| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 24 | 99.05 9 | 85.34 58 | 98.13 49 | 96.77 61 | 88.38 74 | 97.70 8 | 98.77 10 | 92.06 3 | 99.84 13 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| PC_three_1452 | | | | | | | | | | 91.12 36 | 98.33 2 | 98.42 30 | 92.51 2 | 99.81 22 | 98.96 4 | 99.37 1 | 99.70 3 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 12 | | | | 98.54 20 | 92.06 3 | 99.84 13 | 99.11 3 | 99.37 1 | 99.74 1 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 24 | 97.10 31 | 95.17 3 | 92.11 85 | 98.46 26 | 87.33 24 | 99.97 2 | 97.21 29 | 99.31 4 | 99.63 7 |
|
| MSP-MVS | | | 95.62 8 | 96.54 1 | 92.86 97 | 98.31 48 | 80.10 181 | 97.42 103 | 96.78 55 | 92.20 22 | 97.11 14 | 98.29 36 | 93.46 1 | 99.10 104 | 96.01 39 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPM-MVS | | | 96.21 2 | 95.53 13 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 8 | 96.98 38 | 93.39 14 | 96.45 25 | 98.79 8 | 90.17 9 | 99.99 1 | 89.33 137 | 99.25 6 | 99.70 3 |
|
| HPM-MVS++ |  | | 95.32 11 | 95.48 14 | 94.85 26 | 98.62 34 | 86.04 39 | 97.81 70 | 96.93 44 | 92.45 20 | 95.69 33 | 98.50 24 | 85.38 32 | 99.85 11 | 94.75 59 | 99.18 7 | 98.65 50 |
|
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 24 | 99.06 17 | 97.12 29 | 94.66 5 | 96.79 17 | 98.78 9 | 86.42 28 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 31 |
|
| NCCC | | | 95.63 7 | 95.94 8 | 94.69 32 | 99.21 6 | 85.15 68 | 99.16 7 | 96.96 41 | 94.11 9 | 95.59 34 | 98.64 17 | 85.07 34 | 99.91 4 | 95.61 46 | 99.10 9 | 99.00 31 |
|
| SMA-MVS |  | | 94.70 21 | 94.68 21 | 94.76 29 | 98.02 59 | 85.94 43 | 97.47 96 | 96.77 61 | 85.32 142 | 97.92 3 | 98.70 15 | 83.09 55 | 99.84 13 | 95.79 43 | 99.08 10 | 98.49 57 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MSLP-MVS++ | | | 94.28 27 | 94.39 27 | 93.97 49 | 98.30 49 | 84.06 88 | 98.64 31 | 96.93 44 | 90.71 42 | 93.08 69 | 98.70 15 | 79.98 81 | 99.21 90 | 94.12 68 | 99.07 11 | 98.63 51 |
|
| DPE-MVS |  | | 95.32 11 | 95.55 12 | 94.64 33 | 98.79 23 | 84.87 76 | 97.77 72 | 96.74 66 | 86.11 124 | 96.54 24 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 20 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| TSAR-MVS + MP. | | | 94.79 20 | 95.17 18 | 93.64 64 | 97.66 69 | 84.10 87 | 95.85 217 | 96.42 108 | 91.26 34 | 97.49 12 | 96.80 121 | 86.50 27 | 98.49 135 | 95.54 48 | 99.03 13 | 98.33 65 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test9_res | | | | | | | | | | | | | | | 96.00 40 | 99.03 13 | 98.31 68 |
|
| test_241102_TWO | | | | | | | | | 96.78 55 | 88.72 66 | 97.70 8 | 98.91 2 | 87.86 21 | 99.82 19 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 64 | 99.00 15 | 98.57 53 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 25 | 99.03 15 | 85.03 71 | 99.12 12 | 96.78 55 | 88.72 66 | 97.79 6 | 98.91 2 | 88.48 17 | 99.82 19 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 58 | | 96.86 51 | 92.05 27 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| train_agg | | | 94.28 27 | 94.45 25 | 93.74 57 | 98.64 31 | 83.71 93 | 97.82 68 | 96.65 78 | 84.50 166 | 95.16 37 | 98.09 48 | 84.33 40 | 99.36 81 | 95.91 42 | 98.96 19 | 98.16 79 |
|
| MG-MVS | | | 94.25 29 | 93.72 35 | 95.85 12 | 99.38 3 | 89.35 11 | 97.98 59 | 98.09 9 | 89.99 53 | 92.34 81 | 96.97 113 | 81.30 66 | 98.99 110 | 88.54 144 | 98.88 20 | 99.20 25 |
|
| DVP-MVS |  | | 95.58 9 | 95.91 9 | 94.57 34 | 99.05 9 | 85.18 63 | 99.06 17 | 96.46 103 | 88.75 64 | 96.69 18 | 98.76 12 | 87.69 22 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 40 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 95.14 20 | 99.04 14 | 86.14 38 | 99.06 17 | 96.77 61 | | | | | 99.84 13 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| test_0728_THIRD | | | | | | | | | | 88.38 74 | 96.69 18 | 98.76 12 | 89.64 12 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| balanced_conf03 | | | 94.60 23 | 94.30 29 | 95.48 16 | 96.45 100 | 88.82 14 | 96.33 188 | 95.58 173 | 91.12 36 | 95.84 32 | 93.87 200 | 83.47 51 | 98.37 144 | 97.26 27 | 98.81 24 | 99.24 23 |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 52 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| test_prior2 | | | | | | | | 98.37 39 | | 86.08 126 | 94.57 50 | 98.02 54 | 83.14 53 | | 95.05 55 | 98.79 27 | |
|
| APDe-MVS |  | | 94.56 24 | 94.75 20 | 93.96 50 | 98.84 22 | 83.40 101 | 98.04 57 | 96.41 109 | 85.79 133 | 95.00 43 | 98.28 37 | 84.32 43 | 99.18 97 | 97.35 26 | 98.77 28 | 99.28 21 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepC-MVS_fast | | 89.06 2 | 94.48 25 | 94.30 29 | 95.02 22 | 98.86 21 | 85.68 49 | 98.06 55 | 96.64 81 | 93.64 12 | 91.74 91 | 98.54 20 | 80.17 77 | 99.90 5 | 92.28 93 | 98.75 29 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CDPH-MVS | | | 93.12 44 | 92.91 52 | 93.74 57 | 98.65 30 | 83.88 89 | 97.67 80 | 96.26 125 | 83.00 209 | 93.22 67 | 98.24 38 | 81.31 65 | 99.21 90 | 89.12 138 | 98.74 30 | 98.14 81 |
|
| DELS-MVS | | | 94.98 14 | 94.49 24 | 96.44 6 | 96.42 101 | 90.59 7 | 99.21 5 | 97.02 36 | 94.40 8 | 91.46 93 | 97.08 109 | 83.32 52 | 99.69 49 | 92.83 88 | 98.70 31 | 99.04 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DeepPCF-MVS | | 89.82 1 | 94.61 22 | 96.17 5 | 89.91 209 | 97.09 94 | 70.21 342 | 98.99 23 | 96.69 73 | 95.57 2 | 95.08 41 | 99.23 1 | 86.40 29 | 99.87 8 | 97.84 20 | 98.66 32 | 99.65 6 |
|
| PHI-MVS | | | 93.59 39 | 93.63 38 | 93.48 75 | 98.05 58 | 81.76 134 | 98.64 31 | 97.13 27 | 82.60 219 | 94.09 56 | 98.49 25 | 80.35 72 | 99.85 11 | 94.74 60 | 98.62 33 | 98.83 38 |
|
| ACMMP_NAP | | | 93.46 40 | 93.23 46 | 94.17 45 | 97.16 92 | 84.28 85 | 96.82 155 | 96.65 78 | 86.24 122 | 94.27 53 | 97.99 55 | 77.94 109 | 99.83 17 | 93.39 75 | 98.57 34 | 98.39 63 |
|
| MVSMamba_PlusPlus | | | 92.37 72 | 91.55 83 | 94.83 27 | 95.37 135 | 87.69 24 | 95.60 229 | 95.42 189 | 74.65 330 | 93.95 58 | 92.81 217 | 83.11 54 | 97.70 173 | 94.49 63 | 98.53 35 | 99.11 28 |
|
| SF-MVS | | | 94.17 30 | 94.05 34 | 94.55 35 | 97.56 75 | 85.95 41 | 97.73 76 | 96.43 107 | 84.02 182 | 95.07 42 | 98.74 14 | 82.93 56 | 99.38 78 | 95.42 50 | 98.51 36 | 98.32 66 |
|
| 原ACMM1 | | | | | 91.22 170 | 97.77 65 | 78.10 237 | | 96.61 84 | 81.05 241 | 91.28 99 | 97.42 92 | 77.92 111 | 98.98 111 | 79.85 223 | 98.51 36 | 96.59 178 |
|
| SD-MVS | | | 94.84 18 | 95.02 19 | 94.29 40 | 97.87 64 | 84.61 79 | 97.76 74 | 96.19 133 | 89.59 57 | 96.66 20 | 98.17 44 | 84.33 40 | 99.60 59 | 96.09 38 | 98.50 38 | 98.66 49 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ZD-MVS | | | | | | 99.09 8 | 83.22 105 | | 96.60 87 | 82.88 212 | 93.61 63 | 98.06 53 | 82.93 56 | 99.14 100 | 95.51 49 | 98.49 39 | |
|
| 新几何1 | | | | | 93.12 86 | 97.44 81 | 81.60 141 | | 96.71 70 | 74.54 331 | 91.22 100 | 97.57 83 | 79.13 91 | 99.51 71 | 77.40 249 | 98.46 40 | 98.26 73 |
|
| SteuartSystems-ACMMP | | | 94.13 32 | 94.44 26 | 93.20 83 | 95.41 133 | 81.35 144 | 99.02 21 | 96.59 88 | 89.50 58 | 94.18 55 | 98.36 33 | 83.68 50 | 99.45 75 | 94.77 58 | 98.45 41 | 98.81 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 9.14 | | | | 94.26 31 | | 98.10 57 | | 98.14 46 | 96.52 96 | 84.74 158 | 94.83 47 | 98.80 7 | 82.80 58 | 99.37 80 | 95.95 41 | 98.42 42 | |
|
| HFP-MVS | | | 92.89 50 | 92.86 55 | 92.98 92 | 98.71 25 | 81.12 147 | 97.58 86 | 96.70 71 | 85.20 147 | 91.75 90 | 97.97 60 | 78.47 101 | 99.71 45 | 90.95 107 | 98.41 43 | 98.12 84 |
|
| ACMMPR | | | 92.69 60 | 92.67 58 | 92.75 101 | 98.66 28 | 80.57 165 | 97.58 86 | 96.69 73 | 85.20 147 | 91.57 92 | 97.92 61 | 77.01 125 | 99.67 53 | 90.95 107 | 98.41 43 | 98.00 93 |
|
| MP-MVS-pluss | | | 92.58 65 | 92.35 64 | 93.29 79 | 97.30 90 | 82.53 114 | 96.44 179 | 96.04 144 | 84.68 161 | 89.12 130 | 98.37 32 | 77.48 118 | 99.74 38 | 93.31 80 | 98.38 45 | 97.59 125 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| region2R | | | 92.72 56 | 92.70 57 | 92.79 100 | 98.68 26 | 80.53 169 | 97.53 91 | 96.51 97 | 85.22 145 | 91.94 88 | 97.98 58 | 77.26 120 | 99.67 53 | 90.83 112 | 98.37 46 | 98.18 77 |
|
| APD-MVS |  | | 93.61 38 | 93.59 39 | 93.69 62 | 98.76 24 | 83.26 104 | 97.21 114 | 96.09 139 | 82.41 223 | 94.65 49 | 98.21 39 | 81.96 63 | 98.81 122 | 94.65 61 | 98.36 47 | 99.01 30 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ZNCC-MVS | | | 92.75 52 | 92.60 60 | 93.23 82 | 98.24 51 | 81.82 132 | 97.63 81 | 96.50 99 | 85.00 153 | 91.05 102 | 97.74 72 | 78.38 102 | 99.80 25 | 90.48 118 | 98.34 48 | 98.07 86 |
|
| test12 | | | | | 94.25 41 | 98.34 46 | 85.55 55 | | 96.35 118 | | 92.36 80 | | 80.84 67 | 99.22 89 | | 98.31 49 | 97.98 95 |
|
| MP-MVS |  | | 92.61 64 | 92.67 58 | 92.42 117 | 98.13 56 | 79.73 191 | 97.33 109 | 96.20 131 | 85.63 135 | 90.53 109 | 97.66 75 | 78.14 107 | 99.70 48 | 92.12 96 | 98.30 50 | 97.85 104 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| test222 | | | | | | 96.15 108 | 78.41 225 | 95.87 215 | 96.46 103 | 71.97 351 | 89.66 120 | 97.45 88 | 76.33 140 | | | 98.24 51 | 98.30 69 |
|
| CP-MVS | | | 92.54 66 | 92.60 60 | 92.34 119 | 98.50 40 | 79.90 184 | 98.40 38 | 96.40 111 | 84.75 157 | 90.48 111 | 98.09 48 | 77.40 119 | 99.21 90 | 91.15 106 | 98.23 52 | 97.92 99 |
|
| MTAPA | | | 92.45 69 | 92.31 66 | 92.86 97 | 97.90 61 | 80.85 158 | 92.88 308 | 96.33 119 | 87.92 86 | 90.20 114 | 98.18 41 | 76.71 133 | 99.76 31 | 92.57 92 | 98.09 53 | 97.96 98 |
|
| XVS | | | 92.69 60 | 92.71 56 | 92.63 109 | 98.52 37 | 80.29 172 | 97.37 107 | 96.44 105 | 87.04 111 | 91.38 94 | 97.83 69 | 77.24 122 | 99.59 60 | 90.46 120 | 98.07 54 | 98.02 88 |
|
| X-MVStestdata | | | 86.26 202 | 84.14 222 | 92.63 109 | 98.52 37 | 80.29 172 | 97.37 107 | 96.44 105 | 87.04 111 | 91.38 94 | 20.73 420 | 77.24 122 | 99.59 60 | 90.46 120 | 98.07 54 | 98.02 88 |
|
| MVS | | | 90.60 115 | 88.64 141 | 96.50 5 | 94.25 174 | 90.53 8 | 93.33 296 | 97.21 22 | 77.59 303 | 78.88 250 | 97.31 95 | 71.52 215 | 99.69 49 | 89.60 132 | 98.03 56 | 99.27 22 |
|
| mPP-MVS | | | 91.88 83 | 91.82 77 | 92.07 135 | 98.38 44 | 78.63 219 | 97.29 111 | 96.09 139 | 85.12 149 | 88.45 142 | 97.66 75 | 75.53 154 | 99.68 51 | 89.83 129 | 98.02 57 | 97.88 100 |
|
| MM | | | 95.85 6 | 95.74 10 | 96.15 8 | 96.34 102 | 89.50 9 | 99.18 6 | 98.10 8 | 95.68 1 | 96.64 21 | 97.92 61 | 80.72 68 | 99.80 25 | 99.16 1 | 97.96 58 | 99.15 27 |
|
| HPM-MVS |  | | 91.62 90 | 91.53 84 | 91.89 143 | 97.88 63 | 79.22 203 | 96.99 137 | 95.73 167 | 82.07 229 | 89.50 125 | 97.19 104 | 75.59 152 | 98.93 117 | 90.91 109 | 97.94 59 | 97.54 127 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_HR | | | 93.41 41 | 93.39 44 | 93.47 77 | 97.34 89 | 82.83 110 | 97.56 88 | 98.27 6 | 89.16 62 | 89.71 118 | 97.14 105 | 79.77 83 | 99.56 66 | 93.65 73 | 97.94 59 | 98.02 88 |
|
| PGM-MVS | | | 91.93 80 | 91.80 78 | 92.32 123 | 98.27 50 | 79.74 190 | 95.28 239 | 97.27 20 | 83.83 190 | 90.89 106 | 97.78 71 | 76.12 143 | 99.56 66 | 88.82 141 | 97.93 61 | 97.66 119 |
|
| MVS_0304 | | | 95.58 9 | 95.44 15 | 96.01 10 | 97.63 70 | 89.26 12 | 99.27 3 | 96.59 88 | 94.71 4 | 97.08 15 | 97.99 55 | 78.69 99 | 99.86 10 | 99.15 2 | 97.85 62 | 98.91 35 |
|
| 3Dnovator | | 82.32 10 | 89.33 138 | 87.64 159 | 94.42 37 | 93.73 191 | 85.70 47 | 97.73 76 | 96.75 65 | 86.73 120 | 76.21 283 | 95.93 137 | 62.17 273 | 99.68 51 | 81.67 208 | 97.81 63 | 97.88 100 |
|
| CS-MVS-test | | | 92.98 47 | 93.67 37 | 90.90 178 | 96.52 99 | 76.87 270 | 98.68 28 | 94.73 221 | 90.36 50 | 94.84 46 | 97.89 65 | 77.94 109 | 97.15 212 | 94.28 67 | 97.80 64 | 98.70 48 |
|
| GST-MVS | | | 92.43 70 | 92.22 70 | 93.04 90 | 98.17 54 | 81.64 139 | 97.40 105 | 96.38 114 | 84.71 160 | 90.90 105 | 97.40 93 | 77.55 117 | 99.76 31 | 89.75 131 | 97.74 65 | 97.72 114 |
|
| PAPM | | | 92.87 51 | 92.40 63 | 94.30 39 | 92.25 239 | 87.85 21 | 96.40 183 | 96.38 114 | 91.07 38 | 88.72 139 | 96.90 114 | 82.11 61 | 97.37 198 | 90.05 128 | 97.70 66 | 97.67 118 |
|
| test_fmvsm_n_1920 | | | 94.81 19 | 95.60 11 | 92.45 114 | 95.29 138 | 80.96 154 | 99.29 2 | 97.21 22 | 94.50 7 | 97.29 13 | 98.44 27 | 82.15 60 | 99.78 28 | 98.56 7 | 97.68 67 | 96.61 177 |
|
| CANet | | | 94.89 16 | 94.64 22 | 95.63 13 | 97.55 76 | 88.12 18 | 99.06 17 | 96.39 113 | 94.07 10 | 95.34 36 | 97.80 70 | 76.83 130 | 99.87 8 | 97.08 31 | 97.64 68 | 98.89 36 |
|
| patch_mono-2 | | | 95.14 13 | 96.08 7 | 92.33 121 | 98.44 43 | 77.84 247 | 98.43 36 | 97.21 22 | 92.58 19 | 97.68 10 | 97.65 79 | 86.88 25 | 99.83 17 | 98.25 9 | 97.60 69 | 99.33 18 |
|
| dcpmvs_2 | | | 93.10 45 | 93.46 43 | 92.02 139 | 97.77 65 | 79.73 191 | 94.82 259 | 93.86 277 | 86.91 113 | 91.33 97 | 96.76 122 | 85.20 33 | 98.06 156 | 96.90 33 | 97.60 69 | 98.27 72 |
|
| testdata | | | | | 90.13 200 | 95.92 117 | 74.17 305 | | 96.49 102 | 73.49 340 | 94.82 48 | 97.99 55 | 78.80 97 | 97.93 160 | 83.53 193 | 97.52 71 | 98.29 70 |
|
| MVSFormer | | | 91.36 96 | 90.57 102 | 93.73 59 | 93.00 214 | 88.08 19 | 94.80 261 | 94.48 238 | 80.74 247 | 94.90 44 | 97.13 106 | 78.84 95 | 95.10 312 | 83.77 185 | 97.46 72 | 98.02 88 |
|
| lupinMVS | | | 93.87 36 | 93.58 40 | 94.75 30 | 93.00 214 | 88.08 19 | 99.15 8 | 95.50 180 | 91.03 39 | 94.90 44 | 97.66 75 | 78.84 95 | 97.56 181 | 94.64 62 | 97.46 72 | 98.62 52 |
|
| HPM-MVS_fast | | | 90.38 122 | 90.17 115 | 91.03 174 | 97.61 71 | 77.35 262 | 97.15 124 | 95.48 181 | 79.51 276 | 88.79 136 | 96.90 114 | 71.64 214 | 98.81 122 | 87.01 162 | 97.44 74 | 96.94 163 |
|
| GG-mvs-BLEND | | | | | 93.49 74 | 94.94 150 | 86.26 36 | 81.62 388 | 97.00 37 | | 88.32 145 | 94.30 188 | 91.23 5 | 96.21 254 | 88.49 146 | 97.43 75 | 98.00 93 |
|
| 旧先验1 | | | | | | 97.39 86 | 79.58 195 | | 96.54 94 | | | 98.08 51 | 84.00 45 | | | 97.42 76 | 97.62 123 |
|
| PS-MVSNAJ | | | 94.17 30 | 93.52 41 | 96.10 9 | 95.65 126 | 92.35 2 | 98.21 44 | 95.79 163 | 92.42 21 | 96.24 27 | 98.18 41 | 71.04 220 | 99.17 98 | 96.77 34 | 97.39 77 | 96.79 170 |
|
| CSCG | | | 92.02 78 | 91.65 81 | 93.12 86 | 98.53 36 | 80.59 164 | 97.47 96 | 97.18 25 | 77.06 312 | 84.64 185 | 97.98 58 | 83.98 46 | 99.52 69 | 90.72 114 | 97.33 78 | 99.23 24 |
|
| CS-MVS | | | 92.73 54 | 93.48 42 | 90.48 191 | 96.27 104 | 75.93 290 | 98.55 34 | 94.93 208 | 89.32 59 | 94.54 51 | 97.67 74 | 78.91 94 | 97.02 216 | 93.80 70 | 97.32 79 | 98.49 57 |
|
| SR-MVS | | | 92.16 75 | 92.27 67 | 91.83 148 | 98.37 45 | 78.41 225 | 96.67 166 | 95.76 164 | 82.19 227 | 91.97 86 | 98.07 52 | 76.44 136 | 98.64 126 | 93.71 72 | 97.27 80 | 98.45 60 |
|
| gg-mvs-nofinetune | | | 85.48 218 | 82.90 240 | 93.24 81 | 94.51 166 | 85.82 45 | 79.22 393 | 96.97 40 | 61.19 390 | 87.33 154 | 53.01 409 | 90.58 6 | 96.07 257 | 86.07 165 | 97.23 81 | 97.81 109 |
|
| reproduce-ours | | | 92.70 58 | 93.02 49 | 91.75 150 | 97.45 79 | 77.77 251 | 96.16 198 | 95.94 153 | 84.12 178 | 92.45 76 | 98.43 28 | 80.06 79 | 99.24 86 | 95.35 51 | 97.18 82 | 98.24 74 |
|
| our_new_method | | | 92.70 58 | 93.02 49 | 91.75 150 | 97.45 79 | 77.77 251 | 96.16 198 | 95.94 153 | 84.12 178 | 92.45 76 | 98.43 28 | 80.06 79 | 99.24 86 | 95.35 51 | 97.18 82 | 98.24 74 |
|
| MAR-MVS | | | 90.63 114 | 90.22 112 | 91.86 145 | 98.47 42 | 78.20 235 | 97.18 118 | 96.61 84 | 83.87 189 | 88.18 147 | 98.18 41 | 68.71 233 | 99.75 36 | 83.66 190 | 97.15 84 | 97.63 122 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| EC-MVSNet | | | 91.73 85 | 92.11 72 | 90.58 187 | 93.54 195 | 77.77 251 | 98.07 54 | 94.40 248 | 87.44 99 | 92.99 71 | 97.11 108 | 74.59 177 | 96.87 227 | 93.75 71 | 97.08 85 | 97.11 157 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 134 | 87.85 154 | 94.99 23 | 94.49 168 | 86.76 33 | 97.84 67 | 95.74 166 | 86.10 125 | 75.47 294 | 96.02 136 | 65.00 259 | 99.51 71 | 82.91 200 | 97.07 86 | 98.72 47 |
|
| mvsmamba | | | 90.53 119 | 90.08 117 | 91.88 144 | 94.81 154 | 80.93 155 | 93.94 282 | 94.45 243 | 88.24 79 | 87.02 160 | 92.35 224 | 68.04 235 | 95.80 272 | 94.86 57 | 97.03 87 | 98.92 34 |
|
| reproduce_model | | | 92.53 67 | 92.87 53 | 91.50 160 | 97.41 83 | 77.14 268 | 96.02 205 | 95.91 156 | 83.65 196 | 92.45 76 | 98.39 31 | 79.75 84 | 99.21 90 | 95.27 54 | 96.98 88 | 98.14 81 |
|
| DeepC-MVS | | 86.58 3 | 91.53 92 | 91.06 94 | 92.94 94 | 94.52 163 | 81.89 128 | 95.95 209 | 95.98 148 | 90.76 41 | 83.76 196 | 96.76 122 | 73.24 194 | 99.71 45 | 91.67 103 | 96.96 89 | 97.22 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CPTT-MVS | | | 89.72 131 | 89.87 125 | 89.29 220 | 98.33 47 | 73.30 311 | 97.70 78 | 95.35 193 | 75.68 321 | 87.40 152 | 97.44 91 | 70.43 226 | 98.25 149 | 89.56 134 | 96.90 90 | 96.33 187 |
|
| APD-MVS_3200maxsize | | | 91.23 100 | 91.35 86 | 90.89 179 | 97.89 62 | 76.35 280 | 96.30 190 | 95.52 178 | 79.82 270 | 91.03 103 | 97.88 66 | 74.70 173 | 98.54 132 | 92.11 97 | 96.89 91 | 97.77 111 |
|
| MVP-Stereo | | | 82.65 264 | 81.67 259 | 85.59 299 | 86.10 345 | 78.29 228 | 93.33 296 | 92.82 321 | 77.75 301 | 69.17 343 | 87.98 290 | 59.28 294 | 95.76 276 | 71.77 295 | 96.88 92 | 82.73 379 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PAPM_NR | | | 91.46 93 | 90.82 97 | 93.37 78 | 98.50 40 | 81.81 133 | 95.03 255 | 96.13 136 | 84.65 162 | 86.10 167 | 97.65 79 | 79.24 89 | 99.75 36 | 83.20 196 | 96.88 92 | 98.56 54 |
|
| EIA-MVS | | | 91.73 85 | 92.05 74 | 90.78 183 | 94.52 163 | 76.40 279 | 98.06 55 | 95.34 194 | 89.19 61 | 88.90 134 | 97.28 100 | 77.56 116 | 97.73 172 | 90.77 113 | 96.86 94 | 98.20 76 |
|
| SR-MVS-dyc-post | | | 91.29 98 | 91.45 85 | 90.80 181 | 97.76 67 | 76.03 285 | 96.20 196 | 95.44 185 | 80.56 252 | 90.72 107 | 97.84 67 | 75.76 149 | 98.61 127 | 91.99 99 | 96.79 95 | 97.75 112 |
|
| RE-MVS-def | | | | 91.18 93 | | 97.76 67 | 76.03 285 | 96.20 196 | 95.44 185 | 80.56 252 | 90.72 107 | 97.84 67 | 73.36 193 | | 91.99 99 | 96.79 95 | 97.75 112 |
|
| jason | | | 92.73 54 | 92.23 69 | 94.21 44 | 90.50 284 | 87.30 29 | 98.65 30 | 95.09 202 | 90.61 44 | 92.76 75 | 97.13 106 | 75.28 165 | 97.30 201 | 93.32 79 | 96.75 97 | 98.02 88 |
| jason: jason. |
| test_fmvsmconf_n | | | 93.99 34 | 94.36 28 | 92.86 97 | 92.82 221 | 81.12 147 | 99.26 4 | 96.37 117 | 93.47 13 | 95.16 37 | 98.21 39 | 79.00 92 | 99.64 55 | 98.21 10 | 96.73 98 | 97.83 106 |
|
| test_vis1_n_1920 | | | 89.95 127 | 90.59 101 | 88.03 249 | 92.36 231 | 68.98 351 | 99.12 12 | 94.34 251 | 93.86 11 | 93.64 62 | 97.01 112 | 51.54 342 | 99.59 60 | 96.76 35 | 96.71 99 | 95.53 206 |
|
| xiu_mvs_v2_base | | | 93.92 35 | 93.26 45 | 95.91 11 | 95.07 146 | 92.02 6 | 98.19 45 | 95.68 169 | 92.06 25 | 96.01 31 | 98.14 45 | 70.83 224 | 98.96 112 | 96.74 36 | 96.57 100 | 96.76 173 |
|
| test_fmvsmconf0.1_n | | | 93.08 46 | 93.22 47 | 92.65 107 | 88.45 317 | 80.81 159 | 99.00 22 | 95.11 201 | 93.21 15 | 94.00 57 | 97.91 63 | 76.84 128 | 99.59 60 | 97.91 16 | 96.55 101 | 97.54 127 |
|
| MVS_111021_LR | | | 91.60 91 | 91.64 82 | 91.47 162 | 95.74 123 | 78.79 216 | 96.15 200 | 96.77 61 | 88.49 71 | 88.64 140 | 97.07 110 | 72.33 204 | 99.19 96 | 93.13 85 | 96.48 102 | 96.43 182 |
|
| PAPR | | | 92.74 53 | 92.17 71 | 94.45 36 | 98.89 20 | 84.87 76 | 97.20 116 | 96.20 131 | 87.73 92 | 88.40 143 | 98.12 46 | 78.71 98 | 99.76 31 | 87.99 151 | 96.28 103 | 98.74 42 |
|
| test_fmvsmvis_n_1920 | | | 92.12 76 | 92.10 73 | 92.17 131 | 90.87 276 | 81.04 150 | 98.34 40 | 93.90 274 | 92.71 18 | 87.24 156 | 97.90 64 | 74.83 171 | 99.72 43 | 96.96 32 | 96.20 104 | 95.76 200 |
|
| test_cas_vis1_n_1920 | | | 89.90 128 | 90.02 119 | 89.54 217 | 90.14 292 | 74.63 300 | 98.71 27 | 94.43 246 | 93.04 17 | 92.40 79 | 96.35 130 | 53.41 338 | 99.08 106 | 95.59 47 | 96.16 105 | 94.90 219 |
|
| Vis-MVSNet |  | | 88.67 154 | 87.82 155 | 91.24 168 | 92.68 223 | 78.82 213 | 96.95 145 | 93.85 278 | 87.55 96 | 87.07 159 | 95.13 167 | 63.43 266 | 97.21 206 | 77.58 245 | 96.15 106 | 97.70 117 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| EPNet | | | 94.06 33 | 94.15 32 | 93.76 56 | 97.27 91 | 84.35 82 | 98.29 41 | 97.64 14 | 94.57 6 | 95.36 35 | 96.88 116 | 79.96 82 | 99.12 103 | 91.30 104 | 96.11 107 | 97.82 108 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| API-MVS | | | 90.18 124 | 88.97 134 | 93.80 54 | 98.66 28 | 82.95 109 | 97.50 95 | 95.63 172 | 75.16 325 | 86.31 164 | 97.69 73 | 72.49 201 | 99.90 5 | 81.26 210 | 96.07 108 | 98.56 54 |
|
| QAPM | | | 86.88 191 | 84.51 212 | 93.98 48 | 94.04 184 | 85.89 44 | 97.19 117 | 96.05 143 | 73.62 337 | 75.12 297 | 95.62 147 | 62.02 276 | 99.74 38 | 70.88 304 | 96.06 109 | 96.30 189 |
|
| fmvsm_l_conf0.5_n_a | | | 94.91 15 | 95.30 16 | 93.72 60 | 94.50 167 | 84.30 84 | 99.14 10 | 96.00 146 | 91.94 28 | 97.91 5 | 98.60 18 | 84.78 36 | 99.77 29 | 98.84 5 | 96.03 110 | 97.08 159 |
|
| 1314 | | | 88.94 145 | 87.20 173 | 94.17 45 | 93.21 206 | 85.73 46 | 93.33 296 | 96.64 81 | 82.89 211 | 75.98 286 | 96.36 129 | 66.83 246 | 99.39 77 | 83.52 194 | 96.02 111 | 97.39 142 |
|
| MS-PatchMatch | | | 83.05 256 | 81.82 257 | 86.72 281 | 89.64 301 | 79.10 208 | 94.88 258 | 94.59 234 | 79.70 273 | 70.67 333 | 89.65 266 | 50.43 347 | 96.82 230 | 70.82 307 | 95.99 112 | 84.25 371 |
|
| CHOSEN 280x420 | | | 91.71 88 | 91.85 76 | 91.29 166 | 94.94 150 | 82.69 111 | 87.89 356 | 96.17 134 | 85.94 130 | 87.27 155 | 94.31 187 | 90.27 8 | 95.65 284 | 94.04 69 | 95.86 113 | 95.53 206 |
|
| OpenMVS |  | 79.58 14 | 86.09 204 | 83.62 229 | 93.50 73 | 90.95 273 | 86.71 34 | 97.44 99 | 95.83 161 | 75.35 322 | 72.64 319 | 95.72 142 | 57.42 314 | 99.64 55 | 71.41 298 | 95.85 114 | 94.13 235 |
|
| PVSNet_Blended | | | 93.13 43 | 92.98 51 | 93.57 69 | 97.47 77 | 83.86 90 | 99.32 1 | 96.73 67 | 91.02 40 | 89.53 123 | 96.21 132 | 76.42 137 | 99.57 64 | 94.29 65 | 95.81 115 | 97.29 149 |
|
| fmvsm_l_conf0.5_n | | | 94.89 16 | 95.24 17 | 93.86 52 | 94.42 170 | 84.61 79 | 99.13 11 | 96.15 135 | 92.06 25 | 97.92 3 | 98.52 23 | 84.52 38 | 99.74 38 | 98.76 6 | 95.67 116 | 97.22 151 |
|
| CHOSEN 1792x2688 | | | 91.07 105 | 90.21 113 | 93.64 64 | 95.18 142 | 83.53 98 | 96.26 192 | 96.13 136 | 88.92 63 | 84.90 179 | 93.10 215 | 72.86 196 | 99.62 58 | 88.86 140 | 95.67 116 | 97.79 110 |
|
| test_fmvsmconf0.01_n | | | 91.08 104 | 90.68 100 | 92.29 124 | 82.43 376 | 80.12 180 | 97.94 62 | 93.93 270 | 92.07 24 | 91.97 86 | 97.60 82 | 67.56 238 | 99.53 68 | 97.09 30 | 95.56 118 | 97.21 153 |
|
| ETV-MVS | | | 92.72 56 | 92.87 53 | 92.28 125 | 94.54 162 | 81.89 128 | 97.98 59 | 95.21 199 | 89.77 56 | 93.11 68 | 96.83 118 | 77.23 124 | 97.50 189 | 95.74 44 | 95.38 119 | 97.44 137 |
|
| 114514_t | | | 88.79 152 | 87.57 164 | 92.45 114 | 98.21 53 | 81.74 135 | 96.99 137 | 95.45 184 | 75.16 325 | 82.48 207 | 95.69 144 | 68.59 234 | 98.50 134 | 80.33 215 | 95.18 120 | 97.10 158 |
|
| CANet_DTU | | | 90.98 107 | 90.04 118 | 93.83 53 | 94.76 156 | 86.23 37 | 96.32 189 | 93.12 316 | 93.11 16 | 93.71 60 | 96.82 120 | 63.08 269 | 99.48 73 | 84.29 178 | 95.12 121 | 95.77 199 |
|
| DP-MVS Recon | | | 91.72 87 | 90.85 96 | 94.34 38 | 99.50 1 | 85.00 73 | 98.51 35 | 95.96 150 | 80.57 251 | 88.08 148 | 97.63 81 | 76.84 128 | 99.89 7 | 85.67 168 | 94.88 122 | 98.13 83 |
|
| test2506 | | | 90.96 108 | 90.39 107 | 92.65 107 | 93.54 195 | 82.46 117 | 96.37 184 | 97.35 17 | 86.78 117 | 87.55 151 | 95.25 156 | 77.83 113 | 97.50 189 | 84.07 180 | 94.80 123 | 97.98 95 |
|
| ECVR-MVS |  | | 88.35 165 | 87.25 172 | 91.65 154 | 93.54 195 | 79.40 198 | 96.56 171 | 90.78 354 | 86.78 117 | 85.57 171 | 95.25 156 | 57.25 315 | 97.56 181 | 84.73 176 | 94.80 123 | 97.98 95 |
|
| fmvsm_s_conf0.5_n | | | 93.69 37 | 94.13 33 | 92.34 119 | 94.56 160 | 82.01 122 | 99.07 16 | 97.13 27 | 92.09 23 | 96.25 26 | 98.53 22 | 76.47 135 | 99.80 25 | 98.39 8 | 94.71 125 | 95.22 215 |
|
| test1111 | | | 88.11 170 | 87.04 178 | 91.35 163 | 93.15 209 | 78.79 216 | 96.57 169 | 90.78 354 | 86.88 114 | 85.04 176 | 95.20 162 | 57.23 316 | 97.39 196 | 83.88 182 | 94.59 126 | 97.87 102 |
|
| fmvsm_s_conf0.1_n | | | 92.93 49 | 93.16 48 | 92.24 126 | 90.52 283 | 81.92 126 | 98.42 37 | 96.24 127 | 91.17 35 | 96.02 30 | 98.35 34 | 75.34 164 | 99.74 38 | 97.84 20 | 94.58 127 | 95.05 217 |
|
| BH-w/o | | | 88.24 168 | 87.47 168 | 90.54 190 | 95.03 149 | 78.54 220 | 97.41 104 | 93.82 279 | 84.08 180 | 78.23 256 | 94.51 185 | 69.34 232 | 97.21 206 | 80.21 219 | 94.58 127 | 95.87 197 |
|
| MVS_Test | | | 90.29 123 | 89.18 131 | 93.62 66 | 95.23 139 | 84.93 74 | 94.41 266 | 94.66 226 | 84.31 171 | 90.37 113 | 91.02 246 | 75.13 167 | 97.82 169 | 83.11 198 | 94.42 129 | 98.12 84 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 148 | 88.87 139 | 88.91 227 | 93.89 187 | 74.43 303 | 96.93 147 | 94.19 259 | 84.39 169 | 83.22 201 | 95.67 145 | 78.24 104 | 94.70 323 | 78.88 233 | 94.40 130 | 97.61 124 |
|
| test_fmvs1 | | | 87.79 178 | 88.52 144 | 85.62 298 | 92.98 218 | 64.31 370 | 97.88 65 | 92.42 326 | 87.95 85 | 92.24 82 | 95.82 140 | 47.94 357 | 98.44 142 | 95.31 53 | 94.09 131 | 94.09 236 |
|
| UGNet | | | 87.73 179 | 86.55 187 | 91.27 167 | 95.16 143 | 79.11 207 | 96.35 186 | 96.23 128 | 88.14 81 | 87.83 150 | 90.48 254 | 50.65 345 | 99.09 105 | 80.13 220 | 94.03 132 | 95.60 203 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet | | 82.34 9 | 89.02 143 | 87.79 156 | 92.71 104 | 95.49 131 | 81.50 142 | 97.70 78 | 97.29 18 | 87.76 91 | 85.47 173 | 95.12 168 | 56.90 317 | 98.90 118 | 80.33 215 | 94.02 133 | 97.71 116 |
|
| TSAR-MVS + GP. | | | 94.35 26 | 94.50 23 | 93.89 51 | 97.38 88 | 83.04 108 | 98.10 51 | 95.29 196 | 91.57 30 | 93.81 59 | 97.45 88 | 86.64 26 | 99.43 76 | 96.28 37 | 94.01 134 | 99.20 25 |
|
| PVSNet_Blended_VisFu | | | 91.24 99 | 90.77 98 | 92.66 106 | 95.09 144 | 82.40 118 | 97.77 72 | 95.87 160 | 88.26 77 | 86.39 163 | 93.94 198 | 76.77 131 | 99.27 84 | 88.80 142 | 94.00 135 | 96.31 188 |
|
| RRT-MVS | | | 89.67 132 | 88.67 140 | 92.67 105 | 94.44 169 | 81.08 149 | 94.34 269 | 94.45 243 | 86.05 127 | 85.79 169 | 92.39 223 | 63.39 267 | 98.16 154 | 93.22 82 | 93.95 136 | 98.76 41 |
|
| PMMVS | | | 89.46 136 | 89.92 123 | 88.06 247 | 94.64 157 | 69.57 348 | 96.22 194 | 94.95 207 | 87.27 105 | 91.37 96 | 96.54 128 | 65.88 251 | 97.39 196 | 88.54 144 | 93.89 137 | 97.23 150 |
|
| BH-untuned | | | 86.95 190 | 85.94 191 | 89.99 204 | 94.52 163 | 77.46 259 | 96.78 158 | 93.37 305 | 81.80 232 | 76.62 274 | 93.81 203 | 66.64 247 | 97.02 216 | 76.06 262 | 93.88 138 | 95.48 208 |
|
| BH-RMVSNet | | | 86.84 192 | 85.28 200 | 91.49 161 | 95.35 136 | 80.26 175 | 96.95 145 | 92.21 329 | 82.86 213 | 81.77 222 | 95.46 152 | 59.34 293 | 97.64 176 | 69.79 311 | 93.81 139 | 96.57 179 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 42 | 93.71 36 | 92.22 128 | 93.38 203 | 81.71 137 | 98.86 25 | 96.98 38 | 91.64 29 | 96.85 16 | 98.55 19 | 75.58 153 | 99.77 29 | 97.88 19 | 93.68 140 | 95.18 216 |
|
| Effi-MVS+ | | | 90.70 113 | 89.90 124 | 93.09 88 | 93.61 192 | 83.48 99 | 95.20 245 | 92.79 322 | 83.22 202 | 91.82 89 | 95.70 143 | 71.82 211 | 97.48 191 | 91.25 105 | 93.67 141 | 98.32 66 |
|
| IS-MVSNet | | | 88.67 154 | 88.16 150 | 90.20 199 | 93.61 192 | 76.86 271 | 96.77 160 | 93.07 317 | 84.02 182 | 83.62 197 | 95.60 148 | 74.69 176 | 96.24 253 | 78.43 237 | 93.66 142 | 97.49 134 |
|
| test_fmvs1_n | | | 86.34 200 | 86.72 185 | 85.17 305 | 87.54 329 | 63.64 375 | 96.91 149 | 92.37 328 | 87.49 98 | 91.33 97 | 95.58 149 | 40.81 384 | 98.46 138 | 95.00 56 | 93.49 143 | 93.41 250 |
|
| AdaColmap |  | | 88.81 150 | 87.61 162 | 92.39 118 | 99.33 4 | 79.95 182 | 96.70 165 | 95.58 173 | 77.51 304 | 83.05 204 | 96.69 126 | 61.90 279 | 99.72 43 | 84.29 178 | 93.47 144 | 97.50 133 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 71 | 92.49 62 | 92.06 136 | 88.08 322 | 81.62 140 | 97.97 61 | 96.01 145 | 90.62 43 | 96.58 22 | 98.33 35 | 74.09 183 | 99.71 45 | 97.23 28 | 93.46 145 | 94.86 221 |
|
| xiu_mvs_v1_base_debu | | | 90.54 116 | 89.54 127 | 93.55 70 | 92.31 232 | 87.58 26 | 96.99 137 | 94.87 212 | 87.23 106 | 93.27 64 | 97.56 84 | 57.43 311 | 98.32 146 | 92.72 89 | 93.46 145 | 94.74 225 |
|
| xiu_mvs_v1_base | | | 90.54 116 | 89.54 127 | 93.55 70 | 92.31 232 | 87.58 26 | 96.99 137 | 94.87 212 | 87.23 106 | 93.27 64 | 97.56 84 | 57.43 311 | 98.32 146 | 92.72 89 | 93.46 145 | 94.74 225 |
|
| xiu_mvs_v1_base_debi | | | 90.54 116 | 89.54 127 | 93.55 70 | 92.31 232 | 87.58 26 | 96.99 137 | 94.87 212 | 87.23 106 | 93.27 64 | 97.56 84 | 57.43 311 | 98.32 146 | 92.72 89 | 93.46 145 | 94.74 225 |
|
| mvs_anonymous | | | 88.68 153 | 87.62 161 | 91.86 145 | 94.80 155 | 81.69 138 | 93.53 292 | 94.92 209 | 82.03 230 | 78.87 251 | 90.43 256 | 75.77 148 | 95.34 298 | 85.04 173 | 93.16 149 | 98.55 56 |
|
| test_vis1_n | | | 85.60 214 | 85.70 193 | 85.33 302 | 84.79 360 | 64.98 368 | 96.83 153 | 91.61 339 | 87.36 102 | 91.00 104 | 94.84 178 | 36.14 391 | 97.18 208 | 95.66 45 | 93.03 150 | 93.82 241 |
|
| LCM-MVSNet-Re | | | 83.75 244 | 83.54 231 | 84.39 320 | 93.54 195 | 64.14 372 | 92.51 311 | 84.03 395 | 83.90 188 | 66.14 356 | 86.59 311 | 67.36 241 | 92.68 353 | 84.89 175 | 92.87 151 | 96.35 184 |
|
| casdiffmvs_mvg |  | | 91.13 102 | 90.45 106 | 93.17 85 | 92.99 217 | 83.58 97 | 97.46 98 | 94.56 235 | 87.69 93 | 87.19 157 | 94.98 175 | 74.50 178 | 97.60 178 | 91.88 102 | 92.79 152 | 98.34 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 90.95 109 | 90.39 107 | 92.63 109 | 92.82 221 | 82.53 114 | 96.83 153 | 94.47 241 | 87.69 93 | 88.47 141 | 95.56 150 | 74.04 184 | 97.54 185 | 90.90 110 | 92.74 153 | 97.83 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TAPA-MVS | | 81.61 12 | 85.02 223 | 83.67 226 | 89.06 223 | 96.79 96 | 73.27 314 | 95.92 211 | 94.79 219 | 74.81 328 | 80.47 232 | 96.83 118 | 71.07 219 | 98.19 152 | 49.82 389 | 92.57 154 | 95.71 201 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| diffmvs |  | | 91.17 101 | 90.74 99 | 92.44 116 | 93.11 213 | 82.50 116 | 96.25 193 | 93.62 292 | 87.79 90 | 90.40 112 | 95.93 137 | 73.44 192 | 97.42 193 | 93.62 74 | 92.55 155 | 97.41 139 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPMVS | | | 87.47 185 | 85.90 192 | 92.18 130 | 95.41 133 | 82.26 121 | 87.00 363 | 96.28 123 | 85.88 132 | 84.23 187 | 85.57 330 | 75.07 169 | 96.26 250 | 71.14 303 | 92.50 156 | 98.03 87 |
|
| LS3D | | | 82.22 271 | 79.94 285 | 89.06 223 | 97.43 82 | 74.06 307 | 93.20 302 | 92.05 331 | 61.90 385 | 73.33 312 | 95.21 161 | 59.35 292 | 99.21 90 | 54.54 376 | 92.48 157 | 93.90 240 |
|
| ACMMP |  | | 90.39 120 | 89.97 120 | 91.64 155 | 97.58 74 | 78.21 234 | 96.78 158 | 96.72 69 | 84.73 159 | 84.72 183 | 97.23 102 | 71.22 217 | 99.63 57 | 88.37 149 | 92.41 158 | 97.08 159 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| TESTMET0.1,1 | | | 89.83 129 | 89.34 130 | 91.31 164 | 92.54 229 | 80.19 178 | 97.11 128 | 96.57 91 | 86.15 123 | 86.85 162 | 91.83 237 | 79.32 86 | 96.95 221 | 81.30 209 | 92.35 159 | 96.77 172 |
|
| PLC |  | 83.97 7 | 88.00 173 | 87.38 170 | 89.83 212 | 98.02 59 | 76.46 277 | 97.16 122 | 94.43 246 | 79.26 283 | 81.98 217 | 96.28 131 | 69.36 231 | 99.27 84 | 77.71 242 | 92.25 160 | 93.77 242 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| baseline | | | 90.76 112 | 90.10 116 | 92.74 102 | 92.90 220 | 82.56 113 | 94.60 263 | 94.56 235 | 87.69 93 | 89.06 132 | 95.67 145 | 73.76 187 | 97.51 188 | 90.43 122 | 92.23 161 | 98.16 79 |
|
| PatchMatch-RL | | | 85.00 224 | 83.66 227 | 89.02 225 | 95.86 118 | 74.55 302 | 92.49 312 | 93.60 293 | 79.30 281 | 79.29 247 | 91.47 238 | 58.53 299 | 98.45 140 | 70.22 309 | 92.17 162 | 94.07 237 |
|
| test-LLR | | | 88.48 160 | 87.98 152 | 89.98 205 | 92.26 237 | 77.23 264 | 97.11 128 | 95.96 150 | 83.76 193 | 86.30 165 | 91.38 240 | 72.30 205 | 96.78 233 | 80.82 211 | 91.92 163 | 95.94 195 |
|
| test-mter | | | 88.95 144 | 88.60 142 | 89.98 205 | 92.26 237 | 77.23 264 | 97.11 128 | 95.96 150 | 85.32 142 | 86.30 165 | 91.38 240 | 76.37 139 | 96.78 233 | 80.82 211 | 91.92 163 | 95.94 195 |
|
| Fast-Effi-MVS+ | | | 87.93 175 | 86.94 181 | 90.92 177 | 94.04 184 | 79.16 205 | 98.26 42 | 93.72 288 | 81.29 238 | 83.94 193 | 92.90 216 | 69.83 230 | 96.68 236 | 76.70 255 | 91.74 165 | 96.93 164 |
|
| FE-MVS | | | 86.06 205 | 84.15 221 | 91.78 149 | 94.33 173 | 79.81 185 | 84.58 380 | 96.61 84 | 76.69 315 | 85.00 177 | 87.38 297 | 70.71 225 | 98.37 144 | 70.39 308 | 91.70 166 | 97.17 156 |
|
| UA-Net | | | 88.92 146 | 88.48 145 | 90.24 197 | 94.06 183 | 77.18 266 | 93.04 304 | 94.66 226 | 87.39 101 | 91.09 101 | 93.89 199 | 74.92 170 | 98.18 153 | 75.83 265 | 91.43 167 | 95.35 211 |
|
| PatchmatchNet |  | | 86.83 193 | 85.12 205 | 91.95 141 | 94.12 181 | 82.27 120 | 86.55 367 | 95.64 171 | 84.59 164 | 82.98 205 | 84.99 342 | 77.26 120 | 95.96 264 | 68.61 316 | 91.34 168 | 97.64 121 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PCF-MVS | | 84.09 5 | 86.77 195 | 85.00 207 | 92.08 134 | 92.06 251 | 83.07 107 | 92.14 317 | 94.47 241 | 79.63 274 | 76.90 270 | 94.78 179 | 71.15 218 | 99.20 95 | 72.87 289 | 91.05 169 | 93.98 238 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EI-MVSNet-Vis-set | | | 91.84 84 | 91.77 79 | 92.04 138 | 97.60 72 | 81.17 146 | 96.61 167 | 96.87 49 | 88.20 80 | 89.19 128 | 97.55 87 | 78.69 99 | 99.14 100 | 90.29 125 | 90.94 170 | 95.80 198 |
|
| mamv4 | | | 85.50 216 | 86.76 183 | 81.72 344 | 93.23 205 | 54.93 401 | 89.95 338 | 92.94 319 | 69.96 361 | 79.00 248 | 92.20 227 | 80.69 70 | 94.22 334 | 92.06 98 | 90.77 171 | 96.01 193 |
|
| CNLPA | | | 86.96 189 | 85.37 199 | 91.72 153 | 97.59 73 | 79.34 201 | 97.21 114 | 91.05 349 | 74.22 332 | 78.90 249 | 96.75 124 | 67.21 243 | 98.95 114 | 74.68 275 | 90.77 171 | 96.88 168 |
|
| UBG | | | 92.68 62 | 92.35 64 | 93.70 61 | 95.61 127 | 85.65 52 | 97.25 112 | 97.06 34 | 87.92 86 | 89.28 127 | 95.03 171 | 86.06 31 | 98.07 155 | 92.24 94 | 90.69 173 | 97.37 143 |
|
| CVMVSNet | | | 84.83 226 | 85.57 195 | 82.63 337 | 91.55 261 | 60.38 387 | 95.13 249 | 95.03 205 | 80.60 250 | 82.10 216 | 94.71 180 | 66.40 249 | 90.19 379 | 74.30 280 | 90.32 174 | 97.31 147 |
|
| EPNet_dtu | | | 87.65 182 | 87.89 153 | 86.93 276 | 94.57 159 | 71.37 336 | 96.72 161 | 96.50 99 | 88.56 70 | 87.12 158 | 95.02 172 | 75.91 147 | 94.01 338 | 66.62 325 | 90.00 175 | 95.42 209 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| FA-MVS(test-final) | | | 87.71 181 | 86.23 189 | 92.17 131 | 94.19 176 | 80.55 166 | 87.16 362 | 96.07 142 | 82.12 228 | 85.98 168 | 88.35 284 | 72.04 209 | 98.49 135 | 80.26 217 | 89.87 176 | 97.48 135 |
|
| baseline2 | | | 90.39 120 | 90.21 113 | 90.93 176 | 90.86 277 | 80.99 152 | 95.20 245 | 97.41 16 | 86.03 129 | 80.07 240 | 94.61 182 | 90.58 6 | 97.47 192 | 87.29 158 | 89.86 177 | 94.35 231 |
|
| LFMVS | | | 89.27 140 | 87.64 159 | 94.16 47 | 97.16 92 | 85.52 56 | 97.18 118 | 94.66 226 | 79.17 284 | 89.63 121 | 96.57 127 | 55.35 328 | 98.22 150 | 89.52 135 | 89.54 178 | 98.74 42 |
|
| EI-MVSNet-UG-set | | | 91.35 97 | 91.22 89 | 91.73 152 | 97.39 86 | 80.68 162 | 96.47 176 | 96.83 52 | 87.92 86 | 88.30 146 | 97.36 94 | 77.84 112 | 99.13 102 | 89.43 136 | 89.45 179 | 95.37 210 |
|
| GeoE | | | 86.36 199 | 85.20 201 | 89.83 212 | 93.17 208 | 76.13 282 | 97.53 91 | 92.11 330 | 79.58 275 | 80.99 226 | 94.01 196 | 66.60 248 | 96.17 256 | 73.48 287 | 89.30 180 | 97.20 155 |
|
| UWE-MVS | | | 88.56 159 | 88.91 138 | 87.50 263 | 94.17 177 | 72.19 322 | 95.82 219 | 97.05 35 | 84.96 154 | 84.78 181 | 93.51 209 | 81.33 64 | 94.75 321 | 79.43 226 | 89.17 181 | 95.57 204 |
|
| sss | | | 90.87 111 | 89.96 121 | 93.60 67 | 94.15 178 | 83.84 92 | 97.14 125 | 98.13 7 | 85.93 131 | 89.68 119 | 96.09 135 | 71.67 212 | 99.30 83 | 87.69 154 | 89.16 182 | 97.66 119 |
|
| HY-MVS | | 84.06 6 | 91.63 89 | 90.37 109 | 95.39 19 | 96.12 109 | 88.25 17 | 90.22 336 | 97.58 15 | 88.33 76 | 90.50 110 | 91.96 233 | 79.26 88 | 99.06 107 | 90.29 125 | 89.07 183 | 98.88 37 |
|
| testing11 | | | 92.48 68 | 92.04 75 | 93.78 55 | 95.94 116 | 86.00 40 | 97.56 88 | 97.08 32 | 87.52 97 | 89.32 126 | 95.40 153 | 84.60 37 | 98.02 157 | 91.93 101 | 89.04 184 | 97.32 145 |
|
| thisisatest0515 | | | 90.95 109 | 90.26 110 | 93.01 91 | 94.03 186 | 84.27 86 | 97.91 63 | 96.67 75 | 83.18 203 | 86.87 161 | 95.51 151 | 88.66 15 | 97.85 168 | 80.46 214 | 89.01 185 | 96.92 166 |
|
| CDS-MVSNet | | | 89.50 135 | 88.96 135 | 91.14 172 | 91.94 256 | 80.93 155 | 97.09 132 | 95.81 162 | 84.26 176 | 84.72 183 | 94.20 192 | 80.31 73 | 95.64 285 | 83.37 195 | 88.96 186 | 96.85 169 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| VNet | | | 92.11 77 | 91.22 89 | 94.79 28 | 96.91 95 | 86.98 30 | 97.91 63 | 97.96 10 | 86.38 121 | 93.65 61 | 95.74 141 | 70.16 229 | 98.95 114 | 93.39 75 | 88.87 187 | 98.43 61 |
|
| alignmvs | | | 92.97 48 | 92.26 68 | 95.12 21 | 95.54 130 | 87.77 22 | 98.67 29 | 96.38 114 | 88.04 83 | 93.01 70 | 97.45 88 | 79.20 90 | 98.60 128 | 93.25 81 | 88.76 188 | 98.99 33 |
|
| WTY-MVS | | | 92.65 63 | 91.68 80 | 95.56 14 | 96.00 112 | 88.90 13 | 98.23 43 | 97.65 13 | 88.57 69 | 89.82 117 | 97.22 103 | 79.29 87 | 99.06 107 | 89.57 133 | 88.73 189 | 98.73 46 |
|
| ETVMVS | | | 90.99 106 | 90.26 110 | 93.19 84 | 95.81 120 | 85.64 53 | 96.97 142 | 97.18 25 | 85.43 139 | 88.77 138 | 94.86 177 | 82.00 62 | 96.37 246 | 82.70 201 | 88.60 190 | 97.57 126 |
|
| sasdasda | | | 92.27 73 | 91.22 89 | 95.41 17 | 95.80 121 | 88.31 15 | 97.09 132 | 94.64 229 | 88.49 71 | 92.99 71 | 97.31 95 | 72.68 198 | 98.57 130 | 93.38 77 | 88.58 191 | 99.36 16 |
|
| canonicalmvs | | | 92.27 73 | 91.22 89 | 95.41 17 | 95.80 121 | 88.31 15 | 97.09 132 | 94.64 229 | 88.49 71 | 92.99 71 | 97.31 95 | 72.68 198 | 98.57 130 | 93.38 77 | 88.58 191 | 99.36 16 |
|
| test_yl | | | 91.46 93 | 90.53 103 | 94.24 42 | 97.41 83 | 85.18 63 | 98.08 52 | 97.72 11 | 80.94 242 | 89.85 115 | 96.14 133 | 75.61 150 | 98.81 122 | 90.42 123 | 88.56 193 | 98.74 42 |
|
| DCV-MVSNet | | | 91.46 93 | 90.53 103 | 94.24 42 | 97.41 83 | 85.18 63 | 98.08 52 | 97.72 11 | 80.94 242 | 89.85 115 | 96.14 133 | 75.61 150 | 98.81 122 | 90.42 123 | 88.56 193 | 98.74 42 |
|
| MGCFI-Net | | | 91.95 79 | 91.03 95 | 94.72 31 | 95.68 125 | 86.38 35 | 96.93 147 | 94.48 238 | 88.25 78 | 92.78 74 | 97.24 101 | 72.34 203 | 98.46 138 | 93.13 85 | 88.43 195 | 99.32 19 |
|
| HyFIR lowres test | | | 89.36 137 | 88.60 142 | 91.63 157 | 94.91 152 | 80.76 161 | 95.60 229 | 95.53 176 | 82.56 220 | 84.03 189 | 91.24 243 | 78.03 108 | 96.81 231 | 87.07 161 | 88.41 196 | 97.32 145 |
|
| testing222 | | | 91.09 103 | 90.49 105 | 92.87 96 | 95.82 119 | 85.04 70 | 96.51 174 | 97.28 19 | 86.05 127 | 89.13 129 | 95.34 155 | 80.16 78 | 96.62 239 | 85.82 166 | 88.31 197 | 96.96 162 |
|
| TAMVS | | | 88.48 160 | 87.79 156 | 90.56 188 | 91.09 271 | 79.18 204 | 96.45 178 | 95.88 158 | 83.64 197 | 83.12 202 | 93.33 210 | 75.94 146 | 95.74 280 | 82.40 203 | 88.27 198 | 96.75 174 |
|
| EPP-MVSNet | | | 89.76 130 | 89.72 126 | 89.87 210 | 93.78 188 | 76.02 287 | 97.22 113 | 96.51 97 | 79.35 278 | 85.11 175 | 95.01 173 | 84.82 35 | 97.10 214 | 87.46 157 | 88.21 199 | 96.50 180 |
|
| MVS-HIRNet | | | 71.36 353 | 67.00 359 | 84.46 318 | 90.58 282 | 69.74 346 | 79.15 394 | 87.74 377 | 46.09 406 | 61.96 376 | 50.50 410 | 45.14 366 | 95.64 285 | 53.74 378 | 88.11 200 | 88.00 326 |
|
| testing99 | | | 91.91 81 | 91.35 86 | 93.60 67 | 95.98 114 | 85.70 47 | 97.31 110 | 96.92 46 | 86.82 115 | 88.91 133 | 95.25 156 | 84.26 44 | 97.89 167 | 88.80 142 | 87.94 201 | 97.21 153 |
|
| testing91 | | | 91.90 82 | 91.31 88 | 93.66 63 | 95.99 113 | 85.68 49 | 97.39 106 | 96.89 47 | 86.75 119 | 88.85 135 | 95.23 159 | 83.93 47 | 97.90 166 | 88.91 139 | 87.89 202 | 97.41 139 |
|
| TR-MVS | | | 86.30 201 | 84.93 209 | 90.42 192 | 94.63 158 | 77.58 257 | 96.57 169 | 93.82 279 | 80.30 260 | 82.42 209 | 95.16 165 | 58.74 297 | 97.55 183 | 74.88 273 | 87.82 203 | 96.13 192 |
|
| cascas | | | 86.50 197 | 84.48 214 | 92.55 112 | 92.64 227 | 85.95 41 | 97.04 136 | 95.07 204 | 75.32 323 | 80.50 231 | 91.02 246 | 54.33 335 | 97.98 159 | 86.79 163 | 87.62 204 | 93.71 243 |
|
| OMC-MVS | | | 88.80 151 | 88.16 150 | 90.72 184 | 95.30 137 | 77.92 244 | 94.81 260 | 94.51 237 | 86.80 116 | 84.97 178 | 96.85 117 | 67.53 239 | 98.60 128 | 85.08 172 | 87.62 204 | 95.63 202 |
|
| SCA | | | 85.63 213 | 83.64 228 | 91.60 158 | 92.30 235 | 81.86 130 | 92.88 308 | 95.56 175 | 84.85 155 | 82.52 206 | 85.12 340 | 58.04 304 | 95.39 295 | 73.89 283 | 87.58 206 | 97.54 127 |
|
| thisisatest0530 | | | 89.65 133 | 89.02 133 | 91.53 159 | 93.46 201 | 80.78 160 | 96.52 172 | 96.67 75 | 81.69 235 | 83.79 195 | 94.90 176 | 88.85 14 | 97.68 174 | 77.80 238 | 87.49 207 | 96.14 191 |
|
| WB-MVSnew | | | 84.08 239 | 83.51 232 | 85.80 292 | 91.34 266 | 76.69 275 | 95.62 228 | 96.27 124 | 81.77 233 | 81.81 221 | 92.81 217 | 58.23 301 | 94.70 323 | 66.66 324 | 87.06 208 | 85.99 358 |
|
| VDDNet | | | 86.44 198 | 84.51 212 | 92.22 128 | 91.56 260 | 81.83 131 | 97.10 131 | 94.64 229 | 69.50 364 | 87.84 149 | 95.19 163 | 48.01 355 | 97.92 165 | 89.82 130 | 86.92 209 | 96.89 167 |
|
| VDD-MVS | | | 88.28 167 | 87.02 179 | 92.06 136 | 95.09 144 | 80.18 179 | 97.55 90 | 94.45 243 | 83.09 205 | 89.10 131 | 95.92 139 | 47.97 356 | 98.49 135 | 93.08 87 | 86.91 210 | 97.52 132 |
|
| thres200 | | | 88.92 146 | 87.65 158 | 92.73 103 | 96.30 103 | 85.62 54 | 97.85 66 | 98.86 1 | 84.38 170 | 84.82 180 | 93.99 197 | 75.12 168 | 98.01 158 | 70.86 305 | 86.67 211 | 94.56 230 |
|
| DP-MVS | | | 81.47 280 | 78.28 297 | 91.04 173 | 98.14 55 | 78.48 221 | 95.09 254 | 86.97 379 | 61.14 391 | 71.12 330 | 92.78 220 | 59.59 289 | 99.38 78 | 53.11 380 | 86.61 212 | 95.27 214 |
|
| F-COLMAP | | | 84.50 233 | 83.44 234 | 87.67 255 | 95.22 140 | 72.22 320 | 95.95 209 | 93.78 284 | 75.74 320 | 76.30 280 | 95.18 164 | 59.50 291 | 98.45 140 | 72.67 291 | 86.59 213 | 92.35 256 |
|
| mvsany_test1 | | | 87.58 183 | 88.22 147 | 85.67 296 | 89.78 296 | 67.18 358 | 95.25 242 | 87.93 375 | 83.96 185 | 88.79 136 | 97.06 111 | 72.52 200 | 94.53 328 | 92.21 95 | 86.45 214 | 95.30 213 |
|
| tttt0517 | | | 88.57 158 | 88.19 149 | 89.71 216 | 93.00 214 | 75.99 288 | 95.67 224 | 96.67 75 | 80.78 246 | 81.82 220 | 94.40 186 | 88.97 13 | 97.58 180 | 76.05 263 | 86.31 215 | 95.57 204 |
|
| CR-MVSNet | | | 83.53 247 | 81.36 264 | 90.06 201 | 90.16 290 | 79.75 188 | 79.02 395 | 91.12 346 | 84.24 177 | 82.27 214 | 80.35 372 | 75.45 156 | 93.67 345 | 63.37 343 | 86.25 216 | 96.75 174 |
|
| RPMNet | | | 79.85 296 | 75.92 316 | 91.64 155 | 90.16 290 | 79.75 188 | 79.02 395 | 95.44 185 | 58.43 400 | 82.27 214 | 72.55 398 | 73.03 195 | 98.41 143 | 46.10 396 | 86.25 216 | 96.75 174 |
|
| thres100view900 | | | 88.30 166 | 86.95 180 | 92.33 121 | 96.10 110 | 84.90 75 | 97.14 125 | 98.85 2 | 82.69 217 | 83.41 198 | 93.66 205 | 75.43 158 | 97.93 160 | 69.04 313 | 86.24 218 | 94.17 232 |
|
| tfpn200view9 | | | 88.48 160 | 87.15 174 | 92.47 113 | 96.21 106 | 85.30 61 | 97.44 99 | 98.85 2 | 83.37 200 | 83.99 190 | 93.82 201 | 75.36 161 | 97.93 160 | 69.04 313 | 86.24 218 | 94.17 232 |
|
| thres400 | | | 88.42 163 | 87.15 174 | 92.23 127 | 96.21 106 | 85.30 61 | 97.44 99 | 98.85 2 | 83.37 200 | 83.99 190 | 93.82 201 | 75.36 161 | 97.93 160 | 69.04 313 | 86.24 218 | 93.45 248 |
|
| CostFormer | | | 89.08 142 | 88.39 146 | 91.15 171 | 93.13 211 | 79.15 206 | 88.61 348 | 96.11 138 | 83.14 204 | 89.58 122 | 86.93 306 | 83.83 49 | 96.87 227 | 88.22 150 | 85.92 221 | 97.42 138 |
|
| thres600view7 | | | 88.06 171 | 86.70 186 | 92.15 133 | 96.10 110 | 85.17 67 | 97.14 125 | 98.85 2 | 82.70 216 | 83.41 198 | 93.66 205 | 75.43 158 | 97.82 169 | 67.13 322 | 85.88 222 | 93.45 248 |
|
| Effi-MVS+-dtu | | | 84.61 230 | 84.90 210 | 83.72 327 | 91.96 254 | 63.14 378 | 94.95 256 | 93.34 306 | 85.57 136 | 79.79 241 | 87.12 303 | 61.99 277 | 95.61 288 | 83.55 191 | 85.83 223 | 92.41 255 |
|
| JIA-IIPM | | | 79.00 306 | 77.20 305 | 84.40 319 | 89.74 299 | 64.06 373 | 75.30 403 | 95.44 185 | 62.15 384 | 81.90 218 | 59.08 407 | 78.92 93 | 95.59 289 | 66.51 328 | 85.78 224 | 93.54 245 |
|
| tpm2 | | | 87.35 186 | 86.26 188 | 90.62 186 | 92.93 219 | 78.67 218 | 88.06 355 | 95.99 147 | 79.33 279 | 87.40 152 | 86.43 317 | 80.28 74 | 96.40 244 | 80.23 218 | 85.73 225 | 96.79 170 |
|
| 1112_ss | | | 88.60 157 | 87.47 168 | 92.00 140 | 93.21 206 | 80.97 153 | 96.47 176 | 92.46 325 | 83.64 197 | 80.86 228 | 97.30 98 | 80.24 75 | 97.62 177 | 77.60 244 | 85.49 226 | 97.40 141 |
|
| Test_1112_low_res | | | 88.03 172 | 86.73 184 | 91.94 142 | 93.15 209 | 80.88 157 | 96.44 179 | 92.41 327 | 83.59 199 | 80.74 230 | 91.16 244 | 80.18 76 | 97.59 179 | 77.48 247 | 85.40 227 | 97.36 144 |
|
| GA-MVS | | | 85.79 210 | 84.04 223 | 91.02 175 | 89.47 306 | 80.27 174 | 96.90 150 | 94.84 215 | 85.57 136 | 80.88 227 | 89.08 270 | 56.56 321 | 96.47 243 | 77.72 241 | 85.35 228 | 96.34 185 |
|
| tpmrst | | | 88.36 164 | 87.38 170 | 91.31 164 | 94.36 172 | 79.92 183 | 87.32 360 | 95.26 198 | 85.32 142 | 88.34 144 | 86.13 323 | 80.60 71 | 96.70 235 | 83.78 184 | 85.34 229 | 97.30 148 |
|
| MDTV_nov1_ep13 | | | | 83.69 225 | | 94.09 182 | 81.01 151 | 86.78 365 | 96.09 139 | 83.81 191 | 84.75 182 | 84.32 347 | 74.44 179 | 96.54 240 | 63.88 339 | 85.07 230 | |
|
| Fast-Effi-MVS+-dtu | | | 83.33 250 | 82.60 246 | 85.50 300 | 89.55 304 | 69.38 349 | 96.09 204 | 91.38 341 | 82.30 224 | 75.96 287 | 91.41 239 | 56.71 318 | 95.58 290 | 75.13 272 | 84.90 231 | 91.54 257 |
|
| PatchT | | | 79.75 297 | 76.85 309 | 88.42 235 | 89.55 304 | 75.49 294 | 77.37 399 | 94.61 232 | 63.07 380 | 82.46 208 | 73.32 395 | 75.52 155 | 93.41 350 | 51.36 383 | 84.43 232 | 96.36 183 |
|
| XVG-OURS-SEG-HR | | | 85.74 211 | 85.16 204 | 87.49 265 | 90.22 288 | 71.45 334 | 91.29 328 | 94.09 265 | 81.37 237 | 83.90 194 | 95.22 160 | 60.30 286 | 97.53 187 | 85.58 169 | 84.42 233 | 93.50 246 |
|
| tpm cat1 | | | 83.63 246 | 81.38 263 | 90.39 193 | 93.53 200 | 78.19 236 | 85.56 374 | 95.09 202 | 70.78 357 | 78.51 252 | 83.28 357 | 74.80 172 | 97.03 215 | 66.77 323 | 84.05 234 | 95.95 194 |
|
| DSMNet-mixed | | | 73.13 343 | 72.45 338 | 75.19 376 | 77.51 392 | 46.82 407 | 85.09 378 | 82.01 400 | 67.61 373 | 69.27 342 | 81.33 367 | 50.89 344 | 86.28 394 | 54.54 376 | 83.80 235 | 92.46 253 |
|
| ADS-MVSNet2 | | | 79.57 300 | 77.53 303 | 85.71 295 | 93.78 188 | 72.13 323 | 79.48 391 | 86.11 386 | 73.09 343 | 80.14 237 | 79.99 375 | 62.15 274 | 90.14 380 | 59.49 356 | 83.52 236 | 94.85 222 |
|
| ADS-MVSNet | | | 81.26 283 | 78.36 296 | 89.96 207 | 93.78 188 | 79.78 186 | 79.48 391 | 93.60 293 | 73.09 343 | 80.14 237 | 79.99 375 | 62.15 274 | 95.24 304 | 59.49 356 | 83.52 236 | 94.85 222 |
|
| XVG-OURS | | | 85.18 221 | 84.38 216 | 87.59 259 | 90.42 286 | 71.73 331 | 91.06 331 | 94.07 266 | 82.00 231 | 83.29 200 | 95.08 170 | 56.42 322 | 97.55 183 | 83.70 189 | 83.42 238 | 93.49 247 |
|
| dp | | | 84.30 236 | 82.31 249 | 90.28 196 | 94.24 175 | 77.97 240 | 86.57 366 | 95.53 176 | 79.94 269 | 80.75 229 | 85.16 338 | 71.49 216 | 96.39 245 | 63.73 340 | 83.36 239 | 96.48 181 |
|
| MSDG | | | 80.62 292 | 77.77 302 | 89.14 222 | 93.43 202 | 77.24 263 | 91.89 320 | 90.18 358 | 69.86 363 | 68.02 344 | 91.94 235 | 52.21 341 | 98.84 120 | 59.32 358 | 83.12 240 | 91.35 258 |
|
| MIMVSNet | | | 79.18 305 | 75.99 315 | 88.72 232 | 87.37 330 | 80.66 163 | 79.96 389 | 91.82 334 | 77.38 306 | 74.33 302 | 81.87 363 | 41.78 377 | 90.74 375 | 66.36 330 | 83.10 241 | 94.76 224 |
|
| HQP3-MVS | | | | | | | | | 94.80 217 | | | | | | | 83.01 242 | |
|
| HQP-MVS | | | 87.91 176 | 87.55 165 | 88.98 226 | 92.08 248 | 78.48 221 | 97.63 81 | 94.80 217 | 90.52 45 | 82.30 210 | 94.56 183 | 65.40 255 | 97.32 199 | 87.67 155 | 83.01 242 | 91.13 259 |
|
| plane_prior | | | | | | | 77.96 241 | 97.52 94 | | 90.36 50 | | | | | | 82.96 244 | |
|
| CLD-MVS | | | 87.97 174 | 87.48 167 | 89.44 218 | 92.16 244 | 80.54 168 | 98.14 46 | 94.92 209 | 91.41 32 | 79.43 245 | 95.40 153 | 62.34 272 | 97.27 204 | 90.60 117 | 82.90 245 | 90.50 266 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP_MVS | | | 87.50 184 | 87.09 177 | 88.74 231 | 91.86 257 | 77.96 241 | 97.18 118 | 94.69 222 | 89.89 54 | 81.33 223 | 94.15 193 | 64.77 260 | 97.30 201 | 87.08 159 | 82.82 246 | 90.96 261 |
|
| plane_prior5 | | | | | | | | | 94.69 222 | | | | | 97.30 201 | 87.08 159 | 82.82 246 | 90.96 261 |
|
| OPM-MVS | | | 85.84 208 | 85.10 206 | 88.06 247 | 88.34 319 | 77.83 248 | 95.72 222 | 94.20 258 | 87.89 89 | 80.45 233 | 94.05 195 | 58.57 298 | 97.26 205 | 83.88 182 | 82.76 248 | 89.09 296 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Anonymous202405211 | | | 84.41 234 | 81.93 255 | 91.85 147 | 96.78 97 | 78.41 225 | 97.44 99 | 91.34 344 | 70.29 359 | 84.06 188 | 94.26 189 | 41.09 381 | 98.96 112 | 79.46 225 | 82.65 249 | 98.17 78 |
|
| ab-mvs | | | 87.08 187 | 84.94 208 | 93.48 75 | 93.34 204 | 83.67 95 | 88.82 345 | 95.70 168 | 81.18 239 | 84.55 186 | 90.14 262 | 62.72 270 | 98.94 116 | 85.49 170 | 82.54 250 | 97.85 104 |
|
| Syy-MVS | | | 77.97 314 | 78.05 299 | 77.74 365 | 92.13 245 | 56.85 394 | 93.97 280 | 94.23 255 | 82.43 221 | 73.39 308 | 93.57 207 | 57.95 307 | 87.86 387 | 32.40 408 | 82.34 251 | 88.51 312 |
|
| myMVS_eth3d | | | 81.93 274 | 82.18 250 | 81.18 347 | 92.13 245 | 67.18 358 | 93.97 280 | 94.23 255 | 82.43 221 | 73.39 308 | 93.57 207 | 76.98 126 | 87.86 387 | 50.53 387 | 82.34 251 | 88.51 312 |
|
| ET-MVSNet_ETH3D | | | 90.01 126 | 89.03 132 | 92.95 93 | 94.38 171 | 86.77 32 | 98.14 46 | 96.31 122 | 89.30 60 | 63.33 368 | 96.72 125 | 90.09 10 | 93.63 346 | 90.70 116 | 82.29 253 | 98.46 59 |
|
| SDMVSNet | | | 87.02 188 | 85.61 194 | 91.24 168 | 94.14 179 | 83.30 103 | 93.88 284 | 95.98 148 | 84.30 173 | 79.63 243 | 92.01 229 | 58.23 301 | 97.68 174 | 90.28 127 | 82.02 254 | 92.75 251 |
|
| sd_testset | | | 84.62 229 | 83.11 237 | 89.17 221 | 94.14 179 | 77.78 250 | 91.54 327 | 94.38 249 | 84.30 173 | 79.63 243 | 92.01 229 | 52.28 340 | 96.98 219 | 77.67 243 | 82.02 254 | 92.75 251 |
|
| tpmvs | | | 83.04 257 | 80.77 270 | 89.84 211 | 95.43 132 | 77.96 241 | 85.59 373 | 95.32 195 | 75.31 324 | 76.27 281 | 83.70 353 | 73.89 185 | 97.41 194 | 59.53 355 | 81.93 256 | 94.14 234 |
|
| CMPMVS |  | 54.94 21 | 75.71 331 | 74.56 326 | 79.17 359 | 79.69 384 | 55.98 396 | 89.59 339 | 93.30 307 | 60.28 393 | 53.85 397 | 89.07 271 | 47.68 360 | 96.33 248 | 76.55 256 | 81.02 257 | 85.22 364 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| dmvs_re | | | 84.10 238 | 82.90 240 | 87.70 254 | 91.41 265 | 73.28 312 | 90.59 334 | 93.19 310 | 85.02 151 | 77.96 260 | 93.68 204 | 57.92 309 | 96.18 255 | 75.50 268 | 80.87 258 | 93.63 244 |
|
| LPG-MVS_test | | | 84.20 237 | 83.49 233 | 86.33 283 | 90.88 274 | 73.06 315 | 95.28 239 | 94.13 262 | 82.20 225 | 76.31 278 | 93.20 211 | 54.83 333 | 96.95 221 | 83.72 187 | 80.83 259 | 88.98 302 |
|
| LGP-MVS_train | | | | | 86.33 283 | 90.88 274 | 73.06 315 | | 94.13 262 | 82.20 225 | 76.31 278 | 93.20 211 | 54.83 333 | 96.95 221 | 83.72 187 | 80.83 259 | 88.98 302 |
|
| ACMM | | 80.70 13 | 83.72 245 | 82.85 242 | 86.31 286 | 91.19 268 | 72.12 324 | 95.88 214 | 94.29 253 | 80.44 255 | 77.02 268 | 91.96 233 | 55.24 329 | 97.14 213 | 79.30 228 | 80.38 261 | 89.67 282 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| jajsoiax | | | 82.12 272 | 81.15 267 | 85.03 307 | 84.19 366 | 70.70 338 | 94.22 276 | 93.95 269 | 83.07 206 | 73.48 307 | 89.75 265 | 49.66 351 | 95.37 297 | 82.24 205 | 79.76 262 | 89.02 300 |
|
| test_djsdf | | | 83.00 259 | 82.45 248 | 84.64 313 | 84.07 368 | 69.78 345 | 94.80 261 | 94.48 238 | 80.74 247 | 75.41 295 | 87.70 293 | 61.32 283 | 95.10 312 | 83.77 185 | 79.76 262 | 89.04 299 |
|
| ACMP | | 81.66 11 | 84.00 240 | 83.22 236 | 86.33 283 | 91.53 263 | 72.95 318 | 95.91 213 | 93.79 283 | 83.70 195 | 73.79 304 | 92.22 226 | 54.31 336 | 96.89 225 | 83.98 181 | 79.74 264 | 89.16 294 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| testing3 | | | 80.74 290 | 81.17 266 | 79.44 357 | 91.15 270 | 63.48 376 | 97.16 122 | 95.76 164 | 80.83 244 | 71.36 327 | 93.15 214 | 78.22 105 | 87.30 392 | 43.19 400 | 79.67 265 | 87.55 337 |
|
| PVSNet_BlendedMVS | | | 90.05 125 | 89.96 121 | 90.33 195 | 97.47 77 | 83.86 90 | 98.02 58 | 96.73 67 | 87.98 84 | 89.53 123 | 89.61 267 | 76.42 137 | 99.57 64 | 94.29 65 | 79.59 266 | 87.57 334 |
|
| Patchmatch-test | | | 78.25 309 | 74.72 324 | 88.83 229 | 91.20 267 | 74.10 306 | 73.91 406 | 88.70 373 | 59.89 396 | 66.82 351 | 85.12 340 | 78.38 102 | 94.54 327 | 48.84 392 | 79.58 267 | 97.86 103 |
|
| mvs_tets | | | 81.74 276 | 80.71 272 | 84.84 308 | 84.22 365 | 70.29 341 | 93.91 283 | 93.78 284 | 82.77 215 | 73.37 310 | 89.46 268 | 47.36 361 | 95.31 301 | 81.99 206 | 79.55 268 | 88.92 306 |
|
| FIs | | | 86.73 196 | 86.10 190 | 88.61 233 | 90.05 293 | 80.21 177 | 96.14 201 | 96.95 42 | 85.56 138 | 78.37 254 | 92.30 225 | 76.73 132 | 95.28 302 | 79.51 224 | 79.27 269 | 90.35 268 |
|
| D2MVS | | | 82.67 263 | 81.55 260 | 86.04 290 | 87.77 325 | 76.47 276 | 95.21 244 | 96.58 90 | 82.66 218 | 70.26 336 | 85.46 333 | 60.39 285 | 95.80 272 | 76.40 259 | 79.18 270 | 85.83 361 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 271 | |
|
| PS-MVSNAJss | | | 84.91 225 | 84.30 217 | 86.74 277 | 85.89 348 | 74.40 304 | 94.95 256 | 94.16 261 | 83.93 187 | 76.45 276 | 90.11 263 | 71.04 220 | 95.77 275 | 83.16 197 | 79.02 272 | 90.06 278 |
|
| FC-MVSNet-test | | | 85.96 206 | 85.39 198 | 87.66 256 | 89.38 308 | 78.02 238 | 95.65 226 | 96.87 49 | 85.12 149 | 77.34 263 | 91.94 235 | 76.28 141 | 94.74 322 | 77.09 250 | 78.82 273 | 90.21 271 |
|
| EG-PatchMatch MVS | | | 74.92 333 | 72.02 341 | 83.62 328 | 83.76 373 | 73.28 312 | 93.62 289 | 92.04 332 | 68.57 367 | 58.88 386 | 83.80 352 | 31.87 400 | 95.57 291 | 56.97 368 | 78.67 274 | 82.00 387 |
|
| EI-MVSNet | | | 85.80 209 | 85.20 201 | 87.59 259 | 91.55 261 | 77.41 260 | 95.13 249 | 95.36 191 | 80.43 257 | 80.33 235 | 94.71 180 | 73.72 188 | 95.97 261 | 76.96 253 | 78.64 275 | 89.39 284 |
|
| MVSTER | | | 89.25 141 | 88.92 137 | 90.24 197 | 95.98 114 | 84.66 78 | 96.79 157 | 95.36 191 | 87.19 109 | 80.33 235 | 90.61 253 | 90.02 11 | 95.97 261 | 85.38 171 | 78.64 275 | 90.09 276 |
|
| anonymousdsp | | | 80.98 288 | 79.97 284 | 84.01 321 | 81.73 378 | 70.44 340 | 92.49 312 | 93.58 295 | 77.10 311 | 72.98 316 | 86.31 319 | 57.58 310 | 94.90 316 | 79.32 227 | 78.63 277 | 86.69 347 |
|
| UniMVSNet_ETH3D | | | 80.86 289 | 78.75 295 | 87.22 272 | 86.31 339 | 72.02 325 | 91.95 318 | 93.76 287 | 73.51 338 | 75.06 298 | 90.16 261 | 43.04 374 | 95.66 282 | 76.37 260 | 78.55 278 | 93.98 238 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 279 | |
|
| test_fmvs2 | | | 79.59 299 | 79.90 286 | 78.67 361 | 82.86 375 | 55.82 398 | 95.20 245 | 89.55 362 | 81.09 240 | 80.12 239 | 89.80 264 | 34.31 396 | 93.51 348 | 87.82 152 | 78.36 280 | 86.69 347 |
|
| Anonymous20240529 | | | 83.15 254 | 80.60 274 | 90.80 181 | 95.74 123 | 78.27 229 | 96.81 156 | 94.92 209 | 60.10 395 | 81.89 219 | 92.54 221 | 45.82 365 | 98.82 121 | 79.25 229 | 78.32 281 | 95.31 212 |
|
| XVG-ACMP-BASELINE | | | 79.38 303 | 77.90 301 | 83.81 323 | 84.98 359 | 67.14 362 | 89.03 344 | 93.18 312 | 80.26 263 | 72.87 317 | 88.15 288 | 38.55 386 | 96.26 250 | 76.05 263 | 78.05 282 | 88.02 325 |
|
| tpm | | | 85.55 215 | 84.47 215 | 88.80 230 | 90.19 289 | 75.39 295 | 88.79 346 | 94.69 222 | 84.83 156 | 83.96 192 | 85.21 336 | 78.22 105 | 94.68 325 | 76.32 261 | 78.02 283 | 96.34 185 |
|
| test0.0.03 1 | | | 82.79 261 | 82.48 247 | 83.74 326 | 86.81 334 | 72.22 320 | 96.52 172 | 95.03 205 | 83.76 193 | 73.00 315 | 93.20 211 | 72.30 205 | 88.88 382 | 64.15 338 | 77.52 284 | 90.12 274 |
|
| RPSCF | | | 77.73 316 | 76.63 311 | 81.06 348 | 88.66 315 | 55.76 399 | 87.77 357 | 87.88 376 | 64.82 378 | 74.14 303 | 92.79 219 | 49.22 352 | 96.81 231 | 67.47 320 | 76.88 285 | 90.62 264 |
|
| MonoMVSNet | | | 85.68 212 | 84.22 219 | 90.03 202 | 88.43 318 | 77.83 248 | 92.95 307 | 91.46 340 | 87.28 104 | 78.11 257 | 85.96 325 | 66.31 250 | 94.81 320 | 90.71 115 | 76.81 286 | 97.46 136 |
|
| LTVRE_ROB | | 73.68 18 | 77.99 312 | 75.74 317 | 84.74 309 | 90.45 285 | 72.02 325 | 86.41 368 | 91.12 346 | 72.57 348 | 66.63 353 | 87.27 299 | 54.95 332 | 96.98 219 | 56.29 370 | 75.98 287 | 85.21 365 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_vis1_rt | | | 73.96 336 | 72.40 339 | 78.64 362 | 83.91 370 | 61.16 386 | 95.63 227 | 68.18 415 | 76.32 316 | 60.09 383 | 74.77 389 | 29.01 404 | 97.54 185 | 87.74 153 | 75.94 288 | 77.22 398 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 344 | 69.57 351 | 83.37 331 | 80.54 382 | 71.82 329 | 93.60 290 | 88.22 374 | 62.37 383 | 61.98 375 | 83.15 358 | 35.31 395 | 95.47 293 | 45.08 398 | 75.88 289 | 82.82 377 |
|
| USDC | | | 78.65 307 | 76.25 313 | 85.85 291 | 87.58 327 | 74.60 301 | 89.58 340 | 90.58 357 | 84.05 181 | 63.13 369 | 88.23 286 | 40.69 385 | 96.86 229 | 66.57 327 | 75.81 290 | 86.09 356 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 330 | 73.00 337 | 83.94 322 | 92.38 230 | 69.08 350 | 91.85 321 | 86.93 380 | 61.48 388 | 65.32 360 | 90.27 258 | 42.27 376 | 96.93 224 | 50.91 385 | 75.63 291 | 85.80 362 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| GBi-Net | | | 82.42 267 | 80.43 277 | 88.39 238 | 92.66 224 | 81.95 123 | 94.30 272 | 93.38 302 | 79.06 287 | 75.82 289 | 85.66 326 | 56.38 323 | 93.84 341 | 71.23 300 | 75.38 292 | 89.38 286 |
|
| test1 | | | 82.42 267 | 80.43 277 | 88.39 238 | 92.66 224 | 81.95 123 | 94.30 272 | 93.38 302 | 79.06 287 | 75.82 289 | 85.66 326 | 56.38 323 | 93.84 341 | 71.23 300 | 75.38 292 | 89.38 286 |
|
| FMVSNet3 | | | 84.71 227 | 82.71 244 | 90.70 185 | 94.55 161 | 87.71 23 | 95.92 211 | 94.67 225 | 81.73 234 | 75.82 289 | 88.08 289 | 66.99 244 | 94.47 329 | 71.23 300 | 75.38 292 | 89.91 280 |
|
| tt0805 | | | 81.20 285 | 79.06 293 | 87.61 257 | 86.50 336 | 72.97 317 | 93.66 287 | 95.48 181 | 74.11 333 | 76.23 282 | 91.99 231 | 41.36 380 | 97.40 195 | 77.44 248 | 74.78 295 | 92.45 254 |
|
| FMVSNet2 | | | 82.79 261 | 80.44 276 | 89.83 212 | 92.66 224 | 85.43 57 | 95.42 236 | 94.35 250 | 79.06 287 | 74.46 301 | 87.28 298 | 56.38 323 | 94.31 332 | 69.72 312 | 74.68 296 | 89.76 281 |
|
| ITE_SJBPF | | | | | 82.38 338 | 87.00 332 | 65.59 366 | | 89.55 362 | 79.99 268 | 69.37 341 | 91.30 242 | 41.60 379 | 95.33 299 | 62.86 345 | 74.63 297 | 86.24 353 |
|
| ACMH | | 75.40 17 | 77.99 312 | 74.96 320 | 87.10 274 | 90.67 281 | 76.41 278 | 93.19 303 | 91.64 338 | 72.47 349 | 63.44 367 | 87.61 295 | 43.34 371 | 97.16 209 | 58.34 360 | 73.94 298 | 87.72 329 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline1 | | | 88.85 149 | 87.49 166 | 92.93 95 | 95.21 141 | 86.85 31 | 95.47 234 | 94.61 232 | 87.29 103 | 83.11 203 | 94.99 174 | 80.70 69 | 96.89 225 | 82.28 204 | 73.72 299 | 95.05 217 |
|
| pmmvs4 | | | 82.54 265 | 80.79 269 | 87.79 252 | 86.11 344 | 80.49 170 | 93.55 291 | 93.18 312 | 77.29 307 | 73.35 311 | 89.40 269 | 65.26 258 | 95.05 315 | 75.32 270 | 73.61 300 | 87.83 328 |
|
| AllTest | | | 75.92 328 | 73.06 336 | 84.47 316 | 92.18 242 | 67.29 356 | 91.07 330 | 84.43 392 | 67.63 369 | 63.48 365 | 90.18 259 | 38.20 387 | 97.16 209 | 57.04 366 | 73.37 301 | 88.97 304 |
|
| TestCases | | | | | 84.47 316 | 92.18 242 | 67.29 356 | | 84.43 392 | 67.63 369 | 63.48 365 | 90.18 259 | 38.20 387 | 97.16 209 | 57.04 366 | 73.37 301 | 88.97 304 |
|
| pmmvs5 | | | 81.34 282 | 79.54 288 | 86.73 280 | 85.02 358 | 76.91 269 | 96.22 194 | 91.65 337 | 77.65 302 | 73.55 306 | 88.61 277 | 55.70 326 | 94.43 330 | 74.12 282 | 73.35 303 | 88.86 308 |
|
| XXY-MVS | | | 83.84 242 | 82.00 254 | 89.35 219 | 87.13 331 | 81.38 143 | 95.72 222 | 94.26 254 | 80.15 264 | 75.92 288 | 90.63 252 | 61.96 278 | 96.52 241 | 78.98 232 | 73.28 304 | 90.14 273 |
|
| WBMVS | | | 87.73 179 | 86.79 182 | 90.56 188 | 95.61 127 | 85.68 49 | 97.63 81 | 95.52 178 | 83.77 192 | 78.30 255 | 88.44 282 | 86.14 30 | 95.78 274 | 82.54 202 | 73.15 305 | 90.21 271 |
|
| FMVSNet1 | | | 79.50 301 | 76.54 312 | 88.39 238 | 88.47 316 | 81.95 123 | 94.30 272 | 93.38 302 | 73.14 342 | 72.04 324 | 85.66 326 | 43.86 368 | 93.84 341 | 65.48 332 | 72.53 306 | 89.38 286 |
|
| cl22 | | | 85.11 222 | 84.17 220 | 87.92 250 | 95.06 148 | 78.82 213 | 95.51 232 | 94.22 257 | 79.74 272 | 76.77 271 | 87.92 291 | 75.96 145 | 95.68 281 | 79.93 222 | 72.42 307 | 89.27 291 |
|
| miper_ehance_all_eth | | | 84.57 231 | 83.60 230 | 87.50 263 | 92.64 227 | 78.25 230 | 95.40 238 | 93.47 297 | 79.28 282 | 76.41 277 | 87.64 294 | 76.53 134 | 95.24 304 | 78.58 235 | 72.42 307 | 89.01 301 |
|
| miper_enhance_ethall | | | 85.95 207 | 85.20 201 | 88.19 246 | 94.85 153 | 79.76 187 | 96.00 206 | 94.06 267 | 82.98 210 | 77.74 261 | 88.76 275 | 79.42 85 | 95.46 294 | 80.58 213 | 72.42 307 | 89.36 289 |
|
| test_0402 | | | 72.68 345 | 69.54 352 | 82.09 341 | 88.67 314 | 71.81 330 | 92.72 310 | 86.77 383 | 61.52 387 | 62.21 374 | 83.91 351 | 43.22 372 | 93.76 344 | 34.60 406 | 72.23 310 | 80.72 393 |
|
| dmvs_testset | | | 72.00 350 | 73.36 335 | 67.91 382 | 83.83 371 | 31.90 422 | 85.30 376 | 77.12 407 | 82.80 214 | 63.05 371 | 92.46 222 | 61.54 281 | 82.55 404 | 42.22 403 | 71.89 311 | 89.29 290 |
|
| testgi | | | 74.88 334 | 73.40 334 | 79.32 358 | 80.13 383 | 61.75 382 | 93.21 301 | 86.64 384 | 79.49 277 | 66.56 355 | 91.06 245 | 35.51 394 | 88.67 383 | 56.79 369 | 71.25 312 | 87.56 335 |
|
| nrg030 | | | 86.79 194 | 85.43 197 | 90.87 180 | 88.76 311 | 85.34 58 | 97.06 135 | 94.33 252 | 84.31 171 | 80.45 233 | 91.98 232 | 72.36 202 | 96.36 247 | 88.48 147 | 71.13 313 | 90.93 263 |
|
| ACMH+ | | 76.62 16 | 77.47 319 | 74.94 321 | 85.05 306 | 91.07 272 | 71.58 333 | 93.26 300 | 90.01 359 | 71.80 352 | 64.76 362 | 88.55 278 | 41.62 378 | 96.48 242 | 62.35 346 | 71.00 314 | 87.09 343 |
|
| VPA-MVSNet | | | 85.32 219 | 83.83 224 | 89.77 215 | 90.25 287 | 82.63 112 | 96.36 185 | 97.07 33 | 83.03 208 | 81.21 225 | 89.02 272 | 61.58 280 | 96.31 249 | 85.02 174 | 70.95 315 | 90.36 267 |
|
| IterMVS | | | 80.67 291 | 79.16 291 | 85.20 304 | 89.79 295 | 76.08 283 | 92.97 306 | 91.86 333 | 80.28 261 | 71.20 329 | 85.14 339 | 57.93 308 | 91.34 369 | 72.52 292 | 70.74 316 | 88.18 323 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-LS | | | 83.93 241 | 82.80 243 | 87.31 269 | 91.46 264 | 77.39 261 | 95.66 225 | 93.43 300 | 80.44 255 | 75.51 293 | 87.26 300 | 73.72 188 | 95.16 308 | 76.99 251 | 70.72 317 | 89.39 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 80.51 293 | 79.10 292 | 84.73 310 | 89.63 302 | 74.66 299 | 92.98 305 | 91.81 335 | 80.05 266 | 71.06 331 | 85.18 337 | 58.04 304 | 91.40 368 | 72.48 293 | 70.70 318 | 88.12 324 |
|
| v1240 | | | 81.70 277 | 79.83 287 | 87.30 270 | 85.50 351 | 77.70 256 | 95.48 233 | 93.44 298 | 78.46 295 | 76.53 275 | 86.44 315 | 60.85 284 | 95.84 269 | 71.59 297 | 70.17 319 | 88.35 319 |
|
| V42 | | | 83.04 257 | 81.53 261 | 87.57 261 | 86.27 341 | 79.09 209 | 95.87 215 | 94.11 264 | 80.35 259 | 77.22 266 | 86.79 309 | 65.32 257 | 96.02 259 | 77.74 240 | 70.14 320 | 87.61 333 |
|
| v1192 | | | 82.31 270 | 80.55 275 | 87.60 258 | 85.94 346 | 78.47 224 | 95.85 217 | 93.80 282 | 79.33 279 | 76.97 269 | 86.51 312 | 63.33 268 | 95.87 268 | 73.11 288 | 70.13 321 | 88.46 316 |
|
| v1144 | | | 82.90 260 | 81.27 265 | 87.78 253 | 86.29 340 | 79.07 210 | 96.14 201 | 93.93 270 | 80.05 266 | 77.38 262 | 86.80 308 | 65.50 253 | 95.93 266 | 75.21 271 | 70.13 321 | 88.33 320 |
|
| Anonymous20231206 | | | 75.29 332 | 73.64 333 | 80.22 353 | 80.75 379 | 63.38 377 | 93.36 295 | 90.71 356 | 73.09 343 | 67.12 347 | 83.70 353 | 50.33 348 | 90.85 374 | 53.63 379 | 70.10 323 | 86.44 350 |
|
| WR-MVS | | | 84.32 235 | 82.96 238 | 88.41 236 | 89.38 308 | 80.32 171 | 96.59 168 | 96.25 126 | 83.97 184 | 76.63 273 | 90.36 257 | 67.53 239 | 94.86 318 | 75.82 266 | 70.09 324 | 90.06 278 |
|
| EU-MVSNet | | | 76.92 324 | 76.95 308 | 76.83 370 | 84.10 367 | 54.73 402 | 91.77 322 | 92.71 323 | 72.74 346 | 69.57 340 | 88.69 276 | 58.03 306 | 87.43 391 | 64.91 335 | 70.00 325 | 88.33 320 |
|
| IB-MVS | | 85.34 4 | 88.67 154 | 87.14 176 | 93.26 80 | 93.12 212 | 84.32 83 | 98.76 26 | 97.27 20 | 87.19 109 | 79.36 246 | 90.45 255 | 83.92 48 | 98.53 133 | 84.41 177 | 69.79 326 | 96.93 164 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| v1921920 | | | 82.02 273 | 80.23 279 | 87.41 266 | 85.62 350 | 77.92 244 | 95.79 221 | 93.69 289 | 78.86 290 | 76.67 272 | 86.44 315 | 62.50 271 | 95.83 270 | 72.69 290 | 69.77 327 | 88.47 315 |
|
| v2v482 | | | 83.46 248 | 81.86 256 | 88.25 243 | 86.19 342 | 79.65 193 | 96.34 187 | 94.02 268 | 81.56 236 | 77.32 264 | 88.23 286 | 65.62 252 | 96.03 258 | 77.77 239 | 69.72 328 | 89.09 296 |
|
| v144192 | | | 82.43 266 | 80.73 271 | 87.54 262 | 85.81 349 | 78.22 231 | 95.98 207 | 93.78 284 | 79.09 286 | 77.11 267 | 86.49 313 | 64.66 262 | 95.91 267 | 74.20 281 | 69.42 329 | 88.49 314 |
|
| cl____ | | | 83.27 251 | 82.12 251 | 86.74 277 | 92.20 240 | 75.95 289 | 95.11 251 | 93.27 308 | 78.44 296 | 74.82 299 | 87.02 305 | 74.19 181 | 95.19 306 | 74.67 276 | 69.32 330 | 89.09 296 |
|
| DIV-MVS_self_test | | | 83.27 251 | 82.12 251 | 86.74 277 | 92.19 241 | 75.92 291 | 95.11 251 | 93.26 309 | 78.44 296 | 74.81 300 | 87.08 304 | 74.19 181 | 95.19 306 | 74.66 277 | 69.30 331 | 89.11 295 |
|
| Anonymous20231211 | | | 79.72 298 | 77.19 306 | 87.33 267 | 95.59 129 | 77.16 267 | 95.18 248 | 94.18 260 | 59.31 398 | 72.57 320 | 86.20 322 | 47.89 358 | 95.66 282 | 74.53 279 | 69.24 332 | 89.18 293 |
|
| FMVSNet5 | | | 76.46 326 | 74.16 330 | 83.35 332 | 90.05 293 | 76.17 281 | 89.58 340 | 89.85 360 | 71.39 355 | 65.29 361 | 80.42 371 | 50.61 346 | 87.70 390 | 61.05 352 | 69.24 332 | 86.18 354 |
|
| c3_l | | | 83.80 243 | 82.65 245 | 87.25 271 | 92.10 247 | 77.74 255 | 95.25 242 | 93.04 318 | 78.58 293 | 76.01 285 | 87.21 302 | 75.25 166 | 95.11 311 | 77.54 246 | 68.89 334 | 88.91 307 |
|
| TinyColmap | | | 72.41 346 | 68.99 355 | 82.68 336 | 88.11 321 | 69.59 347 | 88.41 349 | 85.20 388 | 65.55 375 | 57.91 389 | 84.82 344 | 30.80 402 | 95.94 265 | 51.38 382 | 68.70 335 | 82.49 382 |
|
| LF4IMVS | | | 72.36 347 | 70.82 345 | 76.95 369 | 79.18 385 | 56.33 395 | 86.12 370 | 86.11 386 | 69.30 365 | 63.06 370 | 86.66 310 | 33.03 398 | 92.25 358 | 65.33 333 | 68.64 336 | 82.28 384 |
|
| Anonymous20240521 | | | 72.06 349 | 69.91 350 | 78.50 363 | 77.11 394 | 61.67 384 | 91.62 326 | 90.97 351 | 65.52 376 | 62.37 373 | 79.05 378 | 36.32 390 | 90.96 373 | 57.75 363 | 68.52 337 | 82.87 376 |
|
| OurMVSNet-221017-0 | | | 77.18 322 | 76.06 314 | 80.55 351 | 83.78 372 | 60.00 389 | 90.35 335 | 91.05 349 | 77.01 313 | 66.62 354 | 87.92 291 | 47.73 359 | 94.03 337 | 71.63 296 | 68.44 338 | 87.62 332 |
|
| CP-MVSNet | | | 81.01 287 | 80.08 281 | 83.79 324 | 87.91 324 | 70.51 339 | 94.29 275 | 95.65 170 | 80.83 244 | 72.54 321 | 88.84 274 | 63.71 264 | 92.32 357 | 68.58 317 | 68.36 339 | 88.55 311 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 217 | 84.59 211 | 88.21 245 | 89.44 307 | 79.36 199 | 96.71 163 | 96.41 109 | 85.22 145 | 78.11 257 | 90.98 248 | 76.97 127 | 95.14 309 | 79.14 230 | 68.30 340 | 90.12 274 |
|
| DU-MVS | | | 84.57 231 | 83.33 235 | 88.28 241 | 88.76 311 | 79.36 199 | 96.43 181 | 95.41 190 | 85.42 140 | 78.11 257 | 90.82 249 | 67.61 236 | 95.14 309 | 79.14 230 | 68.30 340 | 90.33 269 |
|
| PS-CasMVS | | | 80.27 294 | 79.18 290 | 83.52 330 | 87.56 328 | 69.88 344 | 94.08 278 | 95.29 196 | 80.27 262 | 72.08 323 | 88.51 281 | 59.22 295 | 92.23 359 | 67.49 319 | 68.15 342 | 88.45 317 |
|
| UniMVSNet (Re) | | | 85.31 220 | 84.23 218 | 88.55 234 | 89.75 297 | 80.55 166 | 96.72 161 | 96.89 47 | 85.42 140 | 78.40 253 | 88.93 273 | 75.38 160 | 95.52 292 | 78.58 235 | 68.02 343 | 89.57 283 |
|
| our_test_3 | | | 77.90 315 | 75.37 319 | 85.48 301 | 85.39 353 | 76.74 273 | 93.63 288 | 91.67 336 | 73.39 341 | 65.72 358 | 84.65 345 | 58.20 303 | 93.13 352 | 57.82 362 | 67.87 344 | 86.57 349 |
|
| tfpnnormal | | | 78.14 310 | 75.42 318 | 86.31 286 | 88.33 320 | 79.24 202 | 94.41 266 | 96.22 129 | 73.51 338 | 69.81 339 | 85.52 332 | 55.43 327 | 95.75 277 | 47.65 394 | 67.86 345 | 83.95 374 |
|
| VPNet | | | 84.69 228 | 82.92 239 | 90.01 203 | 89.01 310 | 83.45 100 | 96.71 163 | 95.46 183 | 85.71 134 | 79.65 242 | 92.18 228 | 56.66 320 | 96.01 260 | 83.05 199 | 67.84 346 | 90.56 265 |
|
| v10 | | | 81.43 281 | 79.53 289 | 87.11 273 | 86.38 337 | 78.87 212 | 94.31 271 | 93.43 300 | 77.88 299 | 73.24 313 | 85.26 334 | 65.44 254 | 95.75 277 | 72.14 294 | 67.71 347 | 86.72 346 |
|
| v8 | | | 81.88 275 | 80.06 283 | 87.32 268 | 86.63 335 | 79.04 211 | 94.41 266 | 93.65 291 | 78.77 291 | 73.19 314 | 85.57 330 | 66.87 245 | 95.81 271 | 73.84 285 | 67.61 348 | 87.11 342 |
|
| v7n | | | 79.32 304 | 77.34 304 | 85.28 303 | 84.05 369 | 72.89 319 | 93.38 294 | 93.87 276 | 75.02 327 | 70.68 332 | 84.37 346 | 59.58 290 | 95.62 287 | 67.60 318 | 67.50 349 | 87.32 341 |
|
| WR-MVS_H | | | 81.02 286 | 80.09 280 | 83.79 324 | 88.08 322 | 71.26 337 | 94.46 264 | 96.54 94 | 80.08 265 | 72.81 318 | 86.82 307 | 70.36 227 | 92.65 354 | 64.18 337 | 67.50 349 | 87.46 339 |
|
| Patchmtry | | | 77.36 320 | 74.59 325 | 85.67 296 | 89.75 297 | 75.75 293 | 77.85 398 | 91.12 346 | 60.28 393 | 71.23 328 | 80.35 372 | 75.45 156 | 93.56 347 | 57.94 361 | 67.34 351 | 87.68 331 |
|
| reproduce_monomvs | | | 87.80 177 | 87.60 163 | 88.40 237 | 96.56 98 | 80.26 175 | 95.80 220 | 96.32 121 | 91.56 31 | 73.60 305 | 88.36 283 | 88.53 16 | 96.25 252 | 90.47 119 | 67.23 352 | 88.67 309 |
|
| eth_miper_zixun_eth | | | 83.12 255 | 82.01 253 | 86.47 282 | 91.85 259 | 74.80 298 | 94.33 270 | 93.18 312 | 79.11 285 | 75.74 292 | 87.25 301 | 72.71 197 | 95.32 300 | 76.78 254 | 67.13 353 | 89.27 291 |
|
| miper_lstm_enhance | | | 81.66 279 | 80.66 273 | 84.67 312 | 91.19 268 | 71.97 327 | 91.94 319 | 93.19 310 | 77.86 300 | 72.27 322 | 85.26 334 | 73.46 191 | 93.42 349 | 73.71 286 | 67.05 354 | 88.61 310 |
|
| v148 | | | 82.41 269 | 80.89 268 | 86.99 275 | 86.18 343 | 76.81 272 | 96.27 191 | 93.82 279 | 80.49 254 | 75.28 296 | 86.11 324 | 67.32 242 | 95.75 277 | 75.48 269 | 67.03 355 | 88.42 318 |
|
| NR-MVSNet | | | 83.35 249 | 81.52 262 | 88.84 228 | 88.76 311 | 81.31 145 | 94.45 265 | 95.16 200 | 84.65 162 | 67.81 345 | 90.82 249 | 70.36 227 | 94.87 317 | 74.75 274 | 66.89 356 | 90.33 269 |
|
| Baseline_NR-MVSNet | | | 81.22 284 | 80.07 282 | 84.68 311 | 85.32 356 | 75.12 297 | 96.48 175 | 88.80 370 | 76.24 319 | 77.28 265 | 86.40 318 | 67.61 236 | 94.39 331 | 75.73 267 | 66.73 357 | 84.54 368 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 253 | 81.71 258 | 87.83 251 | 87.71 326 | 78.81 215 | 96.13 203 | 94.82 216 | 84.52 165 | 76.18 284 | 90.78 251 | 64.07 263 | 94.60 326 | 74.60 278 | 66.59 358 | 90.09 276 |
|
| h-mvs33 | | | 89.30 139 | 88.95 136 | 90.36 194 | 95.07 146 | 76.04 284 | 96.96 144 | 97.11 30 | 90.39 48 | 92.22 83 | 95.10 169 | 74.70 173 | 98.86 119 | 93.14 83 | 65.89 359 | 96.16 190 |
|
| PEN-MVS | | | 79.47 302 | 78.26 298 | 83.08 333 | 86.36 338 | 68.58 352 | 93.85 285 | 94.77 220 | 79.76 271 | 71.37 326 | 88.55 278 | 59.79 287 | 92.46 355 | 64.50 336 | 65.40 360 | 88.19 322 |
|
| FPMVS | | | 55.09 373 | 52.93 376 | 61.57 391 | 55.98 415 | 40.51 416 | 83.11 386 | 83.41 398 | 37.61 409 | 34.95 410 | 71.95 399 | 14.40 412 | 76.95 409 | 29.81 409 | 65.16 361 | 67.25 404 |
|
| ppachtmachnet_test | | | 77.19 321 | 74.22 329 | 86.13 289 | 85.39 353 | 78.22 231 | 93.98 279 | 91.36 343 | 71.74 353 | 67.11 348 | 84.87 343 | 56.67 319 | 93.37 351 | 52.21 381 | 64.59 362 | 86.80 345 |
|
| AUN-MVS | | | 86.25 203 | 85.57 195 | 88.26 242 | 93.57 194 | 73.38 309 | 95.45 235 | 95.88 158 | 83.94 186 | 85.47 173 | 94.21 191 | 73.70 190 | 96.67 237 | 83.54 192 | 64.41 363 | 94.73 228 |
|
| hse-mvs2 | | | 88.22 169 | 88.21 148 | 88.25 243 | 93.54 195 | 73.41 308 | 95.41 237 | 95.89 157 | 90.39 48 | 92.22 83 | 94.22 190 | 74.70 173 | 96.66 238 | 93.14 83 | 64.37 364 | 94.69 229 |
|
| pm-mvs1 | | | 80.05 295 | 78.02 300 | 86.15 288 | 85.42 352 | 75.81 292 | 95.11 251 | 92.69 324 | 77.13 309 | 70.36 335 | 87.43 296 | 58.44 300 | 95.27 303 | 71.36 299 | 64.25 365 | 87.36 340 |
|
| N_pmnet | | | 61.30 368 | 60.20 371 | 64.60 387 | 84.32 364 | 17.00 428 | 91.67 325 | 10.98 426 | 61.77 386 | 58.45 388 | 78.55 379 | 49.89 350 | 91.83 365 | 42.27 402 | 63.94 366 | 84.97 366 |
|
| SixPastTwentyTwo | | | 76.04 327 | 74.32 328 | 81.22 346 | 84.54 362 | 61.43 385 | 91.16 329 | 89.30 366 | 77.89 298 | 64.04 364 | 86.31 319 | 48.23 353 | 94.29 333 | 63.54 342 | 63.84 367 | 87.93 327 |
|
| MIMVSNet1 | | | 69.44 358 | 66.65 362 | 77.84 364 | 76.48 396 | 62.84 379 | 87.42 359 | 88.97 368 | 66.96 374 | 57.75 391 | 79.72 377 | 32.77 399 | 85.83 396 | 46.32 395 | 63.42 368 | 84.85 367 |
|
| DTE-MVSNet | | | 78.37 308 | 77.06 307 | 82.32 340 | 85.22 357 | 67.17 361 | 93.40 293 | 93.66 290 | 78.71 292 | 70.53 334 | 88.29 285 | 59.06 296 | 92.23 359 | 61.38 350 | 63.28 369 | 87.56 335 |
|
| new_pmnet | | | 66.18 365 | 63.18 367 | 75.18 377 | 76.27 398 | 61.74 383 | 83.79 383 | 84.66 391 | 56.64 402 | 51.57 398 | 71.85 401 | 31.29 401 | 87.93 386 | 49.98 388 | 62.55 370 | 75.86 399 |
|
| test_fmvs3 | | | 69.56 356 | 69.19 354 | 70.67 380 | 69.01 406 | 47.05 406 | 90.87 332 | 86.81 381 | 71.31 356 | 66.79 352 | 77.15 383 | 16.40 411 | 83.17 402 | 81.84 207 | 62.51 371 | 81.79 389 |
|
| test20.03 | | | 72.36 347 | 71.15 344 | 75.98 374 | 77.79 390 | 59.16 391 | 92.40 314 | 89.35 365 | 74.09 334 | 61.50 377 | 84.32 347 | 48.09 354 | 85.54 397 | 50.63 386 | 62.15 372 | 83.24 375 |
|
| EGC-MVSNET | | | 52.46 376 | 47.56 379 | 67.15 383 | 81.98 377 | 60.11 388 | 82.54 387 | 72.44 411 | 0.11 423 | 0.70 424 | 74.59 390 | 25.11 405 | 83.26 401 | 29.04 410 | 61.51 373 | 58.09 408 |
|
| pmmvs6 | | | 74.65 335 | 71.67 342 | 83.60 329 | 79.13 386 | 69.94 343 | 93.31 299 | 90.88 353 | 61.05 392 | 65.83 357 | 84.15 349 | 43.43 370 | 94.83 319 | 66.62 325 | 60.63 374 | 86.02 357 |
|
| MDA-MVSNet_test_wron | | | 73.54 340 | 70.43 348 | 82.86 334 | 84.55 361 | 71.85 328 | 91.74 323 | 91.32 345 | 67.63 369 | 46.73 402 | 81.09 369 | 55.11 330 | 90.42 378 | 55.91 372 | 59.76 375 | 86.31 352 |
|
| YYNet1 | | | 73.53 341 | 70.43 348 | 82.85 335 | 84.52 363 | 71.73 331 | 91.69 324 | 91.37 342 | 67.63 369 | 46.79 401 | 81.21 368 | 55.04 331 | 90.43 377 | 55.93 371 | 59.70 376 | 86.38 351 |
|
| test_f | | | 64.01 367 | 62.13 370 | 69.65 381 | 63.00 413 | 45.30 412 | 83.66 384 | 80.68 402 | 61.30 389 | 55.70 394 | 72.62 397 | 14.23 413 | 84.64 398 | 69.84 310 | 58.11 377 | 79.00 395 |
|
| Patchmatch-RL test | | | 76.65 325 | 74.01 332 | 84.55 315 | 77.37 393 | 64.23 371 | 78.49 397 | 82.84 399 | 78.48 294 | 64.63 363 | 73.40 394 | 76.05 144 | 91.70 367 | 76.99 251 | 57.84 378 | 97.72 114 |
|
| pmmvs-eth3d | | | 73.59 338 | 70.66 346 | 82.38 338 | 76.40 397 | 73.38 309 | 89.39 343 | 89.43 364 | 72.69 347 | 60.34 382 | 77.79 381 | 46.43 364 | 91.26 371 | 66.42 329 | 57.06 379 | 82.51 380 |
|
| PM-MVS | | | 69.32 359 | 66.93 360 | 76.49 371 | 73.60 403 | 55.84 397 | 85.91 371 | 79.32 405 | 74.72 329 | 61.09 379 | 78.18 380 | 21.76 407 | 91.10 372 | 70.86 305 | 56.90 380 | 82.51 380 |
|
| kuosan | | | 73.55 339 | 72.39 340 | 77.01 368 | 89.68 300 | 66.72 363 | 85.24 377 | 93.44 298 | 67.76 368 | 60.04 384 | 83.40 356 | 71.90 210 | 84.25 399 | 45.34 397 | 54.75 381 | 80.06 394 |
|
| Gipuma |  | | 45.11 381 | 42.05 383 | 54.30 397 | 80.69 380 | 51.30 404 | 35.80 415 | 83.81 396 | 28.13 411 | 27.94 415 | 34.53 415 | 11.41 418 | 76.70 411 | 21.45 414 | 54.65 382 | 34.90 415 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| APD_test1 | | | 56.56 371 | 53.58 375 | 65.50 384 | 67.93 409 | 46.51 409 | 77.24 401 | 72.95 410 | 38.09 408 | 42.75 406 | 75.17 388 | 13.38 414 | 82.78 403 | 40.19 404 | 54.53 383 | 67.23 405 |
|
| MDA-MVSNet-bldmvs | | | 71.45 351 | 67.94 358 | 81.98 342 | 85.33 355 | 68.50 353 | 92.35 315 | 88.76 371 | 70.40 358 | 42.99 405 | 81.96 362 | 46.57 363 | 91.31 370 | 48.75 393 | 54.39 384 | 86.11 355 |
|
| K. test v3 | | | 73.62 337 | 71.59 343 | 79.69 355 | 82.98 374 | 59.85 390 | 90.85 333 | 88.83 369 | 77.13 309 | 58.90 385 | 82.11 361 | 43.62 369 | 91.72 366 | 65.83 331 | 54.10 385 | 87.50 338 |
|
| CL-MVSNet_self_test | | | 75.81 329 | 74.14 331 | 80.83 350 | 78.33 389 | 67.79 355 | 94.22 276 | 93.52 296 | 77.28 308 | 69.82 338 | 81.54 366 | 61.47 282 | 89.22 381 | 57.59 364 | 53.51 386 | 85.48 363 |
|
| KD-MVS_self_test | | | 70.97 354 | 69.31 353 | 75.95 375 | 76.24 399 | 55.39 400 | 87.45 358 | 90.94 352 | 70.20 360 | 62.96 372 | 77.48 382 | 44.01 367 | 88.09 385 | 61.25 351 | 53.26 387 | 84.37 370 |
|
| TDRefinement | | | 69.20 360 | 65.78 364 | 79.48 356 | 66.04 411 | 62.21 381 | 88.21 350 | 86.12 385 | 62.92 381 | 61.03 380 | 85.61 329 | 33.23 397 | 94.16 335 | 55.82 373 | 53.02 388 | 82.08 386 |
|
| ambc | | | | | 76.02 373 | 68.11 408 | 51.43 403 | 64.97 411 | 89.59 361 | | 60.49 381 | 74.49 391 | 17.17 410 | 92.46 355 | 61.50 349 | 52.85 389 | 84.17 372 |
|
| TransMVSNet (Re) | | | 76.94 323 | 74.38 327 | 84.62 314 | 85.92 347 | 75.25 296 | 95.28 239 | 89.18 367 | 73.88 336 | 67.22 346 | 86.46 314 | 59.64 288 | 94.10 336 | 59.24 359 | 52.57 390 | 84.50 369 |
|
| mvsany_test3 | | | 67.19 363 | 65.34 365 | 72.72 378 | 63.08 412 | 48.57 405 | 83.12 385 | 78.09 406 | 72.07 350 | 61.21 378 | 77.11 384 | 22.94 406 | 87.78 389 | 78.59 234 | 51.88 391 | 81.80 388 |
|
| mvs5depth | | | 71.40 352 | 68.36 357 | 80.54 352 | 75.31 401 | 65.56 367 | 79.94 390 | 85.14 389 | 69.11 366 | 71.75 325 | 81.59 364 | 41.02 382 | 93.94 339 | 60.90 353 | 50.46 392 | 82.10 385 |
|
| test_vis3_rt | | | 54.10 374 | 51.04 377 | 63.27 390 | 58.16 414 | 46.08 411 | 84.17 381 | 49.32 425 | 56.48 403 | 36.56 409 | 49.48 412 | 8.03 421 | 91.91 364 | 67.29 321 | 49.87 393 | 51.82 411 |
|
| PMVS |  | 34.80 23 | 39.19 383 | 35.53 386 | 50.18 398 | 29.72 425 | 30.30 423 | 59.60 413 | 66.20 418 | 26.06 414 | 17.91 418 | 49.53 411 | 3.12 424 | 74.09 413 | 18.19 416 | 49.40 394 | 46.14 412 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| lessismore_v0 | | | | | 79.98 354 | 80.59 381 | 58.34 393 | | 80.87 401 | | 58.49 387 | 83.46 355 | 43.10 373 | 93.89 340 | 63.11 344 | 48.68 395 | 87.72 329 |
|
| UnsupCasMVSNet_eth | | | 73.25 342 | 70.57 347 | 81.30 345 | 77.53 391 | 66.33 364 | 87.24 361 | 93.89 275 | 80.38 258 | 57.90 390 | 81.59 364 | 42.91 375 | 90.56 376 | 65.18 334 | 48.51 396 | 87.01 344 |
|
| new-patchmatchnet | | | 68.85 361 | 65.93 363 | 77.61 366 | 73.57 404 | 63.94 374 | 90.11 337 | 88.73 372 | 71.62 354 | 55.08 395 | 73.60 393 | 40.84 383 | 87.22 393 | 51.35 384 | 48.49 397 | 81.67 391 |
|
| dongtai | | | 69.47 357 | 68.98 356 | 70.93 379 | 86.87 333 | 58.45 392 | 88.19 351 | 93.18 312 | 63.98 379 | 56.04 393 | 80.17 374 | 70.97 223 | 79.24 406 | 33.46 407 | 47.94 398 | 75.09 400 |
|
| pmmvs3 | | | 65.75 366 | 62.18 369 | 76.45 372 | 67.12 410 | 64.54 369 | 88.68 347 | 85.05 390 | 54.77 404 | 57.54 392 | 73.79 392 | 29.40 403 | 86.21 395 | 55.49 375 | 47.77 399 | 78.62 396 |
|
| test_method | | | 56.77 370 | 54.53 374 | 63.49 389 | 76.49 395 | 40.70 415 | 75.68 402 | 74.24 409 | 19.47 417 | 48.73 399 | 71.89 400 | 19.31 408 | 65.80 417 | 57.46 365 | 47.51 400 | 83.97 373 |
|
| ttmdpeth | | | 69.58 355 | 66.92 361 | 77.54 367 | 75.95 400 | 62.40 380 | 88.09 352 | 84.32 394 | 62.87 382 | 65.70 359 | 86.25 321 | 36.53 389 | 88.53 384 | 55.65 374 | 46.96 401 | 81.70 390 |
|
| mmtdpeth | | | 78.04 311 | 76.76 310 | 81.86 343 | 89.60 303 | 66.12 365 | 92.34 316 | 87.18 378 | 76.83 314 | 85.55 172 | 76.49 386 | 46.77 362 | 97.02 216 | 90.85 111 | 45.24 402 | 82.43 383 |
|
| UnsupCasMVSNet_bld | | | 68.60 362 | 64.50 366 | 80.92 349 | 74.63 402 | 67.80 354 | 83.97 382 | 92.94 319 | 65.12 377 | 54.63 396 | 68.23 403 | 35.97 392 | 92.17 361 | 60.13 354 | 44.83 403 | 82.78 378 |
|
| LCM-MVSNet | | | 52.52 375 | 48.24 378 | 65.35 385 | 47.63 422 | 41.45 414 | 72.55 407 | 83.62 397 | 31.75 410 | 37.66 408 | 57.92 408 | 9.19 420 | 76.76 410 | 49.26 390 | 44.60 404 | 77.84 397 |
|
| PVSNet_0 | | 77.72 15 | 81.70 277 | 78.95 294 | 89.94 208 | 90.77 280 | 76.72 274 | 95.96 208 | 96.95 42 | 85.01 152 | 70.24 337 | 88.53 280 | 52.32 339 | 98.20 151 | 86.68 164 | 44.08 405 | 94.89 220 |
|
| testf1 | | | 45.70 379 | 42.41 381 | 55.58 395 | 53.29 419 | 40.02 417 | 68.96 409 | 62.67 419 | 27.45 412 | 29.85 412 | 61.58 404 | 5.98 422 | 73.83 414 | 28.49 412 | 43.46 406 | 52.90 409 |
|
| APD_test2 | | | 45.70 379 | 42.41 381 | 55.58 395 | 53.29 419 | 40.02 417 | 68.96 409 | 62.67 419 | 27.45 412 | 29.85 412 | 61.58 404 | 5.98 422 | 73.83 414 | 28.49 412 | 43.46 406 | 52.90 409 |
|
| KD-MVS_2432*1600 | | | 77.63 317 | 74.92 322 | 85.77 293 | 90.86 277 | 79.44 196 | 88.08 353 | 93.92 272 | 76.26 317 | 67.05 349 | 82.78 359 | 72.15 207 | 91.92 362 | 61.53 347 | 41.62 408 | 85.94 359 |
|
| miper_refine_blended | | | 77.63 317 | 74.92 322 | 85.77 293 | 90.86 277 | 79.44 196 | 88.08 353 | 93.92 272 | 76.26 317 | 67.05 349 | 82.78 359 | 72.15 207 | 91.92 362 | 61.53 347 | 41.62 408 | 85.94 359 |
|
| DeepMVS_CX |  | | | | 64.06 388 | 78.53 388 | 43.26 413 | | 68.11 417 | 69.94 362 | 38.55 407 | 76.14 387 | 18.53 409 | 79.34 405 | 43.72 399 | 41.62 408 | 69.57 403 |
|
| MVStest1 | | | 66.93 364 | 63.01 368 | 78.69 360 | 78.56 387 | 71.43 335 | 85.51 375 | 86.81 381 | 49.79 405 | 48.57 400 | 84.15 349 | 53.46 337 | 83.31 400 | 43.14 401 | 37.15 411 | 81.34 392 |
|
| WB-MVS | | | 57.26 369 | 56.22 372 | 60.39 393 | 69.29 405 | 35.91 420 | 86.39 369 | 70.06 413 | 59.84 397 | 46.46 403 | 72.71 396 | 51.18 343 | 78.11 407 | 15.19 417 | 34.89 412 | 67.14 406 |
|
| SSC-MVS | | | 56.01 372 | 54.96 373 | 59.17 394 | 68.42 407 | 34.13 421 | 84.98 379 | 69.23 414 | 58.08 401 | 45.36 404 | 71.67 402 | 50.30 349 | 77.46 408 | 14.28 418 | 32.33 413 | 65.91 407 |
|
| PMMVS2 | | | 50.90 377 | 46.31 380 | 64.67 386 | 55.53 416 | 46.67 408 | 77.30 400 | 71.02 412 | 40.89 407 | 34.16 411 | 59.32 406 | 9.83 419 | 76.14 412 | 40.09 405 | 28.63 414 | 71.21 401 |
|
| MVE |  | 35.65 22 | 33.85 384 | 29.49 389 | 46.92 399 | 41.86 423 | 36.28 419 | 50.45 414 | 56.52 422 | 18.75 418 | 18.28 417 | 37.84 414 | 2.41 425 | 58.41 418 | 18.71 415 | 20.62 415 | 46.06 413 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 32.70 385 | 32.39 387 | 33.65 401 | 53.35 418 | 25.70 425 | 74.07 405 | 53.33 423 | 21.08 415 | 17.17 419 | 33.63 417 | 11.85 417 | 54.84 419 | 12.98 419 | 14.04 416 | 20.42 416 |
|
| ANet_high | | | 46.22 378 | 41.28 385 | 61.04 392 | 39.91 424 | 46.25 410 | 70.59 408 | 76.18 408 | 58.87 399 | 23.09 416 | 48.00 413 | 12.58 416 | 66.54 416 | 28.65 411 | 13.62 417 | 70.35 402 |
|
| tmp_tt | | | 41.54 382 | 41.93 384 | 40.38 400 | 20.10 426 | 26.84 424 | 61.93 412 | 59.09 421 | 14.81 419 | 28.51 414 | 80.58 370 | 35.53 393 | 48.33 421 | 63.70 341 | 13.11 418 | 45.96 414 |
|
| EMVS | | | 31.70 386 | 31.45 388 | 32.48 402 | 50.72 421 | 23.95 426 | 74.78 404 | 52.30 424 | 20.36 416 | 16.08 420 | 31.48 418 | 12.80 415 | 53.60 420 | 11.39 420 | 13.10 419 | 19.88 417 |
|
| wuyk23d | | | 14.10 388 | 13.89 391 | 14.72 403 | 55.23 417 | 22.91 427 | 33.83 416 | 3.56 427 | 4.94 420 | 4.11 421 | 2.28 423 | 2.06 426 | 19.66 422 | 10.23 421 | 8.74 420 | 1.59 420 |
|
| testmvs | | | 9.92 389 | 12.94 392 | 0.84 405 | 0.65 427 | 0.29 430 | 93.78 286 | 0.39 428 | 0.42 421 | 2.85 422 | 15.84 421 | 0.17 428 | 0.30 424 | 2.18 422 | 0.21 421 | 1.91 419 |
|
| test123 | | | 9.07 390 | 11.73 393 | 1.11 404 | 0.50 428 | 0.77 429 | 89.44 342 | 0.20 429 | 0.34 422 | 2.15 423 | 10.72 422 | 0.34 427 | 0.32 423 | 1.79 423 | 0.08 422 | 2.23 418 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 21.43 387 | 28.57 390 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 95.93 155 | 0.00 424 | 0.00 425 | 97.66 75 | 63.57 265 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 5.92 392 | 7.89 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 71.04 220 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 8.11 391 | 10.81 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 97.30 98 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 67.18 358 | | | | | | | | 49.00 391 | | |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 239 | 98.13 49 | 96.21 130 | 83.04 207 | 94.39 52 | | | | | | |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 81 | | 96.70 71 | 88.06 82 | 96.57 23 | 98.77 10 | 88.04 20 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 71 | | 96.78 55 | 88.72 66 | 97.79 6 | 98.90 5 | 88.48 17 | 99.82 19 | | | |
|
| save fliter | | | | | | 98.24 51 | 83.34 102 | 98.61 33 | 96.57 91 | 91.32 33 | | | | | | | |
|
| test0726 | | | | | | 99.05 9 | 85.18 63 | 99.11 15 | 96.78 55 | 88.75 64 | 97.65 11 | 98.91 2 | 87.69 22 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 127 |
|
| test_part2 | | | | | | 98.90 19 | 85.14 69 | | | | 96.07 29 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 115 | | | | 97.54 127 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 163 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 119 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 372 | | | | 30.24 419 | 73.77 186 | 95.07 314 | 73.89 283 | | |
|
| test_post | | | | | | | | | | | | 33.80 416 | 76.17 142 | 95.97 261 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 385 | 77.78 114 | 95.39 295 | | | |
|
| MTMP | | | | | | | | 97.53 91 | 68.16 416 | | | | | | | | |
|
| gm-plane-assit | | | | | | 92.27 236 | 79.64 194 | | | 84.47 168 | | 95.15 166 | | 97.93 160 | 85.81 167 | | |
|
| TEST9 | | | | | | 98.64 31 | 83.71 93 | 97.82 68 | 96.65 78 | 84.29 175 | 95.16 37 | 98.09 48 | 84.39 39 | 99.36 81 | | | |
|
| test_8 | | | | | | 98.63 33 | 83.64 96 | 97.81 70 | 96.63 83 | 84.50 166 | 95.10 40 | 98.11 47 | 84.33 40 | 99.23 88 | | | |
|
| agg_prior | | | | | | 98.59 35 | 83.13 106 | | 96.56 93 | | 94.19 54 | | | 99.16 99 | | | |
|
| test_prior4 | | | | | | | 82.34 119 | 97.75 75 | | | | | | | | | |
|
| test_prior | | | | | 93.09 88 | 98.68 26 | 81.91 127 | | 96.40 111 | | | | | 99.06 107 | | | 98.29 70 |
|
| 旧先验2 | | | | | | | | 96.97 142 | | 74.06 335 | 96.10 28 | | | 97.76 171 | 88.38 148 | | |
|
| 新几何2 | | | | | | | | 96.42 182 | | | | | | | | | |
|
| 无先验 | | | | | | | | 96.87 151 | 96.78 55 | 77.39 305 | | | | 99.52 69 | 79.95 221 | | 98.43 61 |
|
| 原ACMM2 | | | | | | | | 96.84 152 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 59 | | | | |
|
| testdata1 | | | | | | | | 95.57 231 | | 87.44 99 | | | | | | | |
|
| plane_prior7 | | | | | | 91.86 257 | 77.55 258 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 91.98 253 | 77.92 244 | | | | | | 64.77 260 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 94.15 193 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 254 | | | 90.17 52 | 81.33 223 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 118 | | 89.89 54 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 255 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 404 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 99 | | | | | | | | |
|
| door | | | | | | | | | 80.13 403 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 221 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 248 | | 97.63 81 | | 90.52 45 | 82.30 210 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 248 | | 97.63 81 | | 90.52 45 | 82.30 210 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 155 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 210 | | | 97.32 199 | | | 91.13 259 |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 255 | | | | |
|
| NP-MVS | | | | | | 92.04 252 | 78.22 231 | | | | | 94.56 183 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 135 | 86.80 364 | | 80.65 249 | 85.65 170 | | 74.26 180 | | 76.52 257 | | 96.98 161 |
|
| Test By Simon | | | | | | | | | | | | | 71.65 213 | | | | |
|