| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 17 | | | | 99.19 30 | 95.12 7 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| PC_three_1452 | | | | | | | | | | 94.60 36 | 99.41 4 | 99.12 46 | 95.50 6 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| MM | | | 97.76 10 | 97.39 19 | 98.86 5 | 98.30 93 | 96.83 7 | 99.81 11 | 99.13 9 | 97.66 2 | 98.29 39 | 98.96 66 | 85.84 128 | 99.90 50 | 99.72 3 | 98.80 94 | 99.85 30 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 27 | 99.77 17 | 97.72 81 | 94.17 43 | 99.30 8 | 99.54 3 | 93.32 17 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 81 | 94.17 43 | 99.23 10 | 99.54 3 | 93.14 22 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 24 | | 97.73 80 | 95.54 26 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 32 | 99.72 23 | 97.47 141 | 93.95 48 | 99.07 15 | 99.46 10 | 93.18 20 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 23 | 97.68 90 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 179 | 99.21 61 | 83.73 293 | 99.62 37 | 98.25 32 | 95.28 30 | 99.38 6 | 98.91 75 | 92.28 26 | 99.94 34 | 99.61 9 | 99.22 73 | 99.78 38 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 23 | 99.29 80 | 97.72 81 | 94.50 37 | 98.64 28 | 99.54 3 | 93.32 17 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| fmvsm_l_conf0.5_n_a | | | 97.70 12 | 97.80 11 | 97.42 48 | 97.59 117 | 92.91 86 | 99.86 4 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 36 | 99.94 34 | 99.57 11 | 98.66 101 | 99.40 88 |
|
| fmvsm_l_conf0.5_n | | | 97.65 13 | 97.72 12 | 97.41 49 | 97.51 122 | 92.78 88 | 99.85 7 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 45 | 99.92 40 | 99.55 12 | 98.50 106 | 99.55 74 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| MVS_0304 | | | 97.53 14 | 97.15 22 | 98.67 11 | 97.30 130 | 96.52 12 | 99.60 38 | 98.88 14 | 97.14 4 | 97.21 68 | 98.94 72 | 86.89 103 | 99.91 45 | 99.43 15 | 98.91 89 | 99.59 73 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 40 | 97.84 10 | 92.68 229 | 98.71 85 | 78.11 351 | 99.70 26 | 97.71 85 | 98.18 1 | 97.36 64 | 99.76 1 | 90.37 47 | 99.94 34 | 99.27 16 | 99.54 54 | 99.99 1 |
|
| APDe-MVS |  | | 97.53 14 | 97.47 15 | 97.70 38 | 99.58 30 | 93.63 67 | 99.56 43 | 97.52 131 | 93.59 63 | 98.01 50 | 99.12 46 | 90.80 39 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 24 | 99.55 44 | 97.68 90 | 93.01 70 | 99.23 10 | 99.45 14 | 95.12 7 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| test_0728_THIRD | | | | | | | | | | 93.01 70 | 99.07 15 | 99.46 10 | 94.66 12 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| dcpmvs_2 | | | 95.67 71 | 96.18 45 | 94.12 195 | 98.82 81 | 84.22 286 | 97.37 260 | 95.45 301 | 90.70 119 | 95.77 104 | 98.63 101 | 90.47 43 | 98.68 166 | 99.20 20 | 99.22 73 | 99.45 84 |
|
| fmvsm_s_conf0.5_n | | | 96.19 49 | 96.49 36 | 95.30 149 | 97.37 127 | 89.16 168 | 99.86 4 | 98.47 25 | 95.68 23 | 98.87 22 | 99.15 39 | 82.44 189 | 99.92 40 | 99.14 21 | 97.43 132 | 96.83 224 |
|
| test_fmvsmconf_n | | | 96.78 34 | 96.84 29 | 96.61 89 | 95.99 193 | 90.25 139 | 99.90 2 | 98.13 42 | 96.68 11 | 98.42 34 | 98.92 74 | 85.34 140 | 99.88 54 | 99.12 22 | 99.08 76 | 99.70 52 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 136 | 97.94 105 | 89.61 163 | 99.93 1 | 98.48 24 | 97.08 5 | 99.08 14 | 99.13 44 | 88.17 74 | 99.93 38 | 99.11 23 | 99.06 78 | 97.47 204 |
|
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 60 | 98.88 79 | 91.62 106 | 99.58 41 | 96.54 218 | 95.09 32 | 96.84 78 | 98.63 101 | 91.16 29 | 99.77 85 | 99.04 24 | 96.42 149 | 99.81 33 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 26 | 97.98 53 | 97.18 3 | 95.96 96 | 99.33 19 | 92.62 24 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 15 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 23 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| test_fmvsmconf0.1_n | | | 95.94 59 | 95.79 62 | 96.40 103 | 92.42 300 | 89.92 155 | 99.79 16 | 96.85 198 | 96.53 15 | 97.22 67 | 98.67 97 | 82.71 181 | 99.84 69 | 98.92 27 | 98.98 83 | 99.43 87 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 56 | 96.19 43 | 95.31 148 | 96.51 168 | 89.01 175 | 99.81 11 | 98.39 27 | 95.46 28 | 99.19 13 | 99.16 36 | 81.44 204 | 99.91 45 | 98.83 28 | 96.97 141 | 97.01 220 |
|
| CANet | | | 97.00 28 | 96.49 36 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 9 | 97.52 131 | 95.90 19 | 97.21 68 | 98.90 76 | 82.66 182 | 99.93 38 | 98.71 29 | 98.80 94 | 99.63 66 |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 51 | 97.49 138 | 89.41 162 | 98.59 30 | 99.43 16 | 89.78 55 | 99.69 91 | 98.69 30 | 99.62 46 | |
|
| SD-MVS | | | 97.51 16 | 97.40 18 | 97.81 36 | 99.01 72 | 93.79 66 | 99.33 78 | 97.38 154 | 93.73 59 | 98.83 25 | 99.02 58 | 90.87 38 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_s_conf0.1_n | | | 95.56 73 | 95.68 65 | 95.20 152 | 94.35 255 | 89.10 171 | 99.50 51 | 97.67 94 | 94.76 34 | 98.68 27 | 99.03 56 | 81.13 207 | 99.86 63 | 98.63 32 | 97.36 134 | 96.63 227 |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| PS-MVSNAJ | | | 96.87 31 | 96.40 39 | 98.29 19 | 97.35 128 | 97.29 5 | 99.03 117 | 97.11 179 | 95.83 20 | 98.97 19 | 99.14 42 | 82.48 185 | 99.60 103 | 98.60 33 | 99.08 76 | 98.00 190 |
|
| xiu_mvs_v2_base | | | 96.66 36 | 96.17 48 | 98.11 28 | 97.11 147 | 96.96 6 | 99.01 120 | 97.04 186 | 95.51 27 | 98.86 23 | 99.11 50 | 82.19 193 | 99.36 130 | 98.59 35 | 98.14 115 | 98.00 190 |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 44 | 99.57 33 | 93.17 76 | 99.38 71 | 97.66 95 | 90.18 136 | 98.39 35 | 99.18 33 | 90.94 34 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 16 | 97.39 51 | 99.12 65 | 93.49 72 | 98.52 172 | 97.50 136 | 94.46 38 | 98.99 17 | 98.64 99 | 91.58 28 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 69 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 37 | 99.44 62 | 97.45 144 | 89.60 154 | 98.70 26 | 99.42 17 | 90.42 45 | 99.72 89 | 98.47 38 | 99.65 40 | 99.77 43 |
|
| PHI-MVS | | | 96.65 37 | 96.46 38 | 97.21 57 | 99.34 50 | 91.77 103 | 99.70 26 | 98.05 46 | 86.48 246 | 98.05 47 | 99.20 29 | 89.33 60 | 99.96 28 | 98.38 39 | 99.62 46 | 99.90 22 |
|
| test_fmvsmvis_n_1920 | | | 95.47 75 | 95.40 72 | 95.70 133 | 94.33 256 | 90.22 142 | 99.70 26 | 96.98 193 | 96.80 7 | 92.75 155 | 98.89 78 | 82.46 188 | 99.92 40 | 98.36 40 | 98.33 111 | 96.97 221 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 74 | | 97.61 110 | 87.78 213 | 97.41 62 | 99.16 36 | 90.15 51 | 99.56 105 | 98.35 41 | 99.70 36 | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 105 | 98.12 44 | 98.97 62 | 90.43 44 | | 98.33 42 | 99.81 23 | |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 31 | 99.30 54 | 94.20 58 | 99.16 95 | 97.65 102 | 89.55 158 | 99.22 12 | 99.52 8 | 90.34 48 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CHOSEN 280x420 | | | 96.80 33 | 96.85 28 | 96.66 88 | 97.85 108 | 94.42 53 | 94.76 331 | 98.36 29 | 92.50 81 | 95.62 109 | 97.52 150 | 97.92 1 | 97.38 243 | 98.31 44 | 98.80 94 | 98.20 184 |
|
| test_fmvsmconf0.01_n | | | 94.14 116 | 93.51 124 | 96.04 119 | 86.79 372 | 89.19 167 | 99.28 83 | 95.94 260 | 95.70 21 | 95.50 110 | 98.49 110 | 73.27 262 | 99.79 82 | 98.28 45 | 98.32 113 | 99.15 111 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 50 | 99.81 11 | 97.88 57 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 25 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 84 | 95.15 78 | 95.18 153 | 92.06 306 | 88.94 179 | 99.29 80 | 97.53 127 | 94.46 38 | 98.98 18 | 98.99 60 | 79.99 213 | 99.85 67 | 98.24 47 | 96.86 143 | 96.73 225 |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 96 | 99.54 36 | 90.14 144 | 99.41 68 | 97.70 86 | 95.46 28 | 98.60 29 | 99.19 30 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ETV-MVS | | | 96.00 53 | 96.00 53 | 96.00 122 | 96.56 164 | 91.05 122 | 99.63 36 | 96.61 209 | 93.26 68 | 97.39 63 | 98.30 121 | 86.62 110 | 98.13 192 | 98.07 49 | 97.57 126 | 98.82 144 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 17 | 97.63 40 | 99.65 16 | 93.21 75 | 99.70 26 | 98.13 42 | 94.61 35 | 97.78 57 | 99.46 10 | 89.85 54 | 99.81 79 | 97.97 50 | 99.91 6 | 99.88 26 |
|
| APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 40 | 99.51 41 | 93.58 68 | 99.16 95 | 97.44 147 | 90.08 141 | 98.59 30 | 99.07 51 | 89.06 62 | 99.42 123 | 97.92 51 | 99.66 38 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 20 | 97.01 63 | 97.38 126 | 91.46 110 | 99.75 21 | 97.66 95 | 94.14 47 | 98.13 42 | 99.26 21 | 92.16 27 | 99.66 94 | 97.91 52 | 99.64 42 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MVSMamba_PlusPlus | | | 95.73 70 | 95.15 78 | 97.44 46 | 97.28 134 | 94.35 56 | 98.26 204 | 96.75 203 | 83.09 300 | 97.84 54 | 95.97 218 | 89.59 57 | 98.48 175 | 97.86 53 | 99.73 31 | 99.49 81 |
|
| test_vis1_n_1920 | | | 93.08 151 | 93.42 126 | 92.04 242 | 96.31 177 | 79.36 338 | 99.83 9 | 96.06 251 | 96.72 9 | 98.53 32 | 98.10 129 | 58.57 349 | 99.91 45 | 97.86 53 | 98.79 97 | 96.85 223 |
|
| iter_conf05 | | | 94.60 105 | 93.87 115 | 96.79 77 | 97.28 134 | 94.04 62 | 95.67 323 | 95.94 260 | 83.09 300 | 90.06 198 | 95.97 218 | 89.59 57 | 98.48 175 | 97.86 53 | 99.34 65 | 97.86 194 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 56 | 99.87 9 | 99.91 21 |
|
| mvsany_test1 | | | 94.57 108 | 95.09 82 | 92.98 220 | 95.84 199 | 82.07 315 | 98.76 145 | 95.24 314 | 92.87 77 | 96.45 89 | 98.71 94 | 84.81 147 | 99.15 141 | 97.68 57 | 95.49 167 | 97.73 196 |
|
| HPM-MVS++ |  | | 97.72 11 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 44 | 99.19 89 | 97.75 76 | 95.66 24 | 98.21 40 | 99.29 20 | 91.10 31 | 99.99 5 | 97.68 57 | 99.87 9 | 99.68 56 |
|
| test_vis1_n | | | 90.40 203 | 90.27 193 | 90.79 270 | 91.55 316 | 76.48 356 | 99.12 107 | 94.44 337 | 94.31 41 | 97.34 65 | 96.95 181 | 43.60 388 | 99.42 123 | 97.57 59 | 97.60 125 | 96.47 234 |
|
| SR-MVS | | | 96.13 50 | 96.16 50 | 96.07 118 | 99.42 47 | 89.04 173 | 98.59 167 | 97.33 158 | 90.44 130 | 96.84 78 | 99.12 46 | 86.75 106 | 99.41 126 | 97.47 60 | 99.44 60 | 99.76 45 |
|
| PVSNet_BlendedMVS | | | 93.36 141 | 93.20 133 | 93.84 206 | 98.77 83 | 91.61 107 | 99.47 55 | 98.04 48 | 91.44 104 | 94.21 133 | 92.63 283 | 83.50 160 | 99.87 58 | 97.41 61 | 83.37 279 | 90.05 342 |
|
| PVSNet_Blended | | | 95.94 59 | 95.66 66 | 96.75 80 | 98.77 83 | 91.61 107 | 99.88 3 | 98.04 48 | 93.64 62 | 94.21 133 | 97.76 137 | 83.50 160 | 99.87 58 | 97.41 61 | 97.75 124 | 98.79 147 |
|
| test_fmvs1 | | | 92.35 164 | 92.94 140 | 90.57 275 | 97.19 140 | 75.43 360 | 99.55 44 | 94.97 321 | 95.20 31 | 96.82 81 | 97.57 149 | 59.59 347 | 99.84 69 | 97.30 63 | 98.29 114 | 96.46 235 |
|
| mamv4 | | | 91.41 182 | 93.57 122 | 84.91 348 | 97.11 147 | 58.11 395 | 95.68 322 | 95.93 264 | 82.09 322 | 89.78 203 | 95.71 224 | 90.09 52 | 98.24 187 | 97.26 64 | 98.50 106 | 98.38 170 |
|
| EC-MVSNet | | | 95.09 86 | 95.17 77 | 94.84 167 | 95.42 213 | 88.17 195 | 99.48 53 | 95.92 266 | 91.47 103 | 97.34 65 | 98.36 118 | 82.77 177 | 97.41 242 | 97.24 65 | 98.58 103 | 98.94 132 |
|
| MVS_111021_HR | | | 96.69 35 | 96.69 33 | 96.72 84 | 98.58 88 | 91.00 124 | 99.14 103 | 99.45 1 | 93.86 54 | 95.15 117 | 98.73 89 | 88.48 69 | 99.76 86 | 97.23 66 | 99.56 52 | 99.40 88 |
|
| test_fmvs1_n | | | 91.07 191 | 91.41 171 | 90.06 289 | 94.10 263 | 74.31 364 | 99.18 91 | 94.84 325 | 94.81 33 | 96.37 91 | 97.46 153 | 50.86 377 | 99.82 76 | 97.14 67 | 97.90 118 | 96.04 242 |
|
| xiu_mvs_v1_base_debu | | | 94.73 99 | 93.98 106 | 96.99 65 | 95.19 222 | 95.24 27 | 98.62 161 | 96.50 220 | 92.99 72 | 97.52 59 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 68 | 96.74 144 | 96.58 230 |
|
| xiu_mvs_v1_base | | | 94.73 99 | 93.98 106 | 96.99 65 | 95.19 222 | 95.24 27 | 98.62 161 | 96.50 220 | 92.99 72 | 97.52 59 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 68 | 96.74 144 | 96.58 230 |
|
| xiu_mvs_v1_base_debi | | | 94.73 99 | 93.98 106 | 96.99 65 | 95.19 222 | 95.24 27 | 98.62 161 | 96.50 220 | 92.99 72 | 97.52 59 | 98.83 82 | 72.37 269 | 99.15 141 | 97.03 68 | 96.74 144 | 96.58 230 |
|
| lupinMVS | | | 96.32 45 | 95.94 54 | 97.44 46 | 95.05 236 | 94.87 38 | 99.86 4 | 96.50 220 | 93.82 57 | 98.04 48 | 98.77 85 | 85.52 132 | 98.09 195 | 96.98 71 | 98.97 84 | 99.37 92 |
|
| CS-MVS-test | | | 95.98 55 | 96.34 41 | 94.90 164 | 98.06 102 | 87.66 207 | 99.69 33 | 96.10 246 | 93.66 60 | 98.35 38 | 99.05 54 | 86.28 119 | 97.66 225 | 96.96 72 | 98.90 90 | 99.37 92 |
|
| MVS_111021_LR | | | 95.78 65 | 95.94 54 | 95.28 150 | 98.19 98 | 87.69 204 | 98.80 139 | 99.26 7 | 93.39 65 | 95.04 119 | 98.69 96 | 84.09 154 | 99.76 86 | 96.96 72 | 99.06 78 | 98.38 170 |
|
| VNet | | | 95.08 87 | 94.26 95 | 97.55 45 | 98.07 101 | 93.88 64 | 98.68 152 | 98.73 18 | 90.33 133 | 97.16 72 | 97.43 155 | 79.19 223 | 99.53 109 | 96.91 74 | 91.85 209 | 99.24 104 |
|
| test_cas_vis1_n_1920 | | | 93.86 126 | 93.74 119 | 94.22 191 | 95.39 216 | 86.08 250 | 99.73 22 | 96.07 250 | 96.38 17 | 97.19 71 | 97.78 136 | 65.46 324 | 99.86 63 | 96.71 75 | 98.92 88 | 96.73 225 |
|
| CS-MVS | | | 95.75 68 | 96.19 43 | 94.40 183 | 97.88 107 | 86.22 244 | 99.66 34 | 96.12 245 | 92.69 78 | 98.07 46 | 98.89 78 | 87.09 97 | 97.59 231 | 96.71 75 | 98.62 102 | 99.39 91 |
|
| APD-MVS_3200maxsize | | | 95.64 72 | 95.65 68 | 95.62 138 | 99.24 58 | 87.80 203 | 98.42 185 | 97.22 166 | 88.93 175 | 96.64 88 | 98.98 61 | 85.49 135 | 99.36 130 | 96.68 77 | 99.27 71 | 99.70 52 |
|
| SR-MVS-dyc-post | | | 95.75 68 | 95.86 57 | 95.41 144 | 99.22 59 | 87.26 223 | 98.40 190 | 97.21 167 | 89.63 152 | 96.67 86 | 98.97 62 | 86.73 108 | 99.36 130 | 96.62 78 | 99.31 68 | 99.60 69 |
|
| RE-MVS-def | | | | 95.70 64 | | 99.22 59 | 87.26 223 | 98.40 190 | 97.21 167 | 89.63 152 | 96.67 86 | 98.97 62 | 85.24 141 | | 96.62 78 | 99.31 68 | 99.60 69 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 51 | 98.85 133 | 97.64 103 | 96.51 16 | 95.88 99 | 99.39 18 | 87.35 93 | 99.99 5 | 96.61 80 | 99.69 37 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDD-MVS | | | 91.24 189 | 90.18 194 | 94.45 182 | 97.08 149 | 85.84 260 | 98.40 190 | 96.10 246 | 86.99 229 | 93.36 148 | 98.16 127 | 54.27 366 | 99.20 138 | 96.59 81 | 90.63 233 | 98.31 177 |
|
| MP-MVS-pluss | | | 95.80 64 | 95.30 73 | 97.29 53 | 98.95 76 | 92.66 89 | 98.59 167 | 97.14 175 | 88.95 173 | 93.12 151 | 99.25 23 | 85.62 129 | 99.94 34 | 96.56 82 | 99.48 56 | 99.28 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| diffmvs |  | | 94.59 107 | 94.19 98 | 95.81 129 | 95.54 209 | 90.69 131 | 98.70 150 | 95.68 288 | 91.61 98 | 95.96 96 | 97.81 133 | 80.11 212 | 98.06 197 | 96.52 83 | 95.76 162 | 98.67 156 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMMP_NAP | | | 96.59 38 | 96.18 45 | 97.81 36 | 98.82 81 | 93.55 69 | 98.88 132 | 97.59 116 | 90.66 120 | 97.98 51 | 99.14 42 | 86.59 111 | 100.00 1 | 96.47 84 | 99.46 57 | 99.89 25 |
|
| PAPM | | | 96.35 43 | 95.94 54 | 97.58 42 | 94.10 263 | 95.25 26 | 98.93 127 | 98.17 37 | 94.26 42 | 93.94 138 | 98.72 91 | 89.68 56 | 97.88 207 | 96.36 85 | 99.29 70 | 99.62 68 |
|
| MTAPA | | | 96.09 51 | 95.80 61 | 96.96 70 | 99.29 55 | 91.19 114 | 97.23 267 | 97.45 144 | 92.58 79 | 94.39 131 | 99.24 25 | 86.43 117 | 99.99 5 | 96.22 86 | 99.40 64 | 99.71 51 |
|
| alignmvs | | | 95.77 66 | 95.00 84 | 98.06 29 | 97.35 128 | 95.68 20 | 99.71 25 | 97.50 136 | 91.50 102 | 96.16 94 | 98.61 103 | 86.28 119 | 99.00 151 | 96.19 87 | 91.74 211 | 99.51 79 |
|
| sasdasda | | | 95.02 88 | 93.96 109 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 147 | 96.19 239 | 91.78 95 | 95.86 101 | 98.49 110 | 79.53 218 | 99.03 149 | 96.12 88 | 91.42 223 | 99.66 60 |
|
| iter_conf05_11 | | | 95.50 74 | 95.43 71 | 95.70 133 | 97.26 136 | 89.15 169 | 98.26 204 | 96.60 210 | 91.37 108 | 97.84 54 | 96.18 210 | 85.57 131 | 98.56 171 | 96.12 88 | 99.66 38 | 99.40 88 |
|
| canonicalmvs | | | 95.02 88 | 93.96 109 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 147 | 96.19 239 | 91.78 95 | 95.86 101 | 98.49 110 | 79.53 218 | 99.03 149 | 96.12 88 | 91.42 223 | 99.66 60 |
|
| DELS-MVS | | | 97.12 25 | 96.60 35 | 98.68 10 | 98.03 103 | 96.57 11 | 99.84 8 | 97.84 61 | 96.36 18 | 95.20 116 | 98.24 123 | 88.17 74 | 99.83 73 | 96.11 91 | 99.60 50 | 99.64 64 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| jason | | | 95.40 79 | 94.86 86 | 97.03 62 | 92.91 295 | 94.23 57 | 99.70 26 | 96.30 230 | 93.56 64 | 96.73 84 | 98.52 106 | 81.46 203 | 97.91 204 | 96.08 92 | 98.47 109 | 98.96 127 |
| jason: jason. |
| CP-MVS | | | 96.22 48 | 96.15 51 | 96.42 101 | 99.67 10 | 89.62 162 | 99.70 26 | 97.61 110 | 90.07 142 | 96.00 95 | 99.16 36 | 87.43 87 | 99.92 40 | 96.03 93 | 99.72 32 | 99.70 52 |
|
| MP-MVS |  | | 96.00 53 | 95.82 58 | 96.54 95 | 99.47 46 | 90.13 146 | 99.36 75 | 97.41 151 | 90.64 123 | 95.49 111 | 98.95 69 | 85.51 134 | 99.98 9 | 96.00 94 | 99.59 51 | 99.52 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MGCFI-Net | | | 94.89 90 | 93.84 116 | 98.06 29 | 97.49 123 | 95.55 21 | 98.64 158 | 96.10 246 | 91.60 100 | 95.75 105 | 98.46 116 | 79.31 222 | 98.98 153 | 95.95 95 | 91.24 227 | 99.65 63 |
|
| h-mvs33 | | | 92.47 163 | 91.95 160 | 94.05 199 | 97.13 145 | 85.01 276 | 98.36 196 | 98.08 44 | 93.85 55 | 96.27 92 | 96.73 194 | 83.19 169 | 99.43 122 | 95.81 96 | 68.09 366 | 97.70 197 |
|
| hse-mvs2 | | | 91.67 178 | 91.51 169 | 92.15 239 | 96.22 181 | 82.61 311 | 97.74 245 | 97.53 127 | 93.85 55 | 96.27 92 | 96.15 211 | 83.19 169 | 97.44 240 | 95.81 96 | 66.86 373 | 96.40 237 |
|
| HFP-MVS | | | 96.42 42 | 96.26 42 | 96.90 72 | 99.69 8 | 90.96 125 | 99.47 55 | 97.81 68 | 90.54 127 | 96.88 75 | 99.05 54 | 87.57 84 | 99.96 28 | 95.65 98 | 99.72 32 | 99.78 38 |
|
| XVS | | | 96.47 41 | 96.37 40 | 96.77 78 | 99.62 22 | 90.66 133 | 99.43 65 | 97.58 118 | 92.41 85 | 96.86 76 | 98.96 66 | 87.37 89 | 99.87 58 | 95.65 98 | 99.43 61 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 200 | 88.66 223 | 96.77 78 | 99.62 22 | 90.66 133 | 99.43 65 | 97.58 118 | 92.41 85 | 96.86 76 | 29.59 412 | 87.37 89 | 99.87 58 | 95.65 98 | 99.43 61 | 99.78 38 |
|
| ACMMPR | | | 96.28 47 | 96.14 52 | 96.73 82 | 99.68 9 | 90.47 136 | 99.47 55 | 97.80 70 | 90.54 127 | 96.83 80 | 99.03 56 | 86.51 115 | 99.95 31 | 95.65 98 | 99.72 32 | 99.75 46 |
|
| HPM-MVS |  | | 95.41 78 | 95.22 76 | 95.99 123 | 99.29 55 | 89.14 170 | 99.17 94 | 97.09 183 | 87.28 226 | 95.40 112 | 98.48 113 | 84.93 144 | 99.38 128 | 95.64 102 | 99.65 40 | 99.47 83 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| test_yl | | | 95.27 82 | 94.60 89 | 97.28 54 | 98.53 89 | 92.98 82 | 99.05 115 | 98.70 19 | 86.76 238 | 94.65 126 | 97.74 139 | 87.78 81 | 99.44 119 | 95.57 103 | 92.61 193 | 99.44 85 |
|
| DCV-MVSNet | | | 95.27 82 | 94.60 89 | 97.28 54 | 98.53 89 | 92.98 82 | 99.05 115 | 98.70 19 | 86.76 238 | 94.65 126 | 97.74 139 | 87.78 81 | 99.44 119 | 95.57 103 | 92.61 193 | 99.44 85 |
|
| region2R | | | 96.30 46 | 96.17 48 | 96.70 85 | 99.70 7 | 90.31 138 | 99.46 59 | 97.66 95 | 90.55 126 | 97.07 73 | 99.07 51 | 86.85 104 | 99.97 21 | 95.43 105 | 99.74 29 | 99.81 33 |
|
| EI-MVSNet-Vis-set | | | 95.76 67 | 95.63 70 | 96.17 114 | 99.14 64 | 90.33 137 | 98.49 178 | 97.82 65 | 91.92 93 | 94.75 123 | 98.88 80 | 87.06 99 | 99.48 116 | 95.40 106 | 97.17 139 | 98.70 154 |
|
| EPNet | | | 96.82 32 | 96.68 34 | 97.25 56 | 98.65 86 | 93.10 78 | 99.48 53 | 98.76 15 | 96.54 13 | 97.84 54 | 98.22 124 | 87.49 86 | 99.66 94 | 95.35 107 | 97.78 123 | 99.00 123 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 111 | 99.06 10 | 94.45 40 | 96.42 90 | 98.70 95 | 88.81 66 | 99.74 88 | 95.35 107 | 99.86 12 | 99.97 7 |
|
| HY-MVS | | 88.56 7 | 95.29 81 | 94.23 96 | 98.48 14 | 97.72 110 | 96.41 13 | 94.03 339 | 98.74 16 | 92.42 84 | 95.65 108 | 94.76 240 | 86.52 114 | 99.49 112 | 95.29 109 | 92.97 188 | 99.53 76 |
|
| testing11 | | | 95.33 80 | 94.98 85 | 96.37 105 | 97.20 138 | 92.31 96 | 99.29 80 | 97.68 90 | 90.59 124 | 94.43 128 | 97.20 166 | 90.79 40 | 98.60 169 | 95.25 110 | 92.38 197 | 98.18 185 |
|
| mPP-MVS | | | 95.90 61 | 95.75 63 | 96.38 104 | 99.58 30 | 89.41 166 | 99.26 84 | 97.41 151 | 90.66 120 | 94.82 121 | 98.95 69 | 86.15 123 | 99.98 9 | 95.24 111 | 99.64 42 | 99.74 47 |
|
| ZNCC-MVS | | | 96.09 51 | 95.81 60 | 96.95 71 | 99.42 47 | 91.19 114 | 99.55 44 | 97.53 127 | 89.72 149 | 95.86 101 | 98.94 72 | 86.59 111 | 99.97 21 | 95.13 112 | 99.56 52 | 99.68 56 |
|
| GG-mvs-BLEND | | | | | 96.98 68 | 96.53 166 | 94.81 43 | 87.20 381 | 97.74 77 | | 93.91 139 | 96.40 203 | 96.56 2 | 96.94 259 | 95.08 113 | 98.95 87 | 99.20 108 |
|
| EIA-MVS | | | 95.11 85 | 95.27 75 | 94.64 176 | 96.34 176 | 86.51 232 | 99.59 40 | 96.62 208 | 92.51 80 | 94.08 136 | 98.64 99 | 86.05 124 | 98.24 187 | 95.07 114 | 98.50 106 | 99.18 109 |
|
| DeepC-MVS | | 91.02 4 | 94.56 109 | 93.92 112 | 96.46 98 | 97.16 143 | 90.76 129 | 98.39 194 | 97.11 179 | 93.92 50 | 88.66 212 | 98.33 119 | 78.14 231 | 99.85 67 | 95.02 115 | 98.57 104 | 98.78 149 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs_mvg |  | | 94.00 119 | 93.33 129 | 96.03 120 | 95.22 220 | 90.90 127 | 99.09 109 | 95.99 253 | 90.58 125 | 91.55 173 | 97.37 157 | 79.91 214 | 98.06 197 | 95.01 116 | 95.22 169 | 99.13 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| WTY-MVS | | | 95.97 56 | 95.11 81 | 98.54 13 | 97.62 114 | 96.65 9 | 99.44 62 | 98.74 16 | 92.25 88 | 95.21 115 | 98.46 116 | 86.56 113 | 99.46 118 | 95.00 117 | 92.69 192 | 99.50 80 |
|
| CSCG | | | 94.87 94 | 94.71 87 | 95.36 145 | 99.54 36 | 86.49 233 | 99.34 77 | 98.15 40 | 82.71 310 | 90.15 197 | 99.25 23 | 89.48 59 | 99.86 63 | 94.97 118 | 98.82 93 | 99.72 50 |
|
| EI-MVSNet-UG-set | | | 95.43 76 | 95.29 74 | 95.86 128 | 99.07 70 | 89.87 156 | 98.43 184 | 97.80 70 | 91.78 95 | 94.11 135 | 98.77 85 | 86.25 121 | 99.48 116 | 94.95 119 | 96.45 148 | 98.22 182 |
|
| CPTT-MVS | | | 94.60 105 | 94.43 93 | 95.09 156 | 99.66 12 | 86.85 228 | 99.44 62 | 97.47 141 | 83.22 297 | 94.34 132 | 98.96 66 | 82.50 183 | 99.55 106 | 94.81 120 | 99.50 55 | 98.88 137 |
|
| PVSNet_0 | | 83.28 16 | 87.31 262 | 85.16 277 | 93.74 209 | 94.78 246 | 84.59 281 | 98.91 130 | 98.69 21 | 89.81 148 | 78.59 327 | 93.23 272 | 61.95 338 | 99.34 134 | 94.75 121 | 55.72 393 | 97.30 208 |
|
| CLD-MVS | | | 91.06 192 | 90.71 187 | 92.10 240 | 94.05 267 | 86.10 249 | 99.55 44 | 96.29 233 | 94.16 45 | 84.70 246 | 97.17 170 | 69.62 290 | 97.82 211 | 94.74 122 | 86.08 256 | 92.39 267 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| casdiffmvs |  | | 93.98 121 | 93.43 125 | 95.61 139 | 95.07 235 | 89.86 157 | 98.80 139 | 95.84 279 | 90.98 114 | 92.74 156 | 97.66 144 | 79.71 215 | 98.10 194 | 94.72 123 | 95.37 168 | 98.87 139 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| VDDNet | | | 90.08 213 | 88.54 228 | 94.69 173 | 94.41 254 | 87.68 205 | 98.21 210 | 96.40 225 | 76.21 358 | 93.33 149 | 97.75 138 | 54.93 364 | 98.77 159 | 94.71 124 | 90.96 228 | 97.61 202 |
|
| CDPH-MVS | | | 96.56 39 | 96.18 45 | 97.70 38 | 99.59 28 | 93.92 63 | 99.13 106 | 97.44 147 | 89.02 170 | 97.90 53 | 99.22 27 | 88.90 65 | 99.49 112 | 94.63 125 | 99.79 27 | 99.68 56 |
|
| GST-MVS | | | 95.97 56 | 95.66 66 | 96.90 72 | 99.49 45 | 91.22 112 | 99.45 61 | 97.48 139 | 89.69 150 | 95.89 98 | 98.72 91 | 86.37 118 | 99.95 31 | 94.62 126 | 99.22 73 | 99.52 77 |
|
| Effi-MVS+ | | | 93.87 125 | 93.15 134 | 96.02 121 | 95.79 200 | 90.76 129 | 96.70 289 | 95.78 280 | 86.98 232 | 95.71 106 | 97.17 170 | 79.58 216 | 98.01 202 | 94.57 127 | 96.09 157 | 99.31 98 |
|
| LFMVS | | | 92.23 169 | 90.84 183 | 96.42 101 | 98.24 95 | 91.08 121 | 98.24 207 | 96.22 236 | 83.39 295 | 94.74 124 | 98.31 120 | 61.12 342 | 98.85 156 | 94.45 128 | 92.82 189 | 99.32 97 |
|
| bld_raw_dy_0_64 | | | 91.25 187 | 90.03 196 | 94.92 163 | 95.99 193 | 92.32 95 | 91.40 366 | 95.74 283 | 70.34 379 | 84.15 252 | 94.47 243 | 85.61 130 | 98.17 189 | 94.42 129 | 98.14 115 | 94.26 252 |
|
| ET-MVSNet_ETH3D | | | 92.56 161 | 91.45 170 | 95.88 127 | 96.39 174 | 94.13 60 | 99.46 59 | 96.97 194 | 92.18 90 | 66.94 381 | 98.29 122 | 94.65 13 | 94.28 352 | 94.34 130 | 83.82 275 | 99.24 104 |
|
| baseline | | | 93.91 123 | 93.30 130 | 95.72 132 | 95.10 233 | 90.07 148 | 97.48 256 | 95.91 271 | 91.03 112 | 93.54 146 | 97.68 142 | 79.58 216 | 98.02 201 | 94.27 131 | 95.14 170 | 99.08 119 |
|
| SDMVSNet | | | 91.09 190 | 89.91 198 | 94.65 174 | 96.80 157 | 90.54 135 | 97.78 240 | 97.81 68 | 88.34 194 | 85.73 236 | 95.26 232 | 66.44 316 | 98.26 185 | 94.25 132 | 86.75 248 | 95.14 246 |
|
| PAPR | | | 96.35 43 | 95.82 58 | 97.94 33 | 99.63 18 | 94.19 59 | 99.42 67 | 97.55 123 | 92.43 82 | 93.82 142 | 99.12 46 | 87.30 94 | 99.91 45 | 94.02 133 | 99.06 78 | 99.74 47 |
|
| PGM-MVS | | | 95.85 62 | 95.65 68 | 96.45 99 | 99.50 42 | 89.77 159 | 98.22 208 | 98.90 13 | 89.19 165 | 96.74 83 | 98.95 69 | 85.91 127 | 99.92 40 | 93.94 134 | 99.46 57 | 99.66 60 |
|
| gg-mvs-nofinetune | | | 90.00 214 | 87.71 240 | 96.89 76 | 96.15 186 | 94.69 47 | 85.15 387 | 97.74 77 | 68.32 387 | 92.97 154 | 60.16 400 | 96.10 3 | 96.84 262 | 93.89 135 | 98.87 91 | 99.14 112 |
|
| MVS | | | 93.92 122 | 92.28 151 | 98.83 7 | 95.69 204 | 96.82 8 | 96.22 304 | 98.17 37 | 84.89 272 | 84.34 251 | 98.61 103 | 79.32 221 | 99.83 73 | 93.88 136 | 99.43 61 | 99.86 29 |
|
| 旧先验2 | | | | | | | | 98.67 154 | | 85.75 257 | 98.96 20 | | | 98.97 154 | 93.84 137 | | |
|
| ACMMP |  | | 94.67 103 | 94.30 94 | 95.79 130 | 99.25 57 | 88.13 197 | 98.41 187 | 98.67 22 | 90.38 132 | 91.43 175 | 98.72 91 | 82.22 192 | 99.95 31 | 93.83 138 | 95.76 162 | 99.29 100 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| BP-MVS | | | | | | | | | | | | | | | 93.82 139 | | |
|
| HQP-MVS | | | 91.50 179 | 91.23 174 | 92.29 234 | 93.95 268 | 86.39 237 | 99.16 95 | 96.37 226 | 93.92 50 | 87.57 220 | 96.67 197 | 73.34 259 | 97.77 215 | 93.82 139 | 86.29 251 | 92.72 262 |
|
| DP-MVS Recon | | | 95.85 62 | 95.15 78 | 97.95 32 | 99.87 2 | 94.38 54 | 99.60 38 | 97.48 139 | 86.58 241 | 94.42 129 | 99.13 44 | 87.36 92 | 99.98 9 | 93.64 141 | 98.33 111 | 99.48 82 |
|
| CHOSEN 1792x2688 | | | 94.35 113 | 93.82 117 | 95.95 125 | 97.40 125 | 88.74 187 | 98.41 187 | 98.27 31 | 92.18 90 | 91.43 175 | 96.40 203 | 78.88 224 | 99.81 79 | 93.59 142 | 97.81 120 | 99.30 99 |
|
| testing91 | | | 94.88 92 | 94.44 92 | 96.21 110 | 97.19 140 | 91.90 102 | 99.23 86 | 97.66 95 | 89.91 145 | 93.66 144 | 97.05 177 | 90.21 50 | 98.50 172 | 93.52 143 | 91.53 220 | 98.25 178 |
|
| testing99 | | | 94.88 92 | 94.45 91 | 96.17 114 | 97.20 138 | 91.91 101 | 99.20 88 | 97.66 95 | 89.95 144 | 93.68 143 | 97.06 175 | 90.28 49 | 98.50 172 | 93.52 143 | 91.54 217 | 98.12 187 |
|
| cascas | | | 90.93 195 | 89.33 209 | 95.76 131 | 95.69 204 | 93.03 81 | 98.99 122 | 96.59 212 | 80.49 338 | 86.79 232 | 94.45 244 | 65.23 325 | 98.60 169 | 93.52 143 | 92.18 204 | 95.66 245 |
|
| HQP_MVS | | | 91.26 185 | 90.95 180 | 92.16 238 | 93.84 275 | 86.07 252 | 99.02 118 | 96.30 230 | 93.38 66 | 86.99 227 | 96.52 199 | 72.92 264 | 97.75 221 | 93.46 146 | 86.17 254 | 92.67 264 |
|
| plane_prior5 | | | | | | | | | 96.30 230 | | | | | 97.75 221 | 93.46 146 | 86.17 254 | 92.67 264 |
|
| PVSNet_Blended_VisFu | | | 94.67 103 | 94.11 101 | 96.34 107 | 97.14 144 | 91.10 119 | 99.32 79 | 97.43 149 | 92.10 92 | 91.53 174 | 96.38 206 | 83.29 166 | 99.68 92 | 93.42 148 | 96.37 150 | 98.25 178 |
|
| AdaColmap |  | | 93.82 127 | 93.06 135 | 96.10 117 | 99.88 1 | 89.07 172 | 98.33 198 | 97.55 123 | 86.81 237 | 90.39 194 | 98.65 98 | 75.09 244 | 99.98 9 | 93.32 149 | 97.53 129 | 99.26 103 |
|
| HyFIR lowres test | | | 93.68 132 | 93.29 131 | 94.87 165 | 97.57 119 | 88.04 199 | 98.18 212 | 98.47 25 | 87.57 221 | 91.24 180 | 95.05 235 | 85.49 135 | 97.46 238 | 93.22 150 | 92.82 189 | 99.10 117 |
|
| HPM-MVS_fast | | | 94.89 90 | 94.62 88 | 95.70 133 | 99.11 66 | 88.44 193 | 99.14 103 | 97.11 179 | 85.82 254 | 95.69 107 | 98.47 114 | 83.46 162 | 99.32 135 | 93.16 151 | 99.63 45 | 99.35 94 |
|
| PMMVS | | | 93.62 135 | 93.90 113 | 92.79 224 | 96.79 159 | 81.40 321 | 98.85 133 | 96.81 199 | 91.25 110 | 96.82 81 | 98.15 128 | 77.02 237 | 98.13 192 | 93.15 152 | 96.30 153 | 98.83 143 |
|
| LCM-MVSNet-Re | | | 88.59 243 | 88.61 224 | 88.51 321 | 95.53 210 | 72.68 373 | 96.85 281 | 88.43 393 | 88.45 187 | 73.14 357 | 90.63 322 | 75.82 240 | 94.38 351 | 92.95 153 | 95.71 164 | 98.48 165 |
|
| EPP-MVSNet | | | 93.75 129 | 93.67 120 | 94.01 201 | 95.86 198 | 85.70 262 | 98.67 154 | 97.66 95 | 84.46 277 | 91.36 178 | 97.18 169 | 91.16 29 | 97.79 213 | 92.93 154 | 93.75 181 | 98.53 162 |
|
| CostFormer | | | 92.89 153 | 92.48 149 | 94.12 195 | 94.99 238 | 85.89 257 | 92.89 349 | 97.00 192 | 86.98 232 | 95.00 120 | 90.78 314 | 90.05 53 | 97.51 236 | 92.92 155 | 91.73 212 | 98.96 127 |
|
| XVG-OURS-SEG-HR | | | 90.95 194 | 90.66 189 | 91.83 245 | 95.18 225 | 81.14 328 | 95.92 311 | 95.92 266 | 88.40 191 | 90.33 195 | 97.85 131 | 70.66 284 | 99.38 128 | 92.83 156 | 88.83 240 | 94.98 249 |
|
| mvsmamba | | | 89.99 215 | 89.42 206 | 91.69 252 | 90.64 329 | 86.34 240 | 98.40 190 | 92.27 368 | 91.01 113 | 84.80 245 | 94.93 236 | 76.12 239 | 96.51 278 | 92.81 157 | 83.84 272 | 92.21 276 |
|
| sss | | | 94.85 95 | 93.94 111 | 97.58 42 | 96.43 171 | 94.09 61 | 98.93 127 | 99.16 8 | 89.50 159 | 95.27 114 | 97.85 131 | 81.50 201 | 99.65 98 | 92.79 158 | 94.02 179 | 98.99 124 |
|
| test_vis1_rt | | | 81.31 328 | 80.05 331 | 85.11 345 | 91.29 321 | 70.66 379 | 98.98 124 | 77.39 408 | 85.76 256 | 68.80 372 | 82.40 379 | 36.56 395 | 99.44 119 | 92.67 159 | 86.55 250 | 85.24 383 |
|
| MAR-MVS | | | 94.43 112 | 94.09 102 | 95.45 142 | 99.10 68 | 87.47 213 | 98.39 194 | 97.79 72 | 88.37 192 | 94.02 137 | 99.17 35 | 78.64 229 | 99.91 45 | 92.48 160 | 98.85 92 | 98.96 127 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| API-MVS | | | 94.78 97 | 94.18 100 | 96.59 91 | 99.21 61 | 90.06 151 | 98.80 139 | 97.78 73 | 83.59 292 | 93.85 140 | 99.21 28 | 83.79 157 | 99.97 21 | 92.37 161 | 99.00 82 | 99.74 47 |
|
| nrg030 | | | 90.23 207 | 88.87 217 | 94.32 187 | 91.53 317 | 93.54 70 | 98.79 143 | 95.89 274 | 88.12 202 | 84.55 248 | 94.61 242 | 78.80 227 | 96.88 261 | 92.35 162 | 75.21 320 | 92.53 266 |
|
| OMC-MVS | | | 93.90 124 | 93.62 121 | 94.73 172 | 98.63 87 | 87.00 226 | 98.04 227 | 96.56 216 | 92.19 89 | 92.46 158 | 98.73 89 | 79.49 220 | 99.14 145 | 92.16 163 | 94.34 177 | 98.03 189 |
|
| testing222 | | | 94.48 111 | 94.00 105 | 95.95 125 | 97.30 130 | 92.27 97 | 98.82 136 | 97.92 55 | 89.20 164 | 94.82 121 | 97.26 161 | 87.13 96 | 97.32 246 | 91.95 164 | 91.56 215 | 98.25 178 |
|
| 1314 | | | 93.44 137 | 91.98 159 | 97.84 34 | 95.24 218 | 94.38 54 | 96.22 304 | 97.92 55 | 90.18 136 | 82.28 279 | 97.71 141 | 77.63 234 | 99.80 81 | 91.94 165 | 98.67 100 | 99.34 96 |
|
| DPM-MVS | | | 97.86 8 | 97.25 21 | 99.68 1 | 98.25 94 | 99.10 1 | 99.76 20 | 97.78 73 | 96.61 12 | 98.15 41 | 99.53 7 | 93.62 15 | 100.00 1 | 91.79 166 | 99.80 26 | 99.94 18 |
|
| mvs_anonymous | | | 92.50 162 | 91.65 166 | 95.06 157 | 96.60 163 | 89.64 161 | 97.06 273 | 96.44 224 | 86.64 240 | 84.14 253 | 93.93 254 | 82.49 184 | 96.17 303 | 91.47 167 | 96.08 158 | 99.35 94 |
|
| baseline2 | | | 94.04 118 | 93.80 118 | 94.74 171 | 93.07 294 | 90.25 139 | 98.12 218 | 98.16 39 | 89.86 146 | 86.53 233 | 96.95 181 | 95.56 5 | 98.05 199 | 91.44 168 | 94.53 174 | 95.93 243 |
|
| IB-MVS | | 89.43 6 | 92.12 171 | 90.83 185 | 95.98 124 | 95.40 215 | 90.78 128 | 99.81 11 | 98.06 45 | 91.23 111 | 85.63 239 | 93.66 262 | 90.63 41 | 98.78 158 | 91.22 169 | 71.85 355 | 98.36 174 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ab-mvs | | | 91.05 193 | 89.17 211 | 96.69 86 | 95.96 195 | 91.72 105 | 92.62 353 | 97.23 165 | 85.61 258 | 89.74 204 | 93.89 256 | 68.55 295 | 99.42 123 | 91.09 170 | 87.84 243 | 98.92 135 |
|
| XVG-OURS | | | 90.83 196 | 90.49 191 | 91.86 244 | 95.23 219 | 81.25 325 | 95.79 319 | 95.92 266 | 88.96 172 | 90.02 200 | 98.03 130 | 71.60 278 | 99.35 133 | 91.06 171 | 87.78 244 | 94.98 249 |
|
| 3Dnovator | | 87.35 11 | 93.17 149 | 91.77 164 | 97.37 52 | 95.41 214 | 93.07 79 | 98.82 136 | 97.85 60 | 91.53 101 | 82.56 272 | 97.58 148 | 71.97 273 | 99.82 76 | 91.01 172 | 99.23 72 | 99.22 107 |
|
| VPA-MVSNet | | | 89.10 226 | 87.66 241 | 93.45 212 | 92.56 297 | 91.02 123 | 97.97 231 | 98.32 30 | 86.92 234 | 86.03 235 | 92.01 290 | 68.84 294 | 97.10 253 | 90.92 173 | 75.34 319 | 92.23 274 |
|
| PAPM_NR | | | 95.43 76 | 95.05 83 | 96.57 94 | 99.42 47 | 90.14 144 | 98.58 169 | 97.51 133 | 90.65 122 | 92.44 159 | 98.90 76 | 87.77 83 | 99.90 50 | 90.88 174 | 99.32 67 | 99.68 56 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 138 | 91.84 162 | 98.17 23 | 95.73 203 | 95.08 34 | 98.92 129 | 97.04 186 | 91.42 106 | 81.48 296 | 97.60 146 | 74.60 247 | 99.79 82 | 90.84 175 | 98.97 84 | 99.64 64 |
|
| test_fmvs2 | | | 85.10 296 | 85.45 274 | 84.02 354 | 89.85 338 | 65.63 388 | 98.49 178 | 92.59 364 | 90.45 129 | 85.43 242 | 93.32 268 | 43.94 386 | 96.59 272 | 90.81 176 | 84.19 269 | 89.85 346 |
|
| gm-plane-assit | | | | | | 94.69 248 | 88.14 196 | | | 88.22 199 | | 97.20 166 | | 98.29 183 | 90.79 177 | | |
|
| MVSTER | | | 92.71 155 | 92.32 150 | 93.86 205 | 97.29 132 | 92.95 85 | 99.01 120 | 96.59 212 | 90.09 140 | 85.51 240 | 94.00 251 | 94.61 14 | 96.56 274 | 90.77 178 | 83.03 281 | 92.08 282 |
|
| ETVMVS | | | 94.50 110 | 93.90 113 | 96.31 108 | 97.48 124 | 92.98 82 | 99.07 111 | 97.86 59 | 88.09 203 | 94.40 130 | 96.90 184 | 88.35 71 | 97.28 247 | 90.72 179 | 92.25 203 | 98.66 159 |
|
| ACMP | | 87.39 10 | 88.71 239 | 88.24 232 | 90.12 288 | 93.91 273 | 81.06 329 | 98.50 176 | 95.67 289 | 89.43 161 | 80.37 305 | 95.55 226 | 65.67 319 | 97.83 210 | 90.55 180 | 84.51 265 | 91.47 299 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ECVR-MVS |  | | 92.29 166 | 91.33 172 | 95.15 154 | 96.41 172 | 87.84 202 | 98.10 221 | 94.84 325 | 90.82 117 | 91.42 177 | 97.28 159 | 65.61 321 | 98.49 174 | 90.33 181 | 97.19 137 | 99.12 115 |
|
| testdata | | | | | 95.26 151 | 98.20 96 | 87.28 220 | | 97.60 112 | 85.21 263 | 98.48 33 | 99.15 39 | 88.15 76 | 98.72 164 | 90.29 182 | 99.45 59 | 99.78 38 |
|
| LPG-MVS_test | | | 88.86 231 | 88.47 229 | 90.06 289 | 93.35 289 | 80.95 330 | 98.22 208 | 95.94 260 | 87.73 217 | 83.17 262 | 96.11 213 | 66.28 317 | 97.77 215 | 90.19 183 | 85.19 261 | 91.46 300 |
|
| LGP-MVS_train | | | | | 90.06 289 | 93.35 289 | 80.95 330 | | 95.94 260 | 87.73 217 | 83.17 262 | 96.11 213 | 66.28 317 | 97.77 215 | 90.19 183 | 85.19 261 | 91.46 300 |
|
| MVSFormer | | | 94.71 102 | 94.08 103 | 96.61 89 | 95.05 236 | 94.87 38 | 97.77 242 | 96.17 242 | 86.84 235 | 98.04 48 | 98.52 106 | 85.52 132 | 95.99 309 | 89.83 185 | 98.97 84 | 98.96 127 |
|
| test_djsdf | | | 88.26 248 | 87.73 239 | 89.84 296 | 88.05 361 | 82.21 313 | 97.77 242 | 96.17 242 | 86.84 235 | 82.41 277 | 91.95 294 | 72.07 272 | 95.99 309 | 89.83 185 | 84.50 266 | 91.32 307 |
|
| test2506 | | | 94.80 96 | 94.21 97 | 96.58 92 | 96.41 172 | 92.18 99 | 98.01 228 | 98.96 11 | 90.82 117 | 93.46 147 | 97.28 159 | 85.92 125 | 98.45 177 | 89.82 187 | 97.19 137 | 99.12 115 |
|
| tpmrst | | | 92.78 154 | 92.16 154 | 94.65 174 | 96.27 179 | 87.45 214 | 91.83 359 | 97.10 182 | 89.10 169 | 94.68 125 | 90.69 318 | 88.22 73 | 97.73 223 | 89.78 188 | 91.80 210 | 98.77 150 |
|
| PLC |  | 91.07 3 | 94.23 115 | 94.01 104 | 94.87 165 | 99.17 63 | 87.49 212 | 99.25 85 | 96.55 217 | 88.43 190 | 91.26 179 | 98.21 126 | 85.92 125 | 99.86 63 | 89.77 189 | 97.57 126 | 97.24 211 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test1111 | | | 92.12 171 | 91.19 175 | 94.94 162 | 96.15 186 | 87.36 217 | 98.12 218 | 94.84 325 | 90.85 116 | 90.97 182 | 97.26 161 | 65.60 322 | 98.37 179 | 89.74 190 | 97.14 140 | 99.07 121 |
|
| CDS-MVSNet | | | 93.47 136 | 93.04 137 | 94.76 169 | 94.75 247 | 89.45 165 | 98.82 136 | 97.03 188 | 87.91 210 | 90.97 182 | 96.48 201 | 89.06 62 | 96.36 288 | 89.50 191 | 92.81 191 | 98.49 164 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Effi-MVS+-dtu | | | 89.97 216 | 90.68 188 | 87.81 326 | 95.15 226 | 71.98 375 | 97.87 236 | 95.40 305 | 91.92 93 | 87.57 220 | 91.44 302 | 74.27 253 | 96.84 262 | 89.45 192 | 93.10 187 | 94.60 251 |
|
| jajsoiax | | | 87.35 261 | 86.51 258 | 89.87 294 | 87.75 366 | 81.74 317 | 97.03 274 | 95.98 254 | 88.47 184 | 80.15 308 | 93.80 258 | 61.47 339 | 96.36 288 | 89.44 193 | 84.47 267 | 91.50 298 |
|
| mvs_tets | | | 87.09 264 | 86.22 261 | 89.71 300 | 87.87 362 | 81.39 322 | 96.73 288 | 95.90 272 | 88.19 200 | 79.99 310 | 93.61 263 | 59.96 346 | 96.31 296 | 89.40 194 | 84.34 268 | 91.43 302 |
|
| PS-MVSNAJss | | | 89.54 222 | 89.05 214 | 91.00 263 | 88.77 352 | 84.36 284 | 97.39 257 | 95.97 255 | 88.47 184 | 81.88 289 | 93.80 258 | 82.48 185 | 96.50 279 | 89.34 195 | 83.34 280 | 92.15 279 |
|
| VPNet | | | 88.30 246 | 86.57 256 | 93.49 211 | 91.95 309 | 91.35 111 | 98.18 212 | 97.20 171 | 88.61 181 | 84.52 249 | 94.89 237 | 62.21 337 | 96.76 267 | 89.34 195 | 72.26 352 | 92.36 268 |
|
| 114514_t | | | 94.06 117 | 93.05 136 | 97.06 61 | 99.08 69 | 92.26 98 | 98.97 125 | 97.01 191 | 82.58 312 | 92.57 157 | 98.22 124 | 80.68 210 | 99.30 136 | 89.34 195 | 99.02 81 | 99.63 66 |
|
| OPM-MVS | | | 89.76 218 | 89.15 212 | 91.57 254 | 90.53 330 | 85.58 264 | 98.11 220 | 95.93 264 | 92.88 76 | 86.05 234 | 96.47 202 | 67.06 311 | 97.87 208 | 89.29 198 | 86.08 256 | 91.26 310 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MVS_Test | | | 93.67 133 | 92.67 145 | 96.69 86 | 96.72 161 | 92.66 89 | 97.22 268 | 96.03 252 | 87.69 219 | 95.12 118 | 94.03 249 | 81.55 199 | 98.28 184 | 89.17 199 | 96.46 147 | 99.14 112 |
|
| BH-w/o | | | 92.32 165 | 91.79 163 | 93.91 204 | 96.85 154 | 86.18 246 | 99.11 108 | 95.74 283 | 88.13 201 | 84.81 244 | 97.00 179 | 77.26 236 | 97.91 204 | 89.16 200 | 98.03 117 | 97.64 198 |
|
| TAMVS | | | 92.62 158 | 92.09 157 | 94.20 192 | 94.10 263 | 87.68 205 | 98.41 187 | 96.97 194 | 87.53 223 | 89.74 204 | 96.04 216 | 84.77 149 | 96.49 281 | 88.97 201 | 92.31 200 | 98.42 166 |
|
| CNLPA | | | 93.64 134 | 92.74 143 | 96.36 106 | 98.96 75 | 90.01 154 | 99.19 89 | 95.89 274 | 86.22 249 | 89.40 207 | 98.85 81 | 80.66 211 | 99.84 69 | 88.57 202 | 96.92 142 | 99.24 104 |
|
| baseline1 | | | 92.61 159 | 91.28 173 | 96.58 92 | 97.05 151 | 94.63 48 | 97.72 246 | 96.20 237 | 89.82 147 | 88.56 213 | 96.85 188 | 86.85 104 | 97.82 211 | 88.42 203 | 80.10 296 | 97.30 208 |
|
| CANet_DTU | | | 94.31 114 | 93.35 128 | 97.20 58 | 97.03 152 | 94.71 46 | 98.62 161 | 95.54 296 | 95.61 25 | 97.21 68 | 98.47 114 | 71.88 274 | 99.84 69 | 88.38 204 | 97.46 131 | 97.04 218 |
|
| thisisatest0515 | | | 94.75 98 | 94.19 98 | 96.43 100 | 96.13 191 | 92.64 92 | 99.47 55 | 97.60 112 | 87.55 222 | 93.17 150 | 97.59 147 | 94.71 11 | 98.42 178 | 88.28 205 | 93.20 185 | 98.24 181 |
|
| 原ACMM1 | | | | | 96.18 112 | 99.03 71 | 90.08 147 | | 97.63 107 | 88.98 171 | 97.00 74 | 98.97 62 | 88.14 77 | 99.71 90 | 88.23 206 | 99.62 46 | 98.76 151 |
|
| UGNet | | | 91.91 175 | 90.85 182 | 95.10 155 | 97.06 150 | 88.69 188 | 98.01 228 | 98.24 34 | 92.41 85 | 92.39 160 | 93.61 263 | 60.52 344 | 99.68 92 | 88.14 207 | 97.25 135 | 96.92 222 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| AUN-MVS | | | 90.17 210 | 89.50 203 | 92.19 237 | 96.21 182 | 82.67 309 | 97.76 244 | 97.53 127 | 88.05 204 | 91.67 168 | 96.15 211 | 83.10 171 | 97.47 237 | 88.11 208 | 66.91 372 | 96.43 236 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 146 | 93.00 139 | 94.06 198 | 96.14 188 | 86.71 231 | 98.68 152 | 96.70 204 | 88.30 196 | 89.71 206 | 97.64 145 | 85.43 138 | 96.39 286 | 88.06 209 | 96.32 151 | 99.08 119 |
|
| PVSNet | | 87.13 12 | 93.69 130 | 92.83 142 | 96.28 109 | 97.99 104 | 90.22 142 | 99.38 71 | 98.93 12 | 91.42 106 | 93.66 144 | 97.68 142 | 71.29 281 | 99.64 100 | 87.94 210 | 97.20 136 | 98.98 125 |
|
| FIs | | | 90.70 199 | 89.87 199 | 93.18 216 | 92.29 301 | 91.12 117 | 98.17 214 | 98.25 32 | 89.11 168 | 83.44 258 | 94.82 239 | 82.26 191 | 96.17 303 | 87.76 211 | 82.76 283 | 92.25 272 |
|
| tpm2 | | | 91.77 176 | 91.09 176 | 93.82 207 | 94.83 245 | 85.56 265 | 92.51 354 | 97.16 174 | 84.00 283 | 93.83 141 | 90.66 320 | 87.54 85 | 97.17 249 | 87.73 212 | 91.55 216 | 98.72 152 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 172 | 97.82 65 | 87.20 227 | | | | 99.90 50 | 87.64 213 | | 99.85 30 |
|
| Anonymous202405211 | | | 88.84 232 | 87.03 251 | 94.27 188 | 98.14 100 | 84.18 287 | 98.44 183 | 95.58 294 | 76.79 357 | 89.34 208 | 96.88 187 | 53.42 369 | 99.54 108 | 87.53 214 | 87.12 247 | 99.09 118 |
|
| IS-MVSNet | | | 93.00 152 | 92.51 148 | 94.49 179 | 96.14 188 | 87.36 217 | 98.31 201 | 95.70 286 | 88.58 183 | 90.17 196 | 97.50 151 | 83.02 173 | 97.22 248 | 87.06 215 | 96.07 159 | 98.90 136 |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 116 | 91.38 367 | | 87.45 224 | 93.08 152 | | 86.67 109 | | 87.02 216 | | 98.95 131 |
|
| Anonymous20240529 | | | 87.66 258 | 85.58 271 | 93.92 203 | 97.59 117 | 85.01 276 | 98.13 216 | 97.13 177 | 66.69 392 | 88.47 214 | 96.01 217 | 55.09 363 | 99.51 110 | 87.00 217 | 84.12 270 | 97.23 212 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 220 | 88.55 227 | 92.75 226 | 92.17 304 | 90.07 148 | 98.74 146 | 98.15 40 | 88.37 192 | 83.21 260 | 93.98 252 | 82.86 175 | 95.93 313 | 86.95 218 | 72.47 349 | 92.25 272 |
|
| DU-MVS | | | 88.83 234 | 87.51 242 | 92.79 224 | 91.46 318 | 90.07 148 | 98.71 147 | 97.62 109 | 88.87 177 | 83.21 260 | 93.68 260 | 74.63 245 | 95.93 313 | 86.95 218 | 72.47 349 | 92.36 268 |
|
| FA-MVS(test-final) | | | 92.22 170 | 91.08 177 | 95.64 137 | 96.05 192 | 88.98 176 | 91.60 363 | 97.25 161 | 86.99 229 | 91.84 164 | 92.12 286 | 83.03 172 | 99.00 151 | 86.91 220 | 93.91 180 | 98.93 133 |
|
| ACMM | | 86.95 13 | 88.77 237 | 88.22 233 | 90.43 280 | 93.61 281 | 81.34 323 | 98.50 176 | 95.92 266 | 87.88 211 | 83.85 256 | 95.20 234 | 67.20 309 | 97.89 206 | 86.90 221 | 84.90 263 | 92.06 283 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UniMVSNet (Re) | | | 89.50 223 | 88.32 231 | 93.03 218 | 92.21 303 | 90.96 125 | 98.90 131 | 98.39 27 | 89.13 167 | 83.22 259 | 92.03 288 | 81.69 198 | 96.34 294 | 86.79 222 | 72.53 348 | 91.81 287 |
|
| BH-untuned | | | 91.46 181 | 90.84 183 | 93.33 214 | 96.51 168 | 84.83 279 | 98.84 135 | 95.50 298 | 86.44 248 | 83.50 257 | 96.70 195 | 75.49 243 | 97.77 215 | 86.78 223 | 97.81 120 | 97.40 205 |
|
| mvsany_test3 | | | 75.85 351 | 74.52 353 | 79.83 368 | 73.53 400 | 60.64 392 | 91.73 361 | 87.87 395 | 83.91 286 | 70.55 366 | 82.52 378 | 31.12 397 | 93.66 355 | 86.66 224 | 62.83 379 | 85.19 384 |
|
| miper_enhance_ethall | | | 90.33 205 | 89.70 200 | 92.22 235 | 97.12 146 | 88.93 181 | 98.35 197 | 95.96 257 | 88.60 182 | 83.14 264 | 92.33 285 | 87.38 88 | 96.18 302 | 86.49 225 | 77.89 305 | 91.55 297 |
|
| thisisatest0530 | | | 94.00 119 | 93.52 123 | 95.43 143 | 95.76 202 | 90.02 153 | 98.99 122 | 97.60 112 | 86.58 241 | 91.74 166 | 97.36 158 | 94.78 10 | 98.34 180 | 86.37 226 | 92.48 196 | 97.94 192 |
|
| UWE-MVS | | | 93.18 147 | 93.40 127 | 92.50 232 | 96.56 164 | 83.55 295 | 98.09 224 | 97.84 61 | 89.50 159 | 91.72 167 | 96.23 209 | 91.08 32 | 96.70 268 | 86.28 227 | 93.33 184 | 97.26 210 |
|
| TESTMET0.1,1 | | | 93.82 127 | 93.26 132 | 95.49 141 | 95.21 221 | 90.25 139 | 99.15 100 | 97.54 126 | 89.18 166 | 91.79 165 | 94.87 238 | 89.13 61 | 97.63 228 | 86.21 228 | 96.29 154 | 98.60 160 |
|
| anonymousdsp | | | 86.69 270 | 85.75 269 | 89.53 305 | 86.46 374 | 82.94 302 | 96.39 295 | 95.71 285 | 83.97 284 | 79.63 315 | 90.70 317 | 68.85 293 | 95.94 312 | 86.01 229 | 84.02 271 | 89.72 348 |
|
| F-COLMAP | | | 92.07 173 | 91.75 165 | 93.02 219 | 98.16 99 | 82.89 305 | 98.79 143 | 95.97 255 | 86.54 243 | 87.92 217 | 97.80 134 | 78.69 228 | 99.65 98 | 85.97 230 | 95.93 161 | 96.53 233 |
|
| cl22 | | | 89.57 221 | 88.79 220 | 91.91 243 | 97.94 105 | 87.62 208 | 97.98 230 | 96.51 219 | 85.03 268 | 82.37 278 | 91.79 295 | 83.65 158 | 96.50 279 | 85.96 231 | 77.89 305 | 91.61 294 |
|
| test-LLR | | | 93.11 150 | 92.68 144 | 94.40 183 | 94.94 241 | 87.27 221 | 99.15 100 | 97.25 161 | 90.21 134 | 91.57 170 | 94.04 247 | 84.89 145 | 97.58 232 | 85.94 232 | 96.13 155 | 98.36 174 |
|
| test-mter | | | 93.27 145 | 92.89 141 | 94.40 183 | 94.94 241 | 87.27 221 | 99.15 100 | 97.25 161 | 88.95 173 | 91.57 170 | 94.04 247 | 88.03 79 | 97.58 232 | 85.94 232 | 96.13 155 | 98.36 174 |
|
| FC-MVSNet-test | | | 90.22 208 | 89.40 207 | 92.67 230 | 91.78 313 | 89.86 157 | 97.89 233 | 98.22 35 | 88.81 178 | 82.96 265 | 94.66 241 | 81.90 197 | 95.96 311 | 85.89 234 | 82.52 286 | 92.20 278 |
|
| Vis-MVSNet |  | | 92.64 157 | 91.85 161 | 95.03 160 | 95.12 229 | 88.23 194 | 98.48 180 | 96.81 199 | 91.61 98 | 92.16 163 | 97.22 165 | 71.58 279 | 98.00 203 | 85.85 235 | 97.81 120 | 98.88 137 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| sd_testset | | | 89.23 224 | 88.05 237 | 92.74 227 | 96.80 157 | 85.33 269 | 95.85 317 | 97.03 188 | 88.34 194 | 85.73 236 | 95.26 232 | 61.12 342 | 97.76 220 | 85.61 236 | 86.75 248 | 95.14 246 |
|
| test_fmvs3 | | | 75.09 352 | 75.19 349 | 74.81 373 | 77.45 396 | 54.08 399 | 95.93 310 | 90.64 384 | 82.51 315 | 73.29 355 | 81.19 384 | 22.29 402 | 86.29 395 | 85.50 237 | 67.89 368 | 84.06 386 |
|
| WR-MVS | | | 88.54 244 | 87.22 249 | 92.52 231 | 91.93 311 | 89.50 164 | 98.56 170 | 97.84 61 | 86.99 229 | 81.87 290 | 93.81 257 | 74.25 254 | 95.92 315 | 85.29 238 | 74.43 329 | 92.12 280 |
|
| XXY-MVS | | | 87.75 254 | 86.02 264 | 92.95 222 | 90.46 331 | 89.70 160 | 97.71 248 | 95.90 272 | 84.02 282 | 80.95 299 | 94.05 246 | 67.51 307 | 97.10 253 | 85.16 239 | 78.41 302 | 92.04 284 |
|
| thres200 | | | 93.69 130 | 92.59 147 | 96.97 69 | 97.76 109 | 94.74 45 | 99.35 76 | 99.36 2 | 89.23 163 | 91.21 181 | 96.97 180 | 83.42 163 | 98.77 159 | 85.08 240 | 90.96 228 | 97.39 206 |
|
| tttt0517 | | | 93.30 143 | 93.01 138 | 94.17 193 | 95.57 207 | 86.47 234 | 98.51 175 | 97.60 112 | 85.99 252 | 90.55 189 | 97.19 168 | 94.80 9 | 98.31 181 | 85.06 241 | 91.86 208 | 97.74 195 |
|
| XVG-ACMP-BASELINE | | | 85.86 285 | 84.95 281 | 88.57 320 | 89.90 336 | 77.12 355 | 94.30 335 | 95.60 293 | 87.40 225 | 82.12 282 | 92.99 278 | 53.42 369 | 97.66 225 | 85.02 242 | 83.83 273 | 90.92 318 |
|
| dmvs_re | | | 88.69 240 | 88.06 236 | 90.59 274 | 93.83 277 | 78.68 345 | 95.75 320 | 96.18 241 | 87.99 207 | 84.48 250 | 96.32 207 | 67.52 306 | 96.94 259 | 84.98 243 | 85.49 260 | 96.14 240 |
|
| æ–°å‡ ä½•1 | | | | | 97.40 50 | 98.92 77 | 92.51 94 | | 97.77 75 | 85.52 259 | 96.69 85 | 99.06 53 | 88.08 78 | 99.89 53 | 84.88 244 | 99.62 46 | 99.79 36 |
|
| 1112_ss | | | 92.71 155 | 91.55 168 | 96.20 111 | 95.56 208 | 91.12 117 | 98.48 180 | 94.69 332 | 88.29 197 | 86.89 230 | 98.50 108 | 87.02 100 | 98.66 167 | 84.75 245 | 89.77 238 | 98.81 145 |
|
| miper_ehance_all_eth | | | 88.94 229 | 88.12 235 | 91.40 255 | 95.32 217 | 86.93 227 | 97.85 237 | 95.55 295 | 84.19 280 | 81.97 287 | 91.50 301 | 84.16 153 | 95.91 316 | 84.69 246 | 77.89 305 | 91.36 305 |
|
| Test_1112_low_res | | | 92.27 168 | 90.97 179 | 96.18 112 | 95.53 210 | 91.10 119 | 98.47 182 | 94.66 333 | 88.28 198 | 86.83 231 | 93.50 267 | 87.00 101 | 98.65 168 | 84.69 246 | 89.74 239 | 98.80 146 |
|
| TR-MVS | | | 90.77 197 | 89.44 205 | 94.76 169 | 96.31 177 | 88.02 200 | 97.92 232 | 95.96 257 | 85.52 259 | 88.22 216 | 97.23 164 | 66.80 312 | 98.09 195 | 84.58 248 | 92.38 197 | 98.17 186 |
|
| tt0805 | | | 86.50 276 | 84.79 285 | 91.63 253 | 91.97 307 | 81.49 319 | 96.49 293 | 97.38 154 | 82.24 319 | 82.44 274 | 95.82 222 | 51.22 374 | 98.25 186 | 84.55 249 | 80.96 292 | 95.13 248 |
|
| OpenMVS |  | 85.28 14 | 90.75 198 | 88.84 218 | 96.48 97 | 93.58 282 | 93.51 71 | 98.80 139 | 97.41 151 | 82.59 311 | 78.62 325 | 97.49 152 | 68.00 302 | 99.82 76 | 84.52 250 | 98.55 105 | 96.11 241 |
|
| UniMVSNet_ETH3D | | | 85.65 292 | 83.79 300 | 91.21 258 | 90.41 332 | 80.75 332 | 95.36 325 | 95.78 280 | 78.76 347 | 81.83 293 | 94.33 245 | 49.86 379 | 96.66 269 | 84.30 251 | 83.52 278 | 96.22 239 |
|
| NR-MVSNet | | | 87.74 257 | 86.00 265 | 92.96 221 | 91.46 318 | 90.68 132 | 96.65 290 | 97.42 150 | 88.02 206 | 73.42 354 | 93.68 260 | 77.31 235 | 95.83 319 | 84.26 252 | 71.82 356 | 92.36 268 |
|
| D2MVS | | | 87.96 250 | 87.39 244 | 89.70 301 | 91.84 312 | 83.40 297 | 98.31 201 | 98.49 23 | 88.04 205 | 78.23 331 | 90.26 333 | 73.57 257 | 96.79 266 | 84.21 253 | 83.53 277 | 88.90 358 |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 254 | | |
|
| Baseline_NR-MVSNet | | | 85.83 286 | 84.82 284 | 88.87 319 | 88.73 353 | 83.34 298 | 98.63 160 | 91.66 377 | 80.41 341 | 82.44 274 | 91.35 304 | 74.63 245 | 95.42 331 | 84.13 255 | 71.39 358 | 87.84 364 |
|
| thres100view900 | | | 93.34 142 | 92.15 155 | 96.90 72 | 97.62 114 | 94.84 40 | 99.06 114 | 99.36 2 | 87.96 208 | 90.47 192 | 96.78 192 | 83.29 166 | 98.75 161 | 84.11 256 | 90.69 230 | 97.12 213 |
|
| tfpn200view9 | | | 93.43 138 | 92.27 152 | 96.90 72 | 97.68 112 | 94.84 40 | 99.18 91 | 99.36 2 | 88.45 187 | 90.79 184 | 96.90 184 | 83.31 164 | 98.75 161 | 84.11 256 | 90.69 230 | 97.12 213 |
|
| thres400 | | | 93.39 140 | 92.27 152 | 96.73 82 | 97.68 112 | 94.84 40 | 99.18 91 | 99.36 2 | 88.45 187 | 90.79 184 | 96.90 184 | 83.31 164 | 98.75 161 | 84.11 256 | 90.69 230 | 96.61 228 |
|
| c3_l | | | 88.19 249 | 87.23 248 | 91.06 261 | 94.97 239 | 86.17 247 | 97.72 246 | 95.38 306 | 83.43 294 | 81.68 294 | 91.37 303 | 82.81 176 | 95.72 322 | 84.04 259 | 73.70 337 | 91.29 309 |
|
| UA-Net | | | 93.30 143 | 92.62 146 | 95.34 146 | 96.27 179 | 88.53 192 | 95.88 314 | 96.97 194 | 90.90 115 | 95.37 113 | 97.07 174 | 82.38 190 | 99.10 147 | 83.91 260 | 94.86 173 | 98.38 170 |
|
| IterMVS-LS | | | 88.34 245 | 87.44 243 | 91.04 262 | 94.10 263 | 85.85 259 | 98.10 221 | 95.48 299 | 85.12 264 | 82.03 286 | 91.21 307 | 81.35 205 | 95.63 325 | 83.86 261 | 75.73 317 | 91.63 290 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 89.87 217 | 89.38 208 | 91.36 257 | 94.32 257 | 85.87 258 | 97.61 253 | 96.59 212 | 85.10 265 | 85.51 240 | 97.10 172 | 81.30 206 | 96.56 274 | 83.85 262 | 83.03 281 | 91.64 289 |
|
| tpm | | | 89.67 219 | 88.95 216 | 91.82 246 | 92.54 298 | 81.43 320 | 92.95 348 | 95.92 266 | 87.81 212 | 90.50 191 | 89.44 346 | 84.99 143 | 95.65 324 | 83.67 263 | 82.71 284 | 98.38 170 |
|
| eth_miper_zixun_eth | | | 87.76 253 | 87.00 252 | 90.06 289 | 94.67 249 | 82.65 310 | 97.02 276 | 95.37 307 | 84.19 280 | 81.86 292 | 91.58 300 | 81.47 202 | 95.90 317 | 83.24 264 | 73.61 338 | 91.61 294 |
|
| Fast-Effi-MVS+ | | | 91.72 177 | 90.79 186 | 94.49 179 | 95.89 196 | 87.40 216 | 99.54 49 | 95.70 286 | 85.01 270 | 89.28 209 | 95.68 225 | 77.75 233 | 97.57 235 | 83.22 265 | 95.06 171 | 98.51 163 |
|
| test_post1 | | | | | | | | 90.74 375 | | | | 41.37 411 | 85.38 139 | 96.36 288 | 83.16 266 | | |
|
| SCA | | | 90.64 201 | 89.25 210 | 94.83 168 | 94.95 240 | 88.83 183 | 96.26 301 | 97.21 167 | 90.06 143 | 90.03 199 | 90.62 323 | 66.61 313 | 96.81 264 | 83.16 266 | 94.36 176 | 98.84 140 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 254 | 86.31 260 | 92.07 241 | 90.81 326 | 88.56 189 | 98.33 198 | 97.18 172 | 87.76 214 | 81.87 290 | 93.90 255 | 72.45 268 | 95.43 330 | 83.13 268 | 71.30 359 | 92.23 274 |
|
| CMPMVS |  | 58.40 21 | 80.48 331 | 80.11 330 | 81.59 366 | 85.10 378 | 59.56 393 | 94.14 338 | 95.95 259 | 68.54 386 | 60.71 390 | 93.31 269 | 55.35 362 | 97.87 208 | 83.06 269 | 84.85 264 | 87.33 370 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| thres600view7 | | | 93.18 147 | 92.00 158 | 96.75 80 | 97.62 114 | 94.92 35 | 99.07 111 | 99.36 2 | 87.96 208 | 90.47 192 | 96.78 192 | 83.29 166 | 98.71 165 | 82.93 270 | 90.47 234 | 96.61 228 |
|
| pmmvs4 | | | 87.58 260 | 86.17 263 | 91.80 247 | 89.58 342 | 88.92 182 | 97.25 265 | 95.28 310 | 82.54 313 | 80.49 304 | 93.17 274 | 75.62 242 | 96.05 308 | 82.75 271 | 78.90 300 | 90.42 333 |
|
| CVMVSNet | | | 90.30 206 | 90.91 181 | 88.46 322 | 94.32 257 | 73.58 368 | 97.61 253 | 97.59 116 | 90.16 139 | 88.43 215 | 97.10 172 | 76.83 238 | 92.86 362 | 82.64 272 | 93.54 183 | 98.93 133 |
|
| Anonymous20231211 | | | 84.72 300 | 82.65 312 | 90.91 265 | 97.71 111 | 84.55 282 | 97.28 263 | 96.67 205 | 66.88 391 | 79.18 321 | 90.87 313 | 58.47 350 | 96.60 271 | 82.61 273 | 74.20 333 | 91.59 296 |
|
| GA-MVS | | | 90.10 212 | 88.69 222 | 94.33 186 | 92.44 299 | 87.97 201 | 99.08 110 | 96.26 234 | 89.65 151 | 86.92 229 | 93.11 275 | 68.09 300 | 96.96 257 | 82.54 274 | 90.15 235 | 98.05 188 |
|
| QAPM | | | 91.41 182 | 89.49 204 | 97.17 59 | 95.66 206 | 93.42 73 | 98.60 165 | 97.51 133 | 80.92 336 | 81.39 297 | 97.41 156 | 72.89 266 | 99.87 58 | 82.33 275 | 98.68 99 | 98.21 183 |
|
| Patchmatch-RL test | | | 81.90 325 | 80.13 329 | 87.23 333 | 80.71 390 | 70.12 382 | 84.07 393 | 88.19 394 | 83.16 299 | 70.57 365 | 82.18 381 | 87.18 95 | 92.59 367 | 82.28 276 | 62.78 380 | 98.98 125 |
|
| v2v482 | | | 87.27 263 | 85.76 268 | 91.78 251 | 89.59 341 | 87.58 209 | 98.56 170 | 95.54 296 | 84.53 276 | 82.51 273 | 91.78 296 | 73.11 263 | 96.47 282 | 82.07 277 | 74.14 335 | 91.30 308 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 232 | 88.59 226 | 89.58 304 | 93.44 287 | 78.18 349 | 98.65 156 | 94.62 334 | 88.46 186 | 84.12 254 | 95.37 231 | 68.91 292 | 96.52 277 | 82.06 278 | 91.70 213 | 94.06 253 |
|
| pmmvs5 | | | 85.87 284 | 84.40 295 | 90.30 285 | 88.53 356 | 84.23 285 | 98.60 165 | 93.71 352 | 81.53 328 | 80.29 306 | 92.02 289 | 64.51 327 | 95.52 327 | 82.04 279 | 78.34 303 | 91.15 312 |
|
| V42 | | | 87.00 265 | 85.68 270 | 90.98 264 | 89.91 335 | 86.08 250 | 98.32 200 | 95.61 292 | 83.67 291 | 82.72 267 | 90.67 319 | 74.00 256 | 96.53 276 | 81.94 280 | 74.28 332 | 90.32 335 |
|
| EPMVS | | | 92.59 160 | 91.59 167 | 95.59 140 | 97.22 137 | 90.03 152 | 91.78 360 | 98.04 48 | 90.42 131 | 91.66 169 | 90.65 321 | 86.49 116 | 97.46 238 | 81.78 281 | 96.31 152 | 99.28 101 |
|
| DIV-MVS_self_test | | | 87.82 251 | 86.81 254 | 90.87 268 | 94.87 244 | 85.39 268 | 97.81 238 | 95.22 319 | 82.92 308 | 80.76 301 | 91.31 305 | 81.99 194 | 95.81 320 | 81.36 282 | 75.04 322 | 91.42 303 |
|
| cl____ | | | 87.82 251 | 86.79 255 | 90.89 267 | 94.88 243 | 85.43 266 | 97.81 238 | 95.24 314 | 82.91 309 | 80.71 302 | 91.22 306 | 81.97 196 | 95.84 318 | 81.34 283 | 75.06 321 | 91.40 304 |
|
| RPSCF | | | 85.33 294 | 85.55 272 | 84.67 351 | 94.63 251 | 62.28 390 | 93.73 341 | 93.76 350 | 74.38 367 | 85.23 243 | 97.06 175 | 64.09 328 | 98.31 181 | 80.98 284 | 86.08 256 | 93.41 258 |
|
| OurMVSNet-221017-0 | | | 84.13 312 | 83.59 301 | 85.77 343 | 87.81 363 | 70.24 380 | 94.89 330 | 93.65 354 | 86.08 250 | 76.53 335 | 93.28 271 | 61.41 340 | 96.14 305 | 80.95 285 | 77.69 310 | 90.93 317 |
|
| v148 | | | 86.38 278 | 85.06 278 | 90.37 284 | 89.47 346 | 84.10 288 | 98.52 172 | 95.48 299 | 83.80 287 | 80.93 300 | 90.22 337 | 74.60 247 | 96.31 296 | 80.92 286 | 71.55 357 | 90.69 328 |
|
| PatchMatch-RL | | | 91.47 180 | 90.54 190 | 94.26 189 | 98.20 96 | 86.36 239 | 96.94 277 | 97.14 175 | 87.75 215 | 88.98 210 | 95.75 223 | 71.80 276 | 99.40 127 | 80.92 286 | 97.39 133 | 97.02 219 |
|
| FE-MVS | | | 91.38 184 | 90.16 195 | 95.05 159 | 96.46 170 | 87.53 211 | 89.69 378 | 97.84 61 | 82.97 304 | 92.18 162 | 92.00 292 | 84.07 155 | 98.93 155 | 80.71 288 | 95.52 166 | 98.68 155 |
|
| miper_lstm_enhance | | | 86.90 266 | 86.20 262 | 89.00 316 | 94.53 252 | 81.19 326 | 96.74 287 | 95.24 314 | 82.33 318 | 80.15 308 | 90.51 330 | 81.99 194 | 94.68 348 | 80.71 288 | 73.58 339 | 91.12 313 |
|
| PCF-MVS | | 89.78 5 | 91.26 185 | 89.63 201 | 96.16 116 | 95.44 212 | 91.58 109 | 95.29 326 | 96.10 246 | 85.07 267 | 82.75 266 | 97.45 154 | 78.28 230 | 99.78 84 | 80.60 290 | 95.65 165 | 97.12 213 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| BH-RMVSNet | | | 91.25 187 | 89.99 197 | 95.03 160 | 96.75 160 | 88.55 190 | 98.65 156 | 94.95 322 | 87.74 216 | 87.74 219 | 97.80 134 | 68.27 298 | 98.14 191 | 80.53 291 | 97.49 130 | 98.41 167 |
|
| GeoE | | | 90.60 202 | 89.56 202 | 93.72 210 | 95.10 233 | 85.43 266 | 99.41 68 | 94.94 323 | 83.96 285 | 87.21 226 | 96.83 191 | 74.37 251 | 97.05 255 | 80.50 292 | 93.73 182 | 98.67 156 |
|
| CP-MVSNet | | | 86.54 274 | 85.45 274 | 89.79 298 | 91.02 325 | 82.78 308 | 97.38 259 | 97.56 122 | 85.37 261 | 79.53 317 | 93.03 276 | 71.86 275 | 95.25 335 | 79.92 293 | 73.43 343 | 91.34 306 |
|
| PatchmatchNet |  | | 92.05 174 | 91.04 178 | 95.06 157 | 96.17 185 | 89.04 173 | 91.26 369 | 97.26 160 | 89.56 157 | 90.64 188 | 90.56 327 | 88.35 71 | 97.11 251 | 79.53 294 | 96.07 159 | 99.03 122 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v1144 | | | 86.83 268 | 85.31 276 | 91.40 255 | 89.75 339 | 87.21 225 | 98.31 201 | 95.45 301 | 83.22 297 | 82.70 268 | 90.78 314 | 73.36 258 | 96.36 288 | 79.49 295 | 74.69 326 | 90.63 330 |
|
| IterMVS | | | 85.81 287 | 84.67 288 | 89.22 311 | 93.51 283 | 83.67 294 | 96.32 298 | 94.80 328 | 85.09 266 | 78.69 323 | 90.17 340 | 66.57 315 | 93.17 361 | 79.48 296 | 77.42 311 | 90.81 320 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 85.73 290 | 84.64 289 | 89.00 316 | 93.46 286 | 82.90 304 | 96.27 299 | 94.70 331 | 85.02 269 | 78.62 325 | 90.35 332 | 66.61 313 | 93.33 358 | 79.38 297 | 77.36 312 | 90.76 324 |
|
| GBi-Net | | | 86.67 271 | 84.96 279 | 91.80 247 | 95.11 230 | 88.81 184 | 96.77 283 | 95.25 311 | 82.94 305 | 82.12 282 | 90.25 334 | 62.89 334 | 94.97 339 | 79.04 298 | 80.24 293 | 91.62 291 |
|
| test1 | | | 86.67 271 | 84.96 279 | 91.80 247 | 95.11 230 | 88.81 184 | 96.77 283 | 95.25 311 | 82.94 305 | 82.12 282 | 90.25 334 | 62.89 334 | 94.97 339 | 79.04 298 | 80.24 293 | 91.62 291 |
|
| FMVSNet3 | | | 88.81 236 | 87.08 250 | 93.99 202 | 96.52 167 | 94.59 49 | 98.08 225 | 96.20 237 | 85.85 253 | 82.12 282 | 91.60 299 | 74.05 255 | 95.40 332 | 79.04 298 | 80.24 293 | 91.99 285 |
|
| LF4IMVS | | | 81.94 324 | 81.17 323 | 84.25 353 | 87.23 370 | 68.87 385 | 93.35 345 | 91.93 375 | 83.35 296 | 75.40 344 | 93.00 277 | 49.25 382 | 96.65 270 | 78.88 301 | 78.11 304 | 87.22 372 |
|
| v8 | | | 86.11 281 | 84.45 292 | 91.10 260 | 89.99 334 | 86.85 228 | 97.24 266 | 95.36 308 | 81.99 323 | 79.89 312 | 89.86 342 | 74.53 249 | 96.39 286 | 78.83 302 | 72.32 351 | 90.05 342 |
|
| pm-mvs1 | | | 84.68 301 | 82.78 309 | 90.40 281 | 89.58 342 | 85.18 272 | 97.31 261 | 94.73 330 | 81.93 325 | 76.05 338 | 92.01 290 | 65.48 323 | 96.11 306 | 78.75 303 | 69.14 363 | 89.91 345 |
|
| test_f | | | 71.94 357 | 70.82 358 | 75.30 372 | 72.77 401 | 53.28 400 | 91.62 362 | 89.66 390 | 75.44 362 | 64.47 386 | 78.31 392 | 20.48 403 | 89.56 386 | 78.63 304 | 66.02 375 | 83.05 391 |
|
| v144192 | | | 86.40 277 | 84.89 282 | 90.91 265 | 89.48 345 | 85.59 263 | 98.21 210 | 95.43 304 | 82.45 316 | 82.62 271 | 90.58 326 | 72.79 267 | 96.36 288 | 78.45 305 | 74.04 336 | 90.79 322 |
|
| PS-CasMVS | | | 85.81 287 | 84.58 290 | 89.49 308 | 90.77 327 | 82.11 314 | 97.20 269 | 97.36 156 | 84.83 273 | 79.12 322 | 92.84 279 | 67.42 308 | 95.16 337 | 78.39 306 | 73.25 344 | 91.21 311 |
|
| tmp_tt | | | 53.66 371 | 52.86 373 | 56.05 388 | 32.75 416 | 41.97 412 | 73.42 402 | 76.12 409 | 21.91 409 | 39.68 405 | 96.39 205 | 42.59 389 | 65.10 408 | 78.00 307 | 14.92 409 | 61.08 401 |
|
| JIA-IIPM | | | 85.97 283 | 84.85 283 | 89.33 310 | 93.23 291 | 73.68 367 | 85.05 388 | 97.13 177 | 69.62 383 | 91.56 172 | 68.03 398 | 88.03 79 | 96.96 257 | 77.89 308 | 93.12 186 | 97.34 207 |
|
| MDTV_nov1_ep13 | | | | 90.47 192 | | 96.14 188 | 88.55 190 | 91.34 368 | 97.51 133 | 89.58 155 | 92.24 161 | 90.50 331 | 86.99 102 | 97.61 230 | 77.64 309 | 92.34 199 | |
|
| v1192 | | | 86.32 279 | 84.71 287 | 91.17 259 | 89.53 344 | 86.40 236 | 98.13 216 | 95.44 303 | 82.52 314 | 82.42 276 | 90.62 323 | 71.58 279 | 96.33 295 | 77.23 310 | 74.88 323 | 90.79 322 |
|
| FMVSNet2 | | | 86.90 266 | 84.79 285 | 93.24 215 | 95.11 230 | 92.54 93 | 97.67 251 | 95.86 278 | 82.94 305 | 80.55 303 | 91.17 308 | 62.89 334 | 95.29 334 | 77.23 310 | 79.71 299 | 91.90 286 |
|
| MVP-Stereo | | | 86.61 273 | 85.83 267 | 88.93 318 | 88.70 354 | 83.85 292 | 96.07 308 | 94.41 341 | 82.15 321 | 75.64 343 | 91.96 293 | 67.65 305 | 96.45 284 | 77.20 312 | 98.72 98 | 86.51 376 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| tpm cat1 | | | 88.89 230 | 87.27 247 | 93.76 208 | 95.79 200 | 85.32 270 | 90.76 374 | 97.09 183 | 76.14 359 | 85.72 238 | 88.59 352 | 82.92 174 | 98.04 200 | 76.96 313 | 91.43 222 | 97.90 193 |
|
| v10 | | | 85.73 290 | 84.01 298 | 90.87 268 | 90.03 333 | 86.73 230 | 97.20 269 | 95.22 319 | 81.25 331 | 79.85 313 | 89.75 343 | 73.30 261 | 96.28 300 | 76.87 314 | 72.64 347 | 89.61 350 |
|
| v1921920 | | | 86.02 282 | 84.44 293 | 90.77 271 | 89.32 347 | 85.20 271 | 98.10 221 | 95.35 309 | 82.19 320 | 82.25 280 | 90.71 316 | 70.73 282 | 96.30 299 | 76.85 315 | 74.49 328 | 90.80 321 |
|
| MS-PatchMatch | | | 86.75 269 | 85.92 266 | 89.22 311 | 91.97 307 | 82.47 312 | 96.91 278 | 96.14 244 | 83.74 288 | 77.73 332 | 93.53 266 | 58.19 351 | 97.37 245 | 76.75 316 | 98.35 110 | 87.84 364 |
|
| K. test v3 | | | 81.04 329 | 79.77 332 | 84.83 349 | 87.41 367 | 70.23 381 | 95.60 324 | 93.93 349 | 83.70 290 | 67.51 379 | 89.35 348 | 55.76 357 | 93.58 357 | 76.67 317 | 68.03 367 | 90.67 329 |
|
| PM-MVS | | | 74.88 353 | 72.85 356 | 80.98 367 | 78.98 394 | 64.75 389 | 90.81 373 | 85.77 397 | 80.95 335 | 68.23 376 | 82.81 377 | 29.08 399 | 92.84 363 | 76.54 318 | 62.46 382 | 85.36 381 |
|
| WR-MVS_H | | | 86.53 275 | 85.49 273 | 89.66 303 | 91.04 324 | 83.31 299 | 97.53 255 | 98.20 36 | 84.95 271 | 79.64 314 | 90.90 312 | 78.01 232 | 95.33 333 | 76.29 319 | 72.81 345 | 90.35 334 |
|
| ACMH+ | | 83.78 15 | 84.21 309 | 82.56 314 | 89.15 313 | 93.73 280 | 79.16 340 | 96.43 294 | 94.28 343 | 81.09 333 | 74.00 350 | 94.03 249 | 54.58 365 | 97.67 224 | 76.10 320 | 78.81 301 | 90.63 330 |
|
| PEN-MVS | | | 85.21 295 | 83.93 299 | 89.07 315 | 89.89 337 | 81.31 324 | 97.09 272 | 97.24 164 | 84.45 278 | 78.66 324 | 92.68 282 | 68.44 297 | 94.87 342 | 75.98 321 | 70.92 360 | 91.04 315 |
|
| USDC | | | 84.74 299 | 82.93 305 | 90.16 287 | 91.73 314 | 83.54 296 | 95.00 329 | 93.30 358 | 88.77 179 | 73.19 356 | 93.30 270 | 53.62 368 | 97.65 227 | 75.88 322 | 81.54 290 | 89.30 353 |
|
| EU-MVSNet | | | 84.19 310 | 84.42 294 | 83.52 358 | 88.64 355 | 67.37 386 | 96.04 309 | 95.76 282 | 85.29 262 | 78.44 328 | 93.18 273 | 70.67 283 | 91.48 378 | 75.79 323 | 75.98 315 | 91.70 288 |
|
| v1240 | | | 85.77 289 | 84.11 296 | 90.73 272 | 89.26 348 | 85.15 274 | 97.88 235 | 95.23 318 | 81.89 326 | 82.16 281 | 90.55 328 | 69.60 291 | 96.31 296 | 75.59 324 | 74.87 324 | 90.72 327 |
|
| ITE_SJBPF | | | | | 87.93 324 | 92.26 302 | 76.44 357 | | 93.47 357 | 87.67 220 | 79.95 311 | 95.49 229 | 56.50 356 | 97.38 243 | 75.24 325 | 82.33 287 | 89.98 344 |
|
| dp | | | 90.16 211 | 88.83 219 | 94.14 194 | 96.38 175 | 86.42 235 | 91.57 364 | 97.06 185 | 84.76 274 | 88.81 211 | 90.19 339 | 84.29 152 | 97.43 241 | 75.05 326 | 91.35 226 | 98.56 161 |
|
| LS3D | | | 90.19 209 | 88.72 221 | 94.59 178 | 98.97 73 | 86.33 241 | 96.90 279 | 96.60 210 | 74.96 364 | 84.06 255 | 98.74 88 | 75.78 241 | 99.83 73 | 74.93 327 | 97.57 126 | 97.62 201 |
|
| TDRefinement | | | 78.01 344 | 75.31 348 | 86.10 341 | 70.06 403 | 73.84 366 | 93.59 344 | 91.58 379 | 74.51 366 | 73.08 359 | 91.04 309 | 49.63 381 | 97.12 250 | 74.88 328 | 59.47 386 | 87.33 370 |
|
| tpmvs | | | 89.16 225 | 87.76 238 | 93.35 213 | 97.19 140 | 84.75 280 | 90.58 376 | 97.36 156 | 81.99 323 | 84.56 247 | 89.31 349 | 83.98 156 | 98.17 189 | 74.85 329 | 90.00 237 | 97.12 213 |
|
| pmmvs6 | | | 79.90 334 | 77.31 340 | 87.67 327 | 84.17 381 | 78.13 350 | 95.86 316 | 93.68 353 | 67.94 388 | 72.67 362 | 89.62 345 | 50.98 376 | 95.75 321 | 74.80 330 | 66.04 374 | 89.14 356 |
|
| SixPastTwentyTwo | | | 82.63 320 | 81.58 318 | 85.79 342 | 88.12 360 | 71.01 378 | 95.17 327 | 92.54 365 | 84.33 279 | 72.93 361 | 92.08 287 | 60.41 345 | 95.61 326 | 74.47 331 | 74.15 334 | 90.75 325 |
|
| ACMH | | 83.09 17 | 84.60 302 | 82.61 313 | 90.57 275 | 93.18 292 | 82.94 302 | 96.27 299 | 94.92 324 | 81.01 334 | 72.61 363 | 93.61 263 | 56.54 355 | 97.79 213 | 74.31 332 | 81.07 291 | 90.99 316 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_vis3_rt | | | 61.29 364 | 58.75 367 | 68.92 380 | 67.41 404 | 52.84 402 | 91.18 371 | 59.23 415 | 66.96 390 | 41.96 403 | 58.44 403 | 11.37 411 | 94.72 347 | 74.25 333 | 57.97 389 | 59.20 402 |
|
| ADS-MVSNet2 | | | 87.62 259 | 86.88 253 | 89.86 295 | 96.21 182 | 79.14 341 | 87.15 382 | 92.99 359 | 83.01 302 | 89.91 201 | 87.27 362 | 78.87 225 | 92.80 365 | 74.20 334 | 92.27 201 | 97.64 198 |
|
| ADS-MVSNet | | | 88.99 227 | 87.30 246 | 94.07 197 | 96.21 182 | 87.56 210 | 87.15 382 | 96.78 202 | 83.01 302 | 89.91 201 | 87.27 362 | 78.87 225 | 97.01 256 | 74.20 334 | 92.27 201 | 97.64 198 |
|
| lessismore_v0 | | | | | 85.08 346 | 85.59 377 | 69.28 383 | | 90.56 385 | | 67.68 378 | 90.21 338 | 54.21 367 | 95.46 329 | 73.88 336 | 62.64 381 | 90.50 332 |
|
| MIMVSNet | | | 84.48 305 | 81.83 316 | 92.42 233 | 91.73 314 | 87.36 217 | 85.52 385 | 94.42 340 | 81.40 329 | 81.91 288 | 87.58 356 | 51.92 372 | 92.81 364 | 73.84 337 | 88.15 242 | 97.08 217 |
|
| v7n | | | 84.42 307 | 82.75 310 | 89.43 309 | 88.15 359 | 81.86 316 | 96.75 286 | 95.67 289 | 80.53 337 | 78.38 329 | 89.43 347 | 69.89 286 | 96.35 293 | 73.83 338 | 72.13 353 | 90.07 340 |
|
| ambc | | | | | 79.60 369 | 72.76 402 | 56.61 396 | 76.20 400 | 92.01 374 | | 68.25 375 | 80.23 388 | 23.34 401 | 94.73 346 | 73.78 339 | 60.81 384 | 87.48 367 |
|
| pmmvs-eth3d | | | 78.71 341 | 76.16 346 | 86.38 337 | 80.25 392 | 81.19 326 | 94.17 337 | 92.13 372 | 77.97 350 | 66.90 382 | 82.31 380 | 55.76 357 | 92.56 368 | 73.63 340 | 62.31 383 | 85.38 380 |
|
| FMVSNet1 | | | 83.94 314 | 81.32 322 | 91.80 247 | 91.94 310 | 88.81 184 | 96.77 283 | 95.25 311 | 77.98 349 | 78.25 330 | 90.25 334 | 50.37 378 | 94.97 339 | 73.27 341 | 77.81 309 | 91.62 291 |
|
| MSDG | | | 88.29 247 | 86.37 259 | 94.04 200 | 96.90 153 | 86.15 248 | 96.52 292 | 94.36 342 | 77.89 353 | 79.22 320 | 96.95 181 | 69.72 288 | 99.59 104 | 73.20 342 | 92.58 195 | 96.37 238 |
|
| test0.0.03 1 | | | 88.96 228 | 88.61 224 | 90.03 293 | 91.09 323 | 84.43 283 | 98.97 125 | 97.02 190 | 90.21 134 | 80.29 306 | 96.31 208 | 84.89 145 | 91.93 376 | 72.98 343 | 85.70 259 | 93.73 254 |
|
| UnsupCasMVSNet_eth | | | 78.90 339 | 76.67 344 | 85.58 344 | 82.81 386 | 74.94 362 | 91.98 358 | 96.31 229 | 84.64 275 | 65.84 385 | 87.71 355 | 51.33 373 | 92.23 372 | 72.89 344 | 56.50 392 | 89.56 351 |
|
| WB-MVSnew | | | 88.69 240 | 88.34 230 | 89.77 299 | 94.30 261 | 85.99 255 | 98.14 215 | 97.31 159 | 87.15 228 | 87.85 218 | 96.07 215 | 69.91 285 | 95.52 327 | 72.83 345 | 91.47 221 | 87.80 366 |
|
| DTE-MVSNet | | | 84.14 311 | 82.80 307 | 88.14 323 | 88.95 351 | 79.87 335 | 96.81 282 | 96.24 235 | 83.50 293 | 77.60 333 | 92.52 284 | 67.89 304 | 94.24 353 | 72.64 346 | 69.05 364 | 90.32 335 |
|
| EPNet_dtu | | | 92.28 167 | 92.15 155 | 92.70 228 | 97.29 132 | 84.84 278 | 98.64 158 | 97.82 65 | 92.91 75 | 93.02 153 | 97.02 178 | 85.48 137 | 95.70 323 | 72.25 347 | 94.89 172 | 97.55 203 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| AllTest | | | 84.97 298 | 83.12 304 | 90.52 278 | 96.82 155 | 78.84 343 | 95.89 312 | 92.17 370 | 77.96 351 | 75.94 339 | 95.50 227 | 55.48 359 | 99.18 139 | 71.15 348 | 87.14 245 | 93.55 256 |
|
| TestCases | | | | | 90.52 278 | 96.82 155 | 78.84 343 | | 92.17 370 | 77.96 351 | 75.94 339 | 95.50 227 | 55.48 359 | 99.18 139 | 71.15 348 | 87.14 245 | 93.55 256 |
|
| DP-MVS | | | 88.75 238 | 86.56 257 | 95.34 146 | 98.92 77 | 87.45 214 | 97.64 252 | 93.52 356 | 70.55 377 | 81.49 295 | 97.25 163 | 74.43 250 | 99.88 54 | 71.14 350 | 94.09 178 | 98.67 156 |
|
| CR-MVSNet | | | 88.83 234 | 87.38 245 | 93.16 217 | 93.47 284 | 86.24 242 | 84.97 389 | 94.20 345 | 88.92 176 | 90.76 186 | 86.88 366 | 84.43 150 | 94.82 344 | 70.64 351 | 92.17 205 | 98.41 167 |
|
| KD-MVS_2432*1600 | | | 82.98 318 | 80.52 327 | 90.38 282 | 94.32 257 | 88.98 176 | 92.87 350 | 95.87 276 | 80.46 339 | 73.79 351 | 87.49 359 | 82.76 179 | 93.29 359 | 70.56 352 | 46.53 402 | 88.87 359 |
|
| miper_refine_blended | | | 82.98 318 | 80.52 327 | 90.38 282 | 94.32 257 | 88.98 176 | 92.87 350 | 95.87 276 | 80.46 339 | 73.79 351 | 87.49 359 | 82.76 179 | 93.29 359 | 70.56 352 | 46.53 402 | 88.87 359 |
|
| test_method | | | 70.10 359 | 68.66 362 | 74.41 375 | 86.30 376 | 55.84 397 | 94.47 332 | 89.82 388 | 35.18 404 | 66.15 384 | 84.75 374 | 30.54 398 | 77.96 405 | 70.40 354 | 60.33 385 | 89.44 352 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 303 | 82.72 311 | 90.18 286 | 92.89 296 | 83.18 300 | 93.15 346 | 94.74 329 | 78.99 344 | 75.14 346 | 92.69 281 | 65.64 320 | 97.63 228 | 69.46 355 | 81.82 289 | 89.74 347 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| myMVS_eth3d | | | 88.68 242 | 89.07 213 | 87.50 330 | 95.14 227 | 79.74 336 | 97.68 249 | 96.66 206 | 86.52 244 | 82.63 269 | 96.84 189 | 85.22 142 | 89.89 383 | 69.43 356 | 91.54 217 | 92.87 260 |
|
| FMVSNet5 | | | 82.29 321 | 80.54 326 | 87.52 329 | 93.79 279 | 84.01 289 | 93.73 341 | 92.47 366 | 76.92 356 | 74.27 348 | 86.15 370 | 63.69 332 | 89.24 388 | 69.07 357 | 74.79 325 | 89.29 354 |
|
| our_test_3 | | | 84.47 306 | 82.80 307 | 89.50 306 | 89.01 349 | 83.90 291 | 97.03 274 | 94.56 335 | 81.33 330 | 75.36 345 | 90.52 329 | 71.69 277 | 94.54 350 | 68.81 358 | 76.84 313 | 90.07 340 |
|
| UnsupCasMVSNet_bld | | | 73.85 355 | 70.14 359 | 84.99 347 | 79.44 393 | 75.73 358 | 88.53 379 | 95.24 314 | 70.12 381 | 61.94 389 | 74.81 395 | 41.41 391 | 93.62 356 | 68.65 359 | 51.13 399 | 85.62 379 |
|
| Patchmtry | | | 83.61 317 | 81.64 317 | 89.50 306 | 93.36 288 | 82.84 307 | 84.10 392 | 94.20 345 | 69.47 384 | 79.57 316 | 86.88 366 | 84.43 150 | 94.78 345 | 68.48 360 | 74.30 331 | 90.88 319 |
|
| KD-MVS_self_test | | | 77.47 347 | 75.88 347 | 82.24 361 | 81.59 387 | 68.93 384 | 92.83 352 | 94.02 348 | 77.03 355 | 73.14 357 | 83.39 376 | 55.44 361 | 90.42 380 | 67.95 361 | 57.53 390 | 87.38 368 |
|
| WAC-MVS | | | | | | | 79.74 336 | | | | | | | | 67.75 362 | | |
|
| TransMVSNet (Re) | | | 81.97 323 | 79.61 333 | 89.08 314 | 89.70 340 | 84.01 289 | 97.26 264 | 91.85 376 | 78.84 345 | 73.07 360 | 91.62 298 | 67.17 310 | 95.21 336 | 67.50 363 | 59.46 387 | 88.02 363 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 304 | 82.82 306 | 89.70 301 | 96.72 161 | 78.85 342 | 95.89 312 | 92.83 362 | 71.55 374 | 77.54 334 | 95.89 221 | 59.40 348 | 99.14 145 | 67.26 364 | 88.26 241 | 91.11 314 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| EG-PatchMatch MVS | | | 79.92 333 | 77.59 338 | 86.90 335 | 87.06 371 | 77.90 353 | 96.20 306 | 94.06 347 | 74.61 365 | 66.53 383 | 88.76 351 | 40.40 393 | 96.20 301 | 67.02 365 | 83.66 276 | 86.61 374 |
|
| DSMNet-mixed | | | 81.60 326 | 81.43 320 | 82.10 363 | 84.36 380 | 60.79 391 | 93.63 343 | 86.74 396 | 79.00 343 | 79.32 319 | 87.15 364 | 63.87 330 | 89.78 385 | 66.89 366 | 91.92 207 | 95.73 244 |
|
| testgi | | | 82.29 321 | 81.00 324 | 86.17 340 | 87.24 369 | 74.84 363 | 97.39 257 | 91.62 378 | 88.63 180 | 75.85 342 | 95.42 230 | 46.07 385 | 91.55 377 | 66.87 367 | 79.94 297 | 92.12 280 |
|
| MDA-MVSNet_test_wron | | | 79.65 336 | 77.05 341 | 87.45 331 | 87.79 365 | 80.13 333 | 96.25 302 | 94.44 337 | 73.87 368 | 51.80 396 | 87.47 361 | 68.04 301 | 92.12 374 | 66.02 368 | 67.79 369 | 90.09 338 |
|
| YYNet1 | | | 79.64 337 | 77.04 342 | 87.43 332 | 87.80 364 | 79.98 334 | 96.23 303 | 94.44 337 | 73.83 369 | 51.83 395 | 87.53 357 | 67.96 303 | 92.07 375 | 66.00 369 | 67.75 370 | 90.23 337 |
|
| DeepMVS_CX |  | | | | 76.08 371 | 90.74 328 | 51.65 404 | | 90.84 383 | 86.47 247 | 57.89 392 | 87.98 353 | 35.88 396 | 92.60 366 | 65.77 370 | 65.06 377 | 83.97 387 |
|
| Anonymous20240521 | | | 78.63 342 | 76.90 343 | 83.82 355 | 82.82 385 | 72.86 371 | 95.72 321 | 93.57 355 | 73.55 371 | 72.17 364 | 84.79 373 | 49.69 380 | 92.51 369 | 65.29 371 | 74.50 327 | 86.09 378 |
|
| TinyColmap | | | 80.42 332 | 77.94 337 | 87.85 325 | 92.09 305 | 78.58 346 | 93.74 340 | 89.94 387 | 74.99 363 | 69.77 369 | 91.78 296 | 46.09 384 | 97.58 232 | 65.17 372 | 77.89 305 | 87.38 368 |
|
| kuosan | | | 84.40 308 | 83.34 302 | 87.60 328 | 95.87 197 | 79.21 339 | 92.39 355 | 96.87 197 | 76.12 360 | 73.79 351 | 93.98 252 | 81.51 200 | 90.63 379 | 64.13 373 | 75.42 318 | 92.95 259 |
|
| MVS-HIRNet | | | 79.01 338 | 75.13 350 | 90.66 273 | 93.82 278 | 81.69 318 | 85.16 386 | 93.75 351 | 54.54 396 | 74.17 349 | 59.15 402 | 57.46 353 | 96.58 273 | 63.74 374 | 94.38 175 | 93.72 255 |
|
| ppachtmachnet_test | | | 83.63 316 | 81.57 319 | 89.80 297 | 89.01 349 | 85.09 275 | 97.13 271 | 94.50 336 | 78.84 345 | 76.14 337 | 91.00 310 | 69.78 287 | 94.61 349 | 63.40 375 | 74.36 330 | 89.71 349 |
|
| CL-MVSNet_self_test | | | 79.89 335 | 78.34 336 | 84.54 352 | 81.56 388 | 75.01 361 | 96.88 280 | 95.62 291 | 81.10 332 | 75.86 341 | 85.81 371 | 68.49 296 | 90.26 381 | 63.21 376 | 56.51 391 | 88.35 361 |
|
| Patchmatch-test | | | 86.25 280 | 84.06 297 | 92.82 223 | 94.42 253 | 82.88 306 | 82.88 396 | 94.23 344 | 71.58 373 | 79.39 318 | 90.62 323 | 89.00 64 | 96.42 285 | 63.03 377 | 91.37 225 | 99.16 110 |
|
| pmmvs3 | | | 72.86 356 | 69.76 361 | 82.17 362 | 73.86 399 | 74.19 365 | 94.20 336 | 89.01 392 | 64.23 395 | 67.72 377 | 80.91 387 | 41.48 390 | 88.65 390 | 62.40 378 | 54.02 395 | 83.68 388 |
|
| new_pmnet | | | 76.02 349 | 73.71 354 | 82.95 359 | 83.88 382 | 72.85 372 | 91.26 369 | 92.26 369 | 70.44 378 | 62.60 388 | 81.37 383 | 47.64 383 | 92.32 371 | 61.85 379 | 72.10 354 | 83.68 388 |
|
| tfpnnormal | | | 83.65 315 | 81.35 321 | 90.56 277 | 91.37 320 | 88.06 198 | 97.29 262 | 97.87 58 | 78.51 348 | 76.20 336 | 90.91 311 | 64.78 326 | 96.47 282 | 61.71 380 | 73.50 340 | 87.13 373 |
|
| testing3 | | | 87.75 254 | 88.22 233 | 86.36 338 | 94.66 250 | 77.41 354 | 99.52 50 | 97.95 54 | 86.05 251 | 81.12 298 | 96.69 196 | 86.18 122 | 89.31 387 | 61.65 381 | 90.12 236 | 92.35 271 |
|
| MDA-MVSNet-bldmvs | | | 77.82 346 | 74.75 352 | 87.03 334 | 88.33 357 | 78.52 347 | 96.34 297 | 92.85 361 | 75.57 361 | 48.87 398 | 87.89 354 | 57.32 354 | 92.49 370 | 60.79 382 | 64.80 378 | 90.08 339 |
|
| Anonymous20231206 | | | 80.76 330 | 79.42 334 | 84.79 350 | 84.78 379 | 72.98 370 | 96.53 291 | 92.97 360 | 79.56 342 | 74.33 347 | 88.83 350 | 61.27 341 | 92.15 373 | 60.59 383 | 75.92 316 | 89.24 355 |
|
| new-patchmatchnet | | | 74.80 354 | 72.40 357 | 81.99 364 | 78.36 395 | 72.20 374 | 94.44 333 | 92.36 367 | 77.06 354 | 63.47 387 | 79.98 389 | 51.04 375 | 88.85 389 | 60.53 384 | 54.35 394 | 84.92 385 |
|
| LCM-MVSNet | | | 60.07 366 | 56.37 368 | 71.18 377 | 54.81 412 | 48.67 405 | 82.17 397 | 89.48 391 | 37.95 402 | 49.13 397 | 69.12 396 | 13.75 410 | 81.76 397 | 59.28 385 | 51.63 398 | 83.10 390 |
|
| TAPA-MVS | | 87.50 9 | 90.35 204 | 89.05 214 | 94.25 190 | 98.48 91 | 85.17 273 | 98.42 185 | 96.58 215 | 82.44 317 | 87.24 225 | 98.53 105 | 82.77 177 | 98.84 157 | 59.09 386 | 97.88 119 | 98.72 152 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test20.03 | | | 78.51 343 | 77.48 339 | 81.62 365 | 83.07 384 | 71.03 377 | 96.11 307 | 92.83 362 | 81.66 327 | 69.31 371 | 89.68 344 | 57.53 352 | 87.29 393 | 58.65 387 | 68.47 365 | 86.53 375 |
|
| PatchT | | | 85.44 293 | 83.19 303 | 92.22 235 | 93.13 293 | 83.00 301 | 83.80 395 | 96.37 226 | 70.62 376 | 90.55 189 | 79.63 390 | 84.81 147 | 94.87 342 | 58.18 388 | 91.59 214 | 98.79 147 |
|
| APD_test1 | | | 68.93 360 | 66.98 363 | 74.77 374 | 80.62 391 | 53.15 401 | 87.97 380 | 85.01 399 | 53.76 397 | 59.26 391 | 87.52 358 | 25.19 400 | 89.95 382 | 56.20 389 | 67.33 371 | 81.19 392 |
|
| MIMVSNet1 | | | 75.92 350 | 73.30 355 | 83.81 356 | 81.29 389 | 75.57 359 | 92.26 356 | 92.05 373 | 73.09 372 | 67.48 380 | 86.18 369 | 40.87 392 | 87.64 392 | 55.78 390 | 70.68 361 | 88.21 362 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 345 | 75.06 351 | 86.77 336 | 83.81 383 | 77.94 352 | 96.38 296 | 91.53 380 | 67.54 389 | 68.38 374 | 87.13 365 | 43.94 386 | 96.08 307 | 55.03 391 | 81.83 288 | 86.29 377 |
|
| RPMNet | | | 85.07 297 | 81.88 315 | 94.64 176 | 93.47 284 | 86.24 242 | 84.97 389 | 97.21 167 | 64.85 394 | 90.76 186 | 78.80 391 | 80.95 209 | 99.27 137 | 53.76 392 | 92.17 205 | 98.41 167 |
|
| N_pmnet | | | 70.19 358 | 69.87 360 | 71.12 378 | 88.24 358 | 30.63 417 | 95.85 317 | 28.70 416 | 70.18 380 | 68.73 373 | 86.55 368 | 64.04 329 | 93.81 354 | 53.12 393 | 73.46 341 | 88.94 357 |
|
| dmvs_testset | | | 77.17 348 | 78.99 335 | 71.71 376 | 87.25 368 | 38.55 413 | 91.44 365 | 81.76 404 | 85.77 255 | 69.49 370 | 95.94 220 | 69.71 289 | 84.37 396 | 52.71 394 | 76.82 314 | 92.21 276 |
|
| dongtai | | | 81.36 327 | 80.61 325 | 83.62 357 | 94.25 262 | 73.32 369 | 95.15 328 | 96.81 199 | 73.56 370 | 69.79 368 | 92.81 280 | 81.00 208 | 86.80 394 | 52.08 395 | 70.06 362 | 90.75 325 |
|
| PMMVS2 | | | 58.97 367 | 55.07 370 | 70.69 379 | 62.72 407 | 55.37 398 | 85.97 384 | 80.52 405 | 49.48 398 | 45.94 399 | 68.31 397 | 15.73 408 | 80.78 401 | 49.79 396 | 37.12 404 | 75.91 393 |
|
| test_0402 | | | 78.81 340 | 76.33 345 | 86.26 339 | 91.18 322 | 78.44 348 | 95.88 314 | 91.34 381 | 68.55 385 | 70.51 367 | 89.91 341 | 52.65 371 | 94.99 338 | 47.14 397 | 79.78 298 | 85.34 382 |
|
| Syy-MVS | | | 84.10 313 | 84.53 291 | 82.83 360 | 95.14 227 | 65.71 387 | 97.68 249 | 96.66 206 | 86.52 244 | 82.63 269 | 96.84 189 | 68.15 299 | 89.89 383 | 45.62 398 | 91.54 217 | 92.87 260 |
|
| FPMVS | | | 61.57 363 | 60.32 366 | 65.34 383 | 60.14 410 | 42.44 411 | 91.02 372 | 89.72 389 | 44.15 399 | 42.63 402 | 80.93 385 | 19.02 404 | 80.59 402 | 42.50 399 | 72.76 346 | 73.00 396 |
|
| testf1 | | | 56.38 368 | 53.73 371 | 64.31 385 | 64.84 405 | 45.11 406 | 80.50 398 | 75.94 410 | 38.87 400 | 42.74 400 | 75.07 393 | 11.26 412 | 81.19 399 | 41.11 400 | 53.27 396 | 66.63 399 |
|
| APD_test2 | | | 56.38 368 | 53.73 371 | 64.31 385 | 64.84 405 | 45.11 406 | 80.50 398 | 75.94 410 | 38.87 400 | 42.74 400 | 75.07 393 | 11.26 412 | 81.19 399 | 41.11 400 | 53.27 396 | 66.63 399 |
|
| EGC-MVSNET | | | 60.70 365 | 55.37 369 | 76.72 370 | 86.35 375 | 71.08 376 | 89.96 377 | 84.44 401 | 0.38 413 | 1.50 414 | 84.09 375 | 37.30 394 | 88.10 391 | 40.85 402 | 73.44 342 | 70.97 398 |
|
| ANet_high | | | 50.71 372 | 46.17 375 | 64.33 384 | 44.27 414 | 52.30 403 | 76.13 401 | 78.73 406 | 64.95 393 | 27.37 407 | 55.23 404 | 14.61 409 | 67.74 407 | 36.01 403 | 18.23 407 | 72.95 397 |
|
| Gipuma |  | | 54.77 370 | 52.22 374 | 62.40 387 | 86.50 373 | 59.37 394 | 50.20 405 | 90.35 386 | 36.52 403 | 41.20 404 | 49.49 405 | 18.33 406 | 81.29 398 | 32.10 404 | 65.34 376 | 46.54 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 41.42 23 | 45.67 373 | 42.50 376 | 55.17 389 | 34.28 415 | 32.37 415 | 66.24 403 | 78.71 407 | 30.72 405 | 22.04 410 | 59.59 401 | 4.59 414 | 77.85 406 | 27.49 405 | 58.84 388 | 55.29 403 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 44.00 22 | 41.70 374 | 37.64 379 | 53.90 390 | 49.46 413 | 43.37 410 | 65.09 404 | 66.66 412 | 26.19 408 | 25.77 409 | 48.53 406 | 3.58 416 | 63.35 409 | 26.15 406 | 27.28 405 | 54.97 404 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| WB-MVS | | | 66.44 361 | 66.29 364 | 66.89 381 | 74.84 397 | 44.93 408 | 93.00 347 | 84.09 402 | 71.15 375 | 55.82 393 | 81.63 382 | 63.79 331 | 80.31 403 | 21.85 407 | 50.47 400 | 75.43 394 |
|
| SSC-MVS | | | 65.42 362 | 65.20 365 | 66.06 382 | 73.96 398 | 43.83 409 | 92.08 357 | 83.54 403 | 69.77 382 | 54.73 394 | 80.92 386 | 63.30 333 | 79.92 404 | 20.48 408 | 48.02 401 | 74.44 395 |
|
| E-PMN | | | 41.02 375 | 40.93 377 | 41.29 391 | 61.97 408 | 33.83 414 | 84.00 394 | 65.17 413 | 27.17 406 | 27.56 406 | 46.72 407 | 17.63 407 | 60.41 410 | 19.32 409 | 18.82 406 | 29.61 406 |
|
| EMVS | | | 39.96 376 | 39.88 378 | 40.18 392 | 59.57 411 | 32.12 416 | 84.79 391 | 64.57 414 | 26.27 407 | 26.14 408 | 44.18 410 | 18.73 405 | 59.29 411 | 17.03 410 | 17.67 408 | 29.12 407 |
|
| wuyk23d | | | 16.71 379 | 16.73 383 | 16.65 393 | 60.15 409 | 25.22 418 | 41.24 406 | 5.17 417 | 6.56 410 | 5.48 413 | 3.61 413 | 3.64 415 | 22.72 412 | 15.20 411 | 9.52 410 | 1.99 410 |
|
| testmvs | | | 18.81 378 | 23.05 381 | 6.10 395 | 4.48 417 | 2.29 420 | 97.78 240 | 3.00 418 | 3.27 411 | 18.60 411 | 62.71 399 | 1.53 418 | 2.49 414 | 14.26 412 | 1.80 411 | 13.50 409 |
|
| test123 | | | 16.58 380 | 19.47 382 | 7.91 394 | 3.59 418 | 5.37 419 | 94.32 334 | 1.39 419 | 2.49 412 | 13.98 412 | 44.60 409 | 2.91 417 | 2.65 413 | 11.35 413 | 0.57 412 | 15.70 408 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 22.52 377 | 30.03 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 97.17 173 | 0.00 414 | 0.00 415 | 98.77 85 | 74.35 252 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 6.87 382 | 9.16 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 82.48 185 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 8.21 381 | 10.94 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 98.50 108 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 179 | 99.55 44 | 97.47 141 | 91.32 109 | 98.12 44 | | | | | | |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 36 | | 97.64 103 | 93.14 69 | 98.93 21 | 99.45 14 | 93.45 16 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 27 | | 97.72 81 | 94.16 45 | 99.30 8 | 99.49 9 | 93.32 17 | 99.98 9 | | | |
|
| save fliter | | | | | | 99.34 50 | 93.85 65 | 99.65 35 | 97.63 107 | 95.69 22 | | | | | | | |
|
| test0726 | | | | | | 99.66 12 | 95.20 32 | 99.77 17 | 97.70 86 | 93.95 48 | 99.35 7 | 99.54 3 | 93.18 20 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 140 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 22 | | | | 98.13 42 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 70 | | | | 98.84 140 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 98 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 144 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 46.00 408 | 87.37 89 | 97.11 251 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 372 | 88.73 67 | 96.81 264 | | | |
|
| MTMP | | | | | | | | 99.21 87 | 91.09 382 | | | | | | | | |
|
| TEST9 | | | | | | 99.57 33 | 93.17 76 | 99.38 71 | 97.66 95 | 89.57 156 | 98.39 35 | 99.18 33 | 90.88 37 | 99.66 94 | | | |
|
| test_8 | | | | | | 99.55 35 | 93.07 79 | 99.37 74 | 97.64 103 | 90.18 136 | 98.36 37 | 99.19 30 | 90.94 34 | 99.64 100 | | | |
|
| agg_prior | | | | | | 99.54 36 | 92.66 89 | | 97.64 103 | | 97.98 51 | | | 99.61 102 | | | |
|
| test_prior4 | | | | | | | 92.00 100 | 99.41 68 | | | | | | | | | |
|
| test_prior | | | | | 97.01 63 | 99.58 30 | 91.77 103 | | 97.57 121 | | | | | 99.49 112 | | | 99.79 36 |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 204 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 87 | | 97.74 77 | | | 99.15 39 | 91.05 33 | | | 99.33 66 | 99.60 69 |
|
| 原ACMM2 | | | | | | | | 98.69 151 | | | | | | | | | |
|
| test222 | | | | | | 98.32 92 | 91.21 113 | 98.08 225 | 97.58 118 | 83.74 288 | 95.87 100 | 99.02 58 | 86.74 107 | | | 99.64 42 | 99.81 33 |
|
| segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
| testdata1 | | | | | | | | 97.89 233 | | 92.43 82 | | | | | | | |
|
| test12 | | | | | 97.83 35 | 99.33 53 | 94.45 51 | | 97.55 123 | | 97.56 58 | | 88.60 68 | 99.50 111 | | 99.71 35 | 99.55 74 |
|
| plane_prior7 | | | | | | 93.84 275 | 85.73 261 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 272 | 86.02 254 | | | | | | 72.92 264 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 96.52 199 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 256 | | | 93.65 61 | 86.99 227 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 118 | | 93.38 66 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 274 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 252 | 99.14 103 | | 93.81 58 | | | | | | 86.26 253 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 400 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 90 | | | | | | | | |
|
| door | | | | | | | | | 85.30 398 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 237 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 93.95 268 | | 99.16 95 | | 93.92 50 | 87.57 220 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 268 | | 99.16 95 | | 93.92 50 | 87.57 220 | | | | | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 220 | | | 97.77 215 | | | 92.72 262 |
|
| HQP3-MVS | | | | | | | | | 96.37 226 | | | | | | | 86.29 251 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 259 | | | | |
|
| NP-MVS | | | | | | 93.94 271 | 86.22 244 | | | | | 96.67 197 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 285 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 273 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 159 | | | | |
|