This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
patch_mono-298.24 5699.12 595.59 22499.67 7786.91 34399.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12099.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
dcpmvs_297.42 9398.09 5495.42 22999.58 8587.24 33999.23 24296.95 31294.28 12998.93 9499.73 8094.39 7499.16 17499.89 1699.82 7799.86 89
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9198.21 18693.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 16999.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1598.80 6290.78 25899.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11898.38 15993.19 17099.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 9099.09 14799.35 198.21 24199.73 3299.78 8099.77 101
test9_res99.71 3399.99 21100.00 1
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3598.43 13194.35 12499.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18396.41 12799.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15799.06 11194.41 20199.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 220
test_fmvsm_n_192098.44 4198.61 2397.92 14199.27 10195.18 183100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 221
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28596.20 13999.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior299.48 43100.00 1100.00 1
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15198.63 14694.26 20699.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 197
PAPM98.60 3098.42 3199.14 5996.05 27498.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20899.45 4599.89 6799.96 64
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10698.36 16394.08 13799.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmvis_n_192097.67 8397.59 7897.91 14397.02 24395.34 17499.95 5398.45 11897.87 1597.02 16199.59 10689.64 18099.98 4399.41 4899.34 11698.42 224
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20198.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 218
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20398.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 218
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
test_fmvsmconf0.01_n96.39 14095.74 14898.32 11891.47 36495.56 16599.84 12697.30 27697.74 1897.89 14099.35 12979.62 27899.85 10899.25 5499.24 12099.55 141
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16397.38 22794.40 20399.90 9198.64 7696.47 6399.51 6299.65 10084.99 23299.93 8599.22 5599.09 12798.46 222
mvsany_test197.82 7297.90 6697.55 16498.77 13893.04 23999.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
PVSNet_BlendedMVS96.05 15295.82 14796.72 19699.59 8196.99 10999.95 5399.10 3194.06 14098.27 12795.80 29189.00 19299.95 6999.12 5887.53 28493.24 342
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 109100.00 199.10 3195.38 9298.27 12799.08 14889.00 19299.95 6999.12 5899.25 11999.57 139
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16195.65 29494.21 20899.83 13398.50 11296.27 7299.65 4199.64 10184.72 23399.93 8599.04 6398.84 13498.74 215
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12199.97 2898.39 15594.43 11998.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24198.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS97.92 6697.80 7098.25 12198.14 18196.48 12499.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18799.02 6698.54 14099.46 157
VDD-MVS93.77 21592.94 22396.27 21098.55 15290.22 30398.77 29297.79 23090.85 25496.82 16799.42 12061.18 37799.77 12898.95 6794.13 23198.82 210
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12299.82 13698.30 17793.95 14699.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12799.18 8598.88 17486.26 22099.89 9698.93 6994.32 22899.69 110
iter_conf05_1196.12 14995.46 15598.10 12998.62 14795.52 167100.00 196.30 34896.54 6099.81 1599.80 5169.19 34699.10 17698.92 7099.91 6699.68 111
bld_raw_dy_0_6494.22 20592.97 22297.98 13698.62 14795.09 18699.89 9993.09 38996.55 5992.59 23299.80 5168.57 35099.19 17198.92 7088.69 26499.68 111
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21192.06 24499.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6941.37 40794.34 7699.96 6198.92 7099.95 4999.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15998.18 19093.35 16496.45 17699.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13099.90 9198.17 19192.61 19498.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_vis1_n_192095.44 17095.31 16195.82 22098.50 15788.74 32299.98 1597.30 27697.84 1699.85 999.19 14266.82 35899.97 5398.82 7999.46 10798.76 213
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
PVSNet_088.03 1991.80 26290.27 27596.38 20898.27 17190.46 29899.94 6999.61 1493.99 14386.26 33197.39 24471.13 34099.89 9698.77 8267.05 38598.79 212
EC-MVSNet97.38 9697.24 8997.80 14697.41 22595.64 16299.99 597.06 30194.59 11499.63 4499.32 13089.20 19098.14 24498.76 8399.23 12199.62 126
CS-MVS-test97.88 6797.94 6397.70 15699.28 10095.20 18299.98 1597.15 29195.53 8999.62 4799.79 5792.08 14398.38 22498.75 8499.28 11899.52 149
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18599.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22298.28 17995.76 8297.18 15799.88 2192.74 124100.00 198.67 8899.88 6999.99 23
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
test_vis1_n93.61 22193.03 22195.35 23195.86 28086.94 34199.87 10696.36 34696.85 4699.54 5798.79 18452.41 38799.83 11898.64 9198.97 13099.29 180
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11299.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13199.24 13992.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 598.44 12394.40 12398.41 12099.47 11693.65 9899.42 16298.57 9494.26 23099.67 115
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10698.33 17093.97 14499.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12399.40 21898.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21298.87 5291.68 22898.84 9799.85 3092.34 13799.99 3698.44 9899.96 46100.00 1
lupinMVS97.85 6997.60 7698.62 9397.28 23697.70 8199.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19798.40 9999.62 9099.45 159
CS-MVS97.79 7697.91 6597.43 17199.10 10994.42 20099.99 597.10 29695.07 9899.68 3899.75 7192.95 11798.34 22898.38 10099.14 12499.54 145
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13399.36 22798.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10199.30 11799.81 94
diffmvspermissive97.00 11296.64 11498.09 13197.64 21496.17 14299.81 13897.19 28594.67 11398.95 9299.28 13186.43 21798.76 19298.37 10197.42 16999.33 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3598.35 16589.90 27298.36 12399.79 5791.18 15799.99 3698.37 10199.99 2199.99 23
test_fmvs195.35 17295.68 15294.36 27298.99 11784.98 35299.96 3596.65 33697.60 2299.73 3398.96 16371.58 33699.93 8598.31 10499.37 11498.17 228
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6998.44 12394.31 12798.50 11799.82 4693.06 11499.99 3698.30 10599.99 2199.93 76
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21183.70 35899.90 9196.57 33997.40 2899.67 3998.88 17461.82 37499.92 8898.23 10699.13 12598.14 231
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7998.44 12392.06 21798.40 12299.84 4195.68 40100.00 198.19 10799.71 8499.97 58
GG-mvs-BLEND98.54 10398.21 17598.01 6893.87 37998.52 10497.92 13897.92 23199.02 297.94 25898.17 10899.58 9799.67 115
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7698.39 15594.04 14298.80 10099.74 7892.98 116100.00 198.16 10999.76 8199.93 76
CSCG97.10 10697.04 9897.27 18199.89 4591.92 26599.90 9199.07 3488.67 29595.26 20199.82 4693.17 11299.98 4398.15 11099.47 10599.90 83
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19499.05 26298.76 6392.65 19298.66 11099.82 4688.52 19799.98 4398.12 11199.63 8999.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11299.83 7399.99 23
CLD-MVS94.06 20893.90 19794.55 26196.02 27590.69 29199.98 1597.72 23296.62 5891.05 25198.85 18277.21 29598.47 20998.11 11289.51 25494.48 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDDNet93.12 23291.91 24796.76 19496.67 26492.65 25098.69 29998.21 18682.81 35997.75 14499.28 13161.57 37599.48 15998.09 11494.09 23298.15 229
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8498.32 12597.41 24293.32 10599.77 12898.08 11595.75 20799.81 94
EIA-MVS97.53 8697.46 8097.76 15398.04 18694.84 19199.98 1597.61 24394.41 12297.90 13999.59 10692.40 13598.87 18498.04 11699.13 12599.59 132
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15898.74 29397.98 21187.81 30998.47 11899.39 12567.43 35699.53 15098.01 11795.20 21999.67 115
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16499.09 25198.84 5893.32 16696.74 16999.72 8386.04 221100.00 198.01 11799.43 11199.94 74
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11799.90 9199.51 1797.60 2299.20 8299.36 12893.71 9799.91 8997.99 11998.71 13899.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14399.18 24699.45 1994.84 10696.41 17999.71 8591.40 15199.99 3697.99 11998.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9999.52 1595.58 8798.24 13099.39 12593.33 10499.74 13497.98 12195.58 21099.78 100
jason97.24 10096.86 10598.38 11695.73 28897.32 9799.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20597.94 12299.47 10599.25 184
jason: jason.
BP-MVS97.92 123
HQP-MVS94.61 19194.50 18294.92 24695.78 28191.85 26699.87 10697.89 22196.82 4893.37 22198.65 19480.65 26998.39 22097.92 12389.60 24994.53 260
SDMVSNet94.80 18293.96 19597.33 17998.92 12595.42 17199.59 19198.99 3792.41 20692.55 23497.85 23275.81 31398.93 18397.90 12591.62 24597.64 239
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14597.44 22495.47 16899.86 11897.29 27893.35 16496.03 18699.19 14285.39 22798.72 19697.89 12697.04 17899.49 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1197.48 8897.27 8898.10 12998.36 16396.02 14699.92 7998.45 11893.45 16398.15 13398.70 18995.48 4599.22 16597.85 12795.05 22099.07 198
h-mvs3394.92 18094.36 18496.59 20098.85 13391.29 28198.93 27498.94 4195.90 7898.77 10298.42 21590.89 16599.77 12897.80 12870.76 37498.72 217
hse-mvs294.38 19894.08 19295.31 23498.27 17190.02 30899.29 23798.56 9295.90 7898.77 10298.00 22690.89 16598.26 23997.80 12869.20 38097.64 239
131496.84 11895.96 13899.48 3496.74 26198.52 5698.31 31898.86 5395.82 8089.91 26398.98 15987.49 20499.96 6197.80 12899.73 8399.96 64
HQP_MVS94.49 19594.36 18494.87 24795.71 29191.74 27099.84 12697.87 22396.38 6793.01 22598.59 19980.47 27398.37 22697.79 13189.55 25294.52 262
plane_prior597.87 22398.37 22697.79 13189.55 25294.52 262
gg-mvs-nofinetune93.51 22391.86 24998.47 10897.72 20897.96 7292.62 38398.51 10774.70 38597.33 15369.59 39898.91 397.79 26297.77 13399.56 9899.67 115
casdiffmvspermissive96.42 13995.97 13797.77 15197.30 23494.98 18799.84 12697.09 29893.75 15496.58 17399.26 13785.07 23098.78 19097.77 13397.04 17899.54 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10899.75 15699.50 1893.90 14999.37 7499.76 6593.24 110100.00 197.75 13599.96 4699.98 48
test_cas_vis1_n_192096.59 13296.23 12697.65 15898.22 17494.23 20799.99 597.25 28297.77 1799.58 5499.08 14877.10 29699.97 5397.64 13699.45 10898.74 215
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 14999.66 17998.06 20496.37 7094.37 21099.49 11583.29 24699.90 9197.63 13799.61 9499.55 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12699.88 10398.16 19591.75 22798.94 9399.54 11291.82 14999.65 14797.62 13899.99 2199.99 23
baseline96.43 13795.98 13497.76 15397.34 23095.17 18499.51 20597.17 28893.92 14896.90 16499.28 13185.37 22898.64 20297.50 13996.86 18499.46 157
PLCcopyleft95.54 397.93 6597.89 6798.05 13499.82 5894.77 19599.92 7998.46 11793.93 14797.20 15699.27 13495.44 4699.97 5397.41 14099.51 10399.41 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS96.60 13195.56 15499.72 1396.85 25499.22 2098.31 31898.94 4191.57 23090.90 25299.61 10586.66 21599.96 6197.36 14199.88 6999.99 23
XVG-OURS-SEG-HR94.79 18394.70 18095.08 24098.05 18589.19 31799.08 25397.54 25193.66 15694.87 20499.58 10878.78 28799.79 12397.31 14293.40 23896.25 252
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25697.47 9399.45 21598.81 6095.52 9089.39 27799.00 15681.97 25299.95 6997.27 14399.83 7399.84 90
iter_conf0596.07 15195.95 14096.44 20598.43 16097.52 8799.91 8496.85 32394.16 13392.49 23697.98 22998.20 497.34 27797.26 14488.29 27294.45 270
cascas94.64 19093.61 20297.74 15597.82 19896.26 13499.96 3597.78 23185.76 33494.00 21697.54 23976.95 30099.21 16697.23 14595.43 21397.76 238
LCM-MVSNet-Re92.31 25192.60 23291.43 33097.53 21979.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24495.48 35297.22 14697.58 16599.54 145
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11499.87 10698.14 19993.78 15296.55 17499.69 8992.28 13899.98 4397.13 14799.44 10999.93 76
Effi-MVS+96.30 14595.69 15098.16 12497.85 19696.26 13497.41 34197.21 28490.37 26498.65 11198.58 20286.61 21698.70 19897.11 14897.37 17199.52 149
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 11999.92 7998.64 7694.51 11696.38 18098.49 20889.05 19199.88 10297.10 14998.34 14499.43 162
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25398.64 5299.72 16798.24 18395.27 9688.42 30298.98 15982.76 24899.94 7797.10 14999.83 7399.96 64
testing9997.17 10396.91 10297.95 13898.35 16595.70 15899.91 8498.43 13192.94 17697.36 15298.72 18794.83 6199.21 16697.00 15194.64 22298.95 203
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14399.82 13698.43 13194.56 11597.52 14799.70 8794.40 7199.98 4397.00 15199.98 3299.99 23
testing9197.16 10496.90 10397.97 13798.35 16595.67 16199.91 8498.42 14392.91 17897.33 15398.72 18794.81 6299.21 16696.98 15394.63 22399.03 200
CHOSEN 1792x268896.81 11996.53 11997.64 15998.91 12993.07 23699.65 18199.80 395.64 8595.39 19898.86 17984.35 23999.90 9196.98 15399.16 12399.95 71
旧先验299.46 21494.21 13299.85 999.95 6996.96 155
PMMVS96.76 12396.76 10996.76 19498.28 17092.10 26099.91 8497.98 21194.12 13599.53 5899.39 12586.93 21398.73 19496.95 15697.73 16199.45 159
EPP-MVSNet96.69 12896.60 11696.96 18897.74 20393.05 23899.37 22598.56 9288.75 29395.83 19299.01 15496.01 3298.56 20596.92 15797.20 17499.25 184
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15998.30 16797.99 6999.99 597.61 24394.35 12471.57 38599.45 11996.23 3195.34 35596.91 15885.14 30099.59 132
HyFIR lowres test96.66 13096.43 12297.36 17799.05 11293.91 21799.70 17399.80 390.54 26196.26 18298.08 22392.15 14198.23 24096.84 15995.46 21199.93 76
OMC-MVS97.28 9897.23 9097.41 17299.76 6693.36 23499.65 18197.95 21496.03 7797.41 15199.70 8789.61 18199.51 15296.73 16098.25 15099.38 166
mvsmamba94.10 20693.72 20195.25 23693.57 32794.13 21099.67 17896.45 34493.63 15891.34 24797.77 23586.29 21997.22 28796.65 16188.10 27694.40 272
CostFormer96.10 15095.88 14596.78 19397.03 24292.55 25297.08 34997.83 22890.04 27198.72 10794.89 33395.01 5698.29 23396.54 16295.77 20599.50 153
sss97.57 8597.03 9999.18 5098.37 16298.04 6799.73 16499.38 2393.46 16198.76 10499.06 15091.21 15399.89 9696.33 16397.01 18099.62 126
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9998.27 18188.48 29999.06 8899.66 9890.30 17399.64 14896.32 16499.97 4299.96 64
test_vis1_rt86.87 32586.05 32789.34 34696.12 27178.07 38199.87 10683.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16593.11 24290.03 375
ACMP92.05 992.74 24192.42 23993.73 29395.91 27988.72 32399.81 13897.53 25394.13 13487.00 31998.23 21974.07 32798.47 20996.22 16688.86 26193.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20895.69 16099.99 598.81 6094.28 12992.70 23196.90 25995.08 5299.17 17396.07 16773.88 36999.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 18194.74 17995.06 24198.00 18789.19 31799.08 25397.55 24994.10 13694.71 20599.62 10480.51 27199.74 13496.04 16893.06 24396.25 252
ab-mvs94.69 18793.42 21198.51 10698.07 18496.26 13496.49 35898.68 7090.31 26694.54 20697.00 25776.30 30899.71 13895.98 16993.38 23999.56 140
mvs_anonymous95.65 16695.03 17197.53 16598.19 17795.74 15599.33 22997.49 25890.87 25390.47 25697.10 25188.23 19897.16 28995.92 17097.66 16499.68 111
nrg03093.51 22392.53 23696.45 20394.36 31497.20 10099.81 13897.16 29091.60 22989.86 26597.46 24086.37 21897.68 26695.88 17180.31 33994.46 265
testing22297.08 11096.75 11098.06 13398.56 14996.82 11599.85 12198.61 8292.53 20098.84 9798.84 18393.36 10298.30 23295.84 17294.30 22999.05 199
LPG-MVS_test92.96 23592.71 23093.71 29595.43 29888.67 32499.75 15697.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
LGP-MVS_train93.71 29595.43 29888.67 32497.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9998.57 8991.10 24898.17 13298.59 19993.86 9398.19 24295.64 17595.24 21899.28 181
VPA-MVSNet92.70 24291.55 25496.16 21295.09 30296.20 13998.88 27999.00 3691.02 25191.82 24295.29 32076.05 31297.96 25595.62 17681.19 32794.30 281
ECVR-MVScopyleft95.66 16595.05 17097.51 16798.66 14493.71 22198.85 28598.45 11894.93 10196.86 16598.96 16375.22 31999.20 16995.34 17798.15 15199.64 121
F-COLMAP96.93 11596.95 10196.87 19199.71 7591.74 27099.85 12197.95 21493.11 17395.72 19499.16 14592.35 13699.94 7795.32 17899.35 11598.92 204
BH-w/o95.71 16295.38 15996.68 19798.49 15892.28 25699.84 12697.50 25792.12 21492.06 24198.79 18484.69 23498.67 20195.29 17999.66 8799.09 195
原ACMM198.96 7599.73 7296.99 10998.51 10794.06 14099.62 4799.85 3094.97 5999.96 6195.11 18099.95 4999.92 81
RRT_MVS93.14 23192.92 22493.78 29293.31 33490.04 30799.66 17997.69 23492.53 20088.91 29197.76 23684.36 23796.93 30795.10 18186.99 28794.37 275
Anonymous20240521193.10 23391.99 24596.40 20699.10 10989.65 31498.88 27997.93 21683.71 35394.00 21698.75 18668.79 34799.88 10295.08 18291.71 24499.68 111
test111195.57 16794.98 17397.37 17598.56 14993.37 23398.86 28398.45 11894.95 10096.63 17198.95 16875.21 32099.11 17595.02 18398.14 15399.64 121
testdata98.42 11399.47 9295.33 17598.56 9293.78 15299.79 2699.85 3093.64 9999.94 7794.97 18499.94 54100.00 1
test250697.53 8697.19 9298.58 9898.66 14496.90 11398.81 28899.77 594.93 10197.95 13798.96 16392.51 13199.20 16994.93 18598.15 15199.64 121
gm-plane-assit96.97 24693.76 22091.47 23598.96 16398.79 18994.92 186
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15199.95 5399.65 1294.73 10999.04 8999.21 14184.48 23699.95 6994.92 18698.74 13799.58 138
tpmrst96.27 14895.98 13497.13 18397.96 18993.15 23596.34 36198.17 19192.07 21598.71 10895.12 32493.91 9098.73 19494.91 18896.62 18599.50 153
VPNet91.81 25990.46 26995.85 21994.74 30895.54 16698.98 26898.59 8692.14 21390.77 25497.44 24168.73 34997.54 27194.89 18977.89 35294.46 265
baseline296.71 12796.49 12097.37 17595.63 29695.96 14899.74 15998.88 5192.94 17691.61 24398.97 16197.72 698.62 20394.83 19098.08 15797.53 244
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20182.54 36399.59 19197.06 30194.92 10395.29 20095.37 31485.81 22297.89 25994.80 19197.07 17696.23 254
MVSTER95.53 16895.22 16496.45 20398.56 14997.72 7899.91 8497.67 23692.38 20891.39 24597.14 24997.24 1797.30 28194.80 19187.85 27994.34 280
thisisatest051597.41 9497.02 10098.59 9797.71 21097.52 8799.97 2898.54 10191.83 22397.45 15099.04 15197.50 899.10 17694.75 19396.37 19299.16 189
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33497.32 28094.75 19388.68 26594.11 301
Anonymous2024052992.10 25590.65 26696.47 20198.82 13490.61 29498.72 29598.67 7375.54 38293.90 21898.58 20266.23 36099.90 9194.70 19590.67 24798.90 207
MVSFormer96.94 11496.60 11697.95 13897.28 23697.70 8199.55 19997.27 28091.17 24499.43 6799.54 11290.92 16296.89 30994.67 19699.62 9099.25 184
test_djsdf92.83 23992.29 24094.47 26691.90 35892.46 25399.55 19997.27 28091.17 24489.96 26196.07 28881.10 26296.89 30994.67 19688.91 25894.05 305
UGNet95.33 17394.57 18197.62 16298.55 15294.85 19098.67 30199.32 2695.75 8396.80 16896.27 28072.18 33399.96 6194.58 19899.05 12998.04 232
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33297.36 27594.53 19988.77 26294.13 300
MVS_Test96.46 13695.74 14898.61 9498.18 17897.23 9999.31 23297.15 29191.07 24998.84 9797.05 25588.17 19998.97 18094.39 20097.50 16699.61 129
PS-MVSNAJss93.64 22093.31 21694.61 25692.11 35592.19 25899.12 24997.38 26892.51 20388.45 29796.99 25891.20 15497.29 28494.36 20187.71 28194.36 276
无先验99.49 20998.71 6693.46 161100.00 194.36 20199.99 23
MDTV_nov1_ep13_2view96.26 13496.11 36691.89 22198.06 13494.40 7194.30 20399.67 115
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12199.71 793.17 17196.26 18298.88 17489.87 17899.51 15294.26 20494.91 22199.31 176
BH-untuned95.18 17494.83 17696.22 21198.36 16391.22 28299.80 14297.32 27490.91 25291.08 24998.67 19183.51 24398.54 20794.23 20599.61 9498.92 204
FIs94.10 20693.43 21096.11 21394.70 30996.82 11599.58 19398.93 4592.54 19989.34 27997.31 24587.62 20397.10 29594.22 20686.58 28994.40 272
tpm295.47 16995.18 16696.35 20996.91 24991.70 27496.96 35297.93 21688.04 30698.44 11995.40 31093.32 10597.97 25394.00 20795.61 20999.38 166
sd_testset93.55 22292.83 22695.74 22298.92 12590.89 28998.24 32198.85 5692.41 20692.55 23497.85 23271.07 34198.68 20093.93 20891.62 24597.64 239
dmvs_re93.20 22993.15 21993.34 30496.54 26583.81 35798.71 29698.51 10791.39 24192.37 23798.56 20478.66 28997.83 26193.89 20989.74 24898.38 225
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27397.48 9299.56 19798.57 8990.46 26286.51 32598.95 16878.57 29099.94 7793.86 21099.74 8297.57 243
thres100view90096.74 12595.92 14399.18 5098.90 13098.77 4099.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.84 21194.57 22499.27 182
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.27 182
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.16 189
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21499.94 5499.98 48
CDS-MVSNet96.34 14296.07 12997.13 18397.37 22894.96 18899.53 20297.91 22091.55 23195.37 19998.32 21895.05 5497.13 29293.80 21595.75 20799.30 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline195.78 15994.86 17598.54 10398.47 15998.07 6599.06 25897.99 20992.68 19094.13 21598.62 19893.28 10898.69 19993.79 21685.76 29398.84 209
OPM-MVS93.21 22892.80 22794.44 26893.12 33890.85 29099.77 14897.61 24396.19 7591.56 24498.65 19475.16 32198.47 20993.78 21789.39 25593.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAMVS95.85 15795.58 15396.65 19997.07 24093.50 22899.17 24797.82 22991.39 24195.02 20398.01 22592.20 13997.30 28193.75 21895.83 20499.14 192
thisisatest053097.10 10696.72 11198.22 12297.60 21696.70 11899.92 7998.54 10191.11 24797.07 16098.97 16197.47 1199.03 17893.73 21996.09 19598.92 204
IS-MVSNet96.29 14695.90 14497.45 16998.13 18294.80 19399.08 25397.61 24392.02 21995.54 19798.96 16390.64 16898.08 24793.73 21997.41 17099.47 156
ACMM91.95 1092.88 23892.52 23793.98 28695.75 28789.08 32099.77 14897.52 25593.00 17489.95 26297.99 22876.17 31098.46 21293.63 22188.87 26094.39 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17897.93 19194.82 19299.47 21298.15 19891.83 22395.09 20299.11 14691.37 15297.47 27393.47 22297.43 16799.74 104
thres600view796.69 12895.87 14699.14 5998.90 13098.78 3999.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.44 22394.50 22799.16 189
Vis-MVSNetpermissive95.72 16095.15 16797.45 16997.62 21594.28 20599.28 23898.24 18394.27 13196.84 16698.94 17079.39 28098.76 19293.25 22498.49 14199.30 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-test93.81 21393.15 21995.80 22194.30 31696.20 13999.42 21798.89 4992.33 21089.03 28997.27 24787.39 20696.83 31393.20 22586.48 29094.36 276
UniMVSNet_NR-MVSNet92.95 23692.11 24295.49 22594.61 31195.28 17799.83 13399.08 3391.49 23289.21 28496.86 26287.14 20996.73 31793.20 22577.52 35594.46 265
DU-MVS92.46 24891.45 25795.49 22594.05 31995.28 17799.81 13898.74 6492.25 21289.21 28496.64 27081.66 25596.73 31793.20 22577.52 35594.46 265
WR-MVS92.31 25191.25 25995.48 22894.45 31395.29 17699.60 19098.68 7090.10 26888.07 30596.89 26080.68 26896.80 31593.14 22879.67 34394.36 276
UniMVSNet (Re)93.07 23492.13 24195.88 21794.84 30696.24 13899.88 10398.98 3892.49 20489.25 28195.40 31087.09 21097.14 29193.13 22978.16 35094.26 283
QAPM95.40 17194.17 19099.10 6496.92 24897.71 7999.40 21898.68 7089.31 27888.94 29098.89 17382.48 24999.96 6193.12 23099.83 7399.62 126
tttt051796.85 11796.49 12097.92 14197.48 22395.89 15099.85 12198.54 10190.72 25996.63 17198.93 17297.47 1199.02 17993.03 23195.76 20698.85 208
test_fmvs289.47 30989.70 28688.77 35394.54 31275.74 38299.83 13394.70 37794.71 11091.08 24996.82 26754.46 38497.78 26492.87 23288.27 27392.80 350
TR-MVS94.54 19293.56 20797.49 16897.96 18994.34 20498.71 29697.51 25690.30 26794.51 20898.69 19075.56 31498.77 19192.82 23395.99 19799.35 171
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12697.63 23897.25 3799.20 8299.64 10181.36 25999.98 4392.77 23498.89 13198.28 227
AUN-MVS93.28 22792.60 23295.34 23298.29 16890.09 30699.31 23298.56 9291.80 22696.35 18198.00 22689.38 18498.28 23592.46 23569.22 37997.64 239
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29396.92 30892.38 23688.73 26393.39 338
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32585.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 22092.29 23788.61 26693.89 319
miper_enhance_ethall94.36 20193.98 19495.49 22598.68 14295.24 17999.73 16497.29 27893.28 16889.86 26595.97 28994.37 7597.05 29892.20 23884.45 30594.19 289
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20395.62 16396.31 36298.17 19191.42 23996.26 18296.13 28590.56 16999.47 16092.18 23997.07 17699.35 171
UWE-MVS96.79 12096.72 11197.00 18698.51 15693.70 22299.71 16998.60 8492.96 17597.09 15898.34 21796.67 2798.85 18692.11 24096.50 18898.44 223
RPSCF91.80 26292.79 22888.83 35098.15 18069.87 38898.11 32896.60 33883.93 35194.33 21199.27 13479.60 27999.46 16191.99 24193.16 24197.18 246
cl2293.77 21593.25 21895.33 23399.49 9194.43 19999.61 18998.09 20190.38 26389.16 28795.61 29890.56 16997.34 27791.93 24284.45 30594.21 288
1112_ss96.01 15495.20 16598.42 11397.80 19996.41 12799.65 18196.66 33592.71 18792.88 22999.40 12392.16 14099.30 16391.92 24393.66 23599.55 141
Test_1112_low_res95.72 16094.83 17698.42 11397.79 20096.41 12799.65 18196.65 33692.70 18892.86 23096.13 28592.15 14199.30 16391.88 24493.64 23699.55 141
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
XXY-MVS91.82 25890.46 26995.88 21793.91 32295.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32697.89 25991.66 24684.07 30994.35 279
D2MVS92.76 24092.59 23593.27 30795.13 30189.54 31699.69 17499.38 2392.26 21187.59 31094.61 34185.05 23197.79 26291.59 24788.01 27792.47 355
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 31088.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26991.41 24888.59 26897.77 237
NR-MVSNet91.56 26790.22 27695.60 22394.05 31995.76 15498.25 32098.70 6791.16 24680.78 35996.64 27083.23 24796.57 32391.41 24877.73 35494.46 265
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5599.82 4694.40 71100.00 191.21 25099.94 5499.99 23
UA-Net96.54 13395.96 13898.27 12098.23 17395.71 15798.00 33298.45 11893.72 15598.41 12099.27 13488.71 19699.66 14691.19 25197.69 16299.44 161
EPMVS96.53 13496.01 13198.09 13198.43 16096.12 14596.36 36099.43 2193.53 15997.64 14595.04 32694.41 7098.38 22491.13 25298.11 15499.75 103
EI-MVSNet93.73 21793.40 21494.74 25196.80 25792.69 24799.06 25897.67 23688.96 28791.39 24599.02 15288.75 19597.30 28191.07 25387.85 27994.22 286
test_post195.78 37259.23 40693.20 11197.74 26591.06 254
SCA94.69 18793.81 20097.33 17997.10 23994.44 19898.86 28398.32 17293.30 16796.17 18595.59 30076.48 30697.95 25691.06 25497.43 16799.59 132
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14893.94 38484.69 34889.04 28895.66 29781.66 25596.52 32490.99 25676.98 36191.97 361
IterMVS-LS92.69 24392.11 24294.43 27096.80 25792.74 24499.45 21596.89 32088.98 28589.65 27295.38 31388.77 19496.34 33290.98 25782.04 32194.22 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D95.84 15895.11 16898.02 13599.85 5495.10 18598.74 29398.50 11287.22 31693.66 21999.86 2687.45 20599.95 6990.94 25899.81 7999.02 201
CVMVSNet94.68 18994.94 17493.89 29096.80 25786.92 34299.06 25898.98 3894.45 11794.23 21499.02 15285.60 22395.31 35690.91 25995.39 21499.43 162
BH-RMVSNet95.18 17494.31 18797.80 14698.17 17995.23 18099.76 15397.53 25392.52 20294.27 21399.25 13876.84 30198.80 18890.89 26099.54 9999.35 171
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34297.56 27090.82 26180.27 34094.15 296
miper_ehance_all_eth93.16 23092.60 23294.82 25097.57 21793.56 22699.50 20797.07 30088.75 29388.85 29295.52 30490.97 16196.74 31690.77 26284.45 30594.17 290
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
tpm93.70 21993.41 21394.58 25995.36 30087.41 33897.01 35096.90 31990.85 25496.72 17094.14 34990.40 17296.84 31290.75 26388.54 26999.51 151
tt080591.28 27090.18 27894.60 25796.26 26987.55 33698.39 31698.72 6589.00 28489.22 28398.47 21262.98 37198.96 18190.57 26588.00 27897.28 245
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22996.48 12499.96 3598.29 17891.93 22095.77 19398.07 22495.54 4298.29 23390.55 26698.89 13199.70 108
testdata299.99 3690.54 267
c3_l92.53 24691.87 24894.52 26297.40 22692.99 24099.40 21896.93 31787.86 30788.69 29595.44 30889.95 17796.44 32890.45 26880.69 33694.14 299
test-LLR96.47 13596.04 13097.78 14997.02 24395.44 16999.96 3598.21 18694.07 13895.55 19596.38 27693.90 9198.27 23790.42 26998.83 13599.64 121
test-mter96.39 14095.93 14297.78 14997.02 24395.44 16999.96 3598.21 18691.81 22595.55 19596.38 27695.17 4998.27 23790.42 26998.83 13599.64 121
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15295.99 14797.91 33497.31 27590.35 26589.48 27699.22 14085.19 22999.89 9690.40 27198.47 14299.41 164
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CP-MVSNet91.23 27290.22 27694.26 27493.96 32192.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28396.37 33090.29 27278.95 34594.02 306
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24793.69 32693.98 21599.69 17498.65 7491.03 25088.44 29896.83 26680.05 27696.18 33890.26 27376.89 36394.45 270
PatchMatch-RL96.04 15395.40 15797.95 13899.59 8195.22 18199.52 20399.07 3493.96 14596.49 17598.35 21682.28 25099.82 12090.15 27499.22 12298.81 211
MDTV_nov1_ep1395.69 15097.90 19294.15 20995.98 36998.44 12393.12 17297.98 13695.74 29395.10 5198.58 20490.02 27596.92 182
FE-MVS95.70 16495.01 17297.79 14898.21 17594.57 19695.03 37498.69 6888.90 29097.50 14996.19 28292.60 12899.49 15889.99 27697.94 16099.31 176
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23690.68 29298.83 28696.97 31188.57 29889.19 28695.73 29589.24 18996.69 31989.97 27781.55 32494.15 296
Fast-Effi-MVS+95.02 17894.19 18997.52 16697.88 19394.55 19799.97 2897.08 29988.85 29294.47 20997.96 23084.59 23598.41 21689.84 27897.10 17599.59 132
Fast-Effi-MVS+-dtu93.72 21893.86 19993.29 30697.06 24186.16 34499.80 14296.83 32592.66 19192.58 23397.83 23481.39 25897.67 26789.75 27996.87 18396.05 257
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29588.64 32698.55 30597.45 26089.03 28281.62 35497.61 23869.75 34498.41 21689.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs492.10 25591.07 26295.18 23892.82 34694.96 18899.48 21196.83 32587.45 31288.66 29696.56 27483.78 24296.83 31389.29 28184.77 30393.75 327
PatchmatchNetpermissive95.94 15595.45 15697.39 17497.83 19794.41 20196.05 36798.40 15292.86 17997.09 15895.28 32194.21 8298.07 24989.26 28298.11 15499.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27686.12 34598.81 28897.18 28789.38 27783.14 34797.76 23668.42 35298.43 21489.11 28386.05 29293.78 326
DP-MVS94.54 19293.42 21197.91 14399.46 9494.04 21298.93 27497.48 25981.15 36690.04 26099.55 11087.02 21199.95 6988.97 28498.11 15499.73 105
PS-CasMVS90.63 28589.51 29293.99 28593.83 32391.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31596.31 33488.83 28578.86 34793.95 314
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38888.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
cl____92.31 25191.58 25294.52 26297.33 23292.77 24299.57 19596.78 33086.97 32187.56 31195.51 30589.43 18396.62 32188.60 28782.44 31894.16 295
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23392.74 24499.58 19396.75 33186.99 32087.64 30995.54 30289.55 18296.50 32588.58 28882.44 31894.17 290
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15995.58 36385.88 33387.24 31895.74 29373.41 33096.48 32688.54 28983.56 31293.95 314
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37491.44 23686.29 33097.11 25065.30 36598.11 24688.53 29085.25 29892.07 358
JIA-IIPM91.76 26590.70 26594.94 24596.11 27287.51 33793.16 38298.13 20075.79 38197.58 14677.68 39592.84 12097.97 25388.47 29196.54 18699.33 174
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 23089.18 31999.38 22396.79 32986.70 32487.47 31395.22 32290.00 17695.86 34988.26 29281.37 32694.15 296
WR-MVS_H91.30 26890.35 27294.15 27694.17 31892.62 25199.17 24798.94 4188.87 29186.48 32794.46 34684.36 23796.61 32288.19 29378.51 34893.21 343
tpmvs94.28 20393.57 20696.40 20698.55 15291.50 27995.70 37398.55 9887.47 31192.15 23894.26 34891.42 15098.95 18288.15 29495.85 20398.76 213
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36791.48 23485.65 33697.31 24572.66 33197.29 28488.15 29484.83 30293.97 313
GeoE94.36 20193.48 20996.99 18797.29 23593.54 22799.96 3596.72 33388.35 30293.43 22098.94 17082.05 25198.05 25088.12 29696.48 19099.37 168
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37884.73 34780.21 36196.12 28763.56 36998.39 22087.92 29763.97 39090.95 369
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 23087.88 29888.41 27189.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8093.63 37387.75 29969.61 37699.79 97
GA-MVS93.83 21192.84 22596.80 19295.73 28893.57 22599.88 10397.24 28392.57 19892.92 22796.66 26878.73 28897.67 26787.75 29994.06 23399.17 188
ADS-MVSNet293.80 21493.88 19893.55 30197.87 19485.94 34694.24 37596.84 32490.07 26996.43 17794.48 34490.29 17495.37 35487.44 30197.23 17299.36 169
ADS-MVSNet94.79 18394.02 19397.11 18597.87 19493.79 21894.24 37598.16 19590.07 26996.43 17794.48 34490.29 17498.19 24287.44 30197.23 17299.36 169
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15696.89 32087.51 31088.27 30395.01 32781.67 25497.04 30087.40 30377.17 36093.75 327
V4291.28 27090.12 28194.74 25193.42 33293.46 22999.68 17697.02 30487.36 31389.85 26795.05 32581.31 26197.34 27787.34 30480.07 34193.40 337
v2v48291.30 26890.07 28295.01 24293.13 33693.79 21899.77 14897.02 30488.05 30589.25 28195.37 31480.73 26797.15 29087.28 30580.04 34294.09 302
IterMVS90.91 27790.17 27993.12 31196.78 26090.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30495.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21190.97 28499.71 16998.35 16590.79 25692.10 23998.67 19192.46 13493.09 37787.13 30795.95 20096.59 250
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30295.94 34887.07 30876.91 36293.89 319
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26289.96 30998.89 27796.99 30788.95 28886.63 32395.67 29676.48 30695.00 35987.04 30984.04 31193.84 323
tpm cat193.51 22392.52 23796.47 20197.77 20191.47 28096.13 36598.06 20480.98 36792.91 22893.78 35289.66 17998.87 18487.03 31096.39 19199.09 195
GBi-Net90.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
test190.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
FMVSNet392.69 24391.58 25295.99 21598.29 16897.42 9599.26 24097.62 24089.80 27489.68 26995.32 31681.62 25796.27 33587.01 31185.65 29494.29 282
dp95.05 17794.43 18396.91 18997.99 18892.73 24696.29 36397.98 21189.70 27595.93 18994.67 33993.83 9598.45 21386.91 31496.53 18799.54 145
MSDG94.37 19993.36 21597.40 17398.88 13293.95 21699.37 22597.38 26885.75 33690.80 25399.17 14484.11 24199.88 10286.35 31598.43 14398.36 226
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26693.31 37686.20 31681.91 32294.26 283
pm-mvs189.36 31187.81 31794.01 28393.40 33391.93 26498.62 30496.48 34386.25 32983.86 34496.14 28473.68 32997.04 30086.16 31775.73 36793.04 346
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33482.30 36288.43 30099.01 15476.97 29999.85 10886.11 31896.50 18894.86 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WAC-MVS90.97 28486.10 319
ITE_SJBPF92.38 32195.69 29385.14 35095.71 35992.81 18289.33 28098.11 22270.23 34398.42 21585.91 32088.16 27593.59 334
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
AllTest92.48 24791.64 25095.00 24399.01 11488.43 32898.94 27396.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
TestCases95.00 24399.01 11488.43 32896.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
FMVSNet291.02 27589.56 28995.41 23097.53 21995.74 15598.98 26897.41 26687.05 31788.43 30095.00 32971.34 33796.24 33785.12 32485.21 29994.25 285
v114491.09 27489.83 28394.87 24793.25 33593.69 22399.62 18896.98 30986.83 32389.64 27394.99 33080.94 26497.05 29885.08 32581.16 32893.87 321
v890.54 28789.17 29794.66 25493.43 33193.40 23299.20 24496.94 31685.76 33487.56 31194.51 34281.96 25397.19 28884.94 32678.25 34993.38 339
ambc83.23 36677.17 39962.61 39287.38 39594.55 37976.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30390.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 32898.28 23584.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37288.97 28682.26 35096.89 26071.75 33596.67 32084.00 33082.98 31393.72 331
v14419290.79 28189.52 29194.59 25893.11 33992.77 24299.56 19796.99 30786.38 32789.82 26894.95 33280.50 27297.10 29583.98 33180.41 33793.90 318
USDC90.00 30188.96 30293.10 31394.81 30788.16 33298.71 29695.54 36493.66 15683.75 34597.20 24865.58 36298.31 23183.96 33287.49 28592.85 349
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29297.27 28683.78 33399.70 8591.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31785.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 25183.62 33499.62 9091.60 363
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 30995.30 35783.56 33575.74 36693.41 336
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
v1090.25 29588.82 30494.57 26093.53 32993.43 23099.08 25396.87 32285.00 34387.34 31794.51 34280.93 26597.02 30482.85 33879.23 34493.26 341
DeepMVS_CXcopyleft82.92 36795.98 27858.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24782.57 33985.29 29792.03 360
testing393.92 20994.23 18892.99 31597.54 21890.23 30299.99 599.16 3090.57 26091.33 24898.63 19792.99 11592.52 38182.46 34095.39 21496.22 255
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
v119290.62 28689.25 29694.72 25393.13 33693.07 23699.50 20797.02 30486.33 32889.56 27595.01 32779.22 28297.09 29782.34 34281.16 32894.01 308
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20996.98 30986.10 33089.61 27495.30 31778.55 29197.03 30282.17 34380.89 33594.01 308
MIMVSNet90.30 29388.67 30795.17 23996.45 26691.64 27692.39 38497.15 29185.99 33190.50 25593.19 35966.95 35794.86 36282.01 34493.43 23799.01 202
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
FMVSNet188.50 31686.64 32294.08 27995.62 29791.97 26198.43 31296.95 31283.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 290
test0.0.03 193.86 21093.61 20294.64 25595.02 30592.18 25999.93 7698.58 8794.07 13887.96 30698.50 20793.90 9194.96 36081.33 34793.17 24096.78 247
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27597.13 29281.14 34878.12 35193.49 335
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37683.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22396.92 31885.89 33289.36 27894.87 33477.89 29497.03 30280.66 35081.08 33194.01 308
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22996.35 34787.84 30885.30 33794.99 33084.14 24096.09 34380.38 35184.56 30493.71 332
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
TinyColmap87.87 32286.51 32391.94 32695.05 30485.57 34897.65 33894.08 38184.40 34981.82 35396.85 26362.14 37398.33 22980.25 35386.37 29191.91 362
Patchmtry89.70 30688.49 30993.33 30596.24 27089.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 15996.03 34580.18 35482.10 32094.02 306
WB-MVSnew92.90 23792.77 22993.26 30896.95 24793.63 22499.71 16998.16 19591.49 23294.28 21298.14 22181.33 26096.48 32679.47 35595.46 21189.68 378
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
CR-MVSNet93.45 22692.62 23195.94 21696.29 26792.66 24892.01 38696.23 34992.62 19396.94 16293.31 35791.04 15996.03 34579.23 35695.96 19899.13 193
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29479.16 35988.61 26690.96 368
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20595.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31191.95 38478.46 36196.05 19697.92 233
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
EPNet_dtu95.71 16295.39 15896.66 19898.92 12593.41 23199.57 19598.90 4796.19 7597.52 14798.56 20492.65 12597.36 27577.89 36398.33 14599.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testgi89.01 31488.04 31591.90 32793.49 33084.89 35399.73 16495.66 36193.89 15185.14 33898.17 22059.68 37894.66 36477.73 36488.88 25996.16 256
Patchmatch-test92.65 24591.50 25596.10 21496.85 25490.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5598.00 25277.41 36596.98 18199.82 92
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24396.55 34079.60 37357.26 39692.72 36079.09 28693.78 37277.25 36677.37 35893.84 323
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24496.52 34179.70 37257.12 39792.69 36179.11 28493.86 37177.10 36777.46 35793.86 322
tfpnnormal89.29 31287.61 31894.34 27394.35 31594.13 21098.95 27298.94 4183.94 35084.47 34195.51 30574.84 32297.39 27477.05 36880.41 33791.48 365
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32891.03 28398.54 30794.05 38383.69 35481.09 35796.16 28375.32 31696.40 32976.69 36968.41 38192.06 359
FMVSNet588.32 31787.47 31990.88 33396.90 25288.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27791.16 38676.39 37081.51 32593.09 344
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22996.73 33285.49 33985.90 33595.77 29281.09 26396.00 34776.00 37182.49 31793.30 340
MVS-HIRNet86.22 32783.19 34095.31 23496.71 26390.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34597.49 27275.12 37297.99 15998.15 229
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34582.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38773.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 36982.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
TAPA-MVS92.12 894.42 19793.60 20496.90 19099.33 9891.78 26999.78 14598.00 20889.89 27394.52 20799.47 11691.97 14599.18 17269.90 38099.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30391.40 38569.53 38160.36 39492.40 356
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38644.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37073.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 27090.34 372
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29795.76 35068.14 38482.81 31492.64 351
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36885.43 34082.82 34893.92 35074.40 32593.44 37566.99 38581.83 32393.08 345
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20679.25 28186.65 39566.85 38682.69 31595.57 258
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34889.11 39066.52 38775.82 36591.00 367
PatchT90.38 29088.75 30695.25 23695.99 27690.16 30491.22 39097.54 25176.80 37797.26 15586.01 38991.88 14696.07 34466.16 38895.91 20299.51 151
test_040285.58 32983.94 33490.50 33793.81 32485.04 35198.55 30595.20 37176.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
Syy-MVS90.00 30190.63 26788.11 35797.68 21174.66 38599.71 16998.35 16590.79 25692.10 23998.67 19179.10 28593.09 37763.35 39195.95 20096.59 250
RPMNet89.76 30587.28 32097.19 18296.29 26792.66 24892.01 38698.31 17470.19 39196.94 16285.87 39087.25 20899.78 12562.69 39295.96 19899.13 193
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37551.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3850.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17618.47 41220.74 40564.59 39098.48 21110.95 41017.09 40956.66 39811.01 40555.94 402
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37347.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38081.30 36569.43 38890.70 37377.02 29882.06 39935.71 40468.11 38383.13 390
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38280.42 36968.75 38990.14 37576.54 30581.66 40033.25 40566.34 38782.19 391
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9683.37 2450.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1540.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1230.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
FOURS199.92 3197.66 8399.95 5398.36 16395.58 8799.52 60
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
save fliter99.82 5898.79 3899.96 3598.40 15297.66 21
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
GSMVS99.59 132
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 132
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post63.35 40394.43 6998.13 245
patchmatchnet-post91.70 36895.12 5097.95 256
MTMP99.87 10696.49 342
TEST999.92 3198.92 2899.96 3598.43 13193.90 14999.71 3599.86 2695.88 3799.85 108
test_899.92 3198.88 3199.96 3598.43 13194.35 12499.69 3799.85 3095.94 3499.85 108
agg_prior99.93 2498.77 4098.43 13199.63 4499.85 108
test_prior498.05 6699.94 69
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
新几何299.40 218
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
原ACMM299.90 91
test22299.55 8697.41 9699.34 22898.55 9891.86 22299.27 8199.83 4393.84 9499.95 4999.99 23
segment_acmp96.68 25
testdata199.28 23896.35 71
test1299.43 3599.74 6998.56 5598.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
plane_prior795.71 29191.59 278
plane_prior695.76 28591.72 27380.47 273
plane_prior498.59 199
plane_prior391.64 27696.63 5693.01 225
plane_prior299.84 12696.38 67
plane_prior195.73 288
plane_prior91.74 27099.86 11896.76 5289.59 251
n20.00 415
nn0.00 415
door-mid89.69 399
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
HQP-NCC95.78 28199.87 10696.82 4893.37 221
ACMP_Plane95.78 28199.87 10696.82 4893.37 221
HQP4-MVS93.37 22198.39 22094.53 260
HQP3-MVS97.89 22189.60 249
HQP2-MVS80.65 269
NP-MVS95.77 28491.79 26898.65 194
ACMMP++_ref87.04 286
ACMMP++88.23 274
Test By Simon92.82 122