This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12488.63 3666.08 6486.77 392.75 3072.05 191.46 6383.35 1793.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 7993.25 294.80 1
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12788.88 2658.00 20483.60 693.39 1667.21 296.39 481.64 2891.98 493.98 5
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
MVP-Stereo70.97 13270.44 12072.59 20376.03 24951.36 15585.02 12686.99 6460.31 15856.53 25578.92 24540.11 16790.00 10460.00 17090.01 676.41 319
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3192.13 3960.24 694.78 1978.97 4189.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2493.00 2853.10 3291.76 5780.40 3489.56 892.68 25
MVS76.91 4175.48 5281.23 1884.56 7355.21 6080.23 25191.64 258.65 19465.37 13091.48 5845.72 9295.05 1672.11 9089.52 993.44 9
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 13880.26 2093.10 2346.53 8292.41 4479.97 3588.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator64.70 674.46 7372.48 8680.41 2482.84 11755.40 5483.08 18788.61 3867.61 4359.85 19488.66 11334.57 23893.97 2458.42 18188.70 1191.85 46
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20173.60 5393.31 1943.14 13193.79 2773.81 8088.53 1292.37 31
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18071.82 7790.05 8859.72 996.04 1078.37 4788.40 1393.75 7
MS-PatchMatch72.34 10871.26 10975.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25680.74 22932.28 25992.89 3357.95 19088.10 1478.39 297
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3393.87 752.58 3593.91 2684.17 1287.92 1592.39 30
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 32888.45 4268.73 9987.45 13659.15 1090.67 8554.83 21487.67 1692.03 40
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 21884.61 494.09 358.81 1196.37 682.28 2387.60 1794.06 3
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 1987.60 1792.44 29
test_241102_TWO88.76 3257.50 21883.60 694.09 356.14 1896.37 682.28 2387.43 1992.55 27
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21281.91 1393.64 1155.17 2096.44 281.68 2687.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2687.13 2092.47 28
ACMMP_NAP76.43 4975.66 4978.73 5281.92 13354.67 7984.06 15685.35 9561.10 14372.99 6191.50 5740.25 16391.00 7576.84 5886.98 2390.51 79
test_0728_THIRD58.00 20481.91 1393.64 1156.54 1596.44 281.64 2886.86 2492.23 34
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19274.63 4492.38 3647.75 6891.35 6578.18 5186.85 2591.15 66
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
PAPM76.76 4676.07 4778.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9488.84 11151.57 4187.16 19765.48 12586.68 2890.15 88
gg-mvs-nofinetune67.43 19964.53 22576.13 11885.95 4747.79 24564.38 34088.28 4439.34 34366.62 11341.27 37758.69 1389.00 13149.64 25086.62 2991.59 51
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2293.64 1152.40 3693.27 3088.85 486.56 3092.61 26
MAR-MVS76.76 4675.60 5080.21 2690.87 754.68 7889.14 4189.11 2062.95 11270.54 9292.33 3741.05 15594.95 1757.90 19186.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22586.41 7469.61 2481.72 1588.16 12455.09 2288.04 17074.12 7886.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 1893.22 2237.77 18792.50 4282.75 2086.25 3391.57 53
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2195.30 156.18 1790.97 7882.57 2286.22 3493.28 13
test1279.24 3986.89 4156.08 4085.16 10672.27 7447.15 7491.10 7385.93 3590.54 78
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3493.09 2554.15 2895.57 1285.80 885.87 3693.31 11
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1793.07 2737.63 19292.28 4782.73 2185.71 3791.57 53
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 24881.21 1693.69 1056.51 1694.27 2278.36 4885.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1478.19 2485.67 5388.32 5088.84 2959.89 16374.58 4692.62 3346.80 7892.66 3981.40 3285.62 39
test_prior289.04 4261.88 13173.55 5491.46 5948.01 6674.73 7285.46 40
test9_res78.72 4585.44 4191.39 59
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 20972.99 6190.98 6344.99 10288.58 14778.19 4985.32 4291.34 63
ZNCC-MVS75.82 6075.02 5978.23 6883.88 8753.80 9486.91 8186.05 8159.71 16667.85 10590.55 7242.23 14091.02 7472.66 8885.29 4389.87 97
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8492.75 3045.52 9590.37 9371.15 9285.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior275.65 6485.11 4591.01 68
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 27966.70 11187.07 14340.15 16689.70 11351.23 24185.06 4684.10 209
MP-MVS-pluss75.54 6375.03 5877.04 9481.37 15552.65 12884.34 14784.46 12561.16 14169.14 9691.76 4939.98 17088.99 13378.19 4984.89 4789.48 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2393.10 2349.88 5692.98 3284.09 1484.75 4893.08 17
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6491.98 4745.10 10091.27 6675.02 7184.56 4990.84 72
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5588.09 12548.07 6492.19 4862.24 14784.53 5091.53 55
CDPH-MVS76.05 5575.19 5678.62 5786.51 4454.98 6987.32 6884.59 12358.62 19570.75 8990.85 6843.10 13390.63 8870.50 9684.51 5190.24 84
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10489.97 9048.03 6591.41 6475.60 6584.14 5289.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5292.75 3046.88 7793.28 2978.79 4484.07 5391.50 57
OpenMVScopyleft61.00 1169.99 15067.55 16877.30 8778.37 21454.07 9284.36 14685.76 8657.22 22356.71 25287.67 13330.79 27292.83 3543.04 28884.06 5485.01 197
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11371.65 7891.56 5642.33 13892.56 4177.14 5783.69 5590.15 88
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS74.87 7173.90 7377.77 7683.30 9953.45 10485.75 10285.29 9959.22 17966.50 11789.85 9240.94 15690.76 8370.94 9483.35 5689.10 114
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24378.56 2892.49 3548.20 6392.65 4079.49 3683.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3591.72 5049.32 6090.17 10273.46 8382.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS74.17 7872.07 9880.49 2290.02 1158.55 887.30 7084.27 12957.51 21765.77 12787.77 13141.61 15195.97 1151.71 23782.63 5986.94 157
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7191.62 5445.53 9490.99 7774.48 7482.51 6091.23 64
MSLP-MVS++74.21 7772.25 9280.11 3181.45 15356.47 3386.32 8979.65 21658.19 20066.36 11892.29 3836.11 21990.66 8667.39 11082.49 6193.18 16
MTAPA72.73 10171.22 11077.27 8981.54 15053.57 9967.06 33481.31 18559.41 17368.39 10190.96 6536.07 22189.01 13073.80 8182.45 6289.23 109
MP-MVScopyleft74.99 7074.33 6776.95 10082.89 11553.05 12085.63 10683.50 14757.86 20867.25 10890.24 8043.38 12888.85 14176.03 6082.23 6388.96 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS75.92 5675.18 5778.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10090.53 7345.79 9191.58 6067.21 11282.18 6491.20 65
3Dnovator+62.71 772.29 11070.50 11977.65 7983.40 9751.29 15887.32 6886.40 7559.01 18758.49 22488.32 12132.40 25791.27 6657.04 20082.15 6590.38 81
EC-MVSNet75.30 6475.20 5575.62 12880.98 16049.00 20687.43 6584.68 12163.49 10470.97 8890.15 8642.86 13591.14 7274.33 7681.90 6686.71 166
CHOSEN 1792x268876.24 5174.03 7282.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13783.49 18641.52 15393.69 2870.55 9581.82 6792.12 37
APD-MVScopyleft76.15 5375.68 4877.54 8188.52 2753.44 10587.26 7385.03 11053.79 26574.91 4291.68 5243.80 11890.31 9674.36 7581.82 6788.87 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS89.55 1453.46 10284.38 12657.02 22673.97 5191.03 6144.57 11291.17 7075.41 6981.78 69
QAPM71.88 11769.33 14179.52 3582.20 13054.30 8686.30 9088.77 3156.61 23659.72 19687.48 13533.90 24495.36 1347.48 26581.49 7088.90 117
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9789.33 10346.70 8088.13 16675.43 6681.48 7189.55 102
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6090.52 7445.23 9990.66 8679.37 3780.95 7290.22 85
HFP-MVS74.37 7573.13 8178.10 7184.30 7753.68 9785.58 10784.36 12756.82 23065.78 12690.56 7140.70 16190.90 7969.18 10180.88 7389.71 98
ACMMPR73.76 8472.61 8377.24 9183.92 8552.96 12385.58 10784.29 12856.82 23065.12 13190.45 7537.24 20390.18 10169.18 10180.84 7488.58 127
region2R73.75 8572.55 8577.33 8583.90 8652.98 12285.54 11084.09 13456.83 22965.10 13290.45 7537.34 20190.24 9968.89 10380.83 7588.77 123
MVS_Test75.85 5774.93 6178.62 5784.08 8155.20 6183.99 15885.17 10568.07 3573.38 5782.76 19650.44 5189.00 13165.90 12180.61 7691.64 49
Vis-MVSNetpermissive70.61 13969.34 14074.42 15980.95 16548.49 22286.03 9677.51 25958.74 19365.55 12987.78 13034.37 23985.95 23652.53 23580.61 7688.80 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS72.92 9771.62 10376.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 15389.63 9635.50 22689.78 10965.50 12380.50 7888.16 133
X-MVStestdata65.85 22962.20 23776.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 1534.82 39635.50 22689.78 10965.50 12380.50 7888.16 133
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2591.09 6055.43 1990.09 10385.01 1080.40 8091.99 43
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13383.68 14267.85 3869.36 9590.24 8060.20 792.10 5284.14 1380.40 8092.82 21
新几何173.30 19183.10 10453.48 10171.43 32045.55 32066.14 12087.17 14133.88 24580.54 29048.50 25980.33 8285.88 184
PGM-MVS72.60 10371.20 11176.80 10582.95 11252.82 12583.07 18882.14 16856.51 23863.18 16289.81 9335.68 22589.76 11167.30 11180.19 8387.83 141
MVSFormer73.53 9072.19 9577.57 8083.02 10955.24 5881.63 22281.44 18350.28 29076.67 3690.91 6644.82 10886.11 22660.83 15880.09 8491.36 61
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3692.02 4344.82 10890.23 10080.83 3380.09 8492.08 38
HPM-MVScopyleft72.60 10371.50 10575.89 12482.02 13151.42 15480.70 24483.05 15656.12 24264.03 15189.53 9737.55 19588.37 15570.48 9780.04 8687.88 140
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR76.39 5075.38 5479.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12289.88 9143.79 11992.16 4975.03 7080.03 8789.64 100
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23774.26 4991.60 5554.26 2692.16 4975.87 6279.91 8893.05 18
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 10974.63 4490.83 6941.38 15494.40 2075.42 6879.90 8994.72 2
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8388.35 11951.58 4091.22 6879.02 4079.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+75.24 6573.61 7480.16 2981.92 13357.42 1985.21 11676.71 27460.68 15473.32 5889.34 10147.30 7291.63 5968.28 10679.72 9191.42 58
test250672.91 9872.43 8874.32 16380.12 18144.18 29383.19 18484.77 11864.02 9065.97 12387.43 13747.67 6988.72 14259.08 17279.66 9290.08 90
ECVR-MVScopyleft71.81 11871.00 11374.26 16580.12 18143.49 29884.69 13782.16 16764.02 9064.64 13987.43 13735.04 23389.21 12461.24 15579.66 9290.08 90
PAPM_NR71.80 11969.98 13177.26 9081.54 15053.34 11078.60 26785.25 10253.46 26860.53 19088.66 11345.69 9389.24 12256.49 20479.62 9489.19 111
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5090.91 6642.14 14289.99 10579.30 3879.12 9591.36 61
jason: jason.
CANet_DTU73.71 8673.14 7975.40 13782.61 12450.05 18284.67 14079.36 22469.72 2375.39 3990.03 8929.41 28085.93 23767.99 10879.11 9690.22 85
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8088.63 11750.89 4990.35 9476.00 6179.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,172.86 9972.33 8974.46 15781.98 13250.77 16285.13 11985.47 8966.09 6367.30 10783.69 18337.27 20283.57 26665.06 13378.97 9889.05 115
SD-MVS76.18 5274.85 6280.18 2885.39 5956.90 2485.75 10282.45 16656.79 23274.48 4791.81 4843.72 12290.75 8474.61 7378.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16084.88 11471.38 1471.51 8189.15 10650.51 5090.55 9075.71 6378.65 9991.39 59
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4090.15 8646.77 7991.00 7573.52 8278.46 10193.44 9
test111171.06 13070.42 12172.97 19679.48 18841.49 31984.82 13482.74 16264.20 8762.98 16587.43 13735.20 22987.92 17258.54 17878.42 10289.49 104
旧先验181.57 14947.48 24771.83 31488.66 11336.94 20778.34 10388.67 124
mPP-MVS71.79 12070.38 12276.04 12182.65 12352.06 13784.45 14481.78 17855.59 24762.05 17789.68 9533.48 24888.28 16365.45 12878.24 10487.77 143
CP-MVS72.59 10571.46 10676.00 12382.93 11452.32 13586.93 8082.48 16555.15 25263.65 15790.44 7835.03 23488.53 15168.69 10477.83 10587.15 155
PVSNet_Blended_VisFu73.40 9372.44 8776.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14285.38 16247.11 7587.38 19467.75 10977.55 10686.81 165
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3292.11 4250.90 4789.95 10678.18 5177.54 10793.20 15
131471.11 12969.41 13876.22 11379.32 19150.49 16980.23 25185.14 10859.44 17258.93 21388.89 11033.83 24689.60 11661.49 15377.42 10888.57 128
PAPR75.20 6774.13 6878.41 6488.31 3155.10 6584.31 14885.66 8763.76 9767.55 10690.73 7043.48 12789.40 11966.36 11877.03 10990.73 74
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 3891.99 4554.07 2989.05 12877.34 5677.00 11092.89 20
test22279.36 18950.97 16177.99 27067.84 33942.54 33862.84 16786.53 15030.26 27576.91 11185.23 193
PMMVS72.98 9672.05 9975.78 12683.57 9048.60 21784.08 15482.85 16161.62 13468.24 10290.33 7928.35 28487.78 18072.71 8776.69 11290.95 70
UGNet68.71 17367.11 17673.50 18880.55 17547.61 24684.08 15478.51 24359.45 17165.68 12882.73 19923.78 31885.08 25152.80 23076.40 11387.80 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
xiu_mvs_v1_base_debu71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base_debi71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
Fast-Effi-MVS+72.73 10171.15 11277.48 8282.75 11954.76 7286.77 8380.64 19663.05 11165.93 12484.01 17644.42 11389.03 12956.45 20776.36 11788.64 125
VDD-MVS76.08 5474.97 6079.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7289.34 10132.52 25692.76 3877.90 5375.96 11892.22 36
testdata67.08 28777.59 22445.46 27869.20 33544.47 32771.50 8288.34 12031.21 26970.76 35352.20 23675.88 11985.03 196
mvs_anonymous72.29 11070.74 11576.94 10182.85 11654.72 7578.43 26881.54 18163.77 9661.69 17979.32 23951.11 4485.31 24462.15 14975.79 12090.79 73
VDDNet74.37 7572.13 9681.09 1979.58 18756.52 3290.02 2686.70 7052.61 27571.23 8587.20 14031.75 26693.96 2574.30 7775.77 12192.79 23
diffmvspermissive75.11 6974.65 6576.46 10978.52 21053.35 10983.28 18279.94 20870.51 1871.64 7988.72 11246.02 8886.08 23177.52 5475.75 12289.96 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet68.80 17167.55 16872.54 20478.50 21143.43 30081.03 23679.35 22559.12 18557.27 24786.71 14746.05 8787.70 18344.32 28375.60 12386.49 169
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 26888.46 4990.32 1171.40 1372.32 7391.72 5053.44 3092.37 4566.28 11975.42 12493.28 13
test_fmvsm_n_192075.56 6275.54 5175.61 12974.60 26849.51 19681.82 21774.08 29766.52 5580.40 1993.46 1546.95 7689.72 11286.69 575.30 12587.61 147
Vis-MVSNet (Re-imp)65.52 23065.63 20765.17 30377.49 22630.54 35975.49 28577.73 25559.34 17552.26 29286.69 14849.38 5980.53 29137.07 30775.28 12684.42 205
test-LLR69.65 15869.01 14571.60 22978.67 20548.17 23185.13 11979.72 21359.18 18263.13 16382.58 20336.91 20880.24 29460.56 16275.17 12786.39 172
test-mter68.36 17867.29 17271.60 22978.67 20548.17 23185.13 11979.72 21353.38 26963.13 16382.58 20327.23 29480.24 29460.56 16275.17 12786.39 172
PVSNet62.49 869.27 16267.81 16373.64 18484.41 7651.85 14384.63 14177.80 25366.42 5659.80 19584.95 16722.14 33280.44 29255.03 21375.11 12988.62 126
test_yl75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
DCV-MVSNet75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
BH-w/o70.02 14868.51 14974.56 15582.77 11850.39 17386.60 8678.14 24959.77 16559.65 19785.57 16039.27 17587.30 19549.86 24874.94 13285.99 179
SR-MVS70.92 13469.73 13474.50 15683.38 9850.48 17084.27 14979.35 22548.96 30066.57 11690.45 7533.65 24787.11 19866.42 11674.56 13385.91 182
UA-Net67.32 20366.23 19270.59 24578.85 20141.23 32273.60 29675.45 28761.54 13666.61 11484.53 16938.73 18086.57 21742.48 29374.24 13483.98 215
CDS-MVSNet70.48 14169.43 13773.64 18477.56 22548.83 21283.51 17177.45 26063.27 10862.33 17285.54 16143.85 11683.29 27057.38 19974.00 13588.79 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-RMVSNet70.08 14668.01 15676.27 11184.21 8051.22 16087.29 7179.33 22758.96 18963.63 15886.77 14633.29 25090.30 9844.63 28173.96 13687.30 154
CLD-MVS75.60 6175.39 5376.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13588.93 10842.05 14490.58 8976.57 5973.96 13685.73 185
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
APD-MVS_3200maxsize69.62 15968.23 15473.80 17981.58 14848.22 23081.91 21379.50 21948.21 30364.24 14889.75 9431.91 26587.55 19163.08 14173.85 13885.64 188
HPM-MVS_fast67.86 18766.28 19172.61 20280.67 17248.34 22781.18 23475.95 28350.81 28859.55 20188.05 12727.86 28985.98 23358.83 17573.58 13983.51 224
ACMMPcopyleft70.81 13669.29 14275.39 13881.52 15251.92 14283.43 17483.03 15756.67 23558.80 21888.91 10931.92 26488.58 14765.89 12273.39 14085.67 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmvis_n_192071.29 12670.38 12274.00 17271.04 30948.79 21379.19 26364.62 34662.75 11566.73 11091.99 4540.94 15688.35 15783.00 1873.18 14184.85 201
HQP3-MVS83.68 14273.12 142
HQP-MVS72.34 10871.44 10775.03 14979.02 19751.56 15088.00 5383.68 14265.45 7064.48 14385.13 16337.35 19988.62 14566.70 11473.12 14284.91 199
TAMVS69.51 16168.16 15573.56 18776.30 24448.71 21682.57 19877.17 26562.10 12661.32 18384.23 17441.90 14783.46 26854.80 21673.09 14488.50 131
BH-untuned68.28 18166.40 18773.91 17481.62 14550.01 18385.56 10977.39 26157.63 21457.47 24483.69 18336.36 21787.08 19944.81 27973.08 14584.65 202
plane_prior49.57 19187.43 6564.57 8372.84 146
PCF-MVS61.03 1070.10 14568.40 15175.22 14677.15 23451.99 13979.30 26282.12 16956.47 23961.88 17886.48 15243.98 11587.24 19655.37 21272.79 14786.43 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS67.03 573.90 8173.14 7976.18 11784.70 7147.36 25075.56 28286.36 7666.27 5970.66 9183.91 17851.05 4589.31 12067.10 11372.61 14891.88 45
DP-MVS Recon71.99 11470.31 12477.01 9690.65 853.44 10589.37 3782.97 15956.33 24063.56 16089.47 9834.02 24292.15 5154.05 22072.41 14985.43 192
HQP_MVS70.96 13369.91 13274.12 16877.95 21849.57 19185.76 10082.59 16363.60 10162.15 17583.28 19036.04 22288.30 16165.46 12672.34 15084.49 203
plane_prior582.59 16388.30 16165.46 12672.34 15084.49 203
MVS_111021_LR69.07 16367.91 15772.54 20477.27 22949.56 19379.77 25573.96 30059.33 17760.73 18887.82 12930.19 27681.53 27869.94 9872.19 15286.53 168
SR-MVS-dyc-post68.27 18266.87 17772.48 20780.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9931.17 27086.09 23060.52 16472.06 15383.19 231
RE-MVS-def66.66 18380.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9929.28 28260.52 16472.06 15383.19 231
test_fmvsmconf_n74.41 7474.05 7175.49 13574.16 27448.38 22582.66 19572.57 31067.05 4875.11 4192.88 2946.35 8387.81 17583.93 1571.71 15590.28 83
Anonymous20240521170.11 14467.88 15976.79 10687.20 4047.24 25489.49 3577.38 26254.88 25766.14 12086.84 14520.93 33791.54 6156.45 20771.62 15691.59 51
EPMVS68.45 17765.44 21377.47 8384.91 6856.17 3871.89 31481.91 17561.72 13360.85 18672.49 31436.21 21887.06 20047.32 26671.62 15689.17 112
TR-MVS69.71 15567.85 16275.27 14482.94 11348.48 22387.40 6780.86 19357.15 22564.61 14187.08 14232.67 25589.64 11546.38 27271.55 15887.68 146
test_fmvsmconf0.1_n73.69 8773.15 7775.34 13970.71 31148.26 22982.15 20771.83 31466.75 5174.47 4892.59 3444.89 10587.78 18083.59 1671.35 15989.97 93
FA-MVS(test-final)69.00 16666.60 18576.19 11683.48 9347.96 24174.73 28982.07 17057.27 22262.18 17478.47 24936.09 22092.89 3353.76 22371.32 16087.73 144
OPM-MVS70.75 13769.58 13674.26 16575.55 25551.34 15686.05 9583.29 15261.94 13062.95 16685.77 15734.15 24188.44 15365.44 12971.07 16182.99 235
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
114514_t69.87 15367.88 15975.85 12588.38 2952.35 13486.94 7983.68 14253.70 26655.68 26285.60 15930.07 27791.20 6955.84 21071.02 16283.99 213
sss70.49 14070.13 12971.58 23181.59 14739.02 33080.78 24384.71 12059.34 17566.61 11488.09 12537.17 20485.52 24061.82 15271.02 16290.20 87
ET-MVSNet_ETH3D75.23 6674.08 7078.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28490.22 8249.71 5787.62 18972.12 8970.82 16492.82 21
cascas69.01 16566.13 19477.66 7879.36 18955.41 5386.99 7783.75 14156.69 23458.92 21481.35 22324.31 31692.10 5253.23 22470.61 16585.46 191
GeoE69.96 15167.88 15976.22 11381.11 15951.71 14784.15 15276.74 27359.83 16460.91 18584.38 17041.56 15288.10 16851.67 23870.57 16688.84 120
iter_conf_final71.46 12469.68 13576.81 10286.03 4653.49 10084.73 13574.37 29460.27 15966.28 11984.36 17235.14 23190.87 8065.41 13070.51 16786.05 176
LCM-MVSNet-Re58.82 28256.54 28165.68 29779.31 19229.09 37061.39 35245.79 36860.73 15337.65 35672.47 31531.42 26881.08 28249.66 24970.41 16886.87 159
baseline275.15 6874.54 6676.98 9981.67 14351.74 14683.84 16291.94 169.97 2158.98 21186.02 15459.73 891.73 5868.37 10570.40 16987.48 149
AdaColmapbinary67.86 18765.48 21075.00 15088.15 3354.99 6886.10 9476.63 27649.30 29757.80 23386.65 14929.39 28188.94 13745.10 27870.21 17081.06 266
CPTT-MVS67.15 20765.84 20271.07 23980.96 16250.32 17781.94 21274.10 29646.18 31857.91 23187.64 13429.57 27981.31 28064.10 13570.18 17181.56 252
thisisatest051573.64 8972.20 9477.97 7381.63 14453.01 12186.69 8488.81 3062.53 12064.06 14985.65 15852.15 3992.50 4258.43 17969.84 17288.39 132
PatchmatchNetpermissive67.07 21163.63 23177.40 8483.10 10458.03 972.11 31277.77 25458.85 19059.37 20470.83 32737.84 18684.93 25342.96 28969.83 17389.26 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvsmconf0.01_n71.97 11570.95 11475.04 14866.21 33747.87 24280.35 24870.08 32865.85 6972.69 6691.68 5239.99 16987.67 18482.03 2569.66 17489.58 101
EPP-MVSNet71.14 12770.07 13074.33 16279.18 19446.52 26183.81 16386.49 7256.32 24157.95 23084.90 16854.23 2789.14 12658.14 18669.65 17587.33 152
EPNet_dtu66.25 22466.71 18164.87 30578.66 20734.12 34782.80 19375.51 28561.75 13264.47 14686.90 14437.06 20572.46 34743.65 28669.63 17688.02 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet63.12 24760.29 25771.61 22875.92 25146.65 25965.15 33681.94 17259.14 18454.65 27169.47 33425.74 30480.63 28841.03 29569.56 17787.55 148
EI-MVSNet-Vis-set73.19 9572.60 8474.99 15182.56 12549.80 18982.55 20089.00 2266.17 6165.89 12588.98 10743.83 11792.29 4665.38 13269.01 17882.87 238
FIs70.00 14970.24 12869.30 26377.93 22038.55 33383.99 15887.72 5566.86 5057.66 23784.17 17552.28 3785.31 24452.72 23468.80 17984.02 211
CostFormer73.89 8272.30 9178.66 5682.36 12856.58 2875.56 28285.30 9866.06 6570.50 9376.88 27157.02 1489.06 12768.27 10768.74 18090.33 82
HyFIR lowres test69.94 15267.58 16677.04 9477.11 23557.29 2081.49 23079.11 23058.27 19958.86 21680.41 23042.33 13886.96 20361.91 15068.68 18186.87 159
1112_ss70.05 14769.37 13972.10 21380.77 16942.78 30785.12 12276.75 27259.69 16761.19 18492.12 4047.48 7183.84 26153.04 22768.21 18289.66 99
ab-mvs70.65 13869.11 14475.29 14280.87 16646.23 26973.48 29885.24 10359.99 16266.65 11280.94 22643.13 13288.69 14363.58 13868.07 18390.95 70
tpm270.82 13568.44 15077.98 7280.78 16856.11 3974.21 29381.28 18760.24 16068.04 10375.27 28952.26 3888.50 15255.82 21168.03 18489.33 106
EI-MVSNet-UG-set72.37 10771.73 10274.29 16481.60 14649.29 20081.85 21588.64 3565.29 7865.05 13388.29 12243.18 12991.83 5663.74 13767.97 18581.75 249
thres20068.71 17367.27 17473.02 19484.73 7046.76 25885.03 12587.73 5462.34 12459.87 19383.45 18743.15 13088.32 16031.25 33667.91 18683.98 215
tpmrst71.04 13169.77 13374.86 15283.19 10355.86 4675.64 28178.73 23867.88 3764.99 13673.73 30049.96 5579.56 30365.92 12067.85 18789.14 113
iter_conf0573.51 9172.24 9377.33 8587.93 3655.97 4387.90 5770.81 32468.72 2864.04 15084.36 17247.54 7090.87 8071.11 9367.75 18885.13 195
test_vis1_n_192068.59 17668.31 15269.44 26269.16 32241.51 31884.63 14168.58 33758.80 19173.26 5988.37 11825.30 30780.60 28979.10 3967.55 18986.23 174
Anonymous2024052969.71 15567.28 17377.00 9783.78 8850.36 17588.87 4585.10 10947.22 30864.03 15183.37 18827.93 28892.10 5257.78 19467.44 19088.53 130
EG-PatchMatch MVS62.40 25759.59 26170.81 24373.29 28249.05 20385.81 9884.78 11751.85 28244.19 33073.48 30615.52 36089.85 10740.16 29767.24 19173.54 340
OMC-MVS65.97 22865.06 21968.71 27272.97 28742.58 31178.61 26675.35 28854.72 25859.31 20686.25 15333.30 24977.88 31757.99 18767.05 19285.66 187
TAPA-MVS56.12 1461.82 26060.18 25966.71 29178.48 21237.97 33675.19 28776.41 27946.82 31157.04 24886.52 15127.67 29277.03 32326.50 35667.02 19385.14 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re67.61 19366.00 19772.42 20881.86 13543.45 29964.67 33980.00 20669.56 2560.07 19285.00 16634.71 23687.63 18751.48 23966.68 19486.17 175
FE-MVS64.15 23560.43 25675.30 14180.85 16749.86 18768.28 33078.37 24650.26 29359.31 20673.79 29926.19 30191.92 5540.19 29666.67 19584.12 208
fmvsm_s_conf0.5_n74.48 7274.12 6975.56 13176.96 23647.85 24385.32 11469.80 33164.16 8878.74 2693.48 1445.51 9689.29 12186.48 666.62 19689.55 102
CMPMVSbinary40.41 2155.34 30352.64 30663.46 31160.88 36143.84 29561.58 35171.06 32230.43 36736.33 35874.63 29324.14 31775.44 33248.05 26266.62 19671.12 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test67.49 19767.91 15766.21 29576.06 24733.06 35280.82 24287.18 6064.44 8454.81 26882.87 19350.40 5282.60 27248.05 26266.55 19882.98 236
GA-MVS69.04 16466.70 18276.06 12075.11 25852.36 13383.12 18680.23 20363.32 10760.65 18979.22 24230.98 27188.37 15561.25 15466.41 19987.46 150
thres100view90066.87 21665.42 21471.24 23583.29 10043.15 30381.67 22187.78 5159.04 18655.92 26082.18 21343.73 12087.80 17728.80 34366.36 20082.78 240
tfpn200view967.57 19566.13 19471.89 22684.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20082.78 240
thres40067.40 20266.13 19471.19 23784.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20080.71 271
fmvsm_s_conf0.1_n73.80 8373.26 7675.43 13673.28 28347.80 24484.57 14369.43 33363.34 10678.40 2993.29 2044.73 11189.22 12385.99 766.28 20389.26 107
Test_1112_low_res67.18 20666.23 19270.02 25778.75 20341.02 32383.43 17473.69 30257.29 22158.45 22682.39 20845.30 9880.88 28450.50 24466.26 20488.16 133
PVSNet_BlendedMVS73.42 9273.30 7573.76 18085.91 4851.83 14486.18 9284.24 13265.40 7369.09 9780.86 22746.70 8088.13 16675.43 6665.92 20581.33 262
SDMVSNet71.89 11670.62 11875.70 12781.70 14051.61 14873.89 29488.72 3366.58 5261.64 18082.38 20937.63 19289.48 11777.44 5565.60 20686.01 177
sd_testset67.79 19065.95 19973.32 18981.70 14046.33 26668.99 32680.30 20266.58 5261.64 18082.38 20930.45 27487.63 18755.86 20965.60 20686.01 177
XVG-OURS61.88 25959.34 26469.49 26065.37 34246.27 26764.80 33873.49 30547.04 31057.41 24682.85 19425.15 30978.18 30953.00 22864.98 20884.01 212
thres600view766.46 22165.12 21870.47 24683.41 9443.80 29682.15 20787.78 5159.37 17456.02 25982.21 21243.73 12086.90 20626.51 35564.94 20980.71 271
LPG-MVS_test66.44 22264.58 22472.02 21674.42 27048.60 21783.07 18880.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
LGP-MVS_train72.02 21674.42 27048.60 21780.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
MVSTER73.25 9472.33 8976.01 12285.54 5653.76 9683.52 16787.16 6167.06 4763.88 15581.66 21952.77 3390.44 9164.66 13464.69 21283.84 220
EI-MVSNet69.70 15768.70 14772.68 20175.00 26248.90 21079.54 25787.16 6161.05 14463.88 15583.74 18145.87 8990.44 9157.42 19864.68 21378.70 290
tpm cat166.28 22362.78 23376.77 10781.40 15457.14 2270.03 32177.19 26453.00 27258.76 21970.73 33046.17 8486.73 21043.27 28764.46 21486.44 170
test_cas_vis1_n_192067.10 20866.60 18568.59 27565.17 34543.23 30283.23 18369.84 33055.34 25170.67 9087.71 13224.70 31476.66 32878.57 4664.20 21585.89 183
fmvsm_s_conf0.5_n_a73.68 8873.15 7775.29 14275.45 25648.05 23683.88 16168.84 33663.43 10578.60 2793.37 1845.32 9788.92 13885.39 964.04 21688.89 118
XVG-OURS-SEG-HR62.02 25859.54 26269.46 26165.30 34345.88 27265.06 33773.57 30446.45 31457.42 24583.35 18926.95 29678.09 31153.77 22264.03 21784.42 205
LS3D56.40 29853.82 29864.12 30781.12 15845.69 27773.42 29966.14 34235.30 35943.24 33779.88 23322.18 33179.62 30219.10 37564.00 21867.05 359
ACMP61.11 966.24 22564.33 22672.00 21874.89 26449.12 20183.18 18579.83 21155.41 25052.29 29082.68 20025.83 30386.10 22860.89 15763.94 21980.78 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm68.36 17867.48 17070.97 24179.93 18451.34 15676.58 27978.75 23767.73 4063.54 16174.86 29148.33 6272.36 34853.93 22163.71 22089.21 110
XXY-MVS70.18 14369.28 14372.89 19977.64 22242.88 30685.06 12387.50 5962.58 11962.66 17082.34 21143.64 12489.83 10858.42 18163.70 22185.96 181
fmvsm_s_conf0.1_n_a72.82 10072.05 9975.12 14770.95 31047.97 23982.72 19468.43 33862.52 12178.17 3093.08 2644.21 11488.86 13984.82 1163.54 22288.54 129
mvsmamba66.93 21564.88 22273.09 19375.06 26047.26 25283.36 18069.21 33462.64 11855.68 26281.43 22229.72 27889.20 12563.35 14063.50 22382.79 239
GBi-Net67.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
test167.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
FMVSNet368.84 16867.40 17173.19 19285.05 6548.53 22085.71 10585.36 9460.90 15057.58 23979.15 24342.16 14186.77 20847.25 26763.40 22484.27 207
VPA-MVSNet71.12 12870.66 11772.49 20678.75 20344.43 28987.64 6090.02 1263.97 9365.02 13481.58 22142.14 14287.42 19363.42 13963.38 22785.63 189
Fast-Effi-MVS+-dtu66.53 22064.10 22973.84 17772.41 29452.30 13684.73 13575.66 28459.51 17056.34 25779.11 24428.11 28685.85 23857.74 19563.29 22883.35 225
CVMVSNet60.85 26560.44 25562.07 31775.00 26232.73 35479.54 25773.49 30536.98 35156.28 25883.74 18129.28 28269.53 35646.48 27163.23 22983.94 218
ACMMP++_ref63.20 230
ACMM58.35 1264.35 23462.01 23971.38 23374.21 27348.51 22182.25 20679.66 21547.61 30654.54 27280.11 23125.26 30886.00 23251.26 24063.16 23179.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42057.53 29256.38 28560.97 32774.01 27548.10 23546.30 37154.31 36248.18 30450.88 30177.43 26038.37 18359.16 36954.83 21463.14 23275.66 323
PS-MVSNAJss68.78 17267.17 17573.62 18673.01 28648.33 22884.95 12984.81 11659.30 17858.91 21579.84 23537.77 18788.86 13962.83 14363.12 23383.67 223
MDTV_nov1_ep1361.56 24281.68 14255.12 6372.41 30678.18 24859.19 18058.85 21769.29 33534.69 23786.16 22536.76 31162.96 234
FMVSNet267.57 19565.79 20372.90 19782.71 12047.97 23985.15 11884.93 11258.55 19656.71 25278.26 25036.72 21386.67 21146.15 27462.94 23584.07 210
D2MVS63.49 24361.39 24469.77 25869.29 32148.93 20978.89 26577.71 25660.64 15549.70 30572.10 32227.08 29583.48 26754.48 21762.65 23676.90 311
MVS-HIRNet49.01 32644.71 33061.92 32176.06 24746.61 26063.23 34454.90 36124.77 37333.56 36636.60 38121.28 33675.88 33129.49 34062.54 23763.26 369
IB-MVS68.87 274.01 7972.03 10179.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18281.74 21853.21 3194.28 2160.45 16662.41 23890.03 92
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03072.27 11271.56 10474.42 15975.93 25050.60 16686.97 7883.21 15362.75 11567.15 10984.38 17050.07 5386.66 21271.19 9162.37 23985.99 179
thisisatest053070.47 14268.56 14876.20 11579.78 18551.52 15283.49 17388.58 4057.62 21558.60 22082.79 19551.03 4691.48 6252.84 22962.36 24085.59 190
OpenMVS_ROBcopyleft53.19 1759.20 27556.00 28768.83 26871.13 30844.30 29083.64 16675.02 29046.42 31546.48 32673.03 30918.69 34588.14 16527.74 35161.80 24174.05 336
dp64.41 23361.58 24172.90 19782.40 12654.09 9172.53 30476.59 27760.39 15755.68 26270.39 33135.18 23076.90 32639.34 29961.71 24287.73 144
UniMVSNet_ETH3D62.51 25360.49 25468.57 27668.30 33040.88 32573.89 29479.93 20951.81 28354.77 26979.61 23624.80 31281.10 28149.93 24761.35 24383.73 221
FMVSNet164.57 23262.11 23871.96 21977.32 22846.36 26383.52 16783.31 14952.43 27754.42 27376.23 28027.80 29086.20 22242.59 29261.34 24483.32 226
VPNet72.07 11371.42 10874.04 17078.64 20847.17 25589.91 3187.97 4872.56 964.66 13885.04 16541.83 14988.33 15961.17 15660.97 24586.62 167
Effi-MVS+-dtu66.24 22564.96 22170.08 25475.17 25749.64 19082.01 21074.48 29362.15 12557.83 23276.08 28430.59 27383.79 26265.40 13160.93 24676.81 312
PLCcopyleft52.38 1860.89 26458.97 26866.68 29381.77 13745.70 27678.96 26474.04 29943.66 33347.63 31683.19 19223.52 32177.78 32037.47 30260.46 24776.55 318
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023121166.08 22763.67 23073.31 19083.07 10748.75 21486.01 9784.67 12245.27 32256.54 25476.67 27428.06 28788.95 13552.78 23159.95 24882.23 243
CR-MVSNet62.47 25559.04 26772.77 20073.97 27756.57 2960.52 35371.72 31660.04 16157.49 24265.86 34438.94 17780.31 29342.86 29059.93 24981.42 257
RPMNet59.29 27354.25 29674.42 15973.97 27756.57 2960.52 35376.98 26835.72 35557.49 24258.87 36337.73 19085.26 24627.01 35459.93 24981.42 257
dmvs_testset57.65 29058.21 27155.97 34274.62 2679.82 39863.75 34163.34 35067.23 4548.89 30983.68 18539.12 17676.14 32923.43 36459.80 25181.96 246
bld_raw_dy_0_6459.75 27057.01 28067.96 28066.73 33645.30 27977.59 27359.97 35650.49 28947.15 32177.03 26617.45 35279.06 30456.92 20259.76 25279.51 283
v114468.81 17066.82 17874.80 15372.34 29553.46 10284.68 13881.77 17964.25 8660.28 19177.91 25240.23 16488.95 13560.37 16759.52 25381.97 245
v2v48269.55 16067.64 16575.26 14572.32 29653.83 9384.93 13081.94 17265.37 7560.80 18779.25 24141.62 15088.98 13463.03 14259.51 25482.98 236
CNLPA60.59 26658.44 27067.05 28879.21 19347.26 25279.75 25664.34 34842.46 33951.90 29483.94 17727.79 29175.41 33337.12 30559.49 25578.47 294
ACMMP++59.38 256
tt080563.39 24461.31 24669.64 25969.36 32038.87 33178.00 26985.48 8848.82 30155.66 26581.66 21924.38 31586.37 22149.04 25559.36 25783.68 222
PatchMatch-RL56.66 29453.75 29965.37 30277.91 22145.28 28069.78 32360.38 35441.35 34047.57 31773.73 30016.83 35476.91 32436.99 30859.21 25873.92 337
test0.0.03 162.54 25262.44 23562.86 31672.28 29729.51 36782.93 19178.78 23559.18 18253.07 28582.41 20736.91 20877.39 32137.45 30358.96 25981.66 251
v119267.96 18665.74 20574.63 15471.79 29853.43 10784.06 15680.99 19263.19 11059.56 20077.46 25937.50 19888.65 14458.20 18558.93 26081.79 248
cl2268.85 16767.69 16472.35 21078.07 21749.98 18482.45 20378.48 24462.50 12258.46 22577.95 25149.99 5485.17 24862.55 14458.72 26181.90 247
miper_ehance_all_eth68.70 17567.58 16672.08 21476.91 23749.48 19782.47 20278.45 24562.68 11758.28 22977.88 25350.90 4785.01 25261.91 15058.72 26181.75 249
miper_enhance_ethall69.77 15468.90 14672.38 20978.93 20049.91 18583.29 18178.85 23264.90 8059.37 20479.46 23752.77 3385.16 24963.78 13658.72 26182.08 244
V4267.66 19265.60 20973.86 17670.69 31353.63 9881.50 22878.61 24163.85 9559.49 20377.49 25837.98 18487.65 18562.33 14558.43 26480.29 276
Syy-MVS61.51 26161.35 24562.00 31981.73 13830.09 36280.97 23881.02 19060.93 14855.06 26682.64 20135.09 23280.81 28516.40 38058.32 26575.10 329
myMVS_eth3d63.52 24263.56 23263.40 31281.73 13834.28 34580.97 23881.02 19060.93 14855.06 26682.64 20148.00 6780.81 28523.42 36558.32 26575.10 329
tpmvs62.45 25659.42 26371.53 23283.93 8454.32 8570.03 32177.61 25751.91 28053.48 28368.29 33837.91 18586.66 21233.36 32658.27 26773.62 339
XVG-ACMP-BASELINE56.03 30052.85 30465.58 29861.91 35840.95 32463.36 34272.43 31145.20 32346.02 32774.09 2969.20 37178.12 31045.13 27758.27 26777.66 306
pmmvs562.80 25161.18 24767.66 28269.53 31942.37 31482.65 19675.19 28954.30 26452.03 29378.51 24831.64 26780.67 28748.60 25858.15 26979.95 280
v124066.99 21264.68 22373.93 17371.38 30652.66 12783.39 17879.98 20761.97 12958.44 22777.11 26435.25 22887.81 17556.46 20658.15 26981.33 262
v192192067.45 19865.23 21774.10 16971.51 30352.90 12483.75 16580.44 19962.48 12359.12 21077.13 26336.98 20687.90 17357.53 19658.14 27181.49 253
jajsoiax63.21 24660.84 25170.32 25068.33 32944.45 28881.23 23281.05 18953.37 27050.96 30077.81 25517.49 35185.49 24259.31 17158.05 27281.02 267
tttt051768.33 18066.29 19074.46 15778.08 21649.06 20280.88 24189.08 2154.40 26254.75 27080.77 22851.31 4390.33 9549.35 25258.01 27383.99 213
Anonymous2023120659.08 27857.59 27463.55 31068.77 32532.14 35780.26 25079.78 21250.00 29449.39 30672.39 31726.64 29878.36 30833.12 32957.94 27480.14 278
mvs_tets62.96 24960.55 25370.19 25168.22 33244.24 29280.90 24080.74 19552.99 27350.82 30277.56 25616.74 35585.44 24359.04 17457.94 27480.89 268
LTVRE_ROB45.45 1952.73 31549.74 31861.69 32269.78 31834.99 34244.52 37267.60 34143.11 33643.79 33274.03 29718.54 34781.45 27928.39 34857.94 27468.62 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419267.86 18765.76 20474.16 16771.68 30053.09 11884.14 15380.83 19462.85 11459.21 20977.28 26239.30 17488.00 17158.67 17757.88 27781.40 259
IterMVS-LS66.63 21865.36 21570.42 24875.10 25948.90 21081.45 23176.69 27561.05 14455.71 26177.10 26545.86 9083.65 26557.44 19757.88 27778.70 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3373.95 8072.89 8277.15 9280.17 18050.37 17484.68 13883.33 14868.08 3371.97 7588.65 11642.50 13691.15 7178.82 4257.78 27989.91 96
ACMH53.70 1659.78 26955.94 28871.28 23476.59 23948.35 22680.15 25376.11 28049.74 29541.91 34173.45 30716.50 35790.31 9631.42 33457.63 28075.17 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 27255.14 29272.32 21174.69 26550.71 16374.39 29273.58 30344.44 32843.40 33577.52 25719.45 34190.87 8031.31 33557.49 28175.38 325
pmmvs463.34 24561.07 24970.16 25270.14 31550.53 16879.97 25471.41 32155.08 25354.12 27678.58 24732.79 25482.09 27650.33 24557.22 28277.86 303
c3_l67.97 18566.66 18371.91 22576.20 24649.31 19982.13 20978.00 25161.99 12857.64 23876.94 26849.41 5884.93 25360.62 16157.01 28381.49 253
UniMVSNet (Re)67.71 19166.80 17970.45 24774.44 26942.93 30582.42 20484.90 11363.69 9959.63 19880.99 22547.18 7385.23 24751.17 24256.75 28483.19 231
SCA63.84 23860.01 26075.32 14078.58 20957.92 1061.61 35077.53 25856.71 23357.75 23670.77 32831.97 26279.91 30048.80 25656.36 28588.13 136
v867.25 20464.99 22074.04 17072.89 28953.31 11282.37 20580.11 20561.54 13654.29 27576.02 28542.89 13488.41 15458.43 17956.36 28580.39 275
cl____67.43 19965.93 20071.95 22276.33 24248.02 23782.58 19779.12 22961.30 14056.72 25176.92 26946.12 8586.44 21957.98 18856.31 28781.38 261
DIV-MVS_self_test67.43 19965.93 20071.94 22376.33 24248.01 23882.57 19879.11 23061.31 13956.73 25076.92 26946.09 8686.43 22057.98 18856.31 28781.39 260
DP-MVS59.24 27456.12 28668.63 27388.24 3250.35 17682.51 20164.43 34741.10 34146.70 32478.77 24624.75 31388.57 15022.26 36756.29 28966.96 360
NR-MVSNet67.25 20465.99 19871.04 24073.27 28443.91 29485.32 11484.75 11966.05 6653.65 28282.11 21445.05 10185.97 23547.55 26456.18 29083.24 229
v1066.61 21964.20 22873.83 17872.59 29253.37 10881.88 21479.91 21061.11 14254.09 27775.60 28740.06 16888.26 16456.47 20556.10 29179.86 281
baseline172.51 10672.12 9773.69 18385.05 6544.46 28783.51 17186.13 8071.61 1264.64 13987.97 12855.00 2389.48 11759.07 17356.05 29287.13 156
UniMVSNet_NR-MVSNet68.82 16968.29 15370.40 24975.71 25342.59 30984.23 15086.78 6766.31 5858.51 22182.45 20651.57 4184.64 25753.11 22555.96 29383.96 217
DU-MVS66.84 21765.74 20570.16 25273.27 28442.59 30981.50 22882.92 16063.53 10358.51 22182.11 21440.75 15884.64 25753.11 22555.96 29383.24 229
v14868.24 18366.35 18873.88 17571.76 29951.47 15384.23 15081.90 17663.69 9958.94 21276.44 27643.72 12287.78 18060.63 16055.86 29582.39 242
test_djsdf63.84 23861.56 24270.70 24468.78 32444.69 28681.63 22281.44 18350.28 29052.27 29176.26 27926.72 29786.11 22660.83 15855.84 29681.29 265
tfpnnormal61.47 26259.09 26668.62 27476.29 24541.69 31581.14 23585.16 10654.48 26151.32 29673.63 30432.32 25886.89 20721.78 36955.71 29777.29 309
WR-MVS67.58 19466.76 18070.04 25675.92 25145.06 28586.23 9185.28 10064.31 8558.50 22381.00 22444.80 11082.00 27749.21 25455.57 29883.06 234
RRT_MVS63.68 24161.01 25071.70 22773.48 27945.98 27181.19 23376.08 28154.33 26352.84 28679.27 24022.21 33087.65 18554.13 21955.54 29981.46 256
test_fmvs153.60 31352.54 30856.78 33858.07 36330.26 36068.95 32742.19 37432.46 36263.59 15982.56 20511.55 36460.81 36358.25 18455.27 30079.28 284
Baseline_NR-MVSNet65.49 23164.27 22769.13 26474.37 27241.65 31683.39 17878.85 23259.56 16959.62 19976.88 27140.75 15887.44 19249.99 24655.05 30178.28 299
v7n62.50 25459.27 26572.20 21267.25 33549.83 18877.87 27180.12 20452.50 27648.80 31073.07 30832.10 26087.90 17346.83 27054.92 30278.86 288
TranMVSNet+NR-MVSNet66.94 21465.61 20870.93 24273.45 28043.38 30183.02 19084.25 13065.31 7758.33 22881.90 21739.92 17185.52 24049.43 25154.89 30383.89 219
FMVSNet558.61 28456.45 28265.10 30477.20 23339.74 32774.77 28877.12 26650.27 29243.28 33667.71 33926.15 30276.90 32636.78 31054.78 30478.65 292
ACMH+54.58 1558.55 28655.24 29068.50 27774.68 26645.80 27580.27 24970.21 32747.15 30942.77 33875.48 28816.73 35685.98 23335.10 32154.78 30473.72 338
test_fmvs1_n52.55 31751.19 31256.65 33951.90 37330.14 36167.66 33142.84 37332.27 36362.30 17382.02 2169.12 37260.84 36257.82 19254.75 30678.99 286
eth_miper_zixun_eth66.98 21365.28 21672.06 21575.61 25450.40 17281.00 23776.97 27162.00 12756.99 24976.97 26744.84 10785.58 23958.75 17654.42 30780.21 277
IterMVS63.77 24061.67 24070.08 25472.68 29151.24 15980.44 24675.51 28560.51 15651.41 29573.70 30332.08 26178.91 30554.30 21854.35 30880.08 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp60.46 26757.65 27368.88 26663.63 35345.09 28172.93 30278.63 24046.52 31351.12 29772.80 31221.46 33583.07 27157.79 19353.97 30978.47 294
F-COLMAP55.96 30253.65 30062.87 31572.76 29042.77 30874.70 29170.37 32640.03 34241.11 34679.36 23817.77 35073.70 34132.80 33053.96 31072.15 346
ADS-MVSNet255.21 30551.44 31066.51 29480.60 17349.56 19355.03 36465.44 34344.72 32551.00 29861.19 35622.83 32375.41 33328.54 34653.63 31174.57 333
ADS-MVSNet56.17 29951.95 30968.84 26780.60 17353.07 11955.03 36470.02 32944.72 32551.00 29861.19 35622.83 32378.88 30628.54 34653.63 31174.57 333
IterMVS-SCA-FT59.12 27658.81 26960.08 32970.68 31445.07 28280.42 24774.25 29543.54 33450.02 30473.73 30031.97 26256.74 37151.06 24353.60 31378.42 296
pm-mvs164.12 23662.56 23468.78 27071.68 30038.87 33182.89 19281.57 18055.54 24953.89 27977.82 25437.73 19086.74 20948.46 26053.49 31480.72 270
AUN-MVS68.20 18466.35 18873.76 18076.37 24047.45 24879.52 25979.52 21860.98 14662.34 17186.02 15436.59 21686.94 20462.32 14653.47 31586.89 158
hse-mvs271.44 12570.68 11673.73 18276.34 24147.44 24979.45 26079.47 22068.08 3371.97 7586.01 15642.50 13686.93 20578.82 4253.46 31686.83 164
miper_lstm_enhance63.91 23762.30 23668.75 27175.06 26046.78 25769.02 32581.14 18859.68 16852.76 28772.39 31740.71 16077.99 31556.81 20353.09 31781.48 255
PatchT56.60 29552.97 30267.48 28372.94 28846.16 27057.30 36173.78 30138.77 34554.37 27457.26 36637.52 19678.06 31232.02 33152.79 31878.23 301
test_vis1_n51.19 32249.66 31955.76 34351.26 37429.85 36567.20 33338.86 37832.12 36459.50 20279.86 2348.78 37358.23 37056.95 20152.46 31979.19 285
JIA-IIPM52.33 31947.77 32666.03 29671.20 30746.92 25640.00 37976.48 27837.10 35046.73 32337.02 37932.96 25177.88 31735.97 31252.45 32073.29 342
Patchmatch-test53.33 31448.17 32368.81 26973.31 28142.38 31342.98 37458.23 35732.53 36138.79 35370.77 32839.66 17273.51 34225.18 35852.06 32190.55 76
testgi54.25 30852.57 30759.29 33262.76 35621.65 38272.21 30970.47 32553.25 27141.94 34077.33 26114.28 36177.95 31629.18 34251.72 32278.28 299
test_040256.45 29753.03 30166.69 29276.78 23850.31 17881.76 21869.61 33242.79 33743.88 33172.13 32022.82 32586.46 21816.57 37950.94 32363.31 368
testing359.97 26860.19 25859.32 33177.60 22330.01 36481.75 21981.79 17753.54 26750.34 30379.94 23248.99 6176.91 32417.19 37850.59 32471.03 354
COLMAP_ROBcopyleft43.60 2050.90 32348.05 32459.47 33067.81 33340.57 32671.25 31662.72 35336.49 35436.19 35973.51 30513.48 36273.92 33920.71 37150.26 32563.92 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs659.64 27157.15 27767.09 28666.01 33836.86 34080.50 24578.64 23945.05 32449.05 30873.94 29827.28 29386.10 22843.96 28549.94 32678.31 298
Anonymous2024052151.65 32048.42 32261.34 32656.43 36739.65 32973.57 29773.47 30836.64 35336.59 35763.98 34910.75 36772.25 34935.35 31549.01 32772.11 347
USDC54.36 30751.23 31163.76 30964.29 35137.71 33762.84 34773.48 30756.85 22835.47 36171.94 3239.23 37078.43 30738.43 30148.57 32875.13 328
WR-MVS_H58.91 28158.04 27261.54 32369.07 32333.83 34976.91 27681.99 17151.40 28548.17 31174.67 29240.23 16474.15 33631.78 33348.10 32976.64 316
ITE_SJBPF51.84 34758.03 36431.94 35853.57 36536.67 35241.32 34475.23 29011.17 36651.57 37625.81 35748.04 33072.02 348
CL-MVSNet_self_test62.98 24861.14 24868.50 27765.86 34042.96 30484.37 14582.98 15860.98 14653.95 27872.70 31340.43 16283.71 26441.10 29447.93 33178.83 289
test_fmvs245.89 33144.32 33350.62 34945.85 38224.70 37658.87 35937.84 38125.22 37252.46 28974.56 2947.07 37654.69 37249.28 25347.70 33272.48 345
CP-MVSNet58.54 28757.57 27561.46 32468.50 32733.96 34876.90 27778.60 24251.67 28447.83 31476.60 27534.99 23572.79 34535.45 31447.58 33377.64 307
MIMVSNet150.35 32447.81 32557.96 33661.53 35927.80 37367.40 33274.06 29843.25 33533.31 36965.38 34716.03 35871.34 35021.80 36847.55 33474.75 331
PS-CasMVS58.12 28957.03 27961.37 32568.24 33133.80 35076.73 27878.01 25051.20 28647.54 31876.20 28332.85 25272.76 34635.17 31947.37 33577.55 308
Patchmatch-RL test58.72 28354.32 29571.92 22463.91 35244.25 29161.73 34955.19 36057.38 22049.31 30754.24 36837.60 19480.89 28362.19 14847.28 33690.63 75
PEN-MVS58.35 28857.15 27761.94 32067.55 33434.39 34477.01 27578.35 24751.87 28147.72 31576.73 27333.91 24373.75 34034.03 32447.17 33777.68 305
FPMVS35.40 34133.67 34540.57 35946.34 38128.74 37141.05 37657.05 35920.37 37722.27 38153.38 3706.87 37844.94 3848.62 38647.11 33848.01 378
test20.0355.22 30454.07 29758.68 33463.14 35525.00 37577.69 27274.78 29152.64 27443.43 33472.39 31726.21 30074.76 33529.31 34147.05 33976.28 320
DSMNet-mixed38.35 33835.36 34347.33 35248.11 38014.91 39437.87 38036.60 38219.18 37834.37 36359.56 36115.53 35953.01 37520.14 37346.89 34074.07 335
Patchmtry56.56 29652.95 30367.42 28472.53 29350.59 16759.05 35771.72 31637.86 34946.92 32265.86 34438.94 17780.06 29736.94 30946.72 34171.60 350
test_vis1_rt40.29 33738.64 33945.25 35548.91 37930.09 36259.44 35627.07 39224.52 37438.48 35451.67 3736.71 37949.44 37744.33 28246.59 34256.23 371
EU-MVSNet52.63 31650.72 31358.37 33562.69 35728.13 37272.60 30375.97 28230.94 36640.76 34872.11 32120.16 33970.80 35235.11 32046.11 34376.19 321
RPSCF45.77 33244.13 33450.68 34857.67 36629.66 36654.92 36645.25 37026.69 37145.92 32875.92 28617.43 35345.70 38227.44 35245.95 34476.67 313
our_test_359.11 27755.08 29371.18 23871.42 30453.29 11381.96 21174.52 29248.32 30242.08 33969.28 33628.14 28582.15 27434.35 32345.68 34578.11 302
DTE-MVSNet57.03 29355.73 28960.95 32865.94 33932.57 35575.71 28077.09 26751.16 28746.65 32576.34 27832.84 25373.22 34430.94 33744.87 34677.06 310
pmmvs-eth3d55.97 30152.78 30565.54 29961.02 36046.44 26275.36 28667.72 34049.61 29643.65 33367.58 34021.63 33477.04 32244.11 28444.33 34773.15 344
AllTest47.32 32944.66 33155.32 34465.08 34637.50 33862.96 34654.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
TestCases55.32 34465.08 34637.50 33854.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
ppachtmachnet_test58.56 28554.34 29471.24 23571.42 30454.74 7381.84 21672.27 31249.02 29945.86 32968.99 33726.27 29983.30 26930.12 33843.23 35075.69 322
KD-MVS_self_test49.24 32546.85 32856.44 34054.32 36822.87 37857.39 36073.36 30944.36 32937.98 35559.30 36218.97 34471.17 35133.48 32542.44 35175.26 326
PM-MVS46.92 33043.76 33556.41 34152.18 37232.26 35663.21 34538.18 37937.99 34840.78 34766.20 3435.09 38465.42 35948.19 26141.99 35271.54 351
TinyColmap48.15 32844.49 33259.13 33365.73 34138.04 33563.34 34362.86 35238.78 34429.48 37367.23 3426.46 38173.30 34324.59 36041.90 35366.04 363
N_pmnet41.25 33539.77 33845.66 35468.50 3270.82 40472.51 3050.38 40335.61 35635.26 36261.51 35520.07 34067.74 35723.51 36340.63 35468.42 358
TransMVSNet (Re)62.82 25060.76 25269.02 26573.98 27641.61 31786.36 8879.30 22856.90 22752.53 28876.44 27641.85 14887.60 19038.83 30040.61 35577.86 303
OurMVSNet-221017-052.39 31848.73 32163.35 31365.21 34438.42 33468.54 32964.95 34438.19 34639.57 34971.43 32413.23 36379.92 29837.16 30440.32 35671.72 349
YYNet153.82 31149.96 31665.41 30170.09 31748.95 20772.30 30771.66 31844.25 33031.89 37063.07 35223.73 31973.95 33833.26 32739.40 35773.34 341
MDA-MVSNet_test_wron53.82 31149.95 31765.43 30070.13 31649.05 20372.30 30771.65 31944.23 33131.85 37163.13 35123.68 32074.01 33733.25 32839.35 35873.23 343
ambc62.06 31853.98 37029.38 36835.08 38279.65 21641.37 34359.96 3596.27 38282.15 27435.34 31638.22 35974.65 332
test_fmvs337.95 33935.75 34244.55 35635.50 38818.92 38648.32 36834.00 38618.36 38041.31 34561.58 3542.29 39148.06 38142.72 29137.71 36066.66 361
mvsany_test143.38 33442.57 33645.82 35350.96 37526.10 37455.80 36227.74 39127.15 37047.41 32074.39 29518.67 34644.95 38344.66 28036.31 36166.40 362
Gipumacopyleft27.47 34924.26 35437.12 36460.55 36229.17 36911.68 39160.00 35514.18 38310.52 39215.12 3932.20 39363.01 3618.39 38735.65 36219.18 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth57.56 29155.15 29164.79 30664.57 35033.12 35173.17 30183.87 14058.98 18841.75 34270.03 33222.54 32679.92 29846.12 27535.31 36381.32 264
TDRefinement40.91 33638.37 34048.55 35150.45 37633.03 35358.98 35850.97 36628.50 36829.89 37267.39 3416.21 38354.51 37317.67 37735.25 36458.11 370
EGC-MVSNET33.75 34430.42 34843.75 35764.94 34836.21 34160.47 35540.70 3770.02 3970.10 39853.79 3697.39 37560.26 36411.09 38535.23 36534.79 383
LF4IMVS33.04 34632.55 34634.52 36540.96 38322.03 38044.45 37335.62 38320.42 37628.12 37662.35 3535.03 38531.88 39521.61 37034.42 36649.63 377
new-patchmatchnet48.21 32746.55 32953.18 34657.73 36518.19 39070.24 31971.02 32345.70 31933.70 36560.23 35818.00 34969.86 35527.97 35034.35 36771.49 352
pmmvs345.53 33341.55 33757.44 33748.97 37839.68 32870.06 32057.66 35828.32 36934.06 36457.29 3658.50 37466.85 35834.86 32234.26 36865.80 364
SixPastTwentyTwo54.37 30650.10 31567.21 28570.70 31241.46 32074.73 28964.69 34547.56 30739.12 35169.49 33318.49 34884.69 25631.87 33234.20 36975.48 324
UnsupCasMVSNet_bld53.86 31050.53 31463.84 30863.52 35434.75 34371.38 31581.92 17446.53 31238.95 35257.93 36420.55 33880.20 29639.91 29834.09 37076.57 317
MDA-MVSNet-bldmvs51.56 32147.75 32763.00 31471.60 30247.32 25169.70 32472.12 31343.81 33227.65 37863.38 35021.97 33375.96 33027.30 35332.19 37165.70 365
PMVScopyleft19.57 2225.07 35322.43 35832.99 36923.12 39922.98 37740.98 37735.19 38415.99 38211.95 39135.87 3831.47 39749.29 3785.41 39531.90 37226.70 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 34531.89 34738.59 36149.01 37720.42 38351.01 36737.92 38020.58 37523.45 38046.79 3756.66 38049.28 37920.00 37431.57 37346.09 380
KD-MVS_2432*160059.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_refine_blended59.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
test_vis3_rt24.79 35422.95 35730.31 37128.59 39418.92 38637.43 38117.27 39912.90 38421.28 38229.92 3881.02 39836.35 38828.28 34929.82 37635.65 382
test_f27.12 35024.85 35133.93 36726.17 39815.25 39330.24 38722.38 39612.53 38628.23 37549.43 3742.59 39034.34 39325.12 35926.99 37752.20 375
APD_test126.46 35224.41 35332.62 37037.58 38521.74 38140.50 37830.39 38811.45 38716.33 38443.76 3761.63 39641.62 38511.24 38426.82 37834.51 384
K. test v354.04 30949.42 32067.92 28168.55 32642.57 31275.51 28463.07 35152.07 27839.21 35064.59 34819.34 34282.21 27337.11 30625.31 37978.97 287
LCM-MVSNet28.07 34723.85 35540.71 35827.46 39718.93 38530.82 38646.19 36712.76 38516.40 38334.70 3841.90 39448.69 38020.25 37224.22 38054.51 373
test_method24.09 35521.07 35933.16 36827.67 3968.35 40226.63 38835.11 3853.40 39414.35 38636.98 3803.46 38835.31 39019.08 37622.95 38155.81 372
testf121.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
APD_test221.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
lessismore_v067.98 27964.76 34941.25 32145.75 36936.03 36065.63 34619.29 34384.11 25935.67 31321.24 38478.59 293
mvsany_test328.00 34825.98 35034.05 36628.97 39315.31 39234.54 38318.17 39716.24 38129.30 37453.37 3712.79 38933.38 39430.01 33920.41 38553.45 374
PVSNet_057.04 1361.19 26357.24 27673.02 19477.45 22750.31 17879.43 26177.36 26363.96 9447.51 31972.45 31625.03 31083.78 26352.76 23319.22 38684.96 198
WB-MVS37.41 34036.37 34140.54 36054.23 36910.43 39765.29 33543.75 37134.86 36027.81 37754.63 36724.94 31163.21 3606.81 39215.00 38747.98 379
SSC-MVS35.20 34234.30 34437.90 36252.58 3718.65 40061.86 34841.64 37531.81 36525.54 37952.94 37223.39 32259.28 3686.10 39312.86 38845.78 381
PMMVS226.71 35122.98 35637.87 36336.89 3868.51 40142.51 37529.32 39019.09 37913.01 38737.54 3782.23 39253.11 37414.54 38111.71 38951.99 376
MVEpermissive16.60 2317.34 36113.39 36429.16 37228.43 39519.72 38413.73 39023.63 3957.23 3937.96 39321.41 3890.80 39936.08 3896.97 39010.39 39031.69 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN19.16 35818.40 36221.44 37536.19 38713.63 39547.59 36930.89 38710.73 3885.91 39516.59 3913.66 38739.77 3865.95 3948.14 39110.92 391
DeepMVS_CXcopyleft13.10 37721.34 4008.99 39910.02 40110.59 3897.53 39430.55 3871.82 39514.55 3966.83 3917.52 39215.75 390
EMVS18.42 35917.66 36320.71 37634.13 38912.64 39646.94 37029.94 38910.46 3905.58 39614.93 3944.23 38638.83 3875.24 3967.51 39310.67 392
wuyk23d9.11 3638.77 36710.15 37840.18 38416.76 39120.28 3891.01 4022.58 3952.66 3970.98 3970.23 40212.49 3974.08 3976.90 3941.19 394
tmp_tt9.44 36210.68 3655.73 3792.49 4014.21 40310.48 39218.04 3980.34 39612.59 38820.49 39011.39 3657.03 39813.84 3836.46 3955.95 393
ANet_high34.39 34329.59 34948.78 35030.34 39222.28 37955.53 36363.79 34938.11 34715.47 38536.56 3826.94 37759.98 36513.93 3825.64 39664.08 366
test_blank0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
cdsmvs_eth3d_5k18.33 36024.44 3520.00 3820.00 4030.00 4060.00 39389.40 160.00 3980.00 40192.02 4338.55 1810.00 3990.00 4000.00 3970.00 397
pcd_1.5k_mvsjas3.15 3674.20 3700.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 40037.77 1870.00 3990.00 4000.00 3970.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
Regformer0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
testmvs6.14 3658.18 3680.01 3800.01 4020.00 40673.40 3000.00 4040.00 3980.02 3990.15 3980.00 4030.00 3990.02 3980.00 3970.02 395
test1236.01 3668.01 3690.01 3800.00 4030.01 40571.93 3130.00 4040.00 3980.02 3990.11 3990.00 4030.00 3990.02 3980.00 3970.02 395
ab-mvs-re7.68 36410.24 3660.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 40192.12 400.00 4030.00 3990.00 4000.00 3970.00 397
uanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
WAC-MVS34.28 34522.56 366
FOURS183.24 10149.90 18684.98 12778.76 23647.71 30573.42 56
test_one_060189.39 2257.29 2088.09 4657.21 22482.06 1293.39 1654.94 24
eth-test20.00 403
eth-test0.00 403
test_241102_ONE89.48 1756.89 2588.94 2457.53 21684.61 493.29 2058.81 1196.45 1
save fliter85.35 6056.34 3689.31 3981.46 18261.55 135
test072689.40 2057.45 1792.32 788.63 3657.71 21283.14 993.96 655.17 20
GSMVS88.13 136
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 17988.13 136
sam_mvs35.99 224
MTGPAbinary81.31 185
test_post170.84 31814.72 39534.33 24083.86 26048.80 256
test_post16.22 39237.52 19684.72 255
patchmatchnet-post59.74 36038.41 18279.91 300
MTMP87.27 7215.34 400
gm-plane-assit83.24 10154.21 8870.91 1588.23 12395.25 1466.37 117
TEST985.68 5155.42 5187.59 6284.00 13657.72 21172.99 6190.98 6344.87 10688.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 20972.84 6590.99 6244.99 10288.34 158
agg_prior85.64 5454.92 7083.61 14672.53 7088.10 168
test_prior456.39 3587.15 75
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
旧先验281.73 22045.53 32174.66 4370.48 35458.31 183
新几何281.61 224
无先验85.19 11778.00 25149.08 29885.13 25052.78 23187.45 151
原ACMM283.77 164
testdata277.81 31945.64 276
segment_acmp44.97 104
testdata177.55 27464.14 89
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 222
plane_prior483.28 190
plane_prior348.95 20764.01 9262.15 175
plane_prior285.76 10063.60 101
plane_prior178.31 215
n20.00 404
nn0.00 404
door-mid41.31 376
test1184.25 130
door43.27 372
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 143
ACMP_Plane79.02 19788.00 5365.45 7064.48 143
BP-MVS66.70 114
HQP4-MVS64.47 14688.61 14684.91 199
HQP2-MVS37.35 199
NP-MVS78.76 20250.43 17185.12 164
MDTV_nov1_ep13_2view43.62 29771.13 31754.95 25659.29 20836.76 21046.33 27387.32 153
Test By Simon39.38 173