This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4198.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4198.43 116100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8898.44 10897.48 1599.64 3599.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 36100.00 1100.00 1
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8499.45 5199.85 3394.07 89100.00 198.67 77100.00 199.98 51
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4198.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4195.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7098.39 13597.20 2499.46 5099.85 3395.53 4299.79 10999.86 12100.00 199.99 20
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8898.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4198.38 13995.04 7998.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16199.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5698.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7498.55 8395.14 7899.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9998.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 2999.99 20100.00 1
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3699.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4198.56 7797.56 1399.44 5299.85 3395.38 45100.00 199.31 4399.99 2099.87 93
HPM-MVS_fast97.80 7997.50 7998.68 9599.79 7096.42 13099.88 8598.16 17791.75 20298.94 8599.54 10791.82 14599.65 13897.62 12099.99 2099.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7498.17 17492.61 17198.62 10099.57 10491.87 14399.67 13698.87 6599.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8898.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8597.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21798.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6298.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7498.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4198.42 12797.50 1499.52 4899.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12798.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4198.61 6994.77 8699.31 6499.85 3394.22 83100.00 198.70 7599.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4198.61 6995.00 8099.31 6499.85 3394.22 83100.00 198.78 7299.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4198.60 7194.77 8699.31 6499.84 4693.73 98100.00 198.70 7599.98 3399.98 51
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14599.82 11398.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6499.83 4995.06 5299.80 10699.70 3099.97 44
9.1498.38 3899.87 5299.91 7098.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4198.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6699.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8298.27 16188.48 26499.06 7899.66 9790.30 16599.64 13996.32 14399.97 4499.96 70
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5698.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13599.50 1693.90 12899.37 6199.76 7293.24 113100.00 197.75 11899.96 4899.98 51
API-MVS97.86 7497.66 7398.47 11499.52 9695.41 16899.47 18798.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9998.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10698.35 14694.92 8199.32 6399.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5599.78 6694.34 7699.96 5398.92 6099.95 5199.99 20
X-MVStestdata93.83 18992.06 21899.15 6199.94 1497.50 9499.94 5698.42 12796.22 4999.41 5541.37 36694.34 7699.96 5398.92 6099.95 5199.99 20
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3899.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
test22299.55 9497.41 10299.34 20498.55 8391.86 19799.27 6999.83 4993.84 9699.95 5199.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4399.94 497.18 17100.00 193.81 18999.94 5799.98 51
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4399.82 5394.40 71100.00 191.21 22399.94 5799.99 20
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6299.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7498.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3899.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DeepPCF-MVS95.94 297.71 8398.98 1093.92 26599.63 8881.76 34099.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 12098.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7793.28 11099.78 11198.90 6399.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13298.31 15394.43 10099.40 5999.75 7792.95 11998.90 6399.92 6799.97 63
112198.03 6997.57 7899.40 4199.74 7798.21 6698.31 28998.62 6792.78 16199.53 4599.83 4995.08 50100.00 194.36 17699.92 6799.99 20
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11398.30 15693.95 12599.37 6199.77 6892.84 12199.76 11898.95 5799.92 6799.97 63
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8898.52 9096.05 5399.41 5599.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8898.52 9096.04 5499.41 5599.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
MP-MVS-pluss98.07 6897.64 7499.38 4499.74 7798.41 6099.74 13898.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6299.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 3398.42 3199.14 6396.05 24898.96 2099.90 7499.35 2396.68 3798.35 11299.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12098.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19898.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MVS96.60 12395.56 14299.72 996.85 23199.22 1598.31 28998.94 3691.57 20690.90 22199.61 10186.66 20499.96 5397.36 12499.88 7699.99 20
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8899.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10298.37 14294.68 9199.53 4599.83 4992.87 120100.00 198.66 8099.84 8099.99 20
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15498.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6799.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15498.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7099.83 8199.98 51
QAPM95.40 15494.17 17099.10 6996.92 22597.71 8399.40 19498.68 5689.31 24588.94 25998.89 15982.48 23599.96 5393.12 20699.83 8199.62 125
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4198.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 23098.64 4999.72 14698.24 16495.27 7688.42 27098.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23397.47 9799.45 19098.81 4895.52 7089.39 24799.00 14681.97 23899.95 6097.27 12699.83 8199.84 95
LS3D95.84 14495.11 15498.02 13599.85 5595.10 17898.74 26698.50 10187.22 28093.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 188
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28299.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6298.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24797.48 9699.56 17298.57 7590.46 23086.51 29498.95 15578.57 27299.94 6893.86 18599.74 9097.57 217
131496.84 11195.96 13099.48 3396.74 23898.52 5598.31 28998.86 4595.82 5889.91 23398.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
abl_697.67 8497.34 8698.66 9799.68 8696.11 14899.68 15198.14 18093.80 13299.27 6999.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6698.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
MVP-Stereo90.93 25090.45 24592.37 29491.25 33288.76 29798.05 30296.17 32287.27 27984.04 31295.30 28578.46 27497.27 25883.78 30199.70 9491.09 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17698.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 201
BH-w/o95.71 14895.38 14696.68 17998.49 14692.28 23799.84 10697.50 23792.12 19092.06 21298.79 16984.69 22198.67 17895.29 15499.66 9699.09 186
MAR-MVS97.43 8997.19 9098.15 13199.47 10094.79 18799.05 23798.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.65 25790.30 24891.71 30294.22 28785.50 32198.24 29397.70 21388.67 26086.42 29796.37 24767.82 32698.03 22483.62 30299.62 9891.60 333
MVSFormer96.94 10796.60 10897.95 13797.28 21497.70 8599.55 17497.27 26091.17 21699.43 5399.54 10790.92 15796.89 28094.67 17099.62 9899.25 175
lupinMVS97.85 7597.60 7698.62 10097.28 21497.70 8599.99 497.55 22895.50 7199.43 5399.67 9590.92 15798.71 17598.40 8899.62 9899.45 154
BH-untuned95.18 15794.83 15896.22 19498.36 15091.22 26399.80 12097.32 25690.91 22391.08 21998.67 17383.51 22998.54 18494.23 18199.61 10198.92 190
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15498.06 18696.37 4794.37 18899.49 11083.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34198.52 9097.92 12497.92 20399.02 297.94 23198.17 9499.58 10399.67 117
gg-mvs-nofinetune93.51 19991.86 22398.47 11497.72 19297.96 7792.62 34598.51 9774.70 34797.33 13669.59 35898.91 397.79 23497.77 11699.56 10499.67 117
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16395.23 17599.76 13297.53 23292.52 17894.27 19099.25 13176.84 28198.80 16690.89 23499.54 10599.35 166
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19498.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
TAPA-MVS92.12 894.42 17993.60 18396.90 17299.33 10691.78 25099.78 12498.00 18989.89 24194.52 18599.47 11191.97 14199.18 15569.90 34499.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft95.54 397.93 7297.89 6998.05 13499.82 6594.77 18899.92 6698.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 9896.86 10098.38 12295.73 26097.32 10399.97 1697.40 24995.34 7498.60 10299.54 10787.70 19398.56 18297.94 10899.47 10999.25 175
jason: jason.
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24699.90 7499.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
CNLPA97.76 8197.38 8298.92 8599.53 9596.84 11899.87 8898.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22698.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
F-COLMAP96.93 10896.95 9996.87 17399.71 8491.74 25199.85 10297.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 190
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20398.50 10195.21 7798.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
CS-MVS97.52 8897.36 8598.00 13697.47 20496.11 148100.00 197.08 27694.74 8899.65 3399.33 12389.89 17098.22 21598.79 7199.25 11699.68 114
PVSNet_Blended97.94 7197.64 7498.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17899.07 3193.96 12496.49 15598.35 19182.28 23699.82 10590.15 24699.22 11898.81 197
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21899.65 15799.80 395.64 6795.39 17698.86 16584.35 22599.90 7596.98 13499.16 11999.95 78
EIA-MVS97.53 8797.46 8097.76 14598.04 16994.84 18499.98 897.61 22294.41 10397.90 12599.59 10292.40 13298.87 16398.04 10299.13 12099.59 130
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27399.32 2495.75 6596.80 14896.27 25072.18 30999.96 5394.58 17299.05 12198.04 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10697.63 21797.25 2399.20 7199.64 9981.36 24699.98 4292.77 20998.89 12298.28 204
TESTMET0.1,196.74 11796.26 11798.16 12897.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19795.54 4098.29 20790.55 23898.89 12299.70 111
test-LLR96.47 12696.04 12197.78 14297.02 22295.44 16699.96 2398.21 16894.07 11795.55 17396.38 24593.90 9498.27 21190.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22295.44 16699.96 2398.21 16891.81 20095.55 17396.38 24595.17 4798.27 21190.42 24198.83 12499.64 123
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4199.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7499.51 1597.60 1299.20 7199.36 12293.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17898.08 18597.05 2699.86 499.86 2990.65 16199.71 12999.39 4198.63 12898.69 201
ETV-MVS97.92 7397.80 7198.25 12698.14 16596.48 12899.98 897.63 21795.61 6899.29 6899.46 11392.55 12998.82 16599.02 5698.54 12999.46 152
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19694.28 19599.28 21498.24 16494.27 11196.84 14698.94 15679.39 26598.76 17193.25 20098.49 13099.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30597.31 25790.35 23389.48 24699.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 18193.36 19497.40 15898.88 13093.95 20299.37 20197.38 25085.75 30190.80 22299.17 13584.11 22799.88 8586.35 28498.43 13298.36 203
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6698.64 6394.51 9796.38 16098.49 18489.05 18299.88 8597.10 13198.34 13399.43 157
EPNet_dtu95.71 14895.39 14596.66 18098.92 12593.41 21499.57 17098.90 4196.19 5197.52 13298.56 18292.65 12697.36 24877.89 32898.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18898.14 6799.31 20897.86 20596.43 4199.62 3899.69 9185.56 21399.68 13399.05 5098.31 13597.83 210
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21699.65 15797.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
mvs-test195.53 15195.97 12894.20 25397.77 18585.44 32299.95 4197.06 27994.92 8196.58 15298.72 17185.81 21098.98 16094.80 16398.11 13998.18 205
DP-MVS94.54 17593.42 19097.91 14099.46 10294.04 19898.93 24997.48 23981.15 33090.04 23099.55 10587.02 20199.95 6088.97 25598.11 13999.73 108
EPMVS96.53 12596.01 12298.09 13298.43 14896.12 14796.36 32699.43 1993.53 14097.64 13095.04 29494.41 7098.38 20191.13 22598.11 13999.75 106
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18194.41 19396.05 33198.40 13292.86 15597.09 14195.28 28994.21 8698.07 22289.26 25398.11 13999.70 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 11996.49 11297.37 16095.63 26795.96 15299.74 13898.88 4392.94 15491.61 21498.97 15197.72 598.62 18094.83 16298.08 14397.53 218
ACMMPcopyleft97.74 8297.44 8198.66 9799.92 3596.13 14599.18 22199.45 1794.84 8596.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 29983.19 31195.31 21396.71 24090.29 27992.12 34797.33 25562.85 35386.82 28970.37 35769.37 31997.49 24375.12 33797.99 14598.15 206
PMMVS96.76 11596.76 10496.76 17698.28 15492.10 24199.91 7097.98 19294.12 11499.53 4599.39 11986.93 20298.73 17396.95 13697.73 14699.45 154
UA-Net96.54 12495.96 13098.27 12598.23 15995.71 16198.00 30398.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10595.00 5799.94 6899.91 1197.68 14899.99 20
mvs_anonymous95.65 15095.03 15597.53 15298.19 16195.74 15999.33 20597.49 23890.87 22490.47 22697.10 22088.23 19097.16 26195.92 14897.66 14999.68 114
LCM-MVSNet-Re92.31 22592.60 20591.43 30397.53 19979.27 34999.02 24091.83 35692.07 19180.31 33094.38 31583.50 23095.48 32197.22 12897.58 15099.54 143
MVS_Test96.46 12795.74 13898.61 10198.18 16297.23 10599.31 20897.15 27091.07 22098.84 8797.05 22488.17 19198.97 16194.39 17597.50 15199.61 127
SCA94.69 16993.81 18097.33 16397.10 21794.44 19198.86 25898.32 15193.30 14696.17 16495.59 26876.48 28597.95 22991.06 22797.43 15299.59 130
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17494.82 18599.47 18798.15 17991.83 19895.09 18099.11 13791.37 14897.47 24593.47 19897.43 15299.74 107
diffmvs97.00 10596.64 10798.09 13297.64 19596.17 14499.81 11597.19 26494.67 9398.95 8499.28 12486.43 20698.76 17198.37 8997.42 15499.33 168
IS-MVSNet96.29 13595.90 13497.45 15598.13 16694.80 18699.08 22897.61 22292.02 19495.54 17598.96 15390.64 16298.08 22093.73 19497.41 15599.47 151
Effi-MVS+96.30 13495.69 13998.16 12897.85 18096.26 13797.41 31197.21 26390.37 23298.65 9998.58 18086.61 20598.70 17697.11 13097.37 15699.52 146
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15894.67 18998.86 25898.20 17293.60 13998.09 12098.89 15997.51 798.78 16894.04 18397.28 15799.55 139
ADS-MVSNet293.80 19293.88 17893.55 27797.87 17885.94 31894.24 33796.84 30090.07 23796.43 15794.48 31290.29 16695.37 32387.44 27197.23 15899.36 164
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17893.79 20494.24 33798.16 17790.07 23796.43 15794.48 31290.29 16698.19 21787.44 27197.23 15899.36 164
EPP-MVSNet96.69 12096.60 10896.96 17097.74 18893.05 22099.37 20198.56 7788.75 25895.83 17099.01 14496.01 2898.56 18296.92 13797.20 16099.25 175
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17694.55 19099.97 1697.08 27688.85 25794.47 18797.96 20284.59 22298.41 19389.84 24997.10 16199.59 130
Effi-MVS+-dtu94.53 17795.30 14892.22 29597.77 18582.54 33399.59 16797.06 27994.92 8195.29 17895.37 28285.81 21097.89 23294.80 16397.07 16296.23 225
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10697.09 27593.75 13596.58 15299.26 13085.07 21998.78 16897.77 11697.04 16399.54 143
sss97.57 8697.03 9799.18 5498.37 14998.04 7299.73 14399.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
Patchmatch-test92.65 21991.50 22996.10 19796.85 23190.49 27591.50 35097.19 26482.76 32590.23 22795.59 26895.02 5498.00 22577.41 33096.98 16599.82 97
MDTV_nov1_ep1395.69 13997.90 17594.15 19695.98 33298.44 10893.12 15197.98 12395.74 26195.10 4998.58 18190.02 24796.92 166
Fast-Effi-MVS+-dtu93.72 19693.86 17993.29 28097.06 21986.16 31699.80 12096.83 30192.66 16892.58 21097.83 20481.39 24597.67 23889.75 25096.87 16796.05 227
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 18097.17 26793.92 12796.90 14599.28 12485.37 21698.64 17997.50 12196.86 16899.46 152
tpmrst96.27 13795.98 12597.13 16697.96 17293.15 21796.34 32798.17 17492.07 19198.71 9695.12 29293.91 9398.73 17394.91 16096.62 16999.50 149
JIA-IIPM91.76 24090.70 24094.94 22496.11 24687.51 31193.16 34498.13 18275.79 34497.58 13177.68 35592.84 12197.97 22688.47 26196.54 17099.33 168
dp95.05 16094.43 16596.91 17197.99 17192.73 22796.29 32897.98 19289.70 24395.93 16794.67 30793.83 9798.45 19086.91 28396.53 17199.54 143
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25299.00 11788.04 30998.42 28796.70 31082.30 32788.43 26899.01 14476.97 27999.85 9486.11 28796.50 17294.86 228
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE94.36 18393.48 18896.99 16997.29 21393.54 21099.96 2396.72 30988.35 26793.43 19898.94 15682.05 23798.05 22388.12 26696.48 17399.37 163
tpm cat193.51 19992.52 21096.47 18497.77 18591.47 26196.13 32998.06 18680.98 33192.91 20693.78 32089.66 17298.87 16387.03 27996.39 17499.09 186
thisisatest051597.41 9397.02 9898.59 10497.71 19497.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17599.16 180
AllTest92.48 22191.64 22495.00 22299.01 11588.43 30398.94 24896.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
TestCases95.00 22299.01 11588.43 30396.82 30386.50 28988.71 26198.47 18874.73 29999.88 8585.39 29096.18 17696.71 221
thisisatest053097.10 10296.72 10598.22 12797.60 19796.70 12199.92 6698.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17898.92 190
DSMNet-mixed88.28 29188.24 28688.42 32689.64 34275.38 35198.06 30189.86 35985.59 30388.20 27392.14 33576.15 29091.95 34878.46 32696.05 17997.92 209
TR-MVS94.54 17593.56 18697.49 15497.96 17294.34 19498.71 26997.51 23690.30 23594.51 18698.69 17275.56 29298.77 17092.82 20895.99 18099.35 166
CR-MVSNet93.45 20292.62 20495.94 20096.29 24392.66 22992.01 34896.23 32092.62 17096.94 14393.31 32591.04 15496.03 31579.23 32195.96 18199.13 184
RPMNet89.76 27887.28 29397.19 16596.29 24392.66 22992.01 34898.31 15370.19 35296.94 14385.87 35187.25 19899.78 11162.69 35495.96 18199.13 184
PatchT90.38 26488.75 27895.25 21695.99 25090.16 28191.22 35297.54 23076.80 34097.26 13786.01 35091.88 14296.07 31466.16 35195.91 18399.51 147
tpmvs94.28 18593.57 18596.40 18998.55 14291.50 26095.70 33698.55 8387.47 27592.15 21194.26 31691.42 14698.95 16288.15 26495.85 18498.76 199
TAMVS95.85 14395.58 14196.65 18197.07 21893.50 21199.17 22297.82 20991.39 21595.02 18198.01 19892.20 13697.30 25393.75 19395.83 18599.14 183
CostFormer96.10 13895.88 13596.78 17597.03 22192.55 23397.08 31897.83 20890.04 23998.72 9594.89 30195.01 5698.29 20796.54 14195.77 18699.50 149
tttt051796.85 11096.49 11297.92 13997.48 20395.89 15499.85 10298.54 8790.72 22896.63 15198.93 15897.47 999.02 15993.03 20795.76 18798.85 194
HY-MVS92.50 797.79 8097.17 9299.63 1298.98 11899.32 697.49 31099.52 1395.69 6698.32 11397.41 21193.32 10799.77 11598.08 10195.75 18899.81 98
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17797.91 20091.55 20795.37 17798.32 19295.05 5397.13 26493.80 19095.75 18899.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 15395.18 15296.35 19296.91 22691.70 25596.96 32197.93 19788.04 27098.44 10795.40 27893.32 10797.97 22694.00 18495.61 19099.38 161
WTY-MVS98.10 6797.60 7699.60 1798.92 12599.28 1299.89 8299.52 1395.58 6998.24 11899.39 11993.33 10699.74 12597.98 10795.58 19199.78 103
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14899.80 390.54 22996.26 16298.08 19692.15 13898.23 21496.84 13995.46 19299.93 81
cascas94.64 17293.61 18197.74 14797.82 18296.26 13799.96 2397.78 21185.76 29994.00 19397.54 20876.95 28099.21 15497.23 12795.43 19397.76 214
CVMVSNet94.68 17194.94 15693.89 26796.80 23486.92 31499.06 23398.98 3494.45 9894.23 19199.02 14285.60 21295.31 32590.91 23395.39 19499.43 157
test_yl97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
DCV-MVSNet97.83 7697.37 8399.21 5199.18 10897.98 7599.64 16199.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6795.32 19599.79 100
LFMVS94.75 16893.56 18698.30 12499.03 11495.70 16298.74 26697.98 19287.81 27398.47 10699.39 11967.43 32899.53 14198.01 10395.20 19799.67 117
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10299.71 593.17 15096.26 16298.88 16189.87 17199.51 14394.26 18094.91 19899.31 170
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.84 18694.57 19999.27 173
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.27 173
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12499.71 592.86 15596.02 16598.87 16389.33 17799.50 14593.84 18694.57 19999.16 180
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13899.71 592.59 17395.84 16898.86 16589.25 17999.50 14593.44 19994.50 20299.16 180
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23999.21 2794.31 10899.18 7598.88 16186.26 20899.89 7998.93 5994.32 20399.69 113
alignmvs97.81 7897.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11193.65 10099.42 15198.57 8394.26 20499.67 117
VDD-MVS93.77 19392.94 19996.27 19398.55 14290.22 28098.77 26597.79 21090.85 22596.82 14799.42 11561.18 34699.77 11598.95 5794.13 20598.82 196
VDDNet93.12 20691.91 22196.76 17696.67 24192.65 23198.69 27198.21 16882.81 32497.75 12999.28 12461.57 34499.48 14998.09 10094.09 20698.15 206
GA-MVS93.83 18992.84 20096.80 17495.73 26093.57 20899.88 8597.24 26292.57 17692.92 20596.66 23878.73 27197.67 23887.75 26994.06 20799.17 179
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14697.35 25294.45 9897.88 12699.42 11586.71 20399.52 14298.48 8693.97 20899.72 110
1112_ss96.01 14195.20 15198.42 11997.80 18396.41 13199.65 15796.66 31192.71 16492.88 20799.40 11792.16 13799.30 15291.92 21693.66 20999.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18496.41 13199.65 15796.65 31292.70 16592.86 20896.13 25492.15 13899.30 15291.88 21793.64 21099.55 139
MIMVSNet90.30 26788.67 27995.17 21896.45 24291.64 25792.39 34697.15 27085.99 29590.50 22593.19 32766.95 32994.86 33182.01 31193.43 21199.01 189
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21998.05 16889.19 29399.08 22897.54 23093.66 13794.87 18299.58 10378.78 27099.79 10997.31 12593.40 21296.25 223
ab-mvs94.69 16993.42 19098.51 11298.07 16796.26 13796.49 32598.68 5690.31 23494.54 18497.00 22676.30 28799.71 12995.98 14793.38 21399.56 138
test0.0.03 193.86 18893.61 18194.64 23495.02 27692.18 24099.93 6298.58 7394.07 11787.96 27598.50 18393.90 9494.96 32981.33 31493.17 21496.78 220
RPSCF91.80 23792.79 20288.83 32298.15 16469.87 35398.11 29996.60 31383.93 31794.33 18999.27 12779.60 26499.46 15091.99 21493.16 21597.18 219
XVG-OURS94.82 16494.74 16195.06 22098.00 17089.19 29399.08 22897.55 22894.10 11594.71 18399.62 10080.51 25799.74 12596.04 14693.06 21696.25 223
MVS_030489.28 28588.31 28492.21 29697.05 22086.53 31597.76 30899.57 1285.58 30493.86 19692.71 32951.04 35696.30 30584.49 29692.72 21793.79 296
Anonymous20240521193.10 20791.99 21996.40 18999.10 11289.65 29098.88 25497.93 19783.71 31994.00 19398.75 17068.79 32099.88 8595.08 15691.71 21899.68 114
Anonymous2024052992.10 23090.65 24196.47 18498.82 13390.61 27298.72 26898.67 5975.54 34593.90 19598.58 18066.23 33199.90 7594.70 16990.67 21998.90 193
HQP3-MVS97.89 20189.60 220
HQP-MVS94.61 17394.50 16494.92 22595.78 25491.85 24799.87 8897.89 20196.82 3093.37 19998.65 17480.65 25598.39 19797.92 10989.60 22094.53 229
plane_prior91.74 25199.86 9996.76 3489.59 222
HQP_MVS94.49 17894.36 16694.87 22695.71 26391.74 25199.84 10697.87 20396.38 4493.01 20398.59 17880.47 25998.37 20297.79 11489.55 22394.52 231
plane_prior597.87 20398.37 20297.79 11489.55 22394.52 231
CLD-MVS94.06 18793.90 17794.55 23996.02 24990.69 26999.98 897.72 21296.62 3991.05 22098.85 16877.21 27798.47 18698.11 9889.51 22594.48 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 20492.80 20194.44 24693.12 30690.85 26899.77 12797.61 22296.19 5191.56 21598.65 17475.16 29798.47 18693.78 19289.39 22693.99 281
LPG-MVS_test92.96 21092.71 20393.71 27195.43 26988.67 29999.75 13597.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
LGP-MVS_train93.71 27195.43 26988.67 29997.62 21992.81 15890.05 22898.49 18475.24 29598.40 19595.84 15089.12 22794.07 273
test_djsdf92.83 21392.29 21494.47 24491.90 32492.46 23499.55 17497.27 26091.17 21689.96 23196.07 25681.10 24896.89 28094.67 17088.91 22994.05 275
testgi89.01 28788.04 28891.90 30093.49 29984.89 32599.73 14395.66 33293.89 13085.14 30898.17 19459.68 34794.66 33377.73 32988.88 23096.16 226
ACMM91.95 1092.88 21292.52 21093.98 26495.75 25989.08 29699.77 12797.52 23493.00 15389.95 23297.99 20176.17 28998.46 18993.63 19788.87 23194.39 242
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 21592.42 21293.73 26995.91 25388.72 29899.81 11597.53 23294.13 11387.00 28898.23 19374.07 30398.47 18696.22 14488.86 23293.99 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 23291.18 23494.15 25491.35 33090.95 26699.00 24197.42 24592.61 17187.38 28497.08 22172.46 30897.36 24894.53 17388.77 23394.13 270
anonymousdsp91.79 23990.92 23794.41 24990.76 33592.93 22298.93 24997.17 26789.08 24787.46 28395.30 28578.43 27596.92 27992.38 21188.73 23493.39 309
mvs_tets91.81 23491.08 23594.00 26291.63 32890.58 27398.67 27397.43 24392.43 18287.37 28597.05 22471.76 31097.32 25294.75 16688.68 23594.11 271
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29293.73 29585.61 31998.52 28197.44 24292.77 16289.90 23496.85 23266.64 33098.39 19792.29 21288.61 23693.89 289
EG-PatchMatch MVS85.35 30583.81 30789.99 31690.39 33781.89 33898.21 29696.09 32481.78 32974.73 34693.72 32151.56 35597.12 26679.16 32488.61 23690.96 338
UniMVSNet_ETH3D90.06 27488.58 28094.49 24394.67 28188.09 30897.81 30797.57 22783.91 31888.44 26697.41 21157.44 35097.62 24091.41 22188.59 23897.77 213
tpm93.70 19793.41 19294.58 23795.36 27187.41 31297.01 31996.90 29690.85 22596.72 15094.14 31790.40 16496.84 28390.75 23788.54 23999.51 147
OpenMVS_ROBcopyleft79.82 2083.77 31481.68 31790.03 31588.30 34682.82 33098.46 28295.22 34173.92 34976.00 34391.29 33755.00 35296.94 27868.40 34788.51 24090.34 342
CMPMVSbinary61.59 2184.75 30885.14 30283.57 33390.32 33862.54 35796.98 32097.59 22674.33 34869.95 35196.66 23864.17 33898.32 20587.88 26888.41 24189.84 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++88.23 242
ITE_SJBPF92.38 29395.69 26585.14 32395.71 33092.81 15889.33 25098.11 19570.23 31798.42 19285.91 28888.16 24393.59 305
D2MVS92.76 21492.59 20893.27 28195.13 27289.54 29299.69 14999.38 2192.26 18687.59 27994.61 30985.05 22097.79 23491.59 22088.01 24492.47 325
EI-MVSNet93.73 19593.40 19394.74 23096.80 23492.69 22899.06 23397.67 21588.96 25391.39 21699.02 14288.75 18697.30 25391.07 22687.85 24594.22 255
MVSTER95.53 15195.22 15096.45 18698.56 14197.72 8299.91 7097.67 21592.38 18391.39 21697.14 21897.24 1497.30 25394.80 16387.85 24594.34 248
PS-MVSNAJss93.64 19893.31 19594.61 23592.11 32192.19 23999.12 22497.38 25092.51 17988.45 26596.99 22791.20 15097.29 25694.36 17687.71 24794.36 244
LTVRE_ROB88.28 1890.29 26889.05 27394.02 26095.08 27490.15 28297.19 31597.43 24384.91 31283.99 31397.06 22374.00 30498.28 20984.08 29787.71 24793.62 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 25889.63 25993.66 27595.64 26688.64 30198.55 27797.45 24089.03 24981.62 32497.61 20769.75 31898.41 19389.37 25187.62 24993.92 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 13995.82 13796.72 17899.59 9096.99 11499.95 4199.10 2894.06 11998.27 11595.80 25989.00 18399.95 6099.12 4787.53 25093.24 313
USDC90.00 27588.96 27493.10 28694.81 27888.16 30798.71 26995.54 33593.66 13783.75 31597.20 21765.58 33398.31 20683.96 30087.49 25192.85 320
RRT_MVS95.23 15694.77 16096.61 18298.28 15498.32 6399.81 11597.41 24792.59 17391.28 21897.76 20595.02 5497.23 25993.65 19687.14 25294.28 251
ACMMP++_ref87.04 253
test_040285.58 30183.94 30590.50 31093.81 29485.04 32498.55 27795.20 34276.01 34279.72 33395.13 29164.15 33996.26 30766.04 35286.88 25490.21 344
FIs94.10 18693.43 18996.11 19694.70 28096.82 11999.58 16898.93 4092.54 17789.34 24997.31 21487.62 19497.10 26794.22 18286.58 25594.40 241
FC-MVSNet-test93.81 19193.15 19895.80 20494.30 28696.20 14299.42 19398.89 4292.33 18589.03 25897.27 21687.39 19796.83 28493.20 20186.48 25694.36 244
TinyColmap87.87 29586.51 29691.94 29995.05 27585.57 32097.65 30994.08 35084.40 31581.82 32396.85 23262.14 34398.33 20480.25 31986.37 25791.91 332
ACMH+89.98 1690.35 26589.54 26292.78 29195.99 25086.12 31798.81 26297.18 26689.38 24483.14 31797.76 20568.42 32498.43 19189.11 25486.05 25893.78 297
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23397.99 19092.68 16794.13 19298.62 17793.28 11098.69 17793.79 19185.76 25998.84 195
GBi-Net90.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
test190.88 25289.82 25794.08 25797.53 19991.97 24298.43 28496.95 29087.05 28189.68 23994.72 30371.34 31296.11 31087.01 28085.65 26094.17 259
FMVSNet392.69 21791.58 22695.99 19898.29 15297.42 10199.26 21697.62 21989.80 24289.68 23995.32 28481.62 24496.27 30687.01 28085.65 26094.29 250
DeepMVS_CXcopyleft82.92 33595.98 25258.66 35996.01 32592.72 16378.34 33795.51 27358.29 34998.08 22082.57 30785.29 26392.03 330
LF4IMVS89.25 28688.85 27590.45 31292.81 31581.19 34298.12 29894.79 34591.44 21186.29 30097.11 21965.30 33698.11 21988.53 26085.25 26492.07 328
FMVSNet291.02 24989.56 26195.41 21097.53 19995.74 15998.98 24397.41 24787.05 28188.43 26895.00 29771.34 31296.24 30885.12 29285.21 26594.25 254
ET-MVSNet_ETH3D94.37 18193.28 19697.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34999.45 11496.23 2795.34 32496.91 13885.14 26699.59 130
OurMVSNet-221017-089.81 27789.48 26690.83 30891.64 32781.21 34198.17 29795.38 33891.48 20985.65 30697.31 21472.66 30797.29 25688.15 26484.83 26793.97 283
pmmvs492.10 23091.07 23695.18 21792.82 31494.96 18199.48 18696.83 30187.45 27688.66 26496.56 24383.78 22896.83 28489.29 25284.77 26893.75 298
our_test_390.39 26389.48 26693.12 28492.40 31889.57 29199.33 20596.35 31987.84 27285.30 30794.99 29884.14 22696.09 31380.38 31884.56 26993.71 303
cl-mvsnet293.77 19393.25 19795.33 21299.49 9994.43 19299.61 16598.09 18390.38 23189.16 25695.61 26690.56 16397.34 25091.93 21584.45 27094.21 257
miper_ehance_all_eth93.16 20592.60 20594.82 22997.57 19893.56 20999.50 18297.07 27888.75 25888.85 26095.52 27290.97 15696.74 28790.77 23684.45 27094.17 259
miper_enhance_ethall94.36 18393.98 17595.49 20698.68 14095.24 17499.73 14397.29 25893.28 14789.86 23595.97 25794.37 7597.05 27092.20 21384.45 27094.19 258
bset_n11_16_dypcd93.05 20992.30 21395.31 21390.23 33995.05 17999.44 19297.28 25992.51 17990.65 22496.68 23785.30 21796.71 29094.49 17484.14 27394.16 264
IterMVS90.91 25190.17 25293.12 28496.78 23790.42 27898.89 25297.05 28189.03 24986.49 29595.42 27776.59 28495.02 32787.22 27684.09 27493.93 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 28986.64 29594.08 25795.62 26891.97 24298.43 28496.95 29083.00 32286.08 30394.72 30359.09 34896.11 31081.82 31384.07 27594.17 259
XXY-MVS91.82 23390.46 24395.88 20193.91 29295.40 16998.87 25797.69 21488.63 26287.87 27697.08 22174.38 30297.89 23291.66 21984.07 27594.35 247
IterMVS-SCA-FT90.85 25490.16 25392.93 28896.72 23989.96 28598.89 25296.99 28588.95 25486.63 29295.67 26476.48 28595.00 32887.04 27884.04 27793.84 293
RRT_test8_iter0594.58 17494.11 17195.98 19997.88 17696.11 14899.89 8297.45 24091.66 20488.28 27196.71 23696.53 2497.40 24694.73 16883.85 27894.45 239
pmmvs590.17 27289.09 27193.40 27892.10 32289.77 28999.74 13895.58 33485.88 29887.24 28795.74 26173.41 30696.48 29888.54 25983.56 27993.95 284
SixPastTwentyTwo88.73 28888.01 28990.88 30691.85 32582.24 33598.22 29595.18 34388.97 25282.26 32096.89 22971.75 31196.67 29284.00 29882.98 28093.72 302
N_pmnet80.06 32180.78 31977.89 33691.94 32345.28 36598.80 26356.82 36878.10 33980.08 33293.33 32377.03 27895.76 32068.14 34882.81 28192.64 321
ppachtmachnet_test89.58 28188.35 28393.25 28292.40 31890.44 27799.33 20596.73 30885.49 30585.90 30595.77 26081.09 24996.00 31776.00 33682.49 28293.30 311
cl-mvsnet____92.31 22591.58 22694.52 24097.33 21092.77 22399.57 17096.78 30686.97 28587.56 28095.51 27389.43 17596.62 29388.60 25782.44 28394.16 264
cl-mvsnet192.32 22491.60 22594.47 24497.31 21192.74 22599.58 16896.75 30786.99 28487.64 27895.54 27089.55 17496.50 29788.58 25882.44 28394.17 259
Patchmtry89.70 27988.49 28193.33 27996.24 24589.94 28891.37 35196.23 32078.22 33887.69 27793.31 32591.04 15496.03 31580.18 32082.10 28594.02 276
IterMVS-LS92.69 21792.11 21694.43 24896.80 23492.74 22599.45 19096.89 29788.98 25189.65 24295.38 28188.77 18596.34 30390.98 23182.04 28694.22 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 27390.34 24789.54 31892.55 31781.06 34398.69 27198.04 18891.41 21486.59 29396.84 23480.83 25293.31 34586.20 28581.91 28794.26 252
Anonymous2023120686.32 29885.42 30089.02 32189.11 34480.53 34799.05 23795.28 33985.43 30682.82 31893.92 31874.40 30193.44 34466.99 34981.83 28893.08 316
eth_miper_zixun_eth92.41 22391.93 22093.84 26897.28 21490.68 27098.83 26096.97 28988.57 26389.19 25595.73 26389.24 18196.69 29189.97 24881.55 28994.15 266
FMVSNet588.32 29087.47 29290.88 30696.90 22988.39 30597.28 31395.68 33182.60 32684.67 31092.40 33479.83 26391.16 35076.39 33581.51 29093.09 315
miper_lstm_enhance91.81 23491.39 23293.06 28797.34 20889.18 29599.38 19996.79 30586.70 28887.47 28295.22 29090.00 16895.86 31988.26 26281.37 29194.15 266
VPA-MVSNet92.70 21691.55 22896.16 19595.09 27396.20 14298.88 25499.00 3391.02 22291.82 21395.29 28876.05 29197.96 22895.62 15281.19 29294.30 249
v119290.62 26089.25 26894.72 23293.13 30493.07 21899.50 18297.02 28286.33 29289.56 24595.01 29579.22 26697.09 26982.34 30981.16 29394.01 278
v114491.09 24889.83 25694.87 22693.25 30393.69 20799.62 16496.98 28786.83 28789.64 24394.99 29880.94 25097.05 27085.08 29381.16 29393.87 291
Anonymous2024052185.15 30683.81 30789.16 32088.32 34582.69 33198.80 26395.74 32979.72 33481.53 32590.99 33865.38 33594.16 33672.69 34081.11 29590.63 341
v124090.20 27088.79 27794.44 24693.05 30992.27 23899.38 19996.92 29585.89 29689.36 24894.87 30277.89 27697.03 27480.66 31781.08 29694.01 278
new_pmnet84.49 31182.92 31389.21 31990.03 34082.60 33296.89 32295.62 33380.59 33275.77 34589.17 34265.04 33794.79 33272.12 34181.02 29790.23 343
K. test v388.05 29287.24 29490.47 31191.82 32682.23 33698.96 24697.42 24589.05 24876.93 34095.60 26768.49 32395.42 32285.87 28981.01 29893.75 298
FPMVS68.72 32368.72 32668.71 34165.95 36244.27 36795.97 33394.74 34651.13 35653.26 35990.50 34125.11 36483.00 35860.80 35580.97 29978.87 354
v192192090.46 26289.12 27094.50 24292.96 31192.46 23499.49 18496.98 28786.10 29489.61 24495.30 28578.55 27397.03 27482.17 31080.89 30094.01 278
cl_fuxian92.53 22091.87 22294.52 24097.40 20592.99 22199.40 19496.93 29487.86 27188.69 26395.44 27689.95 16996.44 29990.45 24080.69 30194.14 269
tfpnnormal89.29 28487.61 29194.34 25094.35 28594.13 19798.95 24798.94 3683.94 31684.47 31195.51 27374.84 29897.39 24777.05 33380.41 30291.48 335
v14419290.79 25589.52 26394.59 23693.11 30792.77 22399.56 17296.99 28586.38 29189.82 23894.95 30080.50 25897.10 26783.98 29980.41 30293.90 288
nrg03093.51 19992.53 20996.45 18694.36 28497.20 10699.81 11597.16 26991.60 20589.86 23597.46 20986.37 20797.68 23795.88 14980.31 30494.46 234
Anonymous2023121189.86 27688.44 28294.13 25698.93 12390.68 27098.54 27998.26 16276.28 34186.73 29095.54 27070.60 31697.56 24190.82 23580.27 30594.15 266
V4291.28 24590.12 25494.74 23093.42 30193.46 21299.68 15197.02 28287.36 27789.85 23795.05 29381.31 24797.34 25087.34 27480.07 30693.40 308
v2v48291.30 24390.07 25595.01 22193.13 30493.79 20499.77 12797.02 28288.05 26989.25 25195.37 28280.73 25397.15 26287.28 27580.04 30794.09 272
WR-MVS92.31 22591.25 23395.48 20994.45 28395.29 17199.60 16698.68 5690.10 23688.07 27496.89 22980.68 25496.80 28693.14 20479.67 30894.36 244
v1090.25 26988.82 27694.57 23893.53 29893.43 21399.08 22896.87 29985.00 30987.34 28694.51 31080.93 25197.02 27682.85 30679.23 30993.26 312
test_part192.15 22990.72 23996.44 18898.87 13197.46 9898.99 24298.26 16285.89 29686.34 29996.34 24881.71 24097.48 24491.06 22778.99 31094.37 243
CP-MVSNet91.23 24690.22 25094.26 25193.96 29192.39 23699.09 22698.57 7588.95 25486.42 29796.57 24279.19 26796.37 30190.29 24478.95 31194.02 276
MIMVSNet182.58 31680.51 32088.78 32386.68 34984.20 32896.65 32395.41 33778.75 33778.59 33692.44 33151.88 35489.76 35365.26 35378.95 31192.38 327
PS-CasMVS90.63 25989.51 26493.99 26393.83 29391.70 25598.98 24398.52 9088.48 26486.15 30296.53 24475.46 29396.31 30488.83 25678.86 31393.95 284
WR-MVS_H91.30 24390.35 24694.15 25494.17 28892.62 23299.17 22298.94 3688.87 25686.48 29694.46 31484.36 22496.61 29488.19 26378.51 31493.21 314
v890.54 26189.17 26994.66 23393.43 30093.40 21599.20 21996.94 29385.76 29987.56 28094.51 31081.96 23997.19 26084.94 29478.25 31593.38 310
UniMVSNet (Re)93.07 20892.13 21595.88 20194.84 27796.24 14199.88 8598.98 3492.49 18189.25 25195.40 27887.09 20097.14 26393.13 20578.16 31694.26 252
v7n89.65 28088.29 28593.72 27092.22 32090.56 27499.07 23297.10 27485.42 30786.73 29094.72 30380.06 26197.13 26481.14 31578.12 31793.49 306
VPNet91.81 23490.46 24395.85 20394.74 27995.54 16598.98 24398.59 7292.14 18990.77 22397.44 21068.73 32297.54 24294.89 16177.89 31894.46 234
Gipumacopyleft66.95 32665.00 32772.79 33991.52 32967.96 35466.16 36095.15 34447.89 35758.54 35567.99 35929.74 36187.54 35550.20 35877.83 31962.87 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 24290.22 25095.60 20594.05 28995.76 15898.25 29298.70 5491.16 21880.78 32996.64 24083.23 23396.57 29591.41 22177.73 32094.46 234
UniMVSNet_NR-MVSNet92.95 21192.11 21695.49 20694.61 28295.28 17299.83 11299.08 3091.49 20889.21 25396.86 23187.14 19996.73 28893.20 20177.52 32194.46 234
DU-MVS92.46 22291.45 23195.49 20694.05 28995.28 17299.81 11598.74 5292.25 18789.21 25396.64 24081.66 24296.73 28893.20 20177.52 32194.46 234
MDA-MVSNet_test_wron85.51 30383.32 31092.10 29790.96 33388.58 30299.20 21996.52 31579.70 33557.12 35792.69 33079.11 26893.86 34077.10 33277.46 32393.86 292
YYNet185.50 30483.33 30992.00 29890.89 33488.38 30699.22 21896.55 31479.60 33657.26 35692.72 32879.09 26993.78 34177.25 33177.37 32493.84 293
test_method80.79 31879.70 32184.08 33292.83 31367.06 35599.51 18095.42 33654.34 35581.07 32893.53 32244.48 35892.22 34778.90 32577.23 32592.94 318
v14890.70 25689.63 25993.92 26592.97 31090.97 26599.75 13596.89 29787.51 27488.27 27295.01 29581.67 24197.04 27287.40 27377.17 32693.75 298
Baseline_NR-MVSNet90.33 26689.51 26492.81 29092.84 31289.95 28699.77 12793.94 35284.69 31489.04 25795.66 26581.66 24296.52 29690.99 23076.98 32791.97 331
PEN-MVS90.19 27189.06 27293.57 27693.06 30890.90 26799.06 23398.47 10388.11 26885.91 30496.30 24976.67 28295.94 31887.07 27776.91 32893.89 289
TranMVSNet+NR-MVSNet91.68 24190.61 24294.87 22693.69 29693.98 20199.69 14998.65 6091.03 22188.44 26696.83 23580.05 26296.18 30990.26 24576.89 32994.45 239
MDA-MVSNet-bldmvs84.09 31281.52 31891.81 30191.32 33188.00 31098.67 27395.92 32780.22 33355.60 35893.32 32468.29 32593.60 34373.76 33876.61 33093.82 295
test20.0384.72 30983.99 30386.91 32988.19 34780.62 34698.88 25495.94 32688.36 26678.87 33494.62 30868.75 32189.11 35466.52 35075.82 33191.00 337
DTE-MVSNet89.40 28288.24 28692.88 28992.66 31689.95 28699.10 22598.22 16787.29 27885.12 30996.22 25176.27 28895.30 32683.56 30375.74 33293.41 307
pm-mvs189.36 28387.81 29094.01 26193.40 30291.93 24598.62 27696.48 31786.25 29383.86 31496.14 25373.68 30597.04 27286.16 28675.73 33393.04 317
lessismore_v090.53 30990.58 33680.90 34495.80 32877.01 33995.84 25866.15 33296.95 27783.03 30575.05 33493.74 301
IB-MVS92.85 694.99 16293.94 17698.16 12897.72 19295.69 16399.99 498.81 4894.28 11092.70 20996.90 22895.08 5099.17 15696.07 14573.88 33599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 30083.84 30691.26 30590.00 34184.41 32797.82 30696.15 32375.86 34381.29 32695.39 28061.21 34596.87 28283.52 30473.29 33692.50 324
hse-mvs394.92 16394.36 16696.59 18398.85 13291.29 26298.93 24998.94 3695.90 5698.77 9198.42 19090.89 15999.77 11597.80 11170.76 33798.72 200
ambc83.23 33477.17 35762.61 35687.38 35594.55 34976.72 34186.65 34930.16 36096.36 30284.85 29569.86 33890.73 340
Patchmatch-RL test86.90 29785.98 29989.67 31784.45 35275.59 35089.71 35392.43 35486.89 28677.83 33890.94 33994.22 8393.63 34287.75 26969.61 33999.79 100
PM-MVS80.47 31978.88 32385.26 33183.79 35472.22 35295.89 33491.08 35785.71 30276.56 34288.30 34436.64 35993.90 33982.39 30869.57 34089.66 347
pmmvs-eth3d84.03 31381.97 31690.20 31384.15 35387.09 31398.10 30094.73 34783.05 32174.10 34787.77 34665.56 33494.01 33781.08 31669.24 34189.49 348
AUN-MVS93.28 20392.60 20595.34 21198.29 15290.09 28399.31 20898.56 7791.80 20196.35 16198.00 19989.38 17698.28 20992.46 21069.22 34297.64 215
hse-mvs294.38 18094.08 17395.31 21398.27 15690.02 28499.29 21398.56 7795.90 5698.77 9198.00 19990.89 15998.26 21397.80 11169.20 34397.64 215
TransMVSNet (Re)87.25 29685.28 30193.16 28393.56 29791.03 26498.54 27994.05 35183.69 32081.09 32796.16 25275.32 29496.40 30076.69 33468.41 34492.06 329
PMVScopyleft49.05 2353.75 32951.34 33360.97 34440.80 36834.68 36874.82 35989.62 36137.55 36028.67 36672.12 3567.09 37081.63 35943.17 36168.21 34566.59 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth85.52 30283.99 30390.10 31489.36 34383.51 32996.65 32397.99 19089.14 24675.89 34493.83 31963.25 34193.92 33881.92 31267.90 34692.88 319
PVSNet_088.03 1991.80 23790.27 24996.38 19198.27 15690.46 27699.94 5699.61 1193.99 12286.26 30197.39 21371.13 31599.89 7998.77 7367.05 34798.79 198
TDRefinement84.76 30782.56 31491.38 30474.58 35884.80 32697.36 31294.56 34884.73 31380.21 33196.12 25563.56 34098.39 19787.92 26763.97 34890.95 339
new-patchmatchnet81.19 31779.34 32286.76 33082.86 35580.36 34897.92 30495.27 34082.09 32872.02 34886.87 34862.81 34290.74 35271.10 34263.08 34989.19 350
pmmvs380.27 32077.77 32487.76 32880.32 35682.43 33498.23 29491.97 35572.74 35078.75 33587.97 34557.30 35190.99 35170.31 34362.37 35089.87 345
DIV-MVS_2432*160083.59 31582.06 31588.20 32786.93 34880.70 34597.21 31496.38 31882.87 32382.49 31988.97 34367.63 32792.32 34673.75 33962.30 35191.58 334
CL-MVSNet_2432*160084.50 31083.15 31288.53 32586.00 35081.79 33998.82 26197.35 25285.12 30883.62 31690.91 34076.66 28391.40 34969.53 34560.36 35292.40 326
UnsupCasMVSNet_bld79.97 32277.03 32588.78 32385.62 35181.98 33793.66 34297.35 25275.51 34670.79 35083.05 35248.70 35794.91 33078.31 32760.29 35389.46 349
LCM-MVSNet67.77 32464.73 32876.87 33762.95 36456.25 36189.37 35493.74 35344.53 35861.99 35380.74 35320.42 36686.53 35669.37 34659.50 35487.84 351
KD-MVS_2432*160088.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
miper_refine_blended88.00 29386.10 29793.70 27396.91 22694.04 19897.17 31697.12 27284.93 31081.96 32192.41 33292.48 13094.51 33479.23 32152.68 35592.56 322
PMMVS267.15 32564.15 32976.14 33870.56 36162.07 35893.89 34087.52 36358.09 35460.02 35478.32 35422.38 36584.54 35759.56 35647.03 35781.80 353
MVEpermissive53.74 2251.54 33147.86 33562.60 34359.56 36550.93 36279.41 35877.69 36535.69 36236.27 36461.76 3635.79 37269.63 36137.97 36236.61 35867.24 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33052.18 33252.67 34571.51 35945.40 36493.62 34376.60 36636.01 36143.50 36264.13 36127.11 36367.31 36331.06 36326.06 35945.30 362
EMVS51.44 33251.22 33452.11 34670.71 36044.97 36694.04 33975.66 36735.34 36342.40 36361.56 36428.93 36265.87 36427.64 36424.73 36045.49 361
ANet_high56.10 32852.24 33167.66 34249.27 36656.82 36083.94 35682.02 36470.47 35133.28 36564.54 36017.23 36869.16 36245.59 36023.85 36177.02 355
tmp_tt65.23 32762.94 33072.13 34044.90 36750.03 36381.05 35789.42 36238.45 35948.51 36199.90 1754.09 35378.70 36091.84 21818.26 36287.64 352
testmvs40.60 33344.45 33629.05 34819.49 37014.11 37199.68 15118.47 36920.74 36464.59 35298.48 18710.95 36917.09 36756.66 35711.01 36355.94 360
wuyk23d20.37 33620.84 33918.99 34965.34 36327.73 36950.43 3617.67 3719.50 3668.01 3676.34 3676.13 37126.24 36523.40 36510.69 3642.99 363
test12337.68 33439.14 33733.31 34719.94 36924.83 37098.36 2889.75 37015.53 36551.31 36087.14 34719.62 36717.74 36647.10 3593.47 36557.36 359
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.43 33531.24 3380.00 3500.00 3710.00 3720.00 36298.09 1830.00 3670.00 36899.67 9583.37 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.60 33810.13 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36891.20 1500.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.28 33711.04 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.40 1170.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 130
test_part299.89 4599.25 1399.49 49
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33559.23 36593.20 11497.74 23691.06 227
test_post63.35 36294.43 6998.13 218
patchmatchnet-post91.70 33695.12 4897.95 229
MTMP99.87 8896.49 316
gm-plane-assit96.97 22493.76 20691.47 21098.96 15398.79 16794.92 158
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior99.93 2698.77 3698.43 11699.63 3699.85 94
test_prior498.05 7199.94 56
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
旧先验299.46 18994.21 11299.85 699.95 6096.96 135
新几何299.40 194
无先验99.49 18498.71 5393.46 142100.00 194.36 17699.99 20
原ACMM299.90 74
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata199.28 21496.35 48
plane_prior795.71 26391.59 259
plane_prior695.76 25891.72 25480.47 259
plane_prior498.59 178
plane_prior391.64 25796.63 3893.01 203
plane_prior299.84 10696.38 44
plane_prior195.73 260
n20.00 372
nn0.00 372
door-mid89.69 360
test1198.44 108
door90.31 358
HQP5-MVS91.85 247
HQP-NCC95.78 25499.87 8896.82 3093.37 199
ACMP_Plane95.78 25499.87 8896.82 3093.37 199
BP-MVS97.92 109
HQP4-MVS93.37 19998.39 19794.53 229
HQP2-MVS80.65 255
NP-MVS95.77 25791.79 24998.65 174
MDTV_nov1_ep13_2view96.26 13796.11 33091.89 19698.06 12194.40 7194.30 17999.67 117
Test By Simon92.82 123