This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 25100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17697.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 135100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12797.48 2799.64 4399.94 496.68 2799.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 46100.00 1100.00 1
region2R98.54 3698.37 3999.05 7199.96 897.18 10699.96 3598.55 9994.87 10799.45 6599.85 3394.07 94100.00 198.67 93100.00 199.98 51
test_prior299.95 5395.78 8399.73 3399.76 6696.00 3599.78 27100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 38100.00 199.51 43100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8598.39 15997.20 3899.46 6499.85 3395.53 4699.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 32100.00 199.74 33100.00 1100.00 1
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10698.33 17493.97 14899.76 2899.87 2794.99 6099.75 13598.55 100100.00 199.98 51
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 11899.95 5398.38 16395.04 10198.61 11799.80 5493.39 109100.00 198.64 96100.00 199.98 51
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 22100.00 199.75 31100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 16100.00 199.54 42100.00 1100.00 1
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 18899.44 1997.33 3199.00 9699.72 8494.03 9599.98 4798.73 90100.00 1100.00 1
ZNCC-MVS98.31 5298.03 5999.17 5599.88 4997.59 8899.94 6998.44 12794.31 13198.50 12299.82 4993.06 12399.99 3698.30 11599.99 2199.93 79
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11798.38 16393.19 17499.77 2799.94 495.54 44100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 3699.99 21100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9397.56 2599.44 6699.85 3395.38 49100.00 199.31 5499.99 2199.87 90
HPM-MVS_fast97.80 8097.50 8498.68 9599.79 6296.42 13599.88 10398.16 20291.75 23398.94 9899.54 11391.82 15799.65 15097.62 14999.99 2199.99 23
HPM-MVScopyleft97.96 6797.72 7598.68 9599.84 5696.39 13999.90 9198.17 19892.61 20198.62 11699.57 11091.87 15599.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10698.36 16794.08 14199.74 3199.73 8194.08 9399.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 12899.97 2898.39 15994.43 12398.90 10099.87 2794.30 85100.00 199.04 6799.99 2199.99 23
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8399.98 1598.44 12796.85 4999.80 1799.91 1497.57 799.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 9097.32 9398.58 10599.97 395.77 16299.96 3598.35 16989.90 28198.36 12999.79 5891.18 16599.99 3698.37 11199.99 2199.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 24998.47 11998.14 1099.08 9299.91 1493.09 122100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13596.48 6399.80 1799.93 1197.44 13100.00 199.92 1399.98 32100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 9100.00 199.99 599.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 13100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10399.95 5398.42 14797.50 2699.52 6099.88 2497.43 1599.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14798.38 16396.73 5699.88 699.74 7994.89 6299.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 12899.71 3599.86 2995.94 3699.85 11199.69 3899.98 3299.99 23
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9799.95 5398.61 8394.77 10999.31 7899.85 3394.22 88100.00 198.70 9199.98 3299.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10699.95 5398.60 8594.77 10999.31 7899.84 4493.73 104100.00 198.70 9199.98 3299.98 51
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6599.75 13599.98 3299.99 23
PAPM_NR98.12 6497.93 6898.70 9499.94 1396.13 15299.82 13598.43 13594.56 11797.52 15599.70 8894.40 7799.98 4797.00 16199.98 3299.99 23
ZD-MVS99.92 3198.57 5698.52 10792.34 21599.31 7899.83 4695.06 5599.80 12499.70 3799.97 42
9.1498.38 3799.87 5199.91 8598.33 17493.22 17399.78 2699.89 2294.57 7399.85 11199.84 2299.97 42
MP-MVScopyleft98.23 6197.97 6399.03 7399.94 1397.17 10999.95 5398.39 15994.70 11398.26 13599.81 5391.84 156100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 10096.83 11399.14 6199.51 9497.83 7999.89 10098.27 18588.48 30999.06 9399.66 9990.30 18399.64 15196.32 17499.97 4299.96 67
balanced_conf0398.27 5597.99 6199.11 6698.64 15398.43 6299.47 21797.79 23794.56 11799.74 3198.35 22094.33 8499.25 17199.12 6199.96 4699.64 124
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 6998.34 17396.38 6999.81 1599.76 6694.59 7099.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5198.13 5498.99 7899.92 3197.00 11499.75 15699.50 1793.90 15499.37 7599.76 6693.24 118100.00 197.75 14699.96 4699.98 51
API-MVS97.86 7297.66 7898.47 11599.52 9295.41 18099.47 21798.87 5291.68 23498.84 10299.85 3392.34 14599.99 3698.44 10799.96 46100.00 1
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11399.84 12598.35 16994.92 10599.32 7799.80 5493.35 11199.78 12899.30 5599.95 5099.96 67
XVS98.70 2998.55 2899.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7099.78 6294.34 8299.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22192.06 25499.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7041.37 42294.34 8299.96 6598.92 7699.95 5099.99 23
原ACMM198.96 8299.73 7396.99 11598.51 11094.06 14499.62 4799.85 3394.97 6199.96 6595.11 19099.95 5099.92 84
test22299.55 9097.41 9999.34 23598.55 9991.86 22899.27 8299.83 4693.84 10299.95 5099.99 23
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 20100.00 193.81 22499.94 5599.98 51
新几何199.42 3799.75 6998.27 6498.63 8192.69 19699.55 5599.82 4994.40 77100.00 191.21 26099.94 5599.99 23
旧先验199.76 6697.52 9198.64 7799.85 3395.63 4399.94 5599.99 23
testdata98.42 12099.47 9695.33 18398.56 9393.78 15799.79 2599.85 3393.64 10799.94 8194.97 19399.94 55100.00 1
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13799.24 14292.58 13799.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10699.93 7699.90 196.81 5498.67 11399.77 6493.92 9799.89 9999.27 5699.94 5599.96 67
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9198.21 19393.53 16399.81 1599.89 2294.70 6999.86 11099.84 2299.93 6199.96 67
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11199.98 1598.80 6390.78 26499.62 4799.78 6295.30 50100.00 199.80 2599.93 6199.99 23
DeepPCF-MVS95.94 297.71 8898.98 1293.92 29799.63 8381.76 38499.96 3598.56 9399.47 199.19 8699.99 194.16 92100.00 199.92 1399.93 61100.00 1
SR-MVS-dyc-post98.31 5298.17 5198.71 9399.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7293.28 11699.78 12898.90 7999.92 6499.97 61
RE-MVS-def98.13 5499.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7292.95 12698.90 7999.92 6499.97 61
APD-MVS_3200maxsize98.25 5998.08 5898.78 8999.81 6096.60 12999.82 13598.30 18193.95 15099.37 7599.77 6492.84 12999.76 13498.95 7399.92 6499.97 61
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11199.73 16698.23 19197.02 4599.18 8799.90 1894.54 7499.99 3699.77 2899.90 6999.99 23
MVSMamba_PlusPlus97.83 7597.45 8698.99 7898.60 15598.15 6599.58 19797.74 24090.34 27399.26 8398.32 22394.29 8699.23 17299.03 7099.89 7099.58 143
MP-MVS-pluss98.07 6697.64 7999.38 4299.74 7098.41 6399.74 15998.18 19793.35 16896.45 18699.85 3392.64 13499.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 3398.42 3499.14 6196.05 28698.96 2699.90 9199.35 2496.68 5898.35 13099.66 9996.45 3198.51 21899.45 4899.89 7099.96 67
MTAPA98.29 5497.96 6699.30 4499.85 5497.93 7799.39 22998.28 18395.76 8497.18 16799.88 2492.74 132100.00 198.67 9399.88 7399.99 23
MVS96.60 14095.56 16499.72 1396.85 26699.22 2098.31 33198.94 4191.57 23690.90 26199.61 10686.66 22899.96 6597.36 15299.88 7399.99 23
MVS_111021_LR98.42 4798.38 3798.53 11299.39 9995.79 16199.87 10699.86 296.70 5798.78 10699.79 5892.03 15299.90 9499.17 6099.86 7599.88 88
ACMMP_NAP98.49 4098.14 5399.54 2799.66 8298.62 5599.85 12098.37 16694.68 11499.53 5899.83 4692.87 128100.00 198.66 9599.84 7699.99 23
QAPM95.40 17994.17 20199.10 6796.92 26097.71 8399.40 22598.68 7189.31 28788.94 30098.89 17682.48 26299.96 6593.12 24099.83 7799.62 130
PAPR98.52 3898.16 5299.58 2499.97 398.77 4299.95 5398.43 13595.35 9598.03 14199.75 7294.03 9599.98 4798.11 12299.83 7799.99 23
3Dnovator+91.53 1196.31 15395.24 17299.52 2896.88 26598.64 5499.72 17098.24 18995.27 9888.42 31298.98 16282.76 26199.94 8197.10 15999.83 7799.96 67
3Dnovator91.47 1296.28 15695.34 16999.08 7096.82 26897.47 9699.45 22298.81 6195.52 9289.39 28799.00 15981.97 26599.95 7397.27 15499.83 7799.84 93
patch_mono-298.24 6099.12 595.59 23499.67 8186.91 35499.95 5398.89 4997.60 2299.90 399.76 6696.54 3099.98 4799.94 1199.82 8199.88 88
dcpmvs_297.42 9998.09 5795.42 23999.58 8987.24 35099.23 25096.95 32794.28 13498.93 9999.73 8194.39 8099.16 18299.89 1799.82 8199.86 92
LS3D95.84 16695.11 17798.02 14299.85 5495.10 19398.74 30498.50 11687.22 32793.66 23099.86 2987.45 21799.95 7390.94 26899.81 8399.02 211
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32299.42 2197.03 4499.02 9599.09 15099.35 298.21 25199.73 3599.78 8499.77 104
GST-MVS98.27 5597.97 6399.17 5599.92 3197.57 8999.93 7698.39 15994.04 14698.80 10599.74 7992.98 125100.00 198.16 11999.76 8599.93 79
OpenMVScopyleft90.15 1594.77 19693.59 21698.33 12496.07 28597.48 9599.56 20298.57 9090.46 26986.51 33698.95 17178.57 30499.94 8193.86 22099.74 8697.57 254
131496.84 12795.96 14899.48 3496.74 27398.52 5898.31 33198.86 5395.82 8289.91 27298.98 16287.49 21699.96 6597.80 13999.73 8799.96 67
DP-MVS Recon98.41 4898.02 6099.56 2599.97 398.70 4899.92 7998.44 12792.06 22398.40 12899.84 4495.68 42100.00 198.19 11799.71 8899.97 61
MVP-Stereo90.93 28790.45 28292.37 33291.25 38088.76 33198.05 34596.17 36387.27 32684.04 35595.30 32878.46 30697.27 29883.78 34499.70 8991.09 377
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20698.17 19897.34 2999.85 999.85 3391.20 16299.89 9999.41 5199.67 9098.69 228
BH-w/o95.71 17095.38 16896.68 20598.49 16592.28 26499.84 12597.50 26892.12 22092.06 25198.79 18784.69 24798.67 21195.29 18999.66 9199.09 205
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7899.98 1598.85 5698.25 599.92 299.75 7294.72 6799.97 5799.87 1999.64 9299.95 74
mamv495.24 18396.90 10990.25 35498.65 15272.11 40198.28 33397.64 24789.99 28095.93 19998.25 22594.74 6699.11 18399.01 7299.64 9299.53 155
MAR-MVS97.43 9597.19 9898.15 13599.47 9694.79 20299.05 27098.76 6492.65 19998.66 11499.82 4988.52 20799.98 4798.12 12199.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmconf_n98.43 4698.32 4398.78 8998.12 19396.41 13699.99 498.83 6098.22 799.67 3999.64 10291.11 16699.94 8199.67 3999.62 9599.98 51
MS-PatchMatch90.65 29490.30 28591.71 34194.22 33185.50 36198.24 33597.70 24288.67 30586.42 33996.37 28667.82 36798.03 26283.62 34599.62 9591.60 374
MVSFormer96.94 12296.60 12497.95 14497.28 24897.70 8599.55 20497.27 29391.17 25099.43 6899.54 11390.92 17096.89 32194.67 20599.62 9599.25 193
lupinMVS97.85 7397.60 8198.62 10097.28 24897.70 8599.99 497.55 26095.50 9399.43 6899.67 9790.92 17098.71 20798.40 10899.62 9599.45 168
BH-untuned95.18 18494.83 18696.22 21998.36 17291.22 29099.80 14197.32 28690.91 25891.08 25898.67 19483.51 25598.54 21794.23 21599.61 9998.92 214
DeepC-MVS94.51 496.92 12596.40 13198.45 11799.16 11195.90 15899.66 18398.06 21196.37 7294.37 22199.49 11683.29 25899.90 9497.63 14899.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.1_n97.74 8597.44 8798.64 9995.76 29796.20 14899.94 6998.05 21398.17 998.89 10199.42 12187.65 21499.90 9499.50 4499.60 10199.82 95
GG-mvs-BLEND98.54 11098.21 18498.01 7293.87 39398.52 10797.92 14497.92 23899.02 397.94 26998.17 11899.58 10299.67 118
gg-mvs-nofinetune93.51 23391.86 25998.47 11597.72 21997.96 7692.62 39798.51 11074.70 39997.33 16269.59 41398.91 497.79 27397.77 14499.56 10399.67 118
BH-RMVSNet95.18 18494.31 19897.80 15398.17 18895.23 18899.76 15297.53 26492.52 20894.27 22499.25 14176.84 31598.80 19790.89 27099.54 10499.35 180
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8199.98 1598.86 5398.25 599.90 399.76 6694.21 9099.97 5799.87 1999.52 10599.98 51
EI-MVSNet-Vis-set98.27 5598.11 5698.75 9299.83 5796.59 13199.40 22598.51 11095.29 9798.51 12199.76 6693.60 10899.71 14198.53 10399.52 10599.95 74
TAPA-MVS92.12 894.42 20993.60 21596.90 19899.33 10291.78 27799.78 14498.00 21589.89 28294.52 21899.47 11791.97 15399.18 17969.90 39599.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsm_n_192098.44 4498.61 2797.92 14899.27 10695.18 191100.00 198.90 4798.05 1299.80 1799.73 8192.64 13499.99 3699.58 4199.51 10898.59 231
PLCcopyleft95.54 397.93 6997.89 7198.05 14199.82 5894.77 20399.92 7998.46 12193.93 15197.20 16599.27 13795.44 4899.97 5797.41 15199.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 10696.86 11298.38 12395.73 30097.32 10099.97 2897.40 27895.34 9698.60 11899.54 11387.70 21398.56 21597.94 13299.47 11099.25 193
jason: jason.
CSCG97.10 11297.04 10497.27 18999.89 4591.92 27399.90 9199.07 3488.67 30595.26 21299.82 4993.17 12199.98 4798.15 12099.47 11099.90 86
test_vis1_n_192095.44 17895.31 17095.82 23098.50 16488.74 33299.98 1597.30 28897.84 1699.85 999.19 14566.82 37199.97 5798.82 8399.46 11298.76 223
test_cas_vis1_n_192096.59 14196.23 13597.65 16598.22 18394.23 21699.99 497.25 29597.77 1799.58 5499.08 15177.10 31099.97 5797.64 14799.45 11398.74 225
CNLPA97.76 8497.38 8998.92 8599.53 9196.84 12099.87 10698.14 20693.78 15796.55 18499.69 9092.28 14699.98 4797.13 15799.44 11499.93 79
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18099.96 6599.89 1799.43 11599.98 51
AdaColmapbinary97.23 10796.80 11598.51 11399.99 195.60 17399.09 25998.84 5993.32 17096.74 17999.72 8486.04 234100.00 198.01 12799.43 11599.94 78
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 11899.99 3699.94 1199.41 11799.95 74
CANet98.27 5597.82 7399.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 11999.71 8687.80 21299.95 7399.75 3199.38 11899.83 94
test_fmvs195.35 18195.68 16194.36 28298.99 12184.98 36499.96 3596.65 35097.60 2299.73 3398.96 16671.58 35099.93 8898.31 11499.37 11998.17 238
F-COLMAP96.93 12496.95 10796.87 19999.71 7691.74 27899.85 12097.95 22193.11 17995.72 20599.16 14892.35 14499.94 8195.32 18899.35 12098.92 214
test_fmvsmvis_n_192097.67 8997.59 8397.91 15097.02 25595.34 18299.95 5398.45 12297.87 1597.02 17199.59 10789.64 19099.98 4799.41 5199.34 12198.42 234
EI-MVSNet-UG-set98.14 6397.99 6198.60 10299.80 6196.27 14299.36 23498.50 11695.21 9998.30 13299.75 7293.29 11599.73 14098.37 11199.30 12299.81 97
SPE-MVS-test97.88 7197.94 6797.70 16399.28 10595.20 19099.98 1597.15 30495.53 9199.62 4799.79 5892.08 15198.38 23498.75 8999.28 12399.52 157
PVSNet_Blended97.94 6897.64 7998.83 8899.59 8596.99 115100.00 199.10 3195.38 9498.27 13399.08 15189.00 20299.95 7399.12 6199.25 12499.57 145
test_fmvsmconf0.01_n96.39 14995.74 15798.32 12591.47 37795.56 17499.84 12597.30 28897.74 1897.89 14699.35 13279.62 29299.85 11199.25 5799.24 12599.55 147
EC-MVSNet97.38 10297.24 9597.80 15397.41 23795.64 17199.99 497.06 31594.59 11699.63 4499.32 13389.20 20098.14 25498.76 8899.23 12699.62 130
PatchMatch-RL96.04 16195.40 16697.95 14499.59 8595.22 18999.52 20899.07 3493.96 14996.49 18598.35 22082.28 26399.82 12390.15 28499.22 12798.81 221
CHOSEN 1792x268896.81 12896.53 12797.64 16698.91 13493.07 24499.65 18499.80 395.64 8795.39 20998.86 18284.35 25199.90 9496.98 16399.16 12899.95 74
CS-MVS97.79 8297.91 6997.43 17999.10 11394.42 20899.99 497.10 30995.07 10099.68 3899.75 7292.95 12698.34 23898.38 10999.14 12999.54 151
test_fmvs1_n94.25 21694.36 19593.92 29797.68 22283.70 37199.90 9196.57 35397.40 2899.67 3998.88 17761.82 38999.92 9198.23 11699.13 13098.14 241
EIA-MVS97.53 9297.46 8597.76 16098.04 19694.84 19999.98 1597.61 25494.41 12697.90 14599.59 10792.40 14398.87 19398.04 12699.13 13099.59 137
fmvsm_s_conf0.1_n97.30 10397.21 9797.60 17097.38 23994.40 21199.90 9198.64 7796.47 6599.51 6299.65 10184.99 24599.93 8899.22 5899.09 13298.46 232
fmvsm_s_conf0.5_n97.80 8097.85 7297.67 16499.06 11594.41 20999.98 1598.97 4097.34 2999.63 4499.69 9087.27 21999.97 5799.62 4099.06 13398.62 230
UGNet95.33 18294.57 19197.62 16998.55 15994.85 19898.67 31299.32 2695.75 8596.80 17896.27 28972.18 34799.96 6594.58 20799.05 13498.04 242
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvsmamba96.94 12296.73 11897.55 17197.99 19894.37 21299.62 19197.70 24293.13 17798.42 12597.92 23888.02 21198.75 20398.78 8699.01 13599.52 157
test_vis1_n93.61 23193.03 23295.35 24195.86 29286.94 35299.87 10696.36 35996.85 4999.54 5798.79 18752.41 40299.83 12198.64 9698.97 13699.29 189
fmvsm_s_conf0.5_n_a97.73 8797.72 7597.77 15898.63 15494.26 21599.96 3598.92 4697.18 3999.75 2999.69 9087.00 22499.97 5799.46 4798.89 13799.08 207
CANet_DTU96.76 13296.15 13898.60 10298.78 14397.53 9099.84 12597.63 24897.25 3799.20 8499.64 10281.36 27399.98 4792.77 24498.89 13798.28 237
TESTMET0.1,196.74 13496.26 13498.16 13297.36 24196.48 13399.96 3598.29 18291.93 22695.77 20498.07 23195.54 4498.29 24390.55 27698.89 13799.70 113
fmvsm_s_conf0.1_n_a97.09 11496.90 10997.63 16895.65 30794.21 21799.83 13298.50 11696.27 7499.65 4199.64 10284.72 24699.93 8899.04 6798.84 14098.74 225
test-LLR96.47 14496.04 14097.78 15697.02 25595.44 17799.96 3598.21 19394.07 14295.55 20696.38 28493.90 9998.27 24790.42 27998.83 14199.64 124
test-mter96.39 14995.93 15197.78 15697.02 25595.44 17799.96 3598.21 19391.81 23195.55 20696.38 28495.17 5198.27 24790.42 27998.83 14199.64 124
PVSNet91.05 1397.13 11196.69 12198.45 11799.52 9295.81 16099.95 5399.65 1294.73 11199.04 9499.21 14484.48 24999.95 7394.92 19598.74 14399.58 143
EPNet98.49 4098.40 3598.77 9199.62 8496.80 12399.90 9199.51 1697.60 2299.20 8499.36 13193.71 10599.91 9297.99 12998.71 14499.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 6197.97 6399.02 7698.69 14798.66 5199.52 20898.08 21097.05 4399.86 799.86 2990.65 17599.71 14199.39 5398.63 14598.69 228
RRT-MVS96.24 15895.68 16197.94 14797.65 22594.92 19799.27 24797.10 30992.79 19197.43 15997.99 23581.85 26799.37 16898.46 10698.57 14699.53 155
ETV-MVS97.92 7097.80 7498.25 12998.14 19196.48 13399.98 1597.63 24895.61 8899.29 8199.46 11992.55 13898.82 19699.02 7198.54 14799.46 166
Vis-MVSNetpermissive95.72 16895.15 17697.45 17797.62 22794.28 21499.28 24598.24 18994.27 13696.84 17698.94 17379.39 29498.76 20193.25 23498.49 14899.30 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 18494.10 20298.43 11998.55 15995.99 15697.91 34897.31 28790.35 27289.48 28699.22 14385.19 24299.89 9990.40 28198.47 14999.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 21193.36 22697.40 18198.88 13793.95 22499.37 23297.38 27985.75 34790.80 26299.17 14784.11 25399.88 10586.35 32598.43 15098.36 236
PVSNet_Blended_VisFu97.27 10596.81 11498.66 9798.81 14196.67 12699.92 7998.64 7794.51 11996.38 19098.49 21189.05 20199.88 10597.10 15998.34 15199.43 171
EPNet_dtu95.71 17095.39 16796.66 20698.92 13093.41 23999.57 20098.90 4796.19 7797.52 15598.56 20792.65 13397.36 28777.89 37698.33 15299.20 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base_debi97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
mvsany_test197.82 7897.90 7097.55 17198.77 14493.04 24799.80 14197.93 22396.95 4899.61 5399.68 9690.92 17099.83 12199.18 5998.29 15699.80 99
OMC-MVS97.28 10497.23 9697.41 18099.76 6693.36 24299.65 18497.95 22196.03 7997.41 16099.70 8889.61 19199.51 15696.73 17098.25 15799.38 175
test250697.53 9297.19 9898.58 10598.66 15096.90 11998.81 29999.77 594.93 10397.95 14398.96 16692.51 13999.20 17794.93 19498.15 15899.64 124
ECVR-MVScopyleft95.66 17395.05 18097.51 17598.66 15093.71 22998.85 29698.45 12294.93 10396.86 17598.96 16675.22 33399.20 17795.34 18798.15 15899.64 124
test111195.57 17594.98 18397.37 18398.56 15693.37 24198.86 29498.45 12294.95 10296.63 18198.95 17175.21 33499.11 18395.02 19298.14 16099.64 124
DP-MVS94.54 20393.42 22297.91 15099.46 9894.04 22098.93 28497.48 27081.15 38090.04 26999.55 11187.02 22399.95 7388.97 29498.11 16199.73 108
EPMVS96.53 14396.01 14198.09 13898.43 16796.12 15496.36 37499.43 2093.53 16397.64 15395.04 33994.41 7698.38 23491.13 26298.11 16199.75 106
PatchmatchNetpermissive95.94 16395.45 16597.39 18297.83 20894.41 20996.05 38198.40 15692.86 18597.09 16895.28 33294.21 9098.07 26089.26 29298.11 16199.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 13696.49 12897.37 18395.63 30995.96 15799.74 15998.88 5192.94 18291.61 25398.97 16497.72 698.62 21394.83 19998.08 16497.53 255
ACMMPcopyleft97.74 8597.44 8798.66 9799.92 3196.13 15299.18 25499.45 1894.84 10896.41 18999.71 8691.40 15999.99 3697.99 12998.03 16599.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 34083.19 35395.31 24496.71 27590.29 31092.12 39997.33 28562.85 40786.82 33170.37 41269.37 35997.49 28475.12 38697.99 16698.15 239
FE-MVS95.70 17295.01 18297.79 15598.21 18494.57 20495.03 38898.69 6988.90 29997.50 15796.19 29192.60 13699.49 16389.99 28697.94 16799.31 185
PMMVS96.76 13296.76 11696.76 20298.28 17992.10 26899.91 8597.98 21894.12 13999.53 5899.39 12886.93 22598.73 20496.95 16697.73 16899.45 168
UA-Net96.54 14295.96 14898.27 12898.23 18295.71 16698.00 34698.45 12293.72 16098.41 12699.27 13788.71 20699.66 14991.19 26197.69 16999.44 170
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12799.97 2897.92 22698.07 1198.76 10999.55 11195.00 5999.94 8199.91 1697.68 17099.99 23
mvs_anonymous95.65 17495.03 18197.53 17398.19 18695.74 16499.33 23697.49 26990.87 25990.47 26597.10 25988.23 20997.16 30095.92 18097.66 17199.68 116
LCM-MVSNet-Re92.31 26192.60 24191.43 34297.53 23179.27 39499.02 27591.83 40992.07 22180.31 37494.38 36083.50 25695.48 36697.22 15697.58 17299.54 151
MVS_Test96.46 14595.74 15798.61 10198.18 18797.23 10499.31 23997.15 30491.07 25598.84 10297.05 26388.17 21098.97 18894.39 20997.50 17399.61 134
SCA94.69 19893.81 21297.33 18797.10 25194.44 20698.86 29498.32 17693.30 17196.17 19595.59 31076.48 32097.95 26791.06 26497.43 17499.59 137
Vis-MVSNet (Re-imp)96.32 15295.98 14497.35 18697.93 20294.82 20099.47 21798.15 20591.83 22995.09 21399.11 14991.37 16097.47 28593.47 23297.43 17499.74 107
diffmvspermissive97.00 11996.64 12298.09 13897.64 22696.17 15199.81 13797.19 29894.67 11598.95 9799.28 13486.43 23098.76 20198.37 11197.42 17699.33 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 15595.90 15397.45 17798.13 19294.80 20199.08 26197.61 25492.02 22595.54 20898.96 16690.64 17698.08 25893.73 22997.41 17799.47 165
Effi-MVS+96.30 15495.69 15998.16 13297.85 20796.26 14397.41 35597.21 29790.37 27198.65 11598.58 20586.61 22998.70 20897.11 15897.37 17899.52 157
ADS-MVSNet293.80 22493.88 21093.55 31097.87 20585.94 35894.24 38996.84 33890.07 27796.43 18794.48 35790.29 18495.37 36887.44 31197.23 17999.36 178
ADS-MVSNet94.79 19494.02 20597.11 19397.87 20593.79 22694.24 38998.16 20290.07 27796.43 18794.48 35790.29 18498.19 25287.44 31197.23 17999.36 178
EPP-MVSNet96.69 13796.60 12496.96 19697.74 21493.05 24699.37 23298.56 9388.75 30395.83 20399.01 15796.01 3498.56 21596.92 16797.20 18199.25 193
Fast-Effi-MVS+95.02 18894.19 20097.52 17497.88 20494.55 20599.97 2897.08 31388.85 30194.47 22097.96 23784.59 24898.41 22689.84 28897.10 18299.59 137
FA-MVS(test-final)95.86 16495.09 17898.15 13597.74 21495.62 17296.31 37698.17 19891.42 24596.26 19296.13 29490.56 17899.47 16592.18 24997.07 18399.35 180
Effi-MVS+-dtu94.53 20595.30 17192.22 33397.77 21282.54 37799.59 19597.06 31594.92 10595.29 21195.37 32585.81 23597.89 27094.80 20097.07 18396.23 266
casdiffmvspermissive96.42 14895.97 14797.77 15897.30 24694.98 19499.84 12597.09 31293.75 15996.58 18399.26 14085.07 24398.78 19997.77 14497.04 18599.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive96.43 14695.94 15097.89 15297.44 23695.47 17699.86 11797.29 29193.35 16896.03 19699.19 14585.39 24098.72 20697.89 13697.04 18599.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss97.57 9197.03 10599.18 5298.37 17198.04 7199.73 16699.38 2293.46 16598.76 10999.06 15391.21 16199.89 9996.33 17397.01 18799.62 130
Patchmatch-test92.65 25591.50 26596.10 22296.85 26690.49 30691.50 40297.19 29882.76 37490.23 26695.59 31095.02 5798.00 26377.41 37896.98 18899.82 95
MDTV_nov1_ep1395.69 15997.90 20394.15 21895.98 38398.44 12793.12 17897.98 14295.74 30395.10 5398.58 21490.02 28596.92 189
Fast-Effi-MVS+-dtu93.72 22893.86 21193.29 31597.06 25386.16 35699.80 14196.83 33992.66 19892.58 24497.83 24381.39 27297.67 27889.75 28996.87 19096.05 269
baseline96.43 14695.98 14497.76 16097.34 24295.17 19299.51 21097.17 30193.92 15296.90 17499.28 13485.37 24198.64 21297.50 15096.86 19199.46 166
tpmrst96.27 15795.98 14497.13 19197.96 20093.15 24396.34 37598.17 19892.07 22198.71 11295.12 33693.91 9898.73 20494.91 19796.62 19299.50 162
JIA-IIPM91.76 27590.70 27694.94 25496.11 28487.51 34793.16 39698.13 20775.79 39597.58 15477.68 41092.84 12997.97 26488.47 30196.54 19399.33 183
dp95.05 18794.43 19396.91 19797.99 19892.73 25496.29 37797.98 21889.70 28495.93 19994.67 35293.83 10398.45 22386.91 32496.53 19499.54 151
UWE-MVS96.79 12996.72 11997.00 19498.51 16393.70 23099.71 17398.60 8592.96 18197.09 16898.34 22296.67 2998.85 19592.11 25096.50 19598.44 233
COLMAP_ROBcopyleft90.47 1492.18 26491.49 26694.25 28599.00 12088.04 34498.42 32896.70 34882.30 37688.43 31099.01 15776.97 31399.85 11186.11 32996.50 19594.86 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE94.36 21393.48 22096.99 19597.29 24793.54 23599.96 3596.72 34788.35 31293.43 23198.94 17382.05 26498.05 26188.12 30696.48 19799.37 177
tpm cat193.51 23392.52 24796.47 20997.77 21291.47 28896.13 37998.06 21180.98 38192.91 24093.78 36689.66 18998.87 19387.03 32096.39 19899.09 205
thisisatest051597.41 10097.02 10698.59 10497.71 22197.52 9199.97 2898.54 10291.83 22997.45 15899.04 15497.50 899.10 18594.75 20296.37 19999.16 198
UBG97.84 7497.69 7798.29 12798.38 16996.59 13199.90 9198.53 10593.91 15398.52 11998.42 21896.77 2399.17 18098.54 10196.20 20099.11 204
AllTest92.48 25791.64 26095.00 25299.01 11888.43 33898.94 28296.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
TestCases95.00 25299.01 11888.43 33896.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
thisisatest053097.10 11296.72 11998.22 13097.60 22896.70 12499.92 7998.54 10291.11 25397.07 17098.97 16497.47 1199.03 18693.73 22996.09 20398.92 214
DSMNet-mixed88.28 33088.24 32488.42 37089.64 39175.38 39898.06 34489.86 41385.59 34988.20 31492.14 38176.15 32591.95 39978.46 37496.05 20497.92 244
TR-MVS94.54 20393.56 21897.49 17697.96 20094.34 21398.71 30797.51 26790.30 27594.51 21998.69 19375.56 32898.77 20092.82 24395.99 20599.35 180
CR-MVSNet93.45 23692.62 24095.94 22696.29 27992.66 25692.01 40096.23 36192.62 20096.94 17293.31 37191.04 16796.03 35879.23 36895.96 20699.13 202
RPMNet89.76 31687.28 33297.19 19096.29 27992.66 25692.01 40098.31 17870.19 40696.94 17285.87 40587.25 22099.78 12862.69 40795.96 20699.13 202
Syy-MVS90.00 31290.63 27888.11 37297.68 22274.66 39999.71 17398.35 16990.79 26292.10 24998.67 19479.10 29993.09 39263.35 40695.95 20896.59 262
myMVS_eth3d94.46 20894.76 18893.55 31097.68 22290.97 29299.71 17398.35 16990.79 26292.10 24998.67 19492.46 14293.09 39287.13 31795.95 20896.59 262
PatchT90.38 30188.75 31795.25 24695.99 28890.16 31391.22 40497.54 26276.80 39197.26 16486.01 40491.88 15496.07 35766.16 40395.91 21099.51 160
tpmvs94.28 21593.57 21796.40 21398.55 15991.50 28795.70 38798.55 9987.47 32292.15 24894.26 36291.42 15898.95 19188.15 30495.85 21198.76 223
TAMVS95.85 16595.58 16396.65 20797.07 25293.50 23699.17 25597.82 23691.39 24795.02 21498.01 23292.20 14797.30 29393.75 22895.83 21299.14 201
CostFormer96.10 15995.88 15496.78 20197.03 25492.55 26097.08 36397.83 23590.04 27998.72 11194.89 34695.01 5898.29 24396.54 17295.77 21399.50 162
tttt051796.85 12696.49 12897.92 14897.48 23595.89 15999.85 12098.54 10290.72 26696.63 18198.93 17597.47 1199.02 18793.03 24195.76 21498.85 218
HY-MVS92.50 797.79 8297.17 10099.63 1798.98 12299.32 997.49 35399.52 1495.69 8698.32 13197.41 25093.32 11399.77 13198.08 12595.75 21599.81 97
CDS-MVSNet96.34 15196.07 13997.13 19197.37 24094.96 19599.53 20797.91 22791.55 23795.37 21098.32 22395.05 5697.13 30393.80 22595.75 21599.30 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 17795.18 17596.35 21696.91 26191.70 28296.96 36697.93 22388.04 31698.44 12495.40 32193.32 11397.97 26494.00 21795.61 21799.38 175
WTY-MVS98.10 6597.60 8199.60 2298.92 13099.28 1799.89 10099.52 1495.58 8998.24 13699.39 12893.33 11299.74 13797.98 13195.58 21899.78 103
WB-MVSnew92.90 24792.77 23893.26 31796.95 25993.63 23299.71 17398.16 20291.49 23894.28 22398.14 22881.33 27496.48 33979.47 36795.46 21989.68 393
HyFIR lowres test96.66 13996.43 13097.36 18599.05 11693.91 22599.70 17799.80 390.54 26896.26 19298.08 23092.15 14998.23 25096.84 16995.46 21999.93 79
cascas94.64 20193.61 21397.74 16297.82 20996.26 14399.96 3597.78 23985.76 34594.00 22797.54 24776.95 31499.21 17497.23 15595.43 22197.76 249
testing393.92 21994.23 19992.99 32497.54 23090.23 31199.99 499.16 3090.57 26791.33 25798.63 20092.99 12492.52 39682.46 35295.39 22296.22 267
CVMVSNet94.68 20094.94 18493.89 30096.80 26986.92 35399.06 26698.98 3894.45 12094.23 22599.02 15585.60 23695.31 37090.91 26995.39 22299.43 171
test_yl97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DCV-MVSNet97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
ETVMVS97.03 11896.64 12298.20 13198.67 14997.12 11099.89 10098.57 9091.10 25498.17 13898.59 20293.86 10198.19 25295.64 18595.24 22699.28 190
LFMVS94.75 19793.56 21898.30 12699.03 11795.70 16798.74 30497.98 21887.81 32098.47 12399.39 12867.43 36999.53 15398.01 12795.20 22799.67 118
testing1197.48 9497.27 9498.10 13798.36 17296.02 15599.92 7998.45 12293.45 16798.15 13998.70 19295.48 4799.22 17397.85 13795.05 22899.07 208
thres20096.96 12196.21 13799.22 4898.97 12398.84 3699.85 12099.71 793.17 17596.26 19298.88 17789.87 18899.51 15694.26 21494.91 22999.31 185
testing9997.17 10996.91 10897.95 14498.35 17495.70 16799.91 8598.43 13592.94 18297.36 16198.72 19094.83 6399.21 17497.00 16194.64 23098.95 213
testing9197.16 11096.90 10997.97 14398.35 17495.67 17099.91 8598.42 14792.91 18497.33 16298.72 19094.81 6499.21 17496.98 16394.63 23199.03 210
thres100view90096.74 13495.92 15299.18 5298.90 13598.77 4299.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.84 22194.57 23299.27 191
tfpn200view996.79 12995.99 14299.19 5198.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.27 191
thres40096.78 13195.99 14299.16 5798.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.16 198
thres600view796.69 13795.87 15599.14 6198.90 13598.78 4199.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.44 23394.50 23599.16 198
VNet97.21 10896.57 12699.13 6598.97 12397.82 8099.03 27399.21 2994.31 13199.18 8798.88 17786.26 23399.89 9998.93 7594.32 23699.69 115
testing22297.08 11796.75 11798.06 14098.56 15696.82 12199.85 12098.61 8392.53 20798.84 10298.84 18693.36 11098.30 24295.84 18294.30 23799.05 209
alignmvs97.81 7997.33 9299.25 4698.77 14498.66 5199.99 498.44 12794.40 12798.41 12699.47 11793.65 10699.42 16798.57 9994.26 23899.67 118
VDD-MVS93.77 22592.94 23396.27 21898.55 15990.22 31298.77 30397.79 23790.85 26096.82 17799.42 12161.18 39299.77 13198.95 7394.13 23998.82 220
VDDNet93.12 24291.91 25796.76 20296.67 27692.65 25898.69 31098.21 19382.81 37397.75 15299.28 13461.57 39099.48 16498.09 12494.09 24098.15 239
GA-MVS93.83 22192.84 23496.80 20095.73 30093.57 23399.88 10397.24 29692.57 20592.92 23996.66 27678.73 30297.67 27887.75 30994.06 24199.17 197
sasdasda97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
canonicalmvs97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
MGCFI-Net97.00 11996.22 13699.34 4398.86 13898.80 3999.67 18297.30 28894.31 13197.77 15199.41 12586.36 23299.50 15898.38 10993.90 24499.72 110
1112_ss96.01 16295.20 17498.42 12097.80 21096.41 13699.65 18496.66 34992.71 19492.88 24199.40 12692.16 14899.30 16991.92 25393.66 24599.55 147
Test_1112_low_res95.72 16894.83 18698.42 12097.79 21196.41 13699.65 18496.65 35092.70 19592.86 24296.13 29492.15 14999.30 16991.88 25493.64 24699.55 147
kuosan93.17 24092.60 24194.86 25998.40 16889.54 32498.44 32498.53 10584.46 36088.49 30697.92 23890.57 17797.05 30983.10 34893.49 24797.99 243
MIMVSNet90.30 30488.67 31895.17 24896.45 27891.64 28492.39 39897.15 30485.99 34290.50 26493.19 37366.95 37094.86 37782.01 35693.43 24899.01 212
XVG-OURS-SEG-HR94.79 19494.70 19095.08 24998.05 19589.19 32699.08 26197.54 26293.66 16194.87 21599.58 10978.78 30199.79 12697.31 15393.40 24996.25 264
ab-mvs94.69 19893.42 22298.51 11398.07 19496.26 14396.49 37298.68 7190.31 27494.54 21797.00 26576.30 32299.71 14195.98 17993.38 25099.56 146
test0.0.03 193.86 22093.61 21394.64 26595.02 31892.18 26799.93 7698.58 8894.07 14287.96 31698.50 21093.90 9994.96 37481.33 35993.17 25196.78 259
RPSCF91.80 27292.79 23788.83 36598.15 19069.87 40398.11 34296.60 35283.93 36394.33 22299.27 13779.60 29399.46 16691.99 25193.16 25297.18 257
test_vis1_rt86.87 33886.05 34089.34 36196.12 28378.07 39599.87 10683.54 42092.03 22478.21 38489.51 39145.80 40699.91 9296.25 17593.11 25390.03 390
XVG-OURS94.82 19194.74 18995.06 25098.00 19789.19 32699.08 26197.55 26094.10 14094.71 21699.62 10580.51 28599.74 13796.04 17893.06 25496.25 264
dongtai91.55 27891.13 27192.82 32798.16 18986.35 35599.47 21798.51 11083.24 36885.07 35197.56 24690.33 18294.94 37576.09 38491.73 25597.18 257
Anonymous20240521193.10 24391.99 25596.40 21399.10 11389.65 32298.88 29097.93 22383.71 36594.00 22798.75 18968.79 36099.88 10595.08 19191.71 25699.68 116
SDMVSNet94.80 19393.96 20797.33 18798.92 13095.42 17999.59 19598.99 3792.41 21292.55 24597.85 24175.81 32798.93 19297.90 13591.62 25797.64 250
sd_testset93.55 23292.83 23595.74 23298.92 13090.89 29798.24 33598.85 5692.41 21292.55 24597.85 24171.07 35598.68 21093.93 21891.62 25797.64 250
MonoMVSNet94.82 19194.43 19395.98 22494.54 32590.73 29999.03 27397.06 31593.16 17693.15 23695.47 31888.29 20897.57 28197.85 13791.33 25999.62 130
Anonymous2024052992.10 26590.65 27796.47 20998.82 14090.61 30398.72 30698.67 7475.54 39693.90 22998.58 20566.23 37399.90 9494.70 20490.67 26098.90 217
dmvs_re93.20 23993.15 23093.34 31396.54 27783.81 37098.71 30798.51 11091.39 24792.37 24798.56 20778.66 30397.83 27293.89 21989.74 26198.38 235
HQP3-MVS97.89 22889.60 262
HQP-MVS94.61 20294.50 19294.92 25595.78 29391.85 27499.87 10697.89 22896.82 5193.37 23298.65 19780.65 28398.39 23097.92 13389.60 26294.53 272
plane_prior91.74 27899.86 11796.76 5589.59 264
HQP_MVS94.49 20794.36 19594.87 25695.71 30391.74 27899.84 12597.87 23096.38 6993.01 23798.59 20280.47 28798.37 23697.79 14289.55 26594.52 274
plane_prior597.87 23098.37 23697.79 14289.55 26594.52 274
CLD-MVS94.06 21893.90 20994.55 27196.02 28790.69 30099.98 1597.72 24196.62 6291.05 26098.85 18577.21 30998.47 21998.11 12289.51 26794.48 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 23892.80 23694.44 27893.12 35090.85 29899.77 14797.61 25496.19 7791.56 25498.65 19775.16 33598.47 21993.78 22789.39 26893.99 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test92.96 24592.71 23993.71 30495.43 31188.67 33499.75 15697.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
LGP-MVS_train93.71 30495.43 31188.67 33497.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
test_djsdf92.83 24992.29 25094.47 27691.90 37192.46 26199.55 20497.27 29391.17 25089.96 27096.07 29781.10 27696.89 32194.67 20588.91 27194.05 316
testgi89.01 32588.04 32691.90 33793.49 34384.89 36599.73 16695.66 37493.89 15685.14 34998.17 22759.68 39394.66 37977.73 37788.88 27296.16 268
ACMM91.95 1092.88 24892.52 24793.98 29695.75 29989.08 33099.77 14797.52 26693.00 18089.95 27197.99 23576.17 32498.46 22293.63 23188.87 27394.39 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 25192.42 24993.73 30295.91 29188.72 33399.81 13797.53 26494.13 13887.00 33098.23 22674.07 34198.47 21996.22 17688.86 27493.99 322
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 26791.18 27094.15 28691.35 37890.95 29599.00 27697.42 27592.61 20187.38 32697.08 26072.46 34697.36 28794.53 20888.77 27594.13 311
anonymousdsp91.79 27490.92 27494.41 28190.76 38392.93 24998.93 28497.17 30189.08 28987.46 32595.30 32878.43 30796.92 31992.38 24688.73 27693.39 349
mvs_tets91.81 26991.08 27294.00 29491.63 37590.58 30498.67 31297.43 27392.43 21187.37 32797.05 26371.76 34897.32 29194.75 20288.68 27794.11 312
XVG-ACMP-BASELINE91.22 28490.75 27592.63 33093.73 33985.61 35998.52 32197.44 27292.77 19289.90 27396.85 27166.64 37298.39 23092.29 24788.61 27893.89 330
EG-PatchMatch MVS85.35 34683.81 34989.99 35890.39 38581.89 38298.21 33996.09 36581.78 37874.73 39593.72 36751.56 40497.12 30579.16 37188.61 27890.96 380
UniMVSNet_ETH3D90.06 31188.58 31994.49 27594.67 32388.09 34397.81 35197.57 25983.91 36488.44 30897.41 25057.44 39697.62 28091.41 25888.59 28097.77 248
tpm93.70 22993.41 22494.58 26995.36 31387.41 34897.01 36496.90 33490.85 26096.72 18094.14 36390.40 18196.84 32490.75 27388.54 28199.51 160
OpenMVS_ROBcopyleft79.82 2083.77 35881.68 36190.03 35788.30 39582.82 37498.46 32295.22 38373.92 40176.00 39291.29 38355.00 39896.94 31868.40 39888.51 28290.34 385
CMPMVSbinary61.59 2184.75 35185.14 34483.57 38090.32 38662.54 40896.98 36597.59 25874.33 40069.95 40196.66 27664.17 38098.32 24087.88 30888.41 28389.84 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs289.47 32089.70 29788.77 36894.54 32575.74 39699.83 13294.70 39294.71 11291.08 25896.82 27554.46 39997.78 27592.87 24288.27 28492.80 361
ACMMP++88.23 285
ITE_SJBPF92.38 33195.69 30685.14 36295.71 37292.81 18889.33 29098.11 22970.23 35798.42 22585.91 33188.16 28693.59 345
D2MVS92.76 25092.59 24593.27 31695.13 31489.54 32499.69 17899.38 2292.26 21787.59 32194.61 35485.05 24497.79 27391.59 25788.01 28792.47 366
tt080591.28 28190.18 28994.60 26796.26 28187.55 34698.39 32998.72 6689.00 29389.22 29398.47 21562.98 38598.96 19090.57 27588.00 28897.28 256
EI-MVSNet93.73 22793.40 22594.74 26196.80 26992.69 25599.06 26697.67 24588.96 29691.39 25599.02 15588.75 20597.30 29391.07 26387.85 28994.22 297
MVSTER95.53 17695.22 17396.45 21198.56 15697.72 8299.91 8597.67 24592.38 21491.39 25597.14 25797.24 1797.30 29394.80 20087.85 28994.34 290
PS-MVSNAJss93.64 23093.31 22794.61 26692.11 36892.19 26699.12 25797.38 27992.51 20988.45 30796.99 26691.20 16297.29 29694.36 21087.71 29194.36 285
LTVRE_ROB88.28 1890.29 30589.05 31294.02 29295.08 31690.15 31497.19 35997.43 27384.91 35783.99 35797.06 26274.00 34298.28 24584.08 34087.71 29193.62 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 29589.63 29893.66 30895.64 30888.64 33698.55 31797.45 27189.03 29181.62 36897.61 24569.75 35898.41 22689.37 29087.62 29393.92 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 16095.82 15696.72 20499.59 8596.99 11599.95 5399.10 3194.06 14498.27 13395.80 30189.00 20299.95 7399.12 6187.53 29493.24 353
USDC90.00 31288.96 31393.10 32294.81 32088.16 34298.71 30795.54 37793.66 16183.75 35997.20 25665.58 37598.31 24183.96 34387.49 29592.85 360
ACMMP++_ref87.04 296
test_040285.58 34283.94 34790.50 35193.81 33885.04 36398.55 31795.20 38476.01 39379.72 37895.13 33564.15 38196.26 34966.04 40486.88 29790.21 387
FIs94.10 21793.43 22196.11 22194.70 32296.82 12199.58 19798.93 4592.54 20689.34 28997.31 25387.62 21597.10 30694.22 21686.58 29894.40 283
FC-MVSNet-test93.81 22393.15 23095.80 23194.30 33096.20 14899.42 22498.89 4992.33 21689.03 29997.27 25587.39 21896.83 32693.20 23586.48 29994.36 285
TinyColmap87.87 33586.51 33691.94 33695.05 31785.57 36097.65 35294.08 39684.40 36181.82 36796.85 27162.14 38898.33 23980.25 36586.37 30091.91 373
ACMH+89.98 1690.35 30289.54 30192.78 32995.99 28886.12 35798.81 29997.18 30089.38 28683.14 36197.76 24468.42 36498.43 22489.11 29386.05 30193.78 337
baseline195.78 16794.86 18598.54 11098.47 16698.07 6999.06 26697.99 21692.68 19794.13 22698.62 20193.28 11698.69 20993.79 22685.76 30298.84 219
GBi-Net90.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
test190.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
FMVSNet392.69 25391.58 26295.99 22398.29 17797.42 9899.26 24897.62 25189.80 28389.68 27895.32 32781.62 27196.27 34887.01 32185.65 30394.29 292
DeepMVS_CXcopyleft82.92 38295.98 29058.66 41396.01 36692.72 19378.34 38395.51 31558.29 39598.08 25882.57 35185.29 30692.03 371
LF4IMVS89.25 32488.85 31490.45 35392.81 36081.19 38798.12 34194.79 38991.44 24286.29 34197.11 25865.30 37898.11 25688.53 30085.25 30792.07 369
FMVSNet291.02 28689.56 30095.41 24097.53 23195.74 16498.98 27797.41 27787.05 32888.43 31095.00 34271.34 35196.24 35085.12 33585.21 30894.25 295
ET-MVSNet_ETH3D94.37 21193.28 22897.64 16698.30 17697.99 7399.99 497.61 25494.35 12871.57 39999.45 12096.23 3395.34 36996.91 16885.14 30999.59 137
EGC-MVSNET69.38 37363.76 38386.26 37690.32 38681.66 38596.24 37893.85 4000.99 4233.22 42492.33 38052.44 40192.92 39459.53 41084.90 31084.21 404
OurMVSNet-221017-089.81 31589.48 30590.83 34891.64 37481.21 38698.17 34095.38 38091.48 24085.65 34797.31 25372.66 34597.29 29688.15 30484.83 31193.97 324
pmmvs492.10 26591.07 27395.18 24792.82 35994.96 19599.48 21696.83 33987.45 32388.66 30596.56 28283.78 25496.83 32689.29 29184.77 31293.75 338
our_test_390.39 30089.48 30593.12 32092.40 36489.57 32399.33 23696.35 36087.84 31985.30 34894.99 34384.14 25296.09 35680.38 36384.56 31393.71 343
cl2293.77 22593.25 22995.33 24399.49 9594.43 20799.61 19398.09 20890.38 27089.16 29795.61 30890.56 17897.34 28991.93 25284.45 31494.21 299
miper_ehance_all_eth93.16 24192.60 24194.82 26097.57 22993.56 23499.50 21297.07 31488.75 30388.85 30195.52 31490.97 16996.74 32990.77 27284.45 31494.17 301
miper_enhance_ethall94.36 21393.98 20695.49 23598.68 14895.24 18799.73 16697.29 29193.28 17289.86 27495.97 29994.37 8197.05 30992.20 24884.45 31494.19 300
IterMVS90.91 28890.17 29093.12 32096.78 27290.42 30998.89 28897.05 31889.03 29186.49 33795.42 32076.59 31895.02 37287.22 31684.09 31793.93 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 32886.64 33594.08 28995.62 31091.97 26998.43 32596.95 32783.00 37186.08 34494.72 34859.09 39496.11 35381.82 35884.07 31894.17 301
XXY-MVS91.82 26890.46 28095.88 22793.91 33695.40 18198.87 29397.69 24488.63 30787.87 31797.08 26074.38 34097.89 27091.66 25684.07 31894.35 288
IterMVS-SCA-FT90.85 29190.16 29192.93 32596.72 27489.96 31798.89 28896.99 32288.95 29786.63 33495.67 30676.48 32095.00 37387.04 31984.04 32093.84 334
WBMVS94.52 20694.03 20495.98 22498.38 16996.68 12599.92 7997.63 24890.75 26589.64 28295.25 33396.77 2396.90 32094.35 21283.57 32194.35 288
pmmvs590.17 30989.09 31093.40 31292.10 36989.77 32199.74 15995.58 37685.88 34487.24 32995.74 30373.41 34496.48 33988.54 29983.56 32293.95 325
SixPastTwentyTwo88.73 32688.01 32790.88 34591.85 37282.24 37998.22 33895.18 38588.97 29582.26 36496.89 26871.75 34996.67 33384.00 34182.98 32393.72 342
N_pmnet80.06 36780.78 36577.89 38691.94 37045.28 42498.80 30156.82 42678.10 39080.08 37693.33 36977.03 31195.76 36368.14 39982.81 32492.64 362
dmvs_testset83.79 35786.07 33976.94 38792.14 36748.60 42296.75 36990.27 41289.48 28578.65 38198.55 20979.25 29586.65 41066.85 40182.69 32595.57 270
APD_test181.15 36380.92 36481.86 38392.45 36359.76 41296.04 38293.61 40273.29 40277.06 38796.64 27844.28 40896.16 35272.35 39182.52 32689.67 394
ppachtmachnet_test89.58 31988.35 32293.25 31892.40 36490.44 30899.33 23696.73 34685.49 35085.90 34695.77 30281.09 27796.00 36076.00 38582.49 32793.30 351
cl____92.31 26191.58 26294.52 27297.33 24492.77 25099.57 20096.78 34486.97 33287.56 32295.51 31589.43 19396.62 33488.60 29782.44 32894.16 306
DIV-MVS_self_test92.32 26091.60 26194.47 27697.31 24592.74 25299.58 19796.75 34586.99 33187.64 32095.54 31289.55 19296.50 33888.58 29882.44 32894.17 301
Patchmtry89.70 31788.49 32093.33 31496.24 28289.94 32091.37 40396.23 36178.22 38987.69 31993.31 37191.04 16796.03 35880.18 36682.10 33094.02 317
IterMVS-LS92.69 25392.11 25294.43 28096.80 26992.74 25299.45 22296.89 33588.98 29489.65 28195.38 32488.77 20496.34 34590.98 26782.04 33194.22 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 31090.34 28489.54 36092.55 36281.06 38898.69 31098.04 21491.41 24686.59 33596.84 27380.83 28093.31 39186.20 32781.91 33294.26 293
Anonymous2023120686.32 33985.42 34289.02 36489.11 39380.53 39299.05 27095.28 38185.43 35182.82 36293.92 36474.40 33993.44 39066.99 40081.83 33393.08 356
eth_miper_zixun_eth92.41 25991.93 25693.84 30197.28 24890.68 30198.83 29796.97 32688.57 30889.19 29695.73 30589.24 19996.69 33289.97 28781.55 33494.15 307
FMVSNet588.32 32987.47 33190.88 34596.90 26488.39 34097.28 35795.68 37382.60 37584.67 35392.40 37979.83 29191.16 40176.39 38381.51 33593.09 355
miper_lstm_enhance91.81 26991.39 26893.06 32397.34 24289.18 32899.38 23096.79 34386.70 33587.47 32495.22 33490.00 18695.86 36288.26 30281.37 33694.15 307
VPA-MVSNet92.70 25291.55 26496.16 22095.09 31596.20 14898.88 29099.00 3691.02 25791.82 25295.29 33176.05 32697.96 26695.62 18681.19 33794.30 291
v119290.62 29789.25 30794.72 26393.13 34893.07 24499.50 21297.02 31986.33 33989.56 28595.01 34079.22 29697.09 30882.34 35481.16 33894.01 319
v114491.09 28589.83 29494.87 25693.25 34793.69 23199.62 19196.98 32486.83 33489.64 28294.99 34380.94 27897.05 30985.08 33681.16 33893.87 332
Anonymous2024052185.15 34783.81 34989.16 36388.32 39482.69 37598.80 30195.74 37079.72 38581.53 36990.99 38465.38 37794.16 38272.69 39081.11 34090.63 384
v124090.20 30788.79 31694.44 27893.05 35392.27 26599.38 23096.92 33385.89 34389.36 28894.87 34777.89 30897.03 31480.66 36281.08 34194.01 319
reproduce_monomvs95.38 18095.07 17996.32 21799.32 10496.60 12999.76 15298.85 5696.65 5987.83 31896.05 29899.52 198.11 25696.58 17181.07 34294.25 295
new_pmnet84.49 35482.92 35589.21 36290.03 38882.60 37696.89 36895.62 37580.59 38275.77 39489.17 39265.04 37994.79 37872.12 39281.02 34390.23 386
K. test v388.05 33287.24 33390.47 35291.82 37382.23 38098.96 28097.42 27589.05 29076.93 38995.60 30968.49 36395.42 36785.87 33281.01 34493.75 338
FPMVS68.72 37568.72 37668.71 39765.95 42044.27 42695.97 38494.74 39051.13 41253.26 41490.50 38825.11 41783.00 41360.80 40880.97 34578.87 410
v192192090.46 29989.12 30994.50 27492.96 35592.46 26199.49 21496.98 32486.10 34189.61 28495.30 32878.55 30597.03 31482.17 35580.89 34694.01 319
c3_l92.53 25691.87 25894.52 27297.40 23892.99 24899.40 22596.93 33287.86 31888.69 30495.44 31989.95 18796.44 34190.45 27880.69 34794.14 310
tfpnnormal89.29 32387.61 33094.34 28394.35 32994.13 21998.95 28198.94 4183.94 36284.47 35495.51 31574.84 33697.39 28677.05 38180.41 34891.48 376
v14419290.79 29289.52 30294.59 26893.11 35192.77 25099.56 20296.99 32286.38 33889.82 27794.95 34580.50 28697.10 30683.98 34280.41 34893.90 329
nrg03093.51 23392.53 24696.45 21194.36 32897.20 10599.81 13797.16 30391.60 23589.86 27497.46 24886.37 23197.68 27795.88 18180.31 35094.46 277
Anonymous2023121189.86 31488.44 32194.13 28898.93 12790.68 30198.54 31998.26 18676.28 39286.73 33295.54 31270.60 35697.56 28290.82 27180.27 35194.15 307
V4291.28 28190.12 29294.74 26193.42 34593.46 23799.68 18097.02 31987.36 32489.85 27695.05 33881.31 27597.34 28987.34 31480.07 35293.40 348
v2v48291.30 27990.07 29395.01 25193.13 34893.79 22699.77 14797.02 31988.05 31589.25 29195.37 32580.73 28197.15 30187.28 31580.04 35394.09 313
WR-MVS92.31 26191.25 26995.48 23894.45 32795.29 18499.60 19498.68 7190.10 27688.07 31596.89 26880.68 28296.80 32893.14 23879.67 35494.36 285
v1090.25 30688.82 31594.57 27093.53 34293.43 23899.08 26196.87 33785.00 35487.34 32894.51 35580.93 27997.02 31682.85 35079.23 35593.26 352
CP-MVSNet91.23 28390.22 28794.26 28493.96 33592.39 26399.09 25998.57 9088.95 29786.42 33996.57 28179.19 29796.37 34390.29 28278.95 35694.02 317
MIMVSNet182.58 36080.51 36688.78 36686.68 39884.20 36996.65 37095.41 37978.75 38878.59 38292.44 37651.88 40389.76 40465.26 40578.95 35692.38 368
PS-CasMVS90.63 29689.51 30393.99 29593.83 33791.70 28298.98 27798.52 10788.48 30986.15 34396.53 28375.46 32996.31 34788.83 29578.86 35893.95 325
WR-MVS_H91.30 27990.35 28394.15 28694.17 33292.62 25999.17 25598.94 4188.87 30086.48 33894.46 35984.36 25096.61 33588.19 30378.51 35993.21 354
v890.54 29889.17 30894.66 26493.43 34493.40 24099.20 25296.94 33185.76 34587.56 32294.51 35581.96 26697.19 29984.94 33778.25 36093.38 350
UniMVSNet (Re)93.07 24492.13 25195.88 22794.84 31996.24 14799.88 10398.98 3892.49 21089.25 29195.40 32187.09 22297.14 30293.13 23978.16 36194.26 293
v7n89.65 31888.29 32393.72 30392.22 36690.56 30599.07 26597.10 30985.42 35286.73 33294.72 34880.06 28997.13 30381.14 36078.12 36293.49 346
VPNet91.81 26990.46 28095.85 22994.74 32195.54 17598.98 27798.59 8792.14 21990.77 26397.44 24968.73 36297.54 28394.89 19877.89 36394.46 277
Gipumacopyleft66.95 38065.00 38072.79 39291.52 37667.96 40466.16 41595.15 38647.89 41358.54 41067.99 41529.74 41287.54 40950.20 41477.83 36462.87 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 27790.22 28795.60 23394.05 33395.76 16398.25 33498.70 6891.16 25280.78 37396.64 27883.23 25996.57 33691.41 25877.73 36594.46 277
UniMVSNet_NR-MVSNet92.95 24692.11 25295.49 23594.61 32495.28 18599.83 13299.08 3391.49 23889.21 29496.86 27087.14 22196.73 33093.20 23577.52 36694.46 277
DU-MVS92.46 25891.45 26795.49 23594.05 33395.28 18599.81 13798.74 6592.25 21889.21 29496.64 27881.66 26996.73 33093.20 23577.52 36694.46 277
MDA-MVSNet_test_wron85.51 34483.32 35292.10 33490.96 38188.58 33799.20 25296.52 35579.70 38657.12 41292.69 37579.11 29893.86 38677.10 38077.46 36893.86 333
YYNet185.50 34583.33 35192.00 33590.89 38288.38 34199.22 25196.55 35479.60 38757.26 41192.72 37479.09 30093.78 38777.25 37977.37 36993.84 334
test_method80.79 36479.70 36884.08 37992.83 35867.06 40599.51 21095.42 37854.34 41181.07 37293.53 36844.48 40792.22 39878.90 37277.23 37092.94 358
v14890.70 29389.63 29893.92 29792.97 35490.97 29299.75 15696.89 33587.51 32188.27 31395.01 34081.67 26897.04 31287.40 31377.17 37193.75 338
Baseline_NR-MVSNet90.33 30389.51 30392.81 32892.84 35789.95 31899.77 14793.94 39984.69 35989.04 29895.66 30781.66 26996.52 33790.99 26676.98 37291.97 372
PEN-MVS90.19 30889.06 31193.57 30993.06 35290.90 29699.06 26698.47 11988.11 31485.91 34596.30 28876.67 31695.94 36187.07 31876.91 37393.89 330
TranMVSNet+NR-MVSNet91.68 27690.61 27994.87 25693.69 34093.98 22399.69 17898.65 7591.03 25688.44 30896.83 27480.05 29096.18 35190.26 28376.89 37494.45 282
MDA-MVSNet-bldmvs84.09 35581.52 36291.81 33991.32 37988.00 34598.67 31295.92 36880.22 38455.60 41393.32 37068.29 36593.60 38973.76 38876.61 37593.82 336
ttmdpeth88.23 33187.06 33491.75 34089.91 39087.35 34998.92 28795.73 37187.92 31784.02 35696.31 28768.23 36696.84 32486.33 32676.12 37691.06 378
test20.0384.72 35283.99 34586.91 37488.19 39680.62 39198.88 29095.94 36788.36 31178.87 37994.62 35368.75 36189.11 40566.52 40275.82 37791.00 379
DTE-MVSNet89.40 32188.24 32492.88 32692.66 36189.95 31899.10 25898.22 19287.29 32585.12 35096.22 29076.27 32395.30 37183.56 34675.74 37893.41 347
pm-mvs189.36 32287.81 32894.01 29393.40 34691.93 27298.62 31596.48 35786.25 34083.86 35896.14 29373.68 34397.04 31286.16 32875.73 37993.04 357
lessismore_v090.53 35090.58 38480.90 38995.80 36977.01 38895.84 30066.15 37496.95 31783.03 34975.05 38093.74 341
IB-MVS92.85 694.99 18993.94 20898.16 13297.72 21995.69 16999.99 498.81 6194.28 13492.70 24396.90 26795.08 5499.17 18096.07 17773.88 38199.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 34183.84 34891.26 34490.00 38984.41 36897.82 35096.15 36475.86 39481.29 37095.39 32361.21 39196.87 32383.52 34773.29 38292.50 365
test_fmvs379.99 36880.17 36779.45 38584.02 40462.83 40699.05 27093.49 40388.29 31380.06 37786.65 40228.09 41488.00 40688.63 29673.27 38387.54 402
test_f78.40 37077.59 37280.81 38480.82 40962.48 40996.96 36693.08 40583.44 36774.57 39684.57 40627.95 41592.63 39584.15 33972.79 38487.32 403
mvs5depth84.87 34982.90 35690.77 34985.59 40184.84 36691.10 40593.29 40483.14 36985.07 35194.33 36162.17 38797.32 29178.83 37372.59 38590.14 388
mvsany_test382.12 36181.14 36385.06 37881.87 40770.41 40297.09 36292.14 40791.27 24977.84 38588.73 39439.31 40995.49 36590.75 27371.24 38689.29 398
h-mvs3394.92 19094.36 19596.59 20898.85 13991.29 28998.93 28498.94 4195.90 8098.77 10798.42 21890.89 17399.77 13197.80 13970.76 38798.72 227
ambc83.23 38177.17 41462.61 40787.38 41094.55 39476.72 39086.65 40230.16 41196.36 34484.85 33869.86 38890.73 382
Patchmatch-RL test86.90 33785.98 34189.67 35984.45 40275.59 39789.71 40892.43 40686.89 33377.83 38690.94 38594.22 8893.63 38887.75 30969.61 38999.79 100
PM-MVS80.47 36578.88 37085.26 37783.79 40572.22 40095.89 38591.08 41085.71 34876.56 39188.30 39536.64 41093.90 38582.39 35369.57 39089.66 395
pmmvs-eth3d84.03 35681.97 36090.20 35584.15 40387.09 35198.10 34394.73 39183.05 37074.10 39787.77 39965.56 37694.01 38381.08 36169.24 39189.49 396
AUN-MVS93.28 23792.60 24195.34 24298.29 17790.09 31599.31 23998.56 9391.80 23296.35 19198.00 23389.38 19498.28 24592.46 24569.22 39297.64 250
hse-mvs294.38 21094.08 20395.31 24498.27 18090.02 31699.29 24498.56 9395.90 8098.77 10798.00 23390.89 17398.26 24997.80 13969.20 39397.64 250
TransMVSNet (Re)87.25 33685.28 34393.16 31993.56 34191.03 29198.54 31994.05 39883.69 36681.09 37196.16 29275.32 33096.40 34276.69 38268.41 39492.06 370
PMVScopyleft49.05 2353.75 38351.34 38760.97 40040.80 42634.68 42774.82 41489.62 41537.55 41628.67 42272.12 4117.09 42681.63 41643.17 41768.21 39566.59 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS76.28 37177.28 37373.29 39181.18 40854.68 41697.87 34994.19 39581.30 37969.43 40290.70 38777.02 31282.06 41435.71 41968.11 39683.13 405
UnsupCasMVSNet_eth85.52 34383.99 34590.10 35689.36 39283.51 37296.65 37097.99 21689.14 28875.89 39393.83 36563.25 38493.92 38481.92 35767.90 39792.88 359
PVSNet_088.03 1991.80 27290.27 28696.38 21598.27 18090.46 30799.94 6999.61 1393.99 14786.26 34297.39 25271.13 35499.89 9998.77 8767.05 39898.79 222
test_vis3_rt68.82 37466.69 37975.21 39076.24 41560.41 41196.44 37368.71 42575.13 39850.54 41669.52 41416.42 42496.32 34680.27 36466.92 39968.89 412
SSC-MVS75.42 37276.40 37572.49 39580.68 41053.62 41797.42 35494.06 39780.42 38368.75 40390.14 38976.54 31981.66 41533.25 42066.34 40082.19 406
MVStest185.03 34882.76 35791.83 33892.95 35689.16 32998.57 31694.82 38871.68 40468.54 40495.11 33783.17 26095.66 36474.69 38765.32 40190.65 383
testf168.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
APD_test268.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
TDRefinement84.76 35082.56 35891.38 34374.58 41684.80 36797.36 35694.56 39384.73 35880.21 37596.12 29663.56 38298.39 23087.92 30763.97 40490.95 381
new-patchmatchnet81.19 36279.34 36986.76 37582.86 40680.36 39397.92 34795.27 38282.09 37772.02 39886.87 40162.81 38690.74 40371.10 39363.08 40589.19 399
mmtdpeth88.52 32787.75 32990.85 34795.71 30383.47 37398.94 28294.85 38788.78 30297.19 16689.58 39063.29 38398.97 18898.54 10162.86 40690.10 389
pmmvs380.27 36677.77 37187.76 37380.32 41182.43 37898.23 33791.97 40872.74 40378.75 38087.97 39857.30 39790.99 40270.31 39462.37 40789.87 391
KD-MVS_self_test83.59 35982.06 35988.20 37186.93 39780.70 39097.21 35896.38 35882.87 37282.49 36388.97 39367.63 36892.32 39773.75 38962.30 40891.58 375
CL-MVSNet_self_test84.50 35383.15 35488.53 36986.00 39981.79 38398.82 29897.35 28185.12 35383.62 36090.91 38676.66 31791.40 40069.53 39660.36 40992.40 367
UnsupCasMVSNet_bld79.97 36977.03 37488.78 36685.62 40081.98 38193.66 39497.35 28175.51 39770.79 40083.05 40748.70 40594.91 37678.31 37560.29 41089.46 397
LCM-MVSNet67.77 37864.73 38176.87 38862.95 42256.25 41589.37 40993.74 40144.53 41461.99 40680.74 40820.42 42186.53 41169.37 39759.50 41187.84 400
KD-MVS_2432*160088.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
miper_refine_blended88.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
PMMVS267.15 37964.15 38276.14 38970.56 41962.07 41093.89 39287.52 41758.09 40860.02 40778.32 40922.38 41884.54 41259.56 40947.03 41481.80 407
MVEpermissive53.74 2251.54 38547.86 38962.60 39959.56 42350.93 41879.41 41377.69 42235.69 41836.27 42061.76 4195.79 42869.63 41837.97 41836.61 41567.24 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 38452.18 38652.67 40171.51 41745.40 42393.62 39576.60 42336.01 41743.50 41864.13 41727.11 41667.31 42031.06 42126.06 41645.30 419
EMVS51.44 38651.22 38852.11 40270.71 41844.97 42594.04 39175.66 42435.34 41942.40 41961.56 42028.93 41365.87 42127.64 42224.73 41745.49 418
ANet_high56.10 38252.24 38567.66 39849.27 42456.82 41483.94 41182.02 42170.47 40533.28 42164.54 41617.23 42369.16 41945.59 41623.85 41877.02 411
tmp_tt65.23 38162.94 38472.13 39644.90 42550.03 42181.05 41289.42 41638.45 41548.51 41799.90 1854.09 40078.70 41791.84 25518.26 41987.64 401
testmvs40.60 38744.45 39029.05 40419.49 42814.11 43099.68 18018.47 42720.74 42064.59 40598.48 21410.95 42517.09 42456.66 41311.01 42055.94 417
wuyk23d20.37 39020.84 39318.99 40565.34 42127.73 42850.43 4167.67 4299.50 4228.01 4236.34 4236.13 42726.24 42223.40 42310.69 4212.99 420
test12337.68 38839.14 39133.31 40319.94 42724.83 42998.36 3309.75 42815.53 42151.31 41587.14 40019.62 42217.74 42347.10 4153.47 42257.36 416
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.02 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.43 38931.24 3920.00 4060.00 4290.00 4310.00 41798.09 2080.00 4240.00 42599.67 9783.37 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.60 39210.13 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42591.20 1620.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.28 39111.04 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.40 1260.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.97 29286.10 330
FOURS199.92 3197.66 8799.95 5398.36 16795.58 8999.52 60
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 9
eth-test20.00 429
eth-test0.00 429
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 25100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 18
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6799.59 137
sam_mvs94.25 87
MTGPAbinary98.28 183
test_post195.78 38659.23 42193.20 12097.74 27691.06 264
test_post63.35 41894.43 7598.13 255
patchmatchnet-post91.70 38295.12 5297.95 267
MTMP99.87 10696.49 356
gm-plane-assit96.97 25893.76 22891.47 24198.96 16698.79 19894.92 195
TEST999.92 3198.92 2999.96 3598.43 13593.90 15499.71 3599.86 2995.88 3999.85 111
test_899.92 3198.88 3299.96 3598.43 13594.35 12899.69 3799.85 3395.94 3699.85 111
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
test_prior498.05 7099.94 69
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22194.21 13799.85 999.95 7396.96 165
新几何299.40 225
无先验99.49 21498.71 6793.46 165100.00 194.36 21099.99 23
原ACMM299.90 91
testdata299.99 3690.54 277
segment_acmp96.68 27
testdata199.28 24596.35 73
plane_prior795.71 30391.59 286
plane_prior695.76 29791.72 28180.47 287
plane_prior498.59 202
plane_prior391.64 28496.63 6093.01 237
plane_prior299.84 12596.38 69
plane_prior195.73 300
n20.00 430
nn0.00 430
door-mid89.69 414
test1198.44 127
door90.31 411
HQP5-MVS91.85 274
HQP-NCC95.78 29399.87 10696.82 5193.37 232
ACMP_Plane95.78 29399.87 10696.82 5193.37 232
BP-MVS97.92 133
HQP4-MVS93.37 23298.39 23094.53 272
HQP2-MVS80.65 283
NP-MVS95.77 29691.79 27698.65 197
MDTV_nov1_ep13_2view96.26 14396.11 38091.89 22798.06 14094.40 7794.30 21399.67 118
Test By Simon92.82 131