DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 10 | 85.34 50 | 98.13 39 | 96.77 55 | 88.38 63 | 97.70 6 | 98.77 12 | 92.06 3 | 99.84 12 | 97.47 14 | 99.37 1 | 99.70 3 |
|
PC_three_1452 | | | | | | | | | | 91.12 22 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 22 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 15 | 97.10 26 | 95.17 2 | 92.11 73 | 98.46 26 | 87.33 24 | 99.97 2 | 97.21 17 | 99.31 4 | 99.63 7 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 95 | 98.31 55 | 80.10 168 | 97.42 95 | 96.78 49 | 92.20 14 | 97.11 11 | 98.29 31 | 93.46 1 | 99.10 100 | 96.01 26 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPM-MVS | | | 96.21 2 | 95.53 11 | 98.26 1 | 96.26 114 | 95.09 1 | 99.15 4 | 96.98 32 | 93.39 9 | 96.45 18 | 98.79 10 | 90.17 10 | 99.99 1 | 89.33 117 | 99.25 6 | 99.70 3 |
|
HPM-MVS++ |  | | 95.32 10 | 95.48 12 | 94.85 23 | 98.62 38 | 86.04 35 | 97.81 59 | 96.93 38 | 92.45 12 | 95.69 24 | 98.50 24 | 85.38 32 | 99.85 10 | 94.75 43 | 99.18 7 | 98.65 44 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 9 | 97.12 24 | 94.66 3 | 96.79 12 | 98.78 11 | 86.42 29 | 99.95 3 | 97.59 13 | 99.18 7 | 99.00 28 |
|
NCCC | | | 95.63 6 | 95.94 8 | 94.69 27 | 99.21 7 | 85.15 60 | 99.16 3 | 96.96 35 | 94.11 6 | 95.59 25 | 98.64 21 | 85.07 34 | 99.91 4 | 95.61 33 | 99.10 9 | 99.00 28 |
|
SMA-MVS |  | | 94.70 17 | 94.68 17 | 94.76 25 | 98.02 70 | 85.94 38 | 97.47 87 | 96.77 55 | 85.32 124 | 97.92 3 | 98.70 18 | 83.09 52 | 99.84 12 | 95.79 30 | 99.08 10 | 98.49 52 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 94.28 24 | 94.39 25 | 93.97 47 | 98.30 56 | 84.06 80 | 98.64 21 | 96.93 38 | 90.71 27 | 93.08 62 | 98.70 18 | 79.98 76 | 99.21 85 | 94.12 51 | 99.07 11 | 98.63 45 |
|
DPE-MVS |  | | 95.32 10 | 95.55 10 | 94.64 28 | 98.79 25 | 84.87 67 | 97.77 61 | 96.74 60 | 86.11 105 | 96.54 17 | 98.89 7 | 88.39 19 | 99.74 33 | 97.67 12 | 99.05 12 | 99.31 19 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + MP. | | | 94.79 16 | 95.17 14 | 93.64 60 | 97.66 82 | 84.10 79 | 95.85 203 | 96.42 105 | 91.26 21 | 97.49 10 | 96.80 117 | 86.50 28 | 98.49 132 | 95.54 34 | 99.03 13 | 98.33 59 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test9_res | | | | | | | | | | | | | | | 96.00 27 | 99.03 13 | 98.31 63 |
|
test_241102_TWO | | | | | | | | | 96.78 49 | 88.72 56 | 97.70 6 | 98.91 3 | 87.86 21 | 99.82 18 | 98.15 4 | 99.00 15 | 99.47 9 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 47 | 99.00 15 | 98.57 47 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 16 | 85.03 62 | 99.12 6 | 96.78 49 | 88.72 56 | 97.79 4 | 98.91 3 | 88.48 17 | 99.82 18 | 98.15 4 | 98.97 17 | 99.74 1 |
|
IU-MVS | | | | | | 99.03 16 | 85.34 50 | | 96.86 44 | 92.05 16 | 98.74 1 | | | | 98.15 4 | 98.97 17 | 99.42 13 |
|
train_agg | | | 94.28 24 | 94.45 22 | 93.74 54 | 98.64 35 | 83.71 86 | 97.82 57 | 96.65 74 | 84.50 147 | 95.16 29 | 98.09 46 | 84.33 38 | 99.36 75 | 95.91 29 | 98.96 19 | 98.16 75 |
|
ETH3 D test6400 | | | 95.56 9 | 95.41 13 | 96.00 9 | 99.02 19 | 89.42 9 | 98.75 17 | 96.80 48 | 87.28 86 | 95.88 23 | 98.95 2 | 85.92 31 | 99.41 67 | 97.15 18 | 98.95 20 | 99.18 25 |
|
MG-MVS | | | 94.25 26 | 93.72 36 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 49 | 98.09 8 | 89.99 37 | 92.34 70 | 96.97 109 | 81.30 64 | 98.99 106 | 88.54 123 | 98.88 21 | 99.20 23 |
|
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 29 | 99.05 10 | 85.18 55 | 99.06 9 | 96.46 100 | 88.75 54 | 96.69 13 | 98.76 14 | 87.69 22 | 99.76 25 | 97.90 9 | 98.85 22 | 98.77 35 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 95.14 17 | 99.04 15 | 86.14 34 | 99.06 9 | 96.77 55 | | | | | 99.84 12 | 97.90 9 | 98.85 22 | 99.45 10 |
|
test_0728_THIRD | | | | | | | | | | 88.38 63 | 96.69 13 | 98.76 14 | 89.64 13 | 99.76 25 | 97.47 14 | 98.84 24 | 99.38 14 |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
No_MVS | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
test_prior3 | | | 94.03 33 | 94.34 26 | 93.09 84 | 98.68 29 | 81.91 121 | 98.37 29 | 96.40 109 | 86.08 107 | 94.57 43 | 98.02 52 | 83.14 49 | 99.06 102 | 95.05 40 | 98.79 27 | 98.29 65 |
|
test_prior2 | | | | | | | | 98.37 29 | | 86.08 107 | 94.57 43 | 98.02 52 | 83.14 49 | | 95.05 40 | 98.79 27 | |
|
APDe-MVS | | | 94.56 19 | 94.75 16 | 93.96 48 | 98.84 24 | 83.40 93 | 98.04 47 | 96.41 106 | 85.79 113 | 95.00 35 | 98.28 32 | 84.32 41 | 99.18 92 | 97.35 16 | 98.77 29 | 99.28 20 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 20 | 94.30 28 | 95.02 19 | 98.86 23 | 85.68 45 | 98.06 45 | 96.64 77 | 93.64 8 | 91.74 79 | 98.54 22 | 80.17 75 | 99.90 5 | 92.28 78 | 98.75 30 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 94.10 30 | 94.31 27 | 93.48 70 | 98.59 39 | 83.13 99 | 97.77 61 | 96.56 88 | 84.38 151 | 94.19 48 | 98.13 41 | 84.66 36 | 99.16 94 | 95.74 31 | 98.74 31 | 98.15 77 |
|
CDPH-MVS | | | 93.12 45 | 92.91 51 | 93.74 54 | 98.65 34 | 83.88 81 | 97.67 72 | 96.26 122 | 83.00 188 | 93.22 60 | 98.24 33 | 81.31 63 | 99.21 85 | 89.12 118 | 98.74 31 | 98.14 78 |
|
DELS-MVS | | | 94.98 13 | 94.49 21 | 96.44 6 | 96.42 111 | 90.59 7 | 99.21 2 | 97.02 29 | 94.40 5 | 91.46 82 | 97.08 106 | 83.32 48 | 99.69 41 | 92.83 71 | 98.70 33 | 99.04 26 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepPCF-MVS | | 89.82 1 | 94.61 18 | 96.17 5 | 89.91 194 | 97.09 104 | 70.21 324 | 98.99 14 | 96.69 68 | 95.57 1 | 95.08 32 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 11 | 98.66 34 | 99.65 6 |
|
PHI-MVS | | | 93.59 40 | 93.63 38 | 93.48 70 | 98.05 69 | 81.76 129 | 98.64 21 | 97.13 23 | 82.60 198 | 94.09 52 | 98.49 25 | 80.35 70 | 99.85 10 | 94.74 44 | 98.62 35 | 98.83 33 |
|
ACMMP_NAP | | | 93.46 41 | 93.23 46 | 94.17 42 | 97.16 102 | 84.28 77 | 96.82 142 | 96.65 74 | 86.24 103 | 94.27 47 | 97.99 55 | 77.94 102 | 99.83 16 | 93.39 60 | 98.57 36 | 98.39 58 |
|
ETH3D-3000-0.1 | | | 94.43 21 | 94.42 24 | 94.45 31 | 97.78 77 | 85.78 41 | 97.98 49 | 96.53 92 | 85.29 127 | 95.45 26 | 98.81 8 | 83.36 47 | 99.38 69 | 96.07 25 | 98.53 37 | 98.19 72 |
|
xxxxxxxxxxxxxcwj | | | 94.38 22 | 94.62 19 | 93.68 58 | 98.24 58 | 83.34 94 | 98.61 23 | 92.69 297 | 91.32 19 | 95.07 33 | 98.74 16 | 82.93 53 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 60 |
|
SF-MVS | | | 94.17 27 | 94.05 32 | 94.55 30 | 97.56 87 | 85.95 36 | 97.73 67 | 96.43 104 | 84.02 160 | 95.07 33 | 98.74 16 | 82.93 53 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 60 |
|
原ACMM1 | | | | | 91.22 152 | 97.77 78 | 78.10 223 | | 96.61 80 | 81.05 217 | 91.28 89 | 97.42 91 | 77.92 104 | 98.98 107 | 79.85 202 | 98.51 38 | 96.59 166 |
|
SD-MVS | | | 94.84 15 | 95.02 15 | 94.29 37 | 97.87 76 | 84.61 71 | 97.76 65 | 96.19 129 | 89.59 42 | 96.66 15 | 98.17 39 | 84.33 38 | 99.60 51 | 96.09 24 | 98.50 41 | 98.66 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ZD-MVS | | | | | | 99.09 9 | 83.22 98 | | 96.60 83 | 82.88 191 | 93.61 56 | 98.06 51 | 82.93 53 | 99.14 96 | 95.51 35 | 98.49 42 | |
|
新几何1 | | | | | 93.12 82 | 97.44 91 | 81.60 135 | | 96.71 64 | 74.54 303 | 91.22 91 | 97.57 81 | 79.13 86 | 99.51 61 | 77.40 225 | 98.46 43 | 98.26 69 |
|
SteuartSystems-ACMMP | | | 94.13 29 | 94.44 23 | 93.20 79 | 95.41 136 | 81.35 138 | 99.02 13 | 96.59 84 | 89.50 43 | 94.18 50 | 98.36 30 | 83.68 46 | 99.45 65 | 94.77 42 | 98.45 44 | 98.81 34 |
Skip Steuart: Steuart Systems R&D Blog. |
1121 | | | 90.66 101 | 89.82 110 | 93.16 81 | 97.39 95 | 81.71 132 | 93.33 274 | 96.66 73 | 74.45 304 | 91.38 83 | 97.55 85 | 79.27 82 | 99.52 58 | 79.95 199 | 98.43 45 | 98.26 69 |
|
9.14 | | | | 94.26 29 | | 98.10 66 | | 98.14 36 | 96.52 93 | 84.74 139 | 94.83 39 | 98.80 9 | 82.80 56 | 99.37 73 | 95.95 28 | 98.42 46 | |
|
testtj | | | 94.09 31 | 94.08 31 | 94.09 45 | 99.28 6 | 83.32 96 | 97.59 77 | 96.61 80 | 83.60 176 | 94.77 41 | 98.46 26 | 82.72 57 | 99.64 47 | 95.29 38 | 98.42 46 | 99.32 18 |
|
HFP-MVS | | | 92.89 51 | 92.86 53 | 92.98 89 | 98.71 27 | 81.12 141 | 97.58 78 | 96.70 65 | 85.20 130 | 91.75 77 | 97.97 59 | 78.47 94 | 99.71 37 | 90.95 89 | 98.41 48 | 98.12 80 |
|
#test# | | | 92.99 48 | 92.99 49 | 92.98 89 | 98.71 27 | 81.12 141 | 97.77 61 | 96.70 65 | 85.75 114 | 91.75 77 | 97.97 59 | 78.47 94 | 99.71 37 | 91.36 85 | 98.41 48 | 98.12 80 |
|
ACMMPR | | | 92.69 60 | 92.67 57 | 92.75 99 | 98.66 32 | 80.57 155 | 97.58 78 | 96.69 68 | 85.20 130 | 91.57 81 | 97.92 61 | 77.01 118 | 99.67 45 | 90.95 89 | 98.41 48 | 98.00 92 |
|
ETH3D cwj APD-0.16 | | | 93.91 37 | 93.76 35 | 94.36 34 | 96.70 108 | 85.74 42 | 97.22 102 | 96.41 106 | 83.94 163 | 94.13 51 | 98.69 20 | 83.13 51 | 99.37 73 | 95.25 39 | 98.39 51 | 97.97 97 |
|
MP-MVS-pluss | | | 92.58 64 | 92.35 62 | 93.29 75 | 97.30 100 | 82.53 109 | 96.44 168 | 96.04 138 | 84.68 142 | 89.12 119 | 98.37 29 | 77.48 111 | 99.74 33 | 93.31 64 | 98.38 52 | 97.59 125 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
region2R | | | 92.72 58 | 92.70 56 | 92.79 98 | 98.68 29 | 80.53 158 | 97.53 82 | 96.51 94 | 85.22 128 | 91.94 75 | 97.98 57 | 77.26 113 | 99.67 45 | 90.83 93 | 98.37 53 | 98.18 73 |
|
APD-MVS |  | | 93.61 39 | 93.59 39 | 93.69 57 | 98.76 26 | 83.26 97 | 97.21 105 | 96.09 134 | 82.41 200 | 94.65 42 | 98.21 34 | 81.96 62 | 98.81 119 | 94.65 45 | 98.36 54 | 99.01 27 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZNCC-MVS | | | 92.75 53 | 92.60 59 | 93.23 78 | 98.24 58 | 81.82 127 | 97.63 73 | 96.50 96 | 85.00 135 | 91.05 93 | 97.74 71 | 78.38 96 | 99.80 24 | 90.48 98 | 98.34 55 | 98.07 83 |
|
test12 | | | | | 94.25 38 | 98.34 53 | 85.55 47 | | 96.35 116 | | 92.36 69 | | 80.84 65 | 99.22 83 | | 98.31 56 | 97.98 94 |
|
MP-MVS |  | | 92.61 63 | 92.67 57 | 92.42 112 | 98.13 65 | 79.73 177 | 97.33 100 | 96.20 127 | 85.63 117 | 90.53 99 | 97.66 74 | 78.14 100 | 99.70 40 | 92.12 80 | 98.30 57 | 97.85 105 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test222 | | | | | | 96.15 117 | 78.41 211 | 95.87 201 | 96.46 100 | 71.97 323 | 89.66 111 | 97.45 87 | 76.33 131 | | | 98.24 58 | 98.30 64 |
|
CP-MVS | | | 92.54 65 | 92.60 59 | 92.34 114 | 98.50 45 | 79.90 171 | 98.40 28 | 96.40 109 | 84.75 138 | 90.48 101 | 98.09 46 | 77.40 112 | 99.21 85 | 91.15 88 | 98.23 59 | 97.92 100 |
|
zzz-MVS | | | 92.74 54 | 92.71 54 | 92.86 95 | 97.90 72 | 80.85 148 | 96.47 163 | 96.33 117 | 87.92 72 | 90.20 104 | 98.18 35 | 76.71 124 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 98 |
|
MTAPA | | | 92.45 66 | 92.31 63 | 92.86 95 | 97.90 72 | 80.85 148 | 92.88 287 | 96.33 117 | 87.92 72 | 90.20 104 | 98.18 35 | 76.71 124 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 98 |
|
XVS | | | 92.69 60 | 92.71 54 | 92.63 105 | 98.52 42 | 80.29 161 | 97.37 98 | 96.44 102 | 87.04 93 | 91.38 83 | 97.83 68 | 77.24 115 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 87 |
|
X-MVStestdata | | | 86.26 182 | 84.14 199 | 92.63 105 | 98.52 42 | 80.29 161 | 97.37 98 | 96.44 102 | 87.04 93 | 91.38 83 | 20.73 378 | 77.24 115 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 87 |
|
MVS | | | 90.60 103 | 88.64 127 | 96.50 5 | 94.25 169 | 90.53 8 | 93.33 274 | 97.21 20 | 77.59 279 | 78.88 225 | 97.31 94 | 71.52 197 | 99.69 41 | 89.60 112 | 98.03 64 | 99.27 21 |
|
mPP-MVS | | | 91.88 73 | 91.82 73 | 92.07 124 | 98.38 51 | 78.63 205 | 97.29 101 | 96.09 134 | 85.12 132 | 88.45 127 | 97.66 74 | 75.53 145 | 99.68 43 | 89.83 109 | 98.02 65 | 97.88 101 |
|
HPM-MVS |  | | 91.62 81 | 91.53 79 | 91.89 131 | 97.88 75 | 79.22 189 | 96.99 128 | 95.73 154 | 82.07 205 | 89.50 116 | 97.19 101 | 75.59 144 | 98.93 114 | 90.91 91 | 97.94 66 | 97.54 126 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 93.41 42 | 93.39 44 | 93.47 73 | 97.34 99 | 82.83 105 | 97.56 80 | 98.27 6 | 89.16 49 | 89.71 109 | 97.14 102 | 79.77 78 | 99.56 56 | 93.65 56 | 97.94 66 | 98.02 87 |
|
PGM-MVS | | | 91.93 72 | 91.80 74 | 92.32 117 | 98.27 57 | 79.74 176 | 95.28 222 | 97.27 18 | 83.83 168 | 90.89 96 | 97.78 70 | 76.12 134 | 99.56 56 | 88.82 121 | 97.93 68 | 97.66 119 |
|
3Dnovator | | 82.32 10 | 89.33 125 | 87.64 143 | 94.42 33 | 93.73 182 | 85.70 44 | 97.73 67 | 96.75 59 | 86.73 101 | 76.21 259 | 95.93 132 | 62.17 252 | 99.68 43 | 81.67 186 | 97.81 69 | 97.88 101 |
|
CS-MVS-test | | | 92.98 49 | 93.67 37 | 90.90 161 | 96.52 110 | 76.87 251 | 98.68 18 | 94.73 206 | 90.36 34 | 94.84 38 | 97.89 62 | 77.94 102 | 97.15 193 | 94.28 50 | 97.80 70 | 98.70 42 |
|
GST-MVS | | | 92.43 67 | 92.22 67 | 93.04 87 | 98.17 63 | 81.64 134 | 97.40 97 | 96.38 113 | 84.71 141 | 90.90 95 | 97.40 92 | 77.55 110 | 99.76 25 | 89.75 111 | 97.74 71 | 97.72 114 |
|
PAPM | | | 92.87 52 | 92.40 61 | 94.30 36 | 92.25 224 | 87.85 18 | 96.40 172 | 96.38 113 | 91.07 23 | 88.72 124 | 96.90 110 | 82.11 61 | 97.37 179 | 90.05 107 | 97.70 72 | 97.67 118 |
|
CANet | | | 94.89 14 | 94.64 18 | 95.63 12 | 97.55 88 | 88.12 15 | 99.06 9 | 96.39 112 | 94.07 7 | 95.34 28 | 97.80 69 | 76.83 121 | 99.87 8 | 97.08 19 | 97.64 73 | 98.89 31 |
|
patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 115 | 98.44 48 | 77.84 233 | 98.43 27 | 97.21 20 | 92.58 11 | 97.68 8 | 97.65 78 | 86.88 26 | 99.83 16 | 98.25 3 | 97.60 74 | 99.33 17 |
|
dcpmvs_2 | | | 93.10 46 | 93.46 43 | 92.02 127 | 97.77 78 | 79.73 177 | 94.82 241 | 93.86 253 | 86.91 95 | 91.33 88 | 96.76 118 | 85.20 33 | 98.06 145 | 96.90 20 | 97.60 74 | 98.27 68 |
|
testdata | | | | | 90.13 185 | 95.92 123 | 74.17 288 | | 96.49 99 | 73.49 312 | 94.82 40 | 97.99 55 | 78.80 91 | 97.93 148 | 83.53 173 | 97.52 76 | 98.29 65 |
|
MVSFormer | | | 91.36 87 | 90.57 91 | 93.73 56 | 93.00 203 | 88.08 16 | 94.80 243 | 94.48 221 | 80.74 222 | 94.90 36 | 97.13 103 | 78.84 89 | 95.10 291 | 83.77 164 | 97.46 77 | 98.02 87 |
|
lupinMVS | | | 93.87 38 | 93.58 40 | 94.75 26 | 93.00 203 | 88.08 16 | 99.15 4 | 95.50 166 | 91.03 24 | 94.90 36 | 97.66 74 | 78.84 89 | 97.56 164 | 94.64 46 | 97.46 77 | 98.62 46 |
|
HPM-MVS_fast | | | 90.38 109 | 90.17 101 | 91.03 157 | 97.61 83 | 77.35 244 | 97.15 114 | 95.48 167 | 79.51 251 | 88.79 123 | 96.90 110 | 71.64 196 | 98.81 119 | 87.01 139 | 97.44 79 | 96.94 152 |
|
GG-mvs-BLEND | | | | | 93.49 69 | 94.94 151 | 86.26 32 | 81.62 350 | 97.00 30 | | 88.32 130 | 94.30 174 | 91.23 5 | 96.21 230 | 88.49 125 | 97.43 80 | 98.00 92 |
|
旧先验1 | | | | | | 97.39 95 | 79.58 181 | | 96.54 90 | | | 98.08 49 | 84.00 42 | | | 97.42 81 | 97.62 123 |
|
PS-MVSNAJ | | | 94.17 27 | 93.52 41 | 96.10 8 | 95.65 130 | 92.35 2 | 98.21 34 | 95.79 151 | 92.42 13 | 96.24 19 | 98.18 35 | 71.04 202 | 99.17 93 | 96.77 21 | 97.39 82 | 96.79 159 |
|
CSCG | | | 92.02 71 | 91.65 77 | 93.12 82 | 98.53 41 | 80.59 154 | 97.47 87 | 97.18 22 | 77.06 288 | 84.64 162 | 97.98 57 | 83.98 43 | 99.52 58 | 90.72 95 | 97.33 83 | 99.23 22 |
|
CS-MVS | | | 92.73 56 | 93.48 42 | 90.48 174 | 96.27 113 | 75.93 270 | 98.55 25 | 94.93 193 | 89.32 46 | 94.54 45 | 97.67 73 | 78.91 88 | 97.02 197 | 93.80 53 | 97.32 84 | 98.49 52 |
|
SR-MVS | | | 92.16 69 | 92.27 64 | 91.83 135 | 98.37 52 | 78.41 211 | 96.67 154 | 95.76 152 | 82.19 204 | 91.97 74 | 98.07 50 | 76.44 127 | 98.64 123 | 93.71 55 | 97.27 85 | 98.45 55 |
|
gg-mvs-nofinetune | | | 85.48 194 | 82.90 217 | 93.24 77 | 94.51 165 | 85.82 40 | 79.22 354 | 96.97 34 | 61.19 355 | 87.33 139 | 53.01 368 | 90.58 6 | 96.07 232 | 86.07 143 | 97.23 86 | 97.81 109 |
|
test1172 | | | 91.64 79 | 92.00 71 | 90.54 172 | 98.20 62 | 74.48 285 | 96.45 166 | 95.65 157 | 81.97 208 | 91.63 80 | 98.02 52 | 75.76 140 | 98.61 124 | 93.16 66 | 97.17 87 | 98.52 51 |
|
MAR-MVS | | | 90.63 102 | 90.22 98 | 91.86 132 | 98.47 47 | 78.20 221 | 97.18 109 | 96.61 80 | 83.87 167 | 88.18 132 | 98.18 35 | 68.71 214 | 99.75 31 | 83.66 169 | 97.15 88 | 97.63 122 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DROMVSNet | | | 91.73 75 | 92.11 69 | 90.58 170 | 93.54 186 | 77.77 235 | 98.07 44 | 94.40 227 | 87.44 82 | 92.99 64 | 97.11 105 | 74.59 166 | 96.87 206 | 93.75 54 | 97.08 89 | 97.11 148 |
|
3Dnovator+ | | 82.88 8 | 89.63 120 | 87.85 138 | 94.99 20 | 94.49 166 | 86.76 30 | 97.84 56 | 95.74 153 | 86.10 106 | 75.47 272 | 96.02 131 | 65.00 238 | 99.51 61 | 82.91 180 | 97.07 90 | 98.72 41 |
|
Regformer-1 | | | 94.00 34 | 94.04 33 | 93.87 50 | 98.41 49 | 84.29 76 | 97.43 93 | 97.04 28 | 89.50 43 | 92.75 67 | 98.13 41 | 82.60 59 | 99.26 80 | 93.55 58 | 96.99 91 | 98.06 84 |
|
Regformer-2 | | | 93.92 35 | 94.01 34 | 93.67 59 | 98.41 49 | 83.75 85 | 97.43 93 | 97.00 30 | 89.43 45 | 92.69 68 | 98.13 41 | 82.48 60 | 99.22 83 | 93.51 59 | 96.99 91 | 98.04 85 |
|
DeepC-MVS | | 86.58 3 | 91.53 83 | 91.06 86 | 92.94 92 | 94.52 162 | 81.89 123 | 95.95 195 | 95.98 140 | 90.76 26 | 83.76 174 | 96.76 118 | 73.24 181 | 99.71 37 | 91.67 84 | 96.96 93 | 97.22 146 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 89.72 118 | 89.87 109 | 89.29 204 | 98.33 54 | 73.30 295 | 97.70 69 | 95.35 177 | 75.68 294 | 87.40 137 | 97.44 90 | 70.43 206 | 98.25 140 | 89.56 114 | 96.90 94 | 96.33 175 |
|
APD-MVS_3200maxsize | | | 91.23 91 | 91.35 81 | 90.89 162 | 97.89 74 | 76.35 260 | 96.30 178 | 95.52 165 | 79.82 245 | 91.03 94 | 97.88 65 | 74.70 162 | 98.54 129 | 92.11 81 | 96.89 95 | 97.77 111 |
|
MVP-Stereo | | | 82.65 242 | 81.67 236 | 85.59 279 | 86.10 319 | 78.29 214 | 93.33 274 | 92.82 294 | 77.75 277 | 69.17 316 | 87.98 265 | 59.28 274 | 95.76 254 | 71.77 270 | 96.88 96 | 82.73 353 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PAPM_NR | | | 91.46 84 | 90.82 88 | 93.37 74 | 98.50 45 | 81.81 128 | 95.03 237 | 96.13 131 | 84.65 143 | 86.10 149 | 97.65 78 | 79.24 84 | 99.75 31 | 83.20 176 | 96.88 96 | 98.56 48 |
|
EIA-MVS | | | 91.73 75 | 92.05 70 | 90.78 166 | 94.52 162 | 76.40 259 | 98.06 45 | 95.34 178 | 89.19 48 | 88.90 122 | 97.28 98 | 77.56 109 | 97.73 158 | 90.77 94 | 96.86 98 | 98.20 71 |
|
SR-MVS-dyc-post | | | 91.29 89 | 91.45 80 | 90.80 164 | 97.76 80 | 76.03 265 | 96.20 185 | 95.44 170 | 80.56 227 | 90.72 97 | 97.84 66 | 75.76 140 | 98.61 124 | 91.99 82 | 96.79 99 | 97.75 112 |
|
RE-MVS-def | | | | 91.18 85 | | 97.76 80 | 76.03 265 | 96.20 185 | 95.44 170 | 80.56 227 | 90.72 97 | 97.84 66 | 73.36 180 | | 91.99 82 | 96.79 99 | 97.75 112 |
|
jason | | | 92.73 56 | 92.23 66 | 94.21 41 | 90.50 263 | 87.30 25 | 98.65 20 | 95.09 186 | 90.61 28 | 92.76 66 | 97.13 103 | 75.28 155 | 97.30 182 | 93.32 63 | 96.75 101 | 98.02 87 |
jason: jason. |
xiu_mvs_v2_base | | | 93.92 35 | 93.26 45 | 95.91 10 | 95.07 147 | 92.02 6 | 98.19 35 | 95.68 156 | 92.06 15 | 96.01 22 | 98.14 40 | 70.83 205 | 98.96 108 | 96.74 22 | 96.57 102 | 96.76 162 |
|
MVS_111021_LR | | | 91.60 82 | 91.64 78 | 91.47 145 | 95.74 127 | 78.79 202 | 96.15 187 | 96.77 55 | 88.49 61 | 88.64 125 | 97.07 107 | 72.33 188 | 99.19 90 | 93.13 69 | 96.48 103 | 96.43 170 |
|
PAPR | | | 92.74 54 | 92.17 68 | 94.45 31 | 98.89 22 | 84.87 67 | 97.20 107 | 96.20 127 | 87.73 78 | 88.40 128 | 98.12 44 | 78.71 92 | 99.76 25 | 87.99 130 | 96.28 104 | 98.74 36 |
|
Vis-MVSNet |  | | 88.67 141 | 87.82 139 | 91.24 151 | 92.68 209 | 78.82 199 | 96.95 135 | 93.85 254 | 87.55 81 | 87.07 142 | 95.13 157 | 63.43 246 | 97.21 187 | 77.58 222 | 96.15 105 | 97.70 117 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPNet | | | 94.06 32 | 94.15 30 | 93.76 53 | 97.27 101 | 84.35 74 | 98.29 31 | 97.64 13 | 94.57 4 | 95.36 27 | 96.88 112 | 79.96 77 | 99.12 99 | 91.30 86 | 96.11 106 | 97.82 108 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
API-MVS | | | 90.18 111 | 88.97 122 | 93.80 52 | 98.66 32 | 82.95 104 | 97.50 86 | 95.63 160 | 75.16 298 | 86.31 146 | 97.69 72 | 72.49 186 | 99.90 5 | 81.26 188 | 96.07 107 | 98.56 48 |
|
QAPM | | | 86.88 171 | 84.51 191 | 93.98 46 | 94.04 175 | 85.89 39 | 97.19 108 | 96.05 137 | 73.62 309 | 75.12 275 | 95.62 141 | 62.02 255 | 99.74 33 | 70.88 279 | 96.06 108 | 96.30 177 |
|
1314 | | | 88.94 132 | 87.20 156 | 94.17 42 | 93.21 195 | 85.73 43 | 93.33 274 | 96.64 77 | 82.89 190 | 75.98 262 | 96.36 125 | 66.83 226 | 99.39 68 | 83.52 174 | 96.02 109 | 97.39 137 |
|
MS-PatchMatch | | | 83.05 234 | 81.82 234 | 86.72 260 | 89.64 277 | 79.10 194 | 94.88 240 | 94.59 218 | 79.70 248 | 70.67 306 | 89.65 243 | 50.43 321 | 96.82 209 | 70.82 282 | 95.99 110 | 84.25 345 |
|
CHOSEN 280x420 | | | 91.71 78 | 91.85 72 | 91.29 149 | 94.94 151 | 82.69 106 | 87.89 328 | 96.17 130 | 85.94 110 | 87.27 140 | 94.31 173 | 90.27 9 | 95.65 262 | 94.04 52 | 95.86 111 | 95.53 192 |
|
OpenMVS |  | 79.58 14 | 86.09 184 | 83.62 206 | 93.50 68 | 90.95 254 | 86.71 31 | 97.44 89 | 95.83 149 | 75.35 295 | 72.64 294 | 95.72 136 | 57.42 291 | 99.64 47 | 71.41 273 | 95.85 112 | 94.13 215 |
|
PVSNet_Blended | | | 93.13 44 | 92.98 50 | 93.57 64 | 97.47 89 | 83.86 82 | 99.32 1 | 96.73 61 | 91.02 25 | 89.53 114 | 96.21 127 | 76.42 128 | 99.57 54 | 94.29 48 | 95.81 113 | 97.29 143 |
|
CHOSEN 1792x2688 | | | 91.07 93 | 90.21 99 | 93.64 60 | 95.18 143 | 83.53 90 | 96.26 180 | 96.13 131 | 88.92 52 | 84.90 157 | 93.10 195 | 72.86 183 | 99.62 50 | 88.86 120 | 95.67 114 | 97.79 110 |
|
ETV-MVS | | | 92.72 58 | 92.87 52 | 92.28 118 | 94.54 161 | 81.89 123 | 97.98 49 | 95.21 183 | 89.77 41 | 93.11 61 | 96.83 114 | 77.23 117 | 97.50 171 | 95.74 31 | 95.38 115 | 97.44 133 |
|
abl_6 | | | 89.80 116 | 89.71 113 | 90.07 186 | 96.53 109 | 75.52 274 | 94.48 246 | 95.04 189 | 81.12 216 | 89.22 117 | 97.00 108 | 68.83 213 | 98.96 108 | 89.86 108 | 95.27 116 | 95.73 187 |
|
Regformer-3 | | | 93.19 43 | 93.19 47 | 93.19 80 | 98.10 66 | 83.01 103 | 97.08 124 | 96.98 32 | 88.98 51 | 91.35 87 | 97.89 62 | 80.80 66 | 99.23 81 | 92.30 77 | 95.20 117 | 97.32 139 |
|
Regformer-4 | | | 93.06 47 | 93.12 48 | 92.89 94 | 98.10 66 | 82.20 117 | 97.08 124 | 96.92 40 | 88.87 53 | 91.23 90 | 97.89 62 | 80.57 69 | 99.19 90 | 92.21 79 | 95.20 117 | 97.29 143 |
|
114514_t | | | 88.79 139 | 87.57 147 | 92.45 110 | 98.21 61 | 81.74 130 | 96.99 128 | 95.45 169 | 75.16 298 | 82.48 185 | 95.69 138 | 68.59 215 | 98.50 131 | 80.33 194 | 95.18 119 | 97.10 149 |
|
CANet_DTU | | | 90.98 94 | 90.04 103 | 93.83 51 | 94.76 156 | 86.23 33 | 96.32 177 | 93.12 290 | 93.11 10 | 93.71 54 | 96.82 116 | 63.08 248 | 99.48 63 | 84.29 156 | 95.12 120 | 95.77 186 |
|
DP-MVS Recon | | | 91.72 77 | 90.85 87 | 94.34 35 | 99.50 1 | 85.00 64 | 98.51 26 | 95.96 141 | 80.57 226 | 88.08 133 | 97.63 80 | 76.84 120 | 99.89 7 | 85.67 145 | 94.88 121 | 98.13 79 |
|
test2506 | | | 90.96 95 | 90.39 94 | 92.65 104 | 93.54 186 | 82.46 112 | 96.37 173 | 97.35 16 | 86.78 99 | 87.55 136 | 95.25 147 | 77.83 106 | 97.50 171 | 84.07 158 | 94.80 122 | 97.98 94 |
|
ECVR-MVS |  | | 88.35 151 | 87.25 155 | 91.65 138 | 93.54 186 | 79.40 184 | 96.56 159 | 90.78 324 | 86.78 99 | 85.57 151 | 95.25 147 | 57.25 292 | 97.56 164 | 84.73 154 | 94.80 122 | 97.98 94 |
|
test1111 | | | 88.11 156 | 87.04 162 | 91.35 146 | 93.15 198 | 78.79 202 | 96.57 157 | 90.78 324 | 86.88 97 | 85.04 155 | 95.20 151 | 57.23 293 | 97.39 177 | 83.88 161 | 94.59 124 | 97.87 103 |
|
BH-w/o | | | 88.24 154 | 87.47 151 | 90.54 172 | 95.03 150 | 78.54 206 | 97.41 96 | 93.82 255 | 84.08 158 | 78.23 232 | 94.51 171 | 69.34 212 | 97.21 187 | 80.21 197 | 94.58 125 | 95.87 184 |
|
MVS_Test | | | 90.29 110 | 89.18 119 | 93.62 62 | 95.23 140 | 84.93 65 | 94.41 249 | 94.66 211 | 84.31 153 | 90.37 103 | 91.02 223 | 75.13 157 | 97.82 155 | 83.11 178 | 94.42 126 | 98.12 80 |
|
Vis-MVSNet (Re-imp) | | | 88.88 135 | 88.87 126 | 88.91 210 | 93.89 178 | 74.43 286 | 96.93 137 | 94.19 236 | 84.39 150 | 83.22 179 | 95.67 139 | 78.24 98 | 94.70 301 | 78.88 212 | 94.40 127 | 97.61 124 |
|
UGNet | | | 87.73 163 | 86.55 168 | 91.27 150 | 95.16 144 | 79.11 193 | 96.35 175 | 96.23 124 | 88.14 68 | 87.83 135 | 90.48 232 | 50.65 319 | 99.09 101 | 80.13 198 | 94.03 128 | 95.60 190 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet | | 82.34 9 | 89.02 130 | 87.79 140 | 92.71 102 | 95.49 134 | 81.50 136 | 97.70 69 | 97.29 17 | 87.76 77 | 85.47 152 | 95.12 158 | 56.90 294 | 98.90 115 | 80.33 194 | 94.02 129 | 97.71 116 |
|
TSAR-MVS + GP. | | | 94.35 23 | 94.50 20 | 93.89 49 | 97.38 98 | 83.04 102 | 98.10 41 | 95.29 180 | 91.57 17 | 93.81 53 | 97.45 87 | 86.64 27 | 99.43 66 | 96.28 23 | 94.01 130 | 99.20 23 |
|
PVSNet_Blended_VisFu | | | 91.24 90 | 90.77 89 | 92.66 103 | 95.09 145 | 82.40 113 | 97.77 61 | 95.87 148 | 88.26 66 | 86.39 145 | 93.94 184 | 76.77 122 | 99.27 78 | 88.80 122 | 94.00 131 | 96.31 176 |
|
PMMVS | | | 89.46 123 | 89.92 107 | 88.06 229 | 94.64 157 | 69.57 331 | 96.22 182 | 94.95 192 | 87.27 87 | 91.37 86 | 96.54 124 | 65.88 230 | 97.39 177 | 88.54 123 | 93.89 132 | 97.23 145 |
|
BH-untuned | | | 86.95 170 | 85.94 171 | 89.99 189 | 94.52 162 | 77.46 241 | 96.78 145 | 93.37 280 | 81.80 209 | 76.62 250 | 93.81 188 | 66.64 227 | 97.02 197 | 76.06 238 | 93.88 133 | 95.48 193 |
|
BH-RMVSNet | | | 86.84 172 | 85.28 178 | 91.49 144 | 95.35 138 | 80.26 164 | 96.95 135 | 92.21 301 | 82.86 192 | 81.77 200 | 95.46 145 | 59.34 273 | 97.64 160 | 69.79 284 | 93.81 134 | 96.57 167 |
|
Effi-MVS+ | | | 90.70 100 | 89.90 108 | 93.09 84 | 93.61 183 | 83.48 91 | 95.20 227 | 92.79 295 | 83.22 180 | 91.82 76 | 95.70 137 | 71.82 193 | 97.48 173 | 91.25 87 | 93.67 135 | 98.32 60 |
|
IS-MVSNet | | | 88.67 141 | 88.16 134 | 90.20 184 | 93.61 183 | 76.86 252 | 96.77 147 | 93.07 291 | 84.02 160 | 83.62 175 | 95.60 142 | 74.69 165 | 96.24 229 | 78.43 215 | 93.66 136 | 97.49 132 |
|
AdaColmap |  | | 88.81 137 | 87.61 146 | 92.39 113 | 99.33 4 | 79.95 169 | 96.70 153 | 95.58 161 | 77.51 280 | 83.05 182 | 96.69 122 | 61.90 259 | 99.72 36 | 84.29 156 | 93.47 137 | 97.50 131 |
|
xiu_mvs_v1_base_debu | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 217 | 87.58 22 | 96.99 128 | 94.87 197 | 87.23 88 | 93.27 57 | 97.56 82 | 57.43 288 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
xiu_mvs_v1_base | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 217 | 87.58 22 | 96.99 128 | 94.87 197 | 87.23 88 | 93.27 57 | 97.56 82 | 57.43 288 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
xiu_mvs_v1_base_debi | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 217 | 87.58 22 | 96.99 128 | 94.87 197 | 87.23 88 | 93.27 57 | 97.56 82 | 57.43 288 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 205 |
|
mvs_anonymous | | | 88.68 140 | 87.62 145 | 91.86 132 | 94.80 155 | 81.69 133 | 93.53 270 | 94.92 194 | 82.03 206 | 78.87 226 | 90.43 234 | 75.77 139 | 95.34 276 | 85.04 150 | 93.16 141 | 98.55 50 |
|
LCM-MVSNet-Re | | | 83.75 220 | 83.54 208 | 84.39 299 | 93.54 186 | 64.14 347 | 92.51 290 | 84.03 362 | 83.90 166 | 66.14 328 | 86.59 285 | 67.36 221 | 92.68 328 | 84.89 152 | 92.87 142 | 96.35 172 |
|
casdiffmvs | | | 90.95 96 | 90.39 94 | 92.63 105 | 92.82 208 | 82.53 109 | 96.83 141 | 94.47 223 | 87.69 79 | 88.47 126 | 95.56 143 | 74.04 171 | 97.54 168 | 90.90 92 | 92.74 143 | 97.83 107 |
|
TAPA-MVS | | 81.61 12 | 85.02 200 | 83.67 203 | 89.06 206 | 96.79 106 | 73.27 297 | 95.92 197 | 94.79 204 | 74.81 301 | 80.47 211 | 96.83 114 | 71.07 201 | 98.19 143 | 49.82 358 | 92.57 144 | 95.71 188 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
diffmvs | | | 91.17 92 | 90.74 90 | 92.44 111 | 93.11 202 | 82.50 111 | 96.25 181 | 93.62 268 | 87.79 76 | 90.40 102 | 95.93 132 | 73.44 179 | 97.42 175 | 93.62 57 | 92.55 145 | 97.41 135 |
|
EPMVS | | | 87.47 166 | 85.90 172 | 92.18 121 | 95.41 136 | 82.26 116 | 87.00 334 | 96.28 121 | 85.88 112 | 84.23 165 | 85.57 302 | 75.07 159 | 96.26 227 | 71.14 278 | 92.50 146 | 98.03 86 |
|
LS3D | | | 82.22 249 | 79.94 262 | 89.06 206 | 97.43 92 | 74.06 290 | 93.20 281 | 92.05 303 | 61.90 351 | 73.33 287 | 95.21 150 | 59.35 272 | 99.21 85 | 54.54 346 | 92.48 147 | 93.90 219 |
|
ACMMP |  | | 90.39 107 | 89.97 104 | 91.64 139 | 97.58 86 | 78.21 220 | 96.78 145 | 96.72 63 | 84.73 140 | 84.72 160 | 97.23 99 | 71.22 199 | 99.63 49 | 88.37 128 | 92.41 148 | 97.08 150 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TESTMET0.1,1 | | | 89.83 115 | 89.34 117 | 91.31 147 | 92.54 215 | 80.19 166 | 97.11 118 | 96.57 86 | 86.15 104 | 86.85 144 | 91.83 210 | 79.32 80 | 96.95 200 | 81.30 187 | 92.35 149 | 96.77 161 |
|
PLC |  | 83.97 7 | 88.00 159 | 87.38 153 | 89.83 197 | 98.02 70 | 76.46 257 | 97.16 113 | 94.43 226 | 79.26 258 | 81.98 196 | 96.28 126 | 69.36 211 | 99.27 78 | 77.71 220 | 92.25 150 | 93.77 220 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
baseline | | | 90.76 99 | 90.10 102 | 92.74 100 | 92.90 207 | 82.56 108 | 94.60 245 | 94.56 219 | 87.69 79 | 89.06 121 | 95.67 139 | 73.76 174 | 97.51 170 | 90.43 102 | 92.23 151 | 98.16 75 |
|
PatchMatch-RL | | | 85.00 201 | 83.66 204 | 89.02 208 | 95.86 124 | 74.55 284 | 92.49 291 | 93.60 269 | 79.30 256 | 79.29 223 | 91.47 213 | 58.53 280 | 98.45 134 | 70.22 283 | 92.17 152 | 94.07 216 |
|
test-LLR | | | 88.48 146 | 87.98 136 | 89.98 190 | 92.26 222 | 77.23 246 | 97.11 118 | 95.96 141 | 83.76 171 | 86.30 147 | 91.38 216 | 72.30 189 | 96.78 212 | 80.82 190 | 91.92 153 | 95.94 182 |
|
test-mter | | | 88.95 131 | 88.60 128 | 89.98 190 | 92.26 222 | 77.23 246 | 97.11 118 | 95.96 141 | 85.32 124 | 86.30 147 | 91.38 216 | 76.37 130 | 96.78 212 | 80.82 190 | 91.92 153 | 95.94 182 |
|
Fast-Effi-MVS+ | | | 87.93 161 | 86.94 165 | 90.92 160 | 94.04 175 | 79.16 191 | 98.26 32 | 93.72 264 | 81.29 214 | 83.94 171 | 92.90 196 | 69.83 210 | 96.68 215 | 76.70 231 | 91.74 155 | 96.93 153 |
|
UA-Net | | | 88.92 133 | 88.48 130 | 90.24 182 | 94.06 174 | 77.18 248 | 93.04 283 | 94.66 211 | 87.39 84 | 91.09 92 | 93.89 185 | 74.92 160 | 98.18 144 | 75.83 241 | 91.43 156 | 95.35 196 |
|
PatchmatchNet |  | | 86.83 173 | 85.12 183 | 91.95 129 | 94.12 172 | 82.27 115 | 86.55 338 | 95.64 159 | 84.59 145 | 82.98 183 | 84.99 314 | 77.26 113 | 95.96 241 | 68.61 290 | 91.34 157 | 97.64 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PCF-MVS | | 84.09 5 | 86.77 176 | 85.00 185 | 92.08 123 | 92.06 234 | 83.07 101 | 92.14 295 | 94.47 223 | 79.63 249 | 76.90 245 | 94.78 165 | 71.15 200 | 99.20 89 | 72.87 264 | 91.05 158 | 93.98 217 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-Vis-set | | | 91.84 74 | 91.77 75 | 92.04 126 | 97.60 84 | 81.17 140 | 96.61 155 | 96.87 42 | 88.20 67 | 89.19 118 | 97.55 85 | 78.69 93 | 99.14 96 | 90.29 105 | 90.94 159 | 95.80 185 |
|
CNLPA | | | 86.96 169 | 85.37 177 | 91.72 137 | 97.59 85 | 79.34 187 | 97.21 105 | 91.05 319 | 74.22 305 | 78.90 224 | 96.75 120 | 67.21 223 | 98.95 111 | 74.68 250 | 90.77 160 | 96.88 157 |
|
mvs-test1 | | | 86.83 173 | 87.17 157 | 85.81 273 | 91.96 237 | 65.24 344 | 97.90 54 | 93.34 281 | 85.57 118 | 84.51 164 | 95.14 156 | 61.99 256 | 97.19 189 | 83.55 170 | 90.55 161 | 95.00 200 |
|
CVMVSNet | | | 84.83 203 | 85.57 173 | 82.63 317 | 91.55 245 | 60.38 358 | 95.13 230 | 95.03 190 | 80.60 225 | 82.10 194 | 94.71 166 | 66.40 229 | 90.19 353 | 74.30 255 | 90.32 162 | 97.31 141 |
|
EPNet_dtu | | | 87.65 164 | 87.89 137 | 86.93 255 | 94.57 159 | 71.37 317 | 96.72 149 | 96.50 96 | 88.56 60 | 87.12 141 | 95.02 161 | 75.91 138 | 94.01 314 | 66.62 297 | 90.00 163 | 95.42 194 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline2 | | | 90.39 107 | 90.21 99 | 90.93 159 | 90.86 257 | 80.99 144 | 95.20 227 | 97.41 15 | 86.03 109 | 80.07 218 | 94.61 168 | 90.58 6 | 97.47 174 | 87.29 135 | 89.86 164 | 94.35 211 |
|
LFMVS | | | 89.27 127 | 87.64 143 | 94.16 44 | 97.16 102 | 85.52 48 | 97.18 109 | 94.66 211 | 79.17 259 | 89.63 112 | 96.57 123 | 55.35 306 | 98.22 141 | 89.52 115 | 89.54 165 | 98.74 36 |
|
EI-MVSNet-UG-set | | | 91.35 88 | 91.22 82 | 91.73 136 | 97.39 95 | 80.68 152 | 96.47 163 | 96.83 45 | 87.92 72 | 88.30 131 | 97.36 93 | 77.84 105 | 99.13 98 | 89.43 116 | 89.45 166 | 95.37 195 |
|
GeoE | | | 86.36 180 | 85.20 179 | 89.83 197 | 93.17 197 | 76.13 262 | 97.53 82 | 92.11 302 | 79.58 250 | 80.99 205 | 94.01 182 | 66.60 228 | 96.17 231 | 73.48 262 | 89.30 167 | 97.20 147 |
|
sss | | | 90.87 98 | 89.96 105 | 93.60 63 | 94.15 171 | 83.84 84 | 97.14 115 | 98.13 7 | 85.93 111 | 89.68 110 | 96.09 130 | 71.67 194 | 99.30 77 | 87.69 131 | 89.16 168 | 97.66 119 |
|
HY-MVS | | 84.06 6 | 91.63 80 | 90.37 96 | 95.39 16 | 96.12 118 | 88.25 14 | 90.22 311 | 97.58 14 | 88.33 65 | 90.50 100 | 91.96 206 | 79.26 83 | 99.06 102 | 90.29 105 | 89.07 169 | 98.88 32 |
|
thisisatest0515 | | | 90.95 96 | 90.26 97 | 93.01 88 | 94.03 177 | 84.27 78 | 97.91 52 | 96.67 70 | 83.18 181 | 86.87 143 | 95.51 144 | 88.66 16 | 97.85 154 | 80.46 193 | 89.01 170 | 96.92 155 |
|
CDS-MVSNet | | | 89.50 122 | 88.96 123 | 91.14 155 | 91.94 240 | 80.93 146 | 97.09 122 | 95.81 150 | 84.26 156 | 84.72 160 | 94.20 178 | 80.31 71 | 95.64 263 | 83.37 175 | 88.96 171 | 96.85 158 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VNet | | | 92.11 70 | 91.22 82 | 94.79 24 | 96.91 105 | 86.98 26 | 97.91 52 | 97.96 9 | 86.38 102 | 93.65 55 | 95.74 135 | 70.16 209 | 98.95 111 | 93.39 60 | 88.87 172 | 98.43 56 |
|
alignmvs | | | 92.97 50 | 92.26 65 | 95.12 18 | 95.54 133 | 87.77 19 | 98.67 19 | 96.38 113 | 88.04 70 | 93.01 63 | 97.45 87 | 79.20 85 | 98.60 126 | 93.25 65 | 88.76 173 | 98.99 30 |
|
WTY-MVS | | | 92.65 62 | 91.68 76 | 95.56 13 | 96.00 121 | 88.90 12 | 98.23 33 | 97.65 12 | 88.57 59 | 89.82 108 | 97.22 100 | 79.29 81 | 99.06 102 | 89.57 113 | 88.73 174 | 98.73 40 |
|
canonicalmvs | | | 92.27 68 | 91.22 82 | 95.41 15 | 95.80 126 | 88.31 13 | 97.09 122 | 94.64 214 | 88.49 61 | 92.99 64 | 97.31 94 | 72.68 185 | 98.57 128 | 93.38 62 | 88.58 175 | 99.36 16 |
|
test_yl | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 55 | 98.08 42 | 97.72 10 | 80.94 218 | 89.85 106 | 96.14 128 | 75.61 142 | 98.81 119 | 90.42 103 | 88.56 176 | 98.74 36 |
|
DCV-MVSNet | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 55 | 98.08 42 | 97.72 10 | 80.94 218 | 89.85 106 | 96.14 128 | 75.61 142 | 98.81 119 | 90.42 103 | 88.56 176 | 98.74 36 |
|
HyFIR lowres test | | | 89.36 124 | 88.60 128 | 91.63 141 | 94.91 153 | 80.76 151 | 95.60 212 | 95.53 163 | 82.56 199 | 84.03 167 | 91.24 220 | 78.03 101 | 96.81 210 | 87.07 138 | 88.41 178 | 97.32 139 |
|
TAMVS | | | 88.48 146 | 87.79 140 | 90.56 171 | 91.09 252 | 79.18 190 | 96.45 166 | 95.88 146 | 83.64 174 | 83.12 180 | 93.33 191 | 75.94 137 | 95.74 258 | 82.40 181 | 88.27 179 | 96.75 163 |
|
EPP-MVSNet | | | 89.76 117 | 89.72 112 | 89.87 195 | 93.78 179 | 76.02 267 | 97.22 102 | 96.51 94 | 79.35 253 | 85.11 154 | 95.01 162 | 84.82 35 | 97.10 195 | 87.46 134 | 88.21 180 | 96.50 168 |
|
MVS-HIRNet | | | 71.36 323 | 67.00 327 | 84.46 297 | 90.58 262 | 69.74 329 | 79.15 355 | 87.74 348 | 46.09 367 | 61.96 346 | 50.50 369 | 45.14 337 | 95.64 263 | 53.74 348 | 88.11 181 | 88.00 302 |
|
TR-MVS | | | 86.30 181 | 84.93 187 | 90.42 175 | 94.63 158 | 77.58 239 | 96.57 157 | 93.82 255 | 80.30 235 | 82.42 187 | 95.16 154 | 58.74 278 | 97.55 166 | 74.88 248 | 87.82 182 | 96.13 180 |
|
cascas | | | 86.50 178 | 84.48 193 | 92.55 108 | 92.64 213 | 85.95 36 | 97.04 127 | 95.07 188 | 75.32 296 | 80.50 210 | 91.02 223 | 54.33 313 | 97.98 147 | 86.79 141 | 87.62 183 | 93.71 221 |
|
OMC-MVS | | | 88.80 138 | 88.16 134 | 90.72 167 | 95.30 139 | 77.92 230 | 94.81 242 | 94.51 220 | 86.80 98 | 84.97 156 | 96.85 113 | 67.53 219 | 98.60 126 | 85.08 149 | 87.62 183 | 95.63 189 |
|
SCA | | | 85.63 191 | 83.64 205 | 91.60 142 | 92.30 220 | 81.86 125 | 92.88 287 | 95.56 162 | 84.85 136 | 82.52 184 | 85.12 312 | 58.04 283 | 95.39 273 | 73.89 258 | 87.58 185 | 97.54 126 |
|
thisisatest0530 | | | 89.65 119 | 89.02 121 | 91.53 143 | 93.46 192 | 80.78 150 | 96.52 160 | 96.67 70 | 81.69 211 | 83.79 173 | 94.90 164 | 88.85 15 | 97.68 159 | 77.80 216 | 87.49 186 | 96.14 179 |
|
VDDNet | | | 86.44 179 | 84.51 191 | 92.22 120 | 91.56 244 | 81.83 126 | 97.10 121 | 94.64 214 | 69.50 334 | 87.84 134 | 95.19 152 | 48.01 328 | 97.92 153 | 89.82 110 | 86.92 187 | 96.89 156 |
|
VDD-MVS | | | 88.28 153 | 87.02 163 | 92.06 125 | 95.09 145 | 80.18 167 | 97.55 81 | 94.45 225 | 83.09 184 | 89.10 120 | 95.92 134 | 47.97 329 | 98.49 132 | 93.08 70 | 86.91 188 | 97.52 130 |
|
thres200 | | | 88.92 133 | 87.65 142 | 92.73 101 | 96.30 112 | 85.62 46 | 97.85 55 | 98.86 1 | 84.38 151 | 84.82 158 | 93.99 183 | 75.12 158 | 98.01 146 | 70.86 280 | 86.67 189 | 94.56 210 |
|
DP-MVS | | | 81.47 258 | 78.28 272 | 91.04 156 | 98.14 64 | 78.48 207 | 95.09 235 | 86.97 349 | 61.14 356 | 71.12 303 | 92.78 200 | 59.59 269 | 99.38 69 | 53.11 350 | 86.61 190 | 95.27 198 |
|
F-COLMAP | | | 84.50 210 | 83.44 210 | 87.67 235 | 95.22 141 | 72.22 302 | 95.95 195 | 93.78 260 | 75.74 293 | 76.30 257 | 95.18 153 | 59.50 271 | 98.45 134 | 72.67 266 | 86.59 191 | 92.35 229 |
|
tttt0517 | | | 88.57 145 | 88.19 133 | 89.71 201 | 93.00 203 | 75.99 268 | 95.67 208 | 96.67 70 | 80.78 221 | 81.82 199 | 94.40 172 | 88.97 14 | 97.58 163 | 76.05 239 | 86.31 192 | 95.57 191 |
|
CR-MVSNet | | | 83.53 224 | 81.36 241 | 90.06 187 | 90.16 269 | 79.75 174 | 79.02 356 | 91.12 316 | 84.24 157 | 82.27 192 | 80.35 341 | 75.45 147 | 93.67 320 | 63.37 315 | 86.25 193 | 96.75 163 |
|
RPMNet | | | 79.85 272 | 75.92 290 | 91.64 139 | 90.16 269 | 79.75 174 | 79.02 356 | 95.44 170 | 58.43 364 | 82.27 192 | 72.55 360 | 73.03 182 | 98.41 136 | 46.10 364 | 86.25 193 | 96.75 163 |
|
thres100view900 | | | 88.30 152 | 86.95 164 | 92.33 115 | 96.10 119 | 84.90 66 | 97.14 115 | 98.85 2 | 82.69 196 | 83.41 176 | 93.66 189 | 75.43 149 | 97.93 148 | 69.04 286 | 86.24 195 | 94.17 212 |
|
tfpn200view9 | | | 88.48 146 | 87.15 158 | 92.47 109 | 96.21 115 | 85.30 53 | 97.44 89 | 98.85 2 | 83.37 178 | 83.99 168 | 93.82 186 | 75.36 152 | 97.93 148 | 69.04 286 | 86.24 195 | 94.17 212 |
|
thres400 | | | 88.42 149 | 87.15 158 | 92.23 119 | 96.21 115 | 85.30 53 | 97.44 89 | 98.85 2 | 83.37 178 | 83.99 168 | 93.82 186 | 75.36 152 | 97.93 148 | 69.04 286 | 86.24 195 | 93.45 225 |
|
CostFormer | | | 89.08 129 | 88.39 131 | 91.15 154 | 93.13 200 | 79.15 192 | 88.61 322 | 96.11 133 | 83.14 182 | 89.58 113 | 86.93 280 | 83.83 45 | 96.87 206 | 88.22 129 | 85.92 198 | 97.42 134 |
|
thres600view7 | | | 88.06 157 | 86.70 167 | 92.15 122 | 96.10 119 | 85.17 59 | 97.14 115 | 98.85 2 | 82.70 195 | 83.41 176 | 93.66 189 | 75.43 149 | 97.82 155 | 67.13 295 | 85.88 199 | 93.45 225 |
|
Effi-MVS+-dtu | | | 84.61 207 | 84.90 188 | 83.72 306 | 91.96 237 | 63.14 351 | 94.95 238 | 93.34 281 | 85.57 118 | 79.79 219 | 87.12 277 | 61.99 256 | 95.61 266 | 83.55 170 | 85.83 200 | 92.41 228 |
|
JIA-IIPM | | | 79.00 281 | 77.20 279 | 84.40 298 | 89.74 276 | 64.06 348 | 75.30 363 | 95.44 170 | 62.15 350 | 81.90 197 | 59.08 366 | 78.92 87 | 95.59 267 | 66.51 300 | 85.78 201 | 93.54 222 |
|
tpm2 | | | 87.35 167 | 86.26 169 | 90.62 169 | 92.93 206 | 78.67 204 | 88.06 327 | 95.99 139 | 79.33 254 | 87.40 137 | 86.43 291 | 80.28 72 | 96.40 222 | 80.23 196 | 85.73 202 | 96.79 159 |
|
1112_ss | | | 88.60 144 | 87.47 151 | 92.00 128 | 93.21 195 | 80.97 145 | 96.47 163 | 92.46 299 | 83.64 174 | 80.86 207 | 97.30 96 | 80.24 73 | 97.62 161 | 77.60 221 | 85.49 203 | 97.40 136 |
|
Test_1112_low_res | | | 88.03 158 | 86.73 166 | 91.94 130 | 93.15 198 | 80.88 147 | 96.44 168 | 92.41 300 | 83.59 177 | 80.74 209 | 91.16 221 | 80.18 74 | 97.59 162 | 77.48 224 | 85.40 204 | 97.36 138 |
|
GA-MVS | | | 85.79 189 | 84.04 200 | 91.02 158 | 89.47 281 | 80.27 163 | 96.90 138 | 94.84 200 | 85.57 118 | 80.88 206 | 89.08 248 | 56.56 298 | 96.47 221 | 77.72 219 | 85.35 205 | 96.34 173 |
|
tpmrst | | | 88.36 150 | 87.38 153 | 91.31 147 | 94.36 168 | 79.92 170 | 87.32 332 | 95.26 182 | 85.32 124 | 88.34 129 | 86.13 296 | 80.60 68 | 96.70 214 | 83.78 163 | 85.34 206 | 97.30 142 |
|
MDTV_nov1_ep13 | | | | 83.69 202 | | 94.09 173 | 81.01 143 | 86.78 336 | 96.09 134 | 83.81 169 | 84.75 159 | 84.32 319 | 74.44 167 | 96.54 218 | 63.88 311 | 85.07 207 | |
|
Fast-Effi-MVS+-dtu | | | 83.33 228 | 82.60 223 | 85.50 280 | 89.55 279 | 69.38 332 | 96.09 191 | 91.38 311 | 82.30 201 | 75.96 264 | 91.41 214 | 56.71 295 | 95.58 268 | 75.13 247 | 84.90 208 | 91.54 230 |
|
PatchT | | | 79.75 273 | 76.85 283 | 88.42 218 | 89.55 279 | 75.49 275 | 77.37 360 | 94.61 216 | 63.07 347 | 82.46 186 | 73.32 359 | 75.52 146 | 93.41 324 | 51.36 353 | 84.43 209 | 96.36 171 |
|
XVG-OURS-SEG-HR | | | 85.74 190 | 85.16 182 | 87.49 243 | 90.22 267 | 71.45 316 | 91.29 305 | 94.09 243 | 81.37 213 | 83.90 172 | 95.22 149 | 60.30 266 | 97.53 169 | 85.58 146 | 84.42 210 | 93.50 223 |
|
tpm cat1 | | | 83.63 223 | 81.38 240 | 90.39 176 | 93.53 191 | 78.19 222 | 85.56 344 | 95.09 186 | 70.78 328 | 78.51 229 | 83.28 327 | 74.80 161 | 97.03 196 | 66.77 296 | 84.05 211 | 95.95 181 |
|
DSMNet-mixed | | | 73.13 315 | 72.45 311 | 75.19 345 | 77.51 361 | 46.82 372 | 85.09 345 | 82.01 368 | 67.61 341 | 69.27 315 | 81.33 336 | 50.89 318 | 86.28 363 | 54.54 346 | 83.80 212 | 92.46 227 |
|
ADS-MVSNet2 | | | 79.57 275 | 77.53 277 | 85.71 276 | 93.78 179 | 72.13 304 | 79.48 352 | 86.11 354 | 73.09 315 | 80.14 216 | 79.99 344 | 62.15 253 | 90.14 354 | 59.49 327 | 83.52 213 | 94.85 202 |
|
ADS-MVSNet | | | 81.26 261 | 78.36 271 | 89.96 192 | 93.78 179 | 79.78 172 | 79.48 352 | 93.60 269 | 73.09 315 | 80.14 216 | 79.99 344 | 62.15 253 | 95.24 283 | 59.49 327 | 83.52 213 | 94.85 202 |
|
XVG-OURS | | | 85.18 197 | 84.38 195 | 87.59 238 | 90.42 265 | 71.73 313 | 91.06 308 | 94.07 244 | 82.00 207 | 83.29 178 | 95.08 160 | 56.42 299 | 97.55 166 | 83.70 168 | 83.42 215 | 93.49 224 |
|
dp | | | 84.30 213 | 82.31 227 | 90.28 181 | 94.24 170 | 77.97 226 | 86.57 337 | 95.53 163 | 79.94 244 | 80.75 208 | 85.16 310 | 71.49 198 | 96.39 223 | 63.73 312 | 83.36 216 | 96.48 169 |
|
MSDG | | | 80.62 268 | 77.77 276 | 89.14 205 | 93.43 193 | 77.24 245 | 91.89 298 | 90.18 328 | 69.86 333 | 68.02 317 | 91.94 208 | 52.21 317 | 98.84 117 | 59.32 329 | 83.12 217 | 91.35 231 |
|
MIMVSNet | | | 79.18 280 | 75.99 289 | 88.72 215 | 87.37 305 | 80.66 153 | 79.96 351 | 91.82 306 | 77.38 282 | 74.33 280 | 81.87 333 | 41.78 348 | 90.74 349 | 66.36 302 | 83.10 218 | 94.76 204 |
|
HQP3-MVS | | | | | | | | | 94.80 202 | | | | | | | 83.01 219 | |
|
HQP-MVS | | | 87.91 162 | 87.55 148 | 88.98 209 | 92.08 231 | 78.48 207 | 97.63 73 | 94.80 202 | 90.52 29 | 82.30 188 | 94.56 169 | 65.40 234 | 97.32 180 | 87.67 132 | 83.01 219 | 91.13 232 |
|
plane_prior | | | | | | | 77.96 227 | 97.52 85 | | 90.36 34 | | | | | | 82.96 221 | |
|
CLD-MVS | | | 87.97 160 | 87.48 150 | 89.44 202 | 92.16 229 | 80.54 157 | 98.14 36 | 94.92 194 | 91.41 18 | 79.43 221 | 95.40 146 | 62.34 251 | 97.27 185 | 90.60 97 | 82.90 222 | 90.50 241 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP_MVS | | | 87.50 165 | 87.09 161 | 88.74 214 | 91.86 241 | 77.96 227 | 97.18 109 | 94.69 207 | 89.89 39 | 81.33 202 | 94.15 179 | 64.77 240 | 97.30 182 | 87.08 136 | 82.82 223 | 90.96 234 |
|
plane_prior5 | | | | | | | | | 94.69 207 | | | | | 97.30 182 | 87.08 136 | 82.82 223 | 90.96 234 |
|
OPM-MVS | | | 85.84 187 | 85.10 184 | 88.06 229 | 88.34 292 | 77.83 234 | 95.72 206 | 94.20 235 | 87.89 75 | 80.45 212 | 94.05 181 | 58.57 279 | 97.26 186 | 83.88 161 | 82.76 225 | 89.09 275 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Anonymous202405211 | | | 84.41 211 | 81.93 232 | 91.85 134 | 96.78 107 | 78.41 211 | 97.44 89 | 91.34 314 | 70.29 330 | 84.06 166 | 94.26 175 | 41.09 351 | 98.96 108 | 79.46 204 | 82.65 226 | 98.17 74 |
|
ab-mvs | | | 87.08 168 | 84.94 186 | 93.48 70 | 93.34 194 | 83.67 88 | 88.82 319 | 95.70 155 | 81.18 215 | 84.55 163 | 90.14 240 | 62.72 249 | 98.94 113 | 85.49 147 | 82.54 227 | 97.85 105 |
|
ET-MVSNet_ETH3D | | | 90.01 114 | 89.03 120 | 92.95 91 | 94.38 167 | 86.77 29 | 98.14 36 | 96.31 120 | 89.30 47 | 63.33 339 | 96.72 121 | 90.09 11 | 93.63 321 | 90.70 96 | 82.29 228 | 98.46 54 |
|
tpmvs | | | 83.04 235 | 80.77 246 | 89.84 196 | 95.43 135 | 77.96 227 | 85.59 343 | 95.32 179 | 75.31 297 | 76.27 258 | 83.70 324 | 73.89 172 | 97.41 176 | 59.53 326 | 81.93 229 | 94.14 214 |
|
CMPMVS |  | 54.94 21 | 75.71 305 | 74.56 300 | 79.17 334 | 79.69 354 | 55.98 365 | 89.59 313 | 93.30 283 | 60.28 358 | 53.85 362 | 89.07 249 | 47.68 332 | 96.33 225 | 76.55 232 | 81.02 230 | 85.22 338 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
iter_conf_final | | | 89.51 121 | 89.21 118 | 90.39 176 | 95.60 131 | 84.44 73 | 97.22 102 | 89.09 337 | 89.11 50 | 82.07 195 | 92.80 197 | 87.03 25 | 96.03 233 | 89.10 119 | 80.89 231 | 90.70 237 |
|
LPG-MVS_test | | | 84.20 214 | 83.49 209 | 86.33 263 | 90.88 255 | 73.06 298 | 95.28 222 | 94.13 239 | 82.20 202 | 76.31 255 | 93.20 192 | 54.83 311 | 96.95 200 | 83.72 166 | 80.83 232 | 88.98 281 |
|
LGP-MVS_train | | | | | 86.33 263 | 90.88 255 | 73.06 298 | | 94.13 239 | 82.20 202 | 76.31 255 | 93.20 192 | 54.83 311 | 96.95 200 | 83.72 166 | 80.83 232 | 88.98 281 |
|
iter_conf05 | | | 90.14 112 | 89.79 111 | 91.17 153 | 95.85 125 | 86.93 27 | 97.68 71 | 88.67 344 | 89.93 38 | 81.73 201 | 92.80 197 | 90.37 8 | 96.03 233 | 90.44 101 | 80.65 234 | 90.56 239 |
|
ACMM | | 80.70 13 | 83.72 222 | 82.85 218 | 86.31 266 | 91.19 250 | 72.12 305 | 95.88 200 | 94.29 231 | 80.44 230 | 77.02 243 | 91.96 206 | 55.24 307 | 97.14 194 | 79.30 207 | 80.38 235 | 89.67 261 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS_0304 | | | 78.43 283 | 76.70 284 | 83.60 308 | 88.22 294 | 69.81 327 | 92.91 286 | 95.10 185 | 72.32 322 | 78.71 227 | 80.29 343 | 33.78 362 | 93.37 325 | 68.77 289 | 80.23 236 | 87.63 308 |
|
mvsmamba | | | 85.17 198 | 84.54 190 | 87.05 253 | 87.94 297 | 75.11 279 | 96.22 182 | 87.79 347 | 86.91 95 | 78.55 228 | 91.77 211 | 64.93 239 | 95.91 245 | 86.94 140 | 79.80 237 | 90.12 249 |
|
jajsoiax | | | 82.12 251 | 81.15 243 | 85.03 286 | 84.19 340 | 70.70 320 | 94.22 259 | 93.95 247 | 83.07 185 | 73.48 284 | 89.75 242 | 49.66 324 | 95.37 275 | 82.24 183 | 79.76 238 | 89.02 279 |
|
test_djsdf | | | 83.00 237 | 82.45 226 | 84.64 292 | 84.07 342 | 69.78 328 | 94.80 243 | 94.48 221 | 80.74 222 | 75.41 273 | 87.70 268 | 61.32 262 | 95.10 291 | 83.77 164 | 79.76 238 | 89.04 278 |
|
ACMP | | 81.66 11 | 84.00 215 | 83.22 213 | 86.33 263 | 91.53 247 | 72.95 300 | 95.91 199 | 93.79 259 | 83.70 173 | 73.79 282 | 92.22 203 | 54.31 314 | 96.89 204 | 83.98 159 | 79.74 240 | 89.16 272 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet_BlendedMVS | | | 90.05 113 | 89.96 105 | 90.33 180 | 97.47 89 | 83.86 82 | 98.02 48 | 96.73 61 | 87.98 71 | 89.53 114 | 89.61 244 | 76.42 128 | 99.57 54 | 94.29 48 | 79.59 241 | 87.57 311 |
|
Patchmatch-test | | | 78.25 285 | 74.72 298 | 88.83 212 | 91.20 249 | 74.10 289 | 73.91 366 | 88.70 343 | 59.89 361 | 66.82 324 | 85.12 312 | 78.38 96 | 94.54 305 | 48.84 360 | 79.58 242 | 97.86 104 |
|
mvs_tets | | | 81.74 254 | 80.71 249 | 84.84 287 | 84.22 339 | 70.29 323 | 93.91 263 | 93.78 260 | 82.77 194 | 73.37 285 | 89.46 246 | 47.36 333 | 95.31 279 | 81.99 185 | 79.55 243 | 88.92 285 |
|
bld_raw_conf005 | | | 83.53 224 | 82.51 224 | 86.62 261 | 87.38 304 | 73.99 291 | 95.66 209 | 85.25 356 | 85.74 115 | 76.81 246 | 91.39 215 | 55.95 303 | 95.86 248 | 84.87 153 | 79.51 244 | 90.00 256 |
|
test_low_dy_conf_001 | | | 83.73 221 | 83.18 214 | 85.40 282 | 86.81 308 | 71.09 319 | 95.06 236 | 94.22 233 | 82.79 193 | 77.42 236 | 91.69 212 | 59.07 276 | 95.26 282 | 82.20 184 | 79.32 245 | 89.86 259 |
|
FIs | | | 86.73 177 | 86.10 170 | 88.61 216 | 90.05 271 | 80.21 165 | 96.14 188 | 96.95 36 | 85.56 121 | 78.37 231 | 92.30 202 | 76.73 123 | 95.28 280 | 79.51 203 | 79.27 246 | 90.35 243 |
|
D2MVS | | | 82.67 241 | 81.55 237 | 86.04 271 | 87.77 299 | 76.47 256 | 95.21 226 | 96.58 85 | 82.66 197 | 70.26 309 | 85.46 305 | 60.39 265 | 95.80 252 | 76.40 235 | 79.18 247 | 85.83 335 |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 248 | |
|
PS-MVSNAJss | | | 84.91 202 | 84.30 196 | 86.74 256 | 85.89 322 | 74.40 287 | 94.95 238 | 94.16 238 | 83.93 165 | 76.45 253 | 90.11 241 | 71.04 202 | 95.77 253 | 83.16 177 | 79.02 249 | 90.06 254 |
|
FC-MVSNet-test | | | 85.96 185 | 85.39 176 | 87.66 236 | 89.38 283 | 78.02 224 | 95.65 211 | 96.87 42 | 85.12 132 | 77.34 238 | 91.94 208 | 76.28 132 | 94.74 300 | 77.09 226 | 78.82 250 | 90.21 247 |
|
EG-PatchMatch MVS | | | 74.92 307 | 72.02 312 | 83.62 307 | 83.76 345 | 73.28 296 | 93.62 267 | 92.04 304 | 68.57 336 | 58.88 353 | 83.80 323 | 31.87 366 | 95.57 269 | 56.97 339 | 78.67 251 | 82.00 359 |
|
EI-MVSNet | | | 85.80 188 | 85.20 179 | 87.59 238 | 91.55 245 | 77.41 242 | 95.13 230 | 95.36 175 | 80.43 232 | 80.33 214 | 94.71 166 | 73.72 175 | 95.97 238 | 76.96 229 | 78.64 252 | 89.39 263 |
|
MVSTER | | | 89.25 128 | 88.92 125 | 90.24 182 | 95.98 122 | 84.66 70 | 96.79 144 | 95.36 175 | 87.19 91 | 80.33 214 | 90.61 231 | 90.02 12 | 95.97 238 | 85.38 148 | 78.64 252 | 90.09 252 |
|
anonymousdsp | | | 80.98 265 | 79.97 261 | 84.01 300 | 81.73 348 | 70.44 322 | 92.49 291 | 93.58 271 | 77.10 287 | 72.98 291 | 86.31 293 | 57.58 287 | 94.90 296 | 79.32 206 | 78.63 254 | 86.69 323 |
|
bld_raw_dy_0_64 | | | 82.13 250 | 80.76 247 | 86.24 268 | 85.78 324 | 75.03 280 | 94.40 252 | 82.62 367 | 83.12 183 | 76.46 252 | 90.96 226 | 53.83 315 | 94.55 304 | 81.04 189 | 78.60 255 | 89.14 273 |
|
UniMVSNet_ETH3D | | | 80.86 266 | 78.75 270 | 87.22 250 | 86.31 313 | 72.02 307 | 91.95 296 | 93.76 263 | 73.51 310 | 75.06 276 | 90.16 239 | 43.04 345 | 95.66 260 | 76.37 236 | 78.55 256 | 93.98 217 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 257 | |
|
Anonymous20240529 | | | 83.15 232 | 80.60 251 | 90.80 164 | 95.74 127 | 78.27 215 | 96.81 143 | 94.92 194 | 60.10 360 | 81.89 198 | 92.54 201 | 45.82 336 | 98.82 118 | 79.25 208 | 78.32 258 | 95.31 197 |
|
XVG-ACMP-BASELINE | | | 79.38 278 | 77.90 275 | 83.81 302 | 84.98 334 | 67.14 341 | 89.03 318 | 93.18 287 | 80.26 238 | 72.87 292 | 88.15 263 | 38.55 354 | 96.26 227 | 76.05 239 | 78.05 259 | 88.02 301 |
|
tpm | | | 85.55 192 | 84.47 194 | 88.80 213 | 90.19 268 | 75.39 276 | 88.79 320 | 94.69 207 | 84.83 137 | 83.96 170 | 85.21 308 | 78.22 99 | 94.68 302 | 76.32 237 | 78.02 260 | 96.34 173 |
|
test0.0.03 1 | | | 82.79 239 | 82.48 225 | 83.74 305 | 86.81 308 | 72.22 302 | 96.52 160 | 95.03 190 | 83.76 171 | 73.00 290 | 93.20 192 | 72.30 189 | 88.88 356 | 64.15 310 | 77.52 261 | 90.12 249 |
|
RPSCF | | | 77.73 290 | 76.63 285 | 81.06 325 | 88.66 290 | 55.76 367 | 87.77 329 | 87.88 346 | 64.82 346 | 74.14 281 | 92.79 199 | 49.22 325 | 96.81 210 | 67.47 294 | 76.88 262 | 90.62 238 |
|
RRT_MVS | | | 83.88 217 | 83.27 212 | 85.71 276 | 87.53 303 | 72.12 305 | 95.35 221 | 94.33 229 | 83.81 169 | 75.86 266 | 91.28 219 | 60.55 264 | 95.09 293 | 83.93 160 | 76.76 263 | 89.90 258 |
|
LTVRE_ROB | | 73.68 18 | 77.99 287 | 75.74 291 | 84.74 288 | 90.45 264 | 72.02 307 | 86.41 339 | 91.12 316 | 72.57 320 | 66.63 325 | 87.27 273 | 54.95 310 | 96.98 199 | 56.29 341 | 75.98 264 | 85.21 339 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS_ROB |  | 68.52 20 | 73.02 316 | 69.57 322 | 83.37 311 | 80.54 352 | 71.82 311 | 93.60 268 | 88.22 345 | 62.37 349 | 61.98 345 | 83.15 328 | 35.31 361 | 95.47 271 | 45.08 365 | 75.88 265 | 82.82 351 |
|
USDC | | | 78.65 282 | 76.25 287 | 85.85 272 | 87.58 301 | 74.60 283 | 89.58 314 | 90.58 327 | 84.05 159 | 63.13 340 | 88.23 261 | 40.69 353 | 96.86 208 | 66.57 299 | 75.81 266 | 86.09 331 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 304 | 73.00 310 | 83.94 301 | 92.38 216 | 69.08 333 | 91.85 299 | 86.93 350 | 61.48 354 | 65.32 331 | 90.27 236 | 42.27 347 | 96.93 203 | 50.91 355 | 75.63 267 | 85.80 336 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GBi-Net | | | 82.42 245 | 80.43 254 | 88.39 220 | 92.66 210 | 81.95 118 | 94.30 255 | 93.38 277 | 79.06 262 | 75.82 267 | 85.66 298 | 56.38 300 | 93.84 316 | 71.23 275 | 75.38 268 | 89.38 265 |
|
test1 | | | 82.42 245 | 80.43 254 | 88.39 220 | 92.66 210 | 81.95 118 | 94.30 255 | 93.38 277 | 79.06 262 | 75.82 267 | 85.66 298 | 56.38 300 | 93.84 316 | 71.23 275 | 75.38 268 | 89.38 265 |
|
FMVSNet3 | | | 84.71 205 | 82.71 221 | 90.70 168 | 94.55 160 | 87.71 20 | 95.92 197 | 94.67 210 | 81.73 210 | 75.82 267 | 88.08 264 | 66.99 224 | 94.47 306 | 71.23 275 | 75.38 268 | 89.91 257 |
|
FMVSNet2 | | | 82.79 239 | 80.44 253 | 89.83 197 | 92.66 210 | 85.43 49 | 95.42 218 | 94.35 228 | 79.06 262 | 74.46 279 | 87.28 272 | 56.38 300 | 94.31 309 | 69.72 285 | 74.68 271 | 89.76 260 |
|
ITE_SJBPF | | | | | 82.38 318 | 87.00 307 | 65.59 343 | | 89.55 332 | 79.99 243 | 69.37 314 | 91.30 218 | 41.60 350 | 95.33 277 | 62.86 317 | 74.63 272 | 86.24 328 |
|
ACMH | | 75.40 17 | 77.99 287 | 74.96 294 | 87.10 252 | 90.67 261 | 76.41 258 | 93.19 282 | 91.64 310 | 72.47 321 | 63.44 338 | 87.61 270 | 43.34 342 | 97.16 190 | 58.34 331 | 73.94 273 | 87.72 305 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline1 | | | 88.85 136 | 87.49 149 | 92.93 93 | 95.21 142 | 86.85 28 | 95.47 216 | 94.61 216 | 87.29 85 | 83.11 181 | 94.99 163 | 80.70 67 | 96.89 204 | 82.28 182 | 73.72 274 | 95.05 199 |
|
pmmvs4 | | | 82.54 243 | 80.79 245 | 87.79 233 | 86.11 318 | 80.49 159 | 93.55 269 | 93.18 287 | 77.29 283 | 73.35 286 | 89.40 247 | 65.26 237 | 95.05 295 | 75.32 245 | 73.61 275 | 87.83 304 |
|
AllTest | | | 75.92 302 | 73.06 309 | 84.47 295 | 92.18 227 | 67.29 338 | 91.07 307 | 84.43 360 | 67.63 337 | 63.48 336 | 90.18 237 | 38.20 355 | 97.16 190 | 57.04 337 | 73.37 276 | 88.97 283 |
|
TestCases | | | | | 84.47 295 | 92.18 227 | 67.29 338 | | 84.43 360 | 67.63 337 | 63.48 336 | 90.18 237 | 38.20 355 | 97.16 190 | 57.04 337 | 73.37 276 | 88.97 283 |
|
pmmvs5 | | | 81.34 260 | 79.54 264 | 86.73 259 | 85.02 333 | 76.91 250 | 96.22 182 | 91.65 309 | 77.65 278 | 73.55 283 | 88.61 255 | 55.70 304 | 94.43 307 | 74.12 257 | 73.35 278 | 88.86 287 |
|
XXY-MVS | | | 83.84 218 | 82.00 231 | 89.35 203 | 87.13 306 | 81.38 137 | 95.72 206 | 94.26 232 | 80.15 239 | 75.92 265 | 90.63 230 | 61.96 258 | 96.52 219 | 78.98 211 | 73.28 279 | 90.14 248 |
|
FMVSNet1 | | | 79.50 276 | 76.54 286 | 88.39 220 | 88.47 291 | 81.95 118 | 94.30 255 | 93.38 277 | 73.14 314 | 72.04 299 | 85.66 298 | 43.86 339 | 93.84 316 | 65.48 304 | 72.53 280 | 89.38 265 |
|
cl22 | | | 85.11 199 | 84.17 198 | 87.92 231 | 95.06 149 | 78.82 199 | 95.51 214 | 94.22 233 | 79.74 247 | 76.77 247 | 87.92 266 | 75.96 136 | 95.68 259 | 79.93 201 | 72.42 281 | 89.27 269 |
|
miper_ehance_all_eth | | | 84.57 208 | 83.60 207 | 87.50 242 | 92.64 213 | 78.25 216 | 95.40 220 | 93.47 273 | 79.28 257 | 76.41 254 | 87.64 269 | 76.53 126 | 95.24 283 | 78.58 213 | 72.42 281 | 89.01 280 |
|
miper_enhance_ethall | | | 85.95 186 | 85.20 179 | 88.19 228 | 94.85 154 | 79.76 173 | 96.00 192 | 94.06 245 | 82.98 189 | 77.74 235 | 88.76 253 | 79.42 79 | 95.46 272 | 80.58 192 | 72.42 281 | 89.36 268 |
|
test_0402 | | | 72.68 317 | 69.54 323 | 82.09 321 | 88.67 289 | 71.81 312 | 92.72 289 | 86.77 351 | 61.52 353 | 62.21 344 | 83.91 322 | 43.22 343 | 93.76 319 | 34.60 369 | 72.23 284 | 80.72 361 |
|
testgi | | | 74.88 308 | 73.40 308 | 79.32 333 | 80.13 353 | 61.75 354 | 93.21 280 | 86.64 352 | 79.49 252 | 66.56 327 | 91.06 222 | 35.51 360 | 88.67 357 | 56.79 340 | 71.25 285 | 87.56 312 |
|
nrg030 | | | 86.79 175 | 85.43 175 | 90.87 163 | 88.76 286 | 85.34 50 | 97.06 126 | 94.33 229 | 84.31 153 | 80.45 212 | 91.98 205 | 72.36 187 | 96.36 224 | 88.48 126 | 71.13 286 | 90.93 236 |
|
ACMH+ | | 76.62 16 | 77.47 293 | 74.94 295 | 85.05 285 | 91.07 253 | 71.58 315 | 93.26 279 | 90.01 329 | 71.80 324 | 64.76 333 | 88.55 256 | 41.62 349 | 96.48 220 | 62.35 318 | 71.00 287 | 87.09 319 |
|
VPA-MVSNet | | | 85.32 195 | 83.83 201 | 89.77 200 | 90.25 266 | 82.63 107 | 96.36 174 | 97.07 27 | 83.03 187 | 81.21 204 | 89.02 250 | 61.58 260 | 96.31 226 | 85.02 151 | 70.95 288 | 90.36 242 |
|
IterMVS | | | 80.67 267 | 79.16 267 | 85.20 284 | 89.79 273 | 76.08 263 | 92.97 285 | 91.86 305 | 80.28 236 | 71.20 302 | 85.14 311 | 57.93 286 | 91.34 343 | 72.52 267 | 70.74 289 | 88.18 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-LS | | | 83.93 216 | 82.80 220 | 87.31 247 | 91.46 248 | 77.39 243 | 95.66 209 | 93.43 275 | 80.44 230 | 75.51 271 | 87.26 274 | 73.72 175 | 95.16 287 | 76.99 227 | 70.72 290 | 89.39 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 80.51 269 | 79.10 268 | 84.73 289 | 89.63 278 | 74.66 282 | 92.98 284 | 91.81 307 | 80.05 241 | 71.06 304 | 85.18 309 | 58.04 283 | 91.40 342 | 72.48 268 | 70.70 291 | 88.12 300 |
|
v1240 | | | 81.70 255 | 79.83 263 | 87.30 248 | 85.50 326 | 77.70 238 | 95.48 215 | 93.44 274 | 78.46 271 | 76.53 251 | 86.44 289 | 60.85 263 | 95.84 249 | 71.59 272 | 70.17 292 | 88.35 295 |
|
V42 | | | 83.04 235 | 81.53 238 | 87.57 240 | 86.27 315 | 79.09 195 | 95.87 201 | 94.11 241 | 80.35 234 | 77.22 241 | 86.79 283 | 65.32 236 | 96.02 236 | 77.74 218 | 70.14 293 | 87.61 310 |
|
v1192 | | | 82.31 248 | 80.55 252 | 87.60 237 | 85.94 320 | 78.47 210 | 95.85 203 | 93.80 258 | 79.33 254 | 76.97 244 | 86.51 286 | 63.33 247 | 95.87 247 | 73.11 263 | 70.13 294 | 88.46 292 |
|
v1144 | | | 82.90 238 | 81.27 242 | 87.78 234 | 86.29 314 | 79.07 196 | 96.14 188 | 93.93 248 | 80.05 241 | 77.38 237 | 86.80 282 | 65.50 232 | 95.93 244 | 75.21 246 | 70.13 294 | 88.33 296 |
|
Anonymous20231206 | | | 75.29 306 | 73.64 307 | 80.22 329 | 80.75 349 | 63.38 350 | 93.36 273 | 90.71 326 | 73.09 315 | 67.12 320 | 83.70 324 | 50.33 322 | 90.85 348 | 53.63 349 | 70.10 296 | 86.44 325 |
|
WR-MVS | | | 84.32 212 | 82.96 215 | 88.41 219 | 89.38 283 | 80.32 160 | 96.59 156 | 96.25 123 | 83.97 162 | 76.63 249 | 90.36 235 | 67.53 219 | 94.86 298 | 75.82 242 | 70.09 297 | 90.06 254 |
|
EU-MVSNet | | | 76.92 298 | 76.95 282 | 76.83 339 | 84.10 341 | 54.73 369 | 91.77 300 | 92.71 296 | 72.74 318 | 69.57 313 | 88.69 254 | 58.03 285 | 87.43 361 | 64.91 307 | 70.00 298 | 88.33 296 |
|
IB-MVS | | 85.34 4 | 88.67 141 | 87.14 160 | 93.26 76 | 93.12 201 | 84.32 75 | 98.76 16 | 97.27 18 | 87.19 91 | 79.36 222 | 90.45 233 | 83.92 44 | 98.53 130 | 84.41 155 | 69.79 299 | 96.93 153 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
v1921920 | | | 82.02 252 | 80.23 256 | 87.41 244 | 85.62 325 | 77.92 230 | 95.79 205 | 93.69 265 | 78.86 266 | 76.67 248 | 86.44 289 | 62.50 250 | 95.83 250 | 72.69 265 | 69.77 300 | 88.47 291 |
|
v2v482 | | | 83.46 226 | 81.86 233 | 88.25 225 | 86.19 316 | 79.65 179 | 96.34 176 | 94.02 246 | 81.56 212 | 77.32 239 | 88.23 261 | 65.62 231 | 96.03 233 | 77.77 217 | 69.72 301 | 89.09 275 |
|
v144192 | | | 82.43 244 | 80.73 248 | 87.54 241 | 85.81 323 | 78.22 217 | 95.98 193 | 93.78 260 | 79.09 261 | 77.11 242 | 86.49 287 | 64.66 242 | 95.91 245 | 74.20 256 | 69.42 302 | 88.49 290 |
|
cl____ | | | 83.27 229 | 82.12 228 | 86.74 256 | 92.20 225 | 75.95 269 | 95.11 232 | 93.27 284 | 78.44 272 | 74.82 277 | 87.02 279 | 74.19 169 | 95.19 285 | 74.67 251 | 69.32 303 | 89.09 275 |
|
DIV-MVS_self_test | | | 83.27 229 | 82.12 228 | 86.74 256 | 92.19 226 | 75.92 271 | 95.11 232 | 93.26 285 | 78.44 272 | 74.81 278 | 87.08 278 | 74.19 169 | 95.19 285 | 74.66 252 | 69.30 304 | 89.11 274 |
|
Anonymous20231211 | | | 79.72 274 | 77.19 280 | 87.33 245 | 95.59 132 | 77.16 249 | 95.18 229 | 94.18 237 | 59.31 362 | 72.57 295 | 86.20 295 | 47.89 330 | 95.66 260 | 74.53 254 | 69.24 305 | 89.18 271 |
|
FMVSNet5 | | | 76.46 300 | 74.16 304 | 83.35 312 | 90.05 271 | 76.17 261 | 89.58 314 | 89.85 330 | 71.39 327 | 65.29 332 | 80.42 340 | 50.61 320 | 87.70 360 | 61.05 324 | 69.24 305 | 86.18 329 |
|
c3_l | | | 83.80 219 | 82.65 222 | 87.25 249 | 92.10 230 | 77.74 237 | 95.25 225 | 93.04 292 | 78.58 269 | 76.01 261 | 87.21 276 | 75.25 156 | 95.11 290 | 77.54 223 | 68.89 307 | 88.91 286 |
|
TinyColmap | | | 72.41 318 | 68.99 325 | 82.68 316 | 88.11 295 | 69.59 330 | 88.41 323 | 85.20 357 | 65.55 343 | 57.91 356 | 84.82 316 | 30.80 368 | 95.94 242 | 51.38 352 | 68.70 308 | 82.49 356 |
|
LF4IMVS | | | 72.36 319 | 70.82 316 | 76.95 338 | 79.18 355 | 56.33 364 | 86.12 340 | 86.11 354 | 69.30 335 | 63.06 341 | 86.66 284 | 33.03 364 | 92.25 333 | 65.33 305 | 68.64 309 | 82.28 357 |
|
Anonymous20240521 | | | 72.06 321 | 69.91 321 | 78.50 335 | 77.11 363 | 61.67 356 | 91.62 304 | 90.97 321 | 65.52 344 | 62.37 343 | 79.05 347 | 36.32 357 | 90.96 347 | 57.75 334 | 68.52 310 | 82.87 350 |
|
OurMVSNet-221017-0 | | | 77.18 296 | 76.06 288 | 80.55 328 | 83.78 344 | 60.00 360 | 90.35 310 | 91.05 319 | 77.01 289 | 66.62 326 | 87.92 266 | 47.73 331 | 94.03 313 | 71.63 271 | 68.44 311 | 87.62 309 |
|
CP-MVSNet | | | 81.01 264 | 80.08 258 | 83.79 303 | 87.91 298 | 70.51 321 | 94.29 258 | 95.65 157 | 80.83 220 | 72.54 296 | 88.84 252 | 63.71 244 | 92.32 332 | 68.58 291 | 68.36 312 | 88.55 289 |
|
UniMVSNet_NR-MVSNet | | | 85.49 193 | 84.59 189 | 88.21 227 | 89.44 282 | 79.36 185 | 96.71 151 | 96.41 106 | 85.22 128 | 78.11 233 | 90.98 225 | 76.97 119 | 95.14 288 | 79.14 209 | 68.30 313 | 90.12 249 |
|
DU-MVS | | | 84.57 208 | 83.33 211 | 88.28 223 | 88.76 286 | 79.36 185 | 96.43 170 | 95.41 174 | 85.42 122 | 78.11 233 | 90.82 227 | 67.61 217 | 95.14 288 | 79.14 209 | 68.30 313 | 90.33 244 |
|
PS-CasMVS | | | 80.27 270 | 79.18 266 | 83.52 310 | 87.56 302 | 69.88 326 | 94.08 261 | 95.29 180 | 80.27 237 | 72.08 298 | 88.51 259 | 59.22 275 | 92.23 334 | 67.49 293 | 68.15 315 | 88.45 293 |
|
UniMVSNet (Re) | | | 85.31 196 | 84.23 197 | 88.55 217 | 89.75 274 | 80.55 156 | 96.72 149 | 96.89 41 | 85.42 122 | 78.40 230 | 88.93 251 | 75.38 151 | 95.52 270 | 78.58 213 | 68.02 316 | 89.57 262 |
|
our_test_3 | | | 77.90 289 | 75.37 293 | 85.48 281 | 85.39 328 | 76.74 254 | 93.63 266 | 91.67 308 | 73.39 313 | 65.72 330 | 84.65 317 | 58.20 282 | 93.13 327 | 57.82 333 | 67.87 317 | 86.57 324 |
|
tfpnnormal | | | 78.14 286 | 75.42 292 | 86.31 266 | 88.33 293 | 79.24 188 | 94.41 249 | 96.22 125 | 73.51 310 | 69.81 312 | 85.52 304 | 55.43 305 | 95.75 255 | 47.65 362 | 67.86 318 | 83.95 348 |
|
VPNet | | | 84.69 206 | 82.92 216 | 90.01 188 | 89.01 285 | 83.45 92 | 96.71 151 | 95.46 168 | 85.71 116 | 79.65 220 | 92.18 204 | 56.66 297 | 96.01 237 | 83.05 179 | 67.84 319 | 90.56 239 |
|
v10 | | | 81.43 259 | 79.53 265 | 87.11 251 | 86.38 311 | 78.87 198 | 94.31 254 | 93.43 275 | 77.88 275 | 73.24 288 | 85.26 306 | 65.44 233 | 95.75 255 | 72.14 269 | 67.71 320 | 86.72 322 |
|
v8 | | | 81.88 253 | 80.06 260 | 87.32 246 | 86.63 310 | 79.04 197 | 94.41 249 | 93.65 267 | 78.77 267 | 73.19 289 | 85.57 302 | 66.87 225 | 95.81 251 | 73.84 260 | 67.61 321 | 87.11 318 |
|
test_part1 | | | 84.72 204 | 82.85 218 | 90.34 179 | 95.73 129 | 84.79 69 | 96.75 148 | 94.10 242 | 79.05 265 | 75.97 263 | 89.51 245 | 67.69 216 | 95.94 242 | 79.34 205 | 67.50 322 | 90.30 246 |
|
v7n | | | 79.32 279 | 77.34 278 | 85.28 283 | 84.05 343 | 72.89 301 | 93.38 272 | 93.87 252 | 75.02 300 | 70.68 305 | 84.37 318 | 59.58 270 | 95.62 265 | 67.60 292 | 67.50 322 | 87.32 317 |
|
WR-MVS_H | | | 81.02 263 | 80.09 257 | 83.79 303 | 88.08 296 | 71.26 318 | 94.46 247 | 96.54 90 | 80.08 240 | 72.81 293 | 86.82 281 | 70.36 207 | 92.65 329 | 64.18 309 | 67.50 322 | 87.46 315 |
|
Patchmtry | | | 77.36 294 | 74.59 299 | 85.67 278 | 89.75 274 | 75.75 273 | 77.85 359 | 91.12 316 | 60.28 358 | 71.23 301 | 80.35 341 | 75.45 147 | 93.56 322 | 57.94 332 | 67.34 325 | 87.68 307 |
|
eth_miper_zixun_eth | | | 83.12 233 | 82.01 230 | 86.47 262 | 91.85 243 | 74.80 281 | 94.33 253 | 93.18 287 | 79.11 260 | 75.74 270 | 87.25 275 | 72.71 184 | 95.32 278 | 76.78 230 | 67.13 326 | 89.27 269 |
|
miper_lstm_enhance | | | 81.66 257 | 80.66 250 | 84.67 291 | 91.19 250 | 71.97 309 | 91.94 297 | 93.19 286 | 77.86 276 | 72.27 297 | 85.26 306 | 73.46 178 | 93.42 323 | 73.71 261 | 67.05 327 | 88.61 288 |
|
v148 | | | 82.41 247 | 80.89 244 | 86.99 254 | 86.18 317 | 76.81 253 | 96.27 179 | 93.82 255 | 80.49 229 | 75.28 274 | 86.11 297 | 67.32 222 | 95.75 255 | 75.48 244 | 67.03 328 | 88.42 294 |
|
NR-MVSNet | | | 83.35 227 | 81.52 239 | 88.84 211 | 88.76 286 | 81.31 139 | 94.45 248 | 95.16 184 | 84.65 143 | 67.81 318 | 90.82 227 | 70.36 207 | 94.87 297 | 74.75 249 | 66.89 329 | 90.33 244 |
|
Baseline_NR-MVSNet | | | 81.22 262 | 80.07 259 | 84.68 290 | 85.32 331 | 75.12 278 | 96.48 162 | 88.80 340 | 76.24 292 | 77.28 240 | 86.40 292 | 67.61 217 | 94.39 308 | 75.73 243 | 66.73 330 | 84.54 342 |
|
TranMVSNet+NR-MVSNet | | | 83.24 231 | 81.71 235 | 87.83 232 | 87.71 300 | 78.81 201 | 96.13 190 | 94.82 201 | 84.52 146 | 76.18 260 | 90.78 229 | 64.07 243 | 94.60 303 | 74.60 253 | 66.59 331 | 90.09 252 |
|
h-mvs33 | | | 89.30 126 | 88.95 124 | 90.36 178 | 95.07 147 | 76.04 264 | 96.96 134 | 97.11 25 | 90.39 32 | 92.22 71 | 95.10 159 | 74.70 162 | 98.86 116 | 93.14 67 | 65.89 332 | 96.16 178 |
|
PEN-MVS | | | 79.47 277 | 78.26 273 | 83.08 313 | 86.36 312 | 68.58 334 | 93.85 264 | 94.77 205 | 79.76 246 | 71.37 300 | 88.55 256 | 59.79 267 | 92.46 330 | 64.50 308 | 65.40 333 | 88.19 298 |
|
FPMVS | | | 55.09 334 | 52.93 337 | 61.57 353 | 55.98 375 | 40.51 378 | 83.11 348 | 83.41 365 | 37.61 369 | 34.95 370 | 71.95 361 | 14.40 375 | 76.95 369 | 29.81 370 | 65.16 334 | 67.25 368 |
|
ppachtmachnet_test | | | 77.19 295 | 74.22 303 | 86.13 270 | 85.39 328 | 78.22 217 | 93.98 262 | 91.36 313 | 71.74 325 | 67.11 321 | 84.87 315 | 56.67 296 | 93.37 325 | 52.21 351 | 64.59 335 | 86.80 321 |
|
AUN-MVS | | | 86.25 183 | 85.57 173 | 88.26 224 | 93.57 185 | 73.38 293 | 95.45 217 | 95.88 146 | 83.94 163 | 85.47 152 | 94.21 177 | 73.70 177 | 96.67 216 | 83.54 172 | 64.41 336 | 94.73 208 |
|
hse-mvs2 | | | 88.22 155 | 88.21 132 | 88.25 225 | 93.54 186 | 73.41 292 | 95.41 219 | 95.89 145 | 90.39 32 | 92.22 71 | 94.22 176 | 74.70 162 | 96.66 217 | 93.14 67 | 64.37 337 | 94.69 209 |
|
pm-mvs1 | | | 80.05 271 | 78.02 274 | 86.15 269 | 85.42 327 | 75.81 272 | 95.11 232 | 92.69 297 | 77.13 285 | 70.36 308 | 87.43 271 | 58.44 281 | 95.27 281 | 71.36 274 | 64.25 338 | 87.36 316 |
|
N_pmnet | | | 61.30 332 | 60.20 335 | 64.60 350 | 84.32 338 | 17.00 385 | 91.67 303 | 10.98 384 | 61.77 352 | 58.45 355 | 78.55 348 | 49.89 323 | 91.83 339 | 42.27 367 | 63.94 339 | 84.97 340 |
|
SixPastTwentyTwo | | | 76.04 301 | 74.32 302 | 81.22 324 | 84.54 336 | 61.43 357 | 91.16 306 | 89.30 335 | 77.89 274 | 64.04 335 | 86.31 293 | 48.23 326 | 94.29 310 | 63.54 314 | 63.84 340 | 87.93 303 |
|
MIMVSNet1 | | | 69.44 325 | 66.65 329 | 77.84 336 | 76.48 365 | 62.84 352 | 87.42 331 | 88.97 338 | 66.96 342 | 57.75 358 | 79.72 346 | 32.77 365 | 85.83 365 | 46.32 363 | 63.42 341 | 84.85 341 |
|
DTE-MVSNet | | | 78.37 284 | 77.06 281 | 82.32 320 | 85.22 332 | 67.17 340 | 93.40 271 | 93.66 266 | 78.71 268 | 70.53 307 | 88.29 260 | 59.06 277 | 92.23 334 | 61.38 322 | 63.28 342 | 87.56 312 |
|
new_pmnet | | | 66.18 330 | 63.18 333 | 75.18 346 | 76.27 367 | 61.74 355 | 83.79 347 | 84.66 359 | 56.64 365 | 51.57 363 | 71.85 363 | 31.29 367 | 87.93 359 | 49.98 357 | 62.55 343 | 75.86 364 |
|
test20.03 | | | 72.36 319 | 71.15 315 | 75.98 343 | 77.79 359 | 59.16 362 | 92.40 293 | 89.35 334 | 74.09 306 | 61.50 347 | 84.32 319 | 48.09 327 | 85.54 366 | 50.63 356 | 62.15 344 | 83.24 349 |
|
EGC-MVSNET | | | 52.46 336 | 47.56 339 | 67.15 347 | 81.98 347 | 60.11 359 | 82.54 349 | 72.44 375 | 0.11 381 | 0.70 382 | 74.59 354 | 25.11 370 | 83.26 367 | 29.04 371 | 61.51 345 | 58.09 369 |
|
pmmvs6 | | | 74.65 309 | 71.67 313 | 83.60 308 | 79.13 356 | 69.94 325 | 93.31 278 | 90.88 323 | 61.05 357 | 65.83 329 | 84.15 321 | 43.43 341 | 94.83 299 | 66.62 297 | 60.63 346 | 86.02 332 |
|
MDA-MVSNet_test_wron | | | 73.54 312 | 70.43 319 | 82.86 314 | 84.55 335 | 71.85 310 | 91.74 301 | 91.32 315 | 67.63 337 | 46.73 366 | 81.09 338 | 55.11 308 | 90.42 352 | 55.91 343 | 59.76 347 | 86.31 327 |
|
YYNet1 | | | 73.53 313 | 70.43 319 | 82.85 315 | 84.52 337 | 71.73 313 | 91.69 302 | 91.37 312 | 67.63 337 | 46.79 365 | 81.21 337 | 55.04 309 | 90.43 351 | 55.93 342 | 59.70 348 | 86.38 326 |
|
Patchmatch-RL test | | | 76.65 299 | 74.01 306 | 84.55 294 | 77.37 362 | 64.23 346 | 78.49 358 | 82.84 366 | 78.48 270 | 64.63 334 | 73.40 358 | 76.05 135 | 91.70 341 | 76.99 227 | 57.84 349 | 97.72 114 |
|
pmmvs-eth3d | | | 73.59 311 | 70.66 317 | 82.38 318 | 76.40 366 | 73.38 293 | 89.39 317 | 89.43 333 | 72.69 319 | 60.34 351 | 77.79 350 | 46.43 335 | 91.26 345 | 66.42 301 | 57.06 350 | 82.51 354 |
|
PM-MVS | | | 69.32 326 | 66.93 328 | 76.49 340 | 73.60 370 | 55.84 366 | 85.91 341 | 79.32 372 | 74.72 302 | 61.09 348 | 78.18 349 | 21.76 371 | 91.10 346 | 70.86 280 | 56.90 351 | 82.51 354 |
|
Gipuma |  | | 45.11 339 | 42.05 341 | 54.30 355 | 80.69 350 | 51.30 371 | 35.80 373 | 83.81 363 | 28.13 371 | 27.94 373 | 34.53 373 | 11.41 379 | 76.70 371 | 21.45 373 | 54.65 352 | 34.90 373 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 71.45 322 | 67.94 326 | 81.98 322 | 85.33 330 | 68.50 335 | 92.35 294 | 88.76 341 | 70.40 329 | 42.99 367 | 81.96 332 | 46.57 334 | 91.31 344 | 48.75 361 | 54.39 353 | 86.11 330 |
|
K. test v3 | | | 73.62 310 | 71.59 314 | 79.69 331 | 82.98 346 | 59.85 361 | 90.85 309 | 88.83 339 | 77.13 285 | 58.90 352 | 82.11 331 | 43.62 340 | 91.72 340 | 65.83 303 | 54.10 354 | 87.50 314 |
|
CL-MVSNet_self_test | | | 75.81 303 | 74.14 305 | 80.83 327 | 78.33 358 | 67.79 337 | 94.22 259 | 93.52 272 | 77.28 284 | 69.82 311 | 81.54 335 | 61.47 261 | 89.22 355 | 57.59 335 | 53.51 355 | 85.48 337 |
|
KD-MVS_self_test | | | 70.97 324 | 69.31 324 | 75.95 344 | 76.24 368 | 55.39 368 | 87.45 330 | 90.94 322 | 70.20 331 | 62.96 342 | 77.48 351 | 44.01 338 | 88.09 358 | 61.25 323 | 53.26 356 | 84.37 344 |
|
TDRefinement | | | 69.20 327 | 65.78 331 | 79.48 332 | 66.04 374 | 62.21 353 | 88.21 324 | 86.12 353 | 62.92 348 | 61.03 349 | 85.61 301 | 33.23 363 | 94.16 311 | 55.82 344 | 53.02 357 | 82.08 358 |
|
ambc | | | | | 76.02 342 | 68.11 372 | 51.43 370 | 64.97 369 | 89.59 331 | | 60.49 350 | 74.49 355 | 17.17 374 | 92.46 330 | 61.50 321 | 52.85 358 | 84.17 346 |
|
TransMVSNet (Re) | | | 76.94 297 | 74.38 301 | 84.62 293 | 85.92 321 | 75.25 277 | 95.28 222 | 89.18 336 | 73.88 308 | 67.22 319 | 86.46 288 | 59.64 268 | 94.10 312 | 59.24 330 | 52.57 359 | 84.50 343 |
|
PMVS |  | 34.80 23 | 39.19 341 | 35.53 344 | 50.18 356 | 29.72 383 | 30.30 380 | 59.60 371 | 66.20 379 | 26.06 372 | 17.91 376 | 49.53 370 | 3.12 382 | 74.09 373 | 18.19 375 | 49.40 360 | 46.14 370 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
lessismore_v0 | | | | | 79.98 330 | 80.59 351 | 58.34 363 | | 80.87 369 | | 58.49 354 | 83.46 326 | 43.10 344 | 93.89 315 | 63.11 316 | 48.68 361 | 87.72 305 |
|
UnsupCasMVSNet_eth | | | 73.25 314 | 70.57 318 | 81.30 323 | 77.53 360 | 66.33 342 | 87.24 333 | 93.89 251 | 80.38 233 | 57.90 357 | 81.59 334 | 42.91 346 | 90.56 350 | 65.18 306 | 48.51 362 | 87.01 320 |
|
new-patchmatchnet | | | 68.85 328 | 65.93 330 | 77.61 337 | 73.57 371 | 63.94 349 | 90.11 312 | 88.73 342 | 71.62 326 | 55.08 360 | 73.60 357 | 40.84 352 | 87.22 362 | 51.35 354 | 48.49 363 | 81.67 360 |
|
pmmvs3 | | | 65.75 331 | 62.18 334 | 76.45 341 | 67.12 373 | 64.54 345 | 88.68 321 | 85.05 358 | 54.77 366 | 57.54 359 | 73.79 356 | 29.40 369 | 86.21 364 | 55.49 345 | 47.77 364 | 78.62 362 |
|
test_method | | | 56.77 333 | 54.53 336 | 63.49 352 | 76.49 364 | 40.70 377 | 75.68 362 | 74.24 374 | 19.47 375 | 48.73 364 | 71.89 362 | 19.31 372 | 65.80 375 | 57.46 336 | 47.51 365 | 83.97 347 |
|
UnsupCasMVSNet_bld | | | 68.60 329 | 64.50 332 | 80.92 326 | 74.63 369 | 67.80 336 | 83.97 346 | 92.94 293 | 65.12 345 | 54.63 361 | 68.23 364 | 35.97 358 | 92.17 336 | 60.13 325 | 44.83 366 | 82.78 352 |
|
LCM-MVSNet | | | 52.52 335 | 48.24 338 | 65.35 348 | 47.63 380 | 41.45 376 | 72.55 367 | 83.62 364 | 31.75 370 | 37.66 369 | 57.92 367 | 9.19 381 | 76.76 370 | 49.26 359 | 44.60 367 | 77.84 363 |
|
PVSNet_0 | | 77.72 15 | 81.70 255 | 78.95 269 | 89.94 193 | 90.77 260 | 76.72 255 | 95.96 194 | 96.95 36 | 85.01 134 | 70.24 310 | 88.53 258 | 52.32 316 | 98.20 142 | 86.68 142 | 44.08 368 | 94.89 201 |
|
KD-MVS_2432*1600 | | | 77.63 291 | 74.92 296 | 85.77 274 | 90.86 257 | 79.44 182 | 88.08 325 | 93.92 249 | 76.26 290 | 67.05 322 | 82.78 329 | 72.15 191 | 91.92 337 | 61.53 319 | 41.62 369 | 85.94 333 |
|
miper_refine_blended | | | 77.63 291 | 74.92 296 | 85.77 274 | 90.86 257 | 79.44 182 | 88.08 325 | 93.92 249 | 76.26 290 | 67.05 322 | 82.78 329 | 72.15 191 | 91.92 337 | 61.53 319 | 41.62 369 | 85.94 333 |
|
DeepMVS_CX |  | | | | 64.06 351 | 78.53 357 | 43.26 375 | | 68.11 378 | 69.94 332 | 38.55 368 | 76.14 353 | 18.53 373 | 79.34 368 | 43.72 366 | 41.62 369 | 69.57 367 |
|
PMMVS2 | | | 50.90 337 | 46.31 340 | 64.67 349 | 55.53 376 | 46.67 373 | 77.30 361 | 71.02 376 | 40.89 368 | 34.16 371 | 59.32 365 | 9.83 380 | 76.14 372 | 40.09 368 | 28.63 372 | 71.21 365 |
|
MVE |  | 35.65 22 | 33.85 342 | 29.49 347 | 46.92 357 | 41.86 381 | 36.28 379 | 50.45 372 | 56.52 381 | 18.75 376 | 18.28 375 | 37.84 372 | 2.41 383 | 58.41 376 | 18.71 374 | 20.62 373 | 46.06 371 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 343 | 32.39 345 | 33.65 359 | 53.35 378 | 25.70 382 | 74.07 365 | 53.33 382 | 21.08 373 | 17.17 377 | 33.63 375 | 11.85 378 | 54.84 377 | 12.98 376 | 14.04 374 | 20.42 374 |
|
ANet_high | | | 46.22 338 | 41.28 343 | 61.04 354 | 39.91 382 | 46.25 374 | 70.59 368 | 76.18 373 | 58.87 363 | 23.09 374 | 48.00 371 | 12.58 377 | 66.54 374 | 28.65 372 | 13.62 375 | 70.35 366 |
|
tmp_tt | | | 41.54 340 | 41.93 342 | 40.38 358 | 20.10 384 | 26.84 381 | 61.93 370 | 59.09 380 | 14.81 377 | 28.51 372 | 80.58 339 | 35.53 359 | 48.33 379 | 63.70 313 | 13.11 376 | 45.96 372 |
|
EMVS | | | 31.70 344 | 31.45 346 | 32.48 360 | 50.72 379 | 23.95 383 | 74.78 364 | 52.30 383 | 20.36 374 | 16.08 378 | 31.48 376 | 12.80 376 | 53.60 378 | 11.39 377 | 13.10 377 | 19.88 375 |
|
wuyk23d | | | 14.10 346 | 13.89 349 | 14.72 361 | 55.23 377 | 22.91 384 | 33.83 374 | 3.56 385 | 4.94 378 | 4.11 379 | 2.28 381 | 2.06 384 | 19.66 380 | 10.23 378 | 8.74 378 | 1.59 378 |
|
testmvs | | | 9.92 347 | 12.94 350 | 0.84 363 | 0.65 385 | 0.29 387 | 93.78 265 | 0.39 386 | 0.42 379 | 2.85 380 | 15.84 379 | 0.17 386 | 0.30 382 | 2.18 379 | 0.21 379 | 1.91 377 |
|
test123 | | | 9.07 348 | 11.73 351 | 1.11 362 | 0.50 386 | 0.77 386 | 89.44 316 | 0.20 387 | 0.34 380 | 2.15 381 | 10.72 380 | 0.34 385 | 0.32 381 | 1.79 380 | 0.08 380 | 2.23 376 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
cdsmvs_eth3d_5k | | | 21.43 345 | 28.57 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 95.93 144 | 0.00 382 | 0.00 383 | 97.66 74 | 63.57 245 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 5.92 350 | 7.89 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 71.04 202 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 8.11 349 | 10.81 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 97.30 96 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 98.51 44 | 78.01 225 | 98.13 39 | 96.21 126 | 83.04 186 | 94.39 46 | | | | | | |
|
test_one_0601 | | | | | | 98.91 20 | 84.56 72 | | 96.70 65 | 88.06 69 | 96.57 16 | 98.77 12 | 88.04 20 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.03 16 | 85.03 62 | | 96.78 49 | 88.72 56 | 97.79 4 | 98.90 6 | 88.48 17 | 99.82 18 | | | |
|
save fliter | | | | | | 98.24 58 | 83.34 94 | 98.61 23 | 96.57 86 | 91.32 19 | | | | | | | |
|
test0726 | | | | | | 99.05 10 | 85.18 55 | 99.11 8 | 96.78 49 | 88.75 54 | 97.65 9 | 98.91 3 | 87.69 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 126 |
|
test_part2 | | | | | | 98.90 21 | 85.14 61 | | | | 96.07 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 108 | | | | 97.54 126 |
|
sam_mvs | | | | | | | | | | | | | 75.35 154 | | | | |
|
MTGPA |  | | | | | | | | 96.33 117 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 342 | | | | 30.24 377 | 73.77 173 | 95.07 294 | 73.89 258 | | |
|
test_post | | | | | | | | | | | | 33.80 374 | 76.17 133 | 95.97 238 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 352 | 77.78 107 | 95.39 273 | | | |
|
MTMP | | | | | | | | 97.53 82 | 68.16 377 | | | | | | | | |
|
gm-plane-assit | | | | | | 92.27 221 | 79.64 180 | | | 84.47 149 | | 95.15 155 | | 97.93 148 | 85.81 144 | | |
|
TEST9 | | | | | | 98.64 35 | 83.71 86 | 97.82 57 | 96.65 74 | 84.29 155 | 95.16 29 | 98.09 46 | 84.39 37 | 99.36 75 | | | |
|
test_8 | | | | | | 98.63 37 | 83.64 89 | 97.81 59 | 96.63 79 | 84.50 147 | 95.10 31 | 98.11 45 | 84.33 38 | 99.23 81 | | | |
|
agg_prior | | | | | | 98.59 39 | 83.13 99 | | 96.56 88 | | 94.19 48 | | | 99.16 94 | | | |
|
test_prior4 | | | | | | | 82.34 114 | 97.75 66 | | | | | | | | | |
|
test_prior | | | | | 93.09 84 | 98.68 29 | 81.91 121 | | 96.40 109 | | | | | 99.06 102 | | | 98.29 65 |
|
旧先验2 | | | | | | | | 96.97 133 | | 74.06 307 | 96.10 20 | | | 97.76 157 | 88.38 127 | | |
|
新几何2 | | | | | | | | 96.42 171 | | | | | | | | | |
|
无先验 | | | | | | | | 96.87 139 | 96.78 49 | 77.39 281 | | | | 99.52 58 | 79.95 199 | | 98.43 56 |
|
原ACMM2 | | | | | | | | 96.84 140 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 63 | 76.45 234 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 58 | | | | |
|
testdata1 | | | | | | | | 95.57 213 | | 87.44 82 | | | | | | | |
|
plane_prior7 | | | | | | 91.86 241 | 77.55 240 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 236 | 77.92 230 | | | | | | 64.77 240 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 179 | | | | | |
|
plane_prior3 | | | | | | | 77.75 236 | | | 90.17 36 | 81.33 202 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 109 | | 89.89 39 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 239 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 371 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 96 | | | | | | | | |
|
door | | | | | | | | | 80.13 370 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 207 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 231 | | 97.63 73 | | 90.52 29 | 82.30 188 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 231 | | 97.63 73 | | 90.52 29 | 82.30 188 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 132 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 188 | | | 97.32 180 | | | 91.13 232 |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 234 | | | | |
|
NP-MVS | | | | | | 92.04 235 | 78.22 217 | | | | | 94.56 169 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 130 | 86.80 335 | | 80.65 224 | 85.65 150 | | 74.26 168 | | 76.52 233 | | 96.98 151 |
|
Test By Simon | | | | | | | | | | | | | 71.65 195 | | | | |
|