This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSC_two_6792asdad99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11697.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13297.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15697.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 116100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 10897.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 40100.00 1100.00 1
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8394.87 8999.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6095.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4597.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 13997.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6398.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15493.97 12999.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14395.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5598.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6798.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1897.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 10894.31 11498.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8395.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14393.19 15599.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 3399.99 22100.00 1
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11694.63 9999.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7797.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13699.88 8998.16 18291.75 20898.94 9199.54 11091.82 14899.65 14297.62 12699.99 2299.99 24
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 13999.90 7898.17 17992.61 17798.62 10699.57 10791.87 14699.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 14894.08 12299.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13099.97 1898.39 13994.43 10698.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 10896.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16299.96 2598.35 15189.90 24698.36 11799.79 6491.18 15899.99 4098.37 9499.99 2299.99 24
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10398.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++.99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11696.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10594.56 10199.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14693.81 13799.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 12897.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14396.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11694.35 11199.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 6994.77 9199.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 6995.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7194.77 9199.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
test1299.43 3899.74 8298.56 5798.40 13699.65 3894.76 6699.75 12599.98 3599.99 24
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15199.82 11798.43 11694.56 10197.52 13899.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
ZD-MVS99.92 3698.57 5598.52 9092.34 19099.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
9.1498.38 3999.87 5799.91 7498.33 15493.22 15499.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 13994.70 9498.26 12399.81 5991.84 147100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 9596.83 10499.14 6699.51 10397.83 8499.89 8698.27 16688.48 27099.06 8499.66 10090.30 17099.64 14396.32 14999.97 4899.96 74
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15396.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1693.90 13499.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
API-MVS97.86 7597.66 7498.47 11799.52 10195.41 17499.47 19198.87 4491.68 20998.84 9399.85 3592.34 13799.99 4098.44 9299.96 52100.00 1
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 16992.18 19499.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15194.92 8699.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19292.06 22199.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6141.37 37194.34 7999.96 5798.92 6499.95 5599.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9794.06 12599.62 4399.85 3594.97 6299.96 5795.11 16199.95 5599.92 91
test22299.55 9997.41 10799.34 20898.55 8391.86 20399.27 7599.83 5193.84 9999.95 5599.99 24
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 10897.96 799.55 4899.94 497.18 20100.00 193.81 19599.94 6199.98 55
新几何199.42 4199.75 8198.27 6998.63 6692.69 17299.55 4899.82 5594.40 74100.00 191.21 22999.94 6199.99 24
旧先验199.76 7997.52 9698.64 6399.85 3595.63 4299.94 6199.99 24
testdata98.42 12299.47 10595.33 17698.56 7793.78 13999.79 2399.85 3593.64 10499.94 7294.97 16399.94 61100.00 1
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7397.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 23997.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17393.53 14699.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5090.78 23399.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27099.63 9381.76 34799.96 2598.56 7799.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
test117298.38 5498.25 4898.77 9399.88 5496.56 13399.80 12498.36 14894.68 9699.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29398.62 6792.78 16799.53 5099.83 5195.08 53100.00 194.36 18299.92 7199.99 24
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13199.82 11798.30 16193.95 13199.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9096.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9096.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 17893.35 15096.45 16299.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 3498.42 3299.14 6696.05 25598.96 2499.90 7899.35 2396.68 3898.35 11899.66 10096.45 2898.51 18999.45 4199.89 7899.96 74
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MVS96.60 12695.56 14599.72 1296.85 23899.22 1998.31 29398.94 3691.57 21290.90 22799.61 10486.66 20999.96 5797.36 13099.88 8099.99 24
MVS_111021_LR98.42 4998.38 3998.53 11499.39 10895.79 16199.87 9299.86 296.70 3798.78 9699.79 6492.03 14399.90 7999.17 5099.86 8399.88 96
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14694.68 9699.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9095.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9095.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
QAPM95.40 15794.17 17399.10 7296.92 23297.71 8799.40 19898.68 5689.31 25188.94 26598.89 16482.48 24099.96 5793.12 21299.83 8599.62 129
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11695.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
3Dnovator+91.53 1196.31 13695.24 15299.52 2996.88 23798.64 5399.72 15098.24 16995.27 8088.42 27698.98 15482.76 23999.94 7297.10 13799.83 8599.96 74
3Dnovator91.47 1296.28 13995.34 15099.08 7496.82 24097.47 10299.45 19498.81 4895.52 7489.39 25399.00 15181.97 24399.95 6497.27 13299.83 8599.84 99
LS3D95.84 14795.11 15798.02 13999.85 6095.10 18498.74 27098.50 10187.22 28693.66 20399.86 3187.45 20199.95 6490.94 23899.81 9199.02 194
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28699.42 2097.03 2799.02 8699.09 14399.35 198.21 22199.73 3199.78 9299.77 108
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 13994.04 12798.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
OpenMVScopyleft90.15 1594.77 17093.59 18798.33 12696.07 25497.48 10199.56 17698.57 7590.46 23686.51 30098.95 16078.57 27799.94 7293.86 19199.74 9497.57 223
131496.84 11495.96 13399.48 3696.74 24598.52 5998.31 29398.86 4595.82 6189.91 23998.98 15487.49 20099.96 5797.80 11799.73 9599.96 74
abl_697.67 8697.34 8898.66 10099.68 9196.11 15499.68 15598.14 18593.80 13899.27 7599.70 9188.65 19399.98 4697.46 12899.72 9699.89 94
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 10892.06 19998.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
MVP-Stereo90.93 25390.45 24892.37 29991.25 33988.76 30498.05 30696.17 32987.27 28584.04 31895.30 29078.46 27997.27 26483.78 30799.70 9891.09 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 17997.34 1699.85 699.85 3591.20 15599.89 8399.41 4499.67 9998.69 207
BH-w/o95.71 15195.38 14996.68 18498.49 15192.28 24499.84 11097.50 24292.12 19692.06 21898.79 17484.69 22698.67 18295.29 16099.66 10099.09 192
MAR-MVS97.43 9197.19 9398.15 13499.47 10594.79 19399.05 24198.76 5192.65 17598.66 10499.82 5588.52 19499.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.65 26090.30 25191.71 30794.22 29485.50 32898.24 29797.70 21888.67 26686.42 30396.37 25267.82 33198.03 23083.62 30899.62 10291.60 339
MVSFormer96.94 11096.60 11197.95 14097.28 22197.70 8999.55 17897.27 26591.17 22299.43 5999.54 11090.92 16296.89 28694.67 17699.62 10299.25 181
lupinMVS97.85 7697.60 7898.62 10397.28 22197.70 8999.99 597.55 23395.50 7599.43 5999.67 9890.92 16298.71 17998.40 9399.62 10299.45 160
BH-untuned95.18 16094.83 16196.22 19998.36 15591.22 27099.80 12497.32 26190.91 22991.08 22598.67 17883.51 23498.54 18894.23 18799.61 10598.92 196
DeepC-MVS94.51 496.92 11296.40 11898.45 11999.16 11595.90 15899.66 15898.06 19196.37 5094.37 19499.49 11383.29 23799.90 7997.63 12599.61 10599.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GG-mvs-BLEND98.54 11298.21 16598.01 7793.87 34598.52 9097.92 13097.92 20899.02 297.94 23798.17 10099.58 10799.67 120
gg-mvs-nofinetune93.51 20291.86 22698.47 11797.72 19797.96 8192.62 34998.51 9774.70 35397.33 14269.59 36398.91 397.79 24097.77 12299.56 10899.67 120
BH-RMVSNet95.18 16094.31 17197.80 14498.17 16895.23 18199.76 13697.53 23792.52 18494.27 19699.25 13576.84 28698.80 17090.89 24099.54 10999.35 172
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13299.40 19898.51 9795.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
TAPA-MVS92.12 894.42 18293.60 18696.90 17799.33 11191.78 25799.78 12898.00 19489.89 24794.52 19199.47 11491.97 14499.18 15969.90 35099.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft95.54 397.93 7397.89 7098.05 13899.82 7094.77 19499.92 7098.46 10593.93 13297.20 14499.27 13195.44 4799.97 5597.41 12999.51 11299.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 10196.86 10398.38 12595.73 26797.32 10899.97 1897.40 25495.34 7898.60 10899.54 11087.70 19898.56 18697.94 11499.47 11399.25 181
jason: jason.
CSCG97.10 10597.04 9997.27 16999.89 5091.92 25399.90 7899.07 3188.67 26695.26 18599.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12399.87 9298.14 18593.78 13996.55 16099.69 9492.28 13899.98 4697.13 13599.44 11599.93 85
AdaColmapbinary97.23 10296.80 10698.51 11599.99 195.60 17099.09 23098.84 4793.32 15196.74 15599.72 8786.04 214100.00 198.01 10999.43 11699.94 84
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9797.00 2898.52 10999.71 8987.80 19799.95 6499.75 2699.38 11799.83 100
F-COLMAP96.93 11196.95 10296.87 17899.71 8991.74 25899.85 10697.95 20093.11 15895.72 17899.16 14192.35 13699.94 7295.32 15999.35 11898.92 196
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14299.36 20798.50 10195.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2895.38 7698.27 12199.08 14489.00 18899.95 6499.12 5199.25 12099.57 142
CS-MVS97.74 8397.61 7798.15 13497.52 20896.69 127100.00 197.11 27994.93 8599.73 2999.41 12091.68 14998.25 21998.84 7199.24 12199.52 151
DROMVSNet97.38 9797.24 9197.80 14497.41 21195.64 16999.99 597.06 28494.59 10099.63 4099.32 12789.20 18698.14 22398.76 7899.23 12299.62 129
PatchMatch-RL96.04 14395.40 14797.95 14099.59 9595.22 18299.52 18299.07 3193.96 13096.49 16198.35 19682.28 24199.82 10990.15 25299.22 12398.81 203
CHOSEN 1792x268896.81 11596.53 11497.64 15398.91 13293.07 22599.65 16199.80 395.64 7095.39 18298.86 17084.35 23099.90 7996.98 14099.16 12499.95 82
EIA-MVS97.53 8997.46 8297.76 14998.04 17494.84 19099.98 1097.61 22794.41 10997.90 13199.59 10592.40 13598.87 16798.04 10899.13 12599.59 135
UGNet95.33 15894.57 16697.62 15598.55 14794.85 18998.67 27799.32 2495.75 6896.80 15496.27 25572.18 31499.96 5794.58 17899.05 12698.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test97.44 9097.41 8497.53 15697.46 21094.66 196100.00 197.04 28894.69 9599.72 3399.25 13591.22 15398.29 21198.33 9798.95 12799.64 126
CANet_DTU96.76 11896.15 12298.60 10598.78 14197.53 9599.84 11097.63 22297.25 2399.20 7799.64 10281.36 25199.98 4692.77 21598.89 12898.28 210
TESTMET0.1,196.74 12096.26 12098.16 13197.36 21496.48 13499.96 2598.29 16291.93 20195.77 17798.07 20295.54 4398.29 21190.55 24498.89 12899.70 115
test-LLR96.47 12996.04 12497.78 14697.02 22995.44 17299.96 2598.21 17394.07 12395.55 17996.38 25093.90 9798.27 21690.42 24798.83 13099.64 126
test-mter96.39 13395.93 13597.78 14697.02 22995.44 17299.96 2598.21 17391.81 20695.55 17996.38 25095.17 5098.27 21690.42 24798.83 13099.64 126
PVSNet91.05 1397.13 10496.69 10998.45 11999.52 10195.81 16099.95 4399.65 1094.73 9399.04 8599.21 13984.48 22899.95 6494.92 16498.74 13299.58 141
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12599.90 7899.51 1597.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19097.05 2699.86 499.86 3190.65 16699.71 13399.39 4598.63 13498.69 207
ETV-MVS97.92 7497.80 7298.25 12998.14 17096.48 13499.98 1097.63 22295.61 7199.29 7499.46 11692.55 13298.82 16999.02 6098.54 13599.46 158
Vis-MVSNetpermissive95.72 14995.15 15697.45 16097.62 20194.28 20299.28 21898.24 16994.27 11796.84 15298.94 16179.39 27098.76 17593.25 20698.49 13699.30 177
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 16094.10 17598.43 12198.55 14795.99 15697.91 30997.31 26290.35 23989.48 25299.22 13885.19 22399.89 8390.40 24998.47 13799.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 18493.36 19797.40 16398.88 13593.95 20999.37 20597.38 25585.75 30790.80 22899.17 14084.11 23299.88 8986.35 29098.43 13898.36 209
PVSNet_Blended_VisFu97.27 10096.81 10598.66 10098.81 13996.67 12899.92 7098.64 6394.51 10396.38 16698.49 18989.05 18799.88 8997.10 13798.34 13999.43 163
EPNet_dtu95.71 15195.39 14896.66 18598.92 13093.41 22199.57 17498.90 4196.19 5497.52 13898.56 18792.65 12997.36 25477.89 33498.33 14099.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base_debi97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
OMC-MVS97.28 9997.23 9297.41 16299.76 7993.36 22399.65 16197.95 20096.03 5897.41 14199.70 9189.61 17799.51 14796.73 14698.25 14499.38 167
mvs-test195.53 15495.97 13194.20 25897.77 19085.44 32999.95 4397.06 28494.92 8696.58 15898.72 17685.81 21598.98 16494.80 16998.11 14598.18 211
DP-MVS94.54 17893.42 19397.91 14399.46 10794.04 20598.93 25397.48 24481.15 33690.04 23699.55 10887.02 20699.95 6488.97 26198.11 14599.73 112
EPMVS96.53 12896.01 12598.09 13698.43 15396.12 15396.36 33099.43 1993.53 14697.64 13695.04 29994.41 7398.38 20591.13 23198.11 14599.75 110
PatchmatchNetpermissive95.94 14595.45 14697.39 16497.83 18694.41 20096.05 33598.40 13692.86 16197.09 14795.28 29494.21 8998.07 22889.26 25998.11 14599.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 12296.49 11597.37 16595.63 27495.96 15799.74 14298.88 4392.94 16091.61 22098.97 15697.72 598.62 18494.83 16898.08 14997.53 224
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15199.18 22599.45 1794.84 9096.41 16599.71 8991.40 15199.99 4097.99 11198.03 15099.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 30283.19 31495.31 21896.71 24790.29 28692.12 35197.33 26062.85 35986.82 29570.37 36269.37 32497.49 24975.12 34397.99 15198.15 212
PMMVS96.76 11896.76 10796.76 18198.28 15992.10 24899.91 7497.98 19794.12 12099.53 5099.39 12386.93 20798.73 17796.95 14297.73 15299.45 160
UA-Net96.54 12795.96 13398.27 12898.23 16495.71 16698.00 30798.45 10793.72 14298.41 11499.27 13188.71 19299.66 14191.19 23097.69 15399.44 162
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 12999.97 1897.92 20498.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15499.99 24
mvs_anonymous95.65 15395.03 15897.53 15698.19 16695.74 16499.33 20997.49 24390.87 23090.47 23297.10 22588.23 19597.16 26795.92 15497.66 15599.68 118
LCM-MVSNet-Re92.31 22892.60 20891.43 30897.53 20479.27 35699.02 24491.83 36392.07 19780.31 33694.38 32083.50 23595.48 32797.22 13497.58 15699.54 148
MVS_Test96.46 13095.74 14198.61 10498.18 16797.23 11099.31 21297.15 27591.07 22698.84 9397.05 22988.17 19698.97 16594.39 18197.50 15799.61 132
SCA94.69 17293.81 18397.33 16897.10 22494.44 19898.86 26298.32 15693.30 15296.17 17095.59 27376.48 29097.95 23591.06 23397.43 15899.59 135
Vis-MVSNet (Re-imp)96.32 13595.98 12897.35 16797.93 17994.82 19199.47 19198.15 18491.83 20495.09 18699.11 14291.37 15297.47 25193.47 20497.43 15899.74 111
diffmvs97.00 10896.64 11098.09 13697.64 20096.17 15099.81 11997.19 26994.67 9898.95 9099.28 12886.43 21198.76 17598.37 9497.42 16099.33 174
IS-MVSNet96.29 13895.90 13797.45 16098.13 17194.80 19299.08 23297.61 22792.02 20095.54 18198.96 15890.64 16798.08 22693.73 20097.41 16199.47 157
Effi-MVS+96.30 13795.69 14298.16 13197.85 18596.26 14397.41 31597.21 26890.37 23898.65 10598.58 18586.61 21098.70 18097.11 13697.37 16299.52 151
DWT-MVSNet_test97.31 9897.19 9397.66 15298.24 16394.67 19598.86 26298.20 17793.60 14598.09 12698.89 16497.51 798.78 17294.04 18997.28 16399.55 144
ADS-MVSNet293.80 19593.88 18193.55 28297.87 18385.94 32594.24 34196.84 30790.07 24396.43 16394.48 31790.29 17195.37 32987.44 27797.23 16499.36 170
ADS-MVSNet94.79 16894.02 17797.11 17397.87 18393.79 21194.24 34198.16 18290.07 24396.43 16394.48 31790.29 17198.19 22287.44 27797.23 16499.36 170
EPP-MVSNet96.69 12396.60 11196.96 17597.74 19393.05 22799.37 20598.56 7788.75 26495.83 17699.01 14996.01 3198.56 18696.92 14397.20 16699.25 181
Fast-Effi-MVS+95.02 16494.19 17297.52 15897.88 18194.55 19799.97 1897.08 28288.85 26394.47 19397.96 20784.59 22798.41 19789.84 25597.10 16799.59 135
Effi-MVS+-dtu94.53 18095.30 15192.22 30097.77 19082.54 34099.59 17197.06 28494.92 8695.29 18495.37 28785.81 21597.89 23894.80 16997.07 16896.23 231
casdiffmvs96.42 13295.97 13197.77 14897.30 21994.98 18699.84 11097.09 28193.75 14196.58 15899.26 13485.07 22498.78 17297.77 12297.04 16999.54 148
sss97.57 8897.03 10099.18 5798.37 15498.04 7699.73 14799.38 2193.46 14898.76 9999.06 14591.21 15499.89 8396.33 14897.01 17099.62 129
Patchmatch-test92.65 22291.50 23296.10 20296.85 23890.49 28291.50 35497.19 26982.76 33190.23 23395.59 27395.02 5798.00 23177.41 33696.98 17199.82 101
MDTV_nov1_ep1395.69 14297.90 18094.15 20395.98 33698.44 10893.12 15797.98 12995.74 26695.10 5298.58 18590.02 25396.92 172
Fast-Effi-MVS+-dtu93.72 19993.86 18293.29 28597.06 22686.16 32399.80 12496.83 30892.66 17492.58 21697.83 20981.39 25097.67 24489.75 25696.87 17396.05 233
baseline96.43 13195.98 12897.76 14997.34 21595.17 18399.51 18497.17 27293.92 13396.90 15199.28 12885.37 22198.64 18397.50 12796.86 17499.46 158
tpmrst96.27 14095.98 12897.13 17197.96 17793.15 22496.34 33198.17 17992.07 19798.71 10295.12 29793.91 9698.73 17794.91 16696.62 17599.50 155
JIA-IIPM91.76 24390.70 24394.94 22996.11 25387.51 31893.16 34898.13 18775.79 35097.58 13777.68 36092.84 12497.97 23288.47 26796.54 17699.33 174
dp95.05 16394.43 16896.91 17697.99 17692.73 23496.29 33297.98 19789.70 24995.93 17394.67 31293.83 10098.45 19486.91 28996.53 17799.54 148
COLMAP_ROBcopyleft90.47 1492.18 23191.49 23394.25 25799.00 12288.04 31698.42 29196.70 31782.30 33388.43 27499.01 14976.97 28499.85 9886.11 29396.50 17894.86 234
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE94.36 18693.48 19196.99 17497.29 22093.54 21799.96 2596.72 31688.35 27393.43 20498.94 16182.05 24298.05 22988.12 27296.48 17999.37 169
tpm cat193.51 20292.52 21396.47 18997.77 19091.47 26896.13 33398.06 19180.98 33792.91 21293.78 32589.66 17698.87 16787.03 28596.39 18099.09 192
thisisatest051597.41 9597.02 10198.59 10797.71 19997.52 9699.97 1898.54 8791.83 20497.45 14099.04 14697.50 899.10 16194.75 17296.37 18199.16 186
AllTest92.48 22491.64 22795.00 22799.01 12088.43 31098.94 25296.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
TestCases95.00 22799.01 12088.43 31096.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
thisisatest053097.10 10596.72 10898.22 13097.60 20296.70 12699.92 7098.54 8791.11 22597.07 14898.97 15697.47 1199.03 16293.73 20096.09 18498.92 196
DSMNet-mixed88.28 29488.24 28988.42 33189.64 34975.38 35898.06 30589.86 36685.59 30988.20 27992.14 34076.15 29591.95 35478.46 33296.05 18597.92 215
TR-MVS94.54 17893.56 18997.49 15997.96 17794.34 20198.71 27397.51 24190.30 24194.51 19298.69 17775.56 29798.77 17492.82 21495.99 18699.35 172
CR-MVSNet93.45 20592.62 20795.94 20596.29 25092.66 23692.01 35296.23 32792.62 17696.94 14993.31 33091.04 15996.03 32179.23 32795.96 18799.13 190
RPMNet89.76 28187.28 29697.19 17096.29 25092.66 23692.01 35298.31 15870.19 35896.94 14985.87 35687.25 20399.78 11562.69 36095.96 18799.13 190
PatchT90.38 26788.75 28195.25 22195.99 25790.16 28891.22 35697.54 23576.80 34697.26 14386.01 35591.88 14596.07 32066.16 35795.91 18999.51 153
tpmvs94.28 18893.57 18896.40 19498.55 14791.50 26795.70 34098.55 8387.47 28192.15 21794.26 32191.42 15098.95 16688.15 27095.85 19098.76 205
TAMVS95.85 14695.58 14496.65 18697.07 22593.50 21899.17 22697.82 21491.39 22195.02 18798.01 20392.20 13997.30 25993.75 19995.83 19199.14 189
CostFormer96.10 14195.88 13896.78 18097.03 22892.55 24097.08 32297.83 21390.04 24598.72 10194.89 30695.01 5998.29 21196.54 14795.77 19299.50 155
tttt051796.85 11396.49 11597.92 14297.48 20995.89 15999.85 10698.54 8790.72 23496.63 15798.93 16397.47 1199.02 16393.03 21395.76 19398.85 200
HY-MVS92.50 797.79 8197.17 9599.63 1598.98 12399.32 897.49 31499.52 1395.69 6998.32 11997.41 21693.32 11099.77 11998.08 10795.75 19499.81 102
CDS-MVSNet96.34 13496.07 12397.13 17197.37 21394.96 18799.53 18197.91 20591.55 21395.37 18398.32 19795.05 5697.13 27093.80 19695.75 19499.30 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 15695.18 15596.35 19796.91 23391.70 26296.96 32597.93 20288.04 27698.44 11395.40 28393.32 11097.97 23294.00 19095.61 19699.38 167
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1395.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 19799.78 107
HyFIR lowres test96.66 12596.43 11797.36 16699.05 11893.91 21099.70 15299.80 390.54 23596.26 16898.08 20192.15 14198.23 22096.84 14595.46 19899.93 85
cascas94.64 17593.61 18497.74 15197.82 18796.26 14399.96 2597.78 21685.76 30594.00 19997.54 21376.95 28599.21 15897.23 13395.43 19997.76 220
CVMVSNet94.68 17494.94 15993.89 27296.80 24186.92 32199.06 23798.98 3494.45 10494.23 19799.02 14785.60 21795.31 33190.91 23995.39 20099.43 163
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
LFMVS94.75 17193.56 18998.30 12799.03 11995.70 16798.74 27097.98 19787.81 27998.47 11299.39 12367.43 33399.53 14598.01 10995.20 20399.67 120
thres20096.96 10996.21 12199.22 5398.97 12498.84 3499.85 10699.71 593.17 15696.26 16898.88 16689.87 17599.51 14794.26 18694.91 20499.31 176
thres100view90096.74 12095.92 13699.18 5798.90 13398.77 4099.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.84 19294.57 20599.27 179
tfpn200view996.79 11695.99 12699.19 5698.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.27 179
thres40096.78 11795.99 12699.16 6298.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.16 186
thres600view796.69 12395.87 13999.14 6698.90 13398.78 3999.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.44 20594.50 20899.16 186
VNet97.21 10396.57 11399.13 7198.97 12497.82 8599.03 24399.21 2794.31 11499.18 8198.88 16686.26 21399.89 8398.93 6394.32 20999.69 117
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 10894.40 11098.41 11499.47 11493.65 10399.42 15598.57 8894.26 21099.67 120
VDD-MVS93.77 19692.94 20296.27 19898.55 14790.22 28798.77 26997.79 21590.85 23196.82 15399.42 11861.18 35199.77 11998.95 6194.13 21198.82 202
VDDNet93.12 20991.91 22496.76 18196.67 24892.65 23898.69 27598.21 17382.81 33097.75 13599.28 12861.57 34999.48 15398.09 10694.09 21298.15 212
GA-MVS93.83 19292.84 20396.80 17995.73 26793.57 21599.88 8997.24 26792.57 18292.92 21196.66 24378.73 27697.67 24487.75 27594.06 21399.17 185
canonicalmvs97.09 10796.32 11999.39 4698.93 12898.95 2599.72 15097.35 25794.45 10497.88 13299.42 11886.71 20899.52 14698.48 9193.97 21499.72 114
1112_ss96.01 14495.20 15498.42 12297.80 18896.41 13799.65 16196.66 31892.71 17092.88 21399.40 12192.16 14099.30 15691.92 22293.66 21599.55 144
Test_1112_low_res95.72 14994.83 16198.42 12297.79 18996.41 13799.65 16196.65 31992.70 17192.86 21496.13 25992.15 14199.30 15691.88 22393.64 21699.55 144
MIMVSNet90.30 27088.67 28295.17 22396.45 24991.64 26492.39 35097.15 27585.99 30190.50 23193.19 33266.95 33494.86 33782.01 31793.43 21799.01 195
XVG-OURS-SEG-HR94.79 16894.70 16595.08 22498.05 17389.19 30099.08 23297.54 23593.66 14394.87 18899.58 10678.78 27599.79 11397.31 13193.40 21896.25 229
ab-mvs94.69 17293.42 19398.51 11598.07 17296.26 14396.49 32998.68 5690.31 24094.54 19097.00 23176.30 29299.71 13395.98 15393.38 21999.56 143
test0.0.03 193.86 19193.61 18494.64 23995.02 28392.18 24799.93 6698.58 7394.07 12387.96 28198.50 18893.90 9794.96 33581.33 32093.17 22096.78 226
RPSCF91.80 24092.79 20588.83 32798.15 16969.87 36098.11 30396.60 32083.93 32394.33 19599.27 13179.60 26999.46 15491.99 22093.16 22197.18 225
XVG-OURS94.82 16794.74 16495.06 22598.00 17589.19 30099.08 23297.55 23394.10 12194.71 18999.62 10380.51 26299.74 12996.04 15293.06 22296.25 229
MVS_030489.28 28888.31 28792.21 30197.05 22786.53 32297.76 31299.57 1285.58 31093.86 20292.71 33451.04 36196.30 31184.49 30292.72 22393.79 302
Anonymous20240521193.10 21091.99 22296.40 19499.10 11789.65 29798.88 25897.93 20283.71 32594.00 19998.75 17568.79 32599.88 8995.08 16291.71 22499.68 118
Anonymous2024052992.10 23390.65 24496.47 18998.82 13890.61 27998.72 27298.67 5975.54 35193.90 20198.58 18566.23 33699.90 7994.70 17590.67 22598.90 199
HQP3-MVS97.89 20689.60 226
HQP-MVS94.61 17694.50 16794.92 23095.78 26191.85 25499.87 9297.89 20696.82 3193.37 20598.65 17980.65 26098.39 20197.92 11589.60 22694.53 235
plane_prior91.74 25899.86 10396.76 3589.59 228
HQP_MVS94.49 18194.36 16994.87 23195.71 27091.74 25899.84 11097.87 20896.38 4793.01 20998.59 18380.47 26498.37 20697.79 12089.55 22994.52 237
plane_prior597.87 20898.37 20697.79 12089.55 22994.52 237
CLD-MVS94.06 19093.90 18094.55 24496.02 25690.69 27699.98 1097.72 21796.62 4191.05 22698.85 17377.21 28298.47 19098.11 10489.51 23194.48 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 20792.80 20494.44 25193.12 31390.85 27599.77 13197.61 22796.19 5491.56 22198.65 17975.16 30298.47 19093.78 19889.39 23293.99 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test92.96 21392.71 20693.71 27695.43 27688.67 30699.75 13997.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
LGP-MVS_train93.71 27695.43 27688.67 30697.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
test_djsdf92.83 21692.29 21794.47 24991.90 33192.46 24199.55 17897.27 26591.17 22289.96 23796.07 26181.10 25396.89 28694.67 17688.91 23594.05 281
testgi89.01 29088.04 29191.90 30593.49 30684.89 33299.73 14795.66 33993.89 13685.14 31498.17 19959.68 35294.66 33977.73 33588.88 23696.16 232
ACMM91.95 1092.88 21592.52 21393.98 26995.75 26689.08 30399.77 13197.52 23993.00 15989.95 23897.99 20676.17 29498.46 19393.63 20388.87 23794.39 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 21892.42 21593.73 27495.91 26088.72 30599.81 11997.53 23794.13 11987.00 29498.23 19874.07 30898.47 19096.22 15088.86 23893.99 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 23591.18 23794.15 25991.35 33790.95 27399.00 24597.42 25092.61 17787.38 29097.08 22672.46 31397.36 25494.53 17988.77 23994.13 276
anonymousdsp91.79 24290.92 24094.41 25490.76 34292.93 22998.93 25397.17 27289.08 25387.46 28995.30 29078.43 28096.92 28592.38 21788.73 24093.39 315
mvs_tets91.81 23791.08 23894.00 26791.63 33590.58 28098.67 27797.43 24892.43 18887.37 29197.05 22971.76 31597.32 25894.75 17288.68 24194.11 277
XVG-ACMP-BASELINE91.22 25090.75 24192.63 29793.73 30285.61 32698.52 28597.44 24792.77 16889.90 24096.85 23766.64 33598.39 20192.29 21888.61 24293.89 295
EG-PatchMatch MVS85.35 30883.81 31089.99 32190.39 34481.89 34598.21 30096.09 33181.78 33574.73 35293.72 32651.56 36097.12 27279.16 33088.61 24290.96 344
UniMVSNet_ETH3D90.06 27788.58 28394.49 24894.67 28888.09 31597.81 31197.57 23283.91 32488.44 27297.41 21657.44 35597.62 24691.41 22788.59 24497.77 219
tpm93.70 20093.41 19594.58 24295.36 27887.41 31997.01 32396.90 30390.85 23196.72 15694.14 32290.40 16996.84 28990.75 24388.54 24599.51 153
OpenMVS_ROBcopyleft79.82 2083.77 31781.68 32090.03 32088.30 35382.82 33798.46 28695.22 34873.92 35576.00 34991.29 34255.00 35796.94 28468.40 35388.51 24690.34 348
CMPMVSbinary61.59 2184.75 31185.14 30583.57 33890.32 34562.54 36496.98 32497.59 23174.33 35469.95 35796.66 24364.17 34398.32 20987.88 27488.41 24789.84 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++88.23 248
ITE_SJBPF92.38 29895.69 27285.14 33095.71 33792.81 16489.33 25698.11 20070.23 32298.42 19685.91 29488.16 24993.59 311
D2MVS92.76 21792.59 21193.27 28695.13 27989.54 29999.69 15399.38 2192.26 19287.59 28594.61 31485.05 22597.79 24091.59 22688.01 25092.47 331
EI-MVSNet93.73 19893.40 19694.74 23596.80 24192.69 23599.06 23797.67 22088.96 25991.39 22299.02 14788.75 19197.30 25991.07 23287.85 25194.22 261
MVSTER95.53 15495.22 15396.45 19198.56 14697.72 8699.91 7497.67 22092.38 18991.39 22297.14 22397.24 1797.30 25994.80 16987.85 25194.34 254
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 32892.19 24699.12 22897.38 25592.51 18588.45 27196.99 23291.20 15597.29 26294.36 18287.71 25394.36 250
LTVRE_ROB88.28 1890.29 27189.05 27694.02 26595.08 28190.15 28997.19 31997.43 24884.91 31883.99 31997.06 22874.00 30998.28 21484.08 30387.71 25393.62 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 26189.63 26293.66 28095.64 27388.64 30898.55 28197.45 24589.03 25581.62 33097.61 21269.75 32398.41 19789.37 25787.62 25593.92 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 14295.82 14096.72 18399.59 9596.99 11999.95 4399.10 2894.06 12598.27 12195.80 26489.00 18899.95 6499.12 5187.53 25693.24 319
USDC90.00 27888.96 27793.10 29194.81 28588.16 31498.71 27395.54 34293.66 14383.75 32197.20 22265.58 33898.31 21083.96 30687.49 25792.85 326
RRT_MVS95.23 15994.77 16396.61 18798.28 15998.32 6799.81 11997.41 25292.59 17991.28 22497.76 21095.02 5797.23 26593.65 20287.14 25894.28 257
ACMMP++_ref87.04 259
test_040285.58 30483.94 30890.50 31593.81 30185.04 33198.55 28195.20 34976.01 34879.72 33995.13 29664.15 34496.26 31366.04 35886.88 26090.21 350
FIs94.10 18993.43 19296.11 20194.70 28796.82 12499.58 17298.93 4092.54 18389.34 25597.31 21987.62 19997.10 27394.22 18886.58 26194.40 247
FC-MVSNet-test93.81 19493.15 20195.80 20994.30 29396.20 14899.42 19798.89 4292.33 19189.03 26497.27 22187.39 20296.83 29093.20 20786.48 26294.36 250
TinyColmap87.87 29886.51 29991.94 30495.05 28285.57 32797.65 31394.08 35784.40 32181.82 32996.85 23762.14 34898.33 20880.25 32586.37 26391.91 338
ACMH+89.98 1690.35 26889.54 26592.78 29695.99 25786.12 32498.81 26697.18 27189.38 25083.14 32397.76 21068.42 32998.43 19589.11 26086.05 26493.78 303
baseline195.78 14894.86 16098.54 11298.47 15298.07 7499.06 23797.99 19592.68 17394.13 19898.62 18293.28 11398.69 18193.79 19785.76 26598.84 201
GBi-Net90.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
test190.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
FMVSNet392.69 22091.58 22995.99 20398.29 15797.42 10699.26 22097.62 22489.80 24889.68 24595.32 28981.62 24996.27 31287.01 28685.65 26694.29 256
DeepMVS_CXcopyleft82.92 34095.98 25958.66 36696.01 33292.72 16978.34 34395.51 27858.29 35498.08 22682.57 31385.29 26992.03 336
LF4IMVS89.25 28988.85 27890.45 31792.81 32281.19 34998.12 30294.79 35291.44 21786.29 30697.11 22465.30 34198.11 22588.53 26685.25 27092.07 334
FMVSNet291.02 25289.56 26495.41 21597.53 20495.74 16498.98 24797.41 25287.05 28788.43 27495.00 30271.34 31796.24 31485.12 29885.21 27194.25 260
ET-MVSNet_ETH3D94.37 18493.28 19997.64 15398.30 15697.99 7899.99 597.61 22794.35 11171.57 35599.45 11796.23 3095.34 33096.91 14485.14 27299.59 135
OurMVSNet-221017-089.81 28089.48 26990.83 31391.64 33481.21 34898.17 30195.38 34591.48 21585.65 31297.31 21972.66 31297.29 26288.15 27084.83 27393.97 289
pmmvs492.10 23391.07 23995.18 22292.82 32194.96 18799.48 19096.83 30887.45 28288.66 27096.56 24883.78 23396.83 29089.29 25884.77 27493.75 304
our_test_390.39 26689.48 26993.12 28992.40 32589.57 29899.33 20996.35 32687.84 27885.30 31394.99 30384.14 23196.09 31980.38 32484.56 27593.71 309
cl2293.77 19693.25 20095.33 21799.49 10494.43 19999.61 16998.09 18890.38 23789.16 26295.61 27190.56 16897.34 25691.93 22184.45 27694.21 263
miper_ehance_all_eth93.16 20892.60 20894.82 23497.57 20393.56 21699.50 18697.07 28388.75 26488.85 26695.52 27790.97 16196.74 29390.77 24284.45 27694.17 265
miper_enhance_ethall94.36 18693.98 17895.49 21198.68 14595.24 18099.73 14797.29 26393.28 15389.86 24195.97 26294.37 7897.05 27692.20 21984.45 27694.19 264
bset_n11_16_dypcd93.05 21292.30 21695.31 21890.23 34695.05 18599.44 19697.28 26492.51 18590.65 23096.68 24285.30 22296.71 29694.49 18084.14 27994.16 270
IterMVS90.91 25490.17 25593.12 28996.78 24490.42 28598.89 25697.05 28789.03 25586.49 30195.42 28276.59 28995.02 33387.22 28284.09 28093.93 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 29286.64 29894.08 26295.62 27591.97 24998.43 28896.95 29783.00 32886.08 30994.72 30859.09 35396.11 31681.82 31984.07 28194.17 265
XXY-MVS91.82 23690.46 24695.88 20693.91 29995.40 17598.87 26197.69 21988.63 26887.87 28297.08 22674.38 30797.89 23891.66 22584.07 28194.35 253
IterMVS-SCA-FT90.85 25790.16 25692.93 29396.72 24689.96 29298.89 25696.99 29288.95 26086.63 29895.67 26976.48 29095.00 33487.04 28484.04 28393.84 299
RRT_test8_iter0594.58 17794.11 17495.98 20497.88 18196.11 15499.89 8697.45 24591.66 21088.28 27796.71 24196.53 2797.40 25294.73 17483.85 28494.45 245
pmmvs590.17 27589.09 27493.40 28392.10 32989.77 29699.74 14295.58 34185.88 30487.24 29395.74 26673.41 31196.48 30488.54 26583.56 28593.95 290
SixPastTwentyTwo88.73 29188.01 29290.88 31191.85 33282.24 34298.22 29995.18 35088.97 25882.26 32696.89 23471.75 31696.67 29884.00 30482.98 28693.72 308
N_pmnet80.06 32480.78 32277.89 34191.94 33045.28 37298.80 26756.82 37578.10 34580.08 33893.33 32877.03 28395.76 32668.14 35482.81 28792.64 327
ppachtmachnet_test89.58 28488.35 28693.25 28792.40 32590.44 28499.33 20996.73 31585.49 31185.90 31195.77 26581.09 25496.00 32376.00 34282.49 28893.30 317
cl____92.31 22891.58 22994.52 24597.33 21792.77 23099.57 17496.78 31386.97 29187.56 28695.51 27889.43 17996.62 29988.60 26382.44 28994.16 270
DIV-MVS_self_test92.32 22791.60 22894.47 24997.31 21892.74 23299.58 17296.75 31486.99 29087.64 28495.54 27589.55 17896.50 30388.58 26482.44 28994.17 265
Patchmtry89.70 28288.49 28493.33 28496.24 25289.94 29591.37 35596.23 32778.22 34487.69 28393.31 33091.04 15996.03 32180.18 32682.10 29194.02 282
IterMVS-LS92.69 22092.11 21994.43 25396.80 24192.74 23299.45 19496.89 30488.98 25789.65 24895.38 28688.77 19096.34 30990.98 23782.04 29294.22 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 27690.34 25089.54 32392.55 32481.06 35098.69 27598.04 19391.41 22086.59 29996.84 23980.83 25793.31 35186.20 29181.91 29394.26 258
Anonymous2023120686.32 30185.42 30389.02 32689.11 35180.53 35499.05 24195.28 34685.43 31282.82 32493.92 32374.40 30693.44 35066.99 35581.83 29493.08 322
eth_miper_zixun_eth92.41 22691.93 22393.84 27397.28 22190.68 27798.83 26496.97 29688.57 26989.19 26195.73 26889.24 18596.69 29789.97 25481.55 29594.15 272
FMVSNet588.32 29387.47 29590.88 31196.90 23688.39 31297.28 31795.68 33882.60 33284.67 31692.40 33979.83 26891.16 35676.39 34181.51 29693.09 321
miper_lstm_enhance91.81 23791.39 23593.06 29297.34 21589.18 30299.38 20396.79 31286.70 29487.47 28895.22 29590.00 17395.86 32588.26 26881.37 29794.15 272
VPA-MVSNet92.70 21991.55 23196.16 20095.09 28096.20 14898.88 25899.00 3391.02 22891.82 21995.29 29376.05 29697.96 23495.62 15881.19 29894.30 255
v119290.62 26389.25 27194.72 23793.13 31193.07 22599.50 18697.02 28986.33 29889.56 25195.01 30079.22 27197.09 27582.34 31581.16 29994.01 284
v114491.09 25189.83 25994.87 23193.25 31093.69 21499.62 16896.98 29486.83 29389.64 24994.99 30380.94 25597.05 27685.08 29981.16 29993.87 297
Anonymous2024052185.15 30983.81 31089.16 32588.32 35282.69 33898.80 26795.74 33679.72 34081.53 33190.99 34365.38 34094.16 34272.69 34681.11 30190.63 347
v124090.20 27388.79 28094.44 25193.05 31692.27 24599.38 20396.92 30285.89 30289.36 25494.87 30777.89 28197.03 28080.66 32381.08 30294.01 284
new_pmnet84.49 31482.92 31689.21 32490.03 34782.60 33996.89 32695.62 34080.59 33875.77 35189.17 34765.04 34294.79 33872.12 34781.02 30390.23 349
K. test v388.05 29587.24 29790.47 31691.82 33382.23 34398.96 25097.42 25089.05 25476.93 34695.60 27268.49 32895.42 32885.87 29581.01 30493.75 304
FPMVS68.72 32668.72 32968.71 34665.95 36944.27 37495.97 33794.74 35351.13 36253.26 36590.50 34625.11 36983.00 36460.80 36180.97 30578.87 360
v192192090.46 26589.12 27394.50 24792.96 31892.46 24199.49 18896.98 29486.10 30089.61 25095.30 29078.55 27897.03 28082.17 31680.89 30694.01 284
c3_l92.53 22391.87 22594.52 24597.40 21292.99 22899.40 19896.93 30187.86 27788.69 26995.44 28189.95 17496.44 30590.45 24680.69 30794.14 275
tfpnnormal89.29 28787.61 29494.34 25594.35 29294.13 20498.95 25198.94 3683.94 32284.47 31795.51 27874.84 30397.39 25377.05 33980.41 30891.48 341
v14419290.79 25889.52 26694.59 24193.11 31492.77 23099.56 17696.99 29286.38 29789.82 24494.95 30580.50 26397.10 27383.98 30580.41 30893.90 294
nrg03093.51 20292.53 21296.45 19194.36 29197.20 11199.81 11997.16 27491.60 21189.86 24197.46 21486.37 21297.68 24395.88 15580.31 31094.46 240
Anonymous2023121189.86 27988.44 28594.13 26198.93 12890.68 27798.54 28398.26 16776.28 34786.73 29695.54 27570.60 32197.56 24790.82 24180.27 31194.15 272
V4291.28 24890.12 25794.74 23593.42 30893.46 21999.68 15597.02 28987.36 28389.85 24395.05 29881.31 25297.34 25687.34 28080.07 31293.40 314
v2v48291.30 24690.07 25895.01 22693.13 31193.79 21199.77 13197.02 28988.05 27589.25 25795.37 28780.73 25897.15 26887.28 28180.04 31394.09 278
WR-MVS92.31 22891.25 23695.48 21494.45 29095.29 17799.60 17098.68 5690.10 24288.07 28096.89 23480.68 25996.80 29293.14 21079.67 31494.36 250
v1090.25 27288.82 27994.57 24393.53 30593.43 22099.08 23296.87 30685.00 31587.34 29294.51 31580.93 25697.02 28282.85 31279.23 31593.26 318
test_part192.15 23290.72 24296.44 19398.87 13697.46 10398.99 24698.26 16785.89 30286.34 30596.34 25381.71 24597.48 25091.06 23378.99 31694.37 249
CP-MVSNet91.23 24990.22 25394.26 25693.96 29892.39 24399.09 23098.57 7588.95 26086.42 30396.57 24779.19 27296.37 30790.29 25078.95 31794.02 282
MIMVSNet182.58 31980.51 32388.78 32886.68 35684.20 33596.65 32795.41 34478.75 34378.59 34292.44 33651.88 35989.76 35965.26 35978.95 31792.38 333
PS-CasMVS90.63 26289.51 26793.99 26893.83 30091.70 26298.98 24798.52 9088.48 27086.15 30896.53 24975.46 29896.31 31088.83 26278.86 31993.95 290
WR-MVS_H91.30 24690.35 24994.15 25994.17 29592.62 23999.17 22698.94 3688.87 26286.48 30294.46 31984.36 22996.61 30088.19 26978.51 32093.21 320
v890.54 26489.17 27294.66 23893.43 30793.40 22299.20 22396.94 30085.76 30587.56 28694.51 31581.96 24497.19 26684.94 30078.25 32193.38 316
UniMVSNet (Re)93.07 21192.13 21895.88 20694.84 28496.24 14799.88 8998.98 3492.49 18789.25 25795.40 28387.09 20597.14 26993.13 21178.16 32294.26 258
v7n89.65 28388.29 28893.72 27592.22 32790.56 28199.07 23697.10 28085.42 31386.73 29694.72 30880.06 26697.13 27081.14 32178.12 32393.49 312
VPNet91.81 23790.46 24695.85 20894.74 28695.54 17198.98 24798.59 7292.14 19590.77 22997.44 21568.73 32797.54 24894.89 16777.89 32494.46 240
Gipumacopyleft66.95 32965.00 33072.79 34491.52 33667.96 36166.16 36495.15 35147.89 36358.54 36167.99 36429.74 36687.54 36150.20 36477.83 32562.87 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 24590.22 25395.60 21094.05 29695.76 16398.25 29698.70 5491.16 22480.78 33596.64 24583.23 23896.57 30191.41 22777.73 32694.46 240
UniMVSNet_NR-MVSNet92.95 21492.11 21995.49 21194.61 28995.28 17899.83 11699.08 3091.49 21489.21 25996.86 23687.14 20496.73 29493.20 20777.52 32794.46 240
DU-MVS92.46 22591.45 23495.49 21194.05 29695.28 17899.81 11998.74 5292.25 19389.21 25996.64 24581.66 24796.73 29493.20 20777.52 32794.46 240
MDA-MVSNet_test_wron85.51 30683.32 31392.10 30290.96 34088.58 30999.20 22396.52 32279.70 34157.12 36392.69 33579.11 27393.86 34677.10 33877.46 32993.86 298
YYNet185.50 30783.33 31292.00 30390.89 34188.38 31399.22 22296.55 32179.60 34257.26 36292.72 33379.09 27493.78 34777.25 33777.37 33093.84 299
test_method80.79 32179.70 32484.08 33792.83 32067.06 36299.51 18495.42 34354.34 36181.07 33493.53 32744.48 36392.22 35378.90 33177.23 33192.94 324
v14890.70 25989.63 26293.92 27092.97 31790.97 27299.75 13996.89 30487.51 28088.27 27895.01 30081.67 24697.04 27887.40 27977.17 33293.75 304
Baseline_NR-MVSNet90.33 26989.51 26792.81 29592.84 31989.95 29399.77 13193.94 35984.69 32089.04 26395.66 27081.66 24796.52 30290.99 23676.98 33391.97 337
PEN-MVS90.19 27489.06 27593.57 28193.06 31590.90 27499.06 23798.47 10388.11 27485.91 31096.30 25476.67 28795.94 32487.07 28376.91 33493.89 295
TranMVSNet+NR-MVSNet91.68 24490.61 24594.87 23193.69 30393.98 20899.69 15398.65 6091.03 22788.44 27296.83 24080.05 26796.18 31590.26 25176.89 33594.45 245
MDA-MVSNet-bldmvs84.09 31581.52 32191.81 30691.32 33888.00 31798.67 27795.92 33480.22 33955.60 36493.32 32968.29 33093.60 34973.76 34476.61 33693.82 301
test20.0384.72 31283.99 30686.91 33488.19 35480.62 35398.88 25895.94 33388.36 27278.87 34094.62 31368.75 32689.11 36066.52 35675.82 33791.00 343
DTE-MVSNet89.40 28588.24 28992.88 29492.66 32389.95 29399.10 22998.22 17287.29 28485.12 31596.22 25676.27 29395.30 33283.56 30975.74 33893.41 313
pm-mvs189.36 28687.81 29394.01 26693.40 30991.93 25298.62 28096.48 32486.25 29983.86 32096.14 25873.68 31097.04 27886.16 29275.73 33993.04 323
lessismore_v090.53 31490.58 34380.90 35195.80 33577.01 34595.84 26366.15 33796.95 28383.03 31175.05 34093.74 307
IB-MVS92.85 694.99 16593.94 17998.16 13197.72 19795.69 16899.99 598.81 4894.28 11692.70 21596.90 23395.08 5399.17 16096.07 15173.88 34199.60 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 30383.84 30991.26 31090.00 34884.41 33497.82 31096.15 33075.86 34981.29 33295.39 28561.21 35096.87 28883.52 31073.29 34292.50 330
h-mvs3394.92 16694.36 16996.59 18898.85 13791.29 26998.93 25398.94 3695.90 5998.77 9798.42 19590.89 16499.77 11997.80 11770.76 34398.72 206
ambc83.23 33977.17 36462.61 36387.38 35994.55 35676.72 34786.65 35430.16 36596.36 30884.85 30169.86 34490.73 346
Patchmatch-RL test86.90 30085.98 30289.67 32284.45 35975.59 35789.71 35792.43 36186.89 29277.83 34490.94 34494.22 8693.63 34887.75 27569.61 34599.79 104
PM-MVS80.47 32278.88 32685.26 33683.79 36172.22 35995.89 33891.08 36485.71 30876.56 34888.30 34936.64 36493.90 34582.39 31469.57 34689.66 353
pmmvs-eth3d84.03 31681.97 31990.20 31884.15 36087.09 32098.10 30494.73 35483.05 32774.10 35387.77 35165.56 33994.01 34381.08 32269.24 34789.49 354
AUN-MVS93.28 20692.60 20895.34 21698.29 15790.09 29099.31 21298.56 7791.80 20796.35 16798.00 20489.38 18098.28 21492.46 21669.22 34897.64 221
hse-mvs294.38 18394.08 17695.31 21898.27 16190.02 29199.29 21798.56 7795.90 5998.77 9798.00 20490.89 16498.26 21897.80 11769.20 34997.64 221
TransMVSNet (Re)87.25 29985.28 30493.16 28893.56 30491.03 27198.54 28394.05 35883.69 32681.09 33396.16 25775.32 29996.40 30676.69 34068.41 35092.06 335
PMVScopyleft49.05 2353.75 33251.34 33660.97 34940.80 37534.68 37574.82 36389.62 36837.55 36628.67 37272.12 3617.09 37581.63 36543.17 36768.21 35166.59 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth85.52 30583.99 30690.10 31989.36 35083.51 33696.65 32797.99 19589.14 25275.89 35093.83 32463.25 34693.92 34481.92 31867.90 35292.88 325
PVSNet_088.03 1991.80 24090.27 25296.38 19698.27 16190.46 28399.94 6099.61 1193.99 12886.26 30797.39 21871.13 32099.89 8398.77 7767.05 35398.79 204
TDRefinement84.76 31082.56 31791.38 30974.58 36584.80 33397.36 31694.56 35584.73 31980.21 33796.12 26063.56 34598.39 20187.92 27363.97 35490.95 345
new-patchmatchnet81.19 32079.34 32586.76 33582.86 36280.36 35597.92 30895.27 34782.09 33472.02 35486.87 35362.81 34790.74 35871.10 34863.08 35589.19 356
pmmvs380.27 32377.77 32787.76 33380.32 36382.43 34198.23 29891.97 36272.74 35678.75 34187.97 35057.30 35690.99 35770.31 34962.37 35689.87 351
KD-MVS_self_test83.59 31882.06 31888.20 33286.93 35580.70 35297.21 31896.38 32582.87 32982.49 32588.97 34867.63 33292.32 35273.75 34562.30 35791.58 340
CL-MVSNet_self_test84.50 31383.15 31588.53 33086.00 35781.79 34698.82 26597.35 25785.12 31483.62 32290.91 34576.66 28891.40 35569.53 35160.36 35892.40 332
UnsupCasMVSNet_bld79.97 32577.03 32888.78 32885.62 35881.98 34493.66 34697.35 25775.51 35270.79 35683.05 35748.70 36294.91 33678.31 33360.29 35989.46 355
LCM-MVSNet67.77 32764.73 33176.87 34262.95 37156.25 36889.37 35893.74 36044.53 36461.99 35980.74 35820.42 37186.53 36269.37 35259.50 36087.84 357
KD-MVS_2432*160088.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
miper_refine_blended88.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
PMMVS267.15 32864.15 33276.14 34370.56 36862.07 36593.89 34487.52 37058.09 36060.02 36078.32 35922.38 37084.54 36359.56 36247.03 36381.80 359
MVEpermissive53.74 2251.54 33447.86 33862.60 34859.56 37250.93 36979.41 36277.69 37235.69 36836.27 37061.76 3685.79 37769.63 36737.97 36836.61 36467.24 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33352.18 33552.67 35071.51 36645.40 37193.62 34776.60 37336.01 36743.50 36864.13 36627.11 36867.31 36931.06 36926.06 36545.30 368
EMVS51.44 33551.22 33752.11 35170.71 36744.97 37394.04 34375.66 37435.34 36942.40 36961.56 36928.93 36765.87 37027.64 37024.73 36645.49 367
ANet_high56.10 33152.24 33467.66 34749.27 37356.82 36783.94 36082.02 37170.47 35733.28 37164.54 36517.23 37369.16 36845.59 36623.85 36777.02 361
tmp_tt65.23 33062.94 33372.13 34544.90 37450.03 37081.05 36189.42 36938.45 36548.51 36799.90 1954.09 35878.70 36691.84 22418.26 36887.64 358
testmvs40.60 33644.45 33929.05 35319.49 37714.11 37899.68 15518.47 37620.74 37064.59 35898.48 19210.95 37417.09 37356.66 36311.01 36955.94 366
wuyk23d20.37 33920.84 34218.99 35465.34 37027.73 37650.43 3657.67 3789.50 3728.01 3736.34 3726.13 37626.24 37123.40 37110.69 3702.99 369
test12337.68 33739.14 34033.31 35219.94 37624.83 37798.36 2929.75 37715.53 37151.31 36687.14 35219.62 37217.74 37247.10 3653.47 37157.36 365
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.02 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.43 33831.24 3410.00 3550.00 3780.00 3790.00 36698.09 1880.00 3730.00 37499.67 9883.37 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.60 34110.13 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37491.20 1550.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.28 34011.04 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.40 1210.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.92 3697.66 9199.95 4398.36 14895.58 7299.52 53
test_one_060199.94 1499.30 1198.41 13296.63 3999.75 2799.93 1197.49 9
eth-test20.00 378
eth-test0.00 378
test_241102_ONE99.93 2799.30 1198.43 11697.26 2299.80 1699.88 2496.71 23100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13697.66 10
test072699.93 2799.29 1499.96 2598.42 12897.28 1899.86 499.94 497.22 18
GSMVS99.59 135
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 135
sam_mvs94.25 85
MTGPAbinary98.28 163
test_post195.78 33959.23 37093.20 11797.74 24291.06 233
test_post63.35 36794.43 7298.13 224
patchmatchnet-post91.70 34195.12 5197.95 235
MTMP99.87 9296.49 323
gm-plane-assit96.97 23193.76 21391.47 21698.96 15898.79 17194.92 164
TEST999.92 3698.92 2799.96 2598.43 11693.90 13499.71 3599.86 3195.88 3799.85 98
test_899.92 3698.88 3099.96 2598.43 11694.35 11199.69 3799.85 3595.94 3499.85 98
agg_prior99.93 2798.77 4098.43 11699.63 4099.85 98
test_prior498.05 7599.94 60
test_prior99.43 3899.94 1498.49 6198.65 6099.80 11099.99 24
旧先验299.46 19394.21 11899.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5393.46 148100.00 194.36 18299.99 24
原ACMM299.90 78
testdata299.99 4090.54 245
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior795.71 27091.59 266
plane_prior695.76 26591.72 26180.47 264
plane_prior498.59 183
plane_prior391.64 26496.63 3993.01 209
plane_prior299.84 11096.38 47
plane_prior195.73 267
n20.00 379
nn0.00 379
door-mid89.69 367
test1198.44 108
door90.31 365
HQP5-MVS91.85 254
HQP-NCC95.78 26199.87 9296.82 3193.37 205
ACMP_Plane95.78 26199.87 9296.82 3193.37 205
BP-MVS97.92 115
HQP4-MVS93.37 20598.39 20194.53 235
HQP2-MVS80.65 260
NP-MVS95.77 26491.79 25698.65 179
MDTV_nov1_ep13_2view96.26 14396.11 33491.89 20298.06 12794.40 7494.30 18599.67 120
Test By Simon92.82 126