MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 48 | 82.99 111 | 52.71 124 | 85.04 121 | 88.63 33 | 66.08 55 | 86.77 3 | 92.75 22 | 72.05 1 | 91.46 61 | 83.35 8 | 93.53 1 | 92.23 32 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 175 | 59.50 5 | 92.24 8 | 90.72 9 | 69.37 23 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 29 | 74.02 66 | 93.25 2 | 94.80 1 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 1 | 92.55 3 | 94.06 3 |
|
DVP-MVS++ | | | 82.44 2 | 82.38 4 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 124 | 88.88 24 | 58.00 187 | 83.60 6 | 93.39 12 | 67.21 2 | 96.39 4 | 81.64 17 | 91.98 4 | 93.98 5 |
|
PC_three_1452 | | | | | | | | | | 66.58 46 | 87.27 2 | 93.70 8 | 66.82 4 | 94.95 17 | 89.74 2 | 91.98 4 | 93.98 5 |
|
MVP-Stereo | | | 70.97 121 | 70.44 110 | 72.59 190 | 76.03 241 | 51.36 152 | 85.02 123 | 86.99 61 | 60.31 141 | 56.53 240 | 78.92 226 | 40.11 155 | 90.00 102 | 60.00 157 | 90.01 6 | 76.41 303 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
DELS-MVS | | | 82.32 4 | 82.50 3 | 81.79 11 | 86.80 42 | 56.89 25 | 92.77 2 | 86.30 74 | 77.83 1 | 77.88 24 | 92.13 30 | 60.24 6 | 94.78 19 | 78.97 30 | 89.61 7 | 93.69 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS++ |  | | 80.50 12 | 80.71 12 | 79.88 32 | 87.34 39 | 55.20 60 | 89.93 27 | 87.55 55 | 66.04 58 | 79.46 21 | 93.00 21 | 53.10 31 | 91.76 55 | 80.40 23 | 89.56 8 | 92.68 24 |
|
MVS | | | 76.91 40 | 75.48 50 | 81.23 18 | 84.56 73 | 55.21 59 | 80.23 237 | 91.64 2 | 58.65 177 | 65.37 118 | 91.48 47 | 45.72 86 | 95.05 16 | 72.11 77 | 89.52 9 | 93.44 9 |
|
SMA-MVS |  | | 79.10 19 | 78.76 19 | 80.12 28 | 84.42 75 | 55.87 45 | 87.58 62 | 86.76 65 | 61.48 123 | 80.26 18 | 93.10 17 | 46.53 77 | 92.41 42 | 79.97 24 | 88.77 10 | 92.08 36 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
3Dnovator | | 64.70 6 | 74.46 70 | 72.48 79 | 80.41 23 | 82.84 117 | 55.40 54 | 83.08 181 | 88.61 35 | 67.61 40 | 59.85 179 | 88.66 102 | 34.57 221 | 93.97 23 | 58.42 168 | 88.70 11 | 91.85 44 |
|
PHI-MVS | | | 77.49 33 | 77.00 35 | 78.95 43 | 85.33 61 | 50.69 161 | 88.57 46 | 88.59 36 | 58.14 184 | 73.60 44 | 93.31 14 | 43.14 120 | 93.79 26 | 73.81 67 | 88.53 12 | 92.37 29 |
|
CSCG | | | 80.41 13 | 79.72 13 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 38 | 91.54 3 | 59.19 163 | 71.82 67 | 90.05 77 | 59.72 9 | 96.04 10 | 78.37 35 | 88.40 13 | 93.75 7 |
|
MS-PatchMatch | | | 72.34 100 | 71.26 101 | 75.61 126 | 82.38 127 | 55.55 48 | 88.00 51 | 89.95 14 | 65.38 64 | 56.51 241 | 80.74 211 | 32.28 242 | 92.89 31 | 57.95 177 | 88.10 14 | 78.39 281 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 9 | 88.87 26 | 70.31 17 | 77.64 26 | 93.87 7 | 52.58 34 | 93.91 25 | 84.17 5 | 87.92 15 | 92.39 28 |
|
GG-mvs-BLEND | | | | | 77.77 74 | 86.68 43 | 50.61 162 | 68.67 312 | 88.45 39 | | 68.73 88 | 87.45 124 | 59.15 10 | 90.67 83 | 54.83 200 | 87.67 16 | 92.03 38 |
|
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 17 | 56.89 25 | 92.48 3 | 88.94 22 | 57.50 201 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 13 | 87.60 17 | 94.06 3 |
|
IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 5 | 66.22 51 | 88.26 1 | | | | 82.83 9 | 87.60 17 | 92.44 27 |
|
test_241102_TWO | | | | | | | | | 88.76 30 | 57.50 201 | 83.60 6 | 94.09 3 | 56.14 18 | 96.37 6 | 82.28 13 | 87.43 19 | 92.55 25 |
|
DVP-MVS |  | | 81.30 8 | 81.00 11 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 13 | 57.71 195 | 81.91 12 | 93.64 10 | 55.17 20 | 96.44 2 | 81.68 15 | 87.13 20 | 92.72 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 24 | | | | | 96.39 4 | 81.68 15 | 87.13 20 | 92.47 26 |
|
ACMMP_NAP | | | 76.43 48 | 75.66 48 | 78.73 50 | 81.92 132 | 54.67 77 | 84.06 152 | 85.35 92 | 61.10 128 | 72.99 52 | 91.50 46 | 40.25 151 | 91.00 73 | 76.84 45 | 86.98 22 | 90.51 77 |
|
test_0728_THIRD | | | | | | | | | | 58.00 187 | 81.91 12 | 93.64 10 | 56.54 15 | 96.44 2 | 81.64 17 | 86.86 23 | 92.23 32 |
|
SF-MVS | | | 77.64 32 | 77.42 31 | 78.32 65 | 83.75 89 | 52.47 129 | 86.63 83 | 87.80 47 | 58.78 175 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 63 | 78.18 39 | 86.85 24 | 91.15 64 |
|
MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 19 | 86.80 25 | 92.34 30 |
|
No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 19 | 86.80 25 | 92.34 30 |
|
PAPM | | | 76.76 45 | 76.07 46 | 78.81 47 | 80.20 173 | 59.11 6 | 86.86 80 | 86.23 75 | 68.60 26 | 70.18 83 | 88.84 100 | 51.57 39 | 87.16 183 | 65.48 112 | 86.68 27 | 90.15 85 |
|
gg-mvs-nofinetune | | | 67.43 186 | 64.53 211 | 76.13 116 | 85.95 47 | 47.79 233 | 64.38 322 | 88.28 41 | 39.34 325 | 66.62 101 | 41.27 357 | 58.69 13 | 89.00 125 | 49.64 235 | 86.62 28 | 91.59 49 |
|
MAR-MVS | | | 76.76 45 | 75.60 49 | 80.21 25 | 90.87 7 | 54.68 76 | 89.14 39 | 89.11 19 | 62.95 99 | 70.54 81 | 92.33 28 | 41.05 144 | 94.95 17 | 57.90 178 | 86.55 29 | 91.00 67 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + MP. | | | 78.31 25 | 78.26 21 | 78.48 59 | 81.33 150 | 56.31 37 | 81.59 214 | 86.41 71 | 69.61 22 | 81.72 14 | 88.16 113 | 55.09 22 | 88.04 161 | 74.12 65 | 86.31 30 | 91.09 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PS-MVSNAJ | | | 80.06 14 | 79.52 15 | 81.68 13 | 85.58 55 | 60.97 3 | 91.69 10 | 87.02 60 | 70.62 14 | 80.75 17 | 93.22 16 | 37.77 173 | 92.50 40 | 82.75 10 | 86.25 31 | 91.57 51 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 11 | 81.56 9 | 77.94 73 | 85.46 58 | 49.56 190 | 90.99 19 | 86.66 68 | 70.58 15 | 80.07 19 | 95.30 1 | 56.18 17 | 90.97 76 | 82.57 12 | 86.22 32 | 93.28 12 |
|
test12 | | | | | 79.24 37 | 86.89 41 | 56.08 40 | | 85.16 103 | | 72.27 64 | | 47.15 70 | 91.10 71 | | 85.93 33 | 90.54 76 |
|
MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 27 | 93.09 19 | 54.15 27 | 95.57 12 | 85.80 3 | 85.87 34 | 93.31 11 |
|
xiu_mvs_v2_base | | | 79.86 15 | 79.31 16 | 81.53 14 | 85.03 67 | 60.73 4 | 91.65 11 | 86.86 63 | 70.30 18 | 80.77 16 | 93.07 20 | 37.63 178 | 92.28 45 | 82.73 11 | 85.71 35 | 91.57 51 |
|
DPE-MVS |  | | 79.82 16 | 79.66 14 | 80.29 24 | 89.27 24 | 55.08 65 | 88.70 44 | 87.92 46 | 55.55 231 | 81.21 15 | 93.69 9 | 56.51 16 | 94.27 22 | 78.36 36 | 85.70 36 | 91.51 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
9.14 | | | | 78.19 23 | | 85.67 53 | | 88.32 48 | 88.84 27 | 59.89 146 | 74.58 38 | 92.62 25 | 46.80 73 | 92.66 37 | 81.40 21 | 85.62 37 | |
|
test_prior2 | | | | | | | | 89.04 40 | | 61.88 116 | 73.55 45 | 91.46 48 | 48.01 63 | | 74.73 59 | 85.46 38 | |
|
test9_res | | | | | | | | | | | | | | | 78.72 34 | 85.44 39 | 91.39 57 |
|
train_agg | | | 76.91 40 | 76.40 42 | 78.45 61 | 85.68 51 | 55.42 51 | 87.59 60 | 84.00 133 | 57.84 192 | 72.99 52 | 90.98 52 | 44.99 94 | 88.58 139 | 78.19 37 | 85.32 40 | 91.34 61 |
|
ZNCC-MVS | | | 75.82 59 | 75.02 57 | 78.23 66 | 83.88 87 | 53.80 92 | 86.91 79 | 86.05 78 | 59.71 149 | 67.85 94 | 90.55 61 | 42.23 129 | 91.02 72 | 72.66 75 | 85.29 41 | 89.87 93 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 28 | 77.63 28 | 79.13 41 | 88.52 27 | 55.12 62 | 89.95 26 | 85.98 79 | 68.31 27 | 71.33 74 | 92.75 22 | 45.52 89 | 90.37 91 | 71.15 79 | 85.14 42 | 91.91 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior2 | | | | | | | | | | | | | | | 75.65 51 | 85.11 43 | 91.01 66 |
|
原ACMM1 | | | | | 76.13 116 | 84.89 69 | 54.59 79 | | 85.26 98 | 51.98 260 | 66.70 99 | 87.07 131 | 40.15 154 | 89.70 110 | 51.23 226 | 85.06 44 | 84.10 194 |
|
MP-MVS-pluss | | | 75.54 61 | 75.03 56 | 77.04 92 | 81.37 149 | 52.65 126 | 84.34 143 | 84.46 122 | 61.16 126 | 69.14 85 | 91.76 39 | 39.98 157 | 88.99 127 | 78.19 37 | 84.89 45 | 89.48 99 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CANet | | | 80.90 9 | 81.17 10 | 80.09 30 | 87.62 37 | 54.21 86 | 91.60 12 | 86.47 70 | 73.13 6 | 79.89 20 | 93.10 17 | 49.88 54 | 92.98 30 | 84.09 7 | 84.75 46 | 93.08 16 |
|
CS-MVS-test | | | 77.20 36 | 77.25 33 | 77.05 91 | 84.60 72 | 49.04 201 | 89.42 34 | 85.83 82 | 65.90 59 | 72.85 55 | 91.98 37 | 45.10 92 | 91.27 64 | 75.02 58 | 84.56 47 | 90.84 70 |
|
MG-MVS | | | 78.42 22 | 76.99 36 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 27 | 88.51 38 | 64.83 71 | 73.52 46 | 88.09 114 | 48.07 61 | 92.19 46 | 62.24 134 | 84.53 48 | 91.53 53 |
|
CDPH-MVS | | | 76.05 54 | 75.19 54 | 78.62 55 | 86.51 44 | 54.98 68 | 87.32 66 | 84.59 120 | 58.62 178 | 70.75 79 | 90.85 57 | 43.10 122 | 90.63 86 | 70.50 83 | 84.51 49 | 90.24 81 |
|
DeepC-MVS | | 67.15 4 | 76.90 42 | 76.27 44 | 78.80 48 | 80.70 164 | 55.02 66 | 86.39 85 | 86.71 66 | 66.96 44 | 67.91 93 | 89.97 79 | 48.03 62 | 91.41 62 | 75.60 52 | 84.14 50 | 89.96 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NCCC | | | 79.57 17 | 79.23 17 | 80.59 20 | 89.50 15 | 56.99 23 | 91.38 14 | 88.17 42 | 67.71 38 | 73.81 43 | 92.75 22 | 46.88 72 | 93.28 28 | 78.79 33 | 84.07 51 | 91.50 55 |
|
OpenMVS |  | 61.00 11 | 69.99 139 | 67.55 157 | 77.30 85 | 78.37 208 | 54.07 90 | 84.36 142 | 85.76 83 | 57.22 206 | 56.71 237 | 87.67 121 | 30.79 255 | 92.83 33 | 43.04 273 | 84.06 52 | 85.01 183 |
|
SteuartSystems-ACMMP | | | 77.08 38 | 76.33 43 | 79.34 36 | 80.98 154 | 55.31 55 | 89.76 31 | 86.91 62 | 62.94 100 | 71.65 68 | 91.56 45 | 42.33 127 | 92.56 39 | 77.14 44 | 83.69 53 | 90.15 85 |
Skip Steuart: Steuart Systems R&D Blog. |
GST-MVS | | | 74.87 69 | 73.90 69 | 77.77 74 | 83.30 99 | 53.45 102 | 85.75 100 | 85.29 96 | 59.22 162 | 66.50 105 | 89.85 81 | 40.94 145 | 90.76 81 | 70.94 81 | 83.35 54 | 89.10 107 |
|
APDe-MVS | | | 78.44 21 | 78.20 22 | 79.19 38 | 88.56 26 | 54.55 80 | 89.76 31 | 87.77 50 | 55.91 226 | 78.56 23 | 92.49 26 | 48.20 60 | 92.65 38 | 79.49 25 | 83.04 55 | 90.39 78 |
|
EPNet | | | 78.36 24 | 78.49 20 | 77.97 71 | 85.49 57 | 52.04 136 | 89.36 36 | 84.07 132 | 73.22 5 | 77.03 28 | 91.72 40 | 49.32 58 | 90.17 100 | 73.46 70 | 82.77 56 | 91.69 46 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
API-MVS | | | 74.17 74 | 72.07 91 | 80.49 21 | 90.02 11 | 58.55 8 | 87.30 68 | 84.27 126 | 57.51 200 | 65.77 115 | 87.77 120 | 41.61 140 | 95.97 11 | 51.71 223 | 82.63 57 | 86.94 147 |
|
CS-MVS | | | 76.77 44 | 76.70 39 | 76.99 96 | 83.55 91 | 48.75 209 | 88.60 45 | 85.18 101 | 66.38 48 | 72.47 61 | 91.62 43 | 45.53 88 | 90.99 75 | 74.48 61 | 82.51 58 | 91.23 62 |
|
MSLP-MVS++ | | | 74.21 73 | 72.25 85 | 80.11 29 | 81.45 147 | 56.47 33 | 86.32 87 | 79.65 208 | 58.19 183 | 66.36 106 | 92.29 29 | 36.11 204 | 90.66 84 | 67.39 97 | 82.49 59 | 93.18 15 |
|
MTAPA | | | 72.73 93 | 71.22 102 | 77.27 87 | 81.54 144 | 53.57 97 | 67.06 318 | 81.31 181 | 59.41 156 | 68.39 90 | 90.96 54 | 36.07 206 | 89.01 124 | 73.80 68 | 82.45 60 | 89.23 102 |
|
MP-MVS |  | | 74.99 68 | 74.33 65 | 76.95 98 | 82.89 115 | 53.05 118 | 85.63 104 | 83.50 144 | 57.86 191 | 67.25 97 | 90.24 69 | 43.38 117 | 88.85 133 | 76.03 47 | 82.23 61 | 88.96 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EIA-MVS | | | 75.92 55 | 75.18 55 | 78.13 68 | 85.14 64 | 51.60 146 | 87.17 72 | 85.32 94 | 64.69 72 | 68.56 89 | 90.53 62 | 45.79 85 | 91.58 58 | 67.21 99 | 82.18 62 | 91.20 63 |
|
3Dnovator+ | | 62.71 7 | 72.29 102 | 70.50 109 | 77.65 77 | 83.40 97 | 51.29 155 | 87.32 66 | 86.40 72 | 59.01 170 | 58.49 209 | 88.32 110 | 32.40 240 | 91.27 64 | 57.04 187 | 82.15 63 | 90.38 79 |
|
DROMVSNet | | | 75.30 62 | 75.20 53 | 75.62 125 | 80.98 154 | 49.00 202 | 87.43 63 | 84.68 118 | 63.49 93 | 70.97 78 | 90.15 75 | 42.86 124 | 91.14 70 | 74.33 63 | 81.90 64 | 86.71 156 |
|
CHOSEN 1792x2688 | | | 76.24 50 | 74.03 68 | 82.88 1 | 83.09 106 | 62.84 2 | 85.73 102 | 85.39 90 | 69.79 20 | 64.87 125 | 83.49 172 | 41.52 142 | 93.69 27 | 70.55 82 | 81.82 65 | 92.12 35 |
|
APD-MVS |  | | 76.15 52 | 75.68 47 | 77.54 79 | 88.52 27 | 53.44 103 | 87.26 71 | 85.03 107 | 53.79 247 | 74.91 34 | 91.68 42 | 43.80 107 | 90.31 94 | 74.36 62 | 81.82 65 | 88.87 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZD-MVS | | | | | | 89.55 14 | 53.46 100 | | 84.38 123 | 57.02 209 | 73.97 42 | 91.03 50 | 44.57 102 | 91.17 68 | 75.41 56 | 81.78 67 | |
|
QAPM | | | 71.88 107 | 69.33 130 | 79.52 33 | 82.20 129 | 54.30 84 | 86.30 88 | 88.77 29 | 56.61 219 | 59.72 181 | 87.48 123 | 33.90 227 | 95.36 13 | 47.48 250 | 81.49 68 | 88.90 110 |
|
PVSNet_Blended | | | 76.53 47 | 76.54 40 | 76.50 106 | 85.91 48 | 51.83 142 | 88.89 42 | 84.24 129 | 67.82 36 | 69.09 86 | 89.33 92 | 46.70 75 | 88.13 157 | 75.43 53 | 81.48 69 | 89.55 97 |
|
ETV-MVS | | | 77.17 37 | 76.74 38 | 78.48 59 | 81.80 134 | 54.55 80 | 86.13 91 | 85.33 93 | 68.20 29 | 73.10 51 | 90.52 63 | 45.23 91 | 90.66 84 | 79.37 26 | 80.95 70 | 90.22 82 |
|
HFP-MVS | | | 74.37 71 | 73.13 74 | 78.10 69 | 84.30 77 | 53.68 95 | 85.58 105 | 84.36 124 | 56.82 213 | 65.78 114 | 90.56 60 | 40.70 149 | 90.90 77 | 69.18 88 | 80.88 71 | 89.71 94 |
|
ACMMPR | | | 73.76 79 | 72.61 76 | 77.24 89 | 83.92 85 | 52.96 121 | 85.58 105 | 84.29 125 | 56.82 213 | 65.12 119 | 90.45 64 | 37.24 188 | 90.18 99 | 69.18 88 | 80.84 72 | 88.58 119 |
|
region2R | | | 73.75 80 | 72.55 78 | 77.33 83 | 83.90 86 | 52.98 120 | 85.54 108 | 84.09 131 | 56.83 212 | 65.10 120 | 90.45 64 | 37.34 186 | 90.24 97 | 68.89 90 | 80.83 73 | 88.77 115 |
|
MVS_Test | | | 75.85 56 | 74.93 59 | 78.62 55 | 84.08 81 | 55.20 60 | 83.99 154 | 85.17 102 | 68.07 32 | 73.38 48 | 82.76 182 | 50.44 49 | 89.00 125 | 65.90 108 | 80.61 74 | 91.64 47 |
|
Vis-MVSNet |  | | 70.61 128 | 69.34 129 | 74.42 148 | 80.95 159 | 48.49 217 | 86.03 94 | 77.51 251 | 58.74 176 | 65.55 117 | 87.78 119 | 34.37 222 | 85.95 222 | 52.53 221 | 80.61 74 | 88.80 113 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
XVS | | | 72.92 90 | 71.62 95 | 76.81 100 | 83.41 94 | 52.48 127 | 84.88 128 | 83.20 151 | 58.03 185 | 63.91 141 | 89.63 85 | 35.50 211 | 89.78 107 | 65.50 110 | 80.50 76 | 88.16 124 |
|
X-MVStestdata | | | 65.85 215 | 62.20 222 | 76.81 100 | 83.41 94 | 52.48 127 | 84.88 128 | 83.20 151 | 58.03 185 | 63.91 141 | 4.82 376 | 35.50 211 | 89.78 107 | 65.50 110 | 80.50 76 | 88.16 124 |
|
patch_mono-2 | | | 80.84 10 | 81.59 8 | 78.62 55 | 90.34 9 | 53.77 93 | 88.08 50 | 88.36 40 | 76.17 2 | 79.40 22 | 91.09 49 | 55.43 19 | 90.09 101 | 85.01 4 | 80.40 78 | 91.99 41 |
|
dcpmvs_2 | | | 79.33 18 | 78.94 18 | 80.49 21 | 89.75 12 | 56.54 31 | 84.83 130 | 83.68 139 | 67.85 35 | 69.36 84 | 90.24 69 | 60.20 7 | 92.10 50 | 84.14 6 | 80.40 78 | 92.82 20 |
|
新几何1 | | | | | 73.30 178 | 83.10 104 | 53.48 99 | | 71.43 309 | 45.55 301 | 66.14 108 | 87.17 129 | 33.88 228 | 80.54 274 | 48.50 244 | 80.33 80 | 85.88 170 |
|
PGM-MVS | | | 72.60 95 | 71.20 103 | 76.80 103 | 82.95 112 | 52.82 123 | 83.07 182 | 82.14 165 | 56.51 221 | 63.18 150 | 89.81 82 | 35.68 210 | 89.76 109 | 67.30 98 | 80.19 81 | 87.83 132 |
|
MVSFormer | | | 73.53 83 | 72.19 88 | 77.57 78 | 83.02 109 | 55.24 57 | 81.63 211 | 81.44 179 | 50.28 271 | 76.67 29 | 90.91 55 | 44.82 99 | 86.11 212 | 60.83 145 | 80.09 82 | 91.36 59 |
|
lupinMVS | | | 78.38 23 | 78.11 24 | 79.19 38 | 83.02 109 | 55.24 57 | 91.57 13 | 84.82 112 | 69.12 24 | 76.67 29 | 92.02 34 | 44.82 99 | 90.23 98 | 80.83 22 | 80.09 82 | 92.08 36 |
|
HPM-MVS |  | | 72.60 95 | 71.50 97 | 75.89 122 | 82.02 130 | 51.42 151 | 80.70 231 | 83.05 153 | 56.12 225 | 64.03 139 | 89.53 86 | 37.55 180 | 88.37 147 | 70.48 84 | 80.04 84 | 87.88 131 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 76.39 49 | 75.38 52 | 79.42 35 | 85.33 61 | 56.47 33 | 88.15 49 | 84.97 108 | 65.15 69 | 66.06 110 | 89.88 80 | 43.79 108 | 92.16 47 | 75.03 57 | 80.03 85 | 89.64 96 |
|
TSAR-MVS + GP. | | | 77.82 30 | 77.59 29 | 78.49 58 | 85.25 63 | 50.27 177 | 90.02 24 | 90.57 10 | 56.58 220 | 74.26 40 | 91.60 44 | 54.26 25 | 92.16 47 | 75.87 49 | 79.91 86 | 93.05 17 |
|
LFMVS | | | 78.52 20 | 77.14 34 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 17 | 88.05 44 | 63.22 96 | 74.63 36 | 90.83 58 | 41.38 143 | 94.40 20 | 75.42 55 | 79.90 87 | 94.72 2 |
|
casdiffmvs_mvg |  | | 77.75 31 | 77.28 32 | 79.16 40 | 80.42 171 | 54.44 82 | 87.76 56 | 85.46 87 | 71.67 9 | 71.38 73 | 88.35 108 | 51.58 38 | 91.22 66 | 79.02 29 | 79.89 88 | 91.83 45 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Effi-MVS+ | | | 75.24 63 | 73.61 70 | 80.16 27 | 81.92 132 | 57.42 19 | 85.21 113 | 76.71 266 | 60.68 137 | 73.32 49 | 89.34 90 | 47.30 68 | 91.63 57 | 68.28 93 | 79.72 89 | 91.42 56 |
|
test2506 | | | 72.91 91 | 72.43 81 | 74.32 152 | 80.12 175 | 44.18 280 | 83.19 178 | 84.77 115 | 64.02 79 | 65.97 111 | 87.43 125 | 47.67 65 | 88.72 134 | 59.08 159 | 79.66 90 | 90.08 87 |
|
ECVR-MVS |  | | 71.81 108 | 71.00 105 | 74.26 154 | 80.12 175 | 43.49 285 | 84.69 134 | 82.16 164 | 64.02 79 | 64.64 127 | 87.43 125 | 35.04 217 | 89.21 118 | 61.24 142 | 79.66 90 | 90.08 87 |
|
PAPM_NR | | | 71.80 109 | 69.98 120 | 77.26 88 | 81.54 144 | 53.34 108 | 78.60 252 | 85.25 99 | 53.46 249 | 60.53 176 | 88.66 102 | 45.69 87 | 89.24 117 | 56.49 191 | 79.62 92 | 89.19 104 |
|
jason | | | 77.01 39 | 76.45 41 | 78.69 52 | 79.69 180 | 54.74 72 | 90.56 22 | 83.99 135 | 68.26 28 | 74.10 41 | 90.91 55 | 42.14 131 | 89.99 103 | 79.30 27 | 79.12 93 | 91.36 59 |
jason: jason. |
CANet_DTU | | | 73.71 81 | 73.14 72 | 75.40 130 | 82.61 124 | 50.05 179 | 84.67 137 | 79.36 216 | 69.72 21 | 75.39 32 | 90.03 78 | 29.41 262 | 85.93 223 | 67.99 95 | 79.11 94 | 90.22 82 |
|
casdiffmvs |  | | 77.36 35 | 76.85 37 | 78.88 46 | 80.40 172 | 54.66 78 | 87.06 74 | 85.88 80 | 72.11 8 | 71.57 70 | 88.63 106 | 50.89 47 | 90.35 92 | 76.00 48 | 79.11 94 | 91.63 48 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
TESTMET0.1,1 | | | 72.86 92 | 72.33 82 | 74.46 146 | 81.98 131 | 50.77 159 | 85.13 116 | 85.47 86 | 66.09 54 | 67.30 96 | 83.69 170 | 37.27 187 | 83.57 252 | 65.06 120 | 78.97 96 | 89.05 108 |
|
SD-MVS | | | 76.18 51 | 74.85 60 | 80.18 26 | 85.39 59 | 56.90 24 | 85.75 100 | 82.45 163 | 56.79 215 | 74.48 39 | 91.81 38 | 43.72 111 | 90.75 82 | 74.61 60 | 78.65 97 | 92.91 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
baseline | | | 76.86 43 | 76.24 45 | 78.71 51 | 80.47 170 | 54.20 88 | 83.90 156 | 84.88 111 | 71.38 12 | 71.51 71 | 89.15 95 | 50.51 48 | 90.55 88 | 75.71 50 | 78.65 97 | 91.39 57 |
|
VNet | | | 77.99 29 | 77.92 26 | 78.19 67 | 87.43 38 | 50.12 178 | 90.93 20 | 91.41 4 | 67.48 41 | 75.12 33 | 90.15 75 | 46.77 74 | 91.00 73 | 73.52 69 | 78.46 99 | 93.44 9 |
|
test1111 | | | 71.06 119 | 70.42 111 | 72.97 183 | 79.48 182 | 41.49 304 | 84.82 131 | 82.74 159 | 64.20 77 | 62.98 153 | 87.43 125 | 35.20 214 | 87.92 163 | 58.54 165 | 78.42 100 | 89.49 98 |
|
旧先验1 | | | | | | 81.57 143 | 47.48 235 | | 71.83 304 | | | 88.66 102 | 36.94 192 | | | 78.34 101 | 88.67 116 |
|
mPP-MVS | | | 71.79 110 | 70.38 112 | 76.04 119 | 82.65 123 | 52.06 135 | 84.45 140 | 81.78 174 | 55.59 230 | 62.05 165 | 89.68 84 | 33.48 231 | 88.28 154 | 65.45 115 | 78.24 102 | 87.77 134 |
|
CP-MVS | | | 72.59 97 | 71.46 98 | 76.00 121 | 82.93 114 | 52.32 133 | 86.93 78 | 82.48 162 | 55.15 234 | 63.65 145 | 90.44 67 | 35.03 218 | 88.53 143 | 68.69 91 | 77.83 103 | 87.15 145 |
|
PVSNet_Blended_VisFu | | | 73.40 86 | 72.44 80 | 76.30 108 | 81.32 151 | 54.70 75 | 85.81 96 | 78.82 226 | 63.70 87 | 64.53 130 | 85.38 150 | 47.11 71 | 87.38 180 | 67.75 96 | 77.55 104 | 86.81 155 |
|
canonicalmvs | | | 78.17 26 | 77.86 27 | 79.12 42 | 84.30 77 | 54.22 85 | 87.71 57 | 84.57 121 | 67.70 39 | 77.70 25 | 92.11 33 | 50.90 45 | 89.95 104 | 78.18 39 | 77.54 105 | 93.20 14 |
|
1314 | | | 71.11 118 | 69.41 127 | 76.22 111 | 79.32 185 | 50.49 166 | 80.23 237 | 85.14 105 | 59.44 155 | 58.93 198 | 88.89 99 | 33.83 229 | 89.60 113 | 61.49 140 | 77.42 106 | 88.57 120 |
|
PAPR | | | 75.20 65 | 74.13 66 | 78.41 62 | 88.31 31 | 55.10 64 | 84.31 144 | 85.66 84 | 63.76 86 | 67.55 95 | 90.73 59 | 43.48 116 | 89.40 115 | 66.36 105 | 77.03 107 | 90.73 72 |
|
alignmvs | | | 78.08 27 | 77.98 25 | 78.39 63 | 83.53 92 | 53.22 112 | 89.77 30 | 85.45 88 | 66.11 53 | 76.59 31 | 91.99 36 | 54.07 28 | 89.05 122 | 77.34 43 | 77.00 108 | 92.89 19 |
|
test222 | | | | | | 79.36 183 | 50.97 158 | 77.99 255 | 67.84 323 | 42.54 320 | 62.84 155 | 86.53 138 | 30.26 257 | | | 76.91 109 | 85.23 179 |
|
PMMVS | | | 72.98 89 | 72.05 92 | 75.78 124 | 83.57 90 | 48.60 212 | 84.08 150 | 82.85 158 | 61.62 119 | 68.24 91 | 90.33 68 | 28.35 266 | 87.78 170 | 72.71 74 | 76.69 110 | 90.95 68 |
|
UGNet | | | 68.71 162 | 67.11 165 | 73.50 176 | 80.55 169 | 47.61 234 | 84.08 150 | 78.51 235 | 59.45 154 | 65.68 116 | 82.73 185 | 23.78 298 | 85.08 237 | 52.80 216 | 76.40 111 | 87.80 133 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
xiu_mvs_v1_base_debu | | | 71.60 111 | 70.29 114 | 75.55 127 | 77.26 223 | 53.15 113 | 85.34 109 | 79.37 213 | 55.83 227 | 72.54 57 | 90.19 72 | 22.38 306 | 86.66 198 | 73.28 71 | 76.39 112 | 86.85 151 |
|
xiu_mvs_v1_base | | | 71.60 111 | 70.29 114 | 75.55 127 | 77.26 223 | 53.15 113 | 85.34 109 | 79.37 213 | 55.83 227 | 72.54 57 | 90.19 72 | 22.38 306 | 86.66 198 | 73.28 71 | 76.39 112 | 86.85 151 |
|
xiu_mvs_v1_base_debi | | | 71.60 111 | 70.29 114 | 75.55 127 | 77.26 223 | 53.15 113 | 85.34 109 | 79.37 213 | 55.83 227 | 72.54 57 | 90.19 72 | 22.38 306 | 86.66 198 | 73.28 71 | 76.39 112 | 86.85 151 |
|
Fast-Effi-MVS+ | | | 72.73 93 | 71.15 104 | 77.48 80 | 82.75 119 | 54.76 71 | 86.77 81 | 80.64 190 | 63.05 98 | 65.93 112 | 84.01 163 | 44.42 103 | 89.03 123 | 56.45 194 | 76.36 115 | 88.64 117 |
|
VDD-MVS | | | 76.08 53 | 74.97 58 | 79.44 34 | 84.27 79 | 53.33 109 | 91.13 18 | 85.88 80 | 65.33 66 | 72.37 62 | 89.34 90 | 32.52 239 | 92.76 36 | 77.90 41 | 75.96 116 | 92.22 34 |
|
testdata | | | | | 67.08 272 | 77.59 217 | 45.46 265 | | 69.20 320 | 44.47 308 | 71.50 72 | 88.34 109 | 31.21 252 | 70.76 335 | 52.20 222 | 75.88 117 | 85.03 182 |
|
mvs_anonymous | | | 72.29 102 | 70.74 106 | 76.94 99 | 82.85 116 | 54.72 74 | 78.43 253 | 81.54 177 | 63.77 85 | 61.69 167 | 79.32 220 | 51.11 42 | 85.31 230 | 62.15 136 | 75.79 118 | 90.79 71 |
|
VDDNet | | | 74.37 71 | 72.13 89 | 81.09 19 | 79.58 181 | 56.52 32 | 90.02 24 | 86.70 67 | 52.61 256 | 71.23 75 | 87.20 128 | 31.75 249 | 93.96 24 | 74.30 64 | 75.77 119 | 92.79 22 |
|
diffmvs |  | | 75.11 67 | 74.65 63 | 76.46 107 | 78.52 204 | 53.35 107 | 83.28 177 | 79.94 200 | 70.51 16 | 71.64 69 | 88.72 101 | 46.02 82 | 86.08 217 | 77.52 42 | 75.75 120 | 89.96 90 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
IS-MVSNet | | | 68.80 160 | 67.55 157 | 72.54 191 | 78.50 205 | 43.43 286 | 81.03 225 | 79.35 217 | 59.12 168 | 57.27 232 | 86.71 135 | 46.05 81 | 87.70 172 | 44.32 268 | 75.60 121 | 86.49 159 |
|
WTY-MVS | | | 77.47 34 | 77.52 30 | 77.30 85 | 88.33 30 | 46.25 255 | 88.46 47 | 90.32 11 | 71.40 11 | 72.32 63 | 91.72 40 | 53.44 29 | 92.37 43 | 66.28 106 | 75.42 122 | 93.28 12 |
|
Vis-MVSNet (Re-imp) | | | 65.52 216 | 65.63 193 | 65.17 288 | 77.49 219 | 30.54 343 | 75.49 271 | 77.73 247 | 59.34 158 | 52.26 276 | 86.69 136 | 49.38 57 | 80.53 275 | 37.07 293 | 75.28 123 | 84.42 190 |
|
test-LLR | | | 69.65 147 | 69.01 134 | 71.60 215 | 78.67 199 | 48.17 224 | 85.13 116 | 79.72 205 | 59.18 165 | 63.13 151 | 82.58 187 | 36.91 193 | 80.24 278 | 60.56 149 | 75.17 124 | 86.39 162 |
|
test-mter | | | 68.36 167 | 67.29 161 | 71.60 215 | 78.67 199 | 48.17 224 | 85.13 116 | 79.72 205 | 53.38 250 | 63.13 151 | 82.58 187 | 27.23 276 | 80.24 278 | 60.56 149 | 75.17 124 | 86.39 162 |
|
PVSNet | | 62.49 8 | 69.27 151 | 67.81 152 | 73.64 172 | 84.41 76 | 51.85 141 | 84.63 138 | 77.80 245 | 66.42 47 | 59.80 180 | 84.95 154 | 22.14 311 | 80.44 276 | 55.03 199 | 75.11 126 | 88.62 118 |
|
test_yl | | | 75.85 56 | 74.83 61 | 78.91 44 | 88.08 34 | 51.94 138 | 91.30 15 | 89.28 16 | 57.91 189 | 71.19 76 | 89.20 93 | 42.03 134 | 92.77 34 | 69.41 86 | 75.07 127 | 92.01 39 |
|
DCV-MVSNet | | | 75.85 56 | 74.83 61 | 78.91 44 | 88.08 34 | 51.94 138 | 91.30 15 | 89.28 16 | 57.91 189 | 71.19 76 | 89.20 93 | 42.03 134 | 92.77 34 | 69.41 86 | 75.07 127 | 92.01 39 |
|
BH-w/o | | | 70.02 137 | 68.51 138 | 74.56 144 | 82.77 118 | 50.39 170 | 86.60 84 | 78.14 241 | 59.77 148 | 59.65 182 | 85.57 148 | 39.27 162 | 87.30 181 | 49.86 233 | 74.94 129 | 85.99 166 |
|
SR-MVS | | | 70.92 123 | 69.73 123 | 74.50 145 | 83.38 98 | 50.48 167 | 84.27 145 | 79.35 217 | 48.96 281 | 66.57 104 | 90.45 64 | 33.65 230 | 87.11 184 | 66.42 103 | 74.56 130 | 85.91 169 |
|
UA-Net | | | 67.32 190 | 66.23 180 | 70.59 231 | 78.85 195 | 41.23 307 | 73.60 281 | 75.45 279 | 61.54 121 | 66.61 102 | 84.53 156 | 38.73 166 | 86.57 203 | 42.48 279 | 74.24 131 | 83.98 200 |
|
CDS-MVSNet | | | 70.48 130 | 69.43 126 | 73.64 172 | 77.56 218 | 48.83 208 | 83.51 166 | 77.45 252 | 63.27 95 | 62.33 160 | 85.54 149 | 43.85 105 | 83.29 256 | 57.38 186 | 74.00 132 | 88.79 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
BH-RMVSNet | | | 70.08 135 | 68.01 145 | 76.27 109 | 84.21 80 | 51.22 157 | 87.29 69 | 79.33 219 | 58.96 172 | 63.63 146 | 86.77 134 | 33.29 233 | 90.30 96 | 44.63 266 | 73.96 133 | 87.30 144 |
|
CLD-MVS | | | 75.60 60 | 75.39 51 | 76.24 110 | 80.69 165 | 52.40 130 | 90.69 21 | 86.20 76 | 74.40 4 | 65.01 123 | 88.93 97 | 42.05 133 | 90.58 87 | 76.57 46 | 73.96 133 | 85.73 171 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
APD-MVS_3200maxsize | | | 69.62 148 | 68.23 143 | 73.80 167 | 81.58 142 | 48.22 223 | 81.91 204 | 79.50 211 | 48.21 284 | 64.24 136 | 89.75 83 | 31.91 248 | 87.55 177 | 63.08 128 | 73.85 135 | 85.64 174 |
|
HPM-MVS_fast | | | 67.86 176 | 66.28 179 | 72.61 189 | 80.67 166 | 48.34 221 | 81.18 223 | 75.95 275 | 50.81 269 | 59.55 186 | 88.05 116 | 27.86 271 | 85.98 219 | 58.83 162 | 73.58 136 | 83.51 209 |
|
ACMMP |  | | 70.81 125 | 69.29 131 | 75.39 131 | 81.52 146 | 51.92 140 | 83.43 169 | 83.03 154 | 56.67 218 | 58.80 203 | 88.91 98 | 31.92 247 | 88.58 139 | 65.89 109 | 73.39 137 | 85.67 172 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP3-MVS | | | | | | | | | 83.68 139 | | | | | | | 73.12 138 | |
|
HQP-MVS | | | 72.34 100 | 71.44 99 | 75.03 138 | 79.02 191 | 51.56 147 | 88.00 51 | 83.68 139 | 65.45 60 | 64.48 131 | 85.13 151 | 37.35 184 | 88.62 137 | 66.70 101 | 73.12 138 | 84.91 185 |
|
TAMVS | | | 69.51 150 | 68.16 144 | 73.56 175 | 76.30 236 | 48.71 211 | 82.57 190 | 77.17 257 | 62.10 111 | 61.32 169 | 84.23 161 | 41.90 136 | 83.46 254 | 54.80 202 | 73.09 140 | 88.50 122 |
|
BH-untuned | | | 68.28 170 | 66.40 175 | 73.91 162 | 81.62 139 | 50.01 180 | 85.56 107 | 77.39 253 | 57.63 197 | 57.47 229 | 83.69 170 | 36.36 202 | 87.08 185 | 44.81 264 | 73.08 141 | 84.65 187 |
|
plane_prior | | | | | | | 49.57 188 | 87.43 63 | | 64.57 73 | | | | | | 72.84 142 | |
|
PCF-MVS | | 61.03 10 | 70.10 134 | 68.40 140 | 75.22 137 | 77.15 227 | 51.99 137 | 79.30 248 | 82.12 166 | 56.47 222 | 61.88 166 | 86.48 140 | 43.98 104 | 87.24 182 | 55.37 198 | 72.79 143 | 86.43 161 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HY-MVS | | 67.03 5 | 73.90 77 | 73.14 72 | 76.18 115 | 84.70 71 | 47.36 238 | 75.56 268 | 86.36 73 | 66.27 50 | 70.66 80 | 83.91 165 | 51.05 43 | 89.31 116 | 67.10 100 | 72.61 144 | 91.88 43 |
|
DP-MVS Recon | | | 71.99 106 | 70.31 113 | 77.01 94 | 90.65 8 | 53.44 103 | 89.37 35 | 82.97 156 | 56.33 223 | 63.56 148 | 89.47 87 | 34.02 225 | 92.15 49 | 54.05 206 | 72.41 145 | 85.43 178 |
|
HQP_MVS | | | 70.96 122 | 69.91 121 | 74.12 157 | 77.95 212 | 49.57 188 | 85.76 98 | 82.59 160 | 63.60 90 | 62.15 163 | 83.28 176 | 36.04 207 | 88.30 152 | 65.46 113 | 72.34 146 | 84.49 188 |
|
plane_prior5 | | | | | | | | | 82.59 160 | | | | | 88.30 152 | 65.46 113 | 72.34 146 | 84.49 188 |
|
MVS_111021_LR | | | 69.07 152 | 67.91 146 | 72.54 191 | 77.27 222 | 49.56 190 | 79.77 241 | 73.96 291 | 59.33 160 | 60.73 174 | 87.82 118 | 30.19 258 | 81.53 264 | 69.94 85 | 72.19 148 | 86.53 158 |
|
SR-MVS-dyc-post | | | 68.27 171 | 66.87 166 | 72.48 194 | 80.96 156 | 48.14 226 | 81.54 215 | 76.98 260 | 46.42 296 | 62.75 156 | 89.42 88 | 31.17 253 | 86.09 216 | 60.52 151 | 72.06 149 | 83.19 216 |
|
RE-MVS-def | | | | 66.66 172 | | 80.96 156 | 48.14 226 | 81.54 215 | 76.98 260 | 46.42 296 | 62.75 156 | 89.42 88 | 29.28 264 | | 60.52 151 | 72.06 149 | 83.19 216 |
|
Anonymous202405211 | | | 70.11 133 | 67.88 148 | 76.79 104 | 87.20 40 | 47.24 242 | 89.49 33 | 77.38 254 | 54.88 239 | 66.14 108 | 86.84 133 | 20.93 316 | 91.54 59 | 56.45 194 | 71.62 151 | 91.59 49 |
|
EPMVS | | | 68.45 166 | 65.44 199 | 77.47 81 | 84.91 68 | 56.17 38 | 71.89 299 | 81.91 172 | 61.72 118 | 60.85 172 | 72.49 295 | 36.21 203 | 87.06 186 | 47.32 251 | 71.62 151 | 89.17 105 |
|
TR-MVS | | | 69.71 144 | 67.85 151 | 75.27 135 | 82.94 113 | 48.48 218 | 87.40 65 | 80.86 187 | 57.15 208 | 64.61 129 | 87.08 130 | 32.67 238 | 89.64 112 | 46.38 257 | 71.55 153 | 87.68 137 |
|
FA-MVS(test-final) | | | 69.00 155 | 66.60 174 | 76.19 114 | 83.48 93 | 47.96 232 | 74.73 275 | 82.07 167 | 57.27 205 | 62.18 162 | 78.47 230 | 36.09 205 | 92.89 31 | 53.76 209 | 71.32 154 | 87.73 135 |
|
OPM-MVS | | | 70.75 126 | 69.58 125 | 74.26 154 | 75.55 247 | 51.34 153 | 86.05 93 | 83.29 149 | 61.94 115 | 62.95 154 | 85.77 145 | 34.15 224 | 88.44 145 | 65.44 116 | 71.07 155 | 82.99 220 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
114514_t | | | 69.87 142 | 67.88 148 | 75.85 123 | 88.38 29 | 52.35 132 | 86.94 77 | 83.68 139 | 53.70 248 | 55.68 247 | 85.60 147 | 30.07 259 | 91.20 67 | 55.84 196 | 71.02 156 | 83.99 198 |
|
sss | | | 70.49 129 | 70.13 118 | 71.58 217 | 81.59 141 | 39.02 315 | 80.78 230 | 84.71 117 | 59.34 158 | 66.61 102 | 88.09 114 | 37.17 189 | 85.52 226 | 61.82 139 | 71.02 156 | 90.20 84 |
|
ET-MVSNet_ETH3D | | | 75.23 64 | 74.08 67 | 78.67 53 | 84.52 74 | 55.59 47 | 88.92 41 | 89.21 18 | 68.06 33 | 53.13 267 | 90.22 71 | 49.71 55 | 87.62 175 | 72.12 76 | 70.82 158 | 92.82 20 |
|
cascas | | | 69.01 154 | 66.13 182 | 77.66 76 | 79.36 183 | 55.41 53 | 86.99 75 | 83.75 138 | 56.69 217 | 58.92 199 | 81.35 205 | 24.31 296 | 92.10 50 | 53.23 210 | 70.61 159 | 85.46 177 |
|
GeoE | | | 69.96 140 | 67.88 148 | 76.22 111 | 81.11 153 | 51.71 145 | 84.15 148 | 76.74 265 | 59.83 147 | 60.91 171 | 84.38 157 | 41.56 141 | 88.10 159 | 51.67 224 | 70.57 160 | 88.84 112 |
|
iter_conf_final | | | 71.46 114 | 69.68 124 | 76.81 100 | 86.03 46 | 53.49 98 | 84.73 132 | 74.37 286 | 60.27 142 | 66.28 107 | 84.36 159 | 35.14 216 | 90.87 78 | 65.41 117 | 70.51 161 | 86.05 165 |
|
LCM-MVSNet-Re | | | 58.82 265 | 56.54 263 | 65.68 282 | 79.31 186 | 29.09 352 | 61.39 332 | 45.79 350 | 60.73 136 | 37.65 338 | 72.47 296 | 31.42 251 | 81.08 268 | 49.66 234 | 70.41 162 | 86.87 149 |
|
baseline2 | | | 75.15 66 | 74.54 64 | 76.98 97 | 81.67 137 | 51.74 144 | 83.84 157 | 91.94 1 | 69.97 19 | 58.98 196 | 86.02 142 | 59.73 8 | 91.73 56 | 68.37 92 | 70.40 163 | 87.48 139 |
|
AdaColmap |  | | 67.86 176 | 65.48 196 | 75.00 139 | 88.15 33 | 54.99 67 | 86.10 92 | 76.63 268 | 49.30 278 | 57.80 218 | 86.65 137 | 29.39 263 | 88.94 131 | 45.10 263 | 70.21 164 | 81.06 250 |
|
CPTT-MVS | | | 67.15 194 | 65.84 188 | 71.07 225 | 80.96 156 | 50.32 174 | 81.94 203 | 74.10 288 | 46.18 299 | 57.91 216 | 87.64 122 | 29.57 261 | 81.31 266 | 64.10 122 | 70.18 165 | 81.56 236 |
|
thisisatest0515 | | | 73.64 82 | 72.20 87 | 77.97 71 | 81.63 138 | 53.01 119 | 86.69 82 | 88.81 28 | 62.53 106 | 64.06 137 | 85.65 146 | 52.15 37 | 92.50 40 | 58.43 166 | 69.84 166 | 88.39 123 |
|
PatchmatchNet |  | | 67.07 197 | 63.63 217 | 77.40 82 | 83.10 104 | 58.03 9 | 72.11 297 | 77.77 246 | 58.85 173 | 59.37 189 | 70.83 308 | 37.84 172 | 84.93 239 | 42.96 275 | 69.83 167 | 89.26 101 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPP-MVSNet | | | 71.14 116 | 70.07 119 | 74.33 151 | 79.18 188 | 46.52 249 | 83.81 158 | 86.49 69 | 56.32 224 | 57.95 215 | 84.90 155 | 54.23 26 | 89.14 120 | 58.14 173 | 69.65 168 | 87.33 142 |
|
EPNet_dtu | | | 66.25 210 | 66.71 170 | 64.87 290 | 78.66 201 | 34.12 331 | 82.80 187 | 75.51 277 | 61.75 117 | 64.47 134 | 86.90 132 | 37.06 190 | 72.46 329 | 43.65 271 | 69.63 169 | 88.02 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MIMVSNet | | | 63.12 232 | 60.29 241 | 71.61 214 | 75.92 243 | 46.65 247 | 65.15 319 | 81.94 169 | 59.14 167 | 54.65 254 | 69.47 315 | 25.74 286 | 80.63 272 | 41.03 281 | 69.56 170 | 87.55 138 |
|
EI-MVSNet-Vis-set | | | 73.19 88 | 72.60 77 | 74.99 140 | 82.56 125 | 49.80 186 | 82.55 192 | 89.00 21 | 66.17 52 | 65.89 113 | 88.98 96 | 43.83 106 | 92.29 44 | 65.38 119 | 69.01 171 | 82.87 223 |
|
FIs | | | 70.00 138 | 70.24 117 | 69.30 249 | 77.93 214 | 38.55 318 | 83.99 154 | 87.72 52 | 66.86 45 | 57.66 222 | 84.17 162 | 52.28 35 | 85.31 230 | 52.72 220 | 68.80 172 | 84.02 196 |
|
CostFormer | | | 73.89 78 | 72.30 84 | 78.66 54 | 82.36 128 | 56.58 28 | 75.56 268 | 85.30 95 | 66.06 56 | 70.50 82 | 76.88 252 | 57.02 14 | 89.06 121 | 68.27 94 | 68.74 173 | 90.33 80 |
|
HyFIR lowres test | | | 69.94 141 | 67.58 155 | 77.04 92 | 77.11 228 | 57.29 20 | 81.49 219 | 79.11 222 | 58.27 182 | 58.86 201 | 80.41 212 | 42.33 127 | 86.96 189 | 61.91 137 | 68.68 174 | 86.87 149 |
|
1112_ss | | | 70.05 136 | 69.37 128 | 72.10 199 | 80.77 163 | 42.78 292 | 85.12 119 | 76.75 264 | 59.69 150 | 61.19 170 | 92.12 31 | 47.48 67 | 83.84 247 | 53.04 213 | 68.21 175 | 89.66 95 |
|
ab-mvs | | | 70.65 127 | 69.11 133 | 75.29 134 | 80.87 160 | 46.23 256 | 73.48 283 | 85.24 100 | 59.99 145 | 66.65 100 | 80.94 208 | 43.13 121 | 88.69 135 | 63.58 125 | 68.07 176 | 90.95 68 |
|
tpm2 | | | 70.82 124 | 68.44 139 | 77.98 70 | 80.78 162 | 56.11 39 | 74.21 279 | 81.28 183 | 60.24 143 | 68.04 92 | 75.27 270 | 52.26 36 | 88.50 144 | 55.82 197 | 68.03 177 | 89.33 100 |
|
EI-MVSNet-UG-set | | | 72.37 99 | 71.73 94 | 74.29 153 | 81.60 140 | 49.29 196 | 81.85 206 | 88.64 32 | 65.29 68 | 65.05 121 | 88.29 111 | 43.18 118 | 91.83 54 | 63.74 124 | 67.97 178 | 81.75 233 |
|
thres200 | | | 68.71 162 | 67.27 163 | 73.02 181 | 84.73 70 | 46.76 246 | 85.03 122 | 87.73 51 | 62.34 109 | 59.87 178 | 83.45 173 | 43.15 119 | 88.32 151 | 31.25 322 | 67.91 179 | 83.98 200 |
|
tpmrst | | | 71.04 120 | 69.77 122 | 74.86 141 | 83.19 103 | 55.86 46 | 75.64 267 | 78.73 230 | 67.88 34 | 64.99 124 | 73.73 281 | 49.96 53 | 79.56 287 | 65.92 107 | 67.85 180 | 89.14 106 |
|
iter_conf05 | | | 73.51 84 | 72.24 86 | 77.33 83 | 87.93 36 | 55.97 43 | 87.90 55 | 70.81 313 | 68.72 25 | 64.04 138 | 84.36 159 | 47.54 66 | 90.87 78 | 71.11 80 | 67.75 181 | 85.13 181 |
|
test_vis1_n_1920 | | | 68.59 165 | 68.31 141 | 69.44 248 | 69.16 307 | 41.51 303 | 84.63 138 | 68.58 322 | 58.80 174 | 73.26 50 | 88.37 107 | 25.30 289 | 80.60 273 | 79.10 28 | 67.55 182 | 86.23 164 |
|
Anonymous20240529 | | | 69.71 144 | 67.28 162 | 77.00 95 | 83.78 88 | 50.36 172 | 88.87 43 | 85.10 106 | 47.22 289 | 64.03 139 | 83.37 174 | 27.93 270 | 92.10 50 | 57.78 181 | 67.44 183 | 88.53 121 |
|
EG-PatchMatch MVS | | | 62.40 242 | 59.59 244 | 70.81 229 | 73.29 270 | 49.05 199 | 85.81 96 | 84.78 114 | 51.85 263 | 44.19 312 | 73.48 287 | 15.52 339 | 89.85 105 | 40.16 283 | 67.24 184 | 73.54 322 |
|
OMC-MVS | | | 65.97 214 | 65.06 205 | 68.71 258 | 72.97 274 | 42.58 296 | 78.61 251 | 75.35 280 | 54.72 240 | 59.31 191 | 86.25 141 | 33.30 232 | 77.88 301 | 57.99 174 | 67.05 185 | 85.66 173 |
|
TAPA-MVS | | 56.12 14 | 61.82 245 | 60.18 242 | 66.71 276 | 78.48 206 | 37.97 321 | 75.19 273 | 76.41 271 | 46.82 292 | 57.04 233 | 86.52 139 | 27.67 274 | 77.03 307 | 26.50 342 | 67.02 186 | 85.14 180 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FE-MVS | | | 64.15 221 | 60.43 240 | 75.30 133 | 80.85 161 | 49.86 184 | 68.28 314 | 78.37 238 | 50.26 274 | 59.31 191 | 73.79 280 | 26.19 283 | 91.92 53 | 40.19 282 | 66.67 187 | 84.12 193 |
|
CMPMVS |  | 40.41 21 | 55.34 286 | 52.64 289 | 63.46 296 | 60.88 344 | 43.84 282 | 61.58 331 | 71.06 311 | 30.43 347 | 36.33 340 | 74.63 274 | 24.14 297 | 75.44 313 | 48.05 247 | 66.62 188 | 71.12 336 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FC-MVSNet-test | | | 67.49 184 | 67.91 146 | 66.21 280 | 76.06 239 | 33.06 336 | 80.82 229 | 87.18 57 | 64.44 74 | 54.81 251 | 82.87 179 | 50.40 50 | 82.60 258 | 48.05 247 | 66.55 189 | 82.98 221 |
|
GA-MVS | | | 69.04 153 | 66.70 171 | 76.06 118 | 75.11 249 | 52.36 131 | 83.12 180 | 80.23 196 | 63.32 94 | 60.65 175 | 79.22 223 | 30.98 254 | 88.37 147 | 61.25 141 | 66.41 190 | 87.46 140 |
|
thres100view900 | | | 66.87 202 | 65.42 200 | 71.24 221 | 83.29 100 | 43.15 288 | 81.67 210 | 87.78 48 | 59.04 169 | 55.92 245 | 82.18 195 | 43.73 109 | 87.80 167 | 28.80 329 | 66.36 191 | 82.78 225 |
|
tfpn200view9 | | | 67.57 182 | 66.13 182 | 71.89 212 | 84.05 82 | 45.07 269 | 83.40 171 | 87.71 53 | 60.79 134 | 57.79 219 | 82.76 182 | 43.53 114 | 87.80 167 | 28.80 329 | 66.36 191 | 82.78 225 |
|
thres400 | | | 67.40 189 | 66.13 182 | 71.19 223 | 84.05 82 | 45.07 269 | 83.40 171 | 87.71 53 | 60.79 134 | 57.79 219 | 82.76 182 | 43.53 114 | 87.80 167 | 28.80 329 | 66.36 191 | 80.71 255 |
|
Test_1112_low_res | | | 67.18 193 | 66.23 180 | 70.02 243 | 78.75 197 | 41.02 308 | 83.43 169 | 73.69 293 | 57.29 204 | 58.45 211 | 82.39 192 | 45.30 90 | 80.88 270 | 50.50 229 | 66.26 194 | 88.16 124 |
|
PVSNet_BlendedMVS | | | 73.42 85 | 73.30 71 | 73.76 168 | 85.91 48 | 51.83 142 | 86.18 90 | 84.24 129 | 65.40 63 | 69.09 86 | 80.86 209 | 46.70 75 | 88.13 157 | 75.43 53 | 65.92 195 | 81.33 246 |
|
XVG-OURS | | | 61.88 244 | 59.34 247 | 69.49 246 | 65.37 326 | 46.27 254 | 64.80 321 | 73.49 296 | 47.04 291 | 57.41 231 | 82.85 180 | 25.15 291 | 78.18 293 | 53.00 214 | 64.98 196 | 84.01 197 |
|
thres600view7 | | | 66.46 207 | 65.12 204 | 70.47 232 | 83.41 94 | 43.80 283 | 82.15 199 | 87.78 48 | 59.37 157 | 56.02 244 | 82.21 194 | 43.73 109 | 86.90 192 | 26.51 341 | 64.94 197 | 80.71 255 |
|
LPG-MVS_test | | | 66.44 208 | 64.58 210 | 72.02 202 | 74.42 259 | 48.60 212 | 83.07 182 | 80.64 190 | 54.69 241 | 53.75 263 | 83.83 166 | 25.73 287 | 86.98 187 | 60.33 155 | 64.71 198 | 80.48 257 |
|
LGP-MVS_train | | | | | 72.02 202 | 74.42 259 | 48.60 212 | | 80.64 190 | 54.69 241 | 53.75 263 | 83.83 166 | 25.73 287 | 86.98 187 | 60.33 155 | 64.71 198 | 80.48 257 |
|
MVSTER | | | 73.25 87 | 72.33 82 | 76.01 120 | 85.54 56 | 53.76 94 | 83.52 162 | 87.16 58 | 67.06 43 | 63.88 143 | 81.66 201 | 52.77 32 | 90.44 89 | 64.66 121 | 64.69 200 | 83.84 205 |
|
EI-MVSNet | | | 69.70 146 | 68.70 136 | 72.68 188 | 75.00 253 | 48.90 206 | 79.54 243 | 87.16 58 | 61.05 129 | 63.88 143 | 83.74 168 | 45.87 83 | 90.44 89 | 57.42 185 | 64.68 201 | 78.70 274 |
|
tpm cat1 | | | 66.28 209 | 62.78 218 | 76.77 105 | 81.40 148 | 57.14 22 | 70.03 306 | 77.19 256 | 53.00 253 | 58.76 204 | 70.73 311 | 46.17 78 | 86.73 196 | 43.27 272 | 64.46 202 | 86.44 160 |
|
XVG-OURS-SEG-HR | | | 62.02 243 | 59.54 245 | 69.46 247 | 65.30 327 | 45.88 259 | 65.06 320 | 73.57 295 | 46.45 295 | 57.42 230 | 83.35 175 | 26.95 278 | 78.09 295 | 53.77 208 | 64.03 203 | 84.42 190 |
|
LS3D | | | 56.40 281 | 53.82 281 | 64.12 292 | 81.12 152 | 45.69 264 | 73.42 284 | 66.14 326 | 35.30 341 | 43.24 319 | 79.88 214 | 22.18 310 | 79.62 286 | 19.10 358 | 64.00 204 | 67.05 341 |
|
ACMP | | 61.11 9 | 66.24 211 | 64.33 212 | 72.00 204 | 74.89 255 | 49.12 197 | 83.18 179 | 79.83 203 | 55.41 233 | 52.29 274 | 82.68 186 | 25.83 285 | 86.10 214 | 60.89 144 | 63.94 205 | 80.78 253 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
tpm | | | 68.36 167 | 67.48 159 | 70.97 227 | 79.93 178 | 51.34 153 | 76.58 264 | 78.75 229 | 67.73 37 | 63.54 149 | 74.86 272 | 48.33 59 | 72.36 330 | 53.93 207 | 63.71 206 | 89.21 103 |
|
XXY-MVS | | | 70.18 132 | 69.28 132 | 72.89 186 | 77.64 216 | 42.88 291 | 85.06 120 | 87.50 56 | 62.58 105 | 62.66 158 | 82.34 193 | 43.64 113 | 89.83 106 | 58.42 168 | 63.70 207 | 85.96 168 |
|
mvsmamba | | | 66.93 201 | 64.88 208 | 73.09 180 | 75.06 251 | 47.26 240 | 83.36 175 | 69.21 319 | 62.64 104 | 55.68 247 | 81.43 204 | 29.72 260 | 89.20 119 | 63.35 127 | 63.50 208 | 82.79 224 |
|
GBi-Net | | | 67.09 195 | 65.47 197 | 71.96 205 | 82.71 120 | 46.36 251 | 83.52 162 | 83.31 146 | 58.55 179 | 57.58 224 | 76.23 261 | 36.72 198 | 86.20 208 | 47.25 252 | 63.40 209 | 83.32 211 |
|
test1 | | | 67.09 195 | 65.47 197 | 71.96 205 | 82.71 120 | 46.36 251 | 83.52 162 | 83.31 146 | 58.55 179 | 57.58 224 | 76.23 261 | 36.72 198 | 86.20 208 | 47.25 252 | 63.40 209 | 83.32 211 |
|
FMVSNet3 | | | 68.84 157 | 67.40 160 | 73.19 179 | 85.05 65 | 48.53 215 | 85.71 103 | 85.36 91 | 60.90 133 | 57.58 224 | 79.15 224 | 42.16 130 | 86.77 194 | 47.25 252 | 63.40 209 | 84.27 192 |
|
VPA-MVSNet | | | 71.12 117 | 70.66 108 | 72.49 193 | 78.75 197 | 44.43 276 | 87.64 58 | 90.02 12 | 63.97 82 | 65.02 122 | 81.58 203 | 42.14 131 | 87.42 179 | 63.42 126 | 63.38 212 | 85.63 175 |
|
Fast-Effi-MVS+-dtu | | | 66.53 206 | 64.10 215 | 73.84 165 | 72.41 281 | 52.30 134 | 84.73 132 | 75.66 276 | 59.51 153 | 56.34 242 | 79.11 225 | 28.11 268 | 85.85 224 | 57.74 182 | 63.29 213 | 83.35 210 |
|
CVMVSNet | | | 60.85 249 | 60.44 239 | 62.07 301 | 75.00 253 | 32.73 338 | 79.54 243 | 73.49 296 | 36.98 333 | 56.28 243 | 83.74 168 | 29.28 264 | 69.53 338 | 46.48 256 | 63.23 214 | 83.94 203 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 215 | |
|
ACMM | | 58.35 12 | 64.35 220 | 62.01 224 | 71.38 219 | 74.21 262 | 48.51 216 | 82.25 198 | 79.66 207 | 47.61 287 | 54.54 255 | 80.11 213 | 25.26 290 | 86.00 218 | 51.26 225 | 63.16 216 | 79.64 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CHOSEN 280x420 | | | 57.53 274 | 56.38 267 | 60.97 311 | 74.01 263 | 48.10 228 | 46.30 351 | 54.31 344 | 48.18 285 | 50.88 285 | 77.43 241 | 38.37 169 | 59.16 349 | 54.83 200 | 63.14 217 | 75.66 307 |
|
PS-MVSNAJss | | | 68.78 161 | 67.17 164 | 73.62 174 | 73.01 273 | 48.33 222 | 84.95 126 | 84.81 113 | 59.30 161 | 58.91 200 | 79.84 216 | 37.77 173 | 88.86 132 | 62.83 130 | 63.12 218 | 83.67 208 |
|
MDTV_nov1_ep13 | | | | 61.56 227 | | 81.68 136 | 55.12 62 | 72.41 291 | 78.18 240 | 59.19 163 | 58.85 202 | 69.29 316 | 34.69 220 | 86.16 211 | 36.76 297 | 62.96 219 | |
|
FMVSNet2 | | | 67.57 182 | 65.79 189 | 72.90 184 | 82.71 120 | 47.97 231 | 85.15 115 | 84.93 109 | 58.55 179 | 56.71 237 | 78.26 231 | 36.72 198 | 86.67 197 | 46.15 259 | 62.94 220 | 84.07 195 |
|
D2MVS | | | 63.49 228 | 61.39 229 | 69.77 244 | 69.29 306 | 48.93 205 | 78.89 250 | 77.71 248 | 60.64 138 | 49.70 288 | 72.10 303 | 27.08 277 | 83.48 253 | 54.48 203 | 62.65 221 | 76.90 295 |
|
MVS-HIRNet | | | 49.01 309 | 44.71 313 | 61.92 304 | 76.06 239 | 46.61 248 | 63.23 325 | 54.90 343 | 24.77 353 | 33.56 348 | 36.60 361 | 21.28 315 | 75.88 312 | 29.49 326 | 62.54 222 | 63.26 351 |
|
IB-MVS | | 68.87 2 | 74.01 75 | 72.03 93 | 79.94 31 | 83.04 108 | 55.50 49 | 90.24 23 | 88.65 31 | 67.14 42 | 61.38 168 | 81.74 200 | 53.21 30 | 94.28 21 | 60.45 153 | 62.41 223 | 90.03 89 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
nrg030 | | | 72.27 104 | 71.56 96 | 74.42 148 | 75.93 242 | 50.60 163 | 86.97 76 | 83.21 150 | 62.75 102 | 67.15 98 | 84.38 157 | 50.07 51 | 86.66 198 | 71.19 78 | 62.37 224 | 85.99 166 |
|
thisisatest0530 | | | 70.47 131 | 68.56 137 | 76.20 113 | 79.78 179 | 51.52 149 | 83.49 168 | 88.58 37 | 57.62 198 | 58.60 205 | 82.79 181 | 51.03 44 | 91.48 60 | 52.84 215 | 62.36 225 | 85.59 176 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 258 | 56.00 269 | 68.83 254 | 71.13 295 | 44.30 277 | 83.64 161 | 75.02 282 | 46.42 296 | 46.48 308 | 73.03 290 | 18.69 324 | 88.14 156 | 27.74 337 | 61.80 226 | 74.05 318 |
|
dp | | | 64.41 219 | 61.58 226 | 72.90 184 | 82.40 126 | 54.09 89 | 72.53 289 | 76.59 269 | 60.39 140 | 55.68 247 | 70.39 312 | 35.18 215 | 76.90 309 | 39.34 285 | 61.71 227 | 87.73 135 |
|
UniMVSNet_ETH3D | | | 62.51 238 | 60.49 238 | 68.57 261 | 68.30 315 | 40.88 310 | 73.89 280 | 79.93 201 | 51.81 264 | 54.77 252 | 79.61 217 | 24.80 293 | 81.10 267 | 49.93 232 | 61.35 228 | 83.73 206 |
|
FMVSNet1 | | | 64.57 218 | 62.11 223 | 71.96 205 | 77.32 221 | 46.36 251 | 83.52 162 | 83.31 146 | 52.43 258 | 54.42 256 | 76.23 261 | 27.80 272 | 86.20 208 | 42.59 278 | 61.34 229 | 83.32 211 |
|
VPNet | | | 72.07 105 | 71.42 100 | 74.04 159 | 78.64 202 | 47.17 243 | 89.91 29 | 87.97 45 | 72.56 7 | 64.66 126 | 85.04 153 | 41.83 138 | 88.33 150 | 61.17 143 | 60.97 230 | 86.62 157 |
|
Effi-MVS+-dtu | | | 66.24 211 | 64.96 207 | 70.08 240 | 75.17 248 | 49.64 187 | 82.01 201 | 74.48 285 | 62.15 110 | 57.83 217 | 76.08 265 | 30.59 256 | 83.79 248 | 65.40 118 | 60.93 231 | 76.81 296 |
|
PLC |  | 52.38 18 | 60.89 248 | 58.97 251 | 66.68 278 | 81.77 135 | 45.70 263 | 78.96 249 | 74.04 290 | 43.66 315 | 47.63 298 | 83.19 178 | 23.52 301 | 77.78 304 | 37.47 288 | 60.46 232 | 76.55 302 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Anonymous20231211 | | | 66.08 213 | 63.67 216 | 73.31 177 | 83.07 107 | 48.75 209 | 86.01 95 | 84.67 119 | 45.27 303 | 56.54 239 | 76.67 255 | 28.06 269 | 88.95 129 | 52.78 217 | 59.95 233 | 82.23 228 |
|
CR-MVSNet | | | 62.47 240 | 59.04 250 | 72.77 187 | 73.97 265 | 56.57 29 | 60.52 333 | 71.72 305 | 60.04 144 | 57.49 227 | 65.86 326 | 38.94 163 | 80.31 277 | 42.86 276 | 59.93 234 | 81.42 241 |
|
RPMNet | | | 59.29 256 | 54.25 279 | 74.42 148 | 73.97 265 | 56.57 29 | 60.52 333 | 76.98 260 | 35.72 337 | 57.49 227 | 58.87 345 | 37.73 176 | 85.26 232 | 27.01 340 | 59.93 234 | 81.42 241 |
|
bld_raw_dy_0_64 | | | 59.75 253 | 57.01 262 | 67.96 265 | 66.73 321 | 45.30 266 | 77.59 258 | 59.97 338 | 50.49 270 | 47.15 303 | 77.03 247 | 17.45 331 | 79.06 288 | 56.92 189 | 59.76 236 | 79.51 267 |
|
v1144 | | | 68.81 159 | 66.82 167 | 74.80 142 | 72.34 282 | 53.46 100 | 84.68 135 | 81.77 175 | 64.25 76 | 60.28 177 | 77.91 233 | 40.23 152 | 88.95 129 | 60.37 154 | 59.52 237 | 81.97 230 |
|
v2v482 | | | 69.55 149 | 67.64 154 | 75.26 136 | 72.32 283 | 53.83 91 | 84.93 127 | 81.94 169 | 65.37 65 | 60.80 173 | 79.25 222 | 41.62 139 | 88.98 128 | 63.03 129 | 59.51 238 | 82.98 221 |
|
CNLPA | | | 60.59 250 | 58.44 253 | 67.05 273 | 79.21 187 | 47.26 240 | 79.75 242 | 64.34 331 | 42.46 321 | 51.90 278 | 83.94 164 | 27.79 273 | 75.41 314 | 37.12 291 | 59.49 239 | 78.47 278 |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 240 | |
|
tt0805 | | | 63.39 229 | 61.31 230 | 69.64 245 | 69.36 305 | 38.87 316 | 78.00 254 | 85.48 85 | 48.82 282 | 55.66 250 | 81.66 201 | 24.38 295 | 86.37 207 | 49.04 240 | 59.36 241 | 83.68 207 |
|
PatchMatch-RL | | | 56.66 277 | 53.75 282 | 65.37 287 | 77.91 215 | 45.28 267 | 69.78 308 | 60.38 336 | 41.35 322 | 47.57 299 | 73.73 281 | 16.83 333 | 76.91 308 | 36.99 294 | 59.21 242 | 73.92 319 |
|
test0.0.03 1 | | | 62.54 237 | 62.44 220 | 62.86 300 | 72.28 284 | 29.51 349 | 82.93 185 | 78.78 227 | 59.18 165 | 53.07 268 | 82.41 191 | 36.91 193 | 77.39 305 | 37.45 289 | 58.96 243 | 81.66 235 |
|
v1192 | | | 67.96 175 | 65.74 191 | 74.63 143 | 71.79 285 | 53.43 105 | 84.06 152 | 80.99 186 | 63.19 97 | 59.56 185 | 77.46 240 | 37.50 183 | 88.65 136 | 58.20 172 | 58.93 244 | 81.79 232 |
|
cl22 | | | 68.85 156 | 67.69 153 | 72.35 196 | 78.07 211 | 49.98 181 | 82.45 195 | 78.48 236 | 62.50 107 | 58.46 210 | 77.95 232 | 49.99 52 | 85.17 234 | 62.55 131 | 58.72 245 | 81.90 231 |
|
miper_ehance_all_eth | | | 68.70 164 | 67.58 155 | 72.08 200 | 76.91 229 | 49.48 193 | 82.47 194 | 78.45 237 | 62.68 103 | 58.28 214 | 77.88 234 | 50.90 45 | 85.01 238 | 61.91 137 | 58.72 245 | 81.75 233 |
|
miper_enhance_ethall | | | 69.77 143 | 68.90 135 | 72.38 195 | 78.93 194 | 49.91 182 | 83.29 176 | 78.85 224 | 64.90 70 | 59.37 189 | 79.46 218 | 52.77 32 | 85.16 235 | 63.78 123 | 58.72 245 | 82.08 229 |
|
MVS_0304 | | | 56.72 276 | 55.17 273 | 61.37 308 | 70.71 296 | 36.80 326 | 75.74 265 | 68.75 321 | 44.11 313 | 52.53 271 | 68.20 320 | 15.05 340 | 74.53 317 | 42.98 274 | 58.44 248 | 72.79 327 |
|
V42 | | | 67.66 180 | 65.60 195 | 73.86 164 | 70.69 298 | 53.63 96 | 81.50 217 | 78.61 233 | 63.85 84 | 59.49 188 | 77.49 239 | 37.98 170 | 87.65 173 | 62.33 132 | 58.43 249 | 80.29 260 |
|
tpmvs | | | 62.45 241 | 59.42 246 | 71.53 218 | 83.93 84 | 54.32 83 | 70.03 306 | 77.61 249 | 51.91 261 | 53.48 266 | 68.29 319 | 37.91 171 | 86.66 198 | 33.36 312 | 58.27 250 | 73.62 321 |
|
XVG-ACMP-BASELINE | | | 56.03 283 | 52.85 287 | 65.58 283 | 61.91 341 | 40.95 309 | 63.36 323 | 72.43 301 | 45.20 304 | 46.02 309 | 74.09 277 | 9.20 351 | 78.12 294 | 45.13 262 | 58.27 250 | 77.66 290 |
|
pmmvs5 | | | 62.80 236 | 61.18 231 | 67.66 267 | 69.53 304 | 42.37 299 | 82.65 188 | 75.19 281 | 54.30 246 | 52.03 277 | 78.51 229 | 31.64 250 | 80.67 271 | 48.60 243 | 58.15 252 | 79.95 264 |
|
v1240 | | | 66.99 198 | 64.68 209 | 73.93 161 | 71.38 293 | 52.66 125 | 83.39 173 | 79.98 199 | 61.97 114 | 58.44 212 | 77.11 245 | 35.25 213 | 87.81 166 | 56.46 193 | 58.15 252 | 81.33 246 |
|
v1921920 | | | 67.45 185 | 65.23 203 | 74.10 158 | 71.51 290 | 52.90 122 | 83.75 160 | 80.44 193 | 62.48 108 | 59.12 195 | 77.13 244 | 36.98 191 | 87.90 164 | 57.53 183 | 58.14 254 | 81.49 237 |
|
jajsoiax | | | 63.21 231 | 60.84 235 | 70.32 236 | 68.33 314 | 44.45 275 | 81.23 221 | 81.05 185 | 53.37 251 | 50.96 284 | 77.81 236 | 17.49 330 | 85.49 228 | 59.31 158 | 58.05 255 | 81.02 251 |
|
tttt0517 | | | 68.33 169 | 66.29 178 | 74.46 146 | 78.08 210 | 49.06 198 | 80.88 228 | 89.08 20 | 54.40 244 | 54.75 253 | 80.77 210 | 51.31 41 | 90.33 93 | 49.35 237 | 58.01 256 | 83.99 198 |
|
Anonymous20231206 | | | 59.08 261 | 57.59 256 | 63.55 295 | 68.77 310 | 32.14 341 | 80.26 236 | 79.78 204 | 50.00 275 | 49.39 289 | 72.39 298 | 26.64 280 | 78.36 292 | 33.12 315 | 57.94 257 | 80.14 262 |
|
mvs_tets | | | 62.96 234 | 60.55 237 | 70.19 237 | 68.22 317 | 44.24 279 | 80.90 227 | 80.74 189 | 52.99 254 | 50.82 286 | 77.56 237 | 16.74 334 | 85.44 229 | 59.04 161 | 57.94 257 | 80.89 252 |
|
LTVRE_ROB | | 45.45 19 | 52.73 298 | 49.74 301 | 61.69 305 | 69.78 303 | 34.99 328 | 44.52 352 | 67.60 325 | 43.11 318 | 43.79 314 | 74.03 278 | 18.54 326 | 81.45 265 | 28.39 334 | 57.94 257 | 68.62 339 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 67.86 176 | 65.76 190 | 74.16 156 | 71.68 287 | 53.09 116 | 84.14 149 | 80.83 188 | 62.85 101 | 59.21 194 | 77.28 243 | 39.30 161 | 88.00 162 | 58.67 164 | 57.88 260 | 81.40 243 |
|
IterMVS-LS | | | 66.63 204 | 65.36 201 | 70.42 234 | 75.10 250 | 48.90 206 | 81.45 220 | 76.69 267 | 61.05 129 | 55.71 246 | 77.10 246 | 45.86 84 | 83.65 251 | 57.44 184 | 57.88 260 | 78.70 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
h-mvs33 | | | 73.95 76 | 72.89 75 | 77.15 90 | 80.17 174 | 50.37 171 | 84.68 135 | 83.33 145 | 68.08 30 | 71.97 65 | 88.65 105 | 42.50 125 | 91.15 69 | 78.82 31 | 57.78 262 | 89.91 92 |
|
ACMH | | 53.70 16 | 59.78 252 | 55.94 270 | 71.28 220 | 76.59 231 | 48.35 220 | 80.15 239 | 76.11 272 | 49.74 276 | 41.91 323 | 73.45 288 | 16.50 336 | 90.31 94 | 31.42 320 | 57.63 263 | 75.17 311 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSDG | | | 59.44 255 | 55.14 275 | 72.32 197 | 74.69 256 | 50.71 160 | 74.39 278 | 73.58 294 | 44.44 309 | 43.40 317 | 77.52 238 | 19.45 320 | 90.87 78 | 31.31 321 | 57.49 264 | 75.38 309 |
|
pmmvs4 | | | 63.34 230 | 61.07 233 | 70.16 238 | 70.14 300 | 50.53 165 | 79.97 240 | 71.41 310 | 55.08 235 | 54.12 259 | 78.58 228 | 32.79 237 | 82.09 262 | 50.33 230 | 57.22 265 | 77.86 287 |
|
c3_l | | | 67.97 174 | 66.66 172 | 71.91 211 | 76.20 238 | 49.31 195 | 82.13 200 | 78.00 243 | 61.99 113 | 57.64 223 | 76.94 249 | 49.41 56 | 84.93 239 | 60.62 148 | 57.01 266 | 81.49 237 |
|
UniMVSNet (Re) | | | 67.71 179 | 66.80 168 | 70.45 233 | 74.44 258 | 42.93 290 | 82.42 196 | 84.90 110 | 63.69 88 | 59.63 183 | 80.99 207 | 47.18 69 | 85.23 233 | 51.17 227 | 56.75 267 | 83.19 216 |
|
SCA | | | 63.84 224 | 60.01 243 | 75.32 132 | 78.58 203 | 57.92 10 | 61.61 330 | 77.53 250 | 56.71 216 | 57.75 221 | 70.77 309 | 31.97 245 | 79.91 284 | 48.80 241 | 56.36 268 | 88.13 127 |
|
v8 | | | 67.25 191 | 64.99 206 | 74.04 159 | 72.89 276 | 53.31 110 | 82.37 197 | 80.11 198 | 61.54 121 | 54.29 258 | 76.02 266 | 42.89 123 | 88.41 146 | 58.43 166 | 56.36 268 | 80.39 259 |
|
cl____ | | | 67.43 186 | 65.93 186 | 71.95 208 | 76.33 234 | 48.02 229 | 82.58 189 | 79.12 221 | 61.30 125 | 56.72 236 | 76.92 250 | 46.12 79 | 86.44 205 | 57.98 175 | 56.31 270 | 81.38 245 |
|
DIV-MVS_self_test | | | 67.43 186 | 65.93 186 | 71.94 209 | 76.33 234 | 48.01 230 | 82.57 190 | 79.11 222 | 61.31 124 | 56.73 235 | 76.92 250 | 46.09 80 | 86.43 206 | 57.98 175 | 56.31 270 | 81.39 244 |
|
DP-MVS | | | 59.24 257 | 56.12 268 | 68.63 259 | 88.24 32 | 50.35 173 | 82.51 193 | 64.43 330 | 41.10 323 | 46.70 306 | 78.77 227 | 24.75 294 | 88.57 142 | 22.26 350 | 56.29 272 | 66.96 342 |
|
NR-MVSNet | | | 67.25 191 | 65.99 185 | 71.04 226 | 73.27 271 | 43.91 281 | 85.32 112 | 84.75 116 | 66.05 57 | 53.65 265 | 82.11 196 | 45.05 93 | 85.97 221 | 47.55 249 | 56.18 273 | 83.24 214 |
|
v10 | | | 66.61 205 | 64.20 214 | 73.83 166 | 72.59 279 | 53.37 106 | 81.88 205 | 79.91 202 | 61.11 127 | 54.09 260 | 75.60 268 | 40.06 156 | 88.26 155 | 56.47 192 | 56.10 274 | 79.86 265 |
|
baseline1 | | | 72.51 98 | 72.12 90 | 73.69 171 | 85.05 65 | 44.46 274 | 83.51 166 | 86.13 77 | 71.61 10 | 64.64 127 | 87.97 117 | 55.00 23 | 89.48 114 | 59.07 160 | 56.05 275 | 87.13 146 |
|
UniMVSNet_NR-MVSNet | | | 68.82 158 | 68.29 142 | 70.40 235 | 75.71 245 | 42.59 294 | 84.23 146 | 86.78 64 | 66.31 49 | 58.51 206 | 82.45 190 | 51.57 39 | 84.64 243 | 53.11 211 | 55.96 276 | 83.96 202 |
|
DU-MVS | | | 66.84 203 | 65.74 191 | 70.16 238 | 73.27 271 | 42.59 294 | 81.50 217 | 82.92 157 | 63.53 92 | 58.51 206 | 82.11 196 | 40.75 146 | 84.64 243 | 53.11 211 | 55.96 276 | 83.24 214 |
|
v148 | | | 68.24 172 | 66.35 176 | 73.88 163 | 71.76 286 | 51.47 150 | 84.23 146 | 81.90 173 | 63.69 88 | 58.94 197 | 76.44 257 | 43.72 111 | 87.78 170 | 60.63 147 | 55.86 278 | 82.39 227 |
|
test_djsdf | | | 63.84 224 | 61.56 227 | 70.70 230 | 68.78 309 | 44.69 273 | 81.63 211 | 81.44 179 | 50.28 271 | 52.27 275 | 76.26 260 | 26.72 279 | 86.11 212 | 60.83 145 | 55.84 279 | 81.29 249 |
|
tfpnnormal | | | 61.47 246 | 59.09 249 | 68.62 260 | 76.29 237 | 41.69 300 | 81.14 224 | 85.16 103 | 54.48 243 | 51.32 280 | 73.63 285 | 32.32 241 | 86.89 193 | 21.78 352 | 55.71 280 | 77.29 293 |
|
WR-MVS | | | 67.58 181 | 66.76 169 | 70.04 242 | 75.92 243 | 45.06 272 | 86.23 89 | 85.28 97 | 64.31 75 | 58.50 208 | 81.00 206 | 44.80 101 | 82.00 263 | 49.21 239 | 55.57 281 | 83.06 219 |
|
RRT_MVS | | | 63.68 227 | 61.01 234 | 71.70 213 | 73.48 267 | 45.98 258 | 81.19 222 | 76.08 273 | 54.33 245 | 52.84 269 | 79.27 221 | 22.21 309 | 87.65 173 | 54.13 205 | 55.54 282 | 81.46 240 |
|
test_fmvs1 | | | 53.60 296 | 52.54 291 | 56.78 321 | 58.07 346 | 30.26 344 | 68.95 311 | 42.19 355 | 32.46 343 | 63.59 147 | 82.56 189 | 11.55 344 | 60.81 344 | 58.25 171 | 55.27 283 | 79.28 268 |
|
Baseline_NR-MVSNet | | | 65.49 217 | 64.27 213 | 69.13 250 | 74.37 261 | 41.65 301 | 83.39 173 | 78.85 224 | 59.56 152 | 59.62 184 | 76.88 252 | 40.75 146 | 87.44 178 | 49.99 231 | 55.05 284 | 78.28 283 |
|
v7n | | | 62.50 239 | 59.27 248 | 72.20 198 | 67.25 320 | 49.83 185 | 77.87 256 | 80.12 197 | 52.50 257 | 48.80 292 | 73.07 289 | 32.10 243 | 87.90 164 | 46.83 255 | 54.92 285 | 78.86 272 |
|
TranMVSNet+NR-MVSNet | | | 66.94 200 | 65.61 194 | 70.93 228 | 73.45 268 | 43.38 287 | 83.02 184 | 84.25 127 | 65.31 67 | 58.33 213 | 81.90 199 | 39.92 158 | 85.52 226 | 49.43 236 | 54.89 286 | 83.89 204 |
|
FMVSNet5 | | | 58.61 267 | 56.45 264 | 65.10 289 | 77.20 226 | 39.74 312 | 74.77 274 | 77.12 258 | 50.27 273 | 43.28 318 | 67.71 321 | 26.15 284 | 76.90 309 | 36.78 296 | 54.78 287 | 78.65 276 |
|
ACMH+ | | 54.58 15 | 58.55 269 | 55.24 272 | 68.50 262 | 74.68 257 | 45.80 262 | 80.27 235 | 70.21 316 | 47.15 290 | 42.77 320 | 75.48 269 | 16.73 335 | 85.98 219 | 35.10 307 | 54.78 287 | 73.72 320 |
|
test_fmvs1_n | | | 52.55 300 | 51.19 295 | 56.65 322 | 51.90 354 | 30.14 345 | 67.66 315 | 42.84 354 | 32.27 344 | 62.30 161 | 82.02 198 | 9.12 352 | 60.84 343 | 57.82 179 | 54.75 289 | 78.99 270 |
|
eth_miper_zixun_eth | | | 66.98 199 | 65.28 202 | 72.06 201 | 75.61 246 | 50.40 169 | 81.00 226 | 76.97 263 | 62.00 112 | 56.99 234 | 76.97 248 | 44.84 98 | 85.58 225 | 58.75 163 | 54.42 290 | 80.21 261 |
|
IterMVS | | | 63.77 226 | 61.67 225 | 70.08 240 | 72.68 278 | 51.24 156 | 80.44 233 | 75.51 277 | 60.51 139 | 51.41 279 | 73.70 284 | 32.08 244 | 78.91 289 | 54.30 204 | 54.35 291 | 80.08 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
anonymousdsp | | | 60.46 251 | 57.65 255 | 68.88 252 | 63.63 336 | 45.09 268 | 72.93 287 | 78.63 232 | 46.52 294 | 51.12 281 | 72.80 293 | 21.46 314 | 83.07 257 | 57.79 180 | 53.97 292 | 78.47 278 |
|
F-COLMAP | | | 55.96 285 | 53.65 283 | 62.87 299 | 72.76 277 | 42.77 293 | 74.70 277 | 70.37 315 | 40.03 324 | 41.11 328 | 79.36 219 | 17.77 329 | 73.70 323 | 32.80 316 | 53.96 293 | 72.15 329 |
|
ADS-MVSNet2 | | | 55.21 288 | 51.44 293 | 66.51 279 | 80.60 167 | 49.56 190 | 55.03 344 | 65.44 327 | 44.72 306 | 51.00 282 | 61.19 338 | 22.83 302 | 75.41 314 | 28.54 332 | 53.63 294 | 74.57 315 |
|
ADS-MVSNet | | | 56.17 282 | 51.95 292 | 68.84 253 | 80.60 167 | 53.07 117 | 55.03 344 | 70.02 317 | 44.72 306 | 51.00 282 | 61.19 338 | 22.83 302 | 78.88 290 | 28.54 332 | 53.63 294 | 74.57 315 |
|
IterMVS-SCA-FT | | | 59.12 259 | 58.81 252 | 60.08 313 | 70.68 299 | 45.07 269 | 80.42 234 | 74.25 287 | 43.54 316 | 50.02 287 | 73.73 281 | 31.97 245 | 56.74 351 | 51.06 228 | 53.60 296 | 78.42 280 |
|
pm-mvs1 | | | 64.12 222 | 62.56 219 | 68.78 256 | 71.68 287 | 38.87 316 | 82.89 186 | 81.57 176 | 55.54 232 | 53.89 262 | 77.82 235 | 37.73 176 | 86.74 195 | 48.46 245 | 53.49 297 | 80.72 254 |
|
AUN-MVS | | | 68.20 173 | 66.35 176 | 73.76 168 | 76.37 232 | 47.45 236 | 79.52 245 | 79.52 210 | 60.98 131 | 62.34 159 | 86.02 142 | 36.59 201 | 86.94 190 | 62.32 133 | 53.47 298 | 86.89 148 |
|
hse-mvs2 | | | 71.44 115 | 70.68 107 | 73.73 170 | 76.34 233 | 47.44 237 | 79.45 246 | 79.47 212 | 68.08 30 | 71.97 65 | 86.01 144 | 42.50 125 | 86.93 191 | 78.82 31 | 53.46 299 | 86.83 154 |
|
miper_lstm_enhance | | | 63.91 223 | 62.30 221 | 68.75 257 | 75.06 251 | 46.78 245 | 69.02 310 | 81.14 184 | 59.68 151 | 52.76 270 | 72.39 298 | 40.71 148 | 77.99 299 | 56.81 190 | 53.09 300 | 81.48 239 |
|
PatchT | | | 56.60 278 | 52.97 285 | 67.48 268 | 72.94 275 | 46.16 257 | 57.30 341 | 73.78 292 | 38.77 327 | 54.37 257 | 57.26 348 | 37.52 181 | 78.06 296 | 32.02 317 | 52.79 301 | 78.23 285 |
|
test_vis1_n | | | 51.19 305 | 49.66 302 | 55.76 325 | 51.26 355 | 29.85 347 | 67.20 317 | 38.86 358 | 32.12 345 | 59.50 187 | 79.86 215 | 8.78 353 | 58.23 350 | 56.95 188 | 52.46 302 | 79.19 269 |
|
JIA-IIPM | | | 52.33 302 | 47.77 309 | 66.03 281 | 71.20 294 | 46.92 244 | 40.00 359 | 76.48 270 | 37.10 332 | 46.73 305 | 37.02 359 | 32.96 234 | 77.88 301 | 35.97 298 | 52.45 303 | 73.29 324 |
|
Patchmatch-test | | | 53.33 297 | 48.17 306 | 68.81 255 | 73.31 269 | 42.38 298 | 42.98 354 | 58.23 339 | 32.53 342 | 38.79 335 | 70.77 309 | 39.66 159 | 73.51 324 | 25.18 344 | 52.06 304 | 90.55 74 |
|
testgi | | | 54.25 291 | 52.57 290 | 59.29 315 | 62.76 339 | 21.65 364 | 72.21 294 | 70.47 314 | 53.25 252 | 41.94 322 | 77.33 242 | 14.28 341 | 77.95 300 | 29.18 328 | 51.72 305 | 78.28 283 |
|
test_0402 | | | 56.45 280 | 53.03 284 | 66.69 277 | 76.78 230 | 50.31 175 | 81.76 208 | 69.61 318 | 42.79 319 | 43.88 313 | 72.13 301 | 22.82 304 | 86.46 204 | 16.57 361 | 50.94 306 | 63.31 350 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 306 | 48.05 307 | 59.47 314 | 67.81 318 | 40.57 311 | 71.25 301 | 62.72 335 | 36.49 336 | 36.19 341 | 73.51 286 | 13.48 342 | 73.92 321 | 20.71 354 | 50.26 307 | 63.92 349 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
pmmvs6 | | | 59.64 254 | 57.15 259 | 67.09 271 | 66.01 322 | 36.86 325 | 80.50 232 | 78.64 231 | 45.05 305 | 49.05 291 | 73.94 279 | 27.28 275 | 86.10 214 | 43.96 270 | 49.94 308 | 78.31 282 |
|
Anonymous20240521 | | | 51.65 303 | 48.42 305 | 61.34 310 | 56.43 350 | 39.65 314 | 73.57 282 | 73.47 299 | 36.64 335 | 36.59 339 | 63.98 331 | 10.75 347 | 72.25 331 | 35.35 301 | 49.01 309 | 72.11 330 |
|
USDC | | | 54.36 290 | 51.23 294 | 63.76 294 | 64.29 334 | 37.71 322 | 62.84 328 | 73.48 298 | 56.85 211 | 35.47 343 | 71.94 304 | 9.23 350 | 78.43 291 | 38.43 287 | 48.57 310 | 75.13 312 |
|
WR-MVS_H | | | 58.91 264 | 58.04 254 | 61.54 306 | 69.07 308 | 33.83 333 | 76.91 261 | 81.99 168 | 51.40 266 | 48.17 293 | 74.67 273 | 40.23 152 | 74.15 318 | 31.78 319 | 48.10 311 | 76.64 300 |
|
ITE_SJBPF | | | | | 51.84 329 | 58.03 347 | 31.94 342 | | 53.57 347 | 36.67 334 | 41.32 326 | 75.23 271 | 11.17 346 | 51.57 356 | 25.81 343 | 48.04 312 | 72.02 331 |
|
CL-MVSNet_self_test | | | 62.98 233 | 61.14 232 | 68.50 262 | 65.86 324 | 42.96 289 | 84.37 141 | 82.98 155 | 60.98 131 | 53.95 261 | 72.70 294 | 40.43 150 | 83.71 250 | 41.10 280 | 47.93 313 | 78.83 273 |
|
test_fmvs2 | | | 45.89 314 | 44.32 316 | 50.62 331 | 45.85 363 | 24.70 358 | 58.87 339 | 37.84 361 | 25.22 352 | 52.46 273 | 74.56 275 | 7.07 356 | 54.69 352 | 49.28 238 | 47.70 314 | 72.48 328 |
|
CP-MVSNet | | | 58.54 270 | 57.57 257 | 61.46 307 | 68.50 312 | 33.96 332 | 76.90 262 | 78.60 234 | 51.67 265 | 47.83 296 | 76.60 256 | 34.99 219 | 72.79 327 | 35.45 300 | 47.58 315 | 77.64 291 |
|
MIMVSNet1 | | | 50.35 307 | 47.81 308 | 57.96 319 | 61.53 342 | 27.80 355 | 67.40 316 | 74.06 289 | 43.25 317 | 33.31 351 | 65.38 329 | 16.03 337 | 71.34 332 | 21.80 351 | 47.55 316 | 74.75 313 |
|
PS-CasMVS | | | 58.12 272 | 57.03 261 | 61.37 308 | 68.24 316 | 33.80 334 | 76.73 263 | 78.01 242 | 51.20 267 | 47.54 300 | 76.20 264 | 32.85 235 | 72.76 328 | 35.17 305 | 47.37 317 | 77.55 292 |
|
Patchmatch-RL test | | | 58.72 266 | 54.32 278 | 71.92 210 | 63.91 335 | 44.25 278 | 61.73 329 | 55.19 342 | 57.38 203 | 49.31 290 | 54.24 349 | 37.60 179 | 80.89 269 | 62.19 135 | 47.28 318 | 90.63 73 |
|
PEN-MVS | | | 58.35 271 | 57.15 259 | 61.94 303 | 67.55 319 | 34.39 330 | 77.01 260 | 78.35 239 | 51.87 262 | 47.72 297 | 76.73 254 | 33.91 226 | 73.75 322 | 34.03 310 | 47.17 319 | 77.68 289 |
|
FPMVS | | | 35.40 323 | 33.67 326 | 40.57 341 | 46.34 362 | 28.74 353 | 41.05 356 | 57.05 341 | 20.37 357 | 22.27 361 | 53.38 351 | 6.87 358 | 44.94 364 | 8.62 367 | 47.11 320 | 48.01 360 |
|
test20.03 | | | 55.22 287 | 54.07 280 | 58.68 317 | 63.14 338 | 25.00 357 | 77.69 257 | 74.78 283 | 52.64 255 | 43.43 316 | 72.39 298 | 26.21 282 | 74.76 316 | 29.31 327 | 47.05 321 | 76.28 304 |
|
DSMNet-mixed | | | 38.35 321 | 35.36 325 | 47.33 334 | 48.11 361 | 14.91 376 | 37.87 360 | 36.60 362 | 19.18 358 | 34.37 345 | 59.56 343 | 15.53 338 | 53.01 355 | 20.14 356 | 46.89 322 | 74.07 317 |
|
Patchmtry | | | 56.56 279 | 52.95 286 | 67.42 269 | 72.53 280 | 50.59 164 | 59.05 337 | 71.72 305 | 37.86 331 | 46.92 304 | 65.86 326 | 38.94 163 | 80.06 281 | 36.94 295 | 46.72 323 | 71.60 333 |
|
test_vis1_rt | | | 40.29 320 | 38.64 322 | 45.25 337 | 48.91 360 | 30.09 346 | 59.44 336 | 27.07 372 | 24.52 354 | 38.48 336 | 51.67 353 | 6.71 359 | 49.44 357 | 44.33 267 | 46.59 324 | 56.23 353 |
|
EU-MVSNet | | | 52.63 299 | 50.72 296 | 58.37 318 | 62.69 340 | 28.13 354 | 72.60 288 | 75.97 274 | 30.94 346 | 40.76 330 | 72.11 302 | 20.16 318 | 70.80 334 | 35.11 306 | 46.11 325 | 76.19 305 |
|
RPSCF | | | 45.77 315 | 44.13 317 | 50.68 330 | 57.67 349 | 29.66 348 | 54.92 346 | 45.25 352 | 26.69 351 | 45.92 310 | 75.92 267 | 17.43 332 | 45.70 362 | 27.44 338 | 45.95 326 | 76.67 297 |
|
our_test_3 | | | 59.11 260 | 55.08 276 | 71.18 224 | 71.42 291 | 53.29 111 | 81.96 202 | 74.52 284 | 48.32 283 | 42.08 321 | 69.28 317 | 28.14 267 | 82.15 260 | 34.35 309 | 45.68 327 | 78.11 286 |
|
DTE-MVSNet | | | 57.03 275 | 55.73 271 | 60.95 312 | 65.94 323 | 32.57 339 | 75.71 266 | 77.09 259 | 51.16 268 | 46.65 307 | 76.34 259 | 32.84 236 | 73.22 326 | 30.94 323 | 44.87 328 | 77.06 294 |
|
pmmvs-eth3d | | | 55.97 284 | 52.78 288 | 65.54 284 | 61.02 343 | 46.44 250 | 75.36 272 | 67.72 324 | 49.61 277 | 43.65 315 | 67.58 322 | 21.63 313 | 77.04 306 | 44.11 269 | 44.33 329 | 73.15 326 |
|
AllTest | | | 47.32 312 | 44.66 314 | 55.32 326 | 65.08 329 | 37.50 323 | 62.96 327 | 54.25 345 | 35.45 339 | 33.42 349 | 72.82 291 | 9.98 348 | 59.33 347 | 24.13 347 | 43.84 330 | 69.13 337 |
|
TestCases | | | | | 55.32 326 | 65.08 329 | 37.50 323 | | 54.25 345 | 35.45 339 | 33.42 349 | 72.82 291 | 9.98 348 | 59.33 347 | 24.13 347 | 43.84 330 | 69.13 337 |
|
ppachtmachnet_test | | | 58.56 268 | 54.34 277 | 71.24 221 | 71.42 291 | 54.74 72 | 81.84 207 | 72.27 302 | 49.02 280 | 45.86 311 | 68.99 318 | 26.27 281 | 83.30 255 | 30.12 324 | 43.23 332 | 75.69 306 |
|
KD-MVS_self_test | | | 49.24 308 | 46.85 311 | 56.44 323 | 54.32 351 | 22.87 360 | 57.39 340 | 73.36 300 | 44.36 310 | 37.98 337 | 59.30 344 | 18.97 323 | 71.17 333 | 33.48 311 | 42.44 333 | 75.26 310 |
|
PM-MVS | | | 46.92 313 | 43.76 318 | 56.41 324 | 52.18 353 | 32.26 340 | 63.21 326 | 38.18 359 | 37.99 330 | 40.78 329 | 66.20 325 | 5.09 364 | 65.42 341 | 48.19 246 | 41.99 334 | 71.54 334 |
|
TinyColmap | | | 48.15 311 | 44.49 315 | 59.13 316 | 65.73 325 | 38.04 320 | 63.34 324 | 62.86 334 | 38.78 326 | 29.48 355 | 67.23 324 | 6.46 361 | 73.30 325 | 24.59 346 | 41.90 335 | 66.04 345 |
|
N_pmnet | | | 41.25 318 | 39.77 321 | 45.66 336 | 68.50 312 | 0.82 383 | 72.51 290 | 0.38 383 | 35.61 338 | 35.26 344 | 61.51 337 | 20.07 319 | 67.74 339 | 23.51 349 | 40.63 336 | 68.42 340 |
|
TransMVSNet (Re) | | | 62.82 235 | 60.76 236 | 69.02 251 | 73.98 264 | 41.61 302 | 86.36 86 | 79.30 220 | 56.90 210 | 52.53 271 | 76.44 257 | 41.85 137 | 87.60 176 | 38.83 286 | 40.61 337 | 77.86 287 |
|
OurMVSNet-221017-0 | | | 52.39 301 | 48.73 304 | 63.35 297 | 65.21 328 | 38.42 319 | 68.54 313 | 64.95 328 | 38.19 328 | 39.57 331 | 71.43 305 | 13.23 343 | 79.92 282 | 37.16 290 | 40.32 338 | 71.72 332 |
|
YYNet1 | | | 53.82 294 | 49.96 299 | 65.41 286 | 70.09 302 | 48.95 203 | 72.30 292 | 71.66 307 | 44.25 311 | 31.89 352 | 63.07 334 | 23.73 299 | 73.95 320 | 33.26 313 | 39.40 339 | 73.34 323 |
|
MDA-MVSNet_test_wron | | | 53.82 294 | 49.95 300 | 65.43 285 | 70.13 301 | 49.05 199 | 72.30 292 | 71.65 308 | 44.23 312 | 31.85 353 | 63.13 333 | 23.68 300 | 74.01 319 | 33.25 314 | 39.35 340 | 73.23 325 |
|
ambc | | | | | 62.06 302 | 53.98 352 | 29.38 350 | 35.08 362 | 79.65 208 | | 41.37 325 | 59.96 341 | 6.27 362 | 82.15 260 | 35.34 302 | 38.22 341 | 74.65 314 |
|
test_fmvs3 | | | 37.95 322 | 35.75 324 | 44.55 338 | 35.50 369 | 18.92 368 | 48.32 348 | 34.00 366 | 18.36 360 | 41.31 327 | 61.58 336 | 2.29 371 | 48.06 361 | 42.72 277 | 37.71 342 | 66.66 343 |
|
mvsany_test1 | | | 43.38 317 | 42.57 319 | 45.82 335 | 50.96 356 | 26.10 356 | 55.80 342 | 27.74 371 | 27.15 350 | 47.41 302 | 74.39 276 | 18.67 325 | 44.95 363 | 44.66 265 | 36.31 343 | 66.40 344 |
|
Gipuma |  | | 27.47 330 | 24.26 335 | 37.12 344 | 60.55 345 | 29.17 351 | 11.68 371 | 60.00 337 | 14.18 363 | 10.52 372 | 15.12 373 | 2.20 373 | 63.01 342 | 8.39 368 | 35.65 344 | 19.18 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
UnsupCasMVSNet_eth | | | 57.56 273 | 55.15 274 | 64.79 291 | 64.57 333 | 33.12 335 | 73.17 286 | 83.87 137 | 58.98 171 | 41.75 324 | 70.03 313 | 22.54 305 | 79.92 282 | 46.12 260 | 35.31 345 | 81.32 248 |
|
TDRefinement | | | 40.91 319 | 38.37 323 | 48.55 333 | 50.45 357 | 33.03 337 | 58.98 338 | 50.97 348 | 28.50 348 | 29.89 354 | 67.39 323 | 6.21 363 | 54.51 353 | 17.67 360 | 35.25 346 | 58.11 352 |
|
EGC-MVSNET | | | 33.75 325 | 30.42 329 | 43.75 339 | 64.94 331 | 36.21 327 | 60.47 335 | 40.70 357 | 0.02 377 | 0.10 378 | 53.79 350 | 7.39 355 | 60.26 345 | 11.09 366 | 35.23 347 | 34.79 363 |
|
LF4IMVS | | | 33.04 327 | 32.55 327 | 34.52 345 | 40.96 364 | 22.03 362 | 44.45 353 | 35.62 363 | 20.42 356 | 28.12 358 | 62.35 335 | 5.03 365 | 31.88 375 | 21.61 353 | 34.42 348 | 49.63 359 |
|
new-patchmatchnet | | | 48.21 310 | 46.55 312 | 53.18 328 | 57.73 348 | 18.19 372 | 70.24 304 | 71.02 312 | 45.70 300 | 33.70 347 | 60.23 340 | 18.00 328 | 69.86 337 | 27.97 336 | 34.35 349 | 71.49 335 |
|
pmmvs3 | | | 45.53 316 | 41.55 320 | 57.44 320 | 48.97 359 | 39.68 313 | 70.06 305 | 57.66 340 | 28.32 349 | 34.06 346 | 57.29 347 | 8.50 354 | 66.85 340 | 34.86 308 | 34.26 350 | 65.80 346 |
|
SixPastTwentyTwo | | | 54.37 289 | 50.10 298 | 67.21 270 | 70.70 297 | 41.46 305 | 74.73 275 | 64.69 329 | 47.56 288 | 39.12 333 | 69.49 314 | 18.49 327 | 84.69 242 | 31.87 318 | 34.20 351 | 75.48 308 |
|
UnsupCasMVSNet_bld | | | 53.86 293 | 50.53 297 | 63.84 293 | 63.52 337 | 34.75 329 | 71.38 300 | 81.92 171 | 46.53 293 | 38.95 334 | 57.93 346 | 20.55 317 | 80.20 280 | 39.91 284 | 34.09 352 | 76.57 301 |
|
MDA-MVSNet-bldmvs | | | 51.56 304 | 47.75 310 | 63.00 298 | 71.60 289 | 47.32 239 | 69.70 309 | 72.12 303 | 43.81 314 | 27.65 359 | 63.38 332 | 21.97 312 | 75.96 311 | 27.30 339 | 32.19 353 | 65.70 347 |
|
PMVS |  | 19.57 22 | 25.07 334 | 22.43 339 | 32.99 349 | 23.12 380 | 22.98 359 | 40.98 357 | 35.19 364 | 15.99 362 | 11.95 371 | 35.87 363 | 1.47 377 | 49.29 358 | 5.41 374 | 31.90 354 | 26.70 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 33.56 326 | 31.89 328 | 38.59 342 | 49.01 358 | 20.42 365 | 51.01 347 | 37.92 360 | 20.58 355 | 23.45 360 | 46.79 355 | 6.66 360 | 49.28 359 | 20.00 357 | 31.57 355 | 46.09 361 |
|
KD-MVS_2432*1600 | | | 59.04 262 | 56.44 265 | 66.86 274 | 79.07 189 | 45.87 260 | 72.13 295 | 80.42 194 | 55.03 236 | 48.15 294 | 71.01 306 | 36.73 196 | 78.05 297 | 35.21 303 | 30.18 356 | 76.67 297 |
|
miper_refine_blended | | | 59.04 262 | 56.44 265 | 66.86 274 | 79.07 189 | 45.87 260 | 72.13 295 | 80.42 194 | 55.03 236 | 48.15 294 | 71.01 306 | 36.73 196 | 78.05 297 | 35.21 303 | 30.18 356 | 76.67 297 |
|
test_vis3_rt | | | 24.79 335 | 22.95 338 | 30.31 351 | 28.59 375 | 18.92 368 | 37.43 361 | 17.27 379 | 12.90 364 | 21.28 362 | 29.92 368 | 1.02 378 | 36.35 368 | 28.28 335 | 29.82 358 | 35.65 362 |
|
test_f | | | 27.12 331 | 24.85 332 | 33.93 347 | 26.17 379 | 15.25 375 | 30.24 367 | 22.38 376 | 12.53 366 | 28.23 357 | 49.43 354 | 2.59 370 | 34.34 373 | 25.12 345 | 26.99 359 | 52.20 357 |
|
APD_test1 | | | 26.46 333 | 24.41 334 | 32.62 350 | 37.58 366 | 21.74 363 | 40.50 358 | 30.39 368 | 11.45 367 | 16.33 364 | 43.76 356 | 1.63 376 | 41.62 365 | 11.24 365 | 26.82 360 | 34.51 364 |
|
K. test v3 | | | 54.04 292 | 49.42 303 | 67.92 266 | 68.55 311 | 42.57 297 | 75.51 270 | 63.07 333 | 52.07 259 | 39.21 332 | 64.59 330 | 19.34 321 | 82.21 259 | 37.11 292 | 25.31 361 | 78.97 271 |
|
LCM-MVSNet | | | 28.07 328 | 23.85 336 | 40.71 340 | 27.46 378 | 18.93 367 | 30.82 366 | 46.19 349 | 12.76 365 | 16.40 363 | 34.70 364 | 1.90 374 | 48.69 360 | 20.25 355 | 24.22 362 | 54.51 355 |
|
test_method | | | 24.09 336 | 21.07 340 | 33.16 348 | 27.67 377 | 8.35 381 | 26.63 368 | 35.11 365 | 3.40 374 | 14.35 366 | 36.98 360 | 3.46 368 | 35.31 370 | 19.08 359 | 22.95 363 | 55.81 354 |
|
testf1 | | | 21.11 337 | 19.08 341 | 27.18 353 | 30.56 371 | 18.28 370 | 33.43 364 | 24.48 373 | 8.02 371 | 12.02 369 | 33.50 365 | 0.75 380 | 35.09 371 | 7.68 369 | 21.32 364 | 28.17 366 |
|
APD_test2 | | | 21.11 337 | 19.08 341 | 27.18 353 | 30.56 371 | 18.28 370 | 33.43 364 | 24.48 373 | 8.02 371 | 12.02 369 | 33.50 365 | 0.75 380 | 35.09 371 | 7.68 369 | 21.32 364 | 28.17 366 |
|
lessismore_v0 | | | | | 67.98 264 | 64.76 332 | 41.25 306 | | 45.75 351 | | 36.03 342 | 65.63 328 | 19.29 322 | 84.11 245 | 35.67 299 | 21.24 366 | 78.59 277 |
|
mvsany_test3 | | | 28.00 329 | 25.98 331 | 34.05 346 | 28.97 374 | 15.31 374 | 34.54 363 | 18.17 377 | 16.24 361 | 29.30 356 | 53.37 352 | 2.79 369 | 33.38 374 | 30.01 325 | 20.41 367 | 53.45 356 |
|
PVSNet_0 | | 57.04 13 | 61.19 247 | 57.24 258 | 73.02 181 | 77.45 220 | 50.31 175 | 79.43 247 | 77.36 255 | 63.96 83 | 47.51 301 | 72.45 297 | 25.03 292 | 83.78 249 | 52.76 219 | 19.22 368 | 84.96 184 |
|
PMMVS2 | | | 26.71 332 | 22.98 337 | 37.87 343 | 36.89 367 | 8.51 380 | 42.51 355 | 29.32 370 | 19.09 359 | 13.01 367 | 37.54 358 | 2.23 372 | 53.11 354 | 14.54 362 | 11.71 369 | 51.99 358 |
|
MVE |  | 16.60 23 | 17.34 342 | 13.39 345 | 29.16 352 | 28.43 376 | 19.72 366 | 13.73 370 | 23.63 375 | 7.23 373 | 7.96 373 | 21.41 369 | 0.80 379 | 36.08 369 | 6.97 371 | 10.39 370 | 31.69 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 19.16 339 | 18.40 343 | 21.44 355 | 36.19 368 | 13.63 377 | 47.59 349 | 30.89 367 | 10.73 368 | 5.91 375 | 16.59 371 | 3.66 367 | 39.77 366 | 5.95 373 | 8.14 371 | 10.92 371 |
|
DeepMVS_CX |  | | | | 13.10 357 | 21.34 381 | 8.99 379 | | 10.02 381 | 10.59 369 | 7.53 374 | 30.55 367 | 1.82 375 | 14.55 376 | 6.83 372 | 7.52 372 | 15.75 370 |
|
EMVS | | | 18.42 340 | 17.66 344 | 20.71 356 | 34.13 370 | 12.64 378 | 46.94 350 | 29.94 369 | 10.46 370 | 5.58 376 | 14.93 374 | 4.23 366 | 38.83 367 | 5.24 375 | 7.51 373 | 10.67 372 |
|
wuyk23d | | | 9.11 344 | 8.77 348 | 10.15 358 | 40.18 365 | 16.76 373 | 20.28 369 | 1.01 382 | 2.58 375 | 2.66 377 | 0.98 377 | 0.23 382 | 12.49 377 | 4.08 376 | 6.90 374 | 1.19 374 |
|
tmp_tt | | | 9.44 343 | 10.68 346 | 5.73 359 | 2.49 382 | 4.21 382 | 10.48 372 | 18.04 378 | 0.34 376 | 12.59 368 | 20.49 370 | 11.39 345 | 7.03 378 | 13.84 364 | 6.46 375 | 5.95 373 |
|
ANet_high | | | 34.39 324 | 29.59 330 | 48.78 332 | 30.34 373 | 22.28 361 | 55.53 343 | 63.79 332 | 38.11 329 | 15.47 365 | 36.56 362 | 6.94 357 | 59.98 346 | 13.93 363 | 5.64 376 | 64.08 348 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 18.33 341 | 24.44 333 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 89.40 15 | 0.00 378 | 0.00 381 | 92.02 34 | 38.55 167 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 3.15 348 | 4.20 351 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 37.77 173 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
testmvs | | | 6.14 346 | 8.18 349 | 0.01 360 | 0.01 383 | 0.00 385 | 73.40 285 | 0.00 384 | 0.00 378 | 0.02 379 | 0.15 378 | 0.00 383 | 0.00 379 | 0.02 377 | 0.00 377 | 0.02 375 |
|
test123 | | | 6.01 347 | 8.01 350 | 0.01 360 | 0.00 384 | 0.01 384 | 71.93 298 | 0.00 384 | 0.00 378 | 0.02 379 | 0.11 379 | 0.00 383 | 0.00 379 | 0.02 377 | 0.00 377 | 0.02 375 |
|
ab-mvs-re | | | 7.68 345 | 10.24 347 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 92.12 31 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 384 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 378 | 0.00 381 | 0.00 380 | 0.00 383 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
FOURS1 | | | | | | 83.24 101 | 49.90 183 | 84.98 124 | 78.76 228 | 47.71 286 | 73.42 47 | | | | | | |
|
test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 43 | 57.21 207 | 82.06 11 | 93.39 12 | 54.94 24 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 89.48 17 | 56.89 25 | | 88.94 22 | 57.53 199 | 84.61 4 | 93.29 15 | 58.81 11 | 96.45 1 | | | |
|
save fliter | | | | | | 85.35 60 | 56.34 36 | 89.31 37 | 81.46 178 | 61.55 120 | | | | | | | |
|
test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 33 | 57.71 195 | 83.14 9 | 93.96 6 | 55.17 20 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 127 |
|
test_part2 | | | | | | 89.33 23 | 55.48 50 | | | | 82.27 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 165 | | | | 88.13 127 |
|
sam_mvs | | | | | | | | | | | | | 35.99 209 | | | | |
|
MTGPA |  | | | | | | | | 81.31 181 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 303 | | | | 14.72 375 | 34.33 223 | 83.86 246 | 48.80 241 | | |
|
test_post | | | | | | | | | | | | 16.22 372 | 37.52 181 | 84.72 241 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 342 | 38.41 168 | 79.91 284 | | | |
|
MTMP | | | | | | | | 87.27 70 | 15.34 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 101 | 54.21 86 | | | 70.91 13 | | 88.23 112 | | 95.25 14 | 66.37 104 | | |
|
TEST9 | | | | | | 85.68 51 | 55.42 51 | 87.59 60 | 84.00 133 | 57.72 194 | 72.99 52 | 90.98 52 | 44.87 97 | 88.58 139 | | | |
|
test_8 | | | | | | 85.72 50 | 55.31 55 | 87.60 59 | 83.88 136 | 57.84 192 | 72.84 56 | 90.99 51 | 44.99 94 | 88.34 149 | | | |
|
agg_prior | | | | | | 85.64 54 | 54.92 69 | | 83.61 143 | | 72.53 60 | | | 88.10 159 | | | |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 73 | | | | | | | | | |
|
test_prior | | | | | 78.39 63 | 86.35 45 | 54.91 70 | | 85.45 88 | | | | | 89.70 110 | | | 90.55 74 |
|
旧先验2 | | | | | | | | 81.73 209 | | 45.53 302 | 74.66 35 | | | 70.48 336 | 58.31 170 | | |
|
新几何2 | | | | | | | | 81.61 213 | | | | | | | | | |
|
无先验 | | | | | | | | 85.19 114 | 78.00 243 | 49.08 279 | | | | 85.13 236 | 52.78 217 | | 87.45 141 |
|
原ACMM2 | | | | | | | | 83.77 159 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 303 | 45.64 261 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 96 | | | | |
|
testdata1 | | | | | | | | 77.55 259 | | 64.14 78 | | | | | | | |
|
plane_prior7 | | | | | | 77.95 212 | 48.46 219 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 207 | 49.39 194 | | | | | | 36.04 207 | | | | |
|
plane_prior4 | | | | | | | | | | | | 83.28 176 | | | | | |
|
plane_prior3 | | | | | | | 48.95 203 | | | 64.01 81 | 62.15 163 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 98 | | 63.60 90 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 209 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 356 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 127 | | | | | | | | |
|
door | | | | | | | | | 43.27 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 147 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 191 | | 88.00 51 | | 65.45 60 | 64.48 131 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 191 | | 88.00 51 | | 65.45 60 | 64.48 131 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 101 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 134 | | | 88.61 138 | | | 84.91 185 |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 184 | | | | |
|
NP-MVS | | | | | | 78.76 196 | 50.43 168 | | | | | 85.12 152 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 284 | 71.13 302 | | 54.95 238 | 59.29 193 | | 36.76 195 | | 46.33 258 | | 87.32 143 |
|
Test By Simon | | | | | | | | | | | | | 39.38 160 | | | | |
|