This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_241102_ONE89.48 1756.89 2988.94 3157.53 23184.61 493.29 2258.81 1296.45 1
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1957.71 22781.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 21981.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13788.88 3358.00 21983.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3396.39 481.68 2987.13 2192.47 31
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3157.50 23384.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
test_241102_TWO88.76 4057.50 23383.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19571.82 8290.05 9559.72 1096.04 1078.37 5088.40 1493.75 7
API-MVS74.17 9072.07 11280.49 2590.02 1158.55 987.30 7584.27 14357.51 23265.77 14187.77 14441.61 16695.97 1151.71 25482.63 6186.94 176
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 3893.31 11
QAPM71.88 13269.33 15879.52 4082.20 14354.30 9386.30 9788.77 3956.61 25159.72 21387.48 14833.90 26795.36 1347.48 28281.49 7288.90 130
gm-plane-assit83.24 11254.21 9670.91 2188.23 13395.25 1466.37 129
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
MVS76.91 4975.48 6281.23 1984.56 8255.21 6580.23 26491.64 458.65 20965.37 14491.48 6245.72 10495.05 1672.11 9889.52 1093.44 9
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2862.95 12670.54 10292.33 3941.05 17094.95 1757.90 20886.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 8977.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5563.22 12274.63 4890.83 7541.38 16994.40 2075.42 7279.90 9194.72 2
IB-MVS68.87 274.01 9272.03 11579.94 3883.04 11955.50 5390.24 2588.65 4267.14 5561.38 19881.74 23553.21 4094.28 2160.45 18262.41 25590.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5755.55 26381.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2175.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2193.30 12
3Dnovator64.70 674.46 8572.48 10080.41 2982.84 13055.40 5983.08 19788.61 4667.61 5159.85 21188.66 12134.57 26093.97 2458.42 19788.70 1291.85 52
VDDNet74.37 8772.13 11081.09 2079.58 20456.52 3790.02 2686.70 8052.61 29071.23 9087.20 15331.75 28993.96 2574.30 8275.77 13492.79 27
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3570.31 2577.64 3693.87 752.58 4493.91 2684.17 1587.92 1692.39 33
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17388.57 4988.59 4758.14 21673.60 5793.31 2143.14 14593.79 2773.81 8788.53 1392.37 34
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8174.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3393.01 21
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11762.84 285.73 11185.39 10669.79 2864.87 15283.49 19941.52 16893.69 2970.55 10381.82 6992.12 40
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5367.71 4873.81 5692.75 3246.88 8993.28 3078.79 4784.07 5591.50 64
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 25889.51 2369.76 2971.05 9486.66 16258.68 1593.24 3184.64 1490.40 693.14 18
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8573.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5093.08 19
FA-MVS(test-final)69.00 18666.60 20576.19 12483.48 10447.96 25974.73 30482.07 18457.27 23762.18 19078.47 26536.09 24392.89 3453.76 24071.32 17887.73 162
MS-PatchMatch72.34 12271.26 12475.61 13982.38 14055.55 5288.00 5589.95 2065.38 8556.51 27480.74 24532.28 28292.89 3457.95 20688.10 1578.39 314
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 18358.25 1074.47 30787.61 6650.53 30465.24 14583.41 20157.38 1892.83 3673.92 8687.13 2191.80 54
OpenMVScopyleft61.00 1169.99 16767.55 18777.30 9578.37 23254.07 10184.36 15685.76 9957.22 23856.71 27087.67 14630.79 29592.83 3643.04 30784.06 5685.01 214
test_yl75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
DCV-MVSNet75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
VDD-MVS76.08 6274.97 7179.44 4184.27 9053.33 11991.13 2085.88 9665.33 8772.37 7689.34 10832.52 27992.76 4077.90 5775.96 13192.22 39
9.1478.19 2885.67 6188.32 5188.84 3759.89 17874.58 5092.62 3546.80 9092.66 4181.40 3585.62 41
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 13955.82 2692.65 4269.61 10875.00 14792.05 44
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6155.91 25878.56 3092.49 3748.20 7592.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13557.29 1992.63 4469.24 11175.13 14391.91 49
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7562.94 12771.65 8391.56 6042.33 15392.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051573.64 10372.20 10777.97 8281.63 15953.01 12986.69 9188.81 3862.53 13364.06 16585.65 17252.15 4792.50 4658.43 19569.84 19088.39 147
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7370.62 2280.75 2193.22 2437.77 20492.50 4682.75 2386.25 3591.57 60
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7861.48 15280.26 2393.10 2546.53 9492.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
WTY-MVS77.47 4377.52 3877.30 9588.33 3046.25 28588.46 5090.32 1771.40 1872.32 7791.72 5453.44 3992.37 4966.28 13175.42 13793.28 13
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10188.37 12757.69 1792.30 5075.25 7476.24 12891.20 73
EI-MVSNet-Vis-set73.19 10972.60 9874.99 16582.56 13849.80 19982.55 21089.00 3066.17 7065.89 13888.98 11443.83 13092.29 5165.38 14569.01 19682.87 256
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7670.30 2680.77 2093.07 2937.63 20992.28 5282.73 2485.71 3991.57 60
RRT-MVS73.29 10771.37 12379.07 5284.63 8054.16 9978.16 28386.64 8361.67 14760.17 20882.35 22640.63 17892.26 5370.19 10677.87 10890.81 83
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 4964.83 9273.52 5988.09 13548.07 7692.19 5462.24 16284.53 5291.53 62
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19090.02 2690.57 1656.58 25274.26 5391.60 5954.26 3592.16 5575.87 6679.91 9093.05 20
MVS_111021_HR76.39 5875.38 6579.42 4285.33 6956.47 3888.15 5384.97 12465.15 9066.06 13589.88 9843.79 13292.16 5575.03 7580.03 8989.64 113
DP-MVS Recon71.99 12970.31 14177.01 10490.65 853.44 11389.37 3782.97 17356.33 25563.56 17689.47 10534.02 26592.15 5754.05 23772.41 16785.43 210
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14483.68 15667.85 4569.36 10590.24 8760.20 892.10 5884.14 1680.40 8292.82 25
Anonymous2024052969.71 17267.28 19377.00 10583.78 9950.36 18588.87 4685.10 12247.22 32764.03 16683.37 20227.93 31092.10 5857.78 21167.44 20788.53 143
cascas69.01 18566.13 21477.66 8779.36 20655.41 5886.99 8383.75 15556.69 24958.92 23181.35 23924.31 33892.10 5853.23 24170.61 18485.46 209
FE-MVS64.15 25560.43 27575.30 15480.85 18349.86 19768.28 34778.37 26450.26 30859.31 22373.79 31626.19 32391.92 6140.19 31566.67 21284.12 226
EI-MVSNet-UG-set72.37 12171.73 11674.29 17981.60 16149.29 21381.85 22788.64 4365.29 8965.05 14888.29 13243.18 14391.83 6263.74 15367.97 20381.75 267
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6766.04 7679.46 2693.00 3053.10 4191.76 6380.40 3789.56 992.68 29
baseline275.15 8074.54 7876.98 10781.67 15851.74 15583.84 17391.94 369.97 2758.98 22886.02 16859.73 991.73 6468.37 11770.40 18787.48 167
Effi-MVS+75.24 7773.61 8680.16 3381.92 14857.42 2185.21 12676.71 29460.68 17073.32 6289.34 10847.30 8491.63 6568.28 11879.72 9391.42 65
EIA-MVS75.92 6575.18 6878.13 7985.14 7251.60 15887.17 8085.32 11064.69 9368.56 11390.53 8045.79 10391.58 6667.21 12482.18 6691.20 73
Anonymous20240521170.11 16167.88 17876.79 11487.20 4447.24 27189.49 3577.38 28154.88 27266.14 13386.84 15820.93 35891.54 6756.45 22471.62 17491.59 58
thisisatest053070.47 15968.56 16576.20 12379.78 20251.52 16183.49 18488.58 4857.62 23058.60 23782.79 20951.03 5491.48 6852.84 24662.36 25785.59 208
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13485.04 13488.63 4466.08 7386.77 392.75 3272.05 191.46 6983.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 7966.96 5867.91 11889.97 9748.03 7791.41 7075.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 13986.63 9287.80 5858.78 20774.63 4892.38 3847.75 8191.35 7178.18 5486.85 2791.15 75
SPE-MVS-test77.20 4577.25 4177.05 10184.60 8149.04 21889.42 3685.83 9865.90 7772.85 6891.98 5045.10 11291.27 7275.02 7684.56 5190.84 82
3Dnovator+62.71 772.29 12470.50 13477.65 8883.40 10851.29 16787.32 7386.40 8759.01 20258.49 24188.32 13132.40 28091.27 7257.04 21782.15 6790.38 92
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12055.19 2891.24 7465.18 14676.32 12791.29 71
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10371.67 1571.38 8888.35 12951.58 4891.22 7579.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t69.87 17067.88 17875.85 13388.38 2952.35 14286.94 8583.68 15653.70 28155.68 28085.60 17330.07 30091.20 7655.84 22771.02 18083.99 231
ZD-MVS89.55 1453.46 11084.38 14057.02 24173.97 5591.03 6544.57 12591.17 7775.41 7381.78 71
h-mvs3373.95 9372.89 9677.15 10080.17 19750.37 18484.68 14883.33 16268.08 3971.97 8088.65 12442.50 15191.15 7878.82 4557.78 29589.91 109
EC-MVSNet75.30 7575.20 6675.62 13880.98 17649.00 21987.43 7084.68 13463.49 11770.97 9590.15 9342.86 15091.14 7974.33 8181.90 6886.71 185
test1279.24 4486.89 4656.08 4585.16 11972.27 7847.15 8691.10 8085.93 3790.54 89
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9853.80 10386.91 8786.05 9459.71 18167.85 11990.55 7942.23 15591.02 8172.66 9685.29 4589.87 110
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16685.35 10861.10 15972.99 6591.50 6140.25 18091.00 8276.84 6286.98 2590.51 90
VNet77.99 3777.92 3178.19 7887.43 4250.12 19190.93 2291.41 867.48 5275.12 4390.15 9346.77 9191.00 8273.52 8978.46 10393.44 9
CS-MVS76.77 5376.70 4876.99 10683.55 10248.75 22888.60 4885.18 11766.38 6672.47 7591.62 5845.53 10690.99 8474.48 7982.51 6291.23 72
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6649.56 20390.99 2186.66 8170.58 2380.07 2495.30 156.18 2490.97 8582.57 2586.22 3693.28 13
HFP-MVS74.37 8773.13 9578.10 8084.30 8753.68 10685.58 11584.36 14156.82 24565.78 14090.56 7840.70 17790.90 8669.18 11280.88 7589.71 111
MSDG59.44 29055.14 31072.32 22974.69 28550.71 17274.39 30873.58 32244.44 34843.40 35477.52 27319.45 36290.87 8731.31 35557.49 29775.38 342
GST-MVS74.87 8373.90 8577.77 8583.30 11053.45 11285.75 10985.29 11259.22 19466.50 13189.85 9940.94 17290.76 8870.94 10283.35 5889.10 127
SD-MVS76.18 6074.85 7380.18 3285.39 6756.90 2885.75 10982.45 18056.79 24774.48 5191.81 5243.72 13590.75 8974.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GG-mvs-BLEND77.77 8586.68 4850.61 17468.67 34588.45 5068.73 11287.45 14959.15 1190.67 9054.83 23187.67 1792.03 45
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 10968.20 3873.10 6490.52 8145.23 11190.66 9179.37 4080.95 7490.22 97
MSLP-MVS++74.21 8972.25 10680.11 3681.45 16956.47 3886.32 9679.65 23458.19 21566.36 13292.29 4036.11 24290.66 9167.39 12282.49 6393.18 17
CDPH-MVS76.05 6375.19 6778.62 6686.51 5054.98 7587.32 7384.59 13658.62 21070.75 9790.85 7443.10 14790.63 9370.50 10484.51 5390.24 96
CLD-MVS75.60 7275.39 6476.24 12080.69 18852.40 14090.69 2386.20 9174.40 665.01 15088.93 11542.05 15990.58 9476.57 6373.96 15485.73 203
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17184.88 12771.38 1971.51 8689.15 11350.51 6090.55 9575.71 6778.65 10191.39 66
EI-MVSNet69.70 17568.70 16472.68 21875.00 28248.90 22379.54 27187.16 7161.05 16063.88 17083.74 19445.87 10190.44 9657.42 21564.68 23078.70 307
MVSTER73.25 10872.33 10376.01 13085.54 6453.76 10583.52 17887.16 7167.06 5663.88 17081.66 23652.77 4290.44 9664.66 15064.69 22983.84 238
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9568.31 3671.33 8992.75 3245.52 10790.37 9871.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9672.11 1371.57 8588.63 12550.89 5890.35 9976.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051768.33 20066.29 21074.46 17278.08 23449.06 21580.88 25389.08 2954.40 27854.75 28880.77 24451.31 5190.33 10049.35 26958.01 28983.99 231
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11387.26 7885.03 12353.79 28074.91 4691.68 5643.80 13190.31 10174.36 8081.82 6988.87 132
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH53.70 1659.78 28855.94 30671.28 25276.59 25748.35 24180.15 26676.11 30049.74 31041.91 36073.45 32416.50 37890.31 10131.42 35457.63 29675.17 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet70.08 16368.01 17576.27 11984.21 9151.22 16987.29 7679.33 24558.96 20463.63 17486.77 15933.29 27390.30 10344.63 30073.96 15487.30 173
region2R73.75 9972.55 9977.33 9483.90 9752.98 13085.54 11984.09 14856.83 24465.10 14790.45 8237.34 21890.24 10468.89 11480.83 7788.77 136
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 12869.12 3476.67 3992.02 4644.82 12190.23 10580.83 3680.09 8692.08 41
ACMMPR73.76 9872.61 9777.24 9983.92 9652.96 13185.58 11584.29 14256.82 24565.12 14690.45 8237.24 22190.18 10669.18 11280.84 7688.58 140
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14789.36 3984.07 14973.22 777.03 3891.72 5449.32 7290.17 10773.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5176.17 279.40 2791.09 6455.43 2790.09 10885.01 1280.40 8291.99 48
MVP-Stereo70.97 14970.44 13572.59 22076.03 26951.36 16485.02 13686.99 7460.31 17456.53 27378.92 26140.11 18490.00 10960.00 18690.01 776.41 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15268.26 3774.10 5490.91 7242.14 15789.99 11079.30 4179.12 9791.36 68
jason: jason.
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
EG-PatchMatch MVS62.40 27659.59 28070.81 26173.29 30149.05 21685.81 10584.78 13051.85 29744.19 34973.48 32315.52 38189.85 11340.16 31667.24 20873.54 359
XXY-MVS70.18 16069.28 16072.89 21577.64 24042.88 32485.06 13387.50 6862.58 13262.66 18682.34 22743.64 13789.83 11458.42 19763.70 23885.96 199
XVS72.92 11171.62 11776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 16889.63 10335.50 24989.78 11565.50 13780.50 8088.16 150
X-MVStestdata65.85 24962.20 25776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 1684.82 42035.50 24989.78 11565.50 13780.50 8088.16 150
PGM-MVS72.60 11771.20 12676.80 11382.95 12352.82 13383.07 19882.14 18256.51 25363.18 17889.81 10035.68 24889.76 11767.30 12380.19 8587.83 159
test_fmvsm_n_192075.56 7375.54 6175.61 13974.60 28849.51 20881.82 22974.08 31666.52 6480.40 2293.46 1746.95 8889.72 11886.69 775.30 13887.61 165
test_prior78.39 7486.35 5354.91 7785.45 10489.70 11990.55 87
原ACMM176.13 12684.89 7754.59 8885.26 11451.98 29466.70 12587.07 15640.15 18389.70 11951.23 25885.06 4884.10 227
TR-MVS69.71 17267.85 18175.27 15882.94 12448.48 23787.40 7280.86 20957.15 24064.61 15687.08 15532.67 27889.64 12146.38 29171.55 17687.68 164
131471.11 14569.41 15576.22 12179.32 20850.49 17880.23 26485.14 12159.44 18758.93 23088.89 11733.83 26989.60 12261.49 16977.42 11388.57 141
SDMVSNet71.89 13170.62 13375.70 13781.70 15551.61 15773.89 31088.72 4166.58 6161.64 19682.38 22337.63 20989.48 12377.44 5965.60 22386.01 195
baseline172.51 12072.12 11173.69 19985.05 7344.46 30283.51 18286.13 9371.61 1664.64 15487.97 14055.00 3289.48 12359.07 18956.05 30887.13 175
reproduce-ours71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_new_method71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15885.66 10063.76 10967.55 12090.73 7743.48 14089.40 12566.36 13077.03 11590.73 85
HY-MVS67.03 573.90 9573.14 9376.18 12584.70 7947.36 26875.56 29786.36 8866.27 6870.66 10083.91 19151.05 5389.31 12867.10 12572.61 16691.88 51
fmvsm_s_conf0.5_n74.48 8474.12 8175.56 14176.96 25447.85 26185.32 12369.80 35264.16 10078.74 2893.48 1645.51 10889.29 12986.48 866.62 21389.55 115
ETVMVS75.80 7175.44 6376.89 11086.23 5450.38 18385.55 11891.42 771.30 2068.80 11187.94 14156.42 2389.24 13056.54 22074.75 15091.07 77
PAPM_NR71.80 13469.98 14877.26 9881.54 16553.34 11878.60 28185.25 11553.46 28360.53 20688.66 12145.69 10589.24 13056.49 22179.62 9689.19 124
fmvsm_s_conf0.1_n73.80 9773.26 9075.43 14773.28 30247.80 26284.57 15369.43 35463.34 11978.40 3193.29 2244.73 12489.22 13285.99 966.28 22089.26 120
ECVR-MVScopyleft71.81 13371.00 12874.26 18080.12 19843.49 31484.69 14782.16 18164.02 10264.64 15487.43 15035.04 25589.21 13361.24 17179.66 9490.08 103
EPP-MVSNet71.14 14370.07 14774.33 17779.18 21246.52 27883.81 17486.49 8456.32 25657.95 24784.90 18354.23 3689.14 13458.14 20269.65 19387.33 171
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12658.53 1689.08 13573.21 9477.98 10792.08 41
CostFormer73.89 9672.30 10578.66 6582.36 14156.58 3375.56 29785.30 11166.06 7470.50 10376.88 28757.02 2089.06 13668.27 11968.74 19890.33 93
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10466.11 7176.59 4191.99 4854.07 3889.05 13777.34 6077.00 11692.89 23
Fast-Effi-MVS+72.73 11571.15 12777.48 9182.75 13254.76 7986.77 9080.64 21263.05 12565.93 13784.01 18944.42 12689.03 13856.45 22476.36 12688.64 138
MTAPA72.73 11571.22 12577.27 9781.54 16553.57 10867.06 35281.31 19959.41 18868.39 11490.96 6936.07 24489.01 13973.80 8882.45 6489.23 122
gg-mvs-nofinetune67.43 21964.53 24476.13 12685.95 5547.79 26364.38 35988.28 5239.34 36466.62 12741.27 40158.69 1489.00 14049.64 26786.62 3191.59 58
MVS_Test75.85 6774.93 7278.62 6684.08 9255.20 6783.99 16885.17 11868.07 4173.38 6182.76 21050.44 6189.00 14065.90 13580.61 7891.64 56
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 17152.65 13684.34 15784.46 13961.16 15669.14 10891.76 5339.98 18788.99 14278.19 5284.89 4989.48 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v2v48269.55 17867.64 18475.26 15972.32 31653.83 10284.93 14181.94 18665.37 8660.80 20379.25 25741.62 16588.98 14363.03 15759.51 27082.98 254
Anonymous2023121166.08 24763.67 25073.31 20683.07 11848.75 22886.01 10484.67 13545.27 34156.54 27276.67 29028.06 30988.95 14452.78 24859.95 26582.23 261
v114468.81 19066.82 19874.80 16872.34 31553.46 11084.68 14881.77 19364.25 9860.28 20777.91 26840.23 18188.95 14460.37 18359.52 26981.97 263
AdaColmapbinary67.86 20765.48 23075.00 16488.15 3654.99 7486.10 10176.63 29649.30 31257.80 25086.65 16329.39 30388.94 14645.10 29770.21 18881.06 284
fmvsm_s_conf0.5_n_a73.68 10273.15 9175.29 15575.45 27748.05 25483.88 17268.84 35763.43 11878.60 2993.37 2045.32 10988.92 14785.39 1164.04 23388.89 131
reproduce_monomvs69.71 17268.52 16673.29 20886.43 5248.21 24783.91 17086.17 9268.02 4354.91 28577.46 27542.96 14888.86 14868.44 11648.38 34582.80 257
fmvsm_s_conf0.1_n_a72.82 11472.05 11375.12 16170.95 33147.97 25782.72 20468.43 35962.52 13478.17 3293.08 2844.21 12788.86 14884.82 1363.54 23988.54 142
PS-MVSNAJss68.78 19267.17 19573.62 20273.01 30648.33 24484.95 14084.81 12959.30 19358.91 23279.84 25237.77 20488.86 14862.83 15863.12 24983.67 241
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12753.05 12885.63 11483.50 16157.86 22367.25 12290.24 8743.38 14288.85 15176.03 6482.23 6588.96 129
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250672.91 11272.43 10274.32 17880.12 19844.18 30983.19 19484.77 13164.02 10265.97 13687.43 15047.67 8288.72 15259.08 18879.66 9490.08 103
ab-mvs70.65 15569.11 16175.29 15580.87 18246.23 28673.48 31485.24 11659.99 17766.65 12680.94 24243.13 14688.69 15363.58 15468.07 20190.95 80
v119267.96 20665.74 22574.63 16971.79 31953.43 11584.06 16680.99 20863.19 12359.56 21777.46 27537.50 21588.65 15458.20 20158.93 27681.79 266
HQP-MVS72.34 12271.44 12175.03 16379.02 21551.56 15988.00 5583.68 15665.45 8164.48 15985.13 17737.35 21688.62 15566.70 12673.12 16084.91 217
HQP4-MVS64.47 16288.61 15684.91 217
reproduce_model71.07 14669.67 15275.28 15781.51 16848.82 22681.73 23280.57 21547.81 32368.26 11590.78 7636.49 23988.60 15765.12 14774.76 14988.42 146
TEST985.68 5955.42 5687.59 6784.00 15057.72 22672.99 6590.98 6744.87 11988.58 158
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15057.84 22472.99 6590.98 6744.99 11588.58 15878.19 5285.32 4491.34 70
ACMMPcopyleft70.81 15369.29 15975.39 14981.52 16751.92 15183.43 18583.03 17156.67 25058.80 23588.91 11631.92 28788.58 15865.89 13673.39 15885.67 204
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS59.24 29256.12 30468.63 29188.24 3450.35 18682.51 21364.43 36941.10 36146.70 34378.77 26224.75 33588.57 16122.26 38756.29 30566.96 379
CP-MVS72.59 11971.46 12076.00 13182.93 12552.32 14386.93 8682.48 17955.15 26763.65 17390.44 8535.03 25688.53 16268.69 11577.83 10987.15 174
tpm270.82 15268.44 16877.98 8180.78 18556.11 4474.21 30981.28 20160.24 17568.04 11775.27 30552.26 4688.50 16355.82 22868.03 20289.33 119
OPM-MVS70.75 15469.58 15374.26 18075.55 27651.34 16586.05 10283.29 16661.94 14362.95 18285.77 17134.15 26488.44 16465.44 14371.07 17982.99 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v867.25 22464.99 24074.04 18572.89 30953.31 12082.37 21780.11 22261.54 15054.29 29476.02 30142.89 14988.41 16558.43 19556.36 30180.39 293
GA-MVS69.04 18466.70 20276.06 12875.11 27952.36 14183.12 19680.23 22063.32 12060.65 20579.22 25830.98 29488.37 16661.25 17066.41 21687.46 168
HPM-MVScopyleft72.60 11771.50 11975.89 13282.02 14451.42 16380.70 25683.05 17056.12 25764.03 16689.53 10437.55 21288.37 16670.48 10580.04 8887.88 158
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmvis_n_192071.29 14270.38 13974.00 18771.04 33048.79 22779.19 27764.62 36862.75 12966.73 12491.99 4840.94 17288.35 16883.00 2173.18 15984.85 219
test_885.72 5855.31 6187.60 6683.88 15357.84 22472.84 6990.99 6644.99 11588.34 169
VPNet72.07 12871.42 12274.04 18578.64 22647.17 27289.91 3187.97 5672.56 1164.66 15385.04 18041.83 16488.33 17061.17 17260.97 26286.62 186
thres20068.71 19367.27 19473.02 21084.73 7846.76 27585.03 13587.73 6262.34 13759.87 21083.45 20043.15 14488.32 17131.25 35667.91 20483.98 233
HQP_MVS70.96 15069.91 14974.12 18377.95 23649.57 20185.76 10782.59 17763.60 11362.15 19183.28 20436.04 24588.30 17265.46 14072.34 16884.49 221
plane_prior582.59 17788.30 17265.46 14072.34 16884.49 221
mPP-MVS71.79 13570.38 13976.04 12982.65 13652.06 14684.45 15481.78 19255.59 26262.05 19389.68 10233.48 27188.28 17465.45 14278.24 10687.77 161
v1066.61 23964.20 24873.83 19472.59 31253.37 11681.88 22679.91 22861.11 15854.09 29675.60 30340.06 18588.26 17556.47 22256.10 30779.86 299
OpenMVS_ROBcopyleft53.19 1759.20 29356.00 30568.83 28671.13 32944.30 30583.64 17775.02 30946.42 33446.48 34573.03 32618.69 36688.14 17627.74 37161.80 25874.05 355
PVSNet_BlendedMVS73.42 10573.30 8973.76 19685.91 5651.83 15386.18 9984.24 14665.40 8469.09 10980.86 24346.70 9288.13 17775.43 7065.92 22281.33 279
PVSNet_Blended76.53 5676.54 4976.50 11685.91 5651.83 15388.89 4584.24 14667.82 4669.09 10989.33 11046.70 9288.13 17775.43 7081.48 7389.55 115
GeoE69.96 16867.88 17876.22 12181.11 17551.71 15684.15 16276.74 29359.83 17960.91 20184.38 18541.56 16788.10 17951.67 25570.57 18588.84 133
agg_prior85.64 6254.92 7683.61 16072.53 7488.10 179
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 23886.41 8669.61 3181.72 1688.16 13455.09 3188.04 18174.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419267.86 20765.76 22474.16 18271.68 32153.09 12684.14 16380.83 21062.85 12859.21 22677.28 27939.30 19188.00 18258.67 19357.88 29381.40 276
test111171.06 14770.42 13872.97 21279.48 20541.49 33784.82 14582.74 17664.20 9962.98 18187.43 15035.20 25287.92 18358.54 19478.42 10489.49 117
v192192067.45 21865.23 23774.10 18471.51 32452.90 13283.75 17680.44 21662.48 13659.12 22777.13 28036.98 22887.90 18457.53 21358.14 28781.49 271
v7n62.50 27359.27 28472.20 23167.25 35649.83 19877.87 28680.12 22152.50 29148.80 32973.07 32532.10 28387.90 18446.83 28754.92 31778.86 305
test_fmvsmconf_n74.41 8674.05 8375.49 14674.16 29448.38 24082.66 20572.57 32967.05 5775.11 4492.88 3146.35 9587.81 18683.93 1871.71 17390.28 95
v124066.99 23264.68 24273.93 18971.38 32752.66 13583.39 18979.98 22461.97 14258.44 24477.11 28135.25 25187.81 18656.46 22358.15 28581.33 279
thres100view90066.87 23565.42 23471.24 25383.29 11143.15 32181.67 23487.78 5959.04 20155.92 27882.18 22943.73 13387.80 18828.80 36366.36 21782.78 258
tfpn200view967.57 21566.13 21471.89 24584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21782.78 258
thres40067.40 22266.13 21471.19 25584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21780.71 289
test_fmvsmconf0.1_n73.69 10173.15 9175.34 15070.71 33248.26 24582.15 21971.83 33466.75 6074.47 5292.59 3644.89 11887.78 19183.59 1971.35 17789.97 106
v14868.24 20366.35 20873.88 19171.76 32051.47 16284.23 16081.90 19063.69 11158.94 22976.44 29243.72 13587.78 19160.63 17655.86 31182.39 260
PMMVS72.98 11072.05 11375.78 13483.57 10148.60 23184.08 16482.85 17561.62 14868.24 11690.33 8628.35 30687.78 19172.71 9576.69 12190.95 80
IS-MVSNet68.80 19167.55 18772.54 22178.50 22943.43 31681.03 24879.35 24359.12 20057.27 26486.71 16046.05 9987.70 19444.32 30275.60 13686.49 188
test_fmvsmconf0.01_n71.97 13070.95 12975.04 16266.21 35747.87 26080.35 26170.08 34965.85 7872.69 7091.68 5639.99 18687.67 19582.03 2869.66 19289.58 114
V4267.66 21265.60 22973.86 19270.69 33453.63 10781.50 24178.61 25963.85 10759.49 22077.49 27437.98 20187.65 19662.33 16058.43 28080.29 294
dmvs_re67.61 21366.00 21772.42 22581.86 15043.45 31564.67 35880.00 22369.56 3260.07 20985.00 18134.71 25887.63 19751.48 25666.68 21186.17 194
sd_testset67.79 21065.95 21973.32 20581.70 15546.33 28368.99 34380.30 21966.58 6161.64 19682.38 22330.45 29787.63 19755.86 22665.60 22386.01 195
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8355.59 5188.92 4489.21 2768.06 4253.13 30390.22 8949.71 6987.62 19972.12 9770.82 18292.82 25
TransMVSNet (Re)62.82 26960.76 27169.02 28373.98 29641.61 33586.36 9579.30 24656.90 24252.53 30676.44 29241.85 16387.60 20038.83 31940.61 37277.86 320
APD-MVS_3200maxsize69.62 17768.23 17373.80 19581.58 16348.22 24681.91 22579.50 23748.21 32164.24 16489.75 10131.91 28887.55 20163.08 15673.85 15685.64 206
WB-MVSnew69.36 18168.24 17272.72 21779.26 21049.40 21085.72 11288.85 3661.33 15364.59 15782.38 22334.57 26087.53 20246.82 28870.63 18381.22 283
Baseline_NR-MVSNet65.49 25164.27 24769.13 28274.37 29241.65 33483.39 18978.85 25059.56 18459.62 21676.88 28740.75 17487.44 20349.99 26355.05 31678.28 316
VPA-MVSNet71.12 14470.66 13272.49 22378.75 22144.43 30487.64 6590.02 1863.97 10565.02 14981.58 23842.14 15787.42 20463.42 15563.38 24385.63 207
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 15276.08 26648.34 24285.24 12570.62 34563.13 12481.45 1893.62 1449.98 6687.40 20587.76 676.77 12090.20 99
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 17354.70 8385.81 10578.82 25263.70 11064.53 15885.38 17647.11 8787.38 20667.75 12177.55 11086.81 184
BH-w/o70.02 16568.51 16774.56 17082.77 13150.39 18286.60 9378.14 26859.77 18059.65 21485.57 17439.27 19287.30 20749.86 26574.94 14885.99 197
PCF-MVS61.03 1070.10 16268.40 16975.22 16077.15 25251.99 14879.30 27682.12 18356.47 25461.88 19486.48 16643.98 12887.24 20855.37 22972.79 16586.43 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 15276.01 27048.44 23984.98 13771.08 34263.50 11681.70 1793.52 1550.00 6487.18 20987.80 576.87 11990.32 94
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9068.60 3570.18 10488.84 11851.57 4987.16 21065.48 13986.68 3090.15 101
SR-MVS70.92 15169.73 15174.50 17183.38 10950.48 17984.27 15979.35 24348.96 31566.57 13090.45 8233.65 27087.11 21166.42 12874.56 15185.91 200
BH-untuned68.28 20166.40 20773.91 19081.62 16050.01 19385.56 11777.39 28057.63 22957.47 26183.69 19636.36 24087.08 21244.81 29873.08 16384.65 220
EPMVS68.45 19765.44 23377.47 9284.91 7656.17 4371.89 33181.91 18961.72 14660.85 20272.49 33136.21 24187.06 21347.32 28371.62 17489.17 125
LPG-MVS_test66.44 24264.58 24372.02 23574.42 29048.60 23183.07 19880.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
LGP-MVS_train72.02 23574.42 29048.60 23180.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
HyFIR lowres test69.94 16967.58 18577.04 10277.11 25357.29 2281.49 24379.11 24858.27 21458.86 23380.41 24642.33 15386.96 21661.91 16568.68 19986.87 178
AUN-MVS68.20 20466.35 20873.76 19676.37 25847.45 26679.52 27379.52 23660.98 16262.34 18786.02 16836.59 23886.94 21762.32 16153.47 33186.89 177
hse-mvs271.44 14170.68 13173.73 19876.34 25947.44 26779.45 27479.47 23868.08 3971.97 8086.01 17042.50 15186.93 21878.82 4553.46 33286.83 183
thres600view766.46 24165.12 23870.47 26483.41 10543.80 31282.15 21987.78 5959.37 18956.02 27782.21 22843.73 13386.90 21926.51 37564.94 22680.71 289
tfpnnormal61.47 28159.09 28568.62 29276.29 26341.69 33381.14 24785.16 11954.48 27651.32 31473.63 32132.32 28186.89 22021.78 38955.71 31377.29 326
FMVSNet368.84 18867.40 19173.19 20985.05 7348.53 23485.71 11385.36 10760.90 16657.58 25679.15 25942.16 15686.77 22147.25 28463.40 24084.27 225
pm-mvs164.12 25662.56 25468.78 28871.68 32138.87 34982.89 20281.57 19455.54 26453.89 29877.82 27037.73 20786.74 22248.46 27753.49 33080.72 288
tpm cat166.28 24362.78 25376.77 11581.40 17057.14 2470.03 33877.19 28353.00 28758.76 23670.73 34746.17 9686.73 22343.27 30664.46 23186.44 189
FMVSNet267.57 21565.79 22372.90 21382.71 13347.97 25785.15 12884.93 12558.55 21156.71 27078.26 26636.72 23586.67 22446.15 29362.94 25184.07 228
xiu_mvs_v1_base_debu71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base_debi71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
nrg03072.27 12671.56 11874.42 17475.93 27150.60 17586.97 8483.21 16762.75 12967.15 12384.38 18550.07 6386.66 22571.19 10062.37 25685.99 197
tpmvs62.45 27559.42 28271.53 25083.93 9554.32 9270.03 33877.61 27651.91 29553.48 30268.29 35737.91 20286.66 22533.36 34658.27 28373.62 358
UA-Net67.32 22366.23 21270.59 26378.85 21941.23 34073.60 31275.45 30661.54 15066.61 12884.53 18438.73 19786.57 23042.48 31274.24 15283.98 233
WBMVS73.93 9473.39 8775.55 14287.82 3955.21 6589.37 3787.29 6967.27 5363.70 17280.30 24760.32 686.47 23161.58 16862.85 25284.97 215
test_040256.45 31653.03 32066.69 31076.78 25650.31 18881.76 23069.61 35342.79 35743.88 35072.13 33722.82 34786.46 23216.57 40150.94 33963.31 388
cl____67.43 21965.93 22071.95 24176.33 26048.02 25582.58 20779.12 24761.30 15556.72 26976.92 28546.12 9786.44 23357.98 20456.31 30381.38 278
DIV-MVS_self_test67.43 21965.93 22071.94 24276.33 26048.01 25682.57 20879.11 24861.31 15456.73 26876.92 28546.09 9886.43 23457.98 20456.31 30381.39 277
tt080563.39 26361.31 26669.64 27769.36 34138.87 34978.00 28485.48 10148.82 31655.66 28281.66 23624.38 33786.37 23549.04 27259.36 27383.68 240
MonoMVSNet66.80 23764.41 24573.96 18876.21 26448.07 25376.56 29478.26 26664.34 9654.32 29374.02 31437.21 22286.36 23664.85 14953.96 32587.45 169
GBi-Net67.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
test167.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
FMVSNet164.57 25262.11 25871.96 23877.32 24646.36 28083.52 17883.31 16352.43 29254.42 29176.23 29627.80 31286.20 23742.59 31161.34 26183.32 244
MDTV_nov1_ep1361.56 26281.68 15755.12 6972.41 32378.18 26759.19 19558.85 23469.29 35334.69 25986.16 24036.76 33062.96 250
MVSFormer73.53 10472.19 10877.57 8983.02 12055.24 6381.63 23581.44 19750.28 30576.67 3990.91 7244.82 12186.11 24160.83 17480.09 8691.36 68
test_djsdf63.84 25861.56 26270.70 26268.78 34544.69 30181.63 23581.44 19750.28 30552.27 30976.26 29526.72 31986.11 24160.83 17455.84 31281.29 282
pmmvs659.64 28957.15 29667.09 30466.01 35836.86 35980.50 25778.64 25745.05 34349.05 32773.94 31527.28 31586.10 24343.96 30449.94 34278.31 315
ACMP61.11 966.24 24564.33 24672.00 23774.89 28449.12 21483.18 19579.83 22955.41 26552.29 30882.68 21425.83 32586.10 24360.89 17363.94 23680.78 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS-dyc-post68.27 20266.87 19772.48 22480.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10631.17 29386.09 24560.52 18072.06 17183.19 249
diffmvspermissive75.11 8174.65 7676.46 11778.52 22853.35 11783.28 19279.94 22670.51 2471.64 8488.72 11946.02 10086.08 24677.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM58.35 1264.35 25462.01 25971.38 25174.21 29348.51 23582.25 21879.66 23347.61 32554.54 29080.11 24825.26 33086.00 24751.26 25763.16 24779.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast67.86 20766.28 21172.61 21980.67 18948.34 24281.18 24675.95 30250.81 30359.55 21888.05 13827.86 31185.98 24858.83 19173.58 15783.51 242
ACMH+54.58 1558.55 30455.24 30868.50 29574.68 28645.80 29180.27 26270.21 34847.15 32842.77 35775.48 30416.73 37785.98 24835.10 34154.78 31973.72 357
NR-MVSNet67.25 22465.99 21871.04 25873.27 30343.91 31085.32 12384.75 13266.05 7553.65 30182.11 23045.05 11385.97 25047.55 28156.18 30683.24 247
Vis-MVSNetpermissive70.61 15669.34 15774.42 17480.95 18148.49 23686.03 10377.51 27858.74 20865.55 14387.78 14334.37 26285.95 25152.53 25280.61 7888.80 134
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet_DTU73.71 10073.14 9375.40 14882.61 13750.05 19284.67 15079.36 24269.72 3075.39 4290.03 9629.41 30285.93 25267.99 12079.11 9890.22 97
Fast-Effi-MVS+-dtu66.53 24064.10 24973.84 19372.41 31452.30 14484.73 14675.66 30359.51 18556.34 27579.11 26028.11 30885.85 25357.74 21263.29 24483.35 243
eth_miper_zixun_eth66.98 23365.28 23672.06 23475.61 27550.40 18181.00 24976.97 29062.00 14056.99 26676.97 28344.84 12085.58 25458.75 19254.42 32280.21 295
TranMVSNet+NR-MVSNet66.94 23465.61 22870.93 26073.45 29943.38 31783.02 20084.25 14465.31 8858.33 24581.90 23439.92 18885.52 25549.43 26854.89 31883.89 237
sss70.49 15770.13 14671.58 24981.59 16239.02 34880.78 25584.71 13359.34 19066.61 12888.09 13537.17 22385.52 25561.82 16771.02 18090.20 99
jajsoiax63.21 26560.84 27070.32 26868.33 35044.45 30381.23 24581.05 20353.37 28550.96 31877.81 27117.49 37285.49 25759.31 18758.05 28881.02 285
mvs_tets62.96 26860.55 27270.19 26968.22 35344.24 30880.90 25280.74 21152.99 28850.82 32077.56 27216.74 37685.44 25859.04 19057.94 29080.89 286
FIs70.00 16670.24 14569.30 28177.93 23838.55 35183.99 16887.72 6366.86 5957.66 25484.17 18852.28 4585.31 25952.72 25168.80 19784.02 229
mvs_anonymous72.29 12470.74 13076.94 10982.85 12954.72 8278.43 28281.54 19563.77 10861.69 19579.32 25651.11 5285.31 25962.15 16475.79 13390.79 84
RPMNet59.29 29154.25 31574.42 17473.97 29756.57 3460.52 37476.98 28735.72 37657.49 25958.87 38637.73 20785.26 26127.01 37459.93 26681.42 274
UniMVSNet (Re)67.71 21166.80 19970.45 26574.44 28942.93 32382.42 21684.90 12663.69 11159.63 21580.99 24147.18 8585.23 26251.17 25956.75 30083.19 249
cl2268.85 18767.69 18372.35 22778.07 23549.98 19482.45 21578.48 26262.50 13558.46 24277.95 26749.99 6585.17 26362.55 15958.72 27781.90 265
miper_enhance_ethall69.77 17168.90 16372.38 22678.93 21849.91 19583.29 19178.85 25064.90 9159.37 22179.46 25452.77 4285.16 26463.78 15258.72 27782.08 262
无先验85.19 12778.00 27049.08 31385.13 26552.78 24887.45 169
UGNet68.71 19367.11 19673.50 20480.55 19247.61 26484.08 16478.51 26159.45 18665.68 14282.73 21323.78 34085.08 26652.80 24776.40 12287.80 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 19567.58 18572.08 23376.91 25549.48 20982.47 21478.45 26362.68 13158.28 24677.88 26950.90 5585.01 26761.91 16558.72 27781.75 267
c3_l67.97 20566.66 20371.91 24476.20 26549.31 21282.13 22178.00 27061.99 14157.64 25576.94 28449.41 7084.93 26860.62 17757.01 29981.49 271
PatchmatchNetpermissive67.07 23163.63 25177.40 9383.10 11558.03 1172.11 32977.77 27358.85 20559.37 22170.83 34437.84 20384.93 26842.96 30869.83 19189.26 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_post16.22 41637.52 21384.72 270
SixPastTwentyTwo54.37 32550.10 33467.21 30370.70 33341.46 33874.73 30464.69 36747.56 32639.12 37369.49 35018.49 36984.69 27131.87 35234.20 38775.48 341
UniMVSNet_NR-MVSNet68.82 18968.29 17170.40 26775.71 27442.59 32784.23 16086.78 7766.31 6758.51 23882.45 22051.57 4984.64 27253.11 24255.96 30983.96 235
DU-MVS66.84 23665.74 22570.16 27073.27 30342.59 32781.50 24182.92 17463.53 11558.51 23882.11 23040.75 17484.64 27253.11 24255.96 30983.24 247
UWE-MVS72.17 12772.15 10972.21 23082.26 14244.29 30686.83 8989.58 2265.58 8065.82 13985.06 17945.02 11484.35 27454.07 23675.18 14087.99 157
mvsmamba69.38 18067.52 18974.95 16682.86 12852.22 14567.36 35076.75 29161.14 15749.43 32482.04 23237.26 22084.14 27573.93 8576.91 11788.50 144
lessismore_v067.98 29764.76 36941.25 33945.75 39236.03 38265.63 36619.29 36484.11 27635.67 33321.24 40578.59 310
test_post170.84 33514.72 41934.33 26383.86 27748.80 273
1112_ss70.05 16469.37 15672.10 23280.77 18642.78 32585.12 13276.75 29159.69 18261.19 20092.12 4247.48 8383.84 27853.04 24468.21 20089.66 112
Effi-MVS+-dtu66.24 24564.96 24170.08 27275.17 27849.64 20082.01 22274.48 31362.15 13857.83 24976.08 30030.59 29683.79 27965.40 14460.93 26376.81 329
PVSNet_057.04 1361.19 28257.24 29573.02 21077.45 24550.31 18879.43 27577.36 28263.96 10647.51 33972.45 33325.03 33283.78 28052.76 25019.22 40884.96 216
CL-MVSNet_self_test62.98 26761.14 26868.50 29565.86 36042.96 32284.37 15582.98 17260.98 16253.95 29772.70 33040.43 17983.71 28141.10 31347.93 34878.83 306
IterMVS-LS66.63 23865.36 23570.42 26675.10 28048.90 22381.45 24476.69 29561.05 16055.71 27977.10 28245.86 10283.65 28257.44 21457.88 29378.70 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,172.86 11372.33 10374.46 17281.98 14550.77 17185.13 12985.47 10266.09 7267.30 12183.69 19637.27 21983.57 28365.06 14878.97 10089.05 128
D2MVS63.49 26261.39 26469.77 27669.29 34248.93 22278.89 27977.71 27560.64 17149.70 32372.10 33927.08 31783.48 28454.48 23462.65 25376.90 328
mmtdpeth57.93 30854.78 31267.39 30272.32 31643.38 31772.72 31968.93 35654.45 27756.85 26762.43 37417.02 37483.46 28557.95 20630.31 39375.31 343
TAMVS69.51 17968.16 17473.56 20376.30 26248.71 23082.57 20877.17 28462.10 13961.32 19984.23 18741.90 16283.46 28554.80 23373.09 16288.50 144
ppachtmachnet_test58.56 30354.34 31371.24 25371.42 32554.74 8081.84 22872.27 33149.02 31445.86 34868.99 35526.27 32183.30 28730.12 35843.23 36775.69 339
CDS-MVSNet70.48 15869.43 15473.64 20077.56 24348.83 22583.51 18277.45 27963.27 12162.33 18885.54 17543.85 12983.29 28857.38 21674.00 15388.79 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp60.46 28657.65 29268.88 28463.63 37445.09 29672.93 31878.63 25846.52 33251.12 31572.80 32921.46 35683.07 28957.79 21053.97 32478.47 311
FC-MVSNet-test67.49 21767.91 17666.21 31376.06 26733.06 37280.82 25487.18 7064.44 9554.81 28682.87 20750.40 6282.60 29048.05 27966.55 21582.98 254
K. test v354.04 32849.42 34067.92 29868.55 34742.57 33075.51 29963.07 37352.07 29339.21 37264.59 36919.34 36382.21 29137.11 32525.31 39978.97 304
our_test_359.11 29555.08 31171.18 25671.42 32553.29 12181.96 22374.52 31248.32 31942.08 35869.28 35428.14 30782.15 29234.35 34345.68 36278.11 319
ambc62.06 33753.98 39329.38 38935.08 40679.65 23441.37 36259.96 3826.27 40582.15 29235.34 33638.22 37674.65 351
pmmvs463.34 26461.07 26970.16 27070.14 33650.53 17779.97 26871.41 34155.08 26854.12 29578.58 26332.79 27782.09 29450.33 26257.22 29877.86 320
WR-MVS67.58 21466.76 20070.04 27475.92 27245.06 30086.23 9885.28 11364.31 9758.50 24081.00 24044.80 12382.00 29549.21 27155.57 31483.06 252
MVS_111021_LR69.07 18367.91 17672.54 22177.27 24749.56 20379.77 26973.96 31959.33 19260.73 20487.82 14230.19 29981.53 29669.94 10772.19 17086.53 187
LTVRE_ROB45.45 1952.73 33449.74 33861.69 34169.78 33934.99 36144.52 39567.60 36243.11 35643.79 35174.03 31318.54 36881.45 29728.39 36857.94 29068.62 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CPTT-MVS67.15 22765.84 22271.07 25780.96 17850.32 18781.94 22474.10 31546.18 33757.91 24887.64 14729.57 30181.31 29864.10 15170.18 18981.56 270
UniMVSNet_ETH3D62.51 27260.49 27368.57 29468.30 35140.88 34373.89 31079.93 22751.81 29854.77 28779.61 25324.80 33481.10 29949.93 26461.35 26083.73 239
LCM-MVSNet-Re58.82 30056.54 29965.68 31579.31 20929.09 39161.39 37345.79 39160.73 16937.65 37872.47 33231.42 29181.08 30049.66 26670.41 18686.87 178
Patchmatch-RL test58.72 30154.32 31471.92 24363.91 37244.25 30761.73 37055.19 38257.38 23549.31 32654.24 39237.60 21180.89 30162.19 16347.28 35390.63 86
Test_1112_low_res67.18 22666.23 21270.02 27578.75 22141.02 34183.43 18573.69 32157.29 23658.45 24382.39 22245.30 11080.88 30250.50 26166.26 22188.16 150
MGCFI-Net74.07 9174.64 7772.34 22882.90 12643.33 31980.04 26779.96 22565.61 7974.93 4591.85 5148.01 7880.86 30371.41 9977.10 11492.84 24
Syy-MVS61.51 28061.35 26562.00 33881.73 15330.09 38380.97 25081.02 20460.93 16455.06 28382.64 21535.09 25480.81 30416.40 40258.32 28175.10 347
myMVS_eth3d63.52 26163.56 25263.40 33081.73 15334.28 36480.97 25081.02 20460.93 16455.06 28382.64 21548.00 8080.81 30423.42 38558.32 28175.10 347
pmmvs562.80 27061.18 26767.66 29969.53 34042.37 33282.65 20675.19 30854.30 27952.03 31178.51 26431.64 29080.67 30648.60 27558.15 28579.95 298
MIMVSNet63.12 26660.29 27671.61 24675.92 27246.65 27665.15 35581.94 18659.14 19954.65 28969.47 35125.74 32680.63 30741.03 31469.56 19587.55 166
test_vis1_n_192068.59 19668.31 17069.44 28069.16 34341.51 33684.63 15168.58 35858.80 20673.26 6388.37 12725.30 32980.60 30879.10 4267.55 20686.23 193
新几何173.30 20783.10 11553.48 10971.43 34045.55 33966.14 13387.17 15433.88 26880.54 30948.50 27680.33 8485.88 202
Vis-MVSNet (Re-imp)65.52 25065.63 22765.17 32177.49 24430.54 37975.49 30077.73 27459.34 19052.26 31086.69 16149.38 7180.53 31037.07 32675.28 13984.42 223
PVSNet62.49 869.27 18267.81 18273.64 20084.41 8551.85 15284.63 15177.80 27266.42 6559.80 21284.95 18222.14 35380.44 31155.03 23075.11 14488.62 139
CR-MVSNet62.47 27459.04 28672.77 21673.97 29756.57 3460.52 37471.72 33660.04 17657.49 25965.86 36338.94 19480.31 31242.86 30959.93 26681.42 274
test-LLR69.65 17669.01 16271.60 24778.67 22348.17 24885.13 12979.72 23159.18 19763.13 17982.58 21736.91 23080.24 31360.56 17875.17 14186.39 191
test-mter68.36 19867.29 19271.60 24778.67 22348.17 24885.13 12979.72 23153.38 28463.13 17982.58 21727.23 31680.24 31360.56 17875.17 14186.39 191
UnsupCasMVSNet_bld53.86 32950.53 33363.84 32663.52 37534.75 36271.38 33281.92 18846.53 33138.95 37457.93 38720.55 35980.20 31539.91 31734.09 38876.57 334
Patchmtry56.56 31552.95 32267.42 30172.53 31350.59 17659.05 37871.72 33637.86 37046.92 34165.86 36338.94 19480.06 31636.94 32846.72 35871.60 369
OurMVSNet-221017-052.39 33748.73 34163.35 33165.21 36438.42 35268.54 34664.95 36638.19 36739.57 37171.43 34113.23 38479.92 31737.16 32340.32 37371.72 368
UnsupCasMVSNet_eth57.56 31055.15 30964.79 32464.57 37033.12 37173.17 31783.87 15458.98 20341.75 36170.03 34922.54 34879.92 31746.12 29435.31 38181.32 281
patchmatchnet-post59.74 38338.41 19979.91 319
SCA63.84 25860.01 27975.32 15178.58 22757.92 1261.61 37177.53 27756.71 24857.75 25370.77 34531.97 28579.91 31948.80 27356.36 30188.13 153
mvs5depth50.97 34246.98 34862.95 33356.63 38934.23 36662.73 36867.35 36345.03 34448.00 33365.41 36710.40 39079.88 32136.00 33131.27 39274.73 350
LS3D56.40 31753.82 31764.12 32581.12 17445.69 29373.42 31566.14 36435.30 38043.24 35679.88 25022.18 35279.62 32219.10 39664.00 23567.05 378
tpmrst71.04 14869.77 15074.86 16783.19 11455.86 5075.64 29678.73 25667.88 4464.99 15173.73 31749.96 6779.56 32365.92 13467.85 20589.14 126
IterMVS63.77 26061.67 26070.08 27272.68 31151.24 16880.44 25975.51 30460.51 17251.41 31373.70 32032.08 28478.91 32454.30 23554.35 32380.08 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet56.17 31851.95 32868.84 28580.60 19053.07 12755.03 38670.02 35044.72 34551.00 31661.19 37822.83 34578.88 32528.54 36653.63 32774.57 352
USDC54.36 32651.23 33063.76 32764.29 37137.71 35662.84 36773.48 32656.85 24335.47 38371.94 3409.23 39378.43 32638.43 32048.57 34475.13 346
Anonymous2023120659.08 29657.59 29363.55 32868.77 34632.14 37780.26 26379.78 23050.00 30949.39 32572.39 33426.64 32078.36 32733.12 34957.94 29080.14 296
XVG-OURS61.88 27859.34 28369.49 27865.37 36246.27 28464.80 35773.49 32447.04 32957.41 26382.85 20825.15 33178.18 32853.00 24564.98 22584.01 230
XVG-ACMP-BASELINE56.03 31952.85 32365.58 31661.91 37940.95 34263.36 36272.43 33045.20 34246.02 34674.09 3129.20 39478.12 32945.13 29658.27 28377.66 323
XVG-OURS-SEG-HR62.02 27759.54 28169.46 27965.30 36345.88 28865.06 35673.57 32346.45 33357.42 26283.35 20326.95 31878.09 33053.77 23964.03 23484.42 223
PatchT56.60 31452.97 32167.48 30072.94 30846.16 28757.30 38273.78 32038.77 36654.37 29257.26 38937.52 21378.06 33132.02 35152.79 33478.23 318
KD-MVS_2432*160059.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_refine_blended59.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_lstm_enhance63.91 25762.30 25668.75 28975.06 28146.78 27469.02 34281.14 20259.68 18352.76 30572.39 33440.71 17677.99 33456.81 21953.09 33381.48 273
testgi54.25 32752.57 32659.29 35162.76 37721.65 40672.21 32670.47 34653.25 28641.94 35977.33 27814.28 38277.95 33529.18 36251.72 33878.28 316
JIA-IIPM52.33 33847.77 34666.03 31471.20 32846.92 27340.00 40376.48 29837.10 37146.73 34237.02 40332.96 27477.88 33635.97 33252.45 33673.29 361
OMC-MVS65.97 24865.06 23968.71 29072.97 30742.58 32978.61 28075.35 30754.72 27359.31 22386.25 16733.30 27277.88 33657.99 20367.05 20985.66 205
testdata277.81 33845.64 295
PLCcopyleft52.38 1860.89 28358.97 28766.68 31181.77 15245.70 29278.96 27874.04 31843.66 35347.63 33683.19 20623.52 34377.78 33937.47 32160.46 26476.55 335
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 27162.44 25562.86 33572.28 31829.51 38882.93 20178.78 25359.18 19753.07 30482.41 22136.91 23077.39 34037.45 32258.96 27581.66 269
pmmvs-eth3d55.97 32052.78 32465.54 31761.02 38146.44 27975.36 30167.72 36149.61 31143.65 35267.58 35921.63 35577.04 34144.11 30344.33 36473.15 363
TAPA-MVS56.12 1461.82 27960.18 27866.71 30978.48 23037.97 35575.19 30276.41 29946.82 33057.04 26586.52 16527.67 31477.03 34226.50 37667.02 21085.14 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testing359.97 28760.19 27759.32 35077.60 24130.01 38581.75 23181.79 19153.54 28250.34 32179.94 24948.99 7376.91 34317.19 40050.59 34071.03 373
PatchMatch-RL56.66 31353.75 31865.37 32077.91 23945.28 29569.78 34060.38 37641.35 36047.57 33773.73 31716.83 37576.91 34336.99 32759.21 27473.92 356
FMVSNet558.61 30256.45 30065.10 32277.20 25139.74 34574.77 30377.12 28550.27 30743.28 35567.71 35826.15 32476.90 34536.78 32954.78 31978.65 309
dp64.41 25361.58 26172.90 21382.40 13954.09 10072.53 32176.59 29760.39 17355.68 28070.39 34835.18 25376.90 34539.34 31861.71 25987.73 162
test_cas_vis1_n_192067.10 22866.60 20568.59 29365.17 36543.23 32083.23 19369.84 35155.34 26670.67 9987.71 14524.70 33676.66 34778.57 4964.20 23285.89 201
dmvs_testset57.65 30958.21 29055.97 36174.62 2879.82 42263.75 36163.34 37267.23 5448.89 32883.68 19839.12 19376.14 34823.43 38459.80 26881.96 264
MDA-MVSNet-bldmvs51.56 34047.75 34763.00 33271.60 32347.32 26969.70 34172.12 33243.81 35227.65 40163.38 37121.97 35475.96 34927.30 37332.19 38965.70 384
MVS-HIRNet49.01 34744.71 35161.92 34076.06 26746.61 27763.23 36454.90 38324.77 39633.56 38836.60 40521.28 35775.88 35029.49 36062.54 25463.26 389
CMPMVSbinary40.41 2155.34 32252.64 32563.46 32960.88 38243.84 31161.58 37271.06 34330.43 38836.33 38074.63 30924.14 33975.44 35148.05 27966.62 21371.12 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet255.21 32451.44 32966.51 31280.60 19049.56 20355.03 38665.44 36544.72 34551.00 31661.19 37822.83 34575.41 35228.54 36653.63 32774.57 352
CNLPA60.59 28558.44 28967.05 30679.21 21147.26 27079.75 27064.34 37042.46 35951.90 31283.94 19027.79 31375.41 35237.12 32459.49 27178.47 311
test20.0355.22 32354.07 31658.68 35363.14 37625.00 39777.69 28774.78 31152.64 28943.43 35372.39 33426.21 32274.76 35429.31 36147.05 35676.28 337
WR-MVS_H58.91 29958.04 29161.54 34269.07 34433.83 36976.91 29081.99 18551.40 30048.17 33074.67 30840.23 18174.15 35531.78 35348.10 34676.64 333
MDA-MVSNet_test_wron53.82 33049.95 33765.43 31870.13 33749.05 21672.30 32471.65 33944.23 35131.85 39463.13 37223.68 34274.01 35633.25 34839.35 37573.23 362
YYNet153.82 33049.96 33665.41 31970.09 33848.95 22072.30 32471.66 33844.25 35031.89 39363.07 37323.73 34173.95 35733.26 34739.40 37473.34 360
COLMAP_ROBcopyleft43.60 2050.90 34348.05 34459.47 34967.81 35440.57 34471.25 33362.72 37536.49 37536.19 38173.51 32213.48 38373.92 35820.71 39150.26 34163.92 387
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS58.35 30657.15 29661.94 33967.55 35534.39 36377.01 28978.35 26551.87 29647.72 33576.73 28933.91 26673.75 35934.03 34447.17 35477.68 322
F-COLMAP55.96 32153.65 31962.87 33472.76 31042.77 32674.70 30670.37 34740.03 36241.11 36679.36 25517.77 37173.70 36032.80 35053.96 32572.15 365
Patchmatch-test53.33 33348.17 34368.81 28773.31 30042.38 33142.98 39858.23 37832.53 38238.79 37570.77 34539.66 18973.51 36125.18 37852.06 33790.55 87
TinyColmap48.15 34944.49 35359.13 35265.73 36138.04 35363.34 36362.86 37438.78 36529.48 39667.23 3616.46 40473.30 36224.59 38041.90 37066.04 382
DTE-MVSNet57.03 31255.73 30760.95 34765.94 35932.57 37575.71 29577.09 28651.16 30246.65 34476.34 29432.84 27673.22 36330.94 35744.87 36377.06 327
CP-MVSNet58.54 30557.57 29461.46 34368.50 34833.96 36876.90 29178.60 26051.67 29947.83 33476.60 29134.99 25772.79 36435.45 33447.58 35077.64 324
PS-CasMVS58.12 30757.03 29861.37 34468.24 35233.80 37076.73 29278.01 26951.20 30147.54 33876.20 29932.85 27572.76 36535.17 33947.37 35277.55 325
EPNet_dtu66.25 24466.71 20164.87 32378.66 22534.12 36782.80 20375.51 30461.75 14564.47 16286.90 15737.06 22672.46 36643.65 30569.63 19488.02 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm68.36 19867.48 19070.97 25979.93 20151.34 16576.58 29378.75 25567.73 4763.54 17774.86 30748.33 7472.36 36753.93 23863.71 23789.21 123
Anonymous2024052151.65 33948.42 34261.34 34556.43 39039.65 34773.57 31373.47 32736.64 37436.59 37963.98 37010.75 38972.25 36835.35 33549.01 34372.11 366
MIMVSNet150.35 34447.81 34557.96 35561.53 38027.80 39567.40 34974.06 31743.25 35533.31 39265.38 36816.03 37971.34 36921.80 38847.55 35174.75 349
KD-MVS_self_test49.24 34646.85 34956.44 35954.32 39122.87 40057.39 38173.36 32844.36 34937.98 37759.30 38518.97 36571.17 37033.48 34542.44 36875.26 344
EU-MVSNet52.63 33550.72 33258.37 35462.69 37828.13 39472.60 32075.97 30130.94 38740.76 36872.11 33820.16 36070.80 37135.11 34046.11 36076.19 338
testdata67.08 30577.59 24245.46 29469.20 35544.47 34771.50 8788.34 13031.21 29270.76 37252.20 25375.88 13285.03 213
旧先验281.73 23245.53 34074.66 4770.48 37358.31 199
new-patchmatchnet48.21 34846.55 35053.18 36557.73 38718.19 41470.24 33671.02 34445.70 33833.70 38760.23 38118.00 37069.86 37427.97 37034.35 38571.49 371
CVMVSNet60.85 28460.44 27462.07 33675.00 28232.73 37479.54 27173.49 32436.98 37256.28 27683.74 19429.28 30469.53 37546.48 29063.23 24583.94 236
N_pmnet41.25 35839.77 36145.66 37668.50 3480.82 42872.51 3220.38 42735.61 37735.26 38461.51 37720.07 36167.74 37623.51 38340.63 37168.42 377
kuosan50.20 34550.09 33550.52 36973.09 30529.09 39165.25 35474.89 31048.27 32041.34 36360.85 38043.45 14167.48 37718.59 39825.07 40055.01 394
pmmvs345.53 35441.55 36057.44 35648.97 40339.68 34670.06 33757.66 37928.32 39134.06 38657.29 3888.50 39766.85 37834.86 34234.26 38665.80 383
PM-MVS46.92 35143.76 35856.41 36052.18 39532.26 37663.21 36538.18 40337.99 36940.78 36766.20 3625.09 40865.42 37948.19 27841.99 36971.54 370
WB-MVS37.41 36536.37 36540.54 38354.23 39210.43 42165.29 35343.75 39434.86 38127.81 40054.63 39024.94 33363.21 3806.81 41615.00 41147.98 402
Gipumacopyleft27.47 37424.26 37937.12 38860.55 38329.17 39011.68 41560.00 37714.18 40710.52 41615.12 4172.20 41763.01 3818.39 41135.65 38019.18 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ttmdpeth40.58 36037.50 36449.85 37049.40 40122.71 40156.65 38346.78 38928.35 39040.29 37069.42 3525.35 40761.86 38220.16 39321.06 40664.96 385
test_fmvs1_n52.55 33651.19 33156.65 35851.90 39630.14 38267.66 34842.84 39632.27 38462.30 18982.02 2339.12 39560.84 38357.82 20954.75 32178.99 303
test_fmvs153.60 33252.54 32756.78 35758.07 38530.26 38168.95 34442.19 39732.46 38363.59 17582.56 21911.55 38660.81 38458.25 20055.27 31579.28 301
EGC-MVSNET33.75 36930.42 37343.75 37964.94 36836.21 36060.47 37640.70 4000.02 4210.10 42253.79 3937.39 39860.26 38511.09 40835.23 38334.79 407
ANet_high34.39 36829.59 37448.78 37230.34 41722.28 40255.53 38563.79 37138.11 36815.47 40936.56 4066.94 40059.98 38613.93 4055.64 42064.08 386
AllTest47.32 35044.66 35255.32 36365.08 36637.50 35762.96 36654.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
TestCases55.32 36365.08 36637.50 35754.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
SSC-MVS35.20 36734.30 36937.90 38652.58 3948.65 42461.86 36941.64 39831.81 38625.54 40352.94 39623.39 34459.28 3896.10 41712.86 41245.78 405
CHOSEN 280x42057.53 31156.38 30360.97 34674.01 29548.10 25246.30 39454.31 38448.18 32250.88 31977.43 27738.37 20059.16 39054.83 23163.14 24875.66 340
test_vis1_n51.19 34149.66 33955.76 36251.26 39829.85 38667.20 35138.86 40232.12 38559.50 21979.86 2518.78 39658.23 39156.95 21852.46 33579.19 302
dongtai43.51 35544.07 35641.82 38063.75 37321.90 40463.80 36072.05 33339.59 36333.35 39154.54 39141.04 17157.30 39210.75 40917.77 40946.26 403
MVStest138.35 36234.53 36849.82 37151.43 39730.41 38050.39 39055.25 38117.56 40426.45 40265.85 36511.72 38557.00 39314.79 40317.31 41062.05 390
IterMVS-SCA-FT59.12 29458.81 28860.08 34870.68 33545.07 29780.42 26074.25 31443.54 35450.02 32273.73 31731.97 28556.74 39451.06 26053.60 32978.42 313
test_fmvs245.89 35244.32 35450.62 36845.85 40724.70 39858.87 38037.84 40525.22 39452.46 30774.56 3107.07 39954.69 39549.28 27047.70 34972.48 364
TDRefinement40.91 35938.37 36348.55 37350.45 40033.03 37358.98 37950.97 38828.50 38929.89 39567.39 3606.21 40654.51 39617.67 39935.25 38258.11 391
PMMVS226.71 37622.98 38137.87 38736.89 4118.51 42542.51 39929.32 41419.09 40213.01 41137.54 4022.23 41653.11 39714.54 40411.71 41351.99 399
DSMNet-mixed38.35 36235.36 36747.33 37448.11 40514.91 41837.87 40436.60 40619.18 40134.37 38559.56 38415.53 38053.01 39820.14 39446.89 35774.07 354
ITE_SJBPF51.84 36658.03 38631.94 37853.57 38736.67 37341.32 36475.23 30611.17 38851.57 39925.81 37748.04 34772.02 367
test_vis1_rt40.29 36138.64 36245.25 37748.91 40430.09 38359.44 37727.07 41624.52 39738.48 37651.67 3976.71 40249.44 40044.33 30146.59 35956.23 392
PMVScopyleft19.57 2225.07 37822.43 38332.99 39323.12 42422.98 39940.98 40135.19 40815.99 40611.95 41535.87 4071.47 42149.29 4015.41 41931.90 39026.70 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 37031.89 37238.59 38449.01 40220.42 40751.01 38937.92 40420.58 39823.45 40446.79 3996.66 40349.28 40220.00 39531.57 39146.09 404
LCM-MVSNet28.07 37223.85 38040.71 38127.46 42218.93 40930.82 41046.19 39012.76 40916.40 40734.70 4081.90 41848.69 40320.25 39224.22 40154.51 395
test_fmvs337.95 36435.75 36644.55 37835.50 41318.92 41048.32 39134.00 41018.36 40341.31 36561.58 3762.29 41548.06 40442.72 31037.71 37766.66 380
RPSCF45.77 35344.13 35550.68 36757.67 38829.66 38754.92 38845.25 39326.69 39345.92 34775.92 30217.43 37345.70 40527.44 37245.95 36176.67 330
mvsany_test143.38 35642.57 35945.82 37550.96 39926.10 39655.80 38427.74 41527.15 39247.41 34074.39 31118.67 36744.95 40644.66 29936.31 37966.40 381
FPMVS35.40 36633.67 37040.57 38246.34 40628.74 39341.05 40057.05 38020.37 40022.27 40553.38 3946.87 40144.94 4078.62 41047.11 35548.01 401
APD_test126.46 37724.41 37832.62 39437.58 41021.74 40540.50 40230.39 41211.45 41116.33 40843.76 4001.63 42041.62 40811.24 40726.82 39834.51 408
E-PMN19.16 38318.40 38721.44 39936.19 41213.63 41947.59 39230.89 41110.73 4125.91 41916.59 4153.66 41139.77 4095.95 4188.14 41510.92 415
EMVS18.42 38417.66 38820.71 40034.13 41412.64 42046.94 39329.94 41310.46 4145.58 42014.93 4184.23 41038.83 4105.24 4207.51 41710.67 416
test_vis3_rt24.79 37922.95 38230.31 39528.59 41918.92 41037.43 40517.27 42312.90 40821.28 40629.92 4121.02 42236.35 41128.28 36929.82 39635.65 406
MVEpermissive16.60 2317.34 38613.39 38929.16 39628.43 42019.72 40813.73 41423.63 4197.23 4177.96 41721.41 4130.80 42336.08 4126.97 41410.39 41431.69 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 38021.07 38433.16 39227.67 4218.35 42626.63 41235.11 4093.40 41814.35 41036.98 4043.46 41235.31 41319.08 39722.95 40255.81 393
testf121.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
APD_test221.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
test_f27.12 37524.85 37633.93 39126.17 42315.25 41730.24 41122.38 42012.53 41028.23 39849.43 3982.59 41434.34 41625.12 37926.99 39752.20 398
mvsany_test328.00 37325.98 37534.05 39028.97 41815.31 41634.54 40718.17 42116.24 40529.30 39753.37 3952.79 41333.38 41730.01 35920.41 40753.45 396
LF4IMVS33.04 37132.55 37134.52 38940.96 40822.03 40344.45 39635.62 40720.42 39928.12 39962.35 3755.03 40931.88 41821.61 39034.42 38449.63 400
mamv442.60 35744.05 35738.26 38559.21 38438.00 35444.14 39739.03 40125.03 39540.61 36968.39 35637.01 22724.28 41946.62 28936.43 37852.50 397
DeepMVS_CXcopyleft13.10 40121.34 4258.99 42310.02 42510.59 4137.53 41830.55 4111.82 41914.55 4206.83 4157.52 41615.75 414
wuyk23d9.11 3888.77 39210.15 40240.18 40916.76 41520.28 4131.01 4262.58 4192.66 4210.98 4210.23 42612.49 4214.08 4216.90 4181.19 418
tmp_tt9.44 38710.68 3905.73 4032.49 4264.21 42710.48 41618.04 4220.34 42012.59 41220.49 41411.39 3877.03 42213.84 4066.46 4195.95 417
mmdepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
cdsmvs_eth3d_5k18.33 38524.44 3770.00 4060.00 4280.00 4300.00 41789.40 240.00 4220.00 42592.02 4638.55 1980.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.15 3924.20 3950.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 42437.77 2040.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
testmvs6.14 3908.18 3930.01 4040.01 4270.00 43073.40 3160.00 4280.00 4220.02 4230.15 4220.00 4270.00 4230.02 4220.00 4210.02 419
test1236.01 3918.01 3940.01 4040.00 4280.01 42971.93 3300.00 4280.00 4220.02 4230.11 4230.00 4270.00 4230.02 4220.00 4210.02 419
ab-mvs-re7.68 38910.24 3910.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 42592.12 420.00 4270.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
WAC-MVS34.28 36422.56 386
FOURS183.24 11249.90 19684.98 13778.76 25447.71 32473.42 60
test_one_060189.39 2257.29 2288.09 5457.21 23982.06 1393.39 1854.94 33
eth-test20.00 428
eth-test0.00 428
RE-MVS-def66.66 20380.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10629.28 30460.52 18072.06 17183.19 249
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
save fliter85.35 6856.34 4189.31 4081.46 19661.55 149
test072689.40 2057.45 1992.32 788.63 4457.71 22783.14 993.96 655.17 29
GSMVS88.13 153
test_part289.33 2355.48 5482.27 12
sam_mvs138.86 19688.13 153
sam_mvs35.99 247
MTGPAbinary81.31 199
MTMP87.27 7715.34 424
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14473.55 5891.46 6348.01 7874.73 7785.46 42
新几何281.61 237
旧先验181.57 16447.48 26571.83 33488.66 12136.94 22978.34 10588.67 137
原ACMM283.77 175
test22279.36 20650.97 17077.99 28567.84 36042.54 35862.84 18386.53 16430.26 29876.91 11785.23 211
segment_acmp44.97 117
testdata177.55 28864.14 101
plane_prior777.95 23648.46 238
plane_prior678.42 23149.39 21136.04 245
plane_prior483.28 204
plane_prior348.95 22064.01 10462.15 191
plane_prior285.76 10763.60 113
plane_prior178.31 233
plane_prior49.57 20187.43 7064.57 9472.84 164
n20.00 428
nn0.00 428
door-mid41.31 399
test1184.25 144
door43.27 395
HQP5-MVS51.56 159
HQP-NCC79.02 21588.00 5565.45 8164.48 159
ACMP_Plane79.02 21588.00 5565.45 8164.48 159
BP-MVS66.70 126
HQP3-MVS83.68 15673.12 160
HQP2-MVS37.35 216
NP-MVS78.76 22050.43 18085.12 178
MDTV_nov1_ep13_2view43.62 31371.13 33454.95 27159.29 22536.76 23246.33 29287.32 172
ACMMP++_ref63.20 246
ACMMP++59.38 272
Test By Simon39.38 190