| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 59 | 82.99 122 | 52.71 134 | 85.04 134 | 88.63 44 | 66.08 73 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 69 | 83.35 20 | 93.53 1 | 92.23 37 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPM-MVS | | | 82.39 4 | 82.36 7 | 82.49 5 | 80.12 198 | 59.50 5 | 92.24 8 | 90.72 15 | 69.37 33 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 32 | 74.02 84 | 93.25 2 | 94.80 1 |
|
| OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 48 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 3 | 92.55 3 | 94.06 3 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 6 | 82.62 4 | 91.77 4 | 57.49 17 | 84.98 137 | 88.88 33 | 58.00 219 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 31 | 91.98 4 | 93.98 5 |
|
| PC_three_1452 | | | | | | | | | | 66.58 61 | 87.27 2 | 93.70 10 | 66.82 4 | 94.95 17 | 89.74 4 | 91.98 4 | 93.98 5 |
|
| balanced_conf03 | | | 80.28 16 | 79.73 15 | 81.90 11 | 86.47 51 | 59.34 6 | 80.45 258 | 89.51 23 | 69.76 29 | 71.05 94 | 86.66 162 | 58.68 15 | 93.24 31 | 84.64 14 | 90.40 6 | 93.14 18 |
|
| MVP-Stereo | | | 70.97 149 | 70.44 135 | 72.59 220 | 76.03 269 | 51.36 164 | 85.02 136 | 86.99 74 | 60.31 174 | 56.53 273 | 78.92 261 | 40.11 184 | 90.00 109 | 60.00 186 | 90.01 7 | 76.41 336 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| DELS-MVS | | | 82.32 5 | 82.50 5 | 81.79 12 | 86.80 47 | 56.89 29 | 92.77 2 | 86.30 89 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 7 | 94.78 19 | 78.97 44 | 89.61 8 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 39 | 87.34 43 | 55.20 67 | 89.93 29 | 87.55 67 | 66.04 76 | 79.46 26 | 93.00 30 | 53.10 41 | 91.76 63 | 80.40 37 | 89.56 9 | 92.68 29 |
|
| MVS | | | 76.91 49 | 75.48 62 | 81.23 19 | 84.56 82 | 55.21 65 | 80.23 264 | 91.64 4 | 58.65 209 | 65.37 144 | 91.48 62 | 45.72 104 | 95.05 16 | 72.11 98 | 89.52 10 | 93.44 9 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 24 | 80.12 35 | 84.42 84 | 55.87 49 | 87.58 69 | 86.76 78 | 61.48 152 | 80.26 23 | 93.10 25 | 46.53 94 | 92.41 48 | 79.97 38 | 88.77 11 | 92.08 41 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| 3Dnovator | | 64.70 6 | 74.46 85 | 72.48 100 | 80.41 29 | 82.84 130 | 55.40 59 | 83.08 197 | 88.61 46 | 67.61 51 | 59.85 211 | 88.66 121 | 34.57 260 | 93.97 24 | 58.42 197 | 88.70 12 | 91.85 52 |
|
| PHI-MVS | | | 77.49 42 | 77.00 44 | 78.95 53 | 85.33 69 | 50.69 173 | 88.57 49 | 88.59 47 | 58.14 216 | 73.60 57 | 93.31 21 | 43.14 145 | 93.79 27 | 73.81 87 | 88.53 13 | 92.37 34 |
|
| CSCG | | | 80.41 15 | 79.72 16 | 82.49 5 | 89.12 25 | 57.67 15 | 89.29 41 | 91.54 5 | 59.19 195 | 71.82 82 | 90.05 95 | 59.72 10 | 96.04 10 | 78.37 50 | 88.40 14 | 93.75 7 |
|
| MS-PatchMatch | | | 72.34 122 | 71.26 124 | 75.61 139 | 82.38 140 | 55.55 52 | 88.00 55 | 89.95 20 | 65.38 85 | 56.51 274 | 80.74 245 | 32.28 282 | 92.89 34 | 57.95 206 | 88.10 15 | 78.39 314 |
|
| CNVR-MVS | | | 81.76 9 | 81.90 8 | 81.33 18 | 90.04 10 | 57.70 14 | 91.71 11 | 88.87 35 | 70.31 25 | 77.64 36 | 93.87 7 | 52.58 44 | 93.91 26 | 84.17 15 | 87.92 16 | 92.39 33 |
|
| GG-mvs-BLEND | | | | | 77.77 85 | 86.68 48 | 50.61 174 | 68.67 345 | 88.45 50 | | 68.73 112 | 87.45 149 | 59.15 11 | 90.67 90 | 54.83 231 | 87.67 17 | 92.03 45 |
|
| SED-MVS | | | 81.92 8 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 29 | 92.48 3 | 88.94 31 | 57.50 233 | 84.61 4 | 94.09 3 | 58.81 12 | 96.37 6 | 82.28 26 | 87.60 18 | 94.06 3 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 17 | | 91.38 9 | 66.22 69 | 88.26 1 | | | | 82.83 22 | 87.60 18 | 92.44 32 |
|
| test_241102_TWO | | | | | | | | | 88.76 40 | 57.50 233 | 83.60 6 | 94.09 3 | 56.14 25 | 96.37 6 | 82.28 26 | 87.43 20 | 92.55 30 |
|
| MVSMamba_PlusPlus | | | 75.28 76 | 73.39 87 | 80.96 21 | 80.85 183 | 58.25 10 | 74.47 307 | 87.61 66 | 50.53 304 | 65.24 145 | 83.41 201 | 57.38 18 | 92.83 36 | 73.92 86 | 87.13 21 | 91.80 54 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 22 | 84.38 86 | 55.40 59 | 92.16 10 | 89.85 21 | 75.28 4 | 82.41 11 | 93.86 8 | 54.30 34 | 93.98 23 | 90.29 1 | 87.13 21 | 93.30 12 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 19 | 92.34 5 | 89.99 19 | 57.71 227 | 81.91 14 | 93.64 12 | 55.17 29 | 96.44 2 | 81.68 29 | 87.13 21 | 92.72 28 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 13 | 92.34 5 | 88.88 33 | | | | | 96.39 4 | 81.68 29 | 87.13 21 | 92.47 31 |
|
| ACMMP_NAP | | | 76.43 57 | 75.66 59 | 78.73 61 | 81.92 148 | 54.67 86 | 84.06 166 | 85.35 108 | 61.10 159 | 72.99 65 | 91.50 61 | 40.25 180 | 91.00 82 | 76.84 62 | 86.98 25 | 90.51 90 |
|
| test_0728_THIRD | | | | | | | | | | 58.00 219 | 81.91 14 | 93.64 12 | 56.54 21 | 96.44 2 | 81.64 31 | 86.86 26 | 92.23 37 |
|
| SF-MVS | | | 77.64 41 | 77.42 39 | 78.32 76 | 83.75 100 | 52.47 139 | 86.63 92 | 87.80 58 | 58.78 207 | 74.63 48 | 92.38 38 | 47.75 81 | 91.35 71 | 78.18 54 | 86.85 27 | 91.15 75 |
|
| MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 46 | | 91.10 11 | | | | | 96.22 8 | 81.46 33 | 86.80 28 | 92.34 35 |
|
| No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 46 | | 91.10 11 | | | | | 96.22 8 | 81.46 33 | 86.80 28 | 92.34 35 |
|
| PAPM | | | 76.76 54 | 76.07 56 | 78.81 58 | 80.20 196 | 59.11 7 | 86.86 88 | 86.23 90 | 68.60 35 | 70.18 104 | 88.84 118 | 51.57 49 | 87.16 210 | 65.48 139 | 86.68 30 | 90.15 101 |
|
| gg-mvs-nofinetune | | | 67.43 219 | 64.53 244 | 76.13 126 | 85.95 55 | 47.79 263 | 64.38 359 | 88.28 52 | 39.34 364 | 66.62 127 | 41.27 401 | 58.69 14 | 89.00 140 | 49.64 267 | 86.62 31 | 91.59 58 |
|
| MAR-MVS | | | 76.76 54 | 75.60 60 | 80.21 31 | 90.87 7 | 54.68 85 | 89.14 42 | 89.11 28 | 62.95 126 | 70.54 102 | 92.33 39 | 41.05 170 | 94.95 17 | 57.90 208 | 86.55 32 | 91.00 79 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_0304 | | | 82.10 7 | 82.64 4 | 80.47 27 | 86.63 49 | 54.69 84 | 92.20 9 | 86.66 81 | 74.48 5 | 82.63 10 | 93.80 9 | 50.83 59 | 93.70 28 | 90.11 2 | 86.44 33 | 93.01 21 |
|
| TSAR-MVS + MP. | | | 78.31 31 | 78.26 26 | 78.48 70 | 81.33 172 | 56.31 42 | 81.59 238 | 86.41 86 | 69.61 31 | 81.72 16 | 88.16 134 | 55.09 31 | 88.04 181 | 74.12 83 | 86.31 34 | 91.09 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PS-MVSNAJ | | | 80.06 17 | 79.52 18 | 81.68 14 | 85.58 63 | 60.97 3 | 91.69 12 | 87.02 73 | 70.62 22 | 80.75 21 | 93.22 24 | 37.77 204 | 92.50 46 | 82.75 23 | 86.25 35 | 91.57 60 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 84 | 85.46 66 | 49.56 203 | 90.99 21 | 86.66 81 | 70.58 23 | 80.07 24 | 95.30 1 | 56.18 24 | 90.97 85 | 82.57 25 | 86.22 36 | 93.28 13 |
|
| test12 | | | | | 79.24 44 | 86.89 46 | 56.08 45 | | 85.16 119 | | 72.27 78 | | 47.15 86 | 91.10 80 | | 85.93 37 | 90.54 89 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 11 | 75.95 3 | 77.10 37 | 93.09 27 | 54.15 37 | 95.57 12 | 85.80 10 | 85.87 38 | 93.31 11 |
|
| xiu_mvs_v2_base | | | 79.86 18 | 79.31 19 | 81.53 15 | 85.03 75 | 60.73 4 | 91.65 13 | 86.86 76 | 70.30 26 | 80.77 20 | 93.07 29 | 37.63 209 | 92.28 52 | 82.73 24 | 85.71 39 | 91.57 60 |
|
| DPE-MVS |  | | 79.82 19 | 79.66 17 | 80.29 30 | 89.27 24 | 55.08 72 | 88.70 47 | 87.92 57 | 55.55 263 | 81.21 19 | 93.69 11 | 56.51 22 | 94.27 22 | 78.36 51 | 85.70 40 | 91.51 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| 9.14 | | | | 78.19 28 | | 85.67 61 | | 88.32 51 | 88.84 37 | 59.89 178 | 74.58 50 | 92.62 35 | 46.80 90 | 92.66 41 | 81.40 35 | 85.62 41 | |
|
| test_prior2 | | | | | | | | 89.04 43 | | 61.88 144 | 73.55 58 | 91.46 63 | 48.01 78 | | 74.73 77 | 85.46 42 | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 48 | 85.44 43 | 91.39 66 |
|
| train_agg | | | 76.91 49 | 76.40 51 | 78.45 72 | 85.68 59 | 55.42 56 | 87.59 67 | 84.00 150 | 57.84 224 | 72.99 65 | 90.98 67 | 44.99 115 | 88.58 158 | 78.19 52 | 85.32 44 | 91.34 70 |
|
| ZNCC-MVS | | | 75.82 70 | 75.02 70 | 78.23 77 | 83.88 98 | 53.80 103 | 86.91 87 | 86.05 94 | 59.71 181 | 67.85 119 | 90.55 79 | 42.23 155 | 91.02 81 | 72.66 96 | 85.29 45 | 89.87 110 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 36 | 77.63 35 | 79.13 49 | 88.52 27 | 55.12 69 | 89.95 28 | 85.98 95 | 68.31 36 | 71.33 89 | 92.75 32 | 45.52 107 | 90.37 98 | 71.15 101 | 85.14 46 | 91.91 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| agg_prior2 | | | | | | | | | | | | | | | 75.65 68 | 85.11 47 | 91.01 78 |
|
| 原ACMM1 | | | | | 76.13 126 | 84.89 77 | 54.59 88 | | 85.26 114 | 51.98 294 | 66.70 125 | 87.07 156 | 40.15 183 | 89.70 119 | 51.23 258 | 85.06 48 | 84.10 227 |
|
| MP-MVS-pluss | | | 75.54 74 | 75.03 69 | 77.04 102 | 81.37 171 | 52.65 136 | 84.34 157 | 84.46 139 | 61.16 156 | 69.14 108 | 91.76 53 | 39.98 187 | 88.99 142 | 78.19 52 | 84.89 49 | 89.48 118 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| CANet | | | 80.90 11 | 81.17 12 | 80.09 37 | 87.62 41 | 54.21 96 | 91.60 14 | 86.47 85 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 68 | 92.98 33 | 84.09 17 | 84.75 50 | 93.08 19 |
|
| SPE-MVS-test | | | 77.20 45 | 77.25 41 | 77.05 101 | 84.60 81 | 49.04 218 | 89.42 36 | 85.83 98 | 65.90 77 | 72.85 68 | 91.98 50 | 45.10 112 | 91.27 72 | 75.02 76 | 84.56 51 | 90.84 82 |
|
| MG-MVS | | | 78.42 28 | 76.99 45 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 49 | 64.83 92 | 73.52 59 | 88.09 135 | 48.07 76 | 92.19 54 | 62.24 162 | 84.53 52 | 91.53 62 |
|
| CDPH-MVS | | | 76.05 63 | 75.19 67 | 78.62 66 | 86.51 50 | 54.98 75 | 87.32 73 | 84.59 136 | 58.62 210 | 70.75 97 | 90.85 74 | 43.10 147 | 90.63 93 | 70.50 104 | 84.51 53 | 90.24 96 |
|
| DeepC-MVS | | 67.15 4 | 76.90 51 | 76.27 53 | 78.80 59 | 80.70 187 | 55.02 73 | 86.39 94 | 86.71 79 | 66.96 58 | 67.91 118 | 89.97 97 | 48.03 77 | 91.41 70 | 75.60 69 | 84.14 54 | 89.96 107 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| NCCC | | | 79.57 20 | 79.23 20 | 80.59 24 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 53 | 67.71 48 | 73.81 56 | 92.75 32 | 46.88 89 | 93.28 30 | 78.79 47 | 84.07 55 | 91.50 64 |
|
| OpenMVS |  | 61.00 11 | 69.99 167 | 67.55 187 | 77.30 95 | 78.37 232 | 54.07 101 | 84.36 156 | 85.76 99 | 57.22 238 | 56.71 270 | 87.67 146 | 30.79 295 | 92.83 36 | 43.04 307 | 84.06 56 | 85.01 214 |
|
| SteuartSystems-ACMMP | | | 77.08 47 | 76.33 52 | 79.34 43 | 80.98 176 | 55.31 61 | 89.76 33 | 86.91 75 | 62.94 127 | 71.65 83 | 91.56 60 | 42.33 153 | 92.56 45 | 77.14 61 | 83.69 57 | 90.15 101 |
| Skip Steuart: Steuart Systems R&D Blog. |
| GST-MVS | | | 74.87 83 | 73.90 85 | 77.77 85 | 83.30 110 | 53.45 112 | 85.75 109 | 85.29 112 | 59.22 194 | 66.50 131 | 89.85 99 | 40.94 172 | 90.76 88 | 70.94 102 | 83.35 58 | 89.10 127 |
|
| APDe-MVS |  | | 78.44 27 | 78.20 27 | 79.19 45 | 88.56 26 | 54.55 89 | 89.76 33 | 87.77 61 | 55.91 258 | 78.56 30 | 92.49 37 | 48.20 75 | 92.65 42 | 79.49 39 | 83.04 59 | 90.39 91 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| EPNet | | | 78.36 30 | 78.49 25 | 77.97 82 | 85.49 65 | 52.04 147 | 89.36 39 | 84.07 149 | 73.22 7 | 77.03 38 | 91.72 54 | 49.32 72 | 90.17 107 | 73.46 90 | 82.77 60 | 91.69 55 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| API-MVS | | | 74.17 90 | 72.07 112 | 80.49 25 | 90.02 11 | 58.55 9 | 87.30 75 | 84.27 143 | 57.51 232 | 65.77 141 | 87.77 144 | 41.61 166 | 95.97 11 | 51.71 254 | 82.63 61 | 86.94 176 |
|
| CS-MVS | | | 76.77 53 | 76.70 48 | 76.99 106 | 83.55 102 | 48.75 228 | 88.60 48 | 85.18 117 | 66.38 66 | 72.47 75 | 91.62 58 | 45.53 106 | 90.99 84 | 74.48 79 | 82.51 62 | 91.23 72 |
|
| MSLP-MVS++ | | | 74.21 89 | 72.25 106 | 80.11 36 | 81.45 169 | 56.47 38 | 86.32 96 | 79.65 234 | 58.19 215 | 66.36 132 | 92.29 40 | 36.11 242 | 90.66 91 | 67.39 122 | 82.49 63 | 93.18 17 |
|
| MTAPA | | | 72.73 115 | 71.22 125 | 77.27 97 | 81.54 165 | 53.57 108 | 67.06 352 | 81.31 199 | 59.41 188 | 68.39 114 | 90.96 69 | 36.07 244 | 89.01 139 | 73.80 88 | 82.45 64 | 89.23 122 |
|
| MP-MVS |  | | 74.99 82 | 74.33 79 | 76.95 108 | 82.89 127 | 53.05 128 | 85.63 114 | 83.50 161 | 57.86 223 | 67.25 122 | 90.24 87 | 43.38 142 | 88.85 151 | 76.03 64 | 82.23 65 | 88.96 129 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| EIA-MVS | | | 75.92 65 | 75.18 68 | 78.13 79 | 85.14 72 | 51.60 158 | 87.17 80 | 85.32 110 | 64.69 93 | 68.56 113 | 90.53 80 | 45.79 103 | 91.58 66 | 67.21 124 | 82.18 66 | 91.20 73 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 124 | 70.50 134 | 77.65 88 | 83.40 108 | 51.29 167 | 87.32 73 | 86.40 87 | 59.01 202 | 58.49 241 | 88.32 131 | 32.40 280 | 91.27 72 | 57.04 217 | 82.15 67 | 90.38 92 |
|
| EC-MVSNet | | | 75.30 75 | 75.20 66 | 75.62 138 | 80.98 176 | 49.00 219 | 87.43 70 | 84.68 134 | 63.49 117 | 70.97 95 | 90.15 93 | 42.86 150 | 91.14 79 | 74.33 81 | 81.90 68 | 86.71 185 |
|
| CHOSEN 1792x2688 | | | 76.24 59 | 74.03 84 | 82.88 1 | 83.09 117 | 62.84 2 | 85.73 111 | 85.39 106 | 69.79 28 | 64.87 152 | 83.49 199 | 41.52 168 | 93.69 29 | 70.55 103 | 81.82 69 | 92.12 40 |
|
| APD-MVS |  | | 76.15 61 | 75.68 58 | 77.54 90 | 88.52 27 | 53.44 113 | 87.26 78 | 85.03 123 | 53.79 280 | 74.91 46 | 91.68 56 | 43.80 131 | 90.31 101 | 74.36 80 | 81.82 69 | 88.87 132 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ZD-MVS | | | | | | 89.55 14 | 53.46 110 | | 84.38 140 | 57.02 241 | 73.97 55 | 91.03 65 | 44.57 125 | 91.17 77 | 75.41 73 | 81.78 71 | |
|
| QAPM | | | 71.88 132 | 69.33 158 | 79.52 40 | 82.20 143 | 54.30 93 | 86.30 97 | 88.77 39 | 56.61 251 | 59.72 213 | 87.48 148 | 33.90 267 | 95.36 13 | 47.48 282 | 81.49 72 | 88.90 130 |
|
| PVSNet_Blended | | | 76.53 56 | 76.54 49 | 76.50 116 | 85.91 56 | 51.83 153 | 88.89 45 | 84.24 146 | 67.82 46 | 69.09 109 | 89.33 110 | 46.70 92 | 88.13 177 | 75.43 70 | 81.48 73 | 89.55 115 |
|
| ETV-MVS | | | 77.17 46 | 76.74 47 | 78.48 70 | 81.80 151 | 54.55 89 | 86.13 100 | 85.33 109 | 68.20 38 | 73.10 64 | 90.52 81 | 45.23 111 | 90.66 91 | 79.37 40 | 80.95 74 | 90.22 97 |
|
| HFP-MVS | | | 74.37 87 | 73.13 95 | 78.10 80 | 84.30 87 | 53.68 106 | 85.58 115 | 84.36 141 | 56.82 245 | 65.78 140 | 90.56 78 | 40.70 177 | 90.90 86 | 69.18 112 | 80.88 75 | 89.71 111 |
|
| ACMMPR | | | 73.76 98 | 72.61 97 | 77.24 99 | 83.92 96 | 52.96 131 | 85.58 115 | 84.29 142 | 56.82 245 | 65.12 146 | 90.45 82 | 37.24 221 | 90.18 106 | 69.18 112 | 80.84 76 | 88.58 140 |
|
| region2R | | | 73.75 99 | 72.55 99 | 77.33 94 | 83.90 97 | 52.98 130 | 85.54 119 | 84.09 148 | 56.83 244 | 65.10 147 | 90.45 82 | 37.34 218 | 90.24 104 | 68.89 114 | 80.83 77 | 88.77 136 |
|
| MVS_Test | | | 75.85 67 | 74.93 72 | 78.62 66 | 84.08 92 | 55.20 67 | 83.99 168 | 85.17 118 | 68.07 41 | 73.38 61 | 82.76 210 | 50.44 61 | 89.00 140 | 65.90 135 | 80.61 78 | 91.64 56 |
|
| Vis-MVSNet |  | | 70.61 156 | 69.34 157 | 74.42 174 | 80.95 181 | 48.49 236 | 86.03 103 | 77.51 278 | 58.74 208 | 65.55 143 | 87.78 143 | 34.37 262 | 85.95 251 | 52.53 252 | 80.61 78 | 88.80 134 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| XVS | | | 72.92 111 | 71.62 117 | 76.81 111 | 83.41 105 | 52.48 137 | 84.88 142 | 83.20 168 | 58.03 217 | 63.91 168 | 89.63 103 | 35.50 249 | 89.78 115 | 65.50 137 | 80.50 80 | 88.16 150 |
|
| X-MVStestdata | | | 65.85 249 | 62.20 257 | 76.81 111 | 83.41 105 | 52.48 137 | 84.88 142 | 83.20 168 | 58.03 217 | 63.91 168 | 4.82 420 | 35.50 249 | 89.78 115 | 65.50 137 | 80.50 80 | 88.16 150 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 66 | 90.34 9 | 53.77 104 | 88.08 54 | 88.36 51 | 76.17 2 | 79.40 27 | 91.09 64 | 55.43 27 | 90.09 108 | 85.01 12 | 80.40 82 | 91.99 48 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 21 | 80.49 25 | 89.75 12 | 56.54 36 | 84.83 144 | 83.68 156 | 67.85 45 | 69.36 105 | 90.24 87 | 60.20 8 | 92.10 58 | 84.14 16 | 80.40 82 | 92.82 25 |
|
| 新几何1 | | | | | 73.30 207 | 83.10 115 | 53.48 109 | | 71.43 340 | 45.55 339 | 66.14 133 | 87.17 154 | 33.88 268 | 80.54 309 | 48.50 276 | 80.33 84 | 85.88 202 |
|
| PGM-MVS | | | 72.60 117 | 71.20 126 | 76.80 113 | 82.95 123 | 52.82 133 | 83.07 198 | 82.14 182 | 56.51 253 | 63.18 178 | 89.81 100 | 35.68 248 | 89.76 117 | 67.30 123 | 80.19 85 | 87.83 159 |
|
| MVSFormer | | | 73.53 104 | 72.19 108 | 77.57 89 | 83.02 120 | 55.24 63 | 81.63 235 | 81.44 197 | 50.28 305 | 76.67 39 | 90.91 72 | 44.82 121 | 86.11 241 | 60.83 174 | 80.09 86 | 91.36 68 |
|
| lupinMVS | | | 78.38 29 | 78.11 29 | 79.19 45 | 83.02 120 | 55.24 63 | 91.57 15 | 84.82 128 | 69.12 34 | 76.67 39 | 92.02 46 | 44.82 121 | 90.23 105 | 80.83 36 | 80.09 86 | 92.08 41 |
|
| HPM-MVS |  | | 72.60 117 | 71.50 119 | 75.89 132 | 82.02 144 | 51.42 163 | 80.70 256 | 83.05 170 | 56.12 257 | 64.03 166 | 89.53 104 | 37.55 212 | 88.37 166 | 70.48 105 | 80.04 88 | 87.88 158 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_HR | | | 76.39 58 | 75.38 65 | 79.42 42 | 85.33 69 | 56.47 38 | 88.15 53 | 84.97 124 | 65.15 90 | 66.06 135 | 89.88 98 | 43.79 132 | 92.16 55 | 75.03 75 | 80.03 89 | 89.64 113 |
|
| TSAR-MVS + GP. | | | 77.82 38 | 77.59 36 | 78.49 69 | 85.25 71 | 50.27 190 | 90.02 26 | 90.57 16 | 56.58 252 | 74.26 53 | 91.60 59 | 54.26 35 | 92.16 55 | 75.87 66 | 79.91 90 | 93.05 20 |
|
| LFMVS | | | 78.52 25 | 77.14 43 | 82.67 3 | 89.58 13 | 58.90 8 | 91.27 19 | 88.05 55 | 63.22 122 | 74.63 48 | 90.83 75 | 41.38 169 | 94.40 20 | 75.42 72 | 79.90 91 | 94.72 2 |
|
| casdiffmvs_mvg |  | | 77.75 39 | 77.28 40 | 79.16 47 | 80.42 194 | 54.44 91 | 87.76 61 | 85.46 103 | 71.67 15 | 71.38 88 | 88.35 129 | 51.58 48 | 91.22 75 | 79.02 43 | 79.89 92 | 91.83 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Effi-MVS+ | | | 75.24 77 | 73.61 86 | 80.16 33 | 81.92 148 | 57.42 21 | 85.21 126 | 76.71 294 | 60.68 170 | 73.32 62 | 89.34 108 | 47.30 84 | 91.63 65 | 68.28 118 | 79.72 93 | 91.42 65 |
|
| test2506 | | | 72.91 112 | 72.43 102 | 74.32 178 | 80.12 198 | 44.18 309 | 83.19 194 | 84.77 131 | 64.02 102 | 65.97 136 | 87.43 150 | 47.67 82 | 88.72 152 | 59.08 188 | 79.66 94 | 90.08 103 |
|
| ECVR-MVS |  | | 71.81 133 | 71.00 128 | 74.26 180 | 80.12 198 | 43.49 314 | 84.69 147 | 82.16 181 | 64.02 102 | 64.64 154 | 87.43 150 | 35.04 255 | 89.21 133 | 61.24 171 | 79.66 94 | 90.08 103 |
|
| PAPM_NR | | | 71.80 134 | 69.98 148 | 77.26 98 | 81.54 165 | 53.34 118 | 78.60 281 | 85.25 115 | 53.46 283 | 60.53 206 | 88.66 121 | 45.69 105 | 89.24 130 | 56.49 221 | 79.62 96 | 89.19 124 |
|
| jason | | | 77.01 48 | 76.45 50 | 78.69 63 | 79.69 203 | 54.74 80 | 90.56 24 | 83.99 152 | 68.26 37 | 74.10 54 | 90.91 72 | 42.14 157 | 89.99 110 | 79.30 41 | 79.12 97 | 91.36 68 |
| jason: jason. |
| CANet_DTU | | | 73.71 100 | 73.14 93 | 75.40 148 | 82.61 137 | 50.05 192 | 84.67 150 | 79.36 242 | 69.72 30 | 75.39 42 | 90.03 96 | 29.41 302 | 85.93 252 | 67.99 120 | 79.11 98 | 90.22 97 |
|
| casdiffmvs |  | | 77.36 44 | 76.85 46 | 78.88 56 | 80.40 195 | 54.66 87 | 87.06 82 | 85.88 96 | 72.11 13 | 71.57 85 | 88.63 125 | 50.89 58 | 90.35 99 | 76.00 65 | 79.11 98 | 91.63 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TESTMET0.1,1 | | | 72.86 113 | 72.33 103 | 74.46 172 | 81.98 145 | 50.77 171 | 85.13 129 | 85.47 102 | 66.09 72 | 67.30 121 | 83.69 196 | 37.27 219 | 83.57 283 | 65.06 148 | 78.97 100 | 89.05 128 |
|
| SD-MVS | | | 76.18 60 | 74.85 73 | 80.18 32 | 85.39 67 | 56.90 28 | 85.75 109 | 82.45 180 | 56.79 247 | 74.48 51 | 91.81 52 | 43.72 135 | 90.75 89 | 74.61 78 | 78.65 101 | 92.91 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| baseline | | | 76.86 52 | 76.24 54 | 78.71 62 | 80.47 193 | 54.20 98 | 83.90 171 | 84.88 127 | 71.38 19 | 71.51 86 | 89.15 113 | 50.51 60 | 90.55 95 | 75.71 67 | 78.65 101 | 91.39 66 |
|
| VNet | | | 77.99 37 | 77.92 31 | 78.19 78 | 87.43 42 | 50.12 191 | 90.93 22 | 91.41 8 | 67.48 52 | 75.12 43 | 90.15 93 | 46.77 91 | 91.00 82 | 73.52 89 | 78.46 103 | 93.44 9 |
|
| test1111 | | | 71.06 147 | 70.42 138 | 72.97 212 | 79.48 205 | 41.49 337 | 84.82 145 | 82.74 176 | 64.20 99 | 62.98 181 | 87.43 150 | 35.20 252 | 87.92 183 | 58.54 194 | 78.42 104 | 89.49 117 |
|
| 旧先验1 | | | | | | 81.57 164 | 47.48 265 | | 71.83 334 | | | 88.66 121 | 36.94 229 | | | 78.34 105 | 88.67 137 |
|
| mPP-MVS | | | 71.79 135 | 70.38 139 | 76.04 129 | 82.65 136 | 52.06 146 | 84.45 154 | 81.78 192 | 55.59 262 | 62.05 193 | 89.68 102 | 33.48 271 | 88.28 174 | 65.45 142 | 78.24 106 | 87.77 161 |
|
| UBG | | | 78.86 24 | 78.86 22 | 78.86 57 | 87.80 40 | 55.43 55 | 87.67 64 | 91.21 10 | 72.83 9 | 72.10 79 | 88.40 126 | 58.53 16 | 89.08 135 | 73.21 94 | 77.98 107 | 92.08 41 |
|
| RRT-MVS | | | 73.29 107 | 71.37 123 | 79.07 52 | 84.63 80 | 54.16 99 | 78.16 283 | 86.64 83 | 61.67 147 | 60.17 208 | 82.35 226 | 40.63 178 | 92.26 53 | 70.19 106 | 77.87 108 | 90.81 83 |
|
| CP-MVS | | | 72.59 119 | 71.46 120 | 76.00 131 | 82.93 125 | 52.32 143 | 86.93 86 | 82.48 179 | 55.15 267 | 63.65 173 | 90.44 85 | 35.03 256 | 88.53 162 | 68.69 115 | 77.83 109 | 87.15 174 |
|
| PVSNet_Blended_VisFu | | | 73.40 106 | 72.44 101 | 76.30 118 | 81.32 173 | 54.70 83 | 85.81 105 | 78.82 252 | 63.70 110 | 64.53 158 | 85.38 176 | 47.11 87 | 87.38 206 | 67.75 121 | 77.55 110 | 86.81 184 |
|
| sasdasda | | | 78.17 33 | 77.86 32 | 79.12 50 | 84.30 87 | 54.22 94 | 87.71 62 | 84.57 137 | 67.70 49 | 77.70 34 | 92.11 44 | 50.90 55 | 89.95 111 | 78.18 54 | 77.54 111 | 93.20 15 |
|
| canonicalmvs | | | 78.17 33 | 77.86 32 | 79.12 50 | 84.30 87 | 54.22 94 | 87.71 62 | 84.57 137 | 67.70 49 | 77.70 34 | 92.11 44 | 50.90 55 | 89.95 111 | 78.18 54 | 77.54 111 | 93.20 15 |
|
| 1314 | | | 71.11 145 | 69.41 155 | 76.22 121 | 79.32 208 | 50.49 178 | 80.23 264 | 85.14 121 | 59.44 187 | 58.93 230 | 88.89 117 | 33.83 269 | 89.60 122 | 61.49 169 | 77.42 113 | 88.57 141 |
|
| MGCFI-Net | | | 74.07 91 | 74.64 77 | 72.34 228 | 82.90 126 | 43.33 319 | 80.04 267 | 79.96 225 | 65.61 79 | 74.93 45 | 91.85 51 | 48.01 78 | 80.86 303 | 71.41 99 | 77.10 114 | 92.84 24 |
|
| PAPR | | | 75.20 79 | 74.13 80 | 78.41 73 | 88.31 32 | 55.10 71 | 84.31 158 | 85.66 100 | 63.76 109 | 67.55 120 | 90.73 77 | 43.48 140 | 89.40 125 | 66.36 130 | 77.03 115 | 90.73 85 |
|
| alignmvs | | | 78.08 35 | 77.98 30 | 78.39 74 | 83.53 103 | 53.22 122 | 89.77 32 | 85.45 104 | 66.11 71 | 76.59 41 | 91.99 48 | 54.07 38 | 89.05 137 | 77.34 60 | 77.00 116 | 92.89 23 |
|
| test222 | | | | | | 79.36 206 | 50.97 170 | 77.99 285 | 67.84 360 | 42.54 358 | 62.84 183 | 86.53 164 | 30.26 298 | | | 76.91 117 | 85.23 211 |
|
| mvsmamba | | | 69.38 180 | 67.52 189 | 74.95 166 | 82.86 128 | 52.22 145 | 67.36 350 | 76.75 291 | 61.14 157 | 49.43 324 | 82.04 232 | 37.26 220 | 84.14 275 | 73.93 85 | 76.91 117 | 88.50 144 |
|
| fmvsm_l_conf0.5_n | | | 75.95 64 | 76.16 55 | 75.31 152 | 76.01 270 | 48.44 239 | 84.98 137 | 71.08 342 | 63.50 116 | 81.70 17 | 93.52 15 | 50.00 64 | 87.18 209 | 87.80 5 | 76.87 119 | 90.32 94 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 66 | 76.07 56 | 75.31 152 | 76.08 266 | 48.34 242 | 85.24 125 | 70.62 345 | 63.13 124 | 81.45 18 | 93.62 14 | 49.98 66 | 87.40 205 | 87.76 6 | 76.77 120 | 90.20 99 |
|
| PMMVS | | | 72.98 110 | 72.05 113 | 75.78 134 | 83.57 101 | 48.60 231 | 84.08 164 | 82.85 175 | 61.62 148 | 68.24 116 | 90.33 86 | 28.35 306 | 87.78 191 | 72.71 95 | 76.69 121 | 90.95 80 |
|
| UGNet | | | 68.71 193 | 67.11 196 | 73.50 204 | 80.55 192 | 47.61 264 | 84.08 164 | 78.51 261 | 59.45 186 | 65.68 142 | 82.73 213 | 23.78 340 | 85.08 266 | 52.80 247 | 76.40 122 | 87.80 160 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| xiu_mvs_v1_base_debu | | | 71.60 138 | 70.29 142 | 75.55 142 | 77.26 248 | 53.15 123 | 85.34 120 | 79.37 239 | 55.83 259 | 72.54 71 | 90.19 90 | 22.38 349 | 86.66 225 | 73.28 91 | 76.39 123 | 86.85 180 |
|
| xiu_mvs_v1_base | | | 71.60 138 | 70.29 142 | 75.55 142 | 77.26 248 | 53.15 123 | 85.34 120 | 79.37 239 | 55.83 259 | 72.54 71 | 90.19 90 | 22.38 349 | 86.66 225 | 73.28 91 | 76.39 123 | 86.85 180 |
|
| xiu_mvs_v1_base_debi | | | 71.60 138 | 70.29 142 | 75.55 142 | 77.26 248 | 53.15 123 | 85.34 120 | 79.37 239 | 55.83 259 | 72.54 71 | 90.19 90 | 22.38 349 | 86.66 225 | 73.28 91 | 76.39 123 | 86.85 180 |
|
| Fast-Effi-MVS+ | | | 72.73 115 | 71.15 127 | 77.48 91 | 82.75 132 | 54.76 79 | 86.77 90 | 80.64 212 | 63.05 125 | 65.93 137 | 84.01 189 | 44.42 126 | 89.03 138 | 56.45 224 | 76.36 126 | 88.64 138 |
|
| testing222 | | | 77.70 40 | 77.22 42 | 79.14 48 | 86.95 45 | 54.89 78 | 87.18 79 | 91.96 2 | 72.29 12 | 71.17 93 | 88.70 120 | 55.19 28 | 91.24 74 | 65.18 146 | 76.32 127 | 91.29 71 |
|
| testing11 | | | 79.18 22 | 78.85 23 | 80.16 33 | 88.33 30 | 56.99 26 | 88.31 52 | 92.06 1 | 72.82 10 | 70.62 101 | 88.37 127 | 57.69 17 | 92.30 50 | 75.25 74 | 76.24 128 | 91.20 73 |
|
| reproduce-ours | | | 71.77 136 | 70.43 136 | 75.78 134 | 81.96 146 | 49.54 206 | 82.54 211 | 81.01 206 | 48.77 317 | 69.21 106 | 90.96 69 | 37.13 224 | 89.40 125 | 66.28 131 | 76.01 129 | 88.39 147 |
|
| our_new_method | | | 71.77 136 | 70.43 136 | 75.78 134 | 81.96 146 | 49.54 206 | 82.54 211 | 81.01 206 | 48.77 317 | 69.21 106 | 90.96 69 | 37.13 224 | 89.40 125 | 66.28 131 | 76.01 129 | 88.39 147 |
|
| VDD-MVS | | | 76.08 62 | 74.97 71 | 79.44 41 | 84.27 90 | 53.33 119 | 91.13 20 | 85.88 96 | 65.33 87 | 72.37 76 | 89.34 108 | 32.52 279 | 92.76 40 | 77.90 57 | 75.96 131 | 92.22 39 |
|
| testdata | | | | | 67.08 305 | 77.59 242 | 45.46 294 | | 69.20 355 | 44.47 347 | 71.50 87 | 88.34 130 | 31.21 292 | 70.76 372 | 52.20 253 | 75.88 132 | 85.03 213 |
|
| mvs_anonymous | | | 72.29 124 | 70.74 130 | 76.94 109 | 82.85 129 | 54.72 82 | 78.43 282 | 81.54 195 | 63.77 108 | 61.69 195 | 79.32 256 | 51.11 52 | 85.31 259 | 62.15 164 | 75.79 133 | 90.79 84 |
|
| VDDNet | | | 74.37 87 | 72.13 110 | 81.09 20 | 79.58 204 | 56.52 37 | 90.02 26 | 86.70 80 | 52.61 290 | 71.23 90 | 87.20 153 | 31.75 289 | 93.96 25 | 74.30 82 | 75.77 134 | 92.79 27 |
|
| diffmvs |  | | 75.11 81 | 74.65 76 | 76.46 117 | 78.52 228 | 53.35 117 | 83.28 192 | 79.94 226 | 70.51 24 | 71.64 84 | 88.72 119 | 46.02 100 | 86.08 246 | 77.52 58 | 75.75 135 | 89.96 107 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IS-MVSNet | | | 68.80 191 | 67.55 187 | 72.54 221 | 78.50 229 | 43.43 316 | 81.03 248 | 79.35 243 | 59.12 200 | 57.27 264 | 86.71 160 | 46.05 99 | 87.70 194 | 44.32 302 | 75.60 136 | 86.49 188 |
|
| WTY-MVS | | | 77.47 43 | 77.52 38 | 77.30 95 | 88.33 30 | 46.25 285 | 88.46 50 | 90.32 17 | 71.40 18 | 72.32 77 | 91.72 54 | 53.44 39 | 92.37 49 | 66.28 131 | 75.42 137 | 93.28 13 |
|
| test_fmvsm_n_1920 | | | 75.56 73 | 75.54 61 | 75.61 139 | 74.60 288 | 49.51 208 | 81.82 229 | 74.08 316 | 66.52 64 | 80.40 22 | 93.46 17 | 46.95 88 | 89.72 118 | 86.69 7 | 75.30 138 | 87.61 165 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 250 | 65.63 227 | 65.17 321 | 77.49 244 | 30.54 379 | 75.49 300 | 77.73 274 | 59.34 190 | 52.26 310 | 86.69 161 | 49.38 71 | 80.53 310 | 37.07 326 | 75.28 139 | 84.42 223 |
|
| UWE-MVS | | | 72.17 127 | 72.15 109 | 72.21 230 | 82.26 142 | 44.29 306 | 86.83 89 | 89.58 22 | 65.58 80 | 65.82 139 | 85.06 179 | 45.02 114 | 84.35 274 | 54.07 236 | 75.18 140 | 87.99 157 |
|
| test-LLR | | | 69.65 176 | 69.01 162 | 71.60 247 | 78.67 223 | 48.17 248 | 85.13 129 | 79.72 231 | 59.18 197 | 63.13 179 | 82.58 217 | 36.91 230 | 80.24 313 | 60.56 178 | 75.17 141 | 86.39 191 |
|
| test-mter | | | 68.36 198 | 67.29 192 | 71.60 247 | 78.67 223 | 48.17 248 | 85.13 129 | 79.72 231 | 53.38 284 | 63.13 179 | 82.58 217 | 27.23 316 | 80.24 313 | 60.56 178 | 75.17 141 | 86.39 191 |
|
| testing99 | | | 78.45 26 | 77.78 34 | 80.45 28 | 88.28 33 | 56.81 32 | 87.95 59 | 91.49 6 | 71.72 14 | 70.84 96 | 88.09 135 | 57.29 19 | 92.63 44 | 69.24 111 | 75.13 143 | 91.91 49 |
|
| PVSNet | | 62.49 8 | 69.27 182 | 67.81 182 | 73.64 200 | 84.41 85 | 51.85 152 | 84.63 151 | 77.80 272 | 66.42 65 | 59.80 212 | 84.95 182 | 22.14 353 | 80.44 311 | 55.03 230 | 75.11 144 | 88.62 139 |
|
| test_yl | | | 75.85 67 | 74.83 74 | 78.91 54 | 88.08 37 | 51.94 149 | 91.30 17 | 89.28 25 | 57.91 221 | 71.19 91 | 89.20 111 | 42.03 160 | 92.77 38 | 69.41 109 | 75.07 145 | 92.01 46 |
|
| DCV-MVSNet | | | 75.85 67 | 74.83 74 | 78.91 54 | 88.08 37 | 51.94 149 | 91.30 17 | 89.28 25 | 57.91 221 | 71.19 91 | 89.20 111 | 42.03 160 | 92.77 38 | 69.41 109 | 75.07 145 | 92.01 46 |
|
| testing91 | | | 78.30 32 | 77.54 37 | 80.61 23 | 88.16 35 | 57.12 25 | 87.94 60 | 91.07 14 | 71.43 17 | 70.75 97 | 88.04 139 | 55.82 26 | 92.65 42 | 69.61 108 | 75.00 147 | 92.05 44 |
|
| BH-w/o | | | 70.02 165 | 68.51 167 | 74.56 170 | 82.77 131 | 50.39 182 | 86.60 93 | 78.14 268 | 59.77 180 | 59.65 214 | 85.57 174 | 39.27 192 | 87.30 207 | 49.86 265 | 74.94 148 | 85.99 197 |
|
| reproduce_model | | | 71.07 146 | 69.67 152 | 75.28 157 | 81.51 168 | 48.82 226 | 81.73 232 | 80.57 215 | 47.81 323 | 68.26 115 | 90.78 76 | 36.49 239 | 88.60 157 | 65.12 147 | 74.76 149 | 88.42 146 |
|
| ETVMVS | | | 75.80 71 | 75.44 63 | 76.89 110 | 86.23 54 | 50.38 183 | 85.55 118 | 91.42 7 | 71.30 20 | 68.80 111 | 87.94 141 | 56.42 23 | 89.24 130 | 56.54 220 | 74.75 150 | 91.07 77 |
|
| SR-MVS | | | 70.92 151 | 69.73 151 | 74.50 171 | 83.38 109 | 50.48 179 | 84.27 159 | 79.35 243 | 48.96 315 | 66.57 130 | 90.45 82 | 33.65 270 | 87.11 211 | 66.42 128 | 74.56 151 | 85.91 200 |
|
| UA-Net | | | 67.32 223 | 66.23 212 | 70.59 263 | 78.85 219 | 41.23 340 | 73.60 312 | 75.45 306 | 61.54 150 | 66.61 128 | 84.53 184 | 38.73 197 | 86.57 230 | 42.48 312 | 74.24 152 | 83.98 233 |
|
| CDS-MVSNet | | | 70.48 158 | 69.43 154 | 73.64 200 | 77.56 243 | 48.83 225 | 83.51 182 | 77.45 279 | 63.27 121 | 62.33 188 | 85.54 175 | 43.85 129 | 83.29 288 | 57.38 216 | 74.00 153 | 88.79 135 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| BH-RMVSNet | | | 70.08 163 | 68.01 175 | 76.27 119 | 84.21 91 | 51.22 169 | 87.29 76 | 79.33 245 | 58.96 204 | 63.63 174 | 86.77 159 | 33.29 273 | 90.30 103 | 44.63 300 | 73.96 154 | 87.30 173 |
|
| CLD-MVS | | | 75.60 72 | 75.39 64 | 76.24 120 | 80.69 188 | 52.40 140 | 90.69 23 | 86.20 91 | 74.40 6 | 65.01 150 | 88.93 115 | 42.05 159 | 90.58 94 | 76.57 63 | 73.96 154 | 85.73 203 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| APD-MVS_3200maxsize | | | 69.62 177 | 68.23 173 | 73.80 195 | 81.58 163 | 48.22 246 | 81.91 225 | 79.50 237 | 48.21 321 | 64.24 164 | 89.75 101 | 31.91 288 | 87.55 201 | 63.08 156 | 73.85 156 | 85.64 206 |
|
| HPM-MVS_fast | | | 67.86 207 | 66.28 211 | 72.61 219 | 80.67 189 | 48.34 242 | 81.18 246 | 75.95 302 | 50.81 303 | 59.55 218 | 88.05 138 | 27.86 311 | 85.98 248 | 58.83 191 | 73.58 157 | 83.51 242 |
|
| ACMMP |  | | 70.81 153 | 69.29 159 | 75.39 149 | 81.52 167 | 51.92 151 | 83.43 185 | 83.03 171 | 56.67 250 | 58.80 235 | 88.91 116 | 31.92 287 | 88.58 158 | 65.89 136 | 73.39 158 | 85.67 204 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_fmvsmvis_n_1920 | | | 71.29 142 | 70.38 139 | 74.00 187 | 71.04 330 | 48.79 227 | 79.19 277 | 64.62 368 | 62.75 129 | 66.73 124 | 91.99 48 | 40.94 172 | 88.35 168 | 83.00 21 | 73.18 159 | 84.85 219 |
|
| HQP3-MVS | | | | | | | | | 83.68 156 | | | | | | | 73.12 160 | |
|
| HQP-MVS | | | 72.34 122 | 71.44 121 | 75.03 163 | 79.02 215 | 51.56 159 | 88.00 55 | 83.68 156 | 65.45 81 | 64.48 159 | 85.13 177 | 37.35 216 | 88.62 155 | 66.70 126 | 73.12 160 | 84.91 217 |
|
| TAMVS | | | 69.51 179 | 68.16 174 | 73.56 203 | 76.30 262 | 48.71 230 | 82.57 208 | 77.17 284 | 62.10 139 | 61.32 199 | 84.23 187 | 41.90 162 | 83.46 285 | 54.80 233 | 73.09 162 | 88.50 144 |
|
| BH-untuned | | | 68.28 201 | 66.40 207 | 73.91 190 | 81.62 160 | 50.01 193 | 85.56 117 | 77.39 280 | 57.63 229 | 57.47 261 | 83.69 196 | 36.36 240 | 87.08 212 | 44.81 298 | 73.08 163 | 84.65 220 |
|
| plane_prior | | | | | | | 49.57 201 | 87.43 70 | | 64.57 94 | | | | | | 72.84 164 | |
|
| PCF-MVS | | 61.03 10 | 70.10 162 | 68.40 169 | 75.22 160 | 77.15 252 | 51.99 148 | 79.30 276 | 82.12 183 | 56.47 254 | 61.88 194 | 86.48 166 | 43.98 128 | 87.24 208 | 55.37 229 | 72.79 165 | 86.43 190 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HY-MVS | | 67.03 5 | 73.90 95 | 73.14 93 | 76.18 125 | 84.70 79 | 47.36 268 | 75.56 297 | 86.36 88 | 66.27 68 | 70.66 100 | 83.91 191 | 51.05 53 | 89.31 128 | 67.10 125 | 72.61 166 | 91.88 51 |
|
| DP-MVS Recon | | | 71.99 129 | 70.31 141 | 77.01 104 | 90.65 8 | 53.44 113 | 89.37 37 | 82.97 173 | 56.33 255 | 63.56 176 | 89.47 105 | 34.02 265 | 92.15 57 | 54.05 237 | 72.41 167 | 85.43 210 |
|
| HQP_MVS | | | 70.96 150 | 69.91 149 | 74.12 183 | 77.95 236 | 49.57 201 | 85.76 107 | 82.59 177 | 63.60 113 | 62.15 191 | 83.28 204 | 36.04 245 | 88.30 172 | 65.46 140 | 72.34 168 | 84.49 221 |
|
| plane_prior5 | | | | | | | | | 82.59 177 | | | | | 88.30 172 | 65.46 140 | 72.34 168 | 84.49 221 |
|
| MVS_111021_LR | | | 69.07 183 | 67.91 176 | 72.54 221 | 77.27 247 | 49.56 203 | 79.77 269 | 73.96 319 | 59.33 192 | 60.73 204 | 87.82 142 | 30.19 299 | 81.53 296 | 69.94 107 | 72.19 170 | 86.53 187 |
|
| SR-MVS-dyc-post | | | 68.27 202 | 66.87 197 | 72.48 224 | 80.96 178 | 48.14 250 | 81.54 239 | 76.98 287 | 46.42 334 | 62.75 184 | 89.42 106 | 31.17 293 | 86.09 245 | 60.52 180 | 72.06 171 | 83.19 249 |
|
| RE-MVS-def | | | | 66.66 203 | | 80.96 178 | 48.14 250 | 81.54 239 | 76.98 287 | 46.42 334 | 62.75 184 | 89.42 106 | 29.28 304 | | 60.52 180 | 72.06 171 | 83.19 249 |
|
| test_fmvsmconf_n | | | 74.41 86 | 74.05 83 | 75.49 146 | 74.16 294 | 48.38 240 | 82.66 205 | 72.57 329 | 67.05 57 | 75.11 44 | 92.88 31 | 46.35 95 | 87.81 186 | 83.93 18 | 71.71 173 | 90.28 95 |
|
| Anonymous202405211 | | | 70.11 161 | 67.88 178 | 76.79 114 | 87.20 44 | 47.24 271 | 89.49 35 | 77.38 281 | 54.88 272 | 66.14 133 | 86.84 158 | 20.93 358 | 91.54 67 | 56.45 224 | 71.62 174 | 91.59 58 |
|
| EPMVS | | | 68.45 197 | 65.44 233 | 77.47 92 | 84.91 76 | 56.17 43 | 71.89 331 | 81.91 189 | 61.72 146 | 60.85 202 | 72.49 331 | 36.21 241 | 87.06 213 | 47.32 283 | 71.62 174 | 89.17 125 |
|
| TR-MVS | | | 69.71 172 | 67.85 181 | 75.27 158 | 82.94 124 | 48.48 237 | 87.40 72 | 80.86 209 | 57.15 240 | 64.61 156 | 87.08 155 | 32.67 278 | 89.64 121 | 46.38 291 | 71.55 176 | 87.68 164 |
|
| test_fmvsmconf0.1_n | | | 73.69 101 | 73.15 91 | 75.34 150 | 70.71 332 | 48.26 245 | 82.15 219 | 71.83 334 | 66.75 60 | 74.47 52 | 92.59 36 | 44.89 118 | 87.78 191 | 83.59 19 | 71.35 177 | 89.97 106 |
|
| FA-MVS(test-final) | | | 69.00 186 | 66.60 205 | 76.19 124 | 83.48 104 | 47.96 259 | 74.73 304 | 82.07 184 | 57.27 237 | 62.18 190 | 78.47 265 | 36.09 243 | 92.89 34 | 53.76 240 | 71.32 178 | 87.73 162 |
|
| OPM-MVS | | | 70.75 154 | 69.58 153 | 74.26 180 | 75.55 276 | 51.34 165 | 86.05 102 | 83.29 166 | 61.94 143 | 62.95 182 | 85.77 171 | 34.15 264 | 88.44 164 | 65.44 143 | 71.07 179 | 82.99 253 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| 114514_t | | | 69.87 170 | 67.88 178 | 75.85 133 | 88.38 29 | 52.35 142 | 86.94 85 | 83.68 156 | 53.70 281 | 55.68 280 | 85.60 173 | 30.07 300 | 91.20 76 | 55.84 227 | 71.02 180 | 83.99 231 |
|
| sss | | | 70.49 157 | 70.13 146 | 71.58 249 | 81.59 162 | 39.02 348 | 80.78 255 | 84.71 133 | 59.34 190 | 66.61 128 | 88.09 135 | 37.17 223 | 85.52 255 | 61.82 167 | 71.02 180 | 90.20 99 |
|
| ET-MVSNet_ETH3D | | | 75.23 78 | 74.08 82 | 78.67 64 | 84.52 83 | 55.59 51 | 88.92 44 | 89.21 27 | 68.06 42 | 53.13 303 | 90.22 89 | 49.71 69 | 87.62 199 | 72.12 97 | 70.82 182 | 92.82 25 |
|
| WB-MVSnew | | | 69.36 181 | 68.24 172 | 72.72 217 | 79.26 210 | 49.40 210 | 85.72 112 | 88.85 36 | 61.33 153 | 64.59 157 | 82.38 223 | 34.57 260 | 87.53 202 | 46.82 288 | 70.63 183 | 81.22 283 |
|
| cascas | | | 69.01 185 | 66.13 214 | 77.66 87 | 79.36 206 | 55.41 58 | 86.99 83 | 83.75 155 | 56.69 249 | 58.92 231 | 81.35 239 | 24.31 338 | 92.10 58 | 53.23 241 | 70.61 184 | 85.46 209 |
|
| GeoE | | | 69.96 168 | 67.88 178 | 76.22 121 | 81.11 175 | 51.71 156 | 84.15 162 | 76.74 293 | 59.83 179 | 60.91 201 | 84.38 185 | 41.56 167 | 88.10 179 | 51.67 255 | 70.57 185 | 88.84 133 |
|
| LCM-MVSNet-Re | | | 58.82 300 | 56.54 299 | 65.68 315 | 79.31 209 | 29.09 391 | 61.39 373 | 45.79 391 | 60.73 169 | 37.65 378 | 72.47 332 | 31.42 291 | 81.08 300 | 49.66 266 | 70.41 186 | 86.87 178 |
|
| baseline2 | | | 75.15 80 | 74.54 78 | 76.98 107 | 81.67 158 | 51.74 155 | 83.84 173 | 91.94 3 | 69.97 27 | 58.98 228 | 86.02 168 | 59.73 9 | 91.73 64 | 68.37 117 | 70.40 187 | 87.48 167 |
|
| AdaColmap |  | | 67.86 207 | 65.48 230 | 75.00 164 | 88.15 36 | 54.99 74 | 86.10 101 | 76.63 296 | 49.30 312 | 57.80 250 | 86.65 163 | 29.39 303 | 88.94 146 | 45.10 297 | 70.21 188 | 81.06 284 |
|
| CPTT-MVS | | | 67.15 227 | 65.84 222 | 71.07 257 | 80.96 178 | 50.32 187 | 81.94 224 | 74.10 315 | 46.18 337 | 57.91 248 | 87.64 147 | 29.57 301 | 81.31 298 | 64.10 151 | 70.18 189 | 81.56 270 |
|
| thisisatest0515 | | | 73.64 103 | 72.20 107 | 77.97 82 | 81.63 159 | 53.01 129 | 86.69 91 | 88.81 38 | 62.53 133 | 64.06 165 | 85.65 172 | 52.15 47 | 92.50 46 | 58.43 195 | 69.84 190 | 88.39 147 |
|
| PatchmatchNet |  | | 67.07 231 | 63.63 251 | 77.40 93 | 83.10 115 | 58.03 11 | 72.11 329 | 77.77 273 | 58.85 205 | 59.37 221 | 70.83 344 | 37.84 203 | 84.93 268 | 42.96 308 | 69.83 191 | 89.26 120 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvsmconf0.01_n | | | 71.97 130 | 70.95 129 | 75.04 162 | 66.21 357 | 47.87 260 | 80.35 261 | 70.08 349 | 65.85 78 | 72.69 70 | 91.68 56 | 39.99 186 | 87.67 195 | 82.03 28 | 69.66 192 | 89.58 114 |
|
| EPP-MVSNet | | | 71.14 143 | 70.07 147 | 74.33 177 | 79.18 212 | 46.52 278 | 83.81 174 | 86.49 84 | 56.32 256 | 57.95 247 | 84.90 183 | 54.23 36 | 89.14 134 | 58.14 202 | 69.65 193 | 87.33 171 |
|
| EPNet_dtu | | | 66.25 244 | 66.71 201 | 64.87 323 | 78.66 225 | 34.12 367 | 82.80 203 | 75.51 304 | 61.75 145 | 64.47 162 | 86.90 157 | 37.06 226 | 72.46 366 | 43.65 305 | 69.63 194 | 88.02 156 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MIMVSNet | | | 63.12 266 | 60.29 276 | 71.61 246 | 75.92 272 | 46.65 276 | 65.15 355 | 81.94 186 | 59.14 199 | 54.65 289 | 69.47 351 | 25.74 326 | 80.63 307 | 41.03 314 | 69.56 195 | 87.55 166 |
|
| EI-MVSNet-Vis-set | | | 73.19 109 | 72.60 98 | 74.99 165 | 82.56 138 | 49.80 199 | 82.55 210 | 89.00 30 | 66.17 70 | 65.89 138 | 88.98 114 | 43.83 130 | 92.29 51 | 65.38 145 | 69.01 196 | 82.87 256 |
|
| FIs | | | 70.00 166 | 70.24 145 | 69.30 281 | 77.93 238 | 38.55 351 | 83.99 168 | 87.72 63 | 66.86 59 | 57.66 254 | 84.17 188 | 52.28 45 | 85.31 259 | 52.72 251 | 68.80 197 | 84.02 229 |
|
| CostFormer | | | 73.89 96 | 72.30 105 | 78.66 65 | 82.36 141 | 56.58 33 | 75.56 297 | 85.30 111 | 66.06 74 | 70.50 103 | 76.88 287 | 57.02 20 | 89.06 136 | 68.27 119 | 68.74 198 | 90.33 93 |
|
| HyFIR lowres test | | | 69.94 169 | 67.58 185 | 77.04 102 | 77.11 253 | 57.29 22 | 81.49 243 | 79.11 248 | 58.27 214 | 58.86 233 | 80.41 246 | 42.33 153 | 86.96 216 | 61.91 165 | 68.68 199 | 86.87 178 |
|
| 1112_ss | | | 70.05 164 | 69.37 156 | 72.10 232 | 80.77 186 | 42.78 325 | 85.12 132 | 76.75 291 | 59.69 182 | 61.19 200 | 92.12 42 | 47.48 83 | 83.84 278 | 53.04 244 | 68.21 200 | 89.66 112 |
|
| ab-mvs | | | 70.65 155 | 69.11 161 | 75.29 155 | 80.87 182 | 46.23 286 | 73.48 314 | 85.24 116 | 59.99 177 | 66.65 126 | 80.94 242 | 43.13 146 | 88.69 153 | 63.58 154 | 68.07 201 | 90.95 80 |
|
| tpm2 | | | 70.82 152 | 68.44 168 | 77.98 81 | 80.78 185 | 56.11 44 | 74.21 309 | 81.28 201 | 60.24 175 | 68.04 117 | 75.27 305 | 52.26 46 | 88.50 163 | 55.82 228 | 68.03 202 | 89.33 119 |
|
| EI-MVSNet-UG-set | | | 72.37 121 | 71.73 116 | 74.29 179 | 81.60 161 | 49.29 213 | 81.85 227 | 88.64 43 | 65.29 89 | 65.05 148 | 88.29 132 | 43.18 143 | 91.83 62 | 63.74 153 | 67.97 203 | 81.75 267 |
|
| thres200 | | | 68.71 193 | 67.27 194 | 73.02 210 | 84.73 78 | 46.76 275 | 85.03 135 | 87.73 62 | 62.34 137 | 59.87 210 | 83.45 200 | 43.15 144 | 88.32 171 | 31.25 356 | 67.91 204 | 83.98 233 |
|
| tpmrst | | | 71.04 148 | 69.77 150 | 74.86 167 | 83.19 114 | 55.86 50 | 75.64 296 | 78.73 256 | 67.88 44 | 64.99 151 | 73.73 317 | 49.96 67 | 79.56 323 | 65.92 134 | 67.85 205 | 89.14 126 |
|
| test_vis1_n_1920 | | | 68.59 196 | 68.31 170 | 69.44 280 | 69.16 343 | 41.51 336 | 84.63 151 | 68.58 358 | 58.80 206 | 73.26 63 | 88.37 127 | 25.30 329 | 80.60 308 | 79.10 42 | 67.55 206 | 86.23 193 |
|
| Anonymous20240529 | | | 69.71 172 | 67.28 193 | 77.00 105 | 83.78 99 | 50.36 185 | 88.87 46 | 85.10 122 | 47.22 327 | 64.03 166 | 83.37 202 | 27.93 310 | 92.10 58 | 57.78 211 | 67.44 207 | 88.53 143 |
|
| EG-PatchMatch MVS | | | 62.40 276 | 59.59 280 | 70.81 261 | 73.29 301 | 49.05 216 | 85.81 105 | 84.78 130 | 51.85 297 | 44.19 349 | 73.48 323 | 15.52 381 | 89.85 113 | 40.16 316 | 67.24 208 | 73.54 359 |
|
| OMC-MVS | | | 65.97 248 | 65.06 239 | 68.71 290 | 72.97 307 | 42.58 329 | 78.61 280 | 75.35 307 | 54.72 273 | 59.31 223 | 86.25 167 | 33.30 272 | 77.88 336 | 57.99 203 | 67.05 209 | 85.66 205 |
|
| TAPA-MVS | | 56.12 14 | 61.82 279 | 60.18 278 | 66.71 309 | 78.48 230 | 37.97 355 | 75.19 302 | 76.41 299 | 46.82 330 | 57.04 265 | 86.52 165 | 27.67 314 | 77.03 342 | 26.50 376 | 67.02 210 | 85.14 212 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| dmvs_re | | | 67.61 213 | 66.00 217 | 72.42 225 | 81.86 150 | 43.45 315 | 64.67 358 | 80.00 223 | 69.56 32 | 60.07 209 | 85.00 181 | 34.71 258 | 87.63 197 | 51.48 256 | 66.68 211 | 86.17 194 |
|
| FE-MVS | | | 64.15 255 | 60.43 275 | 75.30 154 | 80.85 183 | 49.86 197 | 68.28 347 | 78.37 264 | 50.26 308 | 59.31 223 | 73.79 316 | 26.19 323 | 91.92 61 | 40.19 315 | 66.67 212 | 84.12 226 |
|
| fmvsm_s_conf0.5_n | | | 74.48 84 | 74.12 81 | 75.56 141 | 76.96 254 | 47.85 261 | 85.32 123 | 69.80 352 | 64.16 100 | 78.74 28 | 93.48 16 | 45.51 108 | 89.29 129 | 86.48 8 | 66.62 213 | 89.55 115 |
|
| CMPMVS |  | 40.41 21 | 55.34 322 | 52.64 325 | 63.46 329 | 60.88 382 | 43.84 311 | 61.58 372 | 71.06 343 | 30.43 388 | 36.33 380 | 74.63 309 | 24.14 339 | 75.44 351 | 48.05 279 | 66.62 213 | 71.12 372 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FC-MVSNet-test | | | 67.49 217 | 67.91 176 | 66.21 313 | 76.06 267 | 33.06 372 | 80.82 254 | 87.18 70 | 64.44 95 | 54.81 286 | 82.87 207 | 50.40 62 | 82.60 290 | 48.05 279 | 66.55 215 | 82.98 254 |
|
| GA-MVS | | | 69.04 184 | 66.70 202 | 76.06 128 | 75.11 279 | 52.36 141 | 83.12 196 | 80.23 220 | 63.32 120 | 60.65 205 | 79.22 258 | 30.98 294 | 88.37 166 | 61.25 170 | 66.41 216 | 87.46 168 |
|
| thres100view900 | | | 66.87 235 | 65.42 234 | 71.24 253 | 83.29 111 | 43.15 321 | 81.67 234 | 87.78 59 | 59.04 201 | 55.92 278 | 82.18 229 | 43.73 133 | 87.80 188 | 28.80 363 | 66.36 217 | 82.78 258 |
|
| tfpn200view9 | | | 67.57 215 | 66.13 214 | 71.89 245 | 84.05 93 | 45.07 297 | 83.40 187 | 87.71 64 | 60.79 167 | 57.79 251 | 82.76 210 | 43.53 138 | 87.80 188 | 28.80 363 | 66.36 217 | 82.78 258 |
|
| thres400 | | | 67.40 222 | 66.13 214 | 71.19 255 | 84.05 93 | 45.07 297 | 83.40 187 | 87.71 64 | 60.79 167 | 57.79 251 | 82.76 210 | 43.53 138 | 87.80 188 | 28.80 363 | 66.36 217 | 80.71 289 |
|
| fmvsm_s_conf0.1_n | | | 73.80 97 | 73.26 90 | 75.43 147 | 73.28 302 | 47.80 262 | 84.57 153 | 69.43 354 | 63.34 119 | 78.40 31 | 93.29 22 | 44.73 124 | 89.22 132 | 85.99 9 | 66.28 220 | 89.26 120 |
|
| Test_1112_low_res | | | 67.18 226 | 66.23 212 | 70.02 275 | 78.75 221 | 41.02 341 | 83.43 185 | 73.69 321 | 57.29 236 | 58.45 243 | 82.39 222 | 45.30 110 | 80.88 302 | 50.50 261 | 66.26 221 | 88.16 150 |
|
| PVSNet_BlendedMVS | | | 73.42 105 | 73.30 89 | 73.76 196 | 85.91 56 | 51.83 153 | 86.18 99 | 84.24 146 | 65.40 84 | 69.09 109 | 80.86 243 | 46.70 92 | 88.13 177 | 75.43 70 | 65.92 222 | 81.33 279 |
|
| SDMVSNet | | | 71.89 131 | 70.62 133 | 75.70 137 | 81.70 155 | 51.61 157 | 73.89 310 | 88.72 41 | 66.58 61 | 61.64 196 | 82.38 223 | 37.63 209 | 89.48 123 | 77.44 59 | 65.60 223 | 86.01 195 |
|
| sd_testset | | | 67.79 210 | 65.95 219 | 73.32 205 | 81.70 155 | 46.33 283 | 68.99 343 | 80.30 219 | 66.58 61 | 61.64 196 | 82.38 223 | 30.45 297 | 87.63 197 | 55.86 226 | 65.60 223 | 86.01 195 |
|
| XVG-OURS | | | 61.88 278 | 59.34 283 | 69.49 278 | 65.37 362 | 46.27 284 | 64.80 357 | 73.49 324 | 47.04 329 | 57.41 263 | 82.85 208 | 25.15 331 | 78.18 328 | 53.00 245 | 64.98 225 | 84.01 230 |
|
| thres600view7 | | | 66.46 241 | 65.12 238 | 70.47 264 | 83.41 105 | 43.80 312 | 82.15 219 | 87.78 59 | 59.37 189 | 56.02 277 | 82.21 228 | 43.73 133 | 86.90 219 | 26.51 375 | 64.94 226 | 80.71 289 |
|
| LPG-MVS_test | | | 66.44 242 | 64.58 243 | 72.02 235 | 74.42 290 | 48.60 231 | 83.07 198 | 80.64 212 | 54.69 274 | 53.75 299 | 83.83 192 | 25.73 327 | 86.98 214 | 60.33 184 | 64.71 227 | 80.48 291 |
|
| LGP-MVS_train | | | | | 72.02 235 | 74.42 290 | 48.60 231 | | 80.64 212 | 54.69 274 | 53.75 299 | 83.83 192 | 25.73 327 | 86.98 214 | 60.33 184 | 64.71 227 | 80.48 291 |
|
| MVSTER | | | 73.25 108 | 72.33 103 | 76.01 130 | 85.54 64 | 53.76 105 | 83.52 178 | 87.16 71 | 67.06 56 | 63.88 170 | 81.66 236 | 52.77 42 | 90.44 96 | 64.66 150 | 64.69 229 | 83.84 238 |
|
| EI-MVSNet | | | 69.70 175 | 68.70 164 | 72.68 218 | 75.00 282 | 48.90 223 | 79.54 271 | 87.16 71 | 61.05 160 | 63.88 170 | 83.74 194 | 45.87 101 | 90.44 96 | 57.42 215 | 64.68 230 | 78.70 307 |
|
| tpm cat1 | | | 66.28 243 | 62.78 253 | 76.77 115 | 81.40 170 | 57.14 24 | 70.03 338 | 77.19 283 | 53.00 287 | 58.76 236 | 70.73 347 | 46.17 96 | 86.73 223 | 43.27 306 | 64.46 231 | 86.44 189 |
|
| test_cas_vis1_n_1920 | | | 67.10 228 | 66.60 205 | 68.59 293 | 65.17 365 | 43.23 320 | 83.23 193 | 69.84 351 | 55.34 266 | 70.67 99 | 87.71 145 | 24.70 336 | 76.66 347 | 78.57 49 | 64.20 232 | 85.89 201 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 102 | 73.15 91 | 75.29 155 | 75.45 277 | 48.05 254 | 83.88 172 | 68.84 357 | 63.43 118 | 78.60 29 | 93.37 20 | 45.32 109 | 88.92 147 | 85.39 11 | 64.04 233 | 88.89 131 |
|
| XVG-OURS-SEG-HR | | | 62.02 277 | 59.54 281 | 69.46 279 | 65.30 363 | 45.88 288 | 65.06 356 | 73.57 323 | 46.45 333 | 57.42 262 | 83.35 203 | 26.95 318 | 78.09 330 | 53.77 239 | 64.03 234 | 84.42 223 |
|
| LS3D | | | 56.40 317 | 53.82 317 | 64.12 325 | 81.12 174 | 45.69 293 | 73.42 315 | 66.14 364 | 35.30 380 | 43.24 356 | 79.88 250 | 22.18 352 | 79.62 322 | 19.10 396 | 64.00 235 | 67.05 378 |
|
| ACMP | | 61.11 9 | 66.24 245 | 64.33 246 | 72.00 237 | 74.89 284 | 49.12 214 | 83.18 195 | 79.83 229 | 55.41 265 | 52.29 308 | 82.68 214 | 25.83 325 | 86.10 243 | 60.89 173 | 63.94 236 | 80.78 287 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| tpm | | | 68.36 198 | 67.48 190 | 70.97 259 | 79.93 201 | 51.34 165 | 76.58 293 | 78.75 255 | 67.73 47 | 63.54 177 | 74.86 307 | 48.33 74 | 72.36 367 | 53.93 238 | 63.71 237 | 89.21 123 |
|
| XXY-MVS | | | 70.18 160 | 69.28 160 | 72.89 215 | 77.64 240 | 42.88 324 | 85.06 133 | 87.50 68 | 62.58 132 | 62.66 186 | 82.34 227 | 43.64 137 | 89.83 114 | 58.42 197 | 63.70 238 | 85.96 199 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 114 | 72.05 113 | 75.12 161 | 70.95 331 | 47.97 257 | 82.72 204 | 68.43 359 | 62.52 134 | 78.17 32 | 93.08 28 | 44.21 127 | 88.86 148 | 84.82 13 | 63.54 239 | 88.54 142 |
|
| GBi-Net | | | 67.09 229 | 65.47 231 | 71.96 238 | 82.71 133 | 46.36 280 | 83.52 178 | 83.31 163 | 58.55 211 | 57.58 256 | 76.23 296 | 36.72 235 | 86.20 237 | 47.25 284 | 63.40 240 | 83.32 244 |
|
| test1 | | | 67.09 229 | 65.47 231 | 71.96 238 | 82.71 133 | 46.36 280 | 83.52 178 | 83.31 163 | 58.55 211 | 57.58 256 | 76.23 296 | 36.72 235 | 86.20 237 | 47.25 284 | 63.40 240 | 83.32 244 |
|
| FMVSNet3 | | | 68.84 188 | 67.40 191 | 73.19 209 | 85.05 73 | 48.53 234 | 85.71 113 | 85.36 107 | 60.90 166 | 57.58 256 | 79.15 259 | 42.16 156 | 86.77 221 | 47.25 284 | 63.40 240 | 84.27 225 |
|
| VPA-MVSNet | | | 71.12 144 | 70.66 132 | 72.49 223 | 78.75 221 | 44.43 304 | 87.64 65 | 90.02 18 | 63.97 105 | 65.02 149 | 81.58 238 | 42.14 157 | 87.42 204 | 63.42 155 | 63.38 243 | 85.63 207 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 240 | 64.10 249 | 73.84 193 | 72.41 314 | 52.30 144 | 84.73 146 | 75.66 303 | 59.51 185 | 56.34 275 | 79.11 260 | 28.11 308 | 85.85 253 | 57.74 212 | 63.29 244 | 83.35 243 |
|
| CVMVSNet | | | 60.85 284 | 60.44 274 | 62.07 336 | 75.00 282 | 32.73 374 | 79.54 271 | 73.49 324 | 36.98 372 | 56.28 276 | 83.74 194 | 29.28 304 | 69.53 375 | 46.48 290 | 63.23 245 | 83.94 236 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 246 | |
|
| ACMM | | 58.35 12 | 64.35 254 | 62.01 259 | 71.38 251 | 74.21 293 | 48.51 235 | 82.25 218 | 79.66 233 | 47.61 325 | 54.54 290 | 80.11 248 | 25.26 330 | 86.00 247 | 51.26 257 | 63.16 247 | 79.64 300 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CHOSEN 280x420 | | | 57.53 311 | 56.38 303 | 60.97 346 | 74.01 295 | 48.10 252 | 46.30 394 | 54.31 384 | 48.18 322 | 50.88 319 | 77.43 277 | 38.37 200 | 59.16 390 | 54.83 231 | 63.14 248 | 75.66 340 |
|
| PS-MVSNAJss | | | 68.78 192 | 67.17 195 | 73.62 202 | 73.01 306 | 48.33 244 | 84.95 140 | 84.81 129 | 59.30 193 | 58.91 232 | 79.84 252 | 37.77 204 | 88.86 148 | 62.83 158 | 63.12 249 | 83.67 241 |
|
| MDTV_nov1_ep13 | | | | 61.56 262 | | 81.68 157 | 55.12 69 | 72.41 323 | 78.18 267 | 59.19 195 | 58.85 234 | 69.29 353 | 34.69 259 | 86.16 240 | 36.76 330 | 62.96 250 | |
|
| FMVSNet2 | | | 67.57 215 | 65.79 223 | 72.90 213 | 82.71 133 | 47.97 257 | 85.15 128 | 84.93 125 | 58.55 211 | 56.71 270 | 78.26 266 | 36.72 235 | 86.67 224 | 46.15 293 | 62.94 251 | 84.07 228 |
|
| WBMVS | | | 73.93 94 | 73.39 87 | 75.55 142 | 87.82 39 | 55.21 65 | 89.37 37 | 87.29 69 | 67.27 53 | 63.70 172 | 80.30 247 | 60.32 6 | 86.47 231 | 61.58 168 | 62.85 252 | 84.97 215 |
|
| D2MVS | | | 63.49 262 | 61.39 264 | 69.77 276 | 69.29 342 | 48.93 222 | 78.89 279 | 77.71 275 | 60.64 171 | 49.70 323 | 72.10 339 | 27.08 317 | 83.48 284 | 54.48 234 | 62.65 253 | 76.90 328 |
|
| MVS-HIRNet | | | 49.01 347 | 44.71 351 | 61.92 340 | 76.06 267 | 46.61 277 | 63.23 364 | 54.90 383 | 24.77 396 | 33.56 388 | 36.60 405 | 21.28 357 | 75.88 350 | 29.49 360 | 62.54 254 | 63.26 389 |
|
| IB-MVS | | 68.87 2 | 74.01 92 | 72.03 115 | 79.94 38 | 83.04 119 | 55.50 53 | 90.24 25 | 88.65 42 | 67.14 55 | 61.38 198 | 81.74 235 | 53.21 40 | 94.28 21 | 60.45 182 | 62.41 255 | 90.03 105 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| nrg030 | | | 72.27 126 | 71.56 118 | 74.42 174 | 75.93 271 | 50.60 175 | 86.97 84 | 83.21 167 | 62.75 129 | 67.15 123 | 84.38 185 | 50.07 63 | 86.66 225 | 71.19 100 | 62.37 256 | 85.99 197 |
|
| thisisatest0530 | | | 70.47 159 | 68.56 165 | 76.20 123 | 79.78 202 | 51.52 161 | 83.49 184 | 88.58 48 | 57.62 230 | 58.60 237 | 82.79 209 | 51.03 54 | 91.48 68 | 52.84 246 | 62.36 257 | 85.59 208 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 293 | 56.00 305 | 68.83 286 | 71.13 329 | 44.30 305 | 83.64 177 | 75.02 309 | 46.42 334 | 46.48 345 | 73.03 326 | 18.69 366 | 88.14 176 | 27.74 371 | 61.80 258 | 74.05 355 |
|
| dp | | | 64.41 253 | 61.58 261 | 72.90 213 | 82.40 139 | 54.09 100 | 72.53 321 | 76.59 297 | 60.39 173 | 55.68 280 | 70.39 348 | 35.18 253 | 76.90 345 | 39.34 318 | 61.71 259 | 87.73 162 |
|
| UniMVSNet_ETH3D | | | 62.51 272 | 60.49 273 | 68.57 294 | 68.30 351 | 40.88 343 | 73.89 310 | 79.93 227 | 51.81 298 | 54.77 287 | 79.61 253 | 24.80 334 | 81.10 299 | 49.93 264 | 61.35 260 | 83.73 239 |
|
| FMVSNet1 | | | 64.57 252 | 62.11 258 | 71.96 238 | 77.32 246 | 46.36 280 | 83.52 178 | 83.31 163 | 52.43 292 | 54.42 291 | 76.23 296 | 27.80 312 | 86.20 237 | 42.59 311 | 61.34 261 | 83.32 244 |
|
| VPNet | | | 72.07 128 | 71.42 122 | 74.04 185 | 78.64 226 | 47.17 272 | 89.91 31 | 87.97 56 | 72.56 11 | 64.66 153 | 85.04 180 | 41.83 164 | 88.33 170 | 61.17 172 | 60.97 262 | 86.62 186 |
|
| Effi-MVS+-dtu | | | 66.24 245 | 64.96 241 | 70.08 272 | 75.17 278 | 49.64 200 | 82.01 222 | 74.48 313 | 62.15 138 | 57.83 249 | 76.08 300 | 30.59 296 | 83.79 279 | 65.40 144 | 60.93 263 | 76.81 329 |
|
| PLC |  | 52.38 18 | 60.89 283 | 58.97 287 | 66.68 311 | 81.77 152 | 45.70 292 | 78.96 278 | 74.04 318 | 43.66 353 | 47.63 336 | 83.19 206 | 23.52 343 | 77.78 339 | 37.47 321 | 60.46 264 | 76.55 335 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Anonymous20231211 | | | 66.08 247 | 63.67 250 | 73.31 206 | 83.07 118 | 48.75 228 | 86.01 104 | 84.67 135 | 45.27 341 | 56.54 272 | 76.67 290 | 28.06 309 | 88.95 144 | 52.78 248 | 59.95 265 | 82.23 261 |
|
| CR-MVSNet | | | 62.47 274 | 59.04 286 | 72.77 216 | 73.97 297 | 56.57 34 | 60.52 374 | 71.72 336 | 60.04 176 | 57.49 259 | 65.86 363 | 38.94 194 | 80.31 312 | 42.86 309 | 59.93 266 | 81.42 274 |
|
| RPMNet | | | 59.29 291 | 54.25 315 | 74.42 174 | 73.97 297 | 56.57 34 | 60.52 374 | 76.98 287 | 35.72 376 | 57.49 259 | 58.87 386 | 37.73 207 | 85.26 261 | 27.01 374 | 59.93 266 | 81.42 274 |
|
| dmvs_testset | | | 57.65 309 | 58.21 290 | 55.97 361 | 74.62 287 | 9.82 422 | 63.75 361 | 63.34 372 | 67.23 54 | 48.89 328 | 83.68 198 | 39.12 193 | 76.14 348 | 23.43 384 | 59.80 268 | 81.96 264 |
|
| v1144 | | | 68.81 190 | 66.82 198 | 74.80 168 | 72.34 315 | 53.46 110 | 84.68 148 | 81.77 193 | 64.25 98 | 60.28 207 | 77.91 268 | 40.23 181 | 88.95 144 | 60.37 183 | 59.52 269 | 81.97 263 |
|
| v2v482 | | | 69.55 178 | 67.64 184 | 75.26 159 | 72.32 316 | 53.83 102 | 84.93 141 | 81.94 186 | 65.37 86 | 60.80 203 | 79.25 257 | 41.62 165 | 88.98 143 | 63.03 157 | 59.51 270 | 82.98 254 |
|
| CNLPA | | | 60.59 285 | 58.44 289 | 67.05 306 | 79.21 211 | 47.26 270 | 79.75 270 | 64.34 370 | 42.46 359 | 51.90 312 | 83.94 190 | 27.79 313 | 75.41 352 | 37.12 324 | 59.49 271 | 78.47 311 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 272 | |
|
| tt0805 | | | 63.39 263 | 61.31 266 | 69.64 277 | 69.36 341 | 38.87 349 | 78.00 284 | 85.48 101 | 48.82 316 | 55.66 282 | 81.66 236 | 24.38 337 | 86.37 235 | 49.04 272 | 59.36 273 | 83.68 240 |
|
| PatchMatch-RL | | | 56.66 313 | 53.75 318 | 65.37 320 | 77.91 239 | 45.28 295 | 69.78 340 | 60.38 376 | 41.35 360 | 47.57 337 | 73.73 317 | 16.83 375 | 76.91 343 | 36.99 327 | 59.21 274 | 73.92 356 |
|
| test0.0.03 1 | | | 62.54 271 | 62.44 255 | 62.86 335 | 72.28 318 | 29.51 388 | 82.93 201 | 78.78 253 | 59.18 197 | 53.07 304 | 82.41 221 | 36.91 230 | 77.39 340 | 37.45 322 | 58.96 275 | 81.66 269 |
|
| v1192 | | | 67.96 206 | 65.74 225 | 74.63 169 | 71.79 319 | 53.43 115 | 84.06 166 | 80.99 208 | 63.19 123 | 59.56 217 | 77.46 275 | 37.50 215 | 88.65 154 | 58.20 201 | 58.93 276 | 81.79 266 |
|
| cl22 | | | 68.85 187 | 67.69 183 | 72.35 227 | 78.07 235 | 49.98 194 | 82.45 215 | 78.48 262 | 62.50 135 | 58.46 242 | 77.95 267 | 49.99 65 | 85.17 263 | 62.55 159 | 58.72 277 | 81.90 265 |
|
| miper_ehance_all_eth | | | 68.70 195 | 67.58 185 | 72.08 233 | 76.91 255 | 49.48 209 | 82.47 214 | 78.45 263 | 62.68 131 | 58.28 246 | 77.88 269 | 50.90 55 | 85.01 267 | 61.91 165 | 58.72 277 | 81.75 267 |
|
| miper_enhance_ethall | | | 69.77 171 | 68.90 163 | 72.38 226 | 78.93 218 | 49.91 195 | 83.29 191 | 78.85 250 | 64.90 91 | 59.37 221 | 79.46 254 | 52.77 42 | 85.16 264 | 63.78 152 | 58.72 277 | 82.08 262 |
|
| V42 | | | 67.66 212 | 65.60 229 | 73.86 192 | 70.69 334 | 53.63 107 | 81.50 241 | 78.61 259 | 63.85 107 | 59.49 220 | 77.49 274 | 37.98 201 | 87.65 196 | 62.33 160 | 58.43 280 | 80.29 294 |
|
| Syy-MVS | | | 61.51 280 | 61.35 265 | 62.00 338 | 81.73 153 | 30.09 383 | 80.97 250 | 81.02 204 | 60.93 164 | 55.06 283 | 82.64 215 | 35.09 254 | 80.81 304 | 16.40 402 | 58.32 281 | 75.10 347 |
|
| myMVS_eth3d | | | 63.52 261 | 63.56 252 | 63.40 330 | 81.73 153 | 34.28 364 | 80.97 250 | 81.02 204 | 60.93 164 | 55.06 283 | 82.64 215 | 48.00 80 | 80.81 304 | 23.42 385 | 58.32 281 | 75.10 347 |
|
| tpmvs | | | 62.45 275 | 59.42 282 | 71.53 250 | 83.93 95 | 54.32 92 | 70.03 338 | 77.61 276 | 51.91 295 | 53.48 302 | 68.29 357 | 37.91 202 | 86.66 225 | 33.36 346 | 58.27 283 | 73.62 358 |
|
| XVG-ACMP-BASELINE | | | 56.03 319 | 52.85 323 | 65.58 316 | 61.91 379 | 40.95 342 | 63.36 362 | 72.43 330 | 45.20 342 | 46.02 346 | 74.09 312 | 9.20 394 | 78.12 329 | 45.13 296 | 58.27 283 | 77.66 323 |
|
| pmmvs5 | | | 62.80 270 | 61.18 267 | 67.66 299 | 69.53 340 | 42.37 332 | 82.65 206 | 75.19 308 | 54.30 279 | 52.03 311 | 78.51 264 | 31.64 290 | 80.67 306 | 48.60 275 | 58.15 285 | 79.95 298 |
|
| v1240 | | | 66.99 232 | 64.68 242 | 73.93 189 | 71.38 327 | 52.66 135 | 83.39 189 | 79.98 224 | 61.97 142 | 58.44 244 | 77.11 281 | 35.25 251 | 87.81 186 | 56.46 223 | 58.15 285 | 81.33 279 |
|
| v1921920 | | | 67.45 218 | 65.23 237 | 74.10 184 | 71.51 324 | 52.90 132 | 83.75 176 | 80.44 216 | 62.48 136 | 59.12 227 | 77.13 280 | 36.98 228 | 87.90 184 | 57.53 213 | 58.14 287 | 81.49 271 |
|
| jajsoiax | | | 63.21 265 | 60.84 270 | 70.32 268 | 68.33 350 | 44.45 303 | 81.23 245 | 81.05 203 | 53.37 285 | 50.96 318 | 77.81 271 | 17.49 372 | 85.49 257 | 59.31 187 | 58.05 288 | 81.02 285 |
|
| tttt0517 | | | 68.33 200 | 66.29 210 | 74.46 172 | 78.08 234 | 49.06 215 | 80.88 253 | 89.08 29 | 54.40 278 | 54.75 288 | 80.77 244 | 51.31 51 | 90.33 100 | 49.35 269 | 58.01 289 | 83.99 231 |
|
| Anonymous20231206 | | | 59.08 296 | 57.59 293 | 63.55 328 | 68.77 346 | 32.14 377 | 80.26 263 | 79.78 230 | 50.00 309 | 49.39 325 | 72.39 334 | 26.64 320 | 78.36 327 | 33.12 349 | 57.94 290 | 80.14 296 |
|
| mvs_tets | | | 62.96 268 | 60.55 272 | 70.19 269 | 68.22 353 | 44.24 308 | 80.90 252 | 80.74 211 | 52.99 288 | 50.82 320 | 77.56 272 | 16.74 376 | 85.44 258 | 59.04 190 | 57.94 290 | 80.89 286 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 334 | 49.74 338 | 61.69 341 | 69.78 339 | 34.99 361 | 44.52 395 | 67.60 362 | 43.11 356 | 43.79 351 | 74.03 313 | 18.54 368 | 81.45 297 | 28.39 368 | 57.94 290 | 68.62 376 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v144192 | | | 67.86 207 | 65.76 224 | 74.16 182 | 71.68 321 | 53.09 126 | 84.14 163 | 80.83 210 | 62.85 128 | 59.21 226 | 77.28 279 | 39.30 191 | 88.00 182 | 58.67 193 | 57.88 293 | 81.40 276 |
|
| IterMVS-LS | | | 66.63 238 | 65.36 235 | 70.42 266 | 75.10 280 | 48.90 223 | 81.45 244 | 76.69 295 | 61.05 160 | 55.71 279 | 77.10 282 | 45.86 102 | 83.65 282 | 57.44 214 | 57.88 293 | 78.70 307 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| h-mvs33 | | | 73.95 93 | 72.89 96 | 77.15 100 | 80.17 197 | 50.37 184 | 84.68 148 | 83.33 162 | 68.08 39 | 71.97 80 | 88.65 124 | 42.50 151 | 91.15 78 | 78.82 45 | 57.78 295 | 89.91 109 |
|
| ACMH | | 53.70 16 | 59.78 288 | 55.94 306 | 71.28 252 | 76.59 257 | 48.35 241 | 80.15 266 | 76.11 300 | 49.74 310 | 41.91 360 | 73.45 324 | 16.50 378 | 90.31 101 | 31.42 354 | 57.63 296 | 75.17 345 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MSDG | | | 59.44 290 | 55.14 310 | 72.32 229 | 74.69 285 | 50.71 172 | 74.39 308 | 73.58 322 | 44.44 348 | 43.40 354 | 77.52 273 | 19.45 362 | 90.87 87 | 31.31 355 | 57.49 297 | 75.38 342 |
|
| pmmvs4 | | | 63.34 264 | 61.07 269 | 70.16 270 | 70.14 336 | 50.53 177 | 79.97 268 | 71.41 341 | 55.08 268 | 54.12 295 | 78.58 263 | 32.79 277 | 82.09 294 | 50.33 262 | 57.22 298 | 77.86 320 |
|
| c3_l | | | 67.97 205 | 66.66 203 | 71.91 244 | 76.20 265 | 49.31 212 | 82.13 221 | 78.00 270 | 61.99 141 | 57.64 255 | 76.94 284 | 49.41 70 | 84.93 268 | 60.62 177 | 57.01 299 | 81.49 271 |
|
| UniMVSNet (Re) | | | 67.71 211 | 66.80 199 | 70.45 265 | 74.44 289 | 42.93 323 | 82.42 216 | 84.90 126 | 63.69 111 | 59.63 215 | 80.99 241 | 47.18 85 | 85.23 262 | 51.17 259 | 56.75 300 | 83.19 249 |
|
| SCA | | | 63.84 258 | 60.01 279 | 75.32 151 | 78.58 227 | 57.92 12 | 61.61 371 | 77.53 277 | 56.71 248 | 57.75 253 | 70.77 345 | 31.97 285 | 79.91 319 | 48.80 273 | 56.36 301 | 88.13 153 |
|
| v8 | | | 67.25 224 | 64.99 240 | 74.04 185 | 72.89 309 | 53.31 120 | 82.37 217 | 80.11 222 | 61.54 150 | 54.29 294 | 76.02 301 | 42.89 149 | 88.41 165 | 58.43 195 | 56.36 301 | 80.39 293 |
|
| cl____ | | | 67.43 219 | 65.93 220 | 71.95 241 | 76.33 260 | 48.02 255 | 82.58 207 | 79.12 247 | 61.30 155 | 56.72 269 | 76.92 285 | 46.12 97 | 86.44 233 | 57.98 204 | 56.31 303 | 81.38 278 |
|
| DIV-MVS_self_test | | | 67.43 219 | 65.93 220 | 71.94 242 | 76.33 260 | 48.01 256 | 82.57 208 | 79.11 248 | 61.31 154 | 56.73 268 | 76.92 285 | 46.09 98 | 86.43 234 | 57.98 204 | 56.31 303 | 81.39 277 |
|
| DP-MVS | | | 59.24 292 | 56.12 304 | 68.63 291 | 88.24 34 | 50.35 186 | 82.51 213 | 64.43 369 | 41.10 361 | 46.70 343 | 78.77 262 | 24.75 335 | 88.57 161 | 22.26 387 | 56.29 305 | 66.96 379 |
|
| NR-MVSNet | | | 67.25 224 | 65.99 218 | 71.04 258 | 73.27 303 | 43.91 310 | 85.32 123 | 84.75 132 | 66.05 75 | 53.65 301 | 82.11 230 | 45.05 113 | 85.97 250 | 47.55 281 | 56.18 306 | 83.24 247 |
|
| v10 | | | 66.61 239 | 64.20 248 | 73.83 194 | 72.59 312 | 53.37 116 | 81.88 226 | 79.91 228 | 61.11 158 | 54.09 296 | 75.60 303 | 40.06 185 | 88.26 175 | 56.47 222 | 56.10 307 | 79.86 299 |
|
| baseline1 | | | 72.51 120 | 72.12 111 | 73.69 199 | 85.05 73 | 44.46 302 | 83.51 182 | 86.13 93 | 71.61 16 | 64.64 154 | 87.97 140 | 55.00 32 | 89.48 123 | 59.07 189 | 56.05 308 | 87.13 175 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 189 | 68.29 171 | 70.40 267 | 75.71 274 | 42.59 327 | 84.23 160 | 86.78 77 | 66.31 67 | 58.51 238 | 82.45 220 | 51.57 49 | 84.64 272 | 53.11 242 | 55.96 309 | 83.96 235 |
|
| DU-MVS | | | 66.84 236 | 65.74 225 | 70.16 270 | 73.27 303 | 42.59 327 | 81.50 241 | 82.92 174 | 63.53 115 | 58.51 238 | 82.11 230 | 40.75 174 | 84.64 272 | 53.11 242 | 55.96 309 | 83.24 247 |
|
| v148 | | | 68.24 203 | 66.35 208 | 73.88 191 | 71.76 320 | 51.47 162 | 84.23 160 | 81.90 190 | 63.69 111 | 58.94 229 | 76.44 292 | 43.72 135 | 87.78 191 | 60.63 176 | 55.86 311 | 82.39 260 |
|
| test_djsdf | | | 63.84 258 | 61.56 262 | 70.70 262 | 68.78 345 | 44.69 301 | 81.63 235 | 81.44 197 | 50.28 305 | 52.27 309 | 76.26 295 | 26.72 319 | 86.11 241 | 60.83 174 | 55.84 312 | 81.29 282 |
|
| tfpnnormal | | | 61.47 281 | 59.09 285 | 68.62 292 | 76.29 263 | 41.69 333 | 81.14 247 | 85.16 119 | 54.48 276 | 51.32 314 | 73.63 321 | 32.32 281 | 86.89 220 | 21.78 389 | 55.71 313 | 77.29 326 |
|
| WR-MVS | | | 67.58 214 | 66.76 200 | 70.04 274 | 75.92 272 | 45.06 300 | 86.23 98 | 85.28 113 | 64.31 97 | 58.50 240 | 81.00 240 | 44.80 123 | 82.00 295 | 49.21 271 | 55.57 314 | 83.06 252 |
|
| test_fmvs1 | | | 53.60 332 | 52.54 327 | 56.78 357 | 58.07 385 | 30.26 381 | 68.95 344 | 42.19 397 | 32.46 383 | 63.59 175 | 82.56 219 | 11.55 386 | 60.81 384 | 58.25 200 | 55.27 315 | 79.28 301 |
|
| Baseline_NR-MVSNet | | | 65.49 251 | 64.27 247 | 69.13 282 | 74.37 292 | 41.65 334 | 83.39 189 | 78.85 250 | 59.56 184 | 59.62 216 | 76.88 287 | 40.75 174 | 87.44 203 | 49.99 263 | 55.05 316 | 78.28 316 |
|
| v7n | | | 62.50 273 | 59.27 284 | 72.20 231 | 67.25 356 | 49.83 198 | 77.87 286 | 80.12 221 | 52.50 291 | 48.80 329 | 73.07 325 | 32.10 283 | 87.90 184 | 46.83 287 | 54.92 317 | 78.86 305 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 234 | 65.61 228 | 70.93 260 | 73.45 299 | 43.38 317 | 83.02 200 | 84.25 144 | 65.31 88 | 58.33 245 | 81.90 234 | 39.92 188 | 85.52 255 | 49.43 268 | 54.89 318 | 83.89 237 |
|
| FMVSNet5 | | | 58.61 302 | 56.45 300 | 65.10 322 | 77.20 251 | 39.74 345 | 74.77 303 | 77.12 285 | 50.27 307 | 43.28 355 | 67.71 358 | 26.15 324 | 76.90 345 | 36.78 329 | 54.78 319 | 78.65 309 |
|
| ACMH+ | | 54.58 15 | 58.55 304 | 55.24 308 | 68.50 295 | 74.68 286 | 45.80 291 | 80.27 262 | 70.21 348 | 47.15 328 | 42.77 357 | 75.48 304 | 16.73 377 | 85.98 248 | 35.10 341 | 54.78 319 | 73.72 357 |
|
| test_fmvs1_n | | | 52.55 336 | 51.19 331 | 56.65 358 | 51.90 396 | 30.14 382 | 67.66 348 | 42.84 396 | 32.27 384 | 62.30 189 | 82.02 233 | 9.12 395 | 60.84 383 | 57.82 209 | 54.75 321 | 78.99 303 |
|
| eth_miper_zixun_eth | | | 66.98 233 | 65.28 236 | 72.06 234 | 75.61 275 | 50.40 181 | 81.00 249 | 76.97 290 | 62.00 140 | 56.99 266 | 76.97 283 | 44.84 120 | 85.58 254 | 58.75 192 | 54.42 322 | 80.21 295 |
|
| IterMVS | | | 63.77 260 | 61.67 260 | 70.08 272 | 72.68 311 | 51.24 168 | 80.44 259 | 75.51 304 | 60.51 172 | 51.41 313 | 73.70 320 | 32.08 284 | 78.91 324 | 54.30 235 | 54.35 323 | 80.08 297 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| anonymousdsp | | | 60.46 286 | 57.65 292 | 68.88 284 | 63.63 374 | 45.09 296 | 72.93 318 | 78.63 258 | 46.52 332 | 51.12 315 | 72.80 329 | 21.46 356 | 83.07 289 | 57.79 210 | 53.97 324 | 78.47 311 |
|
| MonoMVSNet | | | 66.80 237 | 64.41 245 | 73.96 188 | 76.21 264 | 48.07 253 | 76.56 294 | 78.26 266 | 64.34 96 | 54.32 293 | 74.02 314 | 37.21 222 | 86.36 236 | 64.85 149 | 53.96 325 | 87.45 169 |
|
| F-COLMAP | | | 55.96 321 | 53.65 319 | 62.87 334 | 72.76 310 | 42.77 326 | 74.70 306 | 70.37 347 | 40.03 362 | 41.11 366 | 79.36 255 | 17.77 371 | 73.70 360 | 32.80 350 | 53.96 325 | 72.15 365 |
|
| ADS-MVSNet2 | | | 55.21 324 | 51.44 329 | 66.51 312 | 80.60 190 | 49.56 203 | 55.03 386 | 65.44 365 | 44.72 345 | 51.00 316 | 61.19 378 | 22.83 345 | 75.41 352 | 28.54 366 | 53.63 327 | 74.57 352 |
|
| ADS-MVSNet | | | 56.17 318 | 51.95 328 | 68.84 285 | 80.60 190 | 53.07 127 | 55.03 386 | 70.02 350 | 44.72 345 | 51.00 316 | 61.19 378 | 22.83 345 | 78.88 325 | 28.54 366 | 53.63 327 | 74.57 352 |
|
| IterMVS-SCA-FT | | | 59.12 294 | 58.81 288 | 60.08 348 | 70.68 335 | 45.07 297 | 80.42 260 | 74.25 314 | 43.54 354 | 50.02 322 | 73.73 317 | 31.97 285 | 56.74 394 | 51.06 260 | 53.60 329 | 78.42 313 |
|
| pm-mvs1 | | | 64.12 256 | 62.56 254 | 68.78 288 | 71.68 321 | 38.87 349 | 82.89 202 | 81.57 194 | 55.54 264 | 53.89 298 | 77.82 270 | 37.73 207 | 86.74 222 | 48.46 277 | 53.49 330 | 80.72 288 |
|
| AUN-MVS | | | 68.20 204 | 66.35 208 | 73.76 196 | 76.37 258 | 47.45 266 | 79.52 273 | 79.52 236 | 60.98 162 | 62.34 187 | 86.02 168 | 36.59 238 | 86.94 217 | 62.32 161 | 53.47 331 | 86.89 177 |
|
| hse-mvs2 | | | 71.44 141 | 70.68 131 | 73.73 198 | 76.34 259 | 47.44 267 | 79.45 274 | 79.47 238 | 68.08 39 | 71.97 80 | 86.01 170 | 42.50 151 | 86.93 218 | 78.82 45 | 53.46 332 | 86.83 183 |
|
| miper_lstm_enhance | | | 63.91 257 | 62.30 256 | 68.75 289 | 75.06 281 | 46.78 274 | 69.02 342 | 81.14 202 | 59.68 183 | 52.76 305 | 72.39 334 | 40.71 176 | 77.99 334 | 56.81 219 | 53.09 333 | 81.48 273 |
|
| PatchT | | | 56.60 314 | 52.97 321 | 67.48 300 | 72.94 308 | 46.16 287 | 57.30 382 | 73.78 320 | 38.77 366 | 54.37 292 | 57.26 389 | 37.52 213 | 78.06 331 | 32.02 351 | 52.79 334 | 78.23 318 |
|
| test_vis1_n | | | 51.19 341 | 49.66 339 | 55.76 362 | 51.26 398 | 29.85 386 | 67.20 351 | 38.86 402 | 32.12 385 | 59.50 219 | 79.86 251 | 8.78 396 | 58.23 391 | 56.95 218 | 52.46 335 | 79.19 302 |
|
| JIA-IIPM | | | 52.33 338 | 47.77 346 | 66.03 314 | 71.20 328 | 46.92 273 | 40.00 403 | 76.48 298 | 37.10 371 | 46.73 342 | 37.02 403 | 32.96 274 | 77.88 336 | 35.97 332 | 52.45 336 | 73.29 361 |
|
| Patchmatch-test | | | 53.33 333 | 48.17 343 | 68.81 287 | 73.31 300 | 42.38 331 | 42.98 398 | 58.23 378 | 32.53 382 | 38.79 375 | 70.77 345 | 39.66 189 | 73.51 361 | 25.18 378 | 52.06 337 | 90.55 87 |
|
| testgi | | | 54.25 327 | 52.57 326 | 59.29 351 | 62.76 377 | 21.65 406 | 72.21 326 | 70.47 346 | 53.25 286 | 41.94 359 | 77.33 278 | 14.28 382 | 77.95 335 | 29.18 362 | 51.72 338 | 78.28 316 |
|
| test_0402 | | | 56.45 316 | 53.03 320 | 66.69 310 | 76.78 256 | 50.31 188 | 81.76 230 | 69.61 353 | 42.79 357 | 43.88 350 | 72.13 337 | 22.82 347 | 86.46 232 | 16.57 401 | 50.94 339 | 63.31 388 |
|
| testing3 | | | 59.97 287 | 60.19 277 | 59.32 350 | 77.60 241 | 30.01 385 | 81.75 231 | 81.79 191 | 53.54 282 | 50.34 321 | 79.94 249 | 48.99 73 | 76.91 343 | 17.19 400 | 50.59 340 | 71.03 373 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 343 | 48.05 344 | 59.47 349 | 67.81 354 | 40.57 344 | 71.25 333 | 62.72 375 | 36.49 375 | 36.19 381 | 73.51 322 | 13.48 383 | 73.92 358 | 20.71 391 | 50.26 341 | 63.92 387 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| pmmvs6 | | | 59.64 289 | 57.15 296 | 67.09 304 | 66.01 358 | 36.86 359 | 80.50 257 | 78.64 257 | 45.05 343 | 49.05 327 | 73.94 315 | 27.28 315 | 86.10 243 | 43.96 304 | 49.94 342 | 78.31 315 |
|
| Anonymous20240521 | | | 51.65 339 | 48.42 342 | 61.34 345 | 56.43 390 | 39.65 347 | 73.57 313 | 73.47 327 | 36.64 374 | 36.59 379 | 63.98 370 | 10.75 389 | 72.25 368 | 35.35 335 | 49.01 343 | 72.11 366 |
|
| USDC | | | 54.36 326 | 51.23 330 | 63.76 327 | 64.29 371 | 37.71 356 | 62.84 367 | 73.48 326 | 56.85 243 | 35.47 383 | 71.94 340 | 9.23 393 | 78.43 326 | 38.43 320 | 48.57 344 | 75.13 346 |
|
| reproduce_monomvs | | | 69.71 172 | 68.52 166 | 73.29 208 | 86.43 52 | 48.21 247 | 83.91 170 | 86.17 92 | 68.02 43 | 54.91 285 | 77.46 275 | 42.96 148 | 88.86 148 | 68.44 116 | 48.38 345 | 82.80 257 |
|
| WR-MVS_H | | | 58.91 299 | 58.04 291 | 61.54 342 | 69.07 344 | 33.83 369 | 76.91 290 | 81.99 185 | 51.40 300 | 48.17 330 | 74.67 308 | 40.23 181 | 74.15 355 | 31.78 353 | 48.10 346 | 76.64 333 |
|
| ITE_SJBPF | | | | | 51.84 366 | 58.03 386 | 31.94 378 | | 53.57 387 | 36.67 373 | 41.32 364 | 75.23 306 | 11.17 388 | 51.57 399 | 25.81 377 | 48.04 347 | 72.02 367 |
|
| CL-MVSNet_self_test | | | 62.98 267 | 61.14 268 | 68.50 295 | 65.86 360 | 42.96 322 | 84.37 155 | 82.98 172 | 60.98 162 | 53.95 297 | 72.70 330 | 40.43 179 | 83.71 281 | 41.10 313 | 47.93 348 | 78.83 306 |
|
| test_fmvs2 | | | 45.89 352 | 44.32 354 | 50.62 368 | 45.85 407 | 24.70 398 | 58.87 380 | 37.84 405 | 25.22 394 | 52.46 307 | 74.56 310 | 7.07 399 | 54.69 395 | 49.28 270 | 47.70 349 | 72.48 364 |
|
| CP-MVSNet | | | 58.54 305 | 57.57 294 | 61.46 343 | 68.50 348 | 33.96 368 | 76.90 291 | 78.60 260 | 51.67 299 | 47.83 334 | 76.60 291 | 34.99 257 | 72.79 364 | 35.45 334 | 47.58 350 | 77.64 324 |
|
| MIMVSNet1 | | | 50.35 344 | 47.81 345 | 57.96 355 | 61.53 380 | 27.80 395 | 67.40 349 | 74.06 317 | 43.25 355 | 33.31 392 | 65.38 368 | 16.03 379 | 71.34 369 | 21.80 388 | 47.55 351 | 74.75 349 |
|
| PS-CasMVS | | | 58.12 307 | 57.03 298 | 61.37 344 | 68.24 352 | 33.80 370 | 76.73 292 | 78.01 269 | 51.20 301 | 47.54 338 | 76.20 299 | 32.85 275 | 72.76 365 | 35.17 339 | 47.37 352 | 77.55 325 |
|
| Patchmatch-RL test | | | 58.72 301 | 54.32 314 | 71.92 243 | 63.91 372 | 44.25 307 | 61.73 370 | 55.19 382 | 57.38 235 | 49.31 326 | 54.24 392 | 37.60 211 | 80.89 301 | 62.19 163 | 47.28 353 | 90.63 86 |
|
| PEN-MVS | | | 58.35 306 | 57.15 296 | 61.94 339 | 67.55 355 | 34.39 363 | 77.01 289 | 78.35 265 | 51.87 296 | 47.72 335 | 76.73 289 | 33.91 266 | 73.75 359 | 34.03 344 | 47.17 354 | 77.68 322 |
|
| FPMVS | | | 35.40 366 | 33.67 370 | 40.57 382 | 46.34 406 | 28.74 393 | 41.05 400 | 57.05 380 | 20.37 400 | 22.27 405 | 53.38 394 | 6.87 401 | 44.94 407 | 8.62 410 | 47.11 355 | 48.01 401 |
|
| test20.03 | | | 55.22 323 | 54.07 316 | 58.68 353 | 63.14 376 | 25.00 397 | 77.69 287 | 74.78 311 | 52.64 289 | 43.43 353 | 72.39 334 | 26.21 322 | 74.76 354 | 29.31 361 | 47.05 356 | 76.28 337 |
|
| DSMNet-mixed | | | 38.35 362 | 35.36 367 | 47.33 374 | 48.11 405 | 14.91 418 | 37.87 404 | 36.60 406 | 19.18 401 | 34.37 385 | 59.56 384 | 15.53 380 | 53.01 398 | 20.14 394 | 46.89 357 | 74.07 354 |
|
| Patchmtry | | | 56.56 315 | 52.95 322 | 67.42 301 | 72.53 313 | 50.59 176 | 59.05 378 | 71.72 336 | 37.86 370 | 46.92 341 | 65.86 363 | 38.94 194 | 80.06 316 | 36.94 328 | 46.72 358 | 71.60 369 |
|
| test_vis1_rt | | | 40.29 361 | 38.64 362 | 45.25 377 | 48.91 404 | 30.09 383 | 59.44 377 | 27.07 416 | 24.52 397 | 38.48 376 | 51.67 397 | 6.71 402 | 49.44 400 | 44.33 301 | 46.59 359 | 56.23 392 |
|
| EU-MVSNet | | | 52.63 335 | 50.72 332 | 58.37 354 | 62.69 378 | 28.13 394 | 72.60 320 | 75.97 301 | 30.94 387 | 40.76 368 | 72.11 338 | 20.16 360 | 70.80 371 | 35.11 340 | 46.11 360 | 76.19 338 |
|
| RPSCF | | | 45.77 353 | 44.13 355 | 50.68 367 | 57.67 388 | 29.66 387 | 54.92 388 | 45.25 393 | 26.69 393 | 45.92 347 | 75.92 302 | 17.43 373 | 45.70 405 | 27.44 372 | 45.95 361 | 76.67 330 |
|
| our_test_3 | | | 59.11 295 | 55.08 311 | 71.18 256 | 71.42 325 | 53.29 121 | 81.96 223 | 74.52 312 | 48.32 319 | 42.08 358 | 69.28 354 | 28.14 307 | 82.15 292 | 34.35 343 | 45.68 362 | 78.11 319 |
|
| DTE-MVSNet | | | 57.03 312 | 55.73 307 | 60.95 347 | 65.94 359 | 32.57 375 | 75.71 295 | 77.09 286 | 51.16 302 | 46.65 344 | 76.34 294 | 32.84 276 | 73.22 363 | 30.94 357 | 44.87 363 | 77.06 327 |
|
| pmmvs-eth3d | | | 55.97 320 | 52.78 324 | 65.54 317 | 61.02 381 | 46.44 279 | 75.36 301 | 67.72 361 | 49.61 311 | 43.65 352 | 67.58 359 | 21.63 355 | 77.04 341 | 44.11 303 | 44.33 364 | 73.15 363 |
|
| AllTest | | | 47.32 350 | 44.66 352 | 55.32 363 | 65.08 366 | 37.50 357 | 62.96 366 | 54.25 385 | 35.45 378 | 33.42 389 | 72.82 327 | 9.98 391 | 59.33 387 | 24.13 381 | 43.84 365 | 69.13 374 |
|
| TestCases | | | | | 55.32 363 | 65.08 366 | 37.50 357 | | 54.25 385 | 35.45 378 | 33.42 389 | 72.82 327 | 9.98 391 | 59.33 387 | 24.13 381 | 43.84 365 | 69.13 374 |
|
| ppachtmachnet_test | | | 58.56 303 | 54.34 313 | 71.24 253 | 71.42 325 | 54.74 80 | 81.84 228 | 72.27 331 | 49.02 314 | 45.86 348 | 68.99 355 | 26.27 321 | 83.30 287 | 30.12 358 | 43.23 367 | 75.69 339 |
|
| KD-MVS_self_test | | | 49.24 346 | 46.85 349 | 56.44 359 | 54.32 391 | 22.87 400 | 57.39 381 | 73.36 328 | 44.36 349 | 37.98 377 | 59.30 385 | 18.97 365 | 71.17 370 | 33.48 345 | 42.44 368 | 75.26 344 |
|
| PM-MVS | | | 46.92 351 | 43.76 358 | 56.41 360 | 52.18 395 | 32.26 376 | 63.21 365 | 38.18 403 | 37.99 369 | 40.78 367 | 66.20 362 | 5.09 408 | 65.42 379 | 48.19 278 | 41.99 369 | 71.54 370 |
|
| TinyColmap | | | 48.15 349 | 44.49 353 | 59.13 352 | 65.73 361 | 38.04 353 | 63.34 363 | 62.86 374 | 38.78 365 | 29.48 396 | 67.23 361 | 6.46 404 | 73.30 362 | 24.59 380 | 41.90 370 | 66.04 382 |
|
| N_pmnet | | | 41.25 358 | 39.77 361 | 45.66 376 | 68.50 348 | 0.82 428 | 72.51 322 | 0.38 427 | 35.61 377 | 35.26 384 | 61.51 377 | 20.07 361 | 67.74 376 | 23.51 383 | 40.63 371 | 68.42 377 |
|
| TransMVSNet (Re) | | | 62.82 269 | 60.76 271 | 69.02 283 | 73.98 296 | 41.61 335 | 86.36 95 | 79.30 246 | 56.90 242 | 52.53 306 | 76.44 292 | 41.85 163 | 87.60 200 | 38.83 319 | 40.61 372 | 77.86 320 |
|
| OurMVSNet-221017-0 | | | 52.39 337 | 48.73 341 | 63.35 331 | 65.21 364 | 38.42 352 | 68.54 346 | 64.95 366 | 38.19 367 | 39.57 371 | 71.43 341 | 13.23 384 | 79.92 317 | 37.16 323 | 40.32 373 | 71.72 368 |
|
| YYNet1 | | | 53.82 330 | 49.96 336 | 65.41 319 | 70.09 338 | 48.95 220 | 72.30 324 | 71.66 338 | 44.25 350 | 31.89 393 | 63.07 373 | 23.73 341 | 73.95 357 | 33.26 347 | 39.40 374 | 73.34 360 |
|
| MDA-MVSNet_test_wron | | | 53.82 330 | 49.95 337 | 65.43 318 | 70.13 337 | 49.05 216 | 72.30 324 | 71.65 339 | 44.23 351 | 31.85 394 | 63.13 372 | 23.68 342 | 74.01 356 | 33.25 348 | 39.35 375 | 73.23 362 |
|
| ambc | | | | | 62.06 337 | 53.98 393 | 29.38 389 | 35.08 406 | 79.65 234 | | 41.37 362 | 59.96 382 | 6.27 405 | 82.15 292 | 35.34 336 | 38.22 376 | 74.65 351 |
|
| test_fmvs3 | | | 37.95 364 | 35.75 366 | 44.55 378 | 35.50 413 | 18.92 410 | 48.32 391 | 34.00 410 | 18.36 403 | 41.31 365 | 61.58 376 | 2.29 415 | 48.06 404 | 42.72 310 | 37.71 377 | 66.66 380 |
|
| mamv4 | | | 42.60 357 | 44.05 357 | 38.26 385 | 59.21 384 | 38.00 354 | 44.14 397 | 39.03 401 | 25.03 395 | 40.61 369 | 68.39 356 | 37.01 227 | 24.28 419 | 46.62 289 | 36.43 378 | 52.50 397 |
|
| mvsany_test1 | | | 43.38 356 | 42.57 359 | 45.82 375 | 50.96 399 | 26.10 396 | 55.80 384 | 27.74 415 | 27.15 392 | 47.41 340 | 74.39 311 | 18.67 367 | 44.95 406 | 44.66 299 | 36.31 379 | 66.40 381 |
|
| Gipuma |  | | 27.47 374 | 24.26 379 | 37.12 388 | 60.55 383 | 29.17 390 | 11.68 415 | 60.00 377 | 14.18 407 | 10.52 416 | 15.12 417 | 2.20 417 | 63.01 381 | 8.39 411 | 35.65 380 | 19.18 413 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UnsupCasMVSNet_eth | | | 57.56 310 | 55.15 309 | 64.79 324 | 64.57 370 | 33.12 371 | 73.17 317 | 83.87 154 | 58.98 203 | 41.75 361 | 70.03 349 | 22.54 348 | 79.92 317 | 46.12 294 | 35.31 381 | 81.32 281 |
|
| TDRefinement | | | 40.91 359 | 38.37 363 | 48.55 373 | 50.45 400 | 33.03 373 | 58.98 379 | 50.97 388 | 28.50 389 | 29.89 395 | 67.39 360 | 6.21 406 | 54.51 396 | 17.67 399 | 35.25 382 | 58.11 391 |
|
| EGC-MVSNET | | | 33.75 369 | 30.42 373 | 43.75 379 | 64.94 368 | 36.21 360 | 60.47 376 | 40.70 400 | 0.02 421 | 0.10 422 | 53.79 393 | 7.39 398 | 60.26 385 | 11.09 408 | 35.23 383 | 34.79 407 |
|
| LF4IMVS | | | 33.04 371 | 32.55 371 | 34.52 389 | 40.96 408 | 22.03 403 | 44.45 396 | 35.62 407 | 20.42 399 | 28.12 399 | 62.35 375 | 5.03 409 | 31.88 418 | 21.61 390 | 34.42 384 | 49.63 400 |
|
| new-patchmatchnet | | | 48.21 348 | 46.55 350 | 53.18 365 | 57.73 387 | 18.19 414 | 70.24 336 | 71.02 344 | 45.70 338 | 33.70 387 | 60.23 381 | 18.00 370 | 69.86 374 | 27.97 370 | 34.35 385 | 71.49 371 |
|
| pmmvs3 | | | 45.53 354 | 41.55 360 | 57.44 356 | 48.97 403 | 39.68 346 | 70.06 337 | 57.66 379 | 28.32 391 | 34.06 386 | 57.29 388 | 8.50 397 | 66.85 378 | 34.86 342 | 34.26 386 | 65.80 383 |
|
| SixPastTwentyTwo | | | 54.37 325 | 50.10 334 | 67.21 303 | 70.70 333 | 41.46 338 | 74.73 304 | 64.69 367 | 47.56 326 | 39.12 373 | 69.49 350 | 18.49 369 | 84.69 271 | 31.87 352 | 34.20 387 | 75.48 341 |
|
| UnsupCasMVSNet_bld | | | 53.86 329 | 50.53 333 | 63.84 326 | 63.52 375 | 34.75 362 | 71.38 332 | 81.92 188 | 46.53 331 | 38.95 374 | 57.93 387 | 20.55 359 | 80.20 315 | 39.91 317 | 34.09 388 | 76.57 334 |
|
| MDA-MVSNet-bldmvs | | | 51.56 340 | 47.75 347 | 63.00 332 | 71.60 323 | 47.32 269 | 69.70 341 | 72.12 332 | 43.81 352 | 27.65 401 | 63.38 371 | 21.97 354 | 75.96 349 | 27.30 373 | 32.19 389 | 65.70 384 |
|
| PMVS |  | 19.57 22 | 25.07 378 | 22.43 383 | 32.99 393 | 23.12 424 | 22.98 399 | 40.98 401 | 35.19 408 | 15.99 406 | 11.95 415 | 35.87 407 | 1.47 421 | 49.29 401 | 5.41 419 | 31.90 390 | 26.70 412 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 33.56 370 | 31.89 372 | 38.59 384 | 49.01 402 | 20.42 407 | 51.01 389 | 37.92 404 | 20.58 398 | 23.45 404 | 46.79 399 | 6.66 403 | 49.28 402 | 20.00 395 | 31.57 391 | 46.09 404 |
|
| mvs5depth | | | 50.97 342 | 46.98 348 | 62.95 333 | 56.63 389 | 34.23 366 | 62.73 368 | 67.35 363 | 45.03 344 | 48.00 333 | 65.41 367 | 10.40 390 | 79.88 321 | 36.00 331 | 31.27 392 | 74.73 350 |
|
| mmtdpeth | | | 57.93 308 | 54.78 312 | 67.39 302 | 72.32 316 | 43.38 317 | 72.72 319 | 68.93 356 | 54.45 277 | 56.85 267 | 62.43 374 | 17.02 374 | 83.46 285 | 57.95 206 | 30.31 393 | 75.31 343 |
|
| KD-MVS_2432*1600 | | | 59.04 297 | 56.44 301 | 66.86 307 | 79.07 213 | 45.87 289 | 72.13 327 | 80.42 217 | 55.03 269 | 48.15 331 | 71.01 342 | 36.73 233 | 78.05 332 | 35.21 337 | 30.18 394 | 76.67 330 |
|
| miper_refine_blended | | | 59.04 297 | 56.44 301 | 66.86 307 | 79.07 213 | 45.87 289 | 72.13 327 | 80.42 217 | 55.03 269 | 48.15 331 | 71.01 342 | 36.73 233 | 78.05 332 | 35.21 337 | 30.18 394 | 76.67 330 |
|
| test_vis3_rt | | | 24.79 379 | 22.95 382 | 30.31 395 | 28.59 419 | 18.92 410 | 37.43 405 | 17.27 423 | 12.90 408 | 21.28 406 | 29.92 412 | 1.02 422 | 36.35 411 | 28.28 369 | 29.82 396 | 35.65 406 |
|
| test_f | | | 27.12 375 | 24.85 376 | 33.93 391 | 26.17 423 | 15.25 417 | 30.24 411 | 22.38 420 | 12.53 410 | 28.23 398 | 49.43 398 | 2.59 414 | 34.34 416 | 25.12 379 | 26.99 397 | 52.20 398 |
|
| APD_test1 | | | 26.46 377 | 24.41 378 | 32.62 394 | 37.58 410 | 21.74 405 | 40.50 402 | 30.39 412 | 11.45 411 | 16.33 408 | 43.76 400 | 1.63 420 | 41.62 408 | 11.24 407 | 26.82 398 | 34.51 408 |
|
| K. test v3 | | | 54.04 328 | 49.42 340 | 67.92 298 | 68.55 347 | 42.57 330 | 75.51 299 | 63.07 373 | 52.07 293 | 39.21 372 | 64.59 369 | 19.34 363 | 82.21 291 | 37.11 325 | 25.31 399 | 78.97 304 |
|
| kuosan | | | 50.20 345 | 50.09 335 | 50.52 369 | 73.09 305 | 29.09 391 | 65.25 354 | 74.89 310 | 48.27 320 | 41.34 363 | 60.85 380 | 43.45 141 | 67.48 377 | 18.59 398 | 25.07 400 | 55.01 394 |
|
| LCM-MVSNet | | | 28.07 372 | 23.85 380 | 40.71 381 | 27.46 422 | 18.93 409 | 30.82 410 | 46.19 390 | 12.76 409 | 16.40 407 | 34.70 408 | 1.90 418 | 48.69 403 | 20.25 392 | 24.22 401 | 54.51 395 |
|
| test_method | | | 24.09 380 | 21.07 384 | 33.16 392 | 27.67 421 | 8.35 426 | 26.63 412 | 35.11 409 | 3.40 418 | 14.35 410 | 36.98 404 | 3.46 412 | 35.31 413 | 19.08 397 | 22.95 402 | 55.81 393 |
|
| testf1 | | | 21.11 381 | 19.08 385 | 27.18 397 | 30.56 415 | 18.28 412 | 33.43 408 | 24.48 417 | 8.02 415 | 12.02 413 | 33.50 409 | 0.75 424 | 35.09 414 | 7.68 412 | 21.32 403 | 28.17 410 |
|
| APD_test2 | | | 21.11 381 | 19.08 385 | 27.18 397 | 30.56 415 | 18.28 412 | 33.43 408 | 24.48 417 | 8.02 415 | 12.02 413 | 33.50 409 | 0.75 424 | 35.09 414 | 7.68 412 | 21.32 403 | 28.17 410 |
|
| lessismore_v0 | | | | | 67.98 297 | 64.76 369 | 41.25 339 | | 45.75 392 | | 36.03 382 | 65.63 366 | 19.29 364 | 84.11 276 | 35.67 333 | 21.24 405 | 78.59 310 |
|
| ttmdpeth | | | 40.58 360 | 37.50 364 | 49.85 370 | 49.40 401 | 22.71 401 | 56.65 383 | 46.78 389 | 28.35 390 | 40.29 370 | 69.42 352 | 5.35 407 | 61.86 382 | 20.16 393 | 21.06 406 | 64.96 385 |
|
| mvsany_test3 | | | 28.00 373 | 25.98 375 | 34.05 390 | 28.97 418 | 15.31 416 | 34.54 407 | 18.17 421 | 16.24 405 | 29.30 397 | 53.37 395 | 2.79 413 | 33.38 417 | 30.01 359 | 20.41 407 | 53.45 396 |
|
| PVSNet_0 | | 57.04 13 | 61.19 282 | 57.24 295 | 73.02 210 | 77.45 245 | 50.31 188 | 79.43 275 | 77.36 282 | 63.96 106 | 47.51 339 | 72.45 333 | 25.03 332 | 83.78 280 | 52.76 250 | 19.22 408 | 84.96 216 |
|
| dongtai | | | 43.51 355 | 44.07 356 | 41.82 380 | 63.75 373 | 21.90 404 | 63.80 360 | 72.05 333 | 39.59 363 | 33.35 391 | 54.54 391 | 41.04 171 | 57.30 392 | 10.75 409 | 17.77 409 | 46.26 403 |
|
| MVStest1 | | | 38.35 362 | 34.53 368 | 49.82 371 | 51.43 397 | 30.41 380 | 50.39 390 | 55.25 381 | 17.56 404 | 26.45 402 | 65.85 365 | 11.72 385 | 57.00 393 | 14.79 403 | 17.31 410 | 62.05 390 |
|
| WB-MVS | | | 37.41 365 | 36.37 365 | 40.54 383 | 54.23 392 | 10.43 421 | 65.29 353 | 43.75 394 | 34.86 381 | 27.81 400 | 54.63 390 | 24.94 333 | 63.21 380 | 6.81 416 | 15.00 411 | 47.98 402 |
|
| SSC-MVS | | | 35.20 367 | 34.30 369 | 37.90 386 | 52.58 394 | 8.65 424 | 61.86 369 | 41.64 398 | 31.81 386 | 25.54 403 | 52.94 396 | 23.39 344 | 59.28 389 | 6.10 417 | 12.86 412 | 45.78 405 |
|
| PMMVS2 | | | 26.71 376 | 22.98 381 | 37.87 387 | 36.89 411 | 8.51 425 | 42.51 399 | 29.32 414 | 19.09 402 | 13.01 411 | 37.54 402 | 2.23 416 | 53.11 397 | 14.54 404 | 11.71 413 | 51.99 399 |
|
| MVE |  | 16.60 23 | 17.34 386 | 13.39 389 | 29.16 396 | 28.43 420 | 19.72 408 | 13.73 414 | 23.63 419 | 7.23 417 | 7.96 417 | 21.41 413 | 0.80 423 | 36.08 412 | 6.97 414 | 10.39 414 | 31.69 409 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 19.16 383 | 18.40 387 | 21.44 399 | 36.19 412 | 13.63 419 | 47.59 392 | 30.89 411 | 10.73 412 | 5.91 419 | 16.59 415 | 3.66 411 | 39.77 409 | 5.95 418 | 8.14 415 | 10.92 415 |
|
| DeepMVS_CX |  | | | | 13.10 401 | 21.34 425 | 8.99 423 | | 10.02 425 | 10.59 413 | 7.53 418 | 30.55 411 | 1.82 419 | 14.55 420 | 6.83 415 | 7.52 416 | 15.75 414 |
|
| EMVS | | | 18.42 384 | 17.66 388 | 20.71 400 | 34.13 414 | 12.64 420 | 46.94 393 | 29.94 413 | 10.46 414 | 5.58 420 | 14.93 418 | 4.23 410 | 38.83 410 | 5.24 420 | 7.51 417 | 10.67 416 |
|
| wuyk23d | | | 9.11 388 | 8.77 392 | 10.15 402 | 40.18 409 | 16.76 415 | 20.28 413 | 1.01 426 | 2.58 419 | 2.66 421 | 0.98 421 | 0.23 426 | 12.49 421 | 4.08 421 | 6.90 418 | 1.19 418 |
|
| tmp_tt | | | 9.44 387 | 10.68 390 | 5.73 403 | 2.49 426 | 4.21 427 | 10.48 416 | 18.04 422 | 0.34 420 | 12.59 412 | 20.49 414 | 11.39 387 | 7.03 422 | 13.84 406 | 6.46 419 | 5.95 417 |
|
| ANet_high | | | 34.39 368 | 29.59 374 | 48.78 372 | 30.34 417 | 22.28 402 | 55.53 385 | 63.79 371 | 38.11 368 | 15.47 409 | 36.56 406 | 6.94 400 | 59.98 386 | 13.93 405 | 5.64 420 | 64.08 386 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 18.33 385 | 24.44 377 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 89.40 24 | 0.00 422 | 0.00 425 | 92.02 46 | 38.55 198 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 3.15 392 | 4.20 395 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 37.77 204 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| testmvs | | | 6.14 390 | 8.18 393 | 0.01 404 | 0.01 427 | 0.00 430 | 73.40 316 | 0.00 428 | 0.00 422 | 0.02 423 | 0.15 422 | 0.00 427 | 0.00 423 | 0.02 422 | 0.00 421 | 0.02 419 |
|
| test123 | | | 6.01 391 | 8.01 394 | 0.01 404 | 0.00 428 | 0.01 429 | 71.93 330 | 0.00 428 | 0.00 422 | 0.02 423 | 0.11 423 | 0.00 427 | 0.00 423 | 0.02 422 | 0.00 421 | 0.02 419 |
|
| ab-mvs-re | | | 7.68 389 | 10.24 391 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 92.12 42 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 428 | 0.00 430 | 0.00 417 | 0.00 428 | 0.00 422 | 0.00 425 | 0.00 424 | 0.00 427 | 0.00 423 | 0.00 424 | 0.00 421 | 0.00 421 |
|
| WAC-MVS | | | | | | | 34.28 364 | | | | | | | | 22.56 386 | | |
|
| FOURS1 | | | | | | 83.24 112 | 49.90 196 | 84.98 137 | 78.76 254 | 47.71 324 | 73.42 60 | | | | | | |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 22 | | 88.09 54 | 57.21 239 | 82.06 13 | 93.39 18 | 54.94 33 | | | | |
|
| eth-test2 | | | | | | 0.00 428 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 428 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 29 | | 88.94 31 | 57.53 231 | 84.61 4 | 93.29 22 | 58.81 12 | 96.45 1 | | | |
|
| save fliter | | | | | | 85.35 68 | 56.34 41 | 89.31 40 | 81.46 196 | 61.55 149 | | | | | | | |
|
| test0726 | | | | | | 89.40 20 | 57.45 19 | 92.32 7 | 88.63 44 | 57.71 227 | 83.14 9 | 93.96 6 | 55.17 29 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 153 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 54 | | | | 82.27 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 196 | | | | 88.13 153 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 247 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 199 | | | | | | | | |
|
| test_post1 | | | | | | | | 70.84 335 | | | | 14.72 419 | 34.33 263 | 83.86 277 | 48.80 273 | | |
|
| test_post | | | | | | | | | | | | 16.22 416 | 37.52 213 | 84.72 270 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 383 | 38.41 199 | 79.91 319 | | | |
|
| MTMP | | | | | | | | 87.27 77 | 15.34 424 | | | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 112 | 54.21 96 | | | 70.91 21 | | 88.23 133 | | 95.25 14 | 66.37 129 | | |
|
| TEST9 | | | | | | 85.68 59 | 55.42 56 | 87.59 67 | 84.00 150 | 57.72 226 | 72.99 65 | 90.98 67 | 44.87 119 | 88.58 158 | | | |
|
| test_8 | | | | | | 85.72 58 | 55.31 61 | 87.60 66 | 83.88 153 | 57.84 224 | 72.84 69 | 90.99 66 | 44.99 115 | 88.34 169 | | | |
|
| agg_prior | | | | | | 85.64 62 | 54.92 76 | | 83.61 160 | | 72.53 74 | | | 88.10 179 | | | |
|
| test_prior4 | | | | | | | 56.39 40 | 87.15 81 | | | | | | | | | |
|
| test_prior | | | | | 78.39 74 | 86.35 53 | 54.91 77 | | 85.45 104 | | | | | 89.70 119 | | | 90.55 87 |
|
| 旧先验2 | | | | | | | | 81.73 232 | | 45.53 340 | 74.66 47 | | | 70.48 373 | 58.31 199 | | |
|
| 新几何2 | | | | | | | | 81.61 237 | | | | | | | | | |
|
| 无先验 | | | | | | | | 85.19 127 | 78.00 270 | 49.08 313 | | | | 85.13 265 | 52.78 248 | | 87.45 169 |
|
| 原ACMM2 | | | | | | | | 83.77 175 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 77.81 338 | 45.64 295 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 117 | | | | |
|
| testdata1 | | | | | | | | 77.55 288 | | 64.14 101 | | | | | | | |
|
| plane_prior7 | | | | | | 77.95 236 | 48.46 238 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 231 | 49.39 211 | | | | | | 36.04 245 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 83.28 204 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 220 | | | 64.01 104 | 62.15 191 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 107 | | 63.60 113 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 233 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 428 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 428 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 399 | | | | | | | | |
|
| test11 | | | | | | | | | 84.25 144 | | | | | | | | |
|
| door | | | | | | | | | 43.27 395 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 159 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 215 | | 88.00 55 | | 65.45 81 | 64.48 159 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 215 | | 88.00 55 | | 65.45 81 | 64.48 159 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 126 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 162 | | | 88.61 156 | | | 84.91 217 |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 216 | | | | |
|
| NP-MVS | | | | | | 78.76 220 | 50.43 180 | | | | | 85.12 178 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 313 | 71.13 334 | | 54.95 271 | 59.29 225 | | 36.76 232 | | 46.33 292 | | 87.32 172 |
|
| Test By Simon | | | | | | | | | | | | | 39.38 190 | | | | |
|