This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS82.39 482.36 682.49 580.12 19059.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21583.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
MVP-Stereo70.97 14370.44 13272.59 21376.03 26051.36 16185.02 13786.99 7160.31 17056.53 26678.92 25640.11 17690.00 10960.00 17890.01 676.41 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22874.74 683.40 894.00 621.51 34594.70 2184.07 1789.68 793.82 7
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 28
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20565.37 13991.48 6345.72 10095.05 1672.11 9689.52 1093.44 11
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 14980.26 2393.10 2746.53 9092.41 4879.97 3988.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator64.70 674.46 8472.48 9780.41 2882.84 12555.40 5983.08 19888.61 4567.61 5159.85 20588.66 11934.57 24693.97 2658.42 18988.70 1291.85 51
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21273.60 5793.31 2343.14 14093.79 2973.81 8688.53 1392.37 34
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19171.82 8190.05 9359.72 996.04 1078.37 5188.40 1493.75 9
MS-PatchMatch72.34 11971.26 12175.61 13682.38 13555.55 5388.00 5589.95 1965.38 8356.51 26780.74 24032.28 26892.89 3557.95 19888.10 1578.39 307
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 33
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33888.45 4968.73 10887.45 14659.15 1090.67 9054.83 22287.67 1792.03 44
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22984.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 32
test_241102_TWO88.76 3957.50 22983.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 30
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22381.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 27
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 31
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14254.67 8584.06 16785.35 10261.10 15572.99 6591.50 6240.25 17291.00 8176.84 6386.98 2490.51 87
test_0728_THIRD58.00 21581.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 37
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20374.63 4892.38 4047.75 7691.35 7078.18 5586.85 2691.15 73
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
PAPM76.76 5376.07 5578.81 5680.20 18859.11 686.86 8886.23 8568.60 3670.18 10288.84 11651.57 4687.16 20765.48 13386.68 2990.15 98
gg-mvs-nofinetune67.43 21164.53 23776.13 12585.95 5347.79 25564.38 35088.28 5139.34 35366.62 12241.27 38758.69 1389.00 13849.64 25986.62 3091.59 56
MVS_030481.58 982.05 780.20 3182.36 13654.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 29
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12370.54 10092.33 4141.05 16494.95 1757.90 19986.55 3291.00 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16556.31 4281.59 23686.41 8169.61 3181.72 1688.16 13155.09 2788.04 17774.12 8486.31 3391.09 74
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19692.50 4682.75 2486.25 3491.57 58
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
test1279.24 4486.89 4756.08 4585.16 11372.27 7847.15 8291.10 7985.93 3690.54 86
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20192.28 5282.73 2585.71 3891.57 58
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25981.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1478.19 2785.67 5988.32 5188.84 3659.89 17474.58 5092.62 3746.80 8692.66 4181.40 3685.62 40
test_prior289.04 4361.88 14273.55 5891.46 6448.01 7474.73 7885.46 41
test9_res78.72 4985.44 4291.39 64
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22072.99 6590.98 6844.99 11188.58 15478.19 5385.32 4391.34 68
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17767.85 11490.55 7742.23 14991.02 8072.66 9485.29 4489.87 107
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8892.75 3445.52 10390.37 9871.15 9885.14 4591.91 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior275.65 6985.11 4691.01 76
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29066.70 12087.07 15340.15 17589.70 11951.23 25085.06 4784.10 219
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16452.65 13484.34 15884.46 13361.16 15369.14 10491.76 5439.98 17988.99 14078.19 5384.89 4889.48 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6891.98 5245.10 10891.27 7175.02 7784.56 5090.84 80
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9073.52 5988.09 13248.07 7292.19 5362.24 15584.53 5191.53 60
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20670.75 9590.85 7343.10 14290.63 9370.50 10284.51 5290.24 93
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 17955.02 7286.39 9586.71 7666.96 5767.91 11389.97 9548.03 7391.41 6975.60 7084.14 5389.96 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5692.75 3446.88 8593.28 3178.79 4884.07 5491.50 62
OpenMVScopyleft61.00 1169.99 16167.55 18077.30 9478.37 22454.07 9984.36 15785.76 9357.22 23456.71 26387.67 14330.79 28192.83 3743.04 29884.06 5585.01 207
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 16955.31 6189.76 3486.91 7262.94 12471.65 8291.56 6142.33 14792.56 4577.14 6283.69 5690.15 98
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS74.87 8273.90 8377.77 8383.30 10753.45 11085.75 11085.29 10659.22 19066.50 12689.85 9740.94 16590.76 8870.94 10083.35 5789.10 124
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25478.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 88
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5549.32 6890.17 10773.46 8982.77 5991.69 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS74.17 8972.07 11080.49 2590.02 1158.55 887.30 7584.27 13757.51 22865.77 13687.77 14141.61 16095.97 1151.71 24682.63 6086.94 168
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7591.62 5945.53 10290.99 8374.48 8082.51 6191.23 70
MSLP-MVS++74.21 8872.25 10380.11 3681.45 16256.47 3886.32 9779.65 22458.19 21166.36 12792.29 4236.11 22890.66 9167.39 11882.49 6293.18 19
MTAPA72.73 11271.22 12277.27 9681.54 15953.57 10667.06 34481.31 19359.41 18468.39 11090.96 7036.07 23089.01 13773.80 8782.45 6389.23 119
MP-MVScopyleft74.99 8174.33 7776.95 10782.89 12353.05 12685.63 11583.50 15557.86 21967.25 11790.24 8543.38 13788.85 14876.03 6582.23 6488.96 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9168.56 10990.53 7845.79 9991.58 6567.21 12082.18 6591.20 71
3Dnovator+62.71 772.29 12170.50 13177.65 8683.40 10551.29 16487.32 7386.40 8259.01 19858.49 23588.32 12832.40 26691.27 7157.04 20882.15 6690.38 89
EC-MVSNet75.30 7575.20 6575.62 13580.98 16949.00 21487.43 7084.68 12863.49 11470.97 9390.15 9142.86 14491.14 7874.33 8281.90 6786.71 177
CHOSEN 1792x268876.24 5874.03 8282.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14783.49 19641.52 16293.69 3070.55 10181.82 6892.12 40
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27674.91 4691.68 5743.80 12790.31 10174.36 8181.82 6888.87 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS89.55 1453.46 10884.38 13457.02 23773.97 5591.03 6644.57 12191.17 7675.41 7481.78 70
QAPM71.88 12969.33 15279.52 4082.20 13954.30 9286.30 9888.77 3856.61 24759.72 20787.48 14533.90 25395.36 1347.48 27481.49 7188.90 127
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10589.33 10846.70 8888.13 17375.43 7181.48 7289.55 112
ETV-MVS77.17 4576.74 4678.48 6881.80 14554.55 8886.13 10185.33 10368.20 3973.10 6490.52 7945.23 10790.66 9179.37 4180.95 7390.22 94
HFP-MVS74.37 8673.13 9278.10 7884.30 8453.68 10485.58 11684.36 13556.82 24165.78 13590.56 7640.70 17090.90 8569.18 10980.88 7489.71 108
ACMMPR73.76 9572.61 9477.24 9883.92 9352.96 12985.58 11684.29 13656.82 24165.12 14090.45 8037.24 21290.18 10669.18 10980.84 7588.58 137
region2R73.75 9672.55 9677.33 9283.90 9452.98 12885.54 12084.09 14256.83 24065.10 14190.45 8037.34 21090.24 10468.89 11180.83 7688.77 133
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6182.76 20650.44 5789.00 13865.90 12980.61 7791.64 54
Vis-MVSNetpermissive70.61 15069.34 15174.42 16880.95 17448.49 23086.03 10477.51 26858.74 20465.55 13887.78 14034.37 24885.95 24652.53 24480.61 7788.80 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS72.92 10871.62 11576.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 16489.63 10135.50 23589.78 11565.50 13180.50 7988.16 143
X-MVStestdata65.85 24162.20 24976.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 1644.82 40635.50 23589.78 11565.50 13180.50 7988.16 143
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6555.43 2390.09 10885.01 1280.40 8191.99 47
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10390.24 8560.20 792.10 5784.14 1580.40 8192.82 24
新几何173.30 20083.10 11253.48 10771.43 32845.55 33066.14 12887.17 15133.88 25480.54 30148.50 26880.33 8385.88 194
PGM-MVS72.60 11471.20 12376.80 11282.95 12052.82 13183.07 19982.14 17656.51 24963.18 17389.81 9835.68 23489.76 11767.30 11980.19 8487.83 152
MVSFormer73.53 10172.19 10677.57 8783.02 11755.24 6381.63 23381.44 19150.28 30076.67 4090.91 7144.82 11786.11 23660.83 16680.09 8591.36 66
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11790.23 10580.83 3780.09 8592.08 41
HPM-MVScopyleft72.60 11471.50 11775.89 13182.02 14051.42 16080.70 25583.05 16456.12 25364.03 16289.53 10237.55 20488.37 16270.48 10380.04 8787.88 151
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8866.06 13089.88 9643.79 12892.16 5475.03 7680.03 8889.64 110
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24874.26 5391.60 6054.26 3192.16 5475.87 6779.91 8993.05 21
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 11974.63 4890.83 7441.38 16394.40 2275.42 7379.90 9094.72 2
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18654.44 9087.76 6285.46 9771.67 1671.38 8788.35 12651.58 4591.22 7479.02 4479.89 9191.83 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+75.24 7673.61 8480.16 3381.92 14257.42 1985.21 12776.71 28360.68 16673.32 6289.34 10647.30 8091.63 6468.28 11479.72 9291.42 63
test250672.91 10972.43 9974.32 17280.12 19044.18 30383.19 19584.77 12564.02 9965.97 13187.43 14747.67 7788.72 14959.08 18079.66 9390.08 100
ECVR-MVScopyleft71.81 13071.00 12574.26 17480.12 19043.49 30884.69 14882.16 17564.02 9964.64 14987.43 14735.04 24189.21 13161.24 16379.66 9390.08 100
PAPM_NR71.80 13169.98 14377.26 9781.54 15953.34 11678.60 27885.25 10953.46 27960.53 20188.66 11945.69 10189.24 12856.49 21279.62 9589.19 121
jason77.01 4776.45 4978.69 6179.69 19554.74 7990.56 2583.99 14668.26 3874.10 5490.91 7142.14 15189.99 11079.30 4279.12 9691.36 66
jason: jason.
CANet_DTU73.71 9773.14 9075.40 14482.61 13250.05 18984.67 15179.36 23369.72 3075.39 4390.03 9429.41 28985.93 24767.99 11679.11 9790.22 94
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18754.66 8687.06 8285.88 9072.11 1471.57 8488.63 12350.89 5590.35 9976.00 6679.11 9791.63 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,172.86 11072.33 10074.46 16681.98 14150.77 16885.13 13085.47 9666.09 7167.30 11683.69 19337.27 21183.57 27765.06 14178.97 9989.05 125
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24374.48 5191.81 5343.72 13190.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline76.86 5176.24 5378.71 6080.47 18554.20 9783.90 17184.88 12171.38 2071.51 8589.15 11150.51 5690.55 9575.71 6878.65 10091.39 64
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9146.77 8791.00 8173.52 8878.46 10293.44 11
test111171.06 14170.42 13372.97 20579.48 19741.49 32984.82 14682.74 17064.20 9662.98 17687.43 14735.20 23887.92 17958.54 18678.42 10389.49 114
旧先验181.57 15847.48 25771.83 32288.66 11936.94 21678.34 10488.67 134
mPP-MVS71.79 13270.38 13476.04 12882.65 13152.06 14384.45 15581.78 18655.59 25862.05 18889.68 10033.48 25788.28 17065.45 13678.24 10587.77 154
CP-MVS72.59 11671.46 11876.00 13082.93 12252.32 14186.93 8682.48 17355.15 26363.65 16890.44 8335.03 24288.53 15868.69 11277.83 10687.15 166
PVSNet_Blended_VisFu73.40 10472.44 9876.30 11781.32 16654.70 8285.81 10678.82 24363.70 10764.53 15385.38 17247.11 8387.38 20367.75 11777.55 10786.81 176
MGCFI-Net78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
131471.11 14069.41 14976.22 12079.32 20050.49 17580.23 26285.14 11559.44 18358.93 22488.89 11533.83 25589.60 12261.49 16177.42 11088.57 138
PAPR75.20 7874.13 7878.41 7188.31 3255.10 7084.31 15985.66 9463.76 10667.55 11590.73 7543.48 13689.40 12566.36 12677.03 11190.73 82
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11292.89 23
test22279.36 19850.97 16777.99 28167.84 34942.54 34862.84 17886.53 16030.26 28476.91 11385.23 203
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26148.44 23384.98 13871.08 33063.50 11381.70 1793.52 1750.00 6087.18 20687.80 576.87 11490.32 91
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25748.34 23685.24 12670.62 33463.13 12181.45 1893.62 1649.98 6287.40 20287.76 676.77 11590.20 96
PMMVS72.98 10772.05 11175.78 13383.57 9848.60 22584.08 16582.85 16961.62 14568.24 11190.33 8428.35 29387.78 18772.71 9376.69 11690.95 78
UGNet68.71 18567.11 18873.50 19780.55 18447.61 25684.08 16578.51 25259.45 18265.68 13782.73 20923.78 32785.08 26152.80 23976.40 11787.80 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
xiu_mvs_v1_base_debu71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base_debi71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
Fast-Effi-MVS+72.73 11271.15 12477.48 8982.75 12754.76 7886.77 9080.64 20463.05 12265.93 13284.01 18644.42 12289.03 13656.45 21576.36 12188.64 135
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9288.70 11855.19 2491.24 7365.18 14076.32 12291.29 69
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9988.37 12457.69 1492.30 5075.25 7576.24 12391.20 71
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8572.37 7689.34 10632.52 26592.76 4077.90 5875.96 12492.22 39
testdata67.08 29777.59 23445.46 28869.20 34544.47 33771.50 8688.34 12731.21 27870.76 36352.20 24575.88 12585.03 206
mvs_anonymous72.29 12170.74 12776.94 10882.85 12454.72 8178.43 27981.54 18963.77 10561.69 19079.32 25051.11 4985.31 25462.15 15775.79 12690.79 81
VDDNet74.37 8672.13 10881.09 2179.58 19656.52 3790.02 2786.70 7752.61 28671.23 8987.20 15031.75 27593.96 2774.30 8375.77 12792.79 26
diffmvspermissive75.11 8074.65 7576.46 11678.52 22053.35 11583.28 19379.94 21670.51 2571.64 8388.72 11746.02 9686.08 24177.52 5975.75 12889.96 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet68.80 18367.55 18072.54 21478.50 22143.43 31081.03 24779.35 23459.12 19657.27 25886.71 15746.05 9587.70 19044.32 29375.60 12986.49 180
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7791.72 5553.44 3592.37 4966.28 12775.42 13093.28 15
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28049.51 20381.82 22874.08 30566.52 6380.40 2293.46 1946.95 8489.72 11886.69 775.30 13187.61 158
Vis-MVSNet (Re-imp)65.52 24265.63 21965.17 31377.49 23630.54 36975.49 29577.73 26459.34 18652.26 30386.69 15849.38 6780.53 30237.07 31775.28 13284.42 215
UWE-MVS72.17 12472.15 10772.21 22282.26 13844.29 30086.83 8989.58 2165.58 7865.82 13485.06 17545.02 11084.35 26954.07 22875.18 13387.99 150
test-LLR69.65 16969.01 15671.60 24078.67 21548.17 24185.13 13079.72 22159.18 19363.13 17482.58 21336.91 21780.24 30560.56 17075.17 13486.39 183
test-mter68.36 19067.29 18471.60 24078.67 21548.17 24185.13 13079.72 22153.38 28063.13 17482.58 21327.23 30380.24 30560.56 17075.17 13486.39 183
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9488.09 13257.29 1592.63 4469.24 10875.13 13691.91 48
PVSNet62.49 869.27 17467.81 17573.64 19384.41 8251.85 14984.63 15277.80 26266.42 6459.80 20684.95 17822.14 34280.44 30355.03 22175.11 13788.62 136
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9588.04 13655.82 2292.65 4269.61 10575.00 14092.05 43
BH-w/o70.02 15968.51 16074.56 16482.77 12650.39 17986.60 9478.14 25859.77 17659.65 20885.57 17039.27 18487.30 20449.86 25774.94 14185.99 189
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10787.94 13856.42 1989.24 12856.54 21174.75 14291.07 75
SR-MVS70.92 14569.73 14674.50 16583.38 10650.48 17684.27 16079.35 23448.96 31066.57 12590.45 8033.65 25687.11 20866.42 12474.56 14385.91 192
UA-Net67.32 21566.23 20470.59 25678.85 21141.23 33273.60 30675.45 29661.54 14766.61 12384.53 18038.73 18986.57 22742.48 30374.24 14483.98 225
CDS-MVSNet70.48 15269.43 14873.64 19377.56 23548.83 22083.51 18277.45 26963.27 11862.33 18385.54 17143.85 12583.29 28157.38 20774.00 14588.79 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-RMVSNet70.08 15768.01 16876.27 11884.21 8851.22 16687.29 7679.33 23658.96 20063.63 16986.77 15633.29 25990.30 10344.63 29173.96 14687.30 165
CLD-MVS75.60 7175.39 6376.24 11980.69 18052.40 13890.69 2486.20 8674.40 865.01 14488.93 11342.05 15390.58 9476.57 6473.96 14685.73 195
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
APD-MVS_3200maxsize69.62 17068.23 16673.80 18881.58 15748.22 24081.91 22479.50 22748.21 31364.24 15989.75 9931.91 27487.55 19863.08 14973.85 14885.64 198
HPM-MVS_fast67.86 19966.28 20372.61 21280.67 18148.34 23681.18 24575.95 29250.81 29959.55 21288.05 13527.86 29885.98 24358.83 18373.58 14983.51 234
ACMMPcopyleft70.81 14769.29 15375.39 14581.52 16151.92 14883.43 18583.03 16556.67 24658.80 22988.91 11431.92 27388.58 15465.89 13073.39 15085.67 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmvis_n_192071.29 13770.38 13474.00 18171.04 32148.79 22179.19 27464.62 35762.75 12666.73 11991.99 5040.94 16588.35 16483.00 2273.18 15184.85 211
HQP3-MVS83.68 15073.12 152
HQP-MVS72.34 11971.44 11975.03 15879.02 20751.56 15688.00 5583.68 15065.45 7964.48 15485.13 17337.35 20888.62 15266.70 12273.12 15284.91 209
TAMVS69.51 17268.16 16773.56 19676.30 25448.71 22482.57 20977.17 27462.10 13761.32 19484.23 18441.90 15683.46 27954.80 22473.09 15488.50 141
BH-untuned68.28 19366.40 19973.91 18381.62 15450.01 19085.56 11877.39 27057.63 22557.47 25583.69 19336.36 22687.08 20944.81 28973.08 15584.65 212
plane_prior49.57 19887.43 7064.57 9272.84 156
PCF-MVS61.03 1070.10 15668.40 16275.22 15577.15 24451.99 14579.30 27382.12 17756.47 25061.88 18986.48 16243.98 12487.24 20555.37 22072.79 15786.43 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS67.03 573.90 9273.14 9076.18 12484.70 7747.36 26075.56 29286.36 8366.27 6770.66 9883.91 18851.05 5089.31 12667.10 12172.61 15891.88 50
bld_raw_dy_0_6475.36 7473.18 8781.89 1187.91 4057.01 2486.77 9067.69 35178.56 165.01 14493.99 722.18 34094.84 1984.07 1772.45 15993.82 7
DP-MVS Recon71.99 12670.31 13677.01 10390.65 853.44 11189.37 3882.97 16756.33 25163.56 17189.47 10334.02 25192.15 5654.05 22972.41 16085.43 202
HQP_MVS70.96 14469.91 14474.12 17777.95 22849.57 19885.76 10882.59 17163.60 11062.15 18683.28 20036.04 23188.30 16865.46 13472.34 16184.49 213
plane_prior582.59 17188.30 16865.46 13472.34 16184.49 213
MVS_111021_LR69.07 17567.91 16972.54 21477.27 23949.56 20079.77 26673.96 30859.33 18860.73 19987.82 13930.19 28581.53 28969.94 10472.19 16386.53 179
SR-MVS-dyc-post68.27 19466.87 18972.48 21780.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10431.17 27986.09 24060.52 17272.06 16483.19 241
RE-MVS-def66.66 19580.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10429.28 29160.52 17272.06 16483.19 241
test_fmvsmconf_n74.41 8574.05 8175.49 14274.16 28648.38 23482.66 20672.57 31867.05 5675.11 4592.88 3346.35 9187.81 18283.93 1971.71 16690.28 92
Anonymous20240521170.11 15567.88 17176.79 11387.20 4547.24 26489.49 3677.38 27154.88 26866.14 12886.84 15520.93 34891.54 6656.45 21571.62 16791.59 56
EPMVS68.45 18965.44 22577.47 9084.91 7456.17 4371.89 32481.91 18361.72 14460.85 19772.49 32436.21 22787.06 21047.32 27571.62 16789.17 122
TR-MVS69.71 16667.85 17475.27 15382.94 12148.48 23187.40 7280.86 20157.15 23664.61 15187.08 15232.67 26489.64 12146.38 28271.55 16987.68 157
test_fmvsmconf0.1_n73.69 9873.15 8875.34 14670.71 32348.26 23982.15 21871.83 32266.75 5974.47 5292.59 3844.89 11487.78 18783.59 2071.35 17089.97 103
FA-MVS(test-final)69.00 17866.60 19776.19 12383.48 10147.96 25174.73 29982.07 17857.27 23362.18 18578.47 26036.09 22992.89 3553.76 23271.32 17187.73 155
OPM-MVS70.75 14869.58 14774.26 17475.55 26751.34 16286.05 10383.29 16061.94 14162.95 17785.77 16734.15 25088.44 16065.44 13771.07 17282.99 245
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
114514_t69.87 16467.88 17175.85 13288.38 2952.35 14086.94 8583.68 15053.70 27755.68 27385.60 16930.07 28691.20 7555.84 21871.02 17383.99 223
sss70.49 15170.13 14171.58 24281.59 15639.02 34080.78 25484.71 12759.34 18666.61 12388.09 13237.17 21385.52 25061.82 16071.02 17390.20 96
ET-MVSNet_ETH3D75.23 7774.08 8078.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29590.22 8749.71 6587.62 19672.12 9570.82 17592.82 24
WB-MVSnew69.36 17368.24 16572.72 21079.26 20249.40 20585.72 11388.85 3561.33 15064.59 15282.38 21934.57 24687.53 19946.82 28070.63 17681.22 276
cascas69.01 17766.13 20677.66 8579.36 19855.41 5886.99 8383.75 14956.69 24558.92 22581.35 23424.31 32592.10 5753.23 23370.61 17785.46 201
GeoE69.96 16267.88 17176.22 12081.11 16851.71 15384.15 16376.74 28259.83 17560.91 19684.38 18141.56 16188.10 17551.67 24770.57 17888.84 130
LCM-MVSNet-Re58.82 29356.54 29265.68 30779.31 20129.09 38061.39 36245.79 37860.73 16537.65 36672.47 32531.42 27781.08 29349.66 25870.41 17986.87 170
baseline275.15 7974.54 7676.98 10681.67 15251.74 15283.84 17391.94 369.97 2858.98 22286.02 16459.73 891.73 6368.37 11370.40 18087.48 160
AdaColmapbinary67.86 19965.48 22275.00 15988.15 3654.99 7386.10 10276.63 28549.30 30757.80 24486.65 15929.39 29088.94 14445.10 28870.21 18181.06 277
CPTT-MVS67.15 21965.84 21471.07 25080.96 17150.32 18481.94 22374.10 30446.18 32857.91 24287.64 14429.57 28881.31 29164.10 14370.18 18281.56 262
thisisatest051573.64 10072.20 10577.97 8081.63 15353.01 12786.69 9288.81 3762.53 13164.06 16085.65 16852.15 4492.50 4658.43 18769.84 18388.39 142
PatchmatchNetpermissive67.07 22363.63 24377.40 9183.10 11258.03 972.11 32277.77 26358.85 20159.37 21570.83 33737.84 19584.93 26342.96 29969.83 18489.26 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvsmconf0.01_n71.97 12770.95 12675.04 15766.21 34847.87 25280.35 25970.08 33865.85 7772.69 7091.68 5739.99 17887.67 19182.03 2969.66 18589.58 111
EPP-MVSNet71.14 13870.07 14274.33 17179.18 20446.52 27183.81 17486.49 7956.32 25257.95 24184.90 17954.23 3289.14 13358.14 19469.65 18687.33 163
EPNet_dtu66.25 23666.71 19364.87 31578.66 21734.12 35782.80 20475.51 29461.75 14364.47 15786.90 15437.06 21472.46 35743.65 29669.63 18788.02 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet63.12 25960.29 26971.61 23975.92 26346.65 26965.15 34681.94 18059.14 19554.65 28269.47 34425.74 31380.63 29941.03 30569.56 18887.55 159
EI-MVSNet-Vis-set73.19 10672.60 9574.99 16082.56 13349.80 19682.55 21189.00 2866.17 6965.89 13388.98 11243.83 12692.29 5165.38 13969.01 18982.87 248
FIs70.00 16070.24 14069.30 27477.93 23038.55 34383.99 16987.72 6266.86 5857.66 24884.17 18552.28 4285.31 25452.72 24368.80 19084.02 221
CostFormer73.89 9372.30 10278.66 6382.36 13656.58 3375.56 29285.30 10566.06 7370.50 10176.88 28157.02 1689.06 13468.27 11568.74 19190.33 90
HyFIR lowres test69.94 16367.58 17877.04 10177.11 24557.29 2081.49 24179.11 23958.27 21058.86 22780.41 24142.33 14786.96 21361.91 15868.68 19286.87 170
1112_ss70.05 15869.37 15072.10 22480.77 17842.78 31785.12 13376.75 28159.69 17861.19 19592.12 4447.48 7983.84 27253.04 23668.21 19389.66 109
ab-mvs70.65 14969.11 15575.29 15180.87 17546.23 27973.48 30885.24 11059.99 17366.65 12180.94 23743.13 14188.69 15063.58 14668.07 19490.95 78
tpm270.82 14668.44 16177.98 7980.78 17756.11 4474.21 30381.28 19560.24 17168.04 11275.27 29952.26 4388.50 15955.82 21968.03 19589.33 116
EI-MVSNet-UG-set72.37 11871.73 11474.29 17381.60 15549.29 20881.85 22688.64 4265.29 8765.05 14288.29 12943.18 13891.83 6163.74 14567.97 19681.75 259
thres20068.71 18567.27 18673.02 20384.73 7646.76 26885.03 13687.73 6162.34 13559.87 20483.45 19743.15 13988.32 16731.25 34667.91 19783.98 225
tpmrst71.04 14269.77 14574.86 16183.19 11155.86 5175.64 29178.73 24767.88 4464.99 14673.73 31049.96 6379.56 31465.92 12867.85 19889.14 123
iter_conf0573.51 10272.24 10477.33 9287.93 3955.97 4887.90 6170.81 33368.72 3564.04 16184.36 18347.54 7890.87 8671.11 9967.75 19985.13 205
test_vis1_n_192068.59 18868.31 16369.44 27369.16 33441.51 32884.63 15268.58 34758.80 20273.26 6388.37 12425.30 31680.60 30079.10 4367.55 20086.23 185
Anonymous2024052969.71 16667.28 18577.00 10483.78 9650.36 18288.87 4685.10 11647.22 31864.03 16283.37 19827.93 29792.10 5757.78 20267.44 20188.53 140
EG-PatchMatch MVS62.40 26959.59 27370.81 25473.29 29449.05 21185.81 10684.78 12451.85 29344.19 34073.48 31615.52 37089.85 11340.16 30767.24 20273.54 350
OMC-MVS65.97 24065.06 23168.71 28372.97 29942.58 32178.61 27775.35 29754.72 26959.31 21786.25 16333.30 25877.88 32757.99 19567.05 20385.66 197
TAPA-MVS56.12 1461.82 27260.18 27166.71 30178.48 22237.97 34675.19 29776.41 28846.82 32157.04 25986.52 16127.67 30177.03 33326.50 36667.02 20485.14 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re67.61 20566.00 20972.42 21881.86 14443.45 30964.67 34980.00 21469.56 3260.07 20385.00 17734.71 24487.63 19451.48 24866.68 20586.17 186
FE-MVS64.15 24760.43 26875.30 15080.85 17649.86 19468.28 34078.37 25550.26 30359.31 21773.79 30926.19 31091.92 6040.19 30666.67 20684.12 218
fmvsm_s_conf0.5_n74.48 8374.12 7975.56 13876.96 24647.85 25385.32 12469.80 34164.16 9778.74 2993.48 1845.51 10489.29 12786.48 866.62 20789.55 112
CMPMVSbinary40.41 2155.34 31452.64 31763.46 32160.88 37243.84 30561.58 36171.06 33130.43 37736.33 36874.63 30324.14 32675.44 34248.05 27166.62 20771.12 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test67.49 20967.91 16966.21 30576.06 25833.06 36280.82 25387.18 6764.44 9354.81 27982.87 20350.40 5882.60 28348.05 27166.55 20982.98 246
GA-MVS69.04 17666.70 19476.06 12775.11 27052.36 13983.12 19780.23 21163.32 11760.65 20079.22 25330.98 28088.37 16261.25 16266.41 21087.46 161
thres100view90066.87 22865.42 22671.24 24683.29 10843.15 31381.67 23287.78 5859.04 19755.92 27182.18 22443.73 12987.80 18428.80 35366.36 21182.78 250
tfpn200view967.57 20766.13 20671.89 23784.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21182.78 250
thres40067.40 21466.13 20671.19 24884.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21180.71 282
fmvsm_s_conf0.1_n73.80 9473.26 8675.43 14373.28 29547.80 25484.57 15469.43 34363.34 11678.40 3293.29 2444.73 12089.22 13085.99 966.28 21489.26 117
Test_1112_low_res67.18 21866.23 20470.02 26878.75 21341.02 33383.43 18573.69 31057.29 23258.45 23782.39 21845.30 10680.88 29550.50 25366.26 21588.16 143
PVSNet_BlendedMVS73.42 10373.30 8573.76 18985.91 5451.83 15086.18 10084.24 14065.40 8269.09 10580.86 23846.70 8888.13 17375.43 7165.92 21681.33 272
SDMVSNet71.89 12870.62 13075.70 13481.70 14951.61 15473.89 30488.72 4066.58 6061.64 19182.38 21937.63 20189.48 12377.44 6065.60 21786.01 187
sd_testset67.79 20265.95 21173.32 19881.70 14946.33 27668.99 33680.30 21066.58 6061.64 19182.38 21930.45 28387.63 19455.86 21765.60 21786.01 187
XVG-OURS61.88 27159.34 27669.49 27165.37 35346.27 27764.80 34873.49 31347.04 32057.41 25782.85 20425.15 31878.18 31953.00 23764.98 21984.01 222
thres600view766.46 23365.12 23070.47 25783.41 10243.80 30682.15 21887.78 5859.37 18556.02 27082.21 22343.73 12986.90 21626.51 36564.94 22080.71 282
LPG-MVS_test66.44 23464.58 23672.02 22774.42 28248.60 22583.07 19980.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
LGP-MVS_train72.02 22774.42 28248.60 22580.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
MVSTER73.25 10572.33 10076.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16681.66 23052.77 3890.44 9664.66 14264.69 22383.84 230
EI-MVSNet69.70 16868.70 15872.68 21175.00 27448.90 21879.54 26887.16 6861.05 15663.88 16683.74 19145.87 9790.44 9657.42 20664.68 22478.70 300
tpm cat166.28 23562.78 24576.77 11481.40 16357.14 2270.03 33177.19 27353.00 28358.76 23070.73 34046.17 9286.73 22043.27 29764.46 22586.44 181
test_cas_vis1_n_192067.10 22066.60 19768.59 28665.17 35643.23 31283.23 19469.84 34055.34 26270.67 9787.71 14224.70 32376.66 33878.57 5064.20 22685.89 193
fmvsm_s_conf0.5_n_a73.68 9973.15 8875.29 15175.45 26848.05 24683.88 17268.84 34663.43 11578.60 3093.37 2245.32 10588.92 14585.39 1164.04 22788.89 128
XVG-OURS-SEG-HR62.02 27059.54 27469.46 27265.30 35445.88 28265.06 34773.57 31246.45 32457.42 25683.35 19926.95 30578.09 32153.77 23164.03 22884.42 215
LS3D56.40 30953.82 30964.12 31781.12 16745.69 28773.42 30966.14 35335.30 36943.24 34779.88 24422.18 34079.62 31319.10 38564.00 22967.05 369
ACMP61.11 966.24 23764.33 23872.00 22974.89 27649.12 20983.18 19679.83 21955.41 26152.29 30182.68 21025.83 31286.10 23860.89 16563.94 23080.78 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm68.36 19067.48 18270.97 25279.93 19351.34 16276.58 28978.75 24667.73 4763.54 17274.86 30148.33 7072.36 35853.93 23063.71 23189.21 120
XXY-MVS70.18 15469.28 15472.89 20877.64 23242.88 31685.06 13487.50 6662.58 13062.66 18182.34 22243.64 13389.83 11458.42 18963.70 23285.96 191
fmvsm_s_conf0.1_n_a72.82 11172.05 11175.12 15670.95 32247.97 24982.72 20568.43 34862.52 13278.17 3393.08 3044.21 12388.86 14684.82 1363.54 23388.54 139
mvsmamba66.93 22764.88 23473.09 20275.06 27247.26 26283.36 19169.21 34462.64 12955.68 27381.43 23329.72 28789.20 13263.35 14863.50 23482.79 249
GBi-Net67.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
test167.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
FMVSNet368.84 18067.40 18373.19 20185.05 7148.53 22885.71 11485.36 10160.90 16257.58 25079.15 25442.16 15086.77 21847.25 27663.40 23584.27 217
VPA-MVSNet71.12 13970.66 12972.49 21678.75 21344.43 29887.64 6590.02 1763.97 10265.02 14381.58 23242.14 15187.42 20163.42 14763.38 23885.63 199
Fast-Effi-MVS+-dtu66.53 23264.10 24173.84 18672.41 30652.30 14284.73 14775.66 29359.51 18156.34 26879.11 25528.11 29585.85 24857.74 20363.29 23983.35 235
CVMVSNet60.85 27760.44 26762.07 32775.00 27432.73 36479.54 26873.49 31336.98 36156.28 26983.74 19129.28 29169.53 36646.48 28163.23 24083.94 228
ACMMP++_ref63.20 241
ACMM58.35 1264.35 24662.01 25171.38 24474.21 28548.51 22982.25 21779.66 22347.61 31654.54 28380.11 24225.26 31786.00 24251.26 24963.16 24279.64 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42057.53 30356.38 29660.97 33774.01 28748.10 24546.30 38154.31 37248.18 31450.88 31277.43 27138.37 19259.16 37954.83 22263.14 24375.66 333
PS-MVSNAJss68.78 18467.17 18773.62 19573.01 29848.33 23884.95 14184.81 12359.30 18958.91 22679.84 24637.77 19688.86 14662.83 15163.12 24483.67 233
MDTV_nov1_ep1361.56 25481.68 15155.12 6872.41 31678.18 25759.19 19158.85 22869.29 34534.69 24586.16 23536.76 32162.96 245
FMVSNet267.57 20765.79 21572.90 20682.71 12847.97 24985.15 12984.93 11958.55 20756.71 26378.26 26136.72 22286.67 22146.15 28462.94 24684.07 220
D2MVS63.49 25561.39 25669.77 26969.29 33348.93 21778.89 27677.71 26560.64 16749.70 31672.10 33227.08 30483.48 27854.48 22562.65 24776.90 321
MVS-HIRNet49.01 33744.71 34161.92 33176.06 25846.61 27063.23 35454.90 37124.77 38333.56 37636.60 39121.28 34775.88 34129.49 35062.54 24863.26 379
IB-MVS68.87 274.01 9072.03 11379.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19381.74 22953.21 3694.28 2360.45 17462.41 24990.03 102
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03072.27 12371.56 11674.42 16875.93 26250.60 17286.97 8483.21 16162.75 12667.15 11884.38 18150.07 5986.66 22271.19 9762.37 25085.99 189
thisisatest053070.47 15368.56 15976.20 12279.78 19451.52 15883.49 18488.58 4757.62 22658.60 23182.79 20551.03 5191.48 6752.84 23862.36 25185.59 200
OpenMVS_ROBcopyleft53.19 1759.20 28656.00 29868.83 27971.13 32044.30 29983.64 17775.02 29946.42 32546.48 33673.03 31918.69 35688.14 17227.74 36161.80 25274.05 346
dp64.41 24561.58 25372.90 20682.40 13454.09 9872.53 31476.59 28660.39 16955.68 27370.39 34135.18 23976.90 33639.34 30961.71 25387.73 155
UniMVSNet_ETH3D62.51 26560.49 26668.57 28768.30 34240.88 33573.89 30479.93 21751.81 29454.77 28079.61 24724.80 32181.10 29249.93 25661.35 25483.73 231
FMVSNet164.57 24462.11 25071.96 23077.32 23846.36 27383.52 17883.31 15752.43 28854.42 28476.23 29027.80 29986.20 23242.59 30261.34 25583.32 236
VPNet72.07 12571.42 12074.04 17978.64 21847.17 26589.91 3287.97 5572.56 1264.66 14885.04 17641.83 15888.33 16661.17 16460.97 25686.62 178
Effi-MVS+-dtu66.24 23764.96 23370.08 26575.17 26949.64 19782.01 22174.48 30262.15 13657.83 24376.08 29430.59 28283.79 27365.40 13860.93 25776.81 322
PLCcopyleft52.38 1860.89 27658.97 28066.68 30381.77 14645.70 28678.96 27574.04 30743.66 34347.63 32783.19 20223.52 33077.78 33037.47 31260.46 25876.55 328
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023121166.08 23963.67 24273.31 19983.07 11548.75 22286.01 10584.67 12945.27 33256.54 26576.67 28428.06 29688.95 14252.78 24059.95 25982.23 253
CR-MVSNet62.47 26759.04 27972.77 20973.97 28956.57 3460.52 36371.72 32460.04 17257.49 25365.86 35438.94 18680.31 30442.86 30059.93 26081.42 267
RPMNet59.29 28454.25 30774.42 16873.97 28956.57 3460.52 36376.98 27735.72 36557.49 25358.87 37337.73 19985.26 25627.01 36459.93 26081.42 267
dmvs_testset57.65 30158.21 28355.97 35274.62 2799.82 40863.75 35163.34 36167.23 5348.89 32083.68 19539.12 18576.14 33923.43 37459.80 26281.96 256
v114468.81 18266.82 19074.80 16272.34 30753.46 10884.68 14981.77 18764.25 9560.28 20277.91 26340.23 17388.95 14260.37 17559.52 26381.97 255
v2v48269.55 17167.64 17775.26 15472.32 30853.83 10084.93 14281.94 18065.37 8460.80 19879.25 25241.62 15988.98 14163.03 15059.51 26482.98 246
CNLPA60.59 27858.44 28267.05 29879.21 20347.26 26279.75 26764.34 35942.46 34951.90 30583.94 18727.79 30075.41 34337.12 31559.49 26578.47 304
ACMMP++59.38 266
tt080563.39 25661.31 25869.64 27069.36 33238.87 34178.00 28085.48 9548.82 31155.66 27681.66 23024.38 32486.37 23149.04 26459.36 26783.68 232
PatchMatch-RL56.66 30553.75 31065.37 31277.91 23145.28 28969.78 33360.38 36541.35 35047.57 32873.73 31016.83 36476.91 33436.99 31859.21 26873.92 347
test0.0.03 162.54 26462.44 24762.86 32672.28 30929.51 37782.93 20278.78 24459.18 19353.07 29682.41 21736.91 21777.39 33137.45 31358.96 26981.66 261
v119267.96 19865.74 21774.63 16371.79 31053.43 11384.06 16780.99 20063.19 12059.56 21177.46 27037.50 20788.65 15158.20 19358.93 27081.79 258
cl2268.85 17967.69 17672.35 22078.07 22749.98 19182.45 21478.48 25362.50 13358.46 23677.95 26249.99 6185.17 25862.55 15258.72 27181.90 257
miper_ehance_all_eth68.70 18767.58 17872.08 22576.91 24749.48 20482.47 21378.45 25462.68 12858.28 24077.88 26450.90 5285.01 26261.91 15858.72 27181.75 259
miper_enhance_ethall69.77 16568.90 15772.38 21978.93 21049.91 19283.29 19278.85 24164.90 8959.37 21579.46 24852.77 3885.16 25963.78 14458.72 27182.08 254
V4267.66 20465.60 22173.86 18570.69 32553.63 10581.50 23978.61 25063.85 10459.49 21477.49 26937.98 19387.65 19262.33 15358.43 27480.29 287
Syy-MVS61.51 27361.35 25762.00 32981.73 14730.09 37280.97 24981.02 19860.93 16055.06 27782.64 21135.09 24080.81 29616.40 39058.32 27575.10 339
myMVS_eth3d63.52 25463.56 24463.40 32281.73 14734.28 35580.97 24981.02 19860.93 16055.06 27782.64 21148.00 7580.81 29623.42 37558.32 27575.10 339
tpmvs62.45 26859.42 27571.53 24383.93 9254.32 9170.03 33177.61 26651.91 29153.48 29468.29 34837.91 19486.66 22233.36 33658.27 27773.62 349
XVG-ACMP-BASELINE56.03 31152.85 31565.58 30861.91 36940.95 33463.36 35272.43 31945.20 33346.02 33774.09 3069.20 38178.12 32045.13 28758.27 27777.66 316
pmmvs562.80 26361.18 25967.66 29269.53 33142.37 32482.65 20775.19 29854.30 27552.03 30478.51 25931.64 27680.67 29848.60 26758.15 27979.95 291
v124066.99 22464.68 23573.93 18271.38 31852.66 13383.39 18979.98 21561.97 14058.44 23877.11 27535.25 23787.81 18256.46 21458.15 27981.33 272
v192192067.45 21065.23 22974.10 17871.51 31552.90 13083.75 17680.44 20762.48 13459.12 22177.13 27436.98 21587.90 18057.53 20458.14 28181.49 263
jajsoiax63.21 25860.84 26370.32 26168.33 34144.45 29781.23 24381.05 19753.37 28150.96 31177.81 26617.49 36285.49 25259.31 17958.05 28281.02 278
tttt051768.33 19266.29 20274.46 16678.08 22649.06 21080.88 25289.08 2754.40 27354.75 28180.77 23951.31 4890.33 10049.35 26158.01 28383.99 223
Anonymous2023120659.08 28957.59 28663.55 32068.77 33732.14 36780.26 26179.78 22050.00 30449.39 31772.39 32726.64 30778.36 31833.12 33957.94 28480.14 289
mvs_tets62.96 26160.55 26570.19 26268.22 34444.24 30280.90 25180.74 20352.99 28450.82 31377.56 26716.74 36585.44 25359.04 18257.94 28480.89 279
LTVRE_ROB45.45 1952.73 32649.74 32961.69 33269.78 33034.99 35244.52 38267.60 35243.11 34643.79 34274.03 30718.54 35881.45 29028.39 35857.94 28468.62 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419267.86 19965.76 21674.16 17671.68 31253.09 12484.14 16480.83 20262.85 12559.21 22077.28 27339.30 18388.00 17858.67 18557.88 28781.40 269
IterMVS-LS66.63 23065.36 22770.42 25975.10 27148.90 21881.45 24276.69 28461.05 15655.71 27277.10 27645.86 9883.65 27657.44 20557.88 28778.70 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3373.95 9172.89 9377.15 9980.17 18950.37 18184.68 14983.33 15668.08 4071.97 7988.65 12242.50 14591.15 7778.82 4657.78 28989.91 106
ACMH53.70 1659.78 28155.94 29971.28 24576.59 24948.35 23580.15 26476.11 28949.74 30541.91 35173.45 31716.50 36790.31 10131.42 34457.63 29075.17 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 28355.14 30372.32 22174.69 27750.71 16974.39 30273.58 31144.44 33843.40 34577.52 26819.45 35290.87 8631.31 34557.49 29175.38 335
pmmvs463.34 25761.07 26170.16 26370.14 32750.53 17479.97 26571.41 32955.08 26454.12 28778.58 25832.79 26382.09 28750.33 25457.22 29277.86 313
c3_l67.97 19766.66 19571.91 23676.20 25649.31 20782.13 22078.00 26061.99 13957.64 24976.94 27849.41 6684.93 26360.62 16957.01 29381.49 263
UniMVSNet (Re)67.71 20366.80 19170.45 25874.44 28142.93 31582.42 21584.90 12063.69 10859.63 20980.99 23647.18 8185.23 25751.17 25156.75 29483.19 241
SCA63.84 25060.01 27275.32 14778.58 21957.92 1061.61 36077.53 26756.71 24457.75 24770.77 33831.97 27179.91 31148.80 26556.36 29588.13 146
v867.25 21664.99 23274.04 17972.89 30153.31 11882.37 21680.11 21361.54 14754.29 28676.02 29542.89 14388.41 16158.43 18756.36 29580.39 286
cl____67.43 21165.93 21271.95 23376.33 25248.02 24782.58 20879.12 23861.30 15256.72 26276.92 27946.12 9386.44 22957.98 19656.31 29781.38 271
DIV-MVS_self_test67.43 21165.93 21271.94 23476.33 25248.01 24882.57 20979.11 23961.31 15156.73 26176.92 27946.09 9486.43 23057.98 19656.31 29781.39 270
DP-MVS59.24 28556.12 29768.63 28488.24 3450.35 18382.51 21264.43 35841.10 35146.70 33478.77 25724.75 32288.57 15722.26 37756.29 29966.96 370
NR-MVSNet67.25 21665.99 21071.04 25173.27 29643.91 30485.32 12484.75 12666.05 7453.65 29382.11 22545.05 10985.97 24547.55 27356.18 30083.24 239
v1066.61 23164.20 24073.83 18772.59 30453.37 11481.88 22579.91 21861.11 15454.09 28875.60 29740.06 17788.26 17156.47 21356.10 30179.86 292
baseline172.51 11772.12 10973.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 14987.97 13755.00 2889.48 12359.07 18156.05 30287.13 167
UniMVSNet_NR-MVSNet68.82 18168.29 16470.40 26075.71 26542.59 31984.23 16186.78 7466.31 6658.51 23282.45 21651.57 4684.64 26753.11 23455.96 30383.96 227
DU-MVS66.84 22965.74 21770.16 26373.27 29642.59 31981.50 23982.92 16863.53 11258.51 23282.11 22540.75 16784.64 26753.11 23455.96 30383.24 239
v14868.24 19566.35 20073.88 18471.76 31151.47 15984.23 16181.90 18463.69 10858.94 22376.44 28643.72 13187.78 18760.63 16855.86 30582.39 252
test_djsdf63.84 25061.56 25470.70 25568.78 33644.69 29581.63 23381.44 19150.28 30052.27 30276.26 28926.72 30686.11 23660.83 16655.84 30681.29 275
tfpnnormal61.47 27459.09 27868.62 28576.29 25541.69 32581.14 24685.16 11354.48 27251.32 30773.63 31432.32 26786.89 21721.78 37955.71 30777.29 319
WR-MVS67.58 20666.76 19270.04 26775.92 26345.06 29486.23 9985.28 10764.31 9458.50 23481.00 23544.80 11982.00 28849.21 26355.57 30883.06 244
RRT_MVS63.68 25361.01 26271.70 23873.48 29145.98 28181.19 24476.08 29054.33 27452.84 29779.27 25122.21 33987.65 19254.13 22755.54 30981.46 266
test_fmvs153.60 32452.54 31956.78 34858.07 37430.26 37068.95 33742.19 38432.46 37263.59 17082.56 21511.55 37460.81 37358.25 19255.27 31079.28 294
Baseline_NR-MVSNet65.49 24364.27 23969.13 27574.37 28441.65 32683.39 18978.85 24159.56 18059.62 21076.88 28140.75 16787.44 20049.99 25555.05 31178.28 309
v7n62.50 26659.27 27772.20 22367.25 34749.83 19577.87 28280.12 21252.50 28748.80 32173.07 31832.10 26987.90 18046.83 27954.92 31278.86 298
TranMVSNet+NR-MVSNet66.94 22665.61 22070.93 25373.45 29243.38 31183.02 20184.25 13865.31 8658.33 23981.90 22839.92 18085.52 25049.43 26054.89 31383.89 229
FMVSNet558.61 29556.45 29365.10 31477.20 24339.74 33774.77 29877.12 27550.27 30243.28 34667.71 34926.15 31176.90 33636.78 32054.78 31478.65 302
ACMH+54.58 1558.55 29755.24 30168.50 28874.68 27845.80 28580.27 26070.21 33747.15 31942.77 34875.48 29816.73 36685.98 24335.10 33154.78 31473.72 348
test_fmvs1_n52.55 32851.19 32356.65 34951.90 38430.14 37167.66 34142.84 38332.27 37362.30 18482.02 2279.12 38260.84 37257.82 20054.75 31678.99 296
eth_miper_zixun_eth66.98 22565.28 22872.06 22675.61 26650.40 17881.00 24876.97 28062.00 13856.99 26076.97 27744.84 11685.58 24958.75 18454.42 31780.21 288
IterMVS63.77 25261.67 25270.08 26572.68 30351.24 16580.44 25775.51 29460.51 16851.41 30673.70 31332.08 27078.91 31554.30 22654.35 31880.08 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp60.46 27957.65 28568.88 27763.63 36445.09 29072.93 31278.63 24946.52 32351.12 30872.80 32221.46 34683.07 28257.79 20153.97 31978.47 304
F-COLMAP55.96 31353.65 31162.87 32572.76 30242.77 31874.70 30170.37 33640.03 35241.11 35679.36 24917.77 36173.70 35132.80 34053.96 32072.15 356
ADS-MVSNet255.21 31651.44 32166.51 30480.60 18249.56 20055.03 37465.44 35444.72 33551.00 30961.19 36622.83 33275.41 34328.54 35653.63 32174.57 343
ADS-MVSNet56.17 31051.95 32068.84 27880.60 18253.07 12555.03 37470.02 33944.72 33551.00 30961.19 36622.83 33278.88 31628.54 35653.63 32174.57 343
IterMVS-SCA-FT59.12 28758.81 28160.08 33970.68 32645.07 29180.42 25874.25 30343.54 34450.02 31573.73 31031.97 27156.74 38151.06 25253.60 32378.42 306
pm-mvs164.12 24862.56 24668.78 28171.68 31238.87 34182.89 20381.57 18855.54 26053.89 29077.82 26537.73 19986.74 21948.46 26953.49 32480.72 281
AUN-MVS68.20 19666.35 20073.76 18976.37 25047.45 25879.52 27079.52 22660.98 15862.34 18286.02 16436.59 22586.94 21462.32 15453.47 32586.89 169
hse-mvs271.44 13670.68 12873.73 19176.34 25147.44 25979.45 27179.47 22968.08 4071.97 7986.01 16642.50 14586.93 21578.82 4653.46 32686.83 175
miper_lstm_enhance63.91 24962.30 24868.75 28275.06 27246.78 26769.02 33581.14 19659.68 17952.76 29872.39 32740.71 16977.99 32556.81 21053.09 32781.48 265
PatchT56.60 30652.97 31367.48 29372.94 30046.16 28057.30 37173.78 30938.77 35554.37 28557.26 37637.52 20578.06 32232.02 34152.79 32878.23 311
test_vis1_n51.19 33349.66 33055.76 35351.26 38529.85 37567.20 34338.86 38832.12 37459.50 21379.86 2458.78 38358.23 38056.95 20952.46 32979.19 295
JIA-IIPM52.33 33047.77 33766.03 30671.20 31946.92 26640.00 38976.48 28737.10 36046.73 33337.02 38932.96 26077.88 32735.97 32252.45 33073.29 352
Patchmatch-test53.33 32548.17 33468.81 28073.31 29342.38 32342.98 38458.23 36732.53 37138.79 36370.77 33839.66 18173.51 35225.18 36852.06 33190.55 84
testgi54.25 31952.57 31859.29 34262.76 36721.65 39272.21 31970.47 33553.25 28241.94 35077.33 27214.28 37177.95 32629.18 35251.72 33278.28 309
test_040256.45 30853.03 31266.69 30276.78 24850.31 18581.76 22969.61 34242.79 34743.88 34172.13 33022.82 33486.46 22816.57 38950.94 33363.31 378
testing359.97 28060.19 27059.32 34177.60 23330.01 37481.75 23081.79 18553.54 27850.34 31479.94 24348.99 6976.91 33417.19 38850.59 33471.03 364
COLMAP_ROBcopyleft43.60 2050.90 33448.05 33559.47 34067.81 34540.57 33671.25 32662.72 36436.49 36436.19 36973.51 31513.48 37273.92 34920.71 38150.26 33563.92 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs659.64 28257.15 28967.09 29666.01 34936.86 35080.50 25678.64 24845.05 33449.05 31973.94 30827.28 30286.10 23843.96 29549.94 33678.31 308
Anonymous2024052151.65 33148.42 33361.34 33656.43 37839.65 33973.57 30773.47 31636.64 36336.59 36763.98 35910.75 37772.25 35935.35 32549.01 33772.11 357
USDC54.36 31851.23 32263.76 31964.29 36237.71 34762.84 35773.48 31556.85 23935.47 37171.94 3339.23 38078.43 31738.43 31148.57 33875.13 338
WR-MVS_H58.91 29258.04 28461.54 33369.07 33533.83 35976.91 28681.99 17951.40 29648.17 32274.67 30240.23 17374.15 34631.78 34348.10 33976.64 326
ITE_SJBPF51.84 35758.03 37531.94 36853.57 37536.67 36241.32 35475.23 30011.17 37651.57 38625.81 36748.04 34072.02 358
CL-MVSNet_self_test62.98 26061.14 26068.50 28865.86 35142.96 31484.37 15682.98 16660.98 15853.95 28972.70 32340.43 17183.71 27541.10 30447.93 34178.83 299
test_fmvs245.89 34244.32 34450.62 35945.85 39324.70 38658.87 36937.84 39125.22 38252.46 30074.56 3047.07 38654.69 38249.28 26247.70 34272.48 355
CP-MVSNet58.54 29857.57 28761.46 33468.50 33933.96 35876.90 28778.60 25151.67 29547.83 32576.60 28534.99 24372.79 35535.45 32447.58 34377.64 317
MIMVSNet150.35 33547.81 33657.96 34661.53 37027.80 38367.40 34274.06 30643.25 34533.31 37965.38 35716.03 36871.34 36021.80 37847.55 34474.75 341
PS-CasMVS58.12 30057.03 29161.37 33568.24 34333.80 36076.73 28878.01 25951.20 29747.54 32976.20 29332.85 26172.76 35635.17 32947.37 34577.55 318
Patchmatch-RL test58.72 29454.32 30671.92 23563.91 36344.25 30161.73 35955.19 37057.38 23149.31 31854.24 37837.60 20380.89 29462.19 15647.28 34690.63 83
PEN-MVS58.35 29957.15 28961.94 33067.55 34634.39 35477.01 28578.35 25651.87 29247.72 32676.73 28333.91 25273.75 35034.03 33447.17 34777.68 315
FPMVS35.40 35233.67 35640.57 36946.34 39228.74 38141.05 38657.05 36920.37 38722.27 39153.38 3806.87 38844.94 3948.62 39647.11 34848.01 388
test20.0355.22 31554.07 30858.68 34463.14 36625.00 38577.69 28374.78 30052.64 28543.43 34472.39 32726.21 30974.76 34529.31 35147.05 34976.28 330
DSMNet-mixed38.35 34935.36 35447.33 36248.11 39114.91 40437.87 39036.60 39219.18 38834.37 37359.56 37115.53 36953.01 38520.14 38346.89 35074.07 345
Patchmtry56.56 30752.95 31467.42 29472.53 30550.59 17359.05 36771.72 32437.86 35946.92 33265.86 35438.94 18680.06 30836.94 31946.72 35171.60 360
test_vis1_rt40.29 34838.64 35045.25 36548.91 39030.09 37259.44 36627.07 40224.52 38438.48 36451.67 3836.71 38949.44 38744.33 29246.59 35256.23 381
EU-MVSNet52.63 32750.72 32458.37 34562.69 36828.13 38272.60 31375.97 29130.94 37640.76 35872.11 33120.16 35070.80 36235.11 33046.11 35376.19 331
RPSCF45.77 34344.13 34550.68 35857.67 37729.66 37654.92 37645.25 38026.69 38145.92 33875.92 29617.43 36345.70 39227.44 36245.95 35476.67 323
our_test_359.11 28855.08 30471.18 24971.42 31653.29 11981.96 22274.52 30148.32 31242.08 34969.28 34628.14 29482.15 28534.35 33345.68 35578.11 312
DTE-MVSNet57.03 30455.73 30060.95 33865.94 35032.57 36575.71 29077.09 27651.16 29846.65 33576.34 28832.84 26273.22 35430.94 34744.87 35677.06 320
pmmvs-eth3d55.97 31252.78 31665.54 30961.02 37146.44 27275.36 29667.72 35049.61 30643.65 34367.58 35021.63 34477.04 33244.11 29444.33 35773.15 354
AllTest47.32 34044.66 34255.32 35465.08 35737.50 34862.96 35654.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
TestCases55.32 35465.08 35737.50 34854.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
ppachtmachnet_test58.56 29654.34 30571.24 24671.42 31654.74 7981.84 22772.27 32049.02 30945.86 33968.99 34726.27 30883.30 28030.12 34843.23 36075.69 332
KD-MVS_self_test49.24 33646.85 33956.44 35054.32 37922.87 38857.39 37073.36 31744.36 33937.98 36559.30 37218.97 35571.17 36133.48 33542.44 36175.26 336
PM-MVS46.92 34143.76 34656.41 35152.18 38332.26 36663.21 35538.18 38937.99 35840.78 35766.20 3535.09 39465.42 36948.19 27041.99 36271.54 361
TinyColmap48.15 33944.49 34359.13 34365.73 35238.04 34563.34 35362.86 36338.78 35429.48 38367.23 3526.46 39173.30 35324.59 37041.90 36366.04 373
N_pmnet41.25 34639.77 34945.66 36468.50 3390.82 41472.51 3150.38 41335.61 36635.26 37261.51 36520.07 35167.74 36723.51 37340.63 36468.42 368
TransMVSNet (Re)62.82 26260.76 26469.02 27673.98 28841.61 32786.36 9679.30 23756.90 23852.53 29976.44 28641.85 15787.60 19738.83 31040.61 36577.86 313
OurMVSNet-221017-052.39 32948.73 33263.35 32365.21 35538.42 34468.54 33964.95 35538.19 35639.57 35971.43 33413.23 37379.92 30937.16 31440.32 36671.72 359
YYNet153.82 32249.96 32765.41 31170.09 32948.95 21572.30 31771.66 32644.25 34031.89 38063.07 36223.73 32873.95 34833.26 33739.40 36773.34 351
MDA-MVSNet_test_wron53.82 32249.95 32865.43 31070.13 32849.05 21172.30 31771.65 32744.23 34131.85 38163.13 36123.68 32974.01 34733.25 33839.35 36873.23 353
ambc62.06 32853.98 38129.38 37835.08 39279.65 22441.37 35359.96 3696.27 39282.15 28535.34 32638.22 36974.65 342
test_fmvs337.95 35035.75 35344.55 36635.50 39918.92 39648.32 37834.00 39618.36 39041.31 35561.58 3642.29 40148.06 39142.72 30137.71 37066.66 371
mvsany_test143.38 34542.57 34745.82 36350.96 38626.10 38455.80 37227.74 40127.15 38047.41 33174.39 30518.67 35744.95 39344.66 29036.31 37166.40 372
Gipumacopyleft27.47 36024.26 36537.12 37460.55 37329.17 37911.68 40160.00 36614.18 39310.52 40215.12 4032.20 40363.01 3718.39 39735.65 37219.18 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth57.56 30255.15 30264.79 31664.57 36133.12 36173.17 31183.87 14858.98 19941.75 35270.03 34222.54 33579.92 30946.12 28535.31 37381.32 274
TDRefinement40.91 34738.37 35148.55 36150.45 38733.03 36358.98 36850.97 37628.50 37829.89 38267.39 3516.21 39354.51 38317.67 38735.25 37458.11 380
EGC-MVSNET33.75 35530.42 35943.75 36764.94 35936.21 35160.47 36540.70 3870.02 4070.10 40853.79 3797.39 38560.26 37411.09 39535.23 37534.79 393
LF4IMVS33.04 35732.55 35734.52 37540.96 39422.03 39044.45 38335.62 39320.42 38628.12 38662.35 3635.03 39531.88 40521.61 38034.42 37649.63 387
new-patchmatchnet48.21 33846.55 34053.18 35657.73 37618.19 40070.24 32971.02 33245.70 32933.70 37560.23 36818.00 36069.86 36527.97 36034.35 37771.49 362
pmmvs345.53 34441.55 34857.44 34748.97 38939.68 33870.06 33057.66 36828.32 37934.06 37457.29 3758.50 38466.85 36834.86 33234.26 37865.80 374
SixPastTwentyTwo54.37 31750.10 32667.21 29570.70 32441.46 33074.73 29964.69 35647.56 31739.12 36169.49 34318.49 35984.69 26631.87 34234.20 37975.48 334
UnsupCasMVSNet_bld53.86 32150.53 32563.84 31863.52 36534.75 35371.38 32581.92 18246.53 32238.95 36257.93 37420.55 34980.20 30739.91 30834.09 38076.57 327
MDA-MVSNet-bldmvs51.56 33247.75 33863.00 32471.60 31447.32 26169.70 33472.12 32143.81 34227.65 38863.38 36021.97 34375.96 34027.30 36332.19 38165.70 375
PMVScopyleft19.57 2225.07 36422.43 36932.99 37923.12 41022.98 38740.98 38735.19 39415.99 39211.95 40135.87 3931.47 40749.29 3885.41 40531.90 38226.70 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 35631.89 35838.59 37149.01 38820.42 39351.01 37737.92 39020.58 38523.45 39046.79 3856.66 39049.28 38920.00 38431.57 38346.09 390
KD-MVS_2432*160059.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
miper_refine_blended59.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
test_vis3_rt24.79 36522.95 36830.31 38128.59 40518.92 39637.43 39117.27 40912.90 39421.28 39229.92 3981.02 40836.35 39828.28 35929.82 38635.65 392
test_f27.12 36124.85 36233.93 37726.17 40915.25 40330.24 39722.38 40612.53 39628.23 38549.43 3842.59 40034.34 40325.12 36926.99 38752.20 385
APD_test126.46 36324.41 36432.62 38037.58 39621.74 39140.50 38830.39 39811.45 39716.33 39443.76 3861.63 40641.62 39511.24 39426.82 38834.51 394
K. test v354.04 32049.42 33167.92 29168.55 33842.57 32275.51 29463.07 36252.07 28939.21 36064.59 35819.34 35382.21 28437.11 31625.31 38978.97 297
LCM-MVSNet28.07 35823.85 36640.71 36827.46 40818.93 39530.82 39646.19 37712.76 39516.40 39334.70 3941.90 40448.69 39020.25 38224.22 39054.51 383
test_method24.09 36621.07 37033.16 37827.67 4078.35 41226.63 39835.11 3953.40 40414.35 39636.98 3903.46 39835.31 40019.08 38622.95 39155.81 382
testf121.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
APD_test221.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
lessismore_v067.98 29064.76 36041.25 33145.75 37936.03 37065.63 35619.29 35484.11 27035.67 32321.24 39478.59 303
mvsany_test328.00 35925.98 36134.05 37628.97 40415.31 40234.54 39318.17 40716.24 39129.30 38453.37 3812.79 39933.38 40430.01 34920.41 39553.45 384
PVSNet_057.04 1361.19 27557.24 28873.02 20377.45 23750.31 18579.43 27277.36 27263.96 10347.51 33072.45 32625.03 31983.78 27452.76 24219.22 39684.96 208
WB-MVS37.41 35136.37 35240.54 37054.23 38010.43 40765.29 34543.75 38134.86 37027.81 38754.63 37724.94 32063.21 3706.81 40215.00 39747.98 389
SSC-MVS35.20 35334.30 35537.90 37252.58 3828.65 41061.86 35841.64 38531.81 37525.54 38952.94 38223.39 33159.28 3786.10 40312.86 39845.78 391
PMMVS226.71 36222.98 36737.87 37336.89 3978.51 41142.51 38529.32 40019.09 38913.01 39737.54 3882.23 40253.11 38414.54 39111.71 39951.99 386
MVEpermissive16.60 2317.34 37213.39 37529.16 38228.43 40619.72 39413.73 40023.63 4057.23 4037.96 40321.41 3990.80 40936.08 3996.97 40010.39 40031.69 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN19.16 36918.40 37321.44 38536.19 39813.63 40547.59 37930.89 39710.73 3985.91 40516.59 4013.66 39739.77 3965.95 4048.14 40110.92 401
DeepMVS_CXcopyleft13.10 38721.34 4118.99 40910.02 41110.59 3997.53 40430.55 3971.82 40514.55 4066.83 4017.52 40215.75 400
EMVS18.42 37017.66 37420.71 38634.13 40012.64 40646.94 38029.94 39910.46 4005.58 40614.93 4044.23 39638.83 3975.24 4067.51 40310.67 402
wuyk23d9.11 3748.77 37810.15 38840.18 39516.76 40120.28 3991.01 4122.58 4052.66 4070.98 4070.23 41212.49 4074.08 4076.90 4041.19 404
tmp_tt9.44 37310.68 3765.73 3892.49 4124.21 41310.48 40218.04 4080.34 40612.59 39820.49 40011.39 3757.03 40813.84 3936.46 4055.95 403
ANet_high34.39 35429.59 36048.78 36030.34 40322.28 38955.53 37363.79 36038.11 35715.47 39536.56 3926.94 38759.98 37513.93 3925.64 40664.08 376
test_blank0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
cdsmvs_eth3d_5k18.33 37124.44 3630.00 3920.00 4140.00 4160.00 40389.40 220.00 4080.00 41192.02 4838.55 1900.00 4090.00 4100.00 4070.00 407
pcd_1.5k_mvsjas3.15 3784.20 3810.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 41037.77 1960.00 4090.00 4100.00 4070.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
sosnet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
Regformer0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
testmvs6.14 3768.18 3790.01 3900.01 4130.00 41673.40 3100.00 4140.00 4080.02 4090.15 4080.00 4130.00 4090.02 4080.00 4070.02 405
test1236.01 3778.01 3800.01 3900.00 4140.01 41571.93 3230.00 4140.00 4080.02 4090.11 4090.00 4130.00 4090.02 4080.00 4070.02 405
ab-mvs-re7.68 37510.24 3770.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 41192.12 440.00 4130.00 4090.00 4100.00 4070.00 407
uanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
WAC-MVS34.28 35522.56 376
FOURS183.24 10949.90 19384.98 13878.76 24547.71 31573.42 60
test_one_060189.39 2257.29 2088.09 5357.21 23582.06 1393.39 2054.94 29
eth-test20.00 414
eth-test0.00 414
test_241102_ONE89.48 1756.89 2988.94 3057.53 22784.61 493.29 2458.81 1196.45 1
save fliter85.35 6656.34 4189.31 4081.46 19061.55 146
test072689.40 2057.45 1792.32 888.63 4357.71 22383.14 1093.96 855.17 25
GSMVS88.13 146
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18888.13 146
sam_mvs35.99 233
MTGPAbinary81.31 193
test_post170.84 32814.72 40534.33 24983.86 27148.80 265
test_post16.22 40237.52 20584.72 265
patchmatchnet-post59.74 37038.41 19179.91 311
MTMP87.27 7715.34 410
gm-plane-assit83.24 10954.21 9570.91 2288.23 13095.25 1466.37 125
TEST985.68 5755.42 5687.59 6784.00 14457.72 22272.99 6590.98 6844.87 11588.58 154
test_885.72 5655.31 6187.60 6683.88 14757.84 22072.84 6990.99 6744.99 11188.34 165
agg_prior85.64 6054.92 7583.61 15472.53 7488.10 175
test_prior456.39 4087.15 81
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 84
旧先验281.73 23145.53 33174.66 4770.48 36458.31 191
新几何281.61 235
无先验85.19 12878.00 26049.08 30885.13 26052.78 24087.45 162
原ACMM283.77 175
testdata277.81 32945.64 286
segment_acmp44.97 113
testdata177.55 28464.14 98
plane_prior777.95 22848.46 232
plane_prior678.42 22349.39 20636.04 231
plane_prior483.28 200
plane_prior348.95 21564.01 10162.15 186
plane_prior285.76 10863.60 110
plane_prior178.31 225
n20.00 414
nn0.00 414
door-mid41.31 386
test1184.25 138
door43.27 382
HQP5-MVS51.56 156
HQP-NCC79.02 20788.00 5565.45 7964.48 154
ACMP_Plane79.02 20788.00 5565.45 7964.48 154
BP-MVS66.70 122
HQP4-MVS64.47 15788.61 15384.91 209
HQP2-MVS37.35 208
NP-MVS78.76 21250.43 17785.12 174
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26759.29 21936.76 21946.33 28387.32 164
Test By Simon39.38 182