This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 102100.00 1100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
MVSMamba_PlusPlus99.39 8599.25 9599.80 10799.68 16599.59 11699.99 21799.30 25096.66 23999.96 12699.97 20197.89 15599.92 17599.76 132100.00 199.90 162
balanced_conf0399.43 8299.28 8999.85 9099.68 16599.68 10899.97 24999.28 26297.03 20499.96 12699.97 20197.90 15499.93 17299.77 130100.00 199.94 136
patch_mono-299.04 13299.79 696.81 33599.92 10890.47 385100.00 199.41 19098.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 131
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 187100.00 1100.00 199.32 6499.99 98100.00 1100.00 1
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13099.99 9899.99 64100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11099.99 64100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 39100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 25100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9399.99 98100.00 1100.00 1100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 104100.00 199.94 96100.00 1100.00 1
dcpmvs_298.87 15899.53 6296.90 32999.87 11890.88 38499.94 26699.07 34798.20 98100.00 1100.00 198.69 12999.86 187100.00 1100.00 199.95 131
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8599.99 98100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 63100.00 1100.00 199.61 18100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 9999.99 98100.00 1100.00 1100.00 1
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 24100.00 197.64 277100.00 1100.00 1
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 52100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 78100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 24999.98 1698.96 32100.00 1100.00 199.96 499.42 268100.00 1100.00 1100.00 1
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 193100.00 198.77 125100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1799.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4799.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 116100.00 199.98 76100.00 1100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 155100.00 198.65 130100.00 199.96 88100.00 1100.00 1
test9_res100.00 1100.00 1100.00 1
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.97 130100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 66100.00 199.99 64100.00 1100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 81100.00 199.99 64100.00 1100.00 1
mamv498.95 15299.11 11498.46 24099.68 16595.67 32499.14 38499.27 27296.43 25299.94 15599.97 20197.79 16299.88 18599.77 130100.00 199.84 195
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26199.44 11698.35 90100.00 1100.00 198.98 10299.97 13099.98 76100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24399.44 11698.35 9099.99 111100.00 199.04 9699.96 14399.98 76100.00 1100.00 1
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 79100.00 1100.00 1100.00 199.99 110
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 83100.00 1100.00 1100.00 1100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 45100.00 1100.00 1
X-MVStestdata97.04 26196.06 29099.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42299.16 83100.00 1100.00 1100.00 1100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 80100.00 197.91 269100.00 1100.00 1
旧先验199.99 4999.88 7799.82 40100.00 199.27 75100.00 1100.00 1
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 52100.00 199.50 187100.00 1100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 71100.00 1100.00 1
testdata99.66 13599.99 4998.97 19399.73 5697.96 121100.00 1100.00 199.42 55100.00 199.28 200100.00 1100.00 1
131499.38 8799.19 10699.96 4598.88 31199.89 7099.24 36699.93 3098.88 4498.79 263100.00 197.02 192100.00 1100.00 1100.00 1100.00 1
MVS99.22 11598.96 13199.98 2399.00 29899.95 3299.24 36699.94 2298.14 10398.88 253100.00 195.63 225100.00 199.85 112100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 61100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2599.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10499.99 9899.98 76100.00 1100.00 1
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 72100.00 199.99 64100.00 1100.00 1
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 144100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 48100.00 199.79 123100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 66100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6499.99 98100.00 1100.00 1100.00 1
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7799.97 130100.00 1100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 96100.00 1100.00 1100.00 1100.00 1
MVSFormer98.94 15398.82 14799.28 19299.45 25199.49 134100.00 199.13 32795.46 29899.97 122100.00 196.76 20498.59 32998.63 237100.00 199.74 241
lupinMVS99.29 10399.16 11099.69 12999.45 25199.49 134100.00 199.15 31897.45 17499.97 122100.00 196.76 20499.76 21399.67 159100.00 199.81 213
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 199100.00 1100.00 198.95 10899.96 14399.98 76100.00 1100.00 1
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13399.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7599.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 59100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 22100.00 1100.00 1100.00 1100.00 1
114514_t99.39 8599.25 9599.81 10299.97 9099.48 138100.00 199.42 14195.53 291100.00 1100.00 198.37 14299.95 15699.97 86100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 90100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3499.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
BH-w/o98.82 16298.81 14998.88 21899.62 19796.71 307100.00 199.28 26297.09 19998.81 261100.00 194.91 23899.96 14399.54 183100.00 199.96 125
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 140100.00 199.78 4798.92 3999.73 198100.00 197.70 166100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.64 17598.65 16498.60 23399.59 20596.17 314100.00 199.28 26296.67 23898.41 285100.00 194.52 24499.83 19799.41 191100.00 199.81 213
CPTT-MVS99.49 7599.38 7799.85 90100.00 199.54 123100.00 199.42 14197.58 15999.98 117100.00 197.43 183100.00 199.99 64100.00 1100.00 1
BH-RMVSNet98.46 19498.08 21199.59 14599.61 19999.19 169100.00 199.28 26297.06 20398.95 249100.00 188.99 32099.82 20098.83 225100.00 199.77 237
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 12100.00 199.96 88100.00 1100.00 1
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15299.95 15699.99 64100.00 1100.00 1
DP-MVS98.86 15998.54 17599.81 10299.97 9099.45 14099.52 33999.40 19494.35 32698.36 287100.00 196.13 21799.97 13099.12 210100.00 1100.00 1
QAPM98.99 14598.66 16399.96 4599.01 29499.87 7999.88 28199.93 3097.99 11498.68 267100.00 193.17 262100.00 199.32 197100.00 1100.00 1
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 35100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15799.95 156100.00 1100.00 1100.00 1
CSCG99.28 10499.35 8599.05 20599.99 4997.15 296100.00 199.47 7997.44 17599.42 216100.00 197.83 161100.00 199.99 64100.00 1100.00 1
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15099.96 25599.94 2298.48 79100.00 1100.00 198.92 113100.00 1100.00 1100.00 1100.00 1
PAPM99.78 1699.76 1299.85 9099.01 29499.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1199.60 226100.00 1100.00 1100.00 1
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 171100.00 199.14 86100.00 199.97 86100.00 1100.00 1
PHI-MVS99.50 7399.39 7699.82 97100.00 199.45 140100.00 199.94 2296.38 258100.00 1100.00 198.18 145100.00 1100.00 1100.00 1100.00 1
F-COLMAP99.64 5199.64 3799.67 13299.99 4999.07 177100.00 199.44 11698.30 9399.90 166100.00 199.18 8299.99 9899.91 101100.00 199.94 136
DeepPCF-MVS98.03 498.54 18899.72 1994.98 36099.99 4984.94 399100.00 199.42 14199.98 1100.00 1100.00 198.11 147100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31299.52 7299.06 13100.00 1100.00 198.80 124100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24399.47 7999.09 10100.00 1100.00 198.59 134100.00 199.95 94100.00 1100.00 1
AdaColmapbinary99.44 8199.26 9499.95 54100.00 199.86 8299.70 31799.99 1398.53 7699.90 166100.00 195.34 227100.00 199.92 99100.00 1100.00 1
PLCcopyleft98.56 299.70 3699.74 1699.58 149100.00 198.79 199100.00 199.54 7198.58 7599.96 126100.00 199.59 22100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS99.49 7599.36 8399.89 7999.97 9099.66 11099.74 30799.95 1997.89 125100.00 1100.00 196.71 208100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator+95.58 1599.03 13498.71 16099.96 4598.99 30199.89 70100.00 199.51 7698.96 3298.32 291100.00 192.78 268100.00 199.87 109100.00 1100.00 1
3Dnovator95.63 1499.06 12998.76 15399.96 4598.86 31599.90 6399.98 24399.93 3098.95 3598.49 282100.00 192.91 266100.00 199.71 145100.00 1100.00 1
TAPA-MVS96.40 1097.64 23197.37 24098.45 24299.94 10395.70 323100.00 199.40 19497.65 14599.53 207100.00 199.31 6699.66 22380.48 406100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D99.31 10099.13 11299.87 8499.99 4999.71 10299.55 33599.46 9497.32 18599.82 186100.00 196.85 20399.97 13099.14 207100.00 199.92 149
test_fmvsmconf0.1_n99.25 11199.05 11999.82 9798.92 30799.55 121100.00 199.23 29098.91 4199.75 19699.97 20194.79 24099.94 16899.94 9699.99 10399.97 119
test_fmvsmconf_n99.56 6799.46 7399.86 8799.68 16599.58 118100.00 199.31 24698.92 3999.88 171100.00 197.35 18599.99 9899.98 7699.99 103100.00 1
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 153100.00 198.39 141100.00 199.96 8899.99 103100.00 1
CANet99.40 8499.24 9899.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 192100.00 195.28 22899.96 143100.00 199.99 10399.96 125
GG-mvs-BLEND99.59 14599.54 21999.49 13499.17 37999.52 7299.96 12699.68 281100.00 199.33 27599.71 14599.99 10399.96 125
gg-mvs-nofinetune96.95 26696.10 28899.50 15799.41 25799.36 15199.07 39399.52 7283.69 40399.96 12683.60 419100.00 199.20 28199.68 15699.99 10399.96 125
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26199.42 14198.38 84100.00 1100.00 198.75 126100.00 199.88 10699.99 10399.74 241
test-LLR99.03 13498.91 14099.40 17499.40 26299.28 157100.00 199.45 10296.70 23499.42 21699.12 33699.31 6699.01 28996.82 30499.99 10399.91 151
TESTMET0.1,199.08 12798.96 13199.44 16499.63 19099.38 147100.00 199.45 10295.53 29199.48 211100.00 199.71 1399.02 28896.84 30399.99 10399.91 151
test-mter98.96 14998.82 14799.40 17499.40 26299.28 157100.00 199.45 10295.44 30199.42 21699.12 33699.70 1499.01 28996.82 30499.99 10399.91 151
MVP-Stereo96.51 28596.48 27296.60 33995.65 39494.25 35498.84 39898.16 39095.85 28295.23 36999.04 34392.54 27699.13 28392.98 35799.98 11396.43 386
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch95.66 32395.87 29995.05 35697.80 35989.25 38998.88 39799.30 25096.35 26196.86 34799.01 34881.35 37999.43 26693.30 35599.98 11396.46 385
PatchMatch-RL99.02 13998.78 15199.74 12099.99 4999.29 156100.00 1100.00 198.38 8499.89 16999.81 25993.14 26499.99 9897.85 27199.98 11399.95 131
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 209100.00 1100.00 199.97 116100.00 1
jason99.11 12598.96 13199.59 14599.17 27899.31 155100.00 199.13 32797.38 17999.83 178100.00 195.54 22699.72 21999.57 17999.97 11699.74 241
jason: jason.
OpenMVScopyleft95.20 1798.76 16598.41 18699.78 11498.89 31099.81 9099.99 21799.76 4998.02 11298.02 309100.00 191.44 284100.00 199.63 16899.97 11699.55 254
CANet_DTU99.02 13998.90 14399.41 17099.88 11698.71 205100.00 199.29 25698.84 51100.00 1100.00 194.02 250100.00 198.08 26099.96 11999.52 256
DeepC-MVS97.84 599.00 14298.80 15099.60 14399.93 10599.03 182100.00 199.40 19498.61 7499.33 226100.00 192.23 27899.95 15699.74 13699.96 11999.83 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 116100.00 199.36 21898.98 30100.00 1100.00 197.92 15399.99 98100.00 199.95 121100.00 1
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 159100.00 1100.00 199.95 121100.00 1
CHOSEN 1792x268899.00 14298.91 14099.25 19699.90 11297.79 271100.00 199.99 1398.79 6398.28 294100.00 193.63 25499.95 15699.66 16399.95 121100.00 1
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 118100.00 199.36 21898.98 30100.00 1100.00 197.85 15799.99 98100.00 199.94 124100.00 1
baseline298.99 14598.93 13899.18 20099.26 27599.15 174100.00 199.46 9496.71 23396.79 350100.00 199.42 5599.25 27998.75 22999.94 12499.15 262
MSDG98.90 15798.63 16799.70 12899.92 10899.25 162100.00 199.37 21295.71 28599.40 222100.00 196.58 21099.95 15696.80 30699.94 12499.91 151
fmvsm_s_conf0.1_n98.77 16498.42 18599.82 9799.47 24799.52 128100.00 199.27 27297.53 164100.00 1100.00 189.73 31099.96 14399.84 11599.93 12799.97 119
fmvsm_s_conf0.5_n99.21 11699.01 12399.83 9599.84 12199.53 125100.00 199.38 20998.29 94100.00 1100.00 193.62 25599.99 9899.99 6499.93 12799.98 112
COLMAP_ROBcopyleft97.10 798.29 20798.17 20598.65 22999.94 10397.39 28399.30 36299.40 19495.64 28697.75 323100.00 192.69 27399.95 15698.89 22099.92 12998.62 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PCF-MVS98.23 398.69 17298.37 19199.62 14099.78 14999.02 18499.23 37199.06 35596.43 25298.08 303100.00 194.72 24199.95 15698.16 25899.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsm_n_192099.55 6899.49 6999.73 12399.85 12099.19 169100.00 199.41 19098.87 47100.00 1100.00 197.34 186100.00 199.98 7699.90 131100.00 1
test_fmvsmconf0.01_n98.60 18098.24 20099.67 13296.90 38399.21 16799.99 21799.04 36098.80 6099.57 20699.96 21690.12 30299.91 17799.89 10499.89 13299.90 162
UGNet98.41 20098.11 20899.31 18899.54 21998.55 21599.18 374100.00 198.64 7399.79 19099.04 34387.61 336100.00 199.30 19999.89 13299.40 259
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvs198.37 20398.04 21599.34 18199.84 12198.07 249100.00 199.00 36698.85 49100.00 1100.00 185.11 35999.96 14399.69 15599.88 134100.00 1
PVSNet_Blended99.48 7799.36 8399.83 9599.98 8699.60 114100.00 1100.00 197.79 133100.00 1100.00 196.57 21199.99 98100.00 199.88 13499.90 162
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30699.73 5698.16 10099.75 196100.00 198.90 115100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet94.12 34092.73 35498.29 25399.33 26895.95 31699.38 35399.19 30374.54 41198.26 29786.34 41586.07 35199.06 28691.60 36799.87 13799.85 194
fmvsm_s_conf0.5_n_a99.32 9899.15 11199.81 10299.80 14299.47 139100.00 199.35 22998.22 95100.00 1100.00 195.21 23299.99 9899.96 8899.86 13899.98 112
test_fmvsmvis_n_192099.46 7999.37 8099.73 12398.88 31199.18 171100.00 199.26 27998.85 4999.79 190100.00 197.70 166100.00 199.98 7699.86 138100.00 1
test_cas_vis1_n_192098.63 17898.25 19799.77 11799.69 16199.32 153100.00 199.31 24698.84 5199.96 126100.00 187.42 33899.99 9899.14 20799.86 138100.00 1
fmvsm_s_conf0.1_n_a98.71 16998.36 19399.78 11499.09 28499.42 144100.00 199.26 27997.42 177100.00 1100.00 189.78 30899.96 14399.82 12199.85 14199.97 119
test_vis1_n_192097.77 22797.24 24899.34 18199.79 14698.04 253100.00 199.25 28198.88 44100.00 1100.00 177.52 390100.00 199.88 10699.85 141100.00 1
AllTest98.55 18598.40 18798.99 21099.93 10597.35 286100.00 199.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
TestCases98.99 21099.93 10597.35 28699.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
OMC-MVS99.27 10599.38 7798.96 21399.95 10097.06 300100.00 199.40 19498.83 5399.88 171100.00 197.01 19399.86 18799.47 18899.84 14399.97 119
FE-MVS99.16 12198.99 12799.66 13599.65 18299.18 17199.58 33299.43 12495.24 30299.91 16499.59 30299.37 6099.97 13098.31 25199.81 14699.83 199
SPE-MVS-test99.31 10099.27 9099.43 16799.99 4998.77 200100.00 199.19 30397.24 19199.96 126100.00 197.56 17499.70 22199.68 15699.81 14699.82 204
UA-Net99.06 12998.83 14699.74 12099.52 22999.40 14699.08 39199.45 10297.64 14799.83 178100.00 195.80 22199.94 16898.35 24999.80 14899.88 181
EC-MVSNet99.19 11799.09 11799.48 16099.42 25599.07 177100.00 199.21 29996.95 20999.96 126100.00 196.88 20299.48 25799.64 16599.79 14999.88 181
PVSNet94.91 1899.30 10299.25 9599.44 164100.00 198.32 232100.00 199.86 3898.04 111100.00 1100.00 196.10 218100.00 199.55 18099.73 150100.00 1
EIA-MVS99.26 10799.19 10699.45 16399.63 19098.75 201100.00 199.27 27296.93 21199.95 153100.00 197.47 17999.79 20699.74 13699.72 15199.82 204
test_fmvs1_n97.43 24396.86 25699.15 20199.68 16597.48 28099.99 21798.98 36998.82 55100.00 1100.00 174.85 39799.96 14399.67 15999.70 152100.00 1
FA-MVS(test-final)99.00 14298.75 15499.73 12399.63 19099.43 14399.83 28799.43 12495.84 28399.52 20899.37 32397.84 15999.96 14397.63 27899.68 15399.79 233
EPNet_dtu98.53 18998.23 20399.43 16799.92 10899.01 18699.96 25599.47 7998.80 6099.96 12699.96 21698.56 13599.30 27687.78 39199.68 153100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS99.33 9699.27 9099.50 15799.99 4999.00 189100.00 199.13 32797.26 19099.96 126100.00 197.79 16299.64 22499.64 16599.67 15599.87 191
Fast-Effi-MVS+-dtu98.38 20298.56 17497.82 29499.58 21094.44 352100.00 199.16 31696.75 22799.51 20999.63 29495.03 23699.60 22697.71 27599.67 15599.42 258
ETV-MVS99.34 9499.24 9899.64 13799.58 21099.33 152100.00 199.25 28197.57 16099.96 126100.00 197.44 18299.79 20699.70 14899.65 15799.81 213
mvsmamba99.05 13198.98 12899.27 19499.57 21498.10 247100.00 199.28 26295.92 27799.96 12699.97 20196.73 20799.89 18099.72 14199.65 15799.81 213
PVSNet_Blended_VisFu99.33 9699.18 10999.78 11499.82 12599.49 134100.00 199.95 1997.36 18099.63 204100.00 196.45 21599.95 15699.79 12399.65 15799.89 168
thisisatest051599.42 8399.31 8899.74 12099.59 20599.55 121100.00 199.46 9496.65 24099.92 161100.00 199.44 4899.85 19399.09 21299.63 16099.81 213
EPNet99.62 5999.69 2299.42 16999.99 4998.37 226100.00 199.89 3798.83 53100.00 1100.00 198.97 104100.00 199.90 10299.61 16199.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053099.37 8999.27 9099.69 12999.59 20599.41 145100.00 199.46 9496.46 25199.90 166100.00 199.44 4899.85 19398.97 21699.58 16299.80 230
test_vis1_n96.69 27795.81 30199.32 18699.14 27997.98 25699.97 24998.98 36998.45 81100.00 1100.00 166.44 40899.99 9899.78 12999.57 163100.00 1
Effi-MVS+-dtu98.51 19298.86 14597.47 30399.77 15194.21 355100.00 198.94 37197.61 15499.91 16498.75 36495.89 21999.51 25399.36 19399.48 16498.68 268
tttt051799.34 9499.23 10199.67 13299.57 21499.38 147100.00 199.46 9496.33 26399.89 169100.00 199.44 4899.84 19698.93 21899.46 16599.78 236
RRT-MVS98.75 16798.52 17899.44 16499.65 18298.57 21499.90 27599.08 34296.51 24999.96 12699.95 22392.59 27499.96 14399.60 17399.45 16699.81 213
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 123100.00 199.36 21898.94 37100.00 1100.00 197.97 150100.00 199.88 10699.28 167100.00 1
MonoMVSNet98.55 18598.64 16698.26 25698.21 34495.76 32299.94 26699.16 31696.23 26699.47 21499.24 33096.75 20699.22 28099.61 17299.17 16899.81 213
XVG-OURS-SEG-HR98.27 21098.31 19598.14 26699.59 20595.92 317100.00 199.36 21898.48 7999.21 231100.00 189.27 31799.94 16899.76 13299.17 16898.56 271
xiu_mvs_v2_base99.51 7099.41 7499.82 9799.70 16099.73 10099.92 27199.40 19498.15 102100.00 1100.00 198.50 138100.00 199.85 11299.13 17099.74 241
TSAR-MVS + GP.99.61 6199.69 2299.35 18099.99 4998.06 251100.00 199.36 21899.83 2100.00 1100.00 198.95 10899.99 98100.00 199.11 171100.00 1
xiu_mvs_v1_base_debu99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base_debi99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
PatchmatchNetpermissive99.03 13498.96 13199.26 19599.49 24298.33 23099.38 35399.45 10296.64 24199.96 12699.58 30499.49 4199.50 25597.63 27899.00 17599.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS99.25 11199.13 11299.60 14399.60 20199.20 16899.60 330100.00 196.93 21199.92 16199.36 32499.05 9399.71 22098.77 22798.94 17699.90 162
Vis-MVSNetpermissive98.52 19098.25 19799.34 18199.68 16598.55 21599.68 32199.41 19097.34 18399.94 155100.00 190.38 30199.70 22199.03 21498.84 17799.76 239
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SCA98.30 20597.98 21999.23 19799.41 25798.25 23799.99 21799.45 10296.91 21499.76 19599.58 30489.65 31299.54 24598.31 25198.79 17899.91 151
test250699.48 7799.38 7799.75 11999.89 11499.51 12999.45 345100.00 198.38 8499.83 178100.00 198.86 11799.81 20399.25 20198.78 17999.94 136
test111198.42 19898.12 20799.29 18999.88 11698.15 24299.46 343100.00 198.36 8899.42 216100.00 187.91 33199.79 20699.31 19898.78 17999.94 136
ECVR-MVScopyleft98.43 19698.14 20699.32 18699.89 11498.21 24099.46 343100.00 198.38 8499.47 214100.00 187.91 33199.80 20599.35 19498.78 17999.94 136
sss99.45 8099.34 8799.80 10799.76 15299.50 131100.00 199.91 3597.72 13899.98 11799.94 22998.45 139100.00 199.53 18598.75 18299.89 168
MDTV_nov1_ep1398.94 13699.53 22298.36 22899.39 35299.46 9496.54 24699.99 11199.63 29498.92 11399.86 18798.30 25498.71 183
Patchmatch-test97.83 22497.42 23699.06 20399.08 28597.66 27598.66 40199.21 29993.65 34298.25 29899.58 30499.47 4599.57 23390.25 37998.59 18499.95 131
ADS-MVSNet298.28 20998.51 18097.62 29999.51 23495.03 33299.24 36699.41 19095.52 29399.96 12699.70 27497.57 17297.94 37397.11 29598.54 18599.88 181
ADS-MVSNet98.70 17198.51 18099.28 19299.51 23498.39 22399.24 36699.44 11695.52 29399.96 12699.70 27497.57 17299.58 23297.11 29598.54 18599.88 181
mvs_anonymous98.80 16398.60 17199.38 17899.57 21499.24 164100.00 199.21 29995.87 27898.92 25099.82 25696.39 21699.03 28799.13 20998.50 18799.88 181
PMMVS99.12 12498.97 13099.58 14999.57 21498.98 191100.00 199.30 25097.14 19699.96 126100.00 196.53 21499.82 20099.70 14898.49 18899.94 136
MVS_Test98.93 15498.65 16499.77 11799.62 19799.50 13199.99 21799.19 30395.52 29399.96 12699.86 24596.54 21399.98 12398.65 23498.48 18999.82 204
PatchT95.90 31994.95 33398.75 22699.03 29298.39 22399.08 39199.32 24085.52 39999.96 12694.99 40397.94 15198.05 36980.20 40798.47 19099.81 213
test0.0.03 198.12 21598.03 21698.39 24699.11 28198.07 249100.00 199.93 3096.70 23496.91 34699.95 22399.31 6698.19 35391.93 36498.44 19198.91 266
LCM-MVSNet-Re96.52 28397.21 25094.44 36499.27 27385.80 39799.85 28596.61 41495.98 27592.75 38798.48 37493.97 25197.55 38399.58 17898.43 19299.98 112
dp98.72 16898.61 16999.03 20899.53 22297.39 28399.45 34599.39 20795.62 28899.94 15599.52 31398.83 12199.82 20096.77 30998.42 19399.89 168
CR-MVSNet98.02 21997.71 22998.93 21499.31 26998.86 19699.13 38599.00 36696.53 24799.96 12698.98 35096.94 19998.10 36391.18 36998.40 19499.84 195
RPMNet95.26 32993.82 33899.56 15299.31 26998.86 19699.13 38599.42 14179.82 40899.96 12695.13 40195.69 22499.98 12377.54 41198.40 19499.84 195
WB-MVSnew97.02 26497.24 24896.37 34499.44 25397.36 285100.00 199.43 12496.12 27399.35 22599.89 24093.60 25698.42 34388.91 39098.39 19693.33 405
IS-MVSNet99.08 12798.91 14099.59 14599.65 18299.38 14799.78 29799.24 28696.70 23499.51 209100.00 198.44 14099.52 25198.47 24598.39 19699.88 181
casdiffmvspermissive98.65 17498.38 18999.46 16199.52 22998.74 204100.00 199.15 31896.91 21499.05 245100.00 192.75 26999.83 19799.70 14898.38 19899.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF97.37 24698.24 20094.76 36399.80 14284.57 40099.99 21799.05 35794.95 30799.82 186100.00 194.03 249100.00 198.15 25998.38 19899.70 246
casdiffmvs_mvgpermissive98.64 17598.39 18899.40 17499.50 23898.60 212100.00 199.22 29396.85 21899.10 239100.00 192.75 26999.78 21099.71 14598.35 20099.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+98.58 18298.24 20099.61 14199.60 20199.26 16097.85 40799.10 33696.22 26999.97 12299.89 24093.75 25299.77 21199.43 18998.34 20199.81 213
baseline98.69 17298.45 18499.41 17099.52 22998.67 208100.00 199.17 31597.03 20499.13 237100.00 193.17 26299.74 21699.70 14898.34 20199.81 213
Vis-MVSNet (Re-imp)98.99 14598.89 14499.29 18999.64 18898.89 19599.98 24399.31 24696.74 22999.48 211100.00 198.11 14799.10 28498.39 24798.34 20199.89 168
UWE-MVS99.18 11899.06 11899.51 15499.67 17398.80 198100.00 199.43 12496.80 22299.93 16099.86 24599.79 799.94 16897.78 27398.33 20499.80 230
diffmvspermissive98.96 14998.73 15699.63 13899.54 21999.16 173100.00 199.18 31097.33 18499.96 126100.00 194.60 24399.91 17799.66 16398.33 20499.82 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TR-MVS98.14 21497.74 22699.33 18499.59 20598.28 23599.27 36399.21 29996.42 25599.15 23699.94 22988.87 32399.79 20698.88 22198.29 20699.93 147
kuosan98.55 18598.53 17798.62 23199.66 18096.16 315100.00 199.44 11693.93 33699.81 18999.98 19297.58 17099.81 20398.08 26098.28 20799.89 168
JIA-IIPM97.09 25796.34 27999.36 17998.88 31198.59 21399.81 29199.43 12484.81 40199.96 12690.34 41198.55 13699.52 25197.00 29898.28 20799.98 112
dongtai98.29 20798.25 19798.42 24499.58 21095.86 320100.00 199.44 11693.46 34999.69 20199.97 20197.53 17599.51 25396.28 31698.27 20999.89 168
Fast-Effi-MVS+98.40 20198.02 21799.55 15399.63 19099.06 179100.00 199.15 31895.07 30499.42 21699.95 22393.26 26199.73 21897.44 28598.24 21099.87 191
HY-MVS96.53 999.50 7399.35 8599.96 4599.81 13199.93 4799.64 324100.00 197.97 11899.84 17599.85 25098.94 11099.99 9899.86 11098.23 21199.95 131
WTY-MVS99.54 6999.40 7599.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 175100.00 198.94 11099.98 12399.86 11098.21 21299.94 136
tpm cat198.05 21797.76 22598.92 21599.50 23897.10 29999.77 30299.30 25090.20 38499.72 19998.71 36597.71 16599.86 18796.75 31098.20 21399.81 213
GeoE98.06 21697.65 23199.29 18999.47 24798.41 220100.00 199.19 30394.85 30998.88 253100.00 191.21 28699.59 22897.02 29798.19 21499.88 181
tpmrst98.98 14898.93 13899.14 20299.61 19997.74 27299.52 33999.36 21896.05 27499.98 11799.64 29099.04 9699.86 18798.94 21798.19 21499.82 204
tpmvs98.59 18198.38 18999.23 19799.69 16197.90 26399.31 36199.47 7994.52 32099.68 20299.28 32897.64 16999.89 18097.71 27598.17 21699.89 168
cascas98.43 19698.07 21399.50 15799.65 18299.02 184100.00 199.22 29394.21 32999.72 19999.98 19292.03 28199.93 17299.68 15698.12 21799.54 255
MIMVSNet97.06 26096.73 26198.05 28099.38 26696.64 31098.47 40399.35 22993.41 35099.48 21198.53 37289.66 31197.70 38294.16 34698.11 21899.80 230
HyFIR lowres test99.32 9899.24 9899.58 14999.95 10099.26 160100.00 199.99 1396.72 23299.29 22899.91 23799.49 4199.47 25999.74 13698.08 219100.00 1
UBG99.36 9099.27 9099.63 13899.63 19099.01 186100.00 199.43 12496.99 207100.00 199.92 23499.69 1599.99 9899.74 13698.06 22099.88 181
EPP-MVSNet99.10 12699.00 12599.40 17499.51 23498.68 20799.92 27199.43 12495.47 29799.65 203100.00 199.51 3599.76 21399.53 18598.00 22199.75 240
APD_test193.07 35094.14 33689.85 38199.18 27772.49 40999.76 30498.90 37692.86 36496.35 35799.94 22975.56 39599.91 17786.73 39397.98 22297.15 372
CDS-MVSNet98.96 14998.95 13599.01 20999.48 24498.36 22899.93 26999.37 21296.79 22399.31 22799.83 25399.77 1098.91 30098.07 26297.98 22299.77 237
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Syy-MVS96.17 30796.57 26795.00 35899.50 23887.37 395100.00 199.57 6896.23 26698.07 304100.00 192.41 27797.81 37685.34 39697.96 22499.82 204
myMVS_eth3d98.52 19098.51 18098.53 23699.50 23897.98 256100.00 199.57 6896.23 26698.07 304100.00 199.09 8997.81 37696.17 31797.96 22499.82 204
tpm298.64 17598.58 17398.81 22399.42 25597.12 29799.69 31999.37 21293.63 34399.94 15599.67 28298.96 10799.47 25998.62 23997.95 22699.83 199
ab-mvs98.42 19898.02 21799.61 14199.71 15899.00 18999.10 38899.64 6496.70 23499.04 24699.81 25990.64 29599.98 12399.64 16597.93 22799.84 195
TAMVS98.76 16598.73 15698.86 21999.44 25397.69 27399.57 33399.34 23596.57 24499.12 23899.81 25998.83 12199.16 28297.97 26897.91 22899.73 245
test_vis1_rt93.10 34992.93 35093.58 37399.63 19085.07 39899.99 21793.71 41997.49 17090.96 39197.10 39360.40 41099.95 15699.24 20397.90 22995.72 395
thres20099.27 10599.04 12099.96 4599.81 13199.90 63100.00 199.94 2297.31 18799.83 17899.96 21697.04 189100.00 199.62 16997.88 23099.98 112
DSMNet-mixed95.18 33095.21 32895.08 35596.03 38990.21 38799.65 32393.64 42092.91 36198.34 28997.40 39190.05 30695.51 40291.02 37197.86 23199.51 257
thres100view90099.25 11199.01 12399.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.59 17597.85 23299.98 112
tfpn200view999.26 10799.03 12199.96 4599.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.98 112
thres40099.26 10799.03 12199.95 5499.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.97 119
XVG-OURS98.30 20598.36 19398.13 26999.58 21095.91 318100.00 199.36 21898.69 6899.23 230100.00 191.20 28799.92 17599.34 19597.82 23598.56 271
CostFormer98.84 16098.77 15299.04 20799.41 25797.58 27799.67 32299.35 22994.66 31599.96 12699.36 32499.28 7499.74 21699.41 19197.81 23699.81 213
testing398.44 19598.37 19198.65 22999.51 23498.32 232100.00 199.62 6696.43 25297.93 31399.99 18799.11 8797.81 37694.88 33797.80 23799.82 204
testgi96.18 30595.93 29696.93 32898.98 30294.20 356100.00 199.07 34797.16 19596.06 36399.86 24584.08 36797.79 37990.38 37897.80 23798.81 267
testing1199.26 10799.19 10699.46 16199.64 18898.61 211100.00 199.43 12496.94 21099.92 16199.94 22999.43 5299.97 13099.67 15997.79 23999.82 204
thres600view799.24 11499.00 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.54 18397.77 24099.97 119
test_yl99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
DCV-MVSNet99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
Test_1112_low_res98.83 16198.60 17199.51 15499.69 16198.75 20199.99 21799.14 32396.81 22198.84 25899.06 34097.45 18099.89 18098.66 23297.75 24199.89 168
1112_ss98.91 15598.71 16099.51 15499.69 16198.75 20199.99 21799.15 31896.82 22098.84 258100.00 197.45 18099.89 18098.66 23297.75 24199.89 168
testing9199.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.82 18699.92 23499.05 9399.98 12399.62 16997.67 24599.81 213
testing9999.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.84 17599.92 23499.06 9199.98 12399.62 16997.67 24599.81 213
DeepMVS_CXcopyleft89.98 38098.90 30971.46 41199.18 31097.61 15496.92 34499.83 25386.07 35199.83 19796.02 31897.65 24798.65 269
ETVMVS99.16 12198.98 12899.69 12999.67 17399.56 120100.00 199.45 10296.36 26099.98 11799.95 22398.65 13099.64 22499.11 21197.63 24899.88 181
GA-MVS97.72 22997.27 24699.06 20399.24 27697.93 262100.00 199.24 28695.80 28498.99 24899.64 29089.77 30999.36 27195.12 33497.62 24999.89 168
LFMVS97.42 24496.62 26599.81 10299.80 14299.50 13199.16 38099.56 7094.48 322100.00 1100.00 179.35 385100.00 199.89 10497.37 25099.94 136
CVMVSNet98.56 18498.47 18398.82 22099.11 28197.67 27499.74 30799.47 7997.57 16099.06 244100.00 195.72 22398.97 29598.21 25797.33 25199.83 199
testing22299.14 12398.94 13699.73 12399.67 17399.51 129100.00 199.43 12496.90 21699.99 11199.90 23998.55 13699.86 18798.85 22297.18 25299.81 213
alignmvs99.38 8799.21 10299.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9199.93 17299.83 11697.12 25399.90 162
VNet99.04 13298.75 15499.90 7799.81 13199.75 9799.50 34199.47 7998.36 88100.00 199.99 18794.66 242100.00 199.90 10297.09 25499.96 125
Anonymous20240521197.87 22297.53 23398.90 21699.81 13196.70 30899.35 35699.46 9492.98 36098.83 26099.99 18790.63 296100.00 199.70 14897.03 255100.00 1
Anonymous2024052996.93 26796.22 28499.05 20599.79 14697.30 29099.16 38099.47 7988.51 39098.69 266100.00 183.50 370100.00 199.83 11697.02 25699.83 199
VDDNet96.39 29495.55 31698.90 21699.27 27397.45 28199.15 38299.92 3491.28 37399.98 117100.00 173.55 398100.00 199.85 11296.98 25799.24 260
VDD-MVS96.58 28295.99 29398.34 25099.52 22995.33 32799.18 37499.38 20996.64 24199.77 193100.00 172.51 402100.00 1100.00 196.94 25899.70 246
sasdasda99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
canonicalmvs99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
MGCFI-Net99.01 14198.70 16299.93 7099.74 15699.94 41100.00 199.29 25697.60 157100.00 1100.00 195.10 23499.96 14399.74 13696.85 26199.91 151
tpm98.24 21198.22 20498.32 25299.13 28095.79 32199.53 33899.12 33395.20 30399.96 12699.36 32497.58 17099.28 27897.41 28796.67 26299.88 181
EGC-MVSNET79.46 37874.04 38695.72 35396.00 39092.73 37099.09 39099.04 3605.08 42316.72 42398.71 36573.03 40098.74 31782.05 40396.64 26395.69 396
SDMVSNet98.49 19398.08 21199.73 12399.82 12599.53 12599.99 21799.45 10297.62 15099.38 22399.86 24590.06 30599.88 18599.92 9996.61 26499.79 233
sd_testset97.81 22597.48 23498.79 22499.82 12596.80 30599.32 35899.45 10297.62 15099.38 22399.86 24585.56 35799.77 21199.72 14196.61 26499.79 233
OpenMVS_ROBcopyleft88.34 2091.89 35691.12 35894.19 37095.55 39687.63 39499.26 36498.03 39686.61 39890.65 39596.82 39570.14 40698.78 31186.54 39496.50 26696.15 389
tt080596.52 28396.23 28397.40 30499.30 27293.55 36099.32 35899.45 10296.75 22797.88 31699.99 18779.99 38399.59 22897.39 28995.98 26799.06 265
plane_prior94.80 339100.00 199.03 2195.58 268
HQP3-MVS99.40 19495.58 268
HQP-MVS97.73 22897.85 22297.39 30599.07 28694.82 336100.00 199.40 19499.04 1699.17 23299.97 20188.61 32699.57 23399.79 12395.58 26897.77 273
CLD-MVS97.64 23197.74 22697.36 30799.01 29494.76 344100.00 199.34 23599.30 499.00 24799.97 20187.49 33799.57 23399.96 8895.58 26897.75 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS97.71 23097.82 22497.37 30699.00 29894.80 339100.00 199.40 19499.00 2799.08 24299.97 20188.58 32899.55 24299.79 12395.57 27297.76 275
plane_prior599.40 19499.55 24299.79 12395.57 27297.76 275
OPM-MVS97.21 25197.18 25197.32 31098.08 35094.66 345100.00 199.28 26298.65 7298.92 25099.98 19286.03 35399.56 23798.28 25595.41 27497.72 321
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline198.91 15598.61 16999.81 10299.71 15899.77 9599.78 29799.44 11697.51 16898.81 26199.99 18798.25 14399.76 21398.60 24095.41 27499.89 168
test_djsdf97.55 23797.38 23998.07 27297.50 37297.99 255100.00 199.13 32795.46 29898.47 28399.85 25092.01 28298.59 32998.63 23795.36 27697.62 350
anonymousdsp97.16 25496.88 25598.00 28497.08 38298.06 25199.81 29199.15 31894.58 31797.84 31999.62 29890.49 29898.60 32797.98 26595.32 27797.33 368
EI-MVSNet97.98 22097.93 22098.16 26599.11 28197.84 26899.74 30799.29 25694.39 32598.65 268100.00 197.21 18798.88 30697.62 28195.31 27897.75 286
MVSTER98.58 18298.52 17898.77 22599.65 18299.68 108100.00 199.29 25695.63 28798.65 26899.80 26299.78 898.88 30698.59 24195.31 27897.73 315
LPG-MVS_test97.31 24897.32 24297.28 31398.85 31694.60 348100.00 199.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
LGP-MVS_train97.28 31398.85 31694.60 34899.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
ITE_SJBPF96.84 33398.96 30493.49 36198.12 39298.12 10798.35 28899.97 20184.45 36199.56 23795.63 32595.25 28297.49 360
dmvs_re97.54 23897.88 22196.54 34099.55 21890.35 38699.86 28399.46 9497.00 20699.41 221100.00 190.78 29499.30 27699.60 17395.24 28399.96 125
ACMP97.00 897.19 25297.16 25297.27 31598.97 30394.58 351100.00 199.32 24097.97 11897.45 33499.98 19285.79 35599.56 23799.70 14895.24 28397.67 339
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EG-PatchMatch MVS92.94 35192.49 35594.29 36895.87 39187.07 39699.07 39398.11 39393.19 35788.98 39798.66 36870.89 40399.08 28592.43 36295.21 28596.72 380
ACMM97.17 697.37 24697.40 23897.29 31299.01 29494.64 347100.00 199.25 28198.07 11098.44 28499.98 19287.38 33999.55 24299.25 20195.19 28697.69 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D95.28 32894.41 33497.89 29298.91 30895.14 33099.13 38599.35 22992.11 36897.17 34199.66 28470.28 40599.36 27197.88 27095.18 28799.16 261
ACMMP++95.17 288
test_040294.35 33593.70 34096.32 34597.92 35593.60 35999.61 32998.85 37888.19 39394.68 37499.48 31680.01 38298.58 33189.39 38595.15 28996.77 379
ACMH96.25 1196.77 27196.62 26597.21 31698.96 30494.43 35399.64 32499.33 23797.43 17696.55 35599.97 20183.52 36999.54 24599.07 21395.13 29097.66 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax97.07 25996.79 26097.89 29297.28 38097.12 29799.95 26199.19 30396.55 24597.31 33799.69 27787.35 34198.91 30098.70 23195.12 29197.66 340
mvs_tets97.00 26596.69 26297.94 28897.41 37997.27 29199.60 33099.18 31096.51 24997.35 33699.69 27786.53 34798.91 30098.84 22395.09 29297.65 344
test_fmvs295.17 33195.23 32795.01 35798.95 30688.99 39199.99 21797.77 40397.79 13398.58 27399.70 27473.36 39999.34 27495.88 31995.03 29396.70 381
XVG-ACMP-BASELINE96.60 28196.52 27096.84 33398.41 33293.29 36599.99 21799.32 24097.76 13798.51 28099.29 32781.95 37699.54 24598.40 24695.03 29397.68 335
LTVRE_ROB95.29 1696.32 29896.10 28896.99 32498.55 32793.88 35799.45 34599.28 26294.50 32196.46 35699.52 31384.86 36099.48 25797.26 29395.03 29397.59 354
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
D2MVS97.63 23497.83 22397.05 32098.83 31894.60 348100.00 199.82 4096.89 21798.28 29499.03 34694.05 24899.47 25998.58 24294.97 29697.09 373
USDC95.90 31995.70 30996.50 34198.60 32692.56 373100.00 198.30 38897.77 13596.92 34499.94 22981.25 38099.45 26493.54 35394.96 29797.49 360
PVSNet_BlendedMVS98.71 16998.62 16898.98 21299.98 8699.60 114100.00 1100.00 197.23 192100.00 199.03 34696.57 21199.99 98100.00 194.75 29897.35 367
TinyColmap95.50 32595.12 33096.64 33798.69 32293.00 36799.40 35197.75 40496.40 25796.14 36299.87 24379.47 38499.50 25593.62 35294.72 29997.40 365
ACMH+96.20 1396.49 28896.33 28097.00 32399.06 29093.80 35899.81 29199.31 24697.32 18595.89 36699.97 20182.62 37499.54 24598.34 25094.63 30097.65 344
PS-MVSNAJss98.03 21898.06 21497.94 28897.63 36497.33 28999.89 27999.23 29096.27 26598.03 30799.59 30298.75 12698.78 31198.52 24394.61 30197.70 329
ACMMP++_ref94.58 302
CMPMVSbinary66.12 2290.65 36392.04 35686.46 38896.18 38866.87 41898.03 40699.38 20983.38 40485.49 40599.55 31077.59 38998.80 31094.44 34194.31 30393.72 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-096.14 31195.98 29496.62 33897.49 37493.44 36299.92 27198.16 39095.86 28097.65 32599.95 22385.71 35698.78 31194.93 33694.18 30497.64 347
LF4IMVS96.19 30496.18 28596.23 34798.26 34192.09 375100.00 197.89 40197.82 13097.94 31299.87 24382.71 37399.38 27097.41 28793.71 30597.20 370
GBi-Net96.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
test196.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
FMVSNet397.30 24996.95 25398.37 24899.65 18299.25 16299.71 31599.28 26294.23 32798.53 27798.91 35793.30 26098.11 36095.31 33093.60 30697.73 315
FMVSNet296.22 30395.60 31598.06 27699.53 22298.33 23099.45 34599.27 27293.71 33898.03 30798.84 36084.23 36498.10 36393.97 34893.40 30997.73 315
K. test v395.46 32695.14 32996.40 34297.53 37193.40 36399.99 21799.23 29095.49 29692.70 38899.73 26884.26 36398.12 35893.94 34993.38 31097.68 335
SixPastTwentyTwo95.71 32295.49 31996.38 34397.42 37793.01 36699.84 28698.23 38994.75 31195.98 36499.97 20185.35 35898.43 34294.71 33893.17 31197.69 333
FIs97.95 22197.73 22898.62 23198.53 32999.24 164100.00 199.43 12496.74 22997.87 31799.82 25695.27 22998.89 30398.78 22693.07 31297.74 308
FC-MVSNet-test97.84 22397.63 23298.45 24298.30 33999.05 180100.00 199.43 12496.63 24397.61 32999.82 25695.19 23398.57 33298.64 23593.05 31397.73 315
XXY-MVS97.14 25696.63 26498.67 22898.65 32398.92 19499.54 33799.29 25695.57 29097.63 32699.83 25387.79 33599.35 27398.39 24792.95 31497.75 286
reproduce_monomvs98.61 17998.54 17598.82 22099.97 9099.28 157100.00 199.33 23798.51 7897.87 31799.24 33099.98 399.45 26499.02 21592.93 31597.74 308
FMVSNet194.45 33493.63 34196.89 33098.87 31494.87 33399.18 37499.27 27290.95 37797.31 33798.81 36172.89 40198.07 36592.61 35892.81 31697.72 321
N_pmnet91.88 35793.37 34487.40 38697.24 38166.33 41999.90 27591.05 42289.77 38695.65 36798.58 37190.05 30698.11 36085.39 39592.72 31797.75 286
cl2298.23 21298.11 20898.58 23599.82 12599.01 186100.00 199.28 26296.92 21398.33 29099.21 33398.09 14998.97 29598.72 23092.61 31897.76 275
miper_ehance_all_eth97.81 22597.66 23098.23 25899.49 24298.37 22699.99 21799.11 33494.78 31098.25 29899.21 33398.18 14598.57 33297.35 29192.61 31897.76 275
miper_enhance_ethall98.33 20498.27 19698.51 23799.66 18099.04 181100.00 199.22 29397.53 16498.51 28099.38 32299.49 4198.75 31698.02 26492.61 31897.76 275
pmmvs497.17 25396.80 25898.27 25497.68 36398.64 210100.00 199.18 31094.22 32898.55 27599.71 27193.67 25398.47 34095.66 32492.57 32197.71 328
Anonymous2024052193.29 34692.76 35394.90 36295.64 39591.27 38199.97 24998.82 37987.04 39594.71 37398.19 38183.86 36896.80 38784.04 39992.56 32296.64 382
WBMVS98.19 21398.10 21098.47 23999.63 19099.03 182100.00 199.32 24095.46 29898.39 28699.40 32199.69 1598.61 32498.64 23592.39 32397.76 275
our_test_396.51 28596.35 27896.98 32597.61 36695.05 33199.98 24399.01 36594.68 31496.77 35299.06 34095.87 22098.14 35691.81 36592.37 32497.75 286
IterMVS96.76 27296.46 27397.63 29799.41 25796.89 30299.99 21799.13 32794.74 31397.59 33199.66 28489.63 31498.28 34995.71 32292.31 32597.72 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test96.17 30795.89 29797.02 32297.61 36695.24 32899.99 21799.24 28693.31 35496.71 35399.62 29894.34 24698.07 36589.87 38092.30 32697.75 286
pmmvs595.94 31895.61 31496.95 32697.42 37794.66 345100.00 198.08 39493.60 34497.05 34299.43 31987.02 34298.46 34195.76 32092.12 32797.72 321
IterMVS-SCA-FT96.72 27596.42 27597.62 29999.40 26296.83 30499.99 21799.14 32394.65 31697.55 33299.72 26989.65 31298.31 34795.62 32692.05 32897.73 315
new_pmnet94.11 34193.47 34396.04 35096.60 38692.82 36999.97 24998.91 37490.21 38395.26 36898.05 38685.89 35498.14 35684.28 39892.01 32997.16 371
DIV-MVS_self_test97.52 24197.35 24198.05 28099.46 25098.11 245100.00 199.10 33694.21 32997.62 32899.63 29497.65 16898.29 34896.47 31191.98 33097.76 275
cl____97.54 23897.32 24298.18 26299.47 24798.14 244100.00 199.10 33694.16 33297.60 33099.63 29497.52 17698.65 32296.47 31191.97 33197.76 275
FMVSNet595.32 32795.43 32494.99 35999.39 26592.99 36899.25 36599.24 28690.45 38097.44 33598.45 37595.78 22294.39 40587.02 39291.88 33297.59 354
ttmdpeth96.24 30295.88 29897.32 31097.80 35996.61 31199.95 26198.77 38297.80 13293.42 38399.28 32886.42 34899.01 28997.63 27891.84 33396.33 388
test_method91.04 36291.10 35990.85 37898.34 33477.63 405100.00 198.93 37376.69 40996.25 36098.52 37370.44 40497.98 37189.02 38991.74 33496.92 377
Gipumacopyleft84.73 37383.50 37888.40 38497.50 37282.21 40288.87 41399.05 35765.81 41385.71 40490.49 41053.70 41196.31 39478.64 40991.74 33486.67 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS97.56 23697.44 23597.92 29199.38 26697.90 26399.89 27999.10 33694.41 32498.32 29199.54 31297.21 18798.11 36097.50 28391.62 33697.75 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset93.27 34795.48 32186.65 38798.74 32168.42 41699.92 27198.91 37496.19 27193.28 384100.00 191.06 29191.67 41289.64 38391.54 33799.86 193
Patchmtry96.81 26996.37 27798.14 26699.31 26998.55 21598.91 39699.00 36690.45 38097.92 31498.98 35096.94 19998.12 35894.27 34391.53 33897.75 286
eth_miper_zixun_eth97.47 24297.28 24498.06 27699.41 25797.94 26199.62 32899.08 34294.46 32398.19 30199.56 30996.91 20198.50 33796.78 30791.49 33997.74 308
MIMVSNet191.96 35491.20 35794.23 36994.94 40091.69 37899.34 35799.22 29388.23 39194.18 37998.45 37575.52 39693.41 40979.37 40891.49 33997.60 353
miper_lstm_enhance97.40 24597.28 24497.75 29699.48 24497.52 278100.00 199.07 34794.08 33398.01 31099.61 30097.38 18497.98 37196.44 31491.47 34197.76 275
tfpnnormal96.36 29595.69 31298.37 24898.55 32798.71 20599.69 31999.45 10293.16 35896.69 35499.71 27188.44 33098.99 29294.17 34491.38 34297.41 364
FPMVS77.92 38279.45 38073.34 40176.87 42246.81 42898.24 40499.05 35759.89 41673.55 41298.34 37936.81 42186.55 41480.96 40491.35 34386.65 413
c3_l97.58 23597.42 23698.06 27699.48 24498.16 24199.96 25599.10 33694.54 31998.13 30299.20 33597.87 15698.25 35197.28 29291.20 34497.75 286
EU-MVSNet96.63 27996.53 26896.94 32797.59 36896.87 30399.76 30499.47 7996.35 26196.85 34899.78 26592.57 27596.27 39695.33 32991.08 34597.68 335
v124095.96 31795.25 32698.07 27297.91 35697.87 26799.96 25599.07 34793.24 35698.64 27098.96 35488.98 32198.61 32489.58 38490.92 34697.75 286
v119296.18 30595.49 31998.26 25698.01 35298.15 24299.99 21799.08 34293.36 35298.54 27698.97 35389.47 31598.89 30391.15 37090.82 34797.75 286
v114496.51 28595.97 29598.13 26997.98 35498.04 25399.99 21799.08 34293.51 34798.62 27198.98 35090.98 29398.62 32393.79 35090.79 34897.74 308
v192192096.16 30995.50 31798.14 26697.88 35897.96 25999.99 21799.07 34793.33 35398.60 27299.24 33089.37 31698.71 31891.28 36890.74 34997.75 286
Anonymous2023120693.45 34593.17 34694.30 36795.00 39989.69 38899.98 24398.43 38793.30 35594.50 37798.59 37090.52 29795.73 40177.46 41290.73 35097.48 362
v14419296.40 29395.81 30198.17 26497.89 35798.11 24599.99 21799.06 35593.39 35198.75 26499.09 33890.43 30098.66 32193.10 35690.55 35197.75 286
v2v48296.70 27696.18 28598.27 25498.04 35198.39 223100.00 199.13 32794.19 33198.58 27399.08 33990.48 29998.67 32095.69 32390.44 35297.75 286
lessismore_v096.05 34997.55 37091.80 37799.22 29391.87 38999.91 23783.50 37098.68 31992.48 36190.42 35397.68 335
V4296.65 27896.16 28798.11 27198.17 34898.23 23899.99 21799.09 34193.97 33498.74 26599.05 34291.09 28998.82 30995.46 32889.90 35497.27 369
v1096.14 31195.50 31798.07 27298.19 34697.96 25999.83 28799.07 34792.10 36998.07 30498.94 35591.07 29098.61 32492.41 36389.82 35597.63 348
nrg03097.64 23197.27 24698.75 22698.34 33499.53 125100.00 199.22 29396.21 27098.27 29699.95 22394.40 24598.98 29399.23 20489.78 35697.75 286
VPA-MVSNet97.03 26296.43 27498.82 22098.64 32499.32 15399.38 35399.47 7996.73 23198.91 25298.94 35587.00 34399.40 26999.23 20489.59 35797.76 275
MDA-MVSNet_test_wron92.61 35291.09 36097.19 31796.71 38597.26 292100.00 199.14 32388.61 38967.90 41798.32 38089.03 31996.57 39190.47 37789.59 35797.74 308
Anonymous2023121196.29 29995.70 30998.07 27299.80 14297.49 27999.15 38299.40 19489.11 38797.75 32399.45 31888.93 32298.98 29398.26 25689.47 35997.73 315
MDA-MVSNet-bldmvs91.65 35989.94 36796.79 33696.72 38496.70 30899.42 35098.94 37188.89 38866.97 41998.37 37881.43 37895.91 39989.24 38789.46 36097.75 286
WB-MVS88.24 36990.09 36582.68 39491.56 40969.51 414100.00 198.73 38390.72 37987.29 40298.12 38292.87 26785.01 41662.19 41789.34 36193.54 404
WR-MVS97.09 25796.64 26398.46 24098.43 33199.09 17699.97 24999.33 23795.62 28897.76 32099.67 28291.17 28898.56 33498.49 24489.28 36297.74 308
test20.0393.11 34892.85 35293.88 37295.19 39891.83 376100.00 198.87 37793.68 34192.76 38698.88 35989.20 31892.71 41077.88 41089.19 36397.09 373
YYNet192.44 35390.92 36197.03 32196.20 38797.06 30099.99 21799.14 32388.21 39267.93 41698.43 37788.63 32596.28 39590.64 37289.08 36497.74 308
mvs5depth93.81 34293.00 34996.23 34794.25 40293.33 36497.43 40998.07 39593.47 34894.15 38099.58 30477.52 39098.97 29593.64 35188.92 36596.39 387
CP-MVSNet96.73 27396.25 28298.18 26298.21 34498.67 20899.77 30299.32 24095.06 30597.20 34099.65 28690.10 30398.19 35398.06 26388.90 36697.66 340
PS-CasMVS96.34 29795.78 30598.03 28398.18 34798.27 23699.71 31599.32 24094.75 31196.82 34999.65 28686.98 34498.15 35597.74 27488.85 36797.66 340
v896.35 29695.73 30898.21 26198.11 34998.23 23899.94 26699.07 34792.66 36698.29 29399.00 34991.46 28398.77 31494.17 34488.83 36897.62 350
SSC-MVS87.61 37089.47 36882.04 39590.63 41268.77 41599.99 21798.66 38490.34 38286.70 40398.08 38392.72 27284.12 41759.41 42088.71 36993.22 408
v7n96.06 31595.42 32597.99 28697.58 36997.35 28699.86 28399.11 33492.81 36597.91 31599.49 31590.99 29298.92 29992.51 36088.49 37097.70 329
WR-MVS_H96.73 27396.32 28197.95 28798.26 34197.88 26599.72 31499.43 12495.06 30596.99 34398.68 36793.02 26598.53 33597.43 28688.33 37197.43 363
NR-MVSNet96.63 27996.04 29198.38 24798.31 33798.98 19199.22 37399.35 22995.87 27894.43 37899.65 28692.73 27198.40 34496.78 30788.05 37297.75 286
pm-mvs195.76 32195.01 33198.00 28498.23 34397.45 28199.24 36699.04 36093.13 35995.93 36599.72 26986.28 34998.84 30895.62 32687.92 37397.72 321
VPNet96.41 29095.76 30698.33 25198.61 32598.30 23499.48 34299.45 10296.98 20898.87 25599.88 24281.57 37798.93 29899.22 20687.82 37497.76 275
UniMVSNet (Re)97.29 25096.85 25798.59 23498.49 33099.13 175100.00 199.42 14196.52 24898.24 30098.90 35894.93 23798.89 30397.54 28287.61 37597.75 286
ET-MVSNet_ETH3D96.41 29095.48 32199.20 19999.81 13199.75 97100.00 199.02 36397.30 18978.33 411100.00 197.73 16497.94 37399.70 14887.41 37699.92 149
PEN-MVS96.01 31695.48 32197.58 30197.74 36197.26 29299.90 27599.29 25694.55 31896.79 35099.55 31087.38 33997.84 37596.92 30187.24 37797.65 344
v14896.29 29995.84 30097.63 29797.74 36196.53 312100.00 199.07 34793.52 34698.01 31099.42 32091.22 28598.60 32796.37 31587.22 37897.75 286
UniMVSNet_NR-MVSNet97.16 25496.80 25898.22 25998.38 33398.41 220100.00 199.45 10296.14 27297.76 32099.64 29095.05 23598.50 33797.98 26586.84 37997.75 286
DU-MVS96.93 26796.49 27198.22 25998.31 33798.41 220100.00 199.37 21296.41 25697.76 32099.65 28692.14 27998.50 33797.98 26586.84 37997.75 286
Baseline_NR-MVSNet96.16 30995.70 30997.56 30298.28 34096.79 306100.00 197.86 40291.93 37097.63 32699.47 31792.14 27998.35 34697.13 29486.83 38197.54 357
TranMVSNet+NR-MVSNet96.45 28996.01 29297.79 29598.00 35397.62 276100.00 199.35 22995.98 27597.31 33799.64 29090.09 30498.00 37096.89 30286.80 38297.75 286
MVStest194.27 33693.30 34597.19 31798.83 31897.18 29599.93 26998.79 38186.80 39684.88 40899.04 34394.32 24798.25 35190.55 37586.57 38396.12 391
pmmvs693.64 34392.87 35195.94 35197.47 37691.41 38098.92 39599.02 36387.84 39495.01 37199.61 30077.24 39298.77 31494.33 34286.41 38497.63 348
DTE-MVSNet95.52 32494.99 33297.08 31997.49 37496.45 313100.00 199.25 28193.82 33796.17 36199.57 30887.81 33497.18 38494.57 33986.26 38597.62 350
TransMVSNet (Re)94.78 33293.72 33997.93 29098.34 33497.88 26599.23 37197.98 39991.60 37194.55 37599.71 27187.89 33398.36 34589.30 38684.92 38697.56 356
UnsupCasMVSNet_eth94.25 33793.89 33795.34 35497.63 36492.13 37499.73 31299.36 21894.88 30892.78 38598.63 36982.72 37296.53 39294.57 33984.73 38797.36 366
ambc88.45 38386.84 41570.76 41297.79 40898.02 39890.91 39295.14 40038.69 41898.51 33694.97 33584.23 38896.09 392
testf184.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
APD_test284.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
PMVScopyleft60.66 2365.98 38865.05 38968.75 40455.06 42738.40 42988.19 41496.98 41048.30 42144.82 42288.52 41312.22 42786.49 41567.58 41683.79 39181.35 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f86.87 37286.06 37589.28 38291.45 41076.37 40799.87 28297.11 40991.10 37588.46 39893.05 40838.31 41996.66 39091.77 36683.46 39294.82 399
test_fmvs387.19 37187.02 37487.71 38592.69 40476.64 40699.96 25597.27 40893.55 34590.82 39394.03 40638.00 42092.19 41193.49 35483.35 39394.32 400
mvsany_test389.36 36788.96 37190.56 37991.95 40578.97 40499.74 30796.59 41596.84 21989.25 39696.07 39752.59 41297.11 38595.17 33382.44 39495.58 398
PVSNet_093.57 1996.41 29095.74 30798.41 24599.84 12195.22 329100.00 1100.00 198.08 10997.55 33299.78 26584.40 362100.00 1100.00 181.99 395100.00 1
Patchmatch-RL test93.49 34493.63 34193.05 37591.78 40683.41 40198.21 40596.95 41191.58 37291.05 39097.64 39099.40 5895.83 40094.11 34781.95 39699.91 151
PM-MVS88.39 36887.41 37391.31 37791.73 40782.02 40399.79 29696.62 41391.06 37690.71 39495.73 39848.60 41495.96 39890.56 37481.91 39795.97 393
pmmvs-eth3d91.73 35890.67 36294.92 36191.63 40892.71 37199.90 27598.54 38691.19 37488.08 39995.50 39979.31 38696.13 39790.55 37581.32 39895.91 394
mmtdpeth94.58 33394.18 33595.81 35298.82 32091.09 38399.99 21798.61 38596.38 258100.00 197.23 39276.52 39399.85 19399.82 12180.22 39996.48 384
UnsupCasMVSNet_bld89.50 36688.00 37293.99 37195.30 39788.86 39298.52 40299.28 26285.50 40087.80 40194.11 40561.63 40996.96 38690.63 37379.26 40096.15 389
new-patchmatchnet90.30 36589.46 36992.84 37690.77 41188.55 39399.83 28798.80 38090.07 38587.86 40095.00 40278.77 38794.30 40684.86 39779.15 40195.68 397
test_vis3_rt79.61 37778.19 38283.86 39188.68 41469.56 41399.81 29182.19 42786.78 39768.57 41584.51 41825.06 42498.26 35089.18 38878.94 40283.75 415
IB-MVS96.24 1297.54 23896.95 25399.33 18499.67 17398.10 247100.00 199.47 7997.42 17799.26 22999.69 27798.83 12199.89 18099.43 18978.77 403100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs390.62 36489.36 37094.40 36590.53 41391.49 379100.00 196.73 41284.21 40293.65 38296.65 39682.56 37594.83 40382.28 40277.62 40496.89 378
h-mvs3397.03 26296.53 26898.51 23799.79 14695.90 31999.45 34599.45 10298.21 96100.00 199.78 26597.49 17799.99 9899.72 14174.92 40599.65 253
LCM-MVSNet79.01 38176.93 38485.27 38978.28 42168.01 41796.57 41098.03 39655.10 41782.03 41093.27 40731.99 42393.95 40782.72 40074.37 40693.84 402
AUN-MVS96.26 30195.67 31398.06 27699.68 16595.60 32599.82 29099.42 14196.78 22499.88 17199.80 26294.84 23999.47 25997.48 28473.29 40799.12 263
hse-mvs296.79 27096.38 27698.04 28299.68 16595.54 32699.81 29199.42 14198.21 96100.00 199.80 26297.49 17799.46 26399.72 14173.27 40899.12 263
TDRefinement91.93 35590.48 36396.27 34681.60 41992.65 37299.10 38897.61 40793.96 33593.77 38199.85 25080.03 38199.53 25097.82 27270.59 40996.63 383
KD-MVS_self_test91.16 36090.09 36594.35 36694.44 40191.27 38199.74 30799.08 34290.82 37894.53 37694.91 40486.11 35094.78 40482.67 40168.52 41096.99 375
CL-MVSNet_self_test91.07 36190.35 36493.24 37493.27 40389.16 39099.55 33599.25 28192.34 36795.23 36997.05 39488.86 32493.59 40880.67 40566.95 41196.96 376
KD-MVS_2432*160094.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
miper_refine_blended94.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
PMMVS279.15 38077.28 38384.76 39082.34 41872.66 40899.70 31795.11 41871.68 41284.78 40990.87 40932.05 42289.99 41375.53 41563.45 41491.64 409
MVEpermissive68.59 2167.22 38664.68 39074.84 39874.67 42462.32 42395.84 41190.87 42350.98 41858.72 42081.05 42012.20 42878.95 41861.06 41956.75 41583.24 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 37681.95 37974.80 39958.54 42659.58 424100.00 187.14 42576.09 41099.61 205100.00 167.06 40774.19 42298.84 22350.30 41690.64 411
E-PMN70.72 38470.06 38772.69 40283.92 41765.48 42199.95 26192.72 42149.88 41972.30 41386.26 41647.17 41577.43 41953.83 42144.49 41775.17 419
EMVS69.88 38569.09 38872.24 40384.70 41665.82 42099.96 25587.08 42649.82 42071.51 41484.74 41749.30 41375.32 42050.97 42243.71 41875.59 418
ANet_high66.05 38763.44 39173.88 40061.14 42563.45 42295.68 41287.18 42479.93 40747.35 42180.68 42122.35 42572.33 42361.24 41835.42 41985.88 414
tmp_tt75.80 38374.26 38580.43 39652.91 42853.67 42787.42 41597.98 39961.80 41567.04 418100.00 176.43 39496.40 39396.47 31128.26 42091.23 410
test12379.44 37979.23 38180.05 39780.03 42071.72 410100.00 177.93 42862.52 41494.81 37299.69 27778.21 38874.53 42192.57 35927.33 42193.90 401
wuyk23d28.28 38929.73 39323.92 40575.89 42332.61 43066.50 41612.88 42916.09 42214.59 42416.59 42312.35 42632.36 42439.36 42313.36 4226.79 420
mmdepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.07 3930.09 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.79 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.41 39032.55 3920.00 4060.00 4290.00 4310.00 41799.39 2070.00 4240.00 425100.00 193.55 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.24 39210.99 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 42598.75 1260.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.33 39111.11 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.98 25695.74 321
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 19
eth-test20.00 429
eth-test0.00 429
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 39100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31
GSMVS99.91 151
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7299.91 151
sam_mvs99.33 61
MTGPAbinary99.42 141
test_post199.32 35888.24 41499.33 6199.59 22898.31 251
test_post89.05 41299.49 4199.59 228
patchmatchnet-post97.79 38799.41 5799.54 245
MTMP100.00 199.18 310
gm-plane-assit99.52 22997.26 29295.86 280100.00 199.43 26698.76 228
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3199.97 130
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.98 123
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
test_prior499.93 47100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 159
新几何2100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 196100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 290
segment_acmp99.55 27
testdata1100.00 198.77 66
plane_prior799.00 29894.78 343
plane_prior699.06 29094.80 33988.58 328
plane_prior499.97 201
plane_prior394.79 34299.03 2199.08 242
plane_prior2100.00 199.00 27
plane_prior199.02 293
n20.00 430
nn0.00 430
door-mid96.32 416
test1199.42 141
door96.13 417
HQP5-MVS94.82 336
HQP-NCC99.07 286100.00 199.04 1699.17 232
ACMP_Plane99.07 286100.00 199.04 1699.17 232
BP-MVS99.79 123
HQP4-MVS99.17 23299.57 23397.77 273
HQP2-MVS88.61 326
NP-MVS99.07 28694.81 33899.97 201
MDTV_nov1_ep13_2view99.24 16499.56 33496.31 26499.96 12698.86 11798.92 21999.89 168
Test By Simon99.10 88