This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5796.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 9093.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5599.81 7997.97 5099.91 699.88 26
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 8194.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5499.87 999.91 21
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9097.75 7695.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11299.06 1094.45 4096.42 8898.70 9588.81 6599.74 8895.35 10199.86 1299.97 7
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14199.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7197.66 9590.18 13598.39 3599.18 3390.94 3699.66 9498.58 3699.85 1399.88 26
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9697.65 10289.55 15799.22 1299.52 890.34 5099.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17297.50 13694.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 14193.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 8194.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2297.73 8095.54 2699.54 399.69 699.81 2399.99 1
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4698.33 4299.81 23
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 17100.00 191.79 16199.80 2699.94 18
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4397.52 13193.59 6398.01 5099.12 4690.80 4199.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10797.44 14789.02 17197.90 5399.22 2788.90 6499.49 11294.63 12099.79 2799.68 56
region2R96.30 4696.17 4896.70 8199.70 790.31 13599.46 5997.66 9590.55 12597.07 7199.07 5186.85 10399.97 2195.43 9999.74 2999.81 33
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7897.38 15493.73 5998.83 2599.02 5890.87 4099.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5597.81 6890.54 12696.88 7399.05 5487.57 8399.96 2895.65 9299.72 3199.78 38
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13399.47 5597.80 7090.54 12696.83 7899.03 5686.51 11499.95 3195.65 9299.72 3199.75 46
CP-MVS96.22 4896.15 5196.42 9799.67 1089.62 15999.70 2697.61 11090.07 14196.00 9399.16 3687.43 8699.92 4096.03 8899.72 3199.70 52
test1297.83 3399.33 5394.45 4997.55 12397.56 5688.60 6799.50 11199.71 3499.55 72
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6099.16 3690.15 5399.56 10598.35 4199.70 35
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13597.64 10396.51 1695.88 9799.39 1887.35 9299.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9697.44 14790.08 14098.59 3099.07 5189.06 6199.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6297.45 14489.60 15398.70 2699.42 1790.42 4799.72 8998.47 3899.65 3899.77 43
HPM-MVScopyleft95.41 7695.22 7595.99 11999.29 5589.14 16699.17 9597.09 18387.28 22795.40 10898.48 11284.93 14199.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 9291.21 11098.08 22397.58 11883.74 28995.87 9899.02 5886.74 10699.64 4099.81 33
mPP-MVS95.90 6195.75 6396.38 10099.58 3089.41 16399.26 8597.41 15190.66 11994.82 11798.95 6986.15 12299.98 995.24 10599.64 4099.74 47
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12491.46 10799.75 2197.66 9594.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 8794.62 8695.70 12999.11 6688.44 18999.14 10497.11 17985.82 25595.69 10398.47 11383.46 15999.32 13593.16 14699.63 4399.35 90
9.1496.87 2799.34 5099.50 5197.49 13889.41 16198.59 3099.43 1689.78 5699.69 9198.69 3099.62 44
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8399.06 5388.08 7799.89 5384.88 24199.62 4499.79 36
原ACMM196.18 10899.03 7190.08 14497.63 10788.98 17297.00 7298.97 6288.14 7699.71 9088.23 20299.62 4498.76 147
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 10099.70 2698.05 4686.48 24798.05 4799.20 2989.33 5999.96 2898.38 3999.62 4499.90 22
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11298.24 12188.17 7399.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14399.36 7597.41 15190.64 12295.49 10798.95 6985.51 13199.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4497.53 12789.72 14895.86 9998.94 7286.59 11099.97 2195.13 10699.56 5099.68 56
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10499.45 193.86 5495.15 11398.73 8988.48 6899.76 8697.23 6399.56 5099.40 85
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22598.71 8578.11 34899.70 2697.71 8598.18 197.36 6299.76 190.37 4999.94 3499.27 1699.54 5299.99 1
CPTT-MVS94.60 10194.43 9195.09 15199.66 1286.85 22499.44 6297.47 14183.22 29894.34 12898.96 6682.50 18099.55 10694.81 11499.50 5398.88 133
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16797.14 17588.95 17493.12 14799.25 2385.62 12899.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13497.59 11690.66 11997.98 5199.14 4286.59 110100.00 196.47 8199.46 5599.89 25
PGM-MVS95.85 6295.65 6896.45 9599.50 4289.77 15698.22 20698.90 1389.19 16696.74 8198.95 6985.91 12699.92 4093.94 12999.46 5599.66 60
testdata95.26 14698.20 9687.28 21697.60 11285.21 26498.48 3399.15 3988.15 7598.72 16290.29 17899.45 5799.78 38
SR-MVS96.13 5096.16 5096.07 11499.42 4789.04 16998.59 16797.33 15890.44 12996.84 7699.12 4686.75 10599.41 12697.47 5899.44 5899.76 45
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7498.96 6687.37 8899.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 19588.66 21896.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7429.59 40787.37 8899.87 5895.65 9299.43 5999.78 38
MVS93.92 11792.28 14798.83 795.69 19896.82 896.22 30498.17 3784.89 27384.34 24798.61 10379.32 21599.83 7393.88 13199.43 5999.86 29
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 7994.39 12799.24 2586.43 11699.99 596.22 8399.40 6299.71 51
旧先验198.97 7392.90 8497.74 7799.15 3991.05 3599.33 6399.60 67
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14198.58 16997.51 13390.65 12192.44 15598.90 7687.77 8299.90 5090.88 16999.32 6499.68 56
SR-MVS-dyc-post95.75 6895.86 5795.41 13999.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6286.73 10799.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6499.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6285.24 13896.62 7599.31 6599.60 67
PAPM96.35 4395.94 5497.58 4094.10 25695.25 2498.93 12998.17 3794.26 4293.94 13498.72 9189.68 5797.88 20096.36 8299.29 6799.62 66
APD-MVS_3200maxsize95.64 7195.65 6895.62 13399.24 5887.80 19998.42 18597.22 16688.93 17696.64 8698.98 6185.49 13299.36 13096.68 7499.27 6899.70 52
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20893.07 7698.82 13897.85 6091.53 10182.56 26897.58 14671.97 26799.82 7691.01 16799.23 6999.22 103
patch_mono-297.10 2697.97 894.49 17399.21 6183.73 29099.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
dcpmvs_295.67 7096.18 4594.12 19098.82 8184.22 28397.37 25995.45 29390.70 11895.77 10198.63 10190.47 4598.68 16499.20 2099.22 7099.45 81
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6197.48 13989.69 14995.89 9698.72 9186.37 11799.95 3194.62 12199.22 7099.52 75
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 18990.25 13699.90 298.13 4296.68 1198.42 3498.92 7485.34 13799.88 5499.12 2299.08 7399.70 52
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12697.29 599.03 11997.11 17995.83 2098.97 1999.14 4282.48 18299.60 10398.60 3399.08 7398.00 185
test_fmvsm_n_192097.08 2797.55 1495.67 13197.94 10589.61 16099.93 198.48 2497.08 599.08 1499.13 4488.17 7399.93 3899.11 2399.06 7597.47 198
MVS_111021_LR95.78 6595.94 5495.28 14598.19 9887.69 20098.80 14199.26 793.39 6595.04 11598.69 9684.09 15199.76 8696.96 6999.06 7598.38 166
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6797.55 12392.43 8293.82 13899.12 4687.30 9399.91 4594.02 12799.06 7599.74 47
114514_t94.06 11293.05 13197.06 5899.08 6992.26 9498.97 12797.01 19182.58 31192.57 15398.22 12280.68 20599.30 13689.34 19199.02 7899.63 64
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14898.80 14197.78 7383.59 29393.85 13699.21 2883.79 15499.97 2192.37 15699.00 7999.74 47
test_fmvsmconf0.1_n95.94 5995.79 6296.40 9992.42 29389.92 15299.79 1696.85 19796.53 1597.22 6598.67 9782.71 17899.84 6998.92 2798.98 8099.43 84
MVSFormer94.71 9894.08 10196.61 8595.05 23094.87 3697.77 24196.17 23886.84 23698.04 4898.52 10685.52 12995.99 30689.83 18198.97 8198.96 123
lupinMVS96.32 4595.94 5497.44 4495.05 23094.87 3699.86 496.50 21693.82 5798.04 4898.77 8585.52 12998.09 18896.98 6898.97 8199.37 88
3Dnovator+87.72 893.43 13491.84 15898.17 2295.73 19795.08 3298.92 13197.04 18691.42 10681.48 29397.60 14474.60 24099.79 8290.84 17098.97 8199.64 62
GG-mvs-BLEND96.98 6596.53 16294.81 4187.20 37697.74 7793.91 13596.40 20196.56 296.94 25295.08 10798.95 8499.20 104
test_cas_vis1_n_192093.86 12193.74 11494.22 18695.39 21086.08 24699.73 2296.07 24596.38 1797.19 6997.78 13465.46 31999.86 6396.71 7298.92 8596.73 219
MVS_030497.53 1497.15 2298.67 1197.30 12896.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 10299.91 4599.43 1598.91 8699.59 71
CS-MVS-test95.98 5596.34 4194.90 15898.06 10287.66 20399.69 3396.10 24293.66 6098.35 3899.05 5486.28 11897.66 21896.96 6998.90 8799.37 88
gg-mvs-nofinetune90.00 20987.71 23696.89 7396.15 18294.69 4585.15 38297.74 7768.32 38292.97 15060.16 39596.10 396.84 25593.89 13098.87 8899.14 108
MAR-MVS94.43 10794.09 10095.45 13799.10 6887.47 20998.39 19497.79 7288.37 19394.02 13399.17 3578.64 22299.91 4592.48 15598.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CSCG94.87 9094.71 8595.36 14099.54 3686.49 22999.34 7798.15 4082.71 30990.15 19399.25 2389.48 5899.86 6394.97 11298.82 9099.72 50
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12799.90 5099.72 398.80 9199.85 30
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8195.62 10597.52 14897.92 197.38 23698.31 4498.80 9198.20 179
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6698.90 7682.66 17999.93 3898.71 2998.80 9199.63 64
test_vis1_n_192093.08 14893.42 12092.04 23896.31 17379.36 33699.83 996.06 24696.72 998.53 3298.10 12758.57 34499.91 4597.86 5398.79 9496.85 217
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29996.45 27977.20 30998.72 9586.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 17989.49 19997.17 5695.66 20093.42 7098.60 16597.51 13380.92 33481.39 29497.41 15472.89 26099.87 5882.33 27298.68 9698.21 178
131493.44 13391.98 15597.84 3295.24 21294.38 5296.22 30497.92 5590.18 13582.28 27697.71 13977.63 22799.80 8191.94 16098.67 9799.34 92
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 498.04 4896.70 1099.58 299.26 2190.90 3899.94 3499.57 1198.66 9899.40 85
CS-MVS95.75 6896.19 4394.40 17797.88 10786.22 24099.66 3496.12 24192.69 7898.07 4698.89 7887.09 9697.59 22496.71 7298.62 9999.39 87
EC-MVSNet95.09 8495.17 7694.84 16195.42 20788.17 19199.48 5395.92 25991.47 10397.34 6398.36 11682.77 17497.41 23597.24 6298.58 10098.94 128
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 13890.76 12698.39 19497.11 17993.92 5088.66 20698.33 11778.14 22499.85 6795.02 10998.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 19388.84 21396.48 9393.58 27593.51 6898.80 14197.41 15182.59 31078.62 32297.49 15068.00 29699.82 7684.52 24798.55 10296.11 235
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 798.05 4696.78 899.60 199.23 2690.42 4799.92 4099.55 1298.50 10399.55 72
EIA-MVS95.11 8395.27 7494.64 17096.34 17286.51 22899.59 4096.62 20592.51 8094.08 13298.64 9986.05 12398.24 18295.07 10898.50 10399.18 105
jason95.40 7794.86 8497.03 5992.91 28894.23 5499.70 2696.30 22793.56 6496.73 8298.52 10681.46 19997.91 19796.08 8798.47 10598.96 123
jason: jason.
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30082.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34697.37 23876.75 31398.35 10687.84 359
test_fmvsmvis_n_192095.47 7395.40 7195.70 12994.33 25090.22 13999.70 2696.98 19396.80 792.75 15198.89 7882.46 18599.92 4098.36 4098.33 10796.97 215
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3897.48 13986.58 24294.42 12599.13 4487.36 9199.98 993.64 13698.33 10799.48 79
test_fmvsmconf0.01_n94.14 11193.51 11896.04 11586.79 36789.19 16499.28 8495.94 25595.70 2195.50 10698.49 11073.27 25599.79 8298.28 4598.32 10999.15 107
test_fmvs192.35 16192.94 13690.57 27297.19 13575.43 35799.55 4494.97 31395.20 3196.82 7997.57 14759.59 34299.84 6997.30 6198.29 11096.46 229
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14396.96 699.01 12297.04 18695.51 2798.86 2399.11 5082.19 19099.36 13098.59 3598.14 11198.00 185
BH-w/o92.32 16291.79 15993.91 19996.85 15086.18 24299.11 10995.74 27688.13 20284.81 24097.00 17777.26 22997.91 19789.16 19698.03 11297.64 192
test_fmvs1_n91.07 18691.41 16790.06 28694.10 25674.31 36199.18 9294.84 31794.81 3396.37 8997.46 15150.86 37299.82 7697.14 6497.90 11396.04 236
TAPA-MVS87.50 990.35 19989.05 20994.25 18598.48 9185.17 27098.42 18596.58 21182.44 31687.24 21998.53 10582.77 17498.84 15559.09 38297.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 10893.82 11295.95 12197.40 12388.74 18398.41 18798.27 3192.18 9191.43 17196.40 20178.88 21799.81 7993.59 13797.81 11599.30 95
BH-untuned91.46 17890.84 17993.33 21096.51 16484.83 27698.84 13795.50 29086.44 24983.50 25296.70 19375.49 23697.77 20886.78 22097.81 11597.40 199
Vis-MVSNetpermissive92.64 15491.85 15795.03 15595.12 22388.23 19098.48 18096.81 19891.61 9992.16 15997.22 16371.58 27398.00 19685.85 23297.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8599.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10499.88 398.04 4893.64 6294.21 12997.76 13583.50 15799.87 5897.41 5997.75 11998.79 143
test_vis1_n90.40 19890.27 18990.79 26791.55 30976.48 35399.12 10894.44 32994.31 4197.34 6396.95 17943.60 38399.42 12397.57 5797.60 12096.47 228
ETV-MVS96.00 5396.00 5396.00 11896.56 16091.05 11999.63 3696.61 20693.26 6897.39 6198.30 11986.62 10998.13 18598.07 4997.57 12198.82 140
PLCcopyleft91.07 394.23 11094.01 10294.87 15999.17 6387.49 20899.25 8696.55 21388.43 19191.26 17598.21 12485.92 12499.86 6389.77 18597.57 12197.24 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 20488.72 21694.59 17298.97 7386.33 23796.90 27996.60 20774.96 36184.06 25098.74 8875.78 23499.83 7374.93 32497.57 12197.62 195
AdaColmapbinary93.82 12293.06 13096.10 11399.88 189.07 16898.33 19897.55 12386.81 23890.39 19098.65 9875.09 23799.98 993.32 14497.53 12499.26 99
BH-RMVSNet91.25 18389.99 19295.03 15596.75 15688.55 18698.65 15794.95 31487.74 21787.74 21397.80 13268.27 29298.14 18480.53 28897.49 12598.41 163
CANet_DTU94.31 10993.35 12297.20 5597.03 14794.71 4498.62 16195.54 28895.61 2597.21 6698.47 11371.88 26899.84 6988.38 20097.46 12697.04 212
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14497.37 12589.16 16599.86 498.47 2595.68 2398.87 2299.15 3982.44 18699.92 4099.14 2197.43 12796.83 218
PatchMatch-RL91.47 17790.54 18694.26 18498.20 9686.36 23596.94 27797.14 17587.75 21688.98 20495.75 21871.80 27099.40 12780.92 28397.39 12897.02 213
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14794.35 24989.10 16799.50 5197.67 9494.76 3498.68 2799.03 5681.13 20399.86 6398.63 3297.36 12996.63 221
UGNet91.91 17290.85 17895.10 15097.06 14588.69 18498.01 22798.24 3492.41 8592.39 15693.61 25960.52 33999.68 9288.14 20397.25 13096.92 216
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 12592.83 13896.28 10597.99 10490.22 13999.38 7198.93 1291.42 10693.66 14097.68 14071.29 27599.64 10087.94 20797.20 13198.98 121
test250694.80 9294.21 9596.58 8896.41 16892.18 9698.01 22798.96 1190.82 11693.46 14397.28 15785.92 12498.45 17289.82 18397.19 13299.12 111
ECVR-MVScopyleft92.29 16391.33 16895.15 14996.41 16887.84 19898.10 21994.84 31790.82 11691.42 17397.28 15765.61 31698.49 17190.33 17797.19 13299.12 111
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11099.14 6490.33 13498.49 17897.82 6591.92 9594.75 11998.88 8087.06 9899.48 11695.40 10097.17 13498.70 150
test111192.12 16891.19 17194.94 15796.15 18287.36 21398.12 21694.84 31790.85 11590.97 17897.26 15965.60 31798.37 17489.74 18697.14 13599.07 117
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14396.51 16489.01 17199.81 1198.39 2795.46 2899.19 1399.16 3681.44 20099.91 4598.83 2896.97 13697.01 214
CNLPA93.64 12992.74 13996.36 10298.96 7590.01 15199.19 9095.89 26786.22 25089.40 20198.85 8180.66 20699.84 6988.57 19896.92 13799.24 100
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 14892.06 29988.94 17599.29 8197.53 12794.46 3898.98 1898.99 6079.99 20899.85 6798.24 4796.86 13896.73 219
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
MVS_Test93.67 12892.67 14196.69 8296.72 15792.66 8697.22 26896.03 24787.69 22095.12 11494.03 24681.55 19698.28 17989.17 19596.46 14299.14 108
EI-MVSNet-UG-set95.43 7495.29 7395.86 12499.07 7089.87 15398.43 18497.80 7091.78 9794.11 13198.77 8586.25 12099.48 11694.95 11396.45 14398.22 177
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10399.58 4196.54 21495.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10397.14 14091.10 11699.32 7997.43 14992.10 9491.53 17096.38 20483.29 16399.68 9293.42 14396.37 14598.25 173
Vis-MVSNet (Re-imp)93.26 14293.00 13594.06 19396.14 18486.71 22798.68 15396.70 20188.30 19789.71 20097.64 14385.43 13596.39 28188.06 20596.32 14699.08 115
EPMVS92.59 15791.59 16395.59 13597.22 13290.03 14991.78 35698.04 4890.42 13091.66 16590.65 31686.49 11597.46 23181.78 27896.31 14799.28 97
PMMVS93.62 13093.90 11092.79 22096.79 15581.40 31998.85 13596.81 19891.25 10996.82 7998.15 12677.02 23098.13 18593.15 14796.30 14898.83 139
TESTMET0.1,193.82 12293.26 12695.49 13695.21 21590.25 13699.15 10197.54 12689.18 16791.79 16194.87 23489.13 6097.63 22186.21 22596.29 14998.60 156
test-LLR93.11 14792.68 14094.40 17794.94 23587.27 21799.15 10197.25 16190.21 13391.57 16694.04 24484.89 14297.58 22585.94 22996.13 15098.36 169
test-mter93.27 14192.89 13794.40 17794.94 23587.27 21799.15 10197.25 16188.95 17491.57 16694.04 24488.03 7897.58 22585.94 22996.13 15098.36 169
Effi-MVS+93.87 12093.15 12996.02 11795.79 19490.76 12696.70 28995.78 27386.98 23395.71 10297.17 16879.58 21198.01 19594.57 12296.09 15299.31 94
mvs_anonymous92.50 15991.65 16295.06 15296.60 15989.64 15897.06 27396.44 22086.64 24184.14 24893.93 25082.49 18196.17 29991.47 16296.08 15399.35 90
IS-MVSNet93.00 14992.51 14494.49 17396.14 18487.36 21398.31 20195.70 27888.58 18490.17 19297.50 14983.02 17097.22 24187.06 21296.07 15498.90 132
PatchmatchNetpermissive92.05 17191.04 17495.06 15296.17 18189.04 16991.26 36497.26 16089.56 15690.64 18490.56 32288.35 7097.11 24479.53 29196.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 17091.75 16193.02 21598.16 9982.89 30298.79 14595.97 25086.54 24487.92 21197.80 13278.69 22199.65 9885.97 22795.93 15696.53 227
diffmvspermissive94.59 10294.19 9695.81 12595.54 20390.69 12898.70 15195.68 28091.61 9995.96 9497.81 13180.11 20798.06 19096.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPcopyleft94.67 9994.30 9295.79 12699.25 5788.13 19398.41 18798.67 2290.38 13191.43 17198.72 9182.22 18999.95 3193.83 13395.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 23988.61 21988.51 31995.53 20472.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23394.38 34892.95 14895.71 15998.48 161
PCF-MVS89.78 591.26 18189.63 19696.16 11295.44 20691.58 10695.29 32496.10 24285.07 26882.75 26297.45 15278.28 22399.78 8480.60 28795.65 16097.12 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FE-MVS91.38 18090.16 19195.05 15496.46 16687.53 20789.69 37397.84 6182.97 30392.18 15892.00 28784.07 15298.93 15380.71 28595.52 16198.68 151
mvsany_test194.57 10395.09 8092.98 21695.84 19382.07 31298.76 14795.24 30692.87 7796.45 8798.71 9484.81 14499.15 14197.68 5595.49 16297.73 190
casdiffmvspermissive93.98 11693.43 11995.61 13495.07 22989.86 15498.80 14195.84 27290.98 11392.74 15297.66 14279.71 21098.10 18794.72 11795.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 11493.33 12396.03 11695.22 21490.90 12499.09 11095.99 24890.58 12491.55 16997.37 15579.91 20998.06 19095.01 11095.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline93.91 11893.30 12495.72 12895.10 22790.07 14597.48 25595.91 26491.03 11193.54 14297.68 14079.58 21198.02 19494.27 12595.14 16599.08 115
Fast-Effi-MVS+91.72 17490.79 18294.49 17395.89 19187.40 21299.54 4995.70 27885.01 27189.28 20395.68 21977.75 22697.57 22883.22 26295.06 16698.51 159
EPNet_dtu92.28 16492.15 15192.70 22497.29 13084.84 27598.64 15997.82 6592.91 7593.02 14997.02 17685.48 13495.70 32072.25 34494.89 16797.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 13992.62 14295.34 14196.27 17588.53 18895.88 31496.97 19490.90 11495.37 10997.07 17282.38 18799.10 14783.91 25794.86 16898.38 166
baseline294.04 11393.80 11394.74 16593.07 28790.25 13698.12 21698.16 3989.86 14586.53 22996.95 17995.56 698.05 19291.44 16394.53 16995.93 237
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27181.69 31585.16 38193.75 34354.54 39174.17 34659.15 39757.46 34896.58 26863.74 37094.38 17093.72 248
SCA90.64 19689.25 20594.83 16294.95 23488.83 17996.26 30197.21 16790.06 14290.03 19490.62 31866.61 30796.81 25783.16 26394.36 17198.84 136
OMC-MVS93.90 11993.62 11694.73 16698.63 8787.00 22298.04 22696.56 21292.19 9092.46 15498.73 8979.49 21499.14 14592.16 15894.34 17298.03 184
DP-MVS88.75 23486.56 25495.34 14198.92 7787.45 21097.64 25193.52 34870.55 37381.49 29297.25 16174.43 24399.88 5471.14 34794.09 17398.67 152
sss94.85 9193.94 10897.58 4096.43 16794.09 5998.93 12999.16 889.50 15895.27 11097.85 12981.50 19799.65 9892.79 15394.02 17498.99 120
FA-MVS(test-final)92.22 16791.08 17395.64 13296.05 18888.98 17291.60 35997.25 16186.99 23091.84 16092.12 28183.03 16999.00 15086.91 21793.91 17598.93 129
EPP-MVSNet93.75 12493.67 11594.01 19695.86 19285.70 25898.67 15597.66 9584.46 27891.36 17497.18 16791.16 3197.79 20692.93 14993.75 17698.53 158
GeoE90.60 19789.56 19793.72 20695.10 22785.43 26399.41 6894.94 31583.96 28687.21 22096.83 18974.37 24497.05 24880.50 28993.73 17798.67 152
CVMVSNet90.30 20190.91 17788.46 32094.32 25173.58 36597.61 25297.59 11690.16 13888.43 20997.10 17076.83 23192.86 35982.64 26993.54 17898.93 129
UWE-MVS93.18 14493.40 12192.50 22896.56 16083.55 29298.09 22297.84 6189.50 15891.72 16396.23 20791.08 3496.70 26186.28 22493.33 17997.26 204
thisisatest051594.75 9494.19 9696.43 9696.13 18792.64 8999.47 5597.60 11287.55 22393.17 14697.59 14594.71 1398.42 17388.28 20193.20 18098.24 176
JIA-IIPM85.97 28084.85 28089.33 30893.23 28473.68 36485.05 38397.13 17769.62 37891.56 16868.03 39388.03 7896.96 25077.89 30593.12 18197.34 201
Effi-MVS+-dtu89.97 21190.68 18487.81 32495.15 22071.98 37197.87 23595.40 29791.92 9587.57 21491.44 29774.27 24696.84 25589.45 18893.10 18294.60 245
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8495.65 10494.76 23786.52 11399.49 11295.29 10392.97 18399.53 74
LFMVS92.23 16690.84 17996.42 9798.24 9591.08 11898.24 20596.22 23383.39 29694.74 12098.31 11861.12 33798.85 15494.45 12392.82 18499.32 93
HyFIR lowres test93.68 12793.29 12594.87 15997.57 11988.04 19598.18 21098.47 2587.57 22291.24 17695.05 23185.49 13297.46 23193.22 14592.82 18499.10 113
CDS-MVSNet93.47 13293.04 13294.76 16394.75 24189.45 16298.82 13897.03 18887.91 21190.97 17896.48 19989.06 6196.36 28389.50 18792.81 18698.49 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 11299.46 11895.00 11192.69 18799.50 78
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
MSDG88.29 24386.37 25694.04 19596.90 14986.15 24496.52 29294.36 33477.89 35179.22 31796.95 17969.72 28299.59 10473.20 33992.58 19096.37 232
thisisatest053094.00 11493.52 11795.43 13895.76 19690.02 15098.99 12497.60 11286.58 24291.74 16297.36 15694.78 1298.34 17586.37 22392.48 19197.94 187
testing1195.33 7894.98 8396.37 10197.20 13392.31 9299.29 8197.68 9090.59 12394.43 12497.20 16490.79 4298.60 16795.25 10492.38 19298.18 180
TR-MVS90.77 19289.44 20094.76 16396.31 17388.02 19697.92 23195.96 25285.52 26088.22 21097.23 16266.80 30698.09 18884.58 24592.38 19298.17 181
MDTV_nov1_ep1390.47 18896.14 18488.55 18691.34 36397.51 13389.58 15492.24 15790.50 32686.99 10197.61 22377.64 30692.34 194
TAMVS92.62 15592.09 15394.20 18794.10 25687.68 20198.41 18796.97 19487.53 22489.74 19896.04 21384.77 14696.49 27688.97 19792.31 19598.42 162
ADS-MVSNet287.62 25686.88 24989.86 29396.21 17879.14 33887.15 37792.99 35283.01 30189.91 19687.27 35778.87 21892.80 36274.20 33192.27 19697.64 192
ADS-MVSNet88.99 22287.30 24294.07 19296.21 17887.56 20687.15 37796.78 20083.01 30189.91 19687.27 35778.87 21897.01 24974.20 33192.27 19697.64 192
ETVMVS94.50 10593.90 11096.31 10497.48 12292.98 7999.07 11297.86 5988.09 20494.40 12696.90 18288.35 7097.28 24090.72 17492.25 19898.66 155
cascas90.93 19089.33 20495.76 12795.69 19893.03 7898.99 12496.59 20880.49 33686.79 22794.45 24165.23 32098.60 16793.52 13892.18 19995.66 239
CR-MVSNet88.83 23087.38 24193.16 21393.47 27786.24 23884.97 38494.20 33788.92 17790.76 18286.88 36184.43 14794.82 34170.64 34892.17 20098.41 163
RPMNet85.07 29481.88 31194.64 17093.47 27786.24 23884.97 38497.21 16764.85 38990.76 18278.80 38680.95 20499.27 13753.76 38892.17 20098.41 163
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32589.78 38166.89 36391.92 20295.73 238
tttt051793.30 13993.01 13494.17 18895.57 20186.47 23098.51 17597.60 11285.99 25390.55 18597.19 16694.80 1198.31 17685.06 23891.86 20397.74 189
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15398.73 1890.33 13297.16 7097.43 15379.19 21699.53 10996.91 7191.85 20499.24 100
tpmrst92.78 15192.16 15094.65 16896.27 17587.45 21091.83 35597.10 18289.10 17094.68 12190.69 31388.22 7297.73 21689.78 18491.80 20598.77 146
alignmvs95.77 6695.00 8298.06 2897.35 12695.68 1999.71 2597.50 13691.50 10296.16 9298.61 10386.28 11899.00 15096.19 8491.74 20699.51 77
CostFormer92.89 15092.48 14594.12 19094.99 23285.89 25392.89 34697.00 19286.98 23395.00 11690.78 30990.05 5497.51 22992.92 15091.73 20798.96 123
Fast-Effi-MVS+-dtu88.84 22888.59 22189.58 30293.44 28078.18 34698.65 15794.62 32688.46 18784.12 24995.37 22768.91 28696.52 27282.06 27591.70 20894.06 246
PatchT85.44 29083.19 29992.22 23193.13 28683.00 29883.80 39096.37 22370.62 37290.55 18579.63 38584.81 14494.87 33958.18 38491.59 20998.79 143
testing22294.48 10694.00 10395.95 12197.30 12892.27 9398.82 13897.92 5589.20 16594.82 11797.26 15987.13 9597.32 23991.95 15991.56 21098.25 173
tpm291.77 17391.09 17293.82 20294.83 23985.56 26292.51 35197.16 17484.00 28493.83 13790.66 31587.54 8497.17 24287.73 20991.55 21198.72 148
testing9994.88 8894.45 8996.17 11097.20 13391.91 9899.20 8997.66 9589.95 14393.68 13997.06 17390.28 5198.50 16993.52 13891.54 21298.12 182
Syy-MVS84.10 30984.53 28882.83 35595.14 22165.71 38397.68 24896.66 20386.52 24582.63 26596.84 18768.15 29389.89 37945.62 39391.54 21292.87 252
myMVS_eth3d88.68 23889.07 20887.50 32795.14 22179.74 33497.68 24896.66 20386.52 24582.63 26596.84 18785.22 13989.89 37969.43 35391.54 21292.87 252
testing9194.88 8894.44 9096.21 10697.19 13591.90 9999.23 8797.66 9589.91 14493.66 14097.05 17590.21 5298.50 16993.52 13891.53 21598.25 173
WB-MVSnew88.69 23688.34 22689.77 29794.30 25585.99 25198.14 21397.31 15987.15 22987.85 21296.07 21269.91 27995.52 32472.83 34291.47 21687.80 361
tpm cat188.89 22687.27 24393.76 20395.79 19485.32 26790.76 36997.09 18376.14 35785.72 23488.59 34782.92 17198.04 19376.96 31091.43 21797.90 188
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 14996.19 23691.78 9795.86 9998.49 11079.53 21399.03 14996.12 8591.42 21899.66 60
Patchmatch-test86.25 27784.06 29492.82 21994.42 24782.88 30382.88 39194.23 33671.58 36979.39 31590.62 31889.00 6396.42 28063.03 37391.37 21999.16 106
dp90.16 20688.83 21494.14 18996.38 17186.42 23191.57 36097.06 18584.76 27588.81 20590.19 33484.29 14997.43 23475.05 32391.35 22098.56 157
VDDNet90.08 20888.54 22494.69 16794.41 24887.68 20198.21 20896.40 22176.21 35693.33 14597.75 13654.93 35998.77 15794.71 11890.96 22197.61 196
thres20093.69 12592.59 14396.97 6697.76 10994.74 4399.35 7699.36 289.23 16491.21 17796.97 17883.42 16098.77 15785.08 23790.96 22197.39 200
thres100view90093.34 13892.15 15196.90 6997.62 11494.84 3899.06 11599.36 287.96 20990.47 18896.78 19083.29 16398.75 15984.11 25390.69 22397.12 207
tfpn200view993.43 13492.27 14896.90 6997.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22397.12 207
thres40093.39 13692.27 14896.73 7897.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22396.61 222
VDD-MVS91.24 18490.18 19094.45 17697.08 14485.84 25698.40 19096.10 24286.99 23093.36 14498.16 12554.27 36199.20 13896.59 7890.63 22698.31 172
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11299.36 287.96 20990.47 18896.78 19083.29 16398.71 16382.93 26790.47 22796.61 222
GA-MVS90.10 20788.69 21794.33 18192.44 29287.97 19799.08 11196.26 23189.65 15086.92 22493.11 27168.09 29496.96 25082.54 27190.15 22898.05 183
testing387.75 25188.22 22986.36 33594.66 24477.41 35199.52 5097.95 5486.05 25281.12 29596.69 19486.18 12189.31 38361.65 37790.12 22992.35 265
tpmvs89.16 22087.76 23493.35 20997.19 13584.75 27790.58 37197.36 15681.99 32184.56 24389.31 34483.98 15398.17 18374.85 32690.00 23097.12 207
1112_ss92.71 15291.55 16496.20 10795.56 20291.12 11498.48 18094.69 32488.29 19886.89 22598.50 10887.02 9998.66 16584.75 24289.77 23198.81 141
Test_1112_low_res92.27 16590.97 17596.18 10895.53 20491.10 11698.47 18294.66 32588.28 19986.83 22693.50 26387.00 10098.65 16684.69 24389.74 23298.80 142
XVG-OURS-SEG-HR90.95 18990.66 18591.83 24195.18 21981.14 32695.92 31195.92 25988.40 19290.33 19197.85 12970.66 27899.38 12892.83 15188.83 23394.98 243
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15778.85 33995.89 31292.83 35671.55 37077.54 33195.89 21659.40 34399.14 14567.26 36188.26 23491.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30281.83 31292.42 22991.73 30787.36 21385.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23597.08 211
ab-mvs91.05 18889.17 20696.69 8295.96 19091.72 10292.62 35097.23 16585.61 25989.74 19893.89 25268.55 28999.42 12391.09 16587.84 23698.92 131
XVG-OURS90.83 19190.49 18791.86 24095.23 21381.25 32395.79 31995.92 25988.96 17390.02 19598.03 12871.60 27299.35 13391.06 16687.78 23794.98 243
AllTest84.97 29583.12 30090.52 27596.82 15178.84 34095.89 31292.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
TestCases90.52 27596.82 15178.84 34092.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
Anonymous20240521188.84 22887.03 24794.27 18398.14 10084.18 28498.44 18395.58 28676.79 35589.34 20296.88 18553.42 36499.54 10887.53 21187.12 24099.09 114
SDMVSNet91.09 18589.91 19394.65 16896.80 15390.54 13297.78 23997.81 6888.34 19585.73 23295.26 22866.44 31098.26 18094.25 12686.75 24195.14 240
sd_testset89.23 21988.05 23392.74 22396.80 15385.33 26695.85 31797.03 18888.34 19585.73 23295.26 22861.12 33797.76 21385.61 23386.75 24195.14 240
test_vis1_rt81.31 32380.05 32685.11 34291.29 31470.66 37598.98 12677.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15486.55 24385.24 378
HQP3-MVS96.37 22386.29 244
HQP-MVS91.50 17691.23 17092.29 23093.95 26186.39 23399.16 9696.37 22393.92 5087.57 21496.67 19573.34 25297.77 20893.82 13486.29 24492.72 254
plane_prior86.07 24899.14 10493.81 5886.26 246
HQP_MVS91.26 18190.95 17692.16 23493.84 26886.07 24899.02 12096.30 22793.38 6686.99 22196.52 19772.92 25897.75 21493.46 14186.17 24792.67 256
plane_prior596.30 22797.75 21493.46 14186.17 24792.67 256
OPM-MVS89.76 21389.15 20791.57 25090.53 32385.58 26198.11 21895.93 25892.88 7686.05 23096.47 20067.06 30597.87 20189.29 19486.08 24991.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF85.33 29185.55 26984.67 34794.63 24562.28 38693.73 33893.76 34274.38 36485.23 23997.06 17364.09 32398.31 17680.98 28186.08 24993.41 251
CLD-MVS91.06 18790.71 18392.10 23694.05 26086.10 24599.55 4496.29 23094.16 4584.70 24297.17 16869.62 28497.82 20494.74 11686.08 24992.39 260
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 22388.61 21990.03 29091.09 31684.43 28098.97 12797.02 19090.21 13380.29 30396.31 20684.89 14291.93 37372.98 34085.70 25293.73 247
dmvs_re88.69 23688.06 23290.59 27193.83 27078.68 34295.75 32096.18 23787.99 20884.48 24696.32 20567.52 30096.94 25284.98 24085.49 25396.14 234
LPG-MVS_test88.86 22788.47 22590.06 28693.35 28280.95 32898.22 20695.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
LGP-MVS_train90.06 28693.35 28280.95 32895.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
ACMM86.95 1388.77 23388.22 22990.43 27793.61 27481.34 32198.50 17695.92 25987.88 21283.85 25195.20 23067.20 30397.89 19986.90 21884.90 25692.06 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20183.06 26684.85 25787.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 23588.24 22890.12 28593.91 26681.06 32798.50 17695.67 28189.43 16080.37 30295.55 22065.67 31497.83 20390.55 17584.51 25891.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 24487.73 23589.84 29488.05 35682.21 31097.77 24196.17 23886.84 23682.41 27391.95 28972.07 26695.99 30689.83 18184.50 25991.32 303
iter_conf_final93.22 14393.04 13293.76 20397.03 14792.22 9599.05 11693.31 35092.11 9386.93 22395.42 22495.01 1096.59 26593.98 12884.48 26092.46 259
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33496.36 28389.44 18984.47 26191.50 294
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 34196.31 29189.40 19084.34 26291.43 298
iter_conf0593.48 13193.18 12894.39 18097.15 13994.17 5799.30 8092.97 35392.38 8886.70 22895.42 22495.67 596.59 26594.67 11984.32 26392.39 260
test_fmvs285.10 29385.45 27184.02 35089.85 33265.63 38498.49 17892.59 35890.45 12885.43 23893.32 26443.94 38196.59 26590.81 17184.19 26489.85 341
Anonymous2024052987.66 25585.58 26893.92 19897.59 11785.01 27398.13 21497.13 17766.69 38788.47 20896.01 21455.09 35899.51 11087.00 21484.12 26597.23 206
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28795.94 30986.01 22684.02 26689.72 343
mvsmamba89.99 21089.42 20191.69 24890.64 32286.34 23698.40 19092.27 36291.01 11284.80 24194.93 23276.12 23296.51 27392.81 15283.84 26792.21 270
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33077.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 21885.02 23983.83 26890.92 314
ACMMP++83.83 268
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12396.39 17094.13 5899.46 5996.97 19492.18 9166.94 37698.29 12094.65 1594.28 34994.34 12483.82 27099.24 100
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 33974.61 36266.53 37888.76 34640.40 38896.20 29667.02 36283.66 27186.61 369
D2MVS87.96 24687.39 24089.70 29991.84 30583.40 29498.31 20198.49 2388.04 20678.23 32890.26 32873.57 25096.79 25984.21 25083.53 27288.90 353
UniMVSNet_ETH3D85.65 28983.79 29791.21 25490.41 32580.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26284.30 24883.52 27396.22 233
bld_raw_dy_0_6487.82 24786.71 25291.15 25689.54 33885.61 25997.37 25989.16 38689.26 16383.42 25494.50 24065.79 31396.18 29788.00 20683.37 27491.67 284
PVSNet_BlendedMVS93.36 13793.20 12793.84 20198.77 8391.61 10499.47 5598.04 4891.44 10494.21 12992.63 27883.50 15799.87 5897.41 5983.37 27490.05 337
PS-MVSNAJss89.54 21789.05 20991.00 26088.77 34784.36 28197.39 25695.97 25088.47 18581.88 28693.80 25482.48 18296.50 27489.34 19183.34 27692.15 273
EI-MVSNet89.87 21289.38 20391.36 25394.32 25185.87 25497.61 25296.59 20885.10 26685.51 23697.10 17081.30 20296.56 26983.85 25983.03 27791.64 285
MVSTER92.71 15292.32 14693.86 20097.29 13092.95 8299.01 12296.59 20890.09 13985.51 23694.00 24894.61 1696.56 26990.77 17383.03 27792.08 277
FIs90.70 19489.87 19493.18 21292.29 29491.12 11498.17 21298.25 3289.11 16983.44 25394.82 23682.26 18896.17 29987.76 20882.76 27992.25 266
tpm89.67 21488.95 21191.82 24292.54 29181.43 31892.95 34595.92 25987.81 21390.50 18789.44 34184.99 14095.65 32183.67 26082.71 28098.38 166
ACMMP++_ref82.64 281
FC-MVSNet-test90.22 20389.40 20292.67 22691.78 30689.86 15497.89 23298.22 3588.81 17982.96 26194.66 23881.90 19495.96 30885.89 23182.52 28292.20 272
ITE_SJBPF87.93 32292.26 29576.44 35493.47 34987.67 22179.95 30895.49 22356.50 35197.38 23675.24 32282.33 28389.98 339
RRT_MVS88.91 22588.56 22289.93 29190.31 32681.61 31698.08 22396.38 22289.30 16282.41 27394.84 23573.15 25696.04 30590.38 17682.23 28492.15 273
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 28983.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31597.63 22169.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 29682.93 30190.16 28491.73 30783.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22075.88 31981.54 28789.30 348
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28582.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20674.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080586.50 27384.79 28291.63 24991.97 30081.49 31796.49 29397.38 15482.24 31882.44 27095.82 21751.22 36998.25 18184.55 24680.96 28995.13 242
GBi-Net86.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
FMVSNet388.81 23287.08 24693.99 19796.52 16394.59 4798.08 22396.20 23485.85 25482.12 27991.60 29474.05 24895.40 32979.04 29580.24 29091.99 280
baseline192.61 15691.28 16996.58 8897.05 14694.63 4697.72 24596.20 23489.82 14688.56 20796.85 18686.85 10397.82 20488.42 19980.10 29397.30 202
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25691.62 37288.63 18175.85 33995.42 22446.07 38091.55 37466.87 36479.94 29492.12 275
test_040278.81 33576.33 34086.26 33691.18 31578.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
FMVSNet286.90 26384.79 28293.24 21195.11 22492.54 9097.67 25095.86 27182.94 30480.55 30091.17 30362.89 32995.29 33177.23 30779.71 29691.90 281
pmmvs487.58 25786.17 26091.80 24389.58 33688.92 17897.25 26595.28 30282.54 31280.49 30193.17 27075.62 23596.05 30482.75 26878.90 29790.42 328
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27379.16 33796.43 29494.28 33581.09 33174.00 34794.03 24654.58 36097.67 21776.10 31778.81 29890.63 325
XXY-MVS87.75 25186.02 26192.95 21890.46 32489.70 15797.71 24795.90 26584.02 28380.95 29694.05 24367.51 30197.10 24685.16 23678.41 29992.04 279
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16593.71 34481.53 32680.29 30392.02 28464.51 32295.52 32482.04 27678.34 30091.15 308
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26378.88 29878.11 30187.22 367
cl2289.57 21688.79 21591.91 23997.94 10587.62 20497.98 22996.51 21585.03 26982.37 27591.79 29083.65 15596.50 27485.96 22877.89 30291.61 290
miper_ehance_all_eth88.94 22488.12 23191.40 25195.32 21186.93 22397.85 23695.55 28784.19 28181.97 28491.50 29684.16 15095.91 31384.69 24377.89 30291.36 301
miper_enhance_ethall90.33 20089.70 19592.22 23197.12 14288.93 17798.35 19795.96 25288.60 18383.14 26092.33 28087.38 8796.18 29786.49 22277.89 30291.55 293
TinyColmap80.42 32777.94 33287.85 32392.09 29878.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22565.17 36977.89 30287.38 363
FMVSNet183.94 31081.32 31891.80 24391.94 30388.81 18096.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34686.08 25176.53 33293.28 26761.41 33596.14 30180.95 28277.69 30790.93 313
IterMVS85.81 28484.67 28589.22 30993.51 27683.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30993.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 27982.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30793.33 35579.38 29477.36 30990.76 320
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27194.54 34768.81 35576.84 31090.07 335
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21569.71 28384.37 39152.71 39076.82 31192.21 270
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27791.48 37575.79 32075.98 31291.70 283
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33692.15 37060.59 37975.92 31389.24 350
IterMVS-LS88.34 24187.44 23991.04 25994.10 25685.85 25598.10 21995.48 29185.12 26582.03 28391.21 30281.35 20195.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet89.10 22187.66 23793.45 20892.56 29091.02 12097.97 23098.32 3086.92 23586.03 23192.01 28568.84 28897.10 24690.92 16875.34 31592.23 268
nrg03090.23 20288.87 21294.32 18291.53 31093.54 6798.79 14595.89 26788.12 20384.55 24494.61 23978.80 22096.88 25492.35 15775.21 31692.53 258
cl____87.82 24786.79 25190.89 26494.88 23785.43 26397.81 23795.24 30682.91 30880.71 29991.22 30181.97 19395.84 31581.34 28075.06 31791.40 300
DIV-MVS_self_test87.82 24786.81 25090.87 26594.87 23885.39 26597.81 23795.22 31182.92 30780.76 29891.31 30081.99 19195.81 31781.36 27975.04 31891.42 299
v119286.32 27684.71 28491.17 25589.53 33986.40 23298.13 21495.44 29582.52 31382.42 27290.62 31871.58 27396.33 29077.23 30774.88 31990.79 318
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23495.23 31081.89 32482.16 27890.55 32369.60 28596.31 29175.59 32174.87 32090.72 322
FMVSNet582.29 31780.54 32187.52 32693.79 27284.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32789.24 38469.07 35474.79 32189.29 349
v114486.83 26585.31 27391.40 25189.75 33387.21 22198.31 20195.45 29383.22 29882.70 26490.78 30973.36 25196.36 28379.49 29274.69 32290.63 325
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34773.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 21995.35 30182.19 31982.25 27790.71 31170.73 27696.30 29476.85 31274.49 32490.80 317
WR-MVS88.54 24087.22 24592.52 22791.93 30489.50 16198.56 17097.84 6186.99 23081.87 28793.81 25374.25 24795.92 31285.29 23574.43 32592.12 275
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28194.61 34663.40 37174.36 32689.71 344
Patchmtry83.61 31381.64 31389.50 30493.36 28182.84 30484.10 38794.20 33769.47 37979.57 31386.88 36184.43 14794.78 34268.48 35774.30 32790.88 315
V4287.00 26285.68 26790.98 26189.91 32986.08 24698.32 20095.61 28483.67 29282.72 26390.67 31474.00 24996.53 27181.94 27774.28 32890.32 330
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34596.60 26482.61 27074.20 32991.59 292
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 34095.61 32374.47 32874.15 33090.75 321
v2v48287.27 26085.76 26591.78 24789.59 33587.58 20598.56 17095.54 28884.53 27782.51 26991.78 29173.11 25796.47 27782.07 27474.14 33191.30 304
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20895.43 29682.45 31582.62 26790.58 32172.79 26196.36 28378.45 30274.04 33290.79 318
c3_l88.19 24587.23 24491.06 25894.97 23386.17 24397.72 24595.38 29883.43 29581.68 29191.37 29882.81 17395.72 31984.04 25673.70 33391.29 305
eth_miper_zixun_eth87.76 25087.00 24890.06 28694.67 24382.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19895.90 31483.24 26173.61 33491.61 290
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24681.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19194.68 34580.71 28573.58 33591.12 309
tfpnnormal83.65 31181.35 31790.56 27491.37 31388.06 19497.29 26297.87 5878.51 34676.20 33390.91 30664.78 32196.47 27761.71 37673.50 33687.13 368
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32493.81 35153.12 38973.46 33788.94 352
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
CP-MVSNet86.54 27185.45 27189.79 29691.02 31882.78 30597.38 25897.56 12285.37 26279.53 31493.03 27271.86 26995.25 33279.92 29073.43 33991.34 302
PS-CasMVS85.81 28484.58 28789.49 30690.77 32082.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30295.16 33478.39 30373.25 34091.21 307
WR-MVS_H86.53 27285.49 27089.66 30191.04 31783.31 29697.53 25498.20 3684.95 27279.64 31190.90 30778.01 22595.33 33076.29 31672.81 34190.35 329
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
v1085.73 28784.01 29590.87 26590.03 32786.73 22697.20 26995.22 31181.25 32979.85 31089.75 33873.30 25496.28 29576.87 31172.64 34389.61 345
UniMVSNet (Re)89.50 21888.32 22793.03 21492.21 29690.96 12298.90 13398.39 2789.13 16883.22 25592.03 28381.69 19596.34 28986.79 21972.53 34491.81 282
UniMVSNet_NR-MVSNet89.60 21588.55 22392.75 22292.17 29790.07 14598.74 14898.15 4088.37 19383.21 25693.98 24982.86 17295.93 31086.95 21572.47 34592.25 266
DU-MVS88.83 23087.51 23892.79 22091.46 31190.07 14598.71 14997.62 10988.87 17883.21 25693.68 25674.63 23895.93 31086.95 21572.47 34592.36 262
v886.11 27884.45 28991.10 25789.99 32886.85 22497.24 26695.36 30081.99 32179.89 30989.86 33774.53 24296.39 28178.83 29972.32 34790.05 337
VPNet88.30 24286.57 25393.49 20791.95 30291.35 10898.18 21097.20 17188.61 18284.52 24594.89 23362.21 33296.76 26089.34 19172.26 34892.36 262
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 28096.35 28873.83 33572.13 34990.07 335
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
IB-MVS89.43 692.12 16890.83 18195.98 12095.40 20990.78 12599.81 1198.06 4591.23 11085.63 23593.66 25890.63 4398.78 15691.22 16471.85 35198.36 169
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 25486.00 26292.96 21791.46 31190.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22895.83 31684.26 24971.82 35292.36 262
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17295.48 29183.80 28880.93 29790.22 33274.60 24096.31 29180.92 28371.55 35390.69 323
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16091.66 37180.41 33982.44 27091.35 29974.63 23895.42 32884.13 25271.39 35487.84 359
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23790.81 31988.56 18598.33 19897.18 17287.76 21581.87 28793.90 25172.45 26295.43 32783.13 26571.30 35592.23 268
PEN-MVS85.21 29283.93 29689.07 31389.89 33181.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29194.87 33975.98 31870.92 35691.04 311
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
pm-mvs184.68 29882.78 30590.40 27889.58 33685.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31896.11 30278.75 30069.14 35889.91 340
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29894.24 35072.64 34369.05 35990.32 330
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34787.29 38958.65 38368.47 36086.53 370
h-mvs3392.47 16091.95 15694.05 19497.13 14185.01 27398.36 19698.08 4493.85 5596.27 9096.73 19283.19 16699.43 12295.81 9068.09 36197.70 191
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34183.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29592.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29792.07 37266.00 36667.75 36590.23 332
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
AUN-MVS90.17 20589.50 19892.19 23396.21 17882.67 30697.76 24397.53 12788.05 20591.67 16496.15 20883.10 16897.47 23088.11 20466.91 36796.43 230
hse-mvs291.67 17591.51 16592.15 23596.22 17782.61 30897.74 24497.53 12793.85 5596.27 9096.15 20883.19 16697.44 23395.81 9066.86 36896.40 231
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34567.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 36690.74 32151.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34992.49 36760.79 37864.80 37390.08 334
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9492.59 36482.28 27362.78 37598.98 121
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24374.88 32559.47 38187.33 365
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33484.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30495.21 33367.50 36059.46 38288.02 358
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34077.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 29090.26 37763.21 37256.51 38688.35 356
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
PVSNet_083.28 1687.31 25985.16 27493.74 20594.78 24084.59 27898.91 13298.69 2189.81 14778.59 32493.23 26861.95 33399.34 13494.75 11555.72 38897.30 202
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38764.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32680.31 39821.85 40250.47 39575.43 389
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32879.92 39920.48 40348.02 39674.44 390
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20342.59 38465.10 40378.00 30414.92 40461.08 396
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2393.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8574.35 2450.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1820.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1080.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
FOURS199.50 4288.94 17599.55 4497.47 14191.32 10898.12 44
test_one_060199.59 2894.89 3497.64 10393.14 6998.93 2199.45 1493.45 18
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.63 1895.24 2597.72 8194.16 4599.30 899.49 993.32 1999.98 9
save fliter99.34 5093.85 6299.65 3597.63 10795.69 22
test072699.66 1295.20 3099.77 1797.70 8693.95 4899.35 799.54 393.18 22
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6998.84 136
sam_mvs87.08 97
MTGPAbinary97.45 144
test_post190.74 37041.37 40685.38 13696.36 28383.16 263
test_post46.00 40387.37 8897.11 244
patchmatchnet-post84.86 36788.73 6696.81 257
MTMP99.21 8891.09 376
gm-plane-assit94.69 24288.14 19288.22 20097.20 16498.29 17890.79 172
TEST999.57 3393.17 7399.38 7197.66 9589.57 15598.39 3599.18 3390.88 3999.66 94
test_899.55 3593.07 7699.37 7497.64 10390.18 13598.36 3799.19 3090.94 3699.64 100
agg_prior99.54 3692.66 8697.64 10397.98 5199.61 102
test_prior492.00 9799.41 68
test_prior97.01 6099.58 3091.77 10097.57 12199.49 11299.79 36
旧先验298.67 15585.75 25898.96 2098.97 15293.84 132
新几何298.26 204
无先验98.52 17297.82 6587.20 22899.90 5087.64 21099.85 30
原ACMM298.69 152
testdata299.88 5484.16 251
segment_acmp90.56 44
testdata197.89 23292.43 82
plane_prior793.84 26885.73 257
plane_prior693.92 26586.02 25072.92 258
plane_prior496.52 197
plane_prior385.91 25293.65 6186.99 221
plane_prior299.02 12093.38 66
plane_prior193.90 267
n20.00 415
nn0.00 415
door-mid84.90 395
test1197.68 90
door85.30 393
HQP5-MVS86.39 233
HQP-NCC93.95 26199.16 9693.92 5087.57 214
ACMP_Plane93.95 26199.16 9693.92 5087.57 214
BP-MVS93.82 134
HQP4-MVS87.57 21497.77 20892.72 254
HQP2-MVS73.34 252
NP-MVS93.94 26486.22 24096.67 195
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14886.67 10887.02 21398.95 127
Test By Simon83.62 156