This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7794.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
test_241102_TWO97.72 7794.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
IU-MVS99.63 2195.38 2197.73 7595.54 1599.54 199.69 599.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13593.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8699.98 1099.64 699.82 1999.96 10
patch_mono-297.10 2797.97 894.49 16999.21 7383.73 28499.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7794.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8499.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8499.98 1099.55 1099.83 1599.96 10
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7591.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21998.71 9978.11 33699.70 1697.71 8198.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12493.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8693.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
dcpmvs_295.67 7596.18 4994.12 18598.82 9584.22 27797.37 24395.45 28090.70 11095.77 9998.63 10390.47 4498.68 16099.20 1799.22 8399.45 92
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20695.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12489.85 13598.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12495.90 997.21 6198.90 8182.66 17899.93 4098.71 2298.80 10199.63 74
9.1496.87 2899.34 5899.50 4297.49 13289.41 15098.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14993.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test9_res98.60 2599.87 999.90 24
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17495.83 1098.97 1499.14 4582.48 18199.60 9698.60 2599.08 8698.00 188
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 18195.51 1698.86 1799.11 5382.19 18799.36 12698.59 2798.14 11598.00 188
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8990.18 12698.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9590.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 13094.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 28095.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13889.60 14398.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14988.44 18098.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23098.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
ZD-MVS99.67 1393.28 7497.61 10387.78 20097.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11491.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9489.55 14799.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31098.36 2492.50 6695.62 10397.52 14797.92 197.38 22698.31 3998.80 10198.20 184
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7191.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8295.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19793.26 5197.39 5898.30 12186.62 11398.13 17698.07 4397.57 12398.82 147
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14290.08 13198.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8994.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
agg_prior297.84 4799.87 999.91 22
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6995.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15390.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
PVSNet_BlendedMVS93.36 13293.20 12093.84 19698.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26083.50 15799.87 5297.41 5083.37 25790.05 322
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15799.87 5297.41 5097.75 12298.79 150
test117295.92 6596.07 5795.46 13699.42 5487.24 21698.51 16297.24 15890.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
DROMVSNet95.09 8695.17 7994.84 15895.42 20588.17 18699.48 4395.92 24691.47 9197.34 6098.36 11882.77 17497.41 22597.24 5398.58 10898.94 135
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21295.24 2498.62 14896.50 20892.99 5597.52 5498.83 8672.37 25899.15 13897.03 5696.74 13796.58 218
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
lupinMVS96.32 5195.94 6097.44 4895.05 22594.87 3699.86 296.50 20893.82 4098.04 4498.77 8985.52 13298.09 17996.98 6098.97 9199.37 97
CS-MVS-test95.98 6196.34 4494.90 15598.06 11787.66 19899.69 2296.10 23393.66 4398.35 3499.05 5786.28 12397.66 20896.96 6198.90 9599.37 97
MVS_111021_LR95.78 7095.94 6095.28 14398.19 11387.69 19598.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 173
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 21099.53 10296.91 6391.85 19899.24 109
CS-MVS95.75 7396.19 4894.40 17397.88 12186.22 23799.66 2396.12 23292.69 6298.07 4298.89 8387.09 10097.59 21496.71 6498.62 10799.39 96
APD-MVS_3200maxsize95.64 7695.65 7295.62 13299.24 7087.80 19498.42 17297.22 16188.93 16596.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
SR-MVS-dyc-post95.75 7395.86 6395.41 13999.22 7187.26 21498.40 17797.21 16289.63 14196.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21498.40 17797.21 16289.63 14196.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9596.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 17790.18 18194.45 17297.08 14985.84 25198.40 17796.10 23386.99 21593.36 13798.16 12754.27 34599.20 13596.59 6990.63 21498.31 179
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 17088.95 16393.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvs94.59 10394.19 9695.81 12695.54 20190.69 13398.70 13795.68 26791.61 8795.96 9197.81 13280.11 20298.06 18296.52 7195.76 15698.67 159
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10990.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
PAPM96.35 4995.94 6097.58 4394.10 24795.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 19196.36 7599.29 7899.62 76
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13892.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25197.45 13892.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 13091.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 20099.51 86
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22891.78 8595.86 9698.49 11379.53 20799.03 14596.12 7991.42 20699.66 70
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 8094.86 8497.03 6492.91 27894.23 5599.70 1696.30 21993.56 4796.73 7898.52 10981.46 19697.91 18896.08 8198.47 11298.96 130
jason: jason.
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10390.07 13296.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14690.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6190.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
h-mvs3392.47 15391.95 14994.05 18997.13 14685.01 26798.36 18398.08 3993.85 3896.27 8596.73 18283.19 16699.43 11995.81 8568.09 34397.70 193
hse-mvs291.67 16791.51 15892.15 22896.22 17782.61 30197.74 23097.53 12193.85 3896.27 8596.15 19583.19 16697.44 22395.81 8566.86 34896.40 223
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6190.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11192.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18688.66 20796.77 8499.62 2590.66 13599.43 5697.58 11192.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6390.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17887.28 21395.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22494.65 11897.74 13787.78 8499.44 11795.57 9292.61 18499.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22494.65 11897.74 13787.78 8499.44 11795.57 9292.61 18499.44 93
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8990.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5891.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 157
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 31898.74 1492.42 7195.65 10294.76 21986.52 11799.49 10995.29 9892.97 17999.53 83
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14690.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12189.72 13895.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7193.91 13096.40 19096.56 296.94 24095.08 10198.95 9499.20 113
EIA-MVS95.11 8595.27 7794.64 16696.34 17386.51 22599.59 3096.62 19692.51 6594.08 12798.64 10186.05 12798.24 17395.07 10298.50 11199.18 114
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17493.92 3388.66 19798.33 11978.14 21899.85 5995.02 10398.57 10998.78 152
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18399.50 87
CSCG94.87 9094.71 8595.36 14099.54 4086.49 22699.34 6998.15 3682.71 28990.15 18499.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6391.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 182
CPTT-MVS94.60 10294.43 9195.09 14799.66 1586.85 22199.44 5397.47 13583.22 27894.34 12398.96 7282.50 17999.55 9994.81 10799.50 6298.88 140
PVSNet_083.28 1687.31 24585.16 25993.74 20094.78 23584.59 27298.91 11698.69 1989.81 13778.59 30893.23 24961.95 32099.34 13194.75 10855.72 36597.30 203
CLD-MVS91.06 17890.71 17592.10 22994.05 25086.10 24299.55 3596.29 22294.16 2884.70 23097.17 16469.62 27797.82 19594.74 10986.08 23492.39 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvs93.98 11293.43 11595.61 13395.07 22489.86 15598.80 12695.84 25990.98 10492.74 14497.66 14279.71 20498.10 17894.72 11095.37 16198.87 142
VDDNet90.08 19888.54 21394.69 16494.41 24287.68 19698.21 19596.40 21376.21 33693.33 13897.75 13654.93 34398.77 15394.71 11190.96 20997.61 198
iter_conf0593.48 12693.18 12194.39 17697.15 14494.17 5899.30 7292.97 33892.38 7586.70 21995.42 20895.67 596.59 25294.67 11284.32 24792.39 245
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14289.02 16097.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13389.69 13995.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
Effi-MVS+93.87 11693.15 12296.02 11995.79 19290.76 13196.70 27395.78 26086.98 21895.71 10097.17 16479.58 20598.01 18694.57 11596.09 15099.31 103
abl_694.63 10194.48 8995.09 14798.61 10386.96 21998.06 21296.97 18789.31 15195.86 9698.56 10779.82 20399.64 9194.53 11698.65 10698.66 162
LFMVS92.23 15890.84 17196.42 10698.24 11091.08 12398.24 19296.22 22583.39 27694.74 11698.31 12061.12 32498.85 15094.45 11792.82 18099.32 102
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17194.13 5999.46 5096.97 18792.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25399.24 109
baseline93.91 11493.30 11795.72 12995.10 22290.07 14797.48 23995.91 25191.03 10293.54 13597.68 14079.58 20598.02 18594.27 11995.14 16299.08 122
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11792.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
iter_conf_final93.22 13893.04 12593.76 19897.03 15292.22 9899.05 10193.31 33592.11 8086.93 21395.42 20895.01 1096.59 25293.98 12184.48 24492.46 244
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15596.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
gg-mvs-nofinetune90.00 19987.71 22196.89 8296.15 18294.69 4685.15 35797.74 7168.32 35992.97 14360.16 36996.10 396.84 24293.89 12398.87 9699.14 116
MVS93.92 11392.28 13998.83 695.69 19696.82 796.22 28798.17 3384.89 25484.34 23498.61 10579.32 20999.83 6293.88 12499.43 6899.86 32
旧先验298.67 14285.75 23898.96 1598.97 14893.84 125
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18898.41 17498.67 2090.38 12091.43 16198.72 9582.22 18699.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 127
HQP-MVS91.50 16991.23 16292.29 22393.95 25186.39 23099.16 8296.37 21593.92 3387.57 20496.67 18473.34 24897.77 19993.82 12786.29 22992.72 239
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13386.58 22794.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17898.41 17498.27 2692.18 7891.43 16196.40 19078.88 21199.81 6793.59 13097.81 11899.30 104
cascas90.93 18189.33 19495.76 12895.69 19693.03 8298.99 10996.59 19980.49 31586.79 21894.45 22365.23 30998.60 16393.52 13192.18 19395.66 229
HQP_MVS91.26 17490.95 16892.16 22793.84 25886.07 24499.02 10596.30 21993.38 4986.99 21196.52 18672.92 25397.75 20493.46 13286.17 23292.67 241
plane_prior596.30 21997.75 20493.46 13286.17 23292.67 241
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14492.10 8191.53 16096.38 19383.29 16399.68 8393.42 13496.37 14398.25 180
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11786.81 22390.39 18198.65 10075.09 23199.98 1093.32 13597.53 12699.26 108
HyFIR lowres test93.68 12293.29 11894.87 15697.57 13288.04 19098.18 19798.47 2287.57 20891.24 16695.05 21385.49 13597.46 22193.22 13692.82 18099.10 120
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18499.14 9197.11 17485.82 23795.69 10198.47 11583.46 15999.32 13293.16 13799.63 5099.35 99
PMMVS93.62 12593.90 10992.79 21596.79 15881.40 31098.85 12196.81 19191.25 9996.82 7698.15 12877.02 22498.13 17693.15 13896.30 14698.83 146
LCM-MVSNet-Re88.59 22588.61 20888.51 30795.53 20272.68 35496.85 26588.43 37088.45 17773.14 33690.63 29975.82 22794.38 33392.95 13995.71 15898.48 168
EPP-MVSNet93.75 11993.67 11294.01 19195.86 19185.70 25398.67 14297.66 8984.46 25991.36 16497.18 16391.16 3197.79 19792.93 14093.75 17398.53 165
CostFormer92.89 14392.48 13794.12 18594.99 22785.89 24892.89 32797.00 18686.98 21895.00 11390.78 29190.05 5397.51 21992.92 14191.73 20198.96 130
XVG-OURS-SEG-HR90.95 18090.66 17791.83 23395.18 21581.14 31795.92 29495.92 24688.40 18290.33 18297.85 13070.66 27399.38 12492.83 14288.83 22094.98 230
mvsmamba89.99 20089.42 19191.69 24090.64 30786.34 23398.40 17792.27 34691.01 10384.80 22994.93 21476.12 22696.51 25992.81 14383.84 25092.21 254
sss94.85 9193.94 10797.58 4396.43 16894.09 6098.93 11399.16 889.50 14895.27 10797.85 13081.50 19499.65 8992.79 14494.02 17198.99 127
MAR-MVS94.43 10594.09 10095.45 13799.10 8187.47 20498.39 18197.79 6588.37 18394.02 12899.17 3978.64 21699.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6683.59 27393.85 13199.21 3283.79 15499.97 2392.37 14699.00 9099.74 56
nrg03090.23 19288.87 20194.32 17891.53 29693.54 6998.79 13095.89 25488.12 19184.55 23294.61 22178.80 21496.88 24192.35 14775.21 29792.53 243
OMC-MVS93.90 11593.62 11394.73 16398.63 10187.00 21898.04 21396.56 20392.19 7792.46 14698.73 9379.49 20899.14 14192.16 14894.34 16998.03 187
131493.44 12891.98 14897.84 3395.24 20994.38 5396.22 28797.92 4990.18 12682.28 26097.71 13977.63 22199.80 6991.94 14998.67 10599.34 101
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6696.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
mvs_anonymous92.50 15291.65 15595.06 14996.60 16289.64 15997.06 25796.44 21286.64 22684.14 23593.93 23282.49 18096.17 28591.47 15196.08 15199.35 99
baseline294.04 11093.80 11194.74 16293.07 27690.25 14098.12 20298.16 3589.86 13486.53 22096.95 17395.56 698.05 18391.44 15294.53 16695.93 227
IB-MVS89.43 692.12 16090.83 17395.98 12295.40 20790.78 13099.81 598.06 4091.23 10085.63 22493.66 24090.63 4198.78 15291.22 15371.85 33398.36 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 17989.17 19696.69 9295.96 18991.72 10492.62 33197.23 16085.61 23989.74 18993.89 23468.55 28299.42 12091.09 15487.84 22398.92 138
XVG-OURS90.83 18290.49 17991.86 23295.23 21081.25 31495.79 30295.92 24688.96 16290.02 18698.03 12971.60 26799.35 13091.06 15587.78 22494.98 230
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20693.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26299.82 6591.01 15699.23 8299.22 112
VPA-MVSNet89.10 21087.66 22293.45 20492.56 28091.02 12597.97 21798.32 2586.92 22086.03 22292.01 26768.84 28197.10 23490.92 15775.34 29692.23 252
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12790.65 11392.44 14798.90 8187.77 8699.90 4590.88 15899.32 7599.68 66
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19595.08 3198.92 11597.04 18191.42 9581.48 27797.60 14474.60 23499.79 7090.84 15998.97 9199.64 72
gm-plane-assit94.69 23788.14 18788.22 18897.20 16198.29 17190.79 160
MVSTER92.71 14592.32 13893.86 19597.29 13992.95 8699.01 10796.59 19990.09 13085.51 22594.00 23094.61 1696.56 25590.77 16183.03 26092.08 260
ACMP87.39 1088.71 22488.24 21690.12 27393.91 25681.06 31898.50 16495.67 26889.43 14980.37 28595.55 20465.67 30497.83 19490.55 16284.51 24291.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS88.91 21488.56 21189.93 27890.31 31181.61 30898.08 20996.38 21489.30 15282.41 25794.84 21773.15 25196.04 29190.38 16382.23 26792.15 256
ECVR-MVScopyleft92.29 15591.33 16095.15 14596.41 16987.84 19398.10 20694.84 30490.82 10891.42 16397.28 15465.61 30698.49 16490.33 16497.19 13299.12 118
testdata95.26 14498.20 11187.28 21197.60 10585.21 24598.48 2999.15 4388.15 7998.72 15890.29 16599.45 6699.78 42
LPG-MVS_test88.86 21688.47 21490.06 27493.35 27180.95 31998.22 19395.94 24387.73 20483.17 24596.11 19766.28 30197.77 19990.19 16685.19 23891.46 280
LGP-MVS_train90.06 27493.35 27180.95 31995.94 24387.73 20483.17 24596.11 19766.28 30197.77 19990.19 16685.19 23891.46 280
MVSFormer94.71 9894.08 10196.61 9595.05 22594.87 3697.77 22796.17 22986.84 22198.04 4498.52 10985.52 13295.99 29289.83 16898.97 9198.96 130
test_djsdf88.26 23187.73 22089.84 28188.05 34082.21 30397.77 22796.17 22986.84 22182.41 25791.95 27172.07 26195.99 29289.83 16884.50 24391.32 287
test250694.80 9294.21 9596.58 9796.41 16992.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16589.82 17097.19 13299.12 118
tpmrst92.78 14492.16 14394.65 16596.27 17587.45 20591.83 33597.10 17789.10 15994.68 11790.69 29588.22 7797.73 20689.78 17191.80 19998.77 153
PLCcopyleft91.07 394.23 10894.01 10294.87 15699.17 7687.49 20399.25 7596.55 20488.43 18191.26 16598.21 12685.92 12899.86 5789.77 17297.57 12397.24 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 16091.19 16394.94 15496.15 18287.36 20898.12 20294.84 30490.85 10790.97 16997.26 15665.60 30798.37 16789.74 17397.14 13599.07 124
CDS-MVSNet93.47 12793.04 12594.76 16094.75 23689.45 16298.82 12497.03 18387.91 19790.97 16996.48 18889.06 6496.36 26989.50 17492.81 18298.49 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 20190.68 17687.81 31295.15 21671.98 35697.87 22295.40 28591.92 8287.57 20491.44 27974.27 24196.84 24289.45 17593.10 17894.60 232
mvs-test191.57 16892.20 14289.70 28595.15 21674.34 34699.51 4195.40 28591.92 8291.02 16897.25 15774.27 24198.08 18189.45 17595.83 15596.67 215
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 25895.98 23788.47 17480.15 28993.80 23661.47 32196.36 26989.44 17784.47 24591.50 278
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27295.90 25288.19 18979.99 29193.61 24159.96 32796.31 27789.40 17884.34 24691.43 282
PS-MVSNAJss89.54 20789.05 19891.00 25188.77 33184.36 27597.39 24095.97 23888.47 17481.88 27093.80 23682.48 18196.50 26089.34 17983.34 25992.15 256
VPNet88.30 22986.57 23993.49 20391.95 28991.35 11298.18 19797.20 16688.61 17184.52 23394.89 21562.21 31996.76 24789.34 17972.26 33092.36 247
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18582.58 29192.57 14598.22 12480.68 20099.30 13389.34 17999.02 8999.63 74
OPM-MVS89.76 20389.15 19791.57 24190.53 30885.58 25698.11 20595.93 24592.88 6086.05 22196.47 18967.06 29697.87 19289.29 18286.08 23491.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25296.03 23687.69 20695.12 11194.03 22881.55 19398.28 17289.17 18396.46 14099.14 116
BH-w/o92.32 15491.79 15293.91 19496.85 15586.18 23999.11 9695.74 26388.13 19084.81 22897.00 17177.26 22397.91 18889.16 18498.03 11697.64 194
TAMVS92.62 14892.09 14694.20 18294.10 24787.68 19698.41 17496.97 18787.53 21089.74 18996.04 19984.77 14696.49 26288.97 18592.31 19098.42 169
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25486.22 23389.40 19298.85 8580.66 20199.84 6088.57 18696.92 13699.24 109
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23196.20 22689.82 13688.56 19896.85 17886.85 10697.82 19588.42 18780.10 27597.30 203
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27595.61 1497.21 6198.47 11571.88 26399.84 6088.38 18897.46 12897.04 212
thisisatest051594.75 9494.19 9696.43 10596.13 18792.64 9299.47 4597.60 10587.55 20993.17 13997.59 14594.71 1398.42 16688.28 18993.20 17698.24 181
原ACMM196.18 11399.03 8490.08 14697.63 10088.98 16197.00 6598.97 6788.14 8099.71 7888.23 19099.62 5198.76 154
UGNet91.91 16490.85 17095.10 14697.06 15088.69 17998.01 21498.24 2992.41 7292.39 14893.61 24160.52 32599.68 8388.14 19197.25 13096.92 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 19589.50 18892.19 22696.21 17882.67 29997.76 22997.53 12188.05 19291.67 15596.15 19583.10 16897.47 22088.11 19266.91 34796.43 222
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18896.14 18486.71 22498.68 14096.70 19488.30 18589.71 19197.64 14385.43 13896.39 26788.06 19396.32 14499.08 122
bld_raw_dy_0_6487.82 23486.71 23791.15 24789.54 32285.61 25497.37 24389.16 36889.26 15383.42 24194.50 22265.79 30396.18 28388.00 19483.37 25791.67 268
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 27099.64 9187.94 19597.20 13198.98 128
FIs90.70 18589.87 18493.18 20892.29 28391.12 11998.17 19998.25 2789.11 15883.44 24094.82 21882.26 18596.17 28587.76 19682.76 26292.25 250
tpm291.77 16591.09 16493.82 19794.83 23485.56 25792.51 33297.16 16984.00 26593.83 13290.66 29787.54 8997.17 23087.73 19791.55 20498.72 155
无先验98.52 15997.82 5887.20 21499.90 4587.64 19899.85 33
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28797.75 6985.50 24296.86 7099.01 6588.59 7299.90 4587.64 19899.60 5699.79 38
Anonymous20240521188.84 21787.03 23294.27 17998.14 11584.18 27898.44 17095.58 27376.79 33589.34 19396.88 17753.42 34899.54 10187.53 20087.12 22799.09 121
IS-MVSNet93.00 14292.51 13694.49 16996.14 18487.36 20898.31 18895.70 26588.58 17390.17 18397.50 14883.02 17097.22 22987.06 20196.07 15298.90 139
MDTV_nov1_ep13_2view91.17 11891.38 33987.45 21193.08 14186.67 11287.02 20298.95 134
Anonymous2024052987.66 24185.58 25493.92 19397.59 13185.01 26798.13 20097.13 17266.69 36388.47 19996.01 20055.09 34299.51 10687.00 20384.12 24897.23 206
UniMVSNet_NR-MVSNet89.60 20588.55 21292.75 21792.17 28690.07 14798.74 13298.15 3688.37 18383.21 24393.98 23182.86 17295.93 29686.95 20472.47 32792.25 250
DU-MVS88.83 21987.51 22392.79 21591.46 29790.07 14798.71 13397.62 10288.87 16783.21 24393.68 23874.63 23295.93 29686.95 20472.47 32792.36 247
FA-MVS(test-final)92.22 15991.08 16595.64 13196.05 18888.98 16891.60 33797.25 15586.99 21591.84 15292.12 26383.03 16999.00 14686.91 20693.91 17298.93 136
ACMM86.95 1388.77 22288.22 21790.43 26593.61 26381.34 31298.50 16495.92 24687.88 19883.85 23895.20 21267.20 29497.89 19086.90 20784.90 24092.06 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 20888.32 21593.03 21092.21 28590.96 12798.90 11798.39 2389.13 15783.22 24292.03 26581.69 19296.34 27586.79 20872.53 32691.81 266
BH-untuned91.46 17190.84 17193.33 20696.51 16684.83 27098.84 12395.50 27786.44 23283.50 23996.70 18375.49 23097.77 19986.78 20997.81 11897.40 200
miper_enhance_ethall90.33 19089.70 18592.22 22497.12 14788.93 17298.35 18495.96 24088.60 17283.14 24792.33 26287.38 9296.18 28386.49 21077.89 28491.55 277
thisisatest053094.00 11193.52 11495.43 13895.76 19490.02 15298.99 10997.60 10586.58 22791.74 15497.36 15394.78 1298.34 16886.37 21192.48 18797.94 190
TESTMET0.1,193.82 11793.26 11995.49 13595.21 21190.25 14099.15 8897.54 12089.18 15691.79 15394.87 21689.13 6397.63 21186.21 21296.29 14798.60 163
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29296.39 27895.71 26483.97 26679.63 29690.70 29468.85 28095.94 29586.01 21384.02 24989.72 327
F-COLMAP92.07 16291.75 15493.02 21198.16 11482.89 29598.79 13095.97 23886.54 22987.92 20297.80 13378.69 21599.65 8985.97 21495.93 15496.53 221
cl2289.57 20688.79 20491.91 23197.94 12087.62 19997.98 21696.51 20785.03 25082.37 25991.79 27283.65 15596.50 26085.96 21577.89 28491.61 274
test-LLR93.11 14192.68 13294.40 17394.94 23087.27 21299.15 8897.25 15590.21 12491.57 15794.04 22684.89 14397.58 21585.94 21696.13 14898.36 176
test-mter93.27 13692.89 12994.40 17394.94 23087.27 21299.15 8897.25 15588.95 16391.57 15794.04 22688.03 8297.58 21585.94 21696.13 14898.36 176
FC-MVSNet-test90.22 19389.40 19292.67 22091.78 29389.86 15597.89 21998.22 3088.81 16882.96 24894.66 22081.90 19195.96 29485.89 21882.52 26592.20 255
Vis-MVSNetpermissive92.64 14791.85 15095.03 15295.12 21888.23 18598.48 16796.81 19191.61 8792.16 15197.22 16071.58 26898.00 18785.85 21997.81 11898.88 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.54 22687.22 23092.52 22191.93 29189.50 16198.56 15797.84 5586.99 21581.87 27193.81 23574.25 24395.92 29885.29 22074.43 30692.12 258
XXY-MVS87.75 23886.02 24792.95 21390.46 30989.70 15897.71 23395.90 25284.02 26480.95 27994.05 22567.51 29297.10 23485.16 22178.41 28192.04 262
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15491.21 16796.97 17283.42 16098.77 15385.08 22290.96 20997.39 201
tttt051793.30 13493.01 12794.17 18395.57 19986.47 22798.51 16297.60 10585.99 23590.55 17697.19 16294.80 1198.31 16985.06 22391.86 19797.74 192
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31577.12 33994.30 31495.60 27287.40 21282.12 26392.99 25653.42 34897.66 20885.02 22483.83 25190.92 298
test_part188.43 22786.68 23893.67 20297.56 13392.40 9698.12 20296.55 20482.26 29780.31 28693.16 25274.59 23696.62 25085.00 22572.61 32591.99 263
新几何197.40 5198.92 9092.51 9597.77 6885.52 24096.69 7999.06 5688.08 8199.89 4884.88 22699.62 5199.79 38
1112_ss92.71 14591.55 15796.20 11295.56 20091.12 11998.48 16794.69 31088.29 18686.89 21598.50 11187.02 10398.66 16184.75 22789.77 21898.81 148
miper_ehance_all_eth88.94 21388.12 21891.40 24295.32 20886.93 22097.85 22395.55 27484.19 26281.97 26891.50 27884.16 15095.91 29984.69 22877.89 28491.36 285
Test_1112_low_res92.27 15790.97 16796.18 11395.53 20291.10 12198.47 16994.66 31188.28 18786.83 21793.50 24587.00 10498.65 16284.69 22889.74 21998.80 149
TR-MVS90.77 18389.44 19094.76 16096.31 17488.02 19197.92 21895.96 24085.52 24088.22 20197.23 15966.80 29798.09 17984.58 23092.38 18898.17 185
OpenMVScopyleft85.28 1490.75 18488.84 20296.48 10293.58 26493.51 7098.80 12697.41 14682.59 29078.62 30697.49 14968.00 28899.82 6584.52 23198.55 11096.11 226
UniMVSNet_ETH3D85.65 27483.79 28091.21 24590.41 31080.75 32195.36 30595.78 26078.76 32581.83 27494.33 22449.86 35696.66 24884.30 23283.52 25696.22 225
NR-MVSNet87.74 24086.00 24892.96 21291.46 29790.68 13496.65 27497.42 14588.02 19473.42 33493.68 23877.31 22295.83 30284.26 23371.82 33492.36 247
D2MVS87.96 23387.39 22589.70 28591.84 29283.40 28798.31 18898.49 2188.04 19378.23 31290.26 31073.57 24696.79 24684.21 23483.53 25588.90 337
testdata299.88 4984.16 235
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28898.63 14791.66 35580.41 31882.44 25591.35 28174.63 23295.42 31384.13 23671.39 33687.84 343
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19590.47 17996.78 18083.29 16398.75 15584.11 23790.69 21197.12 207
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17790.79 17196.90 17583.31 16198.75 15584.11 23790.69 21197.12 207
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17790.79 17196.90 17583.31 16198.75 15584.11 23790.69 21196.61 216
c3_l88.19 23287.23 22991.06 24994.97 22886.17 24097.72 23195.38 28783.43 27581.68 27591.37 28082.81 17395.72 30584.04 24073.70 31491.29 289
UA-Net93.30 13492.62 13495.34 14196.27 17588.53 18395.88 29796.97 18790.90 10695.37 10697.07 16882.38 18499.10 14383.91 24194.86 16598.38 173
IterMVS-LS88.34 22887.44 22491.04 25094.10 24785.85 25098.10 20695.48 27885.12 24682.03 26791.21 28481.35 19795.63 30883.86 24275.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20289.38 19391.36 24494.32 24385.87 24997.61 23696.59 19985.10 24785.51 22597.10 16681.30 19896.56 25583.85 24383.03 26091.64 269
tpm89.67 20488.95 20091.82 23492.54 28181.43 30992.95 32695.92 24687.81 19990.50 17889.44 32384.99 14195.65 30783.67 24482.71 26398.38 173
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23882.65 30097.02 26095.37 28884.19 26281.86 27391.58 27781.47 19595.90 30083.24 24573.61 31591.61 274
Fast-Effi-MVS+91.72 16690.79 17494.49 16995.89 19087.40 20799.54 3995.70 26585.01 25289.28 19495.68 20377.75 22097.57 21883.22 24695.06 16398.51 166
test_post190.74 34641.37 37985.38 13996.36 26983.16 247
SCA90.64 18789.25 19594.83 15994.95 22988.83 17496.26 28497.21 16290.06 13390.03 18590.62 30066.61 29896.81 24483.16 24794.36 16898.84 143
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 23090.81 30488.56 18098.33 18597.18 16787.76 20181.87 27193.90 23372.45 25795.43 31283.13 24971.30 33792.23 252
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31795.95 24268.54 35860.71 36493.31 24655.35 34197.87 19283.06 25084.85 24187.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19590.47 17996.78 18083.29 16398.71 15982.93 25190.47 21596.61 216
pmmvs487.58 24386.17 24691.80 23589.58 32088.92 17397.25 24995.28 29182.54 29280.49 28493.17 25175.62 22996.05 29082.75 25278.90 27990.42 313
CVMVSNet90.30 19190.91 16988.46 30894.32 24373.58 35097.61 23697.59 10990.16 12988.43 20097.10 16676.83 22592.86 34382.64 25393.54 17598.93 136
Anonymous2023121184.72 28182.65 29290.91 25397.71 12584.55 27397.28 24796.67 19566.88 36279.18 30290.87 29058.47 32996.60 25182.61 25474.20 31091.59 276
GA-MVS90.10 19788.69 20694.33 17792.44 28287.97 19299.08 9796.26 22389.65 14086.92 21493.11 25368.09 28696.96 23882.54 25590.15 21698.05 186
QAPM91.41 17289.49 18997.17 6195.66 19893.42 7298.60 15297.51 12780.92 31381.39 27897.41 15272.89 25599.87 5282.33 25698.68 10498.21 183
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28070.57 34482.18 35687.18 9992.59 34882.28 25762.78 35398.98 128
v2v48287.27 24685.76 25191.78 23989.59 31987.58 20098.56 15795.54 27584.53 25882.51 25491.78 27373.11 25296.47 26382.07 25874.14 31291.30 288
Fast-Effi-MVS+-dtu88.84 21788.59 21089.58 28993.44 26978.18 33498.65 14494.62 31288.46 17684.12 23695.37 21168.91 27996.52 25882.06 25991.70 20294.06 233
pmmvs585.87 26684.40 27590.30 27088.53 33584.23 27698.60 15293.71 32981.53 30580.29 28792.02 26664.51 31195.52 31082.04 26078.34 28291.15 292
V4287.00 24885.68 25390.98 25289.91 31486.08 24398.32 18795.61 27183.67 27282.72 25090.67 29674.00 24596.53 25781.94 26174.28 30990.32 315
EPMVS92.59 15091.59 15695.59 13497.22 14190.03 15191.78 33698.04 4290.42 11991.66 15690.65 29886.49 11997.46 22181.78 26296.31 14599.28 106
DIV-MVS_self_test87.82 23486.81 23590.87 25694.87 23385.39 26097.81 22495.22 29982.92 28780.76 28191.31 28281.99 18895.81 30381.36 26375.04 29991.42 283
cl____87.82 23486.79 23690.89 25594.88 23285.43 25897.81 22495.24 29582.91 28880.71 28291.22 28381.97 19095.84 30181.34 26475.06 29891.40 284
RPSCF85.33 27685.55 25584.67 33294.63 23962.28 36893.73 32093.76 32774.38 34385.23 22797.06 16964.09 31298.31 16980.98 26586.08 23493.41 238
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 30993.65 33186.08 23476.53 31693.28 24861.41 32296.14 28780.95 26677.69 28990.93 297
v14886.38 26085.06 26090.37 26989.47 32584.10 27998.52 15995.48 27883.80 26880.93 28090.22 31474.60 23496.31 27780.92 26771.55 33590.69 308
PatchMatch-RL91.47 17090.54 17894.26 18098.20 11186.36 23296.94 26197.14 17087.75 20288.98 19595.75 20271.80 26599.40 12380.92 26797.39 12997.02 213
FE-MVS91.38 17390.16 18295.05 15196.46 16787.53 20289.69 34997.84 5582.97 28392.18 15092.00 26984.07 15298.93 14980.71 26995.52 16098.68 158
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 24081.19 31596.74 27195.24 29582.33 29680.15 28990.51 30781.99 18894.68 33080.71 26973.58 31691.12 293
PCF-MVS89.78 591.26 17489.63 18696.16 11695.44 20491.58 10995.29 30696.10 23385.07 24982.75 24997.45 15078.28 21799.78 7180.60 27195.65 15997.12 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17689.99 18395.03 15296.75 15988.55 18198.65 14494.95 30187.74 20387.74 20397.80 13368.27 28598.14 17580.53 27297.49 12798.41 170
GeoE90.60 18889.56 18793.72 20195.10 22285.43 25899.41 5994.94 30283.96 26787.21 21096.83 17974.37 23997.05 23680.50 27393.73 17498.67 159
CP-MVSNet86.54 25785.45 25789.79 28391.02 30382.78 29897.38 24297.56 11685.37 24379.53 29893.03 25471.86 26495.25 31779.92 27473.43 32091.34 286
PatchmatchNetpermissive92.05 16391.04 16695.06 14996.17 18189.04 16691.26 34197.26 15489.56 14690.64 17590.56 30488.35 7697.11 23279.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 25185.31 25891.40 24289.75 31787.21 21798.31 18895.45 28083.22 27882.70 25190.78 29173.36 24796.36 26979.49 27674.69 30390.63 310
IterMVS85.81 26984.67 26989.22 29693.51 26583.67 28596.32 28194.80 30685.09 24878.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26882.90 29496.27 28294.70 30985.02 25178.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
GBi-Net86.67 25484.96 26191.80 23595.11 21988.81 17596.77 26795.25 29282.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23595.11 21988.81 17596.77 26795.25 29282.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet388.81 22187.08 23193.99 19296.52 16594.59 4898.08 20996.20 22685.85 23682.12 26391.60 27674.05 24495.40 31479.04 27980.24 27291.99 263
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32491.93 35383.35 27775.40 32593.00 25549.25 35996.65 24978.88 28278.11 28387.22 350
v886.11 26384.45 27291.10 24889.99 31386.85 22197.24 25095.36 28981.99 30079.89 29389.86 31974.53 23796.39 26778.83 28372.32 32990.05 322
pm-mvs184.68 28282.78 28890.40 26689.58 32085.18 26397.31 24594.73 30881.93 30276.05 31992.01 26765.48 30896.11 28878.75 28469.14 34089.91 325
v14419286.40 25984.89 26490.91 25389.48 32485.59 25598.21 19595.43 28482.45 29482.62 25290.58 30372.79 25696.36 26978.45 28574.04 31390.79 302
PS-CasMVS85.81 26984.58 27189.49 29390.77 30582.11 30497.20 25397.36 15184.83 25579.12 30392.84 25767.42 29395.16 31978.39 28673.25 32191.21 291
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
JIA-IIPM85.97 26584.85 26589.33 29593.23 27373.68 34985.05 35897.13 17269.62 35591.56 15968.03 36788.03 8296.96 23877.89 28893.12 17797.34 202
MDTV_nov1_ep1390.47 18096.14 18488.55 18191.34 34097.51 12789.58 14492.24 14990.50 30886.99 10597.61 21377.64 28992.34 189
v119286.32 26184.71 26891.17 24689.53 32386.40 22998.13 20095.44 28382.52 29382.42 25690.62 30071.58 26896.33 27677.23 29074.88 30090.79 302
FMVSNet286.90 24984.79 26793.24 20795.11 21992.54 9497.67 23495.86 25882.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28396.07 29294.41 31882.15 29975.64 32491.96 27067.65 29196.45 26577.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 21587.27 22893.76 19895.79 19285.32 26190.76 34597.09 17876.14 33785.72 22388.59 32982.92 17198.04 18476.96 29391.43 20597.90 191
v1085.73 27284.01 27890.87 25690.03 31286.73 22397.20 25395.22 29981.25 30879.85 29489.75 32073.30 25096.28 28176.87 29472.64 32489.61 329
v192192086.02 26484.44 27390.77 25889.32 32685.20 26298.10 20695.35 29082.19 29882.25 26190.71 29370.73 27196.30 28076.85 29574.49 30590.80 301
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28882.47 30296.91 26296.14 23183.74 26977.73 31393.53 24458.19 33097.37 22876.75 29698.35 11387.84 343
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30493.93 32683.70 27167.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34485.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
MVS_030484.13 29282.66 29188.52 30693.07 27680.15 32295.81 30198.21 3179.27 32086.85 21686.40 34541.33 36794.69 32976.36 29986.69 22890.73 306
WR-MVS_H86.53 25885.49 25689.66 28891.04 30283.31 28997.53 23898.20 3284.95 25379.64 29590.90 28978.01 21995.33 31576.29 30072.81 32290.35 314
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26279.16 32696.43 27794.28 32081.09 31074.00 33194.03 22854.58 34497.67 20776.10 30178.81 28090.63 310
PEN-MVS85.21 27783.93 27989.07 30089.89 31681.31 31397.09 25697.24 15884.45 26078.66 30592.68 25968.44 28494.87 32475.98 30270.92 33891.04 295
USDC84.74 28082.93 28490.16 27291.73 29483.54 28695.00 30893.30 33688.77 16973.19 33593.30 24753.62 34797.65 21075.88 30381.54 27089.30 332
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29395.76 26285.29 24478.44 30993.18 25070.67 27291.48 35975.79 30475.98 29391.70 267
v124085.77 27184.11 27690.73 25989.26 32785.15 26597.88 22195.23 29881.89 30382.16 26290.55 30569.60 27896.31 27775.59 30574.87 30190.72 307
ITE_SJBPF87.93 31092.26 28476.44 34093.47 33487.67 20779.95 29295.49 20756.50 33597.38 22675.24 30682.33 26689.98 324
dp90.16 19688.83 20394.14 18496.38 17286.42 22891.57 33897.06 18084.76 25688.81 19690.19 31684.29 14997.43 22475.05 30791.35 20898.56 164
LS3D90.19 19488.72 20594.59 16898.97 8686.33 23496.90 26396.60 19874.96 34084.06 23798.74 9275.78 22899.83 6274.93 30897.57 12397.62 197
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32391.58 35774.51 34273.08 33891.04 28649.63 35897.12 23174.88 30959.47 35987.33 348
tpmvs89.16 20987.76 21993.35 20597.19 14284.75 27190.58 34797.36 15181.99 30084.56 23189.31 32683.98 15398.17 17474.85 31090.00 21797.12 207
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 29993.68 33067.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30792.54 34384.33 26172.93 34092.08 26460.41 32695.61 30974.47 31274.15 31190.75 305
ACMH83.09 1784.60 28382.61 29390.57 26193.18 27482.94 29296.27 28294.92 30381.01 31172.61 34293.61 24156.54 33497.79 19774.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17879.14 32787.15 35292.99 33783.01 28189.91 18787.27 33878.87 21292.80 34674.20 31492.27 19197.64 194
ADS-MVSNet88.99 21187.30 22794.07 18796.21 17887.56 20187.15 35296.78 19383.01 28189.91 18787.27 33878.87 21297.01 23774.20 31492.27 19197.64 194
lessismore_v085.08 32885.59 35469.28 36390.56 36267.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
MIMVSNet84.48 28681.83 29692.42 22291.73 29487.36 20885.52 35594.42 31781.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22297.08 211
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27095.67 26880.53 31478.38 31089.43 32469.89 27496.35 27473.83 31872.13 33190.07 320
ambc79.60 34672.76 37356.61 37276.20 36892.01 35268.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31692.13 35077.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
FMVSNet183.94 29481.32 30291.80 23591.94 29088.81 17596.77 26795.25 29277.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
MSDG88.29 23086.37 24294.04 19096.90 15486.15 24196.52 27694.36 31977.89 33179.22 30196.95 17369.72 27699.59 9773.20 32292.58 18696.37 224
test0.0.03 188.96 21288.61 20890.03 27791.09 30184.43 27498.97 11197.02 18490.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23793.73 234
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33496.31 21884.64 25765.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26696.24 22483.50 27477.60 31492.52 26167.89 29094.24 33572.64 32569.05 34190.32 315
EPNet_dtu92.28 15692.15 14492.70 21897.29 13984.84 26998.64 14697.82 5892.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16497.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 27983.12 28390.52 26396.82 15678.84 32995.89 29592.17 34877.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22593.55 236
TestCases90.52 26396.82 15678.84 32992.17 34877.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22593.55 236
DP-MVS88.75 22386.56 24095.34 14198.92 9087.45 20597.64 23593.52 33370.55 35181.49 27697.25 15774.43 23899.88 4971.14 32994.09 17098.67 159
CR-MVSNet88.83 21987.38 22693.16 20993.47 26686.24 23584.97 35994.20 32288.92 16690.76 17386.88 34284.43 14794.82 32670.64 33092.17 19498.41 170
KD-MVS_2432*160082.98 29880.52 30690.38 26794.32 24388.98 16892.87 32895.87 25680.46 31673.79 33287.49 33582.76 17693.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26794.32 24388.98 16892.87 32895.87 25680.46 31673.79 33287.49 33582.76 17693.29 34070.56 33146.53 37088.87 338
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31189.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27192.89 27983.18 29093.15 32594.74 30778.99 32275.14 32792.69 25865.64 30597.63 21169.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet582.29 30180.54 30587.52 31493.79 26184.01 28093.73 32092.47 34476.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28297.03 25894.56 31381.33 30775.36 32690.52 30671.69 26694.54 33268.81 33676.84 29290.07 320
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29570.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
Patchmtry83.61 29781.64 29789.50 29193.36 27082.84 29784.10 36294.20 32269.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33094.02 32577.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 28097.26 24891.85 35478.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29592.83 34171.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 22191.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29094.06 32474.61 34166.53 35888.76 32840.40 36996.20 28267.02 34283.66 25486.61 352
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32286.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19695.73 228
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24091.62 35688.63 17075.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 258
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28594.44 31573.87 34451.80 36787.47 33768.04 28792.12 35566.02 34567.79 34590.09 318
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28694.44 31573.83 34551.83 36687.53 33467.96 28992.07 35666.00 34667.75 34690.23 317
DeepMVS_CXcopyleft76.08 34890.74 30651.65 37690.84 36186.47 23157.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30393.57 33273.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
TinyColmap80.42 31077.94 31487.85 31192.09 28778.58 33193.74 31989.94 36474.99 33969.77 34691.78 27346.09 36197.58 21565.17 34977.89 28487.38 346
MVS-HIRNet79.01 31675.13 32690.66 26093.82 26081.69 30785.16 35693.75 32854.54 36774.17 33059.15 37157.46 33296.58 25463.74 35094.38 16793.72 235
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26697.13 25594.50 31478.84 32376.14 31891.00 28769.78 27594.61 33163.40 35174.36 30789.71 328
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26495.62 27081.10 30975.86 32285.81 34868.49 28390.26 36163.21 35256.51 36388.35 340
Patchmatch-test86.25 26284.06 27792.82 21494.42 24182.88 29682.88 36694.23 32171.58 34879.39 29990.62 30089.00 6696.42 26663.03 35391.37 20799.16 115
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31589.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34192.26 34770.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
tfpnnormal83.65 29581.35 30190.56 26291.37 29988.06 18997.29 24697.87 5378.51 32676.20 31790.91 28864.78 31096.47 26361.71 35673.50 31787.13 351
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28092.85 34075.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27592.97 33879.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31292.36 34577.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
TAPA-MVS87.50 990.35 18989.05 19894.25 18198.48 10785.17 26498.42 17296.58 20282.44 29587.24 20998.53 10882.77 17498.84 15159.09 36197.88 11798.72 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29192.83 34181.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
PatchT85.44 27583.19 28292.22 22493.13 27583.00 29183.80 36596.37 21570.62 35090.55 17679.63 36284.81 14594.87 32458.18 36391.59 20398.79 150
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33392.05 35173.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 27991.53 35867.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
RPMNet85.07 27881.88 29594.64 16693.47 26686.24 23584.97 35997.21 16264.85 36590.76 17378.80 36380.95 19999.27 13453.76 36692.17 19498.41 170
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30028.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
test_040278.81 31876.33 32286.26 32291.18 30078.44 33395.88 29791.34 35968.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34389.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34884.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36336.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2263.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3131.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1680.00 3820.00 38398.77 8974.35 2400.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1810.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.50 4788.94 17199.55 3597.47 13591.32 9798.12 39
test_one_060199.59 3194.89 3497.64 9593.14 5298.93 1699.45 1693.45 18
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.63 2195.24 2497.72 7794.16 2899.30 699.49 1093.32 1999.98 10
save fliter99.34 5893.85 6399.65 2497.63 10095.69 11
test072699.66 1595.20 2999.77 897.70 8293.95 3199.35 599.54 393.18 22
GSMVS98.84 143
test_part299.54 4095.42 1998.13 37
sam_mvs188.39 7598.84 143
sam_mvs87.08 101
MTGPAbinary97.45 138
test_post46.00 37687.37 9397.11 232
patchmatchnet-post84.86 34988.73 6996.81 244
MTMP99.21 7691.09 360
TEST999.57 3793.17 7699.38 6297.66 8989.57 14598.39 3199.18 3790.88 3799.66 85
test_899.55 3993.07 8099.37 6597.64 9590.18 12698.36 3399.19 3490.94 3599.64 91
agg_prior99.54 4092.66 8897.64 9597.98 4799.61 94
test_prior492.00 10099.41 59
test_prior97.01 6599.58 3391.77 10197.57 11499.49 10999.79 38
新几何298.26 191
旧先验198.97 8692.90 8797.74 7199.15 4391.05 3499.33 7499.60 78
原ACMM298.69 138
test22298.32 10891.21 11498.08 20997.58 11183.74 26995.87 9599.02 6186.74 10999.64 4799.81 35
segment_acmp90.56 43
testdata197.89 21992.43 68
test1297.83 3499.33 6494.45 5097.55 11797.56 5388.60 7099.50 10899.71 3899.55 82
plane_prior793.84 25885.73 252
plane_prior693.92 25586.02 24672.92 253
plane_prior496.52 186
plane_prior385.91 24793.65 4486.99 211
plane_prior299.02 10593.38 49
plane_prior193.90 257
plane_prior86.07 24499.14 9193.81 4186.26 231
n20.00 388
nn0.00 388
door-mid84.90 375
test1197.68 86
door85.30 374
HQP5-MVS86.39 230
HQP-NCC93.95 25199.16 8293.92 3387.57 204
ACMP_Plane93.95 25199.16 8293.92 3387.57 204
HQP4-MVS87.57 20497.77 19992.72 239
HQP3-MVS96.37 21586.29 229
HQP2-MVS73.34 248
NP-MVS93.94 25486.22 23796.67 184
ACMMP++_ref82.64 264
ACMMP++83.83 251
Test By Simon83.62 156