OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 47 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 16 | 89.82 1 | 92.55 3 | 94.06 3 |
|
PC_three_1452 | | | | | | | | | | 66.58 48 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 18 | 89.74 2 | 91.98 4 | 93.98 5 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 7 | 59.33 6 | 92.10 9 | 90.95 9 | 65.68 63 | 80.67 18 | 94.42 3 | 59.41 10 | 95.89 12 | 86.74 3 | 89.75 7 | 92.94 18 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 11 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 28 | 93.09 20 | 54.15 28 | 95.57 13 | 85.80 4 | 85.87 38 | 93.31 11 |
|
patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 61 | 90.34 10 | 53.77 97 | 88.08 57 | 88.36 48 | 76.17 2 | 79.40 23 | 91.09 56 | 55.43 20 | 90.09 109 | 85.01 5 | 80.40 87 | 91.99 43 |
|
CNVR-MVS | | | 81.76 8 | 81.90 7 | 81.33 18 | 90.04 11 | 57.70 14 | 91.71 10 | 88.87 33 | 70.31 17 | 77.64 27 | 93.87 8 | 52.58 35 | 93.91 28 | 84.17 6 | 87.92 16 | 92.39 29 |
|
dcpmvs_2 | | | 79.33 19 | 78.94 19 | 80.49 22 | 89.75 14 | 56.54 34 | 84.83 143 | 83.68 150 | 67.85 36 | 69.36 91 | 90.24 82 | 60.20 7 | 92.10 58 | 84.14 7 | 80.40 87 | 92.82 21 |
|
CANet | | | 80.90 10 | 81.17 11 | 80.09 32 | 87.62 40 | 54.21 90 | 91.60 13 | 86.47 80 | 73.13 6 | 79.89 21 | 93.10 18 | 49.88 56 | 92.98 35 | 84.09 8 | 84.75 51 | 93.08 16 |
|
MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 52 | 82.99 124 | 52.71 132 | 85.04 134 | 88.63 40 | 66.08 59 | 86.77 3 | 92.75 24 | 72.05 1 | 91.46 70 | 83.35 9 | 93.53 1 | 92.23 34 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
IU-MVS | | | | | | 89.48 19 | 57.49 17 | | 91.38 5 | 66.22 55 | 88.26 1 | | | | 82.83 10 | 87.60 18 | 92.44 28 |
|
PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 14 | 85.58 62 | 60.97 3 | 91.69 11 | 87.02 69 | 70.62 14 | 80.75 17 | 93.22 17 | 37.77 186 | 92.50 46 | 82.75 11 | 86.25 35 | 91.57 52 |
|
xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 15 | 85.03 78 | 60.73 4 | 91.65 12 | 86.86 72 | 70.30 18 | 80.77 16 | 93.07 21 | 37.63 191 | 92.28 52 | 82.73 12 | 85.71 39 | 91.57 52 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 84 | 85.46 68 | 49.56 206 | 90.99 20 | 86.66 78 | 70.58 15 | 80.07 20 | 95.30 1 | 56.18 18 | 90.97 85 | 82.57 13 | 86.22 36 | 93.28 12 |
|
SED-MVS | | | 81.92 7 | 81.75 8 | 82.44 8 | 89.48 19 | 56.89 28 | 92.48 3 | 88.94 29 | 57.50 213 | 84.61 4 | 94.09 4 | 58.81 12 | 96.37 6 | 82.28 14 | 87.60 18 | 94.06 3 |
|
test_241102_TWO | | | | | | | | | 88.76 37 | 57.50 213 | 83.60 6 | 94.09 4 | 56.14 19 | 96.37 6 | 82.28 14 | 87.43 20 | 92.55 26 |
|
DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 9 | 89.40 22 | 57.45 19 | 92.34 5 | 89.99 16 | 57.71 207 | 81.91 12 | 93.64 11 | 55.17 21 | 96.44 2 | 81.68 16 | 87.13 21 | 92.72 24 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 82.20 9 | 89.50 17 | 57.73 13 | 92.34 5 | 88.88 31 | | | | | 96.39 4 | 81.68 16 | 87.13 21 | 92.47 27 |
|
ETH3D-3000-0.1 | | | 78.73 21 | 78.71 21 | 78.78 55 | 85.58 62 | 52.40 140 | 88.42 54 | 89.03 26 | 60.01 152 | 76.06 33 | 92.80 23 | 48.34 62 | 92.88 37 | 81.66 18 | 86.48 33 | 91.04 69 |
|
DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 5 | 91.77 4 | 57.49 17 | 84.98 137 | 88.88 31 | 58.00 198 | 83.60 6 | 93.39 13 | 67.21 2 | 96.39 4 | 81.64 19 | 91.98 4 | 93.98 5 |
|
test_0728_THIRD | | | | | | | | | | 58.00 198 | 81.91 12 | 93.64 11 | 56.54 16 | 96.44 2 | 81.64 19 | 86.86 25 | 92.23 34 |
|
MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 45 | | 91.10 6 | | | | | 96.22 8 | 81.46 21 | 86.80 28 | 92.34 31 |
|
No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 45 | | 91.10 6 | | | | | 96.22 8 | 81.46 21 | 86.80 28 | 92.34 31 |
|
9.14 | | | | 78.19 25 | | 85.67 59 | | 88.32 55 | 88.84 34 | 59.89 154 | 74.58 43 | 92.62 27 | 46.80 80 | 92.66 43 | 81.40 23 | 85.62 41 | |
|
lupinMVS | | | 78.38 25 | 78.11 27 | 79.19 41 | 83.02 122 | 55.24 60 | 91.57 14 | 84.82 122 | 69.12 24 | 76.67 30 | 92.02 39 | 44.82 109 | 90.23 106 | 80.83 24 | 80.09 92 | 92.08 38 |
|
ETH3D cwj APD-0.16 | | | 78.36 26 | 78.19 25 | 78.86 50 | 84.21 91 | 52.68 133 | 86.70 91 | 89.02 27 | 59.13 178 | 75.37 35 | 92.49 28 | 49.06 61 | 93.20 33 | 80.67 25 | 87.08 23 | 90.71 77 |
|
HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 34 | 87.34 42 | 55.20 63 | 89.93 29 | 87.55 64 | 66.04 62 | 79.46 22 | 93.00 22 | 53.10 32 | 91.76 63 | 80.40 26 | 89.56 9 | 92.68 25 |
|
SMA-MVS |  | | 79.10 20 | 78.76 20 | 80.12 30 | 84.42 85 | 55.87 48 | 87.58 69 | 86.76 75 | 61.48 131 | 80.26 19 | 93.10 18 | 46.53 84 | 92.41 49 | 79.97 27 | 88.77 11 | 92.08 38 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 78.44 23 | 78.20 24 | 79.19 41 | 88.56 28 | 54.55 85 | 89.76 34 | 87.77 59 | 55.91 237 | 78.56 24 | 92.49 28 | 48.20 64 | 92.65 44 | 79.49 28 | 83.04 60 | 90.39 84 |
|
ETV-MVS | | | 77.17 41 | 76.74 43 | 78.48 65 | 81.80 148 | 54.55 85 | 86.13 102 | 85.33 103 | 68.20 30 | 73.10 56 | 90.52 76 | 45.23 102 | 90.66 92 | 79.37 29 | 80.95 78 | 90.22 88 |
|
jason | | | 77.01 44 | 76.45 48 | 78.69 58 | 79.69 194 | 54.74 77 | 90.56 24 | 83.99 146 | 68.26 29 | 74.10 46 | 90.91 64 | 42.14 143 | 89.99 111 | 79.30 30 | 79.12 102 | 91.36 60 |
jason: jason. |
DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 12 | 86.80 47 | 56.89 28 | 92.77 2 | 86.30 84 | 77.83 1 | 77.88 25 | 92.13 35 | 60.24 6 | 94.78 22 | 78.97 31 | 89.61 8 | 93.69 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
h-mvs33 | | | 73.95 89 | 72.89 88 | 77.15 103 | 80.17 188 | 50.37 185 | 84.68 147 | 83.33 157 | 68.08 31 | 71.97 72 | 88.65 119 | 42.50 137 | 91.15 77 | 78.82 32 | 57.78 272 | 89.91 98 |
|
hse-mvs2 | | | 71.44 128 | 70.68 121 | 73.73 182 | 76.34 248 | 47.44 254 | 79.45 262 | 79.47 224 | 68.08 31 | 71.97 72 | 86.01 159 | 42.50 137 | 86.93 202 | 78.82 32 | 53.46 308 | 86.83 164 |
|
NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 17 | 56.99 26 | 91.38 15 | 88.17 50 | 67.71 39 | 73.81 48 | 92.75 24 | 46.88 79 | 93.28 32 | 78.79 34 | 84.07 56 | 91.50 56 |
|
test9_res | | | | | | | | | | | | | | | 78.72 35 | 85.44 44 | 91.39 58 |
|
CSCG | | | 80.41 14 | 79.72 14 | 82.49 6 | 89.12 27 | 57.67 15 | 89.29 41 | 91.54 3 | 59.19 172 | 71.82 75 | 90.05 91 | 59.72 9 | 96.04 10 | 78.37 36 | 88.40 14 | 93.75 7 |
|
DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 25 | 89.27 26 | 55.08 68 | 88.70 49 | 87.92 55 | 55.55 242 | 81.21 15 | 93.69 10 | 56.51 17 | 94.27 25 | 78.36 37 | 85.70 40 | 91.51 55 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 75.54 70 | 75.03 65 | 77.04 104 | 81.37 165 | 52.65 135 | 84.34 154 | 84.46 132 | 61.16 134 | 69.14 93 | 91.76 45 | 39.98 170 | 88.99 137 | 78.19 38 | 84.89 50 | 89.48 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
train_agg | | | 76.91 47 | 76.40 49 | 78.45 67 | 85.68 57 | 55.42 54 | 87.59 67 | 84.00 144 | 57.84 204 | 72.99 57 | 90.98 60 | 44.99 104 | 88.58 149 | 78.19 38 | 85.32 45 | 91.34 62 |
|
xxxxxxxxxxxxxcwj | | | 77.31 40 | 76.54 45 | 79.61 35 | 85.35 70 | 56.34 39 | 89.31 39 | 72.84 314 | 61.55 127 | 74.63 40 | 92.38 30 | 47.75 70 | 91.35 72 | 78.18 40 | 86.85 26 | 91.15 66 |
|
SF-MVS | | | 77.64 35 | 77.42 35 | 78.32 73 | 83.75 101 | 52.47 138 | 86.63 93 | 87.80 56 | 58.78 186 | 74.63 40 | 92.38 30 | 47.75 70 | 91.35 72 | 78.18 40 | 86.85 26 | 91.15 66 |
|
canonicalmvs | | | 78.17 29 | 77.86 30 | 79.12 44 | 84.30 87 | 54.22 89 | 87.71 62 | 84.57 131 | 67.70 40 | 77.70 26 | 92.11 38 | 50.90 47 | 89.95 112 | 78.18 40 | 77.54 114 | 93.20 14 |
|
VDD-MVS | | | 76.08 61 | 74.97 67 | 79.44 37 | 84.27 90 | 53.33 117 | 91.13 19 | 85.88 91 | 65.33 70 | 72.37 69 | 89.34 104 | 32.52 252 | 92.76 41 | 77.90 43 | 75.96 127 | 92.22 36 |
|
agg_prior1 | | | 76.68 54 | 76.24 52 | 78.00 80 | 85.64 60 | 54.92 72 | 87.55 70 | 83.61 154 | 57.99 200 | 72.53 64 | 91.05 57 | 45.36 100 | 88.10 169 | 77.76 44 | 84.68 52 | 90.99 72 |
|
diffmvs | | | 75.11 77 | 74.65 72 | 76.46 120 | 78.52 219 | 53.35 115 | 83.28 188 | 79.94 212 | 70.51 16 | 71.64 77 | 88.72 115 | 46.02 91 | 86.08 228 | 77.52 45 | 75.75 131 | 89.96 96 |
|
alignmvs | | | 78.08 30 | 77.98 28 | 78.39 70 | 83.53 105 | 53.22 120 | 89.77 33 | 85.45 97 | 66.11 57 | 76.59 32 | 91.99 41 | 54.07 29 | 89.05 131 | 77.34 46 | 77.00 119 | 92.89 20 |
|
SteuartSystems-ACMMP | | | 77.08 43 | 76.33 50 | 79.34 39 | 80.98 170 | 55.31 58 | 89.76 34 | 86.91 71 | 62.94 106 | 71.65 76 | 91.56 51 | 42.33 139 | 92.56 45 | 77.14 47 | 83.69 58 | 90.15 91 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 76.43 56 | 75.66 56 | 78.73 56 | 81.92 146 | 54.67 82 | 84.06 163 | 85.35 102 | 61.10 136 | 72.99 57 | 91.50 52 | 40.25 164 | 91.00 82 | 76.84 48 | 86.98 24 | 90.51 83 |
|
CLD-MVS | | | 75.60 69 | 75.39 60 | 76.24 123 | 80.69 180 | 52.40 140 | 90.69 22 | 86.20 86 | 74.40 4 | 65.01 136 | 88.93 111 | 42.05 145 | 90.58 95 | 76.57 49 | 73.96 144 | 85.73 184 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MP-MVS |  | | 74.99 79 | 74.33 75 | 76.95 109 | 82.89 128 | 53.05 126 | 85.63 115 | 83.50 156 | 57.86 203 | 67.25 108 | 90.24 82 | 43.38 129 | 88.85 143 | 76.03 50 | 82.23 69 | 88.96 120 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
casdiffmvs | | | 77.36 39 | 76.85 41 | 78.88 48 | 80.40 186 | 54.66 83 | 87.06 82 | 85.88 91 | 72.11 9 | 71.57 78 | 88.63 120 | 50.89 49 | 90.35 100 | 76.00 51 | 79.11 103 | 91.63 49 |
|
TSAR-MVS + GP. | | | 77.82 33 | 77.59 32 | 78.49 64 | 85.25 74 | 50.27 192 | 90.02 26 | 90.57 11 | 56.58 231 | 74.26 45 | 91.60 50 | 54.26 26 | 92.16 55 | 75.87 52 | 79.91 96 | 93.05 17 |
|
baseline | | | 76.86 50 | 76.24 52 | 78.71 57 | 80.47 185 | 54.20 92 | 83.90 168 | 84.88 121 | 71.38 12 | 71.51 79 | 89.15 109 | 50.51 50 | 90.55 96 | 75.71 53 | 78.65 106 | 91.39 58 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 54 | 85.11 48 | 91.01 70 |
|
DeepC-MVS | | 67.15 4 | 76.90 49 | 76.27 51 | 78.80 52 | 80.70 179 | 55.02 69 | 86.39 96 | 86.71 76 | 66.96 46 | 67.91 103 | 89.97 93 | 48.03 66 | 91.41 71 | 75.60 55 | 84.14 55 | 89.96 96 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PVSNet_BlendedMVS | | | 73.42 98 | 73.30 83 | 73.76 180 | 85.91 54 | 51.83 154 | 86.18 101 | 84.24 140 | 65.40 67 | 69.09 94 | 80.86 222 | 46.70 82 | 88.13 167 | 75.43 56 | 65.92 207 | 81.33 257 |
|
PVSNet_Blended | | | 76.53 55 | 76.54 45 | 76.50 118 | 85.91 54 | 51.83 154 | 88.89 46 | 84.24 140 | 67.82 37 | 69.09 94 | 89.33 106 | 46.70 82 | 88.13 167 | 75.43 56 | 81.48 77 | 89.55 104 |
|
LFMVS | | | 78.52 22 | 77.14 37 | 82.67 4 | 89.58 15 | 58.90 8 | 91.27 18 | 88.05 52 | 63.22 102 | 74.63 40 | 90.83 67 | 41.38 155 | 94.40 23 | 75.42 58 | 79.90 97 | 94.72 2 |
|
ZD-MVS | | | | | | 89.55 16 | 53.46 107 | | 84.38 133 | 57.02 220 | 73.97 47 | 91.03 58 | 44.57 112 | 91.17 76 | 75.41 59 | 81.78 75 | |
|
testtj | | | 76.96 45 | 76.48 47 | 78.40 69 | 89.89 13 | 53.67 101 | 88.72 48 | 86.15 87 | 54.56 255 | 74.86 38 | 92.31 33 | 44.38 114 | 91.97 61 | 75.19 60 | 82.24 68 | 89.54 105 |
|
MVS_111021_HR | | | 76.39 57 | 75.38 61 | 79.42 38 | 85.33 72 | 56.47 36 | 88.15 56 | 84.97 118 | 65.15 74 | 66.06 121 | 89.88 94 | 43.79 120 | 92.16 55 | 75.03 61 | 80.03 95 | 89.64 103 |
|
test_prior3 | | | 77.59 36 | 77.33 36 | 78.39 70 | 86.35 50 | 54.91 74 | 89.04 43 | 85.45 97 | 61.88 122 | 73.55 50 | 91.46 54 | 48.01 67 | 89.70 118 | 74.73 62 | 85.46 42 | 90.55 79 |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 122 | 73.55 50 | 91.46 54 | 48.01 67 | | 74.73 62 | 85.46 42 | |
|
SD-MVS | | | 76.18 59 | 74.85 69 | 80.18 28 | 85.39 69 | 56.90 27 | 85.75 111 | 82.45 175 | 56.79 226 | 74.48 44 | 91.81 42 | 43.72 123 | 90.75 90 | 74.61 64 | 78.65 106 | 92.91 19 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CS-MVS-test | | | 76.94 46 | 77.04 38 | 76.62 116 | 83.59 102 | 47.60 250 | 89.87 32 | 85.55 95 | 66.52 49 | 72.49 66 | 90.53 74 | 47.76 69 | 91.03 80 | 74.53 65 | 82.55 63 | 91.25 63 |
|
CS-MVS | | | 76.69 53 | 76.72 44 | 76.60 117 | 83.54 104 | 47.58 251 | 88.59 51 | 85.23 111 | 66.38 52 | 72.48 68 | 91.62 49 | 45.57 98 | 91.00 82 | 74.50 66 | 82.55 63 | 91.23 64 |
|
APD-MVS |  | | 76.15 60 | 75.68 55 | 77.54 91 | 88.52 29 | 53.44 111 | 87.26 79 | 85.03 117 | 53.79 259 | 74.91 37 | 91.68 48 | 43.80 119 | 90.31 102 | 74.36 67 | 81.82 73 | 88.87 122 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DROMVSNet | | | 75.30 72 | 75.20 62 | 75.62 137 | 80.98 170 | 49.00 217 | 87.43 71 | 84.68 128 | 63.49 99 | 70.97 85 | 90.15 88 | 42.86 136 | 91.14 78 | 74.33 68 | 81.90 72 | 86.71 167 |
|
VDDNet | | | 74.37 83 | 72.13 101 | 81.09 20 | 79.58 195 | 56.52 35 | 90.02 26 | 86.70 77 | 52.61 268 | 71.23 82 | 87.20 142 | 31.75 262 | 93.96 27 | 74.30 69 | 75.77 130 | 92.79 23 |
|
TSAR-MVS + MP. | | | 78.31 28 | 78.26 23 | 78.48 65 | 81.33 166 | 56.31 41 | 81.59 228 | 86.41 81 | 69.61 22 | 81.72 14 | 88.16 126 | 55.09 23 | 88.04 172 | 74.12 70 | 86.31 34 | 91.09 68 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 6 | 80.12 189 | 59.50 5 | 92.24 8 | 90.72 10 | 69.37 23 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 34 | 74.02 71 | 93.25 2 | 94.80 1 |
|
PHI-MVS | | | 77.49 37 | 77.00 39 | 78.95 45 | 85.33 72 | 50.69 175 | 88.57 52 | 88.59 44 | 58.14 195 | 73.60 49 | 93.31 15 | 43.14 132 | 93.79 29 | 73.81 72 | 88.53 13 | 92.37 30 |
|
zzz-MVS | | | 74.15 87 | 73.11 87 | 77.27 99 | 81.54 158 | 53.57 103 | 84.02 165 | 81.31 192 | 59.41 164 | 68.39 99 | 90.96 62 | 36.07 218 | 89.01 133 | 73.80 73 | 82.45 66 | 89.23 111 |
|
MTAPA | | | 72.73 107 | 71.22 115 | 77.27 99 | 81.54 158 | 53.57 103 | 67.06 327 | 81.31 192 | 59.41 164 | 68.39 99 | 90.96 62 | 36.07 218 | 89.01 133 | 73.80 73 | 82.45 66 | 89.23 111 |
|
Regformer-1 | | | 77.80 34 | 77.44 34 | 78.88 48 | 87.78 38 | 52.44 139 | 87.60 64 | 90.08 14 | 68.86 25 | 72.49 66 | 91.79 43 | 47.69 72 | 94.90 20 | 73.57 75 | 77.05 116 | 89.31 109 |
|
VNet | | | 77.99 32 | 77.92 29 | 78.19 75 | 87.43 41 | 50.12 195 | 90.93 21 | 91.41 4 | 67.48 42 | 75.12 36 | 90.15 88 | 46.77 81 | 91.00 82 | 73.52 76 | 78.46 108 | 93.44 9 |
|
EPNet | | | 78.36 26 | 78.49 22 | 77.97 82 | 85.49 65 | 52.04 147 | 89.36 38 | 84.07 143 | 73.22 5 | 77.03 29 | 91.72 46 | 49.32 60 | 90.17 108 | 73.46 77 | 82.77 61 | 91.69 47 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v1_base_debu | | | 71.60 125 | 70.29 128 | 75.55 139 | 77.26 238 | 53.15 121 | 85.34 120 | 79.37 225 | 55.83 238 | 72.54 61 | 90.19 85 | 22.38 320 | 86.66 209 | 73.28 78 | 76.39 123 | 86.85 161 |
|
xiu_mvs_v1_base | | | 71.60 125 | 70.29 128 | 75.55 139 | 77.26 238 | 53.15 121 | 85.34 120 | 79.37 225 | 55.83 238 | 72.54 61 | 90.19 85 | 22.38 320 | 86.66 209 | 73.28 78 | 76.39 123 | 86.85 161 |
|
xiu_mvs_v1_base_debi | | | 71.60 125 | 70.29 128 | 75.55 139 | 77.26 238 | 53.15 121 | 85.34 120 | 79.37 225 | 55.83 238 | 72.54 61 | 90.19 85 | 22.38 320 | 86.66 209 | 73.28 78 | 76.39 123 | 86.85 161 |
|
Regformer-2 | | | 77.15 42 | 76.82 42 | 78.14 76 | 87.78 38 | 51.84 153 | 87.60 64 | 89.12 23 | 67.23 43 | 71.93 74 | 91.79 43 | 46.03 90 | 93.53 31 | 72.85 81 | 77.05 116 | 89.05 118 |
|
PMMVS | | | 72.98 102 | 72.05 105 | 75.78 136 | 83.57 103 | 48.60 227 | 84.08 161 | 82.85 170 | 61.62 126 | 68.24 101 | 90.33 81 | 28.35 280 | 87.78 181 | 72.71 82 | 76.69 121 | 90.95 73 |
|
ZNCC-MVS | | | 75.82 68 | 75.02 66 | 78.23 74 | 83.88 99 | 53.80 96 | 86.91 88 | 86.05 89 | 59.71 157 | 67.85 104 | 90.55 73 | 42.23 141 | 91.02 81 | 72.66 83 | 85.29 46 | 89.87 99 |
|
ET-MVSNet_ETH3D | | | 75.23 74 | 74.08 77 | 78.67 59 | 84.52 84 | 55.59 50 | 88.92 45 | 89.21 22 | 68.06 34 | 53.13 278 | 90.22 84 | 49.71 57 | 87.62 185 | 72.12 84 | 70.82 173 | 92.82 21 |
|
MVS | | | 76.91 47 | 75.48 58 | 81.23 19 | 84.56 83 | 55.21 62 | 80.23 251 | 91.64 2 | 58.65 188 | 65.37 130 | 91.48 53 | 45.72 96 | 95.05 17 | 72.11 85 | 89.52 10 | 93.44 9 |
|
#test# | | | 74.86 81 | 73.78 81 | 78.10 78 | 84.30 87 | 53.68 99 | 86.95 85 | 84.36 134 | 59.00 182 | 65.78 125 | 90.56 71 | 40.70 161 | 90.90 86 | 71.48 86 | 80.88 79 | 89.71 100 |
|
nrg030 | | | 72.27 118 | 71.56 109 | 74.42 160 | 75.93 257 | 50.60 177 | 86.97 84 | 83.21 162 | 62.75 108 | 67.15 109 | 84.38 173 | 50.07 53 | 86.66 209 | 71.19 87 | 62.37 235 | 85.99 177 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 31 | 77.63 31 | 79.13 43 | 88.52 29 | 55.12 65 | 89.95 28 | 85.98 90 | 68.31 28 | 71.33 81 | 92.75 24 | 45.52 99 | 90.37 99 | 71.15 88 | 85.14 47 | 91.91 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GST-MVS | | | 74.87 80 | 73.90 79 | 77.77 85 | 83.30 111 | 53.45 110 | 85.75 111 | 85.29 106 | 59.22 171 | 66.50 116 | 89.85 95 | 40.94 157 | 90.76 89 | 70.94 89 | 83.35 59 | 89.10 117 |
|
CHOSEN 1792x2688 | | | 76.24 58 | 74.03 78 | 82.88 1 | 83.09 118 | 62.84 2 | 85.73 113 | 85.39 100 | 69.79 20 | 64.87 138 | 83.49 186 | 41.52 154 | 93.69 30 | 70.55 90 | 81.82 73 | 92.12 37 |
|
CDPH-MVS | | | 76.05 62 | 75.19 63 | 78.62 61 | 86.51 49 | 54.98 71 | 87.32 74 | 84.59 130 | 58.62 189 | 70.75 86 | 90.85 66 | 43.10 134 | 90.63 94 | 70.50 91 | 84.51 54 | 90.24 87 |
|
HPM-MVS |  | | 72.60 109 | 71.50 110 | 75.89 134 | 82.02 144 | 51.42 165 | 80.70 245 | 83.05 165 | 56.12 236 | 64.03 151 | 89.53 100 | 37.55 193 | 88.37 157 | 70.48 92 | 80.04 94 | 87.88 142 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
Regformer-3 | | | 76.02 63 | 75.47 59 | 77.70 87 | 85.49 65 | 51.47 163 | 85.12 130 | 90.19 13 | 68.52 27 | 69.36 91 | 90.66 69 | 46.45 85 | 94.81 21 | 70.25 93 | 73.16 150 | 86.81 165 |
|
MVS_111021_LR | | | 69.07 166 | 67.91 159 | 72.54 205 | 77.27 237 | 49.56 206 | 79.77 256 | 73.96 304 | 59.33 169 | 60.73 187 | 87.82 131 | 30.19 273 | 81.53 277 | 69.94 94 | 72.19 163 | 86.53 169 |
|
test_yl | | | 75.85 65 | 74.83 70 | 78.91 46 | 88.08 36 | 51.94 149 | 91.30 16 | 89.28 20 | 57.91 201 | 71.19 83 | 89.20 107 | 42.03 146 | 92.77 39 | 69.41 95 | 75.07 138 | 92.01 41 |
|
DCV-MVSNet | | | 75.85 65 | 74.83 70 | 78.91 46 | 88.08 36 | 51.94 149 | 91.30 16 | 89.28 20 | 57.91 201 | 71.19 83 | 89.20 107 | 42.03 146 | 92.77 39 | 69.41 95 | 75.07 138 | 92.01 41 |
|
Regformer-4 | | | 75.06 78 | 74.59 73 | 76.47 119 | 85.49 65 | 50.33 188 | 85.12 130 | 88.61 42 | 66.42 50 | 68.48 98 | 90.66 69 | 44.15 115 | 92.68 42 | 69.24 97 | 73.16 150 | 86.39 173 |
|
HFP-MVS | | | 74.37 83 | 73.13 86 | 78.10 78 | 84.30 87 | 53.68 99 | 85.58 116 | 84.36 134 | 56.82 224 | 65.78 125 | 90.56 71 | 40.70 161 | 90.90 86 | 69.18 98 | 80.88 79 | 89.71 100 |
|
ACMMPR | | | 73.76 93 | 72.61 89 | 77.24 102 | 83.92 97 | 52.96 129 | 85.58 116 | 84.29 136 | 56.82 224 | 65.12 132 | 90.45 77 | 37.24 201 | 90.18 107 | 69.18 98 | 80.84 81 | 88.58 130 |
|
region2R | | | 73.75 94 | 72.55 91 | 77.33 96 | 83.90 98 | 52.98 128 | 85.54 119 | 84.09 142 | 56.83 223 | 65.10 133 | 90.45 77 | 37.34 199 | 90.24 105 | 68.89 100 | 80.83 82 | 88.77 126 |
|
CP-MVS | | | 72.59 111 | 71.46 111 | 76.00 133 | 82.93 127 | 52.32 144 | 86.93 87 | 82.48 174 | 55.15 246 | 63.65 159 | 90.44 80 | 35.03 230 | 88.53 153 | 68.69 101 | 77.83 112 | 87.15 155 |
|
baseline2 | | | 75.15 76 | 74.54 74 | 76.98 108 | 81.67 151 | 51.74 156 | 83.84 169 | 91.94 1 | 69.97 19 | 58.98 209 | 86.02 157 | 59.73 8 | 91.73 64 | 68.37 102 | 70.40 177 | 87.48 149 |
|
Effi-MVS+ | | | 75.24 73 | 73.61 82 | 80.16 29 | 81.92 146 | 57.42 21 | 85.21 124 | 76.71 280 | 60.68 145 | 73.32 55 | 89.34 104 | 47.30 75 | 91.63 65 | 68.28 103 | 79.72 98 | 91.42 57 |
|
CostFormer | | | 73.89 91 | 72.30 97 | 78.66 60 | 82.36 142 | 56.58 31 | 75.56 282 | 85.30 105 | 66.06 60 | 70.50 89 | 76.88 262 | 57.02 15 | 89.06 129 | 68.27 104 | 68.74 187 | 90.33 86 |
|
CANet_DTU | | | 73.71 95 | 73.14 84 | 75.40 142 | 82.61 138 | 50.05 196 | 84.67 149 | 79.36 228 | 69.72 21 | 75.39 34 | 90.03 92 | 29.41 276 | 85.93 234 | 67.99 105 | 79.11 103 | 90.22 88 |
|
PVSNet_Blended_VisFu | | | 73.40 99 | 72.44 93 | 76.30 121 | 81.32 167 | 54.70 80 | 85.81 107 | 78.82 238 | 63.70 93 | 64.53 143 | 85.38 166 | 47.11 78 | 87.38 191 | 67.75 106 | 77.55 113 | 86.81 165 |
|
MSLP-MVS++ | | | 74.21 85 | 72.25 98 | 80.11 31 | 81.45 163 | 56.47 36 | 86.32 98 | 79.65 220 | 58.19 194 | 66.36 117 | 92.29 34 | 36.11 217 | 90.66 92 | 67.39 107 | 82.49 65 | 93.18 15 |
|
PGM-MVS | | | 72.60 109 | 71.20 116 | 76.80 113 | 82.95 125 | 52.82 131 | 83.07 193 | 82.14 177 | 56.51 232 | 63.18 163 | 89.81 96 | 35.68 223 | 89.76 117 | 67.30 108 | 80.19 91 | 87.83 143 |
|
EIA-MVS | | | 75.92 64 | 75.18 64 | 78.13 77 | 85.14 75 | 51.60 159 | 87.17 80 | 85.32 104 | 64.69 77 | 68.56 97 | 90.53 74 | 45.79 95 | 91.58 66 | 67.21 109 | 82.18 70 | 91.20 65 |
|
HY-MVS | | 67.03 5 | 73.90 90 | 73.14 84 | 76.18 127 | 84.70 82 | 47.36 255 | 75.56 282 | 86.36 83 | 66.27 54 | 70.66 87 | 83.91 179 | 51.05 45 | 89.31 125 | 67.10 110 | 72.61 159 | 91.88 45 |
|
bset_n11_16_dypcd | | | 65.51 231 | 63.21 233 | 72.41 209 | 68.84 321 | 50.15 193 | 81.25 235 | 72.40 316 | 59.17 176 | 59.20 207 | 78.66 239 | 25.69 303 | 85.27 243 | 66.80 111 | 56.88 277 | 81.80 243 |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 112 | | |
|
HQP-MVS | | | 72.34 114 | 71.44 112 | 75.03 149 | 79.02 205 | 51.56 160 | 88.00 58 | 83.68 150 | 65.45 64 | 64.48 144 | 85.13 167 | 37.35 197 | 88.62 147 | 66.70 112 | 73.12 152 | 84.91 198 |
|
SR-MVS | | | 70.92 136 | 69.73 137 | 74.50 157 | 83.38 110 | 50.48 181 | 84.27 156 | 79.35 229 | 48.96 291 | 66.57 115 | 90.45 77 | 33.65 243 | 87.11 195 | 66.42 114 | 74.56 141 | 85.91 180 |
|
gm-plane-assit | | | | | | 83.24 113 | 54.21 90 | | | 70.91 13 | | 88.23 125 | | 95.25 15 | 66.37 115 | | |
|
PAPR | | | 75.20 75 | 74.13 76 | 78.41 68 | 88.31 33 | 55.10 67 | 84.31 155 | 85.66 94 | 63.76 92 | 67.55 105 | 90.73 68 | 43.48 128 | 89.40 124 | 66.36 116 | 77.03 118 | 90.73 76 |
|
WTY-MVS | | | 77.47 38 | 77.52 33 | 77.30 97 | 88.33 32 | 46.25 271 | 88.46 53 | 90.32 12 | 71.40 11 | 72.32 70 | 91.72 46 | 53.44 30 | 92.37 50 | 66.28 117 | 75.42 133 | 93.28 12 |
|
RRT_test8_iter05 | | | 72.74 106 | 71.20 116 | 77.36 95 | 87.25 44 | 53.51 105 | 88.68 50 | 89.53 18 | 65.20 73 | 61.32 181 | 81.27 218 | 45.89 92 | 92.48 48 | 65.99 118 | 55.65 292 | 86.10 176 |
|
tpmrst | | | 71.04 133 | 69.77 136 | 74.86 152 | 83.19 115 | 55.86 49 | 75.64 281 | 78.73 242 | 67.88 35 | 64.99 137 | 73.73 288 | 49.96 55 | 79.56 299 | 65.92 119 | 67.85 194 | 89.14 116 |
|
MVS_Test | | | 75.85 65 | 74.93 68 | 78.62 61 | 84.08 93 | 55.20 63 | 83.99 166 | 85.17 112 | 68.07 33 | 73.38 54 | 82.76 196 | 50.44 51 | 89.00 135 | 65.90 120 | 80.61 83 | 91.64 48 |
|
ACMMP |  | | 70.81 138 | 69.29 144 | 75.39 143 | 81.52 162 | 51.92 151 | 83.43 181 | 83.03 166 | 56.67 229 | 58.80 216 | 88.91 112 | 31.92 260 | 88.58 149 | 65.89 121 | 73.39 149 | 85.67 185 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
XVS | | | 72.92 103 | 71.62 108 | 76.81 111 | 83.41 106 | 52.48 136 | 84.88 141 | 83.20 163 | 58.03 196 | 63.91 154 | 89.63 99 | 35.50 224 | 89.78 115 | 65.50 122 | 80.50 85 | 88.16 135 |
|
X-MVStestdata | | | 65.85 229 | 62.20 238 | 76.81 111 | 83.41 106 | 52.48 136 | 84.88 141 | 83.20 163 | 58.03 196 | 63.91 154 | 4.82 375 | 35.50 224 | 89.78 115 | 65.50 122 | 80.50 85 | 88.16 135 |
|
PAPM | | | 76.76 51 | 76.07 54 | 78.81 51 | 80.20 187 | 59.11 7 | 86.86 89 | 86.23 85 | 68.60 26 | 70.18 90 | 88.84 114 | 51.57 41 | 87.16 194 | 65.48 124 | 86.68 30 | 90.15 91 |
|
HQP_MVS | | | 70.96 135 | 69.91 135 | 74.12 169 | 77.95 227 | 49.57 204 | 85.76 109 | 82.59 172 | 63.60 96 | 62.15 174 | 83.28 190 | 36.04 220 | 88.30 162 | 65.46 125 | 72.34 161 | 84.49 201 |
|
plane_prior5 | | | | | | | | | 82.59 172 | | | | | 88.30 162 | 65.46 125 | 72.34 161 | 84.49 201 |
|
mPP-MVS | | | 71.79 124 | 70.38 126 | 76.04 131 | 82.65 137 | 52.06 146 | 84.45 151 | 81.78 185 | 55.59 241 | 62.05 177 | 89.68 98 | 33.48 244 | 88.28 164 | 65.45 127 | 78.24 111 | 87.77 145 |
|
OPM-MVS | | | 70.75 139 | 69.58 138 | 74.26 166 | 75.55 262 | 51.34 167 | 86.05 104 | 83.29 161 | 61.94 121 | 62.95 167 | 85.77 161 | 34.15 236 | 88.44 155 | 65.44 128 | 71.07 170 | 82.99 232 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Effi-MVS+-dtu | | | 66.24 225 | 64.96 222 | 70.08 254 | 75.17 263 | 49.64 203 | 82.01 215 | 74.48 298 | 62.15 115 | 57.83 230 | 76.08 275 | 30.59 270 | 83.79 261 | 65.40 129 | 60.93 242 | 76.81 305 |
|
mvs-test1 | | | 69.04 167 | 67.57 170 | 73.44 190 | 75.17 263 | 51.68 158 | 86.57 95 | 74.48 298 | 62.15 115 | 62.07 176 | 85.79 160 | 30.59 270 | 87.48 188 | 65.40 129 | 65.94 206 | 81.18 261 |
|
EI-MVSNet-Vis-set | | | 73.19 101 | 72.60 90 | 74.99 151 | 82.56 139 | 49.80 202 | 82.55 205 | 89.00 28 | 66.17 56 | 65.89 124 | 88.98 110 | 43.83 118 | 92.29 51 | 65.38 131 | 69.01 185 | 82.87 235 |
|
TESTMET0.1,1 | | | 72.86 105 | 72.33 95 | 74.46 158 | 81.98 145 | 50.77 173 | 85.13 127 | 85.47 96 | 66.09 58 | 67.30 106 | 83.69 184 | 37.27 200 | 83.57 265 | 65.06 132 | 78.97 105 | 89.05 118 |
|
test_part1 | | | 73.80 92 | 72.13 101 | 78.79 54 | 85.92 53 | 58.26 10 | 90.60 23 | 86.85 73 | 63.98 87 | 63.95 153 | 81.54 216 | 52.08 39 | 92.24 53 | 64.93 133 | 59.32 251 | 85.87 182 |
|
MVSTER | | | 73.25 100 | 72.33 95 | 76.01 132 | 85.54 64 | 53.76 98 | 83.52 174 | 87.16 67 | 67.06 45 | 63.88 156 | 81.66 214 | 52.77 33 | 90.44 97 | 64.66 134 | 64.69 212 | 83.84 217 |
|
test1172 | | | 69.64 161 | 68.38 154 | 73.41 191 | 82.77 131 | 48.84 223 | 82.79 200 | 78.34 251 | 47.02 302 | 65.27 131 | 90.07 90 | 31.17 266 | 86.09 226 | 64.51 135 | 73.49 148 | 85.31 192 |
|
CPTT-MVS | | | 67.15 209 | 65.84 203 | 71.07 239 | 80.96 172 | 50.32 189 | 81.94 217 | 74.10 301 | 46.18 310 | 57.91 229 | 87.64 136 | 29.57 275 | 81.31 279 | 64.10 136 | 70.18 179 | 81.56 248 |
|
miper_enhance_ethall | | | 69.77 156 | 68.90 148 | 72.38 210 | 78.93 208 | 49.91 199 | 83.29 187 | 78.85 236 | 64.90 75 | 59.37 202 | 79.46 230 | 52.77 33 | 85.16 247 | 63.78 137 | 58.72 255 | 82.08 240 |
|
EI-MVSNet-UG-set | | | 72.37 113 | 71.73 107 | 74.29 165 | 81.60 154 | 49.29 212 | 81.85 220 | 88.64 39 | 65.29 72 | 65.05 134 | 88.29 123 | 43.18 130 | 91.83 62 | 63.74 138 | 67.97 192 | 81.75 245 |
|
ab-mvs | | | 70.65 140 | 69.11 146 | 75.29 145 | 80.87 176 | 46.23 272 | 73.48 296 | 85.24 110 | 59.99 153 | 66.65 111 | 80.94 221 | 43.13 133 | 88.69 145 | 63.58 139 | 68.07 190 | 90.95 73 |
|
VPA-MVSNet | | | 71.12 130 | 70.66 122 | 72.49 207 | 78.75 211 | 44.43 290 | 87.64 63 | 90.02 15 | 63.97 88 | 65.02 135 | 81.58 215 | 42.14 143 | 87.42 190 | 63.42 140 | 63.38 223 | 85.63 188 |
|
APD-MVS_3200maxsize | | | 69.62 162 | 68.23 156 | 73.80 179 | 81.58 156 | 48.22 239 | 81.91 218 | 79.50 223 | 48.21 293 | 64.24 149 | 89.75 97 | 31.91 261 | 87.55 187 | 63.08 141 | 73.85 146 | 85.64 187 |
|
v2v482 | | | 69.55 163 | 67.64 167 | 75.26 147 | 72.32 297 | 53.83 95 | 84.93 140 | 81.94 180 | 65.37 69 | 60.80 186 | 79.25 233 | 41.62 151 | 88.98 138 | 63.03 142 | 59.51 248 | 82.98 233 |
|
PS-MVSNAJss | | | 68.78 176 | 67.17 178 | 73.62 187 | 73.01 287 | 48.33 238 | 84.95 139 | 84.81 123 | 59.30 170 | 58.91 213 | 79.84 228 | 37.77 186 | 88.86 142 | 62.83 143 | 63.12 229 | 83.67 219 |
|
cl22 | | | 68.85 170 | 67.69 166 | 72.35 211 | 78.07 226 | 49.98 198 | 82.45 208 | 78.48 248 | 62.50 112 | 58.46 223 | 77.95 243 | 49.99 54 | 85.17 246 | 62.55 144 | 58.72 255 | 81.90 242 |
|
V42 | | | 67.66 195 | 65.60 210 | 73.86 176 | 70.69 312 | 53.63 102 | 81.50 231 | 78.61 245 | 63.85 90 | 59.49 201 | 77.49 250 | 37.98 183 | 87.65 184 | 62.33 145 | 58.43 259 | 80.29 272 |
|
AUN-MVS | | | 68.20 187 | 66.35 190 | 73.76 180 | 76.37 247 | 47.45 253 | 79.52 261 | 79.52 222 | 60.98 139 | 62.34 172 | 86.02 157 | 36.59 214 | 86.94 201 | 62.32 146 | 53.47 307 | 86.89 158 |
|
MG-MVS | | | 78.42 24 | 76.99 40 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 46 | 64.83 76 | 73.52 52 | 88.09 127 | 48.07 65 | 92.19 54 | 62.24 147 | 84.53 53 | 91.53 54 |
|
Patchmatch-RL test | | | 58.72 278 | 54.32 290 | 71.92 225 | 63.91 347 | 44.25 292 | 61.73 338 | 55.19 354 | 57.38 215 | 49.31 299 | 54.24 355 | 37.60 192 | 80.89 282 | 62.19 148 | 47.28 326 | 90.63 78 |
|
mvs_anonymous | | | 72.29 116 | 70.74 120 | 76.94 110 | 82.85 129 | 54.72 79 | 78.43 269 | 81.54 188 | 63.77 91 | 61.69 179 | 79.32 232 | 51.11 44 | 85.31 241 | 62.15 149 | 75.79 129 | 90.79 75 |
|
miper_ehance_all_eth | | | 68.70 179 | 67.58 168 | 72.08 215 | 76.91 244 | 49.48 209 | 82.47 207 | 78.45 249 | 62.68 109 | 58.28 227 | 77.88 245 | 50.90 47 | 85.01 251 | 61.91 150 | 58.72 255 | 81.75 245 |
|
HyFIR lowres test | | | 69.94 154 | 67.58 168 | 77.04 104 | 77.11 243 | 57.29 22 | 81.49 233 | 79.11 234 | 58.27 193 | 58.86 214 | 80.41 225 | 42.33 139 | 86.96 200 | 61.91 150 | 68.68 188 | 86.87 159 |
|
sss | | | 70.49 142 | 70.13 132 | 71.58 231 | 81.59 155 | 39.02 328 | 80.78 244 | 84.71 127 | 59.34 167 | 66.61 113 | 88.09 127 | 37.17 202 | 85.52 237 | 61.82 152 | 71.02 171 | 90.20 90 |
|
1314 | | | 71.11 131 | 69.41 140 | 76.22 124 | 79.32 199 | 50.49 180 | 80.23 251 | 85.14 115 | 59.44 163 | 58.93 211 | 88.89 113 | 33.83 242 | 89.60 122 | 61.49 153 | 77.42 115 | 88.57 131 |
|
GA-MVS | | | 69.04 167 | 66.70 186 | 76.06 130 | 75.11 265 | 52.36 142 | 83.12 191 | 80.23 208 | 63.32 100 | 60.65 188 | 79.22 234 | 30.98 268 | 88.37 157 | 61.25 154 | 66.41 201 | 87.46 150 |
|
ECVR-MVS |  | | 71.81 122 | 71.00 119 | 74.26 166 | 80.12 189 | 43.49 299 | 84.69 146 | 82.16 176 | 64.02 84 | 64.64 140 | 87.43 139 | 35.04 229 | 89.21 127 | 61.24 155 | 79.66 99 | 90.08 93 |
|
VPNet | | | 72.07 119 | 71.42 113 | 74.04 171 | 78.64 216 | 47.17 259 | 89.91 31 | 87.97 53 | 72.56 8 | 64.66 139 | 85.04 169 | 41.83 150 | 88.33 160 | 61.17 156 | 60.97 241 | 86.62 168 |
|
RRT_MVS | | | 65.43 233 | 64.01 230 | 69.68 259 | 81.54 158 | 50.15 193 | 82.31 211 | 76.78 277 | 55.25 245 | 60.64 189 | 82.00 211 | 25.18 305 | 79.00 300 | 60.96 157 | 51.45 314 | 79.89 277 |
|
ACMP | | 61.11 9 | 66.24 225 | 64.33 226 | 72.00 219 | 74.89 270 | 49.12 213 | 83.18 190 | 79.83 215 | 55.41 244 | 52.29 283 | 82.68 200 | 25.83 299 | 86.10 224 | 60.89 158 | 63.94 217 | 80.78 265 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVSFormer | | | 73.53 97 | 72.19 100 | 77.57 90 | 83.02 122 | 55.24 60 | 81.63 225 | 81.44 190 | 50.28 282 | 76.67 30 | 90.91 64 | 44.82 109 | 86.11 222 | 60.83 159 | 80.09 92 | 91.36 60 |
|
test_djsdf | | | 63.84 239 | 61.56 243 | 70.70 244 | 68.78 322 | 44.69 287 | 81.63 225 | 81.44 190 | 50.28 282 | 52.27 284 | 76.26 270 | 26.72 294 | 86.11 222 | 60.83 159 | 55.84 290 | 81.29 260 |
|
v148 | | | 68.24 186 | 66.35 190 | 73.88 175 | 71.76 300 | 51.47 163 | 84.23 157 | 81.90 184 | 63.69 94 | 58.94 210 | 76.44 267 | 43.72 123 | 87.78 181 | 60.63 161 | 55.86 289 | 82.39 238 |
|
c3_l | | | 67.97 189 | 66.66 187 | 71.91 226 | 76.20 253 | 49.31 211 | 82.13 214 | 78.00 256 | 61.99 119 | 57.64 236 | 76.94 259 | 49.41 58 | 84.93 252 | 60.62 162 | 57.01 276 | 81.49 249 |
|
test-LLR | | | 69.65 160 | 69.01 147 | 71.60 229 | 78.67 213 | 48.17 240 | 85.13 127 | 79.72 217 | 59.18 174 | 63.13 164 | 82.58 201 | 36.91 206 | 80.24 290 | 60.56 163 | 75.17 135 | 86.39 173 |
|
test-mter | | | 68.36 181 | 67.29 175 | 71.60 229 | 78.67 213 | 48.17 240 | 85.13 127 | 79.72 217 | 53.38 262 | 63.13 164 | 82.58 201 | 27.23 291 | 80.24 290 | 60.56 163 | 75.17 135 | 86.39 173 |
|
SR-MVS-dyc-post | | | 68.27 185 | 66.87 180 | 72.48 208 | 80.96 172 | 48.14 242 | 81.54 229 | 76.98 273 | 46.42 307 | 62.75 169 | 89.42 102 | 31.17 266 | 86.09 226 | 60.52 165 | 72.06 164 | 83.19 228 |
|
RE-MVS-def | | | | 66.66 187 | | 80.96 172 | 48.14 242 | 81.54 229 | 76.98 273 | 46.42 307 | 62.75 169 | 89.42 102 | 29.28 278 | | 60.52 165 | 72.06 164 | 83.19 228 |
|
IB-MVS | | 68.87 2 | 74.01 88 | 72.03 106 | 79.94 33 | 83.04 121 | 55.50 52 | 90.24 25 | 88.65 38 | 67.14 44 | 61.38 180 | 81.74 213 | 53.21 31 | 94.28 24 | 60.45 167 | 62.41 234 | 90.03 95 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
v1144 | | | 68.81 173 | 66.82 181 | 74.80 154 | 72.34 296 | 53.46 107 | 84.68 147 | 81.77 186 | 64.25 81 | 60.28 191 | 77.91 244 | 40.23 165 | 88.95 139 | 60.37 168 | 59.52 247 | 81.97 241 |
|
LPG-MVS_test | | | 66.44 222 | 64.58 224 | 72.02 217 | 74.42 274 | 48.60 227 | 83.07 193 | 80.64 202 | 54.69 253 | 53.75 274 | 83.83 180 | 25.73 301 | 86.98 198 | 60.33 169 | 64.71 210 | 80.48 269 |
|
LGP-MVS_train | | | | | 72.02 217 | 74.42 274 | 48.60 227 | | 80.64 202 | 54.69 253 | 53.75 274 | 83.83 180 | 25.73 301 | 86.98 198 | 60.33 169 | 64.71 210 | 80.48 269 |
|
abl_6 | | | 68.03 188 | 66.15 196 | 73.66 184 | 78.54 218 | 48.48 233 | 79.77 256 | 78.04 254 | 47.39 298 | 63.70 158 | 88.25 124 | 28.21 281 | 89.06 129 | 60.17 171 | 71.25 169 | 83.45 221 |
|
MVP-Stereo | | | 70.97 134 | 70.44 124 | 72.59 204 | 76.03 256 | 51.36 166 | 85.02 136 | 86.99 70 | 60.31 149 | 56.53 253 | 78.92 237 | 40.11 168 | 90.00 110 | 60.00 172 | 90.01 6 | 76.41 312 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
jajsoiax | | | 63.21 244 | 60.84 249 | 70.32 250 | 68.33 327 | 44.45 289 | 81.23 236 | 81.05 197 | 53.37 263 | 50.96 293 | 77.81 247 | 17.49 342 | 85.49 239 | 59.31 173 | 58.05 265 | 81.02 263 |
|
test2506 | | | 72.91 104 | 72.43 94 | 74.32 164 | 80.12 189 | 44.18 294 | 83.19 189 | 84.77 125 | 64.02 84 | 65.97 122 | 87.43 139 | 47.67 73 | 88.72 144 | 59.08 174 | 79.66 99 | 90.08 93 |
|
baseline1 | | | 72.51 112 | 72.12 103 | 73.69 183 | 85.05 76 | 44.46 288 | 83.51 178 | 86.13 88 | 71.61 10 | 64.64 140 | 87.97 130 | 55.00 24 | 89.48 123 | 59.07 175 | 56.05 286 | 87.13 156 |
|
mvs_tets | | | 62.96 247 | 60.55 251 | 70.19 251 | 68.22 330 | 44.24 293 | 80.90 241 | 80.74 201 | 52.99 266 | 50.82 295 | 77.56 248 | 16.74 345 | 85.44 240 | 59.04 176 | 57.94 267 | 80.89 264 |
|
HPM-MVS_fast | | | 67.86 191 | 66.28 193 | 72.61 203 | 80.67 181 | 48.34 237 | 81.18 237 | 75.95 288 | 50.81 281 | 59.55 200 | 88.05 129 | 27.86 286 | 85.98 230 | 58.83 177 | 73.58 147 | 83.51 220 |
|
eth_miper_zixun_eth | | | 66.98 214 | 65.28 217 | 72.06 216 | 75.61 261 | 50.40 183 | 81.00 240 | 76.97 276 | 62.00 118 | 56.99 247 | 76.97 258 | 44.84 108 | 85.58 236 | 58.75 178 | 54.42 299 | 80.21 273 |
|
v144192 | | | 67.86 191 | 65.76 205 | 74.16 168 | 71.68 301 | 53.09 124 | 84.14 160 | 80.83 200 | 62.85 107 | 59.21 206 | 77.28 254 | 39.30 174 | 88.00 173 | 58.67 179 | 57.88 270 | 81.40 254 |
|
test1111 | | | 71.06 132 | 70.42 125 | 72.97 197 | 79.48 196 | 41.49 317 | 84.82 144 | 82.74 171 | 64.20 82 | 62.98 166 | 87.43 139 | 35.20 227 | 87.92 174 | 58.54 180 | 78.42 109 | 89.49 106 |
|
thisisatest0515 | | | 73.64 96 | 72.20 99 | 77.97 82 | 81.63 152 | 53.01 127 | 86.69 92 | 88.81 35 | 62.53 111 | 64.06 150 | 85.65 162 | 52.15 38 | 92.50 46 | 58.43 181 | 69.84 180 | 88.39 134 |
|
v8 | | | 67.25 206 | 64.99 221 | 74.04 171 | 72.89 290 | 53.31 118 | 82.37 210 | 80.11 210 | 61.54 129 | 54.29 269 | 76.02 276 | 42.89 135 | 88.41 156 | 58.43 181 | 56.36 279 | 80.39 271 |
|
XXY-MVS | | | 70.18 145 | 69.28 145 | 72.89 200 | 77.64 231 | 42.88 305 | 85.06 133 | 87.50 65 | 62.58 110 | 62.66 171 | 82.34 206 | 43.64 125 | 89.83 114 | 58.42 183 | 63.70 219 | 85.96 179 |
|
3Dnovator | | 64.70 6 | 74.46 82 | 72.48 92 | 80.41 24 | 82.84 130 | 55.40 57 | 83.08 192 | 88.61 42 | 67.61 41 | 59.85 193 | 88.66 116 | 34.57 233 | 93.97 26 | 58.42 183 | 88.70 12 | 91.85 46 |
|
旧先验2 | | | | | | | | 81.73 223 | | 45.53 313 | 74.66 39 | | | 70.48 348 | 58.31 185 | | |
|
v1192 | | | 67.96 190 | 65.74 206 | 74.63 155 | 71.79 299 | 53.43 113 | 84.06 163 | 80.99 198 | 63.19 103 | 59.56 199 | 77.46 251 | 37.50 196 | 88.65 146 | 58.20 186 | 58.93 254 | 81.79 244 |
|
EPP-MVSNet | | | 71.14 129 | 70.07 133 | 74.33 163 | 79.18 202 | 46.52 265 | 83.81 170 | 86.49 79 | 56.32 235 | 57.95 228 | 84.90 171 | 54.23 27 | 89.14 128 | 58.14 187 | 69.65 182 | 87.33 152 |
|
OMC-MVS | | | 65.97 228 | 65.06 220 | 68.71 271 | 72.97 288 | 42.58 310 | 78.61 267 | 75.35 293 | 54.72 252 | 59.31 204 | 86.25 156 | 33.30 245 | 77.88 313 | 57.99 188 | 67.05 197 | 85.66 186 |
|
cl____ | | | 67.43 201 | 65.93 201 | 71.95 223 | 76.33 249 | 48.02 245 | 82.58 202 | 79.12 233 | 61.30 133 | 56.72 249 | 76.92 260 | 46.12 87 | 86.44 216 | 57.98 189 | 56.31 281 | 81.38 256 |
|
DIV-MVS_self_test | | | 67.43 201 | 65.93 201 | 71.94 224 | 76.33 249 | 48.01 246 | 82.57 203 | 79.11 234 | 61.31 132 | 56.73 248 | 76.92 260 | 46.09 88 | 86.43 217 | 57.98 189 | 56.31 281 | 81.39 255 |
|
MS-PatchMatch | | | 72.34 114 | 71.26 114 | 75.61 138 | 82.38 141 | 55.55 51 | 88.00 58 | 89.95 17 | 65.38 68 | 56.51 254 | 80.74 224 | 32.28 255 | 92.89 36 | 57.95 191 | 88.10 15 | 78.39 290 |
|
MAR-MVS | | | 76.76 51 | 75.60 57 | 80.21 27 | 90.87 8 | 54.68 81 | 89.14 42 | 89.11 24 | 62.95 105 | 70.54 88 | 92.33 32 | 41.05 156 | 94.95 18 | 57.90 192 | 86.55 32 | 91.00 71 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
anonymousdsp | | | 60.46 264 | 57.65 268 | 68.88 265 | 63.63 348 | 45.09 282 | 72.93 300 | 78.63 244 | 46.52 305 | 51.12 290 | 72.80 300 | 21.46 327 | 83.07 270 | 57.79 193 | 53.97 301 | 78.47 287 |
|
Anonymous20240529 | | | 69.71 157 | 67.28 176 | 77.00 107 | 83.78 100 | 50.36 186 | 88.87 47 | 85.10 116 | 47.22 299 | 64.03 151 | 83.37 188 | 27.93 285 | 92.10 58 | 57.78 194 | 67.44 195 | 88.53 132 |
|
Fast-Effi-MVS+-dtu | | | 66.53 220 | 64.10 229 | 73.84 177 | 72.41 295 | 52.30 145 | 84.73 145 | 75.66 289 | 59.51 161 | 56.34 255 | 79.11 236 | 28.11 283 | 85.85 235 | 57.74 195 | 63.29 224 | 83.35 222 |
|
v1921920 | | | 67.45 200 | 65.23 218 | 74.10 170 | 71.51 304 | 52.90 130 | 83.75 172 | 80.44 205 | 62.48 113 | 59.12 208 | 77.13 255 | 36.98 204 | 87.90 175 | 57.53 196 | 58.14 264 | 81.49 249 |
|
IterMVS-LS | | | 66.63 218 | 65.36 216 | 70.42 248 | 75.10 266 | 48.90 221 | 81.45 234 | 76.69 281 | 61.05 137 | 55.71 259 | 77.10 257 | 45.86 94 | 83.65 264 | 57.44 197 | 57.88 270 | 78.70 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 69.70 159 | 68.70 149 | 72.68 202 | 75.00 268 | 48.90 221 | 79.54 259 | 87.16 67 | 61.05 137 | 63.88 156 | 83.74 182 | 45.87 93 | 90.44 97 | 57.42 198 | 64.68 213 | 78.70 283 |
|
CDS-MVSNet | | | 70.48 143 | 69.43 139 | 73.64 185 | 77.56 233 | 48.83 224 | 83.51 178 | 77.45 265 | 63.27 101 | 62.33 173 | 85.54 165 | 43.85 117 | 83.29 269 | 57.38 199 | 74.00 143 | 88.79 125 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
3Dnovator+ | | 62.71 7 | 72.29 116 | 70.50 123 | 77.65 89 | 83.40 109 | 51.29 169 | 87.32 74 | 86.40 82 | 59.01 181 | 58.49 222 | 88.32 122 | 32.40 253 | 91.27 74 | 57.04 200 | 82.15 71 | 90.38 85 |
|
miper_lstm_enhance | | | 63.91 238 | 62.30 237 | 68.75 270 | 75.06 267 | 46.78 261 | 69.02 323 | 81.14 196 | 59.68 159 | 52.76 280 | 72.39 305 | 40.71 160 | 77.99 311 | 56.81 201 | 53.09 309 | 81.48 251 |
|
PAPM_NR | | | 71.80 123 | 69.98 134 | 77.26 101 | 81.54 158 | 53.34 116 | 78.60 268 | 85.25 109 | 53.46 261 | 60.53 190 | 88.66 116 | 45.69 97 | 89.24 126 | 56.49 202 | 79.62 101 | 89.19 114 |
|
v10 | | | 66.61 219 | 64.20 228 | 73.83 178 | 72.59 293 | 53.37 114 | 81.88 219 | 79.91 214 | 61.11 135 | 54.09 271 | 75.60 278 | 40.06 169 | 88.26 165 | 56.47 203 | 56.10 285 | 79.86 278 |
|
v1240 | | | 66.99 213 | 64.68 223 | 73.93 173 | 71.38 307 | 52.66 134 | 83.39 185 | 79.98 211 | 61.97 120 | 58.44 225 | 77.11 256 | 35.25 226 | 87.81 177 | 56.46 204 | 58.15 262 | 81.33 257 |
|
Anonymous202405211 | | | 70.11 146 | 67.88 161 | 76.79 114 | 87.20 45 | 47.24 258 | 89.49 36 | 77.38 267 | 54.88 251 | 66.14 119 | 86.84 148 | 20.93 329 | 91.54 67 | 56.45 205 | 71.62 166 | 91.59 50 |
|
Fast-Effi-MVS+ | | | 72.73 107 | 71.15 118 | 77.48 92 | 82.75 133 | 54.76 76 | 86.77 90 | 80.64 202 | 63.05 104 | 65.93 123 | 84.01 177 | 44.42 113 | 89.03 132 | 56.45 205 | 76.36 126 | 88.64 128 |
|
114514_t | | | 69.87 155 | 67.88 161 | 75.85 135 | 88.38 31 | 52.35 143 | 86.94 86 | 83.68 150 | 53.70 260 | 55.68 260 | 85.60 163 | 30.07 274 | 91.20 75 | 55.84 207 | 71.02 171 | 83.99 210 |
|
tpm2 | | | 70.82 137 | 68.44 152 | 77.98 81 | 80.78 177 | 56.11 43 | 74.21 292 | 81.28 195 | 60.24 150 | 68.04 102 | 75.27 280 | 52.26 37 | 88.50 154 | 55.82 208 | 68.03 191 | 89.33 108 |
|
PCF-MVS | | 61.03 10 | 70.10 147 | 68.40 153 | 75.22 148 | 77.15 242 | 51.99 148 | 79.30 264 | 82.12 178 | 56.47 233 | 61.88 178 | 86.48 155 | 43.98 116 | 87.24 193 | 55.37 209 | 72.79 157 | 86.43 172 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet | | 62.49 8 | 69.27 165 | 67.81 165 | 73.64 185 | 84.41 86 | 51.85 152 | 84.63 150 | 77.80 258 | 66.42 50 | 59.80 194 | 84.95 170 | 22.14 324 | 80.44 288 | 55.03 210 | 75.11 137 | 88.62 129 |
|
CHOSEN 280x420 | | | 57.53 286 | 56.38 279 | 60.97 323 | 74.01 278 | 48.10 244 | 46.30 356 | 54.31 356 | 48.18 294 | 50.88 294 | 77.43 252 | 38.37 182 | 59.16 359 | 54.83 211 | 63.14 228 | 75.66 316 |
|
GG-mvs-BLEND | | | | | 77.77 85 | 86.68 48 | 50.61 176 | 68.67 324 | 88.45 47 | | 68.73 96 | 87.45 138 | 59.15 11 | 90.67 91 | 54.83 211 | 87.67 17 | 92.03 40 |
|
TAMVS | | | 69.51 164 | 68.16 157 | 73.56 188 | 76.30 251 | 48.71 226 | 82.57 203 | 77.17 270 | 62.10 117 | 61.32 181 | 84.23 175 | 41.90 148 | 83.46 267 | 54.80 213 | 73.09 154 | 88.50 133 |
|
DWT-MVSNet_test | | | 75.47 71 | 73.87 80 | 80.29 25 | 87.33 43 | 57.05 25 | 82.86 198 | 87.96 54 | 72.59 7 | 67.29 107 | 87.79 132 | 51.61 40 | 91.52 68 | 54.75 214 | 72.63 158 | 92.29 33 |
|
D2MVS | | | 63.49 242 | 61.39 245 | 69.77 258 | 69.29 319 | 48.93 220 | 78.89 266 | 77.71 261 | 60.64 146 | 49.70 297 | 72.10 310 | 27.08 292 | 83.48 266 | 54.48 215 | 62.65 232 | 76.90 304 |
|
IterMVS | | | 63.77 241 | 61.67 241 | 70.08 254 | 72.68 292 | 51.24 170 | 80.44 247 | 75.51 290 | 60.51 147 | 51.41 288 | 73.70 291 | 32.08 257 | 78.91 301 | 54.30 216 | 54.35 300 | 80.08 275 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 71.99 120 | 70.31 127 | 77.01 106 | 90.65 9 | 53.44 111 | 89.37 37 | 82.97 168 | 56.33 234 | 63.56 161 | 89.47 101 | 34.02 237 | 92.15 57 | 54.05 217 | 72.41 160 | 85.43 191 |
|
tpm | | | 68.36 181 | 67.48 173 | 70.97 241 | 79.93 192 | 51.34 167 | 76.58 278 | 78.75 241 | 67.73 38 | 63.54 162 | 74.86 282 | 48.33 63 | 72.36 342 | 53.93 218 | 63.71 218 | 89.21 113 |
|
XVG-OURS-SEG-HR | | | 62.02 256 | 59.54 258 | 69.46 261 | 65.30 339 | 45.88 274 | 65.06 329 | 73.57 308 | 46.45 306 | 57.42 243 | 83.35 189 | 26.95 293 | 78.09 307 | 53.77 219 | 64.03 215 | 84.42 203 |
|
cascas | | | 69.01 169 | 66.13 197 | 77.66 88 | 79.36 197 | 55.41 56 | 86.99 83 | 83.75 149 | 56.69 228 | 58.92 212 | 81.35 217 | 24.31 310 | 92.10 58 | 53.23 220 | 70.61 174 | 85.46 190 |
|
UniMVSNet_NR-MVSNet | | | 68.82 172 | 68.29 155 | 70.40 249 | 75.71 260 | 42.59 308 | 84.23 157 | 86.78 74 | 66.31 53 | 58.51 219 | 82.45 203 | 51.57 41 | 84.64 256 | 53.11 221 | 55.96 287 | 83.96 214 |
|
DU-MVS | | | 66.84 217 | 65.74 206 | 70.16 252 | 73.27 285 | 42.59 308 | 81.50 231 | 82.92 169 | 63.53 98 | 58.51 219 | 82.11 209 | 40.75 158 | 84.64 256 | 53.11 221 | 55.96 287 | 83.24 226 |
|
1112_ss | | | 70.05 149 | 69.37 141 | 72.10 214 | 80.77 178 | 42.78 306 | 85.12 130 | 76.75 278 | 59.69 158 | 61.19 183 | 92.12 36 | 47.48 74 | 83.84 260 | 53.04 223 | 68.21 189 | 89.66 102 |
|
XVG-OURS | | | 61.88 257 | 59.34 260 | 69.49 260 | 65.37 338 | 46.27 270 | 64.80 330 | 73.49 309 | 47.04 301 | 57.41 244 | 82.85 194 | 25.15 306 | 78.18 305 | 53.00 224 | 64.98 208 | 84.01 209 |
|
thisisatest0530 | | | 70.47 144 | 68.56 150 | 76.20 126 | 79.78 193 | 51.52 162 | 83.49 180 | 88.58 45 | 57.62 210 | 58.60 218 | 82.79 195 | 51.03 46 | 91.48 69 | 52.84 225 | 62.36 236 | 85.59 189 |
|
UGNet | | | 68.71 177 | 67.11 179 | 73.50 189 | 80.55 184 | 47.61 249 | 84.08 161 | 78.51 247 | 59.45 162 | 65.68 128 | 82.73 199 | 23.78 312 | 85.08 250 | 52.80 226 | 76.40 122 | 87.80 144 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 66.08 227 | 63.67 231 | 73.31 192 | 83.07 120 | 48.75 225 | 86.01 106 | 84.67 129 | 45.27 315 | 56.54 252 | 76.67 265 | 28.06 284 | 88.95 139 | 52.78 227 | 59.95 244 | 82.23 239 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 125 | 78.00 256 | 49.08 289 | | | | 85.13 248 | 52.78 227 | | 87.45 151 |
|
1121 | | | 68.79 175 | 66.77 183 | 74.82 153 | 83.08 119 | 53.46 107 | 80.23 251 | 71.53 324 | 45.47 314 | 66.31 118 | 87.19 143 | 34.02 237 | 85.13 248 | 52.78 227 | 80.36 89 | 85.87 182 |
|
PVSNet_0 | | 57.04 13 | 61.19 260 | 57.24 271 | 73.02 195 | 77.45 235 | 50.31 190 | 79.43 263 | 77.36 268 | 63.96 89 | 47.51 310 | 72.45 304 | 25.03 307 | 83.78 262 | 52.76 230 | 19.22 367 | 84.96 197 |
|
FIs | | | 70.00 151 | 70.24 131 | 69.30 262 | 77.93 229 | 38.55 330 | 83.99 166 | 87.72 61 | 66.86 47 | 57.66 235 | 84.17 176 | 52.28 36 | 85.31 241 | 52.72 231 | 68.80 186 | 84.02 208 |
|
Vis-MVSNet |  | | 70.61 141 | 69.34 142 | 74.42 160 | 80.95 175 | 48.49 232 | 86.03 105 | 77.51 264 | 58.74 187 | 65.55 129 | 87.78 133 | 34.37 234 | 85.95 233 | 52.53 232 | 80.61 83 | 88.80 124 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
testdata | | | | | 67.08 284 | 77.59 232 | 45.46 280 | | 69.20 334 | 44.47 320 | 71.50 80 | 88.34 121 | 31.21 265 | 70.76 347 | 52.20 233 | 75.88 128 | 85.03 195 |
|
API-MVS | | | 74.17 86 | 72.07 104 | 80.49 22 | 90.02 12 | 58.55 9 | 87.30 76 | 84.27 137 | 57.51 212 | 65.77 127 | 87.77 134 | 41.61 152 | 95.97 11 | 51.71 234 | 82.63 62 | 86.94 157 |
|
GeoE | | | 69.96 153 | 67.88 161 | 76.22 124 | 81.11 169 | 51.71 157 | 84.15 159 | 76.74 279 | 59.83 155 | 60.91 184 | 84.38 173 | 41.56 153 | 88.10 169 | 51.67 235 | 70.57 175 | 88.84 123 |
|
ACMM | | 58.35 12 | 64.35 236 | 62.01 240 | 71.38 233 | 74.21 277 | 48.51 231 | 82.25 212 | 79.66 219 | 47.61 296 | 54.54 266 | 80.11 226 | 25.26 304 | 86.00 229 | 51.26 236 | 63.16 227 | 79.64 279 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
原ACMM1 | | | | | 76.13 128 | 84.89 80 | 54.59 84 | | 85.26 108 | 51.98 272 | 66.70 110 | 87.07 146 | 40.15 167 | 89.70 118 | 51.23 237 | 85.06 49 | 84.10 206 |
|
UniMVSNet (Re) | | | 67.71 194 | 66.80 182 | 70.45 247 | 74.44 273 | 42.93 304 | 82.42 209 | 84.90 120 | 63.69 94 | 59.63 197 | 80.99 220 | 47.18 76 | 85.23 245 | 51.17 238 | 56.75 278 | 83.19 228 |
|
IterMVS-SCA-FT | | | 59.12 271 | 58.81 265 | 60.08 325 | 70.68 313 | 45.07 283 | 80.42 248 | 74.25 300 | 43.54 328 | 50.02 296 | 73.73 288 | 31.97 258 | 56.74 360 | 51.06 239 | 53.60 305 | 78.42 289 |
|
Test_1112_low_res | | | 67.18 208 | 66.23 194 | 70.02 257 | 78.75 211 | 41.02 321 | 83.43 181 | 73.69 306 | 57.29 216 | 58.45 224 | 82.39 205 | 45.30 101 | 80.88 283 | 50.50 240 | 66.26 205 | 88.16 135 |
|
pmmvs4 | | | 63.34 243 | 61.07 248 | 70.16 252 | 70.14 314 | 50.53 179 | 79.97 255 | 71.41 326 | 55.08 247 | 54.12 270 | 78.58 240 | 32.79 250 | 82.09 275 | 50.33 241 | 57.22 275 | 77.86 296 |
|
Baseline_NR-MVSNet | | | 65.49 232 | 64.27 227 | 69.13 263 | 74.37 276 | 41.65 315 | 83.39 185 | 78.85 236 | 59.56 160 | 59.62 198 | 76.88 262 | 40.75 158 | 87.44 189 | 49.99 242 | 55.05 294 | 78.28 292 |
|
UniMVSNet_ETH3D | | | 62.51 251 | 60.49 252 | 68.57 274 | 68.30 328 | 40.88 323 | 73.89 293 | 79.93 213 | 51.81 276 | 54.77 263 | 79.61 229 | 24.80 308 | 81.10 280 | 49.93 243 | 61.35 239 | 83.73 218 |
|
BH-w/o | | | 70.02 150 | 68.51 151 | 74.56 156 | 82.77 131 | 50.39 184 | 86.60 94 | 78.14 253 | 59.77 156 | 59.65 196 | 85.57 164 | 39.27 175 | 87.30 192 | 49.86 244 | 74.94 140 | 85.99 177 |
|
LCM-MVSNet-Re | | | 58.82 277 | 56.54 275 | 65.68 294 | 79.31 200 | 29.09 360 | 61.39 341 | 45.79 362 | 60.73 144 | 37.65 343 | 72.47 303 | 31.42 264 | 81.08 281 | 49.66 245 | 70.41 176 | 86.87 159 |
|
gg-mvs-nofinetune | | | 67.43 201 | 64.53 225 | 76.13 128 | 85.95 52 | 47.79 248 | 64.38 331 | 88.28 49 | 39.34 337 | 66.62 112 | 41.27 359 | 58.69 14 | 89.00 135 | 49.64 246 | 86.62 31 | 91.59 50 |
|
TranMVSNet+NR-MVSNet | | | 66.94 215 | 65.61 209 | 70.93 242 | 73.45 282 | 43.38 301 | 83.02 195 | 84.25 138 | 65.31 71 | 58.33 226 | 81.90 212 | 39.92 171 | 85.52 237 | 49.43 247 | 54.89 296 | 83.89 216 |
|
tttt0517 | | | 68.33 183 | 66.29 192 | 74.46 158 | 78.08 225 | 49.06 214 | 80.88 242 | 89.08 25 | 54.40 257 | 54.75 264 | 80.77 223 | 51.31 43 | 90.33 101 | 49.35 248 | 58.01 266 | 83.99 210 |
|
WR-MVS | | | 67.58 196 | 66.76 184 | 70.04 256 | 75.92 258 | 45.06 286 | 86.23 100 | 85.28 107 | 64.31 80 | 58.50 221 | 81.00 219 | 44.80 111 | 82.00 276 | 49.21 249 | 55.57 293 | 83.06 231 |
|
test_post1 | | | | | | | | 70.84 316 | | | | 14.72 374 | 34.33 235 | 83.86 259 | 48.80 250 | | |
|
SCA | | | 63.84 239 | 60.01 256 | 75.32 144 | 78.58 217 | 57.92 12 | 61.61 339 | 77.53 263 | 56.71 227 | 57.75 234 | 70.77 316 | 31.97 258 | 79.91 296 | 48.80 250 | 56.36 279 | 88.13 138 |
|
pmmvs5 | | | 62.80 249 | 61.18 246 | 67.66 279 | 69.53 318 | 42.37 313 | 82.65 201 | 75.19 294 | 54.30 258 | 52.03 286 | 78.51 241 | 31.64 263 | 80.67 284 | 48.60 252 | 58.15 262 | 79.95 276 |
|
æ–°å‡ ä½•1 | | | | | 73.30 193 | 83.10 116 | 53.48 106 | | 71.43 325 | 45.55 312 | 66.14 119 | 87.17 144 | 33.88 241 | 80.54 286 | 48.50 253 | 80.33 90 | 85.88 181 |
|
pm-mvs1 | | | 64.12 237 | 62.56 235 | 68.78 269 | 71.68 301 | 38.87 329 | 82.89 197 | 81.57 187 | 55.54 243 | 53.89 273 | 77.82 246 | 37.73 189 | 86.74 206 | 48.46 254 | 53.49 306 | 80.72 266 |
|
PM-MVS | | | 46.92 322 | 43.76 326 | 56.41 334 | 52.18 364 | 32.26 352 | 63.21 335 | 38.18 368 | 37.99 342 | 40.78 335 | 66.20 332 | 5.09 370 | 65.42 353 | 48.19 255 | 41.99 341 | 71.54 342 |
|
FC-MVSNet-test | | | 67.49 199 | 67.91 159 | 66.21 292 | 76.06 254 | 33.06 348 | 80.82 243 | 87.18 66 | 64.44 79 | 54.81 262 | 82.87 193 | 50.40 52 | 82.60 271 | 48.05 256 | 66.55 200 | 82.98 233 |
|
CMPMVS |  | 40.41 21 | 55.34 298 | 52.64 301 | 63.46 308 | 60.88 356 | 43.84 296 | 61.58 340 | 71.06 327 | 30.43 356 | 36.33 345 | 74.63 284 | 24.14 311 | 75.44 325 | 48.05 256 | 66.62 199 | 71.12 344 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
NR-MVSNet | | | 67.25 206 | 65.99 200 | 71.04 240 | 73.27 285 | 43.91 295 | 85.32 123 | 84.75 126 | 66.05 61 | 53.65 276 | 82.11 209 | 45.05 103 | 85.97 232 | 47.55 258 | 56.18 284 | 83.24 226 |
|
QAPM | | | 71.88 121 | 69.33 143 | 79.52 36 | 82.20 143 | 54.30 88 | 86.30 99 | 88.77 36 | 56.61 230 | 59.72 195 | 87.48 137 | 33.90 240 | 95.36 14 | 47.48 259 | 81.49 76 | 88.90 121 |
|
EPMVS | | | 68.45 180 | 65.44 214 | 77.47 93 | 84.91 79 | 56.17 42 | 71.89 312 | 81.91 183 | 61.72 125 | 60.85 185 | 72.49 302 | 36.21 216 | 87.06 197 | 47.32 260 | 71.62 166 | 89.17 115 |
|
GBi-Net | | | 67.09 210 | 65.47 212 | 71.96 220 | 82.71 134 | 46.36 267 | 83.52 174 | 83.31 158 | 58.55 190 | 57.58 237 | 76.23 271 | 36.72 211 | 86.20 218 | 47.25 261 | 63.40 220 | 83.32 223 |
|
test1 | | | 67.09 210 | 65.47 212 | 71.96 220 | 82.71 134 | 46.36 267 | 83.52 174 | 83.31 158 | 58.55 190 | 57.58 237 | 76.23 271 | 36.72 211 | 86.20 218 | 47.25 261 | 63.40 220 | 83.32 223 |
|
FMVSNet3 | | | 68.84 171 | 67.40 174 | 73.19 194 | 85.05 76 | 48.53 230 | 85.71 114 | 85.36 101 | 60.90 141 | 57.58 237 | 79.15 235 | 42.16 142 | 86.77 205 | 47.25 261 | 63.40 220 | 84.27 205 |
|
v7n | | | 62.50 252 | 59.27 261 | 72.20 213 | 67.25 333 | 49.83 201 | 77.87 271 | 80.12 209 | 52.50 269 | 48.80 301 | 73.07 296 | 32.10 256 | 87.90 175 | 46.83 264 | 54.92 295 | 78.86 281 |
|
CVMVSNet | | | 60.85 262 | 60.44 253 | 62.07 313 | 75.00 268 | 32.73 350 | 79.54 259 | 73.49 309 | 36.98 345 | 56.28 256 | 83.74 182 | 29.28 278 | 69.53 350 | 46.48 265 | 63.23 225 | 83.94 215 |
|
TR-MVS | | | 69.71 157 | 67.85 164 | 75.27 146 | 82.94 126 | 48.48 233 | 87.40 73 | 80.86 199 | 57.15 219 | 64.61 142 | 87.08 145 | 32.67 251 | 89.64 121 | 46.38 266 | 71.55 168 | 87.68 147 |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 298 | 71.13 315 | | 54.95 250 | 59.29 205 | | 36.76 208 | | 46.33 267 | | 87.32 153 |
|
FMVSNet2 | | | 67.57 197 | 65.79 204 | 72.90 198 | 82.71 134 | 47.97 247 | 85.15 126 | 84.93 119 | 58.55 190 | 56.71 250 | 78.26 242 | 36.72 211 | 86.67 208 | 46.15 268 | 62.94 231 | 84.07 207 |
|
UnsupCasMVSNet_eth | | | 57.56 285 | 55.15 286 | 64.79 303 | 64.57 345 | 33.12 347 | 73.17 299 | 83.87 148 | 58.98 183 | 41.75 331 | 70.03 320 | 22.54 319 | 79.92 294 | 46.12 269 | 35.31 350 | 81.32 259 |
|
testdata2 | | | | | | | | | | | | | | 77.81 315 | 45.64 270 | | |
|
XVG-ACMP-BASELINE | | | 56.03 295 | 52.85 299 | 65.58 295 | 61.91 353 | 40.95 322 | 63.36 332 | 72.43 315 | 45.20 316 | 46.02 316 | 74.09 285 | 9.20 361 | 78.12 306 | 45.13 271 | 58.27 260 | 77.66 299 |
|
AdaColmap |  | | 67.86 191 | 65.48 211 | 75.00 150 | 88.15 35 | 54.99 70 | 86.10 103 | 76.63 282 | 49.30 288 | 57.80 231 | 86.65 152 | 29.39 277 | 88.94 141 | 45.10 272 | 70.21 178 | 81.06 262 |
|
BH-untuned | | | 68.28 184 | 66.40 189 | 73.91 174 | 81.62 153 | 50.01 197 | 85.56 118 | 77.39 266 | 57.63 209 | 57.47 242 | 83.69 184 | 36.36 215 | 87.08 196 | 44.81 273 | 73.08 155 | 84.65 200 |
|
BH-RMVSNet | | | 70.08 148 | 68.01 158 | 76.27 122 | 84.21 91 | 51.22 171 | 87.29 77 | 79.33 231 | 58.96 184 | 63.63 160 | 86.77 149 | 33.29 246 | 90.30 104 | 44.63 274 | 73.96 144 | 87.30 154 |
|
IS-MVSNet | | | 68.80 174 | 67.55 171 | 72.54 205 | 78.50 220 | 43.43 300 | 81.03 239 | 79.35 229 | 59.12 179 | 57.27 245 | 86.71 150 | 46.05 89 | 87.70 183 | 44.32 275 | 75.60 132 | 86.49 170 |
|
pmmvs-eth3d | | | 55.97 296 | 52.78 300 | 65.54 296 | 61.02 355 | 46.44 266 | 75.36 286 | 67.72 337 | 49.61 287 | 43.65 322 | 67.58 329 | 21.63 326 | 77.04 318 | 44.11 276 | 44.33 336 | 73.15 335 |
|
pmmvs6 | | | 59.64 266 | 57.15 272 | 67.09 283 | 66.01 334 | 36.86 337 | 80.50 246 | 78.64 243 | 45.05 317 | 49.05 300 | 73.94 287 | 27.28 290 | 86.10 224 | 43.96 277 | 49.94 317 | 78.31 291 |
|
EPNet_dtu | | | 66.25 224 | 66.71 185 | 64.87 302 | 78.66 215 | 34.12 343 | 82.80 199 | 75.51 290 | 61.75 124 | 64.47 147 | 86.90 147 | 37.06 203 | 72.46 341 | 43.65 278 | 69.63 183 | 88.02 141 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm cat1 | | | 66.28 223 | 62.78 234 | 76.77 115 | 81.40 164 | 57.14 24 | 70.03 319 | 77.19 269 | 53.00 265 | 58.76 217 | 70.73 318 | 46.17 86 | 86.73 207 | 43.27 279 | 64.46 214 | 86.44 171 |
|
OpenMVS |  | 61.00 11 | 69.99 152 | 67.55 171 | 77.30 97 | 78.37 223 | 54.07 94 | 84.36 153 | 85.76 93 | 57.22 217 | 56.71 250 | 87.67 135 | 30.79 269 | 92.83 38 | 43.04 280 | 84.06 57 | 85.01 196 |
|
MVS_0304 | | | 56.72 288 | 55.17 285 | 61.37 320 | 70.71 310 | 36.80 338 | 75.74 279 | 68.75 335 | 44.11 325 | 52.53 281 | 68.20 327 | 15.05 351 | 74.53 329 | 42.98 281 | 58.44 258 | 72.79 336 |
|
PatchmatchNet |  | | 67.07 212 | 63.63 232 | 77.40 94 | 83.10 116 | 58.03 11 | 72.11 310 | 77.77 259 | 58.85 185 | 59.37 202 | 70.83 315 | 37.84 185 | 84.93 252 | 42.96 282 | 69.83 181 | 89.26 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CR-MVSNet | | | 62.47 253 | 59.04 263 | 72.77 201 | 73.97 280 | 56.57 32 | 60.52 342 | 71.72 320 | 60.04 151 | 57.49 240 | 65.86 333 | 38.94 176 | 80.31 289 | 42.86 283 | 59.93 245 | 81.42 252 |
|
FMVSNet1 | | | 64.57 234 | 62.11 239 | 71.96 220 | 77.32 236 | 46.36 267 | 83.52 174 | 83.31 158 | 52.43 270 | 54.42 267 | 76.23 271 | 27.80 287 | 86.20 218 | 42.59 284 | 61.34 240 | 83.32 223 |
|
UA-Net | | | 67.32 205 | 66.23 194 | 70.59 245 | 78.85 209 | 41.23 320 | 73.60 294 | 75.45 292 | 61.54 129 | 66.61 113 | 84.53 172 | 38.73 179 | 86.57 214 | 42.48 285 | 74.24 142 | 83.98 212 |
|
CL-MVSNet_self_test | | | 62.98 246 | 61.14 247 | 68.50 275 | 65.86 336 | 42.96 303 | 84.37 152 | 82.98 167 | 60.98 139 | 53.95 272 | 72.70 301 | 40.43 163 | 83.71 263 | 41.10 286 | 47.93 322 | 78.83 282 |
|
MIMVSNet | | | 63.12 245 | 60.29 254 | 71.61 228 | 75.92 258 | 46.65 263 | 65.15 328 | 81.94 180 | 59.14 177 | 54.65 265 | 69.47 322 | 25.74 300 | 80.63 285 | 41.03 287 | 69.56 184 | 87.55 148 |
|
EG-PatchMatch MVS | | | 62.40 255 | 59.59 257 | 70.81 243 | 73.29 284 | 49.05 215 | 85.81 107 | 84.78 124 | 51.85 275 | 44.19 319 | 73.48 294 | 15.52 350 | 89.85 113 | 40.16 288 | 67.24 196 | 73.54 331 |
|
UnsupCasMVSNet_bld | | | 53.86 305 | 50.53 307 | 63.84 305 | 63.52 349 | 34.75 341 | 71.38 313 | 81.92 182 | 46.53 304 | 38.95 340 | 57.93 352 | 20.55 330 | 80.20 292 | 39.91 289 | 34.09 357 | 76.57 310 |
|
dp | | | 64.41 235 | 61.58 242 | 72.90 198 | 82.40 140 | 54.09 93 | 72.53 302 | 76.59 283 | 60.39 148 | 55.68 260 | 70.39 319 | 35.18 228 | 76.90 321 | 39.34 290 | 61.71 238 | 87.73 146 |
|
TransMVSNet (Re) | | | 62.82 248 | 60.76 250 | 69.02 264 | 73.98 279 | 41.61 316 | 86.36 97 | 79.30 232 | 56.90 221 | 52.53 281 | 76.44 267 | 41.85 149 | 87.60 186 | 38.83 291 | 40.61 344 | 77.86 296 |
|
USDC | | | 54.36 302 | 51.23 305 | 63.76 306 | 64.29 346 | 37.71 334 | 62.84 337 | 73.48 311 | 56.85 222 | 35.47 348 | 71.94 311 | 9.23 360 | 78.43 303 | 38.43 292 | 48.57 319 | 75.13 321 |
|
PLC |  | 52.38 18 | 60.89 261 | 58.97 264 | 66.68 290 | 81.77 149 | 45.70 278 | 78.96 265 | 74.04 303 | 43.66 327 | 47.63 307 | 83.19 192 | 23.52 315 | 77.78 316 | 37.47 293 | 60.46 243 | 76.55 311 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test0.0.03 1 | | | 62.54 250 | 62.44 236 | 62.86 312 | 72.28 298 | 29.51 357 | 82.93 196 | 78.78 239 | 59.18 174 | 53.07 279 | 82.41 204 | 36.91 206 | 77.39 317 | 37.45 294 | 58.96 253 | 81.66 247 |
|
OurMVSNet-221017-0 | | | 52.39 311 | 48.73 313 | 63.35 309 | 65.21 340 | 38.42 331 | 68.54 325 | 64.95 341 | 38.19 340 | 39.57 337 | 71.43 312 | 13.23 354 | 79.92 294 | 37.16 295 | 40.32 345 | 71.72 340 |
|
CNLPA | | | 60.59 263 | 58.44 266 | 67.05 285 | 79.21 201 | 47.26 257 | 79.75 258 | 64.34 344 | 42.46 333 | 51.90 287 | 83.94 178 | 27.79 288 | 75.41 326 | 37.12 296 | 59.49 249 | 78.47 287 |
|
K. test v3 | | | 54.04 304 | 49.42 312 | 67.92 278 | 68.55 324 | 42.57 311 | 75.51 284 | 63.07 346 | 52.07 271 | 39.21 338 | 64.59 337 | 19.34 334 | 82.21 272 | 37.11 297 | 25.31 363 | 78.97 280 |
|
Vis-MVSNet (Re-imp) | | | 65.52 230 | 65.63 208 | 65.17 300 | 77.49 234 | 30.54 355 | 75.49 285 | 77.73 260 | 59.34 167 | 52.26 285 | 86.69 151 | 49.38 59 | 80.53 287 | 37.07 298 | 75.28 134 | 84.42 203 |
|
PatchMatch-RL | | | 56.66 289 | 53.75 294 | 65.37 299 | 77.91 230 | 45.28 281 | 69.78 321 | 60.38 349 | 41.35 334 | 47.57 308 | 73.73 288 | 16.83 344 | 76.91 320 | 36.99 299 | 59.21 252 | 73.92 328 |
|
Patchmtry | | | 56.56 291 | 52.95 298 | 67.42 281 | 72.53 294 | 50.59 178 | 59.05 345 | 71.72 320 | 37.86 343 | 46.92 311 | 65.86 333 | 38.94 176 | 80.06 293 | 36.94 300 | 46.72 331 | 71.60 341 |
|
FMVSNet5 | | | 58.61 279 | 56.45 276 | 65.10 301 | 77.20 241 | 39.74 325 | 74.77 288 | 77.12 271 | 50.27 284 | 43.28 325 | 67.71 328 | 26.15 298 | 76.90 321 | 36.78 301 | 54.78 297 | 78.65 285 |
|
MDTV_nov1_ep13 | | | | 61.56 243 | | 81.68 150 | 55.12 65 | 72.41 304 | 78.18 252 | 59.19 172 | 58.85 215 | 69.29 323 | 34.69 232 | 86.16 221 | 36.76 302 | 62.96 230 | |
|
JIA-IIPM | | | 52.33 312 | 47.77 318 | 66.03 293 | 71.20 308 | 46.92 260 | 40.00 363 | 76.48 284 | 37.10 344 | 46.73 312 | 37.02 361 | 32.96 247 | 77.88 313 | 35.97 303 | 52.45 311 | 73.29 333 |
|
lessismore_v0 | | | | | 67.98 277 | 64.76 344 | 41.25 319 | | 45.75 363 | | 36.03 347 | 65.63 335 | 19.29 335 | 84.11 258 | 35.67 304 | 21.24 366 | 78.59 286 |
|
CP-MVSNet | | | 58.54 282 | 57.57 270 | 61.46 319 | 68.50 325 | 33.96 344 | 76.90 276 | 78.60 246 | 51.67 277 | 47.83 305 | 76.60 266 | 34.99 231 | 72.79 339 | 35.45 305 | 47.58 323 | 77.64 300 |
|
Anonymous20240521 | | | 51.65 313 | 48.42 314 | 61.34 322 | 56.43 361 | 39.65 327 | 73.57 295 | 73.47 312 | 36.64 347 | 36.59 344 | 63.98 338 | 10.75 357 | 72.25 343 | 35.35 306 | 49.01 318 | 72.11 338 |
|
ambc | | | | | 62.06 314 | 53.98 363 | 29.38 358 | 35.08 365 | 79.65 220 | | 41.37 332 | 59.96 347 | 6.27 368 | 82.15 273 | 35.34 307 | 38.22 348 | 74.65 323 |
|
KD-MVS_2432*1600 | | | 59.04 274 | 56.44 277 | 66.86 286 | 79.07 203 | 45.87 275 | 72.13 308 | 80.42 206 | 55.03 248 | 48.15 303 | 71.01 313 | 36.73 209 | 78.05 309 | 35.21 308 | 30.18 361 | 76.67 306 |
|
miper_refine_blended | | | 59.04 274 | 56.44 277 | 66.86 286 | 79.07 203 | 45.87 275 | 72.13 308 | 80.42 206 | 55.03 248 | 48.15 303 | 71.01 313 | 36.73 209 | 78.05 309 | 35.21 308 | 30.18 361 | 76.67 306 |
|
PS-CasMVS | | | 58.12 284 | 57.03 274 | 61.37 320 | 68.24 329 | 33.80 346 | 76.73 277 | 78.01 255 | 51.20 279 | 47.54 309 | 76.20 274 | 32.85 248 | 72.76 340 | 35.17 310 | 47.37 325 | 77.55 301 |
|
EU-MVSNet | | | 52.63 310 | 50.72 306 | 58.37 330 | 62.69 352 | 28.13 362 | 72.60 301 | 75.97 287 | 30.94 355 | 40.76 336 | 72.11 309 | 20.16 331 | 70.80 346 | 35.11 311 | 46.11 332 | 76.19 314 |
|
ACMH+ | | 54.58 15 | 58.55 281 | 55.24 284 | 68.50 275 | 74.68 272 | 45.80 277 | 80.27 249 | 70.21 331 | 47.15 300 | 42.77 327 | 75.48 279 | 16.73 346 | 85.98 230 | 35.10 312 | 54.78 297 | 73.72 329 |
|
pmmvs3 | | | 45.53 324 | 41.55 327 | 57.44 332 | 48.97 367 | 39.68 326 | 70.06 318 | 57.66 352 | 28.32 358 | 34.06 351 | 57.29 353 | 8.50 362 | 66.85 352 | 34.86 313 | 34.26 355 | 65.80 352 |
|
our_test_3 | | | 59.11 272 | 55.08 288 | 71.18 238 | 71.42 305 | 53.29 119 | 81.96 216 | 74.52 297 | 48.32 292 | 42.08 328 | 69.28 324 | 28.14 282 | 82.15 273 | 34.35 314 | 45.68 334 | 78.11 295 |
|
PEN-MVS | | | 58.35 283 | 57.15 272 | 61.94 315 | 67.55 332 | 34.39 342 | 77.01 274 | 78.35 250 | 51.87 274 | 47.72 306 | 76.73 264 | 33.91 239 | 73.75 334 | 34.03 315 | 47.17 327 | 77.68 298 |
|
KD-MVS_self_test | | | 49.24 317 | 46.85 320 | 56.44 333 | 54.32 362 | 22.87 366 | 57.39 347 | 73.36 313 | 44.36 322 | 37.98 342 | 59.30 350 | 18.97 336 | 71.17 345 | 33.48 316 | 42.44 340 | 75.26 319 |
|
tpmvs | | | 62.45 254 | 59.42 259 | 71.53 232 | 83.93 96 | 54.32 87 | 70.03 319 | 77.61 262 | 51.91 273 | 53.48 277 | 68.29 326 | 37.91 184 | 86.66 209 | 33.36 317 | 58.27 260 | 73.62 330 |
|
YYNet1 | | | 53.82 306 | 49.96 309 | 65.41 298 | 70.09 316 | 48.95 218 | 72.30 305 | 71.66 322 | 44.25 323 | 31.89 357 | 63.07 341 | 23.73 313 | 73.95 332 | 33.26 318 | 39.40 346 | 73.34 332 |
|
MDA-MVSNet_test_wron | | | 53.82 306 | 49.95 310 | 65.43 297 | 70.13 315 | 49.05 215 | 72.30 305 | 71.65 323 | 44.23 324 | 31.85 358 | 63.13 340 | 23.68 314 | 74.01 331 | 33.25 319 | 39.35 347 | 73.23 334 |
|
Anonymous20231206 | | | 59.08 273 | 57.59 269 | 63.55 307 | 68.77 323 | 32.14 353 | 80.26 250 | 79.78 216 | 50.00 285 | 49.39 298 | 72.39 305 | 26.64 295 | 78.36 304 | 33.12 320 | 57.94 267 | 80.14 274 |
|
F-COLMAP | | | 55.96 297 | 53.65 295 | 62.87 311 | 72.76 291 | 42.77 307 | 74.70 290 | 70.37 330 | 40.03 336 | 41.11 334 | 79.36 231 | 17.77 341 | 73.70 335 | 32.80 321 | 53.96 302 | 72.15 337 |
|
PatchT | | | 56.60 290 | 52.97 297 | 67.48 280 | 72.94 289 | 46.16 273 | 57.30 348 | 73.78 305 | 38.77 339 | 54.37 268 | 57.26 354 | 37.52 194 | 78.06 308 | 32.02 322 | 52.79 310 | 78.23 294 |
|
SixPastTwentyTwo | | | 54.37 301 | 50.10 308 | 67.21 282 | 70.70 311 | 41.46 318 | 74.73 289 | 64.69 342 | 47.56 297 | 39.12 339 | 69.49 321 | 18.49 339 | 84.69 255 | 31.87 323 | 34.20 356 | 75.48 317 |
|
WR-MVS_H | | | 58.91 276 | 58.04 267 | 61.54 318 | 69.07 320 | 33.83 345 | 76.91 275 | 81.99 179 | 51.40 278 | 48.17 302 | 74.67 283 | 40.23 165 | 74.15 330 | 31.78 324 | 48.10 320 | 76.64 309 |
|
ACMH | | 53.70 16 | 59.78 265 | 55.94 282 | 71.28 234 | 76.59 246 | 48.35 236 | 80.15 254 | 76.11 286 | 49.74 286 | 41.91 330 | 73.45 295 | 16.50 347 | 90.31 102 | 31.42 325 | 57.63 273 | 75.17 320 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSDG | | | 59.44 267 | 55.14 287 | 72.32 212 | 74.69 271 | 50.71 174 | 74.39 291 | 73.58 307 | 44.44 321 | 43.40 324 | 77.52 249 | 19.45 333 | 90.87 88 | 31.31 326 | 57.49 274 | 75.38 318 |
|
thres200 | | | 68.71 177 | 67.27 177 | 73.02 195 | 84.73 81 | 46.76 262 | 85.03 135 | 87.73 60 | 62.34 114 | 59.87 192 | 83.45 187 | 43.15 131 | 88.32 161 | 31.25 327 | 67.91 193 | 83.98 212 |
|
DTE-MVSNet | | | 57.03 287 | 55.73 283 | 60.95 324 | 65.94 335 | 32.57 351 | 75.71 280 | 77.09 272 | 51.16 280 | 46.65 314 | 76.34 269 | 32.84 249 | 73.22 338 | 30.94 328 | 44.87 335 | 77.06 303 |
|
ppachtmachnet_test | | | 58.56 280 | 54.34 289 | 71.24 235 | 71.42 305 | 54.74 77 | 81.84 221 | 72.27 317 | 49.02 290 | 45.86 318 | 68.99 325 | 26.27 296 | 83.30 268 | 30.12 329 | 43.23 339 | 75.69 315 |
|
MVS-HIRNet | | | 49.01 318 | 44.71 322 | 61.92 316 | 76.06 254 | 46.61 264 | 63.23 334 | 54.90 355 | 24.77 360 | 33.56 353 | 36.60 363 | 21.28 328 | 75.88 324 | 29.49 330 | 62.54 233 | 63.26 357 |
|
test20.03 | | | 55.22 299 | 54.07 292 | 58.68 329 | 63.14 350 | 25.00 364 | 77.69 272 | 74.78 296 | 52.64 267 | 43.43 323 | 72.39 305 | 26.21 297 | 74.76 328 | 29.31 331 | 47.05 329 | 76.28 313 |
|
testgi | | | 54.25 303 | 52.57 302 | 59.29 327 | 62.76 351 | 21.65 369 | 72.21 307 | 70.47 329 | 53.25 264 | 41.94 329 | 77.33 253 | 14.28 352 | 77.95 312 | 29.18 332 | 51.72 313 | 78.28 292 |
|
thres100view900 | | | 66.87 216 | 65.42 215 | 71.24 235 | 83.29 112 | 43.15 302 | 81.67 224 | 87.78 57 | 59.04 180 | 55.92 258 | 82.18 208 | 43.73 121 | 87.80 178 | 28.80 333 | 66.36 202 | 82.78 236 |
|
tfpn200view9 | | | 67.57 197 | 66.13 197 | 71.89 227 | 84.05 94 | 45.07 283 | 83.40 183 | 87.71 62 | 60.79 142 | 57.79 232 | 82.76 196 | 43.53 126 | 87.80 178 | 28.80 333 | 66.36 202 | 82.78 236 |
|
thres400 | | | 67.40 204 | 66.13 197 | 71.19 237 | 84.05 94 | 45.07 283 | 83.40 183 | 87.71 62 | 60.79 142 | 57.79 232 | 82.76 196 | 43.53 126 | 87.80 178 | 28.80 333 | 66.36 202 | 80.71 267 |
|
ADS-MVSNet2 | | | 55.21 300 | 51.44 304 | 66.51 291 | 80.60 182 | 49.56 206 | 55.03 350 | 65.44 340 | 44.72 318 | 51.00 291 | 61.19 344 | 22.83 316 | 75.41 326 | 28.54 336 | 53.63 303 | 74.57 324 |
|
ADS-MVSNet | | | 56.17 294 | 51.95 303 | 68.84 266 | 80.60 182 | 53.07 125 | 55.03 350 | 70.02 332 | 44.72 318 | 51.00 291 | 61.19 344 | 22.83 316 | 78.88 302 | 28.54 336 | 53.63 303 | 74.57 324 |
|
LTVRE_ROB | | 45.45 19 | 52.73 309 | 49.74 311 | 61.69 317 | 69.78 317 | 34.99 340 | 44.52 357 | 67.60 338 | 43.11 330 | 43.79 321 | 74.03 286 | 18.54 338 | 81.45 278 | 28.39 338 | 57.94 267 | 68.62 347 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
new-patchmatchnet | | | 48.21 319 | 46.55 321 | 53.18 337 | 57.73 359 | 18.19 373 | 70.24 317 | 71.02 328 | 45.70 311 | 33.70 352 | 60.23 346 | 18.00 340 | 69.86 349 | 27.97 339 | 34.35 354 | 71.49 343 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 270 | 56.00 281 | 68.83 267 | 71.13 309 | 44.30 291 | 83.64 173 | 75.02 295 | 46.42 307 | 46.48 315 | 73.03 297 | 18.69 337 | 88.14 166 | 27.74 340 | 61.80 237 | 74.05 327 |
|
RPSCF | | | 45.77 323 | 44.13 325 | 50.68 339 | 57.67 360 | 29.66 356 | 54.92 352 | 45.25 364 | 26.69 359 | 45.92 317 | 75.92 277 | 17.43 343 | 45.70 368 | 27.44 341 | 45.95 333 | 76.67 306 |
|
MDA-MVSNet-bldmvs | | | 51.56 314 | 47.75 319 | 63.00 310 | 71.60 303 | 47.32 256 | 69.70 322 | 72.12 318 | 43.81 326 | 27.65 362 | 63.38 339 | 21.97 325 | 75.96 323 | 27.30 342 | 32.19 358 | 65.70 353 |
|
RPMNet | | | 59.29 268 | 54.25 291 | 74.42 160 | 73.97 280 | 56.57 32 | 60.52 342 | 76.98 273 | 35.72 349 | 57.49 240 | 58.87 351 | 37.73 189 | 85.26 244 | 27.01 343 | 59.93 245 | 81.42 252 |
|
thres600view7 | | | 66.46 221 | 65.12 219 | 70.47 246 | 83.41 106 | 43.80 297 | 82.15 213 | 87.78 57 | 59.37 166 | 56.02 257 | 82.21 207 | 43.73 121 | 86.90 203 | 26.51 344 | 64.94 209 | 80.71 267 |
|
TAPA-MVS | | 56.12 14 | 61.82 258 | 60.18 255 | 66.71 288 | 78.48 221 | 37.97 333 | 75.19 287 | 76.41 285 | 46.82 303 | 57.04 246 | 86.52 154 | 27.67 289 | 77.03 319 | 26.50 345 | 67.02 198 | 85.14 194 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ITE_SJBPF | | | | | 51.84 338 | 58.03 358 | 31.94 354 | | 53.57 359 | 36.67 346 | 41.32 333 | 75.23 281 | 11.17 356 | 51.57 364 | 25.81 346 | 48.04 321 | 72.02 339 |
|
Patchmatch-test | | | 53.33 308 | 48.17 315 | 68.81 268 | 73.31 283 | 42.38 312 | 42.98 359 | 58.23 351 | 32.53 354 | 38.79 341 | 70.77 316 | 39.66 172 | 73.51 336 | 25.18 347 | 52.06 312 | 90.55 79 |
|
TinyColmap | | | 48.15 320 | 44.49 324 | 59.13 328 | 65.73 337 | 38.04 332 | 63.34 333 | 62.86 347 | 38.78 338 | 29.48 360 | 67.23 331 | 6.46 367 | 73.30 337 | 24.59 348 | 41.90 342 | 66.04 351 |
|
AllTest | | | 47.32 321 | 44.66 323 | 55.32 335 | 65.08 341 | 37.50 335 | 62.96 336 | 54.25 357 | 35.45 351 | 33.42 354 | 72.82 298 | 9.98 358 | 59.33 357 | 24.13 349 | 43.84 337 | 69.13 345 |
|
TestCases | | | | | 55.32 335 | 65.08 341 | 37.50 335 | | 54.25 357 | 35.45 351 | 33.42 354 | 72.82 298 | 9.98 358 | 59.33 357 | 24.13 349 | 43.84 337 | 69.13 345 |
|
N_pmnet | | | 41.25 325 | 39.77 328 | 45.66 343 | 68.50 325 | 0.82 382 | 72.51 303 | 0.38 382 | 35.61 350 | 35.26 349 | 61.51 343 | 20.07 332 | 67.74 351 | 23.51 351 | 40.63 343 | 68.42 348 |
|
DP-MVS | | | 59.24 269 | 56.12 280 | 68.63 272 | 88.24 34 | 50.35 187 | 82.51 206 | 64.43 343 | 41.10 335 | 46.70 313 | 78.77 238 | 24.75 309 | 88.57 152 | 22.26 352 | 56.29 283 | 66.96 350 |
|
MIMVSNet1 | | | 50.35 316 | 47.81 317 | 57.96 331 | 61.53 354 | 27.80 363 | 67.40 326 | 74.06 302 | 43.25 329 | 33.31 356 | 65.38 336 | 16.03 348 | 71.34 344 | 21.80 353 | 47.55 324 | 74.75 322 |
|
tfpnnormal | | | 61.47 259 | 59.09 262 | 68.62 273 | 76.29 252 | 41.69 314 | 81.14 238 | 85.16 113 | 54.48 256 | 51.32 289 | 73.63 292 | 32.32 254 | 86.89 204 | 21.78 354 | 55.71 291 | 77.29 302 |
|
LF4IMVS | | | 33.04 332 | 32.55 332 | 34.52 350 | 40.96 370 | 22.03 368 | 44.45 358 | 35.62 371 | 20.42 362 | 28.12 361 | 62.35 342 | 5.03 371 | 31.88 374 | 21.61 355 | 34.42 353 | 49.63 362 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 315 | 48.05 316 | 59.47 326 | 67.81 331 | 40.57 324 | 71.25 314 | 62.72 348 | 36.49 348 | 36.19 346 | 73.51 293 | 13.48 353 | 73.92 333 | 20.71 356 | 50.26 316 | 63.92 355 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LCM-MVSNet | | | 28.07 333 | 23.85 338 | 40.71 345 | 27.46 378 | 18.93 372 | 30.82 366 | 46.19 361 | 12.76 368 | 16.40 365 | 34.70 366 | 1.90 377 | 48.69 367 | 20.25 357 | 24.22 364 | 54.51 360 |
|
DSMNet-mixed | | | 38.35 327 | 35.36 330 | 47.33 342 | 48.11 368 | 14.91 375 | 37.87 364 | 36.60 370 | 19.18 364 | 34.37 350 | 59.56 349 | 15.53 349 | 53.01 363 | 20.14 358 | 46.89 330 | 74.07 326 |
|
new_pmnet | | | 33.56 331 | 31.89 333 | 38.59 347 | 49.01 366 | 20.42 370 | 51.01 353 | 37.92 369 | 20.58 361 | 23.45 363 | 46.79 358 | 6.66 366 | 49.28 366 | 20.00 359 | 31.57 360 | 46.09 364 |
|
LS3D | | | 56.40 293 | 53.82 293 | 64.12 304 | 81.12 168 | 45.69 279 | 73.42 297 | 66.14 339 | 35.30 353 | 43.24 326 | 79.88 227 | 22.18 323 | 79.62 298 | 19.10 360 | 64.00 216 | 67.05 349 |
|
test_method | | | 24.09 337 | 21.07 341 | 33.16 351 | 27.67 377 | 8.35 380 | 26.63 367 | 35.11 373 | 3.40 373 | 14.35 367 | 36.98 362 | 3.46 374 | 35.31 373 | 19.08 361 | 22.95 365 | 55.81 359 |
|
TDRefinement | | | 40.91 326 | 38.37 329 | 48.55 341 | 50.45 365 | 33.03 349 | 58.98 346 | 50.97 360 | 28.50 357 | 29.89 359 | 67.39 330 | 6.21 369 | 54.51 361 | 17.67 362 | 35.25 351 | 58.11 358 |
|
test_0402 | | | 56.45 292 | 53.03 296 | 66.69 289 | 76.78 245 | 50.31 190 | 81.76 222 | 69.61 333 | 42.79 331 | 43.88 320 | 72.13 308 | 22.82 318 | 86.46 215 | 16.57 363 | 50.94 315 | 63.31 356 |
|
PMMVS2 | | | 26.71 335 | 22.98 339 | 37.87 348 | 36.89 372 | 8.51 379 | 42.51 360 | 29.32 376 | 19.09 365 | 13.01 368 | 37.54 360 | 2.23 375 | 53.11 362 | 14.54 364 | 11.71 368 | 51.99 361 |
|
ANet_high | | | 34.39 329 | 29.59 335 | 48.78 340 | 30.34 375 | 22.28 367 | 55.53 349 | 63.79 345 | 38.11 341 | 15.47 366 | 36.56 364 | 6.94 364 | 59.98 356 | 13.93 365 | 5.64 375 | 64.08 354 |
|
tmp_tt | | | 9.44 342 | 10.68 345 | 5.73 358 | 2.49 381 | 4.21 381 | 10.48 371 | 18.04 378 | 0.34 375 | 12.59 369 | 20.49 369 | 11.39 355 | 7.03 377 | 13.84 366 | 6.46 374 | 5.95 372 |
|
EGC-MVSNET | | | 33.75 330 | 30.42 334 | 43.75 344 | 64.94 343 | 36.21 339 | 60.47 344 | 40.70 367 | 0.02 376 | 0.10 377 | 53.79 356 | 7.39 363 | 60.26 355 | 11.09 367 | 35.23 352 | 34.79 365 |
|
FPMVS | | | 35.40 328 | 33.67 331 | 40.57 346 | 46.34 369 | 28.74 361 | 41.05 361 | 57.05 353 | 20.37 363 | 22.27 364 | 53.38 357 | 6.87 365 | 44.94 369 | 8.62 368 | 47.11 328 | 48.01 363 |
|
Gipuma |  | | 27.47 334 | 24.26 337 | 37.12 349 | 60.55 357 | 29.17 359 | 11.68 370 | 60.00 350 | 14.18 367 | 10.52 371 | 15.12 372 | 2.20 376 | 63.01 354 | 8.39 369 | 35.65 349 | 19.18 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 16.60 23 | 17.34 341 | 13.39 344 | 29.16 353 | 28.43 376 | 19.72 371 | 13.73 369 | 23.63 377 | 7.23 372 | 7.96 372 | 21.41 368 | 0.80 380 | 36.08 372 | 6.97 370 | 10.39 369 | 31.69 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 13.10 356 | 21.34 380 | 8.99 378 | | 10.02 380 | 10.59 370 | 7.53 373 | 30.55 367 | 1.82 378 | 14.55 375 | 6.83 371 | 7.52 371 | 15.75 369 |
|
E-PMN | | | 19.16 338 | 18.40 342 | 21.44 354 | 36.19 373 | 13.63 376 | 47.59 354 | 30.89 374 | 10.73 369 | 5.91 374 | 16.59 370 | 3.66 373 | 39.77 370 | 5.95 372 | 8.14 370 | 10.92 370 |
|
PMVS |  | 19.57 22 | 25.07 336 | 22.43 340 | 32.99 352 | 23.12 379 | 22.98 365 | 40.98 362 | 35.19 372 | 15.99 366 | 11.95 370 | 35.87 365 | 1.47 379 | 49.29 365 | 5.41 373 | 31.90 359 | 26.70 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 18.42 339 | 17.66 343 | 20.71 355 | 34.13 374 | 12.64 377 | 46.94 355 | 29.94 375 | 10.46 371 | 5.58 375 | 14.93 373 | 4.23 372 | 38.83 371 | 5.24 374 | 7.51 372 | 10.67 371 |
|
wuyk23d | | | 9.11 343 | 8.77 347 | 10.15 357 | 40.18 371 | 16.76 374 | 20.28 368 | 1.01 381 | 2.58 374 | 2.66 376 | 0.98 376 | 0.23 381 | 12.49 376 | 4.08 375 | 6.90 373 | 1.19 373 |
|
testmvs | | | 6.14 345 | 8.18 348 | 0.01 359 | 0.01 382 | 0.00 384 | 73.40 298 | 0.00 383 | 0.00 377 | 0.02 378 | 0.15 377 | 0.00 382 | 0.00 378 | 0.02 376 | 0.00 376 | 0.02 374 |
|
test123 | | | 6.01 346 | 8.01 349 | 0.01 359 | 0.00 383 | 0.01 383 | 71.93 311 | 0.00 383 | 0.00 377 | 0.02 378 | 0.11 378 | 0.00 382 | 0.00 378 | 0.02 376 | 0.00 376 | 0.02 374 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 18.33 340 | 24.44 336 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 89.40 19 | 0.00 377 | 0.00 380 | 92.02 39 | 38.55 180 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 3.15 347 | 4.20 350 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 37.77 186 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
ab-mvs-re | | | 7.68 344 | 10.24 346 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 92.12 36 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 383 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 377 | 0.00 380 | 0.00 379 | 0.00 382 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
FOURS1 | | | | | | 83.24 113 | 49.90 200 | 84.98 137 | 78.76 240 | 47.71 295 | 73.42 53 | | | | | | |
|
test_one_0601 | | | | | | 89.39 24 | 57.29 22 | | 88.09 51 | 57.21 218 | 82.06 11 | 93.39 13 | 54.94 25 | | | | |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 89.48 19 | 56.89 28 | | 88.94 29 | 57.53 211 | 84.61 4 | 93.29 16 | 58.81 12 | 96.45 1 | | | |
|
save fliter | | | | | | 85.35 70 | 56.34 39 | 89.31 39 | 81.46 189 | 61.55 127 | | | | | | | |
|
test0726 | | | | | | 89.40 22 | 57.45 19 | 92.32 7 | 88.63 40 | 57.71 207 | 83.14 9 | 93.96 7 | 55.17 21 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 138 |
|
test_part2 | | | | | | 89.33 25 | 55.48 53 | | | | 82.27 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 178 | | | | 88.13 138 |
|
sam_mvs | | | | | | | | | | | | | 35.99 222 | | | | |
|
MTGPA |  | | | | | | | | 81.31 192 | | | | | | | | |
|
test_post | | | | | | | | | | | | 16.22 371 | 37.52 194 | 84.72 254 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 348 | 38.41 181 | 79.91 296 | | | |
|
MTMP | | | | | | | | 87.27 78 | 15.34 379 | | | | | | | | |
|
TEST9 | | | | | | 85.68 57 | 55.42 54 | 87.59 67 | 84.00 144 | 57.72 206 | 72.99 57 | 90.98 60 | 44.87 107 | 88.58 149 | | | |
|
test_8 | | | | | | 85.72 56 | 55.31 58 | 87.60 64 | 83.88 147 | 57.84 204 | 72.84 60 | 90.99 59 | 44.99 104 | 88.34 159 | | | |
|
agg_prior | | | | | | 85.64 60 | 54.92 72 | | 83.61 154 | | 72.53 64 | | | 88.10 169 | | | |
|
test_prior4 | | | | | | | 56.39 38 | 87.15 81 | | | | | | | | | |
|
test_prior | | | | | 78.39 70 | 86.35 50 | 54.91 74 | | 85.45 97 | | | | | 89.70 118 | | | 90.55 79 |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 227 | | | | | | | | | |
|
旧先验1 | | | | | | 81.57 157 | 47.48 252 | | 71.83 319 | | | 88.66 116 | 36.94 205 | | | 78.34 110 | 88.67 127 |
|
原ACMM2 | | | | | | | | 83.77 171 | | | | | | | | | |
|
test222 | | | | | | 79.36 197 | 50.97 172 | 77.99 270 | 67.84 336 | 42.54 332 | 62.84 168 | 86.53 153 | 30.26 272 | | | 76.91 120 | 85.23 193 |
|
segment_acmp | | | | | | | | | | | | | 44.97 106 | | | | |
|
testdata1 | | | | | | | | 77.55 273 | | 64.14 83 | | | | | | | |
|
test12 | | | | | 79.24 40 | 86.89 46 | 56.08 44 | | 85.16 113 | | 72.27 71 | | 47.15 77 | 91.10 79 | | 85.93 37 | 90.54 82 |
|
plane_prior7 | | | | | | 77.95 227 | 48.46 235 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 222 | 49.39 210 | | | | | | 36.04 220 | | | | |
|
plane_prior4 | | | | | | | | | | | | 83.28 190 | | | | | |
|
plane_prior3 | | | | | | | 48.95 218 | | | 64.01 86 | 62.15 174 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 109 | | 63.60 96 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 224 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 204 | 87.43 71 | | 64.57 78 | | | | | | 72.84 156 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 366 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 138 | | | | | | | | |
|
door | | | | | | | | | 43.27 365 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 160 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 205 | | 88.00 58 | | 65.45 64 | 64.48 144 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 205 | | 88.00 58 | | 65.45 64 | 64.48 144 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 147 | | | 88.61 148 | | | 84.91 198 |
|
HQP3-MVS | | | | | | | | | 83.68 150 | | | | | | | 73.12 152 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 197 | | | | |
|
NP-MVS | | | | | | 78.76 210 | 50.43 182 | | | | | 85.12 168 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 226 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 250 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 173 | | | | |
|