This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9699.33 1992.62 24100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1197.88 5796.54 1398.84 2499.46 1092.55 2599.98 998.25 4699.93 199.94 18
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9093.01 7099.23 1099.45 1495.12 799.98 999.25 1899.92 399.97 7
PC_three_145294.60 3699.41 499.12 4695.50 699.96 2899.84 299.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 799.97 2199.90 199.92 399.99 1
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7599.70 2698.13 4294.61 3597.78 5799.46 1089.85 5499.81 7997.97 5099.91 699.88 26
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8194.50 3798.64 2899.54 393.32 1799.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 23100.00 198.99 2599.90 799.96 10
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 8997.75 7695.66 2498.21 4099.29 2091.10 3199.99 597.68 5799.87 999.68 56
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11199.06 1094.45 4096.42 9098.70 9588.81 6699.74 8895.35 10799.86 1299.97 7
MSP-MVS97.77 998.18 296.53 9699.54 3690.14 14499.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7699.38 7197.66 9590.18 13698.39 3599.18 3390.94 3499.66 9498.58 3699.85 1399.88 26
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5899.16 9597.65 10289.55 15899.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1897.46 1697.39 5199.12 6593.49 7298.52 17297.50 13694.46 3898.99 1798.64 9991.58 2899.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2299.98 999.70 499.82 1999.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2397.47 14193.95 4899.07 1599.46 1093.18 2099.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1299.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1797.72 8194.17 4399.30 899.54 393.32 1799.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2497.73 8095.54 2699.54 399.69 699.81 2399.99 1
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 15100.00 191.79 16699.80 2699.94 18
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6799.56 4397.52 13193.59 6398.01 5099.12 4690.80 3999.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6399.13 10697.44 14789.02 17097.90 5399.22 2788.90 6599.49 11294.63 12599.79 2799.68 56
region2R96.30 4696.17 4896.70 8599.70 790.31 13899.46 5997.66 9590.55 12697.07 7399.07 5186.85 10499.97 2195.43 10599.74 2999.81 33
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6699.33 7897.38 15493.73 5998.83 2599.02 5890.87 3899.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVSMamba_PlusPlus95.73 7095.15 7897.44 4697.28 13494.35 5698.26 20496.75 20383.09 30097.84 5495.97 21889.59 5798.48 17597.86 5399.73 3199.49 81
HFP-MVS96.42 4296.26 4296.90 7299.69 890.96 12599.47 5597.81 6890.54 12796.88 7599.05 5487.57 8499.96 2895.65 9899.72 3299.78 38
ACMMPR96.28 4796.14 5296.73 8299.68 990.47 13699.47 5597.80 7090.54 12796.83 8099.03 5686.51 11599.95 3195.65 9899.72 3299.75 46
CP-MVS96.22 4896.15 5196.42 10199.67 1089.62 16299.70 2697.61 11090.07 14296.00 9599.16 3687.43 8799.92 4096.03 9399.72 3299.70 52
test1297.83 3599.33 5394.45 5197.55 12397.56 5888.60 6899.50 11199.71 3599.55 74
ZD-MVS99.67 1093.28 7497.61 11087.78 21397.41 6299.16 3690.15 5199.56 10598.35 4199.70 36
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13397.64 10396.51 1695.88 9999.39 1887.35 9399.99 596.61 8099.69 3799.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf05_1195.50 7495.43 7195.70 13397.26 13689.15 16998.26 20496.60 21091.37 10897.84 5496.18 21085.57 13198.56 17196.12 8899.66 3899.40 88
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6899.16 9597.44 14790.08 14198.59 3099.07 5189.06 6299.42 12397.92 5199.66 3899.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6297.45 14489.60 15498.70 2699.42 1790.42 4599.72 8998.47 3899.65 4099.77 43
HPM-MVScopyleft95.41 7895.22 7695.99 12399.29 5589.14 17099.17 9497.09 18387.28 22695.40 11298.48 11384.93 14499.38 12895.64 10299.65 4099.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 9291.21 11398.08 22597.58 11883.74 28895.87 10099.02 5886.74 10799.64 4299.81 33
mPP-MVS95.90 6195.75 6396.38 10499.58 3089.41 16699.26 8497.41 15190.66 12094.82 12198.95 6986.15 12399.98 995.24 11199.64 4299.74 47
SteuartSystems-ACMMP97.25 1997.34 2097.01 6397.38 12691.46 11099.75 2197.66 9594.14 4798.13 4299.26 2192.16 2799.66 9497.91 5299.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 9094.62 8895.70 13399.11 6688.44 19399.14 10397.11 17985.82 25495.69 10798.47 11483.46 16299.32 13593.16 15199.63 4599.35 94
9.1496.87 2799.34 5099.50 5197.49 13889.41 16298.59 3099.43 1689.78 5599.69 9198.69 3099.62 46
新几何197.40 5098.92 7792.51 9497.77 7585.52 25996.69 8599.06 5388.08 7899.89 5384.88 24499.62 4699.79 36
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17197.00 7498.97 6288.14 7799.71 9088.23 20699.62 4698.76 151
PHI-MVS96.65 3796.46 3897.21 5799.34 5091.77 10399.70 2698.05 4686.48 24698.05 4799.20 2989.33 6099.96 2898.38 3999.62 4699.90 22
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11698.24 12388.17 7499.83 7396.11 9199.60 5099.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 5395.82 5896.54 9599.47 4690.13 14699.36 7597.41 15190.64 12395.49 11198.95 6985.51 13499.98 996.00 9499.59 5199.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5195.81 6096.95 7199.42 4791.19 11499.55 4497.53 12789.72 14995.86 10198.94 7286.59 11199.97 2195.13 11299.56 5299.68 56
MVS_111021_HR96.69 3596.69 3396.72 8498.58 8891.00 12499.14 10399.45 193.86 5495.15 11798.73 8988.48 6999.76 8697.23 6699.56 5299.40 88
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22998.71 8578.11 35199.70 2697.71 8598.18 197.36 6499.76 190.37 4799.94 3499.27 1699.54 5499.99 1
CPTT-MVS94.60 10594.43 9395.09 15699.66 1286.85 22899.44 6297.47 14183.22 29794.34 13298.96 6682.50 18399.55 10694.81 12099.50 5598.88 137
MP-MVS-pluss95.80 6495.30 7397.29 5398.95 7692.66 8998.59 16797.14 17588.95 17393.12 15199.25 2385.62 12999.94 3496.56 8299.48 5699.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6998.88 13297.59 11690.66 12097.98 5199.14 4286.59 111100.00 196.47 8499.46 5799.89 25
PGM-MVS95.85 6295.65 6896.45 9999.50 4289.77 15998.22 20898.90 1389.19 16596.74 8398.95 6985.91 12799.92 4093.94 13499.46 5799.66 60
testdata95.26 15198.20 9687.28 22097.60 11285.21 26398.48 3399.15 3988.15 7698.72 16490.29 18299.45 5999.78 38
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17398.59 16797.33 15890.44 13096.84 7899.12 4686.75 10699.41 12697.47 6099.44 6099.76 45
XVS96.47 4196.37 4096.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7698.96 6687.37 8999.87 5895.65 9899.43 6199.78 38
X-MVStestdata90.69 20088.66 22396.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7629.59 41287.37 8999.87 5895.65 9899.43 6199.78 38
MVS93.92 12292.28 15198.83 795.69 20496.82 896.22 30498.17 3784.89 27284.34 25198.61 10379.32 22199.83 7393.88 13699.43 6199.86 29
MTAPA96.09 5195.80 6196.96 7099.29 5591.19 11497.23 26797.45 14492.58 7994.39 13199.24 2586.43 11799.99 596.22 8699.40 6499.71 51
iter_conf0594.60 10593.87 11596.79 7797.28 13494.04 6295.67 32395.94 26083.09 30090.06 19895.97 21889.59 5798.48 17597.86 5399.34 6597.86 194
旧先验198.97 7392.90 8797.74 7799.15 3991.05 3399.33 6699.60 69
PAPM_NR95.43 7695.05 8396.57 9499.42 4790.14 14498.58 16997.51 13390.65 12292.44 15998.90 7687.77 8399.90 5090.88 17499.32 6799.68 56
SR-MVS-dyc-post95.75 6895.86 5795.41 14499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6286.73 10899.36 13096.62 7899.31 6899.60 69
RE-MVS-def95.70 6499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6285.24 14196.62 7899.31 6899.60 69
PAPM96.35 4395.94 5497.58 4294.10 26395.25 2698.93 12798.17 3794.26 4293.94 13898.72 9189.68 5697.88 20796.36 8599.29 7099.62 68
APD-MVS_3200maxsize95.64 7295.65 6895.62 13899.24 5887.80 20398.42 18597.22 16688.93 17596.64 8898.98 6185.49 13599.36 13096.68 7799.27 7199.70 52
3Dnovator87.35 1193.17 14991.77 16497.37 5295.41 21493.07 7998.82 13697.85 6091.53 10182.56 27297.58 14871.97 27399.82 7691.01 17299.23 7299.22 107
patch_mono-297.10 2697.97 894.49 17999.21 6183.73 29399.62 3798.25 3295.28 3099.38 698.91 7592.28 2699.94 3499.61 999.22 7399.78 38
dcpmvs_295.67 7196.18 4594.12 19598.82 8184.22 28697.37 26095.45 30190.70 11995.77 10498.63 10190.47 4398.68 16699.20 2099.22 7399.45 84
GST-MVS95.97 5695.66 6696.90 7299.49 4591.22 11299.45 6197.48 13989.69 15095.89 9898.72 9186.37 11899.95 3194.62 12699.22 7399.52 77
test_fmvsmconf_n96.78 3496.84 2996.61 8995.99 19390.25 13999.90 298.13 4296.68 1198.42 3498.92 7485.34 14099.88 5499.12 2299.08 7699.70 52
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 11797.11 17995.83 2098.97 1999.14 4282.48 18599.60 10398.60 3399.08 7698.00 190
test_fmvsm_n_192097.08 2797.55 1495.67 13697.94 10589.61 16399.93 198.48 2497.08 599.08 1499.13 4488.17 7499.93 3899.11 2399.06 7897.47 204
MVS_111021_LR95.78 6595.94 5495.28 15098.19 9887.69 20498.80 13999.26 793.39 6595.04 11998.69 9684.09 15499.76 8696.96 7299.06 7898.38 170
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5999.42 6797.55 12392.43 8293.82 14299.12 4687.30 9499.91 4594.02 13399.06 7899.74 47
114514_t94.06 11793.05 13697.06 6199.08 6992.26 9898.97 12597.01 19182.58 31292.57 15798.22 12480.68 21099.30 13689.34 19599.02 8199.63 66
API-MVS94.78 9794.18 10096.59 9199.21 6190.06 15198.80 13997.78 7383.59 29293.85 14099.21 2883.79 15799.97 2192.37 16199.00 8299.74 47
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10392.42 30089.92 15599.79 1696.85 19896.53 1597.22 6798.67 9782.71 18199.84 6998.92 2798.98 8399.43 87
MVSFormer94.71 10294.08 10396.61 8995.05 23694.87 3897.77 24296.17 24286.84 23598.04 4898.52 10685.52 13295.99 30989.83 18598.97 8498.96 127
lupinMVS96.32 4595.94 5497.44 4695.05 23694.87 3899.86 496.50 22093.82 5798.04 4898.77 8585.52 13298.09 19596.98 7198.97 8499.37 92
3Dnovator+87.72 893.43 13891.84 16298.17 2395.73 20395.08 3498.92 12997.04 18691.42 10681.48 29697.60 14674.60 24799.79 8290.84 17598.97 8499.64 64
GG-mvs-BLEND96.98 6896.53 16694.81 4387.20 38197.74 7793.91 13996.40 20396.56 296.94 25995.08 11398.95 8799.20 108
test_cas_vis1_n_192093.86 12693.74 11994.22 19195.39 21686.08 25099.73 2296.07 25096.38 1797.19 7197.78 13665.46 32499.86 6396.71 7598.92 8896.73 225
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3898.88 1497.14 497.21 6898.94 7286.89 10399.91 4599.43 1598.91 8999.59 73
CS-MVS-test95.98 5596.34 4194.90 16498.06 10287.66 20799.69 3396.10 24693.66 6098.35 3899.05 5486.28 11997.66 22596.96 7298.90 9099.37 92
gg-mvs-nofinetune90.00 21487.71 24096.89 7696.15 18694.69 4785.15 38797.74 7768.32 38792.97 15460.16 40096.10 396.84 26293.89 13598.87 9199.14 112
MAR-MVS94.43 11294.09 10295.45 14299.10 6887.47 21398.39 19497.79 7288.37 19294.02 13799.17 3578.64 22999.91 4592.48 16098.85 9298.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CSCG94.87 9494.71 8795.36 14599.54 3686.49 23399.34 7798.15 4082.71 31090.15 19799.25 2389.48 5999.86 6394.97 11898.82 9399.72 50
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12899.90 5099.72 398.80 9499.85 30
CHOSEN 280x42096.80 3396.85 2896.66 8897.85 10894.42 5394.76 33198.36 2992.50 8195.62 10997.52 15097.92 197.38 24398.31 4498.80 9498.20 184
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6898.90 7682.66 18299.93 3898.71 2998.80 9499.63 66
test_vis1_n_192093.08 15193.42 12692.04 24296.31 17779.36 33899.83 996.06 25196.72 998.53 3298.10 12958.57 34999.91 4597.86 5398.79 9796.85 223
MVP-Stereo86.61 27385.83 26788.93 31888.70 35483.85 29296.07 30894.41 34182.15 32175.64 34391.96 29367.65 30596.45 28477.20 31298.72 9886.51 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 18289.49 20497.17 5995.66 20693.42 7398.60 16597.51 13380.92 33681.39 29797.41 15672.89 26699.87 5882.33 27598.68 9998.21 183
131493.44 13791.98 15997.84 3495.24 21894.38 5496.22 30497.92 5590.18 13682.28 27997.71 14177.63 23499.80 8191.94 16598.67 10099.34 96
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4897.59 11792.91 8699.86 498.04 4896.70 1099.58 299.26 2190.90 3699.94 3499.57 1198.66 10199.40 88
CS-MVS95.75 6896.19 4394.40 18397.88 10786.22 24499.66 3496.12 24592.69 7898.07 4698.89 7887.09 9797.59 23196.71 7598.62 10299.39 91
EC-MVSNet95.09 8695.17 7794.84 16795.42 21388.17 19599.48 5395.92 26691.47 10397.34 6598.36 11882.77 17797.41 24297.24 6598.58 10398.94 132
DeepC-MVS91.02 494.56 10993.92 11296.46 9897.16 14390.76 12998.39 19497.11 17993.92 5088.66 21298.33 11978.14 23199.85 6795.02 11598.57 10498.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 19888.84 21896.48 9793.58 28293.51 7198.80 13997.41 15182.59 31178.62 32597.49 15268.00 30299.82 7684.52 25098.55 10596.11 241
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4997.51 12292.78 8899.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10699.55 74
EIA-MVS95.11 8595.27 7594.64 17696.34 17686.51 23299.59 4096.62 20892.51 8094.08 13698.64 9986.05 12498.24 18795.07 11498.50 10699.18 109
mamv491.41 18293.57 12284.91 34897.11 14758.11 39595.68 32295.93 26482.09 32289.78 20395.71 22490.09 5298.24 18797.26 6498.50 10698.38 170
jason95.40 7994.86 8697.03 6292.91 29594.23 5799.70 2696.30 23093.56 6496.73 8498.52 10681.46 20397.91 20496.08 9298.47 10998.96 127
jason: jason.
MS-PatchMatch86.75 26985.92 26689.22 31191.97 30782.47 31296.91 27896.14 24483.74 28877.73 33293.53 26658.19 35197.37 24576.75 31698.35 11087.84 364
test_fmvsmvis_n_192095.47 7595.40 7295.70 13394.33 25690.22 14299.70 2696.98 19396.80 792.75 15598.89 7882.46 18899.92 4098.36 4098.33 11196.97 221
DP-MVS Recon95.85 6295.15 7897.95 3299.87 294.38 5499.60 3897.48 13986.58 24194.42 12999.13 4487.36 9299.98 993.64 14198.33 11199.48 82
test_fmvsmconf0.01_n94.14 11693.51 12496.04 11986.79 37289.19 16799.28 8395.94 26095.70 2195.50 11098.49 11073.27 26299.79 8298.28 4598.32 11399.15 111
test_fmvs192.35 16492.94 14090.57 27597.19 14075.43 36099.55 4494.97 32195.20 3196.82 8197.57 14959.59 34799.84 6997.30 6398.29 11496.46 235
bld_raw_dy_0_6491.25 18790.03 19694.92 16395.99 19392.32 9591.40 36695.74 28370.34 37984.15 25294.47 24385.61 13098.17 18994.42 12998.14 11594.26 252
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12097.04 18695.51 2798.86 2399.11 5082.19 19399.36 13098.59 3598.14 11598.00 190
BH-w/o92.32 16591.79 16393.91 20496.85 15486.18 24699.11 10895.74 28388.13 20184.81 24497.00 17977.26 23697.91 20489.16 20098.03 11797.64 198
test_fmvs1_n91.07 19191.41 17190.06 28994.10 26374.31 36499.18 9194.84 32594.81 3396.37 9197.46 15350.86 37799.82 7697.14 6797.90 11896.04 242
TAPA-MVS87.50 990.35 20489.05 21494.25 19098.48 9185.17 27398.42 18596.58 21582.44 31787.24 22598.53 10582.77 17798.84 15759.09 38697.88 11998.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 11393.82 11795.95 12597.40 12588.74 18798.41 18798.27 3192.18 9091.43 17596.40 20378.88 22499.81 7993.59 14297.81 12099.30 99
BH-untuned91.46 18190.84 18393.33 21496.51 16884.83 27998.84 13595.50 29886.44 24883.50 25796.70 19575.49 24397.77 21586.78 22397.81 12097.40 205
Vis-MVSNetpermissive92.64 15791.85 16195.03 16095.12 22988.23 19498.48 18096.81 19991.61 9892.16 16397.22 16571.58 27998.00 20385.85 23597.81 12098.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 3296.68 3497.25 5698.65 8693.10 7899.48 5398.76 1596.54 1397.84 5498.22 12487.49 8699.66 9495.35 10797.78 12399.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 5995.66 6696.75 8098.77 8391.61 10799.88 398.04 4893.64 6294.21 13397.76 13783.50 16099.87 5897.41 6197.75 12498.79 147
test_vis1_n90.40 20390.27 19390.79 27091.55 31676.48 35699.12 10794.44 33794.31 4197.34 6596.95 18143.60 38899.42 12397.57 5997.60 12596.47 234
ETV-MVS96.00 5396.00 5396.00 12296.56 16491.05 12299.63 3696.61 20993.26 6897.39 6398.30 12186.62 11098.13 19298.07 4997.57 12698.82 144
PLCcopyleft91.07 394.23 11594.01 10494.87 16599.17 6387.49 21299.25 8596.55 21788.43 19091.26 17998.21 12685.92 12599.86 6389.77 18997.57 12697.24 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 20988.72 22194.59 17898.97 7386.33 24196.90 27996.60 21074.96 36484.06 25598.74 8875.78 24199.83 7374.93 32797.57 12697.62 201
AdaColmapbinary93.82 12793.06 13596.10 11799.88 189.07 17298.33 19897.55 12386.81 23790.39 19498.65 9875.09 24499.98 993.32 14997.53 12999.26 103
BH-RMVSNet91.25 18789.99 19795.03 16096.75 16088.55 19098.65 15694.95 32287.74 21687.74 21997.80 13468.27 29898.14 19180.53 29197.49 13098.41 167
CANet_DTU94.31 11493.35 12897.20 5897.03 15294.71 4698.62 16195.54 29695.61 2597.21 6898.47 11471.88 27499.84 6988.38 20497.46 13197.04 218
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14997.37 12789.16 16899.86 498.47 2595.68 2398.87 2299.15 3982.44 18999.92 4099.14 2197.43 13296.83 224
PatchMatch-RL91.47 18090.54 19094.26 18998.20 9686.36 23996.94 27797.14 17587.75 21588.98 21095.75 22371.80 27699.40 12780.92 28697.39 13397.02 219
fmvsm_s_conf0.1_n95.56 7395.68 6595.20 15294.35 25589.10 17199.50 5197.67 9494.76 3498.68 2799.03 5681.13 20799.86 6398.63 3297.36 13496.63 227
UGNet91.91 17590.85 18295.10 15597.06 15088.69 18898.01 22898.24 3492.41 8592.39 16093.61 26360.52 34499.68 9288.14 20797.25 13596.92 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 13092.83 14296.28 10997.99 10490.22 14299.38 7198.93 1291.42 10693.66 14497.68 14271.29 28199.64 10087.94 21097.20 13698.98 125
test250694.80 9694.21 9796.58 9296.41 17292.18 9998.01 22898.96 1190.82 11793.46 14797.28 15985.92 12598.45 17789.82 18797.19 13799.12 115
ECVR-MVScopyleft92.29 16691.33 17295.15 15496.41 17287.84 20298.10 22194.84 32590.82 11791.42 17797.28 15965.61 32198.49 17490.33 18197.19 13799.12 115
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 17897.82 6591.92 9394.75 12398.88 8087.06 9999.48 11695.40 10697.17 13998.70 154
test111192.12 17191.19 17594.94 16296.15 18687.36 21798.12 21894.84 32590.85 11690.97 18297.26 16165.60 32298.37 17989.74 19097.14 14099.07 121
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14896.51 16889.01 17599.81 1198.39 2795.46 2899.19 1399.16 3681.44 20499.91 4598.83 2896.97 14197.01 220
CNLPA93.64 13492.74 14396.36 10698.96 7590.01 15499.19 8995.89 27486.22 24989.40 20798.85 8180.66 21199.84 6988.57 20296.92 14299.24 104
fmvsm_s_conf0.1_n_a95.16 8495.15 7895.18 15392.06 30688.94 17999.29 8097.53 12794.46 3898.98 1898.99 6079.99 21399.85 6798.24 4796.86 14396.73 225
xiu_mvs_v1_base_debu94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base_debi94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
MVS_Test93.67 13392.67 14596.69 8696.72 16192.66 8997.22 26896.03 25287.69 21995.12 11894.03 24981.55 19998.28 18489.17 19996.46 14799.14 112
EI-MVSNet-UG-set95.43 7695.29 7495.86 12899.07 7089.87 15698.43 18497.80 7091.78 9594.11 13598.77 8586.25 12199.48 11694.95 11996.45 14898.22 182
TSAR-MVS + GP.96.95 2996.91 2697.07 6098.88 7991.62 10699.58 4196.54 21895.09 3296.84 7898.63 10191.16 2999.77 8599.04 2496.42 14999.81 33
PVSNet_Blended_VisFu94.67 10394.11 10196.34 10797.14 14491.10 11999.32 7997.43 14992.10 9291.53 17496.38 20683.29 16699.68 9293.42 14896.37 15098.25 178
Vis-MVSNet (Re-imp)93.26 14693.00 13994.06 19896.14 18886.71 23198.68 15296.70 20488.30 19689.71 20697.64 14585.43 13896.39 28688.06 20996.32 15199.08 119
EPMVS92.59 16091.59 16795.59 14097.22 13790.03 15291.78 36098.04 4890.42 13191.66 16990.65 32186.49 11697.46 23881.78 28196.31 15299.28 101
PMMVS93.62 13593.90 11392.79 22496.79 15981.40 32198.85 13396.81 19991.25 11096.82 8198.15 12877.02 23798.13 19293.15 15296.30 15398.83 143
TESTMET0.1,193.82 12793.26 13295.49 14195.21 22190.25 13999.15 10097.54 12689.18 16691.79 16594.87 23889.13 6197.63 22886.21 22896.29 15498.60 160
test-LLR93.11 15092.68 14494.40 18394.94 24187.27 22199.15 10097.25 16190.21 13491.57 17094.04 24784.89 14597.58 23285.94 23296.13 15598.36 174
test-mter93.27 14592.89 14194.40 18394.94 24187.27 22199.15 10097.25 16188.95 17391.57 17094.04 24788.03 7997.58 23285.94 23296.13 15598.36 174
Effi-MVS+93.87 12593.15 13496.02 12195.79 20090.76 12996.70 28995.78 28086.98 23295.71 10697.17 17079.58 21698.01 20294.57 12796.09 15799.31 98
mvs_anonymous92.50 16291.65 16695.06 15796.60 16389.64 16197.06 27396.44 22486.64 24084.14 25393.93 25482.49 18496.17 30391.47 16796.08 15899.35 94
IS-MVSNet93.00 15292.51 14894.49 17996.14 18887.36 21798.31 20195.70 28688.58 18390.17 19697.50 15183.02 17397.22 24887.06 21596.07 15998.90 136
PatchmatchNetpermissive92.05 17491.04 17895.06 15796.17 18589.04 17391.26 36997.26 16089.56 15790.64 18890.56 32788.35 7197.11 25179.53 29496.07 15999.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 17391.75 16593.02 21998.16 9982.89 30598.79 14395.97 25586.54 24387.92 21797.80 13478.69 22899.65 9885.97 23095.93 16196.53 233
diffmvspermissive94.59 10794.19 9895.81 12995.54 20990.69 13198.70 15095.68 28891.61 9895.96 9697.81 13380.11 21298.06 19796.52 8395.76 16298.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 10394.30 9495.79 13099.25 5788.13 19798.41 18798.67 2290.38 13291.43 17598.72 9182.22 19299.95 3193.83 13895.76 16299.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 24388.61 22488.51 32195.53 21072.68 37396.85 28188.43 39388.45 18773.14 35790.63 32275.82 24094.38 35192.95 15395.71 16498.48 165
PCF-MVS89.78 591.26 18589.63 20196.16 11695.44 21291.58 10995.29 32696.10 24685.07 26782.75 26697.45 15478.28 23099.78 8480.60 29095.65 16597.12 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FE-MVS91.38 18490.16 19595.05 15996.46 17087.53 21189.69 37897.84 6182.97 30492.18 16292.00 29284.07 15598.93 15580.71 28895.52 16698.68 155
mvsany_test194.57 10895.09 8292.98 22095.84 19982.07 31598.76 14595.24 31492.87 7796.45 8998.71 9484.81 14799.15 14197.68 5795.49 16797.73 196
casdiffmvspermissive93.98 12193.43 12595.61 13995.07 23589.86 15798.80 13995.84 27990.98 11492.74 15697.66 14479.71 21598.10 19494.72 12395.37 16898.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 11993.33 12996.03 12095.22 22090.90 12799.09 10995.99 25390.58 12591.55 17397.37 15779.91 21498.06 19795.01 11695.22 16999.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 12393.30 13095.72 13295.10 23390.07 14897.48 25695.91 27191.03 11293.54 14697.68 14279.58 21698.02 20194.27 13195.14 17099.08 119
Fast-Effi-MVS+91.72 17790.79 18694.49 17995.89 19687.40 21699.54 4995.70 28685.01 27089.28 20995.68 22577.75 23397.57 23583.22 26595.06 17198.51 163
EPNet_dtu92.28 16792.15 15592.70 22897.29 13284.84 27898.64 15897.82 6592.91 7593.02 15397.02 17885.48 13795.70 32372.25 34794.89 17297.55 203
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 14392.62 14695.34 14696.27 17988.53 19295.88 31496.97 19490.90 11595.37 11397.07 17482.38 19099.10 14783.91 26094.86 17398.38 170
baseline294.04 11893.80 11894.74 17193.07 29490.25 13998.12 21898.16 3989.86 14686.53 23396.95 18195.56 598.05 19991.44 16894.53 17495.93 243
MVS-HIRNet79.01 33875.13 35090.66 27393.82 27881.69 31885.16 38693.75 35154.54 39674.17 34959.15 40257.46 35396.58 27363.74 37494.38 17593.72 255
SCA90.64 20189.25 21094.83 16894.95 24088.83 18396.26 30197.21 16790.06 14390.03 19990.62 32366.61 31396.81 26483.16 26694.36 17698.84 140
OMC-MVS93.90 12493.62 12194.73 17298.63 8787.00 22698.04 22796.56 21692.19 8992.46 15898.73 8979.49 22099.14 14592.16 16394.34 17798.03 189
DP-MVS88.75 23886.56 25795.34 14698.92 7787.45 21497.64 25293.52 35670.55 37781.49 29597.25 16374.43 25099.88 5471.14 35094.09 17898.67 156
sss94.85 9593.94 11197.58 4296.43 17194.09 6198.93 12799.16 889.50 15995.27 11497.85 13181.50 20199.65 9892.79 15894.02 17998.99 124
FA-MVS(test-final)92.22 17091.08 17795.64 13796.05 19288.98 17691.60 36397.25 16186.99 22991.84 16492.12 28683.03 17299.00 15186.91 22093.91 18098.93 133
EPP-MVSNet93.75 12993.67 12094.01 20195.86 19885.70 26298.67 15497.66 9584.46 27791.36 17897.18 16991.16 2997.79 21392.93 15493.75 18198.53 162
GeoE90.60 20289.56 20293.72 21095.10 23385.43 26699.41 6894.94 32383.96 28587.21 22696.83 19174.37 25197.05 25580.50 29293.73 18298.67 156
CVMVSNet90.30 20690.91 18188.46 32294.32 25773.58 36897.61 25397.59 11690.16 13988.43 21597.10 17276.83 23892.86 36282.64 27293.54 18398.93 133
UWE-MVS93.18 14793.40 12792.50 23296.56 16483.55 29598.09 22497.84 6189.50 15991.72 16796.23 20991.08 3296.70 26886.28 22793.33 18497.26 210
thisisatest051594.75 9894.19 9896.43 10096.13 19192.64 9299.47 5597.60 11287.55 22293.17 15097.59 14794.71 1198.42 17888.28 20593.20 18598.24 181
JIA-IIPM85.97 28384.85 28389.33 31093.23 29173.68 36785.05 38897.13 17769.62 38391.56 17268.03 39888.03 7996.96 25777.89 30893.12 18697.34 207
Effi-MVS+-dtu89.97 21690.68 18887.81 32695.15 22671.98 37597.87 23695.40 30591.92 9387.57 22091.44 30274.27 25396.84 26289.45 19293.10 18794.60 251
HY-MVS88.56 795.29 8194.23 9698.48 1497.72 11096.41 1394.03 33998.74 1692.42 8495.65 10894.76 24086.52 11499.49 11295.29 10992.97 18899.53 76
LFMVS92.23 16990.84 18396.42 10198.24 9591.08 12198.24 20796.22 23683.39 29594.74 12498.31 12061.12 34298.85 15694.45 12892.82 18999.32 97
HyFIR lowres test93.68 13293.29 13194.87 16597.57 11988.04 19998.18 21298.47 2587.57 22191.24 18095.05 23585.49 13597.46 23893.22 15092.82 18999.10 117
CDS-MVSNet93.47 13693.04 13794.76 16994.75 24789.45 16598.82 13697.03 18887.91 21090.97 18296.48 20189.06 6296.36 28889.50 19192.81 19198.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 5695.11 8198.54 1397.62 11496.65 999.44 6298.74 1692.25 8895.21 11598.46 11686.56 11399.46 11895.00 11792.69 19299.50 80
test_yl95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
DCV-MVSNet95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
MSDG88.29 24786.37 25994.04 20096.90 15386.15 24896.52 29294.36 34277.89 35379.22 32096.95 18169.72 28899.59 10473.20 34292.58 19596.37 238
thisisatest053094.00 11993.52 12395.43 14395.76 20290.02 15398.99 12297.60 11286.58 24191.74 16697.36 15894.78 1098.34 18086.37 22692.48 19697.94 192
testing1195.33 8094.98 8596.37 10597.20 13892.31 9699.29 8097.68 9090.59 12494.43 12897.20 16690.79 4098.60 16995.25 11092.38 19798.18 185
TR-MVS90.77 19789.44 20594.76 16996.31 17788.02 20097.92 23295.96 25785.52 25988.22 21697.23 16466.80 31298.09 19584.58 24892.38 19798.17 186
MDTV_nov1_ep1390.47 19296.14 18888.55 19091.34 36897.51 13389.58 15592.24 16190.50 33186.99 10297.61 23077.64 30992.34 199
TAMVS92.62 15892.09 15794.20 19294.10 26387.68 20598.41 18796.97 19487.53 22389.74 20496.04 21684.77 14996.49 28188.97 20192.31 20098.42 166
ADS-MVSNet287.62 25986.88 25389.86 29596.21 18279.14 34187.15 38292.99 35983.01 30289.91 20187.27 36278.87 22592.80 36574.20 33492.27 20197.64 198
ADS-MVSNet88.99 22787.30 24694.07 19796.21 18287.56 21087.15 38296.78 20283.01 30289.91 20187.27 36278.87 22597.01 25674.20 33492.27 20197.64 198
ETVMVS94.50 11093.90 11396.31 10897.48 12492.98 8299.07 11197.86 5988.09 20394.40 13096.90 18488.35 7197.28 24790.72 17992.25 20398.66 159
cascas90.93 19589.33 20995.76 13195.69 20493.03 8198.99 12296.59 21280.49 33886.79 23294.45 24465.23 32598.60 16993.52 14392.18 20495.66 245
CR-MVSNet88.83 23487.38 24593.16 21793.47 28486.24 24284.97 38994.20 34588.92 17690.76 18686.88 36684.43 15094.82 34470.64 35192.17 20598.41 167
RPMNet85.07 29781.88 31594.64 17693.47 28486.24 24284.97 38997.21 16764.85 39490.76 18678.80 39180.95 20999.27 13753.76 39292.17 20598.41 167
DSMNet-mixed81.60 32681.43 32082.10 36384.36 38060.79 39193.63 34386.74 39679.00 34379.32 31987.15 36463.87 33089.78 38566.89 36691.92 20795.73 244
tttt051793.30 14393.01 13894.17 19395.57 20786.47 23498.51 17597.60 11285.99 25290.55 18997.19 16894.80 998.31 18185.06 24191.86 20897.74 195
VNet95.08 8794.26 9597.55 4598.07 10193.88 6498.68 15298.73 1890.33 13397.16 7297.43 15579.19 22399.53 10996.91 7491.85 20999.24 104
tpmrst92.78 15492.16 15494.65 17496.27 17987.45 21491.83 35997.10 18289.10 16994.68 12590.69 31888.22 7397.73 22389.78 18891.80 21098.77 150
alignmvs95.77 6695.00 8498.06 2997.35 12895.68 2099.71 2597.50 13691.50 10296.16 9498.61 10386.28 11999.00 15196.19 8791.74 21199.51 79
CostFormer92.89 15392.48 14994.12 19594.99 23885.89 25792.89 34997.00 19286.98 23295.00 12090.78 31490.05 5397.51 23692.92 15591.73 21298.96 127
Fast-Effi-MVS+-dtu88.84 23288.59 22689.58 30493.44 28778.18 34998.65 15694.62 33488.46 18684.12 25495.37 23168.91 29296.52 27782.06 27891.70 21394.06 253
PatchT85.44 29383.19 30392.22 23593.13 29383.00 30183.80 39596.37 22670.62 37690.55 18979.63 39084.81 14794.87 34258.18 38891.59 21498.79 147
testing22294.48 11194.00 10595.95 12597.30 13092.27 9798.82 13697.92 5589.20 16494.82 12197.26 16187.13 9697.32 24691.95 16491.56 21598.25 178
tpm291.77 17691.09 17693.82 20794.83 24585.56 26592.51 35497.16 17484.00 28393.83 14190.66 32087.54 8597.17 24987.73 21291.55 21698.72 152
testing9994.88 9294.45 9196.17 11497.20 13891.91 10199.20 8897.66 9589.95 14493.68 14397.06 17590.28 4998.50 17293.52 14391.54 21798.12 187
Syy-MVS84.10 31384.53 29182.83 36095.14 22765.71 38797.68 24996.66 20686.52 24482.63 26996.84 18968.15 29989.89 38345.62 39891.54 21792.87 260
myMVS_eth3d88.68 24289.07 21387.50 33095.14 22779.74 33697.68 24996.66 20686.52 24482.63 26996.84 18985.22 14289.89 38369.43 35691.54 21792.87 260
testing9194.88 9294.44 9296.21 11097.19 14091.90 10299.23 8697.66 9589.91 14593.66 14497.05 17790.21 5098.50 17293.52 14391.53 22098.25 178
WB-MVSnew88.69 24088.34 23089.77 29994.30 26185.99 25598.14 21597.31 15987.15 22887.85 21896.07 21569.91 28595.52 32772.83 34591.47 22187.80 366
tpm cat188.89 23087.27 24793.76 20895.79 20085.32 27090.76 37497.09 18376.14 35985.72 23888.59 35282.92 17498.04 20076.96 31391.43 22297.90 193
sasdasda95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
canonicalmvs95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
Patchmatch-test86.25 28084.06 29792.82 22394.42 25382.88 30682.88 39694.23 34471.58 37379.39 31890.62 32389.00 6496.42 28563.03 37791.37 22599.16 110
dp90.16 21188.83 21994.14 19496.38 17586.42 23591.57 36497.06 18584.76 27488.81 21190.19 33984.29 15297.43 24175.05 32691.35 22698.56 161
MGCFI-Net94.89 9093.84 11698.06 2997.49 12395.55 2198.64 15896.10 24691.60 10095.75 10598.46 11679.31 22298.98 15395.95 9591.24 22799.65 63
VDDNet90.08 21388.54 22894.69 17394.41 25487.68 20598.21 21096.40 22576.21 35893.33 14997.75 13854.93 36498.77 15994.71 12490.96 22897.61 202
thres20093.69 13092.59 14796.97 6997.76 10994.74 4599.35 7699.36 289.23 16391.21 18196.97 18083.42 16398.77 15985.08 24090.96 22897.39 206
thres100view90093.34 14292.15 15596.90 7297.62 11494.84 4099.06 11499.36 287.96 20890.47 19296.78 19283.29 16698.75 16184.11 25690.69 23097.12 213
tfpn200view993.43 13892.27 15296.90 7297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23097.12 213
thres40093.39 14092.27 15296.73 8297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23096.61 228
VDD-MVS91.24 18990.18 19494.45 18297.08 14985.84 26098.40 19096.10 24686.99 22993.36 14898.16 12754.27 36699.20 13896.59 8190.63 23398.31 177
thres600view793.18 14792.00 15896.75 8097.62 11494.92 3599.07 11199.36 287.96 20890.47 19296.78 19283.29 16698.71 16582.93 27090.47 23496.61 228
GA-MVS90.10 21288.69 22294.33 18692.44 29987.97 20199.08 11096.26 23489.65 15186.92 22993.11 27568.09 30096.96 25782.54 27490.15 23598.05 188
testing387.75 25488.22 23386.36 33894.66 25077.41 35499.52 5097.95 5486.05 25181.12 29896.69 19686.18 12289.31 38761.65 38190.12 23692.35 271
tpmvs89.16 22587.76 23893.35 21397.19 14084.75 28090.58 37697.36 15681.99 32384.56 24789.31 34983.98 15698.17 18974.85 32990.00 23797.12 213
1112_ss92.71 15591.55 16896.20 11195.56 20891.12 11798.48 18094.69 33288.29 19786.89 23098.50 10887.02 10098.66 16784.75 24589.77 23898.81 145
Test_1112_low_res92.27 16890.97 17996.18 11295.53 21091.10 11998.47 18294.66 33388.28 19886.83 23193.50 26787.00 10198.65 16884.69 24689.74 23998.80 146
XVG-OURS-SEG-HR90.95 19490.66 18991.83 24595.18 22581.14 32895.92 31195.92 26688.40 19190.33 19597.85 13170.66 28499.38 12892.83 15688.83 24094.98 249
COLMAP_ROBcopyleft82.69 1884.54 30482.82 30689.70 30196.72 16178.85 34295.89 31292.83 36271.55 37477.54 33495.89 22159.40 34899.14 14567.26 36488.26 24191.11 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30581.83 31692.42 23391.73 31487.36 21785.52 38594.42 34081.40 32981.91 28887.58 35651.92 37292.81 36473.84 33788.15 24297.08 217
ab-mvs91.05 19389.17 21196.69 8695.96 19591.72 10592.62 35397.23 16585.61 25889.74 20493.89 25668.55 29599.42 12391.09 17087.84 24398.92 135
XVG-OURS90.83 19690.49 19191.86 24495.23 21981.25 32595.79 31995.92 26688.96 17290.02 20098.03 13071.60 27899.35 13391.06 17187.78 24494.98 249
AllTest84.97 29883.12 30490.52 27896.82 15578.84 34395.89 31292.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
TestCases90.52 27896.82 15578.84 34392.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
Anonymous20240521188.84 23287.03 25194.27 18898.14 10084.18 28798.44 18395.58 29476.79 35789.34 20896.88 18753.42 36999.54 10887.53 21487.12 24799.09 118
SDMVSNet91.09 19089.91 19894.65 17496.80 15790.54 13597.78 24097.81 6888.34 19485.73 23695.26 23266.44 31698.26 18594.25 13286.75 24895.14 246
sd_testset89.23 22488.05 23792.74 22796.80 15785.33 26995.85 31797.03 18888.34 19485.73 23695.26 23261.12 34297.76 22085.61 23686.75 24895.14 246
test_vis1_rt81.31 32880.05 33185.11 34591.29 32170.66 37998.98 12477.39 40885.76 25668.80 37282.40 37936.56 39599.44 11992.67 15986.55 25085.24 383
HQP3-MVS96.37 22686.29 251
HQP-MVS91.50 17991.23 17492.29 23493.95 26886.39 23799.16 9596.37 22693.92 5087.57 22096.67 19773.34 25997.77 21593.82 13986.29 25192.72 262
plane_prior86.07 25299.14 10393.81 5886.26 253
HQP_MVS91.26 18590.95 18092.16 23893.84 27586.07 25299.02 11896.30 23093.38 6686.99 22796.52 19972.92 26497.75 22193.46 14686.17 25492.67 264
plane_prior596.30 23097.75 22193.46 14686.17 25492.67 264
OPM-MVS89.76 21889.15 21291.57 25490.53 33085.58 26498.11 22095.93 26492.88 7686.05 23496.47 20267.06 31197.87 20889.29 19886.08 25691.26 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF85.33 29485.55 27284.67 35194.63 25162.28 39093.73 34193.76 35074.38 36785.23 24397.06 17564.09 32898.31 18180.98 28486.08 25693.41 258
CLD-MVS91.06 19290.71 18792.10 24094.05 26786.10 24999.55 4496.29 23394.16 4584.70 24697.17 17069.62 29097.82 21194.74 12286.08 25692.39 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 22888.61 22490.03 29391.09 32384.43 28398.97 12597.02 19090.21 13480.29 30696.31 20884.89 14591.93 37672.98 34385.70 25993.73 254
dmvs_re88.69 24088.06 23690.59 27493.83 27778.68 34595.75 32096.18 24187.99 20784.48 25096.32 20767.52 30696.94 25984.98 24385.49 26096.14 240
LPG-MVS_test88.86 23188.47 22990.06 28993.35 28980.95 33098.22 20895.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
LGP-MVS_train90.06 28993.35 28980.95 33095.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
ACMM86.95 1388.77 23788.22 23390.43 28093.61 28181.34 32398.50 17695.92 26687.88 21183.85 25695.20 23467.20 30997.89 20686.90 22184.90 26392.06 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 33180.11 33081.59 36685.10 37859.56 39394.14 33895.95 25968.54 38660.71 39093.31 26955.35 36297.87 20883.06 26984.85 26487.33 370
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 23988.24 23290.12 28893.91 27381.06 32998.50 17695.67 28989.43 16180.37 30595.55 22665.67 31997.83 21090.55 18084.51 26591.47 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 24887.73 23989.84 29688.05 36182.21 31397.77 24296.17 24286.84 23582.41 27791.95 29472.07 27295.99 30989.83 18584.50 26691.32 307
jajsoiax87.35 26186.51 25889.87 29487.75 36681.74 31797.03 27495.98 25488.47 18480.15 30893.80 25861.47 33996.36 28889.44 19384.47 26791.50 298
mvs_tets87.09 26486.22 26189.71 30087.87 36281.39 32296.73 28895.90 27288.19 20079.99 31093.61 26359.96 34696.31 29689.40 19484.34 26891.43 302
test_fmvs285.10 29685.45 27484.02 35489.85 33865.63 38898.49 17892.59 36490.45 12985.43 24293.32 26843.94 38696.59 27290.81 17684.19 26989.85 346
Anonymous2024052987.66 25885.58 27193.92 20397.59 11785.01 27698.13 21697.13 17766.69 39288.47 21496.01 21755.09 36399.51 11087.00 21784.12 27097.23 212
anonymousdsp86.69 27085.75 26989.53 30586.46 37482.94 30296.39 29595.71 28583.97 28479.63 31590.70 31768.85 29395.94 31286.01 22984.02 27189.72 348
mvsmamba89.99 21589.42 20691.69 25290.64 32986.34 24098.40 19092.27 36891.01 11384.80 24594.93 23676.12 23996.51 27892.81 15783.84 27292.21 276
XVG-ACMP-BASELINE85.86 28584.95 28188.57 32089.90 33677.12 35594.30 33595.60 29387.40 22582.12 28292.99 27853.42 36997.66 22585.02 24283.83 27390.92 318
ACMMP++83.83 273
ET-MVSNet_ETH3D92.56 16191.45 17095.88 12796.39 17494.13 6099.46 5996.97 19492.18 9066.94 38198.29 12294.65 1394.28 35294.34 13083.82 27599.24 104
EG-PatchMatch MVS79.92 33377.59 33886.90 33587.06 37177.90 35396.20 30694.06 34774.61 36566.53 38388.76 35140.40 39396.20 30167.02 36583.66 27686.61 374
D2MVS87.96 25087.39 24489.70 30191.84 31283.40 29798.31 20198.49 2388.04 20578.23 33190.26 33373.57 25796.79 26684.21 25383.53 27788.90 358
UniMVSNet_ETH3D85.65 29283.79 30091.21 25890.41 33280.75 33295.36 32595.78 28078.76 34781.83 29394.33 24549.86 37996.66 26984.30 25183.52 27896.22 239
PVSNet_BlendedMVS93.36 14193.20 13393.84 20698.77 8391.61 10799.47 5598.04 4891.44 10494.21 13392.63 28383.50 16099.87 5897.41 6183.37 27990.05 342
PS-MVSNAJss89.54 22289.05 21491.00 26388.77 35284.36 28497.39 25795.97 25588.47 18481.88 28993.80 25882.48 18596.50 27989.34 19583.34 28092.15 279
EI-MVSNet89.87 21789.38 20891.36 25794.32 25785.87 25897.61 25396.59 21285.10 26585.51 24097.10 17281.30 20696.56 27483.85 26283.03 28191.64 289
MVSTER92.71 15592.32 15093.86 20597.29 13292.95 8599.01 12096.59 21290.09 14085.51 24094.00 25194.61 1496.56 27490.77 17883.03 28192.08 282
FIs90.70 19989.87 19993.18 21692.29 30191.12 11798.17 21498.25 3289.11 16883.44 25894.82 23982.26 19196.17 30387.76 21182.76 28392.25 272
tpm89.67 21988.95 21691.82 24692.54 29881.43 32092.95 34895.92 26687.81 21290.50 19189.44 34684.99 14395.65 32483.67 26382.71 28498.38 170
ACMMP++_ref82.64 285
FC-MVSNet-test90.22 20889.40 20792.67 23091.78 31389.86 15797.89 23398.22 3588.81 17882.96 26594.66 24181.90 19795.96 31185.89 23482.52 28692.20 278
ITE_SJBPF87.93 32492.26 30276.44 35793.47 35787.67 22079.95 31195.49 22956.50 35697.38 24375.24 32582.33 28789.98 344
OpenMVS_ROBcopyleft73.86 2077.99 34575.06 35186.77 33683.81 38377.94 35296.38 29691.53 38067.54 38968.38 37487.13 36543.94 38696.08 30755.03 39181.83 28886.29 377
LTVRE_ROB81.71 1984.59 30382.72 31190.18 28692.89 29683.18 30093.15 34694.74 32978.99 34475.14 34692.69 28165.64 32097.63 22869.46 35581.82 28989.74 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 29982.93 30590.16 28791.73 31483.54 29695.00 32993.30 35888.77 17973.19 35693.30 27053.62 36897.65 22775.88 32281.54 29089.30 353
ACMH83.09 1784.60 30282.61 31390.57 27593.18 29282.94 30296.27 29994.92 32481.01 33472.61 36393.61 26356.54 35597.79 21374.31 33281.07 29190.99 316
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080586.50 27684.79 28591.63 25391.97 30781.49 31996.49 29397.38 15482.24 31982.44 27495.82 22251.22 37498.25 18684.55 24980.96 29295.13 248
GBi-Net86.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
test186.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
FMVSNet388.81 23687.08 25093.99 20296.52 16794.59 4998.08 22596.20 23785.85 25382.12 28291.60 29974.05 25595.40 33279.04 29880.24 29391.99 285
baseline192.61 15991.28 17396.58 9297.05 15194.63 4897.72 24696.20 23789.82 14788.56 21396.85 18886.85 10497.82 21188.42 20380.10 29697.30 208
testgi82.29 32181.00 32486.17 34087.24 36974.84 36397.39 25791.62 37888.63 18075.85 34295.42 23046.07 38591.55 37766.87 36779.94 29792.12 280
test_040278.81 34076.33 34586.26 33991.18 32278.44 34895.88 31491.34 38168.55 38570.51 36789.91 34152.65 37194.99 33847.14 39779.78 29885.34 382
FMVSNet286.90 26684.79 28593.24 21595.11 23092.54 9397.67 25195.86 27882.94 30580.55 30391.17 30862.89 33495.29 33477.23 31079.71 29991.90 286
pmmvs487.58 26086.17 26391.80 24789.58 34288.92 18297.25 26595.28 31082.54 31380.49 30493.17 27475.62 24296.05 30882.75 27178.90 30090.42 333
ACMH+83.78 1584.21 30982.56 31489.15 31393.73 28079.16 34096.43 29494.28 34381.09 33374.00 35094.03 24954.58 36597.67 22476.10 32078.81 30190.63 330
XXY-MVS87.75 25486.02 26492.95 22290.46 33189.70 16097.71 24895.90 27284.02 28280.95 29994.05 24667.51 30797.10 25385.16 23978.41 30292.04 284
pmmvs585.87 28484.40 29590.30 28588.53 35684.23 28598.60 16593.71 35281.53 32880.29 30692.02 28964.51 32795.52 32782.04 27978.34 30391.15 312
LF4IMVS81.94 32481.17 32384.25 35387.23 37068.87 38593.35 34591.93 37583.35 29675.40 34493.00 27749.25 38296.65 27078.88 30178.11 30487.22 372
cl2289.57 22188.79 22091.91 24397.94 10587.62 20897.98 23096.51 21985.03 26882.37 27891.79 29583.65 15896.50 27985.96 23177.89 30591.61 294
miper_ehance_all_eth88.94 22988.12 23591.40 25595.32 21786.93 22797.85 23795.55 29584.19 28081.97 28791.50 30184.16 15395.91 31684.69 24677.89 30591.36 305
miper_enhance_ethall90.33 20589.70 20092.22 23597.12 14688.93 18198.35 19795.96 25788.60 18283.14 26492.33 28587.38 8896.18 30286.49 22577.89 30591.55 297
TinyColmap80.42 33277.94 33787.85 32592.09 30578.58 34693.74 34089.94 38774.99 36369.77 36991.78 29646.09 38497.58 23265.17 37277.89 30587.38 368
FMVSNet183.94 31481.32 32291.80 24791.94 31088.81 18496.77 28395.25 31177.98 34978.25 33090.25 33450.37 37894.97 33973.27 34177.81 30991.62 291
OurMVSNet-221017-084.13 31283.59 30185.77 34387.81 36370.24 38094.89 33093.65 35486.08 25076.53 33593.28 27161.41 34096.14 30580.95 28577.69 31090.93 317
IterMVS85.81 28784.67 28889.22 31193.51 28383.67 29496.32 29894.80 32885.09 26678.69 32390.17 34066.57 31593.17 36179.48 29677.42 31190.81 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 29084.64 28989.00 31693.46 28682.90 30496.27 29994.70 33185.02 26978.62 32590.35 33266.61 31393.33 35879.38 29777.36 31290.76 324
our_test_384.47 30682.80 30789.50 30689.01 34983.90 29197.03 27494.56 33581.33 33075.36 34590.52 32971.69 27794.54 35068.81 35876.84 31390.07 340
dmvs_testset77.17 34878.99 33571.71 37687.25 36838.55 41391.44 36581.76 40485.77 25569.49 37095.94 22069.71 28984.37 39652.71 39476.82 31492.21 276
EU-MVSNet84.19 31084.42 29483.52 35888.64 35567.37 38696.04 30995.76 28285.29 26278.44 32893.18 27370.67 28391.48 37875.79 32375.98 31591.70 288
Anonymous2023120680.76 33079.42 33484.79 35084.78 37972.98 37096.53 29192.97 36079.56 34274.33 34788.83 35061.27 34192.15 37360.59 38375.92 31689.24 355
IterMVS-LS88.34 24587.44 24391.04 26294.10 26385.85 25998.10 22195.48 29985.12 26482.03 28691.21 30781.35 20595.63 32583.86 26175.73 31791.63 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
kuosan84.40 30883.34 30287.60 32895.87 19779.21 33992.39 35596.87 19776.12 36073.79 35193.98 25281.51 20090.63 37964.13 37375.42 31892.95 259
VPA-MVSNet89.10 22687.66 24193.45 21292.56 29791.02 12397.97 23198.32 3086.92 23486.03 23592.01 29068.84 29497.10 25390.92 17375.34 31992.23 274
nrg03090.23 20788.87 21794.32 18791.53 31793.54 7098.79 14395.89 27488.12 20284.55 24894.61 24278.80 22796.88 26192.35 16275.21 32092.53 266
cl____87.82 25186.79 25590.89 26794.88 24385.43 26697.81 23895.24 31482.91 30980.71 30291.22 30681.97 19695.84 31881.34 28375.06 32191.40 304
DIV-MVS_self_test87.82 25186.81 25490.87 26894.87 24485.39 26897.81 23895.22 31982.92 30880.76 30191.31 30581.99 19495.81 32081.36 28275.04 32291.42 303
v119286.32 27984.71 28791.17 25989.53 34486.40 23698.13 21695.44 30382.52 31482.42 27690.62 32371.58 27996.33 29577.23 31074.88 32390.79 322
v124085.77 28984.11 29690.73 27289.26 34885.15 27497.88 23595.23 31881.89 32682.16 28190.55 32869.60 29196.31 29675.59 32474.87 32490.72 327
FMVSNet582.29 32180.54 32687.52 32993.79 27984.01 28993.73 34192.47 36676.92 35674.27 34886.15 37063.69 33289.24 38869.07 35774.79 32589.29 354
v114486.83 26885.31 27691.40 25589.75 33987.21 22598.31 20195.45 30183.22 29782.70 26890.78 31473.36 25896.36 28879.49 29574.69 32690.63 330
Anonymous2024052178.63 34276.90 34383.82 35582.82 38572.86 37195.72 32193.57 35573.55 37172.17 36484.79 37349.69 38092.51 36965.29 37174.50 32786.09 378
v192192086.02 28284.44 29390.77 27189.32 34785.20 27198.10 22195.35 30982.19 32082.25 28090.71 31670.73 28296.30 29976.85 31574.49 32890.80 321
WR-MVS88.54 24487.22 24992.52 23191.93 31189.50 16498.56 17097.84 6186.99 22981.87 29093.81 25774.25 25495.92 31585.29 23874.43 32992.12 280
ppachtmachnet_test83.63 31681.57 31989.80 29789.01 34985.09 27597.13 27194.50 33678.84 34576.14 33791.00 31069.78 28794.61 34963.40 37574.36 33089.71 349
Patchmtry83.61 31781.64 31789.50 30693.36 28882.84 30784.10 39294.20 34569.47 38479.57 31686.88 36684.43 15094.78 34568.48 36074.30 33190.88 319
V4287.00 26585.68 27090.98 26489.91 33586.08 25098.32 20095.61 29283.67 29182.72 26790.67 31974.00 25696.53 27681.94 28074.28 33290.32 335
Anonymous2023121184.72 30082.65 31290.91 26597.71 11184.55 28297.28 26396.67 20566.88 39179.18 32190.87 31358.47 35096.60 27182.61 27374.20 33391.59 296
SixPastTwentyTwo82.63 32081.58 31885.79 34288.12 36071.01 37895.17 32792.54 36584.33 27972.93 36192.08 28760.41 34595.61 32674.47 33174.15 33490.75 325
v2v48287.27 26385.76 26891.78 25189.59 34187.58 20998.56 17095.54 29684.53 27682.51 27391.78 29673.11 26396.47 28282.07 27774.14 33591.30 308
v14419286.40 27784.89 28290.91 26589.48 34585.59 26398.21 21095.43 30482.45 31682.62 27190.58 32672.79 26796.36 28878.45 30574.04 33690.79 322
c3_l88.19 24987.23 24891.06 26194.97 23986.17 24797.72 24695.38 30683.43 29481.68 29491.37 30382.81 17695.72 32284.04 25973.70 33791.29 309
eth_miper_zixun_eth87.76 25387.00 25290.06 28994.67 24982.65 31097.02 27695.37 30784.19 28081.86 29291.58 30081.47 20295.90 31783.24 26473.61 33891.61 294
miper_lstm_enhance86.90 26686.20 26289.00 31694.53 25281.19 32696.74 28795.24 31482.33 31880.15 30890.51 33081.99 19494.68 34880.71 28873.58 33991.12 313
tfpnnormal83.65 31581.35 32190.56 27791.37 32088.06 19897.29 26297.87 5878.51 34876.20 33690.91 31164.78 32696.47 28261.71 38073.50 34087.13 373
N_pmnet70.19 35869.87 36071.12 37888.24 35830.63 41795.85 31728.70 41670.18 38068.73 37386.55 36864.04 32993.81 35453.12 39373.46 34188.94 357
EGC-MVSNET60.70 36555.37 36976.72 37086.35 37571.08 37689.96 37784.44 4010.38 4131.50 41484.09 37537.30 39488.10 39140.85 40273.44 34270.97 398
CP-MVSNet86.54 27485.45 27489.79 29891.02 32582.78 30897.38 25997.56 12285.37 26179.53 31793.03 27671.86 27595.25 33579.92 29373.43 34391.34 306
PS-CasMVS85.81 28784.58 29089.49 30890.77 32782.11 31497.20 26997.36 15684.83 27379.12 32292.84 27967.42 30895.16 33778.39 30673.25 34491.21 311
WR-MVS_H86.53 27585.49 27389.66 30391.04 32483.31 29997.53 25598.20 3684.95 27179.64 31490.90 31278.01 23295.33 33376.29 31972.81 34590.35 334
FPMVS61.57 36360.32 36665.34 38360.14 41042.44 41191.02 37289.72 38944.15 39942.63 40280.93 38519.02 40480.59 40242.50 39972.76 34673.00 396
v1085.73 29084.01 29890.87 26890.03 33386.73 23097.20 26995.22 31981.25 33179.85 31389.75 34373.30 26196.28 30076.87 31472.64 34789.61 350
UniMVSNet (Re)89.50 22388.32 23193.03 21892.21 30390.96 12598.90 13198.39 2789.13 16783.22 25992.03 28881.69 19896.34 29486.79 22272.53 34891.81 287
UniMVSNet_NR-MVSNet89.60 22088.55 22792.75 22692.17 30490.07 14898.74 14698.15 4088.37 19283.21 26093.98 25282.86 17595.93 31386.95 21872.47 34992.25 272
DU-MVS88.83 23487.51 24292.79 22491.46 31890.07 14898.71 14797.62 10988.87 17783.21 26093.68 26074.63 24595.93 31386.95 21872.47 34992.36 268
v886.11 28184.45 29291.10 26089.99 33486.85 22897.24 26695.36 30881.99 32379.89 31289.86 34274.53 24996.39 28678.83 30272.32 35190.05 342
VPNet88.30 24686.57 25693.49 21191.95 30991.35 11198.18 21297.20 17188.61 18184.52 24994.89 23762.21 33796.76 26789.34 19572.26 35292.36 268
v7n84.42 30782.75 31089.43 30988.15 35981.86 31696.75 28695.67 28980.53 33778.38 32989.43 34769.89 28696.35 29373.83 33872.13 35390.07 340
new_pmnet76.02 34973.71 35482.95 35983.88 38272.85 37291.26 36992.26 36970.44 37862.60 38881.37 38347.64 38392.32 37161.85 37972.10 35483.68 388
IB-MVS89.43 692.12 17190.83 18595.98 12495.40 21590.78 12899.81 1198.06 4591.23 11185.63 23993.66 26290.63 4198.78 15891.22 16971.85 35598.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 25786.00 26592.96 22191.46 31890.68 13296.65 29097.42 15088.02 20673.42 35493.68 26077.31 23595.83 31984.26 25271.82 35692.36 268
v14886.38 27885.06 27890.37 28489.47 34684.10 28898.52 17295.48 29983.80 28780.93 30090.22 33774.60 24796.31 29680.92 28671.55 35790.69 328
Baseline_NR-MVSNet85.83 28684.82 28488.87 31988.73 35383.34 29898.63 16091.66 37780.41 34182.44 27491.35 30474.63 24595.42 33184.13 25571.39 35887.84 364
TranMVSNet+NR-MVSNet87.75 25486.31 26092.07 24190.81 32688.56 18998.33 19897.18 17287.76 21481.87 29093.90 25572.45 26895.43 33083.13 26871.30 35992.23 274
PEN-MVS85.21 29583.93 29989.07 31589.89 33781.31 32497.09 27297.24 16484.45 27878.66 32492.68 28268.44 29794.87 34275.98 32170.92 36091.04 315
MIMVSNet175.92 35073.30 35583.81 35681.29 38975.57 35992.26 35692.05 37373.09 37267.48 38086.18 36940.87 39287.64 39255.78 39070.68 36188.21 362
dongtai81.36 32780.61 32583.62 35794.25 26273.32 36995.15 32896.81 19973.56 37069.79 36892.81 28081.00 20886.80 39452.08 39570.06 36290.75 325
pm-mvs184.68 30182.78 30990.40 28189.58 34285.18 27297.31 26194.73 33081.93 32576.05 33892.01 29065.48 32396.11 30678.75 30369.14 36389.91 345
DTE-MVSNet84.14 31182.80 30788.14 32388.95 35179.87 33596.81 28296.24 23583.50 29377.60 33392.52 28467.89 30494.24 35372.64 34669.05 36490.32 335
test20.0378.51 34377.48 33981.62 36583.07 38471.03 37796.11 30792.83 36281.66 32769.31 37189.68 34457.53 35287.29 39358.65 38768.47 36586.53 375
h-mvs3392.47 16391.95 16094.05 19997.13 14585.01 27698.36 19698.08 4493.85 5596.27 9296.73 19483.19 16999.43 12295.81 9668.09 36697.70 197
K. test v381.04 32979.77 33284.83 34987.41 36770.23 38195.60 32493.93 34983.70 29067.51 37989.35 34855.76 35793.58 35776.67 31768.03 36790.67 329
test_fmvs375.09 35275.19 34974.81 37377.45 39654.08 39995.93 31090.64 38482.51 31573.29 35581.19 38422.29 40286.29 39585.50 23767.89 36884.06 386
MDA-MVSNet_test_wron79.65 33677.05 34187.45 33187.79 36580.13 33396.25 30294.44 33773.87 36851.80 39687.47 36168.04 30192.12 37466.02 36867.79 36990.09 338
YYNet179.64 33777.04 34287.43 33287.80 36479.98 33496.23 30394.44 33773.83 36951.83 39587.53 35767.96 30392.07 37566.00 36967.75 37090.23 337
APD_test168.93 36066.98 36374.77 37480.62 39153.15 40187.97 38085.01 39953.76 39759.26 39187.52 35825.19 40089.95 38256.20 38967.33 37181.19 392
AUN-MVS90.17 21089.50 20392.19 23796.21 18282.67 30997.76 24497.53 12788.05 20491.67 16896.15 21183.10 17197.47 23788.11 20866.91 37296.43 236
hse-mvs291.67 17891.51 16992.15 23996.22 18182.61 31197.74 24597.53 12793.85 5596.27 9296.15 21183.19 16997.44 24095.81 9666.86 37396.40 237
pmmvs679.90 33477.31 34087.67 32784.17 38178.13 35095.86 31693.68 35367.94 38872.67 36289.62 34550.98 37695.75 32174.80 33066.04 37489.14 356
test_f71.94 35770.82 35875.30 37272.77 40153.28 40091.62 36289.66 39075.44 36264.47 38678.31 39220.48 40389.56 38678.63 30466.02 37583.05 391
Gipumacopyleft54.77 37052.22 37462.40 38786.50 37359.37 39450.20 40590.35 38636.52 40341.20 40449.49 40518.33 40681.29 39832.10 40465.34 37646.54 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 37190.74 32851.65 40490.84 38386.47 24757.89 39287.98 35335.88 39692.60 36665.77 37065.06 37783.97 387
MDA-MVSNet-bldmvs77.82 34674.75 35287.03 33488.33 35778.52 34796.34 29792.85 36175.57 36148.87 39887.89 35457.32 35492.49 37060.79 38264.80 37890.08 339
mvsany_test375.85 35174.52 35379.83 36873.53 40060.64 39291.73 36187.87 39583.91 28670.55 36682.52 37831.12 39793.66 35586.66 22462.83 37985.19 384
Patchmatch-RL test81.90 32580.13 32987.23 33380.71 39070.12 38284.07 39388.19 39483.16 29970.57 36582.18 38187.18 9592.59 36782.28 27662.78 38098.98 125
lessismore_v085.08 34685.59 37769.28 38390.56 38567.68 37890.21 33854.21 36795.46 32973.88 33662.64 38190.50 332
PM-MVS74.88 35372.85 35680.98 36778.98 39464.75 38990.81 37385.77 39780.95 33568.23 37682.81 37729.08 39992.84 36376.54 31862.46 38285.36 381
pmmvs-eth3d78.71 34176.16 34686.38 33780.25 39281.19 32694.17 33792.13 37277.97 35066.90 38282.31 38055.76 35792.56 36873.63 34062.31 38385.38 380
ambc79.60 36972.76 40256.61 39676.20 40092.01 37468.25 37580.23 38823.34 40194.73 34673.78 33960.81 38487.48 367
test_method70.10 35968.66 36274.41 37586.30 37655.84 39794.47 33289.82 38835.18 40466.15 38484.75 37430.54 39877.96 40570.40 35460.33 38589.44 352
TDRefinement78.01 34475.31 34886.10 34170.06 40373.84 36693.59 34491.58 37974.51 36673.08 35991.04 30949.63 38197.12 25074.88 32859.47 38687.33 370
TransMVSNet (Re)81.97 32379.61 33389.08 31489.70 34084.01 28997.26 26491.85 37678.84 34573.07 36091.62 29867.17 31095.21 33667.50 36359.46 38788.02 363
PMVScopyleft41.42 2345.67 37342.50 37655.17 38934.28 41532.37 41566.24 40378.71 40730.72 40522.04 41059.59 4014.59 41477.85 40627.49 40558.84 38855.29 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt61.29 36458.75 36768.92 38067.41 40452.84 40291.18 37159.23 41566.96 39041.96 40358.44 40311.37 41194.72 34774.25 33357.97 38959.20 402
KD-MVS_self_test77.47 34775.88 34782.24 36181.59 38768.93 38492.83 35294.02 34877.03 35573.14 35783.39 37655.44 36190.42 38067.95 36157.53 39087.38 368
CL-MVSNet_self_test79.89 33578.34 33684.54 35281.56 38875.01 36196.88 28095.62 29181.10 33275.86 34185.81 37168.49 29690.26 38163.21 37656.51 39188.35 361
UnsupCasMVSNet_eth78.90 33976.67 34485.58 34482.81 38674.94 36291.98 35896.31 22984.64 27565.84 38587.71 35551.33 37392.23 37272.89 34456.50 39289.56 351
PVSNet_083.28 1687.31 26285.16 27793.74 20994.78 24684.59 28198.91 13098.69 2189.81 14878.59 32793.23 27261.95 33899.34 13494.75 12155.72 39397.30 208
new-patchmatchnet74.80 35472.40 35781.99 36478.36 39572.20 37494.44 33392.36 36777.06 35463.47 38779.98 38951.04 37588.85 38960.53 38454.35 39484.92 385
pmmvs372.86 35669.76 36182.17 36273.86 39974.19 36594.20 33689.01 39264.23 39567.72 37780.91 38741.48 39088.65 39062.40 37854.02 39583.68 388
testf156.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
APD_test256.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
LCM-MVSNet60.07 36656.37 36871.18 37754.81 41248.67 40582.17 39789.48 39137.95 40249.13 39769.12 39613.75 41081.76 39759.28 38551.63 39883.10 390
UnsupCasMVSNet_bld73.85 35570.14 35984.99 34779.44 39375.73 35888.53 37995.24 31470.12 38161.94 38974.81 39541.41 39193.62 35668.65 35951.13 39985.62 379
WB-MVS66.44 36166.29 36466.89 38174.84 39744.93 40893.00 34784.09 40271.15 37555.82 39381.63 38263.79 33180.31 40321.85 40750.47 40075.43 394
SSC-MVS65.42 36265.20 36566.06 38273.96 39843.83 40992.08 35783.54 40369.77 38254.73 39480.92 38663.30 33379.92 40420.48 40848.02 40174.44 395
KD-MVS_2432*160082.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
miper_refine_blended82.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
PMMVS258.97 36755.07 37070.69 37962.72 40755.37 39885.97 38480.52 40549.48 39845.94 39968.31 39715.73 40880.78 40149.79 39637.12 40475.91 393
MVEpermissive44.00 2241.70 37437.64 37953.90 39049.46 41343.37 41065.09 40466.66 41226.19 40825.77 40948.53 4063.58 41663.35 40926.15 40627.28 40554.97 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37540.93 37741.29 39161.97 40833.83 41484.00 39465.17 41327.17 40627.56 40646.72 40717.63 40760.41 41019.32 40918.82 40629.61 406
ANet_high50.71 37246.17 37564.33 38444.27 41452.30 40376.13 40178.73 40664.95 39327.37 40755.23 40414.61 40967.74 40736.01 40318.23 40772.95 397
EMVS39.96 37639.88 37840.18 39259.57 41132.12 41684.79 39164.57 41426.27 40726.14 40844.18 41018.73 40559.29 41117.03 41017.67 40829.12 407
tmp_tt53.66 37152.86 37356.05 38832.75 41641.97 41273.42 40276.12 40921.91 40939.68 40596.39 20542.59 38965.10 40878.00 30714.92 40961.08 401
wuyk23d16.71 37916.73 38316.65 39360.15 40925.22 41841.24 4065.17 4176.56 4105.48 4133.61 4133.64 41522.72 41215.20 4119.52 4101.99 410
testmvs18.81 37823.05 3816.10 3954.48 4172.29 42097.78 2403.00 4183.27 41118.60 41162.71 3991.53 4182.49 41414.26 4121.80 41113.50 409
test12316.58 38019.47 3827.91 3943.59 4185.37 41994.32 3341.39 4192.49 41213.98 41244.60 4092.91 4172.65 41311.35 4130.57 41215.70 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.52 37730.03 3800.00 3960.00 4190.00 4210.00 40797.17 1730.00 4140.00 41598.77 8574.35 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.87 3829.16 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41482.48 1850.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.21 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.50 1080.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.74 33667.75 362
FOURS199.50 4288.94 17999.55 4497.47 14191.32 10998.12 44
test_one_060199.59 2894.89 3697.64 10393.14 6998.93 2199.45 1493.45 16
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.63 1895.24 2797.72 8194.16 4599.30 899.49 993.32 1799.98 9
save fliter99.34 5093.85 6599.65 3597.63 10795.69 22
test072699.66 1295.20 3299.77 1797.70 8693.95 4899.35 799.54 393.18 20
GSMVS98.84 140
test_part299.54 3695.42 2298.13 42
sam_mvs188.39 7098.84 140
sam_mvs87.08 98
MTGPAbinary97.45 144
test_post190.74 37541.37 41185.38 13996.36 28883.16 266
test_post46.00 40887.37 8997.11 251
patchmatchnet-post84.86 37288.73 6796.81 264
MTMP99.21 8791.09 382
gm-plane-assit94.69 24888.14 19688.22 19997.20 16698.29 18390.79 177
TEST999.57 3393.17 7699.38 7197.66 9589.57 15698.39 3599.18 3390.88 3799.66 94
test_899.55 3593.07 7999.37 7497.64 10390.18 13698.36 3799.19 3090.94 3499.64 100
agg_prior99.54 3692.66 8997.64 10397.98 5199.61 102
test_prior492.00 10099.41 68
test_prior97.01 6399.58 3091.77 10397.57 12199.49 11299.79 36
旧先验298.67 15485.75 25798.96 2098.97 15493.84 137
新几何298.26 204
无先验98.52 17297.82 6587.20 22799.90 5087.64 21399.85 30
原ACMM298.69 151
testdata299.88 5484.16 254
segment_acmp90.56 42
testdata197.89 23392.43 82
plane_prior793.84 27585.73 261
plane_prior693.92 27286.02 25472.92 264
plane_prior496.52 199
plane_prior385.91 25693.65 6186.99 227
plane_prior299.02 11893.38 66
plane_prior193.90 274
n20.00 420
nn0.00 420
door-mid84.90 400
test1197.68 90
door85.30 398
HQP5-MVS86.39 237
HQP-NCC93.95 26899.16 9593.92 5087.57 220
ACMP_Plane93.95 26899.16 9593.92 5087.57 220
BP-MVS93.82 139
HQP4-MVS87.57 22097.77 21592.72 262
HQP2-MVS73.34 259
NP-MVS93.94 27186.22 24496.67 197
MDTV_nov1_ep13_2view91.17 11691.38 36787.45 22493.08 15286.67 10987.02 21698.95 131
Test By Simon83.62 159