This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DVP-MVS++.99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11696.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
MSC_two_6792asdad99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
No_MVS99.93 299.91 4499.80 298.41 132100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11697.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11697.26 2299.80 1699.88 2496.71 23100.00 1
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8395.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15697.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 116100.00 199.99 5100.00 1100.00 1
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 10897.96 799.55 4899.94 497.18 20100.00 193.81 19599.94 6199.98 55
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 13994.04 12798.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14393.19 15599.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14694.68 9699.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16395.76 6597.18 14599.88 2492.74 127100.00 198.67 8299.88 8099.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 6994.77 9199.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8394.87 8999.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 6995.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7797.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
新几何199.42 4199.75 8198.27 6998.63 6692.69 17299.55 4899.82 5594.40 74100.00 191.21 22999.94 6199.99 24
无先验99.49 18898.71 5393.46 148100.00 194.36 18299.99 24
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29398.62 6792.78 16799.53 5099.83 5195.08 53100.00 194.36 18299.92 7199.99 24
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4597.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7194.77 9199.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 13994.70 9498.26 12399.81 5991.84 147100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1693.90 13499.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6398.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14395.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5598.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6798.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13099.97 1898.39 13994.43 10698.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 10892.06 19998.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5090.78 23399.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27099.63 9381.76 34799.96 2598.56 7799.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10398.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.23 10296.80 10698.51 11599.99 195.60 17099.09 23098.84 4793.32 15196.74 15599.72 8786.04 214100.00 198.01 10999.43 11699.94 84
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 10894.31 11498.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 10897.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testdata299.99 4090.54 245
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16299.96 2598.35 15189.90 24698.36 11799.79 6491.18 15899.99 4098.37 9499.99 2299.99 24
API-MVS97.86 7597.66 7498.47 11799.52 10195.41 17499.47 19198.87 4491.68 20998.84 9399.85 3592.34 13799.99 4098.44 9299.96 52100.00 1
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15199.18 22599.45 1794.84 9096.41 16599.71 8991.40 15199.99 4097.99 11198.03 15099.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet_DTU96.76 11896.15 12298.60 10598.78 14197.53 9599.84 11097.63 22297.25 2399.20 7799.64 10281.36 25199.98 4692.77 21598.89 12898.28 210
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15396.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_697.67 8697.34 8898.66 10099.68 9196.11 15499.68 15598.14 18593.80 13899.27 7599.70 9188.65 19399.98 4697.46 12899.72 9699.89 94
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15199.82 11798.43 11694.56 10197.52 13899.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11695.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
CSCG97.10 10597.04 9997.27 16999.89 5091.92 25399.90 7899.07 3188.67 26695.26 18599.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12399.87 9298.14 18593.78 13996.55 16099.69 9492.28 13899.98 4697.13 13599.44 11599.93 85
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1897.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
MAR-MVS97.43 9197.19 9398.15 13499.47 10594.79 19399.05 24198.76 5192.65 17598.66 10499.82 5588.52 19499.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 17893.35 15096.45 16299.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PLCcopyleft95.54 397.93 7397.89 7098.05 13899.82 7094.77 19499.92 7098.46 10593.93 13297.20 14499.27 13195.44 4799.97 5597.41 12999.51 11299.41 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19292.06 22199.15 6499.94 1497.50 9999.94 6098.42 12896.22 5299.41 6141.37 37194.34 7999.96 5798.92 6499.95 5599.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9794.06 12599.62 4399.85 3594.97 6299.96 5795.11 16199.95 5599.92 91
131496.84 11495.96 13399.48 3696.74 24598.52 5998.31 29398.86 4595.82 6189.91 23998.98 15487.49 20099.96 5797.80 11799.73 9599.96 74
MVS96.60 12695.56 14599.72 1296.85 23899.22 1998.31 29398.94 3691.57 21290.90 22799.61 10486.66 20999.96 5797.36 13099.88 8099.99 24
UGNet95.33 15894.57 16697.62 15598.55 14794.85 18998.67 27799.32 2495.75 6896.80 15496.27 25572.18 31499.96 5794.58 17899.05 12698.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
QAPM95.40 15794.17 17399.10 7296.92 23297.71 8799.40 19898.68 5689.31 25188.94 26598.89 16482.48 24099.96 5793.12 21299.83 8599.62 129
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9797.00 2898.52 10999.71 8987.80 19799.95 6499.75 2699.38 11799.83 100
旧先验299.46 19394.21 11899.85 699.95 6496.96 141
PVSNet_BlendedMVS96.05 14295.82 14096.72 18399.59 9596.99 11999.95 4399.10 2894.06 12598.27 12195.80 26489.00 18899.95 6499.12 5187.53 25693.24 319
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2895.38 7698.27 12199.08 14489.00 18899.95 6499.12 5199.25 12099.57 142
DP-MVS94.54 17893.42 19397.91 14399.46 10794.04 20598.93 25397.48 24481.15 33690.04 23699.55 10887.02 20699.95 6488.97 26198.11 14599.73 112
PVSNet91.05 1397.13 10496.69 10998.45 11999.52 10195.81 16099.95 4399.65 1094.73 9399.04 8599.21 13984.48 22899.95 6494.92 16498.74 13299.58 141
3Dnovator91.47 1296.28 13995.34 15099.08 7496.82 24097.47 10299.45 19498.81 4895.52 7489.39 25399.00 15181.97 24399.95 6497.27 13299.83 8599.84 99
LS3D95.84 14795.11 15798.02 13999.85 6095.10 18498.74 27098.50 10187.22 28693.66 20399.86 3187.45 20199.95 6490.94 23899.81 9199.02 194
testdata98.42 12299.47 10595.33 17698.56 7793.78 13999.79 2399.85 3593.64 10499.94 7294.97 16399.94 61100.00 1
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 12999.97 1897.92 20498.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15499.99 24
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7397.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
F-COLMAP96.93 11196.95 10296.87 17899.71 8991.74 25899.85 10697.95 20093.11 15895.72 17899.16 14192.35 13699.94 7295.32 15999.35 11898.92 196
3Dnovator+91.53 1196.31 13695.24 15299.52 2996.88 23798.64 5399.72 15098.24 16995.27 8088.42 27698.98 15482.76 23999.94 7297.10 13799.83 8599.96 74
OpenMVScopyleft90.15 1594.77 17093.59 18798.33 12696.07 25497.48 10199.56 17698.57 7590.46 23686.51 30098.95 16078.57 27799.94 7293.86 19199.74 9497.57 223
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12599.90 7899.51 1597.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052992.10 23390.65 24496.47 18998.82 13890.61 27998.72 27298.67 5975.54 35193.90 20198.58 18566.23 33699.90 7994.70 17590.67 22598.90 199
CHOSEN 1792x268896.81 11596.53 11497.64 15398.91 13293.07 22599.65 16199.80 395.64 7095.39 18298.86 17084.35 23099.90 7996.98 14099.16 12499.95 82
MVS_111021_LR98.42 4998.38 3998.53 11499.39 10895.79 16199.87 9299.86 296.70 3798.78 9699.79 6492.03 14399.90 7999.17 5099.86 8399.88 96
DeepC-MVS94.51 496.92 11296.40 11898.45 11999.16 11595.90 15899.66 15898.06 19196.37 5094.37 19499.49 11383.29 23799.90 7997.63 12599.61 10599.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 17997.34 1699.85 699.85 3591.20 15599.89 8399.41 4499.67 9998.69 207
VNet97.21 10396.57 11399.13 7198.97 12497.82 8599.03 24399.21 2794.31 11499.18 8198.88 16686.26 21399.89 8398.93 6394.32 20999.69 117
sss97.57 8897.03 10099.18 5798.37 15498.04 7699.73 14799.38 2193.46 14898.76 9999.06 14591.21 15499.89 8396.33 14897.01 17099.62 129
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
PVSNet_088.03 1991.80 24090.27 25296.38 19698.27 16190.46 28399.94 6099.61 1193.99 12886.26 30797.39 21871.13 32099.89 8398.77 7767.05 35398.79 204
PCF-MVS94.20 595.18 16094.10 17598.43 12198.55 14795.99 15697.91 30997.31 26290.35 23989.48 25299.22 13885.19 22399.89 8390.40 24998.47 13799.41 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521193.10 21091.99 22296.40 19499.10 11789.65 29798.88 25897.93 20283.71 32594.00 19998.75 17568.79 32599.88 8995.08 16291.71 22499.68 118
AllTest92.48 22491.64 22795.00 22799.01 12088.43 31098.94 25296.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
TestCases95.00 22799.01 12088.43 31096.82 31086.50 29588.71 26798.47 19374.73 30499.88 8985.39 29696.18 18296.71 227
PVSNet_Blended_VisFu97.27 10096.81 10598.66 10098.81 13996.67 12899.92 7098.64 6394.51 10396.38 16698.49 18989.05 18799.88 8997.10 13798.34 13999.43 163
MSDG94.37 18493.36 19797.40 16398.88 13593.95 20999.37 20597.38 25585.75 30790.80 22899.17 14084.11 23299.88 8986.35 29098.43 13898.36 209
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 23997.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17393.53 14699.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10594.56 10199.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14693.81 13799.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 16992.18 19499.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
9.1498.38 3999.87 5799.91 7498.33 15493.22 15499.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
TEST999.92 3698.92 2799.96 2598.43 11693.90 13499.71 3599.86 3195.88 3799.85 98
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11694.35 11199.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 11694.35 11199.69 3799.85 3595.94 3499.85 98
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11694.63 9999.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
agg_prior99.93 2798.77 4098.43 11699.63 4099.85 98
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 10896.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
COLMAP_ROBcopyleft90.47 1492.18 23191.49 23394.25 25799.00 12288.04 31698.42 29196.70 31782.30 33388.43 27499.01 14976.97 28499.85 9886.11 29396.50 17894.86 234
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2591.43 21897.88 13298.99 15295.84 3899.84 10798.82 7295.32 20199.79 104
PatchMatch-RL96.04 14395.40 14797.95 14099.59 9595.22 18299.52 18299.07 3193.96 13096.49 16198.35 19682.28 24199.82 10990.15 25299.22 12398.81 203
ZD-MVS99.92 3698.57 5598.52 9092.34 19099.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6095.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior99.43 3899.94 1498.49 6198.65 6099.80 11099.99 24
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 13997.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
XVG-OURS-SEG-HR94.79 16894.70 16595.08 22498.05 17389.19 30099.08 23297.54 23593.66 14394.87 18899.58 10678.78 27599.79 11397.31 13193.40 21896.25 229
test117298.38 5498.25 4898.77 9399.88 5496.56 13399.80 12498.36 14894.68 9699.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15194.92 8699.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
RPMNet89.76 28187.28 29697.19 17096.29 25092.66 23692.01 35298.31 15870.19 35896.94 14985.87 35687.25 20399.78 11562.69 36095.96 18799.13 190
h-mvs3394.92 16694.36 16996.59 18898.85 13791.29 26998.93 25398.94 3695.90 5998.77 9798.42 19590.89 16499.77 11997.80 11770.76 34398.72 206
VDD-MVS93.77 19692.94 20296.27 19898.55 14790.22 28798.77 26997.79 21590.85 23196.82 15399.42 11861.18 35199.77 11998.95 6194.13 21198.82 202
HY-MVS92.50 797.79 8197.17 9599.63 1598.98 12399.32 897.49 31499.52 1395.69 6998.32 11997.41 21693.32 11099.77 11998.08 10795.75 19499.81 102
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9096.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9096.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13199.82 11798.30 16193.95 13199.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9095.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9095.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15493.97 12999.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
test1299.43 3899.74 8298.56 5798.40 13699.65 3894.76 6699.75 12599.98 3599.99 24
XVG-OURS94.82 16794.74 16495.06 22598.00 17589.19 30099.08 23297.55 23394.10 12194.71 18999.62 10380.51 26299.74 12996.04 15293.06 22296.25 229
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 14894.08 12299.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1395.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 19799.78 107
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14299.36 20798.50 10195.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 12897.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19097.05 2699.86 499.86 3190.65 16699.71 13399.39 4598.63 13498.69 207
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13299.40 19898.51 9795.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
ab-mvs94.69 17293.42 19398.51 11598.07 17296.26 14396.49 32998.68 5690.31 24094.54 19097.00 23176.30 29299.71 13395.98 15393.38 21999.56 143
xiu_mvs_v1_base_debu97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
xiu_mvs_v1_base_debi97.43 9197.06 9698.55 10997.74 19398.14 7199.31 21297.86 21096.43 4499.62 4399.69 9485.56 21899.68 13799.05 5498.31 14197.83 216
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 13999.90 7898.17 17992.61 17798.62 10699.57 10791.87 14699.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net96.54 12795.96 13398.27 12898.23 16495.71 16698.00 30798.45 10793.72 14298.41 11499.27 13188.71 19299.66 14191.19 23097.69 15399.44 162
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13699.88 8998.16 18291.75 20898.94 9199.54 11091.82 14899.65 14297.62 12699.99 2299.99 24
114514_t97.41 9596.83 10499.14 6699.51 10397.83 8499.89 8698.27 16688.48 27099.06 8499.66 10090.30 17099.64 14396.32 14999.97 4899.96 74
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14396.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LFMVS94.75 17193.56 18998.30 12799.03 11995.70 16798.74 27097.98 19787.81 27998.47 11299.39 12367.43 33399.53 14598.01 10995.20 20399.67 120
canonicalmvs97.09 10796.32 11999.39 4698.93 12898.95 2599.72 15097.35 25794.45 10497.88 13299.42 11886.71 20899.52 14698.48 9193.97 21499.72 114
thres20096.96 10996.21 12199.22 5398.97 12498.84 3499.85 10699.71 593.17 15696.26 16898.88 16689.87 17599.51 14794.26 18694.91 20499.31 176
OMC-MVS97.28 9997.23 9297.41 16299.76 7993.36 22399.65 16197.95 20096.03 5897.41 14199.70 9189.61 17799.51 14796.73 14698.25 14499.38 167
thres100view90096.74 12095.92 13699.18 5798.90 13398.77 4099.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.84 19294.57 20599.27 179
tfpn200view996.79 11695.99 12699.19 5698.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.27 179
thres600view796.69 12395.87 13999.14 6698.90 13398.78 3999.74 14299.71 592.59 17995.84 17498.86 17089.25 18399.50 14993.44 20594.50 20899.16 186
thres40096.78 11795.99 12699.16 6298.94 12698.82 3599.78 12899.71 592.86 16196.02 17198.87 16889.33 18199.50 14993.84 19294.57 20599.16 186
VDDNet93.12 20991.91 22496.76 18196.67 24892.65 23898.69 27598.21 17382.81 33097.75 13599.28 12861.57 34999.48 15398.09 10694.09 21298.15 212
RPSCF91.80 24092.79 20588.83 32798.15 16969.87 36098.11 30396.60 32083.93 32394.33 19599.27 13179.60 26999.46 15491.99 22093.16 22197.18 225
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 10894.40 11098.41 11499.47 11493.65 10399.42 15598.57 8894.26 21099.67 120
Test_1112_low_res95.72 14994.83 16198.42 12297.79 18996.41 13799.65 16196.65 31992.70 17192.86 21496.13 25992.15 14199.30 15691.88 22393.64 21699.55 144
1112_ss96.01 14495.20 15498.42 12297.80 18896.41 13799.65 16196.66 31892.71 17092.88 21399.40 12192.16 14099.30 15691.92 22293.66 21599.55 144
cascas94.64 17593.61 18497.74 15197.82 18796.26 14399.96 2597.78 21685.76 30594.00 19997.54 21376.95 28599.21 15897.23 13395.43 19997.76 220
TAPA-MVS92.12 894.42 18293.60 18696.90 17799.33 11191.78 25799.78 12898.00 19489.89 24794.52 19199.47 11491.97 14499.18 15969.90 35099.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS92.85 694.99 16593.94 17998.16 13197.72 19795.69 16899.99 598.81 4894.28 11692.70 21596.90 23395.08 5399.17 16096.07 15173.88 34199.60 134
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9597.02 10198.59 10797.71 19997.52 9699.97 1898.54 8791.83 20497.45 14099.04 14697.50 899.10 16194.75 17296.37 18199.16 186
thisisatest053097.10 10596.72 10898.22 13097.60 20296.70 12699.92 7098.54 8791.11 22597.07 14898.97 15697.47 1199.03 16293.73 20096.09 18498.92 196
tttt051796.85 11396.49 11597.92 14297.48 20995.89 15999.85 10698.54 8790.72 23496.63 15798.93 16397.47 1199.02 16393.03 21395.76 19398.85 200
mvs-test195.53 15495.97 13194.20 25897.77 19085.44 32999.95 4397.06 28494.92 8696.58 15898.72 17685.81 21598.98 16494.80 16998.11 14598.18 211
MVS_Test96.46 13095.74 14198.61 10498.18 16797.23 11099.31 21297.15 27591.07 22698.84 9397.05 22988.17 19698.97 16594.39 18197.50 15799.61 132
tpmvs94.28 18893.57 18896.40 19498.55 14791.50 26795.70 34098.55 8387.47 28192.15 21794.26 32191.42 15098.95 16688.15 27095.85 19098.76 205
EIA-MVS97.53 8997.46 8297.76 14998.04 17494.84 19099.98 1097.61 22794.41 10997.90 13199.59 10592.40 13598.87 16798.04 10899.13 12599.59 135
tpm cat193.51 20292.52 21396.47 18997.77 19091.47 26896.13 33398.06 19180.98 33792.91 21293.78 32589.66 17698.87 16787.03 28596.39 18099.09 192
ETV-MVS97.92 7497.80 7298.25 12998.14 17096.48 13499.98 1097.63 22295.61 7199.29 7499.46 11692.55 13298.82 16999.02 6098.54 13599.46 158
BH-RMVSNet95.18 16094.31 17197.80 14498.17 16895.23 18199.76 13697.53 23792.52 18494.27 19699.25 13576.84 28698.80 17090.89 24099.54 10999.35 172
gm-plane-assit96.97 23193.76 21391.47 21698.96 15898.79 17194.92 164
casdiffmvs96.42 13295.97 13197.77 14897.30 21994.98 18699.84 11097.09 28193.75 14196.58 15899.26 13485.07 22498.78 17297.77 12297.04 16999.54 148
DWT-MVSNet_test97.31 9897.19 9397.66 15298.24 16394.67 19598.86 26298.20 17793.60 14598.09 12698.89 16497.51 798.78 17294.04 18997.28 16399.55 144
TR-MVS94.54 17893.56 18997.49 15997.96 17794.34 20198.71 27397.51 24190.30 24194.51 19298.69 17775.56 29798.77 17492.82 21495.99 18699.35 172
diffmvs97.00 10896.64 11098.09 13697.64 20096.17 15099.81 11997.19 26994.67 9898.95 9099.28 12886.43 21198.76 17598.37 9497.42 16099.33 174
Vis-MVSNetpermissive95.72 14995.15 15697.45 16097.62 20194.28 20299.28 21898.24 16994.27 11796.84 15298.94 16179.39 27098.76 17593.25 20698.49 13699.30 177
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tpmrst96.27 14095.98 12897.13 17197.96 17793.15 22496.34 33198.17 17992.07 19798.71 10295.12 29793.91 9698.73 17794.91 16696.62 17599.50 155
PMMVS96.76 11896.76 10796.76 18198.28 15992.10 24899.91 7497.98 19794.12 12099.53 5099.39 12386.93 20798.73 17796.95 14297.73 15299.45 160
lupinMVS97.85 7697.60 7898.62 10397.28 22197.70 8999.99 597.55 23395.50 7599.43 5999.67 9890.92 16298.71 17998.40 9399.62 10299.45 160
Effi-MVS+96.30 13795.69 14298.16 13197.85 18596.26 14397.41 31597.21 26890.37 23898.65 10598.58 18586.61 21098.70 18097.11 13697.37 16299.52 151
baseline195.78 14894.86 16098.54 11298.47 15298.07 7499.06 23797.99 19592.68 17394.13 19898.62 18293.28 11398.69 18193.79 19785.76 26598.84 201
BH-w/o95.71 15195.38 14996.68 18498.49 15192.28 24499.84 11097.50 24292.12 19692.06 21898.79 17484.69 22698.67 18295.29 16099.66 10099.09 192
baseline96.43 13195.98 12897.76 14997.34 21595.17 18399.51 18497.17 27293.92 13396.90 15199.28 12885.37 22198.64 18397.50 12796.86 17499.46 158
baseline296.71 12296.49 11597.37 16595.63 27495.96 15799.74 14298.88 4392.94 16091.61 22098.97 15697.72 598.62 18494.83 16898.08 14997.53 224
MDTV_nov1_ep1395.69 14297.90 18094.15 20395.98 33698.44 10893.12 15797.98 12995.74 26695.10 5298.58 18590.02 25396.92 172
jason97.24 10196.86 10398.38 12595.73 26797.32 10899.97 1897.40 25495.34 7898.60 10899.54 11087.70 19898.56 18697.94 11499.47 11399.25 181
jason: jason.
EPP-MVSNet96.69 12396.60 11196.96 17597.74 19393.05 22799.37 20598.56 7788.75 26495.83 17699.01 14996.01 3198.56 18696.92 14397.20 16699.25 181
BH-untuned95.18 16094.83 16196.22 19998.36 15591.22 27099.80 12497.32 26190.91 22991.08 22598.67 17883.51 23498.54 18894.23 18799.61 10598.92 196
PAPM98.60 3498.42 3299.14 6696.05 25598.96 2499.90 7899.35 2396.68 3898.35 11899.66 10096.45 2898.51 18999.45 4199.89 7899.96 74
OPM-MVS93.21 20792.80 20494.44 25193.12 31390.85 27599.77 13197.61 22796.19 5491.56 22198.65 17975.16 30298.47 19093.78 19889.39 23293.99 287
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP92.05 992.74 21892.42 21593.73 27495.91 26088.72 30599.81 11997.53 23794.13 11987.00 29498.23 19874.07 30898.47 19096.22 15088.86 23893.99 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS94.06 19093.90 18094.55 24496.02 25690.69 27699.98 1097.72 21796.62 4191.05 22698.85 17377.21 28298.47 19098.11 10489.51 23194.48 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMM91.95 1092.88 21592.52 21393.98 26995.75 26689.08 30399.77 13197.52 23993.00 15989.95 23897.99 20676.17 29498.46 19393.63 20388.87 23794.39 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dp95.05 16394.43 16896.91 17697.99 17692.73 23496.29 33297.98 19789.70 24995.93 17394.67 31293.83 10098.45 19486.91 28996.53 17799.54 148
ACMH+89.98 1690.35 26889.54 26592.78 29695.99 25786.12 32498.81 26697.18 27189.38 25083.14 32397.76 21068.42 32998.43 19589.11 26086.05 26493.78 303
ITE_SJBPF92.38 29895.69 27285.14 33095.71 33792.81 16489.33 25698.11 20070.23 32298.42 19685.91 29488.16 24993.59 311
Fast-Effi-MVS+95.02 16494.19 17297.52 15897.88 18194.55 19799.97 1897.08 28288.85 26394.47 19397.96 20784.59 22798.41 19789.84 25597.10 16799.59 135
ACMH89.72 1790.64 26189.63 26293.66 28095.64 27388.64 30898.55 28197.45 24589.03 25581.62 33097.61 21269.75 32398.41 19789.37 25787.62 25593.92 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.96 21392.71 20693.71 27695.43 27688.67 30699.75 13997.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
LGP-MVS_train93.71 27695.43 27688.67 30697.62 22492.81 16490.05 23498.49 18975.24 30098.40 19995.84 15689.12 23394.07 279
XVG-ACMP-BASELINE91.22 25090.75 24192.63 29793.73 30285.61 32698.52 28597.44 24792.77 16889.90 24096.85 23766.64 33598.39 20192.29 21888.61 24293.89 295
HQP4-MVS93.37 20598.39 20194.53 235
HQP-MVS94.61 17694.50 16794.92 23095.78 26191.85 25499.87 9297.89 20696.82 3193.37 20598.65 17980.65 26098.39 20197.92 11589.60 22694.53 235
TDRefinement84.76 31082.56 31791.38 30974.58 36584.80 33397.36 31694.56 35584.73 31980.21 33796.12 26063.56 34598.39 20187.92 27363.97 35490.95 345
EPMVS96.53 12896.01 12598.09 13698.43 15396.12 15396.36 33099.43 1993.53 14697.64 13695.04 29994.41 7398.38 20591.13 23198.11 14599.75 110
HQP_MVS94.49 18194.36 16994.87 23195.71 27091.74 25899.84 11097.87 20896.38 4793.01 20998.59 18380.47 26498.37 20697.79 12089.55 22994.52 237
plane_prior597.87 20898.37 20697.79 12089.55 22994.52 237
TinyColmap87.87 29886.51 29991.94 30495.05 28285.57 32797.65 31394.08 35784.40 32181.82 32996.85 23762.14 34898.33 20880.25 32586.37 26391.91 338
CMPMVSbinary61.59 2184.75 31185.14 30583.57 33890.32 34562.54 36496.98 32497.59 23174.33 35469.95 35796.66 24364.17 34398.32 20987.88 27488.41 24789.84 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC90.00 27888.96 27793.10 29194.81 28588.16 31498.71 27395.54 34293.66 14383.75 32197.20 22265.58 33898.31 21083.96 30687.49 25792.85 326
CS-MVS-test97.44 9097.41 8497.53 15697.46 21094.66 196100.00 197.04 28894.69 9599.72 3399.25 13591.22 15398.29 21198.33 9798.95 12799.64 126
TESTMET0.1,196.74 12096.26 12098.16 13197.36 21496.48 13499.96 2598.29 16291.93 20195.77 17798.07 20295.54 4398.29 21190.55 24498.89 12899.70 115
CostFormer96.10 14195.88 13896.78 18097.03 22892.55 24097.08 32297.83 21390.04 24598.72 10194.89 30695.01 5998.29 21196.54 14795.77 19299.50 155
AUN-MVS93.28 20692.60 20895.34 21698.29 15790.09 29099.31 21298.56 7791.80 20796.35 16798.00 20489.38 18098.28 21492.46 21669.22 34897.64 221
LTVRE_ROB88.28 1890.29 27189.05 27694.02 26595.08 28190.15 28997.19 31997.43 24884.91 31883.99 31997.06 22874.00 30998.28 21484.08 30387.71 25393.62 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test-LLR96.47 12996.04 12497.78 14697.02 22995.44 17299.96 2598.21 17394.07 12395.55 17996.38 25093.90 9798.27 21690.42 24798.83 13099.64 126
test-mter96.39 13395.93 13597.78 14697.02 22995.44 17299.96 2598.21 17391.81 20695.55 17996.38 25095.17 5098.27 21690.42 24798.83 13099.64 126
hse-mvs294.38 18394.08 17695.31 21898.27 16190.02 29199.29 21798.56 7795.90 5998.77 9798.00 20490.89 16498.26 21897.80 11769.20 34997.64 221
CS-MVS97.74 8397.61 7798.15 13497.52 20896.69 127100.00 197.11 27994.93 8599.73 2999.41 12091.68 14998.25 21998.84 7199.24 12199.52 151
HyFIR lowres test96.66 12596.43 11797.36 16699.05 11893.91 21099.70 15299.80 390.54 23596.26 16898.08 20192.15 14198.23 22096.84 14595.46 19899.93 85
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28699.42 2097.03 2799.02 8699.09 14399.35 198.21 22199.73 3199.78 9299.77 108
ADS-MVSNet94.79 16894.02 17797.11 17397.87 18393.79 21194.24 34198.16 18290.07 24396.43 16394.48 31790.29 17198.19 22287.44 27797.23 16499.36 170
DROMVSNet97.38 9797.24 9197.80 14497.41 21195.64 16999.99 597.06 28494.59 10099.63 4099.32 12789.20 18698.14 22398.76 7899.23 12299.62 129
test_post63.35 36794.43 7298.13 224
LF4IMVS89.25 28988.85 27890.45 31792.81 32281.19 34998.12 30294.79 35291.44 21786.29 30697.11 22465.30 34198.11 22588.53 26685.25 27092.07 334
IS-MVSNet96.29 13895.90 13797.45 16098.13 17194.80 19299.08 23297.61 22792.02 20095.54 18198.96 15890.64 16798.08 22693.73 20097.41 16199.47 157
DeepMVS_CXcopyleft82.92 34095.98 25958.66 36696.01 33292.72 16978.34 34395.51 27858.29 35498.08 22682.57 31385.29 26992.03 336
PatchmatchNetpermissive95.94 14595.45 14697.39 16497.83 18694.41 20096.05 33598.40 13692.86 16197.09 14795.28 29494.21 8998.07 22889.26 25998.11 14599.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE94.36 18693.48 19196.99 17497.29 22093.54 21799.96 2596.72 31688.35 27393.43 20498.94 16182.05 24298.05 22988.12 27296.48 17999.37 169
MS-PatchMatch90.65 26090.30 25191.71 30794.22 29485.50 32898.24 29797.70 21888.67 26686.42 30396.37 25267.82 33198.03 23083.62 30899.62 10291.60 339
Patchmatch-test92.65 22291.50 23296.10 20296.85 23890.49 28291.50 35497.19 26982.76 33190.23 23395.59 27395.02 5798.00 23177.41 33696.98 17199.82 101
tpm295.47 15695.18 15596.35 19796.91 23391.70 26296.96 32597.93 20288.04 27698.44 11395.40 28393.32 11097.97 23294.00 19095.61 19699.38 167
JIA-IIPM91.76 24390.70 24394.94 22996.11 25387.51 31893.16 34898.13 18775.79 35097.58 13777.68 36092.84 12497.97 23288.47 26796.54 17699.33 174
VPA-MVSNet92.70 21991.55 23196.16 20095.09 28096.20 14898.88 25899.00 3391.02 22891.82 21995.29 29376.05 29697.96 23495.62 15881.19 29894.30 255
patchmatchnet-post91.70 34195.12 5197.95 235
SCA94.69 17293.81 18397.33 16897.10 22494.44 19898.86 26298.32 15693.30 15296.17 17095.59 27376.48 29097.95 23591.06 23397.43 15899.59 135
GG-mvs-BLEND98.54 11298.21 16598.01 7793.87 34598.52 9097.92 13097.92 20899.02 297.94 23798.17 10099.58 10799.67 120
Effi-MVS+-dtu94.53 18095.30 15192.22 30097.77 19082.54 34099.59 17197.06 28494.92 8695.29 18495.37 28785.81 21597.89 23894.80 16997.07 16896.23 231
XXY-MVS91.82 23690.46 24695.88 20693.91 29995.40 17598.87 26197.69 21988.63 26887.87 28297.08 22674.38 30797.89 23891.66 22584.07 28194.35 253
D2MVS92.76 21792.59 21193.27 28695.13 27989.54 29999.69 15399.38 2192.26 19287.59 28594.61 31485.05 22597.79 24091.59 22688.01 25092.47 331
gg-mvs-nofinetune93.51 20291.86 22698.47 11797.72 19797.96 8192.62 34998.51 9774.70 35397.33 14269.59 36398.91 397.79 24097.77 12299.56 10899.67 120
test_post195.78 33959.23 37093.20 11797.74 24291.06 233
nrg03093.51 20292.53 21296.45 19194.36 29197.20 11199.81 11997.16 27491.60 21189.86 24197.46 21486.37 21297.68 24395.88 15580.31 31094.46 240
Fast-Effi-MVS+-dtu93.72 19993.86 18293.29 28597.06 22686.16 32399.80 12496.83 30892.66 17492.58 21697.83 20981.39 25097.67 24489.75 25696.87 17396.05 233
GA-MVS93.83 19292.84 20396.80 17995.73 26793.57 21599.88 8997.24 26792.57 18292.92 21196.66 24378.73 27697.67 24487.75 27594.06 21399.17 185
UniMVSNet_ETH3D90.06 27788.58 28394.49 24894.67 28888.09 31597.81 31197.57 23283.91 32488.44 27297.41 21657.44 35597.62 24691.41 22788.59 24497.77 219
Anonymous2023121189.86 27988.44 28594.13 26198.93 12890.68 27798.54 28398.26 16776.28 34786.73 29695.54 27570.60 32197.56 24790.82 24180.27 31194.15 272
VPNet91.81 23790.46 24695.85 20894.74 28695.54 17198.98 24798.59 7292.14 19590.77 22997.44 21568.73 32797.54 24894.89 16777.89 32494.46 240
MVS-HIRNet86.22 30283.19 31495.31 21896.71 24790.29 28692.12 35197.33 26062.85 35986.82 29570.37 36269.37 32497.49 24975.12 34397.99 15198.15 212
test_part192.15 23290.72 24296.44 19398.87 13697.46 10398.99 24698.26 16785.89 30286.34 30596.34 25381.71 24597.48 25091.06 23378.99 31694.37 249
Vis-MVSNet (Re-imp)96.32 13595.98 12897.35 16797.93 17994.82 19199.47 19198.15 18491.83 20495.09 18699.11 14291.37 15297.47 25193.47 20497.43 15899.74 111
RRT_test8_iter0594.58 17794.11 17495.98 20497.88 18196.11 15499.89 8697.45 24591.66 21088.28 27796.71 24196.53 2797.40 25294.73 17483.85 28494.45 245
tfpnnormal89.29 28787.61 29494.34 25594.35 29294.13 20498.95 25198.94 3683.94 32284.47 31795.51 27874.84 30397.39 25377.05 33980.41 30891.48 341
jajsoiax91.92 23591.18 23794.15 25991.35 33790.95 27399.00 24597.42 25092.61 17787.38 29097.08 22672.46 31397.36 25494.53 17988.77 23994.13 276
EPNet_dtu95.71 15195.39 14896.66 18598.92 13093.41 22199.57 17498.90 4196.19 5497.52 13898.56 18792.65 12997.36 25477.89 33498.33 14099.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl2293.77 19693.25 20095.33 21799.49 10494.43 19999.61 16998.09 18890.38 23789.16 26295.61 27190.56 16897.34 25691.93 22184.45 27694.21 263
V4291.28 24890.12 25794.74 23593.42 30893.46 21999.68 15597.02 28987.36 28389.85 24395.05 29881.31 25297.34 25687.34 28080.07 31293.40 314
mvs_tets91.81 23791.08 23894.00 26791.63 33590.58 28098.67 27797.43 24892.43 18887.37 29197.05 22971.76 31597.32 25894.75 17288.68 24194.11 277
EI-MVSNet93.73 19893.40 19694.74 23596.80 24192.69 23599.06 23797.67 22088.96 25991.39 22299.02 14788.75 19197.30 25991.07 23287.85 25194.22 261
MVSTER95.53 15495.22 15396.45 19198.56 14697.72 8699.91 7497.67 22092.38 18991.39 22297.14 22397.24 1797.30 25994.80 16987.85 25194.34 254
TAMVS95.85 14695.58 14496.65 18697.07 22593.50 21899.17 22697.82 21491.39 22195.02 18798.01 20392.20 13997.30 25993.75 19995.83 19199.14 189
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 32892.19 24699.12 22897.38 25592.51 18588.45 27196.99 23291.20 15597.29 26294.36 18287.71 25394.36 250
OurMVSNet-221017-089.81 28089.48 26990.83 31391.64 33481.21 34898.17 30195.38 34591.48 21585.65 31297.31 21972.66 31297.29 26288.15 27084.83 27393.97 289
MVP-Stereo90.93 25390.45 24892.37 29991.25 33988.76 30498.05 30696.17 32987.27 28584.04 31895.30 29078.46 27997.27 26483.78 30799.70 9891.09 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RRT_MVS95.23 15994.77 16396.61 18798.28 15998.32 6799.81 11997.41 25292.59 17991.28 22497.76 21095.02 5797.23 26593.65 20287.14 25894.28 257
v890.54 26489.17 27294.66 23893.43 30793.40 22299.20 22396.94 30085.76 30587.56 28694.51 31581.96 24497.19 26684.94 30078.25 32193.38 316
mvs_anonymous95.65 15395.03 15897.53 15698.19 16695.74 16499.33 20997.49 24390.87 23090.47 23297.10 22588.23 19597.16 26795.92 15497.66 15599.68 118
v2v48291.30 24690.07 25895.01 22693.13 31193.79 21199.77 13197.02 28988.05 27589.25 25795.37 28780.73 25897.15 26887.28 28180.04 31394.09 278
UniMVSNet (Re)93.07 21192.13 21895.88 20694.84 28496.24 14799.88 8998.98 3492.49 18789.25 25795.40 28387.09 20597.14 26993.13 21178.16 32294.26 258
v7n89.65 28388.29 28893.72 27592.22 32790.56 28199.07 23697.10 28085.42 31386.73 29694.72 30880.06 26697.13 27081.14 32178.12 32393.49 312
CDS-MVSNet96.34 13496.07 12397.13 17197.37 21394.96 18799.53 18197.91 20591.55 21395.37 18398.32 19795.05 5697.13 27093.80 19695.75 19499.30 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS85.35 30883.81 31089.99 32190.39 34481.89 34598.21 30096.09 33181.78 33574.73 35293.72 32651.56 36097.12 27279.16 33088.61 24290.96 344
v14419290.79 25889.52 26694.59 24193.11 31492.77 23099.56 17696.99 29286.38 29789.82 24494.95 30580.50 26397.10 27383.98 30580.41 30893.90 294
FIs94.10 18993.43 19296.11 20194.70 28796.82 12499.58 17298.93 4092.54 18389.34 25597.31 21987.62 19997.10 27394.22 18886.58 26194.40 247
v119290.62 26389.25 27194.72 23793.13 31193.07 22599.50 18697.02 28986.33 29889.56 25195.01 30079.22 27197.09 27582.34 31581.16 29994.01 284
miper_enhance_ethall94.36 18693.98 17895.49 21198.68 14595.24 18099.73 14797.29 26393.28 15389.86 24195.97 26294.37 7897.05 27692.20 21984.45 27694.19 264
v114491.09 25189.83 25994.87 23193.25 31093.69 21499.62 16896.98 29486.83 29389.64 24994.99 30380.94 25597.05 27685.08 29981.16 29993.87 297
v14890.70 25989.63 26293.92 27092.97 31790.97 27299.75 13996.89 30487.51 28088.27 27895.01 30081.67 24697.04 27887.40 27977.17 33293.75 304
pm-mvs189.36 28687.81 29394.01 26693.40 30991.93 25298.62 28096.48 32486.25 29983.86 32096.14 25873.68 31097.04 27886.16 29275.73 33993.04 323
v192192090.46 26589.12 27394.50 24792.96 31892.46 24199.49 18896.98 29486.10 30089.61 25095.30 29078.55 27897.03 28082.17 31680.89 30694.01 284
v124090.20 27388.79 28094.44 25193.05 31692.27 24599.38 20396.92 30285.89 30289.36 25494.87 30777.89 28197.03 28080.66 32381.08 30294.01 284
v1090.25 27288.82 27994.57 24393.53 30593.43 22099.08 23296.87 30685.00 31587.34 29294.51 31580.93 25697.02 28282.85 31279.23 31593.26 318
lessismore_v090.53 31490.58 34380.90 35195.80 33577.01 34595.84 26366.15 33796.95 28383.03 31175.05 34093.74 307
OpenMVS_ROBcopyleft79.82 2083.77 31781.68 32090.03 32088.30 35382.82 33798.46 28695.22 34873.92 35576.00 34991.29 34255.00 35796.94 28468.40 35388.51 24690.34 348
anonymousdsp91.79 24290.92 24094.41 25490.76 34292.93 22998.93 25397.17 27289.08 25387.46 28995.30 29078.43 28096.92 28592.38 21788.73 24093.39 315
MVSFormer96.94 11096.60 11197.95 14097.28 22197.70 8999.55 17897.27 26591.17 22299.43 5999.54 11090.92 16296.89 28694.67 17699.62 10299.25 181
test_djsdf92.83 21692.29 21794.47 24991.90 33192.46 24199.55 17897.27 26591.17 22289.96 23796.07 26181.10 25396.89 28694.67 17688.91 23594.05 281
pmmvs685.69 30383.84 30991.26 31090.00 34884.41 33497.82 31096.15 33075.86 34981.29 33295.39 28561.21 35096.87 28883.52 31073.29 34292.50 330
tpm93.70 20093.41 19594.58 24295.36 27887.41 31997.01 32396.90 30390.85 23196.72 15694.14 32290.40 16996.84 28990.75 24388.54 24599.51 153
FC-MVSNet-test93.81 19493.15 20195.80 20994.30 29396.20 14899.42 19798.89 4292.33 19189.03 26497.27 22187.39 20296.83 29093.20 20786.48 26294.36 250
pmmvs492.10 23391.07 23995.18 22292.82 32194.96 18799.48 19096.83 30887.45 28288.66 27096.56 24883.78 23396.83 29089.29 25884.77 27493.75 304
WR-MVS92.31 22891.25 23695.48 21494.45 29095.29 17799.60 17098.68 5690.10 24288.07 28096.89 23480.68 25996.80 29293.14 21079.67 31494.36 250
miper_ehance_all_eth93.16 20892.60 20894.82 23497.57 20393.56 21699.50 18697.07 28388.75 26488.85 26695.52 27790.97 16196.74 29390.77 24284.45 27694.17 265
UniMVSNet_NR-MVSNet92.95 21492.11 21995.49 21194.61 28995.28 17899.83 11699.08 3091.49 21489.21 25996.86 23687.14 20496.73 29493.20 20777.52 32794.46 240
DU-MVS92.46 22591.45 23495.49 21194.05 29695.28 17899.81 11998.74 5292.25 19389.21 25996.64 24581.66 24796.73 29493.20 20777.52 32794.46 240
bset_n11_16_dypcd93.05 21292.30 21695.31 21890.23 34695.05 18599.44 19697.28 26492.51 18590.65 23096.68 24285.30 22296.71 29694.49 18084.14 27994.16 270
eth_miper_zixun_eth92.41 22691.93 22393.84 27397.28 22190.68 27798.83 26496.97 29688.57 26989.19 26195.73 26889.24 18596.69 29789.97 25481.55 29594.15 272
SixPastTwentyTwo88.73 29188.01 29290.88 31191.85 33282.24 34298.22 29995.18 35088.97 25882.26 32696.89 23471.75 31696.67 29884.00 30482.98 28693.72 308
cl____92.31 22891.58 22994.52 24597.33 21792.77 23099.57 17496.78 31386.97 29187.56 28695.51 27889.43 17996.62 29988.60 26382.44 28994.16 270
WR-MVS_H91.30 24690.35 24994.15 25994.17 29592.62 23999.17 22698.94 3688.87 26286.48 30294.46 31984.36 22996.61 30088.19 26978.51 32093.21 320
NR-MVSNet91.56 24590.22 25395.60 21094.05 29695.76 16398.25 29698.70 5491.16 22480.78 33596.64 24583.23 23896.57 30191.41 22777.73 32694.46 240
Baseline_NR-MVSNet90.33 26989.51 26792.81 29592.84 31989.95 29399.77 13193.94 35984.69 32089.04 26395.66 27081.66 24796.52 30290.99 23676.98 33391.97 337
DIV-MVS_self_test92.32 22791.60 22894.47 24997.31 21892.74 23299.58 17296.75 31486.99 29087.64 28495.54 27589.55 17896.50 30388.58 26482.44 28994.17 265
pmmvs590.17 27589.09 27493.40 28392.10 32989.77 29699.74 14295.58 34185.88 30487.24 29395.74 26673.41 31196.48 30488.54 26583.56 28593.95 290
c3_l92.53 22391.87 22594.52 24597.40 21292.99 22899.40 19896.93 30187.86 27788.69 26995.44 28189.95 17496.44 30590.45 24680.69 30794.14 275
TransMVSNet (Re)87.25 29985.28 30493.16 28893.56 30491.03 27198.54 28394.05 35883.69 32681.09 33396.16 25775.32 29996.40 30676.69 34068.41 35092.06 335
CP-MVSNet91.23 24990.22 25394.26 25693.96 29892.39 24399.09 23098.57 7588.95 26086.42 30396.57 24779.19 27296.37 30790.29 25078.95 31794.02 282
ambc83.23 33977.17 36462.61 36387.38 35994.55 35676.72 34786.65 35430.16 36596.36 30884.85 30169.86 34490.73 346
IterMVS-LS92.69 22092.11 21994.43 25396.80 24192.74 23299.45 19496.89 30488.98 25789.65 24895.38 28688.77 19096.34 30990.98 23782.04 29294.22 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS90.63 26289.51 26793.99 26893.83 30091.70 26298.98 24798.52 9088.48 27086.15 30896.53 24975.46 29896.31 31088.83 26278.86 31993.95 290
MVS_030489.28 28888.31 28792.21 30197.05 22786.53 32297.76 31299.57 1285.58 31093.86 20292.71 33451.04 36196.30 31184.49 30292.72 22393.79 302
FMVSNet392.69 22091.58 22995.99 20398.29 15797.42 10699.26 22097.62 22489.80 24889.68 24595.32 28981.62 24996.27 31287.01 28685.65 26694.29 256
test_040285.58 30483.94 30890.50 31593.81 30185.04 33198.55 28195.20 34976.01 34879.72 33995.13 29664.15 34496.26 31366.04 35886.88 26090.21 350
FMVSNet291.02 25289.56 26495.41 21597.53 20495.74 16498.98 24797.41 25287.05 28788.43 27495.00 30271.34 31796.24 31485.12 29885.21 27194.25 260
TranMVSNet+NR-MVSNet91.68 24490.61 24594.87 23193.69 30393.98 20899.69 15398.65 6091.03 22788.44 27296.83 24080.05 26796.18 31590.26 25176.89 33594.45 245
GBi-Net90.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
test190.88 25589.82 26094.08 26297.53 20491.97 24998.43 28896.95 29787.05 28789.68 24594.72 30871.34 31796.11 31687.01 28685.65 26694.17 265
FMVSNet188.50 29286.64 29894.08 26295.62 27591.97 24998.43 28896.95 29783.00 32886.08 30994.72 30859.09 35396.11 31681.82 31984.07 28194.17 265
our_test_390.39 26689.48 26993.12 28992.40 32589.57 29899.33 20996.35 32687.84 27885.30 31394.99 30384.14 23196.09 31980.38 32484.56 27593.71 309
PatchT90.38 26788.75 28195.25 22195.99 25790.16 28891.22 35697.54 23576.80 34697.26 14386.01 35591.88 14596.07 32066.16 35795.91 18999.51 153
CR-MVSNet93.45 20592.62 20795.94 20596.29 25092.66 23692.01 35296.23 32792.62 17696.94 14993.31 33091.04 15996.03 32179.23 32795.96 18799.13 190
Patchmtry89.70 28288.49 28493.33 28496.24 25289.94 29591.37 35596.23 32778.22 34487.69 28393.31 33091.04 15996.03 32180.18 32682.10 29194.02 282
ppachtmachnet_test89.58 28488.35 28693.25 28792.40 32590.44 28499.33 20996.73 31585.49 31185.90 31195.77 26581.09 25496.00 32376.00 34282.49 28893.30 317
PEN-MVS90.19 27489.06 27593.57 28193.06 31590.90 27499.06 23798.47 10388.11 27485.91 31096.30 25476.67 28795.94 32487.07 28376.91 33493.89 295
miper_lstm_enhance91.81 23791.39 23593.06 29297.34 21589.18 30299.38 20396.79 31286.70 29487.47 28895.22 29590.00 17395.86 32588.26 26881.37 29794.15 272
N_pmnet80.06 32480.78 32277.89 34191.94 33045.28 37298.80 26756.82 37578.10 34580.08 33893.33 32877.03 28395.76 32668.14 35482.81 28792.64 327
LCM-MVSNet-Re92.31 22892.60 20891.43 30897.53 20479.27 35699.02 24491.83 36392.07 19780.31 33694.38 32083.50 23595.48 32797.22 13497.58 15699.54 148
K. test v388.05 29587.24 29790.47 31691.82 33382.23 34398.96 25097.42 25089.05 25476.93 34695.60 27268.49 32895.42 32885.87 29581.01 30493.75 304
ADS-MVSNet293.80 19593.88 18193.55 28297.87 18385.94 32594.24 34196.84 30790.07 24396.43 16394.48 31790.29 17195.37 32987.44 27797.23 16499.36 170
ET-MVSNet_ETH3D94.37 18493.28 19997.64 15398.30 15697.99 7899.99 597.61 22794.35 11171.57 35599.45 11796.23 3095.34 33096.91 14485.14 27299.59 135
CVMVSNet94.68 17494.94 15993.89 27296.80 24186.92 32199.06 23798.98 3494.45 10494.23 19799.02 14785.60 21795.31 33190.91 23995.39 20099.43 163
DTE-MVSNet89.40 28588.24 28992.88 29492.66 32389.95 29399.10 22998.22 17287.29 28485.12 31596.22 25676.27 29395.30 33283.56 30975.74 33893.41 313
IterMVS90.91 25490.17 25593.12 28996.78 24490.42 28598.89 25697.05 28789.03 25586.49 30195.42 28276.59 28995.02 33387.22 28284.09 28093.93 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 25790.16 25692.93 29396.72 24689.96 29298.89 25696.99 29288.95 26086.63 29895.67 26976.48 29095.00 33487.04 28484.04 28393.84 299
test0.0.03 193.86 19193.61 18494.64 23995.02 28392.18 24799.93 6698.58 7394.07 12387.96 28198.50 18893.90 9794.96 33581.33 32093.17 22096.78 226
UnsupCasMVSNet_bld79.97 32577.03 32888.78 32885.62 35881.98 34493.66 34697.35 25775.51 35270.79 35683.05 35748.70 36294.91 33678.31 33360.29 35989.46 355
MIMVSNet90.30 27088.67 28295.17 22396.45 24991.64 26492.39 35097.15 27585.99 30190.50 23193.19 33266.95 33494.86 33782.01 31793.43 21799.01 195
new_pmnet84.49 31482.92 31689.21 32490.03 34782.60 33996.89 32695.62 34080.59 33875.77 35189.17 34765.04 34294.79 33872.12 34781.02 30390.23 349
testgi89.01 29088.04 29191.90 30593.49 30684.89 33299.73 14795.66 33993.89 13685.14 31498.17 19959.68 35294.66 33977.73 33588.88 23696.16 232
KD-MVS_2432*160088.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
miper_refine_blended88.00 29686.10 30093.70 27896.91 23394.04 20597.17 32097.12 27784.93 31681.96 32792.41 33792.48 13394.51 34079.23 32752.68 36192.56 328
Anonymous2024052185.15 30983.81 31089.16 32588.32 35282.69 33898.80 26795.74 33679.72 34081.53 33190.99 34365.38 34094.16 34272.69 34681.11 30190.63 347
pmmvs-eth3d84.03 31681.97 31990.20 31884.15 36087.09 32098.10 30494.73 35483.05 32774.10 35387.77 35165.56 33994.01 34381.08 32269.24 34789.49 354
UnsupCasMVSNet_eth85.52 30583.99 30690.10 31989.36 35083.51 33696.65 32797.99 19589.14 25275.89 35093.83 32463.25 34693.92 34481.92 31867.90 35292.88 325
PM-MVS80.47 32278.88 32685.26 33683.79 36172.22 35995.89 33891.08 36485.71 30876.56 34888.30 34936.64 36493.90 34582.39 31469.57 34689.66 353
MDA-MVSNet_test_wron85.51 30683.32 31392.10 30290.96 34088.58 30999.20 22396.52 32279.70 34157.12 36392.69 33579.11 27393.86 34677.10 33877.46 32993.86 298
YYNet185.50 30783.33 31292.00 30390.89 34188.38 31399.22 22296.55 32179.60 34257.26 36292.72 33379.09 27493.78 34777.25 33777.37 33093.84 299
Patchmatch-RL test86.90 30085.98 30289.67 32284.45 35975.59 35789.71 35792.43 36186.89 29277.83 34490.94 34494.22 8693.63 34887.75 27569.61 34599.79 104
MDA-MVSNet-bldmvs84.09 31581.52 32191.81 30691.32 33888.00 31798.67 27795.92 33480.22 33955.60 36493.32 32968.29 33093.60 34973.76 34476.61 33693.82 301
Anonymous2023120686.32 30185.42 30389.02 32689.11 35180.53 35499.05 24195.28 34685.43 31282.82 32493.92 32374.40 30693.44 35066.99 35581.83 29493.08 322
EU-MVSNet90.14 27690.34 25089.54 32392.55 32481.06 35098.69 27598.04 19391.41 22086.59 29996.84 23980.83 25793.31 35186.20 29181.91 29394.26 258
KD-MVS_self_test83.59 31882.06 31888.20 33286.93 35580.70 35297.21 31896.38 32582.87 32982.49 32588.97 34867.63 33292.32 35273.75 34562.30 35791.58 340
test_method80.79 32179.70 32484.08 33792.83 32067.06 36299.51 18495.42 34354.34 36181.07 33493.53 32744.48 36392.22 35378.90 33177.23 33192.94 324
DSMNet-mixed88.28 29488.24 28988.42 33189.64 34975.38 35898.06 30589.86 36685.59 30988.20 27992.14 34076.15 29591.95 35478.46 33296.05 18597.92 215
CL-MVSNet_self_test84.50 31383.15 31588.53 33086.00 35781.79 34698.82 26597.35 25785.12 31483.62 32290.91 34576.66 28891.40 35569.53 35160.36 35892.40 332
FMVSNet588.32 29387.47 29590.88 31196.90 23688.39 31297.28 31795.68 33882.60 33284.67 31692.40 33979.83 26891.16 35676.39 34181.51 29693.09 321
pmmvs380.27 32377.77 32787.76 33380.32 36382.43 34198.23 29891.97 36272.74 35678.75 34187.97 35057.30 35690.99 35770.31 34962.37 35689.87 351
new-patchmatchnet81.19 32079.34 32586.76 33582.86 36280.36 35597.92 30895.27 34782.09 33472.02 35486.87 35362.81 34790.74 35871.10 34863.08 35589.19 356
MIMVSNet182.58 31980.51 32388.78 32886.68 35684.20 33596.65 32795.41 34478.75 34378.59 34292.44 33651.88 35989.76 35965.26 35978.95 31792.38 333
test20.0384.72 31283.99 30686.91 33488.19 35480.62 35398.88 25895.94 33388.36 27278.87 34094.62 31368.75 32689.11 36066.52 35675.82 33791.00 343
Gipumacopyleft66.95 32965.00 33072.79 34491.52 33667.96 36166.16 36495.15 35147.89 36358.54 36167.99 36429.74 36687.54 36150.20 36477.83 32562.87 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 32764.73 33176.87 34262.95 37156.25 36889.37 35893.74 36044.53 36461.99 35980.74 35820.42 37186.53 36269.37 35259.50 36087.84 357
PMMVS267.15 32864.15 33276.14 34370.56 36862.07 36593.89 34487.52 37058.09 36060.02 36078.32 35922.38 37084.54 36359.56 36247.03 36381.80 359
FPMVS68.72 32668.72 32968.71 34665.95 36944.27 37495.97 33794.74 35351.13 36253.26 36590.50 34625.11 36983.00 36460.80 36180.97 30578.87 360
PMVScopyleft49.05 2353.75 33251.34 33660.97 34940.80 37534.68 37574.82 36389.62 36837.55 36628.67 37272.12 3617.09 37581.63 36543.17 36768.21 35166.59 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 33062.94 33372.13 34544.90 37450.03 37081.05 36189.42 36938.45 36548.51 36799.90 1954.09 35878.70 36691.84 22418.26 36887.64 358
MVEpermissive53.74 2251.54 33447.86 33862.60 34859.56 37250.93 36979.41 36277.69 37235.69 36836.27 37061.76 3685.79 37769.63 36737.97 36836.61 36467.24 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33152.24 33467.66 34749.27 37356.82 36783.94 36082.02 37170.47 35733.28 37164.54 36517.23 37369.16 36845.59 36623.85 36777.02 361
E-PMN52.30 33352.18 33552.67 35071.51 36645.40 37193.62 34776.60 37336.01 36743.50 36864.13 36627.11 36867.31 36931.06 36926.06 36545.30 368
EMVS51.44 33551.22 33752.11 35170.71 36744.97 37394.04 34375.66 37435.34 36942.40 36961.56 36928.93 36765.87 37027.64 37024.73 36645.49 367
wuyk23d20.37 33920.84 34218.99 35465.34 37027.73 37650.43 3657.67 3789.50 3728.01 3736.34 3726.13 37626.24 37123.40 37110.69 3702.99 369
test12337.68 33739.14 34033.31 35219.94 37624.83 37798.36 2929.75 37715.53 37151.31 36687.14 35219.62 37217.74 37247.10 3653.47 37157.36 365
testmvs40.60 33644.45 33929.05 35319.49 37714.11 37899.68 15518.47 37620.74 37064.59 35898.48 19210.95 37417.09 37356.66 36311.01 36955.94 366
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.02 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.43 33831.24 3410.00 3550.00 3780.00 3790.00 36698.09 1880.00 3730.00 37499.67 9883.37 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.60 34110.13 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37491.20 1550.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.28 34011.04 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.40 1210.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3740.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.92 3697.66 9199.95 4398.36 14895.58 7299.52 53
test_one_060199.94 1499.30 1198.41 13296.63 3999.75 2799.93 1197.49 9
eth-test20.00 378
eth-test0.00 378
RE-MVS-def98.13 5699.79 7596.37 14099.76 13698.31 15894.43 10699.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
IU-MVS99.93 2799.31 998.41 13297.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13697.66 10
test072699.93 2799.29 1499.96 2598.42 12897.28 1899.86 499.94 497.22 18
GSMVS99.59 135
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 135
sam_mvs94.25 85
MTGPAbinary98.28 163
MTMP99.87 9296.49 323
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
test_prior498.05 7599.94 60
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
新几何299.40 198
旧先验199.76 7997.52 9698.64 6399.85 3595.63 4299.94 6199.99 24
原ACMM299.90 78
test22299.55 9997.41 10799.34 20898.55 8391.86 20399.27 7599.83 5193.84 9999.95 5599.99 24
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior795.71 27091.59 266
plane_prior695.76 26591.72 26180.47 264
plane_prior498.59 183
plane_prior391.64 26496.63 3993.01 209
plane_prior299.84 11096.38 47
plane_prior195.73 267
plane_prior91.74 25899.86 10396.76 3589.59 228
n20.00 379
nn0.00 379
door-mid89.69 367
test1198.44 108
door90.31 365
HQP5-MVS91.85 254
HQP-NCC95.78 26199.87 9296.82 3193.37 205
ACMP_Plane95.78 26199.87 9296.82 3193.37 205
BP-MVS97.92 115
HQP3-MVS97.89 20689.60 226
HQP2-MVS80.65 260
NP-MVS95.77 26491.79 25698.65 179
MDTV_nov1_ep13_2view96.26 14396.11 33491.89 20298.06 12794.40 7494.30 18599.67 120
ACMMP++_ref87.04 259
ACMMP++88.23 248
Test By Simon92.82 126