This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 5898.13 4996.77 6188.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8598.46 2687.33 2499.97 297.21 2999.31 499.63 7
MSP-MVS95.62 896.54 192.86 9798.31 4880.10 18197.42 10396.78 5592.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13799.25 699.70 3
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3299.85 1194.75 5999.18 798.65 50
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 6899.16 796.96 4194.11 995.59 3498.64 1785.07 3499.91 495.61 4699.10 999.00 31
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9696.77 6185.32 14297.92 398.70 1583.09 5599.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 8898.64 3196.93 4490.71 4293.08 6998.70 1579.98 8199.21 9094.12 6899.07 1198.63 51
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7697.77 7296.74 6686.11 12496.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.79 2095.17 1893.64 6497.66 6984.10 8795.85 21796.42 10891.26 3497.49 1296.80 12186.50 2798.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test9_res96.00 4099.03 1398.31 68
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1998.15 1199.00 1599.47 9
agg_prior294.30 6499.00 1598.57 53
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7199.12 1296.78 5588.72 6697.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 5896.86 5192.05 2798.74 198.15 1198.97 1799.42 13
train_agg94.28 2794.45 2593.74 5798.64 3183.71 9397.82 6896.65 7884.50 16695.16 3798.09 4884.33 4099.36 8195.91 4298.96 1998.16 79
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8196.97 11381.30 6698.99 11088.54 14498.88 2099.20 25
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6399.06 1796.46 10388.75 6496.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6199.84 1397.90 1798.85 2199.45 10
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 18895.58 17391.12 3695.84 3293.87 20083.47 5198.37 14497.26 2798.81 2499.24 23
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
test_prior298.37 3986.08 12694.57 5098.02 5483.14 5395.05 5598.79 27
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10198.04 5796.41 10985.79 13395.00 4398.28 3784.32 4399.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 4998.06 5596.64 8193.64 1291.74 9198.54 2080.17 7799.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS93.12 4492.91 5293.74 5798.65 3083.88 8997.67 8096.26 12583.00 20993.22 6798.24 3881.31 6599.21 9089.12 13898.74 3098.14 81
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9397.08 10983.32 5299.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS89.82 194.61 2296.17 589.91 20997.09 9470.21 34298.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
PHI-MVS93.59 3993.63 3893.48 7598.05 5881.76 13498.64 3197.13 2782.60 21994.09 5698.49 2580.35 7299.85 1194.74 6098.62 3398.83 38
ACMMP_NAP93.46 4093.23 4694.17 4597.16 9284.28 8596.82 15596.65 7886.24 12294.27 5397.99 5577.94 10999.83 1793.39 7598.57 3498.39 63
MVSMamba_PlusPlus92.37 7291.55 8394.83 2795.37 13587.69 2495.60 22995.42 18974.65 33093.95 5892.81 21783.11 5497.70 17394.49 6398.53 3599.11 28
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7696.43 10784.02 18295.07 4298.74 1482.93 5699.38 7895.42 5098.51 3698.32 66
原ACMM191.22 17097.77 6578.10 23796.61 8481.05 24191.28 9997.42 9277.92 11198.98 11179.85 22398.51 3696.59 178
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 7997.76 7496.19 13389.59 5796.66 2098.17 4484.33 4099.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS99.09 883.22 10596.60 8782.88 21293.61 6398.06 5382.93 5699.14 10095.51 4998.49 39
新几何193.12 8697.44 8181.60 14196.71 7074.54 33191.22 10097.57 8379.13 9199.51 7177.40 24998.46 4098.26 73
SteuartSystems-ACMMP94.13 3294.44 2693.20 8395.41 13381.35 14499.02 2196.59 8889.50 5894.18 5598.36 3383.68 5099.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
9.1494.26 3198.10 5798.14 4696.52 9684.74 15894.83 4798.80 782.80 5899.37 8095.95 4198.42 42
HFP-MVS92.89 5092.86 5592.98 9298.71 2581.12 14797.58 8696.70 7185.20 14791.75 9097.97 6078.47 10199.71 4590.95 10798.41 4398.12 84
ACMMPR92.69 6092.67 5892.75 10198.66 2880.57 16597.58 8696.69 7385.20 14791.57 9297.92 6177.01 12599.67 5390.95 10798.41 4398.00 93
MP-MVS-pluss92.58 6592.35 6493.29 7997.30 9082.53 11496.44 17996.04 14484.68 16189.12 13098.37 3277.48 11899.74 3893.31 8098.38 4597.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R92.72 5692.70 5792.79 10098.68 2680.53 16997.53 9196.51 9785.22 14591.94 8897.98 5877.26 12099.67 5390.83 11298.37 4698.18 77
APD-MVScopyleft93.61 3893.59 3993.69 6298.76 2483.26 10497.21 11496.09 13982.41 22394.65 4998.21 3981.96 6398.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS92.75 5292.60 6093.23 8298.24 5181.82 13297.63 8196.50 9985.00 15391.05 10297.74 7278.38 10299.80 2590.48 11898.34 4898.07 86
test1294.25 4198.34 4685.55 5596.35 11892.36 8080.84 6799.22 8998.31 4997.98 95
MP-MVScopyleft92.61 6492.67 5892.42 11798.13 5679.73 19197.33 10996.20 13185.63 13590.53 10997.66 7578.14 10799.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22296.15 10878.41 22595.87 21596.46 10371.97 35189.66 12097.45 8876.33 14098.24 5198.30 69
CP-MVS92.54 6692.60 6092.34 11998.50 4079.90 18498.40 3896.40 11184.75 15790.48 11198.09 4877.40 11999.21 9091.15 10698.23 5297.92 99
MTAPA92.45 6992.31 6692.86 9797.90 6180.85 15892.88 30896.33 11987.92 8690.20 11498.18 4176.71 13399.76 3192.57 9298.09 5397.96 98
XVS92.69 6092.71 5692.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9497.83 6977.24 12299.59 6090.46 12098.07 5498.02 88
X-MVStestdata86.26 20284.14 22292.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9420.73 42077.24 12299.59 6090.46 12098.07 5498.02 88
MVS90.60 11588.64 14196.50 594.25 17490.53 893.33 29697.21 2277.59 30378.88 25097.31 9571.52 21599.69 4989.60 13298.03 5699.27 22
mPP-MVS91.88 8391.82 7792.07 13598.38 4478.63 21997.29 11196.09 13985.12 14988.45 14297.66 7575.53 15499.68 5189.83 12998.02 5797.88 100
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 6899.80 2599.16 197.96 5899.15 27
HPM-MVScopyleft91.62 9091.53 8491.89 14397.88 6379.22 20396.99 13795.73 16782.07 22989.50 12597.19 10475.59 15298.93 11790.91 10997.94 5997.54 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 4193.39 4493.47 7797.34 8982.83 11097.56 8898.27 689.16 6289.71 11897.14 10579.77 8399.56 6693.65 7397.94 5998.02 88
PGM-MVS91.93 8091.80 7892.32 12398.27 5079.74 19095.28 23997.27 2083.83 19090.89 10697.78 7176.12 14399.56 6688.82 14197.93 6197.66 119
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8894.71 497.08 1597.99 5578.69 9999.86 1099.15 297.85 6298.91 35
3Dnovator82.32 1089.33 13887.64 15994.42 3793.73 19185.70 4797.73 7696.75 6586.73 12076.21 28395.93 13762.17 27399.68 5181.67 20897.81 6397.88 100
CS-MVS-test92.98 4793.67 3790.90 17896.52 9976.87 27098.68 2894.73 22190.36 5094.84 4697.89 6577.94 10997.15 21294.28 6797.80 6498.70 48
GST-MVS92.43 7092.22 7093.04 9098.17 5481.64 13997.40 10596.38 11484.71 16090.90 10597.40 9377.55 11799.76 3189.75 13197.74 6597.72 114
PAPM92.87 5192.40 6394.30 3992.25 23987.85 2196.40 18396.38 11491.07 3888.72 13996.90 11482.11 6197.37 19890.05 12897.70 6697.67 118
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13880.96 15499.29 297.21 2294.50 797.29 1398.44 2782.15 6099.78 2898.56 797.68 6796.61 177
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11394.07 1095.34 3697.80 7076.83 13099.87 897.08 3197.64 6898.89 36
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24798.43 3697.21 2292.58 1997.68 1097.65 7986.88 2599.83 1798.25 997.60 6999.33 18
dcpmvs_293.10 4593.46 4392.02 13997.77 6579.73 19194.82 25993.86 27786.91 11391.33 9796.76 12285.20 3398.06 15696.90 3397.60 6998.27 72
testdata90.13 20095.92 11774.17 30596.49 10273.49 34094.82 4897.99 5578.80 9797.93 16083.53 19397.52 7198.29 70
MVSFormer91.36 9690.57 10293.73 5993.00 21488.08 1994.80 26194.48 23880.74 24794.90 4497.13 10678.84 9595.10 31283.77 18597.46 7298.02 88
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18091.03 3994.90 4497.66 7578.84 9597.56 18194.64 6297.46 7298.62 52
HPM-MVS_fast90.38 12290.17 11591.03 17497.61 7177.35 26297.15 12495.48 18179.51 27688.79 13696.90 11471.64 21498.81 12287.01 16297.44 7496.94 163
GG-mvs-BLEND93.49 7494.94 15086.26 3681.62 38897.00 3788.32 14594.30 18891.23 596.21 25488.49 14697.43 7598.00 93
旧先验197.39 8679.58 19596.54 9498.08 5184.00 4597.42 7697.62 123
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16392.42 2196.24 2798.18 4171.04 22099.17 9896.77 3497.39 7796.79 170
CSCG92.02 7891.65 8193.12 8698.53 3680.59 16497.47 9697.18 2577.06 31284.64 18597.98 5883.98 4699.52 6990.72 11497.33 7899.23 24
CS-MVS92.73 5493.48 4290.48 19196.27 10475.93 29098.55 3494.93 20889.32 5994.54 5197.67 7478.91 9497.02 21693.80 7097.32 7998.49 57
SR-MVS92.16 7592.27 6791.83 14898.37 4578.41 22596.67 16695.76 16482.19 22791.97 8698.07 5276.44 13698.64 12693.71 7297.27 8098.45 60
gg-mvs-nofinetune85.48 21882.90 24093.24 8194.51 16685.82 4579.22 39396.97 4061.19 39087.33 15453.01 40990.58 696.07 25786.07 16597.23 8197.81 109
reproduce-ours92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
our_new_method92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
MAR-MVS90.63 11490.22 11291.86 14598.47 4278.20 23597.18 11896.61 8483.87 18988.18 14798.18 4168.71 23399.75 3683.66 19097.15 8497.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EC-MVSNet91.73 8592.11 7290.58 18793.54 19577.77 25198.07 5494.40 24887.44 9992.99 7197.11 10874.59 17796.87 22793.75 7197.08 8597.11 157
3Dnovator+82.88 889.63 13487.85 15494.99 2394.49 16886.76 3397.84 6795.74 16686.10 12575.47 29496.02 13665.00 25999.51 7182.91 20097.07 8698.72 47
mvsmamba90.53 11990.08 11791.88 14494.81 15480.93 15593.94 28294.45 24388.24 7987.02 16092.35 22468.04 23595.80 27294.86 5797.03 8798.92 34
reproduce_model92.53 6792.87 5391.50 16097.41 8377.14 26896.02 20595.91 15683.65 19692.45 7698.39 3179.75 8499.21 9095.27 5496.98 8898.14 81
DeepC-MVS86.58 391.53 9291.06 9492.94 9494.52 16381.89 12895.95 20995.98 14890.76 4183.76 19696.76 12273.24 19499.71 4591.67 10396.96 8997.22 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS89.72 13189.87 12589.29 22098.33 4773.30 31197.70 7895.35 19375.68 32187.40 15297.44 9170.43 22698.25 14989.56 13496.90 9096.33 187
APD-MVS_3200maxsize91.23 10091.35 8690.89 17997.89 6276.35 28096.30 19095.52 17879.82 27091.03 10397.88 6674.70 17398.54 13292.11 9796.89 9197.77 111
MVP-Stereo82.65 26481.67 25985.59 29986.10 34578.29 22893.33 29692.82 32177.75 30169.17 34387.98 29059.28 29495.76 27671.77 29596.88 9282.73 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM_NR91.46 9390.82 9793.37 7898.50 4081.81 13395.03 25596.13 13684.65 16286.10 16797.65 7979.24 8999.75 3683.20 19696.88 9298.56 54
EIA-MVS91.73 8592.05 7490.78 18394.52 16376.40 27998.06 5595.34 19489.19 6188.90 13497.28 10077.56 11697.73 17290.77 11396.86 9498.20 76
SR-MVS-dyc-post91.29 9891.45 8590.80 18197.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6775.76 14998.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9397.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6773.36 19391.99 9996.79 9597.75 112
jason92.73 5492.23 6994.21 4490.50 28487.30 2998.65 3095.09 20290.61 4492.76 7597.13 10675.28 16597.30 20193.32 7996.75 9798.02 88
jason: jason.
test_fmvsmconf_n93.99 3494.36 2892.86 9792.82 22181.12 14799.26 496.37 11793.47 1395.16 3798.21 3979.00 9299.64 5598.21 1096.73 9897.83 106
test_vis1_n_192089.95 12790.59 10188.03 24992.36 23168.98 35199.12 1294.34 25193.86 1193.64 6297.01 11251.54 34299.59 6096.76 3596.71 9995.53 206
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14692.02 698.19 4595.68 16992.06 2596.01 3198.14 4570.83 22498.96 11296.74 3696.57 10096.76 173
test_fmvsmconf0.1_n93.08 4693.22 4792.65 10788.45 31780.81 15999.00 2295.11 20193.21 1594.00 5797.91 6376.84 12899.59 6097.91 1696.55 10197.54 127
MVS_111021_LR91.60 9191.64 8291.47 16295.74 12378.79 21696.15 20096.77 6188.49 7188.64 14097.07 11072.33 20499.19 9693.13 8596.48 10296.43 182
PAPR92.74 5392.17 7194.45 3698.89 2084.87 7697.20 11696.20 13187.73 9288.40 14398.12 4678.71 9899.76 3187.99 15196.28 10398.74 42
test_fmvsmvis_n_192092.12 7692.10 7392.17 13190.87 27681.04 15098.34 4093.90 27492.71 1887.24 15697.90 6474.83 17199.72 4396.96 3296.20 10495.76 200
test_cas_vis1_n_192089.90 12890.02 11989.54 21790.14 29274.63 30098.71 2794.43 24693.04 1792.40 7996.35 13053.41 33899.08 10695.59 4796.16 10594.90 219
Vis-MVSNetpermissive88.67 15487.82 15591.24 16892.68 22378.82 21396.95 14593.85 27887.55 9687.07 15995.13 16763.43 26697.21 20677.58 24596.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8298.29 4197.64 1494.57 695.36 3596.88 11679.96 8299.12 10391.30 10496.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS90.18 12488.97 13493.80 5498.66 2882.95 10997.50 9595.63 17275.16 32586.31 16497.69 7372.49 20199.90 581.26 21096.07 10898.56 54
QAPM86.88 19184.51 21293.98 4894.04 18485.89 4497.19 11796.05 14373.62 33775.12 29795.62 14762.02 27699.74 3870.88 30496.06 10996.30 189
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6094.50 16784.30 8499.14 1096.00 14691.94 2897.91 598.60 1884.78 3699.77 2998.84 596.03 11097.08 159
131488.94 14587.20 17394.17 4593.21 20685.73 4693.33 29696.64 8182.89 21175.98 28696.36 12966.83 24699.39 7783.52 19496.02 11197.39 142
MS-PatchMatch83.05 25681.82 25786.72 28189.64 30179.10 20894.88 25894.59 23479.70 27370.67 33389.65 26650.43 34796.82 23070.82 30795.99 11284.25 371
CHOSEN 280x42091.71 8891.85 7691.29 16694.94 15082.69 11187.89 35696.17 13485.94 13087.27 15594.31 18790.27 895.65 28494.04 6995.86 11395.53 206
OpenMVScopyleft79.58 1486.09 20483.62 22993.50 7390.95 27386.71 3497.44 9995.83 16175.35 32272.64 31995.72 14257.42 31499.64 5571.41 29895.85 11494.13 235
PVSNet_Blended93.13 4392.98 5193.57 6997.47 7783.86 9099.32 196.73 6791.02 4089.53 12396.21 13276.42 13799.57 6494.29 6595.81 11597.29 149
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 7999.13 1196.15 13592.06 2597.92 398.52 2384.52 3899.74 3898.76 695.67 11697.22 151
CHOSEN 1792x268891.07 10590.21 11393.64 6495.18 14283.53 9896.26 19296.13 13688.92 6384.90 17993.10 21572.86 19699.62 5888.86 14095.67 11697.79 110
test_fmvsmconf0.01_n91.08 10490.68 10092.29 12482.43 37680.12 18097.94 6293.93 27092.07 2491.97 8697.60 8267.56 23899.53 6897.09 3095.56 11897.21 153
ETV-MVS92.72 5692.87 5392.28 12594.54 16281.89 12897.98 5995.21 19989.77 5693.11 6896.83 11877.23 12497.50 18995.74 4495.38 11997.44 137
114514_t88.79 15287.57 16492.45 11498.21 5381.74 13596.99 13795.45 18475.16 32582.48 20795.69 14468.59 23498.50 13480.33 21595.18 12097.10 158
CANet_DTU90.98 10790.04 11893.83 5394.76 15686.23 3796.32 18993.12 31693.11 1693.71 6096.82 12063.08 26999.48 7384.29 17895.12 12195.77 199
DP-MVS Recon91.72 8790.85 9694.34 3899.50 185.00 7398.51 3595.96 15080.57 25188.08 14897.63 8176.84 12899.89 785.67 16894.88 12298.13 83
test250690.96 10890.39 10792.65 10793.54 19582.46 11796.37 18497.35 1786.78 11787.55 15195.25 15677.83 11397.50 18984.07 18094.80 12397.98 95
ECVR-MVScopyleft88.35 16587.25 17291.65 15493.54 19579.40 19896.56 17190.78 35486.78 11785.57 17195.25 15657.25 31597.56 18184.73 17694.80 12397.98 95
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 16082.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13599.80 2598.39 894.71 12595.22 215
test111188.11 17087.04 17891.35 16393.15 20978.79 21696.57 16990.78 35486.88 11485.04 17695.20 16257.23 31697.39 19683.88 18294.59 12697.87 102
fmvsm_s_conf0.1_n92.93 4993.16 4892.24 12690.52 28381.92 12698.42 3796.24 12791.17 3596.02 3098.35 3475.34 16499.74 3897.84 2094.58 12795.05 217
BH-w/o88.24 16887.47 16890.54 19095.03 14978.54 22097.41 10493.82 27984.08 18078.23 25694.51 18569.34 23297.21 20680.21 21994.58 12795.87 197
MVS_Test90.29 12389.18 13193.62 6695.23 13984.93 7494.41 26694.66 22684.31 17190.37 11391.02 24675.13 16797.82 16983.11 19894.42 12998.12 84
Vis-MVSNet (Re-imp)88.88 14888.87 13988.91 22793.89 18774.43 30396.93 14794.19 25984.39 16983.22 20195.67 14578.24 10494.70 32378.88 23394.40 13097.61 124
test_fmvs187.79 17888.52 14485.62 29892.98 21864.31 37097.88 6592.42 32687.95 8592.24 8295.82 14047.94 35798.44 14295.31 5394.09 13194.09 236
UGNet87.73 17986.55 18791.27 16795.16 14379.11 20796.35 18696.23 12888.14 8187.83 15090.48 25450.65 34599.09 10580.13 22094.03 13295.60 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet82.34 989.02 14387.79 15692.71 10495.49 13181.50 14297.70 7897.29 1887.76 9185.47 17395.12 16856.90 31798.90 11880.33 21594.02 13397.71 116
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 10898.10 5195.29 19691.57 3093.81 5997.45 8886.64 2699.43 7696.28 3794.01 13499.20 25
PVSNet_Blended_VisFu91.24 9990.77 9892.66 10695.09 14482.40 11897.77 7295.87 16088.26 7786.39 16393.94 19876.77 13199.27 8488.80 14294.00 13596.31 188
RRT-MVS89.67 13288.67 14092.67 10594.44 16981.08 14994.34 26994.45 24386.05 12785.79 16992.39 22363.39 26798.16 15493.22 8293.95 13698.76 41
PMMVS89.46 13689.92 12388.06 24794.64 15769.57 34896.22 19494.95 20787.27 10591.37 9696.54 12865.88 25197.39 19688.54 14493.89 13797.23 150
BH-untuned86.95 19085.94 19189.99 20494.52 16377.46 25996.78 15893.37 30581.80 23276.62 27493.81 20366.64 24797.02 21676.06 26293.88 13895.48 208
BH-RMVSNet86.84 19285.28 20091.49 16195.35 13680.26 17596.95 14592.21 32982.86 21381.77 22295.46 15259.34 29397.64 17669.79 31193.81 13996.57 179
fmvsm_s_conf0.5_n_a93.34 4293.71 3692.22 12893.38 20381.71 13798.86 2596.98 3891.64 2996.85 1698.55 1975.58 15399.77 2997.88 1993.68 14095.18 216
Effi-MVS+90.70 11389.90 12493.09 8893.61 19283.48 9995.20 24592.79 32283.22 20291.82 8995.70 14371.82 21197.48 19191.25 10593.67 14198.32 66
IS-MVSNet88.67 15488.16 15090.20 19993.61 19276.86 27196.77 16093.07 31784.02 18283.62 19795.60 14874.69 17696.24 25378.43 23793.66 14297.49 134
test_fmvs1_n86.34 20086.72 18585.17 30587.54 32963.64 37596.91 14992.37 32887.49 9891.33 9795.58 14940.81 38498.46 13895.00 5693.49 14393.41 250
AdaColmapbinary88.81 15087.61 16292.39 11899.33 479.95 18296.70 16595.58 17377.51 30483.05 20496.69 12661.90 27999.72 4384.29 17893.47 14497.50 133
fmvsm_s_conf0.1_n_a92.38 7192.49 6292.06 13688.08 32281.62 14097.97 6196.01 14590.62 4396.58 2298.33 3574.09 18399.71 4597.23 2893.46 14594.86 221
xiu_mvs_v1_base_debu90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base_debi90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
mvs_anonymous88.68 15387.62 16191.86 14594.80 15581.69 13893.53 29294.92 20982.03 23078.87 25190.43 25675.77 14895.34 29885.04 17393.16 14998.55 56
test_vis1_n85.60 21485.70 19385.33 30284.79 36064.98 36896.83 15391.61 33987.36 10291.00 10494.84 17836.14 39197.18 20895.66 4593.03 15093.82 241
LCM-MVSNet-Re83.75 24483.54 23184.39 32093.54 19564.14 37292.51 31184.03 39583.90 18866.14 35686.59 31167.36 24192.68 35384.89 17592.87 15196.35 184
casdiffmvs_mvgpermissive91.13 10290.45 10693.17 8592.99 21783.58 9797.46 9894.56 23587.69 9387.19 15794.98 17574.50 17897.60 17891.88 10292.79 15298.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive90.95 10990.39 10792.63 10992.82 22182.53 11496.83 15394.47 24187.69 9388.47 14195.56 15074.04 18497.54 18590.90 11092.74 15397.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS81.61 1285.02 22383.67 22689.06 22396.79 9673.27 31495.92 21194.79 21974.81 32880.47 23296.83 11871.07 21998.19 15249.82 38992.57 15495.71 201
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive91.17 10190.74 9992.44 11693.11 21382.50 11696.25 19393.62 29287.79 9090.40 11295.93 13773.44 19297.42 19393.62 7492.55 15597.41 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS87.47 18585.90 19292.18 13095.41 13382.26 12187.00 36396.28 12385.88 13284.23 18785.57 33075.07 16996.26 25071.14 30392.50 15698.03 87
LS3D82.22 27179.94 28589.06 22397.43 8274.06 30793.20 30292.05 33161.90 38573.33 31295.21 16159.35 29299.21 9054.54 37692.48 15793.90 240
ACMMPcopyleft90.39 12089.97 12091.64 15597.58 7478.21 23496.78 15896.72 6984.73 15984.72 18397.23 10271.22 21799.63 5788.37 14992.41 15897.08 159
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TESTMET0.1,189.83 12989.34 13091.31 16492.54 22980.19 17897.11 12896.57 9186.15 12386.85 16291.83 23779.32 8696.95 22181.30 20992.35 15996.77 172
PLCcopyleft83.97 788.00 17387.38 17089.83 21298.02 5976.46 27797.16 12294.43 24679.26 28381.98 21796.28 13169.36 23199.27 8477.71 24292.25 16093.77 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline90.76 11290.10 11692.74 10292.90 22082.56 11394.60 26394.56 23587.69 9389.06 13295.67 14573.76 18797.51 18890.43 12292.23 16198.16 79
PatchMatch-RL85.00 22483.66 22789.02 22595.86 11874.55 30292.49 31293.60 29379.30 28179.29 24791.47 23858.53 29998.45 14070.22 30992.17 16294.07 237
test-LLR88.48 16087.98 15289.98 20592.26 23777.23 26497.11 12895.96 15083.76 19386.30 16591.38 24072.30 20596.78 23380.82 21191.92 16395.94 195
test-mter88.95 14488.60 14289.98 20592.26 23777.23 26497.11 12895.96 15085.32 14286.30 16591.38 24076.37 13996.78 23380.82 21191.92 16395.94 195
Fast-Effi-MVS+87.93 17586.94 18190.92 17794.04 18479.16 20598.26 4293.72 28881.29 23883.94 19392.90 21669.83 23096.68 23676.70 25591.74 16596.93 164
FE-MVS86.06 20584.15 22191.78 14994.33 17379.81 18584.58 38096.61 8476.69 31585.00 17787.38 29770.71 22598.37 14470.39 30891.70 16697.17 156
UA-Net88.92 14688.48 14590.24 19794.06 18377.18 26693.04 30494.66 22687.39 10191.09 10193.89 19974.92 17098.18 15375.83 26591.43 16795.35 211
PatchmatchNetpermissive86.83 19385.12 20591.95 14194.12 18182.27 12086.55 36795.64 17184.59 16482.98 20584.99 34277.26 12095.96 26468.61 31691.34 16897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PCF-MVS84.09 586.77 19585.00 20792.08 13492.06 25183.07 10792.14 31794.47 24179.63 27476.90 27094.78 17971.15 21899.20 9572.87 28991.05 16993.98 238
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set91.84 8491.77 7992.04 13897.60 7281.17 14696.61 16796.87 4988.20 8089.19 12897.55 8778.69 9999.14 10090.29 12590.94 17095.80 198
mamv485.50 21686.76 18381.72 34493.23 20554.93 40189.95 33892.94 31969.96 36179.00 24892.20 22780.69 7094.22 33492.06 9890.77 17196.01 193
CNLPA86.96 18985.37 19991.72 15397.59 7379.34 20197.21 11491.05 34974.22 33278.90 24996.75 12467.21 24398.95 11474.68 27590.77 17196.88 168
UBG92.68 6292.35 6493.70 6195.61 12785.65 5297.25 11297.06 3487.92 8689.28 12795.03 17186.06 3198.07 15592.24 9490.69 17397.37 143
CVMVSNet84.83 22685.57 19582.63 33791.55 26160.38 38795.13 24995.03 20580.60 25082.10 21694.71 18066.40 24990.19 37974.30 28090.32 17497.31 147
EPNet_dtu87.65 18287.89 15386.93 27694.57 15971.37 33696.72 16196.50 9988.56 7087.12 15895.02 17275.91 14794.01 33866.62 32590.00 17595.42 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)87.71 18186.23 18992.17 13194.19 17680.55 16687.16 36296.07 14282.12 22885.98 16888.35 28472.04 20998.49 13580.26 21789.87 17697.48 135
baseline290.39 12090.21 11390.93 17690.86 27780.99 15295.20 24597.41 1686.03 12980.07 24094.61 18290.58 697.47 19287.29 15889.86 17794.35 231
LFMVS89.27 14087.64 15994.16 4797.16 9285.52 5697.18 11894.66 22679.17 28489.63 12196.57 12755.35 32898.22 15089.52 13589.54 17898.74 42
EI-MVSNet-UG-set91.35 9791.22 8991.73 15297.39 8680.68 16296.47 17696.83 5287.92 8688.30 14697.36 9477.84 11299.13 10289.43 13689.45 17995.37 210
GeoE86.36 19985.20 20189.83 21293.17 20876.13 28297.53 9192.11 33079.58 27580.99 22694.01 19666.60 24896.17 25673.48 28789.30 18097.20 155
UWE-MVS88.56 15988.91 13887.50 26394.17 17772.19 32295.82 21997.05 3584.96 15484.78 18193.51 20981.33 6494.75 32179.43 22689.17 18195.57 204
sss90.87 11189.96 12193.60 6794.15 17883.84 9297.14 12598.13 785.93 13189.68 11996.09 13571.67 21299.30 8387.69 15489.16 18297.66 119
HY-MVS84.06 691.63 8990.37 10995.39 1996.12 10988.25 1790.22 33697.58 1588.33 7690.50 11091.96 23379.26 8899.06 10790.29 12589.07 18398.88 37
testing1192.48 6892.04 7593.78 5595.94 11686.00 4097.56 8897.08 3287.52 9789.32 12695.40 15384.60 3798.02 15791.93 10189.04 18497.32 145
thisisatest051590.95 10990.26 11093.01 9194.03 18684.27 8697.91 6396.67 7583.18 20386.87 16195.51 15188.66 1597.85 16880.46 21489.01 18596.92 166
CDS-MVSNet89.50 13588.96 13591.14 17291.94 25680.93 15597.09 13295.81 16284.26 17684.72 18394.20 19280.31 7395.64 28583.37 19588.96 18696.85 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet92.11 7791.22 8994.79 2896.91 9586.98 3097.91 6397.96 1086.38 12193.65 6195.74 14170.16 22998.95 11493.39 7588.87 18798.43 61
alignmvs92.97 4892.26 6895.12 2195.54 13087.77 2298.67 2996.38 11488.04 8393.01 7097.45 8879.20 9098.60 12893.25 8188.76 18898.99 33
WTY-MVS92.65 6391.68 8095.56 1496.00 11288.90 1398.23 4397.65 1388.57 6989.82 11797.22 10379.29 8799.06 10789.57 13388.73 18998.73 46
ETVMVS90.99 10690.26 11093.19 8495.81 12085.64 5396.97 14297.18 2585.43 13988.77 13894.86 17782.00 6296.37 24682.70 20188.60 19097.57 126
sasdasda92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
canonicalmvs92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
test_yl91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
DCV-MVSNet91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
MGCFI-Net91.95 7991.03 9594.72 3195.68 12586.38 3596.93 14794.48 23888.25 7892.78 7497.24 10172.34 20398.46 13893.13 8588.43 19599.32 19
HyFIR lowres test89.36 13788.60 14291.63 15794.91 15280.76 16195.60 22995.53 17682.56 22084.03 18991.24 24378.03 10896.81 23187.07 16188.41 19697.32 145
testing22291.09 10390.49 10592.87 9695.82 11985.04 7096.51 17497.28 1986.05 12789.13 12995.34 15580.16 7896.62 23985.82 16688.31 19796.96 162
TAMVS88.48 16087.79 15690.56 18891.09 27179.18 20496.45 17895.88 15883.64 19783.12 20293.33 21075.94 14695.74 28082.40 20388.27 19896.75 174
EPP-MVSNet89.76 13089.72 12689.87 21093.78 18876.02 28797.22 11396.51 9779.35 27885.11 17595.01 17384.82 3597.10 21487.46 15788.21 19996.50 180
MVS-HIRNet71.36 35367.00 35984.46 31890.58 28269.74 34679.15 39487.74 37746.09 40661.96 37650.50 41045.14 36695.64 28553.74 37888.11 20088.00 326
testing9991.91 8191.35 8693.60 6795.98 11485.70 4797.31 11096.92 4686.82 11588.91 13395.25 15684.26 4497.89 16788.80 14287.94 20197.21 153
testing9191.90 8291.31 8893.66 6395.99 11385.68 4997.39 10696.89 4786.75 11988.85 13595.23 15983.93 4797.90 16688.91 13987.89 20297.41 139
TR-MVS86.30 20184.93 20990.42 19294.63 15877.58 25796.57 16993.82 27980.30 26082.42 20995.16 16558.74 29797.55 18374.88 27387.82 20396.13 192
cascas86.50 19784.48 21492.55 11292.64 22785.95 4197.04 13695.07 20475.32 32380.50 23191.02 24654.33 33597.98 15986.79 16387.62 20493.71 243
OMC-MVS88.80 15188.16 15090.72 18495.30 13777.92 24494.81 26094.51 23786.80 11684.97 17896.85 11767.53 23998.60 12885.08 17287.62 20495.63 202
SCA85.63 21383.64 22891.60 15892.30 23581.86 13092.88 30895.56 17584.85 15582.52 20685.12 34058.04 30495.39 29573.89 28387.58 20697.54 127
thisisatest053089.65 13389.02 13391.53 15993.46 20180.78 16096.52 17296.67 7581.69 23583.79 19594.90 17688.85 1497.68 17477.80 23887.49 20796.14 191
WB-MVSnew84.08 23983.51 23285.80 29291.34 26676.69 27595.62 22896.27 12481.77 23381.81 22192.81 21758.23 30194.70 32366.66 32487.06 20885.99 358
VDDNet86.44 19884.51 21292.22 12891.56 26081.83 13197.10 13194.64 22969.50 36487.84 14995.19 16348.01 35597.92 16589.82 13086.92 20996.89 167
VDD-MVS88.28 16787.02 17992.06 13695.09 14480.18 17997.55 9094.45 24383.09 20589.10 13195.92 13947.97 35698.49 13593.08 8786.91 21097.52 132
thres20088.92 14687.65 15892.73 10396.30 10385.62 5497.85 6698.86 184.38 17084.82 18093.99 19775.12 16898.01 15870.86 30586.67 21194.56 230
DP-MVS81.47 28078.28 29791.04 17398.14 5578.48 22195.09 25486.97 37961.14 39171.12 33092.78 22059.59 28999.38 7853.11 38086.61 21295.27 214
F-COLMAP84.50 23383.44 23487.67 25595.22 14072.22 32095.95 20993.78 28475.74 32076.30 28095.18 16459.50 29198.45 14072.67 29186.59 21392.35 256
mvsany_test187.58 18388.22 14785.67 29689.78 29667.18 35895.25 24287.93 37583.96 18588.79 13697.06 11172.52 20094.53 32892.21 9586.45 21495.30 213
tttt051788.57 15888.19 14989.71 21693.00 21475.99 28895.67 22496.67 7580.78 24681.82 22094.40 18688.97 1397.58 18076.05 26386.31 21595.57 204
CR-MVSNet83.53 24781.36 26490.06 20190.16 29079.75 18879.02 39591.12 34684.24 17782.27 21480.35 37275.45 15693.67 34563.37 34386.25 21696.75 174
RPMNet79.85 29675.92 31691.64 15590.16 29079.75 18879.02 39595.44 18558.43 40082.27 21472.55 39873.03 19598.41 14346.10 39686.25 21696.75 174
thres100view90088.30 16686.95 18092.33 12196.10 11084.90 7597.14 12598.85 282.69 21783.41 19893.66 20575.43 15897.93 16069.04 31386.24 21894.17 232
tfpn200view988.48 16087.15 17492.47 11396.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21894.17 232
thres40088.42 16387.15 17492.23 12796.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21893.45 248
CostFormer89.08 14288.39 14691.15 17193.13 21179.15 20688.61 34896.11 13883.14 20489.58 12286.93 30683.83 4996.87 22788.22 15085.92 22197.42 138
thres600view788.06 17186.70 18692.15 13396.10 11085.17 6797.14 12598.85 282.70 21683.41 19893.66 20575.43 15897.82 16967.13 32285.88 22293.45 248
Effi-MVS+-dtu84.61 23084.90 21083.72 32791.96 25463.14 37894.95 25693.34 30685.57 13679.79 24187.12 30361.99 27795.61 28883.55 19185.83 22392.41 255
JIA-IIPM79.00 30677.20 30584.40 31989.74 29964.06 37375.30 40395.44 18562.15 38481.90 21859.08 40778.92 9395.59 28966.51 32885.78 22493.54 245
tpm287.35 18686.26 18890.62 18692.93 21978.67 21888.06 35595.99 14779.33 27987.40 15286.43 31780.28 7496.40 24480.23 21885.73 22596.79 170
1112_ss88.60 15787.47 16892.00 14093.21 20680.97 15396.47 17692.46 32583.64 19780.86 22897.30 9880.24 7597.62 17777.60 24485.49 22697.40 141
Test_1112_low_res88.03 17286.73 18491.94 14293.15 20980.88 15796.44 17992.41 32783.59 19980.74 23091.16 24480.18 7697.59 17977.48 24785.40 22797.36 144
GA-MVS85.79 21084.04 22391.02 17589.47 30680.27 17496.90 15094.84 21585.57 13680.88 22789.08 27056.56 32196.47 24377.72 24185.35 22896.34 185
tpmrst88.36 16487.38 17091.31 16494.36 17279.92 18387.32 36095.26 19885.32 14288.34 14486.13 32380.60 7196.70 23583.78 18485.34 22997.30 148
MDTV_nov1_ep1383.69 22594.09 18281.01 15186.78 36596.09 13983.81 19184.75 18284.32 34774.44 17996.54 24063.88 33985.07 230
Fast-Effi-MVS+-dtu83.33 25082.60 24685.50 30089.55 30469.38 34996.09 20491.38 34182.30 22475.96 28791.41 23956.71 31895.58 29075.13 27284.90 23191.54 257
PatchT79.75 29776.85 30988.42 23589.55 30475.49 29477.37 39994.61 23263.07 38082.46 20873.32 39575.52 15593.41 35051.36 38384.43 23296.36 183
XVG-OURS-SEG-HR85.74 21185.16 20487.49 26590.22 28871.45 33491.29 32894.09 26581.37 23783.90 19495.22 16060.30 28697.53 18785.58 16984.42 23393.50 246
tpm cat183.63 24681.38 26390.39 19393.53 20078.19 23685.56 37495.09 20270.78 35778.51 25283.28 35774.80 17297.03 21566.77 32384.05 23495.95 194
DSMNet-mixed73.13 34372.45 33875.19 37677.51 39246.82 40785.09 37882.01 40067.61 37369.27 34281.33 36750.89 34486.28 39454.54 37683.80 23592.46 253
ADS-MVSNet279.57 30077.53 30385.71 29593.78 18872.13 32379.48 39186.11 38673.09 34380.14 23779.99 37562.15 27490.14 38059.49 35683.52 23694.85 222
ADS-MVSNet81.26 28378.36 29689.96 20793.78 18879.78 18679.48 39193.60 29373.09 34380.14 23779.99 37562.15 27495.24 30459.49 35683.52 23694.85 222
XVG-OURS85.18 22184.38 21687.59 25990.42 28671.73 33191.06 33194.07 26682.00 23183.29 20095.08 17056.42 32297.55 18383.70 18983.42 23893.49 247
dp84.30 23682.31 24990.28 19694.24 17577.97 24086.57 36695.53 17679.94 26980.75 22985.16 33871.49 21696.39 24563.73 34083.36 23996.48 181
MSDG80.62 29277.77 30289.14 22293.43 20277.24 26391.89 32090.18 35869.86 36368.02 34491.94 23552.21 34198.84 12059.32 35883.12 24091.35 258
MIMVSNet79.18 30575.99 31588.72 23287.37 33080.66 16379.96 38991.82 33477.38 30674.33 30281.87 36341.78 37790.74 37566.36 33083.10 24194.76 224
HQP3-MVS94.80 21783.01 242
HQP-MVS87.91 17687.55 16588.98 22692.08 24878.48 22197.63 8194.80 21790.52 4582.30 21094.56 18365.40 25597.32 19987.67 15583.01 24291.13 259
plane_prior77.96 24197.52 9490.36 5082.96 244
CLD-MVS87.97 17487.48 16789.44 21892.16 24480.54 16898.14 4694.92 20991.41 3279.43 24595.40 15362.34 27297.27 20490.60 11782.90 24590.50 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS87.50 18487.09 17788.74 23191.86 25777.96 24197.18 11894.69 22289.89 5481.33 22394.15 19364.77 26097.30 20187.08 15982.82 24690.96 261
plane_prior594.69 22297.30 20187.08 15982.82 24690.96 261
OPM-MVS85.84 20885.10 20688.06 24788.34 31977.83 24895.72 22294.20 25887.89 8980.45 23394.05 19558.57 29897.26 20583.88 18282.76 24889.09 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous20240521184.41 23481.93 25591.85 14796.78 9778.41 22597.44 9991.34 34470.29 35984.06 18894.26 18941.09 38198.96 11279.46 22582.65 24998.17 78
ab-mvs87.08 18784.94 20893.48 7593.34 20483.67 9588.82 34595.70 16881.18 23984.55 18690.14 26262.72 27098.94 11685.49 17082.54 25097.85 104
Syy-MVS77.97 31478.05 29977.74 36592.13 24556.85 39493.97 28094.23 25582.43 22173.39 30893.57 20757.95 30787.86 38732.40 40882.34 25188.51 312
myMVS_eth3d81.93 27482.18 25081.18 34792.13 24567.18 35893.97 28094.23 25582.43 22173.39 30893.57 20776.98 12687.86 38750.53 38782.34 25188.51 312
ET-MVSNet_ETH3D90.01 12689.03 13292.95 9394.38 17186.77 3298.14 4696.31 12289.30 6063.33 36896.72 12590.09 1093.63 34690.70 11682.29 25398.46 59
SDMVSNet87.02 18885.61 19491.24 16894.14 17983.30 10393.88 28495.98 14884.30 17379.63 24392.01 22958.23 30197.68 17490.28 12782.02 25492.75 251
sd_testset84.62 22983.11 23789.17 22194.14 17977.78 25091.54 32794.38 24984.30 17379.63 24392.01 22952.28 34096.98 21977.67 24382.02 25492.75 251
tpmvs83.04 25780.77 27089.84 21195.43 13277.96 24185.59 37395.32 19575.31 32476.27 28183.70 35373.89 18597.41 19459.53 35581.93 25694.14 234
CMPMVSbinary54.94 2175.71 33174.56 32679.17 35979.69 38455.98 39689.59 33993.30 30760.28 39353.85 39789.07 27147.68 36096.33 24876.55 25681.02 25785.22 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re84.10 23882.90 24087.70 25491.41 26573.28 31290.59 33493.19 31085.02 15177.96 26093.68 20457.92 30996.18 25575.50 26880.87 25893.63 244
LPG-MVS_test84.20 23783.49 23386.33 28390.88 27473.06 31595.28 23994.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
LGP-MVS_train86.33 28390.88 27473.06 31594.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
ACMM80.70 1383.72 24582.85 24286.31 28691.19 26872.12 32495.88 21494.29 25380.44 25577.02 26891.96 23355.24 32997.14 21379.30 22880.38 26189.67 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax82.12 27281.15 26785.03 30784.19 36670.70 33894.22 27693.95 26983.07 20673.48 30789.75 26549.66 35195.37 29782.24 20579.76 26289.02 300
test_djsdf83.00 25982.45 24884.64 31384.07 36869.78 34594.80 26194.48 23880.74 24775.41 29587.70 29361.32 28395.10 31283.77 18579.76 26289.04 299
ACMP81.66 1184.00 24083.22 23686.33 28391.53 26372.95 31895.91 21393.79 28383.70 19573.79 30492.22 22654.31 33696.89 22583.98 18179.74 26489.16 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing380.74 29081.17 26679.44 35791.15 27063.48 37697.16 12295.76 16480.83 24471.36 32793.15 21478.22 10587.30 39243.19 40079.67 26587.55 337
PVSNet_BlendedMVS90.05 12589.96 12190.33 19597.47 7783.86 9098.02 5896.73 6787.98 8489.53 12389.61 26776.42 13799.57 6494.29 6579.59 26687.57 334
Patchmatch-test78.25 30974.72 32488.83 22991.20 26774.10 30673.91 40688.70 37359.89 39666.82 35185.12 34078.38 10294.54 32748.84 39279.58 26797.86 103
mvs_tets81.74 27680.71 27284.84 30884.22 36570.29 34193.91 28393.78 28482.77 21573.37 31089.46 26847.36 36195.31 30181.99 20679.55 26888.92 306
FIs86.73 19686.10 19088.61 23390.05 29380.21 17796.14 20196.95 4285.56 13878.37 25492.30 22576.73 13295.28 30279.51 22479.27 26990.35 268
D2MVS82.67 26381.55 26086.04 29087.77 32576.47 27695.21 24496.58 9082.66 21870.26 33685.46 33360.39 28595.80 27276.40 25979.18 27085.83 361
ACMMP++79.05 271
PS-MVSNAJss84.91 22584.30 21786.74 27785.89 34874.40 30494.95 25694.16 26183.93 18776.45 27690.11 26371.04 22095.77 27583.16 19779.02 27290.06 278
FC-MVSNet-test85.96 20685.39 19887.66 25689.38 30878.02 23895.65 22696.87 4985.12 14977.34 26391.94 23576.28 14194.74 32277.09 25078.82 27390.21 271
EG-PatchMatch MVS74.92 33372.02 34183.62 32883.76 37373.28 31293.62 28992.04 33268.57 36758.88 38683.80 35231.87 40095.57 29156.97 36878.67 27482.00 387
EI-MVSNet85.80 20985.20 20187.59 25991.55 26177.41 26095.13 24995.36 19180.43 25780.33 23594.71 18073.72 18895.97 26176.96 25378.64 27589.39 284
MVSTER89.25 14188.92 13790.24 19795.98 11484.66 7896.79 15795.36 19187.19 10980.33 23590.61 25390.02 1195.97 26185.38 17178.64 27590.09 276
anonymousdsp80.98 28879.97 28484.01 32181.73 37870.44 34092.49 31293.58 29577.10 31172.98 31686.31 31957.58 31094.90 31679.32 22778.63 27786.69 347
UniMVSNet_ETH3D80.86 28978.75 29587.22 27286.31 33972.02 32591.95 31893.76 28773.51 33875.06 29890.16 26143.04 37495.66 28276.37 26078.55 27893.98 238
ACMMP++_ref78.45 279
test_fmvs279.59 29979.90 28678.67 36182.86 37555.82 39895.20 24589.55 36281.09 24080.12 23989.80 26434.31 39693.51 34887.82 15278.36 28086.69 347
Anonymous2024052983.15 25480.60 27490.80 18195.74 12378.27 22996.81 15694.92 20960.10 39581.89 21992.54 22145.82 36598.82 12179.25 22978.32 28195.31 212
XVG-ACMP-BASELINE79.38 30377.90 30183.81 32384.98 35967.14 36289.03 34493.18 31280.26 26372.87 31788.15 28838.55 38696.26 25076.05 26378.05 28288.02 325
tpm85.55 21584.47 21588.80 23090.19 28975.39 29588.79 34694.69 22284.83 15683.96 19285.21 33678.22 10594.68 32576.32 26178.02 28396.34 185
test0.0.03 182.79 26182.48 24783.74 32686.81 33472.22 32096.52 17295.03 20583.76 19373.00 31593.20 21172.30 20588.88 38264.15 33877.52 28490.12 274
RPSCF77.73 31676.63 31181.06 34888.66 31555.76 39987.77 35787.88 37664.82 37874.14 30392.79 21949.22 35296.81 23167.47 32076.88 28590.62 264
MonoMVSNet85.68 21284.22 21990.03 20288.43 31877.83 24892.95 30791.46 34087.28 10478.11 25785.96 32566.31 25094.81 32090.71 11576.81 28697.46 136
LTVRE_ROB73.68 1877.99 31275.74 31784.74 30990.45 28572.02 32586.41 36891.12 34672.57 34866.63 35387.27 29954.95 33296.98 21956.29 37075.98 28785.21 365
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_rt73.96 33672.40 33978.64 36283.91 37061.16 38695.63 22768.18 41576.32 31660.09 38374.77 38929.01 40497.54 18587.74 15375.94 28877.22 398
OpenMVS_ROBcopyleft68.52 2073.02 34469.57 35183.37 33180.54 38271.82 32993.60 29088.22 37462.37 38361.98 37583.15 35835.31 39595.47 29345.08 39875.88 28982.82 377
USDC78.65 30776.25 31385.85 29187.58 32774.60 30189.58 34090.58 35784.05 18163.13 36988.23 28640.69 38596.86 22966.57 32775.81 29086.09 356
COLMAP_ROBcopyleft73.24 1975.74 33073.00 33783.94 32292.38 23069.08 35091.85 32186.93 38061.48 38865.32 36090.27 25842.27 37696.93 22450.91 38575.63 29185.80 362
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GBi-Net82.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
test182.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
FMVSNet384.71 22782.71 24490.70 18594.55 16187.71 2395.92 21194.67 22581.73 23475.82 28988.08 28966.99 24494.47 32971.23 30075.38 29289.91 280
tt080581.20 28579.06 29387.61 25786.50 33672.97 31793.66 28795.48 18174.11 33376.23 28291.99 23141.36 38097.40 19577.44 24874.78 29592.45 254
FMVSNet282.79 26180.44 27689.83 21292.66 22485.43 5795.42 23694.35 25079.06 28774.46 30187.28 29856.38 32394.31 33269.72 31274.68 29689.76 281
ITE_SJBPF82.38 33887.00 33265.59 36689.55 36279.99 26869.37 34191.30 24241.60 37995.33 29962.86 34574.63 29786.24 353
ACMH75.40 1777.99 31274.96 32087.10 27490.67 28176.41 27893.19 30391.64 33872.47 34963.44 36787.61 29543.34 37197.16 20958.34 36073.94 29887.72 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline188.85 14987.49 16692.93 9595.21 14186.85 3195.47 23494.61 23287.29 10383.11 20394.99 17480.70 6996.89 22582.28 20473.72 29995.05 217
pmmvs482.54 26580.79 26987.79 25286.11 34480.49 17093.55 29193.18 31277.29 30773.35 31189.40 26965.26 25895.05 31575.32 27073.61 30087.83 328
AllTest75.92 32873.06 33684.47 31692.18 24267.29 35691.07 33084.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
TestCases84.47 31692.18 24267.29 35684.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
pmmvs581.34 28279.54 28886.73 28085.02 35876.91 26996.22 19491.65 33777.65 30273.55 30688.61 27755.70 32694.43 33074.12 28273.35 30388.86 308
XXY-MVS83.84 24282.00 25489.35 21987.13 33181.38 14395.72 22294.26 25480.15 26475.92 28890.63 25261.96 27896.52 24178.98 23273.28 30490.14 273
WBMVS87.73 17986.79 18290.56 18895.61 12785.68 4997.63 8195.52 17883.77 19278.30 25588.44 28286.14 3095.78 27482.54 20273.15 30590.21 271
FMVSNet179.50 30176.54 31288.39 23888.47 31681.95 12394.30 27293.38 30273.14 34272.04 32485.66 32643.86 36893.84 34165.48 33272.53 30689.38 286
cl2285.11 22284.17 22087.92 25095.06 14878.82 21395.51 23294.22 25779.74 27276.77 27187.92 29175.96 14595.68 28179.93 22272.42 30789.27 291
miper_ehance_all_eth84.57 23183.60 23087.50 26392.64 22778.25 23095.40 23893.47 29779.28 28276.41 27787.64 29476.53 13495.24 30478.58 23572.42 30789.01 301
miper_enhance_ethall85.95 20785.20 20188.19 24694.85 15379.76 18796.00 20694.06 26782.98 21077.74 26188.76 27579.42 8595.46 29480.58 21372.42 30789.36 289
test_040272.68 34569.54 35282.09 34188.67 31471.81 33092.72 31086.77 38361.52 38762.21 37483.91 35143.22 37293.76 34434.60 40672.23 31080.72 393
dmvs_testset72.00 35073.36 33567.91 38283.83 37131.90 42285.30 37677.12 40782.80 21463.05 37192.46 22261.54 28182.55 40442.22 40371.89 31189.29 290
testgi74.88 33473.40 33479.32 35880.13 38361.75 38293.21 30186.64 38479.49 27766.56 35591.06 24535.51 39488.67 38356.79 36971.25 31287.56 335
nrg03086.79 19485.43 19790.87 18088.76 31185.34 5897.06 13594.33 25284.31 17180.45 23391.98 23272.36 20296.36 24788.48 14771.13 31390.93 263
ACMH+76.62 1677.47 31974.94 32185.05 30691.07 27271.58 33393.26 30090.01 35971.80 35264.76 36288.55 27841.62 37896.48 24262.35 34671.00 31487.09 343
VPA-MVSNet85.32 21983.83 22489.77 21590.25 28782.63 11296.36 18597.07 3383.03 20881.21 22589.02 27261.58 28096.31 24985.02 17470.95 31590.36 267
IterMVS80.67 29179.16 29185.20 30489.79 29576.08 28392.97 30691.86 33380.28 26171.20 32985.14 33957.93 30891.34 36972.52 29270.74 31688.18 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-LS83.93 24182.80 24387.31 26991.46 26477.39 26195.66 22593.43 30080.44 25575.51 29387.26 30073.72 18895.16 30876.99 25170.72 31789.39 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 29379.10 29284.73 31089.63 30274.66 29992.98 30591.81 33580.05 26671.06 33185.18 33758.04 30491.40 36872.48 29370.70 31888.12 324
v124081.70 27779.83 28787.30 27085.50 35177.70 25695.48 23393.44 29878.46 29576.53 27586.44 31560.85 28495.84 26971.59 29770.17 31988.35 319
V4283.04 25781.53 26187.57 26186.27 34179.09 20995.87 21594.11 26480.35 25977.22 26686.79 30965.32 25796.02 25977.74 24070.14 32087.61 333
v119282.31 27080.55 27587.60 25885.94 34678.47 22495.85 21793.80 28279.33 27976.97 26986.51 31263.33 26895.87 26873.11 28870.13 32188.46 316
v114482.90 26081.27 26587.78 25386.29 34079.07 21096.14 20193.93 27080.05 26677.38 26286.80 30865.50 25395.93 26675.21 27170.13 32188.33 320
Anonymous2023120675.29 33273.64 33380.22 35380.75 37963.38 37793.36 29590.71 35673.09 34367.12 34783.70 35350.33 34890.85 37453.63 37970.10 32386.44 350
WR-MVS84.32 23582.96 23888.41 23689.38 30880.32 17196.59 16896.25 12683.97 18476.63 27390.36 25767.53 23994.86 31875.82 26670.09 32490.06 278
EU-MVSNet76.92 32476.95 30876.83 37084.10 36754.73 40291.77 32292.71 32372.74 34669.57 34088.69 27658.03 30687.43 39164.91 33570.00 32588.33 320
IB-MVS85.34 488.67 15487.14 17693.26 8093.12 21284.32 8398.76 2697.27 2087.19 10979.36 24690.45 25583.92 4898.53 13384.41 17769.79 32696.93 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192082.02 27380.23 27987.41 26685.62 35077.92 24495.79 22193.69 28978.86 29076.67 27286.44 31562.50 27195.83 27072.69 29069.77 32788.47 315
v2v48283.46 24881.86 25688.25 24386.19 34279.65 19396.34 18794.02 26881.56 23677.32 26488.23 28665.62 25296.03 25877.77 23969.72 32889.09 296
v14419282.43 26680.73 27187.54 26285.81 34978.22 23195.98 20793.78 28479.09 28677.11 26786.49 31364.66 26295.91 26774.20 28169.42 32988.49 314
cl____83.27 25182.12 25186.74 27792.20 24075.95 28995.11 25193.27 30878.44 29674.82 29987.02 30574.19 18195.19 30674.67 27669.32 33089.09 296
DIV-MVS_self_test83.27 25182.12 25186.74 27792.19 24175.92 29195.11 25193.26 30978.44 29674.81 30087.08 30474.19 18195.19 30674.66 27769.30 33189.11 295
Anonymous2023121179.72 29877.19 30687.33 26795.59 12977.16 26795.18 24894.18 26059.31 39872.57 32086.20 32247.89 35895.66 28274.53 27969.24 33289.18 293
FMVSNet576.46 32674.16 33083.35 33290.05 29376.17 28189.58 34089.85 36071.39 35565.29 36180.42 37150.61 34687.70 39061.05 35269.24 33286.18 354
c3_l83.80 24382.65 24587.25 27192.10 24777.74 25595.25 24293.04 31878.58 29376.01 28587.21 30275.25 16695.11 31177.54 24668.89 33488.91 307
TinyColmap72.41 34668.99 35582.68 33688.11 32169.59 34788.41 34985.20 38865.55 37557.91 38984.82 34430.80 40295.94 26551.38 38268.70 33582.49 382
LF4IMVS72.36 34770.82 34576.95 36979.18 38556.33 39586.12 37086.11 38669.30 36563.06 37086.66 31033.03 39892.25 35865.33 33368.64 33682.28 384
Anonymous2024052172.06 34969.91 35078.50 36377.11 39461.67 38491.62 32690.97 35165.52 37662.37 37379.05 37836.32 39090.96 37357.75 36368.52 33782.87 376
OurMVSNet-221017-077.18 32276.06 31480.55 35183.78 37260.00 38990.35 33591.05 34977.01 31366.62 35487.92 29147.73 35994.03 33771.63 29668.44 33887.62 332
CP-MVSNet81.01 28780.08 28183.79 32487.91 32470.51 33994.29 27595.65 17080.83 24472.54 32188.84 27463.71 26492.32 35768.58 31768.36 33988.55 311
UniMVSNet_NR-MVSNet85.49 21784.59 21188.21 24589.44 30779.36 19996.71 16396.41 10985.22 14578.11 25790.98 24876.97 12795.14 30979.14 23068.30 34090.12 274
DU-MVS84.57 23183.33 23588.28 24188.76 31179.36 19996.43 18195.41 19085.42 14078.11 25790.82 24967.61 23695.14 30979.14 23068.30 34090.33 269
PS-CasMVS80.27 29479.18 29083.52 33087.56 32869.88 34494.08 27895.29 19680.27 26272.08 32388.51 28159.22 29592.23 35967.49 31968.15 34288.45 317
UniMVSNet (Re)85.31 22084.23 21888.55 23489.75 29780.55 16696.72 16196.89 4785.42 14078.40 25388.93 27375.38 16095.52 29278.58 23568.02 34389.57 283
our_test_377.90 31575.37 31985.48 30185.39 35376.74 27393.63 28891.67 33673.39 34165.72 35884.65 34558.20 30393.13 35257.82 36267.87 34486.57 349
tfpnnormal78.14 31075.42 31886.31 28688.33 32079.24 20294.41 26696.22 12973.51 33869.81 33985.52 33255.43 32795.75 27747.65 39467.86 34583.95 374
VPNet84.69 22882.92 23990.01 20389.01 31083.45 10096.71 16395.46 18385.71 13479.65 24292.18 22856.66 32096.01 26083.05 19967.84 34690.56 265
v1081.43 28179.53 28987.11 27386.38 33778.87 21294.31 27193.43 30077.88 29973.24 31385.26 33465.44 25495.75 27772.14 29467.71 34786.72 346
v881.88 27580.06 28387.32 26886.63 33579.04 21194.41 26693.65 29178.77 29173.19 31485.57 33066.87 24595.81 27173.84 28567.61 34887.11 342
v7n79.32 30477.34 30485.28 30384.05 36972.89 31993.38 29493.87 27675.02 32770.68 33284.37 34659.58 29095.62 28767.60 31867.50 34987.32 341
WR-MVS_H81.02 28680.09 28083.79 32488.08 32271.26 33794.46 26496.54 9480.08 26572.81 31886.82 30770.36 22792.65 35464.18 33767.50 34987.46 339
Patchmtry77.36 32074.59 32585.67 29689.75 29775.75 29377.85 39891.12 34660.28 39371.23 32880.35 37275.45 15693.56 34757.94 36167.34 35187.68 331
reproduce_monomvs87.80 17787.60 16388.40 23796.56 9880.26 17595.80 22096.32 12191.56 3173.60 30588.36 28388.53 1696.25 25290.47 11967.23 35288.67 309
eth_miper_zixun_eth83.12 25582.01 25386.47 28291.85 25974.80 29894.33 27093.18 31279.11 28575.74 29287.25 30172.71 19795.32 30076.78 25467.13 35389.27 291
miper_lstm_enhance81.66 27980.66 27384.67 31291.19 26871.97 32791.94 31993.19 31077.86 30072.27 32285.26 33473.46 19193.42 34973.71 28667.05 35488.61 310
v14882.41 26980.89 26886.99 27586.18 34376.81 27296.27 19193.82 27980.49 25475.28 29686.11 32467.32 24295.75 27775.48 26967.03 35588.42 318
NR-MVSNet83.35 24981.52 26288.84 22888.76 31181.31 14594.45 26595.16 20084.65 16267.81 34590.82 24970.36 22794.87 31774.75 27466.89 35690.33 269
Baseline_NR-MVSNet81.22 28480.07 28284.68 31185.32 35675.12 29796.48 17588.80 37076.24 31977.28 26586.40 31867.61 23694.39 33175.73 26766.73 35784.54 368
TranMVSNet+NR-MVSNet83.24 25381.71 25887.83 25187.71 32678.81 21596.13 20394.82 21684.52 16576.18 28490.78 25164.07 26394.60 32674.60 27866.59 35890.09 276
h-mvs3389.30 13988.95 13690.36 19495.07 14676.04 28496.96 14497.11 3090.39 4892.22 8395.10 16974.70 17398.86 11993.14 8365.89 35996.16 190
PEN-MVS79.47 30278.26 29883.08 33386.36 33868.58 35293.85 28594.77 22079.76 27171.37 32688.55 27859.79 28792.46 35564.50 33665.40 36088.19 322
FPMVS55.09 37352.93 37661.57 39155.98 41540.51 41683.11 38683.41 39837.61 40934.95 41071.95 39914.40 41276.95 40929.81 40965.16 36167.25 404
ppachtmachnet_test77.19 32174.22 32986.13 28985.39 35378.22 23193.98 27991.36 34371.74 35367.11 34884.87 34356.67 31993.37 35152.21 38164.59 36286.80 345
AUN-MVS86.25 20385.57 19588.26 24293.57 19473.38 30995.45 23595.88 15883.94 18685.47 17394.21 19173.70 19096.67 23783.54 19264.41 36394.73 228
hse-mvs288.22 16988.21 14888.25 24393.54 19573.41 30895.41 23795.89 15790.39 4892.22 8394.22 19074.70 17396.66 23893.14 8364.37 36494.69 229
pm-mvs180.05 29578.02 30086.15 28885.42 35275.81 29295.11 25192.69 32477.13 30970.36 33587.43 29658.44 30095.27 30371.36 29964.25 36587.36 340
N_pmnet61.30 36860.20 37164.60 38784.32 36417.00 42891.67 32510.98 42661.77 38658.45 38878.55 37949.89 35091.83 36542.27 40263.94 36684.97 366
SixPastTwentyTwo76.04 32774.32 32881.22 34684.54 36261.43 38591.16 32989.30 36677.89 29864.04 36486.31 31948.23 35394.29 33363.54 34263.84 36787.93 327
MIMVSNet169.44 35866.65 36277.84 36476.48 39662.84 37987.42 35988.97 36866.96 37457.75 39179.72 37732.77 39985.83 39646.32 39563.42 36884.85 367
DTE-MVSNet78.37 30877.06 30782.32 34085.22 35767.17 36193.40 29393.66 29078.71 29270.53 33488.29 28559.06 29692.23 35961.38 35063.28 36987.56 335
new_pmnet66.18 36563.18 36775.18 37776.27 39861.74 38383.79 38384.66 39156.64 40251.57 39871.85 40131.29 40187.93 38649.98 38862.55 37075.86 399
test_fmvs369.56 35669.19 35470.67 38069.01 40647.05 40690.87 33286.81 38171.31 35666.79 35277.15 38316.40 41183.17 40281.84 20762.51 37181.79 389
test20.0372.36 34771.15 34475.98 37477.79 39059.16 39192.40 31489.35 36574.09 33461.50 37784.32 34748.09 35485.54 39750.63 38662.15 37283.24 375
EGC-MVSNET52.46 37647.56 37967.15 38381.98 37760.11 38882.54 38772.44 4110.11 4230.70 42474.59 39025.11 40583.26 40129.04 41061.51 37358.09 408
pmmvs674.65 33571.67 34283.60 32979.13 38669.94 34393.31 29990.88 35361.05 39265.83 35784.15 34943.43 37094.83 31966.62 32560.63 37486.02 357
MDA-MVSNet_test_wron73.54 34070.43 34882.86 33484.55 36171.85 32891.74 32391.32 34567.63 36946.73 40281.09 36955.11 33090.42 37855.91 37259.76 37586.31 352
YYNet173.53 34170.43 34882.85 33584.52 36371.73 33191.69 32491.37 34267.63 36946.79 40181.21 36855.04 33190.43 37755.93 37159.70 37686.38 351
test_f64.01 36762.13 37069.65 38163.00 41345.30 41283.66 38480.68 40261.30 38955.70 39472.62 39714.23 41384.64 39869.84 31058.11 37779.00 395
Patchmatch-RL test76.65 32574.01 33284.55 31577.37 39364.23 37178.49 39782.84 39978.48 29464.63 36373.40 39476.05 14491.70 36776.99 25157.84 37897.72 114
pmmvs-eth3d73.59 33870.66 34682.38 33876.40 39773.38 30989.39 34389.43 36472.69 34760.34 38277.79 38146.43 36491.26 37166.42 32957.06 37982.51 380
PM-MVS69.32 35966.93 36076.49 37173.60 40355.84 39785.91 37179.32 40574.72 32961.09 37978.18 38021.76 40791.10 37270.86 30556.90 38082.51 380
kuosan73.55 33972.39 34077.01 36889.68 30066.72 36385.24 37793.44 29867.76 36860.04 38483.40 35671.90 21084.25 39945.34 39754.75 38180.06 394
Gipumacopyleft45.11 38142.05 38354.30 39780.69 38051.30 40435.80 41583.81 39628.13 41127.94 41534.53 41511.41 41876.70 41121.45 41454.65 38234.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test156.56 37153.58 37565.50 38467.93 40946.51 40977.24 40172.95 41038.09 40842.75 40675.17 38813.38 41482.78 40340.19 40454.53 38367.23 405
MDA-MVSNet-bldmvs71.45 35167.94 35881.98 34285.33 35568.50 35392.35 31588.76 37170.40 35842.99 40581.96 36246.57 36391.31 37048.75 39354.39 38486.11 355
K. test v373.62 33771.59 34379.69 35582.98 37459.85 39090.85 33388.83 36977.13 30958.90 38582.11 36143.62 36991.72 36665.83 33154.10 38587.50 338
CL-MVSNet_self_test75.81 32974.14 33180.83 35078.33 38967.79 35594.22 27693.52 29677.28 30869.82 33881.54 36661.47 28289.22 38157.59 36453.51 38685.48 363
KD-MVS_self_test70.97 35469.31 35375.95 37576.24 39955.39 40087.45 35890.94 35270.20 36062.96 37277.48 38244.01 36788.09 38561.25 35153.26 38784.37 370
TDRefinement69.20 36065.78 36479.48 35666.04 41162.21 38188.21 35086.12 38562.92 38161.03 38085.61 32933.23 39794.16 33555.82 37353.02 38882.08 386
ambc76.02 37368.11 40851.43 40364.97 41189.59 36160.49 38174.49 39117.17 41092.46 35561.50 34952.85 38984.17 372
TransMVSNet (Re)76.94 32374.38 32784.62 31485.92 34775.25 29695.28 23989.18 36773.88 33667.22 34686.46 31459.64 28894.10 33659.24 35952.57 39084.50 369
mvsany_test367.19 36365.34 36572.72 37863.08 41248.57 40583.12 38578.09 40672.07 35061.21 37877.11 38422.94 40687.78 38978.59 23451.88 39181.80 388
mvs5depth71.40 35268.36 35780.54 35275.31 40165.56 36779.94 39085.14 38969.11 36671.75 32581.59 36441.02 38293.94 33960.90 35350.46 39282.10 385
test_vis3_rt54.10 37451.04 37763.27 39058.16 41446.08 41184.17 38149.32 42556.48 40336.56 40949.48 4128.03 42191.91 36467.29 32149.87 39351.82 411
PMVScopyleft34.80 2339.19 38335.53 38650.18 39829.72 42530.30 42359.60 41366.20 41826.06 41417.91 41849.53 4113.12 42474.09 41318.19 41649.40 39446.14 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v079.98 35480.59 38158.34 39380.87 40158.49 38783.46 35543.10 37393.89 34063.11 34448.68 39587.72 329
UnsupCasMVSNet_eth73.25 34270.57 34781.30 34577.53 39166.33 36487.24 36193.89 27580.38 25857.90 39081.59 36442.91 37590.56 37665.18 33448.51 39687.01 344
new-patchmatchnet68.85 36165.93 36377.61 36673.57 40463.94 37490.11 33788.73 37271.62 35455.08 39573.60 39340.84 38387.22 39351.35 38448.49 39781.67 391
dongtai69.47 35768.98 35670.93 37986.87 33358.45 39288.19 35193.18 31263.98 37956.04 39380.17 37470.97 22379.24 40633.46 40747.94 39875.09 400
pmmvs365.75 36662.18 36976.45 37267.12 41064.54 36988.68 34785.05 39054.77 40457.54 39273.79 39229.40 40386.21 39555.49 37547.77 39978.62 396
test_method56.77 37054.53 37463.49 38976.49 39540.70 41575.68 40274.24 40919.47 41748.73 39971.89 40019.31 40865.80 41757.46 36547.51 40083.97 373
ttmdpeth69.58 35566.92 36177.54 36775.95 40062.40 38088.09 35284.32 39462.87 38265.70 35986.25 32136.53 38988.53 38455.65 37446.96 40181.70 390
mmtdpeth78.04 31176.76 31081.86 34389.60 30366.12 36592.34 31687.18 37876.83 31485.55 17276.49 38646.77 36297.02 21690.85 11145.24 40282.43 383
UnsupCasMVSNet_bld68.60 36264.50 36680.92 34974.63 40267.80 35483.97 38292.94 31965.12 37754.63 39668.23 40335.97 39292.17 36160.13 35444.83 40382.78 378
LCM-MVSNet52.52 37548.24 37865.35 38547.63 42241.45 41472.55 40783.62 39731.75 41037.66 40857.92 4089.19 42076.76 41049.26 39044.60 40477.84 397
PVSNet_077.72 1581.70 27778.95 29489.94 20890.77 28076.72 27495.96 20896.95 4285.01 15270.24 33788.53 28052.32 33998.20 15186.68 16444.08 40594.89 220
testf145.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
APD_test245.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
KD-MVS_2432*160077.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
miper_refine_blended77.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
DeepMVS_CXcopyleft64.06 38878.53 38843.26 41368.11 41769.94 36238.55 40776.14 38718.53 40979.34 40543.72 39941.62 40869.57 403
MVStest166.93 36463.01 36878.69 36078.56 38771.43 33585.51 37586.81 38149.79 40548.57 40084.15 34953.46 33783.31 40043.14 40137.15 41181.34 392
WB-MVS57.26 36956.22 37260.39 39369.29 40535.91 42086.39 36970.06 41359.84 39746.46 40372.71 39651.18 34378.11 40715.19 41734.89 41267.14 406
SSC-MVS56.01 37254.96 37359.17 39468.42 40734.13 42184.98 37969.23 41458.08 40145.36 40471.67 40250.30 34977.46 40814.28 41832.33 41365.91 407
PMMVS250.90 37746.31 38064.67 38655.53 41646.67 40877.30 40071.02 41240.89 40734.16 41159.32 4069.83 41976.14 41240.09 40528.63 41471.21 401
MVEpermissive35.65 2233.85 38429.49 38946.92 39941.86 42336.28 41950.45 41456.52 42218.75 41818.28 41737.84 4142.41 42558.41 41818.71 41520.62 41546.06 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 38532.39 38733.65 40153.35 41825.70 42574.07 40553.33 42321.08 41517.17 41933.63 41711.85 41754.84 41912.98 41914.04 41620.42 416
ANet_high46.22 37841.28 38561.04 39239.91 42446.25 41070.59 40876.18 40858.87 39923.09 41648.00 41312.58 41666.54 41628.65 41113.62 41770.35 402
tmp_tt41.54 38241.93 38440.38 40020.10 42626.84 42461.93 41259.09 42114.81 41928.51 41480.58 37035.53 39348.33 42163.70 34113.11 41845.96 414
EMVS31.70 38631.45 38832.48 40250.72 42123.95 42674.78 40452.30 42420.36 41616.08 42031.48 41812.80 41553.60 42011.39 42013.10 41919.88 417
wuyk23d14.10 38813.89 39114.72 40355.23 41722.91 42733.83 4163.56 4274.94 4204.11 4212.28 4232.06 42619.66 42210.23 4218.74 4201.59 420
testmvs9.92 38912.94 3920.84 4050.65 4270.29 43093.78 2860.39 4280.42 4212.85 42215.84 4210.17 4280.30 4242.18 4220.21 4211.91 419
test1239.07 39011.73 3931.11 4040.50 4280.77 42989.44 3420.20 4290.34 4222.15 42310.72 4220.34 4270.32 4231.79 4230.08 4222.23 418
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k21.43 38728.57 3900.00 4060.00 4290.00 4310.00 41795.93 1550.00 4240.00 42597.66 7563.57 2650.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.92 3927.89 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42471.04 2200.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.11 39110.81 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.30 980.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS67.18 35849.00 391
FOURS198.51 3978.01 23998.13 4996.21 13083.04 20794.39 52
test_one_060198.91 1884.56 8196.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 429
eth-test0.00 429
test_241102_ONE99.03 1585.03 7196.78 5588.72 6697.79 698.90 588.48 1799.82 19
save fliter98.24 5183.34 10298.61 3396.57 9191.32 33
test072699.05 985.18 6399.11 1596.78 5588.75 6497.65 1198.91 287.69 22
GSMVS97.54 127
test_part298.90 1985.14 6996.07 29
sam_mvs177.59 11597.54 127
sam_mvs75.35 163
MTGPAbinary96.33 119
test_post185.88 37230.24 41973.77 18695.07 31473.89 283
test_post33.80 41676.17 14295.97 261
patchmatchnet-post77.09 38577.78 11495.39 295
MTMP97.53 9168.16 416
gm-plane-assit92.27 23679.64 19484.47 16895.15 16697.93 16085.81 167
TEST998.64 3183.71 9397.82 6896.65 7884.29 17595.16 3798.09 4884.39 3999.36 81
test_898.63 3383.64 9697.81 7096.63 8384.50 16695.10 4098.11 4784.33 4099.23 88
agg_prior98.59 3583.13 10696.56 9394.19 5499.16 99
test_prior482.34 11997.75 75
test_prior93.09 8898.68 2681.91 12796.40 11199.06 10798.29 70
旧先验296.97 14274.06 33596.10 2897.76 17188.38 148
新几何296.42 182
无先验96.87 15196.78 5577.39 30599.52 6979.95 22198.43 61
原ACMM296.84 152
testdata299.48 7376.45 258
segment_acmp82.69 59
testdata195.57 23187.44 99
plane_prior791.86 25777.55 258
plane_prior691.98 25377.92 24464.77 260
plane_prior494.15 193
plane_prior377.75 25490.17 5281.33 223
plane_prior297.18 11889.89 54
plane_prior191.95 255
n20.00 430
nn0.00 430
door-mid79.75 404
test1196.50 99
door80.13 403
HQP5-MVS78.48 221
HQP-NCC92.08 24897.63 8190.52 4582.30 210
ACMP_Plane92.08 24897.63 8190.52 4582.30 210
BP-MVS87.67 155
HQP4-MVS82.30 21097.32 19991.13 259
HQP2-MVS65.40 255
NP-MVS92.04 25278.22 23194.56 183
MDTV_nov1_ep13_2view81.74 13586.80 36480.65 24985.65 17074.26 18076.52 25796.98 161
Test By Simon71.65 213