This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4397.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
MSP-MVS97.77 998.18 296.53 10099.54 4090.14 14399.41 5897.70 7995.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 4996.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7494.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
DVP-MVS++.98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8393.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13293.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7494.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4497.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
DeepPCF-MVS93.56 196.55 4297.84 992.68 21498.71 9778.11 32899.70 1797.71 7898.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6695.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12193.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12794.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3694.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 27995.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14693.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10899.75 1397.66 8694.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7291.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6396.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
test_prior397.07 2797.09 1997.01 6599.58 3391.77 9999.57 3197.57 11191.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8690.18 11998.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6891.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9290.38 11397.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12189.85 12898.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9189.55 14199.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13589.60 13798.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10499.58 3096.54 20395.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 13799.81 35
9.1496.87 2799.34 5899.50 4197.49 12989.41 14498.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30498.36 2392.50 6395.62 10197.52 14597.92 197.38 22098.31 3798.80 9898.20 178
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9296.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4592.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4692.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 13990.08 12498.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12599.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1296.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5396.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14688.44 17498.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12195.90 997.21 6098.90 7982.66 17499.93 3998.71 2098.80 9899.63 73
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 9999.70 1798.05 3986.48 22398.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17195.83 1098.97 1399.14 4582.48 17799.60 9598.60 2399.08 8498.00 182
XVS96.47 4596.37 4196.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10298.71 13197.90 4892.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
#test#96.48 4496.34 4396.90 7799.69 990.96 12699.53 3997.81 5890.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 10998.71 13197.88 4992.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12699.47 4497.81 5890.54 10996.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10690.66 10497.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 13989.02 15397.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17895.51 1698.86 1699.11 5382.19 18399.36 12598.59 2598.14 11398.00 182
region2R96.30 5196.17 4896.70 9199.70 890.31 13999.46 4997.66 8690.55 10897.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
SR-MVS96.13 5596.16 5096.07 11799.42 5489.04 16898.59 15397.33 15190.44 11196.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
CP-MVS96.22 5396.15 5196.42 10599.67 1389.62 16199.70 1797.61 10090.07 12596.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13799.47 4497.80 6090.54 10996.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
test117295.92 6396.07 5395.46 13699.42 5487.24 21498.51 16197.24 15590.29 11696.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
ETV-MVS96.00 5896.00 5496.00 11996.56 15991.05 12399.63 2596.61 19493.26 4997.39 5798.30 11886.62 11198.13 16998.07 4197.57 12198.82 142
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11498.69 13697.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
lupinMVS96.32 5095.94 5697.44 4895.05 21994.87 3799.86 296.50 20593.82 3998.04 4198.77 8685.52 12998.09 17296.98 5998.97 8999.37 94
MVS_111021_LR95.78 6995.94 5695.28 14398.19 11187.69 19698.80 12499.26 793.39 4695.04 11098.69 9684.09 14999.76 7296.96 6099.06 8598.38 167
PAPM96.35 4895.94 5697.58 4394.10 24195.25 2398.93 11198.17 3194.26 2493.94 12798.72 9289.68 5797.88 18596.36 7299.29 7899.62 75
SR-MVS-dyc-post95.75 7295.86 5995.41 13999.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
MP-MVScopyleft96.00 5895.82 6096.54 9999.47 5190.13 14599.36 6597.41 14390.64 10795.49 10298.95 7385.51 13199.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11492.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11499.55 3497.53 11889.72 13295.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
CS-MVS95.86 6595.81 6295.98 12195.62 19291.26 11199.80 796.12 23092.15 7697.93 4798.45 11485.88 12797.55 21197.56 4798.80 9899.14 114
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11497.23 24497.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
mPP-MVS95.90 6495.75 6596.38 10799.58 3389.41 16599.26 7297.41 14390.66 10494.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
RE-MVS-def95.70 6699.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6685.24 13796.62 6399.31 7699.60 77
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11299.45 5197.48 13089.69 13395.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10599.88 198.04 4093.64 4394.21 12297.76 13383.50 15499.87 5197.41 4997.75 12098.79 145
APD-MVS_3200maxsize95.64 7395.65 6995.62 13199.24 7087.80 19598.42 17197.22 15888.93 15896.64 8198.98 6585.49 13299.36 12596.68 6299.27 7999.70 61
PGM-MVS95.85 6695.65 6996.45 10399.50 4789.77 15798.22 19198.90 1189.19 14796.74 7698.95 7385.91 12699.92 4093.94 11899.46 6499.66 69
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11499.14 7690.33 13898.49 16597.82 5591.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13098.70 152
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16788.95 15693.12 13799.25 2785.62 12899.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 7495.29 7395.86 12599.07 8289.87 15498.43 17097.80 6091.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13698.22 176
EIA-MVS95.11 8395.27 7494.64 16396.34 16686.51 22399.59 2996.62 19392.51 6294.08 12598.64 9886.05 12498.24 16695.07 10098.50 10899.18 112
CS-MVS-test95.20 8195.27 7494.98 15295.67 19088.17 18799.62 2795.84 25691.52 8697.42 5598.30 11885.07 13897.51 21295.81 8298.20 11299.26 105
HPM-MVScopyleft95.41 7695.22 7695.99 12099.29 6689.14 16699.17 7997.09 17587.28 20795.40 10398.48 11084.93 14099.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DROMVSNet95.09 8495.17 7794.84 15595.42 19988.17 18799.48 4295.92 24391.47 8897.34 5998.36 11582.77 17097.41 21997.24 5298.58 10598.94 131
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13086.58 22094.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1392.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 17799.50 86
PAPM_NR95.43 7495.05 8096.57 9899.42 5490.14 14398.58 15597.51 12490.65 10692.44 14598.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12791.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19499.51 85
jason95.40 7794.86 8297.03 6492.91 27294.23 5699.70 1796.30 21693.56 4596.73 7798.52 10581.46 19297.91 18296.08 7898.47 10998.96 126
jason: jason.
CSCG94.87 8894.71 8395.36 14099.54 4086.49 22499.34 6898.15 3482.71 28190.15 17899.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
HPM-MVS_fast94.89 8794.62 8495.70 13099.11 7888.44 18599.14 8997.11 17185.82 23095.69 9998.47 11183.46 15699.32 13193.16 13399.63 5099.35 95
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
abl_694.63 9894.48 8795.09 14698.61 10186.96 21798.06 20796.97 18489.31 14595.86 9598.56 10379.82 19999.64 9094.53 11398.65 10498.66 156
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28197.75 6685.50 23596.86 6999.01 6488.59 7099.90 4487.64 19199.60 5699.79 38
CPTT-MVS94.60 9994.43 8995.09 14699.66 1586.85 21999.44 5297.47 13283.22 27194.34 12198.96 7182.50 17599.55 9894.81 10599.50 6298.88 135
ACMMPcopyleft94.67 9694.30 9095.79 12799.25 6988.13 19098.41 17398.67 1990.38 11391.43 15798.72 9282.22 18299.95 3493.83 12295.76 15199.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1590.33 11597.16 6297.43 14979.19 20699.53 10196.91 6191.85 19299.24 107
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31298.74 1392.42 6895.65 10094.76 21286.52 11599.49 10895.29 9692.97 17399.53 82
thisisatest051594.75 9194.19 9396.43 10496.13 18092.64 9299.47 4497.60 10287.55 20393.17 13697.59 14394.71 1198.42 16088.28 18393.20 17098.24 175
diffmvs94.59 10094.19 9395.81 12695.54 19590.69 13298.70 13595.68 26591.61 8395.96 9097.81 13080.11 19898.06 17696.52 6895.76 15198.67 153
API-MVS94.78 9094.18 9596.59 9699.21 7390.06 15098.80 12497.78 6383.59 26693.85 12999.21 3283.79 15199.97 2392.37 14199.00 8899.74 55
PVSNet_Blended_VisFu94.67 9694.11 9696.34 10997.14 14091.10 12099.32 7097.43 14192.10 7791.53 15696.38 18983.29 16099.68 8293.42 13096.37 13898.25 174
MAR-MVS94.43 10294.09 9795.45 13799.10 8087.47 20398.39 17997.79 6288.37 17794.02 12699.17 3978.64 21299.91 4292.48 14098.85 9498.96 126
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 9594.08 9896.61 9595.05 21994.87 3797.77 22196.17 22786.84 21498.04 4198.52 10585.52 12995.99 28389.83 16398.97 8998.96 126
PLCcopyleft91.07 394.23 10694.01 9994.87 15399.17 7587.49 20299.25 7396.55 20188.43 17591.26 16098.21 12485.92 12599.86 5689.77 16697.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base_debi94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
canonicalmvs95.02 8693.96 10398.20 2097.53 13095.92 1698.71 13196.19 22691.78 8195.86 9598.49 10979.53 20399.03 14496.12 7691.42 20099.66 69
DWT-MVSNet_test94.36 10393.95 10495.62 13196.99 14889.47 16396.62 26897.38 14690.96 10193.07 13997.27 15293.73 1598.09 17285.86 21193.65 16899.29 101
sss94.85 8993.94 10597.58 4396.43 16394.09 6098.93 11199.16 889.50 14295.27 10597.85 12881.50 19099.65 8892.79 13994.02 16598.99 123
DeepC-MVS91.02 494.56 10193.92 10696.46 10297.16 13990.76 13098.39 17997.11 17193.92 3288.66 19198.33 11678.14 21499.85 5895.02 10198.57 10698.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS93.62 12393.90 10792.79 20996.79 15381.40 30298.85 11996.81 18891.25 9696.82 7598.15 12677.02 22098.13 16993.15 13496.30 14198.83 141
CHOSEN 1792x268894.35 10493.82 10895.95 12397.40 13188.74 17998.41 17398.27 2592.18 7491.43 15796.40 18678.88 20799.81 6693.59 12697.81 11699.30 100
baseline294.04 10893.80 10994.74 15993.07 27090.25 14098.12 20098.16 3389.86 12786.53 21296.95 16995.56 598.05 17791.44 14794.53 16095.93 221
EPP-MVSNet93.75 11793.67 11094.01 18595.86 18385.70 24998.67 14097.66 8684.46 25291.36 15997.18 15991.16 2997.79 19192.93 13693.75 16698.53 159
OMC-MVS93.90 11393.62 11194.73 16098.63 9987.00 21698.04 20896.56 20092.19 7392.46 14498.73 9079.49 20499.14 14092.16 14394.34 16398.03 181
thisisatest053094.00 10993.52 11295.43 13895.76 18690.02 15298.99 10697.60 10286.58 22091.74 15097.36 15194.78 1098.34 16186.37 20392.48 18197.94 184
casdiffmvs93.98 11093.43 11395.61 13395.07 21889.86 15598.80 12495.84 25690.98 10092.74 14297.66 14079.71 20098.10 17194.72 10895.37 15598.87 137
CANet_DTU94.31 10593.35 11497.20 6097.03 14794.71 4698.62 14795.54 27495.61 1497.21 6098.47 11171.88 25899.84 5988.38 18297.46 12697.04 206
baseline93.91 11293.30 11595.72 12995.10 21690.07 14797.48 23395.91 24891.03 9993.54 13397.68 13879.58 20198.02 17994.27 11695.14 15699.08 119
HyFIR lowres test93.68 12093.29 11694.87 15397.57 12888.04 19298.18 19598.47 2187.57 20291.24 16195.05 20885.49 13297.46 21593.22 13292.82 17499.10 117
TESTMET0.1,193.82 11593.26 11795.49 13595.21 20590.25 14099.15 8697.54 11789.18 14891.79 14994.87 21089.13 6197.63 20486.21 20496.29 14298.60 157
PVSNet_BlendedMVS93.36 12993.20 11893.84 19098.77 9591.61 10599.47 4498.04 4091.44 8994.21 12292.63 25483.50 15499.87 5197.41 4983.37 24890.05 314
Effi-MVS+93.87 11493.15 11996.02 11895.79 18490.76 13096.70 26695.78 25886.98 21195.71 9897.17 16079.58 20198.01 18094.57 11296.09 14599.31 99
AdaColmapbinary93.82 11593.06 12096.10 11699.88 189.07 16798.33 18397.55 11486.81 21690.39 17598.65 9775.09 22699.98 1093.32 13197.53 12499.26 105
114514_t94.06 10793.05 12197.06 6399.08 8192.26 9798.97 10897.01 18282.58 28392.57 14398.22 12280.68 19699.30 13289.34 17299.02 8799.63 73
CDS-MVSNet93.47 12493.04 12294.76 15794.75 23089.45 16498.82 12297.03 18087.91 19190.97 16496.48 18489.06 6296.36 26289.50 16792.81 17698.49 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 13193.01 12394.17 17895.57 19386.47 22598.51 16197.60 10285.99 22890.55 17097.19 15894.80 998.31 16285.06 21691.86 19197.74 186
Vis-MVSNet (Re-imp)93.26 13493.00 12494.06 18296.14 17786.71 22298.68 13896.70 19188.30 17989.71 18597.64 14185.43 13596.39 26088.06 18796.32 13999.08 119
test-mter93.27 13392.89 12594.40 17094.94 22487.27 21099.15 8697.25 15388.95 15691.57 15394.04 21888.03 8097.58 20785.94 20896.13 14398.36 170
PVSNet87.13 1293.69 11892.83 12696.28 11097.99 11690.22 14299.38 6198.93 1091.42 9293.66 13297.68 13871.29 26599.64 9087.94 18897.20 12998.98 124
CNLPA93.64 12292.74 12796.36 10898.96 8790.01 15399.19 7595.89 25186.22 22689.40 18698.85 8280.66 19799.84 5988.57 18096.92 13199.24 107
test-LLR93.11 13792.68 12894.40 17094.94 22487.27 21099.15 8697.25 15390.21 11791.57 15394.04 21884.89 14197.58 20785.94 20896.13 14398.36 170
MVS_Test93.67 12192.67 12996.69 9296.72 15592.66 8897.22 24596.03 23387.69 20095.12 10994.03 22081.55 18998.28 16589.17 17696.46 13599.14 114
UA-Net93.30 13192.62 13095.34 14196.27 16888.53 18495.88 29196.97 18490.90 10395.37 10497.07 16482.38 18099.10 14283.91 23494.86 15998.38 167
thres20093.69 11892.59 13196.97 7297.76 11994.74 4499.35 6699.36 289.23 14691.21 16296.97 16883.42 15798.77 15085.08 21590.96 20397.39 195
IS-MVSNet93.00 13892.51 13294.49 16796.14 17787.36 20798.31 18695.70 26388.58 16690.17 17797.50 14683.02 16697.22 22387.06 19496.07 14798.90 134
CostFormer92.89 13992.48 13394.12 18094.99 22185.89 24492.89 32197.00 18386.98 21195.00 11190.78 28390.05 5197.51 21292.92 13791.73 19598.96 126
MVSTER92.71 14192.32 13493.86 18997.29 13592.95 8699.01 10496.59 19690.09 12385.51 21794.00 22294.61 1496.56 24890.77 15783.03 25092.08 251
MVS93.92 11192.28 13598.83 695.69 18896.82 796.22 28198.17 3184.89 24784.34 22698.61 10179.32 20599.83 6193.88 12099.43 6899.86 32
tfpn200view993.43 12692.27 13696.90 7797.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20597.12 201
thres40093.39 12892.27 13696.73 8897.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20596.61 210
mvs-test191.57 16292.20 13889.70 27795.15 21074.34 33899.51 4095.40 28391.92 7891.02 16397.25 15374.27 23798.08 17589.45 16895.83 15096.67 209
tpmrst92.78 14092.16 13994.65 16296.27 16887.45 20491.83 32997.10 17489.10 15194.68 11590.69 28788.22 7597.73 20089.78 16591.80 19398.77 148
thres100view90093.34 13092.15 14096.90 7797.62 12494.84 3999.06 9899.36 287.96 18990.47 17396.78 17683.29 16098.75 15284.11 23090.69 20597.12 201
EPNet_dtu92.28 15192.15 14092.70 21397.29 13584.84 26498.64 14497.82 5592.91 5693.02 14097.02 16685.48 13495.70 29872.25 31894.89 15897.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 14492.09 14294.20 17794.10 24187.68 19798.41 17396.97 18487.53 20489.74 18396.04 19584.77 14496.49 25488.97 17992.31 18498.42 163
thres600view793.18 13592.00 14396.75 8697.62 12494.92 3499.07 9699.36 287.96 18990.47 17396.78 17683.29 16098.71 15682.93 24490.47 20996.61 210
131493.44 12591.98 14497.84 3395.24 20394.38 5496.22 28197.92 4790.18 11982.28 25197.71 13777.63 21799.80 6891.94 14498.67 10399.34 97
h-mvs3392.47 14991.95 14594.05 18397.13 14185.01 26298.36 18198.08 3793.85 3796.27 8496.73 17883.19 16399.43 11895.81 8268.09 33497.70 187
Vis-MVSNetpermissive92.64 14391.85 14695.03 15095.12 21288.23 18698.48 16696.81 18891.61 8392.16 14897.22 15671.58 26398.00 18185.85 21297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 12691.84 14798.17 2195.73 18795.08 3298.92 11397.04 17891.42 9281.48 26997.60 14274.60 23099.79 6990.84 15598.97 8999.64 71
BH-w/o92.32 15091.79 14893.91 18896.85 15086.18 23599.11 9495.74 26188.13 18484.81 22197.00 16777.26 21997.91 18289.16 17798.03 11497.64 188
3Dnovator87.35 1193.17 13691.77 14997.37 5495.41 20093.07 8098.82 12297.85 5291.53 8582.56 24597.58 14471.97 25799.82 6491.01 15299.23 8299.22 110
F-COLMAP92.07 15591.75 15093.02 20498.16 11282.89 28898.79 12895.97 23586.54 22287.92 19697.80 13178.69 21199.65 8885.97 20695.93 14996.53 215
mvs_anonymous92.50 14891.65 15195.06 14896.60 15889.64 16097.06 25096.44 20986.64 21984.14 22793.93 22482.49 17696.17 27791.47 14696.08 14699.35 95
EPMVS92.59 14691.59 15295.59 13497.22 13790.03 15191.78 33098.04 4090.42 11291.66 15290.65 29086.49 11797.46 21581.78 25596.31 14099.28 103
1112_ss92.71 14191.55 15396.20 11195.56 19491.12 11898.48 16694.69 30688.29 18086.89 20898.50 10787.02 10198.66 15784.75 22089.77 21298.81 143
hse-mvs291.67 16191.51 15492.15 22396.22 17082.61 29497.74 22497.53 11893.85 3796.27 8496.15 19183.19 16397.44 21795.81 8266.86 33996.40 217
ET-MVSNet_ETH3D92.56 14791.45 15595.88 12496.39 16494.13 5999.46 4996.97 18492.18 7466.94 34898.29 12094.65 1394.28 32694.34 11583.82 24499.24 107
baseline192.61 14591.28 15696.58 9797.05 14694.63 4897.72 22596.20 22489.82 12988.56 19296.85 17486.85 10497.82 18988.42 18180.10 26597.30 197
HQP-MVS91.50 16391.23 15792.29 21893.95 24586.39 22899.16 8096.37 21293.92 3287.57 19896.67 18073.34 24497.77 19393.82 12386.29 22392.72 233
RRT_MVS91.95 15791.09 15894.53 16696.71 15795.12 3198.64 14496.23 22289.04 15285.24 21995.06 20787.71 8596.43 25889.10 17882.06 25792.05 253
tpm291.77 15991.09 15893.82 19194.83 22885.56 25292.51 32697.16 16684.00 25893.83 13090.66 28987.54 8897.17 22487.73 19091.55 19898.72 150
PatchmatchNetpermissive92.05 15691.04 16095.06 14896.17 17589.04 16891.26 33497.26 15289.56 14090.64 16990.56 29688.35 7497.11 22679.53 26796.07 14799.03 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 15290.97 16196.18 11295.53 19691.10 12098.47 16894.66 30788.28 18186.83 21093.50 23887.00 10298.65 15884.69 22189.74 21398.80 144
HQP_MVS91.26 16790.95 16292.16 22293.84 25286.07 24099.02 10296.30 21693.38 4786.99 20596.52 18272.92 24897.75 19893.46 12886.17 22692.67 235
CVMVSNet90.30 18590.91 16388.46 30094.32 23773.58 34297.61 23097.59 10690.16 12288.43 19497.10 16276.83 22192.86 33582.64 24693.54 16998.93 132
UGNet91.91 15890.85 16495.10 14597.06 14588.69 18098.01 20998.24 2792.41 6992.39 14693.61 23360.52 31799.68 8288.14 18597.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 15390.84 16596.42 10598.24 10891.08 12298.24 19096.22 22383.39 26994.74 11498.31 11761.12 31698.85 14794.45 11492.82 17499.32 98
BH-untuned91.46 16590.84 16593.33 19996.51 16284.83 26598.84 12195.50 27686.44 22583.50 23296.70 17975.49 22597.77 19386.78 20197.81 11697.40 194
IB-MVS89.43 692.12 15490.83 16795.98 12195.40 20190.78 12999.81 598.06 3891.23 9785.63 21693.66 23290.63 4098.78 14991.22 14971.85 32498.36 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 16090.79 16894.49 16795.89 18287.40 20699.54 3895.70 26385.01 24589.28 18895.68 19977.75 21697.57 21083.22 23995.06 15798.51 160
CLD-MVS91.06 17190.71 16992.10 22494.05 24486.10 23899.55 3496.29 21994.16 2784.70 22297.17 16069.62 27297.82 18994.74 10786.08 22892.39 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 19490.68 17087.81 30495.15 21071.98 34897.87 21695.40 28391.92 7887.57 19891.44 27174.27 23796.84 23689.45 16893.10 17294.60 226
XVG-OURS-SEG-HR90.95 17490.66 17191.83 22895.18 20981.14 30995.92 28895.92 24388.40 17690.33 17697.85 12870.66 26899.38 12392.83 13888.83 21494.98 224
PatchMatch-RL91.47 16490.54 17294.26 17598.20 10986.36 23096.94 25497.14 16787.75 19688.98 18995.75 19871.80 26099.40 12280.92 26097.39 12797.02 207
XVG-OURS90.83 17690.49 17391.86 22795.23 20481.25 30695.79 29695.92 24388.96 15590.02 18098.03 12771.60 26299.35 12991.06 15187.78 21894.98 224
MDTV_nov1_ep1390.47 17496.14 17788.55 18291.34 33397.51 12489.58 13892.24 14790.50 30086.99 10397.61 20677.64 28192.34 183
RRT_test8_iter0591.04 17390.40 17592.95 20696.20 17489.75 15898.97 10896.38 21188.52 16782.00 25993.51 23790.69 3996.73 24290.43 15976.91 28392.38 239
VDD-MVS91.24 17090.18 17694.45 16997.08 14485.84 24798.40 17696.10 23186.99 20993.36 13498.16 12554.27 33799.20 13496.59 6690.63 20898.31 173
BH-RMVSNet91.25 16989.99 17795.03 15096.75 15488.55 18298.65 14294.95 29987.74 19787.74 19797.80 13168.27 28098.14 16880.53 26497.49 12598.41 164
FIs90.70 17989.87 17893.18 20192.29 27791.12 11898.17 19798.25 2689.11 15083.44 23394.82 21182.26 18196.17 27787.76 18982.76 25292.25 243
miper_enhance_ethall90.33 18489.70 17992.22 21997.12 14288.93 17398.35 18295.96 23788.60 16583.14 23992.33 25687.38 9196.18 27686.49 20277.89 27591.55 269
PCF-MVS89.78 591.26 16789.63 18096.16 11595.44 19891.58 10795.29 30096.10 23185.07 24282.75 24197.45 14878.28 21399.78 7080.60 26395.65 15497.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 18289.56 18193.72 19495.10 21685.43 25399.41 5894.94 30083.96 26087.21 20496.83 17574.37 23597.05 23080.50 26593.73 16798.67 153
AUN-MVS90.17 18989.50 18292.19 22196.21 17182.67 29297.76 22397.53 11888.05 18691.67 15196.15 19183.10 16597.47 21488.11 18666.91 33896.43 216
QAPM91.41 16689.49 18397.17 6195.66 19193.42 7298.60 15197.51 12480.92 30581.39 27097.41 15072.89 25099.87 5182.33 24998.68 10298.21 177
TR-MVS90.77 17789.44 18494.76 15796.31 16788.02 19397.92 21295.96 23785.52 23388.22 19597.23 15566.80 29298.09 17284.58 22392.38 18298.17 179
FC-MVSNet-test90.22 18789.40 18592.67 21591.78 28789.86 15597.89 21398.22 2888.81 16182.96 24094.66 21381.90 18795.96 28585.89 21082.52 25592.20 247
EI-MVSNet89.87 19589.38 18691.36 23894.32 23785.87 24597.61 23096.59 19685.10 24085.51 21797.10 16281.30 19496.56 24883.85 23683.03 25091.64 261
cascas90.93 17589.33 18795.76 12895.69 18893.03 8298.99 10696.59 19680.49 30786.79 21194.45 21565.23 30198.60 15993.52 12792.18 18795.66 223
SCA90.64 18189.25 18894.83 15694.95 22388.83 17596.26 27897.21 15990.06 12690.03 17990.62 29266.61 29396.81 23883.16 24094.36 16298.84 138
ab-mvs91.05 17289.17 18996.69 9295.96 18191.72 10292.62 32597.23 15785.61 23289.74 18393.89 22668.55 27799.42 11991.09 15087.84 21798.92 133
OPM-MVS89.76 19689.15 19091.57 23590.53 30185.58 25198.11 20295.93 24292.88 5886.05 21396.47 18567.06 29197.87 18689.29 17586.08 22891.26 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-MVSNAJss89.54 20089.05 19191.00 24488.77 32284.36 27097.39 23495.97 23588.47 16881.88 26293.80 22882.48 17796.50 25289.34 17283.34 24992.15 248
TAPA-MVS87.50 990.35 18389.05 19194.25 17698.48 10585.17 25998.42 17196.58 19982.44 28787.24 20398.53 10482.77 17098.84 14859.09 35397.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 19788.95 19391.82 22992.54 27581.43 30192.95 32095.92 24387.81 19390.50 17289.44 31584.99 13995.65 29983.67 23782.71 25398.38 167
nrg03090.23 18688.87 19494.32 17391.53 29093.54 6998.79 12895.89 25188.12 18584.55 22494.61 21478.80 21096.88 23592.35 14275.21 28992.53 237
OpenMVScopyleft85.28 1490.75 17888.84 19596.48 10193.58 25893.51 7098.80 12497.41 14382.59 28278.62 29897.49 14768.00 28399.82 6484.52 22498.55 10796.11 220
dp90.16 19088.83 19694.14 17996.38 16586.42 22691.57 33197.06 17784.76 24988.81 19090.19 30884.29 14797.43 21875.05 29991.35 20298.56 158
cl2289.57 19988.79 19791.91 22697.94 11787.62 19997.98 21096.51 20485.03 24382.37 25091.79 26483.65 15296.50 25285.96 20777.89 27591.61 266
LS3D90.19 18888.72 19894.59 16598.97 8586.33 23196.90 25696.60 19574.96 33284.06 22998.74 8975.78 22399.83 6174.93 30097.57 12197.62 191
GA-MVS90.10 19188.69 19994.33 17292.44 27687.97 19499.08 9596.26 22089.65 13486.92 20793.11 24768.09 28196.96 23282.54 24890.15 21098.05 180
X-MVStestdata90.69 18088.66 20096.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6929.59 37187.37 9299.87 5195.65 8599.43 6899.78 42
test0.0.03 188.96 20688.61 20190.03 27091.09 29584.43 26998.97 10897.02 18190.21 11780.29 27996.31 19084.89 14191.93 34972.98 31585.70 23193.73 228
LCM-MVSNet-Re88.59 21888.61 20188.51 29995.53 19672.68 34696.85 25888.43 36288.45 17173.14 32890.63 29175.82 22294.38 32592.95 13595.71 15398.48 162
Fast-Effi-MVS+-dtu88.84 21088.59 20389.58 28193.44 26378.18 32698.65 14294.62 30888.46 17084.12 22895.37 20568.91 27496.52 25182.06 25291.70 19694.06 227
UniMVSNet_NR-MVSNet89.60 19888.55 20492.75 21292.17 28090.07 14798.74 13098.15 3488.37 17783.21 23593.98 22382.86 16895.93 28786.95 19772.47 31892.25 243
VDDNet90.08 19288.54 20594.69 16194.41 23687.68 19798.21 19396.40 21076.21 32893.33 13597.75 13454.93 33598.77 15094.71 10990.96 20397.61 192
LPG-MVS_test88.86 20988.47 20690.06 26793.35 26580.95 31198.22 19195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
UniMVSNet (Re)89.50 20188.32 20793.03 20392.21 27990.96 12698.90 11598.39 2289.13 14983.22 23492.03 25881.69 18896.34 26886.79 20072.53 31791.81 258
ACMP87.39 1088.71 21788.24 20890.12 26693.91 25081.06 31098.50 16395.67 26689.43 14380.37 27795.55 20065.67 29897.83 18890.55 15884.51 23691.47 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM86.95 1388.77 21588.22 20990.43 25893.61 25781.34 30498.50 16395.92 24387.88 19283.85 23195.20 20667.20 28997.89 18486.90 19984.90 23492.06 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 20788.12 21091.40 23695.32 20286.93 21897.85 21795.55 27384.19 25581.97 26091.50 27084.16 14895.91 29084.69 22177.89 27591.36 277
bset_n11_16_dypcd89.07 20487.85 21192.76 21186.16 34490.66 13497.30 23895.62 26889.78 13183.94 23093.15 24674.85 22795.89 29291.34 14878.48 27191.74 259
tpmvs89.16 20287.76 21293.35 19897.19 13884.75 26690.58 34097.36 14981.99 29284.56 22389.31 31883.98 15098.17 16774.85 30290.00 21197.12 201
test_djsdf88.26 22487.73 21389.84 27388.05 33182.21 29697.77 22196.17 22786.84 21482.41 24991.95 26372.07 25695.99 28389.83 16384.50 23791.32 279
gg-mvs-nofinetune90.00 19387.71 21496.89 8296.15 17694.69 4785.15 34897.74 6868.32 35192.97 14160.16 36096.10 396.84 23693.89 11998.87 9399.14 114
VPA-MVSNet89.10 20387.66 21593.45 19792.56 27491.02 12497.97 21198.32 2486.92 21386.03 21492.01 26068.84 27697.10 22890.92 15375.34 28892.23 245
DU-MVS88.83 21287.51 21692.79 20991.46 29190.07 14798.71 13197.62 9988.87 16083.21 23593.68 23074.63 22895.93 28786.95 19772.47 31892.36 240
IterMVS-LS88.34 22187.44 21791.04 24394.10 24185.85 24698.10 20395.48 27785.12 23982.03 25891.21 27681.35 19395.63 30083.86 23575.73 28791.63 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 22687.39 21889.70 27791.84 28683.40 28098.31 18698.49 2088.04 18778.23 30490.26 30273.57 24296.79 24084.21 22783.53 24688.90 329
CR-MVSNet88.83 21287.38 21993.16 20293.47 26086.24 23284.97 35094.20 31888.92 15990.76 16786.88 33484.43 14594.82 31870.64 32292.17 18898.41 164
ADS-MVSNet88.99 20587.30 22094.07 18196.21 17187.56 20187.15 34396.78 19083.01 27489.91 18187.27 33078.87 20897.01 23174.20 30692.27 18597.64 188
tpm cat188.89 20887.27 22193.76 19295.79 18485.32 25690.76 33897.09 17576.14 32985.72 21588.59 32182.92 16798.04 17876.96 28591.43 19997.90 185
c3_l88.19 22587.23 22291.06 24294.97 22286.17 23697.72 22595.38 28583.43 26881.68 26791.37 27282.81 16995.72 29784.04 23373.70 30691.29 281
WR-MVS88.54 21987.22 22392.52 21691.93 28589.50 16298.56 15697.84 5386.99 20981.87 26393.81 22774.25 23995.92 28985.29 21374.43 29892.12 249
FMVSNet388.81 21487.08 22493.99 18696.52 16194.59 4998.08 20596.20 22485.85 22982.12 25491.60 26874.05 24095.40 30679.04 27180.24 26291.99 255
Anonymous20240521188.84 21087.03 22594.27 17498.14 11384.18 27298.44 16995.58 27276.79 32789.34 18796.88 17353.42 34099.54 10087.53 19387.12 22199.09 118
eth_miper_zixun_eth87.76 22987.00 22690.06 26794.67 23282.65 29397.02 25395.37 28684.19 25581.86 26591.58 26981.47 19195.90 29183.24 23873.61 30791.61 266
ADS-MVSNet287.62 23486.88 22789.86 27296.21 17179.14 31987.15 34392.99 33283.01 27489.91 18187.27 33078.87 20892.80 33874.20 30692.27 18597.64 188
DIV-MVS_self_test87.82 22786.81 22890.87 24994.87 22785.39 25597.81 21895.22 29782.92 27980.76 27391.31 27481.99 18495.81 29581.36 25675.04 29191.42 275
cl____87.82 22786.79 22990.89 24894.88 22685.43 25397.81 21895.24 29382.91 28080.71 27491.22 27581.97 18695.84 29381.34 25775.06 29091.40 276
test_part188.43 22086.68 23093.67 19597.56 12992.40 9698.12 20096.55 20182.26 28980.31 27893.16 24574.59 23296.62 24585.00 21872.61 31691.99 255
VPNet88.30 22286.57 23193.49 19691.95 28391.35 11098.18 19597.20 16388.61 16484.52 22594.89 20962.21 31196.76 24189.34 17272.26 32192.36 240
DP-MVS88.75 21686.56 23295.34 14198.92 8987.45 20497.64 22993.52 32970.55 34381.49 26897.25 15374.43 23499.88 4871.14 32194.09 16498.67 153
jajsoiax87.35 23686.51 23389.87 27187.75 33681.74 29997.03 25195.98 23488.47 16880.15 28193.80 22861.47 31396.36 26289.44 17084.47 23891.50 270
MSDG88.29 22386.37 23494.04 18496.90 14986.15 23796.52 27094.36 31577.89 32379.22 29396.95 16969.72 27199.59 9673.20 31492.58 18096.37 218
TranMVSNet+NR-MVSNet87.75 23086.31 23592.07 22590.81 29888.56 18198.33 18397.18 16487.76 19581.87 26393.90 22572.45 25295.43 30483.13 24271.30 32892.23 245
mvs_tets87.09 23986.22 23689.71 27687.87 33281.39 30396.73 26595.90 24988.19 18379.99 28393.61 23359.96 31996.31 27089.40 17184.34 23991.43 274
miper_lstm_enhance86.90 24186.20 23789.00 29394.53 23481.19 30796.74 26495.24 29382.33 28880.15 28190.51 29981.99 18494.68 32280.71 26273.58 30891.12 285
pmmvs487.58 23586.17 23891.80 23089.58 31288.92 17497.25 24295.28 28982.54 28480.49 27693.17 24475.62 22496.05 28282.75 24578.90 26990.42 305
XXY-MVS87.75 23086.02 23992.95 20690.46 30289.70 15997.71 22795.90 24984.02 25780.95 27194.05 21767.51 28797.10 22885.16 21478.41 27292.04 254
NR-MVSNet87.74 23286.00 24092.96 20591.46 29190.68 13396.65 26797.42 14288.02 18873.42 32693.68 23077.31 21895.83 29484.26 22671.82 32592.36 240
MS-PatchMatch86.75 24485.92 24189.22 28891.97 28282.47 29596.91 25596.14 22983.74 26277.73 30593.53 23658.19 32297.37 22276.75 28898.35 11087.84 335
MVP-Stereo86.61 24885.83 24288.93 29588.70 32483.85 27796.07 28694.41 31482.15 29175.64 31691.96 26267.65 28696.45 25777.20 28498.72 10186.51 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 23885.76 24391.78 23489.59 31187.58 20098.56 15695.54 27484.53 25182.51 24691.78 26573.11 24796.47 25582.07 25174.14 30491.30 280
anonymousdsp86.69 24585.75 24489.53 28286.46 34282.94 28596.39 27295.71 26283.97 25979.63 28890.70 28668.85 27595.94 28686.01 20584.02 24189.72 319
V4287.00 24085.68 24590.98 24589.91 30686.08 23998.32 18595.61 27083.67 26582.72 24290.67 28874.00 24196.53 25081.94 25474.28 30190.32 307
Anonymous2024052987.66 23385.58 24693.92 18797.59 12785.01 26298.13 19897.13 16966.69 35588.47 19396.01 19655.09 33499.51 10587.00 19684.12 24097.23 200
RPSCF85.33 26885.55 24784.67 32494.63 23362.28 35993.73 31493.76 32374.38 33585.23 22097.06 16564.09 30498.31 16280.98 25886.08 22893.41 232
WR-MVS_H86.53 25085.49 24889.66 28091.04 29683.31 28297.53 23298.20 3084.95 24679.64 28790.90 28178.01 21595.33 30776.29 29272.81 31390.35 306
CP-MVSNet86.54 24985.45 24989.79 27591.02 29782.78 29197.38 23697.56 11385.37 23679.53 29093.03 24871.86 25995.25 30979.92 26673.43 31191.34 278
v114486.83 24385.31 25091.40 23689.75 30987.21 21598.31 18695.45 27983.22 27182.70 24390.78 28373.36 24396.36 26279.49 26874.69 29590.63 302
PVSNet_083.28 1687.31 23785.16 25193.74 19394.78 22984.59 26798.91 11498.69 1889.81 13078.59 30093.23 24261.95 31299.34 13094.75 10655.72 35697.30 197
v14886.38 25285.06 25290.37 26289.47 31684.10 27398.52 15895.48 27783.80 26180.93 27290.22 30674.60 23096.31 27080.92 26071.55 32690.69 300
GBi-Net86.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
test186.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
XVG-ACMP-BASELINE85.86 25984.95 25588.57 29789.90 30777.12 33194.30 30895.60 27187.40 20682.12 25492.99 25053.42 34097.66 20285.02 21783.83 24290.92 290
v14419286.40 25184.89 25690.91 24689.48 31585.59 25098.21 19395.43 28282.45 28682.62 24490.58 29572.79 25196.36 26278.45 27774.04 30590.79 294
JIA-IIPM85.97 25784.85 25789.33 28793.23 26773.68 34185.05 34997.13 16969.62 34791.56 15568.03 35888.03 8096.96 23277.89 28093.12 17197.34 196
Baseline_NR-MVSNet85.83 26084.82 25888.87 29688.73 32383.34 28198.63 14691.66 34880.41 31082.44 24791.35 27374.63 22895.42 30584.13 22971.39 32787.84 335
FMVSNet286.90 24184.79 25993.24 20095.11 21392.54 9497.67 22895.86 25582.94 27680.55 27591.17 27762.89 30895.29 30877.23 28279.71 26891.90 257
v119286.32 25384.71 26091.17 24089.53 31486.40 22798.13 19895.44 28182.52 28582.42 24890.62 29271.58 26396.33 26977.23 28274.88 29290.79 294
IterMVS85.81 26184.67 26189.22 28893.51 25983.67 27896.32 27594.80 30285.09 24178.69 29690.17 30966.57 29593.17 33479.48 26977.42 28190.81 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26484.64 26289.00 29393.46 26282.90 28796.27 27694.70 30585.02 24478.62 29890.35 30166.61 29393.33 33179.38 27077.36 28290.76 296
PS-CasMVS85.81 26184.58 26389.49 28590.77 29982.11 29797.20 24697.36 14984.83 24879.12 29592.84 25167.42 28895.16 31178.39 27873.25 31291.21 283
v886.11 25584.45 26491.10 24189.99 30586.85 21997.24 24395.36 28781.99 29279.89 28589.86 31174.53 23396.39 26078.83 27572.32 32090.05 314
v192192086.02 25684.44 26590.77 25189.32 31785.20 25798.10 20395.35 28882.19 29082.25 25290.71 28570.73 26696.30 27376.85 28774.49 29790.80 293
EU-MVSNet84.19 28284.42 26683.52 32988.64 32567.37 35796.04 28795.76 26085.29 23778.44 30193.18 24370.67 26791.48 35175.79 29675.98 28591.70 260
pmmvs585.87 25884.40 26790.30 26388.53 32684.23 27198.60 15193.71 32581.53 29780.29 27992.02 25964.51 30395.52 30282.04 25378.34 27391.15 284
v124085.77 26384.11 26890.73 25289.26 31885.15 26097.88 21595.23 29681.89 29582.16 25390.55 29769.60 27396.31 27075.59 29774.87 29390.72 299
Patchmatch-test86.25 25484.06 26992.82 20894.42 23582.88 28982.88 35794.23 31771.58 34079.39 29190.62 29289.00 6496.42 25963.03 34591.37 20199.16 113
v1085.73 26484.01 27090.87 24990.03 30486.73 22197.20 24695.22 29781.25 30079.85 28689.75 31273.30 24696.28 27476.87 28672.64 31589.61 321
PEN-MVS85.21 26983.93 27189.07 29289.89 30881.31 30597.09 24997.24 15584.45 25378.66 29792.68 25368.44 27994.87 31675.98 29470.92 32991.04 287
UniMVSNet_ETH3D85.65 26683.79 27291.21 23990.41 30380.75 31395.36 29995.78 25878.76 31781.83 26694.33 21649.86 34896.66 24384.30 22583.52 24796.22 219
OurMVSNet-221017-084.13 28483.59 27385.77 31887.81 33370.24 35194.89 30393.65 32786.08 22776.53 30893.28 24161.41 31496.14 27980.95 25977.69 28090.93 289
PatchT85.44 26783.19 27492.22 21993.13 26983.00 28483.80 35696.37 21270.62 34290.55 17079.63 35384.81 14394.87 31658.18 35591.59 19798.79 145
AllTest84.97 27183.12 27590.52 25696.82 15178.84 32195.89 28992.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
USDC84.74 27282.93 27690.16 26591.73 28883.54 27995.00 30293.30 33188.77 16273.19 32793.30 24053.62 33997.65 20375.88 29581.54 26089.30 324
COLMAP_ROBcopyleft82.69 1884.54 27782.82 27789.70 27796.72 15578.85 32095.89 28992.83 33571.55 34177.54 30795.89 19759.40 32099.14 14067.26 33388.26 21591.11 286
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 27982.80 27889.50 28389.01 31983.90 27697.03 25194.56 30981.33 29975.36 31890.52 29871.69 26194.54 32468.81 32876.84 28490.07 312
DTE-MVSNet84.14 28382.80 27888.14 30188.95 32179.87 31796.81 25996.24 22183.50 26777.60 30692.52 25567.89 28594.24 32772.64 31769.05 33290.32 307
pm-mvs184.68 27482.78 28090.40 25989.58 31285.18 25897.31 23794.73 30481.93 29476.05 31192.01 26065.48 30096.11 28078.75 27669.14 33189.91 317
v7n84.42 28082.75 28189.43 28688.15 32981.86 29896.75 26395.67 26680.53 30678.38 30289.43 31669.89 26996.35 26773.83 31072.13 32290.07 312
LTVRE_ROB81.71 1984.59 27682.72 28290.18 26492.89 27383.18 28393.15 31994.74 30378.99 31475.14 31992.69 25265.64 29997.63 20469.46 32681.82 25989.74 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030484.13 28482.66 28388.52 29893.07 27080.15 31495.81 29598.21 2979.27 31286.85 20986.40 33741.33 35994.69 32176.36 29186.69 22290.73 298
Anonymous2023121184.72 27382.65 28490.91 24697.71 12184.55 26897.28 24096.67 19266.88 35479.18 29490.87 28258.47 32196.60 24682.61 24774.20 30291.59 268
ACMH83.09 1784.60 27582.61 28590.57 25493.18 26882.94 28596.27 27694.92 30181.01 30372.61 33493.61 23356.54 32697.79 19174.31 30581.07 26190.99 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+83.78 1584.21 28182.56 28689.15 29093.73 25679.16 31896.43 27194.28 31681.09 30274.00 32394.03 22054.58 33697.67 20176.10 29378.81 27090.63 302
RPMNet85.07 27081.88 28794.64 16393.47 26086.24 23284.97 35097.21 15964.85 35790.76 16778.80 35480.95 19599.27 13353.76 35892.17 18898.41 164
MIMVSNet84.48 27881.83 28892.42 21791.73 28887.36 20785.52 34694.42 31381.40 29881.91 26187.58 32551.92 34392.81 33773.84 30988.15 21697.08 205
Patchmtry83.61 28981.64 28989.50 28393.36 26482.84 29084.10 35394.20 31869.47 34879.57 28986.88 33484.43 14594.78 31968.48 33074.30 30090.88 291
SixPastTwentyTwo82.63 29281.58 29085.79 31788.12 33071.01 35095.17 30192.54 33784.33 25472.93 33292.08 25760.41 31895.61 30174.47 30474.15 30390.75 297
ppachtmachnet_test83.63 28881.57 29189.80 27489.01 31985.09 26197.13 24894.50 31078.84 31576.14 31091.00 27969.78 27094.61 32363.40 34374.36 29989.71 320
DSMNet-mixed81.60 29881.43 29282.10 33384.36 34860.79 36093.63 31686.74 36479.00 31379.32 29287.15 33263.87 30689.78 35466.89 33591.92 19095.73 222
tfpnnormal83.65 28781.35 29390.56 25591.37 29388.06 19197.29 23997.87 5178.51 31876.20 30990.91 28064.78 30296.47 25561.71 34873.50 30987.13 343
FMVSNet183.94 28681.32 29491.80 23091.94 28488.81 17696.77 26095.25 29077.98 31978.25 30390.25 30350.37 34794.97 31373.27 31377.81 27991.62 263
LF4IMVS81.94 29681.17 29584.25 32687.23 33968.87 35693.35 31891.93 34683.35 27075.40 31793.00 24949.25 35196.65 24478.88 27478.11 27487.22 342
testgi82.29 29381.00 29686.17 31587.24 33874.84 33797.39 23491.62 34988.63 16375.85 31595.42 20446.07 35491.55 35066.87 33679.94 26692.12 249
FMVSNet582.29 29380.54 29787.52 30693.79 25584.01 27493.73 31492.47 33876.92 32674.27 32186.15 33963.69 30789.24 35569.07 32774.79 29489.29 325
KD-MVS_2432*160082.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
miper_refine_blended82.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
Patchmatch-RL test81.90 29780.13 30087.23 30980.71 35870.12 35384.07 35488.19 36383.16 27370.57 33682.18 34787.18 9892.59 34082.28 25062.78 34498.98 124
CMPMVSbinary58.40 2180.48 30180.11 30181.59 33685.10 34659.56 36194.14 31195.95 23968.54 35060.71 35693.31 23955.35 33397.87 18683.06 24384.85 23587.33 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
K. test v381.04 29979.77 30284.83 32287.41 33770.23 35295.60 29893.93 32283.70 26467.51 34689.35 31755.76 32893.58 33076.67 28968.03 33590.67 301
TransMVSNet (Re)81.97 29579.61 30389.08 29189.70 31084.01 27497.26 24191.85 34778.84 31573.07 33191.62 26767.17 29095.21 31067.50 33259.46 35188.02 334
Anonymous2023120680.76 30079.42 30484.79 32384.78 34772.98 34396.53 26992.97 33379.56 31174.33 32088.83 31961.27 31592.15 34660.59 35075.92 28689.24 326
CL-MVSNet_self_test79.89 30578.34 30584.54 32581.56 35675.01 33596.88 25795.62 26881.10 30175.86 31485.81 34068.49 27890.26 35363.21 34456.51 35488.35 332
TinyColmap80.42 30277.94 30687.85 30392.09 28178.58 32393.74 31389.94 35774.99 33169.77 33891.78 26546.09 35397.58 20765.17 34177.89 27587.38 338
EG-PatchMatch MVS79.92 30377.59 30786.90 31187.06 34077.90 33096.20 28494.06 32074.61 33366.53 35088.76 32040.40 36196.20 27567.02 33483.66 24586.61 344
test20.0378.51 31377.48 30881.62 33583.07 35271.03 34996.11 28592.83 33581.66 29669.31 33989.68 31357.53 32387.29 35958.65 35468.47 33386.53 345
pmmvs679.90 30477.31 30987.67 30584.17 34978.13 32795.86 29393.68 32667.94 35272.67 33389.62 31450.98 34695.75 29674.80 30366.04 34089.14 327
MDA-MVSNet_test_wron79.65 30677.05 31087.45 30787.79 33580.13 31596.25 27994.44 31173.87 33651.80 35987.47 32968.04 28292.12 34766.02 33767.79 33690.09 310
YYNet179.64 30777.04 31187.43 30887.80 33479.98 31696.23 28094.44 31173.83 33751.83 35887.53 32667.96 28492.07 34866.00 33867.75 33790.23 309
Anonymous2024052178.63 31276.90 31283.82 32782.82 35372.86 34495.72 29793.57 32873.55 33872.17 33584.79 34249.69 34992.51 34265.29 34074.50 29686.09 348
UnsupCasMVSNet_eth78.90 30976.67 31385.58 31982.81 35474.94 33691.98 32896.31 21584.64 25065.84 35287.71 32451.33 34492.23 34572.89 31656.50 35589.56 322
test_040278.81 31076.33 31486.26 31491.18 29478.44 32595.88 29191.34 35268.55 34970.51 33789.91 31052.65 34294.99 31247.14 36179.78 26785.34 352
pmmvs-eth3d78.71 31176.16 31586.38 31380.25 35981.19 30794.17 31092.13 34377.97 32066.90 34982.31 34655.76 32892.56 34173.63 31262.31 34785.38 350
KD-MVS_self_test77.47 31775.88 31682.24 33181.59 35568.93 35592.83 32494.02 32177.03 32573.14 32883.39 34455.44 33290.42 35267.95 33157.53 35387.38 338
TDRefinement78.01 31475.31 31786.10 31670.06 36573.84 34093.59 31791.58 35074.51 33473.08 33091.04 27849.63 35097.12 22574.88 30159.47 35087.33 340
MVS-HIRNet79.01 30875.13 31890.66 25393.82 25481.69 30085.16 34793.75 32454.54 35974.17 32259.15 36257.46 32496.58 24763.74 34294.38 16193.72 229
OpenMVS_ROBcopyleft73.86 2077.99 31575.06 31986.77 31283.81 35177.94 32996.38 27391.53 35167.54 35368.38 34187.13 33343.94 35596.08 28155.03 35781.83 25886.29 347
MDA-MVSNet-bldmvs77.82 31674.75 32087.03 31088.33 32778.52 32496.34 27492.85 33475.57 33048.87 36187.89 32357.32 32592.49 34360.79 34964.80 34390.08 311
new_pmnet76.02 31873.71 32182.95 33083.88 35072.85 34591.26 33492.26 34070.44 34462.60 35481.37 34847.64 35292.32 34461.85 34772.10 32383.68 355
MIMVSNet175.92 31973.30 32283.81 32881.29 35775.57 33492.26 32792.05 34473.09 33967.48 34786.18 33840.87 36087.64 35855.78 35670.68 33088.21 333
PM-MVS74.88 32072.85 32380.98 33778.98 36164.75 35890.81 33785.77 36580.95 30468.23 34382.81 34529.08 36492.84 33676.54 29062.46 34685.36 351
new-patchmatchnet74.80 32172.40 32481.99 33478.36 36272.20 34794.44 30692.36 33977.06 32463.47 35379.98 35251.04 34588.85 35660.53 35154.35 35784.92 353
UnsupCasMVSNet_bld73.85 32270.14 32584.99 32179.44 36075.73 33388.53 34195.24 29370.12 34661.94 35574.81 35541.41 35893.62 32968.65 32951.13 36085.62 349
N_pmnet70.19 32469.87 32671.12 34288.24 32830.63 37595.85 29428.70 37570.18 34568.73 34086.55 33664.04 30593.81 32853.12 35973.46 31088.94 328
pmmvs372.86 32369.76 32782.17 33273.86 36374.19 33994.20 30989.01 36164.23 35867.72 34480.91 35041.48 35788.65 35762.40 34654.02 35883.68 355
test_method70.10 32568.66 32874.41 34086.30 34355.84 36494.47 30589.82 35835.18 36466.15 35184.75 34330.54 36377.96 36470.40 32560.33 34989.44 323
FPMVS61.57 32660.32 32965.34 34460.14 36942.44 37091.02 33689.72 35944.15 36142.63 36380.93 34919.02 36680.59 36342.50 36272.76 31473.00 359
LCM-MVSNet60.07 32756.37 33071.18 34154.81 37148.67 36882.17 35889.48 36037.95 36249.13 36069.12 35613.75 37281.76 36059.28 35251.63 35983.10 357
PMMVS258.97 32855.07 33170.69 34362.72 36655.37 36585.97 34580.52 36849.48 36045.94 36268.31 35715.73 37080.78 36249.79 36037.12 36375.91 358
tmp_tt53.66 33052.86 33256.05 34732.75 37541.97 37173.42 36176.12 37121.91 36939.68 36596.39 18842.59 35665.10 36778.00 27914.92 36861.08 361
Gipumacopyleft54.77 32952.22 33362.40 34686.50 34159.37 36250.20 36490.35 35636.52 36341.20 36449.49 36418.33 36881.29 36132.10 36465.34 34146.54 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 33146.17 33464.33 34544.27 37352.30 36676.13 36078.73 36964.95 35627.37 36755.23 36314.61 37167.74 36636.01 36318.23 36672.95 360
PMVScopyleft41.42 2345.67 33242.50 33555.17 34834.28 37432.37 37366.24 36278.71 37030.72 36522.04 37059.59 3614.59 37377.85 36527.49 36558.84 35255.29 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 33440.93 33641.29 35061.97 36733.83 37284.00 35565.17 37327.17 36627.56 36646.72 36617.63 36960.41 36919.32 36718.82 36529.61 365
EMVS39.96 33539.88 33740.18 35159.57 37032.12 37484.79 35264.57 37426.27 36726.14 36844.18 36918.73 36759.29 37017.03 36817.67 36729.12 366
MVEpermissive44.00 2241.70 33337.64 33853.90 34949.46 37243.37 36965.09 36366.66 37226.19 36825.77 36948.53 3653.58 37563.35 36826.15 36627.28 36454.97 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 33630.03 3390.00 3550.00 3780.00 3790.00 36697.17 1650.00 3730.00 37498.77 8674.35 2360.00 3740.00 3720.00 3720.00 370
testmvs18.81 33723.05 3406.10 3544.48 3762.29 37897.78 2203.00 3773.27 37118.60 37162.71 3591.53 3772.49 37314.26 3701.80 37013.50 368
test12316.58 33919.47 3417.91 3533.59 3775.37 37794.32 3071.39 3782.49 37213.98 37244.60 3682.91 3762.65 37211.35 3710.57 37115.70 367
wuyk23d16.71 33816.73 34216.65 35260.15 36825.22 37641.24 3655.17 3766.56 3705.48 3733.61 3723.64 37422.72 37115.20 3699.52 3691.99 369
ab-mvs-re8.21 34010.94 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37498.50 1070.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas6.87 3419.16 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37382.48 1770.00 3740.00 3720.00 3720.00 370
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.50 4788.94 17299.55 3497.47 13291.32 9498.12 37
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
No_MVS99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
test_one_060199.59 3194.89 3597.64 9293.14 5098.93 1599.45 1693.45 17
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.67 1393.28 7497.61 10087.78 19497.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
IU-MVS99.63 2195.38 2197.73 7295.54 1599.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
test_241102_TWO97.72 7494.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7494.16 2799.30 599.49 1093.32 1899.98 10
save fliter99.34 5893.85 6399.65 2397.63 9795.69 11
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8399.98 1099.64 699.82 1999.96 10
test072699.66 1595.20 2999.77 997.70 7993.95 3099.35 499.54 393.18 21
GSMVS98.84 138
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 138
sam_mvs87.08 99
ambc79.60 33872.76 36456.61 36376.20 35992.01 34568.25 34280.23 35123.34 36594.73 32073.78 31160.81 34887.48 337
MTGPAbinary97.45 135
test_post190.74 33941.37 37085.38 13696.36 26283.16 240
test_post46.00 36787.37 9297.11 226
patchmatchnet-post84.86 34188.73 6796.81 238
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34297.74 6893.91 12896.40 18696.56 296.94 23495.08 9998.95 9299.20 111
MTMP99.21 7491.09 353
gm-plane-assit94.69 23188.14 18988.22 18297.20 15798.29 16490.79 156
test9_res98.60 2399.87 999.90 24
TEST999.57 3793.17 7699.38 6197.66 8689.57 13998.39 3099.18 3790.88 3599.66 84
test_899.55 3993.07 8099.37 6497.64 9290.18 11998.36 3299.19 3490.94 3399.64 90
agg_prior297.84 4599.87 999.91 22
agg_prior99.54 4092.66 8897.64 9297.98 4499.61 93
TestCases90.52 25696.82 15178.84 32192.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
test_prior492.00 9899.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
test_prior97.01 6599.58 3391.77 9997.57 11199.49 10899.79 38
旧先验298.67 14085.75 23198.96 1498.97 14693.84 121
新几何298.26 189
新几何197.40 5198.92 8992.51 9597.77 6585.52 23396.69 7899.06 5688.08 7999.89 4784.88 21999.62 5199.79 38
旧先验198.97 8592.90 8797.74 6899.15 4391.05 3299.33 7499.60 77
无先验98.52 15897.82 5587.20 20899.90 4487.64 19199.85 33
原ACMM298.69 136
原ACMM196.18 11299.03 8390.08 14697.63 9788.98 15497.00 6498.97 6688.14 7899.71 7788.23 18499.62 5198.76 149
test22298.32 10691.21 11398.08 20597.58 10883.74 26295.87 9499.02 6086.74 10799.64 4799.81 35
testdata299.88 4884.16 228
segment_acmp90.56 42
testdata95.26 14498.20 10987.28 20997.60 10285.21 23898.48 2899.15 4388.15 7798.72 15590.29 16099.45 6699.78 42
testdata197.89 21392.43 65
test1297.83 3499.33 6494.45 5197.55 11497.56 5188.60 6899.50 10799.71 3899.55 81
plane_prior793.84 25285.73 248
plane_prior693.92 24986.02 24272.92 248
plane_prior596.30 21697.75 19893.46 12886.17 22692.67 235
plane_prior496.52 182
plane_prior385.91 24393.65 4286.99 205
plane_prior299.02 10293.38 47
plane_prior193.90 251
plane_prior86.07 24099.14 8993.81 4086.26 225
n20.00 379
nn0.00 379
door-mid84.90 367
lessismore_v085.08 32085.59 34569.28 35490.56 35567.68 34590.21 30754.21 33895.46 30373.88 30862.64 34590.50 304
LGP-MVS_train90.06 26793.35 26580.95 31195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
test1197.68 83
door85.30 366
HQP5-MVS86.39 228
HQP-NCC93.95 24599.16 8093.92 3287.57 198
ACMP_Plane93.95 24599.16 8093.92 3287.57 198
BP-MVS93.82 123
HQP4-MVS87.57 19897.77 19392.72 233
HQP3-MVS96.37 21286.29 223
HQP2-MVS73.34 244
NP-MVS93.94 24886.22 23496.67 180
MDTV_nov1_ep13_2view91.17 11791.38 33287.45 20593.08 13886.67 11087.02 19598.95 130
ACMMP++_ref82.64 254
ACMMP++83.83 242
Test By Simon83.62 153
ITE_SJBPF87.93 30292.26 27876.44 33293.47 33087.67 20179.95 28495.49 20356.50 32797.38 22075.24 29882.33 25689.98 316
DeepMVS_CXcopyleft76.08 33990.74 30051.65 36790.84 35486.47 22457.89 35787.98 32235.88 36292.60 33965.77 33965.06 34283.97 354