This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 799.97 2199.90 199.92 399.99 1
PC_three_145294.60 3699.41 499.12 4695.50 699.96 2899.84 299.92 399.97 7
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12899.90 5099.72 398.80 9499.85 30
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1797.72 8194.17 4399.30 899.54 393.32 1799.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2299.98 999.70 499.82 1999.99 1
IU-MVS99.63 1895.38 2497.73 8095.54 2699.54 399.69 699.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2397.47 14193.95 4899.07 1599.46 1093.18 2099.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
patch_mono-297.10 2697.97 894.49 17999.21 6183.73 29399.62 3798.25 3295.28 3099.38 698.91 7592.28 2699.94 3499.61 999.22 7399.78 38
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8194.50 3798.64 2899.54 393.32 1799.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4897.59 11792.91 8699.86 498.04 4896.70 1099.58 299.26 2190.90 3699.94 3499.57 1198.66 10199.40 88
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4997.51 12292.78 8899.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10699.55 74
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3898.88 1497.14 497.21 6898.94 7286.89 10399.91 4599.43 1598.91 8999.59 73
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22998.71 8578.11 35199.70 2697.71 8598.18 197.36 6499.76 190.37 4799.94 3499.27 1699.54 5499.99 1
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6799.56 4397.52 13193.59 6398.01 5099.12 4690.80 3999.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9093.01 7099.23 1099.45 1495.12 799.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1299.97 2199.25 1899.82 1999.95 15
dcpmvs_295.67 7196.18 4594.12 19598.82 8184.22 28697.37 26095.45 30190.70 11995.77 10498.63 10190.47 4398.68 16699.20 2099.22 7399.45 84
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14997.37 12789.16 16899.86 498.47 2595.68 2398.87 2299.15 3982.44 18999.92 4099.14 2197.43 13296.83 224
test_fmvsmconf_n96.78 3496.84 2996.61 8995.99 19390.25 13999.90 298.13 4296.68 1198.42 3498.92 7485.34 14099.88 5499.12 2299.08 7699.70 52
test_fmvsm_n_192097.08 2797.55 1495.67 13697.94 10589.61 16399.93 198.48 2497.08 599.08 1499.13 4488.17 7499.93 3899.11 2399.06 7897.47 204
TSAR-MVS + GP.96.95 2996.91 2697.07 6098.88 7991.62 10699.58 4196.54 21895.09 3296.84 7898.63 10191.16 2999.77 8599.04 2496.42 14999.81 33
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9699.33 1992.62 24100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 23100.00 198.99 2599.90 799.96 10
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10392.42 30089.92 15599.79 1696.85 19896.53 1597.22 6798.67 9782.71 18199.84 6998.92 2798.98 8399.43 87
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14896.51 16889.01 17599.81 1198.39 2795.46 2899.19 1399.16 3681.44 20499.91 4598.83 2896.97 14197.01 220
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6898.90 7682.66 18299.93 3898.71 2998.80 9499.63 66
9.1496.87 2799.34 5099.50 5197.49 13889.41 16298.59 3099.43 1689.78 5599.69 9198.69 3099.62 46
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6699.33 7897.38 15493.73 5998.83 2599.02 5890.87 3899.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n95.56 7395.68 6595.20 15294.35 25589.10 17199.50 5197.67 9494.76 3498.68 2799.03 5681.13 20799.86 6398.63 3297.36 13496.63 227
test9_res98.60 3399.87 999.90 22
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 11797.11 17995.83 2098.97 1999.14 4282.48 18599.60 10398.60 3399.08 7698.00 190
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12097.04 18695.51 2798.86 2399.11 5082.19 19399.36 13098.59 3598.14 11598.00 190
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7699.38 7197.66 9590.18 13698.39 3599.18 3390.94 3499.66 9498.58 3699.85 1399.88 26
TSAR-MVS + MP.97.44 1897.46 1697.39 5199.12 6593.49 7298.52 17297.50 13694.46 3898.99 1798.64 9991.58 2899.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6297.45 14489.60 15498.70 2699.42 1790.42 4599.72 8998.47 3899.65 4099.77 43
PHI-MVS96.65 3796.46 3897.21 5799.34 5091.77 10399.70 2698.05 4686.48 24698.05 4799.20 2989.33 6099.96 2898.38 3999.62 4699.90 22
test_fmvsmvis_n_192095.47 7595.40 7295.70 13394.33 25690.22 14299.70 2696.98 19396.80 792.75 15598.89 7882.46 18899.92 4098.36 4098.33 11196.97 221
ZD-MVS99.67 1093.28 7497.61 11087.78 21397.41 6299.16 3690.15 5199.56 10598.35 4199.70 36
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5899.16 9597.65 10289.55 15899.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3396.85 2896.66 8897.85 10894.42 5394.76 33198.36 2992.50 8195.62 10997.52 15097.92 197.38 24398.31 4498.80 9498.20 184
test_fmvsmconf0.01_n94.14 11693.51 12496.04 11986.79 37289.19 16799.28 8395.94 26095.70 2195.50 11098.49 11073.27 26299.79 8298.28 4598.32 11399.15 111
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1197.88 5796.54 1398.84 2499.46 1092.55 2599.98 998.25 4699.93 199.94 18
fmvsm_s_conf0.1_n_a95.16 8495.15 7895.18 15392.06 30688.94 17999.29 8097.53 12794.46 3898.98 1898.99 6079.99 21399.85 6798.24 4796.86 14396.73 225
MSP-MVS97.77 998.18 296.53 9699.54 3690.14 14499.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5396.00 5396.00 12296.56 16491.05 12299.63 3696.61 20993.26 6897.39 6398.30 12186.62 11098.13 19298.07 4997.57 12698.82 144
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7599.70 2698.13 4294.61 3597.78 5799.46 1089.85 5499.81 7997.97 5099.91 699.88 26
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6899.16 9597.44 14790.08 14198.59 3099.07 5189.06 6299.42 12397.92 5199.66 3899.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1997.34 2097.01 6397.38 12691.46 11099.75 2197.66 9594.14 4798.13 4299.26 2192.16 2799.66 9497.91 5299.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
MVSMamba_PlusPlus95.73 7095.15 7897.44 4697.28 13494.35 5698.26 20496.75 20383.09 30097.84 5495.97 21889.59 5798.48 17597.86 5399.73 3199.49 81
test_vis1_n_192093.08 15193.42 12692.04 24296.31 17779.36 33899.83 996.06 25196.72 998.53 3298.10 12958.57 34999.91 4597.86 5398.79 9796.85 223
iter_conf0594.60 10593.87 11596.79 7797.28 13494.04 6295.67 32395.94 26083.09 30090.06 19895.97 21889.59 5798.48 17597.86 5399.34 6597.86 194
agg_prior297.84 5699.87 999.91 21
mvsany_test194.57 10895.09 8292.98 22095.84 19982.07 31598.76 14595.24 31492.87 7796.45 8998.71 9484.81 14799.15 14197.68 5795.49 16797.73 196
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 8997.75 7695.66 2498.21 4099.29 2091.10 3199.99 597.68 5799.87 999.68 56
test_vis1_n90.40 20390.27 19390.79 27091.55 31676.48 35699.12 10794.44 33794.31 4197.34 6596.95 18143.60 38899.42 12397.57 5997.60 12596.47 234
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17398.59 16797.33 15890.44 13096.84 7899.12 4686.75 10699.41 12697.47 6099.44 6099.76 45
PVSNet_BlendedMVS93.36 14193.20 13393.84 20698.77 8391.61 10799.47 5598.04 4891.44 10494.21 13392.63 28383.50 16099.87 5897.41 6183.37 27990.05 342
PVSNet_Blended95.94 5995.66 6696.75 8098.77 8391.61 10799.88 398.04 4893.64 6294.21 13397.76 13783.50 16099.87 5897.41 6197.75 12498.79 147
test_fmvs192.35 16492.94 14090.57 27597.19 14075.43 36099.55 4494.97 32195.20 3196.82 8197.57 14959.59 34799.84 6997.30 6398.29 11496.46 235
mamv491.41 18293.57 12284.91 34897.11 14758.11 39595.68 32295.93 26482.09 32289.78 20395.71 22490.09 5298.24 18797.26 6498.50 10698.38 170
EC-MVSNet95.09 8695.17 7794.84 16795.42 21388.17 19599.48 5395.92 26691.47 10397.34 6598.36 11882.77 17797.41 24297.24 6598.58 10398.94 132
MVS_111021_HR96.69 3596.69 3396.72 8498.58 8891.00 12499.14 10399.45 193.86 5495.15 11798.73 8988.48 6999.76 8697.23 6699.56 5299.40 88
test_fmvs1_n91.07 19191.41 17190.06 28994.10 26374.31 36499.18 9194.84 32594.81 3396.37 9197.46 15350.86 37799.82 7697.14 6797.90 11896.04 242
xiu_mvs_v1_base_debu94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
xiu_mvs_v1_base_debi94.73 9993.98 10696.99 6595.19 22295.24 2798.62 16196.50 22092.99 7297.52 5998.83 8272.37 26999.15 14197.03 6896.74 14496.58 230
lupinMVS96.32 4595.94 5497.44 4695.05 23694.87 3899.86 496.50 22093.82 5798.04 4898.77 8585.52 13298.09 19596.98 7198.97 8499.37 92
CS-MVS-test95.98 5596.34 4194.90 16498.06 10287.66 20799.69 3396.10 24693.66 6098.35 3899.05 5486.28 11997.66 22596.96 7298.90 9099.37 92
MVS_111021_LR95.78 6595.94 5495.28 15098.19 9887.69 20498.80 13999.26 793.39 6595.04 11998.69 9684.09 15499.76 8696.96 7299.06 7898.38 170
VNet95.08 8794.26 9597.55 4598.07 10193.88 6498.68 15298.73 1890.33 13397.16 7297.43 15579.19 22399.53 10996.91 7491.85 20999.24 104
test_cas_vis1_n_192093.86 12693.74 11994.22 19195.39 21686.08 25099.73 2296.07 25096.38 1797.19 7197.78 13665.46 32499.86 6396.71 7598.92 8896.73 225
CS-MVS95.75 6896.19 4394.40 18397.88 10786.22 24499.66 3496.12 24592.69 7898.07 4698.89 7887.09 9797.59 23196.71 7598.62 10299.39 91
APD-MVS_3200maxsize95.64 7295.65 6895.62 13899.24 5887.80 20398.42 18597.22 16688.93 17596.64 8898.98 6185.49 13599.36 13096.68 7799.27 7199.70 52
SR-MVS-dyc-post95.75 6895.86 5795.41 14499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6286.73 10899.36 13096.62 7899.31 6899.60 69
RE-MVS-def95.70 6499.22 5987.26 22398.40 19097.21 16789.63 15296.67 8698.97 6285.24 14196.62 7899.31 6899.60 69
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13397.64 10396.51 1695.88 9999.39 1887.35 9399.99 596.61 8099.69 3799.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 18990.18 19494.45 18297.08 14985.84 26098.40 19096.10 24686.99 22993.36 14898.16 12754.27 36699.20 13896.59 8190.63 23398.31 177
MP-MVS-pluss95.80 6495.30 7397.29 5398.95 7692.66 8998.59 16797.14 17588.95 17393.12 15199.25 2385.62 12999.94 3496.56 8299.48 5699.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvspermissive94.59 10794.19 9895.81 12995.54 20990.69 13198.70 15095.68 28891.61 9895.96 9697.81 13380.11 21298.06 19796.52 8395.76 16298.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6998.88 13297.59 11690.66 12097.98 5199.14 4286.59 111100.00 196.47 8499.46 5799.89 25
PAPM96.35 4395.94 5497.58 4294.10 26395.25 2698.93 12798.17 3794.26 4293.94 13898.72 9189.68 5697.88 20796.36 8599.29 7099.62 68
MTAPA96.09 5195.80 6196.96 7099.29 5591.19 11497.23 26797.45 14492.58 7994.39 13199.24 2586.43 11799.99 596.22 8699.40 6499.71 51
alignmvs95.77 6695.00 8498.06 2997.35 12895.68 2099.71 2597.50 13691.50 10296.16 9498.61 10386.28 11999.00 15196.19 8791.74 21199.51 79
sasdasda95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
iter_conf05_1195.50 7495.43 7195.70 13397.26 13689.15 16998.26 20496.60 21091.37 10897.84 5496.18 21085.57 13198.56 17196.12 8899.66 3899.40 88
canonicalmvs95.02 8893.96 10998.20 2197.53 12095.92 1798.71 14796.19 23991.78 9595.86 10198.49 11079.53 21899.03 14996.12 8891.42 22399.66 60
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11698.24 12388.17 7499.83 7396.11 9199.60 5099.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7994.86 8697.03 6292.91 29594.23 5799.70 2696.30 23093.56 6496.73 8498.52 10681.46 20397.91 20496.08 9298.47 10998.96 127
jason: jason.
CP-MVS96.22 4896.15 5196.42 10199.67 1089.62 16299.70 2697.61 11090.07 14296.00 9599.16 3687.43 8799.92 4096.03 9399.72 3299.70 52
MP-MVScopyleft96.00 5395.82 5896.54 9599.47 4690.13 14699.36 7597.41 15190.64 12395.49 11198.95 6985.51 13499.98 996.00 9499.59 5199.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MGCFI-Net94.89 9093.84 11698.06 2997.49 12395.55 2198.64 15896.10 24691.60 10095.75 10598.46 11679.31 22298.98 15395.95 9591.24 22799.65 63
h-mvs3392.47 16391.95 16094.05 19997.13 14585.01 27698.36 19698.08 4493.85 5596.27 9296.73 19483.19 16999.43 12295.81 9668.09 36697.70 197
hse-mvs291.67 17891.51 16992.15 23996.22 18182.61 31197.74 24597.53 12793.85 5596.27 9296.15 21183.19 16997.44 24095.81 9666.86 37396.40 237
HFP-MVS96.42 4296.26 4296.90 7299.69 890.96 12599.47 5597.81 6890.54 12796.88 7599.05 5487.57 8499.96 2895.65 9899.72 3299.78 38
XVS96.47 4196.37 4096.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7698.96 6687.37 8999.87 5895.65 9899.43 6199.78 38
X-MVStestdata90.69 20088.66 22396.77 7899.62 2290.66 13399.43 6597.58 11892.41 8596.86 7629.59 41287.37 8999.87 5895.65 9899.43 6199.78 38
ACMMPR96.28 4796.14 5296.73 8299.68 990.47 13699.47 5597.80 7090.54 12796.83 8099.03 5686.51 11599.95 3195.65 9899.72 3299.75 46
HPM-MVScopyleft95.41 7895.22 7695.99 12399.29 5589.14 17099.17 9497.09 18387.28 22695.40 11298.48 11384.93 14499.38 12895.64 10299.65 4099.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
DCV-MVSNet95.27 8294.60 8997.28 5498.53 8992.98 8299.05 11598.70 1986.76 23894.65 12697.74 13987.78 8199.44 11995.57 10392.61 19399.44 85
region2R96.30 4696.17 4896.70 8599.70 790.31 13899.46 5997.66 9590.55 12697.07 7399.07 5186.85 10499.97 2195.43 10599.74 2999.81 33
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 17897.82 6591.92 9394.75 12398.88 8087.06 9999.48 11695.40 10697.17 13998.70 154
EPNet96.82 3296.68 3497.25 5698.65 8693.10 7899.48 5398.76 1596.54 1397.84 5498.22 12487.49 8699.66 9495.35 10797.78 12399.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11199.06 1094.45 4096.42 9098.70 9588.81 6699.74 8895.35 10799.86 1299.97 7
HY-MVS88.56 795.29 8194.23 9698.48 1497.72 11096.41 1394.03 33998.74 1692.42 8495.65 10894.76 24086.52 11499.49 11295.29 10992.97 18899.53 76
testing1195.33 8094.98 8596.37 10597.20 13892.31 9699.29 8097.68 9090.59 12494.43 12897.20 16690.79 4098.60 16995.25 11092.38 19798.18 185
mPP-MVS95.90 6195.75 6396.38 10499.58 3089.41 16699.26 8497.41 15190.66 12094.82 12198.95 6986.15 12399.98 995.24 11199.64 4299.74 47
ZNCC-MVS96.09 5195.81 6096.95 7199.42 4791.19 11499.55 4497.53 12789.72 14995.86 10198.94 7286.59 11199.97 2195.13 11299.56 5299.68 56
GG-mvs-BLEND96.98 6896.53 16694.81 4387.20 38197.74 7793.91 13996.40 20396.56 296.94 25995.08 11398.95 8799.20 108
EIA-MVS95.11 8595.27 7594.64 17696.34 17686.51 23299.59 4096.62 20892.51 8094.08 13698.64 9986.05 12498.24 18795.07 11498.50 10699.18 109
DeepC-MVS91.02 494.56 10993.92 11296.46 9897.16 14390.76 12998.39 19497.11 17993.92 5088.66 21298.33 11978.14 23199.85 6795.02 11598.57 10498.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive94.00 11993.33 12996.03 12095.22 22090.90 12799.09 10995.99 25390.58 12591.55 17397.37 15779.91 21498.06 19795.01 11695.22 16999.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS95.97 5695.11 8198.54 1397.62 11496.65 999.44 6298.74 1692.25 8895.21 11598.46 11686.56 11399.46 11895.00 11792.69 19299.50 80
CSCG94.87 9494.71 8795.36 14599.54 3686.49 23399.34 7798.15 4082.71 31090.15 19799.25 2389.48 5999.86 6394.97 11898.82 9399.72 50
EI-MVSNet-UG-set95.43 7695.29 7495.86 12899.07 7089.87 15698.43 18497.80 7091.78 9594.11 13598.77 8586.25 12199.48 11694.95 11996.45 14898.22 182
CPTT-MVS94.60 10594.43 9395.09 15699.66 1286.85 22899.44 6297.47 14183.22 29794.34 13298.96 6682.50 18399.55 10694.81 12099.50 5598.88 137
PVSNet_083.28 1687.31 26285.16 27793.74 20994.78 24684.59 28198.91 13098.69 2189.81 14878.59 32793.23 27261.95 33899.34 13494.75 12155.72 39397.30 208
CLD-MVS91.06 19290.71 18792.10 24094.05 26786.10 24999.55 4496.29 23394.16 4584.70 24697.17 17069.62 29097.82 21194.74 12286.08 25692.39 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvspermissive93.98 12193.43 12595.61 13995.07 23589.86 15798.80 13995.84 27990.98 11492.74 15697.66 14479.71 21598.10 19494.72 12395.37 16898.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDDNet90.08 21388.54 22894.69 17394.41 25487.68 20598.21 21096.40 22576.21 35893.33 14997.75 13854.93 36498.77 15994.71 12490.96 22897.61 202
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6399.13 10697.44 14789.02 17097.90 5399.22 2788.90 6599.49 11294.63 12599.79 2799.68 56
GST-MVS95.97 5695.66 6696.90 7299.49 4591.22 11299.45 6197.48 13989.69 15095.89 9898.72 9186.37 11899.95 3194.62 12699.22 7399.52 77
Effi-MVS+93.87 12593.15 13496.02 12195.79 20090.76 12996.70 28995.78 28086.98 23295.71 10697.17 17079.58 21698.01 20294.57 12796.09 15799.31 98
LFMVS92.23 16990.84 18396.42 10198.24 9591.08 12198.24 20796.22 23683.39 29594.74 12498.31 12061.12 34298.85 15694.45 12892.82 18999.32 97
bld_raw_dy_0_6491.25 18790.03 19694.92 16395.99 19392.32 9591.40 36695.74 28370.34 37984.15 25294.47 24385.61 13098.17 18994.42 12998.14 11594.26 252
ET-MVSNet_ETH3D92.56 16191.45 17095.88 12796.39 17494.13 6099.46 5996.97 19492.18 9066.94 38198.29 12294.65 1394.28 35294.34 13083.82 27599.24 104
baseline93.91 12393.30 13095.72 13295.10 23390.07 14897.48 25695.91 27191.03 11293.54 14697.68 14279.58 21698.02 20194.27 13195.14 17099.08 119
SDMVSNet91.09 19089.91 19894.65 17496.80 15790.54 13597.78 24097.81 6888.34 19485.73 23695.26 23266.44 31698.26 18594.25 13286.75 24895.14 246
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5999.42 6797.55 12392.43 8293.82 14299.12 4687.30 9499.91 4594.02 13399.06 7899.74 47
PGM-MVS95.85 6295.65 6896.45 9999.50 4289.77 15998.22 20898.90 1389.19 16596.74 8398.95 6985.91 12799.92 4093.94 13499.46 5799.66 60
gg-mvs-nofinetune90.00 21487.71 24096.89 7696.15 18694.69 4785.15 38797.74 7768.32 38792.97 15460.16 40096.10 396.84 26293.89 13598.87 9199.14 112
MVS93.92 12292.28 15198.83 795.69 20496.82 896.22 30498.17 3784.89 27284.34 25198.61 10379.32 22199.83 7393.88 13699.43 6199.86 29
旧先验298.67 15485.75 25798.96 2098.97 15493.84 137
ACMMPcopyleft94.67 10394.30 9495.79 13099.25 5788.13 19798.41 18798.67 2290.38 13291.43 17598.72 9182.22 19299.95 3193.83 13895.76 16299.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 139
HQP-MVS91.50 17991.23 17492.29 23493.95 26886.39 23799.16 9596.37 22693.92 5087.57 22096.67 19773.34 25997.77 21593.82 13986.29 25192.72 262
DP-MVS Recon95.85 6295.15 7897.95 3299.87 294.38 5499.60 3897.48 13986.58 24194.42 12999.13 4487.36 9299.98 993.64 14198.33 11199.48 82
CHOSEN 1792x268894.35 11393.82 11795.95 12597.40 12588.74 18798.41 18798.27 3192.18 9091.43 17596.40 20378.88 22499.81 7993.59 14297.81 12099.30 99
testing9194.88 9294.44 9296.21 11097.19 14091.90 10299.23 8697.66 9589.91 14593.66 14497.05 17790.21 5098.50 17293.52 14391.53 22098.25 178
testing9994.88 9294.45 9196.17 11497.20 13891.91 10199.20 8897.66 9589.95 14493.68 14397.06 17590.28 4998.50 17293.52 14391.54 21798.12 187
cascas90.93 19589.33 20995.76 13195.69 20493.03 8198.99 12296.59 21280.49 33886.79 23294.45 24465.23 32598.60 16993.52 14392.18 20495.66 245
HQP_MVS91.26 18590.95 18092.16 23893.84 27586.07 25299.02 11896.30 23093.38 6686.99 22796.52 19972.92 26497.75 22193.46 14686.17 25492.67 264
plane_prior596.30 23097.75 22193.46 14686.17 25492.67 264
PVSNet_Blended_VisFu94.67 10394.11 10196.34 10797.14 14491.10 11999.32 7997.43 14992.10 9291.53 17496.38 20683.29 16699.68 9293.42 14896.37 15098.25 178
AdaColmapbinary93.82 12793.06 13596.10 11799.88 189.07 17298.33 19897.55 12386.81 23790.39 19498.65 9875.09 24499.98 993.32 14997.53 12999.26 103
HyFIR lowres test93.68 13293.29 13194.87 16597.57 11988.04 19998.18 21298.47 2587.57 22191.24 18095.05 23585.49 13597.46 23893.22 15092.82 18999.10 117
HPM-MVS_fast94.89 9094.62 8895.70 13399.11 6688.44 19399.14 10397.11 17985.82 25495.69 10798.47 11483.46 16299.32 13593.16 15199.63 4599.35 94
PMMVS93.62 13593.90 11392.79 22496.79 15981.40 32198.85 13396.81 19991.25 11096.82 8198.15 12877.02 23798.13 19293.15 15296.30 15398.83 143
LCM-MVSNet-Re88.59 24388.61 22488.51 32195.53 21072.68 37396.85 28188.43 39388.45 18773.14 35790.63 32275.82 24094.38 35192.95 15395.71 16498.48 165
EPP-MVSNet93.75 12993.67 12094.01 20195.86 19885.70 26298.67 15497.66 9584.46 27791.36 17897.18 16991.16 2997.79 21392.93 15493.75 18198.53 162
CostFormer92.89 15392.48 14994.12 19594.99 23885.89 25792.89 34997.00 19286.98 23295.00 12090.78 31490.05 5397.51 23692.92 15591.73 21298.96 127
XVG-OURS-SEG-HR90.95 19490.66 18991.83 24595.18 22581.14 32895.92 31195.92 26688.40 19190.33 19597.85 13170.66 28499.38 12892.83 15688.83 24094.98 249
mvsmamba89.99 21589.42 20691.69 25290.64 32986.34 24098.40 19092.27 36891.01 11384.80 24594.93 23676.12 23996.51 27892.81 15783.84 27292.21 276
sss94.85 9593.94 11197.58 4296.43 17194.09 6198.93 12799.16 889.50 15995.27 11497.85 13181.50 20199.65 9892.79 15894.02 17998.99 124
test_vis1_rt81.31 32880.05 33185.11 34591.29 32170.66 37998.98 12477.39 40885.76 25668.80 37282.40 37936.56 39599.44 11992.67 15986.55 25085.24 383
MAR-MVS94.43 11294.09 10295.45 14299.10 6887.47 21398.39 19497.79 7288.37 19294.02 13799.17 3578.64 22999.91 4592.48 16098.85 9298.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 9794.18 10096.59 9199.21 6190.06 15198.80 13997.78 7383.59 29293.85 14099.21 2883.79 15799.97 2192.37 16199.00 8299.74 47
nrg03090.23 20788.87 21794.32 18791.53 31793.54 7098.79 14395.89 27488.12 20284.55 24894.61 24278.80 22796.88 26192.35 16275.21 32092.53 266
OMC-MVS93.90 12493.62 12194.73 17298.63 8787.00 22698.04 22796.56 21692.19 8992.46 15898.73 8979.49 22099.14 14592.16 16394.34 17798.03 189
testing22294.48 11194.00 10595.95 12597.30 13092.27 9798.82 13697.92 5589.20 16494.82 12197.26 16187.13 9697.32 24691.95 16491.56 21598.25 178
131493.44 13791.98 15997.84 3495.24 21894.38 5496.22 30497.92 5590.18 13682.28 27997.71 14177.63 23499.80 8191.94 16598.67 10099.34 96
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 15100.00 191.79 16699.80 2699.94 18
mvs_anonymous92.50 16291.65 16695.06 15796.60 16389.64 16197.06 27396.44 22486.64 24084.14 25393.93 25482.49 18496.17 30391.47 16796.08 15899.35 94
baseline294.04 11893.80 11894.74 17193.07 29490.25 13998.12 21898.16 3989.86 14686.53 23396.95 18195.56 598.05 19991.44 16894.53 17495.93 243
IB-MVS89.43 692.12 17190.83 18595.98 12495.40 21590.78 12899.81 1198.06 4591.23 11185.63 23993.66 26290.63 4198.78 15891.22 16971.85 35598.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 19389.17 21196.69 8695.96 19591.72 10592.62 35397.23 16585.61 25889.74 20493.89 25668.55 29599.42 12391.09 17087.84 24398.92 135
XVG-OURS90.83 19690.49 19191.86 24495.23 21981.25 32595.79 31995.92 26688.96 17290.02 20098.03 13071.60 27899.35 13391.06 17187.78 24494.98 249
3Dnovator87.35 1193.17 14991.77 16497.37 5295.41 21493.07 7998.82 13697.85 6091.53 10182.56 27297.58 14871.97 27399.82 7691.01 17299.23 7299.22 107
VPA-MVSNet89.10 22687.66 24193.45 21292.56 29791.02 12397.97 23198.32 3086.92 23486.03 23592.01 29068.84 29497.10 25390.92 17375.34 31992.23 274
PAPM_NR95.43 7695.05 8396.57 9499.42 4790.14 14498.58 16997.51 13390.65 12292.44 15998.90 7687.77 8399.90 5090.88 17499.32 6799.68 56
3Dnovator+87.72 893.43 13891.84 16298.17 2395.73 20395.08 3498.92 12997.04 18691.42 10681.48 29697.60 14674.60 24799.79 8290.84 17598.97 8499.64 64
test_fmvs285.10 29685.45 27484.02 35489.85 33865.63 38898.49 17892.59 36490.45 12985.43 24293.32 26843.94 38696.59 27290.81 17684.19 26989.85 346
gm-plane-assit94.69 24888.14 19688.22 19997.20 16698.29 18390.79 177
MVSTER92.71 15592.32 15093.86 20597.29 13292.95 8599.01 12096.59 21290.09 14085.51 24094.00 25194.61 1496.56 27490.77 17883.03 28192.08 282
ETVMVS94.50 11093.90 11396.31 10897.48 12492.98 8299.07 11197.86 5988.09 20394.40 13096.90 18488.35 7197.28 24790.72 17992.25 20398.66 159
ACMP87.39 1088.71 23988.24 23290.12 28893.91 27381.06 32998.50 17695.67 28989.43 16180.37 30595.55 22665.67 31997.83 21090.55 18084.51 26591.47 299
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ECVR-MVScopyleft92.29 16691.33 17295.15 15496.41 17287.84 20298.10 22194.84 32590.82 11791.42 17797.28 15965.61 32198.49 17490.33 18197.19 13799.12 115
testdata95.26 15198.20 9687.28 22097.60 11285.21 26398.48 3399.15 3988.15 7698.72 16490.29 18299.45 5999.78 38
LPG-MVS_test88.86 23188.47 22990.06 28993.35 28980.95 33098.22 20895.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
LGP-MVS_train90.06 28993.35 28980.95 33095.94 26087.73 21783.17 26296.11 21366.28 31797.77 21590.19 18385.19 26191.46 300
MVSFormer94.71 10294.08 10396.61 8995.05 23694.87 3897.77 24296.17 24286.84 23598.04 4898.52 10685.52 13295.99 30989.83 18598.97 8498.96 127
test_djsdf88.26 24887.73 23989.84 29688.05 36182.21 31397.77 24296.17 24286.84 23582.41 27791.95 29472.07 27295.99 30989.83 18584.50 26691.32 307
test250694.80 9694.21 9796.58 9296.41 17292.18 9998.01 22898.96 1190.82 11793.46 14797.28 15985.92 12598.45 17789.82 18797.19 13799.12 115
tpmrst92.78 15492.16 15494.65 17496.27 17987.45 21491.83 35997.10 18289.10 16994.68 12590.69 31888.22 7397.73 22389.78 18891.80 21098.77 150
PLCcopyleft91.07 394.23 11594.01 10494.87 16599.17 6387.49 21299.25 8596.55 21788.43 19091.26 17998.21 12685.92 12599.86 6389.77 18997.57 12697.24 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 17191.19 17594.94 16296.15 18687.36 21798.12 21894.84 32590.85 11690.97 18297.26 16165.60 32298.37 17989.74 19097.14 14099.07 121
CDS-MVSNet93.47 13693.04 13794.76 16994.75 24789.45 16598.82 13697.03 18887.91 21090.97 18296.48 20189.06 6296.36 28889.50 19192.81 19198.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 21690.68 18887.81 32695.15 22671.98 37597.87 23695.40 30591.92 9387.57 22091.44 30274.27 25396.84 26289.45 19293.10 18794.60 251
jajsoiax87.35 26186.51 25889.87 29487.75 36681.74 31797.03 27495.98 25488.47 18480.15 30893.80 25861.47 33996.36 28889.44 19384.47 26791.50 298
mvs_tets87.09 26486.22 26189.71 30087.87 36281.39 32296.73 28895.90 27288.19 20079.99 31093.61 26359.96 34696.31 29689.40 19484.34 26891.43 302
PS-MVSNAJss89.54 22289.05 21491.00 26388.77 35284.36 28497.39 25795.97 25588.47 18481.88 28993.80 25882.48 18596.50 27989.34 19583.34 28092.15 279
VPNet88.30 24686.57 25693.49 21191.95 30991.35 11198.18 21297.20 17188.61 18184.52 24994.89 23762.21 33796.76 26789.34 19572.26 35292.36 268
114514_t94.06 11793.05 13697.06 6199.08 6992.26 9898.97 12597.01 19182.58 31292.57 15798.22 12480.68 21099.30 13689.34 19599.02 8199.63 66
OPM-MVS89.76 21889.15 21291.57 25490.53 33085.58 26498.11 22095.93 26492.88 7686.05 23496.47 20267.06 31197.87 20889.29 19886.08 25691.26 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 13392.67 14596.69 8696.72 16192.66 8997.22 26896.03 25287.69 21995.12 11894.03 24981.55 19998.28 18489.17 19996.46 14799.14 112
BH-w/o92.32 16591.79 16393.91 20496.85 15486.18 24699.11 10895.74 28388.13 20184.81 24497.00 17977.26 23697.91 20489.16 20098.03 11797.64 198
TAMVS92.62 15892.09 15794.20 19294.10 26387.68 20598.41 18796.97 19487.53 22389.74 20496.04 21684.77 14996.49 28188.97 20192.31 20098.42 166
CNLPA93.64 13492.74 14396.36 10698.96 7590.01 15499.19 8995.89 27486.22 24989.40 20798.85 8180.66 21199.84 6988.57 20296.92 14299.24 104
baseline192.61 15991.28 17396.58 9297.05 15194.63 4897.72 24696.20 23789.82 14788.56 21396.85 18886.85 10497.82 21188.42 20380.10 29697.30 208
CANet_DTU94.31 11493.35 12897.20 5897.03 15294.71 4698.62 16195.54 29695.61 2597.21 6898.47 11471.88 27499.84 6988.38 20497.46 13197.04 218
thisisatest051594.75 9894.19 9896.43 10096.13 19192.64 9299.47 5597.60 11287.55 22293.17 15097.59 14794.71 1198.42 17888.28 20593.20 18598.24 181
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17197.00 7498.97 6288.14 7799.71 9088.23 20699.62 4698.76 151
UGNet91.91 17590.85 18295.10 15597.06 15088.69 18898.01 22898.24 3492.41 8592.39 16093.61 26360.52 34499.68 9288.14 20797.25 13596.92 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 21089.50 20392.19 23796.21 18282.67 30997.76 24497.53 12788.05 20491.67 16896.15 21183.10 17197.47 23788.11 20866.91 37296.43 236
Vis-MVSNet (Re-imp)93.26 14693.00 13994.06 19896.14 18886.71 23198.68 15296.70 20488.30 19689.71 20697.64 14585.43 13896.39 28688.06 20996.32 15199.08 119
PVSNet87.13 1293.69 13092.83 14296.28 10997.99 10490.22 14299.38 7198.93 1291.42 10693.66 14497.68 14271.29 28199.64 10087.94 21097.20 13698.98 125
FIs90.70 19989.87 19993.18 21692.29 30191.12 11798.17 21498.25 3289.11 16883.44 25894.82 23982.26 19196.17 30387.76 21182.76 28392.25 272
tpm291.77 17691.09 17693.82 20794.83 24585.56 26592.51 35497.16 17484.00 28393.83 14190.66 32087.54 8597.17 24987.73 21291.55 21698.72 152
无先验98.52 17297.82 6587.20 22799.90 5087.64 21399.85 30
Anonymous20240521188.84 23287.03 25194.27 18898.14 10084.18 28798.44 18395.58 29476.79 35789.34 20896.88 18753.42 36999.54 10887.53 21487.12 24799.09 118
IS-MVSNet93.00 15292.51 14894.49 17996.14 18887.36 21798.31 20195.70 28688.58 18390.17 19697.50 15183.02 17397.22 24887.06 21596.07 15998.90 136
MDTV_nov1_ep13_2view91.17 11691.38 36787.45 22493.08 15286.67 10987.02 21698.95 131
Anonymous2024052987.66 25885.58 27193.92 20397.59 11785.01 27698.13 21697.13 17766.69 39288.47 21496.01 21755.09 36399.51 11087.00 21784.12 27097.23 212
UniMVSNet_NR-MVSNet89.60 22088.55 22792.75 22692.17 30490.07 14898.74 14698.15 4088.37 19283.21 26093.98 25282.86 17595.93 31386.95 21872.47 34992.25 272
DU-MVS88.83 23487.51 24292.79 22491.46 31890.07 14898.71 14797.62 10988.87 17783.21 26093.68 26074.63 24595.93 31386.95 21872.47 34992.36 268
FA-MVS(test-final)92.22 17091.08 17795.64 13796.05 19288.98 17691.60 36397.25 16186.99 22991.84 16492.12 28683.03 17299.00 15186.91 22093.91 18098.93 133
ACMM86.95 1388.77 23788.22 23390.43 28093.61 28181.34 32398.50 17695.92 26687.88 21183.85 25695.20 23467.20 30997.89 20686.90 22184.90 26392.06 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 22388.32 23193.03 21892.21 30390.96 12598.90 13198.39 2789.13 16783.22 25992.03 28881.69 19896.34 29486.79 22272.53 34891.81 287
BH-untuned91.46 18190.84 18393.33 21496.51 16884.83 27998.84 13595.50 29886.44 24883.50 25796.70 19575.49 24397.77 21586.78 22397.81 12097.40 205
mvsany_test375.85 35174.52 35379.83 36873.53 40060.64 39291.73 36187.87 39583.91 28670.55 36682.52 37831.12 39793.66 35586.66 22462.83 37985.19 384
miper_enhance_ethall90.33 20589.70 20092.22 23597.12 14688.93 18198.35 19795.96 25788.60 18283.14 26492.33 28587.38 8896.18 30286.49 22577.89 30591.55 297
thisisatest053094.00 11993.52 12395.43 14395.76 20290.02 15398.99 12297.60 11286.58 24191.74 16697.36 15894.78 1098.34 18086.37 22692.48 19697.94 192
UWE-MVS93.18 14793.40 12792.50 23296.56 16483.55 29598.09 22497.84 6189.50 15991.72 16796.23 20991.08 3296.70 26886.28 22793.33 18497.26 210
TESTMET0.1,193.82 12793.26 13295.49 14195.21 22190.25 13999.15 10097.54 12689.18 16691.79 16594.87 23889.13 6197.63 22886.21 22896.29 15498.60 160
anonymousdsp86.69 27085.75 26989.53 30586.46 37482.94 30296.39 29595.71 28583.97 28479.63 31590.70 31768.85 29395.94 31286.01 22984.02 27189.72 348
F-COLMAP92.07 17391.75 16593.02 21998.16 9982.89 30598.79 14395.97 25586.54 24387.92 21797.80 13478.69 22899.65 9885.97 23095.93 16196.53 233
cl2289.57 22188.79 22091.91 24397.94 10587.62 20897.98 23096.51 21985.03 26882.37 27891.79 29583.65 15896.50 27985.96 23177.89 30591.61 294
test-LLR93.11 15092.68 14494.40 18394.94 24187.27 22199.15 10097.25 16190.21 13491.57 17094.04 24784.89 14597.58 23285.94 23296.13 15598.36 174
test-mter93.27 14592.89 14194.40 18394.94 24187.27 22199.15 10097.25 16188.95 17391.57 17094.04 24788.03 7997.58 23285.94 23296.13 15598.36 174
FC-MVSNet-test90.22 20889.40 20792.67 23091.78 31389.86 15797.89 23398.22 3588.81 17882.96 26594.66 24181.90 19795.96 31185.89 23482.52 28692.20 278
Vis-MVSNetpermissive92.64 15791.85 16195.03 16095.12 22988.23 19498.48 18096.81 19991.61 9892.16 16397.22 16571.58 27998.00 20385.85 23597.81 12098.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sd_testset89.23 22488.05 23792.74 22796.80 15785.33 26995.85 31797.03 18888.34 19485.73 23695.26 23261.12 34297.76 22085.61 23686.75 24895.14 246
test_fmvs375.09 35275.19 34974.81 37377.45 39654.08 39995.93 31090.64 38482.51 31573.29 35581.19 38422.29 40286.29 39585.50 23767.89 36884.06 386
WR-MVS88.54 24487.22 24992.52 23191.93 31189.50 16498.56 17097.84 6186.99 22981.87 29093.81 25774.25 25495.92 31585.29 23874.43 32992.12 280
XXY-MVS87.75 25486.02 26492.95 22290.46 33189.70 16097.71 24895.90 27284.02 28280.95 29994.05 24667.51 30797.10 25385.16 23978.41 30292.04 284
thres20093.69 13092.59 14796.97 6997.76 10994.74 4599.35 7699.36 289.23 16391.21 18196.97 18083.42 16398.77 15985.08 24090.96 22897.39 206
tttt051793.30 14393.01 13894.17 19395.57 20786.47 23498.51 17597.60 11285.99 25290.55 18997.19 16894.80 998.31 18185.06 24191.86 20897.74 195
XVG-ACMP-BASELINE85.86 28584.95 28188.57 32089.90 33677.12 35594.30 33595.60 29387.40 22582.12 28292.99 27853.42 36997.66 22585.02 24283.83 27390.92 318
dmvs_re88.69 24088.06 23690.59 27493.83 27778.68 34595.75 32096.18 24187.99 20784.48 25096.32 20767.52 30696.94 25984.98 24385.49 26096.14 240
新几何197.40 5098.92 7792.51 9497.77 7585.52 25996.69 8599.06 5388.08 7899.89 5384.88 24499.62 4699.79 36
1112_ss92.71 15591.55 16896.20 11195.56 20891.12 11798.48 18094.69 33288.29 19786.89 23098.50 10887.02 10098.66 16784.75 24589.77 23898.81 145
miper_ehance_all_eth88.94 22988.12 23591.40 25595.32 21786.93 22797.85 23795.55 29584.19 28081.97 28791.50 30184.16 15395.91 31684.69 24677.89 30591.36 305
Test_1112_low_res92.27 16890.97 17996.18 11295.53 21091.10 11998.47 18294.66 33388.28 19886.83 23193.50 26787.00 10198.65 16884.69 24689.74 23998.80 146
TR-MVS90.77 19789.44 20594.76 16996.31 17788.02 20097.92 23295.96 25785.52 25988.22 21697.23 16466.80 31298.09 19584.58 24892.38 19798.17 186
tt080586.50 27684.79 28591.63 25391.97 30781.49 31996.49 29397.38 15482.24 31982.44 27495.82 22251.22 37498.25 18684.55 24980.96 29295.13 248
OpenMVScopyleft85.28 1490.75 19888.84 21896.48 9793.58 28293.51 7198.80 13997.41 15182.59 31178.62 32597.49 15268.00 30299.82 7684.52 25098.55 10596.11 241
UniMVSNet_ETH3D85.65 29283.79 30091.21 25890.41 33280.75 33295.36 32595.78 28078.76 34781.83 29394.33 24549.86 37996.66 26984.30 25183.52 27896.22 239
NR-MVSNet87.74 25786.00 26592.96 22191.46 31890.68 13296.65 29097.42 15088.02 20673.42 35493.68 26077.31 23595.83 31984.26 25271.82 35692.36 268
D2MVS87.96 25087.39 24489.70 30191.84 31283.40 29798.31 20198.49 2388.04 20578.23 33190.26 33373.57 25796.79 26684.21 25383.53 27788.90 358
testdata299.88 5484.16 254
Baseline_NR-MVSNet85.83 28684.82 28488.87 31988.73 35383.34 29898.63 16091.66 37780.41 34182.44 27491.35 30474.63 24595.42 33184.13 25571.39 35887.84 364
thres100view90093.34 14292.15 15596.90 7297.62 11494.84 4099.06 11499.36 287.96 20890.47 19296.78 19283.29 16698.75 16184.11 25690.69 23097.12 213
tfpn200view993.43 13892.27 15296.90 7297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23097.12 213
thres40093.39 14092.27 15296.73 8297.68 11294.84 4099.18 9199.36 288.45 18790.79 18496.90 18483.31 16498.75 16184.11 25690.69 23096.61 228
c3_l88.19 24987.23 24891.06 26194.97 23986.17 24797.72 24695.38 30683.43 29481.68 29491.37 30382.81 17695.72 32284.04 25973.70 33791.29 309
UA-Net93.30 14392.62 14695.34 14696.27 17988.53 19295.88 31496.97 19490.90 11595.37 11397.07 17482.38 19099.10 14783.91 26094.86 17398.38 170
IterMVS-LS88.34 24587.44 24391.04 26294.10 26385.85 25998.10 22195.48 29985.12 26482.03 28691.21 30781.35 20595.63 32583.86 26175.73 31791.63 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 21789.38 20891.36 25794.32 25785.87 25897.61 25396.59 21285.10 26585.51 24097.10 17281.30 20696.56 27483.85 26283.03 28191.64 289
tpm89.67 21988.95 21691.82 24692.54 29881.43 32092.95 34895.92 26687.81 21290.50 19189.44 34684.99 14395.65 32483.67 26382.71 28498.38 170
eth_miper_zixun_eth87.76 25387.00 25290.06 28994.67 24982.65 31097.02 27695.37 30784.19 28081.86 29291.58 30081.47 20295.90 31783.24 26473.61 33891.61 294
Fast-Effi-MVS+91.72 17790.79 18694.49 17995.89 19687.40 21699.54 4995.70 28685.01 27089.28 20995.68 22577.75 23397.57 23583.22 26595.06 17198.51 163
test_post190.74 37541.37 41185.38 13996.36 28883.16 266
SCA90.64 20189.25 21094.83 16894.95 24088.83 18396.26 30197.21 16790.06 14390.03 19990.62 32366.61 31396.81 26483.16 26694.36 17698.84 140
TranMVSNet+NR-MVSNet87.75 25486.31 26092.07 24190.81 32688.56 18998.33 19897.18 17287.76 21481.87 29093.90 25572.45 26895.43 33083.13 26871.30 35992.23 274
CMPMVSbinary58.40 2180.48 33180.11 33081.59 36685.10 37859.56 39394.14 33895.95 25968.54 38660.71 39093.31 26955.35 36297.87 20883.06 26984.85 26487.33 370
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 14792.00 15896.75 8097.62 11494.92 3599.07 11199.36 287.96 20890.47 19296.78 19283.29 16698.71 16582.93 27090.47 23496.61 228
pmmvs487.58 26086.17 26391.80 24789.58 34288.92 18297.25 26595.28 31082.54 31380.49 30493.17 27475.62 24296.05 30882.75 27178.90 30090.42 333
CVMVSNet90.30 20690.91 18188.46 32294.32 25773.58 36897.61 25397.59 11690.16 13988.43 21597.10 17276.83 23892.86 36282.64 27293.54 18398.93 133
Anonymous2023121184.72 30082.65 31290.91 26597.71 11184.55 28297.28 26396.67 20566.88 39179.18 32190.87 31358.47 35096.60 27182.61 27374.20 33391.59 296
GA-MVS90.10 21288.69 22294.33 18692.44 29987.97 20199.08 11096.26 23489.65 15186.92 22993.11 27568.09 30096.96 25782.54 27490.15 23598.05 188
QAPM91.41 18289.49 20497.17 5995.66 20693.42 7398.60 16597.51 13380.92 33681.39 29797.41 15672.89 26699.87 5882.33 27598.68 9998.21 183
Patchmatch-RL test81.90 32580.13 32987.23 33380.71 39070.12 38284.07 39388.19 39483.16 29970.57 36582.18 38187.18 9592.59 36782.28 27662.78 38098.98 125
v2v48287.27 26385.76 26891.78 25189.59 34187.58 20998.56 17095.54 29684.53 27682.51 27391.78 29673.11 26396.47 28282.07 27774.14 33591.30 308
Fast-Effi-MVS+-dtu88.84 23288.59 22689.58 30493.44 28778.18 34998.65 15694.62 33488.46 18684.12 25495.37 23168.91 29296.52 27782.06 27891.70 21394.06 253
pmmvs585.87 28484.40 29590.30 28588.53 35684.23 28598.60 16593.71 35281.53 32880.29 30692.02 28964.51 32795.52 32782.04 27978.34 30391.15 312
V4287.00 26585.68 27090.98 26489.91 33586.08 25098.32 20095.61 29283.67 29182.72 26790.67 31974.00 25696.53 27681.94 28074.28 33290.32 335
EPMVS92.59 16091.59 16795.59 14097.22 13790.03 15291.78 36098.04 4890.42 13191.66 16990.65 32186.49 11697.46 23881.78 28196.31 15299.28 101
DIV-MVS_self_test87.82 25186.81 25490.87 26894.87 24485.39 26897.81 23895.22 31982.92 30880.76 30191.31 30581.99 19495.81 32081.36 28275.04 32291.42 303
cl____87.82 25186.79 25590.89 26794.88 24385.43 26697.81 23895.24 31482.91 30980.71 30291.22 30681.97 19695.84 31881.34 28375.06 32191.40 304
RPSCF85.33 29485.55 27284.67 35194.63 25162.28 39093.73 34193.76 35074.38 36785.23 24397.06 17564.09 32898.31 18180.98 28486.08 25693.41 258
OurMVSNet-221017-084.13 31283.59 30185.77 34387.81 36370.24 38094.89 33093.65 35486.08 25076.53 33593.28 27161.41 34096.14 30580.95 28577.69 31090.93 317
v14886.38 27885.06 27890.37 28489.47 34684.10 28898.52 17295.48 29983.80 28780.93 30090.22 33774.60 24796.31 29680.92 28671.55 35790.69 328
PatchMatch-RL91.47 18090.54 19094.26 18998.20 9686.36 23996.94 27797.14 17587.75 21588.98 21095.75 22371.80 27699.40 12780.92 28697.39 13397.02 219
FE-MVS91.38 18490.16 19595.05 15996.46 17087.53 21189.69 37897.84 6182.97 30492.18 16292.00 29284.07 15598.93 15580.71 28895.52 16698.68 155
miper_lstm_enhance86.90 26686.20 26289.00 31694.53 25281.19 32696.74 28795.24 31482.33 31880.15 30890.51 33081.99 19494.68 34880.71 28873.58 33991.12 313
PCF-MVS89.78 591.26 18589.63 20196.16 11695.44 21291.58 10995.29 32696.10 24685.07 26782.75 26697.45 15478.28 23099.78 8480.60 29095.65 16597.12 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 18789.99 19795.03 16096.75 16088.55 19098.65 15694.95 32287.74 21687.74 21997.80 13468.27 29898.14 19180.53 29197.49 13098.41 167
GeoE90.60 20289.56 20293.72 21095.10 23385.43 26699.41 6894.94 32383.96 28587.21 22696.83 19174.37 25197.05 25580.50 29293.73 18298.67 156
CP-MVSNet86.54 27485.45 27489.79 29891.02 32582.78 30897.38 25997.56 12285.37 26179.53 31793.03 27671.86 27595.25 33579.92 29373.43 34391.34 306
PatchmatchNetpermissive92.05 17491.04 17895.06 15796.17 18589.04 17391.26 36997.26 16089.56 15790.64 18890.56 32788.35 7197.11 25179.53 29496.07 15999.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 26885.31 27691.40 25589.75 33987.21 22598.31 20195.45 30183.22 29782.70 26890.78 31473.36 25896.36 28879.49 29574.69 32690.63 330
IterMVS85.81 28784.67 28889.22 31193.51 28383.67 29496.32 29894.80 32885.09 26678.69 32390.17 34066.57 31593.17 36179.48 29677.42 31190.81 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 29084.64 28989.00 31693.46 28682.90 30496.27 29994.70 33185.02 26978.62 32590.35 33266.61 31393.33 35879.38 29777.36 31290.76 324
GBi-Net86.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
test186.67 27184.96 27991.80 24795.11 23088.81 18496.77 28395.25 31182.94 30582.12 28290.25 33462.89 33494.97 33979.04 29880.24 29391.62 291
FMVSNet388.81 23687.08 25093.99 20296.52 16794.59 4998.08 22596.20 23785.85 25382.12 28291.60 29974.05 25595.40 33279.04 29880.24 29391.99 285
LF4IMVS81.94 32481.17 32384.25 35387.23 37068.87 38593.35 34591.93 37583.35 29675.40 34493.00 27749.25 38296.65 27078.88 30178.11 30487.22 372
v886.11 28184.45 29291.10 26089.99 33486.85 22897.24 26695.36 30881.99 32379.89 31289.86 34274.53 24996.39 28678.83 30272.32 35190.05 342
pm-mvs184.68 30182.78 30990.40 28189.58 34285.18 27297.31 26194.73 33081.93 32576.05 33892.01 29065.48 32396.11 30678.75 30369.14 36389.91 345
test_f71.94 35770.82 35875.30 37272.77 40153.28 40091.62 36289.66 39075.44 36264.47 38678.31 39220.48 40389.56 38678.63 30466.02 37583.05 391
v14419286.40 27784.89 28290.91 26589.48 34585.59 26398.21 21095.43 30482.45 31682.62 27190.58 32672.79 26796.36 28878.45 30574.04 33690.79 322
PS-CasMVS85.81 28784.58 29089.49 30890.77 32782.11 31497.20 26997.36 15684.83 27379.12 32292.84 27967.42 30895.16 33778.39 30673.25 34491.21 311
tmp_tt53.66 37152.86 37356.05 38832.75 41641.97 41273.42 40276.12 40921.91 40939.68 40596.39 20542.59 38965.10 40878.00 30714.92 40961.08 401
JIA-IIPM85.97 28384.85 28389.33 31093.23 29173.68 36785.05 38897.13 17769.62 38391.56 17268.03 39888.03 7996.96 25777.89 30893.12 18697.34 207
MDTV_nov1_ep1390.47 19296.14 18888.55 19091.34 36897.51 13389.58 15592.24 16190.50 33186.99 10297.61 23077.64 30992.34 199
v119286.32 27984.71 28791.17 25989.53 34486.40 23698.13 21695.44 30382.52 31482.42 27690.62 32371.58 27996.33 29577.23 31074.88 32390.79 322
FMVSNet286.90 26684.79 28593.24 21595.11 23092.54 9397.67 25195.86 27882.94 30580.55 30391.17 30862.89 33495.29 33477.23 31079.71 29991.90 286
MVP-Stereo86.61 27385.83 26788.93 31888.70 35483.85 29296.07 30894.41 34182.15 32175.64 34391.96 29367.65 30596.45 28477.20 31298.72 9886.51 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 23087.27 24793.76 20895.79 20085.32 27090.76 37497.09 18376.14 35985.72 23888.59 35282.92 17498.04 20076.96 31391.43 22297.90 193
v1085.73 29084.01 29890.87 26890.03 33386.73 23097.20 26995.22 31981.25 33179.85 31389.75 34373.30 26196.28 30076.87 31472.64 34789.61 350
v192192086.02 28284.44 29390.77 27189.32 34785.20 27198.10 22195.35 30982.19 32082.25 28090.71 31670.73 28296.30 29976.85 31574.49 32890.80 321
MS-PatchMatch86.75 26985.92 26689.22 31191.97 30782.47 31296.91 27896.14 24483.74 28877.73 33293.53 26658.19 35197.37 24576.75 31698.35 11087.84 364
K. test v381.04 32979.77 33284.83 34987.41 36770.23 38195.60 32493.93 34983.70 29067.51 37989.35 34855.76 35793.58 35776.67 31768.03 36790.67 329
PM-MVS74.88 35372.85 35680.98 36778.98 39464.75 38990.81 37385.77 39780.95 33568.23 37682.81 37729.08 39992.84 36376.54 31862.46 38285.36 381
WR-MVS_H86.53 27585.49 27389.66 30391.04 32483.31 29997.53 25598.20 3684.95 27179.64 31490.90 31278.01 23295.33 33376.29 31972.81 34590.35 334
ACMH+83.78 1584.21 30982.56 31489.15 31393.73 28079.16 34096.43 29494.28 34381.09 33374.00 35094.03 24954.58 36597.67 22476.10 32078.81 30190.63 330
PEN-MVS85.21 29583.93 29989.07 31589.89 33781.31 32497.09 27297.24 16484.45 27878.66 32492.68 28268.44 29794.87 34275.98 32170.92 36091.04 315
USDC84.74 29982.93 30590.16 28791.73 31483.54 29695.00 32993.30 35888.77 17973.19 35693.30 27053.62 36897.65 22775.88 32281.54 29089.30 353
EU-MVSNet84.19 31084.42 29483.52 35888.64 35567.37 38696.04 30995.76 28285.29 26278.44 32893.18 27370.67 28391.48 37875.79 32375.98 31591.70 288
v124085.77 28984.11 29690.73 27289.26 34885.15 27497.88 23595.23 31881.89 32682.16 28190.55 32869.60 29196.31 29675.59 32474.87 32490.72 327
ITE_SJBPF87.93 32492.26 30276.44 35793.47 35787.67 22079.95 31195.49 22956.50 35697.38 24375.24 32582.33 28789.98 344
dp90.16 21188.83 21994.14 19496.38 17586.42 23591.57 36497.06 18584.76 27488.81 21190.19 33984.29 15297.43 24175.05 32691.35 22698.56 161
LS3D90.19 20988.72 22194.59 17898.97 7386.33 24196.90 27996.60 21074.96 36484.06 25598.74 8875.78 24199.83 7374.93 32797.57 12697.62 201
TDRefinement78.01 34475.31 34886.10 34170.06 40373.84 36693.59 34491.58 37974.51 36673.08 35991.04 30949.63 38197.12 25074.88 32859.47 38687.33 370
tpmvs89.16 22587.76 23893.35 21397.19 14084.75 28090.58 37697.36 15681.99 32384.56 24789.31 34983.98 15698.17 18974.85 32990.00 23797.12 213
pmmvs679.90 33477.31 34087.67 32784.17 38178.13 35095.86 31693.68 35367.94 38872.67 36289.62 34550.98 37695.75 32174.80 33066.04 37489.14 356
SixPastTwentyTwo82.63 32081.58 31885.79 34288.12 36071.01 37895.17 32792.54 36584.33 27972.93 36192.08 28760.41 34595.61 32674.47 33174.15 33490.75 325
ACMH83.09 1784.60 30282.61 31390.57 27593.18 29282.94 30296.27 29994.92 32481.01 33472.61 36393.61 26356.54 35597.79 21374.31 33281.07 29190.99 316
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis3_rt61.29 36458.75 36768.92 38067.41 40452.84 40291.18 37159.23 41566.96 39041.96 40358.44 40311.37 41194.72 34774.25 33357.97 38959.20 402
ADS-MVSNet287.62 25986.88 25389.86 29596.21 18279.14 34187.15 38292.99 35983.01 30289.91 20187.27 36278.87 22592.80 36574.20 33492.27 20197.64 198
ADS-MVSNet88.99 22787.30 24694.07 19796.21 18287.56 21087.15 38296.78 20283.01 30289.91 20187.27 36278.87 22597.01 25674.20 33492.27 20197.64 198
lessismore_v085.08 34685.59 37769.28 38390.56 38567.68 37890.21 33854.21 36795.46 32973.88 33662.64 38190.50 332
MIMVSNet84.48 30581.83 31692.42 23391.73 31487.36 21785.52 38594.42 34081.40 32981.91 28887.58 35651.92 37292.81 36473.84 33788.15 24297.08 217
v7n84.42 30782.75 31089.43 30988.15 35981.86 31696.75 28695.67 28980.53 33778.38 32989.43 34769.89 28696.35 29373.83 33872.13 35390.07 340
ambc79.60 36972.76 40256.61 39676.20 40092.01 37468.25 37580.23 38823.34 40194.73 34673.78 33960.81 38487.48 367
pmmvs-eth3d78.71 34176.16 34686.38 33780.25 39281.19 32694.17 33792.13 37277.97 35066.90 38282.31 38055.76 35792.56 36873.63 34062.31 38385.38 380
FMVSNet183.94 31481.32 32291.80 24791.94 31088.81 18496.77 28395.25 31177.98 34978.25 33090.25 33450.37 37894.97 33973.27 34177.81 30991.62 291
MSDG88.29 24786.37 25994.04 20096.90 15386.15 24896.52 29294.36 34277.89 35379.22 32096.95 18169.72 28899.59 10473.20 34292.58 19596.37 238
test0.0.03 188.96 22888.61 22490.03 29391.09 32384.43 28398.97 12597.02 19090.21 13480.29 30696.31 20884.89 14591.93 37672.98 34385.70 25993.73 254
UnsupCasMVSNet_eth78.90 33976.67 34485.58 34482.81 38674.94 36291.98 35896.31 22984.64 27565.84 38587.71 35551.33 37392.23 37272.89 34456.50 39289.56 351
WB-MVSnew88.69 24088.34 23089.77 29994.30 26185.99 25598.14 21597.31 15987.15 22887.85 21896.07 21569.91 28595.52 32772.83 34591.47 22187.80 366
DTE-MVSNet84.14 31182.80 30788.14 32388.95 35179.87 33596.81 28296.24 23583.50 29377.60 33392.52 28467.89 30494.24 35372.64 34669.05 36490.32 335
EPNet_dtu92.28 16792.15 15592.70 22897.29 13284.84 27898.64 15897.82 6592.91 7593.02 15397.02 17885.48 13795.70 32372.25 34794.89 17297.55 203
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 29883.12 30490.52 27896.82 15578.84 34395.89 31292.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
TestCases90.52 27896.82 15578.84 34392.17 37077.96 35175.94 33995.50 22755.48 35999.18 13971.15 34887.14 24593.55 256
DP-MVS88.75 23886.56 25795.34 14698.92 7787.45 21497.64 25293.52 35670.55 37781.49 29597.25 16374.43 25099.88 5471.14 35094.09 17898.67 156
CR-MVSNet88.83 23487.38 24593.16 21793.47 28486.24 24284.97 38994.20 34588.92 17690.76 18686.88 36684.43 15094.82 34470.64 35192.17 20598.41 167
KD-MVS_2432*160082.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
miper_refine_blended82.98 31880.52 32790.38 28294.32 25788.98 17692.87 35095.87 27680.46 33973.79 35187.49 35982.76 17993.29 35970.56 35246.53 40288.87 359
test_method70.10 35968.66 36274.41 37586.30 37655.84 39794.47 33289.82 38835.18 40466.15 38484.75 37430.54 39877.96 40570.40 35460.33 38589.44 352
LTVRE_ROB81.71 1984.59 30382.72 31190.18 28692.89 29683.18 30093.15 34694.74 32978.99 34475.14 34692.69 28165.64 32097.63 22869.46 35581.82 28989.74 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
myMVS_eth3d88.68 24289.07 21387.50 33095.14 22779.74 33697.68 24996.66 20686.52 24482.63 26996.84 18985.22 14289.89 38369.43 35691.54 21792.87 260
FMVSNet582.29 32180.54 32687.52 32993.79 27984.01 28993.73 34192.47 36676.92 35674.27 34886.15 37063.69 33289.24 38869.07 35774.79 32589.29 354
our_test_384.47 30682.80 30789.50 30689.01 34983.90 29197.03 27494.56 33581.33 33075.36 34590.52 32971.69 27794.54 35068.81 35876.84 31390.07 340
UnsupCasMVSNet_bld73.85 35570.14 35984.99 34779.44 39375.73 35888.53 37995.24 31470.12 38161.94 38974.81 39541.41 39193.62 35668.65 35951.13 39985.62 379
Patchmtry83.61 31781.64 31789.50 30693.36 28882.84 30784.10 39294.20 34569.47 38479.57 31686.88 36684.43 15094.78 34568.48 36074.30 33190.88 319
KD-MVS_self_test77.47 34775.88 34782.24 36181.59 38768.93 38492.83 35294.02 34877.03 35573.14 35783.39 37655.44 36190.42 38067.95 36157.53 39087.38 368
WAC-MVS79.74 33667.75 362
TransMVSNet (Re)81.97 32379.61 33389.08 31489.70 34084.01 28997.26 26491.85 37678.84 34573.07 36091.62 29867.17 31095.21 33667.50 36359.46 38788.02 363
COLMAP_ROBcopyleft82.69 1884.54 30482.82 30689.70 30196.72 16178.85 34295.89 31292.83 36271.55 37477.54 33495.89 22159.40 34899.14 14567.26 36488.26 24191.11 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 33377.59 33886.90 33587.06 37177.90 35396.20 30694.06 34774.61 36566.53 38388.76 35140.40 39396.20 30167.02 36583.66 27686.61 374
DSMNet-mixed81.60 32681.43 32082.10 36384.36 38060.79 39193.63 34386.74 39679.00 34379.32 31987.15 36463.87 33089.78 38566.89 36691.92 20795.73 244
testgi82.29 32181.00 32486.17 34087.24 36974.84 36397.39 25791.62 37888.63 18075.85 34295.42 23046.07 38591.55 37766.87 36779.94 29792.12 280
MDA-MVSNet_test_wron79.65 33677.05 34187.45 33187.79 36580.13 33396.25 30294.44 33773.87 36851.80 39687.47 36168.04 30192.12 37466.02 36867.79 36990.09 338
YYNet179.64 33777.04 34287.43 33287.80 36479.98 33496.23 30394.44 33773.83 36951.83 39587.53 35767.96 30392.07 37566.00 36967.75 37090.23 337
DeepMVS_CXcopyleft76.08 37190.74 32851.65 40490.84 38386.47 24757.89 39287.98 35335.88 39692.60 36665.77 37065.06 37783.97 387
Anonymous2024052178.63 34276.90 34383.82 35582.82 38572.86 37195.72 32193.57 35573.55 37172.17 36484.79 37349.69 38092.51 36965.29 37174.50 32786.09 378
TinyColmap80.42 33277.94 33787.85 32592.09 30578.58 34693.74 34089.94 38774.99 36369.77 36991.78 29646.09 38497.58 23265.17 37277.89 30587.38 368
kuosan84.40 30883.34 30287.60 32895.87 19779.21 33992.39 35596.87 19776.12 36073.79 35193.98 25281.51 20090.63 37964.13 37375.42 31892.95 259
MVS-HIRNet79.01 33875.13 35090.66 27393.82 27881.69 31885.16 38693.75 35154.54 39674.17 34959.15 40257.46 35396.58 27363.74 37494.38 17593.72 255
ppachtmachnet_test83.63 31681.57 31989.80 29789.01 34985.09 27597.13 27194.50 33678.84 34576.14 33791.00 31069.78 28794.61 34963.40 37574.36 33089.71 349
CL-MVSNet_self_test79.89 33578.34 33684.54 35281.56 38875.01 36196.88 28095.62 29181.10 33275.86 34185.81 37168.49 29690.26 38163.21 37656.51 39188.35 361
Patchmatch-test86.25 28084.06 29792.82 22394.42 25382.88 30682.88 39694.23 34471.58 37379.39 31890.62 32389.00 6496.42 28563.03 37791.37 22599.16 110
pmmvs372.86 35669.76 36182.17 36273.86 39974.19 36594.20 33689.01 39264.23 39567.72 37780.91 38741.48 39088.65 39062.40 37854.02 39583.68 388
new_pmnet76.02 34973.71 35482.95 35983.88 38272.85 37291.26 36992.26 36970.44 37862.60 38881.37 38347.64 38392.32 37161.85 37972.10 35483.68 388
tfpnnormal83.65 31581.35 32190.56 27791.37 32088.06 19897.29 26297.87 5878.51 34876.20 33690.91 31164.78 32696.47 28261.71 38073.50 34087.13 373
testing387.75 25488.22 23386.36 33894.66 25077.41 35499.52 5097.95 5486.05 25181.12 29896.69 19686.18 12289.31 38761.65 38190.12 23692.35 271
MDA-MVSNet-bldmvs77.82 34674.75 35287.03 33488.33 35778.52 34796.34 29792.85 36175.57 36148.87 39887.89 35457.32 35492.49 37060.79 38264.80 37890.08 339
Anonymous2023120680.76 33079.42 33484.79 35084.78 37972.98 37096.53 29192.97 36079.56 34274.33 34788.83 35061.27 34192.15 37360.59 38375.92 31689.24 355
new-patchmatchnet74.80 35472.40 35781.99 36478.36 39572.20 37494.44 33392.36 36777.06 35463.47 38779.98 38951.04 37588.85 38960.53 38454.35 39484.92 385
LCM-MVSNet60.07 36656.37 36871.18 37754.81 41248.67 40582.17 39789.48 39137.95 40249.13 39769.12 39613.75 41081.76 39759.28 38551.63 39883.10 390
TAPA-MVS87.50 990.35 20489.05 21494.25 19098.48 9185.17 27398.42 18596.58 21582.44 31787.24 22598.53 10582.77 17798.84 15759.09 38697.88 11998.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 34377.48 33981.62 36583.07 38471.03 37796.11 30792.83 36281.66 32769.31 37189.68 34457.53 35287.29 39358.65 38768.47 36586.53 375
PatchT85.44 29383.19 30392.22 23593.13 29383.00 30183.80 39596.37 22670.62 37690.55 18979.63 39084.81 14794.87 34258.18 38891.59 21498.79 147
APD_test168.93 36066.98 36374.77 37480.62 39153.15 40187.97 38085.01 39953.76 39759.26 39187.52 35825.19 40089.95 38256.20 38967.33 37181.19 392
MIMVSNet175.92 35073.30 35583.81 35681.29 38975.57 35992.26 35692.05 37373.09 37267.48 38086.18 36940.87 39287.64 39255.78 39070.68 36188.21 362
OpenMVS_ROBcopyleft73.86 2077.99 34575.06 35186.77 33683.81 38377.94 35296.38 29691.53 38067.54 38968.38 37487.13 36543.94 38696.08 30755.03 39181.83 28886.29 377
RPMNet85.07 29781.88 31594.64 17693.47 28486.24 24284.97 38997.21 16764.85 39490.76 18678.80 39180.95 20999.27 13753.76 39292.17 20598.41 167
N_pmnet70.19 35869.87 36071.12 37888.24 35830.63 41795.85 31728.70 41670.18 38068.73 37386.55 36864.04 32993.81 35453.12 39373.46 34188.94 357
dmvs_testset77.17 34878.99 33571.71 37687.25 36838.55 41391.44 36581.76 40485.77 25569.49 37095.94 22069.71 28984.37 39652.71 39476.82 31492.21 276
dongtai81.36 32780.61 32583.62 35794.25 26273.32 36995.15 32896.81 19973.56 37069.79 36892.81 28081.00 20886.80 39452.08 39570.06 36290.75 325
PMMVS258.97 36755.07 37070.69 37962.72 40755.37 39885.97 38480.52 40549.48 39845.94 39968.31 39715.73 40880.78 40149.79 39637.12 40475.91 393
test_040278.81 34076.33 34586.26 33991.18 32278.44 34895.88 31491.34 38168.55 38570.51 36789.91 34152.65 37194.99 33847.14 39779.78 29885.34 382
Syy-MVS84.10 31384.53 29182.83 36095.14 22765.71 38797.68 24996.66 20686.52 24482.63 26996.84 18968.15 29989.89 38345.62 39891.54 21792.87 260
FPMVS61.57 36360.32 36665.34 38360.14 41042.44 41191.02 37289.72 38944.15 39942.63 40280.93 38519.02 40480.59 40242.50 39972.76 34673.00 396
testf156.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
APD_test256.38 36853.73 37164.31 38564.84 40545.11 40680.50 39875.94 41038.87 40042.74 40075.07 39311.26 41281.19 39941.11 40053.27 39666.63 399
EGC-MVSNET60.70 36555.37 36976.72 37086.35 37571.08 37689.96 37784.44 4010.38 4131.50 41484.09 37537.30 39488.10 39140.85 40273.44 34270.97 398
ANet_high50.71 37246.17 37564.33 38444.27 41452.30 40376.13 40178.73 40664.95 39327.37 40755.23 40414.61 40967.74 40736.01 40318.23 40772.95 397
Gipumacopyleft54.77 37052.22 37462.40 38786.50 37359.37 39450.20 40590.35 38636.52 40341.20 40449.49 40518.33 40681.29 39832.10 40465.34 37646.54 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 37342.50 37655.17 38934.28 41532.37 41566.24 40378.71 40730.72 40522.04 41059.59 4014.59 41477.85 40627.49 40558.84 38855.29 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 37437.64 37953.90 39049.46 41343.37 41065.09 40466.66 41226.19 40825.77 40948.53 4063.58 41663.35 40926.15 40627.28 40554.97 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS66.44 36166.29 36466.89 38174.84 39744.93 40893.00 34784.09 40271.15 37555.82 39381.63 38263.79 33180.31 40321.85 40750.47 40075.43 394
SSC-MVS65.42 36265.20 36566.06 38273.96 39843.83 40992.08 35783.54 40369.77 38254.73 39480.92 38663.30 33379.92 40420.48 40848.02 40174.44 395
E-PMN41.02 37540.93 37741.29 39161.97 40833.83 41484.00 39465.17 41327.17 40627.56 40646.72 40717.63 40760.41 41019.32 40918.82 40629.61 406
EMVS39.96 37639.88 37840.18 39259.57 41132.12 41684.79 39164.57 41426.27 40726.14 40844.18 41018.73 40559.29 41117.03 41017.67 40829.12 407
wuyk23d16.71 37916.73 38316.65 39360.15 40925.22 41841.24 4065.17 4176.56 4105.48 4133.61 4133.64 41522.72 41215.20 4119.52 4101.99 410
testmvs18.81 37823.05 3816.10 3954.48 4172.29 42097.78 2403.00 4183.27 41118.60 41162.71 3991.53 4182.49 41414.26 4121.80 41113.50 409
test12316.58 38019.47 3827.91 3943.59 4185.37 41994.32 3341.39 4192.49 41213.98 41244.60 4092.91 4172.65 41311.35 4130.57 41215.70 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.52 37730.03 3800.00 3960.00 4190.00 4210.00 40797.17 1730.00 4140.00 41598.77 8574.35 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.87 3829.16 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41482.48 1850.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.21 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.50 1080.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.50 4288.94 17999.55 4497.47 14191.32 10998.12 44
test_one_060199.59 2894.89 3697.64 10393.14 6998.93 2199.45 1493.45 16
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.63 1895.24 2797.72 8194.16 4599.30 899.49 993.32 1799.98 9
save fliter99.34 5093.85 6599.65 3597.63 10795.69 22
test072699.66 1295.20 3299.77 1797.70 8693.95 4899.35 799.54 393.18 20
GSMVS98.84 140
test_part299.54 3695.42 2298.13 42
sam_mvs188.39 7098.84 140
sam_mvs87.08 98
MTGPAbinary97.45 144
test_post46.00 40887.37 8997.11 251
patchmatchnet-post84.86 37288.73 6796.81 264
MTMP99.21 8791.09 382
TEST999.57 3393.17 7699.38 7197.66 9589.57 15698.39 3599.18 3390.88 3799.66 94
test_899.55 3593.07 7999.37 7497.64 10390.18 13698.36 3799.19 3090.94 3499.64 100
agg_prior99.54 3692.66 8997.64 10397.98 5199.61 102
test_prior492.00 10099.41 68
test_prior97.01 6399.58 3091.77 10397.57 12199.49 11299.79 36
新几何298.26 204
旧先验198.97 7392.90 8797.74 7799.15 3991.05 3399.33 6699.60 69
原ACMM298.69 151
test22298.32 9291.21 11398.08 22597.58 11883.74 28895.87 10099.02 5886.74 10799.64 4299.81 33
segment_acmp90.56 42
testdata197.89 23392.43 82
test1297.83 3599.33 5394.45 5197.55 12397.56 5888.60 6899.50 11199.71 3599.55 74
plane_prior793.84 27585.73 261
plane_prior693.92 27286.02 25472.92 264
plane_prior496.52 199
plane_prior385.91 25693.65 6186.99 227
plane_prior299.02 11893.38 66
plane_prior193.90 274
plane_prior86.07 25299.14 10393.81 5886.26 253
n20.00 420
nn0.00 420
door-mid84.90 400
test1197.68 90
door85.30 398
HQP5-MVS86.39 237
HQP-NCC93.95 26899.16 9593.92 5087.57 220
ACMP_Plane93.95 26899.16 9593.92 5087.57 220
HQP4-MVS87.57 22097.77 21592.72 262
HQP3-MVS96.37 22686.29 251
HQP2-MVS73.34 259
NP-MVS93.94 27186.22 24496.67 197
ACMMP++_ref82.64 285
ACMMP++83.83 273
Test By Simon83.62 159