This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 102100.00 1100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 118100.00 199.36 21898.98 30100.00 1100.00 197.85 15799.99 98100.00 199.94 124100.00 1
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 116100.00 199.36 21898.98 30100.00 1100.00 197.92 15399.99 98100.00 199.95 121100.00 1
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 209100.00 1100.00 199.97 116100.00 1
patch_mono-299.04 13299.79 696.81 33599.92 10890.47 385100.00 199.41 19098.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 131
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 187100.00 1100.00 199.32 6499.99 98100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 39100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 25100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9399.99 98100.00 1100.00 1100.00 1
dcpmvs_298.87 15899.53 6296.90 32999.87 11890.88 38499.94 26699.07 34798.20 98100.00 1100.00 198.69 12999.86 187100.00 1100.00 199.95 131
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8599.99 98100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 63100.00 1100.00 199.61 18100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 9999.99 98100.00 1100.00 1100.00 1
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 52100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 78100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 24999.98 1698.96 32100.00 1100.00 199.96 499.42 268100.00 1100.00 1100.00 1
CANet99.40 8499.24 9899.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 192100.00 195.28 22899.96 143100.00 199.99 10399.96 125
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 159100.00 1100.00 199.95 121100.00 1
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1799.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4799.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test9_res100.00 1100.00 1100.00 1
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.97 130100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 79100.00 1100.00 1100.00 199.99 110
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 83100.00 1100.00 1100.00 1100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 45100.00 1100.00 1
X-MVStestdata97.04 26196.06 29099.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42299.16 83100.00 1100.00 1100.00 1100.00 1
131499.38 8799.19 10699.96 4598.88 31199.89 7099.24 36699.93 3098.88 4498.79 263100.00 197.02 192100.00 1100.00 1100.00 1100.00 1
VDD-MVS96.58 28295.99 29398.34 25099.52 22995.33 32799.18 37499.38 20996.64 24199.77 193100.00 172.51 402100.00 1100.00 196.94 25899.70 246
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 61100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2599.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 66100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6499.99 98100.00 1100.00 1100.00 1
TSAR-MVS + GP.99.61 6199.69 2299.35 18099.99 4998.06 251100.00 199.36 21899.83 2100.00 1100.00 198.95 10899.99 98100.00 199.11 171100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 96100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7599.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 59100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 22100.00 1100.00 1100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 90100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3499.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_BlendedMVS98.71 16998.62 16898.98 21299.98 8699.60 114100.00 1100.00 197.23 192100.00 199.03 34696.57 21199.99 98100.00 194.75 29897.35 367
PVSNet_Blended99.48 7799.36 8399.83 9599.98 8699.60 114100.00 1100.00 197.79 133100.00 1100.00 196.57 21199.99 98100.00 199.88 13499.90 162
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 35100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15799.95 156100.00 1100.00 1100.00 1
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15099.96 25599.94 2298.48 79100.00 1100.00 198.92 113100.00 1100.00 1100.00 1100.00 1
PAPM99.78 1699.76 1299.85 9099.01 29499.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1199.60 226100.00 1100.00 1100.00 1
PHI-MVS99.50 7399.39 7699.82 97100.00 199.45 140100.00 199.94 2296.38 258100.00 1100.00 198.18 145100.00 1100.00 1100.00 1100.00 1
PVSNet_093.57 1996.41 29095.74 30798.41 24599.84 12195.22 329100.00 1100.00 198.08 10997.55 33299.78 26584.40 362100.00 1100.00 181.99 395100.00 1
DeepPCF-MVS98.03 498.54 18899.72 1994.98 36099.99 4984.94 399100.00 199.42 14199.98 1100.00 1100.00 198.11 147100.00 1100.00 1100.00 1100.00 1
PLCcopyleft98.56 299.70 3699.74 1699.58 149100.00 198.79 199100.00 199.54 7198.58 7599.96 126100.00 199.59 22100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS99.49 7599.36 8399.89 7999.97 9099.66 11099.74 30799.95 1997.89 125100.00 1100.00 196.71 208100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n99.21 11699.01 12399.83 9599.84 12199.53 125100.00 199.38 20998.29 94100.00 1100.00 193.62 25599.99 9899.99 6499.93 12799.98 112
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13099.99 9899.99 64100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11099.99 64100.00 1100.00 1
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 193100.00 198.77 125100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 66100.00 199.99 64100.00 1100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 81100.00 199.99 64100.00 1100.00 1
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 72100.00 199.99 64100.00 1100.00 1
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 144100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13399.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CPTT-MVS99.49 7599.38 7799.85 90100.00 199.54 123100.00 199.42 14197.58 15999.98 117100.00 197.43 183100.00 199.99 64100.00 1100.00 1
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15299.95 15699.99 64100.00 1100.00 1
CSCG99.28 10499.35 8599.05 20599.99 4997.15 296100.00 199.47 7997.44 17599.42 216100.00 197.83 161100.00 199.99 64100.00 1100.00 1
test_fmvsmconf_n99.56 6799.46 7399.86 8799.68 16599.58 118100.00 199.31 24698.92 3999.88 171100.00 197.35 18599.99 9899.98 7699.99 103100.00 1
test_fmvsmvis_n_192099.46 7999.37 8099.73 12398.88 31199.18 171100.00 199.26 27998.85 4999.79 190100.00 197.70 166100.00 199.98 7699.86 138100.00 1
test_fmvsm_n_192099.55 6899.49 6999.73 12399.85 12099.19 169100.00 199.41 19098.87 47100.00 1100.00 197.34 186100.00 199.98 7699.90 131100.00 1
test_yl99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
DCV-MVSNet99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 116100.00 199.98 76100.00 1100.00 1
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26199.44 11698.35 90100.00 1100.00 198.98 10299.97 13099.98 76100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24399.44 11698.35 9099.99 111100.00 199.04 9699.96 14399.98 76100.00 1100.00 1
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10499.99 9899.98 76100.00 1100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 199100.00 1100.00 198.95 10899.96 14399.98 76100.00 1100.00 1
114514_t99.39 8599.25 9599.81 10299.97 9099.48 138100.00 199.42 14195.53 291100.00 1100.00 198.37 14299.95 15699.97 86100.00 1100.00 1
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 171100.00 199.14 86100.00 199.97 86100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 9899.15 11199.81 10299.80 14299.47 139100.00 199.35 22998.22 95100.00 1100.00 195.21 23299.99 9899.96 8899.86 13899.98 112
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 153100.00 198.39 141100.00 199.96 8899.99 103100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 155100.00 198.65 130100.00 199.96 88100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 12100.00 199.96 88100.00 1100.00 1
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30699.73 5698.16 10099.75 196100.00 198.90 115100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS97.64 23197.74 22697.36 30799.01 29494.76 344100.00 199.34 23599.30 499.00 24799.97 20187.49 33799.57 23399.96 8895.58 26897.75 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31299.52 7299.06 13100.00 1100.00 198.80 124100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24399.47 7999.09 10100.00 1100.00 198.59 134100.00 199.95 94100.00 1100.00 1
test_fmvsmconf0.1_n99.25 11199.05 11999.82 9798.92 30799.55 121100.00 199.23 29098.91 4199.75 19699.97 20194.79 24099.94 16899.94 9699.99 10399.97 119
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 104100.00 199.94 96100.00 1100.00 1
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 140100.00 199.78 4798.92 3999.73 198100.00 197.70 166100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SDMVSNet98.49 19398.08 21199.73 12399.82 12599.53 12599.99 21799.45 10297.62 15099.38 22399.86 24590.06 30599.88 18599.92 9996.61 26499.79 233
AdaColmapbinary99.44 8199.26 9499.95 54100.00 199.86 8299.70 31799.99 1398.53 7699.90 166100.00 195.34 227100.00 199.92 99100.00 1100.00 1
F-COLMAP99.64 5199.64 3799.67 13299.99 4999.07 177100.00 199.44 11698.30 9399.90 166100.00 199.18 8299.99 9899.91 101100.00 199.94 136
VNet99.04 13298.75 15499.90 7799.81 13199.75 9799.50 34199.47 7998.36 88100.00 199.99 18794.66 242100.00 199.90 10297.09 25499.96 125
EPNet99.62 5999.69 2299.42 16999.99 4998.37 226100.00 199.89 3798.83 53100.00 1100.00 198.97 104100.00 199.90 10299.61 16199.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n98.60 18098.24 20099.67 13296.90 38399.21 16799.99 21799.04 36098.80 6099.57 20699.96 21690.12 30299.91 17799.89 10499.89 13299.90 162
LFMVS97.42 24496.62 26599.81 10299.80 14299.50 13199.16 38099.56 7094.48 322100.00 1100.00 179.35 385100.00 199.89 10497.37 25099.94 136
test_vis1_n_192097.77 22797.24 24899.34 18199.79 14698.04 253100.00 199.25 28198.88 44100.00 1100.00 177.52 390100.00 199.88 10699.85 141100.00 1
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 123100.00 199.36 21898.94 37100.00 1100.00 197.97 150100.00 199.88 10699.28 167100.00 1
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26199.42 14198.38 84100.00 1100.00 198.75 126100.00 199.88 10699.99 10399.74 241
3Dnovator+95.58 1599.03 13498.71 16099.96 4598.99 30199.89 70100.00 199.51 7698.96 3298.32 291100.00 192.78 268100.00 199.87 109100.00 1100.00 1
WTY-MVS99.54 6999.40 7599.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 175100.00 198.94 11099.98 12399.86 11098.21 21299.94 136
HY-MVS96.53 999.50 7399.35 8599.96 4599.81 13199.93 4799.64 324100.00 197.97 11899.84 17599.85 25098.94 11099.99 9899.86 11098.23 21199.95 131
xiu_mvs_v2_base99.51 7099.41 7499.82 9799.70 16099.73 10099.92 27199.40 19498.15 102100.00 1100.00 198.50 138100.00 199.85 11299.13 17099.74 241
VDDNet96.39 29495.55 31698.90 21699.27 27397.45 28199.15 38299.92 3491.28 37399.98 117100.00 173.55 398100.00 199.85 11296.98 25799.24 260
MVS99.22 11598.96 13199.98 2399.00 29899.95 3299.24 36699.94 2298.14 10398.88 253100.00 195.63 225100.00 199.85 112100.00 1100.00 1
fmvsm_s_conf0.1_n98.77 16498.42 18599.82 9799.47 24799.52 128100.00 199.27 27297.53 164100.00 1100.00 189.73 31099.96 14399.84 11599.93 12799.97 119
Anonymous2024052996.93 26796.22 28499.05 20599.79 14697.30 29099.16 38099.47 7988.51 39098.69 266100.00 183.50 370100.00 199.83 11697.02 25699.83 199
xiu_mvs_v1_base_debu99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base_debi99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
alignmvs99.38 8799.21 10299.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9199.93 17299.83 11697.12 25399.90 162
mmtdpeth94.58 33394.18 33595.81 35298.82 32091.09 38399.99 21798.61 38596.38 258100.00 197.23 39276.52 39399.85 19399.82 12180.22 39996.48 384
fmvsm_s_conf0.1_n_a98.71 16998.36 19399.78 11499.09 28499.42 144100.00 199.26 27997.42 177100.00 1100.00 189.78 30899.96 14399.82 12199.85 14199.97 119
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 48100.00 199.79 123100.00 1100.00 1
HQP_MVS97.71 23097.82 22497.37 30699.00 29894.80 339100.00 199.40 19499.00 2799.08 24299.97 20188.58 32899.55 24299.79 12395.57 27297.76 275
plane_prior599.40 19499.55 24299.79 12395.57 27297.76 275
BP-MVS99.79 123
PVSNet_Blended_VisFu99.33 9699.18 10999.78 11499.82 12599.49 134100.00 199.95 1997.36 18099.63 204100.00 196.45 21599.95 15699.79 12399.65 15799.89 168
HQP-MVS97.73 22897.85 22297.39 30599.07 28694.82 336100.00 199.40 19499.04 1699.17 23299.97 20188.61 32699.57 23399.79 12395.58 26897.77 273
test_vis1_n96.69 27795.81 30199.32 18699.14 27997.98 25699.97 24998.98 36998.45 81100.00 1100.00 166.44 40899.99 9899.78 12999.57 163100.00 1
balanced_conf0399.43 8299.28 8999.85 9099.68 16599.68 10899.97 24999.28 26297.03 20499.96 12699.97 20197.90 15499.93 17299.77 130100.00 199.94 136
mamv498.95 15299.11 11498.46 24099.68 16595.67 32499.14 38499.27 27296.43 25299.94 15599.97 20197.79 16299.88 18599.77 130100.00 199.84 195
MVSMamba_PlusPlus99.39 8599.25 9599.80 10799.68 16599.59 11699.99 21799.30 25096.66 23999.96 12699.97 20197.89 15599.92 17599.76 132100.00 199.90 162
sasdasda99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
canonicalmvs99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
XVG-OURS-SEG-HR98.27 21098.31 19598.14 26699.59 20595.92 317100.00 199.36 21898.48 7999.21 231100.00 189.27 31799.94 16899.76 13299.17 16898.56 271
MGCFI-Net99.01 14198.70 16299.93 7099.74 15699.94 41100.00 199.29 25697.60 157100.00 1100.00 195.10 23499.96 14399.74 13696.85 26199.91 151
UBG99.36 9099.27 9099.63 13899.63 19099.01 186100.00 199.43 12496.99 207100.00 199.92 23499.69 1599.99 9899.74 13698.06 22099.88 181
EIA-MVS99.26 10799.19 10699.45 16399.63 19098.75 201100.00 199.27 27296.93 21199.95 153100.00 197.47 17999.79 20699.74 13699.72 15199.82 204
HyFIR lowres test99.32 9899.24 9899.58 14999.95 10099.26 160100.00 199.99 1396.72 23299.29 22899.91 23799.49 4199.47 25999.74 13698.08 219100.00 1
DeepC-MVS97.84 599.00 14298.80 15099.60 14399.93 10599.03 182100.00 199.40 19498.61 7499.33 226100.00 192.23 27899.95 15699.74 13699.96 11999.83 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sd_testset97.81 22597.48 23498.79 22499.82 12596.80 30599.32 35899.45 10297.62 15099.38 22399.86 24585.56 35799.77 21199.72 14196.61 26499.79 233
h-mvs3397.03 26296.53 26898.51 23799.79 14695.90 31999.45 34599.45 10298.21 96100.00 199.78 26597.49 17799.99 9899.72 14174.92 40599.65 253
hse-mvs296.79 27096.38 27698.04 28299.68 16595.54 32699.81 29199.42 14198.21 96100.00 199.80 26297.49 17799.46 26399.72 14173.27 40899.12 263
mvsmamba99.05 13198.98 12899.27 19499.57 21498.10 247100.00 199.28 26295.92 27799.96 12699.97 20196.73 20799.89 18099.72 14199.65 15799.81 213
GG-mvs-BLEND99.59 14599.54 21999.49 13499.17 37999.52 7299.96 12699.68 281100.00 199.33 27599.71 14599.99 10399.96 125
casdiffmvs_mvgpermissive98.64 17598.39 18899.40 17499.50 23898.60 212100.00 199.22 29396.85 21899.10 239100.00 192.75 26999.78 21099.71 14598.35 20099.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator95.63 1499.06 12998.76 15399.96 4598.86 31599.90 6399.98 24399.93 3098.95 3598.49 282100.00 192.91 266100.00 199.71 145100.00 1100.00 1
ET-MVSNet_ETH3D96.41 29095.48 32199.20 19999.81 13199.75 97100.00 199.02 36397.30 18978.33 411100.00 197.73 16497.94 37399.70 14887.41 37699.92 149
ETV-MVS99.34 9499.24 9899.64 13799.58 21099.33 152100.00 199.25 28197.57 16099.96 126100.00 197.44 18299.79 20699.70 14899.65 15799.81 213
Anonymous20240521197.87 22297.53 23398.90 21699.81 13196.70 30899.35 35699.46 9492.98 36098.83 26099.99 18790.63 296100.00 199.70 14897.03 255100.00 1
casdiffmvspermissive98.65 17498.38 18999.46 16199.52 22998.74 204100.00 199.15 31896.91 21499.05 245100.00 192.75 26999.83 19799.70 14898.38 19899.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.69 17298.45 18499.41 17099.52 22998.67 208100.00 199.17 31597.03 20499.13 237100.00 193.17 26299.74 21699.70 14898.34 20199.81 213
PMMVS99.12 12498.97 13099.58 14999.57 21498.98 191100.00 199.30 25097.14 19699.96 126100.00 196.53 21499.82 20099.70 14898.49 18899.94 136
ACMP97.00 897.19 25297.16 25297.27 31598.97 30394.58 351100.00 199.32 24097.97 11897.45 33499.98 19285.79 35599.56 23799.70 14895.24 28397.67 339
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs198.37 20398.04 21599.34 18199.84 12198.07 249100.00 199.00 36698.85 49100.00 1100.00 185.11 35999.96 14399.69 15599.88 134100.00 1
SPE-MVS-test99.31 10099.27 9099.43 16799.99 4998.77 200100.00 199.19 30397.24 19199.96 126100.00 197.56 17499.70 22199.68 15699.81 14699.82 204
gg-mvs-nofinetune96.95 26696.10 28899.50 15799.41 25799.36 15199.07 39399.52 7283.69 40399.96 12683.60 419100.00 199.20 28199.68 15699.99 10399.96 125
cascas98.43 19698.07 21399.50 15799.65 18299.02 184100.00 199.22 29394.21 32999.72 19999.98 19292.03 28199.93 17299.68 15698.12 21799.54 255
testing1199.26 10799.19 10699.46 16199.64 18898.61 211100.00 199.43 12496.94 21099.92 16199.94 22999.43 5299.97 13099.67 15997.79 23999.82 204
test_fmvs1_n97.43 24396.86 25699.15 20199.68 16597.48 28099.99 21798.98 36998.82 55100.00 1100.00 174.85 39799.96 14399.67 15999.70 152100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 159
lupinMVS99.29 10399.16 11099.69 12999.45 25199.49 134100.00 199.15 31897.45 17499.97 122100.00 196.76 20499.76 21399.67 159100.00 199.81 213
diffmvspermissive98.96 14998.73 15699.63 13899.54 21999.16 173100.00 199.18 31097.33 18499.96 126100.00 194.60 24399.91 17799.66 16398.33 20499.82 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268899.00 14298.91 14099.25 19699.90 11297.79 271100.00 199.99 1398.79 6398.28 294100.00 193.63 25499.95 15699.66 16399.95 121100.00 1
CS-MVS99.33 9699.27 9099.50 15799.99 4999.00 189100.00 199.13 32797.26 19099.96 126100.00 197.79 16299.64 22499.64 16599.67 15599.87 191
EC-MVSNet99.19 11799.09 11799.48 16099.42 25599.07 177100.00 199.21 29996.95 20999.96 126100.00 196.88 20299.48 25799.64 16599.79 14999.88 181
ab-mvs98.42 19898.02 21799.61 14199.71 15899.00 18999.10 38899.64 6496.70 23499.04 24699.81 25990.64 29599.98 12399.64 16597.93 22799.84 195
OpenMVScopyleft95.20 1798.76 16598.41 18699.78 11498.89 31099.81 9099.99 21799.76 4998.02 11298.02 309100.00 191.44 284100.00 199.63 16899.97 11699.55 254
testing9199.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.82 18699.92 23499.05 9399.98 12399.62 16997.67 24599.81 213
testing9999.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.84 17599.92 23499.06 9199.98 12399.62 16997.67 24599.81 213
thres20099.27 10599.04 12099.96 4599.81 13199.90 63100.00 199.94 2297.31 18799.83 17899.96 21697.04 189100.00 199.62 16997.88 23099.98 112
MonoMVSNet98.55 18598.64 16698.26 25698.21 34495.76 32299.94 26699.16 31696.23 26699.47 21499.24 33096.75 20699.22 28099.61 17299.17 16899.81 213
dmvs_re97.54 23897.88 22196.54 34099.55 21890.35 38699.86 28399.46 9497.00 20699.41 221100.00 190.78 29499.30 27699.60 17395.24 28399.96 125
RRT-MVS98.75 16798.52 17899.44 16499.65 18298.57 21499.90 27599.08 34296.51 24999.96 12699.95 22392.59 27499.96 14399.60 17399.45 16699.81 213
thres100view90099.25 11199.01 12399.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.59 17597.85 23299.98 112
tfpn200view999.26 10799.03 12199.96 4599.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.98 112
thres40099.26 10799.03 12199.95 5499.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.97 119
LCM-MVSNet-Re96.52 28397.21 25094.44 36499.27 27385.80 39799.85 28596.61 41495.98 27592.75 38798.48 37493.97 25197.55 38399.58 17898.43 19299.98 112
jason99.11 12598.96 13199.59 14599.17 27899.31 155100.00 199.13 32797.38 17999.83 178100.00 195.54 22699.72 21999.57 17999.97 11699.74 241
jason: jason.
LPG-MVS_test97.31 24897.32 24297.28 31398.85 31694.60 348100.00 199.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
LGP-MVS_train97.28 31398.85 31694.60 34899.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
PVSNet94.91 1899.30 10299.25 9599.44 164100.00 198.32 232100.00 199.86 3898.04 111100.00 1100.00 196.10 218100.00 199.55 18099.73 150100.00 1
thres600view799.24 11499.00 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.54 18397.77 24099.97 119
BH-w/o98.82 16298.81 14998.88 21899.62 19796.71 307100.00 199.28 26297.09 19998.81 261100.00 194.91 23899.96 14399.54 183100.00 199.96 125
sss99.45 8099.34 8799.80 10799.76 15299.50 131100.00 199.91 3597.72 13899.98 11799.94 22998.45 139100.00 199.53 18598.75 18299.89 168
EPP-MVSNet99.10 12699.00 12599.40 17499.51 23498.68 20799.92 27199.43 12495.47 29799.65 203100.00 199.51 3599.76 21399.53 18598.00 22199.75 240
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 52100.00 199.50 187100.00 1100.00 1
OMC-MVS99.27 10599.38 7798.96 21399.95 10097.06 300100.00 199.40 19498.83 5399.88 171100.00 197.01 19399.86 18799.47 18899.84 14399.97 119
Effi-MVS+98.58 18298.24 20099.61 14199.60 20199.26 16097.85 40799.10 33696.22 26999.97 12299.89 24093.75 25299.77 21199.43 18998.34 20199.81 213
IB-MVS96.24 1297.54 23896.95 25399.33 18499.67 17398.10 247100.00 199.47 7997.42 17799.26 22999.69 27798.83 12199.89 18099.43 18978.77 403100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer98.84 16098.77 15299.04 20799.41 25797.58 27799.67 32299.35 22994.66 31599.96 12699.36 32499.28 7499.74 21699.41 19197.81 23699.81 213
BH-untuned98.64 17598.65 16498.60 23399.59 20596.17 314100.00 199.28 26296.67 23898.41 285100.00 194.52 24499.83 19799.41 191100.00 199.81 213
Effi-MVS+-dtu98.51 19298.86 14597.47 30399.77 15194.21 355100.00 198.94 37197.61 15499.91 16498.75 36495.89 21999.51 25399.36 19399.48 16498.68 268
ECVR-MVScopyleft98.43 19698.14 20699.32 18699.89 11498.21 24099.46 343100.00 198.38 8499.47 214100.00 187.91 33199.80 20599.35 19498.78 17999.94 136
XVG-OURS98.30 20598.36 19398.13 26999.58 21095.91 318100.00 199.36 21898.69 6899.23 230100.00 191.20 28799.92 17599.34 19597.82 23598.56 271
无先验100.00 199.80 4397.98 116100.00 199.33 196100.00 1
QAPM98.99 14598.66 16399.96 4599.01 29499.87 7999.88 28199.93 3097.99 11498.68 267100.00 193.17 262100.00 199.32 197100.00 1100.00 1
test111198.42 19898.12 20799.29 18999.88 11698.15 24299.46 343100.00 198.36 8899.42 216100.00 187.91 33199.79 20699.31 19898.78 17999.94 136
UGNet98.41 20098.11 20899.31 18899.54 21998.55 21599.18 374100.00 198.64 7399.79 19099.04 34387.61 336100.00 199.30 19999.89 13299.40 259
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata99.66 13599.99 4998.97 19399.73 5697.96 121100.00 1100.00 199.42 55100.00 199.28 200100.00 1100.00 1
test250699.48 7799.38 7799.75 11999.89 11499.51 12999.45 345100.00 198.38 8499.83 178100.00 198.86 11799.81 20399.25 20198.78 17999.94 136
ACMM97.17 697.37 24697.40 23897.29 31299.01 29494.64 347100.00 199.25 28198.07 11098.44 28499.98 19287.38 33999.55 24299.25 20195.19 28697.69 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt93.10 34992.93 35093.58 37399.63 19085.07 39899.99 21793.71 41997.49 17090.96 39197.10 39360.40 41099.95 15699.24 20397.90 22995.72 395
nrg03097.64 23197.27 24698.75 22698.34 33499.53 125100.00 199.22 29396.21 27098.27 29699.95 22394.40 24598.98 29399.23 20489.78 35697.75 286
VPA-MVSNet97.03 26296.43 27498.82 22098.64 32499.32 15399.38 35399.47 7996.73 23198.91 25298.94 35587.00 34399.40 26999.23 20489.59 35797.76 275
VPNet96.41 29095.76 30698.33 25198.61 32598.30 23499.48 34299.45 10296.98 20898.87 25599.88 24281.57 37798.93 29899.22 20687.82 37497.76 275
test_cas_vis1_n_192098.63 17898.25 19799.77 11799.69 16199.32 153100.00 199.31 24698.84 5199.96 126100.00 187.42 33899.99 9899.14 20799.86 138100.00 1
LS3D99.31 10099.13 11299.87 8499.99 4999.71 10299.55 33599.46 9497.32 18599.82 186100.00 196.85 20399.97 13099.14 207100.00 199.92 149
mvs_anonymous98.80 16398.60 17199.38 17899.57 21499.24 164100.00 199.21 29995.87 27898.92 25099.82 25696.39 21699.03 28799.13 20998.50 18799.88 181
DP-MVS98.86 15998.54 17599.81 10299.97 9099.45 14099.52 33999.40 19494.35 32698.36 287100.00 196.13 21799.97 13099.12 210100.00 1100.00 1
ETVMVS99.16 12198.98 12899.69 12999.67 17399.56 120100.00 199.45 10296.36 26099.98 11799.95 22398.65 13099.64 22499.11 21197.63 24899.88 181
thisisatest051599.42 8399.31 8899.74 12099.59 20599.55 121100.00 199.46 9496.65 24099.92 161100.00 199.44 4899.85 19399.09 21299.63 16099.81 213
ACMH96.25 1196.77 27196.62 26597.21 31698.96 30494.43 35399.64 32499.33 23797.43 17696.55 35599.97 20183.52 36999.54 24599.07 21395.13 29097.66 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive98.52 19098.25 19799.34 18199.68 16598.55 21599.68 32199.41 19097.34 18399.94 155100.00 190.38 30199.70 22199.03 21498.84 17799.76 239
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
reproduce_monomvs98.61 17998.54 17598.82 22099.97 9099.28 157100.00 199.33 23798.51 7897.87 31799.24 33099.98 399.45 26499.02 21592.93 31597.74 308
thisisatest053099.37 8999.27 9099.69 12999.59 20599.41 145100.00 199.46 9496.46 25199.90 166100.00 199.44 4899.85 19398.97 21699.58 16299.80 230
tpmrst98.98 14898.93 13899.14 20299.61 19997.74 27299.52 33999.36 21896.05 27499.98 11799.64 29099.04 9699.86 18798.94 21798.19 21499.82 204
tttt051799.34 9499.23 10199.67 13299.57 21499.38 147100.00 199.46 9496.33 26399.89 169100.00 199.44 4899.84 19698.93 21899.46 16599.78 236
MDTV_nov1_ep13_2view99.24 16499.56 33496.31 26499.96 12698.86 11798.92 21999.89 168
COLMAP_ROBcopyleft97.10 798.29 20798.17 20598.65 22999.94 10397.39 28399.30 36299.40 19495.64 28697.75 323100.00 192.69 27399.95 15698.89 22099.92 12998.62 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS98.14 21497.74 22699.33 18499.59 20598.28 23599.27 36399.21 29996.42 25599.15 23699.94 22988.87 32399.79 20698.88 22198.29 20699.93 147
testing22299.14 12398.94 13699.73 12399.67 17399.51 129100.00 199.43 12496.90 21699.99 11199.90 23998.55 13699.86 18798.85 22297.18 25299.81 213
mvs_tets97.00 26596.69 26297.94 28897.41 37997.27 29199.60 33099.18 31096.51 24997.35 33699.69 27786.53 34798.91 30098.84 22395.09 29297.65 344
testmvs80.17 37681.95 37974.80 39958.54 42659.58 424100.00 187.14 42576.09 41099.61 205100.00 167.06 40774.19 42298.84 22350.30 41690.64 411
BH-RMVSNet98.46 19498.08 21199.59 14599.61 19999.19 169100.00 199.28 26297.06 20398.95 249100.00 188.99 32099.82 20098.83 225100.00 199.77 237
FIs97.95 22197.73 22898.62 23198.53 32999.24 164100.00 199.43 12496.74 22997.87 31799.82 25695.27 22998.89 30398.78 22693.07 31297.74 308
EPMVS99.25 11199.13 11299.60 14399.60 20199.20 16899.60 330100.00 196.93 21199.92 16199.36 32499.05 9399.71 22098.77 22798.94 17699.90 162
gm-plane-assit99.52 22997.26 29295.86 280100.00 199.43 26698.76 228
baseline298.99 14598.93 13899.18 20099.26 27599.15 174100.00 199.46 9496.71 23396.79 350100.00 199.42 5599.25 27998.75 22999.94 12499.15 262
cl2298.23 21298.11 20898.58 23599.82 12599.01 186100.00 199.28 26296.92 21398.33 29099.21 33398.09 14998.97 29598.72 23092.61 31897.76 275
jajsoiax97.07 25996.79 26097.89 29297.28 38097.12 29799.95 26199.19 30396.55 24597.31 33799.69 27787.35 34198.91 30098.70 23195.12 29197.66 340
Test_1112_low_res98.83 16198.60 17199.51 15499.69 16198.75 20199.99 21799.14 32396.81 22198.84 25899.06 34097.45 18099.89 18098.66 23297.75 24199.89 168
1112_ss98.91 15598.71 16099.51 15499.69 16198.75 20199.99 21799.15 31896.82 22098.84 258100.00 197.45 18099.89 18098.66 23297.75 24199.89 168
MVS_Test98.93 15498.65 16499.77 11799.62 19799.50 13199.99 21799.19 30395.52 29399.96 12699.86 24596.54 21399.98 12398.65 23498.48 18999.82 204
WBMVS98.19 21398.10 21098.47 23999.63 19099.03 182100.00 199.32 24095.46 29898.39 28699.40 32199.69 1598.61 32498.64 23592.39 32397.76 275
FC-MVSNet-test97.84 22397.63 23298.45 24298.30 33999.05 180100.00 199.43 12496.63 24397.61 32999.82 25695.19 23398.57 33298.64 23593.05 31397.73 315
MVSFormer98.94 15398.82 14799.28 19299.45 25199.49 134100.00 199.13 32795.46 29899.97 122100.00 196.76 20498.59 32998.63 237100.00 199.74 241
test_djsdf97.55 23797.38 23998.07 27297.50 37297.99 255100.00 199.13 32795.46 29898.47 28399.85 25092.01 28298.59 32998.63 23795.36 27697.62 350
tpm298.64 17598.58 17398.81 22399.42 25597.12 29799.69 31999.37 21293.63 34399.94 15599.67 28298.96 10799.47 25998.62 23997.95 22699.83 199
baseline198.91 15598.61 16999.81 10299.71 15899.77 9599.78 29799.44 11697.51 16898.81 26199.99 18798.25 14399.76 21398.60 24095.41 27499.89 168
MVSTER98.58 18298.52 17898.77 22599.65 18299.68 108100.00 199.29 25695.63 28798.65 26899.80 26299.78 898.88 30698.59 24195.31 27897.73 315
D2MVS97.63 23497.83 22397.05 32098.83 31894.60 348100.00 199.82 4096.89 21798.28 29499.03 34694.05 24899.47 25998.58 24294.97 29697.09 373
PS-MVSNAJss98.03 21898.06 21497.94 28897.63 36497.33 28999.89 27999.23 29096.27 26598.03 30799.59 30298.75 12698.78 31198.52 24394.61 30197.70 329
WR-MVS97.09 25796.64 26398.46 24098.43 33199.09 17699.97 24999.33 23795.62 28897.76 32099.67 28291.17 28898.56 33498.49 24489.28 36297.74 308
IS-MVSNet99.08 12798.91 14099.59 14599.65 18299.38 14799.78 29799.24 28696.70 23499.51 209100.00 198.44 14099.52 25198.47 24598.39 19699.88 181
XVG-ACMP-BASELINE96.60 28196.52 27096.84 33398.41 33293.29 36599.99 21799.32 24097.76 13798.51 28099.29 32781.95 37699.54 24598.40 24695.03 29397.68 335
XXY-MVS97.14 25696.63 26498.67 22898.65 32398.92 19499.54 33799.29 25695.57 29097.63 32699.83 25387.79 33599.35 27398.39 24792.95 31497.75 286
Vis-MVSNet (Re-imp)98.99 14598.89 14499.29 18999.64 18898.89 19599.98 24399.31 24696.74 22999.48 211100.00 198.11 14799.10 28498.39 24798.34 20199.89 168
UA-Net99.06 12998.83 14699.74 12099.52 22999.40 14699.08 39199.45 10297.64 14799.83 178100.00 195.80 22199.94 16898.35 24999.80 14899.88 181
ACMH+96.20 1396.49 28896.33 28097.00 32399.06 29093.80 35899.81 29199.31 24697.32 18595.89 36699.97 20182.62 37499.54 24598.34 25094.63 30097.65 344
FE-MVS99.16 12198.99 12799.66 13599.65 18299.18 17199.58 33299.43 12495.24 30299.91 16499.59 30299.37 6099.97 13098.31 25199.81 14699.83 199
test_post199.32 35888.24 41499.33 6199.59 22898.31 251
SCA98.30 20597.98 21999.23 19799.41 25798.25 23799.99 21799.45 10296.91 21499.76 19599.58 30489.65 31299.54 24598.31 25198.79 17899.91 151
MDTV_nov1_ep1398.94 13699.53 22298.36 22899.39 35299.46 9496.54 24699.99 11199.63 29498.92 11399.86 18798.30 25498.71 183
OPM-MVS97.21 25197.18 25197.32 31098.08 35094.66 345100.00 199.28 26298.65 7298.92 25099.98 19286.03 35399.56 23798.28 25595.41 27497.72 321
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121196.29 29995.70 30998.07 27299.80 14297.49 27999.15 38299.40 19489.11 38797.75 32399.45 31888.93 32298.98 29398.26 25689.47 35997.73 315
CVMVSNet98.56 18498.47 18398.82 22099.11 28197.67 27499.74 30799.47 7997.57 16099.06 244100.00 195.72 22398.97 29598.21 25797.33 25199.83 199
PCF-MVS98.23 398.69 17298.37 19199.62 14099.78 14999.02 18499.23 37199.06 35596.43 25298.08 303100.00 194.72 24199.95 15698.16 25899.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
RPSCF97.37 24698.24 20094.76 36399.80 14284.57 40099.99 21799.05 35794.95 30799.82 186100.00 194.03 249100.00 198.15 25998.38 19899.70 246
kuosan98.55 18598.53 17798.62 23199.66 18096.16 315100.00 199.44 11693.93 33699.81 18999.98 19297.58 17099.81 20398.08 26098.28 20799.89 168
CANet_DTU99.02 13998.90 14399.41 17099.88 11698.71 205100.00 199.29 25698.84 51100.00 1100.00 194.02 250100.00 198.08 26099.96 11999.52 256
CDS-MVSNet98.96 14998.95 13599.01 20999.48 24498.36 22899.93 26999.37 21296.79 22399.31 22799.83 25399.77 1098.91 30098.07 26297.98 22299.77 237
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CP-MVSNet96.73 27396.25 28298.18 26298.21 34498.67 20899.77 30299.32 24095.06 30597.20 34099.65 28690.10 30398.19 35398.06 26388.90 36697.66 340
miper_enhance_ethall98.33 20498.27 19698.51 23799.66 18099.04 181100.00 199.22 29397.53 16498.51 28099.38 32299.49 4198.75 31698.02 26492.61 31897.76 275
anonymousdsp97.16 25496.88 25598.00 28497.08 38298.06 25199.81 29199.15 31894.58 31797.84 31999.62 29890.49 29898.60 32797.98 26595.32 27797.33 368
UniMVSNet_NR-MVSNet97.16 25496.80 25898.22 25998.38 33398.41 220100.00 199.45 10296.14 27297.76 32099.64 29095.05 23598.50 33797.98 26586.84 37997.75 286
DU-MVS96.93 26796.49 27198.22 25998.31 33798.41 220100.00 199.37 21296.41 25697.76 32099.65 28692.14 27998.50 33797.98 26586.84 37997.75 286
TAMVS98.76 16598.73 15698.86 21999.44 25397.69 27399.57 33399.34 23596.57 24499.12 23899.81 25998.83 12199.16 28297.97 26897.91 22899.73 245
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 80100.00 197.91 269100.00 1100.00 1
UniMVSNet_ETH3D95.28 32894.41 33497.89 29298.91 30895.14 33099.13 38599.35 22992.11 36897.17 34199.66 28470.28 40599.36 27197.88 27095.18 28799.16 261
PatchMatch-RL99.02 13998.78 15199.74 12099.99 4999.29 156100.00 1100.00 198.38 8499.89 16999.81 25993.14 26499.99 9897.85 27199.98 11399.95 131
TDRefinement91.93 35590.48 36396.27 34681.60 41992.65 37299.10 38897.61 40793.96 33593.77 38199.85 25080.03 38199.53 25097.82 27270.59 40996.63 383
UWE-MVS99.18 11899.06 11899.51 15499.67 17398.80 198100.00 199.43 12496.80 22299.93 16099.86 24599.79 799.94 16897.78 27398.33 20499.80 230
PS-CasMVS96.34 29795.78 30598.03 28398.18 34798.27 23699.71 31599.32 24094.75 31196.82 34999.65 28686.98 34498.15 35597.74 27488.85 36797.66 340
Fast-Effi-MVS+-dtu98.38 20298.56 17497.82 29499.58 21094.44 352100.00 199.16 31696.75 22799.51 20999.63 29495.03 23699.60 22697.71 27599.67 15599.42 258
tpmvs98.59 18198.38 18999.23 19799.69 16197.90 26399.31 36199.47 7994.52 32099.68 20299.28 32897.64 16999.89 18097.71 27598.17 21699.89 168
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 24100.00 197.64 277100.00 1100.00 1
ttmdpeth96.24 30295.88 29897.32 31097.80 35996.61 31199.95 26198.77 38297.80 13293.42 38399.28 32886.42 34899.01 28997.63 27891.84 33396.33 388
FA-MVS(test-final)99.00 14298.75 15499.73 12399.63 19099.43 14399.83 28799.43 12495.84 28399.52 20899.37 32397.84 15999.96 14397.63 27899.68 15399.79 233
PatchmatchNetpermissive99.03 13498.96 13199.26 19599.49 24298.33 23099.38 35399.45 10296.64 24199.96 12699.58 30499.49 4199.50 25597.63 27899.00 17599.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EI-MVSNet97.98 22097.93 22098.16 26599.11 28197.84 26899.74 30799.29 25694.39 32598.65 268100.00 197.21 18798.88 30697.62 28195.31 27897.75 286
UniMVSNet (Re)97.29 25096.85 25798.59 23498.49 33099.13 175100.00 199.42 14196.52 24898.24 30098.90 35894.93 23798.89 30397.54 28287.61 37597.75 286
IterMVS-LS97.56 23697.44 23597.92 29199.38 26697.90 26399.89 27999.10 33694.41 32498.32 29199.54 31297.21 18798.11 36097.50 28391.62 33697.75 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS96.26 30195.67 31398.06 27699.68 16595.60 32599.82 29099.42 14196.78 22499.88 17199.80 26294.84 23999.47 25997.48 28473.29 40799.12 263
Fast-Effi-MVS+98.40 20198.02 21799.55 15399.63 19099.06 179100.00 199.15 31895.07 30499.42 21699.95 22393.26 26199.73 21897.44 28598.24 21099.87 191
WR-MVS_H96.73 27396.32 28197.95 28798.26 34197.88 26599.72 31499.43 12495.06 30596.99 34398.68 36793.02 26598.53 33597.43 28688.33 37197.43 363
tpm98.24 21198.22 20498.32 25299.13 28095.79 32199.53 33899.12 33395.20 30399.96 12699.36 32497.58 17099.28 27897.41 28796.67 26299.88 181
LF4IMVS96.19 30496.18 28596.23 34798.26 34192.09 375100.00 197.89 40197.82 13097.94 31299.87 24382.71 37399.38 27097.41 28793.71 30597.20 370
tt080596.52 28396.23 28397.40 30499.30 27293.55 36099.32 35899.45 10296.75 22797.88 31699.99 18779.99 38399.59 22897.39 28995.98 26799.06 265
testdata2100.00 197.36 290
miper_ehance_all_eth97.81 22597.66 23098.23 25899.49 24298.37 22699.99 21799.11 33494.78 31098.25 29899.21 33398.18 14598.57 33297.35 29192.61 31897.76 275
c3_l97.58 23597.42 23698.06 27699.48 24498.16 24199.96 25599.10 33694.54 31998.13 30299.20 33597.87 15698.25 35197.28 29291.20 34497.75 286
LTVRE_ROB95.29 1696.32 29896.10 28896.99 32498.55 32793.88 35799.45 34599.28 26294.50 32196.46 35699.52 31384.86 36099.48 25797.26 29395.03 29397.59 354
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet96.16 30995.70 30997.56 30298.28 34096.79 306100.00 197.86 40291.93 37097.63 32699.47 31792.14 27998.35 34697.13 29486.83 38197.54 357
ADS-MVSNet298.28 20998.51 18097.62 29999.51 23495.03 33299.24 36699.41 19095.52 29399.96 12699.70 27497.57 17297.94 37397.11 29598.54 18599.88 181
ADS-MVSNet98.70 17198.51 18099.28 19299.51 23498.39 22399.24 36699.44 11695.52 29399.96 12699.70 27497.57 17299.58 23297.11 29598.54 18599.88 181
GeoE98.06 21697.65 23199.29 18999.47 24798.41 220100.00 199.19 30394.85 30998.88 253100.00 191.21 28699.59 22897.02 29798.19 21499.88 181
JIA-IIPM97.09 25796.34 27999.36 17998.88 31198.59 21399.81 29199.43 12484.81 40199.96 12690.34 41198.55 13699.52 25197.00 29898.28 20799.98 112
AllTest98.55 18598.40 18798.99 21099.93 10597.35 286100.00 199.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
TestCases98.99 21099.93 10597.35 28699.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
PEN-MVS96.01 31695.48 32197.58 30197.74 36197.26 29299.90 27599.29 25694.55 31896.79 35099.55 31087.38 33997.84 37596.92 30187.24 37797.65 344
TranMVSNet+NR-MVSNet96.45 28996.01 29297.79 29598.00 35397.62 276100.00 199.35 22995.98 27597.31 33799.64 29090.09 30498.00 37096.89 30286.80 38297.75 286
TESTMET0.1,199.08 12798.96 13199.44 16499.63 19099.38 147100.00 199.45 10295.53 29199.48 211100.00 199.71 1399.02 28896.84 30399.99 10399.91 151
test-LLR99.03 13498.91 14099.40 17499.40 26299.28 157100.00 199.45 10296.70 23499.42 21699.12 33699.31 6699.01 28996.82 30499.99 10399.91 151
test-mter98.96 14998.82 14799.40 17499.40 26299.28 157100.00 199.45 10295.44 30199.42 21699.12 33699.70 1499.01 28996.82 30499.99 10399.91 151
MSDG98.90 15798.63 16799.70 12899.92 10899.25 162100.00 199.37 21295.71 28599.40 222100.00 196.58 21099.95 15696.80 30699.94 12499.91 151
eth_miper_zixun_eth97.47 24297.28 24498.06 27699.41 25797.94 26199.62 32899.08 34294.46 32398.19 30199.56 30996.91 20198.50 33796.78 30791.49 33997.74 308
NR-MVSNet96.63 27996.04 29198.38 24798.31 33798.98 19199.22 37399.35 22995.87 27894.43 37899.65 28692.73 27198.40 34496.78 30788.05 37297.75 286
dp98.72 16898.61 16999.03 20899.53 22297.39 28399.45 34599.39 20795.62 28899.94 15599.52 31398.83 12199.82 20096.77 30998.42 19399.89 168
tpm cat198.05 21797.76 22598.92 21599.50 23897.10 29999.77 30299.30 25090.20 38499.72 19998.71 36597.71 16599.86 18796.75 31098.20 21399.81 213
cl____97.54 23897.32 24298.18 26299.47 24798.14 244100.00 199.10 33694.16 33297.60 33099.63 29497.52 17698.65 32296.47 31191.97 33197.76 275
DIV-MVS_self_test97.52 24197.35 24198.05 28099.46 25098.11 245100.00 199.10 33694.21 32997.62 32899.63 29497.65 16898.29 34896.47 31191.98 33097.76 275
tmp_tt75.80 38374.26 38580.43 39652.91 42853.67 42787.42 41597.98 39961.80 41567.04 418100.00 176.43 39496.40 39396.47 31128.26 42091.23 410
miper_lstm_enhance97.40 24597.28 24497.75 29699.48 24497.52 278100.00 199.07 34794.08 33398.01 31099.61 30097.38 18497.98 37196.44 31491.47 34197.76 275
v14896.29 29995.84 30097.63 29797.74 36196.53 312100.00 199.07 34793.52 34698.01 31099.42 32091.22 28598.60 32796.37 31587.22 37897.75 286
dongtai98.29 20798.25 19798.42 24499.58 21095.86 320100.00 199.44 11693.46 34999.69 20199.97 20197.53 17599.51 25396.28 31698.27 20999.89 168
myMVS_eth3d98.52 19098.51 18098.53 23699.50 23897.98 256100.00 199.57 6896.23 26698.07 304100.00 199.09 8997.81 37696.17 31797.96 22499.82 204
DeepMVS_CXcopyleft89.98 38098.90 30971.46 41199.18 31097.61 15496.92 34499.83 25386.07 35199.83 19796.02 31897.65 24798.65 269
test_fmvs295.17 33195.23 32795.01 35798.95 30688.99 39199.99 21797.77 40397.79 13398.58 27399.70 27473.36 39999.34 27495.88 31995.03 29396.70 381
pmmvs595.94 31895.61 31496.95 32697.42 37794.66 345100.00 198.08 39493.60 34497.05 34299.43 31987.02 34298.46 34195.76 32092.12 32797.72 321
WAC-MVS97.98 25695.74 321
IterMVS96.76 27296.46 27397.63 29799.41 25796.89 30299.99 21799.13 32794.74 31397.59 33199.66 28489.63 31498.28 34995.71 32292.31 32597.72 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v2v48296.70 27696.18 28598.27 25498.04 35198.39 223100.00 199.13 32794.19 33198.58 27399.08 33990.48 29998.67 32095.69 32390.44 35297.75 286
pmmvs497.17 25396.80 25898.27 25497.68 36398.64 210100.00 199.18 31094.22 32898.55 27599.71 27193.67 25398.47 34095.66 32492.57 32197.71 328
ITE_SJBPF96.84 33398.96 30493.49 36198.12 39298.12 10798.35 28899.97 20184.45 36199.56 23795.63 32595.25 28297.49 360
IterMVS-SCA-FT96.72 27596.42 27597.62 29999.40 26296.83 30499.99 21799.14 32394.65 31697.55 33299.72 26989.65 31298.31 34795.62 32692.05 32897.73 315
pm-mvs195.76 32195.01 33198.00 28498.23 34397.45 28199.24 36699.04 36093.13 35995.93 36599.72 26986.28 34998.84 30895.62 32687.92 37397.72 321
V4296.65 27896.16 28798.11 27198.17 34898.23 23899.99 21799.09 34193.97 33498.74 26599.05 34291.09 28998.82 30995.46 32889.90 35497.27 369
EU-MVSNet96.63 27996.53 26896.94 32797.59 36896.87 30399.76 30499.47 7996.35 26196.85 34899.78 26592.57 27596.27 39695.33 32991.08 34597.68 335
GBi-Net96.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
test196.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
FMVSNet397.30 24996.95 25398.37 24899.65 18299.25 16299.71 31599.28 26294.23 32798.53 27798.91 35793.30 26098.11 36095.31 33093.60 30697.73 315
mvsany_test389.36 36788.96 37190.56 37991.95 40578.97 40499.74 30796.59 41596.84 21989.25 39696.07 39752.59 41297.11 38595.17 33382.44 39495.58 398
GA-MVS97.72 22997.27 24699.06 20399.24 27697.93 262100.00 199.24 28695.80 28498.99 24899.64 29089.77 30999.36 27195.12 33497.62 24999.89 168
ambc88.45 38386.84 41570.76 41297.79 40898.02 39890.91 39295.14 40038.69 41898.51 33694.97 33584.23 38896.09 392
OurMVSNet-221017-096.14 31195.98 29496.62 33897.49 37493.44 36299.92 27198.16 39095.86 28097.65 32599.95 22385.71 35698.78 31194.93 33694.18 30497.64 347
testing398.44 19598.37 19198.65 22999.51 23498.32 232100.00 199.62 6696.43 25297.93 31399.99 18799.11 8797.81 37694.88 33797.80 23799.82 204
SixPastTwentyTwo95.71 32295.49 31996.38 34397.42 37793.01 36699.84 28698.23 38994.75 31195.98 36499.97 20185.35 35898.43 34294.71 33893.17 31197.69 333
DTE-MVSNet95.52 32494.99 33297.08 31997.49 37496.45 313100.00 199.25 28193.82 33796.17 36199.57 30887.81 33497.18 38494.57 33986.26 38597.62 350
UnsupCasMVSNet_eth94.25 33793.89 33795.34 35497.63 36492.13 37499.73 31299.36 21894.88 30892.78 38598.63 36982.72 37296.53 39294.57 33984.73 38797.36 366
CMPMVSbinary66.12 2290.65 36392.04 35686.46 38896.18 38866.87 41898.03 40699.38 20983.38 40485.49 40599.55 31077.59 38998.80 31094.44 34194.31 30393.72 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs693.64 34392.87 35195.94 35197.47 37691.41 38098.92 39599.02 36387.84 39495.01 37199.61 30077.24 39298.77 31494.33 34286.41 38497.63 348
Patchmtry96.81 26996.37 27798.14 26699.31 26998.55 21598.91 39699.00 36690.45 38097.92 31498.98 35096.94 19998.12 35894.27 34391.53 33897.75 286
tfpnnormal96.36 29595.69 31298.37 24898.55 32798.71 20599.69 31999.45 10293.16 35896.69 35499.71 27188.44 33098.99 29294.17 34491.38 34297.41 364
v896.35 29695.73 30898.21 26198.11 34998.23 23899.94 26699.07 34792.66 36698.29 29399.00 34991.46 28398.77 31494.17 34488.83 36897.62 350
MIMVSNet97.06 26096.73 26198.05 28099.38 26696.64 31098.47 40399.35 22993.41 35099.48 21198.53 37289.66 31197.70 38294.16 34698.11 21899.80 230
Patchmatch-RL test93.49 34493.63 34193.05 37591.78 40683.41 40198.21 40596.95 41191.58 37291.05 39097.64 39099.40 5895.83 40094.11 34781.95 39699.91 151
FMVSNet296.22 30395.60 31598.06 27699.53 22298.33 23099.45 34599.27 27293.71 33898.03 30798.84 36084.23 36498.10 36393.97 34893.40 30997.73 315
K. test v395.46 32695.14 32996.40 34297.53 37193.40 36399.99 21799.23 29095.49 29692.70 38899.73 26884.26 36398.12 35893.94 34993.38 31097.68 335
v114496.51 28595.97 29598.13 26997.98 35498.04 25399.99 21799.08 34293.51 34798.62 27198.98 35090.98 29398.62 32393.79 35090.79 34897.74 308
mvs5depth93.81 34293.00 34996.23 34794.25 40293.33 36497.43 40998.07 39593.47 34894.15 38099.58 30477.52 39098.97 29593.64 35188.92 36596.39 387
TinyColmap95.50 32595.12 33096.64 33798.69 32293.00 36799.40 35197.75 40496.40 25796.14 36299.87 24379.47 38499.50 25593.62 35294.72 29997.40 365
USDC95.90 31995.70 30996.50 34198.60 32692.56 373100.00 198.30 38897.77 13596.92 34499.94 22981.25 38099.45 26493.54 35394.96 29797.49 360
test_fmvs387.19 37187.02 37487.71 38592.69 40476.64 40699.96 25597.27 40893.55 34590.82 39394.03 40638.00 42092.19 41193.49 35483.35 39394.32 400
MS-PatchMatch95.66 32395.87 29995.05 35697.80 35989.25 38998.88 39799.30 25096.35 26196.86 34799.01 34881.35 37999.43 26693.30 35599.98 11396.46 385
v14419296.40 29395.81 30198.17 26497.89 35798.11 24599.99 21799.06 35593.39 35198.75 26499.09 33890.43 30098.66 32193.10 35690.55 35197.75 286
MVP-Stereo96.51 28596.48 27296.60 33995.65 39494.25 35498.84 39898.16 39095.85 28295.23 36999.04 34392.54 27699.13 28392.98 35799.98 11396.43 386
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet194.45 33493.63 34196.89 33098.87 31494.87 33399.18 37499.27 27290.95 37797.31 33798.81 36172.89 40198.07 36592.61 35892.81 31697.72 321
test12379.44 37979.23 38180.05 39780.03 42071.72 410100.00 177.93 42862.52 41494.81 37299.69 27778.21 38874.53 42192.57 35927.33 42193.90 401
v7n96.06 31595.42 32597.99 28697.58 36997.35 28699.86 28399.11 33492.81 36597.91 31599.49 31590.99 29298.92 29992.51 36088.49 37097.70 329
lessismore_v096.05 34997.55 37091.80 37799.22 29391.87 38999.91 23783.50 37098.68 31992.48 36190.42 35397.68 335
EG-PatchMatch MVS92.94 35192.49 35594.29 36895.87 39187.07 39699.07 39398.11 39393.19 35788.98 39798.66 36870.89 40399.08 28592.43 36295.21 28596.72 380
v1096.14 31195.50 31798.07 27298.19 34697.96 25999.83 28799.07 34792.10 36998.07 30498.94 35591.07 29098.61 32492.41 36389.82 35597.63 348
test0.0.03 198.12 21598.03 21698.39 24699.11 28198.07 249100.00 199.93 3096.70 23496.91 34699.95 22399.31 6698.19 35391.93 36498.44 19198.91 266
our_test_396.51 28596.35 27896.98 32597.61 36695.05 33199.98 24399.01 36594.68 31496.77 35299.06 34095.87 22098.14 35691.81 36592.37 32497.75 286
test_f86.87 37286.06 37589.28 38291.45 41076.37 40799.87 28297.11 40991.10 37588.46 39893.05 40838.31 41996.66 39091.77 36683.46 39294.82 399
MVS-HIRNet94.12 34092.73 35498.29 25399.33 26895.95 31699.38 35399.19 30374.54 41198.26 29786.34 41586.07 35199.06 28691.60 36799.87 13799.85 194
v192192096.16 30995.50 31798.14 26697.88 35897.96 25999.99 21799.07 34793.33 35398.60 27299.24 33089.37 31698.71 31891.28 36890.74 34997.75 286
CR-MVSNet98.02 21997.71 22998.93 21499.31 26998.86 19699.13 38599.00 36696.53 24799.96 12698.98 35096.94 19998.10 36391.18 36998.40 19499.84 195
v119296.18 30595.49 31998.26 25698.01 35298.15 24299.99 21799.08 34293.36 35298.54 27698.97 35389.47 31598.89 30391.15 37090.82 34797.75 286
DSMNet-mixed95.18 33095.21 32895.08 35596.03 38990.21 38799.65 32393.64 42092.91 36198.34 28997.40 39190.05 30695.51 40291.02 37197.86 23199.51 257
YYNet192.44 35390.92 36197.03 32196.20 38797.06 30099.99 21799.14 32388.21 39267.93 41698.43 37788.63 32596.28 39590.64 37289.08 36497.74 308
UnsupCasMVSNet_bld89.50 36688.00 37293.99 37195.30 39788.86 39298.52 40299.28 26285.50 40087.80 40194.11 40561.63 40996.96 38690.63 37379.26 40096.15 389
PM-MVS88.39 36887.41 37391.31 37791.73 40782.02 40399.79 29696.62 41391.06 37690.71 39495.73 39848.60 41495.96 39890.56 37481.91 39795.97 393
MVStest194.27 33693.30 34597.19 31798.83 31897.18 29599.93 26998.79 38186.80 39684.88 40899.04 34394.32 24798.25 35190.55 37586.57 38396.12 391
pmmvs-eth3d91.73 35890.67 36294.92 36191.63 40892.71 37199.90 27598.54 38691.19 37488.08 39995.50 39979.31 38696.13 39790.55 37581.32 39895.91 394
MDA-MVSNet_test_wron92.61 35291.09 36097.19 31796.71 38597.26 292100.00 199.14 32388.61 38967.90 41798.32 38089.03 31996.57 39190.47 37789.59 35797.74 308
testgi96.18 30595.93 29696.93 32898.98 30294.20 356100.00 199.07 34797.16 19596.06 36399.86 24584.08 36797.79 37990.38 37897.80 23798.81 267
Patchmatch-test97.83 22497.42 23699.06 20399.08 28597.66 27598.66 40199.21 29993.65 34298.25 29899.58 30499.47 4599.57 23390.25 37998.59 18499.95 131
ppachtmachnet_test96.17 30795.89 29797.02 32297.61 36695.24 32899.99 21799.24 28693.31 35496.71 35399.62 29894.34 24698.07 36589.87 38092.30 32697.75 286
KD-MVS_2432*160094.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
miper_refine_blended94.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
dmvs_testset93.27 34795.48 32186.65 38798.74 32168.42 41699.92 27198.91 37496.19 27193.28 384100.00 191.06 29191.67 41289.64 38391.54 33799.86 193
v124095.96 31795.25 32698.07 27297.91 35697.87 26799.96 25599.07 34793.24 35698.64 27098.96 35488.98 32198.61 32489.58 38490.92 34697.75 286
test_040294.35 33593.70 34096.32 34597.92 35593.60 35999.61 32998.85 37888.19 39394.68 37499.48 31680.01 38298.58 33189.39 38595.15 28996.77 379
TransMVSNet (Re)94.78 33293.72 33997.93 29098.34 33497.88 26599.23 37197.98 39991.60 37194.55 37599.71 27187.89 33398.36 34589.30 38684.92 38697.56 356
MDA-MVSNet-bldmvs91.65 35989.94 36796.79 33696.72 38496.70 30899.42 35098.94 37188.89 38866.97 41998.37 37881.43 37895.91 39989.24 38789.46 36097.75 286
test_vis3_rt79.61 37778.19 38283.86 39188.68 41469.56 41399.81 29182.19 42786.78 39768.57 41584.51 41825.06 42498.26 35089.18 38878.94 40283.75 415
test_method91.04 36291.10 35990.85 37898.34 33477.63 405100.00 198.93 37376.69 40996.25 36098.52 37370.44 40497.98 37189.02 38991.74 33496.92 377
WB-MVSnew97.02 26497.24 24896.37 34499.44 25397.36 285100.00 199.43 12496.12 27399.35 22599.89 24093.60 25698.42 34388.91 39098.39 19693.33 405
EPNet_dtu98.53 18998.23 20399.43 16799.92 10899.01 18699.96 25599.47 7998.80 6099.96 12699.96 21698.56 13599.30 27687.78 39199.68 153100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet595.32 32795.43 32494.99 35999.39 26592.99 36899.25 36599.24 28690.45 38097.44 33598.45 37595.78 22294.39 40587.02 39291.88 33297.59 354
APD_test193.07 35094.14 33689.85 38199.18 27772.49 40999.76 30498.90 37692.86 36496.35 35799.94 22975.56 39599.91 17786.73 39397.98 22297.15 372
OpenMVS_ROBcopyleft88.34 2091.89 35691.12 35894.19 37095.55 39687.63 39499.26 36498.03 39686.61 39890.65 39596.82 39570.14 40698.78 31186.54 39496.50 26696.15 389
N_pmnet91.88 35793.37 34487.40 38697.24 38166.33 41999.90 27591.05 42289.77 38695.65 36798.58 37190.05 30698.11 36085.39 39592.72 31797.75 286
Syy-MVS96.17 30796.57 26795.00 35899.50 23887.37 395100.00 199.57 6896.23 26698.07 304100.00 192.41 27797.81 37685.34 39697.96 22499.82 204
new-patchmatchnet90.30 36589.46 36992.84 37690.77 41188.55 39399.83 28798.80 38090.07 38587.86 40095.00 40278.77 38794.30 40684.86 39779.15 40195.68 397
new_pmnet94.11 34193.47 34396.04 35096.60 38692.82 36999.97 24998.91 37490.21 38395.26 36898.05 38685.89 35498.14 35684.28 39892.01 32997.16 371
Anonymous2024052193.29 34692.76 35394.90 36295.64 39591.27 38199.97 24998.82 37987.04 39594.71 37398.19 38183.86 36896.80 38784.04 39992.56 32296.64 382
LCM-MVSNet79.01 38176.93 38485.27 38978.28 42168.01 41796.57 41098.03 39655.10 41782.03 41093.27 40731.99 42393.95 40782.72 40074.37 40693.84 402
KD-MVS_self_test91.16 36090.09 36594.35 36694.44 40191.27 38199.74 30799.08 34290.82 37894.53 37694.91 40486.11 35094.78 40482.67 40168.52 41096.99 375
pmmvs390.62 36489.36 37094.40 36590.53 41391.49 379100.00 196.73 41284.21 40293.65 38296.65 39682.56 37594.83 40382.28 40277.62 40496.89 378
EGC-MVSNET79.46 37874.04 38695.72 35396.00 39092.73 37099.09 39099.04 3605.08 42316.72 42398.71 36573.03 40098.74 31782.05 40396.64 26395.69 396
FPMVS77.92 38279.45 38073.34 40176.87 42246.81 42898.24 40499.05 35759.89 41673.55 41298.34 37936.81 42186.55 41480.96 40491.35 34386.65 413
CL-MVSNet_self_test91.07 36190.35 36493.24 37493.27 40389.16 39099.55 33599.25 28192.34 36795.23 36997.05 39488.86 32493.59 40880.67 40566.95 41196.96 376
TAPA-MVS96.40 1097.64 23197.37 24098.45 24299.94 10395.70 323100.00 199.40 19497.65 14599.53 207100.00 199.31 6699.66 22380.48 406100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchT95.90 31994.95 33398.75 22699.03 29298.39 22399.08 39199.32 24085.52 39999.96 12694.99 40397.94 15198.05 36980.20 40798.47 19099.81 213
MIMVSNet191.96 35491.20 35794.23 36994.94 40091.69 37899.34 35799.22 29388.23 39194.18 37998.45 37575.52 39693.41 40979.37 40891.49 33997.60 353
Gipumacopyleft84.73 37383.50 37888.40 38497.50 37282.21 40288.87 41399.05 35765.81 41385.71 40490.49 41053.70 41196.31 39478.64 40991.74 33486.67 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0393.11 34892.85 35293.88 37295.19 39891.83 376100.00 198.87 37793.68 34192.76 38698.88 35989.20 31892.71 41077.88 41089.19 36397.09 373
RPMNet95.26 32993.82 33899.56 15299.31 26998.86 19699.13 38599.42 14179.82 40899.96 12695.13 40195.69 22499.98 12377.54 41198.40 19499.84 195
Anonymous2023120693.45 34593.17 34694.30 36795.00 39989.69 38899.98 24398.43 38793.30 35594.50 37798.59 37090.52 29795.73 40177.46 41290.73 35097.48 362
testf184.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
APD_test284.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
PMMVS279.15 38077.28 38384.76 39082.34 41872.66 40899.70 31795.11 41871.68 41284.78 40990.87 40932.05 42289.99 41375.53 41563.45 41491.64 409
PMVScopyleft60.66 2365.98 38865.05 38968.75 40455.06 42738.40 42988.19 41496.98 41048.30 42144.82 42288.52 41312.22 42786.49 41567.58 41683.79 39181.35 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS88.24 36990.09 36582.68 39491.56 40969.51 414100.00 198.73 38390.72 37987.29 40298.12 38292.87 26785.01 41662.19 41789.34 36193.54 404
ANet_high66.05 38763.44 39173.88 40061.14 42563.45 42295.68 41287.18 42479.93 40747.35 42180.68 42122.35 42572.33 42361.24 41835.42 41985.88 414
MVEpermissive68.59 2167.22 38664.68 39074.84 39874.67 42462.32 42395.84 41190.87 42350.98 41858.72 42081.05 42012.20 42878.95 41861.06 41956.75 41583.24 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS87.61 37089.47 36882.04 39590.63 41268.77 41599.99 21798.66 38490.34 38286.70 40398.08 38392.72 27284.12 41759.41 42088.71 36993.22 408
E-PMN70.72 38470.06 38772.69 40283.92 41765.48 42199.95 26192.72 42149.88 41972.30 41386.26 41647.17 41577.43 41953.83 42144.49 41775.17 419
EMVS69.88 38569.09 38872.24 40384.70 41665.82 42099.96 25587.08 42649.82 42071.51 41484.74 41749.30 41375.32 42050.97 42243.71 41875.59 418
wuyk23d28.28 38929.73 39323.92 40575.89 42332.61 43066.50 41612.88 42916.09 42214.59 42416.59 42312.35 42632.36 42439.36 42313.36 4226.79 420
mmdepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.07 3930.09 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.79 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.41 39032.55 3920.00 4060.00 4290.00 4310.00 41799.39 2070.00 4240.00 425100.00 193.55 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.24 39210.99 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 42598.75 1260.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.33 39111.11 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 19
eth-test20.00 429
eth-test0.00 429
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 39100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31
GSMVS99.91 151
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7299.91 151
sam_mvs99.33 61
MTGPAbinary99.42 141
test_post89.05 41299.49 4199.59 228
patchmatchnet-post97.79 38799.41 5799.54 245
MTMP100.00 199.18 310
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3199.97 130
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.98 123
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
test_prior499.93 47100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
新几何2100.00 1
旧先验199.99 4999.88 7799.82 40100.00 199.27 75100.00 1100.00 1
原ACMM2100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 71100.00 1100.00 1
segment_acmp99.55 27
testdata1100.00 198.77 66
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7799.97 130100.00 1100.00 1
plane_prior799.00 29894.78 343
plane_prior699.06 29094.80 33988.58 328
plane_prior499.97 201
plane_prior394.79 34299.03 2199.08 242
plane_prior2100.00 199.00 27
plane_prior199.02 293
plane_prior94.80 339100.00 199.03 2195.58 268
n20.00 430
nn0.00 430
door-mid96.32 416
test1199.42 141
door96.13 417
HQP5-MVS94.82 336
HQP-NCC99.07 286100.00 199.04 1699.17 232
ACMP_Plane99.07 286100.00 199.04 1699.17 232
HQP4-MVS99.17 23299.57 23397.77 273
HQP3-MVS99.40 19495.58 268
HQP2-MVS88.61 326
NP-MVS99.07 28694.81 33899.97 201
ACMMP++_ref94.58 302
ACMMP++95.17 288
Test By Simon99.10 88