This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5798.20 399.93 199.98 296.82 23100.00 199.75 28100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 7098.02 699.90 299.95 397.33 17100.00 199.54 39100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4498.32 16197.28 2099.83 1199.91 1597.22 19100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6698.47 299.13 8499.92 1396.38 30100.00 199.74 30100.00 1100.00 1
patch_mono-298.24 6499.12 595.59 21599.67 9286.91 32999.95 4498.89 4397.60 1299.90 299.76 7696.54 2899.98 4699.94 1299.82 9199.88 96
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4498.42 13397.50 1699.52 5599.88 2497.43 1699.71 13599.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12197.27 2299.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9498.44 11397.48 1799.64 4099.94 496.68 2699.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4498.43 12196.48 4499.80 1799.93 1197.44 14100.00 199.92 1399.98 35100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29599.42 2197.03 2999.02 8899.09 14599.35 198.21 22899.73 3399.78 9499.77 110
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 998.86 4797.10 2799.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8798.98 1293.92 27899.63 9481.76 35699.96 2598.56 8099.47 199.19 8299.99 194.16 91100.00 199.92 1399.93 67100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14897.71 8699.98 998.44 11396.85 3299.80 1799.91 1597.57 899.85 10099.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7698.39 14497.20 2699.46 5899.85 3595.53 4699.79 11599.86 18100.00 199.99 24
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4498.56 8097.56 1599.44 6099.85 3595.38 49100.00 199.31 4999.99 2299.87 98
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4498.65 6395.78 6599.73 3099.76 7696.00 3399.80 11299.78 26100.00 199.99 24
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24597.66 1099.81 1399.89 2194.70 6899.86 9699.84 1999.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13498.38 14896.73 3899.88 499.74 8794.89 6599.59 14699.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6298.34 15896.38 4999.81 1399.76 7694.59 7099.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 8198.55 8695.14 8599.72 3499.84 4895.46 47100.00 199.65 3899.99 2299.99 24
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12194.63 10599.63 4199.85 3595.79 4199.85 10099.72 3499.99 2299.99 24
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12194.35 11799.71 3599.86 3195.94 3599.85 10099.69 3799.98 3599.99 24
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 17099.44 1997.33 1999.00 9199.72 9194.03 9499.98 4698.73 81100.00 1100.00 1
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6899.90 196.81 3698.67 10699.77 7293.92 9699.89 8599.27 5199.94 6199.96 74
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9498.52 9396.05 5899.41 6399.79 6494.93 6399.76 12499.07 5599.90 7699.99 24
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9498.52 9396.04 5999.41 6399.79 6494.92 6499.76 12499.05 5699.90 7699.98 55
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6298.42 13396.22 5499.41 6399.78 7094.34 8099.96 5898.92 6699.95 5599.99 24
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6898.46 10894.56 10799.84 999.92 1394.32 8499.86 9699.96 999.98 35100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22598.47 10698.14 499.08 8599.91 1593.09 120100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 13099.97 1897.92 20998.07 598.76 10299.55 11295.00 6099.94 7399.91 1697.68 16199.99 24
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10698.38 14893.19 16499.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11397.96 799.55 5099.94 497.18 21100.00 193.81 20399.94 6199.98 55
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 8198.37 15193.81 14699.81 1399.90 1994.34 8099.86 9699.84 1999.98 3599.97 67
PAPM98.60 3498.42 3399.14 6696.05 26298.96 2499.90 8199.35 2496.68 4098.35 12199.66 10496.45 2998.51 19699.45 4399.89 7899.96 74
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4498.61 7295.00 8899.31 7299.85 3594.22 87100.00 198.78 7799.98 3599.98 55
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9299.66 16298.52 9395.79 6499.01 8999.77 7294.40 7499.75 12798.82 7399.83 8599.98 55
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 8198.21 17893.53 15599.81 1399.89 2194.70 6899.86 9699.84 1999.93 6799.96 74
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12799.90 8199.51 1697.60 1299.20 7999.36 12993.71 10399.91 8097.99 11498.71 13699.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9599.66 16298.52 9395.76 6799.01 8999.77 7294.33 8399.75 12798.80 7699.83 8599.98 55
9.1498.38 4099.87 5799.91 7698.33 15993.22 16399.78 2599.89 2194.57 7199.85 10099.84 1999.97 48
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9499.86 296.70 3998.78 9999.79 6492.03 14899.90 8199.17 5299.86 8399.88 96
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4498.61 7294.77 9799.31 7299.85 3594.22 87100.00 198.70 8299.98 3599.98 55
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8694.87 9599.45 5999.85 3594.07 93100.00 198.67 84100.00 199.98 55
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9498.33 15993.97 13899.76 2799.87 2894.99 6199.75 12798.55 91100.00 199.98 55
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9498.36 15394.08 13099.74 2999.73 8994.08 9299.74 13199.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4498.60 7494.77 9799.31 7299.84 4893.73 102100.00 198.70 8299.98 3599.98 55
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13199.97 1898.39 14494.43 11298.90 9599.87 2894.30 85100.00 199.04 6099.99 2299.99 24
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11398.35 15694.92 9299.32 7199.80 6093.35 10999.78 11799.30 5099.95 5599.96 74
test117298.38 5498.25 4998.77 9399.88 5496.56 13499.80 12798.36 15394.68 10299.20 7999.80 6093.28 11499.78 11799.34 4899.92 7199.98 55
DELS-MVS98.54 4098.22 5099.50 3299.15 11998.65 52100.00 198.58 7697.70 998.21 12899.24 13992.58 13499.94 7398.63 8999.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 998.80 5290.78 24399.62 4499.78 7095.30 50100.00 199.80 2499.93 6799.99 24
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14598.92 2799.54 18598.17 18397.34 1899.85 799.85 3591.20 15899.89 8599.41 4699.67 10198.69 213
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12399.95 4498.38 14895.04 8798.61 11099.80 6093.39 108100.00 198.64 88100.00 199.98 55
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14199.76 13998.31 16394.43 11299.40 6799.75 8293.28 11499.78 11798.90 6999.92 7199.97 67
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4498.43 12195.35 8098.03 13099.75 8294.03 9499.98 4698.11 10799.83 8599.99 24
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10998.37 15194.68 10299.53 5299.83 5192.87 125100.00 198.66 8799.84 8499.99 24
RE-MVS-def98.13 5799.79 7596.37 14199.76 13998.31 16394.43 11299.40 6799.75 8292.95 12398.90 6999.92 7199.97 67
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11999.75 14299.50 1793.90 14399.37 6999.76 7693.24 117100.00 197.75 12799.96 5299.98 55
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13399.40 20298.51 10095.29 8298.51 11399.76 7693.60 10699.71 13598.53 9299.52 11299.95 82
dcpmvs_297.42 9798.09 6095.42 22099.58 10087.24 32699.23 22696.95 30194.28 12298.93 9499.73 8994.39 7899.16 16799.89 1799.82 9199.86 100
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13299.82 12198.30 16693.95 14099.37 6999.77 7292.84 12699.76 12498.95 6399.92 7199.97 67
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10698.24 17492.18 20399.73 3099.87 2893.47 10799.85 10099.74 3099.95 5599.93 85
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9199.94 6298.44 11394.31 12098.50 11499.82 5593.06 12199.99 4098.30 10199.99 2299.93 85
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7298.44 11392.06 20898.40 11999.84 4895.68 42100.00 198.19 10299.71 9999.97 67
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8199.80 12798.28 16895.76 6797.18 14999.88 2492.74 129100.00 198.67 8499.88 8099.99 24
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14399.36 21198.50 10495.21 8498.30 12399.75 8293.29 11399.73 13498.37 9799.30 12299.81 104
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9299.93 6898.39 14494.04 13698.80 9899.74 8792.98 122100.00 198.16 10499.76 9599.93 85
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14998.66 5099.52 18798.08 19597.05 2899.86 599.86 3190.65 16999.71 13599.39 4798.63 13798.69 213
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4498.39 14494.70 10198.26 12699.81 5991.84 152100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8199.39 20698.28 16895.76 6797.18 14999.88 2492.74 129100.00 198.67 8499.88 8099.99 24
CS-MVS-test97.88 7697.94 7197.70 15499.28 11595.20 18499.98 997.15 27895.53 7699.62 4499.79 6492.08 14798.38 21298.75 8099.28 12399.52 155
PAPM_NR98.12 6897.93 7298.70 9799.94 1496.13 15299.82 12198.43 12194.56 10797.52 14199.70 9594.40 7499.98 4697.00 14499.98 3599.99 24
CS-MVS97.79 8397.91 7397.43 16499.10 12094.42 20099.99 397.10 28395.07 8699.68 3899.75 8292.95 12398.34 21698.38 9699.14 12899.54 151
PLCcopyleft95.54 397.93 7497.89 7498.05 13999.82 7094.77 19599.92 7298.46 10893.93 14197.20 14899.27 13495.44 4899.97 5697.41 13299.51 11499.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet98.27 6097.82 7599.63 1599.72 8899.10 2199.98 998.51 10097.00 3098.52 11299.71 9387.80 20199.95 6599.75 2899.38 11999.83 102
ETV-MVS97.92 7597.80 7698.25 13098.14 17996.48 13599.98 997.63 22895.61 7399.29 7699.46 12092.55 13598.82 17799.02 6298.54 13899.46 162
HPM-MVScopyleft97.96 7297.72 7798.68 9899.84 6596.39 14099.90 8198.17 18392.61 18798.62 10999.57 11191.87 15199.67 14298.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 7797.66 7898.47 11899.52 10395.41 17599.47 19698.87 4691.68 21898.84 9699.85 3592.34 14199.99 4098.44 9499.96 52100.00 1
MP-MVS-pluss98.07 7097.64 7999.38 4799.74 8298.41 6499.74 14598.18 18293.35 15996.45 16899.85 3592.64 13299.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 7397.64 7998.83 9199.59 9696.99 120100.00 199.10 2995.38 7998.27 12499.08 14689.00 19299.95 6599.12 5399.25 12499.57 146
lupinMVS97.85 7897.60 8198.62 10397.28 22897.70 8899.99 397.55 23995.50 7899.43 6199.67 10290.92 16598.71 18698.40 9599.62 10499.45 164
WTY-MVS98.10 6997.60 8199.60 2098.92 13599.28 1699.89 8999.52 1495.58 7498.24 12799.39 12693.33 11099.74 13197.98 11695.58 20499.78 109
112198.03 7197.57 8399.40 4499.74 8298.21 6998.31 30298.62 7092.78 17799.53 5299.83 5195.08 54100.00 194.36 19099.92 7199.99 24
HPM-MVS_fast97.80 8297.50 8498.68 9899.79 7596.42 13799.88 9198.16 18791.75 21798.94 9399.54 11491.82 15399.65 14497.62 12999.99 2299.99 24
EIA-MVS97.53 9197.46 8597.76 15198.04 18394.84 19199.98 997.61 23394.41 11597.90 13499.59 10992.40 13998.87 17598.04 11199.13 12999.59 139
ACMMPcopyleft97.74 8697.44 8698.66 10099.92 3696.13 15299.18 23099.45 1894.84 9696.41 17199.71 9391.40 15599.99 4097.99 11498.03 15699.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 8597.38 8798.92 8899.53 10296.84 12599.87 9498.14 19093.78 14896.55 16699.69 9892.28 14299.98 4697.13 13999.44 11799.93 85
test_yl97.83 7997.37 8899.21 5499.18 11697.98 7899.64 17099.27 2691.43 22697.88 13598.99 15495.84 3999.84 10998.82 7395.32 20899.79 106
DCV-MVSNet97.83 7997.37 8899.21 5499.18 11697.98 7899.64 17099.27 2691.43 22697.88 13598.99 15495.84 3999.84 10998.82 7395.32 20899.79 106
abl_697.67 8897.34 9098.66 10099.68 9196.11 15599.68 15898.14 19093.80 14799.27 7799.70 9588.65 19799.98 4697.46 13199.72 9899.89 94
alignmvs97.81 8197.33 9199.25 5298.77 14798.66 5099.99 398.44 11394.40 11698.41 11799.47 11893.65 10499.42 15998.57 9094.26 21799.67 122
CPTT-MVS97.64 8997.32 9298.58 10899.97 395.77 16299.96 2598.35 15689.90 25698.36 12099.79 6491.18 16199.99 4098.37 9799.99 2299.99 24
DROMVSNet97.38 10097.24 9397.80 14597.41 21895.64 16999.99 397.06 28894.59 10699.63 4199.32 13089.20 19098.14 23098.76 7999.23 12599.62 133
OMC-MVS97.28 10197.23 9497.41 16599.76 7993.36 22899.65 16697.95 20596.03 6097.41 14599.70 9589.61 18199.51 14996.73 15198.25 14799.38 171
test250697.53 9197.19 9598.58 10898.66 15196.90 12498.81 27499.77 594.93 9097.95 13298.96 16092.51 13699.20 16394.93 17398.15 14899.64 128
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19499.05 24798.76 5392.65 18598.66 10799.82 5588.52 19899.98 4698.12 10699.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 8397.17 9799.63 1598.98 12899.32 897.49 32399.52 1495.69 7198.32 12297.41 22593.32 11199.77 12198.08 11095.75 20199.81 104
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 20198.14 7099.31 21697.86 21596.43 4699.62 4499.69 9885.56 22399.68 13999.05 5698.31 14497.83 223
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 20198.14 7099.31 21697.86 21596.43 4699.62 4499.69 9885.56 22399.68 13999.05 5698.31 14497.83 223
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 20198.14 7099.31 21697.86 21596.43 4699.62 4499.69 9885.56 22399.68 13999.05 5698.31 14497.83 223
CSCG97.10 10797.04 10197.27 17399.89 5091.92 25899.90 8199.07 3288.67 27795.26 19299.82 5593.17 11999.98 4698.15 10599.47 11599.90 93
sss97.57 9097.03 10299.18 5798.37 16498.04 7599.73 15099.38 2293.46 15798.76 10299.06 14791.21 15799.89 8596.33 15497.01 17799.62 133
thisisatest051597.41 9897.02 10398.59 10797.71 20897.52 9599.97 1898.54 9091.83 21397.45 14499.04 14897.50 999.10 16994.75 18296.37 18899.16 192
F-COLMAP96.93 11396.95 10496.87 18299.71 8991.74 26399.85 10997.95 20593.11 16795.72 18599.16 14392.35 14099.94 7395.32 16699.35 12198.92 202
jason97.24 10396.86 10598.38 12695.73 27497.32 10899.97 1897.40 25895.34 8198.60 11199.54 11487.70 20298.56 19397.94 11799.47 11599.25 187
jason: jason.
114514_t97.41 9896.83 10699.14 6699.51 10597.83 8399.89 8998.27 17188.48 28199.06 8699.66 10490.30 17499.64 14596.32 15599.97 4899.96 74
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14496.67 12999.92 7298.64 6694.51 10996.38 17298.49 19489.05 19199.88 9197.10 14198.34 14299.43 167
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17199.09 23698.84 4993.32 16096.74 16099.72 9186.04 219100.00 198.01 11299.43 11899.94 84
PMMVS96.76 12096.76 10996.76 18598.28 16992.10 25399.91 7697.98 20294.12 12899.53 5299.39 12686.93 21198.73 18496.95 14797.73 15999.45 164
thisisatest053097.10 10796.72 11098.22 13197.60 21196.70 12899.92 7298.54 9091.11 23597.07 15298.97 15897.47 1299.03 17093.73 20896.09 19198.92 202
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10395.81 16099.95 4499.65 1194.73 9999.04 8799.21 14184.48 23299.95 6594.92 17498.74 13599.58 145
diffmvs97.00 11096.64 11298.09 13797.64 20996.17 15199.81 12397.19 27294.67 10498.95 9299.28 13186.43 21598.76 18298.37 9797.42 16799.33 179
MVSFormer96.94 11296.60 11397.95 14197.28 22897.70 8899.55 18397.27 26891.17 23299.43 6199.54 11490.92 16596.89 29794.67 18599.62 10499.25 187
EPP-MVSNet96.69 12596.60 11396.96 17997.74 20193.05 23299.37 20998.56 8088.75 27595.83 18399.01 15196.01 3298.56 19396.92 14897.20 17299.25 187
VNet97.21 10596.57 11599.13 7198.97 12997.82 8499.03 25099.21 2894.31 12099.18 8398.88 17186.26 21899.89 8598.93 6594.32 21699.69 119
CHOSEN 1792x268896.81 11796.53 11697.64 15598.91 13793.07 23099.65 16699.80 395.64 7295.39 18998.86 17584.35 23599.90 8196.98 14599.16 12799.95 82
tttt051796.85 11596.49 11797.92 14397.48 21795.89 15999.85 10998.54 9090.72 24496.63 16298.93 16997.47 1299.02 17193.03 22095.76 20098.85 206
baseline296.71 12496.49 11797.37 16895.63 28195.96 15799.74 14598.88 4592.94 16991.61 22998.97 15897.72 798.62 19194.83 17898.08 15597.53 231
HyFIR lowres test96.66 12796.43 11997.36 17099.05 12293.91 21299.70 15599.80 390.54 24596.26 17498.08 20692.15 14598.23 22796.84 15095.46 20599.93 85
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11895.90 15899.66 16298.06 19696.37 5294.37 20199.49 11783.29 24299.90 8197.63 12899.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs97.09 10996.32 12199.39 4698.93 13398.95 2599.72 15397.35 26194.45 11097.88 13599.42 12286.71 21299.52 14898.48 9393.97 22199.72 116
TESTMET0.1,196.74 12296.26 12298.16 13297.36 22196.48 13599.96 2598.29 16791.93 21095.77 18498.07 20795.54 4498.29 22090.55 25498.89 13199.70 117
thres20096.96 11196.21 12399.22 5398.97 12998.84 3499.85 10999.71 693.17 16596.26 17498.88 17189.87 17999.51 14994.26 19494.91 21199.31 181
CANet_DTU96.76 12096.15 12498.60 10598.78 14697.53 9499.84 11397.63 22897.25 2599.20 7999.64 10681.36 25699.98 4692.77 22398.89 13198.28 216
CDS-MVSNet96.34 13696.07 12597.13 17597.37 22094.96 18899.53 18697.91 21091.55 22195.37 19098.32 20295.05 5797.13 27993.80 20495.75 20199.30 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 13196.04 12697.78 14897.02 23695.44 17399.96 2598.21 17894.07 13195.55 18696.38 25893.90 9898.27 22490.42 25798.83 13399.64 128
EPMVS96.53 13096.01 12798.09 13798.43 16196.12 15496.36 34199.43 2093.53 15597.64 13995.04 30994.41 7398.38 21291.13 24098.11 15199.75 112
tfpn200view996.79 11895.99 12899.19 5698.94 13198.82 3599.78 13199.71 692.86 17096.02 17898.87 17389.33 18599.50 15193.84 20094.57 21299.27 185
thres40096.78 11995.99 12899.16 6298.94 13198.82 3599.78 13199.71 692.86 17096.02 17898.87 17389.33 18599.50 15193.84 20094.57 21299.16 192
baseline96.43 13395.98 13097.76 15197.34 22295.17 18599.51 18997.17 27593.92 14296.90 15599.28 13185.37 22698.64 19097.50 13096.86 18199.46 162
tpmrst96.27 14295.98 13097.13 17597.96 18693.15 22996.34 34298.17 18392.07 20698.71 10595.12 30793.91 9798.73 18494.91 17696.62 18299.50 159
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 17197.93 18894.82 19299.47 19698.15 18991.83 21395.09 19399.11 14491.37 15697.47 25993.47 21197.43 16599.74 113
mvs-test195.53 16295.97 13394.20 26697.77 19885.44 33799.95 4497.06 28894.92 9296.58 16498.72 18185.81 22098.98 17294.80 17998.11 15198.18 217
casdiffmvs96.42 13495.97 13397.77 15097.30 22694.98 18799.84 11397.09 28593.75 15096.58 16499.26 13785.07 22898.78 18097.77 12597.04 17699.54 151
UA-Net96.54 12995.96 13598.27 12998.23 17295.71 16698.00 31698.45 11093.72 15198.41 11799.27 13488.71 19699.66 14391.19 23997.69 16099.44 166
131496.84 11695.96 13599.48 3696.74 25298.52 5998.31 30298.86 4795.82 6389.91 24998.98 15687.49 20499.96 5897.80 12099.73 9799.96 74
iter_conf0596.07 14495.95 13796.44 19698.43 16197.52 9599.91 7696.85 31294.16 12692.49 22597.98 21298.20 497.34 26397.26 13688.29 25694.45 253
iter_conf_final96.01 14795.93 13896.28 20298.38 16397.03 11899.87 9497.03 29294.05 13592.61 22397.98 21298.01 597.34 26397.02 14388.39 25594.47 247
test-mter96.39 13595.93 13897.78 14897.02 23695.44 17399.96 2598.21 17891.81 21595.55 18696.38 25895.17 5198.27 22490.42 25798.83 13399.64 128
thres100view90096.74 12295.92 14099.18 5798.90 13898.77 4099.74 14599.71 692.59 18995.84 18198.86 17589.25 18799.50 15193.84 20094.57 21299.27 185
IS-MVSNet96.29 14095.90 14197.45 16298.13 18094.80 19399.08 23897.61 23392.02 20995.54 18898.96 16090.64 17098.08 23393.73 20897.41 16899.47 161
CostFormer96.10 14395.88 14296.78 18497.03 23592.55 24597.08 33297.83 21890.04 25598.72 10494.89 31695.01 5998.29 22096.54 15395.77 19999.50 159
thres600view796.69 12595.87 14399.14 6698.90 13898.78 3999.74 14599.71 692.59 18995.84 18198.86 17589.25 18799.50 15193.44 21294.50 21599.16 192
PVSNet_BlendedMVS96.05 14595.82 14496.72 18799.59 9696.99 12099.95 4499.10 2994.06 13398.27 12495.80 27489.00 19299.95 6599.12 5387.53 26893.24 328
MVS_Test96.46 13295.74 14598.61 10498.18 17697.23 11099.31 21697.15 27891.07 23698.84 9697.05 23888.17 20098.97 17394.39 18997.50 16499.61 136
Effi-MVS+96.30 13995.69 14698.16 13297.85 19396.26 14497.41 32497.21 27190.37 24898.65 10898.58 19086.61 21498.70 18797.11 14097.37 16999.52 155
MDTV_nov1_ep1395.69 14697.90 18994.15 20495.98 34998.44 11393.12 16697.98 13195.74 27695.10 5398.58 19290.02 26396.92 179
FMVS2_test95.35 16695.68 14894.36 26298.99 12784.98 34099.96 2596.65 32597.60 1299.73 3098.96 16071.58 32599.93 7998.31 10099.37 12098.17 218
TAMVS95.85 15195.58 14996.65 19097.07 23293.50 22199.17 23197.82 21991.39 23095.02 19498.01 20892.20 14397.30 26893.75 20795.83 19899.14 195
MVS96.60 12895.56 15099.72 1296.85 24599.22 1998.31 30298.94 3791.57 22090.90 23799.61 10886.66 21399.96 5897.36 13399.88 8099.99 24
PatchmatchNetpermissive95.94 14995.45 15197.39 16797.83 19494.41 20196.05 34898.40 14192.86 17097.09 15195.28 30494.21 9098.07 23589.26 27098.11 15199.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 14695.40 15297.95 14199.59 9695.22 18399.52 18799.07 3293.96 13996.49 16798.35 20182.28 24699.82 11190.15 26299.22 12698.81 209
EPNet_dtu95.71 15695.39 15396.66 18998.92 13593.41 22599.57 17998.90 4296.19 5697.52 14198.56 19292.65 13197.36 26177.89 34798.33 14399.20 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 15695.38 15496.68 18898.49 15992.28 24999.84 11397.50 24892.12 20592.06 22798.79 17984.69 23098.67 18995.29 16799.66 10299.09 198
3Dnovator91.47 1296.28 14195.34 15599.08 7496.82 24797.47 10299.45 19998.81 5095.52 7789.39 26399.00 15381.97 24899.95 6597.27 13599.83 8599.84 101
Effi-MVS+-dtu94.53 18795.30 15692.22 30997.77 19882.54 34999.59 17697.06 28894.92 9295.29 19195.37 29785.81 22097.89 24594.80 17997.07 17496.23 238
3Dnovator+91.53 1196.31 13895.24 15799.52 2996.88 24498.64 5399.72 15398.24 17495.27 8388.42 28798.98 15682.76 24499.94 7397.10 14199.83 8599.96 74
MVSTER95.53 16295.22 15896.45 19498.56 15397.72 8599.91 7697.67 22692.38 19891.39 23197.14 23297.24 1897.30 26894.80 17987.85 26294.34 264
1112_ss96.01 14795.20 15998.42 12397.80 19696.41 13899.65 16696.66 32492.71 18092.88 22099.40 12492.16 14499.30 16091.92 23193.66 22299.55 148
tpm295.47 16495.18 16096.35 20196.91 24091.70 26796.96 33597.93 20788.04 28898.44 11695.40 29393.32 11197.97 23994.00 19795.61 20399.38 171
Vis-MVSNetpermissive95.72 15495.15 16197.45 16297.62 21094.28 20399.28 22298.24 17494.27 12496.84 15798.94 16779.39 27598.76 18293.25 21398.49 13999.30 183
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 15295.11 16298.02 14099.85 6095.10 18698.74 27998.50 10487.22 29893.66 21099.86 3187.45 20599.95 6590.94 24799.81 9399.02 200
FA-MVS(test-final)95.86 15095.09 16398.15 13597.74 20195.62 17096.31 34398.17 18391.42 22896.26 17496.13 26890.56 17199.47 15792.18 22897.07 17499.35 176
ECVR-MVScopyleft95.66 15995.05 16497.51 16098.66 15193.71 21698.85 27198.45 11094.93 9096.86 15698.96 16075.22 30899.20 16395.34 16598.15 14899.64 128
mvs_anonymous95.65 16095.03 16597.53 15898.19 17595.74 16499.33 21397.49 24990.87 24090.47 24197.10 23488.23 19997.16 27695.92 16097.66 16299.68 120
FE-MVS95.70 15895.01 16697.79 14798.21 17394.57 19695.03 35498.69 5788.90 27297.50 14396.19 26592.60 13399.49 15589.99 26497.94 15899.31 181
test111195.57 16194.98 16797.37 16898.56 15393.37 22798.86 26998.45 11094.95 8996.63 16298.95 16575.21 30999.11 16895.02 17198.14 15099.64 128
CVMVSNet94.68 18294.94 16893.89 28096.80 24886.92 32899.06 24398.98 3594.45 11094.23 20499.02 14985.60 22295.31 34290.91 24895.39 20799.43 167
baseline195.78 15394.86 16998.54 11398.47 16098.07 7399.06 24397.99 20092.68 18394.13 20598.62 18793.28 11498.69 18893.79 20585.76 27798.84 207
BH-untuned95.18 16894.83 17096.22 20498.36 16591.22 27599.80 12797.32 26590.91 23991.08 23498.67 18383.51 23998.54 19594.23 19599.61 10798.92 202
Test_1112_low_res95.72 15494.83 17098.42 12397.79 19796.41 13899.65 16696.65 32592.70 18192.86 22196.13 26892.15 14599.30 16091.88 23293.64 22399.55 148
XVG-OURS94.82 17594.74 17295.06 23198.00 18489.19 30699.08 23897.55 23994.10 12994.71 19699.62 10780.51 26799.74 13196.04 15893.06 22996.25 236
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23098.05 18289.19 30699.08 23897.54 24193.66 15294.87 19599.58 11078.78 28099.79 11597.31 13493.40 22596.25 236
UGNet95.33 16794.57 17497.62 15798.55 15594.85 19098.67 28699.32 2595.75 7096.80 15996.27 26372.18 32299.96 5894.58 18799.05 13098.04 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 18494.50 17594.92 23695.78 26891.85 25999.87 9497.89 21196.82 3393.37 21298.65 18480.65 26598.39 20897.92 11889.60 23394.53 242
dp95.05 17194.43 17696.91 18097.99 18592.73 23996.29 34497.98 20289.70 25995.93 18094.67 32293.83 10198.45 20186.91 30196.53 18499.54 151
h-mvs3394.92 17494.36 17796.59 19198.85 14291.29 27498.93 26098.94 3795.90 6198.77 10098.42 20090.89 16799.77 12197.80 12070.76 35798.72 212
HQP_MVS94.49 18894.36 17794.87 23795.71 27791.74 26399.84 11397.87 21396.38 4993.01 21698.59 18880.47 26998.37 21497.79 12389.55 23694.52 244
BH-RMVSNet95.18 16894.31 17997.80 14598.17 17795.23 18299.76 13997.53 24392.52 19494.27 20399.25 13876.84 29298.80 17890.89 24999.54 11199.35 176
Fast-Effi-MVS+95.02 17294.19 18097.52 15997.88 19094.55 19799.97 1897.08 28688.85 27494.47 20097.96 21484.59 23198.41 20489.84 26697.10 17399.59 139
QAPM95.40 16594.17 18199.10 7296.92 23997.71 8699.40 20298.68 5989.31 26188.94 27598.89 17082.48 24599.96 5893.12 21999.83 8599.62 133
PCF-MVS94.20 595.18 16894.10 18298.43 12298.55 15595.99 15697.91 31897.31 26690.35 24989.48 26299.22 14085.19 22799.89 8590.40 25998.47 14099.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 19094.08 18395.31 22498.27 17090.02 29799.29 22198.56 8095.90 6198.77 10098.00 20990.89 16798.26 22697.80 12069.20 36397.64 228
ADS-MVSNet94.79 17694.02 18497.11 17797.87 19193.79 21394.24 35598.16 18790.07 25396.43 16994.48 32790.29 17598.19 22987.44 28997.23 17099.36 174
miper_enhance_ethall94.36 19393.98 18595.49 21698.68 15095.24 18199.73 15097.29 26793.28 16289.86 25195.97 27294.37 7997.05 28592.20 22784.45 28994.19 273
IB-MVS92.85 694.99 17393.94 18698.16 13297.72 20695.69 16899.99 398.81 5094.28 12292.70 22296.90 24295.08 5499.17 16696.07 15773.88 35299.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 19893.90 18794.55 25196.02 26390.69 28199.98 997.72 22296.62 4391.05 23698.85 17877.21 28898.47 19798.11 10789.51 23894.48 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 20393.88 18893.55 29197.87 19185.94 33394.24 35596.84 31390.07 25396.43 16994.48 32790.29 17595.37 34087.44 28997.23 17099.36 174
Fast-Effi-MVS+-dtu93.72 20793.86 18993.29 29497.06 23386.16 33199.80 12796.83 31492.66 18492.58 22497.83 21681.39 25597.67 25289.75 26796.87 18096.05 240
SCA94.69 18093.81 19097.33 17297.10 23194.44 19898.86 26998.32 16193.30 16196.17 17795.59 28376.48 29697.95 24291.06 24297.43 16599.59 139
mvsmamba94.10 19693.72 19195.25 22693.57 31294.13 20599.67 16196.45 33293.63 15491.34 23397.77 21786.29 21797.22 27496.65 15288.10 26094.40 255
test0.0.03 193.86 19993.61 19294.64 24695.02 29092.18 25299.93 6898.58 7694.07 13187.96 29198.50 19393.90 9894.96 34681.33 33393.17 22796.78 233
cascas94.64 18393.61 19297.74 15397.82 19596.26 14499.96 2597.78 22185.76 31794.00 20697.54 22176.95 29199.21 16297.23 13795.43 20697.76 227
TAPA-MVS92.12 894.42 18993.60 19496.90 18199.33 11391.78 26299.78 13198.00 19989.89 25794.52 19899.47 11891.97 14999.18 16569.90 36399.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 17893.59 19598.33 12796.07 26197.48 10199.56 18198.57 7890.46 24686.51 31098.95 16578.57 28299.94 7393.86 19999.74 9697.57 230
tpmvs94.28 19593.57 19696.40 19898.55 15591.50 27295.70 35398.55 8687.47 29392.15 22694.26 33191.42 15498.95 17488.15 28295.85 19798.76 211
LFMVS94.75 17993.56 19798.30 12899.03 12395.70 16798.74 27997.98 20287.81 29198.47 11599.39 12667.43 34299.53 14798.01 11295.20 21099.67 122
TR-MVS94.54 18593.56 19797.49 16197.96 18694.34 20298.71 28297.51 24790.30 25194.51 19998.69 18275.56 30398.77 18192.82 22295.99 19399.35 176
GeoE94.36 19393.48 19996.99 17897.29 22793.54 22099.96 2596.72 32288.35 28493.43 21198.94 16782.05 24798.05 23688.12 28496.48 18699.37 173
FIs94.10 19693.43 20096.11 20694.70 29496.82 12699.58 17798.93 4192.54 19289.34 26597.31 22887.62 20397.10 28294.22 19686.58 27394.40 255
ab-mvs94.69 18093.42 20198.51 11698.07 18196.26 14496.49 34098.68 5990.31 25094.54 19797.00 24076.30 29899.71 13595.98 15993.38 22699.56 147
DP-MVS94.54 18593.42 20197.91 14499.46 10994.04 20798.93 26097.48 25081.15 34990.04 24699.55 11287.02 21099.95 6588.97 27298.11 15199.73 114
tpm93.70 20893.41 20394.58 24995.36 28587.41 32597.01 33396.90 30890.85 24196.72 16194.14 33290.40 17396.84 30090.75 25288.54 25299.51 157
EI-MVSNet93.73 20693.40 20494.74 24296.80 24892.69 24099.06 24397.67 22688.96 26991.39 23199.02 14988.75 19597.30 26891.07 24187.85 26294.22 270
MSDG94.37 19193.36 20597.40 16698.88 14093.95 21199.37 20997.38 25985.75 31990.80 23899.17 14284.11 23799.88 9186.35 30298.43 14198.36 215
PS-MVSNAJss93.64 20993.31 20694.61 24792.11 33992.19 25199.12 23397.38 25992.51 19588.45 28296.99 24191.20 15897.29 27194.36 19087.71 26594.36 260
ET-MVSNet_ETH3D94.37 19193.28 20797.64 15598.30 16697.99 7799.99 397.61 23394.35 11771.57 36899.45 12196.23 3195.34 34196.91 14985.14 28499.59 139
cl2293.77 20493.25 20895.33 22399.49 10694.43 19999.61 17498.09 19390.38 24789.16 27295.61 28190.56 17197.34 26391.93 23084.45 28994.21 272
FC-MVSNet-test93.81 20293.15 20995.80 21394.30 30196.20 14999.42 20198.89 4392.33 20089.03 27497.27 23087.39 20696.83 30193.20 21486.48 27494.36 260
VDD-MVS93.77 20492.94 21096.27 20398.55 15590.22 29298.77 27897.79 22090.85 24196.82 15899.42 12261.18 36099.77 12198.95 6394.13 21898.82 208
RRT_MVS93.14 21792.92 21193.78 28293.31 31990.04 29699.66 16297.69 22492.53 19388.91 27697.76 21884.36 23396.93 29595.10 16986.99 27194.37 258
GA-MVS93.83 20092.84 21296.80 18395.73 27493.57 21899.88 9197.24 27092.57 19192.92 21896.66 25178.73 28197.67 25287.75 28794.06 22099.17 191
OPM-MVS93.21 21592.80 21394.44 25893.12 32390.85 28099.77 13497.61 23396.19 5691.56 23098.65 18475.16 31098.47 19793.78 20689.39 23993.99 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 24992.79 21488.83 33698.15 17869.87 37298.11 31296.60 32783.93 33594.33 20299.27 13479.60 27499.46 15891.99 22993.16 22897.18 232
LPG-MVS_test92.96 22192.71 21593.71 28595.43 28388.67 31299.75 14297.62 23092.81 17490.05 24498.49 19475.24 30698.40 20695.84 16289.12 24094.07 288
CR-MVSNet93.45 21392.62 21695.94 20996.29 25792.66 24192.01 36696.23 33592.62 18696.94 15393.31 34091.04 16296.03 33179.23 34095.96 19499.13 196
AUN-MVS93.28 21492.60 21795.34 22298.29 16790.09 29599.31 21698.56 8091.80 21696.35 17398.00 20989.38 18498.28 22292.46 22469.22 36297.64 228
miper_ehance_all_eth93.16 21692.60 21794.82 24197.57 21293.56 21999.50 19197.07 28788.75 27588.85 27795.52 28790.97 16496.74 30490.77 25184.45 28994.17 274
LCM-MVSNet-Re92.31 23792.60 21791.43 31797.53 21379.27 36699.02 25191.83 37792.07 20680.31 34694.38 33083.50 24095.48 33897.22 13897.58 16399.54 151
D2MVS92.76 22592.59 22093.27 29595.13 28689.54 30599.69 15699.38 2292.26 20187.59 29594.61 32485.05 22997.79 24791.59 23588.01 26192.47 341
nrg03093.51 21092.53 22196.45 19494.36 29997.20 11199.81 12397.16 27791.60 21989.86 25197.46 22386.37 21697.68 25195.88 16180.31 32194.46 248
tpm cat193.51 21092.52 22296.47 19297.77 19891.47 27396.13 34698.06 19680.98 35092.91 21993.78 33589.66 18098.87 17587.03 29796.39 18799.09 198
ACMM91.95 1092.88 22392.52 22293.98 27795.75 27389.08 30999.77 13497.52 24593.00 16889.95 24897.99 21176.17 30098.46 20093.63 21088.87 24494.39 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 22692.42 22493.73 28395.91 26788.72 31199.81 12397.53 24394.13 12787.00 30498.23 20374.07 31698.47 19796.22 15688.86 24593.99 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 22492.29 22594.47 25691.90 34292.46 24699.55 18397.27 26891.17 23289.96 24796.07 27181.10 25896.89 29794.67 18588.91 24294.05 290
UniMVSNet (Re)93.07 22092.13 22695.88 21094.84 29196.24 14899.88 9198.98 3592.49 19689.25 26795.40 29387.09 20997.14 27893.13 21878.16 33394.26 267
UniMVSNet_NR-MVSNet92.95 22292.11 22795.49 21694.61 29695.28 17999.83 11999.08 3191.49 22289.21 26996.86 24587.14 20896.73 30593.20 21477.52 33894.46 248
IterMVS-LS92.69 22992.11 22794.43 26096.80 24892.74 23799.45 19996.89 30988.98 26789.65 25895.38 29688.77 19496.34 31990.98 24682.04 30394.22 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 20092.06 22999.15 6499.94 1497.50 9999.94 6298.42 13396.22 5499.41 6341.37 38794.34 8099.96 5898.92 6699.95 5599.99 24
bld_raw_dy_0_6492.74 22692.03 23094.87 23793.09 32593.46 22299.12 23395.41 35292.84 17390.44 24297.54 22178.08 28697.04 28793.94 19887.77 26494.11 285
Anonymous20240521193.10 21991.99 23196.40 19899.10 12089.65 30398.88 26597.93 20783.71 33794.00 20698.75 18068.79 33499.88 9195.08 17091.71 23199.68 120
eth_miper_zixun_eth92.41 23591.93 23293.84 28197.28 22890.68 28298.83 27296.97 30088.57 28089.19 27195.73 27889.24 18996.69 30789.97 26581.55 30694.15 280
VDDNet93.12 21891.91 23396.76 18596.67 25592.65 24398.69 28498.21 17882.81 34397.75 13899.28 13161.57 35899.48 15698.09 10994.09 21998.15 219
c3_l92.53 23291.87 23494.52 25297.40 21992.99 23399.40 20296.93 30687.86 28988.69 28095.44 29189.95 17896.44 31590.45 25680.69 31894.14 283
gg-mvs-nofinetune93.51 21091.86 23598.47 11897.72 20697.96 8092.62 36398.51 10074.70 36697.33 14669.59 37998.91 397.79 24797.77 12599.56 11099.67 122
AllTest92.48 23391.64 23695.00 23399.01 12488.43 31698.94 25996.82 31686.50 30788.71 27898.47 19874.73 31299.88 9185.39 30896.18 18996.71 234
DIV-MVS_self_test92.32 23691.60 23794.47 25697.31 22592.74 23799.58 17796.75 32086.99 30287.64 29495.54 28589.55 18296.50 31388.58 27682.44 30094.17 274
cl____92.31 23791.58 23894.52 25297.33 22492.77 23599.57 17996.78 31986.97 30387.56 29695.51 28889.43 18396.62 30988.60 27582.44 30094.16 279
FMVSNet392.69 22991.58 23895.99 20898.29 16797.42 10699.26 22497.62 23089.80 25889.68 25595.32 29981.62 25496.27 32287.01 29885.65 27894.29 266
VPA-MVSNet92.70 22891.55 24096.16 20595.09 28796.20 14998.88 26599.00 3491.02 23891.82 22895.29 30376.05 30297.96 24195.62 16481.19 30994.30 265
Patchmatch-test92.65 23191.50 24196.10 20796.85 24590.49 28791.50 36897.19 27282.76 34490.23 24395.59 28395.02 5898.00 23877.41 34996.98 17899.82 103
COLMAP_ROBcopyleft90.47 1492.18 24091.49 24294.25 26599.00 12688.04 32298.42 30096.70 32382.30 34688.43 28599.01 15176.97 29099.85 10086.11 30596.50 18594.86 241
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 23491.45 24395.49 21694.05 30495.28 17999.81 12398.74 5492.25 20289.21 26996.64 25381.66 25296.73 30593.20 21477.52 33894.46 248
miper_lstm_enhance91.81 24691.39 24493.06 30197.34 22289.18 30899.38 20796.79 31886.70 30687.47 29895.22 30590.00 17795.86 33588.26 28081.37 30894.15 280
WR-MVS92.31 23791.25 24595.48 21994.45 29895.29 17899.60 17598.68 5990.10 25288.07 29096.89 24380.68 26496.80 30393.14 21779.67 32594.36 260
jajsoiax91.92 24491.18 24694.15 26791.35 34890.95 27899.00 25297.42 25592.61 18787.38 30097.08 23572.46 32197.36 26194.53 18888.77 24694.13 284
mvs_tets91.81 24691.08 24794.00 27591.63 34690.58 28598.67 28697.43 25392.43 19787.37 30197.05 23871.76 32397.32 26794.75 18288.68 24894.11 285
pmmvs492.10 24291.07 24895.18 22892.82 33294.96 18899.48 19596.83 31487.45 29488.66 28196.56 25683.78 23896.83 30189.29 26984.77 28793.75 313
anonymousdsp91.79 25190.92 24994.41 26190.76 35392.93 23498.93 26097.17 27589.08 26387.46 29995.30 30078.43 28596.92 29692.38 22588.73 24793.39 324
XVG-ACMP-BASELINE91.22 25990.75 25092.63 30693.73 31085.61 33498.52 29497.44 25292.77 17889.90 25096.85 24666.64 34498.39 20892.29 22688.61 24993.89 304
test_part192.15 24190.72 25196.44 19698.87 14197.46 10398.99 25398.26 17285.89 31486.34 31596.34 26181.71 25097.48 25891.06 24278.99 32794.37 258
JIA-IIPM91.76 25290.70 25294.94 23596.11 26087.51 32493.16 36298.13 19275.79 36397.58 14077.68 37692.84 12697.97 23988.47 27996.54 18399.33 179
Anonymous2024052992.10 24290.65 25396.47 19298.82 14390.61 28498.72 28198.67 6275.54 36493.90 20898.58 19066.23 34599.90 8194.70 18490.67 23298.90 205
TranMVSNet+NR-MVSNet91.68 25390.61 25494.87 23793.69 31193.98 21099.69 15698.65 6391.03 23788.44 28396.83 24980.05 27296.18 32590.26 26176.89 34694.45 253
VPNet91.81 24690.46 25595.85 21294.74 29395.54 17298.98 25498.59 7592.14 20490.77 23997.44 22468.73 33697.54 25694.89 17777.89 33594.46 248
XXY-MVS91.82 24590.46 25595.88 21093.91 30795.40 17698.87 26897.69 22488.63 27987.87 29297.08 23574.38 31597.89 24591.66 23484.07 29394.35 263
MVP-Stereo90.93 26290.45 25792.37 30891.25 35088.76 31098.05 31596.17 33787.27 29784.04 32895.30 30078.46 28497.27 27383.78 32099.70 10091.09 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 25590.35 25894.15 26794.17 30392.62 24499.17 23198.94 3788.87 27386.48 31294.46 32984.36 23396.61 31088.19 28178.51 33193.21 329
EU-MVSNet90.14 28590.34 25989.54 33292.55 33581.06 36098.69 28498.04 19891.41 22986.59 30996.84 24880.83 26293.31 36286.20 30381.91 30494.26 267
MS-PatchMatch90.65 26990.30 26091.71 31694.22 30285.50 33698.24 30697.70 22388.67 27786.42 31396.37 26067.82 34098.03 23783.62 32199.62 10491.60 349
PVSNet_088.03 1991.80 24990.27 26196.38 20098.27 17090.46 28899.94 6299.61 1293.99 13786.26 31797.39 22771.13 32999.89 8598.77 7867.05 36798.79 210
CP-MVSNet91.23 25890.22 26294.26 26493.96 30692.39 24899.09 23698.57 7888.95 27086.42 31396.57 25579.19 27796.37 31790.29 26078.95 32894.02 291
NR-MVSNet91.56 25490.22 26295.60 21494.05 30495.76 16398.25 30598.70 5691.16 23480.78 34596.64 25383.23 24396.57 31191.41 23677.73 33794.46 248
IterMVS90.91 26390.17 26493.12 29896.78 25190.42 29098.89 26397.05 29189.03 26586.49 31195.42 29276.59 29595.02 34487.22 29484.09 29293.93 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 26690.16 26592.93 30296.72 25389.96 29898.89 26396.99 29688.95 27086.63 30895.67 27976.48 29695.00 34587.04 29684.04 29593.84 308
V4291.28 25790.12 26694.74 24293.42 31793.46 22299.68 15897.02 29387.36 29589.85 25395.05 30881.31 25797.34 26387.34 29280.07 32393.40 323
v2v48291.30 25590.07 26795.01 23293.13 32193.79 21399.77 13497.02 29388.05 28789.25 26795.37 29780.73 26397.15 27787.28 29380.04 32494.09 287
v114491.09 26089.83 26894.87 23793.25 32093.69 21799.62 17396.98 29886.83 30589.64 25994.99 31380.94 26097.05 28585.08 31181.16 31093.87 306
GBi-Net90.88 26489.82 26994.08 27097.53 21391.97 25498.43 29796.95 30187.05 29989.68 25594.72 31871.34 32696.11 32687.01 29885.65 27894.17 274
test190.88 26489.82 26994.08 27097.53 21391.97 25498.43 29796.95 30187.05 29989.68 25594.72 31871.34 32696.11 32687.01 29885.65 27894.17 274
FMVS2_test289.47 29489.70 27188.77 33994.54 29775.74 36799.83 11994.70 36494.71 10091.08 23496.82 25054.46 36797.78 24992.87 22188.27 25792.80 336
v14890.70 26889.63 27293.92 27892.97 32890.97 27799.75 14296.89 30987.51 29288.27 28895.01 31081.67 25197.04 28787.40 29177.17 34393.75 313
ACMH89.72 1790.64 27089.63 27293.66 28995.64 28088.64 31498.55 29097.45 25189.03 26581.62 34097.61 22069.75 33298.41 20489.37 26887.62 26793.92 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 26189.56 27495.41 22197.53 21395.74 16498.98 25497.41 25787.05 29988.43 28595.00 31271.34 32696.24 32485.12 31085.21 28394.25 269
ACMH+89.98 1690.35 27789.54 27592.78 30595.99 26486.12 33298.81 27497.18 27489.38 26083.14 33397.76 21868.42 33898.43 20289.11 27186.05 27693.78 312
v14419290.79 26789.52 27694.59 24893.11 32492.77 23599.56 18196.99 29686.38 30989.82 25494.95 31580.50 26897.10 28283.98 31880.41 31993.90 303
PS-CasMVS90.63 27189.51 27793.99 27693.83 30891.70 26798.98 25498.52 9388.48 28186.15 31896.53 25775.46 30496.31 32088.83 27378.86 33093.95 299
Baseline_NR-MVSNet90.33 27889.51 27792.81 30492.84 33089.95 29999.77 13493.94 36984.69 33289.04 27395.66 28081.66 25296.52 31290.99 24576.98 34491.97 347
our_test_390.39 27589.48 27993.12 29892.40 33689.57 30499.33 21396.35 33487.84 29085.30 32394.99 31384.14 23696.09 32980.38 33784.56 28893.71 318
OurMVSNet-221017-089.81 28989.48 27990.83 32291.64 34581.21 35898.17 31095.38 35491.48 22385.65 32297.31 22872.66 32097.29 27188.15 28284.83 28693.97 298
v119290.62 27289.25 28194.72 24493.13 32193.07 23099.50 19197.02 29386.33 31089.56 26195.01 31079.22 27697.09 28482.34 32881.16 31094.01 293
v890.54 27389.17 28294.66 24593.43 31693.40 22699.20 22896.94 30585.76 31787.56 29694.51 32581.96 24997.19 27584.94 31278.25 33293.38 325
v192192090.46 27489.12 28394.50 25492.96 32992.46 24699.49 19396.98 29886.10 31289.61 26095.30 30078.55 28397.03 29082.17 32980.89 31794.01 293
pmmvs590.17 28489.09 28493.40 29292.10 34089.77 30299.74 14595.58 34985.88 31687.24 30395.74 27673.41 31996.48 31488.54 27783.56 29693.95 299
PEN-MVS90.19 28389.06 28593.57 29093.06 32690.90 27999.06 24398.47 10688.11 28685.91 32096.30 26276.67 29395.94 33487.07 29576.91 34593.89 304
LTVRE_ROB88.28 1890.29 28089.05 28694.02 27395.08 28890.15 29497.19 32897.43 25384.91 33083.99 32997.06 23774.00 31798.28 22284.08 31687.71 26593.62 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 28788.96 28793.10 30094.81 29288.16 32098.71 28295.54 35093.66 15283.75 33197.20 23165.58 34798.31 21983.96 31987.49 26992.85 335
LF4IMVS89.25 29988.85 28890.45 32692.81 33381.19 35998.12 31194.79 36191.44 22586.29 31697.11 23365.30 35098.11 23288.53 27885.25 28292.07 344
v1090.25 28188.82 28994.57 25093.53 31493.43 22499.08 23896.87 31185.00 32787.34 30294.51 32580.93 26197.02 29282.85 32579.23 32693.26 327
v124090.20 28288.79 29094.44 25893.05 32792.27 25099.38 20796.92 30785.89 31489.36 26494.87 31777.89 28797.03 29080.66 33681.08 31394.01 293
PatchT90.38 27688.75 29195.25 22695.99 26490.16 29391.22 37097.54 24176.80 35997.26 14786.01 37091.88 15096.07 33066.16 37095.91 19699.51 157
MIMVSNet90.30 27988.67 29295.17 22996.45 25691.64 26992.39 36497.15 27885.99 31390.50 24093.19 34266.95 34394.86 34882.01 33093.43 22499.01 201
UniMVSNet_ETH3D90.06 28688.58 29394.49 25594.67 29588.09 32197.81 32097.57 23883.91 33688.44 28397.41 22557.44 36497.62 25491.41 23688.59 25197.77 226
Patchmtry89.70 29188.49 29493.33 29396.24 25989.94 30191.37 36996.23 33578.22 35787.69 29393.31 34091.04 16296.03 33180.18 33982.10 30294.02 291
Anonymous2023121189.86 28888.44 29594.13 26998.93 13390.68 28298.54 29298.26 17276.28 36086.73 30695.54 28570.60 33097.56 25590.82 25080.27 32294.15 280
ppachtmachnet_test89.58 29388.35 29693.25 29692.40 33690.44 28999.33 21396.73 32185.49 32385.90 32195.77 27581.09 25996.00 33376.00 35582.49 29993.30 326
MVS_030489.28 29888.31 29792.21 31097.05 23486.53 33097.76 32199.57 1385.58 32293.86 20992.71 34451.04 37296.30 32184.49 31492.72 23093.79 311
v7n89.65 29288.29 29893.72 28492.22 33890.56 28699.07 24297.10 28385.42 32586.73 30694.72 31880.06 27197.13 27981.14 33478.12 33493.49 321
DTE-MVSNet89.40 29588.24 29992.88 30392.66 33489.95 29999.10 23598.22 17787.29 29685.12 32596.22 26476.27 29995.30 34383.56 32275.74 34993.41 322
DSMNet-mixed88.28 30488.24 29988.42 34189.64 36075.38 36998.06 31489.86 38085.59 32188.20 28992.14 35176.15 30191.95 36778.46 34596.05 19297.92 222
testgi89.01 30088.04 30191.90 31493.49 31584.89 34199.73 15095.66 34793.89 14585.14 32498.17 20459.68 36194.66 35077.73 34888.88 24396.16 239
SixPastTwentyTwo88.73 30188.01 30290.88 32091.85 34382.24 35198.22 30895.18 35988.97 26882.26 33696.89 24371.75 32496.67 30884.00 31782.98 29793.72 317
pm-mvs189.36 29687.81 30394.01 27493.40 31891.93 25798.62 28996.48 33186.25 31183.86 33096.14 26773.68 31897.04 28786.16 30475.73 35093.04 332
tfpnnormal89.29 29787.61 30494.34 26394.35 30094.13 20598.95 25898.94 3783.94 33484.47 32795.51 28874.84 31197.39 26077.05 35280.41 31991.48 351
FMVSNet588.32 30387.47 30590.88 32096.90 24388.39 31897.28 32695.68 34682.60 34584.67 32692.40 34979.83 27391.16 36976.39 35481.51 30793.09 330
RPMNet89.76 29087.28 30697.19 17496.29 25792.66 24192.01 36698.31 16370.19 37196.94 15385.87 37187.25 20799.78 11762.69 37395.96 19499.13 196
K. test v388.05 30587.24 30790.47 32591.82 34482.23 35298.96 25797.42 25589.05 26476.93 35895.60 28268.49 33795.42 33985.87 30781.01 31593.75 313
FMVSNet188.50 30286.64 30894.08 27095.62 28291.97 25498.43 29796.95 30183.00 34186.08 31994.72 31859.09 36296.11 32681.82 33284.07 29394.17 274
TinyColmap87.87 30886.51 30991.94 31395.05 28985.57 33597.65 32294.08 36784.40 33381.82 33996.85 24662.14 35798.33 21780.25 33886.37 27591.91 348
KD-MVS_2432*160088.00 30686.10 31093.70 28796.91 24094.04 20797.17 32997.12 28184.93 32881.96 33792.41 34792.48 13794.51 35179.23 34052.68 37792.56 338
miper_refine_blended88.00 30686.10 31093.70 28796.91 24094.04 20797.17 32997.12 28184.93 32881.96 33792.41 34792.48 13794.51 35179.23 34052.68 37792.56 338
Patchmatch-RL test86.90 31085.98 31289.67 33184.45 37075.59 36889.71 37392.43 37486.89 30477.83 35690.94 35594.22 8793.63 35987.75 28769.61 35999.79 106
Anonymous2023120686.32 31185.42 31389.02 33589.11 36280.53 36499.05 24795.28 35585.43 32482.82 33493.92 33374.40 31493.44 36166.99 36881.83 30593.08 331
TransMVSNet (Re)87.25 30985.28 31493.16 29793.56 31391.03 27698.54 29294.05 36883.69 33881.09 34396.16 26675.32 30596.40 31676.69 35368.41 36492.06 345
CMPMVSbinary61.59 2184.75 32185.14 31583.57 35090.32 35662.54 37796.98 33497.59 23774.33 36769.95 37096.66 25164.17 35298.32 21887.88 28688.41 25489.84 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 32283.99 31686.91 34488.19 36580.62 36398.88 26595.94 34188.36 28378.87 35194.62 32368.75 33589.11 37366.52 36975.82 34891.00 353
UnsupCasMVSNet_eth85.52 31583.99 31690.10 32889.36 36183.51 34596.65 33897.99 20089.14 26275.89 36293.83 33463.25 35593.92 35581.92 33167.90 36692.88 334
test_040285.58 31483.94 31890.50 32493.81 30985.04 33998.55 29095.20 35876.01 36179.72 35095.13 30664.15 35396.26 32366.04 37186.88 27290.21 360
pmmvs685.69 31383.84 31991.26 31990.00 35984.41 34397.82 31996.15 33875.86 36281.29 34295.39 29561.21 35996.87 29983.52 32373.29 35392.50 340
Anonymous2024052185.15 31983.81 32089.16 33488.32 36382.69 34798.80 27695.74 34479.72 35381.53 34190.99 35465.38 34994.16 35372.69 35981.11 31290.63 357
EG-PatchMatch MVS85.35 31883.81 32089.99 33090.39 35581.89 35498.21 30996.09 33981.78 34874.73 36493.72 33651.56 37197.12 28179.16 34388.61 24990.96 354
YYNet185.50 31783.33 32292.00 31290.89 35288.38 31999.22 22796.55 32879.60 35557.26 37792.72 34379.09 27993.78 35877.25 35077.37 34193.84 308
MDA-MVSNet_test_wron85.51 31683.32 32392.10 31190.96 35188.58 31599.20 22896.52 32979.70 35457.12 37892.69 34579.11 27893.86 35777.10 35177.46 34093.86 307
MVS-HIRNet86.22 31283.19 32495.31 22496.71 25490.29 29192.12 36597.33 26462.85 37286.82 30570.37 37869.37 33397.49 25775.12 35697.99 15798.15 219
CL-MVSNet_self_test84.50 32383.15 32588.53 34086.00 36881.79 35598.82 27397.35 26185.12 32683.62 33290.91 35676.66 29491.40 36869.53 36460.36 37492.40 342
new_pmnet84.49 32482.92 32689.21 33390.03 35882.60 34896.89 33795.62 34880.59 35175.77 36389.17 35865.04 35194.79 34972.12 36081.02 31490.23 359
TDRefinement84.76 32082.56 32791.38 31874.58 38184.80 34297.36 32594.56 36584.73 33180.21 34796.12 27063.56 35498.39 20887.92 28563.97 37090.95 355
KD-MVS_self_test83.59 32882.06 32888.20 34286.93 36680.70 36297.21 32796.38 33382.87 34282.49 33588.97 35967.63 34192.32 36573.75 35862.30 37391.58 350
pmmvs-eth3d84.03 32681.97 32990.20 32784.15 37187.09 32798.10 31394.73 36383.05 34074.10 36687.77 36565.56 34894.01 35481.08 33569.24 36189.49 364
OpenMVS_ROBcopyleft79.82 2083.77 32781.68 33090.03 32988.30 36482.82 34698.46 29595.22 35773.92 36876.00 36191.29 35355.00 36696.94 29468.40 36688.51 25390.34 358
MDA-MVSNet-bldmvs84.09 32581.52 33191.81 31591.32 34988.00 32398.67 28695.92 34280.22 35255.60 37993.32 33968.29 33993.60 36073.76 35776.61 34793.82 310
mvsany_test82.12 33081.14 33285.06 34881.87 37570.41 37197.09 33192.14 37591.27 23177.84 35588.73 36039.31 37595.49 33790.75 25271.24 35689.29 366
N_pmnet80.06 33580.78 33377.89 35591.94 34145.28 38898.80 27656.82 39178.10 35880.08 34893.33 33877.03 28995.76 33668.14 36782.81 29892.64 337
MIMVSNet182.58 32980.51 33488.78 33786.68 36784.20 34496.65 33895.41 35278.75 35678.59 35392.44 34651.88 37089.76 37265.26 37278.95 32892.38 343
FMVS279.99 33680.17 33579.45 35484.02 37262.83 37599.05 24793.49 37288.29 28580.06 34986.65 36828.09 38088.00 37488.63 27473.27 35487.54 370
test_method80.79 33279.70 33684.08 34992.83 33167.06 37499.51 18995.42 35154.34 37681.07 34493.53 33744.48 37492.22 36678.90 34477.23 34292.94 333
new-patchmatchnet81.19 33179.34 33786.76 34582.86 37480.36 36597.92 31795.27 35682.09 34772.02 36786.87 36762.81 35690.74 37171.10 36163.08 37189.19 367
PM-MVS80.47 33378.88 33885.26 34783.79 37372.22 37095.89 35191.08 37885.71 32076.56 36088.30 36136.64 37693.90 35682.39 32769.57 36089.66 363
pmmvs380.27 33477.77 33987.76 34380.32 37782.43 35098.23 30791.97 37672.74 36978.75 35287.97 36457.30 36590.99 37070.31 36262.37 37289.87 361
FMVS78.40 33877.59 34080.81 35380.82 37662.48 37896.96 33593.08 37383.44 33974.57 36584.57 37227.95 38192.63 36484.15 31572.79 35587.32 371
UnsupCasMVSNet_bld79.97 33777.03 34188.78 33785.62 36981.98 35393.66 36097.35 26175.51 36570.79 36983.05 37348.70 37394.91 34778.31 34660.29 37589.46 365
FPMVS68.72 34068.72 34268.71 36265.95 38544.27 39095.97 35094.74 36251.13 37753.26 38090.50 35725.11 38383.00 38060.80 37480.97 31678.87 376
FMVS168.38 34166.92 34372.78 35978.80 37850.36 38490.95 37187.35 38555.47 37458.95 37488.14 36220.64 38587.60 37557.28 37764.69 36880.39 374
APD_test68.38 34166.92 34372.78 35978.80 37850.36 38490.95 37187.35 38555.47 37458.95 37488.14 36220.64 38587.60 37557.28 37764.69 36880.39 374
Gipumacopyleft66.95 34565.00 34572.79 35891.52 34767.96 37366.16 38095.15 36047.89 37858.54 37667.99 38029.74 37887.54 37750.20 38077.83 33662.87 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 34364.73 34676.87 35662.95 38756.25 38289.37 37493.74 37144.53 37961.99 37280.74 37420.42 38786.53 37869.37 36559.50 37687.84 368
PMMVS267.15 34464.15 34776.14 35770.56 38462.07 37993.89 35887.52 38458.09 37360.02 37378.32 37522.38 38484.54 37959.56 37547.03 37981.80 373
EGC-MVSNET69.38 33963.76 34886.26 34690.32 35681.66 35796.24 34593.85 3700.99 3883.22 38992.33 35052.44 36992.92 36359.53 37684.90 28584.21 372
tmp_tt65.23 34662.94 34972.13 36144.90 39050.03 38681.05 37789.42 38338.45 38048.51 38299.90 1954.09 36878.70 38291.84 23318.26 38487.64 369
ANet_high56.10 34752.24 35067.66 36349.27 38956.82 38183.94 37682.02 38770.47 37033.28 38664.54 38117.23 38969.16 38445.59 38223.85 38377.02 377
E-PMN52.30 34952.18 35152.67 36671.51 38245.40 38793.62 36176.60 38936.01 38243.50 38364.13 38227.11 38267.31 38531.06 38526.06 38145.30 384
PMVScopyleft49.05 2353.75 34851.34 35260.97 36540.80 39134.68 39174.82 37989.62 38237.55 38128.67 38772.12 3777.09 39181.63 38143.17 38368.21 36566.59 379
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 35151.22 35352.11 36770.71 38344.97 38994.04 35775.66 39035.34 38442.40 38461.56 38528.93 37965.87 38627.64 38624.73 38245.49 383
MVEpermissive53.74 2251.54 35047.86 35462.60 36459.56 38850.93 38379.41 37877.69 38835.69 38336.27 38561.76 3845.79 39369.63 38337.97 38436.61 38067.24 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 35244.45 35529.05 36919.49 39314.11 39499.68 15818.47 39220.74 38564.59 37198.48 19710.95 39017.09 38956.66 37911.01 38555.94 382
test12337.68 35339.14 35633.31 36819.94 39224.83 39398.36 3019.75 39315.53 38651.31 38187.14 36619.62 38817.74 38847.10 3813.47 38757.36 381
cdsmvs_eth3d_5k23.43 35431.24 3570.00 3710.00 3940.00 3950.00 38298.09 1930.00 3890.00 39099.67 10283.37 2410.00 3900.00 3880.00 3880.00 386
wuyk23d20.37 35520.84 35818.99 37065.34 38627.73 39250.43 3817.67 3949.50 3878.01 3886.34 3886.13 39226.24 38723.40 38710.69 3862.99 385
ab-mvs-re8.28 35611.04 3590.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 39099.40 1240.00 3940.00 3900.00 3880.00 3880.00 386
pcd_1.5k_mvsjas7.60 35710.13 3600.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 39091.20 1580.00 3900.00 3880.00 3880.00 386
test_blank0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.02 3890.00 3940.00 3900.00 3880.00 3880.00 386
uanet_test0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
DCPMVS0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
sosnet-low-res0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
sosnet0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
uncertanet0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
Regformer0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
uanet0.00 3580.00 3610.00 3710.00 3940.00 3950.00 3820.00 3950.00 3890.00 3900.00 3900.00 3940.00 3900.00 3880.00 3880.00 386
FOURS199.92 3697.66 9099.95 4498.36 15395.58 7499.52 55
MSC_two_6792asdad99.93 299.91 4499.80 298.41 137100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3199.80 1799.79 6497.49 10100.00 199.99 599.98 35100.00 1
No_MVS99.93 299.91 4499.80 298.41 137100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13796.63 4199.75 2899.93 1197.49 10
eth-test20.00 394
eth-test0.00 394
ZD-MVS99.92 3698.57 5598.52 9392.34 19999.31 7299.83 5195.06 5699.80 11299.70 3699.97 48
IU-MVS99.93 2799.31 998.41 13797.71 899.84 9100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 14100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 12197.27 2299.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12197.26 2499.80 1799.88 2496.71 24100.00 1
save fliter99.82 7098.79 3799.96 2598.40 14197.66 10
test_0728_THIRD96.48 4499.83 1199.91 1597.87 6100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4498.43 121100.00 199.99 5100.00 1100.00 1
test072699.93 2799.29 1499.96 2598.42 13397.28 2099.86 599.94 497.22 19
GSMVS99.59 139
test_part299.89 5099.25 1799.49 57
sam_mvs194.72 6799.59 139
sam_mvs94.25 86
ambc83.23 35177.17 38062.61 37687.38 37594.55 36676.72 35986.65 36830.16 37796.36 31884.85 31369.86 35890.73 356
MTGPAbinary98.28 168
test_post195.78 35259.23 38693.20 11897.74 25091.06 242
test_post63.35 38394.43 7298.13 231
patchmatchnet-post91.70 35295.12 5297.95 242
GG-mvs-BLEND98.54 11398.21 17398.01 7693.87 35998.52 9397.92 13397.92 21599.02 297.94 24498.17 10399.58 10999.67 122
MTMP99.87 9496.49 330
gm-plane-assit96.97 23893.76 21591.47 22498.96 16098.79 17994.92 174
test9_res99.71 3599.99 22100.00 1
TEST999.92 3698.92 2799.96 2598.43 12193.90 14399.71 3599.86 3195.88 3899.85 100
test_899.92 3698.88 3099.96 2598.43 12194.35 11799.69 3799.85 3595.94 3599.85 100
agg_prior299.48 42100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 12199.63 4199.85 100
TestCases95.00 23399.01 12488.43 31696.82 31686.50 30788.71 27898.47 19874.73 31299.88 9185.39 30896.18 18996.71 234
test_prior498.05 7499.94 62
test_prior299.95 4495.78 6599.73 3099.76 7696.00 3399.78 26100.00 1
test_prior99.43 3899.94 1498.49 6198.65 6399.80 11299.99 24
旧先验299.46 19894.21 12599.85 799.95 6596.96 146
新几何299.40 202
新几何199.42 4199.75 8198.27 6898.63 6992.69 18299.55 5099.82 5594.40 74100.00 191.21 23899.94 6199.99 24
旧先验199.76 7997.52 9598.64 6699.85 3595.63 4399.94 6199.99 24
无先验99.49 19398.71 5593.46 157100.00 194.36 19099.99 24
原ACMM299.90 81
原ACMM198.96 8599.73 8696.99 12098.51 10094.06 13399.62 4499.85 3594.97 6299.96 5895.11 16899.95 5599.92 91
test22299.55 10197.41 10799.34 21298.55 8691.86 21299.27 7799.83 5193.84 10099.95 5599.99 24
testdata299.99 4090.54 255
segment_acmp96.68 26
testdata98.42 12399.47 10795.33 17798.56 8093.78 14899.79 2499.85 3593.64 10599.94 7394.97 17299.94 61100.00 1
testdata199.28 22296.35 53
test1299.43 3899.74 8298.56 5798.40 14199.65 3994.76 6699.75 12799.98 3599.99 24
plane_prior795.71 27791.59 271
plane_prior695.76 27291.72 26680.47 269
plane_prior597.87 21398.37 21497.79 12389.55 23694.52 244
plane_prior498.59 188
plane_prior391.64 26996.63 4193.01 216
plane_prior299.84 11396.38 49
plane_prior195.73 274
plane_prior91.74 26399.86 10696.76 3789.59 235
n20.00 395
nn0.00 395
door-mid89.69 381
lessismore_v090.53 32390.58 35480.90 36195.80 34377.01 35795.84 27366.15 34696.95 29383.03 32475.05 35193.74 316
LGP-MVS_train93.71 28595.43 28388.67 31297.62 23092.81 17490.05 24498.49 19475.24 30698.40 20695.84 16289.12 24094.07 288
test1198.44 113
door90.31 379
HQP5-MVS91.85 259
HQP-NCC95.78 26899.87 9496.82 3393.37 212
ACMP_Plane95.78 26899.87 9496.82 3393.37 212
BP-MVS97.92 118
HQP4-MVS93.37 21298.39 20894.53 242
HQP3-MVS97.89 21189.60 233
HQP2-MVS80.65 265
NP-MVS95.77 27191.79 26198.65 184
MDTV_nov1_ep13_2view96.26 14496.11 34791.89 21198.06 12994.40 7494.30 19399.67 122
ACMMP++_ref87.04 270
ACMMP++88.23 258
Test By Simon92.82 128
ITE_SJBPF92.38 30795.69 27985.14 33895.71 34592.81 17489.33 26698.11 20570.23 33198.42 20385.91 30688.16 25993.59 320
DeepMVS_CXcopyleft82.92 35295.98 26658.66 38096.01 34092.72 17978.34 35495.51 28858.29 36398.08 23382.57 32685.29 28192.03 346