This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1198.69 6198.20 399.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2198.62 7398.02 899.90 299.95 397.33 17100.00 199.54 34100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4598.32 15597.28 2599.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2198.64 6998.47 299.13 7799.92 1396.38 30100.00 199.74 27100.00 1100.00 1
patch_mono-298.24 5299.12 595.59 20799.67 7786.91 32399.95 4598.89 4597.60 1699.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 81
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4598.42 12997.50 2099.52 5399.88 2197.43 1699.71 12899.50 3699.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2898.43 11897.27 2799.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9198.44 11097.48 2199.64 3799.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4598.43 11896.48 5199.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29099.42 2197.03 3499.02 8199.09 13599.35 198.21 22499.73 2999.78 7999.77 96
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1198.86 4997.10 3299.80 1599.94 495.92 36100.00 199.51 35100.00 1100.00 1
DeepPCF-MVS95.94 297.71 7598.98 1293.92 27199.63 7981.76 35099.96 2898.56 8199.47 199.19 7599.99 194.16 79100.00 199.92 1299.93 60100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1198.44 11096.85 3899.80 1599.91 1497.57 899.85 9999.44 3999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7498.39 14097.20 3199.46 5699.85 3095.53 4499.79 11399.86 18100.00 199.99 23
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4598.56 8197.56 1999.44 5899.85 3095.38 46100.00 199.31 4499.99 2199.87 83
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13198.38 14496.73 4599.88 499.74 7394.89 5999.59 13999.80 2299.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6198.34 15296.38 5699.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2898.43 11894.35 11299.71 3199.86 2695.94 3499.85 9999.69 3299.98 3299.99 23
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16499.44 1997.33 2499.00 8299.72 7894.03 8299.98 4398.73 73100.00 1100.00 1
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6799.90 196.81 4398.67 9899.77 6093.92 8499.89 8799.27 4699.94 5499.96 61
test_fmvsm_n_192098.44 3898.61 2197.92 12899.27 10095.18 172100.00 198.90 4398.05 799.80 1599.73 7592.64 11899.99 3699.58 3399.51 9898.59 205
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9199.65 1198.17 498.75 9599.75 6792.76 11599.94 7299.88 1799.44 10499.94 70
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6199.78 5894.34 7299.96 5798.92 6099.95 4999.99 23
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22098.47 10398.14 599.08 7899.91 1493.09 106100.00 199.04 5499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2197.92 20098.07 698.76 9399.55 10095.00 5699.94 7299.91 1597.68 15299.99 23
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10498.38 14493.19 15899.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2898.44 11097.96 999.55 4899.94 497.18 21100.00 193.81 19999.94 5499.98 48
PAPM98.60 2798.42 2899.14 5696.05 25698.96 2599.90 7999.35 2496.68 4798.35 11399.66 9196.45 2998.51 19299.45 3899.89 6699.96 61
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 7998.21 16993.53 14899.81 1399.89 1994.70 6299.86 9899.84 1999.93 6099.96 61
EPNet98.49 3498.40 2998.77 8099.62 8096.80 11399.90 7999.51 1697.60 1699.20 7399.36 11793.71 9199.91 8197.99 10798.71 12799.61 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1498.38 3199.87 5199.91 7498.33 15393.22 15799.78 2499.89 1994.57 6499.85 9999.84 1999.97 42
MVS_111021_LR98.42 4098.38 3198.53 10099.39 9495.79 14599.87 9199.86 296.70 4698.78 9099.79 5492.03 13599.90 8399.17 4899.86 7099.88 81
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4598.61 7494.77 9599.31 6899.85 3094.22 76100.00 198.70 7499.98 3299.98 48
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2898.55 8794.87 9399.45 5799.85 3094.07 81100.00 198.67 76100.00 199.98 48
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9198.33 15393.97 13399.76 2699.87 2494.99 5799.75 12298.55 83100.00 199.98 48
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9198.36 14894.08 12599.74 2899.73 7594.08 8099.74 12499.42 4099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4598.60 7594.77 9599.31 6899.84 4193.73 90100.00 198.70 7499.98 3299.98 48
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2198.39 14094.43 10798.90 8699.87 2494.30 74100.00 199.04 5499.99 2199.99 23
SR-MVS98.46 3698.30 3998.93 7499.88 4997.04 10399.84 11198.35 15094.92 9199.32 6799.80 5193.35 9699.78 11599.30 4599.95 4999.96 61
DELS-MVS98.54 3098.22 4099.50 2999.15 10598.65 50100.00 198.58 7797.70 1498.21 12099.24 12792.58 12199.94 7298.63 8199.94 5499.92 77
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 4198.21 4199.03 6599.86 5397.10 10299.98 1198.80 5590.78 23999.62 4099.78 5895.30 47100.00 199.80 2299.93 6099.99 23
PS-MVSNAJ98.44 3898.20 4299.16 5298.80 13298.92 2799.54 18098.17 17497.34 2399.85 799.85 3091.20 14599.89 8799.41 4199.67 8598.69 203
mPP-MVS98.39 4398.20 4298.97 7199.97 396.92 10999.95 4598.38 14495.04 8798.61 10299.80 5193.39 95100.00 198.64 79100.00 199.98 48
SR-MVS-dyc-post98.31 4598.17 4498.71 8299.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6793.28 10199.78 11598.90 6399.92 6399.97 55
PAPR98.52 3298.16 4599.58 2399.97 398.77 3999.95 4598.43 11895.35 8198.03 12299.75 6794.03 8299.98 4398.11 10099.83 7299.99 23
ACMMP_NAP98.49 3498.14 4699.54 2699.66 7898.62 5299.85 10798.37 14794.68 10099.53 5199.83 4392.87 111100.00 198.66 7899.84 7199.99 23
RE-MVS-def98.13 4799.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6792.95 10998.90 6399.92 6399.97 55
PGM-MVS98.34 4498.13 4798.99 6999.92 3197.00 10599.75 13999.50 1793.90 13899.37 6599.76 6293.24 103100.00 197.75 12299.96 4699.98 48
EI-MVSNet-Vis-set98.27 4898.11 4998.75 8199.83 5796.59 11999.40 19798.51 9695.29 8398.51 10599.76 6293.60 9499.71 12898.53 8499.52 9699.95 68
dcpmvs_297.42 8598.09 5095.42 21299.58 8487.24 31999.23 22196.95 29394.28 11798.93 8599.73 7594.39 7099.16 16099.89 1699.82 7699.86 85
APD-MVS_3200maxsize98.25 5198.08 5198.78 7999.81 6096.60 11899.82 11998.30 16093.95 13599.37 6599.77 6092.84 11299.76 12198.95 5799.92 6399.97 55
ZNCC-MVS98.31 4598.03 5299.17 5099.88 4997.59 8199.94 6198.44 11094.31 11598.50 10699.82 4693.06 10799.99 3698.30 9399.99 2199.93 72
DP-MVS Recon98.41 4198.02 5399.56 2499.97 398.70 4599.92 7098.44 11092.06 20298.40 11199.84 4195.68 40100.00 198.19 9599.71 8399.97 55
EI-MVSNet-UG-set98.14 5597.99 5498.60 9099.80 6196.27 12899.36 20698.50 10195.21 8598.30 11599.75 6793.29 10099.73 12798.37 8999.30 11199.81 89
GST-MVS98.27 4897.97 5599.17 5099.92 3197.57 8299.93 6798.39 14094.04 13198.80 8999.74 7392.98 108100.00 198.16 9799.76 8099.93 72
xiu_mvs_v2_base98.23 5397.97 5599.02 6798.69 13798.66 4899.52 18298.08 18597.05 3399.86 599.86 2690.65 15799.71 12899.39 4398.63 12898.69 203
MP-MVScopyleft98.23 5397.97 5599.03 6599.94 1397.17 10199.95 4598.39 14094.70 9998.26 11899.81 5091.84 139100.00 198.85 6699.97 4299.93 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 4797.96 5899.30 4199.85 5497.93 7299.39 20198.28 16295.76 7097.18 14199.88 2192.74 116100.00 198.67 7699.88 6899.99 23
CS-MVS-test97.88 6397.94 5997.70 14299.28 9995.20 17199.98 1197.15 27195.53 7799.62 4099.79 5492.08 13498.38 20898.75 7299.28 11299.52 141
PAPM_NR98.12 5697.93 6098.70 8399.94 1396.13 13799.82 11998.43 11894.56 10397.52 13399.70 8294.40 6799.98 4397.00 13999.98 3299.99 23
CS-MVS97.79 7197.91 6197.43 15499.10 10694.42 18899.99 497.10 27695.07 8699.68 3499.75 6792.95 10998.34 21298.38 8899.14 11799.54 137
mvsany_test197.82 6897.90 6297.55 14798.77 13493.04 22299.80 12597.93 19796.95 3799.61 4699.68 8890.92 15299.83 10899.18 4798.29 13899.80 91
PLCcopyleft95.54 397.93 6197.89 6398.05 12499.82 5894.77 18399.92 7098.46 10593.93 13697.20 14099.27 12295.44 4599.97 5397.41 12799.51 9899.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet98.27 4897.82 6499.63 1699.72 7499.10 2299.98 1198.51 9697.00 3598.52 10499.71 8087.80 18999.95 6499.75 2599.38 10799.83 87
ETV-MVS97.92 6297.80 6598.25 11598.14 16996.48 12099.98 1197.63 21995.61 7499.29 7199.46 10892.55 12298.82 17199.02 5698.54 12999.46 149
HPM-MVScopyleft97.96 5997.72 6698.68 8499.84 5696.39 12599.90 7998.17 17492.61 18098.62 10199.57 9991.87 13899.67 13598.87 6599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 6497.66 6798.47 10399.52 8795.41 16199.47 19198.87 4891.68 21398.84 8799.85 3092.34 12899.99 3698.44 8699.96 46100.00 1
MP-MVS-pluss98.07 5897.64 6899.38 4099.74 6998.41 5999.74 14298.18 17393.35 15296.45 15999.85 3092.64 11899.97 5398.91 6299.89 6699.77 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 6097.64 6898.83 7899.59 8196.99 106100.00 199.10 2995.38 8098.27 11699.08 13689.00 18199.95 6499.12 4999.25 11399.57 132
lupinMVS97.85 6597.60 7098.62 8897.28 21997.70 7899.99 497.55 23095.50 7999.43 5999.67 8990.92 15298.71 18198.40 8799.62 8899.45 151
WTY-MVS98.10 5797.60 7099.60 2198.92 12199.28 1699.89 8699.52 1495.58 7598.24 11999.39 11493.33 9799.74 12497.98 10995.58 19699.78 95
test_fmvsmvis_n_192097.67 7697.59 7297.91 13097.02 22695.34 16399.95 4598.45 10697.87 1097.02 14499.59 9689.64 16999.98 4399.41 4199.34 11098.42 206
HPM-MVS_fast97.80 7097.50 7398.68 8499.79 6296.42 12299.88 8898.16 17891.75 21298.94 8499.54 10291.82 14099.65 13797.62 12599.99 2199.99 23
EIA-MVS97.53 7997.46 7497.76 13998.04 17394.84 17999.98 1197.61 22494.41 11097.90 12699.59 9692.40 12698.87 16998.04 10499.13 11899.59 125
ACMMPcopyleft97.74 7497.44 7598.66 8699.92 3196.13 13799.18 22599.45 1894.84 9496.41 16299.71 8091.40 14299.99 3697.99 10798.03 14799.87 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 7397.38 7698.92 7599.53 8696.84 11199.87 9198.14 18193.78 14196.55 15799.69 8492.28 12999.98 4397.13 13499.44 10499.93 72
test_yl97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
DCV-MVSNet97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
alignmvs97.81 6997.33 7999.25 4298.77 13498.66 4899.99 498.44 11094.40 11198.41 10999.47 10693.65 9299.42 15298.57 8294.26 20999.67 108
CPTT-MVS97.64 7797.32 8098.58 9399.97 395.77 14699.96 2898.35 15089.90 25298.36 11299.79 5491.18 14899.99 3698.37 8999.99 2199.99 23
EC-MVSNet97.38 8897.24 8197.80 13397.41 20995.64 15399.99 497.06 28194.59 10299.63 3899.32 11889.20 17998.14 22698.76 7199.23 11499.62 119
OMC-MVS97.28 8997.23 8297.41 15599.76 6693.36 21799.65 16097.95 19596.03 6597.41 13799.70 8289.61 17099.51 14296.73 14698.25 13999.38 158
test250697.53 7997.19 8398.58 9398.66 13996.90 11098.81 26899.77 594.93 8997.95 12498.96 15192.51 12399.20 15694.93 16998.15 14099.64 114
MAR-MVS97.43 8197.19 8398.15 12099.47 9194.79 18299.05 24298.76 5692.65 17898.66 9999.82 4688.52 18699.98 4398.12 9999.63 8799.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 7197.17 8599.63 1698.98 11499.32 897.49 31899.52 1495.69 7298.32 11497.41 22293.32 9899.77 11898.08 10395.75 19399.81 89
xiu_mvs_v1_base_debu97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base_debi97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
CSCG97.10 9597.04 8997.27 16499.89 4591.92 24899.90 7999.07 3288.67 27595.26 18499.82 4693.17 10599.98 4398.15 9899.47 10099.90 79
sss97.57 7897.03 9099.18 4798.37 15398.04 6699.73 14799.38 2293.46 15098.76 9399.06 13891.21 14499.89 8796.33 14997.01 16999.62 119
thisisatest051597.41 8697.02 9198.59 9297.71 19797.52 8499.97 2198.54 9091.83 20897.45 13699.04 13997.50 999.10 16294.75 17796.37 18099.16 180
F-COLMAP96.93 10196.95 9296.87 17399.71 7591.74 25399.85 10797.95 19593.11 16195.72 17799.16 13392.35 12799.94 7295.32 16299.35 10998.92 190
jason97.24 9196.86 9398.38 11195.73 26997.32 9499.97 2197.40 24895.34 8298.60 10399.54 10287.70 19098.56 18997.94 11099.47 10099.25 175
jason: jason.
114514_t97.41 8696.83 9499.14 5699.51 8997.83 7399.89 8698.27 16488.48 27999.06 7999.66 9190.30 16299.64 13896.32 15099.97 4299.96 61
PVSNet_Blended_VisFu97.27 9096.81 9598.66 8698.81 13196.67 11599.92 7098.64 6994.51 10496.38 16398.49 18889.05 18099.88 9397.10 13698.34 13399.43 154
AdaColmapbinary97.23 9296.80 9698.51 10199.99 195.60 15599.09 23198.84 5293.32 15496.74 15299.72 7886.04 207100.00 198.01 10599.43 10699.94 70
PMMVS96.76 10896.76 9796.76 17698.28 15892.10 24399.91 7497.98 19294.12 12399.53 5199.39 11486.93 19998.73 17896.95 14297.73 15099.45 151
thisisatest053097.10 9596.72 9898.22 11697.60 20196.70 11499.92 7098.54 9091.11 23197.07 14398.97 14997.47 1299.03 16393.73 20496.09 18398.92 190
PVSNet91.05 1397.13 9496.69 9998.45 10599.52 8795.81 14499.95 4599.65 1194.73 9799.04 8099.21 12984.48 22099.95 6494.92 17098.74 12699.58 131
diffmvspermissive97.00 9896.64 10098.09 12297.64 19996.17 13699.81 12197.19 26594.67 10198.95 8399.28 11986.43 20398.76 17698.37 8997.42 15899.33 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 10096.60 10197.95 12697.28 21997.70 7899.55 17897.27 26091.17 22899.43 5999.54 10290.92 15296.89 29394.67 18099.62 8899.25 175
EPP-MVSNet96.69 11396.60 10196.96 17097.74 19093.05 22199.37 20498.56 8188.75 27395.83 17599.01 14296.01 3298.56 18996.92 14397.20 16399.25 175
VNet97.21 9396.57 10399.13 6098.97 11597.82 7499.03 24599.21 2894.31 11599.18 7698.88 16286.26 20699.89 8798.93 5994.32 20899.69 105
CHOSEN 1792x268896.81 10596.53 10497.64 14498.91 12593.07 21999.65 16099.80 395.64 7395.39 18198.86 16784.35 22399.90 8396.98 14099.16 11699.95 68
tttt051796.85 10396.49 10597.92 12897.48 20795.89 14399.85 10798.54 9090.72 24096.63 15498.93 16097.47 1299.02 16493.03 21695.76 19298.85 194
baseline296.71 11296.49 10597.37 15895.63 27695.96 14199.74 14298.88 4792.94 16391.61 22398.97 14997.72 798.62 18794.83 17498.08 14697.53 226
HyFIR lowres test96.66 11596.43 10797.36 16099.05 10893.91 20199.70 15299.80 390.54 24196.26 16598.08 20192.15 13298.23 22396.84 14595.46 19799.93 72
DeepC-MVS94.51 496.92 10296.40 10898.45 10599.16 10495.90 14299.66 15898.06 18696.37 5994.37 19399.49 10583.29 23099.90 8397.63 12499.61 9199.55 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs97.09 9796.32 10999.39 3998.93 11998.95 2699.72 15097.35 25194.45 10597.88 12799.42 11086.71 20099.52 14198.48 8593.97 21399.72 102
TESTMET0.1,196.74 11096.26 11098.16 11797.36 21296.48 12099.96 2898.29 16191.93 20595.77 17698.07 20295.54 4298.29 21690.55 25098.89 12299.70 103
test_cas_vis1_n_192096.59 11796.23 11197.65 14398.22 16294.23 19299.99 497.25 26297.77 1299.58 4799.08 13677.10 27899.97 5397.64 12399.45 10398.74 201
thres20096.96 9996.21 11299.22 4398.97 11598.84 3499.85 10799.71 693.17 15996.26 16598.88 16289.87 16799.51 14294.26 18894.91 20399.31 168
CANet_DTU96.76 10896.15 11398.60 9098.78 13397.53 8399.84 11197.63 21997.25 3099.20 7399.64 9381.36 24399.98 4392.77 21998.89 12298.28 209
CDS-MVSNet96.34 12696.07 11497.13 16697.37 21194.96 17699.53 18197.91 20191.55 21695.37 18298.32 19795.05 5397.13 27593.80 20095.75 19399.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 12096.04 11597.78 13697.02 22695.44 15899.96 2898.21 16994.07 12695.55 17896.38 25693.90 8698.27 22090.42 25398.83 12499.64 114
EPMVS96.53 11996.01 11698.09 12298.43 15096.12 13996.36 33899.43 2093.53 14897.64 13195.04 30694.41 6698.38 20891.13 23698.11 14399.75 98
tfpn200view996.79 10695.99 11799.19 4698.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.27 173
thres40096.78 10795.99 11799.16 5298.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.16 180
baseline96.43 12295.98 11997.76 13997.34 21395.17 17399.51 18497.17 26893.92 13796.90 14799.28 11985.37 21498.64 18697.50 12696.86 17399.46 149
tpmrst96.27 13295.98 11997.13 16697.96 17693.15 21896.34 33998.17 17492.07 20098.71 9795.12 30493.91 8598.73 17894.91 17296.62 17499.50 145
Vis-MVSNet (Re-imp)96.32 12795.98 11997.35 16197.93 17894.82 18099.47 19198.15 18091.83 20895.09 18599.11 13491.37 14397.47 25593.47 20797.43 15699.74 99
casdiffmvspermissive96.42 12495.97 12297.77 13897.30 21794.98 17599.84 11197.09 27893.75 14396.58 15699.26 12585.07 21698.78 17497.77 12097.04 16799.54 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 11895.96 12398.27 11498.23 16195.71 15098.00 31298.45 10693.72 14498.41 10999.27 12288.71 18599.66 13691.19 23597.69 15199.44 153
131496.84 10495.96 12399.48 3396.74 24398.52 5598.31 29898.86 4995.82 6889.91 24398.98 14787.49 19299.96 5797.80 11599.73 8299.96 61
iter_conf0596.07 13495.95 12596.44 18798.43 15097.52 8499.91 7496.85 30494.16 12192.49 21897.98 20798.20 497.34 25997.26 13188.29 25194.45 250
casdiffmvs_mvgpermissive96.43 12295.94 12697.89 13297.44 20895.47 15799.86 10497.29 25893.35 15296.03 16999.19 13085.39 21398.72 18097.89 11497.04 16799.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final96.01 13795.93 12796.28 19298.38 15297.03 10499.87 9197.03 28494.05 13092.61 21497.98 20798.01 597.34 25997.02 13888.39 25094.47 244
test-mter96.39 12595.93 12797.78 13697.02 22695.44 15899.96 2898.21 16991.81 21095.55 17896.38 25695.17 4898.27 22090.42 25398.83 12499.64 114
thres100view90096.74 11095.92 12999.18 4798.90 12698.77 3999.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.84 19694.57 20499.27 173
IS-MVSNet96.29 13095.90 13097.45 15298.13 17094.80 18199.08 23397.61 22492.02 20495.54 18098.96 15190.64 15898.08 22993.73 20497.41 15999.47 148
CostFormer96.10 13395.88 13196.78 17597.03 22592.55 23597.08 32797.83 20990.04 25198.72 9694.89 31395.01 5598.29 21696.54 14895.77 19199.50 145
thres600view796.69 11395.87 13299.14 5698.90 12698.78 3899.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.44 20894.50 20799.16 180
PVSNet_BlendedMVS96.05 13595.82 13396.72 17899.59 8196.99 10699.95 4599.10 2994.06 12898.27 11695.80 27189.00 18199.95 6499.12 4987.53 26493.24 323
MVS_Test96.46 12195.74 13498.61 8998.18 16697.23 9699.31 21197.15 27191.07 23298.84 8797.05 23588.17 18898.97 16594.39 18497.50 15599.61 122
Effi-MVS+96.30 12995.69 13598.16 11797.85 18396.26 12997.41 31997.21 26490.37 24498.65 10098.58 18286.61 20298.70 18297.11 13597.37 16099.52 141
MDTV_nov1_ep1395.69 13597.90 17994.15 19395.98 34798.44 11093.12 16097.98 12395.74 27395.10 5098.58 18890.02 25996.92 171
test_fmvs195.35 15695.68 13794.36 25698.99 11384.98 33299.96 2896.65 31797.60 1699.73 2998.96 15171.58 31699.93 7998.31 9299.37 10898.17 210
TAMVS95.85 14195.58 13896.65 18197.07 22393.50 21099.17 22697.82 21091.39 22595.02 18698.01 20392.20 13097.30 26493.75 20395.83 19099.14 183
MVS96.60 11695.56 13999.72 1296.85 23699.22 1998.31 29898.94 3891.57 21590.90 23199.61 9586.66 20199.96 5797.36 12899.88 6899.99 23
PatchmatchNetpermissive95.94 13995.45 14097.39 15797.83 18494.41 18996.05 34598.40 13792.86 16497.09 14295.28 30194.21 7898.07 23189.26 26698.11 14399.70 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 13695.40 14197.95 12699.59 8195.22 17099.52 18299.07 3293.96 13496.49 15898.35 19682.28 23499.82 11090.15 25899.22 11598.81 197
EPNet_dtu95.71 14695.39 14296.66 18098.92 12193.41 21499.57 17498.90 4396.19 6397.52 13398.56 18492.65 11797.36 25777.89 34398.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 14695.38 14396.68 17998.49 14892.28 23999.84 11197.50 23892.12 19992.06 22198.79 17184.69 21898.67 18595.29 16399.66 8699.09 186
3Dnovator91.47 1296.28 13195.34 14499.08 6296.82 23897.47 9099.45 19498.81 5395.52 7889.39 25799.00 14481.97 23699.95 6497.27 13099.83 7299.84 86
test_vis1_n_192095.44 15495.31 14595.82 20398.50 14788.74 30299.98 1197.30 25797.84 1199.85 799.19 13066.82 33699.97 5398.82 6799.46 10298.76 199
Effi-MVS+-dtu94.53 17895.30 14692.22 30497.77 18882.54 34399.59 17097.06 28194.92 9195.29 18395.37 29485.81 20897.89 24194.80 17597.07 16596.23 234
3Dnovator+91.53 1196.31 12895.24 14799.52 2796.88 23598.64 5199.72 15098.24 16695.27 8488.42 28298.98 14782.76 23299.94 7297.10 13699.83 7299.96 61
MVSTER95.53 15295.22 14896.45 18598.56 14197.72 7599.91 7497.67 21792.38 19391.39 22597.14 22997.24 1897.30 26494.80 17587.85 25894.34 260
1112_ss96.01 13795.20 14998.42 10897.80 18696.41 12399.65 16096.66 31692.71 17392.88 21199.40 11292.16 13199.30 15391.92 22793.66 21499.55 134
tpm295.47 15395.18 15096.35 19196.91 23191.70 25796.96 33097.93 19788.04 28698.44 10895.40 29093.32 9897.97 23594.00 19195.61 19599.38 158
Vis-MVSNetpermissive95.72 14495.15 15197.45 15297.62 20094.28 19199.28 21798.24 16694.27 11996.84 14998.94 15879.39 26298.76 17693.25 20998.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 14295.11 15298.02 12599.85 5495.10 17498.74 27398.50 10187.22 29693.66 20199.86 2687.45 19399.95 6490.94 24299.81 7899.02 188
FA-MVS(test-final)95.86 14095.09 15398.15 12097.74 19095.62 15496.31 34098.17 17491.42 22396.26 16596.13 26590.56 15999.47 15092.18 22497.07 16599.35 163
ECVR-MVScopyleft95.66 14995.05 15497.51 15098.66 13993.71 20598.85 26598.45 10694.93 8996.86 14898.96 15175.22 29999.20 15695.34 16198.15 14099.64 114
mvs_anonymous95.65 15095.03 15597.53 14898.19 16595.74 14899.33 20897.49 23990.87 23690.47 23597.10 23188.23 18797.16 27295.92 15697.66 15399.68 106
FE-MVS95.70 14895.01 15697.79 13598.21 16394.57 18495.03 35298.69 6188.90 27097.50 13596.19 26292.60 12099.49 14889.99 26097.94 14999.31 168
test111195.57 15194.98 15797.37 15898.56 14193.37 21698.86 26398.45 10694.95 8896.63 15498.95 15675.21 30099.11 16195.02 16798.14 14299.64 114
CVMVSNet94.68 17394.94 15893.89 27496.80 23986.92 32299.06 23898.98 3694.45 10594.23 19699.02 14085.60 20995.31 33990.91 24395.39 19999.43 154
baseline195.78 14394.86 15998.54 9898.47 14998.07 6499.06 23897.99 19092.68 17694.13 19798.62 17993.28 10198.69 18393.79 20185.76 27398.84 195
BH-untuned95.18 15894.83 16096.22 19498.36 15491.22 26599.80 12597.32 25590.91 23591.08 22898.67 17583.51 22798.54 19194.23 18999.61 9198.92 190
Test_1112_low_res95.72 14494.83 16098.42 10897.79 18796.41 12399.65 16096.65 31792.70 17492.86 21296.13 26592.15 13299.30 15391.88 22893.64 21599.55 134
XVG-OURS94.82 16594.74 16295.06 22498.00 17489.19 29799.08 23397.55 23094.10 12494.71 18899.62 9480.51 25499.74 12496.04 15493.06 22296.25 232
XVG-OURS-SEG-HR94.79 16794.70 16395.08 22398.05 17289.19 29799.08 23397.54 23293.66 14594.87 18799.58 9878.78 26899.79 11397.31 12993.40 21796.25 232
UGNet95.33 15794.57 16497.62 14698.55 14394.85 17898.67 28199.32 2595.75 7196.80 15196.27 26072.18 31399.96 5794.58 18299.05 12098.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 17594.50 16594.92 22995.78 26391.85 24999.87 9197.89 20296.82 4093.37 20398.65 17680.65 25298.39 20497.92 11189.60 22894.53 239
dp95.05 16194.43 16696.91 17197.99 17592.73 22996.29 34197.98 19289.70 25595.93 17294.67 31993.83 8998.45 19786.91 29796.53 17699.54 137
test_fmvs1_n94.25 18794.36 16793.92 27197.68 19883.70 33899.90 7996.57 32097.40 2299.67 3598.88 16261.82 35299.92 8098.23 9499.13 11898.14 213
h-mvs3394.92 16494.36 16796.59 18298.85 12991.29 26498.93 25498.94 3895.90 6698.77 9198.42 19590.89 15599.77 11897.80 11570.76 35498.72 202
HQP_MVS94.49 17994.36 16794.87 23095.71 27291.74 25399.84 11197.87 20496.38 5693.01 20798.59 18080.47 25698.37 21097.79 11889.55 23194.52 241
BH-RMVSNet95.18 15894.31 17097.80 13398.17 16795.23 16999.76 13697.53 23492.52 18794.27 19599.25 12676.84 28298.80 17290.89 24499.54 9599.35 163
Fast-Effi-MVS+95.02 16294.19 17197.52 14997.88 18094.55 18599.97 2197.08 27988.85 27294.47 19297.96 20984.59 21998.41 20089.84 26297.10 16499.59 125
QAPM95.40 15594.17 17299.10 6196.92 23097.71 7699.40 19798.68 6389.31 25888.94 27098.89 16182.48 23399.96 5793.12 21599.83 7299.62 119
PCF-MVS94.20 595.18 15894.10 17398.43 10798.55 14395.99 14097.91 31497.31 25690.35 24589.48 25699.22 12885.19 21599.89 8790.40 25598.47 13199.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 18194.08 17495.31 21798.27 15990.02 28899.29 21698.56 8195.90 6698.77 9198.00 20490.89 15598.26 22297.80 11569.20 36097.64 221
ADS-MVSNet94.79 16794.02 17597.11 16897.87 18193.79 20294.24 35398.16 17890.07 24996.43 16094.48 32490.29 16398.19 22587.44 28597.23 16199.36 161
miper_enhance_ethall94.36 18493.98 17695.49 20898.68 13895.24 16899.73 14797.29 25893.28 15689.86 24595.97 26994.37 7197.05 28192.20 22384.45 28594.19 269
SDMVSNet94.80 16693.96 17797.33 16298.92 12195.42 16099.59 17098.99 3592.41 19192.55 21697.85 21175.81 29398.93 16897.90 11391.62 22497.64 221
IB-MVS92.85 694.99 16393.94 17898.16 11797.72 19595.69 15299.99 498.81 5394.28 11792.70 21396.90 23995.08 5199.17 15996.07 15373.88 34999.60 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 19093.90 17994.55 24596.02 25790.69 27299.98 1197.72 21396.62 5091.05 23098.85 17077.21 27798.47 19398.11 10089.51 23394.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 19593.88 18093.55 28597.87 18185.94 32694.24 35396.84 30590.07 24996.43 16094.48 32490.29 16395.37 33787.44 28597.23 16199.36 161
Fast-Effi-MVS+-dtu93.72 19993.86 18193.29 28997.06 22486.16 32499.80 12596.83 30692.66 17792.58 21597.83 21381.39 24297.67 24989.75 26396.87 17296.05 236
SCA94.69 17193.81 18297.33 16297.10 22294.44 18698.86 26398.32 15593.30 15596.17 16895.59 28076.48 28697.95 23891.06 23897.43 15699.59 125
mvsmamba94.10 18893.72 18395.25 21993.57 30794.13 19499.67 15796.45 32593.63 14791.34 22797.77 21486.29 20597.22 27096.65 14788.10 25594.40 252
test0.0.03 193.86 19193.61 18494.64 23995.02 28592.18 24299.93 6798.58 7794.07 12687.96 28698.50 18793.90 8694.96 34381.33 32893.17 21996.78 229
cascas94.64 17493.61 18497.74 14197.82 18596.26 12999.96 2897.78 21285.76 31494.00 19897.54 21876.95 28199.21 15597.23 13295.43 19897.76 220
TAPA-MVS92.12 894.42 18093.60 18696.90 17299.33 9791.78 25299.78 12898.00 18989.89 25394.52 19099.47 10691.97 13699.18 15869.90 36099.52 9699.73 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 16993.59 18798.33 11296.07 25597.48 8999.56 17698.57 7990.46 24286.51 30598.95 15678.57 27199.94 7293.86 19599.74 8197.57 225
tpmvs94.28 18693.57 18896.40 18898.55 14391.50 26295.70 35198.55 8787.47 29192.15 22094.26 32891.42 14198.95 16788.15 27895.85 18998.76 199
LFMVS94.75 17093.56 18998.30 11399.03 10995.70 15198.74 27397.98 19287.81 28998.47 10799.39 11467.43 33499.53 14098.01 10595.20 20299.67 108
TR-MVS94.54 17693.56 18997.49 15197.96 17694.34 19098.71 27697.51 23790.30 24794.51 19198.69 17475.56 29498.77 17592.82 21895.99 18599.35 163
GeoE94.36 18493.48 19196.99 16997.29 21893.54 20999.96 2896.72 31488.35 28293.43 20298.94 15882.05 23598.05 23288.12 28096.48 17899.37 160
FIs94.10 18893.43 19296.11 19694.70 28996.82 11299.58 17298.93 4292.54 18589.34 25997.31 22587.62 19197.10 27894.22 19086.58 26994.40 252
ab-mvs94.69 17193.42 19398.51 10198.07 17196.26 12996.49 33698.68 6390.31 24694.54 18997.00 23776.30 28899.71 12895.98 15593.38 21899.56 133
DP-MVS94.54 17693.42 19397.91 13099.46 9394.04 19698.93 25497.48 24081.15 34590.04 24099.55 10087.02 19899.95 6488.97 26898.11 14399.73 100
tpm93.70 20093.41 19594.58 24395.36 28087.41 31897.01 32896.90 30090.85 23796.72 15394.14 32990.40 16196.84 29690.75 24788.54 24799.51 143
EI-MVSNet93.73 19893.40 19694.74 23596.80 23992.69 23099.06 23897.67 21788.96 26791.39 22599.02 14088.75 18497.30 26491.07 23787.85 25894.22 266
MSDG94.37 18293.36 19797.40 15698.88 12893.95 20099.37 20497.38 24985.75 31690.80 23299.17 13284.11 22599.88 9386.35 29898.43 13298.36 208
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 33692.19 24199.12 22897.38 24992.51 18888.45 27796.99 23891.20 14597.29 26794.36 18587.71 26194.36 256
ET-MVSNet_ETH3D94.37 18293.28 19997.64 14498.30 15597.99 6899.99 497.61 22494.35 11271.57 36599.45 10996.23 3195.34 33896.91 14485.14 28099.59 125
cl2293.77 19693.25 20095.33 21699.49 9094.43 18799.61 16898.09 18390.38 24389.16 26795.61 27890.56 15997.34 25991.93 22684.45 28594.21 268
dmvs_re93.20 21093.15 20193.34 28796.54 24783.81 33798.71 27698.51 9691.39 22592.37 21998.56 18478.66 27097.83 24393.89 19489.74 22798.38 207
FC-MVSNet-test93.81 19493.15 20195.80 20494.30 29696.20 13499.42 19698.89 4592.33 19589.03 26997.27 22787.39 19496.83 29793.20 21086.48 27094.36 256
test_vis1_n93.61 20293.03 20395.35 21495.86 26286.94 32199.87 9196.36 32796.85 3899.54 5098.79 17152.41 36599.83 10898.64 7998.97 12199.29 172
VDD-MVS93.77 19692.94 20496.27 19398.55 14390.22 28398.77 27297.79 21190.85 23796.82 15099.42 11061.18 35599.77 11898.95 5794.13 21098.82 196
RRT_MVS93.14 21292.92 20593.78 27693.31 31490.04 28799.66 15897.69 21592.53 18688.91 27197.76 21584.36 22196.93 29195.10 16586.99 26794.37 255
GA-MVS93.83 19292.84 20696.80 17495.73 26993.57 20799.88 8897.24 26392.57 18492.92 20996.66 24878.73 26997.67 24987.75 28394.06 21299.17 179
sd_testset93.55 20392.83 20795.74 20598.92 12190.89 27098.24 30198.85 5192.41 19192.55 21697.85 21171.07 32198.68 18493.93 19391.62 22497.64 221
OPM-MVS93.21 20992.80 20894.44 25293.12 31890.85 27199.77 13197.61 22496.19 6391.56 22498.65 17675.16 30198.47 19393.78 20289.39 23493.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 24392.79 20988.83 33198.15 16869.87 36798.11 30896.60 31983.93 33194.33 19499.27 12279.60 26199.46 15191.99 22593.16 22097.18 228
LPG-MVS_test92.96 21692.71 21093.71 27995.43 27888.67 30499.75 13997.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
CR-MVSNet93.45 20792.62 21195.94 19996.29 24992.66 23192.01 36496.23 32992.62 17996.94 14593.31 33791.04 14996.03 32879.23 33695.96 18699.13 184
AUN-MVS93.28 20892.60 21295.34 21598.29 15690.09 28699.31 21198.56 8191.80 21196.35 16498.00 20489.38 17398.28 21892.46 22069.22 35997.64 221
miper_ehance_all_eth93.16 21192.60 21294.82 23497.57 20293.56 20899.50 18697.07 28088.75 27388.85 27295.52 28490.97 15196.74 30090.77 24684.45 28594.17 270
LCM-MVSNet-Re92.31 23292.60 21291.43 31197.53 20379.27 36099.02 24691.83 37292.07 20080.31 34094.38 32783.50 22895.48 33597.22 13397.58 15499.54 137
D2MVS92.76 22092.59 21593.27 29095.13 28189.54 29699.69 15399.38 2292.26 19687.59 29094.61 32185.05 21797.79 24491.59 23188.01 25692.47 336
nrg03093.51 20492.53 21696.45 18594.36 29497.20 9799.81 12197.16 27091.60 21489.86 24597.46 22086.37 20497.68 24895.88 15780.31 31994.46 245
tpm cat193.51 20492.52 21796.47 18397.77 18891.47 26396.13 34398.06 18680.98 34692.91 21093.78 33289.66 16898.87 16987.03 29396.39 17999.09 186
ACMM91.95 1092.88 21892.52 21793.98 27095.75 26889.08 30099.77 13197.52 23693.00 16289.95 24297.99 20676.17 29098.46 19693.63 20688.87 23994.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 22192.42 21993.73 27795.91 26188.72 30399.81 12197.53 23494.13 12287.00 29998.23 19874.07 30798.47 19396.22 15288.86 24093.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 21992.29 22094.47 25091.90 33992.46 23699.55 17897.27 26091.17 22889.96 24196.07 26881.10 24596.89 29394.67 18088.91 23794.05 286
UniMVSNet (Re)93.07 21592.13 22195.88 20094.84 28696.24 13399.88 8898.98 3692.49 18989.25 26195.40 29087.09 19797.14 27493.13 21478.16 33094.26 263
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 20894.61 29195.28 16699.83 11799.08 3191.49 21789.21 26496.86 24287.14 19696.73 30193.20 21077.52 33594.46 245
IterMVS-LS92.69 22492.11 22294.43 25496.80 23992.74 22799.45 19496.89 30188.98 26589.65 25295.38 29388.77 18396.34 31590.98 24182.04 30194.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 19292.06 22499.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6141.37 38594.34 7299.96 5798.92 6099.95 4999.99 23
bld_raw_dy_0_6492.74 22192.03 22594.87 23093.09 32093.46 21199.12 22895.41 34692.84 16790.44 23697.54 21878.08 27597.04 28393.94 19287.77 26094.11 281
Anonymous20240521193.10 21491.99 22696.40 18899.10 10689.65 29498.88 25997.93 19783.71 33394.00 19898.75 17368.79 32699.88 9395.08 16691.71 22399.68 106
eth_miper_zixun_eth92.41 23091.93 22793.84 27597.28 21990.68 27398.83 26696.97 29288.57 27889.19 26695.73 27589.24 17896.69 30389.97 26181.55 30494.15 276
VDDNet93.12 21391.91 22896.76 17696.67 24692.65 23398.69 27998.21 16982.81 33997.75 13099.28 11961.57 35399.48 14998.09 10294.09 21198.15 211
c3_l92.53 22791.87 22994.52 24697.40 21092.99 22399.40 19796.93 29887.86 28788.69 27595.44 28889.95 16696.44 31190.45 25280.69 31694.14 279
gg-mvs-nofinetune93.51 20491.86 23098.47 10397.72 19597.96 7192.62 36198.51 9674.70 36397.33 13869.59 37698.91 397.79 24497.77 12099.56 9499.67 108
AllTest92.48 22891.64 23195.00 22699.01 11088.43 30898.94 25396.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
DIV-MVS_self_test92.32 23191.60 23294.47 25097.31 21692.74 22799.58 17296.75 31286.99 30087.64 28995.54 28289.55 17196.50 30988.58 27282.44 29894.17 270
cl____92.31 23291.58 23394.52 24697.33 21592.77 22599.57 17496.78 31186.97 30187.56 29195.51 28589.43 17296.62 30588.60 27182.44 29894.16 275
FMVSNet392.69 22491.58 23395.99 19898.29 15697.42 9299.26 21997.62 22189.80 25489.68 24995.32 29681.62 24196.27 31887.01 29485.65 27494.29 262
VPA-MVSNet92.70 22391.55 23596.16 19595.09 28296.20 13498.88 25999.00 3491.02 23491.82 22295.29 30076.05 29297.96 23795.62 16081.19 30794.30 261
Patchmatch-test92.65 22691.50 23696.10 19796.85 23690.49 27891.50 36697.19 26582.76 34090.23 23795.59 28095.02 5498.00 23477.41 34596.98 17099.82 88
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 25999.00 11288.04 31498.42 29596.70 31582.30 34288.43 28099.01 14276.97 28099.85 9986.11 30196.50 17794.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 22991.45 23895.49 20894.05 29995.28 16699.81 12198.74 5792.25 19789.21 26496.64 25081.66 23996.73 30193.20 21077.52 33594.46 245
miper_lstm_enhance91.81 24091.39 23993.06 29697.34 21389.18 29999.38 20296.79 31086.70 30487.47 29395.22 30290.00 16595.86 33288.26 27681.37 30694.15 276
WR-MVS92.31 23291.25 24095.48 21194.45 29395.29 16599.60 16998.68 6390.10 24888.07 28596.89 24080.68 25196.80 29993.14 21379.67 32394.36 256
jajsoiax91.92 23891.18 24194.15 26091.35 34590.95 26899.00 24797.42 24592.61 18087.38 29597.08 23272.46 31297.36 25794.53 18388.77 24194.13 280
mvs_tets91.81 24091.08 24294.00 26891.63 34390.58 27698.67 28197.43 24392.43 19087.37 29697.05 23571.76 31497.32 26394.75 17788.68 24394.11 281
pmmvs492.10 23691.07 24395.18 22192.82 32794.96 17699.48 19096.83 30687.45 29288.66 27696.56 25483.78 22696.83 29789.29 26584.77 28393.75 308
anonymousdsp91.79 24590.92 24494.41 25590.76 35092.93 22498.93 25497.17 26889.08 26087.46 29495.30 29778.43 27496.92 29292.38 22188.73 24293.39 319
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30585.61 32798.52 28997.44 24292.77 17189.90 24496.85 24366.64 33798.39 20492.29 22288.61 24493.89 300
JIA-IIPM91.76 24690.70 24694.94 22896.11 25487.51 31793.16 36098.13 18275.79 35997.58 13277.68 37392.84 11297.97 23588.47 27596.54 17599.33 166
Anonymous2024052992.10 23690.65 24796.47 18398.82 13090.61 27598.72 27598.67 6675.54 36093.90 20098.58 18266.23 33899.90 8394.70 17990.67 22698.90 193
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23093.69 30693.98 19999.69 15398.65 6791.03 23388.44 27896.83 24680.05 25996.18 32190.26 25776.89 34394.45 250
VPNet91.81 24090.46 24995.85 20294.74 28895.54 15698.98 24898.59 7692.14 19890.77 23397.44 22168.73 32897.54 25394.89 17377.89 33294.46 245
XXY-MVS91.82 23990.46 24995.88 20093.91 30295.40 16298.87 26297.69 21588.63 27787.87 28797.08 23274.38 30697.89 24191.66 23084.07 28994.35 259
MVP-Stereo90.93 25790.45 25192.37 30391.25 34788.76 30198.05 31196.17 33187.27 29584.04 32295.30 29778.46 27397.27 26983.78 31599.70 8491.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 24990.35 25294.15 26094.17 29892.62 23499.17 22698.94 3888.87 27186.48 30794.46 32684.36 22196.61 30688.19 27778.51 32893.21 324
EU-MVSNet90.14 28090.34 25389.54 32692.55 33081.06 35498.69 27998.04 18891.41 22486.59 30496.84 24580.83 24993.31 35986.20 29981.91 30294.26 263
MS-PatchMatch90.65 26490.30 25491.71 31094.22 29785.50 32998.24 30197.70 21488.67 27586.42 30896.37 25867.82 33298.03 23383.62 31699.62 8891.60 344
PVSNet_088.03 1991.80 24390.27 25596.38 19098.27 15990.46 27999.94 6199.61 1393.99 13286.26 31197.39 22471.13 32099.89 8798.77 7067.05 36498.79 198
CP-MVSNet91.23 25390.22 25694.26 25893.96 30192.39 23899.09 23198.57 7988.95 26886.42 30896.57 25379.19 26596.37 31390.29 25678.95 32594.02 287
NR-MVSNet91.56 24890.22 25695.60 20694.05 29995.76 14798.25 30098.70 6091.16 23080.78 33996.64 25083.23 23196.57 30791.41 23277.73 33494.46 245
tt080591.28 25190.18 25894.60 24196.26 25187.55 31698.39 29698.72 5889.00 26489.22 26398.47 19262.98 34998.96 16690.57 24988.00 25797.28 227
IterMVS90.91 25890.17 25993.12 29396.78 24290.42 28198.89 25797.05 28389.03 26286.49 30695.42 28976.59 28595.02 34187.22 29084.09 28893.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 24489.96 28998.89 25796.99 28888.95 26886.63 30395.67 27676.48 28695.00 34287.04 29284.04 29193.84 304
V4291.28 25190.12 26194.74 23593.42 31293.46 21199.68 15597.02 28587.36 29389.85 24795.05 30581.31 24497.34 25987.34 28880.07 32193.40 318
v2v48291.30 24990.07 26295.01 22593.13 31693.79 20299.77 13197.02 28588.05 28589.25 26195.37 29480.73 25097.15 27387.28 28980.04 32294.09 283
v114491.09 25589.83 26394.87 23093.25 31593.69 20699.62 16796.98 29086.83 30389.64 25394.99 31080.94 24797.05 28185.08 30781.16 30893.87 302
GBi-Net90.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
test190.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
test_fmvs289.47 28989.70 26688.77 33494.54 29275.74 36299.83 11794.70 35894.71 9891.08 22896.82 24754.46 36297.78 24692.87 21788.27 25292.80 331
v14890.70 26389.63 26793.92 27192.97 32390.97 26799.75 13996.89 30187.51 29088.27 28395.01 30781.67 23897.04 28387.40 28777.17 34093.75 308
ACMH89.72 1790.64 26589.63 26793.66 28395.64 27588.64 30698.55 28597.45 24189.03 26281.62 33497.61 21769.75 32498.41 20089.37 26487.62 26393.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 25689.56 26995.41 21397.53 20395.74 14898.98 24897.41 24787.05 29788.43 28095.00 30971.34 31796.24 32085.12 30685.21 27994.25 265
ACMH+89.98 1690.35 27289.54 27092.78 30095.99 25886.12 32598.81 26897.18 26789.38 25783.14 32797.76 21568.42 33098.43 19889.11 26786.05 27293.78 307
v14419290.79 26289.52 27194.59 24293.11 31992.77 22599.56 17696.99 28886.38 30789.82 24894.95 31280.50 25597.10 27883.98 31380.41 31793.90 299
PS-CasMVS90.63 26689.51 27293.99 26993.83 30391.70 25798.98 24898.52 9388.48 27986.15 31296.53 25575.46 29596.31 31788.83 26978.86 32793.95 295
Baseline_NR-MVSNet90.33 27389.51 27292.81 29992.84 32589.95 29099.77 13193.94 36384.69 32889.04 26895.66 27781.66 23996.52 30890.99 24076.98 34191.97 342
our_test_390.39 27089.48 27493.12 29392.40 33289.57 29599.33 20896.35 32887.84 28885.30 31794.99 31084.14 22496.09 32680.38 33284.56 28493.71 313
OurMVSNet-221017-089.81 28489.48 27490.83 31691.64 34281.21 35298.17 30695.38 34891.48 21885.65 31697.31 22572.66 31197.29 26788.15 27884.83 28293.97 294
v119290.62 26789.25 27694.72 23793.13 31693.07 21999.50 18697.02 28586.33 30889.56 25595.01 30779.22 26497.09 28082.34 32381.16 30894.01 289
v890.54 26889.17 27794.66 23893.43 31193.40 21599.20 22396.94 29785.76 31487.56 29194.51 32281.96 23797.19 27184.94 30878.25 32993.38 320
v192192090.46 26989.12 27894.50 24892.96 32492.46 23699.49 18896.98 29086.10 31089.61 25495.30 29778.55 27297.03 28682.17 32480.89 31594.01 289
pmmvs590.17 27989.09 27993.40 28692.10 33789.77 29399.74 14295.58 34385.88 31387.24 29895.74 27373.41 31096.48 31088.54 27383.56 29293.95 295
PEN-MVS90.19 27889.06 28093.57 28493.06 32190.90 26999.06 23898.47 10388.11 28485.91 31496.30 25976.67 28395.94 33187.07 29176.91 34293.89 300
LTVRE_ROB88.28 1890.29 27589.05 28194.02 26695.08 28390.15 28597.19 32397.43 24384.91 32683.99 32397.06 23474.00 30898.28 21884.08 31187.71 26193.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 28288.96 28293.10 29594.81 28788.16 31298.71 27695.54 34493.66 14583.75 32597.20 22865.58 34098.31 21583.96 31487.49 26592.85 330
LF4IMVS89.25 29388.85 28390.45 32092.81 32881.19 35398.12 30794.79 35591.44 22086.29 31097.11 23065.30 34398.11 22888.53 27485.25 27892.07 339
v1090.25 27688.82 28494.57 24493.53 30993.43 21399.08 23396.87 30385.00 32387.34 29794.51 32280.93 24897.02 28882.85 32079.23 32493.26 322
v124090.20 27788.79 28594.44 25293.05 32292.27 24099.38 20296.92 29985.89 31289.36 25894.87 31477.89 27697.03 28680.66 33181.08 31194.01 289
PatchT90.38 27188.75 28695.25 21995.99 25890.16 28491.22 36897.54 23276.80 35597.26 13986.01 36791.88 13796.07 32766.16 36895.91 18899.51 143
MIMVSNet90.30 27488.67 28795.17 22296.45 24891.64 25992.39 36297.15 27185.99 31190.50 23493.19 33966.95 33594.86 34582.01 32593.43 21699.01 189
UniMVSNet_ETH3D90.06 28188.58 28894.49 24994.67 29088.09 31397.81 31697.57 22983.91 33288.44 27897.41 22257.44 35997.62 25191.41 23288.59 24697.77 219
Patchmtry89.70 28688.49 28993.33 28896.24 25289.94 29291.37 36796.23 32978.22 35387.69 28893.31 33791.04 14996.03 32880.18 33582.10 30094.02 287
Anonymous2023121189.86 28388.44 29094.13 26298.93 11990.68 27398.54 28798.26 16576.28 35686.73 30195.54 28270.60 32297.56 25290.82 24580.27 32094.15 276
ppachtmachnet_test89.58 28888.35 29193.25 29192.40 33290.44 28099.33 20896.73 31385.49 31985.90 31595.77 27281.09 24696.00 33076.00 35182.49 29793.30 321
v7n89.65 28788.29 29293.72 27892.22 33490.56 27799.07 23797.10 27685.42 32186.73 30194.72 31580.06 25897.13 27581.14 32978.12 33193.49 316
DTE-MVSNet89.40 29088.24 29392.88 29892.66 32989.95 29099.10 23098.22 16887.29 29485.12 31996.22 26176.27 28995.30 34083.56 31775.74 34693.41 317
DSMNet-mixed88.28 29888.24 29388.42 33689.64 35775.38 36498.06 31089.86 37685.59 31888.20 28492.14 34776.15 29191.95 36478.46 34196.05 18497.92 215
testgi89.01 29488.04 29591.90 30893.49 31084.89 33399.73 14795.66 34193.89 14085.14 31898.17 19959.68 35694.66 34777.73 34488.88 23896.16 235
SixPastTwentyTwo88.73 29588.01 29690.88 31491.85 34082.24 34598.22 30495.18 35388.97 26682.26 33096.89 24071.75 31596.67 30484.00 31282.98 29393.72 312
pm-mvs189.36 29187.81 29794.01 26793.40 31391.93 24798.62 28496.48 32486.25 30983.86 32496.14 26473.68 30997.04 28386.16 30075.73 34793.04 327
tfpnnormal89.29 29287.61 29894.34 25794.35 29594.13 19498.95 25298.94 3883.94 33084.47 32195.51 28574.84 30297.39 25677.05 34880.41 31791.48 346
FMVSNet588.32 29787.47 29990.88 31496.90 23488.39 31097.28 32195.68 34082.60 34184.67 32092.40 34579.83 26091.16 36676.39 35081.51 30593.09 325
RPMNet89.76 28587.28 30097.19 16596.29 24992.66 23192.01 36498.31 15770.19 36996.94 14585.87 36887.25 19599.78 11562.69 37195.96 18699.13 184
K. test v388.05 29987.24 30190.47 31991.82 34182.23 34698.96 25197.42 24589.05 26176.93 35595.60 27968.49 32995.42 33685.87 30381.01 31393.75 308
FMVSNet188.50 29686.64 30294.08 26395.62 27791.97 24498.43 29296.95 29383.00 33786.08 31394.72 31559.09 35796.11 32381.82 32784.07 28994.17 270
TinyColmap87.87 30286.51 30391.94 30795.05 28485.57 32897.65 31794.08 36184.40 32981.82 33396.85 24362.14 35198.33 21380.25 33486.37 27191.91 343
KD-MVS_2432*160088.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
miper_refine_blended88.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
dmvs_testset83.79 32286.07 30676.94 35292.14 33548.60 38496.75 33390.27 37589.48 25678.65 34798.55 18679.25 26386.65 37566.85 36682.69 29595.57 237
test_vis1_rt86.87 30586.05 30789.34 32796.12 25378.07 36199.87 9183.54 38392.03 20378.21 35089.51 35445.80 36999.91 8196.25 15193.11 22190.03 356
Patchmatch-RL test86.90 30485.98 30889.67 32584.45 36775.59 36389.71 37192.43 36986.89 30277.83 35290.94 35194.22 7693.63 35687.75 28369.61 35699.79 92
Anonymous2023120686.32 30685.42 30989.02 33089.11 35980.53 35899.05 24295.28 34985.43 32082.82 32893.92 33074.40 30593.44 35866.99 36581.83 30393.08 326
TransMVSNet (Re)87.25 30385.28 31093.16 29293.56 30891.03 26698.54 28794.05 36283.69 33481.09 33796.16 26375.32 29696.40 31276.69 34968.41 36192.06 340
CMPMVSbinary61.59 2184.75 31685.14 31183.57 34590.32 35362.54 37296.98 32997.59 22874.33 36469.95 36796.66 24864.17 34598.32 21487.88 28288.41 24989.84 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 31783.99 31286.91 33988.19 36280.62 35798.88 25995.94 33588.36 28178.87 34594.62 32068.75 32789.11 37066.52 36775.82 34591.00 348
UnsupCasMVSNet_eth85.52 31083.99 31290.10 32289.36 35883.51 33996.65 33497.99 19089.14 25975.89 35993.83 33163.25 34893.92 35281.92 32667.90 36392.88 329
test_040285.58 30983.94 31490.50 31893.81 30485.04 33198.55 28595.20 35276.01 35779.72 34495.13 30364.15 34696.26 31966.04 36986.88 26890.21 355
pmmvs685.69 30883.84 31591.26 31390.00 35684.41 33597.82 31596.15 33275.86 35881.29 33695.39 29261.21 35496.87 29583.52 31873.29 35092.50 335
Anonymous2024052185.15 31483.81 31689.16 32988.32 36082.69 34198.80 27095.74 33879.72 34981.53 33590.99 35065.38 34294.16 35072.69 35581.11 31090.63 352
EG-PatchMatch MVS85.35 31383.81 31689.99 32490.39 35281.89 34898.21 30596.09 33381.78 34474.73 36193.72 33351.56 36797.12 27779.16 33988.61 24490.96 349
YYNet185.50 31283.33 31892.00 30690.89 34988.38 31199.22 22296.55 32179.60 35157.26 37492.72 34079.09 26793.78 35577.25 34677.37 33893.84 304
MDA-MVSNet_test_wron85.51 31183.32 31992.10 30590.96 34888.58 30799.20 22396.52 32279.70 35057.12 37592.69 34179.11 26693.86 35477.10 34777.46 33793.86 303
MVS-HIRNet86.22 30783.19 32095.31 21796.71 24590.29 28292.12 36397.33 25462.85 37086.82 30070.37 37569.37 32597.49 25475.12 35297.99 14898.15 211
CL-MVSNet_self_test84.50 31883.15 32188.53 33586.00 36581.79 34998.82 26797.35 25185.12 32283.62 32690.91 35276.66 28491.40 36569.53 36160.36 37292.40 337
new_pmnet84.49 31982.92 32289.21 32890.03 35582.60 34296.89 33295.62 34280.59 34775.77 36089.17 35565.04 34494.79 34672.12 35781.02 31290.23 354
TDRefinement84.76 31582.56 32391.38 31274.58 37984.80 33497.36 32094.56 35984.73 32780.21 34196.12 26763.56 34798.39 20487.92 28163.97 36890.95 350
KD-MVS_self_test83.59 32482.06 32488.20 33786.93 36380.70 35697.21 32296.38 32682.87 33882.49 32988.97 35667.63 33392.32 36273.75 35462.30 37191.58 345
pmmvs-eth3d84.03 32181.97 32590.20 32184.15 36887.09 32098.10 30994.73 35783.05 33674.10 36387.77 36265.56 34194.01 35181.08 33069.24 35889.49 361
OpenMVS_ROBcopyleft79.82 2083.77 32381.68 32690.03 32388.30 36182.82 34098.46 29095.22 35173.92 36576.00 35891.29 34955.00 36196.94 29068.40 36388.51 24890.34 353
MDA-MVSNet-bldmvs84.09 32081.52 32791.81 30991.32 34688.00 31598.67 28195.92 33680.22 34855.60 37693.32 33668.29 33193.60 35773.76 35376.61 34493.82 306
mvsany_test382.12 32681.14 32885.06 34381.87 37270.41 36697.09 32692.14 37091.27 22777.84 35188.73 35739.31 37295.49 33490.75 24771.24 35389.29 363
APD_test181.15 32880.92 32981.86 34892.45 33159.76 37696.04 34693.61 36673.29 36677.06 35396.64 25044.28 37196.16 32272.35 35682.52 29689.67 359
N_pmnet80.06 33280.78 33077.89 35191.94 33845.28 38698.80 27056.82 38978.10 35480.08 34293.33 33577.03 27995.76 33368.14 36482.81 29492.64 332
MIMVSNet182.58 32580.51 33188.78 33286.68 36484.20 33696.65 33495.41 34678.75 35278.59 34892.44 34251.88 36689.76 36965.26 37078.95 32592.38 338
test_fmvs379.99 33380.17 33279.45 35084.02 36962.83 37099.05 24293.49 36788.29 28380.06 34386.65 36528.09 37788.00 37188.63 27073.27 35187.54 367
test_method80.79 32979.70 33384.08 34492.83 32667.06 36999.51 18495.42 34554.34 37481.07 33893.53 33444.48 37092.22 36378.90 34077.23 33992.94 328
new-patchmatchnet81.19 32779.34 33486.76 34082.86 37180.36 35997.92 31395.27 35082.09 34372.02 36486.87 36462.81 35090.74 36871.10 35863.08 36989.19 364
PM-MVS80.47 33078.88 33585.26 34283.79 37072.22 36595.89 34991.08 37385.71 31776.56 35788.30 35836.64 37393.90 35382.39 32269.57 35789.66 360
pmmvs380.27 33177.77 33687.76 33880.32 37482.43 34498.23 30391.97 37172.74 36778.75 34687.97 36157.30 36090.99 36770.31 35962.37 37089.87 357
test_f78.40 33577.59 33780.81 34980.82 37362.48 37396.96 33093.08 36883.44 33574.57 36284.57 36927.95 37892.63 36184.15 31072.79 35287.32 368
UnsupCasMVSNet_bld79.97 33477.03 33888.78 33285.62 36681.98 34793.66 35897.35 25175.51 36170.79 36683.05 37048.70 36894.91 34478.31 34260.29 37389.46 362
FPMVS68.72 33868.72 33968.71 36065.95 38344.27 38895.97 34894.74 35651.13 37553.26 37790.50 35325.11 38083.00 37860.80 37280.97 31478.87 373
testf168.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
APD_test268.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
test_vis3_rt68.82 33766.69 34275.21 35576.24 37860.41 37596.44 33768.71 38875.13 36250.54 37969.52 37716.42 38796.32 31680.27 33366.92 36568.89 375
Gipumacopyleft66.95 34365.00 34372.79 35691.52 34467.96 36866.16 37895.15 35447.89 37658.54 37367.99 37829.74 37587.54 37450.20 37877.83 33362.87 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 34164.73 34476.87 35362.95 38556.25 37989.37 37293.74 36544.53 37761.99 36980.74 37120.42 38486.53 37669.37 36259.50 37487.84 365
PMMVS267.15 34264.15 34576.14 35470.56 38262.07 37493.89 35687.52 38058.09 37160.02 37078.32 37222.38 38184.54 37759.56 37347.03 37781.80 370
EGC-MVSNET69.38 33663.76 34686.26 34190.32 35381.66 35196.24 34293.85 3640.99 3863.22 38792.33 34652.44 36492.92 36059.53 37484.90 28184.21 369
tmp_tt65.23 34462.94 34772.13 35944.90 38850.03 38381.05 37589.42 37938.45 37848.51 38099.90 1854.09 36378.70 38091.84 22918.26 38287.64 366
ANet_high56.10 34552.24 34867.66 36149.27 38756.82 37883.94 37482.02 38470.47 36833.28 38464.54 37917.23 38669.16 38245.59 38023.85 38177.02 374
E-PMN52.30 34752.18 34952.67 36471.51 38045.40 38593.62 35976.60 38636.01 38043.50 38164.13 38027.11 37967.31 38331.06 38326.06 37945.30 382
PMVScopyleft49.05 2353.75 34651.34 35060.97 36340.80 38934.68 38974.82 37789.62 37837.55 37928.67 38572.12 3747.09 38981.63 37943.17 38168.21 36266.59 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 34951.22 35152.11 36570.71 38144.97 38794.04 35575.66 38735.34 38242.40 38261.56 38328.93 37665.87 38427.64 38424.73 38045.49 381
MVEpermissive53.74 2251.54 34847.86 35262.60 36259.56 38650.93 38079.41 37677.69 38535.69 38136.27 38361.76 3825.79 39169.63 38137.97 38236.61 37867.24 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 35044.45 35329.05 36719.49 39114.11 39299.68 15518.47 39020.74 38364.59 36898.48 19110.95 38817.09 38756.66 37711.01 38355.94 380
test12337.68 35139.14 35433.31 36619.94 39024.83 39198.36 2979.75 39115.53 38451.31 37887.14 36319.62 38517.74 38647.10 3793.47 38557.36 379
cdsmvs_eth3d_5k23.43 35231.24 3550.00 3690.00 3920.00 3930.00 38098.09 1830.00 3870.00 38899.67 8983.37 2290.00 3880.00 3860.00 3860.00 384
wuyk23d20.37 35320.84 35618.99 36865.34 38427.73 39050.43 3797.67 3929.50 3858.01 3866.34 3866.13 39026.24 38523.40 38510.69 3842.99 383
ab-mvs-re8.28 35411.04 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.40 1120.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.60 35510.13 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38891.20 1450.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.02 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.92 3197.66 8099.95 4598.36 14895.58 7599.52 53
MSC_two_6792asdad99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3699.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 13396.63 4899.75 2799.93 1197.49 10
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.92 3198.57 5398.52 9392.34 19499.31 6899.83 4395.06 5299.80 11199.70 3199.97 42
IU-MVS99.93 2499.31 998.41 13397.71 1399.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2899.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11897.27 2799.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11897.26 2999.80 1599.88 2196.71 24100.00 1
save fliter99.82 5898.79 3799.96 2898.40 13797.66 15
test_0728_THIRD96.48 5199.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4598.43 118100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1499.96 2898.42 12997.28 2599.86 599.94 497.22 19
GSMVS99.59 125
test_part299.89 4599.25 1799.49 55
sam_mvs194.72 6199.59 125
sam_mvs94.25 75
ambc83.23 34677.17 37762.61 37187.38 37394.55 36076.72 35686.65 36530.16 37496.36 31484.85 30969.86 35590.73 351
MTGPAbinary98.28 162
test_post195.78 35059.23 38493.20 10497.74 24791.06 238
test_post63.35 38194.43 6598.13 227
patchmatchnet-post91.70 34895.12 4997.95 238
GG-mvs-BLEND98.54 9898.21 16398.01 6793.87 35798.52 9397.92 12597.92 21099.02 297.94 24098.17 9699.58 9399.67 108
MTMP99.87 9196.49 323
gm-plane-assit96.97 22993.76 20491.47 21998.96 15198.79 17394.92 170
test9_res99.71 3099.99 21100.00 1
TEST999.92 3198.92 2799.96 2898.43 11893.90 13899.71 3199.86 2695.88 3799.85 99
test_899.92 3198.88 3099.96 2898.43 11894.35 11299.69 3399.85 3095.94 3499.85 99
agg_prior299.48 37100.00 1100.00 1
agg_prior99.93 2498.77 3998.43 11899.63 3899.85 99
TestCases95.00 22699.01 11088.43 30896.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
test_prior498.05 6599.94 61
test_prior299.95 4595.78 6999.73 2999.76 6296.00 3399.78 24100.00 1
test_prior99.43 3499.94 1398.49 5798.65 6799.80 11199.99 23
旧先验299.46 19394.21 12099.85 799.95 6496.96 141
新几何299.40 197
新几何199.42 3699.75 6898.27 6098.63 7292.69 17599.55 4899.82 4694.40 67100.00 191.21 23499.94 5499.99 23
旧先验199.76 6697.52 8498.64 6999.85 3095.63 4199.94 5499.99 23
无先验99.49 18898.71 5993.46 150100.00 194.36 18599.99 23
原ACMM299.90 79
原ACMM198.96 7299.73 7296.99 10698.51 9694.06 12899.62 4099.85 3094.97 5899.96 5795.11 16499.95 4999.92 77
test22299.55 8597.41 9399.34 20798.55 8791.86 20799.27 7299.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 251
segment_acmp96.68 26
testdata98.42 10899.47 9195.33 16498.56 8193.78 14199.79 2399.85 3093.64 9399.94 7294.97 16899.94 54100.00 1
testdata199.28 21796.35 60
test1299.43 3499.74 6998.56 5498.40 13799.65 3694.76 6099.75 12299.98 3299.99 23
plane_prior795.71 27291.59 261
plane_prior695.76 26791.72 25680.47 256
plane_prior597.87 20498.37 21097.79 11889.55 23194.52 241
plane_prior498.59 180
plane_prior391.64 25996.63 4893.01 207
plane_prior299.84 11196.38 56
plane_prior195.73 269
plane_prior91.74 25399.86 10496.76 4489.59 230
n20.00 393
nn0.00 393
door-mid89.69 377
lessismore_v090.53 31790.58 35180.90 35595.80 33777.01 35495.84 27066.15 33996.95 28983.03 31975.05 34893.74 311
LGP-MVS_train93.71 27995.43 27888.67 30497.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
test1198.44 110
door90.31 374
HQP5-MVS91.85 249
HQP-NCC95.78 26399.87 9196.82 4093.37 203
ACMP_Plane95.78 26399.87 9196.82 4093.37 203
BP-MVS97.92 111
HQP4-MVS93.37 20398.39 20494.53 239
HQP3-MVS97.89 20289.60 228
HQP2-MVS80.65 252
NP-MVS95.77 26691.79 25198.65 176
MDTV_nov1_ep13_2view96.26 12996.11 34491.89 20698.06 12194.40 6794.30 18799.67 108
ACMMP++_ref87.04 266
ACMMP++88.23 253
Test By Simon92.82 114
ITE_SJBPF92.38 30295.69 27485.14 33095.71 33992.81 16889.33 26098.11 20070.23 32398.42 19985.91 30288.16 25493.59 315
DeepMVS_CXcopyleft82.92 34795.98 26058.66 37796.01 33492.72 17278.34 34995.51 28558.29 35898.08 22982.57 32185.29 27792.03 341