OPU-MVS | | | | | 99.49 4 | 99.64 20 | 98.51 4 | 99.77 8 | | | | 99.19 34 | 95.12 7 | 99.97 23 | 99.90 1 | 99.92 3 | 99.99 1 |
|
PC_three_1452 | | | | | | | | | | 94.60 21 | 99.41 2 | 99.12 48 | 95.50 6 | 99.96 30 | 99.84 2 | 99.92 3 | 99.97 7 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 17 | 99.63 21 | 95.24 24 | 99.77 8 | 97.72 76 | 94.17 26 | 99.30 6 | 99.54 3 | 93.32 18 | 99.98 10 | 99.70 3 | 99.81 23 | 99.99 1 |
|
test_241102_TWO | | | | | | | | | 97.72 76 | 94.17 26 | 99.23 8 | 99.54 3 | 93.14 23 | 99.98 10 | 99.70 3 | 99.82 19 | 99.99 1 |
|
IU-MVS | | | | | | 99.63 21 | 95.38 21 | | 97.73 74 | 95.54 15 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 18 | 99.66 15 | 95.20 29 | 99.72 13 | 97.47 134 | 93.95 31 | 99.07 11 | 99.46 11 | 93.18 21 | 99.97 23 | 99.64 6 | 99.82 19 | 99.69 65 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 98.77 7 | 99.66 15 | 96.37 13 | 99.72 13 | 97.68 85 | | | | | 99.98 10 | 99.64 6 | 99.82 19 | 99.96 10 |
|
patch_mono-2 | | | 97.10 27 | 97.97 8 | 94.49 168 | 99.21 73 | 83.73 282 | 99.62 27 | 98.25 27 | 95.28 18 | 99.38 4 | 98.91 79 | 92.28 27 | 99.94 37 | 99.61 8 | 99.22 83 | 99.78 42 |
|
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 15 | 99.50 47 | 95.39 20 | 99.29 72 | 97.72 76 | 94.50 22 | 98.64 24 | 99.54 3 | 93.32 18 | 99.97 23 | 99.58 9 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 83 | | | | | 99.98 10 | 99.55 10 | 99.83 15 | 99.96 10 |
|
No_MVS | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 83 | | | | | 99.98 10 | 99.55 10 | 99.83 15 | 99.96 10 |
|
ETH3 D test6400 | | | 97.67 11 | 97.33 18 | 98.69 9 | 99.69 9 | 96.43 11 | 99.63 25 | 97.73 74 | 91.05 99 | 98.66 23 | 99.53 7 | 90.59 42 | 99.71 78 | 99.32 12 | 99.80 27 | 99.91 22 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 43 | 97.84 10 | 92.68 219 | 98.71 99 | 78.11 333 | 99.70 16 | 97.71 80 | 98.18 1 | 97.36 59 | 99.76 1 | 90.37 50 | 99.94 37 | 99.27 13 | 99.54 61 | 99.99 1 |
|
APDe-MVS | | | 97.53 12 | 97.47 12 | 97.70 39 | 99.58 33 | 93.63 66 | 99.56 34 | 97.52 123 | 93.59 45 | 98.01 46 | 99.12 48 | 90.80 39 | 99.55 99 | 99.26 14 | 99.79 29 | 99.93 21 |
|
DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 15 | 99.61 27 | 95.38 21 | 99.55 35 | 97.68 85 | 93.01 52 | 99.23 8 | 99.45 16 | 95.12 7 | 99.98 10 | 99.25 15 | 99.92 3 | 99.97 7 |
|
test_0728_THIRD | | | | | | | | | | 93.01 52 | 99.07 11 | 99.46 11 | 94.66 12 | 99.97 23 | 99.25 15 | 99.82 19 | 99.95 15 |
|
dcpmvs_2 | | | 95.67 73 | 96.18 47 | 94.12 182 | 98.82 95 | 84.22 275 | 97.37 241 | 95.45 281 | 90.70 108 | 95.77 99 | 98.63 102 | 90.47 44 | 98.68 158 | 99.20 17 | 99.22 83 | 99.45 92 |
|
TSAR-MVS + GP. | | | 96.95 31 | 96.91 27 | 97.07 62 | 98.88 92 | 91.62 105 | 99.58 31 | 96.54 205 | 95.09 19 | 96.84 73 | 98.63 102 | 91.16 30 | 99.77 72 | 99.04 18 | 96.42 142 | 99.81 35 |
|
MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 16 | 97.98 46 | 97.18 2 | 95.96 91 | 99.33 23 | 92.62 25 | 100.00 1 | 98.99 19 | 99.93 1 | 99.98 6 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 14 | 99.80 7 | 97.99 45 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 19 | 99.90 7 | 99.96 10 |
|
ETH3D-3000-0.1 | | | 97.29 17 | 97.01 24 | 98.12 25 | 99.18 75 | 94.97 33 | 99.47 45 | 97.52 123 | 89.85 133 | 98.79 20 | 99.46 11 | 90.41 49 | 99.69 80 | 98.78 21 | 99.67 42 | 99.70 62 |
|
CANet | | | 97.00 29 | 96.49 39 | 98.55 11 | 98.86 94 | 96.10 15 | 99.83 4 | 97.52 123 | 95.90 9 | 97.21 61 | 98.90 80 | 82.66 177 | 99.93 40 | 98.71 22 | 98.80 100 | 99.63 74 |
|
9.14 | | | | 96.87 28 | | 99.34 58 | | 99.50 42 | 97.49 131 | 89.41 149 | 98.59 26 | 99.43 18 | 89.78 56 | 99.69 80 | 98.69 23 | 99.62 51 | |
|
SD-MVS | | | 97.51 13 | 97.40 16 | 97.81 35 | 99.01 85 | 93.79 65 | 99.33 70 | 97.38 148 | 93.73 42 | 98.83 19 | 99.02 60 | 90.87 37 | 99.88 49 | 98.69 23 | 99.74 32 | 99.77 49 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test9_res | | | | | | | | | | | | | | | 98.60 25 | 99.87 9 | 99.90 24 |
|
PS-MVSNAJ | | | 96.87 35 | 96.40 41 | 98.29 18 | 97.35 137 | 97.29 5 | 99.03 102 | 97.11 173 | 95.83 10 | 98.97 14 | 99.14 45 | 82.48 180 | 99.60 96 | 98.60 25 | 99.08 86 | 98.00 187 |
|
xiu_mvs_v2_base | | | 96.66 39 | 96.17 51 | 98.11 27 | 97.11 147 | 96.96 6 | 99.01 105 | 97.04 180 | 95.51 16 | 98.86 17 | 99.11 53 | 82.19 186 | 99.36 126 | 98.59 27 | 98.14 115 | 98.00 187 |
|
train_agg | | | 97.20 23 | 97.08 21 | 97.57 45 | 99.57 37 | 93.17 76 | 99.38 62 | 97.66 88 | 90.18 124 | 98.39 31 | 99.18 37 | 90.94 34 | 99.66 85 | 98.58 28 | 99.85 13 | 99.88 28 |
|
agg_prior1 | | | 97.12 25 | 97.03 23 | 97.38 53 | 99.54 40 | 92.66 88 | 99.35 67 | 97.64 94 | 90.38 118 | 97.98 47 | 99.17 39 | 90.84 38 | 99.61 94 | 98.57 29 | 99.78 31 | 99.87 31 |
|
TSAR-MVS + MP. | | | 97.44 16 | 97.46 13 | 97.39 52 | 99.12 78 | 93.49 71 | 98.52 159 | 97.50 129 | 94.46 23 | 98.99 13 | 98.64 100 | 91.58 29 | 99.08 144 | 98.49 30 | 99.83 15 | 99.60 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 97.51 13 | 97.42 15 | 97.78 37 | 99.34 58 | 93.85 63 | 99.65 23 | 95.45 281 | 95.69 11 | 98.70 21 | 99.42 19 | 90.42 47 | 99.72 76 | 98.47 31 | 99.65 44 | 99.77 49 |
|
SF-MVS | | | 97.22 22 | 96.92 26 | 98.12 25 | 99.11 79 | 94.88 36 | 99.44 53 | 97.45 137 | 89.60 142 | 98.70 21 | 99.42 19 | 90.42 47 | 99.72 76 | 98.47 31 | 99.65 44 | 99.77 49 |
|
ETH3D cwj APD-0.16 | | | 96.94 33 | 96.58 38 | 98.01 29 | 98.62 102 | 94.73 45 | 99.13 93 | 97.38 148 | 88.44 179 | 98.53 28 | 99.39 21 | 89.66 60 | 99.69 80 | 98.43 33 | 99.61 55 | 99.61 77 |
|
PHI-MVS | | | 96.65 40 | 96.46 40 | 97.21 59 | 99.34 58 | 91.77 100 | 99.70 16 | 98.05 41 | 86.48 228 | 98.05 41 | 99.20 33 | 89.33 62 | 99.96 30 | 98.38 34 | 99.62 51 | 99.90 24 |
|
ZD-MVS | | | | | | 99.67 13 | 93.28 74 | | 97.61 102 | 87.78 199 | 97.41 57 | 99.16 41 | 90.15 52 | 99.56 98 | 98.35 35 | 99.70 39 | |
|
test_prior3 | | | 97.07 28 | 97.09 20 | 97.01 65 | 99.58 33 | 91.77 100 | 99.57 32 | 97.57 113 | 91.43 91 | 98.12 38 | 98.97 66 | 90.43 45 | 99.49 109 | 98.33 36 | 99.81 23 | 99.79 38 |
|
test_prior2 | | | | | | | | 99.57 32 | | 91.43 91 | 98.12 38 | 98.97 66 | 90.43 45 | | 98.33 36 | 99.81 23 | |
|
SMA-MVS |  | | 97.24 19 | 96.99 25 | 98.00 30 | 99.30 65 | 94.20 57 | 99.16 81 | 97.65 93 | 89.55 146 | 99.22 10 | 99.52 9 | 90.34 51 | 99.99 5 | 98.32 38 | 99.83 15 | 99.82 34 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CHOSEN 280x420 | | | 96.80 37 | 96.85 29 | 96.66 94 | 97.85 122 | 94.42 53 | 94.76 309 | 98.36 24 | 92.50 66 | 95.62 103 | 97.52 147 | 97.92 1 | 97.38 225 | 98.31 39 | 98.80 100 | 98.20 183 |
|
NCCC | | | 98.12 5 | 98.11 3 | 98.13 23 | 99.76 6 | 94.46 50 | 99.81 5 | 97.88 51 | 96.54 5 | 98.84 18 | 99.46 11 | 92.55 26 | 99.98 10 | 98.25 40 | 99.93 1 | 99.94 18 |
|
testtj | | | 97.23 21 | 97.05 22 | 97.75 38 | 99.75 7 | 93.34 73 | 99.16 81 | 97.74 70 | 91.28 96 | 98.40 30 | 99.29 24 | 89.95 54 | 99.98 10 | 98.20 41 | 99.70 39 | 99.94 18 |
|
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 101 | 99.54 40 | 90.14 143 | 99.41 59 | 97.70 81 | 95.46 17 | 98.60 25 | 99.19 34 | 95.71 4 | 99.49 109 | 98.15 42 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ETV-MVS | | | 96.00 59 | 96.00 57 | 96.00 120 | 96.56 163 | 91.05 123 | 99.63 25 | 96.61 196 | 93.26 50 | 97.39 58 | 98.30 120 | 86.62 114 | 98.13 174 | 98.07 43 | 97.57 123 | 98.82 147 |
|
MSLP-MVS++ | | | 97.50 15 | 97.45 14 | 97.63 41 | 99.65 19 | 93.21 75 | 99.70 16 | 98.13 38 | 94.61 20 | 97.78 52 | 99.46 11 | 89.85 55 | 99.81 67 | 97.97 44 | 99.91 6 | 99.88 28 |
|
APD-MVS |  | | 96.95 31 | 96.72 34 | 97.63 41 | 99.51 46 | 93.58 67 | 99.16 81 | 97.44 141 | 90.08 129 | 98.59 26 | 99.07 54 | 89.06 64 | 99.42 120 | 97.92 45 | 99.66 43 | 99.88 28 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SteuartSystems-ACMMP | | | 97.25 18 | 97.34 17 | 97.01 65 | 97.38 136 | 91.46 109 | 99.75 12 | 97.66 88 | 94.14 30 | 98.13 36 | 99.26 26 | 92.16 28 | 99.66 85 | 97.91 46 | 99.64 47 | 99.90 24 |
Skip Steuart: Steuart Systems R&D Blog. |
agg_prior2 | | | | | | | | | | | | | | | 97.84 47 | 99.87 9 | 99.91 22 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 11 | 98.14 22 | 99.53 45 | 94.76 43 | 99.19 76 | 97.75 68 | 95.66 13 | 98.21 34 | 99.29 24 | 91.10 32 | 99.99 5 | 97.68 48 | 99.87 9 | 99.68 66 |
|
SR-MVS | | | 96.13 56 | 96.16 53 | 96.07 118 | 99.42 54 | 89.04 168 | 98.59 154 | 97.33 153 | 90.44 116 | 96.84 73 | 99.12 48 | 86.75 109 | 99.41 122 | 97.47 49 | 99.44 67 | 99.76 52 |
|
PVSNet_BlendedMVS | | | 93.36 132 | 93.20 121 | 93.84 195 | 98.77 97 | 91.61 106 | 99.47 45 | 98.04 42 | 91.44 90 | 94.21 124 | 92.63 259 | 83.50 157 | 99.87 52 | 97.41 50 | 83.37 253 | 90.05 319 |
|
PVSNet_Blended | | | 95.94 63 | 95.66 70 | 96.75 86 | 98.77 97 | 91.61 106 | 99.88 1 | 98.04 42 | 93.64 44 | 94.21 124 | 97.76 135 | 83.50 157 | 99.87 52 | 97.41 50 | 97.75 122 | 98.79 150 |
|
test1172 | | | 95.92 64 | 96.07 56 | 95.46 136 | 99.42 54 | 87.24 215 | 98.51 162 | 97.24 157 | 90.29 121 | 96.56 83 | 99.12 48 | 86.73 111 | 99.36 126 | 97.33 52 | 99.42 71 | 99.78 42 |
|
DROMVSNet | | | 95.09 86 | 95.17 79 | 94.84 156 | 95.42 204 | 88.17 187 | 99.48 43 | 95.92 245 | 91.47 89 | 97.34 60 | 98.36 117 | 82.77 173 | 97.41 224 | 97.24 53 | 98.58 108 | 98.94 136 |
|
MVS_111021_HR | | | 96.69 38 | 96.69 35 | 96.72 90 | 98.58 104 | 91.00 125 | 99.14 90 | 99.45 1 | 93.86 37 | 95.15 110 | 98.73 92 | 88.48 73 | 99.76 73 | 97.23 54 | 99.56 59 | 99.40 95 |
|
Regformer-1 | | | 96.97 30 | 96.80 32 | 97.47 47 | 99.46 52 | 93.11 78 | 98.89 117 | 97.94 47 | 92.89 58 | 96.90 66 | 99.02 60 | 89.78 56 | 99.53 102 | 97.06 55 | 99.26 80 | 99.75 53 |
|
xiu_mvs_v1_base_debu | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 211 | 95.24 24 | 98.62 148 | 96.50 207 | 92.99 54 | 97.52 54 | 98.83 85 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 217 |
|
xiu_mvs_v1_base | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 211 | 95.24 24 | 98.62 148 | 96.50 207 | 92.99 54 | 97.52 54 | 98.83 85 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 217 |
|
xiu_mvs_v1_base_debi | | | 94.73 95 | 93.98 103 | 96.99 68 | 95.19 211 | 95.24 24 | 98.62 148 | 96.50 207 | 92.99 54 | 97.52 54 | 98.83 85 | 72.37 256 | 99.15 138 | 97.03 56 | 96.74 137 | 96.58 217 |
|
Regformer-2 | | | 96.94 33 | 96.78 33 | 97.42 49 | 99.46 52 | 92.97 85 | 98.89 117 | 97.93 48 | 92.86 60 | 96.88 67 | 99.02 60 | 89.74 58 | 99.53 102 | 97.03 56 | 99.26 80 | 99.75 53 |
|
lupinMVS | | | 96.32 51 | 95.94 59 | 97.44 48 | 95.05 224 | 94.87 37 | 99.86 2 | 96.50 207 | 93.82 40 | 98.04 42 | 98.77 88 | 85.52 132 | 98.09 177 | 96.98 60 | 98.97 91 | 99.37 98 |
|
MVS_111021_LR | | | 95.78 69 | 95.94 59 | 95.28 143 | 98.19 113 | 87.69 196 | 98.80 125 | 99.26 7 | 93.39 47 | 95.04 112 | 98.69 98 | 84.09 152 | 99.76 73 | 96.96 61 | 99.06 87 | 98.38 172 |
|
VNet | | | 95.08 87 | 94.26 93 | 97.55 46 | 98.07 116 | 93.88 62 | 98.68 139 | 98.73 16 | 90.33 120 | 97.16 63 | 97.43 151 | 79.19 209 | 99.53 102 | 96.91 62 | 91.85 197 | 99.24 110 |
|
APD-MVS_3200maxsize | | | 95.64 74 | 95.65 72 | 95.62 131 | 99.24 70 | 87.80 195 | 98.42 172 | 97.22 160 | 88.93 163 | 96.64 82 | 98.98 65 | 85.49 135 | 99.36 126 | 96.68 63 | 99.27 79 | 99.70 62 |
|
CS-MVS | | | 95.63 75 | 96.18 47 | 93.97 190 | 97.87 120 | 84.94 265 | 99.66 22 | 96.15 231 | 92.70 62 | 98.02 44 | 98.88 82 | 87.11 101 | 97.59 212 | 96.64 64 | 98.62 106 | 99.38 96 |
|
CS-MVS-test | | | 95.38 80 | 95.85 63 | 93.97 190 | 97.87 120 | 84.94 265 | 99.62 27 | 95.84 258 | 92.71 61 | 98.02 44 | 98.30 120 | 85.07 141 | 97.59 212 | 96.64 64 | 98.62 106 | 99.38 96 |
|
SR-MVS-dyc-post | | | 95.75 72 | 95.86 62 | 95.41 139 | 99.22 71 | 87.26 213 | 98.40 177 | 97.21 161 | 89.63 140 | 96.67 80 | 98.97 66 | 86.73 111 | 99.36 126 | 96.62 66 | 99.31 76 | 99.60 78 |
|
RE-MVS-def | | | | 95.70 69 | | 99.22 71 | 87.26 213 | 98.40 177 | 97.21 161 | 89.63 140 | 96.67 80 | 98.97 66 | 85.24 140 | | 96.62 66 | 99.31 76 | 99.60 78 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 30 | 98.13 23 | 99.61 27 | 94.45 51 | 98.85 120 | 97.64 94 | 96.51 7 | 95.88 94 | 99.39 21 | 87.35 98 | 99.99 5 | 96.61 68 | 99.69 41 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VDD-MVS | | | 91.24 175 | 90.18 181 | 94.45 171 | 97.08 148 | 85.84 248 | 98.40 177 | 96.10 233 | 86.99 214 | 93.36 137 | 98.16 127 | 54.27 342 | 99.20 135 | 96.59 69 | 90.63 213 | 98.31 178 |
|
MP-MVS-pluss | | | 95.80 68 | 95.30 75 | 97.29 55 | 98.95 89 | 92.66 88 | 98.59 154 | 97.14 169 | 88.95 161 | 93.12 140 | 99.25 27 | 85.62 131 | 99.94 37 | 96.56 70 | 99.48 63 | 99.28 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
diffmvs | | | 94.59 103 | 94.19 96 | 95.81 126 | 95.54 200 | 90.69 132 | 98.70 136 | 95.68 267 | 91.61 85 | 95.96 91 | 97.81 132 | 80.11 201 | 98.06 181 | 96.52 71 | 95.76 156 | 98.67 158 |
|
ACMMP_NAP | | | 96.59 41 | 96.18 47 | 97.81 35 | 98.82 95 | 93.55 68 | 98.88 119 | 97.59 108 | 90.66 109 | 97.98 47 | 99.14 45 | 86.59 115 | 100.00 1 | 96.47 72 | 99.46 64 | 99.89 27 |
|
Regformer-3 | | | 96.50 44 | 96.36 43 | 96.91 76 | 99.34 58 | 91.72 103 | 98.71 132 | 97.90 50 | 92.48 67 | 96.00 88 | 98.95 73 | 88.60 70 | 99.52 105 | 96.44 73 | 98.83 97 | 99.49 88 |
|
Regformer-4 | | | 96.45 47 | 96.33 45 | 96.81 83 | 99.34 58 | 91.44 110 | 98.71 132 | 97.88 51 | 92.43 68 | 95.97 90 | 98.95 73 | 88.42 74 | 99.51 106 | 96.40 74 | 98.83 97 | 99.49 88 |
|
PAPM | | | 96.35 49 | 95.94 59 | 97.58 43 | 94.10 246 | 95.25 23 | 98.93 112 | 98.17 33 | 94.26 25 | 93.94 129 | 98.72 94 | 89.68 59 | 97.88 190 | 96.36 75 | 99.29 78 | 99.62 76 |
|
zzz-MVS | | | 96.21 55 | 95.96 58 | 96.96 73 | 99.29 66 | 91.19 114 | 98.69 137 | 97.45 137 | 92.58 63 | 94.39 121 | 99.24 29 | 86.43 121 | 99.99 5 | 96.22 76 | 99.40 72 | 99.71 60 |
|
MTAPA | | | 96.09 57 | 95.80 67 | 96.96 73 | 99.29 66 | 91.19 114 | 97.23 249 | 97.45 137 | 92.58 63 | 94.39 121 | 99.24 29 | 86.43 121 | 99.99 5 | 96.22 76 | 99.40 72 | 99.71 60 |
|
alignmvs | | | 95.77 70 | 95.00 83 | 98.06 28 | 97.35 137 | 95.68 18 | 99.71 15 | 97.50 129 | 91.50 88 | 96.16 87 | 98.61 104 | 86.28 124 | 99.00 146 | 96.19 78 | 91.74 199 | 99.51 86 |
|
canonicalmvs | | | 95.02 88 | 93.96 106 | 98.20 20 | 97.53 134 | 95.92 16 | 98.71 132 | 96.19 228 | 91.78 83 | 95.86 96 | 98.49 112 | 79.53 206 | 99.03 145 | 96.12 79 | 91.42 205 | 99.66 70 |
|
DELS-MVS | | | 97.12 25 | 96.60 37 | 98.68 10 | 98.03 117 | 96.57 10 | 99.84 3 | 97.84 55 | 96.36 8 | 95.20 109 | 98.24 123 | 88.17 78 | 99.83 62 | 96.11 80 | 99.60 56 | 99.64 72 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
jason | | | 95.40 79 | 94.86 84 | 97.03 64 | 92.91 277 | 94.23 56 | 99.70 16 | 96.30 218 | 93.56 46 | 96.73 78 | 98.52 108 | 81.46 195 | 97.91 187 | 96.08 81 | 98.47 112 | 98.96 131 |
jason: jason. |
CP-MVS | | | 96.22 54 | 96.15 54 | 96.42 106 | 99.67 13 | 89.62 161 | 99.70 16 | 97.61 102 | 90.07 130 | 96.00 88 | 99.16 41 | 87.43 92 | 99.92 41 | 96.03 82 | 99.72 34 | 99.70 62 |
|
MP-MVS |  | | 96.00 59 | 95.82 64 | 96.54 100 | 99.47 51 | 90.13 145 | 99.36 66 | 97.41 145 | 90.64 112 | 95.49 104 | 98.95 73 | 85.51 134 | 99.98 10 | 96.00 83 | 99.59 58 | 99.52 84 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
#test# | | | 96.48 45 | 96.34 44 | 96.90 77 | 99.69 9 | 90.96 126 | 99.53 40 | 97.81 60 | 90.94 103 | 96.88 67 | 99.05 57 | 87.57 88 | 99.96 30 | 95.87 84 | 99.72 34 | 99.78 42 |
|
h-mvs33 | | | 92.47 152 | 91.95 148 | 94.05 186 | 97.13 145 | 85.01 263 | 98.36 182 | 98.08 39 | 93.85 38 | 96.27 85 | 96.73 183 | 83.19 166 | 99.43 119 | 95.81 85 | 68.09 340 | 97.70 192 |
|
hse-mvs2 | | | 91.67 166 | 91.51 157 | 92.15 228 | 96.22 176 | 82.61 299 | 97.74 228 | 97.53 120 | 93.85 38 | 96.27 85 | 96.15 196 | 83.19 166 | 97.44 222 | 95.81 85 | 66.86 345 | 96.40 222 |
|
HFP-MVS | | | 96.42 48 | 96.26 46 | 96.90 77 | 99.69 9 | 90.96 126 | 99.47 45 | 97.81 60 | 90.54 114 | 96.88 67 | 99.05 57 | 87.57 88 | 99.96 30 | 95.65 87 | 99.72 34 | 99.78 42 |
|
XVS | | | 96.47 46 | 96.37 42 | 96.77 84 | 99.62 25 | 90.66 134 | 99.43 56 | 97.58 110 | 92.41 72 | 96.86 70 | 98.96 71 | 87.37 94 | 99.87 52 | 95.65 87 | 99.43 68 | 99.78 42 |
|
X-MVStestdata | | | 90.69 185 | 88.66 205 | 96.77 84 | 99.62 25 | 90.66 134 | 99.43 56 | 97.58 110 | 92.41 72 | 96.86 70 | 29.59 377 | 87.37 94 | 99.87 52 | 95.65 87 | 99.43 68 | 99.78 42 |
|
ACMMPR | | | 96.28 53 | 96.14 55 | 96.73 88 | 99.68 12 | 90.47 137 | 99.47 45 | 97.80 62 | 90.54 114 | 96.83 75 | 99.03 59 | 86.51 119 | 99.95 34 | 95.65 87 | 99.72 34 | 99.75 53 |
|
HPM-MVS |  | | 95.41 78 | 95.22 78 | 95.99 121 | 99.29 66 | 89.14 166 | 99.17 80 | 97.09 177 | 87.28 212 | 95.40 105 | 98.48 113 | 84.93 143 | 99.38 124 | 95.64 91 | 99.65 44 | 99.47 91 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test_yl | | | 95.27 82 | 94.60 87 | 97.28 56 | 98.53 105 | 92.98 83 | 99.05 100 | 98.70 17 | 86.76 222 | 94.65 118 | 97.74 137 | 87.78 84 | 99.44 117 | 95.57 92 | 92.61 183 | 99.44 93 |
|
DCV-MVSNet | | | 95.27 82 | 94.60 87 | 97.28 56 | 98.53 105 | 92.98 83 | 99.05 100 | 98.70 17 | 86.76 222 | 94.65 118 | 97.74 137 | 87.78 84 | 99.44 117 | 95.57 92 | 92.61 183 | 99.44 93 |
|
region2R | | | 96.30 52 | 96.17 51 | 96.70 91 | 99.70 8 | 90.31 139 | 99.46 50 | 97.66 88 | 90.55 113 | 97.07 64 | 99.07 54 | 86.85 107 | 99.97 23 | 95.43 94 | 99.74 32 | 99.81 35 |
|
EI-MVSNet-Vis-set | | | 95.76 71 | 95.63 74 | 96.17 115 | 99.14 77 | 90.33 138 | 98.49 166 | 97.82 57 | 91.92 80 | 94.75 115 | 98.88 82 | 87.06 103 | 99.48 114 | 95.40 95 | 97.17 134 | 98.70 157 |
|
EPNet | | | 96.82 36 | 96.68 36 | 97.25 58 | 98.65 100 | 93.10 79 | 99.48 43 | 98.76 13 | 96.54 5 | 97.84 51 | 98.22 124 | 87.49 91 | 99.66 85 | 95.35 96 | 97.78 121 | 99.00 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 97.24 19 | 96.83 31 | 98.47 14 | 99.79 5 | 95.71 17 | 99.07 97 | 99.06 9 | 94.45 24 | 96.42 84 | 98.70 97 | 88.81 68 | 99.74 75 | 95.35 96 | 99.86 12 | 99.97 7 |
|
HY-MVS | | 88.56 7 | 95.29 81 | 94.23 94 | 98.48 13 | 97.72 124 | 96.41 12 | 94.03 317 | 98.74 14 | 92.42 71 | 95.65 102 | 94.76 217 | 86.52 118 | 99.49 109 | 95.29 98 | 92.97 178 | 99.53 83 |
|
mPP-MVS | | | 95.90 65 | 95.75 68 | 96.38 108 | 99.58 33 | 89.41 165 | 99.26 73 | 97.41 145 | 90.66 109 | 94.82 114 | 98.95 73 | 86.15 126 | 99.98 10 | 95.24 99 | 99.64 47 | 99.74 56 |
|
ZNCC-MVS | | | 96.09 57 | 95.81 66 | 96.95 75 | 99.42 54 | 91.19 114 | 99.55 35 | 97.53 120 | 89.72 137 | 95.86 96 | 98.94 78 | 86.59 115 | 99.97 23 | 95.13 100 | 99.56 59 | 99.68 66 |
|
GG-mvs-BLEND | | | | | 96.98 71 | 96.53 164 | 94.81 42 | 87.20 348 | 97.74 70 | | 93.91 130 | 96.40 191 | 96.56 2 | 96.94 239 | 95.08 101 | 98.95 94 | 99.20 114 |
|
EIA-MVS | | | 95.11 85 | 95.27 77 | 94.64 164 | 96.34 172 | 86.51 224 | 99.59 30 | 96.62 195 | 92.51 65 | 94.08 127 | 98.64 100 | 86.05 127 | 98.24 171 | 95.07 102 | 98.50 111 | 99.18 115 |
|
DeepC-MVS | | 91.02 4 | 94.56 104 | 93.92 109 | 96.46 103 | 97.16 143 | 90.76 130 | 98.39 180 | 97.11 173 | 93.92 33 | 88.66 196 | 98.33 118 | 78.14 217 | 99.85 59 | 95.02 103 | 98.57 109 | 98.78 152 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
WTY-MVS | | | 95.97 61 | 95.11 81 | 98.54 12 | 97.62 128 | 96.65 8 | 99.44 53 | 98.74 14 | 92.25 75 | 95.21 108 | 98.46 116 | 86.56 117 | 99.46 116 | 95.00 104 | 92.69 182 | 99.50 87 |
|
CSCG | | | 94.87 90 | 94.71 85 | 95.36 140 | 99.54 40 | 86.49 225 | 99.34 69 | 98.15 36 | 82.71 286 | 90.15 183 | 99.25 27 | 89.48 61 | 99.86 57 | 94.97 105 | 98.82 99 | 99.72 59 |
|
EI-MVSNet-UG-set | | | 95.43 76 | 95.29 76 | 95.86 125 | 99.07 83 | 89.87 154 | 98.43 171 | 97.80 62 | 91.78 83 | 94.11 126 | 98.77 88 | 86.25 125 | 99.48 114 | 94.95 106 | 96.45 141 | 98.22 181 |
|
CPTT-MVS | | | 94.60 102 | 94.43 91 | 95.09 147 | 99.66 15 | 86.85 220 | 99.44 53 | 97.47 134 | 83.22 276 | 94.34 123 | 98.96 71 | 82.50 178 | 99.55 99 | 94.81 107 | 99.50 62 | 98.88 140 |
|
PVSNet_0 | | 83.28 16 | 87.31 242 | 85.16 256 | 93.74 198 | 94.78 234 | 84.59 270 | 98.91 115 | 98.69 19 | 89.81 135 | 78.59 305 | 93.23 247 | 61.95 317 | 99.34 131 | 94.75 108 | 55.72 362 | 97.30 202 |
|
CLD-MVS | | | 91.06 176 | 90.71 174 | 92.10 229 | 94.05 249 | 86.10 239 | 99.55 35 | 96.29 221 | 94.16 28 | 84.70 227 | 97.17 165 | 69.62 275 | 97.82 194 | 94.74 109 | 86.08 233 | 92.39 243 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
casdiffmvs | | | 93.98 113 | 93.43 116 | 95.61 133 | 95.07 223 | 89.86 155 | 98.80 125 | 95.84 258 | 90.98 101 | 92.74 145 | 97.66 142 | 79.71 203 | 98.10 176 | 94.72 110 | 95.37 160 | 98.87 142 |
|
VDDNet | | | 90.08 197 | 88.54 210 | 94.69 162 | 94.41 241 | 87.68 197 | 98.21 194 | 96.40 212 | 76.21 333 | 93.33 138 | 97.75 136 | 54.93 340 | 98.77 151 | 94.71 111 | 90.96 208 | 97.61 197 |
|
CDPH-MVS | | | 96.56 42 | 96.18 47 | 97.70 39 | 99.59 31 | 93.92 61 | 99.13 93 | 97.44 141 | 89.02 158 | 97.90 50 | 99.22 31 | 88.90 67 | 99.49 109 | 94.63 112 | 99.79 29 | 99.68 66 |
|
GST-MVS | | | 95.97 61 | 95.66 70 | 96.90 77 | 99.49 50 | 91.22 112 | 99.45 52 | 97.48 132 | 89.69 138 | 95.89 93 | 98.72 94 | 86.37 123 | 99.95 34 | 94.62 113 | 99.22 83 | 99.52 84 |
|
Effi-MVS+ | | | 93.87 117 | 93.15 122 | 96.02 119 | 95.79 191 | 90.76 130 | 96.70 271 | 95.78 260 | 86.98 216 | 95.71 100 | 97.17 165 | 79.58 204 | 98.01 185 | 94.57 114 | 96.09 150 | 99.31 103 |
|
abl_6 | | | 94.63 101 | 94.48 89 | 95.09 147 | 98.61 103 | 86.96 218 | 98.06 210 | 96.97 186 | 89.31 150 | 95.86 96 | 98.56 106 | 79.82 202 | 99.64 91 | 94.53 115 | 98.65 105 | 98.66 161 |
|
LFMVS | | | 92.23 157 | 90.84 170 | 96.42 106 | 98.24 110 | 91.08 122 | 98.24 191 | 96.22 225 | 83.39 274 | 94.74 116 | 98.31 119 | 61.12 321 | 98.85 148 | 94.45 116 | 92.82 179 | 99.32 102 |
|
ET-MVSNet_ETH3D | | | 92.56 150 | 91.45 158 | 95.88 124 | 96.39 170 | 94.13 59 | 99.46 50 | 96.97 186 | 92.18 77 | 66.94 353 | 98.29 122 | 94.65 13 | 94.28 331 | 94.34 117 | 83.82 249 | 99.24 110 |
|
baseline | | | 93.91 115 | 93.30 118 | 95.72 129 | 95.10 221 | 90.07 147 | 97.48 237 | 95.91 250 | 91.03 100 | 93.54 135 | 97.68 140 | 79.58 204 | 98.02 184 | 94.27 118 | 95.14 161 | 99.08 123 |
|
PAPR | | | 96.35 49 | 95.82 64 | 97.94 32 | 99.63 21 | 94.19 58 | 99.42 58 | 97.55 116 | 92.43 68 | 93.82 133 | 99.12 48 | 87.30 99 | 99.91 43 | 94.02 119 | 99.06 87 | 99.74 56 |
|
PGM-MVS | | | 95.85 66 | 95.65 72 | 96.45 104 | 99.50 47 | 89.77 157 | 98.22 192 | 98.90 12 | 89.19 152 | 96.74 77 | 98.95 73 | 85.91 130 | 99.92 41 | 93.94 120 | 99.46 64 | 99.66 70 |
|
gg-mvs-nofinetune | | | 90.00 198 | 87.71 219 | 96.89 82 | 96.15 182 | 94.69 47 | 85.15 354 | 97.74 70 | 68.32 356 | 92.97 144 | 60.16 366 | 96.10 3 | 96.84 241 | 93.89 121 | 98.87 95 | 99.14 117 |
|
MVS | | | 93.92 114 | 92.28 138 | 98.83 6 | 95.69 195 | 96.82 7 | 96.22 286 | 98.17 33 | 84.89 252 | 84.34 231 | 98.61 104 | 79.32 208 | 99.83 62 | 93.88 122 | 99.43 68 | 99.86 32 |
|
旧先验2 | | | | | | | | 98.67 141 | | 85.75 236 | 98.96 15 | | | 98.97 147 | 93.84 123 | | |
|
ACMMP |  | | 94.67 99 | 94.30 92 | 95.79 127 | 99.25 69 | 88.13 189 | 98.41 174 | 98.67 20 | 90.38 118 | 91.43 160 | 98.72 94 | 82.22 185 | 99.95 34 | 93.83 124 | 95.76 156 | 99.29 105 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BP-MVS | | | | | | | | | | | | | | | 93.82 125 | | |
|
HQP-MVS | | | 91.50 168 | 91.23 161 | 92.29 223 | 93.95 250 | 86.39 229 | 99.16 81 | 96.37 214 | 93.92 33 | 87.57 203 | 96.67 185 | 73.34 247 | 97.77 198 | 93.82 125 | 86.29 228 | 92.72 238 |
|
DP-MVS Recon | | | 95.85 66 | 95.15 80 | 97.95 31 | 99.87 2 | 94.38 54 | 99.60 29 | 97.48 132 | 86.58 225 | 94.42 120 | 99.13 47 | 87.36 97 | 99.98 10 | 93.64 127 | 98.33 114 | 99.48 90 |
|
CHOSEN 1792x2688 | | | 94.35 107 | 93.82 111 | 95.95 123 | 97.40 135 | 88.74 179 | 98.41 174 | 98.27 26 | 92.18 77 | 91.43 160 | 96.40 191 | 78.88 210 | 99.81 67 | 93.59 128 | 97.81 118 | 99.30 104 |
|
cascas | | | 90.93 180 | 89.33 192 | 95.76 128 | 95.69 195 | 93.03 82 | 98.99 107 | 96.59 198 | 80.49 312 | 86.79 216 | 94.45 220 | 65.23 306 | 98.60 161 | 93.52 129 | 92.18 192 | 95.66 228 |
|
HQP_MVS | | | 91.26 172 | 90.95 167 | 92.16 227 | 93.84 257 | 86.07 241 | 99.02 103 | 96.30 218 | 93.38 48 | 86.99 210 | 96.52 187 | 72.92 251 | 97.75 203 | 93.46 130 | 86.17 231 | 92.67 240 |
|
plane_prior5 | | | | | | | | | 96.30 218 | | | | | 97.75 203 | 93.46 130 | 86.17 231 | 92.67 240 |
|
PVSNet_Blended_VisFu | | | 94.67 99 | 94.11 99 | 96.34 110 | 97.14 144 | 91.10 120 | 99.32 71 | 97.43 143 | 92.10 79 | 91.53 159 | 96.38 194 | 83.29 163 | 99.68 83 | 93.42 132 | 96.37 143 | 98.25 179 |
|
AdaColmap |  | | 93.82 118 | 93.06 123 | 96.10 117 | 99.88 1 | 89.07 167 | 98.33 184 | 97.55 116 | 86.81 221 | 90.39 180 | 98.65 99 | 75.09 229 | 99.98 10 | 93.32 133 | 97.53 126 | 99.26 109 |
|
HyFIR lowres test | | | 93.68 123 | 93.29 119 | 94.87 154 | 97.57 132 | 88.04 191 | 98.18 196 | 98.47 22 | 87.57 207 | 91.24 165 | 95.05 213 | 85.49 135 | 97.46 220 | 93.22 134 | 92.82 179 | 99.10 121 |
|
HPM-MVS_fast | | | 94.89 89 | 94.62 86 | 95.70 130 | 99.11 79 | 88.44 185 | 99.14 90 | 97.11 173 | 85.82 235 | 95.69 101 | 98.47 114 | 83.46 159 | 99.32 132 | 93.16 135 | 99.63 50 | 99.35 99 |
|
PMMVS | | | 93.62 126 | 93.90 110 | 92.79 214 | 96.79 157 | 81.40 307 | 98.85 120 | 96.81 190 | 91.25 97 | 96.82 76 | 98.15 128 | 77.02 223 | 98.13 174 | 93.15 136 | 96.30 146 | 98.83 146 |
|
LCM-MVSNet-Re | | | 88.59 223 | 88.61 206 | 88.51 304 | 95.53 201 | 72.68 351 | 96.85 263 | 88.43 367 | 88.45 176 | 73.14 333 | 90.63 296 | 75.82 225 | 94.38 330 | 92.95 137 | 95.71 158 | 98.48 167 |
|
EPP-MVSNet | | | 93.75 120 | 93.67 113 | 94.01 188 | 95.86 190 | 85.70 250 | 98.67 141 | 97.66 88 | 84.46 257 | 91.36 163 | 97.18 164 | 91.16 30 | 97.79 196 | 92.93 138 | 93.75 171 | 98.53 164 |
|
CostFormer | | | 92.89 142 | 92.48 136 | 94.12 182 | 94.99 226 | 85.89 245 | 92.89 326 | 97.00 185 | 86.98 216 | 95.00 113 | 90.78 288 | 90.05 53 | 97.51 218 | 92.92 139 | 91.73 200 | 98.96 131 |
|
XVG-OURS-SEG-HR | | | 90.95 179 | 90.66 176 | 91.83 233 | 95.18 214 | 81.14 314 | 95.92 293 | 95.92 245 | 88.40 181 | 90.33 181 | 97.85 130 | 70.66 271 | 99.38 124 | 92.83 140 | 88.83 219 | 94.98 229 |
|
sss | | | 94.85 91 | 93.94 108 | 97.58 43 | 96.43 167 | 94.09 60 | 98.93 112 | 99.16 8 | 89.50 147 | 95.27 107 | 97.85 130 | 81.50 193 | 99.65 89 | 92.79 141 | 94.02 170 | 98.99 128 |
|
MAR-MVS | | | 94.43 105 | 94.09 100 | 95.45 137 | 99.10 81 | 87.47 203 | 98.39 180 | 97.79 64 | 88.37 182 | 94.02 128 | 99.17 39 | 78.64 215 | 99.91 43 | 92.48 142 | 98.85 96 | 98.96 131 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 94.78 93 | 94.18 98 | 96.59 96 | 99.21 73 | 90.06 150 | 98.80 125 | 97.78 65 | 83.59 271 | 93.85 131 | 99.21 32 | 83.79 154 | 99.97 23 | 92.37 143 | 99.00 90 | 99.74 56 |
|
nrg030 | | | 90.23 191 | 88.87 199 | 94.32 175 | 91.53 295 | 93.54 69 | 98.79 129 | 95.89 253 | 88.12 190 | 84.55 229 | 94.61 219 | 78.80 213 | 96.88 240 | 92.35 144 | 75.21 294 | 92.53 242 |
|
OMC-MVS | | | 93.90 116 | 93.62 114 | 94.73 161 | 98.63 101 | 87.00 217 | 98.04 211 | 96.56 202 | 92.19 76 | 92.46 147 | 98.73 92 | 79.49 207 | 99.14 141 | 92.16 145 | 94.34 168 | 98.03 186 |
|
1314 | | | 93.44 128 | 91.98 147 | 97.84 33 | 95.24 208 | 94.38 54 | 96.22 286 | 97.92 49 | 90.18 124 | 82.28 256 | 97.71 139 | 77.63 220 | 99.80 69 | 91.94 146 | 98.67 104 | 99.34 101 |
|
DPM-MVS | | | 97.86 8 | 97.25 19 | 99.68 1 | 98.25 109 | 99.10 1 | 99.76 11 | 97.78 65 | 96.61 4 | 98.15 35 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 147 | 99.80 27 | 99.94 18 |
|
mvs_anonymous | | | 92.50 151 | 91.65 154 | 95.06 149 | 96.60 162 | 89.64 160 | 97.06 255 | 96.44 211 | 86.64 224 | 84.14 232 | 93.93 229 | 82.49 179 | 96.17 282 | 91.47 148 | 96.08 151 | 99.35 99 |
|
baseline2 | | | 94.04 111 | 93.80 112 | 94.74 160 | 93.07 275 | 90.25 140 | 98.12 201 | 98.16 35 | 89.86 132 | 86.53 217 | 96.95 174 | 95.56 5 | 98.05 182 | 91.44 149 | 94.53 165 | 95.93 226 |
|
bset_n11_16_dypcd | | | 89.07 209 | 87.85 216 | 92.76 216 | 86.16 350 | 90.66 134 | 97.30 243 | 95.62 270 | 89.78 136 | 83.94 235 | 93.15 251 | 74.85 230 | 95.89 297 | 91.34 150 | 78.48 276 | 91.74 264 |
|
IB-MVS | | 89.43 6 | 92.12 158 | 90.83 172 | 95.98 122 | 95.40 206 | 90.78 129 | 99.81 5 | 98.06 40 | 91.23 98 | 85.63 221 | 93.66 237 | 90.63 41 | 98.78 150 | 91.22 151 | 71.85 330 | 98.36 175 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ab-mvs | | | 91.05 177 | 89.17 194 | 96.69 92 | 95.96 188 | 91.72 103 | 92.62 330 | 97.23 159 | 85.61 237 | 89.74 188 | 93.89 231 | 68.55 280 | 99.42 120 | 91.09 152 | 87.84 222 | 98.92 138 |
|
XVG-OURS | | | 90.83 181 | 90.49 178 | 91.86 232 | 95.23 209 | 81.25 311 | 95.79 301 | 95.92 245 | 88.96 160 | 90.02 185 | 98.03 129 | 71.60 265 | 99.35 130 | 91.06 153 | 87.78 223 | 94.98 229 |
|
3Dnovator | | 87.35 11 | 93.17 139 | 91.77 152 | 97.37 54 | 95.41 205 | 93.07 80 | 98.82 123 | 97.85 54 | 91.53 87 | 82.56 250 | 97.58 146 | 71.97 260 | 99.82 65 | 91.01 154 | 99.23 82 | 99.22 113 |
|
VPA-MVSNet | | | 89.10 208 | 87.66 220 | 93.45 202 | 92.56 279 | 91.02 124 | 97.97 215 | 98.32 25 | 86.92 218 | 86.03 219 | 92.01 265 | 68.84 279 | 97.10 233 | 90.92 155 | 75.34 293 | 92.23 250 |
|
PAPM_NR | | | 95.43 76 | 95.05 82 | 96.57 99 | 99.42 54 | 90.14 143 | 98.58 156 | 97.51 126 | 90.65 111 | 92.44 148 | 98.90 80 | 87.77 86 | 99.90 45 | 90.88 156 | 99.32 75 | 99.68 66 |
|
3Dnovator+ | | 87.72 8 | 93.43 129 | 91.84 150 | 98.17 21 | 95.73 194 | 95.08 32 | 98.92 114 | 97.04 180 | 91.42 93 | 81.48 274 | 97.60 144 | 74.60 233 | 99.79 70 | 90.84 157 | 98.97 91 | 99.64 72 |
|
gm-plane-assit | | | | | | 94.69 236 | 88.14 188 | | | 88.22 187 | | 97.20 162 | | 98.29 169 | 90.79 158 | | |
|
MVSTER | | | 92.71 144 | 92.32 137 | 93.86 194 | 97.29 139 | 92.95 86 | 99.01 105 | 96.59 198 | 90.09 128 | 85.51 222 | 94.00 227 | 94.61 14 | 96.56 253 | 90.77 159 | 83.03 255 | 92.08 256 |
|
ACMP | | 87.39 10 | 88.71 222 | 88.24 213 | 90.12 271 | 93.91 255 | 81.06 315 | 98.50 164 | 95.67 268 | 89.43 148 | 80.37 282 | 95.55 205 | 65.67 301 | 97.83 193 | 90.55 160 | 84.51 241 | 91.47 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
RRT_test8_iter05 | | | 91.04 178 | 90.40 180 | 92.95 211 | 96.20 180 | 89.75 158 | 98.97 109 | 96.38 213 | 88.52 172 | 82.00 264 | 93.51 242 | 90.69 40 | 96.73 247 | 90.43 161 | 76.91 288 | 92.38 244 |
|
ECVR-MVS |  | | 92.29 154 | 91.33 159 | 95.15 145 | 96.41 168 | 87.84 194 | 98.10 205 | 94.84 305 | 90.82 106 | 91.42 162 | 97.28 154 | 65.61 303 | 98.49 162 | 90.33 162 | 97.19 132 | 99.12 119 |
|
testdata | | | | | 95.26 144 | 98.20 111 | 87.28 210 | | 97.60 104 | 85.21 243 | 98.48 29 | 99.15 43 | 88.15 79 | 98.72 156 | 90.29 163 | 99.45 66 | 99.78 42 |
|
LPG-MVS_test | | | 88.86 214 | 88.47 211 | 90.06 272 | 93.35 270 | 80.95 316 | 98.22 192 | 95.94 242 | 87.73 203 | 83.17 242 | 96.11 198 | 66.28 299 | 97.77 198 | 90.19 164 | 85.19 237 | 91.46 277 |
|
LGP-MVS_train | | | | | 90.06 272 | 93.35 270 | 80.95 316 | | 95.94 242 | 87.73 203 | 83.17 242 | 96.11 198 | 66.28 299 | 97.77 198 | 90.19 164 | 85.19 237 | 91.46 277 |
|
MVSFormer | | | 94.71 98 | 94.08 101 | 96.61 95 | 95.05 224 | 94.87 37 | 97.77 225 | 96.17 229 | 86.84 219 | 98.04 42 | 98.52 108 | 85.52 132 | 95.99 288 | 89.83 166 | 98.97 91 | 98.96 131 |
|
test_djsdf | | | 88.26 229 | 87.73 218 | 89.84 278 | 88.05 336 | 82.21 301 | 97.77 225 | 96.17 229 | 86.84 219 | 82.41 254 | 91.95 268 | 72.07 259 | 95.99 288 | 89.83 166 | 84.50 242 | 91.32 284 |
|
test2506 | | | 94.80 92 | 94.21 95 | 96.58 97 | 96.41 168 | 92.18 98 | 98.01 212 | 98.96 10 | 90.82 106 | 93.46 136 | 97.28 154 | 85.92 128 | 98.45 163 | 89.82 168 | 97.19 132 | 99.12 119 |
|
tpmrst | | | 92.78 143 | 92.16 142 | 94.65 163 | 96.27 174 | 87.45 204 | 91.83 334 | 97.10 176 | 89.10 156 | 94.68 117 | 90.69 292 | 88.22 77 | 97.73 205 | 89.78 169 | 91.80 198 | 98.77 153 |
|
PLC |  | 91.07 3 | 94.23 109 | 94.01 102 | 94.87 154 | 99.17 76 | 87.49 202 | 99.25 74 | 96.55 203 | 88.43 180 | 91.26 164 | 98.21 126 | 85.92 128 | 99.86 57 | 89.77 170 | 97.57 123 | 97.24 204 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test1111 | | | 92.12 158 | 91.19 162 | 94.94 153 | 96.15 182 | 87.36 207 | 98.12 201 | 94.84 305 | 90.85 105 | 90.97 168 | 97.26 157 | 65.60 304 | 98.37 165 | 89.74 171 | 97.14 135 | 99.07 125 |
|
CDS-MVSNet | | | 93.47 127 | 93.04 125 | 94.76 158 | 94.75 235 | 89.45 164 | 98.82 123 | 97.03 182 | 87.91 196 | 90.97 168 | 96.48 189 | 89.06 64 | 96.36 267 | 89.50 172 | 92.81 181 | 98.49 166 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Effi-MVS+-dtu | | | 89.97 199 | 90.68 175 | 87.81 309 | 95.15 215 | 71.98 353 | 97.87 220 | 95.40 286 | 91.92 80 | 87.57 203 | 91.44 276 | 74.27 240 | 96.84 241 | 89.45 173 | 93.10 177 | 94.60 231 |
|
mvs-test1 | | | 91.57 167 | 92.20 141 | 89.70 282 | 95.15 215 | 74.34 343 | 99.51 41 | 95.40 286 | 91.92 80 | 91.02 167 | 97.25 158 | 74.27 240 | 98.08 180 | 89.45 173 | 95.83 155 | 96.67 214 |
|
jajsoiax | | | 87.35 241 | 86.51 238 | 89.87 276 | 87.75 341 | 81.74 304 | 97.03 256 | 95.98 236 | 88.47 173 | 80.15 286 | 93.80 233 | 61.47 318 | 96.36 267 | 89.44 175 | 84.47 243 | 91.50 275 |
|
mvs_tets | | | 87.09 244 | 86.22 241 | 89.71 281 | 87.87 337 | 81.39 308 | 96.73 270 | 95.90 251 | 88.19 188 | 79.99 288 | 93.61 238 | 59.96 324 | 96.31 275 | 89.40 176 | 84.34 244 | 91.43 279 |
|
PS-MVSNAJss | | | 89.54 205 | 89.05 196 | 91.00 249 | 88.77 327 | 84.36 273 | 97.39 238 | 95.97 237 | 88.47 173 | 81.88 267 | 93.80 233 | 82.48 180 | 96.50 257 | 89.34 177 | 83.34 254 | 92.15 253 |
|
VPNet | | | 88.30 227 | 86.57 236 | 93.49 201 | 91.95 288 | 91.35 111 | 98.18 196 | 97.20 165 | 88.61 169 | 84.52 230 | 94.89 214 | 62.21 316 | 96.76 246 | 89.34 177 | 72.26 327 | 92.36 245 |
|
114514_t | | | 94.06 110 | 93.05 124 | 97.06 63 | 99.08 82 | 92.26 97 | 98.97 109 | 97.01 184 | 82.58 288 | 92.57 146 | 98.22 124 | 80.68 199 | 99.30 133 | 89.34 177 | 99.02 89 | 99.63 74 |
|
OPM-MVS | | | 89.76 201 | 89.15 195 | 91.57 240 | 90.53 306 | 85.58 252 | 98.11 204 | 95.93 244 | 92.88 59 | 86.05 218 | 96.47 190 | 67.06 294 | 97.87 191 | 89.29 180 | 86.08 233 | 91.26 287 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_Test | | | 93.67 124 | 92.67 132 | 96.69 92 | 96.72 159 | 92.66 88 | 97.22 250 | 96.03 235 | 87.69 205 | 95.12 111 | 94.03 225 | 81.55 192 | 98.28 170 | 89.17 181 | 96.46 140 | 99.14 117 |
|
BH-w/o | | | 92.32 153 | 91.79 151 | 93.91 193 | 96.85 154 | 86.18 236 | 99.11 95 | 95.74 263 | 88.13 189 | 84.81 226 | 97.00 172 | 77.26 222 | 97.91 187 | 89.16 182 | 98.03 116 | 97.64 193 |
|
RRT_MVS | | | 91.95 162 | 91.09 163 | 94.53 167 | 96.71 161 | 95.12 31 | 98.64 145 | 96.23 224 | 89.04 157 | 85.24 224 | 95.06 212 | 87.71 87 | 96.43 263 | 89.10 183 | 82.06 262 | 92.05 258 |
|
TAMVS | | | 92.62 147 | 92.09 145 | 94.20 179 | 94.10 246 | 87.68 197 | 98.41 174 | 96.97 186 | 87.53 209 | 89.74 188 | 96.04 200 | 84.77 147 | 96.49 259 | 88.97 184 | 92.31 189 | 98.42 168 |
|
CNLPA | | | 93.64 125 | 92.74 130 | 96.36 109 | 98.96 88 | 90.01 153 | 99.19 76 | 95.89 253 | 86.22 231 | 89.40 191 | 98.85 84 | 80.66 200 | 99.84 60 | 88.57 185 | 96.92 136 | 99.24 110 |
|
baseline1 | | | 92.61 148 | 91.28 160 | 96.58 97 | 97.05 150 | 94.63 48 | 97.72 229 | 96.20 226 | 89.82 134 | 88.56 197 | 96.85 179 | 86.85 107 | 97.82 194 | 88.42 186 | 80.10 270 | 97.30 202 |
|
CANet_DTU | | | 94.31 108 | 93.35 117 | 97.20 60 | 97.03 151 | 94.71 46 | 98.62 148 | 95.54 276 | 95.61 14 | 97.21 61 | 98.47 114 | 71.88 261 | 99.84 60 | 88.38 187 | 97.46 128 | 97.04 211 |
|
thisisatest0515 | | | 94.75 94 | 94.19 96 | 96.43 105 | 96.13 187 | 92.64 92 | 99.47 45 | 97.60 104 | 87.55 208 | 93.17 139 | 97.59 145 | 94.71 11 | 98.42 164 | 88.28 188 | 93.20 175 | 98.24 180 |
|
原ACMM1 | | | | | 96.18 113 | 99.03 84 | 90.08 146 | | 97.63 99 | 88.98 159 | 97.00 65 | 98.97 66 | 88.14 80 | 99.71 78 | 88.23 189 | 99.62 51 | 98.76 154 |
|
UGNet | | | 91.91 163 | 90.85 169 | 95.10 146 | 97.06 149 | 88.69 180 | 98.01 212 | 98.24 29 | 92.41 72 | 92.39 149 | 93.61 238 | 60.52 322 | 99.68 83 | 88.14 190 | 97.25 130 | 96.92 213 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AUN-MVS | | | 90.17 194 | 89.50 187 | 92.19 226 | 96.21 177 | 82.67 297 | 97.76 227 | 97.53 120 | 88.05 191 | 91.67 154 | 96.15 196 | 83.10 168 | 97.47 219 | 88.11 191 | 66.91 344 | 96.43 221 |
|
Vis-MVSNet (Re-imp) | | | 93.26 137 | 93.00 127 | 94.06 185 | 96.14 184 | 86.71 223 | 98.68 139 | 96.70 193 | 88.30 184 | 89.71 190 | 97.64 143 | 85.43 138 | 96.39 265 | 88.06 192 | 96.32 144 | 99.08 123 |
|
PVSNet | | 87.13 12 | 93.69 121 | 92.83 129 | 96.28 111 | 97.99 118 | 90.22 142 | 99.38 62 | 98.93 11 | 91.42 93 | 93.66 134 | 97.68 140 | 71.29 268 | 99.64 91 | 87.94 193 | 97.20 131 | 98.98 129 |
|
FIs | | | 90.70 184 | 89.87 183 | 93.18 206 | 92.29 282 | 91.12 118 | 98.17 198 | 98.25 27 | 89.11 155 | 83.44 238 | 94.82 216 | 82.26 184 | 96.17 282 | 87.76 194 | 82.76 257 | 92.25 248 |
|
tpm2 | | | 91.77 164 | 91.09 163 | 93.82 196 | 94.83 233 | 85.56 253 | 92.51 331 | 97.16 168 | 84.00 263 | 93.83 132 | 90.66 294 | 87.54 90 | 97.17 229 | 87.73 195 | 91.55 203 | 98.72 155 |
|
æ— å…ˆéªŒ | | | | | | | | 98.52 159 | 97.82 57 | 87.20 213 | | | | 99.90 45 | 87.64 196 | | 99.85 33 |
|
1121 | | | 95.19 84 | 94.45 90 | 97.42 49 | 98.88 92 | 92.58 93 | 96.22 286 | 97.75 68 | 85.50 240 | 96.86 70 | 99.01 64 | 88.59 72 | 99.90 45 | 87.64 196 | 99.60 56 | 99.79 38 |
|
Anonymous202405211 | | | 88.84 215 | 87.03 230 | 94.27 176 | 98.14 115 | 84.18 276 | 98.44 170 | 95.58 274 | 76.79 332 | 89.34 192 | 96.88 178 | 53.42 345 | 99.54 101 | 87.53 198 | 87.12 226 | 99.09 122 |
|
IS-MVSNet | | | 93.00 141 | 92.51 135 | 94.49 168 | 96.14 184 | 87.36 207 | 98.31 187 | 95.70 265 | 88.58 171 | 90.17 182 | 97.50 148 | 83.02 169 | 97.22 228 | 87.06 199 | 96.07 152 | 98.90 139 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 117 | 91.38 337 | | 87.45 210 | 93.08 141 | | 86.67 113 | | 87.02 200 | | 98.95 135 |
|
Anonymous20240529 | | | 87.66 238 | 85.58 251 | 93.92 192 | 97.59 131 | 85.01 263 | 98.13 199 | 97.13 171 | 66.69 360 | 88.47 198 | 96.01 201 | 55.09 339 | 99.51 106 | 87.00 201 | 84.12 245 | 97.23 205 |
|
UniMVSNet_NR-MVSNet | | | 89.60 203 | 88.55 209 | 92.75 217 | 92.17 285 | 90.07 147 | 98.74 131 | 98.15 36 | 88.37 182 | 83.21 240 | 93.98 228 | 82.86 171 | 95.93 292 | 86.95 202 | 72.47 324 | 92.25 248 |
|
DU-MVS | | | 88.83 217 | 87.51 221 | 92.79 214 | 91.46 296 | 90.07 147 | 98.71 132 | 97.62 101 | 88.87 165 | 83.21 240 | 93.68 235 | 74.63 231 | 95.93 292 | 86.95 202 | 72.47 324 | 92.36 245 |
|
ACMM | | 86.95 13 | 88.77 220 | 88.22 214 | 90.43 263 | 93.61 262 | 81.34 309 | 98.50 164 | 95.92 245 | 87.88 197 | 83.85 236 | 95.20 211 | 67.20 292 | 97.89 189 | 86.90 204 | 84.90 239 | 92.06 257 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 89.50 206 | 88.32 212 | 93.03 208 | 92.21 284 | 90.96 126 | 98.90 116 | 98.39 23 | 89.13 154 | 83.22 239 | 92.03 263 | 81.69 191 | 96.34 273 | 86.79 205 | 72.53 323 | 91.81 263 |
|
BH-untuned | | | 91.46 170 | 90.84 170 | 93.33 204 | 96.51 166 | 84.83 268 | 98.84 122 | 95.50 278 | 86.44 230 | 83.50 237 | 96.70 184 | 75.49 228 | 97.77 198 | 86.78 206 | 97.81 118 | 97.40 199 |
|
miper_enhance_ethall | | | 90.33 189 | 89.70 184 | 92.22 224 | 97.12 146 | 88.93 173 | 98.35 183 | 95.96 239 | 88.60 170 | 83.14 244 | 92.33 261 | 87.38 93 | 96.18 281 | 86.49 207 | 77.89 280 | 91.55 274 |
|
thisisatest0530 | | | 94.00 112 | 93.52 115 | 95.43 138 | 95.76 193 | 90.02 152 | 98.99 107 | 97.60 104 | 86.58 225 | 91.74 153 | 97.36 153 | 94.78 10 | 98.34 166 | 86.37 208 | 92.48 186 | 97.94 189 |
|
TESTMET0.1,1 | | | 93.82 118 | 93.26 120 | 95.49 135 | 95.21 210 | 90.25 140 | 99.15 87 | 97.54 119 | 89.18 153 | 91.79 152 | 94.87 215 | 89.13 63 | 97.63 209 | 86.21 209 | 96.29 147 | 98.60 162 |
|
anonymousdsp | | | 86.69 250 | 85.75 249 | 89.53 287 | 86.46 347 | 82.94 290 | 96.39 277 | 95.71 264 | 83.97 264 | 79.63 293 | 90.70 291 | 68.85 278 | 95.94 291 | 86.01 210 | 84.02 246 | 89.72 324 |
|
F-COLMAP | | | 92.07 160 | 91.75 153 | 93.02 209 | 98.16 114 | 82.89 293 | 98.79 129 | 95.97 237 | 86.54 227 | 87.92 201 | 97.80 133 | 78.69 214 | 99.65 89 | 85.97 211 | 95.93 154 | 96.53 220 |
|
cl22 | | | 89.57 204 | 88.79 202 | 91.91 231 | 97.94 119 | 87.62 199 | 97.98 214 | 96.51 206 | 85.03 248 | 82.37 255 | 91.79 269 | 83.65 155 | 96.50 257 | 85.96 212 | 77.89 280 | 91.61 271 |
|
test-LLR | | | 93.11 140 | 92.68 131 | 94.40 172 | 94.94 229 | 87.27 211 | 99.15 87 | 97.25 155 | 90.21 122 | 91.57 156 | 94.04 223 | 84.89 144 | 97.58 214 | 85.94 213 | 96.13 148 | 98.36 175 |
|
test-mter | | | 93.27 136 | 92.89 128 | 94.40 172 | 94.94 229 | 87.27 211 | 99.15 87 | 97.25 155 | 88.95 161 | 91.57 156 | 94.04 223 | 88.03 82 | 97.58 214 | 85.94 213 | 96.13 148 | 98.36 175 |
|
FC-MVSNet-test | | | 90.22 192 | 89.40 190 | 92.67 220 | 91.78 292 | 89.86 155 | 97.89 217 | 98.22 30 | 88.81 166 | 82.96 245 | 94.66 218 | 81.90 190 | 95.96 290 | 85.89 215 | 82.52 260 | 92.20 252 |
|
DWT-MVSNet_test | | | 94.36 106 | 93.95 107 | 95.62 131 | 96.99 152 | 89.47 163 | 96.62 273 | 97.38 148 | 90.96 102 | 93.07 142 | 97.27 156 | 93.73 15 | 98.09 177 | 85.86 216 | 93.65 173 | 99.29 105 |
|
Vis-MVSNet |  | | 92.64 146 | 91.85 149 | 95.03 151 | 95.12 217 | 88.23 186 | 98.48 167 | 96.81 190 | 91.61 85 | 92.16 151 | 97.22 161 | 71.58 266 | 98.00 186 | 85.85 217 | 97.81 118 | 98.88 140 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS | | | 88.54 224 | 87.22 228 | 92.52 221 | 91.93 290 | 89.50 162 | 98.56 157 | 97.84 55 | 86.99 214 | 81.87 268 | 93.81 232 | 74.25 242 | 95.92 294 | 85.29 218 | 74.43 303 | 92.12 254 |
|
XXY-MVS | | | 87.75 235 | 86.02 244 | 92.95 211 | 90.46 307 | 89.70 159 | 97.71 231 | 95.90 251 | 84.02 262 | 80.95 276 | 94.05 222 | 67.51 290 | 97.10 233 | 85.16 219 | 78.41 277 | 92.04 259 |
|
thres200 | | | 93.69 121 | 92.59 134 | 96.97 72 | 97.76 123 | 94.74 44 | 99.35 67 | 99.36 2 | 89.23 151 | 91.21 166 | 96.97 173 | 83.42 160 | 98.77 151 | 85.08 220 | 90.96 208 | 97.39 200 |
|
tttt0517 | | | 93.30 134 | 93.01 126 | 94.17 180 | 95.57 198 | 86.47 226 | 98.51 162 | 97.60 104 | 85.99 233 | 90.55 175 | 97.19 163 | 94.80 9 | 98.31 167 | 85.06 221 | 91.86 196 | 97.74 191 |
|
XVG-ACMP-BASELINE | | | 85.86 264 | 84.95 260 | 88.57 302 | 89.90 312 | 77.12 336 | 94.30 313 | 95.60 273 | 87.40 211 | 82.12 259 | 92.99 255 | 53.42 345 | 97.66 207 | 85.02 222 | 83.83 247 | 90.92 295 |
|
test_part1 | | | 88.43 225 | 86.68 235 | 93.67 200 | 97.56 133 | 92.40 96 | 98.12 201 | 96.55 203 | 82.26 294 | 80.31 283 | 93.16 250 | 74.59 235 | 96.62 250 | 85.00 223 | 72.61 322 | 91.99 260 |
|
æ–°å‡ ä½•1 | | | | | 97.40 51 | 98.92 90 | 92.51 95 | | 97.77 67 | 85.52 238 | 96.69 79 | 99.06 56 | 88.08 81 | 99.89 48 | 84.88 224 | 99.62 51 | 99.79 38 |
|
1112_ss | | | 92.71 144 | 91.55 156 | 96.20 112 | 95.56 199 | 91.12 118 | 98.48 167 | 94.69 311 | 88.29 185 | 86.89 213 | 98.50 110 | 87.02 104 | 98.66 159 | 84.75 225 | 89.77 217 | 98.81 148 |
|
miper_ehance_all_eth | | | 88.94 212 | 88.12 215 | 91.40 241 | 95.32 207 | 86.93 219 | 97.85 221 | 95.55 275 | 84.19 260 | 81.97 265 | 91.50 275 | 84.16 151 | 95.91 295 | 84.69 226 | 77.89 280 | 91.36 282 |
|
Test_1112_low_res | | | 92.27 156 | 90.97 166 | 96.18 113 | 95.53 201 | 91.10 120 | 98.47 169 | 94.66 312 | 88.28 186 | 86.83 215 | 93.50 243 | 87.00 105 | 98.65 160 | 84.69 226 | 89.74 218 | 98.80 149 |
|
TR-MVS | | | 90.77 182 | 89.44 189 | 94.76 158 | 96.31 173 | 88.02 192 | 97.92 216 | 95.96 239 | 85.52 238 | 88.22 200 | 97.23 160 | 66.80 295 | 98.09 177 | 84.58 228 | 92.38 187 | 98.17 184 |
|
OpenMVS |  | 85.28 14 | 90.75 183 | 88.84 200 | 96.48 102 | 93.58 263 | 93.51 70 | 98.80 125 | 97.41 145 | 82.59 287 | 78.62 303 | 97.49 149 | 68.00 286 | 99.82 65 | 84.52 229 | 98.55 110 | 96.11 225 |
|
UniMVSNet_ETH3D | | | 85.65 271 | 83.79 277 | 91.21 244 | 90.41 308 | 80.75 318 | 95.36 304 | 95.78 260 | 78.76 322 | 81.83 271 | 94.33 221 | 49.86 353 | 96.66 248 | 84.30 230 | 83.52 252 | 96.22 224 |
|
NR-MVSNet | | | 87.74 237 | 86.00 245 | 92.96 210 | 91.46 296 | 90.68 133 | 96.65 272 | 97.42 144 | 88.02 193 | 73.42 331 | 93.68 235 | 77.31 221 | 95.83 299 | 84.26 231 | 71.82 331 | 92.36 245 |
|
D2MVS | | | 87.96 231 | 87.39 223 | 89.70 282 | 91.84 291 | 83.40 285 | 98.31 187 | 98.49 21 | 88.04 192 | 78.23 309 | 90.26 307 | 73.57 245 | 96.79 245 | 84.21 232 | 83.53 251 | 88.90 334 |
|
testdata2 | | | | | | | | | | | | | | 99.88 49 | 84.16 233 | | |
|
Baseline_NR-MVSNet | | | 85.83 265 | 84.82 263 | 88.87 301 | 88.73 328 | 83.34 286 | 98.63 147 | 91.66 353 | 80.41 315 | 82.44 252 | 91.35 278 | 74.63 231 | 95.42 310 | 84.13 234 | 71.39 333 | 87.84 340 |
|
thres100view900 | | | 93.34 133 | 92.15 143 | 96.90 77 | 97.62 128 | 94.84 39 | 99.06 99 | 99.36 2 | 87.96 194 | 90.47 178 | 96.78 181 | 83.29 163 | 98.75 153 | 84.11 235 | 90.69 210 | 97.12 206 |
|
tfpn200view9 | | | 93.43 129 | 92.27 139 | 96.90 77 | 97.68 126 | 94.84 39 | 99.18 78 | 99.36 2 | 88.45 176 | 90.79 170 | 96.90 176 | 83.31 161 | 98.75 153 | 84.11 235 | 90.69 210 | 97.12 206 |
|
thres400 | | | 93.39 131 | 92.27 139 | 96.73 88 | 97.68 126 | 94.84 39 | 99.18 78 | 99.36 2 | 88.45 176 | 90.79 170 | 96.90 176 | 83.31 161 | 98.75 153 | 84.11 235 | 90.69 210 | 96.61 215 |
|
c3_l | | | 88.19 230 | 87.23 227 | 91.06 247 | 94.97 227 | 86.17 237 | 97.72 229 | 95.38 288 | 83.43 273 | 81.68 272 | 91.37 277 | 82.81 172 | 95.72 302 | 84.04 238 | 73.70 311 | 91.29 286 |
|
UA-Net | | | 93.30 134 | 92.62 133 | 95.34 141 | 96.27 174 | 88.53 184 | 95.88 296 | 96.97 186 | 90.90 104 | 95.37 106 | 97.07 169 | 82.38 183 | 99.10 143 | 83.91 239 | 94.86 164 | 98.38 172 |
|
IterMVS-LS | | | 88.34 226 | 87.44 222 | 91.04 248 | 94.10 246 | 85.85 247 | 98.10 205 | 95.48 279 | 85.12 244 | 82.03 263 | 91.21 281 | 81.35 196 | 95.63 305 | 83.86 240 | 75.73 292 | 91.63 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.87 200 | 89.38 191 | 91.36 243 | 94.32 242 | 85.87 246 | 97.61 234 | 96.59 198 | 85.10 245 | 85.51 222 | 97.10 167 | 81.30 197 | 96.56 253 | 83.85 241 | 83.03 255 | 91.64 266 |
|
tpm | | | 89.67 202 | 88.95 198 | 91.82 234 | 92.54 280 | 81.43 306 | 92.95 325 | 95.92 245 | 87.81 198 | 90.50 177 | 89.44 320 | 84.99 142 | 95.65 304 | 83.67 242 | 82.71 258 | 98.38 172 |
|
eth_miper_zixun_eth | | | 87.76 234 | 87.00 231 | 90.06 272 | 94.67 237 | 82.65 298 | 97.02 258 | 95.37 289 | 84.19 260 | 81.86 270 | 91.58 274 | 81.47 194 | 95.90 296 | 83.24 243 | 73.61 312 | 91.61 271 |
|
Fast-Effi-MVS+ | | | 91.72 165 | 90.79 173 | 94.49 168 | 95.89 189 | 87.40 206 | 99.54 39 | 95.70 265 | 85.01 250 | 89.28 193 | 95.68 204 | 77.75 219 | 97.57 217 | 83.22 244 | 95.06 162 | 98.51 165 |
|
test_post1 | | | | | | | | 90.74 344 | | | | 41.37 376 | 85.38 139 | 96.36 267 | 83.16 245 | | |
|
SCA | | | 90.64 186 | 89.25 193 | 94.83 157 | 94.95 228 | 88.83 175 | 96.26 283 | 97.21 161 | 90.06 131 | 90.03 184 | 90.62 297 | 66.61 296 | 96.81 243 | 83.16 245 | 94.36 167 | 98.84 143 |
|
TranMVSNet+NR-MVSNet | | | 87.75 235 | 86.31 240 | 92.07 230 | 90.81 303 | 88.56 181 | 98.33 184 | 97.18 166 | 87.76 200 | 81.87 268 | 93.90 230 | 72.45 255 | 95.43 309 | 83.13 247 | 71.30 334 | 92.23 250 |
|
CMPMVS |  | 58.40 21 | 80.48 306 | 80.11 306 | 81.59 341 | 85.10 352 | 59.56 367 | 94.14 316 | 95.95 241 | 68.54 355 | 60.71 361 | 93.31 244 | 55.35 338 | 97.87 191 | 83.06 248 | 84.85 240 | 87.33 345 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres600view7 | | | 93.18 138 | 92.00 146 | 96.75 86 | 97.62 128 | 94.92 34 | 99.07 97 | 99.36 2 | 87.96 194 | 90.47 178 | 96.78 181 | 83.29 163 | 98.71 157 | 82.93 249 | 90.47 214 | 96.61 215 |
|
pmmvs4 | | | 87.58 240 | 86.17 243 | 91.80 235 | 89.58 317 | 88.92 174 | 97.25 247 | 95.28 292 | 82.54 289 | 80.49 281 | 93.17 249 | 75.62 227 | 96.05 287 | 82.75 250 | 78.90 274 | 90.42 310 |
|
CVMVSNet | | | 90.30 190 | 90.91 168 | 88.46 305 | 94.32 242 | 73.58 347 | 97.61 234 | 97.59 108 | 90.16 127 | 88.43 199 | 97.10 167 | 76.83 224 | 92.86 340 | 82.64 251 | 93.54 174 | 98.93 137 |
|
Anonymous20231211 | | | 84.72 278 | 82.65 289 | 90.91 251 | 97.71 125 | 84.55 271 | 97.28 245 | 96.67 194 | 66.88 359 | 79.18 299 | 90.87 287 | 58.47 326 | 96.60 251 | 82.61 252 | 74.20 307 | 91.59 273 |
|
GA-MVS | | | 90.10 196 | 88.69 204 | 94.33 174 | 92.44 281 | 87.97 193 | 99.08 96 | 96.26 222 | 89.65 139 | 86.92 212 | 93.11 252 | 68.09 284 | 96.96 237 | 82.54 253 | 90.15 215 | 98.05 185 |
|
QAPM | | | 91.41 171 | 89.49 188 | 97.17 61 | 95.66 197 | 93.42 72 | 98.60 152 | 97.51 126 | 80.92 310 | 81.39 275 | 97.41 152 | 72.89 253 | 99.87 52 | 82.33 254 | 98.68 103 | 98.21 182 |
|
Patchmatch-RL test | | | 81.90 302 | 80.13 305 | 87.23 314 | 80.71 364 | 70.12 359 | 84.07 360 | 88.19 368 | 83.16 278 | 70.57 341 | 82.18 353 | 87.18 100 | 92.59 345 | 82.28 255 | 62.78 350 | 98.98 129 |
|
v2v482 | | | 87.27 243 | 85.76 248 | 91.78 239 | 89.59 316 | 87.58 200 | 98.56 157 | 95.54 276 | 84.53 256 | 82.51 251 | 91.78 270 | 73.11 250 | 96.47 260 | 82.07 256 | 74.14 309 | 91.30 285 |
|
Fast-Effi-MVS+-dtu | | | 88.84 215 | 88.59 208 | 89.58 286 | 93.44 268 | 78.18 331 | 98.65 143 | 94.62 313 | 88.46 175 | 84.12 233 | 95.37 210 | 68.91 277 | 96.52 256 | 82.06 257 | 91.70 201 | 94.06 232 |
|
pmmvs5 | | | 85.87 263 | 84.40 272 | 90.30 268 | 88.53 331 | 84.23 274 | 98.60 152 | 93.71 330 | 81.53 302 | 80.29 284 | 92.02 264 | 64.51 308 | 95.52 307 | 82.04 258 | 78.34 278 | 91.15 289 |
|
V42 | | | 87.00 245 | 85.68 250 | 90.98 250 | 89.91 311 | 86.08 240 | 98.32 186 | 95.61 272 | 83.67 270 | 82.72 247 | 90.67 293 | 74.00 244 | 96.53 255 | 81.94 259 | 74.28 306 | 90.32 312 |
|
EPMVS | | | 92.59 149 | 91.59 155 | 95.59 134 | 97.22 141 | 90.03 151 | 91.78 335 | 98.04 42 | 90.42 117 | 91.66 155 | 90.65 295 | 86.49 120 | 97.46 220 | 81.78 260 | 96.31 145 | 99.28 107 |
|
DIV-MVS_self_test | | | 87.82 232 | 86.81 233 | 90.87 254 | 94.87 232 | 85.39 256 | 97.81 222 | 95.22 300 | 82.92 284 | 80.76 278 | 91.31 279 | 81.99 187 | 95.81 300 | 81.36 261 | 75.04 296 | 91.42 280 |
|
cl____ | | | 87.82 232 | 86.79 234 | 90.89 253 | 94.88 231 | 85.43 254 | 97.81 222 | 95.24 296 | 82.91 285 | 80.71 279 | 91.22 280 | 81.97 189 | 95.84 298 | 81.34 262 | 75.06 295 | 91.40 281 |
|
RPSCF | | | 85.33 273 | 85.55 252 | 84.67 329 | 94.63 238 | 62.28 365 | 93.73 319 | 93.76 328 | 74.38 340 | 85.23 225 | 97.06 170 | 64.09 309 | 98.31 167 | 80.98 263 | 86.08 233 | 93.41 237 |
|
OurMVSNet-221017-0 | | | 84.13 289 | 83.59 278 | 85.77 323 | 87.81 338 | 70.24 357 | 94.89 308 | 93.65 332 | 86.08 232 | 76.53 313 | 93.28 246 | 61.41 319 | 96.14 284 | 80.95 264 | 77.69 285 | 90.93 294 |
|
v148 | | | 86.38 257 | 85.06 257 | 90.37 267 | 89.47 321 | 84.10 277 | 98.52 159 | 95.48 279 | 83.80 266 | 80.93 277 | 90.22 311 | 74.60 233 | 96.31 275 | 80.92 265 | 71.55 332 | 90.69 305 |
|
PatchMatch-RL | | | 91.47 169 | 90.54 177 | 94.26 177 | 98.20 111 | 86.36 231 | 96.94 259 | 97.14 169 | 87.75 201 | 88.98 194 | 95.75 203 | 71.80 263 | 99.40 123 | 80.92 265 | 97.39 129 | 97.02 212 |
|
miper_lstm_enhance | | | 86.90 246 | 86.20 242 | 89.00 298 | 94.53 239 | 81.19 312 | 96.74 269 | 95.24 296 | 82.33 293 | 80.15 286 | 90.51 304 | 81.99 187 | 94.68 327 | 80.71 267 | 73.58 313 | 91.12 290 |
|
PCF-MVS | | 89.78 5 | 91.26 172 | 89.63 185 | 96.16 116 | 95.44 203 | 91.58 108 | 95.29 305 | 96.10 233 | 85.07 247 | 82.75 246 | 97.45 150 | 78.28 216 | 99.78 71 | 80.60 268 | 95.65 159 | 97.12 206 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-RMVSNet | | | 91.25 174 | 89.99 182 | 95.03 151 | 96.75 158 | 88.55 182 | 98.65 143 | 94.95 302 | 87.74 202 | 87.74 202 | 97.80 133 | 68.27 283 | 98.14 173 | 80.53 269 | 97.49 127 | 98.41 169 |
|
GeoE | | | 90.60 187 | 89.56 186 | 93.72 199 | 95.10 221 | 85.43 254 | 99.41 59 | 94.94 303 | 83.96 265 | 87.21 209 | 96.83 180 | 74.37 238 | 97.05 235 | 80.50 270 | 93.73 172 | 98.67 158 |
|
CP-MVSNet | | | 86.54 254 | 85.45 254 | 89.79 280 | 91.02 302 | 82.78 296 | 97.38 240 | 97.56 115 | 85.37 241 | 79.53 295 | 93.03 253 | 71.86 262 | 95.25 314 | 79.92 271 | 73.43 317 | 91.34 283 |
|
PatchmatchNet |  | | 92.05 161 | 91.04 165 | 95.06 149 | 96.17 181 | 89.04 168 | 91.26 339 | 97.26 154 | 89.56 145 | 90.64 174 | 90.56 301 | 88.35 76 | 97.11 231 | 79.53 272 | 96.07 152 | 99.03 126 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1144 | | | 86.83 248 | 85.31 255 | 91.40 241 | 89.75 314 | 87.21 216 | 98.31 187 | 95.45 281 | 83.22 276 | 82.70 248 | 90.78 288 | 73.36 246 | 96.36 267 | 79.49 273 | 74.69 300 | 90.63 307 |
|
IterMVS | | | 85.81 266 | 84.67 266 | 89.22 293 | 93.51 264 | 83.67 283 | 96.32 280 | 94.80 307 | 85.09 246 | 78.69 301 | 90.17 314 | 66.57 298 | 93.17 339 | 79.48 274 | 77.42 286 | 90.81 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 85.73 269 | 84.64 267 | 89.00 298 | 93.46 267 | 82.90 292 | 96.27 281 | 94.70 310 | 85.02 249 | 78.62 303 | 90.35 306 | 66.61 296 | 93.33 336 | 79.38 275 | 77.36 287 | 90.76 301 |
|
GBi-Net | | | 86.67 251 | 84.96 258 | 91.80 235 | 95.11 218 | 88.81 176 | 96.77 265 | 95.25 293 | 82.94 281 | 82.12 259 | 90.25 308 | 62.89 313 | 94.97 318 | 79.04 276 | 80.24 267 | 91.62 268 |
|
test1 | | | 86.67 251 | 84.96 258 | 91.80 235 | 95.11 218 | 88.81 176 | 96.77 265 | 95.25 293 | 82.94 281 | 82.12 259 | 90.25 308 | 62.89 313 | 94.97 318 | 79.04 276 | 80.24 267 | 91.62 268 |
|
FMVSNet3 | | | 88.81 219 | 87.08 229 | 93.99 189 | 96.52 165 | 94.59 49 | 98.08 208 | 96.20 226 | 85.85 234 | 82.12 259 | 91.60 273 | 74.05 243 | 95.40 311 | 79.04 276 | 80.24 267 | 91.99 260 |
|
LF4IMVS | | | 81.94 301 | 81.17 300 | 84.25 331 | 87.23 344 | 68.87 362 | 93.35 323 | 91.93 351 | 83.35 275 | 75.40 322 | 93.00 254 | 49.25 356 | 96.65 249 | 78.88 279 | 78.11 279 | 87.22 347 |
|
v8 | | | 86.11 260 | 84.45 269 | 91.10 246 | 89.99 310 | 86.85 220 | 97.24 248 | 95.36 290 | 81.99 297 | 79.89 290 | 89.86 316 | 74.53 236 | 96.39 265 | 78.83 280 | 72.32 326 | 90.05 319 |
|
pm-mvs1 | | | 84.68 279 | 82.78 285 | 90.40 264 | 89.58 317 | 85.18 259 | 97.31 242 | 94.73 309 | 81.93 299 | 76.05 316 | 92.01 265 | 65.48 305 | 96.11 285 | 78.75 281 | 69.14 337 | 89.91 322 |
|
v144192 | | | 86.40 256 | 84.89 261 | 90.91 251 | 89.48 320 | 85.59 251 | 98.21 194 | 95.43 285 | 82.45 291 | 82.62 249 | 90.58 300 | 72.79 254 | 96.36 267 | 78.45 282 | 74.04 310 | 90.79 299 |
|
PS-CasMVS | | | 85.81 266 | 84.58 268 | 89.49 290 | 90.77 304 | 82.11 302 | 97.20 251 | 97.36 151 | 84.83 253 | 79.12 300 | 92.84 256 | 67.42 291 | 95.16 316 | 78.39 283 | 73.25 318 | 91.21 288 |
|
tmp_tt | | | 53.66 336 | 52.86 338 | 56.05 353 | 32.75 381 | 41.97 377 | 73.42 367 | 76.12 377 | 21.91 374 | 39.68 370 | 96.39 193 | 42.59 361 | 65.10 373 | 78.00 284 | 14.92 374 | 61.08 367 |
|
JIA-IIPM | | | 85.97 262 | 84.85 262 | 89.33 292 | 93.23 272 | 73.68 346 | 85.05 355 | 97.13 171 | 69.62 352 | 91.56 158 | 68.03 364 | 88.03 82 | 96.96 237 | 77.89 285 | 93.12 176 | 97.34 201 |
|
MDTV_nov1_ep13 | | | | 90.47 179 | | 96.14 184 | 88.55 182 | 91.34 338 | 97.51 126 | 89.58 143 | 92.24 150 | 90.50 305 | 86.99 106 | 97.61 211 | 77.64 286 | 92.34 188 | |
|
v1192 | | | 86.32 258 | 84.71 265 | 91.17 245 | 89.53 319 | 86.40 228 | 98.13 199 | 95.44 284 | 82.52 290 | 82.42 253 | 90.62 297 | 71.58 266 | 96.33 274 | 77.23 287 | 74.88 297 | 90.79 299 |
|
FMVSNet2 | | | 86.90 246 | 84.79 264 | 93.24 205 | 95.11 218 | 92.54 94 | 97.67 232 | 95.86 257 | 82.94 281 | 80.55 280 | 91.17 282 | 62.89 313 | 95.29 313 | 77.23 287 | 79.71 273 | 91.90 262 |
|
MVP-Stereo | | | 86.61 253 | 85.83 247 | 88.93 300 | 88.70 329 | 83.85 281 | 96.07 291 | 94.41 319 | 82.15 296 | 75.64 321 | 91.96 267 | 67.65 289 | 96.45 262 | 77.20 289 | 98.72 102 | 86.51 351 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpm cat1 | | | 88.89 213 | 87.27 226 | 93.76 197 | 95.79 191 | 85.32 257 | 90.76 343 | 97.09 177 | 76.14 334 | 85.72 220 | 88.59 326 | 82.92 170 | 98.04 183 | 76.96 290 | 91.43 204 | 97.90 190 |
|
v10 | | | 85.73 269 | 84.01 275 | 90.87 254 | 90.03 309 | 86.73 222 | 97.20 251 | 95.22 300 | 81.25 305 | 79.85 291 | 89.75 317 | 73.30 249 | 96.28 279 | 76.87 291 | 72.64 321 | 89.61 326 |
|
v1921920 | | | 86.02 261 | 84.44 270 | 90.77 256 | 89.32 322 | 85.20 258 | 98.10 205 | 95.35 291 | 82.19 295 | 82.25 257 | 90.71 290 | 70.73 269 | 96.30 278 | 76.85 292 | 74.49 302 | 90.80 298 |
|
MS-PatchMatch | | | 86.75 249 | 85.92 246 | 89.22 293 | 91.97 287 | 82.47 300 | 96.91 260 | 96.14 232 | 83.74 267 | 77.73 310 | 93.53 241 | 58.19 327 | 97.37 227 | 76.75 293 | 98.35 113 | 87.84 340 |
|
K. test v3 | | | 81.04 304 | 79.77 307 | 84.83 327 | 87.41 342 | 70.23 358 | 95.60 303 | 93.93 327 | 83.70 269 | 67.51 351 | 89.35 322 | 55.76 333 | 93.58 335 | 76.67 294 | 68.03 341 | 90.67 306 |
|
PM-MVS | | | 74.88 325 | 72.85 328 | 80.98 342 | 78.98 367 | 64.75 364 | 90.81 342 | 85.77 370 | 80.95 309 | 68.23 348 | 82.81 351 | 29.08 370 | 92.84 341 | 76.54 295 | 62.46 352 | 85.36 356 |
|
MVS_0304 | | | 84.13 289 | 82.66 288 | 88.52 303 | 93.07 275 | 80.15 319 | 95.81 300 | 98.21 31 | 79.27 317 | 86.85 214 | 86.40 342 | 41.33 364 | 94.69 326 | 76.36 296 | 86.69 227 | 90.73 303 |
|
WR-MVS_H | | | 86.53 255 | 85.49 253 | 89.66 285 | 91.04 301 | 83.31 287 | 97.53 236 | 98.20 32 | 84.95 251 | 79.64 292 | 90.90 286 | 78.01 218 | 95.33 312 | 76.29 297 | 72.81 319 | 90.35 311 |
|
ACMH+ | | 83.78 15 | 84.21 286 | 82.56 291 | 89.15 295 | 93.73 261 | 79.16 323 | 96.43 276 | 94.28 321 | 81.09 307 | 74.00 328 | 94.03 225 | 54.58 341 | 97.67 206 | 76.10 298 | 78.81 275 | 90.63 307 |
|
PEN-MVS | | | 85.21 274 | 83.93 276 | 89.07 297 | 89.89 313 | 81.31 310 | 97.09 254 | 97.24 157 | 84.45 258 | 78.66 302 | 92.68 258 | 68.44 282 | 94.87 321 | 75.98 299 | 70.92 335 | 91.04 292 |
|
USDC | | | 84.74 277 | 82.93 281 | 90.16 270 | 91.73 293 | 83.54 284 | 95.00 307 | 93.30 336 | 88.77 167 | 73.19 332 | 93.30 245 | 53.62 344 | 97.65 208 | 75.88 300 | 81.54 265 | 89.30 329 |
|
EU-MVSNet | | | 84.19 287 | 84.42 271 | 83.52 334 | 88.64 330 | 67.37 363 | 96.04 292 | 95.76 262 | 85.29 242 | 78.44 306 | 93.18 248 | 70.67 270 | 91.48 356 | 75.79 301 | 75.98 290 | 91.70 265 |
|
v1240 | | | 85.77 268 | 84.11 273 | 90.73 257 | 89.26 323 | 85.15 261 | 97.88 219 | 95.23 299 | 81.89 300 | 82.16 258 | 90.55 302 | 69.60 276 | 96.31 275 | 75.59 302 | 74.87 298 | 90.72 304 |
|
ITE_SJBPF | | | | | 87.93 307 | 92.26 283 | 76.44 337 | | 93.47 335 | 87.67 206 | 79.95 289 | 95.49 208 | 56.50 332 | 97.38 225 | 75.24 303 | 82.33 261 | 89.98 321 |
|
dp | | | 90.16 195 | 88.83 201 | 94.14 181 | 96.38 171 | 86.42 227 | 91.57 336 | 97.06 179 | 84.76 254 | 88.81 195 | 90.19 313 | 84.29 150 | 97.43 223 | 75.05 304 | 91.35 207 | 98.56 163 |
|
LS3D | | | 90.19 193 | 88.72 203 | 94.59 166 | 98.97 86 | 86.33 232 | 96.90 261 | 96.60 197 | 74.96 337 | 84.06 234 | 98.74 91 | 75.78 226 | 99.83 62 | 74.93 305 | 97.57 123 | 97.62 196 |
|
TDRefinement | | | 78.01 319 | 75.31 322 | 86.10 321 | 70.06 371 | 73.84 345 | 93.59 322 | 91.58 355 | 74.51 339 | 73.08 335 | 91.04 283 | 49.63 355 | 97.12 230 | 74.88 306 | 59.47 356 | 87.33 345 |
|
tpmvs | | | 89.16 207 | 87.76 217 | 93.35 203 | 97.19 142 | 84.75 269 | 90.58 345 | 97.36 151 | 81.99 297 | 84.56 228 | 89.31 323 | 83.98 153 | 98.17 172 | 74.85 307 | 90.00 216 | 97.12 206 |
|
pmmvs6 | | | 79.90 309 | 77.31 314 | 87.67 310 | 84.17 355 | 78.13 332 | 95.86 298 | 93.68 331 | 67.94 357 | 72.67 338 | 89.62 319 | 50.98 351 | 95.75 301 | 74.80 308 | 66.04 346 | 89.14 332 |
|
SixPastTwentyTwo | | | 82.63 297 | 81.58 295 | 85.79 322 | 88.12 335 | 71.01 356 | 95.17 306 | 92.54 342 | 84.33 259 | 72.93 337 | 92.08 262 | 60.41 323 | 95.61 306 | 74.47 309 | 74.15 308 | 90.75 302 |
|
ACMH | | 83.09 17 | 84.60 280 | 82.61 290 | 90.57 259 | 93.18 273 | 82.94 290 | 96.27 281 | 94.92 304 | 81.01 308 | 72.61 339 | 93.61 238 | 56.54 331 | 97.79 196 | 74.31 310 | 81.07 266 | 90.99 293 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ADS-MVSNet2 | | | 87.62 239 | 86.88 232 | 89.86 277 | 96.21 177 | 79.14 324 | 87.15 349 | 92.99 337 | 83.01 279 | 89.91 186 | 87.27 335 | 78.87 211 | 92.80 343 | 74.20 311 | 92.27 190 | 97.64 193 |
|
ADS-MVSNet | | | 88.99 210 | 87.30 225 | 94.07 184 | 96.21 177 | 87.56 201 | 87.15 349 | 96.78 192 | 83.01 279 | 89.91 186 | 87.27 335 | 78.87 211 | 97.01 236 | 74.20 311 | 92.27 190 | 97.64 193 |
|
lessismore_v0 | | | | | 85.08 325 | 85.59 351 | 69.28 360 | | 90.56 360 | | 67.68 350 | 90.21 312 | 54.21 343 | 95.46 308 | 73.88 313 | 62.64 351 | 90.50 309 |
|
MIMVSNet | | | 84.48 283 | 81.83 293 | 92.42 222 | 91.73 293 | 87.36 207 | 85.52 352 | 94.42 318 | 81.40 303 | 81.91 266 | 87.58 330 | 51.92 348 | 92.81 342 | 73.84 314 | 88.15 221 | 97.08 210 |
|
v7n | | | 84.42 285 | 82.75 286 | 89.43 291 | 88.15 334 | 81.86 303 | 96.75 268 | 95.67 268 | 80.53 311 | 78.38 307 | 89.43 321 | 69.89 272 | 96.35 272 | 73.83 315 | 72.13 328 | 90.07 317 |
|
ambc | | | | | 79.60 343 | 72.76 370 | 56.61 369 | 76.20 365 | 92.01 350 | | 68.25 347 | 80.23 357 | 23.34 371 | 94.73 325 | 73.78 316 | 60.81 354 | 87.48 342 |
|
pmmvs-eth3d | | | 78.71 316 | 76.16 320 | 86.38 318 | 80.25 365 | 81.19 312 | 94.17 315 | 92.13 348 | 77.97 325 | 66.90 354 | 82.31 352 | 55.76 333 | 92.56 346 | 73.63 317 | 62.31 353 | 85.38 355 |
|
FMVSNet1 | | | 83.94 291 | 81.32 299 | 91.80 235 | 91.94 289 | 88.81 176 | 96.77 265 | 95.25 293 | 77.98 324 | 78.25 308 | 90.25 308 | 50.37 352 | 94.97 318 | 73.27 318 | 77.81 284 | 91.62 268 |
|
MSDG | | | 88.29 228 | 86.37 239 | 94.04 187 | 96.90 153 | 86.15 238 | 96.52 275 | 94.36 320 | 77.89 328 | 79.22 298 | 96.95 174 | 69.72 274 | 99.59 97 | 73.20 319 | 92.58 185 | 96.37 223 |
|
test0.0.03 1 | | | 88.96 211 | 88.61 206 | 90.03 275 | 91.09 300 | 84.43 272 | 98.97 109 | 97.02 183 | 90.21 122 | 80.29 284 | 96.31 195 | 84.89 144 | 91.93 354 | 72.98 320 | 85.70 236 | 93.73 233 |
|
UnsupCasMVSNet_eth | | | 78.90 314 | 76.67 318 | 85.58 324 | 82.81 360 | 74.94 341 | 91.98 333 | 96.31 217 | 84.64 255 | 65.84 357 | 87.71 329 | 51.33 349 | 92.23 350 | 72.89 321 | 56.50 361 | 89.56 327 |
|
DTE-MVSNet | | | 84.14 288 | 82.80 283 | 88.14 306 | 88.95 326 | 79.87 322 | 96.81 264 | 96.24 223 | 83.50 272 | 77.60 311 | 92.52 260 | 67.89 288 | 94.24 332 | 72.64 322 | 69.05 338 | 90.32 312 |
|
EPNet_dtu | | | 92.28 155 | 92.15 143 | 92.70 218 | 97.29 139 | 84.84 267 | 98.64 145 | 97.82 57 | 92.91 57 | 93.02 143 | 97.02 171 | 85.48 137 | 95.70 303 | 72.25 323 | 94.89 163 | 97.55 198 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
AllTest | | | 84.97 276 | 83.12 280 | 90.52 261 | 96.82 155 | 78.84 326 | 95.89 294 | 92.17 346 | 77.96 326 | 75.94 317 | 95.50 206 | 55.48 335 | 99.18 136 | 71.15 324 | 87.14 224 | 93.55 235 |
|
TestCases | | | | | 90.52 261 | 96.82 155 | 78.84 326 | | 92.17 346 | 77.96 326 | 75.94 317 | 95.50 206 | 55.48 335 | 99.18 136 | 71.15 324 | 87.14 224 | 93.55 235 |
|
DP-MVS | | | 88.75 221 | 86.56 237 | 95.34 141 | 98.92 90 | 87.45 204 | 97.64 233 | 93.52 334 | 70.55 348 | 81.49 273 | 97.25 158 | 74.43 237 | 99.88 49 | 71.14 326 | 94.09 169 | 98.67 158 |
|
CR-MVSNet | | | 88.83 217 | 87.38 224 | 93.16 207 | 93.47 265 | 86.24 233 | 84.97 356 | 94.20 323 | 88.92 164 | 90.76 172 | 86.88 339 | 84.43 148 | 94.82 323 | 70.64 327 | 92.17 193 | 98.41 169 |
|
KD-MVS_2432*1600 | | | 82.98 295 | 80.52 303 | 90.38 265 | 94.32 242 | 88.98 170 | 92.87 327 | 95.87 255 | 80.46 313 | 73.79 329 | 87.49 332 | 82.76 175 | 93.29 337 | 70.56 328 | 46.53 367 | 88.87 335 |
|
miper_refine_blended | | | 82.98 295 | 80.52 303 | 90.38 265 | 94.32 242 | 88.98 170 | 92.87 327 | 95.87 255 | 80.46 313 | 73.79 329 | 87.49 332 | 82.76 175 | 93.29 337 | 70.56 328 | 46.53 367 | 88.87 335 |
|
test_method | | | 70.10 330 | 68.66 333 | 74.41 346 | 86.30 349 | 55.84 370 | 94.47 310 | 89.82 363 | 35.18 369 | 66.15 356 | 84.75 348 | 30.54 369 | 77.96 370 | 70.40 330 | 60.33 355 | 89.44 328 |
|
LTVRE_ROB | | 81.71 19 | 84.59 281 | 82.72 287 | 90.18 269 | 92.89 278 | 83.18 288 | 93.15 324 | 94.74 308 | 78.99 319 | 75.14 324 | 92.69 257 | 65.64 302 | 97.63 209 | 69.46 331 | 81.82 264 | 89.74 323 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
FMVSNet5 | | | 82.29 298 | 80.54 302 | 87.52 311 | 93.79 260 | 84.01 278 | 93.73 319 | 92.47 343 | 76.92 331 | 74.27 326 | 86.15 344 | 63.69 312 | 89.24 360 | 69.07 332 | 74.79 299 | 89.29 330 |
|
our_test_3 | | | 84.47 284 | 82.80 283 | 89.50 288 | 89.01 324 | 83.90 280 | 97.03 256 | 94.56 314 | 81.33 304 | 75.36 323 | 90.52 303 | 71.69 264 | 94.54 329 | 68.81 333 | 76.84 289 | 90.07 317 |
|
UnsupCasMVSNet_bld | | | 73.85 327 | 70.14 330 | 84.99 326 | 79.44 366 | 75.73 338 | 88.53 347 | 95.24 296 | 70.12 351 | 61.94 360 | 74.81 361 | 41.41 363 | 93.62 334 | 68.65 334 | 51.13 366 | 85.62 354 |
|
Patchmtry | | | 83.61 294 | 81.64 294 | 89.50 288 | 93.36 269 | 82.84 295 | 84.10 359 | 94.20 323 | 69.47 353 | 79.57 294 | 86.88 339 | 84.43 148 | 94.78 324 | 68.48 335 | 74.30 305 | 90.88 296 |
|
KD-MVS_self_test | | | 77.47 322 | 75.88 321 | 82.24 336 | 81.59 361 | 68.93 361 | 92.83 329 | 94.02 326 | 77.03 330 | 73.14 333 | 83.39 350 | 55.44 337 | 90.42 357 | 67.95 336 | 57.53 359 | 87.38 343 |
|
TransMVSNet (Re) | | | 81.97 300 | 79.61 308 | 89.08 296 | 89.70 315 | 84.01 278 | 97.26 246 | 91.85 352 | 78.84 320 | 73.07 336 | 91.62 272 | 67.17 293 | 95.21 315 | 67.50 337 | 59.46 357 | 88.02 339 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 282 | 82.82 282 | 89.70 282 | 96.72 159 | 78.85 325 | 95.89 294 | 92.83 340 | 71.55 346 | 77.54 312 | 95.89 202 | 59.40 325 | 99.14 141 | 67.26 338 | 88.26 220 | 91.11 291 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
EG-PatchMatch MVS | | | 79.92 308 | 77.59 312 | 86.90 316 | 87.06 345 | 77.90 335 | 96.20 289 | 94.06 325 | 74.61 338 | 66.53 355 | 88.76 325 | 40.40 366 | 96.20 280 | 67.02 339 | 83.66 250 | 86.61 349 |
|
DSMNet-mixed | | | 81.60 303 | 81.43 297 | 82.10 338 | 84.36 354 | 60.79 366 | 93.63 321 | 86.74 369 | 79.00 318 | 79.32 297 | 87.15 337 | 63.87 311 | 89.78 359 | 66.89 340 | 91.92 195 | 95.73 227 |
|
testgi | | | 82.29 298 | 81.00 301 | 86.17 320 | 87.24 343 | 74.84 342 | 97.39 238 | 91.62 354 | 88.63 168 | 75.85 320 | 95.42 209 | 46.07 359 | 91.55 355 | 66.87 341 | 79.94 271 | 92.12 254 |
|
MDA-MVSNet_test_wron | | | 79.65 311 | 77.05 315 | 87.45 312 | 87.79 340 | 80.13 320 | 96.25 284 | 94.44 316 | 73.87 341 | 51.80 364 | 87.47 334 | 68.04 285 | 92.12 352 | 66.02 342 | 67.79 342 | 90.09 315 |
|
YYNet1 | | | 79.64 312 | 77.04 316 | 87.43 313 | 87.80 339 | 79.98 321 | 96.23 285 | 94.44 316 | 73.83 342 | 51.83 363 | 87.53 331 | 67.96 287 | 92.07 353 | 66.00 343 | 67.75 343 | 90.23 314 |
|
DeepMVS_CX |  | | | | 76.08 345 | 90.74 305 | 51.65 373 | | 90.84 359 | 86.47 229 | 57.89 362 | 87.98 327 | 35.88 368 | 92.60 344 | 65.77 344 | 65.06 348 | 83.97 359 |
|
Anonymous20240521 | | | 78.63 317 | 76.90 317 | 83.82 332 | 82.82 359 | 72.86 349 | 95.72 302 | 93.57 333 | 73.55 343 | 72.17 340 | 84.79 347 | 49.69 354 | 92.51 347 | 65.29 345 | 74.50 301 | 86.09 353 |
|
TinyColmap | | | 80.42 307 | 77.94 311 | 87.85 308 | 92.09 286 | 78.58 328 | 93.74 318 | 89.94 362 | 74.99 336 | 69.77 343 | 91.78 270 | 46.09 358 | 97.58 214 | 65.17 346 | 77.89 280 | 87.38 343 |
|
MVS-HIRNet | | | 79.01 313 | 75.13 323 | 90.66 258 | 93.82 259 | 81.69 305 | 85.16 353 | 93.75 329 | 54.54 364 | 74.17 327 | 59.15 368 | 57.46 329 | 96.58 252 | 63.74 347 | 94.38 166 | 93.72 234 |
|
ppachtmachnet_test | | | 83.63 293 | 81.57 296 | 89.80 279 | 89.01 324 | 85.09 262 | 97.13 253 | 94.50 315 | 78.84 320 | 76.14 315 | 91.00 284 | 69.78 273 | 94.61 328 | 63.40 348 | 74.36 304 | 89.71 325 |
|
CL-MVSNet_self_test | | | 79.89 310 | 78.34 310 | 84.54 330 | 81.56 362 | 75.01 340 | 96.88 262 | 95.62 270 | 81.10 306 | 75.86 319 | 85.81 345 | 68.49 281 | 90.26 358 | 63.21 349 | 56.51 360 | 88.35 337 |
|
Patchmatch-test | | | 86.25 259 | 84.06 274 | 92.82 213 | 94.42 240 | 82.88 294 | 82.88 363 | 94.23 322 | 71.58 345 | 79.39 296 | 90.62 297 | 89.00 66 | 96.42 264 | 63.03 350 | 91.37 206 | 99.16 116 |
|
pmmvs3 | | | 72.86 328 | 69.76 332 | 82.17 337 | 73.86 369 | 74.19 344 | 94.20 314 | 89.01 366 | 64.23 363 | 67.72 349 | 80.91 356 | 41.48 362 | 88.65 362 | 62.40 351 | 54.02 364 | 83.68 360 |
|
new_pmnet | | | 76.02 323 | 73.71 326 | 82.95 335 | 83.88 356 | 72.85 350 | 91.26 339 | 92.26 345 | 70.44 349 | 62.60 359 | 81.37 354 | 47.64 357 | 92.32 349 | 61.85 352 | 72.10 329 | 83.68 360 |
|
tfpnnormal | | | 83.65 292 | 81.35 298 | 90.56 260 | 91.37 298 | 88.06 190 | 97.29 244 | 97.87 53 | 78.51 323 | 76.20 314 | 90.91 285 | 64.78 307 | 96.47 260 | 61.71 353 | 73.50 314 | 87.13 348 |
|
MDA-MVSNet-bldmvs | | | 77.82 321 | 74.75 325 | 87.03 315 | 88.33 332 | 78.52 329 | 96.34 279 | 92.85 339 | 75.57 335 | 48.87 366 | 87.89 328 | 57.32 330 | 92.49 348 | 60.79 354 | 64.80 349 | 90.08 316 |
|
Anonymous20231206 | | | 80.76 305 | 79.42 309 | 84.79 328 | 84.78 353 | 72.98 348 | 96.53 274 | 92.97 338 | 79.56 316 | 74.33 325 | 88.83 324 | 61.27 320 | 92.15 351 | 60.59 355 | 75.92 291 | 89.24 331 |
|
new-patchmatchnet | | | 74.80 326 | 72.40 329 | 81.99 339 | 78.36 368 | 72.20 352 | 94.44 311 | 92.36 344 | 77.06 329 | 63.47 358 | 79.98 358 | 51.04 350 | 88.85 361 | 60.53 356 | 54.35 363 | 84.92 358 |
|
LCM-MVSNet | | | 60.07 333 | 56.37 335 | 71.18 347 | 54.81 377 | 48.67 374 | 82.17 364 | 89.48 365 | 37.95 367 | 49.13 365 | 69.12 362 | 13.75 378 | 81.76 366 | 59.28 357 | 51.63 365 | 83.10 362 |
|
TAPA-MVS | | 87.50 9 | 90.35 188 | 89.05 196 | 94.25 178 | 98.48 107 | 85.17 260 | 98.42 172 | 96.58 201 | 82.44 292 | 87.24 208 | 98.53 107 | 82.77 173 | 98.84 149 | 59.09 358 | 97.88 117 | 98.72 155 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test20.03 | | | 78.51 318 | 77.48 313 | 81.62 340 | 83.07 358 | 71.03 355 | 96.11 290 | 92.83 340 | 81.66 301 | 69.31 344 | 89.68 318 | 57.53 328 | 87.29 365 | 58.65 359 | 68.47 339 | 86.53 350 |
|
PatchT | | | 85.44 272 | 83.19 279 | 92.22 224 | 93.13 274 | 83.00 289 | 83.80 362 | 96.37 214 | 70.62 347 | 90.55 175 | 79.63 359 | 84.81 146 | 94.87 321 | 58.18 360 | 91.59 202 | 98.79 150 |
|
MIMVSNet1 | | | 75.92 324 | 73.30 327 | 83.81 333 | 81.29 363 | 75.57 339 | 92.26 332 | 92.05 349 | 73.09 344 | 67.48 352 | 86.18 343 | 40.87 365 | 87.64 364 | 55.78 361 | 70.68 336 | 88.21 338 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 320 | 75.06 324 | 86.77 317 | 83.81 357 | 77.94 334 | 96.38 278 | 91.53 356 | 67.54 358 | 68.38 346 | 87.13 338 | 43.94 360 | 96.08 286 | 55.03 362 | 81.83 263 | 86.29 352 |
|
RPMNet | | | 85.07 275 | 81.88 292 | 94.64 164 | 93.47 265 | 86.24 233 | 84.97 356 | 97.21 161 | 64.85 362 | 90.76 172 | 78.80 360 | 80.95 198 | 99.27 134 | 53.76 363 | 92.17 193 | 98.41 169 |
|
N_pmnet | | | 70.19 329 | 69.87 331 | 71.12 348 | 88.24 333 | 30.63 381 | 95.85 299 | 28.70 381 | 70.18 350 | 68.73 345 | 86.55 341 | 64.04 310 | 93.81 333 | 53.12 364 | 73.46 315 | 88.94 333 |
|
PMMVS2 | | | 58.97 334 | 55.07 337 | 70.69 349 | 62.72 372 | 55.37 371 | 85.97 351 | 80.52 374 | 49.48 365 | 45.94 367 | 68.31 363 | 15.73 376 | 80.78 368 | 49.79 365 | 37.12 369 | 75.91 363 |
|
test_0402 | | | 78.81 315 | 76.33 319 | 86.26 319 | 91.18 299 | 78.44 330 | 95.88 296 | 91.34 357 | 68.55 354 | 70.51 342 | 89.91 315 | 52.65 347 | 94.99 317 | 47.14 366 | 79.78 272 | 85.34 357 |
|
FPMVS | | | 61.57 331 | 60.32 334 | 65.34 350 | 60.14 375 | 42.44 376 | 91.02 341 | 89.72 364 | 44.15 366 | 42.63 368 | 80.93 355 | 19.02 372 | 80.59 369 | 42.50 367 | 72.76 320 | 73.00 364 |
|
EGC-MVSNET | | | 60.70 332 | 55.37 336 | 76.72 344 | 86.35 348 | 71.08 354 | 89.96 346 | 84.44 373 | 0.38 378 | 1.50 379 | 84.09 349 | 37.30 367 | 88.10 363 | 40.85 368 | 73.44 316 | 70.97 366 |
|
ANet_high | | | 50.71 337 | 46.17 340 | 64.33 351 | 44.27 379 | 52.30 372 | 76.13 366 | 78.73 375 | 64.95 361 | 27.37 372 | 55.23 369 | 14.61 377 | 67.74 372 | 36.01 369 | 18.23 372 | 72.95 365 |
|
Gipuma |  | | 54.77 335 | 52.22 339 | 62.40 352 | 86.50 346 | 59.37 368 | 50.20 370 | 90.35 361 | 36.52 368 | 41.20 369 | 49.49 370 | 18.33 374 | 81.29 367 | 32.10 370 | 65.34 347 | 46.54 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 41.42 23 | 45.67 338 | 42.50 341 | 55.17 354 | 34.28 380 | 32.37 379 | 66.24 368 | 78.71 376 | 30.72 370 | 22.04 375 | 59.59 367 | 4.59 379 | 77.85 371 | 27.49 371 | 58.84 358 | 55.29 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 44.00 22 | 41.70 339 | 37.64 344 | 53.90 355 | 49.46 378 | 43.37 375 | 65.09 369 | 66.66 378 | 26.19 373 | 25.77 374 | 48.53 371 | 3.58 381 | 63.35 374 | 26.15 372 | 27.28 370 | 54.97 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 41.02 340 | 40.93 342 | 41.29 356 | 61.97 373 | 33.83 378 | 84.00 361 | 65.17 379 | 27.17 371 | 27.56 371 | 46.72 372 | 17.63 375 | 60.41 375 | 19.32 373 | 18.82 371 | 29.61 371 |
|
EMVS | | | 39.96 341 | 39.88 343 | 40.18 357 | 59.57 376 | 32.12 380 | 84.79 358 | 64.57 380 | 26.27 372 | 26.14 373 | 44.18 375 | 18.73 373 | 59.29 376 | 17.03 374 | 17.67 373 | 29.12 372 |
|
wuyk23d | | | 16.71 344 | 16.73 348 | 16.65 358 | 60.15 374 | 25.22 382 | 41.24 371 | 5.17 382 | 6.56 375 | 5.48 378 | 3.61 378 | 3.64 380 | 22.72 377 | 15.20 375 | 9.52 375 | 1.99 375 |
|
testmvs | | | 18.81 343 | 23.05 346 | 6.10 360 | 4.48 382 | 2.29 384 | 97.78 224 | 3.00 383 | 3.27 376 | 18.60 376 | 62.71 365 | 1.53 383 | 2.49 379 | 14.26 376 | 1.80 376 | 13.50 374 |
|
test123 | | | 16.58 345 | 19.47 347 | 7.91 359 | 3.59 383 | 5.37 383 | 94.32 312 | 1.39 384 | 2.49 377 | 13.98 377 | 44.60 374 | 2.91 382 | 2.65 378 | 11.35 377 | 0.57 377 | 15.70 373 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 22.52 342 | 30.03 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 97.17 167 | 0.00 379 | 0.00 380 | 98.77 88 | 74.35 239 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 6.87 347 | 9.16 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 82.48 180 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.21 346 | 10.94 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 98.50 110 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.50 47 | 88.94 172 | 99.55 35 | 97.47 134 | 91.32 95 | 98.12 38 | | | | | | |
|
test_one_0601 | | | | | | 99.59 31 | 94.89 35 | | 97.64 94 | 93.14 51 | 98.93 16 | 99.45 16 | 93.45 17 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 24 | | 97.72 76 | 94.16 28 | 99.30 6 | 99.49 10 | 93.32 18 | 99.98 10 | | | |
|
save fliter | | | | | | 99.34 58 | 93.85 63 | 99.65 23 | 97.63 99 | 95.69 11 | | | | | | | |
|
test0726 | | | | | | 99.66 15 | 95.20 29 | 99.77 8 | 97.70 81 | 93.95 31 | 99.35 5 | 99.54 3 | 93.18 21 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 143 |
|
test_part2 | | | | | | 99.54 40 | 95.42 19 | | | | 98.13 36 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 75 | | | | 98.84 143 |
|
sam_mvs | | | | | | | | | | | | | 87.08 102 | | | | |
|
MTGPA |  | | | | | | | | 97.45 137 | | | | | | | | |
|
test_post | | | | | | | | | | | | 46.00 373 | 87.37 94 | 97.11 231 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 346 | 88.73 69 | 96.81 243 | | | |
|
MTMP | | | | | | | | 99.21 75 | 91.09 358 | | | | | | | | |
|
TEST9 | | | | | | 99.57 37 | 93.17 76 | 99.38 62 | 97.66 88 | 89.57 144 | 98.39 31 | 99.18 37 | 90.88 36 | 99.66 85 | | | |
|
test_8 | | | | | | 99.55 39 | 93.07 80 | 99.37 65 | 97.64 94 | 90.18 124 | 98.36 33 | 99.19 34 | 90.94 34 | 99.64 91 | | | |
|
agg_prior | | | | | | 99.54 40 | 92.66 88 | | 97.64 94 | | 97.98 47 | | | 99.61 94 | | | |
|
test_prior4 | | | | | | | 92.00 99 | 99.41 59 | | | | | | | | | |
|
test_prior | | | | | 97.01 65 | 99.58 33 | 91.77 100 | | 97.57 113 | | | | | 99.49 109 | | | 99.79 38 |
|
æ–°å‡ ä½•2 | | | | | | | | 98.26 190 | | | | | | | | | |
|
旧先验1 | | | | | | 98.97 86 | 92.90 87 | | 97.74 70 | | | 99.15 43 | 91.05 33 | | | 99.33 74 | 99.60 78 |
|
原ACMM2 | | | | | | | | 98.69 137 | | | | | | | | | |
|
test222 | | | | | | 98.32 108 | 91.21 113 | 98.08 208 | 97.58 110 | 83.74 267 | 95.87 95 | 99.02 60 | 86.74 110 | | | 99.64 47 | 99.81 35 |
|
segment_acmp | | | | | | | | | | | | | 90.56 43 | | | | |
|
testdata1 | | | | | | | | 97.89 217 | | 92.43 68 | | | | | | | |
|
test12 | | | | | 97.83 34 | 99.33 64 | 94.45 51 | | 97.55 116 | | 97.56 53 | | 88.60 70 | 99.50 108 | | 99.71 38 | 99.55 82 |
|
plane_prior7 | | | | | | 93.84 257 | 85.73 249 | | | | | | | | | | |
|
plane_prior6 | | | | | | 93.92 254 | 86.02 243 | | | | | | 72.92 251 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.52 187 | | | | | |
|
plane_prior3 | | | | | | | 85.91 244 | | | 93.65 43 | 86.99 210 | | | | | | |
|
plane_prior2 | | | | | | | | 99.02 103 | | 93.38 48 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 256 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 241 | 99.14 90 | | 93.81 41 | | | | | | 86.26 230 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 372 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 85 | | | | | | | | |
|
door | | | | | | | | | 85.30 371 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 229 | | | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 250 | | 99.16 81 | | 93.92 33 | 87.57 203 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 250 | | 99.16 81 | | 93.92 33 | 87.57 203 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 203 | | | 97.77 198 | | | 92.72 238 |
|
HQP3-MVS | | | | | | | | | 96.37 214 | | | | | | | 86.29 228 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 247 | | | | |
|
NP-MVS | | | | | | 93.94 253 | 86.22 235 | | | | | 96.67 185 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 259 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 247 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 156 | | | | |
|