This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17297.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 31100.00 199.74 30100.00 1100.00 1
patch_mono-298.24 5699.12 595.59 22399.67 7786.91 34399.95 5298.89 4997.60 2299.90 399.76 6396.54 2999.98 4399.94 1199.82 7699.88 85
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14397.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13197.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12397.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13196.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 8999.09 14599.35 198.21 23999.73 3299.78 7999.77 101
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3498.56 9299.47 199.19 8399.99 194.16 85100.00 199.92 1299.93 60100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12396.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6599.97 5399.87 1999.64 8799.95 71
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8398.39 15597.20 3899.46 6399.85 3095.53 4599.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6599.85 3095.38 48100.00 199.31 5199.99 2199.87 87
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 9999.98 48
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14798.38 15996.73 5399.88 699.74 7694.89 6199.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16996.38 6599.81 1599.76 6394.59 6899.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 13194.35 12299.71 3499.86 2695.94 3599.85 10899.69 3599.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9099.72 8194.03 8899.98 4398.73 83100.00 1100.00 1
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
test_fmvsm_n_192098.44 4198.61 2397.92 13999.27 10195.18 183100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10298.59 219
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10599.75 6992.76 12499.94 7799.88 1899.44 10899.94 74
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6899.78 5994.34 7799.96 6198.92 7099.95 4999.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24098.47 11598.14 1099.08 8699.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 17299.96 6199.89 1699.43 11099.98 48
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21998.07 1198.76 10399.55 10895.00 5899.94 7799.91 1597.68 16299.99 23
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11798.38 15993.19 16999.77 2799.94 495.54 43100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12397.96 1499.55 5499.94 497.18 21100.00 193.81 21499.94 5499.98 48
PAPM98.60 3098.42 3199.14 5996.05 27398.96 2699.90 9099.35 2596.68 5598.35 12399.66 9696.45 3098.51 20699.45 4599.89 6699.96 64
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9098.21 18693.53 15899.81 1599.89 1994.70 6799.86 10799.84 2299.93 6099.96 64
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 9099.51 1797.60 2299.20 8199.36 12693.71 9899.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1498.38 3499.87 5199.91 8398.33 17093.22 16899.78 2699.89 1994.57 6999.85 10899.84 2299.97 42
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15399.87 10499.86 296.70 5498.78 10099.79 5592.03 14599.90 9199.17 5799.86 7099.88 85
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 81100.00 198.70 8499.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9894.87 10399.45 6499.85 3094.07 87100.00 198.67 86100.00 199.98 48
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10498.33 17093.97 14399.76 2899.87 2494.99 5999.75 13298.55 93100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10498.36 16394.08 13599.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18296.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15999.94 7799.67 3699.62 8999.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 97100.00 198.70 8499.98 3299.98 48
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15594.43 11798.90 9499.87 2494.30 79100.00 199.04 6399.99 2199.99 23
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12598.35 16594.92 10199.32 7599.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13099.24 13792.58 13099.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25899.62 4699.78 5995.30 49100.00 199.80 2599.93 6099.99 23
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20098.17 19197.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8598.69 216
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15995.04 9798.61 11299.80 5193.39 102100.00 198.64 89100.00 199.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6993.28 10999.78 12598.90 7399.92 6399.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 13195.35 9198.03 13499.75 6994.03 8899.98 4398.11 11099.83 7299.99 23
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12098.37 16294.68 11099.53 5799.83 4392.87 120100.00 198.66 8899.84 7199.99 23
RE-MVS-def98.13 5199.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6992.95 11898.90 7399.92 6399.97 58
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15599.50 1893.90 14899.37 7399.76 6393.24 111100.00 197.75 13399.96 4699.98 48
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21798.51 10795.29 9398.51 11599.76 6393.60 10199.71 13898.53 9499.52 9999.95 71
dcpmvs_297.42 9398.09 5495.42 22899.58 8587.24 33999.23 24196.95 31394.28 12798.93 9399.73 7894.39 7599.16 17399.89 1699.82 7699.86 89
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13598.30 17793.95 14599.37 7399.77 6192.84 12199.76 13198.95 6799.92 6399.97 58
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12394.31 12598.50 11699.82 4693.06 11599.99 3698.30 10399.99 2199.93 76
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12392.06 21798.40 12199.84 4195.68 41100.00 198.19 10599.71 8399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22698.50 11295.21 9598.30 12599.75 6993.29 10899.73 13798.37 9999.30 11699.81 94
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15594.04 14198.80 9999.74 7692.98 117100.00 198.16 10799.76 8099.93 76
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20298.08 20397.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 13898.69 216
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15594.70 10998.26 12899.81 5091.84 149100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22198.28 17995.76 8097.18 15699.88 2192.74 125100.00 198.67 8699.88 6899.99 23
CS-MVS-test97.88 6797.94 6397.70 15499.28 10095.20 18299.98 1497.15 29195.53 8799.62 4699.79 5592.08 14498.38 22298.75 8299.28 11799.52 147
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13598.43 13194.56 11397.52 14699.70 8594.40 7299.98 4397.00 15099.98 3299.99 23
CS-MVS97.79 7697.91 6597.43 16999.10 10994.42 19999.99 497.10 29695.07 9699.68 3799.75 6992.95 11898.34 22698.38 9899.14 12399.54 143
mvsany_test197.82 7297.90 6697.55 16298.77 13893.04 23999.80 14197.93 21696.95 4599.61 5299.68 9390.92 16399.83 11899.18 5698.29 14899.80 96
PLCcopyleft95.54 397.93 6597.89 6798.05 13399.82 5894.77 19499.92 7898.46 11793.93 14697.20 15599.27 13295.44 4799.97 5397.41 13899.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15599.06 11194.41 20099.98 1498.97 4097.34 2999.63 4399.69 8787.27 20899.97 5399.62 3799.06 12798.62 218
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10797.00 4398.52 11499.71 8387.80 20199.95 6999.75 2899.38 11299.83 91
ETV-MVS97.92 6697.80 7098.25 12198.14 18096.48 12599.98 1497.63 23895.61 8499.29 7999.46 11692.55 13198.82 18599.02 6698.54 13999.46 155
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14998.63 14694.26 20599.96 3498.92 4697.18 3999.75 2999.69 8787.00 21399.97 5399.46 4498.89 13099.08 195
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 9098.17 19192.61 19498.62 11199.57 10791.87 14899.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21198.87 5291.68 22898.84 9699.85 3092.34 13899.99 3698.44 9699.96 46100.00 1
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15898.18 19093.35 16396.45 17599.85 3092.64 12799.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 19399.95 6999.12 5899.25 11899.57 137
lupinMVS97.85 6997.60 7698.62 9397.28 23597.70 8199.99 497.55 24995.50 8999.43 6699.67 9490.92 16398.71 19598.40 9799.62 8999.45 157
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9899.52 1595.58 8598.24 12999.39 12393.33 10599.74 13497.98 11995.58 20999.78 100
test_fmvsmvis_n_192097.67 8397.59 7897.91 14197.02 24295.34 17499.95 5298.45 11897.87 1597.02 16099.59 10489.64 18199.98 4399.41 4899.34 11598.42 222
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 10198.16 19591.75 22798.94 9299.54 11091.82 15099.65 14797.62 13699.99 2199.99 23
EIA-MVS97.53 8697.46 8097.76 15198.04 18594.84 19099.98 1497.61 24394.41 12097.90 13899.59 10492.40 13698.87 18298.04 11499.13 12499.59 130
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28496.20 14099.94 6898.05 20698.17 898.89 9599.42 11887.65 20399.90 9199.50 4199.60 9599.82 92
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24599.45 1994.84 10496.41 17899.71 8391.40 15299.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10498.14 19993.78 15196.55 17399.69 8792.28 13999.98 4397.13 14599.44 10899.93 76
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12394.40 12198.41 11999.47 11493.65 9999.42 16298.57 9294.26 22999.67 113
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15499.96 3498.35 16589.90 27298.36 12299.79 5591.18 15899.99 3698.37 9999.99 2199.99 23
testing1197.48 8897.27 8898.10 12998.36 16296.02 14799.92 7898.45 11893.45 16298.15 13298.70 18795.48 4699.22 16597.85 12595.05 21999.07 196
EC-MVSNet97.38 9697.24 8997.80 14497.41 22495.64 16399.99 497.06 30194.59 11299.63 4399.32 12889.20 19198.14 24298.76 8199.23 12099.62 124
OMC-MVS97.28 9897.23 9097.41 17099.76 6693.36 23499.65 18097.95 21496.03 7597.41 15099.70 8589.61 18299.51 15296.73 15998.25 14999.38 164
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16197.38 22694.40 20299.90 9098.64 7696.47 6199.51 6199.65 9884.99 23399.93 8599.22 5599.09 12698.46 220
test250697.53 8697.19 9298.58 9898.66 14496.90 11498.81 28899.77 594.93 9997.95 13698.96 16192.51 13299.20 16994.93 18498.15 15099.64 119
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19399.05 26298.76 6392.65 19298.66 10999.82 4688.52 19899.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8298.32 12497.41 24293.32 10699.77 12898.08 11395.75 20699.81 94
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
CSCG97.10 10697.04 9897.27 17999.89 4591.92 26599.90 9099.07 3488.67 29595.26 20099.82 4693.17 11399.98 4398.15 10899.47 10499.90 83
sss97.57 8597.03 9999.18 5098.37 16198.04 6799.73 16399.38 2393.46 16098.76 10399.06 14891.21 15499.89 9696.33 16297.01 17999.62 124
thisisatest051597.41 9497.02 10098.59 9797.71 20997.52 8799.97 2798.54 10191.83 22397.45 14999.04 14997.50 999.10 17594.75 19296.37 19199.16 187
F-COLMAP96.93 11596.95 10196.87 18999.71 7591.74 27099.85 12097.95 21493.11 17295.72 19399.16 14392.35 13799.94 7795.32 17799.35 11498.92 202
testing9997.17 10396.91 10297.95 13698.35 16495.70 15999.91 8398.43 13192.94 17597.36 15198.72 18594.83 6299.21 16697.00 15094.64 22198.95 201
testing9197.16 10496.90 10397.97 13598.35 16495.67 16299.91 8398.42 14392.91 17797.33 15298.72 18594.81 6399.21 16696.98 15294.63 22299.03 198
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 15995.65 29394.21 20799.83 13298.50 11296.27 7099.65 4099.64 9984.72 23499.93 8599.04 6398.84 13398.74 213
jason97.24 10096.86 10598.38 11695.73 28797.32 9799.97 2797.40 26795.34 9298.60 11399.54 11087.70 20298.56 20397.94 12099.47 10499.25 182
jason: jason.
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9898.27 18188.48 29999.06 8799.66 9690.30 17499.64 14896.32 16399.97 4299.96 64
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17998.49 20689.05 19299.88 10297.10 14798.34 14399.43 160
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16599.09 25198.84 5893.32 16596.74 16899.72 8186.04 222100.00 198.01 11599.43 11099.94 74
PMMVS96.76 12396.76 10996.76 19298.28 16992.10 26099.91 8397.98 21194.12 13399.53 5799.39 12386.93 21498.73 19296.95 15597.73 16099.45 157
testing22297.08 11096.75 11098.06 13298.56 14796.82 11699.85 12098.61 8292.53 20098.84 9698.84 18193.36 10398.30 23095.84 17194.30 22899.05 197
UWE-MVS96.79 12096.72 11197.00 18498.51 15493.70 22199.71 16898.60 8492.96 17497.09 15798.34 21596.67 2898.85 18492.11 24096.50 18798.44 221
thisisatest053097.10 10696.72 11198.22 12297.60 21596.70 11999.92 7898.54 10191.11 24797.07 15998.97 15997.47 1299.03 17693.73 21996.09 19498.92 202
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15299.95 5299.65 1294.73 10799.04 8899.21 13984.48 23799.95 6994.92 18598.74 13699.58 136
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9898.57 8991.10 24898.17 13198.59 19793.86 9498.19 24095.64 17495.24 21799.28 179
diffmvspermissive97.00 11296.64 11498.09 13097.64 21396.17 14399.81 13797.19 28594.67 11198.95 9199.28 12986.43 21898.76 19098.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 11496.60 11697.95 13697.28 23597.70 8199.55 19897.27 28091.17 24499.43 6699.54 11090.92 16396.89 30994.67 19599.62 8999.25 182
EPP-MVSNet96.69 12896.60 11696.96 18697.74 20293.05 23899.37 22498.56 9288.75 29395.83 19199.01 15296.01 3398.56 20396.92 15697.20 17399.25 182
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12599.18 8498.88 17286.26 22199.89 9698.93 6994.32 22799.69 110
CHOSEN 1792x268896.81 11996.53 11997.64 15798.91 12993.07 23699.65 18099.80 395.64 8395.39 19798.86 17784.35 24099.90 9196.98 15299.16 12299.95 71
tttt051796.85 11796.49 12097.92 13997.48 22295.89 15199.85 12098.54 10190.72 25996.63 17098.93 17097.47 1299.02 17793.03 23195.76 20598.85 206
baseline296.71 12796.49 12097.37 17395.63 29595.96 14999.74 15898.88 5192.94 17591.61 24298.97 15997.72 798.62 20194.83 18998.08 15697.53 242
HyFIR lowres test96.66 13096.43 12297.36 17599.05 11293.91 21699.70 17299.80 390.54 26196.26 18198.08 22192.15 14298.23 23896.84 15895.46 21099.93 76
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 15099.66 17898.06 20496.37 6894.37 20999.49 11383.29 24799.90 9197.63 13599.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16697.35 27094.45 11597.88 14099.42 11886.71 21599.52 15198.48 9593.97 23399.72 107
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22896.48 12599.96 3498.29 17891.93 22095.77 19298.07 22295.54 4398.29 23190.55 26698.89 13099.70 108
test_cas_vis1_n_192096.59 13296.23 12697.65 15698.22 17394.23 20699.99 497.25 28297.77 1799.58 5399.08 14677.10 29899.97 5397.64 13499.45 10798.74 213
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12099.71 793.17 17096.26 18198.88 17289.87 17999.51 15294.26 20394.91 22099.31 174
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12597.63 23897.25 3799.20 8199.64 9981.36 26099.98 4392.77 23498.89 13098.28 225
CDS-MVSNet96.34 14296.07 12997.13 18197.37 22794.96 18799.53 20197.91 22091.55 23195.37 19898.32 21695.05 5597.13 29193.80 21595.75 20699.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 13596.04 13097.78 14797.02 24295.44 16999.96 3498.21 18694.07 13695.55 19496.38 27693.90 9298.27 23590.42 26998.83 13499.64 119
EPMVS96.53 13496.01 13198.09 13098.43 15896.12 14696.36 36099.43 2193.53 15897.64 14495.04 32694.41 7198.38 22291.13 25298.11 15399.75 103
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.27 180
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.16 187
baseline96.43 13795.98 13497.76 15197.34 22995.17 18499.51 20497.17 28893.92 14796.90 16399.28 12985.37 22998.64 20097.50 13796.86 18399.46 155
tpmrst96.27 14895.98 13497.13 18197.96 18893.15 23596.34 36198.17 19192.07 21598.71 10795.12 32493.91 9198.73 19294.91 18796.62 18499.50 151
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17697.93 19094.82 19199.47 21198.15 19891.83 22395.09 20199.11 14491.37 15397.47 27193.47 22297.43 16699.74 104
casdiffmvspermissive96.42 13995.97 13797.77 14997.30 23394.98 18699.84 12597.09 29893.75 15396.58 17299.26 13585.07 23198.78 18897.77 13197.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 13395.96 13898.27 12098.23 17295.71 15898.00 33298.45 11893.72 15498.41 11999.27 13288.71 19799.66 14691.19 25197.69 16199.44 159
131496.84 11895.96 13899.48 3496.74 26098.52 5698.31 31898.86 5395.82 7889.91 26398.98 15787.49 20599.96 6197.80 12699.73 8299.96 64
iter_conf0596.07 15095.95 14096.44 20398.43 15897.52 8799.91 8396.85 32494.16 13192.49 23597.98 22798.20 497.34 27597.26 14288.29 27194.45 269
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14397.44 22395.47 16899.86 11797.29 27893.35 16396.03 18599.19 14085.39 22898.72 19497.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final96.01 15395.93 14296.28 20898.38 16097.03 10899.87 10497.03 30494.05 14092.61 23197.98 22798.01 597.34 27597.02 14988.39 27094.47 263
test-mter96.39 14095.93 14297.78 14797.02 24295.44 16999.96 3498.21 18691.81 22595.55 19496.38 27695.17 5098.27 23590.42 26998.83 13499.64 119
thres100view90096.74 12595.92 14499.18 5098.90 13098.77 4099.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.84 21194.57 22399.27 180
IS-MVSNet96.29 14695.90 14597.45 16798.13 18194.80 19299.08 25397.61 24392.02 21995.54 19698.96 16190.64 16998.08 24593.73 21997.41 16999.47 154
CostFormer96.10 14995.88 14696.78 19197.03 24192.55 25297.08 34997.83 22890.04 27198.72 10694.89 33395.01 5798.29 23196.54 16195.77 20499.50 151
thres600view796.69 12895.87 14799.14 5998.90 13098.78 3999.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.44 22394.50 22699.16 187
PVSNet_BlendedMVS96.05 15195.82 14896.72 19499.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 29189.00 19399.95 6999.12 5887.53 28493.24 342
test_fmvsmconf0.01_n96.39 14095.74 14998.32 11891.47 36495.56 16699.84 12597.30 27697.74 1897.89 13999.35 12779.62 27999.85 10899.25 5499.24 11999.55 139
MVS_Test96.46 13695.74 14998.61 9498.18 17797.23 9999.31 23197.15 29191.07 24998.84 9697.05 25588.17 20098.97 17894.39 19997.50 16599.61 127
Effi-MVS+96.30 14595.69 15198.16 12497.85 19596.26 13597.41 34197.21 28490.37 26498.65 11098.58 20086.61 21798.70 19697.11 14697.37 17099.52 147
MDTV_nov1_ep1395.69 15197.90 19194.15 20895.98 36998.44 12393.12 17197.98 13595.74 29395.10 5298.58 20290.02 27596.92 181
test_fmvs195.35 17295.68 15394.36 27298.99 11784.98 35299.96 3496.65 33797.60 2299.73 3298.96 16171.58 33899.93 8598.31 10299.37 11398.17 226
TAMVS95.85 15795.58 15496.65 19797.07 23993.50 22799.17 24697.82 22991.39 24195.02 20298.01 22392.20 14097.30 28093.75 21895.83 20399.14 190
MVS96.60 13195.56 15599.72 1396.85 25399.22 2098.31 31898.94 4191.57 23090.90 25199.61 10386.66 21699.96 6197.36 13999.88 6899.99 23
PatchmatchNetpermissive95.94 15595.45 15697.39 17297.83 19694.41 20096.05 36798.40 15292.86 17897.09 15795.28 32194.21 8398.07 24789.26 28298.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 15295.40 15797.95 13699.59 8195.22 18199.52 20299.07 3493.96 14496.49 17498.35 21482.28 25199.82 12090.15 27499.22 12198.81 209
EPNet_dtu95.71 16295.39 15896.66 19698.92 12593.41 23199.57 19498.90 4796.19 7397.52 14698.56 20292.65 12697.36 27377.89 36398.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16295.38 15996.68 19598.49 15692.28 25699.84 12597.50 25792.12 21492.06 24098.79 18284.69 23598.67 19995.29 17899.66 8699.09 193
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25597.47 9399.45 21498.81 6095.52 8889.39 27799.00 15481.97 25399.95 6997.27 14199.83 7299.84 90
test_vis1_n_192095.44 17095.31 16195.82 21998.50 15588.74 32299.98 1497.30 27697.84 1699.85 999.19 14066.82 35899.97 5398.82 7799.46 10698.76 211
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20082.54 36399.59 19097.06 30194.92 10195.29 19995.37 31485.81 22397.89 25794.80 19097.07 17596.23 252
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25298.64 5299.72 16698.24 18395.27 9488.42 30298.98 15782.76 24999.94 7797.10 14799.83 7299.96 64
MVSTER95.53 16895.22 16496.45 20198.56 14797.72 7899.91 8397.67 23692.38 20891.39 24497.14 24997.24 1897.30 28094.80 19087.85 27894.34 279
1112_ss96.01 15395.20 16598.42 11397.80 19896.41 12899.65 18096.66 33692.71 18792.88 22899.40 12192.16 14199.30 16391.92 24393.66 23499.55 139
tpm295.47 16995.18 16696.35 20796.91 24891.70 27496.96 35297.93 21688.04 30698.44 11895.40 31093.32 10697.97 25194.00 20695.61 20899.38 164
Vis-MVSNetpermissive95.72 16095.15 16797.45 16797.62 21494.28 20499.28 23798.24 18394.27 12996.84 16598.94 16879.39 28198.76 19093.25 22498.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 15895.11 16898.02 13499.85 5495.10 18598.74 29398.50 11287.22 31693.66 21899.86 2687.45 20699.95 6990.94 25899.81 7899.02 199
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20295.62 16496.31 36298.17 19191.42 23996.26 18196.13 28590.56 17099.47 16092.18 23997.07 17599.35 169
ECVR-MVScopyleft95.66 16595.05 17097.51 16598.66 14493.71 22098.85 28598.45 11894.93 9996.86 16498.96 16175.22 32199.20 16995.34 17698.15 15099.64 119
mvs_anonymous95.65 16695.03 17197.53 16398.19 17695.74 15699.33 22897.49 25890.87 25390.47 25597.10 25188.23 19997.16 28895.92 16997.66 16399.68 111
FE-MVS95.70 16495.01 17297.79 14698.21 17494.57 19595.03 37498.69 6888.90 29097.50 14896.19 28292.60 12999.49 15889.99 27697.94 15999.31 174
test111195.57 16794.98 17397.37 17398.56 14793.37 23398.86 28398.45 11894.95 9896.63 17098.95 16675.21 32299.11 17495.02 18298.14 15299.64 119
CVMVSNet94.68 18994.94 17493.89 29096.80 25686.92 34299.06 25898.98 3894.45 11594.23 21399.02 15085.60 22495.31 35690.91 25995.39 21399.43 160
baseline195.78 15994.86 17598.54 10398.47 15798.07 6599.06 25897.99 20992.68 19094.13 21498.62 19693.28 10998.69 19793.79 21685.76 29398.84 207
BH-untuned95.18 17494.83 17696.22 21098.36 16291.22 28299.80 14197.32 27490.91 25291.08 24898.67 18983.51 24498.54 20594.23 20499.61 9398.92 202
Test_1112_low_res95.72 16094.83 17698.42 11397.79 19996.41 12899.65 18096.65 33792.70 18892.86 22996.13 28592.15 14299.30 16391.88 24493.64 23599.55 139
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21090.97 28499.71 16898.35 16590.79 25692.10 23898.67 18992.46 13593.09 37787.13 30795.95 19996.59 248
XVG-OURS94.82 18194.74 17995.06 24098.00 18689.19 31799.08 25397.55 24994.10 13494.71 20499.62 10280.51 27299.74 13496.04 16793.06 24296.25 250
XVG-OURS-SEG-HR94.79 18394.70 18095.08 23998.05 18489.19 31799.08 25397.54 25193.66 15594.87 20399.58 10678.78 28899.79 12397.31 14093.40 23796.25 250
UGNet95.33 17394.57 18197.62 16098.55 15094.85 18998.67 30199.32 2695.75 8196.80 16796.27 28072.18 33599.96 6194.58 19799.05 12898.04 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 19194.50 18294.92 24595.78 28091.85 26699.87 10497.89 22196.82 4893.37 22098.65 19280.65 27098.39 21897.92 12189.60 24894.53 258
dp95.05 17794.43 18396.91 18797.99 18792.73 24696.29 36397.98 21189.70 27595.93 18894.67 33993.83 9698.45 21186.91 31496.53 18699.54 143
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21083.70 35899.90 9096.57 34097.40 2899.67 3898.88 17261.82 37499.92 8898.23 10499.13 12498.14 229
h-mvs3394.92 18094.36 18496.59 19898.85 13391.29 28198.93 27498.94 4195.90 7698.77 10198.42 21390.89 16699.77 12897.80 12670.76 37498.72 215
HQP_MVS94.49 19594.36 18494.87 24695.71 29091.74 27099.84 12597.87 22396.38 6593.01 22498.59 19780.47 27498.37 22497.79 12989.55 25194.52 260
BH-RMVSNet95.18 17494.31 18797.80 14498.17 17895.23 18099.76 15297.53 25392.52 20294.27 21299.25 13676.84 30398.80 18690.89 26099.54 9899.35 169
testing393.92 20894.23 18892.99 31597.54 21790.23 30299.99 499.16 3090.57 26091.33 24798.63 19592.99 11692.52 38182.46 34095.39 21396.22 253
Fast-Effi-MVS+95.02 17894.19 18997.52 16497.88 19294.55 19699.97 2797.08 29988.85 29294.47 20897.96 22984.59 23698.41 21489.84 27897.10 17499.59 130
QAPM95.40 17194.17 19099.10 6496.92 24797.71 7999.40 21798.68 7089.31 27888.94 29098.89 17182.48 25099.96 6193.12 23099.83 7299.62 124
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15095.99 14897.91 33497.31 27590.35 26589.48 27699.22 13885.19 23099.89 9690.40 27198.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 19894.08 19295.31 23398.27 17090.02 30899.29 23698.56 9295.90 7698.77 10198.00 22490.89 16698.26 23797.80 12669.20 38097.64 237
ADS-MVSNet94.79 18394.02 19397.11 18397.87 19393.79 21794.24 37598.16 19590.07 26996.43 17694.48 34490.29 17598.19 24087.44 30197.23 17199.36 167
miper_enhance_ethall94.36 20193.98 19495.49 22498.68 14295.24 17999.73 16397.29 27893.28 16789.86 26595.97 28994.37 7697.05 29792.20 23884.45 30594.19 288
SDMVSNet94.80 18293.96 19597.33 17798.92 12595.42 17199.59 19098.99 3792.41 20692.55 23397.85 23175.81 31598.93 18197.90 12391.62 24497.64 237
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20795.69 16199.99 498.81 6094.28 12792.70 23096.90 25995.08 5399.17 17296.07 16673.88 36999.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 20793.90 19794.55 26196.02 27490.69 29199.98 1497.72 23296.62 5891.05 25098.85 18077.21 29798.47 20798.11 11089.51 25394.48 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 21393.88 19893.55 30197.87 19385.94 34694.24 37596.84 32590.07 26996.43 17694.48 34490.29 17595.37 35487.44 30197.23 17199.36 167
Fast-Effi-MVS+-dtu93.72 21793.86 19993.29 30697.06 24086.16 34499.80 14196.83 32692.66 19192.58 23297.83 23381.39 25997.67 26589.75 27996.87 18296.05 255
SCA94.69 18793.81 20097.33 17797.10 23894.44 19798.86 28398.32 17293.30 16696.17 18495.59 30076.48 30897.95 25491.06 25497.43 16699.59 130
mvsmamba94.10 20593.72 20195.25 23593.57 32694.13 20999.67 17796.45 34593.63 15791.34 24697.77 23486.29 22097.22 28696.65 16088.10 27594.40 271
test0.0.03 193.86 20993.61 20294.64 25595.02 30492.18 25999.93 7598.58 8794.07 13687.96 30698.50 20593.90 9294.96 36081.33 34793.17 23996.78 245
cascas94.64 19093.61 20297.74 15397.82 19796.26 13599.96 3497.78 23185.76 33494.00 21597.54 23876.95 30299.21 16697.23 14395.43 21297.76 236
TAPA-MVS92.12 894.42 19793.60 20496.90 18899.33 9891.78 26999.78 14498.00 20889.89 27394.52 20699.47 11491.97 14699.18 17169.90 38099.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27297.48 9299.56 19698.57 8990.46 26286.51 32598.95 16678.57 29199.94 7793.86 21099.74 8197.57 241
tpmvs94.28 20393.57 20696.40 20498.55 15091.50 27995.70 37398.55 9887.47 31192.15 23794.26 34891.42 15198.95 18088.15 29495.85 20298.76 211
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15998.74 29397.98 21187.81 30998.47 11799.39 12367.43 35699.53 15098.01 11595.20 21899.67 113
TR-MVS94.54 19293.56 20797.49 16697.96 18894.34 20398.71 29697.51 25690.30 26794.51 20798.69 18875.56 31698.77 18992.82 23395.99 19699.35 169
GeoE94.36 20193.48 20996.99 18597.29 23493.54 22699.96 3496.72 33488.35 30293.43 21998.94 16882.05 25298.05 24888.12 29696.48 18999.37 166
FIs94.10 20593.43 21096.11 21294.70 30896.82 11699.58 19298.93 4592.54 19989.34 27997.31 24587.62 20497.10 29494.22 20586.58 28994.40 271
ab-mvs94.69 18793.42 21198.51 10698.07 18396.26 13596.49 35898.68 7090.31 26694.54 20597.00 25776.30 31099.71 13895.98 16893.38 23899.56 138
DP-MVS94.54 19293.42 21197.91 14199.46 9494.04 21198.93 27497.48 25981.15 36690.04 26099.55 10887.02 21299.95 6988.97 28498.11 15399.73 105
tpm93.70 21893.41 21394.58 25995.36 29987.41 33897.01 35096.90 32090.85 25496.72 16994.14 34990.40 17396.84 31290.75 26388.54 26799.51 149
EI-MVSNet93.73 21693.40 21494.74 25196.80 25692.69 24799.06 25897.67 23688.96 28791.39 24499.02 15088.75 19697.30 28091.07 25387.85 27894.22 285
MSDG94.37 19993.36 21597.40 17198.88 13293.95 21599.37 22497.38 26885.75 33690.80 25299.17 14284.11 24299.88 10286.35 31598.43 14298.36 224
PS-MVSNAJss93.64 21993.31 21694.61 25692.11 35592.19 25899.12 24897.38 26892.51 20388.45 29796.99 25891.20 15597.29 28394.36 20087.71 28194.36 275
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15798.30 16697.99 6999.99 497.61 24394.35 12271.57 38599.45 11796.23 3295.34 35596.91 15785.14 30099.59 130
cl2293.77 21493.25 21895.33 23299.49 9194.43 19899.61 18898.09 20190.38 26389.16 28795.61 29890.56 17097.34 27591.93 24284.45 30594.21 287
dmvs_re93.20 22893.15 21993.34 30496.54 26483.81 35798.71 29698.51 10791.39 24192.37 23698.56 20278.66 29097.83 25993.89 20989.74 24798.38 223
FC-MVSNet-test93.81 21293.15 21995.80 22094.30 31596.20 14099.42 21698.89 4992.33 21089.03 28997.27 24787.39 20796.83 31393.20 22586.48 29094.36 275
test_vis1_n93.61 22093.03 22195.35 23095.86 27986.94 34199.87 10496.36 34796.85 4699.54 5698.79 18252.41 38799.83 11898.64 8998.97 12999.29 178
VDD-MVS93.77 21492.94 22296.27 20998.55 15090.22 30398.77 29297.79 23090.85 25496.82 16699.42 11861.18 37799.77 12898.95 6794.13 23098.82 208
RRT_MVS93.14 23092.92 22393.78 29293.31 33390.04 30799.66 17897.69 23492.53 20088.91 29197.76 23584.36 23896.93 30795.10 18086.99 28794.37 274
GA-MVS93.83 21092.84 22496.80 19095.73 28793.57 22499.88 10197.24 28392.57 19892.92 22696.66 26878.73 28997.67 26587.75 29994.06 23299.17 186
sd_testset93.55 22192.83 22595.74 22198.92 12590.89 28998.24 32198.85 5692.41 20692.55 23397.85 23171.07 34398.68 19893.93 20891.62 24497.64 237
OPM-MVS93.21 22792.80 22694.44 26893.12 33790.85 29099.77 14797.61 24396.19 7391.56 24398.65 19275.16 32398.47 20793.78 21789.39 25493.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 26292.79 22788.83 35098.15 17969.87 38898.11 32896.60 33983.93 35194.33 21099.27 13279.60 28099.46 16191.99 24193.16 24097.18 244
WB-MVSnew92.90 23692.77 22893.26 30896.95 24693.63 22399.71 16898.16 19591.49 23294.28 21198.14 21981.33 26196.48 32679.47 35595.46 21089.68 378
LPG-MVS_test92.96 23492.71 22993.71 29595.43 29788.67 32499.75 15597.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
CR-MVSNet93.45 22592.62 23095.94 21596.29 26692.66 24892.01 38696.23 34992.62 19396.94 16193.31 35791.04 16096.03 34579.23 35695.96 19799.13 191
AUN-MVS93.28 22692.60 23195.34 23198.29 16790.09 30699.31 23198.56 9291.80 22696.35 18098.00 22489.38 18598.28 23392.46 23569.22 37997.64 237
miper_ehance_all_eth93.16 22992.60 23194.82 25097.57 21693.56 22599.50 20697.07 30088.75 29388.85 29295.52 30490.97 16296.74 31690.77 26284.45 30594.17 289
LCM-MVSNet-Re92.31 25192.60 23191.43 33097.53 21879.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24595.48 35297.22 14497.58 16499.54 143
D2MVS92.76 23992.59 23493.27 30795.13 30089.54 31699.69 17399.38 2392.26 21187.59 31094.61 34185.05 23297.79 26091.59 24788.01 27692.47 355
nrg03093.51 22292.53 23596.45 20194.36 31397.20 10099.81 13797.16 29091.60 22989.86 26597.46 24086.37 21997.68 26495.88 17080.31 33994.46 264
tpm cat193.51 22292.52 23696.47 19997.77 20091.47 28096.13 36598.06 20480.98 36792.91 22793.78 35289.66 18098.87 18287.03 31096.39 19099.09 193
ACMM91.95 1092.88 23792.52 23693.98 28695.75 28689.08 32099.77 14797.52 25593.00 17389.95 26297.99 22676.17 31298.46 21093.63 22188.87 25994.39 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 24092.42 23893.73 29395.91 27888.72 32399.81 13797.53 25394.13 13287.00 31998.23 21774.07 32998.47 20796.22 16588.86 26093.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 23892.29 23994.47 26691.90 35892.46 25399.55 19897.27 28091.17 24489.96 26196.07 28881.10 26396.89 30994.67 19588.91 25794.05 305
UniMVSNet (Re)93.07 23392.13 24095.88 21694.84 30596.24 13999.88 10198.98 3892.49 20489.25 28195.40 31087.09 21197.14 29093.13 22978.16 35094.26 282
UniMVSNet_NR-MVSNet92.95 23592.11 24195.49 22494.61 31095.28 17799.83 13299.08 3391.49 23289.21 28496.86 26287.14 21096.73 31793.20 22577.52 35594.46 264
IterMVS-LS92.69 24392.11 24194.43 27096.80 25692.74 24499.45 21496.89 32188.98 28589.65 27295.38 31388.77 19596.34 33290.98 25782.04 32194.22 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 21092.06 24399.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6841.37 40794.34 7799.96 6198.92 7099.95 4999.99 23
bld_raw_dy_0_6492.74 24092.03 24494.87 24693.09 33993.46 22899.12 24895.41 36692.84 18190.44 25697.54 23878.08 29597.04 29993.94 20787.77 28094.11 300
Anonymous20240521193.10 23291.99 24596.40 20499.10 10989.65 31498.88 27997.93 21683.71 35394.00 21598.75 18468.79 34899.88 10295.08 18191.71 24399.68 111
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23590.68 29298.83 28696.97 31288.57 29889.19 28695.73 29589.24 19096.69 31989.97 27781.55 32494.15 295
VDDNet93.12 23191.91 24796.76 19296.67 26392.65 25098.69 29998.21 18682.81 35997.75 14399.28 12961.57 37599.48 15998.09 11294.09 23198.15 227
c3_l92.53 24691.87 24894.52 26297.40 22592.99 24099.40 21796.93 31887.86 30788.69 29595.44 30889.95 17896.44 32890.45 26880.69 33694.14 298
gg-mvs-nofinetune93.51 22291.86 24998.47 10897.72 20797.96 7292.62 38398.51 10774.70 38597.33 15269.59 39898.91 397.79 26097.77 13199.56 9799.67 113
AllTest92.48 24791.64 25095.00 24299.01 11488.43 32898.94 27396.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23292.74 24499.58 19296.75 33286.99 32087.64 30995.54 30289.55 18396.50 32588.58 28882.44 31894.17 289
cl____92.31 25191.58 25294.52 26297.33 23192.77 24299.57 19496.78 33186.97 32187.56 31195.51 30589.43 18496.62 32188.60 28782.44 31894.16 294
FMVSNet392.69 24391.58 25295.99 21498.29 16797.42 9599.26 23997.62 24089.80 27489.68 26995.32 31681.62 25896.27 33587.01 31185.65 29494.29 281
VPA-MVSNet92.70 24291.55 25496.16 21195.09 30196.20 14098.88 27999.00 3691.02 25191.82 24195.29 32076.05 31497.96 25395.62 17581.19 32794.30 280
Patchmatch-test92.65 24591.50 25596.10 21396.85 25390.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5698.00 25077.41 36596.98 18099.82 92
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33582.30 36288.43 30099.01 15276.97 30199.85 10886.11 31896.50 18794.86 257
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 24891.45 25795.49 22494.05 31895.28 17799.81 13798.74 6492.25 21289.21 28496.64 27081.66 25696.73 31793.20 22577.52 35594.46 264
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 22989.18 31999.38 22296.79 33086.70 32487.47 31395.22 32290.00 17795.86 34988.26 29281.37 32694.15 295
WR-MVS92.31 25191.25 25995.48 22794.45 31295.29 17699.60 18998.68 7090.10 26888.07 30596.89 26080.68 26996.80 31593.14 22879.67 34394.36 275
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33497.36 27394.53 19888.77 26194.13 299
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33697.32 27994.75 19288.68 26394.11 300
pmmvs492.10 25591.07 26295.18 23792.82 34694.96 18799.48 21096.83 32687.45 31288.66 29696.56 27483.78 24396.83 31389.29 28184.77 30393.75 327
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29496.92 30892.38 23688.73 26293.39 338
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32485.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 21892.29 23788.61 26493.89 319
JIA-IIPM91.76 26590.70 26594.94 24496.11 27187.51 33793.16 38298.13 20075.79 38197.58 14577.68 39592.84 12197.97 25188.47 29196.54 18599.33 172
Anonymous2024052992.10 25590.65 26696.47 19998.82 13490.61 29498.72 29598.67 7375.54 38293.90 21798.58 20066.23 36099.90 9194.70 19490.67 24698.90 205
Syy-MVS90.00 30190.63 26788.11 35797.68 21074.66 38599.71 16898.35 16590.79 25692.10 23898.67 18979.10 28693.09 37763.35 39195.95 19996.59 248
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24693.69 32593.98 21499.69 17398.65 7491.03 25088.44 29896.83 26680.05 27796.18 33890.26 27376.89 36394.45 269
VPNet91.81 25990.46 26995.85 21894.74 30795.54 16798.98 26898.59 8692.14 21390.77 25397.44 24168.73 35097.54 26994.89 18877.89 35294.46 264
XXY-MVS91.82 25890.46 26995.88 21693.91 32195.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32897.89 25791.66 24684.07 30994.35 278
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29397.27 28583.78 33399.70 8491.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 26890.35 27294.15 27694.17 31792.62 25199.17 24698.94 4188.87 29186.48 32794.46 34684.36 23896.61 32288.19 29378.51 34893.21 343
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26793.31 37686.20 31681.91 32294.26 282
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31685.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 24983.62 33499.62 8991.60 363
PVSNet_088.03 1991.80 26290.27 27596.38 20698.27 17090.46 29899.94 6899.61 1493.99 14286.26 33197.39 24471.13 34299.89 9698.77 8067.05 38598.79 210
CP-MVSNet91.23 27290.22 27694.26 27493.96 32092.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28496.37 33090.29 27278.95 34594.02 306
NR-MVSNet91.56 26790.22 27695.60 22294.05 31895.76 15598.25 32098.70 6791.16 24680.78 35996.64 27083.23 24896.57 32391.41 24877.73 35494.46 264
tt080591.28 27090.18 27894.60 25796.26 26887.55 33698.39 31698.72 6589.00 28489.22 28398.47 21062.98 37198.96 17990.57 26588.00 27797.28 243
IterMVS90.91 27790.17 27993.12 31196.78 25990.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30695.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26189.96 30998.89 27796.99 30888.95 28886.63 32395.67 29676.48 30895.00 35987.04 30984.04 31193.84 323
V4291.28 27090.12 28194.74 25193.42 33193.46 22899.68 17597.02 30587.36 31389.85 26795.05 32581.31 26297.34 27587.34 30480.07 34193.40 337
v2v48291.30 26890.07 28295.01 24193.13 33593.79 21799.77 14797.02 30588.05 30589.25 28195.37 31480.73 26897.15 28987.28 30580.04 34294.09 302
v114491.09 27489.83 28394.87 24693.25 33493.69 22299.62 18796.98 31086.83 32389.64 27394.99 33080.94 26597.05 29785.08 32581.16 32893.87 321
GBi-Net90.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test190.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test_fmvs289.47 30989.70 28688.77 35394.54 31175.74 38299.83 13294.70 37894.71 10891.08 24896.82 26754.46 38497.78 26292.87 23288.27 27292.80 350
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15596.89 32187.51 31088.27 30395.01 32781.67 25597.04 29987.40 30377.17 36093.75 327
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29488.64 32698.55 30597.45 26089.03 28281.62 35497.61 23769.75 34698.41 21489.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 27589.56 28995.41 22997.53 21895.74 15698.98 26897.41 26687.05 31788.43 30095.00 32971.34 33996.24 33785.12 32485.21 29994.25 284
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27586.12 34598.81 28897.18 28789.38 27783.14 34797.76 23568.42 35298.43 21289.11 28386.05 29293.78 326
v14419290.79 28189.52 29194.59 25893.11 33892.77 24299.56 19696.99 30886.38 32789.82 26894.95 33280.50 27397.10 29483.98 33180.41 33793.90 318
PS-CasMVS90.63 28589.51 29293.99 28593.83 32291.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31796.31 33488.83 28578.86 34793.95 314
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14793.94 38584.69 34889.04 28895.66 29781.66 25696.52 32490.99 25676.98 36191.97 361
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22896.35 34887.84 30885.30 33794.99 33084.14 24196.09 34380.38 35184.56 30493.71 332
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36891.48 23485.65 33697.31 24572.66 33397.29 28388.15 29484.83 30293.97 313
v119290.62 28689.25 29694.72 25393.13 33593.07 23699.50 20697.02 30586.33 32889.56 27595.01 32779.22 28397.09 29682.34 34281.16 32894.01 308
v890.54 28789.17 29794.66 25493.43 33093.40 23299.20 24396.94 31785.76 33487.56 31194.51 34281.96 25497.19 28784.94 32678.25 34993.38 339
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20896.98 31086.10 33089.61 27495.30 31778.55 29297.03 30282.17 34380.89 33594.01 308
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15895.58 36385.88 33387.24 31895.74 29373.41 33296.48 32688.54 28983.56 31293.95 314
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30495.94 34887.07 30876.91 36293.89 319
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30290.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 33098.28 23384.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 30188.96 30293.10 31394.81 30688.16 33298.71 29695.54 36493.66 15583.75 34597.20 24865.58 36298.31 22983.96 33287.49 28592.85 349
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37591.44 23686.29 33097.11 25065.30 36598.11 24488.53 29085.25 29892.07 358
v1090.25 29588.82 30494.57 26093.53 32893.43 23099.08 25396.87 32385.00 34387.34 31794.51 34280.93 26697.02 30482.85 33879.23 34493.26 341
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22296.92 31985.89 33289.36 27894.87 33477.89 29697.03 30280.66 35081.08 33194.01 308
PatchT90.38 29088.75 30695.25 23595.99 27590.16 30491.22 39097.54 25176.80 37797.26 15486.01 38991.88 14796.07 34466.16 38895.91 20199.51 149
MIMVSNet90.30 29388.67 30795.17 23896.45 26591.64 27692.39 38497.15 29185.99 33190.50 25493.19 35966.95 35794.86 36282.01 34493.43 23699.01 200
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 30988.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26791.41 24888.59 26697.77 235
Patchmtry89.70 30688.49 30993.33 30596.24 26989.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 16096.03 34580.18 35482.10 32094.02 306
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34497.56 26890.82 26180.27 34094.15 295
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22896.73 33385.49 33985.90 33595.77 29281.09 26496.00 34776.00 37182.49 31793.30 340
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27697.13 29181.14 34878.12 35193.49 335
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 31195.30 35783.56 33575.74 36693.41 336
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31391.95 38478.46 36196.05 19597.92 231
testgi89.01 31488.04 31591.90 32793.49 32984.89 35399.73 16395.66 36193.89 15085.14 33898.17 21859.68 37894.66 36477.73 36488.88 25896.16 254
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37388.97 28682.26 35096.89 26071.75 33796.67 32084.00 33082.98 31393.72 331
pm-mvs189.36 31187.81 31794.01 28393.40 33291.93 26498.62 30496.48 34486.25 32983.86 34496.14 28473.68 33197.04 29986.16 31775.73 36793.04 346
tfpnnormal89.29 31287.61 31894.34 27394.35 31494.13 20998.95 27298.94 4183.94 35084.47 34195.51 30574.84 32497.39 27277.05 36880.41 33791.48 365
FMVSNet588.32 31787.47 31990.88 33396.90 25188.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27891.16 38676.39 37081.51 32593.09 344
RPMNet89.76 30587.28 32097.19 18096.29 26692.66 24892.01 38698.31 17470.19 39196.94 16185.87 39087.25 20999.78 12562.69 39295.96 19799.13 191
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
FMVSNet188.50 31686.64 32294.08 27995.62 29691.97 26198.43 31296.95 31383.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 289
TinyColmap87.87 32286.51 32391.94 32695.05 30385.57 34897.65 33894.08 38284.40 34981.82 35396.85 26362.14 37398.33 22780.25 35386.37 29191.91 362
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20479.25 28286.65 39566.85 38682.69 31595.57 256
test_vis1_rt86.87 32586.05 32789.34 34696.12 27078.07 38199.87 10483.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16493.11 24190.03 375
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8193.63 37387.75 29969.61 37699.79 97
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36985.43 34082.82 34893.92 35074.40 32793.44 37566.99 38581.83 32393.08 345
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32791.03 28398.54 30794.05 38483.69 35481.09 35796.16 28375.32 31896.40 32976.69 36968.41 38192.06 359
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 22887.88 29888.41 26989.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34989.11 39066.52 38775.82 36591.00 367
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
test_040285.58 32983.94 33490.50 33793.81 32385.04 35198.55 30595.20 37276.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29379.16 35988.61 26490.96 368
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24296.55 34179.60 37357.26 39692.72 36079.09 28793.78 37277.25 36677.37 35893.84 323
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24396.52 34279.70 37257.12 39792.69 36179.11 28593.86 37177.10 36777.46 35793.86 322
MVS-HIRNet86.22 32783.19 34095.31 23396.71 26290.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34797.49 27075.12 37297.99 15898.15 227
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30591.40 38569.53 38160.36 39492.40 356
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37984.73 34780.21 36196.12 28763.56 36998.39 21887.92 29763.97 39090.95 369
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34682.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37783.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37173.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 26890.34 372
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38873.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29995.76 35068.14 38482.81 31492.64 351
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38988.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20495.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 37082.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38181.30 36569.43 38890.70 37377.02 30082.06 39935.71 40468.11 38383.13 390
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38380.42 36968.75 38990.14 37576.54 30781.66 40033.25 40566.34 38782.19 391
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37651.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37447.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38744.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3860.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17518.47 41220.74 40564.59 39098.48 20910.95 41017.09 40956.66 39811.01 40555.94 402
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9483.37 2460.00 4100.00 4090.00 4080.00 406
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1210.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1550.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
FOURS199.92 3197.66 8399.95 5298.36 16395.58 8599.52 59
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 10
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7699.83 4395.06 5499.80 12199.70 3499.97 42
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 24100.00 1
save fliter99.82 5898.79 3899.96 3498.40 15297.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 131100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3498.42 14397.28 3299.86 799.94 497.22 19
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6599.59 130
sam_mvs94.25 80
ambc83.23 36677.17 39962.61 39287.38 39594.55 38076.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11297.74 26391.06 254
test_post63.35 40394.43 7098.13 243
patchmatchnet-post91.70 36895.12 5197.95 254
GG-mvs-BLEND98.54 10398.21 17498.01 6893.87 37998.52 10497.92 13797.92 23099.02 297.94 25698.17 10699.58 9699.67 113
MTMP99.87 10496.49 343
gm-plane-assit96.97 24593.76 21991.47 23598.96 16198.79 18794.92 185
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2899.96 3498.43 13193.90 14899.71 3499.86 2695.88 3899.85 108
test_899.92 3198.88 3199.96 3498.43 13194.35 12299.69 3699.85 3095.94 3599.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4399.85 108
TestCases95.00 24299.01 11488.43 32896.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3499.78 27100.00 1
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 21394.21 13099.85 999.95 6996.96 154
新几何299.40 217
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5499.82 4694.40 72100.00 191.21 25099.94 5499.99 23
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4299.94 5499.99 23
无先验99.49 20898.71 6693.46 160100.00 194.36 20099.99 23
原ACMM299.90 90
原ACMM198.96 7599.73 7296.99 11098.51 10794.06 13899.62 4699.85 3094.97 6099.96 6195.11 17999.95 4999.92 81
test22299.55 8697.41 9699.34 22798.55 9891.86 22299.27 8099.83 4393.84 9599.95 4999.99 23
testdata299.99 3690.54 267
segment_acmp96.68 26
testdata98.42 11399.47 9295.33 17598.56 9293.78 15199.79 2599.85 3093.64 10099.94 7794.97 18399.94 54100.00 1
testdata199.28 23796.35 69
test1299.43 3599.74 6998.56 5598.40 15299.65 4094.76 6499.75 13299.98 3299.99 23
plane_prior795.71 29091.59 278
plane_prior695.76 28491.72 27380.47 274
plane_prior597.87 22398.37 22497.79 12989.55 25194.52 260
plane_prior498.59 197
plane_prior391.64 27696.63 5693.01 224
plane_prior299.84 12596.38 65
plane_prior195.73 287
plane_prior91.74 27099.86 11796.76 5289.59 250
n20.00 415
nn0.00 415
door-mid89.69 399
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
LGP-MVS_train93.71 29595.43 29788.67 32497.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
HQP-NCC95.78 28099.87 10496.82 4893.37 220
ACMP_Plane95.78 28099.87 10496.82 4893.37 220
BP-MVS97.92 121
HQP4-MVS93.37 22098.39 21894.53 258
HQP3-MVS97.89 22189.60 248
HQP2-MVS80.65 270
NP-MVS95.77 28391.79 26898.65 192
MDTV_nov1_ep13_2view96.26 13596.11 36691.89 22198.06 13394.40 7294.30 20299.67 113
ACMMP++_ref87.04 286
ACMMP++88.23 273
Test By Simon92.82 123
ITE_SJBPF92.38 32195.69 29285.14 35095.71 35992.81 18289.33 28098.11 22070.23 34598.42 21385.91 32088.16 27493.59 334
DeepMVS_CXcopyleft82.92 36795.98 27758.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24582.57 33985.29 29792.03 360