This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_241102_ONE89.48 1756.89 2988.94 3057.53 22784.61 493.29 2458.81 1196.45 1
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22381.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 27
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 21581.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 37
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21583.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 31
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22984.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_TWO88.76 3957.50 22983.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 30
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 35
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19171.82 8190.05 9359.72 996.04 1078.37 5188.40 1493.75 9
API-MVS74.17 8972.07 11080.49 2590.02 1158.55 887.30 7584.27 13757.51 22865.77 13687.77 14141.61 16095.97 1151.71 24682.63 6086.94 168
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
QAPM71.88 12969.33 15279.52 4082.20 13954.30 9286.30 9888.77 3856.61 24759.72 20787.48 14533.90 25395.36 1347.48 27481.49 7188.90 127
gm-plane-assit83.24 10954.21 9570.91 2288.23 13095.25 1466.37 125
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20565.37 13991.48 6345.72 10095.05 1672.11 9689.52 1093.44 11
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12370.54 10092.33 4141.05 16494.95 1757.90 19986.55 3291.00 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bld_raw_dy_0_6475.36 7473.18 8781.89 1187.91 4057.01 2486.77 9067.69 35178.56 165.01 14493.99 722.18 34094.84 1984.07 1772.45 15993.82 7
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22874.74 683.40 894.00 621.51 34594.70 2184.07 1789.68 793.82 7
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 11974.63 4890.83 7441.38 16394.40 2275.42 7379.90 9094.72 2
IB-MVS68.87 274.01 9072.03 11379.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19381.74 22953.21 3694.28 2360.45 17462.41 24990.03 102
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25981.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
3Dnovator64.70 674.46 8472.48 9780.41 2882.84 12555.40 5983.08 19888.61 4567.61 5159.85 20588.66 11934.57 24693.97 2658.42 18988.70 1291.85 51
VDDNet74.37 8672.13 10881.09 2179.58 19656.52 3790.02 2786.70 7752.61 28671.23 8987.20 15031.75 27593.96 2774.30 8375.77 12792.79 26
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 33
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21273.60 5793.31 2343.14 14093.79 2973.81 8688.53 1392.37 34
CHOSEN 1792x268876.24 5874.03 8282.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14783.49 19641.52 16293.69 3070.55 10181.82 6892.12 40
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5692.75 3446.88 8593.28 3178.79 4884.07 5491.50 62
MVS_030481.58 982.05 780.20 3182.36 13654.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 29
DPM-MVS82.39 482.36 682.49 580.12 19059.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
FA-MVS(test-final)69.00 17866.60 19776.19 12383.48 10147.96 25174.73 29982.07 17857.27 23362.18 18578.47 26036.09 22992.89 3553.76 23271.32 17187.73 155
MS-PatchMatch72.34 11971.26 12175.61 13682.38 13555.55 5388.00 5589.95 1965.38 8356.51 26780.74 24032.28 26892.89 3557.95 19888.10 1578.39 307
OpenMVScopyleft61.00 1169.99 16167.55 18077.30 9478.37 22454.07 9984.36 15785.76 9357.22 23456.71 26387.67 14330.79 28192.83 3743.04 29884.06 5585.01 207
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21771.19 9089.20 10942.03 15492.77 3869.41 10675.07 13892.01 45
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8572.37 7689.34 10632.52 26592.76 4077.90 5875.96 12492.22 39
9.1478.19 2785.67 5988.32 5188.84 3659.89 17474.58 5092.62 3746.80 8692.66 4181.40 3685.62 40
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9588.04 13655.82 2292.65 4269.61 10575.00 14092.05 43
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25478.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 88
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9488.09 13257.29 1592.63 4469.24 10875.13 13691.91 48
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 16955.31 6189.76 3486.91 7262.94 12471.65 8291.56 6142.33 14792.56 4577.14 6283.69 5690.15 98
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051573.64 10072.20 10577.97 8081.63 15353.01 12786.69 9288.81 3762.53 13164.06 16085.65 16852.15 4492.50 4658.43 18769.84 18388.39 142
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19692.50 4682.75 2486.25 3491.57 58
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 14980.26 2393.10 2746.53 9092.41 4879.97 3988.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7791.72 5553.44 3592.37 4966.28 12775.42 13093.28 15
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9988.37 12457.69 1492.30 5075.25 7576.24 12391.20 71
EI-MVSNet-Vis-set73.19 10672.60 9574.99 16082.56 13349.80 19682.55 21189.00 2866.17 6965.89 13388.98 11243.83 12692.29 5165.38 13969.01 18982.87 248
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20192.28 5282.73 2585.71 3891.57 58
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9073.52 5988.09 13248.07 7292.19 5362.24 15584.53 5191.53 60
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24874.26 5391.60 6054.26 3192.16 5475.87 6779.91 8993.05 21
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8866.06 13089.88 9643.79 12892.16 5475.03 7680.03 8889.64 110
DP-MVS Recon71.99 12670.31 13677.01 10390.65 853.44 11189.37 3882.97 16756.33 25163.56 17189.47 10334.02 25192.15 5654.05 22972.41 16085.43 202
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10390.24 8560.20 792.10 5784.14 1580.40 8192.82 24
Anonymous2024052969.71 16667.28 18577.00 10483.78 9650.36 18288.87 4685.10 11647.22 31864.03 16283.37 19827.93 29792.10 5757.78 20267.44 20188.53 140
cascas69.01 17766.13 20677.66 8579.36 19855.41 5886.99 8383.75 14956.69 24558.92 22581.35 23424.31 32592.10 5753.23 23370.61 17785.46 201
FE-MVS64.15 24760.43 26875.30 15080.85 17649.86 19468.28 34078.37 25550.26 30359.31 21773.79 30926.19 31091.92 6040.19 30666.67 20684.12 218
EI-MVSNet-UG-set72.37 11871.73 11474.29 17381.60 15549.29 20881.85 22688.64 4265.29 8765.05 14288.29 12943.18 13891.83 6163.74 14567.97 19681.75 259
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 28
baseline275.15 7974.54 7676.98 10681.67 15251.74 15283.84 17391.94 369.97 2858.98 22286.02 16459.73 891.73 6368.37 11370.40 18087.48 160
Effi-MVS+75.24 7673.61 8480.16 3381.92 14257.42 1985.21 12776.71 28360.68 16673.32 6289.34 10647.30 8091.63 6468.28 11479.72 9291.42 63
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9168.56 10990.53 7845.79 9991.58 6567.21 12082.18 6591.20 71
Anonymous20240521170.11 15567.88 17176.79 11387.20 4547.24 26489.49 3677.38 27154.88 26866.14 12886.84 15520.93 34891.54 6656.45 21571.62 16791.59 56
thisisatest053070.47 15368.56 15976.20 12279.78 19451.52 15883.49 18488.58 4757.62 22658.60 23182.79 20551.03 5191.48 6752.84 23862.36 25185.59 200
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 17955.02 7286.39 9586.71 7666.96 5767.91 11389.97 9548.03 7391.41 6975.60 7084.14 5389.96 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20374.63 4892.38 4047.75 7691.35 7078.18 5586.85 2691.15 73
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6891.98 5245.10 10891.27 7175.02 7784.56 5090.84 80
3Dnovator+62.71 772.29 12170.50 13177.65 8683.40 10551.29 16487.32 7386.40 8259.01 19858.49 23588.32 12832.40 26691.27 7157.04 20882.15 6690.38 89
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9288.70 11855.19 2491.24 7365.18 14076.32 12291.29 69
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18654.44 9087.76 6285.46 9771.67 1671.38 8788.35 12651.58 4591.22 7479.02 4479.89 9191.83 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t69.87 16467.88 17175.85 13288.38 2952.35 14086.94 8583.68 15053.70 27755.68 27385.60 16930.07 28691.20 7555.84 21871.02 17383.99 223
ZD-MVS89.55 1453.46 10884.38 13457.02 23773.97 5591.03 6644.57 12191.17 7675.41 7481.78 70
h-mvs3373.95 9172.89 9377.15 9980.17 18950.37 18184.68 14983.33 15668.08 4071.97 7988.65 12242.50 14591.15 7778.82 4657.78 28989.91 106
EC-MVSNet75.30 7575.20 6575.62 13580.98 16949.00 21487.43 7084.68 12863.49 11470.97 9390.15 9142.86 14491.14 7874.33 8281.90 6786.71 177
test1279.24 4486.89 4756.08 4585.16 11372.27 7847.15 8291.10 7985.93 3690.54 86
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17767.85 11490.55 7742.23 14991.02 8072.66 9485.29 4489.87 107
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14254.67 8584.06 16785.35 10261.10 15572.99 6591.50 6240.25 17291.00 8176.84 6386.98 2490.51 87
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9146.77 8791.00 8173.52 8878.46 10293.44 11
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7591.62 5945.53 10290.99 8374.48 8082.51 6191.23 70
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
HFP-MVS74.37 8673.13 9278.10 7884.30 8453.68 10485.58 11684.36 13556.82 24165.78 13590.56 7640.70 17090.90 8569.18 10980.88 7489.71 108
iter_conf0573.51 10272.24 10477.33 9287.93 3955.97 4887.90 6170.81 33368.72 3564.04 16184.36 18347.54 7890.87 8671.11 9967.75 19985.13 205
MSDG59.44 28355.14 30372.32 22174.69 27750.71 16974.39 30273.58 31144.44 33843.40 34577.52 26819.45 35290.87 8631.31 34557.49 29175.38 335
GST-MVS74.87 8273.90 8377.77 8383.30 10753.45 11085.75 11085.29 10659.22 19066.50 12689.85 9740.94 16590.76 8870.94 10083.35 5789.10 124
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24374.48 5191.81 5343.72 13190.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33888.45 4968.73 10887.45 14659.15 1090.67 9054.83 22287.67 1792.03 44
ETV-MVS77.17 4576.74 4678.48 6881.80 14554.55 8886.13 10185.33 10368.20 3973.10 6490.52 7945.23 10790.66 9179.37 4180.95 7390.22 94
MSLP-MVS++74.21 8872.25 10380.11 3681.45 16256.47 3886.32 9779.65 22458.19 21166.36 12792.29 4236.11 22890.66 9167.39 11882.49 6293.18 19
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20670.75 9590.85 7343.10 14290.63 9370.50 10284.51 5290.24 93
CLD-MVS75.60 7175.39 6376.24 11980.69 18052.40 13890.69 2486.20 8674.40 865.01 14488.93 11342.05 15390.58 9476.57 6473.96 14685.73 195
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline76.86 5176.24 5378.71 6080.47 18554.20 9783.90 17184.88 12171.38 2071.51 8589.15 11150.51 5690.55 9575.71 6878.65 10091.39 64
EI-MVSNet69.70 16868.70 15872.68 21175.00 27448.90 21879.54 26887.16 6861.05 15663.88 16683.74 19145.87 9790.44 9657.42 20664.68 22478.70 300
MVSTER73.25 10572.33 10076.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16681.66 23052.77 3890.44 9664.66 14264.69 22383.84 230
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8892.75 3445.52 10390.37 9871.15 9885.14 4591.91 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18754.66 8687.06 8285.88 9072.11 1471.57 8488.63 12350.89 5590.35 9976.00 6679.11 9791.63 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051768.33 19266.29 20274.46 16678.08 22649.06 21080.88 25289.08 2754.40 27354.75 28180.77 23951.31 4890.33 10049.35 26158.01 28383.99 223
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27674.91 4691.68 5743.80 12790.31 10174.36 8181.82 6888.87 129
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH53.70 1659.78 28155.94 29971.28 24576.59 24948.35 23580.15 26476.11 28949.74 30541.91 35173.45 31716.50 36790.31 10131.42 34457.63 29075.17 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet70.08 15768.01 16876.27 11884.21 8851.22 16687.29 7679.33 23658.96 20063.63 16986.77 15633.29 25990.30 10344.63 29173.96 14687.30 165
region2R73.75 9672.55 9677.33 9283.90 9452.98 12885.54 12084.09 14256.83 24065.10 14190.45 8037.34 21090.24 10468.89 11180.83 7688.77 133
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11790.23 10580.83 3780.09 8592.08 41
ACMMPR73.76 9572.61 9477.24 9883.92 9352.96 12985.58 11684.29 13656.82 24165.12 14090.45 8037.24 21290.18 10669.18 10980.84 7588.58 137
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5549.32 6890.17 10773.46 8982.77 5991.69 53
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6555.43 2390.09 10885.01 1280.40 8191.99 47
MVP-Stereo70.97 14370.44 13272.59 21376.03 26051.36 16185.02 13786.99 7160.31 17056.53 26678.92 25640.11 17690.00 10960.00 17890.01 676.41 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jason77.01 4776.45 4978.69 6179.69 19554.74 7990.56 2583.99 14668.26 3874.10 5490.91 7142.14 15189.99 11079.30 4279.12 9691.36 66
jason: jason.
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
EG-PatchMatch MVS62.40 26959.59 27370.81 25473.29 29449.05 21185.81 10684.78 12451.85 29344.19 34073.48 31615.52 37089.85 11340.16 30767.24 20273.54 350
XXY-MVS70.18 15469.28 15472.89 20877.64 23242.88 31685.06 13487.50 6662.58 13062.66 18182.34 22243.64 13389.83 11458.42 18963.70 23285.96 191
XVS72.92 10871.62 11576.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 16489.63 10135.50 23589.78 11565.50 13180.50 7988.16 143
X-MVStestdata65.85 24162.20 24976.81 11083.41 10252.48 13584.88 14383.20 16258.03 21363.91 1644.82 40635.50 23589.78 11565.50 13180.50 7988.16 143
PGM-MVS72.60 11471.20 12376.80 11282.95 12052.82 13183.07 19982.14 17656.51 24963.18 17389.81 9835.68 23489.76 11767.30 11980.19 8487.83 152
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28049.51 20381.82 22874.08 30566.52 6380.40 2293.46 1946.95 8489.72 11886.69 775.30 13187.61 158
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 84
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29066.70 12087.07 15340.15 17589.70 11951.23 25085.06 4784.10 219
TR-MVS69.71 16667.85 17475.27 15382.94 12148.48 23187.40 7280.86 20157.15 23664.61 15187.08 15232.67 26489.64 12146.38 28271.55 16987.68 157
131471.11 14069.41 14976.22 12079.32 20050.49 17580.23 26285.14 11559.44 18358.93 22488.89 11533.83 25589.60 12261.49 16177.42 11088.57 138
SDMVSNet71.89 12870.62 13075.70 13481.70 14951.61 15473.89 30488.72 4066.58 6061.64 19182.38 21937.63 20189.48 12377.44 6065.60 21786.01 187
baseline172.51 11772.12 10973.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 14987.97 13755.00 2889.48 12359.07 18156.05 30287.13 167
PAPR75.20 7874.13 7878.41 7188.31 3255.10 7084.31 15985.66 9463.76 10667.55 11590.73 7543.48 13689.40 12566.36 12677.03 11190.73 82
HY-MVS67.03 573.90 9273.14 9076.18 12484.70 7747.36 26075.56 29286.36 8366.27 6770.66 9883.91 18851.05 5089.31 12667.10 12172.61 15891.88 50
fmvsm_s_conf0.5_n74.48 8374.12 7975.56 13876.96 24647.85 25385.32 12469.80 34164.16 9778.74 2993.48 1845.51 10489.29 12786.48 866.62 20789.55 112
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10787.94 13856.42 1989.24 12856.54 21174.75 14291.07 75
PAPM_NR71.80 13169.98 14377.26 9781.54 15953.34 11678.60 27885.25 10953.46 27960.53 20188.66 11945.69 10189.24 12856.49 21279.62 9589.19 121
fmvsm_s_conf0.1_n73.80 9473.26 8675.43 14373.28 29547.80 25484.57 15469.43 34363.34 11678.40 3293.29 2444.73 12089.22 13085.99 966.28 21489.26 117
ECVR-MVScopyleft71.81 13071.00 12574.26 17480.12 19043.49 30884.69 14882.16 17564.02 9964.64 14987.43 14735.04 24189.21 13161.24 16379.66 9390.08 100
mvsmamba66.93 22764.88 23473.09 20275.06 27247.26 26283.36 19169.21 34462.64 12955.68 27381.43 23329.72 28789.20 13263.35 14863.50 23482.79 249
EPP-MVSNet71.14 13870.07 14274.33 17179.18 20446.52 27183.81 17486.49 7956.32 25257.95 24184.90 17954.23 3289.14 13358.14 19469.65 18687.33 163
CostFormer73.89 9372.30 10278.66 6382.36 13656.58 3375.56 29285.30 10566.06 7370.50 10176.88 28157.02 1689.06 13468.27 11568.74 19190.33 90
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11292.89 23
Fast-Effi-MVS+72.73 11271.15 12477.48 8982.75 12754.76 7886.77 9080.64 20463.05 12265.93 13284.01 18644.42 12289.03 13656.45 21576.36 12188.64 135
MTAPA72.73 11271.22 12277.27 9681.54 15953.57 10667.06 34481.31 19359.41 18468.39 11090.96 7036.07 23089.01 13773.80 8782.45 6389.23 119
gg-mvs-nofinetune67.43 21164.53 23776.13 12585.95 5347.79 25564.38 35088.28 5139.34 35366.62 12241.27 38758.69 1389.00 13849.64 25986.62 3091.59 56
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6182.76 20650.44 5789.00 13865.90 12980.61 7791.64 54
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16452.65 13484.34 15884.46 13361.16 15369.14 10491.76 5439.98 17988.99 14078.19 5384.89 4889.48 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v2v48269.55 17167.64 17775.26 15472.32 30853.83 10084.93 14281.94 18065.37 8460.80 19879.25 25241.62 15988.98 14163.03 15059.51 26482.98 246
Anonymous2023121166.08 23963.67 24273.31 19983.07 11548.75 22286.01 10584.67 12945.27 33256.54 26576.67 28428.06 29688.95 14252.78 24059.95 25982.23 253
v114468.81 18266.82 19074.80 16272.34 30753.46 10884.68 14981.77 18764.25 9560.28 20277.91 26340.23 17388.95 14260.37 17559.52 26381.97 255
AdaColmapbinary67.86 19965.48 22275.00 15988.15 3654.99 7386.10 10276.63 28549.30 30757.80 24486.65 15929.39 29088.94 14445.10 28870.21 18181.06 277
fmvsm_s_conf0.5_n_a73.68 9973.15 8875.29 15175.45 26848.05 24683.88 17268.84 34663.43 11578.60 3093.37 2245.32 10588.92 14585.39 1164.04 22788.89 128
fmvsm_s_conf0.1_n_a72.82 11172.05 11175.12 15670.95 32247.97 24982.72 20568.43 34862.52 13278.17 3393.08 3044.21 12388.86 14684.82 1363.54 23388.54 139
PS-MVSNAJss68.78 18467.17 18773.62 19573.01 29848.33 23884.95 14184.81 12359.30 18958.91 22679.84 24637.77 19688.86 14662.83 15163.12 24483.67 233
MP-MVScopyleft74.99 8174.33 7776.95 10782.89 12353.05 12685.63 11583.50 15557.86 21967.25 11790.24 8543.38 13788.85 14876.03 6582.23 6488.96 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250672.91 10972.43 9974.32 17280.12 19044.18 30383.19 19584.77 12564.02 9965.97 13187.43 14747.67 7788.72 14959.08 18079.66 9390.08 100
ab-mvs70.65 14969.11 15575.29 15180.87 17546.23 27973.48 30885.24 11059.99 17366.65 12180.94 23743.13 14188.69 15063.58 14668.07 19490.95 78
v119267.96 19865.74 21774.63 16371.79 31053.43 11384.06 16780.99 20063.19 12059.56 21177.46 27037.50 20788.65 15158.20 19358.93 27081.79 258
HQP-MVS72.34 11971.44 11975.03 15879.02 20751.56 15688.00 5583.68 15065.45 7964.48 15485.13 17337.35 20888.62 15266.70 12273.12 15284.91 209
HQP4-MVS64.47 15788.61 15384.91 209
TEST985.68 5755.42 5687.59 6784.00 14457.72 22272.99 6590.98 6844.87 11588.58 154
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22072.99 6590.98 6844.99 11188.58 15478.19 5385.32 4391.34 68
ACMMPcopyleft70.81 14769.29 15375.39 14581.52 16151.92 14883.43 18583.03 16556.67 24658.80 22988.91 11431.92 27388.58 15465.89 13073.39 15085.67 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS59.24 28556.12 29768.63 28488.24 3450.35 18382.51 21264.43 35841.10 35146.70 33478.77 25724.75 32288.57 15722.26 37756.29 29966.96 370
CP-MVS72.59 11671.46 11876.00 13082.93 12252.32 14186.93 8682.48 17355.15 26363.65 16890.44 8335.03 24288.53 15868.69 11277.83 10687.15 166
tpm270.82 14668.44 16177.98 7980.78 17756.11 4474.21 30381.28 19560.24 17168.04 11275.27 29952.26 4388.50 15955.82 21968.03 19589.33 116
OPM-MVS70.75 14869.58 14774.26 17475.55 26751.34 16286.05 10383.29 16061.94 14162.95 17785.77 16734.15 25088.44 16065.44 13771.07 17282.99 245
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v867.25 21664.99 23274.04 17972.89 30153.31 11882.37 21680.11 21361.54 14754.29 28676.02 29542.89 14388.41 16158.43 18756.36 29580.39 286
GA-MVS69.04 17666.70 19476.06 12775.11 27052.36 13983.12 19780.23 21163.32 11760.65 20079.22 25330.98 28088.37 16261.25 16266.41 21087.46 161
HPM-MVScopyleft72.60 11471.50 11775.89 13182.02 14051.42 16080.70 25583.05 16456.12 25364.03 16289.53 10237.55 20488.37 16270.48 10380.04 8787.88 151
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmvis_n_192071.29 13770.38 13474.00 18171.04 32148.79 22179.19 27464.62 35762.75 12666.73 11991.99 5040.94 16588.35 16483.00 2273.18 15184.85 211
test_885.72 5655.31 6187.60 6683.88 14757.84 22072.84 6990.99 6744.99 11188.34 165
VPNet72.07 12571.42 12074.04 17978.64 21847.17 26589.91 3287.97 5572.56 1264.66 14885.04 17641.83 15888.33 16661.17 16460.97 25686.62 178
thres20068.71 18567.27 18673.02 20384.73 7646.76 26885.03 13687.73 6162.34 13559.87 20483.45 19743.15 13988.32 16731.25 34667.91 19783.98 225
HQP_MVS70.96 14469.91 14474.12 17777.95 22849.57 19885.76 10882.59 17163.60 11062.15 18683.28 20036.04 23188.30 16865.46 13472.34 16184.49 213
plane_prior582.59 17188.30 16865.46 13472.34 16184.49 213
mPP-MVS71.79 13270.38 13476.04 12882.65 13152.06 14384.45 15581.78 18655.59 25862.05 18889.68 10033.48 25788.28 17065.45 13678.24 10587.77 154
v1066.61 23164.20 24073.83 18772.59 30453.37 11481.88 22579.91 21861.11 15454.09 28875.60 29740.06 17788.26 17156.47 21356.10 30179.86 292
OpenMVS_ROBcopyleft53.19 1759.20 28656.00 29868.83 27971.13 32044.30 29983.64 17775.02 29946.42 32546.48 33673.03 31918.69 35688.14 17227.74 36161.80 25274.05 346
PVSNet_BlendedMVS73.42 10373.30 8573.76 18985.91 5451.83 15086.18 10084.24 14065.40 8269.09 10580.86 23846.70 8888.13 17375.43 7165.92 21681.33 272
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10589.33 10846.70 8888.13 17375.43 7181.48 7289.55 112
GeoE69.96 16267.88 17176.22 12081.11 16851.71 15384.15 16376.74 28259.83 17560.91 19684.38 18141.56 16188.10 17551.67 24770.57 17888.84 130
agg_prior85.64 6054.92 7583.61 15472.53 7488.10 175
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16556.31 4281.59 23686.41 8169.61 3181.72 1688.16 13155.09 2788.04 17774.12 8486.31 3391.09 74
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419267.86 19965.76 21674.16 17671.68 31253.09 12484.14 16480.83 20262.85 12559.21 22077.28 27339.30 18388.00 17858.67 18557.88 28781.40 269
test111171.06 14170.42 13372.97 20579.48 19741.49 32984.82 14682.74 17064.20 9662.98 17687.43 14735.20 23887.92 17958.54 18678.42 10389.49 114
v192192067.45 21065.23 22974.10 17871.51 31552.90 13083.75 17680.44 20762.48 13459.12 22177.13 27436.98 21587.90 18057.53 20458.14 28181.49 263
v7n62.50 26659.27 27772.20 22367.25 34749.83 19577.87 28280.12 21252.50 28748.80 32173.07 31832.10 26987.90 18046.83 27954.92 31278.86 298
test_fmvsmconf_n74.41 8574.05 8175.49 14274.16 28648.38 23482.66 20672.57 31867.05 5675.11 4592.88 3346.35 9187.81 18283.93 1971.71 16690.28 92
v124066.99 22464.68 23573.93 18271.38 31852.66 13383.39 18979.98 21561.97 14058.44 23877.11 27535.25 23787.81 18256.46 21458.15 27981.33 272
thres100view90066.87 22865.42 22671.24 24683.29 10843.15 31381.67 23287.78 5859.04 19755.92 27182.18 22443.73 12987.80 18428.80 35366.36 21182.78 250
tfpn200view967.57 20766.13 20671.89 23784.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21182.78 250
thres40067.40 21466.13 20671.19 24884.05 9045.07 29183.40 18787.71 6360.79 16357.79 24582.76 20643.53 13487.80 18428.80 35366.36 21180.71 282
test_fmvsmconf0.1_n73.69 9873.15 8875.34 14670.71 32348.26 23982.15 21871.83 32266.75 5974.47 5292.59 3844.89 11487.78 18783.59 2071.35 17089.97 103
v14868.24 19566.35 20073.88 18471.76 31151.47 15984.23 16181.90 18463.69 10858.94 22376.44 28643.72 13187.78 18760.63 16855.86 30582.39 252
PMMVS72.98 10772.05 11175.78 13383.57 9848.60 22584.08 16582.85 16961.62 14568.24 11190.33 8428.35 29387.78 18772.71 9376.69 11690.95 78
IS-MVSNet68.80 18367.55 18072.54 21478.50 22143.43 31081.03 24779.35 23459.12 19657.27 25886.71 15746.05 9587.70 19044.32 29375.60 12986.49 180
test_fmvsmconf0.01_n71.97 12770.95 12675.04 15766.21 34847.87 25280.35 25970.08 33865.85 7772.69 7091.68 5739.99 17887.67 19182.03 2969.66 18589.58 111
RRT_MVS63.68 25361.01 26271.70 23873.48 29145.98 28181.19 24476.08 29054.33 27452.84 29779.27 25122.21 33987.65 19254.13 22755.54 30981.46 266
V4267.66 20465.60 22173.86 18570.69 32553.63 10581.50 23978.61 25063.85 10459.49 21477.49 26937.98 19387.65 19262.33 15358.43 27480.29 287
dmvs_re67.61 20566.00 20972.42 21881.86 14443.45 30964.67 34980.00 21469.56 3260.07 20385.00 17734.71 24487.63 19451.48 24866.68 20586.17 186
sd_testset67.79 20265.95 21173.32 19881.70 14946.33 27668.99 33680.30 21066.58 6061.64 19182.38 21930.45 28387.63 19455.86 21765.60 21786.01 187
ET-MVSNet_ETH3D75.23 7774.08 8078.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29590.22 8749.71 6587.62 19672.12 9570.82 17592.82 24
TransMVSNet (Re)62.82 26260.76 26469.02 27673.98 28841.61 32786.36 9679.30 23756.90 23852.53 29976.44 28641.85 15787.60 19738.83 31040.61 36577.86 313
APD-MVS_3200maxsize69.62 17068.23 16673.80 18881.58 15748.22 24081.91 22479.50 22748.21 31364.24 15989.75 9931.91 27487.55 19863.08 14973.85 14885.64 198
WB-MVSnew69.36 17368.24 16572.72 21079.26 20249.40 20585.72 11388.85 3561.33 15064.59 15282.38 21934.57 24687.53 19946.82 28070.63 17681.22 276
Baseline_NR-MVSNet65.49 24364.27 23969.13 27574.37 28441.65 32683.39 18978.85 24159.56 18059.62 21076.88 28140.75 16787.44 20049.99 25555.05 31178.28 309
VPA-MVSNet71.12 13970.66 12972.49 21678.75 21344.43 29887.64 6590.02 1763.97 10265.02 14381.58 23242.14 15187.42 20163.42 14763.38 23885.63 199
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25748.34 23685.24 12670.62 33463.13 12181.45 1893.62 1649.98 6287.40 20287.76 676.77 11590.20 96
PVSNet_Blended_VisFu73.40 10472.44 9876.30 11781.32 16654.70 8285.81 10678.82 24363.70 10764.53 15385.38 17247.11 8387.38 20367.75 11777.55 10786.81 176
BH-w/o70.02 15968.51 16074.56 16482.77 12650.39 17986.60 9478.14 25859.77 17659.65 20885.57 17039.27 18487.30 20449.86 25774.94 14185.99 189
PCF-MVS61.03 1070.10 15668.40 16275.22 15577.15 24451.99 14579.30 27382.12 17756.47 25061.88 18986.48 16243.98 12487.24 20555.37 22072.79 15786.43 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26148.44 23384.98 13871.08 33063.50 11381.70 1793.52 1750.00 6087.18 20687.80 576.87 11490.32 91
PAPM76.76 5376.07 5578.81 5680.20 18859.11 686.86 8886.23 8568.60 3670.18 10288.84 11651.57 4687.16 20765.48 13386.68 2990.15 98
SR-MVS70.92 14569.73 14674.50 16583.38 10650.48 17684.27 16079.35 23448.96 31066.57 12590.45 8033.65 25687.11 20866.42 12474.56 14385.91 192
BH-untuned68.28 19366.40 19973.91 18381.62 15450.01 19085.56 11877.39 27057.63 22557.47 25583.69 19336.36 22687.08 20944.81 28973.08 15584.65 212
EPMVS68.45 18965.44 22577.47 9084.91 7456.17 4371.89 32481.91 18361.72 14460.85 19772.49 32436.21 22787.06 21047.32 27571.62 16789.17 122
LPG-MVS_test66.44 23464.58 23672.02 22774.42 28248.60 22583.07 19980.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
LGP-MVS_train72.02 22774.42 28248.60 22580.64 20454.69 27053.75 29183.83 18925.73 31486.98 21160.33 17664.71 22180.48 284
HyFIR lowres test69.94 16367.58 17877.04 10177.11 24557.29 2081.49 24179.11 23958.27 21058.86 22780.41 24142.33 14786.96 21361.91 15868.68 19286.87 170
AUN-MVS68.20 19666.35 20073.76 18976.37 25047.45 25879.52 27079.52 22660.98 15862.34 18286.02 16436.59 22586.94 21462.32 15453.47 32586.89 169
hse-mvs271.44 13670.68 12873.73 19176.34 25147.44 25979.45 27179.47 22968.08 4071.97 7986.01 16642.50 14586.93 21578.82 4653.46 32686.83 175
thres600view766.46 23365.12 23070.47 25783.41 10243.80 30682.15 21887.78 5859.37 18556.02 27082.21 22343.73 12986.90 21626.51 36564.94 22080.71 282
tfpnnormal61.47 27459.09 27868.62 28576.29 25541.69 32581.14 24685.16 11354.48 27251.32 30773.63 31432.32 26786.89 21721.78 37955.71 30777.29 319
FMVSNet368.84 18067.40 18373.19 20185.05 7148.53 22885.71 11485.36 10160.90 16257.58 25079.15 25442.16 15086.77 21847.25 27663.40 23584.27 217
pm-mvs164.12 24862.56 24668.78 28171.68 31238.87 34182.89 20381.57 18855.54 26053.89 29077.82 26537.73 19986.74 21948.46 26953.49 32480.72 281
tpm cat166.28 23562.78 24576.77 11481.40 16357.14 2270.03 33177.19 27353.00 28358.76 23070.73 34046.17 9286.73 22043.27 29764.46 22586.44 181
FMVSNet267.57 20765.79 21572.90 20682.71 12847.97 24985.15 12984.93 11958.55 20756.71 26378.26 26136.72 22286.67 22146.15 28462.94 24684.07 220
xiu_mvs_v1_base_debu71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
xiu_mvs_v1_base_debi71.60 13370.29 13775.55 13977.26 24053.15 12185.34 12179.37 23055.83 25572.54 7190.19 8822.38 33686.66 22273.28 9076.39 11886.85 172
nrg03072.27 12371.56 11674.42 16875.93 26250.60 17286.97 8483.21 16162.75 12667.15 11884.38 18150.07 5986.66 22271.19 9762.37 25085.99 189
tpmvs62.45 26859.42 27571.53 24383.93 9254.32 9170.03 33177.61 26651.91 29153.48 29468.29 34837.91 19486.66 22233.36 33658.27 27773.62 349
UA-Net67.32 21566.23 20470.59 25678.85 21141.23 33273.60 30675.45 29661.54 14766.61 12384.53 18038.73 18986.57 22742.48 30374.24 14483.98 225
test_040256.45 30853.03 31266.69 30276.78 24850.31 18581.76 22969.61 34242.79 34743.88 34172.13 33022.82 33486.46 22816.57 38950.94 33363.31 378
cl____67.43 21165.93 21271.95 23376.33 25248.02 24782.58 20879.12 23861.30 15256.72 26276.92 27946.12 9386.44 22957.98 19656.31 29781.38 271
DIV-MVS_self_test67.43 21165.93 21271.94 23476.33 25248.01 24882.57 20979.11 23961.31 15156.73 26176.92 27946.09 9486.43 23057.98 19656.31 29781.39 270
tt080563.39 25661.31 25869.64 27069.36 33238.87 34178.00 28085.48 9548.82 31155.66 27681.66 23024.38 32486.37 23149.04 26459.36 26783.68 232
GBi-Net67.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
test167.09 22165.47 22371.96 23082.71 12846.36 27383.52 17883.31 15758.55 20757.58 25076.23 29036.72 22286.20 23247.25 27663.40 23583.32 236
FMVSNet164.57 24462.11 25071.96 23077.32 23846.36 27383.52 17883.31 15752.43 28854.42 28476.23 29027.80 29986.20 23242.59 30261.34 25583.32 236
MDTV_nov1_ep1361.56 25481.68 15155.12 6872.41 31678.18 25759.19 19158.85 22869.29 34534.69 24586.16 23536.76 32162.96 245
MVSFormer73.53 10172.19 10677.57 8783.02 11755.24 6381.63 23381.44 19150.28 30076.67 4090.91 7144.82 11786.11 23660.83 16680.09 8591.36 66
test_djsdf63.84 25061.56 25470.70 25568.78 33644.69 29581.63 23381.44 19150.28 30052.27 30276.26 28926.72 30686.11 23660.83 16655.84 30681.29 275
pmmvs659.64 28257.15 28967.09 29666.01 34936.86 35080.50 25678.64 24845.05 33449.05 31973.94 30827.28 30286.10 23843.96 29549.94 33678.31 308
ACMP61.11 966.24 23764.33 23872.00 22974.89 27649.12 20983.18 19679.83 21955.41 26152.29 30182.68 21025.83 31286.10 23860.89 16563.94 23080.78 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS-dyc-post68.27 19466.87 18972.48 21780.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10431.17 27986.09 24060.52 17272.06 16483.19 241
diffmvspermissive75.11 8074.65 7576.46 11678.52 22053.35 11583.28 19379.94 21670.51 2571.64 8388.72 11746.02 9686.08 24177.52 5975.75 12889.96 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM58.35 1264.35 24662.01 25171.38 24474.21 28548.51 22982.25 21779.66 22347.61 31654.54 28380.11 24225.26 31786.00 24251.26 24963.16 24279.64 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast67.86 19966.28 20372.61 21280.67 18148.34 23681.18 24575.95 29250.81 29959.55 21288.05 13527.86 29885.98 24358.83 18373.58 14983.51 234
ACMH+54.58 1558.55 29755.24 30168.50 28874.68 27845.80 28580.27 26070.21 33747.15 31942.77 34875.48 29816.73 36685.98 24335.10 33154.78 31473.72 348
NR-MVSNet67.25 21665.99 21071.04 25173.27 29643.91 30485.32 12484.75 12666.05 7453.65 29382.11 22545.05 10985.97 24547.55 27356.18 30083.24 239
Vis-MVSNetpermissive70.61 15069.34 15174.42 16880.95 17448.49 23086.03 10477.51 26858.74 20465.55 13887.78 14034.37 24885.95 24652.53 24480.61 7788.80 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet_DTU73.71 9773.14 9075.40 14482.61 13250.05 18984.67 15179.36 23369.72 3075.39 4390.03 9429.41 28985.93 24767.99 11679.11 9790.22 94
Fast-Effi-MVS+-dtu66.53 23264.10 24173.84 18672.41 30652.30 14284.73 14775.66 29359.51 18156.34 26879.11 25528.11 29585.85 24857.74 20363.29 23983.35 235
eth_miper_zixun_eth66.98 22565.28 22872.06 22675.61 26650.40 17881.00 24876.97 28062.00 13856.99 26076.97 27744.84 11685.58 24958.75 18454.42 31780.21 288
TranMVSNet+NR-MVSNet66.94 22665.61 22070.93 25373.45 29243.38 31183.02 20184.25 13865.31 8658.33 23981.90 22839.92 18085.52 25049.43 26054.89 31383.89 229
sss70.49 15170.13 14171.58 24281.59 15639.02 34080.78 25484.71 12759.34 18666.61 12388.09 13237.17 21385.52 25061.82 16071.02 17390.20 96
jajsoiax63.21 25860.84 26370.32 26168.33 34144.45 29781.23 24381.05 19753.37 28150.96 31177.81 26617.49 36285.49 25259.31 17958.05 28281.02 278
mvs_tets62.96 26160.55 26570.19 26268.22 34444.24 30280.90 25180.74 20352.99 28450.82 31377.56 26716.74 36585.44 25359.04 18257.94 28480.89 279
FIs70.00 16070.24 14069.30 27477.93 23038.55 34383.99 16987.72 6266.86 5857.66 24884.17 18552.28 4285.31 25452.72 24368.80 19084.02 221
mvs_anonymous72.29 12170.74 12776.94 10882.85 12454.72 8178.43 27981.54 18963.77 10561.69 19079.32 25051.11 4985.31 25462.15 15775.79 12690.79 81
RPMNet59.29 28454.25 30774.42 16873.97 28956.57 3460.52 36376.98 27735.72 36557.49 25358.87 37337.73 19985.26 25627.01 36459.93 26081.42 267
UniMVSNet (Re)67.71 20366.80 19170.45 25874.44 28142.93 31582.42 21584.90 12063.69 10859.63 20980.99 23647.18 8185.23 25751.17 25156.75 29483.19 241
cl2268.85 17967.69 17672.35 22078.07 22749.98 19182.45 21478.48 25362.50 13358.46 23677.95 26249.99 6185.17 25862.55 15258.72 27181.90 257
miper_enhance_ethall69.77 16568.90 15772.38 21978.93 21049.91 19283.29 19278.85 24164.90 8959.37 21579.46 24852.77 3885.16 25963.78 14458.72 27182.08 254
无先验85.19 12878.00 26049.08 30885.13 26052.78 24087.45 162
UGNet68.71 18567.11 18873.50 19780.55 18447.61 25684.08 16578.51 25259.45 18265.68 13782.73 20923.78 32785.08 26152.80 23976.40 11787.80 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 18767.58 17872.08 22576.91 24749.48 20482.47 21378.45 25462.68 12858.28 24077.88 26450.90 5285.01 26261.91 15858.72 27181.75 259
c3_l67.97 19766.66 19571.91 23676.20 25649.31 20782.13 22078.00 26061.99 13957.64 24976.94 27849.41 6684.93 26360.62 16957.01 29381.49 263
PatchmatchNetpermissive67.07 22363.63 24377.40 9183.10 11258.03 972.11 32277.77 26358.85 20159.37 21570.83 33737.84 19584.93 26342.96 29969.83 18489.26 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_post16.22 40237.52 20584.72 265
SixPastTwentyTwo54.37 31750.10 32667.21 29570.70 32441.46 33074.73 29964.69 35647.56 31739.12 36169.49 34318.49 35984.69 26631.87 34234.20 37975.48 334
UniMVSNet_NR-MVSNet68.82 18168.29 16470.40 26075.71 26542.59 31984.23 16186.78 7466.31 6658.51 23282.45 21651.57 4684.64 26753.11 23455.96 30383.96 227
DU-MVS66.84 22965.74 21770.16 26373.27 29642.59 31981.50 23982.92 16863.53 11258.51 23282.11 22540.75 16784.64 26753.11 23455.96 30383.24 239
UWE-MVS72.17 12472.15 10772.21 22282.26 13844.29 30086.83 8989.58 2165.58 7865.82 13485.06 17545.02 11084.35 26954.07 22875.18 13387.99 150
lessismore_v067.98 29064.76 36041.25 33145.75 37936.03 37065.63 35619.29 35484.11 27035.67 32321.24 39478.59 303
test_post170.84 32814.72 40534.33 24983.86 27148.80 265
1112_ss70.05 15869.37 15072.10 22480.77 17842.78 31785.12 13376.75 28159.69 17861.19 19592.12 4447.48 7983.84 27253.04 23668.21 19389.66 109
Effi-MVS+-dtu66.24 23764.96 23370.08 26575.17 26949.64 19782.01 22174.48 30262.15 13657.83 24376.08 29430.59 28283.79 27365.40 13860.93 25776.81 322
PVSNet_057.04 1361.19 27557.24 28873.02 20377.45 23750.31 18579.43 27277.36 27263.96 10347.51 33072.45 32625.03 31983.78 27452.76 24219.22 39684.96 208
CL-MVSNet_self_test62.98 26061.14 26068.50 28865.86 35142.96 31484.37 15682.98 16660.98 15853.95 28972.70 32340.43 17183.71 27541.10 30447.93 34178.83 299
IterMVS-LS66.63 23065.36 22770.42 25975.10 27148.90 21881.45 24276.69 28461.05 15655.71 27277.10 27645.86 9883.65 27657.44 20557.88 28778.70 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,172.86 11072.33 10074.46 16681.98 14150.77 16885.13 13085.47 9666.09 7167.30 11683.69 19337.27 21183.57 27765.06 14178.97 9989.05 125
D2MVS63.49 25561.39 25669.77 26969.29 33348.93 21778.89 27677.71 26560.64 16749.70 31672.10 33227.08 30483.48 27854.48 22562.65 24776.90 321
TAMVS69.51 17268.16 16773.56 19676.30 25448.71 22482.57 20977.17 27462.10 13761.32 19484.23 18441.90 15683.46 27954.80 22473.09 15488.50 141
ppachtmachnet_test58.56 29654.34 30571.24 24671.42 31654.74 7981.84 22772.27 32049.02 30945.86 33968.99 34726.27 30883.30 28030.12 34843.23 36075.69 332
CDS-MVSNet70.48 15269.43 14873.64 19377.56 23548.83 22083.51 18277.45 26963.27 11862.33 18385.54 17143.85 12583.29 28157.38 20774.00 14588.79 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp60.46 27957.65 28568.88 27763.63 36445.09 29072.93 31278.63 24946.52 32351.12 30872.80 32221.46 34683.07 28257.79 20153.97 31978.47 304
FC-MVSNet-test67.49 20967.91 16966.21 30576.06 25833.06 36280.82 25387.18 6764.44 9354.81 27982.87 20350.40 5882.60 28348.05 27166.55 20982.98 246
K. test v354.04 32049.42 33167.92 29168.55 33842.57 32275.51 29463.07 36252.07 28939.21 36064.59 35819.34 35382.21 28437.11 31625.31 38978.97 297
our_test_359.11 28855.08 30471.18 24971.42 31653.29 11981.96 22274.52 30148.32 31242.08 34969.28 34628.14 29482.15 28534.35 33345.68 35578.11 312
ambc62.06 32853.98 38129.38 37835.08 39279.65 22441.37 35359.96 3696.27 39282.15 28535.34 32638.22 36974.65 342
pmmvs463.34 25761.07 26170.16 26370.14 32750.53 17479.97 26571.41 32955.08 26454.12 28778.58 25832.79 26382.09 28750.33 25457.22 29277.86 313
WR-MVS67.58 20666.76 19270.04 26775.92 26345.06 29486.23 9985.28 10764.31 9458.50 23481.00 23544.80 11982.00 28849.21 26355.57 30883.06 244
MVS_111021_LR69.07 17567.91 16972.54 21477.27 23949.56 20079.77 26673.96 30859.33 18860.73 19987.82 13930.19 28581.53 28969.94 10472.19 16386.53 179
LTVRE_ROB45.45 1952.73 32649.74 32961.69 33269.78 33034.99 35244.52 38267.60 35243.11 34643.79 34274.03 30718.54 35881.45 29028.39 35857.94 28468.62 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CPTT-MVS67.15 21965.84 21471.07 25080.96 17150.32 18481.94 22374.10 30446.18 32857.91 24287.64 14429.57 28881.31 29164.10 14370.18 18281.56 262
UniMVSNet_ETH3D62.51 26560.49 26668.57 28768.30 34240.88 33573.89 30479.93 21751.81 29454.77 28079.61 24724.80 32181.10 29249.93 25661.35 25483.73 231
LCM-MVSNet-Re58.82 29356.54 29265.68 30779.31 20129.09 38061.39 36245.79 37860.73 16537.65 36672.47 32531.42 27781.08 29349.66 25870.41 17986.87 170
Patchmatch-RL test58.72 29454.32 30671.92 23563.91 36344.25 30161.73 35955.19 37057.38 23149.31 31854.24 37837.60 20380.89 29462.19 15647.28 34690.63 83
Test_1112_low_res67.18 21866.23 20470.02 26878.75 21341.02 33383.43 18573.69 31057.29 23258.45 23782.39 21845.30 10680.88 29550.50 25366.26 21588.16 143
Syy-MVS61.51 27361.35 25762.00 32981.73 14730.09 37280.97 24981.02 19860.93 16055.06 27782.64 21135.09 24080.81 29616.40 39058.32 27575.10 339
myMVS_eth3d63.52 25463.56 24463.40 32281.73 14734.28 35580.97 24981.02 19860.93 16055.06 27782.64 21148.00 7580.81 29623.42 37558.32 27575.10 339
pmmvs562.80 26361.18 25967.66 29269.53 33142.37 32482.65 20775.19 29854.30 27552.03 30478.51 25931.64 27680.67 29848.60 26758.15 27979.95 291
MIMVSNet63.12 25960.29 26971.61 23975.92 26346.65 26965.15 34681.94 18059.14 19554.65 28269.47 34425.74 31380.63 29941.03 30569.56 18887.55 159
test_vis1_n_192068.59 18868.31 16369.44 27369.16 33441.51 32884.63 15268.58 34758.80 20273.26 6388.37 12425.30 31680.60 30079.10 4367.55 20086.23 185
新几何173.30 20083.10 11253.48 10771.43 32845.55 33066.14 12887.17 15133.88 25480.54 30148.50 26880.33 8385.88 194
Vis-MVSNet (Re-imp)65.52 24265.63 21965.17 31377.49 23630.54 36975.49 29577.73 26459.34 18652.26 30386.69 15849.38 6780.53 30237.07 31775.28 13284.42 215
PVSNet62.49 869.27 17467.81 17573.64 19384.41 8251.85 14984.63 15277.80 26266.42 6459.80 20684.95 17822.14 34280.44 30355.03 22175.11 13788.62 136
CR-MVSNet62.47 26759.04 27972.77 20973.97 28956.57 3460.52 36371.72 32460.04 17257.49 25365.86 35438.94 18680.31 30442.86 30059.93 26081.42 267
test-LLR69.65 16969.01 15671.60 24078.67 21548.17 24185.13 13079.72 22159.18 19363.13 17482.58 21336.91 21780.24 30560.56 17075.17 13486.39 183
test-mter68.36 19067.29 18471.60 24078.67 21548.17 24185.13 13079.72 22153.38 28063.13 17482.58 21327.23 30380.24 30560.56 17075.17 13486.39 183
UnsupCasMVSNet_bld53.86 32150.53 32563.84 31863.52 36534.75 35371.38 32581.92 18246.53 32238.95 36257.93 37420.55 34980.20 30739.91 30834.09 38076.57 327
Patchmtry56.56 30752.95 31467.42 29472.53 30550.59 17359.05 36771.72 32437.86 35946.92 33265.86 35438.94 18680.06 30836.94 31946.72 35171.60 360
OurMVSNet-221017-052.39 32948.73 33263.35 32365.21 35538.42 34468.54 33964.95 35538.19 35639.57 35971.43 33413.23 37379.92 30937.16 31440.32 36671.72 359
UnsupCasMVSNet_eth57.56 30255.15 30264.79 31664.57 36133.12 36173.17 31183.87 14858.98 19941.75 35270.03 34222.54 33579.92 30946.12 28535.31 37381.32 274
patchmatchnet-post59.74 37038.41 19179.91 311
SCA63.84 25060.01 27275.32 14778.58 21957.92 1061.61 36077.53 26756.71 24457.75 24770.77 33831.97 27179.91 31148.80 26556.36 29588.13 146
LS3D56.40 30953.82 30964.12 31781.12 16745.69 28773.42 30966.14 35335.30 36943.24 34779.88 24422.18 34079.62 31319.10 38564.00 22967.05 369
tpmrst71.04 14269.77 14574.86 16183.19 11155.86 5175.64 29178.73 24767.88 4464.99 14673.73 31049.96 6379.56 31465.92 12867.85 19889.14 123
IterMVS63.77 25261.67 25270.08 26572.68 30351.24 16580.44 25775.51 29460.51 16851.41 30673.70 31332.08 27078.91 31554.30 22654.35 31880.08 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet56.17 31051.95 32068.84 27880.60 18253.07 12555.03 37470.02 33944.72 33551.00 30961.19 36622.83 33278.88 31628.54 35653.63 32174.57 343
USDC54.36 31851.23 32263.76 31964.29 36237.71 34762.84 35773.48 31556.85 23935.47 37171.94 3339.23 38078.43 31738.43 31148.57 33875.13 338
Anonymous2023120659.08 28957.59 28663.55 32068.77 33732.14 36780.26 26179.78 22050.00 30449.39 31772.39 32726.64 30778.36 31833.12 33957.94 28480.14 289
XVG-OURS61.88 27159.34 27669.49 27165.37 35346.27 27764.80 34873.49 31347.04 32057.41 25782.85 20425.15 31878.18 31953.00 23764.98 21984.01 222
XVG-ACMP-BASELINE56.03 31152.85 31565.58 30861.91 36940.95 33463.36 35272.43 31945.20 33346.02 33774.09 3069.20 38178.12 32045.13 28758.27 27777.66 316
XVG-OURS-SEG-HR62.02 27059.54 27469.46 27265.30 35445.88 28265.06 34773.57 31246.45 32457.42 25683.35 19926.95 30578.09 32153.77 23164.03 22884.42 215
PatchT56.60 30652.97 31367.48 29372.94 30046.16 28057.30 37173.78 30938.77 35554.37 28557.26 37637.52 20578.06 32232.02 34152.79 32878.23 311
KD-MVS_2432*160059.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
miper_refine_blended59.04 29056.44 29466.86 29979.07 20545.87 28372.13 32080.42 20855.03 26548.15 32371.01 33536.73 22078.05 32335.21 32730.18 38476.67 323
miper_lstm_enhance63.91 24962.30 24868.75 28275.06 27246.78 26769.02 33581.14 19659.68 17952.76 29872.39 32740.71 16977.99 32556.81 21053.09 32781.48 265
testgi54.25 31952.57 31859.29 34262.76 36721.65 39272.21 31970.47 33553.25 28241.94 35077.33 27214.28 37177.95 32629.18 35251.72 33278.28 309
JIA-IIPM52.33 33047.77 33766.03 30671.20 31946.92 26640.00 38976.48 28737.10 36046.73 33337.02 38932.96 26077.88 32735.97 32252.45 33073.29 352
OMC-MVS65.97 24065.06 23168.71 28372.97 29942.58 32178.61 27775.35 29754.72 26959.31 21786.25 16333.30 25877.88 32757.99 19567.05 20385.66 197
testdata277.81 32945.64 286
PLCcopyleft52.38 1860.89 27658.97 28066.68 30381.77 14645.70 28678.96 27574.04 30743.66 34347.63 32783.19 20223.52 33077.78 33037.47 31260.46 25876.55 328
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 26462.44 24762.86 32672.28 30929.51 37782.93 20278.78 24459.18 19353.07 29682.41 21736.91 21777.39 33137.45 31358.96 26981.66 261
pmmvs-eth3d55.97 31252.78 31665.54 30961.02 37146.44 27275.36 29667.72 35049.61 30643.65 34367.58 35021.63 34477.04 33244.11 29444.33 35773.15 354
TAPA-MVS56.12 1461.82 27260.18 27166.71 30178.48 22237.97 34675.19 29776.41 28846.82 32157.04 25986.52 16127.67 30177.03 33326.50 36667.02 20485.14 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testing359.97 28060.19 27059.32 34177.60 23330.01 37481.75 23081.79 18553.54 27850.34 31479.94 24348.99 6976.91 33417.19 38850.59 33471.03 364
PatchMatch-RL56.66 30553.75 31065.37 31277.91 23145.28 28969.78 33360.38 36541.35 35047.57 32873.73 31016.83 36476.91 33436.99 31859.21 26873.92 347
FMVSNet558.61 29556.45 29365.10 31477.20 24339.74 33774.77 29877.12 27550.27 30243.28 34667.71 34926.15 31176.90 33636.78 32054.78 31478.65 302
dp64.41 24561.58 25372.90 20682.40 13454.09 9872.53 31476.59 28660.39 16955.68 27370.39 34135.18 23976.90 33639.34 30961.71 25387.73 155
test_cas_vis1_n_192067.10 22066.60 19768.59 28665.17 35643.23 31283.23 19469.84 34055.34 26270.67 9787.71 14224.70 32376.66 33878.57 5064.20 22685.89 193
dmvs_testset57.65 30158.21 28355.97 35274.62 2799.82 40863.75 35163.34 36167.23 5348.89 32083.68 19539.12 18576.14 33923.43 37459.80 26281.96 256
MDA-MVSNet-bldmvs51.56 33247.75 33863.00 32471.60 31447.32 26169.70 33472.12 32143.81 34227.65 38863.38 36021.97 34375.96 34027.30 36332.19 38165.70 375
MVS-HIRNet49.01 33744.71 34161.92 33176.06 25846.61 27063.23 35454.90 37124.77 38333.56 37636.60 39121.28 34775.88 34129.49 35062.54 24863.26 379
CMPMVSbinary40.41 2155.34 31452.64 31763.46 32160.88 37243.84 30561.58 36171.06 33130.43 37736.33 36874.63 30324.14 32675.44 34248.05 27166.62 20771.12 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet255.21 31651.44 32166.51 30480.60 18249.56 20055.03 37465.44 35444.72 33551.00 30961.19 36622.83 33275.41 34328.54 35653.63 32174.57 343
CNLPA60.59 27858.44 28267.05 29879.21 20347.26 26279.75 26764.34 35942.46 34951.90 30583.94 18727.79 30075.41 34337.12 31559.49 26578.47 304
test20.0355.22 31554.07 30858.68 34463.14 36625.00 38577.69 28374.78 30052.64 28543.43 34472.39 32726.21 30974.76 34529.31 35147.05 34976.28 330
WR-MVS_H58.91 29258.04 28461.54 33369.07 33533.83 35976.91 28681.99 17951.40 29648.17 32274.67 30240.23 17374.15 34631.78 34348.10 33976.64 326
MDA-MVSNet_test_wron53.82 32249.95 32865.43 31070.13 32849.05 21172.30 31771.65 32744.23 34131.85 38163.13 36123.68 32974.01 34733.25 33839.35 36873.23 353
YYNet153.82 32249.96 32765.41 31170.09 32948.95 21572.30 31771.66 32644.25 34031.89 38063.07 36223.73 32873.95 34833.26 33739.40 36773.34 351
COLMAP_ROBcopyleft43.60 2050.90 33448.05 33559.47 34067.81 34540.57 33671.25 32662.72 36436.49 36436.19 36973.51 31513.48 37273.92 34920.71 38150.26 33563.92 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS58.35 29957.15 28961.94 33067.55 34634.39 35477.01 28578.35 25651.87 29247.72 32676.73 28333.91 25273.75 35034.03 33447.17 34777.68 315
F-COLMAP55.96 31353.65 31162.87 32572.76 30242.77 31874.70 30170.37 33640.03 35241.11 35679.36 24917.77 36173.70 35132.80 34053.96 32072.15 356
Patchmatch-test53.33 32548.17 33468.81 28073.31 29342.38 32342.98 38458.23 36732.53 37138.79 36370.77 33839.66 18173.51 35225.18 36852.06 33190.55 84
TinyColmap48.15 33944.49 34359.13 34365.73 35238.04 34563.34 35362.86 36338.78 35429.48 38367.23 3526.46 39173.30 35324.59 37041.90 36366.04 373
DTE-MVSNet57.03 30455.73 30060.95 33865.94 35032.57 36575.71 29077.09 27651.16 29846.65 33576.34 28832.84 26273.22 35430.94 34744.87 35677.06 320
CP-MVSNet58.54 29857.57 28761.46 33468.50 33933.96 35876.90 28778.60 25151.67 29547.83 32576.60 28534.99 24372.79 35535.45 32447.58 34377.64 317
PS-CasMVS58.12 30057.03 29161.37 33568.24 34333.80 36076.73 28878.01 25951.20 29747.54 32976.20 29332.85 26172.76 35635.17 32947.37 34577.55 318
EPNet_dtu66.25 23666.71 19364.87 31578.66 21734.12 35782.80 20475.51 29461.75 14364.47 15786.90 15437.06 21472.46 35743.65 29669.63 18788.02 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm68.36 19067.48 18270.97 25279.93 19351.34 16276.58 28978.75 24667.73 4763.54 17274.86 30148.33 7072.36 35853.93 23063.71 23189.21 120
Anonymous2024052151.65 33148.42 33361.34 33656.43 37839.65 33973.57 30773.47 31636.64 36336.59 36763.98 35910.75 37772.25 35935.35 32549.01 33772.11 357
MIMVSNet150.35 33547.81 33657.96 34661.53 37027.80 38367.40 34274.06 30643.25 34533.31 37965.38 35716.03 36871.34 36021.80 37847.55 34474.75 341
KD-MVS_self_test49.24 33646.85 33956.44 35054.32 37922.87 38857.39 37073.36 31744.36 33937.98 36559.30 37218.97 35571.17 36133.48 33542.44 36175.26 336
EU-MVSNet52.63 32750.72 32458.37 34562.69 36828.13 38272.60 31375.97 29130.94 37640.76 35872.11 33120.16 35070.80 36235.11 33046.11 35376.19 331
testdata67.08 29777.59 23445.46 28869.20 34544.47 33771.50 8688.34 12731.21 27870.76 36352.20 24575.88 12585.03 206
旧先验281.73 23145.53 33174.66 4770.48 36458.31 191
new-patchmatchnet48.21 33846.55 34053.18 35657.73 37618.19 40070.24 32971.02 33245.70 32933.70 37560.23 36818.00 36069.86 36527.97 36034.35 37771.49 362
CVMVSNet60.85 27760.44 26762.07 32775.00 27432.73 36479.54 26873.49 31336.98 36156.28 26983.74 19129.28 29169.53 36646.48 28163.23 24083.94 228
N_pmnet41.25 34639.77 34945.66 36468.50 3390.82 41472.51 3150.38 41335.61 36635.26 37261.51 36520.07 35167.74 36723.51 37340.63 36468.42 368
pmmvs345.53 34441.55 34857.44 34748.97 38939.68 33870.06 33057.66 36828.32 37934.06 37457.29 3758.50 38466.85 36834.86 33234.26 37865.80 374
PM-MVS46.92 34143.76 34656.41 35152.18 38332.26 36663.21 35538.18 38937.99 35840.78 35766.20 3535.09 39465.42 36948.19 27041.99 36271.54 361
WB-MVS37.41 35136.37 35240.54 37054.23 38010.43 40765.29 34543.75 38134.86 37027.81 38754.63 37724.94 32063.21 3706.81 40215.00 39747.98 389
Gipumacopyleft27.47 36024.26 36537.12 37460.55 37329.17 37911.68 40160.00 36614.18 39310.52 40215.12 4032.20 40363.01 3718.39 39735.65 37219.18 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs1_n52.55 32851.19 32356.65 34951.90 38430.14 37167.66 34142.84 38332.27 37362.30 18482.02 2279.12 38260.84 37257.82 20054.75 31678.99 296
test_fmvs153.60 32452.54 31956.78 34858.07 37430.26 37068.95 33742.19 38432.46 37263.59 17082.56 21511.55 37460.81 37358.25 19255.27 31079.28 294
EGC-MVSNET33.75 35530.42 35943.75 36764.94 35936.21 35160.47 36540.70 3870.02 4070.10 40853.79 3797.39 38560.26 37411.09 39535.23 37534.79 393
ANet_high34.39 35429.59 36048.78 36030.34 40322.28 38955.53 37363.79 36038.11 35715.47 39536.56 3926.94 38759.98 37513.93 3925.64 40664.08 376
AllTest47.32 34044.66 34255.32 35465.08 35737.50 34862.96 35654.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
TestCases55.32 35465.08 35737.50 34854.25 37335.45 36733.42 37772.82 3209.98 37859.33 37624.13 37143.84 35869.13 365
SSC-MVS35.20 35334.30 35537.90 37252.58 3828.65 41061.86 35841.64 38531.81 37525.54 38952.94 38223.39 33159.28 3786.10 40312.86 39845.78 391
CHOSEN 280x42057.53 30356.38 29660.97 33774.01 28748.10 24546.30 38154.31 37248.18 31450.88 31277.43 27138.37 19259.16 37954.83 22263.14 24375.66 333
test_vis1_n51.19 33349.66 33055.76 35351.26 38529.85 37567.20 34338.86 38832.12 37459.50 21379.86 2458.78 38358.23 38056.95 20952.46 32979.19 295
IterMVS-SCA-FT59.12 28758.81 28160.08 33970.68 32645.07 29180.42 25874.25 30343.54 34450.02 31573.73 31031.97 27156.74 38151.06 25253.60 32378.42 306
test_fmvs245.89 34244.32 34450.62 35945.85 39324.70 38658.87 36937.84 39125.22 38252.46 30074.56 3047.07 38654.69 38249.28 26247.70 34272.48 355
TDRefinement40.91 34738.37 35148.55 36150.45 38733.03 36358.98 36850.97 37628.50 37829.89 38267.39 3516.21 39354.51 38317.67 38735.25 37458.11 380
PMMVS226.71 36222.98 36737.87 37336.89 3978.51 41142.51 38529.32 40019.09 38913.01 39737.54 3882.23 40253.11 38414.54 39111.71 39951.99 386
DSMNet-mixed38.35 34935.36 35447.33 36248.11 39114.91 40437.87 39036.60 39219.18 38834.37 37359.56 37115.53 36953.01 38520.14 38346.89 35074.07 345
ITE_SJBPF51.84 35758.03 37531.94 36853.57 37536.67 36241.32 35475.23 30011.17 37651.57 38625.81 36748.04 34072.02 358
test_vis1_rt40.29 34838.64 35045.25 36548.91 39030.09 37259.44 36627.07 40224.52 38438.48 36451.67 3836.71 38949.44 38744.33 29246.59 35256.23 381
PMVScopyleft19.57 2225.07 36422.43 36932.99 37923.12 41022.98 38740.98 38735.19 39415.99 39211.95 40135.87 3931.47 40749.29 3885.41 40531.90 38226.70 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 35631.89 35838.59 37149.01 38820.42 39351.01 37737.92 39020.58 38523.45 39046.79 3856.66 39049.28 38920.00 38431.57 38346.09 390
LCM-MVSNet28.07 35823.85 36640.71 36827.46 40818.93 39530.82 39646.19 37712.76 39516.40 39334.70 3941.90 40448.69 39020.25 38224.22 39054.51 383
test_fmvs337.95 35035.75 35344.55 36635.50 39918.92 39648.32 37834.00 39618.36 39041.31 35561.58 3642.29 40148.06 39142.72 30137.71 37066.66 371
RPSCF45.77 34344.13 34550.68 35857.67 37729.66 37654.92 37645.25 38026.69 38145.92 33875.92 29617.43 36345.70 39227.44 36245.95 35476.67 323
mvsany_test143.38 34542.57 34745.82 36350.96 38626.10 38455.80 37227.74 40127.15 38047.41 33174.39 30518.67 35744.95 39344.66 29036.31 37166.40 372
FPMVS35.40 35233.67 35640.57 36946.34 39228.74 38141.05 38657.05 36920.37 38722.27 39153.38 3806.87 38844.94 3948.62 39647.11 34848.01 388
APD_test126.46 36324.41 36432.62 38037.58 39621.74 39140.50 38830.39 39811.45 39716.33 39443.76 3861.63 40641.62 39511.24 39426.82 38834.51 394
E-PMN19.16 36918.40 37321.44 38536.19 39813.63 40547.59 37930.89 39710.73 3985.91 40516.59 4013.66 39739.77 3965.95 4048.14 40110.92 401
EMVS18.42 37017.66 37420.71 38634.13 40012.64 40646.94 38029.94 39910.46 4005.58 40614.93 4044.23 39638.83 3975.24 4067.51 40310.67 402
test_vis3_rt24.79 36522.95 36830.31 38128.59 40518.92 39637.43 39117.27 40912.90 39421.28 39229.92 3981.02 40836.35 39828.28 35929.82 38635.65 392
MVEpermissive16.60 2317.34 37213.39 37529.16 38228.43 40619.72 39413.73 40023.63 4057.23 4037.96 40321.41 3990.80 40936.08 3996.97 40010.39 40031.69 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 36621.07 37033.16 37827.67 4078.35 41226.63 39835.11 3953.40 40414.35 39636.98 3903.46 39835.31 40019.08 38622.95 39155.81 382
testf121.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
APD_test221.11 36719.08 37127.18 38330.56 40118.28 39833.43 39424.48 4038.02 40112.02 39933.50 3950.75 41035.09 4017.68 39821.32 39228.17 396
test_f27.12 36124.85 36233.93 37726.17 40915.25 40330.24 39722.38 40612.53 39628.23 38549.43 3842.59 40034.34 40325.12 36926.99 38752.20 385
mvsany_test328.00 35925.98 36134.05 37628.97 40415.31 40234.54 39318.17 40716.24 39129.30 38453.37 3812.79 39933.38 40430.01 34920.41 39553.45 384
LF4IMVS33.04 35732.55 35734.52 37540.96 39422.03 39044.45 38335.62 39320.42 38628.12 38662.35 3635.03 39531.88 40521.61 38034.42 37649.63 387
DeepMVS_CXcopyleft13.10 38721.34 4118.99 40910.02 41110.59 3997.53 40430.55 3971.82 40514.55 4066.83 4017.52 40215.75 400
wuyk23d9.11 3748.77 37810.15 38840.18 39516.76 40120.28 3991.01 4122.58 4052.66 4070.98 4070.23 41212.49 4074.08 4076.90 4041.19 404
tmp_tt9.44 37310.68 3765.73 3892.49 4124.21 41310.48 40218.04 4080.34 40612.59 39820.49 40011.39 3757.03 40813.84 3936.46 4055.95 403
test_blank0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
cdsmvs_eth3d_5k18.33 37124.44 3630.00 3920.00 4140.00 4160.00 40389.40 220.00 4080.00 41192.02 4838.55 1900.00 4090.00 4100.00 4070.00 407
pcd_1.5k_mvsjas3.15 3784.20 3810.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 41037.77 1960.00 4090.00 4100.00 4070.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
sosnet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
Regformer0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
testmvs6.14 3768.18 3790.01 3900.01 4130.00 41673.40 3100.00 4140.00 4080.02 4090.15 4080.00 4130.00 4090.02 4080.00 4070.02 405
test1236.01 3778.01 3800.01 3900.00 4140.01 41571.93 3230.00 4140.00 4080.02 4090.11 4090.00 4130.00 4090.02 4080.00 4070.02 405
ab-mvs-re7.68 37510.24 3770.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 41192.12 440.00 4130.00 4090.00 4100.00 4070.00 407
uanet0.00 3790.00 3820.00 3920.00 4140.00 4160.00 4030.00 4140.00 4080.00 4110.00 4100.00 4130.00 4090.00 4100.00 4070.00 407
WAC-MVS34.28 35522.56 376
FOURS183.24 10949.90 19384.98 13878.76 24547.71 31573.42 60
test_one_060189.39 2257.29 2088.09 5357.21 23582.06 1393.39 2054.94 29
eth-test20.00 414
eth-test0.00 414
RE-MVS-def66.66 19580.96 17148.14 24381.54 23776.98 27746.42 32562.75 17989.42 10429.28 29160.52 17272.06 16483.19 241
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 32
save fliter85.35 6656.34 4189.31 4081.46 19061.55 146
test072689.40 2057.45 1792.32 888.63 4357.71 22383.14 1093.96 855.17 25
GSMVS88.13 146
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18888.13 146
sam_mvs35.99 233
MTGPAbinary81.31 193
MTMP87.27 7715.34 410
test9_res78.72 4985.44 4291.39 64
agg_prior275.65 6985.11 4691.01 76
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14273.55 5891.46 6448.01 7474.73 7885.46 41
新几何281.61 235
旧先验181.57 15847.48 25771.83 32288.66 11936.94 21678.34 10488.67 134
原ACMM283.77 175
test22279.36 19850.97 16777.99 28167.84 34942.54 34862.84 17886.53 16030.26 28476.91 11385.23 203
segment_acmp44.97 113
testdata177.55 28464.14 98
plane_prior777.95 22848.46 232
plane_prior678.42 22349.39 20636.04 231
plane_prior483.28 200
plane_prior348.95 21564.01 10162.15 186
plane_prior285.76 10863.60 110
plane_prior178.31 225
plane_prior49.57 19887.43 7064.57 9272.84 156
n20.00 414
nn0.00 414
door-mid41.31 386
test1184.25 138
door43.27 382
HQP5-MVS51.56 156
HQP-NCC79.02 20788.00 5565.45 7964.48 154
ACMP_Plane79.02 20788.00 5565.45 7964.48 154
BP-MVS66.70 122
HQP3-MVS83.68 15073.12 152
HQP2-MVS37.35 208
NP-MVS78.76 21250.43 17785.12 174
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26759.29 21936.76 21946.33 28387.32 164
ACMMP++_ref63.20 241
ACMMP++59.38 266
Test By Simon39.38 182