This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_241102_ONE89.48 1756.89 2588.94 2457.53 21684.61 493.29 2058.81 1196.45 1
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21281.91 1393.64 1155.17 2096.44 281.68 2687.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 20481.91 1393.64 1156.54 1596.44 281.64 2886.86 2492.23 34
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12788.88 2658.00 20483.60 693.39 1667.21 296.39 481.64 2891.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2687.13 2092.47 28
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 21884.61 494.09 358.81 1196.37 682.28 2387.60 1794.06 3
test_241102_TWO88.76 3257.50 21883.60 694.09 356.14 1896.37 682.28 2387.43 1992.55 27
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18071.82 7790.05 8859.72 996.04 1078.37 4788.40 1393.75 7
API-MVS74.17 7872.07 9880.49 2290.02 1158.55 887.30 7084.27 12957.51 21765.77 12787.77 13141.61 15195.97 1151.71 23782.63 5986.94 157
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3493.09 2554.15 2895.57 1285.80 885.87 3693.31 11
QAPM71.88 11769.33 14179.52 3582.20 13054.30 8686.30 9088.77 3156.61 23659.72 19687.48 13533.90 24495.36 1347.48 26581.49 7088.90 117
gm-plane-assit83.24 10154.21 8870.91 1588.23 12395.25 1466.37 117
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
MVS76.91 4175.48 5281.23 1884.56 7355.21 6080.23 25191.64 258.65 19465.37 13091.48 5845.72 9295.05 1672.11 9089.52 993.44 9
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
MAR-MVS76.76 4675.60 5080.21 2690.87 754.68 7889.14 4189.11 2062.95 11270.54 9292.33 3741.05 15594.95 1757.90 19186.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3192.13 3960.24 694.78 1978.97 4189.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 10974.63 4490.83 6941.38 15494.40 2075.42 6879.90 8994.72 2
IB-MVS68.87 274.01 7972.03 10179.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18281.74 21853.21 3194.28 2160.45 16662.41 23890.03 92
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 24881.21 1693.69 1056.51 1694.27 2278.36 4885.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
3Dnovator64.70 674.46 7372.48 8680.41 2482.84 11755.40 5483.08 18788.61 3867.61 4359.85 19488.66 11334.57 23893.97 2458.42 18188.70 1191.85 46
VDDNet74.37 7572.13 9681.09 1979.58 18756.52 3290.02 2686.70 7052.61 27571.23 8587.20 14031.75 26693.96 2574.30 7775.77 12192.79 23
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3393.87 752.58 3593.91 2684.17 1287.92 1592.39 30
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20173.60 5393.31 1943.14 13193.79 2773.81 8088.53 1292.37 31
CHOSEN 1792x268876.24 5174.03 7282.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13783.49 18641.52 15393.69 2870.55 9581.82 6792.12 37
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5292.75 3046.88 7793.28 2978.79 4484.07 5391.50 57
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2293.64 1152.40 3693.27 3088.85 486.56 3092.61 26
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 7993.25 294.80 1
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2393.10 2349.88 5692.98 3284.09 1484.75 4893.08 17
FA-MVS(test-final)69.00 16666.60 18576.19 11683.48 9347.96 24174.73 28982.07 17057.27 22262.18 17478.47 24936.09 22092.89 3353.76 22371.32 16087.73 144
MS-PatchMatch72.34 10871.26 10975.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25680.74 22932.28 25992.89 3357.95 19088.10 1478.39 297
OpenMVScopyleft61.00 1169.99 15067.55 16877.30 8778.37 21454.07 9284.36 14685.76 8657.22 22356.71 25287.67 13330.79 27292.83 3543.04 28884.06 5485.01 197
test_yl75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
DCV-MVSNet75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
VDD-MVS76.08 5474.97 6079.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7289.34 10132.52 25692.76 3877.90 5375.96 11892.22 36
9.1478.19 2485.67 5388.32 5088.84 2959.89 16374.58 4692.62 3346.80 7892.66 3981.40 3285.62 39
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24378.56 2892.49 3548.20 6392.65 4079.49 3683.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11371.65 7891.56 5642.33 13892.56 4177.14 5783.69 5590.15 88
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051573.64 8972.20 9477.97 7381.63 14453.01 12186.69 8488.81 3062.53 12064.06 14985.65 15852.15 3992.50 4258.43 17969.84 17288.39 132
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 1893.22 2237.77 18792.50 4282.75 2086.25 3391.57 53
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 13880.26 2093.10 2346.53 8292.41 4479.97 3588.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 26888.46 4990.32 1171.40 1372.32 7391.72 5053.44 3092.37 4566.28 11975.42 12493.28 13
EI-MVSNet-Vis-set73.19 9572.60 8474.99 15182.56 12549.80 18982.55 20089.00 2266.17 6165.89 12588.98 10743.83 11792.29 4665.38 13269.01 17882.87 238
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1793.07 2737.63 19292.28 4782.73 2185.71 3791.57 53
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5588.09 12548.07 6492.19 4862.24 14784.53 5091.53 55
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23774.26 4991.60 5554.26 2692.16 4975.87 6279.91 8893.05 18
MVS_111021_HR76.39 5075.38 5479.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12289.88 9143.79 11992.16 4975.03 7080.03 8789.64 100
DP-MVS Recon71.99 11470.31 12477.01 9690.65 853.44 10589.37 3782.97 15956.33 24063.56 16089.47 9834.02 24292.15 5154.05 22072.41 14985.43 192
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13383.68 14267.85 3869.36 9590.24 8060.20 792.10 5284.14 1380.40 8092.82 21
Anonymous2024052969.71 15567.28 17377.00 9783.78 8850.36 17588.87 4585.10 10947.22 30864.03 15183.37 18827.93 28892.10 5257.78 19467.44 19088.53 130
cascas69.01 16566.13 19477.66 7879.36 18955.41 5386.99 7783.75 14156.69 23458.92 21481.35 22324.31 31692.10 5253.23 22470.61 16585.46 191
FE-MVS64.15 23560.43 25675.30 14180.85 16749.86 18768.28 33078.37 24650.26 29359.31 20673.79 29926.19 30191.92 5540.19 29666.67 19584.12 208
EI-MVSNet-UG-set72.37 10771.73 10274.29 16481.60 14649.29 20081.85 21588.64 3565.29 7865.05 13388.29 12243.18 12991.83 5663.74 13767.97 18581.75 249
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2493.00 2853.10 3291.76 5780.40 3489.56 892.68 25
baseline275.15 6874.54 6676.98 9981.67 14351.74 14683.84 16291.94 169.97 2158.98 21186.02 15459.73 891.73 5868.37 10570.40 16987.48 149
Effi-MVS+75.24 6573.61 7480.16 2981.92 13357.42 1985.21 11676.71 27460.68 15473.32 5889.34 10147.30 7291.63 5968.28 10679.72 9191.42 58
EIA-MVS75.92 5675.18 5778.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10090.53 7345.79 9191.58 6067.21 11282.18 6491.20 65
Anonymous20240521170.11 14467.88 15976.79 10687.20 4047.24 25489.49 3577.38 26254.88 25766.14 12086.84 14520.93 33791.54 6156.45 20771.62 15691.59 51
thisisatest053070.47 14268.56 14876.20 11579.78 18551.52 15283.49 17388.58 4057.62 21558.60 22082.79 19551.03 4691.48 6252.84 22962.36 24085.59 190
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12488.63 3666.08 6486.77 392.75 3072.05 191.46 6383.35 1793.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10489.97 9048.03 6591.41 6475.60 6584.14 5289.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19274.63 4492.38 3647.75 6891.35 6578.18 5186.85 2591.15 66
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6491.98 4745.10 10091.27 6675.02 7184.56 4990.84 72
3Dnovator+62.71 772.29 11070.50 11977.65 7983.40 9751.29 15887.32 6886.40 7559.01 18758.49 22488.32 12132.40 25791.27 6657.04 20082.15 6590.38 81
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8388.35 11951.58 4091.22 6879.02 4079.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t69.87 15367.88 15975.85 12588.38 2952.35 13486.94 7983.68 14253.70 26655.68 26285.60 15930.07 27791.20 6955.84 21071.02 16283.99 213
ZD-MVS89.55 1453.46 10284.38 12657.02 22673.97 5191.03 6144.57 11291.17 7075.41 6981.78 69
h-mvs3373.95 8072.89 8277.15 9280.17 18050.37 17484.68 13883.33 14868.08 3371.97 7588.65 11642.50 13691.15 7178.82 4257.78 27989.91 96
EC-MVSNet75.30 6475.20 5575.62 12880.98 16049.00 20687.43 6584.68 12163.49 10470.97 8890.15 8642.86 13591.14 7274.33 7681.90 6686.71 166
test1279.24 3986.89 4156.08 4085.16 10672.27 7447.15 7491.10 7385.93 3590.54 78
ZNCC-MVS75.82 6075.02 5978.23 6883.88 8753.80 9486.91 8186.05 8159.71 16667.85 10590.55 7242.23 14091.02 7472.66 8885.29 4389.87 97
ACMMP_NAP76.43 4975.66 4978.73 5281.92 13354.67 7984.06 15685.35 9561.10 14372.99 6191.50 5740.25 16391.00 7576.84 5886.98 2390.51 79
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4090.15 8646.77 7991.00 7573.52 8278.46 10193.44 9
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7191.62 5445.53 9490.99 7774.48 7482.51 6091.23 64
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2195.30 156.18 1790.97 7882.57 2286.22 3493.28 13
HFP-MVS74.37 7573.13 8178.10 7184.30 7753.68 9785.58 10784.36 12756.82 23065.78 12690.56 7140.70 16190.90 7969.18 10180.88 7389.71 98
iter_conf_final71.46 12469.68 13576.81 10286.03 4653.49 10084.73 13574.37 29460.27 15966.28 11984.36 17235.14 23190.87 8065.41 13070.51 16786.05 176
iter_conf0573.51 9172.24 9377.33 8587.93 3655.97 4387.90 5770.81 32468.72 2864.04 15084.36 17247.54 7090.87 8071.11 9367.75 18885.13 195
MSDG59.44 27255.14 29272.32 21174.69 26550.71 16374.39 29273.58 30344.44 32843.40 33577.52 25719.45 34190.87 8031.31 33557.49 28175.38 325
GST-MVS74.87 7173.90 7377.77 7683.30 9953.45 10485.75 10285.29 9959.22 17966.50 11789.85 9240.94 15690.76 8370.94 9483.35 5689.10 114
SD-MVS76.18 5274.85 6280.18 2885.39 5956.90 2485.75 10282.45 16656.79 23274.48 4791.81 4843.72 12290.75 8474.61 7378.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 32888.45 4268.73 9987.45 13659.15 1090.67 8554.83 21487.67 1692.03 40
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6090.52 7445.23 9990.66 8679.37 3780.95 7290.22 85
MSLP-MVS++74.21 7772.25 9280.11 3181.45 15356.47 3386.32 8979.65 21658.19 20066.36 11892.29 3836.11 21990.66 8667.39 11082.49 6193.18 16
CDPH-MVS76.05 5575.19 5678.62 5786.51 4454.98 6987.32 6884.59 12358.62 19570.75 8990.85 6843.10 13390.63 8870.50 9684.51 5190.24 84
CLD-MVS75.60 6175.39 5376.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13588.93 10842.05 14490.58 8976.57 5973.96 13685.73 185
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16084.88 11471.38 1471.51 8189.15 10650.51 5090.55 9075.71 6378.65 9991.39 59
EI-MVSNet69.70 15768.70 14772.68 20175.00 26248.90 21079.54 25787.16 6161.05 14463.88 15583.74 18145.87 8990.44 9157.42 19864.68 21378.70 290
MVSTER73.25 9472.33 8976.01 12285.54 5653.76 9683.52 16787.16 6167.06 4763.88 15581.66 21952.77 3390.44 9164.66 13464.69 21283.84 220
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8492.75 3045.52 9590.37 9371.15 9285.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8088.63 11750.89 4990.35 9476.00 6179.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051768.33 18066.29 19074.46 15778.08 21649.06 20280.88 24189.08 2154.40 26254.75 27080.77 22851.31 4390.33 9549.35 25258.01 27383.99 213
APD-MVScopyleft76.15 5375.68 4877.54 8188.52 2753.44 10587.26 7385.03 11053.79 26574.91 4291.68 5243.80 11890.31 9674.36 7581.82 6788.87 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH53.70 1659.78 26955.94 28871.28 23476.59 23948.35 22680.15 25376.11 28049.74 29541.91 34173.45 30716.50 35790.31 9631.42 33457.63 28075.17 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet70.08 14668.01 15676.27 11184.21 8051.22 16087.29 7179.33 22758.96 18963.63 15886.77 14633.29 25090.30 9844.63 28173.96 13687.30 154
region2R73.75 8572.55 8577.33 8583.90 8652.98 12285.54 11084.09 13456.83 22965.10 13290.45 7537.34 20190.24 9968.89 10380.83 7588.77 123
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3692.02 4344.82 10890.23 10080.83 3380.09 8492.08 38
ACMMPR73.76 8472.61 8377.24 9183.92 8552.96 12385.58 10784.29 12856.82 23065.12 13190.45 7537.24 20390.18 10169.18 10180.84 7488.58 127
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3591.72 5049.32 6090.17 10273.46 8382.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2591.09 6055.43 1990.09 10385.01 1080.40 8091.99 43
MVP-Stereo70.97 13270.44 12072.59 20376.03 24951.36 15585.02 12686.99 6460.31 15856.53 25578.92 24540.11 16790.00 10460.00 17090.01 676.41 319
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5090.91 6642.14 14289.99 10579.30 3879.12 9591.36 61
jason: jason.
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3292.11 4250.90 4789.95 10678.18 5177.54 10793.20 15
EG-PatchMatch MVS62.40 25759.59 26170.81 24373.29 28249.05 20385.81 9884.78 11751.85 28244.19 33073.48 30615.52 36089.85 10740.16 29767.24 19173.54 340
XXY-MVS70.18 14369.28 14372.89 19977.64 22242.88 30685.06 12387.50 5962.58 11962.66 17082.34 21143.64 12489.83 10858.42 18163.70 22185.96 181
XVS72.92 9771.62 10376.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 15389.63 9635.50 22689.78 10965.50 12380.50 7888.16 133
X-MVStestdata65.85 22962.20 23776.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 1534.82 39635.50 22689.78 10965.50 12380.50 7888.16 133
PGM-MVS72.60 10371.20 11176.80 10582.95 11252.82 12583.07 18882.14 16856.51 23863.18 16289.81 9335.68 22589.76 11167.30 11180.19 8387.83 141
test_fmvsm_n_192075.56 6275.54 5175.61 12974.60 26849.51 19681.82 21774.08 29766.52 5580.40 1993.46 1546.95 7689.72 11286.69 575.30 12587.61 147
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 27966.70 11187.07 14340.15 16689.70 11351.23 24185.06 4684.10 209
TR-MVS69.71 15567.85 16275.27 14482.94 11348.48 22387.40 6780.86 19357.15 22564.61 14187.08 14232.67 25589.64 11546.38 27271.55 15887.68 146
131471.11 12969.41 13876.22 11379.32 19150.49 16980.23 25185.14 10859.44 17258.93 21388.89 11033.83 24689.60 11661.49 15377.42 10888.57 128
SDMVSNet71.89 11670.62 11875.70 12781.70 14051.61 14873.89 29488.72 3366.58 5261.64 18082.38 20937.63 19289.48 11777.44 5565.60 20686.01 177
baseline172.51 10672.12 9773.69 18385.05 6544.46 28783.51 17186.13 8071.61 1264.64 13987.97 12855.00 2389.48 11759.07 17356.05 29287.13 156
PAPR75.20 6774.13 6878.41 6488.31 3155.10 6584.31 14885.66 8763.76 9767.55 10690.73 7043.48 12789.40 11966.36 11877.03 10990.73 74
HY-MVS67.03 573.90 8173.14 7976.18 11784.70 7147.36 25075.56 28286.36 7666.27 5970.66 9183.91 17851.05 4589.31 12067.10 11372.61 14891.88 45
fmvsm_s_conf0.5_n74.48 7274.12 6975.56 13176.96 23647.85 24385.32 11469.80 33164.16 8878.74 2693.48 1445.51 9689.29 12186.48 666.62 19689.55 102
PAPM_NR71.80 11969.98 13177.26 9081.54 15053.34 11078.60 26785.25 10253.46 26860.53 19088.66 11345.69 9389.24 12256.49 20479.62 9489.19 111
fmvsm_s_conf0.1_n73.80 8373.26 7675.43 13673.28 28347.80 24484.57 14369.43 33363.34 10678.40 2993.29 2044.73 11189.22 12385.99 766.28 20389.26 107
ECVR-MVScopyleft71.81 11871.00 11374.26 16580.12 18143.49 29884.69 13782.16 16764.02 9064.64 13987.43 13735.04 23389.21 12461.24 15579.66 9290.08 90
mvsmamba66.93 21564.88 22273.09 19375.06 26047.26 25283.36 18069.21 33462.64 11855.68 26281.43 22229.72 27889.20 12563.35 14063.50 22382.79 239
EPP-MVSNet71.14 12770.07 13074.33 16279.18 19446.52 26183.81 16386.49 7256.32 24157.95 23084.90 16854.23 2789.14 12658.14 18669.65 17587.33 152
CostFormer73.89 8272.30 9178.66 5682.36 12856.58 2875.56 28285.30 9866.06 6570.50 9376.88 27157.02 1489.06 12768.27 10768.74 18090.33 82
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 3891.99 4554.07 2989.05 12877.34 5677.00 11092.89 20
Fast-Effi-MVS+72.73 10171.15 11277.48 8282.75 11954.76 7286.77 8380.64 19663.05 11165.93 12484.01 17644.42 11389.03 12956.45 20776.36 11788.64 125
MTAPA72.73 10171.22 11077.27 8981.54 15053.57 9967.06 33481.31 18559.41 17368.39 10190.96 6536.07 22189.01 13073.80 8182.45 6289.23 109
gg-mvs-nofinetune67.43 19964.53 22576.13 11885.95 4747.79 24564.38 34088.28 4439.34 34366.62 11341.27 37758.69 1389.00 13149.64 25086.62 2991.59 51
MVS_Test75.85 5774.93 6178.62 5784.08 8155.20 6183.99 15885.17 10568.07 3573.38 5782.76 19650.44 5189.00 13165.90 12180.61 7691.64 49
MP-MVS-pluss75.54 6375.03 5877.04 9481.37 15552.65 12884.34 14784.46 12561.16 14169.14 9691.76 4939.98 17088.99 13378.19 4984.89 4789.48 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v2v48269.55 16067.64 16575.26 14572.32 29653.83 9384.93 13081.94 17265.37 7560.80 18779.25 24141.62 15088.98 13463.03 14259.51 25482.98 236
Anonymous2023121166.08 22763.67 23073.31 19083.07 10748.75 21486.01 9784.67 12245.27 32256.54 25476.67 27428.06 28788.95 13552.78 23159.95 24882.23 243
v114468.81 17066.82 17874.80 15372.34 29553.46 10284.68 13881.77 17964.25 8660.28 19177.91 25240.23 16488.95 13560.37 16759.52 25381.97 245
AdaColmapbinary67.86 18765.48 21075.00 15088.15 3354.99 6886.10 9476.63 27649.30 29757.80 23386.65 14929.39 28188.94 13745.10 27870.21 17081.06 266
fmvsm_s_conf0.5_n_a73.68 8873.15 7775.29 14275.45 25648.05 23683.88 16168.84 33663.43 10578.60 2793.37 1845.32 9788.92 13885.39 964.04 21688.89 118
fmvsm_s_conf0.1_n_a72.82 10072.05 9975.12 14770.95 31047.97 23982.72 19468.43 33862.52 12178.17 3093.08 2644.21 11488.86 13984.82 1163.54 22288.54 129
PS-MVSNAJss68.78 17267.17 17573.62 18673.01 28648.33 22884.95 12984.81 11659.30 17858.91 21579.84 23537.77 18788.86 13962.83 14363.12 23383.67 223
MP-MVScopyleft74.99 7074.33 6776.95 10082.89 11553.05 12085.63 10683.50 14757.86 20867.25 10890.24 8043.38 12888.85 14176.03 6082.23 6388.96 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250672.91 9872.43 8874.32 16380.12 18144.18 29383.19 18484.77 11864.02 9065.97 12387.43 13747.67 6988.72 14259.08 17279.66 9290.08 90
ab-mvs70.65 13869.11 14475.29 14280.87 16646.23 26973.48 29885.24 10359.99 16266.65 11280.94 22643.13 13288.69 14363.58 13868.07 18390.95 70
v119267.96 18665.74 20574.63 15471.79 29853.43 10784.06 15680.99 19263.19 11059.56 20077.46 25937.50 19888.65 14458.20 18558.93 26081.79 248
HQP-MVS72.34 10871.44 10775.03 14979.02 19751.56 15088.00 5383.68 14265.45 7064.48 14385.13 16337.35 19988.62 14566.70 11473.12 14284.91 199
HQP4-MVS64.47 14688.61 14684.91 199
TEST985.68 5155.42 5187.59 6284.00 13657.72 21172.99 6190.98 6344.87 10688.58 147
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 20972.99 6190.98 6344.99 10288.58 14778.19 4985.32 4291.34 63
ACMMPcopyleft70.81 13669.29 14275.39 13881.52 15251.92 14283.43 17483.03 15756.67 23558.80 21888.91 10931.92 26488.58 14765.89 12273.39 14085.67 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS59.24 27456.12 28668.63 27388.24 3250.35 17682.51 20164.43 34741.10 34146.70 32478.77 24624.75 31388.57 15022.26 36756.29 28966.96 360
CP-MVS72.59 10571.46 10676.00 12382.93 11452.32 13586.93 8082.48 16555.15 25263.65 15790.44 7835.03 23488.53 15168.69 10477.83 10587.15 155
tpm270.82 13568.44 15077.98 7280.78 16856.11 3974.21 29381.28 18760.24 16068.04 10375.27 28952.26 3888.50 15255.82 21168.03 18489.33 106
OPM-MVS70.75 13769.58 13674.26 16575.55 25551.34 15686.05 9583.29 15261.94 13062.95 16685.77 15734.15 24188.44 15365.44 12971.07 16182.99 235
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v867.25 20464.99 22074.04 17072.89 28953.31 11282.37 20580.11 20561.54 13654.29 27576.02 28542.89 13488.41 15458.43 17956.36 28580.39 275
GA-MVS69.04 16466.70 18276.06 12075.11 25852.36 13383.12 18680.23 20363.32 10760.65 18979.22 24230.98 27188.37 15561.25 15466.41 19987.46 150
HPM-MVScopyleft72.60 10371.50 10575.89 12482.02 13151.42 15480.70 24483.05 15656.12 24264.03 15189.53 9737.55 19588.37 15570.48 9780.04 8687.88 140
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmvis_n_192071.29 12670.38 12274.00 17271.04 30948.79 21379.19 26364.62 34662.75 11566.73 11091.99 4540.94 15688.35 15783.00 1873.18 14184.85 201
test_885.72 5055.31 5687.60 6183.88 13957.84 20972.84 6590.99 6244.99 10288.34 158
VPNet72.07 11371.42 10874.04 17078.64 20847.17 25589.91 3187.97 4872.56 964.66 13885.04 16541.83 14988.33 15961.17 15660.97 24586.62 167
thres20068.71 17367.27 17473.02 19484.73 7046.76 25885.03 12587.73 5462.34 12459.87 19383.45 18743.15 13088.32 16031.25 33667.91 18683.98 215
HQP_MVS70.96 13369.91 13274.12 16877.95 21849.57 19185.76 10082.59 16363.60 10162.15 17583.28 19036.04 22288.30 16165.46 12672.34 15084.49 203
plane_prior582.59 16388.30 16165.46 12672.34 15084.49 203
mPP-MVS71.79 12070.38 12276.04 12182.65 12352.06 13784.45 14481.78 17855.59 24762.05 17789.68 9533.48 24888.28 16365.45 12878.24 10487.77 143
v1066.61 21964.20 22873.83 17872.59 29253.37 10881.88 21479.91 21061.11 14254.09 27775.60 28740.06 16888.26 16456.47 20556.10 29179.86 281
OpenMVS_ROBcopyleft53.19 1759.20 27556.00 28768.83 26871.13 30844.30 29083.64 16675.02 29046.42 31546.48 32673.03 30918.69 34588.14 16527.74 35161.80 24174.05 336
PVSNet_BlendedMVS73.42 9273.30 7573.76 18085.91 4851.83 14486.18 9284.24 13265.40 7369.09 9780.86 22746.70 8088.13 16675.43 6665.92 20581.33 262
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9789.33 10346.70 8088.13 16675.43 6681.48 7189.55 102
GeoE69.96 15167.88 15976.22 11381.11 15951.71 14784.15 15276.74 27359.83 16460.91 18584.38 17041.56 15288.10 16851.67 23870.57 16688.84 120
agg_prior85.64 5454.92 7083.61 14672.53 7088.10 168
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22586.41 7469.61 2481.72 1588.16 12455.09 2288.04 17074.12 7886.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419267.86 18765.76 20474.16 16771.68 30053.09 11884.14 15380.83 19462.85 11459.21 20977.28 26239.30 17488.00 17158.67 17757.88 27781.40 259
test111171.06 13070.42 12172.97 19679.48 18841.49 31984.82 13482.74 16264.20 8762.98 16587.43 13735.20 22987.92 17258.54 17878.42 10289.49 104
v192192067.45 19865.23 21774.10 16971.51 30352.90 12483.75 16580.44 19962.48 12359.12 21077.13 26336.98 20687.90 17357.53 19658.14 27181.49 253
v7n62.50 25459.27 26572.20 21267.25 33549.83 18877.87 27180.12 20452.50 27648.80 31073.07 30832.10 26087.90 17346.83 27054.92 30278.86 288
test_fmvsmconf_n74.41 7474.05 7175.49 13574.16 27448.38 22582.66 19572.57 31067.05 4875.11 4192.88 2946.35 8387.81 17583.93 1571.71 15590.28 83
v124066.99 21264.68 22373.93 17371.38 30652.66 12783.39 17879.98 20761.97 12958.44 22777.11 26435.25 22887.81 17556.46 20658.15 26981.33 262
thres100view90066.87 21665.42 21471.24 23583.29 10043.15 30381.67 22187.78 5159.04 18655.92 26082.18 21343.73 12087.80 17728.80 34366.36 20082.78 240
tfpn200view967.57 19566.13 19471.89 22684.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20082.78 240
thres40067.40 20266.13 19471.19 23784.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20080.71 271
test_fmvsmconf0.1_n73.69 8773.15 7775.34 13970.71 31148.26 22982.15 20771.83 31466.75 5174.47 4892.59 3444.89 10587.78 18083.59 1671.35 15989.97 93
v14868.24 18366.35 18873.88 17571.76 29951.47 15384.23 15081.90 17663.69 9958.94 21276.44 27643.72 12287.78 18060.63 16055.86 29582.39 242
PMMVS72.98 9672.05 9975.78 12683.57 9048.60 21784.08 15482.85 16161.62 13468.24 10290.33 7928.35 28487.78 18072.71 8776.69 11290.95 70
IS-MVSNet68.80 17167.55 16872.54 20478.50 21143.43 30081.03 23679.35 22559.12 18557.27 24786.71 14746.05 8787.70 18344.32 28375.60 12386.49 169
test_fmvsmconf0.01_n71.97 11570.95 11475.04 14866.21 33747.87 24280.35 24870.08 32865.85 6972.69 6691.68 5239.99 16987.67 18482.03 2569.66 17489.58 101
RRT_MVS63.68 24161.01 25071.70 22773.48 27945.98 27181.19 23376.08 28154.33 26352.84 28679.27 24022.21 33087.65 18554.13 21955.54 29981.46 256
V4267.66 19265.60 20973.86 17670.69 31353.63 9881.50 22878.61 24163.85 9559.49 20377.49 25837.98 18487.65 18562.33 14558.43 26480.29 276
dmvs_re67.61 19366.00 19772.42 20881.86 13543.45 29964.67 33980.00 20669.56 2560.07 19285.00 16634.71 23687.63 18751.48 23966.68 19486.17 175
sd_testset67.79 19065.95 19973.32 18981.70 14046.33 26668.99 32680.30 20266.58 5261.64 18082.38 20930.45 27487.63 18755.86 20965.60 20686.01 177
ET-MVSNet_ETH3D75.23 6674.08 7078.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28490.22 8249.71 5787.62 18972.12 8970.82 16492.82 21
TransMVSNet (Re)62.82 25060.76 25269.02 26573.98 27641.61 31786.36 8879.30 22856.90 22752.53 28876.44 27641.85 14887.60 19038.83 30040.61 35577.86 303
APD-MVS_3200maxsize69.62 15968.23 15473.80 17981.58 14848.22 23081.91 21379.50 21948.21 30364.24 14889.75 9431.91 26587.55 19163.08 14173.85 13885.64 188
Baseline_NR-MVSNet65.49 23164.27 22769.13 26474.37 27241.65 31683.39 17878.85 23259.56 16959.62 19976.88 27140.75 15887.44 19249.99 24655.05 30178.28 299
VPA-MVSNet71.12 12870.66 11772.49 20678.75 20344.43 28987.64 6090.02 1263.97 9365.02 13481.58 22142.14 14287.42 19363.42 13963.38 22785.63 189
PVSNet_Blended_VisFu73.40 9372.44 8776.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14285.38 16247.11 7587.38 19467.75 10977.55 10686.81 165
BH-w/o70.02 14868.51 14974.56 15582.77 11850.39 17386.60 8678.14 24959.77 16559.65 19785.57 16039.27 17587.30 19549.86 24874.94 13285.99 179
PCF-MVS61.03 1070.10 14568.40 15175.22 14677.15 23451.99 13979.30 26282.12 16956.47 23961.88 17886.48 15243.98 11587.24 19655.37 21272.79 14786.43 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM76.76 4676.07 4778.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9488.84 11151.57 4187.16 19765.48 12586.68 2890.15 88
SR-MVS70.92 13469.73 13474.50 15683.38 9850.48 17084.27 14979.35 22548.96 30066.57 11690.45 7533.65 24787.11 19866.42 11674.56 13385.91 182
BH-untuned68.28 18166.40 18773.91 17481.62 14550.01 18385.56 10977.39 26157.63 21457.47 24483.69 18336.36 21787.08 19944.81 27973.08 14584.65 202
EPMVS68.45 17765.44 21377.47 8384.91 6856.17 3871.89 31481.91 17561.72 13360.85 18672.49 31436.21 21887.06 20047.32 26671.62 15689.17 112
LPG-MVS_test66.44 22264.58 22472.02 21674.42 27048.60 21783.07 18880.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
LGP-MVS_train72.02 21674.42 27048.60 21780.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
HyFIR lowres test69.94 15267.58 16677.04 9477.11 23557.29 2081.49 23079.11 23058.27 19958.86 21680.41 23042.33 13886.96 20361.91 15068.68 18186.87 159
AUN-MVS68.20 18466.35 18873.76 18076.37 24047.45 24879.52 25979.52 21860.98 14662.34 17186.02 15436.59 21686.94 20462.32 14653.47 31586.89 158
hse-mvs271.44 12570.68 11673.73 18276.34 24147.44 24979.45 26079.47 22068.08 3371.97 7586.01 15642.50 13686.93 20578.82 4253.46 31686.83 164
thres600view766.46 22165.12 21870.47 24683.41 9443.80 29682.15 20787.78 5159.37 17456.02 25982.21 21243.73 12086.90 20626.51 35564.94 20980.71 271
tfpnnormal61.47 26259.09 26668.62 27476.29 24541.69 31581.14 23585.16 10654.48 26151.32 29673.63 30432.32 25886.89 20721.78 36955.71 29777.29 309
FMVSNet368.84 16867.40 17173.19 19285.05 6548.53 22085.71 10585.36 9460.90 15057.58 23979.15 24342.16 14186.77 20847.25 26763.40 22484.27 207
pm-mvs164.12 23662.56 23468.78 27071.68 30038.87 33182.89 19281.57 18055.54 24953.89 27977.82 25437.73 19086.74 20948.46 26053.49 31480.72 270
tpm cat166.28 22362.78 23376.77 10781.40 15457.14 2270.03 32177.19 26453.00 27258.76 21970.73 33046.17 8486.73 21043.27 28764.46 21486.44 170
FMVSNet267.57 19565.79 20372.90 19782.71 12047.97 23985.15 11884.93 11258.55 19656.71 25278.26 25036.72 21386.67 21146.15 27462.94 23584.07 210
xiu_mvs_v1_base_debu71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base_debi71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
nrg03072.27 11271.56 10474.42 15975.93 25050.60 16686.97 7883.21 15362.75 11567.15 10984.38 17050.07 5386.66 21271.19 9162.37 23985.99 179
tpmvs62.45 25659.42 26371.53 23283.93 8454.32 8570.03 32177.61 25751.91 28053.48 28368.29 33837.91 18586.66 21233.36 32658.27 26773.62 339
UA-Net67.32 20366.23 19270.59 24578.85 20141.23 32273.60 29675.45 28761.54 13666.61 11484.53 16938.73 18086.57 21742.48 29374.24 13483.98 215
test_040256.45 29753.03 30166.69 29276.78 23850.31 17881.76 21869.61 33242.79 33743.88 33172.13 32022.82 32586.46 21816.57 37950.94 32363.31 368
cl____67.43 19965.93 20071.95 22276.33 24248.02 23782.58 19779.12 22961.30 14056.72 25176.92 26946.12 8586.44 21957.98 18856.31 28781.38 261
DIV-MVS_self_test67.43 19965.93 20071.94 22376.33 24248.01 23882.57 19879.11 23061.31 13956.73 25076.92 26946.09 8686.43 22057.98 18856.31 28781.39 260
tt080563.39 24461.31 24669.64 25969.36 32038.87 33178.00 26985.48 8848.82 30155.66 26581.66 21924.38 31586.37 22149.04 25559.36 25783.68 222
GBi-Net67.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
test167.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
FMVSNet164.57 23262.11 23871.96 21977.32 22846.36 26383.52 16783.31 14952.43 27754.42 27376.23 28027.80 29086.20 22242.59 29261.34 24483.32 226
MDTV_nov1_ep1361.56 24281.68 14255.12 6372.41 30678.18 24859.19 18058.85 21769.29 33534.69 23786.16 22536.76 31162.96 234
MVSFormer73.53 9072.19 9577.57 8083.02 10955.24 5881.63 22281.44 18350.28 29076.67 3690.91 6644.82 10886.11 22660.83 15880.09 8491.36 61
test_djsdf63.84 23861.56 24270.70 24468.78 32444.69 28681.63 22281.44 18350.28 29052.27 29176.26 27926.72 29786.11 22660.83 15855.84 29681.29 265
pmmvs659.64 27157.15 27767.09 28666.01 33836.86 34080.50 24578.64 23945.05 32449.05 30873.94 29827.28 29386.10 22843.96 28549.94 32678.31 298
ACMP61.11 966.24 22564.33 22672.00 21874.89 26449.12 20183.18 18579.83 21155.41 25052.29 29082.68 20025.83 30386.10 22860.89 15763.94 21980.78 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS-dyc-post68.27 18266.87 17772.48 20780.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9931.17 27086.09 23060.52 16472.06 15383.19 231
diffmvspermissive75.11 6974.65 6576.46 10978.52 21053.35 10983.28 18279.94 20870.51 1871.64 7988.72 11246.02 8886.08 23177.52 5475.75 12289.96 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM58.35 1264.35 23462.01 23971.38 23374.21 27348.51 22182.25 20679.66 21547.61 30654.54 27280.11 23125.26 30886.00 23251.26 24063.16 23179.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast67.86 18766.28 19172.61 20280.67 17248.34 22781.18 23475.95 28350.81 28859.55 20188.05 12727.86 28985.98 23358.83 17573.58 13983.51 224
ACMH+54.58 1558.55 28655.24 29068.50 27774.68 26645.80 27580.27 24970.21 32747.15 30942.77 33875.48 28816.73 35685.98 23335.10 32154.78 30473.72 338
NR-MVSNet67.25 20465.99 19871.04 24073.27 28443.91 29485.32 11484.75 11966.05 6653.65 28282.11 21445.05 10185.97 23547.55 26456.18 29083.24 229
Vis-MVSNetpermissive70.61 13969.34 14074.42 15980.95 16548.49 22286.03 9677.51 25958.74 19365.55 12987.78 13034.37 23985.95 23652.53 23580.61 7688.80 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet_DTU73.71 8673.14 7975.40 13782.61 12450.05 18284.67 14079.36 22469.72 2375.39 3990.03 8929.41 28085.93 23767.99 10879.11 9690.22 85
Fast-Effi-MVS+-dtu66.53 22064.10 22973.84 17772.41 29452.30 13684.73 13575.66 28459.51 17056.34 25779.11 24428.11 28685.85 23857.74 19563.29 22883.35 225
eth_miper_zixun_eth66.98 21365.28 21672.06 21575.61 25450.40 17281.00 23776.97 27162.00 12756.99 24976.97 26744.84 10785.58 23958.75 17654.42 30780.21 277
TranMVSNet+NR-MVSNet66.94 21465.61 20870.93 24273.45 28043.38 30183.02 19084.25 13065.31 7758.33 22881.90 21739.92 17185.52 24049.43 25154.89 30383.89 219
sss70.49 14070.13 12971.58 23181.59 14739.02 33080.78 24384.71 12059.34 17566.61 11488.09 12537.17 20485.52 24061.82 15271.02 16290.20 87
jajsoiax63.21 24660.84 25170.32 25068.33 32944.45 28881.23 23281.05 18953.37 27050.96 30077.81 25517.49 35185.49 24259.31 17158.05 27281.02 267
mvs_tets62.96 24960.55 25370.19 25168.22 33244.24 29280.90 24080.74 19552.99 27350.82 30277.56 25616.74 35585.44 24359.04 17457.94 27480.89 268
FIs70.00 14970.24 12869.30 26377.93 22038.55 33383.99 15887.72 5566.86 5057.66 23784.17 17552.28 3785.31 24452.72 23468.80 17984.02 211
mvs_anonymous72.29 11070.74 11576.94 10182.85 11654.72 7578.43 26881.54 18163.77 9661.69 17979.32 23951.11 4485.31 24462.15 14975.79 12090.79 73
RPMNet59.29 27354.25 29674.42 15973.97 27756.57 2960.52 35376.98 26835.72 35557.49 24258.87 36337.73 19085.26 24627.01 35459.93 24981.42 257
UniMVSNet (Re)67.71 19166.80 17970.45 24774.44 26942.93 30582.42 20484.90 11363.69 9959.63 19880.99 22547.18 7385.23 24751.17 24256.75 28483.19 231
cl2268.85 16767.69 16472.35 21078.07 21749.98 18482.45 20378.48 24462.50 12258.46 22577.95 25149.99 5485.17 24862.55 14458.72 26181.90 247
miper_enhance_ethall69.77 15468.90 14672.38 20978.93 20049.91 18583.29 18178.85 23264.90 8059.37 20479.46 23752.77 3385.16 24963.78 13658.72 26182.08 244
无先验85.19 11778.00 25149.08 29885.13 25052.78 23187.45 151
UGNet68.71 17367.11 17673.50 18880.55 17547.61 24684.08 15478.51 24359.45 17165.68 12882.73 19923.78 31885.08 25152.80 23076.40 11387.80 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 17567.58 16672.08 21476.91 23749.48 19782.47 20278.45 24562.68 11758.28 22977.88 25350.90 4785.01 25261.91 15058.72 26181.75 249
c3_l67.97 18566.66 18371.91 22576.20 24649.31 19982.13 20978.00 25161.99 12857.64 23876.94 26849.41 5884.93 25360.62 16157.01 28381.49 253
PatchmatchNetpermissive67.07 21163.63 23177.40 8483.10 10458.03 972.11 31277.77 25458.85 19059.37 20470.83 32737.84 18684.93 25342.96 28969.83 17389.26 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_post16.22 39237.52 19684.72 255
SixPastTwentyTwo54.37 30650.10 31567.21 28570.70 31241.46 32074.73 28964.69 34547.56 30739.12 35169.49 33318.49 34884.69 25631.87 33234.20 36975.48 324
UniMVSNet_NR-MVSNet68.82 16968.29 15370.40 24975.71 25342.59 30984.23 15086.78 6766.31 5858.51 22182.45 20651.57 4184.64 25753.11 22555.96 29383.96 217
DU-MVS66.84 21765.74 20570.16 25273.27 28442.59 30981.50 22882.92 16063.53 10358.51 22182.11 21440.75 15884.64 25753.11 22555.96 29383.24 229
lessismore_v067.98 27964.76 34941.25 32145.75 36936.03 36065.63 34619.29 34384.11 25935.67 31321.24 38478.59 293
test_post170.84 31814.72 39534.33 24083.86 26048.80 256
1112_ss70.05 14769.37 13972.10 21380.77 16942.78 30785.12 12276.75 27259.69 16761.19 18492.12 4047.48 7183.84 26153.04 22768.21 18289.66 99
Effi-MVS+-dtu66.24 22564.96 22170.08 25475.17 25749.64 19082.01 21074.48 29362.15 12557.83 23276.08 28430.59 27383.79 26265.40 13160.93 24676.81 312
PVSNet_057.04 1361.19 26357.24 27673.02 19477.45 22750.31 17879.43 26177.36 26363.96 9447.51 31972.45 31625.03 31083.78 26352.76 23319.22 38684.96 198
CL-MVSNet_self_test62.98 24861.14 24868.50 27765.86 34042.96 30484.37 14582.98 15860.98 14653.95 27872.70 31340.43 16283.71 26441.10 29447.93 33178.83 289
IterMVS-LS66.63 21865.36 21570.42 24875.10 25948.90 21081.45 23176.69 27561.05 14455.71 26177.10 26545.86 9083.65 26557.44 19757.88 27778.70 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,172.86 9972.33 8974.46 15781.98 13250.77 16285.13 11985.47 8966.09 6367.30 10783.69 18337.27 20283.57 26665.06 13378.97 9889.05 115
D2MVS63.49 24361.39 24469.77 25869.29 32148.93 20978.89 26577.71 25660.64 15549.70 30572.10 32227.08 29583.48 26754.48 21762.65 23676.90 311
TAMVS69.51 16168.16 15573.56 18776.30 24448.71 21682.57 19877.17 26562.10 12661.32 18384.23 17441.90 14783.46 26854.80 21673.09 14488.50 131
ppachtmachnet_test58.56 28554.34 29471.24 23571.42 30454.74 7381.84 21672.27 31249.02 29945.86 32968.99 33726.27 29983.30 26930.12 33843.23 35075.69 322
CDS-MVSNet70.48 14169.43 13773.64 18477.56 22548.83 21283.51 17177.45 26063.27 10862.33 17285.54 16143.85 11683.29 27057.38 19974.00 13588.79 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp60.46 26757.65 27368.88 26663.63 35345.09 28172.93 30278.63 24046.52 31351.12 29772.80 31221.46 33583.07 27157.79 19353.97 30978.47 294
FC-MVSNet-test67.49 19767.91 15766.21 29576.06 24733.06 35280.82 24287.18 6064.44 8454.81 26882.87 19350.40 5282.60 27248.05 26266.55 19882.98 236
K. test v354.04 30949.42 32067.92 28168.55 32642.57 31275.51 28463.07 35152.07 27839.21 35064.59 34819.34 34282.21 27337.11 30625.31 37978.97 287
our_test_359.11 27755.08 29371.18 23871.42 30453.29 11381.96 21174.52 29248.32 30242.08 33969.28 33628.14 28582.15 27434.35 32345.68 34578.11 302
ambc62.06 31853.98 37029.38 36835.08 38279.65 21641.37 34359.96 3596.27 38282.15 27435.34 31638.22 35974.65 332
pmmvs463.34 24561.07 24970.16 25270.14 31550.53 16879.97 25471.41 32155.08 25354.12 27678.58 24732.79 25482.09 27650.33 24557.22 28277.86 303
WR-MVS67.58 19466.76 18070.04 25675.92 25145.06 28586.23 9185.28 10064.31 8558.50 22381.00 22444.80 11082.00 27749.21 25455.57 29883.06 234
MVS_111021_LR69.07 16367.91 15772.54 20477.27 22949.56 19379.77 25573.96 30059.33 17760.73 18887.82 12930.19 27681.53 27869.94 9872.19 15286.53 168
LTVRE_ROB45.45 1952.73 31549.74 31861.69 32269.78 31834.99 34244.52 37267.60 34143.11 33643.79 33274.03 29718.54 34781.45 27928.39 34857.94 27468.62 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CPTT-MVS67.15 20765.84 20271.07 23980.96 16250.32 17781.94 21274.10 29646.18 31857.91 23187.64 13429.57 27981.31 28064.10 13570.18 17181.56 252
UniMVSNet_ETH3D62.51 25360.49 25468.57 27668.30 33040.88 32573.89 29479.93 20951.81 28354.77 26979.61 23624.80 31281.10 28149.93 24761.35 24383.73 221
LCM-MVSNet-Re58.82 28256.54 28165.68 29779.31 19229.09 37061.39 35245.79 36860.73 15337.65 35672.47 31531.42 26881.08 28249.66 24970.41 16886.87 159
Patchmatch-RL test58.72 28354.32 29571.92 22463.91 35244.25 29161.73 34955.19 36057.38 22049.31 30754.24 36837.60 19480.89 28362.19 14847.28 33690.63 75
Test_1112_low_res67.18 20666.23 19270.02 25778.75 20341.02 32383.43 17473.69 30257.29 22158.45 22682.39 20845.30 9880.88 28450.50 24466.26 20488.16 133
Syy-MVS61.51 26161.35 24562.00 31981.73 13830.09 36280.97 23881.02 19060.93 14855.06 26682.64 20135.09 23280.81 28516.40 38058.32 26575.10 329
myMVS_eth3d63.52 24263.56 23263.40 31281.73 13834.28 34580.97 23881.02 19060.93 14855.06 26682.64 20148.00 6780.81 28523.42 36558.32 26575.10 329
pmmvs562.80 25161.18 24767.66 28269.53 31942.37 31482.65 19675.19 28954.30 26452.03 29378.51 24831.64 26780.67 28748.60 25858.15 26979.95 280
MIMVSNet63.12 24760.29 25771.61 22875.92 25146.65 25965.15 33681.94 17259.14 18454.65 27169.47 33425.74 30480.63 28841.03 29569.56 17787.55 148
test_vis1_n_192068.59 17668.31 15269.44 26269.16 32241.51 31884.63 14168.58 33758.80 19173.26 5988.37 11825.30 30780.60 28979.10 3967.55 18986.23 174
新几何173.30 19183.10 10453.48 10171.43 32045.55 32066.14 12087.17 14133.88 24580.54 29048.50 25980.33 8285.88 184
Vis-MVSNet (Re-imp)65.52 23065.63 20765.17 30377.49 22630.54 35975.49 28577.73 25559.34 17552.26 29286.69 14849.38 5980.53 29137.07 30775.28 12684.42 205
PVSNet62.49 869.27 16267.81 16373.64 18484.41 7651.85 14384.63 14177.80 25366.42 5659.80 19584.95 16722.14 33280.44 29255.03 21375.11 12988.62 126
CR-MVSNet62.47 25559.04 26772.77 20073.97 27756.57 2960.52 35371.72 31660.04 16157.49 24265.86 34438.94 17780.31 29342.86 29059.93 24981.42 257
test-LLR69.65 15869.01 14571.60 22978.67 20548.17 23185.13 11979.72 21359.18 18263.13 16382.58 20336.91 20880.24 29460.56 16275.17 12786.39 172
test-mter68.36 17867.29 17271.60 22978.67 20548.17 23185.13 11979.72 21353.38 26963.13 16382.58 20327.23 29480.24 29460.56 16275.17 12786.39 172
UnsupCasMVSNet_bld53.86 31050.53 31463.84 30863.52 35434.75 34371.38 31581.92 17446.53 31238.95 35257.93 36420.55 33880.20 29639.91 29834.09 37076.57 317
Patchmtry56.56 29652.95 30367.42 28472.53 29350.59 16759.05 35771.72 31637.86 34946.92 32265.86 34438.94 17780.06 29736.94 30946.72 34171.60 350
OurMVSNet-221017-052.39 31848.73 32163.35 31365.21 34438.42 33468.54 32964.95 34438.19 34639.57 34971.43 32413.23 36379.92 29837.16 30440.32 35671.72 349
UnsupCasMVSNet_eth57.56 29155.15 29164.79 30664.57 35033.12 35173.17 30183.87 14058.98 18841.75 34270.03 33222.54 32679.92 29846.12 27535.31 36381.32 264
patchmatchnet-post59.74 36038.41 18279.91 300
SCA63.84 23860.01 26075.32 14078.58 20957.92 1061.61 35077.53 25856.71 23357.75 23670.77 32831.97 26279.91 30048.80 25656.36 28588.13 136
LS3D56.40 29853.82 29864.12 30781.12 15845.69 27773.42 29966.14 34235.30 35943.24 33779.88 23322.18 33179.62 30219.10 37564.00 21867.05 359
tpmrst71.04 13169.77 13374.86 15283.19 10355.86 4675.64 28178.73 23867.88 3764.99 13673.73 30049.96 5579.56 30365.92 12067.85 18789.14 113
bld_raw_dy_0_6459.75 27057.01 28067.96 28066.73 33645.30 27977.59 27359.97 35650.49 28947.15 32177.03 26617.45 35279.06 30456.92 20259.76 25279.51 283
IterMVS63.77 24061.67 24070.08 25472.68 29151.24 15980.44 24675.51 28560.51 15651.41 29573.70 30332.08 26178.91 30554.30 21854.35 30880.08 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet56.17 29951.95 30968.84 26780.60 17353.07 11955.03 36470.02 32944.72 32551.00 29861.19 35622.83 32378.88 30628.54 34653.63 31174.57 333
USDC54.36 30751.23 31163.76 30964.29 35137.71 33762.84 34773.48 30756.85 22835.47 36171.94 3239.23 37078.43 30738.43 30148.57 32875.13 328
Anonymous2023120659.08 27857.59 27463.55 31068.77 32532.14 35780.26 25079.78 21250.00 29449.39 30672.39 31726.64 29878.36 30833.12 32957.94 27480.14 278
XVG-OURS61.88 25959.34 26469.49 26065.37 34246.27 26764.80 33873.49 30547.04 31057.41 24682.85 19425.15 30978.18 30953.00 22864.98 20884.01 212
XVG-ACMP-BASELINE56.03 30052.85 30465.58 29861.91 35840.95 32463.36 34272.43 31145.20 32346.02 32774.09 2969.20 37178.12 31045.13 27758.27 26777.66 306
XVG-OURS-SEG-HR62.02 25859.54 26269.46 26165.30 34345.88 27265.06 33773.57 30446.45 31457.42 24583.35 18926.95 29678.09 31153.77 22264.03 21784.42 205
PatchT56.60 29552.97 30267.48 28372.94 28846.16 27057.30 36173.78 30138.77 34554.37 27457.26 36637.52 19678.06 31232.02 33152.79 31878.23 301
KD-MVS_2432*160059.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_refine_blended59.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_lstm_enhance63.91 23762.30 23668.75 27175.06 26046.78 25769.02 32581.14 18859.68 16852.76 28772.39 31740.71 16077.99 31556.81 20353.09 31781.48 255
testgi54.25 30852.57 30759.29 33262.76 35621.65 38272.21 30970.47 32553.25 27141.94 34077.33 26114.28 36177.95 31629.18 34251.72 32278.28 299
JIA-IIPM52.33 31947.77 32666.03 29671.20 30746.92 25640.00 37976.48 27837.10 35046.73 32337.02 37932.96 25177.88 31735.97 31252.45 32073.29 342
OMC-MVS65.97 22865.06 21968.71 27272.97 28742.58 31178.61 26675.35 28854.72 25859.31 20686.25 15333.30 24977.88 31757.99 18767.05 19285.66 187
testdata277.81 31945.64 276
PLCcopyleft52.38 1860.89 26458.97 26866.68 29381.77 13745.70 27678.96 26474.04 29943.66 33347.63 31683.19 19223.52 32177.78 32037.47 30260.46 24776.55 318
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 25262.44 23562.86 31672.28 29729.51 36782.93 19178.78 23559.18 18253.07 28582.41 20736.91 20877.39 32137.45 30358.96 25981.66 251
pmmvs-eth3d55.97 30152.78 30565.54 29961.02 36046.44 26275.36 28667.72 34049.61 29643.65 33367.58 34021.63 33477.04 32244.11 28444.33 34773.15 344
TAPA-MVS56.12 1461.82 26060.18 25966.71 29178.48 21237.97 33675.19 28776.41 27946.82 31157.04 24886.52 15127.67 29277.03 32326.50 35667.02 19385.14 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testing359.97 26860.19 25859.32 33177.60 22330.01 36481.75 21981.79 17753.54 26750.34 30379.94 23248.99 6176.91 32417.19 37850.59 32471.03 354
PatchMatch-RL56.66 29453.75 29965.37 30277.91 22145.28 28069.78 32360.38 35441.35 34047.57 31773.73 30016.83 35476.91 32436.99 30859.21 25873.92 337
FMVSNet558.61 28456.45 28265.10 30477.20 23339.74 32774.77 28877.12 26650.27 29243.28 33667.71 33926.15 30276.90 32636.78 31054.78 30478.65 292
dp64.41 23361.58 24172.90 19782.40 12654.09 9172.53 30476.59 27760.39 15755.68 26270.39 33135.18 23076.90 32639.34 29961.71 24287.73 144
test_cas_vis1_n_192067.10 20866.60 18568.59 27565.17 34543.23 30283.23 18369.84 33055.34 25170.67 9087.71 13224.70 31476.66 32878.57 4664.20 21585.89 183
dmvs_testset57.65 29058.21 27155.97 34274.62 2679.82 39863.75 34163.34 35067.23 4548.89 30983.68 18539.12 17676.14 32923.43 36459.80 25181.96 246
MDA-MVSNet-bldmvs51.56 32147.75 32763.00 31471.60 30247.32 25169.70 32472.12 31343.81 33227.65 37863.38 35021.97 33375.96 33027.30 35332.19 37165.70 365
MVS-HIRNet49.01 32644.71 33061.92 32176.06 24746.61 26063.23 34454.90 36124.77 37333.56 36636.60 38121.28 33675.88 33129.49 34062.54 23763.26 369
CMPMVSbinary40.41 2155.34 30352.64 30663.46 31160.88 36143.84 29561.58 35171.06 32230.43 36736.33 35874.63 29324.14 31775.44 33248.05 26266.62 19671.12 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet255.21 30551.44 31066.51 29480.60 17349.56 19355.03 36465.44 34344.72 32551.00 29861.19 35622.83 32375.41 33328.54 34653.63 31174.57 333
CNLPA60.59 26658.44 27067.05 28879.21 19347.26 25279.75 25664.34 34842.46 33951.90 29483.94 17727.79 29175.41 33337.12 30559.49 25578.47 294
test20.0355.22 30454.07 29758.68 33463.14 35525.00 37577.69 27274.78 29152.64 27443.43 33472.39 31726.21 30074.76 33529.31 34147.05 33976.28 320
WR-MVS_H58.91 28158.04 27261.54 32369.07 32333.83 34976.91 27681.99 17151.40 28548.17 31174.67 29240.23 16474.15 33631.78 33348.10 32976.64 316
MDA-MVSNet_test_wron53.82 31149.95 31765.43 30070.13 31649.05 20372.30 30771.65 31944.23 33131.85 37163.13 35123.68 32074.01 33733.25 32839.35 35873.23 343
YYNet153.82 31149.96 31665.41 30170.09 31748.95 20772.30 30771.66 31844.25 33031.89 37063.07 35223.73 31973.95 33833.26 32739.40 35773.34 341
COLMAP_ROBcopyleft43.60 2050.90 32348.05 32459.47 33067.81 33340.57 32671.25 31662.72 35336.49 35436.19 35973.51 30513.48 36273.92 33920.71 37150.26 32563.92 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS58.35 28857.15 27761.94 32067.55 33434.39 34477.01 27578.35 24751.87 28147.72 31576.73 27333.91 24373.75 34034.03 32447.17 33777.68 305
F-COLMAP55.96 30253.65 30062.87 31572.76 29042.77 30874.70 29170.37 32640.03 34241.11 34679.36 23817.77 35073.70 34132.80 33053.96 31072.15 346
Patchmatch-test53.33 31448.17 32368.81 26973.31 28142.38 31342.98 37458.23 35732.53 36138.79 35370.77 32839.66 17273.51 34225.18 35852.06 32190.55 76
TinyColmap48.15 32844.49 33259.13 33365.73 34138.04 33563.34 34362.86 35238.78 34429.48 37367.23 3426.46 38173.30 34324.59 36041.90 35366.04 363
DTE-MVSNet57.03 29355.73 28960.95 32865.94 33932.57 35575.71 28077.09 26751.16 28746.65 32576.34 27832.84 25373.22 34430.94 33744.87 34677.06 310
CP-MVSNet58.54 28757.57 27561.46 32468.50 32733.96 34876.90 27778.60 24251.67 28447.83 31476.60 27534.99 23572.79 34535.45 31447.58 33377.64 307
PS-CasMVS58.12 28957.03 27961.37 32568.24 33133.80 35076.73 27878.01 25051.20 28647.54 31876.20 28332.85 25272.76 34635.17 31947.37 33577.55 308
EPNet_dtu66.25 22466.71 18164.87 30578.66 20734.12 34782.80 19375.51 28561.75 13264.47 14686.90 14437.06 20572.46 34743.65 28669.63 17688.02 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm68.36 17867.48 17070.97 24179.93 18451.34 15676.58 27978.75 23767.73 4063.54 16174.86 29148.33 6272.36 34853.93 22163.71 22089.21 110
Anonymous2024052151.65 32048.42 32261.34 32656.43 36739.65 32973.57 29773.47 30836.64 35336.59 35763.98 34910.75 36772.25 34935.35 31549.01 32772.11 347
MIMVSNet150.35 32447.81 32557.96 33661.53 35927.80 37367.40 33274.06 29843.25 33533.31 36965.38 34716.03 35871.34 35021.80 36847.55 33474.75 331
KD-MVS_self_test49.24 32546.85 32856.44 34054.32 36822.87 37857.39 36073.36 30944.36 32937.98 35559.30 36218.97 34471.17 35133.48 32542.44 35175.26 326
EU-MVSNet52.63 31650.72 31358.37 33562.69 35728.13 37272.60 30375.97 28230.94 36640.76 34872.11 32120.16 33970.80 35235.11 32046.11 34376.19 321
testdata67.08 28777.59 22445.46 27869.20 33544.47 32771.50 8288.34 12031.21 26970.76 35352.20 23675.88 11985.03 196
旧先验281.73 22045.53 32174.66 4370.48 35458.31 183
new-patchmatchnet48.21 32746.55 32953.18 34657.73 36518.19 39070.24 31971.02 32345.70 31933.70 36560.23 35818.00 34969.86 35527.97 35034.35 36771.49 352
CVMVSNet60.85 26560.44 25562.07 31775.00 26232.73 35479.54 25773.49 30536.98 35156.28 25883.74 18129.28 28269.53 35646.48 27163.23 22983.94 218
N_pmnet41.25 33539.77 33845.66 35468.50 3270.82 40472.51 3050.38 40335.61 35635.26 36261.51 35520.07 34067.74 35723.51 36340.63 35468.42 358
pmmvs345.53 33341.55 33757.44 33748.97 37839.68 32870.06 32057.66 35828.32 36934.06 36457.29 3658.50 37466.85 35834.86 32234.26 36865.80 364
PM-MVS46.92 33043.76 33556.41 34152.18 37232.26 35663.21 34538.18 37937.99 34840.78 34766.20 3435.09 38465.42 35948.19 26141.99 35271.54 351
WB-MVS37.41 34036.37 34140.54 36054.23 36910.43 39765.29 33543.75 37134.86 36027.81 37754.63 36724.94 31163.21 3606.81 39215.00 38747.98 379
Gipumacopyleft27.47 34924.26 35437.12 36460.55 36229.17 36911.68 39160.00 35514.18 38310.52 39215.12 3932.20 39363.01 3618.39 38735.65 36219.18 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs1_n52.55 31751.19 31256.65 33951.90 37330.14 36167.66 33142.84 37332.27 36362.30 17382.02 2169.12 37260.84 36257.82 19254.75 30678.99 286
test_fmvs153.60 31352.54 30856.78 33858.07 36330.26 36068.95 32742.19 37432.46 36263.59 15982.56 20511.55 36460.81 36358.25 18455.27 30079.28 284
EGC-MVSNET33.75 34430.42 34843.75 35764.94 34836.21 34160.47 35540.70 3770.02 3970.10 39853.79 3697.39 37560.26 36411.09 38535.23 36534.79 383
ANet_high34.39 34329.59 34948.78 35030.34 39222.28 37955.53 36363.79 34938.11 34715.47 38536.56 3826.94 37759.98 36513.93 3825.64 39664.08 366
AllTest47.32 32944.66 33155.32 34465.08 34637.50 33862.96 34654.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
TestCases55.32 34465.08 34637.50 33854.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
SSC-MVS35.20 34234.30 34437.90 36252.58 3718.65 40061.86 34841.64 37531.81 36525.54 37952.94 37223.39 32259.28 3686.10 39312.86 38845.78 381
CHOSEN 280x42057.53 29256.38 28560.97 32774.01 27548.10 23546.30 37154.31 36248.18 30450.88 30177.43 26038.37 18359.16 36954.83 21463.14 23275.66 323
test_vis1_n51.19 32249.66 31955.76 34351.26 37429.85 36567.20 33338.86 37832.12 36459.50 20279.86 2348.78 37358.23 37056.95 20152.46 31979.19 285
IterMVS-SCA-FT59.12 27658.81 26960.08 32970.68 31445.07 28280.42 24774.25 29543.54 33450.02 30473.73 30031.97 26256.74 37151.06 24353.60 31378.42 296
test_fmvs245.89 33144.32 33350.62 34945.85 38224.70 37658.87 35937.84 38125.22 37252.46 28974.56 2947.07 37654.69 37249.28 25347.70 33272.48 345
TDRefinement40.91 33638.37 34048.55 35150.45 37633.03 35358.98 35850.97 36628.50 36829.89 37267.39 3416.21 38354.51 37317.67 37735.25 36458.11 370
PMMVS226.71 35122.98 35637.87 36336.89 3868.51 40142.51 37529.32 39019.09 37913.01 38737.54 3782.23 39253.11 37414.54 38111.71 38951.99 376
DSMNet-mixed38.35 33835.36 34347.33 35248.11 38014.91 39437.87 38036.60 38219.18 37834.37 36359.56 36115.53 35953.01 37520.14 37346.89 34074.07 335
ITE_SJBPF51.84 34758.03 36431.94 35853.57 36536.67 35241.32 34475.23 29011.17 36651.57 37625.81 35748.04 33072.02 348
test_vis1_rt40.29 33738.64 33945.25 35548.91 37930.09 36259.44 35627.07 39224.52 37438.48 35451.67 3736.71 37949.44 37744.33 28246.59 34256.23 371
PMVScopyleft19.57 2225.07 35322.43 35832.99 36923.12 39922.98 37740.98 37735.19 38415.99 38211.95 39135.87 3831.47 39749.29 3785.41 39531.90 37226.70 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 34531.89 34738.59 36149.01 37720.42 38351.01 36737.92 38020.58 37523.45 38046.79 3756.66 38049.28 37920.00 37431.57 37346.09 380
LCM-MVSNet28.07 34723.85 35540.71 35827.46 39718.93 38530.82 38646.19 36712.76 38516.40 38334.70 3841.90 39448.69 38020.25 37224.22 38054.51 373
test_fmvs337.95 33935.75 34244.55 35635.50 38818.92 38648.32 36834.00 38618.36 38041.31 34561.58 3542.29 39148.06 38142.72 29137.71 36066.66 361
RPSCF45.77 33244.13 33450.68 34857.67 36629.66 36654.92 36645.25 37026.69 37145.92 32875.92 28617.43 35345.70 38227.44 35245.95 34476.67 313
mvsany_test143.38 33442.57 33645.82 35350.96 37526.10 37455.80 36227.74 39127.15 37047.41 32074.39 29518.67 34644.95 38344.66 28036.31 36166.40 362
FPMVS35.40 34133.67 34540.57 35946.34 38128.74 37141.05 37657.05 35920.37 37722.27 38153.38 3706.87 37844.94 3848.62 38647.11 33848.01 378
APD_test126.46 35224.41 35332.62 37037.58 38521.74 38140.50 37830.39 38811.45 38716.33 38443.76 3761.63 39641.62 38511.24 38426.82 37834.51 384
E-PMN19.16 35818.40 36221.44 37536.19 38713.63 39547.59 36930.89 38710.73 3885.91 39516.59 3913.66 38739.77 3865.95 3948.14 39110.92 391
EMVS18.42 35917.66 36320.71 37634.13 38912.64 39646.94 37029.94 38910.46 3905.58 39614.93 3944.23 38638.83 3875.24 3967.51 39310.67 392
test_vis3_rt24.79 35422.95 35730.31 37128.59 39418.92 38637.43 38117.27 39912.90 38421.28 38229.92 3881.02 39836.35 38828.28 34929.82 37635.65 382
MVEpermissive16.60 2317.34 36113.39 36429.16 37228.43 39519.72 38413.73 39023.63 3957.23 3937.96 39321.41 3890.80 39936.08 3896.97 39010.39 39031.69 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 35521.07 35933.16 36827.67 3968.35 40226.63 38835.11 3853.40 39414.35 38636.98 3803.46 38835.31 39019.08 37622.95 38155.81 372
testf121.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
APD_test221.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
test_f27.12 35024.85 35133.93 36726.17 39815.25 39330.24 38722.38 39612.53 38628.23 37549.43 3742.59 39034.34 39325.12 35926.99 37752.20 375
mvsany_test328.00 34825.98 35034.05 36628.97 39315.31 39234.54 38318.17 39716.24 38129.30 37453.37 3712.79 38933.38 39430.01 33920.41 38553.45 374
LF4IMVS33.04 34632.55 34634.52 36540.96 38322.03 38044.45 37335.62 38320.42 37628.12 37662.35 3535.03 38531.88 39521.61 37034.42 36649.63 377
DeepMVS_CXcopyleft13.10 37721.34 4008.99 39910.02 40110.59 3897.53 39430.55 3871.82 39514.55 3966.83 3917.52 39215.75 390
wuyk23d9.11 3638.77 36710.15 37840.18 38416.76 39120.28 3891.01 4022.58 3952.66 3970.98 3970.23 40212.49 3974.08 3976.90 3941.19 394
tmp_tt9.44 36210.68 3655.73 3792.49 4014.21 40310.48 39218.04 3980.34 39612.59 38820.49 39011.39 3657.03 39813.84 3836.46 3955.95 393
test_blank0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
cdsmvs_eth3d_5k18.33 36024.44 3520.00 3820.00 4030.00 4060.00 39389.40 160.00 3980.00 40192.02 4338.55 1810.00 3990.00 4000.00 3970.00 397
pcd_1.5k_mvsjas3.15 3674.20 3700.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 40037.77 1870.00 3990.00 4000.00 3970.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
Regformer0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
testmvs6.14 3658.18 3680.01 3800.01 4020.00 40673.40 3000.00 4040.00 3980.02 3990.15 3980.00 4030.00 3990.02 3980.00 3970.02 395
test1236.01 3668.01 3690.01 3800.00 4030.01 40571.93 3130.00 4040.00 3980.02 3990.11 3990.00 4030.00 3990.02 3980.00 3970.02 395
ab-mvs-re7.68 36410.24 3660.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 40192.12 400.00 4030.00 3990.00 4000.00 3970.00 397
uanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
WAC-MVS34.28 34522.56 366
FOURS183.24 10149.90 18684.98 12778.76 23647.71 30573.42 56
test_one_060189.39 2257.29 2088.09 4657.21 22482.06 1293.39 1654.94 24
eth-test20.00 403
eth-test0.00 403
RE-MVS-def66.66 18380.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9929.28 28260.52 16472.06 15383.19 231
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 1987.60 1792.44 29
save fliter85.35 6056.34 3689.31 3981.46 18261.55 135
test072689.40 2057.45 1792.32 788.63 3657.71 21283.14 993.96 655.17 20
GSMVS88.13 136
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 17988.13 136
sam_mvs35.99 224
MTGPAbinary81.31 185
MTMP87.27 7215.34 400
test9_res78.72 4585.44 4191.39 59
agg_prior275.65 6485.11 4591.01 68
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13173.55 5491.46 5948.01 6674.73 7285.46 40
新几何281.61 224
旧先验181.57 14947.48 24771.83 31488.66 11336.94 20778.34 10388.67 124
原ACMM283.77 164
test22279.36 18950.97 16177.99 27067.84 33942.54 33862.84 16786.53 15030.26 27576.91 11185.23 193
segment_acmp44.97 104
testdata177.55 27464.14 89
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 222
plane_prior483.28 190
plane_prior348.95 20764.01 9262.15 175
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 146
n20.00 404
nn0.00 404
door-mid41.31 376
test1184.25 130
door43.27 372
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 143
ACMP_Plane79.02 19788.00 5365.45 7064.48 143
BP-MVS66.70 114
HQP3-MVS83.68 14273.12 142
HQP2-MVS37.35 199
NP-MVS78.76 20250.43 17185.12 164
MDTV_nov1_ep13_2view43.62 29771.13 31754.95 25659.29 20836.76 21046.33 27387.32 153
ACMMP++_ref63.20 230
ACMMP++59.38 256
Test By Simon39.38 173