This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12799.90 5099.72 398.80 9199.85 30
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 8194.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
IU-MVS99.63 1895.38 2297.73 8095.54 2699.54 399.69 699.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 14193.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 9099.98 999.64 799.82 1999.96 10
patch_mono-297.10 2697.97 894.49 17399.21 6183.73 29099.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 8194.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 498.04 4896.70 1099.58 299.26 2190.90 3899.94 3499.57 1198.66 9899.40 85
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 798.05 4696.78 899.60 199.23 2690.42 4799.92 4099.55 1298.50 10399.55 72
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
MVS_030497.53 1497.15 2298.67 1197.30 12896.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 10299.91 4599.43 1598.91 8699.59 71
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22598.71 8578.11 34899.70 2697.71 8598.18 197.36 6299.76 190.37 4999.94 3499.27 1699.54 5299.99 1
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4397.52 13193.59 6398.01 5099.12 4690.80 4199.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 9093.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
dcpmvs_295.67 7096.18 4594.12 19098.82 8184.22 28397.37 25995.45 29390.70 11895.77 10198.63 10190.47 4598.68 16499.20 2099.22 7099.45 81
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14497.37 12589.16 16599.86 498.47 2595.68 2398.87 2299.15 3982.44 18699.92 4099.14 2197.43 12796.83 218
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 18990.25 13699.90 298.13 4296.68 1198.42 3498.92 7485.34 13799.88 5499.12 2299.08 7399.70 52
test_fmvsm_n_192097.08 2797.55 1495.67 13197.94 10589.61 16099.93 198.48 2497.08 599.08 1499.13 4488.17 7399.93 3899.11 2399.06 7597.47 198
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10399.58 4196.54 21495.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
test_fmvsmconf0.1_n95.94 5995.79 6296.40 9992.42 29389.92 15299.79 1696.85 19796.53 1597.22 6598.67 9782.71 17899.84 6998.92 2798.98 8099.43 84
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14396.51 16489.01 17199.81 1198.39 2795.46 2899.19 1399.16 3681.44 20099.91 4598.83 2896.97 13697.01 214
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 997.52 13195.90 1997.21 6698.90 7682.66 17999.93 3898.71 2998.80 9199.63 64
9.1496.87 2799.34 5099.50 5197.49 13889.41 16198.59 3099.43 1689.78 5699.69 9198.69 3099.62 44
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7897.38 15493.73 5998.83 2599.02 5890.87 4099.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14794.35 24989.10 16799.50 5197.67 9494.76 3498.68 2799.03 5681.13 20399.86 6398.63 3297.36 12996.63 221
test9_res98.60 3399.87 999.90 22
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12697.29 599.03 11997.11 17995.83 2098.97 1999.14 4282.48 18299.60 10398.60 3399.08 7398.00 185
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14396.96 699.01 12297.04 18695.51 2798.86 2399.11 5082.19 19099.36 13098.59 3598.14 11198.00 185
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7197.66 9590.18 13598.39 3599.18 3390.94 3699.66 9498.58 3699.85 1399.88 26
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17297.50 13694.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6297.45 14489.60 15398.70 2699.42 1790.42 4799.72 8998.47 3899.65 3899.77 43
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 10099.70 2698.05 4686.48 24798.05 4799.20 2989.33 5999.96 2898.38 3999.62 4499.90 22
test_fmvsmvis_n_192095.47 7395.40 7195.70 12994.33 25090.22 13999.70 2696.98 19396.80 792.75 15198.89 7882.46 18599.92 4098.36 4098.33 10796.97 215
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6099.16 3690.15 5399.56 10598.35 4199.70 35
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4698.33 4299.81 23
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9697.65 10289.55 15799.22 1299.52 890.34 5099.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8195.62 10597.52 14897.92 197.38 23698.31 4498.80 9198.20 179
test_fmvsmconf0.01_n94.14 11193.51 11896.04 11586.79 36789.19 16499.28 8495.94 25595.70 2195.50 10698.49 11073.27 25599.79 8298.28 4598.32 10999.15 107
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5796.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 14892.06 29988.94 17599.29 8197.53 12794.46 3898.98 1898.99 6079.99 20899.85 6798.24 4796.86 13896.73 219
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14199.41 6897.70 8695.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5396.00 5396.00 11896.56 16091.05 11999.63 3696.61 20693.26 6897.39 6198.30 11986.62 10998.13 18598.07 4997.57 12198.82 140
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5599.81 7997.97 5099.91 699.88 26
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9697.44 14790.08 14098.59 3099.07 5189.06 6199.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12491.46 10799.75 2197.66 9594.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
test_vis1_n_192093.08 14893.42 12092.04 23896.31 17379.36 33699.83 996.06 24696.72 998.53 3298.10 12758.57 34499.91 4597.86 5398.79 9496.85 217
agg_prior297.84 5499.87 999.91 21
mvsany_test194.57 10395.09 8092.98 21695.84 19382.07 31298.76 14795.24 30692.87 7796.45 8798.71 9484.81 14499.15 14197.68 5595.49 16297.73 190
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9097.75 7695.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
test_vis1_n90.40 19890.27 18990.79 26791.55 30976.48 35399.12 10894.44 32994.31 4197.34 6396.95 17943.60 38399.42 12397.57 5797.60 12096.47 228
SR-MVS96.13 5096.16 5096.07 11499.42 4789.04 16998.59 16797.33 15890.44 12996.84 7699.12 4686.75 10599.41 12697.47 5899.44 5899.76 45
PVSNet_BlendedMVS93.36 13793.20 12793.84 20198.77 8391.61 10499.47 5598.04 4891.44 10494.21 12992.63 27883.50 15799.87 5897.41 5983.37 27490.05 337
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10499.88 398.04 4893.64 6294.21 12997.76 13583.50 15799.87 5897.41 5997.75 11998.79 143
test_fmvs192.35 16192.94 13690.57 27297.19 13575.43 35799.55 4494.97 31395.20 3196.82 7997.57 14759.59 34299.84 6997.30 6198.29 11096.46 229
EC-MVSNet95.09 8495.17 7694.84 16195.42 20788.17 19199.48 5395.92 25991.47 10397.34 6398.36 11682.77 17497.41 23597.24 6298.58 10098.94 128
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10499.45 193.86 5495.15 11398.73 8988.48 6899.76 8697.23 6399.56 5099.40 85
test_fmvs1_n91.07 18691.41 16790.06 28694.10 25674.31 36199.18 9294.84 31794.81 3396.37 8997.46 15150.86 37299.82 7697.14 6497.90 11396.04 236
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21695.24 2598.62 16196.50 21692.99 7297.52 5798.83 8272.37 26399.15 14197.03 6596.74 13996.58 224
lupinMVS96.32 4595.94 5497.44 4495.05 23094.87 3699.86 496.50 21693.82 5798.04 4898.77 8585.52 12998.09 18896.98 6898.97 8199.37 88
CS-MVS-test95.98 5596.34 4194.90 15898.06 10287.66 20399.69 3396.10 24293.66 6098.35 3899.05 5486.28 11897.66 21896.96 6998.90 8799.37 88
MVS_111021_LR95.78 6595.94 5495.28 14598.19 9887.69 20098.80 14199.26 793.39 6595.04 11598.69 9684.09 15199.76 8696.96 6999.06 7598.38 166
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15398.73 1890.33 13297.16 7097.43 15379.19 21699.53 10996.91 7191.85 20499.24 100
test_cas_vis1_n_192093.86 12193.74 11494.22 18695.39 21086.08 24699.73 2296.07 24596.38 1797.19 6997.78 13465.46 31999.86 6396.71 7298.92 8596.73 219
CS-MVS95.75 6896.19 4394.40 17797.88 10786.22 24099.66 3496.12 24192.69 7898.07 4698.89 7887.09 9697.59 22496.71 7298.62 9999.39 87
APD-MVS_3200maxsize95.64 7195.65 6895.62 13399.24 5887.80 19998.42 18597.22 16688.93 17696.64 8698.98 6185.49 13299.36 13096.68 7499.27 6899.70 52
SR-MVS-dyc-post95.75 6895.86 5795.41 13999.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6286.73 10799.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6499.22 5987.26 21998.40 19097.21 16789.63 15196.67 8498.97 6285.24 13896.62 7599.31 6599.60 67
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13597.64 10396.51 1695.88 9799.39 1887.35 9299.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 18490.18 19094.45 17697.08 14485.84 25698.40 19096.10 24286.99 23093.36 14498.16 12554.27 36199.20 13896.59 7890.63 22698.31 172
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16797.14 17588.95 17493.12 14799.25 2385.62 12899.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvspermissive94.59 10294.19 9695.81 12595.54 20390.69 12898.70 15195.68 28091.61 9995.96 9497.81 13180.11 20798.06 19096.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13497.59 11690.66 11997.98 5199.14 4286.59 110100.00 196.47 8199.46 5599.89 25
PAPM96.35 4395.94 5497.58 4094.10 25695.25 2498.93 12998.17 3794.26 4293.94 13498.72 9189.68 5797.88 20096.36 8299.29 6799.62 66
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 7994.39 12799.24 2586.43 11699.99 596.22 8399.40 6299.71 51
alignmvs95.77 6695.00 8298.06 2897.35 12695.68 1999.71 2597.50 13691.50 10296.16 9298.61 10386.28 11899.00 15096.19 8491.74 20699.51 77
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 14996.19 23691.78 9795.86 9998.49 11079.53 21399.03 14996.12 8591.42 21899.66 60
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 897.84 6196.36 1895.20 11298.24 12188.17 7399.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7794.86 8497.03 5992.91 28894.23 5499.70 2696.30 22793.56 6496.73 8298.52 10681.46 19997.91 19796.08 8798.47 10598.96 123
jason: jason.
CP-MVS96.22 4896.15 5196.42 9799.67 1089.62 15999.70 2697.61 11090.07 14196.00 9399.16 3687.43 8699.92 4096.03 8899.72 3199.70 52
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14399.36 7597.41 15190.64 12295.49 10798.95 6985.51 13199.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
h-mvs3392.47 16091.95 15694.05 19497.13 14185.01 27398.36 19698.08 4493.85 5596.27 9096.73 19283.19 16699.43 12295.81 9068.09 36197.70 191
hse-mvs291.67 17591.51 16592.15 23596.22 17782.61 30897.74 24497.53 12793.85 5596.27 9096.15 20883.19 16697.44 23395.81 9066.86 36896.40 231
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5597.81 6890.54 12696.88 7399.05 5487.57 8399.96 2895.65 9299.72 3199.78 38
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7498.96 6687.37 8899.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 19588.66 21896.77 7499.62 2290.66 13099.43 6597.58 11892.41 8596.86 7429.59 40787.37 8899.87 5895.65 9299.43 5999.78 38
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13399.47 5597.80 7090.54 12696.83 7899.03 5686.51 11499.95 3195.65 9299.72 3199.75 46
HPM-MVScopyleft95.41 7695.22 7595.99 11999.29 5589.14 16699.17 9597.09 18387.28 22795.40 10898.48 11284.93 14199.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11698.70 1986.76 23994.65 12297.74 13787.78 8099.44 11995.57 9792.61 18899.44 82
region2R96.30 4696.17 4896.70 8199.70 790.31 13599.46 5997.66 9590.55 12597.07 7199.07 5186.85 10399.97 2195.43 9999.74 2999.81 33
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11099.14 6490.33 13498.49 17897.82 6591.92 9594.75 11998.88 8087.06 9899.48 11695.40 10097.17 13498.70 150
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8599.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11299.06 1094.45 4096.42 8898.70 9588.81 6599.74 8895.35 10199.86 1299.97 7
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8495.65 10494.76 23786.52 11399.49 11295.29 10392.97 18399.53 74
testing1195.33 7894.98 8396.37 10197.20 13392.31 9299.29 8197.68 9090.59 12394.43 12497.20 16490.79 4298.60 16795.25 10492.38 19298.18 180
mPP-MVS95.90 6195.75 6396.38 10099.58 3089.41 16399.26 8597.41 15190.66 11994.82 11798.95 6986.15 12299.98 995.24 10599.64 4099.74 47
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4497.53 12789.72 14895.86 9998.94 7286.59 11099.97 2195.13 10699.56 5099.68 56
GG-mvs-BLEND96.98 6596.53 16294.81 4187.20 37697.74 7793.91 13596.40 20196.56 296.94 25295.08 10798.95 8499.20 104
EIA-MVS95.11 8395.27 7494.64 17096.34 17286.51 22899.59 4096.62 20592.51 8094.08 13298.64 9986.05 12398.24 18295.07 10898.50 10399.18 105
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 13890.76 12698.39 19497.11 17993.92 5088.66 20698.33 11778.14 22499.85 6795.02 10998.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive94.00 11493.33 12396.03 11695.22 21490.90 12499.09 11095.99 24890.58 12491.55 16997.37 15579.91 20998.06 19095.01 11095.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 11299.46 11895.00 11192.69 18799.50 78
CSCG94.87 9094.71 8595.36 14099.54 3686.49 22999.34 7798.15 4082.71 30990.15 19399.25 2389.48 5899.86 6394.97 11298.82 9099.72 50
EI-MVSNet-UG-set95.43 7495.29 7395.86 12499.07 7089.87 15398.43 18497.80 7091.78 9794.11 13198.77 8586.25 12099.48 11694.95 11396.45 14398.22 177
CPTT-MVS94.60 10194.43 9195.09 15199.66 1286.85 22499.44 6297.47 14183.22 29894.34 12898.96 6682.50 18099.55 10694.81 11499.50 5398.88 133
PVSNet_083.28 1687.31 25985.16 27493.74 20594.78 24084.59 27898.91 13298.69 2189.81 14778.59 32493.23 26861.95 33399.34 13494.75 11555.72 38897.30 202
CLD-MVS91.06 18790.71 18392.10 23694.05 26086.10 24599.55 4496.29 23094.16 4584.70 24297.17 16869.62 28497.82 20494.74 11686.08 24992.39 260
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvspermissive93.98 11693.43 11995.61 13495.07 22989.86 15498.80 14195.84 27290.98 11392.74 15297.66 14279.71 21098.10 18794.72 11795.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDDNet90.08 20888.54 22494.69 16794.41 24887.68 20198.21 20896.40 22176.21 35693.33 14597.75 13654.93 35998.77 15794.71 11890.96 22197.61 196
iter_conf0593.48 13193.18 12894.39 18097.15 13994.17 5799.30 8092.97 35392.38 8886.70 22895.42 22495.67 596.59 26594.67 11984.32 26392.39 260
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10797.44 14789.02 17197.90 5399.22 2788.90 6499.49 11294.63 12099.79 2799.68 56
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6197.48 13989.69 14995.89 9698.72 9186.37 11799.95 3194.62 12199.22 7099.52 75
Effi-MVS+93.87 12093.15 12996.02 11795.79 19490.76 12696.70 28995.78 27386.98 23395.71 10297.17 16879.58 21198.01 19594.57 12296.09 15299.31 94
LFMVS92.23 16690.84 17996.42 9798.24 9591.08 11898.24 20596.22 23383.39 29694.74 12098.31 11861.12 33798.85 15494.45 12392.82 18499.32 93
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12396.39 17094.13 5899.46 5996.97 19492.18 9166.94 37698.29 12094.65 1594.28 34994.34 12483.82 27099.24 100
baseline93.91 11893.30 12495.72 12895.10 22790.07 14597.48 25595.91 26491.03 11193.54 14297.68 14079.58 21198.02 19494.27 12595.14 16599.08 115
SDMVSNet91.09 18589.91 19394.65 16896.80 15390.54 13297.78 23997.81 6888.34 19585.73 23295.26 22866.44 31098.26 18094.25 12686.75 24195.14 240
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6797.55 12392.43 8293.82 13899.12 4687.30 9399.91 4594.02 12799.06 7599.74 47
iter_conf_final93.22 14393.04 13293.76 20397.03 14792.22 9599.05 11693.31 35092.11 9386.93 22395.42 22495.01 1096.59 26593.98 12884.48 26092.46 259
PGM-MVS95.85 6295.65 6896.45 9599.50 4289.77 15698.22 20698.90 1389.19 16696.74 8198.95 6985.91 12699.92 4093.94 12999.46 5599.66 60
gg-mvs-nofinetune90.00 20987.71 23696.89 7396.15 18294.69 4585.15 38297.74 7768.32 38292.97 15060.16 39596.10 396.84 25593.89 13098.87 8899.14 108
MVS93.92 11792.28 14798.83 795.69 19896.82 896.22 30498.17 3784.89 27384.34 24798.61 10379.32 21599.83 7393.88 13199.43 5999.86 29
旧先验298.67 15585.75 25898.96 2098.97 15293.84 132
ACMMPcopyleft94.67 9994.30 9295.79 12699.25 5788.13 19398.41 18798.67 2290.38 13191.43 17198.72 9182.22 18999.95 3193.83 13395.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 134
HQP-MVS91.50 17691.23 17092.29 23093.95 26186.39 23399.16 9696.37 22393.92 5087.57 21496.67 19573.34 25297.77 20893.82 13486.29 24492.72 254
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3897.48 13986.58 24294.42 12599.13 4487.36 9199.98 993.64 13698.33 10799.48 79
CHOSEN 1792x268894.35 10893.82 11295.95 12197.40 12388.74 18398.41 18798.27 3192.18 9191.43 17196.40 20178.88 21799.81 7993.59 13797.81 11599.30 95
testing9194.88 8894.44 9096.21 10697.19 13591.90 9999.23 8797.66 9589.91 14493.66 14097.05 17590.21 5298.50 16993.52 13891.53 21598.25 173
testing9994.88 8894.45 8996.17 11097.20 13391.91 9899.20 8997.66 9589.95 14393.68 13997.06 17390.28 5198.50 16993.52 13891.54 21298.12 182
cascas90.93 19089.33 20495.76 12795.69 19893.03 7898.99 12496.59 20880.49 33686.79 22794.45 24165.23 32098.60 16793.52 13892.18 19995.66 239
HQP_MVS91.26 18190.95 17692.16 23493.84 26886.07 24899.02 12096.30 22793.38 6686.99 22196.52 19772.92 25897.75 21493.46 14186.17 24792.67 256
plane_prior596.30 22797.75 21493.46 14186.17 24792.67 256
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10397.14 14091.10 11699.32 7997.43 14992.10 9491.53 17096.38 20483.29 16399.68 9293.42 14396.37 14598.25 173
AdaColmapbinary93.82 12293.06 13096.10 11399.88 189.07 16898.33 19897.55 12386.81 23890.39 19098.65 9875.09 23799.98 993.32 14497.53 12499.26 99
HyFIR lowres test93.68 12793.29 12594.87 15997.57 11988.04 19598.18 21098.47 2587.57 22291.24 17695.05 23185.49 13297.46 23193.22 14592.82 18499.10 113
HPM-MVS_fast94.89 8794.62 8695.70 12999.11 6688.44 18999.14 10497.11 17985.82 25595.69 10398.47 11383.46 15999.32 13593.16 14699.63 4399.35 90
PMMVS93.62 13093.90 11092.79 22096.79 15581.40 31998.85 13596.81 19891.25 10996.82 7998.15 12677.02 23098.13 18593.15 14796.30 14898.83 139
LCM-MVSNet-Re88.59 23988.61 21988.51 31995.53 20472.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23394.38 34892.95 14895.71 15998.48 161
EPP-MVSNet93.75 12493.67 11594.01 19695.86 19285.70 25898.67 15597.66 9584.46 27891.36 17497.18 16791.16 3197.79 20692.93 14993.75 17698.53 158
CostFormer92.89 15092.48 14594.12 19094.99 23285.89 25392.89 34697.00 19286.98 23395.00 11690.78 30990.05 5497.51 22992.92 15091.73 20798.96 123
XVG-OURS-SEG-HR90.95 18990.66 18591.83 24195.18 21981.14 32695.92 31195.92 25988.40 19290.33 19197.85 12970.66 27899.38 12892.83 15188.83 23394.98 243
mvsmamba89.99 21089.42 20191.69 24890.64 32286.34 23698.40 19092.27 36291.01 11284.80 24194.93 23276.12 23296.51 27392.81 15283.84 26792.21 270
sss94.85 9193.94 10897.58 4096.43 16794.09 5998.93 12999.16 889.50 15895.27 11097.85 12981.50 19799.65 9892.79 15394.02 17498.99 120
test_vis1_rt81.31 32380.05 32685.11 34291.29 31470.66 37598.98 12677.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15486.55 24385.24 378
MAR-MVS94.43 10794.09 10095.45 13799.10 6887.47 20998.39 19497.79 7288.37 19394.02 13399.17 3578.64 22299.91 4592.48 15598.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14898.80 14197.78 7383.59 29393.85 13699.21 2883.79 15499.97 2192.37 15699.00 7999.74 47
nrg03090.23 20288.87 21294.32 18291.53 31093.54 6798.79 14595.89 26788.12 20384.55 24494.61 23978.80 22096.88 25492.35 15775.21 31692.53 258
OMC-MVS93.90 11993.62 11694.73 16698.63 8787.00 22298.04 22696.56 21292.19 9092.46 15498.73 8979.49 21499.14 14592.16 15894.34 17298.03 184
testing22294.48 10694.00 10395.95 12197.30 12892.27 9398.82 13897.92 5589.20 16594.82 11797.26 15987.13 9597.32 23991.95 15991.56 21098.25 173
131493.44 13391.98 15597.84 3295.24 21294.38 5296.22 30497.92 5590.18 13582.28 27697.71 13977.63 22799.80 8191.94 16098.67 9799.34 92
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2097.78 7396.61 1298.15 4199.53 793.62 17100.00 191.79 16199.80 2699.94 18
mvs_anonymous92.50 15991.65 16295.06 15296.60 15989.64 15897.06 27396.44 22086.64 24184.14 24893.93 25082.49 18196.17 29991.47 16296.08 15399.35 90
baseline294.04 11393.80 11394.74 16593.07 28790.25 13698.12 21698.16 3989.86 14586.53 22996.95 17995.56 698.05 19291.44 16394.53 16995.93 237
IB-MVS89.43 692.12 16890.83 18195.98 12095.40 20990.78 12599.81 1198.06 4591.23 11085.63 23593.66 25890.63 4398.78 15691.22 16471.85 35198.36 169
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 18889.17 20696.69 8295.96 19091.72 10292.62 35097.23 16585.61 25989.74 19893.89 25268.55 28999.42 12391.09 16587.84 23698.92 131
XVG-OURS90.83 19190.49 18791.86 24095.23 21381.25 32395.79 31995.92 25988.96 17390.02 19598.03 12871.60 27299.35 13391.06 16687.78 23794.98 243
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20893.07 7698.82 13897.85 6091.53 10182.56 26897.58 14671.97 26799.82 7691.01 16799.23 6999.22 103
VPA-MVSNet89.10 22187.66 23793.45 20892.56 29091.02 12097.97 23098.32 3086.92 23586.03 23192.01 28568.84 28897.10 24690.92 16875.34 31592.23 268
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14198.58 16997.51 13390.65 12192.44 15598.90 7687.77 8299.90 5090.88 16999.32 6499.68 56
3Dnovator+87.72 893.43 13491.84 15898.17 2295.73 19795.08 3298.92 13197.04 18691.42 10681.48 29397.60 14474.60 24099.79 8290.84 17098.97 8199.64 62
test_fmvs285.10 29385.45 27184.02 35089.85 33265.63 38498.49 17892.59 35890.45 12885.43 23893.32 26443.94 38196.59 26590.81 17184.19 26489.85 341
gm-plane-assit94.69 24288.14 19288.22 20097.20 16498.29 17890.79 172
MVSTER92.71 15292.32 14693.86 20097.29 13092.95 8299.01 12296.59 20890.09 13985.51 23694.00 24894.61 1696.56 26990.77 17383.03 27792.08 277
ETVMVS94.50 10593.90 11096.31 10497.48 12292.98 7999.07 11297.86 5988.09 20494.40 12696.90 18288.35 7097.28 24090.72 17492.25 19898.66 155
ACMP87.39 1088.71 23588.24 22890.12 28593.91 26681.06 32798.50 17695.67 28189.43 16080.37 30295.55 22065.67 31497.83 20390.55 17584.51 25891.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS88.91 22588.56 22289.93 29190.31 32681.61 31698.08 22396.38 22289.30 16282.41 27394.84 23573.15 25696.04 30590.38 17682.23 28492.15 273
ECVR-MVScopyleft92.29 16391.33 16895.15 14996.41 16887.84 19898.10 21994.84 31790.82 11691.42 17397.28 15765.61 31698.49 17190.33 17797.19 13299.12 111
testdata95.26 14698.20 9687.28 21697.60 11285.21 26498.48 3399.15 3988.15 7598.72 16290.29 17899.45 5799.78 38
LPG-MVS_test88.86 22788.47 22590.06 28693.35 28280.95 32898.22 20695.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
LGP-MVS_train90.06 28693.35 28280.95 32895.94 25587.73 21883.17 25896.11 21066.28 31197.77 20890.19 17985.19 25491.46 296
MVSFormer94.71 9894.08 10196.61 8595.05 23094.87 3697.77 24196.17 23886.84 23698.04 4898.52 10685.52 12995.99 30689.83 18198.97 8198.96 123
test_djsdf88.26 24487.73 23589.84 29488.05 35682.21 31097.77 24196.17 23886.84 23682.41 27391.95 28972.07 26695.99 30689.83 18184.50 25991.32 303
test250694.80 9294.21 9596.58 8896.41 16892.18 9698.01 22798.96 1190.82 11693.46 14397.28 15785.92 12498.45 17289.82 18397.19 13299.12 111
tpmrst92.78 15192.16 15094.65 16896.27 17587.45 21091.83 35597.10 18289.10 17094.68 12190.69 31388.22 7297.73 21689.78 18491.80 20598.77 146
PLCcopyleft91.07 394.23 11094.01 10294.87 15999.17 6387.49 20899.25 8696.55 21388.43 19191.26 17598.21 12485.92 12499.86 6389.77 18597.57 12197.24 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 16891.19 17194.94 15796.15 18287.36 21398.12 21694.84 31790.85 11590.97 17897.26 15965.60 31798.37 17489.74 18697.14 13599.07 117
CDS-MVSNet93.47 13293.04 13294.76 16394.75 24189.45 16298.82 13897.03 18887.91 21190.97 17896.48 19989.06 6196.36 28389.50 18792.81 18698.49 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 21190.68 18487.81 32495.15 22071.98 37197.87 23595.40 29791.92 9587.57 21491.44 29774.27 24696.84 25589.45 18893.10 18294.60 245
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33496.36 28389.44 18984.47 26191.50 294
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 34196.31 29189.40 19084.34 26291.43 298
PS-MVSNAJss89.54 21789.05 20991.00 26088.77 34784.36 28197.39 25695.97 25088.47 18581.88 28693.80 25482.48 18296.50 27489.34 19183.34 27692.15 273
VPNet88.30 24286.57 25393.49 20791.95 30291.35 10898.18 21097.20 17188.61 18284.52 24594.89 23362.21 33296.76 26089.34 19172.26 34892.36 262
114514_t94.06 11293.05 13197.06 5899.08 6992.26 9498.97 12797.01 19182.58 31192.57 15398.22 12280.68 20599.30 13689.34 19199.02 7899.63 64
OPM-MVS89.76 21389.15 20791.57 25090.53 32385.58 26198.11 21895.93 25892.88 7686.05 23096.47 20067.06 30597.87 20189.29 19486.08 24991.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 12892.67 14196.69 8296.72 15792.66 8697.22 26896.03 24787.69 22095.12 11494.03 24681.55 19698.28 17989.17 19596.46 14299.14 108
BH-w/o92.32 16291.79 15993.91 19996.85 15086.18 24299.11 10995.74 27688.13 20284.81 24097.00 17777.26 22997.91 19789.16 19698.03 11297.64 192
TAMVS92.62 15592.09 15394.20 18794.10 25687.68 20198.41 18796.97 19487.53 22489.74 19896.04 21384.77 14696.49 27688.97 19792.31 19598.42 162
CNLPA93.64 12992.74 13996.36 10298.96 7590.01 15199.19 9095.89 26786.22 25089.40 20198.85 8180.66 20699.84 6988.57 19896.92 13799.24 100
baseline192.61 15691.28 16996.58 8897.05 14694.63 4697.72 24596.20 23489.82 14688.56 20796.85 18686.85 10397.82 20488.42 19980.10 29397.30 202
CANet_DTU94.31 10993.35 12297.20 5597.03 14794.71 4498.62 16195.54 28895.61 2597.21 6698.47 11371.88 26899.84 6988.38 20097.46 12697.04 212
thisisatest051594.75 9494.19 9696.43 9696.13 18792.64 8999.47 5597.60 11287.55 22393.17 14697.59 14594.71 1398.42 17388.28 20193.20 18098.24 176
原ACMM196.18 10899.03 7190.08 14497.63 10788.98 17297.00 7298.97 6288.14 7699.71 9088.23 20299.62 4498.76 147
UGNet91.91 17290.85 17895.10 15097.06 14588.69 18498.01 22798.24 3492.41 8592.39 15693.61 25960.52 33999.68 9288.14 20397.25 13096.92 216
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 20589.50 19892.19 23396.21 17882.67 30697.76 24397.53 12788.05 20591.67 16496.15 20883.10 16897.47 23088.11 20466.91 36796.43 230
Vis-MVSNet (Re-imp)93.26 14293.00 13594.06 19396.14 18486.71 22798.68 15396.70 20188.30 19789.71 20097.64 14385.43 13596.39 28188.06 20596.32 14699.08 115
bld_raw_dy_0_6487.82 24786.71 25291.15 25689.54 33885.61 25997.37 25989.16 38689.26 16383.42 25494.50 24065.79 31396.18 29788.00 20683.37 27491.67 284
PVSNet87.13 1293.69 12592.83 13896.28 10597.99 10490.22 13999.38 7198.93 1291.42 10693.66 14097.68 14071.29 27599.64 10087.94 20797.20 13198.98 121
FIs90.70 19489.87 19493.18 21292.29 29491.12 11498.17 21298.25 3289.11 16983.44 25394.82 23682.26 18896.17 29987.76 20882.76 27992.25 266
tpm291.77 17391.09 17293.82 20294.83 23985.56 26292.51 35197.16 17484.00 28493.83 13790.66 31587.54 8497.17 24287.73 20991.55 21198.72 148
无先验98.52 17297.82 6587.20 22899.90 5087.64 21099.85 30
Anonymous20240521188.84 22887.03 24794.27 18398.14 10084.18 28498.44 18395.58 28676.79 35589.34 20296.88 18553.42 36499.54 10887.53 21187.12 24099.09 114
IS-MVSNet93.00 14992.51 14494.49 17396.14 18487.36 21398.31 20195.70 27888.58 18490.17 19297.50 14983.02 17097.22 24187.06 21296.07 15498.90 132
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14886.67 10887.02 21398.95 127
Anonymous2024052987.66 25585.58 26893.92 19897.59 11785.01 27398.13 21497.13 17766.69 38788.47 20896.01 21455.09 35899.51 11087.00 21484.12 26597.23 206
UniMVSNet_NR-MVSNet89.60 21588.55 22392.75 22292.17 29790.07 14598.74 14898.15 4088.37 19383.21 25693.98 24982.86 17295.93 31086.95 21572.47 34592.25 266
DU-MVS88.83 23087.51 23892.79 22091.46 31190.07 14598.71 14997.62 10988.87 17883.21 25693.68 25674.63 23895.93 31086.95 21572.47 34592.36 262
FA-MVS(test-final)92.22 16791.08 17395.64 13296.05 18888.98 17291.60 35997.25 16186.99 23091.84 16092.12 28183.03 16999.00 15086.91 21793.91 17598.93 129
ACMM86.95 1388.77 23388.22 22990.43 27793.61 27481.34 32198.50 17695.92 25987.88 21283.85 25195.20 23067.20 30397.89 19986.90 21884.90 25692.06 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 21888.32 22793.03 21492.21 29690.96 12298.90 13398.39 2789.13 16883.22 25592.03 28381.69 19596.34 28986.79 21972.53 34491.81 282
BH-untuned91.46 17890.84 17993.33 21096.51 16484.83 27698.84 13795.50 29086.44 24983.50 25296.70 19375.49 23697.77 20886.78 22097.81 11597.40 199
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
miper_enhance_ethall90.33 20089.70 19592.22 23197.12 14288.93 17798.35 19795.96 25288.60 18383.14 26092.33 28087.38 8796.18 29786.49 22277.89 30291.55 293
thisisatest053094.00 11493.52 11795.43 13895.76 19690.02 15098.99 12497.60 11286.58 24291.74 16297.36 15694.78 1298.34 17586.37 22392.48 19197.94 187
UWE-MVS93.18 14493.40 12192.50 22896.56 16083.55 29298.09 22297.84 6189.50 15891.72 16396.23 20791.08 3496.70 26186.28 22493.33 17997.26 204
TESTMET0.1,193.82 12293.26 12695.49 13695.21 21590.25 13699.15 10197.54 12689.18 16791.79 16194.87 23489.13 6097.63 22186.21 22596.29 14998.60 156
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28795.94 30986.01 22684.02 26689.72 343
F-COLMAP92.07 17091.75 16193.02 21598.16 9982.89 30298.79 14595.97 25086.54 24487.92 21197.80 13278.69 22199.65 9885.97 22795.93 15696.53 227
cl2289.57 21688.79 21591.91 23997.94 10587.62 20497.98 22996.51 21585.03 26982.37 27591.79 29083.65 15596.50 27485.96 22877.89 30291.61 290
test-LLR93.11 14792.68 14094.40 17794.94 23587.27 21799.15 10197.25 16190.21 13391.57 16694.04 24484.89 14297.58 22585.94 22996.13 15098.36 169
test-mter93.27 14192.89 13794.40 17794.94 23587.27 21799.15 10197.25 16188.95 17491.57 16694.04 24488.03 7897.58 22585.94 22996.13 15098.36 169
FC-MVSNet-test90.22 20389.40 20292.67 22691.78 30689.86 15497.89 23298.22 3588.81 17982.96 26194.66 23881.90 19495.96 30885.89 23182.52 28292.20 272
Vis-MVSNetpermissive92.64 15491.85 15795.03 15595.12 22388.23 19098.48 18096.81 19891.61 9992.16 15997.22 16371.58 27398.00 19685.85 23297.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sd_testset89.23 21988.05 23392.74 22396.80 15385.33 26695.85 31797.03 18888.34 19585.73 23295.26 22861.12 33797.76 21385.61 23386.75 24195.14 240
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
WR-MVS88.54 24087.22 24592.52 22791.93 30489.50 16198.56 17097.84 6186.99 23081.87 28793.81 25374.25 24795.92 31285.29 23574.43 32592.12 275
XXY-MVS87.75 25186.02 26192.95 21890.46 32489.70 15797.71 24795.90 26584.02 28380.95 29694.05 24367.51 30197.10 24685.16 23678.41 29992.04 279
thres20093.69 12592.59 14396.97 6697.76 10994.74 4399.35 7699.36 289.23 16491.21 17796.97 17883.42 16098.77 15785.08 23790.96 22197.39 200
tttt051793.30 13993.01 13494.17 18895.57 20186.47 23098.51 17597.60 11285.99 25390.55 18597.19 16694.80 1198.31 17685.06 23891.86 20397.74 189
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33077.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 21885.02 23983.83 26890.92 314
dmvs_re88.69 23688.06 23290.59 27193.83 27078.68 34295.75 32096.18 23787.99 20884.48 24696.32 20567.52 30096.94 25284.98 24085.49 25396.14 234
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8399.06 5388.08 7799.89 5384.88 24199.62 4499.79 36
1112_ss92.71 15291.55 16496.20 10795.56 20291.12 11498.48 18094.69 32488.29 19886.89 22598.50 10887.02 9998.66 16584.75 24289.77 23198.81 141
miper_ehance_all_eth88.94 22488.12 23191.40 25195.32 21186.93 22397.85 23695.55 28784.19 28181.97 28491.50 29684.16 15095.91 31384.69 24377.89 30291.36 301
Test_1112_low_res92.27 16590.97 17596.18 10895.53 20491.10 11698.47 18294.66 32588.28 19986.83 22693.50 26387.00 10098.65 16684.69 24389.74 23298.80 142
TR-MVS90.77 19289.44 20094.76 16396.31 17388.02 19697.92 23195.96 25285.52 26088.22 21097.23 16266.80 30698.09 18884.58 24592.38 19298.17 181
tt080586.50 27384.79 28291.63 24991.97 30081.49 31796.49 29397.38 15482.24 31882.44 27095.82 21751.22 36998.25 18184.55 24680.96 28995.13 242
OpenMVScopyleft85.28 1490.75 19388.84 21396.48 9393.58 27593.51 6898.80 14197.41 15182.59 31078.62 32297.49 15068.00 29699.82 7684.52 24798.55 10296.11 235
UniMVSNet_ETH3D85.65 28983.79 29791.21 25490.41 32580.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26284.30 24883.52 27396.22 233
NR-MVSNet87.74 25486.00 26292.96 21791.46 31190.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22895.83 31684.26 24971.82 35292.36 262
D2MVS87.96 24687.39 24089.70 29991.84 30583.40 29498.31 20198.49 2388.04 20678.23 32890.26 32873.57 25096.79 25984.21 25083.53 27288.90 353
testdata299.88 5484.16 251
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16091.66 37180.41 33982.44 27091.35 29974.63 23895.42 32884.13 25271.39 35487.84 359
thres100view90093.34 13892.15 15196.90 6997.62 11494.84 3899.06 11599.36 287.96 20990.47 18896.78 19083.29 16398.75 15984.11 25390.69 22397.12 207
tfpn200view993.43 13492.27 14896.90 6997.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22397.12 207
thres40093.39 13692.27 14896.73 7897.68 11294.84 3899.18 9299.36 288.45 18890.79 18096.90 18283.31 16198.75 15984.11 25390.69 22396.61 222
c3_l88.19 24587.23 24491.06 25894.97 23386.17 24397.72 24595.38 29883.43 29581.68 29191.37 29882.81 17395.72 31984.04 25673.70 33391.29 305
UA-Net93.30 13992.62 14295.34 14196.27 17588.53 18895.88 31496.97 19490.90 11495.37 10997.07 17282.38 18799.10 14783.91 25794.86 16898.38 166
IterMVS-LS88.34 24187.44 23991.04 25994.10 25685.85 25598.10 21995.48 29185.12 26582.03 28391.21 30281.35 20195.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 21289.38 20391.36 25394.32 25185.87 25497.61 25296.59 20885.10 26685.51 23697.10 17081.30 20296.56 26983.85 25983.03 27791.64 285
tpm89.67 21488.95 21191.82 24292.54 29181.43 31892.95 34595.92 25987.81 21390.50 18789.44 34184.99 14095.65 32183.67 26082.71 28098.38 166
eth_miper_zixun_eth87.76 25087.00 24890.06 28694.67 24382.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19895.90 31483.24 26173.61 33491.61 290
Fast-Effi-MVS+91.72 17490.79 18294.49 17395.89 19187.40 21299.54 4995.70 27885.01 27189.28 20395.68 21977.75 22697.57 22883.22 26295.06 16698.51 159
test_post190.74 37041.37 40685.38 13696.36 28383.16 263
SCA90.64 19689.25 20594.83 16294.95 23488.83 17996.26 30197.21 16790.06 14290.03 19490.62 31866.61 30796.81 25783.16 26394.36 17198.84 136
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23790.81 31988.56 18598.33 19897.18 17287.76 21581.87 28793.90 25172.45 26295.43 32783.13 26571.30 35592.23 268
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20183.06 26684.85 25787.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11299.36 287.96 20990.47 18896.78 19083.29 16398.71 16382.93 26790.47 22796.61 222
pmmvs487.58 25786.17 26091.80 24389.58 33688.92 17897.25 26595.28 30282.54 31280.49 30193.17 27075.62 23596.05 30482.75 26878.90 29790.42 328
CVMVSNet90.30 20190.91 17788.46 32094.32 25173.58 36597.61 25297.59 11690.16 13888.43 20997.10 17076.83 23192.86 35982.64 26993.54 17898.93 129
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34596.60 26482.61 27074.20 32991.59 292
GA-MVS90.10 20788.69 21794.33 18192.44 29287.97 19799.08 11196.26 23189.65 15086.92 22493.11 27168.09 29496.96 25082.54 27190.15 22898.05 183
QAPM91.41 17989.49 19997.17 5695.66 20093.42 7098.60 16597.51 13380.92 33481.39 29497.41 15472.89 26099.87 5882.33 27298.68 9698.21 178
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9492.59 36482.28 27362.78 37598.98 121
v2v48287.27 26085.76 26591.78 24789.59 33587.58 20598.56 17095.54 28884.53 27782.51 26991.78 29173.11 25796.47 27782.07 27474.14 33191.30 304
Fast-Effi-MVS+-dtu88.84 22888.59 22189.58 30293.44 28078.18 34698.65 15794.62 32688.46 18784.12 24995.37 22768.91 28696.52 27282.06 27591.70 20894.06 246
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16593.71 34481.53 32680.29 30392.02 28464.51 32295.52 32482.04 27678.34 30091.15 308
V4287.00 26285.68 26790.98 26189.91 32986.08 24698.32 20095.61 28483.67 29282.72 26390.67 31474.00 24996.53 27181.94 27774.28 32890.32 330
EPMVS92.59 15791.59 16395.59 13597.22 13290.03 14991.78 35698.04 4890.42 13091.66 16590.65 31686.49 11597.46 23181.78 27896.31 14799.28 97
DIV-MVS_self_test87.82 24786.81 25090.87 26594.87 23885.39 26597.81 23795.22 31182.92 30780.76 29891.31 30081.99 19195.81 31781.36 27975.04 31891.42 299
cl____87.82 24786.79 25190.89 26494.88 23785.43 26397.81 23795.24 30682.91 30880.71 29991.22 30181.97 19395.84 31581.34 28075.06 31791.40 300
RPSCF85.33 29185.55 26984.67 34794.63 24562.28 38693.73 33893.76 34274.38 36485.23 23997.06 17364.09 32398.31 17680.98 28186.08 24993.41 251
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34686.08 25176.53 33293.28 26761.41 33596.14 30180.95 28277.69 30790.93 313
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17295.48 29183.80 28880.93 29790.22 33274.60 24096.31 29180.92 28371.55 35390.69 323
PatchMatch-RL91.47 17790.54 18694.26 18498.20 9686.36 23596.94 27797.14 17587.75 21688.98 20495.75 21871.80 27099.40 12780.92 28397.39 12897.02 213
FE-MVS91.38 18090.16 19195.05 15496.46 16687.53 20789.69 37397.84 6182.97 30392.18 15892.00 28784.07 15298.93 15380.71 28595.52 16198.68 151
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24681.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19194.68 34580.71 28573.58 33591.12 309
PCF-MVS89.78 591.26 18189.63 19696.16 11295.44 20691.58 10695.29 32496.10 24285.07 26882.75 26297.45 15278.28 22399.78 8480.60 28795.65 16097.12 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 18389.99 19295.03 15596.75 15688.55 18698.65 15794.95 31487.74 21787.74 21397.80 13268.27 29298.14 18480.53 28897.49 12598.41 163
GeoE90.60 19789.56 19793.72 20695.10 22785.43 26399.41 6894.94 31583.96 28687.21 22096.83 18974.37 24497.05 24880.50 28993.73 17798.67 152
CP-MVSNet86.54 27185.45 27189.79 29691.02 31882.78 30597.38 25897.56 12285.37 26279.53 31493.03 27271.86 26995.25 33279.92 29073.43 33991.34 302
PatchmatchNetpermissive92.05 17191.04 17495.06 15296.17 18189.04 16991.26 36497.26 16089.56 15690.64 18490.56 32288.35 7097.11 24479.53 29196.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 26585.31 27391.40 25189.75 33387.21 22198.31 20195.45 29383.22 29882.70 26490.78 30973.36 25196.36 28379.49 29274.69 32290.63 325
IterMVS85.81 28484.67 28589.22 30993.51 27683.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30993.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 27982.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30793.33 35579.38 29477.36 30990.76 320
GBi-Net86.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24395.11 22488.81 18096.77 28395.25 30382.94 30482.12 27990.25 32962.89 32994.97 33679.04 29580.24 29091.62 287
FMVSNet388.81 23287.08 24693.99 19796.52 16394.59 4798.08 22396.20 23485.85 25482.12 27991.60 29474.05 24895.40 32979.04 29580.24 29091.99 280
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26378.88 29878.11 30187.22 367
v886.11 27884.45 28991.10 25789.99 32886.85 22497.24 26695.36 30081.99 32179.89 30989.86 33774.53 24296.39 28178.83 29972.32 34790.05 337
pm-mvs184.68 29882.78 30590.40 27889.58 33685.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31896.11 30278.75 30069.14 35889.91 340
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20895.43 29682.45 31582.62 26790.58 32172.79 26196.36 28378.45 30274.04 33290.79 318
PS-CasMVS85.81 28484.58 28789.49 30690.77 32082.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30295.16 33478.39 30373.25 34091.21 307
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20342.59 38465.10 40378.00 30414.92 40461.08 396
JIA-IIPM85.97 28084.85 28089.33 30893.23 28473.68 36485.05 38397.13 17769.62 37891.56 16868.03 39388.03 7896.96 25077.89 30593.12 18197.34 201
MDTV_nov1_ep1390.47 18896.14 18488.55 18691.34 36397.51 13389.58 15492.24 15790.50 32686.99 10197.61 22377.64 30692.34 194
v119286.32 27684.71 28491.17 25589.53 33986.40 23298.13 21495.44 29582.52 31382.42 27290.62 31871.58 27396.33 29077.23 30774.88 31990.79 318
FMVSNet286.90 26384.79 28293.24 21195.11 22492.54 9097.67 25095.86 27182.94 30480.55 30091.17 30362.89 32995.29 33177.23 30779.71 29691.90 281
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29996.45 27977.20 30998.72 9586.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 22687.27 24393.76 20395.79 19485.32 26790.76 36997.09 18376.14 35785.72 23488.59 34782.92 17198.04 19376.96 31091.43 21797.90 188
v1085.73 28784.01 29590.87 26590.03 32786.73 22697.20 26995.22 31181.25 32979.85 31089.75 33873.30 25496.28 29576.87 31172.64 34389.61 345
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 21995.35 30182.19 31982.25 27790.71 31170.73 27696.30 29476.85 31274.49 32490.80 317
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30082.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34697.37 23876.75 31398.35 10687.84 359
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34183.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
WR-MVS_H86.53 27285.49 27089.66 30191.04 31783.31 29697.53 25498.20 3684.95 27279.64 31190.90 30778.01 22595.33 33076.29 31672.81 34190.35 329
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27379.16 33796.43 29494.28 33581.09 33174.00 34794.03 24654.58 36097.67 21776.10 31778.81 29890.63 325
PEN-MVS85.21 29283.93 29689.07 31389.89 33181.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29194.87 33975.98 31870.92 35691.04 311
USDC84.74 29682.93 30190.16 28491.73 30783.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22075.88 31981.54 28789.30 348
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27791.48 37575.79 32075.98 31291.70 283
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23495.23 31081.89 32482.16 27890.55 32369.60 28596.31 29175.59 32174.87 32090.72 322
ITE_SJBPF87.93 32292.26 29576.44 35493.47 34987.67 22179.95 30895.49 22356.50 35197.38 23675.24 32282.33 28389.98 339
dp90.16 20688.83 21494.14 18996.38 17186.42 23191.57 36097.06 18584.76 27588.81 20590.19 33484.29 14997.43 23475.05 32391.35 22098.56 157
LS3D90.19 20488.72 21694.59 17298.97 7386.33 23796.90 27996.60 20774.96 36184.06 25098.74 8875.78 23499.83 7374.93 32497.57 12197.62 195
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24374.88 32559.47 38187.33 365
tpmvs89.16 22087.76 23493.35 20997.19 13584.75 27790.58 37197.36 15681.99 32184.56 24389.31 34483.98 15398.17 18374.85 32690.00 23097.12 207
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34567.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 34095.61 32374.47 32874.15 33090.75 321
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28582.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20674.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
ADS-MVSNet287.62 25686.88 24989.86 29396.21 17879.14 33887.15 37792.99 35283.01 30189.91 19687.27 35778.87 21892.80 36274.20 33192.27 19697.64 192
ADS-MVSNet88.99 22287.30 24294.07 19296.21 17887.56 20687.15 37796.78 20083.01 30189.91 19687.27 35778.87 21897.01 24974.20 33192.27 19697.64 192
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
MIMVSNet84.48 30281.83 31292.42 22991.73 30787.36 21385.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23597.08 211
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 28096.35 28873.83 33572.13 34990.07 335
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
FMVSNet183.94 31081.32 31891.80 24391.94 30388.81 18096.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
MSDG88.29 24386.37 25694.04 19596.90 14986.15 24496.52 29294.36 33477.89 35179.22 31796.95 17969.72 28299.59 10473.20 33992.58 19096.37 232
test0.0.03 188.96 22388.61 21990.03 29091.09 31684.43 28098.97 12797.02 19090.21 13380.29 30396.31 20684.89 14291.93 37372.98 34085.70 25293.73 247
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
WB-MVSnew88.69 23688.34 22689.77 29794.30 25585.99 25198.14 21397.31 15987.15 22987.85 21296.07 21269.91 27995.52 32472.83 34291.47 21687.80 361
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29894.24 35072.64 34369.05 35990.32 330
EPNet_dtu92.28 16492.15 15192.70 22497.29 13084.84 27598.64 15997.82 6592.91 7593.02 14997.02 17685.48 13495.70 32072.25 34494.89 16797.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 29583.12 30090.52 27596.82 15178.84 34095.89 31292.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
TestCases90.52 27596.82 15178.84 34092.17 36477.96 34975.94 33695.50 22155.48 35499.18 13971.15 34587.14 23893.55 249
DP-MVS88.75 23486.56 25495.34 14198.92 7787.45 21097.64 25193.52 34870.55 37381.49 29297.25 16174.43 24399.88 5471.14 34794.09 17398.67 152
CR-MVSNet88.83 23087.38 24193.16 21393.47 27786.24 23884.97 38494.20 33788.92 17790.76 18286.88 36184.43 14794.82 34170.64 34892.17 20098.41 163
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25188.98 17292.87 34795.87 26980.46 33773.79 34887.49 35482.76 17693.29 35670.56 34946.53 39788.87 354
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 28983.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31597.63 22169.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
myMVS_eth3d88.68 23889.07 20887.50 32795.14 22179.74 33497.68 24896.66 20386.52 24582.63 26596.84 18785.22 13989.89 37969.43 35391.54 21292.87 252
FMVSNet582.29 31780.54 32187.52 32693.79 27284.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32789.24 38469.07 35474.79 32189.29 349
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27194.54 34768.81 35576.84 31090.07 335
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
Patchmtry83.61 31381.64 31389.50 30493.36 28182.84 30484.10 38794.20 33769.47 37979.57 31386.88 36184.43 14794.78 34268.48 35774.30 32790.88 315
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34077.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
WAC-MVS79.74 33467.75 359
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33484.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30495.21 33367.50 36059.46 38288.02 358
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15778.85 33995.89 31292.83 35671.55 37077.54 33195.89 21659.40 34399.14 14567.26 36188.26 23491.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 33974.61 36266.53 37888.76 34640.40 38896.20 29667.02 36283.66 27186.61 369
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32589.78 38166.89 36391.92 20295.73 238
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25691.62 37288.63 18175.85 33995.42 22446.07 38091.55 37466.87 36479.94 29492.12 275
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29592.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29792.07 37266.00 36667.75 36590.23 332
DeepMVS_CXcopyleft76.08 36690.74 32151.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34773.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
TinyColmap80.42 32777.94 33287.85 32392.09 29878.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22565.17 36977.89 30287.38 363
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27181.69 31585.16 38193.75 34354.54 39174.17 34659.15 39757.46 34896.58 26863.74 37094.38 17093.72 248
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28194.61 34663.40 37174.36 32689.71 344
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 29090.26 37763.21 37256.51 38688.35 356
Patchmatch-test86.25 27784.06 29492.82 21994.42 24782.88 30382.88 39194.23 33671.58 36979.39 31590.62 31889.00 6396.42 28063.03 37391.37 21999.16 106
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38764.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
tfpnnormal83.65 31181.35 31790.56 27491.37 31388.06 19497.29 26297.87 5878.51 34676.20 33390.91 30664.78 32196.47 27761.71 37673.50 33687.13 368
testing387.75 25188.22 22986.36 33594.66 24477.41 35199.52 5097.95 5486.05 25281.12 29596.69 19486.18 12189.31 38361.65 37790.12 22992.35 265
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34992.49 36760.79 37864.80 37390.08 334
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33692.15 37060.59 37975.92 31389.24 350
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
TAPA-MVS87.50 990.35 19989.05 20994.25 18598.48 9185.17 27098.42 18596.58 21182.44 31687.24 21998.53 10582.77 17498.84 15559.09 38297.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34787.29 38958.65 38368.47 36086.53 370
PatchT85.44 29083.19 29992.22 23193.13 28683.00 29883.80 39096.37 22370.62 37290.55 18579.63 38584.81 14494.87 33958.18 38491.59 20998.79 143
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
RPMNet85.07 29481.88 31194.64 17093.47 27786.24 23884.97 38497.21 16764.85 38990.76 18278.80 38680.95 20499.27 13753.76 38892.17 20098.41 163
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32493.81 35153.12 38973.46 33788.94 352
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21569.71 28384.37 39152.71 39076.82 31192.21 270
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
test_040278.81 33576.33 34086.26 33691.18 31578.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
Syy-MVS84.10 30984.53 28882.83 35595.14 22165.71 38397.68 24896.66 20386.52 24582.63 26596.84 18768.15 29389.89 37945.62 39391.54 21292.87 252
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32680.31 39821.85 40250.47 39575.43 389
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32879.92 39920.48 40348.02 39674.44 390
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2393.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8574.35 2450.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1820.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1080.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
FOURS199.50 4288.94 17599.55 4497.47 14191.32 10898.12 44
test_one_060199.59 2894.89 3497.64 10393.14 6998.93 2199.45 1493.45 18
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.63 1895.24 2597.72 8194.16 4599.30 899.49 993.32 1999.98 9
save fliter99.34 5093.85 6299.65 3597.63 10795.69 22
test072699.66 1295.20 3099.77 1797.70 8693.95 4899.35 799.54 393.18 22
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6998.84 136
sam_mvs87.08 97
MTGPAbinary97.45 144
test_post46.00 40387.37 8897.11 244
patchmatchnet-post84.86 36788.73 6696.81 257
MTMP99.21 8891.09 376
TEST999.57 3393.17 7399.38 7197.66 9589.57 15598.39 3599.18 3390.88 3999.66 94
test_899.55 3593.07 7699.37 7497.64 10390.18 13598.36 3799.19 3090.94 3699.64 100
agg_prior99.54 3692.66 8697.64 10397.98 5199.61 102
test_prior492.00 9799.41 68
test_prior97.01 6099.58 3091.77 10097.57 12199.49 11299.79 36
新几何298.26 204
旧先验198.97 7392.90 8497.74 7799.15 3991.05 3599.33 6399.60 67
原ACMM298.69 152
test22298.32 9291.21 11098.08 22397.58 11883.74 28995.87 9899.02 5886.74 10699.64 4099.81 33
segment_acmp90.56 44
testdata197.89 23292.43 82
test1297.83 3399.33 5394.45 4997.55 12397.56 5688.60 6799.50 11199.71 3499.55 72
plane_prior793.84 26885.73 257
plane_prior693.92 26586.02 25072.92 258
plane_prior496.52 197
plane_prior385.91 25293.65 6186.99 221
plane_prior299.02 12093.38 66
plane_prior193.90 267
plane_prior86.07 24899.14 10493.81 5886.26 246
n20.00 415
nn0.00 415
door-mid84.90 395
test1197.68 90
door85.30 393
HQP5-MVS86.39 233
HQP-NCC93.95 26199.16 9693.92 5087.57 214
ACMP_Plane93.95 26199.16 9693.92 5087.57 214
HQP4-MVS87.57 21497.77 20892.72 254
HQP3-MVS96.37 22386.29 244
HQP2-MVS73.34 252
NP-MVS93.94 26486.22 24096.67 195
ACMMP++_ref82.64 281
ACMMP++83.83 268
Test By Simon83.62 156