This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4796.77 5588.38 7197.70 698.77 1092.06 399.84 1297.47 2299.37 199.70 3
PC_three_145291.12 3398.33 298.42 2692.51 299.81 2198.96 399.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 998.54 1992.06 399.84 1299.11 299.37 199.74 1
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2197.10 3095.17 392.11 7698.46 2487.33 2499.97 297.21 2699.31 499.63 7
MSP-MVS95.62 796.54 192.86 8598.31 4880.10 16797.42 10096.78 4992.20 2297.11 1298.29 3193.46 199.10 9996.01 3699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2298.79 890.17 1099.99 189.33 12199.25 699.70 3
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 6896.93 4092.45 2095.69 2998.50 2285.38 3199.85 1094.75 5299.18 798.65 43
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1497.12 2894.66 596.79 1498.78 986.42 2999.95 397.59 2199.18 799.00 27
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3098.64 1785.07 3399.91 495.61 4399.10 999.00 27
SMA-MVScopyleft94.70 1894.68 1894.76 2698.02 5985.94 3997.47 9396.77 5585.32 13097.92 398.70 1583.09 4799.84 1295.79 4099.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2394.39 2493.97 4598.30 4984.06 7798.64 2996.93 4090.71 3893.08 6598.70 1579.98 6899.21 8694.12 6099.07 1198.63 44
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7096.74 6086.11 11596.54 2198.89 688.39 1999.74 3797.67 2099.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.79 1795.17 1593.64 5597.66 6984.10 7695.85 20596.42 10191.26 3197.49 1096.80 11486.50 2898.49 12995.54 4599.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test9_res96.00 3799.03 1398.31 62
test_241102_TWO96.78 4988.72 6497.70 698.91 287.86 2199.82 1898.15 999.00 1599.47 9
agg_prior294.30 5699.00 1598.57 46
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 996.78 4988.72 6497.79 498.91 288.48 1799.82 1898.15 998.97 1799.74 1
IU-MVS99.03 1585.34 4996.86 4592.05 2698.74 198.15 998.97 1799.42 13
train_agg94.28 2394.45 2293.74 5198.64 3183.71 8297.82 6696.65 7284.50 15395.16 3398.09 4384.33 3699.36 7995.91 3998.96 1998.16 71
MG-MVS94.25 2593.72 3195.85 1199.38 389.35 1197.98 5798.09 989.99 4992.34 7296.97 10681.30 5698.99 10588.54 12798.88 2099.20 22
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1496.46 9688.75 6296.69 1598.76 1287.69 2299.76 3097.90 1598.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1496.77 5599.84 1297.90 1598.85 2199.45 10
test_0728_THIRD88.38 7196.69 1598.76 1289.64 1399.76 3097.47 2298.84 2399.38 14
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
test_prior298.37 3786.08 11794.57 4798.02 4983.14 4695.05 4998.79 26
APDe-MVScopyleft94.56 2094.75 1793.96 4698.84 2283.40 9098.04 5596.41 10285.79 12295.00 4098.28 3284.32 3999.18 9297.35 2498.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2194.30 2695.02 2098.86 2185.68 4498.06 5396.64 7593.64 1291.74 8298.54 1980.17 6799.90 592.28 8298.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS93.12 4092.91 4693.74 5198.65 3083.88 7897.67 7996.26 11683.00 19493.22 6398.24 3381.31 5599.21 8689.12 12298.74 2998.14 73
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8497.08 10283.32 4599.69 4792.83 7798.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS89.82 194.61 1996.17 589.91 19297.09 9070.21 32498.99 2096.69 6795.57 295.08 3899.23 186.40 3099.87 897.84 1898.66 3199.65 6
PHI-MVS93.59 3593.63 3493.48 6598.05 5881.76 12398.64 2997.13 2682.60 20494.09 5398.49 2380.35 6299.85 1094.74 5398.62 3298.83 32
ACMMP_NAP93.46 3693.23 4294.17 4197.16 8884.28 7496.82 14796.65 7286.24 11394.27 5097.99 5077.94 9499.83 1693.39 6798.57 3398.39 57
SF-MVS94.17 2694.05 3094.55 3197.56 7485.95 3797.73 7496.43 10084.02 16795.07 3998.74 1482.93 4899.38 7695.42 4798.51 3498.32 60
原ACMM191.22 15397.77 6578.10 22396.61 7881.05 22591.28 9097.42 8777.92 9698.98 10679.85 20698.51 3496.59 160
SD-MVS94.84 1595.02 1694.29 3697.87 6484.61 6997.76 7296.19 12489.59 5496.66 1798.17 3984.33 3699.60 5796.09 3598.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS99.09 883.22 9496.60 8182.88 19793.61 5998.06 4882.93 4899.14 9595.51 4698.49 37
新几何193.12 7597.44 7881.60 13096.71 6474.54 31391.22 9197.57 7879.13 7799.51 6977.40 23198.46 3898.26 67
SteuartSystems-ACMMP94.13 2894.44 2393.20 7395.41 11981.35 13399.02 1896.59 8289.50 5594.18 5298.36 2883.68 4499.45 7394.77 5198.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
9.1494.26 2798.10 5798.14 4496.52 8984.74 14594.83 4498.80 782.80 5099.37 7895.95 3898.42 40
HFP-MVS92.89 4692.86 4892.98 8198.71 2581.12 13697.58 8496.70 6585.20 13591.75 8197.97 5578.47 8699.71 4390.95 9398.41 4198.12 75
ACMMPR92.69 5492.67 5192.75 8998.66 2880.57 15297.58 8496.69 6785.20 13591.57 8397.92 5677.01 11099.67 5190.95 9398.41 4198.00 84
MP-MVS-pluss92.58 5892.35 5793.29 6997.30 8682.53 10396.44 17096.04 13484.68 14889.12 11898.37 2777.48 10399.74 3793.31 7198.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R92.72 5292.70 5092.79 8898.68 2680.53 15697.53 8896.51 9085.22 13391.94 7997.98 5377.26 10599.67 5190.83 9798.37 4498.18 69
APD-MVScopyleft93.61 3493.59 3593.69 5498.76 2483.26 9397.21 10996.09 12982.41 20894.65 4698.21 3481.96 5498.81 11794.65 5498.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS92.75 4892.60 5393.23 7298.24 5181.82 12197.63 8096.50 9285.00 14191.05 9397.74 6778.38 8799.80 2590.48 10298.34 4698.07 77
test1294.25 3798.34 4685.55 4696.35 11192.36 7180.84 5799.22 8598.31 4797.98 86
MP-MVScopyleft92.61 5792.67 5192.42 10498.13 5679.73 17797.33 10596.20 12285.63 12490.53 10097.66 7078.14 9299.70 4692.12 8498.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22296.15 10178.41 21195.87 20396.46 9671.97 33389.66 11197.45 8376.33 12598.24 4998.30 63
CP-MVS92.54 5992.60 5392.34 10698.50 4079.90 17098.40 3696.40 10484.75 14490.48 10298.09 4377.40 10499.21 8691.15 9298.23 5097.92 90
MTAPA92.45 6092.31 5892.86 8597.90 6180.85 14592.88 29196.33 11287.92 8190.20 10598.18 3676.71 11899.76 3092.57 8198.09 5197.96 89
XVS92.69 5492.71 4992.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8597.83 6477.24 10799.59 5890.46 10398.07 5298.02 79
X-MVStestdata86.26 18384.14 20292.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8520.73 39677.24 10799.59 5890.46 10398.07 5298.02 79
MVS90.60 9988.64 12496.50 594.25 15690.53 893.33 28097.21 2277.59 28778.88 23197.31 9071.52 19799.69 4789.60 11698.03 5499.27 20
mPP-MVS91.88 6991.82 6892.07 12298.38 4478.63 20597.29 10696.09 12985.12 13788.45 12797.66 7075.53 13999.68 4989.83 11398.02 5597.88 91
MM96.15 889.50 999.18 598.10 895.68 196.64 1897.92 5680.72 5999.80 2599.16 197.96 5699.15 24
MVS_030495.36 995.20 1495.85 1194.89 13889.22 1298.83 2397.88 1194.68 495.14 3697.99 5080.80 5899.81 2198.60 497.95 5798.50 50
HPM-MVScopyleft91.62 7691.53 7491.89 13097.88 6379.22 18996.99 13195.73 15382.07 21489.50 11697.19 9775.59 13798.93 11290.91 9597.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 3793.39 4093.47 6797.34 8582.83 9997.56 8698.27 689.16 5989.71 10997.14 9879.77 7099.56 6493.65 6597.94 5898.02 79
PGM-MVS91.93 6891.80 6992.32 11098.27 5079.74 17695.28 22497.27 2083.83 17590.89 9797.78 6676.12 12899.56 6488.82 12597.93 6097.66 110
3Dnovator82.32 1089.33 12287.64 14294.42 3393.73 17285.70 4397.73 7496.75 5986.73 11176.21 26495.93 13062.17 25299.68 4981.67 19097.81 6197.88 91
CS-MVS-test92.98 4393.67 3390.90 16296.52 9476.87 25298.68 2694.73 20490.36 4694.84 4397.89 6077.94 9497.15 19894.28 5997.80 6298.70 41
GST-MVS92.43 6192.22 6293.04 7998.17 5481.64 12897.40 10296.38 10784.71 14790.90 9697.40 8877.55 10299.76 3089.75 11597.74 6397.72 105
PAPM92.87 4792.40 5694.30 3592.25 21987.85 1996.40 17496.38 10791.07 3488.72 12496.90 10782.11 5397.37 18490.05 11297.70 6497.67 109
test_fmvsm_n_192094.81 1695.60 1092.45 10195.29 12380.96 14299.29 297.21 2294.50 797.29 1198.44 2582.15 5299.78 2898.56 597.68 6596.61 159
CANet94.89 1494.64 1995.63 1397.55 7588.12 1699.06 1496.39 10694.07 1095.34 3297.80 6576.83 11599.87 897.08 2897.64 6698.89 30
patch_mono-295.14 1296.08 792.33 10898.44 4377.84 23398.43 3497.21 2292.58 1997.68 897.65 7486.88 2699.83 1698.25 797.60 6799.33 17
dcpmvs_293.10 4193.46 3992.02 12697.77 6579.73 17794.82 24493.86 25786.91 10591.33 8896.76 11585.20 3298.06 14696.90 3097.60 6798.27 66
testdata90.13 18495.92 10774.17 28896.49 9573.49 32294.82 4597.99 5078.80 8397.93 14983.53 17797.52 6998.29 64
MVSFormer91.36 8290.57 8893.73 5393.00 19488.08 1794.80 24694.48 22080.74 23194.90 4197.13 9978.84 8195.10 29583.77 16997.46 7098.02 79
lupinMVS93.87 3293.58 3694.75 2793.00 19488.08 1799.15 795.50 16491.03 3594.90 4197.66 7078.84 8197.56 16794.64 5597.46 7098.62 45
HPM-MVS_fast90.38 10590.17 9991.03 15897.61 7077.35 24597.15 11995.48 16579.51 26088.79 12296.90 10771.64 19698.81 11787.01 14597.44 7296.94 145
GG-mvs-BLEND93.49 6494.94 13586.26 3381.62 36597.00 3388.32 13094.30 17591.23 596.21 23688.49 12997.43 7398.00 84
旧先验197.39 8279.58 18196.54 8798.08 4684.00 4097.42 7497.62 114
PS-MVSNAJ94.17 2693.52 3796.10 995.65 11392.35 298.21 4295.79 14992.42 2196.24 2498.18 3671.04 20299.17 9396.77 3197.39 7596.79 152
CSCG92.02 6791.65 7293.12 7598.53 3680.59 15197.47 9397.18 2577.06 29684.64 16697.98 5383.98 4199.52 6790.72 9997.33 7699.23 21
CS-MVS92.73 5093.48 3890.48 17496.27 9775.93 27198.55 3294.93 19189.32 5694.54 4897.67 6978.91 8097.02 20293.80 6297.32 7798.49 51
SR-MVS92.16 6492.27 5991.83 13498.37 4578.41 21196.67 15895.76 15082.19 21291.97 7798.07 4776.44 12198.64 12193.71 6497.27 7898.45 54
gg-mvs-nofinetune85.48 19782.90 22093.24 7194.51 15185.82 4179.22 36996.97 3661.19 36787.33 13953.01 38590.58 696.07 23986.07 14997.23 7997.81 100
MAR-MVS90.63 9890.22 9691.86 13198.47 4278.20 22197.18 11396.61 7883.87 17488.18 13298.18 3668.71 21499.75 3583.66 17497.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EC-MVSNet91.73 7192.11 6490.58 17193.54 17677.77 23698.07 5294.40 22787.44 9292.99 6797.11 10174.59 16296.87 21293.75 6397.08 8197.11 141
3Dnovator+82.88 889.63 11787.85 13794.99 2194.49 15286.76 3197.84 6595.74 15286.10 11675.47 27696.02 12965.00 23899.51 6982.91 18497.07 8298.72 40
DeepC-MVS86.58 391.53 7891.06 8192.94 8394.52 14881.89 11795.95 19795.98 13790.76 3783.76 17796.76 11573.24 17999.71 4391.67 8996.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS89.72 11589.87 10889.29 20398.33 4773.30 29497.70 7695.35 17675.68 30487.40 13797.44 8670.43 20798.25 14189.56 11896.90 8496.33 169
APD-MVS_3200maxsize91.23 8691.35 7690.89 16397.89 6276.35 26196.30 18095.52 16379.82 25491.03 9497.88 6174.70 15898.54 12692.11 8596.89 8597.77 102
MVP-Stereo82.65 24481.67 23985.59 28286.10 32278.29 21493.33 28092.82 29877.75 28569.17 32387.98 27359.28 27495.76 25971.77 27796.88 8682.73 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM_NR91.46 7990.82 8393.37 6898.50 4081.81 12295.03 24096.13 12684.65 14986.10 15197.65 7479.24 7599.75 3583.20 18096.88 8698.56 47
EIA-MVS91.73 7192.05 6690.78 16794.52 14876.40 26098.06 5395.34 17789.19 5888.90 12197.28 9477.56 10197.73 15990.77 9896.86 8898.20 68
SR-MVS-dyc-post91.29 8491.45 7590.80 16597.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6275.76 13498.61 12291.99 8696.79 8997.75 103
RE-MVS-def91.18 8097.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6273.36 17891.99 8696.79 8997.75 103
jason92.73 5092.23 6194.21 4090.50 26387.30 2698.65 2895.09 18590.61 4092.76 6997.13 9975.28 15097.30 18793.32 7096.75 9198.02 79
jason: jason.
test_fmvsmconf_n93.99 3094.36 2592.86 8592.82 20181.12 13699.26 396.37 11093.47 1395.16 3398.21 3479.00 7899.64 5398.21 896.73 9297.83 97
test_vis1_n_192089.95 11190.59 8788.03 23192.36 21168.98 33399.12 994.34 23093.86 1193.64 5897.01 10551.54 32199.59 5896.76 3296.71 9395.53 186
xiu_mvs_v2_base93.92 3193.26 4195.91 1095.07 13192.02 698.19 4395.68 15592.06 2596.01 2898.14 4070.83 20598.96 10796.74 3396.57 9496.76 155
test_fmvsmconf0.1_n93.08 4293.22 4392.65 9488.45 29480.81 14699.00 1995.11 18493.21 1594.00 5497.91 5876.84 11399.59 5897.91 1496.55 9597.54 117
MVS_111021_LR91.60 7791.64 7391.47 14595.74 11178.79 20296.15 18996.77 5588.49 6988.64 12597.07 10372.33 18799.19 9193.13 7596.48 9696.43 164
PAPR92.74 4992.17 6394.45 3298.89 2084.87 6697.20 11196.20 12287.73 8688.40 12898.12 4178.71 8499.76 3087.99 13496.28 9798.74 35
test_fmvsmvis_n_192092.12 6592.10 6592.17 11890.87 25581.04 13898.34 3893.90 25492.71 1887.24 14197.90 5974.83 15699.72 4196.96 2996.20 9895.76 181
test_cas_vis1_n_192089.90 11290.02 10289.54 20090.14 27174.63 28398.71 2594.43 22593.04 1792.40 7096.35 12353.41 31799.08 10195.59 4496.16 9994.90 199
Vis-MVSNetpermissive88.67 13887.82 13891.24 15192.68 20378.82 19996.95 13893.85 25887.55 9087.07 14495.13 15663.43 24697.21 19277.58 22796.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet94.06 2994.15 2893.76 5097.27 8784.35 7298.29 3997.64 1594.57 695.36 3196.88 10979.96 6999.12 9891.30 9096.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS90.18 10788.97 11993.80 4998.66 2882.95 9897.50 9295.63 15875.16 30886.31 14897.69 6872.49 18599.90 581.26 19296.07 10298.56 47
QAPM86.88 17284.51 19393.98 4494.04 16585.89 4097.19 11296.05 13373.62 31975.12 27995.62 14062.02 25599.74 3770.88 28696.06 10396.30 171
131488.94 12987.20 15594.17 4193.21 18685.73 4293.33 28096.64 7582.89 19675.98 26796.36 12266.83 22699.39 7583.52 17896.02 10497.39 130
MS-PatchMatch83.05 23681.82 23786.72 26389.64 27979.10 19494.88 24394.59 21679.70 25770.67 31389.65 25150.43 32696.82 21570.82 28995.99 10584.25 353
CHOSEN 280x42091.71 7491.85 6791.29 14994.94 13582.69 10087.89 33596.17 12585.94 11987.27 14094.31 17490.27 995.65 26794.04 6195.86 10695.53 186
OpenMVScopyleft79.58 1486.09 18583.62 20993.50 6390.95 25286.71 3297.44 9695.83 14775.35 30572.64 30095.72 13557.42 29399.64 5371.41 28095.85 10794.13 215
PVSNet_Blended93.13 3992.98 4593.57 5997.47 7683.86 7999.32 196.73 6191.02 3689.53 11496.21 12576.42 12299.57 6294.29 5795.81 10897.29 135
CHOSEN 1792x268891.07 9090.21 9793.64 5595.18 12783.53 8796.26 18296.13 12688.92 6184.90 16193.10 20072.86 18199.62 5688.86 12495.67 10997.79 101
test_fmvsmconf0.01_n91.08 8990.68 8692.29 11182.43 35480.12 16697.94 6093.93 25092.07 2491.97 7797.60 7767.56 21899.53 6697.09 2795.56 11097.21 138
ETV-MVS92.72 5292.87 4792.28 11294.54 14781.89 11797.98 5795.21 18289.77 5393.11 6496.83 11177.23 10997.50 17595.74 4195.38 11197.44 126
114514_t88.79 13687.57 14692.45 10198.21 5381.74 12496.99 13195.45 16875.16 30882.48 18895.69 13768.59 21598.50 12880.33 19895.18 11297.10 142
CANet_DTU90.98 9190.04 10193.83 4894.76 14186.23 3496.32 17993.12 29493.11 1693.71 5696.82 11363.08 24899.48 7184.29 16195.12 11395.77 180
DP-MVS Recon91.72 7390.85 8294.34 3499.50 185.00 6398.51 3395.96 13980.57 23588.08 13397.63 7676.84 11399.89 785.67 15194.88 11498.13 74
test250690.96 9290.39 9292.65 9493.54 17682.46 10696.37 17597.35 1886.78 10987.55 13695.25 14777.83 9897.50 17584.07 16394.80 11597.98 86
ECVR-MVScopyleft88.35 14887.25 15491.65 13893.54 17679.40 18496.56 16390.78 33086.78 10985.57 15495.25 14757.25 29497.56 16784.73 15994.80 11597.98 86
fmvsm_s_conf0.5_n93.69 3394.13 2992.34 10694.56 14582.01 11199.07 1397.13 2692.09 2396.25 2398.53 2176.47 12099.80 2598.39 694.71 11795.22 195
test111188.11 15387.04 16091.35 14693.15 18978.79 20296.57 16190.78 33086.88 10785.04 15895.20 15157.23 29597.39 18283.88 16694.59 11897.87 93
fmvsm_s_conf0.1_n92.93 4593.16 4492.24 11390.52 26281.92 11598.42 3596.24 11891.17 3296.02 2798.35 2975.34 14999.74 3797.84 1894.58 11995.05 197
BH-w/o88.24 15187.47 15090.54 17395.03 13478.54 20697.41 10193.82 25984.08 16578.23 23794.51 17269.34 21397.21 19280.21 20294.58 11995.87 178
MVS_Test90.29 10689.18 11693.62 5795.23 12484.93 6494.41 25194.66 20984.31 15890.37 10491.02 23075.13 15297.82 15683.11 18294.42 12198.12 75
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 21093.89 16874.43 28696.93 14094.19 23984.39 15683.22 18295.67 13878.24 8994.70 30578.88 21594.40 12297.61 115
test_fmvs187.79 16088.52 12785.62 28192.98 19864.31 34997.88 6392.42 30387.95 8092.24 7395.82 13347.94 33698.44 13595.31 4894.09 12394.09 216
UGNet87.73 16186.55 16791.27 15095.16 12879.11 19396.35 17796.23 11988.14 7687.83 13590.48 23950.65 32499.09 10080.13 20394.03 12495.60 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet82.34 989.02 12787.79 13992.71 9295.49 11781.50 13197.70 7697.29 1987.76 8585.47 15595.12 15756.90 29698.90 11380.33 19894.02 12597.71 107
TSAR-MVS + GP.94.35 2294.50 2093.89 4797.38 8483.04 9798.10 4995.29 17991.57 2893.81 5597.45 8386.64 2799.43 7496.28 3494.01 12699.20 22
PVSNet_Blended_VisFu91.24 8590.77 8492.66 9395.09 12982.40 10797.77 7095.87 14688.26 7486.39 14793.94 18576.77 11699.27 8288.80 12694.00 12796.31 170
PMMVS89.46 12089.92 10688.06 22994.64 14269.57 33096.22 18494.95 19087.27 9791.37 8796.54 12165.88 23097.39 18288.54 12793.89 12897.23 136
BH-untuned86.95 17185.94 17189.99 18794.52 14877.46 24296.78 15093.37 28481.80 21776.62 25493.81 18966.64 22797.02 20276.06 24493.88 12995.48 188
BH-RMVSNet86.84 17385.28 18091.49 14495.35 12180.26 16296.95 13892.21 30682.86 19881.77 20395.46 14559.34 27397.64 16269.79 29393.81 13096.57 161
fmvsm_s_conf0.5_n_a93.34 3893.71 3292.22 11593.38 18481.71 12698.86 2296.98 3491.64 2796.85 1398.55 1875.58 13899.77 2997.88 1793.68 13195.18 196
Effi-MVS+90.70 9789.90 10793.09 7793.61 17383.48 8895.20 23092.79 29983.22 18691.82 8095.70 13671.82 19397.48 17791.25 9193.67 13298.32 60
IS-MVSNet88.67 13888.16 13390.20 18393.61 17376.86 25396.77 15293.07 29584.02 16783.62 17895.60 14174.69 16196.24 23578.43 21993.66 13397.49 124
test_fmvs1_n86.34 18186.72 16585.17 28887.54 30663.64 35496.91 14192.37 30587.49 9191.33 8895.58 14240.81 36198.46 13295.00 5093.49 13493.41 230
AdaColmapbinary88.81 13487.61 14592.39 10599.33 479.95 16896.70 15795.58 15977.51 28883.05 18596.69 11961.90 25899.72 4184.29 16193.47 13597.50 123
fmvsm_s_conf0.1_n_a92.38 6292.49 5592.06 12388.08 29881.62 12997.97 5996.01 13590.62 3996.58 1998.33 3074.09 16899.71 4397.23 2593.46 13694.86 201
xiu_mvs_v1_base_debu90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base_debi90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
mvs_anonymous88.68 13787.62 14491.86 13194.80 14081.69 12793.53 27694.92 19282.03 21578.87 23290.43 24175.77 13395.34 28185.04 15693.16 14098.55 49
test_vis1_n85.60 19485.70 17385.33 28584.79 33864.98 34796.83 14591.61 31687.36 9591.00 9594.84 16536.14 36797.18 19495.66 4293.03 14193.82 221
LCM-MVSNet-Re83.75 22483.54 21184.39 30393.54 17664.14 35192.51 29484.03 37083.90 17366.14 33686.59 29467.36 22192.68 33384.89 15892.87 14296.35 166
casdiffmvs_mvgpermissive91.13 8890.45 9193.17 7492.99 19783.58 8697.46 9594.56 21787.69 8787.19 14294.98 16374.50 16397.60 16491.88 8892.79 14398.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive90.95 9390.39 9292.63 9692.82 20182.53 10396.83 14594.47 22287.69 8788.47 12695.56 14374.04 16997.54 17190.90 9692.74 14497.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS81.61 1285.02 20383.67 20689.06 20696.79 9273.27 29795.92 19994.79 20274.81 31180.47 21496.83 11171.07 20198.19 14449.82 36892.57 14595.71 182
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive91.17 8790.74 8592.44 10393.11 19382.50 10596.25 18393.62 27287.79 8490.40 10395.93 13073.44 17797.42 17993.62 6692.55 14697.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS87.47 16685.90 17292.18 11795.41 11982.26 11087.00 34296.28 11585.88 12184.23 16885.57 31175.07 15496.26 23371.14 28592.50 14798.03 78
LS3D82.22 25179.94 26689.06 20697.43 7974.06 29093.20 28692.05 30861.90 36273.33 29395.21 15059.35 27299.21 8654.54 35592.48 14893.90 220
ACMMPcopyleft90.39 10389.97 10391.64 13997.58 7378.21 22096.78 15096.72 6384.73 14684.72 16497.23 9571.22 19999.63 5588.37 13292.41 14997.08 143
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TESTMET0.1,189.83 11389.34 11491.31 14792.54 20980.19 16497.11 12396.57 8486.15 11486.85 14691.83 21979.32 7296.95 20681.30 19192.35 15096.77 154
PLCcopyleft83.97 788.00 15687.38 15289.83 19598.02 5976.46 25897.16 11794.43 22579.26 26781.98 19996.28 12469.36 21299.27 8277.71 22492.25 15193.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline90.76 9690.10 10092.74 9092.90 20082.56 10294.60 24894.56 21787.69 8789.06 12095.67 13873.76 17297.51 17490.43 10692.23 15298.16 71
PatchMatch-RL85.00 20483.66 20789.02 20895.86 10874.55 28592.49 29593.60 27379.30 26579.29 22991.47 22158.53 27998.45 13370.22 29192.17 15394.07 217
test-LLR88.48 14387.98 13589.98 18892.26 21777.23 24797.11 12395.96 13983.76 17886.30 14991.38 22372.30 18896.78 21880.82 19491.92 15495.94 176
test-mter88.95 12888.60 12589.98 18892.26 21777.23 24797.11 12395.96 13985.32 13086.30 14991.38 22376.37 12496.78 21880.82 19491.92 15495.94 176
Fast-Effi-MVS+87.93 15886.94 16390.92 16194.04 16579.16 19198.26 4093.72 26881.29 22283.94 17492.90 20169.83 21196.68 22176.70 23791.74 15696.93 146
FE-MVS86.06 18684.15 20191.78 13594.33 15579.81 17184.58 35796.61 7876.69 29885.00 15987.38 28070.71 20698.37 13770.39 29091.70 15797.17 140
UA-Net88.92 13088.48 12890.24 18194.06 16477.18 24993.04 28894.66 20987.39 9491.09 9293.89 18674.92 15598.18 14575.83 24791.43 15895.35 191
PatchmatchNetpermissive86.83 17485.12 18591.95 12894.12 16282.27 10986.55 34695.64 15784.59 15182.98 18684.99 32377.26 10595.96 24868.61 29891.34 15997.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PCF-MVS84.09 586.77 17685.00 18792.08 12192.06 23183.07 9692.14 29994.47 22279.63 25876.90 25094.78 16671.15 20099.20 9072.87 27191.05 16093.98 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12597.60 7181.17 13596.61 15996.87 4388.20 7589.19 11797.55 8278.69 8599.14 9590.29 10990.94 16195.80 179
CNLPA86.96 17085.37 17991.72 13797.59 7279.34 18797.21 10991.05 32574.22 31478.90 23096.75 11767.21 22398.95 10974.68 25790.77 16296.88 150
CVMVSNet84.83 20685.57 17582.63 32091.55 24160.38 36595.13 23495.03 18880.60 23482.10 19794.71 16766.40 22990.19 35974.30 26290.32 16397.31 133
EPNet_dtu87.65 16387.89 13686.93 25894.57 14471.37 31896.72 15396.50 9288.56 6887.12 14395.02 16075.91 13294.01 31966.62 30690.00 16495.42 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)87.71 16286.23 16992.17 11894.19 15880.55 15387.16 34196.07 13282.12 21385.98 15288.35 26772.04 19298.49 12980.26 20089.87 16597.48 125
baseline290.39 10390.21 9790.93 16090.86 25680.99 14095.20 23097.41 1786.03 11880.07 22294.61 16990.58 697.47 17887.29 14189.86 16694.35 211
LFMVS89.27 12487.64 14294.16 4397.16 8885.52 4797.18 11394.66 20979.17 26889.63 11296.57 12055.35 30798.22 14289.52 11989.54 16798.74 35
EI-MVSNet-UG-set91.35 8391.22 7791.73 13697.39 8280.68 14996.47 16796.83 4687.92 8188.30 13197.36 8977.84 9799.13 9789.43 12089.45 16895.37 190
GeoE86.36 18085.20 18189.83 19593.17 18876.13 26397.53 8892.11 30779.58 25980.99 20894.01 18366.60 22896.17 23873.48 26989.30 16997.20 139
sss90.87 9589.96 10493.60 5894.15 15983.84 8197.14 12098.13 785.93 12089.68 11096.09 12871.67 19499.30 8187.69 13789.16 17097.66 110
HY-MVS84.06 691.63 7590.37 9495.39 1796.12 10288.25 1590.22 31897.58 1688.33 7390.50 10191.96 21579.26 7499.06 10290.29 10989.07 17198.88 31
thisisatest051590.95 9390.26 9593.01 8094.03 16784.27 7597.91 6196.67 6983.18 18786.87 14595.51 14488.66 1697.85 15580.46 19789.01 17296.92 148
CDS-MVSNet89.50 11988.96 12091.14 15691.94 23680.93 14397.09 12795.81 14884.26 16384.72 16494.20 17980.31 6395.64 26883.37 17988.96 17396.85 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet92.11 6691.22 7794.79 2596.91 9186.98 2797.91 6197.96 1086.38 11293.65 5795.74 13470.16 21098.95 10993.39 6788.87 17498.43 55
alignmvs92.97 4492.26 6095.12 1995.54 11687.77 2098.67 2796.38 10788.04 7893.01 6697.45 8379.20 7698.60 12393.25 7288.76 17598.99 29
WTY-MVS92.65 5691.68 7195.56 1496.00 10588.90 1398.23 4197.65 1488.57 6789.82 10897.22 9679.29 7399.06 10289.57 11788.73 17698.73 39
canonicalmvs92.27 6391.22 7795.41 1695.80 11088.31 1497.09 12794.64 21288.49 6992.99 6797.31 9072.68 18398.57 12593.38 6988.58 17799.36 16
test_yl91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
DCV-MVSNet91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
HyFIR lowres test89.36 12188.60 12591.63 14194.91 13780.76 14895.60 21495.53 16182.56 20584.03 17091.24 22778.03 9396.81 21687.07 14488.41 18097.32 132
TAMVS88.48 14387.79 13990.56 17291.09 25079.18 19096.45 16995.88 14483.64 18183.12 18393.33 19575.94 13195.74 26382.40 18588.27 18196.75 156
EPP-MVSNet89.76 11489.72 11089.87 19393.78 16976.02 26897.22 10796.51 9079.35 26285.11 15795.01 16184.82 3497.10 20087.46 14088.21 18296.50 162
MVS-HIRNet71.36 33167.00 33684.46 30190.58 26169.74 32879.15 37087.74 35646.09 38261.96 35550.50 38645.14 34495.64 26853.74 35788.11 18388.00 309
TR-MVS86.30 18284.93 18990.42 17594.63 14377.58 24096.57 16193.82 25980.30 24482.42 19095.16 15458.74 27797.55 16974.88 25587.82 18496.13 174
cascas86.50 17884.48 19592.55 9992.64 20785.95 3797.04 13095.07 18775.32 30680.50 21391.02 23054.33 31497.98 14886.79 14787.62 18593.71 223
OMC-MVS88.80 13588.16 13390.72 16895.30 12277.92 23094.81 24594.51 21986.80 10884.97 16096.85 11067.53 21998.60 12385.08 15587.62 18595.63 183
SCA85.63 19383.64 20891.60 14292.30 21581.86 11992.88 29195.56 16084.85 14282.52 18785.12 32158.04 28395.39 27873.89 26587.58 18797.54 117
thisisatest053089.65 11689.02 11891.53 14393.46 18280.78 14796.52 16496.67 6981.69 21983.79 17694.90 16488.85 1597.68 16077.80 22087.49 18896.14 173
VDDNet86.44 17984.51 19392.22 11591.56 24081.83 12097.10 12694.64 21269.50 34587.84 13495.19 15248.01 33497.92 15489.82 11486.92 18996.89 149
VDD-MVS88.28 15087.02 16192.06 12395.09 12980.18 16597.55 8794.45 22483.09 19089.10 11995.92 13247.97 33598.49 12993.08 7686.91 19097.52 122
thres20088.92 13087.65 14192.73 9196.30 9685.62 4597.85 6498.86 184.38 15784.82 16293.99 18475.12 15398.01 14770.86 28786.67 19194.56 210
DP-MVS81.47 26178.28 27891.04 15798.14 5578.48 20795.09 23986.97 35761.14 36871.12 31092.78 20559.59 26999.38 7653.11 35986.61 19295.27 194
F-COLMAP84.50 21383.44 21387.67 23795.22 12572.22 30395.95 19793.78 26475.74 30376.30 26195.18 15359.50 27198.45 13372.67 27386.59 19392.35 236
mvsany_test187.58 16488.22 13085.67 27989.78 27567.18 34095.25 22787.93 35383.96 17088.79 12297.06 10472.52 18494.53 31092.21 8386.45 19495.30 193
tttt051788.57 14288.19 13289.71 19993.00 19475.99 26995.67 21096.67 6980.78 23081.82 20294.40 17388.97 1497.58 16676.05 24586.31 19595.57 185
CR-MVSNet83.53 22781.36 24490.06 18590.16 26979.75 17479.02 37191.12 32284.24 16482.27 19580.35 35075.45 14193.67 32563.37 32486.25 19696.75 156
RPMNet79.85 27775.92 29691.64 13990.16 26979.75 17479.02 37195.44 16958.43 37782.27 19572.55 37473.03 18098.41 13646.10 37586.25 19696.75 156
thres100view90088.30 14986.95 16292.33 10896.10 10384.90 6597.14 12098.85 282.69 20283.41 17993.66 19175.43 14397.93 14969.04 29586.24 19894.17 212
tfpn200view988.48 14387.15 15692.47 10096.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19894.17 212
thres40088.42 14687.15 15692.23 11496.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19893.45 228
CostFormer89.08 12688.39 12991.15 15593.13 19179.15 19288.61 32996.11 12883.14 18889.58 11386.93 28983.83 4396.87 21288.22 13385.92 20197.42 127
thres600view788.06 15486.70 16692.15 12096.10 10385.17 5897.14 12098.85 282.70 20183.41 17993.66 19175.43 14397.82 15667.13 30485.88 20293.45 228
Effi-MVS+-dtu84.61 21084.90 19083.72 31091.96 23463.14 35794.95 24193.34 28585.57 12579.79 22387.12 28661.99 25695.61 27183.55 17585.83 20392.41 235
JIA-IIPM79.00 28777.20 28684.40 30289.74 27864.06 35275.30 37995.44 16962.15 36181.90 20059.08 38378.92 7995.59 27266.51 30985.78 20493.54 225
tpm287.35 16786.26 16890.62 17092.93 19978.67 20488.06 33495.99 13679.33 26387.40 13786.43 30080.28 6496.40 22880.23 20185.73 20596.79 152
1112_ss88.60 14187.47 15092.00 12793.21 18680.97 14196.47 16792.46 30283.64 18180.86 21097.30 9280.24 6597.62 16377.60 22685.49 20697.40 129
Test_1112_low_res88.03 15586.73 16491.94 12993.15 18980.88 14496.44 17092.41 30483.59 18380.74 21291.16 22880.18 6697.59 16577.48 22985.40 20797.36 131
GA-MVS85.79 19184.04 20391.02 15989.47 28380.27 16196.90 14294.84 19885.57 12580.88 20989.08 25556.56 30096.47 22777.72 22385.35 20896.34 167
tpmrst88.36 14787.38 15291.31 14794.36 15479.92 16987.32 33995.26 18185.32 13088.34 12986.13 30580.60 6196.70 22083.78 16885.34 20997.30 134
MDTV_nov1_ep1383.69 20594.09 16381.01 13986.78 34496.09 12983.81 17684.75 16384.32 32874.44 16496.54 22463.88 32085.07 210
Fast-Effi-MVS+-dtu83.33 23082.60 22685.50 28389.55 28169.38 33196.09 19391.38 31782.30 20975.96 26891.41 22256.71 29795.58 27375.13 25484.90 21191.54 237
PatchT79.75 27876.85 29088.42 21889.55 28175.49 27577.37 37594.61 21463.07 35882.46 18973.32 37175.52 14093.41 33051.36 36284.43 21296.36 165
XVG-OURS-SEG-HR85.74 19285.16 18487.49 24690.22 26771.45 31791.29 31094.09 24581.37 22183.90 17595.22 14960.30 26697.53 17385.58 15284.42 21393.50 226
tpm cat183.63 22681.38 24390.39 17693.53 18178.19 22285.56 35395.09 18570.78 33978.51 23483.28 33674.80 15797.03 20166.77 30584.05 21495.95 175
DSMNet-mixed73.13 32272.45 31875.19 35377.51 36946.82 38385.09 35582.01 37667.61 35269.27 32281.33 34550.89 32386.28 37354.54 35583.80 21592.46 233
ADS-MVSNet279.57 28177.53 28485.71 27793.78 16972.13 30579.48 36786.11 36373.09 32580.14 21979.99 35262.15 25390.14 36059.49 33683.52 21694.85 202
ADS-MVSNet81.26 26478.36 27789.96 19093.78 16979.78 17279.48 36793.60 27373.09 32580.14 21979.99 35262.15 25395.24 28759.49 33683.52 21694.85 202
XVG-OURS85.18 20084.38 19787.59 24190.42 26571.73 31491.06 31394.07 24682.00 21683.29 18195.08 15956.42 30197.55 16983.70 17383.42 21893.49 227
dp84.30 21682.31 22990.28 18094.24 15777.97 22686.57 34595.53 16179.94 25380.75 21185.16 31971.49 19896.39 22963.73 32183.36 21996.48 163
MSDG80.62 27377.77 28389.14 20593.43 18377.24 24691.89 30290.18 33469.86 34468.02 32491.94 21752.21 32098.84 11559.32 33883.12 22091.35 238
MIMVSNet79.18 28675.99 29588.72 21587.37 30880.66 15079.96 36691.82 31177.38 29074.33 28481.87 34241.78 35590.74 35566.36 31183.10 22194.76 204
HQP3-MVS94.80 20083.01 222
HQP-MVS87.91 15987.55 14788.98 20992.08 22878.48 20797.63 8094.80 20090.52 4182.30 19194.56 17065.40 23497.32 18587.67 13883.01 22291.13 239
plane_prior77.96 22797.52 9190.36 4682.96 224
CLD-MVS87.97 15787.48 14989.44 20192.16 22480.54 15598.14 4494.92 19291.41 2979.43 22795.40 14662.34 25197.27 19090.60 10182.90 22590.50 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS87.50 16587.09 15988.74 21491.86 23777.96 22797.18 11394.69 20589.89 5181.33 20594.15 18064.77 24097.30 18787.08 14282.82 22690.96 241
plane_prior594.69 20597.30 18787.08 14282.82 22690.96 241
OPM-MVS85.84 18985.10 18688.06 22988.34 29577.83 23495.72 20894.20 23887.89 8380.45 21594.05 18258.57 27897.26 19183.88 16682.76 22889.09 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous20240521184.41 21481.93 23591.85 13396.78 9378.41 21197.44 9691.34 32070.29 34184.06 16994.26 17641.09 35998.96 10779.46 20882.65 22998.17 70
ab-mvs87.08 16884.94 18893.48 6593.34 18583.67 8488.82 32695.70 15481.18 22384.55 16790.14 24762.72 24998.94 11185.49 15382.54 23097.85 95
Syy-MVS77.97 29478.05 28077.74 34492.13 22556.85 37193.97 26594.23 23582.43 20673.39 28993.57 19357.95 28687.86 36632.40 38482.34 23188.51 295
myMVS_eth3d81.93 25582.18 23081.18 32892.13 22567.18 34093.97 26594.23 23582.43 20673.39 28993.57 19376.98 11187.86 36650.53 36682.34 23188.51 295
ET-MVSNet_ETH3D90.01 11089.03 11792.95 8294.38 15386.77 3098.14 4496.31 11489.30 5763.33 34796.72 11890.09 1193.63 32690.70 10082.29 23398.46 53
SDMVSNet87.02 16985.61 17491.24 15194.14 16083.30 9293.88 26895.98 13784.30 16079.63 22592.01 21158.23 28197.68 16090.28 11182.02 23492.75 231
sd_testset84.62 20983.11 21789.17 20494.14 16077.78 23591.54 30994.38 22884.30 16079.63 22592.01 21152.28 31996.98 20477.67 22582.02 23492.75 231
tpmvs83.04 23780.77 25089.84 19495.43 11877.96 22785.59 35295.32 17875.31 30776.27 26283.70 33373.89 17097.41 18059.53 33581.93 23694.14 214
CMPMVSbinary54.94 2175.71 31174.56 30679.17 33979.69 36255.98 37389.59 32093.30 28660.28 37053.85 37489.07 25647.68 33996.33 23176.55 23881.02 23785.22 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final89.51 11889.21 11590.39 17695.60 11484.44 7197.22 10789.09 34489.11 6082.07 19892.80 20287.03 2596.03 24089.10 12380.89 23890.70 244
dmvs_re84.10 21882.90 22087.70 23691.41 24573.28 29590.59 31693.19 28985.02 13977.96 24093.68 19057.92 28896.18 23775.50 25080.87 23993.63 224
LPG-MVS_test84.20 21783.49 21286.33 26590.88 25373.06 29895.28 22494.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
LGP-MVS_train86.33 26590.88 25373.06 29894.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
iter_conf0590.14 10889.79 10991.17 15495.85 10986.93 2897.68 7888.67 35189.93 5081.73 20492.80 20290.37 896.03 24090.44 10580.65 24290.56 246
ACMM80.70 1383.72 22582.85 22286.31 26891.19 24772.12 30695.88 20294.29 23380.44 23977.02 24891.96 21555.24 30897.14 19979.30 21080.38 24389.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba85.17 20184.54 19287.05 25687.94 30075.11 27996.22 18487.79 35586.91 10578.55 23391.77 22064.93 23995.91 25186.94 14679.80 24490.12 255
jajsoiax82.12 25381.15 24785.03 29084.19 34470.70 32094.22 26193.95 24983.07 19173.48 28889.75 25049.66 33095.37 28082.24 18779.76 24589.02 284
test_djsdf83.00 23982.45 22884.64 29684.07 34669.78 32794.80 24694.48 22080.74 23175.41 27787.70 27661.32 26295.10 29583.77 16979.76 24589.04 283
ACMP81.66 1184.00 21983.22 21686.33 26591.53 24372.95 30195.91 20193.79 26383.70 18073.79 28692.22 20954.31 31596.89 21083.98 16479.74 24789.16 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing380.74 27181.17 24679.44 33791.15 24963.48 35597.16 11795.76 15080.83 22871.36 30793.15 19978.22 9087.30 37143.19 37879.67 24887.55 320
PVSNet_BlendedMVS90.05 10989.96 10490.33 17997.47 7683.86 7998.02 5696.73 6187.98 7989.53 11489.61 25276.42 12299.57 6294.29 5779.59 24987.57 317
Patchmatch-test78.25 29074.72 30488.83 21291.20 24674.10 28973.91 38288.70 35059.89 37366.82 33185.12 32178.38 8794.54 30948.84 37179.58 25097.86 94
mvs_tets81.74 25780.71 25384.84 29184.22 34370.29 32393.91 26793.78 26482.77 20073.37 29189.46 25347.36 34095.31 28481.99 18879.55 25188.92 290
FIs86.73 17786.10 17088.61 21690.05 27280.21 16396.14 19096.95 3885.56 12778.37 23692.30 20876.73 11795.28 28579.51 20779.27 25290.35 250
D2MVS82.67 24381.55 24086.04 27387.77 30276.47 25795.21 22996.58 8382.66 20370.26 31685.46 31460.39 26595.80 25776.40 24179.18 25385.83 343
ACMMP++79.05 254
PS-MVSNAJss84.91 20584.30 19886.74 25985.89 32574.40 28794.95 24194.16 24183.93 17276.45 25790.11 24871.04 20295.77 25883.16 18179.02 25590.06 260
FC-MVSNet-test85.96 18785.39 17887.66 23889.38 28578.02 22495.65 21296.87 4385.12 13777.34 24391.94 21776.28 12694.74 30477.09 23278.82 25690.21 253
EG-PatchMatch MVS74.92 31372.02 32083.62 31183.76 35173.28 29593.62 27392.04 30968.57 34758.88 36483.80 33231.87 37695.57 27456.97 34878.67 25782.00 367
EI-MVSNet85.80 19085.20 18187.59 24191.55 24177.41 24395.13 23495.36 17480.43 24180.33 21794.71 16773.72 17395.97 24576.96 23578.64 25889.39 267
MVSTER89.25 12588.92 12290.24 18195.98 10684.66 6896.79 14995.36 17487.19 10180.33 21790.61 23890.02 1295.97 24585.38 15478.64 25890.09 258
anonymousdsp80.98 26979.97 26584.01 30481.73 35670.44 32292.49 29593.58 27577.10 29572.98 29786.31 30257.58 28994.90 30079.32 20978.63 26086.69 330
bld_raw_dy_0_6482.13 25280.76 25186.24 27085.78 32775.03 28094.40 25482.62 37583.12 18976.46 25690.96 23353.83 31694.55 30881.04 19378.60 26189.14 278
UniMVSNet_ETH3D80.86 27078.75 27687.22 25386.31 31672.02 30891.95 30093.76 26773.51 32075.06 28090.16 24643.04 35295.66 26576.37 24278.55 26293.98 218
ACMMP++_ref78.45 263
test_fmvs279.59 28079.90 26778.67 34082.86 35355.82 37595.20 23089.55 33881.09 22480.12 22189.80 24934.31 37293.51 32887.82 13578.36 26486.69 330
Anonymous2024052983.15 23480.60 25590.80 16595.74 11178.27 21596.81 14894.92 19260.10 37281.89 20192.54 20645.82 34398.82 11679.25 21178.32 26595.31 192
XVG-ACMP-BASELINE79.38 28477.90 28283.81 30684.98 33767.14 34489.03 32593.18 29180.26 24772.87 29888.15 27138.55 36396.26 23376.05 24578.05 26688.02 308
tpm85.55 19584.47 19688.80 21390.19 26875.39 27688.79 32794.69 20584.83 14383.96 17385.21 31778.22 9094.68 30676.32 24378.02 26796.34 167
test0.0.03 182.79 24182.48 22783.74 30986.81 31172.22 30396.52 16495.03 18883.76 17873.00 29693.20 19672.30 18888.88 36264.15 31977.52 26890.12 255
RPSCF77.73 29676.63 29181.06 32988.66 29255.76 37687.77 33687.88 35464.82 35774.14 28592.79 20449.22 33196.81 21667.47 30276.88 26990.62 245
RRT_MVS83.88 22183.27 21585.71 27787.53 30772.12 30695.35 22394.33 23183.81 17675.86 27091.28 22660.55 26495.09 29783.93 16576.76 27089.90 263
LTVRE_ROB73.68 1877.99 29275.74 29784.74 29290.45 26472.02 30886.41 34791.12 32272.57 33066.63 33387.27 28254.95 31196.98 20456.29 35075.98 27185.21 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_rt73.96 31672.40 31978.64 34183.91 34861.16 36495.63 21368.18 39176.32 29960.09 36274.77 36529.01 38097.54 17187.74 13675.94 27277.22 375
OpenMVS_ROBcopyleft68.52 2073.02 32369.57 33083.37 31480.54 36071.82 31293.60 27488.22 35262.37 36061.98 35483.15 33735.31 37195.47 27645.08 37675.88 27382.82 359
USDC78.65 28876.25 29385.85 27487.58 30474.60 28489.58 32190.58 33384.05 16663.13 34888.23 26940.69 36296.86 21466.57 30875.81 27486.09 339
COLMAP_ROBcopyleft73.24 1975.74 31073.00 31783.94 30592.38 21069.08 33291.85 30386.93 35861.48 36565.32 33990.27 24342.27 35496.93 20950.91 36475.63 27585.80 344
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GBi-Net82.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
test182.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
FMVSNet384.71 20782.71 22490.70 16994.55 14687.71 2195.92 19994.67 20881.73 21875.82 27188.08 27266.99 22494.47 31171.23 28275.38 27689.91 262
tt080581.20 26679.06 27487.61 23986.50 31372.97 30093.66 27195.48 16574.11 31576.23 26391.99 21341.36 35897.40 18177.44 23074.78 27992.45 234
FMVSNet282.79 24180.44 25789.83 19592.66 20485.43 4895.42 22094.35 22979.06 27174.46 28387.28 28156.38 30294.31 31469.72 29474.68 28089.76 264
ITE_SJBPF82.38 32187.00 31065.59 34689.55 33879.99 25269.37 32191.30 22541.60 35795.33 28262.86 32674.63 28186.24 336
ACMH75.40 1777.99 29274.96 30087.10 25590.67 26076.41 25993.19 28791.64 31572.47 33163.44 34687.61 27843.34 34997.16 19558.34 34073.94 28287.72 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline188.85 13387.49 14892.93 8495.21 12686.85 2995.47 21894.61 21487.29 9683.11 18494.99 16280.70 6096.89 21082.28 18673.72 28395.05 197
pmmvs482.54 24580.79 24987.79 23486.11 32180.49 15793.55 27593.18 29177.29 29173.35 29289.40 25465.26 23795.05 29975.32 25273.61 28487.83 311
AllTest75.92 30873.06 31684.47 29992.18 22267.29 33891.07 31284.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
TestCases84.47 29992.18 22267.29 33884.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
pmmvs581.34 26379.54 26986.73 26285.02 33676.91 25196.22 18491.65 31477.65 28673.55 28788.61 26255.70 30594.43 31274.12 26473.35 28788.86 292
XXY-MVS83.84 22282.00 23489.35 20287.13 30981.38 13295.72 20894.26 23480.15 24875.92 26990.63 23761.96 25796.52 22578.98 21473.28 28890.14 254
FMVSNet179.50 28276.54 29288.39 22088.47 29381.95 11294.30 25793.38 28173.14 32472.04 30585.66 30743.86 34693.84 32165.48 31372.53 28989.38 269
cl2285.11 20284.17 20087.92 23295.06 13378.82 19995.51 21694.22 23779.74 25676.77 25187.92 27475.96 13095.68 26479.93 20572.42 29089.27 274
miper_ehance_all_eth84.57 21183.60 21087.50 24592.64 20778.25 21695.40 22293.47 27779.28 26676.41 25887.64 27776.53 11995.24 28778.58 21772.42 29089.01 285
miper_enhance_ethall85.95 18885.20 18188.19 22894.85 13979.76 17396.00 19494.06 24782.98 19577.74 24188.76 26079.42 7195.46 27780.58 19672.42 29089.36 272
test_040272.68 32469.54 33182.09 32488.67 29171.81 31392.72 29386.77 36061.52 36462.21 35383.91 33143.22 35093.76 32434.60 38372.23 29380.72 371
dmvs_testset72.00 32973.36 31567.91 35883.83 34931.90 39885.30 35477.12 38382.80 19963.05 35092.46 20761.54 26082.55 38142.22 38071.89 29489.29 273
testgi74.88 31473.40 31479.32 33880.13 36161.75 36093.21 28586.64 36179.49 26166.56 33591.06 22935.51 37088.67 36356.79 34971.25 29587.56 318
nrg03086.79 17585.43 17790.87 16488.76 28885.34 4997.06 12994.33 23184.31 15880.45 21591.98 21472.36 18696.36 23088.48 13071.13 29690.93 243
ACMH+76.62 1677.47 29974.94 30185.05 28991.07 25171.58 31693.26 28490.01 33571.80 33464.76 34188.55 26341.62 35696.48 22662.35 32771.00 29787.09 326
VPA-MVSNet85.32 19883.83 20489.77 19890.25 26682.63 10196.36 17697.07 3183.03 19381.21 20789.02 25761.58 25996.31 23285.02 15770.95 29890.36 249
IterMVS80.67 27279.16 27285.20 28789.79 27476.08 26492.97 29091.86 31080.28 24571.20 30985.14 32057.93 28791.34 34972.52 27470.74 29988.18 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-LS83.93 22082.80 22387.31 25091.46 24477.39 24495.66 21193.43 27980.44 23975.51 27587.26 28373.72 17395.16 29176.99 23370.72 30089.39 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 27479.10 27384.73 29389.63 28074.66 28292.98 28991.81 31280.05 25071.06 31185.18 31858.04 28391.40 34872.48 27570.70 30188.12 307
v124081.70 25879.83 26887.30 25185.50 32977.70 23995.48 21793.44 27878.46 27976.53 25586.44 29860.85 26395.84 25471.59 27970.17 30288.35 302
V4283.04 23781.53 24187.57 24386.27 31879.09 19595.87 20394.11 24480.35 24377.22 24686.79 29265.32 23696.02 24377.74 22270.14 30387.61 316
v119282.31 25080.55 25687.60 24085.94 32378.47 21095.85 20593.80 26279.33 26376.97 24986.51 29563.33 24795.87 25373.11 27070.13 30488.46 299
v114482.90 24081.27 24587.78 23586.29 31779.07 19696.14 19093.93 25080.05 25077.38 24286.80 29165.50 23295.93 25075.21 25370.13 30488.33 303
Anonymous2023120675.29 31273.64 31380.22 33380.75 35763.38 35693.36 27990.71 33273.09 32567.12 32783.70 33350.33 32790.85 35453.63 35870.10 30686.44 333
WR-MVS84.32 21582.96 21888.41 21989.38 28580.32 15896.59 16096.25 11783.97 16976.63 25390.36 24267.53 21994.86 30275.82 24870.09 30790.06 260
EU-MVSNet76.92 30476.95 28976.83 34784.10 34554.73 37891.77 30492.71 30072.74 32869.57 32088.69 26158.03 28587.43 37064.91 31670.00 30888.33 303
IB-MVS85.34 488.67 13887.14 15893.26 7093.12 19284.32 7398.76 2497.27 2087.19 10179.36 22890.45 24083.92 4298.53 12784.41 16069.79 30996.93 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192082.02 25480.23 26087.41 24785.62 32877.92 23095.79 20793.69 26978.86 27476.67 25286.44 29862.50 25095.83 25572.69 27269.77 31088.47 298
v2v48283.46 22881.86 23688.25 22586.19 31979.65 17996.34 17894.02 24881.56 22077.32 24488.23 26965.62 23196.03 24077.77 22169.72 31189.09 280
v14419282.43 24680.73 25287.54 24485.81 32678.22 21795.98 19593.78 26479.09 27077.11 24786.49 29664.66 24295.91 25174.20 26369.42 31288.49 297
cl____83.27 23182.12 23186.74 25992.20 22075.95 27095.11 23693.27 28778.44 28074.82 28187.02 28874.19 16695.19 28974.67 25869.32 31389.09 280
DIV-MVS_self_test83.27 23182.12 23186.74 25992.19 22175.92 27295.11 23693.26 28878.44 28074.81 28287.08 28774.19 16695.19 28974.66 25969.30 31489.11 279
Anonymous2023121179.72 27977.19 28787.33 24895.59 11577.16 25095.18 23394.18 24059.31 37572.57 30186.20 30447.89 33795.66 26574.53 26169.24 31589.18 276
FMVSNet576.46 30674.16 31083.35 31590.05 27276.17 26289.58 32189.85 33671.39 33765.29 34080.42 34950.61 32587.70 36961.05 33369.24 31586.18 337
c3_l83.80 22382.65 22587.25 25292.10 22777.74 23895.25 22793.04 29678.58 27776.01 26687.21 28575.25 15195.11 29477.54 22868.89 31788.91 291
TinyColmap72.41 32568.99 33482.68 31988.11 29769.59 32988.41 33085.20 36565.55 35457.91 36784.82 32530.80 37895.94 24951.38 36168.70 31882.49 364
LF4IMVS72.36 32670.82 32476.95 34679.18 36356.33 37286.12 34986.11 36369.30 34663.06 34986.66 29333.03 37492.25 33865.33 31468.64 31982.28 365
Anonymous2024052172.06 32869.91 32978.50 34277.11 37161.67 36291.62 30890.97 32765.52 35562.37 35279.05 35536.32 36690.96 35357.75 34368.52 32082.87 358
OurMVSNet-221017-077.18 30276.06 29480.55 33283.78 35060.00 36790.35 31791.05 32577.01 29766.62 33487.92 27447.73 33894.03 31871.63 27868.44 32187.62 315
CP-MVSNet81.01 26880.08 26283.79 30787.91 30170.51 32194.29 26095.65 15680.83 22872.54 30288.84 25963.71 24492.32 33768.58 29968.36 32288.55 294
UniMVSNet_NR-MVSNet85.49 19684.59 19188.21 22789.44 28479.36 18596.71 15596.41 10285.22 13378.11 23890.98 23276.97 11295.14 29279.14 21268.30 32390.12 255
DU-MVS84.57 21183.33 21488.28 22388.76 28879.36 18596.43 17295.41 17385.42 12878.11 23890.82 23467.61 21695.14 29279.14 21268.30 32390.33 251
PS-CasMVS80.27 27579.18 27183.52 31387.56 30569.88 32694.08 26395.29 17980.27 24672.08 30488.51 26659.22 27592.23 33967.49 30168.15 32588.45 300
UniMVSNet (Re)85.31 19984.23 19988.55 21789.75 27680.55 15396.72 15396.89 4285.42 12878.40 23588.93 25875.38 14595.52 27578.58 21768.02 32689.57 266
our_test_377.90 29575.37 29985.48 28485.39 33176.74 25593.63 27291.67 31373.39 32365.72 33884.65 32658.20 28293.13 33257.82 34267.87 32786.57 332
tfpnnormal78.14 29175.42 29886.31 26888.33 29679.24 18894.41 25196.22 12073.51 32069.81 31985.52 31355.43 30695.75 26047.65 37367.86 32883.95 356
VPNet84.69 20882.92 21990.01 18689.01 28783.45 8996.71 15595.46 16785.71 12379.65 22492.18 21056.66 29996.01 24483.05 18367.84 32990.56 246
v1081.43 26279.53 27087.11 25486.38 31478.87 19894.31 25693.43 27977.88 28373.24 29485.26 31565.44 23395.75 26072.14 27667.71 33086.72 329
v881.88 25680.06 26487.32 24986.63 31279.04 19794.41 25193.65 27178.77 27573.19 29585.57 31166.87 22595.81 25673.84 26767.61 33187.11 325
v7n79.32 28577.34 28585.28 28684.05 34772.89 30293.38 27893.87 25675.02 31070.68 31284.37 32759.58 27095.62 27067.60 30067.50 33287.32 324
WR-MVS_H81.02 26780.09 26183.79 30788.08 29871.26 31994.46 24996.54 8780.08 24972.81 29986.82 29070.36 20892.65 33464.18 31867.50 33287.46 322
Patchmtry77.36 30074.59 30585.67 27989.75 27675.75 27477.85 37491.12 32260.28 37071.23 30880.35 35075.45 14193.56 32757.94 34167.34 33487.68 314
eth_miper_zixun_eth83.12 23582.01 23386.47 26491.85 23974.80 28194.33 25593.18 29179.11 26975.74 27487.25 28472.71 18295.32 28376.78 23667.13 33589.27 274
miper_lstm_enhance81.66 26080.66 25484.67 29591.19 24771.97 31091.94 30193.19 28977.86 28472.27 30385.26 31573.46 17693.42 32973.71 26867.05 33688.61 293
v14882.41 24980.89 24886.99 25786.18 32076.81 25496.27 18193.82 25980.49 23875.28 27886.11 30667.32 22295.75 26075.48 25167.03 33788.42 301
NR-MVSNet83.35 22981.52 24288.84 21188.76 28881.31 13494.45 25095.16 18384.65 14967.81 32590.82 23470.36 20894.87 30174.75 25666.89 33890.33 251
Baseline_NR-MVSNet81.22 26580.07 26384.68 29485.32 33475.12 27896.48 16688.80 34776.24 30277.28 24586.40 30167.61 21694.39 31375.73 24966.73 33984.54 350
TranMVSNet+NR-MVSNet83.24 23381.71 23887.83 23387.71 30378.81 20196.13 19294.82 19984.52 15276.18 26590.78 23664.07 24394.60 30774.60 26066.59 34090.09 258
h-mvs3389.30 12388.95 12190.36 17895.07 13176.04 26596.96 13797.11 2990.39 4492.22 7495.10 15874.70 15898.86 11493.14 7365.89 34196.16 172
PEN-MVS79.47 28378.26 27983.08 31686.36 31568.58 33493.85 26994.77 20379.76 25571.37 30688.55 26359.79 26792.46 33564.50 31765.40 34288.19 305
FPMVS55.09 34852.93 35161.57 36755.98 39040.51 39283.11 36383.41 37337.61 38534.95 38671.95 37514.40 38876.95 38529.81 38565.16 34367.25 380
ppachtmachnet_test77.19 30174.22 30986.13 27285.39 33178.22 21793.98 26491.36 31971.74 33567.11 32884.87 32456.67 29893.37 33152.21 36064.59 34486.80 328
AUN-MVS86.25 18485.57 17588.26 22493.57 17573.38 29295.45 21995.88 14483.94 17185.47 15594.21 17873.70 17596.67 22283.54 17664.41 34594.73 208
hse-mvs288.22 15288.21 13188.25 22593.54 17673.41 29195.41 22195.89 14390.39 4492.22 7494.22 17774.70 15896.66 22393.14 7364.37 34694.69 209
pm-mvs180.05 27678.02 28186.15 27185.42 33075.81 27395.11 23692.69 30177.13 29370.36 31587.43 27958.44 28095.27 28671.36 28164.25 34787.36 323
N_pmnet61.30 34360.20 34664.60 36384.32 34217.00 40491.67 30710.98 40261.77 36358.45 36678.55 35649.89 32991.83 34542.27 37963.94 34884.97 348
SixPastTwentyTwo76.04 30774.32 30881.22 32784.54 34061.43 36391.16 31189.30 34277.89 28264.04 34386.31 30248.23 33294.29 31563.54 32363.84 34987.93 310
MIMVSNet169.44 33466.65 33877.84 34376.48 37362.84 35887.42 33888.97 34566.96 35357.75 36979.72 35432.77 37585.83 37546.32 37463.42 35084.85 349
DTE-MVSNet78.37 28977.06 28882.32 32385.22 33567.17 34393.40 27793.66 27078.71 27670.53 31488.29 26859.06 27692.23 33961.38 33163.28 35187.56 318
new_pmnet66.18 34063.18 34375.18 35476.27 37561.74 36183.79 36084.66 36756.64 37951.57 37571.85 37731.29 37787.93 36549.98 36762.55 35275.86 376
test_fmvs369.56 33369.19 33370.67 35669.01 38147.05 38290.87 31486.81 35971.31 33866.79 33277.15 36016.40 38783.17 37981.84 18962.51 35381.79 369
test20.0372.36 32671.15 32375.98 35177.79 36759.16 36992.40 29789.35 34174.09 31661.50 35684.32 32848.09 33385.54 37650.63 36562.15 35483.24 357
EGC-MVSNET52.46 35147.56 35467.15 35981.98 35560.11 36682.54 36472.44 3870.11 3990.70 40074.59 36625.11 38183.26 37829.04 38661.51 35558.09 384
pmmvs674.65 31571.67 32183.60 31279.13 36469.94 32593.31 28390.88 32961.05 36965.83 33784.15 33043.43 34894.83 30366.62 30660.63 35686.02 340
MDA-MVSNet_test_wron73.54 31970.43 32782.86 31784.55 33971.85 31191.74 30591.32 32167.63 34846.73 37881.09 34755.11 30990.42 35855.91 35259.76 35786.31 335
YYNet173.53 32070.43 32782.85 31884.52 34171.73 31491.69 30691.37 31867.63 34846.79 37781.21 34655.04 31090.43 35755.93 35159.70 35886.38 334
test_f64.01 34262.13 34569.65 35763.00 38845.30 38883.66 36180.68 37861.30 36655.70 37172.62 37314.23 38984.64 37769.84 29258.11 35979.00 372
Patchmatch-RL test76.65 30574.01 31284.55 29877.37 37064.23 35078.49 37382.84 37478.48 27864.63 34273.40 37076.05 12991.70 34776.99 23357.84 36097.72 105
pmmvs-eth3d73.59 31870.66 32582.38 32176.40 37473.38 29289.39 32489.43 34072.69 32960.34 36177.79 35846.43 34291.26 35166.42 31057.06 36182.51 362
PM-MVS69.32 33566.93 33776.49 34873.60 37855.84 37485.91 35079.32 38174.72 31261.09 35878.18 35721.76 38391.10 35270.86 28756.90 36282.51 362
Gipumacopyleft45.11 35642.05 35854.30 37380.69 35851.30 38035.80 39183.81 37128.13 38727.94 39134.53 39111.41 39476.70 38721.45 39054.65 36334.90 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test156.56 34653.58 35065.50 36067.93 38446.51 38577.24 37772.95 38638.09 38442.75 38275.17 36413.38 39082.78 38040.19 38154.53 36467.23 381
MDA-MVSNet-bldmvs71.45 33067.94 33581.98 32585.33 33368.50 33592.35 29888.76 34870.40 34042.99 38181.96 34146.57 34191.31 35048.75 37254.39 36586.11 338
K. test v373.62 31771.59 32279.69 33582.98 35259.85 36890.85 31588.83 34677.13 29358.90 36382.11 34043.62 34791.72 34665.83 31254.10 36687.50 321
CL-MVSNet_self_test75.81 30974.14 31180.83 33178.33 36667.79 33794.22 26193.52 27677.28 29269.82 31881.54 34461.47 26189.22 36157.59 34453.51 36785.48 345
KD-MVS_self_test70.97 33269.31 33275.95 35276.24 37655.39 37787.45 33790.94 32870.20 34262.96 35177.48 35944.01 34588.09 36461.25 33253.26 36884.37 352
TDRefinement69.20 33665.78 34079.48 33666.04 38662.21 35988.21 33186.12 36262.92 35961.03 35985.61 31033.23 37394.16 31655.82 35353.02 36982.08 366
ambc76.02 35068.11 38351.43 37964.97 38789.59 33760.49 36074.49 36717.17 38692.46 33561.50 33052.85 37084.17 354
TransMVSNet (Re)76.94 30374.38 30784.62 29785.92 32475.25 27795.28 22489.18 34373.88 31867.22 32686.46 29759.64 26894.10 31759.24 33952.57 37184.50 351
mvsany_test367.19 33965.34 34172.72 35563.08 38748.57 38183.12 36278.09 38272.07 33261.21 35777.11 36122.94 38287.78 36878.59 21651.88 37281.80 368
test_vis3_rt54.10 34951.04 35263.27 36658.16 38946.08 38784.17 35849.32 40156.48 38036.56 38549.48 3888.03 39791.91 34467.29 30349.87 37351.82 387
PMVScopyleft34.80 2339.19 35835.53 36150.18 37429.72 40030.30 39959.60 38966.20 39426.06 39017.91 39449.53 3873.12 40074.09 38918.19 39249.40 37446.14 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v079.98 33480.59 35958.34 37080.87 37758.49 36583.46 33543.10 35193.89 32063.11 32548.68 37587.72 312
UnsupCasMVSNet_eth73.25 32170.57 32681.30 32677.53 36866.33 34587.24 34093.89 25580.38 24257.90 36881.59 34342.91 35390.56 35665.18 31548.51 37687.01 327
new-patchmatchnet68.85 33765.93 33977.61 34573.57 37963.94 35390.11 31988.73 34971.62 33655.08 37273.60 36940.84 36087.22 37251.35 36348.49 37781.67 370
pmmvs365.75 34162.18 34476.45 34967.12 38564.54 34888.68 32885.05 36654.77 38157.54 37073.79 36829.40 37986.21 37455.49 35447.77 37878.62 373
test_method56.77 34554.53 34963.49 36576.49 37240.70 39175.68 37874.24 38519.47 39348.73 37671.89 37619.31 38465.80 39357.46 34547.51 37983.97 355
UnsupCasMVSNet_bld68.60 33864.50 34280.92 33074.63 37767.80 33683.97 35992.94 29765.12 35654.63 37368.23 37935.97 36892.17 34160.13 33444.83 38082.78 360
LCM-MVSNet52.52 35048.24 35365.35 36147.63 39741.45 39072.55 38383.62 37231.75 38637.66 38457.92 3849.19 39676.76 38649.26 36944.60 38177.84 374
PVSNet_077.72 1581.70 25878.95 27589.94 19190.77 25976.72 25695.96 19696.95 3885.01 14070.24 31788.53 26552.32 31898.20 14386.68 14844.08 38294.89 200
testf145.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
APD_test245.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
KD-MVS_2432*160077.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
miper_refine_blended77.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
DeepMVS_CXcopyleft64.06 36478.53 36543.26 38968.11 39369.94 34338.55 38376.14 36318.53 38579.34 38243.72 37741.62 38569.57 379
WB-MVS57.26 34456.22 34760.39 36969.29 38035.91 39686.39 34870.06 38959.84 37446.46 37972.71 37251.18 32278.11 38315.19 39334.89 38867.14 382
SSC-MVS56.01 34754.96 34859.17 37068.42 38234.13 39784.98 35669.23 39058.08 37845.36 38071.67 37850.30 32877.46 38414.28 39432.33 38965.91 383
PMMVS250.90 35246.31 35564.67 36255.53 39146.67 38477.30 37671.02 38840.89 38334.16 38759.32 3829.83 39576.14 38840.09 38228.63 39071.21 377
MVEpermissive35.65 2233.85 35929.49 36446.92 37541.86 39836.28 39550.45 39056.52 39818.75 39418.28 39337.84 3902.41 40158.41 39418.71 39120.62 39146.06 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 36032.39 36233.65 37753.35 39325.70 40174.07 38153.33 39921.08 39117.17 39533.63 39311.85 39354.84 39512.98 39514.04 39220.42 392
ANet_high46.22 35341.28 36061.04 36839.91 39946.25 38670.59 38476.18 38458.87 37623.09 39248.00 38912.58 39266.54 39228.65 38713.62 39370.35 378
tmp_tt41.54 35741.93 35940.38 37620.10 40126.84 40061.93 38859.09 39714.81 39528.51 39080.58 34835.53 36948.33 39763.70 32213.11 39445.96 390
EMVS31.70 36131.45 36332.48 37850.72 39623.95 40274.78 38052.30 40020.36 39216.08 39631.48 39412.80 39153.60 39611.39 39613.10 39519.88 393
wuyk23d14.10 36313.89 36614.72 37955.23 39222.91 40333.83 3923.56 4034.94 3964.11 3972.28 3992.06 40219.66 39810.23 3978.74 3961.59 396
testmvs9.92 36412.94 3670.84 3810.65 4020.29 40693.78 2700.39 4040.42 3972.85 39815.84 3970.17 4040.30 4002.18 3980.21 3971.91 395
test1239.07 36511.73 3681.11 3800.50 4030.77 40589.44 3230.20 4050.34 3982.15 39910.72 3980.34 4030.32 3991.79 3990.08 3982.23 394
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k21.43 36228.57 3650.00 3820.00 4040.00 4070.00 39395.93 1420.00 4000.00 40197.66 7063.57 2450.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.92 3677.89 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40071.04 2020.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.11 36610.81 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.30 920.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS67.18 34049.00 370
FOURS198.51 3978.01 22598.13 4796.21 12183.04 19294.39 49
test_one_060198.91 1884.56 7096.70 6588.06 7796.57 2098.77 1088.04 20
eth-test20.00 404
eth-test0.00 404
test_241102_ONE99.03 1585.03 6196.78 4988.72 6497.79 498.90 588.48 1799.82 18
save fliter98.24 5183.34 9198.61 3196.57 8491.32 30
test072699.05 985.18 5499.11 1296.78 4988.75 6297.65 998.91 287.69 22
GSMVS97.54 117
test_part298.90 1985.14 6096.07 26
sam_mvs177.59 10097.54 117
sam_mvs75.35 148
MTGPAbinary96.33 112
test_post185.88 35130.24 39573.77 17195.07 29873.89 265
test_post33.80 39276.17 12795.97 245
patchmatchnet-post77.09 36277.78 9995.39 278
MTMP97.53 8868.16 392
gm-plane-assit92.27 21679.64 18084.47 15595.15 15597.93 14985.81 150
TEST998.64 3183.71 8297.82 6696.65 7284.29 16295.16 3398.09 4384.39 3599.36 79
test_898.63 3383.64 8597.81 6896.63 7784.50 15395.10 3798.11 4284.33 3699.23 84
agg_prior98.59 3583.13 9596.56 8694.19 5199.16 94
test_prior482.34 10897.75 73
test_prior93.09 7798.68 2681.91 11696.40 10499.06 10298.29 64
旧先验296.97 13674.06 31796.10 2597.76 15888.38 131
新几何296.42 173
无先验96.87 14396.78 4977.39 28999.52 6779.95 20498.43 55
原ACMM296.84 144
testdata299.48 7176.45 240
segment_acmp82.69 51
testdata195.57 21587.44 92
plane_prior791.86 23777.55 241
plane_prior691.98 23377.92 23064.77 240
plane_prior494.15 180
plane_prior377.75 23790.17 4881.33 205
plane_prior297.18 11389.89 51
plane_prior191.95 235
n20.00 406
nn0.00 406
door-mid79.75 380
test1196.50 92
door80.13 379
HQP5-MVS78.48 207
HQP-NCC92.08 22897.63 8090.52 4182.30 191
ACMP_Plane92.08 22897.63 8090.52 4182.30 191
BP-MVS87.67 138
HQP4-MVS82.30 19197.32 18591.13 239
HQP2-MVS65.40 234
NP-MVS92.04 23278.22 21794.56 170
MDTV_nov1_ep13_2view81.74 12486.80 34380.65 23385.65 15374.26 16576.52 23996.98 144
Test By Simon71.65 195