This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM82.69 283.29 380.89 2084.38 8255.40 5792.16 989.85 2075.28 482.41 1093.86 854.30 3093.98 2390.29 187.13 2093.30 12
OPU-MVS81.71 1292.05 355.97 4692.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
PC_three_145266.58 5787.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
MVS_030481.58 982.05 780.20 2982.36 13454.70 8091.13 1988.95 2974.49 580.04 2493.64 1152.40 4193.27 3088.85 486.56 3092.61 26
fmvsm_l_conf0.5_n75.95 6176.16 5275.31 14676.01 25948.44 23184.98 13571.08 32963.50 11081.70 1693.52 1550.00 5987.18 20487.80 576.87 11290.32 88
fmvsm_l_conf0.5_n_a75.88 6376.07 5375.31 14676.08 25548.34 23485.24 12370.62 33363.13 11881.45 1793.62 1449.98 6187.40 20087.76 676.77 11390.20 93
test_fmvsm_n_192075.56 7075.54 5875.61 13474.60 27849.51 20181.82 22674.08 30466.52 6080.40 2193.46 1746.95 8389.72 11686.69 775.30 12987.61 155
fmvsm_s_conf0.5_n74.48 8074.12 7775.56 13676.96 24447.85 25185.32 12169.80 34064.16 9478.74 2893.48 1645.51 10389.29 12586.48 866.62 20589.55 109
fmvsm_s_conf0.1_n73.80 9173.26 8475.43 14173.28 29347.80 25284.57 15269.43 34263.34 11378.40 3193.29 2244.73 11989.22 12885.99 966.28 21289.26 114
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 377.10 3693.09 2754.15 3395.57 1285.80 1085.87 3693.31 11
fmvsm_s_conf0.5_n_a73.68 9673.15 8575.29 14975.45 26648.05 24483.88 17068.84 34563.43 11278.60 2993.37 2045.32 10488.92 14385.39 1164.04 22588.89 125
patch_mono-280.84 1281.59 1078.62 6190.34 953.77 9988.08 5388.36 5076.17 279.40 2791.09 6255.43 2390.09 10785.01 1280.40 8091.99 44
fmvsm_s_conf0.1_n_a72.82 10872.05 10875.12 15470.95 32047.97 24782.72 20368.43 34762.52 12978.17 3293.08 2844.21 12288.86 14484.82 1363.54 23188.54 136
CNVR-MVS81.76 881.90 881.33 1790.04 1057.70 1291.71 1088.87 3470.31 2477.64 3593.87 752.58 4093.91 2684.17 1487.92 1592.39 30
dcpmvs_279.33 2078.94 2080.49 2389.75 1256.54 3484.83 14283.68 14967.85 4369.36 10190.24 8260.20 792.10 5584.14 1580.40 8092.82 21
CANet80.90 1181.17 1280.09 3587.62 4054.21 9291.60 1386.47 8073.13 879.89 2593.10 2549.88 6392.98 3284.09 1684.75 4893.08 17
test_fmvsmconf_n74.41 8274.05 7975.49 14074.16 28448.38 23282.66 20472.57 31767.05 5375.11 4392.88 3146.35 9087.81 18083.93 1771.71 16390.28 89
test_fmvsmconf0.1_n73.69 9573.15 8575.34 14470.71 32148.26 23782.15 21671.83 32166.75 5674.47 5092.59 3644.89 11387.78 18583.59 1871.35 16789.97 100
MSP-MVS82.30 683.47 178.80 5482.99 11752.71 13085.04 13288.63 4366.08 6986.77 392.75 3272.05 191.46 6683.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmvis_n_192071.29 13570.38 13174.00 17971.04 31948.79 21979.19 27264.62 35562.75 12366.73 11791.99 4740.94 16488.35 16283.00 2073.18 14984.85 209
IU-MVS89.48 1757.49 1591.38 966.22 6588.26 182.83 2187.60 1792.44 29
PS-MVSNAJ80.06 1679.52 1781.68 1385.58 6060.97 391.69 1187.02 7070.62 2180.75 2093.22 2437.77 19592.50 4482.75 2286.25 3391.57 55
xiu_mvs_v2_base79.86 1779.31 1881.53 1485.03 7260.73 491.65 1286.86 7370.30 2580.77 1993.07 2937.63 20092.28 5082.73 2385.71 3791.57 55
DeepPCF-MVS69.37 180.65 1381.56 1177.94 7985.46 6349.56 19890.99 2186.66 7870.58 2280.07 2395.30 156.18 2090.97 8282.57 2486.22 3493.28 13
SED-MVS81.92 781.75 982.44 789.48 1756.89 2792.48 388.94 3057.50 22784.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_TWO88.76 3957.50 22783.60 694.09 356.14 2196.37 682.28 2587.43 1992.55 27
test_fmvsmconf0.01_n71.97 12470.95 12375.04 15566.21 34747.87 25080.35 25770.08 33765.85 7472.69 6891.68 5439.99 17787.67 18982.03 2769.66 18389.58 108
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 589.99 1857.71 22181.91 1393.64 1155.17 2596.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 3296.39 481.68 2887.13 2092.47 28
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13588.88 3258.00 21383.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
test_0728_THIRD58.00 21381.91 1393.64 1156.54 1796.44 281.64 3086.86 2492.23 34
MSC_two_6792asdad81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
9.1478.19 2685.67 5888.32 5088.84 3659.89 17274.58 4892.62 3546.80 8592.66 3981.40 3485.62 39
lupinMVS78.38 2778.11 2779.19 4383.02 11555.24 6191.57 1484.82 12269.12 3276.67 3892.02 4544.82 11690.23 10480.83 3580.09 8492.08 38
HPM-MVS++copyleft80.50 1480.71 1479.88 3787.34 4255.20 6489.93 2987.55 6566.04 7279.46 2693.00 3053.10 3791.76 6080.40 3689.56 892.68 25
SMA-MVScopyleft79.10 2278.76 2280.12 3384.42 8055.87 4887.58 6786.76 7561.48 14680.26 2293.10 2546.53 8992.41 4679.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft78.44 2578.20 2579.19 4388.56 2654.55 8689.76 3387.77 6055.91 25278.56 3092.49 3748.20 7092.65 4079.49 3883.04 5790.39 85
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ETV-MVS77.17 4376.74 4478.48 6581.80 14354.55 8686.13 9885.33 10368.20 3773.10 6290.52 7645.23 10690.66 9079.37 3980.95 7290.22 91
jason77.01 4576.45 4778.69 5879.69 19354.74 7790.56 2483.99 14568.26 3674.10 5290.91 6842.14 15089.99 10979.30 4079.12 9591.36 63
jason: jason.
test_vis1_n_192068.59 18668.31 16169.44 27169.16 33241.51 32784.63 15068.58 34658.80 20073.26 6188.37 12125.30 31680.60 29879.10 4167.55 19886.23 182
casdiffmvs_mvgpermissive77.75 3677.28 3779.16 4580.42 18454.44 8887.76 6185.46 9771.67 1471.38 8588.35 12351.58 4591.22 7279.02 4279.89 9091.83 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS82.32 582.50 481.79 1186.80 4656.89 2792.77 286.30 8477.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3373.95 8872.89 9077.15 9680.17 18750.37 17984.68 14783.33 15568.08 3871.97 7788.65 11942.50 14491.15 7578.82 4457.78 28889.91 103
hse-mvs271.44 13470.68 12573.73 18976.34 24947.44 25779.45 26979.47 22768.08 3871.97 7786.01 16342.50 14486.93 21378.82 4453.46 32586.83 172
NCCC79.57 1979.23 1980.59 2289.50 1556.99 2491.38 1588.17 5267.71 4673.81 5492.75 3246.88 8493.28 2978.79 4684.07 5391.50 59
test9_res78.72 4785.44 4191.39 61
test_cas_vis1_n_192067.10 21866.60 19568.59 28465.17 35543.23 31183.23 19269.84 33955.34 26070.67 9587.71 13924.70 32376.66 33778.57 4864.20 22485.89 191
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4091.54 559.19 18971.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
DPE-MVScopyleft79.82 1879.66 1680.29 2789.27 2455.08 6988.70 4687.92 5655.55 25781.21 1893.69 1056.51 1894.27 2278.36 5085.70 3891.51 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss75.54 7175.03 6677.04 9881.37 16252.65 13284.34 15684.46 13261.16 15069.14 10291.76 5139.98 17888.99 13878.19 5184.89 4789.48 112
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
train_agg76.91 4676.40 4878.45 6785.68 5655.42 5487.59 6584.00 14357.84 21872.99 6390.98 6544.99 11088.58 15278.19 5185.32 4291.34 65
SF-MVS77.64 3877.42 3678.32 7183.75 9552.47 13586.63 9087.80 5758.78 20174.63 4692.38 3847.75 7591.35 6878.18 5386.85 2591.15 70
canonicalmvs78.17 3177.86 3079.12 4884.30 8354.22 9187.71 6284.57 13167.70 4777.70 3492.11 4450.90 5289.95 11078.18 5377.54 10793.20 15
VDD-MVS76.08 5974.97 6879.44 3984.27 8553.33 11591.13 1985.88 9065.33 8272.37 7489.34 10332.52 26592.76 3877.90 5575.96 12292.22 36
diffmvspermissive75.11 7774.65 7376.46 11478.52 21853.35 11383.28 19179.94 21570.51 2371.64 8188.72 11446.02 9586.08 23977.52 5675.75 12689.96 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SDMVSNet71.89 12570.62 12775.70 13281.70 14751.61 15273.89 30388.72 4066.58 5761.64 18982.38 21737.63 20089.48 12177.44 5765.60 21586.01 185
alignmvs78.08 3277.98 2878.39 6983.53 9853.22 11889.77 3285.45 9866.11 6776.59 4091.99 4754.07 3489.05 13377.34 5877.00 11092.89 20
SteuartSystems-ACMMP77.08 4476.33 4979.34 4180.98 16755.31 5989.76 3386.91 7262.94 12171.65 8091.56 5842.33 14692.56 4377.14 5983.69 5590.15 95
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP76.43 5475.66 5678.73 5681.92 14054.67 8384.06 16585.35 10261.10 15272.99 6391.50 5940.25 17191.00 7976.84 6086.98 2390.51 84
CLD-MVS75.60 6975.39 6176.24 11780.69 17852.40 13690.69 2386.20 8674.40 665.01 14388.93 11042.05 15290.58 9376.57 6173.96 14485.73 193
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MP-MVScopyleft74.99 7874.33 7576.95 10482.89 12153.05 12485.63 11283.50 15457.86 21767.25 11590.24 8243.38 13688.85 14676.03 6282.23 6388.96 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive77.36 4176.85 4378.88 5280.40 18554.66 8487.06 8085.88 9072.11 1271.57 8288.63 12050.89 5490.35 9876.00 6379.11 9691.63 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.77.82 3577.59 3378.49 6485.25 6850.27 18590.02 2690.57 1556.58 24674.26 5191.60 5754.26 3192.16 5275.87 6479.91 8893.05 18
baseline76.86 4976.24 5178.71 5780.47 18354.20 9483.90 16984.88 12171.38 1871.51 8389.15 10850.51 5590.55 9475.71 6578.65 9991.39 61
agg_prior275.65 6685.11 4591.01 73
DeepC-MVS67.15 476.90 4876.27 5078.80 5480.70 17755.02 7086.39 9286.71 7666.96 5467.91 11189.97 9248.03 7291.41 6775.60 6784.14 5289.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_BlendedMVS73.42 10073.30 8373.76 18785.91 5351.83 14886.18 9784.24 13965.40 7969.09 10380.86 23646.70 8788.13 17175.43 6865.92 21481.33 270
PVSNet_Blended76.53 5376.54 4676.50 11385.91 5351.83 14888.89 4484.24 13967.82 4469.09 10389.33 10546.70 8788.13 17175.43 6881.48 7189.55 109
LFMVS78.52 2377.14 4082.67 389.58 1358.90 791.27 1888.05 5463.22 11674.63 4690.83 7141.38 16294.40 2075.42 7079.90 8994.72 2
ZD-MVS89.55 1453.46 10684.38 13357.02 23573.97 5391.03 6344.57 12091.17 7475.41 7181.78 69
testing1179.18 2178.85 2180.16 3188.33 3056.99 2488.31 5192.06 172.82 970.62 9788.37 12157.69 1492.30 4875.25 7276.24 12191.20 68
MVS_111021_HR76.39 5575.38 6279.42 4085.33 6656.47 3688.15 5284.97 11865.15 8566.06 12989.88 9343.79 12792.16 5275.03 7380.03 8789.64 107
CS-MVS-test77.20 4277.25 3877.05 9784.60 7749.04 21189.42 3685.83 9265.90 7372.85 6691.98 4945.10 10791.27 6975.02 7484.56 4990.84 77
test_prior289.04 4261.88 13973.55 5691.46 6148.01 7374.73 7585.46 40
SD-MVS76.18 5774.85 7080.18 3085.39 6456.90 2685.75 10782.45 17356.79 24174.48 4991.81 5043.72 13090.75 8874.61 7678.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.77 5076.70 4576.99 10283.55 9748.75 22088.60 4785.18 11166.38 6272.47 7391.62 5645.53 10190.99 8174.48 7782.51 6091.23 67
APD-MVScopyleft76.15 5875.68 5577.54 8588.52 2753.44 10987.26 7685.03 11753.79 27474.91 4491.68 5443.80 12690.31 10074.36 7881.82 6788.87 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet75.30 7275.20 6375.62 13380.98 16749.00 21287.43 6884.68 12863.49 11170.97 9190.15 8842.86 14391.14 7674.33 7981.90 6686.71 174
VDDNet74.37 8372.13 10581.09 1979.58 19456.52 3590.02 2686.70 7752.61 28471.23 8787.20 14731.75 27593.96 2574.30 8075.77 12592.79 23
TSAR-MVS + MP.78.31 2978.26 2478.48 6581.33 16356.31 4081.59 23486.41 8169.61 2981.72 1588.16 12855.09 2788.04 17574.12 8186.31 3291.09 71
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS82.39 482.36 682.49 580.12 18859.50 592.24 890.72 1469.37 3183.22 894.47 263.81 593.18 3174.02 8293.25 294.80 1
PHI-MVS77.49 3977.00 4178.95 4985.33 6650.69 16888.57 4888.59 4658.14 21073.60 5593.31 2143.14 13993.79 2773.81 8388.53 1292.37 31
MTAPA72.73 10971.22 11977.27 9381.54 15753.57 10367.06 34381.31 19259.41 18268.39 10890.96 6736.07 22989.01 13573.80 8482.45 6289.23 116
VNet77.99 3477.92 2978.19 7387.43 4150.12 18690.93 2291.41 867.48 4975.12 4290.15 8846.77 8691.00 7973.52 8578.46 10193.44 9
EPNet78.36 2878.49 2377.97 7785.49 6252.04 14289.36 3884.07 14273.22 777.03 3791.72 5249.32 6790.17 10673.46 8682.77 5891.69 50
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base_debi71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
PMMVS72.98 10472.05 10875.78 13183.57 9648.60 22384.08 16382.85 16861.62 14268.24 10990.33 8128.35 29387.78 18572.71 9076.69 11490.95 75
ZNCC-MVS75.82 6775.02 6778.23 7283.88 9353.80 9886.91 8586.05 8859.71 17567.85 11290.55 7442.23 14891.02 7872.66 9185.29 4389.87 104
ET-MVSNet_ETH3D75.23 7474.08 7878.67 5984.52 7955.59 5088.92 4389.21 2568.06 4153.13 29390.22 8449.71 6487.62 19472.12 9270.82 17292.82 21
MVS76.91 4675.48 5981.23 1884.56 7855.21 6380.23 26091.64 458.65 20365.37 13891.48 6045.72 9995.05 1672.11 9389.52 993.44 9
nrg03072.27 12071.56 11374.42 16675.93 26050.60 17086.97 8283.21 16062.75 12367.15 11684.38 17850.07 5886.66 22071.19 9462.37 24885.99 187
DeepC-MVS_fast67.50 378.00 3377.63 3279.13 4788.52 2755.12 6689.95 2885.98 8968.31 3571.33 8692.75 3245.52 10290.37 9771.15 9585.14 4491.91 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0573.51 9972.24 10177.33 8987.93 3955.97 4687.90 6070.81 33268.72 3364.04 15984.36 18047.54 7790.87 8471.11 9667.75 19785.13 203
GST-MVS74.87 7973.90 8177.77 8083.30 10553.45 10885.75 10785.29 10659.22 18866.50 12489.85 9440.94 16490.76 8770.94 9783.35 5689.10 121
CHOSEN 1792x268876.24 5674.03 8082.88 183.09 11262.84 285.73 10985.39 10069.79 2764.87 14583.49 19441.52 16193.69 2870.55 9881.82 6792.12 37
CDPH-MVS76.05 6075.19 6478.62 6186.51 4854.98 7287.32 7184.59 13058.62 20470.75 9390.85 7043.10 14190.63 9270.50 9984.51 5190.24 90
HPM-MVScopyleft72.60 11171.50 11475.89 12982.02 13851.42 15880.70 25383.05 16356.12 25164.03 16089.53 9937.55 20388.37 16070.48 10080.04 8687.88 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR69.07 17367.91 16772.54 21277.27 23749.56 19879.77 26473.96 30759.33 18660.73 19787.82 13630.19 28581.53 28769.94 10172.19 16086.53 176
testing9178.30 3077.54 3480.61 2188.16 3557.12 2387.94 5991.07 1371.43 1670.75 9388.04 13355.82 2292.65 4069.61 10275.00 13892.05 40
test_yl75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
DCV-MVSNet75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
testing9978.45 2477.78 3180.45 2588.28 3356.81 3087.95 5891.49 671.72 1370.84 9288.09 12957.29 1592.63 4269.24 10575.13 13491.91 45
HFP-MVS74.37 8373.13 8978.10 7584.30 8353.68 10185.58 11384.36 13456.82 23965.78 13490.56 7340.70 16990.90 8369.18 10680.88 7389.71 105
ACMMPR73.76 9272.61 9177.24 9583.92 9152.96 12785.58 11384.29 13556.82 23965.12 13990.45 7737.24 21190.18 10569.18 10680.84 7488.58 134
region2R73.75 9372.55 9377.33 8983.90 9252.98 12685.54 11784.09 14156.83 23865.10 14090.45 7737.34 20990.24 10368.89 10880.83 7588.77 130
CP-MVS72.59 11371.46 11576.00 12882.93 12052.32 13986.93 8482.48 17255.15 26163.65 16690.44 8035.03 24288.53 15668.69 10977.83 10587.15 163
baseline275.15 7674.54 7476.98 10381.67 15051.74 15083.84 17191.94 369.97 2658.98 22086.02 16159.73 891.73 6168.37 11070.40 17887.48 157
Effi-MVS+75.24 7373.61 8280.16 3181.92 14057.42 1985.21 12476.71 28160.68 16373.32 6089.34 10347.30 7991.63 6268.28 11179.72 9191.42 60
CostFormer73.89 9072.30 9978.66 6082.36 13456.58 3175.56 29185.30 10566.06 7070.50 9976.88 28057.02 1689.06 13268.27 11268.74 18990.33 87
CANet_DTU73.71 9473.14 8775.40 14282.61 13050.05 18784.67 14979.36 23169.72 2875.39 4190.03 9129.41 28985.93 24567.99 11379.11 9690.22 91
PVSNet_Blended_VisFu73.40 10172.44 9576.30 11581.32 16454.70 8085.81 10378.82 24163.70 10464.53 15185.38 16947.11 8287.38 20167.75 11477.55 10686.81 173
MSLP-MVS++74.21 8572.25 10080.11 3481.45 16056.47 3686.32 9479.65 22358.19 20966.36 12592.29 4036.11 22790.66 9067.39 11582.49 6193.18 16
PGM-MVS72.60 11171.20 12076.80 11082.95 11852.82 12983.07 19782.14 17556.51 24763.18 17189.81 9535.68 23389.76 11567.30 11680.19 8387.83 149
EIA-MVS75.92 6275.18 6578.13 7485.14 6951.60 15387.17 7885.32 10464.69 8868.56 10790.53 7545.79 9891.58 6367.21 11782.18 6491.20 68
HY-MVS67.03 573.90 8973.14 8776.18 12284.70 7647.36 25875.56 29186.36 8366.27 6470.66 9683.91 18651.05 5089.31 12467.10 11872.61 15691.88 47
BP-MVS66.70 119
HQP-MVS72.34 11671.44 11675.03 15679.02 20551.56 15488.00 5483.68 14965.45 7664.48 15285.13 17037.35 20788.62 15066.70 11973.12 15084.91 207
SR-MVS70.92 14369.73 14374.50 16383.38 10450.48 17484.27 15879.35 23248.96 30966.57 12390.45 7733.65 25687.11 20666.42 12174.56 14185.91 190
gm-plane-assit83.24 10754.21 9270.91 2088.23 12795.25 1466.37 122
PAPR75.20 7574.13 7678.41 6888.31 3255.10 6884.31 15785.66 9463.76 10367.55 11390.73 7243.48 13589.40 12366.36 12377.03 10990.73 79
WTY-MVS77.47 4077.52 3577.30 9188.33 3046.25 27688.46 4990.32 1671.40 1772.32 7591.72 5253.44 3592.37 4766.28 12475.42 12893.28 13
tpmrst71.04 14069.77 14274.86 15983.19 10955.86 4975.64 29078.73 24567.88 4264.99 14473.73 30949.96 6279.56 31265.92 12567.85 19689.14 120
MVS_Test75.85 6474.93 6978.62 6184.08 8755.20 6483.99 16785.17 11268.07 4073.38 5982.76 20450.44 5689.00 13665.90 12680.61 7691.64 51
ACMMPcopyleft70.81 14569.29 15175.39 14381.52 15951.92 14683.43 18383.03 16456.67 24458.80 22788.91 11131.92 27388.58 15265.89 12773.39 14885.67 194
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS72.92 10571.62 11276.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 16289.63 9835.50 23489.78 11365.50 12880.50 7888.16 140
X-MVStestdata65.85 23962.20 24776.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 1624.82 40535.50 23489.78 11365.50 12880.50 7888.16 140
PAPM76.76 5176.07 5378.81 5380.20 18659.11 686.86 8686.23 8568.60 3470.18 10088.84 11351.57 4687.16 20565.48 13086.68 2890.15 95
HQP_MVS70.96 14269.91 14174.12 17577.95 22649.57 19685.76 10582.59 17063.60 10762.15 18483.28 19836.04 23088.30 16665.46 13172.34 15884.49 211
plane_prior582.59 17088.30 16665.46 13172.34 15884.49 211
mPP-MVS71.79 12970.38 13176.04 12682.65 12952.06 14184.45 15381.78 18555.59 25662.05 18689.68 9733.48 25788.28 16865.45 13378.24 10487.77 151
OPM-MVS70.75 14669.58 14574.26 17275.55 26551.34 16086.05 10083.29 15961.94 13862.95 17585.77 16434.15 25088.44 15865.44 13471.07 16982.99 243
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final71.46 13369.68 14476.81 10786.03 5153.49 10484.73 14474.37 30160.27 16866.28 12684.36 18035.14 23990.87 8465.41 13570.51 17686.05 184
Effi-MVS+-dtu66.24 23564.96 23170.08 26375.17 26749.64 19582.01 21974.48 30062.15 13357.83 24176.08 29330.59 28283.79 27165.40 13660.93 25576.81 321
EI-MVSNet-Vis-set73.19 10372.60 9274.99 15882.56 13149.80 19482.55 20989.00 2866.17 6665.89 13288.98 10943.83 12592.29 4965.38 13769.01 18782.87 246
testing22277.70 3777.22 3979.14 4686.95 4454.89 7587.18 7791.96 272.29 1171.17 9088.70 11555.19 2491.24 7165.18 13876.32 12091.29 66
TESTMET0.1,172.86 10772.33 9774.46 16481.98 13950.77 16685.13 12785.47 9666.09 6867.30 11483.69 19137.27 21083.57 27565.06 13978.97 9889.05 122
MVSTER73.25 10272.33 9776.01 12785.54 6153.76 10083.52 17687.16 6867.06 5263.88 16481.66 22852.77 3890.44 9564.66 14064.69 22183.84 228
CPTT-MVS67.15 21765.84 21271.07 24880.96 16950.32 18281.94 22174.10 30346.18 32757.91 24087.64 14129.57 28881.31 28964.10 14170.18 18081.56 260
miper_enhance_ethall69.77 16368.90 15572.38 21778.93 20849.91 19083.29 19078.85 23964.90 8659.37 21379.46 24652.77 3885.16 25763.78 14258.72 27082.08 252
EI-MVSNet-UG-set72.37 11571.73 11174.29 17181.60 15349.29 20681.85 22488.64 4265.29 8465.05 14188.29 12643.18 13791.83 5963.74 14367.97 19481.75 257
ab-mvs70.65 14769.11 15375.29 14980.87 17346.23 27773.48 30785.24 11059.99 17166.65 11980.94 23543.13 14088.69 14863.58 14468.07 19290.95 75
VPA-MVSNet71.12 13770.66 12672.49 21478.75 21144.43 29787.64 6390.02 1763.97 9965.02 14281.58 23042.14 15087.42 19963.42 14563.38 23685.63 197
mvsmamba66.93 22564.88 23273.09 20075.06 27047.26 26083.36 18969.21 34362.64 12655.68 27181.43 23129.72 28789.20 13063.35 14663.50 23282.79 247
APD-MVS_3200maxsize69.62 16868.23 16473.80 18681.58 15548.22 23881.91 22279.50 22648.21 31264.24 15789.75 9631.91 27487.55 19663.08 14773.85 14685.64 196
v2v48269.55 16967.64 17575.26 15272.32 30653.83 9784.93 13981.94 17965.37 8160.80 19679.25 25041.62 15888.98 13963.03 14859.51 26382.98 244
PS-MVSNAJss68.78 18267.17 18573.62 19373.01 29648.33 23684.95 13884.81 12359.30 18758.91 22479.84 24437.77 19588.86 14462.83 14963.12 24283.67 231
cl2268.85 17767.69 17472.35 21878.07 22549.98 18982.45 21278.48 25162.50 13058.46 23477.95 26049.99 6085.17 25662.55 15058.72 27081.90 255
V4267.66 20265.60 21973.86 18370.69 32353.63 10281.50 23778.61 24863.85 10159.49 21277.49 26737.98 19287.65 19062.33 15158.43 27380.29 285
AUN-MVS68.20 19466.35 19873.76 18776.37 24847.45 25679.52 26879.52 22560.98 15562.34 18086.02 16136.59 22486.94 21262.32 15253.47 32486.89 166
MG-MVS78.42 2676.99 4282.73 293.17 164.46 189.93 2988.51 4864.83 8773.52 5788.09 12948.07 7192.19 5162.24 15384.53 5091.53 57
Patchmatch-RL test58.72 29354.32 30571.92 23363.91 36244.25 30061.73 35855.19 36957.38 22949.31 31654.24 37737.60 20280.89 29262.19 15447.28 34590.63 80
mvs_anonymous72.29 11870.74 12476.94 10582.85 12254.72 7978.43 27781.54 18863.77 10261.69 18879.32 24851.11 4985.31 25262.15 15575.79 12490.79 78
miper_ehance_all_eth68.70 18567.58 17672.08 22376.91 24549.48 20282.47 21178.45 25262.68 12558.28 23877.88 26250.90 5285.01 26061.91 15658.72 27081.75 257
HyFIR lowres test69.94 16167.58 17677.04 9877.11 24357.29 2081.49 23979.11 23758.27 20858.86 22580.41 23942.33 14686.96 21161.91 15668.68 19086.87 167
sss70.49 14970.13 13871.58 24081.59 15439.02 33980.78 25284.71 12759.34 18466.61 12188.09 12937.17 21285.52 24861.82 15871.02 17090.20 93
131471.11 13869.41 14776.22 11879.32 19850.49 17380.23 26085.14 11559.44 18158.93 22288.89 11233.83 25589.60 12061.49 15977.42 10888.57 135
GA-MVS69.04 17466.70 19276.06 12575.11 26852.36 13783.12 19580.23 21063.32 11460.65 19879.22 25130.98 28088.37 16061.25 16066.41 20887.46 158
ECVR-MVScopyleft71.81 12771.00 12274.26 17280.12 18843.49 30784.69 14682.16 17464.02 9664.64 14787.43 14435.04 24189.21 12961.24 16179.66 9290.08 97
VPNet72.07 12271.42 11774.04 17778.64 21647.17 26389.91 3187.97 5572.56 1064.66 14685.04 17341.83 15788.33 16461.17 16260.97 25486.62 175
ACMP61.11 966.24 23564.33 23672.00 22774.89 27449.12 20783.18 19479.83 21855.41 25952.29 29982.68 20825.83 31286.10 23660.89 16363.94 22880.78 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer73.53 9872.19 10377.57 8483.02 11555.24 6181.63 23181.44 19050.28 29976.67 3890.91 6844.82 11686.11 23460.83 16480.09 8491.36 63
test_djsdf63.84 24861.56 25270.70 25368.78 33444.69 29481.63 23181.44 19050.28 29952.27 30076.26 28826.72 30686.11 23460.83 16455.84 30581.29 273
v14868.24 19366.35 19873.88 18271.76 30951.47 15784.23 15981.90 18363.69 10558.94 22176.44 28543.72 13087.78 18560.63 16655.86 30482.39 250
c3_l67.97 19566.66 19371.91 23476.20 25449.31 20582.13 21878.00 25861.99 13657.64 24776.94 27749.41 6584.93 26160.62 16757.01 29281.49 261
test-LLR69.65 16769.01 15471.60 23878.67 21348.17 23985.13 12779.72 22059.18 19163.13 17282.58 21136.91 21680.24 30360.56 16875.17 13286.39 180
test-mter68.36 18867.29 18271.60 23878.67 21348.17 23985.13 12779.72 22053.38 27863.13 17282.58 21127.23 30380.24 30360.56 16875.17 13286.39 180
SR-MVS-dyc-post68.27 19266.87 18772.48 21580.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10131.17 27986.09 23860.52 17072.06 16183.19 239
RE-MVS-def66.66 19380.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10129.28 29160.52 17072.06 16183.19 239
IB-MVS68.87 274.01 8772.03 11079.94 3683.04 11455.50 5290.24 2588.65 4167.14 5161.38 19181.74 22753.21 3694.28 2160.45 17262.41 24790.03 99
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v114468.81 18066.82 18874.80 16072.34 30553.46 10684.68 14781.77 18664.25 9260.28 20077.91 26140.23 17288.95 14060.37 17359.52 26281.97 253
LPG-MVS_test66.44 23264.58 23472.02 22574.42 28048.60 22383.07 19780.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
LGP-MVS_train72.02 22574.42 28048.60 22380.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
MVP-Stereo70.97 14170.44 12972.59 21176.03 25851.36 15985.02 13486.99 7160.31 16756.53 26478.92 25440.11 17590.00 10860.00 17690.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax63.21 25660.84 26170.32 25968.33 33944.45 29681.23 24181.05 19653.37 27950.96 30977.81 26417.49 36085.49 25059.31 17758.05 28181.02 276
test250672.91 10672.43 9674.32 17080.12 18844.18 30283.19 19384.77 12564.02 9665.97 13087.43 14447.67 7688.72 14759.08 17879.66 9290.08 97
baseline172.51 11472.12 10673.69 19085.05 7044.46 29583.51 18086.13 8771.61 1564.64 14787.97 13455.00 2889.48 12159.07 17956.05 30187.13 164
mvs_tets62.96 25960.55 26370.19 26068.22 34244.24 30180.90 24980.74 20252.99 28250.82 31177.56 26516.74 36485.44 25159.04 18057.94 28380.89 277
HPM-MVS_fast67.86 19766.28 20172.61 21080.67 17948.34 23481.18 24375.95 29050.81 29759.55 21088.05 13227.86 29885.98 24158.83 18173.58 14783.51 232
eth_miper_zixun_eth66.98 22365.28 22672.06 22475.61 26450.40 17681.00 24676.97 27862.00 13556.99 25876.97 27644.84 11585.58 24758.75 18254.42 31680.21 286
v14419267.86 19765.76 21474.16 17471.68 31053.09 12284.14 16280.83 20162.85 12259.21 21877.28 27139.30 18288.00 17658.67 18357.88 28681.40 267
test111171.06 13970.42 13072.97 20379.48 19541.49 32884.82 14382.74 16964.20 9362.98 17487.43 14435.20 23787.92 17758.54 18478.42 10289.49 111
thisisatest051573.64 9772.20 10277.97 7781.63 15153.01 12586.69 8988.81 3762.53 12864.06 15885.65 16552.15 4492.50 4458.43 18569.84 18188.39 139
v867.25 21464.99 23074.04 17772.89 29953.31 11682.37 21480.11 21261.54 14454.29 28476.02 29442.89 14288.41 15958.43 18556.36 29480.39 284
XXY-MVS70.18 15269.28 15272.89 20677.64 23042.88 31585.06 13187.50 6662.58 12762.66 17982.34 22043.64 13289.83 11258.42 18763.70 23085.96 189
3Dnovator64.70 674.46 8172.48 9480.41 2682.84 12355.40 5783.08 19688.61 4567.61 4859.85 20388.66 11634.57 24693.97 2458.42 18788.70 1191.85 48
旧先验281.73 22945.53 33074.66 4570.48 36358.31 189
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16882.56 21311.55 37360.81 37258.25 19055.27 30979.28 293
v119267.96 19665.74 21574.63 16171.79 30853.43 11184.06 16580.99 19963.19 11759.56 20977.46 26837.50 20688.65 14958.20 19158.93 26981.79 256
EPP-MVSNet71.14 13670.07 13974.33 16979.18 20246.52 26983.81 17286.49 7956.32 25057.95 23984.90 17654.23 3289.14 13158.14 19269.65 18487.33 160
OMC-MVS65.97 23865.06 22968.71 28172.97 29742.58 32078.61 27575.35 29554.72 26759.31 21586.25 16033.30 25877.88 32657.99 19367.05 20185.66 195
cl____67.43 20965.93 21071.95 23176.33 25048.02 24582.58 20679.12 23661.30 14956.72 26076.92 27846.12 9286.44 22757.98 19456.31 29681.38 269
DIV-MVS_self_test67.43 20965.93 21071.94 23276.33 25048.01 24682.57 20779.11 23761.31 14856.73 25976.92 27846.09 9386.43 22857.98 19456.31 29681.39 268
MS-PatchMatch72.34 11671.26 11875.61 13482.38 13355.55 5188.00 5489.95 1965.38 8056.51 26580.74 23832.28 26892.89 3357.95 19688.10 1478.39 306
MAR-MVS76.76 5175.60 5780.21 2890.87 754.68 8289.14 4189.11 2662.95 12070.54 9892.33 3941.05 16394.95 1757.90 19786.55 3191.00 74
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18282.02 2259.12 38160.84 37157.82 19854.75 31578.99 295
anonymousdsp60.46 27757.65 28368.88 27563.63 36345.09 28972.93 31178.63 24746.52 32251.12 30672.80 32121.46 34483.07 28057.79 19953.97 31878.47 303
Anonymous2024052969.71 16467.28 18377.00 10183.78 9450.36 18088.87 4585.10 11647.22 31764.03 16083.37 19627.93 29792.10 5557.78 20067.44 19988.53 137
Fast-Effi-MVS+-dtu66.53 23064.10 23973.84 18472.41 30452.30 14084.73 14475.66 29159.51 17956.34 26679.11 25328.11 29585.85 24657.74 20163.29 23783.35 233
v192192067.45 20865.23 22774.10 17671.51 31352.90 12883.75 17480.44 20662.48 13159.12 21977.13 27236.98 21487.90 17857.53 20258.14 28081.49 261
IterMVS-LS66.63 22865.36 22570.42 25775.10 26948.90 21681.45 24076.69 28261.05 15355.71 27077.10 27445.86 9783.65 27457.44 20357.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.70 16668.70 15672.68 20975.00 27248.90 21679.54 26687.16 6861.05 15363.88 16483.74 18945.87 9690.44 9557.42 20464.68 22278.70 299
CDS-MVSNet70.48 15069.43 14673.64 19177.56 23348.83 21883.51 18077.45 26763.27 11562.33 18185.54 16843.85 12483.29 27957.38 20574.00 14388.79 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+62.71 772.29 11870.50 12877.65 8383.40 10351.29 16287.32 7186.40 8259.01 19658.49 23388.32 12532.40 26691.27 6957.04 20682.15 6590.38 86
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21179.86 2438.78 38258.23 37956.95 20752.46 32879.19 294
bld_raw_dy_0_6459.75 28057.01 29067.96 28966.73 34645.30 28777.59 28259.97 36550.49 29847.15 33077.03 27517.45 36179.06 31356.92 20859.76 26179.51 292
miper_lstm_enhance63.91 24762.30 24668.75 28075.06 27046.78 26569.02 33481.14 19559.68 17752.76 29672.39 32640.71 16877.99 32456.81 20953.09 32681.48 263
ETVMVS75.80 6875.44 6076.89 10686.23 5050.38 17885.55 11691.42 771.30 1968.80 10587.94 13556.42 1989.24 12656.54 21074.75 14091.07 72
PAPM_NR71.80 12869.98 14077.26 9481.54 15753.34 11478.60 27685.25 10953.46 27760.53 19988.66 11645.69 10089.24 12656.49 21179.62 9489.19 118
v1066.61 22964.20 23873.83 18572.59 30253.37 11281.88 22379.91 21761.11 15154.09 28675.60 29640.06 17688.26 16956.47 21256.10 30079.86 290
v124066.99 22264.68 23373.93 18071.38 31652.66 13183.39 18779.98 21461.97 13758.44 23677.11 27335.25 23687.81 18056.46 21358.15 27881.33 270
Anonymous20240521170.11 15367.88 16976.79 11187.20 4347.24 26289.49 3577.38 26954.88 26666.14 12786.84 15220.93 34691.54 6456.45 21471.62 16491.59 53
Fast-Effi-MVS+72.73 10971.15 12177.48 8682.75 12554.76 7686.77 8880.64 20363.05 11965.93 13184.01 18444.42 12189.03 13456.45 21476.36 11988.64 132
sd_testset67.79 20065.95 20973.32 19681.70 14746.33 27468.99 33580.30 20966.58 5761.64 18982.38 21730.45 28387.63 19255.86 21665.60 21586.01 185
114514_t69.87 16267.88 16975.85 13088.38 2952.35 13886.94 8383.68 14953.70 27555.68 27185.60 16630.07 28691.20 7355.84 21771.02 17083.99 221
tpm270.82 14468.44 15977.98 7680.78 17556.11 4274.21 30281.28 19460.24 16968.04 11075.27 29852.26 4388.50 15755.82 21868.03 19389.33 113
PCF-MVS61.03 1070.10 15468.40 16075.22 15377.15 24251.99 14379.30 27182.12 17656.47 24861.88 18786.48 15943.98 12387.24 20355.37 21972.79 15586.43 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet62.49 869.27 17267.81 17373.64 19184.41 8151.85 14784.63 15077.80 26066.42 6159.80 20484.95 17522.14 34180.44 30155.03 22075.11 13588.62 133
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28548.10 24346.30 38054.31 37148.18 31350.88 31077.43 26938.37 19159.16 37854.83 22163.14 24175.66 332
GG-mvs-BLEND77.77 8086.68 4750.61 16968.67 33788.45 4968.73 10687.45 14359.15 1090.67 8954.83 22187.67 1692.03 41
TAMVS69.51 17068.16 16573.56 19476.30 25248.71 22282.57 20777.17 27262.10 13461.32 19284.23 18241.90 15583.46 27754.80 22373.09 15288.50 138
D2MVS63.49 25361.39 25469.77 26769.29 33148.93 21578.89 27477.71 26360.64 16449.70 31472.10 33127.08 30483.48 27654.48 22462.65 24576.90 320
IterMVS63.77 25061.67 25070.08 26372.68 30151.24 16380.44 25575.51 29260.51 16551.41 30473.70 31232.08 27078.91 31454.30 22554.35 31780.08 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 25161.01 26071.70 23673.48 28945.98 27981.19 24276.08 28854.33 27252.84 29579.27 24922.21 33987.65 19054.13 22655.54 30881.46 264
UWE-MVS72.17 12172.15 10472.21 22082.26 13644.29 29986.83 8789.58 2165.58 7565.82 13385.06 17245.02 10984.35 26754.07 22775.18 13187.99 147
DP-MVS Recon71.99 12370.31 13377.01 10090.65 853.44 10989.37 3782.97 16656.33 24963.56 16989.47 10034.02 25192.15 5454.05 22872.41 15785.43 200
tpm68.36 18867.48 18070.97 25079.93 19151.34 16076.58 28878.75 24467.73 4563.54 17074.86 30048.33 6972.36 35753.93 22963.71 22989.21 117
XVG-OURS-SEG-HR62.02 26859.54 27269.46 27065.30 35345.88 28065.06 34673.57 31146.45 32357.42 25483.35 19726.95 30578.09 32053.77 23064.03 22684.42 213
FA-MVS(test-final)69.00 17666.60 19576.19 12183.48 9947.96 24974.73 29882.07 17757.27 23162.18 18378.47 25836.09 22892.89 3353.76 23171.32 16887.73 152
cascas69.01 17566.13 20477.66 8279.36 19655.41 5686.99 8183.75 14856.69 24358.92 22381.35 23224.31 32592.10 5553.23 23270.61 17485.46 199
UniMVSNet_NR-MVSNet68.82 17968.29 16270.40 25875.71 26342.59 31884.23 15986.78 7466.31 6358.51 23082.45 21451.57 4684.64 26553.11 23355.96 30283.96 225
DU-MVS66.84 22765.74 21570.16 26173.27 29442.59 31881.50 23782.92 16763.53 10958.51 23082.11 22340.75 16684.64 26553.11 23355.96 30283.24 237
1112_ss70.05 15669.37 14872.10 22280.77 17642.78 31685.12 13076.75 27959.69 17661.19 19392.12 4247.48 7883.84 27053.04 23568.21 19189.66 106
XVG-OURS61.88 26959.34 27469.49 26965.37 35246.27 27564.80 34773.49 31247.04 31957.41 25582.85 20225.15 31878.18 31853.00 23664.98 21784.01 220
thisisatest053070.47 15168.56 15776.20 12079.78 19251.52 15683.49 18288.58 4757.62 22458.60 22982.79 20351.03 5191.48 6552.84 23762.36 24985.59 198
UGNet68.71 18367.11 18673.50 19580.55 18247.61 25484.08 16378.51 25059.45 18065.68 13682.73 20723.78 32785.08 25952.80 23876.40 11587.80 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121166.08 23763.67 24073.31 19783.07 11348.75 22086.01 10284.67 12945.27 33156.54 26376.67 28328.06 29688.95 14052.78 23959.95 25782.23 251
无先验85.19 12578.00 25849.08 30785.13 25852.78 23987.45 159
PVSNet_057.04 1361.19 27357.24 28673.02 20177.45 23550.31 18379.43 27077.36 27063.96 10047.51 32872.45 32525.03 31983.78 27252.76 24119.22 39584.96 206
FIs70.00 15870.24 13769.30 27277.93 22838.55 34283.99 16787.72 6266.86 5557.66 24684.17 18352.28 4285.31 25252.72 24268.80 18884.02 219
Vis-MVSNetpermissive70.61 14869.34 14974.42 16680.95 17248.49 22886.03 10177.51 26658.74 20265.55 13787.78 13734.37 24885.95 24452.53 24380.61 7688.80 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testdata67.08 29677.59 23245.46 28669.20 34444.47 33671.50 8488.34 12431.21 27870.76 36252.20 24475.88 12385.03 204
API-MVS74.17 8672.07 10780.49 2390.02 1158.55 887.30 7384.27 13657.51 22665.77 13587.77 13841.61 15995.97 1151.71 24582.63 5986.94 165
GeoE69.96 16067.88 16976.22 11881.11 16651.71 15184.15 16176.74 28059.83 17360.91 19484.38 17841.56 16088.10 17351.67 24670.57 17588.84 127
dmvs_re67.61 20366.00 20772.42 21681.86 14243.45 30864.67 34880.00 21369.56 3060.07 20185.00 17434.71 24487.63 19251.48 24766.68 20386.17 183
ACMM58.35 1264.35 24462.01 24971.38 24274.21 28348.51 22782.25 21579.66 22247.61 31554.54 28180.11 24025.26 31786.00 24051.26 24863.16 24079.64 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
原ACMM176.13 12384.89 7454.59 8585.26 10851.98 28866.70 11887.07 15040.15 17489.70 11751.23 24985.06 4684.10 217
UniMVSNet (Re)67.71 20166.80 18970.45 25674.44 27942.93 31482.42 21384.90 12063.69 10559.63 20780.99 23447.18 8085.23 25551.17 25056.75 29383.19 239
IterMVS-SCA-FT59.12 28658.81 27960.08 33870.68 32445.07 29080.42 25674.25 30243.54 34350.02 31373.73 30931.97 27156.74 38051.06 25153.60 32278.42 305
Test_1112_low_res67.18 21666.23 20270.02 26678.75 21141.02 33283.43 18373.69 30957.29 23058.45 23582.39 21645.30 10580.88 29350.50 25266.26 21388.16 140
pmmvs463.34 25561.07 25970.16 26170.14 32550.53 17279.97 26371.41 32855.08 26254.12 28578.58 25632.79 26382.09 28550.33 25357.22 29177.86 312
Baseline_NR-MVSNet65.49 24164.27 23769.13 27374.37 28241.65 32583.39 18778.85 23959.56 17859.62 20876.88 28040.75 16687.44 19849.99 25455.05 31078.28 308
UniMVSNet_ETH3D62.51 26360.49 26468.57 28568.30 34040.88 33473.89 30379.93 21651.81 29254.77 27879.61 24524.80 32181.10 29049.93 25561.35 25283.73 229
BH-w/o70.02 15768.51 15874.56 16282.77 12450.39 17786.60 9178.14 25659.77 17459.65 20685.57 16739.27 18387.30 20249.86 25674.94 13985.99 187
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 19929.09 37961.39 36145.79 37760.73 16237.65 36572.47 32431.42 27781.08 29149.66 25770.41 17786.87 167
gg-mvs-nofinetune67.43 20964.53 23576.13 12385.95 5247.79 25364.38 34988.28 5139.34 35266.62 12041.27 38658.69 1389.00 13649.64 25886.62 2991.59 53
TranMVSNet+NR-MVSNet66.94 22465.61 21870.93 25173.45 29043.38 31083.02 19984.25 13765.31 8358.33 23781.90 22639.92 17985.52 24849.43 25954.89 31283.89 227
tttt051768.33 19066.29 20074.46 16478.08 22449.06 20880.88 25089.08 2754.40 27154.75 27980.77 23751.31 4890.33 9949.35 26058.01 28283.99 221
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29874.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
WR-MVS67.58 20466.76 19070.04 26575.92 26145.06 29386.23 9685.28 10764.31 9158.50 23281.00 23344.80 11882.00 28649.21 26255.57 30783.06 242
tt080563.39 25461.31 25669.64 26869.36 33038.87 34078.00 27885.48 9548.82 31055.66 27481.66 22824.38 32486.37 22949.04 26359.36 26683.68 230
test_post170.84 32714.72 40434.33 24983.86 26948.80 264
SCA63.84 24860.01 27075.32 14578.58 21757.92 1061.61 35977.53 26556.71 24257.75 24570.77 33731.97 27179.91 30948.80 26456.36 29488.13 143
pmmvs562.80 26161.18 25767.66 29169.53 32942.37 32382.65 20575.19 29654.30 27352.03 30278.51 25731.64 27680.67 29648.60 26658.15 27879.95 289
新几何173.30 19883.10 11053.48 10571.43 32745.55 32966.14 12787.17 14833.88 25480.54 29948.50 26780.33 8285.88 192
pm-mvs164.12 24662.56 24468.78 27971.68 31038.87 34082.89 20181.57 18755.54 25853.89 28877.82 26337.73 19886.74 21748.46 26853.49 32380.72 279
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
FC-MVSNet-test67.49 20767.91 16766.21 30476.06 25633.06 36180.82 25187.18 6764.44 9054.81 27782.87 20150.40 5782.60 28148.05 27066.55 20782.98 244
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32675.44 34148.05 27066.62 20571.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet67.25 21465.99 20871.04 24973.27 29443.91 30385.32 12184.75 12666.05 7153.65 29182.11 22345.05 10885.97 24347.55 27256.18 29983.24 237
QAPM71.88 12669.33 15079.52 3882.20 13754.30 9086.30 9588.77 3856.61 24559.72 20587.48 14233.90 25395.36 1347.48 27381.49 7088.90 124
EPMVS68.45 18765.44 22377.47 8784.91 7356.17 4171.89 32381.91 18261.72 14160.85 19572.49 32336.21 22687.06 20847.32 27471.62 16489.17 119
GBi-Net67.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
test167.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
FMVSNet368.84 17867.40 18173.19 19985.05 7048.53 22685.71 11185.36 10160.90 15957.58 24879.15 25242.16 14986.77 21647.25 27563.40 23384.27 215
v7n62.50 26459.27 27572.20 22167.25 34549.83 19377.87 28080.12 21152.50 28548.80 31973.07 31732.10 26987.90 17846.83 27854.92 31178.86 297
WB-MVSnew69.36 17168.24 16372.72 20879.26 20049.40 20385.72 11088.85 3561.33 14764.59 15082.38 21734.57 24687.53 19746.82 27970.63 17381.22 274
CVMVSNet60.85 27560.44 26562.07 32675.00 27232.73 36379.54 26673.49 31236.98 36056.28 26783.74 18929.28 29169.53 36546.48 28063.23 23883.94 226
TR-MVS69.71 16467.85 17275.27 15182.94 11948.48 22987.40 7080.86 20057.15 23464.61 14987.08 14932.67 26489.64 11946.38 28171.55 16687.68 154
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26559.29 21736.76 21846.33 28287.32 161
FMVSNet267.57 20565.79 21372.90 20482.71 12647.97 24785.15 12684.93 11958.55 20556.71 26178.26 25936.72 22186.67 21946.15 28362.94 24484.07 218
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19741.75 35170.03 34122.54 33579.92 30746.12 28435.31 37281.32 272
testdata277.81 32845.64 285
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
AdaColmapbinary67.86 19765.48 22075.00 15788.15 3654.99 7186.10 9976.63 28349.30 30657.80 24286.65 15629.39 29088.94 14245.10 28770.21 17981.06 275
BH-untuned68.28 19166.40 19773.91 18181.62 15250.01 18885.56 11577.39 26857.63 22357.47 25383.69 19136.36 22587.08 20744.81 28873.08 15384.65 210
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 32974.39 30418.67 35544.95 39244.66 28936.31 37066.40 371
BH-RMVSNet70.08 15568.01 16676.27 11684.21 8651.22 16487.29 7479.33 23458.96 19863.63 16786.77 15333.29 25990.30 10244.63 29073.96 14487.30 162
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
IS-MVSNet68.80 18167.55 17872.54 21278.50 21943.43 30981.03 24579.35 23259.12 19457.27 25686.71 15446.05 9487.70 18844.32 29275.60 12786.49 177
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27075.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
pmmvs659.64 28157.15 28767.09 29566.01 34836.86 34980.50 25478.64 24645.05 33349.05 31773.94 30727.28 30286.10 23643.96 29449.94 33578.31 307
EPNet_dtu66.25 23466.71 19164.87 31478.66 21534.12 35682.80 20275.51 29261.75 14064.47 15586.90 15137.06 21372.46 35643.65 29569.63 18588.02 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat166.28 23362.78 24376.77 11281.40 16157.14 2270.03 33077.19 27153.00 28158.76 22870.73 33946.17 9186.73 21843.27 29664.46 22386.44 178
OpenMVScopyleft61.00 1169.99 15967.55 17877.30 9178.37 22254.07 9684.36 15585.76 9357.22 23256.71 26187.67 14030.79 28192.83 3543.04 29784.06 5485.01 205
PatchmatchNetpermissive67.07 22163.63 24177.40 8883.10 11058.03 972.11 32177.77 26158.85 19959.37 21370.83 33637.84 19484.93 26142.96 29869.83 18289.26 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet62.47 26559.04 27772.77 20773.97 28756.57 3260.52 36271.72 32360.04 17057.49 25165.86 35338.94 18580.31 30242.86 29959.93 25881.42 265
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
FMVSNet164.57 24262.11 24871.96 22877.32 23646.36 27183.52 17683.31 15652.43 28654.42 28276.23 28927.80 29986.20 23042.59 30161.34 25383.32 234
UA-Net67.32 21366.23 20270.59 25478.85 20941.23 33173.60 30575.45 29461.54 14466.61 12184.53 17738.73 18886.57 22542.48 30274.24 14283.98 223
CL-MVSNet_self_test62.98 25861.14 25868.50 28665.86 35042.96 31384.37 15482.98 16560.98 15553.95 28772.70 32240.43 17083.71 27341.10 30347.93 34078.83 298
MIMVSNet63.12 25760.29 26771.61 23775.92 26146.65 26765.15 34581.94 17959.14 19354.65 28069.47 34325.74 31380.63 29741.03 30469.56 18687.55 156
FE-MVS64.15 24560.43 26675.30 14880.85 17449.86 19268.28 33978.37 25350.26 30259.31 21573.79 30826.19 31091.92 5840.19 30566.67 20484.12 216
EG-PatchMatch MVS62.40 26759.59 27170.81 25273.29 29249.05 20985.81 10384.78 12451.85 29144.19 33973.48 31515.52 36989.85 11140.16 30667.24 20073.54 349
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34780.20 30539.91 30734.09 37976.57 326
dp64.41 24361.58 25172.90 20482.40 13254.09 9572.53 31376.59 28460.39 16655.68 27170.39 34035.18 23876.90 33539.34 30861.71 25187.73 152
TransMVSNet (Re)62.82 26060.76 26269.02 27473.98 28641.61 32686.36 9379.30 23556.90 23652.53 29776.44 28541.85 15687.60 19538.83 30940.61 36477.86 312
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23735.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
PLCcopyleft52.38 1860.89 27458.97 27866.68 30281.77 14445.70 28478.96 27374.04 30643.66 34247.63 32583.19 20023.52 33077.78 32937.47 31160.46 25676.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 26262.44 24562.86 32572.28 30729.51 37682.93 20078.78 24259.18 19153.07 29482.41 21536.91 21677.39 33037.45 31258.96 26881.66 259
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35338.19 35539.57 35871.43 33313.23 37279.92 30737.16 31340.32 36571.72 358
CNLPA60.59 27658.44 28067.05 29779.21 20147.26 26079.75 26564.34 35742.46 34851.90 30383.94 18527.79 30075.41 34237.12 31459.49 26478.47 303
K. test v354.04 31949.42 33067.92 29068.55 33642.57 32175.51 29363.07 36052.07 28739.21 35964.59 35719.34 35182.21 28237.11 31525.31 38878.97 296
Vis-MVSNet (Re-imp)65.52 24065.63 21765.17 31277.49 23430.54 36875.49 29477.73 26259.34 18452.26 30186.69 15549.38 6680.53 30037.07 31675.28 13084.42 213
PatchMatch-RL56.66 30453.75 30965.37 31177.91 22945.28 28869.78 33260.38 36341.35 34947.57 32673.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
Patchmtry56.56 30652.95 31367.42 29372.53 30350.59 17159.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30636.94 31846.72 35071.60 359
FMVSNet558.61 29456.45 29265.10 31377.20 24139.74 33674.77 29777.12 27350.27 30143.28 34567.71 34826.15 31176.90 33536.78 31954.78 31378.65 301
MDTV_nov1_ep1361.56 25281.68 14955.12 6672.41 31578.18 25559.19 18958.85 22669.29 34434.69 24586.16 23336.76 32062.96 243
JIA-IIPM52.33 32947.77 33666.03 30571.20 31746.92 26440.00 38876.48 28537.10 35946.73 33237.02 38832.96 26077.88 32635.97 32152.45 32973.29 351
lessismore_v067.98 28864.76 35941.25 33045.75 37836.03 36965.63 35519.29 35284.11 26835.67 32221.24 39378.59 302
CP-MVSNet58.54 29757.57 28561.46 33368.50 33733.96 35776.90 28678.60 24951.67 29347.83 32376.60 28434.99 24372.79 35435.45 32347.58 34277.64 316
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28335.34 32538.22 36874.65 341
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
PS-CasMVS58.12 29957.03 28961.37 33468.24 34133.80 35976.73 28778.01 25751.20 29547.54 32776.20 29232.85 26172.76 35535.17 32847.37 34477.55 317
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 28930.94 37540.76 35772.11 33020.16 34870.80 36135.11 32946.11 35276.19 330
ACMH+54.58 1558.55 29655.24 30068.50 28674.68 27645.80 28380.27 25870.21 33647.15 31842.77 34775.48 29716.73 36585.98 24135.10 33054.78 31373.72 347
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
our_test_359.11 28755.08 30371.18 24771.42 31453.29 11781.96 22074.52 29948.32 31142.08 34869.28 34528.14 29482.15 28334.35 33245.68 35478.11 311
PEN-MVS58.35 29857.15 28761.94 32967.55 34434.39 35377.01 28478.35 25451.87 29047.72 32476.73 28233.91 25273.75 34934.03 33347.17 34677.68 314
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35371.17 36033.48 33442.44 36075.26 335
tpmvs62.45 26659.42 27371.53 24183.93 9054.32 8970.03 33077.61 26451.91 28953.48 29268.29 34737.91 19386.66 22033.36 33558.27 27673.62 348
YYNet153.82 32149.96 32665.41 31070.09 32748.95 21372.30 31671.66 32544.25 33931.89 37963.07 36123.73 32873.95 34733.26 33639.40 36673.34 350
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32649.05 20972.30 31671.65 32644.23 34031.85 38063.13 36023.68 32974.01 34633.25 33739.35 36773.23 352
Anonymous2023120659.08 28857.59 28463.55 31968.77 33532.14 36680.26 25979.78 21950.00 30349.39 31572.39 32626.64 30778.36 31733.12 33857.94 28380.14 287
F-COLMAP55.96 31253.65 31062.87 32472.76 30042.77 31774.70 30070.37 33540.03 35141.11 35579.36 24717.77 35973.70 35032.80 33953.96 31972.15 355
PatchT56.60 30552.97 31267.48 29272.94 29846.16 27857.30 37073.78 30838.77 35454.37 28357.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32241.46 32974.73 29864.69 35447.56 31639.12 36069.49 34218.49 35784.69 26431.87 34134.20 37875.48 333
WR-MVS_H58.91 29158.04 28261.54 33269.07 33333.83 35876.91 28581.99 17851.40 29448.17 32074.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
ACMH53.70 1659.78 27955.94 29871.28 24376.59 24748.35 23380.15 26276.11 28749.74 30441.91 35073.45 31616.50 36690.31 10031.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 28255.14 30272.32 21974.69 27550.71 16774.39 30173.58 31044.44 33743.40 34477.52 26619.45 35090.87 8431.31 34457.49 29075.38 334
thres20068.71 18367.27 18473.02 20184.73 7546.76 26685.03 13387.73 6162.34 13259.87 20283.45 19543.15 13888.32 16531.25 34567.91 19583.98 223
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27451.16 29646.65 33476.34 28732.84 26273.22 35330.94 34644.87 35577.06 319
ppachtmachnet_test58.56 29554.34 30471.24 24471.42 31454.74 7781.84 22572.27 31949.02 30845.86 33868.99 34626.27 30883.30 27830.12 34743.23 35975.69 331
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25646.61 26863.23 35354.90 37024.77 38233.56 37536.60 39021.28 34575.88 34029.49 34962.54 24663.26 378
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28174.78 29852.64 28343.43 34372.39 32626.21 30974.76 34429.31 35047.05 34876.28 329
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28041.94 34977.33 27014.28 37077.95 32529.18 35151.72 33178.28 308
thres100view90066.87 22665.42 22471.24 24483.29 10643.15 31281.67 23087.78 5859.04 19555.92 26982.18 22243.73 12887.80 18228.80 35266.36 20982.78 248
tfpn200view967.57 20566.13 20471.89 23584.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20982.78 248
thres40067.40 21266.13 20471.19 24684.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20980.71 280
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18049.56 19855.03 37365.44 35244.72 33451.00 30761.19 36522.83 33275.41 34228.54 35553.63 32074.57 342
ADS-MVSNet56.17 30951.95 31968.84 27680.60 18053.07 12355.03 37370.02 33844.72 33451.00 30761.19 36522.83 33278.88 31528.54 35553.63 32074.57 342
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32834.99 35144.52 38167.60 35043.11 34543.79 34174.03 30618.54 35681.45 28828.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35869.86 36427.97 35934.35 37671.49 361
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27771.13 31844.30 29883.64 17575.02 29746.42 32446.48 33573.03 31818.69 35488.14 17027.74 36061.80 25074.05 345
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31247.32 25969.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
RPMNet59.29 28354.25 30674.42 16673.97 28756.57 3260.52 36276.98 27535.72 36457.49 25158.87 37237.73 19885.26 25427.01 36359.93 25881.42 265
thres600view766.46 23165.12 22870.47 25583.41 10043.80 30582.15 21687.78 5859.37 18356.02 26882.21 22143.73 12886.90 21426.51 36464.94 21880.71 280
TAPA-MVS56.12 1461.82 27060.18 26966.71 30078.48 22037.97 34575.19 29676.41 28646.82 32057.04 25786.52 15827.67 30177.03 33226.50 36567.02 20285.14 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
Patchmatch-test53.33 32448.17 33368.81 27873.31 29142.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 81
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36138.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
N_pmnet41.25 34539.77 34845.66 36368.50 3370.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 34967.74 36623.51 37240.63 36368.42 367
dmvs_testset57.65 30058.21 28155.97 35174.62 2779.82 40763.75 35063.34 35967.23 5048.89 31883.68 19339.12 18476.14 33823.43 37359.80 26081.96 254
myMVS_eth3d63.52 25263.56 24263.40 32181.73 14534.28 35480.97 24781.02 19760.93 15755.06 27582.64 20948.00 7480.81 29423.42 37458.32 27475.10 338
WAC-MVS34.28 35422.56 375
DP-MVS59.24 28456.12 29668.63 28288.24 3450.35 18182.51 21064.43 35641.10 35046.70 33378.77 25524.75 32288.57 15522.26 37656.29 29866.96 369
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
tfpnnormal61.47 27259.09 27668.62 28376.29 25341.69 32481.14 24485.16 11354.48 27051.32 30573.63 31332.32 26786.89 21521.78 37855.71 30677.29 318
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34340.57 33571.25 32562.72 36236.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
LS3D56.40 30853.82 30864.12 31681.12 16545.69 28573.42 30866.14 35135.30 36843.24 34679.88 24222.18 34079.62 31119.10 38464.00 22767.05 368
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
testing359.97 27860.19 26859.32 34077.60 23130.01 37381.75 22881.79 18453.54 27650.34 31279.94 24148.99 6876.91 33317.19 38750.59 33371.03 363
test_040256.45 30753.03 31166.69 30176.78 24650.31 18381.76 22769.61 34142.79 34643.88 34072.13 32922.82 33486.46 22616.57 38850.94 33263.31 377
Syy-MVS61.51 27161.35 25562.00 32881.73 14530.09 37180.97 24781.02 19760.93 15755.06 27582.64 20935.09 24080.81 29416.40 38958.32 27475.10 338
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35838.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36414.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 32063.21 3696.81 40115.00 39647.98 388
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33159.28 3776.10 40212.86 39745.78 390
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4538.55 1890.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 420.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
FOURS183.24 10749.90 19184.98 13578.76 24347.71 31473.42 58
test_one_060189.39 2257.29 2088.09 5357.21 23382.06 1293.39 1854.94 29
eth-test20.00 413
eth-test0.00 413
test_241102_ONE89.48 1756.89 2788.94 3057.53 22584.61 493.29 2258.81 1196.45 1
save fliter85.35 6556.34 3989.31 3981.46 18961.55 143
test072689.40 2057.45 1792.32 788.63 4357.71 22183.14 993.96 655.17 25
GSMVS88.13 143
test_part289.33 2355.48 5382.27 11
sam_mvs138.86 18788.13 143
sam_mvs35.99 232
MTGPAbinary81.31 192
test_post16.22 40137.52 20484.72 263
patchmatchnet-post59.74 36938.41 19079.91 309
MTMP87.27 7515.34 409
TEST985.68 5655.42 5487.59 6584.00 14357.72 22072.99 6390.98 6544.87 11488.58 152
test_885.72 5555.31 5987.60 6483.88 14657.84 21872.84 6790.99 6444.99 11088.34 163
agg_prior85.64 5954.92 7383.61 15372.53 7288.10 173
test_prior456.39 3887.15 79
test_prior78.39 6986.35 4954.91 7485.45 9889.70 11790.55 81
新几何281.61 233
旧先验181.57 15647.48 25571.83 32188.66 11636.94 21578.34 10388.67 131
原ACMM283.77 173
test22279.36 19650.97 16577.99 27967.84 34842.54 34762.84 17686.53 15730.26 28476.91 11185.23 201
segment_acmp44.97 112
testdata177.55 28364.14 95
test1279.24 4286.89 4556.08 4385.16 11372.27 7647.15 8191.10 7785.93 3590.54 83
plane_prior777.95 22648.46 230
plane_prior678.42 22149.39 20436.04 230
plane_prior483.28 198
plane_prior348.95 21364.01 9862.15 184
plane_prior285.76 10563.60 107
plane_prior178.31 223
plane_prior49.57 19687.43 6864.57 8972.84 154
n20.00 413
nn0.00 413
door-mid41.31 385
test1184.25 137
door43.27 381
HQP5-MVS51.56 154
HQP-NCC79.02 20588.00 5465.45 7664.48 152
ACMP_Plane79.02 20588.00 5465.45 7664.48 152
HQP4-MVS64.47 15588.61 15184.91 207
HQP3-MVS83.68 14973.12 150
HQP2-MVS37.35 207
NP-MVS78.76 21050.43 17585.12 171
ACMMP++_ref63.20 239
ACMMP++59.38 265
Test By Simon39.38 181