This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM96.15 889.50 999.18 598.10 895.68 196.64 1897.92 5680.72 5999.80 2599.16 197.96 5699.15 24
OPU-MVS97.30 299.19 792.31 399.12 998.54 1992.06 399.84 1299.11 299.37 199.74 1
PC_three_145291.12 3398.33 298.42 2692.51 299.81 2198.96 399.37 199.70 3
MVS_030495.36 995.20 1495.85 1194.89 13889.22 1298.83 2397.88 1194.68 495.14 3697.99 5080.80 5899.81 2198.60 497.95 5798.50 50
test_fmvsm_n_192094.81 1695.60 1092.45 10195.29 12380.96 14299.29 297.21 2294.50 797.29 1198.44 2582.15 5299.78 2898.56 597.68 6596.61 159
fmvsm_s_conf0.5_n93.69 3394.13 2992.34 10694.56 14582.01 11199.07 1397.13 2692.09 2396.25 2398.53 2176.47 12099.80 2598.39 694.71 11795.22 195
patch_mono-295.14 1296.08 792.33 10898.44 4377.84 23398.43 3497.21 2292.58 1997.68 897.65 7486.88 2699.83 1698.25 797.60 6799.33 17
test_fmvsmconf_n93.99 3094.36 2592.86 8592.82 20181.12 13699.26 396.37 11093.47 1395.16 3398.21 3479.00 7899.64 5398.21 896.73 9297.83 97
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 996.78 4988.72 6497.79 498.91 288.48 1799.82 1898.15 998.97 1799.74 1
IU-MVS99.03 1585.34 4996.86 4592.05 2698.74 198.15 998.97 1799.42 13
test_241102_TWO96.78 4988.72 6497.70 698.91 287.86 2199.82 1898.15 999.00 1599.47 9
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
test_fmvsmconf0.1_n93.08 4293.22 4392.65 9488.45 29480.81 14699.00 1995.11 18493.21 1594.00 5497.91 5876.84 11399.59 5897.91 1496.55 9597.54 117
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1496.46 9688.75 6296.69 1598.76 1287.69 2299.76 3097.90 1598.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1496.77 5599.84 1297.90 1598.85 2199.45 10
fmvsm_s_conf0.5_n_a93.34 3893.71 3292.22 11593.38 18481.71 12698.86 2296.98 3491.64 2796.85 1398.55 1875.58 13899.77 2997.88 1793.68 13195.18 196
fmvsm_s_conf0.1_n92.93 4593.16 4492.24 11390.52 26281.92 11598.42 3596.24 11891.17 3296.02 2798.35 2975.34 14999.74 3797.84 1894.58 11995.05 197
DeepPCF-MVS89.82 194.61 1996.17 589.91 19297.09 9070.21 32498.99 2096.69 6795.57 295.08 3899.23 186.40 3099.87 897.84 1898.66 3199.65 6
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7096.74 6086.11 11596.54 2198.89 688.39 1999.74 3797.67 2099.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1497.12 2894.66 596.79 1498.78 986.42 2999.95 397.59 2199.18 799.00 27
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4796.77 5588.38 7197.70 698.77 1092.06 399.84 1297.47 2299.37 199.70 3
test_0728_THIRD88.38 7196.69 1598.76 1289.64 1399.76 3097.47 2298.84 2399.38 14
APDe-MVScopyleft94.56 2094.75 1793.96 4698.84 2283.40 9098.04 5596.41 10285.79 12295.00 4098.28 3284.32 3999.18 9297.35 2498.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.1_n_a92.38 6292.49 5592.06 12388.08 29881.62 12997.97 5996.01 13590.62 3996.58 1998.33 3074.09 16899.71 4397.23 2593.46 13694.86 201
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2197.10 3095.17 392.11 7698.46 2487.33 2499.97 297.21 2699.31 499.63 7
test_fmvsmconf0.01_n91.08 8990.68 8692.29 11182.43 35480.12 16697.94 6093.93 25092.07 2491.97 7797.60 7767.56 21899.53 6697.09 2795.56 11097.21 138
CANet94.89 1494.64 1995.63 1397.55 7588.12 1699.06 1496.39 10694.07 1095.34 3297.80 6576.83 11599.87 897.08 2897.64 6698.89 30
test_fmvsmvis_n_192092.12 6592.10 6592.17 11890.87 25581.04 13898.34 3893.90 25492.71 1887.24 14197.90 5974.83 15699.72 4196.96 2996.20 9895.76 181
dcpmvs_293.10 4193.46 3992.02 12697.77 6579.73 17794.82 24493.86 25786.91 10591.33 8896.76 11585.20 3298.06 14696.90 3097.60 6798.27 66
PS-MVSNAJ94.17 2693.52 3796.10 995.65 11392.35 298.21 4295.79 14992.42 2196.24 2498.18 3671.04 20299.17 9396.77 3197.39 7596.79 152
test_vis1_n_192089.95 11190.59 8788.03 23192.36 21168.98 33399.12 994.34 23093.86 1193.64 5897.01 10551.54 32199.59 5896.76 3296.71 9395.53 186
xiu_mvs_v2_base93.92 3193.26 4195.91 1095.07 13192.02 698.19 4395.68 15592.06 2596.01 2898.14 4070.83 20598.96 10796.74 3396.57 9496.76 155
TSAR-MVS + GP.94.35 2294.50 2093.89 4797.38 8483.04 9798.10 4995.29 17991.57 2893.81 5597.45 8386.64 2799.43 7496.28 3494.01 12699.20 22
SD-MVS94.84 1595.02 1694.29 3697.87 6484.61 6997.76 7296.19 12489.59 5496.66 1798.17 3984.33 3699.60 5796.09 3598.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS95.62 796.54 192.86 8598.31 4880.10 16797.42 10096.78 4992.20 2297.11 1298.29 3193.46 199.10 9996.01 3699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test9_res96.00 3799.03 1398.31 62
9.1494.26 2798.10 5798.14 4496.52 8984.74 14594.83 4498.80 782.80 5099.37 7895.95 3898.42 40
train_agg94.28 2394.45 2293.74 5198.64 3183.71 8297.82 6696.65 7284.50 15395.16 3398.09 4384.33 3699.36 7995.91 3998.96 1998.16 71
SMA-MVScopyleft94.70 1894.68 1894.76 2698.02 5985.94 3997.47 9396.77 5585.32 13097.92 398.70 1583.09 4799.84 1295.79 4099.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETV-MVS92.72 5292.87 4792.28 11294.54 14781.89 11797.98 5795.21 18289.77 5393.11 6496.83 11177.23 10997.50 17595.74 4195.38 11197.44 126
test_vis1_n85.60 19485.70 17385.33 28584.79 33864.98 34796.83 14591.61 31687.36 9591.00 9594.84 16536.14 36797.18 19495.66 4293.03 14193.82 221
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3098.64 1785.07 3399.91 495.61 4399.10 999.00 27
test_cas_vis1_n_192089.90 11290.02 10289.54 20090.14 27174.63 28398.71 2594.43 22593.04 1792.40 7096.35 12353.41 31799.08 10195.59 4496.16 9994.90 199
TSAR-MVS + MP.94.79 1795.17 1593.64 5597.66 6984.10 7695.85 20596.42 10191.26 3197.49 1096.80 11486.50 2898.49 12995.54 4599.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZD-MVS99.09 883.22 9496.60 8182.88 19793.61 5998.06 4882.93 4899.14 9595.51 4698.49 37
SF-MVS94.17 2694.05 3094.55 3197.56 7485.95 3797.73 7496.43 10084.02 16795.07 3998.74 1482.93 4899.38 7695.42 4798.51 3498.32 60
test_fmvs187.79 16088.52 12785.62 28192.98 19864.31 34997.88 6392.42 30387.95 8092.24 7395.82 13347.94 33698.44 13595.31 4894.09 12394.09 216
test_prior298.37 3786.08 11794.57 4798.02 4983.14 4695.05 4998.79 26
test_fmvs1_n86.34 18186.72 16585.17 28887.54 30663.64 35496.91 14192.37 30587.49 9191.33 8895.58 14240.81 36198.46 13295.00 5093.49 13493.41 230
SteuartSystems-ACMMP94.13 2894.44 2393.20 7395.41 11981.35 13399.02 1896.59 8289.50 5594.18 5298.36 2883.68 4499.45 7394.77 5198.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 6896.93 4092.45 2095.69 2998.50 2285.38 3199.85 1094.75 5299.18 798.65 43
PHI-MVS93.59 3593.63 3493.48 6598.05 5881.76 12398.64 2997.13 2682.60 20494.09 5398.49 2380.35 6299.85 1094.74 5398.62 3298.83 32
APD-MVScopyleft93.61 3493.59 3593.69 5498.76 2483.26 9397.21 10996.09 12982.41 20894.65 4698.21 3481.96 5498.81 11794.65 5498.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS93.87 3293.58 3694.75 2793.00 19488.08 1799.15 795.50 16491.03 3594.90 4197.66 7078.84 8197.56 16794.64 5597.46 7098.62 45
agg_prior294.30 5699.00 1598.57 46
PVSNet_BlendedMVS90.05 10989.96 10490.33 17997.47 7683.86 7998.02 5696.73 6187.98 7989.53 11489.61 25276.42 12299.57 6294.29 5779.59 24987.57 317
PVSNet_Blended93.13 3992.98 4593.57 5997.47 7683.86 7999.32 196.73 6191.02 3689.53 11496.21 12576.42 12299.57 6294.29 5795.81 10897.29 135
CS-MVS-test92.98 4393.67 3390.90 16296.52 9476.87 25298.68 2694.73 20490.36 4694.84 4397.89 6077.94 9497.15 19894.28 5997.80 6298.70 41
MSLP-MVS++94.28 2394.39 2493.97 4598.30 4984.06 7798.64 2996.93 4090.71 3893.08 6598.70 1579.98 6899.21 8694.12 6099.07 1198.63 44
CHOSEN 280x42091.71 7491.85 6791.29 14994.94 13582.69 10087.89 33596.17 12585.94 11987.27 14094.31 17490.27 995.65 26794.04 6195.86 10695.53 186
CS-MVS92.73 5093.48 3890.48 17496.27 9775.93 27198.55 3294.93 19189.32 5694.54 4897.67 6978.91 8097.02 20293.80 6297.32 7798.49 51
EC-MVSNet91.73 7192.11 6490.58 17193.54 17677.77 23698.07 5294.40 22787.44 9292.99 6797.11 10174.59 16296.87 21293.75 6397.08 8197.11 141
SR-MVS92.16 6492.27 5991.83 13498.37 4578.41 21196.67 15895.76 15082.19 21291.97 7798.07 4776.44 12198.64 12193.71 6497.27 7898.45 54
MVS_111021_HR93.41 3793.39 4093.47 6797.34 8582.83 9997.56 8698.27 689.16 5989.71 10997.14 9879.77 7099.56 6493.65 6597.94 5898.02 79
diffmvspermissive91.17 8790.74 8592.44 10393.11 19382.50 10596.25 18393.62 27287.79 8490.40 10395.93 13073.44 17797.42 17993.62 6692.55 14697.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP93.46 3693.23 4294.17 4197.16 8884.28 7496.82 14796.65 7286.24 11394.27 5097.99 5077.94 9499.83 1693.39 6798.57 3398.39 57
VNet92.11 6691.22 7794.79 2596.91 9186.98 2797.91 6197.96 1086.38 11293.65 5795.74 13470.16 21098.95 10993.39 6788.87 17498.43 55
canonicalmvs92.27 6391.22 7795.41 1695.80 11088.31 1497.09 12794.64 21288.49 6992.99 6797.31 9072.68 18398.57 12593.38 6988.58 17799.36 16
jason92.73 5092.23 6194.21 4090.50 26387.30 2698.65 2895.09 18590.61 4092.76 6997.13 9975.28 15097.30 18793.32 7096.75 9198.02 79
jason: jason.
MP-MVS-pluss92.58 5892.35 5793.29 6997.30 8682.53 10396.44 17096.04 13484.68 14889.12 11898.37 2777.48 10399.74 3793.31 7198.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
alignmvs92.97 4492.26 6095.12 1995.54 11687.77 2098.67 2796.38 10788.04 7893.01 6697.45 8379.20 7698.60 12393.25 7288.76 17598.99 29
h-mvs3389.30 12388.95 12190.36 17895.07 13176.04 26596.96 13797.11 2990.39 4492.22 7495.10 15874.70 15898.86 11493.14 7365.89 34196.16 172
hse-mvs288.22 15288.21 13188.25 22593.54 17673.41 29195.41 22195.89 14390.39 4492.22 7494.22 17774.70 15896.66 22393.14 7364.37 34694.69 209
MVS_111021_LR91.60 7791.64 7391.47 14595.74 11178.79 20296.15 18996.77 5588.49 6988.64 12597.07 10372.33 18799.19 9193.13 7596.48 9696.43 164
VDD-MVS88.28 15087.02 16192.06 12395.09 12980.18 16597.55 8794.45 22483.09 19089.10 11995.92 13247.97 33598.49 12993.08 7686.91 19097.52 122
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8497.08 10283.32 4599.69 4792.83 7798.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
xiu_mvs_v1_base_debu90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base_debi90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
MTAPA92.45 6092.31 5892.86 8597.90 6180.85 14592.88 29196.33 11287.92 8190.20 10598.18 3676.71 11899.76 3092.57 8198.09 5197.96 89
DeepC-MVS_fast89.06 294.48 2194.30 2695.02 2098.86 2185.68 4498.06 5396.64 7593.64 1291.74 8298.54 1980.17 6799.90 592.28 8298.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test187.58 16488.22 13085.67 27989.78 27567.18 34095.25 22787.93 35383.96 17088.79 12297.06 10472.52 18494.53 31092.21 8386.45 19495.30 193
MP-MVScopyleft92.61 5792.67 5192.42 10498.13 5679.73 17797.33 10596.20 12285.63 12490.53 10097.66 7078.14 9299.70 4692.12 8498.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize91.23 8691.35 7690.89 16397.89 6276.35 26196.30 18095.52 16379.82 25491.03 9497.88 6174.70 15898.54 12692.11 8596.89 8597.77 102
SR-MVS-dyc-post91.29 8491.45 7590.80 16597.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6275.76 13498.61 12291.99 8696.79 8997.75 103
RE-MVS-def91.18 8097.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6273.36 17891.99 8696.79 8997.75 103
casdiffmvs_mvgpermissive91.13 8890.45 9193.17 7492.99 19783.58 8697.46 9594.56 21787.69 8787.19 14294.98 16374.50 16397.60 16491.88 8892.79 14398.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS86.58 391.53 7891.06 8192.94 8394.52 14881.89 11795.95 19795.98 13790.76 3783.76 17796.76 11573.24 17999.71 4391.67 8996.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet94.06 2994.15 2893.76 5097.27 8784.35 7298.29 3997.64 1594.57 695.36 3196.88 10979.96 6999.12 9891.30 9096.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+90.70 9789.90 10793.09 7793.61 17383.48 8895.20 23092.79 29983.22 18691.82 8095.70 13671.82 19397.48 17791.25 9193.67 13298.32 60
CP-MVS92.54 5992.60 5392.34 10698.50 4079.90 17098.40 3696.40 10484.75 14490.48 10298.09 4377.40 10499.21 8691.15 9298.23 5097.92 90
HFP-MVS92.89 4692.86 4892.98 8198.71 2581.12 13697.58 8496.70 6585.20 13591.75 8197.97 5578.47 8699.71 4390.95 9398.41 4198.12 75
ACMMPR92.69 5492.67 5192.75 8998.66 2880.57 15297.58 8496.69 6785.20 13591.57 8397.92 5677.01 11099.67 5190.95 9398.41 4198.00 84
HPM-MVScopyleft91.62 7691.53 7491.89 13097.88 6379.22 18996.99 13195.73 15382.07 21489.50 11697.19 9775.59 13798.93 11290.91 9597.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvspermissive90.95 9390.39 9292.63 9692.82 20182.53 10396.83 14594.47 22287.69 8788.47 12695.56 14374.04 16997.54 17190.90 9692.74 14497.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R92.72 5292.70 5092.79 8898.68 2680.53 15697.53 8896.51 9085.22 13391.94 7997.98 5377.26 10599.67 5190.83 9798.37 4498.18 69
EIA-MVS91.73 7192.05 6690.78 16794.52 14876.40 26098.06 5395.34 17789.19 5888.90 12197.28 9477.56 10197.73 15990.77 9896.86 8898.20 68
CSCG92.02 6791.65 7293.12 7598.53 3680.59 15197.47 9397.18 2577.06 29684.64 16697.98 5383.98 4199.52 6790.72 9997.33 7699.23 21
ET-MVSNet_ETH3D90.01 11089.03 11792.95 8294.38 15386.77 3098.14 4496.31 11489.30 5763.33 34796.72 11890.09 1193.63 32690.70 10082.29 23398.46 53
CLD-MVS87.97 15787.48 14989.44 20192.16 22480.54 15598.14 4494.92 19291.41 2979.43 22795.40 14662.34 25197.27 19090.60 10182.90 22590.50 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZNCC-MVS92.75 4892.60 5393.23 7298.24 5181.82 12197.63 8096.50 9285.00 14191.05 9397.74 6778.38 8799.80 2590.48 10298.34 4698.07 77
XVS92.69 5492.71 4992.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8597.83 6477.24 10799.59 5890.46 10398.07 5298.02 79
X-MVStestdata86.26 18384.14 20292.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8520.73 39677.24 10799.59 5890.46 10398.07 5298.02 79
iter_conf0590.14 10889.79 10991.17 15495.85 10986.93 2897.68 7888.67 35189.93 5081.73 20492.80 20290.37 896.03 24090.44 10580.65 24290.56 246
baseline90.76 9690.10 10092.74 9092.90 20082.56 10294.60 24894.56 21787.69 8789.06 12095.67 13873.76 17297.51 17490.43 10692.23 15298.16 71
test_yl91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
DCV-MVSNet91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12597.60 7181.17 13596.61 15996.87 4388.20 7589.19 11797.55 8278.69 8599.14 9590.29 10990.94 16195.80 179
HY-MVS84.06 691.63 7590.37 9495.39 1796.12 10288.25 1590.22 31897.58 1688.33 7390.50 10191.96 21579.26 7499.06 10290.29 10989.07 17198.88 31
SDMVSNet87.02 16985.61 17491.24 15194.14 16083.30 9293.88 26895.98 13784.30 16079.63 22592.01 21158.23 28197.68 16090.28 11182.02 23492.75 231
PAPM92.87 4792.40 5694.30 3592.25 21987.85 1996.40 17496.38 10791.07 3488.72 12496.90 10782.11 5397.37 18490.05 11297.70 6497.67 109
mPP-MVS91.88 6991.82 6892.07 12298.38 4478.63 20597.29 10696.09 12985.12 13788.45 12797.66 7075.53 13999.68 4989.83 11398.02 5597.88 91
VDDNet86.44 17984.51 19392.22 11591.56 24081.83 12097.10 12694.64 21269.50 34587.84 13495.19 15248.01 33497.92 15489.82 11486.92 18996.89 149
GST-MVS92.43 6192.22 6293.04 7998.17 5481.64 12897.40 10296.38 10784.71 14790.90 9697.40 8877.55 10299.76 3089.75 11597.74 6397.72 105
MVS90.60 9988.64 12496.50 594.25 15690.53 893.33 28097.21 2277.59 28778.88 23197.31 9071.52 19799.69 4789.60 11698.03 5499.27 20
WTY-MVS92.65 5691.68 7195.56 1496.00 10588.90 1398.23 4197.65 1488.57 6789.82 10897.22 9679.29 7399.06 10289.57 11788.73 17698.73 39
CPTT-MVS89.72 11589.87 10889.29 20398.33 4773.30 29497.70 7695.35 17675.68 30487.40 13797.44 8670.43 20798.25 14189.56 11896.90 8496.33 169
LFMVS89.27 12487.64 14294.16 4397.16 8885.52 4797.18 11394.66 20979.17 26889.63 11296.57 12055.35 30798.22 14289.52 11989.54 16798.74 35
EI-MVSNet-UG-set91.35 8391.22 7791.73 13697.39 8280.68 14996.47 16796.83 4687.92 8188.30 13197.36 8977.84 9799.13 9789.43 12089.45 16895.37 190
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2298.79 890.17 1099.99 189.33 12199.25 699.70 3
CDPH-MVS93.12 4092.91 4693.74 5198.65 3083.88 7897.67 7996.26 11683.00 19493.22 6398.24 3381.31 5599.21 8689.12 12298.74 2998.14 73
iter_conf_final89.51 11889.21 11590.39 17695.60 11484.44 7197.22 10789.09 34489.11 6082.07 19892.80 20287.03 2596.03 24089.10 12380.89 23890.70 244
CHOSEN 1792x268891.07 9090.21 9793.64 5595.18 12783.53 8796.26 18296.13 12688.92 6184.90 16193.10 20072.86 18199.62 5688.86 12495.67 10997.79 101
PGM-MVS91.93 6891.80 6992.32 11098.27 5079.74 17695.28 22497.27 2083.83 17590.89 9797.78 6676.12 12899.56 6488.82 12597.93 6097.66 110
PVSNet_Blended_VisFu91.24 8590.77 8492.66 9395.09 12982.40 10797.77 7095.87 14688.26 7486.39 14793.94 18576.77 11699.27 8288.80 12694.00 12796.31 170
PMMVS89.46 12089.92 10688.06 22994.64 14269.57 33096.22 18494.95 19087.27 9791.37 8796.54 12165.88 23097.39 18288.54 12793.89 12897.23 136
MG-MVS94.25 2593.72 3195.85 1199.38 389.35 1197.98 5798.09 989.99 4992.34 7296.97 10681.30 5698.99 10588.54 12798.88 2099.20 22
GG-mvs-BLEND93.49 6494.94 13586.26 3381.62 36597.00 3388.32 13094.30 17591.23 596.21 23688.49 12997.43 7398.00 84
nrg03086.79 17585.43 17790.87 16488.76 28885.34 4997.06 12994.33 23184.31 15880.45 21591.98 21472.36 18696.36 23088.48 13071.13 29690.93 243
旧先验296.97 13674.06 31796.10 2597.76 15888.38 131
ACMMPcopyleft90.39 10389.97 10391.64 13997.58 7378.21 22096.78 15096.72 6384.73 14684.72 16497.23 9571.22 19999.63 5588.37 13292.41 14997.08 143
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CostFormer89.08 12688.39 12991.15 15593.13 19179.15 19288.61 32996.11 12883.14 18889.58 11386.93 28983.83 4396.87 21288.22 13385.92 20197.42 127
PAPR92.74 4992.17 6394.45 3298.89 2084.87 6697.20 11196.20 12287.73 8688.40 12898.12 4178.71 8499.76 3087.99 13496.28 9798.74 35
test_fmvs279.59 28079.90 26778.67 34082.86 35355.82 37595.20 23089.55 33881.09 22480.12 22189.80 24934.31 37293.51 32887.82 13578.36 26486.69 330
test_vis1_rt73.96 31672.40 31978.64 34183.91 34861.16 36495.63 21368.18 39176.32 29960.09 36274.77 36529.01 38097.54 17187.74 13675.94 27277.22 375
sss90.87 9589.96 10493.60 5894.15 15983.84 8197.14 12098.13 785.93 12089.68 11096.09 12871.67 19499.30 8187.69 13789.16 17097.66 110
BP-MVS87.67 138
HQP-MVS87.91 15987.55 14788.98 20992.08 22878.48 20797.63 8094.80 20090.52 4182.30 19194.56 17065.40 23497.32 18587.67 13883.01 22291.13 239
EPP-MVSNet89.76 11489.72 11089.87 19393.78 16976.02 26897.22 10796.51 9079.35 26285.11 15795.01 16184.82 3497.10 20087.46 14088.21 18296.50 162
baseline290.39 10390.21 9790.93 16090.86 25680.99 14095.20 23097.41 1786.03 11880.07 22294.61 16990.58 697.47 17887.29 14189.86 16694.35 211
HQP_MVS87.50 16587.09 15988.74 21491.86 23777.96 22797.18 11394.69 20589.89 5181.33 20594.15 18064.77 24097.30 18787.08 14282.82 22690.96 241
plane_prior594.69 20597.30 18787.08 14282.82 22690.96 241
HyFIR lowres test89.36 12188.60 12591.63 14194.91 13780.76 14895.60 21495.53 16182.56 20584.03 17091.24 22778.03 9396.81 21687.07 14488.41 18097.32 132
HPM-MVS_fast90.38 10590.17 9991.03 15897.61 7077.35 24597.15 11995.48 16579.51 26088.79 12296.90 10771.64 19698.81 11787.01 14597.44 7296.94 145
mvsmamba85.17 20184.54 19287.05 25687.94 30075.11 27996.22 18487.79 35586.91 10578.55 23391.77 22064.93 23995.91 25186.94 14679.80 24490.12 255
cascas86.50 17884.48 19592.55 9992.64 20785.95 3797.04 13095.07 18775.32 30680.50 21391.02 23054.33 31497.98 14886.79 14787.62 18593.71 223
PVSNet_077.72 1581.70 25878.95 27589.94 19190.77 25976.72 25695.96 19696.95 3885.01 14070.24 31788.53 26552.32 31898.20 14386.68 14844.08 38294.89 200
gg-mvs-nofinetune85.48 19782.90 22093.24 7194.51 15185.82 4179.22 36996.97 3661.19 36787.33 13953.01 38590.58 696.07 23986.07 14997.23 7997.81 100
gm-plane-assit92.27 21679.64 18084.47 15595.15 15597.93 14985.81 150
DP-MVS Recon91.72 7390.85 8294.34 3499.50 185.00 6398.51 3395.96 13980.57 23588.08 13397.63 7676.84 11399.89 785.67 15194.88 11498.13 74
XVG-OURS-SEG-HR85.74 19285.16 18487.49 24690.22 26771.45 31791.29 31094.09 24581.37 22183.90 17595.22 14960.30 26697.53 17385.58 15284.42 21393.50 226
ab-mvs87.08 16884.94 18893.48 6593.34 18583.67 8488.82 32695.70 15481.18 22384.55 16790.14 24762.72 24998.94 11185.49 15382.54 23097.85 95
MVSTER89.25 12588.92 12290.24 18195.98 10684.66 6896.79 14995.36 17487.19 10180.33 21790.61 23890.02 1295.97 24585.38 15478.64 25890.09 258
OMC-MVS88.80 13588.16 13390.72 16895.30 12277.92 23094.81 24594.51 21986.80 10884.97 16096.85 11067.53 21998.60 12385.08 15587.62 18595.63 183
mvs_anonymous88.68 13787.62 14491.86 13194.80 14081.69 12793.53 27694.92 19282.03 21578.87 23290.43 24175.77 13395.34 28185.04 15693.16 14098.55 49
VPA-MVSNet85.32 19883.83 20489.77 19890.25 26682.63 10196.36 17697.07 3183.03 19381.21 20789.02 25761.58 25996.31 23285.02 15770.95 29890.36 249
LCM-MVSNet-Re83.75 22483.54 21184.39 30393.54 17664.14 35192.51 29484.03 37083.90 17366.14 33686.59 29467.36 22192.68 33384.89 15892.87 14296.35 166
ECVR-MVScopyleft88.35 14887.25 15491.65 13893.54 17679.40 18496.56 16390.78 33086.78 10985.57 15495.25 14757.25 29497.56 16784.73 15994.80 11597.98 86
IB-MVS85.34 488.67 13887.14 15893.26 7093.12 19284.32 7398.76 2497.27 2087.19 10179.36 22890.45 24083.92 4298.53 12784.41 16069.79 30996.93 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU90.98 9190.04 10193.83 4894.76 14186.23 3496.32 17993.12 29493.11 1693.71 5696.82 11363.08 24899.48 7184.29 16195.12 11395.77 180
AdaColmapbinary88.81 13487.61 14592.39 10599.33 479.95 16896.70 15795.58 15977.51 28883.05 18596.69 11961.90 25899.72 4184.29 16193.47 13597.50 123
test250690.96 9290.39 9292.65 9493.54 17682.46 10696.37 17597.35 1886.78 10987.55 13695.25 14777.83 9897.50 17584.07 16394.80 11597.98 86
ACMP81.66 1184.00 21983.22 21686.33 26591.53 24372.95 30195.91 20193.79 26383.70 18073.79 28692.22 20954.31 31596.89 21083.98 16479.74 24789.16 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS83.88 22183.27 21585.71 27787.53 30772.12 30695.35 22394.33 23183.81 17675.86 27091.28 22660.55 26495.09 29783.93 16576.76 27089.90 263
test111188.11 15387.04 16091.35 14693.15 18978.79 20296.57 16190.78 33086.88 10785.04 15895.20 15157.23 29597.39 18283.88 16694.59 11897.87 93
OPM-MVS85.84 18985.10 18688.06 22988.34 29577.83 23495.72 20894.20 23887.89 8380.45 21594.05 18258.57 27897.26 19183.88 16682.76 22889.09 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpmrst88.36 14787.38 15291.31 14794.36 15479.92 16987.32 33995.26 18185.32 13088.34 12986.13 30580.60 6196.70 22083.78 16885.34 20997.30 134
MVSFormer91.36 8290.57 8893.73 5393.00 19488.08 1794.80 24694.48 22080.74 23194.90 4197.13 9978.84 8195.10 29583.77 16997.46 7098.02 79
test_djsdf83.00 23982.45 22884.64 29684.07 34669.78 32794.80 24694.48 22080.74 23175.41 27787.70 27661.32 26295.10 29583.77 16979.76 24589.04 283
LPG-MVS_test84.20 21783.49 21286.33 26590.88 25373.06 29895.28 22494.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
LGP-MVS_train86.33 26590.88 25373.06 29894.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
XVG-OURS85.18 20084.38 19787.59 24190.42 26571.73 31491.06 31394.07 24682.00 21683.29 18195.08 15956.42 30197.55 16983.70 17383.42 21893.49 227
MAR-MVS90.63 9890.22 9691.86 13198.47 4278.20 22197.18 11396.61 7883.87 17488.18 13298.18 3668.71 21499.75 3583.66 17497.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu84.61 21084.90 19083.72 31091.96 23463.14 35794.95 24193.34 28585.57 12579.79 22387.12 28661.99 25695.61 27183.55 17585.83 20392.41 235
AUN-MVS86.25 18485.57 17588.26 22493.57 17573.38 29295.45 21995.88 14483.94 17185.47 15594.21 17873.70 17596.67 22283.54 17664.41 34594.73 208
testdata90.13 18495.92 10774.17 28896.49 9573.49 32294.82 4597.99 5078.80 8397.93 14983.53 17797.52 6998.29 64
131488.94 12987.20 15594.17 4193.21 18685.73 4293.33 28096.64 7582.89 19675.98 26796.36 12266.83 22699.39 7583.52 17896.02 10497.39 130
CDS-MVSNet89.50 11988.96 12091.14 15691.94 23680.93 14397.09 12795.81 14884.26 16384.72 16494.20 17980.31 6395.64 26883.37 17988.96 17396.85 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM_NR91.46 7990.82 8393.37 6898.50 4081.81 12295.03 24096.13 12684.65 14986.10 15197.65 7479.24 7599.75 3583.20 18096.88 8698.56 47
PS-MVSNAJss84.91 20584.30 19886.74 25985.89 32574.40 28794.95 24194.16 24183.93 17276.45 25790.11 24871.04 20295.77 25883.16 18179.02 25590.06 260
MVS_Test90.29 10689.18 11693.62 5795.23 12484.93 6494.41 25194.66 20984.31 15890.37 10491.02 23075.13 15297.82 15683.11 18294.42 12198.12 75
VPNet84.69 20882.92 21990.01 18689.01 28783.45 8996.71 15595.46 16785.71 12379.65 22492.18 21056.66 29996.01 24483.05 18367.84 32990.56 246
3Dnovator+82.88 889.63 11787.85 13794.99 2194.49 15286.76 3197.84 6595.74 15286.10 11675.47 27696.02 12965.00 23899.51 6982.91 18497.07 8298.72 40
TAMVS88.48 14387.79 13990.56 17291.09 25079.18 19096.45 16995.88 14483.64 18183.12 18393.33 19575.94 13195.74 26382.40 18588.27 18196.75 156
baseline188.85 13387.49 14892.93 8495.21 12686.85 2995.47 21894.61 21487.29 9683.11 18494.99 16280.70 6096.89 21082.28 18673.72 28395.05 197
jajsoiax82.12 25381.15 24785.03 29084.19 34470.70 32094.22 26193.95 24983.07 19173.48 28889.75 25049.66 33095.37 28082.24 18779.76 24589.02 284
mvs_tets81.74 25780.71 25384.84 29184.22 34370.29 32393.91 26793.78 26482.77 20073.37 29189.46 25347.36 34095.31 28481.99 18879.55 25188.92 290
test_fmvs369.56 33369.19 33370.67 35669.01 38147.05 38290.87 31486.81 35971.31 33866.79 33277.15 36016.40 38783.17 37981.84 18962.51 35381.79 369
3Dnovator82.32 1089.33 12287.64 14294.42 3393.73 17285.70 4397.73 7496.75 5986.73 11176.21 26495.93 13062.17 25299.68 4981.67 19097.81 6197.88 91
TESTMET0.1,189.83 11389.34 11491.31 14792.54 20980.19 16497.11 12396.57 8486.15 11486.85 14691.83 21979.32 7296.95 20681.30 19192.35 15096.77 154
API-MVS90.18 10788.97 11993.80 4998.66 2882.95 9897.50 9295.63 15875.16 30886.31 14897.69 6872.49 18599.90 581.26 19296.07 10298.56 47
bld_raw_dy_0_6482.13 25280.76 25186.24 27085.78 32775.03 28094.40 25482.62 37583.12 18976.46 25690.96 23353.83 31694.55 30881.04 19378.60 26189.14 278
test-LLR88.48 14387.98 13589.98 18892.26 21777.23 24797.11 12395.96 13983.76 17886.30 14991.38 22372.30 18896.78 21880.82 19491.92 15495.94 176
test-mter88.95 12888.60 12589.98 18892.26 21777.23 24797.11 12395.96 13985.32 13086.30 14991.38 22376.37 12496.78 21880.82 19491.92 15495.94 176
miper_enhance_ethall85.95 18885.20 18188.19 22894.85 13979.76 17396.00 19494.06 24782.98 19577.74 24188.76 26079.42 7195.46 27780.58 19672.42 29089.36 272
thisisatest051590.95 9390.26 9593.01 8094.03 16784.27 7597.91 6196.67 6983.18 18786.87 14595.51 14488.66 1697.85 15580.46 19789.01 17296.92 148
114514_t88.79 13687.57 14692.45 10198.21 5381.74 12496.99 13195.45 16875.16 30882.48 18895.69 13768.59 21598.50 12880.33 19895.18 11297.10 142
PVSNet82.34 989.02 12787.79 13992.71 9295.49 11781.50 13197.70 7697.29 1987.76 8585.47 15595.12 15756.90 29698.90 11380.33 19894.02 12597.71 107
FA-MVS(test-final)87.71 16286.23 16992.17 11894.19 15880.55 15387.16 34196.07 13282.12 21385.98 15288.35 26772.04 19298.49 12980.26 20089.87 16597.48 125
tpm287.35 16786.26 16890.62 17092.93 19978.67 20488.06 33495.99 13679.33 26387.40 13786.43 30080.28 6496.40 22880.23 20185.73 20596.79 152
BH-w/o88.24 15187.47 15090.54 17395.03 13478.54 20697.41 10193.82 25984.08 16578.23 23794.51 17269.34 21397.21 19280.21 20294.58 11995.87 178
UGNet87.73 16186.55 16791.27 15095.16 12879.11 19396.35 17796.23 11988.14 7687.83 13590.48 23950.65 32499.09 10080.13 20394.03 12495.60 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验96.87 14396.78 4977.39 28999.52 6779.95 20498.43 55
cl2285.11 20284.17 20087.92 23295.06 13378.82 19995.51 21694.22 23779.74 25676.77 25187.92 27475.96 13095.68 26479.93 20572.42 29089.27 274
原ACMM191.22 15397.77 6578.10 22396.61 7881.05 22591.28 9097.42 8777.92 9698.98 10679.85 20698.51 3496.59 160
FIs86.73 17786.10 17088.61 21690.05 27280.21 16396.14 19096.95 3885.56 12778.37 23692.30 20876.73 11795.28 28579.51 20779.27 25290.35 250
Anonymous20240521184.41 21481.93 23591.85 13396.78 9378.41 21197.44 9691.34 32070.29 34184.06 16994.26 17641.09 35998.96 10779.46 20882.65 22998.17 70
anonymousdsp80.98 26979.97 26584.01 30481.73 35670.44 32292.49 29593.58 27577.10 29572.98 29786.31 30257.58 28994.90 30079.32 20978.63 26086.69 330
ACMM80.70 1383.72 22582.85 22286.31 26891.19 24772.12 30695.88 20294.29 23380.44 23977.02 24891.96 21555.24 30897.14 19979.30 21080.38 24389.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052983.15 23480.60 25590.80 16595.74 11178.27 21596.81 14894.92 19260.10 37281.89 20192.54 20645.82 34398.82 11679.25 21178.32 26595.31 192
UniMVSNet_NR-MVSNet85.49 19684.59 19188.21 22789.44 28479.36 18596.71 15596.41 10285.22 13378.11 23890.98 23276.97 11295.14 29279.14 21268.30 32390.12 255
DU-MVS84.57 21183.33 21488.28 22388.76 28879.36 18596.43 17295.41 17385.42 12878.11 23890.82 23467.61 21695.14 29279.14 21268.30 32390.33 251
XXY-MVS83.84 22282.00 23489.35 20287.13 30981.38 13295.72 20894.26 23480.15 24875.92 26990.63 23761.96 25796.52 22578.98 21473.28 28890.14 254
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 21093.89 16874.43 28696.93 14094.19 23984.39 15683.22 18295.67 13878.24 8994.70 30578.88 21594.40 12297.61 115
mvsany_test367.19 33965.34 34172.72 35563.08 38748.57 38183.12 36278.09 38272.07 33261.21 35777.11 36122.94 38287.78 36878.59 21651.88 37281.80 368
miper_ehance_all_eth84.57 21183.60 21087.50 24592.64 20778.25 21695.40 22293.47 27779.28 26676.41 25887.64 27776.53 11995.24 28778.58 21772.42 29089.01 285
UniMVSNet (Re)85.31 19984.23 19988.55 21789.75 27680.55 15396.72 15396.89 4285.42 12878.40 23588.93 25875.38 14595.52 27578.58 21768.02 32689.57 266
IS-MVSNet88.67 13888.16 13390.20 18393.61 17376.86 25396.77 15293.07 29584.02 16783.62 17895.60 14174.69 16196.24 23578.43 21993.66 13397.49 124
thisisatest053089.65 11689.02 11891.53 14393.46 18280.78 14796.52 16496.67 6981.69 21983.79 17694.90 16488.85 1597.68 16077.80 22087.49 18896.14 173
v2v48283.46 22881.86 23688.25 22586.19 31979.65 17996.34 17894.02 24881.56 22077.32 24488.23 26965.62 23196.03 24077.77 22169.72 31189.09 280
V4283.04 23781.53 24187.57 24386.27 31879.09 19595.87 20394.11 24480.35 24377.22 24686.79 29265.32 23696.02 24377.74 22270.14 30387.61 316
GA-MVS85.79 19184.04 20391.02 15989.47 28380.27 16196.90 14294.84 19885.57 12580.88 20989.08 25556.56 30096.47 22777.72 22385.35 20896.34 167
PLCcopyleft83.97 788.00 15687.38 15289.83 19598.02 5976.46 25897.16 11794.43 22579.26 26781.98 19996.28 12469.36 21299.27 8277.71 22492.25 15193.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
sd_testset84.62 20983.11 21789.17 20494.14 16077.78 23591.54 30994.38 22884.30 16079.63 22592.01 21152.28 31996.98 20477.67 22582.02 23492.75 231
1112_ss88.60 14187.47 15092.00 12793.21 18680.97 14196.47 16792.46 30283.64 18180.86 21097.30 9280.24 6597.62 16377.60 22685.49 20697.40 129
Vis-MVSNetpermissive88.67 13887.82 13891.24 15192.68 20378.82 19996.95 13893.85 25887.55 9087.07 14495.13 15663.43 24697.21 19277.58 22796.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
c3_l83.80 22382.65 22587.25 25292.10 22777.74 23895.25 22793.04 29678.58 27776.01 26687.21 28575.25 15195.11 29477.54 22868.89 31788.91 291
Test_1112_low_res88.03 15586.73 16491.94 12993.15 18980.88 14496.44 17092.41 30483.59 18380.74 21291.16 22880.18 6697.59 16577.48 22985.40 20797.36 131
tt080581.20 26679.06 27487.61 23986.50 31372.97 30093.66 27195.48 16574.11 31576.23 26391.99 21341.36 35897.40 18177.44 23074.78 27992.45 234
新几何193.12 7597.44 7881.60 13096.71 6474.54 31391.22 9197.57 7879.13 7799.51 6977.40 23198.46 3898.26 67
FC-MVSNet-test85.96 18785.39 17887.66 23889.38 28578.02 22495.65 21296.87 4385.12 13777.34 24391.94 21776.28 12694.74 30477.09 23278.82 25690.21 253
Patchmatch-RL test76.65 30574.01 31284.55 29877.37 37064.23 35078.49 37382.84 37478.48 27864.63 34273.40 37076.05 12991.70 34776.99 23357.84 36097.72 105
IterMVS-LS83.93 22082.80 22387.31 25091.46 24477.39 24495.66 21193.43 27980.44 23975.51 27587.26 28373.72 17395.16 29176.99 23370.72 30089.39 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet85.80 19085.20 18187.59 24191.55 24177.41 24395.13 23495.36 17480.43 24180.33 21794.71 16773.72 17395.97 24576.96 23578.64 25889.39 267
eth_miper_zixun_eth83.12 23582.01 23386.47 26491.85 23974.80 28194.33 25593.18 29179.11 26975.74 27487.25 28472.71 18295.32 28376.78 23667.13 33589.27 274
Fast-Effi-MVS+87.93 15886.94 16390.92 16194.04 16579.16 19198.26 4093.72 26881.29 22283.94 17492.90 20169.83 21196.68 22176.70 23791.74 15696.93 146
CMPMVSbinary54.94 2175.71 31174.56 30679.17 33979.69 36255.98 37389.59 32093.30 28660.28 37053.85 37489.07 25647.68 33996.33 23176.55 23881.02 23785.22 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view81.74 12486.80 34380.65 23385.65 15374.26 16576.52 23996.98 144
testdata299.48 7176.45 240
D2MVS82.67 24381.55 24086.04 27387.77 30276.47 25795.21 22996.58 8382.66 20370.26 31685.46 31460.39 26595.80 25776.40 24179.18 25385.83 343
UniMVSNet_ETH3D80.86 27078.75 27687.22 25386.31 31672.02 30891.95 30093.76 26773.51 32075.06 28090.16 24643.04 35295.66 26576.37 24278.55 26293.98 218
tpm85.55 19584.47 19688.80 21390.19 26875.39 27688.79 32794.69 20584.83 14383.96 17385.21 31778.22 9094.68 30676.32 24378.02 26796.34 167
BH-untuned86.95 17185.94 17189.99 18794.52 14877.46 24296.78 15093.37 28481.80 21776.62 25493.81 18966.64 22797.02 20276.06 24493.88 12995.48 188
tttt051788.57 14288.19 13289.71 19993.00 19475.99 26995.67 21096.67 6980.78 23081.82 20294.40 17388.97 1497.58 16676.05 24586.31 19595.57 185
XVG-ACMP-BASELINE79.38 28477.90 28283.81 30684.98 33767.14 34489.03 32593.18 29180.26 24772.87 29888.15 27138.55 36396.26 23376.05 24578.05 26688.02 308
UA-Net88.92 13088.48 12890.24 18194.06 16477.18 24993.04 28894.66 20987.39 9491.09 9293.89 18674.92 15598.18 14575.83 24791.43 15895.35 191
WR-MVS84.32 21582.96 21888.41 21989.38 28580.32 15896.59 16096.25 11783.97 16976.63 25390.36 24267.53 21994.86 30275.82 24870.09 30790.06 260
Baseline_NR-MVSNet81.22 26580.07 26384.68 29485.32 33475.12 27896.48 16688.80 34776.24 30277.28 24586.40 30167.61 21694.39 31375.73 24966.73 33984.54 350
dmvs_re84.10 21882.90 22087.70 23691.41 24573.28 29590.59 31693.19 28985.02 13977.96 24093.68 19057.92 28896.18 23775.50 25080.87 23993.63 224
v14882.41 24980.89 24886.99 25786.18 32076.81 25496.27 18193.82 25980.49 23875.28 27886.11 30667.32 22295.75 26075.48 25167.03 33788.42 301
pmmvs482.54 24580.79 24987.79 23486.11 32180.49 15793.55 27593.18 29177.29 29173.35 29289.40 25465.26 23795.05 29975.32 25273.61 28487.83 311
v114482.90 24081.27 24587.78 23586.29 31779.07 19696.14 19093.93 25080.05 25077.38 24286.80 29165.50 23295.93 25075.21 25370.13 30488.33 303
Fast-Effi-MVS+-dtu83.33 23082.60 22685.50 28389.55 28169.38 33196.09 19391.38 31782.30 20975.96 26891.41 22256.71 29795.58 27375.13 25484.90 21191.54 237
TR-MVS86.30 18284.93 18990.42 17594.63 14377.58 24096.57 16193.82 25980.30 24482.42 19095.16 15458.74 27797.55 16974.88 25587.82 18496.13 174
NR-MVSNet83.35 22981.52 24288.84 21188.76 28881.31 13494.45 25095.16 18384.65 14967.81 32590.82 23470.36 20894.87 30174.75 25666.89 33890.33 251
CNLPA86.96 17085.37 17991.72 13797.59 7279.34 18797.21 10991.05 32574.22 31478.90 23096.75 11767.21 22398.95 10974.68 25790.77 16296.88 150
cl____83.27 23182.12 23186.74 25992.20 22075.95 27095.11 23693.27 28778.44 28074.82 28187.02 28874.19 16695.19 28974.67 25869.32 31389.09 280
DIV-MVS_self_test83.27 23182.12 23186.74 25992.19 22175.92 27295.11 23693.26 28878.44 28074.81 28287.08 28774.19 16695.19 28974.66 25969.30 31489.11 279
TranMVSNet+NR-MVSNet83.24 23381.71 23887.83 23387.71 30378.81 20196.13 19294.82 19984.52 15276.18 26590.78 23664.07 24394.60 30774.60 26066.59 34090.09 258
Anonymous2023121179.72 27977.19 28787.33 24895.59 11577.16 25095.18 23394.18 24059.31 37572.57 30186.20 30447.89 33795.66 26574.53 26169.24 31589.18 276
CVMVSNet84.83 20685.57 17582.63 32091.55 24160.38 36595.13 23495.03 18880.60 23482.10 19794.71 16766.40 22990.19 35974.30 26290.32 16397.31 133
v14419282.43 24680.73 25287.54 24485.81 32678.22 21795.98 19593.78 26479.09 27077.11 24786.49 29664.66 24295.91 25174.20 26369.42 31288.49 297
pmmvs581.34 26379.54 26986.73 26285.02 33676.91 25196.22 18491.65 31477.65 28673.55 28788.61 26255.70 30594.43 31274.12 26473.35 28788.86 292
test_post185.88 35130.24 39573.77 17195.07 29873.89 265
SCA85.63 19383.64 20891.60 14292.30 21581.86 11992.88 29195.56 16084.85 14282.52 18785.12 32158.04 28395.39 27873.89 26587.58 18797.54 117
v881.88 25680.06 26487.32 24986.63 31279.04 19794.41 25193.65 27178.77 27573.19 29585.57 31166.87 22595.81 25673.84 26767.61 33187.11 325
miper_lstm_enhance81.66 26080.66 25484.67 29591.19 24771.97 31091.94 30193.19 28977.86 28472.27 30385.26 31573.46 17693.42 32973.71 26867.05 33688.61 293
GeoE86.36 18085.20 18189.83 19593.17 18876.13 26397.53 8892.11 30779.58 25980.99 20894.01 18366.60 22896.17 23873.48 26989.30 16997.20 139
v119282.31 25080.55 25687.60 24085.94 32378.47 21095.85 20593.80 26279.33 26376.97 24986.51 29563.33 24795.87 25373.11 27070.13 30488.46 299
PCF-MVS84.09 586.77 17685.00 18792.08 12192.06 23183.07 9692.14 29994.47 22279.63 25876.90 25094.78 16671.15 20099.20 9072.87 27191.05 16093.98 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192082.02 25480.23 26087.41 24785.62 32877.92 23095.79 20793.69 26978.86 27476.67 25286.44 29862.50 25095.83 25572.69 27269.77 31088.47 298
F-COLMAP84.50 21383.44 21387.67 23795.22 12572.22 30395.95 19793.78 26475.74 30376.30 26195.18 15359.50 27198.45 13372.67 27386.59 19392.35 236
IterMVS80.67 27279.16 27285.20 28789.79 27476.08 26492.97 29091.86 31080.28 24571.20 30985.14 32057.93 28791.34 34972.52 27470.74 29988.18 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 27479.10 27384.73 29389.63 28074.66 28292.98 28991.81 31280.05 25071.06 31185.18 31858.04 28391.40 34872.48 27570.70 30188.12 307
v1081.43 26279.53 27087.11 25486.38 31478.87 19894.31 25693.43 27977.88 28373.24 29485.26 31565.44 23395.75 26072.14 27667.71 33086.72 329
MVP-Stereo82.65 24481.67 23985.59 28286.10 32278.29 21493.33 28092.82 29877.75 28569.17 32387.98 27359.28 27495.76 25971.77 27796.88 8682.73 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OurMVSNet-221017-077.18 30276.06 29480.55 33283.78 35060.00 36790.35 31791.05 32577.01 29766.62 33487.92 27447.73 33894.03 31871.63 27868.44 32187.62 315
v124081.70 25879.83 26887.30 25185.50 32977.70 23995.48 21793.44 27878.46 27976.53 25586.44 29860.85 26395.84 25471.59 27970.17 30288.35 302
OpenMVScopyleft79.58 1486.09 18583.62 20993.50 6390.95 25286.71 3297.44 9695.83 14775.35 30572.64 30095.72 13557.42 29399.64 5371.41 28095.85 10794.13 215
pm-mvs180.05 27678.02 28186.15 27185.42 33075.81 27395.11 23692.69 30177.13 29370.36 31587.43 27958.44 28095.27 28671.36 28164.25 34787.36 323
GBi-Net82.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
test182.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
FMVSNet384.71 20782.71 22490.70 16994.55 14687.71 2195.92 19994.67 20881.73 21875.82 27188.08 27266.99 22494.47 31171.23 28275.38 27689.91 262
EPMVS87.47 16685.90 17292.18 11795.41 11982.26 11087.00 34296.28 11585.88 12184.23 16885.57 31175.07 15496.26 23371.14 28592.50 14798.03 78
QAPM86.88 17284.51 19393.98 4494.04 16585.89 4097.19 11296.05 13373.62 31975.12 27995.62 14062.02 25599.74 3770.88 28696.06 10396.30 171
thres20088.92 13087.65 14192.73 9196.30 9685.62 4597.85 6498.86 184.38 15784.82 16293.99 18475.12 15398.01 14770.86 28786.67 19194.56 210
PM-MVS69.32 33566.93 33776.49 34873.60 37855.84 37485.91 35079.32 38174.72 31261.09 35878.18 35721.76 38391.10 35270.86 28756.90 36282.51 362
MS-PatchMatch83.05 23681.82 23786.72 26389.64 27979.10 19494.88 24394.59 21679.70 25770.67 31389.65 25150.43 32696.82 21570.82 28995.99 10584.25 353
FE-MVS86.06 18684.15 20191.78 13594.33 15579.81 17184.58 35796.61 7876.69 29885.00 15987.38 28070.71 20698.37 13770.39 29091.70 15797.17 140
PatchMatch-RL85.00 20483.66 20789.02 20895.86 10874.55 28592.49 29593.60 27379.30 26579.29 22991.47 22158.53 27998.45 13370.22 29192.17 15394.07 217
test_f64.01 34262.13 34569.65 35763.00 38845.30 38883.66 36180.68 37861.30 36655.70 37172.62 37314.23 38984.64 37769.84 29258.11 35979.00 372
BH-RMVSNet86.84 17385.28 18091.49 14495.35 12180.26 16296.95 13892.21 30682.86 19881.77 20395.46 14559.34 27397.64 16269.79 29393.81 13096.57 161
FMVSNet282.79 24180.44 25789.83 19592.66 20485.43 4895.42 22094.35 22979.06 27174.46 28387.28 28156.38 30294.31 31469.72 29474.68 28089.76 264
thres100view90088.30 14986.95 16292.33 10896.10 10384.90 6597.14 12098.85 282.69 20283.41 17993.66 19175.43 14397.93 14969.04 29586.24 19894.17 212
tfpn200view988.48 14387.15 15692.47 10096.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19894.17 212
thres40088.42 14687.15 15692.23 11496.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19893.45 228
PatchmatchNetpermissive86.83 17485.12 18591.95 12894.12 16282.27 10986.55 34695.64 15784.59 15182.98 18684.99 32377.26 10595.96 24868.61 29891.34 15997.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet81.01 26880.08 26283.79 30787.91 30170.51 32194.29 26095.65 15680.83 22872.54 30288.84 25963.71 24492.32 33768.58 29968.36 32288.55 294
v7n79.32 28577.34 28585.28 28684.05 34772.89 30293.38 27893.87 25675.02 31070.68 31284.37 32759.58 27095.62 27067.60 30067.50 33287.32 324
PS-CasMVS80.27 27579.18 27183.52 31387.56 30569.88 32694.08 26395.29 17980.27 24672.08 30488.51 26659.22 27592.23 33967.49 30168.15 32588.45 300
RPSCF77.73 29676.63 29181.06 32988.66 29255.76 37687.77 33687.88 35464.82 35774.14 28592.79 20449.22 33196.81 21667.47 30276.88 26990.62 245
test_vis3_rt54.10 34951.04 35263.27 36658.16 38946.08 38784.17 35849.32 40156.48 38036.56 38549.48 3888.03 39791.91 34467.29 30349.87 37351.82 387
thres600view788.06 15486.70 16692.15 12096.10 10385.17 5897.14 12098.85 282.70 20183.41 17993.66 19175.43 14397.82 15667.13 30485.88 20293.45 228
tpm cat183.63 22681.38 24390.39 17693.53 18178.19 22285.56 35395.09 18570.78 33978.51 23483.28 33674.80 15797.03 20166.77 30584.05 21495.95 175
pmmvs674.65 31571.67 32183.60 31279.13 36469.94 32593.31 28390.88 32961.05 36965.83 33784.15 33043.43 34894.83 30366.62 30660.63 35686.02 340
EPNet_dtu87.65 16387.89 13686.93 25894.57 14471.37 31896.72 15396.50 9288.56 6887.12 14395.02 16075.91 13294.01 31966.62 30690.00 16495.42 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC78.65 28876.25 29385.85 27487.58 30474.60 28489.58 32190.58 33384.05 16663.13 34888.23 26940.69 36296.86 21466.57 30875.81 27486.09 339
JIA-IIPM79.00 28777.20 28684.40 30289.74 27864.06 35275.30 37995.44 16962.15 36181.90 20059.08 38378.92 7995.59 27266.51 30985.78 20493.54 225
pmmvs-eth3d73.59 31870.66 32582.38 32176.40 37473.38 29289.39 32489.43 34072.69 32960.34 36177.79 35846.43 34291.26 35166.42 31057.06 36182.51 362
MIMVSNet79.18 28675.99 29588.72 21587.37 30880.66 15079.96 36691.82 31177.38 29074.33 28481.87 34241.78 35590.74 35566.36 31183.10 22194.76 204
K. test v373.62 31771.59 32279.69 33582.98 35259.85 36890.85 31588.83 34677.13 29358.90 36382.11 34043.62 34791.72 34665.83 31254.10 36687.50 321
FMVSNet179.50 28276.54 29288.39 22088.47 29381.95 11294.30 25793.38 28173.14 32472.04 30585.66 30743.86 34693.84 32165.48 31372.53 28989.38 269
LF4IMVS72.36 32670.82 32476.95 34679.18 36356.33 37286.12 34986.11 36369.30 34663.06 34986.66 29333.03 37492.25 33865.33 31468.64 31982.28 365
UnsupCasMVSNet_eth73.25 32170.57 32681.30 32677.53 36866.33 34587.24 34093.89 25580.38 24257.90 36881.59 34342.91 35390.56 35665.18 31548.51 37687.01 327
EU-MVSNet76.92 30476.95 28976.83 34784.10 34554.73 37891.77 30492.71 30072.74 32869.57 32088.69 26158.03 28587.43 37064.91 31670.00 30888.33 303
PEN-MVS79.47 28378.26 27983.08 31686.36 31568.58 33493.85 26994.77 20379.76 25571.37 30688.55 26359.79 26792.46 33564.50 31765.40 34288.19 305
WR-MVS_H81.02 26780.09 26183.79 30788.08 29871.26 31994.46 24996.54 8780.08 24972.81 29986.82 29070.36 20892.65 33464.18 31867.50 33287.46 322
test0.0.03 182.79 24182.48 22783.74 30986.81 31172.22 30396.52 16495.03 18883.76 17873.00 29693.20 19672.30 18888.88 36264.15 31977.52 26890.12 255
MDTV_nov1_ep1383.69 20594.09 16381.01 13986.78 34496.09 12983.81 17684.75 16384.32 32874.44 16496.54 22463.88 32085.07 210
dp84.30 21682.31 22990.28 18094.24 15777.97 22686.57 34595.53 16179.94 25380.75 21185.16 31971.49 19896.39 22963.73 32183.36 21996.48 163
tmp_tt41.54 35741.93 35940.38 37620.10 40126.84 40061.93 38859.09 39714.81 39528.51 39080.58 34835.53 36948.33 39763.70 32213.11 39445.96 390
SixPastTwentyTwo76.04 30774.32 30881.22 32784.54 34061.43 36391.16 31189.30 34277.89 28264.04 34386.31 30248.23 33294.29 31563.54 32363.84 34987.93 310
CR-MVSNet83.53 22781.36 24490.06 18590.16 26979.75 17479.02 37191.12 32284.24 16482.27 19580.35 35075.45 14193.67 32563.37 32486.25 19696.75 156
lessismore_v079.98 33480.59 35958.34 37080.87 37758.49 36583.46 33543.10 35193.89 32063.11 32548.68 37587.72 312
ITE_SJBPF82.38 32187.00 31065.59 34689.55 33879.99 25269.37 32191.30 22541.60 35795.33 28262.86 32674.63 28186.24 336
ACMH+76.62 1677.47 29974.94 30185.05 28991.07 25171.58 31693.26 28490.01 33571.80 33464.76 34188.55 26341.62 35696.48 22662.35 32771.00 29787.09 326
KD-MVS_2432*160077.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
miper_refine_blended77.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
ambc76.02 35068.11 38351.43 37964.97 38789.59 33760.49 36074.49 36717.17 38692.46 33561.50 33052.85 37084.17 354
DTE-MVSNet78.37 28977.06 28882.32 32385.22 33567.17 34393.40 27793.66 27078.71 27670.53 31488.29 26859.06 27692.23 33961.38 33163.28 35187.56 318
KD-MVS_self_test70.97 33269.31 33275.95 35276.24 37655.39 37787.45 33790.94 32870.20 34262.96 35177.48 35944.01 34588.09 36461.25 33253.26 36884.37 352
FMVSNet576.46 30674.16 31083.35 31590.05 27276.17 26289.58 32189.85 33671.39 33765.29 34080.42 34950.61 32587.70 36961.05 33369.24 31586.18 337
UnsupCasMVSNet_bld68.60 33864.50 34280.92 33074.63 37767.80 33683.97 35992.94 29765.12 35654.63 37368.23 37935.97 36892.17 34160.13 33444.83 38082.78 360
tpmvs83.04 23780.77 25089.84 19495.43 11877.96 22785.59 35295.32 17875.31 30776.27 26283.70 33373.89 17097.41 18059.53 33581.93 23694.14 214
ADS-MVSNet279.57 28177.53 28485.71 27793.78 16972.13 30579.48 36786.11 36373.09 32580.14 21979.99 35262.15 25390.14 36059.49 33683.52 21694.85 202
ADS-MVSNet81.26 26478.36 27789.96 19093.78 16979.78 17279.48 36793.60 27373.09 32580.14 21979.99 35262.15 25395.24 28759.49 33683.52 21694.85 202
MSDG80.62 27377.77 28389.14 20593.43 18377.24 24691.89 30290.18 33469.86 34468.02 32491.94 21752.21 32098.84 11559.32 33883.12 22091.35 238
TransMVSNet (Re)76.94 30374.38 30784.62 29785.92 32475.25 27795.28 22489.18 34373.88 31867.22 32686.46 29759.64 26894.10 31759.24 33952.57 37184.50 351
ACMH75.40 1777.99 29274.96 30087.10 25590.67 26076.41 25993.19 28791.64 31572.47 33163.44 34687.61 27843.34 34997.16 19558.34 34073.94 28287.72 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmtry77.36 30074.59 30585.67 27989.75 27675.75 27477.85 37491.12 32260.28 37071.23 30880.35 35075.45 14193.56 32757.94 34167.34 33487.68 314
our_test_377.90 29575.37 29985.48 28485.39 33176.74 25593.63 27291.67 31373.39 32365.72 33884.65 32658.20 28293.13 33257.82 34267.87 32786.57 332
Anonymous2024052172.06 32869.91 32978.50 34277.11 37161.67 36291.62 30890.97 32765.52 35562.37 35279.05 35536.32 36690.96 35357.75 34368.52 32082.87 358
CL-MVSNet_self_test75.81 30974.14 31180.83 33178.33 36667.79 33794.22 26193.52 27677.28 29269.82 31881.54 34461.47 26189.22 36157.59 34453.51 36785.48 345
test_method56.77 34554.53 34963.49 36576.49 37240.70 39175.68 37874.24 38519.47 39348.73 37671.89 37619.31 38465.80 39357.46 34547.51 37983.97 355
AllTest75.92 30873.06 31684.47 29992.18 22267.29 33891.07 31284.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
TestCases84.47 29992.18 22267.29 33884.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
EG-PatchMatch MVS74.92 31372.02 32083.62 31183.76 35173.28 29593.62 27392.04 30968.57 34758.88 36483.80 33231.87 37695.57 27456.97 34878.67 25782.00 367
testgi74.88 31473.40 31479.32 33880.13 36161.75 36093.21 28586.64 36179.49 26166.56 33591.06 22935.51 37088.67 36356.79 34971.25 29587.56 318
LTVRE_ROB73.68 1877.99 29275.74 29784.74 29290.45 26472.02 30886.41 34791.12 32272.57 33066.63 33387.27 28254.95 31196.98 20456.29 35075.98 27185.21 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet173.53 32070.43 32782.85 31884.52 34171.73 31491.69 30691.37 31867.63 34846.79 37781.21 34655.04 31090.43 35755.93 35159.70 35886.38 334
MDA-MVSNet_test_wron73.54 31970.43 32782.86 31784.55 33971.85 31191.74 30591.32 32167.63 34846.73 37881.09 34755.11 30990.42 35855.91 35259.76 35786.31 335
TDRefinement69.20 33665.78 34079.48 33666.04 38662.21 35988.21 33186.12 36262.92 35961.03 35985.61 31033.23 37394.16 31655.82 35353.02 36982.08 366
pmmvs365.75 34162.18 34476.45 34967.12 38564.54 34888.68 32885.05 36654.77 38157.54 37073.79 36829.40 37986.21 37455.49 35447.77 37878.62 373
DSMNet-mixed73.13 32272.45 31875.19 35377.51 36946.82 38385.09 35582.01 37667.61 35269.27 32281.33 34550.89 32386.28 37354.54 35583.80 21592.46 233
LS3D82.22 25179.94 26689.06 20697.43 7974.06 29093.20 28692.05 30861.90 36273.33 29395.21 15059.35 27299.21 8654.54 35592.48 14893.90 220
MVS-HIRNet71.36 33167.00 33684.46 30190.58 26169.74 32879.15 37087.74 35646.09 38261.96 35550.50 38645.14 34495.64 26853.74 35788.11 18388.00 309
Anonymous2023120675.29 31273.64 31380.22 33380.75 35763.38 35693.36 27990.71 33273.09 32567.12 32783.70 33350.33 32790.85 35453.63 35870.10 30686.44 333
DP-MVS81.47 26178.28 27891.04 15798.14 5578.48 20795.09 23986.97 35761.14 36871.12 31092.78 20559.59 26999.38 7653.11 35986.61 19295.27 194
ppachtmachnet_test77.19 30174.22 30986.13 27285.39 33178.22 21793.98 26491.36 31971.74 33567.11 32884.87 32456.67 29893.37 33152.21 36064.59 34486.80 328
TinyColmap72.41 32568.99 33482.68 31988.11 29769.59 32988.41 33085.20 36565.55 35457.91 36784.82 32530.80 37895.94 24951.38 36168.70 31882.49 364
PatchT79.75 27876.85 29088.42 21889.55 28175.49 27577.37 37594.61 21463.07 35882.46 18973.32 37175.52 14093.41 33051.36 36284.43 21296.36 165
new-patchmatchnet68.85 33765.93 33977.61 34573.57 37963.94 35390.11 31988.73 34971.62 33655.08 37273.60 36940.84 36087.22 37251.35 36348.49 37781.67 370
COLMAP_ROBcopyleft73.24 1975.74 31073.00 31783.94 30592.38 21069.08 33291.85 30386.93 35861.48 36565.32 33990.27 24342.27 35496.93 20950.91 36475.63 27585.80 344
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0372.36 32671.15 32375.98 35177.79 36759.16 36992.40 29789.35 34174.09 31661.50 35684.32 32848.09 33385.54 37650.63 36562.15 35483.24 357
myMVS_eth3d81.93 25582.18 23081.18 32892.13 22567.18 34093.97 26594.23 23582.43 20673.39 28993.57 19376.98 11187.86 36650.53 36682.34 23188.51 295
new_pmnet66.18 34063.18 34375.18 35476.27 37561.74 36183.79 36084.66 36756.64 37951.57 37571.85 37731.29 37787.93 36549.98 36762.55 35275.86 376
TAPA-MVS81.61 1285.02 20383.67 20689.06 20696.79 9273.27 29795.92 19994.79 20274.81 31180.47 21496.83 11171.07 20198.19 14449.82 36892.57 14595.71 182
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet52.52 35048.24 35365.35 36147.63 39741.45 39072.55 38383.62 37231.75 38637.66 38457.92 3849.19 39676.76 38649.26 36944.60 38177.84 374
WAC-MVS67.18 34049.00 370
Patchmatch-test78.25 29074.72 30488.83 21291.20 24674.10 28973.91 38288.70 35059.89 37366.82 33185.12 32178.38 8794.54 30948.84 37179.58 25097.86 94
MDA-MVSNet-bldmvs71.45 33067.94 33581.98 32585.33 33368.50 33592.35 29888.76 34870.40 34042.99 38181.96 34146.57 34191.31 35048.75 37254.39 36586.11 338
tfpnnormal78.14 29175.42 29886.31 26888.33 29679.24 18894.41 25196.22 12073.51 32069.81 31985.52 31355.43 30695.75 26047.65 37367.86 32883.95 356
MIMVSNet169.44 33466.65 33877.84 34376.48 37362.84 35887.42 33888.97 34566.96 35357.75 36979.72 35432.77 37585.83 37546.32 37463.42 35084.85 349
RPMNet79.85 27775.92 29691.64 13990.16 26979.75 17479.02 37195.44 16958.43 37782.27 19572.55 37473.03 18098.41 13646.10 37586.25 19696.75 156
OpenMVS_ROBcopyleft68.52 2073.02 32369.57 33083.37 31480.54 36071.82 31293.60 27488.22 35262.37 36061.98 35483.15 33735.31 37195.47 27645.08 37675.88 27382.82 359
DeepMVS_CXcopyleft64.06 36478.53 36543.26 38968.11 39369.94 34338.55 38376.14 36318.53 38579.34 38243.72 37741.62 38569.57 379
testing380.74 27181.17 24679.44 33791.15 24963.48 35597.16 11795.76 15080.83 22871.36 30793.15 19978.22 9087.30 37143.19 37879.67 24887.55 320
N_pmnet61.30 34360.20 34664.60 36384.32 34217.00 40491.67 30710.98 40261.77 36358.45 36678.55 35649.89 32991.83 34542.27 37963.94 34884.97 348
dmvs_testset72.00 32973.36 31567.91 35883.83 34931.90 39885.30 35477.12 38382.80 19963.05 35092.46 20761.54 26082.55 38142.22 38071.89 29489.29 273
APD_test156.56 34653.58 35065.50 36067.93 38446.51 38577.24 37772.95 38638.09 38442.75 38275.17 36413.38 39082.78 38040.19 38154.53 36467.23 381
PMMVS250.90 35246.31 35564.67 36255.53 39146.67 38477.30 37671.02 38840.89 38334.16 38759.32 3829.83 39576.14 38840.09 38228.63 39071.21 377
test_040272.68 32469.54 33182.09 32488.67 29171.81 31392.72 29386.77 36061.52 36462.21 35383.91 33143.22 35093.76 32434.60 38372.23 29380.72 371
Syy-MVS77.97 29478.05 28077.74 34492.13 22556.85 37193.97 26594.23 23582.43 20673.39 28993.57 19357.95 28687.86 36632.40 38482.34 23188.51 295
FPMVS55.09 34852.93 35161.57 36755.98 39040.51 39283.11 36383.41 37337.61 38534.95 38671.95 37514.40 38876.95 38529.81 38565.16 34367.25 380
EGC-MVSNET52.46 35147.56 35467.15 35981.98 35560.11 36682.54 36472.44 3870.11 3990.70 40074.59 36625.11 38183.26 37829.04 38661.51 35558.09 384
ANet_high46.22 35341.28 36061.04 36839.91 39946.25 38670.59 38476.18 38458.87 37623.09 39248.00 38912.58 39266.54 39228.65 38713.62 39370.35 378
testf145.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
APD_test245.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
Gipumacopyleft45.11 35642.05 35854.30 37380.69 35851.30 38035.80 39183.81 37128.13 38727.94 39134.53 39111.41 39476.70 38721.45 39054.65 36334.90 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive35.65 2233.85 35929.49 36446.92 37541.86 39836.28 39550.45 39056.52 39818.75 39418.28 39337.84 3902.41 40158.41 39418.71 39120.62 39146.06 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 35835.53 36150.18 37429.72 40030.30 39959.60 38966.20 39426.06 39017.91 39449.53 3873.12 40074.09 38918.19 39249.40 37446.14 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS57.26 34456.22 34760.39 36969.29 38035.91 39686.39 34870.06 38959.84 37446.46 37972.71 37251.18 32278.11 38315.19 39334.89 38867.14 382
SSC-MVS56.01 34754.96 34859.17 37068.42 38234.13 39784.98 35669.23 39058.08 37845.36 38071.67 37850.30 32877.46 38414.28 39432.33 38965.91 383
E-PMN32.70 36032.39 36233.65 37753.35 39325.70 40174.07 38153.33 39921.08 39117.17 39533.63 39311.85 39354.84 39512.98 39514.04 39220.42 392
EMVS31.70 36131.45 36332.48 37850.72 39623.95 40274.78 38052.30 40020.36 39216.08 39631.48 39412.80 39153.60 39611.39 39613.10 39519.88 393
wuyk23d14.10 36313.89 36614.72 37955.23 39222.91 40333.83 3923.56 4034.94 3964.11 3972.28 3992.06 40219.66 39810.23 3978.74 3961.59 396
testmvs9.92 36412.94 3670.84 3810.65 4020.29 40693.78 2700.39 4040.42 3972.85 39815.84 3970.17 4040.30 4002.18 3980.21 3971.91 395
test1239.07 36511.73 3681.11 3800.50 4030.77 40589.44 3230.20 4050.34 3982.15 39910.72 3980.34 4030.32 3991.79 3990.08 3982.23 394
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k21.43 36228.57 3650.00 3820.00 4040.00 4070.00 39395.93 1420.00 4000.00 40197.66 7063.57 2450.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.92 3677.89 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40071.04 2020.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.11 36610.81 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.30 920.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
FOURS198.51 3978.01 22598.13 4796.21 12183.04 19294.39 49
test_one_060198.91 1884.56 7096.70 6588.06 7796.57 2098.77 1088.04 20
eth-test20.00 404
eth-test0.00 404
test_241102_ONE99.03 1585.03 6196.78 4988.72 6497.79 498.90 588.48 1799.82 18
save fliter98.24 5183.34 9198.61 3196.57 8491.32 30
test072699.05 985.18 5499.11 1296.78 4988.75 6297.65 998.91 287.69 22
GSMVS97.54 117
test_part298.90 1985.14 6096.07 26
sam_mvs177.59 10097.54 117
sam_mvs75.35 148
MTGPAbinary96.33 112
test_post33.80 39276.17 12795.97 245
patchmatchnet-post77.09 36277.78 9995.39 278
MTMP97.53 8868.16 392
TEST998.64 3183.71 8297.82 6696.65 7284.29 16295.16 3398.09 4384.39 3599.36 79
test_898.63 3383.64 8597.81 6896.63 7784.50 15395.10 3798.11 4284.33 3699.23 84
agg_prior98.59 3583.13 9596.56 8694.19 5199.16 94
test_prior482.34 10897.75 73
test_prior93.09 7798.68 2681.91 11696.40 10499.06 10298.29 64
新几何296.42 173
旧先验197.39 8279.58 18196.54 8798.08 4684.00 4097.42 7497.62 114
原ACMM296.84 144
test22296.15 10178.41 21195.87 20396.46 9671.97 33389.66 11197.45 8376.33 12598.24 4998.30 63
segment_acmp82.69 51
testdata195.57 21587.44 92
test1294.25 3798.34 4685.55 4696.35 11192.36 7180.84 5799.22 8598.31 4797.98 86
plane_prior791.86 23777.55 241
plane_prior691.98 23377.92 23064.77 240
plane_prior494.15 180
plane_prior377.75 23790.17 4881.33 205
plane_prior297.18 11389.89 51
plane_prior191.95 235
plane_prior77.96 22797.52 9190.36 4682.96 224
n20.00 406
nn0.00 406
door-mid79.75 380
test1196.50 92
door80.13 379
HQP5-MVS78.48 207
HQP-NCC92.08 22897.63 8090.52 4182.30 191
ACMP_Plane92.08 22897.63 8090.52 4182.30 191
HQP4-MVS82.30 19197.32 18591.13 239
HQP3-MVS94.80 20083.01 222
HQP2-MVS65.40 234
NP-MVS92.04 23278.22 21794.56 170
ACMMP++_ref78.45 263
ACMMP++79.05 254
Test By Simon71.65 195