
thres100view90088.30 15986.95 17192.33 11796.10 10684.90 7197.14 12698.85 282.69 21083.41 18893.66 20075.43 15097.93 15469.04 30386.24 20894.17 222
Fast-Effi-MVS+87.93 16886.94 17290.92 17094.04 17579.16 19998.26 4393.72 27781.29 23183.94 18392.90 21169.83 21896.68 22876.70 24591.74 15996.93 155
Test_1112_low_res88.03 16586.73 17391.94 13893.15 19980.88 15296.44 17892.41 31383.59 19280.74 22291.16 23880.18 7297.59 17277.48 23785.40 21797.36 135
test_fmvs1_n86.34 19186.72 17485.17 29787.54 31763.64 36396.91 14892.37 31487.49 9591.33 9195.58 14640.81 37098.46 13495.00 5493.49 13793.41 240
thres600view788.06 16486.70 17592.15 12996.10 10685.17 6397.14 12698.85 282.70 20983.41 18893.66 20075.43 15097.82 16367.13 31285.88 21293.45 238
UGNet87.73 17186.55 17691.27 15995.16 13579.11 20196.35 18596.23 12688.14 7987.83 14390.48 24850.65 33199.09 10280.13 21094.03 12795.60 193
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
bld_raw_dy_0_6488.31 15886.38 17794.07 4596.33 9784.79 7497.19 11784.75 37694.48 882.36 20098.47 2746.18 35198.30 14396.54 3681.13 24799.13 25
tpm287.35 17786.26 17890.62 17992.93 20978.67 21288.06 34395.99 14579.33 27287.40 14586.43 30980.28 7096.40 23680.23 20885.73 21596.79 161
FA-MVS(test-final)87.71 17286.23 17992.17 12794.19 16780.55 16187.16 35096.07 14082.12 22185.98 16088.35 27672.04 19998.49 13180.26 20789.87 16897.48 128
FIs86.73 18786.10 18088.61 22490.05 28380.21 17196.14 19896.95 4285.56 13478.37 24692.30 21876.73 12495.28 29379.51 21479.27 26290.35 259
BH-untuned86.95 18185.94 18189.99 19594.52 15577.46 25096.78 15793.37 29381.80 22576.62 26493.81 19866.64 23497.02 20976.06 25293.88 13295.48 198
EPMVS87.47 17685.90 18292.18 12695.41 12682.26 11887.00 35196.28 12185.88 12884.23 17785.57 32075.07 16196.26 24271.14 29392.50 15098.03 80
test_vis1_n85.60 20485.70 18385.33 29484.79 34864.98 35696.83 15291.61 32687.36 9991.00 9894.84 17436.14 37697.18 20195.66 4693.03 14493.82 231
SDMVSNet87.02 17985.61 18491.24 16094.14 17083.30 10093.88 27795.98 14684.30 16979.63 23592.01 22158.23 28897.68 16790.28 11682.02 24492.75 241
AUN-MVS86.25 19485.57 18588.26 23293.57 18573.38 30095.45 22995.88 15383.94 18085.47 16394.21 18773.70 18296.67 22983.54 18364.41 35494.73 218
CVMVSNet84.83 21685.57 18582.63 32991.55 25160.38 37495.13 24495.03 19780.60 24382.10 20794.71 17666.40 23690.19 36874.30 27090.32 16697.31 138
nrg03086.79 18585.43 18790.87 17388.76 29985.34 5497.06 13594.33 24084.31 16780.45 22591.98 22472.36 19396.36 23988.48 13671.13 30590.93 253
FC-MVSNet-test85.96 19785.39 18887.66 24689.38 29678.02 23295.65 22196.87 4985.12 14577.34 25391.94 22776.28 13394.74 31377.09 24078.82 26690.21 262
CNLPA86.96 18085.37 18991.72 14697.59 7279.34 19597.21 11491.05 33574.22 32378.90 24096.75 12167.21 23098.95 11174.68 26590.77 16596.88 159
BH-RMVSNet86.84 18385.28 19091.49 15395.35 12880.26 17096.95 14592.21 31582.86 20681.77 21395.46 14959.34 28097.64 16969.79 30193.81 13396.57 170
GeoE86.36 19085.20 19189.83 20393.17 19876.13 27297.53 9292.11 31679.58 26880.99 21894.01 19266.60 23596.17 24773.48 27789.30 17297.20 146
miper_enhance_ethall85.95 19885.20 19188.19 23694.85 14679.76 18196.00 20294.06 25682.98 20377.74 25188.76 26979.42 7895.46 28580.58 20372.42 29989.36 281
EI-MVSNet85.80 20085.20 19187.59 24991.55 25177.41 25195.13 24495.36 18380.43 25080.33 22794.71 17673.72 18095.97 25376.96 24378.64 26889.39 276
XVG-OURS-SEG-HR85.74 20285.16 19487.49 25590.22 27871.45 32691.29 31994.09 25481.37 23083.90 18495.22 15760.30 27397.53 18085.58 15984.42 22393.50 236
PatchmatchNetpermissive86.83 18485.12 19591.95 13794.12 17282.27 11786.55 35595.64 16684.59 16082.98 19584.99 33277.26 11295.96 25668.61 30691.34 16297.64 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS85.84 19985.10 19688.06 23788.34 30677.83 24295.72 21794.20 24787.89 8680.45 22594.05 19158.57 28597.26 19883.88 17382.76 23889.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS84.09 586.77 18685.00 19792.08 13092.06 24183.07 10492.14 30894.47 23179.63 26776.90 26094.78 17571.15 20799.20 9272.87 27991.05 16393.98 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs87.08 17884.94 19893.48 7293.34 19583.67 9288.82 33595.70 16381.18 23284.55 17690.14 25662.72 25698.94 11385.49 16082.54 24097.85 97
TR-MVS86.30 19284.93 19990.42 18494.63 15077.58 24896.57 16893.82 26880.30 25382.42 19995.16 16258.74 28497.55 17674.88 26387.82 19396.13 183
Effi-MVS+-dtu84.61 22084.90 20083.72 31991.96 24463.14 36694.95 25193.34 29485.57 13279.79 23387.12 29561.99 26395.61 27983.55 18285.83 21392.41 245
UniMVSNet_NR-MVSNet85.49 20684.59 20188.21 23589.44 29579.36 19396.71 16296.41 10885.22 14178.11 24890.98 24276.97 11995.14 30079.14 22068.30 33290.12 264
mvsmamba85.17 21184.54 20287.05 26587.94 31175.11 28896.22 19287.79 36486.91 10978.55 24391.77 23064.93 24695.91 25986.94 15279.80 25490.12 264
VDDNet86.44 18984.51 20392.22 12491.56 25081.83 12897.10 13294.64 22169.50 35487.84 14295.19 16048.01 34197.92 15989.82 11986.92 19996.89 158
QAPM86.88 18284.51 20393.98 4694.04 17585.89 4197.19 11796.05 14173.62 32875.12 28895.62 14462.02 26299.74 3870.88 29496.06 10496.30 180
cascas86.50 18884.48 20592.55 10892.64 21785.95 3897.04 13695.07 19675.32 31580.50 22391.02 24054.33 32297.98 15386.79 15387.62 19493.71 233
tpm85.55 20584.47 20688.80 22190.19 27975.39 28588.79 33694.69 21484.83 15283.96 18285.21 32678.22 9794.68 31676.32 25178.02 27696.34 176
XVG-OURS85.18 21084.38 20787.59 24990.42 27671.73 32391.06 32294.07 25582.00 22483.29 19095.08 16756.42 30997.55 17683.70 18083.42 22893.49 237
PS-MVSNAJss84.91 21584.30 20886.74 26885.89 33674.40 29594.95 25194.16 25083.93 18176.45 26690.11 25771.04 20995.77 26683.16 18879.02 26590.06 269
UniMVSNet (Re)85.31 20984.23 20988.55 22589.75 28780.55 16196.72 16096.89 4785.42 13678.40 24588.93 26775.38 15295.52 28378.58 22568.02 33589.57 275
cl2285.11 21284.17 21087.92 24095.06 14078.82 20795.51 22694.22 24679.74 26576.77 26187.92 28375.96 13795.68 27279.93 21272.42 29989.27 283
FE-MVS86.06 19684.15 21191.78 14494.33 16479.81 17984.58 36696.61 8476.69 30785.00 16787.38 28970.71 21398.37 13970.39 29891.70 16097.17 147
X-MVStestdata86.26 19384.14 21292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8820.73 40577.24 11499.59 6090.46 10898.07 5398.02 81
GA-MVS85.79 20184.04 21391.02 16889.47 29480.27 16996.90 14994.84 20785.57 13280.88 21989.08 26456.56 30896.47 23577.72 23185.35 21896.34 176
VPA-MVSNet85.32 20883.83 21489.77 20690.25 27782.63 10996.36 18497.07 3483.03 20181.21 21789.02 26661.58 26696.31 24185.02 16470.95 30790.36 258
MDTV_nov1_ep1383.69 21594.09 17381.01 14786.78 35396.09 13783.81 18584.75 17284.32 33774.44 17196.54 23263.88 32985.07 220
TAPA-MVS81.61 1285.02 21383.67 21689.06 21496.79 9273.27 30595.92 20794.79 21174.81 32080.47 22496.83 11571.07 20898.19 14849.82 37792.57 14895.71 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 21483.66 21789.02 21695.86 11474.55 29392.49 30493.60 28279.30 27479.29 23991.47 23158.53 28698.45 13570.22 29992.17 15694.07 227
SCA85.63 20383.64 21891.60 15192.30 22581.86 12792.88 30095.56 16984.85 15182.52 19685.12 33058.04 29195.39 28673.89 27387.58 19697.54 120
OpenMVScopyleft79.58 1486.09 19583.62 21993.50 7090.95 26386.71 3297.44 10095.83 15675.35 31472.64 30995.72 13957.42 30199.64 5571.41 28895.85 10994.13 225
miper_ehance_all_eth84.57 22183.60 22087.50 25392.64 21778.25 22495.40 23293.47 28679.28 27576.41 26787.64 28676.53 12695.24 29578.58 22572.42 29989.01 293
LCM-MVSNet-Re83.75 23583.54 22184.39 31293.54 18664.14 36092.51 30384.03 38083.90 18266.14 34586.59 30367.36 22892.68 34284.89 16592.87 14596.35 175
WB-MVSnew84.08 22983.51 22285.80 28391.34 25676.69 26595.62 22396.27 12281.77 22681.81 21292.81 21258.23 28894.70 31466.66 31487.06 19885.99 349
LPG-MVS_test84.20 22783.49 22386.33 27490.88 26473.06 30695.28 23494.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
F-COLMAP84.50 22383.44 22487.67 24595.22 13272.22 31195.95 20593.78 27375.74 31276.30 27095.18 16159.50 27898.45 13572.67 28186.59 20392.35 246
DU-MVS84.57 22183.33 22588.28 23188.76 29979.36 19396.43 18095.41 18285.42 13678.11 24890.82 24367.61 22395.14 30079.14 22068.30 33290.33 260
RRT_MVS83.88 23283.27 22685.71 28687.53 31872.12 31595.35 23394.33 24083.81 18575.86 27991.28 23660.55 27195.09 30583.93 17276.76 27989.90 272
ACMP81.66 1184.00 23083.22 22786.33 27491.53 25372.95 30995.91 20993.79 27283.70 18973.79 29592.22 21954.31 32396.89 21783.98 17179.74 25789.16 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sd_testset84.62 21983.11 22889.17 21294.14 17077.78 24391.54 31894.38 23784.30 16979.63 23592.01 22152.28 32696.98 21177.67 23382.02 24492.75 241
WR-MVS84.32 22582.96 22988.41 22789.38 29680.32 16696.59 16796.25 12483.97 17876.63 26390.36 25167.53 22694.86 31075.82 25670.09 31690.06 269
VPNet84.69 21882.92 23090.01 19489.01 29883.45 9796.71 16295.46 17685.71 13079.65 23492.18 22056.66 30796.01 25283.05 19067.84 33890.56 255
dmvs_re84.10 22882.90 23187.70 24491.41 25573.28 30390.59 32593.19 29885.02 14777.96 25093.68 19957.92 29696.18 24675.50 25880.87 24993.63 234
gg-mvs-nofinetune85.48 20782.90 23193.24 7894.51 15885.82 4279.22 37896.97 4061.19 37687.33 14753.01 39490.58 696.07 24886.07 15597.23 8097.81 102
ACMM80.70 1383.72 23682.85 23386.31 27791.19 25872.12 31595.88 21094.29 24280.44 24877.02 25891.96 22555.24 31697.14 20679.30 21880.38 25389.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS83.93 23182.80 23487.31 25991.46 25477.39 25295.66 22093.43 28880.44 24875.51 28487.26 29273.72 18095.16 29976.99 24170.72 30989.39 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet384.71 21782.71 23590.70 17894.55 15387.71 2195.92 20794.67 21781.73 22775.82 28088.08 28166.99 23194.47 32071.23 29075.38 28589.91 271
c3_l83.80 23482.65 23687.25 26192.10 23777.74 24695.25 23793.04 30578.58 28676.01 27587.21 29475.25 15895.11 30277.54 23668.89 32688.91 299
Fast-Effi-MVS+-dtu83.33 24182.60 23785.50 29289.55 29269.38 34096.09 20191.38 32782.30 21775.96 27791.41 23256.71 30595.58 28175.13 26284.90 22191.54 247
test0.0.03 182.79 25282.48 23883.74 31886.81 32272.22 31196.52 17195.03 19783.76 18773.00 30593.20 20672.30 19588.88 37164.15 32877.52 27790.12 264
test_djsdf83.00 25082.45 23984.64 30584.07 35669.78 33694.80 25694.48 22980.74 24075.41 28687.70 28561.32 26995.10 30383.77 17679.76 25589.04 291
dp84.30 22682.31 24090.28 18894.24 16677.97 23486.57 35495.53 17079.94 26280.75 22185.16 32871.49 20596.39 23763.73 33083.36 22996.48 172
myMVS_eth3d81.93 26582.18 24181.18 33792.13 23567.18 34993.97 27494.23 24482.43 21473.39 29893.57 20276.98 11887.86 37550.53 37582.34 24188.51 303
cl____83.27 24282.12 24286.74 26892.20 23075.95 27995.11 24693.27 29678.44 28974.82 29087.02 29774.19 17395.19 29774.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24282.12 24286.74 26892.19 23175.92 28195.11 24693.26 29778.44 28974.81 29187.08 29674.19 17395.19 29774.66 26769.30 32389.11 287
eth_miper_zixun_eth83.12 24682.01 24486.47 27391.85 24974.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 18995.32 29176.78 24467.13 34489.27 283
XXY-MVS83.84 23382.00 24589.35 21087.13 32081.38 14095.72 21794.26 24380.15 25775.92 27890.63 24661.96 26496.52 23378.98 22273.28 29790.14 263
Anonymous20240521184.41 22481.93 24691.85 14296.78 9378.41 21997.44 10091.34 33070.29 35084.06 17894.26 18541.09 36898.96 10979.46 21582.65 23998.17 72
v2v48283.46 23981.86 24788.25 23386.19 33079.65 18796.34 18694.02 25781.56 22977.32 25488.23 27865.62 23896.03 24977.77 22969.72 32089.09 288
MS-PatchMatch83.05 24781.82 24886.72 27289.64 29079.10 20294.88 25394.59 22579.70 26670.67 32289.65 26050.43 33396.82 22270.82 29795.99 10784.25 362
TranMVSNet+NR-MVSNet83.24 24481.71 24987.83 24187.71 31478.81 20996.13 20094.82 20884.52 16176.18 27490.78 24564.07 25094.60 31774.60 26866.59 34990.09 267
MVP-Stereo82.65 25581.67 25085.59 29186.10 33378.29 22293.33 28992.82 30777.75 29469.17 33287.98 28259.28 28195.76 26771.77 28596.88 8782.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS82.67 25481.55 25186.04 28187.77 31376.47 26695.21 23996.58 8982.66 21170.26 32585.46 32360.39 27295.80 26576.40 24979.18 26385.83 352
V4283.04 24881.53 25287.57 25186.27 32979.09 20395.87 21194.11 25380.35 25277.22 25686.79 30165.32 24396.02 25177.74 23070.14 31287.61 324
NR-MVSNet83.35 24081.52 25388.84 21988.76 29981.31 14294.45 26095.16 19284.65 15867.81 33490.82 24370.36 21594.87 30974.75 26466.89 34790.33 260
tpm cat183.63 23781.38 25490.39 18593.53 19178.19 23085.56 36295.09 19470.78 34878.51 24483.28 34574.80 16497.03 20866.77 31384.05 22495.95 184
CR-MVSNet83.53 23881.36 25590.06 19390.16 28079.75 18279.02 38091.12 33284.24 17382.27 20580.35 35975.45 14893.67 33463.37 33386.25 20696.75 165
v114482.90 25181.27 25687.78 24386.29 32879.07 20496.14 19893.93 25980.05 25977.38 25286.80 30065.50 23995.93 25875.21 26170.13 31388.33 311
testing380.74 28181.17 25779.44 34691.15 26063.48 36497.16 12395.76 15980.83 23771.36 31693.15 20978.22 9787.30 38043.19 38779.67 25887.55 328
jajsoiax82.12 26381.15 25885.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33795.37 28882.24 19579.76 25589.02 292
v14882.41 26080.89 25986.99 26686.18 33176.81 26296.27 18993.82 26880.49 24775.28 28786.11 31567.32 22995.75 26875.48 25967.03 34688.42 309
pmmvs482.54 25680.79 26087.79 24286.11 33280.49 16593.55 28493.18 30077.29 30073.35 30189.40 26365.26 24495.05 30775.32 26073.61 29387.83 319
tpmvs83.04 24880.77 26189.84 20295.43 12577.96 23585.59 36195.32 18775.31 31676.27 27183.70 34273.89 17797.41 18759.53 34481.93 24694.14 224
v14419282.43 25780.73 26287.54 25285.81 33778.22 22595.98 20393.78 27379.09 27977.11 25786.49 30564.66 24995.91 25974.20 27169.42 32188.49 305
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34795.31 29281.99 19679.55 26188.92 298
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25871.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18393.42 33873.71 27667.05 34588.61 301
Anonymous2024052983.15 24580.60 26590.80 17495.74 11978.27 22396.81 15594.92 20160.10 38181.89 21092.54 21645.82 35298.82 11879.25 21978.32 27495.31 202
v119282.31 26180.55 26687.60 24885.94 33478.47 21895.85 21393.80 27179.33 27276.97 25986.51 30463.33 25495.87 26173.11 27870.13 31388.46 307
FMVSNet282.79 25280.44 26789.83 20392.66 21485.43 5395.42 23094.35 23879.06 28074.46 29287.28 29056.38 31094.31 32369.72 30274.68 28989.76 273
GBi-Net82.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
test182.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
v192192082.02 26480.23 27087.41 25685.62 33877.92 23895.79 21693.69 27878.86 28376.67 26286.44 30762.50 25795.83 26372.69 28069.77 31988.47 306
WR-MVS_H81.02 27780.09 27183.79 31688.08 30971.26 32894.46 25996.54 9380.08 25872.81 30886.82 29970.36 21592.65 34364.18 32767.50 34187.46 330
CP-MVSNet81.01 27880.08 27283.79 31687.91 31270.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25192.32 34668.58 30768.36 33188.55 302
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28796.48 17488.80 35676.24 31177.28 25586.40 31067.61 22394.39 32275.73 25766.73 34884.54 359
v881.88 26680.06 27487.32 25886.63 32379.04 20594.41 26193.65 28078.77 28473.19 30485.57 32066.87 23295.81 26473.84 27567.61 34087.11 333
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29794.90 30879.32 21778.63 27086.69 338
LS3D82.22 26279.94 27689.06 21497.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15859.35 27999.21 8854.54 36492.48 15193.90 230
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 24089.55 34881.09 23380.12 23189.80 25834.31 38193.51 33787.82 14178.36 27386.69 338
v124081.70 26879.83 27887.30 26085.50 33977.70 24795.48 22793.44 28778.46 28876.53 26586.44 30760.85 27095.84 26271.59 28770.17 31188.35 310
pmmvs581.34 27379.54 27986.73 27185.02 34676.91 25996.22 19291.65 32477.65 29573.55 29688.61 27155.70 31394.43 32174.12 27273.35 29688.86 300
v1081.43 27279.53 28087.11 26386.38 32578.87 20694.31 26593.43 28877.88 29273.24 30385.26 32465.44 24095.75 26872.14 28467.71 33986.72 337
PS-CasMVS80.27 28579.18 28183.52 32287.56 31669.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28292.23 34867.49 30968.15 33488.45 308
IterMVS80.67 28279.16 28285.20 29689.79 28576.08 27392.97 29991.86 31980.28 25471.20 31885.14 32957.93 29591.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29174.66 29092.98 29891.81 32280.05 25971.06 32085.18 32758.04 29191.40 35772.48 28370.70 31088.12 315
tt080581.20 27679.06 28487.61 24786.50 32472.97 30893.66 28095.48 17474.11 32476.23 27291.99 22341.36 36797.40 18877.44 23874.78 28892.45 244
PVSNet_077.72 1581.70 26878.95 28589.94 19990.77 27076.72 26495.96 20496.95 4285.01 14870.24 32688.53 27452.32 32598.20 14786.68 15444.08 39194.89 210
UniMVSNet_ETH3D80.86 28078.75 28687.22 26286.31 32772.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27376.37 25078.55 27193.98 228
ADS-MVSNet81.26 27478.36 28789.96 19893.78 17979.78 18079.48 37693.60 28273.09 33480.14 22979.99 36162.15 26095.24 29559.49 34583.52 22694.85 212
DP-MVS81.47 27178.28 28891.04 16698.14 5578.48 21595.09 24986.97 36661.14 37771.12 31992.78 21559.59 27699.38 7853.11 36886.61 20295.27 204
PEN-MVS79.47 29378.26 28983.08 32586.36 32668.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27492.46 34464.50 32665.40 35188.19 313
Syy-MVS77.97 30478.05 29077.74 35392.13 23556.85 38093.97 27494.23 24482.43 21473.39 29893.57 20257.95 29487.86 37532.40 39382.34 24188.51 303
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28295.11 24692.69 31077.13 30270.36 32487.43 28858.44 28795.27 29471.36 28964.25 35687.36 331
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24276.05 25378.05 27588.02 316
MSDG80.62 28377.77 29389.14 21393.43 19377.24 25491.89 31190.18 34469.86 35368.02 33391.94 22752.21 32798.84 11759.32 34783.12 23091.35 248
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17972.13 31479.48 37686.11 37273.09 33480.14 22979.99 36162.15 26090.14 36959.49 34583.52 22694.85 212
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27795.62 27867.60 30867.50 34187.32 332
JIA-IIPM79.00 29777.20 29684.40 31189.74 28964.06 36175.30 38895.44 17862.15 37081.90 20959.08 39278.92 8695.59 28066.51 31885.78 21493.54 235
Anonymous2023121179.72 28977.19 29787.33 25795.59 12277.16 25895.18 24394.18 24959.31 38472.57 31086.20 31347.89 34495.66 27374.53 26969.24 32489.18 285
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28392.23 34861.38 34063.28 36087.56 326
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29387.43 37964.91 32570.00 31788.33 311
PatchT79.75 28876.85 30088.42 22689.55 29275.49 28477.37 38494.61 22363.07 36782.46 19873.32 38075.52 14793.41 33951.36 37184.43 22296.36 174
RPSCF77.73 30676.63 30181.06 33888.66 30355.76 38587.77 34587.88 36364.82 36674.14 29492.79 21449.22 33896.81 22367.47 31076.88 27890.62 254
FMVSNet179.50 29276.54 30288.39 22888.47 30481.95 12094.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 278
USDC78.65 29876.25 30385.85 28287.58 31574.60 29289.58 33090.58 34384.05 17563.13 35788.23 27840.69 37196.86 22166.57 31775.81 28386.09 347
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33577.01 30666.62 34387.92 28347.73 34594.03 32771.63 28668.44 33087.62 323
MIMVSNet79.18 29675.99 30588.72 22387.37 31980.66 15879.96 37591.82 32177.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23194.76 214
RPMNet79.85 28775.92 30691.64 14890.16 28079.75 18279.02 38095.44 17858.43 38682.27 20572.55 38373.03 18798.41 13846.10 38486.25 20696.75 165
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27572.02 31786.41 35691.12 33272.57 33966.63 34287.27 29154.95 31996.98 21156.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal78.14 30175.42 30886.31 27788.33 30779.24 19694.41 26196.22 12773.51 32969.81 32885.52 32255.43 31495.75 26847.65 38267.86 33783.95 365
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26393.63 28191.67 32373.39 33265.72 34784.65 33558.20 29093.13 34157.82 35167.87 33686.57 340
ACMH75.40 1777.99 30274.96 31087.10 26490.67 27176.41 26893.19 29691.64 32572.47 34063.44 35587.61 28743.34 35897.16 20258.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26271.58 32593.26 29390.01 34571.80 34364.76 35088.55 27241.62 36596.48 23462.35 33671.00 30687.09 334
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
Patchmatch-test78.25 30074.72 31488.83 22091.20 25774.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9494.54 31848.84 38079.58 26097.86 96
Patchmtry77.36 31074.59 31585.67 28889.75 28775.75 28377.85 38391.12 33260.28 37971.23 31780.35 35975.45 14893.56 33657.94 35067.34 34387.68 322
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34696.33 24076.55 24681.02 24885.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33575.25 28695.28 23489.18 35373.88 32767.22 33586.46 30659.64 27594.10 32659.24 34852.57 38084.50 360
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35277.89 29164.04 35286.31 31148.23 33994.29 32463.54 33263.84 35887.93 318
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22593.98 27391.36 32971.74 34467.11 33784.87 33356.67 30693.37 34052.21 36964.59 35386.80 336
FMVSNet576.46 31674.16 32083.35 32490.05 28376.17 27189.58 33089.85 34671.39 34665.29 34980.42 35850.61 33287.70 37861.05 34269.24 32486.18 345
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26889.22 37057.59 35353.51 37685.48 354
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38478.48 28764.63 35173.40 37976.05 13691.70 35676.99 24157.84 36997.72 107
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34273.09 33467.12 33683.70 34250.33 33490.85 36353.63 36770.10 31586.44 341
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23935.51 37988.67 37256.79 35871.25 30487.56 326
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21761.54 26782.55 39042.22 38971.89 30389.29 282
AllTest75.92 31873.06 32684.47 30892.18 23267.29 34791.07 32184.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 22069.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21650.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33086.28 38254.54 36483.80 22592.46 243
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22268.18 40076.32 30860.09 37174.77 37429.01 38997.54 17887.74 14275.94 28177.22 384
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28256.97 35778.67 26782.00 376
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33961.05 37865.83 34684.15 33943.43 35794.83 31166.62 31560.63 36586.02 348
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35174.09 32561.50 36584.32 33748.09 34085.54 38550.63 37462.15 36383.24 366
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 35072.69 33860.34 37077.79 36746.43 35091.26 36066.42 31957.06 37082.51 371
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32867.63 35746.79 38681.21 35555.04 31890.43 36655.93 36059.70 36786.38 342
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33167.63 35746.73 38781.09 35655.11 31790.42 36755.91 36159.76 36686.31 343
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33765.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28445.08 38575.88 28282.82 368
test_040272.68 33469.54 34182.09 33388.67 30271.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33870.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19762.51 36281.79 378
TinyColmap72.41 33568.99 34482.68 32888.11 30869.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25751.38 37068.70 32782.49 373
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 34991.31 35948.75 38154.39 37486.11 346
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27269.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27653.74 36688.11 19088.00 317
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37756.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33691.83 35442.27 38863.94 35784.97 357
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 32978.11 39215.19 40234.89 39767.14 391
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33577.46 39314.28 40332.33 39865.91 392
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38337.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38231.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38128.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7463.57 2520.00 4100.00 4090.00 4080.00 406
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 960.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2090.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
FOURS198.51 3978.01 23398.13 5096.21 12883.04 20094.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
test_one_060198.91 1884.56 7896.70 7188.06 8096.57 2398.77 1088.04 20
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.09 883.22 10296.60 8782.88 20593.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
IU-MVS99.03 1585.34 5496.86 5192.05 2998.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6796.78 5588.72 6797.79 798.90 588.48 1799.82 18
save fliter98.24 5183.34 9998.61 3496.57 9091.32 34
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
test072699.05 985.18 5999.11 1596.78 5588.75 6597.65 1298.91 287.69 22
GSMVS97.54 120
test_part298.90 1985.14 6596.07 29
sam_mvs177.59 10797.54 120
sam_mvs75.35 155
ambc76.02 35968.11 39351.43 38864.97 39689.59 34760.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
MTGPAbinary96.33 118
test_post185.88 36030.24 40473.77 17895.07 30673.89 273
test_post33.80 40176.17 13495.97 253
patchmatchnet-post77.09 37177.78 10695.39 286
GG-mvs-BLEND93.49 7194.94 14286.26 3381.62 37497.00 3788.32 13894.30 18491.23 596.21 24588.49 13597.43 7498.00 86
MTMP97.53 9268.16 401
gm-plane-assit92.27 22679.64 18884.47 16495.15 16397.93 15485.81 157
test9_res96.00 4199.03 1398.31 64
TEST998.64 3183.71 9097.82 6996.65 7884.29 17195.16 3698.09 4784.39 3799.36 81
test_898.63 3383.64 9397.81 7196.63 8384.50 16295.10 4098.11 4684.33 3899.23 86
agg_prior294.30 6099.00 1598.57 48
agg_prior98.59 3583.13 10396.56 9294.19 5499.16 96
TestCases84.47 30892.18 23267.29 34784.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
test_prior482.34 11697.75 76
test_prior298.37 4086.08 12394.57 5098.02 5383.14 5095.05 5398.79 26
test_prior93.09 8598.68 2681.91 12496.40 11099.06 10498.29 66
旧先验296.97 14274.06 32696.10 2897.76 16588.38 137
新几何296.42 181
新几何193.12 8397.44 7881.60 13896.71 7074.54 32291.22 9497.57 8279.13 8499.51 7177.40 23998.46 3998.26 69
旧先验197.39 8279.58 18996.54 9398.08 5084.00 4397.42 7597.62 116
无先验96.87 15096.78 5577.39 29899.52 6979.95 21198.43 57
原ACMM296.84 151
原ACMM191.22 16297.77 6578.10 23196.61 8481.05 23491.28 9397.42 9177.92 10398.98 10879.85 21398.51 3596.59 169
test22296.15 10478.41 21995.87 21196.46 10271.97 34289.66 11497.45 8776.33 13298.24 5098.30 65
testdata299.48 7376.45 248
segment_acmp82.69 55
testdata90.13 19295.92 11374.17 29696.49 10173.49 33194.82 4897.99 5478.80 9097.93 15483.53 18497.52 7098.29 66
testdata195.57 22587.44 96
test1294.25 3898.34 4685.55 5096.35 11792.36 7480.84 6399.22 8798.31 4897.98 88
plane_prior791.86 24777.55 249
plane_prior691.98 24377.92 23864.77 247
plane_prior594.69 21497.30 19487.08 14882.82 23690.96 251
plane_prior494.15 189
plane_prior377.75 24590.17 5281.33 215
plane_prior297.18 11989.89 55
plane_prior191.95 245
plane_prior77.96 23597.52 9590.36 5082.96 234
n20.00 415
nn0.00 415
door-mid79.75 389
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
LGP-MVS_train86.33 27490.88 26473.06 30694.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
test1196.50 98
door80.13 388
HQP5-MVS78.48 215
HQP-NCC92.08 23897.63 8390.52 4582.30 201
ACMP_Plane92.08 23897.63 8390.52 4582.30 201
BP-MVS87.67 144
HQP4-MVS82.30 20197.32 19291.13 249
HQP3-MVS94.80 20983.01 232
HQP2-MVS65.40 241
NP-MVS92.04 24278.22 22594.56 179
MDTV_nov1_ep13_2view81.74 13286.80 35280.65 24285.65 16174.26 17276.52 24796.98 152
ACMMP++_ref78.45 272
ACMMP++79.05 264
Test By Simon71.65 202
ITE_SJBPF82.38 33087.00 32165.59 35589.55 34879.99 26169.37 33091.30 23541.60 36695.33 29062.86 33574.63 29086.24 344
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388