This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 799.97 2399.90 199.92 399.99 1
PC_three_145294.60 2199.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7694.17 2699.30 699.54 393.32 1899.98 1099.70 399.81 2399.99 1
test_241102_TWO97.72 7694.17 2699.23 899.54 393.14 2399.98 1099.70 399.82 1999.99 1
IU-MVS99.63 2195.38 2197.73 7495.54 1599.54 199.69 599.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13493.95 3199.07 1199.46 1193.18 2199.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8599.98 1099.64 699.82 1999.96 10
patch_mono-297.10 2797.97 894.49 16899.21 7383.73 28299.62 2798.25 2795.28 1899.38 498.91 7992.28 2799.94 3799.61 899.22 8399.78 42
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7297.72 7694.50 2298.64 2499.54 393.32 1899.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2597.73 7491.05 9998.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21998.71 9978.11 33399.70 1697.71 8098.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12393.59 4598.01 4699.12 4890.80 3999.55 9999.26 1499.79 2999.93 21
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8593.01 5299.23 899.45 1695.12 799.98 1099.25 1599.92 399.97 7
test_0728_THIRD93.01 5299.07 1199.46 1194.66 1299.97 2399.25 1599.82 1999.95 15
dcpmvs_295.67 7396.18 4794.12 18298.82 9584.22 27597.37 24195.45 28190.70 10895.77 9998.63 10290.47 4498.68 15899.20 1799.22 8399.45 92
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10599.58 3196.54 20595.09 1996.84 7398.63 10291.16 3099.77 7299.04 1896.42 14299.81 35
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 25100.00 198.99 1999.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 24100.00 198.99 1999.90 799.96 10
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3399.47 4597.52 12389.85 13398.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12395.90 997.21 6198.90 8082.66 17799.93 4098.71 2298.80 10099.63 74
9.1496.87 2899.34 5899.50 4297.49 13189.41 14998.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14893.73 4298.83 1999.02 6090.87 3799.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test9_res98.60 2599.87 999.90 24
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10297.11 17395.83 1098.97 1499.14 4582.48 18099.60 9698.60 2599.08 8698.00 187
xiu_mvs_v2_base96.66 3996.17 5198.11 2797.11 14796.96 699.01 10597.04 18095.51 1698.86 1799.11 5382.19 18699.36 12698.59 2798.14 11598.00 187
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8890.18 12498.39 3199.18 3790.94 3499.66 8598.58 2899.85 1399.88 28
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9490.38 11897.98 4799.17 3990.84 3899.61 9498.57 2999.78 3199.87 31
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 12994.46 2398.99 1398.64 10091.58 2999.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2395.45 28195.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3699.44 5397.45 13789.60 14298.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4599.13 9397.38 14888.44 17998.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10099.70 1698.05 4186.48 22898.05 4199.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
ZD-MVS99.67 1393.28 7497.61 10287.78 19997.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10099.57 3297.57 11391.43 9198.12 3898.97 6690.43 4599.49 10998.33 3699.81 2399.79 38
test_prior299.57 3291.43 9198.12 3898.97 6690.43 4598.33 3699.81 23
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5799.16 8197.65 9389.55 14699.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5394.76 30998.36 2492.50 6695.62 10397.52 14797.92 197.38 22598.31 3998.80 10098.20 183
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 5196.54 598.84 1899.46 1192.55 2699.98 1098.25 4099.93 199.94 18
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8197.74 7091.28 9698.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8195.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5996.00 5796.00 12096.56 16391.05 12399.63 2596.61 19693.26 5097.39 5898.30 12086.62 11498.13 17498.07 4397.57 12398.82 147
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8197.44 14190.08 12998.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 10999.75 1297.66 8894.14 3098.13 3699.26 2692.16 2899.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
agg_prior297.84 4799.87 999.91 22
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4399.19 7697.75 6895.66 1398.21 3499.29 2491.10 3299.99 597.68 4899.87 999.68 66
SR-MVS96.13 5696.16 5396.07 11899.42 5489.04 16898.59 15497.33 15390.44 11696.84 7399.12 4886.75 10999.41 12297.47 4999.44 6799.76 52
PVSNet_BlendedMVS93.36 13293.20 12193.84 19598.77 9791.61 10699.47 4598.04 4291.44 9094.21 12492.63 25983.50 15799.87 5297.41 5083.37 25390.05 319
PVSNet_Blended95.94 6395.66 7096.75 8698.77 9791.61 10699.88 198.04 4293.64 4494.21 12497.76 13583.50 15799.87 5297.41 5097.75 12298.79 150
test117295.92 6496.07 5695.46 13699.42 5487.24 21598.51 16297.24 15790.29 12196.56 8399.12 4886.73 11199.36 12697.33 5299.42 7199.78 42
DROMVSNet95.09 8695.17 7994.84 15695.42 20488.17 18799.48 4395.92 24591.47 8997.34 6098.36 11782.77 17397.41 22497.24 5398.58 10898.94 136
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12599.14 9099.45 193.86 3795.15 11098.73 9288.48 7399.76 7397.23 5499.56 5999.40 95
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11797.94 4792.89 5896.90 6699.02 6089.78 5699.53 10297.06 5599.26 8099.75 53
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21195.24 2498.62 14896.50 20792.99 5497.52 5498.83 8572.37 25699.15 13897.03 5696.74 13796.58 217
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21195.24 2498.62 14896.50 20792.99 5497.52 5498.83 8572.37 25699.15 13897.03 5696.74 13796.58 217
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21195.24 2498.62 14896.50 20792.99 5497.52 5498.83 8572.37 25699.15 13897.03 5696.74 13796.58 217
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11797.93 4892.86 6096.88 6799.02 6089.74 5899.53 10297.03 5699.26 8099.75 53
lupinMVS96.32 5195.94 5997.44 4895.05 22494.87 3799.86 296.50 20793.82 4098.04 4298.77 8885.52 13298.09 17796.98 6098.97 9199.37 98
MVS_111021_LR95.78 6995.94 5995.28 14398.19 11387.69 19698.80 12599.26 793.39 4795.04 11298.69 9884.09 15299.76 7396.96 6199.06 8798.38 172
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 13998.73 1690.33 12097.16 6397.43 15179.19 20999.53 10296.91 6291.85 19799.24 110
APD-MVS_3200maxsize95.64 7495.65 7295.62 13199.24 7087.80 19598.42 17297.22 16088.93 16396.64 8298.98 6585.49 13599.36 12696.68 6399.27 7999.70 62
CS-MVS95.63 7596.18 4793.97 19097.87 12084.94 26599.66 2296.15 23192.70 6298.02 4498.88 8287.11 10197.59 21296.64 6498.62 10699.38 96
CS-MVS-test95.38 8095.85 6393.97 19097.87 12084.94 26599.62 2795.84 25892.71 6198.02 4498.30 12085.07 14197.59 21296.64 6498.62 10699.38 96
SR-MVS-dyc-post95.75 7295.86 6295.41 13999.22 7187.26 21398.40 17797.21 16189.63 14096.67 8098.97 6686.73 11199.36 12696.62 6699.31 7699.60 78
RE-MVS-def95.70 6999.22 7187.26 21398.40 17797.21 16189.63 14096.67 8098.97 6685.24 14096.62 6699.31 7699.60 78
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5198.85 12097.64 9496.51 795.88 9499.39 2187.35 9899.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 17590.18 18194.45 17197.08 14885.84 24898.40 17796.10 23386.99 21493.36 13798.16 12754.27 34299.20 13596.59 6990.63 21398.31 178
MP-MVS-pluss95.80 6895.30 7597.29 5598.95 8992.66 8898.59 15497.14 16988.95 16193.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvs94.59 10394.19 9695.81 12695.54 20090.69 13298.70 13695.68 26791.61 8595.96 9197.81 13280.11 20198.06 18196.52 7195.76 15698.67 158
ACMMP_NAP96.59 4196.18 4797.81 3598.82 9593.55 6898.88 11997.59 10890.66 10997.98 4799.14 4586.59 115100.00 196.47 7299.46 6499.89 27
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10398.71 13297.90 5092.48 6796.00 8898.95 7388.60 7099.52 10596.44 7398.83 9799.49 88
Regformer-496.45 4796.33 4596.81 8399.34 5891.44 11098.71 13297.88 5192.43 6895.97 9098.95 7388.42 7499.51 10696.40 7498.83 9799.49 88
PAPM96.35 4995.94 5997.58 4394.10 24695.25 2398.93 11298.17 3394.26 2593.94 12998.72 9489.68 5997.88 19096.36 7599.29 7899.62 76
zzz-MVS96.21 5595.96 5896.96 7399.29 6691.19 11498.69 13797.45 13792.58 6394.39 12199.24 2986.43 12199.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11497.23 24997.45 13792.58 6394.39 12199.24 2986.43 12199.99 596.22 7699.40 7299.71 60
alignmvs95.77 7095.00 8398.06 2897.35 13795.68 1899.71 1597.50 12991.50 8896.16 8798.61 10486.28 12499.00 14696.19 7891.74 19999.51 86
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13296.19 22891.78 8395.86 9698.49 11279.53 20699.03 14596.12 7991.42 20599.66 70
DELS-MVS97.12 2596.60 3798.68 1098.03 11796.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7994.86 8497.03 6492.91 27794.23 5699.70 1696.30 21893.56 4696.73 7898.52 10881.46 19597.91 18796.08 8198.47 11298.96 131
jason: jason.
CP-MVS96.22 5496.15 5496.42 10699.67 1389.62 16199.70 1697.61 10290.07 13096.00 8899.16 4187.43 9299.92 4196.03 8299.72 3499.70 62
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14590.64 11295.49 10498.95 7385.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#96.48 4596.34 4496.90 7799.69 990.96 12699.53 4097.81 6090.94 10396.88 6799.05 5787.57 8899.96 3095.87 8499.72 3499.78 42
h-mvs3392.47 15291.95 14894.05 18697.13 14585.01 26398.36 18298.08 3993.85 3896.27 8596.73 18383.19 16699.43 11995.81 8568.09 34097.70 192
hse-mvs291.67 16691.51 15792.15 22896.22 17682.61 29997.74 22897.53 12093.85 3896.27 8596.15 19683.19 16697.44 22295.81 8566.86 34596.40 222
HFP-MVS96.42 4896.26 4696.90 7799.69 990.96 12699.47 4597.81 6090.54 11496.88 6799.05 5787.57 8899.96 3095.65 8799.72 3499.78 42
XVS96.47 4696.37 4296.77 8499.62 2590.66 13499.43 5697.58 11092.41 7296.86 7098.96 7187.37 9499.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18588.66 20596.77 8499.62 2590.66 13499.43 5697.58 11092.41 7296.86 7029.59 37787.37 9499.87 5295.65 8799.43 6899.78 42
ACMMPR96.28 5396.14 5596.73 8899.68 1290.47 13799.47 4597.80 6290.54 11496.83 7599.03 5986.51 11999.95 3495.65 8799.72 3499.75 53
HPM-MVScopyleft95.41 7895.22 7895.99 12199.29 6689.14 16699.17 8097.09 17787.28 21295.40 10598.48 11384.93 14399.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10098.70 1786.76 22294.65 11897.74 13787.78 8499.44 11795.57 9292.61 18399.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10098.70 1786.76 22294.65 11897.74 13787.78 8499.44 11795.57 9292.61 18399.44 93
region2R96.30 5296.17 5196.70 9199.70 890.31 13999.46 5097.66 8890.55 11397.07 6499.07 5486.85 10799.97 2395.43 9499.74 3299.81 35
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11599.14 7790.33 13898.49 16697.82 5791.92 8094.75 11598.88 8287.06 10399.48 11495.40 9597.17 13498.70 157
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9199.66 8595.35 9697.78 12199.00 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9799.06 994.45 2496.42 8498.70 9788.81 6899.74 7595.35 9699.86 1299.97 7
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 31798.74 1492.42 7195.65 10294.76 21786.52 11899.49 10995.29 9892.97 17899.53 83
mPP-MVS95.90 6595.75 6896.38 10899.58 3389.41 16599.26 7397.41 14590.66 10994.82 11498.95 7386.15 12699.98 1095.24 9999.64 4799.74 56
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11499.55 3597.53 12089.72 13795.86 9698.94 7886.59 11599.97 2395.13 10099.56 5999.68 66
GG-mvs-BLEND96.98 7196.53 16494.81 4287.20 34897.74 7093.91 13096.40 19196.56 296.94 23995.08 10198.95 9499.20 114
EIA-MVS95.11 8595.27 7794.64 16496.34 17286.51 22499.59 3096.62 19592.51 6594.08 12798.64 10086.05 12798.24 17195.07 10298.50 11199.18 115
DeepC-MVS91.02 494.56 10493.92 10996.46 10397.16 14390.76 13098.39 18097.11 17393.92 3388.66 19698.33 11878.14 21799.85 5995.02 10398.57 10998.78 152
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS95.97 6195.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7595.21 10898.46 11686.56 11799.46 11695.00 10492.69 18299.50 87
CSCG94.87 9094.71 8595.36 14099.54 4086.49 22599.34 6998.15 3682.71 28690.15 18399.25 2789.48 6199.86 5794.97 10598.82 9999.72 59
EI-MVSNet-UG-set95.43 7695.29 7695.86 12599.07 8389.87 15498.43 17197.80 6291.78 8394.11 12698.77 8886.25 12599.48 11494.95 10696.45 14198.22 181
CPTT-MVS94.60 10294.43 9195.09 14799.66 1586.85 22099.44 5397.47 13483.22 27694.34 12398.96 7182.50 17899.55 9994.81 10799.50 6298.88 140
PVSNet_083.28 1687.31 24285.16 25693.74 19894.78 23484.59 27098.91 11598.69 1989.81 13578.59 30593.23 24761.95 31799.34 13194.75 10855.72 36297.30 202
CLD-MVS91.06 17690.71 17492.10 22994.05 24986.10 23999.55 3596.29 22194.16 2884.70 22797.17 16569.62 27597.82 19494.74 10986.08 23392.39 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvs93.98 11393.43 11695.61 13395.07 22389.86 15598.80 12595.84 25890.98 10192.74 14597.66 14279.71 20398.10 17694.72 11095.37 16098.87 142
VDDNet90.08 19788.54 21094.69 16294.41 24187.68 19798.21 19496.40 21276.21 33393.33 13897.75 13654.93 34098.77 15194.71 11190.96 20897.61 197
CDPH-MVS96.56 4296.18 4797.70 3999.59 3193.92 6199.13 9397.44 14189.02 15897.90 5099.22 3188.90 6799.49 10994.63 11299.79 2999.68 66
GST-MVS95.97 6195.66 7096.90 7799.49 5091.22 11299.45 5297.48 13289.69 13895.89 9398.72 9486.37 12399.95 3494.62 11399.22 8399.52 84
Effi-MVS+93.87 11793.15 12296.02 11995.79 19190.76 13096.70 27195.78 26086.98 21695.71 10097.17 16579.58 20498.01 18594.57 11496.09 15099.31 103
abl_694.63 10194.48 8995.09 14798.61 10386.96 21898.06 21096.97 18689.31 15095.86 9698.56 10679.82 20299.64 9194.53 11598.65 10598.66 161
LFMVS92.23 15790.84 17096.42 10698.24 11091.08 12298.24 19196.22 22583.39 27494.74 11698.31 11961.12 32198.85 14894.45 11692.82 17999.32 102
ET-MVSNet_ETH3D92.56 15091.45 15895.88 12496.39 17094.13 5999.46 5096.97 18692.18 7766.94 35398.29 12294.65 1394.28 33194.34 11783.82 24999.24 110
baseline93.91 11593.30 11895.72 12995.10 22190.07 14797.48 23795.91 25091.03 10093.54 13597.68 14079.58 20498.02 18494.27 11895.14 16199.08 123
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5899.42 5897.55 11692.43 6893.82 13399.12 4887.30 9999.91 4394.02 11999.06 8799.74 56
PGM-MVS95.85 6695.65 7296.45 10499.50 4789.77 15798.22 19298.90 1289.19 15296.74 7798.95 7385.91 13099.92 4193.94 12099.46 6499.66 70
gg-mvs-nofinetune90.00 19887.71 21996.89 8296.15 18294.69 4785.15 35497.74 7068.32 35692.97 14460.16 36696.10 396.84 24193.89 12198.87 9599.14 117
MVS93.92 11492.28 13898.83 695.69 19596.82 796.22 28698.17 3384.89 25284.34 23198.61 10479.32 20899.83 6293.88 12299.43 6899.86 32
旧先验298.67 14185.75 23698.96 1598.97 14793.84 123
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18998.41 17498.67 2090.38 11891.43 16098.72 9482.22 18599.95 3493.83 12495.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 125
HQP-MVS91.50 16891.23 16192.29 22393.95 25086.39 22999.16 8196.37 21493.92 3387.57 20396.67 18573.34 24797.77 19893.82 12586.29 22892.72 238
DP-MVS Recon95.85 6695.15 8097.95 3199.87 294.38 5499.60 2997.48 13286.58 22594.42 12099.13 4787.36 9799.98 1093.64 12798.33 11499.48 90
CHOSEN 1792x268894.35 10793.82 11195.95 12397.40 13588.74 17998.41 17498.27 2692.18 7791.43 16096.40 19178.88 21099.81 6793.59 12897.81 11899.30 104
cascas90.93 18089.33 19295.76 12895.69 19593.03 8298.99 10796.59 19880.49 31286.79 21694.45 22065.23 30698.60 16193.52 12992.18 19295.66 228
HQP_MVS91.26 17290.95 16792.16 22793.84 25786.07 24199.02 10396.30 21893.38 4886.99 21096.52 18772.92 25197.75 20393.46 13086.17 23192.67 240
plane_prior596.30 21897.75 20393.46 13086.17 23192.67 240
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14491.10 12099.32 7197.43 14392.10 7991.53 15996.38 19483.29 16399.68 8393.42 13296.37 14398.25 179
AdaColmapbinary93.82 11893.06 12396.10 11799.88 189.07 16798.33 18497.55 11686.81 22190.39 18098.65 9975.09 22999.98 1093.32 13397.53 12699.26 109
HyFIR lowres test93.68 12393.29 11994.87 15497.57 13288.04 19198.18 19698.47 2287.57 20791.24 16595.05 21385.49 13597.46 22093.22 13492.82 17999.10 121
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18599.14 9097.11 17385.82 23595.69 10198.47 11483.46 15999.32 13293.16 13599.63 5099.35 99
PMMVS93.62 12693.90 11092.79 21496.79 15781.40 30798.85 12096.81 19091.25 9796.82 7698.15 12877.02 22398.13 17493.15 13696.30 14698.83 146
LCM-MVSNet-Re88.59 22388.61 20688.51 30495.53 20172.68 35196.85 26388.43 36788.45 17673.14 33390.63 29675.82 22594.38 33092.95 13795.71 15898.48 167
EPP-MVSNet93.75 12093.67 11394.01 18895.86 19085.70 25098.67 14197.66 8884.46 25791.36 16397.18 16491.16 3097.79 19692.93 13893.75 17198.53 164
CostFormer92.89 14292.48 13694.12 18294.99 22685.89 24592.89 32697.00 18586.98 21695.00 11390.78 28890.05 5397.51 21892.92 13991.73 20098.96 131
XVG-OURS-SEG-HR90.95 17990.66 17691.83 23395.18 21481.14 31495.92 29395.92 24588.40 18190.33 18197.85 13070.66 27199.38 12492.83 14088.83 21994.98 229
sss94.85 9193.94 10897.58 4396.43 16794.09 6098.93 11299.16 889.50 14795.27 10797.85 13081.50 19399.65 8992.79 14194.02 17098.99 128
MAR-MVS94.43 10594.09 10095.45 13799.10 8187.47 20398.39 18097.79 6488.37 18294.02 12899.17 3978.64 21599.91 4392.48 14298.85 9698.96 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12597.78 6583.59 27193.85 13199.21 3283.79 15499.97 2392.37 14399.00 9099.74 56
nrg03090.23 19188.87 19994.32 17591.53 29593.54 6998.79 12995.89 25388.12 19084.55 22994.61 21978.80 21396.88 24092.35 14475.21 29492.53 242
OMC-MVS93.90 11693.62 11494.73 16198.63 10187.00 21798.04 21196.56 20292.19 7692.46 14798.73 9279.49 20799.14 14192.16 14594.34 16898.03 186
131493.44 12891.98 14797.84 3395.24 20894.38 5496.22 28697.92 4990.18 12482.28 25697.71 13977.63 22099.80 6991.94 14698.67 10499.34 101
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6596.61 498.15 3599.53 793.62 16100.00 191.79 14799.80 2799.94 18
mvs_anonymous92.50 15191.65 15495.06 14996.60 16289.64 16097.06 25596.44 21186.64 22484.14 23293.93 22982.49 17996.17 28291.47 14896.08 15199.35 99
baseline294.04 11193.80 11294.74 16093.07 27590.25 14098.12 20198.16 3589.86 13286.53 21796.95 17495.56 598.05 18291.44 14994.53 16595.93 226
bset_n11_16_dypcd89.07 20987.85 21692.76 21686.16 35090.66 13497.30 24395.62 27089.78 13683.94 23593.15 25174.85 23095.89 29791.34 15078.48 27691.74 264
IB-MVS89.43 692.12 15890.83 17295.98 12295.40 20690.78 12999.81 598.06 4091.23 9885.63 22193.66 23790.63 4198.78 15091.22 15171.85 33098.36 175
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 17789.17 19496.69 9295.96 18891.72 10392.62 33097.23 15985.61 23789.74 18893.89 23168.55 28099.42 12091.09 15287.84 22298.92 138
XVG-OURS90.83 18190.49 17891.86 23295.23 20981.25 31195.79 30195.92 24588.96 16090.02 18598.03 12971.60 26599.35 13091.06 15387.78 22394.98 229
3Dnovator87.35 1193.17 13991.77 15297.37 5495.41 20593.07 8098.82 12397.85 5491.53 8782.56 25097.58 14671.97 26099.82 6591.01 15499.23 8299.22 113
VPA-MVSNet89.10 20887.66 22093.45 20292.56 27991.02 12497.97 21598.32 2586.92 21886.03 21992.01 26568.84 27997.10 23390.92 15575.34 29392.23 250
PAPM_NR95.43 7695.05 8296.57 9999.42 5490.14 14398.58 15697.51 12690.65 11192.44 14898.90 8087.77 8699.90 4590.88 15699.32 7599.68 66
3Dnovator+87.72 893.43 12991.84 15098.17 2195.73 19495.08 3298.92 11497.04 18091.42 9381.48 27497.60 14474.60 23399.79 7090.84 15798.97 9199.64 72
gm-plane-assit94.69 23688.14 18888.22 18797.20 16298.29 16990.79 158
MVSTER92.71 14492.32 13793.86 19497.29 13992.95 8699.01 10596.59 19890.09 12885.51 22294.00 22794.61 1496.56 25390.77 15983.03 25592.08 256
ACMP87.39 1088.71 22288.24 21390.12 27193.91 25581.06 31598.50 16495.67 26889.43 14880.37 28295.55 20565.67 30197.83 19390.55 16084.51 24191.47 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0591.04 17890.40 18092.95 21196.20 18089.75 15898.97 10996.38 21388.52 17282.00 26493.51 24290.69 4096.73 24790.43 16176.91 28892.38 244
ECVR-MVScopyleft92.29 15491.33 15995.15 14596.41 16887.84 19498.10 20594.84 30590.82 10691.42 16297.28 15465.61 30398.49 16290.33 16297.19 13299.12 119
testdata95.26 14498.20 11187.28 21097.60 10485.21 24398.48 2999.15 4388.15 7998.72 15690.29 16399.45 6699.78 42
LPG-MVS_test88.86 21488.47 21190.06 27293.35 27080.95 31698.22 19295.94 24287.73 20383.17 24296.11 19866.28 29997.77 19890.19 16485.19 23791.46 277
LGP-MVS_train90.06 27293.35 27080.95 31695.94 24287.73 20383.17 24296.11 19866.28 29997.77 19890.19 16485.19 23791.46 277
MVSFormer94.71 9894.08 10196.61 9595.05 22494.87 3797.77 22596.17 22986.84 21998.04 4298.52 10885.52 13295.99 28889.83 16698.97 9198.96 131
test_djsdf88.26 22987.73 21889.84 27888.05 33682.21 30197.77 22596.17 22986.84 21982.41 25491.95 26872.07 25995.99 28889.83 16684.50 24291.32 284
test250694.80 9294.21 9596.58 9796.41 16892.18 9898.01 21298.96 1090.82 10693.46 13697.28 15485.92 12898.45 16389.82 16897.19 13299.12 119
tpmrst92.78 14392.16 14294.65 16396.27 17487.45 20491.83 33497.10 17689.10 15694.68 11790.69 29288.22 7797.73 20589.78 16991.80 19898.77 153
PLCcopyleft91.07 394.23 10994.01 10294.87 15499.17 7687.49 20299.25 7496.55 20388.43 18091.26 16498.21 12685.92 12899.86 5789.77 17097.57 12397.24 204
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 15891.19 16294.94 15396.15 18287.36 20798.12 20194.84 30590.85 10590.97 16897.26 15765.60 30498.37 16589.74 17197.14 13599.07 125
CDS-MVSNet93.47 12793.04 12594.76 15894.75 23589.45 16498.82 12397.03 18287.91 19690.97 16896.48 18989.06 6496.36 26789.50 17292.81 18198.49 166
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 19990.68 17587.81 30995.15 21571.98 35397.87 22095.40 28691.92 8087.57 20391.44 27674.27 24096.84 24189.45 17393.10 17794.60 231
mvs-test191.57 16792.20 14189.70 28295.15 21574.34 34399.51 4195.40 28691.92 8091.02 16797.25 15874.27 24098.08 18089.45 17395.83 15596.67 214
jajsoiax87.35 24186.51 23889.87 27687.75 34181.74 30497.03 25695.98 23688.47 17380.15 28693.80 23361.47 31896.36 26789.44 17584.47 24391.50 275
mvs_tets87.09 24486.22 24189.71 28187.87 33781.39 30896.73 27095.90 25188.19 18879.99 28893.61 23859.96 32496.31 27589.40 17684.34 24491.43 279
PS-MVSNAJss89.54 20589.05 19691.00 24988.77 32784.36 27397.39 23895.97 23788.47 17381.88 26793.80 23382.48 18096.50 25789.34 17783.34 25492.15 253
VPNet88.30 22786.57 23693.49 20191.95 28891.35 11198.18 19697.20 16588.61 16984.52 23094.89 21462.21 31696.76 24689.34 17772.26 32792.36 245
114514_t94.06 11093.05 12497.06 6399.08 8292.26 9798.97 10997.01 18482.58 28892.57 14698.22 12480.68 19999.30 13389.34 17799.02 8999.63 74
OPM-MVS89.76 20189.15 19591.57 24090.53 30685.58 25298.11 20495.93 24492.88 5986.05 21896.47 19067.06 29497.87 19189.29 18086.08 23391.26 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 12492.67 13296.69 9296.72 15992.66 8897.22 25096.03 23587.69 20595.12 11194.03 22581.55 19298.28 17089.17 18196.46 14099.14 117
BH-w/o92.32 15391.79 15193.91 19396.85 15486.18 23699.11 9595.74 26388.13 18984.81 22697.00 17277.26 22297.91 18789.16 18298.03 11697.64 193
RRT_MVS91.95 16291.09 16394.53 16796.71 16195.12 3198.64 14596.23 22489.04 15785.24 22495.06 21287.71 8796.43 26389.10 18382.06 26292.05 258
TAMVS92.62 14792.09 14594.20 17994.10 24687.68 19798.41 17496.97 18687.53 20989.74 18896.04 20084.77 14796.49 25988.97 18492.31 18998.42 168
CNLPA93.64 12592.74 13096.36 10998.96 8890.01 15399.19 7695.89 25386.22 23189.40 19198.85 8480.66 20099.84 6088.57 18596.92 13699.24 110
baseline192.61 14891.28 16096.58 9797.05 15094.63 4897.72 22996.20 22689.82 13488.56 19796.85 17986.85 10797.82 19488.42 18680.10 27097.30 202
CANet_DTU94.31 10893.35 11797.20 6097.03 15194.71 4698.62 14895.54 27695.61 1497.21 6198.47 11471.88 26199.84 6088.38 18797.46 12897.04 211
thisisatest051594.75 9494.19 9696.43 10596.13 18792.64 9299.47 4597.60 10487.55 20893.17 13997.59 14594.71 1198.42 16488.28 18893.20 17598.24 180
原ACMM196.18 11399.03 8490.08 14697.63 9988.98 15997.00 6598.97 6688.14 8099.71 7888.23 18999.62 5198.76 154
UGNet91.91 16390.85 16995.10 14697.06 14988.69 18098.01 21298.24 2992.41 7292.39 14993.61 23860.52 32299.68 8388.14 19097.25 13096.92 213
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 19489.50 18792.19 22696.21 17782.67 29797.76 22797.53 12088.05 19191.67 15496.15 19683.10 16897.47 21988.11 19166.91 34496.43 221
Vis-MVSNet (Re-imp)93.26 13793.00 12794.06 18596.14 18486.71 22398.68 13996.70 19388.30 18489.71 19097.64 14385.43 13896.39 26588.06 19296.32 14499.08 123
PVSNet87.13 1293.69 12192.83 12996.28 11197.99 11890.22 14299.38 6298.93 1191.42 9393.66 13497.68 14071.29 26899.64 9187.94 19397.20 13198.98 129
FIs90.70 18489.87 18393.18 20692.29 28291.12 11898.17 19898.25 2789.11 15583.44 23894.82 21682.26 18496.17 28287.76 19482.76 25792.25 248
tpm291.77 16491.09 16393.82 19694.83 23385.56 25392.51 33197.16 16884.00 26393.83 13290.66 29487.54 9097.17 22987.73 19591.55 20398.72 155
无先验98.52 15997.82 5787.20 21399.90 4587.64 19699.85 33
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28697.75 6885.50 24096.86 7099.01 6488.59 7299.90 4587.64 19699.60 5699.79 38
Anonymous20240521188.84 21587.03 23094.27 17698.14 11584.18 27698.44 17095.58 27476.79 33289.34 19296.88 17853.42 34599.54 10187.53 19887.12 22699.09 122
IS-MVSNet93.00 14192.51 13594.49 16896.14 18487.36 20798.31 18795.70 26588.58 17190.17 18297.50 14883.02 16997.22 22887.06 19996.07 15298.90 139
MDTV_nov1_ep13_2view91.17 11791.38 33787.45 21093.08 14186.67 11387.02 20098.95 135
Anonymous2024052987.66 23885.58 25193.92 19297.59 13185.01 26398.13 19997.13 17166.69 36088.47 19896.01 20155.09 33999.51 10687.00 20184.12 24597.23 205
UniMVSNet_NR-MVSNet89.60 20388.55 20992.75 21792.17 28590.07 14798.74 13198.15 3688.37 18283.21 24093.98 22882.86 17195.93 29286.95 20272.47 32492.25 248
DU-MVS88.83 21787.51 22192.79 21491.46 29690.07 14798.71 13297.62 10188.87 16583.21 24093.68 23574.63 23195.93 29286.95 20272.47 32492.36 245
ACMM86.95 1388.77 22088.22 21490.43 26393.61 26281.34 30998.50 16495.92 24587.88 19783.85 23695.20 21167.20 29297.89 18986.90 20484.90 23992.06 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 20688.32 21293.03 20892.21 28490.96 12698.90 11698.39 2389.13 15483.22 23992.03 26381.69 19196.34 27386.79 20572.53 32391.81 263
BH-untuned91.46 17090.84 17093.33 20496.51 16684.83 26898.84 12295.50 27886.44 23083.50 23796.70 18475.49 22897.77 19886.78 20697.81 11897.40 199
miper_enhance_ethall90.33 18989.70 18492.22 22497.12 14688.93 17398.35 18395.96 23988.60 17083.14 24492.33 26187.38 9396.18 28186.49 20777.89 28091.55 274
thisisatest053094.00 11293.52 11595.43 13895.76 19390.02 15298.99 10797.60 10486.58 22591.74 15397.36 15394.78 1098.34 16686.37 20892.48 18697.94 189
TESTMET0.1,193.82 11893.26 12095.49 13595.21 21090.25 14099.15 8797.54 11989.18 15391.79 15294.87 21589.13 6397.63 20986.21 20996.29 14798.60 162
anonymousdsp86.69 25085.75 24989.53 28786.46 34782.94 29096.39 27795.71 26483.97 26479.63 29390.70 29168.85 27895.94 29186.01 21084.02 24689.72 324
F-COLMAP92.07 16091.75 15393.02 20998.16 11482.89 29398.79 12995.97 23786.54 22787.92 20197.80 13378.69 21499.65 8985.97 21195.93 15496.53 220
cl2289.57 20488.79 20291.91 23197.94 11987.62 19997.98 21496.51 20685.03 24882.37 25591.79 26983.65 15596.50 25785.96 21277.89 28091.61 271
test-LLR93.11 14092.68 13194.40 17294.94 22987.27 21199.15 8797.25 15590.21 12291.57 15694.04 22384.89 14497.58 21485.94 21396.13 14898.36 175
test-mter93.27 13692.89 12894.40 17294.94 22987.27 21199.15 8797.25 15588.95 16191.57 15694.04 22388.03 8297.58 21485.94 21396.13 14898.36 175
FC-MVSNet-test90.22 19289.40 19092.67 22091.78 29289.86 15597.89 21798.22 3088.81 16682.96 24594.66 21881.90 19095.96 29085.89 21582.52 26092.20 252
DWT-MVSNet_test94.36 10693.95 10795.62 13196.99 15289.47 16396.62 27397.38 14890.96 10293.07 14297.27 15693.73 1598.09 17785.86 21693.65 17399.29 105
Vis-MVSNetpermissive92.64 14691.85 14995.03 15195.12 21788.23 18698.48 16796.81 19091.61 8592.16 15197.22 16171.58 26698.00 18685.85 21797.81 11898.88 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.54 22487.22 22892.52 22191.93 29089.50 16298.56 15797.84 5586.99 21481.87 26893.81 23274.25 24295.92 29485.29 21874.43 30392.12 254
XXY-MVS87.75 23586.02 24492.95 21190.46 30789.70 15997.71 23195.90 25184.02 26280.95 27694.05 22267.51 29097.10 23385.16 21978.41 27792.04 259
thres20093.69 12192.59 13496.97 7297.76 12394.74 4499.35 6799.36 289.23 15191.21 16696.97 17383.42 16098.77 15185.08 22090.96 20897.39 200
tttt051793.30 13493.01 12694.17 18095.57 19886.47 22698.51 16297.60 10485.99 23390.55 17597.19 16394.80 998.31 16785.06 22191.86 19697.74 191
XVG-ACMP-BASELINE85.86 26484.95 26088.57 30289.90 31277.12 33694.30 31395.60 27387.40 21182.12 25992.99 25553.42 34597.66 20785.02 22283.83 24790.92 295
test_part188.43 22586.68 23593.67 20097.56 13392.40 9698.12 20196.55 20382.26 29480.31 28393.16 25074.59 23596.62 25085.00 22372.61 32291.99 260
新几何197.40 5198.92 9092.51 9597.77 6785.52 23896.69 7999.06 5688.08 8199.89 4884.88 22499.62 5199.79 38
1112_ss92.71 14491.55 15696.20 11295.56 19991.12 11898.48 16794.69 31188.29 18586.89 21398.50 11087.02 10498.66 15984.75 22589.77 21798.81 148
miper_ehance_all_eth88.94 21288.12 21591.40 24195.32 20786.93 21997.85 22195.55 27584.19 26081.97 26591.50 27584.16 15195.91 29584.69 22677.89 28091.36 282
Test_1112_low_res92.27 15690.97 16696.18 11395.53 20191.10 12098.47 16994.66 31288.28 18686.83 21593.50 24387.00 10598.65 16084.69 22689.74 21898.80 149
TR-MVS90.77 18289.44 18994.76 15896.31 17388.02 19297.92 21695.96 23985.52 23888.22 20097.23 16066.80 29598.09 17784.58 22892.38 18798.17 184
OpenMVScopyleft85.28 1490.75 18388.84 20096.48 10293.58 26393.51 7098.80 12597.41 14582.59 28778.62 30397.49 14968.00 28699.82 6584.52 22998.55 11096.11 225
UniMVSNet_ETH3D85.65 27183.79 27791.21 24490.41 30880.75 31895.36 30495.78 26078.76 32281.83 27194.33 22149.86 35396.66 24884.30 23083.52 25296.22 224
NR-MVSNet87.74 23786.00 24592.96 21091.46 29690.68 13396.65 27297.42 14488.02 19373.42 33193.68 23577.31 22195.83 29984.26 23171.82 33192.36 245
D2MVS87.96 23187.39 22389.70 28291.84 29183.40 28598.31 18798.49 2188.04 19278.23 30990.26 30773.57 24596.79 24584.21 23283.53 25188.90 334
testdata299.88 4984.16 233
Baseline_NR-MVSNet85.83 26584.82 26388.87 30188.73 32883.34 28698.63 14791.66 35380.41 31582.44 25291.35 27874.63 23195.42 31084.13 23471.39 33387.84 340
thres100view90093.34 13392.15 14396.90 7797.62 12894.84 3999.06 9999.36 287.96 19490.47 17896.78 18183.29 16398.75 15384.11 23590.69 21097.12 206
tfpn200view993.43 12992.27 13996.90 7797.68 12694.84 3999.18 7899.36 288.45 17690.79 17096.90 17683.31 16198.75 15384.11 23590.69 21097.12 206
thres40093.39 13192.27 13996.73 8897.68 12694.84 3999.18 7899.36 288.45 17690.79 17096.90 17683.31 16198.75 15384.11 23590.69 21096.61 215
c3_l88.19 23087.23 22791.06 24794.97 22786.17 23797.72 22995.38 28883.43 27381.68 27291.37 27782.81 17295.72 30284.04 23873.70 31191.29 286
UA-Net93.30 13492.62 13395.34 14196.27 17488.53 18495.88 29696.97 18690.90 10495.37 10697.07 16982.38 18399.10 14383.91 23994.86 16498.38 172
IterMVS-LS88.34 22687.44 22291.04 24894.10 24685.85 24798.10 20595.48 27985.12 24482.03 26391.21 28181.35 19695.63 30583.86 24075.73 29291.63 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20089.38 19191.36 24394.32 24285.87 24697.61 23496.59 19885.10 24585.51 22297.10 16781.30 19796.56 25383.85 24183.03 25591.64 266
tpm89.67 20288.95 19891.82 23492.54 28081.43 30692.95 32595.92 24587.81 19890.50 17789.44 32084.99 14295.65 30483.67 24282.71 25898.38 172
eth_miper_zixun_eth87.76 23487.00 23190.06 27294.67 23782.65 29897.02 25895.37 28984.19 26081.86 27091.58 27481.47 19495.90 29683.24 24373.61 31291.61 271
Fast-Effi-MVS+91.72 16590.79 17394.49 16895.89 18987.40 20699.54 3995.70 26585.01 25089.28 19395.68 20477.75 21997.57 21783.22 24495.06 16298.51 165
test_post190.74 34441.37 37685.38 13996.36 26783.16 245
SCA90.64 18689.25 19394.83 15794.95 22888.83 17596.26 28397.21 16190.06 13190.03 18490.62 29766.61 29696.81 24383.16 24594.36 16798.84 143
TranMVSNet+NR-MVSNet87.75 23586.31 24092.07 23090.81 30388.56 18198.33 18497.18 16687.76 20081.87 26893.90 23072.45 25595.43 30983.13 24771.30 33492.23 250
CMPMVSbinary58.40 2180.48 30680.11 30681.59 34185.10 35259.56 36794.14 31695.95 24168.54 35560.71 36193.31 24455.35 33897.87 19183.06 24884.85 24087.33 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 13892.00 14696.75 8697.62 12894.92 3499.07 9799.36 287.96 19490.47 17896.78 18183.29 16398.71 15782.93 24990.47 21496.61 215
pmmvs487.58 24086.17 24391.80 23589.58 31788.92 17497.25 24795.28 29282.54 28980.49 28193.17 24975.62 22796.05 28782.75 25078.90 27490.42 310
CVMVSNet90.30 19090.91 16888.46 30594.32 24273.58 34797.61 23497.59 10890.16 12788.43 19997.10 16776.83 22492.86 34082.64 25193.54 17498.93 137
Anonymous2023121184.72 27882.65 28990.91 25197.71 12584.55 27197.28 24596.67 19466.88 35979.18 29990.87 28758.47 32696.60 25182.61 25274.20 30791.59 273
GA-MVS90.10 19688.69 20494.33 17492.44 28187.97 19399.08 9696.26 22289.65 13986.92 21293.11 25268.09 28496.96 23782.54 25390.15 21598.05 185
QAPM91.41 17189.49 18897.17 6195.66 19793.42 7298.60 15297.51 12680.92 31081.39 27597.41 15272.89 25399.87 5282.33 25498.68 10398.21 182
Patchmatch-RL test81.90 30280.13 30587.23 31480.71 36470.12 35984.07 36088.19 36883.16 27870.57 34182.18 35387.18 10092.59 34582.28 25562.78 35098.98 129
v2v48287.27 24385.76 24891.78 23989.59 31687.58 20098.56 15795.54 27684.53 25682.51 25191.78 27073.11 25096.47 26082.07 25674.14 30991.30 285
Fast-Effi-MVS+-dtu88.84 21588.59 20889.58 28693.44 26878.18 33198.65 14394.62 31388.46 17584.12 23395.37 21068.91 27796.52 25682.06 25791.70 20194.06 232
pmmvs585.87 26384.40 27290.30 26888.53 33184.23 27498.60 15293.71 33081.53 30280.29 28492.02 26464.51 30895.52 30782.04 25878.34 27891.15 289
V4287.00 24585.68 25090.98 25089.91 31186.08 24098.32 18695.61 27283.67 27082.72 24790.67 29374.00 24496.53 25581.94 25974.28 30690.32 312
EPMVS92.59 14991.59 15595.59 13497.22 14190.03 15191.78 33598.04 4290.42 11791.66 15590.65 29586.49 12097.46 22081.78 26096.31 14599.28 107
DIV-MVS_self_test87.82 23286.81 23390.87 25494.87 23285.39 25697.81 22295.22 30082.92 28480.76 27891.31 27981.99 18795.81 30081.36 26175.04 29691.42 280
cl____87.82 23286.79 23490.89 25394.88 23185.43 25497.81 22295.24 29682.91 28580.71 27991.22 28081.97 18995.84 29881.34 26275.06 29591.40 281
RPSCF85.33 27385.55 25284.67 32994.63 23862.28 36593.73 31993.76 32874.38 34085.23 22597.06 17064.09 30998.31 16780.98 26386.08 23393.41 237
OurMVSNet-221017-084.13 28983.59 27885.77 32387.81 33870.24 35794.89 30893.65 33286.08 23276.53 31393.28 24661.41 31996.14 28480.95 26477.69 28590.93 294
v14886.38 25785.06 25790.37 26789.47 32184.10 27798.52 15995.48 27983.80 26680.93 27790.22 31174.60 23396.31 27580.92 26571.55 33290.69 305
PatchMatch-RL91.47 16990.54 17794.26 17798.20 11186.36 23196.94 25997.14 16987.75 20188.98 19495.75 20371.80 26399.40 12380.92 26597.39 12997.02 212
miper_lstm_enhance86.90 24686.20 24289.00 29894.53 23981.19 31296.74 26995.24 29682.33 29380.15 28690.51 30481.99 18794.68 32780.71 26773.58 31391.12 290
PCF-MVS89.78 591.26 17289.63 18596.16 11695.44 20391.58 10895.29 30596.10 23385.07 24782.75 24697.45 15078.28 21699.78 7180.60 26895.65 15997.12 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17489.99 18295.03 15196.75 15888.55 18298.65 14394.95 30287.74 20287.74 20297.80 13368.27 28398.14 17380.53 26997.49 12798.41 169
GeoE90.60 18789.56 18693.72 19995.10 22185.43 25499.41 5994.94 30383.96 26587.21 20996.83 18074.37 23897.05 23580.50 27093.73 17298.67 158
CP-MVSNet86.54 25485.45 25489.79 28091.02 30282.78 29697.38 24097.56 11585.37 24179.53 29593.03 25371.86 26295.25 31479.92 27173.43 31791.34 283
PatchmatchNetpermissive92.05 16191.04 16595.06 14996.17 18189.04 16891.26 33997.26 15489.56 14590.64 17490.56 30188.35 7697.11 23179.53 27296.07 15299.03 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 24885.31 25591.40 24189.75 31487.21 21698.31 18795.45 28183.22 27682.70 24890.78 28873.36 24696.36 26779.49 27374.69 30090.63 307
IterMVS85.81 26684.67 26689.22 29393.51 26483.67 28396.32 28094.80 30785.09 24678.69 30190.17 31466.57 29893.17 33979.48 27477.42 28690.81 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26984.64 26789.00 29893.46 26782.90 29296.27 28194.70 31085.02 24978.62 30390.35 30666.61 29693.33 33679.38 27577.36 28790.76 301
GBi-Net86.67 25184.96 25891.80 23595.11 21888.81 17696.77 26595.25 29382.94 28182.12 25990.25 30862.89 31394.97 31879.04 27680.24 26791.62 268
test186.67 25184.96 25891.80 23595.11 21888.81 17696.77 26595.25 29382.94 28182.12 25990.25 30862.89 31394.97 31879.04 27680.24 26791.62 268
FMVSNet388.81 21987.08 22993.99 18996.52 16594.59 4998.08 20896.20 22685.85 23482.12 25991.60 27374.05 24395.40 31179.04 27680.24 26791.99 260
LF4IMVS81.94 30181.17 30084.25 33187.23 34468.87 36293.35 32391.93 35183.35 27575.40 32293.00 25449.25 35696.65 24978.88 27978.11 27987.22 347
v886.11 26084.45 26991.10 24689.99 31086.85 22097.24 24895.36 29081.99 29779.89 29089.86 31674.53 23696.39 26578.83 28072.32 32690.05 319
pm-mvs184.68 27982.78 28590.40 26489.58 31785.18 25997.31 24294.73 30981.93 29976.05 31692.01 26565.48 30596.11 28578.75 28169.14 33789.91 322
v14419286.40 25684.89 26190.91 25189.48 32085.59 25198.21 19495.43 28582.45 29182.62 24990.58 30072.79 25496.36 26778.45 28274.04 31090.79 299
PS-CasMVS85.81 26684.58 26889.49 29090.77 30482.11 30297.20 25197.36 15184.83 25379.12 30092.84 25667.42 29195.16 31678.39 28373.25 31891.21 288
tmp_tt53.66 33652.86 33856.05 35332.75 38141.97 37773.42 36776.12 37721.91 37439.68 37096.39 19342.59 36165.10 37378.00 28414.92 37461.08 367
JIA-IIPM85.97 26284.85 26289.33 29293.23 27273.68 34685.05 35597.13 17169.62 35291.56 15868.03 36488.03 8296.96 23777.89 28593.12 17697.34 201
MDTV_nov1_ep1390.47 17996.14 18488.55 18291.34 33897.51 12689.58 14392.24 15090.50 30586.99 10697.61 21177.64 28692.34 188
v119286.32 25884.71 26591.17 24589.53 31986.40 22898.13 19995.44 28482.52 29082.42 25390.62 29771.58 26696.33 27477.23 28774.88 29790.79 299
FMVSNet286.90 24684.79 26493.24 20595.11 21892.54 9497.67 23295.86 25782.94 28180.55 28091.17 28262.89 31395.29 31377.23 28779.71 27391.90 262
MVP-Stereo86.61 25385.83 24788.93 30088.70 32983.85 28196.07 29194.41 31982.15 29675.64 32191.96 26767.65 28996.45 26277.20 28998.72 10286.51 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 21387.27 22693.76 19795.79 19185.32 25790.76 34397.09 17776.14 33485.72 22088.59 32682.92 17098.04 18376.96 29091.43 20497.90 190
v1085.73 26984.01 27590.87 25490.03 30986.73 22297.20 25195.22 30081.25 30579.85 29189.75 31773.30 24996.28 27976.87 29172.64 32189.61 326
v192192086.02 26184.44 27090.77 25689.32 32285.20 25898.10 20595.35 29182.19 29582.25 25790.71 29070.73 26996.30 27876.85 29274.49 30290.80 298
MS-PatchMatch86.75 24985.92 24689.22 29391.97 28782.47 30096.91 26096.14 23283.74 26777.73 31093.53 24158.19 32797.37 22776.75 29398.35 11387.84 340
K. test v381.04 30479.77 30784.83 32787.41 34270.23 35895.60 30393.93 32783.70 26967.51 35189.35 32255.76 33393.58 33576.67 29468.03 34190.67 306
PM-MVS74.88 32572.85 32880.98 34278.98 36764.75 36490.81 34285.77 37080.95 30968.23 34882.81 35129.08 37092.84 34176.54 29562.46 35285.36 356
MVS_030484.13 28982.66 28888.52 30393.07 27580.15 31995.81 30098.21 3179.27 31786.85 21486.40 34241.33 36494.69 32676.36 29686.69 22790.73 303
WR-MVS_H86.53 25585.49 25389.66 28591.04 30183.31 28797.53 23698.20 3284.95 25179.64 29290.90 28678.01 21895.33 31276.29 29772.81 31990.35 311
ACMH+83.78 1584.21 28682.56 29189.15 29593.73 26179.16 32396.43 27694.28 32181.09 30774.00 32894.03 22554.58 34197.67 20676.10 29878.81 27590.63 307
PEN-MVS85.21 27483.93 27689.07 29789.89 31381.31 31097.09 25497.24 15784.45 25878.66 30292.68 25868.44 28294.87 32175.98 29970.92 33591.04 292
USDC84.74 27782.93 28190.16 27091.73 29383.54 28495.00 30793.30 33688.77 16773.19 33293.30 24553.62 34497.65 20875.88 30081.54 26589.30 329
EU-MVSNet84.19 28784.42 27183.52 33488.64 33067.37 36396.04 29295.76 26285.29 24278.44 30693.18 24870.67 27091.48 35675.79 30175.98 29091.70 265
v124085.77 26884.11 27390.73 25789.26 32385.15 26197.88 21995.23 29981.89 30082.16 25890.55 30269.60 27696.31 27575.59 30274.87 29890.72 304
ITE_SJBPF87.93 30792.26 28376.44 33793.47 33587.67 20679.95 28995.49 20856.50 33297.38 22575.24 30382.33 26189.98 321
dp90.16 19588.83 20194.14 18196.38 17186.42 22791.57 33697.06 17984.76 25488.81 19590.19 31384.29 15097.43 22375.05 30491.35 20798.56 163
LS3D90.19 19388.72 20394.59 16698.97 8686.33 23296.90 26196.60 19774.96 33784.06 23498.74 9175.78 22699.83 6274.93 30597.57 12397.62 196
TDRefinement78.01 31975.31 32286.10 32170.06 37173.84 34593.59 32291.58 35574.51 33973.08 33591.04 28349.63 35597.12 23074.88 30659.47 35687.33 345
tpmvs89.16 20787.76 21793.35 20397.19 14284.75 26990.58 34597.36 15181.99 29784.56 22889.31 32383.98 15398.17 17274.85 30790.00 21697.12 206
pmmvs679.90 30977.31 31487.67 31084.17 35578.13 33295.86 29893.68 33167.94 35772.67 33889.62 31950.98 35195.75 30174.80 30866.04 34689.14 332
SixPastTwentyTwo82.63 29781.58 29585.79 32288.12 33571.01 35695.17 30692.54 34284.33 25972.93 33792.08 26260.41 32395.61 30674.47 30974.15 30890.75 302
ACMH83.09 1784.60 28082.61 29090.57 25993.18 27382.94 29096.27 28194.92 30481.01 30872.61 33993.61 23856.54 33197.79 19674.31 31081.07 26690.99 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet287.62 23986.88 23289.86 27796.21 17779.14 32487.15 34992.99 33783.01 27989.91 18687.27 33578.87 21192.80 34374.20 31192.27 19097.64 193
ADS-MVSNet88.99 21087.30 22594.07 18496.21 17787.56 20187.15 34996.78 19283.01 27989.91 18687.27 33578.87 21197.01 23674.20 31192.27 19097.64 193
lessismore_v085.08 32585.59 35169.28 36090.56 36067.68 35090.21 31254.21 34395.46 30873.88 31362.64 35190.50 309
MIMVSNet84.48 28381.83 29392.42 22291.73 29387.36 20785.52 35294.42 31881.40 30381.91 26687.58 33051.92 34892.81 34273.84 31488.15 22197.08 210
v7n84.42 28582.75 28689.43 29188.15 33481.86 30396.75 26895.67 26880.53 31178.38 30789.43 32169.89 27296.35 27273.83 31572.13 32890.07 317
ambc79.60 34372.76 37056.61 36976.20 36592.01 35068.25 34780.23 35723.34 37194.73 32573.78 31660.81 35487.48 342
pmmvs-eth3d78.71 31676.16 32086.38 31880.25 36581.19 31294.17 31592.13 34877.97 32566.90 35482.31 35255.76 33392.56 34673.63 31762.31 35385.38 355
FMVSNet183.94 29181.32 29991.80 23591.94 28988.81 17696.77 26595.25 29377.98 32478.25 30890.25 30850.37 35294.97 31873.27 31877.81 28491.62 268
MSDG88.29 22886.37 23994.04 18796.90 15386.15 23896.52 27594.36 32077.89 32879.22 29896.95 17469.72 27499.59 9773.20 31992.58 18596.37 223
test0.0.03 188.96 21188.61 20690.03 27591.09 30084.43 27298.97 10997.02 18390.21 12280.29 28496.31 19584.89 14491.93 35472.98 32085.70 23693.73 233
UnsupCasMVSNet_eth78.90 31476.67 31885.58 32482.81 36074.94 34191.98 33396.31 21784.64 25565.84 35787.71 32951.33 34992.23 35072.89 32156.50 36189.56 327
DTE-MVSNet84.14 28882.80 28388.14 30688.95 32679.87 32296.81 26496.24 22383.50 27277.60 31192.52 26067.89 28894.24 33272.64 32269.05 33890.32 312
EPNet_dtu92.28 15592.15 14392.70 21897.29 13984.84 26798.64 14597.82 5792.91 5793.02 14397.02 17185.48 13795.70 30372.25 32394.89 16397.55 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 27683.12 28090.52 26196.82 15578.84 32695.89 29492.17 34677.96 32675.94 31795.50 20655.48 33599.18 13671.15 32487.14 22493.55 235
TestCases90.52 26196.82 15578.84 32692.17 34677.96 32675.94 31795.50 20655.48 33599.18 13671.15 32487.14 22493.55 235
DP-MVS88.75 22186.56 23795.34 14198.92 9087.45 20497.64 23393.52 33470.55 34881.49 27397.25 15874.43 23799.88 4971.14 32694.09 16998.67 158
CR-MVSNet88.83 21787.38 22493.16 20793.47 26586.24 23384.97 35694.20 32388.92 16490.76 17286.88 33984.43 14894.82 32370.64 32792.17 19398.41 169
KD-MVS_2432*160082.98 29580.52 30390.38 26594.32 24288.98 17092.87 32795.87 25580.46 31373.79 32987.49 33282.76 17593.29 33770.56 32846.53 36788.87 335
miper_refine_blended82.98 29580.52 30390.38 26594.32 24288.98 17092.87 32795.87 25580.46 31373.79 32987.49 33282.76 17593.29 33770.56 32846.53 36788.87 335
test_method70.10 33068.66 33374.41 34686.30 34955.84 37094.47 31089.82 36335.18 36966.15 35684.75 34830.54 36977.96 37070.40 33060.33 35589.44 328
LTVRE_ROB81.71 1984.59 28182.72 28790.18 26992.89 27883.18 28893.15 32494.74 30878.99 31975.14 32492.69 25765.64 30297.63 20969.46 33181.82 26489.74 323
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet582.29 29880.54 30287.52 31193.79 26084.01 27893.73 31992.47 34376.92 33174.27 32686.15 34463.69 31289.24 36069.07 33274.79 29989.29 330
our_test_384.47 28482.80 28389.50 28889.01 32483.90 28097.03 25694.56 31481.33 30475.36 32390.52 30371.69 26494.54 32968.81 33376.84 28990.07 317
UnsupCasMVSNet_bld73.85 32770.14 33084.99 32679.44 36675.73 33888.53 34795.24 29670.12 35161.94 36074.81 36141.41 36393.62 33468.65 33451.13 36685.62 354
Patchmtry83.61 29481.64 29489.50 28893.36 26982.84 29584.10 35994.20 32369.47 35379.57 29486.88 33984.43 14894.78 32468.48 33574.30 30590.88 296
KD-MVS_self_test77.47 32275.88 32182.24 33681.59 36168.93 36192.83 32994.02 32677.03 33073.14 33383.39 35055.44 33790.42 35767.95 33657.53 35987.38 343
TransMVSNet (Re)81.97 30079.61 30889.08 29689.70 31584.01 27897.26 24691.85 35278.84 32073.07 33691.62 27267.17 29395.21 31567.50 33759.46 35788.02 339
COLMAP_ROBcopyleft82.69 1884.54 28282.82 28289.70 28296.72 15978.85 32595.89 29492.83 34071.55 34677.54 31295.89 20259.40 32599.14 14167.26 33888.26 22091.11 291
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 30877.59 31286.90 31687.06 34577.90 33596.20 28994.06 32574.61 33866.53 35588.76 32540.40 36696.20 28067.02 33983.66 25086.61 349
DSMNet-mixed81.60 30381.43 29782.10 33884.36 35460.79 36693.63 32186.74 36979.00 31879.32 29787.15 33763.87 31189.78 35966.89 34091.92 19595.73 227
testgi82.29 29881.00 30186.17 32087.24 34374.84 34297.39 23891.62 35488.63 16875.85 32095.42 20946.07 35991.55 35566.87 34179.94 27192.12 254
MDA-MVSNet_test_wron79.65 31177.05 31587.45 31287.79 34080.13 32096.25 28494.44 31673.87 34151.80 36487.47 33468.04 28592.12 35266.02 34267.79 34290.09 315
YYNet179.64 31277.04 31687.43 31387.80 33979.98 32196.23 28594.44 31673.83 34251.83 36387.53 33167.96 28792.07 35366.00 34367.75 34390.23 314
DeepMVS_CXcopyleft76.08 34590.74 30551.65 37390.84 35986.47 22957.89 36287.98 32735.88 36892.60 34465.77 34465.06 34883.97 359
Anonymous2024052178.63 31776.90 31783.82 33282.82 35972.86 34995.72 30293.57 33373.55 34372.17 34084.79 34749.69 35492.51 34765.29 34574.50 30186.09 353
TinyColmap80.42 30777.94 31187.85 30892.09 28678.58 32893.74 31889.94 36274.99 33669.77 34391.78 27046.09 35897.58 21465.17 34677.89 28087.38 343
MVS-HIRNet79.01 31375.13 32390.66 25893.82 25981.69 30585.16 35393.75 32954.54 36474.17 32759.15 36857.46 32996.58 25263.74 34794.38 16693.72 234
ppachtmachnet_test83.63 29381.57 29689.80 27989.01 32485.09 26297.13 25394.50 31578.84 32076.14 31591.00 28469.78 27394.61 32863.40 34874.36 30489.71 325
CL-MVSNet_self_test79.89 31078.34 31084.54 33081.56 36275.01 34096.88 26295.62 27081.10 30675.86 31985.81 34568.49 28190.26 35863.21 34956.51 36088.35 337
Patchmatch-test86.25 25984.06 27492.82 21394.42 24082.88 29482.88 36394.23 32271.58 34579.39 29690.62 29789.00 6696.42 26463.03 35091.37 20699.16 116
pmmvs372.86 32869.76 33282.17 33773.86 36974.19 34494.20 31489.01 36664.23 36367.72 34980.91 35641.48 36288.65 36262.40 35154.02 36483.68 360
new_pmnet76.02 32373.71 32682.95 33583.88 35672.85 35091.26 33992.26 34570.44 34962.60 35981.37 35447.64 35792.32 34961.85 35272.10 32983.68 360
tfpnnormal83.65 29281.35 29890.56 26091.37 29888.06 19097.29 24497.87 5378.51 32376.20 31490.91 28564.78 30796.47 26061.71 35373.50 31487.13 348
MDA-MVSNet-bldmvs77.82 32174.75 32587.03 31588.33 33278.52 32996.34 27992.85 33975.57 33548.87 36687.89 32857.32 33092.49 34860.79 35464.80 34990.08 316
Anonymous2023120680.76 30579.42 30984.79 32884.78 35372.98 34896.53 27492.97 33879.56 31674.33 32588.83 32461.27 32092.15 35160.59 35575.92 29189.24 331
new-patchmatchnet74.80 32672.40 32981.99 33978.36 36872.20 35294.44 31192.36 34477.06 32963.47 35879.98 35851.04 35088.85 36160.53 35654.35 36384.92 358
LCM-MVSNet60.07 33356.37 33571.18 34754.81 37748.67 37482.17 36489.48 36537.95 36749.13 36569.12 36213.75 37881.76 36659.28 35751.63 36583.10 362
TAPA-MVS87.50 990.35 18889.05 19694.25 17898.48 10785.17 26098.42 17296.58 20182.44 29287.24 20898.53 10782.77 17398.84 14959.09 35897.88 11798.72 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 31877.48 31381.62 34083.07 35871.03 35596.11 29092.83 34081.66 30169.31 34489.68 31857.53 32887.29 36558.65 35968.47 33986.53 350
PatchT85.44 27283.19 27992.22 22493.13 27483.00 28983.80 36296.37 21470.62 34790.55 17579.63 35984.81 14694.87 32158.18 36091.59 20298.79 150
MIMVSNet175.92 32473.30 32783.81 33381.29 36375.57 33992.26 33292.05 34973.09 34467.48 35286.18 34340.87 36587.64 36455.78 36170.68 33688.21 338
OpenMVS_ROBcopyleft73.86 2077.99 32075.06 32486.77 31783.81 35777.94 33496.38 27891.53 35667.54 35868.38 34687.13 33843.94 36096.08 28655.03 36281.83 26386.29 352
RPMNet85.07 27581.88 29294.64 16493.47 26586.24 23384.97 35697.21 16164.85 36290.76 17278.80 36080.95 19899.27 13453.76 36392.17 19398.41 169
N_pmnet70.19 32969.87 33171.12 34888.24 33330.63 38195.85 29928.70 38170.18 35068.73 34586.55 34164.04 31093.81 33353.12 36473.46 31588.94 333
PMMVS258.97 33455.07 33770.69 34962.72 37255.37 37185.97 35180.52 37449.48 36545.94 36768.31 36315.73 37680.78 36849.79 36537.12 36975.91 363
test_040278.81 31576.33 31986.26 31991.18 29978.44 33095.88 29691.34 35768.55 35470.51 34289.91 31552.65 34794.99 31747.14 36679.78 27285.34 357
FPMVS61.57 33160.32 33465.34 35060.14 37542.44 37691.02 34189.72 36444.15 36642.63 36880.93 35519.02 37280.59 36942.50 36772.76 32073.00 364
EGC-MVSNET60.70 33255.37 33676.72 34486.35 34871.08 35489.96 34684.44 3730.38 3781.50 37984.09 34937.30 36788.10 36340.85 36873.44 31670.97 366
ANet_high50.71 33746.17 34064.33 35144.27 37952.30 37276.13 36678.73 37564.95 36127.37 37255.23 36914.61 37767.74 37236.01 36918.23 37272.95 365
Gipumacopyleft54.77 33552.22 33962.40 35286.50 34659.37 36850.20 37090.35 36136.52 36841.20 36949.49 37018.33 37481.29 36732.10 37065.34 34746.54 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 33842.50 34155.17 35434.28 38032.37 37966.24 36878.71 37630.72 37022.04 37559.59 3674.59 37977.85 37127.49 37158.84 35855.29 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 33937.64 34453.90 35549.46 37843.37 37565.09 36966.66 37826.19 37325.77 37448.53 3713.58 38163.35 37426.15 37227.28 37054.97 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 34040.93 34241.29 35661.97 37333.83 37884.00 36165.17 37927.17 37127.56 37146.72 37217.63 37560.41 37519.32 37318.82 37129.61 371
EMVS39.96 34139.88 34340.18 35759.57 37632.12 38084.79 35864.57 38026.27 37226.14 37344.18 37518.73 37359.29 37617.03 37417.67 37329.12 372
wuyk23d16.71 34416.73 34816.65 35860.15 37425.22 38241.24 3715.17 3826.56 3755.48 3783.61 3783.64 38022.72 37715.20 3759.52 3751.99 375
testmvs18.81 34323.05 3466.10 3604.48 3822.29 38497.78 2243.00 3833.27 37618.60 37662.71 3651.53 3832.49 37914.26 3761.80 37613.50 374
test12316.58 34519.47 3477.91 3593.59 3835.37 38394.32 3121.39 3842.49 37713.98 37744.60 3742.91 3822.65 37811.35 3770.57 37715.70 373
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k22.52 34230.03 3450.00 3610.00 3840.00 3850.00 37297.17 1670.00 3790.00 38098.77 8874.35 2390.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.87 3479.16 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37982.48 1800.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.21 34610.94 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38098.50 1100.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.50 4788.94 17299.55 3597.47 13491.32 9598.12 38
test_one_060199.59 3194.89 3597.64 9493.14 5198.93 1699.45 1693.45 17
eth-test20.00 384
eth-test0.00 384
test_241102_ONE99.63 2195.24 2497.72 7694.16 2899.30 699.49 1093.32 1899.98 10
save fliter99.34 5893.85 6399.65 2397.63 9995.69 11
test072699.66 1595.20 2999.77 897.70 8193.95 3199.35 599.54 393.18 21
GSMVS98.84 143
test_part299.54 4095.42 1998.13 36
sam_mvs188.39 7598.84 143
sam_mvs87.08 102
MTGPAbinary97.45 137
test_post46.00 37387.37 9497.11 231
patchmatchnet-post84.86 34688.73 6996.81 243
MTMP99.21 7591.09 358
TEST999.57 3793.17 7699.38 6297.66 8889.57 14498.39 3199.18 3790.88 3699.66 85
test_899.55 3993.07 8099.37 6597.64 9490.18 12498.36 3399.19 3490.94 3499.64 91
agg_prior99.54 4092.66 8897.64 9497.98 4799.61 94
test_prior492.00 9999.41 59
test_prior97.01 6599.58 3391.77 10097.57 11399.49 10999.79 38
新几何298.26 190
旧先验198.97 8692.90 8797.74 7099.15 4391.05 3399.33 7499.60 78
原ACMM298.69 137
test22298.32 10891.21 11398.08 20897.58 11083.74 26795.87 9599.02 6086.74 11099.64 4799.81 35
segment_acmp90.56 43
testdata197.89 21792.43 68
test1297.83 3499.33 6494.45 5197.55 11697.56 5388.60 7099.50 10899.71 3899.55 82
plane_prior793.84 25785.73 249
plane_prior693.92 25486.02 24372.92 251
plane_prior496.52 187
plane_prior385.91 24493.65 4386.99 210
plane_prior299.02 10393.38 48
plane_prior193.90 256
plane_prior86.07 24199.14 9093.81 4186.26 230
n20.00 385
nn0.00 385
door-mid84.90 372
test1197.68 85
door85.30 371
HQP5-MVS86.39 229
HQP-NCC93.95 25099.16 8193.92 3387.57 203
ACMP_Plane93.95 25099.16 8193.92 3387.57 203
HQP4-MVS87.57 20397.77 19892.72 238
HQP3-MVS96.37 21486.29 228
HQP2-MVS73.34 247
NP-MVS93.94 25386.22 23596.67 185
ACMMP++_ref82.64 259
ACMMP++83.83 247
Test By Simon83.62 156