This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1697.98 4497.18 295.96 8499.33 2192.62 22100.00 198.99 1399.93 199.98 6
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 597.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
OPU-MVS99.49 299.64 2098.51 299.77 899.19 3295.12 699.97 2099.90 199.92 399.99 1
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1698.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6797.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 797.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4199.87 799.91 18
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7197.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 61
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9299.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8899.86 1099.97 7
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13899.41 5497.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5797.66 8390.18 11398.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7697.65 8889.55 13599.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15497.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1397.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
test_0728_SECOND98.77 599.66 1596.37 1199.72 1397.68 8199.98 1099.64 599.82 1599.96 8
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 897.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3097.57 10791.43 8598.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior299.57 3091.43 8598.12 3498.97 6390.43 4098.33 3099.81 19
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2497.73 7291.05 9298.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1197.78 6396.61 498.15 3199.53 793.62 14100.00 191.79 13999.80 2399.94 14
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11793.59 4398.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8897.44 13489.02 14797.90 4399.22 2988.90 6299.49 10494.63 10499.79 2599.68 61
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6297.64 8990.38 10797.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
region2R96.30 5096.17 4796.70 8899.70 890.31 13499.46 4597.66 8390.55 10297.07 5799.07 5186.85 10199.97 2095.43 8699.74 2899.81 31
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6597.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12199.47 4097.81 5890.54 10396.88 6099.05 5487.57 8399.96 2795.65 7999.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12199.53 3697.81 5890.94 9696.88 6099.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13299.47 4097.80 6090.54 10396.83 6899.03 5686.51 11399.95 3095.65 7999.72 3099.75 48
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15799.70 1697.61 9690.07 11996.00 8199.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
test1297.83 3199.33 5994.45 4797.55 11097.56 4688.60 6599.50 10399.71 3499.55 77
ZD-MVS99.67 1393.28 7097.61 9687.78 18897.41 5199.16 3990.15 4799.56 9398.35 2999.70 35
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7697.74 6891.28 8998.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11597.64 8996.51 795.88 8799.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11789.85 12298.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7697.44 13490.08 11898.59 2299.07 5189.06 5999.42 11597.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2295.45 27295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 13089.60 13198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
HPM-MVScopyleft95.41 7495.22 7495.99 11799.29 6189.14 16299.17 7597.09 17087.28 20195.40 9798.48 10784.93 13599.38 11995.64 8399.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 10191.21 10898.08 20197.58 10483.74 25695.87 8899.02 5786.74 10499.64 4399.81 31
mPP-MVS95.90 6395.75 6396.38 10499.58 2989.41 16199.26 6897.41 13890.66 9894.82 10698.95 7086.15 12099.98 1095.24 9199.64 4399.74 51
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1297.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 8494.62 8195.70 12699.11 7388.44 18099.14 8597.11 16685.82 22495.69 9398.47 10883.46 15299.32 12793.16 12799.63 4699.35 91
9.1496.87 2699.34 5399.50 3897.49 12589.41 13898.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
新几何197.40 4898.92 8492.51 9197.77 6585.52 22796.69 7299.06 5388.08 7699.89 4384.88 21399.62 4799.79 34
原ACMM196.18 10999.03 7890.08 14197.63 9388.98 14897.00 5898.97 6388.14 7599.71 7388.23 17899.62 4798.76 143
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1698.05 3986.48 21798.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8897.38 14188.44 16898.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27797.75 6685.50 22996.86 6399.01 6188.59 6799.90 4087.64 18599.60 5299.79 34
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5396.36 895.20 10198.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 5795.82 5996.54 9699.47 4690.13 14099.36 6197.41 13890.64 10195.49 9698.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5595.81 6196.95 7299.42 4991.19 10999.55 3397.53 11489.72 12695.86 8998.94 7586.59 10999.97 2095.13 9299.56 5599.68 61
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12099.14 8599.45 193.86 3595.15 10298.73 8788.48 6899.76 6897.23 4899.56 5599.40 89
DeepPCF-MVS93.56 196.55 4197.84 892.68 20998.71 9278.11 32199.70 1697.71 7898.18 197.36 5399.76 190.37 4599.94 3399.27 999.54 5799.99 1
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 21299.44 4897.47 12883.22 26594.34 11598.96 6882.50 17099.55 9494.81 9999.50 5898.88 129
MP-MVS-pluss95.80 6695.30 7197.29 5298.95 8392.66 8498.59 14997.14 16288.95 15093.12 13199.25 2585.62 12499.94 3396.56 6299.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11497.59 10290.66 9897.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
PGM-MVS95.85 6495.65 6796.45 10099.50 4389.77 15298.22 18798.90 1189.19 14196.74 7098.95 7085.91 12399.92 3693.94 11299.46 6099.66 65
testdata95.26 14198.20 10487.28 20297.60 9885.21 23298.48 2599.15 4188.15 7498.72 15190.29 15499.45 6299.78 38
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16498.59 14997.33 14690.44 10596.84 6699.12 4686.75 10399.41 11797.47 4399.44 6399.76 47
XVS96.47 4496.37 4096.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6398.96 6887.37 8999.87 4795.65 7999.43 6499.78 38
X-MVStestdata90.69 17788.66 19796.77 8199.62 2590.66 12999.43 5197.58 10492.41 6696.86 6329.59 36687.37 8999.87 4795.65 7999.43 6499.78 38
MVS93.92 10892.28 13298.83 495.69 18396.82 596.22 27798.17 3184.89 24184.34 22098.61 9879.32 20099.83 5793.88 11499.43 6499.86 28
test117295.92 6296.07 5295.46 13299.42 4987.24 20798.51 15797.24 15090.29 11096.56 7699.12 4686.73 10599.36 12197.33 4799.42 6799.78 38
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10998.69 13297.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
MTAPA96.09 5595.80 6296.96 7099.29 6191.19 10997.23 24097.45 13092.58 5794.39 11399.24 2786.43 11599.99 596.22 6899.40 6899.71 55
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
PAPM_NR95.43 7295.05 7796.57 9599.42 4990.14 13898.58 15197.51 12090.65 10092.44 13998.90 7687.77 8199.90 4090.88 14899.32 7199.68 61
SR-MVS-dyc-post95.75 7095.86 5895.41 13599.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6386.73 10599.36 12196.62 5899.31 7299.60 73
RE-MVS-def95.70 6499.22 6687.26 20598.40 17297.21 15489.63 12996.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
PAPM96.35 4795.94 5597.58 4094.10 23495.25 2098.93 10798.17 3194.26 2393.94 12198.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
APD-MVS_3200maxsize95.64 7195.65 6795.62 12799.24 6587.80 18898.42 16797.22 15388.93 15296.64 7598.98 6285.49 12899.36 12196.68 5799.27 7599.70 57
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11297.94 4592.89 5496.90 5999.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11297.93 4692.86 5696.88 6099.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
3Dnovator87.35 1193.17 13391.77 14697.37 5195.41 19393.07 7698.82 11897.85 5291.53 8282.56 23997.58 13971.97 25299.82 6091.01 14699.23 7899.22 105
GST-MVS95.97 5995.66 6596.90 7499.49 4591.22 10799.45 4797.48 12689.69 12795.89 8698.72 8986.37 11799.95 3094.62 10599.22 7999.52 79
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9797.11 16695.83 1098.97 1199.14 4382.48 17299.60 9198.60 1999.08 8098.00 176
MVS_111021_LR95.78 6795.94 5595.28 14098.19 10687.69 18998.80 12099.26 793.39 4595.04 10498.69 9384.09 14499.76 6896.96 5599.06 8198.38 161
PAPR96.35 4795.82 5997.94 2999.63 2194.19 5499.42 5397.55 11092.43 6293.82 12599.12 4687.30 9499.91 3894.02 11199.06 8199.74 51
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9398.97 10497.01 17782.58 27792.57 13798.22 11780.68 19199.30 12889.34 16699.02 8399.63 69
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14598.80 12097.78 6383.59 26093.85 12399.21 3083.79 14699.97 2092.37 13599.00 8499.74 51
MVSFormer94.71 9294.08 9596.61 9295.05 21294.87 3397.77 21796.17 22286.84 20898.04 3798.52 10285.52 12595.99 27789.83 15798.97 8598.96 121
lupinMVS96.32 4995.94 5597.44 4595.05 21294.87 3399.86 296.50 20093.82 3898.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 90
3Dnovator+87.72 893.43 12391.84 14498.17 1895.73 18295.08 2998.92 10997.04 17391.42 8781.48 26397.60 13774.60 22599.79 6590.84 14998.97 8599.64 67
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 33897.74 6893.91 12296.40 18196.56 296.94 22895.08 9398.95 8899.20 106
gg-mvs-nofinetune90.00 19087.71 21196.89 7996.15 17194.69 4385.15 34497.74 6868.32 34592.97 13560.16 35596.10 396.84 23093.89 11398.87 8999.14 109
MAR-MVS94.43 9994.09 9495.45 13399.10 7587.47 19698.39 17597.79 6288.37 17194.02 12099.17 3778.64 20799.91 3892.48 13498.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12797.90 4892.48 6196.00 8198.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12797.88 4992.43 6295.97 8398.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21799.34 6498.15 3482.71 27590.15 17299.25 2589.48 5699.86 5294.97 9798.82 9399.72 54
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30098.36 2392.50 6095.62 9597.52 14097.92 197.38 21498.31 3398.80 9498.20 172
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 497.52 11795.90 997.21 5498.90 7682.66 16999.93 3598.71 1698.80 9499.63 69
MVP-Stereo86.61 24585.83 23988.93 29088.70 31783.85 27096.07 28294.41 30782.15 28575.64 31091.96 25767.65 28196.45 25177.20 27898.72 9686.51 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 16389.49 18097.17 5895.66 18593.42 6898.60 14797.51 12080.92 29981.39 26497.41 14572.89 24599.87 4782.33 24398.68 9798.21 171
131493.44 12291.98 14197.84 3095.24 19694.38 5096.22 27797.92 4790.18 11382.28 24597.71 13277.63 21299.80 6491.94 13898.67 9899.34 93
abl_694.63 9594.48 8495.09 14398.61 9686.96 21098.06 20396.97 17989.31 13995.86 8998.56 10079.82 19499.64 8694.53 10798.65 9998.66 150
CS-MVS95.39 7695.39 7095.40 13695.54 18889.66 15599.62 2695.98 22891.72 7997.48 5098.41 11183.64 14897.46 20997.46 4498.64 10099.06 115
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13490.76 12598.39 17597.11 16693.92 3188.66 18598.33 11278.14 20999.85 5495.02 9598.57 10198.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 17588.84 19296.48 9893.58 25193.51 6698.80 12097.41 13882.59 27678.62 29297.49 14268.00 27899.82 6084.52 21898.55 10296.11 214
EIA-MVS95.11 8195.27 7394.64 15896.34 16186.51 21699.59 2896.62 18892.51 5994.08 11998.64 9586.05 12198.24 16295.07 9498.50 10399.18 107
jason95.40 7594.86 7997.03 6192.91 26594.23 5299.70 1696.30 21193.56 4496.73 7198.52 10281.46 18797.91 17896.08 7398.47 10498.96 121
jason: jason.
MS-PatchMatch86.75 24185.92 23889.22 28391.97 27582.47 28896.91 25196.14 22483.74 25677.73 29993.53 23158.19 31797.37 21676.75 28298.35 10587.84 329
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12686.58 21494.42 11299.13 4587.36 9299.98 1093.64 11998.33 10699.48 85
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10097.04 17395.51 1698.86 1399.11 5082.19 17899.36 12198.59 2198.14 10798.00 176
BH-w/o92.32 14791.79 14593.91 18396.85 14586.18 22899.11 9095.74 25488.13 17884.81 21597.00 16277.26 21497.91 17889.16 17198.03 10897.64 182
TAPA-MVS87.50 990.35 18089.05 18894.25 17198.48 10085.17 25298.42 16796.58 19482.44 28187.24 19798.53 10182.77 16698.84 14459.09 34797.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12688.74 17498.41 16998.27 2592.18 7191.43 15196.40 18178.88 20299.81 6293.59 12097.81 11099.30 96
BH-untuned91.46 16290.84 16293.33 19496.51 15784.83 25898.84 11795.50 26986.44 21983.50 22696.70 17475.49 22097.77 18986.78 19597.81 11097.40 188
Vis-MVSNetpermissive92.64 14091.85 14395.03 14795.12 20588.23 18198.48 16296.81 18391.61 8092.16 14297.22 15171.58 25898.00 17785.85 20697.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8897.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 6195.66 6596.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11697.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
ETV-MVS96.00 5796.00 5396.00 11696.56 15491.05 11899.63 2496.61 18993.26 4897.39 5298.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19599.25 6996.55 19688.43 16991.26 15498.21 11985.92 12299.86 5289.77 16097.57 11597.24 193
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 18588.72 19594.59 16098.97 8086.33 22496.90 25296.60 19074.96 32684.06 22398.74 8675.78 21899.83 5774.93 29497.57 11597.62 185
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16398.33 17997.55 11086.81 21090.39 16998.65 9475.09 22199.98 1093.32 12597.53 11899.26 101
BH-RMVSNet91.25 16689.99 17495.03 14796.75 14988.55 17798.65 13894.95 29287.74 19187.74 19197.80 12668.27 27598.14 16480.53 25897.49 11998.41 158
CANet_DTU94.31 10293.35 11197.20 5797.03 14294.71 4298.62 14395.54 26795.61 1497.21 5498.47 10871.88 25399.84 5588.38 17697.46 12097.04 200
PatchMatch-RL91.47 16190.54 16994.26 17098.20 10486.36 22396.94 25097.14 16287.75 19088.98 18395.75 19371.80 25599.40 11880.92 25497.39 12197.02 201
UGNet91.91 15590.85 16195.10 14297.06 14088.69 17598.01 20598.24 2792.41 6692.39 14093.61 22860.52 31299.68 7888.14 17997.25 12296.92 202
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13799.38 5798.93 1091.42 8793.66 12697.68 13371.29 26099.64 8687.94 18297.20 12398.98 119
EI-MVSNet-Vis-set95.76 6995.63 6996.17 11199.14 7190.33 13398.49 16197.82 5591.92 7494.75 10798.88 7887.06 9799.48 10995.40 8797.17 12498.70 146
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14899.19 7195.89 24586.22 22089.40 18098.85 7980.66 19299.84 5588.57 17496.92 12599.24 102
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19995.24 2198.62 14396.50 20092.99 5097.52 4798.83 8072.37 24899.15 13397.03 5096.74 12696.58 206
MVS_Test93.67 11892.67 12696.69 8996.72 15092.66 8497.22 24196.03 22787.69 19495.12 10394.03 21581.55 18498.28 16189.17 17096.46 12999.14 109
EI-MVSNet-UG-set95.43 7295.29 7295.86 12199.07 7789.87 14998.43 16697.80 6091.78 7794.11 11898.77 8386.25 11999.48 10994.95 9896.45 13098.22 170
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 2996.54 19895.09 1896.84 6698.63 9791.16 2699.77 6799.04 1296.42 13199.81 31
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13591.10 11599.32 6697.43 13692.10 7391.53 15096.38 18483.29 15699.68 7893.42 12496.37 13298.25 168
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17286.71 21598.68 13496.70 18688.30 17389.71 17997.64 13685.43 13196.39 25488.06 18196.32 13399.08 113
EPMVS92.59 14391.59 14995.59 13097.22 13290.03 14691.78 32698.04 4090.42 10691.66 14690.65 28586.49 11497.46 20981.78 24996.31 13499.28 99
PMMVS93.62 12093.90 10492.79 20496.79 14881.40 29598.85 11596.81 18391.25 9096.82 6998.15 12177.02 21598.13 16593.15 12896.30 13598.83 135
TESTMET0.1,193.82 11293.26 11495.49 13195.21 19890.25 13599.15 8297.54 11389.18 14291.79 14394.87 20589.13 5897.63 20086.21 19896.29 13698.60 151
test-LLR93.11 13492.68 12594.40 16594.94 21787.27 20399.15 8297.25 14890.21 11191.57 14794.04 21384.89 13697.58 20385.94 20296.13 13798.36 164
test-mter93.27 13092.89 12294.40 16594.94 21787.27 20399.15 8297.25 14888.95 15091.57 14794.04 21388.03 7797.58 20385.94 20296.13 13798.36 164
Effi-MVS+93.87 11193.15 11696.02 11595.79 17990.76 12596.70 26295.78 25186.98 20595.71 9297.17 15579.58 19698.01 17694.57 10696.09 13999.31 95
mvs_anonymous92.50 14591.65 14895.06 14596.60 15389.64 15697.06 24696.44 20486.64 21384.14 22193.93 21982.49 17196.17 27191.47 14096.08 14099.35 91
IS-MVSNet93.00 13592.51 12994.49 16296.14 17287.36 20098.31 18295.70 25688.58 16090.17 17197.50 14183.02 16297.22 21787.06 18896.07 14198.90 128
PatchmatchNetpermissive92.05 15391.04 15795.06 14596.17 17089.04 16491.26 33097.26 14789.56 13490.64 16390.56 29188.35 7197.11 22079.53 26196.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 15291.75 14793.02 19998.16 10782.89 28198.79 12495.97 23086.54 21687.92 19097.80 12678.69 20699.65 8485.97 20095.93 14396.53 209
mvs-test191.57 15992.20 13589.70 27295.15 20374.34 33199.51 3795.40 27691.92 7491.02 15797.25 14874.27 23298.08 17189.45 16295.83 14496.67 203
diffmvs94.59 9794.19 9095.81 12295.54 18890.69 12798.70 13195.68 25891.61 8095.96 8497.81 12580.11 19398.06 17296.52 6395.76 14598.67 147
ACMMPcopyleft94.67 9394.30 8795.79 12399.25 6488.13 18398.41 16998.67 1990.38 10791.43 15198.72 8982.22 17799.95 3093.83 11695.76 14599.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 21588.61 19888.51 29495.53 19072.68 33996.85 25488.43 35588.45 16573.14 32290.63 28675.82 21794.38 31992.95 12995.71 14798.48 156
PCF-MVS89.78 591.26 16489.63 17796.16 11295.44 19291.58 10395.29 29696.10 22585.07 23682.75 23597.45 14378.28 20899.78 6680.60 25795.65 14897.12 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs93.98 10793.43 11095.61 12995.07 21189.86 15098.80 12095.84 25090.98 9492.74 13697.66 13579.71 19598.10 16794.72 10295.37 14998.87 131
baseline93.91 10993.30 11295.72 12595.10 20990.07 14297.48 22995.91 24291.03 9393.54 12797.68 13379.58 19698.02 17594.27 11095.14 15099.08 113
Fast-Effi-MVS+91.72 15790.79 16594.49 16295.89 17787.40 19999.54 3595.70 25685.01 23989.28 18295.68 19477.75 21197.57 20683.22 23395.06 15198.51 154
EPNet_dtu92.28 14892.15 13792.70 20897.29 13084.84 25798.64 14097.82 5592.91 5393.02 13497.02 16185.48 13095.70 29272.25 31294.89 15297.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 12892.62 12795.34 13896.27 16388.53 17995.88 28796.97 17990.90 9795.37 9897.07 15982.38 17599.10 13883.91 22894.86 15398.38 161
baseline294.04 10593.80 10694.74 15493.07 26390.25 13598.12 19698.16 3389.86 12186.53 20696.95 16495.56 598.05 17391.44 14194.53 15495.93 215
MVS-HIRNet79.01 30575.13 31590.66 24893.82 24781.69 29385.16 34393.75 31754.54 35374.17 31659.15 35757.46 31996.58 24163.74 33694.38 15593.72 223
SCA90.64 17889.25 18594.83 15194.95 21688.83 17096.26 27497.21 15490.06 12090.03 17390.62 28766.61 28896.81 23283.16 23494.36 15698.84 132
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20998.04 20496.56 19592.19 7092.46 13898.73 8779.49 19999.14 13692.16 13794.34 15798.03 175
DP-MVS88.75 21386.56 22995.34 13898.92 8487.45 19797.64 22593.52 32270.55 33781.49 26297.25 14874.43 22999.88 4471.14 31594.09 15898.67 147
sss94.85 8693.94 10297.58 4096.43 15894.09 5698.93 10799.16 889.50 13695.27 9997.85 12381.50 18599.65 8492.79 13394.02 15998.99 118
EPP-MVSNet93.75 11493.67 10794.01 18095.86 17885.70 24298.67 13697.66 8384.46 24691.36 15397.18 15491.16 2697.79 18792.93 13093.75 16098.53 153
GeoE90.60 17989.56 17893.72 18995.10 20985.43 24699.41 5494.94 29383.96 25487.21 19896.83 17074.37 23097.05 22480.50 25993.73 16198.67 147
DWT-MVSNet_test94.36 10093.95 10195.62 12796.99 14389.47 15996.62 26497.38 14190.96 9593.07 13397.27 14793.73 1398.09 16885.86 20593.65 16299.29 97
CVMVSNet90.30 18290.91 16088.46 29594.32 23073.58 33597.61 22697.59 10290.16 11688.43 18897.10 15776.83 21692.86 32982.64 24093.54 16398.93 126
thisisatest051594.75 8894.19 9096.43 10196.13 17592.64 8899.47 4097.60 9887.55 19793.17 13097.59 13894.71 998.42 15688.28 17793.20 16498.24 169
JIA-IIPM85.97 25484.85 25489.33 28293.23 26073.68 33485.05 34597.13 16469.62 34191.56 14968.03 35388.03 7796.96 22677.89 27493.12 16597.34 190
Effi-MVS+-dtu89.97 19190.68 16787.81 29995.15 20371.98 34197.87 21295.40 27691.92 7487.57 19291.44 26674.27 23296.84 23089.45 16293.10 16694.60 220
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30898.74 1392.42 6595.65 9494.76 20786.52 11299.49 10495.29 9092.97 16799.53 78
LFMVS92.23 15090.84 16296.42 10298.24 10391.08 11798.24 18696.22 21883.39 26394.74 10898.31 11361.12 31198.85 14394.45 10892.82 16899.32 94
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18598.18 19198.47 2187.57 19691.24 15595.05 20385.49 12897.46 20993.22 12692.82 16899.10 111
CDS-MVSNet93.47 12193.04 11994.76 15294.75 22389.45 16098.82 11897.03 17587.91 18590.97 15896.48 17989.06 5996.36 25689.50 16192.81 17098.49 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6995.21 10098.46 11086.56 11199.46 11195.00 9692.69 17199.50 82
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9598.70 1686.76 21194.65 11097.74 13087.78 7999.44 11295.57 8492.61 17299.44 87
MSDG88.29 22086.37 23194.04 17996.90 14486.15 23096.52 26694.36 30877.89 31779.22 28796.95 16469.72 26699.59 9273.20 30892.58 17496.37 212
thisisatest053094.00 10693.52 10995.43 13495.76 18190.02 14798.99 10297.60 9886.58 21491.74 14497.36 14694.78 898.34 15786.37 19792.48 17597.94 178
TR-MVS90.77 17489.44 18194.76 15296.31 16288.02 18697.92 20895.96 23285.52 22788.22 18997.23 15066.80 28798.09 16884.58 21792.38 17698.17 173
MDTV_nov1_ep1390.47 17196.14 17288.55 17791.34 32997.51 12089.58 13292.24 14190.50 29586.99 10097.61 20277.64 27592.34 177
TAMVS92.62 14192.09 13994.20 17294.10 23487.68 19098.41 16996.97 17987.53 19889.74 17796.04 19084.77 13996.49 24888.97 17392.31 17898.42 157
ADS-MVSNet287.62 23186.88 22489.86 26796.21 16679.14 31287.15 33992.99 32583.01 26889.91 17587.27 32578.87 20392.80 33274.20 30092.27 17997.64 182
ADS-MVSNet88.99 20287.30 21794.07 17696.21 16687.56 19487.15 33996.78 18583.01 26889.91 17587.27 32578.87 20397.01 22574.20 30092.27 17997.64 182
cascas90.93 17289.33 18495.76 12495.69 18393.03 7898.99 10296.59 19180.49 30186.79 20594.45 21065.23 29698.60 15593.52 12192.18 18195.66 217
CR-MVSNet88.83 20987.38 21693.16 19793.47 25386.24 22584.97 34694.20 31188.92 15390.76 16186.88 32984.43 14094.82 31270.64 31692.17 18298.41 158
RPMNet85.07 26781.88 28494.64 15893.47 25386.24 22584.97 34697.21 15464.85 35190.76 16178.80 34980.95 19099.27 12953.76 35292.17 18298.41 158
DSMNet-mixed81.60 29581.43 28982.10 32884.36 34160.79 35393.63 31286.74 35779.00 30779.32 28687.15 32763.87 30189.78 34866.89 32991.92 18495.73 216
tttt051793.30 12893.01 12094.17 17395.57 18686.47 21898.51 15797.60 9885.99 22290.55 16497.19 15394.80 798.31 15885.06 21091.86 18597.74 180
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13498.73 1590.33 10997.16 5697.43 14479.19 20199.53 9796.91 5691.85 18699.24 102
tpmrst92.78 13792.16 13694.65 15796.27 16387.45 19791.83 32597.10 16989.10 14594.68 10990.69 28288.22 7297.73 19689.78 15991.80 18798.77 142
alignmvs95.77 6895.00 7898.06 2597.35 12895.68 1699.71 1597.50 12391.50 8396.16 8098.61 9886.28 11899.00 14196.19 7091.74 18899.51 81
CostFormer92.89 13692.48 13094.12 17594.99 21485.89 23792.89 31797.00 17886.98 20595.00 10590.78 27890.05 4897.51 20792.92 13191.73 18998.96 121
Fast-Effi-MVS+-dtu88.84 20788.59 20089.58 27693.44 25678.18 31998.65 13894.62 30188.46 16484.12 22295.37 20068.91 26996.52 24582.06 24691.70 19094.06 221
PatchT85.44 26483.19 27192.22 21493.13 26283.00 27783.80 35296.37 20770.62 33690.55 16479.63 34884.81 13894.87 31058.18 34991.59 19198.79 139
tpm291.77 15691.09 15593.82 18694.83 22185.56 24592.51 32297.16 16184.00 25293.83 12490.66 28487.54 8597.17 21887.73 18491.55 19298.72 144
tpm cat188.89 20587.27 21893.76 18795.79 17985.32 24990.76 33497.09 17076.14 32385.72 20988.59 31682.92 16398.04 17476.96 27991.43 19397.90 179
canonicalmvs95.02 8393.96 10098.20 1797.53 12595.92 1498.71 12796.19 22191.78 7795.86 8998.49 10679.53 19899.03 14096.12 7191.42 19499.66 65
Patchmatch-test86.25 25184.06 26692.82 20394.42 22882.88 28282.88 35394.23 31071.58 33479.39 28590.62 28789.00 6196.42 25363.03 33991.37 19599.16 108
dp90.16 18788.83 19394.14 17496.38 16086.42 21991.57 32797.06 17284.76 24388.81 18490.19 30384.29 14297.43 21375.05 29391.35 19698.56 152
VDDNet90.08 18988.54 20294.69 15694.41 22987.68 19098.21 18996.40 20576.21 32293.33 12997.75 12954.93 33098.77 14694.71 10390.96 19797.61 186
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6299.36 289.23 14091.21 15696.97 16383.42 15398.77 14685.08 20990.96 19797.39 189
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9499.36 287.96 18390.47 16796.78 17183.29 15698.75 14884.11 22490.69 19997.12 195
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19997.12 195
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7399.36 288.45 16590.79 15996.90 16683.31 15498.75 14884.11 22490.69 19996.61 204
VDD-MVS91.24 16790.18 17394.45 16497.08 13985.84 24098.40 17296.10 22586.99 20393.36 12898.16 12054.27 33299.20 13096.59 6190.63 20298.31 167
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9299.36 287.96 18390.47 16796.78 17183.29 15698.71 15282.93 23890.47 20396.61 204
GA-MVS90.10 18888.69 19694.33 16792.44 26987.97 18799.08 9196.26 21589.65 12886.92 20193.11 24268.09 27696.96 22682.54 24290.15 20498.05 174
tpmvs89.16 19987.76 20993.35 19397.19 13384.75 25990.58 33697.36 14481.99 28684.56 21789.31 31383.98 14598.17 16374.85 29690.00 20597.12 195
1112_ss92.71 13891.55 15096.20 10895.56 18791.12 11398.48 16294.69 29988.29 17486.89 20298.50 10487.02 9898.66 15384.75 21489.77 20698.81 137
Test_1112_low_res92.27 14990.97 15896.18 10995.53 19091.10 11598.47 16494.66 30088.28 17586.83 20493.50 23387.00 9998.65 15484.69 21589.74 20798.80 138
XVG-OURS-SEG-HR90.95 17190.66 16891.83 22395.18 20281.14 30295.92 28495.92 23888.40 17090.33 17097.85 12370.66 26399.38 11992.83 13288.83 20894.98 218
COLMAP_ROBcopyleft82.69 1884.54 27482.82 27489.70 27296.72 15078.85 31395.89 28592.83 32871.55 33577.54 30195.89 19259.40 31599.14 13667.26 32788.26 20991.11 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 27581.83 28592.42 21291.73 28187.36 20085.52 34294.42 30681.40 29281.91 25587.58 32051.92 33892.81 33173.84 30388.15 21097.08 199
ab-mvs91.05 16989.17 18696.69 8995.96 17691.72 9892.62 32197.23 15285.61 22689.74 17793.89 22168.55 27299.42 11591.09 14487.84 21198.92 127
XVG-OURS90.83 17390.49 17091.86 22295.23 19781.25 29995.79 29295.92 23888.96 14990.02 17498.03 12271.60 25799.35 12591.06 14587.78 21294.98 218
AllTest84.97 26883.12 27290.52 25196.82 14678.84 31495.89 28592.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
TestCases90.52 25196.82 14678.84 31492.17 33477.96 31575.94 30695.50 19655.48 32599.18 13171.15 31387.14 21393.55 224
Anonymous20240521188.84 20787.03 22294.27 16998.14 10884.18 26598.44 16595.58 26576.79 32189.34 18196.88 16853.42 33599.54 9687.53 18787.12 21599.09 112
MVS_030484.13 28182.66 28088.52 29393.07 26380.15 30795.81 29198.21 2979.27 30686.85 20386.40 33241.33 35494.69 31576.36 28586.69 21690.73 292
HQP3-MVS96.37 20786.29 217
HQP-MVS91.50 16091.23 15492.29 21393.95 23886.39 22199.16 7696.37 20793.92 3187.57 19296.67 17573.34 23997.77 18993.82 11786.29 21792.72 227
plane_prior86.07 23399.14 8593.81 3986.26 219
HQP_MVS91.26 16490.95 15992.16 21793.84 24586.07 23399.02 9896.30 21193.38 4686.99 19996.52 17772.92 24397.75 19493.46 12286.17 22092.67 229
plane_prior596.30 21197.75 19493.46 12286.17 22092.67 229
OPM-MVS89.76 19389.15 18791.57 23090.53 29485.58 24498.11 19895.93 23792.88 5586.05 20796.47 18067.06 28697.87 18289.29 16986.08 22291.26 276
RPSCF85.33 26585.55 24484.67 31994.63 22662.28 35293.73 31093.76 31674.38 32985.23 21497.06 16064.09 29998.31 15880.98 25286.08 22293.41 226
CLD-MVS91.06 16890.71 16692.10 21994.05 23786.10 23199.55 3396.29 21494.16 2684.70 21697.17 15569.62 26797.82 18594.74 10186.08 22292.39 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 20388.61 19890.03 26591.09 28884.43 26298.97 10497.02 17690.21 11180.29 27396.31 18584.89 13691.93 34372.98 30985.70 22593.73 222
LPG-MVS_test88.86 20688.47 20390.06 26293.35 25880.95 30498.22 18795.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
LGP-MVS_train90.06 26293.35 25880.95 30495.94 23587.73 19283.17 23196.11 18866.28 29197.77 18990.19 15585.19 22691.46 266
ACMM86.95 1388.77 21288.22 20690.43 25393.61 25081.34 29798.50 15995.92 23887.88 18683.85 22595.20 20167.20 28497.89 18086.90 19384.90 22892.06 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 29880.11 29881.59 33185.10 33959.56 35494.14 30795.95 23468.54 34460.71 35093.31 23455.35 32897.87 18283.06 23784.85 22987.33 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 21488.24 20590.12 26193.91 24381.06 30398.50 15995.67 25989.43 13780.37 27195.55 19565.67 29397.83 18490.55 15284.51 23091.47 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 22187.73 21089.84 26888.05 32482.21 28997.77 21796.17 22286.84 20882.41 24391.95 25872.07 25195.99 27789.83 15784.50 23191.32 273
jajsoiax87.35 23386.51 23089.87 26687.75 32981.74 29297.03 24795.98 22888.47 16280.15 27593.80 22361.47 30896.36 25689.44 16484.47 23291.50 264
mvs_tets87.09 23686.22 23389.71 27187.87 32581.39 29696.73 26195.90 24388.19 17779.99 27793.61 22859.96 31496.31 26489.40 16584.34 23391.43 268
Anonymous2024052987.66 23085.58 24393.92 18297.59 12285.01 25598.13 19497.13 16466.69 34988.47 18796.01 19155.09 32999.51 10187.00 19084.12 23497.23 194
anonymousdsp86.69 24285.75 24189.53 27786.46 33582.94 27896.39 26895.71 25583.97 25379.63 28290.70 28168.85 27095.94 28086.01 19984.02 23589.72 313
XVG-ACMP-BASELINE85.86 25684.95 25288.57 29289.90 30077.12 32494.30 30495.60 26487.40 20082.12 24892.99 24553.42 33597.66 19885.02 21183.83 23690.92 284
ACMMP++83.83 236
ET-MVSNet_ETH3D92.56 14491.45 15295.88 12096.39 15994.13 5599.46 4596.97 17992.18 7166.94 34298.29 11594.65 1194.28 32094.34 10983.82 23899.24 102
EG-PatchMatch MVS79.92 30077.59 30486.90 30687.06 33377.90 32396.20 28094.06 31374.61 32766.53 34488.76 31540.40 35696.20 26967.02 32883.66 23986.61 338
D2MVS87.96 22387.39 21589.70 27291.84 27983.40 27398.31 18298.49 2088.04 18178.23 29890.26 29773.57 23796.79 23484.21 22183.53 24088.90 323
UniMVSNet_ETH3D85.65 26383.79 26991.21 23490.41 29680.75 30695.36 29595.78 25178.76 31181.83 26094.33 21149.86 34396.66 23784.30 21983.52 24196.22 213
PVSNet_BlendedMVS93.36 12693.20 11593.84 18598.77 9091.61 10199.47 4098.04 4091.44 8494.21 11692.63 24983.50 15099.87 4797.41 4583.37 24290.05 308
PS-MVSNAJss89.54 19789.05 18891.00 23988.77 31584.36 26397.39 23095.97 23088.47 16281.88 25693.80 22382.48 17296.50 24689.34 16683.34 24392.15 242
EI-MVSNet89.87 19289.38 18391.36 23394.32 23085.87 23897.61 22696.59 19185.10 23485.51 21197.10 15781.30 18996.56 24283.85 23083.03 24491.64 255
MVSTER92.71 13892.32 13193.86 18497.29 13092.95 8299.01 10096.59 19190.09 11785.51 21194.00 21794.61 1296.56 24290.77 15183.03 24492.08 245
FIs90.70 17689.87 17593.18 19692.29 27091.12 11398.17 19398.25 2689.11 14483.44 22794.82 20682.26 17696.17 27187.76 18382.76 24692.25 237
tpm89.67 19488.95 19091.82 22492.54 26881.43 29492.95 31695.92 23887.81 18790.50 16689.44 31084.99 13495.65 29383.67 23182.71 24798.38 161
ACMMP++_ref82.64 248
FC-MVSNet-test90.22 18489.40 18292.67 21091.78 28089.86 15097.89 20998.22 2888.81 15582.96 23494.66 20881.90 18295.96 27985.89 20482.52 24992.20 241
ITE_SJBPF87.93 29792.26 27176.44 32593.47 32387.67 19579.95 27895.49 19856.50 32297.38 21475.24 29282.33 25089.98 310
RRT_MVS91.95 15491.09 15594.53 16196.71 15295.12 2898.64 14096.23 21789.04 14685.24 21395.06 20287.71 8296.43 25289.10 17282.06 25192.05 247
OpenMVS_ROBcopyleft73.86 2077.99 31275.06 31686.77 30783.81 34477.94 32296.38 26991.53 34467.54 34768.38 33587.13 32843.94 35096.08 27555.03 35181.83 25286.29 341
LTVRE_ROB81.71 1984.59 27382.72 27990.18 25992.89 26683.18 27693.15 31594.74 29678.99 30875.14 31392.69 24765.64 29497.63 20069.46 32081.82 25389.74 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 26982.93 27390.16 26091.73 28183.54 27295.00 29893.30 32488.77 15673.19 32193.30 23553.62 33497.65 19975.88 28981.54 25489.30 318
ACMH83.09 1784.60 27282.61 28290.57 24993.18 26182.94 27896.27 27294.92 29481.01 29772.61 32893.61 22856.54 32197.79 18774.31 29981.07 25590.99 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net86.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
test186.67 24384.96 25091.80 22595.11 20688.81 17196.77 25695.25 28382.94 27082.12 24890.25 29862.89 30394.97 30779.04 26580.24 25691.62 257
FMVSNet388.81 21187.08 22193.99 18196.52 15694.59 4598.08 20196.20 21985.85 22382.12 24891.60 26374.05 23595.40 30079.04 26580.24 25691.99 249
baseline192.61 14291.28 15396.58 9497.05 14194.63 4497.72 22196.20 21989.82 12388.56 18696.85 16986.85 10197.82 18588.42 17580.10 25997.30 191
testgi82.29 29081.00 29386.17 31087.24 33174.84 33097.39 23091.62 34288.63 15775.85 30995.42 19946.07 34991.55 34466.87 33079.94 26092.12 243
test_040278.81 30776.33 31186.26 30991.18 28778.44 31895.88 28791.34 34568.55 34370.51 33189.91 30552.65 33794.99 30647.14 35579.78 26185.34 346
FMVSNet286.90 23884.79 25693.24 19595.11 20692.54 9097.67 22495.86 24982.94 27080.55 26991.17 27262.89 30395.29 30277.23 27679.71 26291.90 251
pmmvs487.58 23286.17 23591.80 22589.58 30588.92 16997.25 23895.28 28282.54 27880.49 27093.17 23975.62 21996.05 27682.75 23978.90 26390.42 299
ACMH+83.78 1584.21 27882.56 28389.15 28593.73 24979.16 31196.43 26794.28 30981.09 29674.00 31794.03 21554.58 33197.67 19776.10 28778.81 26490.63 296
bset_n11_16_dypcd89.07 20187.85 20892.76 20686.16 33790.66 12997.30 23495.62 26189.78 12583.94 22493.15 24174.85 22295.89 28691.34 14278.48 26591.74 253
XXY-MVS87.75 22786.02 23692.95 20190.46 29589.70 15497.71 22395.90 24384.02 25180.95 26594.05 21267.51 28297.10 22285.16 20878.41 26692.04 248
pmmvs585.87 25584.40 26490.30 25888.53 31984.23 26498.60 14793.71 31881.53 29180.29 27392.02 25464.51 29895.52 29682.04 24778.34 26791.15 278
LF4IMVS81.94 29381.17 29284.25 32187.23 33268.87 34993.35 31491.93 33983.35 26475.40 31193.00 24449.25 34696.65 23878.88 26878.11 26887.22 336
cl-mvsnet289.57 19688.79 19491.91 22197.94 11287.62 19297.98 20696.51 19985.03 23782.37 24491.79 25983.65 14796.50 24685.96 20177.89 26991.61 260
miper_ehance_all_eth88.94 20488.12 20791.40 23195.32 19586.93 21197.85 21395.55 26684.19 24981.97 25491.50 26584.16 14395.91 28484.69 21577.89 26991.36 271
miper_enhance_ethall90.33 18189.70 17692.22 21497.12 13788.93 16898.35 17895.96 23288.60 15983.14 23392.33 25187.38 8896.18 27086.49 19677.89 26991.55 263
TinyColmap80.42 29977.94 30387.85 29892.09 27478.58 31693.74 30989.94 35074.99 32569.77 33291.78 26046.09 34897.58 20365.17 33577.89 26987.38 332
FMVSNet183.94 28381.32 29191.80 22591.94 27788.81 17196.77 25695.25 28377.98 31378.25 29790.25 29850.37 34294.97 30773.27 30777.81 27391.62 257
OurMVSNet-221017-084.13 28183.59 27085.77 31387.81 32670.24 34494.89 29993.65 32086.08 22176.53 30293.28 23661.41 30996.14 27380.95 25377.69 27490.93 283
IterMVS85.81 25884.67 25889.22 28393.51 25283.67 27196.32 27194.80 29585.09 23578.69 29090.17 30466.57 29093.17 32879.48 26377.42 27590.81 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26184.64 25989.00 28893.46 25582.90 28096.27 27294.70 29885.02 23878.62 29290.35 29666.61 28893.33 32579.38 26477.36 27690.76 290
RRT_test8_iter0591.04 17090.40 17292.95 20196.20 16989.75 15398.97 10496.38 20688.52 16182.00 25393.51 23290.69 3696.73 23690.43 15376.91 27792.38 233
our_test_384.47 27682.80 27589.50 27889.01 31283.90 26997.03 24794.56 30281.33 29375.36 31290.52 29371.69 25694.54 31868.81 32276.84 27890.07 306
EU-MVSNet84.19 27984.42 26383.52 32488.64 31867.37 35096.04 28395.76 25385.29 23178.44 29593.18 23870.67 26291.48 34575.79 29075.98 27991.70 254
Anonymous2023120680.76 29779.42 30184.79 31884.78 34072.98 33696.53 26592.97 32679.56 30574.33 31488.83 31461.27 31092.15 34060.59 34475.92 28089.24 320
IterMVS-LS88.34 21887.44 21491.04 23894.10 23485.85 23998.10 19995.48 27085.12 23382.03 25291.21 27181.35 18895.63 29483.86 22975.73 28191.63 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet89.10 20087.66 21293.45 19292.56 26791.02 11997.97 20798.32 2486.92 20786.03 20892.01 25568.84 27197.10 22290.92 14775.34 28292.23 239
nrg03090.23 18388.87 19194.32 16891.53 28393.54 6598.79 12495.89 24588.12 17984.55 21894.61 20978.80 20596.88 22992.35 13675.21 28392.53 231
cl-mvsnet____87.82 22486.79 22690.89 24394.88 21985.43 24697.81 21495.24 28682.91 27480.71 26891.22 27081.97 18195.84 28781.34 25175.06 28491.40 270
cl-mvsnet187.82 22486.81 22590.87 24494.87 22085.39 24897.81 21495.22 29082.92 27380.76 26791.31 26981.99 17995.81 28981.36 25075.04 28591.42 269
v119286.32 25084.71 25791.17 23589.53 30786.40 22098.13 19495.44 27482.52 27982.42 24290.62 28771.58 25896.33 26377.23 27674.88 28690.79 288
v124085.77 26084.11 26590.73 24789.26 31185.15 25397.88 21195.23 28981.89 28982.16 24790.55 29269.60 26896.31 26475.59 29174.87 28790.72 293
FMVSNet582.29 29080.54 29487.52 30193.79 24884.01 26793.73 31092.47 33176.92 32074.27 31586.15 33463.69 30289.24 34969.07 32174.79 28889.29 319
v114486.83 24085.31 24791.40 23189.75 30287.21 20898.31 18295.45 27283.22 26582.70 23790.78 27873.36 23896.36 25679.49 26274.69 28990.63 296
Anonymous2024052178.63 30976.90 30983.82 32282.82 34672.86 33795.72 29393.57 32173.55 33272.17 32984.79 33749.69 34492.51 33665.29 33474.50 29086.09 342
v192192086.02 25384.44 26290.77 24689.32 31085.20 25098.10 19995.35 28182.19 28482.25 24690.71 28070.73 26196.30 26776.85 28174.49 29190.80 287
WR-MVS88.54 21687.22 22092.52 21191.93 27889.50 15898.56 15297.84 5386.99 20381.87 25793.81 22274.25 23495.92 28385.29 20774.43 29292.12 243
ppachtmachnet_test83.63 28581.57 28889.80 26989.01 31285.09 25497.13 24494.50 30378.84 30976.14 30491.00 27469.78 26594.61 31763.40 33774.36 29389.71 314
Patchmtry83.61 28681.64 28689.50 27893.36 25782.84 28384.10 34994.20 31169.47 34279.57 28386.88 32984.43 14094.78 31368.48 32474.30 29490.88 285
V4287.00 23785.68 24290.98 24089.91 29986.08 23298.32 18195.61 26383.67 25982.72 23690.67 28374.00 23696.53 24481.94 24874.28 29590.32 301
Anonymous2023121184.72 27082.65 28190.91 24197.71 11684.55 26197.28 23696.67 18766.88 34879.18 28890.87 27758.47 31696.60 24082.61 24174.20 29691.59 262
SixPastTwentyTwo82.63 28981.58 28785.79 31288.12 32371.01 34395.17 29792.54 33084.33 24872.93 32692.08 25260.41 31395.61 29574.47 29874.15 29790.75 291
v2v48287.27 23585.76 24091.78 22989.59 30487.58 19398.56 15295.54 26784.53 24582.51 24091.78 26073.11 24296.47 24982.07 24574.14 29891.30 274
v14419286.40 24884.89 25390.91 24189.48 30885.59 24398.21 18995.43 27582.45 28082.62 23890.58 29072.79 24696.36 25678.45 27174.04 29990.79 288
cl_fuxian88.19 22287.23 21991.06 23794.97 21586.17 22997.72 22195.38 27883.43 26281.68 26191.37 26782.81 16595.72 29184.04 22773.70 30091.29 275
eth_miper_zixun_eth87.76 22687.00 22390.06 26294.67 22582.65 28697.02 24995.37 27984.19 24981.86 25991.58 26481.47 18695.90 28583.24 23273.61 30191.61 260
miper_lstm_enhance86.90 23886.20 23489.00 28894.53 22781.19 30096.74 26095.24 28682.33 28280.15 27590.51 29481.99 17994.68 31680.71 25673.58 30291.12 279
tfpnnormal83.65 28481.35 29090.56 25091.37 28688.06 18497.29 23597.87 5178.51 31276.20 30390.91 27564.78 29796.47 24961.71 34273.50 30387.13 337
N_pmnet70.19 32169.87 32371.12 33788.24 32130.63 36895.85 29028.70 36870.18 33968.73 33486.55 33164.04 30093.81 32253.12 35373.46 30488.94 322
CP-MVSNet86.54 24685.45 24689.79 27091.02 29082.78 28497.38 23297.56 10985.37 23079.53 28493.03 24371.86 25495.25 30379.92 26073.43 30591.34 272
PS-CasMVS85.81 25884.58 26089.49 28090.77 29282.11 29097.20 24297.36 14484.83 24279.12 28992.84 24667.42 28395.16 30578.39 27273.25 30691.21 277
WR-MVS_H86.53 24785.49 24589.66 27591.04 28983.31 27597.53 22898.20 3084.95 24079.64 28190.90 27678.01 21095.33 30176.29 28672.81 30790.35 300
FPMVS61.57 32360.32 32665.34 33960.14 36242.44 36391.02 33289.72 35244.15 35542.63 35780.93 34419.02 36180.59 35742.50 35672.76 30873.00 353
v1085.73 26184.01 26790.87 24490.03 29786.73 21497.20 24295.22 29081.25 29479.85 28089.75 30773.30 24196.28 26876.87 28072.64 30989.61 315
test_part188.43 21786.68 22793.67 19097.56 12492.40 9298.12 19696.55 19682.26 28380.31 27293.16 24074.59 22796.62 23985.00 21272.61 31091.99 249
UniMVSNet (Re)89.50 19888.32 20493.03 19892.21 27290.96 12198.90 11198.39 2289.13 14383.22 22892.03 25381.69 18396.34 26286.79 19472.53 31191.81 252
UniMVSNet_NR-MVSNet89.60 19588.55 20192.75 20792.17 27390.07 14298.74 12698.15 3488.37 17183.21 22993.98 21882.86 16495.93 28186.95 19172.47 31292.25 237
DU-MVS88.83 20987.51 21392.79 20491.46 28490.07 14298.71 12797.62 9588.87 15483.21 22993.68 22574.63 22395.93 28186.95 19172.47 31292.36 234
v886.11 25284.45 26191.10 23689.99 29886.85 21297.24 23995.36 28081.99 28679.89 27989.86 30674.53 22896.39 25478.83 26972.32 31490.05 308
VPNet88.30 21986.57 22893.49 19191.95 27691.35 10698.18 19197.20 15888.61 15884.52 21994.89 20462.21 30696.76 23589.34 16672.26 31592.36 234
v7n84.42 27782.75 27889.43 28188.15 32281.86 29196.75 25995.67 25980.53 30078.38 29689.43 31169.89 26496.35 26173.83 30472.13 31690.07 306
new_pmnet76.02 31573.71 31882.95 32583.88 34372.85 33891.26 33092.26 33370.44 33862.60 34881.37 34347.64 34792.32 33861.85 34172.10 31783.68 349
IB-MVS89.43 692.12 15190.83 16495.98 11895.40 19490.78 12499.81 598.06 3891.23 9185.63 21093.66 22790.63 3798.78 14591.22 14371.85 31898.36 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 22986.00 23792.96 20091.46 28490.68 12896.65 26397.42 13788.02 18273.42 32093.68 22577.31 21395.83 28884.26 22071.82 31992.36 234
v14886.38 24985.06 24990.37 25789.47 30984.10 26698.52 15495.48 27083.80 25580.93 26690.22 30174.60 22596.31 26480.92 25471.55 32090.69 294
Baseline_NR-MVSNet85.83 25784.82 25588.87 29188.73 31683.34 27498.63 14291.66 34180.41 30482.44 24191.35 26874.63 22395.42 29984.13 22371.39 32187.84 329
TranMVSNet+NR-MVSNet87.75 22786.31 23292.07 22090.81 29188.56 17698.33 17997.18 15987.76 18981.87 25793.90 22072.45 24795.43 29883.13 23671.30 32292.23 239
PEN-MVS85.21 26683.93 26889.07 28789.89 30181.31 29897.09 24597.24 15084.45 24778.66 29192.68 24868.44 27494.87 31075.98 28870.92 32391.04 281
MIMVSNet175.92 31673.30 31983.81 32381.29 35075.57 32792.26 32392.05 33773.09 33367.48 34186.18 33340.87 35587.64 35255.78 35070.68 32488.21 327
pm-mvs184.68 27182.78 27790.40 25489.58 30585.18 25197.31 23394.73 29781.93 28876.05 30592.01 25565.48 29596.11 27478.75 27069.14 32589.91 311
DTE-MVSNet84.14 28082.80 27588.14 29688.95 31479.87 31096.81 25596.24 21683.50 26177.60 30092.52 25067.89 28094.24 32172.64 31169.05 32690.32 301
test20.0378.51 31077.48 30581.62 33083.07 34571.03 34296.11 28192.83 32881.66 29069.31 33389.68 30857.53 31887.29 35358.65 34868.47 32786.53 339
hse-mvs392.47 14691.95 14294.05 17897.13 13685.01 25598.36 17798.08 3793.85 3696.27 7896.73 17383.19 15999.43 11495.81 7768.09 32897.70 181
K. test v381.04 29679.77 29984.83 31787.41 33070.23 34595.60 29493.93 31583.70 25867.51 34089.35 31255.76 32393.58 32476.67 28368.03 32990.67 295
MDA-MVSNet_test_wron79.65 30377.05 30787.45 30287.79 32880.13 30896.25 27594.44 30473.87 33051.80 35387.47 32468.04 27792.12 34166.02 33167.79 33090.09 304
YYNet179.64 30477.04 30887.43 30387.80 32779.98 30996.23 27694.44 30473.83 33151.83 35287.53 32167.96 27992.07 34266.00 33267.75 33190.23 303
AUN-MVS90.17 18689.50 17992.19 21696.21 16682.67 28597.76 21997.53 11488.05 18091.67 14596.15 18683.10 16197.47 20888.11 18066.91 33296.43 210
hse-mvs291.67 15891.51 15192.15 21896.22 16582.61 28797.74 22097.53 11493.85 3696.27 7896.15 18683.19 15997.44 21295.81 7766.86 33396.40 211
pmmvs679.90 30177.31 30687.67 30084.17 34278.13 32095.86 28993.68 31967.94 34672.67 32789.62 30950.98 34195.75 29074.80 29766.04 33489.14 321
Gipumacopyleft54.77 32652.22 33062.40 34186.50 33459.37 35550.20 36090.35 34936.52 35741.20 35849.49 35918.33 36381.29 35532.10 35865.34 33546.54 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 33490.74 29351.65 36090.84 34786.47 21857.89 35187.98 31735.88 35792.60 33365.77 33365.06 33683.97 348
MDA-MVSNet-bldmvs77.82 31374.75 31787.03 30588.33 32078.52 31796.34 27092.85 32775.57 32448.87 35587.89 31857.32 32092.49 33760.79 34364.80 33790.08 305
Patchmatch-RL test81.90 29480.13 29787.23 30480.71 35170.12 34684.07 35088.19 35683.16 26770.57 33082.18 34287.18 9592.59 33482.28 24462.78 33898.98 119
lessismore_v085.08 31585.59 33869.28 34790.56 34867.68 33990.21 30254.21 33395.46 29773.88 30262.64 33990.50 298
PM-MVS74.88 31772.85 32080.98 33278.98 35464.75 35190.81 33385.77 35880.95 29868.23 33782.81 34029.08 35992.84 33076.54 28462.46 34085.36 345
pmmvs-eth3d78.71 30876.16 31286.38 30880.25 35281.19 30094.17 30692.13 33677.97 31466.90 34382.31 34155.76 32392.56 33573.63 30662.31 34185.38 344
ambc79.60 33372.76 35756.61 35676.20 35592.01 33868.25 33680.23 34623.34 36094.73 31473.78 30560.81 34287.48 331
test_method70.10 32268.66 32574.41 33586.30 33655.84 35794.47 30189.82 35135.18 35866.15 34584.75 33830.54 35877.96 35870.40 31960.33 34389.44 317
TDRefinement78.01 31175.31 31486.10 31170.06 35873.84 33393.59 31391.58 34374.51 32873.08 32491.04 27349.63 34597.12 21974.88 29559.47 34487.33 334
TransMVSNet (Re)81.97 29279.61 30089.08 28689.70 30384.01 26797.26 23791.85 34078.84 30973.07 32591.62 26267.17 28595.21 30467.50 32659.46 34588.02 328
PMVScopyleft41.42 2345.67 32942.50 33255.17 34334.28 36732.37 36666.24 35878.71 36330.72 35922.04 36459.59 3564.59 36877.85 35927.49 35958.84 34655.29 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DIV-MVS_2432*160077.47 31475.88 31382.24 32681.59 34868.93 34892.83 32094.02 31477.03 31973.14 32283.39 33955.44 32790.42 34667.95 32557.53 34787.38 332
CL-MVSNet_2432*160079.89 30278.34 30284.54 32081.56 34975.01 32896.88 25395.62 26181.10 29575.86 30885.81 33568.49 27390.26 34763.21 33856.51 34888.35 326
UnsupCasMVSNet_eth78.90 30676.67 31085.58 31482.81 34774.94 32991.98 32496.31 21084.64 24465.84 34687.71 31951.33 33992.23 33972.89 31056.50 34989.56 316
PVSNet_083.28 1687.31 23485.16 24893.74 18894.78 22284.59 26098.91 11098.69 1889.81 12478.59 29493.23 23761.95 30799.34 12694.75 10055.72 35097.30 191
new-patchmatchnet74.80 31872.40 32181.99 32978.36 35572.20 34094.44 30292.36 33277.06 31863.47 34779.98 34751.04 34088.85 35060.53 34554.35 35184.92 347
pmmvs372.86 32069.76 32482.17 32773.86 35674.19 33294.20 30589.01 35464.23 35267.72 33880.91 34541.48 35288.65 35162.40 34054.02 35283.68 349
LCM-MVSNet60.07 32456.37 32771.18 33654.81 36448.67 36182.17 35489.48 35337.95 35649.13 35469.12 35113.75 36781.76 35459.28 34651.63 35383.10 351
UnsupCasMVSNet_bld73.85 31970.14 32284.99 31679.44 35375.73 32688.53 33795.24 28670.12 34061.94 34974.81 35041.41 35393.62 32368.65 32351.13 35485.62 343
KD-MVS_2432*160082.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
miper_refine_blended82.98 28780.52 29590.38 25594.32 23088.98 16692.87 31895.87 24780.46 30273.79 31887.49 32282.76 16793.29 32670.56 31746.53 35588.87 324
PMMVS258.97 32555.07 32870.69 33862.72 35955.37 35885.97 34180.52 36149.48 35445.94 35668.31 35215.73 36580.78 35649.79 35437.12 35775.91 352
MVEpermissive44.00 2241.70 33037.64 33553.90 34449.46 36543.37 36265.09 35966.66 36526.19 36225.77 36348.53 3603.58 37063.35 36226.15 36027.28 35854.97 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33140.93 33341.29 34561.97 36033.83 36584.00 35165.17 36627.17 36027.56 36046.72 36117.63 36460.41 36319.32 36118.82 35929.61 359
ANet_high50.71 32846.17 33164.33 34044.27 36652.30 35976.13 35678.73 36264.95 35027.37 36155.23 35814.61 36667.74 36036.01 35718.23 36072.95 354
EMVS39.96 33239.88 33440.18 34659.57 36332.12 36784.79 34864.57 36726.27 36126.14 36244.18 36418.73 36259.29 36417.03 36217.67 36129.12 360
tmp_tt53.66 32752.86 32956.05 34232.75 36841.97 36473.42 35776.12 36421.91 36339.68 35996.39 18342.59 35165.10 36178.00 27314.92 36261.08 355
wuyk23d16.71 33516.73 33916.65 34760.15 36125.22 36941.24 3615.17 3696.56 3645.48 3673.61 3673.64 36922.72 36515.20 3639.52 3631.99 363
testmvs18.81 33423.05 3376.10 3494.48 3692.29 37197.78 2163.00 3703.27 36518.60 36562.71 3541.53 3722.49 36714.26 3641.80 36413.50 362
test12316.58 33619.47 3387.91 3483.59 3705.37 37094.32 3031.39 3712.49 36613.98 36644.60 3632.91 3712.65 36611.35 3650.57 36515.70 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k22.52 33330.03 3360.00 3500.00 3710.00 3720.00 36297.17 1600.00 3670.00 36898.77 8374.35 2310.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.87 3389.16 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36882.48 1720.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.21 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.50 1040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
save fliter99.34 5393.85 5999.65 2297.63 9395.69 11
test072699.66 1595.20 2699.77 897.70 7993.95 2999.35 399.54 393.18 18
GSMVS98.84 132
test_part299.54 3695.42 1798.13 32
sam_mvs188.39 7098.84 132
sam_mvs87.08 96
MTGPAbinary97.45 130
test_post190.74 33541.37 36585.38 13296.36 25683.16 234
test_post46.00 36287.37 8997.11 220
patchmatchnet-post84.86 33688.73 6496.81 232
MTMP99.21 7091.09 346
gm-plane-assit94.69 22488.14 18288.22 17697.20 15298.29 16090.79 150
TEST999.57 3393.17 7299.38 5797.66 8389.57 13398.39 2799.18 3590.88 3299.66 80
test_899.55 3593.07 7699.37 6097.64 8990.18 11398.36 2999.19 3290.94 3099.64 86
agg_prior99.54 3692.66 8497.64 8997.98 4099.61 89
test_prior492.00 9499.41 54
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
旧先验298.67 13685.75 22598.96 1298.97 14293.84 115
新几何298.26 185
无先验98.52 15497.82 5587.20 20299.90 4087.64 18599.85 29
原ACMM298.69 132
testdata299.88 4484.16 222
segment_acmp90.56 39
testdata197.89 20992.43 62
plane_prior793.84 24585.73 241
plane_prior693.92 24286.02 23572.92 243
plane_prior496.52 177
plane_prior385.91 23693.65 4186.99 199
plane_prior299.02 9893.38 46
plane_prior193.90 244
n20.00 372
nn0.00 372
door-mid84.90 360
test1197.68 81
door85.30 359
HQP5-MVS86.39 221
HQP-NCC93.95 23899.16 7693.92 3187.57 192
ACMP_Plane93.95 23899.16 7693.92 3187.57 192
BP-MVS93.82 117
HQP4-MVS87.57 19297.77 18992.72 227
HQP2-MVS73.34 239
NP-MVS93.94 24186.22 22796.67 175
MDTV_nov1_ep13_2view91.17 11291.38 32887.45 19993.08 13286.67 10787.02 18998.95 125
Test By Simon83.62 149