This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 797.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13899.41 5497.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 597.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 897.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1397.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6797.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1697.98 4497.18 295.96 8499.33 2192.62 22100.00 198.99 1399.93 199.98 6
DeepPCF-MVS93.56 196.55 4197.84 892.68 20998.71 9278.11 32199.70 1697.71 7898.18 197.36 5399.76 190.37 4599.94 3399.27 999.54 5799.99 1
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7197.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 61
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11793.59 4398.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15497.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1698.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2295.45 27295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6597.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1297.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2497.73 7291.05 9298.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1197.78 6396.61 498.15 3199.53 793.62 14100.00 191.79 13999.80 2399.94 14
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3097.57 10791.43 8598.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5797.66 8390.18 11398.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7697.74 6891.28 8998.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6297.64 8990.38 10797.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11789.85 12298.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7697.65 8889.55 13599.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 13089.60 13198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 2996.54 19895.09 1896.84 6698.63 9791.16 2699.77 6799.04 1296.42 13199.81 31
9.1496.87 2699.34 5399.50 3897.49 12589.41 13898.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30098.36 2392.50 6095.62 9597.52 14097.92 197.38 21498.31 3398.80 9498.20 172
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11597.64 8996.51 795.88 8799.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9299.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8899.86 1099.97 7
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11297.94 4592.89 5496.90 5999.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11297.93 4692.86 5696.88 6099.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7697.44 13490.08 11898.59 2299.07 5189.06 5999.42 11597.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12099.14 8599.45 193.86 3595.15 10298.73 8788.48 6899.76 6897.23 4899.56 5599.40 89
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8897.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5396.36 895.20 10198.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8897.38 14188.44 16898.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 497.52 11795.90 997.21 5498.90 7682.66 16999.93 3598.71 1698.80 9499.63 69
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1698.05 3986.48 21798.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9797.11 16695.83 1098.97 1199.14 4382.48 17299.60 9198.60 1999.08 8098.00 176
XVS96.47 4496.37 4096.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6398.96 6887.37 8999.87 4795.65 7999.43 6499.78 38
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12797.90 4892.48 6196.00 8198.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
#test#96.48 4396.34 4296.90 7499.69 990.96 12199.53 3697.81 5890.94 9696.88 6099.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12797.88 4992.43 6295.97 8398.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12199.47 4097.81 5890.54 10396.88 6099.05 5487.57 8399.96 2795.65 7999.72 3099.78 38
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11497.59 10290.66 9897.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8897.44 13489.02 14797.90 4399.22 2988.90 6299.49 10494.63 10499.79 2599.68 61
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10097.04 17395.51 1698.86 1399.11 5082.19 17899.36 12198.59 2198.14 10798.00 176
region2R96.30 5096.17 4796.70 8899.70 890.31 13499.46 4597.66 8390.55 10297.07 5799.07 5186.85 10199.97 2095.43 8699.74 2899.81 31
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16498.59 14997.33 14690.44 10596.84 6699.12 4686.75 10399.41 11797.47 4399.44 6399.76 47
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15799.70 1697.61 9690.07 11996.00 8199.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13299.47 4097.80 6090.54 10396.83 6899.03 5686.51 11399.95 3095.65 7999.72 3099.75 48
test117295.92 6296.07 5295.46 13299.42 4987.24 20798.51 15797.24 15090.29 11096.56 7699.12 4686.73 10599.36 12197.33 4799.42 6799.78 38
ETV-MVS96.00 5796.00 5396.00 11696.56 15491.05 11899.63 2496.61 18993.26 4897.39 5298.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10998.69 13297.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
lupinMVS96.32 4995.94 5597.44 4595.05 21294.87 3399.86 296.50 20093.82 3898.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 90
MVS_111021_LR95.78 6795.94 5595.28 14098.19 10687.69 18998.80 12099.26 793.39 4595.04 10498.69 9384.09 14499.76 6896.96 5599.06 8198.38 161
PAPM96.35 4795.94 5597.58 4094.10 23495.25 2098.93 10798.17 3194.26 2393.94 12198.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
SR-MVS-dyc-post95.75 7095.86 5895.41 13599.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6386.73 10599.36 12196.62 5899.31 7299.60 73
MP-MVScopyleft96.00 5795.82 5996.54 9699.47 4690.13 14099.36 6197.41 13890.64 10195.49 9698.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 4795.82 5997.94 2999.63 2194.19 5499.42 5397.55 11092.43 6293.82 12599.12 4687.30 9499.91 3894.02 11199.06 8199.74 51
ZNCC-MVS96.09 5595.81 6196.95 7299.42 4991.19 10999.55 3397.53 11489.72 12695.86 8998.94 7586.59 10999.97 2095.13 9299.56 5599.68 61
MTAPA96.09 5595.80 6296.96 7099.29 6191.19 10997.23 24097.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
mPP-MVS95.90 6395.75 6396.38 10499.58 2989.41 16199.26 6897.41 13890.66 9894.82 10698.95 7086.15 12099.98 1095.24 9199.64 4399.74 51
RE-MVS-def95.70 6499.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
GST-MVS95.97 5995.66 6596.90 7499.49 4591.22 10799.45 4797.48 12689.69 12795.89 8698.72 8986.37 11799.95 3094.62 10599.22 7999.52 79
PVSNet_Blended95.94 6195.66 6596.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11697.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
APD-MVS_3200maxsize95.64 7195.65 6795.62 12799.24 6587.80 18898.42 16797.22 15388.93 15296.64 7598.98 6285.49 12899.36 12196.68 5799.27 7599.70 57
PGM-MVS95.85 6495.65 6796.45 10099.50 4389.77 15298.22 18798.90 1189.19 14196.74 7098.95 7085.91 12399.92 3693.94 11299.46 6099.66 65
EI-MVSNet-Vis-set95.76 6995.63 6996.17 11199.14 7190.33 13398.49 16197.82 5591.92 7494.75 10798.88 7887.06 9799.48 10995.40 8797.17 12498.70 146
CS-MVS95.39 7695.39 7095.40 13695.54 18889.66 15599.62 2695.98 22891.72 7997.48 5098.41 11183.64 14897.46 20997.46 4498.64 10099.06 115
MP-MVS-pluss95.80 6695.30 7197.29 5298.95 8392.66 8498.59 14997.14 16288.95 15093.12 13199.25 2585.62 12499.94 3396.56 6299.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 7295.29 7295.86 12199.07 7789.87 14998.43 16697.80 6091.78 7794.11 11898.77 8386.25 11999.48 10994.95 9896.45 13098.22 170
EIA-MVS95.11 8195.27 7394.64 15896.34 16186.51 21699.59 2896.62 18892.51 5994.08 11998.64 9586.05 12198.24 16295.07 9498.50 10399.18 107
HPM-MVScopyleft95.41 7495.22 7495.99 11799.29 6189.14 16299.17 7597.09 17087.28 20195.40 9798.48 10784.93 13599.38 11995.64 8399.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12686.58 21494.42 11299.13 4587.36 9299.98 1093.64 11998.33 10699.48 85
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6995.21 10098.46 11086.56 11199.46 11195.00 9692.69 17199.50 82
PAPM_NR95.43 7295.05 7796.57 9599.42 4990.14 13898.58 15197.51 12090.65 10092.44 13998.90 7687.77 8199.90 4090.88 14899.32 7199.68 61
alignmvs95.77 6895.00 7898.06 2597.35 12895.68 1699.71 1597.50 12391.50 8396.16 8098.61 9886.28 11899.00 14196.19 7091.74 18899.51 81
jason95.40 7594.86 7997.03 6192.91 26594.23 5299.70 1696.30 21193.56 4496.73 7198.52 10281.46 18797.91 17896.08 7398.47 10498.96 121
jason: jason.
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21799.34 6498.15 3482.71 27590.15 17299.25 2589.48 5699.86 5294.97 9798.82 9399.72 54
HPM-MVS_fast94.89 8494.62 8195.70 12699.11 7388.44 18099.14 8597.11 16685.82 22495.69 9398.47 10883.46 15299.32 12793.16 12799.63 4699.35 91
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
abl_694.63 9594.48 8495.09 14398.61 9686.96 21098.06 20396.97 17989.31 13995.86 8998.56 10079.82 19499.64 8694.53 10798.65 9998.66 150
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27797.75 6685.50 22996.86 6399.01 6188.59 6799.90 4087.64 18599.60 5299.79 34
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 21299.44 4897.47 12883.22 26594.34 11598.96 6882.50 17099.55 9494.81 9999.50 5898.88 129
ACMMPcopyleft94.67 9394.30 8795.79 12399.25 6488.13 18398.41 16998.67 1990.38 10791.43 15198.72 8982.22 17799.95 3093.83 11695.76 14599.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13498.73 1590.33 10997.16 5697.43 14479.19 20199.53 9796.91 5691.85 18699.24 102
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30898.74 1392.42 6595.65 9494.76 20786.52 11299.49 10495.29 9092.97 16799.53 78
thisisatest051594.75 8894.19 9096.43 10196.13 17592.64 8899.47 4097.60 9887.55 19793.17 13097.59 13894.71 998.42 15688.28 17793.20 16498.24 169
diffmvs94.59 9794.19 9095.81 12295.54 18890.69 12798.70 13195.68 25891.61 8095.96 8497.81 12580.11 19398.06 17296.52 6395.76 14598.67 147
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14598.80 12097.78 6383.59 26093.85 12399.21 3083.79 14699.97 2092.37 13599.00 8499.74 51
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13591.10 11599.32 6697.43 13692.10 7391.53 15096.38 18483.29 15699.68 7893.42 12496.37 13298.25 168
MAR-MVS94.43 9994.09 9495.45 13399.10 7587.47 19698.39 17597.79 6288.37 17194.02 12099.17 3778.64 20799.91 3892.48 13498.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 9294.08 9596.61 9295.05 21294.87 3397.77 21796.17 22286.84 20898.04 3798.52 10285.52 12595.99 27789.83 15798.97 8598.96 121
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19599.25 6996.55 19688.43 16991.26 15498.21 11985.92 12299.86 5289.77 16097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
canonicalmvs95.02 8393.96 10098.20 1797.53 12595.92 1498.71 12796.19 22191.78 7795.86 8998.49 10679.53 19899.03 14096.12 7191.42 19499.66 65
DWT-MVSNet_test94.36 10093.95 10195.62 12796.99 14389.47 15996.62 26497.38 14190.96 9593.07 13397.27 14793.73 1398.09 16885.86 20593.65 16299.29 97
sss94.85 8693.94 10297.58 4096.43 15894.09 5698.93 10799.16 889.50 13695.27 9997.85 12381.50 18599.65 8492.79 13394.02 15998.99 118
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13490.76 12598.39 17597.11 16693.92 3188.66 18598.33 11278.14 20999.85 5495.02 9598.57 10198.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS93.62 12093.90 10492.79 20496.79 14881.40 29598.85 11596.81 18391.25 9096.82 6998.15 12177.02 21598.13 16593.15 12896.30 13598.83 135
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12688.74 17498.41 16998.27 2592.18 7191.43 15196.40 18178.88 20299.81 6293.59 12097.81 11099.30 96
baseline294.04 10593.80 10694.74 15493.07 26390.25 13598.12 19698.16 3389.86 12186.53 20696.95 16495.56 598.05 17391.44 14194.53 15495.93 215
EPP-MVSNet93.75 11493.67 10794.01 18095.86 17885.70 24298.67 13697.66 8384.46 24691.36 15397.18 15491.16 2697.79 18792.93 13093.75 16098.53 153
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20998.04 20496.56 19592.19 7092.46 13898.73 8779.49 19999.14 13692.16 13794.34 15798.03 175
thisisatest053094.00 10693.52 10995.43 13495.76 18190.02 14798.99 10297.60 9886.58 21491.74 14497.36 14694.78 898.34 15786.37 19792.48 17597.94 178
casdiffmvs93.98 10793.43 11095.61 12995.07 21189.86 15098.80 12095.84 25090.98 9492.74 13697.66 13579.71 19598.10 16794.72 10295.37 14998.87 131
CANet_DTU94.31 10293.35 11197.20 5797.03 14294.71 4298.62 14395.54 26795.61 1497.21 5498.47 10871.88 25399.84 5588.38 17697.46 12097.04 200
baseline93.91 10993.30 11295.72 12595.10 20990.07 14297.48 22995.91 24291.03 9393.54 12797.68 13379.58 19698.02 17594.27 11095.14 15099.08 113
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18598.18 19198.47 2187.57 19691.24 15595.05 20385.49 12897.46 20993.22 12692.82 16899.10 111
TESTMET0.1,193.82 11293.26 11495.49 13195.21 19890.25 13599.15 8297.54 11389.18 14291.79 14394.87 20589.13 5897.63 20086.21 19896.29 13698.60 151
PVSNet_BlendedMVS93.36 12693.20 11593.84 18598.77 9091.61 10199.47 4098.04 4091.44 8494.21 11692.63 24983.50 15099.87 4797.41 4583.37 24290.05 308
Effi-MVS+93.87 11193.15 11696.02 11595.79 17990.76 12596.70 26295.78 25186.98 20595.71 9297.17 15579.58 19698.01 17694.57 10696.09 13999.31 95
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16398.33 17997.55 11086.81 21090.39 16998.65 9475.09 22199.98 1093.32 12597.53 11899.26 101
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9398.97 10497.01 17782.58 27792.57 13798.22 11780.68 19199.30 12889.34 16699.02 8399.63 69
CDS-MVSNet93.47 12193.04 11994.76 15294.75 22389.45 16098.82 11897.03 17587.91 18590.97 15896.48 17989.06 5996.36 25689.50 16192.81 17098.49 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 12893.01 12094.17 17395.57 18686.47 21898.51 15797.60 9885.99 22290.55 16497.19 15394.80 798.31 15885.06 21091.86 18597.74 180
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17286.71 21598.68 13496.70 18688.30 17389.71 17997.64 13685.43 13196.39 25488.06 18196.32 13399.08 113
test-mter93.27 13092.89 12294.40 16594.94 21787.27 20399.15 8297.25 14888.95 15091.57 14794.04 21388.03 7797.58 20385.94 20296.13 13798.36 164
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13799.38 5798.93 1091.42 8793.66 12697.68 13371.29 26099.64 8687.94 18297.20 12398.98 119
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14899.19 7195.89 24586.22 22089.40 18098.85 7980.66 19299.84 5588.57 17496.92 12599.24 102
test-LLR93.11 13492.68 12594.40 16594.94 21787.27 20399.15 8297.25 14890.21 11191.57 14794.04 21384.89 13697.58 20385.94 20296.13 13798.36 164
MVS_Test93.67 11892.67 12696.69 8996.72 15092.66 8497.22 24196.03 22787.69 19495.12 10394.03 21581.55 18498.28 16189.17 17096.46 12999.14 109
UA-Net93.30 12892.62 12795.34 13896.27 16388.53 17995.88 28796.97 17990.90 9795.37 9897.07 15982.38 17599.10 13883.91 22894.86 15398.38 161
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6299.36 289.23 14091.21 15696.97 16383.42 15398.77 14685.08 20990.96 19797.39 189
IS-MVSNet93.00 13592.51 12994.49 16296.14 17287.36 20098.31 18295.70 25688.58 16090.17 17197.50 14183.02 16297.22 21787.06 18896.07 14198.90 128
CostFormer92.89 13692.48 13094.12 17594.99 21485.89 23792.89 31797.00 17886.98 20595.00 10590.78 27890.05 4897.51 20792.92 13191.73 18998.96 121
MVSTER92.71 13892.32 13193.86 18497.29 13092.95 8299.01 10096.59 19190.09 11785.51 21194.00 21794.61 1296.56 24290.77 15183.03 24492.08 245
MVS93.92 10892.28 13298.83 495.69 18396.82 596.22 27798.17 3184.89 24184.34 22098.61 9879.32 20099.83 5793.88 11499.43 6499.86 28
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19997.12 195
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19996.61 204
mvs-test191.57 15992.20 13589.70 27295.15 20374.34 33199.51 3795.40 27691.92 7491.02 15797.25 14874.27 23298.08 17189.45 16295.83 14496.67 203
tpmrst92.78 13792.16 13694.65 15796.27 16387.45 19791.83 32597.10 16989.10 14594.68 10990.69 28288.22 7297.73 19689.78 15991.80 18798.77 142
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9499.36 287.96 18390.47 16796.78 17183.29 15698.75 14884.11 22490.69 19997.12 195
EPNet_dtu92.28 14892.15 13792.70 20897.29 13084.84 25798.64 14097.82 5592.91 5393.02 13497.02 16185.48 13095.70 29272.25 31294.89 15297.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 14192.09 13994.20 17294.10 23487.68 19098.41 16996.97 17987.53 19889.74 17796.04 19084.77 13996.49 24888.97 17392.31 17898.42 157
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9299.36 287.96 18390.47 16796.78 17183.29 15698.71 15282.93 23890.47 20396.61 204
131493.44 12291.98 14197.84 3095.24 19694.38 5096.22 27797.92 4790.18 11382.28 24597.71 13277.63 21299.80 6491.94 13898.67 9899.34 93
hse-mvs392.47 14691.95 14294.05 17897.13 13685.01 25598.36 17798.08 3793.85 3696.27 7896.73 17383.19 15999.43 11495.81 7768.09 32897.70 181
Vis-MVSNetpermissive92.64 14091.85 14395.03 14795.12 20588.23 18198.48 16296.81 18391.61 8092.16 14297.22 15171.58 25898.00 17785.85 20697.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 12391.84 14498.17 1895.73 18295.08 2998.92 10997.04 17391.42 8781.48 26397.60 13774.60 22599.79 6590.84 14998.97 8599.64 67
BH-w/o92.32 14791.79 14593.91 18396.85 14586.18 22899.11 9095.74 25488.13 17884.81 21597.00 16277.26 21497.91 17889.16 17198.03 10897.64 182
3Dnovator87.35 1193.17 13391.77 14697.37 5195.41 19393.07 7698.82 11897.85 5291.53 8282.56 23997.58 13971.97 25299.82 6091.01 14699.23 7899.22 105
F-COLMAP92.07 15291.75 14793.02 19998.16 10782.89 28198.79 12495.97 23086.54 21687.92 19097.80 12678.69 20699.65 8485.97 20095.93 14396.53 209
mvs_anonymous92.50 14591.65 14895.06 14596.60 15389.64 15697.06 24696.44 20486.64 21384.14 22193.93 21982.49 17196.17 27191.47 14096.08 14099.35 91
EPMVS92.59 14391.59 14995.59 13097.22 13290.03 14691.78 32698.04 4090.42 10691.66 14690.65 28586.49 11497.46 20981.78 24996.31 13499.28 99
1112_ss92.71 13891.55 15096.20 10895.56 18791.12 11398.48 16294.69 29988.29 17486.89 20298.50 10487.02 9898.66 15384.75 21489.77 20698.81 137
hse-mvs291.67 15891.51 15192.15 21896.22 16582.61 28797.74 22097.53 11493.85 3696.27 7896.15 18683.19 15997.44 21295.81 7766.86 33396.40 211
ET-MVSNet_ETH3D92.56 14491.45 15295.88 12096.39 15994.13 5599.46 4596.97 17992.18 7166.94 34298.29 11594.65 1194.28 32094.34 10983.82 23899.24 102
baseline192.61 14291.28 15396.58 9497.05 14194.63 4497.72 22196.20 21989.82 12388.56 18696.85 16986.85 10197.82 18588.42 17580.10 25997.30 191
HQP-MVS91.50 16091.23 15492.29 21393.95 23886.39 22199.16 7696.37 20793.92 3187.57 19296.67 17573.34 23997.77 18993.82 11786.29 21792.72 227
RRT_MVS91.95 15491.09 15594.53 16196.71 15295.12 2898.64 14096.23 21789.04 14685.24 21395.06 20287.71 8296.43 25289.10 17282.06 25192.05 247
tpm291.77 15691.09 15593.82 18694.83 22185.56 24592.51 32297.16 16184.00 25293.83 12490.66 28487.54 8597.17 21887.73 18491.55 19298.72 144
PatchmatchNetpermissive92.05 15391.04 15795.06 14596.17 17089.04 16491.26 33097.26 14789.56 13490.64 16390.56 29188.35 7197.11 22079.53 26196.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 14990.97 15896.18 10995.53 19091.10 11598.47 16494.66 30088.28 17586.83 20493.50 23387.00 9998.65 15484.69 21589.74 20798.80 138
HQP_MVS91.26 16490.95 15992.16 21793.84 24586.07 23399.02 9896.30 21193.38 4686.99 19996.52 17772.92 24397.75 19493.46 12286.17 22092.67 229
CVMVSNet90.30 18290.91 16088.46 29594.32 23073.58 33597.61 22697.59 10290.16 11688.43 18897.10 15776.83 21692.86 32982.64 24093.54 16398.93 126
UGNet91.91 15590.85 16195.10 14297.06 14088.69 17598.01 20598.24 2792.41 6692.39 14093.61 22860.52 31299.68 7888.14 17997.25 12296.92 202
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 15090.84 16296.42 10298.24 10391.08 11798.24 18696.22 21883.39 26394.74 10898.31 11361.12 31198.85 14394.45 10892.82 16899.32 94
BH-untuned91.46 16290.84 16293.33 19496.51 15784.83 25898.84 11795.50 26986.44 21983.50 22696.70 17475.49 22097.77 18986.78 19597.81 11097.40 188
IB-MVS89.43 692.12 15190.83 16495.98 11895.40 19490.78 12499.81 598.06 3891.23 9185.63 21093.66 22790.63 3798.78 14591.22 14371.85 31898.36 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 15790.79 16594.49 16295.89 17787.40 19999.54 3595.70 25685.01 23989.28 18295.68 19477.75 21197.57 20683.22 23395.06 15198.51 154
CLD-MVS91.06 16890.71 16692.10 21994.05 23786.10 23199.55 3396.29 21494.16 2684.70 21697.17 15569.62 26797.82 18594.74 10186.08 22292.39 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 19190.68 16787.81 29995.15 20371.98 34197.87 21295.40 27691.92 7487.57 19291.44 26674.27 23296.84 23089.45 16293.10 16694.60 220
XVG-OURS-SEG-HR90.95 17190.66 16891.83 22395.18 20281.14 30295.92 28495.92 23888.40 17090.33 17097.85 12370.66 26399.38 11992.83 13288.83 20894.98 218
PatchMatch-RL91.47 16190.54 16994.26 17098.20 10486.36 22396.94 25097.14 16287.75 19088.98 18395.75 19371.80 25599.40 11880.92 25497.39 12197.02 201
XVG-OURS90.83 17390.49 17091.86 22295.23 19781.25 29995.79 29295.92 23888.96 14990.02 17498.03 12271.60 25799.35 12591.06 14587.78 21294.98 218
MDTV_nov1_ep1390.47 17196.14 17288.55 17791.34 32997.51 12089.58 13292.24 14190.50 29586.99 10097.61 20277.64 27592.34 177
RRT_test8_iter0591.04 17090.40 17292.95 20196.20 16989.75 15398.97 10496.38 20688.52 16182.00 25393.51 23290.69 3696.73 23690.43 15376.91 27792.38 233
VDD-MVS91.24 16790.18 17394.45 16497.08 13985.84 24098.40 17296.10 22586.99 20393.36 12898.16 12054.27 33299.20 13096.59 6190.63 20298.31 167
BH-RMVSNet91.25 16689.99 17495.03 14796.75 14988.55 17798.65 13894.95 29287.74 19187.74 19197.80 12668.27 27598.14 16480.53 25897.49 11998.41 158
FIs90.70 17689.87 17593.18 19692.29 27091.12 11398.17 19398.25 2689.11 14483.44 22794.82 20682.26 17696.17 27187.76 18382.76 24692.25 237
miper_enhance_ethall90.33 18189.70 17692.22 21497.12 13788.93 16898.35 17895.96 23288.60 15983.14 23392.33 25187.38 8896.18 27086.49 19677.89 26991.55 263
PCF-MVS89.78 591.26 16489.63 17796.16 11295.44 19291.58 10395.29 29696.10 22585.07 23682.75 23597.45 14378.28 20899.78 6680.60 25795.65 14897.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 17989.56 17893.72 18995.10 20985.43 24699.41 5494.94 29383.96 25487.21 19896.83 17074.37 23097.05 22480.50 25993.73 16198.67 147
AUN-MVS90.17 18689.50 17992.19 21696.21 16682.67 28597.76 21997.53 11488.05 18091.67 14596.15 18683.10 16197.47 20888.11 18066.91 33296.43 210
QAPM91.41 16389.49 18097.17 5895.66 18593.42 6898.60 14797.51 12080.92 29981.39 26497.41 14572.89 24599.87 4782.33 24398.68 9798.21 171
TR-MVS90.77 17489.44 18194.76 15296.31 16288.02 18697.92 20895.96 23285.52 22788.22 18997.23 15066.80 28798.09 16884.58 21792.38 17698.17 173
FC-MVSNet-test90.22 18489.40 18292.67 21091.78 28089.86 15097.89 20998.22 2888.81 15582.96 23494.66 20881.90 18295.96 27985.89 20482.52 24992.20 241
EI-MVSNet89.87 19289.38 18391.36 23394.32 23085.87 23897.61 22696.59 19185.10 23485.51 21197.10 15781.30 18996.56 24283.85 23083.03 24491.64 255
cascas90.93 17289.33 18495.76 12495.69 18393.03 7898.99 10296.59 19180.49 30186.79 20594.45 21065.23 29698.60 15593.52 12192.18 18195.66 217
SCA90.64 17889.25 18594.83 15194.95 21688.83 17096.26 27497.21 15490.06 12090.03 17390.62 28766.61 28896.81 23283.16 23494.36 15698.84 132
ab-mvs91.05 16989.17 18696.69 8995.96 17691.72 9892.62 32197.23 15285.61 22689.74 17793.89 22168.55 27299.42 11591.09 14487.84 21198.92 127
OPM-MVS89.76 19389.15 18791.57 23090.53 29485.58 24498.11 19895.93 23792.88 5586.05 20796.47 18067.06 28697.87 18289.29 16986.08 22291.26 276
PS-MVSNAJss89.54 19789.05 18891.00 23988.77 31584.36 26397.39 23095.97 23088.47 16281.88 25693.80 22382.48 17296.50 24689.34 16683.34 24392.15 242
TAPA-MVS87.50 990.35 18089.05 18894.25 17198.48 10085.17 25298.42 16796.58 19482.44 28187.24 19798.53 10182.77 16698.84 14459.09 34797.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 19488.95 19091.82 22492.54 26881.43 29492.95 31695.92 23887.81 18790.50 16689.44 31084.99 13495.65 29383.67 23182.71 24798.38 161
nrg03090.23 18388.87 19194.32 16891.53 28393.54 6598.79 12495.89 24588.12 17984.55 21894.61 20978.80 20596.88 22992.35 13675.21 28392.53 231
OpenMVScopyleft85.28 1490.75 17588.84 19296.48 9893.58 25193.51 6698.80 12097.41 13882.59 27678.62 29297.49 14268.00 27899.82 6084.52 21898.55 10296.11 214
dp90.16 18788.83 19394.14 17496.38 16086.42 21991.57 32797.06 17284.76 24388.81 18490.19 30384.29 14297.43 21375.05 29391.35 19698.56 152
cl-mvsnet289.57 19688.79 19491.91 22197.94 11287.62 19297.98 20696.51 19985.03 23782.37 24491.79 25983.65 14796.50 24685.96 20177.89 26991.61 260
LS3D90.19 18588.72 19594.59 16098.97 8086.33 22496.90 25296.60 19074.96 32684.06 22398.74 8675.78 21899.83 5774.93 29497.57 11597.62 185
GA-MVS90.10 18888.69 19694.33 16792.44 26987.97 18799.08 9196.26 21589.65 12886.92 20193.11 24268.09 27696.96 22682.54 24290.15 20498.05 174
X-MVStestdata90.69 17788.66 19796.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6329.59 36687.37 8999.87 4795.65 7999.43 6499.78 38
test0.0.03 188.96 20388.61 19890.03 26591.09 28884.43 26298.97 10497.02 17690.21 11180.29 27396.31 18584.89 13691.93 34372.98 30985.70 22593.73 222
LCM-MVSNet-Re88.59 21588.61 19888.51 29495.53 19072.68 33996.85 25488.43 35588.45 16573.14 32290.63 28675.82 21794.38 31992.95 12995.71 14798.48 156
Fast-Effi-MVS+-dtu88.84 20788.59 20089.58 27693.44 25678.18 31998.65 13894.62 30188.46 16484.12 22295.37 20068.91 26996.52 24582.06 24691.70 19094.06 221
UniMVSNet_NR-MVSNet89.60 19588.55 20192.75 20792.17 27390.07 14298.74 12698.15 3488.37 17183.21 22993.98 21882.86 16495.93 28186.95 19172.47 31292.25 237
VDDNet90.08 18988.54 20294.69 15694.41 22987.68 19098.21 18996.40 20576.21 32293.33 12997.75 12954.93 33098.77 14694.71 10390.96 19797.61 186
LPG-MVS_test88.86 20688.47 20390.06 26293.35 25880.95 30498.22 18795.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
UniMVSNet (Re)89.50 19888.32 20493.03 19892.21 27290.96 12198.90 11198.39 2289.13 14383.22 22892.03 25381.69 18396.34 26286.79 19472.53 31191.81 252
ACMP87.39 1088.71 21488.24 20590.12 26193.91 24381.06 30398.50 15995.67 25989.43 13780.37 27195.55 19565.67 29397.83 18490.55 15284.51 23091.47 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM86.95 1388.77 21288.22 20690.43 25393.61 25081.34 29798.50 15995.92 23887.88 18683.85 22595.20 20167.20 28497.89 18086.90 19384.90 22892.06 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 20488.12 20791.40 23195.32 19586.93 21197.85 21395.55 26684.19 24981.97 25491.50 26584.16 14395.91 28484.69 21577.89 26991.36 271
bset_n11_16_dypcd89.07 20187.85 20892.76 20686.16 33790.66 12997.30 23495.62 26189.78 12583.94 22493.15 24174.85 22295.89 28691.34 14278.48 26591.74 253
tpmvs89.16 19987.76 20993.35 19397.19 13384.75 25990.58 33697.36 14481.99 28684.56 21789.31 31383.98 14598.17 16374.85 29690.00 20597.12 195
test_djsdf88.26 22187.73 21089.84 26888.05 32482.21 28997.77 21796.17 22286.84 20882.41 24391.95 25872.07 25195.99 27789.83 15784.50 23191.32 273
gg-mvs-nofinetune90.00 19087.71 21196.89 7996.15 17194.69 4385.15 34497.74 6868.32 34592.97 13560.16 35596.10 396.84 23093.89 11398.87 8999.14 109
VPA-MVSNet89.10 20087.66 21293.45 19292.56 26791.02 11997.97 20798.32 2486.92 20786.03 20892.01 25568.84 27197.10 22290.92 14775.34 28292.23 239
DU-MVS88.83 20987.51 21392.79 20491.46 28490.07 14298.71 12797.62 9588.87 15483.21 22993.68 22574.63 22395.93 28186.95 19172.47 31292.36 234
IterMVS-LS88.34 21887.44 21491.04 23894.10 23485.85 23998.10 19995.48 27085.12 23382.03 25291.21 27181.35 18895.63 29483.86 22975.73 28191.63 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 22387.39 21589.70 27291.84 27983.40 27398.31 18298.49 2088.04 18178.23 29890.26 29773.57 23796.79 23484.21 22183.53 24088.90 323
CR-MVSNet88.83 20987.38 21693.16 19793.47 25386.24 22584.97 34694.20 31188.92 15390.76 16186.88 32984.43 14094.82 31270.64 31692.17 18298.41 158
ADS-MVSNet88.99 20287.30 21794.07 17696.21 16687.56 19487.15 33996.78 18583.01 26889.91 17587.27 32578.87 20397.01 22574.20 30092.27 17997.64 182
tpm cat188.89 20587.27 21893.76 18795.79 17985.32 24990.76 33497.09 17076.14 32385.72 20988.59 31682.92 16398.04 17476.96 27991.43 19397.90 179
cl_fuxian88.19 22287.23 21991.06 23794.97 21586.17 22997.72 22195.38 27883.43 26281.68 26191.37 26782.81 16595.72 29184.04 22773.70 30091.29 275
WR-MVS88.54 21687.22 22092.52 21191.93 27889.50 15898.56 15297.84 5386.99 20381.87 25793.81 22274.25 23495.92 28385.29 20774.43 29292.12 243
FMVSNet388.81 21187.08 22193.99 18196.52 15694.59 4598.08 20196.20 21985.85 22382.12 24891.60 26374.05 23595.40 30079.04 26580.24 25691.99 249
Anonymous20240521188.84 20787.03 22294.27 16998.14 10884.18 26598.44 16595.58 26576.79 32189.34 18196.88 16853.42 33599.54 9687.53 18787.12 21599.09 112
eth_miper_zixun_eth87.76 22687.00 22390.06 26294.67 22582.65 28697.02 24995.37 27984.19 24981.86 25991.58 26481.47 18695.90 28583.24 23273.61 30191.61 260
ADS-MVSNet287.62 23186.88 22489.86 26796.21 16679.14 31287.15 33992.99 32583.01 26889.91 17587.27 32578.87 20392.80 33274.20 30092.27 17997.64 182
cl-mvsnet187.82 22486.81 22590.87 24494.87 22085.39 24897.81 21495.22 29082.92 27380.76 26791.31 26981.99 17995.81 28981.36 25075.04 28591.42 269
cl-mvsnet____87.82 22486.79 22690.89 24394.88 21985.43 24697.81 21495.24 28682.91 27480.71 26891.22 27081.97 18195.84 28781.34 25175.06 28491.40 270
test_part188.43 21786.68 22793.67 19097.56 12492.40 9298.12 19696.55 19682.26 28380.31 27293.16 24074.59 22796.62 23985.00 21272.61 31091.99 249
VPNet88.30 21986.57 22893.49 19191.95 27691.35 10698.18 19197.20 15888.61 15884.52 21994.89 20462.21 30696.76 23589.34 16672.26 31592.36 234
DP-MVS88.75 21386.56 22995.34 13898.92 8487.45 19797.64 22593.52 32270.55 33781.49 26297.25 14874.43 22999.88 4471.14 31594.09 15898.67 147
jajsoiax87.35 23386.51 23089.87 26687.75 32981.74 29297.03 24795.98 22888.47 16280.15 27593.80 22361.47 30896.36 25689.44 16484.47 23291.50 264
MSDG88.29 22086.37 23194.04 17996.90 14486.15 23096.52 26694.36 30877.89 31779.22 28796.95 16469.72 26699.59 9273.20 30892.58 17496.37 212
TranMVSNet+NR-MVSNet87.75 22786.31 23292.07 22090.81 29188.56 17698.33 17997.18 15987.76 18981.87 25793.90 22072.45 24795.43 29883.13 23671.30 32292.23 239
mvs_tets87.09 23686.22 23389.71 27187.87 32581.39 29696.73 26195.90 24388.19 17779.99 27793.61 22859.96 31496.31 26489.40 16584.34 23391.43 268
miper_lstm_enhance86.90 23886.20 23489.00 28894.53 22781.19 30096.74 26095.24 28682.33 28280.15 27590.51 29481.99 17994.68 31680.71 25673.58 30291.12 279
pmmvs487.58 23286.17 23591.80 22589.58 30588.92 16997.25 23895.28 28282.54 27880.49 27093.17 23975.62 21996.05 27682.75 23978.90 26390.42 299
XXY-MVS87.75 22786.02 23692.95 20190.46 29589.70 15497.71 22395.90 24384.02 25180.95 26594.05 21267.51 28297.10 22285.16 20878.41 26692.04 248
NR-MVSNet87.74 22986.00 23792.96 20091.46 28490.68 12896.65 26397.42 13788.02 18273.42 32093.68 22577.31 21395.83 28884.26 22071.82 31992.36 234
MS-PatchMatch86.75 24185.92 23889.22 28391.97 27582.47 28896.91 25196.14 22483.74 25677.73 29993.53 23158.19 31797.37 21676.75 28298.35 10587.84 329
MVP-Stereo86.61 24585.83 23988.93 29088.70 31783.85 27096.07 28294.41 30782.15 28575.64 31091.96 25767.65 28196.45 25177.20 27898.72 9686.51 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 23585.76 24091.78 22989.59 30487.58 19398.56 15295.54 26784.53 24582.51 24091.78 26073.11 24296.47 24982.07 24574.14 29891.30 274
anonymousdsp86.69 24285.75 24189.53 27786.46 33582.94 27896.39 26895.71 25583.97 25379.63 28290.70 28168.85 27095.94 28086.01 19984.02 23589.72 313
V4287.00 23785.68 24290.98 24089.91 29986.08 23298.32 18195.61 26383.67 25982.72 23690.67 28374.00 23696.53 24481.94 24874.28 29590.32 301
Anonymous2024052987.66 23085.58 24393.92 18297.59 12285.01 25598.13 19497.13 16466.69 34988.47 18796.01 19155.09 32999.51 10187.00 19084.12 23497.23 194
RPSCF85.33 26585.55 24484.67 31994.63 22662.28 35293.73 31093.76 31674.38 32985.23 21497.06 16064.09 29998.31 15880.98 25286.08 22293.41 226
WR-MVS_H86.53 24785.49 24589.66 27591.04 28983.31 27597.53 22898.20 3084.95 24079.64 28190.90 27678.01 21095.33 30176.29 28672.81 30790.35 300
CP-MVSNet86.54 24685.45 24689.79 27091.02 29082.78 28497.38 23297.56 10985.37 23079.53 28493.03 24371.86 25495.25 30379.92 26073.43 30591.34 272
v114486.83 24085.31 24791.40 23189.75 30287.21 20898.31 18295.45 27283.22 26582.70 23790.78 27873.36 23896.36 25679.49 26274.69 28990.63 296
PVSNet_083.28 1687.31 23485.16 24893.74 18894.78 22284.59 26098.91 11098.69 1889.81 12478.59 29493.23 23761.95 30799.34 12694.75 10055.72 35097.30 191
v14886.38 24985.06 24990.37 25789.47 30984.10 26698.52 15495.48 27083.80 25580.93 26690.22 30174.60 22596.31 26480.92 25471.55 32090.69 294
GBi-Net86.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
test186.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29289.90 30077.12 32494.30 30495.60 26487.40 20082.12 24892.99 24553.42 33597.66 19885.02 21183.83 23690.92 284
v14419286.40 24884.89 25390.91 24189.48 30885.59 24398.21 18995.43 27582.45 28082.62 23890.58 29072.79 24696.36 25678.45 27174.04 29990.79 288
JIA-IIPM85.97 25484.85 25489.33 28293.23 26073.68 33485.05 34597.13 16469.62 34191.56 14968.03 35388.03 7796.96 22677.89 27493.12 16597.34 190
Baseline_NR-MVSNet85.83 25784.82 25588.87 29188.73 31683.34 27498.63 14291.66 34180.41 30482.44 24191.35 26874.63 22395.42 29984.13 22371.39 32187.84 329
FMVSNet286.90 23884.79 25693.24 19595.11 20692.54 9097.67 22495.86 24982.94 27080.55 26991.17 27262.89 30395.29 30277.23 27679.71 26291.90 251
v119286.32 25084.71 25791.17 23589.53 30786.40 22098.13 19495.44 27482.52 27982.42 24290.62 28771.58 25896.33 26377.23 27674.88 28690.79 288
IterMVS85.81 25884.67 25889.22 28393.51 25283.67 27196.32 27194.80 29585.09 23578.69 29090.17 30466.57 29093.17 32879.48 26377.42 27590.81 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26184.64 25989.00 28893.46 25582.90 28096.27 27294.70 29885.02 23878.62 29290.35 29666.61 28893.33 32579.38 26477.36 27690.76 290
PS-CasMVS85.81 25884.58 26089.49 28090.77 29282.11 29097.20 24297.36 14484.83 24279.12 28992.84 24667.42 28395.16 30578.39 27273.25 30691.21 277
v886.11 25284.45 26191.10 23689.99 29886.85 21297.24 23995.36 28081.99 28679.89 27989.86 30674.53 22896.39 25478.83 26972.32 31490.05 308
v192192086.02 25384.44 26290.77 24689.32 31085.20 25098.10 19995.35 28182.19 28482.25 24690.71 28070.73 26196.30 26776.85 28174.49 29190.80 287
EU-MVSNet84.19 27984.42 26383.52 32488.64 31867.37 35096.04 28395.76 25385.29 23178.44 29593.18 23870.67 26291.48 34575.79 29075.98 27991.70 254
pmmvs585.87 25584.40 26490.30 25888.53 31984.23 26498.60 14793.71 31881.53 29180.29 27392.02 25464.51 29895.52 29682.04 24778.34 26791.15 278
v124085.77 26084.11 26590.73 24789.26 31185.15 25397.88 21195.23 28981.89 28982.16 24790.55 29269.60 26896.31 26475.59 29174.87 28790.72 293
Patchmatch-test86.25 25184.06 26692.82 20394.42 22882.88 28282.88 35394.23 31071.58 33479.39 28590.62 28789.00 6196.42 25363.03 33991.37 19599.16 108
v1085.73 26184.01 26790.87 24490.03 29786.73 21497.20 24295.22 29081.25 29479.85 28089.75 30773.30 24196.28 26876.87 28072.64 30989.61 315
PEN-MVS85.21 26683.93 26889.07 28789.89 30181.31 29897.09 24597.24 15084.45 24778.66 29192.68 24868.44 27494.87 31075.98 28870.92 32391.04 281
UniMVSNet_ETH3D85.65 26383.79 26991.21 23490.41 29680.75 30695.36 29595.78 25178.76 31181.83 26094.33 21149.86 34396.66 23784.30 21983.52 24196.22 213
OurMVSNet-221017-084.13 28183.59 27085.77 31387.81 32670.24 34494.89 29993.65 32086.08 22176.53 30293.28 23661.41 30996.14 27380.95 25377.69 27490.93 283
PatchT85.44 26483.19 27192.22 21493.13 26283.00 27783.80 35296.37 20770.62 33690.55 16479.63 34884.81 13894.87 31058.18 34991.59 19198.79 139
AllTest84.97 26883.12 27290.52 25196.82 14678.84 31495.89 28592.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
USDC84.74 26982.93 27390.16 26091.73 28183.54 27295.00 29893.30 32488.77 15673.19 32193.30 23553.62 33497.65 19975.88 28981.54 25489.30 318
COLMAP_ROBcopyleft82.69 1884.54 27482.82 27489.70 27296.72 15078.85 31395.89 28592.83 32871.55 33577.54 30195.89 19259.40 31599.14 13667.26 32788.26 20991.11 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 27682.80 27589.50 27889.01 31283.90 26997.03 24794.56 30281.33 29375.36 31290.52 29371.69 25694.54 31868.81 32276.84 27890.07 306
DTE-MVSNet84.14 28082.80 27588.14 29688.95 31479.87 31096.81 25596.24 21683.50 26177.60 30092.52 25067.89 28094.24 32172.64 31169.05 32690.32 301
pm-mvs184.68 27182.78 27790.40 25489.58 30585.18 25197.31 23394.73 29781.93 28876.05 30592.01 25565.48 29596.11 27478.75 27069.14 32589.91 311
v7n84.42 27782.75 27889.43 28188.15 32281.86 29196.75 25995.67 25980.53 30078.38 29689.43 31169.89 26496.35 26173.83 30472.13 31690.07 306
LTVRE_ROB81.71 1984.59 27382.72 27990.18 25992.89 26683.18 27693.15 31594.74 29678.99 30875.14 31392.69 24765.64 29497.63 20069.46 32081.82 25389.74 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030484.13 28182.66 28088.52 29393.07 26380.15 30795.81 29198.21 2979.27 30686.85 20386.40 33241.33 35494.69 31576.36 28586.69 21690.73 292
Anonymous2023121184.72 27082.65 28190.91 24197.71 11684.55 26197.28 23696.67 18766.88 34879.18 28890.87 27758.47 31696.60 24082.61 24174.20 29691.59 262
ACMH83.09 1784.60 27282.61 28290.57 24993.18 26182.94 27896.27 27294.92 29481.01 29772.61 32893.61 22856.54 32197.79 18774.31 29981.07 25590.99 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+83.78 1584.21 27882.56 28389.15 28593.73 24979.16 31196.43 26794.28 30981.09 29674.00 31794.03 21554.58 33197.67 19776.10 28778.81 26490.63 296
RPMNet85.07 26781.88 28494.64 15893.47 25386.24 22584.97 34697.21 15464.85 35190.76 16178.80 34980.95 19099.27 12953.76 35292.17 18298.41 158
MIMVSNet84.48 27581.83 28592.42 21291.73 28187.36 20085.52 34294.42 30681.40 29281.91 25587.58 32051.92 33892.81 33173.84 30388.15 21097.08 199
Patchmtry83.61 28681.64 28689.50 27893.36 25782.84 28384.10 34994.20 31169.47 34279.57 28386.88 32984.43 14094.78 31368.48 32474.30 29490.88 285
SixPastTwentyTwo82.63 28981.58 28785.79 31288.12 32371.01 34395.17 29792.54 33084.33 24872.93 32692.08 25260.41 31395.61 29574.47 29874.15 29790.75 291
ppachtmachnet_test83.63 28581.57 28889.80 26989.01 31285.09 25497.13 24494.50 30378.84 30976.14 30491.00 27469.78 26594.61 31763.40 33774.36 29389.71 314
DSMNet-mixed81.60 29581.43 28982.10 32884.36 34160.79 35393.63 31286.74 35779.00 30779.32 28687.15 32763.87 30189.78 34866.89 32991.92 18495.73 216
tfpnnormal83.65 28481.35 29090.56 25091.37 28688.06 18497.29 23597.87 5178.51 31276.20 30390.91 27564.78 29796.47 24961.71 34273.50 30387.13 337
FMVSNet183.94 28381.32 29191.80 22591.94 27788.81 17196.77 25695.25 28377.98 31378.25 29790.25 29850.37 34294.97 30773.27 30777.81 27391.62 257
LF4IMVS81.94 29381.17 29284.25 32187.23 33268.87 34993.35 31491.93 33983.35 26475.40 31193.00 24449.25 34696.65 23878.88 26878.11 26887.22 336
testgi82.29 29081.00 29386.17 31087.24 33174.84 33097.39 23091.62 34288.63 15775.85 30995.42 19946.07 34991.55 34466.87 33079.94 26092.12 243
FMVSNet582.29 29080.54 29487.52 30193.79 24884.01 26793.73 31092.47 33176.92 32074.27 31586.15 33463.69 30289.24 34969.07 32174.79 28889.29 319
KD-MVS_2432*160082.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
miper_refine_blended82.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
Patchmatch-RL test81.90 29480.13 29787.23 30480.71 35170.12 34684.07 35088.19 35683.16 26770.57 33082.18 34287.18 9592.59 33482.28 24462.78 33898.98 119
CMPMVSbinary58.40 2180.48 29880.11 29881.59 33185.10 33959.56 35494.14 30795.95 23468.54 34460.71 35093.31 23455.35 32897.87 18283.06 23784.85 22987.33 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
K. test v381.04 29679.77 29984.83 31787.41 33070.23 34595.60 29493.93 31583.70 25867.51 34089.35 31255.76 32393.58 32476.67 28368.03 32990.67 295
TransMVSNet (Re)81.97 29279.61 30089.08 28689.70 30384.01 26797.26 23791.85 34078.84 30973.07 32591.62 26267.17 28595.21 30467.50 32659.46 34588.02 328
Anonymous2023120680.76 29779.42 30184.79 31884.78 34072.98 33696.53 26592.97 32679.56 30574.33 31488.83 31461.27 31092.15 34060.59 34475.92 28089.24 320
CL-MVSNet_2432*160079.89 30278.34 30284.54 32081.56 34975.01 32896.88 25395.62 26181.10 29575.86 30885.81 33568.49 27390.26 34763.21 33856.51 34888.35 326
TinyColmap80.42 29977.94 30387.85 29892.09 27478.58 31693.74 30989.94 35074.99 32569.77 33291.78 26046.09 34897.58 20365.17 33577.89 26987.38 332
EG-PatchMatch MVS79.92 30077.59 30486.90 30687.06 33377.90 32396.20 28094.06 31374.61 32766.53 34488.76 31540.40 35696.20 26967.02 32883.66 23986.61 338
test20.0378.51 31077.48 30581.62 33083.07 34571.03 34296.11 28192.83 32881.66 29069.31 33389.68 30857.53 31887.29 35358.65 34868.47 32786.53 339
pmmvs679.90 30177.31 30687.67 30084.17 34278.13 32095.86 28993.68 31967.94 34672.67 32789.62 30950.98 34195.75 29074.80 29766.04 33489.14 321
MDA-MVSNet_test_wron79.65 30377.05 30787.45 30287.79 32880.13 30896.25 27594.44 30473.87 33051.80 35387.47 32468.04 27792.12 34166.02 33167.79 33090.09 304
YYNet179.64 30477.04 30887.43 30387.80 32779.98 30996.23 27694.44 30473.83 33151.83 35287.53 32167.96 27992.07 34266.00 33267.75 33190.23 303
Anonymous2024052178.63 30976.90 30983.82 32282.82 34672.86 33795.72 29393.57 32173.55 33272.17 32984.79 33749.69 34492.51 33665.29 33474.50 29086.09 342
UnsupCasMVSNet_eth78.90 30676.67 31085.58 31482.81 34774.94 32991.98 32496.31 21084.64 24465.84 34687.71 31951.33 33992.23 33972.89 31056.50 34989.56 316
test_040278.81 30776.33 31186.26 30991.18 28778.44 31895.88 28791.34 34568.55 34370.51 33189.91 30552.65 33794.99 30647.14 35579.78 26185.34 346
pmmvs-eth3d78.71 30876.16 31286.38 30880.25 35281.19 30094.17 30692.13 33677.97 31466.90 34382.31 34155.76 32392.56 33573.63 30662.31 34185.38 344
DIV-MVS_2432*160077.47 31475.88 31382.24 32681.59 34868.93 34892.83 32094.02 31477.03 31973.14 32283.39 33955.44 32790.42 34667.95 32557.53 34787.38 332
TDRefinement78.01 31175.31 31486.10 31170.06 35873.84 33393.59 31391.58 34374.51 32873.08 32491.04 27349.63 34597.12 21974.88 29559.47 34487.33 334
MVS-HIRNet79.01 30575.13 31590.66 24893.82 24781.69 29385.16 34393.75 31754.54 35374.17 31659.15 35757.46 31996.58 24163.74 33694.38 15593.72 223
OpenMVS_ROBcopyleft73.86 2077.99 31275.06 31686.77 30783.81 34477.94 32296.38 26991.53 34467.54 34768.38 33587.13 32843.94 35096.08 27555.03 35181.83 25286.29 341
MDA-MVSNet-bldmvs77.82 31374.75 31787.03 30588.33 32078.52 31796.34 27092.85 32775.57 32448.87 35587.89 31857.32 32092.49 33760.79 34364.80 33790.08 305
new_pmnet76.02 31573.71 31882.95 32583.88 34372.85 33891.26 33092.26 33370.44 33862.60 34881.37 34347.64 34792.32 33861.85 34172.10 31783.68 349
MIMVSNet175.92 31673.30 31983.81 32381.29 35075.57 32792.26 32392.05 33773.09 33367.48 34186.18 33340.87 35587.64 35255.78 35070.68 32488.21 327
PM-MVS74.88 31772.85 32080.98 33278.98 35464.75 35190.81 33385.77 35880.95 29868.23 33782.81 34029.08 35992.84 33076.54 28462.46 34085.36 345
new-patchmatchnet74.80 31872.40 32181.99 32978.36 35572.20 34094.44 30292.36 33277.06 31863.47 34779.98 34751.04 34088.85 35060.53 34554.35 35184.92 347
UnsupCasMVSNet_bld73.85 31970.14 32284.99 31679.44 35375.73 32688.53 33795.24 28670.12 34061.94 34974.81 35041.41 35393.62 32368.65 32351.13 35485.62 343
N_pmnet70.19 32169.87 32371.12 33788.24 32130.63 36895.85 29028.70 36870.18 33968.73 33486.55 33164.04 30093.81 32253.12 35373.46 30488.94 322
pmmvs372.86 32069.76 32482.17 32773.86 35674.19 33294.20 30589.01 35464.23 35267.72 33880.91 34541.48 35288.65 35162.40 34054.02 35283.68 349
test_method70.10 32268.66 32574.41 33586.30 33655.84 35794.47 30189.82 35135.18 35866.15 34584.75 33830.54 35877.96 35870.40 31960.33 34389.44 317
FPMVS61.57 32360.32 32665.34 33960.14 36242.44 36391.02 33289.72 35244.15 35542.63 35780.93 34419.02 36180.59 35742.50 35672.76 30873.00 353
LCM-MVSNet60.07 32456.37 32771.18 33654.81 36448.67 36182.17 35489.48 35337.95 35649.13 35469.12 35113.75 36781.76 35459.28 34651.63 35383.10 351
PMMVS258.97 32555.07 32870.69 33862.72 35955.37 35885.97 34180.52 36149.48 35445.94 35668.31 35215.73 36580.78 35649.79 35437.12 35775.91 352
tmp_tt53.66 32752.86 32956.05 34232.75 36841.97 36473.42 35776.12 36421.91 36339.68 35996.39 18342.59 35165.10 36178.00 27314.92 36261.08 355
Gipumacopyleft54.77 32652.22 33062.40 34186.50 33459.37 35550.20 36090.35 34936.52 35741.20 35849.49 35918.33 36381.29 35532.10 35865.34 33546.54 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 32846.17 33164.33 34044.27 36652.30 35976.13 35678.73 36264.95 35027.37 36155.23 35814.61 36667.74 36036.01 35718.23 36072.95 354
PMVScopyleft41.42 2345.67 32942.50 33255.17 34334.28 36732.37 36666.24 35878.71 36330.72 35922.04 36459.59 3564.59 36877.85 35927.49 35958.84 34655.29 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 33140.93 33341.29 34561.97 36033.83 36584.00 35165.17 36627.17 36027.56 36046.72 36117.63 36460.41 36319.32 36118.82 35929.61 359
EMVS39.96 33239.88 33440.18 34659.57 36332.12 36784.79 34864.57 36726.27 36126.14 36244.18 36418.73 36259.29 36417.03 36217.67 36129.12 360
MVEpermissive44.00 2241.70 33037.64 33553.90 34449.46 36543.37 36265.09 35966.66 36526.19 36225.77 36348.53 3603.58 37063.35 36226.15 36027.28 35854.97 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 33330.03 3360.00 3500.00 3710.00 3720.00 36297.17 1600.00 3670.00 36898.77 8374.35 2310.00 3680.00 3660.00 3660.00 364
testmvs18.81 33423.05 3376.10 3494.48 3692.29 37197.78 2163.00 3703.27 36518.60 36562.71 3541.53 3722.49 36714.26 3641.80 36413.50 362
test12316.58 33619.47 3387.91 3483.59 3705.37 37094.32 3031.39 3712.49 36613.98 36644.60 3632.91 3712.65 36611.35 3650.57 36515.70 361
wuyk23d16.71 33516.73 33916.65 34760.15 36125.22 36941.24 3615.17 3696.56 3645.48 3673.61 3673.64 36922.72 36515.20 3639.52 3631.99 363
ab-mvs-re8.21 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.50 1040.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.87 3389.16 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36882.48 1720.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.67 1393.28 7097.61 9687.78 18897.41 5199.16 3990.15 4799.56 9398.35 2999.70 35
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
OPU-MVS99.49 299.64 2098.51 299.77 899.19 3295.12 699.97 2099.90 199.92 399.99 1
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
save fliter99.34 5393.85 5999.65 2297.63 9395.69 11
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
test_0728_SECOND98.77 599.66 1596.37 1199.72 1397.68 8199.98 1099.64 599.82 1599.96 8
test072699.66 1595.20 2699.77 897.70 7993.95 2999.35 399.54 393.18 18
GSMVS98.84 132
test_part299.54 3695.42 1798.13 32
sam_mvs188.39 7098.84 132
sam_mvs87.08 96
ambc79.60 33372.76 35756.61 35676.20 35592.01 33868.25 33680.23 34623.34 36094.73 31473.78 30560.81 34287.48 331
MTGPAbinary97.45 130
test_post190.74 33541.37 36585.38 13296.36 25683.16 234
test_post46.00 36287.37 8997.11 220
patchmatchnet-post84.86 33688.73 6496.81 232
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 33897.74 6893.91 12296.40 18196.56 296.94 22895.08 9398.95 8899.20 106
MTMP99.21 7091.09 346
gm-plane-assit94.69 22488.14 18288.22 17697.20 15298.29 16090.79 150
test9_res98.60 1999.87 799.90 20
TEST999.57 3393.17 7299.38 5797.66 8389.57 13398.39 2799.18 3590.88 3299.66 80
test_899.55 3593.07 7699.37 6097.64 8990.18 11398.36 2999.19 3290.94 3099.64 86
agg_prior297.84 4199.87 799.91 18
agg_prior99.54 3692.66 8497.64 8997.98 4099.61 89
TestCases90.52 25196.82 14678.84 31492.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
test_prior492.00 9499.41 54
test_prior299.57 3091.43 8598.12 3498.97 6390.43 4098.33 3099.81 19
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
旧先验298.67 13685.75 22598.96 1298.97 14293.84 115
新几何298.26 185
新几何197.40 4898.92 8492.51 9197.77 6585.52 22796.69 7299.06 5388.08 7699.89 4384.88 21399.62 4799.79 34
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
无先验98.52 15497.82 5587.20 20299.90 4087.64 18599.85 29
原ACMM298.69 132
原ACMM196.18 10999.03 7890.08 14197.63 9388.98 14897.00 5898.97 6388.14 7599.71 7388.23 17899.62 4798.76 143
test22298.32 10191.21 10898.08 20197.58 10483.74 25695.87 8899.02 5786.74 10499.64 4399.81 31
testdata299.88 4484.16 222
segment_acmp90.56 39
testdata95.26 14198.20 10487.28 20297.60 9885.21 23298.48 2599.15 4188.15 7498.72 15190.29 15499.45 6299.78 38
testdata197.89 20992.43 62
test1297.83 3199.33 5994.45 4797.55 11097.56 4688.60 6599.50 10399.71 3499.55 77
plane_prior793.84 24585.73 241
plane_prior693.92 24286.02 23572.92 243
plane_prior596.30 21197.75 19493.46 12286.17 22092.67 229
plane_prior496.52 177
plane_prior385.91 23693.65 4186.99 199
plane_prior299.02 9893.38 46
plane_prior193.90 244
plane_prior86.07 23399.14 8593.81 3986.26 219
n20.00 372
nn0.00 372
door-mid84.90 360
lessismore_v085.08 31585.59 33869.28 34790.56 34867.68 33990.21 30254.21 33395.46 29773.88 30262.64 33990.50 298
LGP-MVS_train90.06 26293.35 25880.95 30495.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
test1197.68 81
door85.30 359
HQP5-MVS86.39 221
HQP-NCC93.95 23899.16 7693.92 3187.57 192
ACMP_Plane93.95 23899.16 7693.92 3187.57 192
BP-MVS93.82 117
HQP4-MVS87.57 19297.77 18992.72 227
HQP3-MVS96.37 20786.29 217
HQP2-MVS73.34 239
NP-MVS93.94 24186.22 22796.67 175
MDTV_nov1_ep13_2view91.17 11291.38 32887.45 19993.08 13286.67 10787.02 18998.95 125
ACMMP++_ref82.64 248
ACMMP++83.83 236
Test By Simon83.62 149
ITE_SJBPF87.93 29792.26 27176.44 32593.47 32387.67 19579.95 27895.49 19856.50 32297.38 21475.24 29282.33 25089.98 310
DeepMVS_CXcopyleft76.08 33490.74 29351.65 36090.84 34786.47 21857.89 35187.98 31735.88 35792.60 33365.77 33365.06 33683.97 348