CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 9 | 98.69 57 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 24 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 18 | 98.62 70 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 27 | 99.29 14 | 99.95 44 | 98.32 161 | 97.28 20 | 99.83 11 | 99.91 15 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 94 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 18 | 98.64 66 | 98.47 2 | 99.13 84 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
patch_mono-2 | | | 98.24 64 | 99.12 5 | 95.59 215 | 99.67 92 | 86.91 329 | 99.95 44 | 98.89 43 | 97.60 12 | 99.90 2 | 99.76 76 | 96.54 28 | 99.98 46 | 99.94 12 | 99.82 91 | 99.88 96 |
|
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 83 | 99.93 27 | 97.24 109 | 99.95 44 | 98.42 133 | 97.50 16 | 99.52 55 | 99.88 24 | 97.43 16 | 99.71 135 | 99.50 41 | 99.98 35 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 27 | 99.30 11 | 99.96 25 | 98.43 121 | 97.27 22 | 99.80 17 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 50 | 99.24 18 | 99.87 94 | 98.44 113 | 97.48 17 | 99.64 40 | 99.94 4 | 96.68 26 | 99.99 40 | 99.99 5 | 100.00 1 | 99.99 24 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 44 | 99.31 9 | 99.95 44 | 98.43 121 | 96.48 44 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 13 | 99.98 35 | 100.00 1 |
|
CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 86 | 99.38 111 | 98.87 31 | 98.46 295 | 99.42 21 | 97.03 29 | 99.02 88 | 99.09 145 | 99.35 1 | 98.21 228 | 99.73 33 | 99.78 94 | 99.77 110 |
|
MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 34 | 99.94 14 | 98.46 63 | 99.98 9 | 98.86 47 | 97.10 27 | 99.80 17 | 99.94 4 | 95.92 37 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 87 | 98.98 12 | 93.92 278 | 99.63 94 | 81.76 356 | 99.96 25 | 98.56 80 | 99.47 1 | 99.19 82 | 99.99 1 | 94.16 91 | 100.00 1 | 99.92 13 | 99.93 67 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 57 | 98.72 148 | 97.71 86 | 99.98 9 | 98.44 113 | 96.85 32 | 99.80 17 | 99.91 15 | 97.57 8 | 99.85 100 | 99.44 44 | 99.99 22 | 99.99 24 |
Skip Steuart: Steuart Systems R&D Blog. |
APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 31 | 99.94 14 | 98.76 44 | 99.91 76 | 98.39 144 | 97.20 26 | 99.46 58 | 99.85 35 | 95.53 46 | 99.79 115 | 99.86 18 | 100.00 1 | 99.99 24 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 15 | 99.90 47 | 99.02 23 | 99.95 44 | 98.56 80 | 97.56 15 | 99.44 60 | 99.85 35 | 95.38 49 | 100.00 1 | 99.31 49 | 99.99 22 | 99.87 98 |
|
test_prior3 | | | 98.99 14 | 98.84 16 | 99.43 38 | 99.94 14 | 98.49 61 | 99.95 44 | 98.65 63 | 95.78 65 | 99.73 30 | 99.76 76 | 96.00 33 | 99.80 112 | 99.78 26 | 100.00 1 | 99.99 24 |
|
xxxxxxxxxxxxxcwj | | | 98.98 15 | 98.79 17 | 99.54 26 | 99.82 70 | 98.79 37 | 99.96 25 | 97.52 245 | 97.66 10 | 99.81 13 | 99.89 21 | 94.70 68 | 99.86 96 | 99.84 19 | 99.93 67 | 99.96 74 |
|
TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 42 | 99.74 82 | 98.67 48 | 99.77 134 | 98.38 148 | 96.73 38 | 99.88 4 | 99.74 87 | 94.89 65 | 99.59 146 | 99.80 24 | 99.98 35 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 24 | 99.70 90 | 98.73 45 | 99.94 62 | 98.34 158 | 96.38 49 | 99.81 13 | 99.76 76 | 94.59 70 | 99.98 46 | 99.84 19 | 99.96 52 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
testtj | | | 98.89 19 | 98.69 20 | 99.52 29 | 99.94 14 | 98.56 57 | 99.90 81 | 98.55 86 | 95.14 85 | 99.72 34 | 99.84 48 | 95.46 47 | 100.00 1 | 99.65 38 | 99.99 22 | 99.99 24 |
|
agg_prior1 | | | 98.88 20 | 98.66 21 | 99.54 26 | 99.93 27 | 98.77 40 | 99.96 25 | 98.43 121 | 94.63 105 | 99.63 41 | 99.85 35 | 95.79 41 | 99.85 100 | 99.72 34 | 99.99 22 | 99.99 24 |
|
train_agg | | | 98.88 20 | 98.65 22 | 99.59 21 | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 121 | 94.35 117 | 99.71 35 | 99.86 31 | 95.94 35 | 99.85 100 | 99.69 37 | 99.98 35 | 99.99 24 |
|
MG-MVS | | | 98.91 18 | 98.65 22 | 99.68 14 | 99.94 14 | 99.07 22 | 99.64 170 | 99.44 19 | 97.33 19 | 99.00 91 | 99.72 91 | 94.03 94 | 99.98 46 | 98.73 81 | 100.00 1 | 100.00 1 |
|
MVS_111021_HR | | | 98.72 28 | 98.62 24 | 99.01 81 | 99.36 112 | 97.18 112 | 99.93 68 | 99.90 1 | 96.81 36 | 98.67 106 | 99.77 72 | 93.92 96 | 99.89 85 | 99.27 51 | 99.94 61 | 99.96 74 |
|
Regformer-1 | | | 98.79 25 | 98.60 25 | 99.36 48 | 99.85 60 | 98.34 66 | 99.87 94 | 98.52 93 | 96.05 58 | 99.41 63 | 99.79 64 | 94.93 63 | 99.76 124 | 99.07 55 | 99.90 76 | 99.99 24 |
|
Regformer-2 | | | 98.78 26 | 98.59 26 | 99.36 48 | 99.85 60 | 98.32 67 | 99.87 94 | 98.52 93 | 96.04 59 | 99.41 63 | 99.79 64 | 94.92 64 | 99.76 124 | 99.05 56 | 99.90 76 | 99.98 55 |
|
XVS | | | 98.70 29 | 98.55 27 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 62 | 98.42 133 | 96.22 54 | 99.41 63 | 99.78 70 | 94.34 80 | 99.96 58 | 98.92 66 | 99.95 55 | 99.99 24 |
|
ETH3 D test6400 | | | 98.81 23 | 98.54 28 | 99.59 21 | 99.93 27 | 98.93 26 | 99.93 68 | 98.46 108 | 94.56 107 | 99.84 9 | 99.92 13 | 94.32 84 | 99.86 96 | 99.96 9 | 99.98 35 | 100.00 1 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 28 | 99.62 18 | 99.90 47 | 98.85 33 | 99.24 225 | 98.47 106 | 98.14 4 | 99.08 85 | 99.91 15 | 93.09 120 | 100.00 1 | 99.04 60 | 99.99 22 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 98.60 34 | 98.51 30 | 98.86 90 | 99.73 86 | 96.63 130 | 99.97 18 | 97.92 209 | 98.07 5 | 98.76 102 | 99.55 112 | 95.00 60 | 99.94 73 | 99.91 16 | 97.68 161 | 99.99 24 |
|
SMA-MVS |  | | 98.76 27 | 98.48 31 | 99.62 18 | 99.87 57 | 98.87 31 | 99.86 106 | 98.38 148 | 93.19 164 | 99.77 26 | 99.94 4 | 95.54 44 | 100.00 1 | 99.74 30 | 99.99 22 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 98.83 22 | 98.46 32 | 99.97 1 | 99.33 113 | 99.92 1 | 99.96 25 | 98.44 113 | 97.96 7 | 99.55 50 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 203 | 99.94 61 | 99.98 55 |
|
ETH3D-3000-0.1 | | | 98.68 30 | 98.42 33 | 99.47 37 | 99.83 68 | 98.57 55 | 99.90 81 | 98.37 151 | 93.81 146 | 99.81 13 | 99.90 19 | 94.34 80 | 99.86 96 | 99.84 19 | 99.98 35 | 99.97 67 |
|
PAPM | | | 98.60 34 | 98.42 33 | 99.14 66 | 96.05 262 | 98.96 24 | 99.90 81 | 99.35 24 | 96.68 40 | 98.35 121 | 99.66 104 | 96.45 29 | 98.51 196 | 99.45 43 | 99.89 78 | 99.96 74 |
|
#test# | | | 98.59 36 | 98.41 35 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 44 | 98.61 72 | 95.00 88 | 99.31 72 | 99.85 35 | 94.22 87 | 100.00 1 | 98.78 77 | 99.98 35 | 99.98 55 |
|
Regformer-3 | | | 98.58 37 | 98.41 35 | 99.10 72 | 99.84 65 | 97.57 92 | 99.66 162 | 98.52 93 | 95.79 64 | 99.01 89 | 99.77 72 | 94.40 74 | 99.75 127 | 98.82 73 | 99.83 85 | 99.98 55 |
|
SF-MVS | | | 98.67 31 | 98.40 37 | 99.50 32 | 99.77 78 | 98.67 48 | 99.90 81 | 98.21 178 | 93.53 155 | 99.81 13 | 99.89 21 | 94.70 68 | 99.86 96 | 99.84 19 | 99.93 67 | 99.96 74 |
|
EPNet | | | 98.49 44 | 98.40 37 | 98.77 93 | 99.62 95 | 96.80 127 | 99.90 81 | 99.51 16 | 97.60 12 | 99.20 79 | 99.36 129 | 93.71 103 | 99.91 80 | 97.99 114 | 98.71 136 | 99.61 136 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Regformer-4 | | | 98.56 38 | 98.39 39 | 99.08 74 | 99.84 65 | 97.52 95 | 99.66 162 | 98.52 93 | 95.76 67 | 99.01 89 | 99.77 72 | 94.33 83 | 99.75 127 | 98.80 76 | 99.83 85 | 99.98 55 |
|
9.14 | | | | 98.38 40 | | 99.87 57 | | 99.91 76 | 98.33 159 | 93.22 163 | 99.78 25 | 99.89 21 | 94.57 71 | 99.85 100 | 99.84 19 | 99.97 48 | |
|
MVS_111021_LR | | | 98.42 49 | 98.38 40 | 98.53 115 | 99.39 110 | 95.79 161 | 99.87 94 | 99.86 2 | 96.70 39 | 98.78 99 | 99.79 64 | 92.03 148 | 99.90 81 | 99.17 52 | 99.86 83 | 99.88 96 |
|
HFP-MVS | | | 98.56 38 | 98.37 42 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 44 | 98.61 72 | 94.77 97 | 99.31 72 | 99.85 35 | 94.22 87 | 100.00 1 | 98.70 82 | 99.98 35 | 99.98 55 |
|
region2R | | | 98.54 40 | 98.37 42 | 99.05 76 | 99.96 8 | 97.18 112 | 99.96 25 | 98.55 86 | 94.87 95 | 99.45 59 | 99.85 35 | 94.07 93 | 100.00 1 | 98.67 84 | 100.00 1 | 99.98 55 |
|
CDPH-MVS | | | 98.65 32 | 98.36 44 | 99.49 34 | 99.94 14 | 98.73 45 | 99.87 94 | 98.33 159 | 93.97 138 | 99.76 27 | 99.87 28 | 94.99 61 | 99.75 127 | 98.55 91 | 100.00 1 | 99.98 55 |
|
APD-MVS |  | | 98.62 33 | 98.35 45 | 99.41 42 | 99.90 47 | 98.51 60 | 99.87 94 | 98.36 153 | 94.08 130 | 99.74 29 | 99.73 89 | 94.08 92 | 99.74 131 | 99.42 45 | 99.99 22 | 99.99 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMPR | | | 98.50 43 | 98.32 46 | 99.05 76 | 99.96 8 | 97.18 112 | 99.95 44 | 98.60 74 | 94.77 97 | 99.31 72 | 99.84 48 | 93.73 102 | 100.00 1 | 98.70 82 | 99.98 35 | 99.98 55 |
|
CP-MVS | | | 98.45 47 | 98.32 46 | 98.87 89 | 99.96 8 | 96.62 131 | 99.97 18 | 98.39 144 | 94.43 112 | 98.90 95 | 99.87 28 | 94.30 85 | 100.00 1 | 99.04 60 | 99.99 22 | 99.99 24 |
|
SR-MVS | | | 98.46 46 | 98.30 48 | 98.93 87 | 99.88 54 | 97.04 117 | 99.84 113 | 98.35 156 | 94.92 92 | 99.32 71 | 99.80 60 | 93.35 109 | 99.78 117 | 99.30 50 | 99.95 55 | 99.96 74 |
|
test1172 | | | 98.38 54 | 98.25 49 | 98.77 93 | 99.88 54 | 96.56 134 | 99.80 127 | 98.36 153 | 94.68 102 | 99.20 79 | 99.80 60 | 93.28 114 | 99.78 117 | 99.34 48 | 99.92 71 | 99.98 55 |
|
DELS-MVS | | | 98.54 40 | 98.22 50 | 99.50 32 | 99.15 119 | 98.65 52 | 100.00 1 | 98.58 76 | 97.70 9 | 98.21 128 | 99.24 139 | 92.58 134 | 99.94 73 | 98.63 89 | 99.94 61 | 99.92 91 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PHI-MVS | | | 98.41 50 | 98.21 51 | 99.03 78 | 99.86 59 | 97.10 116 | 99.98 9 | 98.80 52 | 90.78 243 | 99.62 44 | 99.78 70 | 95.30 50 | 100.00 1 | 99.80 24 | 99.93 67 | 99.99 24 |
|
PS-MVSNAJ | | | 98.44 48 | 98.20 52 | 99.16 62 | 98.80 145 | 98.92 27 | 99.54 185 | 98.17 183 | 97.34 18 | 99.85 7 | 99.85 35 | 91.20 158 | 99.89 85 | 99.41 46 | 99.67 101 | 98.69 213 |
|
mPP-MVS | | | 98.39 53 | 98.20 52 | 98.97 84 | 99.97 3 | 96.92 123 | 99.95 44 | 98.38 148 | 95.04 87 | 98.61 110 | 99.80 60 | 93.39 108 | 100.00 1 | 98.64 88 | 100.00 1 | 99.98 55 |
|
SR-MVS-dyc-post | | | 98.31 57 | 98.17 54 | 98.71 96 | 99.79 75 | 96.37 141 | 99.76 139 | 98.31 163 | 94.43 112 | 99.40 67 | 99.75 82 | 93.28 114 | 99.78 117 | 98.90 69 | 99.92 71 | 99.97 67 |
|
PAPR | | | 98.52 42 | 98.16 55 | 99.58 23 | 99.97 3 | 98.77 40 | 99.95 44 | 98.43 121 | 95.35 80 | 98.03 130 | 99.75 82 | 94.03 94 | 99.98 46 | 98.11 107 | 99.83 85 | 99.99 24 |
|
ACMMP_NAP | | | 98.49 44 | 98.14 56 | 99.54 26 | 99.66 93 | 98.62 54 | 99.85 109 | 98.37 151 | 94.68 102 | 99.53 52 | 99.83 51 | 92.87 125 | 100.00 1 | 98.66 87 | 99.84 84 | 99.99 24 |
|
RE-MVS-def | | | | 98.13 57 | | 99.79 75 | 96.37 141 | 99.76 139 | 98.31 163 | 94.43 112 | 99.40 67 | 99.75 82 | 92.95 123 | | 98.90 69 | 99.92 71 | 99.97 67 |
|
PGM-MVS | | | 98.34 55 | 98.13 57 | 98.99 82 | 99.92 36 | 97.00 119 | 99.75 142 | 99.50 17 | 93.90 143 | 99.37 69 | 99.76 76 | 93.24 117 | 100.00 1 | 97.75 127 | 99.96 52 | 99.98 55 |
|
EI-MVSNet-Vis-set | | | 98.27 60 | 98.11 59 | 98.75 95 | 99.83 68 | 96.59 133 | 99.40 202 | 98.51 100 | 95.29 82 | 98.51 113 | 99.76 76 | 93.60 106 | 99.71 135 | 98.53 92 | 99.52 112 | 99.95 82 |
|
dcpmvs_2 | | | 97.42 97 | 98.09 60 | 95.42 220 | 99.58 100 | 87.24 326 | 99.23 226 | 96.95 301 | 94.28 122 | 98.93 94 | 99.73 89 | 94.39 78 | 99.16 167 | 99.89 17 | 99.82 91 | 99.86 100 |
|
APD-MVS_3200maxsize | | | 98.25 63 | 98.08 61 | 98.78 92 | 99.81 73 | 96.60 132 | 99.82 121 | 98.30 166 | 93.95 140 | 99.37 69 | 99.77 72 | 92.84 126 | 99.76 124 | 98.95 63 | 99.92 71 | 99.97 67 |
|
ETH3D cwj APD-0.16 | | | 98.40 52 | 98.07 62 | 99.40 44 | 99.59 96 | 98.41 64 | 99.86 106 | 98.24 174 | 92.18 203 | 99.73 30 | 99.87 28 | 93.47 107 | 99.85 100 | 99.74 30 | 99.95 55 | 99.93 85 |
|
ZNCC-MVS | | | 98.31 57 | 98.03 63 | 99.17 60 | 99.88 54 | 97.59 91 | 99.94 62 | 98.44 113 | 94.31 120 | 98.50 114 | 99.82 55 | 93.06 121 | 99.99 40 | 98.30 101 | 99.99 22 | 99.93 85 |
|
DP-MVS Recon | | | 98.41 50 | 98.02 64 | 99.56 24 | 99.97 3 | 98.70 47 | 99.92 72 | 98.44 113 | 92.06 208 | 98.40 119 | 99.84 48 | 95.68 42 | 100.00 1 | 98.19 102 | 99.71 99 | 99.97 67 |
|
zzz-MVS | | | 98.33 56 | 98.00 65 | 99.30 50 | 99.85 60 | 97.93 81 | 99.80 127 | 98.28 168 | 95.76 67 | 97.18 149 | 99.88 24 | 92.74 129 | 100.00 1 | 98.67 84 | 99.88 80 | 99.99 24 |
|
EI-MVSNet-UG-set | | | 98.14 67 | 97.99 66 | 98.60 105 | 99.80 74 | 96.27 143 | 99.36 211 | 98.50 104 | 95.21 84 | 98.30 123 | 99.75 82 | 93.29 113 | 99.73 134 | 98.37 97 | 99.30 122 | 99.81 104 |
|
GST-MVS | | | 98.27 60 | 97.97 67 | 99.17 60 | 99.92 36 | 97.57 92 | 99.93 68 | 98.39 144 | 94.04 136 | 98.80 98 | 99.74 87 | 92.98 122 | 100.00 1 | 98.16 104 | 99.76 95 | 99.93 85 |
|
xiu_mvs_v2_base | | | 98.23 65 | 97.97 67 | 99.02 80 | 98.69 149 | 98.66 50 | 99.52 187 | 98.08 195 | 97.05 28 | 99.86 5 | 99.86 31 | 90.65 169 | 99.71 135 | 99.39 47 | 98.63 137 | 98.69 213 |
|
MP-MVS |  | | 98.23 65 | 97.97 67 | 99.03 78 | 99.94 14 | 97.17 115 | 99.95 44 | 98.39 144 | 94.70 101 | 98.26 126 | 99.81 59 | 91.84 152 | 100.00 1 | 98.85 72 | 99.97 48 | 99.93 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MTAPA | | | 98.29 59 | 97.96 70 | 99.30 50 | 99.85 60 | 97.93 81 | 99.39 206 | 98.28 168 | 95.76 67 | 97.18 149 | 99.88 24 | 92.74 129 | 100.00 1 | 98.67 84 | 99.88 80 | 99.99 24 |
|
CS-MVS-test | | | 97.88 76 | 97.94 71 | 97.70 154 | 99.28 115 | 95.20 184 | 99.98 9 | 97.15 278 | 95.53 76 | 99.62 44 | 99.79 64 | 92.08 147 | 98.38 212 | 98.75 80 | 99.28 123 | 99.52 155 |
|
PAPM_NR | | | 98.12 68 | 97.93 72 | 98.70 97 | 99.94 14 | 96.13 152 | 99.82 121 | 98.43 121 | 94.56 107 | 97.52 141 | 99.70 95 | 94.40 74 | 99.98 46 | 97.00 144 | 99.98 35 | 99.99 24 |
|
CS-MVS | | | 97.79 83 | 97.91 73 | 97.43 164 | 99.10 120 | 94.42 200 | 99.99 3 | 97.10 283 | 95.07 86 | 99.68 38 | 99.75 82 | 92.95 123 | 98.34 216 | 98.38 96 | 99.14 128 | 99.54 151 |
|
PLC |  | 95.54 3 | 97.93 74 | 97.89 74 | 98.05 139 | 99.82 70 | 94.77 195 | 99.92 72 | 98.46 108 | 93.93 141 | 97.20 148 | 99.27 134 | 95.44 48 | 99.97 56 | 97.41 132 | 99.51 114 | 99.41 169 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 98.27 60 | 97.82 75 | 99.63 15 | 99.72 88 | 99.10 21 | 99.98 9 | 98.51 100 | 97.00 30 | 98.52 112 | 99.71 93 | 87.80 201 | 99.95 65 | 99.75 28 | 99.38 119 | 99.83 102 |
|
ETV-MVS | | | 97.92 75 | 97.80 76 | 98.25 130 | 98.14 179 | 96.48 135 | 99.98 9 | 97.63 228 | 95.61 73 | 99.29 76 | 99.46 120 | 92.55 135 | 98.82 177 | 99.02 62 | 98.54 138 | 99.46 162 |
|
HPM-MVS |  | | 97.96 72 | 97.72 77 | 98.68 98 | 99.84 65 | 96.39 140 | 99.90 81 | 98.17 183 | 92.61 187 | 98.62 109 | 99.57 111 | 91.87 151 | 99.67 142 | 98.87 71 | 99.99 22 | 99.99 24 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
API-MVS | | | 97.86 77 | 97.66 78 | 98.47 118 | 99.52 103 | 95.41 175 | 99.47 196 | 98.87 46 | 91.68 218 | 98.84 96 | 99.85 35 | 92.34 141 | 99.99 40 | 98.44 94 | 99.96 52 | 100.00 1 |
|
MP-MVS-pluss | | | 98.07 70 | 97.64 79 | 99.38 47 | 99.74 82 | 98.41 64 | 99.74 145 | 98.18 182 | 93.35 159 | 96.45 168 | 99.85 35 | 92.64 132 | 99.97 56 | 98.91 68 | 99.89 78 | 99.77 110 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PVSNet_Blended | | | 97.94 73 | 97.64 79 | 98.83 91 | 99.59 96 | 96.99 120 | 100.00 1 | 99.10 29 | 95.38 79 | 98.27 124 | 99.08 146 | 89.00 192 | 99.95 65 | 99.12 53 | 99.25 124 | 99.57 146 |
|
lupinMVS | | | 97.85 78 | 97.60 81 | 98.62 103 | 97.28 228 | 97.70 88 | 99.99 3 | 97.55 239 | 95.50 78 | 99.43 61 | 99.67 102 | 90.92 165 | 98.71 186 | 98.40 95 | 99.62 104 | 99.45 164 |
|
WTY-MVS | | | 98.10 69 | 97.60 81 | 99.60 20 | 98.92 135 | 99.28 16 | 99.89 89 | 99.52 14 | 95.58 74 | 98.24 127 | 99.39 126 | 93.33 110 | 99.74 131 | 97.98 116 | 95.58 204 | 99.78 109 |
|
1121 | | | 98.03 71 | 97.57 83 | 99.40 44 | 99.74 82 | 98.21 69 | 98.31 302 | 98.62 70 | 92.78 177 | 99.53 52 | 99.83 51 | 95.08 54 | 100.00 1 | 94.36 190 | 99.92 71 | 99.99 24 |
|
HPM-MVS_fast | | | 97.80 82 | 97.50 84 | 98.68 98 | 99.79 75 | 96.42 137 | 99.88 91 | 98.16 187 | 91.75 217 | 98.94 93 | 99.54 114 | 91.82 153 | 99.65 144 | 97.62 129 | 99.99 22 | 99.99 24 |
|
EIA-MVS | | | 97.53 91 | 97.46 85 | 97.76 151 | 98.04 183 | 94.84 191 | 99.98 9 | 97.61 233 | 94.41 115 | 97.90 134 | 99.59 109 | 92.40 139 | 98.87 175 | 98.04 111 | 99.13 129 | 99.59 139 |
|
ACMMP |  | | 97.74 86 | 97.44 86 | 98.66 100 | 99.92 36 | 96.13 152 | 99.18 230 | 99.45 18 | 94.84 96 | 96.41 171 | 99.71 93 | 91.40 155 | 99.99 40 | 97.99 114 | 98.03 156 | 99.87 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 97.76 85 | 97.38 87 | 98.92 88 | 99.53 102 | 96.84 125 | 99.87 94 | 98.14 190 | 93.78 148 | 96.55 166 | 99.69 98 | 92.28 142 | 99.98 46 | 97.13 139 | 99.44 117 | 99.93 85 |
|
test_yl | | | 97.83 79 | 97.37 88 | 99.21 54 | 99.18 116 | 97.98 78 | 99.64 170 | 99.27 26 | 91.43 226 | 97.88 135 | 98.99 154 | 95.84 39 | 99.84 109 | 98.82 73 | 95.32 208 | 99.79 106 |
|
DCV-MVSNet | | | 97.83 79 | 97.37 88 | 99.21 54 | 99.18 116 | 97.98 78 | 99.64 170 | 99.27 26 | 91.43 226 | 97.88 135 | 98.99 154 | 95.84 39 | 99.84 109 | 98.82 73 | 95.32 208 | 99.79 106 |
|
abl_6 | | | 97.67 88 | 97.34 90 | 98.66 100 | 99.68 91 | 96.11 155 | 99.68 158 | 98.14 190 | 93.80 147 | 99.27 77 | 99.70 95 | 88.65 197 | 99.98 46 | 97.46 131 | 99.72 98 | 99.89 94 |
|
alignmvs | | | 97.81 81 | 97.33 91 | 99.25 52 | 98.77 147 | 98.66 50 | 99.99 3 | 98.44 113 | 94.40 116 | 98.41 117 | 99.47 118 | 93.65 104 | 99.42 159 | 98.57 90 | 94.26 217 | 99.67 122 |
|
CPTT-MVS | | | 97.64 89 | 97.32 92 | 98.58 108 | 99.97 3 | 95.77 162 | 99.96 25 | 98.35 156 | 89.90 256 | 98.36 120 | 99.79 64 | 91.18 161 | 99.99 40 | 98.37 97 | 99.99 22 | 99.99 24 |
|
DROMVSNet | | | 97.38 100 | 97.24 93 | 97.80 145 | 97.41 218 | 95.64 169 | 99.99 3 | 97.06 288 | 94.59 106 | 99.63 41 | 99.32 130 | 89.20 190 | 98.14 230 | 98.76 79 | 99.23 125 | 99.62 133 |
|
OMC-MVS | | | 97.28 101 | 97.23 94 | 97.41 165 | 99.76 79 | 93.36 228 | 99.65 166 | 97.95 205 | 96.03 60 | 97.41 145 | 99.70 95 | 89.61 181 | 99.51 149 | 96.73 151 | 98.25 147 | 99.38 171 |
|
test2506 | | | 97.53 91 | 97.19 95 | 98.58 108 | 98.66 151 | 96.90 124 | 98.81 274 | 99.77 5 | 94.93 90 | 97.95 132 | 98.96 160 | 92.51 136 | 99.20 163 | 94.93 173 | 98.15 148 | 99.64 128 |
|
MAR-MVS | | | 97.43 93 | 97.19 95 | 98.15 135 | 99.47 107 | 94.79 194 | 99.05 247 | 98.76 53 | 92.65 185 | 98.66 107 | 99.82 55 | 88.52 198 | 99.98 46 | 98.12 106 | 99.63 103 | 99.67 122 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HY-MVS | | 92.50 7 | 97.79 83 | 97.17 97 | 99.63 15 | 98.98 128 | 99.32 8 | 97.49 323 | 99.52 14 | 95.69 71 | 98.32 122 | 97.41 225 | 93.32 111 | 99.77 121 | 98.08 110 | 95.75 201 | 99.81 104 |
|
xiu_mvs_v1_base_debu | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 201 | 98.14 70 | 99.31 216 | 97.86 215 | 96.43 46 | 99.62 44 | 99.69 98 | 85.56 223 | 99.68 139 | 99.05 56 | 98.31 144 | 97.83 223 |
|
xiu_mvs_v1_base | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 201 | 98.14 70 | 99.31 216 | 97.86 215 | 96.43 46 | 99.62 44 | 99.69 98 | 85.56 223 | 99.68 139 | 99.05 56 | 98.31 144 | 97.83 223 |
|
xiu_mvs_v1_base_debi | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 201 | 98.14 70 | 99.31 216 | 97.86 215 | 96.43 46 | 99.62 44 | 99.69 98 | 85.56 223 | 99.68 139 | 99.05 56 | 98.31 144 | 97.83 223 |
|
CSCG | | | 97.10 107 | 97.04 101 | 97.27 173 | 99.89 50 | 91.92 258 | 99.90 81 | 99.07 32 | 88.67 277 | 95.26 192 | 99.82 55 | 93.17 119 | 99.98 46 | 98.15 105 | 99.47 115 | 99.90 93 |
|
sss | | | 97.57 90 | 97.03 102 | 99.18 57 | 98.37 164 | 98.04 75 | 99.73 150 | 99.38 22 | 93.46 157 | 98.76 102 | 99.06 147 | 91.21 157 | 99.89 85 | 96.33 154 | 97.01 177 | 99.62 133 |
|
thisisatest0515 | | | 97.41 98 | 97.02 103 | 98.59 107 | 97.71 208 | 97.52 95 | 99.97 18 | 98.54 90 | 91.83 213 | 97.45 144 | 99.04 148 | 97.50 9 | 99.10 169 | 94.75 182 | 96.37 188 | 99.16 192 |
|
F-COLMAP | | | 96.93 113 | 96.95 104 | 96.87 182 | 99.71 89 | 91.74 263 | 99.85 109 | 97.95 205 | 93.11 167 | 95.72 185 | 99.16 143 | 92.35 140 | 99.94 73 | 95.32 166 | 99.35 121 | 98.92 202 |
|
jason | | | 97.24 103 | 96.86 105 | 98.38 126 | 95.73 274 | 97.32 108 | 99.97 18 | 97.40 258 | 95.34 81 | 98.60 111 | 99.54 114 | 87.70 202 | 98.56 193 | 97.94 117 | 99.47 115 | 99.25 187 |
jason: jason. |
114514_t | | | 97.41 98 | 96.83 106 | 99.14 66 | 99.51 105 | 97.83 83 | 99.89 89 | 98.27 171 | 88.48 281 | 99.06 86 | 99.66 104 | 90.30 174 | 99.64 145 | 96.32 155 | 99.97 48 | 99.96 74 |
|
PVSNet_Blended_VisFu | | | 97.27 102 | 96.81 107 | 98.66 100 | 98.81 144 | 96.67 129 | 99.92 72 | 98.64 66 | 94.51 109 | 96.38 172 | 98.49 194 | 89.05 191 | 99.88 91 | 97.10 141 | 98.34 142 | 99.43 167 |
|
AdaColmap |  | | 97.23 104 | 96.80 108 | 98.51 116 | 99.99 1 | 95.60 171 | 99.09 236 | 98.84 49 | 93.32 160 | 96.74 160 | 99.72 91 | 86.04 219 | 100.00 1 | 98.01 112 | 99.43 118 | 99.94 84 |
|
PMMVS | | | 96.76 120 | 96.76 109 | 96.76 185 | 98.28 169 | 92.10 253 | 99.91 76 | 97.98 202 | 94.12 128 | 99.53 52 | 99.39 126 | 86.93 211 | 98.73 184 | 96.95 147 | 97.73 159 | 99.45 164 |
|
thisisatest0530 | | | 97.10 107 | 96.72 110 | 98.22 131 | 97.60 211 | 96.70 128 | 99.92 72 | 98.54 90 | 91.11 235 | 97.07 152 | 98.97 158 | 97.47 12 | 99.03 170 | 93.73 208 | 96.09 191 | 98.92 202 |
|
PVSNet | | 91.05 13 | 97.13 106 | 96.69 111 | 98.45 120 | 99.52 103 | 95.81 160 | 99.95 44 | 99.65 11 | 94.73 99 | 99.04 87 | 99.21 141 | 84.48 232 | 99.95 65 | 94.92 174 | 98.74 135 | 99.58 145 |
|
diffmvs | | | 97.00 110 | 96.64 112 | 98.09 137 | 97.64 209 | 96.17 151 | 99.81 123 | 97.19 272 | 94.67 104 | 98.95 92 | 99.28 131 | 86.43 215 | 98.76 182 | 98.37 97 | 97.42 167 | 99.33 179 |
|
MVSFormer | | | 96.94 112 | 96.60 113 | 97.95 141 | 97.28 228 | 97.70 88 | 99.55 183 | 97.27 268 | 91.17 232 | 99.43 61 | 99.54 114 | 90.92 165 | 96.89 297 | 94.67 185 | 99.62 104 | 99.25 187 |
|
EPP-MVSNet | | | 96.69 125 | 96.60 113 | 96.96 179 | 97.74 201 | 93.05 232 | 99.37 209 | 98.56 80 | 88.75 275 | 95.83 183 | 99.01 151 | 96.01 32 | 98.56 193 | 96.92 148 | 97.20 172 | 99.25 187 |
|
VNet | | | 97.21 105 | 96.57 115 | 99.13 71 | 98.97 129 | 97.82 84 | 99.03 250 | 99.21 28 | 94.31 120 | 99.18 83 | 98.88 171 | 86.26 218 | 99.89 85 | 98.93 65 | 94.32 216 | 99.69 119 |
|
CHOSEN 1792x2688 | | | 96.81 117 | 96.53 116 | 97.64 155 | 98.91 137 | 93.07 230 | 99.65 166 | 99.80 3 | 95.64 72 | 95.39 189 | 98.86 175 | 84.35 235 | 99.90 81 | 96.98 145 | 99.16 127 | 99.95 82 |
|
tttt0517 | | | 96.85 115 | 96.49 117 | 97.92 143 | 97.48 217 | 95.89 159 | 99.85 109 | 98.54 90 | 90.72 244 | 96.63 162 | 98.93 169 | 97.47 12 | 99.02 171 | 93.03 220 | 95.76 200 | 98.85 206 |
|
baseline2 | | | 96.71 124 | 96.49 117 | 97.37 168 | 95.63 281 | 95.96 157 | 99.74 145 | 98.88 45 | 92.94 169 | 91.61 229 | 98.97 158 | 97.72 7 | 98.62 191 | 94.83 178 | 98.08 155 | 97.53 231 |
|
HyFIR lowres test | | | 96.66 127 | 96.43 119 | 97.36 170 | 99.05 122 | 93.91 212 | 99.70 155 | 99.80 3 | 90.54 245 | 96.26 174 | 98.08 206 | 92.15 145 | 98.23 227 | 96.84 150 | 95.46 205 | 99.93 85 |
|
DeepC-MVS | | 94.51 4 | 96.92 114 | 96.40 120 | 98.45 120 | 99.16 118 | 95.90 158 | 99.66 162 | 98.06 196 | 96.37 52 | 94.37 201 | 99.49 117 | 83.29 242 | 99.90 81 | 97.63 128 | 99.61 107 | 99.55 148 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 97.09 109 | 96.32 121 | 99.39 46 | 98.93 133 | 98.95 25 | 99.72 153 | 97.35 261 | 94.45 110 | 97.88 135 | 99.42 122 | 86.71 212 | 99.52 148 | 98.48 93 | 93.97 221 | 99.72 116 |
|
TESTMET0.1,1 | | | 96.74 122 | 96.26 122 | 98.16 132 | 97.36 221 | 96.48 135 | 99.96 25 | 98.29 167 | 91.93 210 | 95.77 184 | 98.07 207 | 95.54 44 | 98.29 220 | 90.55 254 | 98.89 131 | 99.70 117 |
|
thres200 | | | 96.96 111 | 96.21 123 | 99.22 53 | 98.97 129 | 98.84 34 | 99.85 109 | 99.71 6 | 93.17 165 | 96.26 174 | 98.88 171 | 89.87 179 | 99.51 149 | 94.26 194 | 94.91 211 | 99.31 181 |
|
CANet_DTU | | | 96.76 120 | 96.15 124 | 98.60 105 | 98.78 146 | 97.53 94 | 99.84 113 | 97.63 228 | 97.25 25 | 99.20 79 | 99.64 106 | 81.36 256 | 99.98 46 | 92.77 223 | 98.89 131 | 98.28 216 |
|
CDS-MVSNet | | | 96.34 136 | 96.07 125 | 97.13 175 | 97.37 220 | 94.96 188 | 99.53 186 | 97.91 210 | 91.55 221 | 95.37 190 | 98.32 202 | 95.05 57 | 97.13 279 | 93.80 204 | 95.75 201 | 99.30 183 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test-LLR | | | 96.47 131 | 96.04 126 | 97.78 148 | 97.02 236 | 95.44 173 | 99.96 25 | 98.21 178 | 94.07 131 | 95.55 186 | 96.38 258 | 93.90 98 | 98.27 224 | 90.42 257 | 98.83 133 | 99.64 128 |
|
EPMVS | | | 96.53 130 | 96.01 127 | 98.09 137 | 98.43 161 | 96.12 154 | 96.36 341 | 99.43 20 | 93.53 155 | 97.64 139 | 95.04 309 | 94.41 73 | 98.38 212 | 91.13 240 | 98.11 151 | 99.75 112 |
|
tfpn200view9 | | | 96.79 118 | 95.99 128 | 99.19 56 | 98.94 131 | 98.82 35 | 99.78 131 | 99.71 6 | 92.86 170 | 96.02 178 | 98.87 173 | 89.33 185 | 99.50 151 | 93.84 200 | 94.57 212 | 99.27 185 |
|
thres400 | | | 96.78 119 | 95.99 128 | 99.16 62 | 98.94 131 | 98.82 35 | 99.78 131 | 99.71 6 | 92.86 170 | 96.02 178 | 98.87 173 | 89.33 185 | 99.50 151 | 93.84 200 | 94.57 212 | 99.16 192 |
|
baseline | | | 96.43 133 | 95.98 130 | 97.76 151 | 97.34 222 | 95.17 185 | 99.51 189 | 97.17 275 | 93.92 142 | 96.90 155 | 99.28 131 | 85.37 226 | 98.64 190 | 97.50 130 | 96.86 181 | 99.46 162 |
|
tpmrst | | | 96.27 142 | 95.98 130 | 97.13 175 | 97.96 186 | 93.15 229 | 96.34 342 | 98.17 183 | 92.07 206 | 98.71 105 | 95.12 307 | 93.91 97 | 98.73 184 | 94.91 176 | 96.62 182 | 99.50 159 |
|
Vis-MVSNet (Re-imp) | | | 96.32 137 | 95.98 130 | 97.35 171 | 97.93 188 | 94.82 192 | 99.47 196 | 98.15 189 | 91.83 213 | 95.09 193 | 99.11 144 | 91.37 156 | 97.47 259 | 93.47 211 | 97.43 165 | 99.74 113 |
|
mvs-test1 | | | 95.53 162 | 95.97 133 | 94.20 266 | 97.77 198 | 85.44 337 | 99.95 44 | 97.06 288 | 94.92 92 | 96.58 164 | 98.72 181 | 85.81 220 | 98.98 172 | 94.80 179 | 98.11 151 | 98.18 217 |
|
casdiffmvs | | | 96.42 134 | 95.97 133 | 97.77 150 | 97.30 226 | 94.98 187 | 99.84 113 | 97.09 285 | 93.75 150 | 96.58 164 | 99.26 137 | 85.07 228 | 98.78 180 | 97.77 125 | 97.04 176 | 99.54 151 |
|
UA-Net | | | 96.54 129 | 95.96 135 | 98.27 129 | 98.23 172 | 95.71 166 | 98.00 316 | 98.45 110 | 93.72 151 | 98.41 117 | 99.27 134 | 88.71 196 | 99.66 143 | 91.19 239 | 97.69 160 | 99.44 166 |
|
1314 | | | 96.84 116 | 95.96 135 | 99.48 36 | 96.74 252 | 98.52 59 | 98.31 302 | 98.86 47 | 95.82 63 | 89.91 249 | 98.98 156 | 87.49 204 | 99.96 58 | 97.80 120 | 99.73 97 | 99.96 74 |
|
iter_conf05 | | | 96.07 144 | 95.95 137 | 96.44 196 | 98.43 161 | 97.52 95 | 99.91 76 | 96.85 312 | 94.16 126 | 92.49 225 | 97.98 212 | 98.20 4 | 97.34 263 | 97.26 136 | 88.29 256 | 94.45 253 |
|
iter_conf_final | | | 96.01 147 | 95.93 138 | 96.28 202 | 98.38 163 | 97.03 118 | 99.87 94 | 97.03 292 | 94.05 135 | 92.61 223 | 97.98 212 | 98.01 5 | 97.34 263 | 97.02 143 | 88.39 255 | 94.47 247 |
|
test-mter | | | 96.39 135 | 95.93 138 | 97.78 148 | 97.02 236 | 95.44 173 | 99.96 25 | 98.21 178 | 91.81 215 | 95.55 186 | 96.38 258 | 95.17 51 | 98.27 224 | 90.42 257 | 98.83 133 | 99.64 128 |
|
thres100view900 | | | 96.74 122 | 95.92 140 | 99.18 57 | 98.90 138 | 98.77 40 | 99.74 145 | 99.71 6 | 92.59 189 | 95.84 181 | 98.86 175 | 89.25 187 | 99.50 151 | 93.84 200 | 94.57 212 | 99.27 185 |
|
IS-MVSNet | | | 96.29 140 | 95.90 141 | 97.45 162 | 98.13 180 | 94.80 193 | 99.08 238 | 97.61 233 | 92.02 209 | 95.54 188 | 98.96 160 | 90.64 170 | 98.08 233 | 93.73 208 | 97.41 168 | 99.47 161 |
|
CostFormer | | | 96.10 143 | 95.88 142 | 96.78 184 | 97.03 235 | 92.55 245 | 97.08 332 | 97.83 218 | 90.04 255 | 98.72 104 | 94.89 316 | 95.01 59 | 98.29 220 | 96.54 153 | 95.77 199 | 99.50 159 |
|
thres600view7 | | | 96.69 125 | 95.87 143 | 99.14 66 | 98.90 138 | 98.78 39 | 99.74 145 | 99.71 6 | 92.59 189 | 95.84 181 | 98.86 175 | 89.25 187 | 99.50 151 | 93.44 212 | 94.50 215 | 99.16 192 |
|
PVSNet_BlendedMVS | | | 96.05 145 | 95.82 144 | 96.72 187 | 99.59 96 | 96.99 120 | 99.95 44 | 99.10 29 | 94.06 133 | 98.27 124 | 95.80 274 | 89.00 192 | 99.95 65 | 99.12 53 | 87.53 268 | 93.24 328 |
|
MVS_Test | | | 96.46 132 | 95.74 145 | 98.61 104 | 98.18 176 | 97.23 110 | 99.31 216 | 97.15 278 | 91.07 236 | 98.84 96 | 97.05 238 | 88.17 200 | 98.97 173 | 94.39 189 | 97.50 164 | 99.61 136 |
|
Effi-MVS+ | | | 96.30 139 | 95.69 146 | 98.16 132 | 97.85 193 | 96.26 144 | 97.41 324 | 97.21 271 | 90.37 248 | 98.65 108 | 98.58 190 | 86.61 214 | 98.70 187 | 97.11 140 | 97.37 169 | 99.52 155 |
|
MDTV_nov1_ep13 | | | | 95.69 146 | | 97.90 189 | 94.15 204 | 95.98 349 | 98.44 113 | 93.12 166 | 97.98 131 | 95.74 276 | 95.10 53 | 98.58 192 | 90.02 263 | 96.92 179 | |
|
FMVS2_test | | | 95.35 166 | 95.68 148 | 94.36 262 | 98.99 127 | 84.98 340 | 99.96 25 | 96.65 325 | 97.60 12 | 99.73 30 | 98.96 160 | 71.58 325 | 99.93 79 | 98.31 100 | 99.37 120 | 98.17 218 |
|
TAMVS | | | 95.85 151 | 95.58 149 | 96.65 190 | 97.07 232 | 93.50 221 | 99.17 231 | 97.82 219 | 91.39 230 | 95.02 194 | 98.01 208 | 92.20 143 | 97.30 268 | 93.75 207 | 95.83 198 | 99.14 195 |
|
MVS | | | 96.60 128 | 95.56 150 | 99.72 12 | 96.85 245 | 99.22 19 | 98.31 302 | 98.94 37 | 91.57 220 | 90.90 237 | 99.61 108 | 86.66 213 | 99.96 58 | 97.36 133 | 99.88 80 | 99.99 24 |
|
PatchmatchNet |  | | 95.94 149 | 95.45 151 | 97.39 167 | 97.83 194 | 94.41 201 | 96.05 348 | 98.40 141 | 92.86 170 | 97.09 151 | 95.28 304 | 94.21 90 | 98.07 235 | 89.26 270 | 98.11 151 | 99.70 117 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 96.04 146 | 95.40 152 | 97.95 141 | 99.59 96 | 95.22 183 | 99.52 187 | 99.07 32 | 93.96 139 | 96.49 167 | 98.35 201 | 82.28 246 | 99.82 111 | 90.15 262 | 99.22 126 | 98.81 209 |
|
EPNet_dtu | | | 95.71 156 | 95.39 153 | 96.66 189 | 98.92 135 | 93.41 225 | 99.57 179 | 98.90 42 | 96.19 56 | 97.52 141 | 98.56 192 | 92.65 131 | 97.36 261 | 77.89 347 | 98.33 143 | 99.20 190 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-w/o | | | 95.71 156 | 95.38 154 | 96.68 188 | 98.49 159 | 92.28 249 | 99.84 113 | 97.50 248 | 92.12 205 | 92.06 227 | 98.79 179 | 84.69 230 | 98.67 189 | 95.29 167 | 99.66 102 | 99.09 198 |
|
3Dnovator | | 91.47 12 | 96.28 141 | 95.34 155 | 99.08 74 | 96.82 247 | 97.47 102 | 99.45 199 | 98.81 50 | 95.52 77 | 89.39 263 | 99.00 153 | 81.97 248 | 99.95 65 | 97.27 135 | 99.83 85 | 99.84 101 |
|
Effi-MVS+-dtu | | | 94.53 187 | 95.30 156 | 92.22 309 | 97.77 198 | 82.54 349 | 99.59 176 | 97.06 288 | 94.92 92 | 95.29 191 | 95.37 297 | 85.81 220 | 97.89 245 | 94.80 179 | 97.07 174 | 96.23 238 |
|
3Dnovator+ | | 91.53 11 | 96.31 138 | 95.24 157 | 99.52 29 | 96.88 244 | 98.64 53 | 99.72 153 | 98.24 174 | 95.27 83 | 88.42 287 | 98.98 156 | 82.76 244 | 99.94 73 | 97.10 141 | 99.83 85 | 99.96 74 |
|
MVSTER | | | 95.53 162 | 95.22 158 | 96.45 194 | 98.56 153 | 97.72 85 | 99.91 76 | 97.67 226 | 92.38 198 | 91.39 231 | 97.14 232 | 97.24 18 | 97.30 268 | 94.80 179 | 87.85 262 | 94.34 264 |
|
1112_ss | | | 96.01 147 | 95.20 159 | 98.42 123 | 97.80 196 | 96.41 138 | 99.65 166 | 96.66 324 | 92.71 180 | 92.88 220 | 99.40 124 | 92.16 144 | 99.30 160 | 91.92 231 | 93.66 222 | 99.55 148 |
|
tpm2 | | | 95.47 164 | 95.18 160 | 96.35 201 | 96.91 240 | 91.70 267 | 96.96 335 | 97.93 207 | 88.04 288 | 98.44 116 | 95.40 293 | 93.32 111 | 97.97 239 | 94.00 197 | 95.61 203 | 99.38 171 |
|
Vis-MVSNet |  | | 95.72 154 | 95.15 161 | 97.45 162 | 97.62 210 | 94.28 203 | 99.28 222 | 98.24 174 | 94.27 124 | 96.84 157 | 98.94 167 | 79.39 275 | 98.76 182 | 93.25 213 | 98.49 139 | 99.30 183 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
LS3D | | | 95.84 152 | 95.11 162 | 98.02 140 | 99.85 60 | 95.10 186 | 98.74 279 | 98.50 104 | 87.22 298 | 93.66 210 | 99.86 31 | 87.45 205 | 99.95 65 | 90.94 247 | 99.81 93 | 99.02 200 |
|
FA-MVS(test-final) | | | 95.86 150 | 95.09 163 | 98.15 135 | 97.74 201 | 95.62 170 | 96.31 343 | 98.17 183 | 91.42 228 | 96.26 174 | 96.13 268 | 90.56 171 | 99.47 157 | 92.18 228 | 97.07 174 | 99.35 176 |
|
ECVR-MVS |  | | 95.66 159 | 95.05 164 | 97.51 160 | 98.66 151 | 93.71 216 | 98.85 271 | 98.45 110 | 94.93 90 | 96.86 156 | 98.96 160 | 75.22 308 | 99.20 163 | 95.34 165 | 98.15 148 | 99.64 128 |
|
mvs_anonymous | | | 95.65 160 | 95.03 165 | 97.53 158 | 98.19 175 | 95.74 164 | 99.33 213 | 97.49 249 | 90.87 240 | 90.47 241 | 97.10 234 | 88.23 199 | 97.16 276 | 95.92 160 | 97.66 162 | 99.68 120 |
|
FE-MVS | | | 95.70 158 | 95.01 166 | 97.79 147 | 98.21 173 | 94.57 196 | 95.03 354 | 98.69 57 | 88.90 272 | 97.50 143 | 96.19 265 | 92.60 133 | 99.49 155 | 89.99 264 | 97.94 158 | 99.31 181 |
|
test1111 | | | 95.57 161 | 94.98 167 | 97.37 168 | 98.56 153 | 93.37 227 | 98.86 269 | 98.45 110 | 94.95 89 | 96.63 162 | 98.95 165 | 75.21 309 | 99.11 168 | 95.02 171 | 98.14 150 | 99.64 128 |
|
CVMVSNet | | | 94.68 182 | 94.94 168 | 93.89 280 | 96.80 248 | 86.92 328 | 99.06 243 | 98.98 35 | 94.45 110 | 94.23 204 | 99.02 149 | 85.60 222 | 95.31 342 | 90.91 248 | 95.39 207 | 99.43 167 |
|
baseline1 | | | 95.78 153 | 94.86 169 | 98.54 113 | 98.47 160 | 98.07 73 | 99.06 243 | 97.99 200 | 92.68 183 | 94.13 205 | 98.62 187 | 93.28 114 | 98.69 188 | 93.79 205 | 85.76 277 | 98.84 207 |
|
BH-untuned | | | 95.18 168 | 94.83 170 | 96.22 204 | 98.36 165 | 91.22 275 | 99.80 127 | 97.32 265 | 90.91 239 | 91.08 234 | 98.67 183 | 83.51 239 | 98.54 195 | 94.23 195 | 99.61 107 | 98.92 202 |
|
Test_1112_low_res | | | 95.72 154 | 94.83 170 | 98.42 123 | 97.79 197 | 96.41 138 | 99.65 166 | 96.65 325 | 92.70 181 | 92.86 221 | 96.13 268 | 92.15 145 | 99.30 160 | 91.88 232 | 93.64 223 | 99.55 148 |
|
XVG-OURS | | | 94.82 175 | 94.74 172 | 95.06 231 | 98.00 184 | 89.19 306 | 99.08 238 | 97.55 239 | 94.10 129 | 94.71 196 | 99.62 107 | 80.51 267 | 99.74 131 | 96.04 158 | 93.06 229 | 96.25 236 |
|
XVG-OURS-SEG-HR | | | 94.79 176 | 94.70 173 | 95.08 230 | 98.05 182 | 89.19 306 | 99.08 238 | 97.54 241 | 93.66 152 | 94.87 195 | 99.58 110 | 78.78 280 | 99.79 115 | 97.31 134 | 93.40 225 | 96.25 236 |
|
UGNet | | | 95.33 167 | 94.57 174 | 97.62 157 | 98.55 155 | 94.85 190 | 98.67 286 | 99.32 25 | 95.75 70 | 96.80 159 | 96.27 263 | 72.18 322 | 99.96 58 | 94.58 187 | 99.05 130 | 98.04 221 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
HQP-MVS | | | 94.61 184 | 94.50 175 | 94.92 236 | 95.78 268 | 91.85 259 | 99.87 94 | 97.89 211 | 96.82 33 | 93.37 212 | 98.65 184 | 80.65 265 | 98.39 208 | 97.92 118 | 89.60 233 | 94.53 242 |
|
dp | | | 95.05 171 | 94.43 176 | 96.91 180 | 97.99 185 | 92.73 239 | 96.29 344 | 97.98 202 | 89.70 259 | 95.93 180 | 94.67 322 | 93.83 101 | 98.45 201 | 86.91 301 | 96.53 184 | 99.54 151 |
|
h-mvs33 | | | 94.92 174 | 94.36 177 | 96.59 191 | 98.85 142 | 91.29 274 | 98.93 260 | 98.94 37 | 95.90 61 | 98.77 100 | 98.42 200 | 90.89 167 | 99.77 121 | 97.80 120 | 70.76 357 | 98.72 212 |
|
HQP_MVS | | | 94.49 188 | 94.36 177 | 94.87 237 | 95.71 277 | 91.74 263 | 99.84 113 | 97.87 213 | 96.38 49 | 93.01 216 | 98.59 188 | 80.47 269 | 98.37 214 | 97.79 123 | 89.55 236 | 94.52 244 |
|
BH-RMVSNet | | | 95.18 168 | 94.31 179 | 97.80 145 | 98.17 177 | 95.23 182 | 99.76 139 | 97.53 243 | 92.52 194 | 94.27 203 | 99.25 138 | 76.84 292 | 98.80 178 | 90.89 249 | 99.54 111 | 99.35 176 |
|
Fast-Effi-MVS+ | | | 95.02 172 | 94.19 180 | 97.52 159 | 97.88 190 | 94.55 197 | 99.97 18 | 97.08 286 | 88.85 274 | 94.47 200 | 97.96 214 | 84.59 231 | 98.41 204 | 89.84 266 | 97.10 173 | 99.59 139 |
|
QAPM | | | 95.40 165 | 94.17 181 | 99.10 72 | 96.92 239 | 97.71 86 | 99.40 202 | 98.68 59 | 89.31 261 | 88.94 275 | 98.89 170 | 82.48 245 | 99.96 58 | 93.12 219 | 99.83 85 | 99.62 133 |
|
PCF-MVS | | 94.20 5 | 95.18 168 | 94.10 182 | 98.43 122 | 98.55 155 | 95.99 156 | 97.91 318 | 97.31 266 | 90.35 249 | 89.48 262 | 99.22 140 | 85.19 227 | 99.89 85 | 90.40 259 | 98.47 140 | 99.41 169 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
hse-mvs2 | | | 94.38 190 | 94.08 183 | 95.31 224 | 98.27 170 | 90.02 297 | 99.29 221 | 98.56 80 | 95.90 61 | 98.77 100 | 98.00 209 | 90.89 167 | 98.26 226 | 97.80 120 | 69.20 363 | 97.64 228 |
|
ADS-MVSNet | | | 94.79 176 | 94.02 184 | 97.11 177 | 97.87 191 | 93.79 213 | 94.24 355 | 98.16 187 | 90.07 253 | 96.43 169 | 94.48 327 | 90.29 175 | 98.19 229 | 87.44 289 | 97.23 170 | 99.36 174 |
|
miper_enhance_ethall | | | 94.36 193 | 93.98 185 | 95.49 216 | 98.68 150 | 95.24 181 | 99.73 150 | 97.29 267 | 93.28 162 | 89.86 251 | 95.97 272 | 94.37 79 | 97.05 285 | 92.20 227 | 84.45 289 | 94.19 273 |
|
IB-MVS | | 92.85 6 | 94.99 173 | 93.94 186 | 98.16 132 | 97.72 206 | 95.69 168 | 99.99 3 | 98.81 50 | 94.28 122 | 92.70 222 | 96.90 242 | 95.08 54 | 99.17 166 | 96.07 157 | 73.88 352 | 99.60 138 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CLD-MVS | | | 94.06 198 | 93.90 187 | 94.55 251 | 96.02 263 | 90.69 281 | 99.98 9 | 97.72 222 | 96.62 43 | 91.05 236 | 98.85 178 | 77.21 288 | 98.47 197 | 98.11 107 | 89.51 238 | 94.48 246 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ADS-MVSNet2 | | | 93.80 203 | 93.88 188 | 93.55 291 | 97.87 191 | 85.94 333 | 94.24 355 | 96.84 313 | 90.07 253 | 96.43 169 | 94.48 327 | 90.29 175 | 95.37 340 | 87.44 289 | 97.23 170 | 99.36 174 |
|
Fast-Effi-MVS+-dtu | | | 93.72 207 | 93.86 189 | 93.29 294 | 97.06 233 | 86.16 331 | 99.80 127 | 96.83 314 | 92.66 184 | 92.58 224 | 97.83 216 | 81.39 255 | 97.67 252 | 89.75 267 | 96.87 180 | 96.05 240 |
|
SCA | | | 94.69 180 | 93.81 190 | 97.33 172 | 97.10 231 | 94.44 198 | 98.86 269 | 98.32 161 | 93.30 161 | 96.17 177 | 95.59 283 | 76.48 296 | 97.95 242 | 91.06 242 | 97.43 165 | 99.59 139 |
|
mvsmamba | | | 94.10 196 | 93.72 191 | 95.25 226 | 93.57 312 | 94.13 205 | 99.67 161 | 96.45 332 | 93.63 154 | 91.34 233 | 97.77 217 | 86.29 217 | 97.22 274 | 96.65 152 | 88.10 260 | 94.40 255 |
|
test0.0.03 1 | | | 93.86 199 | 93.61 192 | 94.64 246 | 95.02 290 | 92.18 252 | 99.93 68 | 98.58 76 | 94.07 131 | 87.96 291 | 98.50 193 | 93.90 98 | 94.96 346 | 81.33 333 | 93.17 227 | 96.78 233 |
|
cascas | | | 94.64 183 | 93.61 192 | 97.74 153 | 97.82 195 | 96.26 144 | 99.96 25 | 97.78 221 | 85.76 317 | 94.00 206 | 97.54 221 | 76.95 291 | 99.21 162 | 97.23 137 | 95.43 206 | 97.76 227 |
|
TAPA-MVS | | 92.12 8 | 94.42 189 | 93.60 194 | 96.90 181 | 99.33 113 | 91.78 262 | 99.78 131 | 98.00 199 | 89.89 257 | 94.52 198 | 99.47 118 | 91.97 149 | 99.18 165 | 69.90 363 | 99.52 112 | 99.73 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
OpenMVS |  | 90.15 15 | 94.77 178 | 93.59 195 | 98.33 127 | 96.07 261 | 97.48 101 | 99.56 181 | 98.57 78 | 90.46 246 | 86.51 310 | 98.95 165 | 78.57 282 | 99.94 73 | 93.86 199 | 99.74 96 | 97.57 230 |
|
tpmvs | | | 94.28 195 | 93.57 196 | 96.40 198 | 98.55 155 | 91.50 272 | 95.70 353 | 98.55 86 | 87.47 293 | 92.15 226 | 94.26 331 | 91.42 154 | 98.95 174 | 88.15 282 | 95.85 197 | 98.76 211 |
|
LFMVS | | | 94.75 179 | 93.56 197 | 98.30 128 | 99.03 123 | 95.70 167 | 98.74 279 | 97.98 202 | 87.81 291 | 98.47 115 | 99.39 126 | 67.43 342 | 99.53 147 | 98.01 112 | 95.20 210 | 99.67 122 |
|
TR-MVS | | | 94.54 185 | 93.56 197 | 97.49 161 | 97.96 186 | 94.34 202 | 98.71 282 | 97.51 247 | 90.30 251 | 94.51 199 | 98.69 182 | 75.56 303 | 98.77 181 | 92.82 222 | 95.99 193 | 99.35 176 |
|
GeoE | | | 94.36 193 | 93.48 199 | 96.99 178 | 97.29 227 | 93.54 220 | 99.96 25 | 96.72 322 | 88.35 284 | 93.43 211 | 98.94 167 | 82.05 247 | 98.05 236 | 88.12 284 | 96.48 186 | 99.37 173 |
|
FIs | | | 94.10 196 | 93.43 200 | 96.11 206 | 94.70 294 | 96.82 126 | 99.58 177 | 98.93 41 | 92.54 192 | 89.34 265 | 97.31 228 | 87.62 203 | 97.10 282 | 94.22 196 | 86.58 273 | 94.40 255 |
|
ab-mvs | | | 94.69 180 | 93.42 201 | 98.51 116 | 98.07 181 | 96.26 144 | 96.49 340 | 98.68 59 | 90.31 250 | 94.54 197 | 97.00 240 | 76.30 298 | 99.71 135 | 95.98 159 | 93.38 226 | 99.56 147 |
|
DP-MVS | | | 94.54 185 | 93.42 201 | 97.91 144 | 99.46 109 | 94.04 207 | 98.93 260 | 97.48 250 | 81.15 349 | 90.04 246 | 99.55 112 | 87.02 210 | 99.95 65 | 88.97 272 | 98.11 151 | 99.73 114 |
|
tpm | | | 93.70 208 | 93.41 203 | 94.58 249 | 95.36 285 | 87.41 325 | 97.01 333 | 96.90 308 | 90.85 241 | 96.72 161 | 94.14 332 | 90.40 173 | 96.84 300 | 90.75 252 | 88.54 252 | 99.51 157 |
|
EI-MVSNet | | | 93.73 206 | 93.40 204 | 94.74 242 | 96.80 248 | 92.69 240 | 99.06 243 | 97.67 226 | 88.96 269 | 91.39 231 | 99.02 149 | 88.75 195 | 97.30 268 | 91.07 241 | 87.85 262 | 94.22 270 |
|
MSDG | | | 94.37 191 | 93.36 205 | 97.40 166 | 98.88 140 | 93.95 211 | 99.37 209 | 97.38 259 | 85.75 319 | 90.80 238 | 99.17 142 | 84.11 237 | 99.88 91 | 86.35 302 | 98.43 141 | 98.36 215 |
|
PS-MVSNAJss | | | 93.64 209 | 93.31 206 | 94.61 247 | 92.11 339 | 92.19 251 | 99.12 233 | 97.38 259 | 92.51 195 | 88.45 282 | 96.99 241 | 91.20 158 | 97.29 271 | 94.36 190 | 87.71 265 | 94.36 260 |
|
ET-MVSNet_ETH3D | | | 94.37 191 | 93.28 207 | 97.64 155 | 98.30 166 | 97.99 77 | 99.99 3 | 97.61 233 | 94.35 117 | 71.57 368 | 99.45 121 | 96.23 31 | 95.34 341 | 96.91 149 | 85.14 284 | 99.59 139 |
|
cl22 | | | 93.77 204 | 93.25 208 | 95.33 223 | 99.49 106 | 94.43 199 | 99.61 174 | 98.09 193 | 90.38 247 | 89.16 272 | 95.61 281 | 90.56 171 | 97.34 263 | 91.93 230 | 84.45 289 | 94.21 272 |
|
FC-MVSNet-test | | | 93.81 202 | 93.15 209 | 95.80 213 | 94.30 301 | 96.20 149 | 99.42 201 | 98.89 43 | 92.33 200 | 89.03 274 | 97.27 230 | 87.39 206 | 96.83 301 | 93.20 214 | 86.48 274 | 94.36 260 |
|
VDD-MVS | | | 93.77 204 | 92.94 210 | 96.27 203 | 98.55 155 | 90.22 292 | 98.77 278 | 97.79 220 | 90.85 241 | 96.82 158 | 99.42 122 | 61.18 360 | 99.77 121 | 98.95 63 | 94.13 218 | 98.82 208 |
|
RRT_MVS | | | 93.14 217 | 92.92 211 | 93.78 282 | 93.31 319 | 90.04 296 | 99.66 162 | 97.69 224 | 92.53 193 | 88.91 276 | 97.76 218 | 84.36 233 | 96.93 295 | 95.10 169 | 86.99 271 | 94.37 258 |
|
GA-MVS | | | 93.83 200 | 92.84 212 | 96.80 183 | 95.73 274 | 93.57 218 | 99.88 91 | 97.24 270 | 92.57 191 | 92.92 218 | 96.66 251 | 78.73 281 | 97.67 252 | 87.75 287 | 94.06 220 | 99.17 191 |
|
OPM-MVS | | | 93.21 215 | 92.80 213 | 94.44 258 | 93.12 323 | 90.85 280 | 99.77 134 | 97.61 233 | 96.19 56 | 91.56 230 | 98.65 184 | 75.16 310 | 98.47 197 | 93.78 206 | 89.39 239 | 93.99 296 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
RPSCF | | | 91.80 249 | 92.79 214 | 88.83 336 | 98.15 178 | 69.87 372 | 98.11 312 | 96.60 327 | 83.93 335 | 94.33 202 | 99.27 134 | 79.60 274 | 99.46 158 | 91.99 229 | 93.16 228 | 97.18 232 |
|
LPG-MVS_test | | | 92.96 221 | 92.71 215 | 93.71 285 | 95.43 283 | 88.67 312 | 99.75 142 | 97.62 230 | 92.81 174 | 90.05 244 | 98.49 194 | 75.24 306 | 98.40 206 | 95.84 162 | 89.12 240 | 94.07 288 |
|
CR-MVSNet | | | 93.45 213 | 92.62 216 | 95.94 209 | 96.29 257 | 92.66 241 | 92.01 366 | 96.23 335 | 92.62 186 | 96.94 153 | 93.31 340 | 91.04 162 | 96.03 331 | 79.23 340 | 95.96 194 | 99.13 196 |
|
AUN-MVS | | | 93.28 214 | 92.60 217 | 95.34 222 | 98.29 167 | 90.09 295 | 99.31 216 | 98.56 80 | 91.80 216 | 96.35 173 | 98.00 209 | 89.38 184 | 98.28 222 | 92.46 224 | 69.22 362 | 97.64 228 |
|
miper_ehance_all_eth | | | 93.16 216 | 92.60 217 | 94.82 241 | 97.57 212 | 93.56 219 | 99.50 191 | 97.07 287 | 88.75 275 | 88.85 277 | 95.52 287 | 90.97 164 | 96.74 304 | 90.77 251 | 84.45 289 | 94.17 274 |
|
LCM-MVSNet-Re | | | 92.31 237 | 92.60 217 | 91.43 317 | 97.53 213 | 79.27 366 | 99.02 251 | 91.83 377 | 92.07 206 | 80.31 346 | 94.38 330 | 83.50 240 | 95.48 338 | 97.22 138 | 97.58 163 | 99.54 151 |
|
D2MVS | | | 92.76 225 | 92.59 220 | 93.27 295 | 95.13 286 | 89.54 305 | 99.69 156 | 99.38 22 | 92.26 201 | 87.59 295 | 94.61 324 | 85.05 229 | 97.79 247 | 91.59 235 | 88.01 261 | 92.47 341 |
|
nrg030 | | | 93.51 210 | 92.53 221 | 96.45 194 | 94.36 299 | 97.20 111 | 99.81 123 | 97.16 277 | 91.60 219 | 89.86 251 | 97.46 223 | 86.37 216 | 97.68 251 | 95.88 161 | 80.31 321 | 94.46 248 |
|
tpm cat1 | | | 93.51 210 | 92.52 222 | 96.47 192 | 97.77 198 | 91.47 273 | 96.13 346 | 98.06 196 | 80.98 350 | 92.91 219 | 93.78 335 | 89.66 180 | 98.87 175 | 87.03 297 | 96.39 187 | 99.09 198 |
|
ACMM | | 91.95 10 | 92.88 223 | 92.52 222 | 93.98 277 | 95.75 273 | 89.08 309 | 99.77 134 | 97.52 245 | 93.00 168 | 89.95 248 | 97.99 211 | 76.17 300 | 98.46 200 | 93.63 210 | 88.87 244 | 94.39 257 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 92.05 9 | 92.74 226 | 92.42 224 | 93.73 283 | 95.91 267 | 88.72 311 | 99.81 123 | 97.53 243 | 94.13 127 | 87.00 304 | 98.23 203 | 74.07 316 | 98.47 197 | 96.22 156 | 88.86 245 | 93.99 296 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_djsdf | | | 92.83 224 | 92.29 225 | 94.47 256 | 91.90 342 | 92.46 246 | 99.55 183 | 97.27 268 | 91.17 232 | 89.96 247 | 96.07 271 | 81.10 258 | 96.89 297 | 94.67 185 | 88.91 242 | 94.05 290 |
|
UniMVSNet (Re) | | | 93.07 220 | 92.13 226 | 95.88 210 | 94.84 291 | 96.24 148 | 99.88 91 | 98.98 35 | 92.49 196 | 89.25 267 | 95.40 293 | 87.09 209 | 97.14 278 | 93.13 218 | 78.16 333 | 94.26 267 |
|
UniMVSNet_NR-MVSNet | | | 92.95 222 | 92.11 227 | 95.49 216 | 94.61 296 | 95.28 179 | 99.83 119 | 99.08 31 | 91.49 222 | 89.21 269 | 96.86 245 | 87.14 208 | 96.73 305 | 93.20 214 | 77.52 338 | 94.46 248 |
|
IterMVS-LS | | | 92.69 229 | 92.11 227 | 94.43 260 | 96.80 248 | 92.74 237 | 99.45 199 | 96.89 309 | 88.98 267 | 89.65 258 | 95.38 296 | 88.77 194 | 96.34 319 | 90.98 246 | 82.04 303 | 94.22 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
X-MVStestdata | | | 93.83 200 | 92.06 229 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 62 | 98.42 133 | 96.22 54 | 99.41 63 | 41.37 387 | 94.34 80 | 99.96 58 | 98.92 66 | 99.95 55 | 99.99 24 |
|
bld_raw_dy_0_64 | | | 92.74 226 | 92.03 230 | 94.87 237 | 93.09 325 | 93.46 222 | 99.12 233 | 95.41 352 | 92.84 173 | 90.44 242 | 97.54 221 | 78.08 286 | 97.04 287 | 93.94 198 | 87.77 264 | 94.11 285 |
|
Anonymous202405211 | | | 93.10 219 | 91.99 231 | 96.40 198 | 99.10 120 | 89.65 303 | 98.88 265 | 97.93 207 | 83.71 337 | 94.00 206 | 98.75 180 | 68.79 334 | 99.88 91 | 95.08 170 | 91.71 231 | 99.68 120 |
|
eth_miper_zixun_eth | | | 92.41 235 | 91.93 232 | 93.84 281 | 97.28 228 | 90.68 282 | 98.83 272 | 96.97 300 | 88.57 280 | 89.19 271 | 95.73 278 | 89.24 189 | 96.69 307 | 89.97 265 | 81.55 306 | 94.15 280 |
|
VDDNet | | | 93.12 218 | 91.91 233 | 96.76 185 | 96.67 255 | 92.65 243 | 98.69 284 | 98.21 178 | 82.81 343 | 97.75 138 | 99.28 131 | 61.57 358 | 99.48 156 | 98.09 109 | 94.09 219 | 98.15 219 |
|
c3_l | | | 92.53 232 | 91.87 234 | 94.52 252 | 97.40 219 | 92.99 233 | 99.40 202 | 96.93 306 | 87.86 289 | 88.69 280 | 95.44 291 | 89.95 178 | 96.44 315 | 90.45 256 | 80.69 318 | 94.14 283 |
|
gg-mvs-nofinetune | | | 93.51 210 | 91.86 235 | 98.47 118 | 97.72 206 | 97.96 80 | 92.62 363 | 98.51 100 | 74.70 366 | 97.33 146 | 69.59 379 | 98.91 3 | 97.79 247 | 97.77 125 | 99.56 110 | 99.67 122 |
|
AllTest | | | 92.48 233 | 91.64 236 | 95.00 233 | 99.01 124 | 88.43 316 | 98.94 259 | 96.82 316 | 86.50 307 | 88.71 278 | 98.47 198 | 74.73 312 | 99.88 91 | 85.39 308 | 96.18 189 | 96.71 234 |
|
DIV-MVS_self_test | | | 92.32 236 | 91.60 237 | 94.47 256 | 97.31 225 | 92.74 237 | 99.58 177 | 96.75 320 | 86.99 302 | 87.64 294 | 95.54 285 | 89.55 182 | 96.50 313 | 88.58 276 | 82.44 300 | 94.17 274 |
|
cl____ | | | 92.31 237 | 91.58 238 | 94.52 252 | 97.33 224 | 92.77 235 | 99.57 179 | 96.78 319 | 86.97 303 | 87.56 296 | 95.51 288 | 89.43 183 | 96.62 309 | 88.60 275 | 82.44 300 | 94.16 279 |
|
FMVSNet3 | | | 92.69 229 | 91.58 238 | 95.99 208 | 98.29 167 | 97.42 106 | 99.26 224 | 97.62 230 | 89.80 258 | 89.68 255 | 95.32 299 | 81.62 254 | 96.27 322 | 87.01 298 | 85.65 278 | 94.29 266 |
|
VPA-MVSNet | | | 92.70 228 | 91.55 240 | 96.16 205 | 95.09 287 | 96.20 149 | 98.88 265 | 99.00 34 | 91.02 238 | 91.82 228 | 95.29 303 | 76.05 302 | 97.96 241 | 95.62 164 | 81.19 309 | 94.30 265 |
|
Patchmatch-test | | | 92.65 231 | 91.50 241 | 96.10 207 | 96.85 245 | 90.49 287 | 91.50 368 | 97.19 272 | 82.76 344 | 90.23 243 | 95.59 283 | 95.02 58 | 98.00 238 | 77.41 349 | 96.98 178 | 99.82 103 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 240 | 91.49 242 | 94.25 265 | 99.00 126 | 88.04 322 | 98.42 300 | 96.70 323 | 82.30 346 | 88.43 285 | 99.01 151 | 76.97 290 | 99.85 100 | 86.11 305 | 96.50 185 | 94.86 241 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DU-MVS | | | 92.46 234 | 91.45 243 | 95.49 216 | 94.05 304 | 95.28 179 | 99.81 123 | 98.74 54 | 92.25 202 | 89.21 269 | 96.64 253 | 81.66 252 | 96.73 305 | 93.20 214 | 77.52 338 | 94.46 248 |
|
miper_lstm_enhance | | | 91.81 246 | 91.39 244 | 93.06 301 | 97.34 222 | 89.18 308 | 99.38 207 | 96.79 318 | 86.70 306 | 87.47 298 | 95.22 305 | 90.00 177 | 95.86 335 | 88.26 280 | 81.37 308 | 94.15 280 |
|
WR-MVS | | | 92.31 237 | 91.25 245 | 95.48 219 | 94.45 298 | 95.29 178 | 99.60 175 | 98.68 59 | 90.10 252 | 88.07 290 | 96.89 243 | 80.68 264 | 96.80 303 | 93.14 217 | 79.67 325 | 94.36 260 |
|
jajsoiax | | | 91.92 244 | 91.18 246 | 94.15 267 | 91.35 348 | 90.95 278 | 99.00 252 | 97.42 255 | 92.61 187 | 87.38 300 | 97.08 235 | 72.46 321 | 97.36 261 | 94.53 188 | 88.77 246 | 94.13 284 |
|
mvs_tets | | | 91.81 246 | 91.08 247 | 94.00 275 | 91.63 346 | 90.58 285 | 98.67 286 | 97.43 253 | 92.43 197 | 87.37 301 | 97.05 238 | 71.76 323 | 97.32 267 | 94.75 182 | 88.68 248 | 94.11 285 |
|
pmmvs4 | | | 92.10 242 | 91.07 248 | 95.18 228 | 92.82 332 | 94.96 188 | 99.48 195 | 96.83 314 | 87.45 294 | 88.66 281 | 96.56 256 | 83.78 238 | 96.83 301 | 89.29 269 | 84.77 287 | 93.75 313 |
|
anonymousdsp | | | 91.79 251 | 90.92 249 | 94.41 261 | 90.76 353 | 92.93 234 | 98.93 260 | 97.17 275 | 89.08 263 | 87.46 299 | 95.30 300 | 78.43 285 | 96.92 296 | 92.38 225 | 88.73 247 | 93.39 324 |
|
XVG-ACMP-BASELINE | | | 91.22 259 | 90.75 250 | 92.63 306 | 93.73 310 | 85.61 334 | 98.52 294 | 97.44 252 | 92.77 178 | 89.90 250 | 96.85 246 | 66.64 344 | 98.39 208 | 92.29 226 | 88.61 249 | 93.89 304 |
|
test_part1 | | | 92.15 241 | 90.72 251 | 96.44 196 | 98.87 141 | 97.46 103 | 98.99 253 | 98.26 172 | 85.89 314 | 86.34 315 | 96.34 261 | 81.71 250 | 97.48 258 | 91.06 242 | 78.99 327 | 94.37 258 |
|
JIA-IIPM | | | 91.76 252 | 90.70 252 | 94.94 235 | 96.11 260 | 87.51 324 | 93.16 362 | 98.13 192 | 75.79 363 | 97.58 140 | 77.68 376 | 92.84 126 | 97.97 239 | 88.47 279 | 96.54 183 | 99.33 179 |
|
Anonymous20240529 | | | 92.10 242 | 90.65 253 | 96.47 192 | 98.82 143 | 90.61 284 | 98.72 281 | 98.67 62 | 75.54 364 | 93.90 208 | 98.58 190 | 66.23 345 | 99.90 81 | 94.70 184 | 90.67 232 | 98.90 205 |
|
TranMVSNet+NR-MVSNet | | | 91.68 253 | 90.61 254 | 94.87 237 | 93.69 311 | 93.98 210 | 99.69 156 | 98.65 63 | 91.03 237 | 88.44 283 | 96.83 249 | 80.05 272 | 96.18 325 | 90.26 261 | 76.89 346 | 94.45 253 |
|
VPNet | | | 91.81 246 | 90.46 255 | 95.85 212 | 94.74 293 | 95.54 172 | 98.98 254 | 98.59 75 | 92.14 204 | 90.77 239 | 97.44 224 | 68.73 336 | 97.54 256 | 94.89 177 | 77.89 335 | 94.46 248 |
|
XXY-MVS | | | 91.82 245 | 90.46 255 | 95.88 210 | 93.91 307 | 95.40 176 | 98.87 268 | 97.69 224 | 88.63 279 | 87.87 292 | 97.08 235 | 74.38 315 | 97.89 245 | 91.66 234 | 84.07 293 | 94.35 263 |
|
MVP-Stereo | | | 90.93 262 | 90.45 257 | 92.37 308 | 91.25 350 | 88.76 310 | 98.05 315 | 96.17 337 | 87.27 297 | 84.04 328 | 95.30 300 | 78.46 284 | 97.27 273 | 83.78 320 | 99.70 100 | 91.09 352 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
WR-MVS_H | | | 91.30 255 | 90.35 258 | 94.15 267 | 94.17 303 | 92.62 244 | 99.17 231 | 98.94 37 | 88.87 273 | 86.48 312 | 94.46 329 | 84.36 233 | 96.61 310 | 88.19 281 | 78.51 331 | 93.21 329 |
|
EU-MVSNet | | | 90.14 285 | 90.34 259 | 89.54 332 | 92.55 335 | 81.06 360 | 98.69 284 | 98.04 198 | 91.41 229 | 86.59 309 | 96.84 248 | 80.83 262 | 93.31 362 | 86.20 303 | 81.91 304 | 94.26 267 |
|
MS-PatchMatch | | | 90.65 269 | 90.30 260 | 91.71 316 | 94.22 302 | 85.50 336 | 98.24 306 | 97.70 223 | 88.67 277 | 86.42 313 | 96.37 260 | 67.82 340 | 98.03 237 | 83.62 321 | 99.62 104 | 91.60 349 |
|
PVSNet_0 | | 88.03 19 | 91.80 249 | 90.27 261 | 96.38 200 | 98.27 170 | 90.46 288 | 99.94 62 | 99.61 12 | 93.99 137 | 86.26 317 | 97.39 227 | 71.13 329 | 99.89 85 | 98.77 78 | 67.05 367 | 98.79 210 |
|
CP-MVSNet | | | 91.23 258 | 90.22 262 | 94.26 264 | 93.96 306 | 92.39 248 | 99.09 236 | 98.57 78 | 88.95 270 | 86.42 313 | 96.57 255 | 79.19 277 | 96.37 317 | 90.29 260 | 78.95 328 | 94.02 291 |
|
NR-MVSNet | | | 91.56 254 | 90.22 262 | 95.60 214 | 94.05 304 | 95.76 163 | 98.25 305 | 98.70 56 | 91.16 234 | 80.78 345 | 96.64 253 | 83.23 243 | 96.57 311 | 91.41 236 | 77.73 337 | 94.46 248 |
|
IterMVS | | | 90.91 263 | 90.17 264 | 93.12 298 | 96.78 251 | 90.42 290 | 98.89 263 | 97.05 291 | 89.03 265 | 86.49 311 | 95.42 292 | 76.59 295 | 95.02 344 | 87.22 294 | 84.09 292 | 93.93 301 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 90.85 266 | 90.16 265 | 92.93 302 | 96.72 253 | 89.96 298 | 98.89 263 | 96.99 296 | 88.95 270 | 86.63 308 | 95.67 279 | 76.48 296 | 95.00 345 | 87.04 296 | 84.04 295 | 93.84 308 |
|
V42 | | | 91.28 257 | 90.12 266 | 94.74 242 | 93.42 317 | 93.46 222 | 99.68 158 | 97.02 293 | 87.36 295 | 89.85 253 | 95.05 308 | 81.31 257 | 97.34 263 | 87.34 292 | 80.07 323 | 93.40 323 |
|
v2v482 | | | 91.30 255 | 90.07 267 | 95.01 232 | 93.13 321 | 93.79 213 | 99.77 134 | 97.02 293 | 88.05 287 | 89.25 267 | 95.37 297 | 80.73 263 | 97.15 277 | 87.28 293 | 80.04 324 | 94.09 287 |
|
v1144 | | | 91.09 260 | 89.83 268 | 94.87 237 | 93.25 320 | 93.69 217 | 99.62 173 | 96.98 298 | 86.83 305 | 89.64 259 | 94.99 313 | 80.94 260 | 97.05 285 | 85.08 311 | 81.16 310 | 93.87 306 |
|
GBi-Net | | | 90.88 264 | 89.82 269 | 94.08 270 | 97.53 213 | 91.97 254 | 98.43 297 | 96.95 301 | 87.05 299 | 89.68 255 | 94.72 318 | 71.34 326 | 96.11 326 | 87.01 298 | 85.65 278 | 94.17 274 |
|
test1 | | | 90.88 264 | 89.82 269 | 94.08 270 | 97.53 213 | 91.97 254 | 98.43 297 | 96.95 301 | 87.05 299 | 89.68 255 | 94.72 318 | 71.34 326 | 96.11 326 | 87.01 298 | 85.65 278 | 94.17 274 |
|
FMVS2_test2 | | | 89.47 294 | 89.70 271 | 88.77 339 | 94.54 297 | 75.74 367 | 99.83 119 | 94.70 364 | 94.71 100 | 91.08 234 | 96.82 250 | 54.46 367 | 97.78 249 | 92.87 221 | 88.27 257 | 92.80 336 |
|
v148 | | | 90.70 268 | 89.63 272 | 93.92 278 | 92.97 328 | 90.97 277 | 99.75 142 | 96.89 309 | 87.51 292 | 88.27 288 | 95.01 310 | 81.67 251 | 97.04 287 | 87.40 291 | 77.17 343 | 93.75 313 |
|
ACMH | | 89.72 17 | 90.64 270 | 89.63 272 | 93.66 289 | 95.64 280 | 88.64 314 | 98.55 290 | 97.45 251 | 89.03 265 | 81.62 340 | 97.61 220 | 69.75 332 | 98.41 204 | 89.37 268 | 87.62 267 | 93.92 302 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FMVSNet2 | | | 91.02 261 | 89.56 274 | 95.41 221 | 97.53 213 | 95.74 164 | 98.98 254 | 97.41 257 | 87.05 299 | 88.43 285 | 95.00 312 | 71.34 326 | 96.24 324 | 85.12 310 | 85.21 283 | 94.25 269 |
|
ACMH+ | | 89.98 16 | 90.35 277 | 89.54 275 | 92.78 305 | 95.99 264 | 86.12 332 | 98.81 274 | 97.18 274 | 89.38 260 | 83.14 333 | 97.76 218 | 68.42 338 | 98.43 202 | 89.11 271 | 86.05 276 | 93.78 312 |
|
v144192 | | | 90.79 267 | 89.52 276 | 94.59 248 | 93.11 324 | 92.77 235 | 99.56 181 | 96.99 296 | 86.38 309 | 89.82 254 | 94.95 315 | 80.50 268 | 97.10 282 | 83.98 318 | 80.41 319 | 93.90 303 |
|
PS-CasMVS | | | 90.63 271 | 89.51 277 | 93.99 276 | 93.83 308 | 91.70 267 | 98.98 254 | 98.52 93 | 88.48 281 | 86.15 318 | 96.53 257 | 75.46 304 | 96.31 320 | 88.83 273 | 78.86 330 | 93.95 299 |
|
Baseline_NR-MVSNet | | | 90.33 278 | 89.51 277 | 92.81 304 | 92.84 330 | 89.95 299 | 99.77 134 | 93.94 369 | 84.69 332 | 89.04 273 | 95.66 280 | 81.66 252 | 96.52 312 | 90.99 245 | 76.98 344 | 91.97 347 |
|
our_test_3 | | | 90.39 275 | 89.48 279 | 93.12 298 | 92.40 336 | 89.57 304 | 99.33 213 | 96.35 334 | 87.84 290 | 85.30 323 | 94.99 313 | 84.14 236 | 96.09 329 | 80.38 337 | 84.56 288 | 93.71 318 |
|
OurMVSNet-221017-0 | | | 89.81 289 | 89.48 279 | 90.83 322 | 91.64 345 | 81.21 358 | 98.17 310 | 95.38 354 | 91.48 223 | 85.65 322 | 97.31 228 | 72.66 320 | 97.29 271 | 88.15 282 | 84.83 286 | 93.97 298 |
|
v1192 | | | 90.62 272 | 89.25 281 | 94.72 244 | 93.13 321 | 93.07 230 | 99.50 191 | 97.02 293 | 86.33 310 | 89.56 261 | 95.01 310 | 79.22 276 | 97.09 284 | 82.34 328 | 81.16 310 | 94.01 293 |
|
v8 | | | 90.54 273 | 89.17 282 | 94.66 245 | 93.43 316 | 93.40 226 | 99.20 228 | 96.94 305 | 85.76 317 | 87.56 296 | 94.51 325 | 81.96 249 | 97.19 275 | 84.94 312 | 78.25 332 | 93.38 325 |
|
v1921920 | | | 90.46 274 | 89.12 283 | 94.50 254 | 92.96 329 | 92.46 246 | 99.49 193 | 96.98 298 | 86.10 312 | 89.61 260 | 95.30 300 | 78.55 283 | 97.03 290 | 82.17 329 | 80.89 317 | 94.01 293 |
|
pmmvs5 | | | 90.17 284 | 89.09 284 | 93.40 292 | 92.10 340 | 89.77 302 | 99.74 145 | 95.58 349 | 85.88 316 | 87.24 303 | 95.74 276 | 73.41 319 | 96.48 314 | 88.54 277 | 83.56 296 | 93.95 299 |
|
PEN-MVS | | | 90.19 283 | 89.06 285 | 93.57 290 | 93.06 326 | 90.90 279 | 99.06 243 | 98.47 106 | 88.11 286 | 85.91 320 | 96.30 262 | 76.67 293 | 95.94 334 | 87.07 295 | 76.91 345 | 93.89 304 |
|
LTVRE_ROB | | 88.28 18 | 90.29 280 | 89.05 286 | 94.02 273 | 95.08 288 | 90.15 294 | 97.19 328 | 97.43 253 | 84.91 330 | 83.99 329 | 97.06 237 | 74.00 317 | 98.28 222 | 84.08 316 | 87.71 265 | 93.62 319 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
USDC | | | 90.00 287 | 88.96 287 | 93.10 300 | 94.81 292 | 88.16 320 | 98.71 282 | 95.54 350 | 93.66 152 | 83.75 331 | 97.20 231 | 65.58 347 | 98.31 219 | 83.96 319 | 87.49 269 | 92.85 335 |
|
LF4IMVS | | | 89.25 299 | 88.85 288 | 90.45 326 | 92.81 333 | 81.19 359 | 98.12 311 | 94.79 361 | 91.44 225 | 86.29 316 | 97.11 233 | 65.30 350 | 98.11 232 | 88.53 278 | 85.25 282 | 92.07 344 |
|
v10 | | | 90.25 281 | 88.82 289 | 94.57 250 | 93.53 314 | 93.43 224 | 99.08 238 | 96.87 311 | 85.00 327 | 87.34 302 | 94.51 325 | 80.93 261 | 97.02 292 | 82.85 325 | 79.23 326 | 93.26 327 |
|
v1240 | | | 90.20 282 | 88.79 290 | 94.44 258 | 93.05 327 | 92.27 250 | 99.38 207 | 96.92 307 | 85.89 314 | 89.36 264 | 94.87 317 | 77.89 287 | 97.03 290 | 80.66 336 | 81.08 313 | 94.01 293 |
|
PatchT | | | 90.38 276 | 88.75 291 | 95.25 226 | 95.99 264 | 90.16 293 | 91.22 370 | 97.54 241 | 76.80 359 | 97.26 147 | 86.01 370 | 91.88 150 | 96.07 330 | 66.16 370 | 95.91 196 | 99.51 157 |
|
MIMVSNet | | | 90.30 279 | 88.67 292 | 95.17 229 | 96.45 256 | 91.64 269 | 92.39 364 | 97.15 278 | 85.99 313 | 90.50 240 | 93.19 342 | 66.95 343 | 94.86 348 | 82.01 330 | 93.43 224 | 99.01 201 |
|
UniMVSNet_ETH3D | | | 90.06 286 | 88.58 293 | 94.49 255 | 94.67 295 | 88.09 321 | 97.81 320 | 97.57 238 | 83.91 336 | 88.44 283 | 97.41 225 | 57.44 364 | 97.62 254 | 91.41 236 | 88.59 251 | 97.77 226 |
|
Patchmtry | | | 89.70 291 | 88.49 294 | 93.33 293 | 96.24 259 | 89.94 301 | 91.37 369 | 96.23 335 | 78.22 357 | 87.69 293 | 93.31 340 | 91.04 162 | 96.03 331 | 80.18 339 | 82.10 302 | 94.02 291 |
|
Anonymous20231211 | | | 89.86 288 | 88.44 295 | 94.13 269 | 98.93 133 | 90.68 282 | 98.54 292 | 98.26 172 | 76.28 360 | 86.73 306 | 95.54 285 | 70.60 330 | 97.56 255 | 90.82 250 | 80.27 322 | 94.15 280 |
|
ppachtmachnet_test | | | 89.58 293 | 88.35 296 | 93.25 296 | 92.40 336 | 90.44 289 | 99.33 213 | 96.73 321 | 85.49 323 | 85.90 321 | 95.77 275 | 81.09 259 | 96.00 333 | 76.00 355 | 82.49 299 | 93.30 326 |
|
MVS_0304 | | | 89.28 298 | 88.31 297 | 92.21 310 | 97.05 234 | 86.53 330 | 97.76 321 | 99.57 13 | 85.58 322 | 93.86 209 | 92.71 344 | 51.04 372 | 96.30 321 | 84.49 314 | 92.72 230 | 93.79 311 |
|
v7n | | | 89.65 292 | 88.29 298 | 93.72 284 | 92.22 338 | 90.56 286 | 99.07 242 | 97.10 283 | 85.42 325 | 86.73 306 | 94.72 318 | 80.06 271 | 97.13 279 | 81.14 334 | 78.12 334 | 93.49 321 |
|
DTE-MVSNet | | | 89.40 295 | 88.24 299 | 92.88 303 | 92.66 334 | 89.95 299 | 99.10 235 | 98.22 177 | 87.29 296 | 85.12 325 | 96.22 264 | 76.27 299 | 95.30 343 | 83.56 322 | 75.74 349 | 93.41 322 |
|
DSMNet-mixed | | | 88.28 304 | 88.24 299 | 88.42 341 | 89.64 360 | 75.38 369 | 98.06 314 | 89.86 380 | 85.59 321 | 88.20 289 | 92.14 351 | 76.15 301 | 91.95 367 | 78.46 345 | 96.05 192 | 97.92 222 |
|
testgi | | | 89.01 300 | 88.04 301 | 91.90 314 | 93.49 315 | 84.89 341 | 99.73 150 | 95.66 347 | 93.89 145 | 85.14 324 | 98.17 204 | 59.68 361 | 94.66 350 | 77.73 348 | 88.88 243 | 96.16 239 |
|
SixPastTwentyTwo | | | 88.73 301 | 88.01 302 | 90.88 320 | 91.85 343 | 82.24 351 | 98.22 308 | 95.18 359 | 88.97 268 | 82.26 336 | 96.89 243 | 71.75 324 | 96.67 308 | 84.00 317 | 82.98 297 | 93.72 317 |
|
pm-mvs1 | | | 89.36 296 | 87.81 303 | 94.01 274 | 93.40 318 | 91.93 257 | 98.62 289 | 96.48 331 | 86.25 311 | 83.86 330 | 96.14 267 | 73.68 318 | 97.04 287 | 86.16 304 | 75.73 350 | 93.04 332 |
|
tfpnnormal | | | 89.29 297 | 87.61 304 | 94.34 263 | 94.35 300 | 94.13 205 | 98.95 258 | 98.94 37 | 83.94 334 | 84.47 327 | 95.51 288 | 74.84 311 | 97.39 260 | 77.05 352 | 80.41 319 | 91.48 351 |
|
FMVSNet5 | | | 88.32 303 | 87.47 305 | 90.88 320 | 96.90 243 | 88.39 318 | 97.28 326 | 95.68 346 | 82.60 345 | 84.67 326 | 92.40 349 | 79.83 273 | 91.16 369 | 76.39 354 | 81.51 307 | 93.09 330 |
|
RPMNet | | | 89.76 290 | 87.28 306 | 97.19 174 | 96.29 257 | 92.66 241 | 92.01 366 | 98.31 163 | 70.19 371 | 96.94 153 | 85.87 371 | 87.25 207 | 99.78 117 | 62.69 373 | 95.96 194 | 99.13 196 |
|
K. test v3 | | | 88.05 305 | 87.24 307 | 90.47 325 | 91.82 344 | 82.23 352 | 98.96 257 | 97.42 255 | 89.05 264 | 76.93 358 | 95.60 282 | 68.49 337 | 95.42 339 | 85.87 307 | 81.01 315 | 93.75 313 |
|
FMVSNet1 | | | 88.50 302 | 86.64 308 | 94.08 270 | 95.62 282 | 91.97 254 | 98.43 297 | 96.95 301 | 83.00 341 | 86.08 319 | 94.72 318 | 59.09 362 | 96.11 326 | 81.82 332 | 84.07 293 | 94.17 274 |
|
TinyColmap | | | 87.87 308 | 86.51 309 | 91.94 313 | 95.05 289 | 85.57 335 | 97.65 322 | 94.08 367 | 84.40 333 | 81.82 339 | 96.85 246 | 62.14 357 | 98.33 217 | 80.25 338 | 86.37 275 | 91.91 348 |
|
KD-MVS_2432*1600 | | | 88.00 306 | 86.10 310 | 93.70 287 | 96.91 240 | 94.04 207 | 97.17 329 | 97.12 281 | 84.93 328 | 81.96 337 | 92.41 347 | 92.48 137 | 94.51 351 | 79.23 340 | 52.68 377 | 92.56 338 |
|
miper_refine_blended | | | 88.00 306 | 86.10 310 | 93.70 287 | 96.91 240 | 94.04 207 | 97.17 329 | 97.12 281 | 84.93 328 | 81.96 337 | 92.41 347 | 92.48 137 | 94.51 351 | 79.23 340 | 52.68 377 | 92.56 338 |
|
Patchmatch-RL test | | | 86.90 310 | 85.98 312 | 89.67 331 | 84.45 370 | 75.59 368 | 89.71 373 | 92.43 374 | 86.89 304 | 77.83 356 | 90.94 355 | 94.22 87 | 93.63 359 | 87.75 287 | 69.61 359 | 99.79 106 |
|
Anonymous20231206 | | | 86.32 311 | 85.42 313 | 89.02 335 | 89.11 362 | 80.53 364 | 99.05 247 | 95.28 355 | 85.43 324 | 82.82 334 | 93.92 333 | 74.40 314 | 93.44 361 | 66.99 368 | 81.83 305 | 93.08 331 |
|
TransMVSNet (Re) | | | 87.25 309 | 85.28 314 | 93.16 297 | 93.56 313 | 91.03 276 | 98.54 292 | 94.05 368 | 83.69 338 | 81.09 343 | 96.16 266 | 75.32 305 | 96.40 316 | 76.69 353 | 68.41 364 | 92.06 345 |
|
CMPMVS |  | 61.59 21 | 84.75 321 | 85.14 315 | 83.57 350 | 90.32 356 | 62.54 377 | 96.98 334 | 97.59 237 | 74.33 367 | 69.95 370 | 96.66 251 | 64.17 352 | 98.32 218 | 87.88 286 | 88.41 254 | 89.84 362 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 84.72 322 | 83.99 316 | 86.91 344 | 88.19 365 | 80.62 363 | 98.88 265 | 95.94 341 | 88.36 283 | 78.87 351 | 94.62 323 | 68.75 335 | 89.11 373 | 66.52 369 | 75.82 348 | 91.00 353 |
|
UnsupCasMVSNet_eth | | | 85.52 315 | 83.99 316 | 90.10 328 | 89.36 361 | 83.51 345 | 96.65 338 | 97.99 200 | 89.14 262 | 75.89 362 | 93.83 334 | 63.25 355 | 93.92 355 | 81.92 331 | 67.90 366 | 92.88 334 |
|
test_0402 | | | 85.58 314 | 83.94 318 | 90.50 324 | 93.81 309 | 85.04 339 | 98.55 290 | 95.20 358 | 76.01 361 | 79.72 350 | 95.13 306 | 64.15 353 | 96.26 323 | 66.04 371 | 86.88 272 | 90.21 360 |
|
pmmvs6 | | | 85.69 313 | 83.84 319 | 91.26 319 | 90.00 359 | 84.41 343 | 97.82 319 | 96.15 338 | 75.86 362 | 81.29 342 | 95.39 295 | 61.21 359 | 96.87 299 | 83.52 323 | 73.29 353 | 92.50 340 |
|
Anonymous20240521 | | | 85.15 319 | 83.81 320 | 89.16 334 | 88.32 363 | 82.69 347 | 98.80 276 | 95.74 344 | 79.72 353 | 81.53 341 | 90.99 354 | 65.38 349 | 94.16 353 | 72.69 359 | 81.11 312 | 90.63 357 |
|
EG-PatchMatch MVS | | | 85.35 318 | 83.81 320 | 89.99 330 | 90.39 355 | 81.89 354 | 98.21 309 | 96.09 339 | 81.78 348 | 74.73 364 | 93.72 336 | 51.56 371 | 97.12 281 | 79.16 343 | 88.61 249 | 90.96 354 |
|
YYNet1 | | | 85.50 317 | 83.33 322 | 92.00 312 | 90.89 352 | 88.38 319 | 99.22 227 | 96.55 328 | 79.60 355 | 57.26 377 | 92.72 343 | 79.09 279 | 93.78 358 | 77.25 350 | 77.37 341 | 93.84 308 |
|
MDA-MVSNet_test_wron | | | 85.51 316 | 83.32 323 | 92.10 311 | 90.96 351 | 88.58 315 | 99.20 228 | 96.52 329 | 79.70 354 | 57.12 378 | 92.69 345 | 79.11 278 | 93.86 357 | 77.10 351 | 77.46 340 | 93.86 307 |
|
MVS-HIRNet | | | 86.22 312 | 83.19 324 | 95.31 224 | 96.71 254 | 90.29 291 | 92.12 365 | 97.33 264 | 62.85 372 | 86.82 305 | 70.37 378 | 69.37 333 | 97.49 257 | 75.12 356 | 97.99 157 | 98.15 219 |
|
CL-MVSNet_self_test | | | 84.50 323 | 83.15 325 | 88.53 340 | 86.00 368 | 81.79 355 | 98.82 273 | 97.35 261 | 85.12 326 | 83.62 332 | 90.91 356 | 76.66 294 | 91.40 368 | 69.53 364 | 60.36 374 | 92.40 342 |
|
new_pmnet | | | 84.49 324 | 82.92 326 | 89.21 333 | 90.03 358 | 82.60 348 | 96.89 337 | 95.62 348 | 80.59 351 | 75.77 363 | 89.17 358 | 65.04 351 | 94.79 349 | 72.12 360 | 81.02 314 | 90.23 359 |
|
TDRefinement | | | 84.76 320 | 82.56 327 | 91.38 318 | 74.58 381 | 84.80 342 | 97.36 325 | 94.56 365 | 84.73 331 | 80.21 347 | 96.12 270 | 63.56 354 | 98.39 208 | 87.92 285 | 63.97 370 | 90.95 355 |
|
KD-MVS_self_test | | | 83.59 328 | 82.06 328 | 88.20 342 | 86.93 366 | 80.70 362 | 97.21 327 | 96.38 333 | 82.87 342 | 82.49 335 | 88.97 359 | 67.63 341 | 92.32 365 | 73.75 358 | 62.30 373 | 91.58 350 |
|
pmmvs-eth3d | | | 84.03 326 | 81.97 329 | 90.20 327 | 84.15 371 | 87.09 327 | 98.10 313 | 94.73 363 | 83.05 340 | 74.10 366 | 87.77 365 | 65.56 348 | 94.01 354 | 81.08 335 | 69.24 361 | 89.49 364 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 327 | 81.68 330 | 90.03 329 | 88.30 364 | 82.82 346 | 98.46 295 | 95.22 357 | 73.92 368 | 76.00 361 | 91.29 353 | 55.00 366 | 96.94 294 | 68.40 366 | 88.51 253 | 90.34 358 |
|
MDA-MVSNet-bldmvs | | | 84.09 325 | 81.52 331 | 91.81 315 | 91.32 349 | 88.00 323 | 98.67 286 | 95.92 342 | 80.22 352 | 55.60 379 | 93.32 339 | 68.29 339 | 93.60 360 | 73.76 357 | 76.61 347 | 93.82 310 |
|
mvsany_test | | | 82.12 330 | 81.14 332 | 85.06 348 | 81.87 375 | 70.41 371 | 97.09 331 | 92.14 375 | 91.27 231 | 77.84 355 | 88.73 360 | 39.31 375 | 95.49 337 | 90.75 252 | 71.24 356 | 89.29 366 |
|
N_pmnet | | | 80.06 335 | 80.78 333 | 77.89 355 | 91.94 341 | 45.28 388 | 98.80 276 | 56.82 391 | 78.10 358 | 80.08 348 | 93.33 338 | 77.03 289 | 95.76 336 | 68.14 367 | 82.81 298 | 92.64 337 |
|
MIMVSNet1 | | | 82.58 329 | 80.51 334 | 88.78 337 | 86.68 367 | 84.20 344 | 96.65 338 | 95.41 352 | 78.75 356 | 78.59 353 | 92.44 346 | 51.88 370 | 89.76 372 | 65.26 372 | 78.95 328 | 92.38 343 |
|
FMVS2 | | | 79.99 336 | 80.17 335 | 79.45 354 | 84.02 372 | 62.83 375 | 99.05 247 | 93.49 372 | 88.29 285 | 80.06 349 | 86.65 368 | 28.09 380 | 88.00 374 | 88.63 274 | 73.27 354 | 87.54 370 |
|
test_method | | | 80.79 332 | 79.70 336 | 84.08 349 | 92.83 331 | 67.06 374 | 99.51 189 | 95.42 351 | 54.34 376 | 81.07 344 | 93.53 337 | 44.48 374 | 92.22 366 | 78.90 344 | 77.23 342 | 92.94 333 |
|
new-patchmatchnet | | | 81.19 331 | 79.34 337 | 86.76 345 | 82.86 374 | 80.36 365 | 97.92 317 | 95.27 356 | 82.09 347 | 72.02 367 | 86.87 367 | 62.81 356 | 90.74 371 | 71.10 361 | 63.08 371 | 89.19 367 |
|
PM-MVS | | | 80.47 333 | 78.88 338 | 85.26 347 | 83.79 373 | 72.22 370 | 95.89 351 | 91.08 378 | 85.71 320 | 76.56 360 | 88.30 361 | 36.64 376 | 93.90 356 | 82.39 327 | 69.57 360 | 89.66 363 |
|
pmmvs3 | | | 80.27 334 | 77.77 339 | 87.76 343 | 80.32 377 | 82.43 350 | 98.23 307 | 91.97 376 | 72.74 369 | 78.75 352 | 87.97 364 | 57.30 365 | 90.99 370 | 70.31 362 | 62.37 372 | 89.87 361 |
|
FMVS | | | 78.40 338 | 77.59 340 | 80.81 353 | 80.82 376 | 62.48 378 | 96.96 335 | 93.08 373 | 83.44 339 | 74.57 365 | 84.57 372 | 27.95 381 | 92.63 364 | 84.15 315 | 72.79 355 | 87.32 371 |
|
UnsupCasMVSNet_bld | | | 79.97 337 | 77.03 341 | 88.78 337 | 85.62 369 | 81.98 353 | 93.66 360 | 97.35 261 | 75.51 365 | 70.79 369 | 83.05 373 | 48.70 373 | 94.91 347 | 78.31 346 | 60.29 375 | 89.46 365 |
|
FPMVS | | | 68.72 340 | 68.72 342 | 68.71 362 | 65.95 385 | 44.27 390 | 95.97 350 | 94.74 362 | 51.13 377 | 53.26 380 | 90.50 357 | 25.11 383 | 83.00 380 | 60.80 374 | 80.97 316 | 78.87 376 |
|
FMVS1 | | | 68.38 341 | 66.92 343 | 72.78 359 | 78.80 378 | 50.36 384 | 90.95 371 | 87.35 385 | 55.47 374 | 58.95 374 | 88.14 362 | 20.64 385 | 87.60 375 | 57.28 377 | 64.69 368 | 80.39 374 |
|
APD_test | | | 68.38 341 | 66.92 343 | 72.78 359 | 78.80 378 | 50.36 384 | 90.95 371 | 87.35 385 | 55.47 374 | 58.95 374 | 88.14 362 | 20.64 385 | 87.60 375 | 57.28 377 | 64.69 368 | 80.39 374 |
|
Gipuma |  | | 66.95 345 | 65.00 345 | 72.79 358 | 91.52 347 | 67.96 373 | 66.16 380 | 95.15 360 | 47.89 378 | 58.54 376 | 67.99 380 | 29.74 378 | 87.54 377 | 50.20 380 | 77.83 336 | 62.87 380 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet | | | 67.77 343 | 64.73 346 | 76.87 356 | 62.95 387 | 56.25 382 | 89.37 374 | 93.74 371 | 44.53 379 | 61.99 372 | 80.74 374 | 20.42 387 | 86.53 378 | 69.37 365 | 59.50 376 | 87.84 368 |
|
PMMVS2 | | | 67.15 344 | 64.15 347 | 76.14 357 | 70.56 384 | 62.07 379 | 93.89 358 | 87.52 384 | 58.09 373 | 60.02 373 | 78.32 375 | 22.38 384 | 84.54 379 | 59.56 375 | 47.03 379 | 81.80 373 |
|
EGC-MVSNET | | | 69.38 339 | 63.76 348 | 86.26 346 | 90.32 356 | 81.66 357 | 96.24 345 | 93.85 370 | 0.99 388 | 3.22 389 | 92.33 350 | 52.44 369 | 92.92 363 | 59.53 376 | 84.90 285 | 84.21 372 |
|
tmp_tt | | | 65.23 346 | 62.94 349 | 72.13 361 | 44.90 390 | 50.03 386 | 81.05 377 | 89.42 383 | 38.45 380 | 48.51 382 | 99.90 19 | 54.09 368 | 78.70 382 | 91.84 233 | 18.26 384 | 87.64 369 |
|
ANet_high | | | 56.10 347 | 52.24 350 | 67.66 363 | 49.27 389 | 56.82 381 | 83.94 376 | 82.02 387 | 70.47 370 | 33.28 386 | 64.54 381 | 17.23 389 | 69.16 384 | 45.59 382 | 23.85 383 | 77.02 377 |
|
E-PMN | | | 52.30 349 | 52.18 351 | 52.67 366 | 71.51 382 | 45.40 387 | 93.62 361 | 76.60 389 | 36.01 382 | 43.50 383 | 64.13 382 | 27.11 382 | 67.31 385 | 31.06 385 | 26.06 381 | 45.30 384 |
|
PMVS |  | 49.05 23 | 53.75 348 | 51.34 352 | 60.97 365 | 40.80 391 | 34.68 391 | 74.82 379 | 89.62 382 | 37.55 381 | 28.67 387 | 72.12 377 | 7.09 391 | 81.63 381 | 43.17 383 | 68.21 365 | 66.59 379 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 51.44 351 | 51.22 353 | 52.11 367 | 70.71 383 | 44.97 389 | 94.04 357 | 75.66 390 | 35.34 384 | 42.40 384 | 61.56 385 | 28.93 379 | 65.87 386 | 27.64 386 | 24.73 382 | 45.49 383 |
|
MVE |  | 53.74 22 | 51.54 350 | 47.86 354 | 62.60 364 | 59.56 388 | 50.93 383 | 79.41 378 | 77.69 388 | 35.69 383 | 36.27 385 | 61.76 384 | 5.79 393 | 69.63 383 | 37.97 384 | 36.61 380 | 67.24 378 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 40.60 352 | 44.45 355 | 29.05 369 | 19.49 393 | 14.11 394 | 99.68 158 | 18.47 392 | 20.74 385 | 64.59 371 | 98.48 197 | 10.95 390 | 17.09 389 | 56.66 379 | 11.01 385 | 55.94 382 |
|
test123 | | | 37.68 353 | 39.14 356 | 33.31 368 | 19.94 392 | 24.83 393 | 98.36 301 | 9.75 393 | 15.53 386 | 51.31 381 | 87.14 366 | 19.62 388 | 17.74 388 | 47.10 381 | 3.47 387 | 57.36 381 |
|
cdsmvs_eth3d_5k | | | 23.43 354 | 31.24 357 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 98.09 193 | 0.00 389 | 0.00 390 | 99.67 102 | 83.37 241 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
wuyk23d | | | 20.37 355 | 20.84 358 | 18.99 370 | 65.34 386 | 27.73 392 | 50.43 381 | 7.67 394 | 9.50 387 | 8.01 388 | 6.34 388 | 6.13 392 | 26.24 387 | 23.40 387 | 10.69 386 | 2.99 385 |
|
ab-mvs-re | | | 8.28 356 | 11.04 359 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 99.40 124 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
pcd_1.5k_mvsjas | | | 7.60 357 | 10.13 360 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 91.20 158 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
test_blank | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.02 389 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
uanet_test | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
DCPMVS | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
sosnet-low-res | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
sosnet | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
uncertanet | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
Regformer | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
uanet | | | 0.00 358 | 0.00 361 | 0.00 371 | 0.00 394 | 0.00 395 | 0.00 382 | 0.00 395 | 0.00 389 | 0.00 390 | 0.00 390 | 0.00 394 | 0.00 390 | 0.00 388 | 0.00 388 | 0.00 386 |
|
FOURS1 | | | | | | 99.92 36 | 97.66 90 | 99.95 44 | 98.36 153 | 95.58 74 | 99.52 55 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 137 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
PC_three_1452 | | | | | | | | | | 96.96 31 | 99.80 17 | 99.79 64 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 35 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 137 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 14 | 99.30 11 | | 98.41 137 | 96.63 41 | 99.75 28 | 99.93 11 | 97.49 10 | | | | |
|
eth-test2 | | | | | | 0.00 394 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 394 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.92 36 | 98.57 55 | | 98.52 93 | 92.34 199 | 99.31 72 | 99.83 51 | 95.06 56 | 99.80 112 | 99.70 36 | 99.97 48 | |
|
IU-MVS | | | | | | 99.93 27 | 99.31 9 | | 98.41 137 | 97.71 8 | 99.84 9 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 50 | 99.80 2 | 99.96 25 | | | | 99.80 60 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 35 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 121 | 97.27 22 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 27 | 99.30 11 | | 98.43 121 | 97.26 24 | 99.80 17 | 99.88 24 | 96.71 24 | 100.00 1 | | | |
|
save fliter | | | | | | 99.82 70 | 98.79 37 | 99.96 25 | 98.40 141 | 97.66 10 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.48 44 | 99.83 11 | 99.91 15 | 97.87 6 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 14 | 99.47 7 | 99.95 44 | 98.43 121 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 99.93 27 | 99.29 14 | 99.96 25 | 98.42 133 | 97.28 20 | 99.86 5 | 99.94 4 | 97.22 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 139 |
|
test_part2 | | | | | | 99.89 50 | 99.25 17 | | | | 99.49 57 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 67 | | | | 99.59 139 |
|
sam_mvs | | | | | | | | | | | | | 94.25 86 | | | | |
|
ambc | | | | | 83.23 351 | 77.17 380 | 62.61 376 | 87.38 375 | 94.55 366 | | 76.72 359 | 86.65 368 | 30.16 377 | 96.36 318 | 84.85 313 | 69.86 358 | 90.73 356 |
|
MTGPA |  | | | | | | | | 98.28 168 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 352 | | | | 59.23 386 | 93.20 118 | 97.74 250 | 91.06 242 | | |
|
test_post | | | | | | | | | | | | 63.35 383 | 94.43 72 | 98.13 231 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 352 | 95.12 52 | 97.95 242 | | | |
|
GG-mvs-BLEND | | | | | 98.54 113 | 98.21 173 | 98.01 76 | 93.87 359 | 98.52 93 | | 97.92 133 | 97.92 215 | 99.02 2 | 97.94 244 | 98.17 103 | 99.58 109 | 99.67 122 |
|
MTMP | | | | | | | | 99.87 94 | 96.49 330 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 238 | 93.76 215 | | | 91.47 224 | | 98.96 160 | | 98.79 179 | 94.92 174 | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 35 | 99.99 22 | 100.00 1 |
|
TEST9 | | | | | | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 121 | 93.90 143 | 99.71 35 | 99.86 31 | 95.88 38 | 99.85 100 | | | |
|
test_8 | | | | | | 99.92 36 | 98.88 30 | 99.96 25 | 98.43 121 | 94.35 117 | 99.69 37 | 99.85 35 | 95.94 35 | 99.85 100 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 42 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 27 | 98.77 40 | | 98.43 121 | | 99.63 41 | | | 99.85 100 | | | |
|
TestCases | | | | | 95.00 233 | 99.01 124 | 88.43 316 | | 96.82 316 | 86.50 307 | 88.71 278 | 98.47 198 | 74.73 312 | 99.88 91 | 85.39 308 | 96.18 189 | 96.71 234 |
|
test_prior4 | | | | | | | 98.05 74 | 99.94 62 | | | | | | | | | |
|
test_prior2 | | | | | | | | 99.95 44 | | 95.78 65 | 99.73 30 | 99.76 76 | 96.00 33 | | 99.78 26 | 100.00 1 | |
|
test_prior | | | | | 99.43 38 | 99.94 14 | 98.49 61 | | 98.65 63 | | | | | 99.80 112 | | | 99.99 24 |
|
旧先验2 | | | | | | | | 99.46 198 | | 94.21 125 | 99.85 7 | | | 99.95 65 | 96.96 146 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 202 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.42 41 | 99.75 81 | 98.27 68 | | 98.63 69 | 92.69 182 | 99.55 50 | 99.82 55 | 94.40 74 | 100.00 1 | 91.21 238 | 99.94 61 | 99.99 24 |
|
旧先验1 | | | | | | 99.76 79 | 97.52 95 | | 98.64 66 | | | 99.85 35 | 95.63 43 | | | 99.94 61 | 99.99 24 |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 193 | 98.71 55 | 93.46 157 | | | | 100.00 1 | 94.36 190 | | 99.99 24 |
|
原ACMM2 | | | | | | | | 99.90 81 | | | | | | | | | |
|
原ACMM1 | | | | | 98.96 85 | 99.73 86 | 96.99 120 | | 98.51 100 | 94.06 133 | 99.62 44 | 99.85 35 | 94.97 62 | 99.96 58 | 95.11 168 | 99.95 55 | 99.92 91 |
|
test222 | | | | | | 99.55 101 | 97.41 107 | 99.34 212 | 98.55 86 | 91.86 212 | 99.27 77 | 99.83 51 | 93.84 100 | | | 99.95 55 | 99.99 24 |
|
testdata2 | | | | | | | | | | | | | | 99.99 40 | 90.54 255 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
testdata | | | | | 98.42 123 | 99.47 107 | 95.33 177 | | 98.56 80 | 93.78 148 | 99.79 24 | 99.85 35 | 93.64 105 | 99.94 73 | 94.97 172 | 99.94 61 | 100.00 1 |
|
testdata1 | | | | | | | | 99.28 222 | | 96.35 53 | | | | | | | |
|
test12 | | | | | 99.43 38 | 99.74 82 | 98.56 57 | | 98.40 141 | | 99.65 39 | | 94.76 66 | 99.75 127 | | 99.98 35 | 99.99 24 |
|
plane_prior7 | | | | | | 95.71 277 | 91.59 271 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 272 | 91.72 266 | | | | | | 80.47 269 | | | | |
|
plane_prior5 | | | | | | | | | 97.87 213 | | | | | 98.37 214 | 97.79 123 | 89.55 236 | 94.52 244 |
|
plane_prior4 | | | | | | | | | | | | 98.59 188 | | | | | |
|
plane_prior3 | | | | | | | 91.64 269 | | | 96.63 41 | 93.01 216 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 113 | | 96.38 49 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 274 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 263 | 99.86 106 | | 96.76 37 | | | | | | 89.59 235 | |
|
n2 | | | | | | | | | 0.00 395 | | | | | | | | |
|
nn | | | | | | | | | 0.00 395 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 381 | | | | | | | | |
|
lessismore_v0 | | | | | 90.53 323 | 90.58 354 | 80.90 361 | | 95.80 343 | | 77.01 357 | 95.84 273 | 66.15 346 | 96.95 293 | 83.03 324 | 75.05 351 | 93.74 316 |
|
LGP-MVS_train | | | | | 93.71 285 | 95.43 283 | 88.67 312 | | 97.62 230 | 92.81 174 | 90.05 244 | 98.49 194 | 75.24 306 | 98.40 206 | 95.84 162 | 89.12 240 | 94.07 288 |
|
test11 | | | | | | | | | 98.44 113 | | | | | | | | |
|
door | | | | | | | | | 90.31 379 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 259 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 268 | | 99.87 94 | | 96.82 33 | 93.37 212 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 268 | | 99.87 94 | | 96.82 33 | 93.37 212 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 118 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 212 | | | 98.39 208 | | | 94.53 242 |
|
HQP3-MVS | | | | | | | | | 97.89 211 | | | | | | | 89.60 233 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 265 | | | | |
|
NP-MVS | | | | | | 95.77 271 | 91.79 261 | | | | | 98.65 184 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 144 | 96.11 347 | | 91.89 211 | 98.06 129 | | 94.40 74 | | 94.30 193 | | 99.67 122 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 270 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 258 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 128 | | | | |
|
ITE_SJBPF | | | | | 92.38 307 | 95.69 279 | 85.14 338 | | 95.71 345 | 92.81 174 | 89.33 266 | 98.11 205 | 70.23 331 | 98.42 203 | 85.91 306 | 88.16 259 | 93.59 320 |
|
DeepMVS_CX |  | | | | 82.92 352 | 95.98 266 | 58.66 380 | | 96.01 340 | 92.72 179 | 78.34 354 | 95.51 288 | 58.29 363 | 98.08 233 | 82.57 326 | 85.29 281 | 92.03 346 |
|