This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6396.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10690.66 10497.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4497.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4397.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9189.55 14199.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11498.69 13697.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11497.23 24497.45 13592.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6695.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9296.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++.98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8393.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8199.98 1099.55 999.83 1599.96 10
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7494.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
test_241102_TWO97.72 7494.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7494.16 2799.30 599.49 1093.32 1899.98 10
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6891.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8399.98 1099.64 699.82 1999.96 10
MP-MVScopyleft96.00 5895.82 6096.54 9999.47 5190.13 14599.36 6597.41 14390.64 10795.49 10298.95 7385.51 13199.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6495.75 6596.38 10799.58 3389.41 16599.26 7297.41 14390.66 10494.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 4996.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13086.58 22094.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
AdaColmapbinary93.82 11593.06 12096.10 11699.88 189.07 16798.33 18397.55 11486.81 21690.39 17598.65 9775.09 22699.98 1093.32 13197.53 12499.26 105
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11499.55 3497.53 11889.72 13295.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13293.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7494.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
region2R96.30 5196.17 4896.70 9199.70 890.31 13999.46 4997.66 8690.55 10897.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
API-MVS94.78 9094.18 9596.59 9699.21 7390.06 15098.80 12497.78 6383.59 26693.85 12999.21 3283.79 15199.97 2392.37 14199.00 8899.74 55
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12699.47 4497.81 5890.54 10996.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
#test#96.48 4496.34 4396.90 7799.69 990.96 12699.53 3997.81 5890.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 9999.70 1798.05 3986.48 22398.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11299.45 5197.48 13089.69 13395.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13799.47 4497.80 6090.54 10996.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
ACMMPcopyleft94.67 9694.30 9095.79 12799.25 6988.13 19098.41 17398.67 1990.38 11391.43 15798.72 9282.22 18299.95 3493.83 12295.76 15199.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16788.95 15693.12 13799.25 2785.62 12899.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS93.56 196.55 4297.84 992.68 21498.71 9778.11 32899.70 1797.71 7898.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12195.90 997.21 6098.90 7982.66 17499.93 3998.71 2098.80 9899.63 73
PGM-MVS95.85 6695.65 6996.45 10399.50 4789.77 15798.22 19198.90 1189.19 14796.74 7698.95 7385.91 12699.92 4093.94 11899.46 6499.66 69
CP-MVS96.22 5396.15 5196.42 10599.67 1389.62 16199.70 1797.61 10090.07 12596.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11492.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
MAR-MVS94.43 10294.09 9795.45 13799.10 8087.47 20398.39 17997.79 6288.37 17794.02 12699.17 3978.64 21299.91 4292.48 14098.85 9498.96 126
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
无先验98.52 15897.82 5587.20 20899.90 4487.64 19199.85 33
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28197.75 6685.50 23596.86 6999.01 6488.59 7099.90 4487.64 19199.60 5699.79 38
PAPM_NR95.43 7495.05 8096.57 9899.42 5490.14 14398.58 15597.51 12490.65 10692.44 14598.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
新几何197.40 5198.92 8992.51 9597.77 6585.52 23396.69 7899.06 5688.08 7999.89 4784.88 21999.62 5199.79 38
testdata299.88 4884.16 228
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14693.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS88.75 21686.56 23295.34 14198.92 8987.45 20497.64 22993.52 32970.55 34381.49 26897.25 15374.43 23499.88 4871.14 32194.09 16498.67 153
XVS96.47 4596.37 4196.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
X-MVStestdata90.69 18088.66 20096.77 8499.62 2590.66 13499.43 5597.58 10892.41 6996.86 6929.59 37187.37 9299.87 5195.65 8599.43 6899.78 42
PVSNet_BlendedMVS93.36 12993.20 11893.84 19098.77 9591.61 10599.47 4498.04 4091.44 8994.21 12292.63 25483.50 15499.87 5197.41 4983.37 24890.05 314
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10599.88 198.04 4093.64 4394.21 12297.76 13383.50 15499.87 5197.41 4997.75 12098.79 145
QAPM91.41 16689.49 18397.17 6195.66 19193.42 7298.60 15197.51 12480.92 30581.39 27097.41 15072.89 25099.87 5182.33 24998.68 10298.21 177
CSCG94.87 8894.71 8395.36 14099.54 4086.49 22499.34 6898.15 3482.71 28190.15 17899.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
PLCcopyleft91.07 394.23 10694.01 9994.87 15399.17 7587.49 20299.25 7396.55 20188.43 17591.26 16098.21 12485.92 12599.86 5689.77 16697.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS91.02 494.56 10193.92 10696.46 10297.16 13990.76 13098.39 17997.11 17193.92 3288.66 19198.33 11678.14 21499.85 5895.02 10198.57 10698.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU94.31 10593.35 11497.20 6097.03 14794.71 4698.62 14795.54 27495.61 1497.21 6098.47 11171.88 25899.84 5988.38 18297.46 12697.04 206
CNLPA93.64 12292.74 12796.36 10898.96 8790.01 15399.19 7595.89 25186.22 22689.40 18698.85 8280.66 19799.84 5988.57 18096.92 13199.24 107
MVS93.92 11192.28 13598.83 695.69 18896.82 796.22 28198.17 3184.89 24784.34 22698.61 10179.32 20599.83 6193.88 12099.43 6899.86 32
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5396.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D90.19 18888.72 19894.59 16598.97 8586.33 23196.90 25696.60 19574.96 33284.06 22998.74 8975.78 22399.83 6174.93 30097.57 12197.62 191
3Dnovator87.35 1193.17 13691.77 14997.37 5495.41 20093.07 8098.82 12297.85 5291.53 8582.56 24597.58 14471.97 25799.82 6491.01 15299.23 8299.22 110
OpenMVScopyleft85.28 1490.75 17888.84 19596.48 10193.58 25893.51 7098.80 12497.41 14382.59 28278.62 29897.49 14768.00 28399.82 6484.52 22498.55 10796.11 220
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3694.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
CHOSEN 1792x268894.35 10493.82 10895.95 12397.40 13188.74 17998.41 17398.27 2592.18 7491.43 15796.40 18678.88 20799.81 6693.59 12697.81 11699.30 100
131493.44 12591.98 14497.84 3395.24 20394.38 5496.22 28197.92 4790.18 11982.28 25197.71 13777.63 21799.80 6891.94 14498.67 10399.34 97
3Dnovator+87.72 893.43 12691.84 14798.17 2195.73 18795.08 3298.92 11397.04 17891.42 9281.48 26997.60 14274.60 23099.79 6990.84 15598.97 8999.64 71
PCF-MVS89.78 591.26 16789.63 18096.16 11595.44 19891.58 10795.29 30096.10 23185.07 24282.75 24197.45 14878.28 21399.78 7080.60 26395.65 15497.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10499.58 3096.54 20395.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 13799.81 35
MVS_111021_LR95.78 6995.94 5695.28 14398.19 11187.69 19698.80 12499.26 793.39 4695.04 11098.69 9684.09 14999.76 7296.96 6099.06 8598.38 167
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12599.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 27995.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13589.60 13798.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7291.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
原ACMM196.18 11299.03 8390.08 14697.63 9788.98 15497.00 6498.97 6688.14 7899.71 7788.23 18499.62 5198.76 149
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14688.44 17498.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
9.1496.87 2799.34 5899.50 4197.49 12989.41 14498.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12189.85 12898.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
PVSNet_Blended_VisFu94.67 9694.11 9696.34 10997.14 14091.10 12099.32 7097.43 14192.10 7791.53 15696.38 18983.29 16099.68 8293.42 13096.37 13898.25 174
UGNet91.91 15890.85 16495.10 14597.06 14588.69 18098.01 20998.24 2792.41 6992.39 14693.61 23360.52 31799.68 8288.14 18597.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST999.57 3793.17 7699.38 6197.66 8689.57 13998.39 3099.18 3790.88 3599.66 84
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8690.18 11998.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1296.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10899.75 1397.66 8694.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
sss94.85 8993.94 10597.58 4396.43 16394.09 6098.93 11199.16 889.50 14295.27 10597.85 12881.50 19099.65 8892.79 13994.02 16598.99 123
F-COLMAP92.07 15591.75 15093.02 20498.16 11282.89 28898.79 12895.97 23586.54 22287.92 19697.80 13178.69 21199.65 8885.97 20695.93 14996.53 215
test_899.55 3993.07 8099.37 6497.64 9290.18 11998.36 3299.19 3490.94 3399.64 90
abl_694.63 9894.48 8795.09 14698.61 10186.96 21798.06 20796.97 18489.31 14595.86 9598.56 10379.82 19999.64 9094.53 11398.65 10498.66 156
PVSNet87.13 1293.69 11892.83 12696.28 11097.99 11690.22 14299.38 6198.93 1091.42 9293.66 13297.68 13871.29 26599.64 9087.94 18897.20 12998.98 124
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9290.38 11397.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
agg_prior99.54 4092.66 8897.64 9297.98 4499.61 93
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17195.83 1098.97 1399.14 4582.48 17799.60 9598.60 2399.08 8498.00 182
MSDG88.29 22386.37 23494.04 18496.90 14986.15 23796.52 27094.36 31577.89 32379.22 29396.95 16969.72 27199.59 9673.20 31492.58 18096.37 218
ZD-MVS99.67 1393.28 7497.61 10087.78 19497.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12193.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
CPTT-MVS94.60 9994.43 8995.09 14699.66 1586.85 21999.44 5297.47 13283.22 27194.34 12198.96 7182.50 17599.55 9894.81 10599.50 6298.88 135
Anonymous20240521188.84 21087.03 22594.27 17498.14 11384.18 27298.44 16995.58 27276.79 32789.34 18796.88 17353.42 34099.54 10087.53 19387.12 22199.09 118
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4592.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4692.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1590.33 11597.16 6297.43 14979.19 20699.53 10196.91 6191.85 19299.24 107
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10298.71 13197.90 4892.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
Anonymous2024052987.66 23385.58 24693.92 18797.59 12785.01 26298.13 19897.13 16966.69 35588.47 19396.01 19655.09 33499.51 10587.00 19684.12 24097.23 200
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 10998.71 13197.88 4992.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
test1297.83 3499.33 6494.45 5197.55 11497.56 5188.60 6899.50 10799.71 3899.55 81
MSP-MVS97.77 998.18 296.53 10099.54 4090.14 14399.41 5897.70 7995.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior397.07 2797.09 1997.01 6599.58 3391.77 9999.57 3197.57 11191.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
test_prior97.01 6599.58 3391.77 9997.57 11199.49 10899.79 38
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 13989.02 15397.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31298.74 1392.42 6895.65 10094.76 21286.52 11599.49 10895.29 9692.97 17399.53 82
EI-MVSNet-UG-set95.43 7495.29 7395.86 12599.07 8289.87 15498.43 17097.80 6091.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13698.22 176
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11499.14 7690.33 13898.49 16597.82 5591.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13098.70 152
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1392.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 17799.50 86
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1686.76 21794.65 11697.74 13587.78 8299.44 11695.57 9092.61 17899.44 91
hse-mvs392.47 14991.95 14594.05 18397.13 14185.01 26298.36 18198.08 3793.85 3796.27 8496.73 17883.19 16399.43 11895.81 8268.09 33497.70 187
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 13990.08 12498.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ab-mvs91.05 17289.17 18996.69 9295.96 18191.72 10292.62 32597.23 15785.61 23289.74 18393.89 22668.55 27799.42 11991.09 15087.84 21798.92 133
SR-MVS96.13 5596.16 5096.07 11799.42 5489.04 16898.59 15397.33 15190.44 11196.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
PatchMatch-RL91.47 16490.54 17294.26 17598.20 10986.36 23096.94 25497.14 16787.75 19688.98 18995.75 19871.80 26099.40 12280.92 26097.39 12797.02 207
XVG-OURS-SEG-HR90.95 17490.66 17191.83 22895.18 20981.14 30995.92 28895.92 24388.40 17690.33 17697.85 12870.66 26899.38 12392.83 13888.83 21494.98 224
HPM-MVScopyleft95.41 7695.22 7695.99 12099.29 6689.14 16699.17 7997.09 17587.28 20795.40 10398.48 11084.93 14099.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test117295.92 6396.07 5395.46 13699.42 5487.24 21498.51 16197.24 15590.29 11696.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
SR-MVS-dyc-post95.75 7295.86 5995.41 13999.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17895.51 1698.86 1699.11 5382.19 18399.36 12598.59 2598.14 11398.00 182
APD-MVS_3200maxsize95.64 7395.65 6995.62 13199.24 7087.80 19598.42 17197.22 15888.93 15896.64 8198.98 6585.49 13299.36 12596.68 6299.27 7999.70 61
XVG-OURS90.83 17690.49 17391.86 22795.23 20481.25 30695.79 29695.92 24388.96 15590.02 18098.03 12771.60 26299.35 12991.06 15187.78 21894.98 224
PVSNet_083.28 1687.31 23785.16 25193.74 19394.78 22984.59 26798.91 11498.69 1889.81 13078.59 30093.23 24261.95 31299.34 13094.75 10655.72 35697.30 197
HPM-MVS_fast94.89 8794.62 8495.70 13099.11 7888.44 18599.14 8997.11 17185.82 23095.69 9998.47 11183.46 15699.32 13193.16 13399.63 5099.35 95
114514_t94.06 10793.05 12197.06 6399.08 8192.26 9798.97 10897.01 18282.58 28392.57 14398.22 12280.68 19699.30 13289.34 17299.02 8799.63 73
RPMNet85.07 27081.88 28794.64 16393.47 26086.24 23284.97 35097.21 15964.85 35790.76 16778.80 35480.95 19599.27 13353.76 35892.17 18898.41 164
VDD-MVS91.24 17090.18 17694.45 16997.08 14485.84 24798.40 17696.10 23186.99 20993.36 13498.16 12554.27 33799.20 13496.59 6690.63 20898.31 173
AllTest84.97 27183.12 27590.52 25696.82 15178.84 32195.89 28992.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
TestCases90.52 25696.82 15178.84 32192.17 34177.96 32175.94 31295.50 20155.48 33099.18 13571.15 31987.14 21993.55 230
xiu_mvs_v1_base_debu94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
xiu_mvs_v1_base_debi94.73 9293.98 10096.99 6895.19 20695.24 2498.62 14796.50 20592.99 5397.52 5298.83 8372.37 25399.15 13797.03 5596.74 13296.58 212
OMC-MVS93.90 11393.62 11194.73 16098.63 9987.00 21698.04 20896.56 20092.19 7392.46 14498.73 9079.49 20499.14 14092.16 14394.34 16398.03 181
COLMAP_ROBcopyleft82.69 1884.54 27782.82 27789.70 27796.72 15578.85 32095.89 28992.83 33571.55 34177.54 30795.89 19759.40 32099.14 14067.26 33388.26 21591.11 286
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net93.30 13192.62 13095.34 14196.27 16888.53 18495.88 29196.97 18490.90 10395.37 10497.07 16482.38 18099.10 14283.91 23494.86 15998.38 167
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12794.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs95.02 8693.96 10398.20 2097.53 13095.92 1698.71 13196.19 22691.78 8195.86 9598.49 10979.53 20399.03 14496.12 7691.42 20099.66 69
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12791.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19499.51 85
旧先验298.67 14085.75 23198.96 1498.97 14693.84 121
LFMVS92.23 15390.84 16596.42 10598.24 10891.08 12298.24 19096.22 22383.39 26994.74 11498.31 11761.12 31698.85 14794.45 11492.82 17499.32 98
TAPA-MVS87.50 990.35 18389.05 19194.25 17698.48 10585.17 25998.42 17196.58 19982.44 28787.24 20398.53 10482.77 17098.84 14859.09 35397.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS89.43 692.12 15490.83 16795.98 12195.40 20190.78 12999.81 598.06 3891.23 9785.63 21693.66 23290.63 4098.78 14991.22 14971.85 32498.36 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet90.08 19288.54 20594.69 16194.41 23687.68 19798.21 19396.40 21076.21 32893.33 13597.75 13454.93 33598.77 15094.71 10990.96 20397.61 192
thres20093.69 11892.59 13196.97 7297.76 11994.74 4499.35 6699.36 289.23 14691.21 16296.97 16883.42 15798.77 15085.08 21590.96 20397.39 195
thres100view90093.34 13092.15 14096.90 7797.62 12494.84 3999.06 9899.36 287.96 18990.47 17396.78 17683.29 16098.75 15284.11 23090.69 20597.12 201
tfpn200view993.43 12692.27 13696.90 7797.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20597.12 201
thres40093.39 12892.27 13696.73 8897.68 12294.84 3999.18 7799.36 288.45 17190.79 16596.90 17183.31 15898.75 15284.11 23090.69 20596.61 210
testdata95.26 14498.20 10987.28 20997.60 10285.21 23898.48 2899.15 4388.15 7798.72 15590.29 16099.45 6699.78 42
thres600view793.18 13592.00 14396.75 8697.62 12494.92 3499.07 9699.36 287.96 18990.47 17396.78 17683.29 16098.71 15682.93 24490.47 20996.61 210
1112_ss92.71 14191.55 15396.20 11195.56 19491.12 11898.48 16694.69 30688.29 18086.89 20898.50 10787.02 10198.66 15784.75 22089.77 21298.81 143
Test_1112_low_res92.27 15290.97 16196.18 11295.53 19691.10 12098.47 16894.66 30788.28 18186.83 21093.50 23887.00 10298.65 15884.69 22189.74 21398.80 144
cascas90.93 17589.33 18795.76 12895.69 18893.03 8298.99 10696.59 19680.49 30786.79 21194.45 21565.23 30198.60 15993.52 12792.18 18795.66 223
thisisatest051594.75 9194.19 9396.43 10496.13 18092.64 9299.47 4497.60 10287.55 20393.17 13697.59 14394.71 1198.42 16088.28 18393.20 17098.24 175
thisisatest053094.00 10993.52 11295.43 13895.76 18690.02 15298.99 10697.60 10286.58 22091.74 15097.36 15194.78 1098.34 16186.37 20392.48 18197.94 184
tttt051793.30 13193.01 12394.17 17895.57 19386.47 22598.51 16197.60 10285.99 22890.55 17097.19 15894.80 998.31 16285.06 21691.86 19197.74 186
RPSCF85.33 26885.55 24784.67 32494.63 23362.28 35993.73 31493.76 32374.38 33585.23 22097.06 16564.09 30498.31 16280.98 25886.08 22893.41 232
gm-plane-assit94.69 23188.14 18988.22 18297.20 15798.29 16490.79 156
MVS_Test93.67 12192.67 12996.69 9296.72 15592.66 8897.22 24596.03 23387.69 20095.12 10994.03 22081.55 18998.28 16589.17 17696.46 13599.14 114
EIA-MVS95.11 8395.27 7494.64 16396.34 16686.51 22399.59 2996.62 19392.51 6294.08 12598.64 9886.05 12498.24 16695.07 10098.50 10899.18 112
tpmvs89.16 20287.76 21293.35 19897.19 13884.75 26690.58 34097.36 14981.99 29284.56 22389.31 31883.98 15098.17 16774.85 30290.00 21197.12 201
BH-RMVSNet91.25 16989.99 17795.03 15096.75 15488.55 18298.65 14294.95 29987.74 19787.74 19797.80 13168.27 28098.14 16880.53 26497.49 12598.41 164
ETV-MVS96.00 5896.00 5496.00 11996.56 15991.05 12399.63 2596.61 19493.26 4997.39 5798.30 11886.62 11198.13 16998.07 4197.57 12198.82 142
PMMVS93.62 12393.90 10792.79 20996.79 15381.40 30298.85 11996.81 18891.25 9696.82 7598.15 12677.02 22098.13 16993.15 13496.30 14198.83 141
casdiffmvs93.98 11093.43 11395.61 13395.07 21889.86 15598.80 12495.84 25690.98 10092.74 14297.66 14079.71 20098.10 17194.72 10895.37 15598.87 137
DWT-MVSNet_test94.36 10393.95 10495.62 13196.99 14889.47 16396.62 26897.38 14690.96 10193.07 13997.27 15293.73 1598.09 17285.86 21193.65 16899.29 101
lupinMVS96.32 5095.94 5697.44 4895.05 21994.87 3799.86 296.50 20593.82 3998.04 4198.77 8685.52 12998.09 17296.98 5998.97 8999.37 94
TR-MVS90.77 17789.44 18494.76 15796.31 16788.02 19397.92 21295.96 23785.52 23388.22 19597.23 15566.80 29298.09 17284.58 22392.38 18298.17 179
mvs-test191.57 16292.20 13889.70 27795.15 21074.34 33899.51 4095.40 28391.92 7891.02 16397.25 15374.27 23798.08 17589.45 16895.83 15096.67 209
diffmvs94.59 10094.19 9395.81 12695.54 19590.69 13298.70 13595.68 26591.61 8395.96 9097.81 13080.11 19898.06 17696.52 6895.76 15198.67 153
baseline294.04 10893.80 10994.74 15993.07 27090.25 14098.12 20098.16 3389.86 12786.53 21296.95 16995.56 598.05 17791.44 14794.53 16095.93 221
tpm cat188.89 20887.27 22193.76 19295.79 18485.32 25690.76 33897.09 17576.14 32985.72 21588.59 32182.92 16798.04 17876.96 28591.43 19997.90 185
baseline93.91 11293.30 11595.72 12995.10 21690.07 14797.48 23395.91 24891.03 9993.54 13397.68 13879.58 20198.02 17994.27 11695.14 15699.08 119
Effi-MVS+93.87 11493.15 11996.02 11895.79 18490.76 13096.70 26695.78 25886.98 21195.71 9897.17 16079.58 20198.01 18094.57 11296.09 14599.31 99
Vis-MVSNetpermissive92.64 14391.85 14695.03 15095.12 21288.23 18698.48 16696.81 18891.61 8392.16 14897.22 15671.58 26398.00 18185.85 21297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jason95.40 7794.86 8297.03 6492.91 27294.23 5699.70 1796.30 21693.56 4596.73 7798.52 10581.46 19297.91 18296.08 7898.47 10998.96 126
jason: jason.
BH-w/o92.32 15091.79 14893.91 18896.85 15086.18 23599.11 9495.74 26188.13 18484.81 22197.00 16777.26 21997.91 18289.16 17798.03 11497.64 188
ACMM86.95 1388.77 21588.22 20990.43 25893.61 25781.34 30498.50 16395.92 24387.88 19283.85 23195.20 20667.20 28997.89 18486.90 19984.90 23492.06 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM96.35 4895.94 5697.58 4394.10 24195.25 2398.93 11198.17 3194.26 2493.94 12798.72 9289.68 5797.88 18596.36 7299.29 7899.62 75
OPM-MVS89.76 19689.15 19091.57 23590.53 30185.58 25198.11 20295.93 24292.88 5886.05 21396.47 18567.06 29197.87 18689.29 17586.08 22891.26 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CMPMVSbinary58.40 2180.48 30180.11 30181.59 33685.10 34659.56 36194.14 31195.95 23968.54 35060.71 35693.31 23955.35 33397.87 18683.06 24384.85 23587.33 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 21788.24 20890.12 26693.91 25081.06 31098.50 16395.67 26689.43 14380.37 27795.55 20065.67 29897.83 18890.55 15884.51 23691.47 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline192.61 14591.28 15696.58 9797.05 14694.63 4897.72 22596.20 22489.82 12988.56 19296.85 17486.85 10497.82 18988.42 18180.10 26597.30 197
CLD-MVS91.06 17190.71 16992.10 22494.05 24486.10 23899.55 3496.29 21994.16 2784.70 22297.17 16069.62 27297.82 18994.74 10786.08 22892.39 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPP-MVSNet93.75 11793.67 11094.01 18595.86 18385.70 24998.67 14097.66 8684.46 25291.36 15997.18 15991.16 2997.79 19192.93 13693.75 16698.53 159
ACMH83.09 1784.60 27582.61 28590.57 25493.18 26882.94 28596.27 27694.92 30181.01 30372.61 33493.61 23356.54 32697.79 19174.31 30581.07 26190.99 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test88.86 20988.47 20690.06 26793.35 26580.95 31198.22 19195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
LGP-MVS_train90.06 26793.35 26580.95 31195.94 24087.73 19883.17 23796.11 19366.28 29697.77 19390.19 16185.19 23291.46 272
HQP4-MVS87.57 19897.77 19392.72 233
BH-untuned91.46 16590.84 16593.33 19996.51 16284.83 26598.84 12195.50 27686.44 22583.50 23296.70 17975.49 22597.77 19386.78 20197.81 11697.40 194
HQP-MVS91.50 16391.23 15792.29 21893.95 24586.39 22899.16 8096.37 21293.92 3287.57 19896.67 18073.34 24497.77 19393.82 12386.29 22392.72 233
HQP_MVS91.26 16790.95 16292.16 22293.84 25286.07 24099.02 10296.30 21693.38 4786.99 20596.52 18272.92 24897.75 19893.46 12886.17 22692.67 235
plane_prior596.30 21697.75 19893.46 12886.17 22692.67 235
tpmrst92.78 14092.16 13994.65 16296.27 16887.45 20491.83 32997.10 17489.10 15194.68 11590.69 28788.22 7597.73 20089.78 16591.80 19398.77 148
ACMH+83.78 1584.21 28182.56 28689.15 29093.73 25679.16 31896.43 27194.28 31681.09 30274.00 32394.03 22054.58 33697.67 20176.10 29378.81 27090.63 302
XVG-ACMP-BASELINE85.86 25984.95 25588.57 29789.90 30777.12 33194.30 30895.60 27187.40 20682.12 25492.99 25053.42 34097.66 20285.02 21783.83 24290.92 290
USDC84.74 27282.93 27690.16 26591.73 28883.54 27995.00 30293.30 33188.77 16273.19 32793.30 24053.62 33997.65 20375.88 29581.54 26089.30 324
TESTMET0.1,193.82 11593.26 11795.49 13595.21 20590.25 14099.15 8697.54 11789.18 14891.79 14994.87 21089.13 6197.63 20486.21 20496.29 14298.60 157
LTVRE_ROB81.71 1984.59 27682.72 28290.18 26492.89 27383.18 28393.15 31994.74 30378.99 31475.14 31992.69 25265.64 29997.63 20469.46 32681.82 25989.74 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MDTV_nov1_ep1390.47 17496.14 17788.55 18291.34 33397.51 12489.58 13892.24 14790.50 30086.99 10397.61 20677.64 28192.34 183
test-LLR93.11 13792.68 12894.40 17094.94 22487.27 21099.15 8697.25 15390.21 11791.57 15394.04 21884.89 14197.58 20785.94 20896.13 14398.36 170
test-mter93.27 13392.89 12594.40 17094.94 22487.27 21099.15 8697.25 15388.95 15691.57 15394.04 21888.03 8097.58 20785.94 20896.13 14398.36 170
TinyColmap80.42 30277.94 30687.85 30392.09 28178.58 32393.74 31389.94 35774.99 33169.77 33891.78 26546.09 35397.58 20765.17 34177.89 27587.38 338
Fast-Effi-MVS+91.72 16090.79 16894.49 16795.89 18287.40 20699.54 3895.70 26385.01 24589.28 18895.68 19977.75 21697.57 21083.22 23995.06 15798.51 160
CS-MVS95.86 6595.81 6295.98 12195.62 19291.26 11199.80 796.12 23092.15 7697.93 4798.45 11485.88 12797.55 21197.56 4798.80 9899.14 114
CS-MVS-test95.20 8195.27 7494.98 15295.67 19088.17 18799.62 2795.84 25691.52 8697.42 5598.30 11885.07 13897.51 21295.81 8298.20 11299.26 105
CostFormer92.89 13992.48 13394.12 18094.99 22185.89 24492.89 32197.00 18386.98 21195.00 11190.78 28390.05 5197.51 21292.92 13791.73 19598.96 126
AUN-MVS90.17 18989.50 18292.19 22196.21 17182.67 29297.76 22397.53 11888.05 18691.67 15196.15 19183.10 16597.47 21488.11 18666.91 33896.43 216
HyFIR lowres test93.68 12093.29 11694.87 15397.57 12888.04 19298.18 19598.47 2187.57 20291.24 16195.05 20885.49 13297.46 21593.22 13292.82 17499.10 117
EPMVS92.59 14691.59 15295.59 13497.22 13790.03 15191.78 33098.04 4090.42 11291.66 15290.65 29086.49 11797.46 21581.78 25596.31 14099.28 103
hse-mvs291.67 16191.51 15492.15 22396.22 17082.61 29497.74 22497.53 11893.85 3796.27 8496.15 19183.19 16397.44 21795.81 8266.86 33996.40 217
dp90.16 19088.83 19694.14 17996.38 16586.42 22691.57 33197.06 17784.76 24988.81 19090.19 30884.29 14797.43 21875.05 29991.35 20298.56 158
DROMVSNet95.09 8495.17 7794.84 15595.42 19988.17 18799.48 4295.92 24391.47 8897.34 5998.36 11582.77 17097.41 21997.24 5298.58 10598.94 131
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30498.36 2392.50 6395.62 10197.52 14597.92 197.38 22098.31 3798.80 9898.20 178
ITE_SJBPF87.93 30292.26 27876.44 33293.47 33087.67 20179.95 28495.49 20356.50 32797.38 22075.24 29882.33 25689.98 316
MS-PatchMatch86.75 24485.92 24189.22 28891.97 28282.47 29596.91 25596.14 22983.74 26277.73 30593.53 23658.19 32297.37 22276.75 28898.35 11087.84 335
IS-MVSNet93.00 13892.51 13294.49 16796.14 17787.36 20798.31 18695.70 26388.58 16690.17 17797.50 14683.02 16697.22 22387.06 19496.07 14798.90 134
tpm291.77 15991.09 15893.82 19194.83 22885.56 25292.51 32697.16 16684.00 25893.83 13090.66 28987.54 8897.17 22487.73 19091.55 19898.72 150
TDRefinement78.01 31475.31 31786.10 31670.06 36573.84 34093.59 31791.58 35074.51 33473.08 33091.04 27849.63 35097.12 22574.88 30159.47 35087.33 340
test_post46.00 36787.37 9297.11 226
PatchmatchNetpermissive92.05 15691.04 16095.06 14896.17 17589.04 16891.26 33497.26 15289.56 14090.64 16990.56 29688.35 7497.11 22679.53 26796.07 14799.03 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet89.10 20387.66 21593.45 19792.56 27491.02 12497.97 21198.32 2486.92 21386.03 21492.01 26068.84 27697.10 22890.92 15375.34 28892.23 245
XXY-MVS87.75 23086.02 23992.95 20690.46 30289.70 15997.71 22795.90 24984.02 25780.95 27194.05 21767.51 28797.10 22885.16 21478.41 27292.04 254
GeoE90.60 18289.56 18193.72 19495.10 21685.43 25399.41 5894.94 30083.96 26087.21 20496.83 17574.37 23597.05 23080.50 26593.73 16798.67 153
ADS-MVSNet88.99 20587.30 22094.07 18196.21 17187.56 20187.15 34396.78 19083.01 27489.91 18187.27 33078.87 20897.01 23174.20 30692.27 18597.64 188
GA-MVS90.10 19188.69 19994.33 17292.44 27687.97 19499.08 9596.26 22089.65 13486.92 20793.11 24768.09 28196.96 23282.54 24890.15 21098.05 180
JIA-IIPM85.97 25784.85 25789.33 28793.23 26773.68 34185.05 34997.13 16969.62 34791.56 15568.03 35888.03 8096.96 23277.89 28093.12 17197.34 196
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34297.74 6893.91 12896.40 18696.56 296.94 23495.08 9998.95 9299.20 111
nrg03090.23 18688.87 19494.32 17391.53 29093.54 6998.79 12895.89 25188.12 18584.55 22494.61 21478.80 21096.88 23592.35 14275.21 28992.53 237
Effi-MVS+-dtu89.97 19490.68 17087.81 30495.15 21071.98 34897.87 21695.40 28391.92 7887.57 19891.44 27174.27 23796.84 23689.45 16893.10 17294.60 226
gg-mvs-nofinetune90.00 19387.71 21496.89 8296.15 17694.69 4785.15 34897.74 6868.32 35192.97 14160.16 36096.10 396.84 23693.89 11998.87 9399.14 114
patchmatchnet-post84.86 34188.73 6796.81 238
SCA90.64 18189.25 18894.83 15694.95 22388.83 17596.26 27897.21 15990.06 12690.03 17990.62 29266.61 29396.81 23883.16 24094.36 16298.84 138
D2MVS87.96 22687.39 21889.70 27791.84 28683.40 28098.31 18698.49 2088.04 18778.23 30490.26 30273.57 24296.79 24084.21 22783.53 24688.90 329
VPNet88.30 22286.57 23193.49 19691.95 28391.35 11098.18 19597.20 16388.61 16484.52 22594.89 20962.21 31196.76 24189.34 17272.26 32192.36 240
RRT_test8_iter0591.04 17390.40 17592.95 20696.20 17489.75 15898.97 10896.38 21188.52 16782.00 25993.51 23790.69 3996.73 24290.43 15976.91 28392.38 239
UniMVSNet_ETH3D85.65 26683.79 27291.21 23990.41 30380.75 31395.36 29995.78 25878.76 31781.83 26694.33 21649.86 34896.66 24384.30 22583.52 24796.22 219
LF4IMVS81.94 29681.17 29584.25 32687.23 33968.87 35693.35 31891.93 34683.35 27075.40 31793.00 24949.25 35196.65 24478.88 27478.11 27487.22 342
test_part188.43 22086.68 23093.67 19597.56 12992.40 9698.12 20096.55 20182.26 28980.31 27893.16 24574.59 23296.62 24585.00 21872.61 31691.99 255
Anonymous2023121184.72 27382.65 28490.91 24697.71 12184.55 26897.28 24096.67 19266.88 35479.18 29490.87 28258.47 32196.60 24682.61 24774.20 30291.59 268
MVS-HIRNet79.01 30875.13 31890.66 25393.82 25481.69 30085.16 34793.75 32454.54 35974.17 32259.15 36257.46 32496.58 24763.74 34294.38 16193.72 229
EI-MVSNet89.87 19589.38 18691.36 23894.32 23785.87 24597.61 23096.59 19685.10 24085.51 21797.10 16281.30 19496.56 24883.85 23683.03 25091.64 261
MVSTER92.71 14192.32 13493.86 18997.29 13592.95 8699.01 10496.59 19690.09 12385.51 21794.00 22294.61 1496.56 24890.77 15783.03 25092.08 251
V4287.00 24085.68 24590.98 24589.91 30686.08 23998.32 18595.61 27083.67 26582.72 24290.67 28874.00 24196.53 25081.94 25474.28 30190.32 307
Fast-Effi-MVS+-dtu88.84 21088.59 20389.58 28193.44 26378.18 32698.65 14294.62 30888.46 17084.12 22895.37 20568.91 27496.52 25182.06 25291.70 19694.06 227
cl-mvsnet289.57 19988.79 19791.91 22697.94 11787.62 19997.98 21096.51 20485.03 24382.37 25091.79 26483.65 15296.50 25285.96 20777.89 27591.61 266
PS-MVSNAJss89.54 20089.05 19191.00 24488.77 32284.36 27097.39 23495.97 23588.47 16881.88 26293.80 22882.48 17796.50 25289.34 17283.34 24992.15 248
TAMVS92.62 14492.09 14294.20 17794.10 24187.68 19798.41 17396.97 18487.53 20489.74 18396.04 19584.77 14496.49 25488.97 17992.31 18498.42 163
tfpnnormal83.65 28781.35 29390.56 25591.37 29388.06 19197.29 23997.87 5178.51 31876.20 30990.91 28064.78 30296.47 25561.71 34873.50 30987.13 343
v2v48287.27 23885.76 24391.78 23489.59 31187.58 20098.56 15695.54 27484.53 25182.51 24691.78 26573.11 24796.47 25582.07 25174.14 30491.30 280
MVP-Stereo86.61 24885.83 24288.93 29588.70 32483.85 27796.07 28694.41 31482.15 29175.64 31691.96 26267.65 28696.45 25777.20 28498.72 10186.51 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RRT_MVS91.95 15791.09 15894.53 16696.71 15795.12 3198.64 14496.23 22289.04 15285.24 21995.06 20787.71 8596.43 25889.10 17882.06 25792.05 253
Patchmatch-test86.25 25484.06 26992.82 20894.42 23582.88 28982.88 35794.23 31771.58 34079.39 29190.62 29289.00 6496.42 25963.03 34591.37 20199.16 113
v886.11 25584.45 26491.10 24189.99 30586.85 21997.24 24395.36 28781.99 29279.89 28589.86 31174.53 23396.39 26078.83 27572.32 32090.05 314
Vis-MVSNet (Re-imp)93.26 13493.00 12494.06 18296.14 17786.71 22298.68 13896.70 19188.30 17989.71 18597.64 14185.43 13596.39 26088.06 18796.32 13999.08 119
test_post190.74 33941.37 37085.38 13696.36 26283.16 240
v14419286.40 25184.89 25690.91 24689.48 31585.59 25098.21 19395.43 28282.45 28682.62 24490.58 29572.79 25196.36 26278.45 27774.04 30590.79 294
v114486.83 24385.31 25091.40 23689.75 30987.21 21598.31 18695.45 27983.22 27182.70 24390.78 28373.36 24396.36 26279.49 26874.69 29590.63 302
jajsoiax87.35 23686.51 23389.87 27187.75 33681.74 29997.03 25195.98 23488.47 16880.15 28193.80 22861.47 31396.36 26289.44 17084.47 23891.50 270
CDS-MVSNet93.47 12493.04 12294.76 15794.75 23089.45 16498.82 12297.03 18087.91 19190.97 16496.48 18489.06 6296.36 26289.50 16792.81 17698.49 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n84.42 28082.75 28189.43 28688.15 32981.86 29896.75 26395.67 26680.53 30678.38 30289.43 31669.89 26996.35 26773.83 31072.13 32290.07 312
UniMVSNet (Re)89.50 20188.32 20793.03 20392.21 27990.96 12698.90 11598.39 2289.13 14983.22 23492.03 25881.69 18896.34 26886.79 20072.53 31791.81 258
v119286.32 25384.71 26091.17 24089.53 31486.40 22798.13 19895.44 28182.52 28582.42 24890.62 29271.58 26396.33 26977.23 28274.88 29290.79 294
v14886.38 25285.06 25290.37 26289.47 31684.10 27398.52 15895.48 27783.80 26180.93 27290.22 30674.60 23096.31 27080.92 26071.55 32690.69 300
mvs_tets87.09 23986.22 23689.71 27687.87 33281.39 30396.73 26595.90 24988.19 18379.99 28393.61 23359.96 31996.31 27089.40 17184.34 23991.43 274
v124085.77 26384.11 26890.73 25289.26 31885.15 26097.88 21595.23 29681.89 29582.16 25390.55 29769.60 27396.31 27075.59 29774.87 29390.72 299
v192192086.02 25684.44 26590.77 25189.32 31785.20 25798.10 20395.35 28882.19 29082.25 25290.71 28570.73 26696.30 27376.85 28774.49 29790.80 293
v1085.73 26484.01 27090.87 24990.03 30486.73 22197.20 24695.22 29781.25 30079.85 28689.75 31273.30 24696.28 27476.87 28672.64 31589.61 321
EG-PatchMatch MVS79.92 30377.59 30786.90 31187.06 34077.90 33096.20 28494.06 32074.61 33366.53 35088.76 32040.40 36196.20 27567.02 33483.66 24586.61 344
miper_enhance_ethall90.33 18489.70 17992.22 21997.12 14288.93 17398.35 18295.96 23788.60 16583.14 23992.33 25687.38 9196.18 27686.49 20277.89 27591.55 269
FIs90.70 17989.87 17893.18 20192.29 27791.12 11898.17 19798.25 2689.11 15083.44 23394.82 21182.26 18196.17 27787.76 18982.76 25292.25 243
mvs_anonymous92.50 14891.65 15195.06 14896.60 15889.64 16097.06 25096.44 20986.64 21984.14 22793.93 22482.49 17696.17 27791.47 14696.08 14699.35 95
OurMVSNet-221017-084.13 28483.59 27385.77 31887.81 33370.24 35194.89 30393.65 32786.08 22776.53 30893.28 24161.41 31496.14 27980.95 25977.69 28090.93 289
pm-mvs184.68 27482.78 28090.40 25989.58 31285.18 25897.31 23794.73 30481.93 29476.05 31192.01 26065.48 30096.11 28078.75 27669.14 33189.91 317
OpenMVS_ROBcopyleft73.86 2077.99 31575.06 31986.77 31283.81 35177.94 32996.38 27391.53 35167.54 35368.38 34187.13 33343.94 35596.08 28155.03 35781.83 25886.29 347
pmmvs487.58 23586.17 23891.80 23089.58 31288.92 17497.25 24295.28 28982.54 28480.49 27693.17 24475.62 22496.05 28282.75 24578.90 26990.42 305
MVSFormer94.71 9594.08 9896.61 9595.05 21994.87 3797.77 22196.17 22786.84 21498.04 4198.52 10585.52 12995.99 28389.83 16398.97 8998.96 126
test_djsdf88.26 22487.73 21389.84 27388.05 33182.21 29697.77 22196.17 22786.84 21482.41 24991.95 26372.07 25695.99 28389.83 16384.50 23791.32 279
FC-MVSNet-test90.22 18789.40 18592.67 21591.78 28789.86 15597.89 21398.22 2888.81 16182.96 24094.66 21381.90 18795.96 28585.89 21082.52 25592.20 247
anonymousdsp86.69 24585.75 24489.53 28286.46 34282.94 28596.39 27295.71 26283.97 25979.63 28890.70 28668.85 27595.94 28686.01 20584.02 24189.72 319
UniMVSNet_NR-MVSNet89.60 19888.55 20492.75 21292.17 28090.07 14798.74 13098.15 3488.37 17783.21 23593.98 22382.86 16895.93 28786.95 19772.47 31892.25 243
DU-MVS88.83 21287.51 21692.79 20991.46 29190.07 14798.71 13197.62 9988.87 16083.21 23593.68 23074.63 22895.93 28786.95 19772.47 31892.36 240
WR-MVS88.54 21987.22 22392.52 21691.93 28589.50 16298.56 15697.84 5386.99 20981.87 26393.81 22774.25 23995.92 28985.29 21374.43 29892.12 249
miper_ehance_all_eth88.94 20788.12 21091.40 23695.32 20286.93 21897.85 21795.55 27384.19 25581.97 26091.50 27084.16 14895.91 29084.69 22177.89 27591.36 277
eth_miper_zixun_eth87.76 22987.00 22690.06 26794.67 23282.65 29397.02 25395.37 28684.19 25581.86 26591.58 26981.47 19195.90 29183.24 23873.61 30791.61 266
bset_n11_16_dypcd89.07 20487.85 21192.76 21186.16 34490.66 13497.30 23895.62 26889.78 13183.94 23093.15 24674.85 22795.89 29291.34 14878.48 27191.74 259
cl-mvsnet____87.82 22786.79 22990.89 24894.88 22685.43 25397.81 21895.24 29382.91 28080.71 27491.22 27581.97 18695.84 29381.34 25775.06 29091.40 276
NR-MVSNet87.74 23286.00 24092.96 20591.46 29190.68 13396.65 26797.42 14288.02 18873.42 32693.68 23077.31 21895.83 29484.26 22671.82 32592.36 240
cl-mvsnet187.82 22786.81 22890.87 24994.87 22785.39 25597.81 21895.22 29782.92 27980.76 27391.31 27481.99 18495.81 29581.36 25675.04 29191.42 275
pmmvs679.90 30477.31 30987.67 30584.17 34978.13 32795.86 29393.68 32667.94 35272.67 33389.62 31450.98 34695.75 29674.80 30366.04 34089.14 327
cl_fuxian88.19 22587.23 22291.06 24294.97 22286.17 23697.72 22595.38 28583.43 26881.68 26791.37 27282.81 16995.72 29784.04 23373.70 30691.29 281
EPNet_dtu92.28 15192.15 14092.70 21397.29 13584.84 26498.64 14497.82 5592.91 5693.02 14097.02 16685.48 13495.70 29872.25 31894.89 15897.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm89.67 19788.95 19391.82 22992.54 27581.43 30192.95 32095.92 24387.81 19390.50 17289.44 31584.99 13995.65 29983.67 23782.71 25398.38 167
IterMVS-LS88.34 22187.44 21791.04 24394.10 24185.85 24698.10 20395.48 27785.12 23982.03 25891.21 27681.35 19395.63 30083.86 23575.73 28791.63 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo82.63 29281.58 29085.79 31788.12 33071.01 35095.17 30192.54 33784.33 25472.93 33292.08 25760.41 31895.61 30174.47 30474.15 30390.75 297
pmmvs585.87 25884.40 26790.30 26388.53 32684.23 27198.60 15193.71 32581.53 29780.29 27992.02 25964.51 30395.52 30282.04 25378.34 27391.15 284
lessismore_v085.08 32085.59 34569.28 35490.56 35567.68 34590.21 30754.21 33895.46 30373.88 30862.64 34590.50 304
TranMVSNet+NR-MVSNet87.75 23086.31 23592.07 22590.81 29888.56 18198.33 18397.18 16487.76 19581.87 26393.90 22572.45 25295.43 30483.13 24271.30 32892.23 245
Baseline_NR-MVSNet85.83 26084.82 25888.87 29688.73 32383.34 28198.63 14691.66 34880.41 31082.44 24791.35 27374.63 22895.42 30584.13 22971.39 32787.84 335
FMVSNet388.81 21487.08 22493.99 18696.52 16194.59 4998.08 20596.20 22485.85 22982.12 25491.60 26874.05 24095.40 30679.04 27180.24 26291.99 255
WR-MVS_H86.53 25085.49 24889.66 28091.04 29683.31 28297.53 23298.20 3084.95 24679.64 28790.90 28178.01 21595.33 30776.29 29272.81 31390.35 306
FMVSNet286.90 24184.79 25993.24 20095.11 21392.54 9497.67 22895.86 25582.94 27680.55 27591.17 27762.89 30895.29 30877.23 28279.71 26891.90 257
CP-MVSNet86.54 24985.45 24989.79 27591.02 29782.78 29197.38 23697.56 11385.37 23679.53 29093.03 24871.86 25995.25 30979.92 26673.43 31191.34 278
TransMVSNet (Re)81.97 29579.61 30389.08 29189.70 31084.01 27497.26 24191.85 34778.84 31573.07 33191.62 26767.17 29095.21 31067.50 33259.46 35188.02 334
PS-CasMVS85.81 26184.58 26389.49 28590.77 29982.11 29797.20 24697.36 14984.83 24879.12 29592.84 25167.42 28895.16 31178.39 27873.25 31291.21 283
test_040278.81 31076.33 31486.26 31491.18 29478.44 32595.88 29191.34 35268.55 34970.51 33789.91 31052.65 34294.99 31247.14 36179.78 26785.34 352
GBi-Net86.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
test186.67 24684.96 25391.80 23095.11 21388.81 17696.77 26095.25 29082.94 27682.12 25490.25 30362.89 30894.97 31379.04 27180.24 26291.62 263
FMVSNet183.94 28681.32 29491.80 23091.94 28488.81 17696.77 26095.25 29077.98 31978.25 30390.25 30350.37 34794.97 31373.27 31377.81 27991.62 263
PEN-MVS85.21 26983.93 27189.07 29289.89 30881.31 30597.09 24997.24 15584.45 25378.66 29792.68 25368.44 27994.87 31675.98 29470.92 32991.04 287
PatchT85.44 26783.19 27492.22 21993.13 26983.00 28483.80 35696.37 21270.62 34290.55 17079.63 35384.81 14394.87 31658.18 35591.59 19798.79 145
CR-MVSNet88.83 21287.38 21993.16 20293.47 26086.24 23284.97 35094.20 31888.92 15990.76 16786.88 33484.43 14594.82 31870.64 32292.17 18898.41 164
Patchmtry83.61 28981.64 28989.50 28393.36 26482.84 29084.10 35394.20 31869.47 34879.57 28986.88 33484.43 14594.78 31968.48 33074.30 30090.88 291
ambc79.60 33872.76 36456.61 36376.20 35992.01 34568.25 34280.23 35123.34 36594.73 32073.78 31160.81 34887.48 337
MVS_030484.13 28482.66 28388.52 29893.07 27080.15 31495.81 29598.21 2979.27 31286.85 20986.40 33741.33 35994.69 32176.36 29186.69 22290.73 298
miper_lstm_enhance86.90 24186.20 23789.00 29394.53 23481.19 30796.74 26495.24 29382.33 28880.15 28190.51 29981.99 18494.68 32280.71 26273.58 30891.12 285
ppachtmachnet_test83.63 28881.57 29189.80 27489.01 31985.09 26197.13 24894.50 31078.84 31576.14 31091.00 27969.78 27094.61 32363.40 34374.36 29989.71 320
our_test_384.47 27982.80 27889.50 28389.01 31983.90 27697.03 25194.56 30981.33 29975.36 31890.52 29871.69 26194.54 32468.81 32876.84 28490.07 312
LCM-MVSNet-Re88.59 21888.61 20188.51 29995.53 19672.68 34696.85 25888.43 36288.45 17173.14 32890.63 29175.82 22294.38 32592.95 13595.71 15398.48 162
ET-MVSNet_ETH3D92.56 14791.45 15595.88 12496.39 16494.13 5999.46 4996.97 18492.18 7466.94 34898.29 12094.65 1394.28 32694.34 11583.82 24499.24 107
DTE-MVSNet84.14 28382.80 27888.14 30188.95 32179.87 31796.81 25996.24 22183.50 26777.60 30692.52 25567.89 28594.24 32772.64 31769.05 33290.32 307
N_pmnet70.19 32469.87 32671.12 34288.24 32830.63 37595.85 29428.70 37570.18 34568.73 34086.55 33664.04 30593.81 32853.12 35973.46 31088.94 328
UnsupCasMVSNet_bld73.85 32270.14 32584.99 32179.44 36075.73 33388.53 34195.24 29370.12 34661.94 35574.81 35541.41 35893.62 32968.65 32951.13 36085.62 349
K. test v381.04 29979.77 30284.83 32287.41 33770.23 35295.60 29893.93 32283.70 26467.51 34689.35 31755.76 32893.58 33076.67 28968.03 33590.67 301
IterMVS-SCA-FT85.73 26484.64 26289.00 29393.46 26282.90 28796.27 27694.70 30585.02 24478.62 29890.35 30166.61 29393.33 33179.38 27077.36 28290.76 296
KD-MVS_2432*160082.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
miper_refine_blended82.98 29080.52 29890.38 26094.32 23788.98 17092.87 32295.87 25380.46 30873.79 32487.49 32782.76 17293.29 33270.56 32346.53 36188.87 330
IterMVS85.81 26184.67 26189.22 28893.51 25983.67 27896.32 27594.80 30285.09 24178.69 29690.17 30966.57 29593.17 33479.48 26977.42 28190.81 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet90.30 18590.91 16388.46 30094.32 23773.58 34297.61 23097.59 10690.16 12288.43 19497.10 16276.83 22192.86 33582.64 24693.54 16998.93 132
PM-MVS74.88 32072.85 32380.98 33778.98 36164.75 35890.81 33785.77 36580.95 30468.23 34382.81 34529.08 36492.84 33676.54 29062.46 34685.36 351
MIMVSNet84.48 27881.83 28892.42 21791.73 28887.36 20785.52 34694.42 31381.40 29881.91 26187.58 32551.92 34392.81 33773.84 30988.15 21697.08 205
ADS-MVSNet287.62 23486.88 22789.86 27296.21 17179.14 31987.15 34392.99 33283.01 27489.91 18187.27 33078.87 20892.80 33874.20 30692.27 18597.64 188
DeepMVS_CXcopyleft76.08 33990.74 30051.65 36790.84 35486.47 22457.89 35787.98 32235.88 36292.60 33965.77 33965.06 34283.97 354
Patchmatch-RL test81.90 29780.13 30087.23 30980.71 35870.12 35384.07 35488.19 36383.16 27370.57 33682.18 34787.18 9892.59 34082.28 25062.78 34498.98 124
pmmvs-eth3d78.71 31176.16 31586.38 31380.25 35981.19 30794.17 31092.13 34377.97 32066.90 34982.31 34655.76 32892.56 34173.63 31262.31 34785.38 350
Anonymous2024052178.63 31276.90 31283.82 32782.82 35372.86 34495.72 29793.57 32873.55 33872.17 33584.79 34249.69 34992.51 34265.29 34074.50 29686.09 348
MDA-MVSNet-bldmvs77.82 31674.75 32087.03 31088.33 32778.52 32496.34 27492.85 33475.57 33048.87 36187.89 32357.32 32592.49 34360.79 34964.80 34390.08 311
new_pmnet76.02 31873.71 32182.95 33083.88 35072.85 34591.26 33492.26 34070.44 34462.60 35481.37 34847.64 35292.32 34461.85 34772.10 32383.68 355
UnsupCasMVSNet_eth78.90 30976.67 31385.58 31982.81 35474.94 33691.98 32896.31 21584.64 25065.84 35287.71 32451.33 34492.23 34572.89 31656.50 35589.56 322
Anonymous2023120680.76 30079.42 30484.79 32384.78 34772.98 34396.53 26992.97 33379.56 31174.33 32088.83 31961.27 31592.15 34660.59 35075.92 28689.24 326
MDA-MVSNet_test_wron79.65 30677.05 31087.45 30787.79 33580.13 31596.25 27994.44 31173.87 33651.80 35987.47 32968.04 28292.12 34766.02 33767.79 33690.09 310
YYNet179.64 30777.04 31187.43 30887.80 33479.98 31696.23 28094.44 31173.83 33751.83 35887.53 32667.96 28492.07 34866.00 33867.75 33790.23 309
test0.0.03 188.96 20688.61 20190.03 27091.09 29584.43 26998.97 10897.02 18190.21 11780.29 27996.31 19084.89 14191.93 34972.98 31585.70 23193.73 228
testgi82.29 29381.00 29686.17 31587.24 33874.84 33797.39 23491.62 34988.63 16375.85 31595.42 20446.07 35491.55 35066.87 33679.94 26692.12 249
EU-MVSNet84.19 28284.42 26683.52 32988.64 32567.37 35796.04 28795.76 26085.29 23778.44 30193.18 24370.67 26791.48 35175.79 29675.98 28591.70 260
DIV-MVS_2432*160077.47 31775.88 31682.24 33181.59 35568.93 35592.83 32494.02 32177.03 32573.14 32883.39 34455.44 33290.42 35267.95 33157.53 35387.38 338
CL-MVSNet_2432*160079.89 30578.34 30584.54 32581.56 35675.01 33596.88 25795.62 26881.10 30175.86 31485.81 34068.49 27890.26 35363.21 34456.51 35488.35 332
DSMNet-mixed81.60 29881.43 29282.10 33384.36 34860.79 36093.63 31686.74 36479.00 31379.32 29287.15 33263.87 30689.78 35466.89 33591.92 19095.73 222
FMVSNet582.29 29380.54 29787.52 30693.79 25584.01 27493.73 31492.47 33876.92 32674.27 32186.15 33963.69 30789.24 35569.07 32774.79 29489.29 325
new-patchmatchnet74.80 32172.40 32481.99 33478.36 36272.20 34794.44 30692.36 33977.06 32463.47 35379.98 35251.04 34588.85 35660.53 35154.35 35784.92 353
pmmvs372.86 32369.76 32782.17 33273.86 36374.19 33994.20 30989.01 36164.23 35867.72 34480.91 35041.48 35788.65 35762.40 34654.02 35883.68 355
MIMVSNet175.92 31973.30 32283.81 32881.29 35775.57 33492.26 32792.05 34473.09 33967.48 34786.18 33840.87 36087.64 35855.78 35670.68 33088.21 333
test20.0378.51 31377.48 30881.62 33583.07 35271.03 34996.11 28592.83 33581.66 29669.31 33989.68 31357.53 32387.29 35958.65 35468.47 33386.53 345
LCM-MVSNet60.07 32756.37 33071.18 34154.81 37148.67 36882.17 35889.48 36037.95 36249.13 36069.12 35613.75 37281.76 36059.28 35251.63 35983.10 357
Gipumacopyleft54.77 32952.22 33362.40 34686.50 34159.37 36250.20 36490.35 35636.52 36341.20 36449.49 36418.33 36881.29 36132.10 36465.34 34146.54 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS258.97 32855.07 33170.69 34362.72 36655.37 36585.97 34580.52 36849.48 36045.94 36268.31 35715.73 37080.78 36249.79 36037.12 36375.91 358
FPMVS61.57 32660.32 32965.34 34460.14 36942.44 37091.02 33689.72 35944.15 36142.63 36380.93 34919.02 36680.59 36342.50 36272.76 31473.00 359
test_method70.10 32568.66 32874.41 34086.30 34355.84 36494.47 30589.82 35835.18 36466.15 35184.75 34330.54 36377.96 36470.40 32560.33 34989.44 323
PMVScopyleft41.42 2345.67 33242.50 33555.17 34834.28 37432.37 37366.24 36278.71 37030.72 36522.04 37059.59 3614.59 37377.85 36527.49 36558.84 35255.29 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high50.71 33146.17 33464.33 34544.27 37352.30 36676.13 36078.73 36964.95 35627.37 36755.23 36314.61 37167.74 36636.01 36318.23 36672.95 360
tmp_tt53.66 33052.86 33256.05 34732.75 37541.97 37173.42 36176.12 37121.91 36939.68 36596.39 18842.59 35665.10 36778.00 27914.92 36861.08 361
MVEpermissive44.00 2241.70 33337.64 33853.90 34949.46 37243.37 36965.09 36366.66 37226.19 36825.77 36948.53 3653.58 37563.35 36826.15 36627.28 36454.97 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33440.93 33641.29 35061.97 36733.83 37284.00 35565.17 37327.17 36627.56 36646.72 36617.63 36960.41 36919.32 36718.82 36529.61 365
EMVS39.96 33539.88 33740.18 35159.57 37032.12 37484.79 35264.57 37426.27 36726.14 36844.18 36918.73 36759.29 37017.03 36817.67 36729.12 366
wuyk23d16.71 33816.73 34216.65 35260.15 36825.22 37641.24 3655.17 3766.56 3705.48 3733.61 3723.64 37422.72 37115.20 3699.52 3691.99 369
test12316.58 33919.47 3417.91 3533.59 3775.37 37794.32 3071.39 3782.49 37213.98 37244.60 3682.91 3762.65 37211.35 3710.57 37115.70 367
testmvs18.81 33723.05 3406.10 3544.48 3762.29 37897.78 2203.00 3773.27 37118.60 37162.71 3591.53 3772.49 37314.26 3701.80 37013.50 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k22.52 33630.03 3390.00 3550.00 3780.00 3790.00 36697.17 1650.00 3730.00 37498.77 8674.35 2360.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas6.87 3419.16 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37382.48 1770.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.21 34010.94 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37498.50 1070.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.50 4788.94 17299.55 3497.47 13291.32 9498.12 37
test_one_060199.59 3194.89 3597.64 9293.14 5098.93 1599.45 1693.45 17
eth-test20.00 378
eth-test0.00 378
RE-MVS-def95.70 6699.22 7187.26 21298.40 17697.21 15989.63 13596.67 7998.97 6685.24 13796.62 6399.31 7699.60 77
IU-MVS99.63 2195.38 2197.73 7295.54 1599.54 199.69 599.81 2399.99 1
save fliter99.34 5893.85 6399.65 2397.63 9795.69 11
test072699.66 1595.20 2999.77 997.70 7993.95 3099.35 499.54 393.18 21
GSMVS98.84 138
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 138
sam_mvs87.08 99
MTGPAbinary97.45 135
MTMP99.21 7491.09 353
test9_res98.60 2399.87 999.90 24
agg_prior297.84 4599.87 999.91 22
test_prior492.00 9899.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
新几何298.26 189
旧先验198.97 8592.90 8797.74 6899.15 4391.05 3299.33 7499.60 77
原ACMM298.69 136
test22298.32 10691.21 11398.08 20597.58 10883.74 26295.87 9499.02 6086.74 10799.64 4799.81 35
segment_acmp90.56 42
testdata197.89 21392.43 65
plane_prior793.84 25285.73 248
plane_prior693.92 24986.02 24272.92 248
plane_prior496.52 182
plane_prior385.91 24393.65 4286.99 205
plane_prior299.02 10293.38 47
plane_prior193.90 251
plane_prior86.07 24099.14 8993.81 4086.26 225
n20.00 379
nn0.00 379
door-mid84.90 367
test1197.68 83
door85.30 366
HQP5-MVS86.39 228
HQP-NCC93.95 24599.16 8093.92 3287.57 198
ACMP_Plane93.95 24599.16 8093.92 3287.57 198
BP-MVS93.82 123
HQP3-MVS96.37 21286.29 223
HQP2-MVS73.34 244
NP-MVS93.94 24886.22 23496.67 180
MDTV_nov1_ep13_2view91.17 11791.38 33287.45 20593.08 13886.67 11087.02 19598.95 130
ACMMP++_ref82.64 254
ACMMP++83.83 242
Test By Simon83.62 153