This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 899.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 399.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
patch_mono-298.24 5799.12 595.59 22899.67 7886.91 34699.95 5398.89 4997.60 2299.90 399.76 6396.54 2799.98 4499.94 1199.82 7999.88 85
MSP-MVS99.09 999.12 598.98 7799.93 2497.24 10399.95 5398.42 14597.50 2699.52 6099.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12597.48 2799.64 4399.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1399.98 32100.00 1
CHOSEN 280x42099.01 1499.03 1098.95 8099.38 9798.87 3398.46 31299.42 2197.03 4299.02 9399.09 14799.35 198.21 24799.73 3299.78 8399.77 101
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 8081.76 37499.96 3598.56 9299.47 199.19 8799.99 194.16 87100.00 199.92 1399.93 61100.00 1
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14297.71 8499.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10397.91 7999.98 1598.85 5698.25 599.92 299.75 6994.72 6499.97 5499.87 1999.64 9199.95 71
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15797.20 3899.46 6499.85 3095.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 46100.00 199.31 5199.99 2199.87 87
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 10697.81 8299.98 1598.86 5398.25 599.90 399.76 6394.21 8599.97 5499.87 1999.52 10499.98 48
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 6993.24 11399.99 3699.94 1199.41 11699.95 71
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14598.38 16196.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7798.73 4699.94 6998.34 17196.38 6599.81 1599.76 6394.59 6799.98 4499.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg98.88 2098.65 2199.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2695.94 3399.85 10899.69 3599.98 3299.99 23
MG-MVS98.91 1998.65 2199.68 1699.94 1399.07 2499.64 18299.44 1997.33 3199.00 9499.72 8194.03 9099.98 4498.73 89100.00 1100.00 1
MVS_111021_HR98.72 2598.62 2399.01 7499.36 9897.18 10699.93 7699.90 196.81 5198.67 11199.77 6193.92 9299.89 9699.27 5399.94 5599.96 64
test_fmvsm_n_192098.44 4198.61 2497.92 14599.27 10295.18 187100.00 198.90 4798.05 1299.80 1799.73 7892.64 12999.99 3699.58 3899.51 10798.59 227
XVS98.70 2698.55 2599.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7099.78 5994.34 7699.96 6298.92 7599.95 5099.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11798.14 1099.08 9099.91 1493.09 117100.00 199.04 6499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM98.83 2198.53 2799.76 1099.59 8299.33 899.99 499.76 698.39 499.39 7499.80 5190.49 17699.96 6299.89 1799.43 11499.98 48
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7396.63 12599.97 2897.92 22198.07 1198.76 10799.55 10895.00 5699.94 7899.91 1697.68 16899.99 23
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11598.38 16193.19 17099.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2198.46 3099.97 199.33 9999.92 199.96 3598.44 12597.96 1499.55 5599.94 497.18 19100.00 193.81 21799.94 5599.98 48
PAPM98.60 3098.42 3199.14 6196.05 28198.96 2699.90 9099.35 2496.68 5598.35 12799.66 9696.45 2898.51 21499.45 4599.89 6799.96 64
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9098.21 18893.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6199.96 64
EPNet98.49 3798.40 3298.77 8999.62 8196.80 12299.90 9099.51 1697.60 2299.20 8599.36 12893.71 10099.91 8997.99 12598.71 14399.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1498.38 3499.87 5199.91 8498.33 17293.22 16999.78 2699.89 1994.57 6899.85 10899.84 2299.97 42
MVS_111021_LR98.42 4498.38 3498.53 11199.39 9695.79 15799.87 10499.86 296.70 5498.78 10499.79 5592.03 14799.90 9199.17 5799.86 7399.88 85
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9999.95 5398.61 8294.77 10599.31 7899.85 3094.22 83100.00 198.70 9099.98 3299.98 48
region2R98.54 3398.37 3699.05 6999.96 897.18 10699.96 3598.55 9894.87 10399.45 6599.85 3094.07 89100.00 198.67 92100.00 199.98 48
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10498.33 17293.97 14599.76 2899.87 2494.99 5799.75 13298.55 99100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10498.36 16594.08 13799.74 3199.73 7894.08 8899.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18996.41 13299.99 498.83 5998.22 799.67 3999.64 9991.11 16199.94 7899.67 3699.62 9499.98 48
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10699.95 5398.60 8494.77 10599.31 7899.84 4193.73 99100.00 198.70 9099.98 3299.98 48
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12699.97 2898.39 15794.43 11998.90 9899.87 2494.30 79100.00 199.04 6499.99 2199.99 23
SR-MVS98.46 3998.30 4398.93 8299.88 4997.04 11299.84 12398.35 16794.92 10199.32 7799.80 5193.35 10699.78 12599.30 5299.95 5099.96 64
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 13992.58 13299.94 7898.63 9799.94 5599.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11199.98 1598.80 6290.78 25899.62 4799.78 5995.30 47100.00 199.80 2599.93 6199.99 23
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20198.17 19397.34 2999.85 999.85 3091.20 15799.89 9699.41 4899.67 8998.69 224
mPP-MVS98.39 4798.20 4698.97 7899.97 396.92 11799.95 5398.38 16195.04 9798.61 11599.80 5193.39 104100.00 198.64 95100.00 199.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 9299.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6993.28 11199.78 12598.90 7899.92 6499.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9198.03 13899.75 6994.03 9099.98 4498.11 11899.83 7599.99 23
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7998.62 5599.85 11898.37 16494.68 11099.53 5899.83 4392.87 123100.00 198.66 9499.84 7499.99 23
RE-MVS-def98.13 5199.79 6296.37 13699.76 15098.31 17694.43 11999.40 7299.75 6992.95 12198.90 7899.92 6499.97 58
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11399.75 15399.50 1793.90 15099.37 7599.76 6393.24 113100.00 197.75 14199.96 4699.98 48
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12899.40 22098.51 10895.29 9398.51 11899.76 6393.60 10399.71 13898.53 10099.52 10499.95 71
dcpmvs_297.42 9698.09 5495.42 23399.58 8687.24 34299.23 24496.95 32194.28 13098.93 9799.73 7894.39 7499.16 17899.89 1799.82 7999.86 89
APD-MVS_3200maxsize98.25 5698.08 5598.78 8799.81 6096.60 12799.82 13398.30 17993.95 14799.37 7599.77 6192.84 12499.76 13198.95 7299.92 6499.97 58
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 6998.44 12594.31 12798.50 11999.82 4693.06 11899.99 3698.30 11199.99 2199.93 76
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12592.06 21798.40 12599.84 4195.68 39100.00 198.19 11399.71 8799.97 58
balanced_conf0398.27 5297.99 5899.11 6698.64 14998.43 6299.47 21297.79 23294.56 11399.74 3198.35 21794.33 7899.25 16799.12 5899.96 4699.64 121
EI-MVSNet-UG-set98.14 6097.99 5898.60 10199.80 6196.27 13899.36 22998.50 11495.21 9598.30 12999.75 6993.29 11099.73 13798.37 10799.30 12199.81 94
GST-MVS98.27 5297.97 6099.17 5599.92 3197.57 9199.93 7698.39 15794.04 14298.80 10399.74 7692.98 120100.00 198.16 11599.76 8499.93 76
xiu_mvs_v2_base98.23 5897.97 6099.02 7398.69 14398.66 5199.52 20398.08 20597.05 4199.86 799.86 2690.65 17199.71 13899.39 5098.63 14498.69 224
MP-MVScopyleft98.23 5897.97 6099.03 7199.94 1397.17 10999.95 5398.39 15794.70 10998.26 13299.81 5091.84 151100.00 198.85 8199.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5197.96 6399.30 4499.85 5497.93 7899.39 22498.28 18195.76 8097.18 16299.88 2192.74 127100.00 198.67 9299.88 7199.99 23
CS-MVS-test97.88 6897.94 6497.70 16099.28 10195.20 18699.98 1597.15 30095.53 8799.62 4799.79 5592.08 14698.38 23098.75 8899.28 12299.52 153
PAPM_NR98.12 6197.93 6598.70 9399.94 1396.13 14899.82 13398.43 13394.56 11397.52 15299.70 8594.40 7199.98 4497.00 15699.98 3299.99 23
CS-MVS97.79 7997.91 6697.43 17699.10 10994.42 20399.99 497.10 30595.07 9699.68 3899.75 6992.95 12198.34 23498.38 10599.14 12899.54 148
mvsany_test197.82 7497.90 6797.55 16898.77 14093.04 24299.80 13997.93 21896.95 4599.61 5399.68 9390.92 16599.83 11899.18 5698.29 15499.80 96
PLCcopyleft95.54 397.93 6697.89 6898.05 13999.82 5894.77 19899.92 7998.46 11993.93 14897.20 16199.27 13495.44 4599.97 5497.41 14699.51 10799.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16199.06 11194.41 20499.98 1598.97 4097.34 2999.63 4499.69 8787.27 21499.97 5499.62 3799.06 13298.62 226
CANet98.27 5297.82 7099.63 1799.72 7599.10 2399.98 1598.51 10897.00 4398.52 11799.71 8387.80 20799.95 7099.75 2899.38 11799.83 91
ETV-MVS97.92 6797.80 7198.25 12798.14 18796.48 12999.98 1597.63 24495.61 8499.29 8199.46 11692.55 13398.82 19299.02 6998.54 14599.46 162
fmvsm_s_conf0.5_n_a97.73 8497.72 7297.77 15598.63 15094.26 21099.96 3598.92 4697.18 3999.75 2999.69 8787.00 21999.97 5499.46 4498.89 13699.08 203
HPM-MVScopyleft97.96 6497.72 7298.68 9499.84 5696.39 13599.90 9098.17 19392.61 19598.62 11499.57 10791.87 15099.67 14598.87 8099.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 6997.66 7498.47 11499.52 8995.41 17699.47 21298.87 5291.68 22898.84 10099.85 3092.34 14099.99 3698.44 10399.96 46100.00 1
MP-MVS-pluss98.07 6397.64 7599.38 4299.74 7098.41 6399.74 15698.18 19293.35 16496.45 18199.85 3092.64 12999.97 5498.91 7799.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 6597.64 7598.83 8699.59 8296.99 114100.00 199.10 3195.38 9098.27 13099.08 14889.00 19899.95 7099.12 5899.25 12399.57 142
lupinMVS97.85 7097.60 7798.62 9997.28 24397.70 8699.99 497.55 25595.50 8999.43 6899.67 9490.92 16598.71 20398.40 10499.62 9499.45 164
WTY-MVS98.10 6297.60 7799.60 2298.92 12699.28 1799.89 9899.52 1495.58 8598.24 13399.39 12593.33 10799.74 13497.98 12795.58 21599.78 100
test_fmvsmvis_n_192097.67 8697.59 7997.91 14797.02 25095.34 17899.95 5398.45 12097.87 1597.02 16699.59 10489.64 18699.98 4499.41 4899.34 12098.42 230
HPM-MVS_fast97.80 7797.50 8098.68 9499.79 6296.42 13199.88 10198.16 19791.75 22798.94 9699.54 11091.82 15299.65 14797.62 14499.99 2199.99 23
EIA-MVS97.53 8997.46 8197.76 15798.04 19294.84 19499.98 1597.61 24994.41 12297.90 14299.59 10492.40 13898.87 18998.04 12299.13 12999.59 133
MVSMamba_PlusPlus97.83 7197.45 8298.99 7598.60 15198.15 6599.58 19197.74 23590.34 26699.26 8398.32 22094.29 8099.23 16899.03 6799.89 6799.58 139
bld_raw_conf0397.82 7497.45 8298.94 8198.51 16098.15 6599.58 19197.74 23594.01 14399.26 8398.38 21690.66 17099.09 18298.99 7199.89 6799.58 139
test_fmvsmconf0.1_n97.74 8297.44 8498.64 9895.76 29296.20 14499.94 6998.05 20898.17 998.89 9999.42 11887.65 20999.90 9199.50 4199.60 10099.82 92
ACMMPcopyleft97.74 8297.44 8498.66 9699.92 3196.13 14899.18 24899.45 1894.84 10496.41 18499.71 8391.40 15499.99 3697.99 12598.03 16399.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 8197.38 8698.92 8399.53 8896.84 11999.87 10498.14 20193.78 15396.55 17999.69 8792.28 14199.98 4497.13 15299.44 11399.93 76
test_yl97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
DCV-MVSNet97.83 7197.37 8799.21 4999.18 10497.98 7599.64 18299.27 2791.43 23797.88 14498.99 15795.84 3799.84 11698.82 8295.32 22199.79 97
alignmvs97.81 7697.33 8999.25 4698.77 14098.66 5199.99 498.44 12594.40 12398.41 12399.47 11493.65 10199.42 16498.57 9894.26 23599.67 115
CPTT-MVS97.64 8797.32 9098.58 10499.97 395.77 15899.96 3598.35 16789.90 27598.36 12699.79 5591.18 16099.99 3698.37 10799.99 2199.99 23
testing1197.48 9197.27 9198.10 13598.36 16896.02 15199.92 7998.45 12093.45 16398.15 13698.70 18995.48 4499.22 17097.85 13395.05 22599.07 204
EC-MVSNet97.38 9997.24 9297.80 15097.41 23295.64 16799.99 497.06 31094.59 11299.63 4499.32 13089.20 19698.14 25098.76 8799.23 12599.62 127
OMC-MVS97.28 10297.23 9397.41 17799.76 6693.36 23799.65 17897.95 21696.03 7597.41 15699.70 8589.61 18799.51 15396.73 16598.25 15599.38 171
fmvsm_s_conf0.1_n97.30 10197.21 9497.60 16797.38 23494.40 20699.90 9098.64 7696.47 6199.51 6299.65 9884.99 24099.93 8599.22 5599.09 13198.46 228
test250697.53 8997.19 9598.58 10498.66 14696.90 11898.81 29099.77 594.93 9997.95 14098.96 16392.51 13499.20 17494.93 18898.15 15699.64 121
MAR-MVS97.43 9297.19 9598.15 13399.47 9394.79 19799.05 26498.76 6392.65 19398.66 11299.82 4688.52 20399.98 4498.12 11799.63 9399.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 7997.17 9799.63 1798.98 11899.32 997.49 34499.52 1495.69 8298.32 12897.41 24793.32 10899.77 12898.08 12195.75 21299.81 94
xiu_mvs_v1_base_debu97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
xiu_mvs_v1_base_debi97.43 9297.06 9898.55 10697.74 21098.14 6799.31 23497.86 22796.43 6299.62 4799.69 8785.56 23299.68 14299.05 6198.31 15197.83 241
CSCG97.10 11097.04 10197.27 18699.89 4591.92 26899.90 9099.07 3488.67 29895.26 20899.82 4693.17 11699.98 4498.15 11699.47 10999.90 83
sss97.57 8897.03 10299.18 5298.37 16798.04 7299.73 16199.38 2293.46 16198.76 10799.06 15091.21 15699.89 9696.33 16797.01 18599.62 127
thisisatest051597.41 9797.02 10398.59 10397.71 21797.52 9399.97 2898.54 10191.83 22397.45 15599.04 15197.50 799.10 18194.75 19696.37 19799.16 195
F-COLMAP96.93 12296.95 10496.87 19699.71 7691.74 27399.85 11897.95 21693.11 17495.72 20199.16 14592.35 13999.94 7895.32 18299.35 11998.92 210
testing9997.17 10796.91 10597.95 14298.35 17095.70 16399.91 8498.43 13392.94 17797.36 15798.72 18794.83 6099.21 17197.00 15694.64 22798.95 209
testing9197.16 10896.90 10697.97 14198.35 17095.67 16699.91 8498.42 14592.91 17997.33 15898.72 18794.81 6199.21 17196.98 15894.63 22899.03 206
fmvsm_s_conf0.1_n_a97.09 11296.90 10697.63 16595.65 30194.21 21299.83 13098.50 11496.27 7099.65 4199.64 9984.72 24199.93 8599.04 6498.84 13998.74 221
mamv495.24 17996.90 10690.25 34498.65 14872.11 39198.28 32397.64 24389.99 27495.93 19598.25 22394.74 6399.11 17999.01 7099.64 9199.53 152
iter_conf0597.35 10096.89 10998.73 9198.60 15197.59 8998.26 32497.46 26690.34 26695.94 19498.32 22094.29 8099.23 16899.03 6799.82 7999.36 174
jason97.24 10496.86 11098.38 12295.73 29597.32 10299.97 2897.40 27495.34 9298.60 11699.54 11087.70 20898.56 21197.94 12899.47 10999.25 190
jason: jason.
114514_t97.41 9796.83 11199.14 6199.51 9197.83 8099.89 9898.27 18388.48 30299.06 9199.66 9690.30 17999.64 14896.32 16899.97 4299.96 64
PVSNet_Blended_VisFu97.27 10396.81 11298.66 9698.81 13796.67 12499.92 7998.64 7694.51 11596.38 18598.49 20889.05 19799.88 10297.10 15498.34 14999.43 167
AdaColmapbinary97.23 10596.80 11398.51 11299.99 195.60 16999.09 25398.84 5893.32 16696.74 17499.72 8186.04 229100.00 198.01 12399.43 11499.94 75
PMMVS96.76 13096.76 11496.76 19998.28 17592.10 26399.91 8497.98 21394.12 13599.53 5899.39 12586.93 22098.73 20096.95 16197.73 16699.45 164
testing22297.08 11596.75 11598.06 13898.56 15396.82 12099.85 11898.61 8292.53 20198.84 10098.84 18393.36 10598.30 23895.84 17694.30 23499.05 205
mvsmamba96.94 12096.73 11697.55 16897.99 19494.37 20799.62 18597.70 23893.13 17298.42 12297.92 23588.02 20698.75 19998.78 8599.01 13499.52 153
UWE-MVS96.79 12796.72 11797.00 19198.51 16093.70 22599.71 16798.60 8492.96 17697.09 16398.34 21996.67 2698.85 19192.11 24396.50 19398.44 229
thisisatest053097.10 11096.72 11798.22 12897.60 22396.70 12399.92 7998.54 10191.11 24797.07 16598.97 16197.47 1099.03 18393.73 22296.09 20098.92 210
PVSNet91.05 1397.13 10996.69 11998.45 11699.52 8995.81 15699.95 5399.65 1294.73 10799.04 9299.21 14184.48 24499.95 7094.92 18998.74 14299.58 139
ETVMVS97.03 11696.64 12098.20 12998.67 14597.12 11099.89 9898.57 8991.10 24898.17 13598.59 19993.86 9698.19 24895.64 17995.24 22399.28 187
diffmvspermissive97.00 11796.64 12098.09 13697.64 22196.17 14799.81 13597.19 29494.67 11198.95 9599.28 13186.43 22598.76 19798.37 10797.42 17499.33 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 12096.60 12297.95 14297.28 24397.70 8699.55 19997.27 28991.17 24499.43 6899.54 11090.92 16596.89 31394.67 19999.62 9499.25 190
EPP-MVSNet96.69 13596.60 12296.96 19397.74 21093.05 24199.37 22798.56 9288.75 29695.83 19999.01 15496.01 3198.56 21196.92 16297.20 17999.25 190
VNet97.21 10696.57 12499.13 6598.97 11997.82 8199.03 26799.21 2994.31 12799.18 8898.88 17486.26 22899.89 9698.93 7494.32 23399.69 112
CHOSEN 1792x268896.81 12696.53 12597.64 16398.91 13093.07 23999.65 17899.80 395.64 8395.39 20598.86 17984.35 24699.90 9196.98 15899.16 12799.95 71
tttt051796.85 12496.49 12697.92 14597.48 23095.89 15599.85 11898.54 10190.72 25996.63 17698.93 17297.47 1099.02 18493.03 23495.76 21198.85 214
baseline296.71 13496.49 12697.37 18095.63 30395.96 15399.74 15698.88 5192.94 17791.61 24898.97 16197.72 598.62 20994.83 19398.08 16297.53 251
HyFIR lowres test96.66 13796.43 12897.36 18299.05 11293.91 22099.70 17199.80 390.54 26196.26 18798.08 22892.15 14498.23 24696.84 16495.46 21699.93 76
DeepC-MVS94.51 496.92 12396.40 12998.45 11699.16 10795.90 15499.66 17798.06 20696.37 6894.37 21799.49 11383.29 25399.90 9197.63 14399.61 9899.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
canonicalmvs97.09 11296.32 13099.39 4098.93 12398.95 2799.72 16497.35 27794.45 11697.88 14499.42 11886.71 22199.52 15198.48 10193.97 23999.72 107
TESTMET0.1,196.74 13296.26 13298.16 13097.36 23696.48 12999.96 3598.29 18091.93 22095.77 20098.07 22995.54 4198.29 23990.55 26998.89 13699.70 110
test_cas_vis1_n_192096.59 13996.23 13397.65 16298.22 17994.23 21199.99 497.25 29197.77 1799.58 5499.08 14877.10 30399.97 5497.64 14299.45 11298.74 221
MGCFI-Net97.00 11796.22 13499.34 4398.86 13498.80 3999.67 17697.30 28494.31 12797.77 14899.41 12286.36 22799.50 15598.38 10593.90 24199.72 107
thres20096.96 11996.21 13599.22 4898.97 11998.84 3699.85 11899.71 793.17 17196.26 18798.88 17489.87 18499.51 15394.26 20794.91 22699.31 182
CANet_DTU96.76 13096.15 13698.60 10198.78 13997.53 9299.84 12397.63 24497.25 3799.20 8599.64 9981.36 26699.98 4492.77 23798.89 13698.28 233
CDS-MVSNet96.34 14996.07 13797.13 18897.37 23594.96 19199.53 20297.91 22291.55 23195.37 20698.32 22095.05 5397.13 29693.80 21895.75 21299.30 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 14296.04 13897.78 15397.02 25095.44 17399.96 3598.21 18894.07 13895.55 20296.38 28193.90 9498.27 24390.42 27298.83 14099.64 121
EPMVS96.53 14196.01 13998.09 13698.43 16596.12 15096.36 36599.43 2093.53 15997.64 15095.04 33194.41 7098.38 23091.13 25598.11 15999.75 103
tfpn200view996.79 12795.99 14099.19 5198.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.27 188
thres40096.78 12995.99 14099.16 5798.94 12198.82 3799.78 14299.71 792.86 18096.02 19298.87 17789.33 19199.50 15593.84 21494.57 22999.16 195
baseline96.43 14495.98 14297.76 15797.34 23795.17 18899.51 20597.17 29793.92 14996.90 16999.28 13185.37 23698.64 20897.50 14596.86 18999.46 162
tpmrst96.27 15595.98 14297.13 18897.96 19693.15 23896.34 36698.17 19392.07 21598.71 11095.12 32993.91 9398.73 20094.91 19196.62 19099.50 158
Vis-MVSNet (Re-imp)96.32 15095.98 14297.35 18397.93 19894.82 19599.47 21298.15 20091.83 22395.09 20999.11 14691.37 15597.47 27993.47 22597.43 17299.74 104
casdiffmvspermissive96.42 14695.97 14597.77 15597.30 24194.98 19099.84 12397.09 30793.75 15596.58 17899.26 13785.07 23898.78 19597.77 13997.04 18399.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 14095.96 14698.27 12698.23 17895.71 16298.00 33798.45 12093.72 15698.41 12399.27 13488.71 20299.66 14691.19 25497.69 16799.44 166
131496.84 12595.96 14699.48 3496.74 26898.52 5898.31 32198.86 5395.82 7889.91 26798.98 15987.49 21199.96 6297.80 13499.73 8699.96 64
casdiffmvs_mvgpermissive96.43 14495.94 14897.89 14997.44 23195.47 17299.86 11597.29 28793.35 16496.03 19199.19 14285.39 23598.72 20297.89 13297.04 18399.49 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-mter96.39 14795.93 14997.78 15397.02 25095.44 17399.96 3598.21 18891.81 22595.55 20296.38 28195.17 4898.27 24390.42 27298.83 14099.64 121
thres100view90096.74 13295.92 15099.18 5298.90 13198.77 4299.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.84 21494.57 22999.27 188
IS-MVSNet96.29 15395.90 15197.45 17498.13 18894.80 19699.08 25597.61 24992.02 21995.54 20498.96 16390.64 17298.08 25393.73 22297.41 17599.47 161
CostFormer96.10 15695.88 15296.78 19897.03 24992.55 25597.08 35497.83 23090.04 27398.72 10994.89 33895.01 5598.29 23996.54 16695.77 21099.50 158
thres600view796.69 13595.87 15399.14 6198.90 13198.78 4199.74 15699.71 792.59 19795.84 19798.86 17989.25 19399.50 15593.44 22694.50 23299.16 195
PVSNet_BlendedMVS96.05 15795.82 15496.72 20199.59 8296.99 11499.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 7099.12 5887.53 29093.24 347
test_fmvsmconf0.01_n96.39 14795.74 15598.32 12491.47 36995.56 17099.84 12397.30 28497.74 1897.89 14399.35 12979.62 28599.85 10899.25 5499.24 12499.55 144
MVS_Test96.46 14395.74 15598.61 10098.18 18397.23 10499.31 23497.15 30091.07 24998.84 10097.05 26088.17 20598.97 18594.39 20397.50 17199.61 130
Effi-MVS+96.30 15295.69 15798.16 13097.85 20396.26 13997.41 34697.21 29390.37 26498.65 11398.58 20286.61 22498.70 20497.11 15397.37 17699.52 153
MDTV_nov1_ep1395.69 15797.90 19994.15 21395.98 37498.44 12593.12 17397.98 13995.74 29895.10 5098.58 21090.02 27896.92 187
test_fmvs195.35 17795.68 15994.36 27698.99 11784.98 35699.96 3596.65 34497.60 2299.73 3398.96 16371.58 34399.93 8598.31 11099.37 11898.17 234
TAMVS95.85 16295.58 16096.65 20497.07 24793.50 23199.17 24997.82 23191.39 24195.02 21098.01 23092.20 14297.30 28693.75 22195.83 20999.14 198
MVS96.60 13895.56 16199.72 1396.85 26199.22 2098.31 32198.94 4191.57 23090.90 25699.61 10386.66 22399.96 6297.36 14799.88 7199.99 23
PatchmatchNetpermissive95.94 16095.45 16297.39 17997.83 20494.41 20496.05 37298.40 15492.86 18097.09 16395.28 32694.21 8598.07 25589.26 28598.11 15999.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 15895.40 16397.95 14299.59 8295.22 18599.52 20399.07 3493.96 14696.49 18098.35 21782.28 25799.82 12090.15 27799.22 12698.81 217
EPNet_dtu95.71 16795.39 16496.66 20398.92 12693.41 23499.57 19598.90 4796.19 7397.52 15298.56 20492.65 12897.36 28177.89 36798.33 15099.20 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16795.38 16596.68 20298.49 16392.28 25999.84 12397.50 26392.12 21492.06 24698.79 18484.69 24298.67 20795.29 18399.66 9099.09 201
3Dnovator91.47 1296.28 15495.34 16699.08 6896.82 26397.47 9899.45 21798.81 6095.52 8889.39 28199.00 15681.97 25999.95 7097.27 14999.83 7599.84 90
test_vis1_n_192095.44 17595.31 16795.82 22498.50 16288.74 32599.98 1597.30 28497.84 1699.85 999.19 14266.82 36399.97 5498.82 8299.46 11198.76 219
Effi-MVS+-dtu94.53 20095.30 16892.22 32797.77 20882.54 36799.59 18997.06 31094.92 10195.29 20795.37 31985.81 23097.89 26594.80 19497.07 18196.23 262
3Dnovator+91.53 1196.31 15195.24 16999.52 2896.88 26098.64 5499.72 16498.24 18595.27 9488.42 30698.98 15982.76 25599.94 7897.10 15499.83 7599.96 64
MVSTER95.53 17395.22 17096.45 20898.56 15397.72 8399.91 8497.67 24192.38 20891.39 25097.14 25497.24 1697.30 28694.80 19487.85 28594.34 285
1112_ss96.01 15995.20 17198.42 11997.80 20696.41 13299.65 17896.66 34392.71 18892.88 23699.40 12392.16 14399.30 16591.92 24693.66 24299.55 144
tpm295.47 17495.18 17296.35 21396.91 25691.70 27796.96 35797.93 21888.04 30998.44 12195.40 31593.32 10897.97 25994.00 21095.61 21499.38 171
Vis-MVSNetpermissive95.72 16595.15 17397.45 17497.62 22294.28 20999.28 24098.24 18594.27 13296.84 17198.94 17079.39 28798.76 19793.25 22798.49 14699.30 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 16395.11 17498.02 14099.85 5495.10 18998.74 29598.50 11487.22 31993.66 22699.86 2687.45 21299.95 7090.94 26199.81 8299.02 207
FA-MVS(test-final)95.86 16195.09 17598.15 13397.74 21095.62 16896.31 36798.17 19391.42 23996.26 18796.13 29090.56 17499.47 16292.18 24297.07 18199.35 177
ECVR-MVScopyleft95.66 17095.05 17697.51 17298.66 14693.71 22498.85 28798.45 12094.93 9996.86 17098.96 16375.22 32699.20 17495.34 18198.15 15699.64 121
mvs_anonymous95.65 17195.03 17797.53 17098.19 18295.74 16099.33 23197.49 26490.87 25390.47 26097.10 25688.23 20497.16 29395.92 17497.66 16999.68 113
FE-MVS95.70 16995.01 17897.79 15298.21 18094.57 19995.03 37998.69 6888.90 29397.50 15496.19 28792.60 13199.49 16089.99 27997.94 16599.31 182
test111195.57 17294.98 17997.37 18098.56 15393.37 23698.86 28598.45 12094.95 9896.63 17698.95 16875.21 32799.11 17995.02 18698.14 15899.64 121
CVMVSNet94.68 19594.94 18093.89 29496.80 26486.92 34599.06 26098.98 3894.45 11694.23 22199.02 15285.60 23195.31 36090.91 26295.39 21999.43 167
baseline195.78 16494.86 18198.54 10998.47 16498.07 7099.06 26097.99 21192.68 19194.13 22298.62 19893.28 11198.69 20593.79 21985.76 29898.84 215
BH-untuned95.18 18094.83 18296.22 21598.36 16891.22 28599.80 13997.32 28290.91 25291.08 25398.67 19183.51 25098.54 21394.23 20899.61 9898.92 210
Test_1112_low_res95.72 16594.83 18298.42 11997.79 20796.41 13299.65 17896.65 34492.70 18992.86 23796.13 29092.15 14499.30 16591.88 24793.64 24399.55 144
myMVS_eth3d94.46 20294.76 18493.55 30497.68 21890.97 28799.71 16798.35 16790.79 25692.10 24498.67 19192.46 13793.09 38287.13 31095.95 20596.59 258
XVG-OURS94.82 18794.74 18595.06 24498.00 19389.19 32099.08 25597.55 25594.10 13694.71 21299.62 10280.51 27899.74 13496.04 17293.06 25196.25 260
XVG-OURS-SEG-HR94.79 18994.70 18695.08 24398.05 19189.19 32099.08 25597.54 25793.66 15794.87 21199.58 10678.78 29499.79 12397.31 14893.40 24696.25 260
UGNet95.33 17894.57 18797.62 16698.55 15694.85 19398.67 30399.32 2695.75 8196.80 17396.27 28572.18 34099.96 6294.58 20199.05 13398.04 238
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 19794.50 18894.92 24995.78 28891.85 26999.87 10497.89 22396.82 4893.37 22898.65 19480.65 27698.39 22697.92 12989.60 25894.53 268
dp95.05 18394.43 18996.91 19497.99 19492.73 24996.29 36897.98 21389.70 27895.93 19594.67 34493.83 9898.45 21986.91 31796.53 19299.54 148
test_fmvs1_n94.25 21094.36 19093.92 29197.68 21883.70 36299.90 9096.57 34797.40 2899.67 3998.88 17461.82 37999.92 8898.23 11299.13 12998.14 237
h-mvs3394.92 18694.36 19096.59 20598.85 13591.29 28498.93 27698.94 4195.90 7698.77 10598.42 21590.89 16899.77 12897.80 13470.76 37998.72 223
HQP_MVS94.49 20194.36 19094.87 25095.71 29891.74 27399.84 12397.87 22596.38 6593.01 23298.59 19980.47 28098.37 23297.79 13789.55 26194.52 270
BH-RMVSNet95.18 18094.31 19397.80 15098.17 18495.23 18499.76 15097.53 25992.52 20294.27 22099.25 13876.84 30898.80 19390.89 26399.54 10399.35 177
testing393.92 21394.23 19492.99 31897.54 22590.23 30599.99 499.16 3090.57 26091.33 25298.63 19792.99 11992.52 38682.46 34495.39 21996.22 263
Fast-Effi-MVS+95.02 18494.19 19597.52 17197.88 20094.55 20099.97 2897.08 30888.85 29594.47 21697.96 23484.59 24398.41 22289.84 28197.10 18099.59 133
QAPM95.40 17694.17 19699.10 6796.92 25597.71 8499.40 22098.68 7089.31 28188.94 29498.89 17382.48 25699.96 6293.12 23399.83 7599.62 127
PCF-MVS94.20 595.18 18094.10 19798.43 11898.55 15695.99 15297.91 33997.31 28390.35 26589.48 28099.22 14085.19 23799.89 9690.40 27498.47 14799.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 20494.08 19895.31 23898.27 17690.02 31099.29 23998.56 9295.90 7698.77 10598.00 23190.89 16898.26 24597.80 13469.20 38597.64 246
ADS-MVSNet94.79 18994.02 19997.11 19097.87 20193.79 22194.24 38098.16 19790.07 27196.43 18294.48 34990.29 18098.19 24887.44 30497.23 17799.36 174
miper_enhance_ethall94.36 20793.98 20095.49 22998.68 14495.24 18399.73 16197.29 28793.28 16889.86 26995.97 29494.37 7597.05 30292.20 24184.45 31094.19 294
SDMVSNet94.80 18893.96 20197.33 18498.92 12695.42 17599.59 18998.99 3792.41 20692.55 24097.85 23875.81 32098.93 18897.90 13191.62 25497.64 246
IB-MVS92.85 694.99 18593.94 20298.16 13097.72 21595.69 16599.99 498.81 6094.28 13092.70 23896.90 26495.08 5199.17 17796.07 17173.88 37499.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 21293.90 20394.55 26596.02 28290.69 29499.98 1597.72 23796.62 5891.05 25598.85 18277.21 30298.47 21598.11 11889.51 26394.48 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 21893.88 20493.55 30497.87 20185.94 35094.24 38096.84 33290.07 27196.43 18294.48 34990.29 18095.37 35887.44 30497.23 17799.36 174
Fast-Effi-MVS+-dtu93.72 22293.86 20593.29 30997.06 24886.16 34899.80 13996.83 33392.66 19292.58 23997.83 24081.39 26597.67 27389.75 28296.87 18896.05 265
SCA94.69 19393.81 20697.33 18497.10 24694.44 20198.86 28598.32 17493.30 16796.17 19095.59 30576.48 31397.95 26291.06 25797.43 17299.59 133
test0.0.03 193.86 21493.61 20794.64 25995.02 31292.18 26299.93 7698.58 8794.07 13887.96 31098.50 20793.90 9494.96 36481.33 35193.17 24896.78 255
cascas94.64 19693.61 20797.74 15997.82 20596.26 13999.96 3597.78 23485.76 33794.00 22397.54 24476.95 30799.21 17197.23 15095.43 21897.76 245
TAPA-MVS92.12 894.42 20393.60 20996.90 19599.33 9991.78 27299.78 14298.00 21089.89 27694.52 21499.47 11491.97 14899.18 17669.90 38599.52 10499.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 19193.59 21098.33 12396.07 28097.48 9799.56 19798.57 8990.46 26286.51 32998.95 16878.57 29799.94 7893.86 21399.74 8597.57 250
tpmvs94.28 20993.57 21196.40 21098.55 15691.50 28295.70 37898.55 9887.47 31492.15 24394.26 35391.42 15398.95 18788.15 29795.85 20898.76 219
LFMVS94.75 19293.56 21298.30 12599.03 11395.70 16398.74 29597.98 21387.81 31298.47 12099.39 12567.43 36199.53 15098.01 12395.20 22499.67 115
TR-MVS94.54 19893.56 21297.49 17397.96 19694.34 20898.71 29897.51 26290.30 26994.51 21598.69 19075.56 32198.77 19692.82 23695.99 20299.35 177
GeoE94.36 20793.48 21496.99 19297.29 24293.54 23099.96 3596.72 34188.35 30593.43 22798.94 17082.05 25898.05 25688.12 29996.48 19599.37 173
FIs94.10 21193.43 21596.11 21794.70 31696.82 12099.58 19198.93 4592.54 20089.34 28397.31 25087.62 21097.10 29994.22 20986.58 29494.40 279
ab-mvs94.69 19393.42 21698.51 11298.07 19096.26 13996.49 36398.68 7090.31 26894.54 21397.00 26276.30 31599.71 13895.98 17393.38 24799.56 143
DP-MVS94.54 19893.42 21697.91 14799.46 9594.04 21598.93 27697.48 26581.15 37190.04 26499.55 10887.02 21899.95 7088.97 28798.11 15999.73 105
tpm93.70 22393.41 21894.58 26395.36 30787.41 34197.01 35596.90 32890.85 25496.72 17594.14 35490.40 17796.84 31690.75 26688.54 27799.51 156
EI-MVSNet93.73 22193.40 21994.74 25596.80 26492.69 25099.06 26097.67 24188.96 29091.39 25099.02 15288.75 20197.30 28691.07 25687.85 28594.22 291
MSDG94.37 20593.36 22097.40 17898.88 13393.95 21999.37 22797.38 27585.75 33990.80 25799.17 14484.11 24899.88 10286.35 31898.43 14898.36 232
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26199.12 25197.38 27592.51 20388.45 30196.99 26391.20 15797.29 28994.36 20487.71 28794.36 281
ET-MVSNet_ETH3D94.37 20593.28 22297.64 16398.30 17297.99 7499.99 497.61 24994.35 12471.57 39099.45 11796.23 3095.34 35996.91 16385.14 30599.59 133
cl2293.77 21993.25 22395.33 23799.49 9294.43 20299.61 18798.09 20390.38 26389.16 29195.61 30390.56 17497.34 28391.93 24584.45 31094.21 293
dmvs_re93.20 23393.15 22493.34 30796.54 27283.81 36198.71 29898.51 10891.39 24192.37 24298.56 20478.66 29697.83 26793.89 21289.74 25798.38 231
FC-MVSNet-test93.81 21793.15 22495.80 22594.30 32396.20 14499.42 21998.89 4992.33 21089.03 29397.27 25287.39 21396.83 31793.20 22886.48 29594.36 281
test_vis1_n93.61 22593.03 22695.35 23595.86 28786.94 34499.87 10496.36 35396.85 4699.54 5798.79 18452.41 39299.83 11898.64 9598.97 13599.29 186
VDD-MVS93.77 21992.94 22796.27 21498.55 15690.22 30698.77 29497.79 23290.85 25496.82 17299.42 11861.18 38299.77 12898.95 7294.13 23698.82 216
GA-MVS93.83 21592.84 22896.80 19795.73 29593.57 22899.88 10197.24 29292.57 19992.92 23496.66 27378.73 29597.67 27387.75 30294.06 23899.17 194
sd_testset93.55 22692.83 22995.74 22698.92 12690.89 29298.24 32698.85 5692.41 20692.55 24097.85 23871.07 34898.68 20693.93 21191.62 25497.64 246
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29399.77 14597.61 24996.19 7391.56 24998.65 19475.16 32898.47 21593.78 22089.39 26493.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 26692.79 23188.83 35598.15 18669.87 39398.11 33396.60 34683.93 35594.33 21899.27 13479.60 28699.46 16391.99 24493.16 24997.18 253
WB-MVSnew92.90 24192.77 23293.26 31196.95 25493.63 22799.71 16798.16 19791.49 23294.28 21998.14 22681.33 26796.48 33079.47 35995.46 21689.68 383
LPG-MVS_test92.96 23992.71 23393.71 29895.43 30588.67 32799.75 15397.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
CR-MVSNet93.45 23092.62 23495.94 22096.29 27492.66 25192.01 39196.23 35592.62 19496.94 16793.31 36291.04 16296.03 34979.23 36095.96 20399.13 199
kuosan93.17 23492.60 23594.86 25398.40 16689.54 31898.44 31498.53 10484.46 35288.49 30097.92 23590.57 17397.05 30283.10 34093.49 24497.99 239
AUN-MVS93.28 23192.60 23595.34 23698.29 17390.09 30999.31 23498.56 9291.80 22696.35 18698.00 23189.38 19098.28 24192.46 23869.22 38497.64 246
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22493.56 22999.50 20797.07 30988.75 29688.85 29595.52 30990.97 16496.74 32090.77 26584.45 31094.17 295
LCM-MVSNet-Re92.31 25592.60 23591.43 33497.53 22679.27 38499.02 26891.83 39992.07 21580.31 36594.38 35283.50 25195.48 35697.22 15197.58 17099.54 148
D2MVS92.76 24492.59 23993.27 31095.13 30889.54 31899.69 17299.38 2292.26 21187.59 31494.61 34685.05 23997.79 26891.59 25088.01 28392.47 360
nrg03093.51 22792.53 24096.45 20894.36 32197.20 10599.81 13597.16 29991.60 22989.86 26997.46 24586.37 22697.68 27295.88 17580.31 34494.46 273
tpm cat193.51 22792.52 24196.47 20697.77 20891.47 28396.13 37098.06 20680.98 37292.91 23593.78 35789.66 18598.87 18987.03 31396.39 19699.09 201
ACMM91.95 1092.88 24292.52 24193.98 29095.75 29489.08 32399.77 14597.52 26193.00 17589.95 26697.99 23376.17 31798.46 21893.63 22488.87 26994.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 24592.42 24393.73 29695.91 28688.72 32699.81 13597.53 25994.13 13487.00 32398.23 22474.07 33498.47 21596.22 17088.86 27093.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25699.55 19997.27 28991.17 24489.96 26596.07 29381.10 26996.89 31394.67 19988.91 26794.05 310
UniMVSNet (Re)93.07 23892.13 24595.88 22194.84 31396.24 14399.88 10198.98 3892.49 20489.25 28595.40 31587.09 21797.14 29593.13 23278.16 35594.26 288
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22994.61 31895.28 18199.83 13099.08 3391.49 23289.21 28896.86 26787.14 21696.73 32193.20 22877.52 36094.46 273
IterMVS-LS92.69 24792.11 24694.43 27496.80 26492.74 24799.45 21796.89 32988.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9599.94 6998.42 14596.22 7199.41 7041.37 41294.34 7699.96 6298.92 7599.95 5099.99 23
Anonymous20240521193.10 23791.99 24996.40 21099.10 10989.65 31698.88 28197.93 21883.71 35794.00 22398.75 18668.79 35399.88 10295.08 18591.71 25399.68 113
eth_miper_zixun_eth92.41 25391.93 25093.84 29597.28 24390.68 29598.83 28896.97 32088.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
VDDNet93.12 23691.91 25196.76 19996.67 27192.65 25398.69 30198.21 18882.81 36497.75 14999.28 13161.57 38099.48 16198.09 12094.09 23798.15 235
c3_l92.53 25091.87 25294.52 26697.40 23392.99 24399.40 22096.93 32687.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
gg-mvs-nofinetune93.51 22791.86 25398.47 11497.72 21597.96 7792.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26897.77 13999.56 10299.67 115
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33198.94 27596.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 24092.74 24799.58 19196.75 33986.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
cl____92.31 25591.58 25694.52 26697.33 23992.77 24599.57 19596.78 33886.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
FMVSNet392.69 24791.58 25695.99 21998.29 17397.42 10099.26 24297.62 24689.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
VPA-MVSNet92.70 24691.55 25896.16 21695.09 30996.20 14498.88 28199.00 3691.02 25191.82 24795.29 32576.05 31997.96 26195.62 18081.19 33294.30 286
Patchmatch-test92.65 24991.50 25996.10 21896.85 26190.49 30091.50 39397.19 29482.76 36590.23 26195.59 30595.02 5498.00 25877.41 36996.98 18699.82 92
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 27999.00 11688.04 33798.42 31896.70 34282.30 36788.43 30499.01 15476.97 30699.85 10886.11 32196.50 19394.86 267
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 25291.45 26195.49 22994.05 32695.28 18199.81 13598.74 6492.25 21289.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 273
miper_lstm_enhance91.81 26391.39 26293.06 31797.34 23789.18 32299.38 22596.79 33786.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
WR-MVS92.31 25591.25 26395.48 23294.45 32095.29 18099.60 18898.68 7090.10 27088.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
jajsoiax91.92 26191.18 26494.15 28091.35 37090.95 29099.00 26997.42 27192.61 19587.38 31997.08 25772.46 33997.36 28194.53 20288.77 27194.13 305
dongtai91.55 27291.13 26592.82 32198.16 18586.35 34799.47 21298.51 10883.24 36085.07 34497.56 24390.33 17894.94 36576.09 37591.73 25297.18 253
mvs_tets91.81 26391.08 26694.00 28891.63 36790.58 29898.67 30397.43 26992.43 20587.37 32097.05 26071.76 34197.32 28594.75 19688.68 27394.11 306
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19199.48 21196.83 33387.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24498.93 27697.17 29789.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27293.39 343
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32493.73 33285.61 35198.52 31197.44 26892.77 18689.90 26896.85 26866.64 36498.39 22692.29 24088.61 27493.89 324
JIA-IIPM91.76 26990.70 27094.94 24896.11 27987.51 34093.16 38798.13 20275.79 38697.58 15177.68 40092.84 12497.97 25988.47 29496.54 19199.33 180
Anonymous2024052992.10 25990.65 27196.47 20698.82 13690.61 29798.72 29798.67 7375.54 38793.90 22598.58 20266.23 36599.90 9194.70 19890.67 25698.90 213
Syy-MVS90.00 30690.63 27288.11 36297.68 21874.66 38999.71 16798.35 16790.79 25692.10 24498.67 19179.10 29293.09 38263.35 39695.95 20596.59 258
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33393.98 21899.69 17298.65 7491.03 25088.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 278
VPNet91.81 26390.46 27495.85 22394.74 31595.54 17198.98 27098.59 8692.14 21390.77 25897.44 24668.73 35597.54 27794.89 19277.89 35794.46 273
XXY-MVS91.82 26290.46 27495.88 22193.91 32995.40 17798.87 28497.69 24088.63 30087.87 31197.08 25774.38 33397.89 26591.66 24984.07 31494.35 284
MVP-Stereo90.93 28190.45 27692.37 32691.25 37288.76 32498.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29183.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 27390.35 27794.15 28094.17 32592.62 25499.17 24998.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37898.69 30198.04 20991.41 24086.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
MS-PatchMatch90.65 28890.30 27991.71 33394.22 32485.50 35398.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25783.62 33799.62 9491.60 368
PVSNet_088.03 1991.80 26690.27 28096.38 21298.27 17690.46 30199.94 6999.61 1393.99 14486.26 33597.39 24971.13 34799.89 9698.77 8667.05 39098.79 218
CP-MVSNet91.23 27790.22 28194.26 27893.96 32892.39 25899.09 25398.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
NR-MVSNet91.56 27190.22 28195.60 22794.05 32695.76 15998.25 32598.70 6791.16 24680.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 273
tt080591.28 27590.18 28394.60 26196.26 27687.55 33998.39 31998.72 6589.00 28789.22 28798.47 21262.98 37698.96 18690.57 26888.00 28497.28 252
IterMVS90.91 28290.17 28493.12 31496.78 26790.42 30398.89 27997.05 31289.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 28590.16 28592.93 31996.72 26989.96 31198.89 27996.99 31688.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
V4291.28 27590.12 28694.74 25593.42 33893.46 23299.68 17497.02 31387.36 31689.85 27195.05 33081.31 26897.34 28387.34 30780.07 34693.40 342
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22199.77 14597.02 31388.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
v114491.09 27989.83 28894.87 25093.25 34093.69 22699.62 18596.98 31886.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
GBi-Net90.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28397.53 22691.97 26498.43 31596.95 32187.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test_fmvs289.47 31489.70 29188.77 35894.54 31975.74 38699.83 13094.70 38394.71 10891.08 25396.82 27254.46 38997.78 27092.87 23588.27 28092.80 355
v14890.70 28789.63 29293.92 29192.97 34790.97 28799.75 15396.89 32987.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
ACMH89.72 1790.64 28989.63 29293.66 30295.64 30288.64 32998.55 30797.45 26789.03 28581.62 35997.61 24269.75 35198.41 22289.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 28089.56 29495.41 23497.53 22695.74 16098.98 27097.41 27387.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
ACMH+89.98 1690.35 29689.54 29592.78 32395.99 28386.12 34998.81 29097.18 29689.38 28083.14 35297.76 24168.42 35798.43 22089.11 28686.05 29793.78 331
v14419290.79 28689.52 29694.59 26293.11 34492.77 24599.56 19796.99 31686.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
PS-CasMVS90.63 29089.51 29793.99 28993.83 33091.70 27798.98 27098.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
Baseline_NR-MVSNet90.33 29789.51 29792.81 32292.84 34989.95 31299.77 14593.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
our_test_390.39 29489.48 29993.12 31492.40 35689.57 31799.33 23196.35 35487.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
OurMVSNet-221017-089.81 30989.48 29990.83 33991.64 36681.21 37698.17 33195.38 37391.48 23485.65 34097.31 25072.66 33897.29 28988.15 29784.83 30793.97 318
v119290.62 29189.25 30194.72 25793.13 34193.07 23999.50 20797.02 31386.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
v890.54 29289.17 30294.66 25893.43 33793.40 23599.20 24696.94 32585.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
v192192090.46 29389.12 30394.50 26892.96 34892.46 25699.49 20996.98 31886.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
pmmvs590.17 30389.09 30493.40 30692.10 36189.77 31599.74 15695.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
PEN-MVS90.19 30289.06 30593.57 30393.06 34590.90 29199.06 26098.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28695.08 31090.15 30897.19 35097.43 26984.91 34983.99 34897.06 25974.00 33598.28 24184.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 30688.96 30793.10 31694.81 31488.16 33598.71 29895.54 37093.66 15783.75 35097.20 25365.58 36798.31 23783.96 33587.49 29192.85 354
LF4IMVS89.25 31888.85 30890.45 34392.81 35281.19 37798.12 33294.79 38091.44 23686.29 33497.11 25565.30 37098.11 25288.53 29385.25 30392.07 363
v1090.25 30088.82 30994.57 26493.53 33593.43 23399.08 25596.87 33185.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
v124090.20 30188.79 31094.44 27293.05 34692.27 26099.38 22596.92 32785.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
PatchT90.38 29588.75 31195.25 24095.99 28390.16 30791.22 39597.54 25776.80 38297.26 16086.01 39491.88 14996.07 34866.16 39395.91 20799.51 156
MIMVSNet90.30 29888.67 31295.17 24296.45 27391.64 27992.39 38997.15 30085.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24599.01 208
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31788.09 33697.81 34297.57 25483.91 35688.44 30297.41 24757.44 38697.62 27591.41 25188.59 27697.77 244
Patchmtry89.70 31188.49 31493.33 30896.24 27789.94 31491.37 39496.23 35578.22 38087.69 31293.31 36291.04 16296.03 34980.18 35882.10 32594.02 311
Anonymous2023121189.86 30888.44 31594.13 28298.93 12390.68 29598.54 30998.26 18476.28 38386.73 32595.54 30770.60 34997.56 27690.82 26480.27 34594.15 301
ppachtmachnet_test89.58 31388.35 31693.25 31292.40 35690.44 30299.33 23196.73 34085.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
v7n89.65 31288.29 31793.72 29792.22 35890.56 29999.07 25997.10 30585.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
DTE-MVSNet89.40 31588.24 31892.88 32092.66 35389.95 31299.10 25298.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38898.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 20197.92 240
testgi89.01 31988.04 32091.90 33193.49 33684.89 35799.73 16195.66 36793.89 15285.14 34298.17 22559.68 38394.66 36977.73 36888.88 26896.16 264
SixPastTwentyTwo88.73 32088.01 32190.88 33791.85 36482.24 36998.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
pm-mvs189.36 31687.81 32294.01 28793.40 33991.93 26798.62 30696.48 35186.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
tfpnnormal89.29 31787.61 32394.34 27794.35 32294.13 21498.95 27498.94 4183.94 35484.47 34695.51 31074.84 32997.39 28077.05 37280.41 34291.48 370
FMVSNet588.32 32287.47 32490.88 33796.90 25988.39 33397.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
RPMNet89.76 31087.28 32597.19 18796.29 27492.66 25192.01 39198.31 17670.19 39696.94 16785.87 39587.25 21599.78 12562.69 39795.96 20399.13 199
K. test v388.05 32487.24 32690.47 34291.82 36582.23 37098.96 27397.42 27189.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
FMVSNet188.50 32186.64 32794.08 28395.62 30491.97 26498.43 31596.95 32183.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
TinyColmap87.87 32786.51 32891.94 33095.05 31185.57 35297.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23580.25 35786.37 29691.91 367
KD-MVS_2432*160088.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30096.91 25694.04 21597.17 35197.12 30384.93 34781.96 35692.41 36892.48 13594.51 37079.23 36052.68 40292.56 357
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20679.25 28886.65 40066.85 39182.69 32095.57 266
test_vis1_rt86.87 33086.05 33289.34 35196.12 27878.07 38599.87 10483.54 41092.03 21878.21 37589.51 38145.80 39699.91 8996.25 16993.11 25090.03 380
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38789.71 39892.43 39686.89 32577.83 37790.94 37694.22 8393.63 37887.75 30269.61 38199.79 97
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38299.05 26495.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
TransMVSNet (Re)87.25 32885.28 33593.16 31393.56 33491.03 28698.54 30994.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25374.33 39169.95 39296.66 27364.17 37298.32 23687.88 30188.41 27989.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38198.88 28195.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36396.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
test_040285.58 33483.94 33990.50 34193.81 33185.04 35598.55 30795.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
pmmvs685.69 33383.84 34091.26 33690.00 38184.41 35997.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36598.80 29295.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37298.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27490.96 373
YYNet185.50 33783.33 34392.00 32990.89 37488.38 33499.22 24596.55 34879.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32890.96 37388.58 33099.20 24696.52 34979.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
MVS-HIRNet86.22 33283.19 34595.31 23896.71 27090.29 30492.12 39097.33 28162.85 39786.82 32470.37 40269.37 35297.49 27875.12 37797.99 16498.15 235
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37398.82 28997.35 27785.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36696.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
TDRefinement84.76 34082.56 34891.38 33574.58 40684.80 35897.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22687.92 30063.97 39590.95 374
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38097.21 34996.38 35282.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34398.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36498.46 31295.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27890.34 377
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33291.32 37188.00 33898.67 30395.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24377.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29256.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36096.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26493.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20595.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38397.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39095.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36898.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37193.66 38597.35 27775.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37596.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17418.47 41720.74 41064.59 39598.48 21110.95 41517.09 41456.66 40311.01 41055.94 407
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3209.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9483.37 2520.00 4150.00 4140.00 4130.00 411
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1230.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1570.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.97 28786.10 322
FOURS199.92 3197.66 8899.95 5398.36 16595.58 8599.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 8100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.92 3198.57 5698.52 10592.34 20999.31 7899.83 4395.06 5299.80 12199.70 3499.97 42
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 12100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
GSMVS99.59 133
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 133
sam_mvs94.25 82
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
MTGPAbinary98.28 181
test_post195.78 37759.23 41193.20 11597.74 27191.06 257
test_post63.35 40894.43 6998.13 251
patchmatchnet-post91.70 37395.12 4997.95 262
GG-mvs-BLEND98.54 10998.21 18098.01 7393.87 38498.52 10597.92 14197.92 23599.02 297.94 26498.17 11499.58 10199.67 115
MTMP99.87 10496.49 350
gm-plane-assit96.97 25393.76 22391.47 23598.96 16398.79 19494.92 189
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13393.90 15099.71 3599.86 2695.88 3699.85 108
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3799.85 3095.94 3399.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13399.63 4499.85 108
TestCases95.00 24699.01 11488.43 33196.82 33586.50 32888.71 29698.47 21274.73 33099.88 10285.39 32596.18 19896.71 256
test_prior498.05 7199.94 69
test_prior299.95 5395.78 7999.73 3399.76 6396.00 3299.78 27100.00 1
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
旧先验299.46 21694.21 13399.85 999.95 7096.96 160
新几何299.40 220
新几何199.42 3799.75 6998.27 6498.63 8092.69 19099.55 5599.82 4694.40 71100.00 191.21 25399.94 5599.99 23
旧先验199.76 6697.52 9398.64 7699.85 3095.63 4099.94 5599.99 23
无先验99.49 20998.71 6693.46 161100.00 194.36 20499.99 23
原ACMM299.90 90
原ACMM198.96 7999.73 7396.99 11498.51 10894.06 14099.62 4799.85 3094.97 5899.96 6295.11 18499.95 5099.92 81
test22299.55 8797.41 10199.34 23098.55 9891.86 22299.27 8299.83 4393.84 9799.95 5099.99 23
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata98.42 11999.47 9395.33 17998.56 9293.78 15399.79 2599.85 3093.64 10299.94 7894.97 18799.94 55100.00 1
testdata199.28 24096.35 69
test1299.43 3599.74 7098.56 5798.40 15499.65 4194.76 6299.75 13299.98 3299.99 23
plane_prior795.71 29891.59 281
plane_prior695.76 29291.72 27680.47 280
plane_prior597.87 22598.37 23297.79 13789.55 26194.52 270
plane_prior498.59 199
plane_prior391.64 27996.63 5693.01 232
plane_prior299.84 12396.38 65
plane_prior195.73 295
plane_prior91.74 27399.86 11596.76 5289.59 260
n20.00 420
nn0.00 420
door-mid89.69 404
lessismore_v090.53 34090.58 37680.90 37995.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
LGP-MVS_train93.71 29895.43 30588.67 32797.62 24692.81 18390.05 26298.49 20875.24 32498.40 22495.84 17689.12 26594.07 308
test1198.44 125
door90.31 401
HQP5-MVS91.85 269
HQP-NCC95.78 28899.87 10496.82 4893.37 228
ACMP_Plane95.78 28899.87 10496.82 4893.37 228
BP-MVS97.92 129
HQP4-MVS93.37 22898.39 22694.53 268
HQP3-MVS97.89 22389.60 258
HQP2-MVS80.65 276
NP-MVS95.77 29191.79 27198.65 194
MDTV_nov1_ep13_2view96.26 13996.11 37191.89 22198.06 13794.40 7194.30 20699.67 115
ACMMP++_ref87.04 292
ACMMP++88.23 281
Test By Simon92.82 126
ITE_SJBPF92.38 32595.69 30085.14 35495.71 36592.81 18389.33 28498.11 22770.23 35098.42 22185.91 32388.16 28293.59 339
DeepMVS_CXcopyleft82.92 37295.98 28558.66 40396.01 36092.72 18778.34 37495.51 31058.29 38598.08 25382.57 34385.29 30292.03 365