This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1399.80 897.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1899.90 799.96 10
MSP-MVS97.77 998.18 296.53 8799.54 3690.14 12999.41 5597.70 7495.46 1798.60 2299.19 2895.71 499.49 9898.15 3599.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 598.11 398.13 2299.76 694.46 4699.81 697.88 4896.54 698.84 1899.46 1092.55 2799.98 998.25 3499.93 199.94 18
SED-MVS98.18 298.10 498.41 1699.63 1895.24 2399.77 997.72 6994.17 2999.30 699.54 393.32 1999.98 999.70 399.81 2399.99 1
DVP-MVS++98.18 298.09 598.44 1499.61 2495.38 2099.55 3397.68 7893.01 5699.23 899.45 1495.12 899.98 999.25 1499.92 399.97 7
DVP-MVScopyleft98.07 798.00 698.29 1799.66 1295.20 2899.72 1497.47 12493.95 3499.07 1199.46 1093.18 2299.97 2199.64 699.82 1999.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 698.00 698.44 1499.50 4295.39 1999.29 6897.72 6994.50 2498.64 2199.54 393.32 1999.97 2199.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-297.10 2297.97 894.49 15499.21 6183.73 26899.62 2798.25 2795.28 1899.38 498.91 6592.28 2899.94 3499.61 899.22 7099.78 37
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1797.98 4697.18 295.96 8299.33 1992.62 26100.00 198.99 1899.93 199.98 6
DeepPCF-MVS93.56 196.55 3497.84 1092.68 20498.71 8578.11 32399.70 1797.71 7398.18 197.36 5399.76 190.37 4599.94 3499.27 1299.54 5299.99 1
HPM-MVS++copyleft97.72 1097.59 1198.14 2199.53 4094.76 4099.19 7297.75 6495.66 1398.21 3199.29 2091.10 3399.99 597.68 4299.87 999.68 54
APDe-MVS97.53 1197.47 1297.70 3499.58 3093.63 6299.56 3297.52 11493.59 4998.01 4199.12 4190.80 3999.55 9299.26 1399.79 2799.93 20
TSAR-MVS + MP.97.44 1497.46 1397.39 4499.12 6593.49 6798.52 15297.50 11994.46 2598.99 1398.64 8791.58 3099.08 13498.49 2799.83 1599.60 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1397.45 1497.63 3699.65 1693.21 7099.70 1798.13 3894.61 2297.78 4699.46 1089.85 4999.81 6697.97 3799.91 699.88 26
SD-MVS97.51 1297.40 1597.81 3299.01 7293.79 6199.33 6597.38 13793.73 4598.83 1999.02 5290.87 3899.88 4698.69 2199.74 2999.77 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.25 1597.34 1697.01 5697.38 11991.46 9899.75 1397.66 8194.14 3398.13 3399.26 2192.16 2999.66 8097.91 3999.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
DPM-MVS97.86 897.25 1799.68 198.25 9399.10 199.76 1297.78 6196.61 598.15 3299.53 793.62 17100.00 191.79 14299.80 2699.94 18
train_agg97.20 1997.08 1897.57 4099.57 3393.17 7199.38 5897.66 8190.18 12098.39 2799.18 3190.94 3599.66 8098.58 2699.85 1399.88 26
SMA-MVScopyleft97.24 1696.99 1998.00 2799.30 5494.20 5399.16 7897.65 8689.55 14099.22 1099.52 890.34 4699.99 598.32 3299.83 1599.82 31
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 1896.92 2098.12 2499.11 6694.88 3399.44 4997.45 12789.60 13698.70 2099.42 1790.42 4499.72 7598.47 2899.65 3899.77 42
TSAR-MVS + GP.96.95 2496.91 2197.07 5398.88 7991.62 9499.58 3096.54 19195.09 2096.84 6498.63 8991.16 3199.77 7199.04 1796.42 13099.81 32
9.1496.87 2299.34 5099.50 3997.49 12189.41 14398.59 2399.43 1689.78 5099.69 7798.69 2199.62 44
CHOSEN 280x42096.80 2896.85 2396.66 8097.85 10694.42 4994.76 30298.36 2492.50 6795.62 9397.52 13497.92 197.38 21798.31 3398.80 8698.20 169
DeepC-MVS_fast93.52 297.16 2096.84 2498.13 2299.61 2494.45 4798.85 11697.64 8796.51 895.88 8599.39 1887.35 8499.99 596.61 6399.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 1696.83 2598.47 1399.79 595.71 1699.07 9499.06 994.45 2696.42 7698.70 8488.81 5999.74 7495.35 8799.86 1299.97 7
APD-MVScopyleft96.95 2496.72 2697.63 3699.51 4193.58 6399.16 7897.44 13090.08 12598.59 2399.07 4689.06 5599.42 10997.92 3899.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 2996.69 2796.72 7698.58 8891.00 11299.14 8699.45 193.86 4095.15 10098.73 7888.48 6299.76 7297.23 5099.56 5099.40 80
EPNet96.82 2796.68 2897.25 4998.65 8693.10 7399.48 4098.76 1396.54 697.84 4598.22 10987.49 7799.66 8095.35 8797.78 10899.00 112
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2196.60 2998.68 998.03 10296.57 1099.84 397.84 5196.36 995.20 9998.24 10888.17 6699.83 6096.11 7299.60 4899.64 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2396.49 3098.55 1098.86 8096.10 1499.83 497.52 11495.90 1097.21 5698.90 6682.66 16499.93 3798.71 2098.80 8699.63 62
PHI-MVS96.65 3196.46 3197.21 5099.34 5091.77 9199.70 1798.05 4186.48 22198.05 3899.20 2789.33 5399.96 2898.38 2999.62 4499.90 22
PS-MVSNAJ96.87 2696.40 3298.29 1797.35 12097.29 599.03 10097.11 16195.83 1198.97 1499.14 3882.48 16799.60 8998.60 2399.08 7398.00 173
XVS96.47 3596.37 3396.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6298.96 5987.37 8099.87 4995.65 7899.43 5999.78 37
CS-MVS-test95.98 4896.34 3494.90 14098.06 10187.66 18499.69 2396.10 21893.66 4698.35 3099.05 4986.28 10897.66 19996.96 5698.90 8299.37 82
HFP-MVS96.42 3696.26 3596.90 6599.69 890.96 11399.47 4297.81 5790.54 11196.88 6199.05 4987.57 7599.96 2895.65 7899.72 3199.78 37
CS-MVS95.75 5996.19 3694.40 15897.88 10586.22 22199.66 2496.12 21792.69 6498.07 3798.89 6887.09 8797.59 20596.71 5998.62 9299.39 81
dcpmvs_295.67 6196.18 3794.12 17098.82 8184.22 26197.37 23495.45 26790.70 10495.77 8998.63 8990.47 4298.68 15099.20 1699.22 7099.45 77
ACMMP_NAP96.59 3296.18 3797.81 3298.82 8193.55 6498.88 11597.59 10090.66 10597.98 4299.14 3886.59 100100.00 196.47 6799.46 5599.89 25
CDPH-MVS96.56 3396.18 3797.70 3499.59 2893.92 5899.13 8997.44 13089.02 15297.90 4499.22 2588.90 5899.49 9894.63 10599.79 2799.68 54
xiu_mvs_v2_base96.66 3096.17 4098.11 2597.11 13296.96 699.01 10397.04 16895.51 1698.86 1799.11 4582.19 17399.36 11698.59 2598.14 10198.00 173
region2R96.30 4096.17 4096.70 7799.70 790.31 12599.46 4697.66 8190.55 11097.07 5999.07 4686.85 9399.97 2195.43 8599.74 2999.81 32
SR-MVS96.13 4396.16 4296.07 10499.42 4789.04 15298.59 14797.33 14190.44 11496.84 6499.12 4186.75 9599.41 11297.47 4599.44 5899.76 44
CP-MVS96.22 4296.15 4396.42 9299.67 1089.62 14699.70 1797.61 9490.07 12696.00 8199.16 3487.43 7899.92 3896.03 7499.72 3199.70 51
ACMMPR96.28 4196.14 4496.73 7499.68 990.47 12399.47 4297.80 5890.54 11196.83 6699.03 5186.51 10499.95 3195.65 7899.72 3199.75 45
ETV-MVS96.00 4696.00 4596.00 10796.56 14791.05 11099.63 2696.61 18393.26 5497.39 5298.30 10686.62 9998.13 16798.07 3697.57 11198.82 133
lupinMVS96.32 3995.94 4697.44 4295.05 21194.87 3499.86 296.50 19393.82 4398.04 3998.77 7485.52 11798.09 17096.98 5598.97 7899.37 82
MVS_111021_LR95.78 5695.94 4695.28 12998.19 9787.69 18198.80 12199.26 793.39 5195.04 10298.69 8584.09 13799.76 7296.96 5699.06 7498.38 158
PAPM96.35 3795.94 4697.58 3894.10 23395.25 2298.93 11098.17 3394.26 2893.94 11898.72 8089.68 5197.88 18296.36 6899.29 6799.62 64
SR-MVS-dyc-post95.75 5995.86 4995.41 12599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5586.73 9799.36 11696.62 6199.31 6599.60 65
MP-MVScopyleft96.00 4695.82 5096.54 8699.47 4690.13 13199.36 6297.41 13490.64 10895.49 9498.95 6185.51 11999.98 996.00 7599.59 4999.52 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 3795.82 5097.94 2999.63 1894.19 5499.42 5497.55 10792.43 6893.82 12299.12 4187.30 8599.91 4094.02 11199.06 7499.74 46
ZNCC-MVS96.09 4495.81 5296.95 6499.42 4791.19 10299.55 3397.53 11189.72 13195.86 8798.94 6486.59 10099.97 2195.13 9199.56 5099.68 54
MTAPA96.09 4495.80 5396.96 6399.29 5591.19 10297.23 24297.45 12792.58 6594.39 11199.24 2486.43 10699.99 596.22 6999.40 6299.71 50
mPP-MVS95.90 5295.75 5496.38 9499.58 3089.41 14999.26 6997.41 13490.66 10594.82 10498.95 6186.15 11199.98 995.24 9099.64 4099.74 46
RE-MVS-def95.70 5599.22 5987.26 20098.40 17097.21 14989.63 13496.67 7298.97 5585.24 12596.62 6199.31 6599.60 65
GST-MVS95.97 4995.66 5696.90 6599.49 4591.22 10099.45 4897.48 12289.69 13295.89 8498.72 8086.37 10799.95 3194.62 10699.22 7099.52 71
PVSNet_Blended95.94 5195.66 5696.75 7298.77 8391.61 9599.88 198.04 4293.64 4894.21 11397.76 12183.50 14399.87 4997.41 4697.75 10998.79 136
APD-MVS_3200maxsize95.64 6295.65 5895.62 11999.24 5887.80 18098.42 16597.22 14888.93 15796.64 7498.98 5485.49 12099.36 11696.68 6099.27 6899.70 51
PGM-MVS95.85 5395.65 5896.45 9099.50 4289.77 14398.22 18698.90 1289.19 14796.74 6998.95 6185.91 11599.92 3893.94 11399.46 5599.66 58
EI-MVSNet-Vis-set95.76 5895.63 6096.17 10199.14 6490.33 12498.49 15897.82 5491.92 8194.75 10598.88 6987.06 8999.48 10295.40 8697.17 12298.70 143
MP-MVS-pluss95.80 5595.30 6197.29 4698.95 7692.66 8198.59 14797.14 15788.95 15593.12 12999.25 2285.62 11699.94 3496.56 6599.48 5499.28 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 6395.29 6295.86 11299.07 7089.87 14098.43 16497.80 5891.78 8394.11 11598.77 7486.25 11099.48 10294.95 9896.45 12998.22 167
EIA-MVS95.11 7095.27 6394.64 15196.34 15786.51 20999.59 2996.62 18292.51 6694.08 11698.64 8786.05 11298.24 16495.07 9398.50 9699.18 99
HPM-MVScopyleft95.41 6595.22 6495.99 10899.29 5589.14 15099.17 7797.09 16587.28 20495.40 9598.48 9984.93 12799.38 11495.64 8299.65 3899.47 76
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DROMVSNet95.09 7195.17 6594.84 14395.42 19188.17 17299.48 4095.92 23391.47 8997.34 5498.36 10382.77 16097.41 21697.24 4998.58 9398.94 121
DP-MVS Recon95.85 5395.15 6697.95 2899.87 294.38 5099.60 2897.48 12286.58 21894.42 11099.13 4087.36 8399.98 993.64 12098.33 9999.48 75
WTY-MVS95.97 4995.11 6798.54 1197.62 11296.65 899.44 4998.74 1492.25 7595.21 9898.46 10286.56 10299.46 10495.00 9692.69 17299.50 74
mvsany_test194.57 8895.09 6892.98 19695.84 17782.07 28998.76 12795.24 28092.87 6396.45 7598.71 8384.81 13099.15 12797.68 4295.49 14897.73 178
PAPM_NR95.43 6395.05 6996.57 8599.42 4790.14 12998.58 14997.51 11690.65 10792.44 13698.90 6687.77 7499.90 4390.88 15099.32 6499.68 54
alignmvs95.77 5795.00 7098.06 2697.35 12095.68 1799.71 1697.50 11991.50 8896.16 8098.61 9186.28 10899.00 13696.19 7091.74 18999.51 73
jason95.40 6694.86 7197.03 5592.91 26594.23 5299.70 1796.30 20493.56 5096.73 7098.52 9481.46 18297.91 17996.08 7398.47 9798.96 116
jason: jason.
CSCG94.87 7594.71 7295.36 12699.54 3686.49 21099.34 6498.15 3682.71 28190.15 17399.25 2289.48 5299.86 5494.97 9798.82 8599.72 49
HPM-MVS_fast94.89 7494.62 7395.70 11799.11 6688.44 17099.14 8697.11 16185.82 22895.69 9198.47 10083.46 14599.32 12193.16 12899.63 4399.35 84
test_yl95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
DCV-MVSNet95.27 6894.60 7497.28 4798.53 8992.98 7799.05 9798.70 1786.76 21594.65 10897.74 12387.78 7299.44 10595.57 8392.61 17399.44 78
CPTT-MVS94.60 8694.43 7695.09 13399.66 1286.85 20599.44 4997.47 12483.22 27094.34 11298.96 5982.50 16599.55 9294.81 9999.50 5398.88 126
ACMMPcopyleft94.67 8494.30 7795.79 11499.25 5788.13 17498.41 16798.67 2090.38 11691.43 15198.72 8082.22 17299.95 3193.83 11795.76 14399.29 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 7294.26 7897.55 4198.07 10093.88 5998.68 13398.73 1690.33 11797.16 5897.43 13979.19 19699.53 9596.91 5891.85 18799.24 94
HY-MVS88.56 795.29 6794.23 7998.48 1297.72 10896.41 1194.03 31098.74 1492.42 7095.65 9294.76 20986.52 10399.49 9895.29 8992.97 16899.53 70
test250694.80 7794.21 8096.58 8396.41 15392.18 8998.01 20598.96 1090.82 10293.46 12597.28 14385.92 11398.45 15589.82 16397.19 12099.12 104
thisisatest051594.75 7994.19 8196.43 9196.13 17292.64 8499.47 4297.60 9687.55 20093.17 12897.59 13194.71 1398.42 15688.28 18193.20 16598.24 166
diffmvspermissive94.59 8794.19 8195.81 11395.54 18790.69 11998.70 13195.68 25491.61 8595.96 8297.81 11880.11 18898.06 17296.52 6695.76 14398.67 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
API-MVS94.78 7894.18 8396.59 8299.21 6190.06 13698.80 12197.78 6183.59 26593.85 12099.21 2683.79 14099.97 2192.37 13899.00 7799.74 46
PVSNet_Blended_VisFu94.67 8494.11 8496.34 9697.14 12991.10 10799.32 6697.43 13292.10 8091.53 15096.38 18283.29 14999.68 7893.42 12596.37 13198.25 165
MAR-MVS94.43 9094.09 8595.45 12399.10 6887.47 19098.39 17497.79 6088.37 17494.02 11799.17 3378.64 20299.91 4092.48 13798.85 8498.96 116
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 8394.08 8696.61 8195.05 21194.87 3497.77 21896.17 21486.84 21298.04 3998.52 9485.52 11795.99 28389.83 16198.97 7898.96 116
PLCcopyleft91.07 394.23 9394.01 8794.87 14199.17 6387.49 18999.25 7096.55 19088.43 17291.26 15598.21 11185.92 11399.86 5489.77 16597.57 11197.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
xiu_mvs_v1_base_debi94.73 8093.98 8896.99 5895.19 19995.24 2398.62 14196.50 19392.99 5897.52 4898.83 7172.37 24299.15 12797.03 5296.74 12596.58 204
canonicalmvs95.02 7393.96 9198.20 1997.53 11795.92 1598.71 12996.19 21391.78 8395.86 8798.49 9879.53 19399.03 13596.12 7191.42 19599.66 58
sss94.85 7693.94 9297.58 3896.43 15294.09 5798.93 11099.16 889.50 14195.27 9797.85 11681.50 18099.65 8492.79 13594.02 16098.99 113
DeepC-MVS91.02 494.56 8993.92 9396.46 8997.16 12790.76 11798.39 17497.11 16193.92 3688.66 18698.33 10478.14 20499.85 5695.02 9498.57 9498.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS93.62 11193.90 9492.79 20096.79 14281.40 29698.85 11696.81 17791.25 9596.82 6798.15 11377.02 21098.13 16793.15 12996.30 13498.83 132
CHOSEN 1792x268894.35 9193.82 9595.95 11097.40 11888.74 16498.41 16798.27 2692.18 7791.43 15196.40 17978.88 19799.81 6693.59 12197.81 10599.30 89
baseline294.04 9593.80 9694.74 14793.07 26390.25 12698.12 19598.16 3589.86 12886.53 20996.95 16195.56 698.05 17491.44 14494.53 15595.93 216
EPP-MVSNet93.75 10593.67 9794.01 17695.86 17685.70 23798.67 13597.66 8184.46 25091.36 15497.18 15191.16 3197.79 18892.93 13193.75 16298.53 150
OMC-MVS93.90 10193.62 9894.73 14898.63 8787.00 20398.04 20496.56 18992.19 7692.46 13598.73 7879.49 19499.14 13192.16 14094.34 15898.03 172
thisisatest053094.00 9693.52 9995.43 12495.76 18090.02 13898.99 10597.60 9686.58 21891.74 14397.36 14294.78 1298.34 15886.37 20392.48 17697.94 175
casdiffmvspermissive93.98 9893.43 10095.61 12095.07 21089.86 14198.80 12195.84 24690.98 9992.74 13397.66 12879.71 19098.10 16994.72 10295.37 14998.87 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_n_192093.08 12893.42 10192.04 21696.31 15879.36 31299.83 496.06 22196.72 498.53 2598.10 11458.57 31499.91 4097.86 4098.79 8896.85 201
CANet_DTU94.31 9293.35 10297.20 5197.03 13694.71 4298.62 14195.54 26295.61 1497.21 5698.47 10071.88 24799.84 5788.38 18097.46 11697.04 198
casdiffmvs_mvgpermissive94.00 9693.33 10396.03 10595.22 19790.90 11599.09 9295.99 22390.58 10991.55 14997.37 14179.91 18998.06 17295.01 9595.22 15099.13 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 10093.30 10495.72 11695.10 20890.07 13397.48 23095.91 23891.03 9793.54 12497.68 12679.58 19198.02 17694.27 11095.14 15199.08 108
HyFIR lowres test93.68 10893.29 10594.87 14197.57 11688.04 17698.18 19098.47 2287.57 19991.24 15695.05 20385.49 12097.46 21293.22 12792.82 16999.10 106
TESTMET0.1,193.82 10393.26 10695.49 12295.21 19890.25 12699.15 8397.54 11089.18 14891.79 14294.87 20689.13 5497.63 20286.21 20496.29 13598.60 148
PVSNet_BlendedMVS93.36 11893.20 10793.84 18198.77 8391.61 9599.47 4298.04 4291.44 9094.21 11392.63 25083.50 14399.87 4997.41 4683.37 24890.05 311
iter_conf0593.48 11293.18 10894.39 16197.15 12894.17 5599.30 6792.97 32792.38 7486.70 20895.42 19895.67 596.59 24294.67 10484.32 23792.39 235
Effi-MVS+93.87 10293.15 10996.02 10695.79 17890.76 11796.70 26495.78 24786.98 20995.71 9097.17 15279.58 19198.01 17794.57 10796.09 13899.31 88
AdaColmapbinary93.82 10393.06 11096.10 10399.88 189.07 15198.33 17897.55 10786.81 21490.39 17098.65 8675.09 21799.98 993.32 12697.53 11499.26 93
114514_t94.06 9493.05 11197.06 5499.08 6992.26 8798.97 10897.01 17282.58 28392.57 13498.22 10980.68 18699.30 12289.34 17199.02 7699.63 62
iter_conf_final93.22 12493.04 11293.76 18397.03 13692.22 8899.05 9793.31 32492.11 7986.93 20295.42 19895.01 1096.59 24293.98 11284.48 23492.46 234
CDS-MVSNet93.47 11393.04 11294.76 14594.75 22289.45 14898.82 11997.03 17087.91 18890.97 15896.48 17789.06 5596.36 26089.50 16792.81 17198.49 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 12093.01 11494.17 16895.57 18586.47 21198.51 15597.60 9685.99 22690.55 16597.19 15094.80 1198.31 15985.06 21691.86 18697.74 177
Vis-MVSNet (Re-imp)93.26 12393.00 11594.06 17396.14 16986.71 20898.68 13396.70 18088.30 17689.71 18097.64 12985.43 12396.39 25888.06 18596.32 13299.08 108
test_fmvs192.35 14192.94 11690.57 24997.19 12575.43 33199.55 3394.97 28795.20 1996.82 6797.57 13359.59 31299.84 5797.30 4898.29 10096.46 209
test-mter93.27 12292.89 11794.40 15894.94 21687.27 19899.15 8397.25 14388.95 15591.57 14694.04 21688.03 7097.58 20685.94 20896.13 13698.36 161
PVSNet87.13 1293.69 10692.83 11896.28 9797.99 10390.22 12899.38 5898.93 1191.42 9293.66 12397.68 12671.29 25499.64 8687.94 18797.20 11998.98 114
CNLPA93.64 11092.74 11996.36 9598.96 7590.01 13999.19 7295.89 24186.22 22489.40 18198.85 7080.66 18799.84 5788.57 17896.92 12499.24 94
test-LLR93.11 12792.68 12094.40 15894.94 21687.27 19899.15 8397.25 14390.21 11891.57 14694.04 21684.89 12897.58 20685.94 20896.13 13698.36 161
MVS_Test93.67 10992.67 12196.69 7896.72 14492.66 8197.22 24396.03 22287.69 19795.12 10194.03 21881.55 17998.28 16289.17 17596.46 12899.14 101
UA-Net93.30 12092.62 12295.34 12796.27 16088.53 16995.88 28996.97 17490.90 10095.37 9697.07 15682.38 17099.10 13383.91 23494.86 15498.38 158
thres20093.69 10692.59 12396.97 6297.76 10794.74 4199.35 6399.36 289.23 14691.21 15796.97 16083.42 14698.77 14385.08 21590.96 19897.39 187
IS-MVSNet93.00 12992.51 12494.49 15496.14 16987.36 19498.31 18195.70 25288.58 16590.17 17297.50 13583.02 15697.22 22087.06 19296.07 14098.90 125
CostFormer92.89 13092.48 12594.12 17094.99 21385.89 23292.89 31997.00 17386.98 20995.00 10390.78 28190.05 4897.51 21092.92 13291.73 19098.96 116
MVSTER92.71 13292.32 12693.86 18097.29 12292.95 7999.01 10396.59 18590.09 12485.51 21494.00 22094.61 1696.56 24690.77 15483.03 25192.08 250
MVS93.92 9992.28 12798.83 695.69 18296.82 796.22 27998.17 3384.89 24584.34 22498.61 9179.32 19599.83 6093.88 11599.43 5999.86 29
tfpn200view993.43 11592.27 12896.90 6597.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20097.12 193
thres40093.39 11792.27 12896.73 7497.68 11094.84 3699.18 7499.36 288.45 16990.79 16096.90 16483.31 14798.75 14584.11 23090.69 20096.61 202
tpmrst92.78 13192.16 13094.65 15096.27 16087.45 19191.83 32797.10 16489.10 15194.68 10790.69 28588.22 6597.73 19789.78 16491.80 18898.77 139
thres100view90093.34 11992.15 13196.90 6597.62 11294.84 3699.06 9699.36 287.96 18690.47 16896.78 16983.29 14998.75 14584.11 23090.69 20097.12 193
EPNet_dtu92.28 14492.15 13192.70 20397.29 12284.84 25398.64 13997.82 5492.91 6193.02 13197.02 15885.48 12295.70 29772.25 32194.89 15397.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 13592.09 13394.20 16794.10 23387.68 18298.41 16796.97 17487.53 20189.74 17896.04 18884.77 13296.49 25388.97 17792.31 17998.42 154
thres600view793.18 12592.00 13496.75 7297.62 11294.92 3199.07 9499.36 287.96 18690.47 16896.78 16983.29 14998.71 14982.93 24490.47 20496.61 202
131493.44 11491.98 13597.84 3095.24 19594.38 5096.22 27997.92 4790.18 12082.28 25197.71 12577.63 20799.80 6891.94 14198.67 9199.34 86
h-mvs3392.47 14091.95 13694.05 17497.13 13085.01 25198.36 17698.08 3993.85 4196.27 7896.73 17183.19 15299.43 10895.81 7668.09 33497.70 179
Vis-MVSNetpermissive92.64 13491.85 13795.03 13795.12 20488.23 17198.48 16096.81 17791.61 8592.16 14097.22 14871.58 25298.00 17885.85 21197.81 10598.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 11591.84 13898.17 2095.73 18195.08 3098.92 11297.04 16891.42 9281.48 26897.60 13074.60 22099.79 6990.84 15198.97 7899.64 60
BH-w/o92.32 14291.79 13993.91 17996.85 13986.18 22399.11 9195.74 25088.13 18184.81 21897.00 15977.26 20997.91 17989.16 17698.03 10297.64 180
3Dnovator87.35 1193.17 12691.77 14097.37 4595.41 19293.07 7498.82 11997.85 5091.53 8782.56 24397.58 13271.97 24699.82 6391.01 14899.23 6999.22 97
F-COLMAP92.07 15091.75 14193.02 19598.16 9882.89 27998.79 12595.97 22586.54 22087.92 19197.80 11978.69 20199.65 8485.97 20695.93 14296.53 207
mvs_anonymous92.50 13991.65 14295.06 13496.60 14689.64 14597.06 24896.44 19786.64 21784.14 22593.93 22282.49 16696.17 27691.47 14396.08 13999.35 84
EPMVS92.59 13791.59 14395.59 12197.22 12490.03 13791.78 32898.04 4290.42 11591.66 14590.65 28886.49 10597.46 21281.78 25596.31 13399.28 91
1112_ss92.71 13291.55 14496.20 9895.56 18691.12 10598.48 16094.69 29888.29 17786.89 20498.50 9687.02 9098.66 15184.75 21989.77 20798.81 134
hse-mvs291.67 15591.51 14592.15 21396.22 16282.61 28597.74 22197.53 11193.85 4196.27 7896.15 18483.19 15297.44 21495.81 7666.86 34196.40 211
ET-MVSNet_ETH3D92.56 13891.45 14695.88 11196.39 15594.13 5699.46 4696.97 17492.18 7766.94 34998.29 10794.65 1594.28 32694.34 10983.82 24499.24 94
test_fmvs1_n91.07 16591.41 14790.06 26394.10 23374.31 33599.18 7494.84 29194.81 2196.37 7797.46 13750.86 34299.82 6397.14 5197.90 10396.04 215
ECVR-MVScopyleft92.29 14391.33 14895.15 13196.41 15387.84 17998.10 19894.84 29190.82 10291.42 15397.28 14365.61 29098.49 15490.33 15797.19 12099.12 104
baseline192.61 13691.28 14996.58 8397.05 13594.63 4497.72 22296.20 21189.82 12988.56 18796.85 16786.85 9397.82 18688.42 17980.10 26797.30 189
HQP-MVS91.50 15691.23 15092.29 20893.95 23886.39 21499.16 7896.37 20093.92 3687.57 19396.67 17373.34 23297.77 19093.82 11886.29 21992.72 229
test111192.12 14891.19 15194.94 13996.15 16787.36 19498.12 19594.84 29190.85 10190.97 15897.26 14565.60 29198.37 15789.74 16697.14 12399.07 110
tpm291.77 15391.09 15293.82 18294.83 22085.56 24192.51 32497.16 15684.00 25693.83 12190.66 28787.54 7697.17 22187.73 18991.55 19398.72 141
FA-MVS(test-final)92.22 14791.08 15395.64 11896.05 17388.98 15491.60 33197.25 14386.99 20691.84 14192.12 25383.03 15599.00 13686.91 19793.91 16198.93 122
PatchmatchNetpermissive92.05 15191.04 15495.06 13496.17 16689.04 15291.26 33597.26 14289.56 13990.64 16490.56 29488.35 6497.11 22379.53 26896.07 14099.03 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 14590.97 15596.18 9995.53 18891.10 10798.47 16294.66 29988.28 17886.83 20693.50 23587.00 9198.65 15284.69 22089.74 20898.80 135
HQP_MVS91.26 16190.95 15692.16 21293.84 24586.07 22899.02 10196.30 20493.38 5286.99 20096.52 17572.92 23797.75 19593.46 12386.17 22292.67 231
CVMVSNet90.30 18090.91 15788.46 29794.32 22973.58 33997.61 22797.59 10090.16 12388.43 18997.10 15476.83 21192.86 33682.64 24693.54 16498.93 122
UGNet91.91 15290.85 15895.10 13297.06 13488.69 16598.01 20598.24 2992.41 7192.39 13793.61 23160.52 30999.68 7888.14 18397.25 11896.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 14690.84 15996.42 9298.24 9491.08 10998.24 18596.22 21083.39 26894.74 10698.31 10561.12 30898.85 14094.45 10892.82 16999.32 87
BH-untuned91.46 15890.84 15993.33 19096.51 15084.83 25498.84 11895.50 26486.44 22383.50 22996.70 17275.49 21697.77 19086.78 20097.81 10597.40 186
IB-MVS89.43 692.12 14890.83 16195.98 10995.40 19390.78 11699.81 698.06 4091.23 9685.63 21393.66 23090.63 4098.78 14291.22 14571.85 32498.36 161
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 15490.79 16294.49 15495.89 17587.40 19399.54 3895.70 25285.01 24389.28 18395.68 19377.75 20697.57 20983.22 23995.06 15298.51 151
CLD-MVS91.06 16690.71 16392.10 21494.05 23786.10 22699.55 3396.29 20794.16 3184.70 22097.17 15269.62 26197.82 18694.74 10186.08 22492.39 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 19090.68 16487.81 30195.15 20371.98 34597.87 21395.40 27191.92 8187.57 19391.44 26974.27 22696.84 23389.45 16893.10 16794.60 222
XVG-OURS-SEG-HR90.95 16890.66 16591.83 21995.18 20281.14 30395.92 28695.92 23388.40 17390.33 17197.85 11670.66 25799.38 11492.83 13388.83 20994.98 220
PatchMatch-RL91.47 15790.54 16694.26 16598.20 9586.36 21696.94 25297.14 15787.75 19388.98 18495.75 19271.80 24999.40 11380.92 26097.39 11797.02 199
XVG-OURS90.83 17090.49 16791.86 21895.23 19681.25 30095.79 29495.92 23388.96 15490.02 17598.03 11571.60 25199.35 11991.06 14787.78 21394.98 220
MDTV_nov1_ep1390.47 16896.14 16988.55 16791.34 33497.51 11689.58 13792.24 13890.50 29886.99 9297.61 20477.64 28392.34 178
test_vis1_n90.40 17790.27 16990.79 24591.55 28476.48 32799.12 9094.44 30394.31 2797.34 5496.95 16143.60 35399.42 10997.57 4497.60 11096.47 208
VDD-MVS91.24 16490.18 17094.45 15797.08 13385.84 23598.40 17096.10 21886.99 20693.36 12698.16 11254.27 33199.20 12496.59 6490.63 20398.31 164
FE-MVS91.38 16090.16 17195.05 13696.46 15187.53 18889.69 34497.84 5182.97 27592.18 13992.00 25984.07 13898.93 13980.71 26295.52 14798.68 144
BH-RMVSNet91.25 16389.99 17295.03 13796.75 14388.55 16798.65 13794.95 28887.74 19487.74 19297.80 11968.27 26998.14 16680.53 26597.49 11598.41 155
FIs90.70 17389.87 17393.18 19292.29 27091.12 10598.17 19298.25 2789.11 15083.44 23094.82 20882.26 17196.17 27687.76 18882.76 25392.25 240
miper_enhance_ethall90.33 17989.70 17492.22 20997.12 13188.93 15898.35 17795.96 22788.60 16483.14 23792.33 25287.38 7996.18 27486.49 20277.89 27691.55 266
PCF-MVS89.78 591.26 16189.63 17596.16 10295.44 19091.58 9795.29 29896.10 21885.07 24082.75 23997.45 13878.28 20399.78 7080.60 26495.65 14697.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 17689.56 17693.72 18695.10 20885.43 24299.41 5594.94 28983.96 25887.21 19996.83 16874.37 22497.05 22780.50 26693.73 16398.67 145
AUN-MVS90.17 18489.50 17792.19 21196.21 16382.67 28397.76 22097.53 11188.05 18391.67 14496.15 18483.10 15497.47 21188.11 18466.91 34096.43 210
QAPM91.41 15989.49 17897.17 5295.66 18493.42 6898.60 14597.51 11680.92 30681.39 26997.41 14072.89 23999.87 4982.33 24998.68 9098.21 168
TR-MVS90.77 17189.44 17994.76 14596.31 15888.02 17797.92 20995.96 22785.52 23288.22 19097.23 14766.80 28198.09 17084.58 22292.38 17798.17 170
mvsmamba89.99 18989.42 18091.69 22690.64 29786.34 21798.40 17092.27 33691.01 9884.80 21994.93 20476.12 21296.51 25092.81 13483.84 24192.21 244
FC-MVSNet-test90.22 18289.40 18192.67 20591.78 28189.86 14197.89 21098.22 3088.81 16082.96 23894.66 21081.90 17795.96 28585.89 21082.52 25692.20 245
EI-MVSNet89.87 19189.38 18291.36 23194.32 22985.87 23397.61 22796.59 18585.10 23885.51 21497.10 15481.30 18496.56 24683.85 23683.03 25191.64 258
cascas90.93 16989.33 18395.76 11595.69 18293.03 7698.99 10596.59 18580.49 30886.79 20794.45 21365.23 29398.60 15393.52 12292.18 18295.66 218
SCA90.64 17589.25 18494.83 14494.95 21588.83 16096.26 27697.21 14990.06 12790.03 17490.62 29066.61 28296.81 23583.16 24094.36 15798.84 129
ab-mvs91.05 16789.17 18596.69 7895.96 17491.72 9392.62 32397.23 14785.61 23189.74 17893.89 22468.55 26699.42 10991.09 14687.84 21298.92 124
OPM-MVS89.76 19289.15 18691.57 22890.53 29885.58 24098.11 19795.93 23292.88 6286.05 21096.47 17867.06 28097.87 18389.29 17486.08 22491.26 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-MVSNAJss89.54 19689.05 18791.00 23888.77 32284.36 25997.39 23195.97 22588.47 16681.88 26193.80 22682.48 16796.50 25189.34 17183.34 25092.15 246
TAPA-MVS87.50 990.35 17889.05 18794.25 16698.48 9185.17 24898.42 16596.58 18882.44 28887.24 19898.53 9382.77 16098.84 14159.09 35697.88 10498.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 19388.95 18991.82 22092.54 26881.43 29592.95 31895.92 23387.81 19090.50 16789.44 31384.99 12695.65 29883.67 23782.71 25498.38 158
nrg03090.23 18188.87 19094.32 16391.53 28593.54 6598.79 12595.89 24188.12 18284.55 22294.61 21178.80 20096.88 23292.35 13975.21 28992.53 233
OpenMVScopyleft85.28 1490.75 17288.84 19196.48 8893.58 25193.51 6698.80 12197.41 13482.59 28278.62 29697.49 13668.00 27299.82 6384.52 22498.55 9596.11 214
dp90.16 18588.83 19294.14 16996.38 15686.42 21291.57 33297.06 16784.76 24788.81 18590.19 30684.29 13597.43 21575.05 30191.35 19798.56 149
cl2289.57 19588.79 19391.91 21797.94 10487.62 18597.98 20796.51 19285.03 24182.37 25091.79 26283.65 14196.50 25185.96 20777.89 27691.61 263
LS3D90.19 18388.72 19494.59 15398.97 7386.33 21896.90 25496.60 18474.96 33484.06 22798.74 7775.78 21499.83 6074.93 30297.57 11197.62 183
GA-MVS90.10 18688.69 19594.33 16292.44 26987.97 17899.08 9396.26 20889.65 13386.92 20393.11 24368.09 27096.96 22982.54 24890.15 20598.05 171
X-MVStestdata90.69 17488.66 19696.77 7099.62 2290.66 12199.43 5297.58 10292.41 7196.86 6229.59 37887.37 8099.87 4995.65 7899.43 5999.78 37
test0.0.03 188.96 20188.61 19790.03 26791.09 29184.43 25898.97 10897.02 17190.21 11880.29 27796.31 18384.89 12891.93 35072.98 31885.70 22793.73 224
LCM-MVSNet-Re88.59 21488.61 19788.51 29695.53 18872.68 34396.85 25688.43 36288.45 16973.14 32790.63 28975.82 21394.38 32592.95 13095.71 14598.48 153
Fast-Effi-MVS+-dtu88.84 20688.59 19989.58 27893.44 25678.18 32198.65 13794.62 30088.46 16884.12 22695.37 20168.91 26396.52 24982.06 25291.70 19194.06 223
RRT_MVS88.91 20388.56 20089.93 26890.31 30181.61 29398.08 20196.38 19989.30 14482.41 24894.84 20773.15 23596.04 28290.38 15682.23 25892.15 246
UniMVSNet_NR-MVSNet89.60 19488.55 20192.75 20292.17 27390.07 13398.74 12898.15 3688.37 17483.21 23393.98 22182.86 15895.93 28786.95 19572.47 31892.25 240
VDDNet90.08 18788.54 20294.69 14994.41 22887.68 18298.21 18896.40 19876.21 32993.33 12797.75 12254.93 32998.77 14394.71 10390.96 19897.61 184
LPG-MVS_test88.86 20588.47 20390.06 26393.35 25880.95 30598.22 18695.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
UniMVSNet (Re)89.50 19788.32 20493.03 19492.21 27290.96 11398.90 11498.39 2389.13 14983.22 23292.03 25581.69 17896.34 26686.79 19972.53 31791.81 255
ACMP87.39 1088.71 21388.24 20590.12 26293.91 24381.06 30498.50 15695.67 25589.43 14280.37 27695.55 19465.67 28897.83 18590.55 15584.51 23291.47 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM86.95 1388.77 21188.22 20690.43 25493.61 25081.34 29898.50 15695.92 23387.88 18983.85 22895.20 20267.20 27897.89 18186.90 19884.90 23092.06 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 20288.12 20791.40 22995.32 19486.93 20497.85 21495.55 26184.19 25381.97 25991.50 26884.16 13695.91 29084.69 22077.89 27691.36 274
tpmvs89.16 19887.76 20893.35 18997.19 12584.75 25590.58 34297.36 13981.99 29384.56 22189.31 31683.98 13998.17 16574.85 30490.00 20697.12 193
test_djsdf88.26 21987.73 20989.84 27188.05 33182.21 28797.77 21896.17 21486.84 21282.41 24891.95 26172.07 24595.99 28389.83 16184.50 23391.32 276
gg-mvs-nofinetune90.00 18887.71 21096.89 6996.15 16794.69 4385.15 35397.74 6568.32 35392.97 13260.16 36696.10 396.84 23393.89 11498.87 8399.14 101
VPA-MVSNet89.10 19987.66 21193.45 18892.56 26791.02 11197.97 20898.32 2586.92 21186.03 21192.01 25768.84 26597.10 22590.92 14975.34 28892.23 242
DU-MVS88.83 20887.51 21292.79 20091.46 28690.07 13398.71 12997.62 9388.87 15983.21 23393.68 22874.63 21895.93 28786.95 19572.47 31892.36 237
IterMVS-LS88.34 21687.44 21391.04 23794.10 23385.85 23498.10 19895.48 26585.12 23782.03 25891.21 27481.35 18395.63 29983.86 23575.73 28791.63 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 22187.39 21489.70 27591.84 28083.40 27198.31 18198.49 2188.04 18478.23 30290.26 30073.57 23096.79 23784.21 22783.53 24688.90 327
CR-MVSNet88.83 20887.38 21593.16 19393.47 25386.24 21984.97 35594.20 31188.92 15890.76 16286.88 33384.43 13394.82 31770.64 32592.17 18398.41 155
ADS-MVSNet88.99 20087.30 21694.07 17296.21 16387.56 18787.15 34896.78 17983.01 27389.91 17687.27 32978.87 19897.01 22874.20 30992.27 18097.64 180
tpm cat188.89 20487.27 21793.76 18395.79 17885.32 24590.76 34097.09 16576.14 33085.72 21288.59 31982.92 15798.04 17576.96 28791.43 19497.90 176
c3_l88.19 22087.23 21891.06 23694.97 21486.17 22497.72 22295.38 27283.43 26781.68 26691.37 27082.81 15995.72 29684.04 23373.70 30691.29 278
WR-MVS88.54 21587.22 21992.52 20691.93 27989.50 14798.56 15097.84 5186.99 20681.87 26293.81 22574.25 22795.92 28985.29 21374.43 29892.12 248
FMVSNet388.81 21087.08 22093.99 17796.52 14994.59 4598.08 20196.20 21185.85 22782.12 25491.60 26674.05 22895.40 30579.04 27280.24 26491.99 253
Anonymous20240521188.84 20687.03 22194.27 16498.14 9984.18 26298.44 16395.58 26076.79 32889.34 18296.88 16653.42 33499.54 9487.53 19187.12 21699.09 107
eth_miper_zixun_eth87.76 22587.00 22290.06 26394.67 22482.65 28497.02 25195.37 27384.19 25381.86 26491.58 26781.47 18195.90 29183.24 23873.61 30791.61 263
ADS-MVSNet287.62 23086.88 22389.86 27096.21 16379.14 31487.15 34892.99 32683.01 27389.91 17687.27 32978.87 19892.80 33974.20 30992.27 18097.64 180
DIV-MVS_self_test87.82 22286.81 22490.87 24394.87 21985.39 24497.81 21595.22 28582.92 27980.76 27291.31 27281.99 17495.81 29481.36 25675.04 29191.42 272
cl____87.82 22286.79 22590.89 24294.88 21885.43 24297.81 21595.24 28082.91 28080.71 27391.22 27381.97 17695.84 29281.34 25775.06 29091.40 273
bld_raw_dy_0_6487.82 22286.71 22691.15 23489.54 31385.61 23897.37 23489.16 36089.26 14583.42 23194.50 21265.79 28796.18 27488.00 18683.37 24891.67 257
VPNet88.30 21786.57 22793.49 18791.95 27791.35 9998.18 19097.20 15388.61 16384.52 22394.89 20562.21 30396.76 23889.34 17172.26 32192.36 237
DP-MVS88.75 21286.56 22895.34 12798.92 7787.45 19197.64 22693.52 32270.55 34581.49 26797.25 14674.43 22399.88 4671.14 32494.09 15998.67 145
jajsoiax87.35 23286.51 22989.87 26987.75 33681.74 29197.03 24995.98 22488.47 16680.15 27993.80 22661.47 30596.36 26089.44 16984.47 23591.50 267
MSDG88.29 21886.37 23094.04 17596.90 13886.15 22596.52 26794.36 30877.89 32479.22 29196.95 16169.72 26099.59 9073.20 31792.58 17596.37 212
TranMVSNet+NR-MVSNet87.75 22686.31 23192.07 21590.81 29488.56 16698.33 17897.18 15487.76 19281.87 26293.90 22372.45 24195.43 30383.13 24271.30 32892.23 242
mvs_tets87.09 23586.22 23289.71 27487.87 33281.39 29796.73 26395.90 23988.19 18079.99 28193.61 23159.96 31196.31 26889.40 17084.34 23691.43 271
miper_lstm_enhance86.90 23786.20 23389.00 29094.53 22681.19 30196.74 26295.24 28082.33 28980.15 27990.51 29781.99 17494.68 32280.71 26273.58 30891.12 282
pmmvs487.58 23186.17 23491.80 22189.58 31188.92 15997.25 24095.28 27682.54 28480.49 27593.17 24275.62 21596.05 28182.75 24578.90 27190.42 302
XXY-MVS87.75 22686.02 23592.95 19890.46 29989.70 14497.71 22495.90 23984.02 25580.95 27094.05 21567.51 27697.10 22585.16 21478.41 27392.04 252
NR-MVSNet87.74 22886.00 23692.96 19791.46 28690.68 12096.65 26597.42 13388.02 18573.42 32493.68 22877.31 20895.83 29384.26 22671.82 32592.36 237
MS-PatchMatch86.75 24085.92 23789.22 28591.97 27582.47 28696.91 25396.14 21683.74 26177.73 30393.53 23458.19 31697.37 21976.75 29098.35 9887.84 333
MVP-Stereo86.61 24485.83 23888.93 29288.70 32483.85 26796.07 28394.41 30782.15 29275.64 31491.96 26067.65 27596.45 25677.20 28698.72 8986.51 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 23485.76 23991.78 22589.59 31087.58 18698.56 15095.54 26284.53 24982.51 24491.78 26373.11 23696.47 25482.07 25174.14 30491.30 277
anonymousdsp86.69 24185.75 24089.53 27986.46 34282.94 27696.39 27095.71 25183.97 25779.63 28690.70 28468.85 26495.94 28686.01 20584.02 24089.72 317
V4287.00 23685.68 24190.98 23989.91 30486.08 22798.32 18095.61 25883.67 26482.72 24090.67 28674.00 22996.53 24881.94 25474.28 30190.32 304
Anonymous2024052987.66 22985.58 24293.92 17897.59 11585.01 25198.13 19397.13 15966.69 35888.47 18896.01 18955.09 32899.51 9687.00 19484.12 23997.23 192
RPSCF85.33 26585.55 24384.67 32294.63 22562.28 35993.73 31293.76 31674.38 33785.23 21797.06 15764.09 29698.31 15980.98 25886.08 22493.41 228
WR-MVS_H86.53 24685.49 24489.66 27791.04 29283.31 27397.53 22998.20 3284.95 24479.64 28590.90 27978.01 20595.33 30676.29 29472.81 31490.35 303
test_fmvs285.10 26785.45 24584.02 32589.85 30765.63 35798.49 15892.59 33290.45 11385.43 21693.32 23643.94 35196.59 24290.81 15284.19 23889.85 315
CP-MVSNet86.54 24585.45 24589.79 27391.02 29382.78 28297.38 23397.56 10685.37 23479.53 28893.03 24471.86 24895.25 30879.92 26773.43 31291.34 275
v114486.83 23985.31 24791.40 22989.75 30887.21 20298.31 18195.45 26783.22 27082.70 24190.78 28173.36 23196.36 26079.49 26974.69 29590.63 299
PVSNet_083.28 1687.31 23385.16 24893.74 18594.78 22184.59 25698.91 11398.69 1989.81 13078.59 29893.23 24061.95 30499.34 12094.75 10055.72 36197.30 189
v14886.38 24985.06 24990.37 25889.47 31684.10 26398.52 15295.48 26583.80 26080.93 27190.22 30474.60 22096.31 26880.92 26071.55 32690.69 297
GBi-Net86.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
test186.67 24284.96 25091.80 22195.11 20588.81 16196.77 25895.25 27782.94 27682.12 25490.25 30162.89 30094.97 31279.04 27280.24 26491.62 260
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29489.90 30577.12 32694.30 30695.60 25987.40 20382.12 25492.99 24653.42 33497.66 19985.02 21783.83 24290.92 287
v14419286.40 24884.89 25390.91 24089.48 31585.59 23998.21 18895.43 27082.45 28782.62 24290.58 29372.79 24096.36 26078.45 27974.04 30590.79 291
JIA-IIPM85.97 25484.85 25489.33 28493.23 26073.68 33885.05 35497.13 15969.62 34991.56 14868.03 36488.03 7096.96 22977.89 28293.12 16697.34 188
Baseline_NR-MVSNet85.83 25784.82 25588.87 29388.73 32383.34 27298.63 14091.66 34580.41 31182.44 24591.35 27174.63 21895.42 30484.13 22971.39 32787.84 333
tt080586.50 24784.79 25691.63 22791.97 27581.49 29496.49 26897.38 13782.24 29082.44 24595.82 19151.22 33998.25 16384.55 22380.96 26395.13 219
FMVSNet286.90 23784.79 25693.24 19195.11 20592.54 8597.67 22595.86 24582.94 27680.55 27491.17 27562.89 30095.29 30777.23 28479.71 27091.90 254
v119286.32 25084.71 25891.17 23389.53 31486.40 21398.13 19395.44 26982.52 28582.42 24790.62 29071.58 25296.33 26777.23 28474.88 29290.79 291
IterMVS85.81 25884.67 25989.22 28593.51 25283.67 26996.32 27394.80 29485.09 23978.69 29490.17 30766.57 28493.17 33579.48 27077.42 28290.81 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26184.64 26089.00 29093.46 25582.90 27896.27 27494.70 29785.02 24278.62 29690.35 29966.61 28293.33 33279.38 27177.36 28390.76 293
PS-CasMVS85.81 25884.58 26189.49 28290.77 29582.11 28897.20 24497.36 13984.83 24679.12 29392.84 24767.42 27795.16 31078.39 28073.25 31391.21 280
v886.11 25284.45 26291.10 23589.99 30386.85 20597.24 24195.36 27481.99 29379.89 28389.86 30974.53 22296.39 25878.83 27672.32 32090.05 311
v192192086.02 25384.44 26390.77 24689.32 31785.20 24698.10 19895.35 27582.19 29182.25 25290.71 28370.73 25596.30 27176.85 28974.49 29790.80 290
EU-MVSNet84.19 28084.42 26483.52 32888.64 32567.37 35696.04 28495.76 24985.29 23578.44 29993.18 24170.67 25691.48 35275.79 29875.98 28591.70 256
pmmvs585.87 25584.40 26590.30 25988.53 32684.23 26098.60 14593.71 31881.53 29880.29 27792.02 25664.51 29595.52 30182.04 25378.34 27491.15 281
v124085.77 26084.11 26690.73 24789.26 31885.15 24997.88 21295.23 28481.89 29682.16 25390.55 29569.60 26296.31 26875.59 29974.87 29390.72 296
Patchmatch-test86.25 25184.06 26792.82 19994.42 22782.88 28082.88 36294.23 31071.58 34279.39 28990.62 29089.00 5796.42 25763.03 34891.37 19699.16 100
v1085.73 26184.01 26890.87 24390.03 30286.73 20797.20 24495.22 28581.25 30179.85 28489.75 31073.30 23496.28 27276.87 28872.64 31689.61 319
PEN-MVS85.21 26683.93 26989.07 28989.89 30681.31 29997.09 24797.24 14684.45 25178.66 29592.68 24968.44 26894.87 31575.98 29670.92 32991.04 284
UniMVSNet_ETH3D85.65 26383.79 27091.21 23290.41 30080.75 30795.36 29795.78 24778.76 31881.83 26594.33 21449.86 34496.66 23984.30 22583.52 24796.22 213
OurMVSNet-221017-084.13 28283.59 27185.77 31587.81 33370.24 35094.89 30193.65 32086.08 22576.53 30693.28 23961.41 30696.14 27880.95 25977.69 28190.93 286
PatchT85.44 26483.19 27292.22 20993.13 26283.00 27583.80 36196.37 20070.62 34490.55 16579.63 35684.81 13094.87 31558.18 35891.59 19298.79 136
AllTest84.97 26983.12 27390.52 25296.82 14078.84 31695.89 28792.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
USDC84.74 27082.93 27490.16 26191.73 28283.54 27095.00 30093.30 32588.77 16173.19 32693.30 23853.62 33397.65 20175.88 29781.54 26189.30 322
COLMAP_ROBcopyleft82.69 1884.54 27582.82 27589.70 27596.72 14478.85 31595.89 28792.83 33071.55 34377.54 30595.89 19059.40 31399.14 13167.26 33688.26 21091.11 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 27782.80 27689.50 28089.01 31983.90 26697.03 24994.56 30181.33 30075.36 31690.52 29671.69 25094.54 32468.81 33176.84 28490.07 309
DTE-MVSNet84.14 28182.80 27688.14 29888.95 32179.87 31196.81 25796.24 20983.50 26677.60 30492.52 25167.89 27494.24 32772.64 32069.05 33290.32 304
pm-mvs184.68 27282.78 27890.40 25589.58 31185.18 24797.31 23694.73 29681.93 29576.05 30992.01 25765.48 29296.11 27978.75 27769.14 33189.91 314
v7n84.42 27882.75 27989.43 28388.15 32981.86 29096.75 26195.67 25580.53 30778.38 30089.43 31469.89 25896.35 26573.83 31372.13 32290.07 309
LTVRE_ROB81.71 1984.59 27482.72 28090.18 26092.89 26683.18 27493.15 31794.74 29578.99 31575.14 31792.69 24865.64 28997.63 20269.46 32981.82 26089.74 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030484.13 28282.66 28188.52 29593.07 26380.15 30895.81 29398.21 3179.27 31386.85 20586.40 33641.33 35794.69 32176.36 29386.69 21790.73 295
Anonymous2023121184.72 27182.65 28290.91 24097.71 10984.55 25797.28 23896.67 18166.88 35779.18 29290.87 28058.47 31596.60 24182.61 24774.20 30291.59 265
ACMH83.09 1784.60 27382.61 28390.57 24993.18 26182.94 27696.27 27494.92 29081.01 30472.61 33393.61 23156.54 32097.79 18874.31 30781.07 26290.99 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+83.78 1584.21 27982.56 28489.15 28793.73 24979.16 31396.43 26994.28 30981.09 30374.00 32194.03 21854.58 33097.67 19876.10 29578.81 27290.63 299
RPMNet85.07 26881.88 28594.64 15193.47 25386.24 21984.97 35597.21 14964.85 36090.76 16278.80 35780.95 18599.27 12353.76 36292.17 18398.41 155
MIMVSNet84.48 27681.83 28692.42 20791.73 28287.36 19485.52 35194.42 30681.40 29981.91 26087.58 32351.92 33792.81 33873.84 31288.15 21197.08 197
Patchmtry83.61 28781.64 28789.50 28093.36 25782.84 28184.10 35894.20 31169.47 35079.57 28786.88 33384.43 13394.78 31868.48 33374.30 30090.88 288
SixPastTwentyTwo82.63 29081.58 28885.79 31488.12 33071.01 34895.17 29992.54 33384.33 25272.93 33192.08 25460.41 31095.61 30074.47 30674.15 30390.75 294
ppachtmachnet_test83.63 28681.57 28989.80 27289.01 31985.09 25097.13 24694.50 30278.84 31676.14 30891.00 27769.78 25994.61 32363.40 34674.36 29989.71 318
DSMNet-mixed81.60 29681.43 29082.10 33284.36 34860.79 36093.63 31486.74 36579.00 31479.32 29087.15 33163.87 29889.78 35666.89 33891.92 18595.73 217
tfpnnormal83.65 28581.35 29190.56 25191.37 28888.06 17597.29 23797.87 4978.51 31976.20 30790.91 27864.78 29496.47 25461.71 35173.50 30987.13 341
FMVSNet183.94 28481.32 29291.80 22191.94 27888.81 16196.77 25895.25 27777.98 32078.25 30190.25 30150.37 34394.97 31273.27 31677.81 28091.62 260
LF4IMVS81.94 29481.17 29384.25 32487.23 33968.87 35593.35 31691.93 34383.35 26975.40 31593.00 24549.25 34796.65 24078.88 27578.11 27587.22 340
testgi82.29 29181.00 29486.17 31287.24 33874.84 33497.39 23191.62 34688.63 16275.85 31395.42 19846.07 35091.55 35166.87 33979.94 26892.12 248
FMVSNet582.29 29180.54 29587.52 30393.79 24884.01 26493.73 31292.47 33476.92 32774.27 31986.15 33863.69 29989.24 35869.07 33074.79 29489.29 323
KD-MVS_2432*160082.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
miper_refine_blended82.98 28880.52 29690.38 25694.32 22988.98 15492.87 32095.87 24380.46 30973.79 32287.49 32682.76 16293.29 33370.56 32646.53 36888.87 328
Patchmatch-RL test81.90 29580.13 29887.23 30680.71 35870.12 35284.07 35988.19 36383.16 27270.57 33582.18 34987.18 8692.59 34182.28 25062.78 34898.98 114
CMPMVSbinary58.40 2180.48 30080.11 29981.59 33585.10 34659.56 36294.14 30995.95 22968.54 35260.71 35893.31 23755.35 32797.87 18383.06 24384.85 23187.33 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_rt81.31 29780.05 30085.11 31791.29 28970.66 34998.98 10777.39 37485.76 22968.80 34082.40 34736.56 36199.44 10592.67 13686.55 21885.24 351
K. test v381.04 29879.77 30184.83 32087.41 33770.23 35195.60 29693.93 31583.70 26367.51 34789.35 31555.76 32293.58 33176.67 29168.03 33590.67 298
TransMVSNet (Re)81.97 29379.61 30289.08 28889.70 30984.01 26497.26 23991.85 34478.84 31673.07 33091.62 26567.17 27995.21 30967.50 33559.46 35588.02 332
Anonymous2023120680.76 29979.42 30384.79 32184.78 34772.98 34096.53 26692.97 32779.56 31274.33 31888.83 31761.27 30792.15 34760.59 35375.92 28689.24 324
CL-MVSNet_self_test79.89 30478.34 30484.54 32381.56 35675.01 33296.88 25595.62 25781.10 30275.86 31285.81 33968.49 26790.26 35463.21 34756.51 35988.35 330
TinyColmap80.42 30177.94 30587.85 30092.09 27478.58 31893.74 31189.94 35574.99 33369.77 33891.78 26346.09 34997.58 20665.17 34477.89 27687.38 336
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 34077.90 32596.20 28194.06 31374.61 33566.53 35188.76 31840.40 35996.20 27367.02 33783.66 24586.61 342
test20.0378.51 31277.48 30781.62 33483.07 35271.03 34796.11 28292.83 33081.66 29769.31 33989.68 31157.53 31787.29 36358.65 35768.47 33386.53 343
pmmvs679.90 30377.31 30887.67 30284.17 34978.13 32295.86 29193.68 31967.94 35472.67 33289.62 31250.98 34195.75 29574.80 30566.04 34289.14 325
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33580.13 30996.25 27794.44 30373.87 33851.80 36287.47 32868.04 27192.12 34866.02 34067.79 33790.09 307
YYNet179.64 30677.04 31087.43 30587.80 33479.98 31096.23 27894.44 30373.83 33951.83 36187.53 32467.96 27392.07 34966.00 34167.75 33890.23 306
Anonymous2024052178.63 31176.90 31183.82 32682.82 35372.86 34195.72 29593.57 32173.55 34072.17 33484.79 34149.69 34592.51 34365.29 34374.50 29686.09 346
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 35474.94 33391.98 32696.31 20384.64 24865.84 35387.71 32251.33 33892.23 34672.89 31956.50 36089.56 320
test_040278.81 30976.33 31386.26 31191.18 29078.44 32095.88 28991.34 34968.55 35170.51 33789.91 30852.65 33694.99 31147.14 36579.78 26985.34 350
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 36081.19 30194.17 30892.13 34077.97 32166.90 35082.31 34855.76 32292.56 34273.63 31562.31 35185.38 348
KD-MVS_self_test77.47 31675.88 31582.24 33081.59 35568.93 35492.83 32294.02 31477.03 32673.14 32783.39 34455.44 32690.42 35367.95 33457.53 35887.38 336
TDRefinement78.01 31375.31 31686.10 31370.06 36973.84 33793.59 31591.58 34774.51 33673.08 32991.04 27649.63 34697.12 22274.88 30359.47 35487.33 338
test_fmvs375.09 32075.19 31774.81 34277.45 36454.08 36795.93 28590.64 35282.51 28673.29 32581.19 35122.29 36886.29 36485.50 21267.89 33684.06 354
MVS-HIRNet79.01 30775.13 31890.66 24893.82 24781.69 29285.16 35293.75 31754.54 36274.17 32059.15 36857.46 31896.58 24563.74 34594.38 15693.72 225
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31986.77 30983.81 35177.94 32496.38 27191.53 34867.54 35568.38 34287.13 33243.94 35196.08 28055.03 36181.83 25986.29 345
MDA-MVSNet-bldmvs77.82 31574.75 32087.03 30788.33 32778.52 31996.34 27292.85 32975.57 33148.87 36487.89 32157.32 31992.49 34460.79 35264.80 34690.08 308
mvsany_test375.85 31974.52 32179.83 33773.53 36660.64 36191.73 32987.87 36483.91 25970.55 33682.52 34631.12 36393.66 32986.66 20162.83 34785.19 352
new_pmnet76.02 31773.71 32282.95 32983.88 35072.85 34291.26 33592.26 33770.44 34662.60 35681.37 35047.64 34892.32 34561.85 35072.10 32383.68 356
MIMVSNet175.92 31873.30 32383.81 32781.29 35775.57 33092.26 32592.05 34173.09 34167.48 34886.18 33740.87 35887.64 36255.78 36070.68 33088.21 331
PM-MVS74.88 32172.85 32480.98 33678.98 36264.75 35890.81 33985.77 36680.95 30568.23 34482.81 34529.08 36592.84 33776.54 29262.46 35085.36 349
new-patchmatchnet74.80 32272.40 32581.99 33378.36 36372.20 34494.44 30492.36 33577.06 32563.47 35579.98 35551.04 34088.85 35960.53 35454.35 36284.92 353
test_f71.94 32570.82 32675.30 34172.77 36753.28 36891.62 33089.66 35875.44 33264.47 35478.31 35820.48 36989.56 35778.63 27866.02 34383.05 359
UnsupCasMVSNet_bld73.85 32370.14 32784.99 31979.44 36175.73 32988.53 34595.24 28070.12 34861.94 35774.81 36141.41 35693.62 33068.65 33251.13 36785.62 347
N_pmnet70.19 32669.87 32871.12 34688.24 32830.63 38295.85 29228.70 38270.18 34768.73 34186.55 33564.04 29793.81 32853.12 36373.46 31088.94 326
pmmvs372.86 32469.76 32982.17 33173.86 36574.19 33694.20 30789.01 36164.23 36167.72 34580.91 35341.48 35588.65 36062.40 34954.02 36383.68 356
test_method70.10 32768.66 33074.41 34486.30 34455.84 36594.47 30389.82 35635.18 37066.15 35284.75 34230.54 36477.96 37170.40 32860.33 35389.44 321
APD_test168.93 32866.98 33174.77 34380.62 35953.15 36987.97 34685.01 36853.76 36359.26 35987.52 32525.19 36689.95 35556.20 35967.33 33981.19 360
FPMVS61.57 32960.32 33265.34 34960.14 37642.44 37791.02 33889.72 35744.15 36542.63 36880.93 35219.02 37080.59 37042.50 36672.76 31573.00 362
test_vis3_rt61.29 33058.75 33368.92 34867.41 37052.84 37091.18 33759.23 38166.96 35641.96 36958.44 36911.37 37794.72 32074.25 30857.97 35759.20 368
LCM-MVSNet60.07 33256.37 33471.18 34554.81 37848.67 37382.17 36389.48 35937.95 36849.13 36369.12 36213.75 37681.76 36559.28 35551.63 36683.10 358
EGC-MVSNET60.70 33155.37 33576.72 33986.35 34371.08 34689.96 34384.44 3700.38 3791.50 38084.09 34337.30 36088.10 36140.85 36973.44 31170.97 364
PMMVS258.97 33355.07 33670.69 34762.72 37355.37 36685.97 35080.52 37149.48 36445.94 36568.31 36315.73 37480.78 36949.79 36437.12 37075.91 361
testf156.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
APD_test256.38 33453.73 33764.31 35164.84 37145.11 37480.50 36475.94 37638.87 36642.74 36675.07 35911.26 37881.19 36741.11 36753.27 36466.63 365
tmp_tt53.66 33752.86 33956.05 35432.75 38241.97 37873.42 36876.12 37521.91 37539.68 37196.39 18142.59 35465.10 37478.00 28114.92 37561.08 367
Gipumacopyleft54.77 33652.22 34062.40 35386.50 34159.37 36350.20 37190.35 35436.52 36941.20 37049.49 37118.33 37281.29 36632.10 37165.34 34446.54 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 33846.17 34164.33 35044.27 38052.30 37176.13 36778.73 37264.95 35927.37 37355.23 37014.61 37567.74 37336.01 37018.23 37372.95 363
PMVScopyleft41.42 2345.67 33942.50 34255.17 35534.28 38132.37 38066.24 36978.71 37330.72 37122.04 37659.59 3674.59 38077.85 37227.49 37258.84 35655.29 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 34140.93 34341.29 35761.97 37433.83 37984.00 36065.17 37927.17 37227.56 37246.72 37317.63 37360.41 37619.32 37418.82 37229.61 372
EMVS39.96 34239.88 34440.18 35859.57 37732.12 38184.79 35764.57 38026.27 37326.14 37444.18 37618.73 37159.29 37717.03 37517.67 37429.12 373
MVEpermissive44.00 2241.70 34037.64 34553.90 35649.46 37943.37 37665.09 37066.66 37826.19 37425.77 37548.53 3723.58 38263.35 37526.15 37327.28 37154.97 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 34330.03 3460.00 3620.00 3850.00 3860.00 37397.17 1550.00 3800.00 38198.77 7474.35 2250.00 3810.00 3790.00 3790.00 377
testmvs18.81 34423.05 3476.10 3614.48 3832.29 38597.78 2173.00 3843.27 37718.60 37762.71 3651.53 3842.49 38014.26 3771.80 37713.50 375
test12316.58 34619.47 3487.91 3603.59 3845.37 38494.32 3051.39 3852.49 37813.98 37844.60 3752.91 3832.65 37911.35 3780.57 37815.70 374
wuyk23d16.71 34516.73 34916.65 35960.15 37525.22 38341.24 3725.17 3836.56 3765.48 3793.61 3793.64 38122.72 37815.20 3769.52 3761.99 376
ab-mvs-re8.21 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.50 960.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.87 3489.16 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38082.48 1670.00 3810.00 3790.00 3790.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.50 4288.94 15799.55 3397.47 12491.32 9498.12 35
MSC_two_6792asdad99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
PC_three_145294.60 2399.41 299.12 4195.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 7699.98 999.55 1099.83 1599.96 10
test_one_060199.59 2894.89 3297.64 8793.14 5598.93 1699.45 1493.45 18
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.67 1093.28 6997.61 9487.78 19197.41 5199.16 3490.15 4799.56 9198.35 3099.70 35
IU-MVS99.63 1895.38 2097.73 6895.54 1599.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 999.19 2895.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 6994.17 2999.23 899.54 393.14 2499.98 999.70 399.82 1999.99 1
test_241102_ONE99.63 1895.24 2397.72 6994.16 3199.30 699.49 993.32 1999.98 9
save fliter99.34 5093.85 6099.65 2597.63 9195.69 12
test_0728_THIRD93.01 5699.07 1199.46 1094.66 1499.97 2199.25 1499.82 1999.95 15
test_0728_SECOND98.77 799.66 1296.37 1299.72 1497.68 7899.98 999.64 699.82 1999.96 10
test072699.66 1295.20 2899.77 997.70 7493.95 3499.35 599.54 393.18 22
GSMVS98.84 129
test_part299.54 3695.42 1898.13 33
sam_mvs188.39 6398.84 129
sam_mvs87.08 88
ambc79.60 33872.76 36856.61 36476.20 36692.01 34268.25 34380.23 35423.34 36794.73 31973.78 31460.81 35287.48 335
MTGPAbinary97.45 127
test_post190.74 34141.37 37785.38 12496.36 26083.16 240
test_post46.00 37487.37 8097.11 223
patchmatchnet-post84.86 34088.73 6096.81 235
GG-mvs-BLEND96.98 6196.53 14894.81 3987.20 34797.74 6593.91 11996.40 17996.56 296.94 23195.08 9298.95 8199.20 98
MTMP99.21 7191.09 350
gm-plane-assit94.69 22388.14 17388.22 17997.20 14998.29 16190.79 153
test9_res98.60 2399.87 999.90 22
TEST999.57 3393.17 7199.38 5897.66 8189.57 13898.39 2799.18 3190.88 3799.66 80
test_899.55 3593.07 7499.37 6197.64 8790.18 12098.36 2999.19 2890.94 3599.64 86
agg_prior297.84 4199.87 999.91 21
agg_prior99.54 3692.66 8197.64 8797.98 4299.61 88
TestCases90.52 25296.82 14078.84 31692.17 33877.96 32275.94 31095.50 19555.48 32499.18 12571.15 32287.14 21493.55 226
test_prior492.00 9099.41 55
test_prior299.57 3191.43 9198.12 3598.97 5590.43 4398.33 3199.81 23
test_prior97.01 5699.58 3091.77 9197.57 10599.49 9899.79 35
旧先验298.67 13585.75 23098.96 1598.97 13893.84 116
新几何298.26 184
新几何197.40 4398.92 7792.51 8697.77 6385.52 23296.69 7199.06 4888.08 6999.89 4584.88 21899.62 4499.79 35
旧先验198.97 7392.90 8097.74 6599.15 3691.05 3499.33 6399.60 65
无先验98.52 15297.82 5487.20 20599.90 4387.64 19099.85 30
原ACMM298.69 132
原ACMM196.18 9999.03 7190.08 13297.63 9188.98 15397.00 6098.97 5588.14 6899.71 7688.23 18299.62 4498.76 140
test22298.32 9291.21 10198.08 20197.58 10283.74 26195.87 8699.02 5286.74 9699.64 4099.81 32
testdata299.88 4684.16 228
segment_acmp90.56 41
testdata95.26 13098.20 9587.28 19797.60 9685.21 23698.48 2699.15 3688.15 6798.72 14890.29 15899.45 5799.78 37
testdata197.89 21092.43 68
test1297.83 3199.33 5394.45 4797.55 10797.56 4788.60 6199.50 9799.71 3499.55 69
plane_prior793.84 24585.73 236
plane_prior693.92 24286.02 23072.92 237
plane_prior596.30 20497.75 19593.46 12386.17 22292.67 231
plane_prior496.52 175
plane_prior385.91 23193.65 4786.99 200
plane_prior299.02 10193.38 52
plane_prior193.90 244
plane_prior86.07 22899.14 8693.81 4486.26 221
n20.00 386
nn0.00 386
door-mid84.90 369
lessismore_v085.08 31885.59 34569.28 35390.56 35367.68 34690.21 30554.21 33295.46 30273.88 31162.64 34990.50 301
LGP-MVS_train90.06 26393.35 25880.95 30595.94 23087.73 19583.17 23596.11 18666.28 28597.77 19090.19 15985.19 22891.46 269
test1197.68 78
door85.30 367
HQP5-MVS86.39 214
HQP-NCC93.95 23899.16 7893.92 3687.57 193
ACMP_Plane93.95 23899.16 7893.92 3687.57 193
BP-MVS93.82 118
HQP4-MVS87.57 19397.77 19092.72 229
HQP3-MVS96.37 20086.29 219
HQP2-MVS73.34 232
NP-MVS93.94 24186.22 22196.67 173
MDTV_nov1_ep13_2view91.17 10491.38 33387.45 20293.08 13086.67 9887.02 19398.95 120
ACMMP++_ref82.64 255
ACMMP++83.83 242
Test By Simon83.62 142
ITE_SJBPF87.93 29992.26 27176.44 32893.47 32387.67 19879.95 28295.49 19756.50 32197.38 21775.24 30082.33 25789.98 313
DeepMVS_CXcopyleft76.08 34090.74 29651.65 37290.84 35186.47 22257.89 36087.98 32035.88 36292.60 34065.77 34265.06 34583.97 355