This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11697.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13297.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15697.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 116100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 10897.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10594.56 10199.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
DVP-MVS++.99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11696.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27099.63 9381.76 34799.96 2598.56 7799.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 12999.97 1897.92 20498.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15499.99 24
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 13997.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 23997.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17393.53 14699.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
9.1498.38 3999.87 5799.91 7498.33 15493.22 15499.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14693.81 13799.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15396.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14396.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5090.78 23399.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6095.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9797.00 2898.52 10999.71 8987.80 19799.95 6499.75 2699.38 11799.83 100
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5598.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 16992.18 19499.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14393.19 15599.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6398.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28699.42 2097.03 2799.02 8699.09 14399.35 198.21 22199.73 3199.78 9299.77 108
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11694.63 9999.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
test9_res99.71 3399.99 22100.00 1
ZD-MVS99.92 3698.57 5598.52 9092.34 19099.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11694.35 11199.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8395.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6798.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4597.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 12897.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior299.48 40100.00 1100.00 1
PAPM98.60 3498.42 3299.14 6696.05 25598.96 2499.90 7899.35 2396.68 3898.35 11899.66 10096.45 2898.51 18999.45 4199.89 7899.96 74
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 10896.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 14894.08 12299.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 17997.34 1699.85 699.85 3591.20 15599.89 8399.41 4499.67 9998.69 207
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19097.05 2699.86 499.86 3190.65 16699.71 13399.39 4598.63 13498.69 207
test117298.38 5498.25 4898.77 9399.88 5496.56 13399.80 12498.36 14894.68 9699.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7797.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15194.92 8699.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
MVS_111021_LR98.42 4998.38 3998.53 11499.39 10895.79 16199.87 9299.86 296.70 3798.78 9699.79 6492.03 14399.90 7999.17 5099.86 8399.88 96
PVSNet_BlendedMVS96.05 14295.82 14096.72 18399.59 9596.99 11999.95 4399.10 2894.06 12598.27 12195.80 26489.00 18899.95 6499.12 5187.53 25693.24 319
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2895.38 7698.27 12199.08 14489.00 18899.95 6499.12 5199.25 12099.57 142
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9096.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
xiu_mvs_v1_base_debu97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base_debi97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9096.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13099.97 1898.39 13994.43 10698.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10398.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS97.92 7497.80 7298.25 12998.14 17096.48 13499.98 1097.63 22295.61 7199.29 7499.46 11692.55 13298.82 16999.02 6098.54 13599.46 158
VDD-MVS93.77 19692.94 20296.27 19898.55 14790.22 28798.77 26997.79 21590.85 23196.82 15399.42 11861.18 35199.77 11998.95 6194.13 21198.82 202
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13199.82 11798.30 16193.95 13199.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
VNet97.21 10396.57 11399.13 7198.97 12497.82 8599.03 24399.21 2794.31 11499.18 8198.88 16686.26 21399.89 8398.93 6394.32 20999.69 117
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19292.06 22199.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6141.37 37194.34 7999.96 5798.92 6499.95 5599.99 24
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 17893.35 15096.45 16299.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 13999.90 7898.17 17992.61 17798.62 10699.57 10791.87 14699.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 13994.70 9498.26 12399.81 5991.84 147100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS97.74 8397.61 7798.15 13497.52 20896.69 127100.00 197.11 27994.93 8599.73 2999.41 12091.68 14998.25 21998.84 7199.24 12199.52 151
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9095.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9095.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 6995.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
PVSNet_088.03 1991.80 24090.27 25296.38 19698.27 16190.46 28399.94 6099.61 1193.99 12886.26 30797.39 21871.13 32099.89 8398.77 7767.05 35398.79 204
DROMVSNet97.38 9797.24 9197.80 14497.41 21195.64 16999.99 597.06 28494.59 10099.63 4099.32 12789.20 18698.14 22398.76 7899.23 12299.62 129
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1897.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 6994.77 9199.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7194.77 9199.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8394.87 8999.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14694.68 9699.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14395.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7397.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 10894.40 11098.41 11499.47 11493.65 10399.42 15598.57 8894.26 21099.67 120
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15493.97 12999.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13299.40 19898.51 9795.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
canonicalmvs97.09 10796.32 11999.39 4698.93 12898.95 2599.72 15097.35 25794.45 10497.88 13299.42 11886.71 20899.52 14698.48 9193.97 21499.72 114
API-MVS97.86 7597.66 7498.47 11799.52 10195.41 17499.47 19198.87 4491.68 20998.84 9399.85 3592.34 13799.99 4098.44 9299.96 52100.00 1
lupinMVS97.85 7697.60 7898.62 10397.28 22197.70 8999.99 597.55 23395.50 7599.43 5999.67 9890.92 16298.71 17998.40 9399.62 10299.45 160
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14299.36 20798.50 10195.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
diffmvs97.00 10896.64 11098.09 13697.64 20096.17 15099.81 11997.19 26994.67 9898.95 9099.28 12886.43 21198.76 17598.37 9497.42 16099.33 174
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16299.96 2598.35 15189.90 24698.36 11799.79 6491.18 15899.99 4098.37 9499.99 2299.99 24
CS-MVS-test97.44 9097.41 8497.53 15697.46 21094.66 196100.00 197.04 28894.69 9599.72 3399.25 13591.22 15398.29 21198.33 9798.95 12799.64 126
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 10894.31 11498.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 10892.06 19998.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
GG-mvs-BLEND98.54 11298.21 16598.01 7793.87 34598.52 9097.92 13097.92 20899.02 297.94 23798.17 10099.58 10799.67 120
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 13994.04 12798.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
CSCG97.10 10597.04 9997.27 16999.89 5091.92 25399.90 7899.07 3188.67 26695.26 18599.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
MAR-MVS97.43 9197.19 9398.15 13499.47 10594.79 19399.05 24198.76 5192.65 17598.66 10499.82 5588.52 19499.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11695.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
CLD-MVS94.06 19093.90 18094.55 24496.02 25690.69 27699.98 1097.72 21796.62 4191.05 22698.85 17377.21 28298.47 19098.11 10489.51 23194.48 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDDNet93.12 20991.91 22496.76 18196.67 24892.65 23898.69 27598.21 17382.81 33097.75 13599.28 12861.57 34999.48 15398.09 10694.09 21298.15 212
HY-MVS92.50 797.79 8197.17 9599.63 1598.98 12399.32 897.49 31499.52 1395.69 6998.32 11997.41 21693.32 11099.77 11998.08 10795.75 19499.81 102
EIA-MVS97.53 8997.46 8297.76 14998.04 17494.84 19099.98 1097.61 22794.41 10997.90 13199.59 10592.40 13598.87 16798.04 10899.13 12599.59 135
LFMVS94.75 17193.56 18998.30 12799.03 11995.70 16798.74 27097.98 19787.81 27998.47 11299.39 12367.43 33399.53 14598.01 10995.20 20399.67 120
AdaColmapbinary97.23 10296.80 10698.51 11599.99 195.60 17099.09 23098.84 4793.32 15196.74 15599.72 8786.04 214100.00 198.01 10999.43 11699.94 84
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12599.90 7899.51 1597.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15199.18 22599.45 1794.84 9096.41 16599.71 8991.40 15199.99 4097.99 11198.03 15099.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1395.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 19799.78 107
jason97.24 10196.86 10398.38 12595.73 26797.32 10899.97 1897.40 25495.34 7898.60 10899.54 11087.70 19898.56 18697.94 11499.47 11399.25 181
jason: jason.
BP-MVS97.92 115
HQP-MVS94.61 17694.50 16794.92 23095.78 26191.85 25499.87 9297.89 20696.82 3193.37 20598.65 17980.65 26098.39 20197.92 11589.60 22694.53 235
h-mvs3394.92 16694.36 16996.59 18898.85 13791.29 26998.93 25398.94 3695.90 5998.77 9798.42 19590.89 16499.77 11997.80 11770.76 34398.72 206
hse-mvs294.38 18394.08 17695.31 21898.27 16190.02 29199.29 21798.56 7795.90 5998.77 9798.00 20490.89 16498.26 21897.80 11769.20 34997.64 221
131496.84 11495.96 13399.48 3696.74 24598.52 5998.31 29398.86 4595.82 6189.91 23998.98 15487.49 20099.96 5797.80 11799.73 9599.96 74
HQP_MVS94.49 18194.36 16994.87 23195.71 27091.74 25899.84 11097.87 20896.38 4793.01 20998.59 18380.47 26498.37 20697.79 12089.55 22994.52 237
plane_prior597.87 20898.37 20697.79 12089.55 22994.52 237
gg-mvs-nofinetune93.51 20291.86 22698.47 11797.72 19797.96 8192.62 34998.51 9774.70 35397.33 14269.59 36398.91 397.79 24097.77 12299.56 10899.67 120
casdiffmvs96.42 13295.97 13197.77 14897.30 21994.98 18699.84 11097.09 28193.75 14196.58 15899.26 13485.07 22498.78 17297.77 12297.04 16999.54 148
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1693.90 13499.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
DeepC-MVS94.51 496.92 11296.40 11898.45 11999.16 11595.90 15899.66 15898.06 19196.37 5094.37 19499.49 11383.29 23799.90 7997.63 12599.61 10599.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13699.88 8998.16 18291.75 20898.94 9199.54 11091.82 14899.65 14297.62 12699.99 2299.99 24
baseline96.43 13195.98 12897.76 14997.34 21595.17 18399.51 18497.17 27293.92 13396.90 15199.28 12885.37 22198.64 18397.50 12796.86 17499.46 158
abl_697.67 8697.34 8898.66 10099.68 9196.11 15499.68 15598.14 18593.80 13899.27 7599.70 9188.65 19399.98 4697.46 12899.72 9699.89 94
PLCcopyleft95.54 397.93 7397.89 7098.05 13899.82 7094.77 19499.92 7098.46 10593.93 13297.20 14499.27 13195.44 4799.97 5597.41 12999.51 11299.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS96.60 12695.56 14599.72 1296.85 23899.22 1998.31 29398.94 3691.57 21290.90 22799.61 10486.66 20999.96 5797.36 13099.88 8099.99 24
XVG-OURS-SEG-HR94.79 16894.70 16595.08 22498.05 17389.19 30099.08 23297.54 23593.66 14394.87 18899.58 10678.78 27599.79 11397.31 13193.40 21896.25 229
3Dnovator91.47 1296.28 13995.34 15099.08 7496.82 24097.47 10299.45 19498.81 4895.52 7489.39 25399.00 15181.97 24399.95 6497.27 13299.83 8599.84 99
cascas94.64 17593.61 18497.74 15197.82 18796.26 14399.96 2597.78 21685.76 30594.00 19997.54 21376.95 28599.21 15897.23 13395.43 19997.76 220
LCM-MVSNet-Re92.31 22892.60 20891.43 30897.53 20479.27 35699.02 24491.83 36392.07 19780.31 33694.38 32083.50 23595.48 32797.22 13497.58 15699.54 148
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12399.87 9298.14 18593.78 13996.55 16099.69 9492.28 13899.98 4697.13 13599.44 11599.93 85
Effi-MVS+96.30 13795.69 14298.16 13197.85 18596.26 14397.41 31597.21 26890.37 23898.65 10598.58 18586.61 21098.70 18097.11 13697.37 16299.52 151
PVSNet_Blended_VisFu97.27 10096.81 10598.66 10098.81 13996.67 12899.92 7098.64 6394.51 10396.38 16698.49 18989.05 18799.88 8997.10 13798.34 13999.43 163
3Dnovator+91.53 1196.31 13695.24 15299.52 2996.88 23798.64 5399.72 15098.24 16995.27 8088.42 27698.98 15482.76 23999.94 7297.10 13799.83 8599.96 74
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15199.82 11798.43 11694.56 10197.52 13899.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
CHOSEN 1792x268896.81 11596.53 11497.64 15398.91 13293.07 22599.65 16199.80 395.64 7095.39 18298.86 17084.35 23099.90 7996.98 14099.16 12499.95 82
旧先验299.46 19394.21 11899.85 699.95 6496.96 141
PMMVS96.76 11896.76 10796.76 18198.28 15992.10 24899.91 7497.98 19794.12 12099.53 5099.39 12386.93 20798.73 17796.95 14297.73 15299.45 160
EPP-MVSNet96.69 12396.60 11196.96 17597.74 19393.05 22799.37 20598.56 7788.75 26495.83 17699.01 14996.01 3198.56 18696.92 14397.20 16699.25 181
ET-MVSNet_ETH3D94.37 18493.28 19997.64 15398.30 15697.99 7899.99 597.61 22794.35 11171.57 35599.45 11796.23 3095.34 33096.91 14485.14 27299.59 135
HyFIR lowres test96.66 12596.43 11797.36 16699.05 11893.91 21099.70 15299.80 390.54 23596.26 16898.08 20192.15 14198.23 22096.84 14595.46 19899.93 85
OMC-MVS97.28 9997.23 9297.41 16299.76 7993.36 22399.65 16197.95 20096.03 5897.41 14199.70 9189.61 17799.51 14796.73 14698.25 14499.38 167
CostFormer96.10 14195.88 13896.78 18097.03 22892.55 24097.08 32297.83 21390.04 24598.72 10194.89 30695.01 5998.29 21196.54 14795.77 19299.50 155
sss97.57 8897.03 10099.18 5798.37 15498.04 7699.73 14799.38 2193.46 14898.76 9999.06 14591.21 15499.89 8396.33 14897.01 17099.62 129
114514_t97.41 9596.83 10499.14 6699.51 10397.83 8499.89 8698.27 16688.48 27099.06 8499.66 10090.30 17099.64 14396.32 14999.97 4899.96 74
ACMP92.05 992.74 21892.42 21593.73 27495.91 26088.72 30599.81 11997.53 23794.13 11987.00 29498.23 19874.07 30898.47 19096.22 15088.86 23893.99 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS92.85 694.99 16593.94 17998.16 13197.72 19795.69 16899.99 598.81 4894.28 11692.70 21596.90 23395.08 5399.17 16096.07 15173.88 34199.60 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 16794.74 16495.06 22598.00 17589.19 30099.08 23297.55 23394.10 12194.71 18999.62 10380.51 26299.74 12996.04 15293.06 22296.25 229
ab-mvs94.69 17293.42 19398.51 11598.07 17296.26 14396.49 32998.68 5690.31 24094.54 19097.00 23176.30 29299.71 13395.98 15393.38 21999.56 143
mvs_anonymous95.65 15395.03 15897.53 15698.19 16695.74 16499.33 20997.49 24390.87 23090.47 23297.10 22588.23 19597.16 26795.92 15497.66 15599.68 118
nrg03093.51 20292.53 21296.45 19194.36 29197.20 11199.81 11997.16 27491.60 21189.86 24197.46 21486.37 21297.68 24395.88 15580.31 31094.46 240
LPG-MVS_test92.96 21392.71 20693.71 27695.43 27688.67 30699.75 13997.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
LGP-MVS_train93.71 27695.43 27688.67 30697.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
VPA-MVSNet92.70 21991.55 23196.16 20095.09 28096.20 14898.88 25899.00 3391.02 22891.82 21995.29 29376.05 29697.96 23495.62 15881.19 29894.30 255
F-COLMAP96.93 11196.95 10296.87 17899.71 8991.74 25899.85 10697.95 20093.11 15895.72 17899.16 14192.35 13699.94 7295.32 15999.35 11898.92 196
BH-w/o95.71 15195.38 14996.68 18498.49 15192.28 24499.84 11097.50 24292.12 19692.06 21898.79 17484.69 22698.67 18295.29 16099.66 10099.09 192
原ACMM198.96 8599.73 8696.99 11998.51 9794.06 12599.62 4399.85 3594.97 6299.96 5795.11 16199.95 5599.92 91
Anonymous20240521193.10 21091.99 22296.40 19499.10 11789.65 29798.88 25897.93 20283.71 32594.00 19998.75 17568.79 32599.88 8995.08 16291.71 22499.68 118
testdata98.42 12299.47 10595.33 17698.56 7793.78 13999.79 2399.85 3593.64 10499.94 7294.97 16399.94 61100.00 1
gm-plane-assit96.97 23193.76 21391.47 21698.96 15898.79 17194.92 164
PVSNet91.05 1397.13 10496.69 10998.45 11999.52 10195.81 16099.95 4399.65 1094.73 9399.04 8599.21 13984.48 22899.95 6494.92 16498.74 13299.58 141
tpmrst96.27 14095.98 12897.13 17197.96 17793.15 22496.34 33198.17 17992.07 19798.71 10295.12 29793.91 9698.73 17794.91 16696.62 17599.50 155
VPNet91.81 23790.46 24695.85 20894.74 28695.54 17198.98 24798.59 7292.14 19590.77 22997.44 21568.73 32797.54 24894.89 16777.89 32494.46 240
baseline296.71 12296.49 11597.37 16595.63 27495.96 15799.74 14298.88 4392.94 16091.61 22098.97 15697.72 598.62 18494.83 16898.08 14997.53 224
Effi-MVS+-dtu94.53 18095.30 15192.22 30097.77 19082.54 34099.59 17197.06 28494.92 8695.29 18495.37 28785.81 21597.89 23894.80 16997.07 16896.23 231
mvs-test195.53 15495.97 13194.20 25897.77 19085.44 32999.95 4397.06 28494.92 8696.58 15898.72 17685.81 21598.98 16494.80 16998.11 14598.18 211
MVSTER95.53 15495.22 15396.45 19198.56 14697.72 8699.91 7497.67 22092.38 18991.39 22297.14 22397.24 1797.30 25994.80 16987.85 25194.34 254
thisisatest051597.41 9597.02 10198.59 10797.71 19997.52 9699.97 1898.54 8791.83 20497.45 14099.04 14697.50 899.10 16194.75 17296.37 18199.16 186
mvs_tets91.81 23791.08 23894.00 26791.63 33590.58 28098.67 27797.43 24892.43 18887.37 29197.05 22971.76 31597.32 25894.75 17288.68 24194.11 277
RRT_test8_iter0594.58 17794.11 17495.98 20497.88 18196.11 15499.89 8697.45 24591.66 21088.28 27796.71 24196.53 2797.40 25294.73 17483.85 28494.45 245
Anonymous2024052992.10 23390.65 24496.47 18998.82 13890.61 27998.72 27298.67 5975.54 35193.90 20198.58 18566.23 33699.90 7994.70 17590.67 22598.90 199
MVSFormer96.94 11096.60 11197.95 14097.28 22197.70 8999.55 17897.27 26591.17 22299.43 5999.54 11090.92 16296.89 28694.67 17699.62 10299.25 181
test_djsdf92.83 21692.29 21794.47 24991.90 33192.46 24199.55 17897.27 26591.17 22289.96 23796.07 26181.10 25396.89 28694.67 17688.91 23594.05 281
UGNet95.33 15894.57 16697.62 15598.55 14794.85 18998.67 27799.32 2495.75 6896.80 15496.27 25572.18 31499.96 5794.58 17899.05 12698.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax91.92 23591.18 23794.15 25991.35 33790.95 27399.00 24597.42 25092.61 17787.38 29097.08 22672.46 31397.36 25494.53 17988.77 23994.13 276
bset_n11_16_dypcd93.05 21292.30 21695.31 21890.23 34695.05 18599.44 19697.28 26492.51 18590.65 23096.68 24285.30 22296.71 29694.49 18084.14 27994.16 270
MVS_Test96.46 13095.74 14198.61 10498.18 16797.23 11099.31 21297.15 27591.07 22698.84 9397.05 22988.17 19698.97 16594.39 18197.50 15799.61 132
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 32892.19 24699.12 22897.38 25592.51 18588.45 27196.99 23291.20 15597.29 26294.36 18287.71 25394.36 250
无先验99.49 18898.71 5393.46 148100.00 194.36 18299.99 24
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29398.62 6792.78 16799.53 5099.83 5195.08 53100.00 194.36 18299.92 7199.99 24
MDTV_nov1_ep13_2view96.26 14396.11 33491.89 20298.06 12794.40 7494.30 18599.67 120
thres20096.96 10996.21 12199.22 5398.97 12498.84 3499.85 10699.71 593.17 15696.26 16898.88 16689.87 17599.51 14794.26 18694.91 20499.31 176
BH-untuned95.18 16094.83 16196.22 19998.36 15591.22 27099.80 12497.32 26190.91 22991.08 22598.67 17883.51 23498.54 18894.23 18799.61 10598.92 196
FIs94.10 18993.43 19296.11 20194.70 28796.82 12499.58 17298.93 4092.54 18389.34 25597.31 21987.62 19997.10 27394.22 18886.58 26194.40 247
DWT-MVSNet_test97.31 9897.19 9397.66 15298.24 16394.67 19598.86 26298.20 17793.60 14598.09 12698.89 16497.51 798.78 17294.04 18997.28 16399.55 144
tpm295.47 15695.18 15596.35 19796.91 23391.70 26296.96 32597.93 20288.04 27698.44 11395.40 28393.32 11097.97 23294.00 19095.61 19699.38 167
OpenMVScopyleft90.15 1594.77 17093.59 18798.33 12696.07 25497.48 10199.56 17698.57 7590.46 23686.51 30098.95 16078.57 27799.94 7293.86 19199.74 9497.57 223
thres100view90096.74 12095.92 13699.18 5798.90 13398.77 4099.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.84 19294.57 20599.27 179
tfpn200view996.79 11695.99 12699.19 5698.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.27 179
thres40096.78 11795.99 12699.16 6298.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.16 186
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 10897.96 799.55 4899.94 497.18 20100.00 193.81 19599.94 6199.98 55
CDS-MVSNet96.34 13496.07 12397.13 17197.37 21394.96 18799.53 18197.91 20591.55 21395.37 18398.32 19795.05 5697.13 27093.80 19695.75 19499.30 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline195.78 14894.86 16098.54 11298.47 15298.07 7499.06 23797.99 19592.68 17394.13 19898.62 18293.28 11398.69 18193.79 19785.76 26598.84 201
OPM-MVS93.21 20792.80 20494.44 25193.12 31390.85 27599.77 13197.61 22796.19 5491.56 22198.65 17975.16 30298.47 19093.78 19889.39 23293.99 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAMVS95.85 14695.58 14496.65 18697.07 22593.50 21899.17 22697.82 21491.39 22195.02 18798.01 20392.20 13997.30 25993.75 19995.83 19199.14 189
thisisatest053097.10 10596.72 10898.22 13097.60 20296.70 12699.92 7098.54 8791.11 22597.07 14898.97 15697.47 1199.03 16293.73 20096.09 18498.92 196
IS-MVSNet96.29 13895.90 13797.45 16098.13 17194.80 19299.08 23297.61 22792.02 20095.54 18198.96 15890.64 16798.08 22693.73 20097.41 16199.47 157
RRT_MVS95.23 15994.77 16396.61 18798.28 15998.32 6799.81 11997.41 25292.59 17991.28 22497.76 21095.02 5797.23 26593.65 20287.14 25894.28 257
ACMM91.95 1092.88 21592.52 21393.98 26995.75 26689.08 30399.77 13197.52 23993.00 15989.95 23897.99 20676.17 29498.46 19393.63 20388.87 23794.39 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.32 13595.98 12897.35 16797.93 17994.82 19199.47 19198.15 18491.83 20495.09 18699.11 14291.37 15297.47 25193.47 20497.43 15899.74 111
thres600view796.69 12395.87 13999.14 6698.90 13398.78 3999.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.44 20594.50 20899.16 186
Vis-MVSNetpermissive95.72 14995.15 15697.45 16097.62 20194.28 20299.28 21898.24 16994.27 11796.84 15298.94 16179.39 27098.76 17593.25 20698.49 13699.30 177
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-test93.81 19493.15 20195.80 20994.30 29396.20 14899.42 19798.89 4292.33 19189.03 26497.27 22187.39 20296.83 29093.20 20786.48 26294.36 250
UniMVSNet_NR-MVSNet92.95 21492.11 21995.49 21194.61 28995.28 17899.83 11699.08 3091.49 21489.21 25996.86 23687.14 20496.73 29493.20 20777.52 32794.46 240
DU-MVS92.46 22591.45 23495.49 21194.05 29695.28 17899.81 11998.74 5292.25 19389.21 25996.64 24581.66 24796.73 29493.20 20777.52 32794.46 240
WR-MVS92.31 22891.25 23695.48 21494.45 29095.29 17799.60 17098.68 5690.10 24288.07 28096.89 23480.68 25996.80 29293.14 21079.67 31494.36 250
UniMVSNet (Re)93.07 21192.13 21895.88 20694.84 28496.24 14799.88 8998.98 3492.49 18789.25 25795.40 28387.09 20597.14 26993.13 21178.16 32294.26 258
QAPM95.40 15794.17 17399.10 7296.92 23297.71 8799.40 19898.68 5689.31 25188.94 26598.89 16482.48 24099.96 5793.12 21299.83 8599.62 129
tttt051796.85 11396.49 11597.92 14297.48 20995.89 15999.85 10698.54 8790.72 23496.63 15798.93 16397.47 1199.02 16393.03 21395.76 19398.85 200
TR-MVS94.54 17893.56 18997.49 15997.96 17794.34 20198.71 27397.51 24190.30 24194.51 19298.69 17775.56 29798.77 17492.82 21495.99 18699.35 172
CANet_DTU96.76 11896.15 12298.60 10598.78 14197.53 9599.84 11097.63 22297.25 2399.20 7799.64 10281.36 25199.98 4692.77 21598.89 12898.28 210
AUN-MVS93.28 20692.60 20895.34 21698.29 15790.09 29099.31 21298.56 7791.80 20796.35 16798.00 20489.38 18098.28 21492.46 21669.22 34897.64 221
anonymousdsp91.79 24290.92 24094.41 25490.76 34292.93 22998.93 25397.17 27289.08 25387.46 28995.30 29078.43 28096.92 28592.38 21788.73 24093.39 315
XVG-ACMP-BASELINE91.22 25090.75 24192.63 29793.73 30285.61 32698.52 28597.44 24792.77 16889.90 24096.85 23766.64 33598.39 20192.29 21888.61 24293.89 295
miper_enhance_ethall94.36 18693.98 17895.49 21198.68 14595.24 18099.73 14797.29 26393.28 15389.86 24195.97 26294.37 7897.05 27692.20 21984.45 27694.19 264
RPSCF91.80 24092.79 20588.83 32798.15 16969.87 36098.11 30396.60 32083.93 32394.33 19599.27 13179.60 26999.46 15491.99 22093.16 22197.18 225
cl2293.77 19693.25 20095.33 21799.49 10494.43 19999.61 16998.09 18890.38 23789.16 26295.61 27190.56 16897.34 25691.93 22184.45 27694.21 263
1112_ss96.01 14495.20 15498.42 12297.80 18896.41 13799.65 16196.66 31892.71 17092.88 21399.40 12192.16 14099.30 15691.92 22293.66 21599.55 144
Test_1112_low_res95.72 14994.83 16198.42 12297.79 18996.41 13799.65 16196.65 31992.70 17192.86 21496.13 25992.15 14199.30 15691.88 22393.64 21699.55 144
tmp_tt65.23 33062.94 33372.13 34544.90 37450.03 37081.05 36189.42 36938.45 36548.51 36799.90 1954.09 35878.70 36691.84 22418.26 36887.64 358
XXY-MVS91.82 23690.46 24695.88 20693.91 29995.40 17598.87 26197.69 21988.63 26887.87 28297.08 22674.38 30797.89 23891.66 22584.07 28194.35 253
D2MVS92.76 21792.59 21193.27 28695.13 27989.54 29999.69 15399.38 2192.26 19287.59 28594.61 31485.05 22597.79 24091.59 22688.01 25092.47 331
UniMVSNet_ETH3D90.06 27788.58 28394.49 24894.67 28888.09 31597.81 31197.57 23283.91 32488.44 27297.41 21657.44 35597.62 24691.41 22788.59 24497.77 219
NR-MVSNet91.56 24590.22 25395.60 21094.05 29695.76 16398.25 29698.70 5491.16 22480.78 33596.64 24583.23 23896.57 30191.41 22777.73 32694.46 240
新几何199.42 4199.75 8198.27 6998.63 6692.69 17299.55 4899.82 5594.40 74100.00 191.21 22999.94 6199.99 24
UA-Net96.54 12795.96 13398.27 12898.23 16495.71 16698.00 30798.45 10793.72 14298.41 11499.27 13188.71 19299.66 14191.19 23097.69 15399.44 162
EPMVS96.53 12896.01 12598.09 13698.43 15396.12 15396.36 33099.43 1993.53 14697.64 13695.04 29994.41 7398.38 20591.13 23198.11 14599.75 110
EI-MVSNet93.73 19893.40 19694.74 23596.80 24192.69 23599.06 23797.67 22088.96 25991.39 22299.02 14788.75 19197.30 25991.07 23287.85 25194.22 261
test_part192.15 23290.72 24296.44 19398.87 13697.46 10398.99 24698.26 16785.89 30286.34 30596.34 25381.71 24597.48 25091.06 23378.99 31694.37 249
test_post195.78 33959.23 37093.20 11797.74 24291.06 233
SCA94.69 17293.81 18397.33 16897.10 22494.44 19898.86 26298.32 15693.30 15296.17 17095.59 27376.48 29097.95 23591.06 23397.43 15899.59 135
Baseline_NR-MVSNet90.33 26989.51 26792.81 29592.84 31989.95 29399.77 13193.94 35984.69 32089.04 26395.66 27081.66 24796.52 30290.99 23676.98 33391.97 337
IterMVS-LS92.69 22092.11 21994.43 25396.80 24192.74 23299.45 19496.89 30488.98 25789.65 24895.38 28688.77 19096.34 30990.98 23782.04 29294.22 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D95.84 14795.11 15798.02 13999.85 6095.10 18498.74 27098.50 10187.22 28693.66 20399.86 3187.45 20199.95 6490.94 23899.81 9199.02 194
CVMVSNet94.68 17494.94 15993.89 27296.80 24186.92 32199.06 23798.98 3494.45 10494.23 19799.02 14785.60 21795.31 33190.91 23995.39 20099.43 163
BH-RMVSNet95.18 16094.31 17197.80 14498.17 16895.23 18199.76 13697.53 23792.52 18494.27 19699.25 13576.84 28698.80 17090.89 24099.54 10999.35 172
Anonymous2023121189.86 27988.44 28594.13 26198.93 12890.68 27798.54 28398.26 16776.28 34786.73 29695.54 27570.60 32197.56 24790.82 24180.27 31194.15 272
miper_ehance_all_eth93.16 20892.60 20894.82 23497.57 20393.56 21699.50 18697.07 28388.75 26488.85 26695.52 27790.97 16196.74 29390.77 24284.45 27694.17 265
tpm93.70 20093.41 19594.58 24295.36 27887.41 31997.01 32396.90 30390.85 23196.72 15694.14 32290.40 16996.84 28990.75 24388.54 24599.51 153
TESTMET0.1,196.74 12096.26 12098.16 13197.36 21496.48 13499.96 2598.29 16291.93 20195.77 17798.07 20295.54 4398.29 21190.55 24498.89 12899.70 115
testdata299.99 4090.54 245
c3_l92.53 22391.87 22594.52 24597.40 21292.99 22899.40 19896.93 30187.86 27788.69 26995.44 28189.95 17496.44 30590.45 24680.69 30794.14 275
test-LLR96.47 12996.04 12497.78 14697.02 22995.44 17299.96 2598.21 17394.07 12395.55 17996.38 25093.90 9798.27 21690.42 24798.83 13099.64 126
test-mter96.39 13395.93 13597.78 14697.02 22995.44 17299.96 2598.21 17391.81 20695.55 17996.38 25095.17 5098.27 21690.42 24798.83 13099.64 126
PCF-MVS94.20 595.18 16094.10 17598.43 12198.55 14795.99 15697.91 30997.31 26290.35 23989.48 25299.22 13885.19 22399.89 8390.40 24998.47 13799.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CP-MVSNet91.23 24990.22 25394.26 25693.96 29892.39 24399.09 23098.57 7588.95 26086.42 30396.57 24779.19 27296.37 30790.29 25078.95 31794.02 282
TranMVSNet+NR-MVSNet91.68 24490.61 24594.87 23193.69 30393.98 20899.69 15398.65 6091.03 22788.44 27296.83 24080.05 26796.18 31590.26 25176.89 33594.45 245
PatchMatch-RL96.04 14395.40 14797.95 14099.59 9595.22 18299.52 18299.07 3193.96 13096.49 16198.35 19682.28 24199.82 10990.15 25299.22 12398.81 203
MDTV_nov1_ep1395.69 14297.90 18094.15 20395.98 33698.44 10893.12 15797.98 12995.74 26695.10 5298.58 18590.02 25396.92 172
eth_miper_zixun_eth92.41 22691.93 22393.84 27397.28 22190.68 27798.83 26496.97 29688.57 26989.19 26195.73 26889.24 18596.69 29789.97 25481.55 29594.15 272
Fast-Effi-MVS+95.02 16494.19 17297.52 15897.88 18194.55 19799.97 1897.08 28288.85 26394.47 19397.96 20784.59 22798.41 19789.84 25597.10 16799.59 135
Fast-Effi-MVS+-dtu93.72 19993.86 18293.29 28597.06 22686.16 32399.80 12496.83 30892.66 17492.58 21697.83 20981.39 25097.67 24489.75 25696.87 17396.05 233
ACMH89.72 1790.64 26189.63 26293.66 28095.64 27388.64 30898.55 28197.45 24589.03 25581.62 33097.61 21269.75 32398.41 19789.37 25787.62 25593.92 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs492.10 23391.07 23995.18 22292.82 32194.96 18799.48 19096.83 30887.45 28288.66 27096.56 24883.78 23396.83 29089.29 25884.77 27493.75 304
PatchmatchNetpermissive95.94 14595.45 14697.39 16497.83 18694.41 20096.05 33598.40 13692.86 16197.09 14795.28 29494.21 8998.07 22889.26 25998.11 14599.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+89.98 1690.35 26889.54 26592.78 29695.99 25786.12 32498.81 26697.18 27189.38 25083.14 32397.76 21068.42 32998.43 19589.11 26086.05 26493.78 303
DP-MVS94.54 17893.42 19397.91 14399.46 10794.04 20598.93 25397.48 24481.15 33690.04 23699.55 10887.02 20699.95 6488.97 26198.11 14599.73 112
PS-CasMVS90.63 26289.51 26793.99 26893.83 30091.70 26298.98 24798.52 9088.48 27086.15 30896.53 24975.46 29896.31 31088.83 26278.86 31993.95 290
cl____92.31 22891.58 22994.52 24597.33 21792.77 23099.57 17496.78 31386.97 29187.56 28695.51 27889.43 17996.62 29988.60 26382.44 28994.16 270
DIV-MVS_self_test92.32 22791.60 22894.47 24997.31 21892.74 23299.58 17296.75 31486.99 29087.64 28495.54 27589.55 17896.50 30388.58 26482.44 28994.17 265
pmmvs590.17 27589.09 27493.40 28392.10 32989.77 29699.74 14295.58 34185.88 30487.24 29395.74 26673.41 31196.48 30488.54 26583.56 28593.95 290
LF4IMVS89.25 28988.85 27890.45 31792.81 32281.19 34998.12 30294.79 35291.44 21786.29 30697.11 22465.30 34198.11 22588.53 26685.25 27092.07 334
JIA-IIPM91.76 24390.70 24394.94 22996.11 25387.51 31893.16 34898.13 18775.79 35097.58 13777.68 36092.84 12497.97 23288.47 26796.54 17699.33 174
miper_lstm_enhance91.81 23791.39 23593.06 29297.34 21589.18 30299.38 20396.79 31286.70 29487.47 28895.22 29590.00 17395.86 32588.26 26881.37 29794.15 272
WR-MVS_H91.30 24690.35 24994.15 25994.17 29592.62 23999.17 22698.94 3688.87 26286.48 30294.46 31984.36 22996.61 30088.19 26978.51 32093.21 320
tpmvs94.28 18893.57 18896.40 19498.55 14791.50 26795.70 34098.55 8387.47 28192.15 21794.26 32191.42 15098.95 16688.15 27095.85 19098.76 205
OurMVSNet-221017-089.81 28089.48 26990.83 31391.64 33481.21 34898.17 30195.38 34591.48 21585.65 31297.31 21972.66 31297.29 26288.15 27084.83 27393.97 289
GeoE94.36 18693.48 19196.99 17497.29 22093.54 21799.96 2596.72 31688.35 27393.43 20498.94 16182.05 24298.05 22988.12 27296.48 17999.37 169
TDRefinement84.76 31082.56 31791.38 30974.58 36584.80 33397.36 31694.56 35584.73 31980.21 33796.12 26063.56 34598.39 20187.92 27363.97 35490.95 345
CMPMVSbinary61.59 2184.75 31185.14 30583.57 33890.32 34562.54 36496.98 32497.59 23174.33 35469.95 35796.66 24364.17 34398.32 20987.88 27488.41 24789.84 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test86.90 30085.98 30289.67 32284.45 35975.59 35789.71 35792.43 36186.89 29277.83 34490.94 34494.22 8693.63 34887.75 27569.61 34599.79 104
GA-MVS93.83 19292.84 20396.80 17995.73 26793.57 21599.88 8997.24 26792.57 18292.92 21196.66 24378.73 27697.67 24487.75 27594.06 21399.17 185
ADS-MVSNet293.80 19593.88 18193.55 28297.87 18385.94 32594.24 34196.84 30790.07 24396.43 16394.48 31790.29 17195.37 32987.44 27797.23 16499.36 170
ADS-MVSNet94.79 16894.02 17797.11 17397.87 18393.79 21194.24 34198.16 18290.07 24396.43 16394.48 31790.29 17198.19 22287.44 27797.23 16499.36 170
v14890.70 25989.63 26293.92 27092.97 31790.97 27299.75 13996.89 30487.51 28088.27 27895.01 30081.67 24697.04 27887.40 27977.17 33293.75 304
V4291.28 24890.12 25794.74 23593.42 30893.46 21999.68 15597.02 28987.36 28389.85 24395.05 29881.31 25297.34 25687.34 28080.07 31293.40 314
v2v48291.30 24690.07 25895.01 22693.13 31193.79 21199.77 13197.02 28988.05 27589.25 25795.37 28780.73 25897.15 26887.28 28180.04 31394.09 278
IterMVS90.91 25490.17 25593.12 28996.78 24490.42 28598.89 25697.05 28789.03 25586.49 30195.42 28276.59 28995.02 33387.22 28284.09 28093.93 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS90.19 27489.06 27593.57 28193.06 31590.90 27499.06 23798.47 10388.11 27485.91 31096.30 25476.67 28795.94 32487.07 28376.91 33493.89 295
IterMVS-SCA-FT90.85 25790.16 25692.93 29396.72 24689.96 29298.89 25696.99 29288.95 26086.63 29895.67 26976.48 29095.00 33487.04 28484.04 28393.84 299
tpm cat193.51 20292.52 21396.47 18997.77 19091.47 26896.13 33398.06 19180.98 33792.91 21293.78 32589.66 17698.87 16787.03 28596.39 18099.09 192
GBi-Net90.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
test190.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
FMVSNet392.69 22091.58 22995.99 20398.29 15797.42 10699.26 22097.62 22489.80 24889.68 24595.32 28981.62 24996.27 31287.01 28685.65 26694.29 256
dp95.05 16394.43 16896.91 17697.99 17692.73 23496.29 33297.98 19789.70 24995.93 17394.67 31293.83 10098.45 19486.91 28996.53 17799.54 148
MSDG94.37 18493.36 19797.40 16398.88 13593.95 20999.37 20597.38 25585.75 30790.80 22899.17 14084.11 23299.88 8986.35 29098.43 13898.36 209
EU-MVSNet90.14 27690.34 25089.54 32392.55 32481.06 35098.69 27598.04 19391.41 22086.59 29996.84 23980.83 25793.31 35186.20 29181.91 29394.26 258
pm-mvs189.36 28687.81 29394.01 26693.40 30991.93 25298.62 28096.48 32486.25 29983.86 32096.14 25873.68 31097.04 27886.16 29275.73 33993.04 323
COLMAP_ROBcopyleft90.47 1492.18 23191.49 23394.25 25799.00 12288.04 31698.42 29196.70 31782.30 33388.43 27499.01 14976.97 28499.85 9886.11 29396.50 17894.86 234
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ITE_SJBPF92.38 29895.69 27285.14 33095.71 33792.81 16489.33 25698.11 20070.23 32298.42 19685.91 29488.16 24993.59 311
K. test v388.05 29587.24 29790.47 31691.82 33382.23 34398.96 25097.42 25089.05 25476.93 34695.60 27268.49 32895.42 32885.87 29581.01 30493.75 304
AllTest92.48 22491.64 22795.00 22799.01 12088.43 31098.94 25296.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
TestCases95.00 22799.01 12088.43 31096.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
FMVSNet291.02 25289.56 26495.41 21597.53 20495.74 16498.98 24797.41 25287.05 28788.43 27495.00 30271.34 31796.24 31485.12 29885.21 27194.25 260
v114491.09 25189.83 25994.87 23193.25 31093.69 21499.62 16896.98 29486.83 29389.64 24994.99 30380.94 25597.05 27685.08 29981.16 29993.87 297
v890.54 26489.17 27294.66 23893.43 30793.40 22299.20 22396.94 30085.76 30587.56 28694.51 31581.96 24497.19 26684.94 30078.25 32193.38 316
ambc83.23 33977.17 36462.61 36387.38 35994.55 35676.72 34786.65 35430.16 36596.36 30884.85 30169.86 34490.73 346
MVS_030489.28 28888.31 28792.21 30197.05 22786.53 32297.76 31299.57 1285.58 31093.86 20292.71 33451.04 36196.30 31184.49 30292.72 22393.79 302
LTVRE_ROB88.28 1890.29 27189.05 27694.02 26595.08 28190.15 28997.19 31997.43 24884.91 31883.99 31997.06 22874.00 30998.28 21484.08 30387.71 25393.62 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo88.73 29188.01 29290.88 31191.85 33282.24 34298.22 29995.18 35088.97 25882.26 32696.89 23471.75 31696.67 29884.00 30482.98 28693.72 308
v14419290.79 25889.52 26694.59 24193.11 31492.77 23099.56 17696.99 29286.38 29789.82 24494.95 30580.50 26397.10 27383.98 30580.41 30893.90 294
USDC90.00 27888.96 27793.10 29194.81 28588.16 31498.71 27395.54 34293.66 14383.75 32197.20 22265.58 33898.31 21083.96 30687.49 25792.85 326
MVP-Stereo90.93 25390.45 24892.37 29991.25 33988.76 30498.05 30696.17 32987.27 28584.04 31895.30 29078.46 27997.27 26483.78 30799.70 9891.09 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch90.65 26090.30 25191.71 30794.22 29485.50 32898.24 29797.70 21888.67 26686.42 30396.37 25267.82 33198.03 23083.62 30899.62 10291.60 339
DTE-MVSNet89.40 28588.24 28992.88 29492.66 32389.95 29399.10 22998.22 17287.29 28485.12 31596.22 25676.27 29395.30 33283.56 30975.74 33893.41 313
pmmvs685.69 30383.84 30991.26 31090.00 34884.41 33497.82 31096.15 33075.86 34981.29 33295.39 28561.21 35096.87 28883.52 31073.29 34292.50 330
lessismore_v090.53 31490.58 34380.90 35195.80 33577.01 34595.84 26366.15 33796.95 28383.03 31175.05 34093.74 307
v1090.25 27288.82 27994.57 24393.53 30593.43 22099.08 23296.87 30685.00 31587.34 29294.51 31580.93 25697.02 28282.85 31279.23 31593.26 318
DeepMVS_CXcopyleft82.92 34095.98 25958.66 36696.01 33292.72 16978.34 34395.51 27858.29 35498.08 22682.57 31385.29 26992.03 336
PM-MVS80.47 32278.88 32685.26 33683.79 36172.22 35995.89 33891.08 36485.71 30876.56 34888.30 34936.64 36493.90 34582.39 31469.57 34689.66 353
v119290.62 26389.25 27194.72 23793.13 31193.07 22599.50 18697.02 28986.33 29889.56 25195.01 30079.22 27197.09 27582.34 31581.16 29994.01 284
v192192090.46 26589.12 27394.50 24792.96 31892.46 24199.49 18896.98 29486.10 30089.61 25095.30 29078.55 27897.03 28082.17 31680.89 30694.01 284
MIMVSNet90.30 27088.67 28295.17 22396.45 24991.64 26492.39 35097.15 27585.99 30190.50 23193.19 33266.95 33494.86 33782.01 31793.43 21799.01 195
UnsupCasMVSNet_eth85.52 30583.99 30690.10 31989.36 35083.51 33696.65 32797.99 19589.14 25275.89 35093.83 32463.25 34693.92 34481.92 31867.90 35292.88 325
FMVSNet188.50 29286.64 29894.08 26295.62 27591.97 24998.43 28896.95 29783.00 32886.08 30994.72 30859.09 35396.11 31681.82 31984.07 28194.17 265
test0.0.03 193.86 19193.61 18494.64 23995.02 28392.18 24799.93 6698.58 7394.07 12387.96 28198.50 18893.90 9794.96 33581.33 32093.17 22096.78 226
v7n89.65 28388.29 28893.72 27592.22 32790.56 28199.07 23697.10 28085.42 31386.73 29694.72 30880.06 26697.13 27081.14 32178.12 32393.49 312
pmmvs-eth3d84.03 31681.97 31990.20 31884.15 36087.09 32098.10 30494.73 35483.05 32774.10 35387.77 35165.56 33994.01 34381.08 32269.24 34789.49 354
v124090.20 27388.79 28094.44 25193.05 31692.27 24599.38 20396.92 30285.89 30289.36 25494.87 30777.89 28197.03 28080.66 32381.08 30294.01 284
our_test_390.39 26689.48 26993.12 28992.40 32589.57 29899.33 20996.35 32687.84 27885.30 31394.99 30384.14 23196.09 31980.38 32484.56 27593.71 309
TinyColmap87.87 29886.51 29991.94 30495.05 28285.57 32797.65 31394.08 35784.40 32181.82 32996.85 23762.14 34898.33 20880.25 32586.37 26391.91 338
Patchmtry89.70 28288.49 28493.33 28496.24 25289.94 29591.37 35596.23 32778.22 34487.69 28393.31 33091.04 15996.03 32180.18 32682.10 29194.02 282
KD-MVS_2432*160088.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
miper_refine_blended88.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
CR-MVSNet93.45 20592.62 20795.94 20596.29 25092.66 23692.01 35296.23 32792.62 17696.94 14993.31 33091.04 15996.03 32179.23 32795.96 18799.13 190
EG-PatchMatch MVS85.35 30883.81 31089.99 32190.39 34481.89 34598.21 30096.09 33181.78 33574.73 35293.72 32651.56 36097.12 27279.16 33088.61 24290.96 344
test_method80.79 32179.70 32484.08 33792.83 32067.06 36299.51 18495.42 34354.34 36181.07 33493.53 32744.48 36392.22 35378.90 33177.23 33192.94 324
DSMNet-mixed88.28 29488.24 28988.42 33189.64 34975.38 35898.06 30589.86 36685.59 30988.20 27992.14 34076.15 29591.95 35478.46 33296.05 18597.92 215
UnsupCasMVSNet_bld79.97 32577.03 32888.78 32885.62 35881.98 34493.66 34697.35 25775.51 35270.79 35683.05 35748.70 36294.91 33678.31 33360.29 35989.46 355
EPNet_dtu95.71 15195.39 14896.66 18598.92 13093.41 22199.57 17498.90 4196.19 5497.52 13898.56 18792.65 12997.36 25477.89 33498.33 14099.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testgi89.01 29088.04 29191.90 30593.49 30684.89 33299.73 14795.66 33993.89 13685.14 31498.17 19959.68 35294.66 33977.73 33588.88 23696.16 232
Patchmatch-test92.65 22291.50 23296.10 20296.85 23890.49 28291.50 35497.19 26982.76 33190.23 23395.59 27395.02 5798.00 23177.41 33696.98 17199.82 101
YYNet185.50 30783.33 31292.00 30390.89 34188.38 31399.22 22296.55 32179.60 34257.26 36292.72 33379.09 27493.78 34777.25 33777.37 33093.84 299
MDA-MVSNet_test_wron85.51 30683.32 31392.10 30290.96 34088.58 30999.20 22396.52 32279.70 34157.12 36392.69 33579.11 27393.86 34677.10 33877.46 32993.86 298
tfpnnormal89.29 28787.61 29494.34 25594.35 29294.13 20498.95 25198.94 3683.94 32284.47 31795.51 27874.84 30397.39 25377.05 33980.41 30891.48 341
TransMVSNet (Re)87.25 29985.28 30493.16 28893.56 30491.03 27198.54 28394.05 35883.69 32681.09 33396.16 25775.32 29996.40 30676.69 34068.41 35092.06 335
FMVSNet588.32 29387.47 29590.88 31196.90 23688.39 31297.28 31795.68 33882.60 33284.67 31692.40 33979.83 26891.16 35676.39 34181.51 29693.09 321
ppachtmachnet_test89.58 28488.35 28693.25 28792.40 32590.44 28499.33 20996.73 31585.49 31185.90 31195.77 26581.09 25496.00 32376.00 34282.49 28893.30 317
MVS-HIRNet86.22 30283.19 31495.31 21896.71 24790.29 28692.12 35197.33 26062.85 35986.82 29570.37 36269.37 32497.49 24975.12 34397.99 15198.15 212
MDA-MVSNet-bldmvs84.09 31581.52 32191.81 30691.32 33888.00 31798.67 27795.92 33480.22 33955.60 36493.32 32968.29 33093.60 34973.76 34476.61 33693.82 301
KD-MVS_self_test83.59 31882.06 31888.20 33286.93 35580.70 35297.21 31896.38 32582.87 32982.49 32588.97 34867.63 33292.32 35273.75 34562.30 35791.58 340
Anonymous2024052185.15 30983.81 31089.16 32588.32 35282.69 33898.80 26795.74 33679.72 34081.53 33190.99 34365.38 34094.16 34272.69 34681.11 30190.63 347
new_pmnet84.49 31482.92 31689.21 32490.03 34782.60 33996.89 32695.62 34080.59 33875.77 35189.17 34765.04 34294.79 33872.12 34781.02 30390.23 349
new-patchmatchnet81.19 32079.34 32586.76 33582.86 36280.36 35597.92 30895.27 34782.09 33472.02 35486.87 35362.81 34790.74 35871.10 34863.08 35589.19 356
pmmvs380.27 32377.77 32787.76 33380.32 36382.43 34198.23 29891.97 36272.74 35678.75 34187.97 35057.30 35690.99 35770.31 34962.37 35689.87 351
TAPA-MVS92.12 894.42 18293.60 18696.90 17799.33 11191.78 25799.78 12898.00 19489.89 24794.52 19199.47 11491.97 14499.18 15969.90 35099.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CL-MVSNet_self_test84.50 31383.15 31588.53 33086.00 35781.79 34698.82 26597.35 25785.12 31483.62 32290.91 34576.66 28891.40 35569.53 35160.36 35892.40 332
LCM-MVSNet67.77 32764.73 33176.87 34262.95 37156.25 36889.37 35893.74 36044.53 36461.99 35980.74 35820.42 37186.53 36269.37 35259.50 36087.84 357
OpenMVS_ROBcopyleft79.82 2083.77 31781.68 32090.03 32088.30 35382.82 33798.46 28695.22 34873.92 35576.00 34991.29 34255.00 35796.94 28468.40 35388.51 24690.34 348
N_pmnet80.06 32480.78 32277.89 34191.94 33045.28 37298.80 26756.82 37578.10 34580.08 33893.33 32877.03 28395.76 32668.14 35482.81 28792.64 327
Anonymous2023120686.32 30185.42 30389.02 32689.11 35180.53 35499.05 24195.28 34685.43 31282.82 32493.92 32374.40 30693.44 35066.99 35581.83 29493.08 322
test20.0384.72 31283.99 30686.91 33488.19 35480.62 35398.88 25895.94 33388.36 27278.87 34094.62 31368.75 32689.11 36066.52 35675.82 33791.00 343
PatchT90.38 26788.75 28195.25 22195.99 25790.16 28891.22 35697.54 23576.80 34697.26 14386.01 35591.88 14596.07 32066.16 35795.91 18999.51 153
test_040285.58 30483.94 30890.50 31593.81 30185.04 33198.55 28195.20 34976.01 34879.72 33995.13 29664.15 34496.26 31366.04 35886.88 26090.21 350
MIMVSNet182.58 31980.51 32388.78 32886.68 35684.20 33596.65 32795.41 34478.75 34378.59 34292.44 33651.88 35989.76 35965.26 35978.95 31792.38 333
RPMNet89.76 28187.28 29697.19 17096.29 25092.66 23692.01 35298.31 15870.19 35896.94 14985.87 35687.25 20399.78 11562.69 36095.96 18799.13 190
FPMVS68.72 32668.72 32968.71 34665.95 36944.27 37495.97 33794.74 35351.13 36253.26 36590.50 34625.11 36983.00 36460.80 36180.97 30578.87 360
PMMVS267.15 32864.15 33276.14 34370.56 36862.07 36593.89 34487.52 37058.09 36060.02 36078.32 35922.38 37084.54 36359.56 36247.03 36381.80 359
testmvs40.60 33644.45 33929.05 35319.49 37714.11 37899.68 15518.47 37620.74 37064.59 35898.48 19210.95 37417.09 37356.66 36311.01 36955.94 366
Gipumacopyleft66.95 32965.00 33072.79 34491.52 33667.96 36166.16 36495.15 35147.89 36358.54 36167.99 36429.74 36687.54 36150.20 36477.83 32562.87 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 33739.14 34033.31 35219.94 37624.83 37798.36 2929.75 37715.53 37151.31 36687.14 35219.62 37217.74 37247.10 3653.47 37157.36 365
ANet_high56.10 33152.24 33467.66 34749.27 37356.82 36783.94 36082.02 37170.47 35733.28 37164.54 36517.23 37369.16 36845.59 36623.85 36777.02 361
PMVScopyleft49.05 2353.75 33251.34 33660.97 34940.80 37534.68 37574.82 36389.62 36837.55 36628.67 37272.12 3617.09 37581.63 36543.17 36768.21 35166.59 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive53.74 2251.54 33447.86 33862.60 34859.56 37250.93 36979.41 36277.69 37235.69 36836.27 37061.76 3685.79 37769.63 36737.97 36836.61 36467.24 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33352.18 33552.67 35071.51 36645.40 37193.62 34776.60 37336.01 36743.50 36864.13 36627.11 36867.31 36931.06 36926.06 36545.30 368
EMVS51.44 33551.22 33752.11 35170.71 36744.97 37394.04 34375.66 37435.34 36942.40 36961.56 36928.93 36765.87 37027.64 37024.73 36645.49 367
wuyk23d20.37 33920.84 34218.99 35465.34 37027.73 37650.43 3657.67 3789.50 3728.01 3736.34 3726.13 37626.24 37123.40 37110.69 3702.99 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.02 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.43 33831.24 3410.00 3550.00 3780.00 3790.00 36698.09 1880.00 3730.00 37499.67 9883.37 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.60 34110.13 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37491.20 1550.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.28 34011.04 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.40 1210.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.92 3697.66 9199.95 4398.36 14895.58 7299.52 53
test_one_060199.94 1499.30 1198.41 13296.63 3999.75 2799.93 1197.49 9
eth-test20.00 378
eth-test0.00 378
test_241102_ONE99.93 2799.30 1198.43 11697.26 2299.80 1699.88 2496.71 23100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13697.66 10
test072699.93 2799.29 1499.96 2598.42 12897.28 1899.86 499.94 497.22 18
GSMVS99.59 135
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 135
sam_mvs94.25 85
MTGPAbinary98.28 163
test_post63.35 36794.43 7298.13 224
patchmatchnet-post91.70 34195.12 5197.95 235
MTMP99.87 9296.49 323
TEST999.92 3698.92 2799.96 2598.43 11693.90 13499.71 3599.86 3195.88 3799.85 98
test_899.92 3698.88 3099.96 2598.43 11694.35 11199.69 3799.85 3595.94 3499.85 98
agg_prior99.93 2798.77 4098.43 11699.63 4099.85 98
test_prior498.05 7599.94 60
test_prior99.43 3899.94 1498.49 6198.65 6099.80 11099.99 24
新几何299.40 198
旧先验199.76 7997.52 9698.64 6399.85 3595.63 4299.94 6199.99 24
原ACMM299.90 78
test22299.55 9997.41 10799.34 20898.55 8391.86 20399.27 7599.83 5193.84 9999.95 5599.99 24
segment_acmp96.68 25
testdata199.28 21896.35 51
test1299.43 3899.74 8298.56 5798.40 13699.65 3894.76 6699.75 12599.98 3599.99 24
plane_prior795.71 27091.59 266
plane_prior695.76 26591.72 26180.47 264
plane_prior498.59 183
plane_prior391.64 26496.63 3993.01 209
plane_prior299.84 11096.38 47
plane_prior195.73 267
plane_prior91.74 25899.86 10396.76 3589.59 228
n20.00 379
nn0.00 379
door-mid89.69 367
test1198.44 108
door90.31 365
HQP5-MVS91.85 254
HQP-NCC95.78 26199.87 9296.82 3193.37 205
ACMP_Plane95.78 26199.87 9296.82 3193.37 205
HQP4-MVS93.37 20598.39 20194.53 235
HQP3-MVS97.89 20689.60 226
HQP2-MVS80.65 260
NP-MVS95.77 26491.79 25698.65 179
ACMMP++_ref87.04 259
ACMMP++88.23 248
Test By Simon92.82 126