This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3298.43 12597.27 3299.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14097.71 1799.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3299.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 12597.27 3299.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
PC_three_145296.96 4299.80 1599.79 5597.49 10100.00 199.99 599.98 32100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5098.32 16497.28 3099.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1399.47 799.95 5098.43 125100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 9898.44 11797.48 2599.64 4099.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
patch_mono-298.24 5399.12 595.59 21599.67 7786.91 33499.95 5098.89 4997.60 2099.90 299.76 6396.54 2899.98 4399.94 1199.82 7699.88 83
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5098.43 12596.48 5799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
test_0728_THIRD96.48 5799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
DeepPCF-MVS95.94 297.71 7998.98 1293.92 27999.63 7981.76 36199.96 3298.56 8799.47 199.19 8199.99 194.16 79100.00 199.92 1299.93 60100.00 1
TSAR-MVS + GP.98.60 2798.51 2598.86 7899.73 7296.63 11799.97 2597.92 21098.07 998.76 10099.55 10695.00 5699.94 7599.91 1597.68 16099.99 23
MM99.76 1099.33 899.99 499.76 698.39 399.39 7099.80 5190.49 16499.96 5999.89 1699.43 10899.98 48
dcpmvs_297.42 8998.09 5195.42 22099.58 8487.24 33099.23 23296.95 30494.28 12598.93 9199.73 7694.39 7099.16 16899.89 1699.82 7699.86 87
MVS_030498.87 1898.61 2199.67 1699.18 10199.13 2299.87 9899.65 1298.17 698.75 10299.75 6892.76 11699.94 7599.88 1899.44 10699.94 72
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8098.39 14797.20 3699.46 6199.85 3095.53 4499.79 12199.86 19100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.67 2498.40 2999.50 3099.77 6598.67 4799.90 8598.21 17893.53 15699.81 1399.89 1994.70 6299.86 10599.84 2099.93 6099.96 63
9.1498.38 3199.87 5199.91 8098.33 16293.22 16599.78 2499.89 1994.57 6499.85 10699.84 2099.97 42
SD-MVS98.92 1598.70 1799.56 2599.70 7698.73 4499.94 6698.34 16196.38 6399.81 1399.76 6394.59 6399.98 4399.84 2099.96 4699.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.93 1498.77 1699.41 3899.74 6998.67 4799.77 14098.38 15196.73 5199.88 499.74 7494.89 5999.59 14799.80 2399.98 3299.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PHI-MVS98.41 4298.21 4299.03 6699.86 5397.10 10399.98 1498.80 6090.78 24999.62 4499.78 5995.30 47100.00 199.80 2399.93 6099.99 23
test_prior299.95 5095.78 7799.73 3099.76 6396.00 3399.78 25100.00 1
CANet98.27 4997.82 6699.63 1799.72 7499.10 2399.98 1498.51 10297.00 4198.52 11199.71 8187.80 19399.95 6799.75 2699.38 11099.83 89
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6698.20 599.93 199.98 296.82 23100.00 199.75 26100.00 199.99 23
SMA-MVScopyleft98.76 2198.48 2699.62 2099.87 5198.87 3299.86 11198.38 15193.19 16699.77 2599.94 495.54 42100.00 199.74 2899.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2598.64 7498.47 299.13 8399.92 1396.38 30100.00 199.74 28100.00 1100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7499.38 9598.87 3298.46 30199.42 2297.03 4099.02 8799.09 14399.35 198.21 23299.73 3099.78 7999.77 99
test9_res99.71 3199.99 21100.00 1
ZD-MVS99.92 3198.57 5498.52 9992.34 20299.31 7499.83 4395.06 5299.80 11999.70 3299.97 42
train_agg98.88 1798.65 1899.59 2399.92 3198.92 2899.96 3298.43 12594.35 12099.71 3299.86 2695.94 3499.85 10699.69 3399.98 3299.99 23
test_fmvsmconf_n98.43 4098.32 3798.78 8098.12 17396.41 12499.99 498.83 5798.22 499.67 3699.64 9791.11 15199.94 7599.67 3499.62 8899.98 48
fmvsm_s_conf0.5_n97.80 7197.85 6597.67 14899.06 10894.41 19399.98 1498.97 4097.34 2799.63 4199.69 8587.27 20099.97 5399.62 3599.06 12598.62 211
test_fmvsm_n_192098.44 3898.61 2197.92 13299.27 10095.18 176100.00 198.90 4798.05 1099.80 1599.73 7692.64 11999.99 3699.58 3699.51 10098.59 212
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2598.62 7998.02 1199.90 299.95 397.33 17100.00 199.54 37100.00 1100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 3899.80 1599.94 495.92 36100.00 199.51 38100.00 1100.00 1
test_fmvsmconf0.1_n97.74 7697.44 7898.64 9095.76 27496.20 13699.94 6698.05 19798.17 698.89 9399.42 11687.65 19599.90 8999.50 3999.60 9499.82 90
MSP-MVS99.09 999.12 598.98 7199.93 2497.24 9699.95 5098.42 13697.50 2499.52 5799.88 2197.43 1699.71 13699.50 3999.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior299.48 41100.00 1100.00 1
fmvsm_s_conf0.5_n_a97.73 7897.72 6897.77 14298.63 14294.26 19899.96 3298.92 4697.18 3799.75 2799.69 8587.00 20599.97 5399.46 4298.89 12899.08 192
PAPM98.60 2798.42 2899.14 5796.05 26398.96 2699.90 8599.35 2596.68 5398.35 12099.66 9496.45 2998.51 20099.45 4399.89 6699.96 63
SteuartSystems-ACMMP99.02 1298.97 1399.18 4898.72 13797.71 7799.98 1498.44 11796.85 4499.80 1599.91 1497.57 899.85 10699.44 4499.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.62 2698.35 3699.41 3899.90 4298.51 5799.87 9898.36 15594.08 13399.74 2999.73 7694.08 8099.74 13299.42 4599.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmvis_n_192097.67 8097.59 7597.91 13497.02 23395.34 16799.95 5098.45 11397.87 1397.02 15299.59 10289.64 17399.98 4399.41 4699.34 11398.42 214
PS-MVSNAJ98.44 3898.20 4399.16 5398.80 13398.92 2899.54 19198.17 18397.34 2799.85 799.85 3091.20 14799.89 9499.41 4699.67 8598.69 209
xiu_mvs_v2_base98.23 5497.97 5699.02 6898.69 13898.66 4999.52 19398.08 19497.05 3999.86 599.86 2690.65 16099.71 13699.39 4898.63 13698.69 209
HPM-MVS++copyleft99.07 1098.88 1599.63 1799.90 4299.02 2599.95 5098.56 8797.56 2399.44 6399.85 3095.38 46100.00 199.31 4999.99 2199.87 85
SR-MVS98.46 3698.30 4098.93 7599.88 4997.04 10499.84 11898.35 15794.92 9999.32 7399.80 5193.35 9699.78 12399.30 5099.95 4999.96 63
MVS_111021_HR98.72 2298.62 2099.01 6999.36 9697.18 9999.93 7399.90 196.81 4998.67 10599.77 6193.92 8499.89 9499.27 5199.94 5499.96 63
test_fmvsmconf0.01_n96.39 13195.74 14098.32 11691.47 35495.56 15999.84 11897.30 26797.74 1697.89 13499.35 12579.62 27099.85 10699.25 5299.24 11799.55 137
fmvsm_s_conf0.1_n97.30 9397.21 8797.60 15497.38 21794.40 19599.90 8598.64 7496.47 5999.51 5999.65 9684.99 22599.93 8399.22 5399.09 12498.46 213
mvsany_test197.82 6997.90 6397.55 15598.77 13593.04 23099.80 13497.93 20796.95 4399.61 5099.68 9190.92 15599.83 11699.18 5498.29 14699.80 94
MVS_111021_LR98.42 4198.38 3198.53 10399.39 9495.79 14899.87 9899.86 296.70 5298.78 9799.79 5592.03 13799.90 8999.17 5599.86 7099.88 83
PVSNet_BlendedMVS96.05 14295.82 13996.72 18699.59 8196.99 10799.95 5099.10 3194.06 13698.27 12395.80 28289.00 18599.95 6799.12 5687.53 27593.24 334
PVSNet_Blended97.94 6197.64 7198.83 7999.59 8196.99 107100.00 199.10 3195.38 8898.27 12399.08 14489.00 18599.95 6799.12 5699.25 11699.57 135
xiu_mvs_v1_base_debu97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base_debi97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
fmvsm_s_conf0.1_n_a97.09 10296.90 9897.63 15295.65 28394.21 20099.83 12598.50 10796.27 6899.65 3899.64 9784.72 22699.93 8399.04 6198.84 13198.74 206
CP-MVS98.45 3798.32 3798.87 7799.96 896.62 11899.97 2598.39 14794.43 11598.90 9299.87 2494.30 74100.00 199.04 6199.99 2199.99 23
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 2099.90 4298.85 3499.24 23198.47 11098.14 899.08 8499.91 1493.09 106100.00 199.04 6199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS97.92 6397.80 6798.25 11998.14 17196.48 12199.98 1497.63 22995.61 8299.29 7799.46 11492.55 12398.82 17999.02 6498.54 13799.46 153
VDD-MVS93.77 20592.94 21396.27 20198.55 14590.22 29498.77 28397.79 22190.85 24596.82 15899.42 11661.18 36899.77 12698.95 6594.13 22198.82 201
APD-MVS_3200maxsize98.25 5298.08 5298.78 8099.81 6096.60 11999.82 12898.30 16993.95 14399.37 7199.77 6192.84 11399.76 12998.95 6599.92 6399.97 57
VNet97.21 9896.57 10999.13 6198.97 11697.82 7599.03 25699.21 2994.31 12399.18 8298.88 17086.26 21399.89 9498.93 6794.32 21999.69 108
XVS98.70 2398.55 2399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6699.78 5994.34 7299.96 5998.92 6899.95 4999.99 23
X-MVStestdata93.83 20192.06 23399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6641.37 39894.34 7299.96 5998.92 6899.95 4999.99 23
MP-MVS-pluss98.07 5997.64 7199.38 4199.74 6998.41 6099.74 15198.18 18293.35 16096.45 16799.85 3092.64 11999.97 5398.91 7099.89 6699.77 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.31 4698.17 4598.71 8499.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6893.28 10199.78 12398.90 7199.92 6399.97 57
RE-MVS-def98.13 4899.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6892.95 11098.90 7199.92 6399.97 57
HPM-MVScopyleft97.96 6097.72 6898.68 8699.84 5696.39 12799.90 8598.17 18392.61 18898.62 10899.57 10591.87 14099.67 14398.87 7399.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 5497.97 5699.03 6699.94 1397.17 10299.95 5098.39 14794.70 10798.26 12599.81 5091.84 141100.00 198.85 7499.97 4299.93 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_vis1_n_192095.44 16195.31 15295.82 21198.50 14988.74 31399.98 1497.30 26797.84 1499.85 799.19 13866.82 34999.97 5398.82 7599.46 10498.76 204
test_yl97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DCV-MVSNet97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
PVSNet_088.03 1991.80 25290.27 26596.38 19898.27 16190.46 28999.94 6699.61 1493.99 14086.26 32297.39 23571.13 33399.89 9498.77 7867.05 37698.79 203
EC-MVSNet97.38 9297.24 8597.80 13797.41 21595.64 15699.99 497.06 29294.59 11099.63 4199.32 12689.20 18398.14 23498.76 7999.23 11899.62 122
CS-MVS-test97.88 6497.94 6097.70 14799.28 9995.20 17599.98 1497.15 28295.53 8599.62 4499.79 5592.08 13698.38 21698.75 8099.28 11599.52 145
MG-MVS98.91 1698.65 1899.68 1599.94 1399.07 2499.64 17599.44 2097.33 2999.00 8899.72 7994.03 8299.98 4398.73 81100.00 1100.00 1
HFP-MVS98.56 2998.37 3399.14 5799.96 897.43 9299.95 5098.61 8094.77 10399.31 7499.85 3094.22 76100.00 198.70 8299.98 3299.98 48
ACMMPR98.50 3398.32 3799.05 6499.96 897.18 9999.95 5098.60 8194.77 10399.31 7499.84 4193.73 90100.00 198.70 8299.98 3299.98 48
MTAPA98.29 4897.96 5999.30 4299.85 5497.93 7399.39 21298.28 17195.76 7897.18 14999.88 2192.74 117100.00 198.67 8499.88 6899.99 23
region2R98.54 3098.37 3399.05 6499.96 897.18 9999.96 3298.55 9394.87 10199.45 6299.85 3094.07 81100.00 198.67 84100.00 199.98 48
ACMMP_NAP98.49 3498.14 4799.54 2799.66 7898.62 5399.85 11498.37 15494.68 10899.53 5599.83 4392.87 112100.00 198.66 8699.84 7199.99 23
test_vis1_n93.61 21193.03 21295.35 22295.86 26986.94 33299.87 9896.36 33896.85 4499.54 5498.79 17952.41 37899.83 11698.64 8798.97 12799.29 176
mPP-MVS98.39 4498.20 4398.97 7299.97 396.92 11099.95 5098.38 15195.04 9598.61 10999.80 5193.39 95100.00 198.64 87100.00 199.98 48
DELS-MVS98.54 3098.22 4199.50 3099.15 10598.65 51100.00 198.58 8397.70 1898.21 12799.24 13592.58 12299.94 7598.63 8999.94 5499.92 79
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs97.81 7097.33 8399.25 4398.77 13598.66 4999.99 498.44 11794.40 11998.41 11699.47 11293.65 9299.42 16098.57 9094.26 22099.67 111
CDPH-MVS98.65 2598.36 3599.49 3299.94 1398.73 4499.87 9898.33 16293.97 14199.76 2699.87 2494.99 5799.75 13098.55 91100.00 199.98 48
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8399.83 5796.59 12099.40 20898.51 10295.29 9198.51 11299.76 6393.60 9499.71 13698.53 9299.52 9899.95 70
canonicalmvs97.09 10296.32 11599.39 4098.93 12098.95 2799.72 15997.35 26194.45 11397.88 13599.42 11686.71 20799.52 14998.48 9393.97 22499.72 105
API-MVS97.86 6597.66 7098.47 10699.52 8795.41 16599.47 20298.87 5291.68 22198.84 9499.85 3092.34 13099.99 3698.44 9499.96 46100.00 1
lupinMVS97.85 6697.60 7398.62 9197.28 22697.70 7999.99 497.55 24095.50 8799.43 6499.67 9290.92 15598.71 18998.40 9599.62 8899.45 155
CS-MVS97.79 7397.91 6297.43 16299.10 10694.42 19299.99 497.10 28795.07 9499.68 3599.75 6892.95 11098.34 22098.38 9699.14 12199.54 141
EI-MVSNet-UG-set98.14 5697.99 5598.60 9399.80 6196.27 13099.36 21798.50 10795.21 9398.30 12299.75 6893.29 10099.73 13598.37 9799.30 11499.81 92
diffmvspermissive97.00 10496.64 10698.09 12697.64 20496.17 13999.81 13097.19 27694.67 10998.95 8999.28 12786.43 21098.76 18498.37 9797.42 16699.33 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.64 8197.32 8498.58 9699.97 395.77 14999.96 3298.35 15789.90 26398.36 11999.79 5591.18 15099.99 3698.37 9799.99 2199.99 23
test_fmvs195.35 16395.68 14494.36 26498.99 11484.98 34399.96 3296.65 32897.60 2099.73 3098.96 15971.58 32999.93 8398.31 10099.37 11198.17 218
ZNCC-MVS98.31 4698.03 5399.17 5199.88 4997.59 8299.94 6698.44 11794.31 12398.50 11399.82 4693.06 10799.99 3698.30 10199.99 2199.93 74
test_fmvs1_n94.25 19594.36 17593.92 27997.68 20183.70 34999.90 8596.57 33197.40 2699.67 3698.88 17061.82 36599.92 8698.23 10299.13 12298.14 221
DP-MVS Recon98.41 4298.02 5499.56 2599.97 398.70 4699.92 7698.44 11792.06 21098.40 11899.84 4195.68 40100.00 198.19 10399.71 8399.97 57
GG-mvs-BLEND98.54 10198.21 16598.01 6893.87 37098.52 9997.92 13297.92 22199.02 297.94 24898.17 10499.58 9599.67 111
GST-MVS98.27 4997.97 5699.17 5199.92 3197.57 8399.93 7398.39 14794.04 13998.80 9699.74 7492.98 109100.00 198.16 10599.76 8099.93 74
CSCG97.10 10097.04 9497.27 17299.89 4591.92 25699.90 8599.07 3488.67 28695.26 19299.82 4693.17 10599.98 4398.15 10699.47 10299.90 81
MAR-MVS97.43 8597.19 8898.15 12499.47 9194.79 18699.05 25398.76 6192.65 18698.66 10699.82 4688.52 19099.98 4398.12 10799.63 8799.67 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR98.52 3298.16 4699.58 2499.97 398.77 4099.95 5098.43 12595.35 8998.03 12999.75 6894.03 8299.98 4398.11 10899.83 7299.99 23
CLD-MVS94.06 19893.90 18894.55 25396.02 26490.69 28299.98 1497.72 22396.62 5691.05 24198.85 17877.21 28898.47 20198.11 10889.51 24494.48 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDDNet93.12 22291.91 23796.76 18496.67 25392.65 24198.69 29098.21 17882.81 35097.75 13899.28 12761.57 36699.48 15798.09 11094.09 22298.15 219
HY-MVS92.50 797.79 7397.17 9099.63 1798.98 11599.32 997.49 33099.52 1595.69 8098.32 12197.41 23393.32 9899.77 12698.08 11195.75 20399.81 92
EIA-MVS97.53 8397.46 7797.76 14498.04 17694.84 18399.98 1497.61 23494.41 11897.90 13399.59 10292.40 12898.87 17798.04 11299.13 12299.59 128
LFMVS94.75 17793.56 19898.30 11799.03 11095.70 15498.74 28497.98 20287.81 30098.47 11499.39 12167.43 34799.53 14898.01 11395.20 21399.67 111
AdaColmapbinary97.23 9796.80 10298.51 10499.99 195.60 15899.09 24298.84 5693.32 16296.74 16099.72 7986.04 214100.00 198.01 11399.43 10899.94 72
EPNet98.49 3498.40 2998.77 8299.62 8096.80 11499.90 8599.51 1797.60 2099.20 7999.36 12493.71 9199.91 8797.99 11598.71 13599.61 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft97.74 7697.44 7898.66 8899.92 3196.13 14099.18 23699.45 1994.84 10296.41 17099.71 8191.40 14499.99 3697.99 11598.03 15599.87 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS98.10 5897.60 7399.60 2298.92 12299.28 1799.89 9399.52 1595.58 8398.24 12699.39 12193.33 9799.74 13297.98 11795.58 20699.78 98
jason97.24 9696.86 9998.38 11495.73 27797.32 9599.97 2597.40 25895.34 9098.60 11099.54 10887.70 19498.56 19797.94 11899.47 10299.25 179
jason: jason.
BP-MVS97.92 119
HQP-MVS94.61 18294.50 17394.92 23795.78 27091.85 25799.87 9897.89 21296.82 4693.37 21198.65 18680.65 26198.39 21297.92 11989.60 23994.53 250
SDMVSNet94.80 17393.96 18697.33 17098.92 12295.42 16499.59 18198.99 3792.41 19992.55 22497.85 22275.81 30698.93 17697.90 12191.62 23597.64 229
casdiffmvs_mvgpermissive96.43 12895.94 13297.89 13697.44 21495.47 16199.86 11197.29 26993.35 16096.03 17799.19 13885.39 22098.72 18897.89 12297.04 17599.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3394.92 17194.36 17596.59 19098.85 13091.29 27298.93 26598.94 4195.90 7498.77 9898.42 20690.89 15899.77 12697.80 12370.76 36598.72 208
hse-mvs294.38 18994.08 18395.31 22598.27 16190.02 29999.29 22798.56 8795.90 7498.77 9898.00 21590.89 15898.26 23097.80 12369.20 37197.64 229
131496.84 11095.96 12999.48 3496.74 25098.52 5698.31 30998.86 5395.82 7689.91 25498.98 15587.49 19799.96 5997.80 12399.73 8299.96 63
HQP_MVS94.49 18694.36 17594.87 23895.71 28091.74 26199.84 11897.87 21496.38 6393.01 21598.59 19180.47 26598.37 21897.79 12689.55 24294.52 252
plane_prior597.87 21498.37 21897.79 12689.55 24294.52 252
gg-mvs-nofinetune93.51 21391.86 23998.47 10697.72 19897.96 7292.62 37498.51 10274.70 37697.33 14669.59 38998.91 397.79 25297.77 12899.56 9699.67 111
casdiffmvspermissive96.42 13095.97 12897.77 14297.30 22494.98 17999.84 11897.09 28993.75 15196.58 16499.26 13385.07 22398.78 18297.77 12897.04 17599.54 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS98.34 4598.13 4898.99 7099.92 3197.00 10699.75 14899.50 1893.90 14699.37 7199.76 6393.24 103100.00 197.75 13099.96 4699.98 48
test_cas_vis1_n_192096.59 12396.23 11797.65 14998.22 16494.23 19999.99 497.25 27397.77 1599.58 5199.08 14477.10 28999.97 5397.64 13199.45 10598.74 206
DeepC-MVS94.51 496.92 10896.40 11498.45 10899.16 10495.90 14599.66 16998.06 19596.37 6694.37 20199.49 11183.29 23999.90 8997.63 13299.61 9299.55 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast97.80 7197.50 7698.68 8699.79 6296.42 12399.88 9598.16 18791.75 22098.94 9099.54 10891.82 14299.65 14597.62 13399.99 2199.99 23
baseline96.43 12895.98 12597.76 14497.34 22095.17 17799.51 19597.17 27993.92 14596.90 15599.28 12785.37 22198.64 19497.50 13496.86 18199.46 153
PLCcopyleft95.54 397.93 6297.89 6498.05 12899.82 5894.77 18799.92 7698.46 11293.93 14497.20 14899.27 13095.44 4599.97 5397.41 13599.51 10099.41 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS96.60 12295.56 14699.72 1396.85 24399.22 2098.31 30998.94 4191.57 22390.90 24299.61 10186.66 20899.96 5997.36 13699.88 6899.99 23
XVG-OURS-SEG-HR94.79 17494.70 17195.08 23198.05 17589.19 30899.08 24497.54 24293.66 15394.87 19599.58 10478.78 27999.79 12197.31 13793.40 22896.25 242
3Dnovator91.47 1296.28 13895.34 15199.08 6396.82 24597.47 9199.45 20598.81 5895.52 8689.39 26899.00 15281.97 24599.95 6797.27 13899.83 7299.84 88
iter_conf0596.07 14195.95 13196.44 19598.43 15297.52 8599.91 8096.85 31594.16 12992.49 22697.98 21898.20 497.34 26797.26 13988.29 26294.45 261
cascas94.64 18193.61 19397.74 14697.82 18896.26 13199.96 3297.78 22285.76 32594.00 20697.54 22976.95 29399.21 16397.23 14095.43 20897.76 228
LCM-MVSNet-Re92.31 24192.60 22191.43 32197.53 20979.27 37199.02 25791.83 38592.07 20880.31 35194.38 33883.50 23795.48 34397.22 14197.58 16299.54 141
CNLPA97.76 7597.38 8098.92 7699.53 8696.84 11299.87 9898.14 19093.78 14996.55 16599.69 8592.28 13199.98 4397.13 14299.44 10699.93 74
Effi-MVS+96.30 13695.69 14298.16 12197.85 18696.26 13197.41 33297.21 27590.37 25598.65 10798.58 19386.61 20998.70 19097.11 14397.37 16899.52 145
PVSNet_Blended_VisFu97.27 9596.81 10198.66 8898.81 13296.67 11699.92 7698.64 7494.51 11296.38 17198.49 19989.05 18499.88 10097.10 14498.34 14199.43 158
3Dnovator+91.53 1196.31 13595.24 15499.52 2896.88 24298.64 5299.72 15998.24 17595.27 9288.42 29398.98 15582.76 24199.94 7597.10 14499.83 7299.96 63
iter_conf_final96.01 14495.93 13396.28 20098.38 15497.03 10599.87 9897.03 29594.05 13892.61 22297.98 21898.01 597.34 26797.02 14688.39 26194.47 255
PAPM_NR98.12 5797.93 6198.70 8599.94 1396.13 14099.82 12898.43 12594.56 11197.52 14199.70 8394.40 6799.98 4397.00 14799.98 3299.99 23
CHOSEN 1792x268896.81 11196.53 11097.64 15098.91 12693.07 22799.65 17199.80 395.64 8195.39 18998.86 17584.35 23299.90 8996.98 14899.16 12099.95 70
旧先验299.46 20494.21 12899.85 799.95 6796.96 149
PMMVS96.76 11496.76 10396.76 18498.28 16092.10 25199.91 8097.98 20294.12 13199.53 5599.39 12186.93 20698.73 18696.95 15097.73 15899.45 155
EPP-MVSNet96.69 11996.60 10796.96 17897.74 19393.05 22999.37 21598.56 8788.75 28495.83 18399.01 15096.01 3298.56 19796.92 15197.20 17199.25 179
ET-MVSNet_ETH3D94.37 19093.28 20897.64 15098.30 15797.99 6999.99 497.61 23494.35 12071.57 37699.45 11596.23 3195.34 34696.91 15285.14 29199.59 128
HyFIR lowres test96.66 12196.43 11397.36 16899.05 10993.91 20999.70 16399.80 390.54 25296.26 17398.08 21292.15 13498.23 23196.84 15395.46 20799.93 74
OMC-MVS97.28 9497.23 8697.41 16399.76 6693.36 22599.65 17197.95 20596.03 7397.41 14599.70 8389.61 17499.51 15096.73 15498.25 14799.38 162
mvsmamba94.10 19693.72 19295.25 22793.57 31694.13 20299.67 16896.45 33693.63 15591.34 23797.77 22586.29 21297.22 27896.65 15588.10 26694.40 263
CostFormer96.10 14095.88 13796.78 18397.03 23292.55 24397.08 34097.83 21990.04 26298.72 10394.89 32495.01 5598.29 22496.54 15695.77 20199.50 149
sss97.57 8297.03 9599.18 4898.37 15598.04 6799.73 15699.38 2393.46 15898.76 10099.06 14691.21 14699.89 9496.33 15797.01 17799.62 122
114514_t97.41 9096.83 10099.14 5799.51 8997.83 7499.89 9398.27 17388.48 29099.06 8599.66 9490.30 16699.64 14696.32 15899.97 4299.96 63
test_vis1_rt86.87 31586.05 31789.34 33796.12 26078.07 37299.87 9883.54 39692.03 21178.21 36189.51 36745.80 38299.91 8796.25 15993.11 23290.03 367
ACMP92.05 992.74 23092.42 22893.73 28595.91 26888.72 31499.81 13097.53 24494.13 13087.00 31098.23 20974.07 32098.47 20196.22 16088.86 25193.99 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS92.85 694.99 17093.94 18798.16 12197.72 19895.69 15599.99 498.81 5894.28 12592.70 22196.90 25095.08 5199.17 16796.07 16173.88 36099.60 127
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 17294.74 17095.06 23298.00 17789.19 30899.08 24497.55 24094.10 13294.71 19699.62 10080.51 26399.74 13296.04 16293.06 23396.25 242
ab-mvs94.69 17893.42 20298.51 10498.07 17496.26 13196.49 34998.68 6890.31 25794.54 19797.00 24876.30 30199.71 13695.98 16393.38 22999.56 136
mvs_anonymous95.65 15795.03 16297.53 15698.19 16795.74 15199.33 21997.49 24990.87 24490.47 24697.10 24288.23 19197.16 28095.92 16497.66 16199.68 109
nrg03093.51 21392.53 22596.45 19394.36 30397.20 9899.81 13097.16 28191.60 22289.86 25697.46 23186.37 21197.68 25695.88 16580.31 33094.46 256
LPG-MVS_test92.96 22592.71 21993.71 28795.43 28788.67 31599.75 14897.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
LGP-MVS_train93.71 28795.43 28788.67 31597.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
VPA-MVSNet92.70 23291.55 24496.16 20395.09 29196.20 13698.88 27099.00 3691.02 24291.82 23295.29 31176.05 30597.96 24595.62 16881.19 31894.30 272
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 14093.71 21398.85 27698.45 11394.93 9796.86 15698.96 15975.22 31299.20 16495.34 16998.15 14899.64 117
F-COLMAP96.93 10796.95 9796.87 18199.71 7591.74 26199.85 11497.95 20593.11 16995.72 18599.16 14192.35 12999.94 7595.32 17099.35 11298.92 195
BH-w/o95.71 15395.38 15096.68 18798.49 15092.28 24799.84 11897.50 24892.12 20792.06 23198.79 17984.69 22798.67 19395.29 17199.66 8699.09 190
原ACMM198.96 7399.73 7296.99 10798.51 10294.06 13699.62 4499.85 3094.97 5899.96 5995.11 17299.95 4999.92 79
RRT_MVS93.14 22192.92 21493.78 28493.31 32390.04 29899.66 16997.69 22592.53 19488.91 28297.76 22684.36 23096.93 29995.10 17386.99 27894.37 266
Anonymous20240521193.10 22391.99 23596.40 19699.10 10689.65 30598.88 27097.93 20783.71 34494.00 20698.75 18168.79 33999.88 10095.08 17491.71 23499.68 109
test111195.57 15894.98 16497.37 16698.56 14393.37 22498.86 27498.45 11394.95 9696.63 16298.95 16475.21 31399.11 16995.02 17598.14 15099.64 117
testdata98.42 11199.47 9195.33 16898.56 8793.78 14999.79 2399.85 3093.64 9399.94 7594.97 17699.94 54100.00 1
test250697.53 8397.19 8898.58 9698.66 14096.90 11198.81 27999.77 594.93 9797.95 13198.96 15992.51 12499.20 16494.93 17798.15 14899.64 117
gm-plane-assit96.97 23693.76 21291.47 22798.96 15998.79 18194.92 178
PVSNet91.05 1397.13 9996.69 10598.45 10899.52 8795.81 14799.95 5099.65 1294.73 10599.04 8699.21 13784.48 22999.95 6794.92 17898.74 13499.58 134
tpmrst96.27 13995.98 12597.13 17497.96 17993.15 22696.34 35298.17 18392.07 20898.71 10495.12 31593.91 8598.73 18694.91 18096.62 18299.50 149
VPNet91.81 24990.46 25995.85 21094.74 29795.54 16098.98 25998.59 8292.14 20690.77 24497.44 23268.73 34197.54 26194.89 18177.89 34394.46 256
baseline296.71 11896.49 11197.37 16695.63 28595.96 14499.74 15198.88 5192.94 17191.61 23398.97 15797.72 798.62 19594.83 18298.08 15497.53 234
Effi-MVS+-dtu94.53 18595.30 15392.22 31497.77 19182.54 35499.59 18197.06 29294.92 9995.29 19195.37 30585.81 21597.89 24994.80 18397.07 17396.23 244
MVSTER95.53 15995.22 15596.45 19398.56 14397.72 7699.91 8097.67 22792.38 20191.39 23597.14 24097.24 1897.30 27294.80 18387.85 26994.34 271
thisisatest051597.41 9097.02 9698.59 9597.71 20097.52 8599.97 2598.54 9691.83 21697.45 14499.04 14797.50 999.10 17094.75 18596.37 18899.16 184
mvs_tets91.81 24991.08 25194.00 27691.63 35290.58 28698.67 29297.43 25392.43 19887.37 30797.05 24671.76 32797.32 27194.75 18588.68 25494.11 292
Anonymous2024052992.10 24590.65 25696.47 19198.82 13190.61 28598.72 28698.67 7175.54 37393.90 20898.58 19366.23 35199.90 8994.70 18790.67 23798.90 198
MVSFormer96.94 10696.60 10797.95 13097.28 22697.70 7999.55 18997.27 27191.17 23699.43 6499.54 10890.92 15596.89 30194.67 18899.62 8899.25 179
test_djsdf92.83 22892.29 22994.47 25891.90 34892.46 24499.55 18997.27 27191.17 23689.96 25296.07 27981.10 25496.89 30194.67 18888.91 24894.05 297
UGNet95.33 16494.57 17297.62 15398.55 14594.85 18298.67 29299.32 2695.75 7996.80 15996.27 27172.18 32699.96 5994.58 19099.05 12698.04 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax91.92 24791.18 25094.15 26891.35 35590.95 27899.00 25897.42 25592.61 18887.38 30697.08 24372.46 32597.36 26594.53 19188.77 25294.13 291
MVS_Test96.46 12795.74 14098.61 9298.18 16897.23 9799.31 22297.15 28291.07 24098.84 9497.05 24688.17 19298.97 17394.39 19297.50 16399.61 125
PS-MVSNAJss93.64 21093.31 20794.61 24892.11 34592.19 24999.12 23997.38 25992.51 19688.45 28896.99 24991.20 14797.29 27594.36 19387.71 27294.36 267
无先验99.49 19998.71 6493.46 158100.00 194.36 19399.99 23
MDTV_nov1_ep13_2view96.26 13196.11 35791.89 21498.06 12894.40 6794.30 19599.67 111
thres20096.96 10596.21 11899.22 4498.97 11698.84 3599.85 11499.71 793.17 16796.26 17398.88 17089.87 17199.51 15094.26 19694.91 21499.31 172
BH-untuned95.18 16594.83 16796.22 20298.36 15691.22 27399.80 13497.32 26590.91 24391.08 23998.67 18383.51 23698.54 19994.23 19799.61 9298.92 195
FIs94.10 19693.43 20196.11 20494.70 29896.82 11399.58 18398.93 4592.54 19389.34 27097.31 23687.62 19697.10 28694.22 19886.58 28094.40 263
tpm295.47 16095.18 15796.35 19996.91 23891.70 26596.96 34397.93 20788.04 29798.44 11595.40 30193.32 9897.97 24394.00 19995.61 20599.38 162
bld_raw_dy_0_6492.74 23092.03 23494.87 23893.09 32993.46 21999.12 23995.41 35792.84 17590.44 24797.54 22978.08 28697.04 29193.94 20087.77 27194.11 292
sd_testset93.55 21292.83 21695.74 21398.92 12290.89 28098.24 31298.85 5592.41 19992.55 22497.85 22271.07 33498.68 19293.93 20191.62 23597.64 229
dmvs_re93.20 21993.15 21093.34 29696.54 25483.81 34898.71 28798.51 10291.39 23392.37 22798.56 19578.66 28197.83 25193.89 20289.74 23898.38 215
OpenMVScopyleft90.15 1594.77 17693.59 19698.33 11596.07 26297.48 9099.56 18798.57 8590.46 25386.51 31698.95 16478.57 28299.94 7593.86 20399.74 8197.57 233
thres100view90096.74 11695.92 13599.18 4898.90 12798.77 4099.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.84 20494.57 21599.27 177
tfpn200view996.79 11295.99 12399.19 4798.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.27 177
thres40096.78 11395.99 12399.16 5398.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.16 184
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 3298.44 11797.96 1299.55 5299.94 497.18 21100.00 193.81 20799.94 5499.98 48
CDS-MVSNet96.34 13396.07 12097.13 17497.37 21894.96 18099.53 19297.91 21191.55 22495.37 19098.32 20895.05 5397.13 28393.80 20895.75 20399.30 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline195.78 15094.86 16698.54 10198.47 15198.07 6599.06 24997.99 20092.68 18494.13 20598.62 19093.28 10198.69 19193.79 20985.76 28498.84 200
OPM-MVS93.21 21892.80 21794.44 26093.12 32790.85 28199.77 14097.61 23496.19 7191.56 23498.65 18675.16 31498.47 20193.78 21089.39 24593.99 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAMVS95.85 14895.58 14596.65 18997.07 23093.50 21899.17 23797.82 22091.39 23395.02 19498.01 21492.20 13297.30 27293.75 21195.83 20099.14 187
thisisatest053097.10 10096.72 10498.22 12097.60 20696.70 11599.92 7698.54 9691.11 23997.07 15198.97 15797.47 1299.03 17193.73 21296.09 19198.92 195
IS-MVSNet96.29 13795.90 13697.45 16098.13 17294.80 18599.08 24497.61 23492.02 21295.54 18898.96 15990.64 16198.08 23793.73 21297.41 16799.47 152
ACMM91.95 1092.88 22792.52 22693.98 27895.75 27689.08 31199.77 14097.52 24693.00 17089.95 25397.99 21776.17 30398.46 20493.63 21488.87 25094.39 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.32 13495.98 12597.35 16997.93 18194.82 18499.47 20298.15 18991.83 21695.09 19399.11 14291.37 14597.47 26393.47 21597.43 16499.74 102
thres600view796.69 11995.87 13899.14 5798.90 12798.78 3999.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.44 21694.50 21899.16 184
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20594.28 19799.28 22898.24 17594.27 12796.84 15798.94 16679.39 27298.76 18493.25 21798.49 13899.30 174
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-test93.81 20393.15 21095.80 21294.30 30596.20 13699.42 20798.89 4992.33 20389.03 28097.27 23887.39 19996.83 30593.20 21886.48 28194.36 267
UniMVSNet_NR-MVSNet92.95 22692.11 23195.49 21694.61 30095.28 17099.83 12599.08 3391.49 22589.21 27596.86 25387.14 20296.73 30993.20 21877.52 34694.46 256
DU-MVS92.46 23891.45 24795.49 21694.05 30895.28 17099.81 13098.74 6292.25 20589.21 27596.64 26181.66 24896.73 30993.20 21877.52 34694.46 256
WR-MVS92.31 24191.25 24995.48 21994.45 30295.29 16999.60 18098.68 6890.10 25988.07 29696.89 25180.68 26096.80 30793.14 22179.67 33494.36 267
UniMVSNet (Re)93.07 22492.13 23095.88 20894.84 29596.24 13599.88 9598.98 3892.49 19789.25 27295.40 30187.09 20397.14 28293.13 22278.16 34194.26 274
QAPM95.40 16294.17 18199.10 6296.92 23797.71 7799.40 20898.68 6889.31 26988.94 28198.89 16982.48 24299.96 5993.12 22399.83 7299.62 122
tttt051796.85 10996.49 11197.92 13297.48 21395.89 14699.85 11498.54 9690.72 25096.63 16298.93 16897.47 1299.02 17293.03 22495.76 20298.85 199
test_fmvs289.47 29989.70 27688.77 34494.54 30175.74 37399.83 12594.70 36994.71 10691.08 23996.82 25854.46 37597.78 25492.87 22588.27 26392.80 342
TR-MVS94.54 18393.56 19897.49 15997.96 17994.34 19698.71 28797.51 24790.30 25894.51 19998.69 18275.56 30798.77 18392.82 22695.99 19399.35 167
CANet_DTU96.76 11496.15 11998.60 9398.78 13497.53 8499.84 11897.63 22997.25 3599.20 7999.64 9781.36 25299.98 4392.77 22798.89 12898.28 217
AUN-MVS93.28 21792.60 22195.34 22398.29 15890.09 29799.31 22298.56 8791.80 21996.35 17298.00 21589.38 17798.28 22692.46 22869.22 37097.64 229
anonymousdsp91.79 25490.92 25394.41 26390.76 36092.93 23298.93 26597.17 27989.08 27187.46 30595.30 30878.43 28596.92 30092.38 22988.73 25393.39 330
XVG-ACMP-BASELINE91.22 26390.75 25492.63 31193.73 31485.61 33898.52 30097.44 25292.77 17989.90 25596.85 25466.64 35098.39 21292.29 23088.61 25593.89 311
miper_enhance_ethall94.36 19293.98 18595.49 21698.68 13995.24 17299.73 15697.29 26993.28 16489.86 25695.97 28094.37 7197.05 28992.20 23184.45 29694.19 280
FA-MVS(test-final)95.86 14795.09 16098.15 12497.74 19395.62 15796.31 35398.17 18391.42 23196.26 17396.13 27690.56 16299.47 15892.18 23297.07 17399.35 167
RPSCF91.80 25292.79 21888.83 34198.15 17069.87 37998.11 31996.60 33083.93 34294.33 20299.27 13079.60 27199.46 15991.99 23393.16 23197.18 236
cl2293.77 20593.25 20995.33 22499.49 9094.43 19199.61 17998.09 19290.38 25489.16 27895.61 28990.56 16297.34 26791.93 23484.45 29694.21 279
1112_ss96.01 14495.20 15698.42 11197.80 18996.41 12499.65 17196.66 32792.71 18192.88 21999.40 11992.16 13399.30 16191.92 23593.66 22599.55 137
Test_1112_low_res95.72 15194.83 16798.42 11197.79 19096.41 12499.65 17196.65 32892.70 18292.86 22096.13 27692.15 13499.30 16191.88 23693.64 22699.55 137
tmp_tt65.23 35662.94 35972.13 37244.90 40050.03 39781.05 38889.42 39238.45 39148.51 39399.90 1854.09 37678.70 39391.84 23718.26 39587.64 377
XXY-MVS91.82 24890.46 25995.88 20893.91 31195.40 16698.87 27397.69 22588.63 28887.87 29897.08 24374.38 31997.89 24991.66 23884.07 30094.35 270
D2MVS92.76 22992.59 22493.27 29995.13 29089.54 30799.69 16499.38 2392.26 20487.59 30194.61 33285.05 22497.79 25291.59 23988.01 26792.47 347
UniMVSNet_ETH3D90.06 29088.58 29894.49 25794.67 29988.09 32497.81 32897.57 23983.91 34388.44 28997.41 23357.44 37297.62 25991.41 24088.59 25797.77 227
NR-MVSNet91.56 25790.22 26695.60 21494.05 30895.76 15098.25 31198.70 6591.16 23880.78 35096.64 26183.23 24096.57 31591.41 24077.73 34594.46 256
新几何199.42 3799.75 6898.27 6198.63 7892.69 18399.55 5299.82 4694.40 67100.00 191.21 24299.94 5499.99 23
UA-Net96.54 12495.96 12998.27 11898.23 16395.71 15398.00 32398.45 11393.72 15298.41 11699.27 13088.71 18999.66 14491.19 24397.69 15999.44 157
EPMVS96.53 12596.01 12298.09 12698.43 15296.12 14296.36 35199.43 2193.53 15697.64 13995.04 31794.41 6698.38 21691.13 24498.11 15199.75 101
EI-MVSNet93.73 20793.40 20594.74 24396.80 24692.69 23899.06 24997.67 22788.96 27891.39 23599.02 14888.75 18897.30 27291.07 24587.85 26994.22 277
test_post195.78 36359.23 39793.20 10497.74 25591.06 246
SCA94.69 17893.81 19197.33 17097.10 22994.44 19098.86 27498.32 16493.30 16396.17 17695.59 29176.48 29997.95 24691.06 24697.43 16499.59 128
Baseline_NR-MVSNet90.33 28289.51 28292.81 30992.84 33489.95 30199.77 14093.94 37684.69 33989.04 27995.66 28881.66 24896.52 31690.99 24876.98 35291.97 353
IterMVS-LS92.69 23392.11 23194.43 26296.80 24692.74 23599.45 20596.89 31288.98 27689.65 26395.38 30488.77 18796.34 32390.98 24982.04 31294.22 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D95.84 14995.11 15998.02 12999.85 5495.10 17898.74 28498.50 10787.22 30793.66 20999.86 2687.45 19899.95 6790.94 25099.81 7899.02 193
CVMVSNet94.68 18094.94 16593.89 28296.80 24686.92 33399.06 24998.98 3894.45 11394.23 20499.02 14885.60 21695.31 34790.91 25195.39 20999.43 158
BH-RMVSNet95.18 16594.31 17897.80 13798.17 16995.23 17399.76 14597.53 24492.52 19594.27 20399.25 13476.84 29498.80 18090.89 25299.54 9799.35 167
Anonymous2023121189.86 29388.44 30094.13 27098.93 12090.68 28398.54 29898.26 17476.28 36986.73 31295.54 29370.60 33597.56 26090.82 25380.27 33194.15 287
miper_ehance_all_eth93.16 22092.60 22194.82 24297.57 20793.56 21699.50 19797.07 29188.75 28488.85 28395.52 29590.97 15496.74 30890.77 25484.45 29694.17 281
mvsany_test382.12 33681.14 33885.06 35481.87 38270.41 37897.09 33992.14 38391.27 23577.84 36288.73 37039.31 38595.49 34290.75 25571.24 36489.29 374
tpm93.70 20993.41 20494.58 25195.36 28987.41 32997.01 34196.90 31190.85 24596.72 16194.14 34090.40 16596.84 30490.75 25588.54 25899.51 147
tt080591.28 26090.18 26894.60 24996.26 25887.55 32798.39 30798.72 6389.00 27589.22 27498.47 20362.98 36298.96 17490.57 25788.00 26897.28 235
TESTMET0.1,196.74 11696.26 11698.16 12197.36 21996.48 12199.96 3298.29 17091.93 21395.77 18498.07 21395.54 4298.29 22490.55 25898.89 12899.70 106
testdata299.99 3690.54 259
c3_l92.53 23691.87 23894.52 25497.40 21692.99 23199.40 20896.93 30987.86 29888.69 28695.44 29989.95 17096.44 31990.45 26080.69 32794.14 290
test-LLR96.47 12696.04 12197.78 14097.02 23395.44 16299.96 3298.21 17894.07 13495.55 18696.38 26793.90 8698.27 22890.42 26198.83 13299.64 117
test-mter96.39 13195.93 13397.78 14097.02 23395.44 16299.96 3298.21 17891.81 21895.55 18696.38 26795.17 4898.27 22890.42 26198.83 13299.64 117
PCF-MVS94.20 595.18 16594.10 18298.43 11098.55 14595.99 14397.91 32597.31 26690.35 25689.48 26799.22 13685.19 22299.89 9490.40 26398.47 13999.41 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CP-MVSNet91.23 26290.22 26694.26 26693.96 31092.39 24699.09 24298.57 8588.95 27986.42 31996.57 26479.19 27596.37 32190.29 26478.95 33694.02 298
TranMVSNet+NR-MVSNet91.68 25690.61 25894.87 23893.69 31593.98 20799.69 16498.65 7291.03 24188.44 28996.83 25780.05 26896.18 32990.26 26576.89 35494.45 261
PatchMatch-RL96.04 14395.40 14897.95 13099.59 8195.22 17499.52 19399.07 3493.96 14296.49 16698.35 20782.28 24399.82 11890.15 26699.22 11998.81 202
MDTV_nov1_ep1395.69 14297.90 18294.15 20195.98 36098.44 11793.12 16897.98 13095.74 28495.10 5098.58 19690.02 26796.92 179
FE-MVS95.70 15595.01 16397.79 13998.21 16594.57 18895.03 36598.69 6688.90 28197.50 14396.19 27392.60 12199.49 15689.99 26897.94 15799.31 172
eth_miper_zixun_eth92.41 23991.93 23693.84 28397.28 22690.68 28398.83 27796.97 30388.57 28989.19 27795.73 28689.24 18296.69 31189.97 26981.55 31594.15 287
Fast-Effi-MVS+95.02 16994.19 18097.52 15797.88 18394.55 18999.97 2597.08 29088.85 28394.47 20097.96 22084.59 22898.41 20889.84 27097.10 17299.59 128
Fast-Effi-MVS+-dtu93.72 20893.86 19093.29 29897.06 23186.16 33599.80 13496.83 31792.66 18592.58 22397.83 22481.39 25197.67 25789.75 27196.87 18096.05 247
ACMH89.72 1790.64 27489.63 27793.66 29195.64 28488.64 31798.55 29697.45 25189.03 27381.62 34597.61 22869.75 33798.41 20889.37 27287.62 27493.92 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs492.10 24591.07 25295.18 22992.82 33694.96 18099.48 20196.83 31787.45 30388.66 28796.56 26583.78 23596.83 30589.29 27384.77 29493.75 319
PatchmatchNetpermissive95.94 14695.45 14797.39 16597.83 18794.41 19396.05 35898.40 14492.86 17297.09 15095.28 31294.21 7898.07 23989.26 27498.11 15199.70 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+89.98 1690.35 28189.54 28092.78 31095.99 26586.12 33698.81 27997.18 27889.38 26883.14 33897.76 22668.42 34398.43 20689.11 27586.05 28393.78 318
DP-MVS94.54 18393.42 20297.91 13499.46 9394.04 20498.93 26597.48 25081.15 35790.04 25199.55 10687.02 20499.95 6788.97 27698.11 15199.73 103
PS-CasMVS90.63 27589.51 28293.99 27793.83 31291.70 26598.98 25998.52 9988.48 29086.15 32396.53 26675.46 30896.31 32588.83 27778.86 33893.95 306
test_fmvs379.99 34380.17 34279.45 36184.02 37962.83 38299.05 25393.49 38088.29 29480.06 35486.65 37828.09 39088.00 38288.63 27873.27 36287.54 378
cl____92.31 24191.58 24294.52 25497.33 22292.77 23399.57 18596.78 32286.97 31287.56 30295.51 29689.43 17696.62 31388.60 27982.44 30994.16 286
DIV-MVS_self_test92.32 24091.60 24194.47 25897.31 22392.74 23599.58 18396.75 32386.99 31187.64 30095.54 29389.55 17596.50 31788.58 28082.44 30994.17 281
pmmvs590.17 28889.09 28993.40 29592.10 34689.77 30499.74 15195.58 35485.88 32487.24 30995.74 28473.41 32396.48 31888.54 28183.56 30393.95 306
LF4IMVS89.25 30388.85 29390.45 33092.81 33781.19 36498.12 31894.79 36691.44 22886.29 32197.11 24165.30 35698.11 23688.53 28285.25 28992.07 350
JIA-IIPM91.76 25590.70 25594.94 23696.11 26187.51 32893.16 37398.13 19175.79 37297.58 14077.68 38692.84 11397.97 24388.47 28396.54 18399.33 170
miper_lstm_enhance91.81 24991.39 24893.06 30597.34 22089.18 31099.38 21396.79 32186.70 31587.47 30495.22 31390.00 16995.86 34088.26 28481.37 31794.15 287
WR-MVS_H91.30 25890.35 26294.15 26894.17 30792.62 24299.17 23798.94 4188.87 28286.48 31894.46 33784.36 23096.61 31488.19 28578.51 33993.21 335
tpmvs94.28 19493.57 19796.40 19698.55 14591.50 27095.70 36498.55 9387.47 30292.15 22894.26 33991.42 14398.95 17588.15 28695.85 19998.76 204
OurMVSNet-221017-089.81 29489.48 28490.83 32691.64 35181.21 36398.17 31795.38 35991.48 22685.65 32797.31 23672.66 32497.29 27588.15 28684.83 29393.97 305
GeoE94.36 19293.48 20096.99 17797.29 22593.54 21799.96 3296.72 32588.35 29393.43 21098.94 16682.05 24498.05 24088.12 28896.48 18699.37 164
TDRefinement84.76 32582.56 33391.38 32274.58 39184.80 34597.36 33394.56 37084.73 33880.21 35296.12 27863.56 36098.39 21287.92 28963.97 38190.95 361
CMPMVSbinary61.59 2184.75 32685.14 32183.57 35690.32 36362.54 38496.98 34297.59 23874.33 37769.95 37896.66 25964.17 35898.32 22287.88 29088.41 26089.84 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test86.90 31485.98 31889.67 33584.45 37775.59 37489.71 38492.43 38286.89 31377.83 36390.94 36294.22 7693.63 36487.75 29169.61 36799.79 95
GA-MVS93.83 20192.84 21596.80 18295.73 27793.57 21599.88 9597.24 27492.57 19292.92 21796.66 25978.73 28097.67 25787.75 29194.06 22399.17 183
ADS-MVSNet293.80 20493.88 18993.55 29397.87 18485.94 33794.24 36696.84 31690.07 26096.43 16894.48 33590.29 16795.37 34587.44 29397.23 16999.36 165
ADS-MVSNet94.79 17494.02 18497.11 17697.87 18493.79 21094.24 36698.16 18790.07 26096.43 16894.48 33590.29 16798.19 23387.44 29397.23 16999.36 165
v14890.70 27289.63 27793.92 27992.97 33290.97 27599.75 14896.89 31287.51 30188.27 29495.01 31881.67 24797.04 29187.40 29577.17 35193.75 319
V4291.28 26090.12 27194.74 24393.42 32193.46 21999.68 16697.02 29687.36 30489.85 25895.05 31681.31 25397.34 26787.34 29680.07 33293.40 329
v2v48291.30 25890.07 27295.01 23393.13 32593.79 21099.77 14097.02 29688.05 29689.25 27295.37 30580.73 25997.15 28187.28 29780.04 33394.09 294
IterMVS90.91 26790.17 26993.12 30296.78 24990.42 29198.89 26897.05 29489.03 27386.49 31795.42 30076.59 29795.02 34987.22 29884.09 29993.93 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d94.46 18794.76 16993.55 29397.68 20190.97 27599.71 16198.35 15790.79 24792.10 22998.67 18392.46 12793.09 36887.13 29995.95 19696.59 240
PEN-MVS90.19 28789.06 29093.57 29293.06 33090.90 27999.06 24998.47 11088.11 29585.91 32596.30 27076.67 29595.94 33987.07 30076.91 35393.89 311
IterMVS-SCA-FT90.85 27090.16 27092.93 30796.72 25189.96 30098.89 26896.99 29988.95 27986.63 31495.67 28776.48 29995.00 35087.04 30184.04 30293.84 315
tpm cat193.51 21392.52 22696.47 19197.77 19191.47 27196.13 35698.06 19580.98 35892.91 21893.78 34389.66 17298.87 17787.03 30296.39 18799.09 190
GBi-Net90.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
test190.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
FMVSNet392.69 23391.58 24295.99 20698.29 15897.42 9399.26 23097.62 23189.80 26589.68 26095.32 30781.62 25096.27 32687.01 30385.65 28594.29 273
dp95.05 16894.43 17496.91 17997.99 17892.73 23796.29 35497.98 20289.70 26695.93 18094.67 33093.83 8998.45 20586.91 30696.53 18499.54 141
MSDG94.37 19093.36 20697.40 16498.88 12993.95 20899.37 21597.38 25985.75 32790.80 24399.17 14084.11 23499.88 10086.35 30798.43 14098.36 216
EU-MVSNet90.14 28990.34 26389.54 33692.55 33981.06 36598.69 29098.04 19891.41 23286.59 31596.84 25680.83 25893.31 36786.20 30881.91 31394.26 274
pm-mvs189.36 30187.81 30794.01 27593.40 32291.93 25598.62 29596.48 33586.25 32083.86 33596.14 27573.68 32297.04 29186.16 30975.73 35893.04 338
COLMAP_ROBcopyleft90.47 1492.18 24491.49 24694.25 26799.00 11388.04 32598.42 30696.70 32682.30 35388.43 29199.01 15076.97 29299.85 10686.11 31096.50 18594.86 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WAC-MVS90.97 27586.10 311
ITE_SJBPF92.38 31295.69 28285.14 34195.71 35092.81 17689.33 27198.11 21170.23 33698.42 20785.91 31288.16 26593.59 326
K. test v388.05 30987.24 31190.47 32991.82 35082.23 35798.96 26297.42 25589.05 27276.93 36695.60 29068.49 34295.42 34485.87 31381.01 32493.75 319
AllTest92.48 23791.64 24095.00 23499.01 11188.43 31998.94 26496.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
TestCases95.00 23499.01 11188.43 31996.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
FMVSNet291.02 26589.56 27995.41 22197.53 20995.74 15198.98 25997.41 25787.05 30888.43 29195.00 32071.34 33096.24 32885.12 31685.21 29094.25 276
v114491.09 26489.83 27394.87 23893.25 32493.69 21499.62 17896.98 30186.83 31489.64 26494.99 32180.94 25697.05 28985.08 31781.16 31993.87 313
v890.54 27789.17 28794.66 24693.43 32093.40 22399.20 23496.94 30885.76 32587.56 30294.51 33381.96 24697.19 27984.94 31878.25 34093.38 331
ambc83.23 35777.17 38962.61 38387.38 38694.55 37176.72 36786.65 37830.16 38796.36 32284.85 31969.86 36690.73 362
test_f78.40 34577.59 34780.81 36080.82 38462.48 38596.96 34393.08 38183.44 34674.57 37384.57 38227.95 39192.63 37184.15 32072.79 36387.32 379
LTVRE_ROB88.28 1890.29 28489.05 29194.02 27495.08 29290.15 29697.19 33697.43 25384.91 33783.99 33497.06 24574.00 32198.28 22684.08 32187.71 27293.62 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo88.73 30588.01 30690.88 32491.85 34982.24 35698.22 31595.18 36488.97 27782.26 34196.89 25171.75 32896.67 31284.00 32282.98 30493.72 323
v14419290.79 27189.52 28194.59 25093.11 32892.77 23399.56 18796.99 29986.38 31889.82 25994.95 32380.50 26497.10 28683.98 32380.41 32893.90 310
USDC90.00 29188.96 29293.10 30494.81 29688.16 32398.71 28795.54 35593.66 15383.75 33697.20 23965.58 35398.31 22383.96 32487.49 27692.85 341
MVP-Stereo90.93 26690.45 26192.37 31391.25 35788.76 31298.05 32296.17 34287.27 30684.04 33395.30 30878.46 28497.27 27783.78 32599.70 8491.09 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch90.65 27390.30 26491.71 32094.22 30685.50 34098.24 31297.70 22488.67 28686.42 31996.37 26967.82 34598.03 24183.62 32699.62 8891.60 355
DTE-MVSNet89.40 30088.24 30392.88 30892.66 33889.95 30199.10 24198.22 17787.29 30585.12 33096.22 27276.27 30295.30 34883.56 32775.74 35793.41 328
pmmvs685.69 31883.84 32591.26 32390.00 36684.41 34697.82 32796.15 34375.86 37181.29 34795.39 30361.21 36796.87 30383.52 32873.29 36192.50 346
lessismore_v090.53 32790.58 36180.90 36695.80 34877.01 36595.84 28166.15 35296.95 29783.03 32975.05 35993.74 322
v1090.25 28588.82 29494.57 25293.53 31893.43 22199.08 24496.87 31485.00 33487.34 30894.51 33380.93 25797.02 29682.85 33079.23 33593.26 333
DeepMVS_CXcopyleft82.92 35895.98 26758.66 38996.01 34592.72 18078.34 36095.51 29658.29 37198.08 23782.57 33185.29 28892.03 352
testing393.92 19994.23 17992.99 30697.54 20890.23 29399.99 499.16 3090.57 25191.33 23898.63 18992.99 10892.52 37282.46 33295.39 20996.22 245
PM-MVS80.47 34078.88 34585.26 35383.79 38072.22 37795.89 36291.08 38685.71 32876.56 36888.30 37136.64 38693.90 36182.39 33369.57 36889.66 371
v119290.62 27689.25 28694.72 24593.13 32593.07 22799.50 19797.02 29686.33 31989.56 26695.01 31879.22 27497.09 28882.34 33481.16 31994.01 300
v192192090.46 27889.12 28894.50 25692.96 33392.46 24499.49 19996.98 30186.10 32189.61 26595.30 30878.55 28397.03 29482.17 33580.89 32694.01 300
MIMVSNet90.30 28388.67 29795.17 23096.45 25591.64 26792.39 37597.15 28285.99 32290.50 24593.19 35066.95 34894.86 35382.01 33693.43 22799.01 194
UnsupCasMVSNet_eth85.52 32083.99 32290.10 33289.36 36883.51 35096.65 34797.99 20089.14 27075.89 37093.83 34263.25 36193.92 36081.92 33767.90 37592.88 340
FMVSNet188.50 30686.64 31294.08 27195.62 28691.97 25298.43 30396.95 30483.00 34886.08 32494.72 32659.09 37096.11 33181.82 33884.07 30094.17 281
test0.0.03 193.86 20093.61 19394.64 24795.02 29492.18 25099.93 7398.58 8394.07 13487.96 29798.50 19893.90 8694.96 35181.33 33993.17 23096.78 237
v7n89.65 29788.29 30293.72 28692.22 34390.56 28799.07 24897.10 28785.42 33286.73 31294.72 32680.06 26797.13 28381.14 34078.12 34293.49 327
pmmvs-eth3d84.03 33181.97 33590.20 33184.15 37887.09 33198.10 32094.73 36883.05 34774.10 37487.77 37565.56 35494.01 35981.08 34169.24 36989.49 372
v124090.20 28688.79 29594.44 26093.05 33192.27 24899.38 21396.92 31085.89 32389.36 26994.87 32577.89 28797.03 29480.66 34281.08 32294.01 300
our_test_390.39 27989.48 28493.12 30292.40 34189.57 30699.33 21996.35 33987.84 29985.30 32894.99 32184.14 23396.09 33480.38 34384.56 29593.71 324
test_vis3_rt68.82 34966.69 35475.21 36676.24 39060.41 38796.44 35068.71 40175.13 37550.54 39269.52 39016.42 40096.32 32480.27 34466.92 37768.89 388
TinyColmap87.87 31286.51 31391.94 31795.05 29385.57 33997.65 32994.08 37384.40 34081.82 34496.85 25462.14 36498.33 22180.25 34586.37 28291.91 354
Patchmtry89.70 29688.49 29993.33 29796.24 25989.94 30391.37 38096.23 34078.22 36687.69 29993.31 34891.04 15296.03 33680.18 34682.10 31194.02 298
KD-MVS_2432*160088.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
miper_refine_blended88.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
CR-MVSNet93.45 21692.62 22095.94 20796.29 25692.66 23992.01 37796.23 34092.62 18796.94 15393.31 34891.04 15296.03 33679.23 34795.96 19499.13 188
EG-PatchMatch MVS85.35 32383.81 32689.99 33490.39 36281.89 35998.21 31696.09 34481.78 35574.73 37293.72 34451.56 38097.12 28579.16 35088.61 25590.96 360
test_method80.79 33979.70 34384.08 35592.83 33567.06 38199.51 19595.42 35654.34 38781.07 34993.53 34544.48 38392.22 37478.90 35177.23 35092.94 339
DSMNet-mixed88.28 30888.24 30388.42 34689.64 36775.38 37598.06 32189.86 38985.59 32988.20 29592.14 35876.15 30491.95 37578.46 35296.05 19297.92 223
UnsupCasMVSNet_bld79.97 34477.03 34988.78 34285.62 37681.98 35893.66 37197.35 26175.51 37470.79 37783.05 38348.70 38194.91 35278.31 35360.29 38689.46 373
EPNet_dtu95.71 15395.39 14996.66 18898.92 12293.41 22299.57 18598.90 4796.19 7197.52 14198.56 19592.65 11897.36 26577.89 35498.33 14299.20 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testgi89.01 30488.04 30591.90 31893.49 31984.89 34499.73 15695.66 35293.89 14885.14 32998.17 21059.68 36994.66 35577.73 35588.88 24996.16 246
Patchmatch-test92.65 23591.50 24596.10 20596.85 24390.49 28891.50 37997.19 27682.76 35190.23 24895.59 29195.02 5498.00 24277.41 35696.98 17899.82 90
YYNet185.50 32283.33 32892.00 31690.89 35988.38 32299.22 23396.55 33279.60 36457.26 38792.72 35179.09 27893.78 36377.25 35777.37 34993.84 315
MDA-MVSNet_test_wron85.51 32183.32 32992.10 31590.96 35888.58 31899.20 23496.52 33379.70 36357.12 38892.69 35279.11 27693.86 36277.10 35877.46 34893.86 314
tfpnnormal89.29 30287.61 30894.34 26594.35 30494.13 20298.95 26398.94 4183.94 34184.47 33295.51 29674.84 31597.39 26477.05 35980.41 32891.48 357
TransMVSNet (Re)87.25 31385.28 32093.16 30193.56 31791.03 27498.54 29894.05 37583.69 34581.09 34896.16 27475.32 30996.40 32076.69 36068.41 37292.06 351
FMVSNet588.32 30787.47 30990.88 32496.90 24188.39 32197.28 33495.68 35182.60 35284.67 33192.40 35679.83 26991.16 37776.39 36181.51 31693.09 336
ppachtmachnet_test89.58 29888.35 30193.25 30092.40 34190.44 29099.33 21996.73 32485.49 33085.90 32695.77 28381.09 25596.00 33876.00 36282.49 30893.30 332
MVS-HIRNet86.22 31783.19 33095.31 22596.71 25290.29 29292.12 37697.33 26462.85 38386.82 31170.37 38869.37 33897.49 26275.12 36397.99 15698.15 219
MDA-MVSNet-bldmvs84.09 33081.52 33791.81 31991.32 35688.00 32698.67 29295.92 34780.22 36155.60 38993.32 34768.29 34493.60 36573.76 36476.61 35593.82 317
KD-MVS_self_test83.59 33482.06 33488.20 34786.93 37380.70 36797.21 33596.38 33782.87 34982.49 34088.97 36967.63 34692.32 37373.75 36562.30 38491.58 356
Anonymous2024052185.15 32483.81 32689.16 33988.32 37082.69 35298.80 28195.74 34979.72 36281.53 34690.99 36165.38 35594.16 35872.69 36681.11 32190.63 363
APD_test181.15 33880.92 33981.86 35992.45 34059.76 38896.04 35993.61 37973.29 37977.06 36496.64 26144.28 38496.16 33072.35 36782.52 30789.67 370
new_pmnet84.49 32982.92 33289.21 33890.03 36582.60 35396.89 34595.62 35380.59 35975.77 37189.17 36865.04 35794.79 35472.12 36881.02 32390.23 365
new-patchmatchnet81.19 33779.34 34486.76 35182.86 38180.36 37097.92 32495.27 36182.09 35472.02 37586.87 37762.81 36390.74 37971.10 36963.08 38289.19 375
pmmvs380.27 34177.77 34687.76 34980.32 38682.43 35598.23 31491.97 38472.74 38078.75 35787.97 37457.30 37390.99 37870.31 37062.37 38389.87 368
TAPA-MVS92.12 894.42 18893.60 19596.90 18099.33 9791.78 26099.78 13798.00 19989.89 26494.52 19899.47 11291.97 13899.18 16669.90 37199.52 9899.73 103
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CL-MVSNet_self_test84.50 32883.15 33188.53 34586.00 37581.79 36098.82 27897.35 26185.12 33383.62 33790.91 36376.66 29691.40 37669.53 37260.36 38592.40 348
LCM-MVSNet67.77 35364.73 35676.87 36462.95 39756.25 39189.37 38593.74 37844.53 39061.99 38280.74 38420.42 39786.53 38769.37 37359.50 38787.84 376
OpenMVS_ROBcopyleft79.82 2083.77 33381.68 33690.03 33388.30 37182.82 35198.46 30195.22 36273.92 37876.00 36991.29 36055.00 37496.94 29868.40 37488.51 25990.34 364
N_pmnet80.06 34280.78 34077.89 36291.94 34745.28 40098.80 28156.82 40278.10 36780.08 35393.33 34677.03 29095.76 34168.14 37582.81 30592.64 343
Anonymous2023120686.32 31685.42 31989.02 34089.11 36980.53 36999.05 25395.28 36085.43 33182.82 33993.92 34174.40 31893.44 36666.99 37681.83 31493.08 337
dmvs_testset83.79 33286.07 31676.94 36392.14 34448.60 39896.75 34690.27 38889.48 26778.65 35898.55 19779.25 27386.65 38666.85 37782.69 30695.57 248
test20.0384.72 32783.99 32286.91 35088.19 37280.62 36898.88 27095.94 34688.36 29278.87 35694.62 33168.75 34089.11 38166.52 37875.82 35691.00 359
PatchT90.38 28088.75 29695.25 22795.99 26590.16 29591.22 38197.54 24276.80 36897.26 14786.01 38091.88 13996.07 33566.16 37995.91 19899.51 147
test_040285.58 31983.94 32490.50 32893.81 31385.04 34298.55 29695.20 36376.01 37079.72 35595.13 31464.15 35996.26 32766.04 38086.88 27990.21 366
MIMVSNet182.58 33580.51 34188.78 34286.68 37484.20 34796.65 34795.41 35778.75 36578.59 35992.44 35351.88 37989.76 38065.26 38178.95 33692.38 349
Syy-MVS90.00 29190.63 25788.11 34897.68 20174.66 37699.71 16198.35 15790.79 24792.10 22998.67 18379.10 27793.09 36863.35 38295.95 19696.59 240
RPMNet89.76 29587.28 31097.19 17396.29 25692.66 23992.01 37798.31 16670.19 38296.94 15385.87 38187.25 20199.78 12362.69 38395.96 19499.13 188
FPMVS68.72 35068.72 35168.71 37365.95 39544.27 40295.97 36194.74 36751.13 38853.26 39090.50 36525.11 39383.00 38960.80 38480.97 32578.87 386
PMMVS267.15 35464.15 35776.14 36570.56 39462.07 38693.89 36987.52 39358.09 38460.02 38378.32 38522.38 39484.54 38859.56 38547.03 39081.80 383
EGC-MVSNET69.38 34863.76 35886.26 35290.32 36381.66 36296.24 35593.85 3770.99 3993.22 40092.33 35752.44 37792.92 37059.53 38684.90 29284.21 380
testf168.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
APD_test268.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
testmvs40.60 36244.45 36529.05 38019.49 40314.11 40699.68 16618.47 40320.74 39664.59 38198.48 20210.95 40117.09 40056.66 38911.01 39655.94 393
Gipumacopyleft66.95 35565.00 35572.79 36891.52 35367.96 38066.16 39195.15 36547.89 38958.54 38667.99 39129.74 38887.54 38550.20 39077.83 34462.87 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 36339.14 36633.31 37919.94 40224.83 40598.36 3089.75 40415.53 39751.31 39187.14 37619.62 39817.74 39947.10 3913.47 39857.36 392
ANet_high56.10 35752.24 36067.66 37449.27 39956.82 39083.94 38782.02 39770.47 38133.28 39764.54 39217.23 39969.16 39545.59 39223.85 39477.02 387
PMVScopyleft49.05 2353.75 35851.34 36260.97 37640.80 40134.68 40374.82 39089.62 39137.55 39228.67 39872.12 3877.09 40281.63 39243.17 39368.21 37366.59 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive53.74 2251.54 36047.86 36462.60 37559.56 39850.93 39479.41 38977.69 39835.69 39436.27 39661.76 3955.79 40469.63 39437.97 39436.61 39167.24 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.28 34677.28 34873.29 36781.18 38354.68 39297.87 32694.19 37281.30 35669.43 37990.70 36477.02 29182.06 39035.71 39568.11 37483.13 381
SSC-MVS75.42 34776.40 35072.49 37180.68 38553.62 39397.42 33194.06 37480.42 36068.75 38090.14 36676.54 29881.66 39133.25 39666.34 37882.19 382
E-PMN52.30 35952.18 36152.67 37771.51 39245.40 39993.62 37276.60 39936.01 39343.50 39464.13 39327.11 39267.31 39631.06 39726.06 39245.30 395
EMVS51.44 36151.22 36352.11 37870.71 39344.97 40194.04 36875.66 40035.34 39542.40 39561.56 39628.93 38965.87 39727.64 39824.73 39345.49 394
wuyk23d20.37 36520.84 36818.99 38165.34 39627.73 40450.43 3927.67 4059.50 3988.01 3996.34 3996.13 40326.24 39823.40 39910.69 3972.99 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.02 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.43 36431.24 3670.00 3820.00 4040.00 4070.00 39398.09 1920.00 4000.00 40199.67 9283.37 2380.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.60 36710.13 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40191.20 1470.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.28 36611.04 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.40 1190.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
FOURS199.92 3197.66 8199.95 5098.36 15595.58 8399.52 57
test_one_060199.94 1399.30 1298.41 14096.63 5499.75 2799.93 1197.49 10
eth-test20.00 404
eth-test0.00 404
test_241102_ONE99.93 2499.30 1298.43 12597.26 3499.80 1599.88 2196.71 24100.00 1
save fliter99.82 5898.79 3899.96 3298.40 14497.66 19
test072699.93 2499.29 1599.96 3298.42 13697.28 3099.86 599.94 497.22 19
GSMVS99.59 128
test_part299.89 4599.25 1899.49 60
sam_mvs194.72 6199.59 128
sam_mvs94.25 75
MTGPAbinary98.28 171
test_post63.35 39494.43 6598.13 235
patchmatchnet-post91.70 35995.12 4997.95 246
MTMP99.87 9896.49 334
TEST999.92 3198.92 2899.96 3298.43 12593.90 14699.71 3299.86 2695.88 3799.85 106
test_899.92 3198.88 3199.96 3298.43 12594.35 12099.69 3499.85 3095.94 3499.85 106
agg_prior99.93 2498.77 4098.43 12599.63 4199.85 106
test_prior498.05 6699.94 66
test_prior99.43 3599.94 1398.49 5898.65 7299.80 11999.99 23
新几何299.40 208
旧先验199.76 6697.52 8598.64 7499.85 3095.63 4199.94 5499.99 23
原ACMM299.90 85
test22299.55 8597.41 9499.34 21898.55 9391.86 21599.27 7899.83 4393.84 8899.95 4999.99 23
segment_acmp96.68 26
testdata199.28 22896.35 67
test1299.43 3599.74 6998.56 5598.40 14499.65 3894.76 6099.75 13099.98 3299.99 23
plane_prior795.71 28091.59 269
plane_prior695.76 27491.72 26480.47 265
plane_prior498.59 191
plane_prior391.64 26796.63 5493.01 215
plane_prior299.84 11896.38 63
plane_prior195.73 277
plane_prior91.74 26199.86 11196.76 5089.59 241
n20.00 406
nn0.00 406
door-mid89.69 390
test1198.44 117
door90.31 387
HQP5-MVS91.85 257
HQP-NCC95.78 27099.87 9896.82 4693.37 211
ACMP_Plane95.78 27099.87 9896.82 4693.37 211
HQP4-MVS93.37 21198.39 21294.53 250
HQP3-MVS97.89 21289.60 239
HQP2-MVS80.65 261
NP-MVS95.77 27391.79 25998.65 186
ACMMP++_ref87.04 277
ACMMP++88.23 264
Test By Simon92.82 115