CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 13 | 99.80 8 | 97.99 45 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 18 | 99.90 7 | 99.96 10 |
|
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 87 | 99.54 36 | 90.14 129 | 99.41 55 | 97.70 74 | 95.46 17 | 98.60 22 | 99.19 28 | 95.71 4 | 99.49 98 | 98.15 35 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
NCCC | | | 98.12 5 | 98.11 3 | 98.13 22 | 99.76 6 | 94.46 46 | 99.81 6 | 97.88 48 | 96.54 6 | 98.84 18 | 99.46 10 | 92.55 27 | 99.98 9 | 98.25 34 | 99.93 1 | 99.94 18 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 16 | 99.63 18 | 95.24 23 | 99.77 9 | 97.72 69 | 94.17 29 | 99.30 6 | 99.54 3 | 93.32 19 | 99.98 9 | 99.70 3 | 99.81 23 | 99.99 1 |
|
DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 14 | 99.61 24 | 95.38 20 | 99.55 33 | 97.68 78 | 93.01 56 | 99.23 8 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 14 | 99.92 3 | 99.97 7 |
|
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 17 | 99.66 12 | 95.20 28 | 99.72 14 | 97.47 124 | 93.95 34 | 99.07 11 | 99.46 10 | 93.18 22 | 99.97 21 | 99.64 6 | 99.82 19 | 99.69 53 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 14 | 99.50 42 | 95.39 19 | 99.29 68 | 97.72 69 | 94.50 24 | 98.64 21 | 99.54 3 | 93.32 19 | 99.97 21 | 99.58 9 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
patch_mono-2 | | | 97.10 22 | 97.97 8 | 94.49 154 | 99.21 61 | 83.73 268 | 99.62 27 | 98.25 27 | 95.28 18 | 99.38 4 | 98.91 65 | 92.28 28 | 99.94 34 | 99.61 8 | 99.22 70 | 99.78 37 |
|
MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 17 | 97.98 46 | 97.18 2 | 95.96 82 | 99.33 19 | 92.62 26 | 100.00 1 | 98.99 18 | 99.93 1 | 99.98 6 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 34 | 97.84 10 | 92.68 204 | 98.71 85 | 78.11 323 | 99.70 17 | 97.71 73 | 98.18 1 | 97.36 53 | 99.76 1 | 90.37 45 | 99.94 34 | 99.27 12 | 99.54 52 | 99.99 1 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 11 | 98.14 21 | 99.53 40 | 94.76 40 | 99.19 72 | 97.75 64 | 95.66 13 | 98.21 31 | 99.29 20 | 91.10 33 | 99.99 5 | 97.68 42 | 99.87 9 | 99.68 54 |
|
APDe-MVS | | | 97.53 11 | 97.47 12 | 97.70 34 | 99.58 30 | 93.63 62 | 99.56 32 | 97.52 114 | 93.59 49 | 98.01 41 | 99.12 41 | 90.80 39 | 99.55 92 | 99.26 13 | 99.79 27 | 99.93 20 |
|
TSAR-MVS + MP. | | | 97.44 14 | 97.46 13 | 97.39 44 | 99.12 65 | 93.49 67 | 98.52 152 | 97.50 119 | 94.46 25 | 98.99 13 | 98.64 87 | 91.58 30 | 99.08 134 | 98.49 27 | 99.83 15 | 99.60 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MSLP-MVS++ | | | 97.50 13 | 97.45 14 | 97.63 36 | 99.65 16 | 93.21 70 | 99.70 17 | 98.13 38 | 94.61 22 | 97.78 46 | 99.46 10 | 89.85 49 | 99.81 66 | 97.97 37 | 99.91 6 | 99.88 26 |
|
SD-MVS | | | 97.51 12 | 97.40 15 | 97.81 32 | 99.01 72 | 93.79 61 | 99.33 65 | 97.38 137 | 93.73 45 | 98.83 19 | 99.02 52 | 90.87 38 | 99.88 46 | 98.69 21 | 99.74 29 | 99.77 42 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SteuartSystems-ACMMP | | | 97.25 15 | 97.34 16 | 97.01 56 | 97.38 119 | 91.46 98 | 99.75 13 | 97.66 81 | 94.14 33 | 98.13 33 | 99.26 21 | 92.16 29 | 99.66 80 | 97.91 39 | 99.64 40 | 99.90 22 |
Skip Steuart: Steuart Systems R&D Blog. |
DPM-MVS | | | 97.86 8 | 97.25 17 | 99.68 1 | 98.25 93 | 99.10 1 | 99.76 12 | 97.78 61 | 96.61 5 | 98.15 32 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 142 | 99.80 26 | 99.94 18 |
|
train_agg | | | 97.20 19 | 97.08 18 | 97.57 40 | 99.57 33 | 93.17 71 | 99.38 58 | 97.66 81 | 90.18 120 | 98.39 27 | 99.18 31 | 90.94 35 | 99.66 80 | 98.58 26 | 99.85 13 | 99.88 26 |
|
SMA-MVS |  | | 97.24 16 | 96.99 19 | 98.00 27 | 99.30 54 | 94.20 53 | 99.16 78 | 97.65 86 | 89.55 140 | 99.22 10 | 99.52 8 | 90.34 46 | 99.99 5 | 98.32 32 | 99.83 15 | 99.82 31 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 97.22 18 | 96.92 20 | 98.12 24 | 99.11 66 | 94.88 33 | 99.44 49 | 97.45 127 | 89.60 136 | 98.70 20 | 99.42 17 | 90.42 44 | 99.72 75 | 98.47 28 | 99.65 38 | 99.77 42 |
|
TSAR-MVS + GP. | | | 96.95 24 | 96.91 21 | 97.07 53 | 98.88 79 | 91.62 94 | 99.58 30 | 96.54 191 | 95.09 20 | 96.84 64 | 98.63 89 | 91.16 31 | 99.77 71 | 99.04 17 | 96.42 130 | 99.81 32 |
|
9.14 | | | | 96.87 22 | | 99.34 50 | | 99.50 39 | 97.49 121 | 89.41 143 | 98.59 23 | 99.43 16 | 89.78 50 | 99.69 77 | 98.69 21 | 99.62 44 | |
|
CHOSEN 280x420 | | | 96.80 28 | 96.85 23 | 96.66 80 | 97.85 106 | 94.42 49 | 94.76 302 | 98.36 24 | 92.50 67 | 95.62 93 | 97.52 134 | 97.92 1 | 97.38 217 | 98.31 33 | 98.80 86 | 98.20 169 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 20 | 96.84 24 | 98.13 22 | 99.61 24 | 94.45 47 | 98.85 116 | 97.64 87 | 96.51 8 | 95.88 85 | 99.39 18 | 87.35 84 | 99.99 5 | 96.61 63 | 99.69 36 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MG-MVS | | | 97.24 16 | 96.83 25 | 98.47 13 | 99.79 5 | 95.71 16 | 99.07 94 | 99.06 9 | 94.45 26 | 96.42 76 | 98.70 84 | 88.81 59 | 99.74 74 | 95.35 87 | 99.86 12 | 99.97 7 |
|
APD-MVS |  | | 96.95 24 | 96.72 26 | 97.63 36 | 99.51 41 | 93.58 63 | 99.16 78 | 97.44 130 | 90.08 125 | 98.59 23 | 99.07 46 | 89.06 55 | 99.42 109 | 97.92 38 | 99.66 37 | 99.88 26 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_HR | | | 96.69 29 | 96.69 27 | 96.72 76 | 98.58 88 | 91.00 112 | 99.14 86 | 99.45 1 | 93.86 40 | 95.15 100 | 98.73 78 | 88.48 62 | 99.76 72 | 97.23 50 | 99.56 50 | 99.40 80 |
|
EPNet | | | 96.82 27 | 96.68 28 | 97.25 49 | 98.65 86 | 93.10 73 | 99.48 40 | 98.76 13 | 96.54 6 | 97.84 45 | 98.22 109 | 87.49 77 | 99.66 80 | 95.35 87 | 97.78 108 | 99.00 112 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 97.12 21 | 96.60 29 | 98.68 9 | 98.03 102 | 96.57 10 | 99.84 3 | 97.84 51 | 96.36 9 | 95.20 99 | 98.24 108 | 88.17 66 | 99.83 60 | 96.11 72 | 99.60 48 | 99.64 60 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 97.00 23 | 96.49 30 | 98.55 10 | 98.86 80 | 96.10 14 | 99.83 4 | 97.52 114 | 95.90 10 | 97.21 56 | 98.90 66 | 82.66 164 | 99.93 37 | 98.71 20 | 98.80 86 | 99.63 62 |
|
PHI-MVS | | | 96.65 31 | 96.46 31 | 97.21 50 | 99.34 50 | 91.77 91 | 99.70 17 | 98.05 41 | 86.48 221 | 98.05 38 | 99.20 27 | 89.33 53 | 99.96 28 | 98.38 29 | 99.62 44 | 99.90 22 |
|
PS-MVSNAJ | | | 96.87 26 | 96.40 32 | 98.29 17 | 97.35 120 | 97.29 5 | 99.03 100 | 97.11 161 | 95.83 11 | 98.97 14 | 99.14 38 | 82.48 167 | 99.60 89 | 98.60 23 | 99.08 73 | 98.00 173 |
|
XVS | | | 96.47 35 | 96.37 33 | 96.77 70 | 99.62 22 | 90.66 121 | 99.43 52 | 97.58 102 | 92.41 71 | 96.86 62 | 98.96 59 | 87.37 80 | 99.87 49 | 95.65 78 | 99.43 59 | 99.78 37 |
|
CS-MVS-test | | | 95.98 48 | 96.34 34 | 94.90 140 | 98.06 101 | 87.66 184 | 99.69 23 | 96.10 218 | 93.66 46 | 98.35 30 | 99.05 49 | 86.28 108 | 97.66 199 | 96.96 56 | 98.90 82 | 99.37 82 |
|
HFP-MVS | | | 96.42 36 | 96.26 35 | 96.90 65 | 99.69 8 | 90.96 113 | 99.47 42 | 97.81 57 | 90.54 111 | 96.88 61 | 99.05 49 | 87.57 75 | 99.96 28 | 95.65 78 | 99.72 31 | 99.78 37 |
|
CS-MVS | | | 95.75 59 | 96.19 36 | 94.40 158 | 97.88 105 | 86.22 221 | 99.66 24 | 96.12 217 | 92.69 64 | 98.07 37 | 98.89 68 | 87.09 87 | 97.59 205 | 96.71 59 | 98.62 92 | 99.39 81 |
|
dcpmvs_2 | | | 95.67 61 | 96.18 37 | 94.12 170 | 98.82 81 | 84.22 261 | 97.37 234 | 95.45 267 | 90.70 104 | 95.77 89 | 98.63 89 | 90.47 42 | 98.68 150 | 99.20 16 | 99.22 70 | 99.45 77 |
|
ACMMP_NAP | | | 96.59 32 | 96.18 37 | 97.81 32 | 98.82 81 | 93.55 64 | 98.88 115 | 97.59 100 | 90.66 105 | 97.98 42 | 99.14 38 | 86.59 100 | 100.00 1 | 96.47 67 | 99.46 55 | 99.89 25 |
|
CDPH-MVS | | | 96.56 33 | 96.18 37 | 97.70 34 | 99.59 28 | 93.92 58 | 99.13 89 | 97.44 130 | 89.02 152 | 97.90 44 | 99.22 25 | 88.90 58 | 99.49 98 | 94.63 105 | 99.79 27 | 99.68 54 |
|
xiu_mvs_v2_base | | | 96.66 30 | 96.17 40 | 98.11 25 | 97.11 132 | 96.96 6 | 99.01 103 | 97.04 168 | 95.51 16 | 98.86 17 | 99.11 45 | 82.19 173 | 99.36 116 | 98.59 25 | 98.14 101 | 98.00 173 |
|
region2R | | | 96.30 40 | 96.17 40 | 96.70 77 | 99.70 7 | 90.31 125 | 99.46 46 | 97.66 81 | 90.55 110 | 97.07 59 | 99.07 46 | 86.85 93 | 99.97 21 | 95.43 85 | 99.74 29 | 99.81 32 |
|
SR-MVS | | | 96.13 43 | 96.16 42 | 96.07 104 | 99.42 47 | 89.04 152 | 98.59 147 | 97.33 141 | 90.44 114 | 96.84 64 | 99.12 41 | 86.75 95 | 99.41 112 | 97.47 45 | 99.44 58 | 99.76 44 |
|
CP-MVS | | | 96.22 42 | 96.15 43 | 96.42 92 | 99.67 10 | 89.62 146 | 99.70 17 | 97.61 94 | 90.07 126 | 96.00 81 | 99.16 34 | 87.43 78 | 99.92 38 | 96.03 74 | 99.72 31 | 99.70 51 |
|
ACMMPR | | | 96.28 41 | 96.14 44 | 96.73 74 | 99.68 9 | 90.47 123 | 99.47 42 | 97.80 58 | 90.54 111 | 96.83 66 | 99.03 51 | 86.51 104 | 99.95 31 | 95.65 78 | 99.72 31 | 99.75 45 |
|
ETV-MVS | | | 96.00 46 | 96.00 45 | 96.00 107 | 96.56 147 | 91.05 110 | 99.63 26 | 96.61 183 | 93.26 54 | 97.39 52 | 98.30 106 | 86.62 99 | 98.13 167 | 98.07 36 | 97.57 111 | 98.82 133 |
|
lupinMVS | | | 96.32 39 | 95.94 46 | 97.44 42 | 95.05 211 | 94.87 34 | 99.86 2 | 96.50 193 | 93.82 43 | 98.04 39 | 98.77 74 | 85.52 117 | 98.09 170 | 96.98 55 | 98.97 78 | 99.37 82 |
|
MVS_111021_LR | | | 95.78 56 | 95.94 46 | 95.28 129 | 98.19 97 | 87.69 181 | 98.80 121 | 99.26 7 | 93.39 51 | 95.04 102 | 98.69 85 | 84.09 137 | 99.76 72 | 96.96 56 | 99.06 74 | 98.38 158 |
|
PAPM | | | 96.35 37 | 95.94 46 | 97.58 38 | 94.10 233 | 95.25 22 | 98.93 110 | 98.17 33 | 94.26 28 | 93.94 118 | 98.72 80 | 89.68 51 | 97.88 182 | 96.36 68 | 99.29 67 | 99.62 64 |
|
SR-MVS-dyc-post | | | 95.75 59 | 95.86 49 | 95.41 125 | 99.22 59 | 87.26 200 | 98.40 170 | 97.21 149 | 89.63 134 | 96.67 72 | 98.97 55 | 86.73 97 | 99.36 116 | 96.62 61 | 99.31 65 | 99.60 65 |
|
MP-MVS |  | | 96.00 46 | 95.82 50 | 96.54 86 | 99.47 46 | 90.13 131 | 99.36 62 | 97.41 134 | 90.64 108 | 95.49 94 | 98.95 61 | 85.51 119 | 99.98 9 | 96.00 75 | 99.59 49 | 99.52 71 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PAPR | | | 96.35 37 | 95.82 50 | 97.94 29 | 99.63 18 | 94.19 54 | 99.42 54 | 97.55 107 | 92.43 68 | 93.82 122 | 99.12 41 | 87.30 85 | 99.91 40 | 94.02 111 | 99.06 74 | 99.74 46 |
|
ZNCC-MVS | | | 96.09 44 | 95.81 52 | 96.95 64 | 99.42 47 | 91.19 102 | 99.55 33 | 97.53 111 | 89.72 131 | 95.86 87 | 98.94 64 | 86.59 100 | 99.97 21 | 95.13 91 | 99.56 50 | 99.68 54 |
|
MTAPA | | | 96.09 44 | 95.80 53 | 96.96 63 | 99.29 55 | 91.19 102 | 97.23 242 | 97.45 127 | 92.58 65 | 94.39 111 | 99.24 24 | 86.43 106 | 99.99 5 | 96.22 69 | 99.40 62 | 99.71 50 |
|
mPP-MVS | | | 95.90 52 | 95.75 54 | 96.38 94 | 99.58 30 | 89.41 149 | 99.26 69 | 97.41 134 | 90.66 105 | 94.82 104 | 98.95 61 | 86.15 111 | 99.98 9 | 95.24 90 | 99.64 40 | 99.74 46 |
|
RE-MVS-def | | | | 95.70 55 | | 99.22 59 | 87.26 200 | 98.40 170 | 97.21 149 | 89.63 134 | 96.67 72 | 98.97 55 | 85.24 125 | | 96.62 61 | 99.31 65 | 99.60 65 |
|
GST-MVS | | | 95.97 49 | 95.66 56 | 96.90 65 | 99.49 45 | 91.22 100 | 99.45 48 | 97.48 122 | 89.69 132 | 95.89 84 | 98.72 80 | 86.37 107 | 99.95 31 | 94.62 106 | 99.22 70 | 99.52 71 |
|
PVSNet_Blended | | | 95.94 51 | 95.66 56 | 96.75 72 | 98.77 83 | 91.61 95 | 99.88 1 | 98.04 42 | 93.64 48 | 94.21 113 | 97.76 121 | 83.50 143 | 99.87 49 | 97.41 46 | 97.75 109 | 98.79 136 |
|
APD-MVS_3200maxsize | | | 95.64 62 | 95.65 58 | 95.62 119 | 99.24 58 | 87.80 180 | 98.42 165 | 97.22 148 | 88.93 157 | 96.64 74 | 98.98 54 | 85.49 120 | 99.36 116 | 96.68 60 | 99.27 68 | 99.70 51 |
|
PGM-MVS | | | 95.85 53 | 95.65 58 | 96.45 90 | 99.50 42 | 89.77 143 | 98.22 186 | 98.90 12 | 89.19 147 | 96.74 69 | 98.95 61 | 85.91 115 | 99.92 38 | 93.94 113 | 99.46 55 | 99.66 58 |
|
EI-MVSNet-Vis-set | | | 95.76 58 | 95.63 60 | 96.17 101 | 99.14 64 | 90.33 124 | 98.49 158 | 97.82 54 | 91.92 81 | 94.75 105 | 98.88 69 | 87.06 89 | 99.48 102 | 95.40 86 | 97.17 122 | 98.70 143 |
|
MP-MVS-pluss | | | 95.80 55 | 95.30 61 | 97.29 46 | 98.95 76 | 92.66 81 | 98.59 147 | 97.14 157 | 88.95 155 | 93.12 129 | 99.25 22 | 85.62 116 | 99.94 34 | 96.56 65 | 99.48 54 | 99.28 91 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EI-MVSNet-UG-set | | | 95.43 63 | 95.29 62 | 95.86 112 | 99.07 70 | 89.87 140 | 98.43 164 | 97.80 58 | 91.78 83 | 94.11 115 | 98.77 74 | 86.25 110 | 99.48 102 | 94.95 98 | 96.45 129 | 98.22 167 |
|
EIA-MVS | | | 95.11 70 | 95.27 63 | 94.64 151 | 96.34 157 | 86.51 209 | 99.59 29 | 96.62 182 | 92.51 66 | 94.08 116 | 98.64 87 | 86.05 112 | 98.24 164 | 95.07 93 | 98.50 96 | 99.18 99 |
|
HPM-MVS |  | | 95.41 65 | 95.22 64 | 95.99 108 | 99.29 55 | 89.14 150 | 99.17 77 | 97.09 165 | 87.28 204 | 95.40 95 | 98.48 99 | 84.93 127 | 99.38 114 | 95.64 82 | 99.65 38 | 99.47 76 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DROMVSNet | | | 95.09 71 | 95.17 65 | 94.84 143 | 95.42 191 | 88.17 172 | 99.48 40 | 95.92 233 | 91.47 89 | 97.34 54 | 98.36 103 | 82.77 160 | 97.41 216 | 97.24 49 | 98.58 93 | 98.94 121 |
|
DP-MVS Recon | | | 95.85 53 | 95.15 66 | 97.95 28 | 99.87 2 | 94.38 50 | 99.60 28 | 97.48 122 | 86.58 218 | 94.42 110 | 99.13 40 | 87.36 83 | 99.98 9 | 93.64 120 | 98.33 99 | 99.48 75 |
|
WTY-MVS | | | 95.97 49 | 95.11 67 | 98.54 11 | 97.62 112 | 96.65 8 | 99.44 49 | 98.74 14 | 92.25 75 | 95.21 98 | 98.46 102 | 86.56 102 | 99.46 104 | 95.00 96 | 92.69 172 | 99.50 74 |
|
mvsany_test1 | | | 94.57 88 | 95.09 68 | 92.98 196 | 95.84 177 | 82.07 289 | 98.76 127 | 95.24 280 | 92.87 63 | 96.45 75 | 98.71 83 | 84.81 130 | 99.15 127 | 97.68 42 | 95.49 148 | 97.73 178 |
|
PAPM_NR | | | 95.43 63 | 95.05 69 | 96.57 85 | 99.42 47 | 90.14 129 | 98.58 149 | 97.51 116 | 90.65 107 | 92.44 136 | 98.90 66 | 87.77 74 | 99.90 43 | 90.88 150 | 99.32 64 | 99.68 54 |
|
alignmvs | | | 95.77 57 | 95.00 70 | 98.06 26 | 97.35 120 | 95.68 17 | 99.71 16 | 97.50 119 | 91.50 88 | 96.16 80 | 98.61 91 | 86.28 108 | 99.00 136 | 96.19 70 | 91.74 189 | 99.51 73 |
|
jason | | | 95.40 66 | 94.86 71 | 97.03 55 | 92.91 265 | 94.23 52 | 99.70 17 | 96.30 204 | 93.56 50 | 96.73 70 | 98.52 94 | 81.46 182 | 97.91 179 | 96.08 73 | 98.47 97 | 98.96 116 |
jason: jason. |
CSCG | | | 94.87 75 | 94.71 72 | 95.36 126 | 99.54 36 | 86.49 210 | 99.34 64 | 98.15 36 | 82.71 281 | 90.15 173 | 99.25 22 | 89.48 52 | 99.86 54 | 94.97 97 | 98.82 85 | 99.72 49 |
|
HPM-MVS_fast | | | 94.89 74 | 94.62 73 | 95.70 117 | 99.11 66 | 88.44 170 | 99.14 86 | 97.11 161 | 85.82 228 | 95.69 91 | 98.47 100 | 83.46 145 | 99.32 121 | 93.16 128 | 99.63 43 | 99.35 84 |
|
test_yl | | | 95.27 68 | 94.60 74 | 97.28 47 | 98.53 89 | 92.98 77 | 99.05 97 | 98.70 17 | 86.76 215 | 94.65 108 | 97.74 123 | 87.78 72 | 99.44 105 | 95.57 83 | 92.61 173 | 99.44 78 |
|
DCV-MVSNet | | | 95.27 68 | 94.60 74 | 97.28 47 | 98.53 89 | 92.98 77 | 99.05 97 | 98.70 17 | 86.76 215 | 94.65 108 | 97.74 123 | 87.78 72 | 99.44 105 | 95.57 83 | 92.61 173 | 99.44 78 |
|
CPTT-MVS | | | 94.60 86 | 94.43 76 | 95.09 133 | 99.66 12 | 86.85 205 | 99.44 49 | 97.47 124 | 83.22 270 | 94.34 112 | 98.96 59 | 82.50 165 | 99.55 92 | 94.81 99 | 99.50 53 | 98.88 126 |
|
ACMMP |  | | 94.67 84 | 94.30 77 | 95.79 114 | 99.25 57 | 88.13 174 | 98.41 167 | 98.67 20 | 90.38 116 | 91.43 151 | 98.72 80 | 82.22 172 | 99.95 31 | 93.83 117 | 95.76 143 | 99.29 90 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
VNet | | | 95.08 72 | 94.26 78 | 97.55 41 | 98.07 100 | 93.88 59 | 98.68 133 | 98.73 16 | 90.33 117 | 97.16 58 | 97.43 139 | 79.19 196 | 99.53 95 | 96.91 58 | 91.85 187 | 99.24 94 |
|
HY-MVS | | 88.56 7 | 95.29 67 | 94.23 79 | 98.48 12 | 97.72 108 | 96.41 11 | 94.03 310 | 98.74 14 | 92.42 70 | 95.65 92 | 94.76 209 | 86.52 103 | 99.49 98 | 95.29 89 | 92.97 168 | 99.53 70 |
|
test2506 | | | 94.80 77 | 94.21 80 | 96.58 83 | 96.41 153 | 92.18 89 | 98.01 205 | 98.96 10 | 90.82 102 | 93.46 125 | 97.28 143 | 85.92 113 | 98.45 155 | 89.82 163 | 97.19 120 | 99.12 104 |
|
thisisatest0515 | | | 94.75 79 | 94.19 81 | 96.43 91 | 96.13 172 | 92.64 84 | 99.47 42 | 97.60 96 | 87.55 200 | 93.17 128 | 97.59 131 | 94.71 13 | 98.42 156 | 88.28 181 | 93.20 165 | 98.24 166 |
|
diffmvs |  | | 94.59 87 | 94.19 81 | 95.81 113 | 95.54 187 | 90.69 119 | 98.70 131 | 95.68 254 | 91.61 85 | 95.96 82 | 97.81 118 | 80.11 188 | 98.06 172 | 96.52 66 | 95.76 143 | 98.67 145 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
API-MVS | | | 94.78 78 | 94.18 83 | 96.59 82 | 99.21 61 | 90.06 136 | 98.80 121 | 97.78 61 | 83.59 265 | 93.85 120 | 99.21 26 | 83.79 140 | 99.97 21 | 92.37 138 | 99.00 77 | 99.74 46 |
|
PVSNet_Blended_VisFu | | | 94.67 84 | 94.11 84 | 96.34 96 | 97.14 129 | 91.10 107 | 99.32 66 | 97.43 132 | 92.10 80 | 91.53 150 | 96.38 182 | 83.29 149 | 99.68 78 | 93.42 125 | 96.37 131 | 98.25 165 |
|
MAR-MVS | | | 94.43 90 | 94.09 85 | 95.45 123 | 99.10 68 | 87.47 190 | 98.39 174 | 97.79 60 | 88.37 174 | 94.02 117 | 99.17 33 | 78.64 202 | 99.91 40 | 92.48 137 | 98.85 84 | 98.96 116 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 94.71 83 | 94.08 86 | 96.61 81 | 95.05 211 | 94.87 34 | 97.77 218 | 96.17 214 | 86.84 212 | 98.04 39 | 98.52 94 | 85.52 117 | 95.99 283 | 89.83 161 | 98.97 78 | 98.96 116 |
|
PLC |  | 91.07 3 | 94.23 93 | 94.01 87 | 94.87 141 | 99.17 63 | 87.49 189 | 99.25 70 | 96.55 190 | 88.43 172 | 91.26 155 | 98.21 111 | 85.92 113 | 99.86 54 | 89.77 165 | 97.57 111 | 97.24 191 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
xiu_mvs_v1_base_debu | | | 94.73 80 | 93.98 88 | 96.99 58 | 95.19 199 | 95.24 23 | 98.62 141 | 96.50 193 | 92.99 58 | 97.52 48 | 98.83 71 | 72.37 242 | 99.15 127 | 97.03 52 | 96.74 125 | 96.58 204 |
|
xiu_mvs_v1_base | | | 94.73 80 | 93.98 88 | 96.99 58 | 95.19 199 | 95.24 23 | 98.62 141 | 96.50 193 | 92.99 58 | 97.52 48 | 98.83 71 | 72.37 242 | 99.15 127 | 97.03 52 | 96.74 125 | 96.58 204 |
|
xiu_mvs_v1_base_debi | | | 94.73 80 | 93.98 88 | 96.99 58 | 95.19 199 | 95.24 23 | 98.62 141 | 96.50 193 | 92.99 58 | 97.52 48 | 98.83 71 | 72.37 242 | 99.15 127 | 97.03 52 | 96.74 125 | 96.58 204 |
|
canonicalmvs | | | 95.02 73 | 93.96 91 | 98.20 19 | 97.53 117 | 95.92 15 | 98.71 129 | 96.19 213 | 91.78 83 | 95.86 87 | 98.49 98 | 79.53 193 | 99.03 135 | 96.12 71 | 91.42 195 | 99.66 58 |
|
sss | | | 94.85 76 | 93.94 92 | 97.58 38 | 96.43 152 | 94.09 57 | 98.93 110 | 99.16 8 | 89.50 141 | 95.27 97 | 97.85 116 | 81.50 180 | 99.65 84 | 92.79 135 | 94.02 160 | 98.99 113 |
|
DeepC-MVS | | 91.02 4 | 94.56 89 | 93.92 93 | 96.46 89 | 97.16 127 | 90.76 117 | 98.39 174 | 97.11 161 | 93.92 36 | 88.66 186 | 98.33 104 | 78.14 204 | 99.85 56 | 95.02 94 | 98.57 94 | 98.78 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PMMVS | | | 93.62 111 | 93.90 94 | 92.79 200 | 96.79 142 | 81.40 296 | 98.85 116 | 96.81 177 | 91.25 95 | 96.82 67 | 98.15 113 | 77.02 210 | 98.13 167 | 93.15 129 | 96.30 134 | 98.83 132 |
|
CHOSEN 1792x2688 | | | 94.35 91 | 93.82 95 | 95.95 110 | 97.40 118 | 88.74 164 | 98.41 167 | 98.27 26 | 92.18 77 | 91.43 151 | 96.40 179 | 78.88 197 | 99.81 66 | 93.59 121 | 97.81 105 | 99.30 89 |
|
baseline2 | | | 94.04 95 | 93.80 96 | 94.74 147 | 93.07 263 | 90.25 126 | 98.12 195 | 98.16 35 | 89.86 128 | 86.53 209 | 96.95 161 | 95.56 6 | 98.05 174 | 91.44 144 | 94.53 155 | 95.93 216 |
|
EPP-MVSNet | | | 93.75 105 | 93.67 97 | 94.01 176 | 95.86 176 | 85.70 237 | 98.67 135 | 97.66 81 | 84.46 250 | 91.36 154 | 97.18 151 | 91.16 31 | 97.79 188 | 92.93 131 | 93.75 162 | 98.53 150 |
|
OMC-MVS | | | 93.90 101 | 93.62 98 | 94.73 148 | 98.63 87 | 87.00 203 | 98.04 204 | 96.56 189 | 92.19 76 | 92.46 135 | 98.73 78 | 79.49 194 | 99.14 131 | 92.16 140 | 94.34 158 | 98.03 172 |
|
thisisatest0530 | | | 94.00 96 | 93.52 99 | 95.43 124 | 95.76 180 | 90.02 138 | 98.99 105 | 97.60 96 | 86.58 218 | 91.74 143 | 97.36 142 | 94.78 12 | 98.34 158 | 86.37 203 | 92.48 176 | 97.94 175 |
|
casdiffmvs |  | | 93.98 98 | 93.43 100 | 95.61 120 | 95.07 210 | 89.86 141 | 98.80 121 | 95.84 246 | 90.98 99 | 92.74 133 | 97.66 128 | 79.71 190 | 98.10 169 | 94.72 102 | 95.37 149 | 98.87 128 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test_vis1_n_1920 | | | 93.08 128 | 93.42 101 | 92.04 216 | 96.31 158 | 79.36 312 | 99.83 4 | 96.06 221 | 96.72 4 | 98.53 25 | 98.10 114 | 58.57 314 | 99.91 40 | 97.86 40 | 98.79 88 | 96.85 201 |
|
CANet_DTU | | | 94.31 92 | 93.35 102 | 97.20 51 | 97.03 136 | 94.71 42 | 98.62 141 | 95.54 262 | 95.61 14 | 97.21 56 | 98.47 100 | 71.88 247 | 99.84 57 | 88.38 180 | 97.46 116 | 97.04 198 |
|
casdiffmvs_mvg |  | | 94.00 96 | 93.33 103 | 96.03 105 | 95.22 197 | 90.90 115 | 99.09 92 | 95.99 223 | 90.58 109 | 91.55 149 | 97.37 141 | 79.91 189 | 98.06 172 | 95.01 95 | 95.22 150 | 99.13 103 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 93.91 100 | 93.30 104 | 95.72 116 | 95.10 208 | 90.07 133 | 97.48 230 | 95.91 238 | 91.03 97 | 93.54 124 | 97.68 126 | 79.58 191 | 98.02 176 | 94.27 110 | 95.14 151 | 99.08 108 |
|
HyFIR lowres test | | | 93.68 108 | 93.29 105 | 94.87 141 | 97.57 116 | 88.04 176 | 98.18 190 | 98.47 22 | 87.57 199 | 91.24 156 | 95.05 203 | 85.49 120 | 97.46 212 | 93.22 127 | 92.82 169 | 99.10 106 |
|
TESTMET0.1,1 | | | 93.82 103 | 93.26 106 | 95.49 122 | 95.21 198 | 90.25 126 | 99.15 83 | 97.54 110 | 89.18 148 | 91.79 142 | 94.87 206 | 89.13 54 | 97.63 202 | 86.21 204 | 96.29 135 | 98.60 148 |
|
PVSNet_BlendedMVS | | | 93.36 118 | 93.20 107 | 93.84 181 | 98.77 83 | 91.61 95 | 99.47 42 | 98.04 42 | 91.44 90 | 94.21 113 | 92.63 250 | 83.50 143 | 99.87 49 | 97.41 46 | 83.37 248 | 90.05 311 |
|
iter_conf05 | | | 93.48 112 | 93.18 108 | 94.39 161 | 97.15 128 | 94.17 55 | 99.30 67 | 92.97 327 | 92.38 74 | 86.70 208 | 95.42 198 | 95.67 5 | 96.59 242 | 94.67 104 | 84.32 237 | 92.39 235 |
|
Effi-MVS+ | | | 93.87 102 | 93.15 109 | 96.02 106 | 95.79 178 | 90.76 117 | 96.70 264 | 95.78 247 | 86.98 209 | 95.71 90 | 97.17 152 | 79.58 191 | 98.01 177 | 94.57 107 | 96.09 138 | 99.31 88 |
|
AdaColmap |  | | 93.82 103 | 93.06 110 | 96.10 103 | 99.88 1 | 89.07 151 | 98.33 178 | 97.55 107 | 86.81 214 | 90.39 170 | 98.65 86 | 75.09 217 | 99.98 9 | 93.32 126 | 97.53 114 | 99.26 93 |
|
114514_t | | | 94.06 94 | 93.05 111 | 97.06 54 | 99.08 69 | 92.26 87 | 98.97 108 | 97.01 172 | 82.58 283 | 92.57 134 | 98.22 109 | 80.68 186 | 99.30 122 | 89.34 171 | 99.02 76 | 99.63 62 |
|
iter_conf_final | | | 93.22 124 | 93.04 112 | 93.76 183 | 97.03 136 | 92.22 88 | 99.05 97 | 93.31 324 | 92.11 79 | 86.93 202 | 95.42 198 | 95.01 10 | 96.59 242 | 93.98 112 | 84.48 234 | 92.46 234 |
|
CDS-MVSNet | | | 93.47 113 | 93.04 112 | 94.76 145 | 94.75 222 | 89.45 148 | 98.82 119 | 97.03 170 | 87.91 188 | 90.97 158 | 96.48 177 | 89.06 55 | 96.36 260 | 89.50 167 | 92.81 171 | 98.49 152 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tttt0517 | | | 93.30 120 | 93.01 114 | 94.17 168 | 95.57 185 | 86.47 211 | 98.51 155 | 97.60 96 | 85.99 226 | 90.55 165 | 97.19 150 | 94.80 11 | 98.31 159 | 85.06 216 | 91.86 186 | 97.74 177 |
|
Vis-MVSNet (Re-imp) | | | 93.26 123 | 93.00 115 | 94.06 173 | 96.14 169 | 86.71 208 | 98.68 133 | 96.70 180 | 88.30 176 | 89.71 180 | 97.64 129 | 85.43 123 | 96.39 258 | 88.06 185 | 96.32 132 | 99.08 108 |
|
test_fmvs1 | | | 92.35 141 | 92.94 116 | 90.57 249 | 97.19 125 | 75.43 331 | 99.55 33 | 94.97 287 | 95.20 19 | 96.82 67 | 97.57 133 | 59.59 312 | 99.84 57 | 97.30 48 | 98.29 100 | 96.46 209 |
|
test-mter | | | 93.27 122 | 92.89 117 | 94.40 158 | 94.94 216 | 87.27 198 | 99.15 83 | 97.25 143 | 88.95 155 | 91.57 146 | 94.04 216 | 88.03 70 | 97.58 206 | 85.94 208 | 96.13 136 | 98.36 161 |
|
PVSNet | | 87.13 12 | 93.69 106 | 92.83 118 | 96.28 97 | 97.99 103 | 90.22 128 | 99.38 58 | 98.93 11 | 91.42 92 | 93.66 123 | 97.68 126 | 71.29 254 | 99.64 86 | 87.94 187 | 97.20 119 | 98.98 114 |
|
CNLPA | | | 93.64 110 | 92.74 119 | 96.36 95 | 98.96 75 | 90.01 139 | 99.19 72 | 95.89 241 | 86.22 224 | 89.40 181 | 98.85 70 | 80.66 187 | 99.84 57 | 88.57 178 | 96.92 124 | 99.24 94 |
|
test-LLR | | | 93.11 127 | 92.68 120 | 94.40 158 | 94.94 216 | 87.27 198 | 99.15 83 | 97.25 143 | 90.21 118 | 91.57 146 | 94.04 216 | 84.89 128 | 97.58 206 | 85.94 208 | 96.13 136 | 98.36 161 |
|
MVS_Test | | | 93.67 109 | 92.67 121 | 96.69 78 | 96.72 144 | 92.66 81 | 97.22 243 | 96.03 222 | 87.69 197 | 95.12 101 | 94.03 218 | 81.55 179 | 98.28 162 | 89.17 175 | 96.46 128 | 99.14 101 |
|
UA-Net | | | 93.30 120 | 92.62 122 | 95.34 127 | 96.27 160 | 88.53 169 | 95.88 289 | 96.97 174 | 90.90 100 | 95.37 96 | 97.07 156 | 82.38 170 | 99.10 133 | 83.91 234 | 94.86 154 | 98.38 158 |
|
thres200 | | | 93.69 106 | 92.59 123 | 96.97 62 | 97.76 107 | 94.74 41 | 99.35 63 | 99.36 2 | 89.23 146 | 91.21 157 | 96.97 160 | 83.42 146 | 98.77 143 | 85.08 215 | 90.96 198 | 97.39 187 |
|
IS-MVSNet | | | 93.00 129 | 92.51 124 | 94.49 154 | 96.14 169 | 87.36 194 | 98.31 181 | 95.70 252 | 88.58 165 | 90.17 172 | 97.50 135 | 83.02 156 | 97.22 220 | 87.06 192 | 96.07 140 | 98.90 125 |
|
CostFormer | | | 92.89 130 | 92.48 125 | 94.12 170 | 94.99 213 | 85.89 232 | 92.89 319 | 97.00 173 | 86.98 209 | 95.00 103 | 90.78 281 | 90.05 48 | 97.51 210 | 92.92 132 | 91.73 190 | 98.96 116 |
|
MVSTER | | | 92.71 132 | 92.32 126 | 93.86 180 | 97.29 122 | 92.95 79 | 99.01 103 | 96.59 185 | 90.09 124 | 85.51 214 | 94.00 220 | 94.61 16 | 96.56 246 | 90.77 154 | 83.03 251 | 92.08 250 |
|
MVS | | | 93.92 99 | 92.28 127 | 98.83 6 | 95.69 182 | 96.82 7 | 96.22 279 | 98.17 33 | 84.89 245 | 84.34 224 | 98.61 91 | 79.32 195 | 99.83 60 | 93.88 115 | 99.43 59 | 99.86 29 |
|
tfpn200view9 | | | 93.43 115 | 92.27 128 | 96.90 65 | 97.68 110 | 94.84 36 | 99.18 74 | 99.36 2 | 88.45 169 | 90.79 160 | 96.90 164 | 83.31 147 | 98.75 145 | 84.11 230 | 90.69 200 | 97.12 193 |
|
thres400 | | | 93.39 117 | 92.27 128 | 96.73 74 | 97.68 110 | 94.84 36 | 99.18 74 | 99.36 2 | 88.45 169 | 90.79 160 | 96.90 164 | 83.31 147 | 98.75 145 | 84.11 230 | 90.69 200 | 96.61 202 |
|
tpmrst | | | 92.78 131 | 92.16 130 | 94.65 150 | 96.27 160 | 87.45 191 | 91.83 327 | 97.10 164 | 89.10 151 | 94.68 107 | 90.69 285 | 88.22 65 | 97.73 197 | 89.78 164 | 91.80 188 | 98.77 139 |
|
thres100view900 | | | 93.34 119 | 92.15 131 | 96.90 65 | 97.62 112 | 94.84 36 | 99.06 96 | 99.36 2 | 87.96 186 | 90.47 168 | 96.78 169 | 83.29 149 | 98.75 145 | 84.11 230 | 90.69 200 | 97.12 193 |
|
EPNet_dtu | | | 92.28 144 | 92.15 131 | 92.70 203 | 97.29 122 | 84.84 253 | 98.64 139 | 97.82 54 | 92.91 61 | 93.02 131 | 97.02 158 | 85.48 122 | 95.70 297 | 72.25 321 | 94.89 153 | 97.55 185 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TAMVS | | | 92.62 135 | 92.09 133 | 94.20 167 | 94.10 233 | 87.68 182 | 98.41 167 | 96.97 174 | 87.53 201 | 89.74 178 | 96.04 188 | 84.77 132 | 96.49 253 | 88.97 177 | 92.31 179 | 98.42 154 |
|
thres600view7 | | | 93.18 125 | 92.00 134 | 96.75 72 | 97.62 112 | 94.92 31 | 99.07 94 | 99.36 2 | 87.96 186 | 90.47 168 | 96.78 169 | 83.29 149 | 98.71 149 | 82.93 244 | 90.47 204 | 96.61 202 |
|
1314 | | | 93.44 114 | 91.98 135 | 97.84 30 | 95.24 195 | 94.38 50 | 96.22 279 | 97.92 47 | 90.18 120 | 82.28 251 | 97.71 125 | 77.63 207 | 99.80 68 | 91.94 141 | 98.67 91 | 99.34 86 |
|
h-mvs33 | | | 92.47 140 | 91.95 136 | 94.05 174 | 97.13 130 | 85.01 251 | 98.36 176 | 98.08 39 | 93.85 41 | 96.27 78 | 96.73 171 | 83.19 152 | 99.43 108 | 95.81 76 | 68.09 334 | 97.70 179 |
|
Vis-MVSNet |  | | 92.64 134 | 91.85 137 | 95.03 137 | 95.12 204 | 88.23 171 | 98.48 160 | 96.81 177 | 91.61 85 | 92.16 140 | 97.22 148 | 71.58 252 | 98.00 178 | 85.85 211 | 97.81 105 | 98.88 126 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator+ | | 87.72 8 | 93.43 115 | 91.84 138 | 98.17 20 | 95.73 181 | 95.08 30 | 98.92 112 | 97.04 168 | 91.42 92 | 81.48 268 | 97.60 130 | 74.60 220 | 99.79 69 | 90.84 151 | 98.97 78 | 99.64 60 |
|
BH-w/o | | | 92.32 142 | 91.79 139 | 93.91 179 | 96.85 139 | 86.18 223 | 99.11 91 | 95.74 250 | 88.13 181 | 84.81 218 | 97.00 159 | 77.26 209 | 97.91 179 | 89.16 176 | 98.03 102 | 97.64 180 |
|
3Dnovator | | 87.35 11 | 93.17 126 | 91.77 140 | 97.37 45 | 95.41 192 | 93.07 74 | 98.82 119 | 97.85 50 | 91.53 87 | 82.56 243 | 97.58 132 | 71.97 246 | 99.82 63 | 91.01 148 | 99.23 69 | 99.22 97 |
|
F-COLMAP | | | 92.07 150 | 91.75 141 | 93.02 195 | 98.16 98 | 82.89 279 | 98.79 125 | 95.97 225 | 86.54 220 | 87.92 191 | 97.80 119 | 78.69 201 | 99.65 84 | 85.97 206 | 95.93 142 | 96.53 207 |
|
mvs_anonymous | | | 92.50 139 | 91.65 142 | 95.06 134 | 96.60 146 | 89.64 145 | 97.06 248 | 96.44 197 | 86.64 217 | 84.14 225 | 93.93 222 | 82.49 166 | 96.17 276 | 91.47 143 | 96.08 139 | 99.35 84 |
|
EPMVS | | | 92.59 137 | 91.59 143 | 95.59 121 | 97.22 124 | 90.03 137 | 91.78 328 | 98.04 42 | 90.42 115 | 91.66 145 | 90.65 288 | 86.49 105 | 97.46 212 | 81.78 255 | 96.31 133 | 99.28 91 |
|
1112_ss | | | 92.71 132 | 91.55 144 | 96.20 98 | 95.56 186 | 91.12 105 | 98.48 160 | 94.69 298 | 88.29 177 | 86.89 204 | 98.50 96 | 87.02 90 | 98.66 151 | 84.75 219 | 89.77 207 | 98.81 134 |
|
hse-mvs2 | | | 91.67 155 | 91.51 145 | 92.15 213 | 96.22 162 | 82.61 285 | 97.74 221 | 97.53 111 | 93.85 41 | 96.27 78 | 96.15 184 | 83.19 152 | 97.44 214 | 95.81 76 | 66.86 341 | 96.40 211 |
|
ET-MVSNet_ETH3D | | | 92.56 138 | 91.45 146 | 95.88 111 | 96.39 155 | 94.13 56 | 99.46 46 | 96.97 174 | 92.18 77 | 66.94 349 | 98.29 107 | 94.65 15 | 94.28 326 | 94.34 109 | 83.82 244 | 99.24 94 |
|
test_fmvs1_n | | | 91.07 165 | 91.41 147 | 90.06 263 | 94.10 233 | 74.31 335 | 99.18 74 | 94.84 291 | 94.81 21 | 96.37 77 | 97.46 137 | 50.86 342 | 99.82 63 | 97.14 51 | 97.90 103 | 96.04 215 |
|
ECVR-MVS |  | | 92.29 143 | 91.33 148 | 95.15 131 | 96.41 153 | 87.84 179 | 98.10 198 | 94.84 291 | 90.82 102 | 91.42 153 | 97.28 143 | 65.61 290 | 98.49 154 | 90.33 157 | 97.19 120 | 99.12 104 |
|
baseline1 | | | 92.61 136 | 91.28 149 | 96.58 83 | 97.05 135 | 94.63 44 | 97.72 222 | 96.20 211 | 89.82 129 | 88.56 187 | 96.85 167 | 86.85 93 | 97.82 186 | 88.42 179 | 80.10 267 | 97.30 189 |
|
HQP-MVS | | | 91.50 156 | 91.23 150 | 92.29 208 | 93.95 238 | 86.39 214 | 99.16 78 | 96.37 200 | 93.92 36 | 87.57 193 | 96.67 173 | 73.34 232 | 97.77 190 | 93.82 118 | 86.29 219 | 92.72 229 |
|
test1111 | | | 92.12 148 | 91.19 151 | 94.94 139 | 96.15 167 | 87.36 194 | 98.12 195 | 94.84 291 | 90.85 101 | 90.97 158 | 97.26 145 | 65.60 291 | 98.37 157 | 89.74 166 | 97.14 123 | 99.07 110 |
|
tpm2 | | | 91.77 153 | 91.09 152 | 93.82 182 | 94.83 220 | 85.56 241 | 92.51 324 | 97.16 156 | 84.00 256 | 93.83 121 | 90.66 287 | 87.54 76 | 97.17 221 | 87.73 189 | 91.55 193 | 98.72 141 |
|
FA-MVS(test-final) | | | 92.22 147 | 91.08 153 | 95.64 118 | 96.05 173 | 88.98 154 | 91.60 331 | 97.25 143 | 86.99 206 | 91.84 141 | 92.12 253 | 83.03 155 | 99.00 136 | 86.91 197 | 93.91 161 | 98.93 122 |
|
PatchmatchNet |  | | 92.05 151 | 91.04 154 | 95.06 134 | 96.17 166 | 89.04 152 | 91.26 335 | 97.26 142 | 89.56 139 | 90.64 164 | 90.56 294 | 88.35 64 | 97.11 223 | 79.53 268 | 96.07 140 | 99.03 111 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Test_1112_low_res | | | 92.27 145 | 90.97 155 | 96.18 99 | 95.53 188 | 91.10 107 | 98.47 162 | 94.66 299 | 88.28 178 | 86.83 206 | 93.50 235 | 87.00 91 | 98.65 152 | 84.69 220 | 89.74 208 | 98.80 135 |
|
HQP_MVS | | | 91.26 161 | 90.95 156 | 92.16 212 | 93.84 245 | 86.07 228 | 99.02 101 | 96.30 204 | 93.38 52 | 86.99 200 | 96.52 175 | 72.92 237 | 97.75 195 | 93.46 123 | 86.17 222 | 92.67 231 |
|
CVMVSNet | | | 90.30 180 | 90.91 157 | 88.46 297 | 94.32 229 | 73.58 339 | 97.61 227 | 97.59 100 | 90.16 123 | 88.43 189 | 97.10 154 | 76.83 211 | 92.86 336 | 82.64 246 | 93.54 164 | 98.93 122 |
|
UGNet | | | 91.91 152 | 90.85 158 | 95.10 132 | 97.06 134 | 88.69 165 | 98.01 205 | 98.24 29 | 92.41 71 | 92.39 137 | 93.61 231 | 60.52 309 | 99.68 78 | 88.14 183 | 97.25 118 | 96.92 200 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 92.23 146 | 90.84 159 | 96.42 92 | 98.24 94 | 91.08 109 | 98.24 185 | 96.22 210 | 83.39 268 | 94.74 106 | 98.31 105 | 61.12 308 | 98.85 140 | 94.45 108 | 92.82 169 | 99.32 87 |
|
BH-untuned | | | 91.46 158 | 90.84 159 | 93.33 190 | 96.51 150 | 84.83 254 | 98.84 118 | 95.50 264 | 86.44 223 | 83.50 229 | 96.70 172 | 75.49 216 | 97.77 190 | 86.78 200 | 97.81 105 | 97.40 186 |
|
IB-MVS | | 89.43 6 | 92.12 148 | 90.83 161 | 95.98 109 | 95.40 193 | 90.78 116 | 99.81 6 | 98.06 40 | 91.23 96 | 85.63 213 | 93.66 230 | 90.63 40 | 98.78 142 | 91.22 145 | 71.85 324 | 98.36 161 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Fast-Effi-MVS+ | | | 91.72 154 | 90.79 162 | 94.49 154 | 95.89 175 | 87.40 193 | 99.54 38 | 95.70 252 | 85.01 243 | 89.28 183 | 95.68 193 | 77.75 206 | 97.57 209 | 83.22 239 | 95.06 152 | 98.51 151 |
|
CLD-MVS | | | 91.06 166 | 90.71 163 | 92.10 214 | 94.05 237 | 86.10 226 | 99.55 33 | 96.29 207 | 94.16 31 | 84.70 220 | 97.17 152 | 69.62 261 | 97.82 186 | 94.74 101 | 86.08 224 | 92.39 235 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+-dtu | | | 89.97 190 | 90.68 164 | 87.81 301 | 95.15 203 | 71.98 345 | 97.87 213 | 95.40 271 | 91.92 81 | 87.57 193 | 91.44 269 | 74.27 226 | 96.84 233 | 89.45 168 | 93.10 167 | 94.60 222 |
|
XVG-OURS-SEG-HR | | | 90.95 168 | 90.66 165 | 91.83 219 | 95.18 202 | 81.14 303 | 95.92 286 | 95.92 233 | 88.40 173 | 90.33 171 | 97.85 116 | 70.66 257 | 99.38 114 | 92.83 133 | 88.83 209 | 94.98 220 |
|
PatchMatch-RL | | | 91.47 157 | 90.54 166 | 94.26 165 | 98.20 95 | 86.36 216 | 96.94 252 | 97.14 157 | 87.75 193 | 88.98 184 | 95.75 192 | 71.80 249 | 99.40 113 | 80.92 260 | 97.39 117 | 97.02 199 |
|
XVG-OURS | | | 90.83 170 | 90.49 167 | 91.86 218 | 95.23 196 | 81.25 300 | 95.79 294 | 95.92 233 | 88.96 154 | 90.02 175 | 98.03 115 | 71.60 251 | 99.35 119 | 91.06 147 | 87.78 213 | 94.98 220 |
|
MDTV_nov1_ep13 | | | | 90.47 168 | | 96.14 169 | 88.55 167 | 91.34 334 | 97.51 116 | 89.58 137 | 92.24 138 | 90.50 298 | 86.99 92 | 97.61 204 | 77.64 283 | 92.34 178 | |
|
test_vis1_n | | | 90.40 177 | 90.27 169 | 90.79 245 | 91.55 284 | 76.48 327 | 99.12 90 | 94.44 303 | 94.31 27 | 97.34 54 | 96.95 161 | 43.60 353 | 99.42 109 | 97.57 44 | 97.60 110 | 96.47 208 |
|
VDD-MVS | | | 91.24 164 | 90.18 170 | 94.45 157 | 97.08 133 | 85.84 235 | 98.40 170 | 96.10 218 | 86.99 206 | 93.36 126 | 98.16 112 | 54.27 331 | 99.20 124 | 96.59 64 | 90.63 203 | 98.31 164 |
|
FE-MVS | | | 91.38 160 | 90.16 171 | 95.05 136 | 96.46 151 | 87.53 188 | 89.69 344 | 97.84 51 | 82.97 275 | 92.18 139 | 92.00 259 | 84.07 138 | 98.93 139 | 80.71 262 | 95.52 147 | 98.68 144 |
|
BH-RMVSNet | | | 91.25 163 | 89.99 172 | 95.03 137 | 96.75 143 | 88.55 167 | 98.65 137 | 94.95 288 | 87.74 194 | 87.74 192 | 97.80 119 | 68.27 269 | 98.14 166 | 80.53 265 | 97.49 115 | 98.41 155 |
|
FIs | | | 90.70 173 | 89.87 173 | 93.18 192 | 92.29 270 | 91.12 105 | 98.17 192 | 98.25 27 | 89.11 150 | 83.44 230 | 94.82 208 | 82.26 171 | 96.17 276 | 87.76 188 | 82.76 253 | 92.25 240 |
|
miper_enhance_ethall | | | 90.33 179 | 89.70 174 | 92.22 209 | 97.12 131 | 88.93 158 | 98.35 177 | 95.96 227 | 88.60 164 | 83.14 237 | 92.33 252 | 87.38 79 | 96.18 274 | 86.49 202 | 77.89 276 | 91.55 266 |
|
PCF-MVS | | 89.78 5 | 91.26 161 | 89.63 175 | 96.16 102 | 95.44 190 | 91.58 97 | 95.29 298 | 96.10 218 | 85.07 240 | 82.75 239 | 97.45 138 | 78.28 203 | 99.78 70 | 80.60 264 | 95.65 146 | 97.12 193 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
GeoE | | | 90.60 176 | 89.56 176 | 93.72 186 | 95.10 208 | 85.43 242 | 99.41 55 | 94.94 289 | 83.96 258 | 87.21 199 | 96.83 168 | 74.37 224 | 97.05 227 | 80.50 266 | 93.73 163 | 98.67 145 |
|
AUN-MVS | | | 90.17 184 | 89.50 177 | 92.19 211 | 96.21 163 | 82.67 283 | 97.76 220 | 97.53 111 | 88.05 183 | 91.67 144 | 96.15 184 | 83.10 154 | 97.47 211 | 88.11 184 | 66.91 340 | 96.43 210 |
|
QAPM | | | 91.41 159 | 89.49 178 | 97.17 52 | 95.66 184 | 93.42 68 | 98.60 145 | 97.51 116 | 80.92 306 | 81.39 269 | 97.41 140 | 72.89 239 | 99.87 49 | 82.33 249 | 98.68 90 | 98.21 168 |
|
TR-MVS | | | 90.77 171 | 89.44 179 | 94.76 145 | 96.31 158 | 88.02 177 | 97.92 209 | 95.96 227 | 85.52 232 | 88.22 190 | 97.23 147 | 66.80 281 | 98.09 170 | 84.58 222 | 92.38 177 | 98.17 170 |
|
mvsmamba | | | 89.99 189 | 89.42 180 | 91.69 226 | 90.64 297 | 86.34 217 | 98.40 170 | 92.27 336 | 91.01 98 | 84.80 219 | 94.93 204 | 76.12 212 | 96.51 250 | 92.81 134 | 83.84 241 | 92.21 244 |
|
FC-MVSNet-test | | | 90.22 182 | 89.40 181 | 92.67 205 | 91.78 281 | 89.86 141 | 97.89 210 | 98.22 30 | 88.81 160 | 82.96 238 | 94.66 210 | 81.90 177 | 95.96 285 | 85.89 210 | 82.52 256 | 92.20 245 |
|
EI-MVSNet | | | 89.87 191 | 89.38 182 | 91.36 231 | 94.32 229 | 85.87 233 | 97.61 227 | 96.59 185 | 85.10 238 | 85.51 214 | 97.10 154 | 81.30 184 | 96.56 246 | 83.85 236 | 83.03 251 | 91.64 258 |
|
cascas | | | 90.93 169 | 89.33 183 | 95.76 115 | 95.69 182 | 93.03 76 | 98.99 105 | 96.59 185 | 80.49 308 | 86.79 207 | 94.45 213 | 65.23 293 | 98.60 153 | 93.52 122 | 92.18 182 | 95.66 218 |
|
SCA | | | 90.64 175 | 89.25 184 | 94.83 144 | 94.95 215 | 88.83 160 | 96.26 276 | 97.21 149 | 90.06 127 | 90.03 174 | 90.62 290 | 66.61 282 | 96.81 235 | 83.16 240 | 94.36 157 | 98.84 129 |
|
ab-mvs | | | 91.05 167 | 89.17 185 | 96.69 78 | 95.96 174 | 91.72 93 | 92.62 323 | 97.23 147 | 85.61 231 | 89.74 178 | 93.89 224 | 68.55 266 | 99.42 109 | 91.09 146 | 87.84 212 | 98.92 124 |
|
OPM-MVS | | | 89.76 192 | 89.15 186 | 91.57 228 | 90.53 298 | 85.58 240 | 98.11 197 | 95.93 232 | 92.88 62 | 86.05 210 | 96.47 178 | 67.06 280 | 97.87 183 | 89.29 174 | 86.08 224 | 91.26 279 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PS-MVSNAJss | | | 89.54 196 | 89.05 187 | 91.00 238 | 88.77 322 | 84.36 259 | 97.39 231 | 95.97 225 | 88.47 166 | 81.88 261 | 93.80 226 | 82.48 167 | 96.50 251 | 89.34 171 | 83.34 250 | 92.15 246 |
|
TAPA-MVS | | 87.50 9 | 90.35 178 | 89.05 187 | 94.25 166 | 98.48 91 | 85.17 248 | 98.42 165 | 96.58 188 | 82.44 288 | 87.24 198 | 98.53 93 | 82.77 160 | 98.84 141 | 59.09 356 | 97.88 104 | 98.72 141 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
tpm | | | 89.67 193 | 88.95 189 | 91.82 220 | 92.54 268 | 81.43 295 | 92.95 318 | 95.92 233 | 87.81 190 | 90.50 167 | 89.44 313 | 84.99 126 | 95.65 298 | 83.67 237 | 82.71 254 | 98.38 158 |
|
nrg030 | | | 90.23 181 | 88.87 190 | 94.32 163 | 91.53 285 | 93.54 65 | 98.79 125 | 95.89 241 | 88.12 182 | 84.55 222 | 94.61 211 | 78.80 200 | 96.88 232 | 92.35 139 | 75.21 289 | 92.53 233 |
|
OpenMVS |  | 85.28 14 | 90.75 172 | 88.84 191 | 96.48 88 | 93.58 251 | 93.51 66 | 98.80 121 | 97.41 134 | 82.59 282 | 78.62 296 | 97.49 136 | 68.00 272 | 99.82 63 | 84.52 224 | 98.55 95 | 96.11 214 |
|
dp | | | 90.16 185 | 88.83 192 | 94.14 169 | 96.38 156 | 86.42 212 | 91.57 332 | 97.06 167 | 84.76 247 | 88.81 185 | 90.19 306 | 84.29 135 | 97.43 215 | 75.05 301 | 91.35 197 | 98.56 149 |
|
cl22 | | | 89.57 195 | 88.79 193 | 91.91 217 | 97.94 104 | 87.62 185 | 97.98 207 | 96.51 192 | 85.03 241 | 82.37 250 | 91.79 262 | 83.65 141 | 96.50 251 | 85.96 207 | 77.89 276 | 91.61 263 |
|
LS3D | | | 90.19 183 | 88.72 194 | 94.59 153 | 98.97 73 | 86.33 218 | 96.90 254 | 96.60 184 | 74.96 334 | 84.06 227 | 98.74 77 | 75.78 214 | 99.83 60 | 74.93 302 | 97.57 111 | 97.62 183 |
|
GA-MVS | | | 90.10 186 | 88.69 195 | 94.33 162 | 92.44 269 | 87.97 178 | 99.08 93 | 96.26 208 | 89.65 133 | 86.92 203 | 93.11 243 | 68.09 270 | 96.96 229 | 82.54 248 | 90.15 205 | 98.05 171 |
|
X-MVStestdata | | | 90.69 174 | 88.66 196 | 96.77 70 | 99.62 22 | 90.66 121 | 99.43 52 | 97.58 102 | 92.41 71 | 96.86 62 | 29.59 378 | 87.37 80 | 99.87 49 | 95.65 78 | 99.43 59 | 99.78 37 |
|
test0.0.03 1 | | | 88.96 201 | 88.61 197 | 90.03 267 | 91.09 291 | 84.43 258 | 98.97 108 | 97.02 171 | 90.21 118 | 80.29 277 | 96.31 183 | 84.89 128 | 91.93 350 | 72.98 318 | 85.70 227 | 93.73 224 |
|
LCM-MVSNet-Re | | | 88.59 214 | 88.61 197 | 88.51 296 | 95.53 188 | 72.68 343 | 96.85 256 | 88.43 362 | 88.45 169 | 73.14 327 | 90.63 289 | 75.82 213 | 94.38 325 | 92.95 130 | 95.71 145 | 98.48 153 |
|
Fast-Effi-MVS+-dtu | | | 88.84 206 | 88.59 199 | 89.58 278 | 93.44 256 | 78.18 321 | 98.65 137 | 94.62 300 | 88.46 168 | 84.12 226 | 95.37 201 | 68.91 263 | 96.52 249 | 82.06 252 | 91.70 191 | 94.06 223 |
|
RRT_MVS | | | 88.91 203 | 88.56 200 | 89.93 268 | 90.31 301 | 81.61 293 | 98.08 201 | 96.38 199 | 89.30 144 | 82.41 248 | 94.84 207 | 73.15 235 | 96.04 282 | 90.38 156 | 82.23 258 | 92.15 246 |
|
UniMVSNet_NR-MVSNet | | | 89.60 194 | 88.55 201 | 92.75 202 | 92.17 273 | 90.07 133 | 98.74 128 | 98.15 36 | 88.37 174 | 83.21 233 | 93.98 221 | 82.86 158 | 95.93 287 | 86.95 195 | 72.47 318 | 92.25 240 |
|
VDDNet | | | 90.08 187 | 88.54 202 | 94.69 149 | 94.41 228 | 87.68 182 | 98.21 188 | 96.40 198 | 76.21 329 | 93.33 127 | 97.75 122 | 54.93 329 | 98.77 143 | 94.71 103 | 90.96 198 | 97.61 184 |
|
LPG-MVS_test | | | 88.86 205 | 88.47 203 | 90.06 263 | 93.35 258 | 80.95 305 | 98.22 186 | 95.94 230 | 87.73 195 | 83.17 235 | 96.11 186 | 66.28 285 | 97.77 190 | 90.19 159 | 85.19 228 | 91.46 269 |
|
UniMVSNet (Re) | | | 89.50 197 | 88.32 204 | 93.03 194 | 92.21 272 | 90.96 113 | 98.90 114 | 98.39 23 | 89.13 149 | 83.22 232 | 92.03 255 | 81.69 178 | 96.34 266 | 86.79 199 | 72.53 317 | 91.81 255 |
|
ACMP | | 87.39 10 | 88.71 213 | 88.24 205 | 90.12 262 | 93.91 243 | 81.06 304 | 98.50 156 | 95.67 255 | 89.43 142 | 80.37 276 | 95.55 194 | 65.67 288 | 97.83 185 | 90.55 155 | 84.51 232 | 91.47 268 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 86.95 13 | 88.77 211 | 88.22 206 | 90.43 254 | 93.61 250 | 81.34 298 | 98.50 156 | 95.92 233 | 87.88 189 | 83.85 228 | 95.20 202 | 67.20 278 | 97.89 181 | 86.90 198 | 84.90 230 | 92.06 251 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
miper_ehance_all_eth | | | 88.94 202 | 88.12 207 | 91.40 229 | 95.32 194 | 86.93 204 | 97.85 214 | 95.55 261 | 84.19 253 | 81.97 259 | 91.50 268 | 84.16 136 | 95.91 290 | 84.69 220 | 77.89 276 | 91.36 274 |
|
tpmvs | | | 89.16 198 | 87.76 208 | 93.35 189 | 97.19 125 | 84.75 255 | 90.58 342 | 97.36 139 | 81.99 293 | 84.56 221 | 89.31 316 | 83.98 139 | 98.17 165 | 74.85 304 | 90.00 206 | 97.12 193 |
|
test_djsdf | | | 88.26 219 | 87.73 209 | 89.84 271 | 88.05 331 | 82.21 287 | 97.77 218 | 96.17 214 | 86.84 212 | 82.41 248 | 91.95 261 | 72.07 245 | 95.99 283 | 89.83 161 | 84.50 233 | 91.32 276 |
|
gg-mvs-nofinetune | | | 90.00 188 | 87.71 210 | 96.89 69 | 96.15 167 | 94.69 43 | 85.15 353 | 97.74 65 | 68.32 353 | 92.97 132 | 60.16 366 | 96.10 3 | 96.84 233 | 93.89 114 | 98.87 83 | 99.14 101 |
|
VPA-MVSNet | | | 89.10 199 | 87.66 211 | 93.45 188 | 92.56 267 | 91.02 111 | 97.97 208 | 98.32 25 | 86.92 211 | 86.03 211 | 92.01 257 | 68.84 265 | 97.10 225 | 90.92 149 | 75.34 288 | 92.23 242 |
|
DU-MVS | | | 88.83 208 | 87.51 212 | 92.79 200 | 91.46 286 | 90.07 133 | 98.71 129 | 97.62 93 | 88.87 159 | 83.21 233 | 93.68 228 | 74.63 218 | 95.93 287 | 86.95 195 | 72.47 318 | 92.36 237 |
|
IterMVS-LS | | | 88.34 216 | 87.44 213 | 91.04 237 | 94.10 233 | 85.85 234 | 98.10 198 | 95.48 265 | 85.12 237 | 82.03 258 | 91.21 274 | 81.35 183 | 95.63 299 | 83.86 235 | 75.73 287 | 91.63 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
D2MVS | | | 87.96 221 | 87.39 214 | 89.70 275 | 91.84 280 | 83.40 271 | 98.31 181 | 98.49 21 | 88.04 184 | 78.23 302 | 90.26 300 | 73.57 230 | 96.79 237 | 84.21 227 | 83.53 246 | 88.90 327 |
|
CR-MVSNet | | | 88.83 208 | 87.38 215 | 93.16 193 | 93.47 253 | 86.24 219 | 84.97 355 | 94.20 311 | 88.92 158 | 90.76 162 | 86.88 333 | 84.43 133 | 94.82 317 | 70.64 325 | 92.17 183 | 98.41 155 |
|
ADS-MVSNet | | | 88.99 200 | 87.30 216 | 94.07 172 | 96.21 163 | 87.56 187 | 87.15 348 | 96.78 179 | 83.01 273 | 89.91 176 | 87.27 329 | 78.87 198 | 97.01 228 | 74.20 309 | 92.27 180 | 97.64 180 |
|
tpm cat1 | | | 88.89 204 | 87.27 217 | 93.76 183 | 95.79 178 | 85.32 245 | 90.76 340 | 97.09 165 | 76.14 330 | 85.72 212 | 88.59 319 | 82.92 157 | 98.04 175 | 76.96 287 | 91.43 194 | 97.90 176 |
|
c3_l | | | 88.19 220 | 87.23 218 | 91.06 236 | 94.97 214 | 86.17 224 | 97.72 222 | 95.38 272 | 83.43 267 | 81.68 266 | 91.37 270 | 82.81 159 | 95.72 296 | 84.04 233 | 73.70 306 | 91.29 278 |
|
WR-MVS | | | 88.54 215 | 87.22 219 | 92.52 206 | 91.93 279 | 89.50 147 | 98.56 150 | 97.84 51 | 86.99 206 | 81.87 262 | 93.81 225 | 74.25 227 | 95.92 289 | 85.29 213 | 74.43 298 | 92.12 248 |
|
FMVSNet3 | | | 88.81 210 | 87.08 220 | 93.99 177 | 96.52 149 | 94.59 45 | 98.08 201 | 96.20 211 | 85.85 227 | 82.12 254 | 91.60 266 | 74.05 228 | 95.40 305 | 79.04 272 | 80.24 264 | 91.99 253 |
|
Anonymous202405211 | | | 88.84 206 | 87.03 221 | 94.27 164 | 98.14 99 | 84.18 262 | 98.44 163 | 95.58 260 | 76.79 328 | 89.34 182 | 96.88 166 | 53.42 334 | 99.54 94 | 87.53 191 | 87.12 216 | 99.09 107 |
|
eth_miper_zixun_eth | | | 87.76 225 | 87.00 222 | 90.06 263 | 94.67 224 | 82.65 284 | 97.02 251 | 95.37 273 | 84.19 253 | 81.86 264 | 91.58 267 | 81.47 181 | 95.90 291 | 83.24 238 | 73.61 307 | 91.61 263 |
|
ADS-MVSNet2 | | | 87.62 230 | 86.88 223 | 89.86 270 | 96.21 163 | 79.14 314 | 87.15 348 | 92.99 326 | 83.01 273 | 89.91 176 | 87.27 329 | 78.87 198 | 92.80 339 | 74.20 309 | 92.27 180 | 97.64 180 |
|
DIV-MVS_self_test | | | 87.82 222 | 86.81 224 | 90.87 243 | 94.87 219 | 85.39 244 | 97.81 215 | 95.22 285 | 82.92 279 | 80.76 272 | 91.31 272 | 81.99 174 | 95.81 294 | 81.36 256 | 75.04 291 | 91.42 272 |
|
cl____ | | | 87.82 222 | 86.79 225 | 90.89 242 | 94.88 218 | 85.43 242 | 97.81 215 | 95.24 280 | 82.91 280 | 80.71 273 | 91.22 273 | 81.97 176 | 95.84 292 | 81.34 257 | 75.06 290 | 91.40 273 |
|
bld_raw_dy_0_64 | | | 87.82 222 | 86.71 226 | 91.15 234 | 89.54 313 | 85.61 238 | 97.37 234 | 89.16 360 | 89.26 145 | 83.42 231 | 94.50 212 | 65.79 287 | 96.18 274 | 88.00 186 | 83.37 248 | 91.67 257 |
|
VPNet | | | 88.30 217 | 86.57 227 | 93.49 187 | 91.95 277 | 91.35 99 | 98.18 190 | 97.20 153 | 88.61 163 | 84.52 223 | 94.89 205 | 62.21 303 | 96.76 238 | 89.34 171 | 72.26 321 | 92.36 237 |
|
DP-MVS | | | 88.75 212 | 86.56 228 | 95.34 127 | 98.92 77 | 87.45 191 | 97.64 226 | 93.52 322 | 70.55 345 | 81.49 267 | 97.25 146 | 74.43 223 | 99.88 46 | 71.14 324 | 94.09 159 | 98.67 145 |
|
jajsoiax | | | 87.35 232 | 86.51 229 | 89.87 269 | 87.75 336 | 81.74 291 | 97.03 249 | 95.98 224 | 88.47 166 | 80.15 279 | 93.80 226 | 61.47 305 | 96.36 260 | 89.44 169 | 84.47 235 | 91.50 267 |
|
MSDG | | | 88.29 218 | 86.37 230 | 94.04 175 | 96.90 138 | 86.15 225 | 96.52 267 | 94.36 308 | 77.89 324 | 79.22 291 | 96.95 161 | 69.72 260 | 99.59 90 | 73.20 317 | 92.58 175 | 96.37 212 |
|
TranMVSNet+NR-MVSNet | | | 87.75 226 | 86.31 231 | 92.07 215 | 90.81 294 | 88.56 166 | 98.33 178 | 97.18 154 | 87.76 192 | 81.87 262 | 93.90 223 | 72.45 241 | 95.43 303 | 83.13 242 | 71.30 328 | 92.23 242 |
|
mvs_tets | | | 87.09 235 | 86.22 232 | 89.71 274 | 87.87 332 | 81.39 297 | 96.73 263 | 95.90 239 | 88.19 180 | 79.99 281 | 93.61 231 | 59.96 311 | 96.31 268 | 89.40 170 | 84.34 236 | 91.43 271 |
|
miper_lstm_enhance | | | 86.90 237 | 86.20 233 | 89.00 290 | 94.53 226 | 81.19 301 | 96.74 262 | 95.24 280 | 82.33 289 | 80.15 279 | 90.51 297 | 81.99 174 | 94.68 322 | 80.71 262 | 73.58 308 | 91.12 282 |
|
pmmvs4 | | | 87.58 231 | 86.17 234 | 91.80 221 | 89.58 311 | 88.92 159 | 97.25 240 | 95.28 276 | 82.54 284 | 80.49 275 | 93.17 242 | 75.62 215 | 96.05 281 | 82.75 245 | 78.90 271 | 90.42 302 |
|
XXY-MVS | | | 87.75 226 | 86.02 235 | 92.95 198 | 90.46 299 | 89.70 144 | 97.71 224 | 95.90 239 | 84.02 255 | 80.95 270 | 94.05 215 | 67.51 276 | 97.10 225 | 85.16 214 | 78.41 273 | 92.04 252 |
|
NR-MVSNet | | | 87.74 228 | 86.00 236 | 92.96 197 | 91.46 286 | 90.68 120 | 96.65 265 | 97.42 133 | 88.02 185 | 73.42 324 | 93.68 228 | 77.31 208 | 95.83 293 | 84.26 226 | 71.82 325 | 92.36 237 |
|
MS-PatchMatch | | | 86.75 240 | 85.92 237 | 89.22 285 | 91.97 275 | 82.47 286 | 96.91 253 | 96.14 216 | 83.74 261 | 77.73 303 | 93.53 234 | 58.19 316 | 97.37 219 | 76.75 290 | 98.35 98 | 87.84 333 |
|
MVP-Stereo | | | 86.61 244 | 85.83 238 | 88.93 292 | 88.70 324 | 83.85 267 | 96.07 283 | 94.41 307 | 82.15 292 | 75.64 314 | 91.96 260 | 67.65 275 | 96.45 256 | 77.20 286 | 98.72 89 | 86.51 344 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v2v482 | | | 87.27 234 | 85.76 239 | 91.78 225 | 89.59 310 | 87.58 186 | 98.56 150 | 95.54 262 | 84.53 249 | 82.51 244 | 91.78 263 | 73.11 236 | 96.47 254 | 82.07 251 | 74.14 304 | 91.30 277 |
|
anonymousdsp | | | 86.69 241 | 85.75 240 | 89.53 279 | 86.46 342 | 82.94 276 | 96.39 270 | 95.71 251 | 83.97 257 | 79.63 286 | 90.70 284 | 68.85 264 | 95.94 286 | 86.01 205 | 84.02 240 | 89.72 317 |
|
V42 | | | 87.00 236 | 85.68 241 | 90.98 239 | 89.91 304 | 86.08 227 | 98.32 180 | 95.61 258 | 83.67 264 | 82.72 240 | 90.67 286 | 74.00 229 | 96.53 248 | 81.94 254 | 74.28 301 | 90.32 304 |
|
Anonymous20240529 | | | 87.66 229 | 85.58 242 | 93.92 178 | 97.59 115 | 85.01 251 | 98.13 193 | 97.13 159 | 66.69 358 | 88.47 188 | 96.01 189 | 55.09 328 | 99.51 96 | 87.00 194 | 84.12 239 | 97.23 192 |
|
RPSCF | | | 85.33 265 | 85.55 243 | 84.67 322 | 94.63 225 | 62.28 359 | 93.73 312 | 93.76 316 | 74.38 337 | 85.23 217 | 97.06 157 | 64.09 296 | 98.31 159 | 80.98 258 | 86.08 224 | 93.41 228 |
|
WR-MVS_H | | | 86.53 246 | 85.49 244 | 89.66 277 | 91.04 292 | 83.31 273 | 97.53 229 | 98.20 32 | 84.95 244 | 79.64 285 | 90.90 279 | 78.01 205 | 95.33 306 | 76.29 294 | 72.81 314 | 90.35 303 |
|
test_fmvs2 | | | 85.10 267 | 85.45 245 | 84.02 325 | 89.85 307 | 65.63 357 | 98.49 158 | 92.59 332 | 90.45 113 | 85.43 216 | 93.32 236 | 43.94 351 | 96.59 242 | 90.81 152 | 84.19 238 | 89.85 315 |
|
CP-MVSNet | | | 86.54 245 | 85.45 245 | 89.79 273 | 91.02 293 | 82.78 282 | 97.38 233 | 97.56 106 | 85.37 234 | 79.53 288 | 93.03 244 | 71.86 248 | 95.25 308 | 79.92 267 | 73.43 312 | 91.34 275 |
|
v1144 | | | 86.83 239 | 85.31 247 | 91.40 229 | 89.75 308 | 87.21 202 | 98.31 181 | 95.45 267 | 83.22 270 | 82.70 241 | 90.78 281 | 73.36 231 | 96.36 260 | 79.49 269 | 74.69 295 | 90.63 299 |
|
PVSNet_0 | | 83.28 16 | 87.31 233 | 85.16 248 | 93.74 185 | 94.78 221 | 84.59 256 | 98.91 113 | 98.69 19 | 89.81 130 | 78.59 298 | 93.23 240 | 61.95 304 | 99.34 120 | 94.75 100 | 55.72 361 | 97.30 189 |
|
v148 | | | 86.38 249 | 85.06 249 | 90.37 258 | 89.47 316 | 84.10 263 | 98.52 152 | 95.48 265 | 83.80 260 | 80.93 271 | 90.22 304 | 74.60 220 | 96.31 268 | 80.92 260 | 71.55 326 | 90.69 297 |
|
GBi-Net | | | 86.67 242 | 84.96 250 | 91.80 221 | 95.11 205 | 88.81 161 | 96.77 258 | 95.25 277 | 82.94 276 | 82.12 254 | 90.25 301 | 62.89 300 | 94.97 312 | 79.04 272 | 80.24 264 | 91.62 260 |
|
test1 | | | 86.67 242 | 84.96 250 | 91.80 221 | 95.11 205 | 88.81 161 | 96.77 258 | 95.25 277 | 82.94 276 | 82.12 254 | 90.25 301 | 62.89 300 | 94.97 312 | 79.04 272 | 80.24 264 | 91.62 260 |
|
XVG-ACMP-BASELINE | | | 85.86 256 | 84.95 252 | 88.57 294 | 89.90 305 | 77.12 326 | 94.30 306 | 95.60 259 | 87.40 203 | 82.12 254 | 92.99 246 | 53.42 334 | 97.66 199 | 85.02 217 | 83.83 242 | 90.92 287 |
|
v144192 | | | 86.40 248 | 84.89 253 | 90.91 240 | 89.48 315 | 85.59 239 | 98.21 188 | 95.43 270 | 82.45 287 | 82.62 242 | 90.58 293 | 72.79 240 | 96.36 260 | 78.45 279 | 74.04 305 | 90.79 291 |
|
JIA-IIPM | | | 85.97 254 | 84.85 254 | 89.33 284 | 93.23 260 | 73.68 338 | 85.05 354 | 97.13 159 | 69.62 349 | 91.56 148 | 68.03 364 | 88.03 70 | 96.96 229 | 77.89 282 | 93.12 166 | 97.34 188 |
|
Baseline_NR-MVSNet | | | 85.83 257 | 84.82 255 | 88.87 293 | 88.73 323 | 83.34 272 | 98.63 140 | 91.66 345 | 80.41 311 | 82.44 245 | 91.35 271 | 74.63 218 | 95.42 304 | 84.13 229 | 71.39 327 | 87.84 333 |
|
tt0805 | | | 86.50 247 | 84.79 256 | 91.63 227 | 91.97 275 | 81.49 294 | 96.49 268 | 97.38 137 | 82.24 290 | 82.44 245 | 95.82 191 | 51.22 339 | 98.25 163 | 84.55 223 | 80.96 263 | 95.13 219 |
|
FMVSNet2 | | | 86.90 237 | 84.79 256 | 93.24 191 | 95.11 205 | 92.54 85 | 97.67 225 | 95.86 245 | 82.94 276 | 80.55 274 | 91.17 275 | 62.89 300 | 95.29 307 | 77.23 284 | 79.71 270 | 91.90 254 |
|
v1192 | | | 86.32 250 | 84.71 258 | 91.17 233 | 89.53 314 | 86.40 213 | 98.13 193 | 95.44 269 | 82.52 285 | 82.42 247 | 90.62 290 | 71.58 252 | 96.33 267 | 77.23 284 | 74.88 292 | 90.79 291 |
|
IterMVS | | | 85.81 258 | 84.67 259 | 89.22 285 | 93.51 252 | 83.67 269 | 96.32 273 | 94.80 294 | 85.09 239 | 78.69 294 | 90.17 307 | 66.57 284 | 93.17 335 | 79.48 270 | 77.42 282 | 90.81 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 85.73 261 | 84.64 260 | 89.00 290 | 93.46 255 | 82.90 278 | 96.27 274 | 94.70 297 | 85.02 242 | 78.62 296 | 90.35 299 | 66.61 282 | 93.33 332 | 79.38 271 | 77.36 283 | 90.76 293 |
|
PS-CasMVS | | | 85.81 258 | 84.58 261 | 89.49 282 | 90.77 295 | 82.11 288 | 97.20 244 | 97.36 139 | 84.83 246 | 79.12 293 | 92.84 247 | 67.42 277 | 95.16 310 | 78.39 280 | 73.25 313 | 91.21 280 |
|
v8 | | | 86.11 252 | 84.45 262 | 91.10 235 | 89.99 303 | 86.85 205 | 97.24 241 | 95.36 274 | 81.99 293 | 79.89 283 | 89.86 309 | 74.53 222 | 96.39 258 | 78.83 276 | 72.32 320 | 90.05 311 |
|
v1921920 | | | 86.02 253 | 84.44 263 | 90.77 246 | 89.32 317 | 85.20 246 | 98.10 198 | 95.35 275 | 82.19 291 | 82.25 252 | 90.71 283 | 70.73 255 | 96.30 271 | 76.85 289 | 74.49 297 | 90.80 290 |
|
EU-MVSNet | | | 84.19 280 | 84.42 264 | 83.52 328 | 88.64 325 | 67.37 356 | 96.04 284 | 95.76 249 | 85.29 235 | 78.44 299 | 93.18 241 | 70.67 256 | 91.48 352 | 75.79 298 | 75.98 285 | 91.70 256 |
|
pmmvs5 | | | 85.87 255 | 84.40 265 | 90.30 259 | 88.53 326 | 84.23 260 | 98.60 145 | 93.71 318 | 81.53 298 | 80.29 277 | 92.02 256 | 64.51 295 | 95.52 301 | 82.04 253 | 78.34 274 | 91.15 281 |
|
v1240 | | | 85.77 260 | 84.11 266 | 90.73 247 | 89.26 318 | 85.15 249 | 97.88 212 | 95.23 284 | 81.89 296 | 82.16 253 | 90.55 295 | 69.60 262 | 96.31 268 | 75.59 299 | 74.87 293 | 90.72 296 |
|
Patchmatch-test | | | 86.25 251 | 84.06 267 | 92.82 199 | 94.42 227 | 82.88 280 | 82.88 362 | 94.23 310 | 71.58 342 | 79.39 289 | 90.62 290 | 89.00 57 | 96.42 257 | 63.03 348 | 91.37 196 | 99.16 100 |
|
v10 | | | 85.73 261 | 84.01 268 | 90.87 243 | 90.03 302 | 86.73 207 | 97.20 244 | 95.22 285 | 81.25 301 | 79.85 284 | 89.75 310 | 73.30 234 | 96.28 272 | 76.87 288 | 72.64 316 | 89.61 319 |
|
PEN-MVS | | | 85.21 266 | 83.93 269 | 89.07 289 | 89.89 306 | 81.31 299 | 97.09 247 | 97.24 146 | 84.45 251 | 78.66 295 | 92.68 249 | 68.44 268 | 94.87 315 | 75.98 296 | 70.92 329 | 91.04 284 |
|
UniMVSNet_ETH3D | | | 85.65 263 | 83.79 270 | 91.21 232 | 90.41 300 | 80.75 307 | 95.36 297 | 95.78 247 | 78.76 318 | 81.83 265 | 94.33 214 | 49.86 344 | 96.66 239 | 84.30 225 | 83.52 247 | 96.22 213 |
|
OurMVSNet-221017-0 | | | 84.13 282 | 83.59 271 | 85.77 315 | 87.81 333 | 70.24 350 | 94.89 301 | 93.65 320 | 86.08 225 | 76.53 306 | 93.28 239 | 61.41 306 | 96.14 278 | 80.95 259 | 77.69 281 | 90.93 286 |
|
PatchT | | | 85.44 264 | 83.19 272 | 92.22 209 | 93.13 262 | 83.00 275 | 83.80 361 | 96.37 200 | 70.62 344 | 90.55 165 | 79.63 356 | 84.81 130 | 94.87 315 | 58.18 358 | 91.59 192 | 98.79 136 |
|
AllTest | | | 84.97 269 | 83.12 273 | 90.52 252 | 96.82 140 | 78.84 316 | 95.89 287 | 92.17 338 | 77.96 322 | 75.94 310 | 95.50 195 | 55.48 324 | 99.18 125 | 71.15 322 | 87.14 214 | 93.55 226 |
|
USDC | | | 84.74 270 | 82.93 274 | 90.16 261 | 91.73 282 | 83.54 270 | 95.00 300 | 93.30 325 | 88.77 161 | 73.19 326 | 93.30 238 | 53.62 333 | 97.65 201 | 75.88 297 | 81.54 261 | 89.30 322 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 275 | 82.82 275 | 89.70 275 | 96.72 144 | 78.85 315 | 95.89 287 | 92.83 330 | 71.55 343 | 77.54 305 | 95.89 190 | 59.40 313 | 99.14 131 | 67.26 336 | 88.26 210 | 91.11 283 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
our_test_3 | | | 84.47 277 | 82.80 276 | 89.50 280 | 89.01 319 | 83.90 266 | 97.03 249 | 94.56 301 | 81.33 300 | 75.36 316 | 90.52 296 | 71.69 250 | 94.54 324 | 68.81 331 | 76.84 284 | 90.07 309 |
|
DTE-MVSNet | | | 84.14 281 | 82.80 276 | 88.14 298 | 88.95 321 | 79.87 311 | 96.81 257 | 96.24 209 | 83.50 266 | 77.60 304 | 92.52 251 | 67.89 274 | 94.24 327 | 72.64 320 | 69.05 332 | 90.32 304 |
|
pm-mvs1 | | | 84.68 272 | 82.78 278 | 90.40 255 | 89.58 311 | 85.18 247 | 97.31 236 | 94.73 296 | 81.93 295 | 76.05 309 | 92.01 257 | 65.48 292 | 96.11 279 | 78.75 277 | 69.14 331 | 89.91 314 |
|
v7n | | | 84.42 278 | 82.75 279 | 89.43 283 | 88.15 329 | 81.86 290 | 96.75 261 | 95.67 255 | 80.53 307 | 78.38 300 | 89.43 314 | 69.89 258 | 96.35 265 | 73.83 313 | 72.13 322 | 90.07 309 |
|
LTVRE_ROB | | 81.71 19 | 84.59 274 | 82.72 280 | 90.18 260 | 92.89 266 | 83.18 274 | 93.15 317 | 94.74 295 | 78.99 315 | 75.14 317 | 92.69 248 | 65.64 289 | 97.63 202 | 69.46 329 | 81.82 260 | 89.74 316 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVS_0304 | | | 84.13 282 | 82.66 281 | 88.52 295 | 93.07 263 | 80.15 308 | 95.81 293 | 98.21 31 | 79.27 313 | 86.85 205 | 86.40 336 | 41.33 357 | 94.69 321 | 76.36 293 | 86.69 217 | 90.73 295 |
|
Anonymous20231211 | | | 84.72 271 | 82.65 282 | 90.91 240 | 97.71 109 | 84.55 257 | 97.28 238 | 96.67 181 | 66.88 357 | 79.18 292 | 90.87 280 | 58.47 315 | 96.60 241 | 82.61 247 | 74.20 302 | 91.59 265 |
|
ACMH | | 83.09 17 | 84.60 273 | 82.61 283 | 90.57 249 | 93.18 261 | 82.94 276 | 96.27 274 | 94.92 290 | 81.01 304 | 72.61 333 | 93.61 231 | 56.54 320 | 97.79 188 | 74.31 307 | 81.07 262 | 90.99 285 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 83.78 15 | 84.21 279 | 82.56 284 | 89.15 287 | 93.73 249 | 79.16 313 | 96.43 269 | 94.28 309 | 81.09 303 | 74.00 321 | 94.03 218 | 54.58 330 | 97.67 198 | 76.10 295 | 78.81 272 | 90.63 299 |
|
RPMNet | | | 85.07 268 | 81.88 285 | 94.64 151 | 93.47 253 | 86.24 219 | 84.97 355 | 97.21 149 | 64.85 360 | 90.76 162 | 78.80 357 | 80.95 185 | 99.27 123 | 53.76 362 | 92.17 183 | 98.41 155 |
|
MIMVSNet | | | 84.48 276 | 81.83 286 | 92.42 207 | 91.73 282 | 87.36 194 | 85.52 351 | 94.42 306 | 81.40 299 | 81.91 260 | 87.58 323 | 51.92 337 | 92.81 338 | 73.84 312 | 88.15 211 | 97.08 197 |
|
Patchmtry | | | 83.61 287 | 81.64 287 | 89.50 280 | 93.36 257 | 82.84 281 | 84.10 358 | 94.20 311 | 69.47 350 | 79.57 287 | 86.88 333 | 84.43 133 | 94.78 318 | 68.48 333 | 74.30 300 | 90.88 288 |
|
SixPastTwentyTwo | | | 82.63 290 | 81.58 288 | 85.79 314 | 88.12 330 | 71.01 348 | 95.17 299 | 92.54 333 | 84.33 252 | 72.93 331 | 92.08 254 | 60.41 310 | 95.61 300 | 74.47 306 | 74.15 303 | 90.75 294 |
|
ppachtmachnet_test | | | 83.63 286 | 81.57 289 | 89.80 272 | 89.01 319 | 85.09 250 | 97.13 246 | 94.50 302 | 78.84 316 | 76.14 308 | 91.00 277 | 69.78 259 | 94.61 323 | 63.40 346 | 74.36 299 | 89.71 318 |
|
DSMNet-mixed | | | 81.60 296 | 81.43 290 | 82.10 332 | 84.36 348 | 60.79 360 | 93.63 314 | 86.74 365 | 79.00 314 | 79.32 290 | 87.15 331 | 63.87 298 | 89.78 356 | 66.89 338 | 91.92 185 | 95.73 217 |
|
tfpnnormal | | | 83.65 285 | 81.35 291 | 90.56 251 | 91.37 288 | 88.06 175 | 97.29 237 | 97.87 49 | 78.51 319 | 76.20 307 | 90.91 278 | 64.78 294 | 96.47 254 | 61.71 351 | 73.50 309 | 87.13 341 |
|
FMVSNet1 | | | 83.94 284 | 81.32 292 | 91.80 221 | 91.94 278 | 88.81 161 | 96.77 258 | 95.25 277 | 77.98 320 | 78.25 301 | 90.25 301 | 50.37 343 | 94.97 312 | 73.27 316 | 77.81 280 | 91.62 260 |
|
LF4IMVS | | | 81.94 294 | 81.17 293 | 84.25 324 | 87.23 339 | 68.87 355 | 93.35 316 | 91.93 343 | 83.35 269 | 75.40 315 | 93.00 245 | 49.25 347 | 96.65 240 | 78.88 275 | 78.11 275 | 87.22 340 |
|
testgi | | | 82.29 291 | 81.00 294 | 86.17 312 | 87.24 338 | 74.84 334 | 97.39 231 | 91.62 346 | 88.63 162 | 75.85 313 | 95.42 198 | 46.07 350 | 91.55 351 | 66.87 339 | 79.94 268 | 92.12 248 |
|
FMVSNet5 | | | 82.29 291 | 80.54 295 | 87.52 303 | 93.79 248 | 84.01 264 | 93.73 312 | 92.47 334 | 76.92 327 | 74.27 319 | 86.15 338 | 63.69 299 | 89.24 358 | 69.07 330 | 74.79 294 | 89.29 323 |
|
KD-MVS_2432*1600 | | | 82.98 288 | 80.52 296 | 90.38 256 | 94.32 229 | 88.98 154 | 92.87 320 | 95.87 243 | 80.46 309 | 73.79 322 | 87.49 326 | 82.76 162 | 93.29 333 | 70.56 326 | 46.53 368 | 88.87 328 |
|
miper_refine_blended | | | 82.98 288 | 80.52 296 | 90.38 256 | 94.32 229 | 88.98 154 | 92.87 320 | 95.87 243 | 80.46 309 | 73.79 322 | 87.49 326 | 82.76 162 | 93.29 333 | 70.56 326 | 46.53 368 | 88.87 328 |
|
Patchmatch-RL test | | | 81.90 295 | 80.13 298 | 87.23 306 | 80.71 358 | 70.12 352 | 84.07 359 | 88.19 363 | 83.16 272 | 70.57 335 | 82.18 349 | 87.18 86 | 92.59 341 | 82.28 250 | 62.78 348 | 98.98 114 |
|
CMPMVS |  | 58.40 21 | 80.48 300 | 80.11 299 | 81.59 335 | 85.10 346 | 59.56 362 | 94.14 309 | 95.95 229 | 68.54 352 | 60.71 358 | 93.31 237 | 55.35 327 | 97.87 183 | 83.06 243 | 84.85 231 | 87.33 338 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_vis1_rt | | | 81.31 297 | 80.05 300 | 85.11 317 | 91.29 289 | 70.66 349 | 98.98 107 | 77.39 374 | 85.76 229 | 68.80 340 | 82.40 347 | 36.56 361 | 99.44 105 | 92.67 136 | 86.55 218 | 85.24 351 |
|
K. test v3 | | | 81.04 298 | 79.77 301 | 84.83 320 | 87.41 337 | 70.23 351 | 95.60 296 | 93.93 315 | 83.70 263 | 67.51 347 | 89.35 315 | 55.76 322 | 93.58 331 | 76.67 291 | 68.03 335 | 90.67 298 |
|
TransMVSNet (Re) | | | 81.97 293 | 79.61 302 | 89.08 288 | 89.70 309 | 84.01 264 | 97.26 239 | 91.85 344 | 78.84 316 | 73.07 330 | 91.62 265 | 67.17 279 | 95.21 309 | 67.50 335 | 59.46 355 | 88.02 332 |
|
Anonymous20231206 | | | 80.76 299 | 79.42 303 | 84.79 321 | 84.78 347 | 72.98 340 | 96.53 266 | 92.97 327 | 79.56 312 | 74.33 318 | 88.83 317 | 61.27 307 | 92.15 347 | 60.59 353 | 75.92 286 | 89.24 324 |
|
CL-MVSNet_self_test | | | 79.89 304 | 78.34 304 | 84.54 323 | 81.56 356 | 75.01 332 | 96.88 255 | 95.62 257 | 81.10 302 | 75.86 312 | 85.81 339 | 68.49 267 | 90.26 354 | 63.21 347 | 56.51 359 | 88.35 330 |
|
TinyColmap | | | 80.42 301 | 77.94 305 | 87.85 300 | 92.09 274 | 78.58 318 | 93.74 311 | 89.94 355 | 74.99 333 | 69.77 338 | 91.78 263 | 46.09 349 | 97.58 206 | 65.17 344 | 77.89 276 | 87.38 336 |
|
EG-PatchMatch MVS | | | 79.92 302 | 77.59 306 | 86.90 308 | 87.06 340 | 77.90 325 | 96.20 281 | 94.06 313 | 74.61 335 | 66.53 351 | 88.76 318 | 40.40 359 | 96.20 273 | 67.02 337 | 83.66 245 | 86.61 342 |
|
test20.03 | | | 78.51 312 | 77.48 307 | 81.62 334 | 83.07 352 | 71.03 347 | 96.11 282 | 92.83 330 | 81.66 297 | 69.31 339 | 89.68 311 | 57.53 317 | 87.29 363 | 58.65 357 | 68.47 333 | 86.53 343 |
|
pmmvs6 | | | 79.90 303 | 77.31 308 | 87.67 302 | 84.17 349 | 78.13 322 | 95.86 291 | 93.68 319 | 67.94 354 | 72.67 332 | 89.62 312 | 50.98 341 | 95.75 295 | 74.80 305 | 66.04 342 | 89.14 325 |
|
MDA-MVSNet_test_wron | | | 79.65 305 | 77.05 309 | 87.45 304 | 87.79 335 | 80.13 309 | 96.25 277 | 94.44 303 | 73.87 338 | 51.80 362 | 87.47 328 | 68.04 271 | 92.12 348 | 66.02 340 | 67.79 337 | 90.09 307 |
|
YYNet1 | | | 79.64 306 | 77.04 310 | 87.43 305 | 87.80 334 | 79.98 310 | 96.23 278 | 94.44 303 | 73.83 339 | 51.83 361 | 87.53 324 | 67.96 273 | 92.07 349 | 66.00 341 | 67.75 338 | 90.23 306 |
|
Anonymous20240521 | | | 78.63 311 | 76.90 311 | 83.82 326 | 82.82 353 | 72.86 341 | 95.72 295 | 93.57 321 | 73.55 340 | 72.17 334 | 84.79 341 | 49.69 345 | 92.51 343 | 65.29 343 | 74.50 296 | 86.09 346 |
|
UnsupCasMVSNet_eth | | | 78.90 308 | 76.67 312 | 85.58 316 | 82.81 354 | 74.94 333 | 91.98 326 | 96.31 203 | 84.64 248 | 65.84 353 | 87.71 322 | 51.33 338 | 92.23 346 | 72.89 319 | 56.50 360 | 89.56 320 |
|
test_0402 | | | 78.81 309 | 76.33 313 | 86.26 311 | 91.18 290 | 78.44 320 | 95.88 289 | 91.34 349 | 68.55 351 | 70.51 337 | 89.91 308 | 52.65 336 | 94.99 311 | 47.14 365 | 79.78 269 | 85.34 350 |
|
pmmvs-eth3d | | | 78.71 310 | 76.16 314 | 86.38 310 | 80.25 360 | 81.19 301 | 94.17 308 | 92.13 340 | 77.97 321 | 66.90 350 | 82.31 348 | 55.76 322 | 92.56 342 | 73.63 315 | 62.31 351 | 85.38 348 |
|
KD-MVS_self_test | | | 77.47 316 | 75.88 315 | 82.24 330 | 81.59 355 | 68.93 354 | 92.83 322 | 94.02 314 | 77.03 326 | 73.14 327 | 83.39 344 | 55.44 326 | 90.42 353 | 67.95 334 | 57.53 358 | 87.38 336 |
|
TDRefinement | | | 78.01 313 | 75.31 316 | 86.10 313 | 70.06 369 | 73.84 337 | 93.59 315 | 91.58 347 | 74.51 336 | 73.08 329 | 91.04 276 | 49.63 346 | 97.12 222 | 74.88 303 | 59.47 354 | 87.33 338 |
|
test_fmvs3 | | | 75.09 320 | 75.19 317 | 74.81 342 | 77.45 364 | 54.08 367 | 95.93 285 | 90.64 352 | 82.51 286 | 73.29 325 | 81.19 351 | 22.29 368 | 86.29 364 | 85.50 212 | 67.89 336 | 84.06 354 |
|
MVS-HIRNet | | | 79.01 307 | 75.13 318 | 90.66 248 | 93.82 247 | 81.69 292 | 85.16 352 | 93.75 317 | 54.54 362 | 74.17 320 | 59.15 368 | 57.46 318 | 96.58 245 | 63.74 345 | 94.38 156 | 93.72 225 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 314 | 75.06 319 | 86.77 309 | 83.81 351 | 77.94 324 | 96.38 271 | 91.53 348 | 67.54 355 | 68.38 342 | 87.13 332 | 43.94 351 | 96.08 280 | 55.03 361 | 81.83 259 | 86.29 345 |
|
MDA-MVSNet-bldmvs | | | 77.82 315 | 74.75 320 | 87.03 307 | 88.33 327 | 78.52 319 | 96.34 272 | 92.85 329 | 75.57 331 | 48.87 364 | 87.89 321 | 57.32 319 | 92.49 344 | 60.79 352 | 64.80 346 | 90.08 308 |
|
mvsany_test3 | | | 75.85 319 | 74.52 321 | 79.83 337 | 73.53 366 | 60.64 361 | 91.73 329 | 87.87 364 | 83.91 259 | 70.55 336 | 82.52 346 | 31.12 363 | 93.66 329 | 86.66 201 | 62.83 347 | 85.19 352 |
|
new_pmnet | | | 76.02 317 | 73.71 322 | 82.95 329 | 83.88 350 | 72.85 342 | 91.26 335 | 92.26 337 | 70.44 346 | 62.60 356 | 81.37 350 | 47.64 348 | 92.32 345 | 61.85 350 | 72.10 323 | 83.68 356 |
|
MIMVSNet1 | | | 75.92 318 | 73.30 323 | 83.81 327 | 81.29 357 | 75.57 330 | 92.26 325 | 92.05 341 | 73.09 341 | 67.48 348 | 86.18 337 | 40.87 358 | 87.64 362 | 55.78 360 | 70.68 330 | 88.21 331 |
|
PM-MVS | | | 74.88 321 | 72.85 324 | 80.98 336 | 78.98 362 | 64.75 358 | 90.81 339 | 85.77 366 | 80.95 305 | 68.23 344 | 82.81 345 | 29.08 365 | 92.84 337 | 76.54 292 | 62.46 350 | 85.36 349 |
|
new-patchmatchnet | | | 74.80 322 | 72.40 325 | 81.99 333 | 78.36 363 | 72.20 344 | 94.44 304 | 92.36 335 | 77.06 325 | 63.47 355 | 79.98 355 | 51.04 340 | 88.85 359 | 60.53 354 | 54.35 362 | 84.92 353 |
|
test_f | | | 71.94 325 | 70.82 326 | 75.30 341 | 72.77 367 | 53.28 368 | 91.62 330 | 89.66 358 | 75.44 332 | 64.47 354 | 78.31 358 | 20.48 369 | 89.56 357 | 78.63 278 | 66.02 343 | 83.05 359 |
|
UnsupCasMVSNet_bld | | | 73.85 323 | 70.14 327 | 84.99 319 | 79.44 361 | 75.73 329 | 88.53 345 | 95.24 280 | 70.12 348 | 61.94 357 | 74.81 361 | 41.41 356 | 93.62 330 | 68.65 332 | 51.13 367 | 85.62 347 |
|
N_pmnet | | | 70.19 326 | 69.87 328 | 71.12 346 | 88.24 328 | 30.63 382 | 95.85 292 | 28.70 382 | 70.18 347 | 68.73 341 | 86.55 335 | 64.04 297 | 93.81 328 | 53.12 363 | 73.46 310 | 88.94 326 |
|
pmmvs3 | | | 72.86 324 | 69.76 329 | 82.17 331 | 73.86 365 | 74.19 336 | 94.20 307 | 89.01 361 | 64.23 361 | 67.72 345 | 80.91 353 | 41.48 355 | 88.65 360 | 62.40 349 | 54.02 363 | 83.68 356 |
|
test_method | | | 70.10 327 | 68.66 330 | 74.41 344 | 86.30 344 | 55.84 365 | 94.47 303 | 89.82 356 | 35.18 370 | 66.15 352 | 84.75 342 | 30.54 364 | 77.96 371 | 70.40 328 | 60.33 353 | 89.44 321 |
|
APD_test1 | | | 68.93 328 | 66.98 331 | 74.77 343 | 80.62 359 | 53.15 369 | 87.97 346 | 85.01 368 | 53.76 363 | 59.26 359 | 87.52 325 | 25.19 366 | 89.95 355 | 56.20 359 | 67.33 339 | 81.19 360 |
|
FPMVS | | | 61.57 329 | 60.32 332 | 65.34 349 | 60.14 376 | 42.44 377 | 91.02 338 | 89.72 357 | 44.15 365 | 42.63 368 | 80.93 352 | 19.02 370 | 80.59 370 | 42.50 366 | 72.76 315 | 73.00 362 |
|
test_vis3_rt | | | 61.29 330 | 58.75 333 | 68.92 348 | 67.41 370 | 52.84 370 | 91.18 337 | 59.23 381 | 66.96 356 | 41.96 369 | 58.44 369 | 11.37 377 | 94.72 320 | 74.25 308 | 57.97 357 | 59.20 368 |
|
LCM-MVSNet | | | 60.07 332 | 56.37 334 | 71.18 345 | 54.81 378 | 48.67 373 | 82.17 363 | 89.48 359 | 37.95 368 | 49.13 363 | 69.12 362 | 13.75 376 | 81.76 365 | 59.28 355 | 51.63 366 | 83.10 358 |
|
EGC-MVSNET | | | 60.70 331 | 55.37 335 | 76.72 339 | 86.35 343 | 71.08 346 | 89.96 343 | 84.44 370 | 0.38 379 | 1.50 380 | 84.09 343 | 37.30 360 | 88.10 361 | 40.85 369 | 73.44 311 | 70.97 364 |
|
PMMVS2 | | | 58.97 333 | 55.07 336 | 70.69 347 | 62.72 373 | 55.37 366 | 85.97 350 | 80.52 371 | 49.48 364 | 45.94 365 | 68.31 363 | 15.73 374 | 80.78 369 | 49.79 364 | 37.12 370 | 75.91 361 |
|
testf1 | | | 56.38 334 | 53.73 337 | 64.31 351 | 64.84 371 | 45.11 374 | 80.50 364 | 75.94 376 | 38.87 366 | 42.74 366 | 75.07 359 | 11.26 378 | 81.19 367 | 41.11 367 | 53.27 364 | 66.63 365 |
|
APD_test2 | | | 56.38 334 | 53.73 337 | 64.31 351 | 64.84 371 | 45.11 374 | 80.50 364 | 75.94 376 | 38.87 366 | 42.74 366 | 75.07 359 | 11.26 378 | 81.19 367 | 41.11 367 | 53.27 364 | 66.63 365 |
|
tmp_tt | | | 53.66 337 | 52.86 339 | 56.05 354 | 32.75 382 | 41.97 378 | 73.42 368 | 76.12 375 | 21.91 375 | 39.68 371 | 96.39 181 | 42.59 354 | 65.10 374 | 78.00 281 | 14.92 375 | 61.08 367 |
|
Gipuma |  | | 54.77 336 | 52.22 340 | 62.40 353 | 86.50 341 | 59.37 363 | 50.20 371 | 90.35 354 | 36.52 369 | 41.20 370 | 49.49 371 | 18.33 372 | 81.29 366 | 32.10 371 | 65.34 344 | 46.54 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ANet_high | | | 50.71 338 | 46.17 341 | 64.33 350 | 44.27 380 | 52.30 371 | 76.13 367 | 78.73 372 | 64.95 359 | 27.37 373 | 55.23 370 | 14.61 375 | 67.74 373 | 36.01 370 | 18.23 373 | 72.95 363 |
|
PMVS |  | 41.42 23 | 45.67 339 | 42.50 342 | 55.17 355 | 34.28 381 | 32.37 380 | 66.24 369 | 78.71 373 | 30.72 371 | 22.04 376 | 59.59 367 | 4.59 380 | 77.85 372 | 27.49 372 | 58.84 356 | 55.29 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 41.02 341 | 40.93 343 | 41.29 357 | 61.97 374 | 33.83 379 | 84.00 360 | 65.17 379 | 27.17 372 | 27.56 372 | 46.72 373 | 17.63 373 | 60.41 376 | 19.32 374 | 18.82 372 | 29.61 372 |
|
EMVS | | | 39.96 342 | 39.88 344 | 40.18 358 | 59.57 377 | 32.12 381 | 84.79 357 | 64.57 380 | 26.27 373 | 26.14 374 | 44.18 376 | 18.73 371 | 59.29 377 | 17.03 375 | 17.67 374 | 29.12 373 |
|
MVE |  | 44.00 22 | 41.70 340 | 37.64 345 | 53.90 356 | 49.46 379 | 43.37 376 | 65.09 370 | 66.66 378 | 26.19 374 | 25.77 375 | 48.53 372 | 3.58 382 | 63.35 375 | 26.15 373 | 27.28 371 | 54.97 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 22.52 343 | 30.03 346 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 97.17 155 | 0.00 380 | 0.00 381 | 98.77 74 | 74.35 225 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
testmvs | | | 18.81 344 | 23.05 347 | 6.10 361 | 4.48 383 | 2.29 385 | 97.78 217 | 3.00 384 | 3.27 377 | 18.60 377 | 62.71 365 | 1.53 384 | 2.49 380 | 14.26 377 | 1.80 377 | 13.50 375 |
|
test123 | | | 16.58 346 | 19.47 348 | 7.91 360 | 3.59 384 | 5.37 384 | 94.32 305 | 1.39 385 | 2.49 378 | 13.98 378 | 44.60 375 | 2.91 383 | 2.65 379 | 11.35 378 | 0.57 378 | 15.70 374 |
|
wuyk23d | | | 16.71 345 | 16.73 349 | 16.65 359 | 60.15 375 | 25.22 383 | 41.24 372 | 5.17 383 | 6.56 376 | 5.48 379 | 3.61 379 | 3.64 381 | 22.72 378 | 15.20 376 | 9.52 376 | 1.99 376 |
|
ab-mvs-re | | | 8.21 347 | 10.94 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 98.50 96 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 6.87 348 | 9.16 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 82.48 167 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
FOURS1 | | | | | | 99.50 42 | 88.94 157 | 99.55 33 | 97.47 124 | 91.32 94 | 98.12 35 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 76 | | | | | 99.98 9 | 99.55 10 | 99.83 15 | 99.96 10 |
|
PC_three_1452 | | | | | | | | | | 94.60 23 | 99.41 2 | 99.12 41 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 76 | | | | | 99.98 9 | 99.55 10 | 99.83 15 | 99.96 10 |
|
test_one_0601 | | | | | | 99.59 28 | 94.89 32 | | 97.64 87 | 93.14 55 | 98.93 16 | 99.45 14 | 93.45 18 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.67 10 | 93.28 69 | | 97.61 94 | 87.78 191 | 97.41 51 | 99.16 34 | 90.15 47 | 99.56 91 | 98.35 30 | 99.70 35 | |
|
IU-MVS | | | | | | 99.63 18 | 95.38 20 | | 97.73 68 | 95.54 15 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 9 | | | | 99.19 28 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
test_241102_TWO | | | | | | | | | 97.72 69 | 94.17 29 | 99.23 8 | 99.54 3 | 93.14 24 | 99.98 9 | 99.70 3 | 99.82 19 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 18 | 95.24 23 | | 97.72 69 | 94.16 31 | 99.30 6 | 99.49 9 | 93.32 19 | 99.98 9 | | | |
|
save fliter | | | | | | 99.34 50 | 93.85 60 | 99.65 25 | 97.63 91 | 95.69 12 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.01 56 | 99.07 11 | 99.46 10 | 94.66 14 | 99.97 21 | 99.25 14 | 99.82 19 | 99.95 15 |
|
test_0728_SECOND | | | | | 98.77 7 | 99.66 12 | 96.37 12 | 99.72 14 | 97.68 78 | | | | | 99.98 9 | 99.64 6 | 99.82 19 | 99.96 10 |
|
test0726 | | | | | | 99.66 12 | 95.20 28 | 99.77 9 | 97.70 74 | 93.95 34 | 99.35 5 | 99.54 3 | 93.18 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 129 |
|
test_part2 | | | | | | 99.54 36 | 95.42 18 | | | | 98.13 33 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 63 | | | | 98.84 129 |
|
sam_mvs | | | | | | | | | | | | | 87.08 88 | | | | |
|
ambc | | | | | 79.60 338 | 72.76 368 | 56.61 364 | 76.20 366 | 92.01 342 | | 68.25 343 | 80.23 354 | 23.34 367 | 94.73 319 | 73.78 314 | 60.81 352 | 87.48 335 |
|
MTGPA |  | | | | | | | | 97.45 127 | | | | | | | | |
|
test_post1 | | | | | | | | 90.74 341 | | | | 41.37 377 | 85.38 124 | 96.36 260 | 83.16 240 | | |
|
test_post | | | | | | | | | | | | 46.00 374 | 87.37 80 | 97.11 223 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 340 | 88.73 60 | 96.81 235 | | | |
|
GG-mvs-BLEND | | | | | 96.98 61 | 96.53 148 | 94.81 39 | 87.20 347 | 97.74 65 | | 93.91 119 | 96.40 179 | 96.56 2 | 96.94 231 | 95.08 92 | 98.95 81 | 99.20 98 |
|
MTMP | | | | | | | | 99.21 71 | 91.09 350 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.69 223 | 88.14 173 | | | 88.22 179 | | 97.20 149 | | 98.29 161 | 90.79 153 | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 23 | 99.87 9 | 99.90 22 |
|
TEST9 | | | | | | 99.57 33 | 93.17 71 | 99.38 58 | 97.66 81 | 89.57 138 | 98.39 27 | 99.18 31 | 90.88 37 | 99.66 80 | | | |
|
test_8 | | | | | | 99.55 35 | 93.07 74 | 99.37 61 | 97.64 87 | 90.18 120 | 98.36 29 | 99.19 28 | 90.94 35 | 99.64 86 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 41 | 99.87 9 | 99.91 21 |
|
agg_prior | | | | | | 99.54 36 | 92.66 81 | | 97.64 87 | | 97.98 42 | | | 99.61 88 | | | |
|
TestCases | | | | | 90.52 252 | 96.82 140 | 78.84 316 | | 92.17 338 | 77.96 322 | 75.94 310 | 95.50 195 | 55.48 324 | 99.18 125 | 71.15 322 | 87.14 214 | 93.55 226 |
|
test_prior4 | | | | | | | 92.00 90 | 99.41 55 | | | | | | | | | |
|
test_prior2 | | | | | | | | 99.57 31 | | 91.43 91 | 98.12 35 | 98.97 55 | 90.43 43 | | 98.33 31 | 99.81 23 | |
|
test_prior | | | | | 97.01 56 | 99.58 30 | 91.77 91 | | 97.57 105 | | | | | 99.49 98 | | | 99.79 35 |
|
旧先验2 | | | | | | | | 98.67 135 | | 85.75 230 | 98.96 15 | | | 98.97 138 | 93.84 116 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 98.26 184 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 97.40 43 | 98.92 77 | 92.51 86 | | 97.77 63 | 85.52 232 | 96.69 71 | 99.06 48 | 88.08 69 | 99.89 45 | 84.88 218 | 99.62 44 | 99.79 35 |
|
旧先验1 | | | | | | 98.97 73 | 92.90 80 | | 97.74 65 | | | 99.15 36 | 91.05 34 | | | 99.33 63 | 99.60 65 |
|
æ— å…ˆéªŒ | | | | | | | | 98.52 152 | 97.82 54 | 87.20 205 | | | | 99.90 43 | 87.64 190 | | 99.85 30 |
|
原ACMM2 | | | | | | | | 98.69 132 | | | | | | | | | |
|
原ACMM1 | | | | | 96.18 99 | 99.03 71 | 90.08 132 | | 97.63 91 | 88.98 153 | 97.00 60 | 98.97 55 | 88.14 68 | 99.71 76 | 88.23 182 | 99.62 44 | 98.76 140 |
|
test222 | | | | | | 98.32 92 | 91.21 101 | 98.08 201 | 97.58 102 | 83.74 261 | 95.87 86 | 99.02 52 | 86.74 96 | | | 99.64 40 | 99.81 32 |
|
testdata2 | | | | | | | | | | | | | | 99.88 46 | 84.16 228 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 41 | | | | |
|
testdata | | | | | 95.26 130 | 98.20 95 | 87.28 197 | | 97.60 96 | 85.21 236 | 98.48 26 | 99.15 36 | 88.15 67 | 98.72 148 | 90.29 158 | 99.45 57 | 99.78 37 |
|
testdata1 | | | | | | | | 97.89 210 | | 92.43 68 | | | | | | | |
|
test12 | | | | | 97.83 31 | 99.33 53 | 94.45 47 | | 97.55 107 | | 97.56 47 | | 88.60 61 | 99.50 97 | | 99.71 34 | 99.55 69 |
|
plane_prior7 | | | | | | 93.84 245 | 85.73 236 | | | | | | | | | | |
|
plane_prior6 | | | | | | 93.92 242 | 86.02 230 | | | | | | 72.92 237 | | | | |
|
plane_prior5 | | | | | | | | | 96.30 204 | | | | | 97.75 195 | 93.46 123 | 86.17 222 | 92.67 231 |
|
plane_prior4 | | | | | | | | | | | | 96.52 175 | | | | | |
|
plane_prior3 | | | | | | | 85.91 231 | | | 93.65 47 | 86.99 200 | | | | | | |
|
plane_prior2 | | | | | | | | 99.02 101 | | 93.38 52 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 244 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 228 | 99.14 86 | | 93.81 44 | | | | | | 86.26 221 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 369 | | | | | | | | |
|
lessismore_v0 | | | | | 85.08 318 | 85.59 345 | 69.28 353 | | 90.56 353 | | 67.68 346 | 90.21 305 | 54.21 332 | 95.46 302 | 73.88 311 | 62.64 349 | 90.50 301 |
|
LGP-MVS_train | | | | | 90.06 263 | 93.35 258 | 80.95 305 | | 95.94 230 | 87.73 195 | 83.17 235 | 96.11 186 | 66.28 285 | 97.77 190 | 90.19 159 | 85.19 228 | 91.46 269 |
|
test11 | | | | | | | | | 97.68 78 | | | | | | | | |
|
door | | | | | | | | | 85.30 367 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 214 | | | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 238 | | 99.16 78 | | 93.92 36 | 87.57 193 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 238 | | 99.16 78 | | 93.92 36 | 87.57 193 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 118 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 193 | | | 97.77 190 | | | 92.72 229 |
|
HQP3-MVS | | | | | | | | | 96.37 200 | | | | | | | 86.29 219 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 232 | | | | |
|
NP-MVS | | | | | | 93.94 241 | 86.22 221 | | | | | 96.67 173 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 104 | 91.38 333 | | 87.45 202 | 93.08 130 | | 86.67 98 | | 87.02 193 | | 98.95 120 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 255 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 242 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 142 | | | | |
|
ITE_SJBPF | | | | | 87.93 299 | 92.26 271 | 76.44 328 | | 93.47 323 | 87.67 198 | 79.95 282 | 95.49 197 | 56.50 321 | 97.38 217 | 75.24 300 | 82.33 257 | 89.98 313 |
|
DeepMVS_CX |  | | | | 76.08 340 | 90.74 296 | 51.65 372 | | 90.84 351 | 86.47 222 | 57.89 360 | 87.98 320 | 35.88 362 | 92.60 340 | 65.77 342 | 65.06 345 | 83.97 355 |
|