This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSC_two_6792asdad99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3298.43 12597.27 3299.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14097.71 1799.84 10100.00 1100.00 1100.00 1
test_241102_TWO98.43 12597.27 3299.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5098.32 16497.28 3099.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 5799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5098.43 125100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 9898.44 11797.48 2599.64 4099.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 41100.00 1100.00 1
region2R98.54 3098.37 3399.05 6499.96 897.18 9999.96 3298.55 9394.87 10199.45 6299.85 3094.07 81100.00 198.67 84100.00 199.98 48
test_prior299.95 5095.78 7799.73 3099.76 6396.00 3399.78 25100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 3899.80 1599.94 495.92 36100.00 199.51 38100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8098.39 14797.20 3699.46 6199.85 3095.53 4499.79 12199.86 19100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2598.64 7498.47 299.13 8399.92 1396.38 30100.00 199.74 28100.00 1100.00 1
CDPH-MVS98.65 2598.36 3599.49 3299.94 1398.73 4499.87 9898.33 16293.97 14199.76 2699.87 2494.99 5799.75 13098.55 91100.00 199.98 48
mPP-MVS98.39 4498.20 4398.97 7299.97 396.92 11099.95 5098.38 15195.04 9598.61 10999.80 5193.39 95100.00 198.64 87100.00 199.98 48
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6698.20 599.93 199.98 296.82 23100.00 199.75 26100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2598.62 7998.02 1199.90 299.95 397.33 17100.00 199.54 37100.00 1100.00 1
MG-MVS98.91 1698.65 1899.68 1599.94 1399.07 2499.64 17599.44 2097.33 2999.00 8899.72 7994.03 8299.98 4398.73 81100.00 1100.00 1
ZNCC-MVS98.31 4698.03 5399.17 5199.88 4997.59 8299.94 6698.44 11794.31 12398.50 11399.82 4693.06 10799.99 3698.30 10199.99 2199.93 74
SMA-MVScopyleft98.76 2198.48 2699.62 2099.87 5198.87 3299.86 11198.38 15193.19 16699.77 2599.94 495.54 42100.00 199.74 2899.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 3199.99 21100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1799.90 4299.02 2599.95 5098.56 8797.56 2399.44 6399.85 3095.38 46100.00 199.31 4999.99 2199.87 85
HPM-MVS_fast97.80 7197.50 7698.68 8699.79 6296.42 12399.88 9598.16 18791.75 22098.94 9099.54 10891.82 14299.65 14597.62 13399.99 2199.99 23
HPM-MVScopyleft97.96 6097.72 6898.68 8699.84 5696.39 12799.90 8598.17 18392.61 18898.62 10899.57 10591.87 14099.67 14398.87 7399.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 2698.35 3699.41 3899.90 4298.51 5799.87 9898.36 15594.08 13399.74 2999.73 7694.08 8099.74 13299.42 4599.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 3798.32 3798.87 7799.96 896.62 11899.97 2598.39 14794.43 11598.90 9299.87 2494.30 74100.00 199.04 6199.99 2199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 4898.72 13797.71 7799.98 1498.44 11796.85 4499.80 1599.91 1497.57 899.85 10699.44 4499.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8197.32 8498.58 9699.97 395.77 14999.96 3298.35 15789.90 26398.36 11999.79 5591.18 15099.99 3698.37 9799.99 2199.99 23
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 2099.90 4298.85 3499.24 23198.47 11098.14 899.08 8499.91 1493.09 106100.00 199.04 6199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5098.43 12596.48 5799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
PC_three_145296.96 4299.80 1599.79 5597.49 10100.00 199.99 599.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3299.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 7199.93 2497.24 9699.95 5098.42 13697.50 2499.52 5799.88 2197.43 1699.71 13699.50 3999.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1498.77 1699.41 3899.74 6998.67 4799.77 14098.38 15196.73 5199.88 499.74 7494.89 5999.59 14799.80 2399.98 3299.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 1798.65 1899.59 2399.92 3198.92 2899.96 3298.43 12594.35 12099.71 3299.86 2695.94 3499.85 10699.69 3399.98 3299.99 23
HFP-MVS98.56 2998.37 3399.14 5799.96 897.43 9299.95 5098.61 8094.77 10399.31 7499.85 3094.22 76100.00 198.70 8299.98 3299.98 48
ACMMPR98.50 3398.32 3799.05 6499.96 897.18 9999.95 5098.60 8194.77 10399.31 7499.84 4193.73 90100.00 198.70 8299.98 3299.98 48
test1299.43 3599.74 6998.56 5598.40 14499.65 3894.76 6099.75 13099.98 3299.99 23
PAPM_NR98.12 5797.93 6198.70 8599.94 1396.13 14099.82 12898.43 12594.56 11197.52 14199.70 8394.40 6799.98 4397.00 14799.98 3299.99 23
ZD-MVS99.92 3198.57 5498.52 9992.34 20299.31 7499.83 4395.06 5299.80 11999.70 3299.97 42
9.1498.38 3199.87 5199.91 8098.33 16293.22 16599.78 2499.89 1994.57 6499.85 10699.84 2099.97 42
MP-MVScopyleft98.23 5497.97 5699.03 6699.94 1397.17 10299.95 5098.39 14794.70 10798.26 12599.81 5091.84 141100.00 198.85 7499.97 4299.93 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 9096.83 10099.14 5799.51 8997.83 7499.89 9398.27 17388.48 29099.06 8599.66 9490.30 16699.64 14696.32 15899.97 4299.96 63
SD-MVS98.92 1598.70 1799.56 2599.70 7698.73 4499.94 6698.34 16196.38 6399.81 1399.76 6394.59 6399.98 4399.84 2099.96 4699.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 4598.13 4898.99 7099.92 3197.00 10699.75 14899.50 1893.90 14699.37 7199.76 6393.24 103100.00 197.75 13099.96 4699.98 48
API-MVS97.86 6597.66 7098.47 10699.52 8795.41 16599.47 20298.87 5291.68 22198.84 9499.85 3092.34 13099.99 3698.44 9499.96 46100.00 1
SR-MVS98.46 3698.30 4098.93 7599.88 4997.04 10499.84 11898.35 15794.92 9999.32 7399.80 5193.35 9699.78 12399.30 5099.95 4999.96 63
XVS98.70 2398.55 2399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6699.78 5994.34 7299.96 5998.92 6899.95 4999.99 23
X-MVStestdata93.83 20192.06 23399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6641.37 39894.34 7299.96 5998.92 6899.95 4999.99 23
原ACMM198.96 7399.73 7296.99 10798.51 10294.06 13699.62 4499.85 3094.97 5899.96 5995.11 17299.95 4999.92 79
test22299.55 8597.41 9499.34 21898.55 9391.86 21599.27 7899.83 4393.84 8899.95 4999.99 23
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 3298.44 11797.96 1299.55 5299.94 497.18 21100.00 193.81 20799.94 5499.98 48
新几何199.42 3799.75 6898.27 6198.63 7892.69 18399.55 5299.82 4694.40 67100.00 191.21 24299.94 5499.99 23
旧先验199.76 6697.52 8598.64 7499.85 3095.63 4199.94 5499.99 23
testdata98.42 11199.47 9195.33 16898.56 8793.78 14999.79 2399.85 3093.64 9399.94 7594.97 17699.94 54100.00 1
DELS-MVS98.54 3098.22 4199.50 3099.15 10598.65 51100.00 198.58 8397.70 1898.21 12799.24 13592.58 12299.94 7598.63 8999.94 5499.92 79
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2298.62 2099.01 6999.36 9697.18 9999.93 7399.90 196.81 4998.67 10599.77 6193.92 8499.89 9499.27 5199.94 5499.96 63
SF-MVS98.67 2498.40 2999.50 3099.77 6598.67 4799.90 8598.21 17893.53 15699.81 1399.89 1994.70 6299.86 10599.84 2099.93 6099.96 63
PHI-MVS98.41 4298.21 4299.03 6699.86 5397.10 10399.98 1498.80 6090.78 24999.62 4499.78 5995.30 47100.00 199.80 2399.93 6099.99 23
DeepPCF-MVS95.94 297.71 7998.98 1293.92 27999.63 7981.76 36199.96 3298.56 8799.47 199.19 8199.99 194.16 79100.00 199.92 1299.93 60100.00 1
SR-MVS-dyc-post98.31 4698.17 4598.71 8499.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6893.28 10199.78 12398.90 7199.92 6399.97 57
RE-MVS-def98.13 4899.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6892.95 11098.90 7199.92 6399.97 57
APD-MVS_3200maxsize98.25 5298.08 5298.78 8099.81 6096.60 11999.82 12898.30 16993.95 14399.37 7199.77 6192.84 11399.76 12998.95 6599.92 6399.97 57
MP-MVS-pluss98.07 5997.64 7199.38 4199.74 6998.41 6099.74 15198.18 18293.35 16096.45 16799.85 3092.64 11999.97 5398.91 7099.89 6699.77 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 2798.42 2899.14 5796.05 26398.96 2699.90 8599.35 2596.68 5398.35 12099.66 9496.45 2998.51 20099.45 4399.89 6699.96 63
MTAPA98.29 4897.96 5999.30 4299.85 5497.93 7399.39 21298.28 17195.76 7897.18 14999.88 2192.74 117100.00 198.67 8499.88 6899.99 23
MVS96.60 12295.56 14699.72 1396.85 24399.22 2098.31 30998.94 4191.57 22390.90 24299.61 10186.66 20899.96 5997.36 13699.88 6899.99 23
MVS_111021_LR98.42 4198.38 3198.53 10399.39 9495.79 14899.87 9899.86 296.70 5298.78 9799.79 5592.03 13799.90 8999.17 5599.86 7099.88 83
ACMMP_NAP98.49 3498.14 4799.54 2799.66 7898.62 5399.85 11498.37 15494.68 10899.53 5599.83 4392.87 112100.00 198.66 8699.84 7199.99 23
QAPM95.40 16294.17 18199.10 6296.92 23797.71 7799.40 20898.68 6889.31 26988.94 28198.89 16982.48 24299.96 5993.12 22399.83 7299.62 122
PAPR98.52 3298.16 4699.58 2499.97 398.77 4099.95 5098.43 12595.35 8998.03 12999.75 6894.03 8299.98 4398.11 10899.83 7299.99 23
3Dnovator+91.53 1196.31 13595.24 15499.52 2896.88 24298.64 5299.72 15998.24 17595.27 9288.42 29398.98 15582.76 24199.94 7597.10 14499.83 7299.96 63
3Dnovator91.47 1296.28 13895.34 15199.08 6396.82 24597.47 9199.45 20598.81 5895.52 8689.39 26899.00 15281.97 24599.95 6797.27 13899.83 7299.84 88
patch_mono-298.24 5399.12 595.59 21599.67 7786.91 33499.95 5098.89 4997.60 2099.90 299.76 6396.54 2899.98 4399.94 1199.82 7699.88 83
dcpmvs_297.42 8998.09 5195.42 22099.58 8487.24 33099.23 23296.95 30494.28 12598.93 9199.73 7694.39 7099.16 16899.89 1699.82 7699.86 87
LS3D95.84 14995.11 15998.02 12999.85 5495.10 17898.74 28498.50 10787.22 30793.66 20999.86 2687.45 19899.95 6790.94 25099.81 7899.02 193
CHOSEN 280x42099.01 1399.03 1098.95 7499.38 9598.87 3298.46 30199.42 2297.03 4099.02 8799.09 14399.35 198.21 23299.73 3099.78 7999.77 99
GST-MVS98.27 4997.97 5699.17 5199.92 3197.57 8399.93 7398.39 14794.04 13998.80 9699.74 7492.98 109100.00 198.16 10599.76 8099.93 74
OpenMVScopyleft90.15 1594.77 17693.59 19698.33 11596.07 26297.48 9099.56 18798.57 8590.46 25386.51 31698.95 16478.57 28299.94 7593.86 20399.74 8197.57 233
131496.84 11095.96 12999.48 3496.74 25098.52 5698.31 30998.86 5395.82 7689.91 25498.98 15587.49 19799.96 5997.80 12399.73 8299.96 63
DP-MVS Recon98.41 4298.02 5499.56 2599.97 398.70 4699.92 7698.44 11792.06 21098.40 11899.84 4195.68 40100.00 198.19 10399.71 8399.97 57
MVP-Stereo90.93 26690.45 26192.37 31391.25 35788.76 31298.05 32296.17 34287.27 30684.04 33395.30 30878.46 28497.27 27783.78 32599.70 8491.09 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 3898.20 4399.16 5398.80 13398.92 2899.54 19198.17 18397.34 2799.85 799.85 3091.20 14799.89 9499.41 4699.67 8598.69 209
BH-w/o95.71 15395.38 15096.68 18798.49 15092.28 24799.84 11897.50 24892.12 20792.06 23198.79 17984.69 22798.67 19395.29 17199.66 8699.09 190
MAR-MVS97.43 8597.19 8898.15 12499.47 9194.79 18699.05 25398.76 6192.65 18698.66 10699.82 4688.52 19099.98 4398.12 10799.63 8799.67 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmconf_n98.43 4098.32 3798.78 8098.12 17396.41 12499.99 498.83 5798.22 499.67 3699.64 9791.11 15199.94 7599.67 3499.62 8899.98 48
MS-PatchMatch90.65 27390.30 26491.71 32094.22 30685.50 34098.24 31297.70 22488.67 28686.42 31996.37 26967.82 34598.03 24183.62 32699.62 8891.60 355
MVSFormer96.94 10696.60 10797.95 13097.28 22697.70 7999.55 18997.27 27191.17 23699.43 6499.54 10890.92 15596.89 30194.67 18899.62 8899.25 179
lupinMVS97.85 6697.60 7398.62 9197.28 22697.70 7999.99 497.55 24095.50 8799.43 6499.67 9290.92 15598.71 18998.40 9599.62 8899.45 155
BH-untuned95.18 16594.83 16796.22 20298.36 15691.22 27399.80 13497.32 26590.91 24391.08 23998.67 18383.51 23698.54 19994.23 19799.61 9298.92 195
DeepC-MVS94.51 496.92 10896.40 11498.45 10899.16 10495.90 14599.66 16998.06 19596.37 6694.37 20199.49 11183.29 23999.90 8997.63 13299.61 9299.55 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.1_n97.74 7697.44 7898.64 9095.76 27496.20 13699.94 6698.05 19798.17 698.89 9399.42 11687.65 19599.90 8999.50 3999.60 9499.82 90
GG-mvs-BLEND98.54 10198.21 16598.01 6893.87 37098.52 9997.92 13297.92 22199.02 297.94 24898.17 10499.58 9599.67 111
gg-mvs-nofinetune93.51 21391.86 23998.47 10697.72 19897.96 7292.62 37498.51 10274.70 37697.33 14669.59 38998.91 397.79 25297.77 12899.56 9699.67 111
BH-RMVSNet95.18 16594.31 17897.80 13798.17 16995.23 17399.76 14597.53 24492.52 19594.27 20399.25 13476.84 29498.80 18090.89 25299.54 9799.35 167
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8399.83 5796.59 12099.40 20898.51 10295.29 9198.51 11299.76 6393.60 9499.71 13698.53 9299.52 9899.95 70
TAPA-MVS92.12 894.42 18893.60 19596.90 18099.33 9791.78 26099.78 13798.00 19989.89 26494.52 19899.47 11291.97 13899.18 16669.90 37199.52 9899.73 103
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsm_n_192098.44 3898.61 2197.92 13299.27 10095.18 176100.00 198.90 4798.05 1099.80 1599.73 7692.64 11999.99 3699.58 3699.51 10098.59 212
PLCcopyleft95.54 397.93 6297.89 6498.05 12899.82 5894.77 18799.92 7698.46 11293.93 14497.20 14899.27 13095.44 4599.97 5397.41 13599.51 10099.41 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 9696.86 9998.38 11495.73 27797.32 9599.97 2597.40 25895.34 9098.60 11099.54 10887.70 19498.56 19797.94 11899.47 10299.25 179
jason: jason.
CSCG97.10 10097.04 9497.27 17299.89 4591.92 25699.90 8599.07 3488.67 28695.26 19299.82 4693.17 10599.98 4398.15 10699.47 10299.90 81
test_vis1_n_192095.44 16195.31 15295.82 21198.50 14988.74 31399.98 1497.30 26797.84 1499.85 799.19 13866.82 34999.97 5398.82 7599.46 10498.76 204
test_cas_vis1_n_192096.59 12396.23 11797.65 14998.22 16494.23 19999.99 497.25 27397.77 1599.58 5199.08 14477.10 28999.97 5397.64 13199.45 10598.74 206
MVS_030498.87 1898.61 2199.67 1699.18 10199.13 2299.87 9899.65 1298.17 698.75 10299.75 6892.76 11699.94 7599.88 1899.44 10699.94 72
CNLPA97.76 7597.38 8098.92 7699.53 8696.84 11299.87 9898.14 19093.78 14996.55 16599.69 8592.28 13199.98 4397.13 14299.44 10699.93 74
MM99.76 1099.33 899.99 499.76 698.39 399.39 7099.80 5190.49 16499.96 5999.89 1699.43 10899.98 48
AdaColmapbinary97.23 9796.80 10298.51 10499.99 195.60 15899.09 24298.84 5693.32 16296.74 16099.72 7986.04 214100.00 198.01 11399.43 10899.94 72
CANet98.27 4997.82 6699.63 1799.72 7499.10 2399.98 1498.51 10297.00 4198.52 11199.71 8187.80 19399.95 6799.75 2699.38 11099.83 89
test_fmvs195.35 16395.68 14494.36 26498.99 11484.98 34399.96 3296.65 32897.60 2099.73 3098.96 15971.58 32999.93 8398.31 10099.37 11198.17 218
F-COLMAP96.93 10796.95 9796.87 18199.71 7591.74 26199.85 11497.95 20593.11 16995.72 18599.16 14192.35 12999.94 7595.32 17099.35 11298.92 195
test_fmvsmvis_n_192097.67 8097.59 7597.91 13497.02 23395.34 16799.95 5098.45 11397.87 1397.02 15299.59 10289.64 17399.98 4399.41 4699.34 11398.42 214
EI-MVSNet-UG-set98.14 5697.99 5598.60 9399.80 6196.27 13099.36 21798.50 10795.21 9398.30 12299.75 6893.29 10099.73 13598.37 9799.30 11499.81 92
CS-MVS-test97.88 6497.94 6097.70 14799.28 9995.20 17599.98 1497.15 28295.53 8599.62 4499.79 5592.08 13698.38 21698.75 8099.28 11599.52 145
PVSNet_Blended97.94 6197.64 7198.83 7999.59 8196.99 107100.00 199.10 3195.38 8898.27 12399.08 14489.00 18599.95 6799.12 5699.25 11699.57 135
test_fmvsmconf0.01_n96.39 13195.74 14098.32 11691.47 35495.56 15999.84 11897.30 26797.74 1697.89 13499.35 12579.62 27099.85 10699.25 5299.24 11799.55 137
EC-MVSNet97.38 9297.24 8597.80 13797.41 21595.64 15699.99 497.06 29294.59 11099.63 4199.32 12689.20 18398.14 23498.76 7999.23 11899.62 122
PatchMatch-RL96.04 14395.40 14897.95 13099.59 8195.22 17499.52 19399.07 3493.96 14296.49 16698.35 20782.28 24399.82 11890.15 26699.22 11998.81 202
CHOSEN 1792x268896.81 11196.53 11097.64 15098.91 12693.07 22799.65 17199.80 395.64 8195.39 18998.86 17584.35 23299.90 8996.98 14899.16 12099.95 70
CS-MVS97.79 7397.91 6297.43 16299.10 10694.42 19299.99 497.10 28795.07 9499.68 3599.75 6892.95 11098.34 22098.38 9699.14 12199.54 141
test_fmvs1_n94.25 19594.36 17593.92 27997.68 20183.70 34999.90 8596.57 33197.40 2699.67 3698.88 17061.82 36599.92 8698.23 10299.13 12298.14 221
EIA-MVS97.53 8397.46 7797.76 14498.04 17694.84 18399.98 1497.61 23494.41 11897.90 13399.59 10292.40 12898.87 17798.04 11299.13 12299.59 128
fmvsm_s_conf0.1_n97.30 9397.21 8797.60 15497.38 21794.40 19599.90 8598.64 7496.47 5999.51 5999.65 9684.99 22599.93 8399.22 5399.09 12498.46 213
fmvsm_s_conf0.5_n97.80 7197.85 6597.67 14899.06 10894.41 19399.98 1498.97 4097.34 2799.63 4199.69 8587.27 20099.97 5399.62 3599.06 12598.62 211
UGNet95.33 16494.57 17297.62 15398.55 14594.85 18298.67 29299.32 2695.75 7996.80 15996.27 27172.18 32699.96 5994.58 19099.05 12698.04 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_vis1_n93.61 21193.03 21295.35 22295.86 26986.94 33299.87 9896.36 33896.85 4499.54 5498.79 17952.41 37899.83 11698.64 8798.97 12799.29 176
fmvsm_s_conf0.5_n_a97.73 7897.72 6897.77 14298.63 14294.26 19899.96 3298.92 4697.18 3799.75 2799.69 8587.00 20599.97 5399.46 4298.89 12899.08 192
CANet_DTU96.76 11496.15 11998.60 9398.78 13497.53 8499.84 11897.63 22997.25 3599.20 7999.64 9781.36 25299.98 4392.77 22798.89 12898.28 217
TESTMET0.1,196.74 11696.26 11698.16 12197.36 21996.48 12199.96 3298.29 17091.93 21395.77 18498.07 21395.54 4298.29 22490.55 25898.89 12899.70 106
fmvsm_s_conf0.1_n_a97.09 10296.90 9897.63 15295.65 28394.21 20099.83 12598.50 10796.27 6899.65 3899.64 9784.72 22699.93 8399.04 6198.84 13198.74 206
test-LLR96.47 12696.04 12197.78 14097.02 23395.44 16299.96 3298.21 17894.07 13495.55 18696.38 26793.90 8698.27 22890.42 26198.83 13299.64 117
test-mter96.39 13195.93 13397.78 14097.02 23395.44 16299.96 3298.21 17891.81 21895.55 18696.38 26795.17 4898.27 22890.42 26198.83 13299.64 117
PVSNet91.05 1397.13 9996.69 10598.45 10899.52 8795.81 14799.95 5099.65 1294.73 10599.04 8699.21 13784.48 22999.95 6794.92 17898.74 13499.58 134
EPNet98.49 3498.40 2998.77 8299.62 8096.80 11499.90 8599.51 1797.60 2099.20 7999.36 12493.71 9199.91 8797.99 11598.71 13599.61 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 5497.97 5699.02 6898.69 13898.66 4999.52 19398.08 19497.05 3999.86 599.86 2690.65 16099.71 13699.39 4898.63 13698.69 209
ETV-MVS97.92 6397.80 6798.25 11998.14 17196.48 12199.98 1497.63 22995.61 8299.29 7799.46 11492.55 12398.82 17999.02 6498.54 13799.46 153
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20594.28 19799.28 22898.24 17594.27 12796.84 15798.94 16679.39 27298.76 18493.25 21798.49 13899.30 174
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 16594.10 18298.43 11098.55 14595.99 14397.91 32597.31 26690.35 25689.48 26799.22 13685.19 22299.89 9490.40 26398.47 13999.41 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 19093.36 20697.40 16498.88 12993.95 20899.37 21597.38 25985.75 32790.80 24399.17 14084.11 23499.88 10086.35 30798.43 14098.36 216
PVSNet_Blended_VisFu97.27 9596.81 10198.66 8898.81 13296.67 11699.92 7698.64 7494.51 11296.38 17198.49 19989.05 18499.88 10097.10 14498.34 14199.43 158
EPNet_dtu95.71 15395.39 14996.66 18898.92 12293.41 22299.57 18598.90 4796.19 7197.52 14198.56 19592.65 11897.36 26577.89 35498.33 14299.20 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base_debi97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
mvsany_test197.82 6997.90 6397.55 15598.77 13593.04 23099.80 13497.93 20796.95 4399.61 5099.68 9190.92 15599.83 11699.18 5498.29 14699.80 94
OMC-MVS97.28 9497.23 8697.41 16399.76 6693.36 22599.65 17197.95 20596.03 7397.41 14599.70 8389.61 17499.51 15096.73 15498.25 14799.38 162
test250697.53 8397.19 8898.58 9698.66 14096.90 11198.81 27999.77 594.93 9797.95 13198.96 15992.51 12499.20 16494.93 17798.15 14899.64 117
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 14093.71 21398.85 27698.45 11394.93 9796.86 15698.96 15975.22 31299.20 16495.34 16998.15 14899.64 117
test111195.57 15894.98 16497.37 16698.56 14393.37 22498.86 27498.45 11394.95 9696.63 16298.95 16475.21 31399.11 16995.02 17598.14 15099.64 117
DP-MVS94.54 18393.42 20297.91 13499.46 9394.04 20498.93 26597.48 25081.15 35790.04 25199.55 10687.02 20499.95 6788.97 27698.11 15199.73 103
EPMVS96.53 12596.01 12298.09 12698.43 15296.12 14296.36 35199.43 2193.53 15697.64 13995.04 31794.41 6698.38 21691.13 24498.11 15199.75 101
PatchmatchNetpermissive95.94 14695.45 14797.39 16597.83 18794.41 19396.05 35898.40 14492.86 17297.09 15095.28 31294.21 7898.07 23989.26 27498.11 15199.70 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 11896.49 11197.37 16695.63 28595.96 14499.74 15198.88 5192.94 17191.61 23398.97 15797.72 798.62 19594.83 18298.08 15497.53 234
ACMMPcopyleft97.74 7697.44 7898.66 8899.92 3196.13 14099.18 23699.45 1994.84 10296.41 17099.71 8191.40 14499.99 3697.99 11598.03 15599.87 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 31783.19 33095.31 22596.71 25290.29 29292.12 37697.33 26462.85 38386.82 31170.37 38869.37 33897.49 26275.12 36397.99 15698.15 219
FE-MVS95.70 15595.01 16397.79 13998.21 16594.57 18895.03 36598.69 6688.90 28197.50 14396.19 27392.60 12199.49 15689.99 26897.94 15799.31 172
PMMVS96.76 11496.76 10396.76 18498.28 16092.10 25199.91 8097.98 20294.12 13199.53 5599.39 12186.93 20698.73 18696.95 15097.73 15899.45 155
UA-Net96.54 12495.96 12998.27 11898.23 16395.71 15398.00 32398.45 11393.72 15298.41 11699.27 13088.71 18999.66 14491.19 24397.69 15999.44 157
TSAR-MVS + GP.98.60 2798.51 2598.86 7899.73 7296.63 11799.97 2597.92 21098.07 998.76 10099.55 10695.00 5699.94 7599.91 1597.68 16099.99 23
mvs_anonymous95.65 15795.03 16297.53 15698.19 16795.74 15199.33 21997.49 24990.87 24490.47 24697.10 24288.23 19197.16 28095.92 16497.66 16199.68 109
LCM-MVSNet-Re92.31 24192.60 22191.43 32197.53 20979.27 37199.02 25791.83 38592.07 20880.31 35194.38 33883.50 23795.48 34397.22 14197.58 16299.54 141
MVS_Test96.46 12795.74 14098.61 9298.18 16897.23 9799.31 22297.15 28291.07 24098.84 9497.05 24688.17 19298.97 17394.39 19297.50 16399.61 125
SCA94.69 17893.81 19197.33 17097.10 22994.44 19098.86 27498.32 16493.30 16396.17 17695.59 29176.48 29997.95 24691.06 24697.43 16499.59 128
Vis-MVSNet (Re-imp)96.32 13495.98 12597.35 16997.93 18194.82 18499.47 20298.15 18991.83 21695.09 19399.11 14291.37 14597.47 26393.47 21597.43 16499.74 102
diffmvspermissive97.00 10496.64 10698.09 12697.64 20496.17 13999.81 13097.19 27694.67 10998.95 8999.28 12786.43 21098.76 18498.37 9797.42 16699.33 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet96.29 13795.90 13697.45 16098.13 17294.80 18599.08 24497.61 23492.02 21295.54 18898.96 15990.64 16198.08 23793.73 21297.41 16799.47 152
Effi-MVS+96.30 13695.69 14298.16 12197.85 18696.26 13197.41 33297.21 27590.37 25598.65 10798.58 19386.61 20998.70 19097.11 14397.37 16899.52 145
ADS-MVSNet293.80 20493.88 18993.55 29397.87 18485.94 33794.24 36696.84 31690.07 26096.43 16894.48 33590.29 16795.37 34587.44 29397.23 16999.36 165
ADS-MVSNet94.79 17494.02 18497.11 17697.87 18493.79 21094.24 36698.16 18790.07 26096.43 16894.48 33590.29 16798.19 23387.44 29397.23 16999.36 165
EPP-MVSNet96.69 11996.60 10796.96 17897.74 19393.05 22999.37 21598.56 8788.75 28495.83 18399.01 15096.01 3298.56 19796.92 15197.20 17199.25 179
Fast-Effi-MVS+95.02 16994.19 18097.52 15797.88 18394.55 18999.97 2597.08 29088.85 28394.47 20097.96 22084.59 22898.41 20889.84 27097.10 17299.59 128
FA-MVS(test-final)95.86 14795.09 16098.15 12497.74 19395.62 15796.31 35398.17 18391.42 23196.26 17396.13 27690.56 16299.47 15892.18 23297.07 17399.35 167
Effi-MVS+-dtu94.53 18595.30 15392.22 31497.77 19182.54 35499.59 18197.06 29294.92 9995.29 19195.37 30585.81 21597.89 24994.80 18397.07 17396.23 244
casdiffmvspermissive96.42 13095.97 12897.77 14297.30 22494.98 17999.84 11897.09 28993.75 15196.58 16499.26 13385.07 22398.78 18297.77 12897.04 17599.54 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive96.43 12895.94 13297.89 13697.44 21495.47 16199.86 11197.29 26993.35 16096.03 17799.19 13885.39 22098.72 18897.89 12297.04 17599.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss97.57 8297.03 9599.18 4898.37 15598.04 6799.73 15699.38 2393.46 15898.76 10099.06 14691.21 14699.89 9496.33 15797.01 17799.62 122
Patchmatch-test92.65 23591.50 24596.10 20596.85 24390.49 28891.50 37997.19 27682.76 35190.23 24895.59 29195.02 5498.00 24277.41 35696.98 17899.82 90
MDTV_nov1_ep1395.69 14297.90 18294.15 20195.98 36098.44 11793.12 16897.98 13095.74 28495.10 5098.58 19690.02 26796.92 179
Fast-Effi-MVS+-dtu93.72 20893.86 19093.29 29897.06 23186.16 33599.80 13496.83 31792.66 18592.58 22397.83 22481.39 25197.67 25789.75 27196.87 18096.05 247
baseline96.43 12895.98 12597.76 14497.34 22095.17 17799.51 19597.17 27993.92 14596.90 15599.28 12785.37 22198.64 19497.50 13496.86 18199.46 153
tpmrst96.27 13995.98 12597.13 17497.96 17993.15 22696.34 35298.17 18392.07 20898.71 10495.12 31593.91 8598.73 18694.91 18096.62 18299.50 149
JIA-IIPM91.76 25590.70 25594.94 23696.11 26187.51 32893.16 37398.13 19175.79 37297.58 14077.68 38692.84 11397.97 24388.47 28396.54 18399.33 170
dp95.05 16894.43 17496.91 17997.99 17892.73 23796.29 35497.98 20289.70 26695.93 18094.67 33093.83 8998.45 20586.91 30696.53 18499.54 141
COLMAP_ROBcopyleft90.47 1492.18 24491.49 24694.25 26799.00 11388.04 32598.42 30696.70 32682.30 35388.43 29199.01 15076.97 29299.85 10686.11 31096.50 18594.86 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE94.36 19293.48 20096.99 17797.29 22593.54 21799.96 3296.72 32588.35 29393.43 21098.94 16682.05 24498.05 24088.12 28896.48 18699.37 164
tpm cat193.51 21392.52 22696.47 19197.77 19191.47 27196.13 35698.06 19580.98 35892.91 21893.78 34389.66 17298.87 17787.03 30296.39 18799.09 190
thisisatest051597.41 9097.02 9698.59 9597.71 20097.52 8599.97 2598.54 9691.83 21697.45 14499.04 14797.50 999.10 17094.75 18596.37 18899.16 184
AllTest92.48 23791.64 24095.00 23499.01 11188.43 31998.94 26496.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
TestCases95.00 23499.01 11188.43 31996.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
thisisatest053097.10 10096.72 10498.22 12097.60 20696.70 11599.92 7698.54 9691.11 23997.07 15198.97 15797.47 1299.03 17193.73 21296.09 19198.92 195
DSMNet-mixed88.28 30888.24 30388.42 34689.64 36775.38 37598.06 32189.86 38985.59 32988.20 29592.14 35876.15 30491.95 37578.46 35296.05 19297.92 223
TR-MVS94.54 18393.56 19897.49 15997.96 17994.34 19698.71 28797.51 24790.30 25894.51 19998.69 18275.56 30798.77 18392.82 22695.99 19399.35 167
CR-MVSNet93.45 21692.62 22095.94 20796.29 25692.66 23992.01 37796.23 34092.62 18796.94 15393.31 34891.04 15296.03 33679.23 34795.96 19499.13 188
RPMNet89.76 29587.28 31097.19 17396.29 25692.66 23992.01 37798.31 16670.19 38296.94 15385.87 38187.25 20199.78 12362.69 38395.96 19499.13 188
Syy-MVS90.00 29190.63 25788.11 34897.68 20174.66 37699.71 16198.35 15790.79 24792.10 22998.67 18379.10 27793.09 36863.35 38295.95 19696.59 240
myMVS_eth3d94.46 18794.76 16993.55 29397.68 20190.97 27599.71 16198.35 15790.79 24792.10 22998.67 18392.46 12793.09 36887.13 29995.95 19696.59 240
PatchT90.38 28088.75 29695.25 22795.99 26590.16 29591.22 38197.54 24276.80 36897.26 14786.01 38091.88 13996.07 33566.16 37995.91 19899.51 147
tpmvs94.28 19493.57 19796.40 19698.55 14591.50 27095.70 36498.55 9387.47 30292.15 22894.26 33991.42 14398.95 17588.15 28695.85 19998.76 204
TAMVS95.85 14895.58 14596.65 18997.07 23093.50 21899.17 23797.82 22091.39 23395.02 19498.01 21492.20 13297.30 27293.75 21195.83 20099.14 187
CostFormer96.10 14095.88 13796.78 18397.03 23292.55 24397.08 34097.83 21990.04 26298.72 10394.89 32495.01 5598.29 22496.54 15695.77 20199.50 149
tttt051796.85 10996.49 11197.92 13297.48 21395.89 14699.85 11498.54 9690.72 25096.63 16298.93 16897.47 1299.02 17293.03 22495.76 20298.85 199
HY-MVS92.50 797.79 7397.17 9099.63 1798.98 11599.32 997.49 33099.52 1595.69 8098.32 12197.41 23393.32 9899.77 12698.08 11195.75 20399.81 92
CDS-MVSNet96.34 13396.07 12097.13 17497.37 21894.96 18099.53 19297.91 21191.55 22495.37 19098.32 20895.05 5397.13 28393.80 20895.75 20399.30 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 16095.18 15796.35 19996.91 23891.70 26596.96 34397.93 20788.04 29798.44 11595.40 30193.32 9897.97 24394.00 19995.61 20599.38 162
WTY-MVS98.10 5897.60 7399.60 2298.92 12299.28 1799.89 9399.52 1595.58 8398.24 12699.39 12193.33 9799.74 13297.98 11795.58 20699.78 98
HyFIR lowres test96.66 12196.43 11397.36 16899.05 10993.91 20999.70 16399.80 390.54 25296.26 17398.08 21292.15 13498.23 23196.84 15395.46 20799.93 74
cascas94.64 18193.61 19397.74 14697.82 18896.26 13199.96 3297.78 22285.76 32594.00 20697.54 22976.95 29399.21 16397.23 14095.43 20897.76 228
testing393.92 19994.23 17992.99 30697.54 20890.23 29399.99 499.16 3090.57 25191.33 23898.63 18992.99 10892.52 37282.46 33295.39 20996.22 245
CVMVSNet94.68 18094.94 16593.89 28296.80 24686.92 33399.06 24998.98 3894.45 11394.23 20499.02 14885.60 21695.31 34790.91 25195.39 20999.43 158
test_yl97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DCV-MVSNet97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
LFMVS94.75 17793.56 19898.30 11799.03 11095.70 15498.74 28497.98 20287.81 30098.47 11499.39 12167.43 34799.53 14898.01 11395.20 21399.67 111
thres20096.96 10596.21 11899.22 4498.97 11698.84 3599.85 11499.71 793.17 16796.26 17398.88 17089.87 17199.51 15094.26 19694.91 21499.31 172
thres100view90096.74 11695.92 13599.18 4898.90 12798.77 4099.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.84 20494.57 21599.27 177
tfpn200view996.79 11295.99 12399.19 4798.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.27 177
thres40096.78 11395.99 12399.16 5398.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.16 184
thres600view796.69 11995.87 13899.14 5798.90 12798.78 3999.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.44 21694.50 21899.16 184
VNet97.21 9896.57 10999.13 6198.97 11697.82 7599.03 25699.21 2994.31 12399.18 8298.88 17086.26 21399.89 9498.93 6794.32 21999.69 108
alignmvs97.81 7097.33 8399.25 4398.77 13598.66 4999.99 498.44 11794.40 11998.41 11699.47 11293.65 9299.42 16098.57 9094.26 22099.67 111
VDD-MVS93.77 20592.94 21396.27 20198.55 14590.22 29498.77 28397.79 22190.85 24596.82 15899.42 11661.18 36899.77 12698.95 6594.13 22198.82 201
VDDNet93.12 22291.91 23796.76 18496.67 25392.65 24198.69 29098.21 17882.81 35097.75 13899.28 12761.57 36699.48 15798.09 11094.09 22298.15 219
GA-MVS93.83 20192.84 21596.80 18295.73 27793.57 21599.88 9597.24 27492.57 19292.92 21796.66 25978.73 28097.67 25787.75 29194.06 22399.17 183
canonicalmvs97.09 10296.32 11599.39 4098.93 12098.95 2799.72 15997.35 26194.45 11397.88 13599.42 11686.71 20799.52 14998.48 9393.97 22499.72 105
1112_ss96.01 14495.20 15698.42 11197.80 18996.41 12499.65 17196.66 32792.71 18192.88 21999.40 11992.16 13399.30 16191.92 23593.66 22599.55 137
Test_1112_low_res95.72 15194.83 16798.42 11197.79 19096.41 12499.65 17196.65 32892.70 18292.86 22096.13 27692.15 13499.30 16191.88 23693.64 22699.55 137
MIMVSNet90.30 28388.67 29795.17 23096.45 25591.64 26792.39 37597.15 28285.99 32290.50 24593.19 35066.95 34894.86 35382.01 33693.43 22799.01 194
XVG-OURS-SEG-HR94.79 17494.70 17195.08 23198.05 17589.19 30899.08 24497.54 24293.66 15394.87 19599.58 10478.78 27999.79 12197.31 13793.40 22896.25 242
ab-mvs94.69 17893.42 20298.51 10498.07 17496.26 13196.49 34998.68 6890.31 25794.54 19797.00 24876.30 30199.71 13695.98 16393.38 22999.56 136
test0.0.03 193.86 20093.61 19394.64 24795.02 29492.18 25099.93 7398.58 8394.07 13487.96 29798.50 19893.90 8694.96 35181.33 33993.17 23096.78 237
RPSCF91.80 25292.79 21888.83 34198.15 17069.87 37998.11 31996.60 33083.93 34294.33 20299.27 13079.60 27199.46 15991.99 23393.16 23197.18 236
test_vis1_rt86.87 31586.05 31789.34 33796.12 26078.07 37299.87 9883.54 39692.03 21178.21 36189.51 36745.80 38299.91 8796.25 15993.11 23290.03 367
XVG-OURS94.82 17294.74 17095.06 23298.00 17789.19 30899.08 24497.55 24094.10 13294.71 19699.62 10080.51 26399.74 13296.04 16293.06 23396.25 242
Anonymous20240521193.10 22391.99 23596.40 19699.10 10689.65 30598.88 27097.93 20783.71 34494.00 20698.75 18168.79 33999.88 10095.08 17491.71 23499.68 109
SDMVSNet94.80 17393.96 18697.33 17098.92 12295.42 16499.59 18198.99 3792.41 19992.55 22497.85 22275.81 30698.93 17697.90 12191.62 23597.64 229
sd_testset93.55 21292.83 21695.74 21398.92 12290.89 28098.24 31298.85 5592.41 19992.55 22497.85 22271.07 33498.68 19293.93 20191.62 23597.64 229
Anonymous2024052992.10 24590.65 25696.47 19198.82 13190.61 28598.72 28698.67 7175.54 37393.90 20898.58 19366.23 35199.90 8994.70 18790.67 23798.90 198
dmvs_re93.20 21993.15 21093.34 29696.54 25483.81 34898.71 28798.51 10291.39 23392.37 22798.56 19578.66 28197.83 25193.89 20289.74 23898.38 215
HQP3-MVS97.89 21289.60 239
HQP-MVS94.61 18294.50 17394.92 23795.78 27091.85 25799.87 9897.89 21296.82 4693.37 21198.65 18680.65 26198.39 21297.92 11989.60 23994.53 250
plane_prior91.74 26199.86 11196.76 5089.59 241
HQP_MVS94.49 18694.36 17594.87 23895.71 28091.74 26199.84 11897.87 21496.38 6393.01 21598.59 19180.47 26598.37 21897.79 12689.55 24294.52 252
plane_prior597.87 21498.37 21897.79 12689.55 24294.52 252
CLD-MVS94.06 19893.90 18894.55 25396.02 26490.69 28299.98 1497.72 22396.62 5691.05 24198.85 17877.21 28898.47 20198.11 10889.51 24494.48 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 21892.80 21794.44 26093.12 32790.85 28199.77 14097.61 23496.19 7191.56 23498.65 18675.16 31498.47 20193.78 21089.39 24593.99 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test92.96 22592.71 21993.71 28795.43 28788.67 31599.75 14897.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
LGP-MVS_train93.71 28795.43 28788.67 31597.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
test_djsdf92.83 22892.29 22994.47 25891.90 34892.46 24499.55 18997.27 27191.17 23689.96 25296.07 27981.10 25496.89 30194.67 18888.91 24894.05 297
testgi89.01 30488.04 30591.90 31893.49 31984.89 34499.73 15695.66 35293.89 14885.14 32998.17 21059.68 36994.66 35577.73 35588.88 24996.16 246
ACMM91.95 1092.88 22792.52 22693.98 27895.75 27689.08 31199.77 14097.52 24693.00 17089.95 25397.99 21776.17 30398.46 20493.63 21488.87 25094.39 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 23092.42 22893.73 28595.91 26888.72 31499.81 13097.53 24494.13 13087.00 31098.23 20974.07 32098.47 20196.22 16088.86 25193.99 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 24791.18 25094.15 26891.35 35590.95 27899.00 25897.42 25592.61 18887.38 30697.08 24372.46 32597.36 26594.53 19188.77 25294.13 291
anonymousdsp91.79 25490.92 25394.41 26390.76 36092.93 23298.93 26597.17 27989.08 27187.46 30595.30 30878.43 28596.92 30092.38 22988.73 25393.39 330
mvs_tets91.81 24991.08 25194.00 27691.63 35290.58 28698.67 29297.43 25392.43 19887.37 30797.05 24671.76 32797.32 27194.75 18588.68 25494.11 292
XVG-ACMP-BASELINE91.22 26390.75 25492.63 31193.73 31485.61 33898.52 30097.44 25292.77 17989.90 25596.85 25466.64 35098.39 21292.29 23088.61 25593.89 311
EG-PatchMatch MVS85.35 32383.81 32689.99 33490.39 36281.89 35998.21 31696.09 34481.78 35574.73 37293.72 34451.56 38097.12 28579.16 35088.61 25590.96 360
UniMVSNet_ETH3D90.06 29088.58 29894.49 25794.67 29988.09 32497.81 32897.57 23983.91 34388.44 28997.41 23357.44 37297.62 25991.41 24088.59 25797.77 227
tpm93.70 20993.41 20494.58 25195.36 28987.41 32997.01 34196.90 31190.85 24596.72 16194.14 34090.40 16596.84 30490.75 25588.54 25899.51 147
OpenMVS_ROBcopyleft79.82 2083.77 33381.68 33690.03 33388.30 37182.82 35198.46 30195.22 36273.92 37876.00 36991.29 36055.00 37496.94 29868.40 37488.51 25990.34 364
CMPMVSbinary61.59 2184.75 32685.14 32183.57 35690.32 36362.54 38496.98 34297.59 23874.33 37769.95 37896.66 25964.17 35898.32 22287.88 29088.41 26089.84 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final96.01 14495.93 13396.28 20098.38 15497.03 10599.87 9897.03 29594.05 13892.61 22297.98 21898.01 597.34 26797.02 14688.39 26194.47 255
iter_conf0596.07 14195.95 13196.44 19598.43 15297.52 8599.91 8096.85 31594.16 12992.49 22697.98 21898.20 497.34 26797.26 13988.29 26294.45 261
test_fmvs289.47 29989.70 27688.77 34494.54 30175.74 37399.83 12594.70 36994.71 10691.08 23996.82 25854.46 37597.78 25492.87 22588.27 26392.80 342
ACMMP++88.23 264
ITE_SJBPF92.38 31295.69 28285.14 34195.71 35092.81 17689.33 27198.11 21170.23 33698.42 20785.91 31288.16 26593.59 326
mvsmamba94.10 19693.72 19295.25 22793.57 31694.13 20299.67 16896.45 33693.63 15591.34 23797.77 22586.29 21297.22 27896.65 15588.10 26694.40 263
D2MVS92.76 22992.59 22493.27 29995.13 29089.54 30799.69 16499.38 2392.26 20487.59 30194.61 33285.05 22497.79 25291.59 23988.01 26792.47 347
tt080591.28 26090.18 26894.60 24996.26 25887.55 32798.39 30798.72 6389.00 27589.22 27498.47 20362.98 36298.96 17490.57 25788.00 26897.28 235
EI-MVSNet93.73 20793.40 20594.74 24396.80 24692.69 23899.06 24997.67 22788.96 27891.39 23599.02 14888.75 18897.30 27291.07 24587.85 26994.22 277
MVSTER95.53 15995.22 15596.45 19398.56 14397.72 7699.91 8097.67 22792.38 20191.39 23597.14 24097.24 1897.30 27294.80 18387.85 26994.34 271
bld_raw_dy_0_6492.74 23092.03 23494.87 23893.09 32993.46 21999.12 23995.41 35792.84 17590.44 24797.54 22978.08 28697.04 29193.94 20087.77 27194.11 292
PS-MVSNAJss93.64 21093.31 20794.61 24892.11 34592.19 24999.12 23997.38 25992.51 19688.45 28896.99 24991.20 14797.29 27594.36 19387.71 27294.36 267
LTVRE_ROB88.28 1890.29 28489.05 29194.02 27495.08 29290.15 29697.19 33697.43 25384.91 33783.99 33497.06 24574.00 32198.28 22684.08 32187.71 27293.62 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 27489.63 27793.66 29195.64 28488.64 31798.55 29697.45 25189.03 27381.62 34597.61 22869.75 33798.41 20889.37 27287.62 27493.92 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 14295.82 13996.72 18699.59 8196.99 10799.95 5099.10 3194.06 13698.27 12395.80 28289.00 18599.95 6799.12 5687.53 27593.24 334
USDC90.00 29188.96 29293.10 30494.81 29688.16 32398.71 28795.54 35593.66 15383.75 33697.20 23965.58 35398.31 22383.96 32487.49 27692.85 341
ACMMP++_ref87.04 277
RRT_MVS93.14 22192.92 21493.78 28493.31 32390.04 29899.66 16997.69 22592.53 19488.91 28297.76 22684.36 23096.93 29995.10 17386.99 27894.37 266
test_040285.58 31983.94 32490.50 32893.81 31385.04 34298.55 29695.20 36376.01 37079.72 35595.13 31464.15 35996.26 32766.04 38086.88 27990.21 366
FIs94.10 19693.43 20196.11 20494.70 29896.82 11399.58 18398.93 4592.54 19389.34 27097.31 23687.62 19697.10 28694.22 19886.58 28094.40 263
FC-MVSNet-test93.81 20393.15 21095.80 21294.30 30596.20 13699.42 20798.89 4992.33 20389.03 28097.27 23887.39 19996.83 30593.20 21886.48 28194.36 267
TinyColmap87.87 31286.51 31391.94 31795.05 29385.57 33997.65 32994.08 37384.40 34081.82 34496.85 25462.14 36498.33 22180.25 34586.37 28291.91 354
ACMH+89.98 1690.35 28189.54 28092.78 31095.99 26586.12 33698.81 27997.18 27889.38 26883.14 33897.76 22668.42 34398.43 20689.11 27586.05 28393.78 318
baseline195.78 15094.86 16698.54 10198.47 15198.07 6599.06 24997.99 20092.68 18494.13 20598.62 19093.28 10198.69 19193.79 20985.76 28498.84 200
GBi-Net90.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
test190.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
FMVSNet392.69 23391.58 24295.99 20698.29 15897.42 9399.26 23097.62 23189.80 26589.68 26095.32 30781.62 25096.27 32687.01 30385.65 28594.29 273
DeepMVS_CXcopyleft82.92 35895.98 26758.66 38996.01 34592.72 18078.34 36095.51 29658.29 37198.08 23782.57 33185.29 28892.03 352
LF4IMVS89.25 30388.85 29390.45 33092.81 33781.19 36498.12 31894.79 36691.44 22886.29 32197.11 24165.30 35698.11 23688.53 28285.25 28992.07 350
FMVSNet291.02 26589.56 27995.41 22197.53 20995.74 15198.98 25997.41 25787.05 30888.43 29195.00 32071.34 33096.24 32885.12 31685.21 29094.25 276
ET-MVSNet_ETH3D94.37 19093.28 20897.64 15098.30 15797.99 6999.99 497.61 23494.35 12071.57 37699.45 11596.23 3195.34 34696.91 15285.14 29199.59 128
EGC-MVSNET69.38 34863.76 35886.26 35290.32 36381.66 36296.24 35593.85 3770.99 3993.22 40092.33 35752.44 37792.92 37059.53 38684.90 29284.21 380
OurMVSNet-221017-089.81 29489.48 28490.83 32691.64 35181.21 36398.17 31795.38 35991.48 22685.65 32797.31 23672.66 32497.29 27588.15 28684.83 29393.97 305
pmmvs492.10 24591.07 25295.18 22992.82 33694.96 18099.48 20196.83 31787.45 30388.66 28796.56 26583.78 23596.83 30589.29 27384.77 29493.75 319
our_test_390.39 27989.48 28493.12 30292.40 34189.57 30699.33 21996.35 33987.84 29985.30 32894.99 32184.14 23396.09 33480.38 34384.56 29593.71 324
cl2293.77 20593.25 20995.33 22499.49 9094.43 19199.61 17998.09 19290.38 25489.16 27895.61 28990.56 16297.34 26791.93 23484.45 29694.21 279
miper_ehance_all_eth93.16 22092.60 22194.82 24297.57 20793.56 21699.50 19797.07 29188.75 28488.85 28395.52 29590.97 15496.74 30890.77 25484.45 29694.17 281
miper_enhance_ethall94.36 19293.98 18595.49 21698.68 13995.24 17299.73 15697.29 26993.28 16489.86 25695.97 28094.37 7197.05 28992.20 23184.45 29694.19 280
IterMVS90.91 26790.17 26993.12 30296.78 24990.42 29198.89 26897.05 29489.03 27386.49 31795.42 30076.59 29795.02 34987.22 29884.09 29993.93 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 30686.64 31294.08 27195.62 28691.97 25298.43 30396.95 30483.00 34886.08 32494.72 32659.09 37096.11 33181.82 33884.07 30094.17 281
XXY-MVS91.82 24890.46 25995.88 20893.91 31195.40 16698.87 27397.69 22588.63 28887.87 29897.08 24374.38 31997.89 24991.66 23884.07 30094.35 270
IterMVS-SCA-FT90.85 27090.16 27092.93 30796.72 25189.96 30098.89 26896.99 29988.95 27986.63 31495.67 28776.48 29995.00 35087.04 30184.04 30293.84 315
pmmvs590.17 28889.09 28993.40 29592.10 34689.77 30499.74 15195.58 35485.88 32487.24 30995.74 28473.41 32396.48 31888.54 28183.56 30393.95 306
SixPastTwentyTwo88.73 30588.01 30690.88 32491.85 34982.24 35698.22 31595.18 36488.97 27782.26 34196.89 25171.75 32896.67 31284.00 32282.98 30493.72 323
N_pmnet80.06 34280.78 34077.89 36291.94 34745.28 40098.80 28156.82 40278.10 36780.08 35393.33 34677.03 29095.76 34168.14 37582.81 30592.64 343
dmvs_testset83.79 33286.07 31676.94 36392.14 34448.60 39896.75 34690.27 38889.48 26778.65 35898.55 19779.25 27386.65 38666.85 37782.69 30695.57 248
APD_test181.15 33880.92 33981.86 35992.45 34059.76 38896.04 35993.61 37973.29 37977.06 36496.64 26144.28 38496.16 33072.35 36782.52 30789.67 370
ppachtmachnet_test89.58 29888.35 30193.25 30092.40 34190.44 29099.33 21996.73 32485.49 33085.90 32695.77 28381.09 25596.00 33876.00 36282.49 30893.30 332
cl____92.31 24191.58 24294.52 25497.33 22292.77 23399.57 18596.78 32286.97 31287.56 30295.51 29689.43 17696.62 31388.60 27982.44 30994.16 286
DIV-MVS_self_test92.32 24091.60 24194.47 25897.31 22392.74 23599.58 18396.75 32386.99 31187.64 30095.54 29389.55 17596.50 31788.58 28082.44 30994.17 281
Patchmtry89.70 29688.49 29993.33 29796.24 25989.94 30391.37 38096.23 34078.22 36687.69 29993.31 34891.04 15296.03 33680.18 34682.10 31194.02 298
IterMVS-LS92.69 23392.11 23194.43 26296.80 24692.74 23599.45 20596.89 31288.98 27689.65 26395.38 30488.77 18796.34 32390.98 24982.04 31294.22 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 28990.34 26389.54 33692.55 33981.06 36598.69 29098.04 19891.41 23286.59 31596.84 25680.83 25893.31 36786.20 30881.91 31394.26 274
Anonymous2023120686.32 31685.42 31989.02 34089.11 36980.53 36999.05 25395.28 36085.43 33182.82 33993.92 34174.40 31893.44 36666.99 37681.83 31493.08 337
eth_miper_zixun_eth92.41 23991.93 23693.84 28397.28 22690.68 28398.83 27796.97 30388.57 28989.19 27795.73 28689.24 18296.69 31189.97 26981.55 31594.15 287
FMVSNet588.32 30787.47 30990.88 32496.90 24188.39 32197.28 33495.68 35182.60 35284.67 33192.40 35679.83 26991.16 37776.39 36181.51 31693.09 336
miper_lstm_enhance91.81 24991.39 24893.06 30597.34 22089.18 31099.38 21396.79 32186.70 31587.47 30495.22 31390.00 16995.86 34088.26 28481.37 31794.15 287
VPA-MVSNet92.70 23291.55 24496.16 20395.09 29196.20 13698.88 27099.00 3691.02 24291.82 23295.29 31176.05 30597.96 24595.62 16881.19 31894.30 272
v119290.62 27689.25 28694.72 24593.13 32593.07 22799.50 19797.02 29686.33 31989.56 26695.01 31879.22 27497.09 28882.34 33481.16 31994.01 300
v114491.09 26489.83 27394.87 23893.25 32493.69 21499.62 17896.98 30186.83 31489.64 26494.99 32180.94 25697.05 28985.08 31781.16 31993.87 313
Anonymous2024052185.15 32483.81 32689.16 33988.32 37082.69 35298.80 28195.74 34979.72 36281.53 34690.99 36165.38 35594.16 35872.69 36681.11 32190.63 363
v124090.20 28688.79 29594.44 26093.05 33192.27 24899.38 21396.92 31085.89 32389.36 26994.87 32577.89 28797.03 29480.66 34281.08 32294.01 300
new_pmnet84.49 32982.92 33289.21 33890.03 36582.60 35396.89 34595.62 35380.59 35975.77 37189.17 36865.04 35794.79 35472.12 36881.02 32390.23 365
K. test v388.05 30987.24 31190.47 32991.82 35082.23 35798.96 26297.42 25589.05 27276.93 36695.60 29068.49 34295.42 34485.87 31381.01 32493.75 319
FPMVS68.72 35068.72 35168.71 37365.95 39544.27 40295.97 36194.74 36751.13 38853.26 39090.50 36525.11 39383.00 38960.80 38480.97 32578.87 386
v192192090.46 27889.12 28894.50 25692.96 33392.46 24499.49 19996.98 30186.10 32189.61 26595.30 30878.55 28397.03 29482.17 33580.89 32694.01 300
c3_l92.53 23691.87 23894.52 25497.40 21692.99 23199.40 20896.93 30987.86 29888.69 28695.44 29989.95 17096.44 31990.45 26080.69 32794.14 290
tfpnnormal89.29 30287.61 30894.34 26594.35 30494.13 20298.95 26398.94 4183.94 34184.47 33295.51 29674.84 31597.39 26477.05 35980.41 32891.48 357
v14419290.79 27189.52 28194.59 25093.11 32892.77 23399.56 18796.99 29986.38 31889.82 25994.95 32380.50 26497.10 28683.98 32380.41 32893.90 310
nrg03093.51 21392.53 22596.45 19394.36 30397.20 9899.81 13097.16 28191.60 22289.86 25697.46 23186.37 21197.68 25695.88 16580.31 33094.46 256
Anonymous2023121189.86 29388.44 30094.13 27098.93 12090.68 28398.54 29898.26 17476.28 36986.73 31295.54 29370.60 33597.56 26090.82 25380.27 33194.15 287
V4291.28 26090.12 27194.74 24393.42 32193.46 21999.68 16697.02 29687.36 30489.85 25895.05 31681.31 25397.34 26787.34 29680.07 33293.40 329
v2v48291.30 25890.07 27295.01 23393.13 32593.79 21099.77 14097.02 29688.05 29689.25 27295.37 30580.73 25997.15 28187.28 29780.04 33394.09 294
WR-MVS92.31 24191.25 24995.48 21994.45 30295.29 16999.60 18098.68 6890.10 25988.07 29696.89 25180.68 26096.80 30793.14 22179.67 33494.36 267
v1090.25 28588.82 29494.57 25293.53 31893.43 22199.08 24496.87 31485.00 33487.34 30894.51 33380.93 25797.02 29682.85 33079.23 33593.26 333
CP-MVSNet91.23 26290.22 26694.26 26693.96 31092.39 24699.09 24298.57 8588.95 27986.42 31996.57 26479.19 27596.37 32190.29 26478.95 33694.02 298
MIMVSNet182.58 33580.51 34188.78 34286.68 37484.20 34796.65 34795.41 35778.75 36578.59 35992.44 35351.88 37989.76 38065.26 38178.95 33692.38 349
PS-CasMVS90.63 27589.51 28293.99 27793.83 31291.70 26598.98 25998.52 9988.48 29086.15 32396.53 26675.46 30896.31 32588.83 27778.86 33893.95 306
WR-MVS_H91.30 25890.35 26294.15 26894.17 30792.62 24299.17 23798.94 4188.87 28286.48 31894.46 33784.36 23096.61 31488.19 28578.51 33993.21 335
v890.54 27789.17 28794.66 24693.43 32093.40 22399.20 23496.94 30885.76 32587.56 30294.51 33381.96 24697.19 27984.94 31878.25 34093.38 331
UniMVSNet (Re)93.07 22492.13 23095.88 20894.84 29596.24 13599.88 9598.98 3892.49 19789.25 27295.40 30187.09 20397.14 28293.13 22278.16 34194.26 274
v7n89.65 29788.29 30293.72 28692.22 34390.56 28799.07 24897.10 28785.42 33286.73 31294.72 32680.06 26797.13 28381.14 34078.12 34293.49 327
VPNet91.81 24990.46 25995.85 21094.74 29795.54 16098.98 25998.59 8292.14 20690.77 24497.44 23268.73 34197.54 26194.89 18177.89 34394.46 256
Gipumacopyleft66.95 35565.00 35572.79 36891.52 35367.96 38066.16 39195.15 36547.89 38958.54 38667.99 39129.74 38887.54 38550.20 39077.83 34462.87 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 25790.22 26695.60 21494.05 30895.76 15098.25 31198.70 6591.16 23880.78 35096.64 26183.23 24096.57 31591.41 24077.73 34594.46 256
UniMVSNet_NR-MVSNet92.95 22692.11 23195.49 21694.61 30095.28 17099.83 12599.08 3391.49 22589.21 27596.86 25387.14 20296.73 30993.20 21877.52 34694.46 256
DU-MVS92.46 23891.45 24795.49 21694.05 30895.28 17099.81 13098.74 6292.25 20589.21 27596.64 26181.66 24896.73 30993.20 21877.52 34694.46 256
MDA-MVSNet_test_wron85.51 32183.32 32992.10 31590.96 35888.58 31899.20 23496.52 33379.70 36357.12 38892.69 35279.11 27693.86 36277.10 35877.46 34893.86 314
YYNet185.50 32283.33 32892.00 31690.89 35988.38 32299.22 23396.55 33279.60 36457.26 38792.72 35179.09 27893.78 36377.25 35777.37 34993.84 315
test_method80.79 33979.70 34384.08 35592.83 33567.06 38199.51 19595.42 35654.34 38781.07 34993.53 34544.48 38392.22 37478.90 35177.23 35092.94 339
v14890.70 27289.63 27793.92 27992.97 33290.97 27599.75 14896.89 31287.51 30188.27 29495.01 31881.67 24797.04 29187.40 29577.17 35193.75 319
Baseline_NR-MVSNet90.33 28289.51 28292.81 30992.84 33489.95 30199.77 14093.94 37684.69 33989.04 27995.66 28881.66 24896.52 31690.99 24876.98 35291.97 353
PEN-MVS90.19 28789.06 29093.57 29293.06 33090.90 27999.06 24998.47 11088.11 29585.91 32596.30 27076.67 29595.94 33987.07 30076.91 35393.89 311
TranMVSNet+NR-MVSNet91.68 25690.61 25894.87 23893.69 31593.98 20799.69 16498.65 7291.03 24188.44 28996.83 25780.05 26896.18 32990.26 26576.89 35494.45 261
MDA-MVSNet-bldmvs84.09 33081.52 33791.81 31991.32 35688.00 32698.67 29295.92 34780.22 36155.60 38993.32 34768.29 34493.60 36573.76 36476.61 35593.82 317
test20.0384.72 32783.99 32286.91 35088.19 37280.62 36898.88 27095.94 34688.36 29278.87 35694.62 33168.75 34089.11 38166.52 37875.82 35691.00 359
DTE-MVSNet89.40 30088.24 30392.88 30892.66 33889.95 30199.10 24198.22 17787.29 30585.12 33096.22 27276.27 30295.30 34883.56 32775.74 35793.41 328
pm-mvs189.36 30187.81 30794.01 27593.40 32291.93 25598.62 29596.48 33586.25 32083.86 33596.14 27573.68 32297.04 29186.16 30975.73 35893.04 338
lessismore_v090.53 32790.58 36180.90 36695.80 34877.01 36595.84 28166.15 35296.95 29783.03 32975.05 35993.74 322
IB-MVS92.85 694.99 17093.94 18798.16 12197.72 19895.69 15599.99 498.81 5894.28 12592.70 22196.90 25095.08 5199.17 16796.07 16173.88 36099.60 127
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 31883.84 32591.26 32390.00 36684.41 34697.82 32796.15 34375.86 37181.29 34795.39 30361.21 36796.87 30383.52 32873.29 36192.50 346
test_fmvs379.99 34380.17 34279.45 36184.02 37962.83 38299.05 25393.49 38088.29 29480.06 35486.65 37828.09 39088.00 38288.63 27873.27 36287.54 378
test_f78.40 34577.59 34780.81 36080.82 38462.48 38596.96 34393.08 38183.44 34674.57 37384.57 38227.95 39192.63 37184.15 32072.79 36387.32 379
mvsany_test382.12 33681.14 33885.06 35481.87 38270.41 37897.09 33992.14 38391.27 23577.84 36288.73 37039.31 38595.49 34290.75 25571.24 36489.29 374
h-mvs3394.92 17194.36 17596.59 19098.85 13091.29 27298.93 26598.94 4195.90 7498.77 9898.42 20690.89 15899.77 12697.80 12370.76 36598.72 208
ambc83.23 35777.17 38962.61 38387.38 38694.55 37176.72 36786.65 37830.16 38796.36 32284.85 31969.86 36690.73 362
Patchmatch-RL test86.90 31485.98 31889.67 33584.45 37775.59 37489.71 38492.43 38286.89 31377.83 36390.94 36294.22 7693.63 36487.75 29169.61 36799.79 95
PM-MVS80.47 34078.88 34585.26 35383.79 38072.22 37795.89 36291.08 38685.71 32876.56 36888.30 37136.64 38693.90 36182.39 33369.57 36889.66 371
pmmvs-eth3d84.03 33181.97 33590.20 33184.15 37887.09 33198.10 32094.73 36883.05 34774.10 37487.77 37565.56 35494.01 35981.08 34169.24 36989.49 372
AUN-MVS93.28 21792.60 22195.34 22398.29 15890.09 29799.31 22298.56 8791.80 21996.35 17298.00 21589.38 17798.28 22692.46 22869.22 37097.64 229
hse-mvs294.38 18994.08 18395.31 22598.27 16190.02 29999.29 22798.56 8795.90 7498.77 9898.00 21590.89 15898.26 23097.80 12369.20 37197.64 229
TransMVSNet (Re)87.25 31385.28 32093.16 30193.56 31791.03 27498.54 29894.05 37583.69 34581.09 34896.16 27475.32 30996.40 32076.69 36068.41 37292.06 351
PMVScopyleft49.05 2353.75 35851.34 36260.97 37640.80 40134.68 40374.82 39089.62 39137.55 39228.67 39872.12 3877.09 40281.63 39243.17 39368.21 37366.59 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS76.28 34677.28 34873.29 36781.18 38354.68 39297.87 32694.19 37281.30 35669.43 37990.70 36477.02 29182.06 39035.71 39568.11 37483.13 381
UnsupCasMVSNet_eth85.52 32083.99 32290.10 33289.36 36883.51 35096.65 34797.99 20089.14 27075.89 37093.83 34263.25 36193.92 36081.92 33767.90 37592.88 340
PVSNet_088.03 1991.80 25290.27 26596.38 19898.27 16190.46 28999.94 6699.61 1493.99 14086.26 32297.39 23571.13 33399.89 9498.77 7867.05 37698.79 203
test_vis3_rt68.82 34966.69 35475.21 36676.24 39060.41 38796.44 35068.71 40175.13 37550.54 39269.52 39016.42 40096.32 32480.27 34466.92 37768.89 388
SSC-MVS75.42 34776.40 35072.49 37180.68 38553.62 39397.42 33194.06 37480.42 36068.75 38090.14 36676.54 29881.66 39133.25 39666.34 37882.19 382
testf168.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
APD_test268.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
TDRefinement84.76 32582.56 33391.38 32274.58 39184.80 34597.36 33394.56 37084.73 33880.21 35296.12 27863.56 36098.39 21287.92 28963.97 38190.95 361
new-patchmatchnet81.19 33779.34 34486.76 35182.86 38180.36 37097.92 32495.27 36182.09 35472.02 37586.87 37762.81 36390.74 37971.10 36963.08 38289.19 375
pmmvs380.27 34177.77 34687.76 34980.32 38682.43 35598.23 31491.97 38472.74 38078.75 35787.97 37457.30 37390.99 37870.31 37062.37 38389.87 368
KD-MVS_self_test83.59 33482.06 33488.20 34786.93 37380.70 36797.21 33596.38 33782.87 34982.49 34088.97 36967.63 34692.32 37373.75 36562.30 38491.58 356
CL-MVSNet_self_test84.50 32883.15 33188.53 34586.00 37581.79 36098.82 27897.35 26185.12 33383.62 33790.91 36376.66 29691.40 37669.53 37260.36 38592.40 348
UnsupCasMVSNet_bld79.97 34477.03 34988.78 34285.62 37681.98 35893.66 37197.35 26175.51 37470.79 37783.05 38348.70 38194.91 35278.31 35360.29 38689.46 373
LCM-MVSNet67.77 35364.73 35676.87 36462.95 39756.25 39189.37 38593.74 37844.53 39061.99 38280.74 38420.42 39786.53 38769.37 37359.50 38787.84 376
KD-MVS_2432*160088.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
miper_refine_blended88.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
PMMVS267.15 35464.15 35776.14 36570.56 39462.07 38693.89 36987.52 39358.09 38460.02 38378.32 38522.38 39484.54 38859.56 38547.03 39081.80 383
MVEpermissive53.74 2251.54 36047.86 36462.60 37559.56 39850.93 39479.41 38977.69 39835.69 39436.27 39661.76 3955.79 40469.63 39437.97 39436.61 39167.24 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 35952.18 36152.67 37771.51 39245.40 39993.62 37276.60 39936.01 39343.50 39464.13 39327.11 39267.31 39631.06 39726.06 39245.30 395
EMVS51.44 36151.22 36352.11 37870.71 39344.97 40194.04 36875.66 40035.34 39542.40 39561.56 39628.93 38965.87 39727.64 39824.73 39345.49 394
ANet_high56.10 35752.24 36067.66 37449.27 39956.82 39083.94 38782.02 39770.47 38133.28 39764.54 39217.23 39969.16 39545.59 39223.85 39477.02 387
tmp_tt65.23 35662.94 35972.13 37244.90 40050.03 39781.05 38889.42 39238.45 39148.51 39399.90 1854.09 37678.70 39391.84 23718.26 39587.64 377
testmvs40.60 36244.45 36529.05 38019.49 40314.11 40699.68 16618.47 40320.74 39664.59 38198.48 20210.95 40117.09 40056.66 38911.01 39655.94 393
wuyk23d20.37 36520.84 36818.99 38165.34 39627.73 40450.43 3927.67 4059.50 3988.01 3996.34 3996.13 40326.24 39823.40 39910.69 3972.99 396
test12337.68 36339.14 36633.31 37919.94 40224.83 40598.36 3089.75 40415.53 39751.31 39187.14 37619.62 39817.74 39947.10 3913.47 39857.36 392
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.02 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.43 36431.24 3670.00 3820.00 4040.00 4070.00 39398.09 1920.00 4000.00 40199.67 9283.37 2380.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.60 36710.13 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40191.20 1470.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.28 36611.04 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.40 1190.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.97 27586.10 311
FOURS199.92 3197.66 8199.95 5098.36 15595.58 8399.52 57
test_one_060199.94 1399.30 1298.41 14096.63 5499.75 2799.93 1197.49 10
eth-test20.00 404
eth-test0.00 404
test_241102_ONE99.93 2499.30 1298.43 12597.26 3499.80 1599.88 2196.71 24100.00 1
save fliter99.82 5898.79 3899.96 3298.40 14497.66 19
test072699.93 2499.29 1599.96 3298.42 13697.28 3099.86 599.94 497.22 19
GSMVS99.59 128
test_part299.89 4599.25 1899.49 60
sam_mvs194.72 6199.59 128
sam_mvs94.25 75
MTGPAbinary98.28 171
test_post195.78 36359.23 39793.20 10497.74 25591.06 246
test_post63.35 39494.43 6598.13 235
patchmatchnet-post91.70 35995.12 4997.95 246
MTMP99.87 9896.49 334
gm-plane-assit96.97 23693.76 21291.47 22798.96 15998.79 18194.92 178
TEST999.92 3198.92 2899.96 3298.43 12593.90 14699.71 3299.86 2695.88 3799.85 106
test_899.92 3198.88 3199.96 3298.43 12594.35 12099.69 3499.85 3095.94 3499.85 106
agg_prior99.93 2498.77 4098.43 12599.63 4199.85 106
test_prior498.05 6699.94 66
test_prior99.43 3599.94 1398.49 5898.65 7299.80 11999.99 23
旧先验299.46 20494.21 12899.85 799.95 6796.96 149
新几何299.40 208
无先验99.49 19998.71 6493.46 158100.00 194.36 19399.99 23
原ACMM299.90 85
testdata299.99 3690.54 259
segment_acmp96.68 26
testdata199.28 22896.35 67
plane_prior795.71 28091.59 269
plane_prior695.76 27491.72 26480.47 265
plane_prior498.59 191
plane_prior391.64 26796.63 5493.01 215
plane_prior299.84 11896.38 63
plane_prior195.73 277
n20.00 406
nn0.00 406
door-mid89.69 390
test1198.44 117
door90.31 387
HQP5-MVS91.85 257
HQP-NCC95.78 27099.87 9896.82 4693.37 211
ACMP_Plane95.78 27099.87 9896.82 4693.37 211
BP-MVS97.92 119
HQP4-MVS93.37 21198.39 21294.53 250
HQP2-MVS80.65 261
NP-MVS95.77 27391.79 25998.65 186
MDTV_nov1_ep13_2view96.26 13196.11 35791.89 21498.06 12894.40 6794.30 19599.67 111
Test By Simon92.82 115